Change gdb_realpath to return a unique_xmalloc_ptr
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2017 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "psympriv.h"
57 #include <sys/stat.h>
58 #include "completer.h"
59 #include "vec.h"
60 #include "c-lang.h"
61 #include "go-lang.h"
62 #include "valprint.h"
63 #include "gdbcore.h" /* for gnutarget */
64 #include "gdb/gdb-index.h"
65 #include <ctype.h>
66 #include "gdb_bfd.h"
67 #include "f-lang.h"
68 #include "source.h"
69 #include "filestuff.h"
70 #include "build-id.h"
71 #include "namespace.h"
72 #include "common/gdb_unlinker.h"
73 #include "common/function-view.h"
74 #include "common/gdb_optional.h"
75 #include "common/underlying.h"
76 #include "common/byte-vector.h"
77 #include "filename-seen-cache.h"
78 #include <fcntl.h>
79 #include <sys/types.h>
80 #include <algorithm>
81 #include <unordered_set>
82 #include <unordered_map>
83
84 typedef struct symbol *symbolp;
85 DEF_VEC_P (symbolp);
86
87 /* When == 1, print basic high level tracing messages.
88 When > 1, be more verbose.
89 This is in contrast to the low level DIE reading of dwarf_die_debug. */
90 static unsigned int dwarf_read_debug = 0;
91
92 /* When non-zero, dump DIEs after they are read in. */
93 static unsigned int dwarf_die_debug = 0;
94
95 /* When non-zero, dump line number entries as they are read in. */
96 static unsigned int dwarf_line_debug = 0;
97
98 /* When non-zero, cross-check physname against demangler. */
99 static int check_physname = 0;
100
101 /* When non-zero, do not reject deprecated .gdb_index sections. */
102 static int use_deprecated_index_sections = 0;
103
104 static const struct objfile_data *dwarf2_objfile_data_key;
105
106 /* The "aclass" indices for various kinds of computed DWARF symbols. */
107
108 static int dwarf2_locexpr_index;
109 static int dwarf2_loclist_index;
110 static int dwarf2_locexpr_block_index;
111 static int dwarf2_loclist_block_index;
112
113 /* A descriptor for dwarf sections.
114
115 S.ASECTION, SIZE are typically initialized when the objfile is first
116 scanned. BUFFER, READIN are filled in later when the section is read.
117 If the section contained compressed data then SIZE is updated to record
118 the uncompressed size of the section.
119
120 DWP file format V2 introduces a wrinkle that is easiest to handle by
121 creating the concept of virtual sections contained within a real section.
122 In DWP V2 the sections of the input DWO files are concatenated together
123 into one section, but section offsets are kept relative to the original
124 input section.
125 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
126 the real section this "virtual" section is contained in, and BUFFER,SIZE
127 describe the virtual section. */
128
129 struct dwarf2_section_info
130 {
131 union
132 {
133 /* If this is a real section, the bfd section. */
134 asection *section;
135 /* If this is a virtual section, pointer to the containing ("real")
136 section. */
137 struct dwarf2_section_info *containing_section;
138 } s;
139 /* Pointer to section data, only valid if readin. */
140 const gdb_byte *buffer;
141 /* The size of the section, real or virtual. */
142 bfd_size_type size;
143 /* If this is a virtual section, the offset in the real section.
144 Only valid if is_virtual. */
145 bfd_size_type virtual_offset;
146 /* True if we have tried to read this section. */
147 char readin;
148 /* True if this is a virtual section, False otherwise.
149 This specifies which of s.section and s.containing_section to use. */
150 char is_virtual;
151 };
152
153 typedef struct dwarf2_section_info dwarf2_section_info_def;
154 DEF_VEC_O (dwarf2_section_info_def);
155
156 /* All offsets in the index are of this type. It must be
157 architecture-independent. */
158 typedef uint32_t offset_type;
159
160 DEF_VEC_I (offset_type);
161
162 /* Ensure only legit values are used. */
163 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
164 do { \
165 gdb_assert ((unsigned int) (value) <= 1); \
166 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
167 } while (0)
168
169 /* Ensure only legit values are used. */
170 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
171 do { \
172 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
173 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
174 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
175 } while (0)
176
177 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
178 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
179 do { \
180 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
181 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
182 } while (0)
183
184 /* A description of the mapped index. The file format is described in
185 a comment by the code that writes the index. */
186 struct mapped_index
187 {
188 /* Index data format version. */
189 int version;
190
191 /* The total length of the buffer. */
192 off_t total_size;
193
194 /* A pointer to the address table data. */
195 const gdb_byte *address_table;
196
197 /* Size of the address table data in bytes. */
198 offset_type address_table_size;
199
200 /* The symbol table, implemented as a hash table. */
201 const offset_type *symbol_table;
202
203 /* Size in slots, each slot is 2 offset_types. */
204 offset_type symbol_table_slots;
205
206 /* A pointer to the constant pool. */
207 const char *constant_pool;
208 };
209
210 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
211 DEF_VEC_P (dwarf2_per_cu_ptr);
212
213 struct tu_stats
214 {
215 int nr_uniq_abbrev_tables;
216 int nr_symtabs;
217 int nr_symtab_sharers;
218 int nr_stmt_less_type_units;
219 int nr_all_type_units_reallocs;
220 };
221
222 /* Collection of data recorded per objfile.
223 This hangs off of dwarf2_objfile_data_key. */
224
225 struct dwarf2_per_objfile
226 {
227 /* Construct a dwarf2_per_objfile for OBJFILE. NAMES points to the
228 dwarf2 section names, or is NULL if the standard ELF names are
229 used. */
230 dwarf2_per_objfile (struct objfile *objfile,
231 const dwarf2_debug_sections *names);
232
233 ~dwarf2_per_objfile ();
234
235 /* Disable copy. */
236 dwarf2_per_objfile (const dwarf2_per_objfile &) = delete;
237 void operator= (const dwarf2_per_objfile &) = delete;
238
239 /* Free all cached compilation units. */
240 void free_cached_comp_units ();
241 private:
242 /* This function is mapped across the sections and remembers the
243 offset and size of each of the debugging sections we are
244 interested in. */
245 void locate_sections (bfd *abfd, asection *sectp,
246 const dwarf2_debug_sections &names);
247
248 public:
249 dwarf2_section_info info {};
250 dwarf2_section_info abbrev {};
251 dwarf2_section_info line {};
252 dwarf2_section_info loc {};
253 dwarf2_section_info loclists {};
254 dwarf2_section_info macinfo {};
255 dwarf2_section_info macro {};
256 dwarf2_section_info str {};
257 dwarf2_section_info line_str {};
258 dwarf2_section_info ranges {};
259 dwarf2_section_info rnglists {};
260 dwarf2_section_info addr {};
261 dwarf2_section_info frame {};
262 dwarf2_section_info eh_frame {};
263 dwarf2_section_info gdb_index {};
264
265 VEC (dwarf2_section_info_def) *types = NULL;
266
267 /* Back link. */
268 struct objfile *objfile = NULL;
269
270 /* Table of all the compilation units. This is used to locate
271 the target compilation unit of a particular reference. */
272 struct dwarf2_per_cu_data **all_comp_units = NULL;
273
274 /* The number of compilation units in ALL_COMP_UNITS. */
275 int n_comp_units = 0;
276
277 /* The number of .debug_types-related CUs. */
278 int n_type_units = 0;
279
280 /* The number of elements allocated in all_type_units.
281 If there are skeleton-less TUs, we add them to all_type_units lazily. */
282 int n_allocated_type_units = 0;
283
284 /* The .debug_types-related CUs (TUs).
285 This is stored in malloc space because we may realloc it. */
286 struct signatured_type **all_type_units = NULL;
287
288 /* Table of struct type_unit_group objects.
289 The hash key is the DW_AT_stmt_list value. */
290 htab_t type_unit_groups {};
291
292 /* A table mapping .debug_types signatures to its signatured_type entry.
293 This is NULL if the .debug_types section hasn't been read in yet. */
294 htab_t signatured_types {};
295
296 /* Type unit statistics, to see how well the scaling improvements
297 are doing. */
298 struct tu_stats tu_stats {};
299
300 /* A chain of compilation units that are currently read in, so that
301 they can be freed later. */
302 dwarf2_per_cu_data *read_in_chain = NULL;
303
304 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
305 This is NULL if the table hasn't been allocated yet. */
306 htab_t dwo_files {};
307
308 /* True if we've checked for whether there is a DWP file. */
309 bool dwp_checked = false;
310
311 /* The DWP file if there is one, or NULL. */
312 struct dwp_file *dwp_file = NULL;
313
314 /* The shared '.dwz' file, if one exists. This is used when the
315 original data was compressed using 'dwz -m'. */
316 struct dwz_file *dwz_file = NULL;
317
318 /* A flag indicating whether this objfile has a section loaded at a
319 VMA of 0. */
320 bool has_section_at_zero = false;
321
322 /* True if we are using the mapped index,
323 or we are faking it for OBJF_READNOW's sake. */
324 bool using_index = false;
325
326 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
327 mapped_index *index_table = NULL;
328
329 /* When using index_table, this keeps track of all quick_file_names entries.
330 TUs typically share line table entries with a CU, so we maintain a
331 separate table of all line table entries to support the sharing.
332 Note that while there can be way more TUs than CUs, we've already
333 sorted all the TUs into "type unit groups", grouped by their
334 DW_AT_stmt_list value. Therefore the only sharing done here is with a
335 CU and its associated TU group if there is one. */
336 htab_t quick_file_names_table {};
337
338 /* Set during partial symbol reading, to prevent queueing of full
339 symbols. */
340 bool reading_partial_symbols = false;
341
342 /* Table mapping type DIEs to their struct type *.
343 This is NULL if not allocated yet.
344 The mapping is done via (CU/TU + DIE offset) -> type. */
345 htab_t die_type_hash {};
346
347 /* The CUs we recently read. */
348 VEC (dwarf2_per_cu_ptr) *just_read_cus = NULL;
349
350 /* Table containing line_header indexed by offset and offset_in_dwz. */
351 htab_t line_header_hash {};
352
353 /* Table containing all filenames. This is an optional because the
354 table is lazily constructed on first access. */
355 gdb::optional<filename_seen_cache> filenames_cache;
356 };
357
358 static struct dwarf2_per_objfile *dwarf2_per_objfile;
359
360 /* Default names of the debugging sections. */
361
362 /* Note that if the debugging section has been compressed, it might
363 have a name like .zdebug_info. */
364
365 static const struct dwarf2_debug_sections dwarf2_elf_names =
366 {
367 { ".debug_info", ".zdebug_info" },
368 { ".debug_abbrev", ".zdebug_abbrev" },
369 { ".debug_line", ".zdebug_line" },
370 { ".debug_loc", ".zdebug_loc" },
371 { ".debug_loclists", ".zdebug_loclists" },
372 { ".debug_macinfo", ".zdebug_macinfo" },
373 { ".debug_macro", ".zdebug_macro" },
374 { ".debug_str", ".zdebug_str" },
375 { ".debug_line_str", ".zdebug_line_str" },
376 { ".debug_ranges", ".zdebug_ranges" },
377 { ".debug_rnglists", ".zdebug_rnglists" },
378 { ".debug_types", ".zdebug_types" },
379 { ".debug_addr", ".zdebug_addr" },
380 { ".debug_frame", ".zdebug_frame" },
381 { ".eh_frame", NULL },
382 { ".gdb_index", ".zgdb_index" },
383 23
384 };
385
386 /* List of DWO/DWP sections. */
387
388 static const struct dwop_section_names
389 {
390 struct dwarf2_section_names abbrev_dwo;
391 struct dwarf2_section_names info_dwo;
392 struct dwarf2_section_names line_dwo;
393 struct dwarf2_section_names loc_dwo;
394 struct dwarf2_section_names loclists_dwo;
395 struct dwarf2_section_names macinfo_dwo;
396 struct dwarf2_section_names macro_dwo;
397 struct dwarf2_section_names str_dwo;
398 struct dwarf2_section_names str_offsets_dwo;
399 struct dwarf2_section_names types_dwo;
400 struct dwarf2_section_names cu_index;
401 struct dwarf2_section_names tu_index;
402 }
403 dwop_section_names =
404 {
405 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
406 { ".debug_info.dwo", ".zdebug_info.dwo" },
407 { ".debug_line.dwo", ".zdebug_line.dwo" },
408 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
409 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
410 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
411 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
412 { ".debug_str.dwo", ".zdebug_str.dwo" },
413 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
414 { ".debug_types.dwo", ".zdebug_types.dwo" },
415 { ".debug_cu_index", ".zdebug_cu_index" },
416 { ".debug_tu_index", ".zdebug_tu_index" },
417 };
418
419 /* local data types */
420
421 /* The data in a compilation unit header, after target2host
422 translation, looks like this. */
423 struct comp_unit_head
424 {
425 unsigned int length;
426 short version;
427 unsigned char addr_size;
428 unsigned char signed_addr_p;
429 sect_offset abbrev_sect_off;
430
431 /* Size of file offsets; either 4 or 8. */
432 unsigned int offset_size;
433
434 /* Size of the length field; either 4 or 12. */
435 unsigned int initial_length_size;
436
437 enum dwarf_unit_type unit_type;
438
439 /* Offset to the first byte of this compilation unit header in the
440 .debug_info section, for resolving relative reference dies. */
441 sect_offset sect_off;
442
443 /* Offset to first die in this cu from the start of the cu.
444 This will be the first byte following the compilation unit header. */
445 cu_offset first_die_cu_offset;
446
447 /* 64-bit signature of this type unit - it is valid only for
448 UNIT_TYPE DW_UT_type. */
449 ULONGEST signature;
450
451 /* For types, offset in the type's DIE of the type defined by this TU. */
452 cu_offset type_cu_offset_in_tu;
453 };
454
455 /* Type used for delaying computation of method physnames.
456 See comments for compute_delayed_physnames. */
457 struct delayed_method_info
458 {
459 /* The type to which the method is attached, i.e., its parent class. */
460 struct type *type;
461
462 /* The index of the method in the type's function fieldlists. */
463 int fnfield_index;
464
465 /* The index of the method in the fieldlist. */
466 int index;
467
468 /* The name of the DIE. */
469 const char *name;
470
471 /* The DIE associated with this method. */
472 struct die_info *die;
473 };
474
475 typedef struct delayed_method_info delayed_method_info;
476 DEF_VEC_O (delayed_method_info);
477
478 /* Internal state when decoding a particular compilation unit. */
479 struct dwarf2_cu
480 {
481 /* The objfile containing this compilation unit. */
482 struct objfile *objfile;
483
484 /* The header of the compilation unit. */
485 struct comp_unit_head header;
486
487 /* Base address of this compilation unit. */
488 CORE_ADDR base_address;
489
490 /* Non-zero if base_address has been set. */
491 int base_known;
492
493 /* The language we are debugging. */
494 enum language language;
495 const struct language_defn *language_defn;
496
497 const char *producer;
498
499 /* The generic symbol table building routines have separate lists for
500 file scope symbols and all all other scopes (local scopes). So
501 we need to select the right one to pass to add_symbol_to_list().
502 We do it by keeping a pointer to the correct list in list_in_scope.
503
504 FIXME: The original dwarf code just treated the file scope as the
505 first local scope, and all other local scopes as nested local
506 scopes, and worked fine. Check to see if we really need to
507 distinguish these in buildsym.c. */
508 struct pending **list_in_scope;
509
510 /* The abbrev table for this CU.
511 Normally this points to the abbrev table in the objfile.
512 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
513 struct abbrev_table *abbrev_table;
514
515 /* Hash table holding all the loaded partial DIEs
516 with partial_die->offset.SECT_OFF as hash. */
517 htab_t partial_dies;
518
519 /* Storage for things with the same lifetime as this read-in compilation
520 unit, including partial DIEs. */
521 struct obstack comp_unit_obstack;
522
523 /* When multiple dwarf2_cu structures are living in memory, this field
524 chains them all together, so that they can be released efficiently.
525 We will probably also want a generation counter so that most-recently-used
526 compilation units are cached... */
527 struct dwarf2_per_cu_data *read_in_chain;
528
529 /* Backlink to our per_cu entry. */
530 struct dwarf2_per_cu_data *per_cu;
531
532 /* How many compilation units ago was this CU last referenced? */
533 int last_used;
534
535 /* A hash table of DIE cu_offset for following references with
536 die_info->offset.sect_off as hash. */
537 htab_t die_hash;
538
539 /* Full DIEs if read in. */
540 struct die_info *dies;
541
542 /* A set of pointers to dwarf2_per_cu_data objects for compilation
543 units referenced by this one. Only set during full symbol processing;
544 partial symbol tables do not have dependencies. */
545 htab_t dependencies;
546
547 /* Header data from the line table, during full symbol processing. */
548 struct line_header *line_header;
549 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
550 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
551 this is the DW_TAG_compile_unit die for this CU. We'll hold on
552 to the line header as long as this DIE is being processed. See
553 process_die_scope. */
554 die_info *line_header_die_owner;
555
556 /* A list of methods which need to have physnames computed
557 after all type information has been read. */
558 VEC (delayed_method_info) *method_list;
559
560 /* To be copied to symtab->call_site_htab. */
561 htab_t call_site_htab;
562
563 /* Non-NULL if this CU came from a DWO file.
564 There is an invariant here that is important to remember:
565 Except for attributes copied from the top level DIE in the "main"
566 (or "stub") file in preparation for reading the DWO file
567 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
568 Either there isn't a DWO file (in which case this is NULL and the point
569 is moot), or there is and either we're not going to read it (in which
570 case this is NULL) or there is and we are reading it (in which case this
571 is non-NULL). */
572 struct dwo_unit *dwo_unit;
573
574 /* The DW_AT_addr_base attribute if present, zero otherwise
575 (zero is a valid value though).
576 Note this value comes from the Fission stub CU/TU's DIE. */
577 ULONGEST addr_base;
578
579 /* The DW_AT_ranges_base attribute if present, zero otherwise
580 (zero is a valid value though).
581 Note this value comes from the Fission stub CU/TU's DIE.
582 Also note that the value is zero in the non-DWO case so this value can
583 be used without needing to know whether DWO files are in use or not.
584 N.B. This does not apply to DW_AT_ranges appearing in
585 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
586 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
587 DW_AT_ranges_base *would* have to be applied, and we'd have to care
588 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
589 ULONGEST ranges_base;
590
591 /* Mark used when releasing cached dies. */
592 unsigned int mark : 1;
593
594 /* This CU references .debug_loc. See the symtab->locations_valid field.
595 This test is imperfect as there may exist optimized debug code not using
596 any location list and still facing inlining issues if handled as
597 unoptimized code. For a future better test see GCC PR other/32998. */
598 unsigned int has_loclist : 1;
599
600 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
601 if all the producer_is_* fields are valid. This information is cached
602 because profiling CU expansion showed excessive time spent in
603 producer_is_gxx_lt_4_6. */
604 unsigned int checked_producer : 1;
605 unsigned int producer_is_gxx_lt_4_6 : 1;
606 unsigned int producer_is_gcc_lt_4_3 : 1;
607 unsigned int producer_is_icc : 1;
608
609 /* When set, the file that we're processing is known to have
610 debugging info for C++ namespaces. GCC 3.3.x did not produce
611 this information, but later versions do. */
612
613 unsigned int processing_has_namespace_info : 1;
614 };
615
616 /* Persistent data held for a compilation unit, even when not
617 processing it. We put a pointer to this structure in the
618 read_symtab_private field of the psymtab. */
619
620 struct dwarf2_per_cu_data
621 {
622 /* The start offset and length of this compilation unit.
623 NOTE: Unlike comp_unit_head.length, this length includes
624 initial_length_size.
625 If the DIE refers to a DWO file, this is always of the original die,
626 not the DWO file. */
627 sect_offset sect_off;
628 unsigned int length;
629
630 /* DWARF standard version this data has been read from (such as 4 or 5). */
631 short dwarf_version;
632
633 /* Flag indicating this compilation unit will be read in before
634 any of the current compilation units are processed. */
635 unsigned int queued : 1;
636
637 /* This flag will be set when reading partial DIEs if we need to load
638 absolutely all DIEs for this compilation unit, instead of just the ones
639 we think are interesting. It gets set if we look for a DIE in the
640 hash table and don't find it. */
641 unsigned int load_all_dies : 1;
642
643 /* Non-zero if this CU is from .debug_types.
644 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
645 this is non-zero. */
646 unsigned int is_debug_types : 1;
647
648 /* Non-zero if this CU is from the .dwz file. */
649 unsigned int is_dwz : 1;
650
651 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
652 This flag is only valid if is_debug_types is true.
653 We can't read a CU directly from a DWO file: There are required
654 attributes in the stub. */
655 unsigned int reading_dwo_directly : 1;
656
657 /* Non-zero if the TU has been read.
658 This is used to assist the "Stay in DWO Optimization" for Fission:
659 When reading a DWO, it's faster to read TUs from the DWO instead of
660 fetching them from random other DWOs (due to comdat folding).
661 If the TU has already been read, the optimization is unnecessary
662 (and unwise - we don't want to change where gdb thinks the TU lives
663 "midflight").
664 This flag is only valid if is_debug_types is true. */
665 unsigned int tu_read : 1;
666
667 /* The section this CU/TU lives in.
668 If the DIE refers to a DWO file, this is always the original die,
669 not the DWO file. */
670 struct dwarf2_section_info *section;
671
672 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
673 of the CU cache it gets reset to NULL again. This is left as NULL for
674 dummy CUs (a CU header, but nothing else). */
675 struct dwarf2_cu *cu;
676
677 /* The corresponding objfile.
678 Normally we can get the objfile from dwarf2_per_objfile.
679 However we can enter this file with just a "per_cu" handle. */
680 struct objfile *objfile;
681
682 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
683 is active. Otherwise, the 'psymtab' field is active. */
684 union
685 {
686 /* The partial symbol table associated with this compilation unit,
687 or NULL for unread partial units. */
688 struct partial_symtab *psymtab;
689
690 /* Data needed by the "quick" functions. */
691 struct dwarf2_per_cu_quick_data *quick;
692 } v;
693
694 /* The CUs we import using DW_TAG_imported_unit. This is filled in
695 while reading psymtabs, used to compute the psymtab dependencies,
696 and then cleared. Then it is filled in again while reading full
697 symbols, and only deleted when the objfile is destroyed.
698
699 This is also used to work around a difference between the way gold
700 generates .gdb_index version <=7 and the way gdb does. Arguably this
701 is a gold bug. For symbols coming from TUs, gold records in the index
702 the CU that includes the TU instead of the TU itself. This breaks
703 dw2_lookup_symbol: It assumes that if the index says symbol X lives
704 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
705 will find X. Alas TUs live in their own symtab, so after expanding CU Y
706 we need to look in TU Z to find X. Fortunately, this is akin to
707 DW_TAG_imported_unit, so we just use the same mechanism: For
708 .gdb_index version <=7 this also records the TUs that the CU referred
709 to. Concurrently with this change gdb was modified to emit version 8
710 indices so we only pay a price for gold generated indices.
711 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
712 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
713 };
714
715 /* Entry in the signatured_types hash table. */
716
717 struct signatured_type
718 {
719 /* The "per_cu" object of this type.
720 This struct is used iff per_cu.is_debug_types.
721 N.B.: This is the first member so that it's easy to convert pointers
722 between them. */
723 struct dwarf2_per_cu_data per_cu;
724
725 /* The type's signature. */
726 ULONGEST signature;
727
728 /* Offset in the TU of the type's DIE, as read from the TU header.
729 If this TU is a DWO stub and the definition lives in a DWO file
730 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
731 cu_offset type_offset_in_tu;
732
733 /* Offset in the section of the type's DIE.
734 If the definition lives in a DWO file, this is the offset in the
735 .debug_types.dwo section.
736 The value is zero until the actual value is known.
737 Zero is otherwise not a valid section offset. */
738 sect_offset type_offset_in_section;
739
740 /* Type units are grouped by their DW_AT_stmt_list entry so that they
741 can share them. This points to the containing symtab. */
742 struct type_unit_group *type_unit_group;
743
744 /* The type.
745 The first time we encounter this type we fully read it in and install it
746 in the symbol tables. Subsequent times we only need the type. */
747 struct type *type;
748
749 /* Containing DWO unit.
750 This field is valid iff per_cu.reading_dwo_directly. */
751 struct dwo_unit *dwo_unit;
752 };
753
754 typedef struct signatured_type *sig_type_ptr;
755 DEF_VEC_P (sig_type_ptr);
756
757 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
758 This includes type_unit_group and quick_file_names. */
759
760 struct stmt_list_hash
761 {
762 /* The DWO unit this table is from or NULL if there is none. */
763 struct dwo_unit *dwo_unit;
764
765 /* Offset in .debug_line or .debug_line.dwo. */
766 sect_offset line_sect_off;
767 };
768
769 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
770 an object of this type. */
771
772 struct type_unit_group
773 {
774 /* dwarf2read.c's main "handle" on a TU symtab.
775 To simplify things we create an artificial CU that "includes" all the
776 type units using this stmt_list so that the rest of the code still has
777 a "per_cu" handle on the symtab.
778 This PER_CU is recognized by having no section. */
779 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
780 struct dwarf2_per_cu_data per_cu;
781
782 /* The TUs that share this DW_AT_stmt_list entry.
783 This is added to while parsing type units to build partial symtabs,
784 and is deleted afterwards and not used again. */
785 VEC (sig_type_ptr) *tus;
786
787 /* The compunit symtab.
788 Type units in a group needn't all be defined in the same source file,
789 so we create an essentially anonymous symtab as the compunit symtab. */
790 struct compunit_symtab *compunit_symtab;
791
792 /* The data used to construct the hash key. */
793 struct stmt_list_hash hash;
794
795 /* The number of symtabs from the line header.
796 The value here must match line_header.num_file_names. */
797 unsigned int num_symtabs;
798
799 /* The symbol tables for this TU (obtained from the files listed in
800 DW_AT_stmt_list).
801 WARNING: The order of entries here must match the order of entries
802 in the line header. After the first TU using this type_unit_group, the
803 line header for the subsequent TUs is recreated from this. This is done
804 because we need to use the same symtabs for each TU using the same
805 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
806 there's no guarantee the line header doesn't have duplicate entries. */
807 struct symtab **symtabs;
808 };
809
810 /* These sections are what may appear in a (real or virtual) DWO file. */
811
812 struct dwo_sections
813 {
814 struct dwarf2_section_info abbrev;
815 struct dwarf2_section_info line;
816 struct dwarf2_section_info loc;
817 struct dwarf2_section_info loclists;
818 struct dwarf2_section_info macinfo;
819 struct dwarf2_section_info macro;
820 struct dwarf2_section_info str;
821 struct dwarf2_section_info str_offsets;
822 /* In the case of a virtual DWO file, these two are unused. */
823 struct dwarf2_section_info info;
824 VEC (dwarf2_section_info_def) *types;
825 };
826
827 /* CUs/TUs in DWP/DWO files. */
828
829 struct dwo_unit
830 {
831 /* Backlink to the containing struct dwo_file. */
832 struct dwo_file *dwo_file;
833
834 /* The "id" that distinguishes this CU/TU.
835 .debug_info calls this "dwo_id", .debug_types calls this "signature".
836 Since signatures came first, we stick with it for consistency. */
837 ULONGEST signature;
838
839 /* The section this CU/TU lives in, in the DWO file. */
840 struct dwarf2_section_info *section;
841
842 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
843 sect_offset sect_off;
844 unsigned int length;
845
846 /* For types, offset in the type's DIE of the type defined by this TU. */
847 cu_offset type_offset_in_tu;
848 };
849
850 /* include/dwarf2.h defines the DWP section codes.
851 It defines a max value but it doesn't define a min value, which we
852 use for error checking, so provide one. */
853
854 enum dwp_v2_section_ids
855 {
856 DW_SECT_MIN = 1
857 };
858
859 /* Data for one DWO file.
860
861 This includes virtual DWO files (a virtual DWO file is a DWO file as it
862 appears in a DWP file). DWP files don't really have DWO files per se -
863 comdat folding of types "loses" the DWO file they came from, and from
864 a high level view DWP files appear to contain a mass of random types.
865 However, to maintain consistency with the non-DWP case we pretend DWP
866 files contain virtual DWO files, and we assign each TU with one virtual
867 DWO file (generally based on the line and abbrev section offsets -
868 a heuristic that seems to work in practice). */
869
870 struct dwo_file
871 {
872 /* The DW_AT_GNU_dwo_name attribute.
873 For virtual DWO files the name is constructed from the section offsets
874 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
875 from related CU+TUs. */
876 const char *dwo_name;
877
878 /* The DW_AT_comp_dir attribute. */
879 const char *comp_dir;
880
881 /* The bfd, when the file is open. Otherwise this is NULL.
882 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
883 bfd *dbfd;
884
885 /* The sections that make up this DWO file.
886 Remember that for virtual DWO files in DWP V2, these are virtual
887 sections (for lack of a better name). */
888 struct dwo_sections sections;
889
890 /* The CUs in the file.
891 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
892 an extension to handle LLVM's Link Time Optimization output (where
893 multiple source files may be compiled into a single object/dwo pair). */
894 htab_t cus;
895
896 /* Table of TUs in the file.
897 Each element is a struct dwo_unit. */
898 htab_t tus;
899 };
900
901 /* These sections are what may appear in a DWP file. */
902
903 struct dwp_sections
904 {
905 /* These are used by both DWP version 1 and 2. */
906 struct dwarf2_section_info str;
907 struct dwarf2_section_info cu_index;
908 struct dwarf2_section_info tu_index;
909
910 /* These are only used by DWP version 2 files.
911 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
912 sections are referenced by section number, and are not recorded here.
913 In DWP version 2 there is at most one copy of all these sections, each
914 section being (effectively) comprised of the concatenation of all of the
915 individual sections that exist in the version 1 format.
916 To keep the code simple we treat each of these concatenated pieces as a
917 section itself (a virtual section?). */
918 struct dwarf2_section_info abbrev;
919 struct dwarf2_section_info info;
920 struct dwarf2_section_info line;
921 struct dwarf2_section_info loc;
922 struct dwarf2_section_info macinfo;
923 struct dwarf2_section_info macro;
924 struct dwarf2_section_info str_offsets;
925 struct dwarf2_section_info types;
926 };
927
928 /* These sections are what may appear in a virtual DWO file in DWP version 1.
929 A virtual DWO file is a DWO file as it appears in a DWP file. */
930
931 struct virtual_v1_dwo_sections
932 {
933 struct dwarf2_section_info abbrev;
934 struct dwarf2_section_info line;
935 struct dwarf2_section_info loc;
936 struct dwarf2_section_info macinfo;
937 struct dwarf2_section_info macro;
938 struct dwarf2_section_info str_offsets;
939 /* Each DWP hash table entry records one CU or one TU.
940 That is recorded here, and copied to dwo_unit.section. */
941 struct dwarf2_section_info info_or_types;
942 };
943
944 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
945 In version 2, the sections of the DWO files are concatenated together
946 and stored in one section of that name. Thus each ELF section contains
947 several "virtual" sections. */
948
949 struct virtual_v2_dwo_sections
950 {
951 bfd_size_type abbrev_offset;
952 bfd_size_type abbrev_size;
953
954 bfd_size_type line_offset;
955 bfd_size_type line_size;
956
957 bfd_size_type loc_offset;
958 bfd_size_type loc_size;
959
960 bfd_size_type macinfo_offset;
961 bfd_size_type macinfo_size;
962
963 bfd_size_type macro_offset;
964 bfd_size_type macro_size;
965
966 bfd_size_type str_offsets_offset;
967 bfd_size_type str_offsets_size;
968
969 /* Each DWP hash table entry records one CU or one TU.
970 That is recorded here, and copied to dwo_unit.section. */
971 bfd_size_type info_or_types_offset;
972 bfd_size_type info_or_types_size;
973 };
974
975 /* Contents of DWP hash tables. */
976
977 struct dwp_hash_table
978 {
979 uint32_t version, nr_columns;
980 uint32_t nr_units, nr_slots;
981 const gdb_byte *hash_table, *unit_table;
982 union
983 {
984 struct
985 {
986 const gdb_byte *indices;
987 } v1;
988 struct
989 {
990 /* This is indexed by column number and gives the id of the section
991 in that column. */
992 #define MAX_NR_V2_DWO_SECTIONS \
993 (1 /* .debug_info or .debug_types */ \
994 + 1 /* .debug_abbrev */ \
995 + 1 /* .debug_line */ \
996 + 1 /* .debug_loc */ \
997 + 1 /* .debug_str_offsets */ \
998 + 1 /* .debug_macro or .debug_macinfo */)
999 int section_ids[MAX_NR_V2_DWO_SECTIONS];
1000 const gdb_byte *offsets;
1001 const gdb_byte *sizes;
1002 } v2;
1003 } section_pool;
1004 };
1005
1006 /* Data for one DWP file. */
1007
1008 struct dwp_file
1009 {
1010 /* Name of the file. */
1011 const char *name;
1012
1013 /* File format version. */
1014 int version;
1015
1016 /* The bfd. */
1017 bfd *dbfd;
1018
1019 /* Section info for this file. */
1020 struct dwp_sections sections;
1021
1022 /* Table of CUs in the file. */
1023 const struct dwp_hash_table *cus;
1024
1025 /* Table of TUs in the file. */
1026 const struct dwp_hash_table *tus;
1027
1028 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
1029 htab_t loaded_cus;
1030 htab_t loaded_tus;
1031
1032 /* Table to map ELF section numbers to their sections.
1033 This is only needed for the DWP V1 file format. */
1034 unsigned int num_sections;
1035 asection **elf_sections;
1036 };
1037
1038 /* This represents a '.dwz' file. */
1039
1040 struct dwz_file
1041 {
1042 /* A dwz file can only contain a few sections. */
1043 struct dwarf2_section_info abbrev;
1044 struct dwarf2_section_info info;
1045 struct dwarf2_section_info str;
1046 struct dwarf2_section_info line;
1047 struct dwarf2_section_info macro;
1048 struct dwarf2_section_info gdb_index;
1049
1050 /* The dwz's BFD. */
1051 bfd *dwz_bfd;
1052 };
1053
1054 /* Struct used to pass misc. parameters to read_die_and_children, et
1055 al. which are used for both .debug_info and .debug_types dies.
1056 All parameters here are unchanging for the life of the call. This
1057 struct exists to abstract away the constant parameters of die reading. */
1058
1059 struct die_reader_specs
1060 {
1061 /* The bfd of die_section. */
1062 bfd* abfd;
1063
1064 /* The CU of the DIE we are parsing. */
1065 struct dwarf2_cu *cu;
1066
1067 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1068 struct dwo_file *dwo_file;
1069
1070 /* The section the die comes from.
1071 This is either .debug_info or .debug_types, or the .dwo variants. */
1072 struct dwarf2_section_info *die_section;
1073
1074 /* die_section->buffer. */
1075 const gdb_byte *buffer;
1076
1077 /* The end of the buffer. */
1078 const gdb_byte *buffer_end;
1079
1080 /* The value of the DW_AT_comp_dir attribute. */
1081 const char *comp_dir;
1082 };
1083
1084 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1085 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1086 const gdb_byte *info_ptr,
1087 struct die_info *comp_unit_die,
1088 int has_children,
1089 void *data);
1090
1091 /* A 1-based directory index. This is a strong typedef to prevent
1092 accidentally using a directory index as a 0-based index into an
1093 array/vector. */
1094 enum class dir_index : unsigned int {};
1095
1096 /* Likewise, a 1-based file name index. */
1097 enum class file_name_index : unsigned int {};
1098
1099 struct file_entry
1100 {
1101 file_entry () = default;
1102
1103 file_entry (const char *name_, dir_index d_index_,
1104 unsigned int mod_time_, unsigned int length_)
1105 : name (name_),
1106 d_index (d_index_),
1107 mod_time (mod_time_),
1108 length (length_)
1109 {}
1110
1111 /* Return the include directory at D_INDEX stored in LH. Returns
1112 NULL if D_INDEX is out of bounds. */
1113 const char *include_dir (const line_header *lh) const;
1114
1115 /* The file name. Note this is an observing pointer. The memory is
1116 owned by debug_line_buffer. */
1117 const char *name {};
1118
1119 /* The directory index (1-based). */
1120 dir_index d_index {};
1121
1122 unsigned int mod_time {};
1123
1124 unsigned int length {};
1125
1126 /* True if referenced by the Line Number Program. */
1127 bool included_p {};
1128
1129 /* The associated symbol table, if any. */
1130 struct symtab *symtab {};
1131 };
1132
1133 /* The line number information for a compilation unit (found in the
1134 .debug_line section) begins with a "statement program header",
1135 which contains the following information. */
1136 struct line_header
1137 {
1138 line_header ()
1139 : offset_in_dwz {}
1140 {}
1141
1142 /* Add an entry to the include directory table. */
1143 void add_include_dir (const char *include_dir);
1144
1145 /* Add an entry to the file name table. */
1146 void add_file_name (const char *name, dir_index d_index,
1147 unsigned int mod_time, unsigned int length);
1148
1149 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
1150 is out of bounds. */
1151 const char *include_dir_at (dir_index index) const
1152 {
1153 /* Convert directory index number (1-based) to vector index
1154 (0-based). */
1155 size_t vec_index = to_underlying (index) - 1;
1156
1157 if (vec_index >= include_dirs.size ())
1158 return NULL;
1159 return include_dirs[vec_index];
1160 }
1161
1162 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
1163 is out of bounds. */
1164 file_entry *file_name_at (file_name_index index)
1165 {
1166 /* Convert file name index number (1-based) to vector index
1167 (0-based). */
1168 size_t vec_index = to_underlying (index) - 1;
1169
1170 if (vec_index >= file_names.size ())
1171 return NULL;
1172 return &file_names[vec_index];
1173 }
1174
1175 /* Const version of the above. */
1176 const file_entry *file_name_at (unsigned int index) const
1177 {
1178 if (index >= file_names.size ())
1179 return NULL;
1180 return &file_names[index];
1181 }
1182
1183 /* Offset of line number information in .debug_line section. */
1184 sect_offset sect_off {};
1185
1186 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1187 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1188
1189 unsigned int total_length {};
1190 unsigned short version {};
1191 unsigned int header_length {};
1192 unsigned char minimum_instruction_length {};
1193 unsigned char maximum_ops_per_instruction {};
1194 unsigned char default_is_stmt {};
1195 int line_base {};
1196 unsigned char line_range {};
1197 unsigned char opcode_base {};
1198
1199 /* standard_opcode_lengths[i] is the number of operands for the
1200 standard opcode whose value is i. This means that
1201 standard_opcode_lengths[0] is unused, and the last meaningful
1202 element is standard_opcode_lengths[opcode_base - 1]. */
1203 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1204
1205 /* The include_directories table. Note these are observing
1206 pointers. The memory is owned by debug_line_buffer. */
1207 std::vector<const char *> include_dirs;
1208
1209 /* The file_names table. */
1210 std::vector<file_entry> file_names;
1211
1212 /* The start and end of the statement program following this
1213 header. These point into dwarf2_per_objfile->line_buffer. */
1214 const gdb_byte *statement_program_start {}, *statement_program_end {};
1215 };
1216
1217 typedef std::unique_ptr<line_header> line_header_up;
1218
1219 const char *
1220 file_entry::include_dir (const line_header *lh) const
1221 {
1222 return lh->include_dir_at (d_index);
1223 }
1224
1225 /* When we construct a partial symbol table entry we only
1226 need this much information. */
1227 struct partial_die_info
1228 {
1229 /* Offset of this DIE. */
1230 sect_offset sect_off;
1231
1232 /* DWARF-2 tag for this DIE. */
1233 ENUM_BITFIELD(dwarf_tag) tag : 16;
1234
1235 /* Assorted flags describing the data found in this DIE. */
1236 unsigned int has_children : 1;
1237 unsigned int is_external : 1;
1238 unsigned int is_declaration : 1;
1239 unsigned int has_type : 1;
1240 unsigned int has_specification : 1;
1241 unsigned int has_pc_info : 1;
1242 unsigned int may_be_inlined : 1;
1243
1244 /* This DIE has been marked DW_AT_main_subprogram. */
1245 unsigned int main_subprogram : 1;
1246
1247 /* Flag set if the SCOPE field of this structure has been
1248 computed. */
1249 unsigned int scope_set : 1;
1250
1251 /* Flag set if the DIE has a byte_size attribute. */
1252 unsigned int has_byte_size : 1;
1253
1254 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1255 unsigned int has_const_value : 1;
1256
1257 /* Flag set if any of the DIE's children are template arguments. */
1258 unsigned int has_template_arguments : 1;
1259
1260 /* Flag set if fixup_partial_die has been called on this die. */
1261 unsigned int fixup_called : 1;
1262
1263 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1264 unsigned int is_dwz : 1;
1265
1266 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1267 unsigned int spec_is_dwz : 1;
1268
1269 /* The name of this DIE. Normally the value of DW_AT_name, but
1270 sometimes a default name for unnamed DIEs. */
1271 const char *name;
1272
1273 /* The linkage name, if present. */
1274 const char *linkage_name;
1275
1276 /* The scope to prepend to our children. This is generally
1277 allocated on the comp_unit_obstack, so will disappear
1278 when this compilation unit leaves the cache. */
1279 const char *scope;
1280
1281 /* Some data associated with the partial DIE. The tag determines
1282 which field is live. */
1283 union
1284 {
1285 /* The location description associated with this DIE, if any. */
1286 struct dwarf_block *locdesc;
1287 /* The offset of an import, for DW_TAG_imported_unit. */
1288 sect_offset sect_off;
1289 } d;
1290
1291 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1292 CORE_ADDR lowpc;
1293 CORE_ADDR highpc;
1294
1295 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1296 DW_AT_sibling, if any. */
1297 /* NOTE: This member isn't strictly necessary, read_partial_die could
1298 return DW_AT_sibling values to its caller load_partial_dies. */
1299 const gdb_byte *sibling;
1300
1301 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1302 DW_AT_specification (or DW_AT_abstract_origin or
1303 DW_AT_extension). */
1304 sect_offset spec_offset;
1305
1306 /* Pointers to this DIE's parent, first child, and next sibling,
1307 if any. */
1308 struct partial_die_info *die_parent, *die_child, *die_sibling;
1309 };
1310
1311 /* This data structure holds the information of an abbrev. */
1312 struct abbrev_info
1313 {
1314 unsigned int number; /* number identifying abbrev */
1315 enum dwarf_tag tag; /* dwarf tag */
1316 unsigned short has_children; /* boolean */
1317 unsigned short num_attrs; /* number of attributes */
1318 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1319 struct abbrev_info *next; /* next in chain */
1320 };
1321
1322 struct attr_abbrev
1323 {
1324 ENUM_BITFIELD(dwarf_attribute) name : 16;
1325 ENUM_BITFIELD(dwarf_form) form : 16;
1326
1327 /* It is valid only if FORM is DW_FORM_implicit_const. */
1328 LONGEST implicit_const;
1329 };
1330
1331 /* Size of abbrev_table.abbrev_hash_table. */
1332 #define ABBREV_HASH_SIZE 121
1333
1334 /* Top level data structure to contain an abbreviation table. */
1335
1336 struct abbrev_table
1337 {
1338 /* Where the abbrev table came from.
1339 This is used as a sanity check when the table is used. */
1340 sect_offset sect_off;
1341
1342 /* Storage for the abbrev table. */
1343 struct obstack abbrev_obstack;
1344
1345 /* Hash table of abbrevs.
1346 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1347 It could be statically allocated, but the previous code didn't so we
1348 don't either. */
1349 struct abbrev_info **abbrevs;
1350 };
1351
1352 /* Attributes have a name and a value. */
1353 struct attribute
1354 {
1355 ENUM_BITFIELD(dwarf_attribute) name : 16;
1356 ENUM_BITFIELD(dwarf_form) form : 15;
1357
1358 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1359 field should be in u.str (existing only for DW_STRING) but it is kept
1360 here for better struct attribute alignment. */
1361 unsigned int string_is_canonical : 1;
1362
1363 union
1364 {
1365 const char *str;
1366 struct dwarf_block *blk;
1367 ULONGEST unsnd;
1368 LONGEST snd;
1369 CORE_ADDR addr;
1370 ULONGEST signature;
1371 }
1372 u;
1373 };
1374
1375 /* This data structure holds a complete die structure. */
1376 struct die_info
1377 {
1378 /* DWARF-2 tag for this DIE. */
1379 ENUM_BITFIELD(dwarf_tag) tag : 16;
1380
1381 /* Number of attributes */
1382 unsigned char num_attrs;
1383
1384 /* True if we're presently building the full type name for the
1385 type derived from this DIE. */
1386 unsigned char building_fullname : 1;
1387
1388 /* True if this die is in process. PR 16581. */
1389 unsigned char in_process : 1;
1390
1391 /* Abbrev number */
1392 unsigned int abbrev;
1393
1394 /* Offset in .debug_info or .debug_types section. */
1395 sect_offset sect_off;
1396
1397 /* The dies in a compilation unit form an n-ary tree. PARENT
1398 points to this die's parent; CHILD points to the first child of
1399 this node; and all the children of a given node are chained
1400 together via their SIBLING fields. */
1401 struct die_info *child; /* Its first child, if any. */
1402 struct die_info *sibling; /* Its next sibling, if any. */
1403 struct die_info *parent; /* Its parent, if any. */
1404
1405 /* An array of attributes, with NUM_ATTRS elements. There may be
1406 zero, but it's not common and zero-sized arrays are not
1407 sufficiently portable C. */
1408 struct attribute attrs[1];
1409 };
1410
1411 /* Get at parts of an attribute structure. */
1412
1413 #define DW_STRING(attr) ((attr)->u.str)
1414 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1415 #define DW_UNSND(attr) ((attr)->u.unsnd)
1416 #define DW_BLOCK(attr) ((attr)->u.blk)
1417 #define DW_SND(attr) ((attr)->u.snd)
1418 #define DW_ADDR(attr) ((attr)->u.addr)
1419 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1420
1421 /* Blocks are a bunch of untyped bytes. */
1422 struct dwarf_block
1423 {
1424 size_t size;
1425
1426 /* Valid only if SIZE is not zero. */
1427 const gdb_byte *data;
1428 };
1429
1430 #ifndef ATTR_ALLOC_CHUNK
1431 #define ATTR_ALLOC_CHUNK 4
1432 #endif
1433
1434 /* Allocate fields for structs, unions and enums in this size. */
1435 #ifndef DW_FIELD_ALLOC_CHUNK
1436 #define DW_FIELD_ALLOC_CHUNK 4
1437 #endif
1438
1439 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1440 but this would require a corresponding change in unpack_field_as_long
1441 and friends. */
1442 static int bits_per_byte = 8;
1443
1444 struct nextfield
1445 {
1446 struct nextfield *next;
1447 int accessibility;
1448 int virtuality;
1449 struct field field;
1450 };
1451
1452 struct nextfnfield
1453 {
1454 struct nextfnfield *next;
1455 struct fn_field fnfield;
1456 };
1457
1458 struct fnfieldlist
1459 {
1460 const char *name;
1461 int length;
1462 struct nextfnfield *head;
1463 };
1464
1465 struct typedef_field_list
1466 {
1467 struct typedef_field field;
1468 struct typedef_field_list *next;
1469 };
1470
1471 /* The routines that read and process dies for a C struct or C++ class
1472 pass lists of data member fields and lists of member function fields
1473 in an instance of a field_info structure, as defined below. */
1474 struct field_info
1475 {
1476 /* List of data member and baseclasses fields. */
1477 struct nextfield *fields, *baseclasses;
1478
1479 /* Number of fields (including baseclasses). */
1480 int nfields;
1481
1482 /* Number of baseclasses. */
1483 int nbaseclasses;
1484
1485 /* Set if the accesibility of one of the fields is not public. */
1486 int non_public_fields;
1487
1488 /* Member function fields array, entries are allocated in the order they
1489 are encountered in the object file. */
1490 struct nextfnfield *fnfields;
1491
1492 /* Member function fieldlist array, contains name of possibly overloaded
1493 member function, number of overloaded member functions and a pointer
1494 to the head of the member function field chain. */
1495 struct fnfieldlist *fnfieldlists;
1496
1497 /* Number of entries in the fnfieldlists array. */
1498 int nfnfields;
1499
1500 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1501 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1502 struct typedef_field_list *typedef_field_list;
1503 unsigned typedef_field_list_count;
1504 };
1505
1506 /* One item on the queue of compilation units to read in full symbols
1507 for. */
1508 struct dwarf2_queue_item
1509 {
1510 struct dwarf2_per_cu_data *per_cu;
1511 enum language pretend_language;
1512 struct dwarf2_queue_item *next;
1513 };
1514
1515 /* The current queue. */
1516 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1517
1518 /* Loaded secondary compilation units are kept in memory until they
1519 have not been referenced for the processing of this many
1520 compilation units. Set this to zero to disable caching. Cache
1521 sizes of up to at least twenty will improve startup time for
1522 typical inter-CU-reference binaries, at an obvious memory cost. */
1523 static int dwarf_max_cache_age = 5;
1524 static void
1525 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1526 struct cmd_list_element *c, const char *value)
1527 {
1528 fprintf_filtered (file, _("The upper bound on the age of cached "
1529 "DWARF compilation units is %s.\n"),
1530 value);
1531 }
1532 \f
1533 /* local function prototypes */
1534
1535 static const char *get_section_name (const struct dwarf2_section_info *);
1536
1537 static const char *get_section_file_name (const struct dwarf2_section_info *);
1538
1539 static void dwarf2_find_base_address (struct die_info *die,
1540 struct dwarf2_cu *cu);
1541
1542 static struct partial_symtab *create_partial_symtab
1543 (struct dwarf2_per_cu_data *per_cu, const char *name);
1544
1545 static void dwarf2_build_psymtabs_hard (struct objfile *);
1546
1547 static void scan_partial_symbols (struct partial_die_info *,
1548 CORE_ADDR *, CORE_ADDR *,
1549 int, struct dwarf2_cu *);
1550
1551 static void add_partial_symbol (struct partial_die_info *,
1552 struct dwarf2_cu *);
1553
1554 static void add_partial_namespace (struct partial_die_info *pdi,
1555 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1556 int set_addrmap, struct dwarf2_cu *cu);
1557
1558 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1559 CORE_ADDR *highpc, int set_addrmap,
1560 struct dwarf2_cu *cu);
1561
1562 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1563 struct dwarf2_cu *cu);
1564
1565 static void add_partial_subprogram (struct partial_die_info *pdi,
1566 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1567 int need_pc, struct dwarf2_cu *cu);
1568
1569 static void dwarf2_read_symtab (struct partial_symtab *,
1570 struct objfile *);
1571
1572 static void psymtab_to_symtab_1 (struct partial_symtab *);
1573
1574 static struct abbrev_info *abbrev_table_lookup_abbrev
1575 (const struct abbrev_table *, unsigned int);
1576
1577 static struct abbrev_table *abbrev_table_read_table
1578 (struct dwarf2_section_info *, sect_offset);
1579
1580 static void abbrev_table_free (struct abbrev_table *);
1581
1582 static void abbrev_table_free_cleanup (void *);
1583
1584 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1585 struct dwarf2_section_info *);
1586
1587 static void dwarf2_free_abbrev_table (void *);
1588
1589 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1590
1591 static struct partial_die_info *load_partial_dies
1592 (const struct die_reader_specs *, const gdb_byte *, int);
1593
1594 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1595 struct partial_die_info *,
1596 struct abbrev_info *,
1597 unsigned int,
1598 const gdb_byte *);
1599
1600 static struct partial_die_info *find_partial_die (sect_offset, int,
1601 struct dwarf2_cu *);
1602
1603 static void fixup_partial_die (struct partial_die_info *,
1604 struct dwarf2_cu *);
1605
1606 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1607 struct attribute *, struct attr_abbrev *,
1608 const gdb_byte *);
1609
1610 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1611
1612 static int read_1_signed_byte (bfd *, const gdb_byte *);
1613
1614 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1615
1616 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1617
1618 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1619
1620 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1621 unsigned int *);
1622
1623 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1624
1625 static LONGEST read_checked_initial_length_and_offset
1626 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1627 unsigned int *, unsigned int *);
1628
1629 static LONGEST read_offset (bfd *, const gdb_byte *,
1630 const struct comp_unit_head *,
1631 unsigned int *);
1632
1633 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1634
1635 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1636 sect_offset);
1637
1638 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1639
1640 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1641
1642 static const char *read_indirect_string (bfd *, const gdb_byte *,
1643 const struct comp_unit_head *,
1644 unsigned int *);
1645
1646 static const char *read_indirect_line_string (bfd *, const gdb_byte *,
1647 const struct comp_unit_head *,
1648 unsigned int *);
1649
1650 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1651
1652 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1653
1654 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1655 const gdb_byte *,
1656 unsigned int *);
1657
1658 static const char *read_str_index (const struct die_reader_specs *reader,
1659 ULONGEST str_index);
1660
1661 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1662
1663 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1664 struct dwarf2_cu *);
1665
1666 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1667 unsigned int);
1668
1669 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1670 struct dwarf2_cu *cu);
1671
1672 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1673 struct dwarf2_cu *cu);
1674
1675 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1676
1677 static struct die_info *die_specification (struct die_info *die,
1678 struct dwarf2_cu **);
1679
1680 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1681 struct dwarf2_cu *cu);
1682
1683 static void dwarf_decode_lines (struct line_header *, const char *,
1684 struct dwarf2_cu *, struct partial_symtab *,
1685 CORE_ADDR, int decode_mapping);
1686
1687 static void dwarf2_start_subfile (const char *, const char *);
1688
1689 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1690 const char *, const char *,
1691 CORE_ADDR);
1692
1693 static struct symbol *new_symbol (struct die_info *, struct type *,
1694 struct dwarf2_cu *);
1695
1696 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1697 struct dwarf2_cu *, struct symbol *);
1698
1699 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1700 struct dwarf2_cu *);
1701
1702 static void dwarf2_const_value_attr (const struct attribute *attr,
1703 struct type *type,
1704 const char *name,
1705 struct obstack *obstack,
1706 struct dwarf2_cu *cu, LONGEST *value,
1707 const gdb_byte **bytes,
1708 struct dwarf2_locexpr_baton **baton);
1709
1710 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1711
1712 static int need_gnat_info (struct dwarf2_cu *);
1713
1714 static struct type *die_descriptive_type (struct die_info *,
1715 struct dwarf2_cu *);
1716
1717 static void set_descriptive_type (struct type *, struct die_info *,
1718 struct dwarf2_cu *);
1719
1720 static struct type *die_containing_type (struct die_info *,
1721 struct dwarf2_cu *);
1722
1723 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1724 struct dwarf2_cu *);
1725
1726 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1727
1728 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1729
1730 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1731
1732 static char *typename_concat (struct obstack *obs, const char *prefix,
1733 const char *suffix, int physname,
1734 struct dwarf2_cu *cu);
1735
1736 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1737
1738 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1739
1740 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1741
1742 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1743
1744 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1745
1746 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1747 struct dwarf2_cu *, struct partial_symtab *);
1748
1749 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1750 values. Keep the items ordered with increasing constraints compliance. */
1751 enum pc_bounds_kind
1752 {
1753 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1754 PC_BOUNDS_NOT_PRESENT,
1755
1756 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1757 were present but they do not form a valid range of PC addresses. */
1758 PC_BOUNDS_INVALID,
1759
1760 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1761 PC_BOUNDS_RANGES,
1762
1763 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1764 PC_BOUNDS_HIGH_LOW,
1765 };
1766
1767 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1768 CORE_ADDR *, CORE_ADDR *,
1769 struct dwarf2_cu *,
1770 struct partial_symtab *);
1771
1772 static void get_scope_pc_bounds (struct die_info *,
1773 CORE_ADDR *, CORE_ADDR *,
1774 struct dwarf2_cu *);
1775
1776 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1777 CORE_ADDR, struct dwarf2_cu *);
1778
1779 static void dwarf2_add_field (struct field_info *, struct die_info *,
1780 struct dwarf2_cu *);
1781
1782 static void dwarf2_attach_fields_to_type (struct field_info *,
1783 struct type *, struct dwarf2_cu *);
1784
1785 static void dwarf2_add_member_fn (struct field_info *,
1786 struct die_info *, struct type *,
1787 struct dwarf2_cu *);
1788
1789 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1790 struct type *,
1791 struct dwarf2_cu *);
1792
1793 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1794
1795 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1796
1797 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1798
1799 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1800
1801 static struct using_direct **using_directives (enum language);
1802
1803 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1804
1805 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1806
1807 static struct type *read_module_type (struct die_info *die,
1808 struct dwarf2_cu *cu);
1809
1810 static const char *namespace_name (struct die_info *die,
1811 int *is_anonymous, struct dwarf2_cu *);
1812
1813 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1814
1815 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1816
1817 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1818 struct dwarf2_cu *);
1819
1820 static struct die_info *read_die_and_siblings_1
1821 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1822 struct die_info *);
1823
1824 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1825 const gdb_byte *info_ptr,
1826 const gdb_byte **new_info_ptr,
1827 struct die_info *parent);
1828
1829 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1830 struct die_info **, const gdb_byte *,
1831 int *, int);
1832
1833 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1834 struct die_info **, const gdb_byte *,
1835 int *);
1836
1837 static void process_die (struct die_info *, struct dwarf2_cu *);
1838
1839 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1840 struct obstack *);
1841
1842 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1843
1844 static const char *dwarf2_full_name (const char *name,
1845 struct die_info *die,
1846 struct dwarf2_cu *cu);
1847
1848 static const char *dwarf2_physname (const char *name, struct die_info *die,
1849 struct dwarf2_cu *cu);
1850
1851 static struct die_info *dwarf2_extension (struct die_info *die,
1852 struct dwarf2_cu **);
1853
1854 static const char *dwarf_tag_name (unsigned int);
1855
1856 static const char *dwarf_attr_name (unsigned int);
1857
1858 static const char *dwarf_form_name (unsigned int);
1859
1860 static const char *dwarf_bool_name (unsigned int);
1861
1862 static const char *dwarf_type_encoding_name (unsigned int);
1863
1864 static struct die_info *sibling_die (struct die_info *);
1865
1866 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1867
1868 static void dump_die_for_error (struct die_info *);
1869
1870 static void dump_die_1 (struct ui_file *, int level, int max_level,
1871 struct die_info *);
1872
1873 /*static*/ void dump_die (struct die_info *, int max_level);
1874
1875 static void store_in_ref_table (struct die_info *,
1876 struct dwarf2_cu *);
1877
1878 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1879
1880 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1881
1882 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1883 const struct attribute *,
1884 struct dwarf2_cu **);
1885
1886 static struct die_info *follow_die_ref (struct die_info *,
1887 const struct attribute *,
1888 struct dwarf2_cu **);
1889
1890 static struct die_info *follow_die_sig (struct die_info *,
1891 const struct attribute *,
1892 struct dwarf2_cu **);
1893
1894 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1895 struct dwarf2_cu *);
1896
1897 static struct type *get_DW_AT_signature_type (struct die_info *,
1898 const struct attribute *,
1899 struct dwarf2_cu *);
1900
1901 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1902
1903 static void read_signatured_type (struct signatured_type *);
1904
1905 static int attr_to_dynamic_prop (const struct attribute *attr,
1906 struct die_info *die, struct dwarf2_cu *cu,
1907 struct dynamic_prop *prop);
1908
1909 /* memory allocation interface */
1910
1911 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1912
1913 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1914
1915 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1916
1917 static int attr_form_is_block (const struct attribute *);
1918
1919 static int attr_form_is_section_offset (const struct attribute *);
1920
1921 static int attr_form_is_constant (const struct attribute *);
1922
1923 static int attr_form_is_ref (const struct attribute *);
1924
1925 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1926 struct dwarf2_loclist_baton *baton,
1927 const struct attribute *attr);
1928
1929 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1930 struct symbol *sym,
1931 struct dwarf2_cu *cu,
1932 int is_block);
1933
1934 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1935 const gdb_byte *info_ptr,
1936 struct abbrev_info *abbrev);
1937
1938 static void free_stack_comp_unit (void *);
1939
1940 static hashval_t partial_die_hash (const void *item);
1941
1942 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1943
1944 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1945 (sect_offset sect_off, unsigned int offset_in_dwz, struct objfile *objfile);
1946
1947 static void init_one_comp_unit (struct dwarf2_cu *cu,
1948 struct dwarf2_per_cu_data *per_cu);
1949
1950 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1951 struct die_info *comp_unit_die,
1952 enum language pretend_language);
1953
1954 static void free_heap_comp_unit (void *);
1955
1956 static void free_cached_comp_units (void *);
1957
1958 static void age_cached_comp_units (void);
1959
1960 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1961
1962 static struct type *set_die_type (struct die_info *, struct type *,
1963 struct dwarf2_cu *);
1964
1965 static void create_all_comp_units (struct objfile *);
1966
1967 static int create_all_type_units (struct objfile *);
1968
1969 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1970 enum language);
1971
1972 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1973 enum language);
1974
1975 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1976 enum language);
1977
1978 static void dwarf2_add_dependence (struct dwarf2_cu *,
1979 struct dwarf2_per_cu_data *);
1980
1981 static void dwarf2_mark (struct dwarf2_cu *);
1982
1983 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1984
1985 static struct type *get_die_type_at_offset (sect_offset,
1986 struct dwarf2_per_cu_data *);
1987
1988 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1989
1990 static void dwarf2_release_queue (void *dummy);
1991
1992 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1993 enum language pretend_language);
1994
1995 static void process_queue (void);
1996
1997 /* The return type of find_file_and_directory. Note, the enclosed
1998 string pointers are only valid while this object is valid. */
1999
2000 struct file_and_directory
2001 {
2002 /* The filename. This is never NULL. */
2003 const char *name;
2004
2005 /* The compilation directory. NULL if not known. If we needed to
2006 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
2007 points directly to the DW_AT_comp_dir string attribute owned by
2008 the obstack that owns the DIE. */
2009 const char *comp_dir;
2010
2011 /* If we needed to build a new string for comp_dir, this is what
2012 owns the storage. */
2013 std::string comp_dir_storage;
2014 };
2015
2016 static file_and_directory find_file_and_directory (struct die_info *die,
2017 struct dwarf2_cu *cu);
2018
2019 static char *file_full_name (int file, struct line_header *lh,
2020 const char *comp_dir);
2021
2022 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
2023 enum class rcuh_kind { COMPILE, TYPE };
2024
2025 static const gdb_byte *read_and_check_comp_unit_head
2026 (struct comp_unit_head *header,
2027 struct dwarf2_section_info *section,
2028 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
2029 rcuh_kind section_kind);
2030
2031 static void init_cutu_and_read_dies
2032 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
2033 int use_existing_cu, int keep,
2034 die_reader_func_ftype *die_reader_func, void *data);
2035
2036 static void init_cutu_and_read_dies_simple
2037 (struct dwarf2_per_cu_data *this_cu,
2038 die_reader_func_ftype *die_reader_func, void *data);
2039
2040 static htab_t allocate_signatured_type_table (struct objfile *objfile);
2041
2042 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
2043
2044 static struct dwo_unit *lookup_dwo_unit_in_dwp
2045 (struct dwp_file *dwp_file, const char *comp_dir,
2046 ULONGEST signature, int is_debug_types);
2047
2048 static struct dwp_file *get_dwp_file (void);
2049
2050 static struct dwo_unit *lookup_dwo_comp_unit
2051 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
2052
2053 static struct dwo_unit *lookup_dwo_type_unit
2054 (struct signatured_type *, const char *, const char *);
2055
2056 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2057
2058 static void free_dwo_file_cleanup (void *);
2059
2060 static void process_cu_includes (void);
2061
2062 static void check_producer (struct dwarf2_cu *cu);
2063
2064 static void free_line_header_voidp (void *arg);
2065 \f
2066 /* Various complaints about symbol reading that don't abort the process. */
2067
2068 static void
2069 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2070 {
2071 complaint (&symfile_complaints,
2072 _("statement list doesn't fit in .debug_line section"));
2073 }
2074
2075 static void
2076 dwarf2_debug_line_missing_file_complaint (void)
2077 {
2078 complaint (&symfile_complaints,
2079 _(".debug_line section has line data without a file"));
2080 }
2081
2082 static void
2083 dwarf2_debug_line_missing_end_sequence_complaint (void)
2084 {
2085 complaint (&symfile_complaints,
2086 _(".debug_line section has line "
2087 "program sequence without an end"));
2088 }
2089
2090 static void
2091 dwarf2_complex_location_expr_complaint (void)
2092 {
2093 complaint (&symfile_complaints, _("location expression too complex"));
2094 }
2095
2096 static void
2097 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2098 int arg3)
2099 {
2100 complaint (&symfile_complaints,
2101 _("const value length mismatch for '%s', got %d, expected %d"),
2102 arg1, arg2, arg3);
2103 }
2104
2105 static void
2106 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2107 {
2108 complaint (&symfile_complaints,
2109 _("debug info runs off end of %s section"
2110 " [in module %s]"),
2111 get_section_name (section),
2112 get_section_file_name (section));
2113 }
2114
2115 static void
2116 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2117 {
2118 complaint (&symfile_complaints,
2119 _("macro debug info contains a "
2120 "malformed macro definition:\n`%s'"),
2121 arg1);
2122 }
2123
2124 static void
2125 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2126 {
2127 complaint (&symfile_complaints,
2128 _("invalid attribute class or form for '%s' in '%s'"),
2129 arg1, arg2);
2130 }
2131
2132 /* Hash function for line_header_hash. */
2133
2134 static hashval_t
2135 line_header_hash (const struct line_header *ofs)
2136 {
2137 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2138 }
2139
2140 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2141
2142 static hashval_t
2143 line_header_hash_voidp (const void *item)
2144 {
2145 const struct line_header *ofs = (const struct line_header *) item;
2146
2147 return line_header_hash (ofs);
2148 }
2149
2150 /* Equality function for line_header_hash. */
2151
2152 static int
2153 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2154 {
2155 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2156 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2157
2158 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2159 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2160 }
2161
2162 \f
2163 #if WORDS_BIGENDIAN
2164
2165 /* Convert VALUE between big- and little-endian. */
2166 static offset_type
2167 byte_swap (offset_type value)
2168 {
2169 offset_type result;
2170
2171 result = (value & 0xff) << 24;
2172 result |= (value & 0xff00) << 8;
2173 result |= (value & 0xff0000) >> 8;
2174 result |= (value & 0xff000000) >> 24;
2175 return result;
2176 }
2177
2178 #define MAYBE_SWAP(V) byte_swap (V)
2179
2180 #else
2181 #define MAYBE_SWAP(V) static_cast<offset_type> (V)
2182 #endif /* WORDS_BIGENDIAN */
2183
2184 /* Read the given attribute value as an address, taking the attribute's
2185 form into account. */
2186
2187 static CORE_ADDR
2188 attr_value_as_address (struct attribute *attr)
2189 {
2190 CORE_ADDR addr;
2191
2192 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2193 {
2194 /* Aside from a few clearly defined exceptions, attributes that
2195 contain an address must always be in DW_FORM_addr form.
2196 Unfortunately, some compilers happen to be violating this
2197 requirement by encoding addresses using other forms, such
2198 as DW_FORM_data4 for example. For those broken compilers,
2199 we try to do our best, without any guarantee of success,
2200 to interpret the address correctly. It would also be nice
2201 to generate a complaint, but that would require us to maintain
2202 a list of legitimate cases where a non-address form is allowed,
2203 as well as update callers to pass in at least the CU's DWARF
2204 version. This is more overhead than what we're willing to
2205 expand for a pretty rare case. */
2206 addr = DW_UNSND (attr);
2207 }
2208 else
2209 addr = DW_ADDR (attr);
2210
2211 return addr;
2212 }
2213
2214 /* The suffix for an index file. */
2215 #define INDEX_SUFFIX ".gdb-index"
2216
2217 /* See declaration. */
2218
2219 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2220 const dwarf2_debug_sections *names)
2221 : objfile (objfile_)
2222 {
2223 if (names == NULL)
2224 names = &dwarf2_elf_names;
2225
2226 bfd *obfd = objfile->obfd;
2227
2228 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2229 locate_sections (obfd, sec, *names);
2230 }
2231
2232 dwarf2_per_objfile::~dwarf2_per_objfile ()
2233 {
2234 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2235 free_cached_comp_units ();
2236
2237 if (quick_file_names_table)
2238 htab_delete (quick_file_names_table);
2239
2240 if (line_header_hash)
2241 htab_delete (line_header_hash);
2242
2243 /* Everything else should be on the objfile obstack. */
2244 }
2245
2246 /* See declaration. */
2247
2248 void
2249 dwarf2_per_objfile::free_cached_comp_units ()
2250 {
2251 dwarf2_per_cu_data *per_cu = read_in_chain;
2252 dwarf2_per_cu_data **last_chain = &read_in_chain;
2253 while (per_cu != NULL)
2254 {
2255 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2256
2257 free_heap_comp_unit (per_cu->cu);
2258 *last_chain = next_cu;
2259 per_cu = next_cu;
2260 }
2261 }
2262
2263 /* Try to locate the sections we need for DWARF 2 debugging
2264 information and return true if we have enough to do something.
2265 NAMES points to the dwarf2 section names, or is NULL if the standard
2266 ELF names are used. */
2267
2268 int
2269 dwarf2_has_info (struct objfile *objfile,
2270 const struct dwarf2_debug_sections *names)
2271 {
2272 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2273 objfile_data (objfile, dwarf2_objfile_data_key));
2274 if (!dwarf2_per_objfile)
2275 {
2276 /* Initialize per-objfile state. */
2277 struct dwarf2_per_objfile *data
2278 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
2279
2280 dwarf2_per_objfile = new (data) struct dwarf2_per_objfile (objfile, names);
2281 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
2282 }
2283 return (!dwarf2_per_objfile->info.is_virtual
2284 && dwarf2_per_objfile->info.s.section != NULL
2285 && !dwarf2_per_objfile->abbrev.is_virtual
2286 && dwarf2_per_objfile->abbrev.s.section != NULL);
2287 }
2288
2289 /* Return the containing section of virtual section SECTION. */
2290
2291 static struct dwarf2_section_info *
2292 get_containing_section (const struct dwarf2_section_info *section)
2293 {
2294 gdb_assert (section->is_virtual);
2295 return section->s.containing_section;
2296 }
2297
2298 /* Return the bfd owner of SECTION. */
2299
2300 static struct bfd *
2301 get_section_bfd_owner (const struct dwarf2_section_info *section)
2302 {
2303 if (section->is_virtual)
2304 {
2305 section = get_containing_section (section);
2306 gdb_assert (!section->is_virtual);
2307 }
2308 return section->s.section->owner;
2309 }
2310
2311 /* Return the bfd section of SECTION.
2312 Returns NULL if the section is not present. */
2313
2314 static asection *
2315 get_section_bfd_section (const struct dwarf2_section_info *section)
2316 {
2317 if (section->is_virtual)
2318 {
2319 section = get_containing_section (section);
2320 gdb_assert (!section->is_virtual);
2321 }
2322 return section->s.section;
2323 }
2324
2325 /* Return the name of SECTION. */
2326
2327 static const char *
2328 get_section_name (const struct dwarf2_section_info *section)
2329 {
2330 asection *sectp = get_section_bfd_section (section);
2331
2332 gdb_assert (sectp != NULL);
2333 return bfd_section_name (get_section_bfd_owner (section), sectp);
2334 }
2335
2336 /* Return the name of the file SECTION is in. */
2337
2338 static const char *
2339 get_section_file_name (const struct dwarf2_section_info *section)
2340 {
2341 bfd *abfd = get_section_bfd_owner (section);
2342
2343 return bfd_get_filename (abfd);
2344 }
2345
2346 /* Return the id of SECTION.
2347 Returns 0 if SECTION doesn't exist. */
2348
2349 static int
2350 get_section_id (const struct dwarf2_section_info *section)
2351 {
2352 asection *sectp = get_section_bfd_section (section);
2353
2354 if (sectp == NULL)
2355 return 0;
2356 return sectp->id;
2357 }
2358
2359 /* Return the flags of SECTION.
2360 SECTION (or containing section if this is a virtual section) must exist. */
2361
2362 static int
2363 get_section_flags (const struct dwarf2_section_info *section)
2364 {
2365 asection *sectp = get_section_bfd_section (section);
2366
2367 gdb_assert (sectp != NULL);
2368 return bfd_get_section_flags (sectp->owner, sectp);
2369 }
2370
2371 /* When loading sections, we look either for uncompressed section or for
2372 compressed section names. */
2373
2374 static int
2375 section_is_p (const char *section_name,
2376 const struct dwarf2_section_names *names)
2377 {
2378 if (names->normal != NULL
2379 && strcmp (section_name, names->normal) == 0)
2380 return 1;
2381 if (names->compressed != NULL
2382 && strcmp (section_name, names->compressed) == 0)
2383 return 1;
2384 return 0;
2385 }
2386
2387 /* See declaration. */
2388
2389 void
2390 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2391 const dwarf2_debug_sections &names)
2392 {
2393 flagword aflag = bfd_get_section_flags (abfd, sectp);
2394
2395 if ((aflag & SEC_HAS_CONTENTS) == 0)
2396 {
2397 }
2398 else if (section_is_p (sectp->name, &names.info))
2399 {
2400 this->info.s.section = sectp;
2401 this->info.size = bfd_get_section_size (sectp);
2402 }
2403 else if (section_is_p (sectp->name, &names.abbrev))
2404 {
2405 this->abbrev.s.section = sectp;
2406 this->abbrev.size = bfd_get_section_size (sectp);
2407 }
2408 else if (section_is_p (sectp->name, &names.line))
2409 {
2410 this->line.s.section = sectp;
2411 this->line.size = bfd_get_section_size (sectp);
2412 }
2413 else if (section_is_p (sectp->name, &names.loc))
2414 {
2415 this->loc.s.section = sectp;
2416 this->loc.size = bfd_get_section_size (sectp);
2417 }
2418 else if (section_is_p (sectp->name, &names.loclists))
2419 {
2420 this->loclists.s.section = sectp;
2421 this->loclists.size = bfd_get_section_size (sectp);
2422 }
2423 else if (section_is_p (sectp->name, &names.macinfo))
2424 {
2425 this->macinfo.s.section = sectp;
2426 this->macinfo.size = bfd_get_section_size (sectp);
2427 }
2428 else if (section_is_p (sectp->name, &names.macro))
2429 {
2430 this->macro.s.section = sectp;
2431 this->macro.size = bfd_get_section_size (sectp);
2432 }
2433 else if (section_is_p (sectp->name, &names.str))
2434 {
2435 this->str.s.section = sectp;
2436 this->str.size = bfd_get_section_size (sectp);
2437 }
2438 else if (section_is_p (sectp->name, &names.line_str))
2439 {
2440 this->line_str.s.section = sectp;
2441 this->line_str.size = bfd_get_section_size (sectp);
2442 }
2443 else if (section_is_p (sectp->name, &names.addr))
2444 {
2445 this->addr.s.section = sectp;
2446 this->addr.size = bfd_get_section_size (sectp);
2447 }
2448 else if (section_is_p (sectp->name, &names.frame))
2449 {
2450 this->frame.s.section = sectp;
2451 this->frame.size = bfd_get_section_size (sectp);
2452 }
2453 else if (section_is_p (sectp->name, &names.eh_frame))
2454 {
2455 this->eh_frame.s.section = sectp;
2456 this->eh_frame.size = bfd_get_section_size (sectp);
2457 }
2458 else if (section_is_p (sectp->name, &names.ranges))
2459 {
2460 this->ranges.s.section = sectp;
2461 this->ranges.size = bfd_get_section_size (sectp);
2462 }
2463 else if (section_is_p (sectp->name, &names.rnglists))
2464 {
2465 this->rnglists.s.section = sectp;
2466 this->rnglists.size = bfd_get_section_size (sectp);
2467 }
2468 else if (section_is_p (sectp->name, &names.types))
2469 {
2470 struct dwarf2_section_info type_section;
2471
2472 memset (&type_section, 0, sizeof (type_section));
2473 type_section.s.section = sectp;
2474 type_section.size = bfd_get_section_size (sectp);
2475
2476 VEC_safe_push (dwarf2_section_info_def, this->types,
2477 &type_section);
2478 }
2479 else if (section_is_p (sectp->name, &names.gdb_index))
2480 {
2481 this->gdb_index.s.section = sectp;
2482 this->gdb_index.size = bfd_get_section_size (sectp);
2483 }
2484
2485 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2486 && bfd_section_vma (abfd, sectp) == 0)
2487 this->has_section_at_zero = true;
2488 }
2489
2490 /* A helper function that decides whether a section is empty,
2491 or not present. */
2492
2493 static int
2494 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2495 {
2496 if (section->is_virtual)
2497 return section->size == 0;
2498 return section->s.section == NULL || section->size == 0;
2499 }
2500
2501 /* Read the contents of the section INFO.
2502 OBJFILE is the main object file, but not necessarily the file where
2503 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2504 of the DWO file.
2505 If the section is compressed, uncompress it before returning. */
2506
2507 static void
2508 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2509 {
2510 asection *sectp;
2511 bfd *abfd;
2512 gdb_byte *buf, *retbuf;
2513
2514 if (info->readin)
2515 return;
2516 info->buffer = NULL;
2517 info->readin = 1;
2518
2519 if (dwarf2_section_empty_p (info))
2520 return;
2521
2522 sectp = get_section_bfd_section (info);
2523
2524 /* If this is a virtual section we need to read in the real one first. */
2525 if (info->is_virtual)
2526 {
2527 struct dwarf2_section_info *containing_section =
2528 get_containing_section (info);
2529
2530 gdb_assert (sectp != NULL);
2531 if ((sectp->flags & SEC_RELOC) != 0)
2532 {
2533 error (_("Dwarf Error: DWP format V2 with relocations is not"
2534 " supported in section %s [in module %s]"),
2535 get_section_name (info), get_section_file_name (info));
2536 }
2537 dwarf2_read_section (objfile, containing_section);
2538 /* Other code should have already caught virtual sections that don't
2539 fit. */
2540 gdb_assert (info->virtual_offset + info->size
2541 <= containing_section->size);
2542 /* If the real section is empty or there was a problem reading the
2543 section we shouldn't get here. */
2544 gdb_assert (containing_section->buffer != NULL);
2545 info->buffer = containing_section->buffer + info->virtual_offset;
2546 return;
2547 }
2548
2549 /* If the section has relocations, we must read it ourselves.
2550 Otherwise we attach it to the BFD. */
2551 if ((sectp->flags & SEC_RELOC) == 0)
2552 {
2553 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2554 return;
2555 }
2556
2557 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2558 info->buffer = buf;
2559
2560 /* When debugging .o files, we may need to apply relocations; see
2561 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2562 We never compress sections in .o files, so we only need to
2563 try this when the section is not compressed. */
2564 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2565 if (retbuf != NULL)
2566 {
2567 info->buffer = retbuf;
2568 return;
2569 }
2570
2571 abfd = get_section_bfd_owner (info);
2572 gdb_assert (abfd != NULL);
2573
2574 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2575 || bfd_bread (buf, info->size, abfd) != info->size)
2576 {
2577 error (_("Dwarf Error: Can't read DWARF data"
2578 " in section %s [in module %s]"),
2579 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2580 }
2581 }
2582
2583 /* A helper function that returns the size of a section in a safe way.
2584 If you are positive that the section has been read before using the
2585 size, then it is safe to refer to the dwarf2_section_info object's
2586 "size" field directly. In other cases, you must call this
2587 function, because for compressed sections the size field is not set
2588 correctly until the section has been read. */
2589
2590 static bfd_size_type
2591 dwarf2_section_size (struct objfile *objfile,
2592 struct dwarf2_section_info *info)
2593 {
2594 if (!info->readin)
2595 dwarf2_read_section (objfile, info);
2596 return info->size;
2597 }
2598
2599 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2600 SECTION_NAME. */
2601
2602 void
2603 dwarf2_get_section_info (struct objfile *objfile,
2604 enum dwarf2_section_enum sect,
2605 asection **sectp, const gdb_byte **bufp,
2606 bfd_size_type *sizep)
2607 {
2608 struct dwarf2_per_objfile *data
2609 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2610 dwarf2_objfile_data_key);
2611 struct dwarf2_section_info *info;
2612
2613 /* We may see an objfile without any DWARF, in which case we just
2614 return nothing. */
2615 if (data == NULL)
2616 {
2617 *sectp = NULL;
2618 *bufp = NULL;
2619 *sizep = 0;
2620 return;
2621 }
2622 switch (sect)
2623 {
2624 case DWARF2_DEBUG_FRAME:
2625 info = &data->frame;
2626 break;
2627 case DWARF2_EH_FRAME:
2628 info = &data->eh_frame;
2629 break;
2630 default:
2631 gdb_assert_not_reached ("unexpected section");
2632 }
2633
2634 dwarf2_read_section (objfile, info);
2635
2636 *sectp = get_section_bfd_section (info);
2637 *bufp = info->buffer;
2638 *sizep = info->size;
2639 }
2640
2641 /* A helper function to find the sections for a .dwz file. */
2642
2643 static void
2644 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2645 {
2646 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2647
2648 /* Note that we only support the standard ELF names, because .dwz
2649 is ELF-only (at the time of writing). */
2650 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2651 {
2652 dwz_file->abbrev.s.section = sectp;
2653 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2654 }
2655 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2656 {
2657 dwz_file->info.s.section = sectp;
2658 dwz_file->info.size = bfd_get_section_size (sectp);
2659 }
2660 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2661 {
2662 dwz_file->str.s.section = sectp;
2663 dwz_file->str.size = bfd_get_section_size (sectp);
2664 }
2665 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2666 {
2667 dwz_file->line.s.section = sectp;
2668 dwz_file->line.size = bfd_get_section_size (sectp);
2669 }
2670 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2671 {
2672 dwz_file->macro.s.section = sectp;
2673 dwz_file->macro.size = bfd_get_section_size (sectp);
2674 }
2675 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2676 {
2677 dwz_file->gdb_index.s.section = sectp;
2678 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2679 }
2680 }
2681
2682 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2683 there is no .gnu_debugaltlink section in the file. Error if there
2684 is such a section but the file cannot be found. */
2685
2686 static struct dwz_file *
2687 dwarf2_get_dwz_file (void)
2688 {
2689 char *data;
2690 struct cleanup *cleanup;
2691 const char *filename;
2692 struct dwz_file *result;
2693 bfd_size_type buildid_len_arg;
2694 size_t buildid_len;
2695 bfd_byte *buildid;
2696
2697 if (dwarf2_per_objfile->dwz_file != NULL)
2698 return dwarf2_per_objfile->dwz_file;
2699
2700 bfd_set_error (bfd_error_no_error);
2701 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2702 &buildid_len_arg, &buildid);
2703 if (data == NULL)
2704 {
2705 if (bfd_get_error () == bfd_error_no_error)
2706 return NULL;
2707 error (_("could not read '.gnu_debugaltlink' section: %s"),
2708 bfd_errmsg (bfd_get_error ()));
2709 }
2710 cleanup = make_cleanup (xfree, data);
2711 make_cleanup (xfree, buildid);
2712
2713 buildid_len = (size_t) buildid_len_arg;
2714
2715 filename = (const char *) data;
2716
2717 std::string abs_storage;
2718 if (!IS_ABSOLUTE_PATH (filename))
2719 {
2720 gdb::unique_xmalloc_ptr<char> abs
2721 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2722
2723 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2724 filename = abs_storage.c_str ();
2725 }
2726
2727 /* First try the file name given in the section. If that doesn't
2728 work, try to use the build-id instead. */
2729 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2730 if (dwz_bfd != NULL)
2731 {
2732 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2733 dwz_bfd.release ();
2734 }
2735
2736 if (dwz_bfd == NULL)
2737 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2738
2739 if (dwz_bfd == NULL)
2740 error (_("could not find '.gnu_debugaltlink' file for %s"),
2741 objfile_name (dwarf2_per_objfile->objfile));
2742
2743 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2744 struct dwz_file);
2745 result->dwz_bfd = dwz_bfd.release ();
2746
2747 bfd_map_over_sections (result->dwz_bfd, locate_dwz_sections, result);
2748
2749 do_cleanups (cleanup);
2750
2751 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, result->dwz_bfd);
2752 dwarf2_per_objfile->dwz_file = result;
2753 return result;
2754 }
2755 \f
2756 /* DWARF quick_symbols_functions support. */
2757
2758 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2759 unique line tables, so we maintain a separate table of all .debug_line
2760 derived entries to support the sharing.
2761 All the quick functions need is the list of file names. We discard the
2762 line_header when we're done and don't need to record it here. */
2763 struct quick_file_names
2764 {
2765 /* The data used to construct the hash key. */
2766 struct stmt_list_hash hash;
2767
2768 /* The number of entries in file_names, real_names. */
2769 unsigned int num_file_names;
2770
2771 /* The file names from the line table, after being run through
2772 file_full_name. */
2773 const char **file_names;
2774
2775 /* The file names from the line table after being run through
2776 gdb_realpath. These are computed lazily. */
2777 const char **real_names;
2778 };
2779
2780 /* When using the index (and thus not using psymtabs), each CU has an
2781 object of this type. This is used to hold information needed by
2782 the various "quick" methods. */
2783 struct dwarf2_per_cu_quick_data
2784 {
2785 /* The file table. This can be NULL if there was no file table
2786 or it's currently not read in.
2787 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2788 struct quick_file_names *file_names;
2789
2790 /* The corresponding symbol table. This is NULL if symbols for this
2791 CU have not yet been read. */
2792 struct compunit_symtab *compunit_symtab;
2793
2794 /* A temporary mark bit used when iterating over all CUs in
2795 expand_symtabs_matching. */
2796 unsigned int mark : 1;
2797
2798 /* True if we've tried to read the file table and found there isn't one.
2799 There will be no point in trying to read it again next time. */
2800 unsigned int no_file_data : 1;
2801 };
2802
2803 /* Utility hash function for a stmt_list_hash. */
2804
2805 static hashval_t
2806 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2807 {
2808 hashval_t v = 0;
2809
2810 if (stmt_list_hash->dwo_unit != NULL)
2811 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2812 v += to_underlying (stmt_list_hash->line_sect_off);
2813 return v;
2814 }
2815
2816 /* Utility equality function for a stmt_list_hash. */
2817
2818 static int
2819 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2820 const struct stmt_list_hash *rhs)
2821 {
2822 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2823 return 0;
2824 if (lhs->dwo_unit != NULL
2825 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2826 return 0;
2827
2828 return lhs->line_sect_off == rhs->line_sect_off;
2829 }
2830
2831 /* Hash function for a quick_file_names. */
2832
2833 static hashval_t
2834 hash_file_name_entry (const void *e)
2835 {
2836 const struct quick_file_names *file_data
2837 = (const struct quick_file_names *) e;
2838
2839 return hash_stmt_list_entry (&file_data->hash);
2840 }
2841
2842 /* Equality function for a quick_file_names. */
2843
2844 static int
2845 eq_file_name_entry (const void *a, const void *b)
2846 {
2847 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2848 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2849
2850 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2851 }
2852
2853 /* Delete function for a quick_file_names. */
2854
2855 static void
2856 delete_file_name_entry (void *e)
2857 {
2858 struct quick_file_names *file_data = (struct quick_file_names *) e;
2859 int i;
2860
2861 for (i = 0; i < file_data->num_file_names; ++i)
2862 {
2863 xfree ((void*) file_data->file_names[i]);
2864 if (file_data->real_names)
2865 xfree ((void*) file_data->real_names[i]);
2866 }
2867
2868 /* The space for the struct itself lives on objfile_obstack,
2869 so we don't free it here. */
2870 }
2871
2872 /* Create a quick_file_names hash table. */
2873
2874 static htab_t
2875 create_quick_file_names_table (unsigned int nr_initial_entries)
2876 {
2877 return htab_create_alloc (nr_initial_entries,
2878 hash_file_name_entry, eq_file_name_entry,
2879 delete_file_name_entry, xcalloc, xfree);
2880 }
2881
2882 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2883 have to be created afterwards. You should call age_cached_comp_units after
2884 processing PER_CU->CU. dw2_setup must have been already called. */
2885
2886 static void
2887 load_cu (struct dwarf2_per_cu_data *per_cu)
2888 {
2889 if (per_cu->is_debug_types)
2890 load_full_type_unit (per_cu);
2891 else
2892 load_full_comp_unit (per_cu, language_minimal);
2893
2894 if (per_cu->cu == NULL)
2895 return; /* Dummy CU. */
2896
2897 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2898 }
2899
2900 /* Read in the symbols for PER_CU. */
2901
2902 static void
2903 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2904 {
2905 struct cleanup *back_to;
2906
2907 /* Skip type_unit_groups, reading the type units they contain
2908 is handled elsewhere. */
2909 if (IS_TYPE_UNIT_GROUP (per_cu))
2910 return;
2911
2912 back_to = make_cleanup (dwarf2_release_queue, NULL);
2913
2914 if (dwarf2_per_objfile->using_index
2915 ? per_cu->v.quick->compunit_symtab == NULL
2916 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2917 {
2918 queue_comp_unit (per_cu, language_minimal);
2919 load_cu (per_cu);
2920
2921 /* If we just loaded a CU from a DWO, and we're working with an index
2922 that may badly handle TUs, load all the TUs in that DWO as well.
2923 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2924 if (!per_cu->is_debug_types
2925 && per_cu->cu != NULL
2926 && per_cu->cu->dwo_unit != NULL
2927 && dwarf2_per_objfile->index_table != NULL
2928 && dwarf2_per_objfile->index_table->version <= 7
2929 /* DWP files aren't supported yet. */
2930 && get_dwp_file () == NULL)
2931 queue_and_load_all_dwo_tus (per_cu);
2932 }
2933
2934 process_queue ();
2935
2936 /* Age the cache, releasing compilation units that have not
2937 been used recently. */
2938 age_cached_comp_units ();
2939
2940 do_cleanups (back_to);
2941 }
2942
2943 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2944 the objfile from which this CU came. Returns the resulting symbol
2945 table. */
2946
2947 static struct compunit_symtab *
2948 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2949 {
2950 gdb_assert (dwarf2_per_objfile->using_index);
2951 if (!per_cu->v.quick->compunit_symtab)
2952 {
2953 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2954 scoped_restore decrementer = increment_reading_symtab ();
2955 dw2_do_instantiate_symtab (per_cu);
2956 process_cu_includes ();
2957 do_cleanups (back_to);
2958 }
2959
2960 return per_cu->v.quick->compunit_symtab;
2961 }
2962
2963 /* Return the CU/TU given its index.
2964
2965 This is intended for loops like:
2966
2967 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2968 + dwarf2_per_objfile->n_type_units); ++i)
2969 {
2970 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2971
2972 ...;
2973 }
2974 */
2975
2976 static struct dwarf2_per_cu_data *
2977 dw2_get_cutu (int index)
2978 {
2979 if (index >= dwarf2_per_objfile->n_comp_units)
2980 {
2981 index -= dwarf2_per_objfile->n_comp_units;
2982 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2983 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2984 }
2985
2986 return dwarf2_per_objfile->all_comp_units[index];
2987 }
2988
2989 /* Return the CU given its index.
2990 This differs from dw2_get_cutu in that it's for when you know INDEX
2991 refers to a CU. */
2992
2993 static struct dwarf2_per_cu_data *
2994 dw2_get_cu (int index)
2995 {
2996 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2997
2998 return dwarf2_per_objfile->all_comp_units[index];
2999 }
3000
3001 /* A helper for create_cus_from_index that handles a given list of
3002 CUs. */
3003
3004 static void
3005 create_cus_from_index_list (struct objfile *objfile,
3006 const gdb_byte *cu_list, offset_type n_elements,
3007 struct dwarf2_section_info *section,
3008 int is_dwz,
3009 int base_offset)
3010 {
3011 offset_type i;
3012
3013 for (i = 0; i < n_elements; i += 2)
3014 {
3015 gdb_static_assert (sizeof (ULONGEST) >= 8);
3016
3017 sect_offset sect_off
3018 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
3019 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
3020 cu_list += 2 * 8;
3021
3022 dwarf2_per_cu_data *the_cu
3023 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3024 struct dwarf2_per_cu_data);
3025 the_cu->sect_off = sect_off;
3026 the_cu->length = length;
3027 the_cu->objfile = objfile;
3028 the_cu->section = section;
3029 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3030 struct dwarf2_per_cu_quick_data);
3031 the_cu->is_dwz = is_dwz;
3032 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
3033 }
3034 }
3035
3036 /* Read the CU list from the mapped index, and use it to create all
3037 the CU objects for this objfile. */
3038
3039 static void
3040 create_cus_from_index (struct objfile *objfile,
3041 const gdb_byte *cu_list, offset_type cu_list_elements,
3042 const gdb_byte *dwz_list, offset_type dwz_elements)
3043 {
3044 struct dwz_file *dwz;
3045
3046 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
3047 dwarf2_per_objfile->all_comp_units =
3048 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
3049 dwarf2_per_objfile->n_comp_units);
3050
3051 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
3052 &dwarf2_per_objfile->info, 0, 0);
3053
3054 if (dwz_elements == 0)
3055 return;
3056
3057 dwz = dwarf2_get_dwz_file ();
3058 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
3059 cu_list_elements / 2);
3060 }
3061
3062 /* Create the signatured type hash table from the index. */
3063
3064 static void
3065 create_signatured_type_table_from_index (struct objfile *objfile,
3066 struct dwarf2_section_info *section,
3067 const gdb_byte *bytes,
3068 offset_type elements)
3069 {
3070 offset_type i;
3071 htab_t sig_types_hash;
3072
3073 dwarf2_per_objfile->n_type_units
3074 = dwarf2_per_objfile->n_allocated_type_units
3075 = elements / 3;
3076 dwarf2_per_objfile->all_type_units =
3077 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
3078
3079 sig_types_hash = allocate_signatured_type_table (objfile);
3080
3081 for (i = 0; i < elements; i += 3)
3082 {
3083 struct signatured_type *sig_type;
3084 ULONGEST signature;
3085 void **slot;
3086 cu_offset type_offset_in_tu;
3087
3088 gdb_static_assert (sizeof (ULONGEST) >= 8);
3089 sect_offset sect_off
3090 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3091 type_offset_in_tu
3092 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3093 BFD_ENDIAN_LITTLE);
3094 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3095 bytes += 3 * 8;
3096
3097 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3098 struct signatured_type);
3099 sig_type->signature = signature;
3100 sig_type->type_offset_in_tu = type_offset_in_tu;
3101 sig_type->per_cu.is_debug_types = 1;
3102 sig_type->per_cu.section = section;
3103 sig_type->per_cu.sect_off = sect_off;
3104 sig_type->per_cu.objfile = objfile;
3105 sig_type->per_cu.v.quick
3106 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3107 struct dwarf2_per_cu_quick_data);
3108
3109 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3110 *slot = sig_type;
3111
3112 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
3113 }
3114
3115 dwarf2_per_objfile->signatured_types = sig_types_hash;
3116 }
3117
3118 /* Read the address map data from the mapped index, and use it to
3119 populate the objfile's psymtabs_addrmap. */
3120
3121 static void
3122 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
3123 {
3124 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3125 const gdb_byte *iter, *end;
3126 struct addrmap *mutable_map;
3127 CORE_ADDR baseaddr;
3128
3129 auto_obstack temp_obstack;
3130
3131 mutable_map = addrmap_create_mutable (&temp_obstack);
3132
3133 iter = index->address_table;
3134 end = iter + index->address_table_size;
3135
3136 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3137
3138 while (iter < end)
3139 {
3140 ULONGEST hi, lo, cu_index;
3141 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3142 iter += 8;
3143 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3144 iter += 8;
3145 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3146 iter += 4;
3147
3148 if (lo > hi)
3149 {
3150 complaint (&symfile_complaints,
3151 _(".gdb_index address table has invalid range (%s - %s)"),
3152 hex_string (lo), hex_string (hi));
3153 continue;
3154 }
3155
3156 if (cu_index >= dwarf2_per_objfile->n_comp_units)
3157 {
3158 complaint (&symfile_complaints,
3159 _(".gdb_index address table has invalid CU number %u"),
3160 (unsigned) cu_index);
3161 continue;
3162 }
3163
3164 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3165 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3166 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
3167 }
3168
3169 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3170 &objfile->objfile_obstack);
3171 }
3172
3173 /* The hash function for strings in the mapped index. This is the same as
3174 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
3175 implementation. This is necessary because the hash function is tied to the
3176 format of the mapped index file. The hash values do not have to match with
3177 SYMBOL_HASH_NEXT.
3178
3179 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
3180
3181 static hashval_t
3182 mapped_index_string_hash (int index_version, const void *p)
3183 {
3184 const unsigned char *str = (const unsigned char *) p;
3185 hashval_t r = 0;
3186 unsigned char c;
3187
3188 while ((c = *str++) != 0)
3189 {
3190 if (index_version >= 5)
3191 c = tolower (c);
3192 r = r * 67 + c - 113;
3193 }
3194
3195 return r;
3196 }
3197
3198 /* Find a slot in the mapped index INDEX for the object named NAME.
3199 If NAME is found, set *VEC_OUT to point to the CU vector in the
3200 constant pool and return 1. If NAME cannot be found, return 0. */
3201
3202 static int
3203 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3204 offset_type **vec_out)
3205 {
3206 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
3207 offset_type hash;
3208 offset_type slot, step;
3209 int (*cmp) (const char *, const char *);
3210
3211 if (current_language->la_language == language_cplus
3212 || current_language->la_language == language_fortran
3213 || current_language->la_language == language_d)
3214 {
3215 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3216 not contain any. */
3217
3218 if (strchr (name, '(') != NULL)
3219 {
3220 char *without_params = cp_remove_params (name);
3221
3222 if (without_params != NULL)
3223 {
3224 make_cleanup (xfree, without_params);
3225 name = without_params;
3226 }
3227 }
3228 }
3229
3230 /* Index version 4 did not support case insensitive searches. But the
3231 indices for case insensitive languages are built in lowercase, therefore
3232 simulate our NAME being searched is also lowercased. */
3233 hash = mapped_index_string_hash ((index->version == 4
3234 && case_sensitivity == case_sensitive_off
3235 ? 5 : index->version),
3236 name);
3237
3238 slot = hash & (index->symbol_table_slots - 1);
3239 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
3240 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3241
3242 for (;;)
3243 {
3244 /* Convert a slot number to an offset into the table. */
3245 offset_type i = 2 * slot;
3246 const char *str;
3247 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
3248 {
3249 do_cleanups (back_to);
3250 return 0;
3251 }
3252
3253 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3254 if (!cmp (name, str))
3255 {
3256 *vec_out = (offset_type *) (index->constant_pool
3257 + MAYBE_SWAP (index->symbol_table[i + 1]));
3258 do_cleanups (back_to);
3259 return 1;
3260 }
3261
3262 slot = (slot + step) & (index->symbol_table_slots - 1);
3263 }
3264 }
3265
3266 /* A helper function that reads the .gdb_index from SECTION and fills
3267 in MAP. FILENAME is the name of the file containing the section;
3268 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3269 ok to use deprecated sections.
3270
3271 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3272 out parameters that are filled in with information about the CU and
3273 TU lists in the section.
3274
3275 Returns 1 if all went well, 0 otherwise. */
3276
3277 static int
3278 read_index_from_section (struct objfile *objfile,
3279 const char *filename,
3280 int deprecated_ok,
3281 struct dwarf2_section_info *section,
3282 struct mapped_index *map,
3283 const gdb_byte **cu_list,
3284 offset_type *cu_list_elements,
3285 const gdb_byte **types_list,
3286 offset_type *types_list_elements)
3287 {
3288 const gdb_byte *addr;
3289 offset_type version;
3290 offset_type *metadata;
3291 int i;
3292
3293 if (dwarf2_section_empty_p (section))
3294 return 0;
3295
3296 /* Older elfutils strip versions could keep the section in the main
3297 executable while splitting it for the separate debug info file. */
3298 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3299 return 0;
3300
3301 dwarf2_read_section (objfile, section);
3302
3303 addr = section->buffer;
3304 /* Version check. */
3305 version = MAYBE_SWAP (*(offset_type *) addr);
3306 /* Versions earlier than 3 emitted every copy of a psymbol. This
3307 causes the index to behave very poorly for certain requests. Version 3
3308 contained incomplete addrmap. So, it seems better to just ignore such
3309 indices. */
3310 if (version < 4)
3311 {
3312 static int warning_printed = 0;
3313 if (!warning_printed)
3314 {
3315 warning (_("Skipping obsolete .gdb_index section in %s."),
3316 filename);
3317 warning_printed = 1;
3318 }
3319 return 0;
3320 }
3321 /* Index version 4 uses a different hash function than index version
3322 5 and later.
3323
3324 Versions earlier than 6 did not emit psymbols for inlined
3325 functions. Using these files will cause GDB not to be able to
3326 set breakpoints on inlined functions by name, so we ignore these
3327 indices unless the user has done
3328 "set use-deprecated-index-sections on". */
3329 if (version < 6 && !deprecated_ok)
3330 {
3331 static int warning_printed = 0;
3332 if (!warning_printed)
3333 {
3334 warning (_("\
3335 Skipping deprecated .gdb_index section in %s.\n\
3336 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3337 to use the section anyway."),
3338 filename);
3339 warning_printed = 1;
3340 }
3341 return 0;
3342 }
3343 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3344 of the TU (for symbols coming from TUs),
3345 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3346 Plus gold-generated indices can have duplicate entries for global symbols,
3347 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3348 These are just performance bugs, and we can't distinguish gdb-generated
3349 indices from gold-generated ones, so issue no warning here. */
3350
3351 /* Indexes with higher version than the one supported by GDB may be no
3352 longer backward compatible. */
3353 if (version > 8)
3354 return 0;
3355
3356 map->version = version;
3357 map->total_size = section->size;
3358
3359 metadata = (offset_type *) (addr + sizeof (offset_type));
3360
3361 i = 0;
3362 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3363 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3364 / 8);
3365 ++i;
3366
3367 *types_list = addr + MAYBE_SWAP (metadata[i]);
3368 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3369 - MAYBE_SWAP (metadata[i]))
3370 / 8);
3371 ++i;
3372
3373 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3374 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3375 - MAYBE_SWAP (metadata[i]));
3376 ++i;
3377
3378 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3379 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3380 - MAYBE_SWAP (metadata[i]))
3381 / (2 * sizeof (offset_type)));
3382 ++i;
3383
3384 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3385
3386 return 1;
3387 }
3388
3389
3390 /* Read the index file. If everything went ok, initialize the "quick"
3391 elements of all the CUs and return 1. Otherwise, return 0. */
3392
3393 static int
3394 dwarf2_read_index (struct objfile *objfile)
3395 {
3396 struct mapped_index local_map, *map;
3397 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3398 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3399 struct dwz_file *dwz;
3400
3401 if (!read_index_from_section (objfile, objfile_name (objfile),
3402 use_deprecated_index_sections,
3403 &dwarf2_per_objfile->gdb_index, &local_map,
3404 &cu_list, &cu_list_elements,
3405 &types_list, &types_list_elements))
3406 return 0;
3407
3408 /* Don't use the index if it's empty. */
3409 if (local_map.symbol_table_slots == 0)
3410 return 0;
3411
3412 /* If there is a .dwz file, read it so we can get its CU list as
3413 well. */
3414 dwz = dwarf2_get_dwz_file ();
3415 if (dwz != NULL)
3416 {
3417 struct mapped_index dwz_map;
3418 const gdb_byte *dwz_types_ignore;
3419 offset_type dwz_types_elements_ignore;
3420
3421 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3422 1,
3423 &dwz->gdb_index, &dwz_map,
3424 &dwz_list, &dwz_list_elements,
3425 &dwz_types_ignore,
3426 &dwz_types_elements_ignore))
3427 {
3428 warning (_("could not read '.gdb_index' section from %s; skipping"),
3429 bfd_get_filename (dwz->dwz_bfd));
3430 return 0;
3431 }
3432 }
3433
3434 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3435 dwz_list_elements);
3436
3437 if (types_list_elements)
3438 {
3439 struct dwarf2_section_info *section;
3440
3441 /* We can only handle a single .debug_types when we have an
3442 index. */
3443 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3444 return 0;
3445
3446 section = VEC_index (dwarf2_section_info_def,
3447 dwarf2_per_objfile->types, 0);
3448
3449 create_signatured_type_table_from_index (objfile, section, types_list,
3450 types_list_elements);
3451 }
3452
3453 create_addrmap_from_index (objfile, &local_map);
3454
3455 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
3456 *map = local_map;
3457
3458 dwarf2_per_objfile->index_table = map;
3459 dwarf2_per_objfile->using_index = 1;
3460 dwarf2_per_objfile->quick_file_names_table =
3461 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3462
3463 return 1;
3464 }
3465
3466 /* A helper for the "quick" functions which sets the global
3467 dwarf2_per_objfile according to OBJFILE. */
3468
3469 static void
3470 dw2_setup (struct objfile *objfile)
3471 {
3472 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3473 objfile_data (objfile, dwarf2_objfile_data_key));
3474 gdb_assert (dwarf2_per_objfile);
3475 }
3476
3477 /* die_reader_func for dw2_get_file_names. */
3478
3479 static void
3480 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3481 const gdb_byte *info_ptr,
3482 struct die_info *comp_unit_die,
3483 int has_children,
3484 void *data)
3485 {
3486 struct dwarf2_cu *cu = reader->cu;
3487 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3488 struct objfile *objfile = dwarf2_per_objfile->objfile;
3489 struct dwarf2_per_cu_data *lh_cu;
3490 struct attribute *attr;
3491 int i;
3492 void **slot;
3493 struct quick_file_names *qfn;
3494
3495 gdb_assert (! this_cu->is_debug_types);
3496
3497 /* Our callers never want to match partial units -- instead they
3498 will match the enclosing full CU. */
3499 if (comp_unit_die->tag == DW_TAG_partial_unit)
3500 {
3501 this_cu->v.quick->no_file_data = 1;
3502 return;
3503 }
3504
3505 lh_cu = this_cu;
3506 slot = NULL;
3507
3508 line_header_up lh;
3509 sect_offset line_offset {};
3510
3511 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3512 if (attr)
3513 {
3514 struct quick_file_names find_entry;
3515
3516 line_offset = (sect_offset) DW_UNSND (attr);
3517
3518 /* We may have already read in this line header (TU line header sharing).
3519 If we have we're done. */
3520 find_entry.hash.dwo_unit = cu->dwo_unit;
3521 find_entry.hash.line_sect_off = line_offset;
3522 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3523 &find_entry, INSERT);
3524 if (*slot != NULL)
3525 {
3526 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3527 return;
3528 }
3529
3530 lh = dwarf_decode_line_header (line_offset, cu);
3531 }
3532 if (lh == NULL)
3533 {
3534 lh_cu->v.quick->no_file_data = 1;
3535 return;
3536 }
3537
3538 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3539 qfn->hash.dwo_unit = cu->dwo_unit;
3540 qfn->hash.line_sect_off = line_offset;
3541 gdb_assert (slot != NULL);
3542 *slot = qfn;
3543
3544 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3545
3546 qfn->num_file_names = lh->file_names.size ();
3547 qfn->file_names =
3548 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3549 for (i = 0; i < lh->file_names.size (); ++i)
3550 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3551 qfn->real_names = NULL;
3552
3553 lh_cu->v.quick->file_names = qfn;
3554 }
3555
3556 /* A helper for the "quick" functions which attempts to read the line
3557 table for THIS_CU. */
3558
3559 static struct quick_file_names *
3560 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3561 {
3562 /* This should never be called for TUs. */
3563 gdb_assert (! this_cu->is_debug_types);
3564 /* Nor type unit groups. */
3565 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3566
3567 if (this_cu->v.quick->file_names != NULL)
3568 return this_cu->v.quick->file_names;
3569 /* If we know there is no line data, no point in looking again. */
3570 if (this_cu->v.quick->no_file_data)
3571 return NULL;
3572
3573 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3574
3575 if (this_cu->v.quick->no_file_data)
3576 return NULL;
3577 return this_cu->v.quick->file_names;
3578 }
3579
3580 /* A helper for the "quick" functions which computes and caches the
3581 real path for a given file name from the line table. */
3582
3583 static const char *
3584 dw2_get_real_path (struct objfile *objfile,
3585 struct quick_file_names *qfn, int index)
3586 {
3587 if (qfn->real_names == NULL)
3588 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3589 qfn->num_file_names, const char *);
3590
3591 if (qfn->real_names[index] == NULL)
3592 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3593
3594 return qfn->real_names[index];
3595 }
3596
3597 static struct symtab *
3598 dw2_find_last_source_symtab (struct objfile *objfile)
3599 {
3600 struct compunit_symtab *cust;
3601 int index;
3602
3603 dw2_setup (objfile);
3604 index = dwarf2_per_objfile->n_comp_units - 1;
3605 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3606 if (cust == NULL)
3607 return NULL;
3608 return compunit_primary_filetab (cust);
3609 }
3610
3611 /* Traversal function for dw2_forget_cached_source_info. */
3612
3613 static int
3614 dw2_free_cached_file_names (void **slot, void *info)
3615 {
3616 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3617
3618 if (file_data->real_names)
3619 {
3620 int i;
3621
3622 for (i = 0; i < file_data->num_file_names; ++i)
3623 {
3624 xfree ((void*) file_data->real_names[i]);
3625 file_data->real_names[i] = NULL;
3626 }
3627 }
3628
3629 return 1;
3630 }
3631
3632 static void
3633 dw2_forget_cached_source_info (struct objfile *objfile)
3634 {
3635 dw2_setup (objfile);
3636
3637 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3638 dw2_free_cached_file_names, NULL);
3639 }
3640
3641 /* Helper function for dw2_map_symtabs_matching_filename that expands
3642 the symtabs and calls the iterator. */
3643
3644 static int
3645 dw2_map_expand_apply (struct objfile *objfile,
3646 struct dwarf2_per_cu_data *per_cu,
3647 const char *name, const char *real_path,
3648 gdb::function_view<bool (symtab *)> callback)
3649 {
3650 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3651
3652 /* Don't visit already-expanded CUs. */
3653 if (per_cu->v.quick->compunit_symtab)
3654 return 0;
3655
3656 /* This may expand more than one symtab, and we want to iterate over
3657 all of them. */
3658 dw2_instantiate_symtab (per_cu);
3659
3660 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3661 last_made, callback);
3662 }
3663
3664 /* Implementation of the map_symtabs_matching_filename method. */
3665
3666 static bool
3667 dw2_map_symtabs_matching_filename
3668 (struct objfile *objfile, const char *name, const char *real_path,
3669 gdb::function_view<bool (symtab *)> callback)
3670 {
3671 int i;
3672 const char *name_basename = lbasename (name);
3673
3674 dw2_setup (objfile);
3675
3676 /* The rule is CUs specify all the files, including those used by
3677 any TU, so there's no need to scan TUs here. */
3678
3679 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3680 {
3681 int j;
3682 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3683 struct quick_file_names *file_data;
3684
3685 /* We only need to look at symtabs not already expanded. */
3686 if (per_cu->v.quick->compunit_symtab)
3687 continue;
3688
3689 file_data = dw2_get_file_names (per_cu);
3690 if (file_data == NULL)
3691 continue;
3692
3693 for (j = 0; j < file_data->num_file_names; ++j)
3694 {
3695 const char *this_name = file_data->file_names[j];
3696 const char *this_real_name;
3697
3698 if (compare_filenames_for_search (this_name, name))
3699 {
3700 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3701 callback))
3702 return true;
3703 continue;
3704 }
3705
3706 /* Before we invoke realpath, which can get expensive when many
3707 files are involved, do a quick comparison of the basenames. */
3708 if (! basenames_may_differ
3709 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3710 continue;
3711
3712 this_real_name = dw2_get_real_path (objfile, file_data, j);
3713 if (compare_filenames_for_search (this_real_name, name))
3714 {
3715 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3716 callback))
3717 return true;
3718 continue;
3719 }
3720
3721 if (real_path != NULL)
3722 {
3723 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3724 gdb_assert (IS_ABSOLUTE_PATH (name));
3725 if (this_real_name != NULL
3726 && FILENAME_CMP (real_path, this_real_name) == 0)
3727 {
3728 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3729 callback))
3730 return true;
3731 continue;
3732 }
3733 }
3734 }
3735 }
3736
3737 return false;
3738 }
3739
3740 /* Struct used to manage iterating over all CUs looking for a symbol. */
3741
3742 struct dw2_symtab_iterator
3743 {
3744 /* The internalized form of .gdb_index. */
3745 struct mapped_index *index;
3746 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3747 int want_specific_block;
3748 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3749 Unused if !WANT_SPECIFIC_BLOCK. */
3750 int block_index;
3751 /* The kind of symbol we're looking for. */
3752 domain_enum domain;
3753 /* The list of CUs from the index entry of the symbol,
3754 or NULL if not found. */
3755 offset_type *vec;
3756 /* The next element in VEC to look at. */
3757 int next;
3758 /* The number of elements in VEC, or zero if there is no match. */
3759 int length;
3760 /* Have we seen a global version of the symbol?
3761 If so we can ignore all further global instances.
3762 This is to work around gold/15646, inefficient gold-generated
3763 indices. */
3764 int global_seen;
3765 };
3766
3767 /* Initialize the index symtab iterator ITER.
3768 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3769 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3770
3771 static void
3772 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3773 struct mapped_index *index,
3774 int want_specific_block,
3775 int block_index,
3776 domain_enum domain,
3777 const char *name)
3778 {
3779 iter->index = index;
3780 iter->want_specific_block = want_specific_block;
3781 iter->block_index = block_index;
3782 iter->domain = domain;
3783 iter->next = 0;
3784 iter->global_seen = 0;
3785
3786 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3787 iter->length = MAYBE_SWAP (*iter->vec);
3788 else
3789 {
3790 iter->vec = NULL;
3791 iter->length = 0;
3792 }
3793 }
3794
3795 /* Return the next matching CU or NULL if there are no more. */
3796
3797 static struct dwarf2_per_cu_data *
3798 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3799 {
3800 for ( ; iter->next < iter->length; ++iter->next)
3801 {
3802 offset_type cu_index_and_attrs =
3803 MAYBE_SWAP (iter->vec[iter->next + 1]);
3804 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3805 struct dwarf2_per_cu_data *per_cu;
3806 int want_static = iter->block_index != GLOBAL_BLOCK;
3807 /* This value is only valid for index versions >= 7. */
3808 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3809 gdb_index_symbol_kind symbol_kind =
3810 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3811 /* Only check the symbol attributes if they're present.
3812 Indices prior to version 7 don't record them,
3813 and indices >= 7 may elide them for certain symbols
3814 (gold does this). */
3815 int attrs_valid =
3816 (iter->index->version >= 7
3817 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3818
3819 /* Don't crash on bad data. */
3820 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3821 + dwarf2_per_objfile->n_type_units))
3822 {
3823 complaint (&symfile_complaints,
3824 _(".gdb_index entry has bad CU index"
3825 " [in module %s]"),
3826 objfile_name (dwarf2_per_objfile->objfile));
3827 continue;
3828 }
3829
3830 per_cu = dw2_get_cutu (cu_index);
3831
3832 /* Skip if already read in. */
3833 if (per_cu->v.quick->compunit_symtab)
3834 continue;
3835
3836 /* Check static vs global. */
3837 if (attrs_valid)
3838 {
3839 if (iter->want_specific_block
3840 && want_static != is_static)
3841 continue;
3842 /* Work around gold/15646. */
3843 if (!is_static && iter->global_seen)
3844 continue;
3845 if (!is_static)
3846 iter->global_seen = 1;
3847 }
3848
3849 /* Only check the symbol's kind if it has one. */
3850 if (attrs_valid)
3851 {
3852 switch (iter->domain)
3853 {
3854 case VAR_DOMAIN:
3855 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3856 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3857 /* Some types are also in VAR_DOMAIN. */
3858 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3859 continue;
3860 break;
3861 case STRUCT_DOMAIN:
3862 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3863 continue;
3864 break;
3865 case LABEL_DOMAIN:
3866 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3867 continue;
3868 break;
3869 default:
3870 break;
3871 }
3872 }
3873
3874 ++iter->next;
3875 return per_cu;
3876 }
3877
3878 return NULL;
3879 }
3880
3881 static struct compunit_symtab *
3882 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3883 const char *name, domain_enum domain)
3884 {
3885 struct compunit_symtab *stab_best = NULL;
3886 struct mapped_index *index;
3887
3888 dw2_setup (objfile);
3889
3890 index = dwarf2_per_objfile->index_table;
3891
3892 /* index is NULL if OBJF_READNOW. */
3893 if (index)
3894 {
3895 struct dw2_symtab_iterator iter;
3896 struct dwarf2_per_cu_data *per_cu;
3897
3898 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3899
3900 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3901 {
3902 struct symbol *sym, *with_opaque = NULL;
3903 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3904 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3905 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3906
3907 sym = block_find_symbol (block, name, domain,
3908 block_find_non_opaque_type_preferred,
3909 &with_opaque);
3910
3911 /* Some caution must be observed with overloaded functions
3912 and methods, since the index will not contain any overload
3913 information (but NAME might contain it). */
3914
3915 if (sym != NULL
3916 && SYMBOL_MATCHES_SEARCH_NAME (sym, name))
3917 return stab;
3918 if (with_opaque != NULL
3919 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, name))
3920 stab_best = stab;
3921
3922 /* Keep looking through other CUs. */
3923 }
3924 }
3925
3926 return stab_best;
3927 }
3928
3929 static void
3930 dw2_print_stats (struct objfile *objfile)
3931 {
3932 int i, total, count;
3933
3934 dw2_setup (objfile);
3935 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3936 count = 0;
3937 for (i = 0; i < total; ++i)
3938 {
3939 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3940
3941 if (!per_cu->v.quick->compunit_symtab)
3942 ++count;
3943 }
3944 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3945 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3946 }
3947
3948 /* This dumps minimal information about the index.
3949 It is called via "mt print objfiles".
3950 One use is to verify .gdb_index has been loaded by the
3951 gdb.dwarf2/gdb-index.exp testcase. */
3952
3953 static void
3954 dw2_dump (struct objfile *objfile)
3955 {
3956 dw2_setup (objfile);
3957 gdb_assert (dwarf2_per_objfile->using_index);
3958 printf_filtered (".gdb_index:");
3959 if (dwarf2_per_objfile->index_table != NULL)
3960 {
3961 printf_filtered (" version %d\n",
3962 dwarf2_per_objfile->index_table->version);
3963 }
3964 else
3965 printf_filtered (" faked for \"readnow\"\n");
3966 printf_filtered ("\n");
3967 }
3968
3969 static void
3970 dw2_relocate (struct objfile *objfile,
3971 const struct section_offsets *new_offsets,
3972 const struct section_offsets *delta)
3973 {
3974 /* There's nothing to relocate here. */
3975 }
3976
3977 static void
3978 dw2_expand_symtabs_for_function (struct objfile *objfile,
3979 const char *func_name)
3980 {
3981 struct mapped_index *index;
3982
3983 dw2_setup (objfile);
3984
3985 index = dwarf2_per_objfile->index_table;
3986
3987 /* index is NULL if OBJF_READNOW. */
3988 if (index)
3989 {
3990 struct dw2_symtab_iterator iter;
3991 struct dwarf2_per_cu_data *per_cu;
3992
3993 /* Note: It doesn't matter what we pass for block_index here. */
3994 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3995 func_name);
3996
3997 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3998 dw2_instantiate_symtab (per_cu);
3999 }
4000 }
4001
4002 static void
4003 dw2_expand_all_symtabs (struct objfile *objfile)
4004 {
4005 int i;
4006
4007 dw2_setup (objfile);
4008
4009 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4010 + dwarf2_per_objfile->n_type_units); ++i)
4011 {
4012 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4013
4014 dw2_instantiate_symtab (per_cu);
4015 }
4016 }
4017
4018 static void
4019 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4020 const char *fullname)
4021 {
4022 int i;
4023
4024 dw2_setup (objfile);
4025
4026 /* We don't need to consider type units here.
4027 This is only called for examining code, e.g. expand_line_sal.
4028 There can be an order of magnitude (or more) more type units
4029 than comp units, and we avoid them if we can. */
4030
4031 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4032 {
4033 int j;
4034 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4035 struct quick_file_names *file_data;
4036
4037 /* We only need to look at symtabs not already expanded. */
4038 if (per_cu->v.quick->compunit_symtab)
4039 continue;
4040
4041 file_data = dw2_get_file_names (per_cu);
4042 if (file_data == NULL)
4043 continue;
4044
4045 for (j = 0; j < file_data->num_file_names; ++j)
4046 {
4047 const char *this_fullname = file_data->file_names[j];
4048
4049 if (filename_cmp (this_fullname, fullname) == 0)
4050 {
4051 dw2_instantiate_symtab (per_cu);
4052 break;
4053 }
4054 }
4055 }
4056 }
4057
4058 static void
4059 dw2_map_matching_symbols (struct objfile *objfile,
4060 const char * name, domain_enum domain,
4061 int global,
4062 int (*callback) (struct block *,
4063 struct symbol *, void *),
4064 void *data, symbol_compare_ftype *match,
4065 symbol_compare_ftype *ordered_compare)
4066 {
4067 /* Currently unimplemented; used for Ada. The function can be called if the
4068 current language is Ada for a non-Ada objfile using GNU index. As Ada
4069 does not look for non-Ada symbols this function should just return. */
4070 }
4071
4072 static void
4073 dw2_expand_symtabs_matching
4074 (struct objfile *objfile,
4075 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4076 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4077 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4078 enum search_domain kind)
4079 {
4080 int i;
4081 offset_type iter;
4082 struct mapped_index *index;
4083
4084 dw2_setup (objfile);
4085
4086 /* index_table is NULL if OBJF_READNOW. */
4087 if (!dwarf2_per_objfile->index_table)
4088 return;
4089 index = dwarf2_per_objfile->index_table;
4090
4091 if (file_matcher != NULL)
4092 {
4093 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
4094 htab_eq_pointer,
4095 NULL, xcalloc, xfree));
4096 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
4097 htab_eq_pointer,
4098 NULL, xcalloc, xfree));
4099
4100 /* The rule is CUs specify all the files, including those used by
4101 any TU, so there's no need to scan TUs here. */
4102
4103 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4104 {
4105 int j;
4106 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4107 struct quick_file_names *file_data;
4108 void **slot;
4109
4110 QUIT;
4111
4112 per_cu->v.quick->mark = 0;
4113
4114 /* We only need to look at symtabs not already expanded. */
4115 if (per_cu->v.quick->compunit_symtab)
4116 continue;
4117
4118 file_data = dw2_get_file_names (per_cu);
4119 if (file_data == NULL)
4120 continue;
4121
4122 if (htab_find (visited_not_found.get (), file_data) != NULL)
4123 continue;
4124 else if (htab_find (visited_found.get (), file_data) != NULL)
4125 {
4126 per_cu->v.quick->mark = 1;
4127 continue;
4128 }
4129
4130 for (j = 0; j < file_data->num_file_names; ++j)
4131 {
4132 const char *this_real_name;
4133
4134 if (file_matcher (file_data->file_names[j], false))
4135 {
4136 per_cu->v.quick->mark = 1;
4137 break;
4138 }
4139
4140 /* Before we invoke realpath, which can get expensive when many
4141 files are involved, do a quick comparison of the basenames. */
4142 if (!basenames_may_differ
4143 && !file_matcher (lbasename (file_data->file_names[j]),
4144 true))
4145 continue;
4146
4147 this_real_name = dw2_get_real_path (objfile, file_data, j);
4148 if (file_matcher (this_real_name, false))
4149 {
4150 per_cu->v.quick->mark = 1;
4151 break;
4152 }
4153 }
4154
4155 slot = htab_find_slot (per_cu->v.quick->mark
4156 ? visited_found.get ()
4157 : visited_not_found.get (),
4158 file_data, INSERT);
4159 *slot = file_data;
4160 }
4161 }
4162
4163 for (iter = 0; iter < index->symbol_table_slots; ++iter)
4164 {
4165 offset_type idx = 2 * iter;
4166 const char *name;
4167 offset_type *vec, vec_len, vec_idx;
4168 int global_seen = 0;
4169
4170 QUIT;
4171
4172 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
4173 continue;
4174
4175 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
4176
4177 if (!symbol_matcher (name))
4178 continue;
4179
4180 /* The name was matched, now expand corresponding CUs that were
4181 marked. */
4182 vec = (offset_type *) (index->constant_pool
4183 + MAYBE_SWAP (index->symbol_table[idx + 1]));
4184 vec_len = MAYBE_SWAP (vec[0]);
4185 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4186 {
4187 struct dwarf2_per_cu_data *per_cu;
4188 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
4189 /* This value is only valid for index versions >= 7. */
4190 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4191 gdb_index_symbol_kind symbol_kind =
4192 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4193 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4194 /* Only check the symbol attributes if they're present.
4195 Indices prior to version 7 don't record them,
4196 and indices >= 7 may elide them for certain symbols
4197 (gold does this). */
4198 int attrs_valid =
4199 (index->version >= 7
4200 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4201
4202 /* Work around gold/15646. */
4203 if (attrs_valid)
4204 {
4205 if (!is_static && global_seen)
4206 continue;
4207 if (!is_static)
4208 global_seen = 1;
4209 }
4210
4211 /* Only check the symbol's kind if it has one. */
4212 if (attrs_valid)
4213 {
4214 switch (kind)
4215 {
4216 case VARIABLES_DOMAIN:
4217 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4218 continue;
4219 break;
4220 case FUNCTIONS_DOMAIN:
4221 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4222 continue;
4223 break;
4224 case TYPES_DOMAIN:
4225 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4226 continue;
4227 break;
4228 default:
4229 break;
4230 }
4231 }
4232
4233 /* Don't crash on bad data. */
4234 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4235 + dwarf2_per_objfile->n_type_units))
4236 {
4237 complaint (&symfile_complaints,
4238 _(".gdb_index entry has bad CU index"
4239 " [in module %s]"), objfile_name (objfile));
4240 continue;
4241 }
4242
4243 per_cu = dw2_get_cutu (cu_index);
4244 if (file_matcher == NULL || per_cu->v.quick->mark)
4245 {
4246 int symtab_was_null =
4247 (per_cu->v.quick->compunit_symtab == NULL);
4248
4249 dw2_instantiate_symtab (per_cu);
4250
4251 if (expansion_notify != NULL
4252 && symtab_was_null
4253 && per_cu->v.quick->compunit_symtab != NULL)
4254 {
4255 expansion_notify (per_cu->v.quick->compunit_symtab);
4256 }
4257 }
4258 }
4259 }
4260 }
4261
4262 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4263 symtab. */
4264
4265 static struct compunit_symtab *
4266 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4267 CORE_ADDR pc)
4268 {
4269 int i;
4270
4271 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4272 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4273 return cust;
4274
4275 if (cust->includes == NULL)
4276 return NULL;
4277
4278 for (i = 0; cust->includes[i]; ++i)
4279 {
4280 struct compunit_symtab *s = cust->includes[i];
4281
4282 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4283 if (s != NULL)
4284 return s;
4285 }
4286
4287 return NULL;
4288 }
4289
4290 static struct compunit_symtab *
4291 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4292 struct bound_minimal_symbol msymbol,
4293 CORE_ADDR pc,
4294 struct obj_section *section,
4295 int warn_if_readin)
4296 {
4297 struct dwarf2_per_cu_data *data;
4298 struct compunit_symtab *result;
4299
4300 dw2_setup (objfile);
4301
4302 if (!objfile->psymtabs_addrmap)
4303 return NULL;
4304
4305 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
4306 pc);
4307 if (!data)
4308 return NULL;
4309
4310 if (warn_if_readin && data->v.quick->compunit_symtab)
4311 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4312 paddress (get_objfile_arch (objfile), pc));
4313
4314 result
4315 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4316 pc);
4317 gdb_assert (result != NULL);
4318 return result;
4319 }
4320
4321 static void
4322 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4323 void *data, int need_fullname)
4324 {
4325 dw2_setup (objfile);
4326
4327 if (!dwarf2_per_objfile->filenames_cache)
4328 {
4329 dwarf2_per_objfile->filenames_cache.emplace ();
4330
4331 htab_up visited (htab_create_alloc (10,
4332 htab_hash_pointer, htab_eq_pointer,
4333 NULL, xcalloc, xfree));
4334
4335 /* The rule is CUs specify all the files, including those used
4336 by any TU, so there's no need to scan TUs here. We can
4337 ignore file names coming from already-expanded CUs. */
4338
4339 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4340 {
4341 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4342
4343 if (per_cu->v.quick->compunit_symtab)
4344 {
4345 void **slot = htab_find_slot (visited.get (),
4346 per_cu->v.quick->file_names,
4347 INSERT);
4348
4349 *slot = per_cu->v.quick->file_names;
4350 }
4351 }
4352
4353 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4354 {
4355 int j;
4356 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4357 struct quick_file_names *file_data;
4358 void **slot;
4359
4360 /* We only need to look at symtabs not already expanded. */
4361 if (per_cu->v.quick->compunit_symtab)
4362 continue;
4363
4364 file_data = dw2_get_file_names (per_cu);
4365 if (file_data == NULL)
4366 continue;
4367
4368 slot = htab_find_slot (visited.get (), file_data, INSERT);
4369 if (*slot)
4370 {
4371 /* Already visited. */
4372 continue;
4373 }
4374 *slot = file_data;
4375
4376 for (int j = 0; j < file_data->num_file_names; ++j)
4377 {
4378 const char *filename = file_data->file_names[j];
4379 dwarf2_per_objfile->filenames_cache->seen (filename);
4380 }
4381 }
4382 }
4383
4384 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
4385 {
4386 gdb::unique_xmalloc_ptr<char> this_real_name;
4387
4388 if (need_fullname)
4389 this_real_name = gdb_realpath (filename);
4390 (*fun) (filename, this_real_name.get (), data);
4391 });
4392 }
4393
4394 static int
4395 dw2_has_symbols (struct objfile *objfile)
4396 {
4397 return 1;
4398 }
4399
4400 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4401 {
4402 dw2_has_symbols,
4403 dw2_find_last_source_symtab,
4404 dw2_forget_cached_source_info,
4405 dw2_map_symtabs_matching_filename,
4406 dw2_lookup_symbol,
4407 dw2_print_stats,
4408 dw2_dump,
4409 dw2_relocate,
4410 dw2_expand_symtabs_for_function,
4411 dw2_expand_all_symtabs,
4412 dw2_expand_symtabs_with_fullname,
4413 dw2_map_matching_symbols,
4414 dw2_expand_symtabs_matching,
4415 dw2_find_pc_sect_compunit_symtab,
4416 dw2_map_symbol_filenames
4417 };
4418
4419 /* Initialize for reading DWARF for this objfile. Return 0 if this
4420 file will use psymtabs, or 1 if using the GNU index. */
4421
4422 int
4423 dwarf2_initialize_objfile (struct objfile *objfile)
4424 {
4425 /* If we're about to read full symbols, don't bother with the
4426 indices. In this case we also don't care if some other debug
4427 format is making psymtabs, because they are all about to be
4428 expanded anyway. */
4429 if ((objfile->flags & OBJF_READNOW))
4430 {
4431 int i;
4432
4433 dwarf2_per_objfile->using_index = 1;
4434 create_all_comp_units (objfile);
4435 create_all_type_units (objfile);
4436 dwarf2_per_objfile->quick_file_names_table =
4437 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4438
4439 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4440 + dwarf2_per_objfile->n_type_units); ++i)
4441 {
4442 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4443
4444 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4445 struct dwarf2_per_cu_quick_data);
4446 }
4447
4448 /* Return 1 so that gdb sees the "quick" functions. However,
4449 these functions will be no-ops because we will have expanded
4450 all symtabs. */
4451 return 1;
4452 }
4453
4454 if (dwarf2_read_index (objfile))
4455 return 1;
4456
4457 return 0;
4458 }
4459
4460 \f
4461
4462 /* Build a partial symbol table. */
4463
4464 void
4465 dwarf2_build_psymtabs (struct objfile *objfile)
4466 {
4467
4468 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4469 {
4470 init_psymbol_list (objfile, 1024);
4471 }
4472
4473 TRY
4474 {
4475 /* This isn't really ideal: all the data we allocate on the
4476 objfile's obstack is still uselessly kept around. However,
4477 freeing it seems unsafe. */
4478 psymtab_discarder psymtabs (objfile);
4479 dwarf2_build_psymtabs_hard (objfile);
4480 psymtabs.keep ();
4481 }
4482 CATCH (except, RETURN_MASK_ERROR)
4483 {
4484 exception_print (gdb_stderr, except);
4485 }
4486 END_CATCH
4487 }
4488
4489 /* Return the total length of the CU described by HEADER. */
4490
4491 static unsigned int
4492 get_cu_length (const struct comp_unit_head *header)
4493 {
4494 return header->initial_length_size + header->length;
4495 }
4496
4497 /* Return TRUE if SECT_OFF is within CU_HEADER. */
4498
4499 static inline bool
4500 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
4501 {
4502 sect_offset bottom = cu_header->sect_off;
4503 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
4504
4505 return sect_off >= bottom && sect_off < top;
4506 }
4507
4508 /* Find the base address of the compilation unit for range lists and
4509 location lists. It will normally be specified by DW_AT_low_pc.
4510 In DWARF-3 draft 4, the base address could be overridden by
4511 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4512 compilation units with discontinuous ranges. */
4513
4514 static void
4515 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4516 {
4517 struct attribute *attr;
4518
4519 cu->base_known = 0;
4520 cu->base_address = 0;
4521
4522 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4523 if (attr)
4524 {
4525 cu->base_address = attr_value_as_address (attr);
4526 cu->base_known = 1;
4527 }
4528 else
4529 {
4530 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4531 if (attr)
4532 {
4533 cu->base_address = attr_value_as_address (attr);
4534 cu->base_known = 1;
4535 }
4536 }
4537 }
4538
4539 /* Read in the comp unit header information from the debug_info at info_ptr.
4540 Use rcuh_kind::COMPILE as the default type if not known by the caller.
4541 NOTE: This leaves members offset, first_die_offset to be filled in
4542 by the caller. */
4543
4544 static const gdb_byte *
4545 read_comp_unit_head (struct comp_unit_head *cu_header,
4546 const gdb_byte *info_ptr,
4547 struct dwarf2_section_info *section,
4548 rcuh_kind section_kind)
4549 {
4550 int signed_addr;
4551 unsigned int bytes_read;
4552 const char *filename = get_section_file_name (section);
4553 bfd *abfd = get_section_bfd_owner (section);
4554
4555 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4556 cu_header->initial_length_size = bytes_read;
4557 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4558 info_ptr += bytes_read;
4559 cu_header->version = read_2_bytes (abfd, info_ptr);
4560 info_ptr += 2;
4561 if (cu_header->version < 5)
4562 switch (section_kind)
4563 {
4564 case rcuh_kind::COMPILE:
4565 cu_header->unit_type = DW_UT_compile;
4566 break;
4567 case rcuh_kind::TYPE:
4568 cu_header->unit_type = DW_UT_type;
4569 break;
4570 default:
4571 internal_error (__FILE__, __LINE__,
4572 _("read_comp_unit_head: invalid section_kind"));
4573 }
4574 else
4575 {
4576 cu_header->unit_type = static_cast<enum dwarf_unit_type>
4577 (read_1_byte (abfd, info_ptr));
4578 info_ptr += 1;
4579 switch (cu_header->unit_type)
4580 {
4581 case DW_UT_compile:
4582 if (section_kind != rcuh_kind::COMPILE)
4583 error (_("Dwarf Error: wrong unit_type in compilation unit header "
4584 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
4585 filename);
4586 break;
4587 case DW_UT_type:
4588 section_kind = rcuh_kind::TYPE;
4589 break;
4590 default:
4591 error (_("Dwarf Error: wrong unit_type in compilation unit header "
4592 "(is %d, should be %d or %d) [in module %s]"),
4593 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
4594 }
4595
4596 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4597 info_ptr += 1;
4598 }
4599 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
4600 cu_header,
4601 &bytes_read);
4602 info_ptr += bytes_read;
4603 if (cu_header->version < 5)
4604 {
4605 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4606 info_ptr += 1;
4607 }
4608 signed_addr = bfd_get_sign_extend_vma (abfd);
4609 if (signed_addr < 0)
4610 internal_error (__FILE__, __LINE__,
4611 _("read_comp_unit_head: dwarf from non elf file"));
4612 cu_header->signed_addr_p = signed_addr;
4613
4614 if (section_kind == rcuh_kind::TYPE)
4615 {
4616 LONGEST type_offset;
4617
4618 cu_header->signature = read_8_bytes (abfd, info_ptr);
4619 info_ptr += 8;
4620
4621 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
4622 info_ptr += bytes_read;
4623 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
4624 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
4625 error (_("Dwarf Error: Too big type_offset in compilation unit "
4626 "header (is %s) [in module %s]"), plongest (type_offset),
4627 filename);
4628 }
4629
4630 return info_ptr;
4631 }
4632
4633 /* Helper function that returns the proper abbrev section for
4634 THIS_CU. */
4635
4636 static struct dwarf2_section_info *
4637 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4638 {
4639 struct dwarf2_section_info *abbrev;
4640
4641 if (this_cu->is_dwz)
4642 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4643 else
4644 abbrev = &dwarf2_per_objfile->abbrev;
4645
4646 return abbrev;
4647 }
4648
4649 /* Subroutine of read_and_check_comp_unit_head and
4650 read_and_check_type_unit_head to simplify them.
4651 Perform various error checking on the header. */
4652
4653 static void
4654 error_check_comp_unit_head (struct comp_unit_head *header,
4655 struct dwarf2_section_info *section,
4656 struct dwarf2_section_info *abbrev_section)
4657 {
4658 const char *filename = get_section_file_name (section);
4659
4660 if (header->version < 2 || header->version > 5)
4661 error (_("Dwarf Error: wrong version in compilation unit header "
4662 "(is %d, should be 2, 3, 4 or 5) [in module %s]"), header->version,
4663 filename);
4664
4665 if (to_underlying (header->abbrev_sect_off)
4666 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4667 error (_("Dwarf Error: bad offset (0x%x) in compilation unit header "
4668 "(offset 0x%x + 6) [in module %s]"),
4669 to_underlying (header->abbrev_sect_off),
4670 to_underlying (header->sect_off),
4671 filename);
4672
4673 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
4674 avoid potential 32-bit overflow. */
4675 if (((ULONGEST) header->sect_off + get_cu_length (header))
4676 > section->size)
4677 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
4678 "(offset 0x%x + 0) [in module %s]"),
4679 header->length, to_underlying (header->sect_off),
4680 filename);
4681 }
4682
4683 /* Read in a CU/TU header and perform some basic error checking.
4684 The contents of the header are stored in HEADER.
4685 The result is a pointer to the start of the first DIE. */
4686
4687 static const gdb_byte *
4688 read_and_check_comp_unit_head (struct comp_unit_head *header,
4689 struct dwarf2_section_info *section,
4690 struct dwarf2_section_info *abbrev_section,
4691 const gdb_byte *info_ptr,
4692 rcuh_kind section_kind)
4693 {
4694 const gdb_byte *beg_of_comp_unit = info_ptr;
4695 bfd *abfd = get_section_bfd_owner (section);
4696
4697 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
4698
4699 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
4700
4701 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
4702
4703 error_check_comp_unit_head (header, section, abbrev_section);
4704
4705 return info_ptr;
4706 }
4707
4708 /* Fetch the abbreviation table offset from a comp or type unit header. */
4709
4710 static sect_offset
4711 read_abbrev_offset (struct dwarf2_section_info *section,
4712 sect_offset sect_off)
4713 {
4714 bfd *abfd = get_section_bfd_owner (section);
4715 const gdb_byte *info_ptr;
4716 unsigned int initial_length_size, offset_size;
4717 uint16_t version;
4718
4719 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4720 info_ptr = section->buffer + to_underlying (sect_off);
4721 read_initial_length (abfd, info_ptr, &initial_length_size);
4722 offset_size = initial_length_size == 4 ? 4 : 8;
4723 info_ptr += initial_length_size;
4724
4725 version = read_2_bytes (abfd, info_ptr);
4726 info_ptr += 2;
4727 if (version >= 5)
4728 {
4729 /* Skip unit type and address size. */
4730 info_ptr += 2;
4731 }
4732
4733 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
4734 }
4735
4736 /* Allocate a new partial symtab for file named NAME and mark this new
4737 partial symtab as being an include of PST. */
4738
4739 static void
4740 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4741 struct objfile *objfile)
4742 {
4743 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4744
4745 if (!IS_ABSOLUTE_PATH (subpst->filename))
4746 {
4747 /* It shares objfile->objfile_obstack. */
4748 subpst->dirname = pst->dirname;
4749 }
4750
4751 subpst->textlow = 0;
4752 subpst->texthigh = 0;
4753
4754 subpst->dependencies
4755 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
4756 subpst->dependencies[0] = pst;
4757 subpst->number_of_dependencies = 1;
4758
4759 subpst->globals_offset = 0;
4760 subpst->n_global_syms = 0;
4761 subpst->statics_offset = 0;
4762 subpst->n_static_syms = 0;
4763 subpst->compunit_symtab = NULL;
4764 subpst->read_symtab = pst->read_symtab;
4765 subpst->readin = 0;
4766
4767 /* No private part is necessary for include psymtabs. This property
4768 can be used to differentiate between such include psymtabs and
4769 the regular ones. */
4770 subpst->read_symtab_private = NULL;
4771 }
4772
4773 /* Read the Line Number Program data and extract the list of files
4774 included by the source file represented by PST. Build an include
4775 partial symtab for each of these included files. */
4776
4777 static void
4778 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4779 struct die_info *die,
4780 struct partial_symtab *pst)
4781 {
4782 line_header_up lh;
4783 struct attribute *attr;
4784
4785 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4786 if (attr)
4787 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
4788 if (lh == NULL)
4789 return; /* No linetable, so no includes. */
4790
4791 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4792 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst, pst->textlow, 1);
4793 }
4794
4795 static hashval_t
4796 hash_signatured_type (const void *item)
4797 {
4798 const struct signatured_type *sig_type
4799 = (const struct signatured_type *) item;
4800
4801 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4802 return sig_type->signature;
4803 }
4804
4805 static int
4806 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4807 {
4808 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
4809 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
4810
4811 return lhs->signature == rhs->signature;
4812 }
4813
4814 /* Allocate a hash table for signatured types. */
4815
4816 static htab_t
4817 allocate_signatured_type_table (struct objfile *objfile)
4818 {
4819 return htab_create_alloc_ex (41,
4820 hash_signatured_type,
4821 eq_signatured_type,
4822 NULL,
4823 &objfile->objfile_obstack,
4824 hashtab_obstack_allocate,
4825 dummy_obstack_deallocate);
4826 }
4827
4828 /* A helper function to add a signatured type CU to a table. */
4829
4830 static int
4831 add_signatured_type_cu_to_table (void **slot, void *datum)
4832 {
4833 struct signatured_type *sigt = (struct signatured_type *) *slot;
4834 struct signatured_type ***datap = (struct signatured_type ***) datum;
4835
4836 **datap = sigt;
4837 ++*datap;
4838
4839 return 1;
4840 }
4841
4842 /* A helper for create_debug_types_hash_table. Read types from SECTION
4843 and fill them into TYPES_HTAB. It will process only type units,
4844 therefore DW_UT_type. */
4845
4846 static void
4847 create_debug_type_hash_table (struct dwo_file *dwo_file,
4848 dwarf2_section_info *section, htab_t &types_htab,
4849 rcuh_kind section_kind)
4850 {
4851 struct objfile *objfile = dwarf2_per_objfile->objfile;
4852 struct dwarf2_section_info *abbrev_section;
4853 bfd *abfd;
4854 const gdb_byte *info_ptr, *end_ptr;
4855
4856 abbrev_section = (dwo_file != NULL
4857 ? &dwo_file->sections.abbrev
4858 : &dwarf2_per_objfile->abbrev);
4859
4860 if (dwarf_read_debug)
4861 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
4862 get_section_name (section),
4863 get_section_file_name (abbrev_section));
4864
4865 dwarf2_read_section (objfile, section);
4866 info_ptr = section->buffer;
4867
4868 if (info_ptr == NULL)
4869 return;
4870
4871 /* We can't set abfd until now because the section may be empty or
4872 not present, in which case the bfd is unknown. */
4873 abfd = get_section_bfd_owner (section);
4874
4875 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4876 because we don't need to read any dies: the signature is in the
4877 header. */
4878
4879 end_ptr = info_ptr + section->size;
4880 while (info_ptr < end_ptr)
4881 {
4882 struct signatured_type *sig_type;
4883 struct dwo_unit *dwo_tu;
4884 void **slot;
4885 const gdb_byte *ptr = info_ptr;
4886 struct comp_unit_head header;
4887 unsigned int length;
4888
4889 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
4890
4891 /* Initialize it due to a false compiler warning. */
4892 header.signature = -1;
4893 header.type_cu_offset_in_tu = (cu_offset) -1;
4894
4895 /* We need to read the type's signature in order to build the hash
4896 table, but we don't need anything else just yet. */
4897
4898 ptr = read_and_check_comp_unit_head (&header, section,
4899 abbrev_section, ptr, section_kind);
4900
4901 length = get_cu_length (&header);
4902
4903 /* Skip dummy type units. */
4904 if (ptr >= info_ptr + length
4905 || peek_abbrev_code (abfd, ptr) == 0
4906 || header.unit_type != DW_UT_type)
4907 {
4908 info_ptr += length;
4909 continue;
4910 }
4911
4912 if (types_htab == NULL)
4913 {
4914 if (dwo_file)
4915 types_htab = allocate_dwo_unit_table (objfile);
4916 else
4917 types_htab = allocate_signatured_type_table (objfile);
4918 }
4919
4920 if (dwo_file)
4921 {
4922 sig_type = NULL;
4923 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4924 struct dwo_unit);
4925 dwo_tu->dwo_file = dwo_file;
4926 dwo_tu->signature = header.signature;
4927 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
4928 dwo_tu->section = section;
4929 dwo_tu->sect_off = sect_off;
4930 dwo_tu->length = length;
4931 }
4932 else
4933 {
4934 /* N.B.: type_offset is not usable if this type uses a DWO file.
4935 The real type_offset is in the DWO file. */
4936 dwo_tu = NULL;
4937 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4938 struct signatured_type);
4939 sig_type->signature = header.signature;
4940 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
4941 sig_type->per_cu.objfile = objfile;
4942 sig_type->per_cu.is_debug_types = 1;
4943 sig_type->per_cu.section = section;
4944 sig_type->per_cu.sect_off = sect_off;
4945 sig_type->per_cu.length = length;
4946 }
4947
4948 slot = htab_find_slot (types_htab,
4949 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4950 INSERT);
4951 gdb_assert (slot != NULL);
4952 if (*slot != NULL)
4953 {
4954 sect_offset dup_sect_off;
4955
4956 if (dwo_file)
4957 {
4958 const struct dwo_unit *dup_tu
4959 = (const struct dwo_unit *) *slot;
4960
4961 dup_sect_off = dup_tu->sect_off;
4962 }
4963 else
4964 {
4965 const struct signatured_type *dup_tu
4966 = (const struct signatured_type *) *slot;
4967
4968 dup_sect_off = dup_tu->per_cu.sect_off;
4969 }
4970
4971 complaint (&symfile_complaints,
4972 _("debug type entry at offset 0x%x is duplicate to"
4973 " the entry at offset 0x%x, signature %s"),
4974 to_underlying (sect_off), to_underlying (dup_sect_off),
4975 hex_string (header.signature));
4976 }
4977 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4978
4979 if (dwarf_read_debug > 1)
4980 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4981 to_underlying (sect_off),
4982 hex_string (header.signature));
4983
4984 info_ptr += length;
4985 }
4986 }
4987
4988 /* Create the hash table of all entries in the .debug_types
4989 (or .debug_types.dwo) section(s).
4990 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4991 otherwise it is NULL.
4992
4993 The result is a pointer to the hash table or NULL if there are no types.
4994
4995 Note: This function processes DWO files only, not DWP files. */
4996
4997 static void
4998 create_debug_types_hash_table (struct dwo_file *dwo_file,
4999 VEC (dwarf2_section_info_def) *types,
5000 htab_t &types_htab)
5001 {
5002 int ix;
5003 struct dwarf2_section_info *section;
5004
5005 if (VEC_empty (dwarf2_section_info_def, types))
5006 return;
5007
5008 for (ix = 0;
5009 VEC_iterate (dwarf2_section_info_def, types, ix, section);
5010 ++ix)
5011 create_debug_type_hash_table (dwo_file, section, types_htab,
5012 rcuh_kind::TYPE);
5013 }
5014
5015 /* Create the hash table of all entries in the .debug_types section,
5016 and initialize all_type_units.
5017 The result is zero if there is an error (e.g. missing .debug_types section),
5018 otherwise non-zero. */
5019
5020 static int
5021 create_all_type_units (struct objfile *objfile)
5022 {
5023 htab_t types_htab = NULL;
5024 struct signatured_type **iter;
5025
5026 create_debug_type_hash_table (NULL, &dwarf2_per_objfile->info, types_htab,
5027 rcuh_kind::COMPILE);
5028 create_debug_types_hash_table (NULL, dwarf2_per_objfile->types, types_htab);
5029 if (types_htab == NULL)
5030 {
5031 dwarf2_per_objfile->signatured_types = NULL;
5032 return 0;
5033 }
5034
5035 dwarf2_per_objfile->signatured_types = types_htab;
5036
5037 dwarf2_per_objfile->n_type_units
5038 = dwarf2_per_objfile->n_allocated_type_units
5039 = htab_elements (types_htab);
5040 dwarf2_per_objfile->all_type_units =
5041 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
5042 iter = &dwarf2_per_objfile->all_type_units[0];
5043 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
5044 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
5045 == dwarf2_per_objfile->n_type_units);
5046
5047 return 1;
5048 }
5049
5050 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
5051 If SLOT is non-NULL, it is the entry to use in the hash table.
5052 Otherwise we find one. */
5053
5054 static struct signatured_type *
5055 add_type_unit (ULONGEST sig, void **slot)
5056 {
5057 struct objfile *objfile = dwarf2_per_objfile->objfile;
5058 int n_type_units = dwarf2_per_objfile->n_type_units;
5059 struct signatured_type *sig_type;
5060
5061 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
5062 ++n_type_units;
5063 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
5064 {
5065 if (dwarf2_per_objfile->n_allocated_type_units == 0)
5066 dwarf2_per_objfile->n_allocated_type_units = 1;
5067 dwarf2_per_objfile->n_allocated_type_units *= 2;
5068 dwarf2_per_objfile->all_type_units
5069 = XRESIZEVEC (struct signatured_type *,
5070 dwarf2_per_objfile->all_type_units,
5071 dwarf2_per_objfile->n_allocated_type_units);
5072 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
5073 }
5074 dwarf2_per_objfile->n_type_units = n_type_units;
5075
5076 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5077 struct signatured_type);
5078 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
5079 sig_type->signature = sig;
5080 sig_type->per_cu.is_debug_types = 1;
5081 if (dwarf2_per_objfile->using_index)
5082 {
5083 sig_type->per_cu.v.quick =
5084 OBSTACK_ZALLOC (&objfile->objfile_obstack,
5085 struct dwarf2_per_cu_quick_data);
5086 }
5087
5088 if (slot == NULL)
5089 {
5090 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5091 sig_type, INSERT);
5092 }
5093 gdb_assert (*slot == NULL);
5094 *slot = sig_type;
5095 /* The rest of sig_type must be filled in by the caller. */
5096 return sig_type;
5097 }
5098
5099 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
5100 Fill in SIG_ENTRY with DWO_ENTRY. */
5101
5102 static void
5103 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
5104 struct signatured_type *sig_entry,
5105 struct dwo_unit *dwo_entry)
5106 {
5107 /* Make sure we're not clobbering something we don't expect to. */
5108 gdb_assert (! sig_entry->per_cu.queued);
5109 gdb_assert (sig_entry->per_cu.cu == NULL);
5110 if (dwarf2_per_objfile->using_index)
5111 {
5112 gdb_assert (sig_entry->per_cu.v.quick != NULL);
5113 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
5114 }
5115 else
5116 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
5117 gdb_assert (sig_entry->signature == dwo_entry->signature);
5118 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
5119 gdb_assert (sig_entry->type_unit_group == NULL);
5120 gdb_assert (sig_entry->dwo_unit == NULL);
5121
5122 sig_entry->per_cu.section = dwo_entry->section;
5123 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
5124 sig_entry->per_cu.length = dwo_entry->length;
5125 sig_entry->per_cu.reading_dwo_directly = 1;
5126 sig_entry->per_cu.objfile = objfile;
5127 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
5128 sig_entry->dwo_unit = dwo_entry;
5129 }
5130
5131 /* Subroutine of lookup_signatured_type.
5132 If we haven't read the TU yet, create the signatured_type data structure
5133 for a TU to be read in directly from a DWO file, bypassing the stub.
5134 This is the "Stay in DWO Optimization": When there is no DWP file and we're
5135 using .gdb_index, then when reading a CU we want to stay in the DWO file
5136 containing that CU. Otherwise we could end up reading several other DWO
5137 files (due to comdat folding) to process the transitive closure of all the
5138 mentioned TUs, and that can be slow. The current DWO file will have every
5139 type signature that it needs.
5140 We only do this for .gdb_index because in the psymtab case we already have
5141 to read all the DWOs to build the type unit groups. */
5142
5143 static struct signatured_type *
5144 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5145 {
5146 struct objfile *objfile = dwarf2_per_objfile->objfile;
5147 struct dwo_file *dwo_file;
5148 struct dwo_unit find_dwo_entry, *dwo_entry;
5149 struct signatured_type find_sig_entry, *sig_entry;
5150 void **slot;
5151
5152 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
5153
5154 /* If TU skeletons have been removed then we may not have read in any
5155 TUs yet. */
5156 if (dwarf2_per_objfile->signatured_types == NULL)
5157 {
5158 dwarf2_per_objfile->signatured_types
5159 = allocate_signatured_type_table (objfile);
5160 }
5161
5162 /* We only ever need to read in one copy of a signatured type.
5163 Use the global signatured_types array to do our own comdat-folding
5164 of types. If this is the first time we're reading this TU, and
5165 the TU has an entry in .gdb_index, replace the recorded data from
5166 .gdb_index with this TU. */
5167
5168 find_sig_entry.signature = sig;
5169 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5170 &find_sig_entry, INSERT);
5171 sig_entry = (struct signatured_type *) *slot;
5172
5173 /* We can get here with the TU already read, *or* in the process of being
5174 read. Don't reassign the global entry to point to this DWO if that's
5175 the case. Also note that if the TU is already being read, it may not
5176 have come from a DWO, the program may be a mix of Fission-compiled
5177 code and non-Fission-compiled code. */
5178
5179 /* Have we already tried to read this TU?
5180 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5181 needn't exist in the global table yet). */
5182 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
5183 return sig_entry;
5184
5185 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
5186 dwo_unit of the TU itself. */
5187 dwo_file = cu->dwo_unit->dwo_file;
5188
5189 /* Ok, this is the first time we're reading this TU. */
5190 if (dwo_file->tus == NULL)
5191 return NULL;
5192 find_dwo_entry.signature = sig;
5193 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
5194 if (dwo_entry == NULL)
5195 return NULL;
5196
5197 /* If the global table doesn't have an entry for this TU, add one. */
5198 if (sig_entry == NULL)
5199 sig_entry = add_type_unit (sig, slot);
5200
5201 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5202 sig_entry->per_cu.tu_read = 1;
5203 return sig_entry;
5204 }
5205
5206 /* Subroutine of lookup_signatured_type.
5207 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
5208 then try the DWP file. If the TU stub (skeleton) has been removed then
5209 it won't be in .gdb_index. */
5210
5211 static struct signatured_type *
5212 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5213 {
5214 struct objfile *objfile = dwarf2_per_objfile->objfile;
5215 struct dwp_file *dwp_file = get_dwp_file ();
5216 struct dwo_unit *dwo_entry;
5217 struct signatured_type find_sig_entry, *sig_entry;
5218 void **slot;
5219
5220 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
5221 gdb_assert (dwp_file != NULL);
5222
5223 /* If TU skeletons have been removed then we may not have read in any
5224 TUs yet. */
5225 if (dwarf2_per_objfile->signatured_types == NULL)
5226 {
5227 dwarf2_per_objfile->signatured_types
5228 = allocate_signatured_type_table (objfile);
5229 }
5230
5231 find_sig_entry.signature = sig;
5232 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5233 &find_sig_entry, INSERT);
5234 sig_entry = (struct signatured_type *) *slot;
5235
5236 /* Have we already tried to read this TU?
5237 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5238 needn't exist in the global table yet). */
5239 if (sig_entry != NULL)
5240 return sig_entry;
5241
5242 if (dwp_file->tus == NULL)
5243 return NULL;
5244 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
5245 sig, 1 /* is_debug_types */);
5246 if (dwo_entry == NULL)
5247 return NULL;
5248
5249 sig_entry = add_type_unit (sig, slot);
5250 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5251
5252 return sig_entry;
5253 }
5254
5255 /* Lookup a signature based type for DW_FORM_ref_sig8.
5256 Returns NULL if signature SIG is not present in the table.
5257 It is up to the caller to complain about this. */
5258
5259 static struct signatured_type *
5260 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5261 {
5262 if (cu->dwo_unit
5263 && dwarf2_per_objfile->using_index)
5264 {
5265 /* We're in a DWO/DWP file, and we're using .gdb_index.
5266 These cases require special processing. */
5267 if (get_dwp_file () == NULL)
5268 return lookup_dwo_signatured_type (cu, sig);
5269 else
5270 return lookup_dwp_signatured_type (cu, sig);
5271 }
5272 else
5273 {
5274 struct signatured_type find_entry, *entry;
5275
5276 if (dwarf2_per_objfile->signatured_types == NULL)
5277 return NULL;
5278 find_entry.signature = sig;
5279 entry = ((struct signatured_type *)
5280 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
5281 return entry;
5282 }
5283 }
5284 \f
5285 /* Low level DIE reading support. */
5286
5287 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5288
5289 static void
5290 init_cu_die_reader (struct die_reader_specs *reader,
5291 struct dwarf2_cu *cu,
5292 struct dwarf2_section_info *section,
5293 struct dwo_file *dwo_file)
5294 {
5295 gdb_assert (section->readin && section->buffer != NULL);
5296 reader->abfd = get_section_bfd_owner (section);
5297 reader->cu = cu;
5298 reader->dwo_file = dwo_file;
5299 reader->die_section = section;
5300 reader->buffer = section->buffer;
5301 reader->buffer_end = section->buffer + section->size;
5302 reader->comp_dir = NULL;
5303 }
5304
5305 /* Subroutine of init_cutu_and_read_dies to simplify it.
5306 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5307 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5308 already.
5309
5310 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5311 from it to the DIE in the DWO. If NULL we are skipping the stub.
5312 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5313 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
5314 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5315 STUB_COMP_DIR may be non-NULL.
5316 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5317 are filled in with the info of the DIE from the DWO file.
5318 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5319 provided an abbrev table to use.
5320 The result is non-zero if a valid (non-dummy) DIE was found. */
5321
5322 static int
5323 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5324 struct dwo_unit *dwo_unit,
5325 int abbrev_table_provided,
5326 struct die_info *stub_comp_unit_die,
5327 const char *stub_comp_dir,
5328 struct die_reader_specs *result_reader,
5329 const gdb_byte **result_info_ptr,
5330 struct die_info **result_comp_unit_die,
5331 int *result_has_children)
5332 {
5333 struct objfile *objfile = dwarf2_per_objfile->objfile;
5334 struct dwarf2_cu *cu = this_cu->cu;
5335 struct dwarf2_section_info *section;
5336 bfd *abfd;
5337 const gdb_byte *begin_info_ptr, *info_ptr;
5338 ULONGEST signature; /* Or dwo_id. */
5339 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5340 int i,num_extra_attrs;
5341 struct dwarf2_section_info *dwo_abbrev_section;
5342 struct attribute *attr;
5343 struct die_info *comp_unit_die;
5344
5345 /* At most one of these may be provided. */
5346 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5347
5348 /* These attributes aren't processed until later:
5349 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5350 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5351 referenced later. However, these attributes are found in the stub
5352 which we won't have later. In order to not impose this complication
5353 on the rest of the code, we read them here and copy them to the
5354 DWO CU/TU die. */
5355
5356 stmt_list = NULL;
5357 low_pc = NULL;
5358 high_pc = NULL;
5359 ranges = NULL;
5360 comp_dir = NULL;
5361
5362 if (stub_comp_unit_die != NULL)
5363 {
5364 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5365 DWO file. */
5366 if (! this_cu->is_debug_types)
5367 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5368 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5369 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5370 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5371 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5372
5373 /* There should be a DW_AT_addr_base attribute here (if needed).
5374 We need the value before we can process DW_FORM_GNU_addr_index. */
5375 cu->addr_base = 0;
5376 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5377 if (attr)
5378 cu->addr_base = DW_UNSND (attr);
5379
5380 /* There should be a DW_AT_ranges_base attribute here (if needed).
5381 We need the value before we can process DW_AT_ranges. */
5382 cu->ranges_base = 0;
5383 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5384 if (attr)
5385 cu->ranges_base = DW_UNSND (attr);
5386 }
5387 else if (stub_comp_dir != NULL)
5388 {
5389 /* Reconstruct the comp_dir attribute to simplify the code below. */
5390 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
5391 comp_dir->name = DW_AT_comp_dir;
5392 comp_dir->form = DW_FORM_string;
5393 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5394 DW_STRING (comp_dir) = stub_comp_dir;
5395 }
5396
5397 /* Set up for reading the DWO CU/TU. */
5398 cu->dwo_unit = dwo_unit;
5399 section = dwo_unit->section;
5400 dwarf2_read_section (objfile, section);
5401 abfd = get_section_bfd_owner (section);
5402 begin_info_ptr = info_ptr = (section->buffer
5403 + to_underlying (dwo_unit->sect_off));
5404 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5405 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5406
5407 if (this_cu->is_debug_types)
5408 {
5409 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5410
5411 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5412 dwo_abbrev_section,
5413 info_ptr, rcuh_kind::TYPE);
5414 /* This is not an assert because it can be caused by bad debug info. */
5415 if (sig_type->signature != cu->header.signature)
5416 {
5417 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5418 " TU at offset 0x%x [in module %s]"),
5419 hex_string (sig_type->signature),
5420 hex_string (cu->header.signature),
5421 to_underlying (dwo_unit->sect_off),
5422 bfd_get_filename (abfd));
5423 }
5424 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
5425 /* For DWOs coming from DWP files, we don't know the CU length
5426 nor the type's offset in the TU until now. */
5427 dwo_unit->length = get_cu_length (&cu->header);
5428 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
5429
5430 /* Establish the type offset that can be used to lookup the type.
5431 For DWO files, we don't know it until now. */
5432 sig_type->type_offset_in_section
5433 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
5434 }
5435 else
5436 {
5437 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5438 dwo_abbrev_section,
5439 info_ptr, rcuh_kind::COMPILE);
5440 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
5441 /* For DWOs coming from DWP files, we don't know the CU length
5442 until now. */
5443 dwo_unit->length = get_cu_length (&cu->header);
5444 }
5445
5446 /* Replace the CU's original abbrev table with the DWO's.
5447 Reminder: We can't read the abbrev table until we've read the header. */
5448 if (abbrev_table_provided)
5449 {
5450 /* Don't free the provided abbrev table, the caller of
5451 init_cutu_and_read_dies owns it. */
5452 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5453 /* Ensure the DWO abbrev table gets freed. */
5454 make_cleanup (dwarf2_free_abbrev_table, cu);
5455 }
5456 else
5457 {
5458 dwarf2_free_abbrev_table (cu);
5459 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5460 /* Leave any existing abbrev table cleanup as is. */
5461 }
5462
5463 /* Read in the die, but leave space to copy over the attributes
5464 from the stub. This has the benefit of simplifying the rest of
5465 the code - all the work to maintain the illusion of a single
5466 DW_TAG_{compile,type}_unit DIE is done here. */
5467 num_extra_attrs = ((stmt_list != NULL)
5468 + (low_pc != NULL)
5469 + (high_pc != NULL)
5470 + (ranges != NULL)
5471 + (comp_dir != NULL));
5472 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5473 result_has_children, num_extra_attrs);
5474
5475 /* Copy over the attributes from the stub to the DIE we just read in. */
5476 comp_unit_die = *result_comp_unit_die;
5477 i = comp_unit_die->num_attrs;
5478 if (stmt_list != NULL)
5479 comp_unit_die->attrs[i++] = *stmt_list;
5480 if (low_pc != NULL)
5481 comp_unit_die->attrs[i++] = *low_pc;
5482 if (high_pc != NULL)
5483 comp_unit_die->attrs[i++] = *high_pc;
5484 if (ranges != NULL)
5485 comp_unit_die->attrs[i++] = *ranges;
5486 if (comp_dir != NULL)
5487 comp_unit_die->attrs[i++] = *comp_dir;
5488 comp_unit_die->num_attrs += num_extra_attrs;
5489
5490 if (dwarf_die_debug)
5491 {
5492 fprintf_unfiltered (gdb_stdlog,
5493 "Read die from %s@0x%x of %s:\n",
5494 get_section_name (section),
5495 (unsigned) (begin_info_ptr - section->buffer),
5496 bfd_get_filename (abfd));
5497 dump_die (comp_unit_die, dwarf_die_debug);
5498 }
5499
5500 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5501 TUs by skipping the stub and going directly to the entry in the DWO file.
5502 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5503 to get it via circuitous means. Blech. */
5504 if (comp_dir != NULL)
5505 result_reader->comp_dir = DW_STRING (comp_dir);
5506
5507 /* Skip dummy compilation units. */
5508 if (info_ptr >= begin_info_ptr + dwo_unit->length
5509 || peek_abbrev_code (abfd, info_ptr) == 0)
5510 return 0;
5511
5512 *result_info_ptr = info_ptr;
5513 return 1;
5514 }
5515
5516 /* Subroutine of init_cutu_and_read_dies to simplify it.
5517 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5518 Returns NULL if the specified DWO unit cannot be found. */
5519
5520 static struct dwo_unit *
5521 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5522 struct die_info *comp_unit_die)
5523 {
5524 struct dwarf2_cu *cu = this_cu->cu;
5525 struct attribute *attr;
5526 ULONGEST signature;
5527 struct dwo_unit *dwo_unit;
5528 const char *comp_dir, *dwo_name;
5529
5530 gdb_assert (cu != NULL);
5531
5532 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5533 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5534 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5535
5536 if (this_cu->is_debug_types)
5537 {
5538 struct signatured_type *sig_type;
5539
5540 /* Since this_cu is the first member of struct signatured_type,
5541 we can go from a pointer to one to a pointer to the other. */
5542 sig_type = (struct signatured_type *) this_cu;
5543 signature = sig_type->signature;
5544 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5545 }
5546 else
5547 {
5548 struct attribute *attr;
5549
5550 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5551 if (! attr)
5552 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5553 " [in module %s]"),
5554 dwo_name, objfile_name (this_cu->objfile));
5555 signature = DW_UNSND (attr);
5556 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5557 signature);
5558 }
5559
5560 return dwo_unit;
5561 }
5562
5563 /* Subroutine of init_cutu_and_read_dies to simplify it.
5564 See it for a description of the parameters.
5565 Read a TU directly from a DWO file, bypassing the stub.
5566
5567 Note: This function could be a little bit simpler if we shared cleanups
5568 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5569 to do, so we keep this function self-contained. Or we could move this
5570 into our caller, but it's complex enough already. */
5571
5572 static void
5573 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5574 int use_existing_cu, int keep,
5575 die_reader_func_ftype *die_reader_func,
5576 void *data)
5577 {
5578 struct dwarf2_cu *cu;
5579 struct signatured_type *sig_type;
5580 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5581 struct die_reader_specs reader;
5582 const gdb_byte *info_ptr;
5583 struct die_info *comp_unit_die;
5584 int has_children;
5585
5586 /* Verify we can do the following downcast, and that we have the
5587 data we need. */
5588 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5589 sig_type = (struct signatured_type *) this_cu;
5590 gdb_assert (sig_type->dwo_unit != NULL);
5591
5592 cleanups = make_cleanup (null_cleanup, NULL);
5593
5594 if (use_existing_cu && this_cu->cu != NULL)
5595 {
5596 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5597 cu = this_cu->cu;
5598 /* There's no need to do the rereading_dwo_cu handling that
5599 init_cutu_and_read_dies does since we don't read the stub. */
5600 }
5601 else
5602 {
5603 /* If !use_existing_cu, this_cu->cu must be NULL. */
5604 gdb_assert (this_cu->cu == NULL);
5605 cu = XNEW (struct dwarf2_cu);
5606 init_one_comp_unit (cu, this_cu);
5607 /* If an error occurs while loading, release our storage. */
5608 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5609 }
5610
5611 /* A future optimization, if needed, would be to use an existing
5612 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5613 could share abbrev tables. */
5614
5615 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5616 0 /* abbrev_table_provided */,
5617 NULL /* stub_comp_unit_die */,
5618 sig_type->dwo_unit->dwo_file->comp_dir,
5619 &reader, &info_ptr,
5620 &comp_unit_die, &has_children) == 0)
5621 {
5622 /* Dummy die. */
5623 do_cleanups (cleanups);
5624 return;
5625 }
5626
5627 /* All the "real" work is done here. */
5628 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5629
5630 /* This duplicates the code in init_cutu_and_read_dies,
5631 but the alternative is making the latter more complex.
5632 This function is only for the special case of using DWO files directly:
5633 no point in overly complicating the general case just to handle this. */
5634 if (free_cu_cleanup != NULL)
5635 {
5636 if (keep)
5637 {
5638 /* We've successfully allocated this compilation unit. Let our
5639 caller clean it up when finished with it. */
5640 discard_cleanups (free_cu_cleanup);
5641
5642 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5643 So we have to manually free the abbrev table. */
5644 dwarf2_free_abbrev_table (cu);
5645
5646 /* Link this CU into read_in_chain. */
5647 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5648 dwarf2_per_objfile->read_in_chain = this_cu;
5649 }
5650 else
5651 do_cleanups (free_cu_cleanup);
5652 }
5653
5654 do_cleanups (cleanups);
5655 }
5656
5657 /* Initialize a CU (or TU) and read its DIEs.
5658 If the CU defers to a DWO file, read the DWO file as well.
5659
5660 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5661 Otherwise the table specified in the comp unit header is read in and used.
5662 This is an optimization for when we already have the abbrev table.
5663
5664 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5665 Otherwise, a new CU is allocated with xmalloc.
5666
5667 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5668 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5669
5670 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5671 linker) then DIE_READER_FUNC will not get called. */
5672
5673 static void
5674 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5675 struct abbrev_table *abbrev_table,
5676 int use_existing_cu, int keep,
5677 die_reader_func_ftype *die_reader_func,
5678 void *data)
5679 {
5680 struct objfile *objfile = dwarf2_per_objfile->objfile;
5681 struct dwarf2_section_info *section = this_cu->section;
5682 bfd *abfd = get_section_bfd_owner (section);
5683 struct dwarf2_cu *cu;
5684 const gdb_byte *begin_info_ptr, *info_ptr;
5685 struct die_reader_specs reader;
5686 struct die_info *comp_unit_die;
5687 int has_children;
5688 struct attribute *attr;
5689 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5690 struct signatured_type *sig_type = NULL;
5691 struct dwarf2_section_info *abbrev_section;
5692 /* Non-zero if CU currently points to a DWO file and we need to
5693 reread it. When this happens we need to reread the skeleton die
5694 before we can reread the DWO file (this only applies to CUs, not TUs). */
5695 int rereading_dwo_cu = 0;
5696
5697 if (dwarf_die_debug)
5698 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5699 this_cu->is_debug_types ? "type" : "comp",
5700 to_underlying (this_cu->sect_off));
5701
5702 if (use_existing_cu)
5703 gdb_assert (keep);
5704
5705 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5706 file (instead of going through the stub), short-circuit all of this. */
5707 if (this_cu->reading_dwo_directly)
5708 {
5709 /* Narrow down the scope of possibilities to have to understand. */
5710 gdb_assert (this_cu->is_debug_types);
5711 gdb_assert (abbrev_table == NULL);
5712 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5713 die_reader_func, data);
5714 return;
5715 }
5716
5717 cleanups = make_cleanup (null_cleanup, NULL);
5718
5719 /* This is cheap if the section is already read in. */
5720 dwarf2_read_section (objfile, section);
5721
5722 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
5723
5724 abbrev_section = get_abbrev_section_for_cu (this_cu);
5725
5726 if (use_existing_cu && this_cu->cu != NULL)
5727 {
5728 cu = this_cu->cu;
5729 /* If this CU is from a DWO file we need to start over, we need to
5730 refetch the attributes from the skeleton CU.
5731 This could be optimized by retrieving those attributes from when we
5732 were here the first time: the previous comp_unit_die was stored in
5733 comp_unit_obstack. But there's no data yet that we need this
5734 optimization. */
5735 if (cu->dwo_unit != NULL)
5736 rereading_dwo_cu = 1;
5737 }
5738 else
5739 {
5740 /* If !use_existing_cu, this_cu->cu must be NULL. */
5741 gdb_assert (this_cu->cu == NULL);
5742 cu = XNEW (struct dwarf2_cu);
5743 init_one_comp_unit (cu, this_cu);
5744 /* If an error occurs while loading, release our storage. */
5745 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5746 }
5747
5748 /* Get the header. */
5749 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
5750 {
5751 /* We already have the header, there's no need to read it in again. */
5752 info_ptr += to_underlying (cu->header.first_die_cu_offset);
5753 }
5754 else
5755 {
5756 if (this_cu->is_debug_types)
5757 {
5758 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5759 abbrev_section, info_ptr,
5760 rcuh_kind::TYPE);
5761
5762 /* Since per_cu is the first member of struct signatured_type,
5763 we can go from a pointer to one to a pointer to the other. */
5764 sig_type = (struct signatured_type *) this_cu;
5765 gdb_assert (sig_type->signature == cu->header.signature);
5766 gdb_assert (sig_type->type_offset_in_tu
5767 == cu->header.type_cu_offset_in_tu);
5768 gdb_assert (this_cu->sect_off == cu->header.sect_off);
5769
5770 /* LENGTH has not been set yet for type units if we're
5771 using .gdb_index. */
5772 this_cu->length = get_cu_length (&cu->header);
5773
5774 /* Establish the type offset that can be used to lookup the type. */
5775 sig_type->type_offset_in_section =
5776 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
5777
5778 this_cu->dwarf_version = cu->header.version;
5779 }
5780 else
5781 {
5782 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5783 abbrev_section,
5784 info_ptr,
5785 rcuh_kind::COMPILE);
5786
5787 gdb_assert (this_cu->sect_off == cu->header.sect_off);
5788 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5789 this_cu->dwarf_version = cu->header.version;
5790 }
5791 }
5792
5793 /* Skip dummy compilation units. */
5794 if (info_ptr >= begin_info_ptr + this_cu->length
5795 || peek_abbrev_code (abfd, info_ptr) == 0)
5796 {
5797 do_cleanups (cleanups);
5798 return;
5799 }
5800
5801 /* If we don't have them yet, read the abbrevs for this compilation unit.
5802 And if we need to read them now, make sure they're freed when we're
5803 done. Note that it's important that if the CU had an abbrev table
5804 on entry we don't free it when we're done: Somewhere up the call stack
5805 it may be in use. */
5806 if (abbrev_table != NULL)
5807 {
5808 gdb_assert (cu->abbrev_table == NULL);
5809 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
5810 cu->abbrev_table = abbrev_table;
5811 }
5812 else if (cu->abbrev_table == NULL)
5813 {
5814 dwarf2_read_abbrevs (cu, abbrev_section);
5815 make_cleanup (dwarf2_free_abbrev_table, cu);
5816 }
5817 else if (rereading_dwo_cu)
5818 {
5819 dwarf2_free_abbrev_table (cu);
5820 dwarf2_read_abbrevs (cu, abbrev_section);
5821 }
5822
5823 /* Read the top level CU/TU die. */
5824 init_cu_die_reader (&reader, cu, section, NULL);
5825 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5826
5827 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5828 from the DWO file.
5829 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5830 DWO CU, that this test will fail (the attribute will not be present). */
5831 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5832 if (attr)
5833 {
5834 struct dwo_unit *dwo_unit;
5835 struct die_info *dwo_comp_unit_die;
5836
5837 if (has_children)
5838 {
5839 complaint (&symfile_complaints,
5840 _("compilation unit with DW_AT_GNU_dwo_name"
5841 " has children (offset 0x%x) [in module %s]"),
5842 to_underlying (this_cu->sect_off), bfd_get_filename (abfd));
5843 }
5844 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5845 if (dwo_unit != NULL)
5846 {
5847 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5848 abbrev_table != NULL,
5849 comp_unit_die, NULL,
5850 &reader, &info_ptr,
5851 &dwo_comp_unit_die, &has_children) == 0)
5852 {
5853 /* Dummy die. */
5854 do_cleanups (cleanups);
5855 return;
5856 }
5857 comp_unit_die = dwo_comp_unit_die;
5858 }
5859 else
5860 {
5861 /* Yikes, we couldn't find the rest of the DIE, we only have
5862 the stub. A complaint has already been logged. There's
5863 not much more we can do except pass on the stub DIE to
5864 die_reader_func. We don't want to throw an error on bad
5865 debug info. */
5866 }
5867 }
5868
5869 /* All of the above is setup for this call. Yikes. */
5870 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5871
5872 /* Done, clean up. */
5873 if (free_cu_cleanup != NULL)
5874 {
5875 if (keep)
5876 {
5877 /* We've successfully allocated this compilation unit. Let our
5878 caller clean it up when finished with it. */
5879 discard_cleanups (free_cu_cleanup);
5880
5881 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5882 So we have to manually free the abbrev table. */
5883 dwarf2_free_abbrev_table (cu);
5884
5885 /* Link this CU into read_in_chain. */
5886 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5887 dwarf2_per_objfile->read_in_chain = this_cu;
5888 }
5889 else
5890 do_cleanups (free_cu_cleanup);
5891 }
5892
5893 do_cleanups (cleanups);
5894 }
5895
5896 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5897 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5898 to have already done the lookup to find the DWO file).
5899
5900 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5901 THIS_CU->is_debug_types, but nothing else.
5902
5903 We fill in THIS_CU->length.
5904
5905 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5906 linker) then DIE_READER_FUNC will not get called.
5907
5908 THIS_CU->cu is always freed when done.
5909 This is done in order to not leave THIS_CU->cu in a state where we have
5910 to care whether it refers to the "main" CU or the DWO CU. */
5911
5912 static void
5913 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5914 struct dwo_file *dwo_file,
5915 die_reader_func_ftype *die_reader_func,
5916 void *data)
5917 {
5918 struct objfile *objfile = dwarf2_per_objfile->objfile;
5919 struct dwarf2_section_info *section = this_cu->section;
5920 bfd *abfd = get_section_bfd_owner (section);
5921 struct dwarf2_section_info *abbrev_section;
5922 struct dwarf2_cu cu;
5923 const gdb_byte *begin_info_ptr, *info_ptr;
5924 struct die_reader_specs reader;
5925 struct cleanup *cleanups;
5926 struct die_info *comp_unit_die;
5927 int has_children;
5928
5929 if (dwarf_die_debug)
5930 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5931 this_cu->is_debug_types ? "type" : "comp",
5932 to_underlying (this_cu->sect_off));
5933
5934 gdb_assert (this_cu->cu == NULL);
5935
5936 abbrev_section = (dwo_file != NULL
5937 ? &dwo_file->sections.abbrev
5938 : get_abbrev_section_for_cu (this_cu));
5939
5940 /* This is cheap if the section is already read in. */
5941 dwarf2_read_section (objfile, section);
5942
5943 init_one_comp_unit (&cu, this_cu);
5944
5945 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5946
5947 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
5948 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5949 abbrev_section, info_ptr,
5950 (this_cu->is_debug_types
5951 ? rcuh_kind::TYPE
5952 : rcuh_kind::COMPILE));
5953
5954 this_cu->length = get_cu_length (&cu.header);
5955
5956 /* Skip dummy compilation units. */
5957 if (info_ptr >= begin_info_ptr + this_cu->length
5958 || peek_abbrev_code (abfd, info_ptr) == 0)
5959 {
5960 do_cleanups (cleanups);
5961 return;
5962 }
5963
5964 dwarf2_read_abbrevs (&cu, abbrev_section);
5965 make_cleanup (dwarf2_free_abbrev_table, &cu);
5966
5967 init_cu_die_reader (&reader, &cu, section, dwo_file);
5968 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5969
5970 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5971
5972 do_cleanups (cleanups);
5973 }
5974
5975 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5976 does not lookup the specified DWO file.
5977 This cannot be used to read DWO files.
5978
5979 THIS_CU->cu is always freed when done.
5980 This is done in order to not leave THIS_CU->cu in a state where we have
5981 to care whether it refers to the "main" CU or the DWO CU.
5982 We can revisit this if the data shows there's a performance issue. */
5983
5984 static void
5985 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5986 die_reader_func_ftype *die_reader_func,
5987 void *data)
5988 {
5989 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5990 }
5991 \f
5992 /* Type Unit Groups.
5993
5994 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5995 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5996 so that all types coming from the same compilation (.o file) are grouped
5997 together. A future step could be to put the types in the same symtab as
5998 the CU the types ultimately came from. */
5999
6000 static hashval_t
6001 hash_type_unit_group (const void *item)
6002 {
6003 const struct type_unit_group *tu_group
6004 = (const struct type_unit_group *) item;
6005
6006 return hash_stmt_list_entry (&tu_group->hash);
6007 }
6008
6009 static int
6010 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
6011 {
6012 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
6013 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
6014
6015 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
6016 }
6017
6018 /* Allocate a hash table for type unit groups. */
6019
6020 static htab_t
6021 allocate_type_unit_groups_table (void)
6022 {
6023 return htab_create_alloc_ex (3,
6024 hash_type_unit_group,
6025 eq_type_unit_group,
6026 NULL,
6027 &dwarf2_per_objfile->objfile->objfile_obstack,
6028 hashtab_obstack_allocate,
6029 dummy_obstack_deallocate);
6030 }
6031
6032 /* Type units that don't have DW_AT_stmt_list are grouped into their own
6033 partial symtabs. We combine several TUs per psymtab to not let the size
6034 of any one psymtab grow too big. */
6035 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
6036 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
6037
6038 /* Helper routine for get_type_unit_group.
6039 Create the type_unit_group object used to hold one or more TUs. */
6040
6041 static struct type_unit_group *
6042 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
6043 {
6044 struct objfile *objfile = dwarf2_per_objfile->objfile;
6045 struct dwarf2_per_cu_data *per_cu;
6046 struct type_unit_group *tu_group;
6047
6048 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6049 struct type_unit_group);
6050 per_cu = &tu_group->per_cu;
6051 per_cu->objfile = objfile;
6052
6053 if (dwarf2_per_objfile->using_index)
6054 {
6055 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6056 struct dwarf2_per_cu_quick_data);
6057 }
6058 else
6059 {
6060 unsigned int line_offset = to_underlying (line_offset_struct);
6061 struct partial_symtab *pst;
6062 char *name;
6063
6064 /* Give the symtab a useful name for debug purposes. */
6065 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
6066 name = xstrprintf ("<type_units_%d>",
6067 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
6068 else
6069 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
6070
6071 pst = create_partial_symtab (per_cu, name);
6072 pst->anonymous = 1;
6073
6074 xfree (name);
6075 }
6076
6077 tu_group->hash.dwo_unit = cu->dwo_unit;
6078 tu_group->hash.line_sect_off = line_offset_struct;
6079
6080 return tu_group;
6081 }
6082
6083 /* Look up the type_unit_group for type unit CU, and create it if necessary.
6084 STMT_LIST is a DW_AT_stmt_list attribute. */
6085
6086 static struct type_unit_group *
6087 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
6088 {
6089 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6090 struct type_unit_group *tu_group;
6091 void **slot;
6092 unsigned int line_offset;
6093 struct type_unit_group type_unit_group_for_lookup;
6094
6095 if (dwarf2_per_objfile->type_unit_groups == NULL)
6096 {
6097 dwarf2_per_objfile->type_unit_groups =
6098 allocate_type_unit_groups_table ();
6099 }
6100
6101 /* Do we need to create a new group, or can we use an existing one? */
6102
6103 if (stmt_list)
6104 {
6105 line_offset = DW_UNSND (stmt_list);
6106 ++tu_stats->nr_symtab_sharers;
6107 }
6108 else
6109 {
6110 /* Ugh, no stmt_list. Rare, but we have to handle it.
6111 We can do various things here like create one group per TU or
6112 spread them over multiple groups to split up the expansion work.
6113 To avoid worst case scenarios (too many groups or too large groups)
6114 we, umm, group them in bunches. */
6115 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
6116 | (tu_stats->nr_stmt_less_type_units
6117 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
6118 ++tu_stats->nr_stmt_less_type_units;
6119 }
6120
6121 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
6122 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
6123 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
6124 &type_unit_group_for_lookup, INSERT);
6125 if (*slot != NULL)
6126 {
6127 tu_group = (struct type_unit_group *) *slot;
6128 gdb_assert (tu_group != NULL);
6129 }
6130 else
6131 {
6132 sect_offset line_offset_struct = (sect_offset) line_offset;
6133 tu_group = create_type_unit_group (cu, line_offset_struct);
6134 *slot = tu_group;
6135 ++tu_stats->nr_symtabs;
6136 }
6137
6138 return tu_group;
6139 }
6140 \f
6141 /* Partial symbol tables. */
6142
6143 /* Create a psymtab named NAME and assign it to PER_CU.
6144
6145 The caller must fill in the following details:
6146 dirname, textlow, texthigh. */
6147
6148 static struct partial_symtab *
6149 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
6150 {
6151 struct objfile *objfile = per_cu->objfile;
6152 struct partial_symtab *pst;
6153
6154 pst = start_psymtab_common (objfile, name, 0,
6155 objfile->global_psymbols.next,
6156 objfile->static_psymbols.next);
6157
6158 pst->psymtabs_addrmap_supported = 1;
6159
6160 /* This is the glue that links PST into GDB's symbol API. */
6161 pst->read_symtab_private = per_cu;
6162 pst->read_symtab = dwarf2_read_symtab;
6163 per_cu->v.psymtab = pst;
6164
6165 return pst;
6166 }
6167
6168 /* The DATA object passed to process_psymtab_comp_unit_reader has this
6169 type. */
6170
6171 struct process_psymtab_comp_unit_data
6172 {
6173 /* True if we are reading a DW_TAG_partial_unit. */
6174
6175 int want_partial_unit;
6176
6177 /* The "pretend" language that is used if the CU doesn't declare a
6178 language. */
6179
6180 enum language pretend_language;
6181 };
6182
6183 /* die_reader_func for process_psymtab_comp_unit. */
6184
6185 static void
6186 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
6187 const gdb_byte *info_ptr,
6188 struct die_info *comp_unit_die,
6189 int has_children,
6190 void *data)
6191 {
6192 struct dwarf2_cu *cu = reader->cu;
6193 struct objfile *objfile = cu->objfile;
6194 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6195 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6196 CORE_ADDR baseaddr;
6197 CORE_ADDR best_lowpc = 0, best_highpc = 0;
6198 struct partial_symtab *pst;
6199 enum pc_bounds_kind cu_bounds_kind;
6200 const char *filename;
6201 struct process_psymtab_comp_unit_data *info
6202 = (struct process_psymtab_comp_unit_data *) data;
6203
6204 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
6205 return;
6206
6207 gdb_assert (! per_cu->is_debug_types);
6208
6209 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
6210
6211 cu->list_in_scope = &file_symbols;
6212
6213 /* Allocate a new partial symbol table structure. */
6214 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
6215 if (filename == NULL)
6216 filename = "";
6217
6218 pst = create_partial_symtab (per_cu, filename);
6219
6220 /* This must be done before calling dwarf2_build_include_psymtabs. */
6221 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
6222
6223 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6224
6225 dwarf2_find_base_address (comp_unit_die, cu);
6226
6227 /* Possibly set the default values of LOWPC and HIGHPC from
6228 `DW_AT_ranges'. */
6229 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
6230 &best_highpc, cu, pst);
6231 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
6232 /* Store the contiguous range if it is not empty; it can be empty for
6233 CUs with no code. */
6234 addrmap_set_empty (objfile->psymtabs_addrmap,
6235 gdbarch_adjust_dwarf2_addr (gdbarch,
6236 best_lowpc + baseaddr),
6237 gdbarch_adjust_dwarf2_addr (gdbarch,
6238 best_highpc + baseaddr) - 1,
6239 pst);
6240
6241 /* Check if comp unit has_children.
6242 If so, read the rest of the partial symbols from this comp unit.
6243 If not, there's no more debug_info for this comp unit. */
6244 if (has_children)
6245 {
6246 struct partial_die_info *first_die;
6247 CORE_ADDR lowpc, highpc;
6248
6249 lowpc = ((CORE_ADDR) -1);
6250 highpc = ((CORE_ADDR) 0);
6251
6252 first_die = load_partial_dies (reader, info_ptr, 1);
6253
6254 scan_partial_symbols (first_die, &lowpc, &highpc,
6255 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
6256
6257 /* If we didn't find a lowpc, set it to highpc to avoid
6258 complaints from `maint check'. */
6259 if (lowpc == ((CORE_ADDR) -1))
6260 lowpc = highpc;
6261
6262 /* If the compilation unit didn't have an explicit address range,
6263 then use the information extracted from its child dies. */
6264 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
6265 {
6266 best_lowpc = lowpc;
6267 best_highpc = highpc;
6268 }
6269 }
6270 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6271 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
6272
6273 end_psymtab_common (objfile, pst);
6274
6275 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6276 {
6277 int i;
6278 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6279 struct dwarf2_per_cu_data *iter;
6280
6281 /* Fill in 'dependencies' here; we fill in 'users' in a
6282 post-pass. */
6283 pst->number_of_dependencies = len;
6284 pst->dependencies =
6285 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6286 for (i = 0;
6287 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6288 i, iter);
6289 ++i)
6290 pst->dependencies[i] = iter->v.psymtab;
6291
6292 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6293 }
6294
6295 /* Get the list of files included in the current compilation unit,
6296 and build a psymtab for each of them. */
6297 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6298
6299 if (dwarf_read_debug)
6300 {
6301 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6302
6303 fprintf_unfiltered (gdb_stdlog,
6304 "Psymtab for %s unit @0x%x: %s - %s"
6305 ", %d global, %d static syms\n",
6306 per_cu->is_debug_types ? "type" : "comp",
6307 to_underlying (per_cu->sect_off),
6308 paddress (gdbarch, pst->textlow),
6309 paddress (gdbarch, pst->texthigh),
6310 pst->n_global_syms, pst->n_static_syms);
6311 }
6312 }
6313
6314 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6315 Process compilation unit THIS_CU for a psymtab. */
6316
6317 static void
6318 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6319 int want_partial_unit,
6320 enum language pretend_language)
6321 {
6322 struct process_psymtab_comp_unit_data info;
6323
6324 /* If this compilation unit was already read in, free the
6325 cached copy in order to read it in again. This is
6326 necessary because we skipped some symbols when we first
6327 read in the compilation unit (see load_partial_dies).
6328 This problem could be avoided, but the benefit is unclear. */
6329 if (this_cu->cu != NULL)
6330 free_one_cached_comp_unit (this_cu);
6331
6332 gdb_assert (! this_cu->is_debug_types);
6333 info.want_partial_unit = want_partial_unit;
6334 info.pretend_language = pretend_language;
6335 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6336 process_psymtab_comp_unit_reader,
6337 &info);
6338
6339 /* Age out any secondary CUs. */
6340 age_cached_comp_units ();
6341 }
6342
6343 /* Reader function for build_type_psymtabs. */
6344
6345 static void
6346 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6347 const gdb_byte *info_ptr,
6348 struct die_info *type_unit_die,
6349 int has_children,
6350 void *data)
6351 {
6352 struct objfile *objfile = dwarf2_per_objfile->objfile;
6353 struct dwarf2_cu *cu = reader->cu;
6354 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6355 struct signatured_type *sig_type;
6356 struct type_unit_group *tu_group;
6357 struct attribute *attr;
6358 struct partial_die_info *first_die;
6359 CORE_ADDR lowpc, highpc;
6360 struct partial_symtab *pst;
6361
6362 gdb_assert (data == NULL);
6363 gdb_assert (per_cu->is_debug_types);
6364 sig_type = (struct signatured_type *) per_cu;
6365
6366 if (! has_children)
6367 return;
6368
6369 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6370 tu_group = get_type_unit_group (cu, attr);
6371
6372 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6373
6374 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6375 cu->list_in_scope = &file_symbols;
6376 pst = create_partial_symtab (per_cu, "");
6377 pst->anonymous = 1;
6378
6379 first_die = load_partial_dies (reader, info_ptr, 1);
6380
6381 lowpc = (CORE_ADDR) -1;
6382 highpc = (CORE_ADDR) 0;
6383 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6384
6385 end_psymtab_common (objfile, pst);
6386 }
6387
6388 /* Struct used to sort TUs by their abbreviation table offset. */
6389
6390 struct tu_abbrev_offset
6391 {
6392 struct signatured_type *sig_type;
6393 sect_offset abbrev_offset;
6394 };
6395
6396 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6397
6398 static int
6399 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6400 {
6401 const struct tu_abbrev_offset * const *a
6402 = (const struct tu_abbrev_offset * const*) ap;
6403 const struct tu_abbrev_offset * const *b
6404 = (const struct tu_abbrev_offset * const*) bp;
6405 sect_offset aoff = (*a)->abbrev_offset;
6406 sect_offset boff = (*b)->abbrev_offset;
6407
6408 return (aoff > boff) - (aoff < boff);
6409 }
6410
6411 /* Efficiently read all the type units.
6412 This does the bulk of the work for build_type_psymtabs.
6413
6414 The efficiency is because we sort TUs by the abbrev table they use and
6415 only read each abbrev table once. In one program there are 200K TUs
6416 sharing 8K abbrev tables.
6417
6418 The main purpose of this function is to support building the
6419 dwarf2_per_objfile->type_unit_groups table.
6420 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6421 can collapse the search space by grouping them by stmt_list.
6422 The savings can be significant, in the same program from above the 200K TUs
6423 share 8K stmt_list tables.
6424
6425 FUNC is expected to call get_type_unit_group, which will create the
6426 struct type_unit_group if necessary and add it to
6427 dwarf2_per_objfile->type_unit_groups. */
6428
6429 static void
6430 build_type_psymtabs_1 (void)
6431 {
6432 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6433 struct cleanup *cleanups;
6434 struct abbrev_table *abbrev_table;
6435 sect_offset abbrev_offset;
6436 struct tu_abbrev_offset *sorted_by_abbrev;
6437 int i;
6438
6439 /* It's up to the caller to not call us multiple times. */
6440 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6441
6442 if (dwarf2_per_objfile->n_type_units == 0)
6443 return;
6444
6445 /* TUs typically share abbrev tables, and there can be way more TUs than
6446 abbrev tables. Sort by abbrev table to reduce the number of times we
6447 read each abbrev table in.
6448 Alternatives are to punt or to maintain a cache of abbrev tables.
6449 This is simpler and efficient enough for now.
6450
6451 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6452 symtab to use). Typically TUs with the same abbrev offset have the same
6453 stmt_list value too so in practice this should work well.
6454
6455 The basic algorithm here is:
6456
6457 sort TUs by abbrev table
6458 for each TU with same abbrev table:
6459 read abbrev table if first user
6460 read TU top level DIE
6461 [IWBN if DWO skeletons had DW_AT_stmt_list]
6462 call FUNC */
6463
6464 if (dwarf_read_debug)
6465 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6466
6467 /* Sort in a separate table to maintain the order of all_type_units
6468 for .gdb_index: TU indices directly index all_type_units. */
6469 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6470 dwarf2_per_objfile->n_type_units);
6471 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6472 {
6473 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6474
6475 sorted_by_abbrev[i].sig_type = sig_type;
6476 sorted_by_abbrev[i].abbrev_offset =
6477 read_abbrev_offset (sig_type->per_cu.section,
6478 sig_type->per_cu.sect_off);
6479 }
6480 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6481 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6482 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6483
6484 abbrev_offset = (sect_offset) ~(unsigned) 0;
6485 abbrev_table = NULL;
6486 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6487
6488 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6489 {
6490 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6491
6492 /* Switch to the next abbrev table if necessary. */
6493 if (abbrev_table == NULL
6494 || tu->abbrev_offset != abbrev_offset)
6495 {
6496 if (abbrev_table != NULL)
6497 {
6498 abbrev_table_free (abbrev_table);
6499 /* Reset to NULL in case abbrev_table_read_table throws
6500 an error: abbrev_table_free_cleanup will get called. */
6501 abbrev_table = NULL;
6502 }
6503 abbrev_offset = tu->abbrev_offset;
6504 abbrev_table =
6505 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6506 abbrev_offset);
6507 ++tu_stats->nr_uniq_abbrev_tables;
6508 }
6509
6510 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6511 build_type_psymtabs_reader, NULL);
6512 }
6513
6514 do_cleanups (cleanups);
6515 }
6516
6517 /* Print collected type unit statistics. */
6518
6519 static void
6520 print_tu_stats (void)
6521 {
6522 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6523
6524 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6525 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6526 dwarf2_per_objfile->n_type_units);
6527 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6528 tu_stats->nr_uniq_abbrev_tables);
6529 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6530 tu_stats->nr_symtabs);
6531 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6532 tu_stats->nr_symtab_sharers);
6533 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6534 tu_stats->nr_stmt_less_type_units);
6535 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6536 tu_stats->nr_all_type_units_reallocs);
6537 }
6538
6539 /* Traversal function for build_type_psymtabs. */
6540
6541 static int
6542 build_type_psymtab_dependencies (void **slot, void *info)
6543 {
6544 struct objfile *objfile = dwarf2_per_objfile->objfile;
6545 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6546 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6547 struct partial_symtab *pst = per_cu->v.psymtab;
6548 int len = VEC_length (sig_type_ptr, tu_group->tus);
6549 struct signatured_type *iter;
6550 int i;
6551
6552 gdb_assert (len > 0);
6553 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6554
6555 pst->number_of_dependencies = len;
6556 pst->dependencies =
6557 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6558 for (i = 0;
6559 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6560 ++i)
6561 {
6562 gdb_assert (iter->per_cu.is_debug_types);
6563 pst->dependencies[i] = iter->per_cu.v.psymtab;
6564 iter->type_unit_group = tu_group;
6565 }
6566
6567 VEC_free (sig_type_ptr, tu_group->tus);
6568
6569 return 1;
6570 }
6571
6572 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6573 Build partial symbol tables for the .debug_types comp-units. */
6574
6575 static void
6576 build_type_psymtabs (struct objfile *objfile)
6577 {
6578 if (! create_all_type_units (objfile))
6579 return;
6580
6581 build_type_psymtabs_1 ();
6582 }
6583
6584 /* Traversal function for process_skeletonless_type_unit.
6585 Read a TU in a DWO file and build partial symbols for it. */
6586
6587 static int
6588 process_skeletonless_type_unit (void **slot, void *info)
6589 {
6590 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6591 struct objfile *objfile = (struct objfile *) info;
6592 struct signatured_type find_entry, *entry;
6593
6594 /* If this TU doesn't exist in the global table, add it and read it in. */
6595
6596 if (dwarf2_per_objfile->signatured_types == NULL)
6597 {
6598 dwarf2_per_objfile->signatured_types
6599 = allocate_signatured_type_table (objfile);
6600 }
6601
6602 find_entry.signature = dwo_unit->signature;
6603 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6604 INSERT);
6605 /* If we've already seen this type there's nothing to do. What's happening
6606 is we're doing our own version of comdat-folding here. */
6607 if (*slot != NULL)
6608 return 1;
6609
6610 /* This does the job that create_all_type_units would have done for
6611 this TU. */
6612 entry = add_type_unit (dwo_unit->signature, slot);
6613 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6614 *slot = entry;
6615
6616 /* This does the job that build_type_psymtabs_1 would have done. */
6617 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6618 build_type_psymtabs_reader, NULL);
6619
6620 return 1;
6621 }
6622
6623 /* Traversal function for process_skeletonless_type_units. */
6624
6625 static int
6626 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6627 {
6628 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6629
6630 if (dwo_file->tus != NULL)
6631 {
6632 htab_traverse_noresize (dwo_file->tus,
6633 process_skeletonless_type_unit, info);
6634 }
6635
6636 return 1;
6637 }
6638
6639 /* Scan all TUs of DWO files, verifying we've processed them.
6640 This is needed in case a TU was emitted without its skeleton.
6641 Note: This can't be done until we know what all the DWO files are. */
6642
6643 static void
6644 process_skeletonless_type_units (struct objfile *objfile)
6645 {
6646 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6647 if (get_dwp_file () == NULL
6648 && dwarf2_per_objfile->dwo_files != NULL)
6649 {
6650 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6651 process_dwo_file_for_skeletonless_type_units,
6652 objfile);
6653 }
6654 }
6655
6656 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6657
6658 static void
6659 psymtabs_addrmap_cleanup (void *o)
6660 {
6661 struct objfile *objfile = (struct objfile *) o;
6662
6663 objfile->psymtabs_addrmap = NULL;
6664 }
6665
6666 /* Compute the 'user' field for each psymtab in OBJFILE. */
6667
6668 static void
6669 set_partial_user (struct objfile *objfile)
6670 {
6671 int i;
6672
6673 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6674 {
6675 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6676 struct partial_symtab *pst = per_cu->v.psymtab;
6677 int j;
6678
6679 if (pst == NULL)
6680 continue;
6681
6682 for (j = 0; j < pst->number_of_dependencies; ++j)
6683 {
6684 /* Set the 'user' field only if it is not already set. */
6685 if (pst->dependencies[j]->user == NULL)
6686 pst->dependencies[j]->user = pst;
6687 }
6688 }
6689 }
6690
6691 /* Build the partial symbol table by doing a quick pass through the
6692 .debug_info and .debug_abbrev sections. */
6693
6694 static void
6695 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6696 {
6697 struct cleanup *back_to, *addrmap_cleanup;
6698 int i;
6699
6700 if (dwarf_read_debug)
6701 {
6702 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6703 objfile_name (objfile));
6704 }
6705
6706 dwarf2_per_objfile->reading_partial_symbols = 1;
6707
6708 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6709
6710 /* Any cached compilation units will be linked by the per-objfile
6711 read_in_chain. Make sure to free them when we're done. */
6712 back_to = make_cleanup (free_cached_comp_units, NULL);
6713
6714 build_type_psymtabs (objfile);
6715
6716 create_all_comp_units (objfile);
6717
6718 /* Create a temporary address map on a temporary obstack. We later
6719 copy this to the final obstack. */
6720 auto_obstack temp_obstack;
6721 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6722 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6723
6724 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6725 {
6726 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6727
6728 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6729 }
6730
6731 /* This has to wait until we read the CUs, we need the list of DWOs. */
6732 process_skeletonless_type_units (objfile);
6733
6734 /* Now that all TUs have been processed we can fill in the dependencies. */
6735 if (dwarf2_per_objfile->type_unit_groups != NULL)
6736 {
6737 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6738 build_type_psymtab_dependencies, NULL);
6739 }
6740
6741 if (dwarf_read_debug)
6742 print_tu_stats ();
6743
6744 set_partial_user (objfile);
6745
6746 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6747 &objfile->objfile_obstack);
6748 discard_cleanups (addrmap_cleanup);
6749
6750 do_cleanups (back_to);
6751
6752 if (dwarf_read_debug)
6753 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6754 objfile_name (objfile));
6755 }
6756
6757 /* die_reader_func for load_partial_comp_unit. */
6758
6759 static void
6760 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6761 const gdb_byte *info_ptr,
6762 struct die_info *comp_unit_die,
6763 int has_children,
6764 void *data)
6765 {
6766 struct dwarf2_cu *cu = reader->cu;
6767
6768 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6769
6770 /* Check if comp unit has_children.
6771 If so, read the rest of the partial symbols from this comp unit.
6772 If not, there's no more debug_info for this comp unit. */
6773 if (has_children)
6774 load_partial_dies (reader, info_ptr, 0);
6775 }
6776
6777 /* Load the partial DIEs for a secondary CU into memory.
6778 This is also used when rereading a primary CU with load_all_dies. */
6779
6780 static void
6781 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6782 {
6783 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6784 load_partial_comp_unit_reader, NULL);
6785 }
6786
6787 static void
6788 read_comp_units_from_section (struct objfile *objfile,
6789 struct dwarf2_section_info *section,
6790 unsigned int is_dwz,
6791 int *n_allocated,
6792 int *n_comp_units,
6793 struct dwarf2_per_cu_data ***all_comp_units)
6794 {
6795 const gdb_byte *info_ptr;
6796 bfd *abfd = get_section_bfd_owner (section);
6797
6798 if (dwarf_read_debug)
6799 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6800 get_section_name (section),
6801 get_section_file_name (section));
6802
6803 dwarf2_read_section (objfile, section);
6804
6805 info_ptr = section->buffer;
6806
6807 while (info_ptr < section->buffer + section->size)
6808 {
6809 unsigned int length, initial_length_size;
6810 struct dwarf2_per_cu_data *this_cu;
6811
6812 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
6813
6814 /* Read just enough information to find out where the next
6815 compilation unit is. */
6816 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6817
6818 /* Save the compilation unit for later lookup. */
6819 this_cu = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_cu_data);
6820 memset (this_cu, 0, sizeof (*this_cu));
6821 this_cu->sect_off = sect_off;
6822 this_cu->length = length + initial_length_size;
6823 this_cu->is_dwz = is_dwz;
6824 this_cu->objfile = objfile;
6825 this_cu->section = section;
6826
6827 if (*n_comp_units == *n_allocated)
6828 {
6829 *n_allocated *= 2;
6830 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
6831 *all_comp_units, *n_allocated);
6832 }
6833 (*all_comp_units)[*n_comp_units] = this_cu;
6834 ++*n_comp_units;
6835
6836 info_ptr = info_ptr + this_cu->length;
6837 }
6838 }
6839
6840 /* Create a list of all compilation units in OBJFILE.
6841 This is only done for -readnow and building partial symtabs. */
6842
6843 static void
6844 create_all_comp_units (struct objfile *objfile)
6845 {
6846 int n_allocated;
6847 int n_comp_units;
6848 struct dwarf2_per_cu_data **all_comp_units;
6849 struct dwz_file *dwz;
6850
6851 n_comp_units = 0;
6852 n_allocated = 10;
6853 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
6854
6855 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6856 &n_allocated, &n_comp_units, &all_comp_units);
6857
6858 dwz = dwarf2_get_dwz_file ();
6859 if (dwz != NULL)
6860 read_comp_units_from_section (objfile, &dwz->info, 1,
6861 &n_allocated, &n_comp_units,
6862 &all_comp_units);
6863
6864 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6865 struct dwarf2_per_cu_data *,
6866 n_comp_units);
6867 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6868 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6869 xfree (all_comp_units);
6870 dwarf2_per_objfile->n_comp_units = n_comp_units;
6871 }
6872
6873 /* Process all loaded DIEs for compilation unit CU, starting at
6874 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6875 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6876 DW_AT_ranges). See the comments of add_partial_subprogram on how
6877 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6878
6879 static void
6880 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6881 CORE_ADDR *highpc, int set_addrmap,
6882 struct dwarf2_cu *cu)
6883 {
6884 struct partial_die_info *pdi;
6885
6886 /* Now, march along the PDI's, descending into ones which have
6887 interesting children but skipping the children of the other ones,
6888 until we reach the end of the compilation unit. */
6889
6890 pdi = first_die;
6891
6892 while (pdi != NULL)
6893 {
6894 fixup_partial_die (pdi, cu);
6895
6896 /* Anonymous namespaces or modules have no name but have interesting
6897 children, so we need to look at them. Ditto for anonymous
6898 enums. */
6899
6900 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6901 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6902 || pdi->tag == DW_TAG_imported_unit)
6903 {
6904 switch (pdi->tag)
6905 {
6906 case DW_TAG_subprogram:
6907 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6908 break;
6909 case DW_TAG_constant:
6910 case DW_TAG_variable:
6911 case DW_TAG_typedef:
6912 case DW_TAG_union_type:
6913 if (!pdi->is_declaration)
6914 {
6915 add_partial_symbol (pdi, cu);
6916 }
6917 break;
6918 case DW_TAG_class_type:
6919 case DW_TAG_interface_type:
6920 case DW_TAG_structure_type:
6921 if (!pdi->is_declaration)
6922 {
6923 add_partial_symbol (pdi, cu);
6924 }
6925 if (cu->language == language_rust && pdi->has_children)
6926 scan_partial_symbols (pdi->die_child, lowpc, highpc,
6927 set_addrmap, cu);
6928 break;
6929 case DW_TAG_enumeration_type:
6930 if (!pdi->is_declaration)
6931 add_partial_enumeration (pdi, cu);
6932 break;
6933 case DW_TAG_base_type:
6934 case DW_TAG_subrange_type:
6935 /* File scope base type definitions are added to the partial
6936 symbol table. */
6937 add_partial_symbol (pdi, cu);
6938 break;
6939 case DW_TAG_namespace:
6940 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6941 break;
6942 case DW_TAG_module:
6943 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6944 break;
6945 case DW_TAG_imported_unit:
6946 {
6947 struct dwarf2_per_cu_data *per_cu;
6948
6949 /* For now we don't handle imported units in type units. */
6950 if (cu->per_cu->is_debug_types)
6951 {
6952 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6953 " supported in type units [in module %s]"),
6954 objfile_name (cu->objfile));
6955 }
6956
6957 per_cu = dwarf2_find_containing_comp_unit (pdi->d.sect_off,
6958 pdi->is_dwz,
6959 cu->objfile);
6960
6961 /* Go read the partial unit, if needed. */
6962 if (per_cu->v.psymtab == NULL)
6963 process_psymtab_comp_unit (per_cu, 1, cu->language);
6964
6965 VEC_safe_push (dwarf2_per_cu_ptr,
6966 cu->per_cu->imported_symtabs, per_cu);
6967 }
6968 break;
6969 case DW_TAG_imported_declaration:
6970 add_partial_symbol (pdi, cu);
6971 break;
6972 default:
6973 break;
6974 }
6975 }
6976
6977 /* If the die has a sibling, skip to the sibling. */
6978
6979 pdi = pdi->die_sibling;
6980 }
6981 }
6982
6983 /* Functions used to compute the fully scoped name of a partial DIE.
6984
6985 Normally, this is simple. For C++, the parent DIE's fully scoped
6986 name is concatenated with "::" and the partial DIE's name.
6987 Enumerators are an exception; they use the scope of their parent
6988 enumeration type, i.e. the name of the enumeration type is not
6989 prepended to the enumerator.
6990
6991 There are two complexities. One is DW_AT_specification; in this
6992 case "parent" means the parent of the target of the specification,
6993 instead of the direct parent of the DIE. The other is compilers
6994 which do not emit DW_TAG_namespace; in this case we try to guess
6995 the fully qualified name of structure types from their members'
6996 linkage names. This must be done using the DIE's children rather
6997 than the children of any DW_AT_specification target. We only need
6998 to do this for structures at the top level, i.e. if the target of
6999 any DW_AT_specification (if any; otherwise the DIE itself) does not
7000 have a parent. */
7001
7002 /* Compute the scope prefix associated with PDI's parent, in
7003 compilation unit CU. The result will be allocated on CU's
7004 comp_unit_obstack, or a copy of the already allocated PDI->NAME
7005 field. NULL is returned if no prefix is necessary. */
7006 static const char *
7007 partial_die_parent_scope (struct partial_die_info *pdi,
7008 struct dwarf2_cu *cu)
7009 {
7010 const char *grandparent_scope;
7011 struct partial_die_info *parent, *real_pdi;
7012
7013 /* We need to look at our parent DIE; if we have a DW_AT_specification,
7014 then this means the parent of the specification DIE. */
7015
7016 real_pdi = pdi;
7017 while (real_pdi->has_specification)
7018 real_pdi = find_partial_die (real_pdi->spec_offset,
7019 real_pdi->spec_is_dwz, cu);
7020
7021 parent = real_pdi->die_parent;
7022 if (parent == NULL)
7023 return NULL;
7024
7025 if (parent->scope_set)
7026 return parent->scope;
7027
7028 fixup_partial_die (parent, cu);
7029
7030 grandparent_scope = partial_die_parent_scope (parent, cu);
7031
7032 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
7033 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
7034 Work around this problem here. */
7035 if (cu->language == language_cplus
7036 && parent->tag == DW_TAG_namespace
7037 && strcmp (parent->name, "::") == 0
7038 && grandparent_scope == NULL)
7039 {
7040 parent->scope = NULL;
7041 parent->scope_set = 1;
7042 return NULL;
7043 }
7044
7045 if (pdi->tag == DW_TAG_enumerator)
7046 /* Enumerators should not get the name of the enumeration as a prefix. */
7047 parent->scope = grandparent_scope;
7048 else if (parent->tag == DW_TAG_namespace
7049 || parent->tag == DW_TAG_module
7050 || parent->tag == DW_TAG_structure_type
7051 || parent->tag == DW_TAG_class_type
7052 || parent->tag == DW_TAG_interface_type
7053 || parent->tag == DW_TAG_union_type
7054 || parent->tag == DW_TAG_enumeration_type)
7055 {
7056 if (grandparent_scope == NULL)
7057 parent->scope = parent->name;
7058 else
7059 parent->scope = typename_concat (&cu->comp_unit_obstack,
7060 grandparent_scope,
7061 parent->name, 0, cu);
7062 }
7063 else
7064 {
7065 /* FIXME drow/2004-04-01: What should we be doing with
7066 function-local names? For partial symbols, we should probably be
7067 ignoring them. */
7068 complaint (&symfile_complaints,
7069 _("unhandled containing DIE tag %d for DIE at %d"),
7070 parent->tag, to_underlying (pdi->sect_off));
7071 parent->scope = grandparent_scope;
7072 }
7073
7074 parent->scope_set = 1;
7075 return parent->scope;
7076 }
7077
7078 /* Return the fully scoped name associated with PDI, from compilation unit
7079 CU. The result will be allocated with malloc. */
7080
7081 static char *
7082 partial_die_full_name (struct partial_die_info *pdi,
7083 struct dwarf2_cu *cu)
7084 {
7085 const char *parent_scope;
7086
7087 /* If this is a template instantiation, we can not work out the
7088 template arguments from partial DIEs. So, unfortunately, we have
7089 to go through the full DIEs. At least any work we do building
7090 types here will be reused if full symbols are loaded later. */
7091 if (pdi->has_template_arguments)
7092 {
7093 fixup_partial_die (pdi, cu);
7094
7095 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
7096 {
7097 struct die_info *die;
7098 struct attribute attr;
7099 struct dwarf2_cu *ref_cu = cu;
7100
7101 /* DW_FORM_ref_addr is using section offset. */
7102 attr.name = (enum dwarf_attribute) 0;
7103 attr.form = DW_FORM_ref_addr;
7104 attr.u.unsnd = to_underlying (pdi->sect_off);
7105 die = follow_die_ref (NULL, &attr, &ref_cu);
7106
7107 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
7108 }
7109 }
7110
7111 parent_scope = partial_die_parent_scope (pdi, cu);
7112 if (parent_scope == NULL)
7113 return NULL;
7114 else
7115 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
7116 }
7117
7118 static void
7119 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
7120 {
7121 struct objfile *objfile = cu->objfile;
7122 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7123 CORE_ADDR addr = 0;
7124 const char *actual_name = NULL;
7125 CORE_ADDR baseaddr;
7126 char *built_actual_name;
7127
7128 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7129
7130 built_actual_name = partial_die_full_name (pdi, cu);
7131 if (built_actual_name != NULL)
7132 actual_name = built_actual_name;
7133
7134 if (actual_name == NULL)
7135 actual_name = pdi->name;
7136
7137 switch (pdi->tag)
7138 {
7139 case DW_TAG_subprogram:
7140 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
7141 if (pdi->is_external || cu->language == language_ada)
7142 {
7143 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
7144 of the global scope. But in Ada, we want to be able to access
7145 nested procedures globally. So all Ada subprograms are stored
7146 in the global scope. */
7147 add_psymbol_to_list (actual_name, strlen (actual_name),
7148 built_actual_name != NULL,
7149 VAR_DOMAIN, LOC_BLOCK,
7150 &objfile->global_psymbols,
7151 addr, cu->language, objfile);
7152 }
7153 else
7154 {
7155 add_psymbol_to_list (actual_name, strlen (actual_name),
7156 built_actual_name != NULL,
7157 VAR_DOMAIN, LOC_BLOCK,
7158 &objfile->static_psymbols,
7159 addr, cu->language, objfile);
7160 }
7161
7162 if (pdi->main_subprogram && actual_name != NULL)
7163 set_objfile_main_name (objfile, actual_name, cu->language);
7164 break;
7165 case DW_TAG_constant:
7166 {
7167 struct psymbol_allocation_list *list;
7168
7169 if (pdi->is_external)
7170 list = &objfile->global_psymbols;
7171 else
7172 list = &objfile->static_psymbols;
7173 add_psymbol_to_list (actual_name, strlen (actual_name),
7174 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
7175 list, 0, cu->language, objfile);
7176 }
7177 break;
7178 case DW_TAG_variable:
7179 if (pdi->d.locdesc)
7180 addr = decode_locdesc (pdi->d.locdesc, cu);
7181
7182 if (pdi->d.locdesc
7183 && addr == 0
7184 && !dwarf2_per_objfile->has_section_at_zero)
7185 {
7186 /* A global or static variable may also have been stripped
7187 out by the linker if unused, in which case its address
7188 will be nullified; do not add such variables into partial
7189 symbol table then. */
7190 }
7191 else if (pdi->is_external)
7192 {
7193 /* Global Variable.
7194 Don't enter into the minimal symbol tables as there is
7195 a minimal symbol table entry from the ELF symbols already.
7196 Enter into partial symbol table if it has a location
7197 descriptor or a type.
7198 If the location descriptor is missing, new_symbol will create
7199 a LOC_UNRESOLVED symbol, the address of the variable will then
7200 be determined from the minimal symbol table whenever the variable
7201 is referenced.
7202 The address for the partial symbol table entry is not
7203 used by GDB, but it comes in handy for debugging partial symbol
7204 table building. */
7205
7206 if (pdi->d.locdesc || pdi->has_type)
7207 add_psymbol_to_list (actual_name, strlen (actual_name),
7208 built_actual_name != NULL,
7209 VAR_DOMAIN, LOC_STATIC,
7210 &objfile->global_psymbols,
7211 addr + baseaddr,
7212 cu->language, objfile);
7213 }
7214 else
7215 {
7216 int has_loc = pdi->d.locdesc != NULL;
7217
7218 /* Static Variable. Skip symbols whose value we cannot know (those
7219 without location descriptors or constant values). */
7220 if (!has_loc && !pdi->has_const_value)
7221 {
7222 xfree (built_actual_name);
7223 return;
7224 }
7225
7226 add_psymbol_to_list (actual_name, strlen (actual_name),
7227 built_actual_name != NULL,
7228 VAR_DOMAIN, LOC_STATIC,
7229 &objfile->static_psymbols,
7230 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
7231 cu->language, objfile);
7232 }
7233 break;
7234 case DW_TAG_typedef:
7235 case DW_TAG_base_type:
7236 case DW_TAG_subrange_type:
7237 add_psymbol_to_list (actual_name, strlen (actual_name),
7238 built_actual_name != NULL,
7239 VAR_DOMAIN, LOC_TYPEDEF,
7240 &objfile->static_psymbols,
7241 0, cu->language, objfile);
7242 break;
7243 case DW_TAG_imported_declaration:
7244 case DW_TAG_namespace:
7245 add_psymbol_to_list (actual_name, strlen (actual_name),
7246 built_actual_name != NULL,
7247 VAR_DOMAIN, LOC_TYPEDEF,
7248 &objfile->global_psymbols,
7249 0, cu->language, objfile);
7250 break;
7251 case DW_TAG_module:
7252 add_psymbol_to_list (actual_name, strlen (actual_name),
7253 built_actual_name != NULL,
7254 MODULE_DOMAIN, LOC_TYPEDEF,
7255 &objfile->global_psymbols,
7256 0, cu->language, objfile);
7257 break;
7258 case DW_TAG_class_type:
7259 case DW_TAG_interface_type:
7260 case DW_TAG_structure_type:
7261 case DW_TAG_union_type:
7262 case DW_TAG_enumeration_type:
7263 /* Skip external references. The DWARF standard says in the section
7264 about "Structure, Union, and Class Type Entries": "An incomplete
7265 structure, union or class type is represented by a structure,
7266 union or class entry that does not have a byte size attribute
7267 and that has a DW_AT_declaration attribute." */
7268 if (!pdi->has_byte_size && pdi->is_declaration)
7269 {
7270 xfree (built_actual_name);
7271 return;
7272 }
7273
7274 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7275 static vs. global. */
7276 add_psymbol_to_list (actual_name, strlen (actual_name),
7277 built_actual_name != NULL,
7278 STRUCT_DOMAIN, LOC_TYPEDEF,
7279 cu->language == language_cplus
7280 ? &objfile->global_psymbols
7281 : &objfile->static_psymbols,
7282 0, cu->language, objfile);
7283
7284 break;
7285 case DW_TAG_enumerator:
7286 add_psymbol_to_list (actual_name, strlen (actual_name),
7287 built_actual_name != NULL,
7288 VAR_DOMAIN, LOC_CONST,
7289 cu->language == language_cplus
7290 ? &objfile->global_psymbols
7291 : &objfile->static_psymbols,
7292 0, cu->language, objfile);
7293 break;
7294 default:
7295 break;
7296 }
7297
7298 xfree (built_actual_name);
7299 }
7300
7301 /* Read a partial die corresponding to a namespace; also, add a symbol
7302 corresponding to that namespace to the symbol table. NAMESPACE is
7303 the name of the enclosing namespace. */
7304
7305 static void
7306 add_partial_namespace (struct partial_die_info *pdi,
7307 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7308 int set_addrmap, struct dwarf2_cu *cu)
7309 {
7310 /* Add a symbol for the namespace. */
7311
7312 add_partial_symbol (pdi, cu);
7313
7314 /* Now scan partial symbols in that namespace. */
7315
7316 if (pdi->has_children)
7317 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7318 }
7319
7320 /* Read a partial die corresponding to a Fortran module. */
7321
7322 static void
7323 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7324 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7325 {
7326 /* Add a symbol for the namespace. */
7327
7328 add_partial_symbol (pdi, cu);
7329
7330 /* Now scan partial symbols in that module. */
7331
7332 if (pdi->has_children)
7333 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7334 }
7335
7336 /* Read a partial die corresponding to a subprogram and create a partial
7337 symbol for that subprogram. When the CU language allows it, this
7338 routine also defines a partial symbol for each nested subprogram
7339 that this subprogram contains. If SET_ADDRMAP is true, record the
7340 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7341 and highest PC values found in PDI.
7342
7343 PDI may also be a lexical block, in which case we simply search
7344 recursively for subprograms defined inside that lexical block.
7345 Again, this is only performed when the CU language allows this
7346 type of definitions. */
7347
7348 static void
7349 add_partial_subprogram (struct partial_die_info *pdi,
7350 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7351 int set_addrmap, struct dwarf2_cu *cu)
7352 {
7353 if (pdi->tag == DW_TAG_subprogram)
7354 {
7355 if (pdi->has_pc_info)
7356 {
7357 if (pdi->lowpc < *lowpc)
7358 *lowpc = pdi->lowpc;
7359 if (pdi->highpc > *highpc)
7360 *highpc = pdi->highpc;
7361 if (set_addrmap)
7362 {
7363 struct objfile *objfile = cu->objfile;
7364 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7365 CORE_ADDR baseaddr;
7366 CORE_ADDR highpc;
7367 CORE_ADDR lowpc;
7368
7369 baseaddr = ANOFFSET (objfile->section_offsets,
7370 SECT_OFF_TEXT (objfile));
7371 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7372 pdi->lowpc + baseaddr);
7373 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7374 pdi->highpc + baseaddr);
7375 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7376 cu->per_cu->v.psymtab);
7377 }
7378 }
7379
7380 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7381 {
7382 if (!pdi->is_declaration)
7383 /* Ignore subprogram DIEs that do not have a name, they are
7384 illegal. Do not emit a complaint at this point, we will
7385 do so when we convert this psymtab into a symtab. */
7386 if (pdi->name)
7387 add_partial_symbol (pdi, cu);
7388 }
7389 }
7390
7391 if (! pdi->has_children)
7392 return;
7393
7394 if (cu->language == language_ada)
7395 {
7396 pdi = pdi->die_child;
7397 while (pdi != NULL)
7398 {
7399 fixup_partial_die (pdi, cu);
7400 if (pdi->tag == DW_TAG_subprogram
7401 || pdi->tag == DW_TAG_lexical_block)
7402 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7403 pdi = pdi->die_sibling;
7404 }
7405 }
7406 }
7407
7408 /* Read a partial die corresponding to an enumeration type. */
7409
7410 static void
7411 add_partial_enumeration (struct partial_die_info *enum_pdi,
7412 struct dwarf2_cu *cu)
7413 {
7414 struct partial_die_info *pdi;
7415
7416 if (enum_pdi->name != NULL)
7417 add_partial_symbol (enum_pdi, cu);
7418
7419 pdi = enum_pdi->die_child;
7420 while (pdi)
7421 {
7422 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7423 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7424 else
7425 add_partial_symbol (pdi, cu);
7426 pdi = pdi->die_sibling;
7427 }
7428 }
7429
7430 /* Return the initial uleb128 in the die at INFO_PTR. */
7431
7432 static unsigned int
7433 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7434 {
7435 unsigned int bytes_read;
7436
7437 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7438 }
7439
7440 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7441 Return the corresponding abbrev, or NULL if the number is zero (indicating
7442 an empty DIE). In either case *BYTES_READ will be set to the length of
7443 the initial number. */
7444
7445 static struct abbrev_info *
7446 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7447 struct dwarf2_cu *cu)
7448 {
7449 bfd *abfd = cu->objfile->obfd;
7450 unsigned int abbrev_number;
7451 struct abbrev_info *abbrev;
7452
7453 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7454
7455 if (abbrev_number == 0)
7456 return NULL;
7457
7458 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7459 if (!abbrev)
7460 {
7461 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7462 " at offset 0x%x [in module %s]"),
7463 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7464 to_underlying (cu->header.sect_off), bfd_get_filename (abfd));
7465 }
7466
7467 return abbrev;
7468 }
7469
7470 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7471 Returns a pointer to the end of a series of DIEs, terminated by an empty
7472 DIE. Any children of the skipped DIEs will also be skipped. */
7473
7474 static const gdb_byte *
7475 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7476 {
7477 struct dwarf2_cu *cu = reader->cu;
7478 struct abbrev_info *abbrev;
7479 unsigned int bytes_read;
7480
7481 while (1)
7482 {
7483 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7484 if (abbrev == NULL)
7485 return info_ptr + bytes_read;
7486 else
7487 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7488 }
7489 }
7490
7491 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7492 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7493 abbrev corresponding to that skipped uleb128 should be passed in
7494 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7495 children. */
7496
7497 static const gdb_byte *
7498 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7499 struct abbrev_info *abbrev)
7500 {
7501 unsigned int bytes_read;
7502 struct attribute attr;
7503 bfd *abfd = reader->abfd;
7504 struct dwarf2_cu *cu = reader->cu;
7505 const gdb_byte *buffer = reader->buffer;
7506 const gdb_byte *buffer_end = reader->buffer_end;
7507 unsigned int form, i;
7508
7509 for (i = 0; i < abbrev->num_attrs; i++)
7510 {
7511 /* The only abbrev we care about is DW_AT_sibling. */
7512 if (abbrev->attrs[i].name == DW_AT_sibling)
7513 {
7514 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7515 if (attr.form == DW_FORM_ref_addr)
7516 complaint (&symfile_complaints,
7517 _("ignoring absolute DW_AT_sibling"));
7518 else
7519 {
7520 sect_offset off = dwarf2_get_ref_die_offset (&attr);
7521 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
7522
7523 if (sibling_ptr < info_ptr)
7524 complaint (&symfile_complaints,
7525 _("DW_AT_sibling points backwards"));
7526 else if (sibling_ptr > reader->buffer_end)
7527 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7528 else
7529 return sibling_ptr;
7530 }
7531 }
7532
7533 /* If it isn't DW_AT_sibling, skip this attribute. */
7534 form = abbrev->attrs[i].form;
7535 skip_attribute:
7536 switch (form)
7537 {
7538 case DW_FORM_ref_addr:
7539 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7540 and later it is offset sized. */
7541 if (cu->header.version == 2)
7542 info_ptr += cu->header.addr_size;
7543 else
7544 info_ptr += cu->header.offset_size;
7545 break;
7546 case DW_FORM_GNU_ref_alt:
7547 info_ptr += cu->header.offset_size;
7548 break;
7549 case DW_FORM_addr:
7550 info_ptr += cu->header.addr_size;
7551 break;
7552 case DW_FORM_data1:
7553 case DW_FORM_ref1:
7554 case DW_FORM_flag:
7555 info_ptr += 1;
7556 break;
7557 case DW_FORM_flag_present:
7558 case DW_FORM_implicit_const:
7559 break;
7560 case DW_FORM_data2:
7561 case DW_FORM_ref2:
7562 info_ptr += 2;
7563 break;
7564 case DW_FORM_data4:
7565 case DW_FORM_ref4:
7566 info_ptr += 4;
7567 break;
7568 case DW_FORM_data8:
7569 case DW_FORM_ref8:
7570 case DW_FORM_ref_sig8:
7571 info_ptr += 8;
7572 break;
7573 case DW_FORM_data16:
7574 info_ptr += 16;
7575 break;
7576 case DW_FORM_string:
7577 read_direct_string (abfd, info_ptr, &bytes_read);
7578 info_ptr += bytes_read;
7579 break;
7580 case DW_FORM_sec_offset:
7581 case DW_FORM_strp:
7582 case DW_FORM_GNU_strp_alt:
7583 info_ptr += cu->header.offset_size;
7584 break;
7585 case DW_FORM_exprloc:
7586 case DW_FORM_block:
7587 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7588 info_ptr += bytes_read;
7589 break;
7590 case DW_FORM_block1:
7591 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7592 break;
7593 case DW_FORM_block2:
7594 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7595 break;
7596 case DW_FORM_block4:
7597 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7598 break;
7599 case DW_FORM_sdata:
7600 case DW_FORM_udata:
7601 case DW_FORM_ref_udata:
7602 case DW_FORM_GNU_addr_index:
7603 case DW_FORM_GNU_str_index:
7604 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7605 break;
7606 case DW_FORM_indirect:
7607 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7608 info_ptr += bytes_read;
7609 /* We need to continue parsing from here, so just go back to
7610 the top. */
7611 goto skip_attribute;
7612
7613 default:
7614 error (_("Dwarf Error: Cannot handle %s "
7615 "in DWARF reader [in module %s]"),
7616 dwarf_form_name (form),
7617 bfd_get_filename (abfd));
7618 }
7619 }
7620
7621 if (abbrev->has_children)
7622 return skip_children (reader, info_ptr);
7623 else
7624 return info_ptr;
7625 }
7626
7627 /* Locate ORIG_PDI's sibling.
7628 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7629
7630 static const gdb_byte *
7631 locate_pdi_sibling (const struct die_reader_specs *reader,
7632 struct partial_die_info *orig_pdi,
7633 const gdb_byte *info_ptr)
7634 {
7635 /* Do we know the sibling already? */
7636
7637 if (orig_pdi->sibling)
7638 return orig_pdi->sibling;
7639
7640 /* Are there any children to deal with? */
7641
7642 if (!orig_pdi->has_children)
7643 return info_ptr;
7644
7645 /* Skip the children the long way. */
7646
7647 return skip_children (reader, info_ptr);
7648 }
7649
7650 /* Expand this partial symbol table into a full symbol table. SELF is
7651 not NULL. */
7652
7653 static void
7654 dwarf2_read_symtab (struct partial_symtab *self,
7655 struct objfile *objfile)
7656 {
7657 if (self->readin)
7658 {
7659 warning (_("bug: psymtab for %s is already read in."),
7660 self->filename);
7661 }
7662 else
7663 {
7664 if (info_verbose)
7665 {
7666 printf_filtered (_("Reading in symbols for %s..."),
7667 self->filename);
7668 gdb_flush (gdb_stdout);
7669 }
7670
7671 /* Restore our global data. */
7672 dwarf2_per_objfile
7673 = (struct dwarf2_per_objfile *) objfile_data (objfile,
7674 dwarf2_objfile_data_key);
7675
7676 /* If this psymtab is constructed from a debug-only objfile, the
7677 has_section_at_zero flag will not necessarily be correct. We
7678 can get the correct value for this flag by looking at the data
7679 associated with the (presumably stripped) associated objfile. */
7680 if (objfile->separate_debug_objfile_backlink)
7681 {
7682 struct dwarf2_per_objfile *dpo_backlink
7683 = ((struct dwarf2_per_objfile *)
7684 objfile_data (objfile->separate_debug_objfile_backlink,
7685 dwarf2_objfile_data_key));
7686
7687 dwarf2_per_objfile->has_section_at_zero
7688 = dpo_backlink->has_section_at_zero;
7689 }
7690
7691 dwarf2_per_objfile->reading_partial_symbols = 0;
7692
7693 psymtab_to_symtab_1 (self);
7694
7695 /* Finish up the debug error message. */
7696 if (info_verbose)
7697 printf_filtered (_("done.\n"));
7698 }
7699
7700 process_cu_includes ();
7701 }
7702 \f
7703 /* Reading in full CUs. */
7704
7705 /* Add PER_CU to the queue. */
7706
7707 static void
7708 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7709 enum language pretend_language)
7710 {
7711 struct dwarf2_queue_item *item;
7712
7713 per_cu->queued = 1;
7714 item = XNEW (struct dwarf2_queue_item);
7715 item->per_cu = per_cu;
7716 item->pretend_language = pretend_language;
7717 item->next = NULL;
7718
7719 if (dwarf2_queue == NULL)
7720 dwarf2_queue = item;
7721 else
7722 dwarf2_queue_tail->next = item;
7723
7724 dwarf2_queue_tail = item;
7725 }
7726
7727 /* If PER_CU is not yet queued, add it to the queue.
7728 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7729 dependency.
7730 The result is non-zero if PER_CU was queued, otherwise the result is zero
7731 meaning either PER_CU is already queued or it is already loaded.
7732
7733 N.B. There is an invariant here that if a CU is queued then it is loaded.
7734 The caller is required to load PER_CU if we return non-zero. */
7735
7736 static int
7737 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7738 struct dwarf2_per_cu_data *per_cu,
7739 enum language pretend_language)
7740 {
7741 /* We may arrive here during partial symbol reading, if we need full
7742 DIEs to process an unusual case (e.g. template arguments). Do
7743 not queue PER_CU, just tell our caller to load its DIEs. */
7744 if (dwarf2_per_objfile->reading_partial_symbols)
7745 {
7746 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7747 return 1;
7748 return 0;
7749 }
7750
7751 /* Mark the dependence relation so that we don't flush PER_CU
7752 too early. */
7753 if (dependent_cu != NULL)
7754 dwarf2_add_dependence (dependent_cu, per_cu);
7755
7756 /* If it's already on the queue, we have nothing to do. */
7757 if (per_cu->queued)
7758 return 0;
7759
7760 /* If the compilation unit is already loaded, just mark it as
7761 used. */
7762 if (per_cu->cu != NULL)
7763 {
7764 per_cu->cu->last_used = 0;
7765 return 0;
7766 }
7767
7768 /* Add it to the queue. */
7769 queue_comp_unit (per_cu, pretend_language);
7770
7771 return 1;
7772 }
7773
7774 /* Process the queue. */
7775
7776 static void
7777 process_queue (void)
7778 {
7779 struct dwarf2_queue_item *item, *next_item;
7780
7781 if (dwarf_read_debug)
7782 {
7783 fprintf_unfiltered (gdb_stdlog,
7784 "Expanding one or more symtabs of objfile %s ...\n",
7785 objfile_name (dwarf2_per_objfile->objfile));
7786 }
7787
7788 /* The queue starts out with one item, but following a DIE reference
7789 may load a new CU, adding it to the end of the queue. */
7790 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7791 {
7792 if ((dwarf2_per_objfile->using_index
7793 ? !item->per_cu->v.quick->compunit_symtab
7794 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7795 /* Skip dummy CUs. */
7796 && item->per_cu->cu != NULL)
7797 {
7798 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7799 unsigned int debug_print_threshold;
7800 char buf[100];
7801
7802 if (per_cu->is_debug_types)
7803 {
7804 struct signatured_type *sig_type =
7805 (struct signatured_type *) per_cu;
7806
7807 sprintf (buf, "TU %s at offset 0x%x",
7808 hex_string (sig_type->signature),
7809 to_underlying (per_cu->sect_off));
7810 /* There can be 100s of TUs.
7811 Only print them in verbose mode. */
7812 debug_print_threshold = 2;
7813 }
7814 else
7815 {
7816 sprintf (buf, "CU at offset 0x%x",
7817 to_underlying (per_cu->sect_off));
7818 debug_print_threshold = 1;
7819 }
7820
7821 if (dwarf_read_debug >= debug_print_threshold)
7822 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7823
7824 if (per_cu->is_debug_types)
7825 process_full_type_unit (per_cu, item->pretend_language);
7826 else
7827 process_full_comp_unit (per_cu, item->pretend_language);
7828
7829 if (dwarf_read_debug >= debug_print_threshold)
7830 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7831 }
7832
7833 item->per_cu->queued = 0;
7834 next_item = item->next;
7835 xfree (item);
7836 }
7837
7838 dwarf2_queue_tail = NULL;
7839
7840 if (dwarf_read_debug)
7841 {
7842 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7843 objfile_name (dwarf2_per_objfile->objfile));
7844 }
7845 }
7846
7847 /* Free all allocated queue entries. This function only releases anything if
7848 an error was thrown; if the queue was processed then it would have been
7849 freed as we went along. */
7850
7851 static void
7852 dwarf2_release_queue (void *dummy)
7853 {
7854 struct dwarf2_queue_item *item, *last;
7855
7856 item = dwarf2_queue;
7857 while (item)
7858 {
7859 /* Anything still marked queued is likely to be in an
7860 inconsistent state, so discard it. */
7861 if (item->per_cu->queued)
7862 {
7863 if (item->per_cu->cu != NULL)
7864 free_one_cached_comp_unit (item->per_cu);
7865 item->per_cu->queued = 0;
7866 }
7867
7868 last = item;
7869 item = item->next;
7870 xfree (last);
7871 }
7872
7873 dwarf2_queue = dwarf2_queue_tail = NULL;
7874 }
7875
7876 /* Read in full symbols for PST, and anything it depends on. */
7877
7878 static void
7879 psymtab_to_symtab_1 (struct partial_symtab *pst)
7880 {
7881 struct dwarf2_per_cu_data *per_cu;
7882 int i;
7883
7884 if (pst->readin)
7885 return;
7886
7887 for (i = 0; i < pst->number_of_dependencies; i++)
7888 if (!pst->dependencies[i]->readin
7889 && pst->dependencies[i]->user == NULL)
7890 {
7891 /* Inform about additional files that need to be read in. */
7892 if (info_verbose)
7893 {
7894 /* FIXME: i18n: Need to make this a single string. */
7895 fputs_filtered (" ", gdb_stdout);
7896 wrap_here ("");
7897 fputs_filtered ("and ", gdb_stdout);
7898 wrap_here ("");
7899 printf_filtered ("%s...", pst->dependencies[i]->filename);
7900 wrap_here (""); /* Flush output. */
7901 gdb_flush (gdb_stdout);
7902 }
7903 psymtab_to_symtab_1 (pst->dependencies[i]);
7904 }
7905
7906 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
7907
7908 if (per_cu == NULL)
7909 {
7910 /* It's an include file, no symbols to read for it.
7911 Everything is in the parent symtab. */
7912 pst->readin = 1;
7913 return;
7914 }
7915
7916 dw2_do_instantiate_symtab (per_cu);
7917 }
7918
7919 /* Trivial hash function for die_info: the hash value of a DIE
7920 is its offset in .debug_info for this objfile. */
7921
7922 static hashval_t
7923 die_hash (const void *item)
7924 {
7925 const struct die_info *die = (const struct die_info *) item;
7926
7927 return to_underlying (die->sect_off);
7928 }
7929
7930 /* Trivial comparison function for die_info structures: two DIEs
7931 are equal if they have the same offset. */
7932
7933 static int
7934 die_eq (const void *item_lhs, const void *item_rhs)
7935 {
7936 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
7937 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
7938
7939 return die_lhs->sect_off == die_rhs->sect_off;
7940 }
7941
7942 /* die_reader_func for load_full_comp_unit.
7943 This is identical to read_signatured_type_reader,
7944 but is kept separate for now. */
7945
7946 static void
7947 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7948 const gdb_byte *info_ptr,
7949 struct die_info *comp_unit_die,
7950 int has_children,
7951 void *data)
7952 {
7953 struct dwarf2_cu *cu = reader->cu;
7954 enum language *language_ptr = (enum language *) data;
7955
7956 gdb_assert (cu->die_hash == NULL);
7957 cu->die_hash =
7958 htab_create_alloc_ex (cu->header.length / 12,
7959 die_hash,
7960 die_eq,
7961 NULL,
7962 &cu->comp_unit_obstack,
7963 hashtab_obstack_allocate,
7964 dummy_obstack_deallocate);
7965
7966 if (has_children)
7967 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7968 &info_ptr, comp_unit_die);
7969 cu->dies = comp_unit_die;
7970 /* comp_unit_die is not stored in die_hash, no need. */
7971
7972 /* We try not to read any attributes in this function, because not
7973 all CUs needed for references have been loaded yet, and symbol
7974 table processing isn't initialized. But we have to set the CU language,
7975 or we won't be able to build types correctly.
7976 Similarly, if we do not read the producer, we can not apply
7977 producer-specific interpretation. */
7978 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7979 }
7980
7981 /* Load the DIEs associated with PER_CU into memory. */
7982
7983 static void
7984 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7985 enum language pretend_language)
7986 {
7987 gdb_assert (! this_cu->is_debug_types);
7988
7989 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7990 load_full_comp_unit_reader, &pretend_language);
7991 }
7992
7993 /* Add a DIE to the delayed physname list. */
7994
7995 static void
7996 add_to_method_list (struct type *type, int fnfield_index, int index,
7997 const char *name, struct die_info *die,
7998 struct dwarf2_cu *cu)
7999 {
8000 struct delayed_method_info mi;
8001 mi.type = type;
8002 mi.fnfield_index = fnfield_index;
8003 mi.index = index;
8004 mi.name = name;
8005 mi.die = die;
8006 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
8007 }
8008
8009 /* A cleanup for freeing the delayed method list. */
8010
8011 static void
8012 free_delayed_list (void *ptr)
8013 {
8014 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
8015 if (cu->method_list != NULL)
8016 {
8017 VEC_free (delayed_method_info, cu->method_list);
8018 cu->method_list = NULL;
8019 }
8020 }
8021
8022 /* Compute the physnames of any methods on the CU's method list.
8023
8024 The computation of method physnames is delayed in order to avoid the
8025 (bad) condition that one of the method's formal parameters is of an as yet
8026 incomplete type. */
8027
8028 static void
8029 compute_delayed_physnames (struct dwarf2_cu *cu)
8030 {
8031 int i;
8032 struct delayed_method_info *mi;
8033 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
8034 {
8035 const char *physname;
8036 struct fn_fieldlist *fn_flp
8037 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
8038 physname = dwarf2_physname (mi->name, mi->die, cu);
8039 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
8040 = physname ? physname : "";
8041 }
8042 }
8043
8044 /* Go objects should be embedded in a DW_TAG_module DIE,
8045 and it's not clear if/how imported objects will appear.
8046 To keep Go support simple until that's worked out,
8047 go back through what we've read and create something usable.
8048 We could do this while processing each DIE, and feels kinda cleaner,
8049 but that way is more invasive.
8050 This is to, for example, allow the user to type "p var" or "b main"
8051 without having to specify the package name, and allow lookups
8052 of module.object to work in contexts that use the expression
8053 parser. */
8054
8055 static void
8056 fixup_go_packaging (struct dwarf2_cu *cu)
8057 {
8058 char *package_name = NULL;
8059 struct pending *list;
8060 int i;
8061
8062 for (list = global_symbols; list != NULL; list = list->next)
8063 {
8064 for (i = 0; i < list->nsyms; ++i)
8065 {
8066 struct symbol *sym = list->symbol[i];
8067
8068 if (SYMBOL_LANGUAGE (sym) == language_go
8069 && SYMBOL_CLASS (sym) == LOC_BLOCK)
8070 {
8071 char *this_package_name = go_symbol_package_name (sym);
8072
8073 if (this_package_name == NULL)
8074 continue;
8075 if (package_name == NULL)
8076 package_name = this_package_name;
8077 else
8078 {
8079 if (strcmp (package_name, this_package_name) != 0)
8080 complaint (&symfile_complaints,
8081 _("Symtab %s has objects from two different Go packages: %s and %s"),
8082 (symbol_symtab (sym) != NULL
8083 ? symtab_to_filename_for_display
8084 (symbol_symtab (sym))
8085 : objfile_name (cu->objfile)),
8086 this_package_name, package_name);
8087 xfree (this_package_name);
8088 }
8089 }
8090 }
8091 }
8092
8093 if (package_name != NULL)
8094 {
8095 struct objfile *objfile = cu->objfile;
8096 const char *saved_package_name
8097 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
8098 package_name,
8099 strlen (package_name));
8100 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
8101 saved_package_name);
8102 struct symbol *sym;
8103
8104 TYPE_TAG_NAME (type) = TYPE_NAME (type);
8105
8106 sym = allocate_symbol (objfile);
8107 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
8108 SYMBOL_SET_NAMES (sym, saved_package_name,
8109 strlen (saved_package_name), 0, objfile);
8110 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
8111 e.g., "main" finds the "main" module and not C's main(). */
8112 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
8113 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
8114 SYMBOL_TYPE (sym) = type;
8115
8116 add_symbol_to_list (sym, &global_symbols);
8117
8118 xfree (package_name);
8119 }
8120 }
8121
8122 /* Return the symtab for PER_CU. This works properly regardless of
8123 whether we're using the index or psymtabs. */
8124
8125 static struct compunit_symtab *
8126 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
8127 {
8128 return (dwarf2_per_objfile->using_index
8129 ? per_cu->v.quick->compunit_symtab
8130 : per_cu->v.psymtab->compunit_symtab);
8131 }
8132
8133 /* A helper function for computing the list of all symbol tables
8134 included by PER_CU. */
8135
8136 static void
8137 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
8138 htab_t all_children, htab_t all_type_symtabs,
8139 struct dwarf2_per_cu_data *per_cu,
8140 struct compunit_symtab *immediate_parent)
8141 {
8142 void **slot;
8143 int ix;
8144 struct compunit_symtab *cust;
8145 struct dwarf2_per_cu_data *iter;
8146
8147 slot = htab_find_slot (all_children, per_cu, INSERT);
8148 if (*slot != NULL)
8149 {
8150 /* This inclusion and its children have been processed. */
8151 return;
8152 }
8153
8154 *slot = per_cu;
8155 /* Only add a CU if it has a symbol table. */
8156 cust = get_compunit_symtab (per_cu);
8157 if (cust != NULL)
8158 {
8159 /* If this is a type unit only add its symbol table if we haven't
8160 seen it yet (type unit per_cu's can share symtabs). */
8161 if (per_cu->is_debug_types)
8162 {
8163 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
8164 if (*slot == NULL)
8165 {
8166 *slot = cust;
8167 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8168 if (cust->user == NULL)
8169 cust->user = immediate_parent;
8170 }
8171 }
8172 else
8173 {
8174 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8175 if (cust->user == NULL)
8176 cust->user = immediate_parent;
8177 }
8178 }
8179
8180 for (ix = 0;
8181 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
8182 ++ix)
8183 {
8184 recursively_compute_inclusions (result, all_children,
8185 all_type_symtabs, iter, cust);
8186 }
8187 }
8188
8189 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
8190 PER_CU. */
8191
8192 static void
8193 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
8194 {
8195 gdb_assert (! per_cu->is_debug_types);
8196
8197 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
8198 {
8199 int ix, len;
8200 struct dwarf2_per_cu_data *per_cu_iter;
8201 struct compunit_symtab *compunit_symtab_iter;
8202 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
8203 htab_t all_children, all_type_symtabs;
8204 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
8205
8206 /* If we don't have a symtab, we can just skip this case. */
8207 if (cust == NULL)
8208 return;
8209
8210 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8211 NULL, xcalloc, xfree);
8212 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8213 NULL, xcalloc, xfree);
8214
8215 for (ix = 0;
8216 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
8217 ix, per_cu_iter);
8218 ++ix)
8219 {
8220 recursively_compute_inclusions (&result_symtabs, all_children,
8221 all_type_symtabs, per_cu_iter,
8222 cust);
8223 }
8224
8225 /* Now we have a transitive closure of all the included symtabs. */
8226 len = VEC_length (compunit_symtab_ptr, result_symtabs);
8227 cust->includes
8228 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
8229 struct compunit_symtab *, len + 1);
8230 for (ix = 0;
8231 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
8232 compunit_symtab_iter);
8233 ++ix)
8234 cust->includes[ix] = compunit_symtab_iter;
8235 cust->includes[len] = NULL;
8236
8237 VEC_free (compunit_symtab_ptr, result_symtabs);
8238 htab_delete (all_children);
8239 htab_delete (all_type_symtabs);
8240 }
8241 }
8242
8243 /* Compute the 'includes' field for the symtabs of all the CUs we just
8244 read. */
8245
8246 static void
8247 process_cu_includes (void)
8248 {
8249 int ix;
8250 struct dwarf2_per_cu_data *iter;
8251
8252 for (ix = 0;
8253 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8254 ix, iter);
8255 ++ix)
8256 {
8257 if (! iter->is_debug_types)
8258 compute_compunit_symtab_includes (iter);
8259 }
8260
8261 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8262 }
8263
8264 /* Generate full symbol information for PER_CU, whose DIEs have
8265 already been loaded into memory. */
8266
8267 static void
8268 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8269 enum language pretend_language)
8270 {
8271 struct dwarf2_cu *cu = per_cu->cu;
8272 struct objfile *objfile = per_cu->objfile;
8273 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8274 CORE_ADDR lowpc, highpc;
8275 struct compunit_symtab *cust;
8276 struct cleanup *back_to, *delayed_list_cleanup;
8277 CORE_ADDR baseaddr;
8278 struct block *static_block;
8279 CORE_ADDR addr;
8280
8281 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8282
8283 buildsym_init ();
8284 back_to = make_cleanup (really_free_pendings, NULL);
8285 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8286
8287 cu->list_in_scope = &file_symbols;
8288
8289 cu->language = pretend_language;
8290 cu->language_defn = language_def (cu->language);
8291
8292 /* Do line number decoding in read_file_scope () */
8293 process_die (cu->dies, cu);
8294
8295 /* For now fudge the Go package. */
8296 if (cu->language == language_go)
8297 fixup_go_packaging (cu);
8298
8299 /* Now that we have processed all the DIEs in the CU, all the types
8300 should be complete, and it should now be safe to compute all of the
8301 physnames. */
8302 compute_delayed_physnames (cu);
8303 do_cleanups (delayed_list_cleanup);
8304
8305 /* Some compilers don't define a DW_AT_high_pc attribute for the
8306 compilation unit. If the DW_AT_high_pc is missing, synthesize
8307 it, by scanning the DIE's below the compilation unit. */
8308 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
8309
8310 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8311 static_block = end_symtab_get_static_block (addr, 0, 1);
8312
8313 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8314 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8315 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8316 addrmap to help ensure it has an accurate map of pc values belonging to
8317 this comp unit. */
8318 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8319
8320 cust = end_symtab_from_static_block (static_block,
8321 SECT_OFF_TEXT (objfile), 0);
8322
8323 if (cust != NULL)
8324 {
8325 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
8326
8327 /* Set symtab language to language from DW_AT_language. If the
8328 compilation is from a C file generated by language preprocessors, do
8329 not set the language if it was already deduced by start_subfile. */
8330 if (!(cu->language == language_c
8331 && COMPUNIT_FILETABS (cust)->language != language_unknown))
8332 COMPUNIT_FILETABS (cust)->language = cu->language;
8333
8334 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8335 produce DW_AT_location with location lists but it can be possibly
8336 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8337 there were bugs in prologue debug info, fixed later in GCC-4.5
8338 by "unwind info for epilogues" patch (which is not directly related).
8339
8340 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8341 needed, it would be wrong due to missing DW_AT_producer there.
8342
8343 Still one can confuse GDB by using non-standard GCC compilation
8344 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8345 */
8346 if (cu->has_loclist && gcc_4_minor >= 5)
8347 cust->locations_valid = 1;
8348
8349 if (gcc_4_minor >= 5)
8350 cust->epilogue_unwind_valid = 1;
8351
8352 cust->call_site_htab = cu->call_site_htab;
8353 }
8354
8355 if (dwarf2_per_objfile->using_index)
8356 per_cu->v.quick->compunit_symtab = cust;
8357 else
8358 {
8359 struct partial_symtab *pst = per_cu->v.psymtab;
8360 pst->compunit_symtab = cust;
8361 pst->readin = 1;
8362 }
8363
8364 /* Push it for inclusion processing later. */
8365 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8366
8367 do_cleanups (back_to);
8368 }
8369
8370 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8371 already been loaded into memory. */
8372
8373 static void
8374 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8375 enum language pretend_language)
8376 {
8377 struct dwarf2_cu *cu = per_cu->cu;
8378 struct objfile *objfile = per_cu->objfile;
8379 struct compunit_symtab *cust;
8380 struct cleanup *back_to, *delayed_list_cleanup;
8381 struct signatured_type *sig_type;
8382
8383 gdb_assert (per_cu->is_debug_types);
8384 sig_type = (struct signatured_type *) per_cu;
8385
8386 buildsym_init ();
8387 back_to = make_cleanup (really_free_pendings, NULL);
8388 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8389
8390 cu->list_in_scope = &file_symbols;
8391
8392 cu->language = pretend_language;
8393 cu->language_defn = language_def (cu->language);
8394
8395 /* The symbol tables are set up in read_type_unit_scope. */
8396 process_die (cu->dies, cu);
8397
8398 /* For now fudge the Go package. */
8399 if (cu->language == language_go)
8400 fixup_go_packaging (cu);
8401
8402 /* Now that we have processed all the DIEs in the CU, all the types
8403 should be complete, and it should now be safe to compute all of the
8404 physnames. */
8405 compute_delayed_physnames (cu);
8406 do_cleanups (delayed_list_cleanup);
8407
8408 /* TUs share symbol tables.
8409 If this is the first TU to use this symtab, complete the construction
8410 of it with end_expandable_symtab. Otherwise, complete the addition of
8411 this TU's symbols to the existing symtab. */
8412 if (sig_type->type_unit_group->compunit_symtab == NULL)
8413 {
8414 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8415 sig_type->type_unit_group->compunit_symtab = cust;
8416
8417 if (cust != NULL)
8418 {
8419 /* Set symtab language to language from DW_AT_language. If the
8420 compilation is from a C file generated by language preprocessors,
8421 do not set the language if it was already deduced by
8422 start_subfile. */
8423 if (!(cu->language == language_c
8424 && COMPUNIT_FILETABS (cust)->language != language_c))
8425 COMPUNIT_FILETABS (cust)->language = cu->language;
8426 }
8427 }
8428 else
8429 {
8430 augment_type_symtab ();
8431 cust = sig_type->type_unit_group->compunit_symtab;
8432 }
8433
8434 if (dwarf2_per_objfile->using_index)
8435 per_cu->v.quick->compunit_symtab = cust;
8436 else
8437 {
8438 struct partial_symtab *pst = per_cu->v.psymtab;
8439 pst->compunit_symtab = cust;
8440 pst->readin = 1;
8441 }
8442
8443 do_cleanups (back_to);
8444 }
8445
8446 /* Process an imported unit DIE. */
8447
8448 static void
8449 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8450 {
8451 struct attribute *attr;
8452
8453 /* For now we don't handle imported units in type units. */
8454 if (cu->per_cu->is_debug_types)
8455 {
8456 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8457 " supported in type units [in module %s]"),
8458 objfile_name (cu->objfile));
8459 }
8460
8461 attr = dwarf2_attr (die, DW_AT_import, cu);
8462 if (attr != NULL)
8463 {
8464 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
8465 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8466 dwarf2_per_cu_data *per_cu
8467 = dwarf2_find_containing_comp_unit (sect_off, is_dwz, cu->objfile);
8468
8469 /* If necessary, add it to the queue and load its DIEs. */
8470 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8471 load_full_comp_unit (per_cu, cu->language);
8472
8473 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8474 per_cu);
8475 }
8476 }
8477
8478 /* RAII object that represents a process_die scope: i.e.,
8479 starts/finishes processing a DIE. */
8480 class process_die_scope
8481 {
8482 public:
8483 process_die_scope (die_info *die, dwarf2_cu *cu)
8484 : m_die (die), m_cu (cu)
8485 {
8486 /* We should only be processing DIEs not already in process. */
8487 gdb_assert (!m_die->in_process);
8488 m_die->in_process = true;
8489 }
8490
8491 ~process_die_scope ()
8492 {
8493 m_die->in_process = false;
8494
8495 /* If we're done processing the DIE for the CU that owns the line
8496 header, we don't need the line header anymore. */
8497 if (m_cu->line_header_die_owner == m_die)
8498 {
8499 delete m_cu->line_header;
8500 m_cu->line_header = NULL;
8501 m_cu->line_header_die_owner = NULL;
8502 }
8503 }
8504
8505 private:
8506 die_info *m_die;
8507 dwarf2_cu *m_cu;
8508 };
8509
8510 /* Process a die and its children. */
8511
8512 static void
8513 process_die (struct die_info *die, struct dwarf2_cu *cu)
8514 {
8515 process_die_scope scope (die, cu);
8516
8517 switch (die->tag)
8518 {
8519 case DW_TAG_padding:
8520 break;
8521 case DW_TAG_compile_unit:
8522 case DW_TAG_partial_unit:
8523 read_file_scope (die, cu);
8524 break;
8525 case DW_TAG_type_unit:
8526 read_type_unit_scope (die, cu);
8527 break;
8528 case DW_TAG_subprogram:
8529 case DW_TAG_inlined_subroutine:
8530 read_func_scope (die, cu);
8531 break;
8532 case DW_TAG_lexical_block:
8533 case DW_TAG_try_block:
8534 case DW_TAG_catch_block:
8535 read_lexical_block_scope (die, cu);
8536 break;
8537 case DW_TAG_call_site:
8538 case DW_TAG_GNU_call_site:
8539 read_call_site_scope (die, cu);
8540 break;
8541 case DW_TAG_class_type:
8542 case DW_TAG_interface_type:
8543 case DW_TAG_structure_type:
8544 case DW_TAG_union_type:
8545 process_structure_scope (die, cu);
8546 break;
8547 case DW_TAG_enumeration_type:
8548 process_enumeration_scope (die, cu);
8549 break;
8550
8551 /* These dies have a type, but processing them does not create
8552 a symbol or recurse to process the children. Therefore we can
8553 read them on-demand through read_type_die. */
8554 case DW_TAG_subroutine_type:
8555 case DW_TAG_set_type:
8556 case DW_TAG_array_type:
8557 case DW_TAG_pointer_type:
8558 case DW_TAG_ptr_to_member_type:
8559 case DW_TAG_reference_type:
8560 case DW_TAG_rvalue_reference_type:
8561 case DW_TAG_string_type:
8562 break;
8563
8564 case DW_TAG_base_type:
8565 case DW_TAG_subrange_type:
8566 case DW_TAG_typedef:
8567 /* Add a typedef symbol for the type definition, if it has a
8568 DW_AT_name. */
8569 new_symbol (die, read_type_die (die, cu), cu);
8570 break;
8571 case DW_TAG_common_block:
8572 read_common_block (die, cu);
8573 break;
8574 case DW_TAG_common_inclusion:
8575 break;
8576 case DW_TAG_namespace:
8577 cu->processing_has_namespace_info = 1;
8578 read_namespace (die, cu);
8579 break;
8580 case DW_TAG_module:
8581 cu->processing_has_namespace_info = 1;
8582 read_module (die, cu);
8583 break;
8584 case DW_TAG_imported_declaration:
8585 cu->processing_has_namespace_info = 1;
8586 if (read_namespace_alias (die, cu))
8587 break;
8588 /* The declaration is not a global namespace alias: fall through. */
8589 case DW_TAG_imported_module:
8590 cu->processing_has_namespace_info = 1;
8591 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8592 || cu->language != language_fortran))
8593 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8594 dwarf_tag_name (die->tag));
8595 read_import_statement (die, cu);
8596 break;
8597
8598 case DW_TAG_imported_unit:
8599 process_imported_unit_die (die, cu);
8600 break;
8601
8602 default:
8603 new_symbol (die, NULL, cu);
8604 break;
8605 }
8606 }
8607 \f
8608 /* DWARF name computation. */
8609
8610 /* A helper function for dwarf2_compute_name which determines whether DIE
8611 needs to have the name of the scope prepended to the name listed in the
8612 die. */
8613
8614 static int
8615 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8616 {
8617 struct attribute *attr;
8618
8619 switch (die->tag)
8620 {
8621 case DW_TAG_namespace:
8622 case DW_TAG_typedef:
8623 case DW_TAG_class_type:
8624 case DW_TAG_interface_type:
8625 case DW_TAG_structure_type:
8626 case DW_TAG_union_type:
8627 case DW_TAG_enumeration_type:
8628 case DW_TAG_enumerator:
8629 case DW_TAG_subprogram:
8630 case DW_TAG_inlined_subroutine:
8631 case DW_TAG_member:
8632 case DW_TAG_imported_declaration:
8633 return 1;
8634
8635 case DW_TAG_variable:
8636 case DW_TAG_constant:
8637 /* We only need to prefix "globally" visible variables. These include
8638 any variable marked with DW_AT_external or any variable that
8639 lives in a namespace. [Variables in anonymous namespaces
8640 require prefixing, but they are not DW_AT_external.] */
8641
8642 if (dwarf2_attr (die, DW_AT_specification, cu))
8643 {
8644 struct dwarf2_cu *spec_cu = cu;
8645
8646 return die_needs_namespace (die_specification (die, &spec_cu),
8647 spec_cu);
8648 }
8649
8650 attr = dwarf2_attr (die, DW_AT_external, cu);
8651 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8652 && die->parent->tag != DW_TAG_module)
8653 return 0;
8654 /* A variable in a lexical block of some kind does not need a
8655 namespace, even though in C++ such variables may be external
8656 and have a mangled name. */
8657 if (die->parent->tag == DW_TAG_lexical_block
8658 || die->parent->tag == DW_TAG_try_block
8659 || die->parent->tag == DW_TAG_catch_block
8660 || die->parent->tag == DW_TAG_subprogram)
8661 return 0;
8662 return 1;
8663
8664 default:
8665 return 0;
8666 }
8667 }
8668
8669 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8670 compute the physname for the object, which include a method's:
8671 - formal parameters (C++),
8672 - receiver type (Go),
8673
8674 The term "physname" is a bit confusing.
8675 For C++, for example, it is the demangled name.
8676 For Go, for example, it's the mangled name.
8677
8678 For Ada, return the DIE's linkage name rather than the fully qualified
8679 name. PHYSNAME is ignored..
8680
8681 The result is allocated on the objfile_obstack and canonicalized. */
8682
8683 static const char *
8684 dwarf2_compute_name (const char *name,
8685 struct die_info *die, struct dwarf2_cu *cu,
8686 int physname)
8687 {
8688 struct objfile *objfile = cu->objfile;
8689
8690 if (name == NULL)
8691 name = dwarf2_name (die, cu);
8692
8693 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8694 but otherwise compute it by typename_concat inside GDB.
8695 FIXME: Actually this is not really true, or at least not always true.
8696 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8697 Fortran names because there is no mangling standard. So new_symbol_full
8698 will set the demangled name to the result of dwarf2_full_name, and it is
8699 the demangled name that GDB uses if it exists. */
8700 if (cu->language == language_ada
8701 || (cu->language == language_fortran && physname))
8702 {
8703 /* For Ada unit, we prefer the linkage name over the name, as
8704 the former contains the exported name, which the user expects
8705 to be able to reference. Ideally, we want the user to be able
8706 to reference this entity using either natural or linkage name,
8707 but we haven't started looking at this enhancement yet. */
8708 const char *linkage_name;
8709
8710 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8711 if (linkage_name == NULL)
8712 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8713 if (linkage_name != NULL)
8714 return linkage_name;
8715 }
8716
8717 /* These are the only languages we know how to qualify names in. */
8718 if (name != NULL
8719 && (cu->language == language_cplus
8720 || cu->language == language_fortran || cu->language == language_d
8721 || cu->language == language_rust))
8722 {
8723 if (die_needs_namespace (die, cu))
8724 {
8725 long length;
8726 const char *prefix;
8727 const char *canonical_name = NULL;
8728
8729 string_file buf;
8730
8731 prefix = determine_prefix (die, cu);
8732 if (*prefix != '\0')
8733 {
8734 char *prefixed_name = typename_concat (NULL, prefix, name,
8735 physname, cu);
8736
8737 buf.puts (prefixed_name);
8738 xfree (prefixed_name);
8739 }
8740 else
8741 buf.puts (name);
8742
8743 /* Template parameters may be specified in the DIE's DW_AT_name, or
8744 as children with DW_TAG_template_type_param or
8745 DW_TAG_value_type_param. If the latter, add them to the name
8746 here. If the name already has template parameters, then
8747 skip this step; some versions of GCC emit both, and
8748 it is more efficient to use the pre-computed name.
8749
8750 Something to keep in mind about this process: it is very
8751 unlikely, or in some cases downright impossible, to produce
8752 something that will match the mangled name of a function.
8753 If the definition of the function has the same debug info,
8754 we should be able to match up with it anyway. But fallbacks
8755 using the minimal symbol, for instance to find a method
8756 implemented in a stripped copy of libstdc++, will not work.
8757 If we do not have debug info for the definition, we will have to
8758 match them up some other way.
8759
8760 When we do name matching there is a related problem with function
8761 templates; two instantiated function templates are allowed to
8762 differ only by their return types, which we do not add here. */
8763
8764 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8765 {
8766 struct attribute *attr;
8767 struct die_info *child;
8768 int first = 1;
8769
8770 die->building_fullname = 1;
8771
8772 for (child = die->child; child != NULL; child = child->sibling)
8773 {
8774 struct type *type;
8775 LONGEST value;
8776 const gdb_byte *bytes;
8777 struct dwarf2_locexpr_baton *baton;
8778 struct value *v;
8779
8780 if (child->tag != DW_TAG_template_type_param
8781 && child->tag != DW_TAG_template_value_param)
8782 continue;
8783
8784 if (first)
8785 {
8786 buf.puts ("<");
8787 first = 0;
8788 }
8789 else
8790 buf.puts (", ");
8791
8792 attr = dwarf2_attr (child, DW_AT_type, cu);
8793 if (attr == NULL)
8794 {
8795 complaint (&symfile_complaints,
8796 _("template parameter missing DW_AT_type"));
8797 buf.puts ("UNKNOWN_TYPE");
8798 continue;
8799 }
8800 type = die_type (child, cu);
8801
8802 if (child->tag == DW_TAG_template_type_param)
8803 {
8804 c_print_type (type, "", &buf, -1, 0, &type_print_raw_options);
8805 continue;
8806 }
8807
8808 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8809 if (attr == NULL)
8810 {
8811 complaint (&symfile_complaints,
8812 _("template parameter missing "
8813 "DW_AT_const_value"));
8814 buf.puts ("UNKNOWN_VALUE");
8815 continue;
8816 }
8817
8818 dwarf2_const_value_attr (attr, type, name,
8819 &cu->comp_unit_obstack, cu,
8820 &value, &bytes, &baton);
8821
8822 if (TYPE_NOSIGN (type))
8823 /* GDB prints characters as NUMBER 'CHAR'. If that's
8824 changed, this can use value_print instead. */
8825 c_printchar (value, type, &buf);
8826 else
8827 {
8828 struct value_print_options opts;
8829
8830 if (baton != NULL)
8831 v = dwarf2_evaluate_loc_desc (type, NULL,
8832 baton->data,
8833 baton->size,
8834 baton->per_cu);
8835 else if (bytes != NULL)
8836 {
8837 v = allocate_value (type);
8838 memcpy (value_contents_writeable (v), bytes,
8839 TYPE_LENGTH (type));
8840 }
8841 else
8842 v = value_from_longest (type, value);
8843
8844 /* Specify decimal so that we do not depend on
8845 the radix. */
8846 get_formatted_print_options (&opts, 'd');
8847 opts.raw = 1;
8848 value_print (v, &buf, &opts);
8849 release_value (v);
8850 value_free (v);
8851 }
8852 }
8853
8854 die->building_fullname = 0;
8855
8856 if (!first)
8857 {
8858 /* Close the argument list, with a space if necessary
8859 (nested templates). */
8860 if (!buf.empty () && buf.string ().back () == '>')
8861 buf.puts (" >");
8862 else
8863 buf.puts (">");
8864 }
8865 }
8866
8867 /* For C++ methods, append formal parameter type
8868 information, if PHYSNAME. */
8869
8870 if (physname && die->tag == DW_TAG_subprogram
8871 && cu->language == language_cplus)
8872 {
8873 struct type *type = read_type_die (die, cu);
8874
8875 c_type_print_args (type, &buf, 1, cu->language,
8876 &type_print_raw_options);
8877
8878 if (cu->language == language_cplus)
8879 {
8880 /* Assume that an artificial first parameter is
8881 "this", but do not crash if it is not. RealView
8882 marks unnamed (and thus unused) parameters as
8883 artificial; there is no way to differentiate
8884 the two cases. */
8885 if (TYPE_NFIELDS (type) > 0
8886 && TYPE_FIELD_ARTIFICIAL (type, 0)
8887 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8888 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8889 0))))
8890 buf.puts (" const");
8891 }
8892 }
8893
8894 const std::string &intermediate_name = buf.string ();
8895
8896 if (cu->language == language_cplus)
8897 canonical_name
8898 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
8899 &objfile->per_bfd->storage_obstack);
8900
8901 /* If we only computed INTERMEDIATE_NAME, or if
8902 INTERMEDIATE_NAME is already canonical, then we need to
8903 copy it to the appropriate obstack. */
8904 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
8905 name = ((const char *)
8906 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8907 intermediate_name.c_str (),
8908 intermediate_name.length ()));
8909 else
8910 name = canonical_name;
8911 }
8912 }
8913
8914 return name;
8915 }
8916
8917 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8918 If scope qualifiers are appropriate they will be added. The result
8919 will be allocated on the storage_obstack, or NULL if the DIE does
8920 not have a name. NAME may either be from a previous call to
8921 dwarf2_name or NULL.
8922
8923 The output string will be canonicalized (if C++). */
8924
8925 static const char *
8926 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8927 {
8928 return dwarf2_compute_name (name, die, cu, 0);
8929 }
8930
8931 /* Construct a physname for the given DIE in CU. NAME may either be
8932 from a previous call to dwarf2_name or NULL. The result will be
8933 allocated on the objfile_objstack or NULL if the DIE does not have a
8934 name.
8935
8936 The output string will be canonicalized (if C++). */
8937
8938 static const char *
8939 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8940 {
8941 struct objfile *objfile = cu->objfile;
8942 const char *retval, *mangled = NULL, *canon = NULL;
8943 struct cleanup *back_to;
8944 int need_copy = 1;
8945
8946 /* In this case dwarf2_compute_name is just a shortcut not building anything
8947 on its own. */
8948 if (!die_needs_namespace (die, cu))
8949 return dwarf2_compute_name (name, die, cu, 1);
8950
8951 back_to = make_cleanup (null_cleanup, NULL);
8952
8953 mangled = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8954 if (mangled == NULL)
8955 mangled = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8956
8957 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
8958 See https://github.com/rust-lang/rust/issues/32925. */
8959 if (cu->language == language_rust && mangled != NULL
8960 && strchr (mangled, '{') != NULL)
8961 mangled = NULL;
8962
8963 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8964 has computed. */
8965 if (mangled != NULL)
8966 {
8967 char *demangled;
8968
8969 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8970 type. It is easier for GDB users to search for such functions as
8971 `name(params)' than `long name(params)'. In such case the minimal
8972 symbol names do not match the full symbol names but for template
8973 functions there is never a need to look up their definition from their
8974 declaration so the only disadvantage remains the minimal symbol
8975 variant `long name(params)' does not have the proper inferior type.
8976 */
8977
8978 if (cu->language == language_go)
8979 {
8980 /* This is a lie, but we already lie to the caller new_symbol_full.
8981 new_symbol_full assumes we return the mangled name.
8982 This just undoes that lie until things are cleaned up. */
8983 demangled = NULL;
8984 }
8985 else
8986 {
8987 demangled = gdb_demangle (mangled,
8988 (DMGL_PARAMS | DMGL_ANSI | DMGL_RET_DROP));
8989 }
8990 if (demangled)
8991 {
8992 make_cleanup (xfree, demangled);
8993 canon = demangled;
8994 }
8995 else
8996 {
8997 canon = mangled;
8998 need_copy = 0;
8999 }
9000 }
9001
9002 if (canon == NULL || check_physname)
9003 {
9004 const char *physname = dwarf2_compute_name (name, die, cu, 1);
9005
9006 if (canon != NULL && strcmp (physname, canon) != 0)
9007 {
9008 /* It may not mean a bug in GDB. The compiler could also
9009 compute DW_AT_linkage_name incorrectly. But in such case
9010 GDB would need to be bug-to-bug compatible. */
9011
9012 complaint (&symfile_complaints,
9013 _("Computed physname <%s> does not match demangled <%s> "
9014 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
9015 physname, canon, mangled, to_underlying (die->sect_off),
9016 objfile_name (objfile));
9017
9018 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
9019 is available here - over computed PHYSNAME. It is safer
9020 against both buggy GDB and buggy compilers. */
9021
9022 retval = canon;
9023 }
9024 else
9025 {
9026 retval = physname;
9027 need_copy = 0;
9028 }
9029 }
9030 else
9031 retval = canon;
9032
9033 if (need_copy)
9034 retval = ((const char *)
9035 obstack_copy0 (&objfile->per_bfd->storage_obstack,
9036 retval, strlen (retval)));
9037
9038 do_cleanups (back_to);
9039 return retval;
9040 }
9041
9042 /* Inspect DIE in CU for a namespace alias. If one exists, record
9043 a new symbol for it.
9044
9045 Returns 1 if a namespace alias was recorded, 0 otherwise. */
9046
9047 static int
9048 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
9049 {
9050 struct attribute *attr;
9051
9052 /* If the die does not have a name, this is not a namespace
9053 alias. */
9054 attr = dwarf2_attr (die, DW_AT_name, cu);
9055 if (attr != NULL)
9056 {
9057 int num;
9058 struct die_info *d = die;
9059 struct dwarf2_cu *imported_cu = cu;
9060
9061 /* If the compiler has nested DW_AT_imported_declaration DIEs,
9062 keep inspecting DIEs until we hit the underlying import. */
9063 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
9064 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
9065 {
9066 attr = dwarf2_attr (d, DW_AT_import, cu);
9067 if (attr == NULL)
9068 break;
9069
9070 d = follow_die_ref (d, attr, &imported_cu);
9071 if (d->tag != DW_TAG_imported_declaration)
9072 break;
9073 }
9074
9075 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
9076 {
9077 complaint (&symfile_complaints,
9078 _("DIE at 0x%x has too many recursively imported "
9079 "declarations"), to_underlying (d->sect_off));
9080 return 0;
9081 }
9082
9083 if (attr != NULL)
9084 {
9085 struct type *type;
9086 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
9087
9088 type = get_die_type_at_offset (sect_off, cu->per_cu);
9089 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
9090 {
9091 /* This declaration is a global namespace alias. Add
9092 a symbol for it whose type is the aliased namespace. */
9093 new_symbol (die, type, cu);
9094 return 1;
9095 }
9096 }
9097 }
9098
9099 return 0;
9100 }
9101
9102 /* Return the using directives repository (global or local?) to use in the
9103 current context for LANGUAGE.
9104
9105 For Ada, imported declarations can materialize renamings, which *may* be
9106 global. However it is impossible (for now?) in DWARF to distinguish
9107 "external" imported declarations and "static" ones. As all imported
9108 declarations seem to be static in all other languages, make them all CU-wide
9109 global only in Ada. */
9110
9111 static struct using_direct **
9112 using_directives (enum language language)
9113 {
9114 if (language == language_ada && context_stack_depth == 0)
9115 return &global_using_directives;
9116 else
9117 return &local_using_directives;
9118 }
9119
9120 /* Read the import statement specified by the given die and record it. */
9121
9122 static void
9123 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
9124 {
9125 struct objfile *objfile = cu->objfile;
9126 struct attribute *import_attr;
9127 struct die_info *imported_die, *child_die;
9128 struct dwarf2_cu *imported_cu;
9129 const char *imported_name;
9130 const char *imported_name_prefix;
9131 const char *canonical_name;
9132 const char *import_alias;
9133 const char *imported_declaration = NULL;
9134 const char *import_prefix;
9135 VEC (const_char_ptr) *excludes = NULL;
9136 struct cleanup *cleanups;
9137
9138 import_attr = dwarf2_attr (die, DW_AT_import, cu);
9139 if (import_attr == NULL)
9140 {
9141 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9142 dwarf_tag_name (die->tag));
9143 return;
9144 }
9145
9146 imported_cu = cu;
9147 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
9148 imported_name = dwarf2_name (imported_die, imported_cu);
9149 if (imported_name == NULL)
9150 {
9151 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
9152
9153 The import in the following code:
9154 namespace A
9155 {
9156 typedef int B;
9157 }
9158
9159 int main ()
9160 {
9161 using A::B;
9162 B b;
9163 return b;
9164 }
9165
9166 ...
9167 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
9168 <52> DW_AT_decl_file : 1
9169 <53> DW_AT_decl_line : 6
9170 <54> DW_AT_import : <0x75>
9171 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
9172 <59> DW_AT_name : B
9173 <5b> DW_AT_decl_file : 1
9174 <5c> DW_AT_decl_line : 2
9175 <5d> DW_AT_type : <0x6e>
9176 ...
9177 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
9178 <76> DW_AT_byte_size : 4
9179 <77> DW_AT_encoding : 5 (signed)
9180
9181 imports the wrong die ( 0x75 instead of 0x58 ).
9182 This case will be ignored until the gcc bug is fixed. */
9183 return;
9184 }
9185
9186 /* Figure out the local name after import. */
9187 import_alias = dwarf2_name (die, cu);
9188
9189 /* Figure out where the statement is being imported to. */
9190 import_prefix = determine_prefix (die, cu);
9191
9192 /* Figure out what the scope of the imported die is and prepend it
9193 to the name of the imported die. */
9194 imported_name_prefix = determine_prefix (imported_die, imported_cu);
9195
9196 if (imported_die->tag != DW_TAG_namespace
9197 && imported_die->tag != DW_TAG_module)
9198 {
9199 imported_declaration = imported_name;
9200 canonical_name = imported_name_prefix;
9201 }
9202 else if (strlen (imported_name_prefix) > 0)
9203 canonical_name = obconcat (&objfile->objfile_obstack,
9204 imported_name_prefix,
9205 (cu->language == language_d ? "." : "::"),
9206 imported_name, (char *) NULL);
9207 else
9208 canonical_name = imported_name;
9209
9210 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
9211
9212 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
9213 for (child_die = die->child; child_die && child_die->tag;
9214 child_die = sibling_die (child_die))
9215 {
9216 /* DWARF-4: A Fortran use statement with a “rename list” may be
9217 represented by an imported module entry with an import attribute
9218 referring to the module and owned entries corresponding to those
9219 entities that are renamed as part of being imported. */
9220
9221 if (child_die->tag != DW_TAG_imported_declaration)
9222 {
9223 complaint (&symfile_complaints,
9224 _("child DW_TAG_imported_declaration expected "
9225 "- DIE at 0x%x [in module %s]"),
9226 to_underlying (child_die->sect_off), objfile_name (objfile));
9227 continue;
9228 }
9229
9230 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
9231 if (import_attr == NULL)
9232 {
9233 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9234 dwarf_tag_name (child_die->tag));
9235 continue;
9236 }
9237
9238 imported_cu = cu;
9239 imported_die = follow_die_ref_or_sig (child_die, import_attr,
9240 &imported_cu);
9241 imported_name = dwarf2_name (imported_die, imported_cu);
9242 if (imported_name == NULL)
9243 {
9244 complaint (&symfile_complaints,
9245 _("child DW_TAG_imported_declaration has unknown "
9246 "imported name - DIE at 0x%x [in module %s]"),
9247 to_underlying (child_die->sect_off), objfile_name (objfile));
9248 continue;
9249 }
9250
9251 VEC_safe_push (const_char_ptr, excludes, imported_name);
9252
9253 process_die (child_die, cu);
9254 }
9255
9256 add_using_directive (using_directives (cu->language),
9257 import_prefix,
9258 canonical_name,
9259 import_alias,
9260 imported_declaration,
9261 excludes,
9262 0,
9263 &objfile->objfile_obstack);
9264
9265 do_cleanups (cleanups);
9266 }
9267
9268 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9269 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9270 this, it was first present in GCC release 4.3.0. */
9271
9272 static int
9273 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9274 {
9275 if (!cu->checked_producer)
9276 check_producer (cu);
9277
9278 return cu->producer_is_gcc_lt_4_3;
9279 }
9280
9281 static file_and_directory
9282 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
9283 {
9284 file_and_directory res;
9285
9286 /* Find the filename. Do not use dwarf2_name here, since the filename
9287 is not a source language identifier. */
9288 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
9289 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9290
9291 if (res.comp_dir == NULL
9292 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
9293 && IS_ABSOLUTE_PATH (res.name))
9294 {
9295 res.comp_dir_storage = ldirname (res.name);
9296 if (!res.comp_dir_storage.empty ())
9297 res.comp_dir = res.comp_dir_storage.c_str ();
9298 }
9299 if (res.comp_dir != NULL)
9300 {
9301 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9302 directory, get rid of it. */
9303 const char *cp = strchr (res.comp_dir, ':');
9304
9305 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
9306 res.comp_dir = cp + 1;
9307 }
9308
9309 if (res.name == NULL)
9310 res.name = "<unknown>";
9311
9312 return res;
9313 }
9314
9315 /* Handle DW_AT_stmt_list for a compilation unit.
9316 DIE is the DW_TAG_compile_unit die for CU.
9317 COMP_DIR is the compilation directory. LOWPC is passed to
9318 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
9319
9320 static void
9321 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
9322 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
9323 {
9324 struct objfile *objfile = dwarf2_per_objfile->objfile;
9325 struct attribute *attr;
9326 struct line_header line_header_local;
9327 hashval_t line_header_local_hash;
9328 unsigned u;
9329 void **slot;
9330 int decode_mapping;
9331
9332 gdb_assert (! cu->per_cu->is_debug_types);
9333
9334 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9335 if (attr == NULL)
9336 return;
9337
9338 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
9339
9340 /* The line header hash table is only created if needed (it exists to
9341 prevent redundant reading of the line table for partial_units).
9342 If we're given a partial_unit, we'll need it. If we're given a
9343 compile_unit, then use the line header hash table if it's already
9344 created, but don't create one just yet. */
9345
9346 if (dwarf2_per_objfile->line_header_hash == NULL
9347 && die->tag == DW_TAG_partial_unit)
9348 {
9349 dwarf2_per_objfile->line_header_hash
9350 = htab_create_alloc_ex (127, line_header_hash_voidp,
9351 line_header_eq_voidp,
9352 free_line_header_voidp,
9353 &objfile->objfile_obstack,
9354 hashtab_obstack_allocate,
9355 dummy_obstack_deallocate);
9356 }
9357
9358 line_header_local.sect_off = line_offset;
9359 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9360 line_header_local_hash = line_header_hash (&line_header_local);
9361 if (dwarf2_per_objfile->line_header_hash != NULL)
9362 {
9363 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9364 &line_header_local,
9365 line_header_local_hash, NO_INSERT);
9366
9367 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9368 is not present in *SLOT (since if there is something in *SLOT then
9369 it will be for a partial_unit). */
9370 if (die->tag == DW_TAG_partial_unit && slot != NULL)
9371 {
9372 gdb_assert (*slot != NULL);
9373 cu->line_header = (struct line_header *) *slot;
9374 return;
9375 }
9376 }
9377
9378 /* dwarf_decode_line_header does not yet provide sufficient information.
9379 We always have to call also dwarf_decode_lines for it. */
9380 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
9381 if (lh == NULL)
9382 return;
9383
9384 cu->line_header = lh.release ();
9385 cu->line_header_die_owner = die;
9386
9387 if (dwarf2_per_objfile->line_header_hash == NULL)
9388 slot = NULL;
9389 else
9390 {
9391 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9392 &line_header_local,
9393 line_header_local_hash, INSERT);
9394 gdb_assert (slot != NULL);
9395 }
9396 if (slot != NULL && *slot == NULL)
9397 {
9398 /* This newly decoded line number information unit will be owned
9399 by line_header_hash hash table. */
9400 *slot = cu->line_header;
9401 cu->line_header_die_owner = NULL;
9402 }
9403 else
9404 {
9405 /* We cannot free any current entry in (*slot) as that struct line_header
9406 may be already used by multiple CUs. Create only temporary decoded
9407 line_header for this CU - it may happen at most once for each line
9408 number information unit. And if we're not using line_header_hash
9409 then this is what we want as well. */
9410 gdb_assert (die->tag != DW_TAG_partial_unit);
9411 }
9412 decode_mapping = (die->tag != DW_TAG_partial_unit);
9413 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9414 decode_mapping);
9415
9416 }
9417
9418 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9419
9420 static void
9421 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9422 {
9423 struct objfile *objfile = dwarf2_per_objfile->objfile;
9424 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9425 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9426 CORE_ADDR highpc = ((CORE_ADDR) 0);
9427 struct attribute *attr;
9428 struct die_info *child_die;
9429 CORE_ADDR baseaddr;
9430
9431 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9432
9433 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9434
9435 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9436 from finish_block. */
9437 if (lowpc == ((CORE_ADDR) -1))
9438 lowpc = highpc;
9439 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
9440
9441 file_and_directory fnd = find_file_and_directory (die, cu);
9442
9443 prepare_one_comp_unit (cu, die, cu->language);
9444
9445 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9446 standardised yet. As a workaround for the language detection we fall
9447 back to the DW_AT_producer string. */
9448 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9449 cu->language = language_opencl;
9450
9451 /* Similar hack for Go. */
9452 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9453 set_cu_language (DW_LANG_Go, cu);
9454
9455 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
9456
9457 /* Decode line number information if present. We do this before
9458 processing child DIEs, so that the line header table is available
9459 for DW_AT_decl_file. */
9460 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
9461
9462 /* Process all dies in compilation unit. */
9463 if (die->child != NULL)
9464 {
9465 child_die = die->child;
9466 while (child_die && child_die->tag)
9467 {
9468 process_die (child_die, cu);
9469 child_die = sibling_die (child_die);
9470 }
9471 }
9472
9473 /* Decode macro information, if present. Dwarf 2 macro information
9474 refers to information in the line number info statement program
9475 header, so we can only read it if we've read the header
9476 successfully. */
9477 attr = dwarf2_attr (die, DW_AT_macros, cu);
9478 if (attr == NULL)
9479 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9480 if (attr && cu->line_header)
9481 {
9482 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9483 complaint (&symfile_complaints,
9484 _("CU refers to both DW_AT_macros and DW_AT_macro_info"));
9485
9486 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9487 }
9488 else
9489 {
9490 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9491 if (attr && cu->line_header)
9492 {
9493 unsigned int macro_offset = DW_UNSND (attr);
9494
9495 dwarf_decode_macros (cu, macro_offset, 0);
9496 }
9497 }
9498 }
9499
9500 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9501 Create the set of symtabs used by this TU, or if this TU is sharing
9502 symtabs with another TU and the symtabs have already been created
9503 then restore those symtabs in the line header.
9504 We don't need the pc/line-number mapping for type units. */
9505
9506 static void
9507 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9508 {
9509 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9510 struct type_unit_group *tu_group;
9511 int first_time;
9512 struct attribute *attr;
9513 unsigned int i;
9514 struct signatured_type *sig_type;
9515
9516 gdb_assert (per_cu->is_debug_types);
9517 sig_type = (struct signatured_type *) per_cu;
9518
9519 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9520
9521 /* If we're using .gdb_index (includes -readnow) then
9522 per_cu->type_unit_group may not have been set up yet. */
9523 if (sig_type->type_unit_group == NULL)
9524 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9525 tu_group = sig_type->type_unit_group;
9526
9527 /* If we've already processed this stmt_list there's no real need to
9528 do it again, we could fake it and just recreate the part we need
9529 (file name,index -> symtab mapping). If data shows this optimization
9530 is useful we can do it then. */
9531 first_time = tu_group->compunit_symtab == NULL;
9532
9533 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9534 debug info. */
9535 line_header_up lh;
9536 if (attr != NULL)
9537 {
9538 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
9539 lh = dwarf_decode_line_header (line_offset, cu);
9540 }
9541 if (lh == NULL)
9542 {
9543 if (first_time)
9544 dwarf2_start_symtab (cu, "", NULL, 0);
9545 else
9546 {
9547 gdb_assert (tu_group->symtabs == NULL);
9548 restart_symtab (tu_group->compunit_symtab, "", 0);
9549 }
9550 return;
9551 }
9552
9553 cu->line_header = lh.release ();
9554 cu->line_header_die_owner = die;
9555
9556 if (first_time)
9557 {
9558 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9559
9560 /* Note: We don't assign tu_group->compunit_symtab yet because we're
9561 still initializing it, and our caller (a few levels up)
9562 process_full_type_unit still needs to know if this is the first
9563 time. */
9564
9565 tu_group->num_symtabs = cu->line_header->file_names.size ();
9566 tu_group->symtabs = XNEWVEC (struct symtab *,
9567 cu->line_header->file_names.size ());
9568
9569 for (i = 0; i < cu->line_header->file_names.size (); ++i)
9570 {
9571 file_entry &fe = cu->line_header->file_names[i];
9572
9573 dwarf2_start_subfile (fe.name, fe.include_dir (cu->line_header));
9574
9575 if (current_subfile->symtab == NULL)
9576 {
9577 /* NOTE: start_subfile will recognize when it's been
9578 passed a file it has already seen. So we can't
9579 assume there's a simple mapping from
9580 cu->line_header->file_names to subfiles, plus
9581 cu->line_header->file_names may contain dups. */
9582 current_subfile->symtab
9583 = allocate_symtab (cust, current_subfile->name);
9584 }
9585
9586 fe.symtab = current_subfile->symtab;
9587 tu_group->symtabs[i] = fe.symtab;
9588 }
9589 }
9590 else
9591 {
9592 restart_symtab (tu_group->compunit_symtab, "", 0);
9593
9594 for (i = 0; i < cu->line_header->file_names.size (); ++i)
9595 {
9596 file_entry &fe = cu->line_header->file_names[i];
9597
9598 fe.symtab = tu_group->symtabs[i];
9599 }
9600 }
9601
9602 /* The main symtab is allocated last. Type units don't have DW_AT_name
9603 so they don't have a "real" (so to speak) symtab anyway.
9604 There is later code that will assign the main symtab to all symbols
9605 that don't have one. We need to handle the case of a symbol with a
9606 missing symtab (DW_AT_decl_file) anyway. */
9607 }
9608
9609 /* Process DW_TAG_type_unit.
9610 For TUs we want to skip the first top level sibling if it's not the
9611 actual type being defined by this TU. In this case the first top
9612 level sibling is there to provide context only. */
9613
9614 static void
9615 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9616 {
9617 struct die_info *child_die;
9618
9619 prepare_one_comp_unit (cu, die, language_minimal);
9620
9621 /* Initialize (or reinitialize) the machinery for building symtabs.
9622 We do this before processing child DIEs, so that the line header table
9623 is available for DW_AT_decl_file. */
9624 setup_type_unit_groups (die, cu);
9625
9626 if (die->child != NULL)
9627 {
9628 child_die = die->child;
9629 while (child_die && child_die->tag)
9630 {
9631 process_die (child_die, cu);
9632 child_die = sibling_die (child_die);
9633 }
9634 }
9635 }
9636 \f
9637 /* DWO/DWP files.
9638
9639 http://gcc.gnu.org/wiki/DebugFission
9640 http://gcc.gnu.org/wiki/DebugFissionDWP
9641
9642 To simplify handling of both DWO files ("object" files with the DWARF info)
9643 and DWP files (a file with the DWOs packaged up into one file), we treat
9644 DWP files as having a collection of virtual DWO files. */
9645
9646 static hashval_t
9647 hash_dwo_file (const void *item)
9648 {
9649 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
9650 hashval_t hash;
9651
9652 hash = htab_hash_string (dwo_file->dwo_name);
9653 if (dwo_file->comp_dir != NULL)
9654 hash += htab_hash_string (dwo_file->comp_dir);
9655 return hash;
9656 }
9657
9658 static int
9659 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9660 {
9661 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
9662 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
9663
9664 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9665 return 0;
9666 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9667 return lhs->comp_dir == rhs->comp_dir;
9668 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9669 }
9670
9671 /* Allocate a hash table for DWO files. */
9672
9673 static htab_t
9674 allocate_dwo_file_hash_table (void)
9675 {
9676 struct objfile *objfile = dwarf2_per_objfile->objfile;
9677
9678 return htab_create_alloc_ex (41,
9679 hash_dwo_file,
9680 eq_dwo_file,
9681 NULL,
9682 &objfile->objfile_obstack,
9683 hashtab_obstack_allocate,
9684 dummy_obstack_deallocate);
9685 }
9686
9687 /* Lookup DWO file DWO_NAME. */
9688
9689 static void **
9690 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9691 {
9692 struct dwo_file find_entry;
9693 void **slot;
9694
9695 if (dwarf2_per_objfile->dwo_files == NULL)
9696 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9697
9698 memset (&find_entry, 0, sizeof (find_entry));
9699 find_entry.dwo_name = dwo_name;
9700 find_entry.comp_dir = comp_dir;
9701 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9702
9703 return slot;
9704 }
9705
9706 static hashval_t
9707 hash_dwo_unit (const void *item)
9708 {
9709 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
9710
9711 /* This drops the top 32 bits of the id, but is ok for a hash. */
9712 return dwo_unit->signature;
9713 }
9714
9715 static int
9716 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9717 {
9718 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
9719 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
9720
9721 /* The signature is assumed to be unique within the DWO file.
9722 So while object file CU dwo_id's always have the value zero,
9723 that's OK, assuming each object file DWO file has only one CU,
9724 and that's the rule for now. */
9725 return lhs->signature == rhs->signature;
9726 }
9727
9728 /* Allocate a hash table for DWO CUs,TUs.
9729 There is one of these tables for each of CUs,TUs for each DWO file. */
9730
9731 static htab_t
9732 allocate_dwo_unit_table (struct objfile *objfile)
9733 {
9734 /* Start out with a pretty small number.
9735 Generally DWO files contain only one CU and maybe some TUs. */
9736 return htab_create_alloc_ex (3,
9737 hash_dwo_unit,
9738 eq_dwo_unit,
9739 NULL,
9740 &objfile->objfile_obstack,
9741 hashtab_obstack_allocate,
9742 dummy_obstack_deallocate);
9743 }
9744
9745 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9746
9747 struct create_dwo_cu_data
9748 {
9749 struct dwo_file *dwo_file;
9750 struct dwo_unit dwo_unit;
9751 };
9752
9753 /* die_reader_func for create_dwo_cu. */
9754
9755 static void
9756 create_dwo_cu_reader (const struct die_reader_specs *reader,
9757 const gdb_byte *info_ptr,
9758 struct die_info *comp_unit_die,
9759 int has_children,
9760 void *datap)
9761 {
9762 struct dwarf2_cu *cu = reader->cu;
9763 sect_offset sect_off = cu->per_cu->sect_off;
9764 struct dwarf2_section_info *section = cu->per_cu->section;
9765 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
9766 struct dwo_file *dwo_file = data->dwo_file;
9767 struct dwo_unit *dwo_unit = &data->dwo_unit;
9768 struct attribute *attr;
9769
9770 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9771 if (attr == NULL)
9772 {
9773 complaint (&symfile_complaints,
9774 _("Dwarf Error: debug entry at offset 0x%x is missing"
9775 " its dwo_id [in module %s]"),
9776 to_underlying (sect_off), dwo_file->dwo_name);
9777 return;
9778 }
9779
9780 dwo_unit->dwo_file = dwo_file;
9781 dwo_unit->signature = DW_UNSND (attr);
9782 dwo_unit->section = section;
9783 dwo_unit->sect_off = sect_off;
9784 dwo_unit->length = cu->per_cu->length;
9785
9786 if (dwarf_read_debug)
9787 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9788 to_underlying (sect_off),
9789 hex_string (dwo_unit->signature));
9790 }
9791
9792 /* Create the dwo_units for the CUs in a DWO_FILE.
9793 Note: This function processes DWO files only, not DWP files. */
9794
9795 static void
9796 create_cus_hash_table (struct dwo_file &dwo_file, dwarf2_section_info &section,
9797 htab_t &cus_htab)
9798 {
9799 struct objfile *objfile = dwarf2_per_objfile->objfile;
9800 const struct dwarf2_section_info *abbrev_section = &dwo_file.sections.abbrev;
9801 const gdb_byte *info_ptr, *end_ptr;
9802
9803 dwarf2_read_section (objfile, &section);
9804 info_ptr = section.buffer;
9805
9806 if (info_ptr == NULL)
9807 return;
9808
9809 if (dwarf_read_debug)
9810 {
9811 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9812 get_section_name (&section),
9813 get_section_file_name (&section));
9814 }
9815
9816 end_ptr = info_ptr + section.size;
9817 while (info_ptr < end_ptr)
9818 {
9819 struct dwarf2_per_cu_data per_cu;
9820 struct create_dwo_cu_data create_dwo_cu_data;
9821 struct dwo_unit *dwo_unit;
9822 void **slot;
9823 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
9824
9825 memset (&create_dwo_cu_data.dwo_unit, 0,
9826 sizeof (create_dwo_cu_data.dwo_unit));
9827 memset (&per_cu, 0, sizeof (per_cu));
9828 per_cu.objfile = objfile;
9829 per_cu.is_debug_types = 0;
9830 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
9831 per_cu.section = &section;
9832 create_dwo_cu_data.dwo_file = &dwo_file;
9833
9834 init_cutu_and_read_dies_no_follow (
9835 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
9836 info_ptr += per_cu.length;
9837
9838 // If the unit could not be parsed, skip it.
9839 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
9840 continue;
9841
9842 if (cus_htab == NULL)
9843 cus_htab = allocate_dwo_unit_table (objfile);
9844
9845 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9846 *dwo_unit = create_dwo_cu_data.dwo_unit;
9847 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
9848 gdb_assert (slot != NULL);
9849 if (*slot != NULL)
9850 {
9851 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
9852 sect_offset dup_sect_off = dup_cu->sect_off;
9853
9854 complaint (&symfile_complaints,
9855 _("debug cu entry at offset 0x%x is duplicate to"
9856 " the entry at offset 0x%x, signature %s"),
9857 to_underlying (sect_off), to_underlying (dup_sect_off),
9858 hex_string (dwo_unit->signature));
9859 }
9860 *slot = (void *)dwo_unit;
9861 }
9862 }
9863
9864 /* DWP file .debug_{cu,tu}_index section format:
9865 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9866
9867 DWP Version 1:
9868
9869 Both index sections have the same format, and serve to map a 64-bit
9870 signature to a set of section numbers. Each section begins with a header,
9871 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9872 indexes, and a pool of 32-bit section numbers. The index sections will be
9873 aligned at 8-byte boundaries in the file.
9874
9875 The index section header consists of:
9876
9877 V, 32 bit version number
9878 -, 32 bits unused
9879 N, 32 bit number of compilation units or type units in the index
9880 M, 32 bit number of slots in the hash table
9881
9882 Numbers are recorded using the byte order of the application binary.
9883
9884 The hash table begins at offset 16 in the section, and consists of an array
9885 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9886 order of the application binary). Unused slots in the hash table are 0.
9887 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9888
9889 The parallel table begins immediately after the hash table
9890 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9891 array of 32-bit indexes (using the byte order of the application binary),
9892 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9893 table contains a 32-bit index into the pool of section numbers. For unused
9894 hash table slots, the corresponding entry in the parallel table will be 0.
9895
9896 The pool of section numbers begins immediately following the hash table
9897 (at offset 16 + 12 * M from the beginning of the section). The pool of
9898 section numbers consists of an array of 32-bit words (using the byte order
9899 of the application binary). Each item in the array is indexed starting
9900 from 0. The hash table entry provides the index of the first section
9901 number in the set. Additional section numbers in the set follow, and the
9902 set is terminated by a 0 entry (section number 0 is not used in ELF).
9903
9904 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9905 section must be the first entry in the set, and the .debug_abbrev.dwo must
9906 be the second entry. Other members of the set may follow in any order.
9907
9908 ---
9909
9910 DWP Version 2:
9911
9912 DWP Version 2 combines all the .debug_info, etc. sections into one,
9913 and the entries in the index tables are now offsets into these sections.
9914 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9915 section.
9916
9917 Index Section Contents:
9918 Header
9919 Hash Table of Signatures dwp_hash_table.hash_table
9920 Parallel Table of Indices dwp_hash_table.unit_table
9921 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9922 Table of Section Sizes dwp_hash_table.v2.sizes
9923
9924 The index section header consists of:
9925
9926 V, 32 bit version number
9927 L, 32 bit number of columns in the table of section offsets
9928 N, 32 bit number of compilation units or type units in the index
9929 M, 32 bit number of slots in the hash table
9930
9931 Numbers are recorded using the byte order of the application binary.
9932
9933 The hash table has the same format as version 1.
9934 The parallel table of indices has the same format as version 1,
9935 except that the entries are origin-1 indices into the table of sections
9936 offsets and the table of section sizes.
9937
9938 The table of offsets begins immediately following the parallel table
9939 (at offset 16 + 12 * M from the beginning of the section). The table is
9940 a two-dimensional array of 32-bit words (using the byte order of the
9941 application binary), with L columns and N+1 rows, in row-major order.
9942 Each row in the array is indexed starting from 0. The first row provides
9943 a key to the remaining rows: each column in this row provides an identifier
9944 for a debug section, and the offsets in the same column of subsequent rows
9945 refer to that section. The section identifiers are:
9946
9947 DW_SECT_INFO 1 .debug_info.dwo
9948 DW_SECT_TYPES 2 .debug_types.dwo
9949 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9950 DW_SECT_LINE 4 .debug_line.dwo
9951 DW_SECT_LOC 5 .debug_loc.dwo
9952 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9953 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9954 DW_SECT_MACRO 8 .debug_macro.dwo
9955
9956 The offsets provided by the CU and TU index sections are the base offsets
9957 for the contributions made by each CU or TU to the corresponding section
9958 in the package file. Each CU and TU header contains an abbrev_offset
9959 field, used to find the abbreviations table for that CU or TU within the
9960 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9961 be interpreted as relative to the base offset given in the index section.
9962 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9963 should be interpreted as relative to the base offset for .debug_line.dwo,
9964 and offsets into other debug sections obtained from DWARF attributes should
9965 also be interpreted as relative to the corresponding base offset.
9966
9967 The table of sizes begins immediately following the table of offsets.
9968 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9969 with L columns and N rows, in row-major order. Each row in the array is
9970 indexed starting from 1 (row 0 is shared by the two tables).
9971
9972 ---
9973
9974 Hash table lookup is handled the same in version 1 and 2:
9975
9976 We assume that N and M will not exceed 2^32 - 1.
9977 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9978
9979 Given a 64-bit compilation unit signature or a type signature S, an entry
9980 in the hash table is located as follows:
9981
9982 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9983 the low-order k bits all set to 1.
9984
9985 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9986
9987 3) If the hash table entry at index H matches the signature, use that
9988 entry. If the hash table entry at index H is unused (all zeroes),
9989 terminate the search: the signature is not present in the table.
9990
9991 4) Let H = (H + H') modulo M. Repeat at Step 3.
9992
9993 Because M > N and H' and M are relatively prime, the search is guaranteed
9994 to stop at an unused slot or find the match. */
9995
9996 /* Create a hash table to map DWO IDs to their CU/TU entry in
9997 .debug_{info,types}.dwo in DWP_FILE.
9998 Returns NULL if there isn't one.
9999 Note: This function processes DWP files only, not DWO files. */
10000
10001 static struct dwp_hash_table *
10002 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
10003 {
10004 struct objfile *objfile = dwarf2_per_objfile->objfile;
10005 bfd *dbfd = dwp_file->dbfd;
10006 const gdb_byte *index_ptr, *index_end;
10007 struct dwarf2_section_info *index;
10008 uint32_t version, nr_columns, nr_units, nr_slots;
10009 struct dwp_hash_table *htab;
10010
10011 if (is_debug_types)
10012 index = &dwp_file->sections.tu_index;
10013 else
10014 index = &dwp_file->sections.cu_index;
10015
10016 if (dwarf2_section_empty_p (index))
10017 return NULL;
10018 dwarf2_read_section (objfile, index);
10019
10020 index_ptr = index->buffer;
10021 index_end = index_ptr + index->size;
10022
10023 version = read_4_bytes (dbfd, index_ptr);
10024 index_ptr += 4;
10025 if (version == 2)
10026 nr_columns = read_4_bytes (dbfd, index_ptr);
10027 else
10028 nr_columns = 0;
10029 index_ptr += 4;
10030 nr_units = read_4_bytes (dbfd, index_ptr);
10031 index_ptr += 4;
10032 nr_slots = read_4_bytes (dbfd, index_ptr);
10033 index_ptr += 4;
10034
10035 if (version != 1 && version != 2)
10036 {
10037 error (_("Dwarf Error: unsupported DWP file version (%s)"
10038 " [in module %s]"),
10039 pulongest (version), dwp_file->name);
10040 }
10041 if (nr_slots != (nr_slots & -nr_slots))
10042 {
10043 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
10044 " is not power of 2 [in module %s]"),
10045 pulongest (nr_slots), dwp_file->name);
10046 }
10047
10048 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
10049 htab->version = version;
10050 htab->nr_columns = nr_columns;
10051 htab->nr_units = nr_units;
10052 htab->nr_slots = nr_slots;
10053 htab->hash_table = index_ptr;
10054 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
10055
10056 /* Exit early if the table is empty. */
10057 if (nr_slots == 0 || nr_units == 0
10058 || (version == 2 && nr_columns == 0))
10059 {
10060 /* All must be zero. */
10061 if (nr_slots != 0 || nr_units != 0
10062 || (version == 2 && nr_columns != 0))
10063 {
10064 complaint (&symfile_complaints,
10065 _("Empty DWP but nr_slots,nr_units,nr_columns not"
10066 " all zero [in modules %s]"),
10067 dwp_file->name);
10068 }
10069 return htab;
10070 }
10071
10072 if (version == 1)
10073 {
10074 htab->section_pool.v1.indices =
10075 htab->unit_table + sizeof (uint32_t) * nr_slots;
10076 /* It's harder to decide whether the section is too small in v1.
10077 V1 is deprecated anyway so we punt. */
10078 }
10079 else
10080 {
10081 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
10082 int *ids = htab->section_pool.v2.section_ids;
10083 /* Reverse map for error checking. */
10084 int ids_seen[DW_SECT_MAX + 1];
10085 int i;
10086
10087 if (nr_columns < 2)
10088 {
10089 error (_("Dwarf Error: bad DWP hash table, too few columns"
10090 " in section table [in module %s]"),
10091 dwp_file->name);
10092 }
10093 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
10094 {
10095 error (_("Dwarf Error: bad DWP hash table, too many columns"
10096 " in section table [in module %s]"),
10097 dwp_file->name);
10098 }
10099 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
10100 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
10101 for (i = 0; i < nr_columns; ++i)
10102 {
10103 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
10104
10105 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
10106 {
10107 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
10108 " in section table [in module %s]"),
10109 id, dwp_file->name);
10110 }
10111 if (ids_seen[id] != -1)
10112 {
10113 error (_("Dwarf Error: bad DWP hash table, duplicate section"
10114 " id %d in section table [in module %s]"),
10115 id, dwp_file->name);
10116 }
10117 ids_seen[id] = i;
10118 ids[i] = id;
10119 }
10120 /* Must have exactly one info or types section. */
10121 if (((ids_seen[DW_SECT_INFO] != -1)
10122 + (ids_seen[DW_SECT_TYPES] != -1))
10123 != 1)
10124 {
10125 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
10126 " DWO info/types section [in module %s]"),
10127 dwp_file->name);
10128 }
10129 /* Must have an abbrev section. */
10130 if (ids_seen[DW_SECT_ABBREV] == -1)
10131 {
10132 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
10133 " section [in module %s]"),
10134 dwp_file->name);
10135 }
10136 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
10137 htab->section_pool.v2.sizes =
10138 htab->section_pool.v2.offsets + (sizeof (uint32_t)
10139 * nr_units * nr_columns);
10140 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
10141 * nr_units * nr_columns))
10142 > index_end)
10143 {
10144 error (_("Dwarf Error: DWP index section is corrupt (too small)"
10145 " [in module %s]"),
10146 dwp_file->name);
10147 }
10148 }
10149
10150 return htab;
10151 }
10152
10153 /* Update SECTIONS with the data from SECTP.
10154
10155 This function is like the other "locate" section routines that are
10156 passed to bfd_map_over_sections, but in this context the sections to
10157 read comes from the DWP V1 hash table, not the full ELF section table.
10158
10159 The result is non-zero for success, or zero if an error was found. */
10160
10161 static int
10162 locate_v1_virtual_dwo_sections (asection *sectp,
10163 struct virtual_v1_dwo_sections *sections)
10164 {
10165 const struct dwop_section_names *names = &dwop_section_names;
10166
10167 if (section_is_p (sectp->name, &names->abbrev_dwo))
10168 {
10169 /* There can be only one. */
10170 if (sections->abbrev.s.section != NULL)
10171 return 0;
10172 sections->abbrev.s.section = sectp;
10173 sections->abbrev.size = bfd_get_section_size (sectp);
10174 }
10175 else if (section_is_p (sectp->name, &names->info_dwo)
10176 || section_is_p (sectp->name, &names->types_dwo))
10177 {
10178 /* There can be only one. */
10179 if (sections->info_or_types.s.section != NULL)
10180 return 0;
10181 sections->info_or_types.s.section = sectp;
10182 sections->info_or_types.size = bfd_get_section_size (sectp);
10183 }
10184 else if (section_is_p (sectp->name, &names->line_dwo))
10185 {
10186 /* There can be only one. */
10187 if (sections->line.s.section != NULL)
10188 return 0;
10189 sections->line.s.section = sectp;
10190 sections->line.size = bfd_get_section_size (sectp);
10191 }
10192 else if (section_is_p (sectp->name, &names->loc_dwo))
10193 {
10194 /* There can be only one. */
10195 if (sections->loc.s.section != NULL)
10196 return 0;
10197 sections->loc.s.section = sectp;
10198 sections->loc.size = bfd_get_section_size (sectp);
10199 }
10200 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10201 {
10202 /* There can be only one. */
10203 if (sections->macinfo.s.section != NULL)
10204 return 0;
10205 sections->macinfo.s.section = sectp;
10206 sections->macinfo.size = bfd_get_section_size (sectp);
10207 }
10208 else if (section_is_p (sectp->name, &names->macro_dwo))
10209 {
10210 /* There can be only one. */
10211 if (sections->macro.s.section != NULL)
10212 return 0;
10213 sections->macro.s.section = sectp;
10214 sections->macro.size = bfd_get_section_size (sectp);
10215 }
10216 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10217 {
10218 /* There can be only one. */
10219 if (sections->str_offsets.s.section != NULL)
10220 return 0;
10221 sections->str_offsets.s.section = sectp;
10222 sections->str_offsets.size = bfd_get_section_size (sectp);
10223 }
10224 else
10225 {
10226 /* No other kind of section is valid. */
10227 return 0;
10228 }
10229
10230 return 1;
10231 }
10232
10233 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10234 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10235 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10236 This is for DWP version 1 files. */
10237
10238 static struct dwo_unit *
10239 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10240 uint32_t unit_index,
10241 const char *comp_dir,
10242 ULONGEST signature, int is_debug_types)
10243 {
10244 struct objfile *objfile = dwarf2_per_objfile->objfile;
10245 const struct dwp_hash_table *dwp_htab =
10246 is_debug_types ? dwp_file->tus : dwp_file->cus;
10247 bfd *dbfd = dwp_file->dbfd;
10248 const char *kind = is_debug_types ? "TU" : "CU";
10249 struct dwo_file *dwo_file;
10250 struct dwo_unit *dwo_unit;
10251 struct virtual_v1_dwo_sections sections;
10252 void **dwo_file_slot;
10253 char *virtual_dwo_name;
10254 struct cleanup *cleanups;
10255 int i;
10256
10257 gdb_assert (dwp_file->version == 1);
10258
10259 if (dwarf_read_debug)
10260 {
10261 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
10262 kind,
10263 pulongest (unit_index), hex_string (signature),
10264 dwp_file->name);
10265 }
10266
10267 /* Fetch the sections of this DWO unit.
10268 Put a limit on the number of sections we look for so that bad data
10269 doesn't cause us to loop forever. */
10270
10271 #define MAX_NR_V1_DWO_SECTIONS \
10272 (1 /* .debug_info or .debug_types */ \
10273 + 1 /* .debug_abbrev */ \
10274 + 1 /* .debug_line */ \
10275 + 1 /* .debug_loc */ \
10276 + 1 /* .debug_str_offsets */ \
10277 + 1 /* .debug_macro or .debug_macinfo */ \
10278 + 1 /* trailing zero */)
10279
10280 memset (&sections, 0, sizeof (sections));
10281 cleanups = make_cleanup (null_cleanup, 0);
10282
10283 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
10284 {
10285 asection *sectp;
10286 uint32_t section_nr =
10287 read_4_bytes (dbfd,
10288 dwp_htab->section_pool.v1.indices
10289 + (unit_index + i) * sizeof (uint32_t));
10290
10291 if (section_nr == 0)
10292 break;
10293 if (section_nr >= dwp_file->num_sections)
10294 {
10295 error (_("Dwarf Error: bad DWP hash table, section number too large"
10296 " [in module %s]"),
10297 dwp_file->name);
10298 }
10299
10300 sectp = dwp_file->elf_sections[section_nr];
10301 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
10302 {
10303 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10304 " [in module %s]"),
10305 dwp_file->name);
10306 }
10307 }
10308
10309 if (i < 2
10310 || dwarf2_section_empty_p (&sections.info_or_types)
10311 || dwarf2_section_empty_p (&sections.abbrev))
10312 {
10313 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10314 " [in module %s]"),
10315 dwp_file->name);
10316 }
10317 if (i == MAX_NR_V1_DWO_SECTIONS)
10318 {
10319 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10320 " [in module %s]"),
10321 dwp_file->name);
10322 }
10323
10324 /* It's easier for the rest of the code if we fake a struct dwo_file and
10325 have dwo_unit "live" in that. At least for now.
10326
10327 The DWP file can be made up of a random collection of CUs and TUs.
10328 However, for each CU + set of TUs that came from the same original DWO
10329 file, we can combine them back into a virtual DWO file to save space
10330 (fewer struct dwo_file objects to allocate). Remember that for really
10331 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10332
10333 virtual_dwo_name =
10334 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
10335 get_section_id (&sections.abbrev),
10336 get_section_id (&sections.line),
10337 get_section_id (&sections.loc),
10338 get_section_id (&sections.str_offsets));
10339 make_cleanup (xfree, virtual_dwo_name);
10340 /* Can we use an existing virtual DWO file? */
10341 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10342 /* Create one if necessary. */
10343 if (*dwo_file_slot == NULL)
10344 {
10345 if (dwarf_read_debug)
10346 {
10347 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10348 virtual_dwo_name);
10349 }
10350 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10351 dwo_file->dwo_name
10352 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10353 virtual_dwo_name,
10354 strlen (virtual_dwo_name));
10355 dwo_file->comp_dir = comp_dir;
10356 dwo_file->sections.abbrev = sections.abbrev;
10357 dwo_file->sections.line = sections.line;
10358 dwo_file->sections.loc = sections.loc;
10359 dwo_file->sections.macinfo = sections.macinfo;
10360 dwo_file->sections.macro = sections.macro;
10361 dwo_file->sections.str_offsets = sections.str_offsets;
10362 /* The "str" section is global to the entire DWP file. */
10363 dwo_file->sections.str = dwp_file->sections.str;
10364 /* The info or types section is assigned below to dwo_unit,
10365 there's no need to record it in dwo_file.
10366 Also, we can't simply record type sections in dwo_file because
10367 we record a pointer into the vector in dwo_unit. As we collect more
10368 types we'll grow the vector and eventually have to reallocate space
10369 for it, invalidating all copies of pointers into the previous
10370 contents. */
10371 *dwo_file_slot = dwo_file;
10372 }
10373 else
10374 {
10375 if (dwarf_read_debug)
10376 {
10377 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10378 virtual_dwo_name);
10379 }
10380 dwo_file = (struct dwo_file *) *dwo_file_slot;
10381 }
10382 do_cleanups (cleanups);
10383
10384 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10385 dwo_unit->dwo_file = dwo_file;
10386 dwo_unit->signature = signature;
10387 dwo_unit->section =
10388 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10389 *dwo_unit->section = sections.info_or_types;
10390 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10391
10392 return dwo_unit;
10393 }
10394
10395 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10396 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10397 piece within that section used by a TU/CU, return a virtual section
10398 of just that piece. */
10399
10400 static struct dwarf2_section_info
10401 create_dwp_v2_section (struct dwarf2_section_info *section,
10402 bfd_size_type offset, bfd_size_type size)
10403 {
10404 struct dwarf2_section_info result;
10405 asection *sectp;
10406
10407 gdb_assert (section != NULL);
10408 gdb_assert (!section->is_virtual);
10409
10410 memset (&result, 0, sizeof (result));
10411 result.s.containing_section = section;
10412 result.is_virtual = 1;
10413
10414 if (size == 0)
10415 return result;
10416
10417 sectp = get_section_bfd_section (section);
10418
10419 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10420 bounds of the real section. This is a pretty-rare event, so just
10421 flag an error (easier) instead of a warning and trying to cope. */
10422 if (sectp == NULL
10423 || offset + size > bfd_get_section_size (sectp))
10424 {
10425 bfd *abfd = sectp->owner;
10426
10427 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10428 " in section %s [in module %s]"),
10429 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10430 objfile_name (dwarf2_per_objfile->objfile));
10431 }
10432
10433 result.virtual_offset = offset;
10434 result.size = size;
10435 return result;
10436 }
10437
10438 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10439 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10440 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10441 This is for DWP version 2 files. */
10442
10443 static struct dwo_unit *
10444 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10445 uint32_t unit_index,
10446 const char *comp_dir,
10447 ULONGEST signature, int is_debug_types)
10448 {
10449 struct objfile *objfile = dwarf2_per_objfile->objfile;
10450 const struct dwp_hash_table *dwp_htab =
10451 is_debug_types ? dwp_file->tus : dwp_file->cus;
10452 bfd *dbfd = dwp_file->dbfd;
10453 const char *kind = is_debug_types ? "TU" : "CU";
10454 struct dwo_file *dwo_file;
10455 struct dwo_unit *dwo_unit;
10456 struct virtual_v2_dwo_sections sections;
10457 void **dwo_file_slot;
10458 char *virtual_dwo_name;
10459 struct cleanup *cleanups;
10460 int i;
10461
10462 gdb_assert (dwp_file->version == 2);
10463
10464 if (dwarf_read_debug)
10465 {
10466 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10467 kind,
10468 pulongest (unit_index), hex_string (signature),
10469 dwp_file->name);
10470 }
10471
10472 /* Fetch the section offsets of this DWO unit. */
10473
10474 memset (&sections, 0, sizeof (sections));
10475 cleanups = make_cleanup (null_cleanup, 0);
10476
10477 for (i = 0; i < dwp_htab->nr_columns; ++i)
10478 {
10479 uint32_t offset = read_4_bytes (dbfd,
10480 dwp_htab->section_pool.v2.offsets
10481 + (((unit_index - 1) * dwp_htab->nr_columns
10482 + i)
10483 * sizeof (uint32_t)));
10484 uint32_t size = read_4_bytes (dbfd,
10485 dwp_htab->section_pool.v2.sizes
10486 + (((unit_index - 1) * dwp_htab->nr_columns
10487 + i)
10488 * sizeof (uint32_t)));
10489
10490 switch (dwp_htab->section_pool.v2.section_ids[i])
10491 {
10492 case DW_SECT_INFO:
10493 case DW_SECT_TYPES:
10494 sections.info_or_types_offset = offset;
10495 sections.info_or_types_size = size;
10496 break;
10497 case DW_SECT_ABBREV:
10498 sections.abbrev_offset = offset;
10499 sections.abbrev_size = size;
10500 break;
10501 case DW_SECT_LINE:
10502 sections.line_offset = offset;
10503 sections.line_size = size;
10504 break;
10505 case DW_SECT_LOC:
10506 sections.loc_offset = offset;
10507 sections.loc_size = size;
10508 break;
10509 case DW_SECT_STR_OFFSETS:
10510 sections.str_offsets_offset = offset;
10511 sections.str_offsets_size = size;
10512 break;
10513 case DW_SECT_MACINFO:
10514 sections.macinfo_offset = offset;
10515 sections.macinfo_size = size;
10516 break;
10517 case DW_SECT_MACRO:
10518 sections.macro_offset = offset;
10519 sections.macro_size = size;
10520 break;
10521 }
10522 }
10523
10524 /* It's easier for the rest of the code if we fake a struct dwo_file and
10525 have dwo_unit "live" in that. At least for now.
10526
10527 The DWP file can be made up of a random collection of CUs and TUs.
10528 However, for each CU + set of TUs that came from the same original DWO
10529 file, we can combine them back into a virtual DWO file to save space
10530 (fewer struct dwo_file objects to allocate). Remember that for really
10531 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10532
10533 virtual_dwo_name =
10534 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10535 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10536 (long) (sections.line_size ? sections.line_offset : 0),
10537 (long) (sections.loc_size ? sections.loc_offset : 0),
10538 (long) (sections.str_offsets_size
10539 ? sections.str_offsets_offset : 0));
10540 make_cleanup (xfree, virtual_dwo_name);
10541 /* Can we use an existing virtual DWO file? */
10542 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10543 /* Create one if necessary. */
10544 if (*dwo_file_slot == NULL)
10545 {
10546 if (dwarf_read_debug)
10547 {
10548 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10549 virtual_dwo_name);
10550 }
10551 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10552 dwo_file->dwo_name
10553 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10554 virtual_dwo_name,
10555 strlen (virtual_dwo_name));
10556 dwo_file->comp_dir = comp_dir;
10557 dwo_file->sections.abbrev =
10558 create_dwp_v2_section (&dwp_file->sections.abbrev,
10559 sections.abbrev_offset, sections.abbrev_size);
10560 dwo_file->sections.line =
10561 create_dwp_v2_section (&dwp_file->sections.line,
10562 sections.line_offset, sections.line_size);
10563 dwo_file->sections.loc =
10564 create_dwp_v2_section (&dwp_file->sections.loc,
10565 sections.loc_offset, sections.loc_size);
10566 dwo_file->sections.macinfo =
10567 create_dwp_v2_section (&dwp_file->sections.macinfo,
10568 sections.macinfo_offset, sections.macinfo_size);
10569 dwo_file->sections.macro =
10570 create_dwp_v2_section (&dwp_file->sections.macro,
10571 sections.macro_offset, sections.macro_size);
10572 dwo_file->sections.str_offsets =
10573 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10574 sections.str_offsets_offset,
10575 sections.str_offsets_size);
10576 /* The "str" section is global to the entire DWP file. */
10577 dwo_file->sections.str = dwp_file->sections.str;
10578 /* The info or types section is assigned below to dwo_unit,
10579 there's no need to record it in dwo_file.
10580 Also, we can't simply record type sections in dwo_file because
10581 we record a pointer into the vector in dwo_unit. As we collect more
10582 types we'll grow the vector and eventually have to reallocate space
10583 for it, invalidating all copies of pointers into the previous
10584 contents. */
10585 *dwo_file_slot = dwo_file;
10586 }
10587 else
10588 {
10589 if (dwarf_read_debug)
10590 {
10591 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10592 virtual_dwo_name);
10593 }
10594 dwo_file = (struct dwo_file *) *dwo_file_slot;
10595 }
10596 do_cleanups (cleanups);
10597
10598 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10599 dwo_unit->dwo_file = dwo_file;
10600 dwo_unit->signature = signature;
10601 dwo_unit->section =
10602 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10603 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10604 ? &dwp_file->sections.types
10605 : &dwp_file->sections.info,
10606 sections.info_or_types_offset,
10607 sections.info_or_types_size);
10608 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10609
10610 return dwo_unit;
10611 }
10612
10613 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10614 Returns NULL if the signature isn't found. */
10615
10616 static struct dwo_unit *
10617 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10618 ULONGEST signature, int is_debug_types)
10619 {
10620 const struct dwp_hash_table *dwp_htab =
10621 is_debug_types ? dwp_file->tus : dwp_file->cus;
10622 bfd *dbfd = dwp_file->dbfd;
10623 uint32_t mask = dwp_htab->nr_slots - 1;
10624 uint32_t hash = signature & mask;
10625 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10626 unsigned int i;
10627 void **slot;
10628 struct dwo_unit find_dwo_cu;
10629
10630 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10631 find_dwo_cu.signature = signature;
10632 slot = htab_find_slot (is_debug_types
10633 ? dwp_file->loaded_tus
10634 : dwp_file->loaded_cus,
10635 &find_dwo_cu, INSERT);
10636
10637 if (*slot != NULL)
10638 return (struct dwo_unit *) *slot;
10639
10640 /* Use a for loop so that we don't loop forever on bad debug info. */
10641 for (i = 0; i < dwp_htab->nr_slots; ++i)
10642 {
10643 ULONGEST signature_in_table;
10644
10645 signature_in_table =
10646 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10647 if (signature_in_table == signature)
10648 {
10649 uint32_t unit_index =
10650 read_4_bytes (dbfd,
10651 dwp_htab->unit_table + hash * sizeof (uint32_t));
10652
10653 if (dwp_file->version == 1)
10654 {
10655 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10656 comp_dir, signature,
10657 is_debug_types);
10658 }
10659 else
10660 {
10661 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10662 comp_dir, signature,
10663 is_debug_types);
10664 }
10665 return (struct dwo_unit *) *slot;
10666 }
10667 if (signature_in_table == 0)
10668 return NULL;
10669 hash = (hash + hash2) & mask;
10670 }
10671
10672 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10673 " [in module %s]"),
10674 dwp_file->name);
10675 }
10676
10677 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10678 Open the file specified by FILE_NAME and hand it off to BFD for
10679 preliminary analysis. Return a newly initialized bfd *, which
10680 includes a canonicalized copy of FILE_NAME.
10681 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10682 SEARCH_CWD is true if the current directory is to be searched.
10683 It will be searched before debug-file-directory.
10684 If successful, the file is added to the bfd include table of the
10685 objfile's bfd (see gdb_bfd_record_inclusion).
10686 If unable to find/open the file, return NULL.
10687 NOTE: This function is derived from symfile_bfd_open. */
10688
10689 static gdb_bfd_ref_ptr
10690 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10691 {
10692 int desc, flags;
10693 char *absolute_name;
10694 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10695 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10696 to debug_file_directory. */
10697 char *search_path;
10698 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10699
10700 if (search_cwd)
10701 {
10702 if (*debug_file_directory != '\0')
10703 search_path = concat (".", dirname_separator_string,
10704 debug_file_directory, (char *) NULL);
10705 else
10706 search_path = xstrdup (".");
10707 }
10708 else
10709 search_path = xstrdup (debug_file_directory);
10710
10711 flags = OPF_RETURN_REALPATH;
10712 if (is_dwp)
10713 flags |= OPF_SEARCH_IN_PATH;
10714 desc = openp (search_path, flags, file_name,
10715 O_RDONLY | O_BINARY, &absolute_name);
10716 xfree (search_path);
10717 if (desc < 0)
10718 return NULL;
10719
10720 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name, gnutarget, desc));
10721 xfree (absolute_name);
10722 if (sym_bfd == NULL)
10723 return NULL;
10724 bfd_set_cacheable (sym_bfd.get (), 1);
10725
10726 if (!bfd_check_format (sym_bfd.get (), bfd_object))
10727 return NULL;
10728
10729 /* Success. Record the bfd as having been included by the objfile's bfd.
10730 This is important because things like demangled_names_hash lives in the
10731 objfile's per_bfd space and may have references to things like symbol
10732 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10733 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
10734
10735 return sym_bfd;
10736 }
10737
10738 /* Try to open DWO file FILE_NAME.
10739 COMP_DIR is the DW_AT_comp_dir attribute.
10740 The result is the bfd handle of the file.
10741 If there is a problem finding or opening the file, return NULL.
10742 Upon success, the canonicalized path of the file is stored in the bfd,
10743 same as symfile_bfd_open. */
10744
10745 static gdb_bfd_ref_ptr
10746 open_dwo_file (const char *file_name, const char *comp_dir)
10747 {
10748 if (IS_ABSOLUTE_PATH (file_name))
10749 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10750
10751 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10752
10753 if (comp_dir != NULL)
10754 {
10755 char *path_to_try = concat (comp_dir, SLASH_STRING,
10756 file_name, (char *) NULL);
10757
10758 /* NOTE: If comp_dir is a relative path, this will also try the
10759 search path, which seems useful. */
10760 gdb_bfd_ref_ptr abfd (try_open_dwop_file (path_to_try, 0 /*is_dwp*/,
10761 1 /*search_cwd*/));
10762 xfree (path_to_try);
10763 if (abfd != NULL)
10764 return abfd;
10765 }
10766
10767 /* That didn't work, try debug-file-directory, which, despite its name,
10768 is a list of paths. */
10769
10770 if (*debug_file_directory == '\0')
10771 return NULL;
10772
10773 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10774 }
10775
10776 /* This function is mapped across the sections and remembers the offset and
10777 size of each of the DWO debugging sections we are interested in. */
10778
10779 static void
10780 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10781 {
10782 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
10783 const struct dwop_section_names *names = &dwop_section_names;
10784
10785 if (section_is_p (sectp->name, &names->abbrev_dwo))
10786 {
10787 dwo_sections->abbrev.s.section = sectp;
10788 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10789 }
10790 else if (section_is_p (sectp->name, &names->info_dwo))
10791 {
10792 dwo_sections->info.s.section = sectp;
10793 dwo_sections->info.size = bfd_get_section_size (sectp);
10794 }
10795 else if (section_is_p (sectp->name, &names->line_dwo))
10796 {
10797 dwo_sections->line.s.section = sectp;
10798 dwo_sections->line.size = bfd_get_section_size (sectp);
10799 }
10800 else if (section_is_p (sectp->name, &names->loc_dwo))
10801 {
10802 dwo_sections->loc.s.section = sectp;
10803 dwo_sections->loc.size = bfd_get_section_size (sectp);
10804 }
10805 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10806 {
10807 dwo_sections->macinfo.s.section = sectp;
10808 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10809 }
10810 else if (section_is_p (sectp->name, &names->macro_dwo))
10811 {
10812 dwo_sections->macro.s.section = sectp;
10813 dwo_sections->macro.size = bfd_get_section_size (sectp);
10814 }
10815 else if (section_is_p (sectp->name, &names->str_dwo))
10816 {
10817 dwo_sections->str.s.section = sectp;
10818 dwo_sections->str.size = bfd_get_section_size (sectp);
10819 }
10820 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10821 {
10822 dwo_sections->str_offsets.s.section = sectp;
10823 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10824 }
10825 else if (section_is_p (sectp->name, &names->types_dwo))
10826 {
10827 struct dwarf2_section_info type_section;
10828
10829 memset (&type_section, 0, sizeof (type_section));
10830 type_section.s.section = sectp;
10831 type_section.size = bfd_get_section_size (sectp);
10832 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10833 &type_section);
10834 }
10835 }
10836
10837 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10838 by PER_CU. This is for the non-DWP case.
10839 The result is NULL if DWO_NAME can't be found. */
10840
10841 static struct dwo_file *
10842 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10843 const char *dwo_name, const char *comp_dir)
10844 {
10845 struct objfile *objfile = dwarf2_per_objfile->objfile;
10846 struct dwo_file *dwo_file;
10847 struct cleanup *cleanups;
10848
10849 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwo_name, comp_dir));
10850 if (dbfd == NULL)
10851 {
10852 if (dwarf_read_debug)
10853 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10854 return NULL;
10855 }
10856 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10857 dwo_file->dwo_name = dwo_name;
10858 dwo_file->comp_dir = comp_dir;
10859 dwo_file->dbfd = dbfd.release ();
10860
10861 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10862
10863 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
10864 &dwo_file->sections);
10865
10866 create_cus_hash_table (*dwo_file, dwo_file->sections.info, dwo_file->cus);
10867
10868 create_debug_types_hash_table (dwo_file, dwo_file->sections.types,
10869 dwo_file->tus);
10870
10871 discard_cleanups (cleanups);
10872
10873 if (dwarf_read_debug)
10874 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10875
10876 return dwo_file;
10877 }
10878
10879 /* This function is mapped across the sections and remembers the offset and
10880 size of each of the DWP debugging sections common to version 1 and 2 that
10881 we are interested in. */
10882
10883 static void
10884 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10885 void *dwp_file_ptr)
10886 {
10887 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10888 const struct dwop_section_names *names = &dwop_section_names;
10889 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10890
10891 /* Record the ELF section number for later lookup: this is what the
10892 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10893 gdb_assert (elf_section_nr < dwp_file->num_sections);
10894 dwp_file->elf_sections[elf_section_nr] = sectp;
10895
10896 /* Look for specific sections that we need. */
10897 if (section_is_p (sectp->name, &names->str_dwo))
10898 {
10899 dwp_file->sections.str.s.section = sectp;
10900 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10901 }
10902 else if (section_is_p (sectp->name, &names->cu_index))
10903 {
10904 dwp_file->sections.cu_index.s.section = sectp;
10905 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10906 }
10907 else if (section_is_p (sectp->name, &names->tu_index))
10908 {
10909 dwp_file->sections.tu_index.s.section = sectp;
10910 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10911 }
10912 }
10913
10914 /* This function is mapped across the sections and remembers the offset and
10915 size of each of the DWP version 2 debugging sections that we are interested
10916 in. This is split into a separate function because we don't know if we
10917 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10918
10919 static void
10920 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10921 {
10922 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10923 const struct dwop_section_names *names = &dwop_section_names;
10924 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10925
10926 /* Record the ELF section number for later lookup: this is what the
10927 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10928 gdb_assert (elf_section_nr < dwp_file->num_sections);
10929 dwp_file->elf_sections[elf_section_nr] = sectp;
10930
10931 /* Look for specific sections that we need. */
10932 if (section_is_p (sectp->name, &names->abbrev_dwo))
10933 {
10934 dwp_file->sections.abbrev.s.section = sectp;
10935 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10936 }
10937 else if (section_is_p (sectp->name, &names->info_dwo))
10938 {
10939 dwp_file->sections.info.s.section = sectp;
10940 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10941 }
10942 else if (section_is_p (sectp->name, &names->line_dwo))
10943 {
10944 dwp_file->sections.line.s.section = sectp;
10945 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10946 }
10947 else if (section_is_p (sectp->name, &names->loc_dwo))
10948 {
10949 dwp_file->sections.loc.s.section = sectp;
10950 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10951 }
10952 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10953 {
10954 dwp_file->sections.macinfo.s.section = sectp;
10955 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10956 }
10957 else if (section_is_p (sectp->name, &names->macro_dwo))
10958 {
10959 dwp_file->sections.macro.s.section = sectp;
10960 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10961 }
10962 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10963 {
10964 dwp_file->sections.str_offsets.s.section = sectp;
10965 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10966 }
10967 else if (section_is_p (sectp->name, &names->types_dwo))
10968 {
10969 dwp_file->sections.types.s.section = sectp;
10970 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10971 }
10972 }
10973
10974 /* Hash function for dwp_file loaded CUs/TUs. */
10975
10976 static hashval_t
10977 hash_dwp_loaded_cutus (const void *item)
10978 {
10979 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
10980
10981 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10982 return dwo_unit->signature;
10983 }
10984
10985 /* Equality function for dwp_file loaded CUs/TUs. */
10986
10987 static int
10988 eq_dwp_loaded_cutus (const void *a, const void *b)
10989 {
10990 const struct dwo_unit *dua = (const struct dwo_unit *) a;
10991 const struct dwo_unit *dub = (const struct dwo_unit *) b;
10992
10993 return dua->signature == dub->signature;
10994 }
10995
10996 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10997
10998 static htab_t
10999 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
11000 {
11001 return htab_create_alloc_ex (3,
11002 hash_dwp_loaded_cutus,
11003 eq_dwp_loaded_cutus,
11004 NULL,
11005 &objfile->objfile_obstack,
11006 hashtab_obstack_allocate,
11007 dummy_obstack_deallocate);
11008 }
11009
11010 /* Try to open DWP file FILE_NAME.
11011 The result is the bfd handle of the file.
11012 If there is a problem finding or opening the file, return NULL.
11013 Upon success, the canonicalized path of the file is stored in the bfd,
11014 same as symfile_bfd_open. */
11015
11016 static gdb_bfd_ref_ptr
11017 open_dwp_file (const char *file_name)
11018 {
11019 gdb_bfd_ref_ptr abfd (try_open_dwop_file (file_name, 1 /*is_dwp*/,
11020 1 /*search_cwd*/));
11021 if (abfd != NULL)
11022 return abfd;
11023
11024 /* Work around upstream bug 15652.
11025 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
11026 [Whether that's a "bug" is debatable, but it is getting in our way.]
11027 We have no real idea where the dwp file is, because gdb's realpath-ing
11028 of the executable's path may have discarded the needed info.
11029 [IWBN if the dwp file name was recorded in the executable, akin to
11030 .gnu_debuglink, but that doesn't exist yet.]
11031 Strip the directory from FILE_NAME and search again. */
11032 if (*debug_file_directory != '\0')
11033 {
11034 /* Don't implicitly search the current directory here.
11035 If the user wants to search "." to handle this case,
11036 it must be added to debug-file-directory. */
11037 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
11038 0 /*search_cwd*/);
11039 }
11040
11041 return NULL;
11042 }
11043
11044 /* Initialize the use of the DWP file for the current objfile.
11045 By convention the name of the DWP file is ${objfile}.dwp.
11046 The result is NULL if it can't be found. */
11047
11048 static struct dwp_file *
11049 open_and_init_dwp_file (void)
11050 {
11051 struct objfile *objfile = dwarf2_per_objfile->objfile;
11052 struct dwp_file *dwp_file;
11053
11054 /* Try to find first .dwp for the binary file before any symbolic links
11055 resolving. */
11056
11057 /* If the objfile is a debug file, find the name of the real binary
11058 file and get the name of dwp file from there. */
11059 std::string dwp_name;
11060 if (objfile->separate_debug_objfile_backlink != NULL)
11061 {
11062 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
11063 const char *backlink_basename = lbasename (backlink->original_name);
11064
11065 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
11066 }
11067 else
11068 dwp_name = objfile->original_name;
11069
11070 dwp_name += ".dwp";
11071
11072 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwp_name.c_str ()));
11073 if (dbfd == NULL
11074 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
11075 {
11076 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
11077 dwp_name = objfile_name (objfile);
11078 dwp_name += ".dwp";
11079 dbfd = open_dwp_file (dwp_name.c_str ());
11080 }
11081
11082 if (dbfd == NULL)
11083 {
11084 if (dwarf_read_debug)
11085 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
11086 return NULL;
11087 }
11088 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
11089 dwp_file->name = bfd_get_filename (dbfd.get ());
11090 dwp_file->dbfd = dbfd.release ();
11091
11092 /* +1: section 0 is unused */
11093 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
11094 dwp_file->elf_sections =
11095 OBSTACK_CALLOC (&objfile->objfile_obstack,
11096 dwp_file->num_sections, asection *);
11097
11098 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_common_dwp_sections,
11099 dwp_file);
11100
11101 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
11102
11103 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
11104
11105 /* The DWP file version is stored in the hash table. Oh well. */
11106 if (dwp_file->cus->version != dwp_file->tus->version)
11107 {
11108 /* Technically speaking, we should try to limp along, but this is
11109 pretty bizarre. We use pulongest here because that's the established
11110 portability solution (e.g, we cannot use %u for uint32_t). */
11111 error (_("Dwarf Error: DWP file CU version %s doesn't match"
11112 " TU version %s [in DWP file %s]"),
11113 pulongest (dwp_file->cus->version),
11114 pulongest (dwp_file->tus->version), dwp_name.c_str ());
11115 }
11116 dwp_file->version = dwp_file->cus->version;
11117
11118 if (dwp_file->version == 2)
11119 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_v2_dwp_sections,
11120 dwp_file);
11121
11122 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
11123 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
11124
11125 if (dwarf_read_debug)
11126 {
11127 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
11128 fprintf_unfiltered (gdb_stdlog,
11129 " %s CUs, %s TUs\n",
11130 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
11131 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
11132 }
11133
11134 return dwp_file;
11135 }
11136
11137 /* Wrapper around open_and_init_dwp_file, only open it once. */
11138
11139 static struct dwp_file *
11140 get_dwp_file (void)
11141 {
11142 if (! dwarf2_per_objfile->dwp_checked)
11143 {
11144 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
11145 dwarf2_per_objfile->dwp_checked = 1;
11146 }
11147 return dwarf2_per_objfile->dwp_file;
11148 }
11149
11150 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
11151 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
11152 or in the DWP file for the objfile, referenced by THIS_UNIT.
11153 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
11154 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
11155
11156 This is called, for example, when wanting to read a variable with a
11157 complex location. Therefore we don't want to do file i/o for every call.
11158 Therefore we don't want to look for a DWO file on every call.
11159 Therefore we first see if we've already seen SIGNATURE in a DWP file,
11160 then we check if we've already seen DWO_NAME, and only THEN do we check
11161 for a DWO file.
11162
11163 The result is a pointer to the dwo_unit object or NULL if we didn't find it
11164 (dwo_id mismatch or couldn't find the DWO/DWP file). */
11165
11166 static struct dwo_unit *
11167 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
11168 const char *dwo_name, const char *comp_dir,
11169 ULONGEST signature, int is_debug_types)
11170 {
11171 struct objfile *objfile = dwarf2_per_objfile->objfile;
11172 const char *kind = is_debug_types ? "TU" : "CU";
11173 void **dwo_file_slot;
11174 struct dwo_file *dwo_file;
11175 struct dwp_file *dwp_file;
11176
11177 /* First see if there's a DWP file.
11178 If we have a DWP file but didn't find the DWO inside it, don't
11179 look for the original DWO file. It makes gdb behave differently
11180 depending on whether one is debugging in the build tree. */
11181
11182 dwp_file = get_dwp_file ();
11183 if (dwp_file != NULL)
11184 {
11185 const struct dwp_hash_table *dwp_htab =
11186 is_debug_types ? dwp_file->tus : dwp_file->cus;
11187
11188 if (dwp_htab != NULL)
11189 {
11190 struct dwo_unit *dwo_cutu =
11191 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
11192 signature, is_debug_types);
11193
11194 if (dwo_cutu != NULL)
11195 {
11196 if (dwarf_read_debug)
11197 {
11198 fprintf_unfiltered (gdb_stdlog,
11199 "Virtual DWO %s %s found: @%s\n",
11200 kind, hex_string (signature),
11201 host_address_to_string (dwo_cutu));
11202 }
11203 return dwo_cutu;
11204 }
11205 }
11206 }
11207 else
11208 {
11209 /* No DWP file, look for the DWO file. */
11210
11211 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
11212 if (*dwo_file_slot == NULL)
11213 {
11214 /* Read in the file and build a table of the CUs/TUs it contains. */
11215 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
11216 }
11217 /* NOTE: This will be NULL if unable to open the file. */
11218 dwo_file = (struct dwo_file *) *dwo_file_slot;
11219
11220 if (dwo_file != NULL)
11221 {
11222 struct dwo_unit *dwo_cutu = NULL;
11223
11224 if (is_debug_types && dwo_file->tus)
11225 {
11226 struct dwo_unit find_dwo_cutu;
11227
11228 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11229 find_dwo_cutu.signature = signature;
11230 dwo_cutu
11231 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
11232 }
11233 else if (!is_debug_types && dwo_file->cus)
11234 {
11235 struct dwo_unit find_dwo_cutu;
11236
11237 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11238 find_dwo_cutu.signature = signature;
11239 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
11240 &find_dwo_cutu);
11241 }
11242
11243 if (dwo_cutu != NULL)
11244 {
11245 if (dwarf_read_debug)
11246 {
11247 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11248 kind, dwo_name, hex_string (signature),
11249 host_address_to_string (dwo_cutu));
11250 }
11251 return dwo_cutu;
11252 }
11253 }
11254 }
11255
11256 /* We didn't find it. This could mean a dwo_id mismatch, or
11257 someone deleted the DWO/DWP file, or the search path isn't set up
11258 correctly to find the file. */
11259
11260 if (dwarf_read_debug)
11261 {
11262 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11263 kind, dwo_name, hex_string (signature));
11264 }
11265
11266 /* This is a warning and not a complaint because it can be caused by
11267 pilot error (e.g., user accidentally deleting the DWO). */
11268 {
11269 /* Print the name of the DWP file if we looked there, helps the user
11270 better diagnose the problem. */
11271 char *dwp_text = NULL;
11272 struct cleanup *cleanups;
11273
11274 if (dwp_file != NULL)
11275 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11276 cleanups = make_cleanup (xfree, dwp_text);
11277
11278 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11279 " [in module %s]"),
11280 kind, dwo_name, hex_string (signature),
11281 dwp_text != NULL ? dwp_text : "",
11282 this_unit->is_debug_types ? "TU" : "CU",
11283 to_underlying (this_unit->sect_off), objfile_name (objfile));
11284
11285 do_cleanups (cleanups);
11286 }
11287 return NULL;
11288 }
11289
11290 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11291 See lookup_dwo_cutu_unit for details. */
11292
11293 static struct dwo_unit *
11294 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11295 const char *dwo_name, const char *comp_dir,
11296 ULONGEST signature)
11297 {
11298 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11299 }
11300
11301 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11302 See lookup_dwo_cutu_unit for details. */
11303
11304 static struct dwo_unit *
11305 lookup_dwo_type_unit (struct signatured_type *this_tu,
11306 const char *dwo_name, const char *comp_dir)
11307 {
11308 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11309 }
11310
11311 /* Traversal function for queue_and_load_all_dwo_tus. */
11312
11313 static int
11314 queue_and_load_dwo_tu (void **slot, void *info)
11315 {
11316 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11317 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11318 ULONGEST signature = dwo_unit->signature;
11319 struct signatured_type *sig_type =
11320 lookup_dwo_signatured_type (per_cu->cu, signature);
11321
11322 if (sig_type != NULL)
11323 {
11324 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11325
11326 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11327 a real dependency of PER_CU on SIG_TYPE. That is detected later
11328 while processing PER_CU. */
11329 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11330 load_full_type_unit (sig_cu);
11331 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11332 }
11333
11334 return 1;
11335 }
11336
11337 /* Queue all TUs contained in the DWO of PER_CU to be read in.
11338 The DWO may have the only definition of the type, though it may not be
11339 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11340 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11341
11342 static void
11343 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11344 {
11345 struct dwo_unit *dwo_unit;
11346 struct dwo_file *dwo_file;
11347
11348 gdb_assert (!per_cu->is_debug_types);
11349 gdb_assert (get_dwp_file () == NULL);
11350 gdb_assert (per_cu->cu != NULL);
11351
11352 dwo_unit = per_cu->cu->dwo_unit;
11353 gdb_assert (dwo_unit != NULL);
11354
11355 dwo_file = dwo_unit->dwo_file;
11356 if (dwo_file->tus != NULL)
11357 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11358 }
11359
11360 /* Free all resources associated with DWO_FILE.
11361 Close the DWO file and munmap the sections.
11362 All memory should be on the objfile obstack. */
11363
11364 static void
11365 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
11366 {
11367
11368 /* Note: dbfd is NULL for virtual DWO files. */
11369 gdb_bfd_unref (dwo_file->dbfd);
11370
11371 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11372 }
11373
11374 /* Wrapper for free_dwo_file for use in cleanups. */
11375
11376 static void
11377 free_dwo_file_cleanup (void *arg)
11378 {
11379 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11380 struct objfile *objfile = dwarf2_per_objfile->objfile;
11381
11382 free_dwo_file (dwo_file, objfile);
11383 }
11384
11385 /* Traversal function for free_dwo_files. */
11386
11387 static int
11388 free_dwo_file_from_slot (void **slot, void *info)
11389 {
11390 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11391 struct objfile *objfile = (struct objfile *) info;
11392
11393 free_dwo_file (dwo_file, objfile);
11394
11395 return 1;
11396 }
11397
11398 /* Free all resources associated with DWO_FILES. */
11399
11400 static void
11401 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11402 {
11403 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
11404 }
11405 \f
11406 /* Read in various DIEs. */
11407
11408 /* qsort helper for inherit_abstract_dies. */
11409
11410 static int
11411 unsigned_int_compar (const void *ap, const void *bp)
11412 {
11413 unsigned int a = *(unsigned int *) ap;
11414 unsigned int b = *(unsigned int *) bp;
11415
11416 return (a > b) - (b > a);
11417 }
11418
11419 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11420 Inherit only the children of the DW_AT_abstract_origin DIE not being
11421 already referenced by DW_AT_abstract_origin from the children of the
11422 current DIE. */
11423
11424 static void
11425 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11426 {
11427 struct die_info *child_die;
11428 unsigned die_children_count;
11429 /* CU offsets which were referenced by children of the current DIE. */
11430 sect_offset *offsets;
11431 sect_offset *offsets_end, *offsetp;
11432 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11433 struct die_info *origin_die;
11434 /* Iterator of the ORIGIN_DIE children. */
11435 struct die_info *origin_child_die;
11436 struct cleanup *cleanups;
11437 struct attribute *attr;
11438 struct dwarf2_cu *origin_cu;
11439 struct pending **origin_previous_list_in_scope;
11440
11441 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11442 if (!attr)
11443 return;
11444
11445 /* Note that following die references may follow to a die in a
11446 different cu. */
11447
11448 origin_cu = cu;
11449 origin_die = follow_die_ref (die, attr, &origin_cu);
11450
11451 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11452 symbols in. */
11453 origin_previous_list_in_scope = origin_cu->list_in_scope;
11454 origin_cu->list_in_scope = cu->list_in_scope;
11455
11456 if (die->tag != origin_die->tag
11457 && !(die->tag == DW_TAG_inlined_subroutine
11458 && origin_die->tag == DW_TAG_subprogram))
11459 complaint (&symfile_complaints,
11460 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11461 to_underlying (die->sect_off),
11462 to_underlying (origin_die->sect_off));
11463
11464 child_die = die->child;
11465 die_children_count = 0;
11466 while (child_die && child_die->tag)
11467 {
11468 child_die = sibling_die (child_die);
11469 die_children_count++;
11470 }
11471 offsets = XNEWVEC (sect_offset, die_children_count);
11472 cleanups = make_cleanup (xfree, offsets);
11473
11474 offsets_end = offsets;
11475 for (child_die = die->child;
11476 child_die && child_die->tag;
11477 child_die = sibling_die (child_die))
11478 {
11479 struct die_info *child_origin_die;
11480 struct dwarf2_cu *child_origin_cu;
11481
11482 /* We are trying to process concrete instance entries:
11483 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11484 it's not relevant to our analysis here. i.e. detecting DIEs that are
11485 present in the abstract instance but not referenced in the concrete
11486 one. */
11487 if (child_die->tag == DW_TAG_call_site
11488 || child_die->tag == DW_TAG_GNU_call_site)
11489 continue;
11490
11491 /* For each CHILD_DIE, find the corresponding child of
11492 ORIGIN_DIE. If there is more than one layer of
11493 DW_AT_abstract_origin, follow them all; there shouldn't be,
11494 but GCC versions at least through 4.4 generate this (GCC PR
11495 40573). */
11496 child_origin_die = child_die;
11497 child_origin_cu = cu;
11498 while (1)
11499 {
11500 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11501 child_origin_cu);
11502 if (attr == NULL)
11503 break;
11504 child_origin_die = follow_die_ref (child_origin_die, attr,
11505 &child_origin_cu);
11506 }
11507
11508 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11509 counterpart may exist. */
11510 if (child_origin_die != child_die)
11511 {
11512 if (child_die->tag != child_origin_die->tag
11513 && !(child_die->tag == DW_TAG_inlined_subroutine
11514 && child_origin_die->tag == DW_TAG_subprogram))
11515 complaint (&symfile_complaints,
11516 _("Child DIE 0x%x and its abstract origin 0x%x have "
11517 "different tags"),
11518 to_underlying (child_die->sect_off),
11519 to_underlying (child_origin_die->sect_off));
11520 if (child_origin_die->parent != origin_die)
11521 complaint (&symfile_complaints,
11522 _("Child DIE 0x%x and its abstract origin 0x%x have "
11523 "different parents"),
11524 to_underlying (child_die->sect_off),
11525 to_underlying (child_origin_die->sect_off));
11526 else
11527 *offsets_end++ = child_origin_die->sect_off;
11528 }
11529 }
11530 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11531 unsigned_int_compar);
11532 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11533 if (offsetp[-1] == *offsetp)
11534 complaint (&symfile_complaints,
11535 _("Multiple children of DIE 0x%x refer "
11536 "to DIE 0x%x as their abstract origin"),
11537 to_underlying (die->sect_off), to_underlying (*offsetp));
11538
11539 offsetp = offsets;
11540 origin_child_die = origin_die->child;
11541 while (origin_child_die && origin_child_die->tag)
11542 {
11543 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11544 while (offsetp < offsets_end
11545 && *offsetp < origin_child_die->sect_off)
11546 offsetp++;
11547 if (offsetp >= offsets_end
11548 || *offsetp > origin_child_die->sect_off)
11549 {
11550 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11551 Check whether we're already processing ORIGIN_CHILD_DIE.
11552 This can happen with mutually referenced abstract_origins.
11553 PR 16581. */
11554 if (!origin_child_die->in_process)
11555 process_die (origin_child_die, origin_cu);
11556 }
11557 origin_child_die = sibling_die (origin_child_die);
11558 }
11559 origin_cu->list_in_scope = origin_previous_list_in_scope;
11560
11561 do_cleanups (cleanups);
11562 }
11563
11564 static void
11565 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11566 {
11567 struct objfile *objfile = cu->objfile;
11568 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11569 struct context_stack *newobj;
11570 CORE_ADDR lowpc;
11571 CORE_ADDR highpc;
11572 struct die_info *child_die;
11573 struct attribute *attr, *call_line, *call_file;
11574 const char *name;
11575 CORE_ADDR baseaddr;
11576 struct block *block;
11577 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11578 VEC (symbolp) *template_args = NULL;
11579 struct template_symbol *templ_func = NULL;
11580
11581 if (inlined_func)
11582 {
11583 /* If we do not have call site information, we can't show the
11584 caller of this inlined function. That's too confusing, so
11585 only use the scope for local variables. */
11586 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11587 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11588 if (call_line == NULL || call_file == NULL)
11589 {
11590 read_lexical_block_scope (die, cu);
11591 return;
11592 }
11593 }
11594
11595 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11596
11597 name = dwarf2_name (die, cu);
11598
11599 /* Ignore functions with missing or empty names. These are actually
11600 illegal according to the DWARF standard. */
11601 if (name == NULL)
11602 {
11603 complaint (&symfile_complaints,
11604 _("missing name for subprogram DIE at %d"),
11605 to_underlying (die->sect_off));
11606 return;
11607 }
11608
11609 /* Ignore functions with missing or invalid low and high pc attributes. */
11610 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
11611 <= PC_BOUNDS_INVALID)
11612 {
11613 attr = dwarf2_attr (die, DW_AT_external, cu);
11614 if (!attr || !DW_UNSND (attr))
11615 complaint (&symfile_complaints,
11616 _("cannot get low and high bounds "
11617 "for subprogram DIE at %d"),
11618 to_underlying (die->sect_off));
11619 return;
11620 }
11621
11622 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11623 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11624
11625 /* If we have any template arguments, then we must allocate a
11626 different sort of symbol. */
11627 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11628 {
11629 if (child_die->tag == DW_TAG_template_type_param
11630 || child_die->tag == DW_TAG_template_value_param)
11631 {
11632 templ_func = allocate_template_symbol (objfile);
11633 templ_func->base.is_cplus_template_function = 1;
11634 break;
11635 }
11636 }
11637
11638 newobj = push_context (0, lowpc);
11639 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
11640 (struct symbol *) templ_func);
11641
11642 /* If there is a location expression for DW_AT_frame_base, record
11643 it. */
11644 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11645 if (attr)
11646 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
11647
11648 /* If there is a location for the static link, record it. */
11649 newobj->static_link = NULL;
11650 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11651 if (attr)
11652 {
11653 newobj->static_link
11654 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
11655 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11656 }
11657
11658 cu->list_in_scope = &local_symbols;
11659
11660 if (die->child != NULL)
11661 {
11662 child_die = die->child;
11663 while (child_die && child_die->tag)
11664 {
11665 if (child_die->tag == DW_TAG_template_type_param
11666 || child_die->tag == DW_TAG_template_value_param)
11667 {
11668 struct symbol *arg = new_symbol (child_die, NULL, cu);
11669
11670 if (arg != NULL)
11671 VEC_safe_push (symbolp, template_args, arg);
11672 }
11673 else
11674 process_die (child_die, cu);
11675 child_die = sibling_die (child_die);
11676 }
11677 }
11678
11679 inherit_abstract_dies (die, cu);
11680
11681 /* If we have a DW_AT_specification, we might need to import using
11682 directives from the context of the specification DIE. See the
11683 comment in determine_prefix. */
11684 if (cu->language == language_cplus
11685 && dwarf2_attr (die, DW_AT_specification, cu))
11686 {
11687 struct dwarf2_cu *spec_cu = cu;
11688 struct die_info *spec_die = die_specification (die, &spec_cu);
11689
11690 while (spec_die)
11691 {
11692 child_die = spec_die->child;
11693 while (child_die && child_die->tag)
11694 {
11695 if (child_die->tag == DW_TAG_imported_module)
11696 process_die (child_die, spec_cu);
11697 child_die = sibling_die (child_die);
11698 }
11699
11700 /* In some cases, GCC generates specification DIEs that
11701 themselves contain DW_AT_specification attributes. */
11702 spec_die = die_specification (spec_die, &spec_cu);
11703 }
11704 }
11705
11706 newobj = pop_context ();
11707 /* Make a block for the local symbols within. */
11708 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
11709 newobj->static_link, lowpc, highpc);
11710
11711 /* For C++, set the block's scope. */
11712 if ((cu->language == language_cplus
11713 || cu->language == language_fortran
11714 || cu->language == language_d
11715 || cu->language == language_rust)
11716 && cu->processing_has_namespace_info)
11717 block_set_scope (block, determine_prefix (die, cu),
11718 &objfile->objfile_obstack);
11719
11720 /* If we have address ranges, record them. */
11721 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11722
11723 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
11724
11725 /* Attach template arguments to function. */
11726 if (! VEC_empty (symbolp, template_args))
11727 {
11728 gdb_assert (templ_func != NULL);
11729
11730 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11731 templ_func->template_arguments
11732 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11733 templ_func->n_template_arguments);
11734 memcpy (templ_func->template_arguments,
11735 VEC_address (symbolp, template_args),
11736 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11737 VEC_free (symbolp, template_args);
11738 }
11739
11740 /* In C++, we can have functions nested inside functions (e.g., when
11741 a function declares a class that has methods). This means that
11742 when we finish processing a function scope, we may need to go
11743 back to building a containing block's symbol lists. */
11744 local_symbols = newobj->locals;
11745 local_using_directives = newobj->local_using_directives;
11746
11747 /* If we've finished processing a top-level function, subsequent
11748 symbols go in the file symbol list. */
11749 if (outermost_context_p ())
11750 cu->list_in_scope = &file_symbols;
11751 }
11752
11753 /* Process all the DIES contained within a lexical block scope. Start
11754 a new scope, process the dies, and then close the scope. */
11755
11756 static void
11757 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11758 {
11759 struct objfile *objfile = cu->objfile;
11760 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11761 struct context_stack *newobj;
11762 CORE_ADDR lowpc, highpc;
11763 struct die_info *child_die;
11764 CORE_ADDR baseaddr;
11765
11766 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11767
11768 /* Ignore blocks with missing or invalid low and high pc attributes. */
11769 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11770 as multiple lexical blocks? Handling children in a sane way would
11771 be nasty. Might be easier to properly extend generic blocks to
11772 describe ranges. */
11773 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11774 {
11775 case PC_BOUNDS_NOT_PRESENT:
11776 /* DW_TAG_lexical_block has no attributes, process its children as if
11777 there was no wrapping by that DW_TAG_lexical_block.
11778 GCC does no longer produces such DWARF since GCC r224161. */
11779 for (child_die = die->child;
11780 child_die != NULL && child_die->tag;
11781 child_die = sibling_die (child_die))
11782 process_die (child_die, cu);
11783 return;
11784 case PC_BOUNDS_INVALID:
11785 return;
11786 }
11787 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11788 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11789
11790 push_context (0, lowpc);
11791 if (die->child != NULL)
11792 {
11793 child_die = die->child;
11794 while (child_die && child_die->tag)
11795 {
11796 process_die (child_die, cu);
11797 child_die = sibling_die (child_die);
11798 }
11799 }
11800 inherit_abstract_dies (die, cu);
11801 newobj = pop_context ();
11802
11803 if (local_symbols != NULL || local_using_directives != NULL)
11804 {
11805 struct block *block
11806 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
11807 newobj->start_addr, highpc);
11808
11809 /* Note that recording ranges after traversing children, as we
11810 do here, means that recording a parent's ranges entails
11811 walking across all its children's ranges as they appear in
11812 the address map, which is quadratic behavior.
11813
11814 It would be nicer to record the parent's ranges before
11815 traversing its children, simply overriding whatever you find
11816 there. But since we don't even decide whether to create a
11817 block until after we've traversed its children, that's hard
11818 to do. */
11819 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11820 }
11821 local_symbols = newobj->locals;
11822 local_using_directives = newobj->local_using_directives;
11823 }
11824
11825 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
11826
11827 static void
11828 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11829 {
11830 struct objfile *objfile = cu->objfile;
11831 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11832 CORE_ADDR pc, baseaddr;
11833 struct attribute *attr;
11834 struct call_site *call_site, call_site_local;
11835 void **slot;
11836 int nparams;
11837 struct die_info *child_die;
11838
11839 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11840
11841 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
11842 if (attr == NULL)
11843 {
11844 /* This was a pre-DWARF-5 GNU extension alias
11845 for DW_AT_call_return_pc. */
11846 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11847 }
11848 if (!attr)
11849 {
11850 complaint (&symfile_complaints,
11851 _("missing DW_AT_call_return_pc for DW_TAG_call_site "
11852 "DIE 0x%x [in module %s]"),
11853 to_underlying (die->sect_off), objfile_name (objfile));
11854 return;
11855 }
11856 pc = attr_value_as_address (attr) + baseaddr;
11857 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
11858
11859 if (cu->call_site_htab == NULL)
11860 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11861 NULL, &objfile->objfile_obstack,
11862 hashtab_obstack_allocate, NULL);
11863 call_site_local.pc = pc;
11864 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11865 if (*slot != NULL)
11866 {
11867 complaint (&symfile_complaints,
11868 _("Duplicate PC %s for DW_TAG_call_site "
11869 "DIE 0x%x [in module %s]"),
11870 paddress (gdbarch, pc), to_underlying (die->sect_off),
11871 objfile_name (objfile));
11872 return;
11873 }
11874
11875 /* Count parameters at the caller. */
11876
11877 nparams = 0;
11878 for (child_die = die->child; child_die && child_die->tag;
11879 child_die = sibling_die (child_die))
11880 {
11881 if (child_die->tag != DW_TAG_call_site_parameter
11882 && child_die->tag != DW_TAG_GNU_call_site_parameter)
11883 {
11884 complaint (&symfile_complaints,
11885 _("Tag %d is not DW_TAG_call_site_parameter in "
11886 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
11887 child_die->tag, to_underlying (child_die->sect_off),
11888 objfile_name (objfile));
11889 continue;
11890 }
11891
11892 nparams++;
11893 }
11894
11895 call_site
11896 = ((struct call_site *)
11897 obstack_alloc (&objfile->objfile_obstack,
11898 sizeof (*call_site)
11899 + (sizeof (*call_site->parameter) * (nparams - 1))));
11900 *slot = call_site;
11901 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11902 call_site->pc = pc;
11903
11904 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
11905 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11906 {
11907 struct die_info *func_die;
11908
11909 /* Skip also over DW_TAG_inlined_subroutine. */
11910 for (func_die = die->parent;
11911 func_die && func_die->tag != DW_TAG_subprogram
11912 && func_die->tag != DW_TAG_subroutine_type;
11913 func_die = func_die->parent);
11914
11915 /* DW_AT_call_all_calls is a superset
11916 of DW_AT_call_all_tail_calls. */
11917 if (func_die
11918 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
11919 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11920 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
11921 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11922 {
11923 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11924 not complete. But keep CALL_SITE for look ups via call_site_htab,
11925 both the initial caller containing the real return address PC and
11926 the final callee containing the current PC of a chain of tail
11927 calls do not need to have the tail call list complete. But any
11928 function candidate for a virtual tail call frame searched via
11929 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11930 determined unambiguously. */
11931 }
11932 else
11933 {
11934 struct type *func_type = NULL;
11935
11936 if (func_die)
11937 func_type = get_die_type (func_die, cu);
11938 if (func_type != NULL)
11939 {
11940 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11941
11942 /* Enlist this call site to the function. */
11943 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11944 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11945 }
11946 else
11947 complaint (&symfile_complaints,
11948 _("Cannot find function owning DW_TAG_call_site "
11949 "DIE 0x%x [in module %s]"),
11950 to_underlying (die->sect_off), objfile_name (objfile));
11951 }
11952 }
11953
11954 attr = dwarf2_attr (die, DW_AT_call_target, cu);
11955 if (attr == NULL)
11956 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11957 if (attr == NULL)
11958 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
11959 if (attr == NULL)
11960 {
11961 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
11962 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11963 }
11964 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11965 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11966 /* Keep NULL DWARF_BLOCK. */;
11967 else if (attr_form_is_block (attr))
11968 {
11969 struct dwarf2_locexpr_baton *dlbaton;
11970
11971 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
11972 dlbaton->data = DW_BLOCK (attr)->data;
11973 dlbaton->size = DW_BLOCK (attr)->size;
11974 dlbaton->per_cu = cu->per_cu;
11975
11976 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11977 }
11978 else if (attr_form_is_ref (attr))
11979 {
11980 struct dwarf2_cu *target_cu = cu;
11981 struct die_info *target_die;
11982
11983 target_die = follow_die_ref (die, attr, &target_cu);
11984 gdb_assert (target_cu->objfile == objfile);
11985 if (die_is_declaration (target_die, target_cu))
11986 {
11987 const char *target_physname;
11988
11989 /* Prefer the mangled name; otherwise compute the demangled one. */
11990 target_physname = dwarf2_string_attr (target_die,
11991 DW_AT_linkage_name,
11992 target_cu);
11993 if (target_physname == NULL)
11994 target_physname = dwarf2_string_attr (target_die,
11995 DW_AT_MIPS_linkage_name,
11996 target_cu);
11997 if (target_physname == NULL)
11998 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11999 if (target_physname == NULL)
12000 complaint (&symfile_complaints,
12001 _("DW_AT_call_target target DIE has invalid "
12002 "physname, for referencing DIE 0x%x [in module %s]"),
12003 to_underlying (die->sect_off), objfile_name (objfile));
12004 else
12005 SET_FIELD_PHYSNAME (call_site->target, target_physname);
12006 }
12007 else
12008 {
12009 CORE_ADDR lowpc;
12010
12011 /* DW_AT_entry_pc should be preferred. */
12012 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
12013 <= PC_BOUNDS_INVALID)
12014 complaint (&symfile_complaints,
12015 _("DW_AT_call_target target DIE has invalid "
12016 "low pc, for referencing DIE 0x%x [in module %s]"),
12017 to_underlying (die->sect_off), objfile_name (objfile));
12018 else
12019 {
12020 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
12021 SET_FIELD_PHYSADDR (call_site->target, lowpc);
12022 }
12023 }
12024 }
12025 else
12026 complaint (&symfile_complaints,
12027 _("DW_TAG_call_site DW_AT_call_target is neither "
12028 "block nor reference, for DIE 0x%x [in module %s]"),
12029 to_underlying (die->sect_off), objfile_name (objfile));
12030
12031 call_site->per_cu = cu->per_cu;
12032
12033 for (child_die = die->child;
12034 child_die && child_die->tag;
12035 child_die = sibling_die (child_die))
12036 {
12037 struct call_site_parameter *parameter;
12038 struct attribute *loc, *origin;
12039
12040 if (child_die->tag != DW_TAG_call_site_parameter
12041 && child_die->tag != DW_TAG_GNU_call_site_parameter)
12042 {
12043 /* Already printed the complaint above. */
12044 continue;
12045 }
12046
12047 gdb_assert (call_site->parameter_count < nparams);
12048 parameter = &call_site->parameter[call_site->parameter_count];
12049
12050 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
12051 specifies DW_TAG_formal_parameter. Value of the data assumed for the
12052 register is contained in DW_AT_call_value. */
12053
12054 loc = dwarf2_attr (child_die, DW_AT_location, cu);
12055 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
12056 if (origin == NULL)
12057 {
12058 /* This was a pre-DWARF-5 GNU extension alias
12059 for DW_AT_call_parameter. */
12060 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
12061 }
12062 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
12063 {
12064 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
12065
12066 sect_offset sect_off
12067 = (sect_offset) dwarf2_get_ref_die_offset (origin);
12068 if (!offset_in_cu_p (&cu->header, sect_off))
12069 {
12070 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
12071 binding can be done only inside one CU. Such referenced DIE
12072 therefore cannot be even moved to DW_TAG_partial_unit. */
12073 complaint (&symfile_complaints,
12074 _("DW_AT_call_parameter offset is not in CU for "
12075 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12076 to_underlying (child_die->sect_off),
12077 objfile_name (objfile));
12078 continue;
12079 }
12080 parameter->u.param_cu_off
12081 = (cu_offset) (sect_off - cu->header.sect_off);
12082 }
12083 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
12084 {
12085 complaint (&symfile_complaints,
12086 _("No DW_FORM_block* DW_AT_location for "
12087 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12088 to_underlying (child_die->sect_off), objfile_name (objfile));
12089 continue;
12090 }
12091 else
12092 {
12093 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
12094 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
12095 if (parameter->u.dwarf_reg != -1)
12096 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
12097 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
12098 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
12099 &parameter->u.fb_offset))
12100 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
12101 else
12102 {
12103 complaint (&symfile_complaints,
12104 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
12105 "for DW_FORM_block* DW_AT_location is supported for "
12106 "DW_TAG_call_site child DIE 0x%x "
12107 "[in module %s]"),
12108 to_underlying (child_die->sect_off),
12109 objfile_name (objfile));
12110 continue;
12111 }
12112 }
12113
12114 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
12115 if (attr == NULL)
12116 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
12117 if (!attr_form_is_block (attr))
12118 {
12119 complaint (&symfile_complaints,
12120 _("No DW_FORM_block* DW_AT_call_value for "
12121 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12122 to_underlying (child_die->sect_off),
12123 objfile_name (objfile));
12124 continue;
12125 }
12126 parameter->value = DW_BLOCK (attr)->data;
12127 parameter->value_size = DW_BLOCK (attr)->size;
12128
12129 /* Parameters are not pre-cleared by memset above. */
12130 parameter->data_value = NULL;
12131 parameter->data_value_size = 0;
12132 call_site->parameter_count++;
12133
12134 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
12135 if (attr == NULL)
12136 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
12137 if (attr)
12138 {
12139 if (!attr_form_is_block (attr))
12140 complaint (&symfile_complaints,
12141 _("No DW_FORM_block* DW_AT_call_data_value for "
12142 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12143 to_underlying (child_die->sect_off),
12144 objfile_name (objfile));
12145 else
12146 {
12147 parameter->data_value = DW_BLOCK (attr)->data;
12148 parameter->data_value_size = DW_BLOCK (attr)->size;
12149 }
12150 }
12151 }
12152 }
12153
12154 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
12155 reading .debug_rnglists.
12156 Callback's type should be:
12157 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
12158 Return true if the attributes are present and valid, otherwise,
12159 return false. */
12160
12161 template <typename Callback>
12162 static bool
12163 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
12164 Callback &&callback)
12165 {
12166 struct objfile *objfile = cu->objfile;
12167 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12168 struct comp_unit_head *cu_header = &cu->header;
12169 bfd *obfd = objfile->obfd;
12170 unsigned int addr_size = cu_header->addr_size;
12171 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12172 /* Base address selection entry. */
12173 CORE_ADDR base;
12174 int found_base;
12175 unsigned int dummy;
12176 const gdb_byte *buffer;
12177 CORE_ADDR low = 0;
12178 CORE_ADDR high = 0;
12179 CORE_ADDR baseaddr;
12180 bool overflow = false;
12181
12182 found_base = cu->base_known;
12183 base = cu->base_address;
12184
12185 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
12186 if (offset >= dwarf2_per_objfile->rnglists.size)
12187 {
12188 complaint (&symfile_complaints,
12189 _("Offset %d out of bounds for DW_AT_ranges attribute"),
12190 offset);
12191 return false;
12192 }
12193 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
12194
12195 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12196
12197 while (1)
12198 {
12199 /* Initialize it due to a false compiler warning. */
12200 CORE_ADDR range_beginning = 0, range_end = 0;
12201 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
12202 + dwarf2_per_objfile->rnglists.size);
12203 unsigned int bytes_read;
12204
12205 if (buffer == buf_end)
12206 {
12207 overflow = true;
12208 break;
12209 }
12210 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
12211 switch (rlet)
12212 {
12213 case DW_RLE_end_of_list:
12214 break;
12215 case DW_RLE_base_address:
12216 if (buffer + cu->header.addr_size > buf_end)
12217 {
12218 overflow = true;
12219 break;
12220 }
12221 base = read_address (obfd, buffer, cu, &bytes_read);
12222 found_base = 1;
12223 buffer += bytes_read;
12224 break;
12225 case DW_RLE_start_length:
12226 if (buffer + cu->header.addr_size > buf_end)
12227 {
12228 overflow = true;
12229 break;
12230 }
12231 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12232 buffer += bytes_read;
12233 range_end = (range_beginning
12234 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
12235 buffer += bytes_read;
12236 if (buffer > buf_end)
12237 {
12238 overflow = true;
12239 break;
12240 }
12241 break;
12242 case DW_RLE_offset_pair:
12243 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12244 buffer += bytes_read;
12245 if (buffer > buf_end)
12246 {
12247 overflow = true;
12248 break;
12249 }
12250 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12251 buffer += bytes_read;
12252 if (buffer > buf_end)
12253 {
12254 overflow = true;
12255 break;
12256 }
12257 break;
12258 case DW_RLE_start_end:
12259 if (buffer + 2 * cu->header.addr_size > buf_end)
12260 {
12261 overflow = true;
12262 break;
12263 }
12264 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12265 buffer += bytes_read;
12266 range_end = read_address (obfd, buffer, cu, &bytes_read);
12267 buffer += bytes_read;
12268 break;
12269 default:
12270 complaint (&symfile_complaints,
12271 _("Invalid .debug_rnglists data (no base address)"));
12272 return false;
12273 }
12274 if (rlet == DW_RLE_end_of_list || overflow)
12275 break;
12276 if (rlet == DW_RLE_base_address)
12277 continue;
12278
12279 if (!found_base)
12280 {
12281 /* We have no valid base address for the ranges
12282 data. */
12283 complaint (&symfile_complaints,
12284 _("Invalid .debug_rnglists data (no base address)"));
12285 return false;
12286 }
12287
12288 if (range_beginning > range_end)
12289 {
12290 /* Inverted range entries are invalid. */
12291 complaint (&symfile_complaints,
12292 _("Invalid .debug_rnglists data (inverted range)"));
12293 return false;
12294 }
12295
12296 /* Empty range entries have no effect. */
12297 if (range_beginning == range_end)
12298 continue;
12299
12300 range_beginning += base;
12301 range_end += base;
12302
12303 /* A not-uncommon case of bad debug info.
12304 Don't pollute the addrmap with bad data. */
12305 if (range_beginning + baseaddr == 0
12306 && !dwarf2_per_objfile->has_section_at_zero)
12307 {
12308 complaint (&symfile_complaints,
12309 _(".debug_rnglists entry has start address of zero"
12310 " [in module %s]"), objfile_name (objfile));
12311 continue;
12312 }
12313
12314 callback (range_beginning, range_end);
12315 }
12316
12317 if (overflow)
12318 {
12319 complaint (&symfile_complaints,
12320 _("Offset %d is not terminated "
12321 "for DW_AT_ranges attribute"),
12322 offset);
12323 return false;
12324 }
12325
12326 return true;
12327 }
12328
12329 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
12330 Callback's type should be:
12331 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
12332 Return 1 if the attributes are present and valid, otherwise, return 0. */
12333
12334 template <typename Callback>
12335 static int
12336 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
12337 Callback &&callback)
12338 {
12339 struct objfile *objfile = cu->objfile;
12340 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12341 struct comp_unit_head *cu_header = &cu->header;
12342 bfd *obfd = objfile->obfd;
12343 unsigned int addr_size = cu_header->addr_size;
12344 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12345 /* Base address selection entry. */
12346 CORE_ADDR base;
12347 int found_base;
12348 unsigned int dummy;
12349 const gdb_byte *buffer;
12350 CORE_ADDR baseaddr;
12351
12352 if (cu_header->version >= 5)
12353 return dwarf2_rnglists_process (offset, cu, callback);
12354
12355 found_base = cu->base_known;
12356 base = cu->base_address;
12357
12358 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12359 if (offset >= dwarf2_per_objfile->ranges.size)
12360 {
12361 complaint (&symfile_complaints,
12362 _("Offset %d out of bounds for DW_AT_ranges attribute"),
12363 offset);
12364 return 0;
12365 }
12366 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12367
12368 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12369
12370 while (1)
12371 {
12372 CORE_ADDR range_beginning, range_end;
12373
12374 range_beginning = read_address (obfd, buffer, cu, &dummy);
12375 buffer += addr_size;
12376 range_end = read_address (obfd, buffer, cu, &dummy);
12377 buffer += addr_size;
12378 offset += 2 * addr_size;
12379
12380 /* An end of list marker is a pair of zero addresses. */
12381 if (range_beginning == 0 && range_end == 0)
12382 /* Found the end of list entry. */
12383 break;
12384
12385 /* Each base address selection entry is a pair of 2 values.
12386 The first is the largest possible address, the second is
12387 the base address. Check for a base address here. */
12388 if ((range_beginning & mask) == mask)
12389 {
12390 /* If we found the largest possible address, then we already
12391 have the base address in range_end. */
12392 base = range_end;
12393 found_base = 1;
12394 continue;
12395 }
12396
12397 if (!found_base)
12398 {
12399 /* We have no valid base address for the ranges
12400 data. */
12401 complaint (&symfile_complaints,
12402 _("Invalid .debug_ranges data (no base address)"));
12403 return 0;
12404 }
12405
12406 if (range_beginning > range_end)
12407 {
12408 /* Inverted range entries are invalid. */
12409 complaint (&symfile_complaints,
12410 _("Invalid .debug_ranges data (inverted range)"));
12411 return 0;
12412 }
12413
12414 /* Empty range entries have no effect. */
12415 if (range_beginning == range_end)
12416 continue;
12417
12418 range_beginning += base;
12419 range_end += base;
12420
12421 /* A not-uncommon case of bad debug info.
12422 Don't pollute the addrmap with bad data. */
12423 if (range_beginning + baseaddr == 0
12424 && !dwarf2_per_objfile->has_section_at_zero)
12425 {
12426 complaint (&symfile_complaints,
12427 _(".debug_ranges entry has start address of zero"
12428 " [in module %s]"), objfile_name (objfile));
12429 continue;
12430 }
12431
12432 callback (range_beginning, range_end);
12433 }
12434
12435 return 1;
12436 }
12437
12438 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
12439 Return 1 if the attributes are present and valid, otherwise, return 0.
12440 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
12441
12442 static int
12443 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
12444 CORE_ADDR *high_return, struct dwarf2_cu *cu,
12445 struct partial_symtab *ranges_pst)
12446 {
12447 struct objfile *objfile = cu->objfile;
12448 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12449 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
12450 SECT_OFF_TEXT (objfile));
12451 int low_set = 0;
12452 CORE_ADDR low = 0;
12453 CORE_ADDR high = 0;
12454 int retval;
12455
12456 retval = dwarf2_ranges_process (offset, cu,
12457 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
12458 {
12459 if (ranges_pst != NULL)
12460 {
12461 CORE_ADDR lowpc;
12462 CORE_ADDR highpc;
12463
12464 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12465 range_beginning + baseaddr);
12466 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12467 range_end + baseaddr);
12468 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
12469 ranges_pst);
12470 }
12471
12472 /* FIXME: This is recording everything as a low-high
12473 segment of consecutive addresses. We should have a
12474 data structure for discontiguous block ranges
12475 instead. */
12476 if (! low_set)
12477 {
12478 low = range_beginning;
12479 high = range_end;
12480 low_set = 1;
12481 }
12482 else
12483 {
12484 if (range_beginning < low)
12485 low = range_beginning;
12486 if (range_end > high)
12487 high = range_end;
12488 }
12489 });
12490 if (!retval)
12491 return 0;
12492
12493 if (! low_set)
12494 /* If the first entry is an end-of-list marker, the range
12495 describes an empty scope, i.e. no instructions. */
12496 return 0;
12497
12498 if (low_return)
12499 *low_return = low;
12500 if (high_return)
12501 *high_return = high;
12502 return 1;
12503 }
12504
12505 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
12506 definition for the return value. *LOWPC and *HIGHPC are set iff
12507 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
12508
12509 static enum pc_bounds_kind
12510 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
12511 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12512 struct partial_symtab *pst)
12513 {
12514 struct attribute *attr;
12515 struct attribute *attr_high;
12516 CORE_ADDR low = 0;
12517 CORE_ADDR high = 0;
12518 enum pc_bounds_kind ret;
12519
12520 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12521 if (attr_high)
12522 {
12523 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12524 if (attr)
12525 {
12526 low = attr_value_as_address (attr);
12527 high = attr_value_as_address (attr_high);
12528 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12529 high += low;
12530 }
12531 else
12532 /* Found high w/o low attribute. */
12533 return PC_BOUNDS_INVALID;
12534
12535 /* Found consecutive range of addresses. */
12536 ret = PC_BOUNDS_HIGH_LOW;
12537 }
12538 else
12539 {
12540 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12541 if (attr != NULL)
12542 {
12543 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12544 We take advantage of the fact that DW_AT_ranges does not appear
12545 in DW_TAG_compile_unit of DWO files. */
12546 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12547 unsigned int ranges_offset = (DW_UNSND (attr)
12548 + (need_ranges_base
12549 ? cu->ranges_base
12550 : 0));
12551
12552 /* Value of the DW_AT_ranges attribute is the offset in the
12553 .debug_ranges section. */
12554 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
12555 return PC_BOUNDS_INVALID;
12556 /* Found discontinuous range of addresses. */
12557 ret = PC_BOUNDS_RANGES;
12558 }
12559 else
12560 return PC_BOUNDS_NOT_PRESENT;
12561 }
12562
12563 /* read_partial_die has also the strict LOW < HIGH requirement. */
12564 if (high <= low)
12565 return PC_BOUNDS_INVALID;
12566
12567 /* When using the GNU linker, .gnu.linkonce. sections are used to
12568 eliminate duplicate copies of functions and vtables and such.
12569 The linker will arbitrarily choose one and discard the others.
12570 The AT_*_pc values for such functions refer to local labels in
12571 these sections. If the section from that file was discarded, the
12572 labels are not in the output, so the relocs get a value of 0.
12573 If this is a discarded function, mark the pc bounds as invalid,
12574 so that GDB will ignore it. */
12575 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
12576 return PC_BOUNDS_INVALID;
12577
12578 *lowpc = low;
12579 if (highpc)
12580 *highpc = high;
12581 return ret;
12582 }
12583
12584 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
12585 its low and high PC addresses. Do nothing if these addresses could not
12586 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12587 and HIGHPC to the high address if greater than HIGHPC. */
12588
12589 static void
12590 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12591 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12592 struct dwarf2_cu *cu)
12593 {
12594 CORE_ADDR low, high;
12595 struct die_info *child = die->child;
12596
12597 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
12598 {
12599 *lowpc = std::min (*lowpc, low);
12600 *highpc = std::max (*highpc, high);
12601 }
12602
12603 /* If the language does not allow nested subprograms (either inside
12604 subprograms or lexical blocks), we're done. */
12605 if (cu->language != language_ada)
12606 return;
12607
12608 /* Check all the children of the given DIE. If it contains nested
12609 subprograms, then check their pc bounds. Likewise, we need to
12610 check lexical blocks as well, as they may also contain subprogram
12611 definitions. */
12612 while (child && child->tag)
12613 {
12614 if (child->tag == DW_TAG_subprogram
12615 || child->tag == DW_TAG_lexical_block)
12616 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12617 child = sibling_die (child);
12618 }
12619 }
12620
12621 /* Get the low and high pc's represented by the scope DIE, and store
12622 them in *LOWPC and *HIGHPC. If the correct values can't be
12623 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12624
12625 static void
12626 get_scope_pc_bounds (struct die_info *die,
12627 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12628 struct dwarf2_cu *cu)
12629 {
12630 CORE_ADDR best_low = (CORE_ADDR) -1;
12631 CORE_ADDR best_high = (CORE_ADDR) 0;
12632 CORE_ADDR current_low, current_high;
12633
12634 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
12635 >= PC_BOUNDS_RANGES)
12636 {
12637 best_low = current_low;
12638 best_high = current_high;
12639 }
12640 else
12641 {
12642 struct die_info *child = die->child;
12643
12644 while (child && child->tag)
12645 {
12646 switch (child->tag) {
12647 case DW_TAG_subprogram:
12648 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
12649 break;
12650 case DW_TAG_namespace:
12651 case DW_TAG_module:
12652 /* FIXME: carlton/2004-01-16: Should we do this for
12653 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12654 that current GCC's always emit the DIEs corresponding
12655 to definitions of methods of classes as children of a
12656 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12657 the DIEs giving the declarations, which could be
12658 anywhere). But I don't see any reason why the
12659 standards says that they have to be there. */
12660 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12661
12662 if (current_low != ((CORE_ADDR) -1))
12663 {
12664 best_low = std::min (best_low, current_low);
12665 best_high = std::max (best_high, current_high);
12666 }
12667 break;
12668 default:
12669 /* Ignore. */
12670 break;
12671 }
12672
12673 child = sibling_die (child);
12674 }
12675 }
12676
12677 *lowpc = best_low;
12678 *highpc = best_high;
12679 }
12680
12681 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
12682 in DIE. */
12683
12684 static void
12685 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12686 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12687 {
12688 struct objfile *objfile = cu->objfile;
12689 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12690 struct attribute *attr;
12691 struct attribute *attr_high;
12692
12693 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12694 if (attr_high)
12695 {
12696 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12697 if (attr)
12698 {
12699 CORE_ADDR low = attr_value_as_address (attr);
12700 CORE_ADDR high = attr_value_as_address (attr_high);
12701
12702 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12703 high += low;
12704
12705 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12706 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12707 record_block_range (block, low, high - 1);
12708 }
12709 }
12710
12711 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12712 if (attr)
12713 {
12714 bfd *obfd = objfile->obfd;
12715 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12716 We take advantage of the fact that DW_AT_ranges does not appear
12717 in DW_TAG_compile_unit of DWO files. */
12718 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12719
12720 /* The value of the DW_AT_ranges attribute is the offset of the
12721 address range list in the .debug_ranges section. */
12722 unsigned long offset = (DW_UNSND (attr)
12723 + (need_ranges_base ? cu->ranges_base : 0));
12724 const gdb_byte *buffer;
12725
12726 /* For some target architectures, but not others, the
12727 read_address function sign-extends the addresses it returns.
12728 To recognize base address selection entries, we need a
12729 mask. */
12730 unsigned int addr_size = cu->header.addr_size;
12731 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12732
12733 /* The base address, to which the next pair is relative. Note
12734 that this 'base' is a DWARF concept: most entries in a range
12735 list are relative, to reduce the number of relocs against the
12736 debugging information. This is separate from this function's
12737 'baseaddr' argument, which GDB uses to relocate debugging
12738 information from a shared library based on the address at
12739 which the library was loaded. */
12740 CORE_ADDR base = cu->base_address;
12741 int base_known = cu->base_known;
12742
12743 dwarf2_ranges_process (offset, cu,
12744 [&] (CORE_ADDR start, CORE_ADDR end)
12745 {
12746 start += baseaddr;
12747 end += baseaddr;
12748 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12749 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12750 record_block_range (block, start, end - 1);
12751 });
12752 }
12753 }
12754
12755 /* Check whether the producer field indicates either of GCC < 4.6, or the
12756 Intel C/C++ compiler, and cache the result in CU. */
12757
12758 static void
12759 check_producer (struct dwarf2_cu *cu)
12760 {
12761 int major, minor;
12762
12763 if (cu->producer == NULL)
12764 {
12765 /* For unknown compilers expect their behavior is DWARF version
12766 compliant.
12767
12768 GCC started to support .debug_types sections by -gdwarf-4 since
12769 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12770 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12771 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12772 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12773 }
12774 else if (producer_is_gcc (cu->producer, &major, &minor))
12775 {
12776 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12777 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12778 }
12779 else if (startswith (cu->producer, "Intel(R) C"))
12780 cu->producer_is_icc = 1;
12781 else
12782 {
12783 /* For other non-GCC compilers, expect their behavior is DWARF version
12784 compliant. */
12785 }
12786
12787 cu->checked_producer = 1;
12788 }
12789
12790 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12791 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12792 during 4.6.0 experimental. */
12793
12794 static int
12795 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12796 {
12797 if (!cu->checked_producer)
12798 check_producer (cu);
12799
12800 return cu->producer_is_gxx_lt_4_6;
12801 }
12802
12803 /* Return the default accessibility type if it is not overriden by
12804 DW_AT_accessibility. */
12805
12806 static enum dwarf_access_attribute
12807 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12808 {
12809 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12810 {
12811 /* The default DWARF 2 accessibility for members is public, the default
12812 accessibility for inheritance is private. */
12813
12814 if (die->tag != DW_TAG_inheritance)
12815 return DW_ACCESS_public;
12816 else
12817 return DW_ACCESS_private;
12818 }
12819 else
12820 {
12821 /* DWARF 3+ defines the default accessibility a different way. The same
12822 rules apply now for DW_TAG_inheritance as for the members and it only
12823 depends on the container kind. */
12824
12825 if (die->parent->tag == DW_TAG_class_type)
12826 return DW_ACCESS_private;
12827 else
12828 return DW_ACCESS_public;
12829 }
12830 }
12831
12832 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12833 offset. If the attribute was not found return 0, otherwise return
12834 1. If it was found but could not properly be handled, set *OFFSET
12835 to 0. */
12836
12837 static int
12838 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12839 LONGEST *offset)
12840 {
12841 struct attribute *attr;
12842
12843 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12844 if (attr != NULL)
12845 {
12846 *offset = 0;
12847
12848 /* Note that we do not check for a section offset first here.
12849 This is because DW_AT_data_member_location is new in DWARF 4,
12850 so if we see it, we can assume that a constant form is really
12851 a constant and not a section offset. */
12852 if (attr_form_is_constant (attr))
12853 *offset = dwarf2_get_attr_constant_value (attr, 0);
12854 else if (attr_form_is_section_offset (attr))
12855 dwarf2_complex_location_expr_complaint ();
12856 else if (attr_form_is_block (attr))
12857 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12858 else
12859 dwarf2_complex_location_expr_complaint ();
12860
12861 return 1;
12862 }
12863
12864 return 0;
12865 }
12866
12867 /* Add an aggregate field to the field list. */
12868
12869 static void
12870 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12871 struct dwarf2_cu *cu)
12872 {
12873 struct objfile *objfile = cu->objfile;
12874 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12875 struct nextfield *new_field;
12876 struct attribute *attr;
12877 struct field *fp;
12878 const char *fieldname = "";
12879
12880 /* Allocate a new field list entry and link it in. */
12881 new_field = XNEW (struct nextfield);
12882 make_cleanup (xfree, new_field);
12883 memset (new_field, 0, sizeof (struct nextfield));
12884
12885 if (die->tag == DW_TAG_inheritance)
12886 {
12887 new_field->next = fip->baseclasses;
12888 fip->baseclasses = new_field;
12889 }
12890 else
12891 {
12892 new_field->next = fip->fields;
12893 fip->fields = new_field;
12894 }
12895 fip->nfields++;
12896
12897 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12898 if (attr)
12899 new_field->accessibility = DW_UNSND (attr);
12900 else
12901 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12902 if (new_field->accessibility != DW_ACCESS_public)
12903 fip->non_public_fields = 1;
12904
12905 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12906 if (attr)
12907 new_field->virtuality = DW_UNSND (attr);
12908 else
12909 new_field->virtuality = DW_VIRTUALITY_none;
12910
12911 fp = &new_field->field;
12912
12913 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12914 {
12915 LONGEST offset;
12916
12917 /* Data member other than a C++ static data member. */
12918
12919 /* Get type of field. */
12920 fp->type = die_type (die, cu);
12921
12922 SET_FIELD_BITPOS (*fp, 0);
12923
12924 /* Get bit size of field (zero if none). */
12925 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12926 if (attr)
12927 {
12928 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12929 }
12930 else
12931 {
12932 FIELD_BITSIZE (*fp) = 0;
12933 }
12934
12935 /* Get bit offset of field. */
12936 if (handle_data_member_location (die, cu, &offset))
12937 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12938 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12939 if (attr)
12940 {
12941 if (gdbarch_bits_big_endian (gdbarch))
12942 {
12943 /* For big endian bits, the DW_AT_bit_offset gives the
12944 additional bit offset from the MSB of the containing
12945 anonymous object to the MSB of the field. We don't
12946 have to do anything special since we don't need to
12947 know the size of the anonymous object. */
12948 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12949 }
12950 else
12951 {
12952 /* For little endian bits, compute the bit offset to the
12953 MSB of the anonymous object, subtract off the number of
12954 bits from the MSB of the field to the MSB of the
12955 object, and then subtract off the number of bits of
12956 the field itself. The result is the bit offset of
12957 the LSB of the field. */
12958 int anonymous_size;
12959 int bit_offset = DW_UNSND (attr);
12960
12961 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12962 if (attr)
12963 {
12964 /* The size of the anonymous object containing
12965 the bit field is explicit, so use the
12966 indicated size (in bytes). */
12967 anonymous_size = DW_UNSND (attr);
12968 }
12969 else
12970 {
12971 /* The size of the anonymous object containing
12972 the bit field must be inferred from the type
12973 attribute of the data member containing the
12974 bit field. */
12975 anonymous_size = TYPE_LENGTH (fp->type);
12976 }
12977 SET_FIELD_BITPOS (*fp,
12978 (FIELD_BITPOS (*fp)
12979 + anonymous_size * bits_per_byte
12980 - bit_offset - FIELD_BITSIZE (*fp)));
12981 }
12982 }
12983 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
12984 if (attr != NULL)
12985 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
12986 + dwarf2_get_attr_constant_value (attr, 0)));
12987
12988 /* Get name of field. */
12989 fieldname = dwarf2_name (die, cu);
12990 if (fieldname == NULL)
12991 fieldname = "";
12992
12993 /* The name is already allocated along with this objfile, so we don't
12994 need to duplicate it for the type. */
12995 fp->name = fieldname;
12996
12997 /* Change accessibility for artificial fields (e.g. virtual table
12998 pointer or virtual base class pointer) to private. */
12999 if (dwarf2_attr (die, DW_AT_artificial, cu))
13000 {
13001 FIELD_ARTIFICIAL (*fp) = 1;
13002 new_field->accessibility = DW_ACCESS_private;
13003 fip->non_public_fields = 1;
13004 }
13005 }
13006 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
13007 {
13008 /* C++ static member. */
13009
13010 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
13011 is a declaration, but all versions of G++ as of this writing
13012 (so through at least 3.2.1) incorrectly generate
13013 DW_TAG_variable tags. */
13014
13015 const char *physname;
13016
13017 /* Get name of field. */
13018 fieldname = dwarf2_name (die, cu);
13019 if (fieldname == NULL)
13020 return;
13021
13022 attr = dwarf2_attr (die, DW_AT_const_value, cu);
13023 if (attr
13024 /* Only create a symbol if this is an external value.
13025 new_symbol checks this and puts the value in the global symbol
13026 table, which we want. If it is not external, new_symbol
13027 will try to put the value in cu->list_in_scope which is wrong. */
13028 && dwarf2_flag_true_p (die, DW_AT_external, cu))
13029 {
13030 /* A static const member, not much different than an enum as far as
13031 we're concerned, except that we can support more types. */
13032 new_symbol (die, NULL, cu);
13033 }
13034
13035 /* Get physical name. */
13036 physname = dwarf2_physname (fieldname, die, cu);
13037
13038 /* The name is already allocated along with this objfile, so we don't
13039 need to duplicate it for the type. */
13040 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
13041 FIELD_TYPE (*fp) = die_type (die, cu);
13042 FIELD_NAME (*fp) = fieldname;
13043 }
13044 else if (die->tag == DW_TAG_inheritance)
13045 {
13046 LONGEST offset;
13047
13048 /* C++ base class field. */
13049 if (handle_data_member_location (die, cu, &offset))
13050 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
13051 FIELD_BITSIZE (*fp) = 0;
13052 FIELD_TYPE (*fp) = die_type (die, cu);
13053 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
13054 fip->nbaseclasses++;
13055 }
13056 }
13057
13058 /* Add a typedef defined in the scope of the FIP's class. */
13059
13060 static void
13061 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
13062 struct dwarf2_cu *cu)
13063 {
13064 struct typedef_field_list *new_field;
13065 struct typedef_field *fp;
13066
13067 /* Allocate a new field list entry and link it in. */
13068 new_field = XCNEW (struct typedef_field_list);
13069 make_cleanup (xfree, new_field);
13070
13071 gdb_assert (die->tag == DW_TAG_typedef);
13072
13073 fp = &new_field->field;
13074
13075 /* Get name of field. */
13076 fp->name = dwarf2_name (die, cu);
13077 if (fp->name == NULL)
13078 return;
13079
13080 fp->type = read_type_die (die, cu);
13081
13082 new_field->next = fip->typedef_field_list;
13083 fip->typedef_field_list = new_field;
13084 fip->typedef_field_list_count++;
13085 }
13086
13087 /* Create the vector of fields, and attach it to the type. */
13088
13089 static void
13090 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
13091 struct dwarf2_cu *cu)
13092 {
13093 int nfields = fip->nfields;
13094
13095 /* Record the field count, allocate space for the array of fields,
13096 and create blank accessibility bitfields if necessary. */
13097 TYPE_NFIELDS (type) = nfields;
13098 TYPE_FIELDS (type) = (struct field *)
13099 TYPE_ALLOC (type, sizeof (struct field) * nfields);
13100 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
13101
13102 if (fip->non_public_fields && cu->language != language_ada)
13103 {
13104 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13105
13106 TYPE_FIELD_PRIVATE_BITS (type) =
13107 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13108 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
13109
13110 TYPE_FIELD_PROTECTED_BITS (type) =
13111 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13112 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
13113
13114 TYPE_FIELD_IGNORE_BITS (type) =
13115 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13116 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
13117 }
13118
13119 /* If the type has baseclasses, allocate and clear a bit vector for
13120 TYPE_FIELD_VIRTUAL_BITS. */
13121 if (fip->nbaseclasses && cu->language != language_ada)
13122 {
13123 int num_bytes = B_BYTES (fip->nbaseclasses);
13124 unsigned char *pointer;
13125
13126 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13127 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
13128 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
13129 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
13130 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
13131 }
13132
13133 /* Copy the saved-up fields into the field vector. Start from the head of
13134 the list, adding to the tail of the field array, so that they end up in
13135 the same order in the array in which they were added to the list. */
13136 while (nfields-- > 0)
13137 {
13138 struct nextfield *fieldp;
13139
13140 if (fip->fields)
13141 {
13142 fieldp = fip->fields;
13143 fip->fields = fieldp->next;
13144 }
13145 else
13146 {
13147 fieldp = fip->baseclasses;
13148 fip->baseclasses = fieldp->next;
13149 }
13150
13151 TYPE_FIELD (type, nfields) = fieldp->field;
13152 switch (fieldp->accessibility)
13153 {
13154 case DW_ACCESS_private:
13155 if (cu->language != language_ada)
13156 SET_TYPE_FIELD_PRIVATE (type, nfields);
13157 break;
13158
13159 case DW_ACCESS_protected:
13160 if (cu->language != language_ada)
13161 SET_TYPE_FIELD_PROTECTED (type, nfields);
13162 break;
13163
13164 case DW_ACCESS_public:
13165 break;
13166
13167 default:
13168 /* Unknown accessibility. Complain and treat it as public. */
13169 {
13170 complaint (&symfile_complaints, _("unsupported accessibility %d"),
13171 fieldp->accessibility);
13172 }
13173 break;
13174 }
13175 if (nfields < fip->nbaseclasses)
13176 {
13177 switch (fieldp->virtuality)
13178 {
13179 case DW_VIRTUALITY_virtual:
13180 case DW_VIRTUALITY_pure_virtual:
13181 if (cu->language == language_ada)
13182 error (_("unexpected virtuality in component of Ada type"));
13183 SET_TYPE_FIELD_VIRTUAL (type, nfields);
13184 break;
13185 }
13186 }
13187 }
13188 }
13189
13190 /* Return true if this member function is a constructor, false
13191 otherwise. */
13192
13193 static int
13194 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
13195 {
13196 const char *fieldname;
13197 const char *type_name;
13198 int len;
13199
13200 if (die->parent == NULL)
13201 return 0;
13202
13203 if (die->parent->tag != DW_TAG_structure_type
13204 && die->parent->tag != DW_TAG_union_type
13205 && die->parent->tag != DW_TAG_class_type)
13206 return 0;
13207
13208 fieldname = dwarf2_name (die, cu);
13209 type_name = dwarf2_name (die->parent, cu);
13210 if (fieldname == NULL || type_name == NULL)
13211 return 0;
13212
13213 len = strlen (fieldname);
13214 return (strncmp (fieldname, type_name, len) == 0
13215 && (type_name[len] == '\0' || type_name[len] == '<'));
13216 }
13217
13218 /* Add a member function to the proper fieldlist. */
13219
13220 static void
13221 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
13222 struct type *type, struct dwarf2_cu *cu)
13223 {
13224 struct objfile *objfile = cu->objfile;
13225 struct attribute *attr;
13226 struct fnfieldlist *flp;
13227 int i;
13228 struct fn_field *fnp;
13229 const char *fieldname;
13230 struct nextfnfield *new_fnfield;
13231 struct type *this_type;
13232 enum dwarf_access_attribute accessibility;
13233
13234 if (cu->language == language_ada)
13235 error (_("unexpected member function in Ada type"));
13236
13237 /* Get name of member function. */
13238 fieldname = dwarf2_name (die, cu);
13239 if (fieldname == NULL)
13240 return;
13241
13242 /* Look up member function name in fieldlist. */
13243 for (i = 0; i < fip->nfnfields; i++)
13244 {
13245 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
13246 break;
13247 }
13248
13249 /* Create new list element if necessary. */
13250 if (i < fip->nfnfields)
13251 flp = &fip->fnfieldlists[i];
13252 else
13253 {
13254 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
13255 {
13256 fip->fnfieldlists = (struct fnfieldlist *)
13257 xrealloc (fip->fnfieldlists,
13258 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
13259 * sizeof (struct fnfieldlist));
13260 if (fip->nfnfields == 0)
13261 make_cleanup (free_current_contents, &fip->fnfieldlists);
13262 }
13263 flp = &fip->fnfieldlists[fip->nfnfields];
13264 flp->name = fieldname;
13265 flp->length = 0;
13266 flp->head = NULL;
13267 i = fip->nfnfields++;
13268 }
13269
13270 /* Create a new member function field and chain it to the field list
13271 entry. */
13272 new_fnfield = XNEW (struct nextfnfield);
13273 make_cleanup (xfree, new_fnfield);
13274 memset (new_fnfield, 0, sizeof (struct nextfnfield));
13275 new_fnfield->next = flp->head;
13276 flp->head = new_fnfield;
13277 flp->length++;
13278
13279 /* Fill in the member function field info. */
13280 fnp = &new_fnfield->fnfield;
13281
13282 /* Delay processing of the physname until later. */
13283 if (cu->language == language_cplus)
13284 {
13285 add_to_method_list (type, i, flp->length - 1, fieldname,
13286 die, cu);
13287 }
13288 else
13289 {
13290 const char *physname = dwarf2_physname (fieldname, die, cu);
13291 fnp->physname = physname ? physname : "";
13292 }
13293
13294 fnp->type = alloc_type (objfile);
13295 this_type = read_type_die (die, cu);
13296 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
13297 {
13298 int nparams = TYPE_NFIELDS (this_type);
13299
13300 /* TYPE is the domain of this method, and THIS_TYPE is the type
13301 of the method itself (TYPE_CODE_METHOD). */
13302 smash_to_method_type (fnp->type, type,
13303 TYPE_TARGET_TYPE (this_type),
13304 TYPE_FIELDS (this_type),
13305 TYPE_NFIELDS (this_type),
13306 TYPE_VARARGS (this_type));
13307
13308 /* Handle static member functions.
13309 Dwarf2 has no clean way to discern C++ static and non-static
13310 member functions. G++ helps GDB by marking the first
13311 parameter for non-static member functions (which is the this
13312 pointer) as artificial. We obtain this information from
13313 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
13314 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
13315 fnp->voffset = VOFFSET_STATIC;
13316 }
13317 else
13318 complaint (&symfile_complaints, _("member function type missing for '%s'"),
13319 dwarf2_full_name (fieldname, die, cu));
13320
13321 /* Get fcontext from DW_AT_containing_type if present. */
13322 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13323 fnp->fcontext = die_containing_type (die, cu);
13324
13325 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
13326 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
13327
13328 /* Get accessibility. */
13329 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
13330 if (attr)
13331 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
13332 else
13333 accessibility = dwarf2_default_access_attribute (die, cu);
13334 switch (accessibility)
13335 {
13336 case DW_ACCESS_private:
13337 fnp->is_private = 1;
13338 break;
13339 case DW_ACCESS_protected:
13340 fnp->is_protected = 1;
13341 break;
13342 }
13343
13344 /* Check for artificial methods. */
13345 attr = dwarf2_attr (die, DW_AT_artificial, cu);
13346 if (attr && DW_UNSND (attr) != 0)
13347 fnp->is_artificial = 1;
13348
13349 fnp->is_constructor = dwarf2_is_constructor (die, cu);
13350
13351 /* Get index in virtual function table if it is a virtual member
13352 function. For older versions of GCC, this is an offset in the
13353 appropriate virtual table, as specified by DW_AT_containing_type.
13354 For everyone else, it is an expression to be evaluated relative
13355 to the object address. */
13356
13357 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
13358 if (attr)
13359 {
13360 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
13361 {
13362 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
13363 {
13364 /* Old-style GCC. */
13365 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
13366 }
13367 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
13368 || (DW_BLOCK (attr)->size > 1
13369 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
13370 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
13371 {
13372 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
13373 if ((fnp->voffset % cu->header.addr_size) != 0)
13374 dwarf2_complex_location_expr_complaint ();
13375 else
13376 fnp->voffset /= cu->header.addr_size;
13377 fnp->voffset += 2;
13378 }
13379 else
13380 dwarf2_complex_location_expr_complaint ();
13381
13382 if (!fnp->fcontext)
13383 {
13384 /* If there is no `this' field and no DW_AT_containing_type,
13385 we cannot actually find a base class context for the
13386 vtable! */
13387 if (TYPE_NFIELDS (this_type) == 0
13388 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
13389 {
13390 complaint (&symfile_complaints,
13391 _("cannot determine context for virtual member "
13392 "function \"%s\" (offset %d)"),
13393 fieldname, to_underlying (die->sect_off));
13394 }
13395 else
13396 {
13397 fnp->fcontext
13398 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
13399 }
13400 }
13401 }
13402 else if (attr_form_is_section_offset (attr))
13403 {
13404 dwarf2_complex_location_expr_complaint ();
13405 }
13406 else
13407 {
13408 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
13409 fieldname);
13410 }
13411 }
13412 else
13413 {
13414 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13415 if (attr && DW_UNSND (attr))
13416 {
13417 /* GCC does this, as of 2008-08-25; PR debug/37237. */
13418 complaint (&symfile_complaints,
13419 _("Member function \"%s\" (offset %d) is virtual "
13420 "but the vtable offset is not specified"),
13421 fieldname, to_underlying (die->sect_off));
13422 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13423 TYPE_CPLUS_DYNAMIC (type) = 1;
13424 }
13425 }
13426 }
13427
13428 /* Create the vector of member function fields, and attach it to the type. */
13429
13430 static void
13431 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
13432 struct dwarf2_cu *cu)
13433 {
13434 struct fnfieldlist *flp;
13435 int i;
13436
13437 if (cu->language == language_ada)
13438 error (_("unexpected member functions in Ada type"));
13439
13440 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13441 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13442 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13443
13444 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13445 {
13446 struct nextfnfield *nfp = flp->head;
13447 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13448 int k;
13449
13450 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13451 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13452 fn_flp->fn_fields = (struct fn_field *)
13453 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13454 for (k = flp->length; (k--, nfp); nfp = nfp->next)
13455 fn_flp->fn_fields[k] = nfp->fnfield;
13456 }
13457
13458 TYPE_NFN_FIELDS (type) = fip->nfnfields;
13459 }
13460
13461 /* Returns non-zero if NAME is the name of a vtable member in CU's
13462 language, zero otherwise. */
13463 static int
13464 is_vtable_name (const char *name, struct dwarf2_cu *cu)
13465 {
13466 static const char vptr[] = "_vptr";
13467 static const char vtable[] = "vtable";
13468
13469 /* Look for the C++ form of the vtable. */
13470 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
13471 return 1;
13472
13473 return 0;
13474 }
13475
13476 /* GCC outputs unnamed structures that are really pointers to member
13477 functions, with the ABI-specified layout. If TYPE describes
13478 such a structure, smash it into a member function type.
13479
13480 GCC shouldn't do this; it should just output pointer to member DIEs.
13481 This is GCC PR debug/28767. */
13482
13483 static void
13484 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
13485 {
13486 struct type *pfn_type, *self_type, *new_type;
13487
13488 /* Check for a structure with no name and two children. */
13489 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13490 return;
13491
13492 /* Check for __pfn and __delta members. */
13493 if (TYPE_FIELD_NAME (type, 0) == NULL
13494 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13495 || TYPE_FIELD_NAME (type, 1) == NULL
13496 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13497 return;
13498
13499 /* Find the type of the method. */
13500 pfn_type = TYPE_FIELD_TYPE (type, 0);
13501 if (pfn_type == NULL
13502 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13503 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
13504 return;
13505
13506 /* Look for the "this" argument. */
13507 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13508 if (TYPE_NFIELDS (pfn_type) == 0
13509 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
13510 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
13511 return;
13512
13513 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
13514 new_type = alloc_type (objfile);
13515 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
13516 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13517 TYPE_VARARGS (pfn_type));
13518 smash_to_methodptr_type (type, new_type);
13519 }
13520
13521 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13522 (icc). */
13523
13524 static int
13525 producer_is_icc (struct dwarf2_cu *cu)
13526 {
13527 if (!cu->checked_producer)
13528 check_producer (cu);
13529
13530 return cu->producer_is_icc;
13531 }
13532
13533 /* Called when we find the DIE that starts a structure or union scope
13534 (definition) to create a type for the structure or union. Fill in
13535 the type's name and general properties; the members will not be
13536 processed until process_structure_scope. A symbol table entry for
13537 the type will also not be done until process_structure_scope (assuming
13538 the type has a name).
13539
13540 NOTE: we need to call these functions regardless of whether or not the
13541 DIE has a DW_AT_name attribute, since it might be an anonymous
13542 structure or union. This gets the type entered into our set of
13543 user defined types. */
13544
13545 static struct type *
13546 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
13547 {
13548 struct objfile *objfile = cu->objfile;
13549 struct type *type;
13550 struct attribute *attr;
13551 const char *name;
13552
13553 /* If the definition of this type lives in .debug_types, read that type.
13554 Don't follow DW_AT_specification though, that will take us back up
13555 the chain and we want to go down. */
13556 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13557 if (attr)
13558 {
13559 type = get_DW_AT_signature_type (die, attr, cu);
13560
13561 /* The type's CU may not be the same as CU.
13562 Ensure TYPE is recorded with CU in die_type_hash. */
13563 return set_die_type (die, type, cu);
13564 }
13565
13566 type = alloc_type (objfile);
13567 INIT_CPLUS_SPECIFIC (type);
13568
13569 name = dwarf2_name (die, cu);
13570 if (name != NULL)
13571 {
13572 if (cu->language == language_cplus
13573 || cu->language == language_d
13574 || cu->language == language_rust)
13575 {
13576 const char *full_name = dwarf2_full_name (name, die, cu);
13577
13578 /* dwarf2_full_name might have already finished building the DIE's
13579 type. If so, there is no need to continue. */
13580 if (get_die_type (die, cu) != NULL)
13581 return get_die_type (die, cu);
13582
13583 TYPE_TAG_NAME (type) = full_name;
13584 if (die->tag == DW_TAG_structure_type
13585 || die->tag == DW_TAG_class_type)
13586 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13587 }
13588 else
13589 {
13590 /* The name is already allocated along with this objfile, so
13591 we don't need to duplicate it for the type. */
13592 TYPE_TAG_NAME (type) = name;
13593 if (die->tag == DW_TAG_class_type)
13594 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13595 }
13596 }
13597
13598 if (die->tag == DW_TAG_structure_type)
13599 {
13600 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13601 }
13602 else if (die->tag == DW_TAG_union_type)
13603 {
13604 TYPE_CODE (type) = TYPE_CODE_UNION;
13605 }
13606 else
13607 {
13608 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13609 }
13610
13611 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13612 TYPE_DECLARED_CLASS (type) = 1;
13613
13614 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13615 if (attr)
13616 {
13617 if (attr_form_is_constant (attr))
13618 TYPE_LENGTH (type) = DW_UNSND (attr);
13619 else
13620 {
13621 /* For the moment, dynamic type sizes are not supported
13622 by GDB's struct type. The actual size is determined
13623 on-demand when resolving the type of a given object,
13624 so set the type's length to zero for now. Otherwise,
13625 we record an expression as the length, and that expression
13626 could lead to a very large value, which could eventually
13627 lead to us trying to allocate that much memory when creating
13628 a value of that type. */
13629 TYPE_LENGTH (type) = 0;
13630 }
13631 }
13632 else
13633 {
13634 TYPE_LENGTH (type) = 0;
13635 }
13636
13637 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
13638 {
13639 /* ICC does not output the required DW_AT_declaration
13640 on incomplete types, but gives them a size of zero. */
13641 TYPE_STUB (type) = 1;
13642 }
13643 else
13644 TYPE_STUB_SUPPORTED (type) = 1;
13645
13646 if (die_is_declaration (die, cu))
13647 TYPE_STUB (type) = 1;
13648 else if (attr == NULL && die->child == NULL
13649 && producer_is_realview (cu->producer))
13650 /* RealView does not output the required DW_AT_declaration
13651 on incomplete types. */
13652 TYPE_STUB (type) = 1;
13653
13654 /* We need to add the type field to the die immediately so we don't
13655 infinitely recurse when dealing with pointers to the structure
13656 type within the structure itself. */
13657 set_die_type (die, type, cu);
13658
13659 /* set_die_type should be already done. */
13660 set_descriptive_type (type, die, cu);
13661
13662 return type;
13663 }
13664
13665 /* Finish creating a structure or union type, including filling in
13666 its members and creating a symbol for it. */
13667
13668 static void
13669 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13670 {
13671 struct objfile *objfile = cu->objfile;
13672 struct die_info *child_die;
13673 struct type *type;
13674
13675 type = get_die_type (die, cu);
13676 if (type == NULL)
13677 type = read_structure_type (die, cu);
13678
13679 if (die->child != NULL && ! die_is_declaration (die, cu))
13680 {
13681 struct field_info fi;
13682 VEC (symbolp) *template_args = NULL;
13683 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13684
13685 memset (&fi, 0, sizeof (struct field_info));
13686
13687 child_die = die->child;
13688
13689 while (child_die && child_die->tag)
13690 {
13691 if (child_die->tag == DW_TAG_member
13692 || child_die->tag == DW_TAG_variable)
13693 {
13694 /* NOTE: carlton/2002-11-05: A C++ static data member
13695 should be a DW_TAG_member that is a declaration, but
13696 all versions of G++ as of this writing (so through at
13697 least 3.2.1) incorrectly generate DW_TAG_variable
13698 tags for them instead. */
13699 dwarf2_add_field (&fi, child_die, cu);
13700 }
13701 else if (child_die->tag == DW_TAG_subprogram)
13702 {
13703 /* Rust doesn't have member functions in the C++ sense.
13704 However, it does emit ordinary functions as children
13705 of a struct DIE. */
13706 if (cu->language == language_rust)
13707 read_func_scope (child_die, cu);
13708 else
13709 {
13710 /* C++ member function. */
13711 dwarf2_add_member_fn (&fi, child_die, type, cu);
13712 }
13713 }
13714 else if (child_die->tag == DW_TAG_inheritance)
13715 {
13716 /* C++ base class field. */
13717 dwarf2_add_field (&fi, child_die, cu);
13718 }
13719 else if (child_die->tag == DW_TAG_typedef)
13720 dwarf2_add_typedef (&fi, child_die, cu);
13721 else if (child_die->tag == DW_TAG_template_type_param
13722 || child_die->tag == DW_TAG_template_value_param)
13723 {
13724 struct symbol *arg = new_symbol (child_die, NULL, cu);
13725
13726 if (arg != NULL)
13727 VEC_safe_push (symbolp, template_args, arg);
13728 }
13729
13730 child_die = sibling_die (child_die);
13731 }
13732
13733 /* Attach template arguments to type. */
13734 if (! VEC_empty (symbolp, template_args))
13735 {
13736 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13737 TYPE_N_TEMPLATE_ARGUMENTS (type)
13738 = VEC_length (symbolp, template_args);
13739 TYPE_TEMPLATE_ARGUMENTS (type)
13740 = XOBNEWVEC (&objfile->objfile_obstack,
13741 struct symbol *,
13742 TYPE_N_TEMPLATE_ARGUMENTS (type));
13743 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13744 VEC_address (symbolp, template_args),
13745 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13746 * sizeof (struct symbol *)));
13747 VEC_free (symbolp, template_args);
13748 }
13749
13750 /* Attach fields and member functions to the type. */
13751 if (fi.nfields)
13752 dwarf2_attach_fields_to_type (&fi, type, cu);
13753 if (fi.nfnfields)
13754 {
13755 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13756
13757 /* Get the type which refers to the base class (possibly this
13758 class itself) which contains the vtable pointer for the current
13759 class from the DW_AT_containing_type attribute. This use of
13760 DW_AT_containing_type is a GNU extension. */
13761
13762 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13763 {
13764 struct type *t = die_containing_type (die, cu);
13765
13766 set_type_vptr_basetype (type, t);
13767 if (type == t)
13768 {
13769 int i;
13770
13771 /* Our own class provides vtbl ptr. */
13772 for (i = TYPE_NFIELDS (t) - 1;
13773 i >= TYPE_N_BASECLASSES (t);
13774 --i)
13775 {
13776 const char *fieldname = TYPE_FIELD_NAME (t, i);
13777
13778 if (is_vtable_name (fieldname, cu))
13779 {
13780 set_type_vptr_fieldno (type, i);
13781 break;
13782 }
13783 }
13784
13785 /* Complain if virtual function table field not found. */
13786 if (i < TYPE_N_BASECLASSES (t))
13787 complaint (&symfile_complaints,
13788 _("virtual function table pointer "
13789 "not found when defining class '%s'"),
13790 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13791 "");
13792 }
13793 else
13794 {
13795 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
13796 }
13797 }
13798 else if (cu->producer
13799 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
13800 {
13801 /* The IBM XLC compiler does not provide direct indication
13802 of the containing type, but the vtable pointer is
13803 always named __vfp. */
13804
13805 int i;
13806
13807 for (i = TYPE_NFIELDS (type) - 1;
13808 i >= TYPE_N_BASECLASSES (type);
13809 --i)
13810 {
13811 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13812 {
13813 set_type_vptr_fieldno (type, i);
13814 set_type_vptr_basetype (type, type);
13815 break;
13816 }
13817 }
13818 }
13819 }
13820
13821 /* Copy fi.typedef_field_list linked list elements content into the
13822 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13823 if (fi.typedef_field_list)
13824 {
13825 int i = fi.typedef_field_list_count;
13826
13827 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13828 TYPE_TYPEDEF_FIELD_ARRAY (type)
13829 = ((struct typedef_field *)
13830 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
13831 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13832
13833 /* Reverse the list order to keep the debug info elements order. */
13834 while (--i >= 0)
13835 {
13836 struct typedef_field *dest, *src;
13837
13838 dest = &TYPE_TYPEDEF_FIELD (type, i);
13839 src = &fi.typedef_field_list->field;
13840 fi.typedef_field_list = fi.typedef_field_list->next;
13841 *dest = *src;
13842 }
13843 }
13844
13845 do_cleanups (back_to);
13846 }
13847
13848 quirk_gcc_member_function_pointer (type, objfile);
13849
13850 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13851 snapshots) has been known to create a die giving a declaration
13852 for a class that has, as a child, a die giving a definition for a
13853 nested class. So we have to process our children even if the
13854 current die is a declaration. Normally, of course, a declaration
13855 won't have any children at all. */
13856
13857 child_die = die->child;
13858
13859 while (child_die != NULL && child_die->tag)
13860 {
13861 if (child_die->tag == DW_TAG_member
13862 || child_die->tag == DW_TAG_variable
13863 || child_die->tag == DW_TAG_inheritance
13864 || child_die->tag == DW_TAG_template_value_param
13865 || child_die->tag == DW_TAG_template_type_param)
13866 {
13867 /* Do nothing. */
13868 }
13869 else
13870 process_die (child_die, cu);
13871
13872 child_die = sibling_die (child_die);
13873 }
13874
13875 /* Do not consider external references. According to the DWARF standard,
13876 these DIEs are identified by the fact that they have no byte_size
13877 attribute, and a declaration attribute. */
13878 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13879 || !die_is_declaration (die, cu))
13880 new_symbol (die, type, cu);
13881 }
13882
13883 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13884 update TYPE using some information only available in DIE's children. */
13885
13886 static void
13887 update_enumeration_type_from_children (struct die_info *die,
13888 struct type *type,
13889 struct dwarf2_cu *cu)
13890 {
13891 struct die_info *child_die;
13892 int unsigned_enum = 1;
13893 int flag_enum = 1;
13894 ULONGEST mask = 0;
13895
13896 auto_obstack obstack;
13897
13898 for (child_die = die->child;
13899 child_die != NULL && child_die->tag;
13900 child_die = sibling_die (child_die))
13901 {
13902 struct attribute *attr;
13903 LONGEST value;
13904 const gdb_byte *bytes;
13905 struct dwarf2_locexpr_baton *baton;
13906 const char *name;
13907
13908 if (child_die->tag != DW_TAG_enumerator)
13909 continue;
13910
13911 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13912 if (attr == NULL)
13913 continue;
13914
13915 name = dwarf2_name (child_die, cu);
13916 if (name == NULL)
13917 name = "<anonymous enumerator>";
13918
13919 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13920 &value, &bytes, &baton);
13921 if (value < 0)
13922 {
13923 unsigned_enum = 0;
13924 flag_enum = 0;
13925 }
13926 else if ((mask & value) != 0)
13927 flag_enum = 0;
13928 else
13929 mask |= value;
13930
13931 /* If we already know that the enum type is neither unsigned, nor
13932 a flag type, no need to look at the rest of the enumerates. */
13933 if (!unsigned_enum && !flag_enum)
13934 break;
13935 }
13936
13937 if (unsigned_enum)
13938 TYPE_UNSIGNED (type) = 1;
13939 if (flag_enum)
13940 TYPE_FLAG_ENUM (type) = 1;
13941 }
13942
13943 /* Given a DW_AT_enumeration_type die, set its type. We do not
13944 complete the type's fields yet, or create any symbols. */
13945
13946 static struct type *
13947 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13948 {
13949 struct objfile *objfile = cu->objfile;
13950 struct type *type;
13951 struct attribute *attr;
13952 const char *name;
13953
13954 /* If the definition of this type lives in .debug_types, read that type.
13955 Don't follow DW_AT_specification though, that will take us back up
13956 the chain and we want to go down. */
13957 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13958 if (attr)
13959 {
13960 type = get_DW_AT_signature_type (die, attr, cu);
13961
13962 /* The type's CU may not be the same as CU.
13963 Ensure TYPE is recorded with CU in die_type_hash. */
13964 return set_die_type (die, type, cu);
13965 }
13966
13967 type = alloc_type (objfile);
13968
13969 TYPE_CODE (type) = TYPE_CODE_ENUM;
13970 name = dwarf2_full_name (NULL, die, cu);
13971 if (name != NULL)
13972 TYPE_TAG_NAME (type) = name;
13973
13974 attr = dwarf2_attr (die, DW_AT_type, cu);
13975 if (attr != NULL)
13976 {
13977 struct type *underlying_type = die_type (die, cu);
13978
13979 TYPE_TARGET_TYPE (type) = underlying_type;
13980 }
13981
13982 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13983 if (attr)
13984 {
13985 TYPE_LENGTH (type) = DW_UNSND (attr);
13986 }
13987 else
13988 {
13989 TYPE_LENGTH (type) = 0;
13990 }
13991
13992 /* The enumeration DIE can be incomplete. In Ada, any type can be
13993 declared as private in the package spec, and then defined only
13994 inside the package body. Such types are known as Taft Amendment
13995 Types. When another package uses such a type, an incomplete DIE
13996 may be generated by the compiler. */
13997 if (die_is_declaration (die, cu))
13998 TYPE_STUB (type) = 1;
13999
14000 /* Finish the creation of this type by using the enum's children.
14001 We must call this even when the underlying type has been provided
14002 so that we can determine if we're looking at a "flag" enum. */
14003 update_enumeration_type_from_children (die, type, cu);
14004
14005 /* If this type has an underlying type that is not a stub, then we
14006 may use its attributes. We always use the "unsigned" attribute
14007 in this situation, because ordinarily we guess whether the type
14008 is unsigned -- but the guess can be wrong and the underlying type
14009 can tell us the reality. However, we defer to a local size
14010 attribute if one exists, because this lets the compiler override
14011 the underlying type if needed. */
14012 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
14013 {
14014 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
14015 if (TYPE_LENGTH (type) == 0)
14016 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
14017 }
14018
14019 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
14020
14021 return set_die_type (die, type, cu);
14022 }
14023
14024 /* Given a pointer to a die which begins an enumeration, process all
14025 the dies that define the members of the enumeration, and create the
14026 symbol for the enumeration type.
14027
14028 NOTE: We reverse the order of the element list. */
14029
14030 static void
14031 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
14032 {
14033 struct type *this_type;
14034
14035 this_type = get_die_type (die, cu);
14036 if (this_type == NULL)
14037 this_type = read_enumeration_type (die, cu);
14038
14039 if (die->child != NULL)
14040 {
14041 struct die_info *child_die;
14042 struct symbol *sym;
14043 struct field *fields = NULL;
14044 int num_fields = 0;
14045 const char *name;
14046
14047 child_die = die->child;
14048 while (child_die && child_die->tag)
14049 {
14050 if (child_die->tag != DW_TAG_enumerator)
14051 {
14052 process_die (child_die, cu);
14053 }
14054 else
14055 {
14056 name = dwarf2_name (child_die, cu);
14057 if (name)
14058 {
14059 sym = new_symbol (child_die, this_type, cu);
14060
14061 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
14062 {
14063 fields = (struct field *)
14064 xrealloc (fields,
14065 (num_fields + DW_FIELD_ALLOC_CHUNK)
14066 * sizeof (struct field));
14067 }
14068
14069 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
14070 FIELD_TYPE (fields[num_fields]) = NULL;
14071 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
14072 FIELD_BITSIZE (fields[num_fields]) = 0;
14073
14074 num_fields++;
14075 }
14076 }
14077
14078 child_die = sibling_die (child_die);
14079 }
14080
14081 if (num_fields)
14082 {
14083 TYPE_NFIELDS (this_type) = num_fields;
14084 TYPE_FIELDS (this_type) = (struct field *)
14085 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
14086 memcpy (TYPE_FIELDS (this_type), fields,
14087 sizeof (struct field) * num_fields);
14088 xfree (fields);
14089 }
14090 }
14091
14092 /* If we are reading an enum from a .debug_types unit, and the enum
14093 is a declaration, and the enum is not the signatured type in the
14094 unit, then we do not want to add a symbol for it. Adding a
14095 symbol would in some cases obscure the true definition of the
14096 enum, giving users an incomplete type when the definition is
14097 actually available. Note that we do not want to do this for all
14098 enums which are just declarations, because C++0x allows forward
14099 enum declarations. */
14100 if (cu->per_cu->is_debug_types
14101 && die_is_declaration (die, cu))
14102 {
14103 struct signatured_type *sig_type;
14104
14105 sig_type = (struct signatured_type *) cu->per_cu;
14106 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
14107 if (sig_type->type_offset_in_section != die->sect_off)
14108 return;
14109 }
14110
14111 new_symbol (die, this_type, cu);
14112 }
14113
14114 /* Extract all information from a DW_TAG_array_type DIE and put it in
14115 the DIE's type field. For now, this only handles one dimensional
14116 arrays. */
14117
14118 static struct type *
14119 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
14120 {
14121 struct objfile *objfile = cu->objfile;
14122 struct die_info *child_die;
14123 struct type *type;
14124 struct type *element_type, *range_type, *index_type;
14125 struct type **range_types = NULL;
14126 struct attribute *attr;
14127 int ndim = 0;
14128 struct cleanup *back_to;
14129 const char *name;
14130 unsigned int bit_stride = 0;
14131
14132 element_type = die_type (die, cu);
14133
14134 /* The die_type call above may have already set the type for this DIE. */
14135 type = get_die_type (die, cu);
14136 if (type)
14137 return type;
14138
14139 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
14140 if (attr != NULL)
14141 bit_stride = DW_UNSND (attr) * 8;
14142
14143 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
14144 if (attr != NULL)
14145 bit_stride = DW_UNSND (attr);
14146
14147 /* Irix 6.2 native cc creates array types without children for
14148 arrays with unspecified length. */
14149 if (die->child == NULL)
14150 {
14151 index_type = objfile_type (objfile)->builtin_int;
14152 range_type = create_static_range_type (NULL, index_type, 0, -1);
14153 type = create_array_type_with_stride (NULL, element_type, range_type,
14154 bit_stride);
14155 return set_die_type (die, type, cu);
14156 }
14157
14158 back_to = make_cleanup (null_cleanup, NULL);
14159 child_die = die->child;
14160 while (child_die && child_die->tag)
14161 {
14162 if (child_die->tag == DW_TAG_subrange_type)
14163 {
14164 struct type *child_type = read_type_die (child_die, cu);
14165
14166 if (child_type != NULL)
14167 {
14168 /* The range type was succesfully read. Save it for the
14169 array type creation. */
14170 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
14171 {
14172 range_types = (struct type **)
14173 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
14174 * sizeof (struct type *));
14175 if (ndim == 0)
14176 make_cleanup (free_current_contents, &range_types);
14177 }
14178 range_types[ndim++] = child_type;
14179 }
14180 }
14181 child_die = sibling_die (child_die);
14182 }
14183
14184 /* Dwarf2 dimensions are output from left to right, create the
14185 necessary array types in backwards order. */
14186
14187 type = element_type;
14188
14189 if (read_array_order (die, cu) == DW_ORD_col_major)
14190 {
14191 int i = 0;
14192
14193 while (i < ndim)
14194 type = create_array_type_with_stride (NULL, type, range_types[i++],
14195 bit_stride);
14196 }
14197 else
14198 {
14199 while (ndim-- > 0)
14200 type = create_array_type_with_stride (NULL, type, range_types[ndim],
14201 bit_stride);
14202 }
14203
14204 /* Understand Dwarf2 support for vector types (like they occur on
14205 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
14206 array type. This is not part of the Dwarf2/3 standard yet, but a
14207 custom vendor extension. The main difference between a regular
14208 array and the vector variant is that vectors are passed by value
14209 to functions. */
14210 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
14211 if (attr)
14212 make_vector_type (type);
14213
14214 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
14215 implementation may choose to implement triple vectors using this
14216 attribute. */
14217 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14218 if (attr)
14219 {
14220 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
14221 TYPE_LENGTH (type) = DW_UNSND (attr);
14222 else
14223 complaint (&symfile_complaints,
14224 _("DW_AT_byte_size for array type smaller "
14225 "than the total size of elements"));
14226 }
14227
14228 name = dwarf2_name (die, cu);
14229 if (name)
14230 TYPE_NAME (type) = name;
14231
14232 /* Install the type in the die. */
14233 set_die_type (die, type, cu);
14234
14235 /* set_die_type should be already done. */
14236 set_descriptive_type (type, die, cu);
14237
14238 do_cleanups (back_to);
14239
14240 return type;
14241 }
14242
14243 static enum dwarf_array_dim_ordering
14244 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
14245 {
14246 struct attribute *attr;
14247
14248 attr = dwarf2_attr (die, DW_AT_ordering, cu);
14249
14250 if (attr)
14251 return (enum dwarf_array_dim_ordering) DW_SND (attr);
14252
14253 /* GNU F77 is a special case, as at 08/2004 array type info is the
14254 opposite order to the dwarf2 specification, but data is still
14255 laid out as per normal fortran.
14256
14257 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
14258 version checking. */
14259
14260 if (cu->language == language_fortran
14261 && cu->producer && strstr (cu->producer, "GNU F77"))
14262 {
14263 return DW_ORD_row_major;
14264 }
14265
14266 switch (cu->language_defn->la_array_ordering)
14267 {
14268 case array_column_major:
14269 return DW_ORD_col_major;
14270 case array_row_major:
14271 default:
14272 return DW_ORD_row_major;
14273 };
14274 }
14275
14276 /* Extract all information from a DW_TAG_set_type DIE and put it in
14277 the DIE's type field. */
14278
14279 static struct type *
14280 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
14281 {
14282 struct type *domain_type, *set_type;
14283 struct attribute *attr;
14284
14285 domain_type = die_type (die, cu);
14286
14287 /* The die_type call above may have already set the type for this DIE. */
14288 set_type = get_die_type (die, cu);
14289 if (set_type)
14290 return set_type;
14291
14292 set_type = create_set_type (NULL, domain_type);
14293
14294 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14295 if (attr)
14296 TYPE_LENGTH (set_type) = DW_UNSND (attr);
14297
14298 return set_die_type (die, set_type, cu);
14299 }
14300
14301 /* A helper for read_common_block that creates a locexpr baton.
14302 SYM is the symbol which we are marking as computed.
14303 COMMON_DIE is the DIE for the common block.
14304 COMMON_LOC is the location expression attribute for the common
14305 block itself.
14306 MEMBER_LOC is the location expression attribute for the particular
14307 member of the common block that we are processing.
14308 CU is the CU from which the above come. */
14309
14310 static void
14311 mark_common_block_symbol_computed (struct symbol *sym,
14312 struct die_info *common_die,
14313 struct attribute *common_loc,
14314 struct attribute *member_loc,
14315 struct dwarf2_cu *cu)
14316 {
14317 struct objfile *objfile = dwarf2_per_objfile->objfile;
14318 struct dwarf2_locexpr_baton *baton;
14319 gdb_byte *ptr;
14320 unsigned int cu_off;
14321 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
14322 LONGEST offset = 0;
14323
14324 gdb_assert (common_loc && member_loc);
14325 gdb_assert (attr_form_is_block (common_loc));
14326 gdb_assert (attr_form_is_block (member_loc)
14327 || attr_form_is_constant (member_loc));
14328
14329 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14330 baton->per_cu = cu->per_cu;
14331 gdb_assert (baton->per_cu);
14332
14333 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
14334
14335 if (attr_form_is_constant (member_loc))
14336 {
14337 offset = dwarf2_get_attr_constant_value (member_loc, 0);
14338 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
14339 }
14340 else
14341 baton->size += DW_BLOCK (member_loc)->size;
14342
14343 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
14344 baton->data = ptr;
14345
14346 *ptr++ = DW_OP_call4;
14347 cu_off = common_die->sect_off - cu->per_cu->sect_off;
14348 store_unsigned_integer (ptr, 4, byte_order, cu_off);
14349 ptr += 4;
14350
14351 if (attr_form_is_constant (member_loc))
14352 {
14353 *ptr++ = DW_OP_addr;
14354 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
14355 ptr += cu->header.addr_size;
14356 }
14357 else
14358 {
14359 /* We have to copy the data here, because DW_OP_call4 will only
14360 use a DW_AT_location attribute. */
14361 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
14362 ptr += DW_BLOCK (member_loc)->size;
14363 }
14364
14365 *ptr++ = DW_OP_plus;
14366 gdb_assert (ptr - baton->data == baton->size);
14367
14368 SYMBOL_LOCATION_BATON (sym) = baton;
14369 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
14370 }
14371
14372 /* Create appropriate locally-scoped variables for all the
14373 DW_TAG_common_block entries. Also create a struct common_block
14374 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
14375 is used to sepate the common blocks name namespace from regular
14376 variable names. */
14377
14378 static void
14379 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
14380 {
14381 struct attribute *attr;
14382
14383 attr = dwarf2_attr (die, DW_AT_location, cu);
14384 if (attr)
14385 {
14386 /* Support the .debug_loc offsets. */
14387 if (attr_form_is_block (attr))
14388 {
14389 /* Ok. */
14390 }
14391 else if (attr_form_is_section_offset (attr))
14392 {
14393 dwarf2_complex_location_expr_complaint ();
14394 attr = NULL;
14395 }
14396 else
14397 {
14398 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14399 "common block member");
14400 attr = NULL;
14401 }
14402 }
14403
14404 if (die->child != NULL)
14405 {
14406 struct objfile *objfile = cu->objfile;
14407 struct die_info *child_die;
14408 size_t n_entries = 0, size;
14409 struct common_block *common_block;
14410 struct symbol *sym;
14411
14412 for (child_die = die->child;
14413 child_die && child_die->tag;
14414 child_die = sibling_die (child_die))
14415 ++n_entries;
14416
14417 size = (sizeof (struct common_block)
14418 + (n_entries - 1) * sizeof (struct symbol *));
14419 common_block
14420 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
14421 size);
14422 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
14423 common_block->n_entries = 0;
14424
14425 for (child_die = die->child;
14426 child_die && child_die->tag;
14427 child_die = sibling_die (child_die))
14428 {
14429 /* Create the symbol in the DW_TAG_common_block block in the current
14430 symbol scope. */
14431 sym = new_symbol (child_die, NULL, cu);
14432 if (sym != NULL)
14433 {
14434 struct attribute *member_loc;
14435
14436 common_block->contents[common_block->n_entries++] = sym;
14437
14438 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14439 cu);
14440 if (member_loc)
14441 {
14442 /* GDB has handled this for a long time, but it is
14443 not specified by DWARF. It seems to have been
14444 emitted by gfortran at least as recently as:
14445 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14446 complaint (&symfile_complaints,
14447 _("Variable in common block has "
14448 "DW_AT_data_member_location "
14449 "- DIE at 0x%x [in module %s]"),
14450 to_underlying (child_die->sect_off),
14451 objfile_name (cu->objfile));
14452
14453 if (attr_form_is_section_offset (member_loc))
14454 dwarf2_complex_location_expr_complaint ();
14455 else if (attr_form_is_constant (member_loc)
14456 || attr_form_is_block (member_loc))
14457 {
14458 if (attr)
14459 mark_common_block_symbol_computed (sym, die, attr,
14460 member_loc, cu);
14461 }
14462 else
14463 dwarf2_complex_location_expr_complaint ();
14464 }
14465 }
14466 }
14467
14468 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14469 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
14470 }
14471 }
14472
14473 /* Create a type for a C++ namespace. */
14474
14475 static struct type *
14476 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
14477 {
14478 struct objfile *objfile = cu->objfile;
14479 const char *previous_prefix, *name;
14480 int is_anonymous;
14481 struct type *type;
14482
14483 /* For extensions, reuse the type of the original namespace. */
14484 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14485 {
14486 struct die_info *ext_die;
14487 struct dwarf2_cu *ext_cu = cu;
14488
14489 ext_die = dwarf2_extension (die, &ext_cu);
14490 type = read_type_die (ext_die, ext_cu);
14491
14492 /* EXT_CU may not be the same as CU.
14493 Ensure TYPE is recorded with CU in die_type_hash. */
14494 return set_die_type (die, type, cu);
14495 }
14496
14497 name = namespace_name (die, &is_anonymous, cu);
14498
14499 /* Now build the name of the current namespace. */
14500
14501 previous_prefix = determine_prefix (die, cu);
14502 if (previous_prefix[0] != '\0')
14503 name = typename_concat (&objfile->objfile_obstack,
14504 previous_prefix, name, 0, cu);
14505
14506 /* Create the type. */
14507 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
14508 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14509
14510 return set_die_type (die, type, cu);
14511 }
14512
14513 /* Read a namespace scope. */
14514
14515 static void
14516 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14517 {
14518 struct objfile *objfile = cu->objfile;
14519 int is_anonymous;
14520
14521 /* Add a symbol associated to this if we haven't seen the namespace
14522 before. Also, add a using directive if it's an anonymous
14523 namespace. */
14524
14525 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
14526 {
14527 struct type *type;
14528
14529 type = read_type_die (die, cu);
14530 new_symbol (die, type, cu);
14531
14532 namespace_name (die, &is_anonymous, cu);
14533 if (is_anonymous)
14534 {
14535 const char *previous_prefix = determine_prefix (die, cu);
14536
14537 add_using_directive (using_directives (cu->language),
14538 previous_prefix, TYPE_NAME (type), NULL,
14539 NULL, NULL, 0, &objfile->objfile_obstack);
14540 }
14541 }
14542
14543 if (die->child != NULL)
14544 {
14545 struct die_info *child_die = die->child;
14546
14547 while (child_die && child_die->tag)
14548 {
14549 process_die (child_die, cu);
14550 child_die = sibling_die (child_die);
14551 }
14552 }
14553 }
14554
14555 /* Read a Fortran module as type. This DIE can be only a declaration used for
14556 imported module. Still we need that type as local Fortran "use ... only"
14557 declaration imports depend on the created type in determine_prefix. */
14558
14559 static struct type *
14560 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14561 {
14562 struct objfile *objfile = cu->objfile;
14563 const char *module_name;
14564 struct type *type;
14565
14566 module_name = dwarf2_name (die, cu);
14567 if (!module_name)
14568 complaint (&symfile_complaints,
14569 _("DW_TAG_module has no name, offset 0x%x"),
14570 to_underlying (die->sect_off));
14571 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
14572
14573 /* determine_prefix uses TYPE_TAG_NAME. */
14574 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14575
14576 return set_die_type (die, type, cu);
14577 }
14578
14579 /* Read a Fortran module. */
14580
14581 static void
14582 read_module (struct die_info *die, struct dwarf2_cu *cu)
14583 {
14584 struct die_info *child_die = die->child;
14585 struct type *type;
14586
14587 type = read_type_die (die, cu);
14588 new_symbol (die, type, cu);
14589
14590 while (child_die && child_die->tag)
14591 {
14592 process_die (child_die, cu);
14593 child_die = sibling_die (child_die);
14594 }
14595 }
14596
14597 /* Return the name of the namespace represented by DIE. Set
14598 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14599 namespace. */
14600
14601 static const char *
14602 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
14603 {
14604 struct die_info *current_die;
14605 const char *name = NULL;
14606
14607 /* Loop through the extensions until we find a name. */
14608
14609 for (current_die = die;
14610 current_die != NULL;
14611 current_die = dwarf2_extension (die, &cu))
14612 {
14613 /* We don't use dwarf2_name here so that we can detect the absence
14614 of a name -> anonymous namespace. */
14615 name = dwarf2_string_attr (die, DW_AT_name, cu);
14616
14617 if (name != NULL)
14618 break;
14619 }
14620
14621 /* Is it an anonymous namespace? */
14622
14623 *is_anonymous = (name == NULL);
14624 if (*is_anonymous)
14625 name = CP_ANONYMOUS_NAMESPACE_STR;
14626
14627 return name;
14628 }
14629
14630 /* Extract all information from a DW_TAG_pointer_type DIE and add to
14631 the user defined type vector. */
14632
14633 static struct type *
14634 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
14635 {
14636 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
14637 struct comp_unit_head *cu_header = &cu->header;
14638 struct type *type;
14639 struct attribute *attr_byte_size;
14640 struct attribute *attr_address_class;
14641 int byte_size, addr_class;
14642 struct type *target_type;
14643
14644 target_type = die_type (die, cu);
14645
14646 /* The die_type call above may have already set the type for this DIE. */
14647 type = get_die_type (die, cu);
14648 if (type)
14649 return type;
14650
14651 type = lookup_pointer_type (target_type);
14652
14653 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14654 if (attr_byte_size)
14655 byte_size = DW_UNSND (attr_byte_size);
14656 else
14657 byte_size = cu_header->addr_size;
14658
14659 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14660 if (attr_address_class)
14661 addr_class = DW_UNSND (attr_address_class);
14662 else
14663 addr_class = DW_ADDR_none;
14664
14665 /* If the pointer size or address class is different than the
14666 default, create a type variant marked as such and set the
14667 length accordingly. */
14668 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14669 {
14670 if (gdbarch_address_class_type_flags_p (gdbarch))
14671 {
14672 int type_flags;
14673
14674 type_flags = gdbarch_address_class_type_flags
14675 (gdbarch, byte_size, addr_class);
14676 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14677 == 0);
14678 type = make_type_with_address_space (type, type_flags);
14679 }
14680 else if (TYPE_LENGTH (type) != byte_size)
14681 {
14682 complaint (&symfile_complaints,
14683 _("invalid pointer size %d"), byte_size);
14684 }
14685 else
14686 {
14687 /* Should we also complain about unhandled address classes? */
14688 }
14689 }
14690
14691 TYPE_LENGTH (type) = byte_size;
14692 return set_die_type (die, type, cu);
14693 }
14694
14695 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14696 the user defined type vector. */
14697
14698 static struct type *
14699 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14700 {
14701 struct type *type;
14702 struct type *to_type;
14703 struct type *domain;
14704
14705 to_type = die_type (die, cu);
14706 domain = die_containing_type (die, cu);
14707
14708 /* The calls above may have already set the type for this DIE. */
14709 type = get_die_type (die, cu);
14710 if (type)
14711 return type;
14712
14713 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14714 type = lookup_methodptr_type (to_type);
14715 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14716 {
14717 struct type *new_type = alloc_type (cu->objfile);
14718
14719 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14720 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14721 TYPE_VARARGS (to_type));
14722 type = lookup_methodptr_type (new_type);
14723 }
14724 else
14725 type = lookup_memberptr_type (to_type, domain);
14726
14727 return set_die_type (die, type, cu);
14728 }
14729
14730 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
14731 the user defined type vector. */
14732
14733 static struct type *
14734 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
14735 enum type_code refcode)
14736 {
14737 struct comp_unit_head *cu_header = &cu->header;
14738 struct type *type, *target_type;
14739 struct attribute *attr;
14740
14741 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
14742
14743 target_type = die_type (die, cu);
14744
14745 /* The die_type call above may have already set the type for this DIE. */
14746 type = get_die_type (die, cu);
14747 if (type)
14748 return type;
14749
14750 type = lookup_reference_type (target_type, refcode);
14751 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14752 if (attr)
14753 {
14754 TYPE_LENGTH (type) = DW_UNSND (attr);
14755 }
14756 else
14757 {
14758 TYPE_LENGTH (type) = cu_header->addr_size;
14759 }
14760 return set_die_type (die, type, cu);
14761 }
14762
14763 /* Add the given cv-qualifiers to the element type of the array. GCC
14764 outputs DWARF type qualifiers that apply to an array, not the
14765 element type. But GDB relies on the array element type to carry
14766 the cv-qualifiers. This mimics section 6.7.3 of the C99
14767 specification. */
14768
14769 static struct type *
14770 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14771 struct type *base_type, int cnst, int voltl)
14772 {
14773 struct type *el_type, *inner_array;
14774
14775 base_type = copy_type (base_type);
14776 inner_array = base_type;
14777
14778 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14779 {
14780 TYPE_TARGET_TYPE (inner_array) =
14781 copy_type (TYPE_TARGET_TYPE (inner_array));
14782 inner_array = TYPE_TARGET_TYPE (inner_array);
14783 }
14784
14785 el_type = TYPE_TARGET_TYPE (inner_array);
14786 cnst |= TYPE_CONST (el_type);
14787 voltl |= TYPE_VOLATILE (el_type);
14788 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14789
14790 return set_die_type (die, base_type, cu);
14791 }
14792
14793 static struct type *
14794 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14795 {
14796 struct type *base_type, *cv_type;
14797
14798 base_type = die_type (die, cu);
14799
14800 /* The die_type call above may have already set the type for this DIE. */
14801 cv_type = get_die_type (die, cu);
14802 if (cv_type)
14803 return cv_type;
14804
14805 /* In case the const qualifier is applied to an array type, the element type
14806 is so qualified, not the array type (section 6.7.3 of C99). */
14807 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14808 return add_array_cv_type (die, cu, base_type, 1, 0);
14809
14810 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14811 return set_die_type (die, cv_type, cu);
14812 }
14813
14814 static struct type *
14815 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14816 {
14817 struct type *base_type, *cv_type;
14818
14819 base_type = die_type (die, cu);
14820
14821 /* The die_type call above may have already set the type for this DIE. */
14822 cv_type = get_die_type (die, cu);
14823 if (cv_type)
14824 return cv_type;
14825
14826 /* In case the volatile qualifier is applied to an array type, the
14827 element type is so qualified, not the array type (section 6.7.3
14828 of C99). */
14829 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14830 return add_array_cv_type (die, cu, base_type, 0, 1);
14831
14832 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14833 return set_die_type (die, cv_type, cu);
14834 }
14835
14836 /* Handle DW_TAG_restrict_type. */
14837
14838 static struct type *
14839 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14840 {
14841 struct type *base_type, *cv_type;
14842
14843 base_type = die_type (die, cu);
14844
14845 /* The die_type call above may have already set the type for this DIE. */
14846 cv_type = get_die_type (die, cu);
14847 if (cv_type)
14848 return cv_type;
14849
14850 cv_type = make_restrict_type (base_type);
14851 return set_die_type (die, cv_type, cu);
14852 }
14853
14854 /* Handle DW_TAG_atomic_type. */
14855
14856 static struct type *
14857 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14858 {
14859 struct type *base_type, *cv_type;
14860
14861 base_type = die_type (die, cu);
14862
14863 /* The die_type call above may have already set the type for this DIE. */
14864 cv_type = get_die_type (die, cu);
14865 if (cv_type)
14866 return cv_type;
14867
14868 cv_type = make_atomic_type (base_type);
14869 return set_die_type (die, cv_type, cu);
14870 }
14871
14872 /* Extract all information from a DW_TAG_string_type DIE and add to
14873 the user defined type vector. It isn't really a user defined type,
14874 but it behaves like one, with other DIE's using an AT_user_def_type
14875 attribute to reference it. */
14876
14877 static struct type *
14878 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14879 {
14880 struct objfile *objfile = cu->objfile;
14881 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14882 struct type *type, *range_type, *index_type, *char_type;
14883 struct attribute *attr;
14884 unsigned int length;
14885
14886 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14887 if (attr)
14888 {
14889 length = DW_UNSND (attr);
14890 }
14891 else
14892 {
14893 /* Check for the DW_AT_byte_size attribute. */
14894 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14895 if (attr)
14896 {
14897 length = DW_UNSND (attr);
14898 }
14899 else
14900 {
14901 length = 1;
14902 }
14903 }
14904
14905 index_type = objfile_type (objfile)->builtin_int;
14906 range_type = create_static_range_type (NULL, index_type, 1, length);
14907 char_type = language_string_char_type (cu->language_defn, gdbarch);
14908 type = create_string_type (NULL, char_type, range_type);
14909
14910 return set_die_type (die, type, cu);
14911 }
14912
14913 /* Assuming that DIE corresponds to a function, returns nonzero
14914 if the function is prototyped. */
14915
14916 static int
14917 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14918 {
14919 struct attribute *attr;
14920
14921 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14922 if (attr && (DW_UNSND (attr) != 0))
14923 return 1;
14924
14925 /* The DWARF standard implies that the DW_AT_prototyped attribute
14926 is only meaninful for C, but the concept also extends to other
14927 languages that allow unprototyped functions (Eg: Objective C).
14928 For all other languages, assume that functions are always
14929 prototyped. */
14930 if (cu->language != language_c
14931 && cu->language != language_objc
14932 && cu->language != language_opencl)
14933 return 1;
14934
14935 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14936 prototyped and unprototyped functions; default to prototyped,
14937 since that is more common in modern code (and RealView warns
14938 about unprototyped functions). */
14939 if (producer_is_realview (cu->producer))
14940 return 1;
14941
14942 return 0;
14943 }
14944
14945 /* Handle DIES due to C code like:
14946
14947 struct foo
14948 {
14949 int (*funcp)(int a, long l);
14950 int b;
14951 };
14952
14953 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14954
14955 static struct type *
14956 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14957 {
14958 struct objfile *objfile = cu->objfile;
14959 struct type *type; /* Type that this function returns. */
14960 struct type *ftype; /* Function that returns above type. */
14961 struct attribute *attr;
14962
14963 type = die_type (die, cu);
14964
14965 /* The die_type call above may have already set the type for this DIE. */
14966 ftype = get_die_type (die, cu);
14967 if (ftype)
14968 return ftype;
14969
14970 ftype = lookup_function_type (type);
14971
14972 if (prototyped_function_p (die, cu))
14973 TYPE_PROTOTYPED (ftype) = 1;
14974
14975 /* Store the calling convention in the type if it's available in
14976 the subroutine die. Otherwise set the calling convention to
14977 the default value DW_CC_normal. */
14978 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14979 if (attr)
14980 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14981 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14982 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14983 else
14984 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14985
14986 /* Record whether the function returns normally to its caller or not
14987 if the DWARF producer set that information. */
14988 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14989 if (attr && (DW_UNSND (attr) != 0))
14990 TYPE_NO_RETURN (ftype) = 1;
14991
14992 /* We need to add the subroutine type to the die immediately so
14993 we don't infinitely recurse when dealing with parameters
14994 declared as the same subroutine type. */
14995 set_die_type (die, ftype, cu);
14996
14997 if (die->child != NULL)
14998 {
14999 struct type *void_type = objfile_type (objfile)->builtin_void;
15000 struct die_info *child_die;
15001 int nparams, iparams;
15002
15003 /* Count the number of parameters.
15004 FIXME: GDB currently ignores vararg functions, but knows about
15005 vararg member functions. */
15006 nparams = 0;
15007 child_die = die->child;
15008 while (child_die && child_die->tag)
15009 {
15010 if (child_die->tag == DW_TAG_formal_parameter)
15011 nparams++;
15012 else if (child_die->tag == DW_TAG_unspecified_parameters)
15013 TYPE_VARARGS (ftype) = 1;
15014 child_die = sibling_die (child_die);
15015 }
15016
15017 /* Allocate storage for parameters and fill them in. */
15018 TYPE_NFIELDS (ftype) = nparams;
15019 TYPE_FIELDS (ftype) = (struct field *)
15020 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
15021
15022 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
15023 even if we error out during the parameters reading below. */
15024 for (iparams = 0; iparams < nparams; iparams++)
15025 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
15026
15027 iparams = 0;
15028 child_die = die->child;
15029 while (child_die && child_die->tag)
15030 {
15031 if (child_die->tag == DW_TAG_formal_parameter)
15032 {
15033 struct type *arg_type;
15034
15035 /* DWARF version 2 has no clean way to discern C++
15036 static and non-static member functions. G++ helps
15037 GDB by marking the first parameter for non-static
15038 member functions (which is the this pointer) as
15039 artificial. We pass this information to
15040 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
15041
15042 DWARF version 3 added DW_AT_object_pointer, which GCC
15043 4.5 does not yet generate. */
15044 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
15045 if (attr)
15046 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
15047 else
15048 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
15049 arg_type = die_type (child_die, cu);
15050
15051 /* RealView does not mark THIS as const, which the testsuite
15052 expects. GCC marks THIS as const in method definitions,
15053 but not in the class specifications (GCC PR 43053). */
15054 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
15055 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
15056 {
15057 int is_this = 0;
15058 struct dwarf2_cu *arg_cu = cu;
15059 const char *name = dwarf2_name (child_die, cu);
15060
15061 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
15062 if (attr)
15063 {
15064 /* If the compiler emits this, use it. */
15065 if (follow_die_ref (die, attr, &arg_cu) == child_die)
15066 is_this = 1;
15067 }
15068 else if (name && strcmp (name, "this") == 0)
15069 /* Function definitions will have the argument names. */
15070 is_this = 1;
15071 else if (name == NULL && iparams == 0)
15072 /* Declarations may not have the names, so like
15073 elsewhere in GDB, assume an artificial first
15074 argument is "this". */
15075 is_this = 1;
15076
15077 if (is_this)
15078 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
15079 arg_type, 0);
15080 }
15081
15082 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
15083 iparams++;
15084 }
15085 child_die = sibling_die (child_die);
15086 }
15087 }
15088
15089 return ftype;
15090 }
15091
15092 static struct type *
15093 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
15094 {
15095 struct objfile *objfile = cu->objfile;
15096 const char *name = NULL;
15097 struct type *this_type, *target_type;
15098
15099 name = dwarf2_full_name (NULL, die, cu);
15100 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
15101 TYPE_TARGET_STUB (this_type) = 1;
15102 set_die_type (die, this_type, cu);
15103 target_type = die_type (die, cu);
15104 if (target_type != this_type)
15105 TYPE_TARGET_TYPE (this_type) = target_type;
15106 else
15107 {
15108 /* Self-referential typedefs are, it seems, not allowed by the DWARF
15109 spec and cause infinite loops in GDB. */
15110 complaint (&symfile_complaints,
15111 _("Self-referential DW_TAG_typedef "
15112 "- DIE at 0x%x [in module %s]"),
15113 to_underlying (die->sect_off), objfile_name (objfile));
15114 TYPE_TARGET_TYPE (this_type) = NULL;
15115 }
15116 return this_type;
15117 }
15118
15119 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
15120 (which may be different from NAME) to the architecture back-end to allow
15121 it to guess the correct format if necessary. */
15122
15123 static struct type *
15124 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
15125 const char *name_hint)
15126 {
15127 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15128 const struct floatformat **format;
15129 struct type *type;
15130
15131 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
15132 if (format)
15133 type = init_float_type (objfile, bits, name, format);
15134 else
15135 type = init_type (objfile, TYPE_CODE_ERROR, bits / TARGET_CHAR_BIT, name);
15136
15137 return type;
15138 }
15139
15140 /* Find a representation of a given base type and install
15141 it in the TYPE field of the die. */
15142
15143 static struct type *
15144 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
15145 {
15146 struct objfile *objfile = cu->objfile;
15147 struct type *type;
15148 struct attribute *attr;
15149 int encoding = 0, bits = 0;
15150 const char *name;
15151
15152 attr = dwarf2_attr (die, DW_AT_encoding, cu);
15153 if (attr)
15154 {
15155 encoding = DW_UNSND (attr);
15156 }
15157 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15158 if (attr)
15159 {
15160 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
15161 }
15162 name = dwarf2_name (die, cu);
15163 if (!name)
15164 {
15165 complaint (&symfile_complaints,
15166 _("DW_AT_name missing from DW_TAG_base_type"));
15167 }
15168
15169 switch (encoding)
15170 {
15171 case DW_ATE_address:
15172 /* Turn DW_ATE_address into a void * pointer. */
15173 type = init_type (objfile, TYPE_CODE_VOID, 1, NULL);
15174 type = init_pointer_type (objfile, bits, name, type);
15175 break;
15176 case DW_ATE_boolean:
15177 type = init_boolean_type (objfile, bits, 1, name);
15178 break;
15179 case DW_ATE_complex_float:
15180 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
15181 type = init_complex_type (objfile, name, type);
15182 break;
15183 case DW_ATE_decimal_float:
15184 type = init_decfloat_type (objfile, bits, name);
15185 break;
15186 case DW_ATE_float:
15187 type = dwarf2_init_float_type (objfile, bits, name, name);
15188 break;
15189 case DW_ATE_signed:
15190 type = init_integer_type (objfile, bits, 0, name);
15191 break;
15192 case DW_ATE_unsigned:
15193 if (cu->language == language_fortran
15194 && name
15195 && startswith (name, "character("))
15196 type = init_character_type (objfile, bits, 1, name);
15197 else
15198 type = init_integer_type (objfile, bits, 1, name);
15199 break;
15200 case DW_ATE_signed_char:
15201 if (cu->language == language_ada || cu->language == language_m2
15202 || cu->language == language_pascal
15203 || cu->language == language_fortran)
15204 type = init_character_type (objfile, bits, 0, name);
15205 else
15206 type = init_integer_type (objfile, bits, 0, name);
15207 break;
15208 case DW_ATE_unsigned_char:
15209 if (cu->language == language_ada || cu->language == language_m2
15210 || cu->language == language_pascal
15211 || cu->language == language_fortran
15212 || cu->language == language_rust)
15213 type = init_character_type (objfile, bits, 1, name);
15214 else
15215 type = init_integer_type (objfile, bits, 1, name);
15216 break;
15217 case DW_ATE_UTF:
15218 {
15219 gdbarch *arch = get_objfile_arch (objfile);
15220
15221 if (bits == 16)
15222 type = builtin_type (arch)->builtin_char16;
15223 else if (bits == 32)
15224 type = builtin_type (arch)->builtin_char32;
15225 else
15226 {
15227 complaint (&symfile_complaints,
15228 _("unsupported DW_ATE_UTF bit size: '%d'"),
15229 bits);
15230 type = init_integer_type (objfile, bits, 1, name);
15231 }
15232 return set_die_type (die, type, cu);
15233 }
15234 break;
15235
15236 default:
15237 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
15238 dwarf_type_encoding_name (encoding));
15239 type = init_type (objfile, TYPE_CODE_ERROR,
15240 bits / TARGET_CHAR_BIT, name);
15241 break;
15242 }
15243
15244 if (name && strcmp (name, "char") == 0)
15245 TYPE_NOSIGN (type) = 1;
15246
15247 return set_die_type (die, type, cu);
15248 }
15249
15250 /* Parse dwarf attribute if it's a block, reference or constant and put the
15251 resulting value of the attribute into struct bound_prop.
15252 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
15253
15254 static int
15255 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
15256 struct dwarf2_cu *cu, struct dynamic_prop *prop)
15257 {
15258 struct dwarf2_property_baton *baton;
15259 struct obstack *obstack = &cu->objfile->objfile_obstack;
15260
15261 if (attr == NULL || prop == NULL)
15262 return 0;
15263
15264 if (attr_form_is_block (attr))
15265 {
15266 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15267 baton->referenced_type = NULL;
15268 baton->locexpr.per_cu = cu->per_cu;
15269 baton->locexpr.size = DW_BLOCK (attr)->size;
15270 baton->locexpr.data = DW_BLOCK (attr)->data;
15271 prop->data.baton = baton;
15272 prop->kind = PROP_LOCEXPR;
15273 gdb_assert (prop->data.baton != NULL);
15274 }
15275 else if (attr_form_is_ref (attr))
15276 {
15277 struct dwarf2_cu *target_cu = cu;
15278 struct die_info *target_die;
15279 struct attribute *target_attr;
15280
15281 target_die = follow_die_ref (die, attr, &target_cu);
15282 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
15283 if (target_attr == NULL)
15284 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
15285 target_cu);
15286 if (target_attr == NULL)
15287 return 0;
15288
15289 switch (target_attr->name)
15290 {
15291 case DW_AT_location:
15292 if (attr_form_is_section_offset (target_attr))
15293 {
15294 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15295 baton->referenced_type = die_type (target_die, target_cu);
15296 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
15297 prop->data.baton = baton;
15298 prop->kind = PROP_LOCLIST;
15299 gdb_assert (prop->data.baton != NULL);
15300 }
15301 else if (attr_form_is_block (target_attr))
15302 {
15303 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15304 baton->referenced_type = die_type (target_die, target_cu);
15305 baton->locexpr.per_cu = cu->per_cu;
15306 baton->locexpr.size = DW_BLOCK (target_attr)->size;
15307 baton->locexpr.data = DW_BLOCK (target_attr)->data;
15308 prop->data.baton = baton;
15309 prop->kind = PROP_LOCEXPR;
15310 gdb_assert (prop->data.baton != NULL);
15311 }
15312 else
15313 {
15314 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15315 "dynamic property");
15316 return 0;
15317 }
15318 break;
15319 case DW_AT_data_member_location:
15320 {
15321 LONGEST offset;
15322
15323 if (!handle_data_member_location (target_die, target_cu,
15324 &offset))
15325 return 0;
15326
15327 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15328 baton->referenced_type = read_type_die (target_die->parent,
15329 target_cu);
15330 baton->offset_info.offset = offset;
15331 baton->offset_info.type = die_type (target_die, target_cu);
15332 prop->data.baton = baton;
15333 prop->kind = PROP_ADDR_OFFSET;
15334 break;
15335 }
15336 }
15337 }
15338 else if (attr_form_is_constant (attr))
15339 {
15340 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
15341 prop->kind = PROP_CONST;
15342 }
15343 else
15344 {
15345 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
15346 dwarf2_name (die, cu));
15347 return 0;
15348 }
15349
15350 return 1;
15351 }
15352
15353 /* Read the given DW_AT_subrange DIE. */
15354
15355 static struct type *
15356 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
15357 {
15358 struct type *base_type, *orig_base_type;
15359 struct type *range_type;
15360 struct attribute *attr;
15361 struct dynamic_prop low, high;
15362 int low_default_is_valid;
15363 int high_bound_is_count = 0;
15364 const char *name;
15365 LONGEST negative_mask;
15366
15367 orig_base_type = die_type (die, cu);
15368 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
15369 whereas the real type might be. So, we use ORIG_BASE_TYPE when
15370 creating the range type, but we use the result of check_typedef
15371 when examining properties of the type. */
15372 base_type = check_typedef (orig_base_type);
15373
15374 /* The die_type call above may have already set the type for this DIE. */
15375 range_type = get_die_type (die, cu);
15376 if (range_type)
15377 return range_type;
15378
15379 low.kind = PROP_CONST;
15380 high.kind = PROP_CONST;
15381 high.data.const_val = 0;
15382
15383 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
15384 omitting DW_AT_lower_bound. */
15385 switch (cu->language)
15386 {
15387 case language_c:
15388 case language_cplus:
15389 low.data.const_val = 0;
15390 low_default_is_valid = 1;
15391 break;
15392 case language_fortran:
15393 low.data.const_val = 1;
15394 low_default_is_valid = 1;
15395 break;
15396 case language_d:
15397 case language_objc:
15398 case language_rust:
15399 low.data.const_val = 0;
15400 low_default_is_valid = (cu->header.version >= 4);
15401 break;
15402 case language_ada:
15403 case language_m2:
15404 case language_pascal:
15405 low.data.const_val = 1;
15406 low_default_is_valid = (cu->header.version >= 4);
15407 break;
15408 default:
15409 low.data.const_val = 0;
15410 low_default_is_valid = 0;
15411 break;
15412 }
15413
15414 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
15415 if (attr)
15416 attr_to_dynamic_prop (attr, die, cu, &low);
15417 else if (!low_default_is_valid)
15418 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
15419 "- DIE at 0x%x [in module %s]"),
15420 to_underlying (die->sect_off), objfile_name (cu->objfile));
15421
15422 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
15423 if (!attr_to_dynamic_prop (attr, die, cu, &high))
15424 {
15425 attr = dwarf2_attr (die, DW_AT_count, cu);
15426 if (attr_to_dynamic_prop (attr, die, cu, &high))
15427 {
15428 /* If bounds are constant do the final calculation here. */
15429 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
15430 high.data.const_val = low.data.const_val + high.data.const_val - 1;
15431 else
15432 high_bound_is_count = 1;
15433 }
15434 }
15435
15436 /* Dwarf-2 specifications explicitly allows to create subrange types
15437 without specifying a base type.
15438 In that case, the base type must be set to the type of
15439 the lower bound, upper bound or count, in that order, if any of these
15440 three attributes references an object that has a type.
15441 If no base type is found, the Dwarf-2 specifications say that
15442 a signed integer type of size equal to the size of an address should
15443 be used.
15444 For the following C code: `extern char gdb_int [];'
15445 GCC produces an empty range DIE.
15446 FIXME: muller/2010-05-28: Possible references to object for low bound,
15447 high bound or count are not yet handled by this code. */
15448 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15449 {
15450 struct objfile *objfile = cu->objfile;
15451 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15452 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15453 struct type *int_type = objfile_type (objfile)->builtin_int;
15454
15455 /* Test "int", "long int", and "long long int" objfile types,
15456 and select the first one having a size above or equal to the
15457 architecture address size. */
15458 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15459 base_type = int_type;
15460 else
15461 {
15462 int_type = objfile_type (objfile)->builtin_long;
15463 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15464 base_type = int_type;
15465 else
15466 {
15467 int_type = objfile_type (objfile)->builtin_long_long;
15468 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15469 base_type = int_type;
15470 }
15471 }
15472 }
15473
15474 /* Normally, the DWARF producers are expected to use a signed
15475 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15476 But this is unfortunately not always the case, as witnessed
15477 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15478 is used instead. To work around that ambiguity, we treat
15479 the bounds as signed, and thus sign-extend their values, when
15480 the base type is signed. */
15481 negative_mask =
15482 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
15483 if (low.kind == PROP_CONST
15484 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15485 low.data.const_val |= negative_mask;
15486 if (high.kind == PROP_CONST
15487 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15488 high.data.const_val |= negative_mask;
15489
15490 range_type = create_range_type (NULL, orig_base_type, &low, &high);
15491
15492 if (high_bound_is_count)
15493 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15494
15495 /* Ada expects an empty array on no boundary attributes. */
15496 if (attr == NULL && cu->language != language_ada)
15497 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
15498
15499 name = dwarf2_name (die, cu);
15500 if (name)
15501 TYPE_NAME (range_type) = name;
15502
15503 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15504 if (attr)
15505 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15506
15507 set_die_type (die, range_type, cu);
15508
15509 /* set_die_type should be already done. */
15510 set_descriptive_type (range_type, die, cu);
15511
15512 return range_type;
15513 }
15514
15515 static struct type *
15516 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15517 {
15518 struct type *type;
15519
15520 /* For now, we only support the C meaning of an unspecified type: void. */
15521
15522 type = init_type (cu->objfile, TYPE_CODE_VOID, 0, NULL);
15523 TYPE_NAME (type) = dwarf2_name (die, cu);
15524
15525 return set_die_type (die, type, cu);
15526 }
15527
15528 /* Read a single die and all its descendents. Set the die's sibling
15529 field to NULL; set other fields in the die correctly, and set all
15530 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15531 location of the info_ptr after reading all of those dies. PARENT
15532 is the parent of the die in question. */
15533
15534 static struct die_info *
15535 read_die_and_children (const struct die_reader_specs *reader,
15536 const gdb_byte *info_ptr,
15537 const gdb_byte **new_info_ptr,
15538 struct die_info *parent)
15539 {
15540 struct die_info *die;
15541 const gdb_byte *cur_ptr;
15542 int has_children;
15543
15544 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
15545 if (die == NULL)
15546 {
15547 *new_info_ptr = cur_ptr;
15548 return NULL;
15549 }
15550 store_in_ref_table (die, reader->cu);
15551
15552 if (has_children)
15553 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
15554 else
15555 {
15556 die->child = NULL;
15557 *new_info_ptr = cur_ptr;
15558 }
15559
15560 die->sibling = NULL;
15561 die->parent = parent;
15562 return die;
15563 }
15564
15565 /* Read a die, all of its descendents, and all of its siblings; set
15566 all of the fields of all of the dies correctly. Arguments are as
15567 in read_die_and_children. */
15568
15569 static struct die_info *
15570 read_die_and_siblings_1 (const struct die_reader_specs *reader,
15571 const gdb_byte *info_ptr,
15572 const gdb_byte **new_info_ptr,
15573 struct die_info *parent)
15574 {
15575 struct die_info *first_die, *last_sibling;
15576 const gdb_byte *cur_ptr;
15577
15578 cur_ptr = info_ptr;
15579 first_die = last_sibling = NULL;
15580
15581 while (1)
15582 {
15583 struct die_info *die
15584 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
15585
15586 if (die == NULL)
15587 {
15588 *new_info_ptr = cur_ptr;
15589 return first_die;
15590 }
15591
15592 if (!first_die)
15593 first_die = die;
15594 else
15595 last_sibling->sibling = die;
15596
15597 last_sibling = die;
15598 }
15599 }
15600
15601 /* Read a die, all of its descendents, and all of its siblings; set
15602 all of the fields of all of the dies correctly. Arguments are as
15603 in read_die_and_children.
15604 This the main entry point for reading a DIE and all its children. */
15605
15606 static struct die_info *
15607 read_die_and_siblings (const struct die_reader_specs *reader,
15608 const gdb_byte *info_ptr,
15609 const gdb_byte **new_info_ptr,
15610 struct die_info *parent)
15611 {
15612 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15613 new_info_ptr, parent);
15614
15615 if (dwarf_die_debug)
15616 {
15617 fprintf_unfiltered (gdb_stdlog,
15618 "Read die from %s@0x%x of %s:\n",
15619 get_section_name (reader->die_section),
15620 (unsigned) (info_ptr - reader->die_section->buffer),
15621 bfd_get_filename (reader->abfd));
15622 dump_die (die, dwarf_die_debug);
15623 }
15624
15625 return die;
15626 }
15627
15628 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15629 attributes.
15630 The caller is responsible for filling in the extra attributes
15631 and updating (*DIEP)->num_attrs.
15632 Set DIEP to point to a newly allocated die with its information,
15633 except for its child, sibling, and parent fields.
15634 Set HAS_CHILDREN to tell whether the die has children or not. */
15635
15636 static const gdb_byte *
15637 read_full_die_1 (const struct die_reader_specs *reader,
15638 struct die_info **diep, const gdb_byte *info_ptr,
15639 int *has_children, int num_extra_attrs)
15640 {
15641 unsigned int abbrev_number, bytes_read, i;
15642 struct abbrev_info *abbrev;
15643 struct die_info *die;
15644 struct dwarf2_cu *cu = reader->cu;
15645 bfd *abfd = reader->abfd;
15646
15647 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
15648 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15649 info_ptr += bytes_read;
15650 if (!abbrev_number)
15651 {
15652 *diep = NULL;
15653 *has_children = 0;
15654 return info_ptr;
15655 }
15656
15657 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
15658 if (!abbrev)
15659 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15660 abbrev_number,
15661 bfd_get_filename (abfd));
15662
15663 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
15664 die->sect_off = sect_off;
15665 die->tag = abbrev->tag;
15666 die->abbrev = abbrev_number;
15667
15668 /* Make the result usable.
15669 The caller needs to update num_attrs after adding the extra
15670 attributes. */
15671 die->num_attrs = abbrev->num_attrs;
15672
15673 for (i = 0; i < abbrev->num_attrs; ++i)
15674 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15675 info_ptr);
15676
15677 *diep = die;
15678 *has_children = abbrev->has_children;
15679 return info_ptr;
15680 }
15681
15682 /* Read a die and all its attributes.
15683 Set DIEP to point to a newly allocated die with its information,
15684 except for its child, sibling, and parent fields.
15685 Set HAS_CHILDREN to tell whether the die has children or not. */
15686
15687 static const gdb_byte *
15688 read_full_die (const struct die_reader_specs *reader,
15689 struct die_info **diep, const gdb_byte *info_ptr,
15690 int *has_children)
15691 {
15692 const gdb_byte *result;
15693
15694 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15695
15696 if (dwarf_die_debug)
15697 {
15698 fprintf_unfiltered (gdb_stdlog,
15699 "Read die from %s@0x%x of %s:\n",
15700 get_section_name (reader->die_section),
15701 (unsigned) (info_ptr - reader->die_section->buffer),
15702 bfd_get_filename (reader->abfd));
15703 dump_die (*diep, dwarf_die_debug);
15704 }
15705
15706 return result;
15707 }
15708 \f
15709 /* Abbreviation tables.
15710
15711 In DWARF version 2, the description of the debugging information is
15712 stored in a separate .debug_abbrev section. Before we read any
15713 dies from a section we read in all abbreviations and install them
15714 in a hash table. */
15715
15716 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15717
15718 static struct abbrev_info *
15719 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15720 {
15721 struct abbrev_info *abbrev;
15722
15723 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
15724 memset (abbrev, 0, sizeof (struct abbrev_info));
15725
15726 return abbrev;
15727 }
15728
15729 /* Add an abbreviation to the table. */
15730
15731 static void
15732 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15733 unsigned int abbrev_number,
15734 struct abbrev_info *abbrev)
15735 {
15736 unsigned int hash_number;
15737
15738 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15739 abbrev->next = abbrev_table->abbrevs[hash_number];
15740 abbrev_table->abbrevs[hash_number] = abbrev;
15741 }
15742
15743 /* Look up an abbrev in the table.
15744 Returns NULL if the abbrev is not found. */
15745
15746 static struct abbrev_info *
15747 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15748 unsigned int abbrev_number)
15749 {
15750 unsigned int hash_number;
15751 struct abbrev_info *abbrev;
15752
15753 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15754 abbrev = abbrev_table->abbrevs[hash_number];
15755
15756 while (abbrev)
15757 {
15758 if (abbrev->number == abbrev_number)
15759 return abbrev;
15760 abbrev = abbrev->next;
15761 }
15762 return NULL;
15763 }
15764
15765 /* Read in an abbrev table. */
15766
15767 static struct abbrev_table *
15768 abbrev_table_read_table (struct dwarf2_section_info *section,
15769 sect_offset sect_off)
15770 {
15771 struct objfile *objfile = dwarf2_per_objfile->objfile;
15772 bfd *abfd = get_section_bfd_owner (section);
15773 struct abbrev_table *abbrev_table;
15774 const gdb_byte *abbrev_ptr;
15775 struct abbrev_info *cur_abbrev;
15776 unsigned int abbrev_number, bytes_read, abbrev_name;
15777 unsigned int abbrev_form;
15778 struct attr_abbrev *cur_attrs;
15779 unsigned int allocated_attrs;
15780
15781 abbrev_table = XNEW (struct abbrev_table);
15782 abbrev_table->sect_off = sect_off;
15783 obstack_init (&abbrev_table->abbrev_obstack);
15784 abbrev_table->abbrevs =
15785 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15786 ABBREV_HASH_SIZE);
15787 memset (abbrev_table->abbrevs, 0,
15788 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15789
15790 dwarf2_read_section (objfile, section);
15791 abbrev_ptr = section->buffer + to_underlying (sect_off);
15792 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15793 abbrev_ptr += bytes_read;
15794
15795 allocated_attrs = ATTR_ALLOC_CHUNK;
15796 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
15797
15798 /* Loop until we reach an abbrev number of 0. */
15799 while (abbrev_number)
15800 {
15801 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15802
15803 /* read in abbrev header */
15804 cur_abbrev->number = abbrev_number;
15805 cur_abbrev->tag
15806 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15807 abbrev_ptr += bytes_read;
15808 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15809 abbrev_ptr += 1;
15810
15811 /* now read in declarations */
15812 for (;;)
15813 {
15814 LONGEST implicit_const;
15815
15816 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15817 abbrev_ptr += bytes_read;
15818 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15819 abbrev_ptr += bytes_read;
15820 if (abbrev_form == DW_FORM_implicit_const)
15821 {
15822 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
15823 &bytes_read);
15824 abbrev_ptr += bytes_read;
15825 }
15826 else
15827 {
15828 /* Initialize it due to a false compiler warning. */
15829 implicit_const = -1;
15830 }
15831
15832 if (abbrev_name == 0)
15833 break;
15834
15835 if (cur_abbrev->num_attrs == allocated_attrs)
15836 {
15837 allocated_attrs += ATTR_ALLOC_CHUNK;
15838 cur_attrs
15839 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
15840 }
15841
15842 cur_attrs[cur_abbrev->num_attrs].name
15843 = (enum dwarf_attribute) abbrev_name;
15844 cur_attrs[cur_abbrev->num_attrs].form
15845 = (enum dwarf_form) abbrev_form;
15846 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
15847 ++cur_abbrev->num_attrs;
15848 }
15849
15850 cur_abbrev->attrs =
15851 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15852 cur_abbrev->num_attrs);
15853 memcpy (cur_abbrev->attrs, cur_attrs,
15854 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15855
15856 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15857
15858 /* Get next abbreviation.
15859 Under Irix6 the abbreviations for a compilation unit are not
15860 always properly terminated with an abbrev number of 0.
15861 Exit loop if we encounter an abbreviation which we have
15862 already read (which means we are about to read the abbreviations
15863 for the next compile unit) or if the end of the abbreviation
15864 table is reached. */
15865 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15866 break;
15867 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15868 abbrev_ptr += bytes_read;
15869 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15870 break;
15871 }
15872
15873 xfree (cur_attrs);
15874 return abbrev_table;
15875 }
15876
15877 /* Free the resources held by ABBREV_TABLE. */
15878
15879 static void
15880 abbrev_table_free (struct abbrev_table *abbrev_table)
15881 {
15882 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15883 xfree (abbrev_table);
15884 }
15885
15886 /* Same as abbrev_table_free but as a cleanup.
15887 We pass in a pointer to the pointer to the table so that we can
15888 set the pointer to NULL when we're done. It also simplifies
15889 build_type_psymtabs_1. */
15890
15891 static void
15892 abbrev_table_free_cleanup (void *table_ptr)
15893 {
15894 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
15895
15896 if (*abbrev_table_ptr != NULL)
15897 abbrev_table_free (*abbrev_table_ptr);
15898 *abbrev_table_ptr = NULL;
15899 }
15900
15901 /* Read the abbrev table for CU from ABBREV_SECTION. */
15902
15903 static void
15904 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15905 struct dwarf2_section_info *abbrev_section)
15906 {
15907 cu->abbrev_table =
15908 abbrev_table_read_table (abbrev_section, cu->header.abbrev_sect_off);
15909 }
15910
15911 /* Release the memory used by the abbrev table for a compilation unit. */
15912
15913 static void
15914 dwarf2_free_abbrev_table (void *ptr_to_cu)
15915 {
15916 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
15917
15918 if (cu->abbrev_table != NULL)
15919 abbrev_table_free (cu->abbrev_table);
15920 /* Set this to NULL so that we SEGV if we try to read it later,
15921 and also because free_comp_unit verifies this is NULL. */
15922 cu->abbrev_table = NULL;
15923 }
15924 \f
15925 /* Returns nonzero if TAG represents a type that we might generate a partial
15926 symbol for. */
15927
15928 static int
15929 is_type_tag_for_partial (int tag)
15930 {
15931 switch (tag)
15932 {
15933 #if 0
15934 /* Some types that would be reasonable to generate partial symbols for,
15935 that we don't at present. */
15936 case DW_TAG_array_type:
15937 case DW_TAG_file_type:
15938 case DW_TAG_ptr_to_member_type:
15939 case DW_TAG_set_type:
15940 case DW_TAG_string_type:
15941 case DW_TAG_subroutine_type:
15942 #endif
15943 case DW_TAG_base_type:
15944 case DW_TAG_class_type:
15945 case DW_TAG_interface_type:
15946 case DW_TAG_enumeration_type:
15947 case DW_TAG_structure_type:
15948 case DW_TAG_subrange_type:
15949 case DW_TAG_typedef:
15950 case DW_TAG_union_type:
15951 return 1;
15952 default:
15953 return 0;
15954 }
15955 }
15956
15957 /* Load all DIEs that are interesting for partial symbols into memory. */
15958
15959 static struct partial_die_info *
15960 load_partial_dies (const struct die_reader_specs *reader,
15961 const gdb_byte *info_ptr, int building_psymtab)
15962 {
15963 struct dwarf2_cu *cu = reader->cu;
15964 struct objfile *objfile = cu->objfile;
15965 struct partial_die_info *part_die;
15966 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15967 struct abbrev_info *abbrev;
15968 unsigned int bytes_read;
15969 unsigned int load_all = 0;
15970 int nesting_level = 1;
15971
15972 parent_die = NULL;
15973 last_die = NULL;
15974
15975 gdb_assert (cu->per_cu != NULL);
15976 if (cu->per_cu->load_all_dies)
15977 load_all = 1;
15978
15979 cu->partial_dies
15980 = htab_create_alloc_ex (cu->header.length / 12,
15981 partial_die_hash,
15982 partial_die_eq,
15983 NULL,
15984 &cu->comp_unit_obstack,
15985 hashtab_obstack_allocate,
15986 dummy_obstack_deallocate);
15987
15988 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
15989
15990 while (1)
15991 {
15992 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15993
15994 /* A NULL abbrev means the end of a series of children. */
15995 if (abbrev == NULL)
15996 {
15997 if (--nesting_level == 0)
15998 {
15999 /* PART_DIE was probably the last thing allocated on the
16000 comp_unit_obstack, so we could call obstack_free
16001 here. We don't do that because the waste is small,
16002 and will be cleaned up when we're done with this
16003 compilation unit. This way, we're also more robust
16004 against other users of the comp_unit_obstack. */
16005 return first_die;
16006 }
16007 info_ptr += bytes_read;
16008 last_die = parent_die;
16009 parent_die = parent_die->die_parent;
16010 continue;
16011 }
16012
16013 /* Check for template arguments. We never save these; if
16014 they're seen, we just mark the parent, and go on our way. */
16015 if (parent_die != NULL
16016 && cu->language == language_cplus
16017 && (abbrev->tag == DW_TAG_template_type_param
16018 || abbrev->tag == DW_TAG_template_value_param))
16019 {
16020 parent_die->has_template_arguments = 1;
16021
16022 if (!load_all)
16023 {
16024 /* We don't need a partial DIE for the template argument. */
16025 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
16026 continue;
16027 }
16028 }
16029
16030 /* We only recurse into c++ subprograms looking for template arguments.
16031 Skip their other children. */
16032 if (!load_all
16033 && cu->language == language_cplus
16034 && parent_die != NULL
16035 && parent_die->tag == DW_TAG_subprogram)
16036 {
16037 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
16038 continue;
16039 }
16040
16041 /* Check whether this DIE is interesting enough to save. Normally
16042 we would not be interested in members here, but there may be
16043 later variables referencing them via DW_AT_specification (for
16044 static members). */
16045 if (!load_all
16046 && !is_type_tag_for_partial (abbrev->tag)
16047 && abbrev->tag != DW_TAG_constant
16048 && abbrev->tag != DW_TAG_enumerator
16049 && abbrev->tag != DW_TAG_subprogram
16050 && abbrev->tag != DW_TAG_lexical_block
16051 && abbrev->tag != DW_TAG_variable
16052 && abbrev->tag != DW_TAG_namespace
16053 && abbrev->tag != DW_TAG_module
16054 && abbrev->tag != DW_TAG_member
16055 && abbrev->tag != DW_TAG_imported_unit
16056 && abbrev->tag != DW_TAG_imported_declaration)
16057 {
16058 /* Otherwise we skip to the next sibling, if any. */
16059 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
16060 continue;
16061 }
16062
16063 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
16064 info_ptr);
16065
16066 /* This two-pass algorithm for processing partial symbols has a
16067 high cost in cache pressure. Thus, handle some simple cases
16068 here which cover the majority of C partial symbols. DIEs
16069 which neither have specification tags in them, nor could have
16070 specification tags elsewhere pointing at them, can simply be
16071 processed and discarded.
16072
16073 This segment is also optional; scan_partial_symbols and
16074 add_partial_symbol will handle these DIEs if we chain
16075 them in normally. When compilers which do not emit large
16076 quantities of duplicate debug information are more common,
16077 this code can probably be removed. */
16078
16079 /* Any complete simple types at the top level (pretty much all
16080 of them, for a language without namespaces), can be processed
16081 directly. */
16082 if (parent_die == NULL
16083 && part_die->has_specification == 0
16084 && part_die->is_declaration == 0
16085 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
16086 || part_die->tag == DW_TAG_base_type
16087 || part_die->tag == DW_TAG_subrange_type))
16088 {
16089 if (building_psymtab && part_die->name != NULL)
16090 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
16091 VAR_DOMAIN, LOC_TYPEDEF,
16092 &objfile->static_psymbols,
16093 0, cu->language, objfile);
16094 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
16095 continue;
16096 }
16097
16098 /* The exception for DW_TAG_typedef with has_children above is
16099 a workaround of GCC PR debug/47510. In the case of this complaint
16100 type_name_no_tag_or_error will error on such types later.
16101
16102 GDB skipped children of DW_TAG_typedef by the shortcut above and then
16103 it could not find the child DIEs referenced later, this is checked
16104 above. In correct DWARF DW_TAG_typedef should have no children. */
16105
16106 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
16107 complaint (&symfile_complaints,
16108 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
16109 "- DIE at 0x%x [in module %s]"),
16110 to_underlying (part_die->sect_off), objfile_name (objfile));
16111
16112 /* If we're at the second level, and we're an enumerator, and
16113 our parent has no specification (meaning possibly lives in a
16114 namespace elsewhere), then we can add the partial symbol now
16115 instead of queueing it. */
16116 if (part_die->tag == DW_TAG_enumerator
16117 && parent_die != NULL
16118 && parent_die->die_parent == NULL
16119 && parent_die->tag == DW_TAG_enumeration_type
16120 && parent_die->has_specification == 0)
16121 {
16122 if (part_die->name == NULL)
16123 complaint (&symfile_complaints,
16124 _("malformed enumerator DIE ignored"));
16125 else if (building_psymtab)
16126 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
16127 VAR_DOMAIN, LOC_CONST,
16128 cu->language == language_cplus
16129 ? &objfile->global_psymbols
16130 : &objfile->static_psymbols,
16131 0, cu->language, objfile);
16132
16133 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
16134 continue;
16135 }
16136
16137 /* We'll save this DIE so link it in. */
16138 part_die->die_parent = parent_die;
16139 part_die->die_sibling = NULL;
16140 part_die->die_child = NULL;
16141
16142 if (last_die && last_die == parent_die)
16143 last_die->die_child = part_die;
16144 else if (last_die)
16145 last_die->die_sibling = part_die;
16146
16147 last_die = part_die;
16148
16149 if (first_die == NULL)
16150 first_die = part_die;
16151
16152 /* Maybe add the DIE to the hash table. Not all DIEs that we
16153 find interesting need to be in the hash table, because we
16154 also have the parent/sibling/child chains; only those that we
16155 might refer to by offset later during partial symbol reading.
16156
16157 For now this means things that might have be the target of a
16158 DW_AT_specification, DW_AT_abstract_origin, or
16159 DW_AT_extension. DW_AT_extension will refer only to
16160 namespaces; DW_AT_abstract_origin refers to functions (and
16161 many things under the function DIE, but we do not recurse
16162 into function DIEs during partial symbol reading) and
16163 possibly variables as well; DW_AT_specification refers to
16164 declarations. Declarations ought to have the DW_AT_declaration
16165 flag. It happens that GCC forgets to put it in sometimes, but
16166 only for functions, not for types.
16167
16168 Adding more things than necessary to the hash table is harmless
16169 except for the performance cost. Adding too few will result in
16170 wasted time in find_partial_die, when we reread the compilation
16171 unit with load_all_dies set. */
16172
16173 if (load_all
16174 || abbrev->tag == DW_TAG_constant
16175 || abbrev->tag == DW_TAG_subprogram
16176 || abbrev->tag == DW_TAG_variable
16177 || abbrev->tag == DW_TAG_namespace
16178 || part_die->is_declaration)
16179 {
16180 void **slot;
16181
16182 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
16183 to_underlying (part_die->sect_off),
16184 INSERT);
16185 *slot = part_die;
16186 }
16187
16188 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
16189
16190 /* For some DIEs we want to follow their children (if any). For C
16191 we have no reason to follow the children of structures; for other
16192 languages we have to, so that we can get at method physnames
16193 to infer fully qualified class names, for DW_AT_specification,
16194 and for C++ template arguments. For C++, we also look one level
16195 inside functions to find template arguments (if the name of the
16196 function does not already contain the template arguments).
16197
16198 For Ada, we need to scan the children of subprograms and lexical
16199 blocks as well because Ada allows the definition of nested
16200 entities that could be interesting for the debugger, such as
16201 nested subprograms for instance. */
16202 if (last_die->has_children
16203 && (load_all
16204 || last_die->tag == DW_TAG_namespace
16205 || last_die->tag == DW_TAG_module
16206 || last_die->tag == DW_TAG_enumeration_type
16207 || (cu->language == language_cplus
16208 && last_die->tag == DW_TAG_subprogram
16209 && (last_die->name == NULL
16210 || strchr (last_die->name, '<') == NULL))
16211 || (cu->language != language_c
16212 && (last_die->tag == DW_TAG_class_type
16213 || last_die->tag == DW_TAG_interface_type
16214 || last_die->tag == DW_TAG_structure_type
16215 || last_die->tag == DW_TAG_union_type))
16216 || (cu->language == language_ada
16217 && (last_die->tag == DW_TAG_subprogram
16218 || last_die->tag == DW_TAG_lexical_block))))
16219 {
16220 nesting_level++;
16221 parent_die = last_die;
16222 continue;
16223 }
16224
16225 /* Otherwise we skip to the next sibling, if any. */
16226 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
16227
16228 /* Back to the top, do it again. */
16229 }
16230 }
16231
16232 /* Read a minimal amount of information into the minimal die structure. */
16233
16234 static const gdb_byte *
16235 read_partial_die (const struct die_reader_specs *reader,
16236 struct partial_die_info *part_die,
16237 struct abbrev_info *abbrev, unsigned int abbrev_len,
16238 const gdb_byte *info_ptr)
16239 {
16240 struct dwarf2_cu *cu = reader->cu;
16241 struct objfile *objfile = cu->objfile;
16242 const gdb_byte *buffer = reader->buffer;
16243 unsigned int i;
16244 struct attribute attr;
16245 int has_low_pc_attr = 0;
16246 int has_high_pc_attr = 0;
16247 int high_pc_relative = 0;
16248
16249 memset (part_die, 0, sizeof (struct partial_die_info));
16250
16251 part_die->sect_off = (sect_offset) (info_ptr - buffer);
16252
16253 info_ptr += abbrev_len;
16254
16255 if (abbrev == NULL)
16256 return info_ptr;
16257
16258 part_die->tag = abbrev->tag;
16259 part_die->has_children = abbrev->has_children;
16260
16261 for (i = 0; i < abbrev->num_attrs; ++i)
16262 {
16263 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
16264
16265 /* Store the data if it is of an attribute we want to keep in a
16266 partial symbol table. */
16267 switch (attr.name)
16268 {
16269 case DW_AT_name:
16270 switch (part_die->tag)
16271 {
16272 case DW_TAG_compile_unit:
16273 case DW_TAG_partial_unit:
16274 case DW_TAG_type_unit:
16275 /* Compilation units have a DW_AT_name that is a filename, not
16276 a source language identifier. */
16277 case DW_TAG_enumeration_type:
16278 case DW_TAG_enumerator:
16279 /* These tags always have simple identifiers already; no need
16280 to canonicalize them. */
16281 part_die->name = DW_STRING (&attr);
16282 break;
16283 default:
16284 part_die->name
16285 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
16286 &objfile->per_bfd->storage_obstack);
16287 break;
16288 }
16289 break;
16290 case DW_AT_linkage_name:
16291 case DW_AT_MIPS_linkage_name:
16292 /* Note that both forms of linkage name might appear. We
16293 assume they will be the same, and we only store the last
16294 one we see. */
16295 if (cu->language == language_ada)
16296 part_die->name = DW_STRING (&attr);
16297 part_die->linkage_name = DW_STRING (&attr);
16298 break;
16299 case DW_AT_low_pc:
16300 has_low_pc_attr = 1;
16301 part_die->lowpc = attr_value_as_address (&attr);
16302 break;
16303 case DW_AT_high_pc:
16304 has_high_pc_attr = 1;
16305 part_die->highpc = attr_value_as_address (&attr);
16306 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
16307 high_pc_relative = 1;
16308 break;
16309 case DW_AT_location:
16310 /* Support the .debug_loc offsets. */
16311 if (attr_form_is_block (&attr))
16312 {
16313 part_die->d.locdesc = DW_BLOCK (&attr);
16314 }
16315 else if (attr_form_is_section_offset (&attr))
16316 {
16317 dwarf2_complex_location_expr_complaint ();
16318 }
16319 else
16320 {
16321 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16322 "partial symbol information");
16323 }
16324 break;
16325 case DW_AT_external:
16326 part_die->is_external = DW_UNSND (&attr);
16327 break;
16328 case DW_AT_declaration:
16329 part_die->is_declaration = DW_UNSND (&attr);
16330 break;
16331 case DW_AT_type:
16332 part_die->has_type = 1;
16333 break;
16334 case DW_AT_abstract_origin:
16335 case DW_AT_specification:
16336 case DW_AT_extension:
16337 part_die->has_specification = 1;
16338 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
16339 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16340 || cu->per_cu->is_dwz);
16341 break;
16342 case DW_AT_sibling:
16343 /* Ignore absolute siblings, they might point outside of
16344 the current compile unit. */
16345 if (attr.form == DW_FORM_ref_addr)
16346 complaint (&symfile_complaints,
16347 _("ignoring absolute DW_AT_sibling"));
16348 else
16349 {
16350 sect_offset off = dwarf2_get_ref_die_offset (&attr);
16351 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
16352
16353 if (sibling_ptr < info_ptr)
16354 complaint (&symfile_complaints,
16355 _("DW_AT_sibling points backwards"));
16356 else if (sibling_ptr > reader->buffer_end)
16357 dwarf2_section_buffer_overflow_complaint (reader->die_section);
16358 else
16359 part_die->sibling = sibling_ptr;
16360 }
16361 break;
16362 case DW_AT_byte_size:
16363 part_die->has_byte_size = 1;
16364 break;
16365 case DW_AT_const_value:
16366 part_die->has_const_value = 1;
16367 break;
16368 case DW_AT_calling_convention:
16369 /* DWARF doesn't provide a way to identify a program's source-level
16370 entry point. DW_AT_calling_convention attributes are only meant
16371 to describe functions' calling conventions.
16372
16373 However, because it's a necessary piece of information in
16374 Fortran, and before DWARF 4 DW_CC_program was the only
16375 piece of debugging information whose definition refers to
16376 a 'main program' at all, several compilers marked Fortran
16377 main programs with DW_CC_program --- even when those
16378 functions use the standard calling conventions.
16379
16380 Although DWARF now specifies a way to provide this
16381 information, we support this practice for backward
16382 compatibility. */
16383 if (DW_UNSND (&attr) == DW_CC_program
16384 && cu->language == language_fortran)
16385 part_die->main_subprogram = 1;
16386 break;
16387 case DW_AT_inline:
16388 if (DW_UNSND (&attr) == DW_INL_inlined
16389 || DW_UNSND (&attr) == DW_INL_declared_inlined)
16390 part_die->may_be_inlined = 1;
16391 break;
16392
16393 case DW_AT_import:
16394 if (part_die->tag == DW_TAG_imported_unit)
16395 {
16396 part_die->d.sect_off = dwarf2_get_ref_die_offset (&attr);
16397 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16398 || cu->per_cu->is_dwz);
16399 }
16400 break;
16401
16402 case DW_AT_main_subprogram:
16403 part_die->main_subprogram = DW_UNSND (&attr);
16404 break;
16405
16406 default:
16407 break;
16408 }
16409 }
16410
16411 if (high_pc_relative)
16412 part_die->highpc += part_die->lowpc;
16413
16414 if (has_low_pc_attr && has_high_pc_attr)
16415 {
16416 /* When using the GNU linker, .gnu.linkonce. sections are used to
16417 eliminate duplicate copies of functions and vtables and such.
16418 The linker will arbitrarily choose one and discard the others.
16419 The AT_*_pc values for such functions refer to local labels in
16420 these sections. If the section from that file was discarded, the
16421 labels are not in the output, so the relocs get a value of 0.
16422 If this is a discarded function, mark the pc bounds as invalid,
16423 so that GDB will ignore it. */
16424 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
16425 {
16426 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16427
16428 complaint (&symfile_complaints,
16429 _("DW_AT_low_pc %s is zero "
16430 "for DIE at 0x%x [in module %s]"),
16431 paddress (gdbarch, part_die->lowpc),
16432 to_underlying (part_die->sect_off), objfile_name (objfile));
16433 }
16434 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
16435 else if (part_die->lowpc >= part_die->highpc)
16436 {
16437 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16438
16439 complaint (&symfile_complaints,
16440 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
16441 "for DIE at 0x%x [in module %s]"),
16442 paddress (gdbarch, part_die->lowpc),
16443 paddress (gdbarch, part_die->highpc),
16444 to_underlying (part_die->sect_off),
16445 objfile_name (objfile));
16446 }
16447 else
16448 part_die->has_pc_info = 1;
16449 }
16450
16451 return info_ptr;
16452 }
16453
16454 /* Find a cached partial DIE at OFFSET in CU. */
16455
16456 static struct partial_die_info *
16457 find_partial_die_in_comp_unit (sect_offset sect_off, struct dwarf2_cu *cu)
16458 {
16459 struct partial_die_info *lookup_die = NULL;
16460 struct partial_die_info part_die;
16461
16462 part_die.sect_off = sect_off;
16463 lookup_die = ((struct partial_die_info *)
16464 htab_find_with_hash (cu->partial_dies, &part_die,
16465 to_underlying (sect_off)));
16466
16467 return lookup_die;
16468 }
16469
16470 /* Find a partial DIE at OFFSET, which may or may not be in CU,
16471 except in the case of .debug_types DIEs which do not reference
16472 outside their CU (they do however referencing other types via
16473 DW_FORM_ref_sig8). */
16474
16475 static struct partial_die_info *
16476 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
16477 {
16478 struct objfile *objfile = cu->objfile;
16479 struct dwarf2_per_cu_data *per_cu = NULL;
16480 struct partial_die_info *pd = NULL;
16481
16482 if (offset_in_dwz == cu->per_cu->is_dwz
16483 && offset_in_cu_p (&cu->header, sect_off))
16484 {
16485 pd = find_partial_die_in_comp_unit (sect_off, cu);
16486 if (pd != NULL)
16487 return pd;
16488 /* We missed recording what we needed.
16489 Load all dies and try again. */
16490 per_cu = cu->per_cu;
16491 }
16492 else
16493 {
16494 /* TUs don't reference other CUs/TUs (except via type signatures). */
16495 if (cu->per_cu->is_debug_types)
16496 {
16497 error (_("Dwarf Error: Type Unit at offset 0x%x contains"
16498 " external reference to offset 0x%x [in module %s].\n"),
16499 to_underlying (cu->header.sect_off), to_underlying (sect_off),
16500 bfd_get_filename (objfile->obfd));
16501 }
16502 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
16503 objfile);
16504
16505 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16506 load_partial_comp_unit (per_cu);
16507
16508 per_cu->cu->last_used = 0;
16509 pd = find_partial_die_in_comp_unit (sect_off, per_cu->cu);
16510 }
16511
16512 /* If we didn't find it, and not all dies have been loaded,
16513 load them all and try again. */
16514
16515 if (pd == NULL && per_cu->load_all_dies == 0)
16516 {
16517 per_cu->load_all_dies = 1;
16518
16519 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16520 THIS_CU->cu may already be in use. So we can't just free it and
16521 replace its DIEs with the ones we read in. Instead, we leave those
16522 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16523 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16524 set. */
16525 load_partial_comp_unit (per_cu);
16526
16527 pd = find_partial_die_in_comp_unit (sect_off, per_cu->cu);
16528 }
16529
16530 if (pd == NULL)
16531 internal_error (__FILE__, __LINE__,
16532 _("could not find partial DIE 0x%x "
16533 "in cache [from module %s]\n"),
16534 to_underlying (sect_off), bfd_get_filename (objfile->obfd));
16535 return pd;
16536 }
16537
16538 /* See if we can figure out if the class lives in a namespace. We do
16539 this by looking for a member function; its demangled name will
16540 contain namespace info, if there is any. */
16541
16542 static void
16543 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16544 struct dwarf2_cu *cu)
16545 {
16546 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16547 what template types look like, because the demangler
16548 frequently doesn't give the same name as the debug info. We
16549 could fix this by only using the demangled name to get the
16550 prefix (but see comment in read_structure_type). */
16551
16552 struct partial_die_info *real_pdi;
16553 struct partial_die_info *child_pdi;
16554
16555 /* If this DIE (this DIE's specification, if any) has a parent, then
16556 we should not do this. We'll prepend the parent's fully qualified
16557 name when we create the partial symbol. */
16558
16559 real_pdi = struct_pdi;
16560 while (real_pdi->has_specification)
16561 real_pdi = find_partial_die (real_pdi->spec_offset,
16562 real_pdi->spec_is_dwz, cu);
16563
16564 if (real_pdi->die_parent != NULL)
16565 return;
16566
16567 for (child_pdi = struct_pdi->die_child;
16568 child_pdi != NULL;
16569 child_pdi = child_pdi->die_sibling)
16570 {
16571 if (child_pdi->tag == DW_TAG_subprogram
16572 && child_pdi->linkage_name != NULL)
16573 {
16574 char *actual_class_name
16575 = language_class_name_from_physname (cu->language_defn,
16576 child_pdi->linkage_name);
16577 if (actual_class_name != NULL)
16578 {
16579 struct_pdi->name
16580 = ((const char *)
16581 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16582 actual_class_name,
16583 strlen (actual_class_name)));
16584 xfree (actual_class_name);
16585 }
16586 break;
16587 }
16588 }
16589 }
16590
16591 /* Adjust PART_DIE before generating a symbol for it. This function
16592 may set the is_external flag or change the DIE's name. */
16593
16594 static void
16595 fixup_partial_die (struct partial_die_info *part_die,
16596 struct dwarf2_cu *cu)
16597 {
16598 /* Once we've fixed up a die, there's no point in doing so again.
16599 This also avoids a memory leak if we were to call
16600 guess_partial_die_structure_name multiple times. */
16601 if (part_die->fixup_called)
16602 return;
16603
16604 /* If we found a reference attribute and the DIE has no name, try
16605 to find a name in the referred to DIE. */
16606
16607 if (part_die->name == NULL && part_die->has_specification)
16608 {
16609 struct partial_die_info *spec_die;
16610
16611 spec_die = find_partial_die (part_die->spec_offset,
16612 part_die->spec_is_dwz, cu);
16613
16614 fixup_partial_die (spec_die, cu);
16615
16616 if (spec_die->name)
16617 {
16618 part_die->name = spec_die->name;
16619
16620 /* Copy DW_AT_external attribute if it is set. */
16621 if (spec_die->is_external)
16622 part_die->is_external = spec_die->is_external;
16623 }
16624 }
16625
16626 /* Set default names for some unnamed DIEs. */
16627
16628 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
16629 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
16630
16631 /* If there is no parent die to provide a namespace, and there are
16632 children, see if we can determine the namespace from their linkage
16633 name. */
16634 if (cu->language == language_cplus
16635 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16636 && part_die->die_parent == NULL
16637 && part_die->has_children
16638 && (part_die->tag == DW_TAG_class_type
16639 || part_die->tag == DW_TAG_structure_type
16640 || part_die->tag == DW_TAG_union_type))
16641 guess_partial_die_structure_name (part_die, cu);
16642
16643 /* GCC might emit a nameless struct or union that has a linkage
16644 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16645 if (part_die->name == NULL
16646 && (part_die->tag == DW_TAG_class_type
16647 || part_die->tag == DW_TAG_interface_type
16648 || part_die->tag == DW_TAG_structure_type
16649 || part_die->tag == DW_TAG_union_type)
16650 && part_die->linkage_name != NULL)
16651 {
16652 char *demangled;
16653
16654 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
16655 if (demangled)
16656 {
16657 const char *base;
16658
16659 /* Strip any leading namespaces/classes, keep only the base name.
16660 DW_AT_name for named DIEs does not contain the prefixes. */
16661 base = strrchr (demangled, ':');
16662 if (base && base > demangled && base[-1] == ':')
16663 base++;
16664 else
16665 base = demangled;
16666
16667 part_die->name
16668 = ((const char *)
16669 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16670 base, strlen (base)));
16671 xfree (demangled);
16672 }
16673 }
16674
16675 part_die->fixup_called = 1;
16676 }
16677
16678 /* Read an attribute value described by an attribute form. */
16679
16680 static const gdb_byte *
16681 read_attribute_value (const struct die_reader_specs *reader,
16682 struct attribute *attr, unsigned form,
16683 LONGEST implicit_const, const gdb_byte *info_ptr)
16684 {
16685 struct dwarf2_cu *cu = reader->cu;
16686 struct objfile *objfile = cu->objfile;
16687 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16688 bfd *abfd = reader->abfd;
16689 struct comp_unit_head *cu_header = &cu->header;
16690 unsigned int bytes_read;
16691 struct dwarf_block *blk;
16692
16693 attr->form = (enum dwarf_form) form;
16694 switch (form)
16695 {
16696 case DW_FORM_ref_addr:
16697 if (cu->header.version == 2)
16698 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16699 else
16700 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16701 &cu->header, &bytes_read);
16702 info_ptr += bytes_read;
16703 break;
16704 case DW_FORM_GNU_ref_alt:
16705 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16706 info_ptr += bytes_read;
16707 break;
16708 case DW_FORM_addr:
16709 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16710 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
16711 info_ptr += bytes_read;
16712 break;
16713 case DW_FORM_block2:
16714 blk = dwarf_alloc_block (cu);
16715 blk->size = read_2_bytes (abfd, info_ptr);
16716 info_ptr += 2;
16717 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16718 info_ptr += blk->size;
16719 DW_BLOCK (attr) = blk;
16720 break;
16721 case DW_FORM_block4:
16722 blk = dwarf_alloc_block (cu);
16723 blk->size = read_4_bytes (abfd, info_ptr);
16724 info_ptr += 4;
16725 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16726 info_ptr += blk->size;
16727 DW_BLOCK (attr) = blk;
16728 break;
16729 case DW_FORM_data2:
16730 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16731 info_ptr += 2;
16732 break;
16733 case DW_FORM_data4:
16734 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16735 info_ptr += 4;
16736 break;
16737 case DW_FORM_data8:
16738 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16739 info_ptr += 8;
16740 break;
16741 case DW_FORM_data16:
16742 blk = dwarf_alloc_block (cu);
16743 blk->size = 16;
16744 blk->data = read_n_bytes (abfd, info_ptr, 16);
16745 info_ptr += 16;
16746 DW_BLOCK (attr) = blk;
16747 break;
16748 case DW_FORM_sec_offset:
16749 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16750 info_ptr += bytes_read;
16751 break;
16752 case DW_FORM_string:
16753 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
16754 DW_STRING_IS_CANONICAL (attr) = 0;
16755 info_ptr += bytes_read;
16756 break;
16757 case DW_FORM_strp:
16758 if (!cu->per_cu->is_dwz)
16759 {
16760 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16761 &bytes_read);
16762 DW_STRING_IS_CANONICAL (attr) = 0;
16763 info_ptr += bytes_read;
16764 break;
16765 }
16766 /* FALLTHROUGH */
16767 case DW_FORM_line_strp:
16768 if (!cu->per_cu->is_dwz)
16769 {
16770 DW_STRING (attr) = read_indirect_line_string (abfd, info_ptr,
16771 cu_header, &bytes_read);
16772 DW_STRING_IS_CANONICAL (attr) = 0;
16773 info_ptr += bytes_read;
16774 break;
16775 }
16776 /* FALLTHROUGH */
16777 case DW_FORM_GNU_strp_alt:
16778 {
16779 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16780 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16781 &bytes_read);
16782
16783 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16784 DW_STRING_IS_CANONICAL (attr) = 0;
16785 info_ptr += bytes_read;
16786 }
16787 break;
16788 case DW_FORM_exprloc:
16789 case DW_FORM_block:
16790 blk = dwarf_alloc_block (cu);
16791 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16792 info_ptr += bytes_read;
16793 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16794 info_ptr += blk->size;
16795 DW_BLOCK (attr) = blk;
16796 break;
16797 case DW_FORM_block1:
16798 blk = dwarf_alloc_block (cu);
16799 blk->size = read_1_byte (abfd, info_ptr);
16800 info_ptr += 1;
16801 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16802 info_ptr += blk->size;
16803 DW_BLOCK (attr) = blk;
16804 break;
16805 case DW_FORM_data1:
16806 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16807 info_ptr += 1;
16808 break;
16809 case DW_FORM_flag:
16810 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16811 info_ptr += 1;
16812 break;
16813 case DW_FORM_flag_present:
16814 DW_UNSND (attr) = 1;
16815 break;
16816 case DW_FORM_sdata:
16817 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16818 info_ptr += bytes_read;
16819 break;
16820 case DW_FORM_udata:
16821 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16822 info_ptr += bytes_read;
16823 break;
16824 case DW_FORM_ref1:
16825 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16826 + read_1_byte (abfd, info_ptr));
16827 info_ptr += 1;
16828 break;
16829 case DW_FORM_ref2:
16830 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16831 + read_2_bytes (abfd, info_ptr));
16832 info_ptr += 2;
16833 break;
16834 case DW_FORM_ref4:
16835 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16836 + read_4_bytes (abfd, info_ptr));
16837 info_ptr += 4;
16838 break;
16839 case DW_FORM_ref8:
16840 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16841 + read_8_bytes (abfd, info_ptr));
16842 info_ptr += 8;
16843 break;
16844 case DW_FORM_ref_sig8:
16845 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16846 info_ptr += 8;
16847 break;
16848 case DW_FORM_ref_udata:
16849 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16850 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16851 info_ptr += bytes_read;
16852 break;
16853 case DW_FORM_indirect:
16854 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16855 info_ptr += bytes_read;
16856 if (form == DW_FORM_implicit_const)
16857 {
16858 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16859 info_ptr += bytes_read;
16860 }
16861 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
16862 info_ptr);
16863 break;
16864 case DW_FORM_implicit_const:
16865 DW_SND (attr) = implicit_const;
16866 break;
16867 case DW_FORM_GNU_addr_index:
16868 if (reader->dwo_file == NULL)
16869 {
16870 /* For now flag a hard error.
16871 Later we can turn this into a complaint. */
16872 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16873 dwarf_form_name (form),
16874 bfd_get_filename (abfd));
16875 }
16876 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16877 info_ptr += bytes_read;
16878 break;
16879 case DW_FORM_GNU_str_index:
16880 if (reader->dwo_file == NULL)
16881 {
16882 /* For now flag a hard error.
16883 Later we can turn this into a complaint if warranted. */
16884 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16885 dwarf_form_name (form),
16886 bfd_get_filename (abfd));
16887 }
16888 {
16889 ULONGEST str_index =
16890 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16891
16892 DW_STRING (attr) = read_str_index (reader, str_index);
16893 DW_STRING_IS_CANONICAL (attr) = 0;
16894 info_ptr += bytes_read;
16895 }
16896 break;
16897 default:
16898 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16899 dwarf_form_name (form),
16900 bfd_get_filename (abfd));
16901 }
16902
16903 /* Super hack. */
16904 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16905 attr->form = DW_FORM_GNU_ref_alt;
16906
16907 /* We have seen instances where the compiler tried to emit a byte
16908 size attribute of -1 which ended up being encoded as an unsigned
16909 0xffffffff. Although 0xffffffff is technically a valid size value,
16910 an object of this size seems pretty unlikely so we can relatively
16911 safely treat these cases as if the size attribute was invalid and
16912 treat them as zero by default. */
16913 if (attr->name == DW_AT_byte_size
16914 && form == DW_FORM_data4
16915 && DW_UNSND (attr) >= 0xffffffff)
16916 {
16917 complaint
16918 (&symfile_complaints,
16919 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16920 hex_string (DW_UNSND (attr)));
16921 DW_UNSND (attr) = 0;
16922 }
16923
16924 return info_ptr;
16925 }
16926
16927 /* Read an attribute described by an abbreviated attribute. */
16928
16929 static const gdb_byte *
16930 read_attribute (const struct die_reader_specs *reader,
16931 struct attribute *attr, struct attr_abbrev *abbrev,
16932 const gdb_byte *info_ptr)
16933 {
16934 attr->name = abbrev->name;
16935 return read_attribute_value (reader, attr, abbrev->form,
16936 abbrev->implicit_const, info_ptr);
16937 }
16938
16939 /* Read dwarf information from a buffer. */
16940
16941 static unsigned int
16942 read_1_byte (bfd *abfd, const gdb_byte *buf)
16943 {
16944 return bfd_get_8 (abfd, buf);
16945 }
16946
16947 static int
16948 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16949 {
16950 return bfd_get_signed_8 (abfd, buf);
16951 }
16952
16953 static unsigned int
16954 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16955 {
16956 return bfd_get_16 (abfd, buf);
16957 }
16958
16959 static int
16960 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16961 {
16962 return bfd_get_signed_16 (abfd, buf);
16963 }
16964
16965 static unsigned int
16966 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16967 {
16968 return bfd_get_32 (abfd, buf);
16969 }
16970
16971 static int
16972 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16973 {
16974 return bfd_get_signed_32 (abfd, buf);
16975 }
16976
16977 static ULONGEST
16978 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16979 {
16980 return bfd_get_64 (abfd, buf);
16981 }
16982
16983 static CORE_ADDR
16984 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16985 unsigned int *bytes_read)
16986 {
16987 struct comp_unit_head *cu_header = &cu->header;
16988 CORE_ADDR retval = 0;
16989
16990 if (cu_header->signed_addr_p)
16991 {
16992 switch (cu_header->addr_size)
16993 {
16994 case 2:
16995 retval = bfd_get_signed_16 (abfd, buf);
16996 break;
16997 case 4:
16998 retval = bfd_get_signed_32 (abfd, buf);
16999 break;
17000 case 8:
17001 retval = bfd_get_signed_64 (abfd, buf);
17002 break;
17003 default:
17004 internal_error (__FILE__, __LINE__,
17005 _("read_address: bad switch, signed [in module %s]"),
17006 bfd_get_filename (abfd));
17007 }
17008 }
17009 else
17010 {
17011 switch (cu_header->addr_size)
17012 {
17013 case 2:
17014 retval = bfd_get_16 (abfd, buf);
17015 break;
17016 case 4:
17017 retval = bfd_get_32 (abfd, buf);
17018 break;
17019 case 8:
17020 retval = bfd_get_64 (abfd, buf);
17021 break;
17022 default:
17023 internal_error (__FILE__, __LINE__,
17024 _("read_address: bad switch, "
17025 "unsigned [in module %s]"),
17026 bfd_get_filename (abfd));
17027 }
17028 }
17029
17030 *bytes_read = cu_header->addr_size;
17031 return retval;
17032 }
17033
17034 /* Read the initial length from a section. The (draft) DWARF 3
17035 specification allows the initial length to take up either 4 bytes
17036 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
17037 bytes describe the length and all offsets will be 8 bytes in length
17038 instead of 4.
17039
17040 An older, non-standard 64-bit format is also handled by this
17041 function. The older format in question stores the initial length
17042 as an 8-byte quantity without an escape value. Lengths greater
17043 than 2^32 aren't very common which means that the initial 4 bytes
17044 is almost always zero. Since a length value of zero doesn't make
17045 sense for the 32-bit format, this initial zero can be considered to
17046 be an escape value which indicates the presence of the older 64-bit
17047 format. As written, the code can't detect (old format) lengths
17048 greater than 4GB. If it becomes necessary to handle lengths
17049 somewhat larger than 4GB, we could allow other small values (such
17050 as the non-sensical values of 1, 2, and 3) to also be used as
17051 escape values indicating the presence of the old format.
17052
17053 The value returned via bytes_read should be used to increment the
17054 relevant pointer after calling read_initial_length().
17055
17056 [ Note: read_initial_length() and read_offset() are based on the
17057 document entitled "DWARF Debugging Information Format", revision
17058 3, draft 8, dated November 19, 2001. This document was obtained
17059 from:
17060
17061 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
17062
17063 This document is only a draft and is subject to change. (So beware.)
17064
17065 Details regarding the older, non-standard 64-bit format were
17066 determined empirically by examining 64-bit ELF files produced by
17067 the SGI toolchain on an IRIX 6.5 machine.
17068
17069 - Kevin, July 16, 2002
17070 ] */
17071
17072 static LONGEST
17073 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
17074 {
17075 LONGEST length = bfd_get_32 (abfd, buf);
17076
17077 if (length == 0xffffffff)
17078 {
17079 length = bfd_get_64 (abfd, buf + 4);
17080 *bytes_read = 12;
17081 }
17082 else if (length == 0)
17083 {
17084 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
17085 length = bfd_get_64 (abfd, buf);
17086 *bytes_read = 8;
17087 }
17088 else
17089 {
17090 *bytes_read = 4;
17091 }
17092
17093 return length;
17094 }
17095
17096 /* Cover function for read_initial_length.
17097 Returns the length of the object at BUF, and stores the size of the
17098 initial length in *BYTES_READ and stores the size that offsets will be in
17099 *OFFSET_SIZE.
17100 If the initial length size is not equivalent to that specified in
17101 CU_HEADER then issue a complaint.
17102 This is useful when reading non-comp-unit headers. */
17103
17104 static LONGEST
17105 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
17106 const struct comp_unit_head *cu_header,
17107 unsigned int *bytes_read,
17108 unsigned int *offset_size)
17109 {
17110 LONGEST length = read_initial_length (abfd, buf, bytes_read);
17111
17112 gdb_assert (cu_header->initial_length_size == 4
17113 || cu_header->initial_length_size == 8
17114 || cu_header->initial_length_size == 12);
17115
17116 if (cu_header->initial_length_size != *bytes_read)
17117 complaint (&symfile_complaints,
17118 _("intermixed 32-bit and 64-bit DWARF sections"));
17119
17120 *offset_size = (*bytes_read == 4) ? 4 : 8;
17121 return length;
17122 }
17123
17124 /* Read an offset from the data stream. The size of the offset is
17125 given by cu_header->offset_size. */
17126
17127 static LONGEST
17128 read_offset (bfd *abfd, const gdb_byte *buf,
17129 const struct comp_unit_head *cu_header,
17130 unsigned int *bytes_read)
17131 {
17132 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
17133
17134 *bytes_read = cu_header->offset_size;
17135 return offset;
17136 }
17137
17138 /* Read an offset from the data stream. */
17139
17140 static LONGEST
17141 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
17142 {
17143 LONGEST retval = 0;
17144
17145 switch (offset_size)
17146 {
17147 case 4:
17148 retval = bfd_get_32 (abfd, buf);
17149 break;
17150 case 8:
17151 retval = bfd_get_64 (abfd, buf);
17152 break;
17153 default:
17154 internal_error (__FILE__, __LINE__,
17155 _("read_offset_1: bad switch [in module %s]"),
17156 bfd_get_filename (abfd));
17157 }
17158
17159 return retval;
17160 }
17161
17162 static const gdb_byte *
17163 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
17164 {
17165 /* If the size of a host char is 8 bits, we can return a pointer
17166 to the buffer, otherwise we have to copy the data to a buffer
17167 allocated on the temporary obstack. */
17168 gdb_assert (HOST_CHAR_BIT == 8);
17169 return buf;
17170 }
17171
17172 static const char *
17173 read_direct_string (bfd *abfd, const gdb_byte *buf,
17174 unsigned int *bytes_read_ptr)
17175 {
17176 /* If the size of a host char is 8 bits, we can return a pointer
17177 to the string, otherwise we have to copy the string to a buffer
17178 allocated on the temporary obstack. */
17179 gdb_assert (HOST_CHAR_BIT == 8);
17180 if (*buf == '\0')
17181 {
17182 *bytes_read_ptr = 1;
17183 return NULL;
17184 }
17185 *bytes_read_ptr = strlen ((const char *) buf) + 1;
17186 return (const char *) buf;
17187 }
17188
17189 /* Return pointer to string at section SECT offset STR_OFFSET with error
17190 reporting strings FORM_NAME and SECT_NAME. */
17191
17192 static const char *
17193 read_indirect_string_at_offset_from (bfd *abfd, LONGEST str_offset,
17194 struct dwarf2_section_info *sect,
17195 const char *form_name,
17196 const char *sect_name)
17197 {
17198 dwarf2_read_section (dwarf2_per_objfile->objfile, sect);
17199 if (sect->buffer == NULL)
17200 error (_("%s used without %s section [in module %s]"),
17201 form_name, sect_name, bfd_get_filename (abfd));
17202 if (str_offset >= sect->size)
17203 error (_("%s pointing outside of %s section [in module %s]"),
17204 form_name, sect_name, bfd_get_filename (abfd));
17205 gdb_assert (HOST_CHAR_BIT == 8);
17206 if (sect->buffer[str_offset] == '\0')
17207 return NULL;
17208 return (const char *) (sect->buffer + str_offset);
17209 }
17210
17211 /* Return pointer to string at .debug_str offset STR_OFFSET. */
17212
17213 static const char *
17214 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
17215 {
17216 return read_indirect_string_at_offset_from (abfd, str_offset,
17217 &dwarf2_per_objfile->str,
17218 "DW_FORM_strp", ".debug_str");
17219 }
17220
17221 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
17222
17223 static const char *
17224 read_indirect_line_string_at_offset (bfd *abfd, LONGEST str_offset)
17225 {
17226 return read_indirect_string_at_offset_from (abfd, str_offset,
17227 &dwarf2_per_objfile->line_str,
17228 "DW_FORM_line_strp",
17229 ".debug_line_str");
17230 }
17231
17232 /* Read a string at offset STR_OFFSET in the .debug_str section from
17233 the .dwz file DWZ. Throw an error if the offset is too large. If
17234 the string consists of a single NUL byte, return NULL; otherwise
17235 return a pointer to the string. */
17236
17237 static const char *
17238 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
17239 {
17240 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
17241
17242 if (dwz->str.buffer == NULL)
17243 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
17244 "section [in module %s]"),
17245 bfd_get_filename (dwz->dwz_bfd));
17246 if (str_offset >= dwz->str.size)
17247 error (_("DW_FORM_GNU_strp_alt pointing outside of "
17248 ".debug_str section [in module %s]"),
17249 bfd_get_filename (dwz->dwz_bfd));
17250 gdb_assert (HOST_CHAR_BIT == 8);
17251 if (dwz->str.buffer[str_offset] == '\0')
17252 return NULL;
17253 return (const char *) (dwz->str.buffer + str_offset);
17254 }
17255
17256 /* Return pointer to string at .debug_str offset as read from BUF.
17257 BUF is assumed to be in a compilation unit described by CU_HEADER.
17258 Return *BYTES_READ_PTR count of bytes read from BUF. */
17259
17260 static const char *
17261 read_indirect_string (bfd *abfd, const gdb_byte *buf,
17262 const struct comp_unit_head *cu_header,
17263 unsigned int *bytes_read_ptr)
17264 {
17265 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17266
17267 return read_indirect_string_at_offset (abfd, str_offset);
17268 }
17269
17270 /* Return pointer to string at .debug_line_str offset as read from BUF.
17271 BUF is assumed to be in a compilation unit described by CU_HEADER.
17272 Return *BYTES_READ_PTR count of bytes read from BUF. */
17273
17274 static const char *
17275 read_indirect_line_string (bfd *abfd, const gdb_byte *buf,
17276 const struct comp_unit_head *cu_header,
17277 unsigned int *bytes_read_ptr)
17278 {
17279 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17280
17281 return read_indirect_line_string_at_offset (abfd, str_offset);
17282 }
17283
17284 ULONGEST
17285 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
17286 unsigned int *bytes_read_ptr)
17287 {
17288 ULONGEST result;
17289 unsigned int num_read;
17290 int shift;
17291 unsigned char byte;
17292
17293 result = 0;
17294 shift = 0;
17295 num_read = 0;
17296 while (1)
17297 {
17298 byte = bfd_get_8 (abfd, buf);
17299 buf++;
17300 num_read++;
17301 result |= ((ULONGEST) (byte & 127) << shift);
17302 if ((byte & 128) == 0)
17303 {
17304 break;
17305 }
17306 shift += 7;
17307 }
17308 *bytes_read_ptr = num_read;
17309 return result;
17310 }
17311
17312 static LONGEST
17313 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
17314 unsigned int *bytes_read_ptr)
17315 {
17316 LONGEST result;
17317 int shift, num_read;
17318 unsigned char byte;
17319
17320 result = 0;
17321 shift = 0;
17322 num_read = 0;
17323 while (1)
17324 {
17325 byte = bfd_get_8 (abfd, buf);
17326 buf++;
17327 num_read++;
17328 result |= ((LONGEST) (byte & 127) << shift);
17329 shift += 7;
17330 if ((byte & 128) == 0)
17331 {
17332 break;
17333 }
17334 }
17335 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
17336 result |= -(((LONGEST) 1) << shift);
17337 *bytes_read_ptr = num_read;
17338 return result;
17339 }
17340
17341 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
17342 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
17343 ADDR_SIZE is the size of addresses from the CU header. */
17344
17345 static CORE_ADDR
17346 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
17347 {
17348 struct objfile *objfile = dwarf2_per_objfile->objfile;
17349 bfd *abfd = objfile->obfd;
17350 const gdb_byte *info_ptr;
17351
17352 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
17353 if (dwarf2_per_objfile->addr.buffer == NULL)
17354 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
17355 objfile_name (objfile));
17356 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
17357 error (_("DW_FORM_addr_index pointing outside of "
17358 ".debug_addr section [in module %s]"),
17359 objfile_name (objfile));
17360 info_ptr = (dwarf2_per_objfile->addr.buffer
17361 + addr_base + addr_index * addr_size);
17362 if (addr_size == 4)
17363 return bfd_get_32 (abfd, info_ptr);
17364 else
17365 return bfd_get_64 (abfd, info_ptr);
17366 }
17367
17368 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
17369
17370 static CORE_ADDR
17371 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
17372 {
17373 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
17374 }
17375
17376 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
17377
17378 static CORE_ADDR
17379 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
17380 unsigned int *bytes_read)
17381 {
17382 bfd *abfd = cu->objfile->obfd;
17383 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
17384
17385 return read_addr_index (cu, addr_index);
17386 }
17387
17388 /* Data structure to pass results from dwarf2_read_addr_index_reader
17389 back to dwarf2_read_addr_index. */
17390
17391 struct dwarf2_read_addr_index_data
17392 {
17393 ULONGEST addr_base;
17394 int addr_size;
17395 };
17396
17397 /* die_reader_func for dwarf2_read_addr_index. */
17398
17399 static void
17400 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
17401 const gdb_byte *info_ptr,
17402 struct die_info *comp_unit_die,
17403 int has_children,
17404 void *data)
17405 {
17406 struct dwarf2_cu *cu = reader->cu;
17407 struct dwarf2_read_addr_index_data *aidata =
17408 (struct dwarf2_read_addr_index_data *) data;
17409
17410 aidata->addr_base = cu->addr_base;
17411 aidata->addr_size = cu->header.addr_size;
17412 }
17413
17414 /* Given an index in .debug_addr, fetch the value.
17415 NOTE: This can be called during dwarf expression evaluation,
17416 long after the debug information has been read, and thus per_cu->cu
17417 may no longer exist. */
17418
17419 CORE_ADDR
17420 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
17421 unsigned int addr_index)
17422 {
17423 struct objfile *objfile = per_cu->objfile;
17424 struct dwarf2_cu *cu = per_cu->cu;
17425 ULONGEST addr_base;
17426 int addr_size;
17427
17428 /* This is intended to be called from outside this file. */
17429 dw2_setup (objfile);
17430
17431 /* We need addr_base and addr_size.
17432 If we don't have PER_CU->cu, we have to get it.
17433 Nasty, but the alternative is storing the needed info in PER_CU,
17434 which at this point doesn't seem justified: it's not clear how frequently
17435 it would get used and it would increase the size of every PER_CU.
17436 Entry points like dwarf2_per_cu_addr_size do a similar thing
17437 so we're not in uncharted territory here.
17438 Alas we need to be a bit more complicated as addr_base is contained
17439 in the DIE.
17440
17441 We don't need to read the entire CU(/TU).
17442 We just need the header and top level die.
17443
17444 IWBN to use the aging mechanism to let us lazily later discard the CU.
17445 For now we skip this optimization. */
17446
17447 if (cu != NULL)
17448 {
17449 addr_base = cu->addr_base;
17450 addr_size = cu->header.addr_size;
17451 }
17452 else
17453 {
17454 struct dwarf2_read_addr_index_data aidata;
17455
17456 /* Note: We can't use init_cutu_and_read_dies_simple here,
17457 we need addr_base. */
17458 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
17459 dwarf2_read_addr_index_reader, &aidata);
17460 addr_base = aidata.addr_base;
17461 addr_size = aidata.addr_size;
17462 }
17463
17464 return read_addr_index_1 (addr_index, addr_base, addr_size);
17465 }
17466
17467 /* Given a DW_FORM_GNU_str_index, fetch the string.
17468 This is only used by the Fission support. */
17469
17470 static const char *
17471 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
17472 {
17473 struct objfile *objfile = dwarf2_per_objfile->objfile;
17474 const char *objf_name = objfile_name (objfile);
17475 bfd *abfd = objfile->obfd;
17476 struct dwarf2_cu *cu = reader->cu;
17477 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
17478 struct dwarf2_section_info *str_offsets_section =
17479 &reader->dwo_file->sections.str_offsets;
17480 const gdb_byte *info_ptr;
17481 ULONGEST str_offset;
17482 static const char form_name[] = "DW_FORM_GNU_str_index";
17483
17484 dwarf2_read_section (objfile, str_section);
17485 dwarf2_read_section (objfile, str_offsets_section);
17486 if (str_section->buffer == NULL)
17487 error (_("%s used without .debug_str.dwo section"
17488 " in CU at offset 0x%x [in module %s]"),
17489 form_name, to_underlying (cu->header.sect_off), objf_name);
17490 if (str_offsets_section->buffer == NULL)
17491 error (_("%s used without .debug_str_offsets.dwo section"
17492 " in CU at offset 0x%x [in module %s]"),
17493 form_name, to_underlying (cu->header.sect_off), objf_name);
17494 if (str_index * cu->header.offset_size >= str_offsets_section->size)
17495 error (_("%s pointing outside of .debug_str_offsets.dwo"
17496 " section in CU at offset 0x%x [in module %s]"),
17497 form_name, to_underlying (cu->header.sect_off), objf_name);
17498 info_ptr = (str_offsets_section->buffer
17499 + str_index * cu->header.offset_size);
17500 if (cu->header.offset_size == 4)
17501 str_offset = bfd_get_32 (abfd, info_ptr);
17502 else
17503 str_offset = bfd_get_64 (abfd, info_ptr);
17504 if (str_offset >= str_section->size)
17505 error (_("Offset from %s pointing outside of"
17506 " .debug_str.dwo section in CU at offset 0x%x [in module %s]"),
17507 form_name, to_underlying (cu->header.sect_off), objf_name);
17508 return (const char *) (str_section->buffer + str_offset);
17509 }
17510
17511 /* Return the length of an LEB128 number in BUF. */
17512
17513 static int
17514 leb128_size (const gdb_byte *buf)
17515 {
17516 const gdb_byte *begin = buf;
17517 gdb_byte byte;
17518
17519 while (1)
17520 {
17521 byte = *buf++;
17522 if ((byte & 128) == 0)
17523 return buf - begin;
17524 }
17525 }
17526
17527 static void
17528 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
17529 {
17530 switch (lang)
17531 {
17532 case DW_LANG_C89:
17533 case DW_LANG_C99:
17534 case DW_LANG_C11:
17535 case DW_LANG_C:
17536 case DW_LANG_UPC:
17537 cu->language = language_c;
17538 break;
17539 case DW_LANG_Java:
17540 case DW_LANG_C_plus_plus:
17541 case DW_LANG_C_plus_plus_11:
17542 case DW_LANG_C_plus_plus_14:
17543 cu->language = language_cplus;
17544 break;
17545 case DW_LANG_D:
17546 cu->language = language_d;
17547 break;
17548 case DW_LANG_Fortran77:
17549 case DW_LANG_Fortran90:
17550 case DW_LANG_Fortran95:
17551 case DW_LANG_Fortran03:
17552 case DW_LANG_Fortran08:
17553 cu->language = language_fortran;
17554 break;
17555 case DW_LANG_Go:
17556 cu->language = language_go;
17557 break;
17558 case DW_LANG_Mips_Assembler:
17559 cu->language = language_asm;
17560 break;
17561 case DW_LANG_Ada83:
17562 case DW_LANG_Ada95:
17563 cu->language = language_ada;
17564 break;
17565 case DW_LANG_Modula2:
17566 cu->language = language_m2;
17567 break;
17568 case DW_LANG_Pascal83:
17569 cu->language = language_pascal;
17570 break;
17571 case DW_LANG_ObjC:
17572 cu->language = language_objc;
17573 break;
17574 case DW_LANG_Rust:
17575 case DW_LANG_Rust_old:
17576 cu->language = language_rust;
17577 break;
17578 case DW_LANG_Cobol74:
17579 case DW_LANG_Cobol85:
17580 default:
17581 cu->language = language_minimal;
17582 break;
17583 }
17584 cu->language_defn = language_def (cu->language);
17585 }
17586
17587 /* Return the named attribute or NULL if not there. */
17588
17589 static struct attribute *
17590 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17591 {
17592 for (;;)
17593 {
17594 unsigned int i;
17595 struct attribute *spec = NULL;
17596
17597 for (i = 0; i < die->num_attrs; ++i)
17598 {
17599 if (die->attrs[i].name == name)
17600 return &die->attrs[i];
17601 if (die->attrs[i].name == DW_AT_specification
17602 || die->attrs[i].name == DW_AT_abstract_origin)
17603 spec = &die->attrs[i];
17604 }
17605
17606 if (!spec)
17607 break;
17608
17609 die = follow_die_ref (die, spec, &cu);
17610 }
17611
17612 return NULL;
17613 }
17614
17615 /* Return the named attribute or NULL if not there,
17616 but do not follow DW_AT_specification, etc.
17617 This is for use in contexts where we're reading .debug_types dies.
17618 Following DW_AT_specification, DW_AT_abstract_origin will take us
17619 back up the chain, and we want to go down. */
17620
17621 static struct attribute *
17622 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
17623 {
17624 unsigned int i;
17625
17626 for (i = 0; i < die->num_attrs; ++i)
17627 if (die->attrs[i].name == name)
17628 return &die->attrs[i];
17629
17630 return NULL;
17631 }
17632
17633 /* Return the string associated with a string-typed attribute, or NULL if it
17634 is either not found or is of an incorrect type. */
17635
17636 static const char *
17637 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17638 {
17639 struct attribute *attr;
17640 const char *str = NULL;
17641
17642 attr = dwarf2_attr (die, name, cu);
17643
17644 if (attr != NULL)
17645 {
17646 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
17647 || attr->form == DW_FORM_string
17648 || attr->form == DW_FORM_GNU_str_index
17649 || attr->form == DW_FORM_GNU_strp_alt)
17650 str = DW_STRING (attr);
17651 else
17652 complaint (&symfile_complaints,
17653 _("string type expected for attribute %s for "
17654 "DIE at 0x%x in module %s"),
17655 dwarf_attr_name (name), to_underlying (die->sect_off),
17656 objfile_name (cu->objfile));
17657 }
17658
17659 return str;
17660 }
17661
17662 /* Return non-zero iff the attribute NAME is defined for the given DIE,
17663 and holds a non-zero value. This function should only be used for
17664 DW_FORM_flag or DW_FORM_flag_present attributes. */
17665
17666 static int
17667 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17668 {
17669 struct attribute *attr = dwarf2_attr (die, name, cu);
17670
17671 return (attr && DW_UNSND (attr));
17672 }
17673
17674 static int
17675 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
17676 {
17677 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17678 which value is non-zero. However, we have to be careful with
17679 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17680 (via dwarf2_flag_true_p) follows this attribute. So we may
17681 end up accidently finding a declaration attribute that belongs
17682 to a different DIE referenced by the specification attribute,
17683 even though the given DIE does not have a declaration attribute. */
17684 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17685 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
17686 }
17687
17688 /* Return the die giving the specification for DIE, if there is
17689 one. *SPEC_CU is the CU containing DIE on input, and the CU
17690 containing the return value on output. If there is no
17691 specification, but there is an abstract origin, that is
17692 returned. */
17693
17694 static struct die_info *
17695 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
17696 {
17697 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17698 *spec_cu);
17699
17700 if (spec_attr == NULL)
17701 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17702
17703 if (spec_attr == NULL)
17704 return NULL;
17705 else
17706 return follow_die_ref (die, spec_attr, spec_cu);
17707 }
17708
17709 /* Stub for free_line_header to match void * callback types. */
17710
17711 static void
17712 free_line_header_voidp (void *arg)
17713 {
17714 struct line_header *lh = (struct line_header *) arg;
17715
17716 delete lh;
17717 }
17718
17719 void
17720 line_header::add_include_dir (const char *include_dir)
17721 {
17722 if (dwarf_line_debug >= 2)
17723 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
17724 include_dirs.size () + 1, include_dir);
17725
17726 include_dirs.push_back (include_dir);
17727 }
17728
17729 void
17730 line_header::add_file_name (const char *name,
17731 dir_index d_index,
17732 unsigned int mod_time,
17733 unsigned int length)
17734 {
17735 if (dwarf_line_debug >= 2)
17736 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17737 (unsigned) file_names.size () + 1, name);
17738
17739 file_names.emplace_back (name, d_index, mod_time, length);
17740 }
17741
17742 /* A convenience function to find the proper .debug_line section for a CU. */
17743
17744 static struct dwarf2_section_info *
17745 get_debug_line_section (struct dwarf2_cu *cu)
17746 {
17747 struct dwarf2_section_info *section;
17748
17749 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17750 DWO file. */
17751 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17752 section = &cu->dwo_unit->dwo_file->sections.line;
17753 else if (cu->per_cu->is_dwz)
17754 {
17755 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17756
17757 section = &dwz->line;
17758 }
17759 else
17760 section = &dwarf2_per_objfile->line;
17761
17762 return section;
17763 }
17764
17765 /* Read directory or file name entry format, starting with byte of
17766 format count entries, ULEB128 pairs of entry formats, ULEB128 of
17767 entries count and the entries themselves in the described entry
17768 format. */
17769
17770 static void
17771 read_formatted_entries (bfd *abfd, const gdb_byte **bufp,
17772 struct line_header *lh,
17773 const struct comp_unit_head *cu_header,
17774 void (*callback) (struct line_header *lh,
17775 const char *name,
17776 dir_index d_index,
17777 unsigned int mod_time,
17778 unsigned int length))
17779 {
17780 gdb_byte format_count, formati;
17781 ULONGEST data_count, datai;
17782 const gdb_byte *buf = *bufp;
17783 const gdb_byte *format_header_data;
17784 int i;
17785 unsigned int bytes_read;
17786
17787 format_count = read_1_byte (abfd, buf);
17788 buf += 1;
17789 format_header_data = buf;
17790 for (formati = 0; formati < format_count; formati++)
17791 {
17792 read_unsigned_leb128 (abfd, buf, &bytes_read);
17793 buf += bytes_read;
17794 read_unsigned_leb128 (abfd, buf, &bytes_read);
17795 buf += bytes_read;
17796 }
17797
17798 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
17799 buf += bytes_read;
17800 for (datai = 0; datai < data_count; datai++)
17801 {
17802 const gdb_byte *format = format_header_data;
17803 struct file_entry fe;
17804
17805 for (formati = 0; formati < format_count; formati++)
17806 {
17807 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
17808 format += bytes_read;
17809
17810 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
17811 format += bytes_read;
17812
17813 gdb::optional<const char *> string;
17814 gdb::optional<unsigned int> uint;
17815
17816 switch (form)
17817 {
17818 case DW_FORM_string:
17819 string.emplace (read_direct_string (abfd, buf, &bytes_read));
17820 buf += bytes_read;
17821 break;
17822
17823 case DW_FORM_line_strp:
17824 string.emplace (read_indirect_line_string (abfd, buf,
17825 cu_header,
17826 &bytes_read));
17827 buf += bytes_read;
17828 break;
17829
17830 case DW_FORM_data1:
17831 uint.emplace (read_1_byte (abfd, buf));
17832 buf += 1;
17833 break;
17834
17835 case DW_FORM_data2:
17836 uint.emplace (read_2_bytes (abfd, buf));
17837 buf += 2;
17838 break;
17839
17840 case DW_FORM_data4:
17841 uint.emplace (read_4_bytes (abfd, buf));
17842 buf += 4;
17843 break;
17844
17845 case DW_FORM_data8:
17846 uint.emplace (read_8_bytes (abfd, buf));
17847 buf += 8;
17848 break;
17849
17850 case DW_FORM_udata:
17851 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
17852 buf += bytes_read;
17853 break;
17854
17855 case DW_FORM_block:
17856 /* It is valid only for DW_LNCT_timestamp which is ignored by
17857 current GDB. */
17858 break;
17859 }
17860
17861 switch (content_type)
17862 {
17863 case DW_LNCT_path:
17864 if (string.has_value ())
17865 fe.name = *string;
17866 break;
17867 case DW_LNCT_directory_index:
17868 if (uint.has_value ())
17869 fe.d_index = (dir_index) *uint;
17870 break;
17871 case DW_LNCT_timestamp:
17872 if (uint.has_value ())
17873 fe.mod_time = *uint;
17874 break;
17875 case DW_LNCT_size:
17876 if (uint.has_value ())
17877 fe.length = *uint;
17878 break;
17879 case DW_LNCT_MD5:
17880 break;
17881 default:
17882 complaint (&symfile_complaints,
17883 _("Unknown format content type %s"),
17884 pulongest (content_type));
17885 }
17886 }
17887
17888 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
17889 }
17890
17891 *bufp = buf;
17892 }
17893
17894 /* Read the statement program header starting at OFFSET in
17895 .debug_line, or .debug_line.dwo. Return a pointer
17896 to a struct line_header, allocated using xmalloc.
17897 Returns NULL if there is a problem reading the header, e.g., if it
17898 has a version we don't understand.
17899
17900 NOTE: the strings in the include directory and file name tables of
17901 the returned object point into the dwarf line section buffer,
17902 and must not be freed. */
17903
17904 static line_header_up
17905 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
17906 {
17907 const gdb_byte *line_ptr;
17908 unsigned int bytes_read, offset_size;
17909 int i;
17910 const char *cur_dir, *cur_file;
17911 struct dwarf2_section_info *section;
17912 bfd *abfd;
17913
17914 section = get_debug_line_section (cu);
17915 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17916 if (section->buffer == NULL)
17917 {
17918 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17919 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17920 else
17921 complaint (&symfile_complaints, _("missing .debug_line section"));
17922 return 0;
17923 }
17924
17925 /* We can't do this until we know the section is non-empty.
17926 Only then do we know we have such a section. */
17927 abfd = get_section_bfd_owner (section);
17928
17929 /* Make sure that at least there's room for the total_length field.
17930 That could be 12 bytes long, but we're just going to fudge that. */
17931 if (to_underlying (sect_off) + 4 >= section->size)
17932 {
17933 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17934 return 0;
17935 }
17936
17937 line_header_up lh (new line_header ());
17938
17939 lh->sect_off = sect_off;
17940 lh->offset_in_dwz = cu->per_cu->is_dwz;
17941
17942 line_ptr = section->buffer + to_underlying (sect_off);
17943
17944 /* Read in the header. */
17945 lh->total_length =
17946 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17947 &bytes_read, &offset_size);
17948 line_ptr += bytes_read;
17949 if (line_ptr + lh->total_length > (section->buffer + section->size))
17950 {
17951 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17952 return 0;
17953 }
17954 lh->statement_program_end = line_ptr + lh->total_length;
17955 lh->version = read_2_bytes (abfd, line_ptr);
17956 line_ptr += 2;
17957 if (lh->version > 5)
17958 {
17959 /* This is a version we don't understand. The format could have
17960 changed in ways we don't handle properly so just punt. */
17961 complaint (&symfile_complaints,
17962 _("unsupported version in .debug_line section"));
17963 return NULL;
17964 }
17965 if (lh->version >= 5)
17966 {
17967 gdb_byte segment_selector_size;
17968
17969 /* Skip address size. */
17970 read_1_byte (abfd, line_ptr);
17971 line_ptr += 1;
17972
17973 segment_selector_size = read_1_byte (abfd, line_ptr);
17974 line_ptr += 1;
17975 if (segment_selector_size != 0)
17976 {
17977 complaint (&symfile_complaints,
17978 _("unsupported segment selector size %u "
17979 "in .debug_line section"),
17980 segment_selector_size);
17981 return NULL;
17982 }
17983 }
17984 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17985 line_ptr += offset_size;
17986 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17987 line_ptr += 1;
17988 if (lh->version >= 4)
17989 {
17990 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17991 line_ptr += 1;
17992 }
17993 else
17994 lh->maximum_ops_per_instruction = 1;
17995
17996 if (lh->maximum_ops_per_instruction == 0)
17997 {
17998 lh->maximum_ops_per_instruction = 1;
17999 complaint (&symfile_complaints,
18000 _("invalid maximum_ops_per_instruction "
18001 "in `.debug_line' section"));
18002 }
18003
18004 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
18005 line_ptr += 1;
18006 lh->line_base = read_1_signed_byte (abfd, line_ptr);
18007 line_ptr += 1;
18008 lh->line_range = read_1_byte (abfd, line_ptr);
18009 line_ptr += 1;
18010 lh->opcode_base = read_1_byte (abfd, line_ptr);
18011 line_ptr += 1;
18012 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
18013
18014 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
18015 for (i = 1; i < lh->opcode_base; ++i)
18016 {
18017 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
18018 line_ptr += 1;
18019 }
18020
18021 if (lh->version >= 5)
18022 {
18023 /* Read directory table. */
18024 read_formatted_entries (abfd, &line_ptr, lh.get (), &cu->header,
18025 [] (struct line_header *lh, const char *name,
18026 dir_index d_index, unsigned int mod_time,
18027 unsigned int length)
18028 {
18029 lh->add_include_dir (name);
18030 });
18031
18032 /* Read file name table. */
18033 read_formatted_entries (abfd, &line_ptr, lh.get (), &cu->header,
18034 [] (struct line_header *lh, const char *name,
18035 dir_index d_index, unsigned int mod_time,
18036 unsigned int length)
18037 {
18038 lh->add_file_name (name, d_index, mod_time, length);
18039 });
18040 }
18041 else
18042 {
18043 /* Read directory table. */
18044 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
18045 {
18046 line_ptr += bytes_read;
18047 lh->add_include_dir (cur_dir);
18048 }
18049 line_ptr += bytes_read;
18050
18051 /* Read file name table. */
18052 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
18053 {
18054 unsigned int mod_time, length;
18055 dir_index d_index;
18056
18057 line_ptr += bytes_read;
18058 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18059 line_ptr += bytes_read;
18060 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18061 line_ptr += bytes_read;
18062 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18063 line_ptr += bytes_read;
18064
18065 lh->add_file_name (cur_file, d_index, mod_time, length);
18066 }
18067 line_ptr += bytes_read;
18068 }
18069 lh->statement_program_start = line_ptr;
18070
18071 if (line_ptr > (section->buffer + section->size))
18072 complaint (&symfile_complaints,
18073 _("line number info header doesn't "
18074 "fit in `.debug_line' section"));
18075
18076 return lh;
18077 }
18078
18079 /* Subroutine of dwarf_decode_lines to simplify it.
18080 Return the file name of the psymtab for included file FILE_INDEX
18081 in line header LH of PST.
18082 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18083 If space for the result is malloc'd, it will be freed by a cleanup.
18084 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
18085
18086 The function creates dangling cleanup registration. */
18087
18088 static const char *
18089 psymtab_include_file_name (const struct line_header *lh, int file_index,
18090 const struct partial_symtab *pst,
18091 const char *comp_dir)
18092 {
18093 const file_entry &fe = lh->file_names[file_index];
18094 const char *include_name = fe.name;
18095 const char *include_name_to_compare = include_name;
18096 const char *pst_filename;
18097 char *copied_name = NULL;
18098 int file_is_pst;
18099
18100 const char *dir_name = fe.include_dir (lh);
18101
18102 if (!IS_ABSOLUTE_PATH (include_name)
18103 && (dir_name != NULL || comp_dir != NULL))
18104 {
18105 /* Avoid creating a duplicate psymtab for PST.
18106 We do this by comparing INCLUDE_NAME and PST_FILENAME.
18107 Before we do the comparison, however, we need to account
18108 for DIR_NAME and COMP_DIR.
18109 First prepend dir_name (if non-NULL). If we still don't
18110 have an absolute path prepend comp_dir (if non-NULL).
18111 However, the directory we record in the include-file's
18112 psymtab does not contain COMP_DIR (to match the
18113 corresponding symtab(s)).
18114
18115 Example:
18116
18117 bash$ cd /tmp
18118 bash$ gcc -g ./hello.c
18119 include_name = "hello.c"
18120 dir_name = "."
18121 DW_AT_comp_dir = comp_dir = "/tmp"
18122 DW_AT_name = "./hello.c"
18123
18124 */
18125
18126 if (dir_name != NULL)
18127 {
18128 char *tem = concat (dir_name, SLASH_STRING,
18129 include_name, (char *)NULL);
18130
18131 make_cleanup (xfree, tem);
18132 include_name = tem;
18133 include_name_to_compare = include_name;
18134 }
18135 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
18136 {
18137 char *tem = concat (comp_dir, SLASH_STRING,
18138 include_name, (char *)NULL);
18139
18140 make_cleanup (xfree, tem);
18141 include_name_to_compare = tem;
18142 }
18143 }
18144
18145 pst_filename = pst->filename;
18146 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
18147 {
18148 copied_name = concat (pst->dirname, SLASH_STRING,
18149 pst_filename, (char *)NULL);
18150 pst_filename = copied_name;
18151 }
18152
18153 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
18154
18155 if (copied_name != NULL)
18156 xfree (copied_name);
18157
18158 if (file_is_pst)
18159 return NULL;
18160 return include_name;
18161 }
18162
18163 /* State machine to track the state of the line number program. */
18164
18165 class lnp_state_machine
18166 {
18167 public:
18168 /* Initialize a machine state for the start of a line number
18169 program. */
18170 lnp_state_machine (gdbarch *arch, line_header *lh, bool record_lines_p);
18171
18172 file_entry *current_file ()
18173 {
18174 /* lh->file_names is 0-based, but the file name numbers in the
18175 statement program are 1-based. */
18176 return m_line_header->file_name_at (m_file);
18177 }
18178
18179 /* Record the line in the state machine. END_SEQUENCE is true if
18180 we're processing the end of a sequence. */
18181 void record_line (bool end_sequence);
18182
18183 /* Check address and if invalid nop-out the rest of the lines in this
18184 sequence. */
18185 void check_line_address (struct dwarf2_cu *cu,
18186 const gdb_byte *line_ptr,
18187 CORE_ADDR lowpc, CORE_ADDR address);
18188
18189 void handle_set_discriminator (unsigned int discriminator)
18190 {
18191 m_discriminator = discriminator;
18192 m_line_has_non_zero_discriminator |= discriminator != 0;
18193 }
18194
18195 /* Handle DW_LNE_set_address. */
18196 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
18197 {
18198 m_op_index = 0;
18199 address += baseaddr;
18200 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
18201 }
18202
18203 /* Handle DW_LNS_advance_pc. */
18204 void handle_advance_pc (CORE_ADDR adjust);
18205
18206 /* Handle a special opcode. */
18207 void handle_special_opcode (unsigned char op_code);
18208
18209 /* Handle DW_LNS_advance_line. */
18210 void handle_advance_line (int line_delta)
18211 {
18212 advance_line (line_delta);
18213 }
18214
18215 /* Handle DW_LNS_set_file. */
18216 void handle_set_file (file_name_index file);
18217
18218 /* Handle DW_LNS_negate_stmt. */
18219 void handle_negate_stmt ()
18220 {
18221 m_is_stmt = !m_is_stmt;
18222 }
18223
18224 /* Handle DW_LNS_const_add_pc. */
18225 void handle_const_add_pc ();
18226
18227 /* Handle DW_LNS_fixed_advance_pc. */
18228 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
18229 {
18230 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18231 m_op_index = 0;
18232 }
18233
18234 /* Handle DW_LNS_copy. */
18235 void handle_copy ()
18236 {
18237 record_line (false);
18238 m_discriminator = 0;
18239 }
18240
18241 /* Handle DW_LNE_end_sequence. */
18242 void handle_end_sequence ()
18243 {
18244 m_record_line_callback = ::record_line;
18245 }
18246
18247 private:
18248 /* Advance the line by LINE_DELTA. */
18249 void advance_line (int line_delta)
18250 {
18251 m_line += line_delta;
18252
18253 if (line_delta != 0)
18254 m_line_has_non_zero_discriminator = m_discriminator != 0;
18255 }
18256
18257 gdbarch *m_gdbarch;
18258
18259 /* True if we're recording lines.
18260 Otherwise we're building partial symtabs and are just interested in
18261 finding include files mentioned by the line number program. */
18262 bool m_record_lines_p;
18263
18264 /* The line number header. */
18265 line_header *m_line_header;
18266
18267 /* These are part of the standard DWARF line number state machine,
18268 and initialized according to the DWARF spec. */
18269
18270 unsigned char m_op_index = 0;
18271 /* The line table index (1-based) of the current file. */
18272 file_name_index m_file = (file_name_index) 1;
18273 unsigned int m_line = 1;
18274
18275 /* These are initialized in the constructor. */
18276
18277 CORE_ADDR m_address;
18278 bool m_is_stmt;
18279 unsigned int m_discriminator;
18280
18281 /* Additional bits of state we need to track. */
18282
18283 /* The last file that we called dwarf2_start_subfile for.
18284 This is only used for TLLs. */
18285 unsigned int m_last_file = 0;
18286 /* The last file a line number was recorded for. */
18287 struct subfile *m_last_subfile = NULL;
18288
18289 /* The function to call to record a line. */
18290 record_line_ftype *m_record_line_callback = NULL;
18291
18292 /* The last line number that was recorded, used to coalesce
18293 consecutive entries for the same line. This can happen, for
18294 example, when discriminators are present. PR 17276. */
18295 unsigned int m_last_line = 0;
18296 bool m_line_has_non_zero_discriminator = false;
18297 };
18298
18299 void
18300 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
18301 {
18302 CORE_ADDR addr_adj = (((m_op_index + adjust)
18303 / m_line_header->maximum_ops_per_instruction)
18304 * m_line_header->minimum_instruction_length);
18305 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18306 m_op_index = ((m_op_index + adjust)
18307 % m_line_header->maximum_ops_per_instruction);
18308 }
18309
18310 void
18311 lnp_state_machine::handle_special_opcode (unsigned char op_code)
18312 {
18313 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
18314 CORE_ADDR addr_adj = (((m_op_index
18315 + (adj_opcode / m_line_header->line_range))
18316 / m_line_header->maximum_ops_per_instruction)
18317 * m_line_header->minimum_instruction_length);
18318 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18319 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
18320 % m_line_header->maximum_ops_per_instruction);
18321
18322 int line_delta = (m_line_header->line_base
18323 + (adj_opcode % m_line_header->line_range));
18324 advance_line (line_delta);
18325 record_line (false);
18326 m_discriminator = 0;
18327 }
18328
18329 void
18330 lnp_state_machine::handle_set_file (file_name_index file)
18331 {
18332 m_file = file;
18333
18334 const file_entry *fe = current_file ();
18335 if (fe == NULL)
18336 dwarf2_debug_line_missing_file_complaint ();
18337 else if (m_record_lines_p)
18338 {
18339 const char *dir = fe->include_dir (m_line_header);
18340
18341 m_last_subfile = current_subfile;
18342 m_line_has_non_zero_discriminator = m_discriminator != 0;
18343 dwarf2_start_subfile (fe->name, dir);
18344 }
18345 }
18346
18347 void
18348 lnp_state_machine::handle_const_add_pc ()
18349 {
18350 CORE_ADDR adjust
18351 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
18352
18353 CORE_ADDR addr_adj
18354 = (((m_op_index + adjust)
18355 / m_line_header->maximum_ops_per_instruction)
18356 * m_line_header->minimum_instruction_length);
18357
18358 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18359 m_op_index = ((m_op_index + adjust)
18360 % m_line_header->maximum_ops_per_instruction);
18361 }
18362
18363 /* Ignore this record_line request. */
18364
18365 static void
18366 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
18367 {
18368 return;
18369 }
18370
18371 /* Return non-zero if we should add LINE to the line number table.
18372 LINE is the line to add, LAST_LINE is the last line that was added,
18373 LAST_SUBFILE is the subfile for LAST_LINE.
18374 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
18375 had a non-zero discriminator.
18376
18377 We have to be careful in the presence of discriminators.
18378 E.g., for this line:
18379
18380 for (i = 0; i < 100000; i++);
18381
18382 clang can emit four line number entries for that one line,
18383 each with a different discriminator.
18384 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
18385
18386 However, we want gdb to coalesce all four entries into one.
18387 Otherwise the user could stepi into the middle of the line and
18388 gdb would get confused about whether the pc really was in the
18389 middle of the line.
18390
18391 Things are further complicated by the fact that two consecutive
18392 line number entries for the same line is a heuristic used by gcc
18393 to denote the end of the prologue. So we can't just discard duplicate
18394 entries, we have to be selective about it. The heuristic we use is
18395 that we only collapse consecutive entries for the same line if at least
18396 one of those entries has a non-zero discriminator. PR 17276.
18397
18398 Note: Addresses in the line number state machine can never go backwards
18399 within one sequence, thus this coalescing is ok. */
18400
18401 static int
18402 dwarf_record_line_p (unsigned int line, unsigned int last_line,
18403 int line_has_non_zero_discriminator,
18404 struct subfile *last_subfile)
18405 {
18406 if (current_subfile != last_subfile)
18407 return 1;
18408 if (line != last_line)
18409 return 1;
18410 /* Same line for the same file that we've seen already.
18411 As a last check, for pr 17276, only record the line if the line
18412 has never had a non-zero discriminator. */
18413 if (!line_has_non_zero_discriminator)
18414 return 1;
18415 return 0;
18416 }
18417
18418 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
18419 in the line table of subfile SUBFILE. */
18420
18421 static void
18422 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
18423 unsigned int line, CORE_ADDR address,
18424 record_line_ftype p_record_line)
18425 {
18426 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
18427
18428 if (dwarf_line_debug)
18429 {
18430 fprintf_unfiltered (gdb_stdlog,
18431 "Recording line %u, file %s, address %s\n",
18432 line, lbasename (subfile->name),
18433 paddress (gdbarch, address));
18434 }
18435
18436 (*p_record_line) (subfile, line, addr);
18437 }
18438
18439 /* Subroutine of dwarf_decode_lines_1 to simplify it.
18440 Mark the end of a set of line number records.
18441 The arguments are the same as for dwarf_record_line_1.
18442 If SUBFILE is NULL the request is ignored. */
18443
18444 static void
18445 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
18446 CORE_ADDR address, record_line_ftype p_record_line)
18447 {
18448 if (subfile == NULL)
18449 return;
18450
18451 if (dwarf_line_debug)
18452 {
18453 fprintf_unfiltered (gdb_stdlog,
18454 "Finishing current line, file %s, address %s\n",
18455 lbasename (subfile->name),
18456 paddress (gdbarch, address));
18457 }
18458
18459 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
18460 }
18461
18462 void
18463 lnp_state_machine::record_line (bool end_sequence)
18464 {
18465 if (dwarf_line_debug)
18466 {
18467 fprintf_unfiltered (gdb_stdlog,
18468 "Processing actual line %u: file %u,"
18469 " address %s, is_stmt %u, discrim %u\n",
18470 m_line, to_underlying (m_file),
18471 paddress (m_gdbarch, m_address),
18472 m_is_stmt, m_discriminator);
18473 }
18474
18475 file_entry *fe = current_file ();
18476
18477 if (fe == NULL)
18478 dwarf2_debug_line_missing_file_complaint ();
18479 /* For now we ignore lines not starting on an instruction boundary.
18480 But not when processing end_sequence for compatibility with the
18481 previous version of the code. */
18482 else if (m_op_index == 0 || end_sequence)
18483 {
18484 fe->included_p = 1;
18485 if (m_record_lines_p && m_is_stmt)
18486 {
18487 if (m_last_subfile != current_subfile || end_sequence)
18488 {
18489 dwarf_finish_line (m_gdbarch, m_last_subfile,
18490 m_address, m_record_line_callback);
18491 }
18492
18493 if (!end_sequence)
18494 {
18495 if (dwarf_record_line_p (m_line, m_last_line,
18496 m_line_has_non_zero_discriminator,
18497 m_last_subfile))
18498 {
18499 dwarf_record_line_1 (m_gdbarch, current_subfile,
18500 m_line, m_address,
18501 m_record_line_callback);
18502 }
18503 m_last_subfile = current_subfile;
18504 m_last_line = m_line;
18505 }
18506 }
18507 }
18508 }
18509
18510 lnp_state_machine::lnp_state_machine (gdbarch *arch, line_header *lh,
18511 bool record_lines_p)
18512 {
18513 m_gdbarch = arch;
18514 m_record_lines_p = record_lines_p;
18515 m_line_header = lh;
18516
18517 m_record_line_callback = ::record_line;
18518
18519 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
18520 was a line entry for it so that the backend has a chance to adjust it
18521 and also record it in case it needs it. This is currently used by MIPS
18522 code, cf. `mips_adjust_dwarf2_line'. */
18523 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
18524 m_is_stmt = lh->default_is_stmt;
18525 m_discriminator = 0;
18526 }
18527
18528 void
18529 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
18530 const gdb_byte *line_ptr,
18531 CORE_ADDR lowpc, CORE_ADDR address)
18532 {
18533 /* If address < lowpc then it's not a usable value, it's outside the
18534 pc range of the CU. However, we restrict the test to only address
18535 values of zero to preserve GDB's previous behaviour which is to
18536 handle the specific case of a function being GC'd by the linker. */
18537
18538 if (address == 0 && address < lowpc)
18539 {
18540 /* This line table is for a function which has been
18541 GCd by the linker. Ignore it. PR gdb/12528 */
18542
18543 struct objfile *objfile = cu->objfile;
18544 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
18545
18546 complaint (&symfile_complaints,
18547 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
18548 line_offset, objfile_name (objfile));
18549 m_record_line_callback = noop_record_line;
18550 /* Note: record_line_callback is left as noop_record_line until
18551 we see DW_LNE_end_sequence. */
18552 }
18553 }
18554
18555 /* Subroutine of dwarf_decode_lines to simplify it.
18556 Process the line number information in LH.
18557 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
18558 program in order to set included_p for every referenced header. */
18559
18560 static void
18561 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
18562 const int decode_for_pst_p, CORE_ADDR lowpc)
18563 {
18564 const gdb_byte *line_ptr, *extended_end;
18565 const gdb_byte *line_end;
18566 unsigned int bytes_read, extended_len;
18567 unsigned char op_code, extended_op;
18568 CORE_ADDR baseaddr;
18569 struct objfile *objfile = cu->objfile;
18570 bfd *abfd = objfile->obfd;
18571 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18572 /* True if we're recording line info (as opposed to building partial
18573 symtabs and just interested in finding include files mentioned by
18574 the line number program). */
18575 bool record_lines_p = !decode_for_pst_p;
18576
18577 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18578
18579 line_ptr = lh->statement_program_start;
18580 line_end = lh->statement_program_end;
18581
18582 /* Read the statement sequences until there's nothing left. */
18583 while (line_ptr < line_end)
18584 {
18585 /* The DWARF line number program state machine. Reset the state
18586 machine at the start of each sequence. */
18587 lnp_state_machine state_machine (gdbarch, lh, record_lines_p);
18588 bool end_sequence = false;
18589
18590 if (record_lines_p)
18591 {
18592 /* Start a subfile for the current file of the state
18593 machine. */
18594 const file_entry *fe = state_machine.current_file ();
18595
18596 if (fe != NULL)
18597 dwarf2_start_subfile (fe->name, fe->include_dir (lh));
18598 }
18599
18600 /* Decode the table. */
18601 while (line_ptr < line_end && !end_sequence)
18602 {
18603 op_code = read_1_byte (abfd, line_ptr);
18604 line_ptr += 1;
18605
18606 if (op_code >= lh->opcode_base)
18607 {
18608 /* Special opcode. */
18609 state_machine.handle_special_opcode (op_code);
18610 }
18611 else switch (op_code)
18612 {
18613 case DW_LNS_extended_op:
18614 extended_len = read_unsigned_leb128 (abfd, line_ptr,
18615 &bytes_read);
18616 line_ptr += bytes_read;
18617 extended_end = line_ptr + extended_len;
18618 extended_op = read_1_byte (abfd, line_ptr);
18619 line_ptr += 1;
18620 switch (extended_op)
18621 {
18622 case DW_LNE_end_sequence:
18623 state_machine.handle_end_sequence ();
18624 end_sequence = true;
18625 break;
18626 case DW_LNE_set_address:
18627 {
18628 CORE_ADDR address
18629 = read_address (abfd, line_ptr, cu, &bytes_read);
18630 line_ptr += bytes_read;
18631
18632 state_machine.check_line_address (cu, line_ptr,
18633 lowpc, address);
18634 state_machine.handle_set_address (baseaddr, address);
18635 }
18636 break;
18637 case DW_LNE_define_file:
18638 {
18639 const char *cur_file;
18640 unsigned int mod_time, length;
18641 dir_index dindex;
18642
18643 cur_file = read_direct_string (abfd, line_ptr,
18644 &bytes_read);
18645 line_ptr += bytes_read;
18646 dindex = (dir_index)
18647 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18648 line_ptr += bytes_read;
18649 mod_time =
18650 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18651 line_ptr += bytes_read;
18652 length =
18653 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18654 line_ptr += bytes_read;
18655 lh->add_file_name (cur_file, dindex, mod_time, length);
18656 }
18657 break;
18658 case DW_LNE_set_discriminator:
18659 {
18660 /* The discriminator is not interesting to the
18661 debugger; just ignore it. We still need to
18662 check its value though:
18663 if there are consecutive entries for the same
18664 (non-prologue) line we want to coalesce them.
18665 PR 17276. */
18666 unsigned int discr
18667 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18668 line_ptr += bytes_read;
18669
18670 state_machine.handle_set_discriminator (discr);
18671 }
18672 break;
18673 default:
18674 complaint (&symfile_complaints,
18675 _("mangled .debug_line section"));
18676 return;
18677 }
18678 /* Make sure that we parsed the extended op correctly. If e.g.
18679 we expected a different address size than the producer used,
18680 we may have read the wrong number of bytes. */
18681 if (line_ptr != extended_end)
18682 {
18683 complaint (&symfile_complaints,
18684 _("mangled .debug_line section"));
18685 return;
18686 }
18687 break;
18688 case DW_LNS_copy:
18689 state_machine.handle_copy ();
18690 break;
18691 case DW_LNS_advance_pc:
18692 {
18693 CORE_ADDR adjust
18694 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18695 line_ptr += bytes_read;
18696
18697 state_machine.handle_advance_pc (adjust);
18698 }
18699 break;
18700 case DW_LNS_advance_line:
18701 {
18702 int line_delta
18703 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
18704 line_ptr += bytes_read;
18705
18706 state_machine.handle_advance_line (line_delta);
18707 }
18708 break;
18709 case DW_LNS_set_file:
18710 {
18711 file_name_index file
18712 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
18713 &bytes_read);
18714 line_ptr += bytes_read;
18715
18716 state_machine.handle_set_file (file);
18717 }
18718 break;
18719 case DW_LNS_set_column:
18720 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18721 line_ptr += bytes_read;
18722 break;
18723 case DW_LNS_negate_stmt:
18724 state_machine.handle_negate_stmt ();
18725 break;
18726 case DW_LNS_set_basic_block:
18727 break;
18728 /* Add to the address register of the state machine the
18729 address increment value corresponding to special opcode
18730 255. I.e., this value is scaled by the minimum
18731 instruction length since special opcode 255 would have
18732 scaled the increment. */
18733 case DW_LNS_const_add_pc:
18734 state_machine.handle_const_add_pc ();
18735 break;
18736 case DW_LNS_fixed_advance_pc:
18737 {
18738 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
18739 line_ptr += 2;
18740
18741 state_machine.handle_fixed_advance_pc (addr_adj);
18742 }
18743 break;
18744 default:
18745 {
18746 /* Unknown standard opcode, ignore it. */
18747 int i;
18748
18749 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
18750 {
18751 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18752 line_ptr += bytes_read;
18753 }
18754 }
18755 }
18756 }
18757
18758 if (!end_sequence)
18759 dwarf2_debug_line_missing_end_sequence_complaint ();
18760
18761 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18762 in which case we still finish recording the last line). */
18763 state_machine.record_line (true);
18764 }
18765 }
18766
18767 /* Decode the Line Number Program (LNP) for the given line_header
18768 structure and CU. The actual information extracted and the type
18769 of structures created from the LNP depends on the value of PST.
18770
18771 1. If PST is NULL, then this procedure uses the data from the program
18772 to create all necessary symbol tables, and their linetables.
18773
18774 2. If PST is not NULL, this procedure reads the program to determine
18775 the list of files included by the unit represented by PST, and
18776 builds all the associated partial symbol tables.
18777
18778 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18779 It is used for relative paths in the line table.
18780 NOTE: When processing partial symtabs (pst != NULL),
18781 comp_dir == pst->dirname.
18782
18783 NOTE: It is important that psymtabs have the same file name (via strcmp)
18784 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18785 symtab we don't use it in the name of the psymtabs we create.
18786 E.g. expand_line_sal requires this when finding psymtabs to expand.
18787 A good testcase for this is mb-inline.exp.
18788
18789 LOWPC is the lowest address in CU (or 0 if not known).
18790
18791 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18792 for its PC<->lines mapping information. Otherwise only the filename
18793 table is read in. */
18794
18795 static void
18796 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
18797 struct dwarf2_cu *cu, struct partial_symtab *pst,
18798 CORE_ADDR lowpc, int decode_mapping)
18799 {
18800 struct objfile *objfile = cu->objfile;
18801 const int decode_for_pst_p = (pst != NULL);
18802
18803 if (decode_mapping)
18804 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
18805
18806 if (decode_for_pst_p)
18807 {
18808 int file_index;
18809
18810 /* Now that we're done scanning the Line Header Program, we can
18811 create the psymtab of each included file. */
18812 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
18813 if (lh->file_names[file_index].included_p == 1)
18814 {
18815 const char *include_name =
18816 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18817 if (include_name != NULL)
18818 dwarf2_create_include_psymtab (include_name, pst, objfile);
18819 }
18820 }
18821 else
18822 {
18823 /* Make sure a symtab is created for every file, even files
18824 which contain only variables (i.e. no code with associated
18825 line numbers). */
18826 struct compunit_symtab *cust = buildsym_compunit_symtab ();
18827 int i;
18828
18829 for (i = 0; i < lh->file_names.size (); i++)
18830 {
18831 file_entry &fe = lh->file_names[i];
18832
18833 dwarf2_start_subfile (fe.name, fe.include_dir (lh));
18834
18835 if (current_subfile->symtab == NULL)
18836 {
18837 current_subfile->symtab
18838 = allocate_symtab (cust, current_subfile->name);
18839 }
18840 fe.symtab = current_subfile->symtab;
18841 }
18842 }
18843 }
18844
18845 /* Start a subfile for DWARF. FILENAME is the name of the file and
18846 DIRNAME the name of the source directory which contains FILENAME
18847 or NULL if not known.
18848 This routine tries to keep line numbers from identical absolute and
18849 relative file names in a common subfile.
18850
18851 Using the `list' example from the GDB testsuite, which resides in
18852 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18853 of /srcdir/list0.c yields the following debugging information for list0.c:
18854
18855 DW_AT_name: /srcdir/list0.c
18856 DW_AT_comp_dir: /compdir
18857 files.files[0].name: list0.h
18858 files.files[0].dir: /srcdir
18859 files.files[1].name: list0.c
18860 files.files[1].dir: /srcdir
18861
18862 The line number information for list0.c has to end up in a single
18863 subfile, so that `break /srcdir/list0.c:1' works as expected.
18864 start_subfile will ensure that this happens provided that we pass the
18865 concatenation of files.files[1].dir and files.files[1].name as the
18866 subfile's name. */
18867
18868 static void
18869 dwarf2_start_subfile (const char *filename, const char *dirname)
18870 {
18871 char *copy = NULL;
18872
18873 /* In order not to lose the line information directory,
18874 we concatenate it to the filename when it makes sense.
18875 Note that the Dwarf3 standard says (speaking of filenames in line
18876 information): ``The directory index is ignored for file names
18877 that represent full path names''. Thus ignoring dirname in the
18878 `else' branch below isn't an issue. */
18879
18880 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
18881 {
18882 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18883 filename = copy;
18884 }
18885
18886 start_subfile (filename);
18887
18888 if (copy != NULL)
18889 xfree (copy);
18890 }
18891
18892 /* Start a symtab for DWARF.
18893 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18894
18895 static struct compunit_symtab *
18896 dwarf2_start_symtab (struct dwarf2_cu *cu,
18897 const char *name, const char *comp_dir, CORE_ADDR low_pc)
18898 {
18899 struct compunit_symtab *cust
18900 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18901
18902 record_debugformat ("DWARF 2");
18903 record_producer (cu->producer);
18904
18905 /* We assume that we're processing GCC output. */
18906 processing_gcc_compilation = 2;
18907
18908 cu->processing_has_namespace_info = 0;
18909
18910 return cust;
18911 }
18912
18913 static void
18914 var_decode_location (struct attribute *attr, struct symbol *sym,
18915 struct dwarf2_cu *cu)
18916 {
18917 struct objfile *objfile = cu->objfile;
18918 struct comp_unit_head *cu_header = &cu->header;
18919
18920 /* NOTE drow/2003-01-30: There used to be a comment and some special
18921 code here to turn a symbol with DW_AT_external and a
18922 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18923 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18924 with some versions of binutils) where shared libraries could have
18925 relocations against symbols in their debug information - the
18926 minimal symbol would have the right address, but the debug info
18927 would not. It's no longer necessary, because we will explicitly
18928 apply relocations when we read in the debug information now. */
18929
18930 /* A DW_AT_location attribute with no contents indicates that a
18931 variable has been optimized away. */
18932 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18933 {
18934 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18935 return;
18936 }
18937
18938 /* Handle one degenerate form of location expression specially, to
18939 preserve GDB's previous behavior when section offsets are
18940 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18941 then mark this symbol as LOC_STATIC. */
18942
18943 if (attr_form_is_block (attr)
18944 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18945 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18946 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18947 && (DW_BLOCK (attr)->size
18948 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
18949 {
18950 unsigned int dummy;
18951
18952 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18953 SYMBOL_VALUE_ADDRESS (sym) =
18954 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18955 else
18956 SYMBOL_VALUE_ADDRESS (sym) =
18957 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
18958 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
18959 fixup_symbol_section (sym, objfile);
18960 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18961 SYMBOL_SECTION (sym));
18962 return;
18963 }
18964
18965 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18966 expression evaluator, and use LOC_COMPUTED only when necessary
18967 (i.e. when the value of a register or memory location is
18968 referenced, or a thread-local block, etc.). Then again, it might
18969 not be worthwhile. I'm assuming that it isn't unless performance
18970 or memory numbers show me otherwise. */
18971
18972 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
18973
18974 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
18975 cu->has_loclist = 1;
18976 }
18977
18978 /* Given a pointer to a DWARF information entry, figure out if we need
18979 to make a symbol table entry for it, and if so, create a new entry
18980 and return a pointer to it.
18981 If TYPE is NULL, determine symbol type from the die, otherwise
18982 used the passed type.
18983 If SPACE is not NULL, use it to hold the new symbol. If it is
18984 NULL, allocate a new symbol on the objfile's obstack. */
18985
18986 static struct symbol *
18987 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18988 struct symbol *space)
18989 {
18990 struct objfile *objfile = cu->objfile;
18991 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18992 struct symbol *sym = NULL;
18993 const char *name;
18994 struct attribute *attr = NULL;
18995 struct attribute *attr2 = NULL;
18996 CORE_ADDR baseaddr;
18997 struct pending **list_to_add = NULL;
18998
18999 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
19000
19001 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
19002
19003 name = dwarf2_name (die, cu);
19004 if (name)
19005 {
19006 const char *linkagename;
19007 int suppress_add = 0;
19008
19009 if (space)
19010 sym = space;
19011 else
19012 sym = allocate_symbol (objfile);
19013 OBJSTAT (objfile, n_syms++);
19014
19015 /* Cache this symbol's name and the name's demangled form (if any). */
19016 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
19017 linkagename = dwarf2_physname (name, die, cu);
19018 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
19019
19020 /* Fortran does not have mangling standard and the mangling does differ
19021 between gfortran, iFort etc. */
19022 if (cu->language == language_fortran
19023 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
19024 symbol_set_demangled_name (&(sym->ginfo),
19025 dwarf2_full_name (name, die, cu),
19026 NULL);
19027
19028 /* Default assumptions.
19029 Use the passed type or decode it from the die. */
19030 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
19031 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
19032 if (type != NULL)
19033 SYMBOL_TYPE (sym) = type;
19034 else
19035 SYMBOL_TYPE (sym) = die_type (die, cu);
19036 attr = dwarf2_attr (die,
19037 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
19038 cu);
19039 if (attr)
19040 {
19041 SYMBOL_LINE (sym) = DW_UNSND (attr);
19042 }
19043
19044 attr = dwarf2_attr (die,
19045 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
19046 cu);
19047 if (attr)
19048 {
19049 file_name_index file_index = (file_name_index) DW_UNSND (attr);
19050 struct file_entry *fe;
19051
19052 if (cu->line_header != NULL)
19053 fe = cu->line_header->file_name_at (file_index);
19054 else
19055 fe = NULL;
19056
19057 if (fe == NULL)
19058 complaint (&symfile_complaints,
19059 _("file index out of range"));
19060 else
19061 symbol_set_symtab (sym, fe->symtab);
19062 }
19063
19064 switch (die->tag)
19065 {
19066 case DW_TAG_label:
19067 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
19068 if (attr)
19069 {
19070 CORE_ADDR addr;
19071
19072 addr = attr_value_as_address (attr);
19073 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
19074 SYMBOL_VALUE_ADDRESS (sym) = addr;
19075 }
19076 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
19077 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
19078 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
19079 add_symbol_to_list (sym, cu->list_in_scope);
19080 break;
19081 case DW_TAG_subprogram:
19082 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
19083 finish_block. */
19084 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
19085 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19086 if ((attr2 && (DW_UNSND (attr2) != 0))
19087 || cu->language == language_ada)
19088 {
19089 /* Subprograms marked external are stored as a global symbol.
19090 Ada subprograms, whether marked external or not, are always
19091 stored as a global symbol, because we want to be able to
19092 access them globally. For instance, we want to be able
19093 to break on a nested subprogram without having to
19094 specify the context. */
19095 list_to_add = &global_symbols;
19096 }
19097 else
19098 {
19099 list_to_add = cu->list_in_scope;
19100 }
19101 break;
19102 case DW_TAG_inlined_subroutine:
19103 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
19104 finish_block. */
19105 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
19106 SYMBOL_INLINED (sym) = 1;
19107 list_to_add = cu->list_in_scope;
19108 break;
19109 case DW_TAG_template_value_param:
19110 suppress_add = 1;
19111 /* Fall through. */
19112 case DW_TAG_constant:
19113 case DW_TAG_variable:
19114 case DW_TAG_member:
19115 /* Compilation with minimal debug info may result in
19116 variables with missing type entries. Change the
19117 misleading `void' type to something sensible. */
19118 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
19119 SYMBOL_TYPE (sym)
19120 = objfile_type (objfile)->nodebug_data_symbol;
19121
19122 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19123 /* In the case of DW_TAG_member, we should only be called for
19124 static const members. */
19125 if (die->tag == DW_TAG_member)
19126 {
19127 /* dwarf2_add_field uses die_is_declaration,
19128 so we do the same. */
19129 gdb_assert (die_is_declaration (die, cu));
19130 gdb_assert (attr);
19131 }
19132 if (attr)
19133 {
19134 dwarf2_const_value (attr, sym, cu);
19135 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19136 if (!suppress_add)
19137 {
19138 if (attr2 && (DW_UNSND (attr2) != 0))
19139 list_to_add = &global_symbols;
19140 else
19141 list_to_add = cu->list_in_scope;
19142 }
19143 break;
19144 }
19145 attr = dwarf2_attr (die, DW_AT_location, cu);
19146 if (attr)
19147 {
19148 var_decode_location (attr, sym, cu);
19149 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19150
19151 /* Fortran explicitly imports any global symbols to the local
19152 scope by DW_TAG_common_block. */
19153 if (cu->language == language_fortran && die->parent
19154 && die->parent->tag == DW_TAG_common_block)
19155 attr2 = NULL;
19156
19157 if (SYMBOL_CLASS (sym) == LOC_STATIC
19158 && SYMBOL_VALUE_ADDRESS (sym) == 0
19159 && !dwarf2_per_objfile->has_section_at_zero)
19160 {
19161 /* When a static variable is eliminated by the linker,
19162 the corresponding debug information is not stripped
19163 out, but the variable address is set to null;
19164 do not add such variables into symbol table. */
19165 }
19166 else if (attr2 && (DW_UNSND (attr2) != 0))
19167 {
19168 /* Workaround gfortran PR debug/40040 - it uses
19169 DW_AT_location for variables in -fPIC libraries which may
19170 get overriden by other libraries/executable and get
19171 a different address. Resolve it by the minimal symbol
19172 which may come from inferior's executable using copy
19173 relocation. Make this workaround only for gfortran as for
19174 other compilers GDB cannot guess the minimal symbol
19175 Fortran mangling kind. */
19176 if (cu->language == language_fortran && die->parent
19177 && die->parent->tag == DW_TAG_module
19178 && cu->producer
19179 && startswith (cu->producer, "GNU Fortran"))
19180 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
19181
19182 /* A variable with DW_AT_external is never static,
19183 but it may be block-scoped. */
19184 list_to_add = (cu->list_in_scope == &file_symbols
19185 ? &global_symbols : cu->list_in_scope);
19186 }
19187 else
19188 list_to_add = cu->list_in_scope;
19189 }
19190 else
19191 {
19192 /* We do not know the address of this symbol.
19193 If it is an external symbol and we have type information
19194 for it, enter the symbol as a LOC_UNRESOLVED symbol.
19195 The address of the variable will then be determined from
19196 the minimal symbol table whenever the variable is
19197 referenced. */
19198 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19199
19200 /* Fortran explicitly imports any global symbols to the local
19201 scope by DW_TAG_common_block. */
19202 if (cu->language == language_fortran && die->parent
19203 && die->parent->tag == DW_TAG_common_block)
19204 {
19205 /* SYMBOL_CLASS doesn't matter here because
19206 read_common_block is going to reset it. */
19207 if (!suppress_add)
19208 list_to_add = cu->list_in_scope;
19209 }
19210 else if (attr2 && (DW_UNSND (attr2) != 0)
19211 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
19212 {
19213 /* A variable with DW_AT_external is never static, but it
19214 may be block-scoped. */
19215 list_to_add = (cu->list_in_scope == &file_symbols
19216 ? &global_symbols : cu->list_in_scope);
19217
19218 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
19219 }
19220 else if (!die_is_declaration (die, cu))
19221 {
19222 /* Use the default LOC_OPTIMIZED_OUT class. */
19223 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
19224 if (!suppress_add)
19225 list_to_add = cu->list_in_scope;
19226 }
19227 }
19228 break;
19229 case DW_TAG_formal_parameter:
19230 /* If we are inside a function, mark this as an argument. If
19231 not, we might be looking at an argument to an inlined function
19232 when we do not have enough information to show inlined frames;
19233 pretend it's a local variable in that case so that the user can
19234 still see it. */
19235 if (context_stack_depth > 0
19236 && context_stack[context_stack_depth - 1].name != NULL)
19237 SYMBOL_IS_ARGUMENT (sym) = 1;
19238 attr = dwarf2_attr (die, DW_AT_location, cu);
19239 if (attr)
19240 {
19241 var_decode_location (attr, sym, cu);
19242 }
19243 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19244 if (attr)
19245 {
19246 dwarf2_const_value (attr, sym, cu);
19247 }
19248
19249 list_to_add = cu->list_in_scope;
19250 break;
19251 case DW_TAG_unspecified_parameters:
19252 /* From varargs functions; gdb doesn't seem to have any
19253 interest in this information, so just ignore it for now.
19254 (FIXME?) */
19255 break;
19256 case DW_TAG_template_type_param:
19257 suppress_add = 1;
19258 /* Fall through. */
19259 case DW_TAG_class_type:
19260 case DW_TAG_interface_type:
19261 case DW_TAG_structure_type:
19262 case DW_TAG_union_type:
19263 case DW_TAG_set_type:
19264 case DW_TAG_enumeration_type:
19265 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19266 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
19267
19268 {
19269 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
19270 really ever be static objects: otherwise, if you try
19271 to, say, break of a class's method and you're in a file
19272 which doesn't mention that class, it won't work unless
19273 the check for all static symbols in lookup_symbol_aux
19274 saves you. See the OtherFileClass tests in
19275 gdb.c++/namespace.exp. */
19276
19277 if (!suppress_add)
19278 {
19279 list_to_add = (cu->list_in_scope == &file_symbols
19280 && cu->language == language_cplus
19281 ? &global_symbols : cu->list_in_scope);
19282
19283 /* The semantics of C++ state that "struct foo {
19284 ... }" also defines a typedef for "foo". */
19285 if (cu->language == language_cplus
19286 || cu->language == language_ada
19287 || cu->language == language_d
19288 || cu->language == language_rust)
19289 {
19290 /* The symbol's name is already allocated along
19291 with this objfile, so we don't need to
19292 duplicate it for the type. */
19293 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
19294 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
19295 }
19296 }
19297 }
19298 break;
19299 case DW_TAG_typedef:
19300 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19301 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
19302 list_to_add = cu->list_in_scope;
19303 break;
19304 case DW_TAG_base_type:
19305 case DW_TAG_subrange_type:
19306 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19307 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
19308 list_to_add = cu->list_in_scope;
19309 break;
19310 case DW_TAG_enumerator:
19311 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19312 if (attr)
19313 {
19314 dwarf2_const_value (attr, sym, cu);
19315 }
19316 {
19317 /* NOTE: carlton/2003-11-10: See comment above in the
19318 DW_TAG_class_type, etc. block. */
19319
19320 list_to_add = (cu->list_in_scope == &file_symbols
19321 && cu->language == language_cplus
19322 ? &global_symbols : cu->list_in_scope);
19323 }
19324 break;
19325 case DW_TAG_imported_declaration:
19326 case DW_TAG_namespace:
19327 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19328 list_to_add = &global_symbols;
19329 break;
19330 case DW_TAG_module:
19331 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19332 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
19333 list_to_add = &global_symbols;
19334 break;
19335 case DW_TAG_common_block:
19336 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
19337 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
19338 add_symbol_to_list (sym, cu->list_in_scope);
19339 break;
19340 default:
19341 /* Not a tag we recognize. Hopefully we aren't processing
19342 trash data, but since we must specifically ignore things
19343 we don't recognize, there is nothing else we should do at
19344 this point. */
19345 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
19346 dwarf_tag_name (die->tag));
19347 break;
19348 }
19349
19350 if (suppress_add)
19351 {
19352 sym->hash_next = objfile->template_symbols;
19353 objfile->template_symbols = sym;
19354 list_to_add = NULL;
19355 }
19356
19357 if (list_to_add != NULL)
19358 add_symbol_to_list (sym, list_to_add);
19359
19360 /* For the benefit of old versions of GCC, check for anonymous
19361 namespaces based on the demangled name. */
19362 if (!cu->processing_has_namespace_info
19363 && cu->language == language_cplus)
19364 cp_scan_for_anonymous_namespaces (sym, objfile);
19365 }
19366 return (sym);
19367 }
19368
19369 /* A wrapper for new_symbol_full that always allocates a new symbol. */
19370
19371 static struct symbol *
19372 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
19373 {
19374 return new_symbol_full (die, type, cu, NULL);
19375 }
19376
19377 /* Given an attr with a DW_FORM_dataN value in host byte order,
19378 zero-extend it as appropriate for the symbol's type. The DWARF
19379 standard (v4) is not entirely clear about the meaning of using
19380 DW_FORM_dataN for a constant with a signed type, where the type is
19381 wider than the data. The conclusion of a discussion on the DWARF
19382 list was that this is unspecified. We choose to always zero-extend
19383 because that is the interpretation long in use by GCC. */
19384
19385 static gdb_byte *
19386 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
19387 struct dwarf2_cu *cu, LONGEST *value, int bits)
19388 {
19389 struct objfile *objfile = cu->objfile;
19390 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
19391 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
19392 LONGEST l = DW_UNSND (attr);
19393
19394 if (bits < sizeof (*value) * 8)
19395 {
19396 l &= ((LONGEST) 1 << bits) - 1;
19397 *value = l;
19398 }
19399 else if (bits == sizeof (*value) * 8)
19400 *value = l;
19401 else
19402 {
19403 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
19404 store_unsigned_integer (bytes, bits / 8, byte_order, l);
19405 return bytes;
19406 }
19407
19408 return NULL;
19409 }
19410
19411 /* Read a constant value from an attribute. Either set *VALUE, or if
19412 the value does not fit in *VALUE, set *BYTES - either already
19413 allocated on the objfile obstack, or newly allocated on OBSTACK,
19414 or, set *BATON, if we translated the constant to a location
19415 expression. */
19416
19417 static void
19418 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
19419 const char *name, struct obstack *obstack,
19420 struct dwarf2_cu *cu,
19421 LONGEST *value, const gdb_byte **bytes,
19422 struct dwarf2_locexpr_baton **baton)
19423 {
19424 struct objfile *objfile = cu->objfile;
19425 struct comp_unit_head *cu_header = &cu->header;
19426 struct dwarf_block *blk;
19427 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
19428 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19429
19430 *value = 0;
19431 *bytes = NULL;
19432 *baton = NULL;
19433
19434 switch (attr->form)
19435 {
19436 case DW_FORM_addr:
19437 case DW_FORM_GNU_addr_index:
19438 {
19439 gdb_byte *data;
19440
19441 if (TYPE_LENGTH (type) != cu_header->addr_size)
19442 dwarf2_const_value_length_mismatch_complaint (name,
19443 cu_header->addr_size,
19444 TYPE_LENGTH (type));
19445 /* Symbols of this form are reasonably rare, so we just
19446 piggyback on the existing location code rather than writing
19447 a new implementation of symbol_computed_ops. */
19448 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
19449 (*baton)->per_cu = cu->per_cu;
19450 gdb_assert ((*baton)->per_cu);
19451
19452 (*baton)->size = 2 + cu_header->addr_size;
19453 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
19454 (*baton)->data = data;
19455
19456 data[0] = DW_OP_addr;
19457 store_unsigned_integer (&data[1], cu_header->addr_size,
19458 byte_order, DW_ADDR (attr));
19459 data[cu_header->addr_size + 1] = DW_OP_stack_value;
19460 }
19461 break;
19462 case DW_FORM_string:
19463 case DW_FORM_strp:
19464 case DW_FORM_GNU_str_index:
19465 case DW_FORM_GNU_strp_alt:
19466 /* DW_STRING is already allocated on the objfile obstack, point
19467 directly to it. */
19468 *bytes = (const gdb_byte *) DW_STRING (attr);
19469 break;
19470 case DW_FORM_block1:
19471 case DW_FORM_block2:
19472 case DW_FORM_block4:
19473 case DW_FORM_block:
19474 case DW_FORM_exprloc:
19475 case DW_FORM_data16:
19476 blk = DW_BLOCK (attr);
19477 if (TYPE_LENGTH (type) != blk->size)
19478 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
19479 TYPE_LENGTH (type));
19480 *bytes = blk->data;
19481 break;
19482
19483 /* The DW_AT_const_value attributes are supposed to carry the
19484 symbol's value "represented as it would be on the target
19485 architecture." By the time we get here, it's already been
19486 converted to host endianness, so we just need to sign- or
19487 zero-extend it as appropriate. */
19488 case DW_FORM_data1:
19489 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
19490 break;
19491 case DW_FORM_data2:
19492 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
19493 break;
19494 case DW_FORM_data4:
19495 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
19496 break;
19497 case DW_FORM_data8:
19498 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
19499 break;
19500
19501 case DW_FORM_sdata:
19502 *value = DW_SND (attr);
19503 break;
19504
19505 case DW_FORM_udata:
19506 *value = DW_UNSND (attr);
19507 break;
19508
19509 default:
19510 complaint (&symfile_complaints,
19511 _("unsupported const value attribute form: '%s'"),
19512 dwarf_form_name (attr->form));
19513 *value = 0;
19514 break;
19515 }
19516 }
19517
19518
19519 /* Copy constant value from an attribute to a symbol. */
19520
19521 static void
19522 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
19523 struct dwarf2_cu *cu)
19524 {
19525 struct objfile *objfile = cu->objfile;
19526 LONGEST value;
19527 const gdb_byte *bytes;
19528 struct dwarf2_locexpr_baton *baton;
19529
19530 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
19531 SYMBOL_PRINT_NAME (sym),
19532 &objfile->objfile_obstack, cu,
19533 &value, &bytes, &baton);
19534
19535 if (baton != NULL)
19536 {
19537 SYMBOL_LOCATION_BATON (sym) = baton;
19538 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
19539 }
19540 else if (bytes != NULL)
19541 {
19542 SYMBOL_VALUE_BYTES (sym) = bytes;
19543 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
19544 }
19545 else
19546 {
19547 SYMBOL_VALUE (sym) = value;
19548 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
19549 }
19550 }
19551
19552 /* Return the type of the die in question using its DW_AT_type attribute. */
19553
19554 static struct type *
19555 die_type (struct die_info *die, struct dwarf2_cu *cu)
19556 {
19557 struct attribute *type_attr;
19558
19559 type_attr = dwarf2_attr (die, DW_AT_type, cu);
19560 if (!type_attr)
19561 {
19562 /* A missing DW_AT_type represents a void type. */
19563 return objfile_type (cu->objfile)->builtin_void;
19564 }
19565
19566 return lookup_die_type (die, type_attr, cu);
19567 }
19568
19569 /* True iff CU's producer generates GNAT Ada auxiliary information
19570 that allows to find parallel types through that information instead
19571 of having to do expensive parallel lookups by type name. */
19572
19573 static int
19574 need_gnat_info (struct dwarf2_cu *cu)
19575 {
19576 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
19577 of GNAT produces this auxiliary information, without any indication
19578 that it is produced. Part of enhancing the FSF version of GNAT
19579 to produce that information will be to put in place an indicator
19580 that we can use in order to determine whether the descriptive type
19581 info is available or not. One suggestion that has been made is
19582 to use a new attribute, attached to the CU die. For now, assume
19583 that the descriptive type info is not available. */
19584 return 0;
19585 }
19586
19587 /* Return the auxiliary type of the die in question using its
19588 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
19589 attribute is not present. */
19590
19591 static struct type *
19592 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
19593 {
19594 struct attribute *type_attr;
19595
19596 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
19597 if (!type_attr)
19598 return NULL;
19599
19600 return lookup_die_type (die, type_attr, cu);
19601 }
19602
19603 /* If DIE has a descriptive_type attribute, then set the TYPE's
19604 descriptive type accordingly. */
19605
19606 static void
19607 set_descriptive_type (struct type *type, struct die_info *die,
19608 struct dwarf2_cu *cu)
19609 {
19610 struct type *descriptive_type = die_descriptive_type (die, cu);
19611
19612 if (descriptive_type)
19613 {
19614 ALLOCATE_GNAT_AUX_TYPE (type);
19615 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
19616 }
19617 }
19618
19619 /* Return the containing type of the die in question using its
19620 DW_AT_containing_type attribute. */
19621
19622 static struct type *
19623 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
19624 {
19625 struct attribute *type_attr;
19626
19627 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
19628 if (!type_attr)
19629 error (_("Dwarf Error: Problem turning containing type into gdb type "
19630 "[in module %s]"), objfile_name (cu->objfile));
19631
19632 return lookup_die_type (die, type_attr, cu);
19633 }
19634
19635 /* Return an error marker type to use for the ill formed type in DIE/CU. */
19636
19637 static struct type *
19638 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
19639 {
19640 struct objfile *objfile = dwarf2_per_objfile->objfile;
19641 char *message, *saved;
19642
19643 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
19644 objfile_name (objfile),
19645 to_underlying (cu->header.sect_off),
19646 to_underlying (die->sect_off));
19647 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
19648 message, strlen (message));
19649 xfree (message);
19650
19651 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
19652 }
19653
19654 /* Look up the type of DIE in CU using its type attribute ATTR.
19655 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
19656 DW_AT_containing_type.
19657 If there is no type substitute an error marker. */
19658
19659 static struct type *
19660 lookup_die_type (struct die_info *die, const struct attribute *attr,
19661 struct dwarf2_cu *cu)
19662 {
19663 struct objfile *objfile = cu->objfile;
19664 struct type *this_type;
19665
19666 gdb_assert (attr->name == DW_AT_type
19667 || attr->name == DW_AT_GNAT_descriptive_type
19668 || attr->name == DW_AT_containing_type);
19669
19670 /* First see if we have it cached. */
19671
19672 if (attr->form == DW_FORM_GNU_ref_alt)
19673 {
19674 struct dwarf2_per_cu_data *per_cu;
19675 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
19676
19677 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1, cu->objfile);
19678 this_type = get_die_type_at_offset (sect_off, per_cu);
19679 }
19680 else if (attr_form_is_ref (attr))
19681 {
19682 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
19683
19684 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
19685 }
19686 else if (attr->form == DW_FORM_ref_sig8)
19687 {
19688 ULONGEST signature = DW_SIGNATURE (attr);
19689
19690 return get_signatured_type (die, signature, cu);
19691 }
19692 else
19693 {
19694 complaint (&symfile_complaints,
19695 _("Dwarf Error: Bad type attribute %s in DIE"
19696 " at 0x%x [in module %s]"),
19697 dwarf_attr_name (attr->name), to_underlying (die->sect_off),
19698 objfile_name (objfile));
19699 return build_error_marker_type (cu, die);
19700 }
19701
19702 /* If not cached we need to read it in. */
19703
19704 if (this_type == NULL)
19705 {
19706 struct die_info *type_die = NULL;
19707 struct dwarf2_cu *type_cu = cu;
19708
19709 if (attr_form_is_ref (attr))
19710 type_die = follow_die_ref (die, attr, &type_cu);
19711 if (type_die == NULL)
19712 return build_error_marker_type (cu, die);
19713 /* If we find the type now, it's probably because the type came
19714 from an inter-CU reference and the type's CU got expanded before
19715 ours. */
19716 this_type = read_type_die (type_die, type_cu);
19717 }
19718
19719 /* If we still don't have a type use an error marker. */
19720
19721 if (this_type == NULL)
19722 return build_error_marker_type (cu, die);
19723
19724 return this_type;
19725 }
19726
19727 /* Return the type in DIE, CU.
19728 Returns NULL for invalid types.
19729
19730 This first does a lookup in die_type_hash,
19731 and only reads the die in if necessary.
19732
19733 NOTE: This can be called when reading in partial or full symbols. */
19734
19735 static struct type *
19736 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
19737 {
19738 struct type *this_type;
19739
19740 this_type = get_die_type (die, cu);
19741 if (this_type)
19742 return this_type;
19743
19744 return read_type_die_1 (die, cu);
19745 }
19746
19747 /* Read the type in DIE, CU.
19748 Returns NULL for invalid types. */
19749
19750 static struct type *
19751 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19752 {
19753 struct type *this_type = NULL;
19754
19755 switch (die->tag)
19756 {
19757 case DW_TAG_class_type:
19758 case DW_TAG_interface_type:
19759 case DW_TAG_structure_type:
19760 case DW_TAG_union_type:
19761 this_type = read_structure_type (die, cu);
19762 break;
19763 case DW_TAG_enumeration_type:
19764 this_type = read_enumeration_type (die, cu);
19765 break;
19766 case DW_TAG_subprogram:
19767 case DW_TAG_subroutine_type:
19768 case DW_TAG_inlined_subroutine:
19769 this_type = read_subroutine_type (die, cu);
19770 break;
19771 case DW_TAG_array_type:
19772 this_type = read_array_type (die, cu);
19773 break;
19774 case DW_TAG_set_type:
19775 this_type = read_set_type (die, cu);
19776 break;
19777 case DW_TAG_pointer_type:
19778 this_type = read_tag_pointer_type (die, cu);
19779 break;
19780 case DW_TAG_ptr_to_member_type:
19781 this_type = read_tag_ptr_to_member_type (die, cu);
19782 break;
19783 case DW_TAG_reference_type:
19784 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
19785 break;
19786 case DW_TAG_rvalue_reference_type:
19787 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
19788 break;
19789 case DW_TAG_const_type:
19790 this_type = read_tag_const_type (die, cu);
19791 break;
19792 case DW_TAG_volatile_type:
19793 this_type = read_tag_volatile_type (die, cu);
19794 break;
19795 case DW_TAG_restrict_type:
19796 this_type = read_tag_restrict_type (die, cu);
19797 break;
19798 case DW_TAG_string_type:
19799 this_type = read_tag_string_type (die, cu);
19800 break;
19801 case DW_TAG_typedef:
19802 this_type = read_typedef (die, cu);
19803 break;
19804 case DW_TAG_subrange_type:
19805 this_type = read_subrange_type (die, cu);
19806 break;
19807 case DW_TAG_base_type:
19808 this_type = read_base_type (die, cu);
19809 break;
19810 case DW_TAG_unspecified_type:
19811 this_type = read_unspecified_type (die, cu);
19812 break;
19813 case DW_TAG_namespace:
19814 this_type = read_namespace_type (die, cu);
19815 break;
19816 case DW_TAG_module:
19817 this_type = read_module_type (die, cu);
19818 break;
19819 case DW_TAG_atomic_type:
19820 this_type = read_tag_atomic_type (die, cu);
19821 break;
19822 default:
19823 complaint (&symfile_complaints,
19824 _("unexpected tag in read_type_die: '%s'"),
19825 dwarf_tag_name (die->tag));
19826 break;
19827 }
19828
19829 return this_type;
19830 }
19831
19832 /* See if we can figure out if the class lives in a namespace. We do
19833 this by looking for a member function; its demangled name will
19834 contain namespace info, if there is any.
19835 Return the computed name or NULL.
19836 Space for the result is allocated on the objfile's obstack.
19837 This is the full-die version of guess_partial_die_structure_name.
19838 In this case we know DIE has no useful parent. */
19839
19840 static char *
19841 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19842 {
19843 struct die_info *spec_die;
19844 struct dwarf2_cu *spec_cu;
19845 struct die_info *child;
19846
19847 spec_cu = cu;
19848 spec_die = die_specification (die, &spec_cu);
19849 if (spec_die != NULL)
19850 {
19851 die = spec_die;
19852 cu = spec_cu;
19853 }
19854
19855 for (child = die->child;
19856 child != NULL;
19857 child = child->sibling)
19858 {
19859 if (child->tag == DW_TAG_subprogram)
19860 {
19861 const char *linkage_name;
19862
19863 linkage_name = dwarf2_string_attr (child, DW_AT_linkage_name, cu);
19864 if (linkage_name == NULL)
19865 linkage_name = dwarf2_string_attr (child, DW_AT_MIPS_linkage_name,
19866 cu);
19867 if (linkage_name != NULL)
19868 {
19869 char *actual_name
19870 = language_class_name_from_physname (cu->language_defn,
19871 linkage_name);
19872 char *name = NULL;
19873
19874 if (actual_name != NULL)
19875 {
19876 const char *die_name = dwarf2_name (die, cu);
19877
19878 if (die_name != NULL
19879 && strcmp (die_name, actual_name) != 0)
19880 {
19881 /* Strip off the class name from the full name.
19882 We want the prefix. */
19883 int die_name_len = strlen (die_name);
19884 int actual_name_len = strlen (actual_name);
19885
19886 /* Test for '::' as a sanity check. */
19887 if (actual_name_len > die_name_len + 2
19888 && actual_name[actual_name_len
19889 - die_name_len - 1] == ':')
19890 name = (char *) obstack_copy0 (
19891 &cu->objfile->per_bfd->storage_obstack,
19892 actual_name, actual_name_len - die_name_len - 2);
19893 }
19894 }
19895 xfree (actual_name);
19896 return name;
19897 }
19898 }
19899 }
19900
19901 return NULL;
19902 }
19903
19904 /* GCC might emit a nameless typedef that has a linkage name. Determine the
19905 prefix part in such case. See
19906 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19907
19908 static const char *
19909 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19910 {
19911 struct attribute *attr;
19912 const char *base;
19913
19914 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19915 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19916 return NULL;
19917
19918 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
19919 return NULL;
19920
19921 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19922 if (attr == NULL)
19923 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19924 if (attr == NULL || DW_STRING (attr) == NULL)
19925 return NULL;
19926
19927 /* dwarf2_name had to be already called. */
19928 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19929
19930 /* Strip the base name, keep any leading namespaces/classes. */
19931 base = strrchr (DW_STRING (attr), ':');
19932 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19933 return "";
19934
19935 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19936 DW_STRING (attr),
19937 &base[-1] - DW_STRING (attr));
19938 }
19939
19940 /* Return the name of the namespace/class that DIE is defined within,
19941 or "" if we can't tell. The caller should not xfree the result.
19942
19943 For example, if we're within the method foo() in the following
19944 code:
19945
19946 namespace N {
19947 class C {
19948 void foo () {
19949 }
19950 };
19951 }
19952
19953 then determine_prefix on foo's die will return "N::C". */
19954
19955 static const char *
19956 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
19957 {
19958 struct die_info *parent, *spec_die;
19959 struct dwarf2_cu *spec_cu;
19960 struct type *parent_type;
19961 const char *retval;
19962
19963 if (cu->language != language_cplus
19964 && cu->language != language_fortran && cu->language != language_d
19965 && cu->language != language_rust)
19966 return "";
19967
19968 retval = anonymous_struct_prefix (die, cu);
19969 if (retval)
19970 return retval;
19971
19972 /* We have to be careful in the presence of DW_AT_specification.
19973 For example, with GCC 3.4, given the code
19974
19975 namespace N {
19976 void foo() {
19977 // Definition of N::foo.
19978 }
19979 }
19980
19981 then we'll have a tree of DIEs like this:
19982
19983 1: DW_TAG_compile_unit
19984 2: DW_TAG_namespace // N
19985 3: DW_TAG_subprogram // declaration of N::foo
19986 4: DW_TAG_subprogram // definition of N::foo
19987 DW_AT_specification // refers to die #3
19988
19989 Thus, when processing die #4, we have to pretend that we're in
19990 the context of its DW_AT_specification, namely the contex of die
19991 #3. */
19992 spec_cu = cu;
19993 spec_die = die_specification (die, &spec_cu);
19994 if (spec_die == NULL)
19995 parent = die->parent;
19996 else
19997 {
19998 parent = spec_die->parent;
19999 cu = spec_cu;
20000 }
20001
20002 if (parent == NULL)
20003 return "";
20004 else if (parent->building_fullname)
20005 {
20006 const char *name;
20007 const char *parent_name;
20008
20009 /* It has been seen on RealView 2.2 built binaries,
20010 DW_TAG_template_type_param types actually _defined_ as
20011 children of the parent class:
20012
20013 enum E {};
20014 template class <class Enum> Class{};
20015 Class<enum E> class_e;
20016
20017 1: DW_TAG_class_type (Class)
20018 2: DW_TAG_enumeration_type (E)
20019 3: DW_TAG_enumerator (enum1:0)
20020 3: DW_TAG_enumerator (enum2:1)
20021 ...
20022 2: DW_TAG_template_type_param
20023 DW_AT_type DW_FORM_ref_udata (E)
20024
20025 Besides being broken debug info, it can put GDB into an
20026 infinite loop. Consider:
20027
20028 When we're building the full name for Class<E>, we'll start
20029 at Class, and go look over its template type parameters,
20030 finding E. We'll then try to build the full name of E, and
20031 reach here. We're now trying to build the full name of E,
20032 and look over the parent DIE for containing scope. In the
20033 broken case, if we followed the parent DIE of E, we'd again
20034 find Class, and once again go look at its template type
20035 arguments, etc., etc. Simply don't consider such parent die
20036 as source-level parent of this die (it can't be, the language
20037 doesn't allow it), and break the loop here. */
20038 name = dwarf2_name (die, cu);
20039 parent_name = dwarf2_name (parent, cu);
20040 complaint (&symfile_complaints,
20041 _("template param type '%s' defined within parent '%s'"),
20042 name ? name : "<unknown>",
20043 parent_name ? parent_name : "<unknown>");
20044 return "";
20045 }
20046 else
20047 switch (parent->tag)
20048 {
20049 case DW_TAG_namespace:
20050 parent_type = read_type_die (parent, cu);
20051 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
20052 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
20053 Work around this problem here. */
20054 if (cu->language == language_cplus
20055 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
20056 return "";
20057 /* We give a name to even anonymous namespaces. */
20058 return TYPE_TAG_NAME (parent_type);
20059 case DW_TAG_class_type:
20060 case DW_TAG_interface_type:
20061 case DW_TAG_structure_type:
20062 case DW_TAG_union_type:
20063 case DW_TAG_module:
20064 parent_type = read_type_die (parent, cu);
20065 if (TYPE_TAG_NAME (parent_type) != NULL)
20066 return TYPE_TAG_NAME (parent_type);
20067 else
20068 /* An anonymous structure is only allowed non-static data
20069 members; no typedefs, no member functions, et cetera.
20070 So it does not need a prefix. */
20071 return "";
20072 case DW_TAG_compile_unit:
20073 case DW_TAG_partial_unit:
20074 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
20075 if (cu->language == language_cplus
20076 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
20077 && die->child != NULL
20078 && (die->tag == DW_TAG_class_type
20079 || die->tag == DW_TAG_structure_type
20080 || die->tag == DW_TAG_union_type))
20081 {
20082 char *name = guess_full_die_structure_name (die, cu);
20083 if (name != NULL)
20084 return name;
20085 }
20086 return "";
20087 case DW_TAG_enumeration_type:
20088 parent_type = read_type_die (parent, cu);
20089 if (TYPE_DECLARED_CLASS (parent_type))
20090 {
20091 if (TYPE_TAG_NAME (parent_type) != NULL)
20092 return TYPE_TAG_NAME (parent_type);
20093 return "";
20094 }
20095 /* Fall through. */
20096 default:
20097 return determine_prefix (parent, cu);
20098 }
20099 }
20100
20101 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
20102 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
20103 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
20104 an obconcat, otherwise allocate storage for the result. The CU argument is
20105 used to determine the language and hence, the appropriate separator. */
20106
20107 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
20108
20109 static char *
20110 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
20111 int physname, struct dwarf2_cu *cu)
20112 {
20113 const char *lead = "";
20114 const char *sep;
20115
20116 if (suffix == NULL || suffix[0] == '\0'
20117 || prefix == NULL || prefix[0] == '\0')
20118 sep = "";
20119 else if (cu->language == language_d)
20120 {
20121 /* For D, the 'main' function could be defined in any module, but it
20122 should never be prefixed. */
20123 if (strcmp (suffix, "D main") == 0)
20124 {
20125 prefix = "";
20126 sep = "";
20127 }
20128 else
20129 sep = ".";
20130 }
20131 else if (cu->language == language_fortran && physname)
20132 {
20133 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
20134 DW_AT_MIPS_linkage_name is preferred and used instead. */
20135
20136 lead = "__";
20137 sep = "_MOD_";
20138 }
20139 else
20140 sep = "::";
20141
20142 if (prefix == NULL)
20143 prefix = "";
20144 if (suffix == NULL)
20145 suffix = "";
20146
20147 if (obs == NULL)
20148 {
20149 char *retval
20150 = ((char *)
20151 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
20152
20153 strcpy (retval, lead);
20154 strcat (retval, prefix);
20155 strcat (retval, sep);
20156 strcat (retval, suffix);
20157 return retval;
20158 }
20159 else
20160 {
20161 /* We have an obstack. */
20162 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
20163 }
20164 }
20165
20166 /* Return sibling of die, NULL if no sibling. */
20167
20168 static struct die_info *
20169 sibling_die (struct die_info *die)
20170 {
20171 return die->sibling;
20172 }
20173
20174 /* Get name of a die, return NULL if not found. */
20175
20176 static const char *
20177 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
20178 struct obstack *obstack)
20179 {
20180 if (name && cu->language == language_cplus)
20181 {
20182 std::string canon_name = cp_canonicalize_string (name);
20183
20184 if (!canon_name.empty ())
20185 {
20186 if (canon_name != name)
20187 name = (const char *) obstack_copy0 (obstack,
20188 canon_name.c_str (),
20189 canon_name.length ());
20190 }
20191 }
20192
20193 return name;
20194 }
20195
20196 /* Get name of a die, return NULL if not found.
20197 Anonymous namespaces are converted to their magic string. */
20198
20199 static const char *
20200 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
20201 {
20202 struct attribute *attr;
20203
20204 attr = dwarf2_attr (die, DW_AT_name, cu);
20205 if ((!attr || !DW_STRING (attr))
20206 && die->tag != DW_TAG_namespace
20207 && die->tag != DW_TAG_class_type
20208 && die->tag != DW_TAG_interface_type
20209 && die->tag != DW_TAG_structure_type
20210 && die->tag != DW_TAG_union_type)
20211 return NULL;
20212
20213 switch (die->tag)
20214 {
20215 case DW_TAG_compile_unit:
20216 case DW_TAG_partial_unit:
20217 /* Compilation units have a DW_AT_name that is a filename, not
20218 a source language identifier. */
20219 case DW_TAG_enumeration_type:
20220 case DW_TAG_enumerator:
20221 /* These tags always have simple identifiers already; no need
20222 to canonicalize them. */
20223 return DW_STRING (attr);
20224
20225 case DW_TAG_namespace:
20226 if (attr != NULL && DW_STRING (attr) != NULL)
20227 return DW_STRING (attr);
20228 return CP_ANONYMOUS_NAMESPACE_STR;
20229
20230 case DW_TAG_class_type:
20231 case DW_TAG_interface_type:
20232 case DW_TAG_structure_type:
20233 case DW_TAG_union_type:
20234 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
20235 structures or unions. These were of the form "._%d" in GCC 4.1,
20236 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
20237 and GCC 4.4. We work around this problem by ignoring these. */
20238 if (attr && DW_STRING (attr)
20239 && (startswith (DW_STRING (attr), "._")
20240 || startswith (DW_STRING (attr), "<anonymous")))
20241 return NULL;
20242
20243 /* GCC might emit a nameless typedef that has a linkage name. See
20244 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
20245 if (!attr || DW_STRING (attr) == NULL)
20246 {
20247 char *demangled = NULL;
20248
20249 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
20250 if (attr == NULL)
20251 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
20252
20253 if (attr == NULL || DW_STRING (attr) == NULL)
20254 return NULL;
20255
20256 /* Avoid demangling DW_STRING (attr) the second time on a second
20257 call for the same DIE. */
20258 if (!DW_STRING_IS_CANONICAL (attr))
20259 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
20260
20261 if (demangled)
20262 {
20263 const char *base;
20264
20265 /* FIXME: we already did this for the partial symbol... */
20266 DW_STRING (attr)
20267 = ((const char *)
20268 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
20269 demangled, strlen (demangled)));
20270 DW_STRING_IS_CANONICAL (attr) = 1;
20271 xfree (demangled);
20272
20273 /* Strip any leading namespaces/classes, keep only the base name.
20274 DW_AT_name for named DIEs does not contain the prefixes. */
20275 base = strrchr (DW_STRING (attr), ':');
20276 if (base && base > DW_STRING (attr) && base[-1] == ':')
20277 return &base[1];
20278 else
20279 return DW_STRING (attr);
20280 }
20281 }
20282 break;
20283
20284 default:
20285 break;
20286 }
20287
20288 if (!DW_STRING_IS_CANONICAL (attr))
20289 {
20290 DW_STRING (attr)
20291 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
20292 &cu->objfile->per_bfd->storage_obstack);
20293 DW_STRING_IS_CANONICAL (attr) = 1;
20294 }
20295 return DW_STRING (attr);
20296 }
20297
20298 /* Return the die that this die in an extension of, or NULL if there
20299 is none. *EXT_CU is the CU containing DIE on input, and the CU
20300 containing the return value on output. */
20301
20302 static struct die_info *
20303 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
20304 {
20305 struct attribute *attr;
20306
20307 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
20308 if (attr == NULL)
20309 return NULL;
20310
20311 return follow_die_ref (die, attr, ext_cu);
20312 }
20313
20314 /* Convert a DIE tag into its string name. */
20315
20316 static const char *
20317 dwarf_tag_name (unsigned tag)
20318 {
20319 const char *name = get_DW_TAG_name (tag);
20320
20321 if (name == NULL)
20322 return "DW_TAG_<unknown>";
20323
20324 return name;
20325 }
20326
20327 /* Convert a DWARF attribute code into its string name. */
20328
20329 static const char *
20330 dwarf_attr_name (unsigned attr)
20331 {
20332 const char *name;
20333
20334 #ifdef MIPS /* collides with DW_AT_HP_block_index */
20335 if (attr == DW_AT_MIPS_fde)
20336 return "DW_AT_MIPS_fde";
20337 #else
20338 if (attr == DW_AT_HP_block_index)
20339 return "DW_AT_HP_block_index";
20340 #endif
20341
20342 name = get_DW_AT_name (attr);
20343
20344 if (name == NULL)
20345 return "DW_AT_<unknown>";
20346
20347 return name;
20348 }
20349
20350 /* Convert a DWARF value form code into its string name. */
20351
20352 static const char *
20353 dwarf_form_name (unsigned form)
20354 {
20355 const char *name = get_DW_FORM_name (form);
20356
20357 if (name == NULL)
20358 return "DW_FORM_<unknown>";
20359
20360 return name;
20361 }
20362
20363 static const char *
20364 dwarf_bool_name (unsigned mybool)
20365 {
20366 if (mybool)
20367 return "TRUE";
20368 else
20369 return "FALSE";
20370 }
20371
20372 /* Convert a DWARF type code into its string name. */
20373
20374 static const char *
20375 dwarf_type_encoding_name (unsigned enc)
20376 {
20377 const char *name = get_DW_ATE_name (enc);
20378
20379 if (name == NULL)
20380 return "DW_ATE_<unknown>";
20381
20382 return name;
20383 }
20384
20385 static void
20386 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
20387 {
20388 unsigned int i;
20389
20390 print_spaces (indent, f);
20391 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
20392 dwarf_tag_name (die->tag), die->abbrev,
20393 to_underlying (die->sect_off));
20394
20395 if (die->parent != NULL)
20396 {
20397 print_spaces (indent, f);
20398 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
20399 to_underlying (die->parent->sect_off));
20400 }
20401
20402 print_spaces (indent, f);
20403 fprintf_unfiltered (f, " has children: %s\n",
20404 dwarf_bool_name (die->child != NULL));
20405
20406 print_spaces (indent, f);
20407 fprintf_unfiltered (f, " attributes:\n");
20408
20409 for (i = 0; i < die->num_attrs; ++i)
20410 {
20411 print_spaces (indent, f);
20412 fprintf_unfiltered (f, " %s (%s) ",
20413 dwarf_attr_name (die->attrs[i].name),
20414 dwarf_form_name (die->attrs[i].form));
20415
20416 switch (die->attrs[i].form)
20417 {
20418 case DW_FORM_addr:
20419 case DW_FORM_GNU_addr_index:
20420 fprintf_unfiltered (f, "address: ");
20421 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
20422 break;
20423 case DW_FORM_block2:
20424 case DW_FORM_block4:
20425 case DW_FORM_block:
20426 case DW_FORM_block1:
20427 fprintf_unfiltered (f, "block: size %s",
20428 pulongest (DW_BLOCK (&die->attrs[i])->size));
20429 break;
20430 case DW_FORM_exprloc:
20431 fprintf_unfiltered (f, "expression: size %s",
20432 pulongest (DW_BLOCK (&die->attrs[i])->size));
20433 break;
20434 case DW_FORM_data16:
20435 fprintf_unfiltered (f, "constant of 16 bytes");
20436 break;
20437 case DW_FORM_ref_addr:
20438 fprintf_unfiltered (f, "ref address: ");
20439 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
20440 break;
20441 case DW_FORM_GNU_ref_alt:
20442 fprintf_unfiltered (f, "alt ref address: ");
20443 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
20444 break;
20445 case DW_FORM_ref1:
20446 case DW_FORM_ref2:
20447 case DW_FORM_ref4:
20448 case DW_FORM_ref8:
20449 case DW_FORM_ref_udata:
20450 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
20451 (long) (DW_UNSND (&die->attrs[i])));
20452 break;
20453 case DW_FORM_data1:
20454 case DW_FORM_data2:
20455 case DW_FORM_data4:
20456 case DW_FORM_data8:
20457 case DW_FORM_udata:
20458 case DW_FORM_sdata:
20459 fprintf_unfiltered (f, "constant: %s",
20460 pulongest (DW_UNSND (&die->attrs[i])));
20461 break;
20462 case DW_FORM_sec_offset:
20463 fprintf_unfiltered (f, "section offset: %s",
20464 pulongest (DW_UNSND (&die->attrs[i])));
20465 break;
20466 case DW_FORM_ref_sig8:
20467 fprintf_unfiltered (f, "signature: %s",
20468 hex_string (DW_SIGNATURE (&die->attrs[i])));
20469 break;
20470 case DW_FORM_string:
20471 case DW_FORM_strp:
20472 case DW_FORM_line_strp:
20473 case DW_FORM_GNU_str_index:
20474 case DW_FORM_GNU_strp_alt:
20475 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
20476 DW_STRING (&die->attrs[i])
20477 ? DW_STRING (&die->attrs[i]) : "",
20478 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
20479 break;
20480 case DW_FORM_flag:
20481 if (DW_UNSND (&die->attrs[i]))
20482 fprintf_unfiltered (f, "flag: TRUE");
20483 else
20484 fprintf_unfiltered (f, "flag: FALSE");
20485 break;
20486 case DW_FORM_flag_present:
20487 fprintf_unfiltered (f, "flag: TRUE");
20488 break;
20489 case DW_FORM_indirect:
20490 /* The reader will have reduced the indirect form to
20491 the "base form" so this form should not occur. */
20492 fprintf_unfiltered (f,
20493 "unexpected attribute form: DW_FORM_indirect");
20494 break;
20495 default:
20496 fprintf_unfiltered (f, "unsupported attribute form: %d.",
20497 die->attrs[i].form);
20498 break;
20499 }
20500 fprintf_unfiltered (f, "\n");
20501 }
20502 }
20503
20504 static void
20505 dump_die_for_error (struct die_info *die)
20506 {
20507 dump_die_shallow (gdb_stderr, 0, die);
20508 }
20509
20510 static void
20511 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
20512 {
20513 int indent = level * 4;
20514
20515 gdb_assert (die != NULL);
20516
20517 if (level >= max_level)
20518 return;
20519
20520 dump_die_shallow (f, indent, die);
20521
20522 if (die->child != NULL)
20523 {
20524 print_spaces (indent, f);
20525 fprintf_unfiltered (f, " Children:");
20526 if (level + 1 < max_level)
20527 {
20528 fprintf_unfiltered (f, "\n");
20529 dump_die_1 (f, level + 1, max_level, die->child);
20530 }
20531 else
20532 {
20533 fprintf_unfiltered (f,
20534 " [not printed, max nesting level reached]\n");
20535 }
20536 }
20537
20538 if (die->sibling != NULL && level > 0)
20539 {
20540 dump_die_1 (f, level, max_level, die->sibling);
20541 }
20542 }
20543
20544 /* This is called from the pdie macro in gdbinit.in.
20545 It's not static so gcc will keep a copy callable from gdb. */
20546
20547 void
20548 dump_die (struct die_info *die, int max_level)
20549 {
20550 dump_die_1 (gdb_stdlog, 0, max_level, die);
20551 }
20552
20553 static void
20554 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
20555 {
20556 void **slot;
20557
20558 slot = htab_find_slot_with_hash (cu->die_hash, die,
20559 to_underlying (die->sect_off),
20560 INSERT);
20561
20562 *slot = die;
20563 }
20564
20565 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
20566 required kind. */
20567
20568 static sect_offset
20569 dwarf2_get_ref_die_offset (const struct attribute *attr)
20570 {
20571 if (attr_form_is_ref (attr))
20572 return (sect_offset) DW_UNSND (attr);
20573
20574 complaint (&symfile_complaints,
20575 _("unsupported die ref attribute form: '%s'"),
20576 dwarf_form_name (attr->form));
20577 return {};
20578 }
20579
20580 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
20581 * the value held by the attribute is not constant. */
20582
20583 static LONGEST
20584 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
20585 {
20586 if (attr->form == DW_FORM_sdata)
20587 return DW_SND (attr);
20588 else if (attr->form == DW_FORM_udata
20589 || attr->form == DW_FORM_data1
20590 || attr->form == DW_FORM_data2
20591 || attr->form == DW_FORM_data4
20592 || attr->form == DW_FORM_data8)
20593 return DW_UNSND (attr);
20594 else
20595 {
20596 /* For DW_FORM_data16 see attr_form_is_constant. */
20597 complaint (&symfile_complaints,
20598 _("Attribute value is not a constant (%s)"),
20599 dwarf_form_name (attr->form));
20600 return default_value;
20601 }
20602 }
20603
20604 /* Follow reference or signature attribute ATTR of SRC_DIE.
20605 On entry *REF_CU is the CU of SRC_DIE.
20606 On exit *REF_CU is the CU of the result. */
20607
20608 static struct die_info *
20609 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
20610 struct dwarf2_cu **ref_cu)
20611 {
20612 struct die_info *die;
20613
20614 if (attr_form_is_ref (attr))
20615 die = follow_die_ref (src_die, attr, ref_cu);
20616 else if (attr->form == DW_FORM_ref_sig8)
20617 die = follow_die_sig (src_die, attr, ref_cu);
20618 else
20619 {
20620 dump_die_for_error (src_die);
20621 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
20622 objfile_name ((*ref_cu)->objfile));
20623 }
20624
20625 return die;
20626 }
20627
20628 /* Follow reference OFFSET.
20629 On entry *REF_CU is the CU of the source die referencing OFFSET.
20630 On exit *REF_CU is the CU of the result.
20631 Returns NULL if OFFSET is invalid. */
20632
20633 static struct die_info *
20634 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
20635 struct dwarf2_cu **ref_cu)
20636 {
20637 struct die_info temp_die;
20638 struct dwarf2_cu *target_cu, *cu = *ref_cu;
20639
20640 gdb_assert (cu->per_cu != NULL);
20641
20642 target_cu = cu;
20643
20644 if (cu->per_cu->is_debug_types)
20645 {
20646 /* .debug_types CUs cannot reference anything outside their CU.
20647 If they need to, they have to reference a signatured type via
20648 DW_FORM_ref_sig8. */
20649 if (!offset_in_cu_p (&cu->header, sect_off))
20650 return NULL;
20651 }
20652 else if (offset_in_dwz != cu->per_cu->is_dwz
20653 || !offset_in_cu_p (&cu->header, sect_off))
20654 {
20655 struct dwarf2_per_cu_data *per_cu;
20656
20657 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
20658 cu->objfile);
20659
20660 /* If necessary, add it to the queue and load its DIEs. */
20661 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
20662 load_full_comp_unit (per_cu, cu->language);
20663
20664 target_cu = per_cu->cu;
20665 }
20666 else if (cu->dies == NULL)
20667 {
20668 /* We're loading full DIEs during partial symbol reading. */
20669 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
20670 load_full_comp_unit (cu->per_cu, language_minimal);
20671 }
20672
20673 *ref_cu = target_cu;
20674 temp_die.sect_off = sect_off;
20675 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
20676 &temp_die,
20677 to_underlying (sect_off));
20678 }
20679
20680 /* Follow reference attribute ATTR of SRC_DIE.
20681 On entry *REF_CU is the CU of SRC_DIE.
20682 On exit *REF_CU is the CU of the result. */
20683
20684 static struct die_info *
20685 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
20686 struct dwarf2_cu **ref_cu)
20687 {
20688 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
20689 struct dwarf2_cu *cu = *ref_cu;
20690 struct die_info *die;
20691
20692 die = follow_die_offset (sect_off,
20693 (attr->form == DW_FORM_GNU_ref_alt
20694 || cu->per_cu->is_dwz),
20695 ref_cu);
20696 if (!die)
20697 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20698 "at 0x%x [in module %s]"),
20699 to_underlying (sect_off), to_underlying (src_die->sect_off),
20700 objfile_name (cu->objfile));
20701
20702 return die;
20703 }
20704
20705 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
20706 Returned value is intended for DW_OP_call*. Returned
20707 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
20708
20709 struct dwarf2_locexpr_baton
20710 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
20711 struct dwarf2_per_cu_data *per_cu,
20712 CORE_ADDR (*get_frame_pc) (void *baton),
20713 void *baton)
20714 {
20715 struct dwarf2_cu *cu;
20716 struct die_info *die;
20717 struct attribute *attr;
20718 struct dwarf2_locexpr_baton retval;
20719
20720 dw2_setup (per_cu->objfile);
20721
20722 if (per_cu->cu == NULL)
20723 load_cu (per_cu);
20724 cu = per_cu->cu;
20725 if (cu == NULL)
20726 {
20727 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20728 Instead just throw an error, not much else we can do. */
20729 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20730 to_underlying (sect_off), objfile_name (per_cu->objfile));
20731 }
20732
20733 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
20734 if (!die)
20735 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20736 to_underlying (sect_off), objfile_name (per_cu->objfile));
20737
20738 attr = dwarf2_attr (die, DW_AT_location, cu);
20739 if (!attr)
20740 {
20741 /* DWARF: "If there is no such attribute, then there is no effect.".
20742 DATA is ignored if SIZE is 0. */
20743
20744 retval.data = NULL;
20745 retval.size = 0;
20746 }
20747 else if (attr_form_is_section_offset (attr))
20748 {
20749 struct dwarf2_loclist_baton loclist_baton;
20750 CORE_ADDR pc = (*get_frame_pc) (baton);
20751 size_t size;
20752
20753 fill_in_loclist_baton (cu, &loclist_baton, attr);
20754
20755 retval.data = dwarf2_find_location_expression (&loclist_baton,
20756 &size, pc);
20757 retval.size = size;
20758 }
20759 else
20760 {
20761 if (!attr_form_is_block (attr))
20762 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20763 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
20764 to_underlying (sect_off), objfile_name (per_cu->objfile));
20765
20766 retval.data = DW_BLOCK (attr)->data;
20767 retval.size = DW_BLOCK (attr)->size;
20768 }
20769 retval.per_cu = cu->per_cu;
20770
20771 age_cached_comp_units ();
20772
20773 return retval;
20774 }
20775
20776 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20777 offset. */
20778
20779 struct dwarf2_locexpr_baton
20780 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20781 struct dwarf2_per_cu_data *per_cu,
20782 CORE_ADDR (*get_frame_pc) (void *baton),
20783 void *baton)
20784 {
20785 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
20786
20787 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
20788 }
20789
20790 /* Write a constant of a given type as target-ordered bytes into
20791 OBSTACK. */
20792
20793 static const gdb_byte *
20794 write_constant_as_bytes (struct obstack *obstack,
20795 enum bfd_endian byte_order,
20796 struct type *type,
20797 ULONGEST value,
20798 LONGEST *len)
20799 {
20800 gdb_byte *result;
20801
20802 *len = TYPE_LENGTH (type);
20803 result = (gdb_byte *) obstack_alloc (obstack, *len);
20804 store_unsigned_integer (result, *len, byte_order, value);
20805
20806 return result;
20807 }
20808
20809 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20810 pointer to the constant bytes and set LEN to the length of the
20811 data. If memory is needed, allocate it on OBSTACK. If the DIE
20812 does not have a DW_AT_const_value, return NULL. */
20813
20814 const gdb_byte *
20815 dwarf2_fetch_constant_bytes (sect_offset sect_off,
20816 struct dwarf2_per_cu_data *per_cu,
20817 struct obstack *obstack,
20818 LONGEST *len)
20819 {
20820 struct dwarf2_cu *cu;
20821 struct die_info *die;
20822 struct attribute *attr;
20823 const gdb_byte *result = NULL;
20824 struct type *type;
20825 LONGEST value;
20826 enum bfd_endian byte_order;
20827
20828 dw2_setup (per_cu->objfile);
20829
20830 if (per_cu->cu == NULL)
20831 load_cu (per_cu);
20832 cu = per_cu->cu;
20833 if (cu == NULL)
20834 {
20835 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20836 Instead just throw an error, not much else we can do. */
20837 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20838 to_underlying (sect_off), objfile_name (per_cu->objfile));
20839 }
20840
20841 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
20842 if (!die)
20843 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20844 to_underlying (sect_off), objfile_name (per_cu->objfile));
20845
20846
20847 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20848 if (attr == NULL)
20849 return NULL;
20850
20851 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20852 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20853
20854 switch (attr->form)
20855 {
20856 case DW_FORM_addr:
20857 case DW_FORM_GNU_addr_index:
20858 {
20859 gdb_byte *tem;
20860
20861 *len = cu->header.addr_size;
20862 tem = (gdb_byte *) obstack_alloc (obstack, *len);
20863 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20864 result = tem;
20865 }
20866 break;
20867 case DW_FORM_string:
20868 case DW_FORM_strp:
20869 case DW_FORM_GNU_str_index:
20870 case DW_FORM_GNU_strp_alt:
20871 /* DW_STRING is already allocated on the objfile obstack, point
20872 directly to it. */
20873 result = (const gdb_byte *) DW_STRING (attr);
20874 *len = strlen (DW_STRING (attr));
20875 break;
20876 case DW_FORM_block1:
20877 case DW_FORM_block2:
20878 case DW_FORM_block4:
20879 case DW_FORM_block:
20880 case DW_FORM_exprloc:
20881 case DW_FORM_data16:
20882 result = DW_BLOCK (attr)->data;
20883 *len = DW_BLOCK (attr)->size;
20884 break;
20885
20886 /* The DW_AT_const_value attributes are supposed to carry the
20887 symbol's value "represented as it would be on the target
20888 architecture." By the time we get here, it's already been
20889 converted to host endianness, so we just need to sign- or
20890 zero-extend it as appropriate. */
20891 case DW_FORM_data1:
20892 type = die_type (die, cu);
20893 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20894 if (result == NULL)
20895 result = write_constant_as_bytes (obstack, byte_order,
20896 type, value, len);
20897 break;
20898 case DW_FORM_data2:
20899 type = die_type (die, cu);
20900 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20901 if (result == NULL)
20902 result = write_constant_as_bytes (obstack, byte_order,
20903 type, value, len);
20904 break;
20905 case DW_FORM_data4:
20906 type = die_type (die, cu);
20907 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20908 if (result == NULL)
20909 result = write_constant_as_bytes (obstack, byte_order,
20910 type, value, len);
20911 break;
20912 case DW_FORM_data8:
20913 type = die_type (die, cu);
20914 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20915 if (result == NULL)
20916 result = write_constant_as_bytes (obstack, byte_order,
20917 type, value, len);
20918 break;
20919
20920 case DW_FORM_sdata:
20921 type = die_type (die, cu);
20922 result = write_constant_as_bytes (obstack, byte_order,
20923 type, DW_SND (attr), len);
20924 break;
20925
20926 case DW_FORM_udata:
20927 type = die_type (die, cu);
20928 result = write_constant_as_bytes (obstack, byte_order,
20929 type, DW_UNSND (attr), len);
20930 break;
20931
20932 default:
20933 complaint (&symfile_complaints,
20934 _("unsupported const value attribute form: '%s'"),
20935 dwarf_form_name (attr->form));
20936 break;
20937 }
20938
20939 return result;
20940 }
20941
20942 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
20943 valid type for this die is found. */
20944
20945 struct type *
20946 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
20947 struct dwarf2_per_cu_data *per_cu)
20948 {
20949 struct dwarf2_cu *cu;
20950 struct die_info *die;
20951
20952 dw2_setup (per_cu->objfile);
20953
20954 if (per_cu->cu == NULL)
20955 load_cu (per_cu);
20956 cu = per_cu->cu;
20957 if (!cu)
20958 return NULL;
20959
20960 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
20961 if (!die)
20962 return NULL;
20963
20964 return die_type (die, cu);
20965 }
20966
20967 /* Return the type of the DIE at DIE_OFFSET in the CU named by
20968 PER_CU. */
20969
20970 struct type *
20971 dwarf2_get_die_type (cu_offset die_offset,
20972 struct dwarf2_per_cu_data *per_cu)
20973 {
20974 dw2_setup (per_cu->objfile);
20975
20976 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
20977 return get_die_type_at_offset (die_offset_sect, per_cu);
20978 }
20979
20980 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
20981 On entry *REF_CU is the CU of SRC_DIE.
20982 On exit *REF_CU is the CU of the result.
20983 Returns NULL if the referenced DIE isn't found. */
20984
20985 static struct die_info *
20986 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20987 struct dwarf2_cu **ref_cu)
20988 {
20989 struct die_info temp_die;
20990 struct dwarf2_cu *sig_cu;
20991 struct die_info *die;
20992
20993 /* While it might be nice to assert sig_type->type == NULL here,
20994 we can get here for DW_AT_imported_declaration where we need
20995 the DIE not the type. */
20996
20997 /* If necessary, add it to the queue and load its DIEs. */
20998
20999 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
21000 read_signatured_type (sig_type);
21001
21002 sig_cu = sig_type->per_cu.cu;
21003 gdb_assert (sig_cu != NULL);
21004 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
21005 temp_die.sect_off = sig_type->type_offset_in_section;
21006 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
21007 to_underlying (temp_die.sect_off));
21008 if (die)
21009 {
21010 /* For .gdb_index version 7 keep track of included TUs.
21011 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
21012 if (dwarf2_per_objfile->index_table != NULL
21013 && dwarf2_per_objfile->index_table->version <= 7)
21014 {
21015 VEC_safe_push (dwarf2_per_cu_ptr,
21016 (*ref_cu)->per_cu->imported_symtabs,
21017 sig_cu->per_cu);
21018 }
21019
21020 *ref_cu = sig_cu;
21021 return die;
21022 }
21023
21024 return NULL;
21025 }
21026
21027 /* Follow signatured type referenced by ATTR in SRC_DIE.
21028 On entry *REF_CU is the CU of SRC_DIE.
21029 On exit *REF_CU is the CU of the result.
21030 The result is the DIE of the type.
21031 If the referenced type cannot be found an error is thrown. */
21032
21033 static struct die_info *
21034 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
21035 struct dwarf2_cu **ref_cu)
21036 {
21037 ULONGEST signature = DW_SIGNATURE (attr);
21038 struct signatured_type *sig_type;
21039 struct die_info *die;
21040
21041 gdb_assert (attr->form == DW_FORM_ref_sig8);
21042
21043 sig_type = lookup_signatured_type (*ref_cu, signature);
21044 /* sig_type will be NULL if the signatured type is missing from
21045 the debug info. */
21046 if (sig_type == NULL)
21047 {
21048 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
21049 " from DIE at 0x%x [in module %s]"),
21050 hex_string (signature), to_underlying (src_die->sect_off),
21051 objfile_name ((*ref_cu)->objfile));
21052 }
21053
21054 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
21055 if (die == NULL)
21056 {
21057 dump_die_for_error (src_die);
21058 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
21059 " from DIE at 0x%x [in module %s]"),
21060 hex_string (signature), to_underlying (src_die->sect_off),
21061 objfile_name ((*ref_cu)->objfile));
21062 }
21063
21064 return die;
21065 }
21066
21067 /* Get the type specified by SIGNATURE referenced in DIE/CU,
21068 reading in and processing the type unit if necessary. */
21069
21070 static struct type *
21071 get_signatured_type (struct die_info *die, ULONGEST signature,
21072 struct dwarf2_cu *cu)
21073 {
21074 struct signatured_type *sig_type;
21075 struct dwarf2_cu *type_cu;
21076 struct die_info *type_die;
21077 struct type *type;
21078
21079 sig_type = lookup_signatured_type (cu, signature);
21080 /* sig_type will be NULL if the signatured type is missing from
21081 the debug info. */
21082 if (sig_type == NULL)
21083 {
21084 complaint (&symfile_complaints,
21085 _("Dwarf Error: Cannot find signatured DIE %s referenced"
21086 " from DIE at 0x%x [in module %s]"),
21087 hex_string (signature), to_underlying (die->sect_off),
21088 objfile_name (dwarf2_per_objfile->objfile));
21089 return build_error_marker_type (cu, die);
21090 }
21091
21092 /* If we already know the type we're done. */
21093 if (sig_type->type != NULL)
21094 return sig_type->type;
21095
21096 type_cu = cu;
21097 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
21098 if (type_die != NULL)
21099 {
21100 /* N.B. We need to call get_die_type to ensure only one type for this DIE
21101 is created. This is important, for example, because for c++ classes
21102 we need TYPE_NAME set which is only done by new_symbol. Blech. */
21103 type = read_type_die (type_die, type_cu);
21104 if (type == NULL)
21105 {
21106 complaint (&symfile_complaints,
21107 _("Dwarf Error: Cannot build signatured type %s"
21108 " referenced from DIE at 0x%x [in module %s]"),
21109 hex_string (signature), to_underlying (die->sect_off),
21110 objfile_name (dwarf2_per_objfile->objfile));
21111 type = build_error_marker_type (cu, die);
21112 }
21113 }
21114 else
21115 {
21116 complaint (&symfile_complaints,
21117 _("Dwarf Error: Problem reading signatured DIE %s referenced"
21118 " from DIE at 0x%x [in module %s]"),
21119 hex_string (signature), to_underlying (die->sect_off),
21120 objfile_name (dwarf2_per_objfile->objfile));
21121 type = build_error_marker_type (cu, die);
21122 }
21123 sig_type->type = type;
21124
21125 return type;
21126 }
21127
21128 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
21129 reading in and processing the type unit if necessary. */
21130
21131 static struct type *
21132 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
21133 struct dwarf2_cu *cu) /* ARI: editCase function */
21134 {
21135 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
21136 if (attr_form_is_ref (attr))
21137 {
21138 struct dwarf2_cu *type_cu = cu;
21139 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
21140
21141 return read_type_die (type_die, type_cu);
21142 }
21143 else if (attr->form == DW_FORM_ref_sig8)
21144 {
21145 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
21146 }
21147 else
21148 {
21149 complaint (&symfile_complaints,
21150 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
21151 " at 0x%x [in module %s]"),
21152 dwarf_form_name (attr->form), to_underlying (die->sect_off),
21153 objfile_name (dwarf2_per_objfile->objfile));
21154 return build_error_marker_type (cu, die);
21155 }
21156 }
21157
21158 /* Load the DIEs associated with type unit PER_CU into memory. */
21159
21160 static void
21161 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
21162 {
21163 struct signatured_type *sig_type;
21164
21165 /* Caller is responsible for ensuring type_unit_groups don't get here. */
21166 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
21167
21168 /* We have the per_cu, but we need the signatured_type.
21169 Fortunately this is an easy translation. */
21170 gdb_assert (per_cu->is_debug_types);
21171 sig_type = (struct signatured_type *) per_cu;
21172
21173 gdb_assert (per_cu->cu == NULL);
21174
21175 read_signatured_type (sig_type);
21176
21177 gdb_assert (per_cu->cu != NULL);
21178 }
21179
21180 /* die_reader_func for read_signatured_type.
21181 This is identical to load_full_comp_unit_reader,
21182 but is kept separate for now. */
21183
21184 static void
21185 read_signatured_type_reader (const struct die_reader_specs *reader,
21186 const gdb_byte *info_ptr,
21187 struct die_info *comp_unit_die,
21188 int has_children,
21189 void *data)
21190 {
21191 struct dwarf2_cu *cu = reader->cu;
21192
21193 gdb_assert (cu->die_hash == NULL);
21194 cu->die_hash =
21195 htab_create_alloc_ex (cu->header.length / 12,
21196 die_hash,
21197 die_eq,
21198 NULL,
21199 &cu->comp_unit_obstack,
21200 hashtab_obstack_allocate,
21201 dummy_obstack_deallocate);
21202
21203 if (has_children)
21204 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
21205 &info_ptr, comp_unit_die);
21206 cu->dies = comp_unit_die;
21207 /* comp_unit_die is not stored in die_hash, no need. */
21208
21209 /* We try not to read any attributes in this function, because not
21210 all CUs needed for references have been loaded yet, and symbol
21211 table processing isn't initialized. But we have to set the CU language,
21212 or we won't be able to build types correctly.
21213 Similarly, if we do not read the producer, we can not apply
21214 producer-specific interpretation. */
21215 prepare_one_comp_unit (cu, cu->dies, language_minimal);
21216 }
21217
21218 /* Read in a signatured type and build its CU and DIEs.
21219 If the type is a stub for the real type in a DWO file,
21220 read in the real type from the DWO file as well. */
21221
21222 static void
21223 read_signatured_type (struct signatured_type *sig_type)
21224 {
21225 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
21226
21227 gdb_assert (per_cu->is_debug_types);
21228 gdb_assert (per_cu->cu == NULL);
21229
21230 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
21231 read_signatured_type_reader, NULL);
21232 sig_type->per_cu.tu_read = 1;
21233 }
21234
21235 /* Decode simple location descriptions.
21236 Given a pointer to a dwarf block that defines a location, compute
21237 the location and return the value.
21238
21239 NOTE drow/2003-11-18: This function is called in two situations
21240 now: for the address of static or global variables (partial symbols
21241 only) and for offsets into structures which are expected to be
21242 (more or less) constant. The partial symbol case should go away,
21243 and only the constant case should remain. That will let this
21244 function complain more accurately. A few special modes are allowed
21245 without complaint for global variables (for instance, global
21246 register values and thread-local values).
21247
21248 A location description containing no operations indicates that the
21249 object is optimized out. The return value is 0 for that case.
21250 FIXME drow/2003-11-16: No callers check for this case any more; soon all
21251 callers will only want a very basic result and this can become a
21252 complaint.
21253
21254 Note that stack[0] is unused except as a default error return. */
21255
21256 static CORE_ADDR
21257 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
21258 {
21259 struct objfile *objfile = cu->objfile;
21260 size_t i;
21261 size_t size = blk->size;
21262 const gdb_byte *data = blk->data;
21263 CORE_ADDR stack[64];
21264 int stacki;
21265 unsigned int bytes_read, unsnd;
21266 gdb_byte op;
21267
21268 i = 0;
21269 stacki = 0;
21270 stack[stacki] = 0;
21271 stack[++stacki] = 0;
21272
21273 while (i < size)
21274 {
21275 op = data[i++];
21276 switch (op)
21277 {
21278 case DW_OP_lit0:
21279 case DW_OP_lit1:
21280 case DW_OP_lit2:
21281 case DW_OP_lit3:
21282 case DW_OP_lit4:
21283 case DW_OP_lit5:
21284 case DW_OP_lit6:
21285 case DW_OP_lit7:
21286 case DW_OP_lit8:
21287 case DW_OP_lit9:
21288 case DW_OP_lit10:
21289 case DW_OP_lit11:
21290 case DW_OP_lit12:
21291 case DW_OP_lit13:
21292 case DW_OP_lit14:
21293 case DW_OP_lit15:
21294 case DW_OP_lit16:
21295 case DW_OP_lit17:
21296 case DW_OP_lit18:
21297 case DW_OP_lit19:
21298 case DW_OP_lit20:
21299 case DW_OP_lit21:
21300 case DW_OP_lit22:
21301 case DW_OP_lit23:
21302 case DW_OP_lit24:
21303 case DW_OP_lit25:
21304 case DW_OP_lit26:
21305 case DW_OP_lit27:
21306 case DW_OP_lit28:
21307 case DW_OP_lit29:
21308 case DW_OP_lit30:
21309 case DW_OP_lit31:
21310 stack[++stacki] = op - DW_OP_lit0;
21311 break;
21312
21313 case DW_OP_reg0:
21314 case DW_OP_reg1:
21315 case DW_OP_reg2:
21316 case DW_OP_reg3:
21317 case DW_OP_reg4:
21318 case DW_OP_reg5:
21319 case DW_OP_reg6:
21320 case DW_OP_reg7:
21321 case DW_OP_reg8:
21322 case DW_OP_reg9:
21323 case DW_OP_reg10:
21324 case DW_OP_reg11:
21325 case DW_OP_reg12:
21326 case DW_OP_reg13:
21327 case DW_OP_reg14:
21328 case DW_OP_reg15:
21329 case DW_OP_reg16:
21330 case DW_OP_reg17:
21331 case DW_OP_reg18:
21332 case DW_OP_reg19:
21333 case DW_OP_reg20:
21334 case DW_OP_reg21:
21335 case DW_OP_reg22:
21336 case DW_OP_reg23:
21337 case DW_OP_reg24:
21338 case DW_OP_reg25:
21339 case DW_OP_reg26:
21340 case DW_OP_reg27:
21341 case DW_OP_reg28:
21342 case DW_OP_reg29:
21343 case DW_OP_reg30:
21344 case DW_OP_reg31:
21345 stack[++stacki] = op - DW_OP_reg0;
21346 if (i < size)
21347 dwarf2_complex_location_expr_complaint ();
21348 break;
21349
21350 case DW_OP_regx:
21351 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
21352 i += bytes_read;
21353 stack[++stacki] = unsnd;
21354 if (i < size)
21355 dwarf2_complex_location_expr_complaint ();
21356 break;
21357
21358 case DW_OP_addr:
21359 stack[++stacki] = read_address (objfile->obfd, &data[i],
21360 cu, &bytes_read);
21361 i += bytes_read;
21362 break;
21363
21364 case DW_OP_const1u:
21365 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
21366 i += 1;
21367 break;
21368
21369 case DW_OP_const1s:
21370 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
21371 i += 1;
21372 break;
21373
21374 case DW_OP_const2u:
21375 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
21376 i += 2;
21377 break;
21378
21379 case DW_OP_const2s:
21380 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
21381 i += 2;
21382 break;
21383
21384 case DW_OP_const4u:
21385 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
21386 i += 4;
21387 break;
21388
21389 case DW_OP_const4s:
21390 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
21391 i += 4;
21392 break;
21393
21394 case DW_OP_const8u:
21395 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
21396 i += 8;
21397 break;
21398
21399 case DW_OP_constu:
21400 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
21401 &bytes_read);
21402 i += bytes_read;
21403 break;
21404
21405 case DW_OP_consts:
21406 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
21407 i += bytes_read;
21408 break;
21409
21410 case DW_OP_dup:
21411 stack[stacki + 1] = stack[stacki];
21412 stacki++;
21413 break;
21414
21415 case DW_OP_plus:
21416 stack[stacki - 1] += stack[stacki];
21417 stacki--;
21418 break;
21419
21420 case DW_OP_plus_uconst:
21421 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
21422 &bytes_read);
21423 i += bytes_read;
21424 break;
21425
21426 case DW_OP_minus:
21427 stack[stacki - 1] -= stack[stacki];
21428 stacki--;
21429 break;
21430
21431 case DW_OP_deref:
21432 /* If we're not the last op, then we definitely can't encode
21433 this using GDB's address_class enum. This is valid for partial
21434 global symbols, although the variable's address will be bogus
21435 in the psymtab. */
21436 if (i < size)
21437 dwarf2_complex_location_expr_complaint ();
21438 break;
21439
21440 case DW_OP_GNU_push_tls_address:
21441 case DW_OP_form_tls_address:
21442 /* The top of the stack has the offset from the beginning
21443 of the thread control block at which the variable is located. */
21444 /* Nothing should follow this operator, so the top of stack would
21445 be returned. */
21446 /* This is valid for partial global symbols, but the variable's
21447 address will be bogus in the psymtab. Make it always at least
21448 non-zero to not look as a variable garbage collected by linker
21449 which have DW_OP_addr 0. */
21450 if (i < size)
21451 dwarf2_complex_location_expr_complaint ();
21452 stack[stacki]++;
21453 break;
21454
21455 case DW_OP_GNU_uninit:
21456 break;
21457
21458 case DW_OP_GNU_addr_index:
21459 case DW_OP_GNU_const_index:
21460 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
21461 &bytes_read);
21462 i += bytes_read;
21463 break;
21464
21465 default:
21466 {
21467 const char *name = get_DW_OP_name (op);
21468
21469 if (name)
21470 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
21471 name);
21472 else
21473 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
21474 op);
21475 }
21476
21477 return (stack[stacki]);
21478 }
21479
21480 /* Enforce maximum stack depth of SIZE-1 to avoid writing
21481 outside of the allocated space. Also enforce minimum>0. */
21482 if (stacki >= ARRAY_SIZE (stack) - 1)
21483 {
21484 complaint (&symfile_complaints,
21485 _("location description stack overflow"));
21486 return 0;
21487 }
21488
21489 if (stacki <= 0)
21490 {
21491 complaint (&symfile_complaints,
21492 _("location description stack underflow"));
21493 return 0;
21494 }
21495 }
21496 return (stack[stacki]);
21497 }
21498
21499 /* memory allocation interface */
21500
21501 static struct dwarf_block *
21502 dwarf_alloc_block (struct dwarf2_cu *cu)
21503 {
21504 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
21505 }
21506
21507 static struct die_info *
21508 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
21509 {
21510 struct die_info *die;
21511 size_t size = sizeof (struct die_info);
21512
21513 if (num_attrs > 1)
21514 size += (num_attrs - 1) * sizeof (struct attribute);
21515
21516 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
21517 memset (die, 0, sizeof (struct die_info));
21518 return (die);
21519 }
21520
21521 \f
21522 /* Macro support. */
21523
21524 /* Return file name relative to the compilation directory of file number I in
21525 *LH's file name table. The result is allocated using xmalloc; the caller is
21526 responsible for freeing it. */
21527
21528 static char *
21529 file_file_name (int file, struct line_header *lh)
21530 {
21531 /* Is the file number a valid index into the line header's file name
21532 table? Remember that file numbers start with one, not zero. */
21533 if (1 <= file && file <= lh->file_names.size ())
21534 {
21535 const file_entry &fe = lh->file_names[file - 1];
21536
21537 if (!IS_ABSOLUTE_PATH (fe.name))
21538 {
21539 const char *dir = fe.include_dir (lh);
21540 if (dir != NULL)
21541 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
21542 }
21543 return xstrdup (fe.name);
21544 }
21545 else
21546 {
21547 /* The compiler produced a bogus file number. We can at least
21548 record the macro definitions made in the file, even if we
21549 won't be able to find the file by name. */
21550 char fake_name[80];
21551
21552 xsnprintf (fake_name, sizeof (fake_name),
21553 "<bad macro file number %d>", file);
21554
21555 complaint (&symfile_complaints,
21556 _("bad file number in macro information (%d)"),
21557 file);
21558
21559 return xstrdup (fake_name);
21560 }
21561 }
21562
21563 /* Return the full name of file number I in *LH's file name table.
21564 Use COMP_DIR as the name of the current directory of the
21565 compilation. The result is allocated using xmalloc; the caller is
21566 responsible for freeing it. */
21567 static char *
21568 file_full_name (int file, struct line_header *lh, const char *comp_dir)
21569 {
21570 /* Is the file number a valid index into the line header's file name
21571 table? Remember that file numbers start with one, not zero. */
21572 if (1 <= file && file <= lh->file_names.size ())
21573 {
21574 char *relative = file_file_name (file, lh);
21575
21576 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
21577 return relative;
21578 return reconcat (relative, comp_dir, SLASH_STRING,
21579 relative, (char *) NULL);
21580 }
21581 else
21582 return file_file_name (file, lh);
21583 }
21584
21585
21586 static struct macro_source_file *
21587 macro_start_file (int file, int line,
21588 struct macro_source_file *current_file,
21589 struct line_header *lh)
21590 {
21591 /* File name relative to the compilation directory of this source file. */
21592 char *file_name = file_file_name (file, lh);
21593
21594 if (! current_file)
21595 {
21596 /* Note: We don't create a macro table for this compilation unit
21597 at all until we actually get a filename. */
21598 struct macro_table *macro_table = get_macro_table ();
21599
21600 /* If we have no current file, then this must be the start_file
21601 directive for the compilation unit's main source file. */
21602 current_file = macro_set_main (macro_table, file_name);
21603 macro_define_special (macro_table);
21604 }
21605 else
21606 current_file = macro_include (current_file, line, file_name);
21607
21608 xfree (file_name);
21609
21610 return current_file;
21611 }
21612
21613
21614 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
21615 followed by a null byte. */
21616 static char *
21617 copy_string (const char *buf, int len)
21618 {
21619 char *s = (char *) xmalloc (len + 1);
21620
21621 memcpy (s, buf, len);
21622 s[len] = '\0';
21623 return s;
21624 }
21625
21626
21627 static const char *
21628 consume_improper_spaces (const char *p, const char *body)
21629 {
21630 if (*p == ' ')
21631 {
21632 complaint (&symfile_complaints,
21633 _("macro definition contains spaces "
21634 "in formal argument list:\n`%s'"),
21635 body);
21636
21637 while (*p == ' ')
21638 p++;
21639 }
21640
21641 return p;
21642 }
21643
21644
21645 static void
21646 parse_macro_definition (struct macro_source_file *file, int line,
21647 const char *body)
21648 {
21649 const char *p;
21650
21651 /* The body string takes one of two forms. For object-like macro
21652 definitions, it should be:
21653
21654 <macro name> " " <definition>
21655
21656 For function-like macro definitions, it should be:
21657
21658 <macro name> "() " <definition>
21659 or
21660 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
21661
21662 Spaces may appear only where explicitly indicated, and in the
21663 <definition>.
21664
21665 The Dwarf 2 spec says that an object-like macro's name is always
21666 followed by a space, but versions of GCC around March 2002 omit
21667 the space when the macro's definition is the empty string.
21668
21669 The Dwarf 2 spec says that there should be no spaces between the
21670 formal arguments in a function-like macro's formal argument list,
21671 but versions of GCC around March 2002 include spaces after the
21672 commas. */
21673
21674
21675 /* Find the extent of the macro name. The macro name is terminated
21676 by either a space or null character (for an object-like macro) or
21677 an opening paren (for a function-like macro). */
21678 for (p = body; *p; p++)
21679 if (*p == ' ' || *p == '(')
21680 break;
21681
21682 if (*p == ' ' || *p == '\0')
21683 {
21684 /* It's an object-like macro. */
21685 int name_len = p - body;
21686 char *name = copy_string (body, name_len);
21687 const char *replacement;
21688
21689 if (*p == ' ')
21690 replacement = body + name_len + 1;
21691 else
21692 {
21693 dwarf2_macro_malformed_definition_complaint (body);
21694 replacement = body + name_len;
21695 }
21696
21697 macro_define_object (file, line, name, replacement);
21698
21699 xfree (name);
21700 }
21701 else if (*p == '(')
21702 {
21703 /* It's a function-like macro. */
21704 char *name = copy_string (body, p - body);
21705 int argc = 0;
21706 int argv_size = 1;
21707 char **argv = XNEWVEC (char *, argv_size);
21708
21709 p++;
21710
21711 p = consume_improper_spaces (p, body);
21712
21713 /* Parse the formal argument list. */
21714 while (*p && *p != ')')
21715 {
21716 /* Find the extent of the current argument name. */
21717 const char *arg_start = p;
21718
21719 while (*p && *p != ',' && *p != ')' && *p != ' ')
21720 p++;
21721
21722 if (! *p || p == arg_start)
21723 dwarf2_macro_malformed_definition_complaint (body);
21724 else
21725 {
21726 /* Make sure argv has room for the new argument. */
21727 if (argc >= argv_size)
21728 {
21729 argv_size *= 2;
21730 argv = XRESIZEVEC (char *, argv, argv_size);
21731 }
21732
21733 argv[argc++] = copy_string (arg_start, p - arg_start);
21734 }
21735
21736 p = consume_improper_spaces (p, body);
21737
21738 /* Consume the comma, if present. */
21739 if (*p == ',')
21740 {
21741 p++;
21742
21743 p = consume_improper_spaces (p, body);
21744 }
21745 }
21746
21747 if (*p == ')')
21748 {
21749 p++;
21750
21751 if (*p == ' ')
21752 /* Perfectly formed definition, no complaints. */
21753 macro_define_function (file, line, name,
21754 argc, (const char **) argv,
21755 p + 1);
21756 else if (*p == '\0')
21757 {
21758 /* Complain, but do define it. */
21759 dwarf2_macro_malformed_definition_complaint (body);
21760 macro_define_function (file, line, name,
21761 argc, (const char **) argv,
21762 p);
21763 }
21764 else
21765 /* Just complain. */
21766 dwarf2_macro_malformed_definition_complaint (body);
21767 }
21768 else
21769 /* Just complain. */
21770 dwarf2_macro_malformed_definition_complaint (body);
21771
21772 xfree (name);
21773 {
21774 int i;
21775
21776 for (i = 0; i < argc; i++)
21777 xfree (argv[i]);
21778 }
21779 xfree (argv);
21780 }
21781 else
21782 dwarf2_macro_malformed_definition_complaint (body);
21783 }
21784
21785 /* Skip some bytes from BYTES according to the form given in FORM.
21786 Returns the new pointer. */
21787
21788 static const gdb_byte *
21789 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
21790 enum dwarf_form form,
21791 unsigned int offset_size,
21792 struct dwarf2_section_info *section)
21793 {
21794 unsigned int bytes_read;
21795
21796 switch (form)
21797 {
21798 case DW_FORM_data1:
21799 case DW_FORM_flag:
21800 ++bytes;
21801 break;
21802
21803 case DW_FORM_data2:
21804 bytes += 2;
21805 break;
21806
21807 case DW_FORM_data4:
21808 bytes += 4;
21809 break;
21810
21811 case DW_FORM_data8:
21812 bytes += 8;
21813 break;
21814
21815 case DW_FORM_data16:
21816 bytes += 16;
21817 break;
21818
21819 case DW_FORM_string:
21820 read_direct_string (abfd, bytes, &bytes_read);
21821 bytes += bytes_read;
21822 break;
21823
21824 case DW_FORM_sec_offset:
21825 case DW_FORM_strp:
21826 case DW_FORM_GNU_strp_alt:
21827 bytes += offset_size;
21828 break;
21829
21830 case DW_FORM_block:
21831 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21832 bytes += bytes_read;
21833 break;
21834
21835 case DW_FORM_block1:
21836 bytes += 1 + read_1_byte (abfd, bytes);
21837 break;
21838 case DW_FORM_block2:
21839 bytes += 2 + read_2_bytes (abfd, bytes);
21840 break;
21841 case DW_FORM_block4:
21842 bytes += 4 + read_4_bytes (abfd, bytes);
21843 break;
21844
21845 case DW_FORM_sdata:
21846 case DW_FORM_udata:
21847 case DW_FORM_GNU_addr_index:
21848 case DW_FORM_GNU_str_index:
21849 bytes = gdb_skip_leb128 (bytes, buffer_end);
21850 if (bytes == NULL)
21851 {
21852 dwarf2_section_buffer_overflow_complaint (section);
21853 return NULL;
21854 }
21855 break;
21856
21857 default:
21858 {
21859 complain:
21860 complaint (&symfile_complaints,
21861 _("invalid form 0x%x in `%s'"),
21862 form, get_section_name (section));
21863 return NULL;
21864 }
21865 }
21866
21867 return bytes;
21868 }
21869
21870 /* A helper for dwarf_decode_macros that handles skipping an unknown
21871 opcode. Returns an updated pointer to the macro data buffer; or,
21872 on error, issues a complaint and returns NULL. */
21873
21874 static const gdb_byte *
21875 skip_unknown_opcode (unsigned int opcode,
21876 const gdb_byte **opcode_definitions,
21877 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21878 bfd *abfd,
21879 unsigned int offset_size,
21880 struct dwarf2_section_info *section)
21881 {
21882 unsigned int bytes_read, i;
21883 unsigned long arg;
21884 const gdb_byte *defn;
21885
21886 if (opcode_definitions[opcode] == NULL)
21887 {
21888 complaint (&symfile_complaints,
21889 _("unrecognized DW_MACFINO opcode 0x%x"),
21890 opcode);
21891 return NULL;
21892 }
21893
21894 defn = opcode_definitions[opcode];
21895 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21896 defn += bytes_read;
21897
21898 for (i = 0; i < arg; ++i)
21899 {
21900 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21901 (enum dwarf_form) defn[i], offset_size,
21902 section);
21903 if (mac_ptr == NULL)
21904 {
21905 /* skip_form_bytes already issued the complaint. */
21906 return NULL;
21907 }
21908 }
21909
21910 return mac_ptr;
21911 }
21912
21913 /* A helper function which parses the header of a macro section.
21914 If the macro section is the extended (for now called "GNU") type,
21915 then this updates *OFFSET_SIZE. Returns a pointer to just after
21916 the header, or issues a complaint and returns NULL on error. */
21917
21918 static const gdb_byte *
21919 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
21920 bfd *abfd,
21921 const gdb_byte *mac_ptr,
21922 unsigned int *offset_size,
21923 int section_is_gnu)
21924 {
21925 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
21926
21927 if (section_is_gnu)
21928 {
21929 unsigned int version, flags;
21930
21931 version = read_2_bytes (abfd, mac_ptr);
21932 if (version != 4 && version != 5)
21933 {
21934 complaint (&symfile_complaints,
21935 _("unrecognized version `%d' in .debug_macro section"),
21936 version);
21937 return NULL;
21938 }
21939 mac_ptr += 2;
21940
21941 flags = read_1_byte (abfd, mac_ptr);
21942 ++mac_ptr;
21943 *offset_size = (flags & 1) ? 8 : 4;
21944
21945 if ((flags & 2) != 0)
21946 /* We don't need the line table offset. */
21947 mac_ptr += *offset_size;
21948
21949 /* Vendor opcode descriptions. */
21950 if ((flags & 4) != 0)
21951 {
21952 unsigned int i, count;
21953
21954 count = read_1_byte (abfd, mac_ptr);
21955 ++mac_ptr;
21956 for (i = 0; i < count; ++i)
21957 {
21958 unsigned int opcode, bytes_read;
21959 unsigned long arg;
21960
21961 opcode = read_1_byte (abfd, mac_ptr);
21962 ++mac_ptr;
21963 opcode_definitions[opcode] = mac_ptr;
21964 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21965 mac_ptr += bytes_read;
21966 mac_ptr += arg;
21967 }
21968 }
21969 }
21970
21971 return mac_ptr;
21972 }
21973
21974 /* A helper for dwarf_decode_macros that handles the GNU extensions,
21975 including DW_MACRO_import. */
21976
21977 static void
21978 dwarf_decode_macro_bytes (bfd *abfd,
21979 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21980 struct macro_source_file *current_file,
21981 struct line_header *lh,
21982 struct dwarf2_section_info *section,
21983 int section_is_gnu, int section_is_dwz,
21984 unsigned int offset_size,
21985 htab_t include_hash)
21986 {
21987 struct objfile *objfile = dwarf2_per_objfile->objfile;
21988 enum dwarf_macro_record_type macinfo_type;
21989 int at_commandline;
21990 const gdb_byte *opcode_definitions[256];
21991
21992 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21993 &offset_size, section_is_gnu);
21994 if (mac_ptr == NULL)
21995 {
21996 /* We already issued a complaint. */
21997 return;
21998 }
21999
22000 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
22001 GDB is still reading the definitions from command line. First
22002 DW_MACINFO_start_file will need to be ignored as it was already executed
22003 to create CURRENT_FILE for the main source holding also the command line
22004 definitions. On first met DW_MACINFO_start_file this flag is reset to
22005 normally execute all the remaining DW_MACINFO_start_file macinfos. */
22006
22007 at_commandline = 1;
22008
22009 do
22010 {
22011 /* Do we at least have room for a macinfo type byte? */
22012 if (mac_ptr >= mac_end)
22013 {
22014 dwarf2_section_buffer_overflow_complaint (section);
22015 break;
22016 }
22017
22018 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
22019 mac_ptr++;
22020
22021 /* Note that we rely on the fact that the corresponding GNU and
22022 DWARF constants are the same. */
22023 switch (macinfo_type)
22024 {
22025 /* A zero macinfo type indicates the end of the macro
22026 information. */
22027 case 0:
22028 break;
22029
22030 case DW_MACRO_define:
22031 case DW_MACRO_undef:
22032 case DW_MACRO_define_strp:
22033 case DW_MACRO_undef_strp:
22034 case DW_MACRO_define_sup:
22035 case DW_MACRO_undef_sup:
22036 {
22037 unsigned int bytes_read;
22038 int line;
22039 const char *body;
22040 int is_define;
22041
22042 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22043 mac_ptr += bytes_read;
22044
22045 if (macinfo_type == DW_MACRO_define
22046 || macinfo_type == DW_MACRO_undef)
22047 {
22048 body = read_direct_string (abfd, mac_ptr, &bytes_read);
22049 mac_ptr += bytes_read;
22050 }
22051 else
22052 {
22053 LONGEST str_offset;
22054
22055 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
22056 mac_ptr += offset_size;
22057
22058 if (macinfo_type == DW_MACRO_define_sup
22059 || macinfo_type == DW_MACRO_undef_sup
22060 || section_is_dwz)
22061 {
22062 struct dwz_file *dwz = dwarf2_get_dwz_file ();
22063
22064 body = read_indirect_string_from_dwz (dwz, str_offset);
22065 }
22066 else
22067 body = read_indirect_string_at_offset (abfd, str_offset);
22068 }
22069
22070 is_define = (macinfo_type == DW_MACRO_define
22071 || macinfo_type == DW_MACRO_define_strp
22072 || macinfo_type == DW_MACRO_define_sup);
22073 if (! current_file)
22074 {
22075 /* DWARF violation as no main source is present. */
22076 complaint (&symfile_complaints,
22077 _("debug info with no main source gives macro %s "
22078 "on line %d: %s"),
22079 is_define ? _("definition") : _("undefinition"),
22080 line, body);
22081 break;
22082 }
22083 if ((line == 0 && !at_commandline)
22084 || (line != 0 && at_commandline))
22085 complaint (&symfile_complaints,
22086 _("debug info gives %s macro %s with %s line %d: %s"),
22087 at_commandline ? _("command-line") : _("in-file"),
22088 is_define ? _("definition") : _("undefinition"),
22089 line == 0 ? _("zero") : _("non-zero"), line, body);
22090
22091 if (is_define)
22092 parse_macro_definition (current_file, line, body);
22093 else
22094 {
22095 gdb_assert (macinfo_type == DW_MACRO_undef
22096 || macinfo_type == DW_MACRO_undef_strp
22097 || macinfo_type == DW_MACRO_undef_sup);
22098 macro_undef (current_file, line, body);
22099 }
22100 }
22101 break;
22102
22103 case DW_MACRO_start_file:
22104 {
22105 unsigned int bytes_read;
22106 int line, file;
22107
22108 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22109 mac_ptr += bytes_read;
22110 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22111 mac_ptr += bytes_read;
22112
22113 if ((line == 0 && !at_commandline)
22114 || (line != 0 && at_commandline))
22115 complaint (&symfile_complaints,
22116 _("debug info gives source %d included "
22117 "from %s at %s line %d"),
22118 file, at_commandline ? _("command-line") : _("file"),
22119 line == 0 ? _("zero") : _("non-zero"), line);
22120
22121 if (at_commandline)
22122 {
22123 /* This DW_MACRO_start_file was executed in the
22124 pass one. */
22125 at_commandline = 0;
22126 }
22127 else
22128 current_file = macro_start_file (file, line, current_file, lh);
22129 }
22130 break;
22131
22132 case DW_MACRO_end_file:
22133 if (! current_file)
22134 complaint (&symfile_complaints,
22135 _("macro debug info has an unmatched "
22136 "`close_file' directive"));
22137 else
22138 {
22139 current_file = current_file->included_by;
22140 if (! current_file)
22141 {
22142 enum dwarf_macro_record_type next_type;
22143
22144 /* GCC circa March 2002 doesn't produce the zero
22145 type byte marking the end of the compilation
22146 unit. Complain if it's not there, but exit no
22147 matter what. */
22148
22149 /* Do we at least have room for a macinfo type byte? */
22150 if (mac_ptr >= mac_end)
22151 {
22152 dwarf2_section_buffer_overflow_complaint (section);
22153 return;
22154 }
22155
22156 /* We don't increment mac_ptr here, so this is just
22157 a look-ahead. */
22158 next_type
22159 = (enum dwarf_macro_record_type) read_1_byte (abfd,
22160 mac_ptr);
22161 if (next_type != 0)
22162 complaint (&symfile_complaints,
22163 _("no terminating 0-type entry for "
22164 "macros in `.debug_macinfo' section"));
22165
22166 return;
22167 }
22168 }
22169 break;
22170
22171 case DW_MACRO_import:
22172 case DW_MACRO_import_sup:
22173 {
22174 LONGEST offset;
22175 void **slot;
22176 bfd *include_bfd = abfd;
22177 struct dwarf2_section_info *include_section = section;
22178 const gdb_byte *include_mac_end = mac_end;
22179 int is_dwz = section_is_dwz;
22180 const gdb_byte *new_mac_ptr;
22181
22182 offset = read_offset_1 (abfd, mac_ptr, offset_size);
22183 mac_ptr += offset_size;
22184
22185 if (macinfo_type == DW_MACRO_import_sup)
22186 {
22187 struct dwz_file *dwz = dwarf2_get_dwz_file ();
22188
22189 dwarf2_read_section (objfile, &dwz->macro);
22190
22191 include_section = &dwz->macro;
22192 include_bfd = get_section_bfd_owner (include_section);
22193 include_mac_end = dwz->macro.buffer + dwz->macro.size;
22194 is_dwz = 1;
22195 }
22196
22197 new_mac_ptr = include_section->buffer + offset;
22198 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
22199
22200 if (*slot != NULL)
22201 {
22202 /* This has actually happened; see
22203 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
22204 complaint (&symfile_complaints,
22205 _("recursive DW_MACRO_import in "
22206 ".debug_macro section"));
22207 }
22208 else
22209 {
22210 *slot = (void *) new_mac_ptr;
22211
22212 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
22213 include_mac_end, current_file, lh,
22214 section, section_is_gnu, is_dwz,
22215 offset_size, include_hash);
22216
22217 htab_remove_elt (include_hash, (void *) new_mac_ptr);
22218 }
22219 }
22220 break;
22221
22222 case DW_MACINFO_vendor_ext:
22223 if (!section_is_gnu)
22224 {
22225 unsigned int bytes_read;
22226
22227 /* This reads the constant, but since we don't recognize
22228 any vendor extensions, we ignore it. */
22229 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22230 mac_ptr += bytes_read;
22231 read_direct_string (abfd, mac_ptr, &bytes_read);
22232 mac_ptr += bytes_read;
22233
22234 /* We don't recognize any vendor extensions. */
22235 break;
22236 }
22237 /* FALLTHROUGH */
22238
22239 default:
22240 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
22241 mac_ptr, mac_end, abfd, offset_size,
22242 section);
22243 if (mac_ptr == NULL)
22244 return;
22245 break;
22246 }
22247 } while (macinfo_type != 0);
22248 }
22249
22250 static void
22251 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
22252 int section_is_gnu)
22253 {
22254 struct objfile *objfile = dwarf2_per_objfile->objfile;
22255 struct line_header *lh = cu->line_header;
22256 bfd *abfd;
22257 const gdb_byte *mac_ptr, *mac_end;
22258 struct macro_source_file *current_file = 0;
22259 enum dwarf_macro_record_type macinfo_type;
22260 unsigned int offset_size = cu->header.offset_size;
22261 const gdb_byte *opcode_definitions[256];
22262 struct cleanup *cleanup;
22263 void **slot;
22264 struct dwarf2_section_info *section;
22265 const char *section_name;
22266
22267 if (cu->dwo_unit != NULL)
22268 {
22269 if (section_is_gnu)
22270 {
22271 section = &cu->dwo_unit->dwo_file->sections.macro;
22272 section_name = ".debug_macro.dwo";
22273 }
22274 else
22275 {
22276 section = &cu->dwo_unit->dwo_file->sections.macinfo;
22277 section_name = ".debug_macinfo.dwo";
22278 }
22279 }
22280 else
22281 {
22282 if (section_is_gnu)
22283 {
22284 section = &dwarf2_per_objfile->macro;
22285 section_name = ".debug_macro";
22286 }
22287 else
22288 {
22289 section = &dwarf2_per_objfile->macinfo;
22290 section_name = ".debug_macinfo";
22291 }
22292 }
22293
22294 dwarf2_read_section (objfile, section);
22295 if (section->buffer == NULL)
22296 {
22297 complaint (&symfile_complaints, _("missing %s section"), section_name);
22298 return;
22299 }
22300 abfd = get_section_bfd_owner (section);
22301
22302 /* First pass: Find the name of the base filename.
22303 This filename is needed in order to process all macros whose definition
22304 (or undefinition) comes from the command line. These macros are defined
22305 before the first DW_MACINFO_start_file entry, and yet still need to be
22306 associated to the base file.
22307
22308 To determine the base file name, we scan the macro definitions until we
22309 reach the first DW_MACINFO_start_file entry. We then initialize
22310 CURRENT_FILE accordingly so that any macro definition found before the
22311 first DW_MACINFO_start_file can still be associated to the base file. */
22312
22313 mac_ptr = section->buffer + offset;
22314 mac_end = section->buffer + section->size;
22315
22316 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
22317 &offset_size, section_is_gnu);
22318 if (mac_ptr == NULL)
22319 {
22320 /* We already issued a complaint. */
22321 return;
22322 }
22323
22324 do
22325 {
22326 /* Do we at least have room for a macinfo type byte? */
22327 if (mac_ptr >= mac_end)
22328 {
22329 /* Complaint is printed during the second pass as GDB will probably
22330 stop the first pass earlier upon finding
22331 DW_MACINFO_start_file. */
22332 break;
22333 }
22334
22335 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
22336 mac_ptr++;
22337
22338 /* Note that we rely on the fact that the corresponding GNU and
22339 DWARF constants are the same. */
22340 switch (macinfo_type)
22341 {
22342 /* A zero macinfo type indicates the end of the macro
22343 information. */
22344 case 0:
22345 break;
22346
22347 case DW_MACRO_define:
22348 case DW_MACRO_undef:
22349 /* Only skip the data by MAC_PTR. */
22350 {
22351 unsigned int bytes_read;
22352
22353 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22354 mac_ptr += bytes_read;
22355 read_direct_string (abfd, mac_ptr, &bytes_read);
22356 mac_ptr += bytes_read;
22357 }
22358 break;
22359
22360 case DW_MACRO_start_file:
22361 {
22362 unsigned int bytes_read;
22363 int line, file;
22364
22365 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22366 mac_ptr += bytes_read;
22367 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22368 mac_ptr += bytes_read;
22369
22370 current_file = macro_start_file (file, line, current_file, lh);
22371 }
22372 break;
22373
22374 case DW_MACRO_end_file:
22375 /* No data to skip by MAC_PTR. */
22376 break;
22377
22378 case DW_MACRO_define_strp:
22379 case DW_MACRO_undef_strp:
22380 case DW_MACRO_define_sup:
22381 case DW_MACRO_undef_sup:
22382 {
22383 unsigned int bytes_read;
22384
22385 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22386 mac_ptr += bytes_read;
22387 mac_ptr += offset_size;
22388 }
22389 break;
22390
22391 case DW_MACRO_import:
22392 case DW_MACRO_import_sup:
22393 /* Note that, according to the spec, a transparent include
22394 chain cannot call DW_MACRO_start_file. So, we can just
22395 skip this opcode. */
22396 mac_ptr += offset_size;
22397 break;
22398
22399 case DW_MACINFO_vendor_ext:
22400 /* Only skip the data by MAC_PTR. */
22401 if (!section_is_gnu)
22402 {
22403 unsigned int bytes_read;
22404
22405 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22406 mac_ptr += bytes_read;
22407 read_direct_string (abfd, mac_ptr, &bytes_read);
22408 mac_ptr += bytes_read;
22409 }
22410 /* FALLTHROUGH */
22411
22412 default:
22413 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
22414 mac_ptr, mac_end, abfd, offset_size,
22415 section);
22416 if (mac_ptr == NULL)
22417 return;
22418 break;
22419 }
22420 } while (macinfo_type != 0 && current_file == NULL);
22421
22422 /* Second pass: Process all entries.
22423
22424 Use the AT_COMMAND_LINE flag to determine whether we are still processing
22425 command-line macro definitions/undefinitions. This flag is unset when we
22426 reach the first DW_MACINFO_start_file entry. */
22427
22428 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
22429 htab_eq_pointer,
22430 NULL, xcalloc, xfree));
22431 mac_ptr = section->buffer + offset;
22432 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
22433 *slot = (void *) mac_ptr;
22434 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
22435 current_file, lh, section,
22436 section_is_gnu, 0, offset_size,
22437 include_hash.get ());
22438 }
22439
22440 /* Check if the attribute's form is a DW_FORM_block*
22441 if so return true else false. */
22442
22443 static int
22444 attr_form_is_block (const struct attribute *attr)
22445 {
22446 return (attr == NULL ? 0 :
22447 attr->form == DW_FORM_block1
22448 || attr->form == DW_FORM_block2
22449 || attr->form == DW_FORM_block4
22450 || attr->form == DW_FORM_block
22451 || attr->form == DW_FORM_exprloc);
22452 }
22453
22454 /* Return non-zero if ATTR's value is a section offset --- classes
22455 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
22456 You may use DW_UNSND (attr) to retrieve such offsets.
22457
22458 Section 7.5.4, "Attribute Encodings", explains that no attribute
22459 may have a value that belongs to more than one of these classes; it
22460 would be ambiguous if we did, because we use the same forms for all
22461 of them. */
22462
22463 static int
22464 attr_form_is_section_offset (const struct attribute *attr)
22465 {
22466 return (attr->form == DW_FORM_data4
22467 || attr->form == DW_FORM_data8
22468 || attr->form == DW_FORM_sec_offset);
22469 }
22470
22471 /* Return non-zero if ATTR's value falls in the 'constant' class, or
22472 zero otherwise. When this function returns true, you can apply
22473 dwarf2_get_attr_constant_value to it.
22474
22475 However, note that for some attributes you must check
22476 attr_form_is_section_offset before using this test. DW_FORM_data4
22477 and DW_FORM_data8 are members of both the constant class, and of
22478 the classes that contain offsets into other debug sections
22479 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
22480 that, if an attribute's can be either a constant or one of the
22481 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
22482 taken as section offsets, not constants.
22483
22484 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
22485 cannot handle that. */
22486
22487 static int
22488 attr_form_is_constant (const struct attribute *attr)
22489 {
22490 switch (attr->form)
22491 {
22492 case DW_FORM_sdata:
22493 case DW_FORM_udata:
22494 case DW_FORM_data1:
22495 case DW_FORM_data2:
22496 case DW_FORM_data4:
22497 case DW_FORM_data8:
22498 return 1;
22499 default:
22500 return 0;
22501 }
22502 }
22503
22504
22505 /* DW_ADDR is always stored already as sect_offset; despite for the forms
22506 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
22507
22508 static int
22509 attr_form_is_ref (const struct attribute *attr)
22510 {
22511 switch (attr->form)
22512 {
22513 case DW_FORM_ref_addr:
22514 case DW_FORM_ref1:
22515 case DW_FORM_ref2:
22516 case DW_FORM_ref4:
22517 case DW_FORM_ref8:
22518 case DW_FORM_ref_udata:
22519 case DW_FORM_GNU_ref_alt:
22520 return 1;
22521 default:
22522 return 0;
22523 }
22524 }
22525
22526 /* Return the .debug_loc section to use for CU.
22527 For DWO files use .debug_loc.dwo. */
22528
22529 static struct dwarf2_section_info *
22530 cu_debug_loc_section (struct dwarf2_cu *cu)
22531 {
22532 if (cu->dwo_unit)
22533 {
22534 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
22535
22536 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
22537 }
22538 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
22539 : &dwarf2_per_objfile->loc);
22540 }
22541
22542 /* A helper function that fills in a dwarf2_loclist_baton. */
22543
22544 static void
22545 fill_in_loclist_baton (struct dwarf2_cu *cu,
22546 struct dwarf2_loclist_baton *baton,
22547 const struct attribute *attr)
22548 {
22549 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
22550
22551 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
22552
22553 baton->per_cu = cu->per_cu;
22554 gdb_assert (baton->per_cu);
22555 /* We don't know how long the location list is, but make sure we
22556 don't run off the edge of the section. */
22557 baton->size = section->size - DW_UNSND (attr);
22558 baton->data = section->buffer + DW_UNSND (attr);
22559 baton->base_address = cu->base_address;
22560 baton->from_dwo = cu->dwo_unit != NULL;
22561 }
22562
22563 static void
22564 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
22565 struct dwarf2_cu *cu, int is_block)
22566 {
22567 struct objfile *objfile = dwarf2_per_objfile->objfile;
22568 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
22569
22570 if (attr_form_is_section_offset (attr)
22571 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
22572 the section. If so, fall through to the complaint in the
22573 other branch. */
22574 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
22575 {
22576 struct dwarf2_loclist_baton *baton;
22577
22578 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
22579
22580 fill_in_loclist_baton (cu, baton, attr);
22581
22582 if (cu->base_known == 0)
22583 complaint (&symfile_complaints,
22584 _("Location list used without "
22585 "specifying the CU base address."));
22586
22587 SYMBOL_ACLASS_INDEX (sym) = (is_block
22588 ? dwarf2_loclist_block_index
22589 : dwarf2_loclist_index);
22590 SYMBOL_LOCATION_BATON (sym) = baton;
22591 }
22592 else
22593 {
22594 struct dwarf2_locexpr_baton *baton;
22595
22596 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
22597 baton->per_cu = cu->per_cu;
22598 gdb_assert (baton->per_cu);
22599
22600 if (attr_form_is_block (attr))
22601 {
22602 /* Note that we're just copying the block's data pointer
22603 here, not the actual data. We're still pointing into the
22604 info_buffer for SYM's objfile; right now we never release
22605 that buffer, but when we do clean up properly this may
22606 need to change. */
22607 baton->size = DW_BLOCK (attr)->size;
22608 baton->data = DW_BLOCK (attr)->data;
22609 }
22610 else
22611 {
22612 dwarf2_invalid_attrib_class_complaint ("location description",
22613 SYMBOL_NATURAL_NAME (sym));
22614 baton->size = 0;
22615 }
22616
22617 SYMBOL_ACLASS_INDEX (sym) = (is_block
22618 ? dwarf2_locexpr_block_index
22619 : dwarf2_locexpr_index);
22620 SYMBOL_LOCATION_BATON (sym) = baton;
22621 }
22622 }
22623
22624 /* Return the OBJFILE associated with the compilation unit CU. If CU
22625 came from a separate debuginfo file, then the master objfile is
22626 returned. */
22627
22628 struct objfile *
22629 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
22630 {
22631 struct objfile *objfile = per_cu->objfile;
22632
22633 /* Return the master objfile, so that we can report and look up the
22634 correct file containing this variable. */
22635 if (objfile->separate_debug_objfile_backlink)
22636 objfile = objfile->separate_debug_objfile_backlink;
22637
22638 return objfile;
22639 }
22640
22641 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
22642 (CU_HEADERP is unused in such case) or prepare a temporary copy at
22643 CU_HEADERP first. */
22644
22645 static const struct comp_unit_head *
22646 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
22647 struct dwarf2_per_cu_data *per_cu)
22648 {
22649 const gdb_byte *info_ptr;
22650
22651 if (per_cu->cu)
22652 return &per_cu->cu->header;
22653
22654 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
22655
22656 memset (cu_headerp, 0, sizeof (*cu_headerp));
22657 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
22658 rcuh_kind::COMPILE);
22659
22660 return cu_headerp;
22661 }
22662
22663 /* Return the address size given in the compilation unit header for CU. */
22664
22665 int
22666 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
22667 {
22668 struct comp_unit_head cu_header_local;
22669 const struct comp_unit_head *cu_headerp;
22670
22671 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22672
22673 return cu_headerp->addr_size;
22674 }
22675
22676 /* Return the offset size given in the compilation unit header for CU. */
22677
22678 int
22679 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
22680 {
22681 struct comp_unit_head cu_header_local;
22682 const struct comp_unit_head *cu_headerp;
22683
22684 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22685
22686 return cu_headerp->offset_size;
22687 }
22688
22689 /* See its dwarf2loc.h declaration. */
22690
22691 int
22692 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
22693 {
22694 struct comp_unit_head cu_header_local;
22695 const struct comp_unit_head *cu_headerp;
22696
22697 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22698
22699 if (cu_headerp->version == 2)
22700 return cu_headerp->addr_size;
22701 else
22702 return cu_headerp->offset_size;
22703 }
22704
22705 /* Return the text offset of the CU. The returned offset comes from
22706 this CU's objfile. If this objfile came from a separate debuginfo
22707 file, then the offset may be different from the corresponding
22708 offset in the parent objfile. */
22709
22710 CORE_ADDR
22711 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
22712 {
22713 struct objfile *objfile = per_cu->objfile;
22714
22715 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22716 }
22717
22718 /* Return DWARF version number of PER_CU. */
22719
22720 short
22721 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
22722 {
22723 return per_cu->dwarf_version;
22724 }
22725
22726 /* Locate the .debug_info compilation unit from CU's objfile which contains
22727 the DIE at OFFSET. Raises an error on failure. */
22728
22729 static struct dwarf2_per_cu_data *
22730 dwarf2_find_containing_comp_unit (sect_offset sect_off,
22731 unsigned int offset_in_dwz,
22732 struct objfile *objfile)
22733 {
22734 struct dwarf2_per_cu_data *this_cu;
22735 int low, high;
22736 const sect_offset *cu_off;
22737
22738 low = 0;
22739 high = dwarf2_per_objfile->n_comp_units - 1;
22740 while (high > low)
22741 {
22742 struct dwarf2_per_cu_data *mid_cu;
22743 int mid = low + (high - low) / 2;
22744
22745 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
22746 cu_off = &mid_cu->sect_off;
22747 if (mid_cu->is_dwz > offset_in_dwz
22748 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
22749 high = mid;
22750 else
22751 low = mid + 1;
22752 }
22753 gdb_assert (low == high);
22754 this_cu = dwarf2_per_objfile->all_comp_units[low];
22755 cu_off = &this_cu->sect_off;
22756 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
22757 {
22758 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
22759 error (_("Dwarf Error: could not find partial DIE containing "
22760 "offset 0x%x [in module %s]"),
22761 to_underlying (sect_off), bfd_get_filename (objfile->obfd));
22762
22763 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
22764 <= sect_off);
22765 return dwarf2_per_objfile->all_comp_units[low-1];
22766 }
22767 else
22768 {
22769 this_cu = dwarf2_per_objfile->all_comp_units[low];
22770 if (low == dwarf2_per_objfile->n_comp_units - 1
22771 && sect_off >= this_cu->sect_off + this_cu->length)
22772 error (_("invalid dwarf2 offset %u"), to_underlying (sect_off));
22773 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
22774 return this_cu;
22775 }
22776 }
22777
22778 /* Initialize dwarf2_cu CU, owned by PER_CU. */
22779
22780 static void
22781 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
22782 {
22783 memset (cu, 0, sizeof (*cu));
22784 per_cu->cu = cu;
22785 cu->per_cu = per_cu;
22786 cu->objfile = per_cu->objfile;
22787 obstack_init (&cu->comp_unit_obstack);
22788 }
22789
22790 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22791
22792 static void
22793 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22794 enum language pretend_language)
22795 {
22796 struct attribute *attr;
22797
22798 /* Set the language we're debugging. */
22799 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22800 if (attr)
22801 set_cu_language (DW_UNSND (attr), cu);
22802 else
22803 {
22804 cu->language = pretend_language;
22805 cu->language_defn = language_def (cu->language);
22806 }
22807
22808 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
22809 }
22810
22811 /* Release one cached compilation unit, CU. We unlink it from the tree
22812 of compilation units, but we don't remove it from the read_in_chain;
22813 the caller is responsible for that.
22814 NOTE: DATA is a void * because this function is also used as a
22815 cleanup routine. */
22816
22817 static void
22818 free_heap_comp_unit (void *data)
22819 {
22820 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22821
22822 gdb_assert (cu->per_cu != NULL);
22823 cu->per_cu->cu = NULL;
22824 cu->per_cu = NULL;
22825
22826 obstack_free (&cu->comp_unit_obstack, NULL);
22827
22828 xfree (cu);
22829 }
22830
22831 /* This cleanup function is passed the address of a dwarf2_cu on the stack
22832 when we're finished with it. We can't free the pointer itself, but be
22833 sure to unlink it from the cache. Also release any associated storage. */
22834
22835 static void
22836 free_stack_comp_unit (void *data)
22837 {
22838 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22839
22840 gdb_assert (cu->per_cu != NULL);
22841 cu->per_cu->cu = NULL;
22842 cu->per_cu = NULL;
22843
22844 obstack_free (&cu->comp_unit_obstack, NULL);
22845 cu->partial_dies = NULL;
22846 }
22847
22848 /* Free all cached compilation units. */
22849
22850 static void
22851 free_cached_comp_units (void *data)
22852 {
22853 dwarf2_per_objfile->free_cached_comp_units ();
22854 }
22855
22856 /* Increase the age counter on each cached compilation unit, and free
22857 any that are too old. */
22858
22859 static void
22860 age_cached_comp_units (void)
22861 {
22862 struct dwarf2_per_cu_data *per_cu, **last_chain;
22863
22864 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22865 per_cu = dwarf2_per_objfile->read_in_chain;
22866 while (per_cu != NULL)
22867 {
22868 per_cu->cu->last_used ++;
22869 if (per_cu->cu->last_used <= dwarf_max_cache_age)
22870 dwarf2_mark (per_cu->cu);
22871 per_cu = per_cu->cu->read_in_chain;
22872 }
22873
22874 per_cu = dwarf2_per_objfile->read_in_chain;
22875 last_chain = &dwarf2_per_objfile->read_in_chain;
22876 while (per_cu != NULL)
22877 {
22878 struct dwarf2_per_cu_data *next_cu;
22879
22880 next_cu = per_cu->cu->read_in_chain;
22881
22882 if (!per_cu->cu->mark)
22883 {
22884 free_heap_comp_unit (per_cu->cu);
22885 *last_chain = next_cu;
22886 }
22887 else
22888 last_chain = &per_cu->cu->read_in_chain;
22889
22890 per_cu = next_cu;
22891 }
22892 }
22893
22894 /* Remove a single compilation unit from the cache. */
22895
22896 static void
22897 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
22898 {
22899 struct dwarf2_per_cu_data *per_cu, **last_chain;
22900
22901 per_cu = dwarf2_per_objfile->read_in_chain;
22902 last_chain = &dwarf2_per_objfile->read_in_chain;
22903 while (per_cu != NULL)
22904 {
22905 struct dwarf2_per_cu_data *next_cu;
22906
22907 next_cu = per_cu->cu->read_in_chain;
22908
22909 if (per_cu == target_per_cu)
22910 {
22911 free_heap_comp_unit (per_cu->cu);
22912 per_cu->cu = NULL;
22913 *last_chain = next_cu;
22914 break;
22915 }
22916 else
22917 last_chain = &per_cu->cu->read_in_chain;
22918
22919 per_cu = next_cu;
22920 }
22921 }
22922
22923 /* Release all extra memory associated with OBJFILE. */
22924
22925 void
22926 dwarf2_free_objfile (struct objfile *objfile)
22927 {
22928 dwarf2_per_objfile
22929 = (struct dwarf2_per_objfile *) objfile_data (objfile,
22930 dwarf2_objfile_data_key);
22931
22932 if (dwarf2_per_objfile == NULL)
22933 return;
22934
22935 dwarf2_per_objfile->~dwarf2_per_objfile ();
22936 }
22937
22938 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22939 We store these in a hash table separate from the DIEs, and preserve them
22940 when the DIEs are flushed out of cache.
22941
22942 The CU "per_cu" pointer is needed because offset alone is not enough to
22943 uniquely identify the type. A file may have multiple .debug_types sections,
22944 or the type may come from a DWO file. Furthermore, while it's more logical
22945 to use per_cu->section+offset, with Fission the section with the data is in
22946 the DWO file but we don't know that section at the point we need it.
22947 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22948 because we can enter the lookup routine, get_die_type_at_offset, from
22949 outside this file, and thus won't necessarily have PER_CU->cu.
22950 Fortunately, PER_CU is stable for the life of the objfile. */
22951
22952 struct dwarf2_per_cu_offset_and_type
22953 {
22954 const struct dwarf2_per_cu_data *per_cu;
22955 sect_offset sect_off;
22956 struct type *type;
22957 };
22958
22959 /* Hash function for a dwarf2_per_cu_offset_and_type. */
22960
22961 static hashval_t
22962 per_cu_offset_and_type_hash (const void *item)
22963 {
22964 const struct dwarf2_per_cu_offset_and_type *ofs
22965 = (const struct dwarf2_per_cu_offset_and_type *) item;
22966
22967 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
22968 }
22969
22970 /* Equality function for a dwarf2_per_cu_offset_and_type. */
22971
22972 static int
22973 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
22974 {
22975 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
22976 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
22977 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
22978 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
22979
22980 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22981 && ofs_lhs->sect_off == ofs_rhs->sect_off);
22982 }
22983
22984 /* Set the type associated with DIE to TYPE. Save it in CU's hash
22985 table if necessary. For convenience, return TYPE.
22986
22987 The DIEs reading must have careful ordering to:
22988 * Not cause infite loops trying to read in DIEs as a prerequisite for
22989 reading current DIE.
22990 * Not trying to dereference contents of still incompletely read in types
22991 while reading in other DIEs.
22992 * Enable referencing still incompletely read in types just by a pointer to
22993 the type without accessing its fields.
22994
22995 Therefore caller should follow these rules:
22996 * Try to fetch any prerequisite types we may need to build this DIE type
22997 before building the type and calling set_die_type.
22998 * After building type call set_die_type for current DIE as soon as
22999 possible before fetching more types to complete the current type.
23000 * Make the type as complete as possible before fetching more types. */
23001
23002 static struct type *
23003 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
23004 {
23005 struct dwarf2_per_cu_offset_and_type **slot, ofs;
23006 struct objfile *objfile = cu->objfile;
23007 struct attribute *attr;
23008 struct dynamic_prop prop;
23009
23010 /* For Ada types, make sure that the gnat-specific data is always
23011 initialized (if not already set). There are a few types where
23012 we should not be doing so, because the type-specific area is
23013 already used to hold some other piece of info (eg: TYPE_CODE_FLT
23014 where the type-specific area is used to store the floatformat).
23015 But this is not a problem, because the gnat-specific information
23016 is actually not needed for these types. */
23017 if (need_gnat_info (cu)
23018 && TYPE_CODE (type) != TYPE_CODE_FUNC
23019 && TYPE_CODE (type) != TYPE_CODE_FLT
23020 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
23021 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
23022 && TYPE_CODE (type) != TYPE_CODE_METHOD
23023 && !HAVE_GNAT_AUX_INFO (type))
23024 INIT_GNAT_SPECIFIC (type);
23025
23026 /* Read DW_AT_allocated and set in type. */
23027 attr = dwarf2_attr (die, DW_AT_allocated, cu);
23028 if (attr_form_is_block (attr))
23029 {
23030 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23031 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
23032 }
23033 else if (attr != NULL)
23034 {
23035 complaint (&symfile_complaints,
23036 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
23037 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23038 to_underlying (die->sect_off));
23039 }
23040
23041 /* Read DW_AT_associated and set in type. */
23042 attr = dwarf2_attr (die, DW_AT_associated, cu);
23043 if (attr_form_is_block (attr))
23044 {
23045 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23046 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
23047 }
23048 else if (attr != NULL)
23049 {
23050 complaint (&symfile_complaints,
23051 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
23052 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23053 to_underlying (die->sect_off));
23054 }
23055
23056 /* Read DW_AT_data_location and set in type. */
23057 attr = dwarf2_attr (die, DW_AT_data_location, cu);
23058 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23059 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
23060
23061 if (dwarf2_per_objfile->die_type_hash == NULL)
23062 {
23063 dwarf2_per_objfile->die_type_hash =
23064 htab_create_alloc_ex (127,
23065 per_cu_offset_and_type_hash,
23066 per_cu_offset_and_type_eq,
23067 NULL,
23068 &objfile->objfile_obstack,
23069 hashtab_obstack_allocate,
23070 dummy_obstack_deallocate);
23071 }
23072
23073 ofs.per_cu = cu->per_cu;
23074 ofs.sect_off = die->sect_off;
23075 ofs.type = type;
23076 slot = (struct dwarf2_per_cu_offset_and_type **)
23077 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
23078 if (*slot)
23079 complaint (&symfile_complaints,
23080 _("A problem internal to GDB: DIE 0x%x has type already set"),
23081 to_underlying (die->sect_off));
23082 *slot = XOBNEW (&objfile->objfile_obstack,
23083 struct dwarf2_per_cu_offset_and_type);
23084 **slot = ofs;
23085 return type;
23086 }
23087
23088 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
23089 or return NULL if the die does not have a saved type. */
23090
23091 static struct type *
23092 get_die_type_at_offset (sect_offset sect_off,
23093 struct dwarf2_per_cu_data *per_cu)
23094 {
23095 struct dwarf2_per_cu_offset_and_type *slot, ofs;
23096
23097 if (dwarf2_per_objfile->die_type_hash == NULL)
23098 return NULL;
23099
23100 ofs.per_cu = per_cu;
23101 ofs.sect_off = sect_off;
23102 slot = ((struct dwarf2_per_cu_offset_and_type *)
23103 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
23104 if (slot)
23105 return slot->type;
23106 else
23107 return NULL;
23108 }
23109
23110 /* Look up the type for DIE in CU in die_type_hash,
23111 or return NULL if DIE does not have a saved type. */
23112
23113 static struct type *
23114 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
23115 {
23116 return get_die_type_at_offset (die->sect_off, cu->per_cu);
23117 }
23118
23119 /* Add a dependence relationship from CU to REF_PER_CU. */
23120
23121 static void
23122 dwarf2_add_dependence (struct dwarf2_cu *cu,
23123 struct dwarf2_per_cu_data *ref_per_cu)
23124 {
23125 void **slot;
23126
23127 if (cu->dependencies == NULL)
23128 cu->dependencies
23129 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
23130 NULL, &cu->comp_unit_obstack,
23131 hashtab_obstack_allocate,
23132 dummy_obstack_deallocate);
23133
23134 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
23135 if (*slot == NULL)
23136 *slot = ref_per_cu;
23137 }
23138
23139 /* Subroutine of dwarf2_mark to pass to htab_traverse.
23140 Set the mark field in every compilation unit in the
23141 cache that we must keep because we are keeping CU. */
23142
23143 static int
23144 dwarf2_mark_helper (void **slot, void *data)
23145 {
23146 struct dwarf2_per_cu_data *per_cu;
23147
23148 per_cu = (struct dwarf2_per_cu_data *) *slot;
23149
23150 /* cu->dependencies references may not yet have been ever read if QUIT aborts
23151 reading of the chain. As such dependencies remain valid it is not much
23152 useful to track and undo them during QUIT cleanups. */
23153 if (per_cu->cu == NULL)
23154 return 1;
23155
23156 if (per_cu->cu->mark)
23157 return 1;
23158 per_cu->cu->mark = 1;
23159
23160 if (per_cu->cu->dependencies != NULL)
23161 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
23162
23163 return 1;
23164 }
23165
23166 /* Set the mark field in CU and in every other compilation unit in the
23167 cache that we must keep because we are keeping CU. */
23168
23169 static void
23170 dwarf2_mark (struct dwarf2_cu *cu)
23171 {
23172 if (cu->mark)
23173 return;
23174 cu->mark = 1;
23175 if (cu->dependencies != NULL)
23176 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
23177 }
23178
23179 static void
23180 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
23181 {
23182 while (per_cu)
23183 {
23184 per_cu->cu->mark = 0;
23185 per_cu = per_cu->cu->read_in_chain;
23186 }
23187 }
23188
23189 /* Trivial hash function for partial_die_info: the hash value of a DIE
23190 is its offset in .debug_info for this objfile. */
23191
23192 static hashval_t
23193 partial_die_hash (const void *item)
23194 {
23195 const struct partial_die_info *part_die
23196 = (const struct partial_die_info *) item;
23197
23198 return to_underlying (part_die->sect_off);
23199 }
23200
23201 /* Trivial comparison function for partial_die_info structures: two DIEs
23202 are equal if they have the same offset. */
23203
23204 static int
23205 partial_die_eq (const void *item_lhs, const void *item_rhs)
23206 {
23207 const struct partial_die_info *part_die_lhs
23208 = (const struct partial_die_info *) item_lhs;
23209 const struct partial_die_info *part_die_rhs
23210 = (const struct partial_die_info *) item_rhs;
23211
23212 return part_die_lhs->sect_off == part_die_rhs->sect_off;
23213 }
23214
23215 static struct cmd_list_element *set_dwarf_cmdlist;
23216 static struct cmd_list_element *show_dwarf_cmdlist;
23217
23218 static void
23219 set_dwarf_cmd (char *args, int from_tty)
23220 {
23221 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
23222 gdb_stdout);
23223 }
23224
23225 static void
23226 show_dwarf_cmd (char *args, int from_tty)
23227 {
23228 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
23229 }
23230
23231 /* Free data associated with OBJFILE, if necessary. */
23232
23233 static void
23234 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
23235 {
23236 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
23237 int ix;
23238
23239 /* Make sure we don't accidentally use dwarf2_per_objfile while
23240 cleaning up. */
23241 dwarf2_per_objfile = NULL;
23242
23243 for (ix = 0; ix < data->n_comp_units; ++ix)
23244 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
23245
23246 for (ix = 0; ix < data->n_type_units; ++ix)
23247 VEC_free (dwarf2_per_cu_ptr,
23248 data->all_type_units[ix]->per_cu.imported_symtabs);
23249 xfree (data->all_type_units);
23250
23251 VEC_free (dwarf2_section_info_def, data->types);
23252
23253 if (data->dwo_files)
23254 free_dwo_files (data->dwo_files, objfile);
23255 if (data->dwp_file)
23256 gdb_bfd_unref (data->dwp_file->dbfd);
23257
23258 if (data->dwz_file && data->dwz_file->dwz_bfd)
23259 gdb_bfd_unref (data->dwz_file->dwz_bfd);
23260 }
23261
23262 \f
23263 /* The "save gdb-index" command. */
23264
23265 /* In-memory buffer to prepare data to be written later to a file. */
23266 class data_buf
23267 {
23268 public:
23269 /* Copy DATA to the end of the buffer. */
23270 template<typename T>
23271 void append_data (const T &data)
23272 {
23273 std::copy (reinterpret_cast<const gdb_byte *> (&data),
23274 reinterpret_cast<const gdb_byte *> (&data + 1),
23275 grow (sizeof (data)));
23276 }
23277
23278 /* Copy CSTR (a zero-terminated string) to the end of buffer. The
23279 terminating zero is appended too. */
23280 void append_cstr0 (const char *cstr)
23281 {
23282 const size_t size = strlen (cstr) + 1;
23283 std::copy (cstr, cstr + size, grow (size));
23284 }
23285
23286 /* Accept a host-format integer in VAL and append it to the buffer
23287 as a target-format integer which is LEN bytes long. */
23288 void append_uint (size_t len, bfd_endian byte_order, ULONGEST val)
23289 {
23290 ::store_unsigned_integer (grow (len), len, byte_order, val);
23291 }
23292
23293 /* Return the size of the buffer. */
23294 size_t size () const
23295 {
23296 return m_vec.size ();
23297 }
23298
23299 /* Write the buffer to FILE. */
23300 void file_write (FILE *file) const
23301 {
23302 if (::fwrite (m_vec.data (), 1, m_vec.size (), file) != m_vec.size ())
23303 error (_("couldn't write data to file"));
23304 }
23305
23306 private:
23307 /* Grow SIZE bytes at the end of the buffer. Returns a pointer to
23308 the start of the new block. */
23309 gdb_byte *grow (size_t size)
23310 {
23311 m_vec.resize (m_vec.size () + size);
23312 return &*m_vec.end () - size;
23313 }
23314
23315 gdb::byte_vector m_vec;
23316 };
23317
23318 /* An entry in the symbol table. */
23319 struct symtab_index_entry
23320 {
23321 /* The name of the symbol. */
23322 const char *name;
23323 /* The offset of the name in the constant pool. */
23324 offset_type index_offset;
23325 /* A sorted vector of the indices of all the CUs that hold an object
23326 of this name. */
23327 std::vector<offset_type> cu_indices;
23328 };
23329
23330 /* The symbol table. This is a power-of-2-sized hash table. */
23331 struct mapped_symtab
23332 {
23333 mapped_symtab ()
23334 {
23335 data.resize (1024);
23336 }
23337
23338 offset_type n_elements = 0;
23339 std::vector<symtab_index_entry> data;
23340 };
23341
23342 /* Find a slot in SYMTAB for the symbol NAME. Returns a reference to
23343 the slot.
23344
23345 Function is used only during write_hash_table so no index format backward
23346 compatibility is needed. */
23347
23348 static symtab_index_entry &
23349 find_slot (struct mapped_symtab *symtab, const char *name)
23350 {
23351 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
23352
23353 index = hash & (symtab->data.size () - 1);
23354 step = ((hash * 17) & (symtab->data.size () - 1)) | 1;
23355
23356 for (;;)
23357 {
23358 if (symtab->data[index].name == NULL
23359 || strcmp (name, symtab->data[index].name) == 0)
23360 return symtab->data[index];
23361 index = (index + step) & (symtab->data.size () - 1);
23362 }
23363 }
23364
23365 /* Expand SYMTAB's hash table. */
23366
23367 static void
23368 hash_expand (struct mapped_symtab *symtab)
23369 {
23370 auto old_entries = std::move (symtab->data);
23371
23372 symtab->data.clear ();
23373 symtab->data.resize (old_entries.size () * 2);
23374
23375 for (auto &it : old_entries)
23376 if (it.name != NULL)
23377 {
23378 auto &ref = find_slot (symtab, it.name);
23379 ref = std::move (it);
23380 }
23381 }
23382
23383 /* Add an entry to SYMTAB. NAME is the name of the symbol.
23384 CU_INDEX is the index of the CU in which the symbol appears.
23385 IS_STATIC is one if the symbol is static, otherwise zero (global). */
23386
23387 static void
23388 add_index_entry (struct mapped_symtab *symtab, const char *name,
23389 int is_static, gdb_index_symbol_kind kind,
23390 offset_type cu_index)
23391 {
23392 offset_type cu_index_and_attrs;
23393
23394 ++symtab->n_elements;
23395 if (4 * symtab->n_elements / 3 >= symtab->data.size ())
23396 hash_expand (symtab);
23397
23398 symtab_index_entry &slot = find_slot (symtab, name);
23399 if (slot.name == NULL)
23400 {
23401 slot.name = name;
23402 /* index_offset is set later. */
23403 }
23404
23405 cu_index_and_attrs = 0;
23406 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
23407 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
23408 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
23409
23410 /* We don't want to record an index value twice as we want to avoid the
23411 duplication.
23412 We process all global symbols and then all static symbols
23413 (which would allow us to avoid the duplication by only having to check
23414 the last entry pushed), but a symbol could have multiple kinds in one CU.
23415 To keep things simple we don't worry about the duplication here and
23416 sort and uniqufy the list after we've processed all symbols. */
23417 slot.cu_indices.push_back (cu_index_and_attrs);
23418 }
23419
23420 /* Sort and remove duplicates of all symbols' cu_indices lists. */
23421
23422 static void
23423 uniquify_cu_indices (struct mapped_symtab *symtab)
23424 {
23425 for (auto &entry : symtab->data)
23426 {
23427 if (entry.name != NULL && !entry.cu_indices.empty ())
23428 {
23429 auto &cu_indices = entry.cu_indices;
23430 std::sort (cu_indices.begin (), cu_indices.end ());
23431 auto from = std::unique (cu_indices.begin (), cu_indices.end ());
23432 cu_indices.erase (from, cu_indices.end ());
23433 }
23434 }
23435 }
23436
23437 /* A form of 'const char *' suitable for container keys. Only the
23438 pointer is stored. The strings themselves are compared, not the
23439 pointers. */
23440 class c_str_view
23441 {
23442 public:
23443 c_str_view (const char *cstr)
23444 : m_cstr (cstr)
23445 {}
23446
23447 bool operator== (const c_str_view &other) const
23448 {
23449 return strcmp (m_cstr, other.m_cstr) == 0;
23450 }
23451
23452 private:
23453 friend class c_str_view_hasher;
23454 const char *const m_cstr;
23455 };
23456
23457 /* A std::unordered_map::hasher for c_str_view that uses the right
23458 hash function for strings in a mapped index. */
23459 class c_str_view_hasher
23460 {
23461 public:
23462 size_t operator () (const c_str_view &x) const
23463 {
23464 return mapped_index_string_hash (INT_MAX, x.m_cstr);
23465 }
23466 };
23467
23468 /* A std::unordered_map::hasher for std::vector<>. */
23469 template<typename T>
23470 class vector_hasher
23471 {
23472 public:
23473 size_t operator () (const std::vector<T> &key) const
23474 {
23475 return iterative_hash (key.data (),
23476 sizeof (key.front ()) * key.size (), 0);
23477 }
23478 };
23479
23480 /* Write the mapped hash table SYMTAB to the data buffer OUTPUT, with
23481 constant pool entries going into the data buffer CPOOL. */
23482
23483 static void
23484 write_hash_table (mapped_symtab *symtab, data_buf &output, data_buf &cpool)
23485 {
23486 {
23487 /* Elements are sorted vectors of the indices of all the CUs that
23488 hold an object of this name. */
23489 std::unordered_map<std::vector<offset_type>, offset_type,
23490 vector_hasher<offset_type>>
23491 symbol_hash_table;
23492
23493 /* We add all the index vectors to the constant pool first, to
23494 ensure alignment is ok. */
23495 for (symtab_index_entry &entry : symtab->data)
23496 {
23497 if (entry.name == NULL)
23498 continue;
23499 gdb_assert (entry.index_offset == 0);
23500
23501 /* Finding before inserting is faster than always trying to
23502 insert, because inserting always allocates a node, does the
23503 lookup, and then destroys the new node if another node
23504 already had the same key. C++17 try_emplace will avoid
23505 this. */
23506 const auto found
23507 = symbol_hash_table.find (entry.cu_indices);
23508 if (found != symbol_hash_table.end ())
23509 {
23510 entry.index_offset = found->second;
23511 continue;
23512 }
23513
23514 symbol_hash_table.emplace (entry.cu_indices, cpool.size ());
23515 entry.index_offset = cpool.size ();
23516 cpool.append_data (MAYBE_SWAP (entry.cu_indices.size ()));
23517 for (const auto index : entry.cu_indices)
23518 cpool.append_data (MAYBE_SWAP (index));
23519 }
23520 }
23521
23522 /* Now write out the hash table. */
23523 std::unordered_map<c_str_view, offset_type, c_str_view_hasher> str_table;
23524 for (const auto &entry : symtab->data)
23525 {
23526 offset_type str_off, vec_off;
23527
23528 if (entry.name != NULL)
23529 {
23530 const auto insertpair = str_table.emplace (entry.name, cpool.size ());
23531 if (insertpair.second)
23532 cpool.append_cstr0 (entry.name);
23533 str_off = insertpair.first->second;
23534 vec_off = entry.index_offset;
23535 }
23536 else
23537 {
23538 /* While 0 is a valid constant pool index, it is not valid
23539 to have 0 for both offsets. */
23540 str_off = 0;
23541 vec_off = 0;
23542 }
23543
23544 output.append_data (MAYBE_SWAP (str_off));
23545 output.append_data (MAYBE_SWAP (vec_off));
23546 }
23547 }
23548
23549 typedef std::unordered_map<partial_symtab *, unsigned int> psym_index_map;
23550
23551 /* Helper struct for building the address table. */
23552 struct addrmap_index_data
23553 {
23554 addrmap_index_data (data_buf &addr_vec_, psym_index_map &cu_index_htab_)
23555 : addr_vec (addr_vec_), cu_index_htab (cu_index_htab_)
23556 {}
23557
23558 struct objfile *objfile;
23559 data_buf &addr_vec;
23560 psym_index_map &cu_index_htab;
23561
23562 /* Non-zero if the previous_* fields are valid.
23563 We can't write an entry until we see the next entry (since it is only then
23564 that we know the end of the entry). */
23565 int previous_valid;
23566 /* Index of the CU in the table of all CUs in the index file. */
23567 unsigned int previous_cu_index;
23568 /* Start address of the CU. */
23569 CORE_ADDR previous_cu_start;
23570 };
23571
23572 /* Write an address entry to ADDR_VEC. */
23573
23574 static void
23575 add_address_entry (struct objfile *objfile, data_buf &addr_vec,
23576 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
23577 {
23578 CORE_ADDR baseaddr;
23579
23580 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23581
23582 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, start - baseaddr);
23583 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, end - baseaddr);
23584 addr_vec.append_data (MAYBE_SWAP (cu_index));
23585 }
23586
23587 /* Worker function for traversing an addrmap to build the address table. */
23588
23589 static int
23590 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
23591 {
23592 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
23593 struct partial_symtab *pst = (struct partial_symtab *) obj;
23594
23595 if (data->previous_valid)
23596 add_address_entry (data->objfile, data->addr_vec,
23597 data->previous_cu_start, start_addr,
23598 data->previous_cu_index);
23599
23600 data->previous_cu_start = start_addr;
23601 if (pst != NULL)
23602 {
23603 const auto it = data->cu_index_htab.find (pst);
23604 gdb_assert (it != data->cu_index_htab.cend ());
23605 data->previous_cu_index = it->second;
23606 data->previous_valid = 1;
23607 }
23608 else
23609 data->previous_valid = 0;
23610
23611 return 0;
23612 }
23613
23614 /* Write OBJFILE's address map to ADDR_VEC.
23615 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23616 in the index file. */
23617
23618 static void
23619 write_address_map (struct objfile *objfile, data_buf &addr_vec,
23620 psym_index_map &cu_index_htab)
23621 {
23622 struct addrmap_index_data addrmap_index_data (addr_vec, cu_index_htab);
23623
23624 /* When writing the address table, we have to cope with the fact that
23625 the addrmap iterator only provides the start of a region; we have to
23626 wait until the next invocation to get the start of the next region. */
23627
23628 addrmap_index_data.objfile = objfile;
23629 addrmap_index_data.previous_valid = 0;
23630
23631 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23632 &addrmap_index_data);
23633
23634 /* It's highly unlikely the last entry (end address = 0xff...ff)
23635 is valid, but we should still handle it.
23636 The end address is recorded as the start of the next region, but that
23637 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23638 anyway. */
23639 if (addrmap_index_data.previous_valid)
23640 add_address_entry (objfile, addr_vec,
23641 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23642 addrmap_index_data.previous_cu_index);
23643 }
23644
23645 /* Return the symbol kind of PSYM. */
23646
23647 static gdb_index_symbol_kind
23648 symbol_kind (struct partial_symbol *psym)
23649 {
23650 domain_enum domain = PSYMBOL_DOMAIN (psym);
23651 enum address_class aclass = PSYMBOL_CLASS (psym);
23652
23653 switch (domain)
23654 {
23655 case VAR_DOMAIN:
23656 switch (aclass)
23657 {
23658 case LOC_BLOCK:
23659 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23660 case LOC_TYPEDEF:
23661 return GDB_INDEX_SYMBOL_KIND_TYPE;
23662 case LOC_COMPUTED:
23663 case LOC_CONST_BYTES:
23664 case LOC_OPTIMIZED_OUT:
23665 case LOC_STATIC:
23666 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23667 case LOC_CONST:
23668 /* Note: It's currently impossible to recognize psyms as enum values
23669 short of reading the type info. For now punt. */
23670 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23671 default:
23672 /* There are other LOC_FOO values that one might want to classify
23673 as variables, but dwarf2read.c doesn't currently use them. */
23674 return GDB_INDEX_SYMBOL_KIND_OTHER;
23675 }
23676 case STRUCT_DOMAIN:
23677 return GDB_INDEX_SYMBOL_KIND_TYPE;
23678 default:
23679 return GDB_INDEX_SYMBOL_KIND_OTHER;
23680 }
23681 }
23682
23683 /* Add a list of partial symbols to SYMTAB. */
23684
23685 static void
23686 write_psymbols (struct mapped_symtab *symtab,
23687 std::unordered_set<partial_symbol *> &psyms_seen,
23688 struct partial_symbol **psymp,
23689 int count,
23690 offset_type cu_index,
23691 int is_static)
23692 {
23693 for (; count-- > 0; ++psymp)
23694 {
23695 struct partial_symbol *psym = *psymp;
23696
23697 if (SYMBOL_LANGUAGE (psym) == language_ada)
23698 error (_("Ada is not currently supported by the index"));
23699
23700 /* Only add a given psymbol once. */
23701 if (psyms_seen.insert (psym).second)
23702 {
23703 gdb_index_symbol_kind kind = symbol_kind (psym);
23704
23705 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23706 is_static, kind, cu_index);
23707 }
23708 }
23709 }
23710
23711 /* A helper struct used when iterating over debug_types. */
23712 struct signatured_type_index_data
23713 {
23714 signatured_type_index_data (data_buf &types_list_,
23715 std::unordered_set<partial_symbol *> &psyms_seen_)
23716 : types_list (types_list_), psyms_seen (psyms_seen_)
23717 {}
23718
23719 struct objfile *objfile;
23720 struct mapped_symtab *symtab;
23721 data_buf &types_list;
23722 std::unordered_set<partial_symbol *> &psyms_seen;
23723 int cu_index;
23724 };
23725
23726 /* A helper function that writes a single signatured_type to an
23727 obstack. */
23728
23729 static int
23730 write_one_signatured_type (void **slot, void *d)
23731 {
23732 struct signatured_type_index_data *info
23733 = (struct signatured_type_index_data *) d;
23734 struct signatured_type *entry = (struct signatured_type *) *slot;
23735 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
23736
23737 write_psymbols (info->symtab,
23738 info->psyms_seen,
23739 info->objfile->global_psymbols.list
23740 + psymtab->globals_offset,
23741 psymtab->n_global_syms, info->cu_index,
23742 0);
23743 write_psymbols (info->symtab,
23744 info->psyms_seen,
23745 info->objfile->static_psymbols.list
23746 + psymtab->statics_offset,
23747 psymtab->n_static_syms, info->cu_index,
23748 1);
23749
23750 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
23751 to_underlying (entry->per_cu.sect_off));
23752 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
23753 to_underlying (entry->type_offset_in_tu));
23754 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE, entry->signature);
23755
23756 ++info->cu_index;
23757
23758 return 1;
23759 }
23760
23761 /* Recurse into all "included" dependencies and count their symbols as
23762 if they appeared in this psymtab. */
23763
23764 static void
23765 recursively_count_psymbols (struct partial_symtab *psymtab,
23766 size_t &psyms_seen)
23767 {
23768 for (int i = 0; i < psymtab->number_of_dependencies; ++i)
23769 if (psymtab->dependencies[i]->user != NULL)
23770 recursively_count_psymbols (psymtab->dependencies[i],
23771 psyms_seen);
23772
23773 psyms_seen += psymtab->n_global_syms;
23774 psyms_seen += psymtab->n_static_syms;
23775 }
23776
23777 /* Recurse into all "included" dependencies and write their symbols as
23778 if they appeared in this psymtab. */
23779
23780 static void
23781 recursively_write_psymbols (struct objfile *objfile,
23782 struct partial_symtab *psymtab,
23783 struct mapped_symtab *symtab,
23784 std::unordered_set<partial_symbol *> &psyms_seen,
23785 offset_type cu_index)
23786 {
23787 int i;
23788
23789 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23790 if (psymtab->dependencies[i]->user != NULL)
23791 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23792 symtab, psyms_seen, cu_index);
23793
23794 write_psymbols (symtab,
23795 psyms_seen,
23796 objfile->global_psymbols.list + psymtab->globals_offset,
23797 psymtab->n_global_syms, cu_index,
23798 0);
23799 write_psymbols (symtab,
23800 psyms_seen,
23801 objfile->static_psymbols.list + psymtab->statics_offset,
23802 psymtab->n_static_syms, cu_index,
23803 1);
23804 }
23805
23806 /* Create an index file for OBJFILE in the directory DIR. */
23807
23808 static void
23809 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23810 {
23811 if (dwarf2_per_objfile->using_index)
23812 error (_("Cannot use an index to create the index"));
23813
23814 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23815 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23816
23817 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23818 return;
23819
23820 struct stat st;
23821 if (stat (objfile_name (objfile), &st) < 0)
23822 perror_with_name (objfile_name (objfile));
23823
23824 std::string filename (std::string (dir) + SLASH_STRING
23825 + lbasename (objfile_name (objfile)) + INDEX_SUFFIX);
23826
23827 FILE *out_file = gdb_fopen_cloexec (filename.c_str (), "wb").release ();
23828 if (!out_file)
23829 error (_("Can't open `%s' for writing"), filename.c_str ());
23830
23831 /* Order matters here; we want FILE to be closed before FILENAME is
23832 unlinked, because on MS-Windows one cannot delete a file that is
23833 still open. (Don't call anything here that might throw until
23834 file_closer is created.) */
23835 gdb::unlinker unlink_file (filename.c_str ());
23836 gdb_file_up close_out_file (out_file);
23837
23838 mapped_symtab symtab;
23839 data_buf cu_list;
23840
23841 /* While we're scanning CU's create a table that maps a psymtab pointer
23842 (which is what addrmap records) to its index (which is what is recorded
23843 in the index file). This will later be needed to write the address
23844 table. */
23845 psym_index_map cu_index_htab;
23846 cu_index_htab.reserve (dwarf2_per_objfile->n_comp_units);
23847
23848 /* The CU list is already sorted, so we don't need to do additional
23849 work here. Also, the debug_types entries do not appear in
23850 all_comp_units, but only in their own hash table. */
23851
23852 /* The psyms_seen set is potentially going to be largish (~40k
23853 elements when indexing a -g3 build of GDB itself). Estimate the
23854 number of elements in order to avoid too many rehashes, which
23855 require rebuilding buckets and thus many trips to
23856 malloc/free. */
23857 size_t psyms_count = 0;
23858 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23859 {
23860 struct dwarf2_per_cu_data *per_cu
23861 = dwarf2_per_objfile->all_comp_units[i];
23862 struct partial_symtab *psymtab = per_cu->v.psymtab;
23863
23864 if (psymtab != NULL && psymtab->user == NULL)
23865 recursively_count_psymbols (psymtab, psyms_count);
23866 }
23867 /* Generating an index for gdb itself shows a ratio of
23868 TOTAL_SEEN_SYMS/UNIQUE_SYMS or ~5. 4 seems like a good bet. */
23869 std::unordered_set<partial_symbol *> psyms_seen (psyms_count / 4);
23870 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23871 {
23872 struct dwarf2_per_cu_data *per_cu
23873 = dwarf2_per_objfile->all_comp_units[i];
23874 struct partial_symtab *psymtab = per_cu->v.psymtab;
23875
23876 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23877 It may be referenced from a local scope but in such case it does not
23878 need to be present in .gdb_index. */
23879 if (psymtab == NULL)
23880 continue;
23881
23882 if (psymtab->user == NULL)
23883 recursively_write_psymbols (objfile, psymtab, &symtab,
23884 psyms_seen, i);
23885
23886 const auto insertpair = cu_index_htab.emplace (psymtab, i);
23887 gdb_assert (insertpair.second);
23888
23889 cu_list.append_uint (8, BFD_ENDIAN_LITTLE,
23890 to_underlying (per_cu->sect_off));
23891 cu_list.append_uint (8, BFD_ENDIAN_LITTLE, per_cu->length);
23892 }
23893
23894 /* Dump the address map. */
23895 data_buf addr_vec;
23896 write_address_map (objfile, addr_vec, cu_index_htab);
23897
23898 /* Write out the .debug_type entries, if any. */
23899 data_buf types_cu_list;
23900 if (dwarf2_per_objfile->signatured_types)
23901 {
23902 signatured_type_index_data sig_data (types_cu_list,
23903 psyms_seen);
23904
23905 sig_data.objfile = objfile;
23906 sig_data.symtab = &symtab;
23907 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23908 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23909 write_one_signatured_type, &sig_data);
23910 }
23911
23912 /* Now that we've processed all symbols we can shrink their cu_indices
23913 lists. */
23914 uniquify_cu_indices (&symtab);
23915
23916 data_buf symtab_vec, constant_pool;
23917 write_hash_table (&symtab, symtab_vec, constant_pool);
23918
23919 data_buf contents;
23920 const offset_type size_of_contents = 6 * sizeof (offset_type);
23921 offset_type total_len = size_of_contents;
23922
23923 /* The version number. */
23924 contents.append_data (MAYBE_SWAP (8));
23925
23926 /* The offset of the CU list from the start of the file. */
23927 contents.append_data (MAYBE_SWAP (total_len));
23928 total_len += cu_list.size ();
23929
23930 /* The offset of the types CU list from the start of the file. */
23931 contents.append_data (MAYBE_SWAP (total_len));
23932 total_len += types_cu_list.size ();
23933
23934 /* The offset of the address table from the start of the file. */
23935 contents.append_data (MAYBE_SWAP (total_len));
23936 total_len += addr_vec.size ();
23937
23938 /* The offset of the symbol table from the start of the file. */
23939 contents.append_data (MAYBE_SWAP (total_len));
23940 total_len += symtab_vec.size ();
23941
23942 /* The offset of the constant pool from the start of the file. */
23943 contents.append_data (MAYBE_SWAP (total_len));
23944 total_len += constant_pool.size ();
23945
23946 gdb_assert (contents.size () == size_of_contents);
23947
23948 contents.file_write (out_file);
23949 cu_list.file_write (out_file);
23950 types_cu_list.file_write (out_file);
23951 addr_vec.file_write (out_file);
23952 symtab_vec.file_write (out_file);
23953 constant_pool.file_write (out_file);
23954
23955 /* We want to keep the file. */
23956 unlink_file.keep ();
23957 }
23958
23959 /* Implementation of the `save gdb-index' command.
23960
23961 Note that the file format used by this command is documented in the
23962 GDB manual. Any changes here must be documented there. */
23963
23964 static void
23965 save_gdb_index_command (char *arg, int from_tty)
23966 {
23967 struct objfile *objfile;
23968
23969 if (!arg || !*arg)
23970 error (_("usage: save gdb-index DIRECTORY"));
23971
23972 ALL_OBJFILES (objfile)
23973 {
23974 struct stat st;
23975
23976 /* If the objfile does not correspond to an actual file, skip it. */
23977 if (stat (objfile_name (objfile), &st) < 0)
23978 continue;
23979
23980 dwarf2_per_objfile
23981 = (struct dwarf2_per_objfile *) objfile_data (objfile,
23982 dwarf2_objfile_data_key);
23983 if (dwarf2_per_objfile)
23984 {
23985
23986 TRY
23987 {
23988 write_psymtabs_to_index (objfile, arg);
23989 }
23990 CATCH (except, RETURN_MASK_ERROR)
23991 {
23992 exception_fprintf (gdb_stderr, except,
23993 _("Error while writing index for `%s': "),
23994 objfile_name (objfile));
23995 }
23996 END_CATCH
23997 }
23998 }
23999 }
24000
24001 \f
24002
24003 int dwarf_always_disassemble;
24004
24005 static void
24006 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
24007 struct cmd_list_element *c, const char *value)
24008 {
24009 fprintf_filtered (file,
24010 _("Whether to always disassemble "
24011 "DWARF expressions is %s.\n"),
24012 value);
24013 }
24014
24015 static void
24016 show_check_physname (struct ui_file *file, int from_tty,
24017 struct cmd_list_element *c, const char *value)
24018 {
24019 fprintf_filtered (file,
24020 _("Whether to check \"physname\" is %s.\n"),
24021 value);
24022 }
24023
24024 void _initialize_dwarf2_read (void);
24025
24026 void
24027 _initialize_dwarf2_read (void)
24028 {
24029 struct cmd_list_element *c;
24030
24031 dwarf2_objfile_data_key
24032 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
24033
24034 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
24035 Set DWARF specific variables.\n\
24036 Configure DWARF variables such as the cache size"),
24037 &set_dwarf_cmdlist, "maintenance set dwarf ",
24038 0/*allow-unknown*/, &maintenance_set_cmdlist);
24039
24040 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
24041 Show DWARF specific variables\n\
24042 Show DWARF variables such as the cache size"),
24043 &show_dwarf_cmdlist, "maintenance show dwarf ",
24044 0/*allow-unknown*/, &maintenance_show_cmdlist);
24045
24046 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
24047 &dwarf_max_cache_age, _("\
24048 Set the upper bound on the age of cached DWARF compilation units."), _("\
24049 Show the upper bound on the age of cached DWARF compilation units."), _("\
24050 A higher limit means that cached compilation units will be stored\n\
24051 in memory longer, and more total memory will be used. Zero disables\n\
24052 caching, which can slow down startup."),
24053 NULL,
24054 show_dwarf_max_cache_age,
24055 &set_dwarf_cmdlist,
24056 &show_dwarf_cmdlist);
24057
24058 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
24059 &dwarf_always_disassemble, _("\
24060 Set whether `info address' always disassembles DWARF expressions."), _("\
24061 Show whether `info address' always disassembles DWARF expressions."), _("\
24062 When enabled, DWARF expressions are always printed in an assembly-like\n\
24063 syntax. When disabled, expressions will be printed in a more\n\
24064 conversational style, when possible."),
24065 NULL,
24066 show_dwarf_always_disassemble,
24067 &set_dwarf_cmdlist,
24068 &show_dwarf_cmdlist);
24069
24070 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
24071 Set debugging of the DWARF reader."), _("\
24072 Show debugging of the DWARF reader."), _("\
24073 When enabled (non-zero), debugging messages are printed during DWARF\n\
24074 reading and symtab expansion. A value of 1 (one) provides basic\n\
24075 information. A value greater than 1 provides more verbose information."),
24076 NULL,
24077 NULL,
24078 &setdebuglist, &showdebuglist);
24079
24080 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
24081 Set debugging of the DWARF DIE reader."), _("\
24082 Show debugging of the DWARF DIE reader."), _("\
24083 When enabled (non-zero), DIEs are dumped after they are read in.\n\
24084 The value is the maximum depth to print."),
24085 NULL,
24086 NULL,
24087 &setdebuglist, &showdebuglist);
24088
24089 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
24090 Set debugging of the dwarf line reader."), _("\
24091 Show debugging of the dwarf line reader."), _("\
24092 When enabled (non-zero), line number entries are dumped as they are read in.\n\
24093 A value of 1 (one) provides basic information.\n\
24094 A value greater than 1 provides more verbose information."),
24095 NULL,
24096 NULL,
24097 &setdebuglist, &showdebuglist);
24098
24099 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
24100 Set cross-checking of \"physname\" code against demangler."), _("\
24101 Show cross-checking of \"physname\" code against demangler."), _("\
24102 When enabled, GDB's internal \"physname\" code is checked against\n\
24103 the demangler."),
24104 NULL, show_check_physname,
24105 &setdebuglist, &showdebuglist);
24106
24107 add_setshow_boolean_cmd ("use-deprecated-index-sections",
24108 no_class, &use_deprecated_index_sections, _("\
24109 Set whether to use deprecated gdb_index sections."), _("\
24110 Show whether to use deprecated gdb_index sections."), _("\
24111 When enabled, deprecated .gdb_index sections are used anyway.\n\
24112 Normally they are ignored either because of a missing feature or\n\
24113 performance issue.\n\
24114 Warning: This option must be enabled before gdb reads the file."),
24115 NULL,
24116 NULL,
24117 &setlist, &showlist);
24118
24119 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
24120 _("\
24121 Save a gdb-index file.\n\
24122 Usage: save gdb-index DIRECTORY"),
24123 &save_cmdlist);
24124 set_cmd_completer (c, filename_completer);
24125
24126 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
24127 &dwarf2_locexpr_funcs);
24128 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
24129 &dwarf2_loclist_funcs);
24130
24131 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
24132 &dwarf2_block_frame_base_locexpr_funcs);
24133 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
24134 &dwarf2_block_frame_base_loclist_funcs);
24135 }
This page took 0.531464 seconds and 5 git commands to generate.