gdb/
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2012 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "symtab.h"
34 #include "gdbtypes.h"
35 #include "objfiles.h"
36 #include "dwarf2.h"
37 #include "buildsym.h"
38 #include "demangle.h"
39 #include "gdb-demangle.h"
40 #include "expression.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "macrotab.h"
43 #include "language.h"
44 #include "complaints.h"
45 #include "bcache.h"
46 #include "dwarf2expr.h"
47 #include "dwarf2loc.h"
48 #include "cp-support.h"
49 #include "hashtab.h"
50 #include "command.h"
51 #include "gdbcmd.h"
52 #include "block.h"
53 #include "addrmap.h"
54 #include "typeprint.h"
55 #include "jv-lang.h"
56 #include "psympriv.h"
57 #include "exceptions.h"
58 #include "gdb_stat.h"
59 #include "completer.h"
60 #include "vec.h"
61 #include "c-lang.h"
62 #include "go-lang.h"
63 #include "valprint.h"
64 #include "gdbcore.h" /* for gnutarget */
65 #include <ctype.h>
66
67 #include <fcntl.h>
68 #include "gdb_string.h"
69 #include "gdb_assert.h"
70 #include <sys/types.h>
71 #ifdef HAVE_ZLIB_H
72 #include <zlib.h>
73 #endif
74 #ifdef HAVE_MMAP
75 #include <sys/mman.h>
76 #ifndef MAP_FAILED
77 #define MAP_FAILED ((void *) -1)
78 #endif
79 #endif
80
81 typedef struct symbol *symbolp;
82 DEF_VEC_P (symbolp);
83
84 /* When non-zero, dump DIEs after they are read in. */
85 static int dwarf2_die_debug = 0;
86
87 /* When non-zero, cross-check physname against demangler. */
88 static int check_physname = 0;
89
90 /* When non-zero, do not reject deprecated .gdb_index sections. */
91 int use_deprecated_index_sections = 0;
92
93 static int pagesize;
94
95 /* When set, the file that we're processing is known to have debugging
96 info for C++ namespaces. GCC 3.3.x did not produce this information,
97 but later versions do. */
98
99 static int processing_has_namespace_info;
100
101 static const struct objfile_data *dwarf2_objfile_data_key;
102
103 struct dwarf2_section_info
104 {
105 asection *asection;
106 gdb_byte *buffer;
107 bfd_size_type size;
108 /* Not NULL if the section was actually mmapped. */
109 void *map_addr;
110 /* Page aligned size of mmapped area. */
111 bfd_size_type map_len;
112 /* True if we have tried to read this section. */
113 int readin;
114 };
115
116 typedef struct dwarf2_section_info dwarf2_section_info_def;
117 DEF_VEC_O (dwarf2_section_info_def);
118
119 /* All offsets in the index are of this type. It must be
120 architecture-independent. */
121 typedef uint32_t offset_type;
122
123 DEF_VEC_I (offset_type);
124
125 /* A description of the mapped index. The file format is described in
126 a comment by the code that writes the index. */
127 struct mapped_index
128 {
129 /* Index data format version. */
130 int version;
131
132 /* The total length of the buffer. */
133 off_t total_size;
134
135 /* A pointer to the address table data. */
136 const gdb_byte *address_table;
137
138 /* Size of the address table data in bytes. */
139 offset_type address_table_size;
140
141 /* The symbol table, implemented as a hash table. */
142 const offset_type *symbol_table;
143
144 /* Size in slots, each slot is 2 offset_types. */
145 offset_type symbol_table_slots;
146
147 /* A pointer to the constant pool. */
148 const char *constant_pool;
149 };
150
151 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
152 DEF_VEC_P (dwarf2_per_cu_ptr);
153
154 /* Collection of data recorded per objfile.
155 This hangs off of dwarf2_objfile_data_key. */
156
157 struct dwarf2_per_objfile
158 {
159 struct dwarf2_section_info info;
160 struct dwarf2_section_info abbrev;
161 struct dwarf2_section_info line;
162 struct dwarf2_section_info loc;
163 struct dwarf2_section_info macinfo;
164 struct dwarf2_section_info macro;
165 struct dwarf2_section_info str;
166 struct dwarf2_section_info ranges;
167 struct dwarf2_section_info addr;
168 struct dwarf2_section_info frame;
169 struct dwarf2_section_info eh_frame;
170 struct dwarf2_section_info gdb_index;
171
172 VEC (dwarf2_section_info_def) *types;
173
174 /* Back link. */
175 struct objfile *objfile;
176
177 /* Table of all the compilation units. This is used to locate
178 the target compilation unit of a particular reference. */
179 struct dwarf2_per_cu_data **all_comp_units;
180
181 /* The number of compilation units in ALL_COMP_UNITS. */
182 int n_comp_units;
183
184 /* The number of .debug_types-related CUs. */
185 int n_type_units;
186
187 /* The .debug_types-related CUs (TUs). */
188 struct dwarf2_per_cu_data **all_type_units;
189
190 /* A chain of compilation units that are currently read in, so that
191 they can be freed later. */
192 struct dwarf2_per_cu_data *read_in_chain;
193
194 /* A table mapping .debug_types signatures to its signatured_type entry.
195 This is NULL if the .debug_types section hasn't been read in yet. */
196 htab_t signatured_types;
197
198 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
199 This is NULL if the table hasn't been allocated yet. */
200 htab_t dwo_files;
201
202 /* A flag indicating wether this objfile has a section loaded at a
203 VMA of 0. */
204 int has_section_at_zero;
205
206 /* True if we are using the mapped index,
207 or we are faking it for OBJF_READNOW's sake. */
208 unsigned char using_index;
209
210 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
211 struct mapped_index *index_table;
212
213 /* When using index_table, this keeps track of all quick_file_names entries.
214 TUs can share line table entries with CUs or other TUs, and there can be
215 a lot more TUs than unique line tables, so we maintain a separate table
216 of all line table entries to support the sharing. */
217 htab_t quick_file_names_table;
218
219 /* Set during partial symbol reading, to prevent queueing of full
220 symbols. */
221 int reading_partial_symbols;
222
223 /* Table mapping type DIEs to their struct type *.
224 This is NULL if not allocated yet.
225 The mapping is done via (CU/TU signature + DIE offset) -> type. */
226 htab_t die_type_hash;
227
228 /* The CUs we recently read. */
229 VEC (dwarf2_per_cu_ptr) *just_read_cus;
230 };
231
232 static struct dwarf2_per_objfile *dwarf2_per_objfile;
233
234 /* Default names of the debugging sections. */
235
236 /* Note that if the debugging section has been compressed, it might
237 have a name like .zdebug_info. */
238
239 static const struct dwarf2_debug_sections dwarf2_elf_names =
240 {
241 { ".debug_info", ".zdebug_info" },
242 { ".debug_abbrev", ".zdebug_abbrev" },
243 { ".debug_line", ".zdebug_line" },
244 { ".debug_loc", ".zdebug_loc" },
245 { ".debug_macinfo", ".zdebug_macinfo" },
246 { ".debug_macro", ".zdebug_macro" },
247 { ".debug_str", ".zdebug_str" },
248 { ".debug_ranges", ".zdebug_ranges" },
249 { ".debug_types", ".zdebug_types" },
250 { ".debug_addr", ".zdebug_addr" },
251 { ".debug_frame", ".zdebug_frame" },
252 { ".eh_frame", NULL },
253 { ".gdb_index", ".zgdb_index" },
254 23
255 };
256
257 /* List of DWO sections. */
258
259 static const struct dwo_section_names
260 {
261 struct dwarf2_section_names abbrev_dwo;
262 struct dwarf2_section_names info_dwo;
263 struct dwarf2_section_names line_dwo;
264 struct dwarf2_section_names loc_dwo;
265 struct dwarf2_section_names str_dwo;
266 struct dwarf2_section_names str_offsets_dwo;
267 struct dwarf2_section_names types_dwo;
268 }
269 dwo_section_names =
270 {
271 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
272 { ".debug_info.dwo", ".zdebug_info.dwo" },
273 { ".debug_line.dwo", ".zdebug_line.dwo" },
274 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
275 { ".debug_str.dwo", ".zdebug_str.dwo" },
276 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
277 { ".debug_types.dwo", ".zdebug_types.dwo" },
278 };
279
280 /* local data types */
281
282 /* We hold several abbreviation tables in memory at the same time. */
283 #ifndef ABBREV_HASH_SIZE
284 #define ABBREV_HASH_SIZE 121
285 #endif
286
287 /* The data in a compilation unit header, after target2host
288 translation, looks like this. */
289 struct comp_unit_head
290 {
291 unsigned int length;
292 short version;
293 unsigned char addr_size;
294 unsigned char signed_addr_p;
295 sect_offset abbrev_offset;
296
297 /* Size of file offsets; either 4 or 8. */
298 unsigned int offset_size;
299
300 /* Size of the length field; either 4 or 12. */
301 unsigned int initial_length_size;
302
303 /* Offset to the first byte of this compilation unit header in the
304 .debug_info section, for resolving relative reference dies. */
305 sect_offset offset;
306
307 /* Offset to first die in this cu from the start of the cu.
308 This will be the first byte following the compilation unit header. */
309 cu_offset first_die_offset;
310 };
311
312 /* Type used for delaying computation of method physnames.
313 See comments for compute_delayed_physnames. */
314 struct delayed_method_info
315 {
316 /* The type to which the method is attached, i.e., its parent class. */
317 struct type *type;
318
319 /* The index of the method in the type's function fieldlists. */
320 int fnfield_index;
321
322 /* The index of the method in the fieldlist. */
323 int index;
324
325 /* The name of the DIE. */
326 const char *name;
327
328 /* The DIE associated with this method. */
329 struct die_info *die;
330 };
331
332 typedef struct delayed_method_info delayed_method_info;
333 DEF_VEC_O (delayed_method_info);
334
335 /* Internal state when decoding a particular compilation unit. */
336 struct dwarf2_cu
337 {
338 /* The objfile containing this compilation unit. */
339 struct objfile *objfile;
340
341 /* The header of the compilation unit. */
342 struct comp_unit_head header;
343
344 /* Base address of this compilation unit. */
345 CORE_ADDR base_address;
346
347 /* Non-zero if base_address has been set. */
348 int base_known;
349
350 /* The language we are debugging. */
351 enum language language;
352 const struct language_defn *language_defn;
353
354 const char *producer;
355
356 /* The generic symbol table building routines have separate lists for
357 file scope symbols and all all other scopes (local scopes). So
358 we need to select the right one to pass to add_symbol_to_list().
359 We do it by keeping a pointer to the correct list in list_in_scope.
360
361 FIXME: The original dwarf code just treated the file scope as the
362 first local scope, and all other local scopes as nested local
363 scopes, and worked fine. Check to see if we really need to
364 distinguish these in buildsym.c. */
365 struct pending **list_in_scope;
366
367 /* DWARF abbreviation table associated with this compilation unit. */
368 struct abbrev_info **dwarf2_abbrevs;
369
370 /* Storage for the abbrev table. */
371 struct obstack abbrev_obstack;
372
373 /* Hash table holding all the loaded partial DIEs
374 with partial_die->offset.SECT_OFF as hash. */
375 htab_t partial_dies;
376
377 /* Storage for things with the same lifetime as this read-in compilation
378 unit, including partial DIEs. */
379 struct obstack comp_unit_obstack;
380
381 /* When multiple dwarf2_cu structures are living in memory, this field
382 chains them all together, so that they can be released efficiently.
383 We will probably also want a generation counter so that most-recently-used
384 compilation units are cached... */
385 struct dwarf2_per_cu_data *read_in_chain;
386
387 /* Backchain to our per_cu entry if the tree has been built. */
388 struct dwarf2_per_cu_data *per_cu;
389
390 /* How many compilation units ago was this CU last referenced? */
391 int last_used;
392
393 /* A hash table of DIE cu_offset for following references with
394 die_info->offset.sect_off as hash. */
395 htab_t die_hash;
396
397 /* Full DIEs if read in. */
398 struct die_info *dies;
399
400 /* A set of pointers to dwarf2_per_cu_data objects for compilation
401 units referenced by this one. Only set during full symbol processing;
402 partial symbol tables do not have dependencies. */
403 htab_t dependencies;
404
405 /* Header data from the line table, during full symbol processing. */
406 struct line_header *line_header;
407
408 /* A list of methods which need to have physnames computed
409 after all type information has been read. */
410 VEC (delayed_method_info) *method_list;
411
412 /* To be copied to symtab->call_site_htab. */
413 htab_t call_site_htab;
414
415 /* Non-NULL if this CU came from a DWO file.
416 There is an invariant here that is important to remember:
417 Except for attributes copied from the top level DIE in the "main"
418 (or "stub") file in preparation for reading the DWO file
419 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
420 Either there isn't a DWO file (in which case this is NULL and the point
421 is moot), or there is and either we're not going to read it (in which
422 case this is NULL) or there is and we are reading it (in which case this
423 is non-NULL). */
424 struct dwo_unit *dwo_unit;
425
426 /* The DW_AT_addr_base attribute if present, zero otherwise
427 (zero is a valid value though).
428 Note this value comes from the stub CU/TU's DIE. */
429 ULONGEST addr_base;
430
431 /* Mark used when releasing cached dies. */
432 unsigned int mark : 1;
433
434 /* This CU references .debug_loc. See the symtab->locations_valid field.
435 This test is imperfect as there may exist optimized debug code not using
436 any location list and still facing inlining issues if handled as
437 unoptimized code. For a future better test see GCC PR other/32998. */
438 unsigned int has_loclist : 1;
439
440 /* These cache the results for producer_is_gxx_lt_4_6 and producer_is_icc.
441 CHECKED_PRODUCER is set if both PRODUCER_IS_GXX_LT_4_6 and PRODUCER_IS_ICC
442 are valid. This information is cached because profiling CU expansion
443 showed excessive time spent in producer_is_gxx_lt_4_6. */
444 unsigned int checked_producer : 1;
445 unsigned int producer_is_gxx_lt_4_6 : 1;
446 unsigned int producer_is_icc : 1;
447
448 /* Non-zero if DW_AT_addr_base was found.
449 Used when processing DWO files. */
450 unsigned int have_addr_base : 1;
451 };
452
453 /* Persistent data held for a compilation unit, even when not
454 processing it. We put a pointer to this structure in the
455 read_symtab_private field of the psymtab. */
456
457 struct dwarf2_per_cu_data
458 {
459 /* The start offset and length of this compilation unit. 2**29-1
460 bytes should suffice to store the length of any compilation unit
461 - if it doesn't, GDB will fall over anyway.
462 NOTE: Unlike comp_unit_head.length, this length includes
463 initial_length_size.
464 If the DIE refers to a DWO file, this is always of the original die,
465 not the DWO file. */
466 sect_offset offset;
467 unsigned int length : 29;
468
469 /* Flag indicating this compilation unit will be read in before
470 any of the current compilation units are processed. */
471 unsigned int queued : 1;
472
473 /* This flag will be set when reading partial DIEs if we need to load
474 absolutely all DIEs for this compilation unit, instead of just the ones
475 we think are interesting. It gets set if we look for a DIE in the
476 hash table and don't find it. */
477 unsigned int load_all_dies : 1;
478
479 /* Non-zero if this CU is from .debug_types. */
480 unsigned int is_debug_types : 1;
481
482 /* The section this CU/TU lives in.
483 If the DIE refers to a DWO file, this is always the original die,
484 not the DWO file. */
485 struct dwarf2_section_info *info_or_types_section;
486
487 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
488 of the CU cache it gets reset to NULL again. */
489 struct dwarf2_cu *cu;
490
491 /* The corresponding objfile.
492 Normally we can get the objfile from dwarf2_per_objfile.
493 However we can enter this file with just a "per_cu" handle. */
494 struct objfile *objfile;
495
496 /* When using partial symbol tables, the 'psymtab' field is active.
497 Otherwise the 'quick' field is active. */
498 union
499 {
500 /* The partial symbol table associated with this compilation unit,
501 or NULL for unread partial units. */
502 struct partial_symtab *psymtab;
503
504 /* Data needed by the "quick" functions. */
505 struct dwarf2_per_cu_quick_data *quick;
506 } v;
507
508 /* The CUs we import using DW_TAG_imported_unit. This is filled in
509 while reading psymtabs, used to compute the psymtab dependencies,
510 and then cleared. Then it is filled in again while reading full
511 symbols, and only deleted when the objfile is destroyed. */
512 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
513 };
514
515 /* Entry in the signatured_types hash table. */
516
517 struct signatured_type
518 {
519 /* The type's signature. */
520 ULONGEST signature;
521
522 /* Offset in the TU of the type's DIE, as read from the TU header.
523 If the definition lives in a DWO file, this value is unusable. */
524 cu_offset type_offset_in_tu;
525
526 /* Offset in the section of the type's DIE.
527 If the definition lives in a DWO file, this is the offset in the
528 .debug_types.dwo section.
529 The value is zero until the actual value is known.
530 Zero is otherwise not a valid section offset. */
531 sect_offset type_offset_in_section;
532
533 /* The CU(/TU) of this type. */
534 struct dwarf2_per_cu_data per_cu;
535 };
536
537 /* These sections are what may appear in a "dwo" file. */
538
539 struct dwo_sections
540 {
541 struct dwarf2_section_info abbrev;
542 struct dwarf2_section_info info;
543 struct dwarf2_section_info line;
544 struct dwarf2_section_info loc;
545 struct dwarf2_section_info str;
546 struct dwarf2_section_info str_offsets;
547 VEC (dwarf2_section_info_def) *types;
548 };
549
550 /* Common bits of DWO CUs/TUs. */
551
552 struct dwo_unit
553 {
554 /* Backlink to the containing struct dwo_file. */
555 struct dwo_file *dwo_file;
556
557 /* The "id" that distinguishes this CU/TU.
558 .debug_info calls this "dwo_id", .debug_types calls this "signature".
559 Since signatures came first, we stick with it for consistency. */
560 ULONGEST signature;
561
562 /* The section this CU/TU lives in, in the DWO file. */
563 struct dwarf2_section_info *info_or_types_section;
564
565 /* Same as dwarf2_per_cu_data:{offset,length} but for the DWO section. */
566 sect_offset offset;
567 unsigned int length;
568
569 /* For types, offset in the type's DIE of the type defined by this TU. */
570 cu_offset type_offset_in_tu;
571 };
572
573 /* Data for one DWO file. */
574
575 struct dwo_file
576 {
577 /* The DW_AT_GNU_dwo_name attribute.
578 We don't manage space for this, it's an attribute. */
579 const char *dwo_name;
580
581 /* The bfd, when the file is open. Otherwise this is NULL. */
582 bfd *dwo_bfd;
583
584 /* Section info for this file. */
585 struct dwo_sections sections;
586
587 /* Table of CUs in the file.
588 Each element is a struct dwo_unit. */
589 htab_t cus;
590
591 /* Table of TUs in the file.
592 Each element is a struct dwo_unit. */
593 htab_t tus;
594 };
595
596 /* Struct used to pass misc. parameters to read_die_and_children, et
597 al. which are used for both .debug_info and .debug_types dies.
598 All parameters here are unchanging for the life of the call. This
599 struct exists to abstract away the constant parameters of die reading. */
600
601 struct die_reader_specs
602 {
603 /* die_section->asection->owner. */
604 bfd* abfd;
605
606 /* The CU of the DIE we are parsing. */
607 struct dwarf2_cu *cu;
608
609 /* Non-NULL if reading a DWO file. */
610 struct dwo_file *dwo_file;
611
612 /* The section the die comes from.
613 This is either .debug_info or .debug_types, or the .dwo variants. */
614 struct dwarf2_section_info *die_section;
615
616 /* die_section->buffer. */
617 gdb_byte *buffer;
618
619 /* The end of the buffer. */
620 const gdb_byte *buffer_end;
621 };
622
623 /* Type of function passed to init_cutu_and_read_dies, et.al. */
624 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
625 gdb_byte *info_ptr,
626 struct die_info *comp_unit_die,
627 int has_children,
628 void *data);
629
630 /* The line number information for a compilation unit (found in the
631 .debug_line section) begins with a "statement program header",
632 which contains the following information. */
633 struct line_header
634 {
635 unsigned int total_length;
636 unsigned short version;
637 unsigned int header_length;
638 unsigned char minimum_instruction_length;
639 unsigned char maximum_ops_per_instruction;
640 unsigned char default_is_stmt;
641 int line_base;
642 unsigned char line_range;
643 unsigned char opcode_base;
644
645 /* standard_opcode_lengths[i] is the number of operands for the
646 standard opcode whose value is i. This means that
647 standard_opcode_lengths[0] is unused, and the last meaningful
648 element is standard_opcode_lengths[opcode_base - 1]. */
649 unsigned char *standard_opcode_lengths;
650
651 /* The include_directories table. NOTE! These strings are not
652 allocated with xmalloc; instead, they are pointers into
653 debug_line_buffer. If you try to free them, `free' will get
654 indigestion. */
655 unsigned int num_include_dirs, include_dirs_size;
656 char **include_dirs;
657
658 /* The file_names table. NOTE! These strings are not allocated
659 with xmalloc; instead, they are pointers into debug_line_buffer.
660 Don't try to free them directly. */
661 unsigned int num_file_names, file_names_size;
662 struct file_entry
663 {
664 char *name;
665 unsigned int dir_index;
666 unsigned int mod_time;
667 unsigned int length;
668 int included_p; /* Non-zero if referenced by the Line Number Program. */
669 struct symtab *symtab; /* The associated symbol table, if any. */
670 } *file_names;
671
672 /* The start and end of the statement program following this
673 header. These point into dwarf2_per_objfile->line_buffer. */
674 gdb_byte *statement_program_start, *statement_program_end;
675 };
676
677 /* When we construct a partial symbol table entry we only
678 need this much information. */
679 struct partial_die_info
680 {
681 /* Offset of this DIE. */
682 sect_offset offset;
683
684 /* DWARF-2 tag for this DIE. */
685 ENUM_BITFIELD(dwarf_tag) tag : 16;
686
687 /* Assorted flags describing the data found in this DIE. */
688 unsigned int has_children : 1;
689 unsigned int is_external : 1;
690 unsigned int is_declaration : 1;
691 unsigned int has_type : 1;
692 unsigned int has_specification : 1;
693 unsigned int has_pc_info : 1;
694 unsigned int may_be_inlined : 1;
695
696 /* Flag set if the SCOPE field of this structure has been
697 computed. */
698 unsigned int scope_set : 1;
699
700 /* Flag set if the DIE has a byte_size attribute. */
701 unsigned int has_byte_size : 1;
702
703 /* Flag set if any of the DIE's children are template arguments. */
704 unsigned int has_template_arguments : 1;
705
706 /* Flag set if fixup_partial_die has been called on this die. */
707 unsigned int fixup_called : 1;
708
709 /* The name of this DIE. Normally the value of DW_AT_name, but
710 sometimes a default name for unnamed DIEs. */
711 char *name;
712
713 /* The linkage name, if present. */
714 const char *linkage_name;
715
716 /* The scope to prepend to our children. This is generally
717 allocated on the comp_unit_obstack, so will disappear
718 when this compilation unit leaves the cache. */
719 char *scope;
720
721 /* Some data associated with the partial DIE. The tag determines
722 which field is live. */
723 union
724 {
725 /* The location description associated with this DIE, if any. */
726 struct dwarf_block *locdesc;
727 /* The offset of an import, for DW_TAG_imported_unit. */
728 sect_offset offset;
729 } d;
730
731 /* If HAS_PC_INFO, the PC range associated with this DIE. */
732 CORE_ADDR lowpc;
733 CORE_ADDR highpc;
734
735 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
736 DW_AT_sibling, if any. */
737 /* NOTE: This member isn't strictly necessary, read_partial_die could
738 return DW_AT_sibling values to its caller load_partial_dies. */
739 gdb_byte *sibling;
740
741 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
742 DW_AT_specification (or DW_AT_abstract_origin or
743 DW_AT_extension). */
744 sect_offset spec_offset;
745
746 /* Pointers to this DIE's parent, first child, and next sibling,
747 if any. */
748 struct partial_die_info *die_parent, *die_child, *die_sibling;
749 };
750
751 /* This data structure holds the information of an abbrev. */
752 struct abbrev_info
753 {
754 unsigned int number; /* number identifying abbrev */
755 enum dwarf_tag tag; /* dwarf tag */
756 unsigned short has_children; /* boolean */
757 unsigned short num_attrs; /* number of attributes */
758 struct attr_abbrev *attrs; /* an array of attribute descriptions */
759 struct abbrev_info *next; /* next in chain */
760 };
761
762 struct attr_abbrev
763 {
764 ENUM_BITFIELD(dwarf_attribute) name : 16;
765 ENUM_BITFIELD(dwarf_form) form : 16;
766 };
767
768 /* Attributes have a name and a value. */
769 struct attribute
770 {
771 ENUM_BITFIELD(dwarf_attribute) name : 16;
772 ENUM_BITFIELD(dwarf_form) form : 15;
773
774 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
775 field should be in u.str (existing only for DW_STRING) but it is kept
776 here for better struct attribute alignment. */
777 unsigned int string_is_canonical : 1;
778
779 union
780 {
781 char *str;
782 struct dwarf_block *blk;
783 ULONGEST unsnd;
784 LONGEST snd;
785 CORE_ADDR addr;
786 struct signatured_type *signatured_type;
787 }
788 u;
789 };
790
791 /* This data structure holds a complete die structure. */
792 struct die_info
793 {
794 /* DWARF-2 tag for this DIE. */
795 ENUM_BITFIELD(dwarf_tag) tag : 16;
796
797 /* Number of attributes */
798 unsigned char num_attrs;
799
800 /* True if we're presently building the full type name for the
801 type derived from this DIE. */
802 unsigned char building_fullname : 1;
803
804 /* Abbrev number */
805 unsigned int abbrev;
806
807 /* Offset in .debug_info or .debug_types section. */
808 sect_offset offset;
809
810 /* The dies in a compilation unit form an n-ary tree. PARENT
811 points to this die's parent; CHILD points to the first child of
812 this node; and all the children of a given node are chained
813 together via their SIBLING fields. */
814 struct die_info *child; /* Its first child, if any. */
815 struct die_info *sibling; /* Its next sibling, if any. */
816 struct die_info *parent; /* Its parent, if any. */
817
818 /* An array of attributes, with NUM_ATTRS elements. There may be
819 zero, but it's not common and zero-sized arrays are not
820 sufficiently portable C. */
821 struct attribute attrs[1];
822 };
823
824 /* Get at parts of an attribute structure. */
825
826 #define DW_STRING(attr) ((attr)->u.str)
827 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
828 #define DW_UNSND(attr) ((attr)->u.unsnd)
829 #define DW_BLOCK(attr) ((attr)->u.blk)
830 #define DW_SND(attr) ((attr)->u.snd)
831 #define DW_ADDR(attr) ((attr)->u.addr)
832 #define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
833
834 /* Blocks are a bunch of untyped bytes. */
835 struct dwarf_block
836 {
837 unsigned int size;
838
839 /* Valid only if SIZE is not zero. */
840 gdb_byte *data;
841 };
842
843 #ifndef ATTR_ALLOC_CHUNK
844 #define ATTR_ALLOC_CHUNK 4
845 #endif
846
847 /* Allocate fields for structs, unions and enums in this size. */
848 #ifndef DW_FIELD_ALLOC_CHUNK
849 #define DW_FIELD_ALLOC_CHUNK 4
850 #endif
851
852 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
853 but this would require a corresponding change in unpack_field_as_long
854 and friends. */
855 static int bits_per_byte = 8;
856
857 /* The routines that read and process dies for a C struct or C++ class
858 pass lists of data member fields and lists of member function fields
859 in an instance of a field_info structure, as defined below. */
860 struct field_info
861 {
862 /* List of data member and baseclasses fields. */
863 struct nextfield
864 {
865 struct nextfield *next;
866 int accessibility;
867 int virtuality;
868 struct field field;
869 }
870 *fields, *baseclasses;
871
872 /* Number of fields (including baseclasses). */
873 int nfields;
874
875 /* Number of baseclasses. */
876 int nbaseclasses;
877
878 /* Set if the accesibility of one of the fields is not public. */
879 int non_public_fields;
880
881 /* Member function fields array, entries are allocated in the order they
882 are encountered in the object file. */
883 struct nextfnfield
884 {
885 struct nextfnfield *next;
886 struct fn_field fnfield;
887 }
888 *fnfields;
889
890 /* Member function fieldlist array, contains name of possibly overloaded
891 member function, number of overloaded member functions and a pointer
892 to the head of the member function field chain. */
893 struct fnfieldlist
894 {
895 char *name;
896 int length;
897 struct nextfnfield *head;
898 }
899 *fnfieldlists;
900
901 /* Number of entries in the fnfieldlists array. */
902 int nfnfields;
903
904 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
905 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
906 struct typedef_field_list
907 {
908 struct typedef_field field;
909 struct typedef_field_list *next;
910 }
911 *typedef_field_list;
912 unsigned typedef_field_list_count;
913 };
914
915 /* One item on the queue of compilation units to read in full symbols
916 for. */
917 struct dwarf2_queue_item
918 {
919 struct dwarf2_per_cu_data *per_cu;
920 enum language pretend_language;
921 struct dwarf2_queue_item *next;
922 };
923
924 /* The current queue. */
925 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
926
927 /* Loaded secondary compilation units are kept in memory until they
928 have not been referenced for the processing of this many
929 compilation units. Set this to zero to disable caching. Cache
930 sizes of up to at least twenty will improve startup time for
931 typical inter-CU-reference binaries, at an obvious memory cost. */
932 static int dwarf2_max_cache_age = 5;
933 static void
934 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
935 struct cmd_list_element *c, const char *value)
936 {
937 fprintf_filtered (file, _("The upper bound on the age of cached "
938 "dwarf2 compilation units is %s.\n"),
939 value);
940 }
941
942
943 /* Various complaints about symbol reading that don't abort the process. */
944
945 static void
946 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
947 {
948 complaint (&symfile_complaints,
949 _("statement list doesn't fit in .debug_line section"));
950 }
951
952 static void
953 dwarf2_debug_line_missing_file_complaint (void)
954 {
955 complaint (&symfile_complaints,
956 _(".debug_line section has line data without a file"));
957 }
958
959 static void
960 dwarf2_debug_line_missing_end_sequence_complaint (void)
961 {
962 complaint (&symfile_complaints,
963 _(".debug_line section has line "
964 "program sequence without an end"));
965 }
966
967 static void
968 dwarf2_complex_location_expr_complaint (void)
969 {
970 complaint (&symfile_complaints, _("location expression too complex"));
971 }
972
973 static void
974 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
975 int arg3)
976 {
977 complaint (&symfile_complaints,
978 _("const value length mismatch for '%s', got %d, expected %d"),
979 arg1, arg2, arg3);
980 }
981
982 static void
983 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
984 {
985 complaint (&symfile_complaints,
986 _("debug info runs off end of %s section"
987 " [in module %s]"),
988 section->asection->name,
989 bfd_get_filename (section->asection->owner));
990 }
991
992 static void
993 dwarf2_macro_malformed_definition_complaint (const char *arg1)
994 {
995 complaint (&symfile_complaints,
996 _("macro debug info contains a "
997 "malformed macro definition:\n`%s'"),
998 arg1);
999 }
1000
1001 static void
1002 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1003 {
1004 complaint (&symfile_complaints,
1005 _("invalid attribute class or form for '%s' in '%s'"),
1006 arg1, arg2);
1007 }
1008
1009 /* local function prototypes */
1010
1011 static void dwarf2_locate_sections (bfd *, asection *, void *);
1012
1013 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
1014 struct objfile *);
1015
1016 static void dwarf2_find_base_address (struct die_info *die,
1017 struct dwarf2_cu *cu);
1018
1019 static void dwarf2_build_psymtabs_hard (struct objfile *);
1020
1021 static void scan_partial_symbols (struct partial_die_info *,
1022 CORE_ADDR *, CORE_ADDR *,
1023 int, struct dwarf2_cu *);
1024
1025 static void add_partial_symbol (struct partial_die_info *,
1026 struct dwarf2_cu *);
1027
1028 static void add_partial_namespace (struct partial_die_info *pdi,
1029 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1030 int need_pc, struct dwarf2_cu *cu);
1031
1032 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1033 CORE_ADDR *highpc, int need_pc,
1034 struct dwarf2_cu *cu);
1035
1036 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1037 struct dwarf2_cu *cu);
1038
1039 static void add_partial_subprogram (struct partial_die_info *pdi,
1040 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1041 int need_pc, struct dwarf2_cu *cu);
1042
1043 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
1044
1045 static void psymtab_to_symtab_1 (struct partial_symtab *);
1046
1047 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1048 struct dwarf2_section_info *);
1049
1050 static void dwarf2_free_abbrev_table (void *);
1051
1052 static unsigned int peek_abbrev_code (bfd *, gdb_byte *);
1053
1054 static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
1055 struct dwarf2_cu *);
1056
1057 static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
1058 struct dwarf2_cu *);
1059
1060 static struct partial_die_info *load_partial_dies
1061 (const struct die_reader_specs *, gdb_byte *, int);
1062
1063 static gdb_byte *read_partial_die (const struct die_reader_specs *,
1064 struct partial_die_info *,
1065 struct abbrev_info *,
1066 unsigned int,
1067 gdb_byte *);
1068
1069 static struct partial_die_info *find_partial_die (sect_offset,
1070 struct dwarf2_cu *);
1071
1072 static void fixup_partial_die (struct partial_die_info *,
1073 struct dwarf2_cu *);
1074
1075 static gdb_byte *read_attribute (const struct die_reader_specs *,
1076 struct attribute *, struct attr_abbrev *,
1077 gdb_byte *);
1078
1079 static unsigned int read_1_byte (bfd *, gdb_byte *);
1080
1081 static int read_1_signed_byte (bfd *, gdb_byte *);
1082
1083 static unsigned int read_2_bytes (bfd *, gdb_byte *);
1084
1085 static unsigned int read_4_bytes (bfd *, gdb_byte *);
1086
1087 static ULONGEST read_8_bytes (bfd *, gdb_byte *);
1088
1089 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
1090 unsigned int *);
1091
1092 static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
1093
1094 static LONGEST read_checked_initial_length_and_offset
1095 (bfd *, gdb_byte *, const struct comp_unit_head *,
1096 unsigned int *, unsigned int *);
1097
1098 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
1099 unsigned int *);
1100
1101 static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
1102
1103 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
1104
1105 static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
1106
1107 static char *read_indirect_string (bfd *, gdb_byte *,
1108 const struct comp_unit_head *,
1109 unsigned int *);
1110
1111 static ULONGEST read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
1112
1113 static LONGEST read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
1114
1115 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *, gdb_byte *,
1116 unsigned int *);
1117
1118 static char *read_str_index (const struct die_reader_specs *reader,
1119 struct dwarf2_cu *cu, ULONGEST str_index);
1120
1121 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1122
1123 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1124 struct dwarf2_cu *);
1125
1126 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1127 unsigned int,
1128 struct dwarf2_cu *);
1129
1130 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1131 struct dwarf2_cu *cu);
1132
1133 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1134
1135 static struct die_info *die_specification (struct die_info *die,
1136 struct dwarf2_cu **);
1137
1138 static void free_line_header (struct line_header *lh);
1139
1140 static void add_file_name (struct line_header *, char *, unsigned int,
1141 unsigned int, unsigned int);
1142
1143 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1144 struct dwarf2_cu *cu);
1145
1146 static void dwarf_decode_lines (struct line_header *, const char *,
1147 struct dwarf2_cu *, struct partial_symtab *,
1148 int);
1149
1150 static void dwarf2_start_subfile (char *, const char *, const char *);
1151
1152 static struct symbol *new_symbol (struct die_info *, struct type *,
1153 struct dwarf2_cu *);
1154
1155 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1156 struct dwarf2_cu *, struct symbol *);
1157
1158 static void dwarf2_const_value (struct attribute *, struct symbol *,
1159 struct dwarf2_cu *);
1160
1161 static void dwarf2_const_value_attr (struct attribute *attr,
1162 struct type *type,
1163 const char *name,
1164 struct obstack *obstack,
1165 struct dwarf2_cu *cu, LONGEST *value,
1166 gdb_byte **bytes,
1167 struct dwarf2_locexpr_baton **baton);
1168
1169 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1170
1171 static int need_gnat_info (struct dwarf2_cu *);
1172
1173 static struct type *die_descriptive_type (struct die_info *,
1174 struct dwarf2_cu *);
1175
1176 static void set_descriptive_type (struct type *, struct die_info *,
1177 struct dwarf2_cu *);
1178
1179 static struct type *die_containing_type (struct die_info *,
1180 struct dwarf2_cu *);
1181
1182 static struct type *lookup_die_type (struct die_info *, struct attribute *,
1183 struct dwarf2_cu *);
1184
1185 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1186
1187 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1188
1189 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1190
1191 static char *typename_concat (struct obstack *obs, const char *prefix,
1192 const char *suffix, int physname,
1193 struct dwarf2_cu *cu);
1194
1195 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1196
1197 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1198
1199 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1200
1201 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1202
1203 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1204
1205 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1206 struct dwarf2_cu *, struct partial_symtab *);
1207
1208 static int dwarf2_get_pc_bounds (struct die_info *,
1209 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1210 struct partial_symtab *);
1211
1212 static void get_scope_pc_bounds (struct die_info *,
1213 CORE_ADDR *, CORE_ADDR *,
1214 struct dwarf2_cu *);
1215
1216 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1217 CORE_ADDR, struct dwarf2_cu *);
1218
1219 static void dwarf2_add_field (struct field_info *, struct die_info *,
1220 struct dwarf2_cu *);
1221
1222 static void dwarf2_attach_fields_to_type (struct field_info *,
1223 struct type *, struct dwarf2_cu *);
1224
1225 static void dwarf2_add_member_fn (struct field_info *,
1226 struct die_info *, struct type *,
1227 struct dwarf2_cu *);
1228
1229 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1230 struct type *,
1231 struct dwarf2_cu *);
1232
1233 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1234
1235 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1236
1237 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1238
1239 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1240
1241 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1242
1243 static struct type *read_module_type (struct die_info *die,
1244 struct dwarf2_cu *cu);
1245
1246 static const char *namespace_name (struct die_info *die,
1247 int *is_anonymous, struct dwarf2_cu *);
1248
1249 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1250
1251 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1252
1253 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1254 struct dwarf2_cu *);
1255
1256 static struct die_info *read_die_and_children (const struct die_reader_specs *,
1257 gdb_byte *info_ptr,
1258 gdb_byte **new_info_ptr,
1259 struct die_info *parent);
1260
1261 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1262 gdb_byte *info_ptr,
1263 gdb_byte **new_info_ptr,
1264 struct die_info *parent);
1265
1266 static gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1267 struct die_info **, gdb_byte *, int *, int);
1268
1269 static gdb_byte *read_full_die (const struct die_reader_specs *,
1270 struct die_info **, gdb_byte *, int *);
1271
1272 static void process_die (struct die_info *, struct dwarf2_cu *);
1273
1274 static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
1275 struct obstack *);
1276
1277 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1278
1279 static const char *dwarf2_full_name (char *name,
1280 struct die_info *die,
1281 struct dwarf2_cu *cu);
1282
1283 static struct die_info *dwarf2_extension (struct die_info *die,
1284 struct dwarf2_cu **);
1285
1286 static const char *dwarf_tag_name (unsigned int);
1287
1288 static const char *dwarf_attr_name (unsigned int);
1289
1290 static const char *dwarf_form_name (unsigned int);
1291
1292 static char *dwarf_bool_name (unsigned int);
1293
1294 static const char *dwarf_type_encoding_name (unsigned int);
1295
1296 static struct die_info *sibling_die (struct die_info *);
1297
1298 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1299
1300 static void dump_die_for_error (struct die_info *);
1301
1302 static void dump_die_1 (struct ui_file *, int level, int max_level,
1303 struct die_info *);
1304
1305 /*static*/ void dump_die (struct die_info *, int max_level);
1306
1307 static void store_in_ref_table (struct die_info *,
1308 struct dwarf2_cu *);
1309
1310 static int is_ref_attr (struct attribute *);
1311
1312 static sect_offset dwarf2_get_ref_die_offset (struct attribute *);
1313
1314 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1315
1316 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1317 struct attribute *,
1318 struct dwarf2_cu **);
1319
1320 static struct die_info *follow_die_ref (struct die_info *,
1321 struct attribute *,
1322 struct dwarf2_cu **);
1323
1324 static struct die_info *follow_die_sig (struct die_info *,
1325 struct attribute *,
1326 struct dwarf2_cu **);
1327
1328 static struct signatured_type *lookup_signatured_type_at_offset
1329 (struct objfile *objfile,
1330 struct dwarf2_section_info *section, sect_offset offset);
1331
1332 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1333
1334 static void read_signatured_type (struct signatured_type *);
1335
1336 /* memory allocation interface */
1337
1338 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1339
1340 static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
1341
1342 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1343
1344 static void dwarf_decode_macros (struct line_header *, unsigned int,
1345 char *, bfd *, struct dwarf2_cu *,
1346 struct dwarf2_section_info *,
1347 int, const char *);
1348
1349 static int attr_form_is_block (struct attribute *);
1350
1351 static int attr_form_is_section_offset (struct attribute *);
1352
1353 static int attr_form_is_constant (struct attribute *);
1354
1355 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1356 struct dwarf2_loclist_baton *baton,
1357 struct attribute *attr);
1358
1359 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1360 struct symbol *sym,
1361 struct dwarf2_cu *cu);
1362
1363 static gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1364 gdb_byte *info_ptr,
1365 struct abbrev_info *abbrev);
1366
1367 static void free_stack_comp_unit (void *);
1368
1369 static hashval_t partial_die_hash (const void *item);
1370
1371 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1372
1373 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1374 (sect_offset offset, struct objfile *objfile);
1375
1376 static void init_one_comp_unit (struct dwarf2_cu *cu,
1377 struct dwarf2_per_cu_data *per_cu);
1378
1379 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1380 struct die_info *comp_unit_die,
1381 enum language pretend_language);
1382
1383 static void free_heap_comp_unit (void *);
1384
1385 static void free_cached_comp_units (void *);
1386
1387 static void age_cached_comp_units (void);
1388
1389 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1390
1391 static struct type *set_die_type (struct die_info *, struct type *,
1392 struct dwarf2_cu *);
1393
1394 static void create_all_comp_units (struct objfile *);
1395
1396 static int create_all_type_units (struct objfile *);
1397
1398 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1399 enum language);
1400
1401 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1402 enum language);
1403
1404 static void dwarf2_add_dependence (struct dwarf2_cu *,
1405 struct dwarf2_per_cu_data *);
1406
1407 static void dwarf2_mark (struct dwarf2_cu *);
1408
1409 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1410
1411 static struct type *get_die_type_at_offset (sect_offset,
1412 struct dwarf2_per_cu_data *per_cu);
1413
1414 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1415
1416 static void dwarf2_release_queue (void *dummy);
1417
1418 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1419 enum language pretend_language);
1420
1421 static int maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
1422 struct dwarf2_per_cu_data *per_cu,
1423 enum language pretend_language);
1424
1425 static void process_queue (void);
1426
1427 static void find_file_and_directory (struct die_info *die,
1428 struct dwarf2_cu *cu,
1429 char **name, char **comp_dir);
1430
1431 static char *file_full_name (int file, struct line_header *lh,
1432 const char *comp_dir);
1433
1434 static gdb_byte *read_and_check_comp_unit_head
1435 (struct comp_unit_head *header,
1436 struct dwarf2_section_info *section, gdb_byte *info_ptr,
1437 int is_debug_types_section);
1438
1439 static void init_cutu_and_read_dies
1440 (struct dwarf2_per_cu_data *this_cu, int use_existing_cu, int keep,
1441 die_reader_func_ftype *die_reader_func, void *data);
1442
1443 static void init_cutu_and_read_dies_simple
1444 (struct dwarf2_per_cu_data *this_cu,
1445 die_reader_func_ftype *die_reader_func, void *data);
1446
1447 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1448
1449 static void process_psymtab_comp_unit (struct dwarf2_per_cu_data *, int);
1450
1451 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1452
1453 static struct dwo_unit *lookup_dwo_comp_unit
1454 (struct dwarf2_per_cu_data *, char *, const char *, ULONGEST);
1455
1456 static struct dwo_unit *lookup_dwo_type_unit
1457 (struct signatured_type *, char *, const char *);
1458
1459 static void free_dwo_file_cleanup (void *);
1460
1461 static void munmap_section_buffer (struct dwarf2_section_info *);
1462
1463 static void process_cu_includes (void);
1464
1465 #if WORDS_BIGENDIAN
1466
1467 /* Convert VALUE between big- and little-endian. */
1468 static offset_type
1469 byte_swap (offset_type value)
1470 {
1471 offset_type result;
1472
1473 result = (value & 0xff) << 24;
1474 result |= (value & 0xff00) << 8;
1475 result |= (value & 0xff0000) >> 8;
1476 result |= (value & 0xff000000) >> 24;
1477 return result;
1478 }
1479
1480 #define MAYBE_SWAP(V) byte_swap (V)
1481
1482 #else
1483 #define MAYBE_SWAP(V) (V)
1484 #endif /* WORDS_BIGENDIAN */
1485
1486 /* The suffix for an index file. */
1487 #define INDEX_SUFFIX ".gdb-index"
1488
1489 static const char *dwarf2_physname (char *name, struct die_info *die,
1490 struct dwarf2_cu *cu);
1491
1492 /* Try to locate the sections we need for DWARF 2 debugging
1493 information and return true if we have enough to do something.
1494 NAMES points to the dwarf2 section names, or is NULL if the standard
1495 ELF names are used. */
1496
1497 int
1498 dwarf2_has_info (struct objfile *objfile,
1499 const struct dwarf2_debug_sections *names)
1500 {
1501 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1502 if (!dwarf2_per_objfile)
1503 {
1504 /* Initialize per-objfile state. */
1505 struct dwarf2_per_objfile *data
1506 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1507
1508 memset (data, 0, sizeof (*data));
1509 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1510 dwarf2_per_objfile = data;
1511
1512 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1513 (void *) names);
1514 dwarf2_per_objfile->objfile = objfile;
1515 }
1516 return (dwarf2_per_objfile->info.asection != NULL
1517 && dwarf2_per_objfile->abbrev.asection != NULL);
1518 }
1519
1520 /* When loading sections, we look either for uncompressed section or for
1521 compressed section names. */
1522
1523 static int
1524 section_is_p (const char *section_name,
1525 const struct dwarf2_section_names *names)
1526 {
1527 if (names->normal != NULL
1528 && strcmp (section_name, names->normal) == 0)
1529 return 1;
1530 if (names->compressed != NULL
1531 && strcmp (section_name, names->compressed) == 0)
1532 return 1;
1533 return 0;
1534 }
1535
1536 /* This function is mapped across the sections and remembers the
1537 offset and size of each of the debugging sections we are interested
1538 in. */
1539
1540 static void
1541 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
1542 {
1543 const struct dwarf2_debug_sections *names;
1544
1545 if (vnames == NULL)
1546 names = &dwarf2_elf_names;
1547 else
1548 names = (const struct dwarf2_debug_sections *) vnames;
1549
1550 if (section_is_p (sectp->name, &names->info))
1551 {
1552 dwarf2_per_objfile->info.asection = sectp;
1553 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1554 }
1555 else if (section_is_p (sectp->name, &names->abbrev))
1556 {
1557 dwarf2_per_objfile->abbrev.asection = sectp;
1558 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1559 }
1560 else if (section_is_p (sectp->name, &names->line))
1561 {
1562 dwarf2_per_objfile->line.asection = sectp;
1563 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1564 }
1565 else if (section_is_p (sectp->name, &names->loc))
1566 {
1567 dwarf2_per_objfile->loc.asection = sectp;
1568 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1569 }
1570 else if (section_is_p (sectp->name, &names->macinfo))
1571 {
1572 dwarf2_per_objfile->macinfo.asection = sectp;
1573 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1574 }
1575 else if (section_is_p (sectp->name, &names->macro))
1576 {
1577 dwarf2_per_objfile->macro.asection = sectp;
1578 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1579 }
1580 else if (section_is_p (sectp->name, &names->str))
1581 {
1582 dwarf2_per_objfile->str.asection = sectp;
1583 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1584 }
1585 else if (section_is_p (sectp->name, &names->addr))
1586 {
1587 dwarf2_per_objfile->addr.asection = sectp;
1588 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
1589 }
1590 else if (section_is_p (sectp->name, &names->frame))
1591 {
1592 dwarf2_per_objfile->frame.asection = sectp;
1593 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1594 }
1595 else if (section_is_p (sectp->name, &names->eh_frame))
1596 {
1597 flagword aflag = bfd_get_section_flags (abfd, sectp);
1598
1599 if (aflag & SEC_HAS_CONTENTS)
1600 {
1601 dwarf2_per_objfile->eh_frame.asection = sectp;
1602 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1603 }
1604 }
1605 else if (section_is_p (sectp->name, &names->ranges))
1606 {
1607 dwarf2_per_objfile->ranges.asection = sectp;
1608 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1609 }
1610 else if (section_is_p (sectp->name, &names->types))
1611 {
1612 struct dwarf2_section_info type_section;
1613
1614 memset (&type_section, 0, sizeof (type_section));
1615 type_section.asection = sectp;
1616 type_section.size = bfd_get_section_size (sectp);
1617
1618 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1619 &type_section);
1620 }
1621 else if (section_is_p (sectp->name, &names->gdb_index))
1622 {
1623 dwarf2_per_objfile->gdb_index.asection = sectp;
1624 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1625 }
1626
1627 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1628 && bfd_section_vma (abfd, sectp) == 0)
1629 dwarf2_per_objfile->has_section_at_zero = 1;
1630 }
1631
1632 /* Decompress a section that was compressed using zlib. Store the
1633 decompressed buffer, and its size, in OUTBUF and OUTSIZE. */
1634
1635 static void
1636 zlib_decompress_section (struct objfile *objfile, asection *sectp,
1637 gdb_byte **outbuf, bfd_size_type *outsize)
1638 {
1639 bfd *abfd = sectp->owner;
1640 #ifndef HAVE_ZLIB_H
1641 error (_("Support for zlib-compressed DWARF data (from '%s') "
1642 "is disabled in this copy of GDB"),
1643 bfd_get_filename (abfd));
1644 #else
1645 bfd_size_type compressed_size = bfd_get_section_size (sectp);
1646 gdb_byte *compressed_buffer = xmalloc (compressed_size);
1647 struct cleanup *cleanup = make_cleanup (xfree, compressed_buffer);
1648 bfd_size_type uncompressed_size;
1649 gdb_byte *uncompressed_buffer;
1650 z_stream strm;
1651 int rc;
1652 int header_size = 12;
1653
1654 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1655 || bfd_bread (compressed_buffer,
1656 compressed_size, abfd) != compressed_size)
1657 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1658 bfd_get_filename (abfd));
1659
1660 /* Read the zlib header. In this case, it should be "ZLIB" followed
1661 by the uncompressed section size, 8 bytes in big-endian order. */
1662 if (compressed_size < header_size
1663 || strncmp (compressed_buffer, "ZLIB", 4) != 0)
1664 error (_("Dwarf Error: Corrupt DWARF ZLIB header from '%s'"),
1665 bfd_get_filename (abfd));
1666 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
1667 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
1668 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
1669 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
1670 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
1671 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
1672 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
1673 uncompressed_size += compressed_buffer[11];
1674
1675 /* It is possible the section consists of several compressed
1676 buffers concatenated together, so we uncompress in a loop. */
1677 strm.zalloc = NULL;
1678 strm.zfree = NULL;
1679 strm.opaque = NULL;
1680 strm.avail_in = compressed_size - header_size;
1681 strm.next_in = (Bytef*) compressed_buffer + header_size;
1682 strm.avail_out = uncompressed_size;
1683 uncompressed_buffer = obstack_alloc (&objfile->objfile_obstack,
1684 uncompressed_size);
1685 rc = inflateInit (&strm);
1686 while (strm.avail_in > 0)
1687 {
1688 if (rc != Z_OK)
1689 error (_("Dwarf Error: setting up DWARF uncompression in '%s': %d"),
1690 bfd_get_filename (abfd), rc);
1691 strm.next_out = ((Bytef*) uncompressed_buffer
1692 + (uncompressed_size - strm.avail_out));
1693 rc = inflate (&strm, Z_FINISH);
1694 if (rc != Z_STREAM_END)
1695 error (_("Dwarf Error: zlib error uncompressing from '%s': %d"),
1696 bfd_get_filename (abfd), rc);
1697 rc = inflateReset (&strm);
1698 }
1699 rc = inflateEnd (&strm);
1700 if (rc != Z_OK
1701 || strm.avail_out != 0)
1702 error (_("Dwarf Error: concluding DWARF uncompression in '%s': %d"),
1703 bfd_get_filename (abfd), rc);
1704
1705 do_cleanups (cleanup);
1706 *outbuf = uncompressed_buffer;
1707 *outsize = uncompressed_size;
1708 #endif
1709 }
1710
1711 /* A helper function that decides whether a section is empty,
1712 or not present. */
1713
1714 static int
1715 dwarf2_section_empty_p (struct dwarf2_section_info *info)
1716 {
1717 return info->asection == NULL || info->size == 0;
1718 }
1719
1720 /* Read the contents of the section INFO.
1721 OBJFILE is the main object file, but not necessarily the file where
1722 the section comes from. E.g., for DWO files INFO->asection->owner
1723 is the bfd of the DWO file.
1724 If the section is compressed, uncompress it before returning. */
1725
1726 static void
1727 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1728 {
1729 asection *sectp = info->asection;
1730 bfd *abfd;
1731 gdb_byte *buf, *retbuf;
1732 unsigned char header[4];
1733
1734 if (info->readin)
1735 return;
1736 info->buffer = NULL;
1737 info->map_addr = NULL;
1738 info->readin = 1;
1739
1740 if (dwarf2_section_empty_p (info))
1741 return;
1742
1743 /* Note that ABFD may not be from OBJFILE, e.g. a DWO section. */
1744 abfd = sectp->owner;
1745
1746 /* Check if the file has a 4-byte header indicating compression. */
1747 if (info->size > sizeof (header)
1748 && bfd_seek (abfd, sectp->filepos, SEEK_SET) == 0
1749 && bfd_bread (header, sizeof (header), abfd) == sizeof (header))
1750 {
1751 /* Upon decompression, update the buffer and its size. */
1752 if (strncmp (header, "ZLIB", sizeof (header)) == 0)
1753 {
1754 zlib_decompress_section (objfile, sectp, &info->buffer,
1755 &info->size);
1756 return;
1757 }
1758 }
1759
1760 #ifdef HAVE_MMAP
1761 if (pagesize == 0)
1762 pagesize = getpagesize ();
1763
1764 /* Only try to mmap sections which are large enough: we don't want to
1765 waste space due to fragmentation. Also, only try mmap for sections
1766 without relocations. */
1767
1768 if (info->size > 4 * pagesize && (sectp->flags & SEC_RELOC) == 0)
1769 {
1770 info->buffer = bfd_mmap (abfd, 0, info->size, PROT_READ,
1771 MAP_PRIVATE, sectp->filepos,
1772 &info->map_addr, &info->map_len);
1773
1774 if ((caddr_t)info->buffer != MAP_FAILED)
1775 {
1776 #if HAVE_POSIX_MADVISE
1777 posix_madvise (info->map_addr, info->map_len, POSIX_MADV_WILLNEED);
1778 #endif
1779 return;
1780 }
1781 }
1782 #endif
1783
1784 /* If we get here, we are a normal, not-compressed section. */
1785 info->buffer = buf
1786 = obstack_alloc (&objfile->objfile_obstack, info->size);
1787
1788 /* When debugging .o files, we may need to apply relocations; see
1789 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1790 We never compress sections in .o files, so we only need to
1791 try this when the section is not compressed. */
1792 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1793 if (retbuf != NULL)
1794 {
1795 info->buffer = retbuf;
1796 return;
1797 }
1798
1799 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1800 || bfd_bread (buf, info->size, abfd) != info->size)
1801 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1802 bfd_get_filename (abfd));
1803 }
1804
1805 /* A helper function that returns the size of a section in a safe way.
1806 If you are positive that the section has been read before using the
1807 size, then it is safe to refer to the dwarf2_section_info object's
1808 "size" field directly. In other cases, you must call this
1809 function, because for compressed sections the size field is not set
1810 correctly until the section has been read. */
1811
1812 static bfd_size_type
1813 dwarf2_section_size (struct objfile *objfile,
1814 struct dwarf2_section_info *info)
1815 {
1816 if (!info->readin)
1817 dwarf2_read_section (objfile, info);
1818 return info->size;
1819 }
1820
1821 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1822 SECTION_NAME. */
1823
1824 void
1825 dwarf2_get_section_info (struct objfile *objfile,
1826 enum dwarf2_section_enum sect,
1827 asection **sectp, gdb_byte **bufp,
1828 bfd_size_type *sizep)
1829 {
1830 struct dwarf2_per_objfile *data
1831 = objfile_data (objfile, dwarf2_objfile_data_key);
1832 struct dwarf2_section_info *info;
1833
1834 /* We may see an objfile without any DWARF, in which case we just
1835 return nothing. */
1836 if (data == NULL)
1837 {
1838 *sectp = NULL;
1839 *bufp = NULL;
1840 *sizep = 0;
1841 return;
1842 }
1843 switch (sect)
1844 {
1845 case DWARF2_DEBUG_FRAME:
1846 info = &data->frame;
1847 break;
1848 case DWARF2_EH_FRAME:
1849 info = &data->eh_frame;
1850 break;
1851 default:
1852 gdb_assert_not_reached ("unexpected section");
1853 }
1854
1855 dwarf2_read_section (objfile, info);
1856
1857 *sectp = info->asection;
1858 *bufp = info->buffer;
1859 *sizep = info->size;
1860 }
1861
1862 \f
1863 /* DWARF quick_symbols_functions support. */
1864
1865 /* TUs can share .debug_line entries, and there can be a lot more TUs than
1866 unique line tables, so we maintain a separate table of all .debug_line
1867 derived entries to support the sharing.
1868 All the quick functions need is the list of file names. We discard the
1869 line_header when we're done and don't need to record it here. */
1870 struct quick_file_names
1871 {
1872 /* The offset in .debug_line of the line table. We hash on this. */
1873 unsigned int offset;
1874
1875 /* The number of entries in file_names, real_names. */
1876 unsigned int num_file_names;
1877
1878 /* The file names from the line table, after being run through
1879 file_full_name. */
1880 const char **file_names;
1881
1882 /* The file names from the line table after being run through
1883 gdb_realpath. These are computed lazily. */
1884 const char **real_names;
1885 };
1886
1887 /* When using the index (and thus not using psymtabs), each CU has an
1888 object of this type. This is used to hold information needed by
1889 the various "quick" methods. */
1890 struct dwarf2_per_cu_quick_data
1891 {
1892 /* The file table. This can be NULL if there was no file table
1893 or it's currently not read in.
1894 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
1895 struct quick_file_names *file_names;
1896
1897 /* The corresponding symbol table. This is NULL if symbols for this
1898 CU have not yet been read. */
1899 struct symtab *symtab;
1900
1901 /* A temporary mark bit used when iterating over all CUs in
1902 expand_symtabs_matching. */
1903 unsigned int mark : 1;
1904
1905 /* True if we've tried to read the file table and found there isn't one.
1906 There will be no point in trying to read it again next time. */
1907 unsigned int no_file_data : 1;
1908 };
1909
1910 /* Hash function for a quick_file_names. */
1911
1912 static hashval_t
1913 hash_file_name_entry (const void *e)
1914 {
1915 const struct quick_file_names *file_data = e;
1916
1917 return file_data->offset;
1918 }
1919
1920 /* Equality function for a quick_file_names. */
1921
1922 static int
1923 eq_file_name_entry (const void *a, const void *b)
1924 {
1925 const struct quick_file_names *ea = a;
1926 const struct quick_file_names *eb = b;
1927
1928 return ea->offset == eb->offset;
1929 }
1930
1931 /* Delete function for a quick_file_names. */
1932
1933 static void
1934 delete_file_name_entry (void *e)
1935 {
1936 struct quick_file_names *file_data = e;
1937 int i;
1938
1939 for (i = 0; i < file_data->num_file_names; ++i)
1940 {
1941 xfree ((void*) file_data->file_names[i]);
1942 if (file_data->real_names)
1943 xfree ((void*) file_data->real_names[i]);
1944 }
1945
1946 /* The space for the struct itself lives on objfile_obstack,
1947 so we don't free it here. */
1948 }
1949
1950 /* Create a quick_file_names hash table. */
1951
1952 static htab_t
1953 create_quick_file_names_table (unsigned int nr_initial_entries)
1954 {
1955 return htab_create_alloc (nr_initial_entries,
1956 hash_file_name_entry, eq_file_name_entry,
1957 delete_file_name_entry, xcalloc, xfree);
1958 }
1959
1960 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
1961 have to be created afterwards. You should call age_cached_comp_units after
1962 processing PER_CU->CU. dw2_setup must have been already called. */
1963
1964 static void
1965 load_cu (struct dwarf2_per_cu_data *per_cu)
1966 {
1967 if (per_cu->is_debug_types)
1968 load_full_type_unit (per_cu);
1969 else
1970 load_full_comp_unit (per_cu, language_minimal);
1971
1972 gdb_assert (per_cu->cu != NULL);
1973
1974 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
1975 }
1976
1977 /* Read in the symbols for PER_CU. */
1978
1979 static void
1980 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
1981 {
1982 struct cleanup *back_to;
1983
1984 back_to = make_cleanup (dwarf2_release_queue, NULL);
1985
1986 if (dwarf2_per_objfile->using_index
1987 ? per_cu->v.quick->symtab == NULL
1988 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
1989 {
1990 queue_comp_unit (per_cu, language_minimal);
1991 load_cu (per_cu);
1992 }
1993
1994 process_queue ();
1995
1996 /* Age the cache, releasing compilation units that have not
1997 been used recently. */
1998 age_cached_comp_units ();
1999
2000 do_cleanups (back_to);
2001 }
2002
2003 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2004 the objfile from which this CU came. Returns the resulting symbol
2005 table. */
2006
2007 static struct symtab *
2008 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2009 {
2010 gdb_assert (dwarf2_per_objfile->using_index);
2011 if (!per_cu->v.quick->symtab)
2012 {
2013 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2014 increment_reading_symtab ();
2015 dw2_do_instantiate_symtab (per_cu);
2016 process_cu_includes ();
2017 do_cleanups (back_to);
2018 }
2019 return per_cu->v.quick->symtab;
2020 }
2021
2022 /* Return the CU given its index. */
2023
2024 static struct dwarf2_per_cu_data *
2025 dw2_get_cu (int index)
2026 {
2027 if (index >= dwarf2_per_objfile->n_comp_units)
2028 {
2029 index -= dwarf2_per_objfile->n_comp_units;
2030 return dwarf2_per_objfile->all_type_units[index];
2031 }
2032 return dwarf2_per_objfile->all_comp_units[index];
2033 }
2034
2035 /* A helper function that knows how to read a 64-bit value in a way
2036 that doesn't make gdb die. Returns 1 if the conversion went ok, 0
2037 otherwise. */
2038
2039 static int
2040 extract_cu_value (const char *bytes, ULONGEST *result)
2041 {
2042 if (sizeof (ULONGEST) < 8)
2043 {
2044 int i;
2045
2046 /* Ignore the upper 4 bytes if they are all zero. */
2047 for (i = 0; i < 4; ++i)
2048 if (bytes[i + 4] != 0)
2049 return 0;
2050
2051 *result = extract_unsigned_integer (bytes, 4, BFD_ENDIAN_LITTLE);
2052 }
2053 else
2054 *result = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2055 return 1;
2056 }
2057
2058 /* Read the CU list from the mapped index, and use it to create all
2059 the CU objects for this objfile. Return 0 if something went wrong,
2060 1 if everything went ok. */
2061
2062 static int
2063 create_cus_from_index (struct objfile *objfile, const gdb_byte *cu_list,
2064 offset_type cu_list_elements)
2065 {
2066 offset_type i;
2067
2068 dwarf2_per_objfile->n_comp_units = cu_list_elements / 2;
2069 dwarf2_per_objfile->all_comp_units
2070 = obstack_alloc (&objfile->objfile_obstack,
2071 dwarf2_per_objfile->n_comp_units
2072 * sizeof (struct dwarf2_per_cu_data *));
2073
2074 for (i = 0; i < cu_list_elements; i += 2)
2075 {
2076 struct dwarf2_per_cu_data *the_cu;
2077 ULONGEST offset, length;
2078
2079 if (!extract_cu_value (cu_list, &offset)
2080 || !extract_cu_value (cu_list + 8, &length))
2081 return 0;
2082 cu_list += 2 * 8;
2083
2084 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2085 struct dwarf2_per_cu_data);
2086 the_cu->offset.sect_off = offset;
2087 the_cu->length = length;
2088 the_cu->objfile = objfile;
2089 the_cu->info_or_types_section = &dwarf2_per_objfile->info;
2090 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2091 struct dwarf2_per_cu_quick_data);
2092 dwarf2_per_objfile->all_comp_units[i / 2] = the_cu;
2093 }
2094
2095 return 1;
2096 }
2097
2098 /* Create the signatured type hash table from the index. */
2099
2100 static int
2101 create_signatured_type_table_from_index (struct objfile *objfile,
2102 struct dwarf2_section_info *section,
2103 const gdb_byte *bytes,
2104 offset_type elements)
2105 {
2106 offset_type i;
2107 htab_t sig_types_hash;
2108
2109 dwarf2_per_objfile->n_type_units = elements / 3;
2110 dwarf2_per_objfile->all_type_units
2111 = obstack_alloc (&objfile->objfile_obstack,
2112 dwarf2_per_objfile->n_type_units
2113 * sizeof (struct dwarf2_per_cu_data *));
2114
2115 sig_types_hash = allocate_signatured_type_table (objfile);
2116
2117 for (i = 0; i < elements; i += 3)
2118 {
2119 struct signatured_type *sig_type;
2120 ULONGEST offset, type_offset_in_tu, signature;
2121 void **slot;
2122
2123 if (!extract_cu_value (bytes, &offset)
2124 || !extract_cu_value (bytes + 8, &type_offset_in_tu))
2125 return 0;
2126 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2127 bytes += 3 * 8;
2128
2129 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2130 struct signatured_type);
2131 sig_type->signature = signature;
2132 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2133 sig_type->per_cu.is_debug_types = 1;
2134 sig_type->per_cu.info_or_types_section = section;
2135 sig_type->per_cu.offset.sect_off = offset;
2136 sig_type->per_cu.objfile = objfile;
2137 sig_type->per_cu.v.quick
2138 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2139 struct dwarf2_per_cu_quick_data);
2140
2141 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2142 *slot = sig_type;
2143
2144 dwarf2_per_objfile->all_type_units[i / 3] = &sig_type->per_cu;
2145 }
2146
2147 dwarf2_per_objfile->signatured_types = sig_types_hash;
2148
2149 return 1;
2150 }
2151
2152 /* Read the address map data from the mapped index, and use it to
2153 populate the objfile's psymtabs_addrmap. */
2154
2155 static void
2156 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2157 {
2158 const gdb_byte *iter, *end;
2159 struct obstack temp_obstack;
2160 struct addrmap *mutable_map;
2161 struct cleanup *cleanup;
2162 CORE_ADDR baseaddr;
2163
2164 obstack_init (&temp_obstack);
2165 cleanup = make_cleanup_obstack_free (&temp_obstack);
2166 mutable_map = addrmap_create_mutable (&temp_obstack);
2167
2168 iter = index->address_table;
2169 end = iter + index->address_table_size;
2170
2171 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2172
2173 while (iter < end)
2174 {
2175 ULONGEST hi, lo, cu_index;
2176 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2177 iter += 8;
2178 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2179 iter += 8;
2180 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2181 iter += 4;
2182
2183 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2184 dw2_get_cu (cu_index));
2185 }
2186
2187 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2188 &objfile->objfile_obstack);
2189 do_cleanups (cleanup);
2190 }
2191
2192 /* The hash function for strings in the mapped index. This is the same as
2193 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2194 implementation. This is necessary because the hash function is tied to the
2195 format of the mapped index file. The hash values do not have to match with
2196 SYMBOL_HASH_NEXT.
2197
2198 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2199
2200 static hashval_t
2201 mapped_index_string_hash (int index_version, const void *p)
2202 {
2203 const unsigned char *str = (const unsigned char *) p;
2204 hashval_t r = 0;
2205 unsigned char c;
2206
2207 while ((c = *str++) != 0)
2208 {
2209 if (index_version >= 5)
2210 c = tolower (c);
2211 r = r * 67 + c - 113;
2212 }
2213
2214 return r;
2215 }
2216
2217 /* Find a slot in the mapped index INDEX for the object named NAME.
2218 If NAME is found, set *VEC_OUT to point to the CU vector in the
2219 constant pool and return 1. If NAME cannot be found, return 0. */
2220
2221 static int
2222 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2223 offset_type **vec_out)
2224 {
2225 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2226 offset_type hash;
2227 offset_type slot, step;
2228 int (*cmp) (const char *, const char *);
2229
2230 if (current_language->la_language == language_cplus
2231 || current_language->la_language == language_java
2232 || current_language->la_language == language_fortran)
2233 {
2234 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2235 not contain any. */
2236 const char *paren = strchr (name, '(');
2237
2238 if (paren)
2239 {
2240 char *dup;
2241
2242 dup = xmalloc (paren - name + 1);
2243 memcpy (dup, name, paren - name);
2244 dup[paren - name] = 0;
2245
2246 make_cleanup (xfree, dup);
2247 name = dup;
2248 }
2249 }
2250
2251 /* Index version 4 did not support case insensitive searches. But the
2252 indices for case insensitive languages are built in lowercase, therefore
2253 simulate our NAME being searched is also lowercased. */
2254 hash = mapped_index_string_hash ((index->version == 4
2255 && case_sensitivity == case_sensitive_off
2256 ? 5 : index->version),
2257 name);
2258
2259 slot = hash & (index->symbol_table_slots - 1);
2260 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2261 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2262
2263 for (;;)
2264 {
2265 /* Convert a slot number to an offset into the table. */
2266 offset_type i = 2 * slot;
2267 const char *str;
2268 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2269 {
2270 do_cleanups (back_to);
2271 return 0;
2272 }
2273
2274 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2275 if (!cmp (name, str))
2276 {
2277 *vec_out = (offset_type *) (index->constant_pool
2278 + MAYBE_SWAP (index->symbol_table[i + 1]));
2279 do_cleanups (back_to);
2280 return 1;
2281 }
2282
2283 slot = (slot + step) & (index->symbol_table_slots - 1);
2284 }
2285 }
2286
2287 /* Read the index file. If everything went ok, initialize the "quick"
2288 elements of all the CUs and return 1. Otherwise, return 0. */
2289
2290 static int
2291 dwarf2_read_index (struct objfile *objfile)
2292 {
2293 char *addr;
2294 struct mapped_index *map;
2295 offset_type *metadata;
2296 const gdb_byte *cu_list;
2297 const gdb_byte *types_list = NULL;
2298 offset_type version, cu_list_elements;
2299 offset_type types_list_elements = 0;
2300 int i;
2301
2302 if (dwarf2_section_empty_p (&dwarf2_per_objfile->gdb_index))
2303 return 0;
2304
2305 /* Older elfutils strip versions could keep the section in the main
2306 executable while splitting it for the separate debug info file. */
2307 if ((bfd_get_file_flags (dwarf2_per_objfile->gdb_index.asection)
2308 & SEC_HAS_CONTENTS) == 0)
2309 return 0;
2310
2311 dwarf2_read_section (objfile, &dwarf2_per_objfile->gdb_index);
2312
2313 addr = dwarf2_per_objfile->gdb_index.buffer;
2314 /* Version check. */
2315 version = MAYBE_SWAP (*(offset_type *) addr);
2316 /* Versions earlier than 3 emitted every copy of a psymbol. This
2317 causes the index to behave very poorly for certain requests. Version 3
2318 contained incomplete addrmap. So, it seems better to just ignore such
2319 indices. */
2320 if (version < 4)
2321 {
2322 static int warning_printed = 0;
2323 if (!warning_printed)
2324 {
2325 warning (_("Skipping obsolete .gdb_index section in %s."),
2326 objfile->name);
2327 warning_printed = 1;
2328 }
2329 return 0;
2330 }
2331 /* Index version 4 uses a different hash function than index version
2332 5 and later.
2333
2334 Versions earlier than 6 did not emit psymbols for inlined
2335 functions. Using these files will cause GDB not to be able to
2336 set breakpoints on inlined functions by name, so we ignore these
2337 indices unless the --use-deprecated-index-sections command line
2338 option was supplied. */
2339 if (version < 6 && !use_deprecated_index_sections)
2340 {
2341 static int warning_printed = 0;
2342 if (!warning_printed)
2343 {
2344 warning (_("Skipping deprecated .gdb_index section in %s, pass "
2345 "--use-deprecated-index-sections to use them anyway"),
2346 objfile->name);
2347 warning_printed = 1;
2348 }
2349 return 0;
2350 }
2351 /* Indexes with higher version than the one supported by GDB may be no
2352 longer backward compatible. */
2353 if (version > 6)
2354 return 0;
2355
2356 map = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct mapped_index);
2357 map->version = version;
2358 map->total_size = dwarf2_per_objfile->gdb_index.size;
2359
2360 metadata = (offset_type *) (addr + sizeof (offset_type));
2361
2362 i = 0;
2363 cu_list = addr + MAYBE_SWAP (metadata[i]);
2364 cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2365 / 8);
2366 ++i;
2367
2368 types_list = addr + MAYBE_SWAP (metadata[i]);
2369 types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2370 - MAYBE_SWAP (metadata[i]))
2371 / 8);
2372 ++i;
2373
2374 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2375 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2376 - MAYBE_SWAP (metadata[i]));
2377 ++i;
2378
2379 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2380 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2381 - MAYBE_SWAP (metadata[i]))
2382 / (2 * sizeof (offset_type)));
2383 ++i;
2384
2385 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
2386
2387 /* Don't use the index if it's empty. */
2388 if (map->symbol_table_slots == 0)
2389 return 0;
2390
2391 if (!create_cus_from_index (objfile, cu_list, cu_list_elements))
2392 return 0;
2393
2394 if (types_list_elements)
2395 {
2396 struct dwarf2_section_info *section;
2397
2398 /* We can only handle a single .debug_types when we have an
2399 index. */
2400 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2401 return 0;
2402
2403 section = VEC_index (dwarf2_section_info_def,
2404 dwarf2_per_objfile->types, 0);
2405
2406 if (!create_signatured_type_table_from_index (objfile, section,
2407 types_list,
2408 types_list_elements))
2409 return 0;
2410 }
2411
2412 create_addrmap_from_index (objfile, map);
2413
2414 dwarf2_per_objfile->index_table = map;
2415 dwarf2_per_objfile->using_index = 1;
2416 dwarf2_per_objfile->quick_file_names_table =
2417 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2418
2419 return 1;
2420 }
2421
2422 /* A helper for the "quick" functions which sets the global
2423 dwarf2_per_objfile according to OBJFILE. */
2424
2425 static void
2426 dw2_setup (struct objfile *objfile)
2427 {
2428 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2429 gdb_assert (dwarf2_per_objfile);
2430 }
2431
2432 /* die_reader_func for dw2_get_file_names. */
2433
2434 static void
2435 dw2_get_file_names_reader (const struct die_reader_specs *reader,
2436 gdb_byte *info_ptr,
2437 struct die_info *comp_unit_die,
2438 int has_children,
2439 void *data)
2440 {
2441 struct dwarf2_cu *cu = reader->cu;
2442 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
2443 struct objfile *objfile = dwarf2_per_objfile->objfile;
2444 struct line_header *lh;
2445 struct attribute *attr;
2446 int i;
2447 char *name, *comp_dir;
2448 void **slot;
2449 struct quick_file_names *qfn;
2450 unsigned int line_offset;
2451
2452 /* Our callers never want to match partial units -- instead they
2453 will match the enclosing full CU. */
2454 if (comp_unit_die->tag == DW_TAG_partial_unit)
2455 {
2456 this_cu->v.quick->no_file_data = 1;
2457 return;
2458 }
2459
2460 lh = NULL;
2461 slot = NULL;
2462 line_offset = 0;
2463
2464 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
2465 if (attr)
2466 {
2467 struct quick_file_names find_entry;
2468
2469 line_offset = DW_UNSND (attr);
2470
2471 /* We may have already read in this line header (TU line header sharing).
2472 If we have we're done. */
2473 find_entry.offset = line_offset;
2474 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2475 &find_entry, INSERT);
2476 if (*slot != NULL)
2477 {
2478 this_cu->v.quick->file_names = *slot;
2479 return;
2480 }
2481
2482 lh = dwarf_decode_line_header (line_offset, cu);
2483 }
2484 if (lh == NULL)
2485 {
2486 this_cu->v.quick->no_file_data = 1;
2487 return;
2488 }
2489
2490 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2491 qfn->offset = line_offset;
2492 gdb_assert (slot != NULL);
2493 *slot = qfn;
2494
2495 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
2496
2497 qfn->num_file_names = lh->num_file_names;
2498 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2499 lh->num_file_names * sizeof (char *));
2500 for (i = 0; i < lh->num_file_names; ++i)
2501 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2502 qfn->real_names = NULL;
2503
2504 free_line_header (lh);
2505
2506 this_cu->v.quick->file_names = qfn;
2507 }
2508
2509 /* A helper for the "quick" functions which attempts to read the line
2510 table for THIS_CU. */
2511
2512 static struct quick_file_names *
2513 dw2_get_file_names (struct objfile *objfile,
2514 struct dwarf2_per_cu_data *this_cu)
2515 {
2516 if (this_cu->v.quick->file_names != NULL)
2517 return this_cu->v.quick->file_names;
2518 /* If we know there is no line data, no point in looking again. */
2519 if (this_cu->v.quick->no_file_data)
2520 return NULL;
2521
2522 /* If DWO files are in use, we can still find the DW_AT_stmt_list attribute
2523 in the stub for CUs, there's is no need to lookup the DWO file.
2524 However, that's not the case for TUs where DW_AT_stmt_list lives in the
2525 DWO file. */
2526 if (this_cu->is_debug_types)
2527 init_cutu_and_read_dies (this_cu, 0, 0, dw2_get_file_names_reader, NULL);
2528 else
2529 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
2530
2531 if (this_cu->v.quick->no_file_data)
2532 return NULL;
2533 return this_cu->v.quick->file_names;
2534 }
2535
2536 /* A helper for the "quick" functions which computes and caches the
2537 real path for a given file name from the line table. */
2538
2539 static const char *
2540 dw2_get_real_path (struct objfile *objfile,
2541 struct quick_file_names *qfn, int index)
2542 {
2543 if (qfn->real_names == NULL)
2544 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2545 qfn->num_file_names, sizeof (char *));
2546
2547 if (qfn->real_names[index] == NULL)
2548 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
2549
2550 return qfn->real_names[index];
2551 }
2552
2553 static struct symtab *
2554 dw2_find_last_source_symtab (struct objfile *objfile)
2555 {
2556 int index;
2557
2558 dw2_setup (objfile);
2559 index = dwarf2_per_objfile->n_comp_units - 1;
2560 return dw2_instantiate_symtab (dw2_get_cu (index));
2561 }
2562
2563 /* Traversal function for dw2_forget_cached_source_info. */
2564
2565 static int
2566 dw2_free_cached_file_names (void **slot, void *info)
2567 {
2568 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
2569
2570 if (file_data->real_names)
2571 {
2572 int i;
2573
2574 for (i = 0; i < file_data->num_file_names; ++i)
2575 {
2576 xfree ((void*) file_data->real_names[i]);
2577 file_data->real_names[i] = NULL;
2578 }
2579 }
2580
2581 return 1;
2582 }
2583
2584 static void
2585 dw2_forget_cached_source_info (struct objfile *objfile)
2586 {
2587 dw2_setup (objfile);
2588
2589 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
2590 dw2_free_cached_file_names, NULL);
2591 }
2592
2593 /* Helper function for dw2_map_symtabs_matching_filename that expands
2594 the symtabs and calls the iterator. */
2595
2596 static int
2597 dw2_map_expand_apply (struct objfile *objfile,
2598 struct dwarf2_per_cu_data *per_cu,
2599 const char *name,
2600 const char *full_path, const char *real_path,
2601 int (*callback) (struct symtab *, void *),
2602 void *data)
2603 {
2604 struct symtab *last_made = objfile->symtabs;
2605
2606 /* Don't visit already-expanded CUs. */
2607 if (per_cu->v.quick->symtab)
2608 return 0;
2609
2610 /* This may expand more than one symtab, and we want to iterate over
2611 all of them. */
2612 dw2_instantiate_symtab (per_cu);
2613
2614 return iterate_over_some_symtabs (name, full_path, real_path, callback, data,
2615 objfile->symtabs, last_made);
2616 }
2617
2618 /* Implementation of the map_symtabs_matching_filename method. */
2619
2620 static int
2621 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
2622 const char *full_path, const char *real_path,
2623 int (*callback) (struct symtab *, void *),
2624 void *data)
2625 {
2626 int i;
2627 const char *name_basename = lbasename (name);
2628 int name_len = strlen (name);
2629 int is_abs = IS_ABSOLUTE_PATH (name);
2630
2631 dw2_setup (objfile);
2632
2633 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2634 + dwarf2_per_objfile->n_type_units); ++i)
2635 {
2636 int j;
2637 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2638 struct quick_file_names *file_data;
2639
2640 /* We only need to look at symtabs not already expanded. */
2641 if (per_cu->v.quick->symtab)
2642 continue;
2643
2644 file_data = dw2_get_file_names (objfile, per_cu);
2645 if (file_data == NULL)
2646 continue;
2647
2648 for (j = 0; j < file_data->num_file_names; ++j)
2649 {
2650 const char *this_name = file_data->file_names[j];
2651
2652 if (FILENAME_CMP (name, this_name) == 0
2653 || (!is_abs && compare_filenames_for_search (this_name,
2654 name, name_len)))
2655 {
2656 if (dw2_map_expand_apply (objfile, per_cu,
2657 name, full_path, real_path,
2658 callback, data))
2659 return 1;
2660 }
2661
2662 /* Before we invoke realpath, which can get expensive when many
2663 files are involved, do a quick comparison of the basenames. */
2664 if (! basenames_may_differ
2665 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
2666 continue;
2667
2668 if (full_path != NULL)
2669 {
2670 const char *this_real_name = dw2_get_real_path (objfile,
2671 file_data, j);
2672
2673 if (this_real_name != NULL
2674 && (FILENAME_CMP (full_path, this_real_name) == 0
2675 || (!is_abs
2676 && compare_filenames_for_search (this_real_name,
2677 name, name_len))))
2678 {
2679 if (dw2_map_expand_apply (objfile, per_cu,
2680 name, full_path, real_path,
2681 callback, data))
2682 return 1;
2683 }
2684 }
2685
2686 if (real_path != NULL)
2687 {
2688 const char *this_real_name = dw2_get_real_path (objfile,
2689 file_data, j);
2690
2691 if (this_real_name != NULL
2692 && (FILENAME_CMP (real_path, this_real_name) == 0
2693 || (!is_abs
2694 && compare_filenames_for_search (this_real_name,
2695 name, name_len))))
2696 {
2697 if (dw2_map_expand_apply (objfile, per_cu,
2698 name, full_path, real_path,
2699 callback, data))
2700 return 1;
2701 }
2702 }
2703 }
2704 }
2705
2706 return 0;
2707 }
2708
2709 static struct symtab *
2710 dw2_lookup_symbol (struct objfile *objfile, int block_index,
2711 const char *name, domain_enum domain)
2712 {
2713 /* We do all the work in the pre_expand_symtabs_matching hook
2714 instead. */
2715 return NULL;
2716 }
2717
2718 /* A helper function that expands all symtabs that hold an object
2719 named NAME. */
2720
2721 static void
2722 dw2_do_expand_symtabs_matching (struct objfile *objfile, const char *name)
2723 {
2724 dw2_setup (objfile);
2725
2726 /* index_table is NULL if OBJF_READNOW. */
2727 if (dwarf2_per_objfile->index_table)
2728 {
2729 offset_type *vec;
2730
2731 if (find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2732 name, &vec))
2733 {
2734 offset_type i, len = MAYBE_SWAP (*vec);
2735 for (i = 0; i < len; ++i)
2736 {
2737 offset_type cu_index = MAYBE_SWAP (vec[i + 1]);
2738 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
2739
2740 dw2_instantiate_symtab (per_cu);
2741 }
2742 }
2743 }
2744 }
2745
2746 static void
2747 dw2_pre_expand_symtabs_matching (struct objfile *objfile,
2748 enum block_enum block_kind, const char *name,
2749 domain_enum domain)
2750 {
2751 dw2_do_expand_symtabs_matching (objfile, name);
2752 }
2753
2754 static void
2755 dw2_print_stats (struct objfile *objfile)
2756 {
2757 int i, count;
2758
2759 dw2_setup (objfile);
2760 count = 0;
2761 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2762 + dwarf2_per_objfile->n_type_units); ++i)
2763 {
2764 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2765
2766 if (!per_cu->v.quick->symtab)
2767 ++count;
2768 }
2769 printf_filtered (_(" Number of unread CUs: %d\n"), count);
2770 }
2771
2772 static void
2773 dw2_dump (struct objfile *objfile)
2774 {
2775 /* Nothing worth printing. */
2776 }
2777
2778 static void
2779 dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
2780 struct section_offsets *delta)
2781 {
2782 /* There's nothing to relocate here. */
2783 }
2784
2785 static void
2786 dw2_expand_symtabs_for_function (struct objfile *objfile,
2787 const char *func_name)
2788 {
2789 dw2_do_expand_symtabs_matching (objfile, func_name);
2790 }
2791
2792 static void
2793 dw2_expand_all_symtabs (struct objfile *objfile)
2794 {
2795 int i;
2796
2797 dw2_setup (objfile);
2798
2799 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2800 + dwarf2_per_objfile->n_type_units); ++i)
2801 {
2802 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2803
2804 dw2_instantiate_symtab (per_cu);
2805 }
2806 }
2807
2808 static void
2809 dw2_expand_symtabs_with_filename (struct objfile *objfile,
2810 const char *filename)
2811 {
2812 int i;
2813
2814 dw2_setup (objfile);
2815
2816 /* We don't need to consider type units here.
2817 This is only called for examining code, e.g. expand_line_sal.
2818 There can be an order of magnitude (or more) more type units
2819 than comp units, and we avoid them if we can. */
2820
2821 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
2822 {
2823 int j;
2824 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2825 struct quick_file_names *file_data;
2826
2827 /* We only need to look at symtabs not already expanded. */
2828 if (per_cu->v.quick->symtab)
2829 continue;
2830
2831 file_data = dw2_get_file_names (objfile, per_cu);
2832 if (file_data == NULL)
2833 continue;
2834
2835 for (j = 0; j < file_data->num_file_names; ++j)
2836 {
2837 const char *this_name = file_data->file_names[j];
2838 if (FILENAME_CMP (this_name, filename) == 0)
2839 {
2840 dw2_instantiate_symtab (per_cu);
2841 break;
2842 }
2843 }
2844 }
2845 }
2846
2847 /* A helper function for dw2_find_symbol_file that finds the primary
2848 file name for a given CU. This is a die_reader_func. */
2849
2850 static void
2851 dw2_get_primary_filename_reader (const struct die_reader_specs *reader,
2852 gdb_byte *info_ptr,
2853 struct die_info *comp_unit_die,
2854 int has_children,
2855 void *data)
2856 {
2857 const char **result_ptr = data;
2858 struct dwarf2_cu *cu = reader->cu;
2859 struct attribute *attr;
2860
2861 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
2862 if (attr == NULL)
2863 *result_ptr = NULL;
2864 else
2865 *result_ptr = DW_STRING (attr);
2866 }
2867
2868 static const char *
2869 dw2_find_symbol_file (struct objfile *objfile, const char *name)
2870 {
2871 struct dwarf2_per_cu_data *per_cu;
2872 offset_type *vec;
2873 struct quick_file_names *file_data;
2874 const char *filename;
2875
2876 dw2_setup (objfile);
2877
2878 /* index_table is NULL if OBJF_READNOW. */
2879 if (!dwarf2_per_objfile->index_table)
2880 {
2881 struct symtab *s;
2882
2883 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
2884 {
2885 struct blockvector *bv = BLOCKVECTOR (s);
2886 const struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2887 struct symbol *sym = lookup_block_symbol (block, name, VAR_DOMAIN);
2888
2889 if (sym)
2890 return sym->symtab->filename;
2891 }
2892 return NULL;
2893 }
2894
2895 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2896 name, &vec))
2897 return NULL;
2898
2899 /* Note that this just looks at the very first one named NAME -- but
2900 actually we are looking for a function. find_main_filename
2901 should be rewritten so that it doesn't require a custom hook. It
2902 could just use the ordinary symbol tables. */
2903 /* vec[0] is the length, which must always be >0. */
2904 per_cu = dw2_get_cu (MAYBE_SWAP (vec[1]));
2905
2906 if (per_cu->v.quick->symtab != NULL)
2907 return per_cu->v.quick->symtab->filename;
2908
2909 init_cutu_and_read_dies (per_cu, 0, 0, dw2_get_primary_filename_reader,
2910 &filename);
2911
2912 return filename;
2913 }
2914
2915 static void
2916 dw2_map_matching_symbols (const char * name, domain_enum namespace,
2917 struct objfile *objfile, int global,
2918 int (*callback) (struct block *,
2919 struct symbol *, void *),
2920 void *data, symbol_compare_ftype *match,
2921 symbol_compare_ftype *ordered_compare)
2922 {
2923 /* Currently unimplemented; used for Ada. The function can be called if the
2924 current language is Ada for a non-Ada objfile using GNU index. As Ada
2925 does not look for non-Ada symbols this function should just return. */
2926 }
2927
2928 static void
2929 dw2_expand_symtabs_matching
2930 (struct objfile *objfile,
2931 int (*file_matcher) (const char *, void *),
2932 int (*name_matcher) (const char *, void *),
2933 enum search_domain kind,
2934 void *data)
2935 {
2936 int i;
2937 offset_type iter;
2938 struct mapped_index *index;
2939
2940 dw2_setup (objfile);
2941
2942 /* index_table is NULL if OBJF_READNOW. */
2943 if (!dwarf2_per_objfile->index_table)
2944 return;
2945 index = dwarf2_per_objfile->index_table;
2946
2947 if (file_matcher != NULL)
2948 {
2949 struct cleanup *cleanup;
2950 htab_t visited_found, visited_not_found;
2951
2952 visited_found = htab_create_alloc (10,
2953 htab_hash_pointer, htab_eq_pointer,
2954 NULL, xcalloc, xfree);
2955 cleanup = make_cleanup_htab_delete (visited_found);
2956 visited_not_found = htab_create_alloc (10,
2957 htab_hash_pointer, htab_eq_pointer,
2958 NULL, xcalloc, xfree);
2959 make_cleanup_htab_delete (visited_not_found);
2960
2961 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2962 + dwarf2_per_objfile->n_type_units); ++i)
2963 {
2964 int j;
2965 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2966 struct quick_file_names *file_data;
2967 void **slot;
2968
2969 per_cu->v.quick->mark = 0;
2970
2971 /* We only need to look at symtabs not already expanded. */
2972 if (per_cu->v.quick->symtab)
2973 continue;
2974
2975 file_data = dw2_get_file_names (objfile, per_cu);
2976 if (file_data == NULL)
2977 continue;
2978
2979 if (htab_find (visited_not_found, file_data) != NULL)
2980 continue;
2981 else if (htab_find (visited_found, file_data) != NULL)
2982 {
2983 per_cu->v.quick->mark = 1;
2984 continue;
2985 }
2986
2987 for (j = 0; j < file_data->num_file_names; ++j)
2988 {
2989 if (file_matcher (file_data->file_names[j], data))
2990 {
2991 per_cu->v.quick->mark = 1;
2992 break;
2993 }
2994 }
2995
2996 slot = htab_find_slot (per_cu->v.quick->mark
2997 ? visited_found
2998 : visited_not_found,
2999 file_data, INSERT);
3000 *slot = file_data;
3001 }
3002
3003 do_cleanups (cleanup);
3004 }
3005
3006 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3007 {
3008 offset_type idx = 2 * iter;
3009 const char *name;
3010 offset_type *vec, vec_len, vec_idx;
3011
3012 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3013 continue;
3014
3015 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3016
3017 if (! (*name_matcher) (name, data))
3018 continue;
3019
3020 /* The name was matched, now expand corresponding CUs that were
3021 marked. */
3022 vec = (offset_type *) (index->constant_pool
3023 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3024 vec_len = MAYBE_SWAP (vec[0]);
3025 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3026 {
3027 struct dwarf2_per_cu_data *per_cu;
3028
3029 per_cu = dw2_get_cu (MAYBE_SWAP (vec[vec_idx + 1]));
3030 if (file_matcher == NULL || per_cu->v.quick->mark)
3031 dw2_instantiate_symtab (per_cu);
3032 }
3033 }
3034 }
3035
3036 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3037 symtab. */
3038
3039 static struct symtab *
3040 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3041 {
3042 int i;
3043
3044 if (BLOCKVECTOR (symtab) != NULL
3045 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3046 return symtab;
3047
3048 if (symtab->includes == NULL)
3049 return NULL;
3050
3051 for (i = 0; symtab->includes[i]; ++i)
3052 {
3053 struct symtab *s = symtab->includes[i];
3054
3055 s = recursively_find_pc_sect_symtab (s, pc);
3056 if (s != NULL)
3057 return s;
3058 }
3059
3060 return NULL;
3061 }
3062
3063 static struct symtab *
3064 dw2_find_pc_sect_symtab (struct objfile *objfile,
3065 struct minimal_symbol *msymbol,
3066 CORE_ADDR pc,
3067 struct obj_section *section,
3068 int warn_if_readin)
3069 {
3070 struct dwarf2_per_cu_data *data;
3071 struct symtab *result;
3072
3073 dw2_setup (objfile);
3074
3075 if (!objfile->psymtabs_addrmap)
3076 return NULL;
3077
3078 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3079 if (!data)
3080 return NULL;
3081
3082 if (warn_if_readin && data->v.quick->symtab)
3083 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
3084 paddress (get_objfile_arch (objfile), pc));
3085
3086 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
3087 gdb_assert (result != NULL);
3088 return result;
3089 }
3090
3091 static void
3092 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
3093 void *data, int need_fullname)
3094 {
3095 int i;
3096 struct cleanup *cleanup;
3097 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
3098 NULL, xcalloc, xfree);
3099
3100 cleanup = make_cleanup_htab_delete (visited);
3101 dw2_setup (objfile);
3102
3103 /* We can ignore file names coming from already-expanded CUs. */
3104 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3105 + dwarf2_per_objfile->n_type_units); ++i)
3106 {
3107 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3108
3109 if (per_cu->v.quick->symtab)
3110 {
3111 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
3112 INSERT);
3113
3114 *slot = per_cu->v.quick->file_names;
3115 }
3116 }
3117
3118 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3119 + dwarf2_per_objfile->n_type_units); ++i)
3120 {
3121 int j;
3122 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3123 struct quick_file_names *file_data;
3124 void **slot;
3125
3126 /* We only need to look at symtabs not already expanded. */
3127 if (per_cu->v.quick->symtab)
3128 continue;
3129
3130 file_data = dw2_get_file_names (objfile, per_cu);
3131 if (file_data == NULL)
3132 continue;
3133
3134 slot = htab_find_slot (visited, file_data, INSERT);
3135 if (*slot)
3136 {
3137 /* Already visited. */
3138 continue;
3139 }
3140 *slot = file_data;
3141
3142 for (j = 0; j < file_data->num_file_names; ++j)
3143 {
3144 const char *this_real_name;
3145
3146 if (need_fullname)
3147 this_real_name = dw2_get_real_path (objfile, file_data, j);
3148 else
3149 this_real_name = NULL;
3150 (*fun) (file_data->file_names[j], this_real_name, data);
3151 }
3152 }
3153
3154 do_cleanups (cleanup);
3155 }
3156
3157 static int
3158 dw2_has_symbols (struct objfile *objfile)
3159 {
3160 return 1;
3161 }
3162
3163 const struct quick_symbol_functions dwarf2_gdb_index_functions =
3164 {
3165 dw2_has_symbols,
3166 dw2_find_last_source_symtab,
3167 dw2_forget_cached_source_info,
3168 dw2_map_symtabs_matching_filename,
3169 dw2_lookup_symbol,
3170 dw2_pre_expand_symtabs_matching,
3171 dw2_print_stats,
3172 dw2_dump,
3173 dw2_relocate,
3174 dw2_expand_symtabs_for_function,
3175 dw2_expand_all_symtabs,
3176 dw2_expand_symtabs_with_filename,
3177 dw2_find_symbol_file,
3178 dw2_map_matching_symbols,
3179 dw2_expand_symtabs_matching,
3180 dw2_find_pc_sect_symtab,
3181 dw2_map_symbol_filenames
3182 };
3183
3184 /* Initialize for reading DWARF for this objfile. Return 0 if this
3185 file will use psymtabs, or 1 if using the GNU index. */
3186
3187 int
3188 dwarf2_initialize_objfile (struct objfile *objfile)
3189 {
3190 /* If we're about to read full symbols, don't bother with the
3191 indices. In this case we also don't care if some other debug
3192 format is making psymtabs, because they are all about to be
3193 expanded anyway. */
3194 if ((objfile->flags & OBJF_READNOW))
3195 {
3196 int i;
3197
3198 dwarf2_per_objfile->using_index = 1;
3199 create_all_comp_units (objfile);
3200 create_all_type_units (objfile);
3201 dwarf2_per_objfile->quick_file_names_table =
3202 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3203
3204 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3205 + dwarf2_per_objfile->n_type_units); ++i)
3206 {
3207 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3208
3209 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3210 struct dwarf2_per_cu_quick_data);
3211 }
3212
3213 /* Return 1 so that gdb sees the "quick" functions. However,
3214 these functions will be no-ops because we will have expanded
3215 all symtabs. */
3216 return 1;
3217 }
3218
3219 if (dwarf2_read_index (objfile))
3220 return 1;
3221
3222 return 0;
3223 }
3224
3225 \f
3226
3227 /* Build a partial symbol table. */
3228
3229 void
3230 dwarf2_build_psymtabs (struct objfile *objfile)
3231 {
3232 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
3233 {
3234 init_psymbol_list (objfile, 1024);
3235 }
3236
3237 dwarf2_build_psymtabs_hard (objfile);
3238 }
3239
3240 /* Return TRUE if OFFSET is within CU_HEADER. */
3241
3242 static inline int
3243 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
3244 {
3245 sect_offset bottom = { cu_header->offset.sect_off };
3246 sect_offset top = { (cu_header->offset.sect_off + cu_header->length
3247 + cu_header->initial_length_size) };
3248
3249 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
3250 }
3251
3252 /* Read in the comp unit header information from the debug_info at info_ptr.
3253 NOTE: This leaves members offset, first_die_offset to be filled in
3254 by the caller. */
3255
3256 static gdb_byte *
3257 read_comp_unit_head (struct comp_unit_head *cu_header,
3258 gdb_byte *info_ptr, bfd *abfd)
3259 {
3260 int signed_addr;
3261 unsigned int bytes_read;
3262
3263 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
3264 cu_header->initial_length_size = bytes_read;
3265 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
3266 info_ptr += bytes_read;
3267 cu_header->version = read_2_bytes (abfd, info_ptr);
3268 info_ptr += 2;
3269 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
3270 &bytes_read);
3271 info_ptr += bytes_read;
3272 cu_header->addr_size = read_1_byte (abfd, info_ptr);
3273 info_ptr += 1;
3274 signed_addr = bfd_get_sign_extend_vma (abfd);
3275 if (signed_addr < 0)
3276 internal_error (__FILE__, __LINE__,
3277 _("read_comp_unit_head: dwarf from non elf file"));
3278 cu_header->signed_addr_p = signed_addr;
3279
3280 return info_ptr;
3281 }
3282
3283 /* Subroutine of read_and_check_comp_unit_head and
3284 read_and_check_type_unit_head to simplify them.
3285 Perform various error checking on the header. */
3286
3287 static void
3288 error_check_comp_unit_head (struct comp_unit_head *header,
3289 struct dwarf2_section_info *section)
3290 {
3291 bfd *abfd = section->asection->owner;
3292 const char *filename = bfd_get_filename (abfd);
3293
3294 if (header->version != 2 && header->version != 3 && header->version != 4)
3295 error (_("Dwarf Error: wrong version in compilation unit header "
3296 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
3297 filename);
3298
3299 if (header->abbrev_offset.sect_off
3300 >= dwarf2_section_size (dwarf2_per_objfile->objfile,
3301 &dwarf2_per_objfile->abbrev))
3302 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
3303 "(offset 0x%lx + 6) [in module %s]"),
3304 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
3305 filename);
3306
3307 /* Cast to unsigned long to use 64-bit arithmetic when possible to
3308 avoid potential 32-bit overflow. */
3309 if (((unsigned long) header->offset.sect_off
3310 + header->length + header->initial_length_size)
3311 > section->size)
3312 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
3313 "(offset 0x%lx + 0) [in module %s]"),
3314 (long) header->length, (long) header->offset.sect_off,
3315 filename);
3316 }
3317
3318 /* Read in a CU/TU header and perform some basic error checking.
3319 The contents of the header are stored in HEADER.
3320 The result is a pointer to the start of the first DIE. */
3321
3322 static gdb_byte *
3323 read_and_check_comp_unit_head (struct comp_unit_head *header,
3324 struct dwarf2_section_info *section,
3325 gdb_byte *info_ptr,
3326 int is_debug_types_section)
3327 {
3328 gdb_byte *beg_of_comp_unit = info_ptr;
3329 bfd *abfd = section->asection->owner;
3330
3331 header->offset.sect_off = beg_of_comp_unit - section->buffer;
3332
3333 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
3334
3335 /* If we're reading a type unit, skip over the signature and
3336 type_offset fields. */
3337 if (is_debug_types_section)
3338 info_ptr += 8 /*signature*/ + header->offset_size;
3339
3340 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
3341
3342 error_check_comp_unit_head (header, section);
3343
3344 return info_ptr;
3345 }
3346
3347 /* Read in the types comp unit header information from .debug_types entry at
3348 types_ptr. The result is a pointer to one past the end of the header. */
3349
3350 static gdb_byte *
3351 read_and_check_type_unit_head (struct comp_unit_head *header,
3352 struct dwarf2_section_info *section,
3353 gdb_byte *info_ptr,
3354 ULONGEST *signature,
3355 cu_offset *type_offset_in_tu)
3356 {
3357 gdb_byte *beg_of_comp_unit = info_ptr;
3358 bfd *abfd = section->asection->owner;
3359
3360 header->offset.sect_off = beg_of_comp_unit - section->buffer;
3361
3362 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
3363
3364 /* If we're reading a type unit, skip over the signature and
3365 type_offset fields. */
3366 if (signature != NULL)
3367 *signature = read_8_bytes (abfd, info_ptr);
3368 info_ptr += 8;
3369 if (type_offset_in_tu != NULL)
3370 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
3371 header->offset_size);
3372 info_ptr += header->offset_size;
3373
3374 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
3375
3376 error_check_comp_unit_head (header, section);
3377
3378 return info_ptr;
3379 }
3380
3381 /* Allocate a new partial symtab for file named NAME and mark this new
3382 partial symtab as being an include of PST. */
3383
3384 static void
3385 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
3386 struct objfile *objfile)
3387 {
3388 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
3389
3390 subpst->section_offsets = pst->section_offsets;
3391 subpst->textlow = 0;
3392 subpst->texthigh = 0;
3393
3394 subpst->dependencies = (struct partial_symtab **)
3395 obstack_alloc (&objfile->objfile_obstack,
3396 sizeof (struct partial_symtab *));
3397 subpst->dependencies[0] = pst;
3398 subpst->number_of_dependencies = 1;
3399
3400 subpst->globals_offset = 0;
3401 subpst->n_global_syms = 0;
3402 subpst->statics_offset = 0;
3403 subpst->n_static_syms = 0;
3404 subpst->symtab = NULL;
3405 subpst->read_symtab = pst->read_symtab;
3406 subpst->readin = 0;
3407
3408 /* No private part is necessary for include psymtabs. This property
3409 can be used to differentiate between such include psymtabs and
3410 the regular ones. */
3411 subpst->read_symtab_private = NULL;
3412 }
3413
3414 /* Read the Line Number Program data and extract the list of files
3415 included by the source file represented by PST. Build an include
3416 partial symtab for each of these included files. */
3417
3418 static void
3419 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
3420 struct die_info *die,
3421 struct partial_symtab *pst)
3422 {
3423 struct line_header *lh = NULL;
3424 struct attribute *attr;
3425
3426 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3427 if (attr)
3428 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
3429 if (lh == NULL)
3430 return; /* No linetable, so no includes. */
3431
3432 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
3433 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
3434
3435 free_line_header (lh);
3436 }
3437
3438 static hashval_t
3439 hash_signatured_type (const void *item)
3440 {
3441 const struct signatured_type *sig_type = item;
3442
3443 /* This drops the top 32 bits of the signature, but is ok for a hash. */
3444 return sig_type->signature;
3445 }
3446
3447 static int
3448 eq_signatured_type (const void *item_lhs, const void *item_rhs)
3449 {
3450 const struct signatured_type *lhs = item_lhs;
3451 const struct signatured_type *rhs = item_rhs;
3452
3453 return lhs->signature == rhs->signature;
3454 }
3455
3456 /* Allocate a hash table for signatured types. */
3457
3458 static htab_t
3459 allocate_signatured_type_table (struct objfile *objfile)
3460 {
3461 return htab_create_alloc_ex (41,
3462 hash_signatured_type,
3463 eq_signatured_type,
3464 NULL,
3465 &objfile->objfile_obstack,
3466 hashtab_obstack_allocate,
3467 dummy_obstack_deallocate);
3468 }
3469
3470 /* A helper function to add a signatured type CU to a table. */
3471
3472 static int
3473 add_signatured_type_cu_to_table (void **slot, void *datum)
3474 {
3475 struct signatured_type *sigt = *slot;
3476 struct dwarf2_per_cu_data ***datap = datum;
3477
3478 **datap = &sigt->per_cu;
3479 ++*datap;
3480
3481 return 1;
3482 }
3483
3484 /* Create the hash table of all entries in the .debug_types section.
3485 DWO_FILE is a pointer to the DWO file for .debug_types.dwo, NULL otherwise.
3486 The result is a pointer to the hash table or NULL if there are
3487 no types. */
3488
3489 static htab_t
3490 create_debug_types_hash_table (struct dwo_file *dwo_file,
3491 VEC (dwarf2_section_info_def) *types)
3492 {
3493 struct objfile *objfile = dwarf2_per_objfile->objfile;
3494 htab_t types_htab = NULL;
3495 int ix;
3496 struct dwarf2_section_info *section;
3497
3498 if (VEC_empty (dwarf2_section_info_def, types))
3499 return NULL;
3500
3501 for (ix = 0;
3502 VEC_iterate (dwarf2_section_info_def, types, ix, section);
3503 ++ix)
3504 {
3505 bfd *abfd;
3506 gdb_byte *info_ptr, *end_ptr;
3507
3508 dwarf2_read_section (objfile, section);
3509 info_ptr = section->buffer;
3510
3511 if (info_ptr == NULL)
3512 continue;
3513
3514 /* We can't set abfd until now because the section may be empty or
3515 not present, in which case section->asection will be NULL. */
3516 abfd = section->asection->owner;
3517
3518 if (types_htab == NULL)
3519 {
3520 if (dwo_file)
3521 types_htab = allocate_dwo_unit_table (objfile);
3522 else
3523 types_htab = allocate_signatured_type_table (objfile);
3524 }
3525
3526 if (dwarf2_die_debug)
3527 fprintf_unfiltered (gdb_stdlog, "Reading signatured types for %s:\n",
3528 bfd_get_filename (abfd));
3529
3530 /* We don't use init_cutu_and_read_dies_simple, or some such, here
3531 because we don't need to read any dies: the signature is in the
3532 header. */
3533
3534 end_ptr = info_ptr + section->size;
3535 while (info_ptr < end_ptr)
3536 {
3537 sect_offset offset;
3538 cu_offset type_offset_in_tu;
3539 ULONGEST signature;
3540 struct signatured_type *sig_type;
3541 struct dwo_unit *dwo_tu;
3542 void **slot;
3543 gdb_byte *ptr = info_ptr;
3544 struct comp_unit_head header;
3545 unsigned int length;
3546
3547 offset.sect_off = ptr - section->buffer;
3548
3549 /* We need to read the type's signature in order to build the hash
3550 table, but we don't need anything else just yet. */
3551
3552 ptr = read_and_check_type_unit_head (&header, section, ptr,
3553 &signature, &type_offset_in_tu);
3554
3555 length = header.initial_length_size + header.length;
3556
3557 /* Skip dummy type units. */
3558 if (ptr >= info_ptr + length
3559 || peek_abbrev_code (abfd, ptr) == 0)
3560 {
3561 info_ptr += header.initial_length_size + header.length;
3562 continue;
3563 }
3564
3565 if (dwo_file)
3566 {
3567 sig_type = NULL;
3568 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3569 struct dwo_unit);
3570 dwo_tu->dwo_file = dwo_file;
3571 dwo_tu->signature = signature;
3572 dwo_tu->type_offset_in_tu = type_offset_in_tu;
3573 dwo_tu->info_or_types_section = section;
3574 dwo_tu->offset = offset;
3575 dwo_tu->length = length;
3576 }
3577 else
3578 {
3579 /* N.B.: type_offset is not usable if this type uses a DWO file.
3580 The real type_offset is in the DWO file. */
3581 dwo_tu = NULL;
3582 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3583 struct signatured_type);
3584 sig_type->signature = signature;
3585 sig_type->type_offset_in_tu = type_offset_in_tu;
3586 sig_type->per_cu.objfile = objfile;
3587 sig_type->per_cu.is_debug_types = 1;
3588 sig_type->per_cu.info_or_types_section = section;
3589 sig_type->per_cu.offset = offset;
3590 sig_type->per_cu.length = length;
3591 }
3592
3593 slot = htab_find_slot (types_htab,
3594 dwo_file ? (void*) dwo_tu : (void *) sig_type,
3595 INSERT);
3596 gdb_assert (slot != NULL);
3597 if (*slot != NULL)
3598 {
3599 sect_offset dup_offset;
3600
3601 if (dwo_file)
3602 {
3603 const struct dwo_unit *dup_tu = *slot;
3604
3605 dup_offset = dup_tu->offset;
3606 }
3607 else
3608 {
3609 const struct signatured_type *dup_tu = *slot;
3610
3611 dup_offset = dup_tu->per_cu.offset;
3612 }
3613
3614 complaint (&symfile_complaints,
3615 _("debug type entry at offset 0x%x is duplicate to the "
3616 "entry at offset 0x%x, signature 0x%s"),
3617 offset.sect_off, dup_offset.sect_off,
3618 phex (signature, sizeof (signature)));
3619 }
3620 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
3621
3622 if (dwarf2_die_debug)
3623 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
3624 offset.sect_off,
3625 phex (signature, sizeof (signature)));
3626
3627 info_ptr += length;
3628 }
3629 }
3630
3631 return types_htab;
3632 }
3633
3634 /* Create the hash table of all entries in the .debug_types section,
3635 and initialize all_type_units.
3636 The result is zero if there is an error (e.g. missing .debug_types section),
3637 otherwise non-zero. */
3638
3639 static int
3640 create_all_type_units (struct objfile *objfile)
3641 {
3642 htab_t types_htab;
3643 struct dwarf2_per_cu_data **iter;
3644
3645 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
3646 if (types_htab == NULL)
3647 {
3648 dwarf2_per_objfile->signatured_types = NULL;
3649 return 0;
3650 }
3651
3652 dwarf2_per_objfile->signatured_types = types_htab;
3653
3654 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
3655 dwarf2_per_objfile->all_type_units
3656 = obstack_alloc (&objfile->objfile_obstack,
3657 dwarf2_per_objfile->n_type_units
3658 * sizeof (struct dwarf2_per_cu_data *));
3659 iter = &dwarf2_per_objfile->all_type_units[0];
3660 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
3661 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
3662 == dwarf2_per_objfile->n_type_units);
3663
3664 return 1;
3665 }
3666
3667 /* Lookup a signature based type for DW_FORM_ref_sig8.
3668 Returns NULL if signature SIG is not present in the table. */
3669
3670 static struct signatured_type *
3671 lookup_signatured_type (ULONGEST sig)
3672 {
3673 struct signatured_type find_entry, *entry;
3674
3675 if (dwarf2_per_objfile->signatured_types == NULL)
3676 {
3677 complaint (&symfile_complaints,
3678 _("missing `.debug_types' section for DW_FORM_ref_sig8 die"));
3679 return NULL;
3680 }
3681
3682 find_entry.signature = sig;
3683 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
3684 return entry;
3685 }
3686
3687 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
3688
3689 static void
3690 init_cu_die_reader (struct die_reader_specs *reader,
3691 struct dwarf2_cu *cu,
3692 struct dwarf2_section_info *section,
3693 struct dwo_file *dwo_file)
3694 {
3695 gdb_assert (section->readin && section->buffer != NULL);
3696 reader->abfd = section->asection->owner;
3697 reader->cu = cu;
3698 reader->dwo_file = dwo_file;
3699 reader->die_section = section;
3700 reader->buffer = section->buffer;
3701 reader->buffer_end = section->buffer + section->size;
3702 }
3703
3704 /* Find the base address of the compilation unit for range lists and
3705 location lists. It will normally be specified by DW_AT_low_pc.
3706 In DWARF-3 draft 4, the base address could be overridden by
3707 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3708 compilation units with discontinuous ranges. */
3709
3710 static void
3711 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3712 {
3713 struct attribute *attr;
3714
3715 cu->base_known = 0;
3716 cu->base_address = 0;
3717
3718 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3719 if (attr)
3720 {
3721 cu->base_address = DW_ADDR (attr);
3722 cu->base_known = 1;
3723 }
3724 else
3725 {
3726 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3727 if (attr)
3728 {
3729 cu->base_address = DW_ADDR (attr);
3730 cu->base_known = 1;
3731 }
3732 }
3733 }
3734
3735 /* Initialize a CU (or TU) and read its DIEs.
3736 If the CU defers to a DWO file, read the DWO file as well.
3737
3738 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
3739 Otherwise, a new CU is allocated with xmalloc.
3740
3741 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
3742 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
3743
3744 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
3745 linker) then DIE_READER_FUNC will not get called. */
3746
3747 static void
3748 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
3749 int use_existing_cu, int keep,
3750 die_reader_func_ftype *die_reader_func,
3751 void *data)
3752 {
3753 struct objfile *objfile = dwarf2_per_objfile->objfile;
3754 struct dwarf2_section_info *section = this_cu->info_or_types_section;
3755 bfd *abfd = section->asection->owner;
3756 struct dwarf2_cu *cu;
3757 gdb_byte *begin_info_ptr, *info_ptr;
3758 struct die_reader_specs reader;
3759 struct die_info *comp_unit_die;
3760 int has_children;
3761 struct attribute *attr;
3762 struct cleanup *cleanups, *free_cu_cleanup = NULL;
3763 struct signatured_type *sig_type = NULL;
3764
3765 if (use_existing_cu)
3766 gdb_assert (keep);
3767
3768 cleanups = make_cleanup (null_cleanup, NULL);
3769
3770 /* This is cheap if the section is already read in. */
3771 dwarf2_read_section (objfile, section);
3772
3773 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
3774
3775 if (use_existing_cu && this_cu->cu != NULL)
3776 {
3777 cu = this_cu->cu;
3778 info_ptr += cu->header.first_die_offset.cu_off;
3779 }
3780 else
3781 {
3782 /* If !use_existing_cu, this_cu->cu must be NULL. */
3783 gdb_assert (this_cu->cu == NULL);
3784
3785 cu = xmalloc (sizeof (*cu));
3786 init_one_comp_unit (cu, this_cu);
3787
3788 /* If an error occurs while loading, release our storage. */
3789 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
3790
3791 if (this_cu->is_debug_types)
3792 {
3793 ULONGEST signature;
3794
3795 info_ptr = read_and_check_type_unit_head (&cu->header,
3796 section, info_ptr,
3797 &signature, NULL);
3798
3799 /* There's no way to get from PER_CU to its containing
3800 struct signatured_type.
3801 But we have the signature so we can use that. */
3802 sig_type = lookup_signatured_type (signature);
3803 /* We've already scanned all the signatured types,
3804 this must succeed. */
3805 gdb_assert (sig_type != NULL);
3806 gdb_assert (&sig_type->per_cu == this_cu);
3807 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
3808
3809 /* LENGTH has not been set yet for type units. */
3810 this_cu->length = cu->header.length + cu->header.initial_length_size;
3811
3812 /* Establish the type offset that can be used to lookup the type. */
3813 sig_type->type_offset_in_section.sect_off =
3814 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
3815 }
3816 else
3817 {
3818 info_ptr = read_and_check_comp_unit_head (&cu->header,
3819 section, info_ptr, 0);
3820
3821 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
3822 gdb_assert (this_cu->length
3823 == cu->header.length + cu->header.initial_length_size);
3824 }
3825 }
3826
3827 /* Skip dummy compilation units. */
3828 if (info_ptr >= begin_info_ptr + this_cu->length
3829 || peek_abbrev_code (abfd, info_ptr) == 0)
3830 {
3831 do_cleanups (cleanups);
3832 return;
3833 }
3834
3835 /* Read the abbrevs for this compilation unit into a table. */
3836 if (cu->dwarf2_abbrevs == NULL)
3837 {
3838 dwarf2_read_abbrevs (cu, &dwarf2_per_objfile->abbrev);
3839 make_cleanup (dwarf2_free_abbrev_table, cu);
3840 }
3841
3842 /* Read the top level CU/TU die. */
3843 init_cu_die_reader (&reader, cu, section, NULL);
3844 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
3845
3846 /* If we have a DWO stub, process it and then read in the DWO file.
3847 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains
3848 a DWO CU, that this test will fail. */
3849 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
3850 if (attr)
3851 {
3852 char *dwo_name = DW_STRING (attr);
3853 const char *comp_dir;
3854 struct dwo_unit *dwo_unit;
3855 ULONGEST signature; /* Or dwo_id. */
3856 struct attribute *stmt_list, *low_pc, *high_pc, *ranges;
3857 int i,num_extra_attrs;
3858
3859 if (has_children)
3860 error (_("Dwarf Error: compilation unit with DW_AT_GNU_dwo_name"
3861 " has children (offset 0x%x) [in module %s]"),
3862 this_cu->offset.sect_off, bfd_get_filename (abfd));
3863
3864 /* These attributes aren't processed until later:
3865 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
3866 However, the attribute is found in the stub which we won't have later.
3867 In order to not impose this complication on the rest of the code,
3868 we read them here and copy them to the DWO CU/TU die. */
3869 stmt_list = low_pc = high_pc = ranges = NULL;
3870
3871 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
3872 DWO file. */
3873 if (! this_cu->is_debug_types)
3874 stmt_list = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3875 low_pc = dwarf2_attr (comp_unit_die, DW_AT_low_pc, cu);
3876 high_pc = dwarf2_attr (comp_unit_die, DW_AT_high_pc, cu);
3877 ranges = dwarf2_attr (comp_unit_die, DW_AT_ranges, cu);
3878
3879 /* There should be a DW_AT_addr_base attribute here (if needed).
3880 We need the value before we can process DW_FORM_GNU_addr_index. */
3881 cu->addr_base = 0;
3882 cu->have_addr_base = 0;
3883 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_addr_base, cu);
3884 if (attr)
3885 {
3886 cu->addr_base = DW_UNSND (attr);
3887 cu->have_addr_base = 1;
3888 }
3889
3890 if (this_cu->is_debug_types)
3891 {
3892 gdb_assert (sig_type != NULL);
3893 signature = sig_type->signature;
3894 }
3895 else
3896 {
3897 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
3898 if (! attr)
3899 error (_("Dwarf Error: missing dwo_id [in module %s]"),
3900 dwo_name);
3901 signature = DW_UNSND (attr);
3902 }
3903
3904 /* We may need the comp_dir in order to find the DWO file. */
3905 comp_dir = NULL;
3906 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
3907 if (attr)
3908 comp_dir = DW_STRING (attr);
3909
3910 if (this_cu->is_debug_types)
3911 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
3912 else
3913 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
3914 signature);
3915
3916 if (dwo_unit == NULL)
3917 {
3918 error (_("Dwarf Error: CU at offset 0x%x references unknown DWO"
3919 " with ID %s [in module %s]"),
3920 this_cu->offset.sect_off,
3921 phex (signature, sizeof (signature)),
3922 objfile->name);
3923 }
3924
3925 /* Set up for reading the DWO CU/TU. */
3926 cu->dwo_unit = dwo_unit;
3927 section = dwo_unit->info_or_types_section;
3928 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
3929 init_cu_die_reader (&reader, cu, section, dwo_unit->dwo_file);
3930
3931 if (this_cu->is_debug_types)
3932 {
3933 ULONGEST signature;
3934
3935 info_ptr = read_and_check_type_unit_head (&cu->header,
3936 section, info_ptr,
3937 &signature, NULL);
3938 gdb_assert (sig_type->signature == signature);
3939 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
3940 gdb_assert (dwo_unit->length
3941 == cu->header.length + cu->header.initial_length_size);
3942
3943 /* Establish the type offset that can be used to lookup the type.
3944 For DWO files, we don't know it until now. */
3945 sig_type->type_offset_in_section.sect_off =
3946 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
3947 }
3948 else
3949 {
3950 info_ptr = read_and_check_comp_unit_head (&cu->header,
3951 section, info_ptr, 0);
3952 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
3953 gdb_assert (dwo_unit->length
3954 == cu->header.length + cu->header.initial_length_size);
3955 }
3956
3957 /* Discard the original CU's abbrev table, and read the DWO's. */
3958 dwarf2_free_abbrev_table (cu);
3959 dwarf2_read_abbrevs (cu, &dwo_unit->dwo_file->sections.abbrev);
3960
3961 /* Read in the die, but leave space to copy over the attributes
3962 from the stub. This has the benefit of simplifying the rest of
3963 the code - all the real work is done here. */
3964 num_extra_attrs = ((stmt_list != NULL)
3965 + (low_pc != NULL)
3966 + (high_pc != NULL)
3967 + (ranges != NULL));
3968 info_ptr = read_full_die_1 (&reader, &comp_unit_die, info_ptr,
3969 &has_children, num_extra_attrs);
3970
3971 /* Copy over the attributes from the stub to the DWO die. */
3972 i = comp_unit_die->num_attrs;
3973 if (stmt_list != NULL)
3974 comp_unit_die->attrs[i++] = *stmt_list;
3975 if (low_pc != NULL)
3976 comp_unit_die->attrs[i++] = *low_pc;
3977 if (high_pc != NULL)
3978 comp_unit_die->attrs[i++] = *high_pc;
3979 if (ranges != NULL)
3980 comp_unit_die->attrs[i++] = *ranges;
3981 comp_unit_die->num_attrs += num_extra_attrs;
3982
3983 /* Skip dummy compilation units. */
3984 if (info_ptr >= begin_info_ptr + dwo_unit->length
3985 || peek_abbrev_code (abfd, info_ptr) == 0)
3986 {
3987 do_cleanups (cleanups);
3988 return;
3989 }
3990 }
3991
3992 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
3993
3994 if (free_cu_cleanup != NULL)
3995 {
3996 if (keep)
3997 {
3998 /* We've successfully allocated this compilation unit. Let our
3999 caller clean it up when finished with it. */
4000 discard_cleanups (free_cu_cleanup);
4001
4002 /* We can only discard free_cu_cleanup and all subsequent cleanups.
4003 So we have to manually free the abbrev table. */
4004 dwarf2_free_abbrev_table (cu);
4005
4006 /* Link this CU into read_in_chain. */
4007 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4008 dwarf2_per_objfile->read_in_chain = this_cu;
4009 }
4010 else
4011 do_cleanups (free_cu_cleanup);
4012 }
4013
4014 do_cleanups (cleanups);
4015 }
4016
4017 /* Read CU/TU THIS_CU in section SECTION,
4018 but do not follow DW_AT_GNU_dwo_name if present.
4019 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed to
4020 have already done the lookup to find the DWO file).
4021
4022 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
4023 THIS_CU->is_debug_types, but nothing else.
4024
4025 We fill in THIS_CU->length.
4026
4027 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4028 linker) then DIE_READER_FUNC will not get called.
4029
4030 THIS_CU->cu is always freed when done.
4031 This is done in order to not leave THIS_CU->cu in a state where we have
4032 to care whether it refers to the "main" CU or the DWO CU. */
4033
4034 static void
4035 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
4036 struct dwarf2_section_info *abbrev_section,
4037 struct dwo_file *dwo_file,
4038 die_reader_func_ftype *die_reader_func,
4039 void *data)
4040 {
4041 struct objfile *objfile = dwarf2_per_objfile->objfile;
4042 struct dwarf2_section_info *section = this_cu->info_or_types_section;
4043 bfd *abfd = section->asection->owner;
4044 struct dwarf2_cu cu;
4045 gdb_byte *begin_info_ptr, *info_ptr;
4046 struct die_reader_specs reader;
4047 struct cleanup *cleanups;
4048 struct die_info *comp_unit_die;
4049 int has_children;
4050
4051 gdb_assert (this_cu->cu == NULL);
4052
4053 /* This is cheap if the section is already read in. */
4054 dwarf2_read_section (objfile, section);
4055
4056 init_one_comp_unit (&cu, this_cu);
4057
4058 cleanups = make_cleanup (free_stack_comp_unit, &cu);
4059
4060 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4061 info_ptr = read_and_check_comp_unit_head (&cu.header, section, info_ptr,
4062 this_cu->is_debug_types);
4063
4064 this_cu->length = cu.header.length + cu.header.initial_length_size;
4065
4066 /* Skip dummy compilation units. */
4067 if (info_ptr >= begin_info_ptr + this_cu->length
4068 || peek_abbrev_code (abfd, info_ptr) == 0)
4069 {
4070 do_cleanups (cleanups);
4071 return;
4072 }
4073
4074 dwarf2_read_abbrevs (&cu, abbrev_section);
4075 make_cleanup (dwarf2_free_abbrev_table, &cu);
4076
4077 init_cu_die_reader (&reader, &cu, section, dwo_file);
4078 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
4079
4080 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4081
4082 do_cleanups (cleanups);
4083 }
4084
4085 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
4086 does not lookup the specified DWO file.
4087 This cannot be used to read DWO files.
4088
4089 THIS_CU->cu is always freed when done.
4090 This is done in order to not leave THIS_CU->cu in a state where we have
4091 to care whether it refers to the "main" CU or the DWO CU.
4092 We can revisit this if the data shows there's a performance issue. */
4093
4094 static void
4095 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
4096 die_reader_func_ftype *die_reader_func,
4097 void *data)
4098 {
4099 init_cutu_and_read_dies_no_follow (this_cu,
4100 &dwarf2_per_objfile->abbrev,
4101 NULL,
4102 die_reader_func, data);
4103 }
4104
4105 /* die_reader_func for process_psymtab_comp_unit. */
4106
4107 static void
4108 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
4109 gdb_byte *info_ptr,
4110 struct die_info *comp_unit_die,
4111 int has_children,
4112 void *data)
4113 {
4114 struct dwarf2_cu *cu = reader->cu;
4115 struct objfile *objfile = cu->objfile;
4116 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
4117 struct attribute *attr;
4118 CORE_ADDR baseaddr;
4119 CORE_ADDR best_lowpc = 0, best_highpc = 0;
4120 struct partial_symtab *pst;
4121 int has_pc_info;
4122 const char *filename;
4123 int *want_partial_unit_ptr = data;
4124
4125 if (comp_unit_die->tag == DW_TAG_partial_unit
4126 && (want_partial_unit_ptr == NULL
4127 || !*want_partial_unit_ptr))
4128 return;
4129
4130 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
4131
4132 cu->list_in_scope = &file_symbols;
4133
4134 /* Allocate a new partial symbol table structure. */
4135 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
4136 if (attr == NULL || !DW_STRING (attr))
4137 filename = "";
4138 else
4139 filename = DW_STRING (attr);
4140 pst = start_psymtab_common (objfile, objfile->section_offsets,
4141 filename,
4142 /* TEXTLOW and TEXTHIGH are set below. */
4143 0,
4144 objfile->global_psymbols.next,
4145 objfile->static_psymbols.next);
4146 pst->psymtabs_addrmap_supported = 1;
4147
4148 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4149 if (attr != NULL)
4150 pst->dirname = DW_STRING (attr);
4151
4152 pst->read_symtab_private = per_cu;
4153
4154 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4155
4156 /* Store the function that reads in the rest of the symbol table. */
4157 pst->read_symtab = dwarf2_psymtab_to_symtab;
4158
4159 per_cu->v.psymtab = pst;
4160
4161 dwarf2_find_base_address (comp_unit_die, cu);
4162
4163 /* Possibly set the default values of LOWPC and HIGHPC from
4164 `DW_AT_ranges'. */
4165 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
4166 &best_highpc, cu, pst);
4167 if (has_pc_info == 1 && best_lowpc < best_highpc)
4168 /* Store the contiguous range if it is not empty; it can be empty for
4169 CUs with no code. */
4170 addrmap_set_empty (objfile->psymtabs_addrmap,
4171 best_lowpc + baseaddr,
4172 best_highpc + baseaddr - 1, pst);
4173
4174 /* Check if comp unit has_children.
4175 If so, read the rest of the partial symbols from this comp unit.
4176 If not, there's no more debug_info for this comp unit. */
4177 if (has_children)
4178 {
4179 struct partial_die_info *first_die;
4180 CORE_ADDR lowpc, highpc;
4181
4182 lowpc = ((CORE_ADDR) -1);
4183 highpc = ((CORE_ADDR) 0);
4184
4185 first_die = load_partial_dies (reader, info_ptr, 1);
4186
4187 scan_partial_symbols (first_die, &lowpc, &highpc,
4188 ! has_pc_info, cu);
4189
4190 /* If we didn't find a lowpc, set it to highpc to avoid
4191 complaints from `maint check'. */
4192 if (lowpc == ((CORE_ADDR) -1))
4193 lowpc = highpc;
4194
4195 /* If the compilation unit didn't have an explicit address range,
4196 then use the information extracted from its child dies. */
4197 if (! has_pc_info)
4198 {
4199 best_lowpc = lowpc;
4200 best_highpc = highpc;
4201 }
4202 }
4203 pst->textlow = best_lowpc + baseaddr;
4204 pst->texthigh = best_highpc + baseaddr;
4205
4206 pst->n_global_syms = objfile->global_psymbols.next -
4207 (objfile->global_psymbols.list + pst->globals_offset);
4208 pst->n_static_syms = objfile->static_psymbols.next -
4209 (objfile->static_psymbols.list + pst->statics_offset);
4210 sort_pst_symbols (pst);
4211
4212 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
4213 {
4214 int i;
4215 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
4216 struct dwarf2_per_cu_data *iter;
4217
4218 /* Fill in 'dependencies' here; we fill in 'users' in a
4219 post-pass. */
4220 pst->number_of_dependencies = len;
4221 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
4222 len * sizeof (struct symtab *));
4223 for (i = 0;
4224 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
4225 i, iter);
4226 ++i)
4227 pst->dependencies[i] = iter->v.psymtab;
4228
4229 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
4230 }
4231
4232 if (per_cu->is_debug_types)
4233 {
4234 /* It's not clear we want to do anything with stmt lists here.
4235 Waiting to see what gcc ultimately does. */
4236 }
4237 else
4238 {
4239 /* Get the list of files included in the current compilation unit,
4240 and build a psymtab for each of them. */
4241 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
4242 }
4243 }
4244
4245 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
4246 Process compilation unit THIS_CU for a psymtab. */
4247
4248 static void
4249 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
4250 int want_partial_unit)
4251 {
4252 /* If this compilation unit was already read in, free the
4253 cached copy in order to read it in again. This is
4254 necessary because we skipped some symbols when we first
4255 read in the compilation unit (see load_partial_dies).
4256 This problem could be avoided, but the benefit is unclear. */
4257 if (this_cu->cu != NULL)
4258 free_one_cached_comp_unit (this_cu);
4259
4260 gdb_assert (! this_cu->is_debug_types);
4261 init_cutu_and_read_dies (this_cu, 0, 0, process_psymtab_comp_unit_reader,
4262 &want_partial_unit);
4263
4264 /* Age out any secondary CUs. */
4265 age_cached_comp_units ();
4266 }
4267
4268 /* Traversal function for htab_traverse_noresize.
4269 Process one .debug_types comp-unit. */
4270
4271 static int
4272 process_psymtab_type_unit (void **slot, void *info)
4273 {
4274 struct signatured_type *sig_type = (struct signatured_type *) *slot;
4275 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
4276
4277 gdb_assert (per_cu->is_debug_types);
4278 gdb_assert (info == NULL);
4279
4280 /* If this compilation unit was already read in, free the
4281 cached copy in order to read it in again. This is
4282 necessary because we skipped some symbols when we first
4283 read in the compilation unit (see load_partial_dies).
4284 This problem could be avoided, but the benefit is unclear. */
4285 if (per_cu->cu != NULL)
4286 free_one_cached_comp_unit (per_cu);
4287
4288 init_cutu_and_read_dies (per_cu, 0, 0, process_psymtab_comp_unit_reader,
4289 NULL);
4290
4291 /* Age out any secondary CUs. */
4292 age_cached_comp_units ();
4293
4294 return 1;
4295 }
4296
4297 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
4298 Build partial symbol tables for the .debug_types comp-units. */
4299
4300 static void
4301 build_type_psymtabs (struct objfile *objfile)
4302 {
4303 if (! create_all_type_units (objfile))
4304 return;
4305
4306 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
4307 process_psymtab_type_unit, NULL);
4308 }
4309
4310 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
4311
4312 static void
4313 psymtabs_addrmap_cleanup (void *o)
4314 {
4315 struct objfile *objfile = o;
4316
4317 objfile->psymtabs_addrmap = NULL;
4318 }
4319
4320 /* Compute the 'user' field for each psymtab in OBJFILE. */
4321
4322 static void
4323 set_partial_user (struct objfile *objfile)
4324 {
4325 int i;
4326
4327 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4328 {
4329 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4330 struct partial_symtab *pst = per_cu->v.psymtab;
4331 int j;
4332
4333 for (j = 0; j < pst->number_of_dependencies; ++j)
4334 {
4335 /* Set the 'user' field only if it is not already set. */
4336 if (pst->dependencies[j]->user == NULL)
4337 pst->dependencies[j]->user = pst;
4338 }
4339 }
4340 }
4341
4342 /* Build the partial symbol table by doing a quick pass through the
4343 .debug_info and .debug_abbrev sections. */
4344
4345 static void
4346 dwarf2_build_psymtabs_hard (struct objfile *objfile)
4347 {
4348 struct cleanup *back_to, *addrmap_cleanup;
4349 struct obstack temp_obstack;
4350 int i;
4351
4352 dwarf2_per_objfile->reading_partial_symbols = 1;
4353
4354 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
4355
4356 /* Any cached compilation units will be linked by the per-objfile
4357 read_in_chain. Make sure to free them when we're done. */
4358 back_to = make_cleanup (free_cached_comp_units, NULL);
4359
4360 build_type_psymtabs (objfile);
4361
4362 create_all_comp_units (objfile);
4363
4364 /* Create a temporary address map on a temporary obstack. We later
4365 copy this to the final obstack. */
4366 obstack_init (&temp_obstack);
4367 make_cleanup_obstack_free (&temp_obstack);
4368 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
4369 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
4370
4371 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4372 {
4373 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4374
4375 process_psymtab_comp_unit (per_cu, 0);
4376 }
4377
4378 set_partial_user (objfile);
4379
4380 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
4381 &objfile->objfile_obstack);
4382 discard_cleanups (addrmap_cleanup);
4383
4384 do_cleanups (back_to);
4385 }
4386
4387 /* die_reader_func for load_partial_comp_unit. */
4388
4389 static void
4390 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
4391 gdb_byte *info_ptr,
4392 struct die_info *comp_unit_die,
4393 int has_children,
4394 void *data)
4395 {
4396 struct dwarf2_cu *cu = reader->cu;
4397
4398 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
4399
4400 /* Check if comp unit has_children.
4401 If so, read the rest of the partial symbols from this comp unit.
4402 If not, there's no more debug_info for this comp unit. */
4403 if (has_children)
4404 load_partial_dies (reader, info_ptr, 0);
4405 }
4406
4407 /* Load the partial DIEs for a secondary CU into memory.
4408 This is also used when rereading a primary CU with load_all_dies. */
4409
4410 static void
4411 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
4412 {
4413 init_cutu_and_read_dies (this_cu, 1, 1, load_partial_comp_unit_reader, NULL);
4414 }
4415
4416 /* Create a list of all compilation units in OBJFILE.
4417 This is only done for -readnow and building partial symtabs. */
4418
4419 static void
4420 create_all_comp_units (struct objfile *objfile)
4421 {
4422 int n_allocated;
4423 int n_comp_units;
4424 struct dwarf2_per_cu_data **all_comp_units;
4425 gdb_byte *info_ptr;
4426
4427 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
4428 info_ptr = dwarf2_per_objfile->info.buffer;
4429
4430 n_comp_units = 0;
4431 n_allocated = 10;
4432 all_comp_units = xmalloc (n_allocated
4433 * sizeof (struct dwarf2_per_cu_data *));
4434
4435 while (info_ptr < dwarf2_per_objfile->info.buffer
4436 + dwarf2_per_objfile->info.size)
4437 {
4438 unsigned int length, initial_length_size;
4439 struct dwarf2_per_cu_data *this_cu;
4440 sect_offset offset;
4441
4442 offset.sect_off = info_ptr - dwarf2_per_objfile->info.buffer;
4443
4444 /* Read just enough information to find out where the next
4445 compilation unit is. */
4446 length = read_initial_length (objfile->obfd, info_ptr,
4447 &initial_length_size);
4448
4449 /* Save the compilation unit for later lookup. */
4450 this_cu = obstack_alloc (&objfile->objfile_obstack,
4451 sizeof (struct dwarf2_per_cu_data));
4452 memset (this_cu, 0, sizeof (*this_cu));
4453 this_cu->offset = offset;
4454 this_cu->length = length + initial_length_size;
4455 this_cu->objfile = objfile;
4456 this_cu->info_or_types_section = &dwarf2_per_objfile->info;
4457
4458 if (n_comp_units == n_allocated)
4459 {
4460 n_allocated *= 2;
4461 all_comp_units = xrealloc (all_comp_units,
4462 n_allocated
4463 * sizeof (struct dwarf2_per_cu_data *));
4464 }
4465 all_comp_units[n_comp_units++] = this_cu;
4466
4467 info_ptr = info_ptr + this_cu->length;
4468 }
4469
4470 dwarf2_per_objfile->all_comp_units
4471 = obstack_alloc (&objfile->objfile_obstack,
4472 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
4473 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
4474 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
4475 xfree (all_comp_units);
4476 dwarf2_per_objfile->n_comp_units = n_comp_units;
4477 }
4478
4479 /* Process all loaded DIEs for compilation unit CU, starting at
4480 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
4481 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
4482 DW_AT_ranges). If NEED_PC is set, then this function will set
4483 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
4484 and record the covered ranges in the addrmap. */
4485
4486 static void
4487 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
4488 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
4489 {
4490 struct partial_die_info *pdi;
4491
4492 /* Now, march along the PDI's, descending into ones which have
4493 interesting children but skipping the children of the other ones,
4494 until we reach the end of the compilation unit. */
4495
4496 pdi = first_die;
4497
4498 while (pdi != NULL)
4499 {
4500 fixup_partial_die (pdi, cu);
4501
4502 /* Anonymous namespaces or modules have no name but have interesting
4503 children, so we need to look at them. Ditto for anonymous
4504 enums. */
4505
4506 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
4507 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
4508 || pdi->tag == DW_TAG_imported_unit)
4509 {
4510 switch (pdi->tag)
4511 {
4512 case DW_TAG_subprogram:
4513 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
4514 break;
4515 case DW_TAG_constant:
4516 case DW_TAG_variable:
4517 case DW_TAG_typedef:
4518 case DW_TAG_union_type:
4519 if (!pdi->is_declaration)
4520 {
4521 add_partial_symbol (pdi, cu);
4522 }
4523 break;
4524 case DW_TAG_class_type:
4525 case DW_TAG_interface_type:
4526 case DW_TAG_structure_type:
4527 if (!pdi->is_declaration)
4528 {
4529 add_partial_symbol (pdi, cu);
4530 }
4531 break;
4532 case DW_TAG_enumeration_type:
4533 if (!pdi->is_declaration)
4534 add_partial_enumeration (pdi, cu);
4535 break;
4536 case DW_TAG_base_type:
4537 case DW_TAG_subrange_type:
4538 /* File scope base type definitions are added to the partial
4539 symbol table. */
4540 add_partial_symbol (pdi, cu);
4541 break;
4542 case DW_TAG_namespace:
4543 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
4544 break;
4545 case DW_TAG_module:
4546 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
4547 break;
4548 case DW_TAG_imported_unit:
4549 {
4550 struct dwarf2_per_cu_data *per_cu;
4551
4552 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
4553 cu->objfile);
4554
4555 /* Go read the partial unit, if needed. */
4556 if (per_cu->v.psymtab == NULL)
4557 process_psymtab_comp_unit (per_cu, 1);
4558
4559 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
4560 per_cu);
4561 }
4562 break;
4563 default:
4564 break;
4565 }
4566 }
4567
4568 /* If the die has a sibling, skip to the sibling. */
4569
4570 pdi = pdi->die_sibling;
4571 }
4572 }
4573
4574 /* Functions used to compute the fully scoped name of a partial DIE.
4575
4576 Normally, this is simple. For C++, the parent DIE's fully scoped
4577 name is concatenated with "::" and the partial DIE's name. For
4578 Java, the same thing occurs except that "." is used instead of "::".
4579 Enumerators are an exception; they use the scope of their parent
4580 enumeration type, i.e. the name of the enumeration type is not
4581 prepended to the enumerator.
4582
4583 There are two complexities. One is DW_AT_specification; in this
4584 case "parent" means the parent of the target of the specification,
4585 instead of the direct parent of the DIE. The other is compilers
4586 which do not emit DW_TAG_namespace; in this case we try to guess
4587 the fully qualified name of structure types from their members'
4588 linkage names. This must be done using the DIE's children rather
4589 than the children of any DW_AT_specification target. We only need
4590 to do this for structures at the top level, i.e. if the target of
4591 any DW_AT_specification (if any; otherwise the DIE itself) does not
4592 have a parent. */
4593
4594 /* Compute the scope prefix associated with PDI's parent, in
4595 compilation unit CU. The result will be allocated on CU's
4596 comp_unit_obstack, or a copy of the already allocated PDI->NAME
4597 field. NULL is returned if no prefix is necessary. */
4598 static char *
4599 partial_die_parent_scope (struct partial_die_info *pdi,
4600 struct dwarf2_cu *cu)
4601 {
4602 char *grandparent_scope;
4603 struct partial_die_info *parent, *real_pdi;
4604
4605 /* We need to look at our parent DIE; if we have a DW_AT_specification,
4606 then this means the parent of the specification DIE. */
4607
4608 real_pdi = pdi;
4609 while (real_pdi->has_specification)
4610 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
4611
4612 parent = real_pdi->die_parent;
4613 if (parent == NULL)
4614 return NULL;
4615
4616 if (parent->scope_set)
4617 return parent->scope;
4618
4619 fixup_partial_die (parent, cu);
4620
4621 grandparent_scope = partial_die_parent_scope (parent, cu);
4622
4623 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
4624 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
4625 Work around this problem here. */
4626 if (cu->language == language_cplus
4627 && parent->tag == DW_TAG_namespace
4628 && strcmp (parent->name, "::") == 0
4629 && grandparent_scope == NULL)
4630 {
4631 parent->scope = NULL;
4632 parent->scope_set = 1;
4633 return NULL;
4634 }
4635
4636 if (pdi->tag == DW_TAG_enumerator)
4637 /* Enumerators should not get the name of the enumeration as a prefix. */
4638 parent->scope = grandparent_scope;
4639 else if (parent->tag == DW_TAG_namespace
4640 || parent->tag == DW_TAG_module
4641 || parent->tag == DW_TAG_structure_type
4642 || parent->tag == DW_TAG_class_type
4643 || parent->tag == DW_TAG_interface_type
4644 || parent->tag == DW_TAG_union_type
4645 || parent->tag == DW_TAG_enumeration_type)
4646 {
4647 if (grandparent_scope == NULL)
4648 parent->scope = parent->name;
4649 else
4650 parent->scope = typename_concat (&cu->comp_unit_obstack,
4651 grandparent_scope,
4652 parent->name, 0, cu);
4653 }
4654 else
4655 {
4656 /* FIXME drow/2004-04-01: What should we be doing with
4657 function-local names? For partial symbols, we should probably be
4658 ignoring them. */
4659 complaint (&symfile_complaints,
4660 _("unhandled containing DIE tag %d for DIE at %d"),
4661 parent->tag, pdi->offset.sect_off);
4662 parent->scope = grandparent_scope;
4663 }
4664
4665 parent->scope_set = 1;
4666 return parent->scope;
4667 }
4668
4669 /* Return the fully scoped name associated with PDI, from compilation unit
4670 CU. The result will be allocated with malloc. */
4671
4672 static char *
4673 partial_die_full_name (struct partial_die_info *pdi,
4674 struct dwarf2_cu *cu)
4675 {
4676 char *parent_scope;
4677
4678 /* If this is a template instantiation, we can not work out the
4679 template arguments from partial DIEs. So, unfortunately, we have
4680 to go through the full DIEs. At least any work we do building
4681 types here will be reused if full symbols are loaded later. */
4682 if (pdi->has_template_arguments)
4683 {
4684 fixup_partial_die (pdi, cu);
4685
4686 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
4687 {
4688 struct die_info *die;
4689 struct attribute attr;
4690 struct dwarf2_cu *ref_cu = cu;
4691
4692 /* DW_FORM_ref_addr is using section offset. */
4693 attr.name = 0;
4694 attr.form = DW_FORM_ref_addr;
4695 attr.u.unsnd = pdi->offset.sect_off;
4696 die = follow_die_ref (NULL, &attr, &ref_cu);
4697
4698 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
4699 }
4700 }
4701
4702 parent_scope = partial_die_parent_scope (pdi, cu);
4703 if (parent_scope == NULL)
4704 return NULL;
4705 else
4706 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
4707 }
4708
4709 static void
4710 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
4711 {
4712 struct objfile *objfile = cu->objfile;
4713 CORE_ADDR addr = 0;
4714 char *actual_name = NULL;
4715 CORE_ADDR baseaddr;
4716 int built_actual_name = 0;
4717
4718 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4719
4720 actual_name = partial_die_full_name (pdi, cu);
4721 if (actual_name)
4722 built_actual_name = 1;
4723
4724 if (actual_name == NULL)
4725 actual_name = pdi->name;
4726
4727 switch (pdi->tag)
4728 {
4729 case DW_TAG_subprogram:
4730 if (pdi->is_external || cu->language == language_ada)
4731 {
4732 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
4733 of the global scope. But in Ada, we want to be able to access
4734 nested procedures globally. So all Ada subprograms are stored
4735 in the global scope. */
4736 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
4737 mst_text, objfile); */
4738 add_psymbol_to_list (actual_name, strlen (actual_name),
4739 built_actual_name,
4740 VAR_DOMAIN, LOC_BLOCK,
4741 &objfile->global_psymbols,
4742 0, pdi->lowpc + baseaddr,
4743 cu->language, objfile);
4744 }
4745 else
4746 {
4747 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
4748 mst_file_text, objfile); */
4749 add_psymbol_to_list (actual_name, strlen (actual_name),
4750 built_actual_name,
4751 VAR_DOMAIN, LOC_BLOCK,
4752 &objfile->static_psymbols,
4753 0, pdi->lowpc + baseaddr,
4754 cu->language, objfile);
4755 }
4756 break;
4757 case DW_TAG_constant:
4758 {
4759 struct psymbol_allocation_list *list;
4760
4761 if (pdi->is_external)
4762 list = &objfile->global_psymbols;
4763 else
4764 list = &objfile->static_psymbols;
4765 add_psymbol_to_list (actual_name, strlen (actual_name),
4766 built_actual_name, VAR_DOMAIN, LOC_STATIC,
4767 list, 0, 0, cu->language, objfile);
4768 }
4769 break;
4770 case DW_TAG_variable:
4771 if (pdi->d.locdesc)
4772 addr = decode_locdesc (pdi->d.locdesc, cu);
4773
4774 if (pdi->d.locdesc
4775 && addr == 0
4776 && !dwarf2_per_objfile->has_section_at_zero)
4777 {
4778 /* A global or static variable may also have been stripped
4779 out by the linker if unused, in which case its address
4780 will be nullified; do not add such variables into partial
4781 symbol table then. */
4782 }
4783 else if (pdi->is_external)
4784 {
4785 /* Global Variable.
4786 Don't enter into the minimal symbol tables as there is
4787 a minimal symbol table entry from the ELF symbols already.
4788 Enter into partial symbol table if it has a location
4789 descriptor or a type.
4790 If the location descriptor is missing, new_symbol will create
4791 a LOC_UNRESOLVED symbol, the address of the variable will then
4792 be determined from the minimal symbol table whenever the variable
4793 is referenced.
4794 The address for the partial symbol table entry is not
4795 used by GDB, but it comes in handy for debugging partial symbol
4796 table building. */
4797
4798 if (pdi->d.locdesc || pdi->has_type)
4799 add_psymbol_to_list (actual_name, strlen (actual_name),
4800 built_actual_name,
4801 VAR_DOMAIN, LOC_STATIC,
4802 &objfile->global_psymbols,
4803 0, addr + baseaddr,
4804 cu->language, objfile);
4805 }
4806 else
4807 {
4808 /* Static Variable. Skip symbols without location descriptors. */
4809 if (pdi->d.locdesc == NULL)
4810 {
4811 if (built_actual_name)
4812 xfree (actual_name);
4813 return;
4814 }
4815 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
4816 mst_file_data, objfile); */
4817 add_psymbol_to_list (actual_name, strlen (actual_name),
4818 built_actual_name,
4819 VAR_DOMAIN, LOC_STATIC,
4820 &objfile->static_psymbols,
4821 0, addr + baseaddr,
4822 cu->language, objfile);
4823 }
4824 break;
4825 case DW_TAG_typedef:
4826 case DW_TAG_base_type:
4827 case DW_TAG_subrange_type:
4828 add_psymbol_to_list (actual_name, strlen (actual_name),
4829 built_actual_name,
4830 VAR_DOMAIN, LOC_TYPEDEF,
4831 &objfile->static_psymbols,
4832 0, (CORE_ADDR) 0, cu->language, objfile);
4833 break;
4834 case DW_TAG_namespace:
4835 add_psymbol_to_list (actual_name, strlen (actual_name),
4836 built_actual_name,
4837 VAR_DOMAIN, LOC_TYPEDEF,
4838 &objfile->global_psymbols,
4839 0, (CORE_ADDR) 0, cu->language, objfile);
4840 break;
4841 case DW_TAG_class_type:
4842 case DW_TAG_interface_type:
4843 case DW_TAG_structure_type:
4844 case DW_TAG_union_type:
4845 case DW_TAG_enumeration_type:
4846 /* Skip external references. The DWARF standard says in the section
4847 about "Structure, Union, and Class Type Entries": "An incomplete
4848 structure, union or class type is represented by a structure,
4849 union or class entry that does not have a byte size attribute
4850 and that has a DW_AT_declaration attribute." */
4851 if (!pdi->has_byte_size && pdi->is_declaration)
4852 {
4853 if (built_actual_name)
4854 xfree (actual_name);
4855 return;
4856 }
4857
4858 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
4859 static vs. global. */
4860 add_psymbol_to_list (actual_name, strlen (actual_name),
4861 built_actual_name,
4862 STRUCT_DOMAIN, LOC_TYPEDEF,
4863 (cu->language == language_cplus
4864 || cu->language == language_java)
4865 ? &objfile->global_psymbols
4866 : &objfile->static_psymbols,
4867 0, (CORE_ADDR) 0, cu->language, objfile);
4868
4869 break;
4870 case DW_TAG_enumerator:
4871 add_psymbol_to_list (actual_name, strlen (actual_name),
4872 built_actual_name,
4873 VAR_DOMAIN, LOC_CONST,
4874 (cu->language == language_cplus
4875 || cu->language == language_java)
4876 ? &objfile->global_psymbols
4877 : &objfile->static_psymbols,
4878 0, (CORE_ADDR) 0, cu->language, objfile);
4879 break;
4880 default:
4881 break;
4882 }
4883
4884 if (built_actual_name)
4885 xfree (actual_name);
4886 }
4887
4888 /* Read a partial die corresponding to a namespace; also, add a symbol
4889 corresponding to that namespace to the symbol table. NAMESPACE is
4890 the name of the enclosing namespace. */
4891
4892 static void
4893 add_partial_namespace (struct partial_die_info *pdi,
4894 CORE_ADDR *lowpc, CORE_ADDR *highpc,
4895 int need_pc, struct dwarf2_cu *cu)
4896 {
4897 /* Add a symbol for the namespace. */
4898
4899 add_partial_symbol (pdi, cu);
4900
4901 /* Now scan partial symbols in that namespace. */
4902
4903 if (pdi->has_children)
4904 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
4905 }
4906
4907 /* Read a partial die corresponding to a Fortran module. */
4908
4909 static void
4910 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
4911 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
4912 {
4913 /* Now scan partial symbols in that module. */
4914
4915 if (pdi->has_children)
4916 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
4917 }
4918
4919 /* Read a partial die corresponding to a subprogram and create a partial
4920 symbol for that subprogram. When the CU language allows it, this
4921 routine also defines a partial symbol for each nested subprogram
4922 that this subprogram contains.
4923
4924 DIE my also be a lexical block, in which case we simply search
4925 recursively for suprograms defined inside that lexical block.
4926 Again, this is only performed when the CU language allows this
4927 type of definitions. */
4928
4929 static void
4930 add_partial_subprogram (struct partial_die_info *pdi,
4931 CORE_ADDR *lowpc, CORE_ADDR *highpc,
4932 int need_pc, struct dwarf2_cu *cu)
4933 {
4934 if (pdi->tag == DW_TAG_subprogram)
4935 {
4936 if (pdi->has_pc_info)
4937 {
4938 if (pdi->lowpc < *lowpc)
4939 *lowpc = pdi->lowpc;
4940 if (pdi->highpc > *highpc)
4941 *highpc = pdi->highpc;
4942 if (need_pc)
4943 {
4944 CORE_ADDR baseaddr;
4945 struct objfile *objfile = cu->objfile;
4946
4947 baseaddr = ANOFFSET (objfile->section_offsets,
4948 SECT_OFF_TEXT (objfile));
4949 addrmap_set_empty (objfile->psymtabs_addrmap,
4950 pdi->lowpc + baseaddr,
4951 pdi->highpc - 1 + baseaddr,
4952 cu->per_cu->v.psymtab);
4953 }
4954 }
4955
4956 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
4957 {
4958 if (!pdi->is_declaration)
4959 /* Ignore subprogram DIEs that do not have a name, they are
4960 illegal. Do not emit a complaint at this point, we will
4961 do so when we convert this psymtab into a symtab. */
4962 if (pdi->name)
4963 add_partial_symbol (pdi, cu);
4964 }
4965 }
4966
4967 if (! pdi->has_children)
4968 return;
4969
4970 if (cu->language == language_ada)
4971 {
4972 pdi = pdi->die_child;
4973 while (pdi != NULL)
4974 {
4975 fixup_partial_die (pdi, cu);
4976 if (pdi->tag == DW_TAG_subprogram
4977 || pdi->tag == DW_TAG_lexical_block)
4978 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
4979 pdi = pdi->die_sibling;
4980 }
4981 }
4982 }
4983
4984 /* Read a partial die corresponding to an enumeration type. */
4985
4986 static void
4987 add_partial_enumeration (struct partial_die_info *enum_pdi,
4988 struct dwarf2_cu *cu)
4989 {
4990 struct partial_die_info *pdi;
4991
4992 if (enum_pdi->name != NULL)
4993 add_partial_symbol (enum_pdi, cu);
4994
4995 pdi = enum_pdi->die_child;
4996 while (pdi)
4997 {
4998 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
4999 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
5000 else
5001 add_partial_symbol (pdi, cu);
5002 pdi = pdi->die_sibling;
5003 }
5004 }
5005
5006 /* Return the initial uleb128 in the die at INFO_PTR. */
5007
5008 static unsigned int
5009 peek_abbrev_code (bfd *abfd, gdb_byte *info_ptr)
5010 {
5011 unsigned int bytes_read;
5012
5013 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5014 }
5015
5016 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
5017 Return the corresponding abbrev, or NULL if the number is zero (indicating
5018 an empty DIE). In either case *BYTES_READ will be set to the length of
5019 the initial number. */
5020
5021 static struct abbrev_info *
5022 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
5023 struct dwarf2_cu *cu)
5024 {
5025 bfd *abfd = cu->objfile->obfd;
5026 unsigned int abbrev_number;
5027 struct abbrev_info *abbrev;
5028
5029 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
5030
5031 if (abbrev_number == 0)
5032 return NULL;
5033
5034 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
5035 if (!abbrev)
5036 {
5037 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
5038 abbrev_number, bfd_get_filename (abfd));
5039 }
5040
5041 return abbrev;
5042 }
5043
5044 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
5045 Returns a pointer to the end of a series of DIEs, terminated by an empty
5046 DIE. Any children of the skipped DIEs will also be skipped. */
5047
5048 static gdb_byte *
5049 skip_children (const struct die_reader_specs *reader, gdb_byte *info_ptr)
5050 {
5051 struct dwarf2_cu *cu = reader->cu;
5052 struct abbrev_info *abbrev;
5053 unsigned int bytes_read;
5054
5055 while (1)
5056 {
5057 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
5058 if (abbrev == NULL)
5059 return info_ptr + bytes_read;
5060 else
5061 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
5062 }
5063 }
5064
5065 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
5066 INFO_PTR should point just after the initial uleb128 of a DIE, and the
5067 abbrev corresponding to that skipped uleb128 should be passed in
5068 ABBREV. Returns a pointer to this DIE's sibling, skipping any
5069 children. */
5070
5071 static gdb_byte *
5072 skip_one_die (const struct die_reader_specs *reader, gdb_byte *info_ptr,
5073 struct abbrev_info *abbrev)
5074 {
5075 unsigned int bytes_read;
5076 struct attribute attr;
5077 bfd *abfd = reader->abfd;
5078 struct dwarf2_cu *cu = reader->cu;
5079 gdb_byte *buffer = reader->buffer;
5080 const gdb_byte *buffer_end = reader->buffer_end;
5081 gdb_byte *start_info_ptr = info_ptr;
5082 unsigned int form, i;
5083
5084 for (i = 0; i < abbrev->num_attrs; i++)
5085 {
5086 /* The only abbrev we care about is DW_AT_sibling. */
5087 if (abbrev->attrs[i].name == DW_AT_sibling)
5088 {
5089 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
5090 if (attr.form == DW_FORM_ref_addr)
5091 complaint (&symfile_complaints,
5092 _("ignoring absolute DW_AT_sibling"));
5093 else
5094 return buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
5095 }
5096
5097 /* If it isn't DW_AT_sibling, skip this attribute. */
5098 form = abbrev->attrs[i].form;
5099 skip_attribute:
5100 switch (form)
5101 {
5102 case DW_FORM_ref_addr:
5103 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
5104 and later it is offset sized. */
5105 if (cu->header.version == 2)
5106 info_ptr += cu->header.addr_size;
5107 else
5108 info_ptr += cu->header.offset_size;
5109 break;
5110 case DW_FORM_addr:
5111 info_ptr += cu->header.addr_size;
5112 break;
5113 case DW_FORM_data1:
5114 case DW_FORM_ref1:
5115 case DW_FORM_flag:
5116 info_ptr += 1;
5117 break;
5118 case DW_FORM_flag_present:
5119 break;
5120 case DW_FORM_data2:
5121 case DW_FORM_ref2:
5122 info_ptr += 2;
5123 break;
5124 case DW_FORM_data4:
5125 case DW_FORM_ref4:
5126 info_ptr += 4;
5127 break;
5128 case DW_FORM_data8:
5129 case DW_FORM_ref8:
5130 case DW_FORM_ref_sig8:
5131 info_ptr += 8;
5132 break;
5133 case DW_FORM_string:
5134 read_direct_string (abfd, info_ptr, &bytes_read);
5135 info_ptr += bytes_read;
5136 break;
5137 case DW_FORM_sec_offset:
5138 case DW_FORM_strp:
5139 info_ptr += cu->header.offset_size;
5140 break;
5141 case DW_FORM_exprloc:
5142 case DW_FORM_block:
5143 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5144 info_ptr += bytes_read;
5145 break;
5146 case DW_FORM_block1:
5147 info_ptr += 1 + read_1_byte (abfd, info_ptr);
5148 break;
5149 case DW_FORM_block2:
5150 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
5151 break;
5152 case DW_FORM_block4:
5153 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
5154 break;
5155 case DW_FORM_sdata:
5156 case DW_FORM_udata:
5157 case DW_FORM_ref_udata:
5158 case DW_FORM_GNU_addr_index:
5159 case DW_FORM_GNU_str_index:
5160 info_ptr = (gdb_byte *) safe_skip_leb128 (info_ptr, buffer_end);
5161 break;
5162 case DW_FORM_indirect:
5163 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5164 info_ptr += bytes_read;
5165 /* We need to continue parsing from here, so just go back to
5166 the top. */
5167 goto skip_attribute;
5168
5169 default:
5170 error (_("Dwarf Error: Cannot handle %s "
5171 "in DWARF reader [in module %s]"),
5172 dwarf_form_name (form),
5173 bfd_get_filename (abfd));
5174 }
5175 }
5176
5177 if (abbrev->has_children)
5178 return skip_children (reader, info_ptr);
5179 else
5180 return info_ptr;
5181 }
5182
5183 /* Locate ORIG_PDI's sibling.
5184 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
5185
5186 static gdb_byte *
5187 locate_pdi_sibling (const struct die_reader_specs *reader,
5188 struct partial_die_info *orig_pdi,
5189 gdb_byte *info_ptr)
5190 {
5191 /* Do we know the sibling already? */
5192
5193 if (orig_pdi->sibling)
5194 return orig_pdi->sibling;
5195
5196 /* Are there any children to deal with? */
5197
5198 if (!orig_pdi->has_children)
5199 return info_ptr;
5200
5201 /* Skip the children the long way. */
5202
5203 return skip_children (reader, info_ptr);
5204 }
5205
5206 /* Expand this partial symbol table into a full symbol table. */
5207
5208 static void
5209 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
5210 {
5211 if (pst != NULL)
5212 {
5213 if (pst->readin)
5214 {
5215 warning (_("bug: psymtab for %s is already read in."),
5216 pst->filename);
5217 }
5218 else
5219 {
5220 if (info_verbose)
5221 {
5222 printf_filtered (_("Reading in symbols for %s..."),
5223 pst->filename);
5224 gdb_flush (gdb_stdout);
5225 }
5226
5227 /* Restore our global data. */
5228 dwarf2_per_objfile = objfile_data (pst->objfile,
5229 dwarf2_objfile_data_key);
5230
5231 /* If this psymtab is constructed from a debug-only objfile, the
5232 has_section_at_zero flag will not necessarily be correct. We
5233 can get the correct value for this flag by looking at the data
5234 associated with the (presumably stripped) associated objfile. */
5235 if (pst->objfile->separate_debug_objfile_backlink)
5236 {
5237 struct dwarf2_per_objfile *dpo_backlink
5238 = objfile_data (pst->objfile->separate_debug_objfile_backlink,
5239 dwarf2_objfile_data_key);
5240
5241 dwarf2_per_objfile->has_section_at_zero
5242 = dpo_backlink->has_section_at_zero;
5243 }
5244
5245 dwarf2_per_objfile->reading_partial_symbols = 0;
5246
5247 psymtab_to_symtab_1 (pst);
5248
5249 /* Finish up the debug error message. */
5250 if (info_verbose)
5251 printf_filtered (_("done.\n"));
5252 }
5253 }
5254
5255 process_cu_includes ();
5256 }
5257 \f
5258 /* Reading in full CUs. */
5259
5260 /* Add PER_CU to the queue. */
5261
5262 static void
5263 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
5264 enum language pretend_language)
5265 {
5266 struct dwarf2_queue_item *item;
5267
5268 per_cu->queued = 1;
5269 item = xmalloc (sizeof (*item));
5270 item->per_cu = per_cu;
5271 item->pretend_language = pretend_language;
5272 item->next = NULL;
5273
5274 if (dwarf2_queue == NULL)
5275 dwarf2_queue = item;
5276 else
5277 dwarf2_queue_tail->next = item;
5278
5279 dwarf2_queue_tail = item;
5280 }
5281
5282 /* Process the queue. */
5283
5284 static void
5285 process_queue (void)
5286 {
5287 struct dwarf2_queue_item *item, *next_item;
5288
5289 /* The queue starts out with one item, but following a DIE reference
5290 may load a new CU, adding it to the end of the queue. */
5291 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
5292 {
5293 if (dwarf2_per_objfile->using_index
5294 ? !item->per_cu->v.quick->symtab
5295 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
5296 process_full_comp_unit (item->per_cu, item->pretend_language);
5297
5298 item->per_cu->queued = 0;
5299 next_item = item->next;
5300 xfree (item);
5301 }
5302
5303 dwarf2_queue_tail = NULL;
5304 }
5305
5306 /* Free all allocated queue entries. This function only releases anything if
5307 an error was thrown; if the queue was processed then it would have been
5308 freed as we went along. */
5309
5310 static void
5311 dwarf2_release_queue (void *dummy)
5312 {
5313 struct dwarf2_queue_item *item, *last;
5314
5315 item = dwarf2_queue;
5316 while (item)
5317 {
5318 /* Anything still marked queued is likely to be in an
5319 inconsistent state, so discard it. */
5320 if (item->per_cu->queued)
5321 {
5322 if (item->per_cu->cu != NULL)
5323 free_one_cached_comp_unit (item->per_cu);
5324 item->per_cu->queued = 0;
5325 }
5326
5327 last = item;
5328 item = item->next;
5329 xfree (last);
5330 }
5331
5332 dwarf2_queue = dwarf2_queue_tail = NULL;
5333 }
5334
5335 /* Read in full symbols for PST, and anything it depends on. */
5336
5337 static void
5338 psymtab_to_symtab_1 (struct partial_symtab *pst)
5339 {
5340 struct dwarf2_per_cu_data *per_cu;
5341 int i;
5342
5343 if (pst->readin)
5344 return;
5345
5346 for (i = 0; i < pst->number_of_dependencies; i++)
5347 if (!pst->dependencies[i]->readin
5348 && pst->dependencies[i]->user == NULL)
5349 {
5350 /* Inform about additional files that need to be read in. */
5351 if (info_verbose)
5352 {
5353 /* FIXME: i18n: Need to make this a single string. */
5354 fputs_filtered (" ", gdb_stdout);
5355 wrap_here ("");
5356 fputs_filtered ("and ", gdb_stdout);
5357 wrap_here ("");
5358 printf_filtered ("%s...", pst->dependencies[i]->filename);
5359 wrap_here (""); /* Flush output. */
5360 gdb_flush (gdb_stdout);
5361 }
5362 psymtab_to_symtab_1 (pst->dependencies[i]);
5363 }
5364
5365 per_cu = pst->read_symtab_private;
5366
5367 if (per_cu == NULL)
5368 {
5369 /* It's an include file, no symbols to read for it.
5370 Everything is in the parent symtab. */
5371 pst->readin = 1;
5372 return;
5373 }
5374
5375 dw2_do_instantiate_symtab (per_cu);
5376 }
5377
5378 /* Trivial hash function for die_info: the hash value of a DIE
5379 is its offset in .debug_info for this objfile. */
5380
5381 static hashval_t
5382 die_hash (const void *item)
5383 {
5384 const struct die_info *die = item;
5385
5386 return die->offset.sect_off;
5387 }
5388
5389 /* Trivial comparison function for die_info structures: two DIEs
5390 are equal if they have the same offset. */
5391
5392 static int
5393 die_eq (const void *item_lhs, const void *item_rhs)
5394 {
5395 const struct die_info *die_lhs = item_lhs;
5396 const struct die_info *die_rhs = item_rhs;
5397
5398 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
5399 }
5400
5401 /* die_reader_func for load_full_comp_unit.
5402 This is identical to read_signatured_type_reader,
5403 but is kept separate for now. */
5404
5405 static void
5406 load_full_comp_unit_reader (const struct die_reader_specs *reader,
5407 gdb_byte *info_ptr,
5408 struct die_info *comp_unit_die,
5409 int has_children,
5410 void *data)
5411 {
5412 struct dwarf2_cu *cu = reader->cu;
5413 enum language *language_ptr = data;
5414
5415 gdb_assert (cu->die_hash == NULL);
5416 cu->die_hash =
5417 htab_create_alloc_ex (cu->header.length / 12,
5418 die_hash,
5419 die_eq,
5420 NULL,
5421 &cu->comp_unit_obstack,
5422 hashtab_obstack_allocate,
5423 dummy_obstack_deallocate);
5424
5425 if (has_children)
5426 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
5427 &info_ptr, comp_unit_die);
5428 cu->dies = comp_unit_die;
5429 /* comp_unit_die is not stored in die_hash, no need. */
5430
5431 /* We try not to read any attributes in this function, because not
5432 all CUs needed for references have been loaded yet, and symbol
5433 table processing isn't initialized. But we have to set the CU language,
5434 or we won't be able to build types correctly.
5435 Similarly, if we do not read the producer, we can not apply
5436 producer-specific interpretation. */
5437 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
5438 }
5439
5440 /* Load the DIEs associated with PER_CU into memory. */
5441
5442 static void
5443 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
5444 enum language pretend_language)
5445 {
5446 gdb_assert (! this_cu->is_debug_types);
5447
5448 init_cutu_and_read_dies (this_cu, 1, 1, load_full_comp_unit_reader,
5449 &pretend_language);
5450 }
5451
5452 /* Add a DIE to the delayed physname list. */
5453
5454 static void
5455 add_to_method_list (struct type *type, int fnfield_index, int index,
5456 const char *name, struct die_info *die,
5457 struct dwarf2_cu *cu)
5458 {
5459 struct delayed_method_info mi;
5460 mi.type = type;
5461 mi.fnfield_index = fnfield_index;
5462 mi.index = index;
5463 mi.name = name;
5464 mi.die = die;
5465 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
5466 }
5467
5468 /* A cleanup for freeing the delayed method list. */
5469
5470 static void
5471 free_delayed_list (void *ptr)
5472 {
5473 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
5474 if (cu->method_list != NULL)
5475 {
5476 VEC_free (delayed_method_info, cu->method_list);
5477 cu->method_list = NULL;
5478 }
5479 }
5480
5481 /* Compute the physnames of any methods on the CU's method list.
5482
5483 The computation of method physnames is delayed in order to avoid the
5484 (bad) condition that one of the method's formal parameters is of an as yet
5485 incomplete type. */
5486
5487 static void
5488 compute_delayed_physnames (struct dwarf2_cu *cu)
5489 {
5490 int i;
5491 struct delayed_method_info *mi;
5492 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
5493 {
5494 const char *physname;
5495 struct fn_fieldlist *fn_flp
5496 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
5497 physname = dwarf2_physname ((char *) mi->name, mi->die, cu);
5498 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
5499 }
5500 }
5501
5502 /* Go objects should be embedded in a DW_TAG_module DIE,
5503 and it's not clear if/how imported objects will appear.
5504 To keep Go support simple until that's worked out,
5505 go back through what we've read and create something usable.
5506 We could do this while processing each DIE, and feels kinda cleaner,
5507 but that way is more invasive.
5508 This is to, for example, allow the user to type "p var" or "b main"
5509 without having to specify the package name, and allow lookups
5510 of module.object to work in contexts that use the expression
5511 parser. */
5512
5513 static void
5514 fixup_go_packaging (struct dwarf2_cu *cu)
5515 {
5516 char *package_name = NULL;
5517 struct pending *list;
5518 int i;
5519
5520 for (list = global_symbols; list != NULL; list = list->next)
5521 {
5522 for (i = 0; i < list->nsyms; ++i)
5523 {
5524 struct symbol *sym = list->symbol[i];
5525
5526 if (SYMBOL_LANGUAGE (sym) == language_go
5527 && SYMBOL_CLASS (sym) == LOC_BLOCK)
5528 {
5529 char *this_package_name = go_symbol_package_name (sym);
5530
5531 if (this_package_name == NULL)
5532 continue;
5533 if (package_name == NULL)
5534 package_name = this_package_name;
5535 else
5536 {
5537 if (strcmp (package_name, this_package_name) != 0)
5538 complaint (&symfile_complaints,
5539 _("Symtab %s has objects from two different Go packages: %s and %s"),
5540 (sym->symtab && sym->symtab->filename
5541 ? sym->symtab->filename
5542 : cu->objfile->name),
5543 this_package_name, package_name);
5544 xfree (this_package_name);
5545 }
5546 }
5547 }
5548 }
5549
5550 if (package_name != NULL)
5551 {
5552 struct objfile *objfile = cu->objfile;
5553 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
5554 package_name, objfile);
5555 struct symbol *sym;
5556
5557 TYPE_TAG_NAME (type) = TYPE_NAME (type);
5558
5559 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5560 SYMBOL_SET_LANGUAGE (sym, language_go);
5561 SYMBOL_SET_NAMES (sym, package_name, strlen (package_name), 1, objfile);
5562 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
5563 e.g., "main" finds the "main" module and not C's main(). */
5564 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
5565 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
5566 SYMBOL_TYPE (sym) = type;
5567
5568 add_symbol_to_list (sym, &global_symbols);
5569
5570 xfree (package_name);
5571 }
5572 }
5573
5574 static void compute_symtab_includes (struct dwarf2_per_cu_data *per_cu);
5575
5576 /* Return the symtab for PER_CU. This works properly regardless of
5577 whether we're using the index or psymtabs. */
5578
5579 static struct symtab *
5580 get_symtab (struct dwarf2_per_cu_data *per_cu)
5581 {
5582 return (dwarf2_per_objfile->using_index
5583 ? per_cu->v.quick->symtab
5584 : per_cu->v.psymtab->symtab);
5585 }
5586
5587 /* A helper function for computing the list of all symbol tables
5588 included by PER_CU. */
5589
5590 static void
5591 recursively_compute_inclusions (VEC (dwarf2_per_cu_ptr) **result,
5592 htab_t all_children,
5593 struct dwarf2_per_cu_data *per_cu)
5594 {
5595 void **slot;
5596 int ix;
5597 struct dwarf2_per_cu_data *iter;
5598
5599 slot = htab_find_slot (all_children, per_cu, INSERT);
5600 if (*slot != NULL)
5601 {
5602 /* This inclusion and its children have been processed. */
5603 return;
5604 }
5605
5606 *slot = per_cu;
5607 /* Only add a CU if it has a symbol table. */
5608 if (get_symtab (per_cu) != NULL)
5609 VEC_safe_push (dwarf2_per_cu_ptr, *result, per_cu);
5610
5611 for (ix = 0;
5612 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
5613 ++ix)
5614 recursively_compute_inclusions (result, all_children, iter);
5615 }
5616
5617 /* Compute the symtab 'includes' fields for the symtab related to
5618 PER_CU. */
5619
5620 static void
5621 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
5622 {
5623 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
5624 {
5625 int ix, len;
5626 struct dwarf2_per_cu_data *iter;
5627 VEC (dwarf2_per_cu_ptr) *result_children = NULL;
5628 htab_t all_children;
5629 struct symtab *symtab = get_symtab (per_cu);
5630
5631 /* If we don't have a symtab, we can just skip this case. */
5632 if (symtab == NULL)
5633 return;
5634
5635 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
5636 NULL, xcalloc, xfree);
5637
5638 for (ix = 0;
5639 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
5640 ix, iter);
5641 ++ix)
5642 recursively_compute_inclusions (&result_children, all_children, iter);
5643
5644 /* Now we have a transitive closure of all the included CUs, so
5645 we can convert it to a list of symtabs. */
5646 len = VEC_length (dwarf2_per_cu_ptr, result_children);
5647 symtab->includes
5648 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
5649 (len + 1) * sizeof (struct symtab *));
5650 for (ix = 0;
5651 VEC_iterate (dwarf2_per_cu_ptr, result_children, ix, iter);
5652 ++ix)
5653 symtab->includes[ix] = get_symtab (iter);
5654 symtab->includes[len] = NULL;
5655
5656 VEC_free (dwarf2_per_cu_ptr, result_children);
5657 htab_delete (all_children);
5658 }
5659 }
5660
5661 /* Compute the 'includes' field for the symtabs of all the CUs we just
5662 read. */
5663
5664 static void
5665 process_cu_includes (void)
5666 {
5667 int ix;
5668 struct dwarf2_per_cu_data *iter;
5669
5670 for (ix = 0;
5671 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
5672 ix, iter);
5673 ++ix)
5674 compute_symtab_includes (iter);
5675
5676 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
5677 }
5678
5679 /* Generate full symbol information for PER_CU, whose DIEs have
5680 already been loaded into memory. */
5681
5682 static void
5683 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
5684 enum language pretend_language)
5685 {
5686 struct dwarf2_cu *cu = per_cu->cu;
5687 struct objfile *objfile = per_cu->objfile;
5688 CORE_ADDR lowpc, highpc;
5689 struct symtab *symtab;
5690 struct cleanup *back_to, *delayed_list_cleanup;
5691 CORE_ADDR baseaddr;
5692
5693 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5694
5695 buildsym_init ();
5696 back_to = make_cleanup (really_free_pendings, NULL);
5697 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
5698
5699 cu->list_in_scope = &file_symbols;
5700
5701 cu->language = pretend_language;
5702 cu->language_defn = language_def (cu->language);
5703
5704 /* Do line number decoding in read_file_scope () */
5705 process_die (cu->dies, cu);
5706
5707 /* For now fudge the Go package. */
5708 if (cu->language == language_go)
5709 fixup_go_packaging (cu);
5710
5711 /* Now that we have processed all the DIEs in the CU, all the types
5712 should be complete, and it should now be safe to compute all of the
5713 physnames. */
5714 compute_delayed_physnames (cu);
5715 do_cleanups (delayed_list_cleanup);
5716
5717 /* Some compilers don't define a DW_AT_high_pc attribute for the
5718 compilation unit. If the DW_AT_high_pc is missing, synthesize
5719 it, by scanning the DIE's below the compilation unit. */
5720 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
5721
5722 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
5723
5724 if (symtab != NULL)
5725 {
5726 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
5727
5728 /* Set symtab language to language from DW_AT_language. If the
5729 compilation is from a C file generated by language preprocessors, do
5730 not set the language if it was already deduced by start_subfile. */
5731 if (!(cu->language == language_c && symtab->language != language_c))
5732 symtab->language = cu->language;
5733
5734 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
5735 produce DW_AT_location with location lists but it can be possibly
5736 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
5737 there were bugs in prologue debug info, fixed later in GCC-4.5
5738 by "unwind info for epilogues" patch (which is not directly related).
5739
5740 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
5741 needed, it would be wrong due to missing DW_AT_producer there.
5742
5743 Still one can confuse GDB by using non-standard GCC compilation
5744 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
5745 */
5746 if (cu->has_loclist && gcc_4_minor >= 5)
5747 symtab->locations_valid = 1;
5748
5749 if (gcc_4_minor >= 5)
5750 symtab->epilogue_unwind_valid = 1;
5751
5752 symtab->call_site_htab = cu->call_site_htab;
5753 }
5754
5755 if (dwarf2_per_objfile->using_index)
5756 per_cu->v.quick->symtab = symtab;
5757 else
5758 {
5759 struct partial_symtab *pst = per_cu->v.psymtab;
5760 pst->symtab = symtab;
5761 pst->readin = 1;
5762 }
5763
5764 /* Push it for inclusion processing later. */
5765 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
5766
5767 do_cleanups (back_to);
5768 }
5769
5770 /* Process an imported unit DIE. */
5771
5772 static void
5773 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
5774 {
5775 struct attribute *attr;
5776
5777 attr = dwarf2_attr (die, DW_AT_import, cu);
5778 if (attr != NULL)
5779 {
5780 struct dwarf2_per_cu_data *per_cu;
5781 struct symtab *imported_symtab;
5782 sect_offset offset;
5783
5784 offset = dwarf2_get_ref_die_offset (attr);
5785 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
5786
5787 /* Queue the unit, if needed. */
5788 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
5789 load_full_comp_unit (per_cu, cu->language);
5790
5791 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5792 per_cu);
5793 }
5794 }
5795
5796 /* Process a die and its children. */
5797
5798 static void
5799 process_die (struct die_info *die, struct dwarf2_cu *cu)
5800 {
5801 switch (die->tag)
5802 {
5803 case DW_TAG_padding:
5804 break;
5805 case DW_TAG_compile_unit:
5806 case DW_TAG_partial_unit:
5807 read_file_scope (die, cu);
5808 break;
5809 case DW_TAG_type_unit:
5810 read_type_unit_scope (die, cu);
5811 break;
5812 case DW_TAG_subprogram:
5813 case DW_TAG_inlined_subroutine:
5814 read_func_scope (die, cu);
5815 break;
5816 case DW_TAG_lexical_block:
5817 case DW_TAG_try_block:
5818 case DW_TAG_catch_block:
5819 read_lexical_block_scope (die, cu);
5820 break;
5821 case DW_TAG_GNU_call_site:
5822 read_call_site_scope (die, cu);
5823 break;
5824 case DW_TAG_class_type:
5825 case DW_TAG_interface_type:
5826 case DW_TAG_structure_type:
5827 case DW_TAG_union_type:
5828 process_structure_scope (die, cu);
5829 break;
5830 case DW_TAG_enumeration_type:
5831 process_enumeration_scope (die, cu);
5832 break;
5833
5834 /* These dies have a type, but processing them does not create
5835 a symbol or recurse to process the children. Therefore we can
5836 read them on-demand through read_type_die. */
5837 case DW_TAG_subroutine_type:
5838 case DW_TAG_set_type:
5839 case DW_TAG_array_type:
5840 case DW_TAG_pointer_type:
5841 case DW_TAG_ptr_to_member_type:
5842 case DW_TAG_reference_type:
5843 case DW_TAG_string_type:
5844 break;
5845
5846 case DW_TAG_base_type:
5847 case DW_TAG_subrange_type:
5848 case DW_TAG_typedef:
5849 /* Add a typedef symbol for the type definition, if it has a
5850 DW_AT_name. */
5851 new_symbol (die, read_type_die (die, cu), cu);
5852 break;
5853 case DW_TAG_common_block:
5854 read_common_block (die, cu);
5855 break;
5856 case DW_TAG_common_inclusion:
5857 break;
5858 case DW_TAG_namespace:
5859 processing_has_namespace_info = 1;
5860 read_namespace (die, cu);
5861 break;
5862 case DW_TAG_module:
5863 processing_has_namespace_info = 1;
5864 read_module (die, cu);
5865 break;
5866 case DW_TAG_imported_declaration:
5867 case DW_TAG_imported_module:
5868 processing_has_namespace_info = 1;
5869 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
5870 || cu->language != language_fortran))
5871 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
5872 dwarf_tag_name (die->tag));
5873 read_import_statement (die, cu);
5874 break;
5875
5876 case DW_TAG_imported_unit:
5877 process_imported_unit_die (die, cu);
5878 break;
5879
5880 default:
5881 new_symbol (die, NULL, cu);
5882 break;
5883 }
5884 }
5885
5886 /* A helper function for dwarf2_compute_name which determines whether DIE
5887 needs to have the name of the scope prepended to the name listed in the
5888 die. */
5889
5890 static int
5891 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
5892 {
5893 struct attribute *attr;
5894
5895 switch (die->tag)
5896 {
5897 case DW_TAG_namespace:
5898 case DW_TAG_typedef:
5899 case DW_TAG_class_type:
5900 case DW_TAG_interface_type:
5901 case DW_TAG_structure_type:
5902 case DW_TAG_union_type:
5903 case DW_TAG_enumeration_type:
5904 case DW_TAG_enumerator:
5905 case DW_TAG_subprogram:
5906 case DW_TAG_member:
5907 return 1;
5908
5909 case DW_TAG_variable:
5910 case DW_TAG_constant:
5911 /* We only need to prefix "globally" visible variables. These include
5912 any variable marked with DW_AT_external or any variable that
5913 lives in a namespace. [Variables in anonymous namespaces
5914 require prefixing, but they are not DW_AT_external.] */
5915
5916 if (dwarf2_attr (die, DW_AT_specification, cu))
5917 {
5918 struct dwarf2_cu *spec_cu = cu;
5919
5920 return die_needs_namespace (die_specification (die, &spec_cu),
5921 spec_cu);
5922 }
5923
5924 attr = dwarf2_attr (die, DW_AT_external, cu);
5925 if (attr == NULL && die->parent->tag != DW_TAG_namespace
5926 && die->parent->tag != DW_TAG_module)
5927 return 0;
5928 /* A variable in a lexical block of some kind does not need a
5929 namespace, even though in C++ such variables may be external
5930 and have a mangled name. */
5931 if (die->parent->tag == DW_TAG_lexical_block
5932 || die->parent->tag == DW_TAG_try_block
5933 || die->parent->tag == DW_TAG_catch_block
5934 || die->parent->tag == DW_TAG_subprogram)
5935 return 0;
5936 return 1;
5937
5938 default:
5939 return 0;
5940 }
5941 }
5942
5943 /* Retrieve the last character from a mem_file. */
5944
5945 static void
5946 do_ui_file_peek_last (void *object, const char *buffer, long length)
5947 {
5948 char *last_char_p = (char *) object;
5949
5950 if (length > 0)
5951 *last_char_p = buffer[length - 1];
5952 }
5953
5954 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
5955 compute the physname for the object, which include a method's:
5956 - formal parameters (C++/Java),
5957 - receiver type (Go),
5958 - return type (Java).
5959
5960 The term "physname" is a bit confusing.
5961 For C++, for example, it is the demangled name.
5962 For Go, for example, it's the mangled name.
5963
5964 For Ada, return the DIE's linkage name rather than the fully qualified
5965 name. PHYSNAME is ignored..
5966
5967 The result is allocated on the objfile_obstack and canonicalized. */
5968
5969 static const char *
5970 dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu,
5971 int physname)
5972 {
5973 struct objfile *objfile = cu->objfile;
5974
5975 if (name == NULL)
5976 name = dwarf2_name (die, cu);
5977
5978 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
5979 compute it by typename_concat inside GDB. */
5980 if (cu->language == language_ada
5981 || (cu->language == language_fortran && physname))
5982 {
5983 /* For Ada unit, we prefer the linkage name over the name, as
5984 the former contains the exported name, which the user expects
5985 to be able to reference. Ideally, we want the user to be able
5986 to reference this entity using either natural or linkage name,
5987 but we haven't started looking at this enhancement yet. */
5988 struct attribute *attr;
5989
5990 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
5991 if (attr == NULL)
5992 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
5993 if (attr && DW_STRING (attr))
5994 return DW_STRING (attr);
5995 }
5996
5997 /* These are the only languages we know how to qualify names in. */
5998 if (name != NULL
5999 && (cu->language == language_cplus || cu->language == language_java
6000 || cu->language == language_fortran))
6001 {
6002 if (die_needs_namespace (die, cu))
6003 {
6004 long length;
6005 const char *prefix;
6006 struct ui_file *buf;
6007
6008 prefix = determine_prefix (die, cu);
6009 buf = mem_fileopen ();
6010 if (*prefix != '\0')
6011 {
6012 char *prefixed_name = typename_concat (NULL, prefix, name,
6013 physname, cu);
6014
6015 fputs_unfiltered (prefixed_name, buf);
6016 xfree (prefixed_name);
6017 }
6018 else
6019 fputs_unfiltered (name, buf);
6020
6021 /* Template parameters may be specified in the DIE's DW_AT_name, or
6022 as children with DW_TAG_template_type_param or
6023 DW_TAG_value_type_param. If the latter, add them to the name
6024 here. If the name already has template parameters, then
6025 skip this step; some versions of GCC emit both, and
6026 it is more efficient to use the pre-computed name.
6027
6028 Something to keep in mind about this process: it is very
6029 unlikely, or in some cases downright impossible, to produce
6030 something that will match the mangled name of a function.
6031 If the definition of the function has the same debug info,
6032 we should be able to match up with it anyway. But fallbacks
6033 using the minimal symbol, for instance to find a method
6034 implemented in a stripped copy of libstdc++, will not work.
6035 If we do not have debug info for the definition, we will have to
6036 match them up some other way.
6037
6038 When we do name matching there is a related problem with function
6039 templates; two instantiated function templates are allowed to
6040 differ only by their return types, which we do not add here. */
6041
6042 if (cu->language == language_cplus && strchr (name, '<') == NULL)
6043 {
6044 struct attribute *attr;
6045 struct die_info *child;
6046 int first = 1;
6047
6048 die->building_fullname = 1;
6049
6050 for (child = die->child; child != NULL; child = child->sibling)
6051 {
6052 struct type *type;
6053 LONGEST value;
6054 gdb_byte *bytes;
6055 struct dwarf2_locexpr_baton *baton;
6056 struct value *v;
6057
6058 if (child->tag != DW_TAG_template_type_param
6059 && child->tag != DW_TAG_template_value_param)
6060 continue;
6061
6062 if (first)
6063 {
6064 fputs_unfiltered ("<", buf);
6065 first = 0;
6066 }
6067 else
6068 fputs_unfiltered (", ", buf);
6069
6070 attr = dwarf2_attr (child, DW_AT_type, cu);
6071 if (attr == NULL)
6072 {
6073 complaint (&symfile_complaints,
6074 _("template parameter missing DW_AT_type"));
6075 fputs_unfiltered ("UNKNOWN_TYPE", buf);
6076 continue;
6077 }
6078 type = die_type (child, cu);
6079
6080 if (child->tag == DW_TAG_template_type_param)
6081 {
6082 c_print_type (type, "", buf, -1, 0);
6083 continue;
6084 }
6085
6086 attr = dwarf2_attr (child, DW_AT_const_value, cu);
6087 if (attr == NULL)
6088 {
6089 complaint (&symfile_complaints,
6090 _("template parameter missing "
6091 "DW_AT_const_value"));
6092 fputs_unfiltered ("UNKNOWN_VALUE", buf);
6093 continue;
6094 }
6095
6096 dwarf2_const_value_attr (attr, type, name,
6097 &cu->comp_unit_obstack, cu,
6098 &value, &bytes, &baton);
6099
6100 if (TYPE_NOSIGN (type))
6101 /* GDB prints characters as NUMBER 'CHAR'. If that's
6102 changed, this can use value_print instead. */
6103 c_printchar (value, type, buf);
6104 else
6105 {
6106 struct value_print_options opts;
6107
6108 if (baton != NULL)
6109 v = dwarf2_evaluate_loc_desc (type, NULL,
6110 baton->data,
6111 baton->size,
6112 baton->per_cu);
6113 else if (bytes != NULL)
6114 {
6115 v = allocate_value (type);
6116 memcpy (value_contents_writeable (v), bytes,
6117 TYPE_LENGTH (type));
6118 }
6119 else
6120 v = value_from_longest (type, value);
6121
6122 /* Specify decimal so that we do not depend on
6123 the radix. */
6124 get_formatted_print_options (&opts, 'd');
6125 opts.raw = 1;
6126 value_print (v, buf, &opts);
6127 release_value (v);
6128 value_free (v);
6129 }
6130 }
6131
6132 die->building_fullname = 0;
6133
6134 if (!first)
6135 {
6136 /* Close the argument list, with a space if necessary
6137 (nested templates). */
6138 char last_char = '\0';
6139 ui_file_put (buf, do_ui_file_peek_last, &last_char);
6140 if (last_char == '>')
6141 fputs_unfiltered (" >", buf);
6142 else
6143 fputs_unfiltered (">", buf);
6144 }
6145 }
6146
6147 /* For Java and C++ methods, append formal parameter type
6148 information, if PHYSNAME. */
6149
6150 if (physname && die->tag == DW_TAG_subprogram
6151 && (cu->language == language_cplus
6152 || cu->language == language_java))
6153 {
6154 struct type *type = read_type_die (die, cu);
6155
6156 c_type_print_args (type, buf, 1, cu->language);
6157
6158 if (cu->language == language_java)
6159 {
6160 /* For java, we must append the return type to method
6161 names. */
6162 if (die->tag == DW_TAG_subprogram)
6163 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
6164 0, 0);
6165 }
6166 else if (cu->language == language_cplus)
6167 {
6168 /* Assume that an artificial first parameter is
6169 "this", but do not crash if it is not. RealView
6170 marks unnamed (and thus unused) parameters as
6171 artificial; there is no way to differentiate
6172 the two cases. */
6173 if (TYPE_NFIELDS (type) > 0
6174 && TYPE_FIELD_ARTIFICIAL (type, 0)
6175 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
6176 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
6177 0))))
6178 fputs_unfiltered (" const", buf);
6179 }
6180 }
6181
6182 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
6183 &length);
6184 ui_file_delete (buf);
6185
6186 if (cu->language == language_cplus)
6187 {
6188 char *cname
6189 = dwarf2_canonicalize_name (name, cu,
6190 &objfile->objfile_obstack);
6191
6192 if (cname != NULL)
6193 name = cname;
6194 }
6195 }
6196 }
6197
6198 return name;
6199 }
6200
6201 /* Return the fully qualified name of DIE, based on its DW_AT_name.
6202 If scope qualifiers are appropriate they will be added. The result
6203 will be allocated on the objfile_obstack, or NULL if the DIE does
6204 not have a name. NAME may either be from a previous call to
6205 dwarf2_name or NULL.
6206
6207 The output string will be canonicalized (if C++/Java). */
6208
6209 static const char *
6210 dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu)
6211 {
6212 return dwarf2_compute_name (name, die, cu, 0);
6213 }
6214
6215 /* Construct a physname for the given DIE in CU. NAME may either be
6216 from a previous call to dwarf2_name or NULL. The result will be
6217 allocated on the objfile_objstack or NULL if the DIE does not have a
6218 name.
6219
6220 The output string will be canonicalized (if C++/Java). */
6221
6222 static const char *
6223 dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu)
6224 {
6225 struct objfile *objfile = cu->objfile;
6226 struct attribute *attr;
6227 const char *retval, *mangled = NULL, *canon = NULL;
6228 struct cleanup *back_to;
6229 int need_copy = 1;
6230
6231 /* In this case dwarf2_compute_name is just a shortcut not building anything
6232 on its own. */
6233 if (!die_needs_namespace (die, cu))
6234 return dwarf2_compute_name (name, die, cu, 1);
6235
6236 back_to = make_cleanup (null_cleanup, NULL);
6237
6238 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
6239 if (!attr)
6240 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
6241
6242 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
6243 has computed. */
6244 if (attr && DW_STRING (attr))
6245 {
6246 char *demangled;
6247
6248 mangled = DW_STRING (attr);
6249
6250 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
6251 type. It is easier for GDB users to search for such functions as
6252 `name(params)' than `long name(params)'. In such case the minimal
6253 symbol names do not match the full symbol names but for template
6254 functions there is never a need to look up their definition from their
6255 declaration so the only disadvantage remains the minimal symbol
6256 variant `long name(params)' does not have the proper inferior type.
6257 */
6258
6259 if (cu->language == language_go)
6260 {
6261 /* This is a lie, but we already lie to the caller new_symbol_full.
6262 new_symbol_full assumes we return the mangled name.
6263 This just undoes that lie until things are cleaned up. */
6264 demangled = NULL;
6265 }
6266 else
6267 {
6268 demangled = cplus_demangle (mangled,
6269 (DMGL_PARAMS | DMGL_ANSI
6270 | (cu->language == language_java
6271 ? DMGL_JAVA | DMGL_RET_POSTFIX
6272 : DMGL_RET_DROP)));
6273 }
6274 if (demangled)
6275 {
6276 make_cleanup (xfree, demangled);
6277 canon = demangled;
6278 }
6279 else
6280 {
6281 canon = mangled;
6282 need_copy = 0;
6283 }
6284 }
6285
6286 if (canon == NULL || check_physname)
6287 {
6288 const char *physname = dwarf2_compute_name (name, die, cu, 1);
6289
6290 if (canon != NULL && strcmp (physname, canon) != 0)
6291 {
6292 /* It may not mean a bug in GDB. The compiler could also
6293 compute DW_AT_linkage_name incorrectly. But in such case
6294 GDB would need to be bug-to-bug compatible. */
6295
6296 complaint (&symfile_complaints,
6297 _("Computed physname <%s> does not match demangled <%s> "
6298 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
6299 physname, canon, mangled, die->offset.sect_off, objfile->name);
6300
6301 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
6302 is available here - over computed PHYSNAME. It is safer
6303 against both buggy GDB and buggy compilers. */
6304
6305 retval = canon;
6306 }
6307 else
6308 {
6309 retval = physname;
6310 need_copy = 0;
6311 }
6312 }
6313 else
6314 retval = canon;
6315
6316 if (need_copy)
6317 retval = obsavestring (retval, strlen (retval),
6318 &objfile->objfile_obstack);
6319
6320 do_cleanups (back_to);
6321 return retval;
6322 }
6323
6324 /* Read the import statement specified by the given die and record it. */
6325
6326 static void
6327 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
6328 {
6329 struct objfile *objfile = cu->objfile;
6330 struct attribute *import_attr;
6331 struct die_info *imported_die, *child_die;
6332 struct dwarf2_cu *imported_cu;
6333 const char *imported_name;
6334 const char *imported_name_prefix;
6335 const char *canonical_name;
6336 const char *import_alias;
6337 const char *imported_declaration = NULL;
6338 const char *import_prefix;
6339 VEC (const_char_ptr) *excludes = NULL;
6340 struct cleanup *cleanups;
6341
6342 char *temp;
6343
6344 import_attr = dwarf2_attr (die, DW_AT_import, cu);
6345 if (import_attr == NULL)
6346 {
6347 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
6348 dwarf_tag_name (die->tag));
6349 return;
6350 }
6351
6352 imported_cu = cu;
6353 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
6354 imported_name = dwarf2_name (imported_die, imported_cu);
6355 if (imported_name == NULL)
6356 {
6357 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
6358
6359 The import in the following code:
6360 namespace A
6361 {
6362 typedef int B;
6363 }
6364
6365 int main ()
6366 {
6367 using A::B;
6368 B b;
6369 return b;
6370 }
6371
6372 ...
6373 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
6374 <52> DW_AT_decl_file : 1
6375 <53> DW_AT_decl_line : 6
6376 <54> DW_AT_import : <0x75>
6377 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
6378 <59> DW_AT_name : B
6379 <5b> DW_AT_decl_file : 1
6380 <5c> DW_AT_decl_line : 2
6381 <5d> DW_AT_type : <0x6e>
6382 ...
6383 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
6384 <76> DW_AT_byte_size : 4
6385 <77> DW_AT_encoding : 5 (signed)
6386
6387 imports the wrong die ( 0x75 instead of 0x58 ).
6388 This case will be ignored until the gcc bug is fixed. */
6389 return;
6390 }
6391
6392 /* Figure out the local name after import. */
6393 import_alias = dwarf2_name (die, cu);
6394
6395 /* Figure out where the statement is being imported to. */
6396 import_prefix = determine_prefix (die, cu);
6397
6398 /* Figure out what the scope of the imported die is and prepend it
6399 to the name of the imported die. */
6400 imported_name_prefix = determine_prefix (imported_die, imported_cu);
6401
6402 if (imported_die->tag != DW_TAG_namespace
6403 && imported_die->tag != DW_TAG_module)
6404 {
6405 imported_declaration = imported_name;
6406 canonical_name = imported_name_prefix;
6407 }
6408 else if (strlen (imported_name_prefix) > 0)
6409 {
6410 temp = alloca (strlen (imported_name_prefix)
6411 + 2 + strlen (imported_name) + 1);
6412 strcpy (temp, imported_name_prefix);
6413 strcat (temp, "::");
6414 strcat (temp, imported_name);
6415 canonical_name = temp;
6416 }
6417 else
6418 canonical_name = imported_name;
6419
6420 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
6421
6422 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
6423 for (child_die = die->child; child_die && child_die->tag;
6424 child_die = sibling_die (child_die))
6425 {
6426 /* DWARF-4: A Fortran use statement with a “rename list” may be
6427 represented by an imported module entry with an import attribute
6428 referring to the module and owned entries corresponding to those
6429 entities that are renamed as part of being imported. */
6430
6431 if (child_die->tag != DW_TAG_imported_declaration)
6432 {
6433 complaint (&symfile_complaints,
6434 _("child DW_TAG_imported_declaration expected "
6435 "- DIE at 0x%x [in module %s]"),
6436 child_die->offset.sect_off, objfile->name);
6437 continue;
6438 }
6439
6440 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
6441 if (import_attr == NULL)
6442 {
6443 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
6444 dwarf_tag_name (child_die->tag));
6445 continue;
6446 }
6447
6448 imported_cu = cu;
6449 imported_die = follow_die_ref_or_sig (child_die, import_attr,
6450 &imported_cu);
6451 imported_name = dwarf2_name (imported_die, imported_cu);
6452 if (imported_name == NULL)
6453 {
6454 complaint (&symfile_complaints,
6455 _("child DW_TAG_imported_declaration has unknown "
6456 "imported name - DIE at 0x%x [in module %s]"),
6457 child_die->offset.sect_off, objfile->name);
6458 continue;
6459 }
6460
6461 VEC_safe_push (const_char_ptr, excludes, imported_name);
6462
6463 process_die (child_die, cu);
6464 }
6465
6466 cp_add_using_directive (import_prefix,
6467 canonical_name,
6468 import_alias,
6469 imported_declaration,
6470 excludes,
6471 &objfile->objfile_obstack);
6472
6473 do_cleanups (cleanups);
6474 }
6475
6476 /* Cleanup function for read_file_scope. */
6477
6478 static void
6479 free_cu_line_header (void *arg)
6480 {
6481 struct dwarf2_cu *cu = arg;
6482
6483 free_line_header (cu->line_header);
6484 cu->line_header = NULL;
6485 }
6486
6487 static void
6488 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
6489 char **name, char **comp_dir)
6490 {
6491 struct attribute *attr;
6492
6493 *name = NULL;
6494 *comp_dir = NULL;
6495
6496 /* Find the filename. Do not use dwarf2_name here, since the filename
6497 is not a source language identifier. */
6498 attr = dwarf2_attr (die, DW_AT_name, cu);
6499 if (attr)
6500 {
6501 *name = DW_STRING (attr);
6502 }
6503
6504 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
6505 if (attr)
6506 *comp_dir = DW_STRING (attr);
6507 else if (*name != NULL && IS_ABSOLUTE_PATH (*name))
6508 {
6509 *comp_dir = ldirname (*name);
6510 if (*comp_dir != NULL)
6511 make_cleanup (xfree, *comp_dir);
6512 }
6513 if (*comp_dir != NULL)
6514 {
6515 /* Irix 6.2 native cc prepends <machine>.: to the compilation
6516 directory, get rid of it. */
6517 char *cp = strchr (*comp_dir, ':');
6518
6519 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
6520 *comp_dir = cp + 1;
6521 }
6522
6523 if (*name == NULL)
6524 *name = "<unknown>";
6525 }
6526
6527 /* Handle DW_AT_stmt_list for a compilation unit or type unit.
6528 DIE is the DW_TAG_compile_unit or DW_TAG_type_unit die for CU.
6529 COMP_DIR is the compilation directory.
6530 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
6531
6532 static void
6533 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
6534 const char *comp_dir, int want_line_info)
6535 {
6536 struct attribute *attr;
6537
6538 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6539 if (attr)
6540 {
6541 unsigned int line_offset = DW_UNSND (attr);
6542 struct line_header *line_header
6543 = dwarf_decode_line_header (line_offset, cu);
6544
6545 if (line_header)
6546 {
6547 cu->line_header = line_header;
6548 make_cleanup (free_cu_line_header, cu);
6549 dwarf_decode_lines (line_header, comp_dir, cu, NULL, want_line_info);
6550 }
6551 }
6552 }
6553
6554 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
6555
6556 static void
6557 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
6558 {
6559 struct objfile *objfile = dwarf2_per_objfile->objfile;
6560 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
6561 CORE_ADDR lowpc = ((CORE_ADDR) -1);
6562 CORE_ADDR highpc = ((CORE_ADDR) 0);
6563 struct attribute *attr;
6564 char *name = NULL;
6565 char *comp_dir = NULL;
6566 struct die_info *child_die;
6567 bfd *abfd = objfile->obfd;
6568 CORE_ADDR baseaddr;
6569
6570 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6571
6572 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
6573
6574 /* If we didn't find a lowpc, set it to highpc to avoid complaints
6575 from finish_block. */
6576 if (lowpc == ((CORE_ADDR) -1))
6577 lowpc = highpc;
6578 lowpc += baseaddr;
6579 highpc += baseaddr;
6580
6581 find_file_and_directory (die, cu, &name, &comp_dir);
6582
6583 prepare_one_comp_unit (cu, die, cu->language);
6584
6585 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
6586 standardised yet. As a workaround for the language detection we fall
6587 back to the DW_AT_producer string. */
6588 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
6589 cu->language = language_opencl;
6590
6591 /* Similar hack for Go. */
6592 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
6593 set_cu_language (DW_LANG_Go, cu);
6594
6595 /* We assume that we're processing GCC output. */
6596 processing_gcc_compilation = 2;
6597
6598 processing_has_namespace_info = 0;
6599
6600 start_symtab (name, comp_dir, lowpc);
6601 record_debugformat ("DWARF 2");
6602 record_producer (cu->producer);
6603
6604 /* Decode line number information if present. We do this before
6605 processing child DIEs, so that the line header table is available
6606 for DW_AT_decl_file. */
6607 handle_DW_AT_stmt_list (die, cu, comp_dir, 1);
6608
6609 /* Process all dies in compilation unit. */
6610 if (die->child != NULL)
6611 {
6612 child_die = die->child;
6613 while (child_die && child_die->tag)
6614 {
6615 process_die (child_die, cu);
6616 child_die = sibling_die (child_die);
6617 }
6618 }
6619
6620 /* Decode macro information, if present. Dwarf 2 macro information
6621 refers to information in the line number info statement program
6622 header, so we can only read it if we've read the header
6623 successfully. */
6624 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
6625 if (attr && cu->line_header)
6626 {
6627 if (dwarf2_attr (die, DW_AT_macro_info, cu))
6628 complaint (&symfile_complaints,
6629 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
6630
6631 dwarf_decode_macros (cu->line_header, DW_UNSND (attr),
6632 comp_dir, abfd, cu,
6633 &dwarf2_per_objfile->macro, 1,
6634 ".debug_macro");
6635 }
6636 else
6637 {
6638 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
6639 if (attr && cu->line_header)
6640 {
6641 unsigned int macro_offset = DW_UNSND (attr);
6642
6643 dwarf_decode_macros (cu->line_header, macro_offset,
6644 comp_dir, abfd, cu,
6645 &dwarf2_per_objfile->macinfo, 0,
6646 ".debug_macinfo");
6647 }
6648 }
6649
6650 do_cleanups (back_to);
6651 }
6652
6653 /* Process DW_TAG_type_unit.
6654 For TUs we want to skip the first top level sibling if it's not the
6655 actual type being defined by this TU. In this case the first top
6656 level sibling is there to provide context only. */
6657
6658 static void
6659 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
6660 {
6661 struct objfile *objfile = cu->objfile;
6662 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
6663 CORE_ADDR lowpc;
6664 struct attribute *attr;
6665 char *name = NULL;
6666 char *comp_dir = NULL;
6667 struct die_info *child_die;
6668 bfd *abfd = objfile->obfd;
6669
6670 /* start_symtab needs a low pc, but we don't really have one.
6671 Do what read_file_scope would do in the absence of such info. */
6672 lowpc = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6673
6674 /* Find the filename. Do not use dwarf2_name here, since the filename
6675 is not a source language identifier. */
6676 attr = dwarf2_attr (die, DW_AT_name, cu);
6677 if (attr)
6678 name = DW_STRING (attr);
6679
6680 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
6681 if (attr)
6682 comp_dir = DW_STRING (attr);
6683 else if (name != NULL && IS_ABSOLUTE_PATH (name))
6684 {
6685 comp_dir = ldirname (name);
6686 if (comp_dir != NULL)
6687 make_cleanup (xfree, comp_dir);
6688 }
6689
6690 if (name == NULL)
6691 name = "<unknown>";
6692
6693 prepare_one_comp_unit (cu, die, language_minimal);
6694
6695 /* We assume that we're processing GCC output. */
6696 processing_gcc_compilation = 2;
6697
6698 processing_has_namespace_info = 0;
6699
6700 start_symtab (name, comp_dir, lowpc);
6701 record_debugformat ("DWARF 2");
6702 record_producer (cu->producer);
6703
6704 /* Decode line number information if present. We do this before
6705 processing child DIEs, so that the line header table is available
6706 for DW_AT_decl_file.
6707 We don't need the pc/line-number mapping for type units. */
6708 handle_DW_AT_stmt_list (die, cu, comp_dir, 0);
6709
6710 /* Process the dies in the type unit. */
6711 if (die->child == NULL)
6712 {
6713 dump_die_for_error (die);
6714 error (_("Dwarf Error: Missing children for type unit [in module %s]"),
6715 bfd_get_filename (abfd));
6716 }
6717
6718 child_die = die->child;
6719
6720 while (child_die && child_die->tag)
6721 {
6722 process_die (child_die, cu);
6723
6724 child_die = sibling_die (child_die);
6725 }
6726
6727 do_cleanups (back_to);
6728 }
6729 \f
6730 /* DWO files. */
6731
6732 static hashval_t
6733 hash_dwo_file (const void *item)
6734 {
6735 const struct dwo_file *dwo_file = item;
6736
6737 return htab_hash_string (dwo_file->dwo_name);
6738 }
6739
6740 static int
6741 eq_dwo_file (const void *item_lhs, const void *item_rhs)
6742 {
6743 const struct dwo_file *lhs = item_lhs;
6744 const struct dwo_file *rhs = item_rhs;
6745
6746 return strcmp (lhs->dwo_name, rhs->dwo_name) == 0;
6747 }
6748
6749 /* Allocate a hash table for DWO files. */
6750
6751 static htab_t
6752 allocate_dwo_file_hash_table (void)
6753 {
6754 struct objfile *objfile = dwarf2_per_objfile->objfile;
6755
6756 return htab_create_alloc_ex (41,
6757 hash_dwo_file,
6758 eq_dwo_file,
6759 NULL,
6760 &objfile->objfile_obstack,
6761 hashtab_obstack_allocate,
6762 dummy_obstack_deallocate);
6763 }
6764
6765 static hashval_t
6766 hash_dwo_unit (const void *item)
6767 {
6768 const struct dwo_unit *dwo_unit = item;
6769
6770 /* This drops the top 32 bits of the id, but is ok for a hash. */
6771 return dwo_unit->signature;
6772 }
6773
6774 static int
6775 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
6776 {
6777 const struct dwo_unit *lhs = item_lhs;
6778 const struct dwo_unit *rhs = item_rhs;
6779
6780 /* The signature is assumed to be unique within the DWO file.
6781 So while object file CU dwo_id's always have the value zero,
6782 that's OK, assuming each object file DWO file has only one CU,
6783 and that's the rule for now. */
6784 return lhs->signature == rhs->signature;
6785 }
6786
6787 /* Allocate a hash table for DWO CUs,TUs.
6788 There is one of these tables for each of CUs,TUs for each DWO file. */
6789
6790 static htab_t
6791 allocate_dwo_unit_table (struct objfile *objfile)
6792 {
6793 /* Start out with a pretty small number.
6794 Generally DWO files contain only one CU and maybe some TUs. */
6795 return htab_create_alloc_ex (3,
6796 hash_dwo_unit,
6797 eq_dwo_unit,
6798 NULL,
6799 &objfile->objfile_obstack,
6800 hashtab_obstack_allocate,
6801 dummy_obstack_deallocate);
6802 }
6803
6804 /* This function is mapped across the sections and remembers the offset and
6805 size of each of the DWO debugging sections we are interested in. */
6806
6807 static void
6808 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_file_ptr)
6809 {
6810 struct dwo_file *dwo_file = dwo_file_ptr;
6811 const struct dwo_section_names *names = &dwo_section_names;
6812
6813 if (section_is_p (sectp->name, &names->abbrev_dwo))
6814 {
6815 dwo_file->sections.abbrev.asection = sectp;
6816 dwo_file->sections.abbrev.size = bfd_get_section_size (sectp);
6817 }
6818 else if (section_is_p (sectp->name, &names->info_dwo))
6819 {
6820 dwo_file->sections.info.asection = sectp;
6821 dwo_file->sections.info.size = bfd_get_section_size (sectp);
6822 }
6823 else if (section_is_p (sectp->name, &names->line_dwo))
6824 {
6825 dwo_file->sections.line.asection = sectp;
6826 dwo_file->sections.line.size = bfd_get_section_size (sectp);
6827 }
6828 else if (section_is_p (sectp->name, &names->loc_dwo))
6829 {
6830 dwo_file->sections.loc.asection = sectp;
6831 dwo_file->sections.loc.size = bfd_get_section_size (sectp);
6832 }
6833 else if (section_is_p (sectp->name, &names->str_dwo))
6834 {
6835 dwo_file->sections.str.asection = sectp;
6836 dwo_file->sections.str.size = bfd_get_section_size (sectp);
6837 }
6838 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
6839 {
6840 dwo_file->sections.str_offsets.asection = sectp;
6841 dwo_file->sections.str_offsets.size = bfd_get_section_size (sectp);
6842 }
6843 else if (section_is_p (sectp->name, &names->types_dwo))
6844 {
6845 struct dwarf2_section_info type_section;
6846
6847 memset (&type_section, 0, sizeof (type_section));
6848 type_section.asection = sectp;
6849 type_section.size = bfd_get_section_size (sectp);
6850 VEC_safe_push (dwarf2_section_info_def, dwo_file->sections.types,
6851 &type_section);
6852 }
6853 }
6854
6855 /* Structure used to pass data to create_debug_info_hash_table_reader. */
6856
6857 struct create_dwo_info_table_data
6858 {
6859 struct dwo_file *dwo_file;
6860 htab_t cu_htab;
6861 };
6862
6863 /* die_reader_func for create_debug_info_hash_table. */
6864
6865 static void
6866 create_debug_info_hash_table_reader (const struct die_reader_specs *reader,
6867 gdb_byte *info_ptr,
6868 struct die_info *comp_unit_die,
6869 int has_children,
6870 void *datap)
6871 {
6872 struct dwarf2_cu *cu = reader->cu;
6873 struct objfile *objfile = dwarf2_per_objfile->objfile;
6874 sect_offset offset = cu->per_cu->offset;
6875 struct dwarf2_section_info *section = cu->per_cu->info_or_types_section;
6876 struct create_dwo_info_table_data *data = datap;
6877 struct dwo_file *dwo_file = data->dwo_file;
6878 htab_t cu_htab = data->cu_htab;
6879 void **slot;
6880 struct attribute *attr;
6881 struct dwo_unit *dwo_unit;
6882
6883 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
6884 if (attr == NULL)
6885 {
6886 error (_("Dwarf Error: debug entry at offset 0x%x is missing"
6887 " its dwo_id [in module %s]"),
6888 offset.sect_off, dwo_file->dwo_name);
6889 return;
6890 }
6891
6892 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
6893 dwo_unit->dwo_file = dwo_file;
6894 dwo_unit->signature = DW_UNSND (attr);
6895 dwo_unit->info_or_types_section = section;
6896 dwo_unit->offset = offset;
6897 dwo_unit->length = cu->per_cu->length;
6898
6899 slot = htab_find_slot (cu_htab, dwo_unit, INSERT);
6900 gdb_assert (slot != NULL);
6901 if (*slot != NULL)
6902 {
6903 const struct dwo_unit *dup_dwo_unit = *slot;
6904
6905 complaint (&symfile_complaints,
6906 _("debug entry at offset 0x%x is duplicate to the entry at"
6907 " offset 0x%x, dwo_id 0x%s [in module %s]"),
6908 offset.sect_off, dup_dwo_unit->offset.sect_off,
6909 phex (dwo_unit->signature, sizeof (dwo_unit->signature)),
6910 dwo_file->dwo_name);
6911 }
6912 else
6913 *slot = dwo_unit;
6914
6915 if (dwarf2_die_debug)
6916 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id 0x%s\n",
6917 offset.sect_off,
6918 phex (dwo_unit->signature,
6919 sizeof (dwo_unit->signature)));
6920 }
6921
6922 /* Create a hash table to map DWO IDs to their CU entry in .debug_info.dwo. */
6923
6924 static htab_t
6925 create_debug_info_hash_table (struct dwo_file *dwo_file)
6926 {
6927 struct objfile *objfile = dwarf2_per_objfile->objfile;
6928 struct dwarf2_section_info *section = &dwo_file->sections.info;
6929 bfd *abfd;
6930 htab_t cu_htab;
6931 gdb_byte *info_ptr, *end_ptr;
6932 struct create_dwo_info_table_data create_dwo_info_table_data;
6933
6934 dwarf2_read_section (objfile, section);
6935 info_ptr = section->buffer;
6936
6937 if (info_ptr == NULL)
6938 return NULL;
6939
6940 /* We can't set abfd until now because the section may be empty or
6941 not present, in which case section->asection will be NULL. */
6942 abfd = section->asection->owner;
6943
6944 if (dwarf2_die_debug)
6945 fprintf_unfiltered (gdb_stdlog, "Reading .debug_info.dwo for %s:\n",
6946 bfd_get_filename (abfd));
6947
6948 cu_htab = allocate_dwo_unit_table (objfile);
6949
6950 create_dwo_info_table_data.dwo_file = dwo_file;
6951 create_dwo_info_table_data.cu_htab = cu_htab;
6952
6953 end_ptr = info_ptr + section->size;
6954 while (info_ptr < end_ptr)
6955 {
6956 struct dwarf2_per_cu_data per_cu;
6957
6958 memset (&per_cu, 0, sizeof (per_cu));
6959 per_cu.objfile = objfile;
6960 per_cu.is_debug_types = 0;
6961 per_cu.offset.sect_off = info_ptr - section->buffer;
6962 per_cu.info_or_types_section = section;
6963
6964 init_cutu_and_read_dies_no_follow (&per_cu,
6965 &dwo_file->sections.abbrev,
6966 dwo_file,
6967 create_debug_info_hash_table_reader,
6968 &create_dwo_info_table_data);
6969
6970 info_ptr += per_cu.length;
6971 }
6972
6973 return cu_htab;
6974 }
6975
6976 /* Subroutine of open_dwo_file to simplify it.
6977 Open the file specified by FILE_NAME and hand it off to BFD for
6978 preliminary analysis. Return a newly initialized bfd *, which
6979 includes a canonicalized copy of FILE_NAME.
6980 In case of trouble, return NULL.
6981 NOTE: This function is derived from symfile_bfd_open. */
6982
6983 static bfd *
6984 try_open_dwo_file (const char *file_name)
6985 {
6986 bfd *sym_bfd;
6987 int desc;
6988 char *absolute_name;
6989
6990 desc = openp (debug_file_directory, OPF_TRY_CWD_FIRST, file_name,
6991 O_RDONLY | O_BINARY, &absolute_name);
6992 if (desc < 0)
6993 return NULL;
6994
6995 sym_bfd = bfd_fopen (absolute_name, gnutarget, FOPEN_RB, desc);
6996 if (!sym_bfd)
6997 {
6998 xfree (absolute_name);
6999 return NULL;
7000 }
7001 bfd_set_cacheable (sym_bfd, 1);
7002
7003 if (!bfd_check_format (sym_bfd, bfd_object))
7004 {
7005 bfd_close (sym_bfd); /* This also closes desc. */
7006 xfree (absolute_name);
7007 return NULL;
7008 }
7009
7010 /* bfd_usrdata exists for applications and libbfd must not touch it. */
7011 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
7012
7013 return sym_bfd;
7014 }
7015
7016 /* Try to open DWO file DWO_NAME.
7017 COMP_DIR is the DW_AT_comp_dir attribute.
7018 The result is the bfd handle of the file.
7019 If there is a problem finding or opening the file, return NULL.
7020 Upon success, the canonicalized path of the file is stored in the bfd,
7021 same as symfile_bfd_open. */
7022
7023 static bfd *
7024 open_dwo_file (const char *dwo_name, const char *comp_dir)
7025 {
7026 bfd *abfd;
7027
7028 if (IS_ABSOLUTE_PATH (dwo_name))
7029 return try_open_dwo_file (dwo_name);
7030
7031 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
7032
7033 if (comp_dir != NULL)
7034 {
7035 char *path_to_try = concat (comp_dir, SLASH_STRING, dwo_name, NULL);
7036
7037 /* NOTE: If comp_dir is a relative path, this will also try the
7038 search path, which seems useful. */
7039 abfd = try_open_dwo_file (path_to_try);
7040 xfree (path_to_try);
7041 if (abfd != NULL)
7042 return abfd;
7043 }
7044
7045 /* That didn't work, try debug-file-directory, which, despite its name,
7046 is a list of paths. */
7047
7048 if (*debug_file_directory == '\0')
7049 return NULL;
7050
7051 return try_open_dwo_file (dwo_name);
7052 }
7053
7054 /* Initialize the use of the DWO file specified by DWO_NAME. */
7055
7056 static struct dwo_file *
7057 init_dwo_file (const char *dwo_name, const char *comp_dir)
7058 {
7059 struct objfile *objfile = dwarf2_per_objfile->objfile;
7060 struct dwo_file *dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7061 struct dwo_file);
7062 bfd *abfd;
7063 struct cleanup *cleanups;
7064
7065 if (dwarf2_die_debug)
7066 fprintf_unfiltered (gdb_stdlog, "Reading DWO file %s:\n", dwo_name);
7067
7068 abfd = open_dwo_file (dwo_name, comp_dir);
7069 if (abfd == NULL)
7070 return NULL;
7071 dwo_file->dwo_name = dwo_name;
7072 dwo_file->dwo_bfd = abfd;
7073
7074 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
7075
7076 bfd_map_over_sections (abfd, dwarf2_locate_dwo_sections, dwo_file);
7077
7078 dwo_file->cus = create_debug_info_hash_table (dwo_file);
7079
7080 dwo_file->tus = create_debug_types_hash_table (dwo_file,
7081 dwo_file->sections.types);
7082
7083 discard_cleanups (cleanups);
7084
7085 return dwo_file;
7086 }
7087
7088 /* Lookup DWO file DWO_NAME. */
7089
7090 static struct dwo_file *
7091 lookup_dwo_file (char *dwo_name, const char *comp_dir)
7092 {
7093 struct dwo_file *dwo_file;
7094 struct dwo_file find_entry;
7095 void **slot;
7096
7097 if (dwarf2_per_objfile->dwo_files == NULL)
7098 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
7099
7100 /* Have we already seen this DWO file? */
7101 find_entry.dwo_name = dwo_name;
7102 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
7103
7104 /* If not, read it in and build a table of the DWOs it contains. */
7105 if (*slot == NULL)
7106 *slot = init_dwo_file (dwo_name, comp_dir);
7107
7108 /* NOTE: This will be NULL if unable to open the file. */
7109 dwo_file = *slot;
7110
7111 return dwo_file;
7112 }
7113
7114 /* Lookup the DWO CU referenced from THIS_CU in DWO file DWO_NAME.
7115 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
7116 SIGNATURE is the "dwo_id" of the CU (for consistency we use the same
7117 nomenclature as TUs).
7118 The result is the DWO CU or NULL if we didn't find it
7119 (dwo_id mismatch or couldn't find the DWO file). */
7120
7121 static struct dwo_unit *
7122 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
7123 char *dwo_name, const char *comp_dir,
7124 ULONGEST signature)
7125 {
7126 struct objfile *objfile = dwarf2_per_objfile->objfile;
7127 struct dwo_file *dwo_file;
7128
7129 dwo_file = lookup_dwo_file (dwo_name, comp_dir);
7130 if (dwo_file == NULL)
7131 return NULL;
7132
7133 /* Look up the DWO using its signature(dwo_id). */
7134
7135 if (dwo_file->cus != NULL)
7136 {
7137 struct dwo_unit find_dwo_cu, *dwo_cu;
7138
7139 find_dwo_cu.signature = signature;
7140 dwo_cu = htab_find (dwo_file->cus, &find_dwo_cu);
7141
7142 if (dwo_cu != NULL)
7143 return dwo_cu;
7144 }
7145
7146 /* We didn't find it. This must mean a dwo_id mismatch. */
7147
7148 complaint (&symfile_complaints,
7149 _("Could not find DWO CU referenced by CU at offset 0x%x"
7150 " [in module %s]"),
7151 this_cu->offset.sect_off, objfile->name);
7152 return NULL;
7153 }
7154
7155 /* Lookup the DWO TU referenced from THIS_TU in DWO file DWO_NAME.
7156 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
7157 The result is the DWO CU or NULL if we didn't find it
7158 (dwo_id mismatch or couldn't find the DWO file). */
7159
7160 static struct dwo_unit *
7161 lookup_dwo_type_unit (struct signatured_type *this_tu,
7162 char *dwo_name, const char *comp_dir)
7163 {
7164 struct objfile *objfile = dwarf2_per_objfile->objfile;
7165 struct dwo_file *dwo_file;
7166
7167 dwo_file = lookup_dwo_file (dwo_name, comp_dir);
7168 if (dwo_file == NULL)
7169 return NULL;
7170
7171 /* Look up the DWO using its signature(dwo_id). */
7172
7173 if (dwo_file->tus != NULL)
7174 {
7175 struct dwo_unit find_dwo_tu, *dwo_tu;
7176
7177 find_dwo_tu.signature = this_tu->signature;
7178 dwo_tu = htab_find (dwo_file->tus, &find_dwo_tu);
7179
7180 if (dwo_tu != NULL)
7181 return dwo_tu;
7182 }
7183
7184 /* We didn't find it. This must mean a dwo_id mismatch. */
7185
7186 complaint (&symfile_complaints,
7187 _("Could not find DWO TU referenced by TU at offset 0x%x"
7188 " [in module %s]"),
7189 this_tu->per_cu.offset.sect_off, objfile->name);
7190 return NULL;
7191 }
7192
7193 /* Free all resources associated with DWO_FILE.
7194 Close the DWO file and munmap the sections.
7195 All memory should be on the objfile obstack. */
7196
7197 static void
7198 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
7199 {
7200 int ix;
7201 struct dwarf2_section_info *section;
7202
7203 gdb_assert (dwo_file->dwo_bfd != objfile->obfd);
7204 bfd_close (dwo_file->dwo_bfd);
7205
7206 munmap_section_buffer (&dwo_file->sections.abbrev);
7207 munmap_section_buffer (&dwo_file->sections.info);
7208 munmap_section_buffer (&dwo_file->sections.line);
7209 munmap_section_buffer (&dwo_file->sections.loc);
7210 munmap_section_buffer (&dwo_file->sections.str);
7211 munmap_section_buffer (&dwo_file->sections.str_offsets);
7212
7213 for (ix = 0;
7214 VEC_iterate (dwarf2_section_info_def, dwo_file->sections.types,
7215 ix, section);
7216 ++ix)
7217 munmap_section_buffer (section);
7218
7219 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
7220 }
7221
7222 /* Wrapper for free_dwo_file for use in cleanups. */
7223
7224 static void
7225 free_dwo_file_cleanup (void *arg)
7226 {
7227 struct dwo_file *dwo_file = (struct dwo_file *) arg;
7228 struct objfile *objfile = dwarf2_per_objfile->objfile;
7229
7230 free_dwo_file (dwo_file, objfile);
7231 }
7232
7233 /* Traversal function for free_dwo_files. */
7234
7235 static int
7236 free_dwo_file_from_slot (void **slot, void *info)
7237 {
7238 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
7239 struct objfile *objfile = (struct objfile *) info;
7240
7241 free_dwo_file (dwo_file, objfile);
7242
7243 return 1;
7244 }
7245
7246 /* Free all resources associated with DWO_FILES. */
7247
7248 static void
7249 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
7250 {
7251 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
7252 }
7253 \f
7254 /* Read in various DIEs. */
7255
7256 /* qsort helper for inherit_abstract_dies. */
7257
7258 static int
7259 unsigned_int_compar (const void *ap, const void *bp)
7260 {
7261 unsigned int a = *(unsigned int *) ap;
7262 unsigned int b = *(unsigned int *) bp;
7263
7264 return (a > b) - (b > a);
7265 }
7266
7267 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
7268 Inherit only the children of the DW_AT_abstract_origin DIE not being
7269 already referenced by DW_AT_abstract_origin from the children of the
7270 current DIE. */
7271
7272 static void
7273 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
7274 {
7275 struct die_info *child_die;
7276 unsigned die_children_count;
7277 /* CU offsets which were referenced by children of the current DIE. */
7278 sect_offset *offsets;
7279 sect_offset *offsets_end, *offsetp;
7280 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
7281 struct die_info *origin_die;
7282 /* Iterator of the ORIGIN_DIE children. */
7283 struct die_info *origin_child_die;
7284 struct cleanup *cleanups;
7285 struct attribute *attr;
7286 struct dwarf2_cu *origin_cu;
7287 struct pending **origin_previous_list_in_scope;
7288
7289 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
7290 if (!attr)
7291 return;
7292
7293 /* Note that following die references may follow to a die in a
7294 different cu. */
7295
7296 origin_cu = cu;
7297 origin_die = follow_die_ref (die, attr, &origin_cu);
7298
7299 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
7300 symbols in. */
7301 origin_previous_list_in_scope = origin_cu->list_in_scope;
7302 origin_cu->list_in_scope = cu->list_in_scope;
7303
7304 if (die->tag != origin_die->tag
7305 && !(die->tag == DW_TAG_inlined_subroutine
7306 && origin_die->tag == DW_TAG_subprogram))
7307 complaint (&symfile_complaints,
7308 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
7309 die->offset.sect_off, origin_die->offset.sect_off);
7310
7311 child_die = die->child;
7312 die_children_count = 0;
7313 while (child_die && child_die->tag)
7314 {
7315 child_die = sibling_die (child_die);
7316 die_children_count++;
7317 }
7318 offsets = xmalloc (sizeof (*offsets) * die_children_count);
7319 cleanups = make_cleanup (xfree, offsets);
7320
7321 offsets_end = offsets;
7322 child_die = die->child;
7323 while (child_die && child_die->tag)
7324 {
7325 /* For each CHILD_DIE, find the corresponding child of
7326 ORIGIN_DIE. If there is more than one layer of
7327 DW_AT_abstract_origin, follow them all; there shouldn't be,
7328 but GCC versions at least through 4.4 generate this (GCC PR
7329 40573). */
7330 struct die_info *child_origin_die = child_die;
7331 struct dwarf2_cu *child_origin_cu = cu;
7332
7333 while (1)
7334 {
7335 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
7336 child_origin_cu);
7337 if (attr == NULL)
7338 break;
7339 child_origin_die = follow_die_ref (child_origin_die, attr,
7340 &child_origin_cu);
7341 }
7342
7343 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
7344 counterpart may exist. */
7345 if (child_origin_die != child_die)
7346 {
7347 if (child_die->tag != child_origin_die->tag
7348 && !(child_die->tag == DW_TAG_inlined_subroutine
7349 && child_origin_die->tag == DW_TAG_subprogram))
7350 complaint (&symfile_complaints,
7351 _("Child DIE 0x%x and its abstract origin 0x%x have "
7352 "different tags"), child_die->offset.sect_off,
7353 child_origin_die->offset.sect_off);
7354 if (child_origin_die->parent != origin_die)
7355 complaint (&symfile_complaints,
7356 _("Child DIE 0x%x and its abstract origin 0x%x have "
7357 "different parents"), child_die->offset.sect_off,
7358 child_origin_die->offset.sect_off);
7359 else
7360 *offsets_end++ = child_origin_die->offset;
7361 }
7362 child_die = sibling_die (child_die);
7363 }
7364 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
7365 unsigned_int_compar);
7366 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
7367 if (offsetp[-1].sect_off == offsetp->sect_off)
7368 complaint (&symfile_complaints,
7369 _("Multiple children of DIE 0x%x refer "
7370 "to DIE 0x%x as their abstract origin"),
7371 die->offset.sect_off, offsetp->sect_off);
7372
7373 offsetp = offsets;
7374 origin_child_die = origin_die->child;
7375 while (origin_child_die && origin_child_die->tag)
7376 {
7377 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
7378 while (offsetp < offsets_end
7379 && offsetp->sect_off < origin_child_die->offset.sect_off)
7380 offsetp++;
7381 if (offsetp >= offsets_end
7382 || offsetp->sect_off > origin_child_die->offset.sect_off)
7383 {
7384 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
7385 process_die (origin_child_die, origin_cu);
7386 }
7387 origin_child_die = sibling_die (origin_child_die);
7388 }
7389 origin_cu->list_in_scope = origin_previous_list_in_scope;
7390
7391 do_cleanups (cleanups);
7392 }
7393
7394 static void
7395 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
7396 {
7397 struct objfile *objfile = cu->objfile;
7398 struct context_stack *new;
7399 CORE_ADDR lowpc;
7400 CORE_ADDR highpc;
7401 struct die_info *child_die;
7402 struct attribute *attr, *call_line, *call_file;
7403 char *name;
7404 CORE_ADDR baseaddr;
7405 struct block *block;
7406 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
7407 VEC (symbolp) *template_args = NULL;
7408 struct template_symbol *templ_func = NULL;
7409
7410 if (inlined_func)
7411 {
7412 /* If we do not have call site information, we can't show the
7413 caller of this inlined function. That's too confusing, so
7414 only use the scope for local variables. */
7415 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
7416 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
7417 if (call_line == NULL || call_file == NULL)
7418 {
7419 read_lexical_block_scope (die, cu);
7420 return;
7421 }
7422 }
7423
7424 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7425
7426 name = dwarf2_name (die, cu);
7427
7428 /* Ignore functions with missing or empty names. These are actually
7429 illegal according to the DWARF standard. */
7430 if (name == NULL)
7431 {
7432 complaint (&symfile_complaints,
7433 _("missing name for subprogram DIE at %d"),
7434 die->offset.sect_off);
7435 return;
7436 }
7437
7438 /* Ignore functions with missing or invalid low and high pc attributes. */
7439 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
7440 {
7441 attr = dwarf2_attr (die, DW_AT_external, cu);
7442 if (!attr || !DW_UNSND (attr))
7443 complaint (&symfile_complaints,
7444 _("cannot get low and high bounds "
7445 "for subprogram DIE at %d"),
7446 die->offset.sect_off);
7447 return;
7448 }
7449
7450 lowpc += baseaddr;
7451 highpc += baseaddr;
7452
7453 /* If we have any template arguments, then we must allocate a
7454 different sort of symbol. */
7455 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
7456 {
7457 if (child_die->tag == DW_TAG_template_type_param
7458 || child_die->tag == DW_TAG_template_value_param)
7459 {
7460 templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7461 struct template_symbol);
7462 templ_func->base.is_cplus_template_function = 1;
7463 break;
7464 }
7465 }
7466
7467 new = push_context (0, lowpc);
7468 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
7469 (struct symbol *) templ_func);
7470
7471 /* If there is a location expression for DW_AT_frame_base, record
7472 it. */
7473 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
7474 if (attr)
7475 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
7476 expression is being recorded directly in the function's symbol
7477 and not in a separate frame-base object. I guess this hack is
7478 to avoid adding some sort of frame-base adjunct/annex to the
7479 function's symbol :-(. The problem with doing this is that it
7480 results in a function symbol with a location expression that
7481 has nothing to do with the location of the function, ouch! The
7482 relationship should be: a function's symbol has-a frame base; a
7483 frame-base has-a location expression. */
7484 dwarf2_symbol_mark_computed (attr, new->name, cu);
7485
7486 cu->list_in_scope = &local_symbols;
7487
7488 if (die->child != NULL)
7489 {
7490 child_die = die->child;
7491 while (child_die && child_die->tag)
7492 {
7493 if (child_die->tag == DW_TAG_template_type_param
7494 || child_die->tag == DW_TAG_template_value_param)
7495 {
7496 struct symbol *arg = new_symbol (child_die, NULL, cu);
7497
7498 if (arg != NULL)
7499 VEC_safe_push (symbolp, template_args, arg);
7500 }
7501 else
7502 process_die (child_die, cu);
7503 child_die = sibling_die (child_die);
7504 }
7505 }
7506
7507 inherit_abstract_dies (die, cu);
7508
7509 /* If we have a DW_AT_specification, we might need to import using
7510 directives from the context of the specification DIE. See the
7511 comment in determine_prefix. */
7512 if (cu->language == language_cplus
7513 && dwarf2_attr (die, DW_AT_specification, cu))
7514 {
7515 struct dwarf2_cu *spec_cu = cu;
7516 struct die_info *spec_die = die_specification (die, &spec_cu);
7517
7518 while (spec_die)
7519 {
7520 child_die = spec_die->child;
7521 while (child_die && child_die->tag)
7522 {
7523 if (child_die->tag == DW_TAG_imported_module)
7524 process_die (child_die, spec_cu);
7525 child_die = sibling_die (child_die);
7526 }
7527
7528 /* In some cases, GCC generates specification DIEs that
7529 themselves contain DW_AT_specification attributes. */
7530 spec_die = die_specification (spec_die, &spec_cu);
7531 }
7532 }
7533
7534 new = pop_context ();
7535 /* Make a block for the local symbols within. */
7536 block = finish_block (new->name, &local_symbols, new->old_blocks,
7537 lowpc, highpc, objfile);
7538
7539 /* For C++, set the block's scope. */
7540 if (cu->language == language_cplus || cu->language == language_fortran)
7541 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
7542 determine_prefix (die, cu),
7543 processing_has_namespace_info);
7544
7545 /* If we have address ranges, record them. */
7546 dwarf2_record_block_ranges (die, block, baseaddr, cu);
7547
7548 /* Attach template arguments to function. */
7549 if (! VEC_empty (symbolp, template_args))
7550 {
7551 gdb_assert (templ_func != NULL);
7552
7553 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
7554 templ_func->template_arguments
7555 = obstack_alloc (&objfile->objfile_obstack,
7556 (templ_func->n_template_arguments
7557 * sizeof (struct symbol *)));
7558 memcpy (templ_func->template_arguments,
7559 VEC_address (symbolp, template_args),
7560 (templ_func->n_template_arguments * sizeof (struct symbol *)));
7561 VEC_free (symbolp, template_args);
7562 }
7563
7564 /* In C++, we can have functions nested inside functions (e.g., when
7565 a function declares a class that has methods). This means that
7566 when we finish processing a function scope, we may need to go
7567 back to building a containing block's symbol lists. */
7568 local_symbols = new->locals;
7569 param_symbols = new->params;
7570 using_directives = new->using_directives;
7571
7572 /* If we've finished processing a top-level function, subsequent
7573 symbols go in the file symbol list. */
7574 if (outermost_context_p ())
7575 cu->list_in_scope = &file_symbols;
7576 }
7577
7578 /* Process all the DIES contained within a lexical block scope. Start
7579 a new scope, process the dies, and then close the scope. */
7580
7581 static void
7582 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
7583 {
7584 struct objfile *objfile = cu->objfile;
7585 struct context_stack *new;
7586 CORE_ADDR lowpc, highpc;
7587 struct die_info *child_die;
7588 CORE_ADDR baseaddr;
7589
7590 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7591
7592 /* Ignore blocks with missing or invalid low and high pc attributes. */
7593 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
7594 as multiple lexical blocks? Handling children in a sane way would
7595 be nasty. Might be easier to properly extend generic blocks to
7596 describe ranges. */
7597 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
7598 return;
7599 lowpc += baseaddr;
7600 highpc += baseaddr;
7601
7602 push_context (0, lowpc);
7603 if (die->child != NULL)
7604 {
7605 child_die = die->child;
7606 while (child_die && child_die->tag)
7607 {
7608 process_die (child_die, cu);
7609 child_die = sibling_die (child_die);
7610 }
7611 }
7612 new = pop_context ();
7613
7614 if (local_symbols != NULL || using_directives != NULL)
7615 {
7616 struct block *block
7617 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
7618 highpc, objfile);
7619
7620 /* Note that recording ranges after traversing children, as we
7621 do here, means that recording a parent's ranges entails
7622 walking across all its children's ranges as they appear in
7623 the address map, which is quadratic behavior.
7624
7625 It would be nicer to record the parent's ranges before
7626 traversing its children, simply overriding whatever you find
7627 there. But since we don't even decide whether to create a
7628 block until after we've traversed its children, that's hard
7629 to do. */
7630 dwarf2_record_block_ranges (die, block, baseaddr, cu);
7631 }
7632 local_symbols = new->locals;
7633 using_directives = new->using_directives;
7634 }
7635
7636 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
7637
7638 static void
7639 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
7640 {
7641 struct objfile *objfile = cu->objfile;
7642 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7643 CORE_ADDR pc, baseaddr;
7644 struct attribute *attr;
7645 struct call_site *call_site, call_site_local;
7646 void **slot;
7647 int nparams;
7648 struct die_info *child_die;
7649
7650 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7651
7652 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
7653 if (!attr)
7654 {
7655 complaint (&symfile_complaints,
7656 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
7657 "DIE 0x%x [in module %s]"),
7658 die->offset.sect_off, objfile->name);
7659 return;
7660 }
7661 pc = DW_ADDR (attr) + baseaddr;
7662
7663 if (cu->call_site_htab == NULL)
7664 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
7665 NULL, &objfile->objfile_obstack,
7666 hashtab_obstack_allocate, NULL);
7667 call_site_local.pc = pc;
7668 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
7669 if (*slot != NULL)
7670 {
7671 complaint (&symfile_complaints,
7672 _("Duplicate PC %s for DW_TAG_GNU_call_site "
7673 "DIE 0x%x [in module %s]"),
7674 paddress (gdbarch, pc), die->offset.sect_off, objfile->name);
7675 return;
7676 }
7677
7678 /* Count parameters at the caller. */
7679
7680 nparams = 0;
7681 for (child_die = die->child; child_die && child_die->tag;
7682 child_die = sibling_die (child_die))
7683 {
7684 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
7685 {
7686 complaint (&symfile_complaints,
7687 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
7688 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
7689 child_die->tag, child_die->offset.sect_off, objfile->name);
7690 continue;
7691 }
7692
7693 nparams++;
7694 }
7695
7696 call_site = obstack_alloc (&objfile->objfile_obstack,
7697 (sizeof (*call_site)
7698 + (sizeof (*call_site->parameter)
7699 * (nparams - 1))));
7700 *slot = call_site;
7701 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
7702 call_site->pc = pc;
7703
7704 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
7705 {
7706 struct die_info *func_die;
7707
7708 /* Skip also over DW_TAG_inlined_subroutine. */
7709 for (func_die = die->parent;
7710 func_die && func_die->tag != DW_TAG_subprogram
7711 && func_die->tag != DW_TAG_subroutine_type;
7712 func_die = func_die->parent);
7713
7714 /* DW_AT_GNU_all_call_sites is a superset
7715 of DW_AT_GNU_all_tail_call_sites. */
7716 if (func_die
7717 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
7718 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
7719 {
7720 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
7721 not complete. But keep CALL_SITE for look ups via call_site_htab,
7722 both the initial caller containing the real return address PC and
7723 the final callee containing the current PC of a chain of tail
7724 calls do not need to have the tail call list complete. But any
7725 function candidate for a virtual tail call frame searched via
7726 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
7727 determined unambiguously. */
7728 }
7729 else
7730 {
7731 struct type *func_type = NULL;
7732
7733 if (func_die)
7734 func_type = get_die_type (func_die, cu);
7735 if (func_type != NULL)
7736 {
7737 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
7738
7739 /* Enlist this call site to the function. */
7740 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
7741 TYPE_TAIL_CALL_LIST (func_type) = call_site;
7742 }
7743 else
7744 complaint (&symfile_complaints,
7745 _("Cannot find function owning DW_TAG_GNU_call_site "
7746 "DIE 0x%x [in module %s]"),
7747 die->offset.sect_off, objfile->name);
7748 }
7749 }
7750
7751 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
7752 if (attr == NULL)
7753 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
7754 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
7755 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
7756 /* Keep NULL DWARF_BLOCK. */;
7757 else if (attr_form_is_block (attr))
7758 {
7759 struct dwarf2_locexpr_baton *dlbaton;
7760
7761 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
7762 dlbaton->data = DW_BLOCK (attr)->data;
7763 dlbaton->size = DW_BLOCK (attr)->size;
7764 dlbaton->per_cu = cu->per_cu;
7765
7766 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
7767 }
7768 else if (is_ref_attr (attr))
7769 {
7770 struct dwarf2_cu *target_cu = cu;
7771 struct die_info *target_die;
7772
7773 target_die = follow_die_ref_or_sig (die, attr, &target_cu);
7774 gdb_assert (target_cu->objfile == objfile);
7775 if (die_is_declaration (target_die, target_cu))
7776 {
7777 const char *target_physname;
7778
7779 target_physname = dwarf2_physname (NULL, target_die, target_cu);
7780 if (target_physname == NULL)
7781 complaint (&symfile_complaints,
7782 _("DW_AT_GNU_call_site_target target DIE has invalid "
7783 "physname, for referencing DIE 0x%x [in module %s]"),
7784 die->offset.sect_off, objfile->name);
7785 else
7786 SET_FIELD_PHYSNAME (call_site->target, (char *) target_physname);
7787 }
7788 else
7789 {
7790 CORE_ADDR lowpc;
7791
7792 /* DW_AT_entry_pc should be preferred. */
7793 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
7794 complaint (&symfile_complaints,
7795 _("DW_AT_GNU_call_site_target target DIE has invalid "
7796 "low pc, for referencing DIE 0x%x [in module %s]"),
7797 die->offset.sect_off, objfile->name);
7798 else
7799 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
7800 }
7801 }
7802 else
7803 complaint (&symfile_complaints,
7804 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
7805 "block nor reference, for DIE 0x%x [in module %s]"),
7806 die->offset.sect_off, objfile->name);
7807
7808 call_site->per_cu = cu->per_cu;
7809
7810 for (child_die = die->child;
7811 child_die && child_die->tag;
7812 child_die = sibling_die (child_die))
7813 {
7814 struct call_site_parameter *parameter;
7815 struct attribute *loc;
7816
7817 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
7818 {
7819 /* Already printed the complaint above. */
7820 continue;
7821 }
7822
7823 gdb_assert (call_site->parameter_count < nparams);
7824 parameter = &call_site->parameter[call_site->parameter_count];
7825
7826 /* DW_AT_location specifies the register number. Value of the data
7827 assumed for the register is contained in DW_AT_GNU_call_site_value. */
7828
7829 loc = dwarf2_attr (child_die, DW_AT_location, cu);
7830 if (loc == NULL || !attr_form_is_block (loc))
7831 {
7832 complaint (&symfile_complaints,
7833 _("No DW_FORM_block* DW_AT_location for "
7834 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
7835 child_die->offset.sect_off, objfile->name);
7836 continue;
7837 }
7838 else
7839 {
7840 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
7841 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
7842 if (parameter->u.dwarf_reg != -1)
7843 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
7844 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
7845 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
7846 &parameter->u.fb_offset))
7847 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
7848 else
7849 {
7850 complaint (&symfile_complaints,
7851 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
7852 "for DW_FORM_block* DW_AT_location is supported for "
7853 "DW_TAG_GNU_call_site child DIE 0x%x "
7854 "[in module %s]"),
7855 child_die->offset.sect_off, objfile->name);
7856 continue;
7857 }
7858 }
7859
7860 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
7861 if (!attr_form_is_block (attr))
7862 {
7863 complaint (&symfile_complaints,
7864 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
7865 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
7866 child_die->offset.sect_off, objfile->name);
7867 continue;
7868 }
7869 parameter->value = DW_BLOCK (attr)->data;
7870 parameter->value_size = DW_BLOCK (attr)->size;
7871
7872 /* Parameters are not pre-cleared by memset above. */
7873 parameter->data_value = NULL;
7874 parameter->data_value_size = 0;
7875 call_site->parameter_count++;
7876
7877 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
7878 if (attr)
7879 {
7880 if (!attr_form_is_block (attr))
7881 complaint (&symfile_complaints,
7882 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
7883 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
7884 child_die->offset.sect_off, objfile->name);
7885 else
7886 {
7887 parameter->data_value = DW_BLOCK (attr)->data;
7888 parameter->data_value_size = DW_BLOCK (attr)->size;
7889 }
7890 }
7891 }
7892 }
7893
7894 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
7895 Return 1 if the attributes are present and valid, otherwise, return 0.
7896 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
7897
7898 static int
7899 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
7900 CORE_ADDR *high_return, struct dwarf2_cu *cu,
7901 struct partial_symtab *ranges_pst)
7902 {
7903 struct objfile *objfile = cu->objfile;
7904 struct comp_unit_head *cu_header = &cu->header;
7905 bfd *obfd = objfile->obfd;
7906 unsigned int addr_size = cu_header->addr_size;
7907 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
7908 /* Base address selection entry. */
7909 CORE_ADDR base;
7910 int found_base;
7911 unsigned int dummy;
7912 gdb_byte *buffer;
7913 CORE_ADDR marker;
7914 int low_set;
7915 CORE_ADDR low = 0;
7916 CORE_ADDR high = 0;
7917 CORE_ADDR baseaddr;
7918
7919 found_base = cu->base_known;
7920 base = cu->base_address;
7921
7922 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
7923 if (offset >= dwarf2_per_objfile->ranges.size)
7924 {
7925 complaint (&symfile_complaints,
7926 _("Offset %d out of bounds for DW_AT_ranges attribute"),
7927 offset);
7928 return 0;
7929 }
7930 buffer = dwarf2_per_objfile->ranges.buffer + offset;
7931
7932 /* Read in the largest possible address. */
7933 marker = read_address (obfd, buffer, cu, &dummy);
7934 if ((marker & mask) == mask)
7935 {
7936 /* If we found the largest possible address, then
7937 read the base address. */
7938 base = read_address (obfd, buffer + addr_size, cu, &dummy);
7939 buffer += 2 * addr_size;
7940 offset += 2 * addr_size;
7941 found_base = 1;
7942 }
7943
7944 low_set = 0;
7945
7946 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7947
7948 while (1)
7949 {
7950 CORE_ADDR range_beginning, range_end;
7951
7952 range_beginning = read_address (obfd, buffer, cu, &dummy);
7953 buffer += addr_size;
7954 range_end = read_address (obfd, buffer, cu, &dummy);
7955 buffer += addr_size;
7956 offset += 2 * addr_size;
7957
7958 /* An end of list marker is a pair of zero addresses. */
7959 if (range_beginning == 0 && range_end == 0)
7960 /* Found the end of list entry. */
7961 break;
7962
7963 /* Each base address selection entry is a pair of 2 values.
7964 The first is the largest possible address, the second is
7965 the base address. Check for a base address here. */
7966 if ((range_beginning & mask) == mask)
7967 {
7968 /* If we found the largest possible address, then
7969 read the base address. */
7970 base = read_address (obfd, buffer + addr_size, cu, &dummy);
7971 found_base = 1;
7972 continue;
7973 }
7974
7975 if (!found_base)
7976 {
7977 /* We have no valid base address for the ranges
7978 data. */
7979 complaint (&symfile_complaints,
7980 _("Invalid .debug_ranges data (no base address)"));
7981 return 0;
7982 }
7983
7984 if (range_beginning > range_end)
7985 {
7986 /* Inverted range entries are invalid. */
7987 complaint (&symfile_complaints,
7988 _("Invalid .debug_ranges data (inverted range)"));
7989 return 0;
7990 }
7991
7992 /* Empty range entries have no effect. */
7993 if (range_beginning == range_end)
7994 continue;
7995
7996 range_beginning += base;
7997 range_end += base;
7998
7999 if (ranges_pst != NULL)
8000 addrmap_set_empty (objfile->psymtabs_addrmap,
8001 range_beginning + baseaddr,
8002 range_end - 1 + baseaddr,
8003 ranges_pst);
8004
8005 /* FIXME: This is recording everything as a low-high
8006 segment of consecutive addresses. We should have a
8007 data structure for discontiguous block ranges
8008 instead. */
8009 if (! low_set)
8010 {
8011 low = range_beginning;
8012 high = range_end;
8013 low_set = 1;
8014 }
8015 else
8016 {
8017 if (range_beginning < low)
8018 low = range_beginning;
8019 if (range_end > high)
8020 high = range_end;
8021 }
8022 }
8023
8024 if (! low_set)
8025 /* If the first entry is an end-of-list marker, the range
8026 describes an empty scope, i.e. no instructions. */
8027 return 0;
8028
8029 if (low_return)
8030 *low_return = low;
8031 if (high_return)
8032 *high_return = high;
8033 return 1;
8034 }
8035
8036 /* Get low and high pc attributes from a die. Return 1 if the attributes
8037 are present and valid, otherwise, return 0. Return -1 if the range is
8038 discontinuous, i.e. derived from DW_AT_ranges information. */
8039
8040 static int
8041 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
8042 CORE_ADDR *highpc, struct dwarf2_cu *cu,
8043 struct partial_symtab *pst)
8044 {
8045 struct attribute *attr;
8046 struct attribute *attr_high;
8047 CORE_ADDR low = 0;
8048 CORE_ADDR high = 0;
8049 int ret = 0;
8050
8051 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
8052 if (attr_high)
8053 {
8054 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
8055 if (attr)
8056 {
8057 low = DW_ADDR (attr);
8058 if (attr_high->form == DW_FORM_addr
8059 || attr_high->form == DW_FORM_GNU_addr_index)
8060 high = DW_ADDR (attr_high);
8061 else
8062 high = low + DW_UNSND (attr_high);
8063 }
8064 else
8065 /* Found high w/o low attribute. */
8066 return 0;
8067
8068 /* Found consecutive range of addresses. */
8069 ret = 1;
8070 }
8071 else
8072 {
8073 attr = dwarf2_attr (die, DW_AT_ranges, cu);
8074 if (attr != NULL)
8075 {
8076 /* Value of the DW_AT_ranges attribute is the offset in the
8077 .debug_ranges section. */
8078 if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu, pst))
8079 return 0;
8080 /* Found discontinuous range of addresses. */
8081 ret = -1;
8082 }
8083 }
8084
8085 /* read_partial_die has also the strict LOW < HIGH requirement. */
8086 if (high <= low)
8087 return 0;
8088
8089 /* When using the GNU linker, .gnu.linkonce. sections are used to
8090 eliminate duplicate copies of functions and vtables and such.
8091 The linker will arbitrarily choose one and discard the others.
8092 The AT_*_pc values for such functions refer to local labels in
8093 these sections. If the section from that file was discarded, the
8094 labels are not in the output, so the relocs get a value of 0.
8095 If this is a discarded function, mark the pc bounds as invalid,
8096 so that GDB will ignore it. */
8097 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
8098 return 0;
8099
8100 *lowpc = low;
8101 if (highpc)
8102 *highpc = high;
8103 return ret;
8104 }
8105
8106 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
8107 its low and high PC addresses. Do nothing if these addresses could not
8108 be determined. Otherwise, set LOWPC to the low address if it is smaller,
8109 and HIGHPC to the high address if greater than HIGHPC. */
8110
8111 static void
8112 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
8113 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8114 struct dwarf2_cu *cu)
8115 {
8116 CORE_ADDR low, high;
8117 struct die_info *child = die->child;
8118
8119 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
8120 {
8121 *lowpc = min (*lowpc, low);
8122 *highpc = max (*highpc, high);
8123 }
8124
8125 /* If the language does not allow nested subprograms (either inside
8126 subprograms or lexical blocks), we're done. */
8127 if (cu->language != language_ada)
8128 return;
8129
8130 /* Check all the children of the given DIE. If it contains nested
8131 subprograms, then check their pc bounds. Likewise, we need to
8132 check lexical blocks as well, as they may also contain subprogram
8133 definitions. */
8134 while (child && child->tag)
8135 {
8136 if (child->tag == DW_TAG_subprogram
8137 || child->tag == DW_TAG_lexical_block)
8138 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
8139 child = sibling_die (child);
8140 }
8141 }
8142
8143 /* Get the low and high pc's represented by the scope DIE, and store
8144 them in *LOWPC and *HIGHPC. If the correct values can't be
8145 determined, set *LOWPC to -1 and *HIGHPC to 0. */
8146
8147 static void
8148 get_scope_pc_bounds (struct die_info *die,
8149 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8150 struct dwarf2_cu *cu)
8151 {
8152 CORE_ADDR best_low = (CORE_ADDR) -1;
8153 CORE_ADDR best_high = (CORE_ADDR) 0;
8154 CORE_ADDR current_low, current_high;
8155
8156 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
8157 {
8158 best_low = current_low;
8159 best_high = current_high;
8160 }
8161 else
8162 {
8163 struct die_info *child = die->child;
8164
8165 while (child && child->tag)
8166 {
8167 switch (child->tag) {
8168 case DW_TAG_subprogram:
8169 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
8170 break;
8171 case DW_TAG_namespace:
8172 case DW_TAG_module:
8173 /* FIXME: carlton/2004-01-16: Should we do this for
8174 DW_TAG_class_type/DW_TAG_structure_type, too? I think
8175 that current GCC's always emit the DIEs corresponding
8176 to definitions of methods of classes as children of a
8177 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
8178 the DIEs giving the declarations, which could be
8179 anywhere). But I don't see any reason why the
8180 standards says that they have to be there. */
8181 get_scope_pc_bounds (child, &current_low, &current_high, cu);
8182
8183 if (current_low != ((CORE_ADDR) -1))
8184 {
8185 best_low = min (best_low, current_low);
8186 best_high = max (best_high, current_high);
8187 }
8188 break;
8189 default:
8190 /* Ignore. */
8191 break;
8192 }
8193
8194 child = sibling_die (child);
8195 }
8196 }
8197
8198 *lowpc = best_low;
8199 *highpc = best_high;
8200 }
8201
8202 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
8203 in DIE. */
8204
8205 static void
8206 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
8207 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
8208 {
8209 struct objfile *objfile = cu->objfile;
8210 struct attribute *attr;
8211 struct attribute *attr_high;
8212
8213 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
8214 if (attr_high)
8215 {
8216 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
8217 if (attr)
8218 {
8219 CORE_ADDR low = DW_ADDR (attr);
8220 CORE_ADDR high;
8221 if (attr_high->form == DW_FORM_addr
8222 || attr_high->form == DW_FORM_GNU_addr_index)
8223 high = DW_ADDR (attr_high);
8224 else
8225 high = low + DW_UNSND (attr_high);
8226
8227 record_block_range (block, baseaddr + low, baseaddr + high - 1);
8228 }
8229 }
8230
8231 attr = dwarf2_attr (die, DW_AT_ranges, cu);
8232 if (attr)
8233 {
8234 bfd *obfd = objfile->obfd;
8235
8236 /* The value of the DW_AT_ranges attribute is the offset of the
8237 address range list in the .debug_ranges section. */
8238 unsigned long offset = DW_UNSND (attr);
8239 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
8240
8241 /* For some target architectures, but not others, the
8242 read_address function sign-extends the addresses it returns.
8243 To recognize base address selection entries, we need a
8244 mask. */
8245 unsigned int addr_size = cu->header.addr_size;
8246 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
8247
8248 /* The base address, to which the next pair is relative. Note
8249 that this 'base' is a DWARF concept: most entries in a range
8250 list are relative, to reduce the number of relocs against the
8251 debugging information. This is separate from this function's
8252 'baseaddr' argument, which GDB uses to relocate debugging
8253 information from a shared library based on the address at
8254 which the library was loaded. */
8255 CORE_ADDR base = cu->base_address;
8256 int base_known = cu->base_known;
8257
8258 gdb_assert (dwarf2_per_objfile->ranges.readin);
8259 if (offset >= dwarf2_per_objfile->ranges.size)
8260 {
8261 complaint (&symfile_complaints,
8262 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
8263 offset);
8264 return;
8265 }
8266
8267 for (;;)
8268 {
8269 unsigned int bytes_read;
8270 CORE_ADDR start, end;
8271
8272 start = read_address (obfd, buffer, cu, &bytes_read);
8273 buffer += bytes_read;
8274 end = read_address (obfd, buffer, cu, &bytes_read);
8275 buffer += bytes_read;
8276
8277 /* Did we find the end of the range list? */
8278 if (start == 0 && end == 0)
8279 break;
8280
8281 /* Did we find a base address selection entry? */
8282 else if ((start & base_select_mask) == base_select_mask)
8283 {
8284 base = end;
8285 base_known = 1;
8286 }
8287
8288 /* We found an ordinary address range. */
8289 else
8290 {
8291 if (!base_known)
8292 {
8293 complaint (&symfile_complaints,
8294 _("Invalid .debug_ranges data "
8295 "(no base address)"));
8296 return;
8297 }
8298
8299 if (start > end)
8300 {
8301 /* Inverted range entries are invalid. */
8302 complaint (&symfile_complaints,
8303 _("Invalid .debug_ranges data "
8304 "(inverted range)"));
8305 return;
8306 }
8307
8308 /* Empty range entries have no effect. */
8309 if (start == end)
8310 continue;
8311
8312 record_block_range (block,
8313 baseaddr + base + start,
8314 baseaddr + base + end - 1);
8315 }
8316 }
8317 }
8318 }
8319
8320 /* Check whether the producer field indicates either of GCC < 4.6, or the
8321 Intel C/C++ compiler, and cache the result in CU. */
8322
8323 static void
8324 check_producer (struct dwarf2_cu *cu)
8325 {
8326 const char *cs;
8327 int major, minor, release;
8328
8329 if (cu->producer == NULL)
8330 {
8331 /* For unknown compilers expect their behavior is DWARF version
8332 compliant.
8333
8334 GCC started to support .debug_types sections by -gdwarf-4 since
8335 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
8336 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
8337 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
8338 interpreted incorrectly by GDB now - GCC PR debug/48229. */
8339 }
8340 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
8341 {
8342 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
8343
8344 cs = &cu->producer[strlen ("GNU ")];
8345 while (*cs && !isdigit (*cs))
8346 cs++;
8347 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
8348 {
8349 /* Not recognized as GCC. */
8350 }
8351 else
8352 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
8353 }
8354 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
8355 cu->producer_is_icc = 1;
8356 else
8357 {
8358 /* For other non-GCC compilers, expect their behavior is DWARF version
8359 compliant. */
8360 }
8361
8362 cu->checked_producer = 1;
8363 }
8364
8365 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
8366 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
8367 during 4.6.0 experimental. */
8368
8369 static int
8370 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
8371 {
8372 if (!cu->checked_producer)
8373 check_producer (cu);
8374
8375 return cu->producer_is_gxx_lt_4_6;
8376 }
8377
8378 /* Return the default accessibility type if it is not overriden by
8379 DW_AT_accessibility. */
8380
8381 static enum dwarf_access_attribute
8382 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
8383 {
8384 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
8385 {
8386 /* The default DWARF 2 accessibility for members is public, the default
8387 accessibility for inheritance is private. */
8388
8389 if (die->tag != DW_TAG_inheritance)
8390 return DW_ACCESS_public;
8391 else
8392 return DW_ACCESS_private;
8393 }
8394 else
8395 {
8396 /* DWARF 3+ defines the default accessibility a different way. The same
8397 rules apply now for DW_TAG_inheritance as for the members and it only
8398 depends on the container kind. */
8399
8400 if (die->parent->tag == DW_TAG_class_type)
8401 return DW_ACCESS_private;
8402 else
8403 return DW_ACCESS_public;
8404 }
8405 }
8406
8407 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
8408 offset. If the attribute was not found return 0, otherwise return
8409 1. If it was found but could not properly be handled, set *OFFSET
8410 to 0. */
8411
8412 static int
8413 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
8414 LONGEST *offset)
8415 {
8416 struct attribute *attr;
8417
8418 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
8419 if (attr != NULL)
8420 {
8421 *offset = 0;
8422
8423 /* Note that we do not check for a section offset first here.
8424 This is because DW_AT_data_member_location is new in DWARF 4,
8425 so if we see it, we can assume that a constant form is really
8426 a constant and not a section offset. */
8427 if (attr_form_is_constant (attr))
8428 *offset = dwarf2_get_attr_constant_value (attr, 0);
8429 else if (attr_form_is_section_offset (attr))
8430 dwarf2_complex_location_expr_complaint ();
8431 else if (attr_form_is_block (attr))
8432 *offset = decode_locdesc (DW_BLOCK (attr), cu);
8433 else
8434 dwarf2_complex_location_expr_complaint ();
8435
8436 return 1;
8437 }
8438
8439 return 0;
8440 }
8441
8442 /* Add an aggregate field to the field list. */
8443
8444 static void
8445 dwarf2_add_field (struct field_info *fip, struct die_info *die,
8446 struct dwarf2_cu *cu)
8447 {
8448 struct objfile *objfile = cu->objfile;
8449 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8450 struct nextfield *new_field;
8451 struct attribute *attr;
8452 struct field *fp;
8453 char *fieldname = "";
8454
8455 /* Allocate a new field list entry and link it in. */
8456 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
8457 make_cleanup (xfree, new_field);
8458 memset (new_field, 0, sizeof (struct nextfield));
8459
8460 if (die->tag == DW_TAG_inheritance)
8461 {
8462 new_field->next = fip->baseclasses;
8463 fip->baseclasses = new_field;
8464 }
8465 else
8466 {
8467 new_field->next = fip->fields;
8468 fip->fields = new_field;
8469 }
8470 fip->nfields++;
8471
8472 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
8473 if (attr)
8474 new_field->accessibility = DW_UNSND (attr);
8475 else
8476 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
8477 if (new_field->accessibility != DW_ACCESS_public)
8478 fip->non_public_fields = 1;
8479
8480 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
8481 if (attr)
8482 new_field->virtuality = DW_UNSND (attr);
8483 else
8484 new_field->virtuality = DW_VIRTUALITY_none;
8485
8486 fp = &new_field->field;
8487
8488 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
8489 {
8490 LONGEST offset;
8491
8492 /* Data member other than a C++ static data member. */
8493
8494 /* Get type of field. */
8495 fp->type = die_type (die, cu);
8496
8497 SET_FIELD_BITPOS (*fp, 0);
8498
8499 /* Get bit size of field (zero if none). */
8500 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
8501 if (attr)
8502 {
8503 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
8504 }
8505 else
8506 {
8507 FIELD_BITSIZE (*fp) = 0;
8508 }
8509
8510 /* Get bit offset of field. */
8511 if (handle_data_member_location (die, cu, &offset))
8512 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
8513 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
8514 if (attr)
8515 {
8516 if (gdbarch_bits_big_endian (gdbarch))
8517 {
8518 /* For big endian bits, the DW_AT_bit_offset gives the
8519 additional bit offset from the MSB of the containing
8520 anonymous object to the MSB of the field. We don't
8521 have to do anything special since we don't need to
8522 know the size of the anonymous object. */
8523 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
8524 }
8525 else
8526 {
8527 /* For little endian bits, compute the bit offset to the
8528 MSB of the anonymous object, subtract off the number of
8529 bits from the MSB of the field to the MSB of the
8530 object, and then subtract off the number of bits of
8531 the field itself. The result is the bit offset of
8532 the LSB of the field. */
8533 int anonymous_size;
8534 int bit_offset = DW_UNSND (attr);
8535
8536 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8537 if (attr)
8538 {
8539 /* The size of the anonymous object containing
8540 the bit field is explicit, so use the
8541 indicated size (in bytes). */
8542 anonymous_size = DW_UNSND (attr);
8543 }
8544 else
8545 {
8546 /* The size of the anonymous object containing
8547 the bit field must be inferred from the type
8548 attribute of the data member containing the
8549 bit field. */
8550 anonymous_size = TYPE_LENGTH (fp->type);
8551 }
8552 SET_FIELD_BITPOS (*fp,
8553 (FIELD_BITPOS (*fp)
8554 + anonymous_size * bits_per_byte
8555 - bit_offset - FIELD_BITSIZE (*fp)));
8556 }
8557 }
8558
8559 /* Get name of field. */
8560 fieldname = dwarf2_name (die, cu);
8561 if (fieldname == NULL)
8562 fieldname = "";
8563
8564 /* The name is already allocated along with this objfile, so we don't
8565 need to duplicate it for the type. */
8566 fp->name = fieldname;
8567
8568 /* Change accessibility for artificial fields (e.g. virtual table
8569 pointer or virtual base class pointer) to private. */
8570 if (dwarf2_attr (die, DW_AT_artificial, cu))
8571 {
8572 FIELD_ARTIFICIAL (*fp) = 1;
8573 new_field->accessibility = DW_ACCESS_private;
8574 fip->non_public_fields = 1;
8575 }
8576 }
8577 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
8578 {
8579 /* C++ static member. */
8580
8581 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
8582 is a declaration, but all versions of G++ as of this writing
8583 (so through at least 3.2.1) incorrectly generate
8584 DW_TAG_variable tags. */
8585
8586 const char *physname;
8587
8588 /* Get name of field. */
8589 fieldname = dwarf2_name (die, cu);
8590 if (fieldname == NULL)
8591 return;
8592
8593 attr = dwarf2_attr (die, DW_AT_const_value, cu);
8594 if (attr
8595 /* Only create a symbol if this is an external value.
8596 new_symbol checks this and puts the value in the global symbol
8597 table, which we want. If it is not external, new_symbol
8598 will try to put the value in cu->list_in_scope which is wrong. */
8599 && dwarf2_flag_true_p (die, DW_AT_external, cu))
8600 {
8601 /* A static const member, not much different than an enum as far as
8602 we're concerned, except that we can support more types. */
8603 new_symbol (die, NULL, cu);
8604 }
8605
8606 /* Get physical name. */
8607 physname = dwarf2_physname (fieldname, die, cu);
8608
8609 /* The name is already allocated along with this objfile, so we don't
8610 need to duplicate it for the type. */
8611 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
8612 FIELD_TYPE (*fp) = die_type (die, cu);
8613 FIELD_NAME (*fp) = fieldname;
8614 }
8615 else if (die->tag == DW_TAG_inheritance)
8616 {
8617 LONGEST offset;
8618
8619 /* C++ base class field. */
8620 if (handle_data_member_location (die, cu, &offset))
8621 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
8622 FIELD_BITSIZE (*fp) = 0;
8623 FIELD_TYPE (*fp) = die_type (die, cu);
8624 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
8625 fip->nbaseclasses++;
8626 }
8627 }
8628
8629 /* Add a typedef defined in the scope of the FIP's class. */
8630
8631 static void
8632 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
8633 struct dwarf2_cu *cu)
8634 {
8635 struct objfile *objfile = cu->objfile;
8636 struct typedef_field_list *new_field;
8637 struct attribute *attr;
8638 struct typedef_field *fp;
8639 char *fieldname = "";
8640
8641 /* Allocate a new field list entry and link it in. */
8642 new_field = xzalloc (sizeof (*new_field));
8643 make_cleanup (xfree, new_field);
8644
8645 gdb_assert (die->tag == DW_TAG_typedef);
8646
8647 fp = &new_field->field;
8648
8649 /* Get name of field. */
8650 fp->name = dwarf2_name (die, cu);
8651 if (fp->name == NULL)
8652 return;
8653
8654 fp->type = read_type_die (die, cu);
8655
8656 new_field->next = fip->typedef_field_list;
8657 fip->typedef_field_list = new_field;
8658 fip->typedef_field_list_count++;
8659 }
8660
8661 /* Create the vector of fields, and attach it to the type. */
8662
8663 static void
8664 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
8665 struct dwarf2_cu *cu)
8666 {
8667 int nfields = fip->nfields;
8668
8669 /* Record the field count, allocate space for the array of fields,
8670 and create blank accessibility bitfields if necessary. */
8671 TYPE_NFIELDS (type) = nfields;
8672 TYPE_FIELDS (type) = (struct field *)
8673 TYPE_ALLOC (type, sizeof (struct field) * nfields);
8674 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
8675
8676 if (fip->non_public_fields && cu->language != language_ada)
8677 {
8678 ALLOCATE_CPLUS_STRUCT_TYPE (type);
8679
8680 TYPE_FIELD_PRIVATE_BITS (type) =
8681 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
8682 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
8683
8684 TYPE_FIELD_PROTECTED_BITS (type) =
8685 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
8686 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
8687
8688 TYPE_FIELD_IGNORE_BITS (type) =
8689 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
8690 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
8691 }
8692
8693 /* If the type has baseclasses, allocate and clear a bit vector for
8694 TYPE_FIELD_VIRTUAL_BITS. */
8695 if (fip->nbaseclasses && cu->language != language_ada)
8696 {
8697 int num_bytes = B_BYTES (fip->nbaseclasses);
8698 unsigned char *pointer;
8699
8700 ALLOCATE_CPLUS_STRUCT_TYPE (type);
8701 pointer = TYPE_ALLOC (type, num_bytes);
8702 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
8703 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
8704 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
8705 }
8706
8707 /* Copy the saved-up fields into the field vector. Start from the head of
8708 the list, adding to the tail of the field array, so that they end up in
8709 the same order in the array in which they were added to the list. */
8710 while (nfields-- > 0)
8711 {
8712 struct nextfield *fieldp;
8713
8714 if (fip->fields)
8715 {
8716 fieldp = fip->fields;
8717 fip->fields = fieldp->next;
8718 }
8719 else
8720 {
8721 fieldp = fip->baseclasses;
8722 fip->baseclasses = fieldp->next;
8723 }
8724
8725 TYPE_FIELD (type, nfields) = fieldp->field;
8726 switch (fieldp->accessibility)
8727 {
8728 case DW_ACCESS_private:
8729 if (cu->language != language_ada)
8730 SET_TYPE_FIELD_PRIVATE (type, nfields);
8731 break;
8732
8733 case DW_ACCESS_protected:
8734 if (cu->language != language_ada)
8735 SET_TYPE_FIELD_PROTECTED (type, nfields);
8736 break;
8737
8738 case DW_ACCESS_public:
8739 break;
8740
8741 default:
8742 /* Unknown accessibility. Complain and treat it as public. */
8743 {
8744 complaint (&symfile_complaints, _("unsupported accessibility %d"),
8745 fieldp->accessibility);
8746 }
8747 break;
8748 }
8749 if (nfields < fip->nbaseclasses)
8750 {
8751 switch (fieldp->virtuality)
8752 {
8753 case DW_VIRTUALITY_virtual:
8754 case DW_VIRTUALITY_pure_virtual:
8755 if (cu->language == language_ada)
8756 error (_("unexpected virtuality in component of Ada type"));
8757 SET_TYPE_FIELD_VIRTUAL (type, nfields);
8758 break;
8759 }
8760 }
8761 }
8762 }
8763
8764 /* Add a member function to the proper fieldlist. */
8765
8766 static void
8767 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
8768 struct type *type, struct dwarf2_cu *cu)
8769 {
8770 struct objfile *objfile = cu->objfile;
8771 struct attribute *attr;
8772 struct fnfieldlist *flp;
8773 int i;
8774 struct fn_field *fnp;
8775 char *fieldname;
8776 struct nextfnfield *new_fnfield;
8777 struct type *this_type;
8778 enum dwarf_access_attribute accessibility;
8779
8780 if (cu->language == language_ada)
8781 error (_("unexpected member function in Ada type"));
8782
8783 /* Get name of member function. */
8784 fieldname = dwarf2_name (die, cu);
8785 if (fieldname == NULL)
8786 return;
8787
8788 /* Look up member function name in fieldlist. */
8789 for (i = 0; i < fip->nfnfields; i++)
8790 {
8791 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
8792 break;
8793 }
8794
8795 /* Create new list element if necessary. */
8796 if (i < fip->nfnfields)
8797 flp = &fip->fnfieldlists[i];
8798 else
8799 {
8800 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
8801 {
8802 fip->fnfieldlists = (struct fnfieldlist *)
8803 xrealloc (fip->fnfieldlists,
8804 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
8805 * sizeof (struct fnfieldlist));
8806 if (fip->nfnfields == 0)
8807 make_cleanup (free_current_contents, &fip->fnfieldlists);
8808 }
8809 flp = &fip->fnfieldlists[fip->nfnfields];
8810 flp->name = fieldname;
8811 flp->length = 0;
8812 flp->head = NULL;
8813 i = fip->nfnfields++;
8814 }
8815
8816 /* Create a new member function field and chain it to the field list
8817 entry. */
8818 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
8819 make_cleanup (xfree, new_fnfield);
8820 memset (new_fnfield, 0, sizeof (struct nextfnfield));
8821 new_fnfield->next = flp->head;
8822 flp->head = new_fnfield;
8823 flp->length++;
8824
8825 /* Fill in the member function field info. */
8826 fnp = &new_fnfield->fnfield;
8827
8828 /* Delay processing of the physname until later. */
8829 if (cu->language == language_cplus || cu->language == language_java)
8830 {
8831 add_to_method_list (type, i, flp->length - 1, fieldname,
8832 die, cu);
8833 }
8834 else
8835 {
8836 const char *physname = dwarf2_physname (fieldname, die, cu);
8837 fnp->physname = physname ? physname : "";
8838 }
8839
8840 fnp->type = alloc_type (objfile);
8841 this_type = read_type_die (die, cu);
8842 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
8843 {
8844 int nparams = TYPE_NFIELDS (this_type);
8845
8846 /* TYPE is the domain of this method, and THIS_TYPE is the type
8847 of the method itself (TYPE_CODE_METHOD). */
8848 smash_to_method_type (fnp->type, type,
8849 TYPE_TARGET_TYPE (this_type),
8850 TYPE_FIELDS (this_type),
8851 TYPE_NFIELDS (this_type),
8852 TYPE_VARARGS (this_type));
8853
8854 /* Handle static member functions.
8855 Dwarf2 has no clean way to discern C++ static and non-static
8856 member functions. G++ helps GDB by marking the first
8857 parameter for non-static member functions (which is the this
8858 pointer) as artificial. We obtain this information from
8859 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
8860 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
8861 fnp->voffset = VOFFSET_STATIC;
8862 }
8863 else
8864 complaint (&symfile_complaints, _("member function type missing for '%s'"),
8865 dwarf2_full_name (fieldname, die, cu));
8866
8867 /* Get fcontext from DW_AT_containing_type if present. */
8868 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
8869 fnp->fcontext = die_containing_type (die, cu);
8870
8871 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
8872 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
8873
8874 /* Get accessibility. */
8875 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
8876 if (attr)
8877 accessibility = DW_UNSND (attr);
8878 else
8879 accessibility = dwarf2_default_access_attribute (die, cu);
8880 switch (accessibility)
8881 {
8882 case DW_ACCESS_private:
8883 fnp->is_private = 1;
8884 break;
8885 case DW_ACCESS_protected:
8886 fnp->is_protected = 1;
8887 break;
8888 }
8889
8890 /* Check for artificial methods. */
8891 attr = dwarf2_attr (die, DW_AT_artificial, cu);
8892 if (attr && DW_UNSND (attr) != 0)
8893 fnp->is_artificial = 1;
8894
8895 /* Get index in virtual function table if it is a virtual member
8896 function. For older versions of GCC, this is an offset in the
8897 appropriate virtual table, as specified by DW_AT_containing_type.
8898 For everyone else, it is an expression to be evaluated relative
8899 to the object address. */
8900
8901 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
8902 if (attr)
8903 {
8904 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8905 {
8906 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
8907 {
8908 /* Old-style GCC. */
8909 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
8910 }
8911 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
8912 || (DW_BLOCK (attr)->size > 1
8913 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
8914 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
8915 {
8916 struct dwarf_block blk;
8917 int offset;
8918
8919 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
8920 ? 1 : 2);
8921 blk.size = DW_BLOCK (attr)->size - offset;
8922 blk.data = DW_BLOCK (attr)->data + offset;
8923 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
8924 if ((fnp->voffset % cu->header.addr_size) != 0)
8925 dwarf2_complex_location_expr_complaint ();
8926 else
8927 fnp->voffset /= cu->header.addr_size;
8928 fnp->voffset += 2;
8929 }
8930 else
8931 dwarf2_complex_location_expr_complaint ();
8932
8933 if (!fnp->fcontext)
8934 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
8935 }
8936 else if (attr_form_is_section_offset (attr))
8937 {
8938 dwarf2_complex_location_expr_complaint ();
8939 }
8940 else
8941 {
8942 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
8943 fieldname);
8944 }
8945 }
8946 else
8947 {
8948 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
8949 if (attr && DW_UNSND (attr))
8950 {
8951 /* GCC does this, as of 2008-08-25; PR debug/37237. */
8952 complaint (&symfile_complaints,
8953 _("Member function \"%s\" (offset %d) is virtual "
8954 "but the vtable offset is not specified"),
8955 fieldname, die->offset.sect_off);
8956 ALLOCATE_CPLUS_STRUCT_TYPE (type);
8957 TYPE_CPLUS_DYNAMIC (type) = 1;
8958 }
8959 }
8960 }
8961
8962 /* Create the vector of member function fields, and attach it to the type. */
8963
8964 static void
8965 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
8966 struct dwarf2_cu *cu)
8967 {
8968 struct fnfieldlist *flp;
8969 int i;
8970
8971 if (cu->language == language_ada)
8972 error (_("unexpected member functions in Ada type"));
8973
8974 ALLOCATE_CPLUS_STRUCT_TYPE (type);
8975 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
8976 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
8977
8978 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
8979 {
8980 struct nextfnfield *nfp = flp->head;
8981 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
8982 int k;
8983
8984 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
8985 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
8986 fn_flp->fn_fields = (struct fn_field *)
8987 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
8988 for (k = flp->length; (k--, nfp); nfp = nfp->next)
8989 fn_flp->fn_fields[k] = nfp->fnfield;
8990 }
8991
8992 TYPE_NFN_FIELDS (type) = fip->nfnfields;
8993 }
8994
8995 /* Returns non-zero if NAME is the name of a vtable member in CU's
8996 language, zero otherwise. */
8997 static int
8998 is_vtable_name (const char *name, struct dwarf2_cu *cu)
8999 {
9000 static const char vptr[] = "_vptr";
9001 static const char vtable[] = "vtable";
9002
9003 /* Look for the C++ and Java forms of the vtable. */
9004 if ((cu->language == language_java
9005 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
9006 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
9007 && is_cplus_marker (name[sizeof (vptr) - 1])))
9008 return 1;
9009
9010 return 0;
9011 }
9012
9013 /* GCC outputs unnamed structures that are really pointers to member
9014 functions, with the ABI-specified layout. If TYPE describes
9015 such a structure, smash it into a member function type.
9016
9017 GCC shouldn't do this; it should just output pointer to member DIEs.
9018 This is GCC PR debug/28767. */
9019
9020 static void
9021 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
9022 {
9023 struct type *pfn_type, *domain_type, *new_type;
9024
9025 /* Check for a structure with no name and two children. */
9026 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
9027 return;
9028
9029 /* Check for __pfn and __delta members. */
9030 if (TYPE_FIELD_NAME (type, 0) == NULL
9031 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
9032 || TYPE_FIELD_NAME (type, 1) == NULL
9033 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
9034 return;
9035
9036 /* Find the type of the method. */
9037 pfn_type = TYPE_FIELD_TYPE (type, 0);
9038 if (pfn_type == NULL
9039 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
9040 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
9041 return;
9042
9043 /* Look for the "this" argument. */
9044 pfn_type = TYPE_TARGET_TYPE (pfn_type);
9045 if (TYPE_NFIELDS (pfn_type) == 0
9046 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
9047 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
9048 return;
9049
9050 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
9051 new_type = alloc_type (objfile);
9052 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
9053 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
9054 TYPE_VARARGS (pfn_type));
9055 smash_to_methodptr_type (type, new_type);
9056 }
9057
9058 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
9059 (icc). */
9060
9061 static int
9062 producer_is_icc (struct dwarf2_cu *cu)
9063 {
9064 if (!cu->checked_producer)
9065 check_producer (cu);
9066
9067 return cu->producer_is_icc;
9068 }
9069
9070 /* Called when we find the DIE that starts a structure or union scope
9071 (definition) to create a type for the structure or union. Fill in
9072 the type's name and general properties; the members will not be
9073 processed until process_structure_type.
9074
9075 NOTE: we need to call these functions regardless of whether or not the
9076 DIE has a DW_AT_name attribute, since it might be an anonymous
9077 structure or union. This gets the type entered into our set of
9078 user defined types.
9079
9080 However, if the structure is incomplete (an opaque struct/union)
9081 then suppress creating a symbol table entry for it since gdb only
9082 wants to find the one with the complete definition. Note that if
9083 it is complete, we just call new_symbol, which does it's own
9084 checking about whether the struct/union is anonymous or not (and
9085 suppresses creating a symbol table entry itself). */
9086
9087 static struct type *
9088 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
9089 {
9090 struct objfile *objfile = cu->objfile;
9091 struct type *type;
9092 struct attribute *attr;
9093 char *name;
9094
9095 /* If the definition of this type lives in .debug_types, read that type.
9096 Don't follow DW_AT_specification though, that will take us back up
9097 the chain and we want to go down. */
9098 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
9099 if (attr)
9100 {
9101 struct dwarf2_cu *type_cu = cu;
9102 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
9103
9104 /* We could just recurse on read_structure_type, but we need to call
9105 get_die_type to ensure only one type for this DIE is created.
9106 This is important, for example, because for c++ classes we need
9107 TYPE_NAME set which is only done by new_symbol. Blech. */
9108 type = read_type_die (type_die, type_cu);
9109
9110 /* TYPE_CU may not be the same as CU.
9111 Ensure TYPE is recorded in CU's type_hash table. */
9112 return set_die_type (die, type, cu);
9113 }
9114
9115 type = alloc_type (objfile);
9116 INIT_CPLUS_SPECIFIC (type);
9117
9118 name = dwarf2_name (die, cu);
9119 if (name != NULL)
9120 {
9121 if (cu->language == language_cplus
9122 || cu->language == language_java)
9123 {
9124 char *full_name = (char *) dwarf2_full_name (name, die, cu);
9125
9126 /* dwarf2_full_name might have already finished building the DIE's
9127 type. If so, there is no need to continue. */
9128 if (get_die_type (die, cu) != NULL)
9129 return get_die_type (die, cu);
9130
9131 TYPE_TAG_NAME (type) = full_name;
9132 if (die->tag == DW_TAG_structure_type
9133 || die->tag == DW_TAG_class_type)
9134 TYPE_NAME (type) = TYPE_TAG_NAME (type);
9135 }
9136 else
9137 {
9138 /* The name is already allocated along with this objfile, so
9139 we don't need to duplicate it for the type. */
9140 TYPE_TAG_NAME (type) = (char *) name;
9141 if (die->tag == DW_TAG_class_type)
9142 TYPE_NAME (type) = TYPE_TAG_NAME (type);
9143 }
9144 }
9145
9146 if (die->tag == DW_TAG_structure_type)
9147 {
9148 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9149 }
9150 else if (die->tag == DW_TAG_union_type)
9151 {
9152 TYPE_CODE (type) = TYPE_CODE_UNION;
9153 }
9154 else
9155 {
9156 TYPE_CODE (type) = TYPE_CODE_CLASS;
9157 }
9158
9159 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
9160 TYPE_DECLARED_CLASS (type) = 1;
9161
9162 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
9163 if (attr)
9164 {
9165 TYPE_LENGTH (type) = DW_UNSND (attr);
9166 }
9167 else
9168 {
9169 TYPE_LENGTH (type) = 0;
9170 }
9171
9172 if (producer_is_icc (cu))
9173 {
9174 /* ICC does not output the required DW_AT_declaration
9175 on incomplete types, but gives them a size of zero. */
9176 }
9177 else
9178 TYPE_STUB_SUPPORTED (type) = 1;
9179
9180 if (die_is_declaration (die, cu))
9181 TYPE_STUB (type) = 1;
9182 else if (attr == NULL && die->child == NULL
9183 && producer_is_realview (cu->producer))
9184 /* RealView does not output the required DW_AT_declaration
9185 on incomplete types. */
9186 TYPE_STUB (type) = 1;
9187
9188 /* We need to add the type field to the die immediately so we don't
9189 infinitely recurse when dealing with pointers to the structure
9190 type within the structure itself. */
9191 set_die_type (die, type, cu);
9192
9193 /* set_die_type should be already done. */
9194 set_descriptive_type (type, die, cu);
9195
9196 return type;
9197 }
9198
9199 /* Finish creating a structure or union type, including filling in
9200 its members and creating a symbol for it. */
9201
9202 static void
9203 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
9204 {
9205 struct objfile *objfile = cu->objfile;
9206 struct die_info *child_die = die->child;
9207 struct type *type;
9208
9209 type = get_die_type (die, cu);
9210 if (type == NULL)
9211 type = read_structure_type (die, cu);
9212
9213 if (die->child != NULL && ! die_is_declaration (die, cu))
9214 {
9215 struct field_info fi;
9216 struct die_info *child_die;
9217 VEC (symbolp) *template_args = NULL;
9218 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9219
9220 memset (&fi, 0, sizeof (struct field_info));
9221
9222 child_die = die->child;
9223
9224 while (child_die && child_die->tag)
9225 {
9226 if (child_die->tag == DW_TAG_member
9227 || child_die->tag == DW_TAG_variable)
9228 {
9229 /* NOTE: carlton/2002-11-05: A C++ static data member
9230 should be a DW_TAG_member that is a declaration, but
9231 all versions of G++ as of this writing (so through at
9232 least 3.2.1) incorrectly generate DW_TAG_variable
9233 tags for them instead. */
9234 dwarf2_add_field (&fi, child_die, cu);
9235 }
9236 else if (child_die->tag == DW_TAG_subprogram)
9237 {
9238 /* C++ member function. */
9239 dwarf2_add_member_fn (&fi, child_die, type, cu);
9240 }
9241 else if (child_die->tag == DW_TAG_inheritance)
9242 {
9243 /* C++ base class field. */
9244 dwarf2_add_field (&fi, child_die, cu);
9245 }
9246 else if (child_die->tag == DW_TAG_typedef)
9247 dwarf2_add_typedef (&fi, child_die, cu);
9248 else if (child_die->tag == DW_TAG_template_type_param
9249 || child_die->tag == DW_TAG_template_value_param)
9250 {
9251 struct symbol *arg = new_symbol (child_die, NULL, cu);
9252
9253 if (arg != NULL)
9254 VEC_safe_push (symbolp, template_args, arg);
9255 }
9256
9257 child_die = sibling_die (child_die);
9258 }
9259
9260 /* Attach template arguments to type. */
9261 if (! VEC_empty (symbolp, template_args))
9262 {
9263 ALLOCATE_CPLUS_STRUCT_TYPE (type);
9264 TYPE_N_TEMPLATE_ARGUMENTS (type)
9265 = VEC_length (symbolp, template_args);
9266 TYPE_TEMPLATE_ARGUMENTS (type)
9267 = obstack_alloc (&objfile->objfile_obstack,
9268 (TYPE_N_TEMPLATE_ARGUMENTS (type)
9269 * sizeof (struct symbol *)));
9270 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
9271 VEC_address (symbolp, template_args),
9272 (TYPE_N_TEMPLATE_ARGUMENTS (type)
9273 * sizeof (struct symbol *)));
9274 VEC_free (symbolp, template_args);
9275 }
9276
9277 /* Attach fields and member functions to the type. */
9278 if (fi.nfields)
9279 dwarf2_attach_fields_to_type (&fi, type, cu);
9280 if (fi.nfnfields)
9281 {
9282 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
9283
9284 /* Get the type which refers to the base class (possibly this
9285 class itself) which contains the vtable pointer for the current
9286 class from the DW_AT_containing_type attribute. This use of
9287 DW_AT_containing_type is a GNU extension. */
9288
9289 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
9290 {
9291 struct type *t = die_containing_type (die, cu);
9292
9293 TYPE_VPTR_BASETYPE (type) = t;
9294 if (type == t)
9295 {
9296 int i;
9297
9298 /* Our own class provides vtbl ptr. */
9299 for (i = TYPE_NFIELDS (t) - 1;
9300 i >= TYPE_N_BASECLASSES (t);
9301 --i)
9302 {
9303 const char *fieldname = TYPE_FIELD_NAME (t, i);
9304
9305 if (is_vtable_name (fieldname, cu))
9306 {
9307 TYPE_VPTR_FIELDNO (type) = i;
9308 break;
9309 }
9310 }
9311
9312 /* Complain if virtual function table field not found. */
9313 if (i < TYPE_N_BASECLASSES (t))
9314 complaint (&symfile_complaints,
9315 _("virtual function table pointer "
9316 "not found when defining class '%s'"),
9317 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
9318 "");
9319 }
9320 else
9321 {
9322 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
9323 }
9324 }
9325 else if (cu->producer
9326 && strncmp (cu->producer,
9327 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
9328 {
9329 /* The IBM XLC compiler does not provide direct indication
9330 of the containing type, but the vtable pointer is
9331 always named __vfp. */
9332
9333 int i;
9334
9335 for (i = TYPE_NFIELDS (type) - 1;
9336 i >= TYPE_N_BASECLASSES (type);
9337 --i)
9338 {
9339 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
9340 {
9341 TYPE_VPTR_FIELDNO (type) = i;
9342 TYPE_VPTR_BASETYPE (type) = type;
9343 break;
9344 }
9345 }
9346 }
9347 }
9348
9349 /* Copy fi.typedef_field_list linked list elements content into the
9350 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
9351 if (fi.typedef_field_list)
9352 {
9353 int i = fi.typedef_field_list_count;
9354
9355 ALLOCATE_CPLUS_STRUCT_TYPE (type);
9356 TYPE_TYPEDEF_FIELD_ARRAY (type)
9357 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
9358 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
9359
9360 /* Reverse the list order to keep the debug info elements order. */
9361 while (--i >= 0)
9362 {
9363 struct typedef_field *dest, *src;
9364
9365 dest = &TYPE_TYPEDEF_FIELD (type, i);
9366 src = &fi.typedef_field_list->field;
9367 fi.typedef_field_list = fi.typedef_field_list->next;
9368 *dest = *src;
9369 }
9370 }
9371
9372 do_cleanups (back_to);
9373
9374 if (HAVE_CPLUS_STRUCT (type))
9375 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
9376 }
9377
9378 quirk_gcc_member_function_pointer (type, objfile);
9379
9380 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
9381 snapshots) has been known to create a die giving a declaration
9382 for a class that has, as a child, a die giving a definition for a
9383 nested class. So we have to process our children even if the
9384 current die is a declaration. Normally, of course, a declaration
9385 won't have any children at all. */
9386
9387 while (child_die != NULL && child_die->tag)
9388 {
9389 if (child_die->tag == DW_TAG_member
9390 || child_die->tag == DW_TAG_variable
9391 || child_die->tag == DW_TAG_inheritance
9392 || child_die->tag == DW_TAG_template_value_param
9393 || child_die->tag == DW_TAG_template_type_param)
9394 {
9395 /* Do nothing. */
9396 }
9397 else
9398 process_die (child_die, cu);
9399
9400 child_die = sibling_die (child_die);
9401 }
9402
9403 /* Do not consider external references. According to the DWARF standard,
9404 these DIEs are identified by the fact that they have no byte_size
9405 attribute, and a declaration attribute. */
9406 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
9407 || !die_is_declaration (die, cu))
9408 new_symbol (die, type, cu);
9409 }
9410
9411 /* Given a DW_AT_enumeration_type die, set its type. We do not
9412 complete the type's fields yet, or create any symbols. */
9413
9414 static struct type *
9415 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
9416 {
9417 struct objfile *objfile = cu->objfile;
9418 struct type *type;
9419 struct attribute *attr;
9420 const char *name;
9421
9422 /* If the definition of this type lives in .debug_types, read that type.
9423 Don't follow DW_AT_specification though, that will take us back up
9424 the chain and we want to go down. */
9425 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
9426 if (attr)
9427 {
9428 struct dwarf2_cu *type_cu = cu;
9429 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
9430
9431 type = read_type_die (type_die, type_cu);
9432
9433 /* TYPE_CU may not be the same as CU.
9434 Ensure TYPE is recorded in CU's type_hash table. */
9435 return set_die_type (die, type, cu);
9436 }
9437
9438 type = alloc_type (objfile);
9439
9440 TYPE_CODE (type) = TYPE_CODE_ENUM;
9441 name = dwarf2_full_name (NULL, die, cu);
9442 if (name != NULL)
9443 TYPE_TAG_NAME (type) = (char *) name;
9444
9445 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
9446 if (attr)
9447 {
9448 TYPE_LENGTH (type) = DW_UNSND (attr);
9449 }
9450 else
9451 {
9452 TYPE_LENGTH (type) = 0;
9453 }
9454
9455 /* The enumeration DIE can be incomplete. In Ada, any type can be
9456 declared as private in the package spec, and then defined only
9457 inside the package body. Such types are known as Taft Amendment
9458 Types. When another package uses such a type, an incomplete DIE
9459 may be generated by the compiler. */
9460 if (die_is_declaration (die, cu))
9461 TYPE_STUB (type) = 1;
9462
9463 return set_die_type (die, type, cu);
9464 }
9465
9466 /* Given a pointer to a die which begins an enumeration, process all
9467 the dies that define the members of the enumeration, and create the
9468 symbol for the enumeration type.
9469
9470 NOTE: We reverse the order of the element list. */
9471
9472 static void
9473 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
9474 {
9475 struct type *this_type;
9476
9477 this_type = get_die_type (die, cu);
9478 if (this_type == NULL)
9479 this_type = read_enumeration_type (die, cu);
9480
9481 if (die->child != NULL)
9482 {
9483 struct die_info *child_die;
9484 struct symbol *sym;
9485 struct field *fields = NULL;
9486 int num_fields = 0;
9487 int unsigned_enum = 1;
9488 char *name;
9489 int flag_enum = 1;
9490 ULONGEST mask = 0;
9491
9492 child_die = die->child;
9493 while (child_die && child_die->tag)
9494 {
9495 if (child_die->tag != DW_TAG_enumerator)
9496 {
9497 process_die (child_die, cu);
9498 }
9499 else
9500 {
9501 name = dwarf2_name (child_die, cu);
9502 if (name)
9503 {
9504 sym = new_symbol (child_die, this_type, cu);
9505 if (SYMBOL_VALUE (sym) < 0)
9506 {
9507 unsigned_enum = 0;
9508 flag_enum = 0;
9509 }
9510 else if ((mask & SYMBOL_VALUE (sym)) != 0)
9511 flag_enum = 0;
9512 else
9513 mask |= SYMBOL_VALUE (sym);
9514
9515 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
9516 {
9517 fields = (struct field *)
9518 xrealloc (fields,
9519 (num_fields + DW_FIELD_ALLOC_CHUNK)
9520 * sizeof (struct field));
9521 }
9522
9523 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
9524 FIELD_TYPE (fields[num_fields]) = NULL;
9525 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
9526 FIELD_BITSIZE (fields[num_fields]) = 0;
9527
9528 num_fields++;
9529 }
9530 }
9531
9532 child_die = sibling_die (child_die);
9533 }
9534
9535 if (num_fields)
9536 {
9537 TYPE_NFIELDS (this_type) = num_fields;
9538 TYPE_FIELDS (this_type) = (struct field *)
9539 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
9540 memcpy (TYPE_FIELDS (this_type), fields,
9541 sizeof (struct field) * num_fields);
9542 xfree (fields);
9543 }
9544 if (unsigned_enum)
9545 TYPE_UNSIGNED (this_type) = 1;
9546 if (flag_enum)
9547 TYPE_FLAG_ENUM (this_type) = 1;
9548 }
9549
9550 /* If we are reading an enum from a .debug_types unit, and the enum
9551 is a declaration, and the enum is not the signatured type in the
9552 unit, then we do not want to add a symbol for it. Adding a
9553 symbol would in some cases obscure the true definition of the
9554 enum, giving users an incomplete type when the definition is
9555 actually available. Note that we do not want to do this for all
9556 enums which are just declarations, because C++0x allows forward
9557 enum declarations. */
9558 if (cu->per_cu->is_debug_types
9559 && die_is_declaration (die, cu))
9560 {
9561 struct signatured_type *sig_type;
9562
9563 sig_type
9564 = lookup_signatured_type_at_offset (dwarf2_per_objfile->objfile,
9565 cu->per_cu->info_or_types_section,
9566 cu->per_cu->offset);
9567 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
9568 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
9569 return;
9570 }
9571
9572 new_symbol (die, this_type, cu);
9573 }
9574
9575 /* Extract all information from a DW_TAG_array_type DIE and put it in
9576 the DIE's type field. For now, this only handles one dimensional
9577 arrays. */
9578
9579 static struct type *
9580 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
9581 {
9582 struct objfile *objfile = cu->objfile;
9583 struct die_info *child_die;
9584 struct type *type;
9585 struct type *element_type, *range_type, *index_type;
9586 struct type **range_types = NULL;
9587 struct attribute *attr;
9588 int ndim = 0;
9589 struct cleanup *back_to;
9590 char *name;
9591
9592 element_type = die_type (die, cu);
9593
9594 /* The die_type call above may have already set the type for this DIE. */
9595 type = get_die_type (die, cu);
9596 if (type)
9597 return type;
9598
9599 /* Irix 6.2 native cc creates array types without children for
9600 arrays with unspecified length. */
9601 if (die->child == NULL)
9602 {
9603 index_type = objfile_type (objfile)->builtin_int;
9604 range_type = create_range_type (NULL, index_type, 0, -1);
9605 type = create_array_type (NULL, element_type, range_type);
9606 return set_die_type (die, type, cu);
9607 }
9608
9609 back_to = make_cleanup (null_cleanup, NULL);
9610 child_die = die->child;
9611 while (child_die && child_die->tag)
9612 {
9613 if (child_die->tag == DW_TAG_subrange_type)
9614 {
9615 struct type *child_type = read_type_die (child_die, cu);
9616
9617 if (child_type != NULL)
9618 {
9619 /* The range type was succesfully read. Save it for the
9620 array type creation. */
9621 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
9622 {
9623 range_types = (struct type **)
9624 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
9625 * sizeof (struct type *));
9626 if (ndim == 0)
9627 make_cleanup (free_current_contents, &range_types);
9628 }
9629 range_types[ndim++] = child_type;
9630 }
9631 }
9632 child_die = sibling_die (child_die);
9633 }
9634
9635 /* Dwarf2 dimensions are output from left to right, create the
9636 necessary array types in backwards order. */
9637
9638 type = element_type;
9639
9640 if (read_array_order (die, cu) == DW_ORD_col_major)
9641 {
9642 int i = 0;
9643
9644 while (i < ndim)
9645 type = create_array_type (NULL, type, range_types[i++]);
9646 }
9647 else
9648 {
9649 while (ndim-- > 0)
9650 type = create_array_type (NULL, type, range_types[ndim]);
9651 }
9652
9653 /* Understand Dwarf2 support for vector types (like they occur on
9654 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
9655 array type. This is not part of the Dwarf2/3 standard yet, but a
9656 custom vendor extension. The main difference between a regular
9657 array and the vector variant is that vectors are passed by value
9658 to functions. */
9659 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
9660 if (attr)
9661 make_vector_type (type);
9662
9663 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
9664 implementation may choose to implement triple vectors using this
9665 attribute. */
9666 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
9667 if (attr)
9668 {
9669 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
9670 TYPE_LENGTH (type) = DW_UNSND (attr);
9671 else
9672 complaint (&symfile_complaints,
9673 _("DW_AT_byte_size for array type smaller "
9674 "than the total size of elements"));
9675 }
9676
9677 name = dwarf2_name (die, cu);
9678 if (name)
9679 TYPE_NAME (type) = name;
9680
9681 /* Install the type in the die. */
9682 set_die_type (die, type, cu);
9683
9684 /* set_die_type should be already done. */
9685 set_descriptive_type (type, die, cu);
9686
9687 do_cleanups (back_to);
9688
9689 return type;
9690 }
9691
9692 static enum dwarf_array_dim_ordering
9693 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
9694 {
9695 struct attribute *attr;
9696
9697 attr = dwarf2_attr (die, DW_AT_ordering, cu);
9698
9699 if (attr) return DW_SND (attr);
9700
9701 /* GNU F77 is a special case, as at 08/2004 array type info is the
9702 opposite order to the dwarf2 specification, but data is still
9703 laid out as per normal fortran.
9704
9705 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
9706 version checking. */
9707
9708 if (cu->language == language_fortran
9709 && cu->producer && strstr (cu->producer, "GNU F77"))
9710 {
9711 return DW_ORD_row_major;
9712 }
9713
9714 switch (cu->language_defn->la_array_ordering)
9715 {
9716 case array_column_major:
9717 return DW_ORD_col_major;
9718 case array_row_major:
9719 default:
9720 return DW_ORD_row_major;
9721 };
9722 }
9723
9724 /* Extract all information from a DW_TAG_set_type DIE and put it in
9725 the DIE's type field. */
9726
9727 static struct type *
9728 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
9729 {
9730 struct type *domain_type, *set_type;
9731 struct attribute *attr;
9732
9733 domain_type = die_type (die, cu);
9734
9735 /* The die_type call above may have already set the type for this DIE. */
9736 set_type = get_die_type (die, cu);
9737 if (set_type)
9738 return set_type;
9739
9740 set_type = create_set_type (NULL, domain_type);
9741
9742 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
9743 if (attr)
9744 TYPE_LENGTH (set_type) = DW_UNSND (attr);
9745
9746 return set_die_type (die, set_type, cu);
9747 }
9748
9749 /* First cut: install each common block member as a global variable. */
9750
9751 static void
9752 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
9753 {
9754 struct die_info *child_die;
9755 struct attribute *attr;
9756 struct symbol *sym;
9757 CORE_ADDR base = (CORE_ADDR) 0;
9758
9759 attr = dwarf2_attr (die, DW_AT_location, cu);
9760 if (attr)
9761 {
9762 /* Support the .debug_loc offsets. */
9763 if (attr_form_is_block (attr))
9764 {
9765 base = decode_locdesc (DW_BLOCK (attr), cu);
9766 }
9767 else if (attr_form_is_section_offset (attr))
9768 {
9769 dwarf2_complex_location_expr_complaint ();
9770 }
9771 else
9772 {
9773 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
9774 "common block member");
9775 }
9776 }
9777 if (die->child != NULL)
9778 {
9779 child_die = die->child;
9780 while (child_die && child_die->tag)
9781 {
9782 LONGEST offset;
9783
9784 sym = new_symbol (child_die, NULL, cu);
9785 if (sym != NULL
9786 && handle_data_member_location (child_die, cu, &offset))
9787 {
9788 SYMBOL_VALUE_ADDRESS (sym) = base + offset;
9789 add_symbol_to_list (sym, &global_symbols);
9790 }
9791 child_die = sibling_die (child_die);
9792 }
9793 }
9794 }
9795
9796 /* Create a type for a C++ namespace. */
9797
9798 static struct type *
9799 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
9800 {
9801 struct objfile *objfile = cu->objfile;
9802 const char *previous_prefix, *name;
9803 int is_anonymous;
9804 struct type *type;
9805
9806 /* For extensions, reuse the type of the original namespace. */
9807 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
9808 {
9809 struct die_info *ext_die;
9810 struct dwarf2_cu *ext_cu = cu;
9811
9812 ext_die = dwarf2_extension (die, &ext_cu);
9813 type = read_type_die (ext_die, ext_cu);
9814
9815 /* EXT_CU may not be the same as CU.
9816 Ensure TYPE is recorded in CU's type_hash table. */
9817 return set_die_type (die, type, cu);
9818 }
9819
9820 name = namespace_name (die, &is_anonymous, cu);
9821
9822 /* Now build the name of the current namespace. */
9823
9824 previous_prefix = determine_prefix (die, cu);
9825 if (previous_prefix[0] != '\0')
9826 name = typename_concat (&objfile->objfile_obstack,
9827 previous_prefix, name, 0, cu);
9828
9829 /* Create the type. */
9830 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
9831 objfile);
9832 TYPE_NAME (type) = (char *) name;
9833 TYPE_TAG_NAME (type) = TYPE_NAME (type);
9834
9835 return set_die_type (die, type, cu);
9836 }
9837
9838 /* Read a C++ namespace. */
9839
9840 static void
9841 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
9842 {
9843 struct objfile *objfile = cu->objfile;
9844 int is_anonymous;
9845
9846 /* Add a symbol associated to this if we haven't seen the namespace
9847 before. Also, add a using directive if it's an anonymous
9848 namespace. */
9849
9850 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
9851 {
9852 struct type *type;
9853
9854 type = read_type_die (die, cu);
9855 new_symbol (die, type, cu);
9856
9857 namespace_name (die, &is_anonymous, cu);
9858 if (is_anonymous)
9859 {
9860 const char *previous_prefix = determine_prefix (die, cu);
9861
9862 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
9863 NULL, NULL, &objfile->objfile_obstack);
9864 }
9865 }
9866
9867 if (die->child != NULL)
9868 {
9869 struct die_info *child_die = die->child;
9870
9871 while (child_die && child_die->tag)
9872 {
9873 process_die (child_die, cu);
9874 child_die = sibling_die (child_die);
9875 }
9876 }
9877 }
9878
9879 /* Read a Fortran module as type. This DIE can be only a declaration used for
9880 imported module. Still we need that type as local Fortran "use ... only"
9881 declaration imports depend on the created type in determine_prefix. */
9882
9883 static struct type *
9884 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
9885 {
9886 struct objfile *objfile = cu->objfile;
9887 char *module_name;
9888 struct type *type;
9889
9890 module_name = dwarf2_name (die, cu);
9891 if (!module_name)
9892 complaint (&symfile_complaints,
9893 _("DW_TAG_module has no name, offset 0x%x"),
9894 die->offset.sect_off);
9895 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
9896
9897 /* determine_prefix uses TYPE_TAG_NAME. */
9898 TYPE_TAG_NAME (type) = TYPE_NAME (type);
9899
9900 return set_die_type (die, type, cu);
9901 }
9902
9903 /* Read a Fortran module. */
9904
9905 static void
9906 read_module (struct die_info *die, struct dwarf2_cu *cu)
9907 {
9908 struct die_info *child_die = die->child;
9909
9910 while (child_die && child_die->tag)
9911 {
9912 process_die (child_die, cu);
9913 child_die = sibling_die (child_die);
9914 }
9915 }
9916
9917 /* Return the name of the namespace represented by DIE. Set
9918 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
9919 namespace. */
9920
9921 static const char *
9922 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
9923 {
9924 struct die_info *current_die;
9925 const char *name = NULL;
9926
9927 /* Loop through the extensions until we find a name. */
9928
9929 for (current_die = die;
9930 current_die != NULL;
9931 current_die = dwarf2_extension (die, &cu))
9932 {
9933 name = dwarf2_name (current_die, cu);
9934 if (name != NULL)
9935 break;
9936 }
9937
9938 /* Is it an anonymous namespace? */
9939
9940 *is_anonymous = (name == NULL);
9941 if (*is_anonymous)
9942 name = CP_ANONYMOUS_NAMESPACE_STR;
9943
9944 return name;
9945 }
9946
9947 /* Extract all information from a DW_TAG_pointer_type DIE and add to
9948 the user defined type vector. */
9949
9950 static struct type *
9951 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
9952 {
9953 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
9954 struct comp_unit_head *cu_header = &cu->header;
9955 struct type *type;
9956 struct attribute *attr_byte_size;
9957 struct attribute *attr_address_class;
9958 int byte_size, addr_class;
9959 struct type *target_type;
9960
9961 target_type = die_type (die, cu);
9962
9963 /* The die_type call above may have already set the type for this DIE. */
9964 type = get_die_type (die, cu);
9965 if (type)
9966 return type;
9967
9968 type = lookup_pointer_type (target_type);
9969
9970 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
9971 if (attr_byte_size)
9972 byte_size = DW_UNSND (attr_byte_size);
9973 else
9974 byte_size = cu_header->addr_size;
9975
9976 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
9977 if (attr_address_class)
9978 addr_class = DW_UNSND (attr_address_class);
9979 else
9980 addr_class = DW_ADDR_none;
9981
9982 /* If the pointer size or address class is different than the
9983 default, create a type variant marked as such and set the
9984 length accordingly. */
9985 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
9986 {
9987 if (gdbarch_address_class_type_flags_p (gdbarch))
9988 {
9989 int type_flags;
9990
9991 type_flags = gdbarch_address_class_type_flags
9992 (gdbarch, byte_size, addr_class);
9993 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
9994 == 0);
9995 type = make_type_with_address_space (type, type_flags);
9996 }
9997 else if (TYPE_LENGTH (type) != byte_size)
9998 {
9999 complaint (&symfile_complaints,
10000 _("invalid pointer size %d"), byte_size);
10001 }
10002 else
10003 {
10004 /* Should we also complain about unhandled address classes? */
10005 }
10006 }
10007
10008 TYPE_LENGTH (type) = byte_size;
10009 return set_die_type (die, type, cu);
10010 }
10011
10012 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
10013 the user defined type vector. */
10014
10015 static struct type *
10016 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
10017 {
10018 struct type *type;
10019 struct type *to_type;
10020 struct type *domain;
10021
10022 to_type = die_type (die, cu);
10023 domain = die_containing_type (die, cu);
10024
10025 /* The calls above may have already set the type for this DIE. */
10026 type = get_die_type (die, cu);
10027 if (type)
10028 return type;
10029
10030 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
10031 type = lookup_methodptr_type (to_type);
10032 else
10033 type = lookup_memberptr_type (to_type, domain);
10034
10035 return set_die_type (die, type, cu);
10036 }
10037
10038 /* Extract all information from a DW_TAG_reference_type DIE and add to
10039 the user defined type vector. */
10040
10041 static struct type *
10042 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
10043 {
10044 struct comp_unit_head *cu_header = &cu->header;
10045 struct type *type, *target_type;
10046 struct attribute *attr;
10047
10048 target_type = die_type (die, cu);
10049
10050 /* The die_type call above may have already set the type for this DIE. */
10051 type = get_die_type (die, cu);
10052 if (type)
10053 return type;
10054
10055 type = lookup_reference_type (target_type);
10056 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
10057 if (attr)
10058 {
10059 TYPE_LENGTH (type) = DW_UNSND (attr);
10060 }
10061 else
10062 {
10063 TYPE_LENGTH (type) = cu_header->addr_size;
10064 }
10065 return set_die_type (die, type, cu);
10066 }
10067
10068 static struct type *
10069 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
10070 {
10071 struct type *base_type, *cv_type;
10072
10073 base_type = die_type (die, cu);
10074
10075 /* The die_type call above may have already set the type for this DIE. */
10076 cv_type = get_die_type (die, cu);
10077 if (cv_type)
10078 return cv_type;
10079
10080 /* In case the const qualifier is applied to an array type, the element type
10081 is so qualified, not the array type (section 6.7.3 of C99). */
10082 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
10083 {
10084 struct type *el_type, *inner_array;
10085
10086 base_type = copy_type (base_type);
10087 inner_array = base_type;
10088
10089 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
10090 {
10091 TYPE_TARGET_TYPE (inner_array) =
10092 copy_type (TYPE_TARGET_TYPE (inner_array));
10093 inner_array = TYPE_TARGET_TYPE (inner_array);
10094 }
10095
10096 el_type = TYPE_TARGET_TYPE (inner_array);
10097 TYPE_TARGET_TYPE (inner_array) =
10098 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
10099
10100 return set_die_type (die, base_type, cu);
10101 }
10102
10103 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
10104 return set_die_type (die, cv_type, cu);
10105 }
10106
10107 static struct type *
10108 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
10109 {
10110 struct type *base_type, *cv_type;
10111
10112 base_type = die_type (die, cu);
10113
10114 /* The die_type call above may have already set the type for this DIE. */
10115 cv_type = get_die_type (die, cu);
10116 if (cv_type)
10117 return cv_type;
10118
10119 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
10120 return set_die_type (die, cv_type, cu);
10121 }
10122
10123 /* Extract all information from a DW_TAG_string_type DIE and add to
10124 the user defined type vector. It isn't really a user defined type,
10125 but it behaves like one, with other DIE's using an AT_user_def_type
10126 attribute to reference it. */
10127
10128 static struct type *
10129 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
10130 {
10131 struct objfile *objfile = cu->objfile;
10132 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10133 struct type *type, *range_type, *index_type, *char_type;
10134 struct attribute *attr;
10135 unsigned int length;
10136
10137 attr = dwarf2_attr (die, DW_AT_string_length, cu);
10138 if (attr)
10139 {
10140 length = DW_UNSND (attr);
10141 }
10142 else
10143 {
10144 /* Check for the DW_AT_byte_size attribute. */
10145 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
10146 if (attr)
10147 {
10148 length = DW_UNSND (attr);
10149 }
10150 else
10151 {
10152 length = 1;
10153 }
10154 }
10155
10156 index_type = objfile_type (objfile)->builtin_int;
10157 range_type = create_range_type (NULL, index_type, 1, length);
10158 char_type = language_string_char_type (cu->language_defn, gdbarch);
10159 type = create_string_type (NULL, char_type, range_type);
10160
10161 return set_die_type (die, type, cu);
10162 }
10163
10164 /* Handle DIES due to C code like:
10165
10166 struct foo
10167 {
10168 int (*funcp)(int a, long l);
10169 int b;
10170 };
10171
10172 ('funcp' generates a DW_TAG_subroutine_type DIE). */
10173
10174 static struct type *
10175 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
10176 {
10177 struct objfile *objfile = cu->objfile;
10178 struct type *type; /* Type that this function returns. */
10179 struct type *ftype; /* Function that returns above type. */
10180 struct attribute *attr;
10181
10182 type = die_type (die, cu);
10183
10184 /* The die_type call above may have already set the type for this DIE. */
10185 ftype = get_die_type (die, cu);
10186 if (ftype)
10187 return ftype;
10188
10189 ftype = lookup_function_type (type);
10190
10191 /* All functions in C++, Pascal and Java have prototypes. */
10192 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
10193 if ((attr && (DW_UNSND (attr) != 0))
10194 || cu->language == language_cplus
10195 || cu->language == language_java
10196 || cu->language == language_pascal)
10197 TYPE_PROTOTYPED (ftype) = 1;
10198 else if (producer_is_realview (cu->producer))
10199 /* RealView does not emit DW_AT_prototyped. We can not
10200 distinguish prototyped and unprototyped functions; default to
10201 prototyped, since that is more common in modern code (and
10202 RealView warns about unprototyped functions). */
10203 TYPE_PROTOTYPED (ftype) = 1;
10204
10205 /* Store the calling convention in the type if it's available in
10206 the subroutine die. Otherwise set the calling convention to
10207 the default value DW_CC_normal. */
10208 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
10209 if (attr)
10210 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
10211 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
10212 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
10213 else
10214 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
10215
10216 /* We need to add the subroutine type to the die immediately so
10217 we don't infinitely recurse when dealing with parameters
10218 declared as the same subroutine type. */
10219 set_die_type (die, ftype, cu);
10220
10221 if (die->child != NULL)
10222 {
10223 struct type *void_type = objfile_type (objfile)->builtin_void;
10224 struct die_info *child_die;
10225 int nparams, iparams;
10226
10227 /* Count the number of parameters.
10228 FIXME: GDB currently ignores vararg functions, but knows about
10229 vararg member functions. */
10230 nparams = 0;
10231 child_die = die->child;
10232 while (child_die && child_die->tag)
10233 {
10234 if (child_die->tag == DW_TAG_formal_parameter)
10235 nparams++;
10236 else if (child_die->tag == DW_TAG_unspecified_parameters)
10237 TYPE_VARARGS (ftype) = 1;
10238 child_die = sibling_die (child_die);
10239 }
10240
10241 /* Allocate storage for parameters and fill them in. */
10242 TYPE_NFIELDS (ftype) = nparams;
10243 TYPE_FIELDS (ftype) = (struct field *)
10244 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
10245
10246 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
10247 even if we error out during the parameters reading below. */
10248 for (iparams = 0; iparams < nparams; iparams++)
10249 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
10250
10251 iparams = 0;
10252 child_die = die->child;
10253 while (child_die && child_die->tag)
10254 {
10255 if (child_die->tag == DW_TAG_formal_parameter)
10256 {
10257 struct type *arg_type;
10258
10259 /* DWARF version 2 has no clean way to discern C++
10260 static and non-static member functions. G++ helps
10261 GDB by marking the first parameter for non-static
10262 member functions (which is the this pointer) as
10263 artificial. We pass this information to
10264 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
10265
10266 DWARF version 3 added DW_AT_object_pointer, which GCC
10267 4.5 does not yet generate. */
10268 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
10269 if (attr)
10270 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
10271 else
10272 {
10273 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
10274
10275 /* GCC/43521: In java, the formal parameter
10276 "this" is sometimes not marked with DW_AT_artificial. */
10277 if (cu->language == language_java)
10278 {
10279 const char *name = dwarf2_name (child_die, cu);
10280
10281 if (name && !strcmp (name, "this"))
10282 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
10283 }
10284 }
10285 arg_type = die_type (child_die, cu);
10286
10287 /* RealView does not mark THIS as const, which the testsuite
10288 expects. GCC marks THIS as const in method definitions,
10289 but not in the class specifications (GCC PR 43053). */
10290 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
10291 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
10292 {
10293 int is_this = 0;
10294 struct dwarf2_cu *arg_cu = cu;
10295 const char *name = dwarf2_name (child_die, cu);
10296
10297 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
10298 if (attr)
10299 {
10300 /* If the compiler emits this, use it. */
10301 if (follow_die_ref (die, attr, &arg_cu) == child_die)
10302 is_this = 1;
10303 }
10304 else if (name && strcmp (name, "this") == 0)
10305 /* Function definitions will have the argument names. */
10306 is_this = 1;
10307 else if (name == NULL && iparams == 0)
10308 /* Declarations may not have the names, so like
10309 elsewhere in GDB, assume an artificial first
10310 argument is "this". */
10311 is_this = 1;
10312
10313 if (is_this)
10314 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
10315 arg_type, 0);
10316 }
10317
10318 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
10319 iparams++;
10320 }
10321 child_die = sibling_die (child_die);
10322 }
10323 }
10324
10325 return ftype;
10326 }
10327
10328 static struct type *
10329 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
10330 {
10331 struct objfile *objfile = cu->objfile;
10332 const char *name = NULL;
10333 struct type *this_type, *target_type;
10334
10335 name = dwarf2_full_name (NULL, die, cu);
10336 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
10337 TYPE_FLAG_TARGET_STUB, NULL, objfile);
10338 TYPE_NAME (this_type) = (char *) name;
10339 set_die_type (die, this_type, cu);
10340 target_type = die_type (die, cu);
10341 if (target_type != this_type)
10342 TYPE_TARGET_TYPE (this_type) = target_type;
10343 else
10344 {
10345 /* Self-referential typedefs are, it seems, not allowed by the DWARF
10346 spec and cause infinite loops in GDB. */
10347 complaint (&symfile_complaints,
10348 _("Self-referential DW_TAG_typedef "
10349 "- DIE at 0x%x [in module %s]"),
10350 die->offset.sect_off, objfile->name);
10351 TYPE_TARGET_TYPE (this_type) = NULL;
10352 }
10353 return this_type;
10354 }
10355
10356 /* Find a representation of a given base type and install
10357 it in the TYPE field of the die. */
10358
10359 static struct type *
10360 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
10361 {
10362 struct objfile *objfile = cu->objfile;
10363 struct type *type;
10364 struct attribute *attr;
10365 int encoding = 0, size = 0;
10366 char *name;
10367 enum type_code code = TYPE_CODE_INT;
10368 int type_flags = 0;
10369 struct type *target_type = NULL;
10370
10371 attr = dwarf2_attr (die, DW_AT_encoding, cu);
10372 if (attr)
10373 {
10374 encoding = DW_UNSND (attr);
10375 }
10376 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
10377 if (attr)
10378 {
10379 size = DW_UNSND (attr);
10380 }
10381 name = dwarf2_name (die, cu);
10382 if (!name)
10383 {
10384 complaint (&symfile_complaints,
10385 _("DW_AT_name missing from DW_TAG_base_type"));
10386 }
10387
10388 switch (encoding)
10389 {
10390 case DW_ATE_address:
10391 /* Turn DW_ATE_address into a void * pointer. */
10392 code = TYPE_CODE_PTR;
10393 type_flags |= TYPE_FLAG_UNSIGNED;
10394 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
10395 break;
10396 case DW_ATE_boolean:
10397 code = TYPE_CODE_BOOL;
10398 type_flags |= TYPE_FLAG_UNSIGNED;
10399 break;
10400 case DW_ATE_complex_float:
10401 code = TYPE_CODE_COMPLEX;
10402 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
10403 break;
10404 case DW_ATE_decimal_float:
10405 code = TYPE_CODE_DECFLOAT;
10406 break;
10407 case DW_ATE_float:
10408 code = TYPE_CODE_FLT;
10409 break;
10410 case DW_ATE_signed:
10411 break;
10412 case DW_ATE_unsigned:
10413 type_flags |= TYPE_FLAG_UNSIGNED;
10414 if (cu->language == language_fortran
10415 && name
10416 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
10417 code = TYPE_CODE_CHAR;
10418 break;
10419 case DW_ATE_signed_char:
10420 if (cu->language == language_ada || cu->language == language_m2
10421 || cu->language == language_pascal
10422 || cu->language == language_fortran)
10423 code = TYPE_CODE_CHAR;
10424 break;
10425 case DW_ATE_unsigned_char:
10426 if (cu->language == language_ada || cu->language == language_m2
10427 || cu->language == language_pascal
10428 || cu->language == language_fortran)
10429 code = TYPE_CODE_CHAR;
10430 type_flags |= TYPE_FLAG_UNSIGNED;
10431 break;
10432 case DW_ATE_UTF:
10433 /* We just treat this as an integer and then recognize the
10434 type by name elsewhere. */
10435 break;
10436
10437 default:
10438 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
10439 dwarf_type_encoding_name (encoding));
10440 break;
10441 }
10442
10443 type = init_type (code, size, type_flags, NULL, objfile);
10444 TYPE_NAME (type) = name;
10445 TYPE_TARGET_TYPE (type) = target_type;
10446
10447 if (name && strcmp (name, "char") == 0)
10448 TYPE_NOSIGN (type) = 1;
10449
10450 return set_die_type (die, type, cu);
10451 }
10452
10453 /* Read the given DW_AT_subrange DIE. */
10454
10455 static struct type *
10456 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
10457 {
10458 struct type *base_type;
10459 struct type *range_type;
10460 struct attribute *attr;
10461 LONGEST low, high;
10462 int low_default_is_valid;
10463 char *name;
10464 LONGEST negative_mask;
10465
10466 base_type = die_type (die, cu);
10467 /* Preserve BASE_TYPE's original type, just set its LENGTH. */
10468 check_typedef (base_type);
10469
10470 /* The die_type call above may have already set the type for this DIE. */
10471 range_type = get_die_type (die, cu);
10472 if (range_type)
10473 return range_type;
10474
10475 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
10476 omitting DW_AT_lower_bound. */
10477 switch (cu->language)
10478 {
10479 case language_c:
10480 case language_cplus:
10481 low = 0;
10482 low_default_is_valid = 1;
10483 break;
10484 case language_fortran:
10485 low = 1;
10486 low_default_is_valid = 1;
10487 break;
10488 case language_d:
10489 case language_java:
10490 case language_objc:
10491 low = 0;
10492 low_default_is_valid = (cu->header.version >= 4);
10493 break;
10494 case language_ada:
10495 case language_m2:
10496 case language_pascal:
10497 low = 1;
10498 low_default_is_valid = (cu->header.version >= 4);
10499 break;
10500 default:
10501 low = 0;
10502 low_default_is_valid = 0;
10503 break;
10504 }
10505
10506 /* FIXME: For variable sized arrays either of these could be
10507 a variable rather than a constant value. We'll allow it,
10508 but we don't know how to handle it. */
10509 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
10510 if (attr)
10511 low = dwarf2_get_attr_constant_value (attr, low);
10512 else if (!low_default_is_valid)
10513 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
10514 "- DIE at 0x%x [in module %s]"),
10515 die->offset.sect_off, cu->objfile->name);
10516
10517 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
10518 if (attr)
10519 {
10520 if (attr_form_is_block (attr) || is_ref_attr (attr))
10521 {
10522 /* GCC encodes arrays with unspecified or dynamic length
10523 with a DW_FORM_block1 attribute or a reference attribute.
10524 FIXME: GDB does not yet know how to handle dynamic
10525 arrays properly, treat them as arrays with unspecified
10526 length for now.
10527
10528 FIXME: jimb/2003-09-22: GDB does not really know
10529 how to handle arrays of unspecified length
10530 either; we just represent them as zero-length
10531 arrays. Choose an appropriate upper bound given
10532 the lower bound we've computed above. */
10533 high = low - 1;
10534 }
10535 else
10536 high = dwarf2_get_attr_constant_value (attr, 1);
10537 }
10538 else
10539 {
10540 attr = dwarf2_attr (die, DW_AT_count, cu);
10541 if (attr)
10542 {
10543 int count = dwarf2_get_attr_constant_value (attr, 1);
10544 high = low + count - 1;
10545 }
10546 else
10547 {
10548 /* Unspecified array length. */
10549 high = low - 1;
10550 }
10551 }
10552
10553 /* Dwarf-2 specifications explicitly allows to create subrange types
10554 without specifying a base type.
10555 In that case, the base type must be set to the type of
10556 the lower bound, upper bound or count, in that order, if any of these
10557 three attributes references an object that has a type.
10558 If no base type is found, the Dwarf-2 specifications say that
10559 a signed integer type of size equal to the size of an address should
10560 be used.
10561 For the following C code: `extern char gdb_int [];'
10562 GCC produces an empty range DIE.
10563 FIXME: muller/2010-05-28: Possible references to object for low bound,
10564 high bound or count are not yet handled by this code. */
10565 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
10566 {
10567 struct objfile *objfile = cu->objfile;
10568 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10569 int addr_size = gdbarch_addr_bit (gdbarch) /8;
10570 struct type *int_type = objfile_type (objfile)->builtin_int;
10571
10572 /* Test "int", "long int", and "long long int" objfile types,
10573 and select the first one having a size above or equal to the
10574 architecture address size. */
10575 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
10576 base_type = int_type;
10577 else
10578 {
10579 int_type = objfile_type (objfile)->builtin_long;
10580 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
10581 base_type = int_type;
10582 else
10583 {
10584 int_type = objfile_type (objfile)->builtin_long_long;
10585 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
10586 base_type = int_type;
10587 }
10588 }
10589 }
10590
10591 negative_mask =
10592 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
10593 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
10594 low |= negative_mask;
10595 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
10596 high |= negative_mask;
10597
10598 range_type = create_range_type (NULL, base_type, low, high);
10599
10600 /* Mark arrays with dynamic length at least as an array of unspecified
10601 length. GDB could check the boundary but before it gets implemented at
10602 least allow accessing the array elements. */
10603 if (attr && attr_form_is_block (attr))
10604 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
10605
10606 /* Ada expects an empty array on no boundary attributes. */
10607 if (attr == NULL && cu->language != language_ada)
10608 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
10609
10610 name = dwarf2_name (die, cu);
10611 if (name)
10612 TYPE_NAME (range_type) = name;
10613
10614 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
10615 if (attr)
10616 TYPE_LENGTH (range_type) = DW_UNSND (attr);
10617
10618 set_die_type (die, range_type, cu);
10619
10620 /* set_die_type should be already done. */
10621 set_descriptive_type (range_type, die, cu);
10622
10623 return range_type;
10624 }
10625
10626 static struct type *
10627 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
10628 {
10629 struct type *type;
10630
10631 /* For now, we only support the C meaning of an unspecified type: void. */
10632
10633 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
10634 TYPE_NAME (type) = dwarf2_name (die, cu);
10635
10636 return set_die_type (die, type, cu);
10637 }
10638
10639 /* Read a single die and all its descendents. Set the die's sibling
10640 field to NULL; set other fields in the die correctly, and set all
10641 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
10642 location of the info_ptr after reading all of those dies. PARENT
10643 is the parent of the die in question. */
10644
10645 static struct die_info *
10646 read_die_and_children (const struct die_reader_specs *reader,
10647 gdb_byte *info_ptr,
10648 gdb_byte **new_info_ptr,
10649 struct die_info *parent)
10650 {
10651 struct die_info *die;
10652 gdb_byte *cur_ptr;
10653 int has_children;
10654
10655 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
10656 if (die == NULL)
10657 {
10658 *new_info_ptr = cur_ptr;
10659 return NULL;
10660 }
10661 store_in_ref_table (die, reader->cu);
10662
10663 if (has_children)
10664 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
10665 else
10666 {
10667 die->child = NULL;
10668 *new_info_ptr = cur_ptr;
10669 }
10670
10671 die->sibling = NULL;
10672 die->parent = parent;
10673 return die;
10674 }
10675
10676 /* Read a die, all of its descendents, and all of its siblings; set
10677 all of the fields of all of the dies correctly. Arguments are as
10678 in read_die_and_children. */
10679
10680 static struct die_info *
10681 read_die_and_siblings (const struct die_reader_specs *reader,
10682 gdb_byte *info_ptr,
10683 gdb_byte **new_info_ptr,
10684 struct die_info *parent)
10685 {
10686 struct die_info *first_die, *last_sibling;
10687 gdb_byte *cur_ptr;
10688
10689 cur_ptr = info_ptr;
10690 first_die = last_sibling = NULL;
10691
10692 while (1)
10693 {
10694 struct die_info *die
10695 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
10696
10697 if (die == NULL)
10698 {
10699 *new_info_ptr = cur_ptr;
10700 return first_die;
10701 }
10702
10703 if (!first_die)
10704 first_die = die;
10705 else
10706 last_sibling->sibling = die;
10707
10708 last_sibling = die;
10709 }
10710 }
10711
10712 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
10713 attributes.
10714 The caller is responsible for filling in the extra attributes
10715 and updating (*DIEP)->num_attrs.
10716 Set DIEP to point to a newly allocated die with its information,
10717 except for its child, sibling, and parent fields.
10718 Set HAS_CHILDREN to tell whether the die has children or not. */
10719
10720 static gdb_byte *
10721 read_full_die_1 (const struct die_reader_specs *reader,
10722 struct die_info **diep, gdb_byte *info_ptr,
10723 int *has_children, int num_extra_attrs)
10724 {
10725 unsigned int abbrev_number, bytes_read, i;
10726 sect_offset offset;
10727 struct abbrev_info *abbrev;
10728 struct die_info *die;
10729 struct dwarf2_cu *cu = reader->cu;
10730 bfd *abfd = reader->abfd;
10731
10732 offset.sect_off = info_ptr - reader->buffer;
10733 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
10734 info_ptr += bytes_read;
10735 if (!abbrev_number)
10736 {
10737 *diep = NULL;
10738 *has_children = 0;
10739 return info_ptr;
10740 }
10741
10742 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
10743 if (!abbrev)
10744 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
10745 abbrev_number,
10746 bfd_get_filename (abfd));
10747
10748 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
10749 die->offset = offset;
10750 die->tag = abbrev->tag;
10751 die->abbrev = abbrev_number;
10752
10753 /* Make the result usable.
10754 The caller needs to update num_attrs after adding the extra
10755 attributes. */
10756 die->num_attrs = abbrev->num_attrs;
10757
10758 for (i = 0; i < abbrev->num_attrs; ++i)
10759 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
10760 info_ptr);
10761
10762 *diep = die;
10763 *has_children = abbrev->has_children;
10764 return info_ptr;
10765 }
10766
10767 /* Read a die and all its attributes.
10768 Set DIEP to point to a newly allocated die with its information,
10769 except for its child, sibling, and parent fields.
10770 Set HAS_CHILDREN to tell whether the die has children or not. */
10771
10772 static gdb_byte *
10773 read_full_die (const struct die_reader_specs *reader,
10774 struct die_info **diep, gdb_byte *info_ptr,
10775 int *has_children)
10776 {
10777 return read_full_die_1 (reader, diep, info_ptr, has_children, 0);
10778 }
10779
10780 /* In DWARF version 2, the description of the debugging information is
10781 stored in a separate .debug_abbrev section. Before we read any
10782 dies from a section we read in all abbreviations and install them
10783 in a hash table. This function also sets flags in CU describing
10784 the data found in the abbrev table. */
10785
10786 static void
10787 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
10788 struct dwarf2_section_info *abbrev_section)
10789
10790 {
10791 bfd *abfd = abbrev_section->asection->owner;
10792 struct comp_unit_head *cu_header = &cu->header;
10793 gdb_byte *abbrev_ptr;
10794 struct abbrev_info *cur_abbrev;
10795 unsigned int abbrev_number, bytes_read, abbrev_name;
10796 unsigned int abbrev_form, hash_number;
10797 struct attr_abbrev *cur_attrs;
10798 unsigned int allocated_attrs;
10799
10800 /* Initialize dwarf2 abbrevs. */
10801 obstack_init (&cu->abbrev_obstack);
10802 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
10803 (ABBREV_HASH_SIZE
10804 * sizeof (struct abbrev_info *)));
10805 memset (cu->dwarf2_abbrevs, 0,
10806 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
10807
10808 dwarf2_read_section (cu->objfile, abbrev_section);
10809 abbrev_ptr = abbrev_section->buffer + cu_header->abbrev_offset.sect_off;
10810 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
10811 abbrev_ptr += bytes_read;
10812
10813 allocated_attrs = ATTR_ALLOC_CHUNK;
10814 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
10815
10816 /* Loop until we reach an abbrev number of 0. */
10817 while (abbrev_number)
10818 {
10819 cur_abbrev = dwarf_alloc_abbrev (cu);
10820
10821 /* read in abbrev header */
10822 cur_abbrev->number = abbrev_number;
10823 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
10824 abbrev_ptr += bytes_read;
10825 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
10826 abbrev_ptr += 1;
10827
10828 /* now read in declarations */
10829 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
10830 abbrev_ptr += bytes_read;
10831 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
10832 abbrev_ptr += bytes_read;
10833 while (abbrev_name)
10834 {
10835 if (cur_abbrev->num_attrs == allocated_attrs)
10836 {
10837 allocated_attrs += ATTR_ALLOC_CHUNK;
10838 cur_attrs
10839 = xrealloc (cur_attrs, (allocated_attrs
10840 * sizeof (struct attr_abbrev)));
10841 }
10842
10843 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
10844 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
10845 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
10846 abbrev_ptr += bytes_read;
10847 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
10848 abbrev_ptr += bytes_read;
10849 }
10850
10851 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
10852 (cur_abbrev->num_attrs
10853 * sizeof (struct attr_abbrev)));
10854 memcpy (cur_abbrev->attrs, cur_attrs,
10855 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
10856
10857 hash_number = abbrev_number % ABBREV_HASH_SIZE;
10858 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
10859 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
10860
10861 /* Get next abbreviation.
10862 Under Irix6 the abbreviations for a compilation unit are not
10863 always properly terminated with an abbrev number of 0.
10864 Exit loop if we encounter an abbreviation which we have
10865 already read (which means we are about to read the abbreviations
10866 for the next compile unit) or if the end of the abbreviation
10867 table is reached. */
10868 if ((unsigned int) (abbrev_ptr - abbrev_section->buffer)
10869 >= abbrev_section->size)
10870 break;
10871 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
10872 abbrev_ptr += bytes_read;
10873 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
10874 break;
10875 }
10876
10877 xfree (cur_attrs);
10878 }
10879
10880 /* Release the memory used by the abbrev table for a compilation unit. */
10881
10882 static void
10883 dwarf2_free_abbrev_table (void *ptr_to_cu)
10884 {
10885 struct dwarf2_cu *cu = ptr_to_cu;
10886
10887 obstack_free (&cu->abbrev_obstack, NULL);
10888 cu->dwarf2_abbrevs = NULL;
10889 }
10890
10891 /* Lookup an abbrev_info structure in the abbrev hash table. */
10892
10893 static struct abbrev_info *
10894 dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
10895 {
10896 unsigned int hash_number;
10897 struct abbrev_info *abbrev;
10898
10899 hash_number = number % ABBREV_HASH_SIZE;
10900 abbrev = cu->dwarf2_abbrevs[hash_number];
10901
10902 while (abbrev)
10903 {
10904 if (abbrev->number == number)
10905 return abbrev;
10906 else
10907 abbrev = abbrev->next;
10908 }
10909 return NULL;
10910 }
10911
10912 /* Returns nonzero if TAG represents a type that we might generate a partial
10913 symbol for. */
10914
10915 static int
10916 is_type_tag_for_partial (int tag)
10917 {
10918 switch (tag)
10919 {
10920 #if 0
10921 /* Some types that would be reasonable to generate partial symbols for,
10922 that we don't at present. */
10923 case DW_TAG_array_type:
10924 case DW_TAG_file_type:
10925 case DW_TAG_ptr_to_member_type:
10926 case DW_TAG_set_type:
10927 case DW_TAG_string_type:
10928 case DW_TAG_subroutine_type:
10929 #endif
10930 case DW_TAG_base_type:
10931 case DW_TAG_class_type:
10932 case DW_TAG_interface_type:
10933 case DW_TAG_enumeration_type:
10934 case DW_TAG_structure_type:
10935 case DW_TAG_subrange_type:
10936 case DW_TAG_typedef:
10937 case DW_TAG_union_type:
10938 return 1;
10939 default:
10940 return 0;
10941 }
10942 }
10943
10944 /* Load all DIEs that are interesting for partial symbols into memory. */
10945
10946 static struct partial_die_info *
10947 load_partial_dies (const struct die_reader_specs *reader,
10948 gdb_byte *info_ptr, int building_psymtab)
10949 {
10950 struct dwarf2_cu *cu = reader->cu;
10951 struct objfile *objfile = cu->objfile;
10952 struct partial_die_info *part_die;
10953 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
10954 struct abbrev_info *abbrev;
10955 unsigned int bytes_read;
10956 unsigned int load_all = 0;
10957 int nesting_level = 1;
10958
10959 parent_die = NULL;
10960 last_die = NULL;
10961
10962 gdb_assert (cu->per_cu != NULL);
10963 if (cu->per_cu->load_all_dies)
10964 load_all = 1;
10965
10966 cu->partial_dies
10967 = htab_create_alloc_ex (cu->header.length / 12,
10968 partial_die_hash,
10969 partial_die_eq,
10970 NULL,
10971 &cu->comp_unit_obstack,
10972 hashtab_obstack_allocate,
10973 dummy_obstack_deallocate);
10974
10975 part_die = obstack_alloc (&cu->comp_unit_obstack,
10976 sizeof (struct partial_die_info));
10977
10978 while (1)
10979 {
10980 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
10981
10982 /* A NULL abbrev means the end of a series of children. */
10983 if (abbrev == NULL)
10984 {
10985 if (--nesting_level == 0)
10986 {
10987 /* PART_DIE was probably the last thing allocated on the
10988 comp_unit_obstack, so we could call obstack_free
10989 here. We don't do that because the waste is small,
10990 and will be cleaned up when we're done with this
10991 compilation unit. This way, we're also more robust
10992 against other users of the comp_unit_obstack. */
10993 return first_die;
10994 }
10995 info_ptr += bytes_read;
10996 last_die = parent_die;
10997 parent_die = parent_die->die_parent;
10998 continue;
10999 }
11000
11001 /* Check for template arguments. We never save these; if
11002 they're seen, we just mark the parent, and go on our way. */
11003 if (parent_die != NULL
11004 && cu->language == language_cplus
11005 && (abbrev->tag == DW_TAG_template_type_param
11006 || abbrev->tag == DW_TAG_template_value_param))
11007 {
11008 parent_die->has_template_arguments = 1;
11009
11010 if (!load_all)
11011 {
11012 /* We don't need a partial DIE for the template argument. */
11013 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
11014 continue;
11015 }
11016 }
11017
11018 /* We only recurse into c++ subprograms looking for template arguments.
11019 Skip their other children. */
11020 if (!load_all
11021 && cu->language == language_cplus
11022 && parent_die != NULL
11023 && parent_die->tag == DW_TAG_subprogram)
11024 {
11025 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
11026 continue;
11027 }
11028
11029 /* Check whether this DIE is interesting enough to save. Normally
11030 we would not be interested in members here, but there may be
11031 later variables referencing them via DW_AT_specification (for
11032 static members). */
11033 if (!load_all
11034 && !is_type_tag_for_partial (abbrev->tag)
11035 && abbrev->tag != DW_TAG_constant
11036 && abbrev->tag != DW_TAG_enumerator
11037 && abbrev->tag != DW_TAG_subprogram
11038 && abbrev->tag != DW_TAG_lexical_block
11039 && abbrev->tag != DW_TAG_variable
11040 && abbrev->tag != DW_TAG_namespace
11041 && abbrev->tag != DW_TAG_module
11042 && abbrev->tag != DW_TAG_member
11043 && abbrev->tag != DW_TAG_imported_unit)
11044 {
11045 /* Otherwise we skip to the next sibling, if any. */
11046 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
11047 continue;
11048 }
11049
11050 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
11051 info_ptr);
11052
11053 /* This two-pass algorithm for processing partial symbols has a
11054 high cost in cache pressure. Thus, handle some simple cases
11055 here which cover the majority of C partial symbols. DIEs
11056 which neither have specification tags in them, nor could have
11057 specification tags elsewhere pointing at them, can simply be
11058 processed and discarded.
11059
11060 This segment is also optional; scan_partial_symbols and
11061 add_partial_symbol will handle these DIEs if we chain
11062 them in normally. When compilers which do not emit large
11063 quantities of duplicate debug information are more common,
11064 this code can probably be removed. */
11065
11066 /* Any complete simple types at the top level (pretty much all
11067 of them, for a language without namespaces), can be processed
11068 directly. */
11069 if (parent_die == NULL
11070 && part_die->has_specification == 0
11071 && part_die->is_declaration == 0
11072 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
11073 || part_die->tag == DW_TAG_base_type
11074 || part_die->tag == DW_TAG_subrange_type))
11075 {
11076 if (building_psymtab && part_die->name != NULL)
11077 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
11078 VAR_DOMAIN, LOC_TYPEDEF,
11079 &objfile->static_psymbols,
11080 0, (CORE_ADDR) 0, cu->language, objfile);
11081 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
11082 continue;
11083 }
11084
11085 /* The exception for DW_TAG_typedef with has_children above is
11086 a workaround of GCC PR debug/47510. In the case of this complaint
11087 type_name_no_tag_or_error will error on such types later.
11088
11089 GDB skipped children of DW_TAG_typedef by the shortcut above and then
11090 it could not find the child DIEs referenced later, this is checked
11091 above. In correct DWARF DW_TAG_typedef should have no children. */
11092
11093 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
11094 complaint (&symfile_complaints,
11095 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
11096 "- DIE at 0x%x [in module %s]"),
11097 part_die->offset.sect_off, objfile->name);
11098
11099 /* If we're at the second level, and we're an enumerator, and
11100 our parent has no specification (meaning possibly lives in a
11101 namespace elsewhere), then we can add the partial symbol now
11102 instead of queueing it. */
11103 if (part_die->tag == DW_TAG_enumerator
11104 && parent_die != NULL
11105 && parent_die->die_parent == NULL
11106 && parent_die->tag == DW_TAG_enumeration_type
11107 && parent_die->has_specification == 0)
11108 {
11109 if (part_die->name == NULL)
11110 complaint (&symfile_complaints,
11111 _("malformed enumerator DIE ignored"));
11112 else if (building_psymtab)
11113 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
11114 VAR_DOMAIN, LOC_CONST,
11115 (cu->language == language_cplus
11116 || cu->language == language_java)
11117 ? &objfile->global_psymbols
11118 : &objfile->static_psymbols,
11119 0, (CORE_ADDR) 0, cu->language, objfile);
11120
11121 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
11122 continue;
11123 }
11124
11125 /* We'll save this DIE so link it in. */
11126 part_die->die_parent = parent_die;
11127 part_die->die_sibling = NULL;
11128 part_die->die_child = NULL;
11129
11130 if (last_die && last_die == parent_die)
11131 last_die->die_child = part_die;
11132 else if (last_die)
11133 last_die->die_sibling = part_die;
11134
11135 last_die = part_die;
11136
11137 if (first_die == NULL)
11138 first_die = part_die;
11139
11140 /* Maybe add the DIE to the hash table. Not all DIEs that we
11141 find interesting need to be in the hash table, because we
11142 also have the parent/sibling/child chains; only those that we
11143 might refer to by offset later during partial symbol reading.
11144
11145 For now this means things that might have be the target of a
11146 DW_AT_specification, DW_AT_abstract_origin, or
11147 DW_AT_extension. DW_AT_extension will refer only to
11148 namespaces; DW_AT_abstract_origin refers to functions (and
11149 many things under the function DIE, but we do not recurse
11150 into function DIEs during partial symbol reading) and
11151 possibly variables as well; DW_AT_specification refers to
11152 declarations. Declarations ought to have the DW_AT_declaration
11153 flag. It happens that GCC forgets to put it in sometimes, but
11154 only for functions, not for types.
11155
11156 Adding more things than necessary to the hash table is harmless
11157 except for the performance cost. Adding too few will result in
11158 wasted time in find_partial_die, when we reread the compilation
11159 unit with load_all_dies set. */
11160
11161 if (load_all
11162 || abbrev->tag == DW_TAG_constant
11163 || abbrev->tag == DW_TAG_subprogram
11164 || abbrev->tag == DW_TAG_variable
11165 || abbrev->tag == DW_TAG_namespace
11166 || part_die->is_declaration)
11167 {
11168 void **slot;
11169
11170 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
11171 part_die->offset.sect_off, INSERT);
11172 *slot = part_die;
11173 }
11174
11175 part_die = obstack_alloc (&cu->comp_unit_obstack,
11176 sizeof (struct partial_die_info));
11177
11178 /* For some DIEs we want to follow their children (if any). For C
11179 we have no reason to follow the children of structures; for other
11180 languages we have to, so that we can get at method physnames
11181 to infer fully qualified class names, for DW_AT_specification,
11182 and for C++ template arguments. For C++, we also look one level
11183 inside functions to find template arguments (if the name of the
11184 function does not already contain the template arguments).
11185
11186 For Ada, we need to scan the children of subprograms and lexical
11187 blocks as well because Ada allows the definition of nested
11188 entities that could be interesting for the debugger, such as
11189 nested subprograms for instance. */
11190 if (last_die->has_children
11191 && (load_all
11192 || last_die->tag == DW_TAG_namespace
11193 || last_die->tag == DW_TAG_module
11194 || last_die->tag == DW_TAG_enumeration_type
11195 || (cu->language == language_cplus
11196 && last_die->tag == DW_TAG_subprogram
11197 && (last_die->name == NULL
11198 || strchr (last_die->name, '<') == NULL))
11199 || (cu->language != language_c
11200 && (last_die->tag == DW_TAG_class_type
11201 || last_die->tag == DW_TAG_interface_type
11202 || last_die->tag == DW_TAG_structure_type
11203 || last_die->tag == DW_TAG_union_type))
11204 || (cu->language == language_ada
11205 && (last_die->tag == DW_TAG_subprogram
11206 || last_die->tag == DW_TAG_lexical_block))))
11207 {
11208 nesting_level++;
11209 parent_die = last_die;
11210 continue;
11211 }
11212
11213 /* Otherwise we skip to the next sibling, if any. */
11214 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
11215
11216 /* Back to the top, do it again. */
11217 }
11218 }
11219
11220 /* Read a minimal amount of information into the minimal die structure. */
11221
11222 static gdb_byte *
11223 read_partial_die (const struct die_reader_specs *reader,
11224 struct partial_die_info *part_die,
11225 struct abbrev_info *abbrev, unsigned int abbrev_len,
11226 gdb_byte *info_ptr)
11227 {
11228 struct dwarf2_cu *cu = reader->cu;
11229 struct objfile *objfile = cu->objfile;
11230 gdb_byte *buffer = reader->buffer;
11231 unsigned int i;
11232 struct attribute attr;
11233 int has_low_pc_attr = 0;
11234 int has_high_pc_attr = 0;
11235 int high_pc_relative = 0;
11236
11237 memset (part_die, 0, sizeof (struct partial_die_info));
11238
11239 part_die->offset.sect_off = info_ptr - buffer;
11240
11241 info_ptr += abbrev_len;
11242
11243 if (abbrev == NULL)
11244 return info_ptr;
11245
11246 part_die->tag = abbrev->tag;
11247 part_die->has_children = abbrev->has_children;
11248
11249 for (i = 0; i < abbrev->num_attrs; ++i)
11250 {
11251 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
11252
11253 /* Store the data if it is of an attribute we want to keep in a
11254 partial symbol table. */
11255 switch (attr.name)
11256 {
11257 case DW_AT_name:
11258 switch (part_die->tag)
11259 {
11260 case DW_TAG_compile_unit:
11261 case DW_TAG_partial_unit:
11262 case DW_TAG_type_unit:
11263 /* Compilation units have a DW_AT_name that is a filename, not
11264 a source language identifier. */
11265 case DW_TAG_enumeration_type:
11266 case DW_TAG_enumerator:
11267 /* These tags always have simple identifiers already; no need
11268 to canonicalize them. */
11269 part_die->name = DW_STRING (&attr);
11270 break;
11271 default:
11272 part_die->name
11273 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
11274 &objfile->objfile_obstack);
11275 break;
11276 }
11277 break;
11278 case DW_AT_linkage_name:
11279 case DW_AT_MIPS_linkage_name:
11280 /* Note that both forms of linkage name might appear. We
11281 assume they will be the same, and we only store the last
11282 one we see. */
11283 if (cu->language == language_ada)
11284 part_die->name = DW_STRING (&attr);
11285 part_die->linkage_name = DW_STRING (&attr);
11286 break;
11287 case DW_AT_low_pc:
11288 has_low_pc_attr = 1;
11289 part_die->lowpc = DW_ADDR (&attr);
11290 break;
11291 case DW_AT_high_pc:
11292 has_high_pc_attr = 1;
11293 if (attr.form == DW_FORM_addr
11294 || attr.form == DW_FORM_GNU_addr_index)
11295 part_die->highpc = DW_ADDR (&attr);
11296 else
11297 {
11298 high_pc_relative = 1;
11299 part_die->highpc = DW_UNSND (&attr);
11300 }
11301 break;
11302 case DW_AT_location:
11303 /* Support the .debug_loc offsets. */
11304 if (attr_form_is_block (&attr))
11305 {
11306 part_die->d.locdesc = DW_BLOCK (&attr);
11307 }
11308 else if (attr_form_is_section_offset (&attr))
11309 {
11310 dwarf2_complex_location_expr_complaint ();
11311 }
11312 else
11313 {
11314 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
11315 "partial symbol information");
11316 }
11317 break;
11318 case DW_AT_external:
11319 part_die->is_external = DW_UNSND (&attr);
11320 break;
11321 case DW_AT_declaration:
11322 part_die->is_declaration = DW_UNSND (&attr);
11323 break;
11324 case DW_AT_type:
11325 part_die->has_type = 1;
11326 break;
11327 case DW_AT_abstract_origin:
11328 case DW_AT_specification:
11329 case DW_AT_extension:
11330 part_die->has_specification = 1;
11331 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
11332 break;
11333 case DW_AT_sibling:
11334 /* Ignore absolute siblings, they might point outside of
11335 the current compile unit. */
11336 if (attr.form == DW_FORM_ref_addr)
11337 complaint (&symfile_complaints,
11338 _("ignoring absolute DW_AT_sibling"));
11339 else
11340 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
11341 break;
11342 case DW_AT_byte_size:
11343 part_die->has_byte_size = 1;
11344 break;
11345 case DW_AT_calling_convention:
11346 /* DWARF doesn't provide a way to identify a program's source-level
11347 entry point. DW_AT_calling_convention attributes are only meant
11348 to describe functions' calling conventions.
11349
11350 However, because it's a necessary piece of information in
11351 Fortran, and because DW_CC_program is the only piece of debugging
11352 information whose definition refers to a 'main program' at all,
11353 several compilers have begun marking Fortran main programs with
11354 DW_CC_program --- even when those functions use the standard
11355 calling conventions.
11356
11357 So until DWARF specifies a way to provide this information and
11358 compilers pick up the new representation, we'll support this
11359 practice. */
11360 if (DW_UNSND (&attr) == DW_CC_program
11361 && cu->language == language_fortran)
11362 {
11363 set_main_name (part_die->name);
11364
11365 /* As this DIE has a static linkage the name would be difficult
11366 to look up later. */
11367 language_of_main = language_fortran;
11368 }
11369 break;
11370 case DW_AT_inline:
11371 if (DW_UNSND (&attr) == DW_INL_inlined
11372 || DW_UNSND (&attr) == DW_INL_declared_inlined)
11373 part_die->may_be_inlined = 1;
11374 break;
11375
11376 case DW_AT_import:
11377 if (part_die->tag == DW_TAG_imported_unit)
11378 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
11379 break;
11380
11381 default:
11382 break;
11383 }
11384 }
11385
11386 if (high_pc_relative)
11387 part_die->highpc += part_die->lowpc;
11388
11389 if (has_low_pc_attr && has_high_pc_attr)
11390 {
11391 /* When using the GNU linker, .gnu.linkonce. sections are used to
11392 eliminate duplicate copies of functions and vtables and such.
11393 The linker will arbitrarily choose one and discard the others.
11394 The AT_*_pc values for such functions refer to local labels in
11395 these sections. If the section from that file was discarded, the
11396 labels are not in the output, so the relocs get a value of 0.
11397 If this is a discarded function, mark the pc bounds as invalid,
11398 so that GDB will ignore it. */
11399 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
11400 {
11401 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11402
11403 complaint (&symfile_complaints,
11404 _("DW_AT_low_pc %s is zero "
11405 "for DIE at 0x%x [in module %s]"),
11406 paddress (gdbarch, part_die->lowpc),
11407 part_die->offset.sect_off, objfile->name);
11408 }
11409 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
11410 else if (part_die->lowpc >= part_die->highpc)
11411 {
11412 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11413
11414 complaint (&symfile_complaints,
11415 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
11416 "for DIE at 0x%x [in module %s]"),
11417 paddress (gdbarch, part_die->lowpc),
11418 paddress (gdbarch, part_die->highpc),
11419 part_die->offset.sect_off, objfile->name);
11420 }
11421 else
11422 part_die->has_pc_info = 1;
11423 }
11424
11425 return info_ptr;
11426 }
11427
11428 /* Find a cached partial DIE at OFFSET in CU. */
11429
11430 static struct partial_die_info *
11431 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
11432 {
11433 struct partial_die_info *lookup_die = NULL;
11434 struct partial_die_info part_die;
11435
11436 part_die.offset = offset;
11437 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
11438 offset.sect_off);
11439
11440 return lookup_die;
11441 }
11442
11443 /* Find a partial DIE at OFFSET, which may or may not be in CU,
11444 except in the case of .debug_types DIEs which do not reference
11445 outside their CU (they do however referencing other types via
11446 DW_FORM_ref_sig8). */
11447
11448 static struct partial_die_info *
11449 find_partial_die (sect_offset offset, struct dwarf2_cu *cu)
11450 {
11451 struct objfile *objfile = cu->objfile;
11452 struct dwarf2_per_cu_data *per_cu = NULL;
11453 struct partial_die_info *pd = NULL;
11454
11455 if (offset_in_cu_p (&cu->header, offset))
11456 {
11457 pd = find_partial_die_in_comp_unit (offset, cu);
11458 if (pd != NULL)
11459 return pd;
11460 /* We missed recording what we needed.
11461 Load all dies and try again. */
11462 per_cu = cu->per_cu;
11463 }
11464 else
11465 {
11466 /* TUs don't reference other CUs/TUs (except via type signatures). */
11467 if (cu->per_cu->is_debug_types)
11468 {
11469 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
11470 " external reference to offset 0x%lx [in module %s].\n"),
11471 (long) cu->header.offset.sect_off, (long) offset.sect_off,
11472 bfd_get_filename (objfile->obfd));
11473 }
11474 per_cu = dwarf2_find_containing_comp_unit (offset, objfile);
11475
11476 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
11477 load_partial_comp_unit (per_cu);
11478
11479 per_cu->cu->last_used = 0;
11480 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
11481 }
11482
11483 /* If we didn't find it, and not all dies have been loaded,
11484 load them all and try again. */
11485
11486 if (pd == NULL && per_cu->load_all_dies == 0)
11487 {
11488 per_cu->load_all_dies = 1;
11489
11490 /* This is nasty. When we reread the DIEs, somewhere up the call chain
11491 THIS_CU->cu may already be in use. So we can't just free it and
11492 replace its DIEs with the ones we read in. Instead, we leave those
11493 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
11494 and clobber THIS_CU->cu->partial_dies with the hash table for the new
11495 set. */
11496 load_partial_comp_unit (per_cu);
11497
11498 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
11499 }
11500
11501 if (pd == NULL)
11502 internal_error (__FILE__, __LINE__,
11503 _("could not find partial DIE 0x%x "
11504 "in cache [from module %s]\n"),
11505 offset.sect_off, bfd_get_filename (objfile->obfd));
11506 return pd;
11507 }
11508
11509 /* See if we can figure out if the class lives in a namespace. We do
11510 this by looking for a member function; its demangled name will
11511 contain namespace info, if there is any. */
11512
11513 static void
11514 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
11515 struct dwarf2_cu *cu)
11516 {
11517 /* NOTE: carlton/2003-10-07: Getting the info this way changes
11518 what template types look like, because the demangler
11519 frequently doesn't give the same name as the debug info. We
11520 could fix this by only using the demangled name to get the
11521 prefix (but see comment in read_structure_type). */
11522
11523 struct partial_die_info *real_pdi;
11524 struct partial_die_info *child_pdi;
11525
11526 /* If this DIE (this DIE's specification, if any) has a parent, then
11527 we should not do this. We'll prepend the parent's fully qualified
11528 name when we create the partial symbol. */
11529
11530 real_pdi = struct_pdi;
11531 while (real_pdi->has_specification)
11532 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
11533
11534 if (real_pdi->die_parent != NULL)
11535 return;
11536
11537 for (child_pdi = struct_pdi->die_child;
11538 child_pdi != NULL;
11539 child_pdi = child_pdi->die_sibling)
11540 {
11541 if (child_pdi->tag == DW_TAG_subprogram
11542 && child_pdi->linkage_name != NULL)
11543 {
11544 char *actual_class_name
11545 = language_class_name_from_physname (cu->language_defn,
11546 child_pdi->linkage_name);
11547 if (actual_class_name != NULL)
11548 {
11549 struct_pdi->name
11550 = obsavestring (actual_class_name,
11551 strlen (actual_class_name),
11552 &cu->objfile->objfile_obstack);
11553 xfree (actual_class_name);
11554 }
11555 break;
11556 }
11557 }
11558 }
11559
11560 /* Adjust PART_DIE before generating a symbol for it. This function
11561 may set the is_external flag or change the DIE's name. */
11562
11563 static void
11564 fixup_partial_die (struct partial_die_info *part_die,
11565 struct dwarf2_cu *cu)
11566 {
11567 /* Once we've fixed up a die, there's no point in doing so again.
11568 This also avoids a memory leak if we were to call
11569 guess_partial_die_structure_name multiple times. */
11570 if (part_die->fixup_called)
11571 return;
11572
11573 /* If we found a reference attribute and the DIE has no name, try
11574 to find a name in the referred to DIE. */
11575
11576 if (part_die->name == NULL && part_die->has_specification)
11577 {
11578 struct partial_die_info *spec_die;
11579
11580 spec_die = find_partial_die (part_die->spec_offset, cu);
11581
11582 fixup_partial_die (spec_die, cu);
11583
11584 if (spec_die->name)
11585 {
11586 part_die->name = spec_die->name;
11587
11588 /* Copy DW_AT_external attribute if it is set. */
11589 if (spec_die->is_external)
11590 part_die->is_external = spec_die->is_external;
11591 }
11592 }
11593
11594 /* Set default names for some unnamed DIEs. */
11595
11596 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
11597 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
11598
11599 /* If there is no parent die to provide a namespace, and there are
11600 children, see if we can determine the namespace from their linkage
11601 name. */
11602 if (cu->language == language_cplus
11603 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
11604 && part_die->die_parent == NULL
11605 && part_die->has_children
11606 && (part_die->tag == DW_TAG_class_type
11607 || part_die->tag == DW_TAG_structure_type
11608 || part_die->tag == DW_TAG_union_type))
11609 guess_partial_die_structure_name (part_die, cu);
11610
11611 /* GCC might emit a nameless struct or union that has a linkage
11612 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
11613 if (part_die->name == NULL
11614 && (part_die->tag == DW_TAG_class_type
11615 || part_die->tag == DW_TAG_interface_type
11616 || part_die->tag == DW_TAG_structure_type
11617 || part_die->tag == DW_TAG_union_type)
11618 && part_die->linkage_name != NULL)
11619 {
11620 char *demangled;
11621
11622 demangled = cplus_demangle (part_die->linkage_name, DMGL_TYPES);
11623 if (demangled)
11624 {
11625 const char *base;
11626
11627 /* Strip any leading namespaces/classes, keep only the base name.
11628 DW_AT_name for named DIEs does not contain the prefixes. */
11629 base = strrchr (demangled, ':');
11630 if (base && base > demangled && base[-1] == ':')
11631 base++;
11632 else
11633 base = demangled;
11634
11635 part_die->name = obsavestring (base, strlen (base),
11636 &cu->objfile->objfile_obstack);
11637 xfree (demangled);
11638 }
11639 }
11640
11641 part_die->fixup_called = 1;
11642 }
11643
11644 /* Read an attribute value described by an attribute form. */
11645
11646 static gdb_byte *
11647 read_attribute_value (const struct die_reader_specs *reader,
11648 struct attribute *attr, unsigned form,
11649 gdb_byte *info_ptr)
11650 {
11651 struct dwarf2_cu *cu = reader->cu;
11652 bfd *abfd = reader->abfd;
11653 struct comp_unit_head *cu_header = &cu->header;
11654 unsigned int bytes_read;
11655 struct dwarf_block *blk;
11656
11657 attr->form = form;
11658 switch (form)
11659 {
11660 case DW_FORM_ref_addr:
11661 if (cu->header.version == 2)
11662 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
11663 else
11664 DW_UNSND (attr) = read_offset (abfd, info_ptr,
11665 &cu->header, &bytes_read);
11666 info_ptr += bytes_read;
11667 break;
11668 case DW_FORM_addr:
11669 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
11670 info_ptr += bytes_read;
11671 break;
11672 case DW_FORM_block2:
11673 blk = dwarf_alloc_block (cu);
11674 blk->size = read_2_bytes (abfd, info_ptr);
11675 info_ptr += 2;
11676 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
11677 info_ptr += blk->size;
11678 DW_BLOCK (attr) = blk;
11679 break;
11680 case DW_FORM_block4:
11681 blk = dwarf_alloc_block (cu);
11682 blk->size = read_4_bytes (abfd, info_ptr);
11683 info_ptr += 4;
11684 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
11685 info_ptr += blk->size;
11686 DW_BLOCK (attr) = blk;
11687 break;
11688 case DW_FORM_data2:
11689 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
11690 info_ptr += 2;
11691 break;
11692 case DW_FORM_data4:
11693 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
11694 info_ptr += 4;
11695 break;
11696 case DW_FORM_data8:
11697 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
11698 info_ptr += 8;
11699 break;
11700 case DW_FORM_sec_offset:
11701 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
11702 info_ptr += bytes_read;
11703 break;
11704 case DW_FORM_string:
11705 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
11706 DW_STRING_IS_CANONICAL (attr) = 0;
11707 info_ptr += bytes_read;
11708 break;
11709 case DW_FORM_strp:
11710 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
11711 &bytes_read);
11712 DW_STRING_IS_CANONICAL (attr) = 0;
11713 info_ptr += bytes_read;
11714 break;
11715 case DW_FORM_exprloc:
11716 case DW_FORM_block:
11717 blk = dwarf_alloc_block (cu);
11718 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
11719 info_ptr += bytes_read;
11720 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
11721 info_ptr += blk->size;
11722 DW_BLOCK (attr) = blk;
11723 break;
11724 case DW_FORM_block1:
11725 blk = dwarf_alloc_block (cu);
11726 blk->size = read_1_byte (abfd, info_ptr);
11727 info_ptr += 1;
11728 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
11729 info_ptr += blk->size;
11730 DW_BLOCK (attr) = blk;
11731 break;
11732 case DW_FORM_data1:
11733 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
11734 info_ptr += 1;
11735 break;
11736 case DW_FORM_flag:
11737 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
11738 info_ptr += 1;
11739 break;
11740 case DW_FORM_flag_present:
11741 DW_UNSND (attr) = 1;
11742 break;
11743 case DW_FORM_sdata:
11744 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
11745 info_ptr += bytes_read;
11746 break;
11747 case DW_FORM_udata:
11748 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
11749 info_ptr += bytes_read;
11750 break;
11751 case DW_FORM_ref1:
11752 DW_UNSND (attr) = (cu->header.offset.sect_off
11753 + read_1_byte (abfd, info_ptr));
11754 info_ptr += 1;
11755 break;
11756 case DW_FORM_ref2:
11757 DW_UNSND (attr) = (cu->header.offset.sect_off
11758 + read_2_bytes (abfd, info_ptr));
11759 info_ptr += 2;
11760 break;
11761 case DW_FORM_ref4:
11762 DW_UNSND (attr) = (cu->header.offset.sect_off
11763 + read_4_bytes (abfd, info_ptr));
11764 info_ptr += 4;
11765 break;
11766 case DW_FORM_ref8:
11767 DW_UNSND (attr) = (cu->header.offset.sect_off
11768 + read_8_bytes (abfd, info_ptr));
11769 info_ptr += 8;
11770 break;
11771 case DW_FORM_ref_sig8:
11772 /* Convert the signature to something we can record in DW_UNSND
11773 for later lookup.
11774 NOTE: This is NULL if the type wasn't found. */
11775 DW_SIGNATURED_TYPE (attr) =
11776 lookup_signatured_type (read_8_bytes (abfd, info_ptr));
11777 info_ptr += 8;
11778 break;
11779 case DW_FORM_ref_udata:
11780 DW_UNSND (attr) = (cu->header.offset.sect_off
11781 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
11782 info_ptr += bytes_read;
11783 break;
11784 case DW_FORM_indirect:
11785 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
11786 info_ptr += bytes_read;
11787 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
11788 break;
11789 case DW_FORM_GNU_addr_index:
11790 if (reader->dwo_file == NULL)
11791 {
11792 /* For now flag a hard error.
11793 Later we can turn this into a complaint. */
11794 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
11795 dwarf_form_name (form),
11796 bfd_get_filename (abfd));
11797 }
11798 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
11799 info_ptr += bytes_read;
11800 break;
11801 case DW_FORM_GNU_str_index:
11802 if (reader->dwo_file == NULL)
11803 {
11804 /* For now flag a hard error.
11805 Later we can turn this into a complaint if warranted. */
11806 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
11807 dwarf_form_name (form),
11808 bfd_get_filename (abfd));
11809 }
11810 {
11811 ULONGEST str_index =
11812 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
11813
11814 DW_STRING (attr) = read_str_index (reader, cu, str_index);
11815 DW_STRING_IS_CANONICAL (attr) = 0;
11816 info_ptr += bytes_read;
11817 }
11818 break;
11819 default:
11820 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
11821 dwarf_form_name (form),
11822 bfd_get_filename (abfd));
11823 }
11824
11825 /* We have seen instances where the compiler tried to emit a byte
11826 size attribute of -1 which ended up being encoded as an unsigned
11827 0xffffffff. Although 0xffffffff is technically a valid size value,
11828 an object of this size seems pretty unlikely so we can relatively
11829 safely treat these cases as if the size attribute was invalid and
11830 treat them as zero by default. */
11831 if (attr->name == DW_AT_byte_size
11832 && form == DW_FORM_data4
11833 && DW_UNSND (attr) >= 0xffffffff)
11834 {
11835 complaint
11836 (&symfile_complaints,
11837 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
11838 hex_string (DW_UNSND (attr)));
11839 DW_UNSND (attr) = 0;
11840 }
11841
11842 return info_ptr;
11843 }
11844
11845 /* Read an attribute described by an abbreviated attribute. */
11846
11847 static gdb_byte *
11848 read_attribute (const struct die_reader_specs *reader,
11849 struct attribute *attr, struct attr_abbrev *abbrev,
11850 gdb_byte *info_ptr)
11851 {
11852 attr->name = abbrev->name;
11853 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
11854 }
11855
11856 /* Read dwarf information from a buffer. */
11857
11858 static unsigned int
11859 read_1_byte (bfd *abfd, gdb_byte *buf)
11860 {
11861 return bfd_get_8 (abfd, buf);
11862 }
11863
11864 static int
11865 read_1_signed_byte (bfd *abfd, gdb_byte *buf)
11866 {
11867 return bfd_get_signed_8 (abfd, buf);
11868 }
11869
11870 static unsigned int
11871 read_2_bytes (bfd *abfd, gdb_byte *buf)
11872 {
11873 return bfd_get_16 (abfd, buf);
11874 }
11875
11876 static int
11877 read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
11878 {
11879 return bfd_get_signed_16 (abfd, buf);
11880 }
11881
11882 static unsigned int
11883 read_4_bytes (bfd *abfd, gdb_byte *buf)
11884 {
11885 return bfd_get_32 (abfd, buf);
11886 }
11887
11888 static int
11889 read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
11890 {
11891 return bfd_get_signed_32 (abfd, buf);
11892 }
11893
11894 static ULONGEST
11895 read_8_bytes (bfd *abfd, gdb_byte *buf)
11896 {
11897 return bfd_get_64 (abfd, buf);
11898 }
11899
11900 static CORE_ADDR
11901 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
11902 unsigned int *bytes_read)
11903 {
11904 struct comp_unit_head *cu_header = &cu->header;
11905 CORE_ADDR retval = 0;
11906
11907 if (cu_header->signed_addr_p)
11908 {
11909 switch (cu_header->addr_size)
11910 {
11911 case 2:
11912 retval = bfd_get_signed_16 (abfd, buf);
11913 break;
11914 case 4:
11915 retval = bfd_get_signed_32 (abfd, buf);
11916 break;
11917 case 8:
11918 retval = bfd_get_signed_64 (abfd, buf);
11919 break;
11920 default:
11921 internal_error (__FILE__, __LINE__,
11922 _("read_address: bad switch, signed [in module %s]"),
11923 bfd_get_filename (abfd));
11924 }
11925 }
11926 else
11927 {
11928 switch (cu_header->addr_size)
11929 {
11930 case 2:
11931 retval = bfd_get_16 (abfd, buf);
11932 break;
11933 case 4:
11934 retval = bfd_get_32 (abfd, buf);
11935 break;
11936 case 8:
11937 retval = bfd_get_64 (abfd, buf);
11938 break;
11939 default:
11940 internal_error (__FILE__, __LINE__,
11941 _("read_address: bad switch, "
11942 "unsigned [in module %s]"),
11943 bfd_get_filename (abfd));
11944 }
11945 }
11946
11947 *bytes_read = cu_header->addr_size;
11948 return retval;
11949 }
11950
11951 /* Read the initial length from a section. The (draft) DWARF 3
11952 specification allows the initial length to take up either 4 bytes
11953 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
11954 bytes describe the length and all offsets will be 8 bytes in length
11955 instead of 4.
11956
11957 An older, non-standard 64-bit format is also handled by this
11958 function. The older format in question stores the initial length
11959 as an 8-byte quantity without an escape value. Lengths greater
11960 than 2^32 aren't very common which means that the initial 4 bytes
11961 is almost always zero. Since a length value of zero doesn't make
11962 sense for the 32-bit format, this initial zero can be considered to
11963 be an escape value which indicates the presence of the older 64-bit
11964 format. As written, the code can't detect (old format) lengths
11965 greater than 4GB. If it becomes necessary to handle lengths
11966 somewhat larger than 4GB, we could allow other small values (such
11967 as the non-sensical values of 1, 2, and 3) to also be used as
11968 escape values indicating the presence of the old format.
11969
11970 The value returned via bytes_read should be used to increment the
11971 relevant pointer after calling read_initial_length().
11972
11973 [ Note: read_initial_length() and read_offset() are based on the
11974 document entitled "DWARF Debugging Information Format", revision
11975 3, draft 8, dated November 19, 2001. This document was obtained
11976 from:
11977
11978 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
11979
11980 This document is only a draft and is subject to change. (So beware.)
11981
11982 Details regarding the older, non-standard 64-bit format were
11983 determined empirically by examining 64-bit ELF files produced by
11984 the SGI toolchain on an IRIX 6.5 machine.
11985
11986 - Kevin, July 16, 2002
11987 ] */
11988
11989 static LONGEST
11990 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
11991 {
11992 LONGEST length = bfd_get_32 (abfd, buf);
11993
11994 if (length == 0xffffffff)
11995 {
11996 length = bfd_get_64 (abfd, buf + 4);
11997 *bytes_read = 12;
11998 }
11999 else if (length == 0)
12000 {
12001 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
12002 length = bfd_get_64 (abfd, buf);
12003 *bytes_read = 8;
12004 }
12005 else
12006 {
12007 *bytes_read = 4;
12008 }
12009
12010 return length;
12011 }
12012
12013 /* Cover function for read_initial_length.
12014 Returns the length of the object at BUF, and stores the size of the
12015 initial length in *BYTES_READ and stores the size that offsets will be in
12016 *OFFSET_SIZE.
12017 If the initial length size is not equivalent to that specified in
12018 CU_HEADER then issue a complaint.
12019 This is useful when reading non-comp-unit headers. */
12020
12021 static LONGEST
12022 read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
12023 const struct comp_unit_head *cu_header,
12024 unsigned int *bytes_read,
12025 unsigned int *offset_size)
12026 {
12027 LONGEST length = read_initial_length (abfd, buf, bytes_read);
12028
12029 gdb_assert (cu_header->initial_length_size == 4
12030 || cu_header->initial_length_size == 8
12031 || cu_header->initial_length_size == 12);
12032
12033 if (cu_header->initial_length_size != *bytes_read)
12034 complaint (&symfile_complaints,
12035 _("intermixed 32-bit and 64-bit DWARF sections"));
12036
12037 *offset_size = (*bytes_read == 4) ? 4 : 8;
12038 return length;
12039 }
12040
12041 /* Read an offset from the data stream. The size of the offset is
12042 given by cu_header->offset_size. */
12043
12044 static LONGEST
12045 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
12046 unsigned int *bytes_read)
12047 {
12048 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
12049
12050 *bytes_read = cu_header->offset_size;
12051 return offset;
12052 }
12053
12054 /* Read an offset from the data stream. */
12055
12056 static LONGEST
12057 read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
12058 {
12059 LONGEST retval = 0;
12060
12061 switch (offset_size)
12062 {
12063 case 4:
12064 retval = bfd_get_32 (abfd, buf);
12065 break;
12066 case 8:
12067 retval = bfd_get_64 (abfd, buf);
12068 break;
12069 default:
12070 internal_error (__FILE__, __LINE__,
12071 _("read_offset_1: bad switch [in module %s]"),
12072 bfd_get_filename (abfd));
12073 }
12074
12075 return retval;
12076 }
12077
12078 static gdb_byte *
12079 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
12080 {
12081 /* If the size of a host char is 8 bits, we can return a pointer
12082 to the buffer, otherwise we have to copy the data to a buffer
12083 allocated on the temporary obstack. */
12084 gdb_assert (HOST_CHAR_BIT == 8);
12085 return buf;
12086 }
12087
12088 static char *
12089 read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
12090 {
12091 /* If the size of a host char is 8 bits, we can return a pointer
12092 to the string, otherwise we have to copy the string to a buffer
12093 allocated on the temporary obstack. */
12094 gdb_assert (HOST_CHAR_BIT == 8);
12095 if (*buf == '\0')
12096 {
12097 *bytes_read_ptr = 1;
12098 return NULL;
12099 }
12100 *bytes_read_ptr = strlen ((char *) buf) + 1;
12101 return (char *) buf;
12102 }
12103
12104 static char *
12105 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
12106 {
12107 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
12108 if (dwarf2_per_objfile->str.buffer == NULL)
12109 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
12110 bfd_get_filename (abfd));
12111 if (str_offset >= dwarf2_per_objfile->str.size)
12112 error (_("DW_FORM_strp pointing outside of "
12113 ".debug_str section [in module %s]"),
12114 bfd_get_filename (abfd));
12115 gdb_assert (HOST_CHAR_BIT == 8);
12116 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
12117 return NULL;
12118 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
12119 }
12120
12121 static char *
12122 read_indirect_string (bfd *abfd, gdb_byte *buf,
12123 const struct comp_unit_head *cu_header,
12124 unsigned int *bytes_read_ptr)
12125 {
12126 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
12127
12128 return read_indirect_string_at_offset (abfd, str_offset);
12129 }
12130
12131 static ULONGEST
12132 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
12133 {
12134 ULONGEST result;
12135 unsigned int num_read;
12136 int i, shift;
12137 unsigned char byte;
12138
12139 result = 0;
12140 shift = 0;
12141 num_read = 0;
12142 i = 0;
12143 while (1)
12144 {
12145 byte = bfd_get_8 (abfd, buf);
12146 buf++;
12147 num_read++;
12148 result |= ((ULONGEST) (byte & 127) << shift);
12149 if ((byte & 128) == 0)
12150 {
12151 break;
12152 }
12153 shift += 7;
12154 }
12155 *bytes_read_ptr = num_read;
12156 return result;
12157 }
12158
12159 static LONGEST
12160 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
12161 {
12162 LONGEST result;
12163 int i, shift, num_read;
12164 unsigned char byte;
12165
12166 result = 0;
12167 shift = 0;
12168 num_read = 0;
12169 i = 0;
12170 while (1)
12171 {
12172 byte = bfd_get_8 (abfd, buf);
12173 buf++;
12174 num_read++;
12175 result |= ((LONGEST) (byte & 127) << shift);
12176 shift += 7;
12177 if ((byte & 128) == 0)
12178 {
12179 break;
12180 }
12181 }
12182 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
12183 result |= -(((LONGEST) 1) << shift);
12184 *bytes_read_ptr = num_read;
12185 return result;
12186 }
12187
12188 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
12189 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
12190 ADDR_SIZE is the size of addresses from the CU header. */
12191
12192 static CORE_ADDR
12193 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
12194 {
12195 struct objfile *objfile = dwarf2_per_objfile->objfile;
12196 bfd *abfd = objfile->obfd;
12197 const gdb_byte *info_ptr;
12198
12199 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
12200 if (dwarf2_per_objfile->addr.buffer == NULL)
12201 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
12202 objfile->name);
12203 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
12204 error (_("DW_FORM_addr_index pointing outside of "
12205 ".debug_addr section [in module %s]"),
12206 objfile->name);
12207 info_ptr = (dwarf2_per_objfile->addr.buffer
12208 + addr_base + addr_index * addr_size);
12209 if (addr_size == 4)
12210 return bfd_get_32 (abfd, info_ptr);
12211 else
12212 return bfd_get_64 (abfd, info_ptr);
12213 }
12214
12215 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
12216
12217 static CORE_ADDR
12218 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
12219 {
12220 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
12221 }
12222
12223 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
12224
12225 static CORE_ADDR
12226 read_addr_index_from_leb128 (struct dwarf2_cu *cu, gdb_byte *info_ptr,
12227 unsigned int *bytes_read)
12228 {
12229 bfd *abfd = cu->objfile->obfd;
12230 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
12231
12232 return read_addr_index (cu, addr_index);
12233 }
12234
12235 /* Data structure to pass results from dwarf2_read_addr_index_reader
12236 back to dwarf2_read_addr_index. */
12237
12238 struct dwarf2_read_addr_index_data
12239 {
12240 ULONGEST addr_base;
12241 int addr_size;
12242 };
12243
12244 /* die_reader_func for dwarf2_read_addr_index. */
12245
12246 static void
12247 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
12248 gdb_byte *info_ptr,
12249 struct die_info *comp_unit_die,
12250 int has_children,
12251 void *data)
12252 {
12253 struct dwarf2_cu *cu = reader->cu;
12254 struct dwarf2_read_addr_index_data *aidata =
12255 (struct dwarf2_read_addr_index_data *) data;
12256
12257 aidata->addr_base = cu->addr_base;
12258 aidata->addr_size = cu->header.addr_size;
12259 }
12260
12261 /* Given an index in .debug_addr, fetch the value.
12262 NOTE: This can be called during dwarf expression evaluation,
12263 long after the debug information has been read, and thus per_cu->cu
12264 may no longer exist. */
12265
12266 CORE_ADDR
12267 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
12268 unsigned int addr_index)
12269 {
12270 struct objfile *objfile = per_cu->objfile;
12271 struct dwarf2_cu *cu = per_cu->cu;
12272 ULONGEST addr_base;
12273 int addr_size;
12274
12275 /* This is intended to be called from outside this file. */
12276 dw2_setup (objfile);
12277
12278 /* We need addr_base and addr_size.
12279 If we don't have PER_CU->cu, we have to get it.
12280 Nasty, but the alternative is storing the needed info in PER_CU,
12281 which at this point doesn't seem justified: it's not clear how frequently
12282 it would get used and it would increase the size of every PER_CU.
12283 Entry points like dwarf2_per_cu_addr_size do a similar thing
12284 so we're not in uncharted territory here.
12285 Alas we need to be a bit more complicated as addr_base is contained
12286 in the DIE.
12287
12288 We don't need to read the entire CU(/TU).
12289 We just need the header and top level die.
12290 IWBN to use the aging mechanism to let us lazily later discard the CU.
12291 See however init_cutu_and_read_dies_simple. */
12292
12293 if (cu != NULL)
12294 {
12295 addr_base = cu->addr_base;
12296 addr_size = cu->header.addr_size;
12297 }
12298 else
12299 {
12300 struct dwarf2_read_addr_index_data aidata;
12301
12302 init_cutu_and_read_dies_simple (per_cu, dwarf2_read_addr_index_reader,
12303 &aidata);
12304 addr_base = aidata.addr_base;
12305 addr_size = aidata.addr_size;
12306 }
12307
12308 return read_addr_index_1 (addr_index, addr_base, addr_size);
12309 }
12310
12311 /* Given a DW_AT_str_index, fetch the string. */
12312
12313 static char *
12314 read_str_index (const struct die_reader_specs *reader,
12315 struct dwarf2_cu *cu, ULONGEST str_index)
12316 {
12317 struct objfile *objfile = dwarf2_per_objfile->objfile;
12318 const char *dwo_name = objfile->name;
12319 bfd *abfd = objfile->obfd;
12320 struct dwo_sections *sections = &reader->dwo_file->sections;
12321 gdb_byte *info_ptr;
12322 ULONGEST str_offset;
12323
12324 dwarf2_read_section (objfile, &sections->str);
12325 dwarf2_read_section (objfile, &sections->str_offsets);
12326 if (sections->str.buffer == NULL)
12327 error (_("DW_FORM_str_index used without .debug_str.dwo section"
12328 " in CU at offset 0x%lx [in module %s]"),
12329 (long) cu->header.offset.sect_off, dwo_name);
12330 if (sections->str_offsets.buffer == NULL)
12331 error (_("DW_FORM_str_index used without .debug_str_offsets.dwo section"
12332 " in CU at offset 0x%lx [in module %s]"),
12333 (long) cu->header.offset.sect_off, dwo_name);
12334 if (str_index * cu->header.offset_size >= sections->str_offsets.size)
12335 error (_("DW_FORM_str_index pointing outside of .debug_str_offsets.dwo"
12336 " section in CU at offset 0x%lx [in module %s]"),
12337 (long) cu->header.offset.sect_off, dwo_name);
12338 info_ptr = (sections->str_offsets.buffer
12339 + str_index * cu->header.offset_size);
12340 if (cu->header.offset_size == 4)
12341 str_offset = bfd_get_32 (abfd, info_ptr);
12342 else
12343 str_offset = bfd_get_64 (abfd, info_ptr);
12344 if (str_offset >= sections->str.size)
12345 error (_("Offset from DW_FORM_str_index pointing outside of"
12346 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
12347 (long) cu->header.offset.sect_off, dwo_name);
12348 return (char *) (sections->str.buffer + str_offset);
12349 }
12350
12351 /* Return the length of an LEB128 number in BUF. */
12352
12353 static int
12354 leb128_size (const gdb_byte *buf)
12355 {
12356 const gdb_byte *begin = buf;
12357 gdb_byte byte;
12358
12359 while (1)
12360 {
12361 byte = *buf++;
12362 if ((byte & 128) == 0)
12363 return buf - begin;
12364 }
12365 }
12366
12367 static void
12368 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
12369 {
12370 switch (lang)
12371 {
12372 case DW_LANG_C89:
12373 case DW_LANG_C99:
12374 case DW_LANG_C:
12375 cu->language = language_c;
12376 break;
12377 case DW_LANG_C_plus_plus:
12378 cu->language = language_cplus;
12379 break;
12380 case DW_LANG_D:
12381 cu->language = language_d;
12382 break;
12383 case DW_LANG_Fortran77:
12384 case DW_LANG_Fortran90:
12385 case DW_LANG_Fortran95:
12386 cu->language = language_fortran;
12387 break;
12388 case DW_LANG_Go:
12389 cu->language = language_go;
12390 break;
12391 case DW_LANG_Mips_Assembler:
12392 cu->language = language_asm;
12393 break;
12394 case DW_LANG_Java:
12395 cu->language = language_java;
12396 break;
12397 case DW_LANG_Ada83:
12398 case DW_LANG_Ada95:
12399 cu->language = language_ada;
12400 break;
12401 case DW_LANG_Modula2:
12402 cu->language = language_m2;
12403 break;
12404 case DW_LANG_Pascal83:
12405 cu->language = language_pascal;
12406 break;
12407 case DW_LANG_ObjC:
12408 cu->language = language_objc;
12409 break;
12410 case DW_LANG_Cobol74:
12411 case DW_LANG_Cobol85:
12412 default:
12413 cu->language = language_minimal;
12414 break;
12415 }
12416 cu->language_defn = language_def (cu->language);
12417 }
12418
12419 /* Return the named attribute or NULL if not there. */
12420
12421 static struct attribute *
12422 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
12423 {
12424 for (;;)
12425 {
12426 unsigned int i;
12427 struct attribute *spec = NULL;
12428
12429 for (i = 0; i < die->num_attrs; ++i)
12430 {
12431 if (die->attrs[i].name == name)
12432 return &die->attrs[i];
12433 if (die->attrs[i].name == DW_AT_specification
12434 || die->attrs[i].name == DW_AT_abstract_origin)
12435 spec = &die->attrs[i];
12436 }
12437
12438 if (!spec)
12439 break;
12440
12441 die = follow_die_ref (die, spec, &cu);
12442 }
12443
12444 return NULL;
12445 }
12446
12447 /* Return the named attribute or NULL if not there,
12448 but do not follow DW_AT_specification, etc.
12449 This is for use in contexts where we're reading .debug_types dies.
12450 Following DW_AT_specification, DW_AT_abstract_origin will take us
12451 back up the chain, and we want to go down. */
12452
12453 static struct attribute *
12454 dwarf2_attr_no_follow (struct die_info *die, unsigned int name,
12455 struct dwarf2_cu *cu)
12456 {
12457 unsigned int i;
12458
12459 for (i = 0; i < die->num_attrs; ++i)
12460 if (die->attrs[i].name == name)
12461 return &die->attrs[i];
12462
12463 return NULL;
12464 }
12465
12466 /* Return non-zero iff the attribute NAME is defined for the given DIE,
12467 and holds a non-zero value. This function should only be used for
12468 DW_FORM_flag or DW_FORM_flag_present attributes. */
12469
12470 static int
12471 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
12472 {
12473 struct attribute *attr = dwarf2_attr (die, name, cu);
12474
12475 return (attr && DW_UNSND (attr));
12476 }
12477
12478 static int
12479 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
12480 {
12481 /* A DIE is a declaration if it has a DW_AT_declaration attribute
12482 which value is non-zero. However, we have to be careful with
12483 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
12484 (via dwarf2_flag_true_p) follows this attribute. So we may
12485 end up accidently finding a declaration attribute that belongs
12486 to a different DIE referenced by the specification attribute,
12487 even though the given DIE does not have a declaration attribute. */
12488 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
12489 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
12490 }
12491
12492 /* Return the die giving the specification for DIE, if there is
12493 one. *SPEC_CU is the CU containing DIE on input, and the CU
12494 containing the return value on output. If there is no
12495 specification, but there is an abstract origin, that is
12496 returned. */
12497
12498 static struct die_info *
12499 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
12500 {
12501 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
12502 *spec_cu);
12503
12504 if (spec_attr == NULL)
12505 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
12506
12507 if (spec_attr == NULL)
12508 return NULL;
12509 else
12510 return follow_die_ref (die, spec_attr, spec_cu);
12511 }
12512
12513 /* Free the line_header structure *LH, and any arrays and strings it
12514 refers to.
12515 NOTE: This is also used as a "cleanup" function. */
12516
12517 static void
12518 free_line_header (struct line_header *lh)
12519 {
12520 if (lh->standard_opcode_lengths)
12521 xfree (lh->standard_opcode_lengths);
12522
12523 /* Remember that all the lh->file_names[i].name pointers are
12524 pointers into debug_line_buffer, and don't need to be freed. */
12525 if (lh->file_names)
12526 xfree (lh->file_names);
12527
12528 /* Similarly for the include directory names. */
12529 if (lh->include_dirs)
12530 xfree (lh->include_dirs);
12531
12532 xfree (lh);
12533 }
12534
12535 /* Add an entry to LH's include directory table. */
12536
12537 static void
12538 add_include_dir (struct line_header *lh, char *include_dir)
12539 {
12540 /* Grow the array if necessary. */
12541 if (lh->include_dirs_size == 0)
12542 {
12543 lh->include_dirs_size = 1; /* for testing */
12544 lh->include_dirs = xmalloc (lh->include_dirs_size
12545 * sizeof (*lh->include_dirs));
12546 }
12547 else if (lh->num_include_dirs >= lh->include_dirs_size)
12548 {
12549 lh->include_dirs_size *= 2;
12550 lh->include_dirs = xrealloc (lh->include_dirs,
12551 (lh->include_dirs_size
12552 * sizeof (*lh->include_dirs)));
12553 }
12554
12555 lh->include_dirs[lh->num_include_dirs++] = include_dir;
12556 }
12557
12558 /* Add an entry to LH's file name table. */
12559
12560 static void
12561 add_file_name (struct line_header *lh,
12562 char *name,
12563 unsigned int dir_index,
12564 unsigned int mod_time,
12565 unsigned int length)
12566 {
12567 struct file_entry *fe;
12568
12569 /* Grow the array if necessary. */
12570 if (lh->file_names_size == 0)
12571 {
12572 lh->file_names_size = 1; /* for testing */
12573 lh->file_names = xmalloc (lh->file_names_size
12574 * sizeof (*lh->file_names));
12575 }
12576 else if (lh->num_file_names >= lh->file_names_size)
12577 {
12578 lh->file_names_size *= 2;
12579 lh->file_names = xrealloc (lh->file_names,
12580 (lh->file_names_size
12581 * sizeof (*lh->file_names)));
12582 }
12583
12584 fe = &lh->file_names[lh->num_file_names++];
12585 fe->name = name;
12586 fe->dir_index = dir_index;
12587 fe->mod_time = mod_time;
12588 fe->length = length;
12589 fe->included_p = 0;
12590 fe->symtab = NULL;
12591 }
12592
12593 /* Read the statement program header starting at OFFSET in
12594 .debug_line, or .debug_line.dwo. Return a pointer
12595 to a struct line_header, allocated using xmalloc.
12596
12597 NOTE: the strings in the include directory and file name tables of
12598 the returned object point into the dwarf line section buffer,
12599 and must not be freed. */
12600
12601 static struct line_header *
12602 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
12603 {
12604 struct cleanup *back_to;
12605 struct line_header *lh;
12606 gdb_byte *line_ptr;
12607 unsigned int bytes_read, offset_size;
12608 int i;
12609 char *cur_dir, *cur_file;
12610 struct dwarf2_section_info *section;
12611 bfd *abfd;
12612
12613 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
12614 DWO file. */
12615 if (cu->dwo_unit && cu->per_cu->is_debug_types)
12616 section = &cu->dwo_unit->dwo_file->sections.line;
12617 else
12618 section = &dwarf2_per_objfile->line;
12619
12620 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
12621 if (section->buffer == NULL)
12622 {
12623 if (cu->dwo_unit && cu->per_cu->is_debug_types)
12624 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
12625 else
12626 complaint (&symfile_complaints, _("missing .debug_line section"));
12627 return 0;
12628 }
12629
12630 /* We can't do this until we know the section is non-empty.
12631 Only then do we know we have such a section. */
12632 abfd = section->asection->owner;
12633
12634 /* Make sure that at least there's room for the total_length field.
12635 That could be 12 bytes long, but we're just going to fudge that. */
12636 if (offset + 4 >= section->size)
12637 {
12638 dwarf2_statement_list_fits_in_line_number_section_complaint ();
12639 return 0;
12640 }
12641
12642 lh = xmalloc (sizeof (*lh));
12643 memset (lh, 0, sizeof (*lh));
12644 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
12645 (void *) lh);
12646
12647 line_ptr = section->buffer + offset;
12648
12649 /* Read in the header. */
12650 lh->total_length =
12651 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
12652 &bytes_read, &offset_size);
12653 line_ptr += bytes_read;
12654 if (line_ptr + lh->total_length > (section->buffer + section->size))
12655 {
12656 dwarf2_statement_list_fits_in_line_number_section_complaint ();
12657 return 0;
12658 }
12659 lh->statement_program_end = line_ptr + lh->total_length;
12660 lh->version = read_2_bytes (abfd, line_ptr);
12661 line_ptr += 2;
12662 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
12663 line_ptr += offset_size;
12664 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
12665 line_ptr += 1;
12666 if (lh->version >= 4)
12667 {
12668 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
12669 line_ptr += 1;
12670 }
12671 else
12672 lh->maximum_ops_per_instruction = 1;
12673
12674 if (lh->maximum_ops_per_instruction == 0)
12675 {
12676 lh->maximum_ops_per_instruction = 1;
12677 complaint (&symfile_complaints,
12678 _("invalid maximum_ops_per_instruction "
12679 "in `.debug_line' section"));
12680 }
12681
12682 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
12683 line_ptr += 1;
12684 lh->line_base = read_1_signed_byte (abfd, line_ptr);
12685 line_ptr += 1;
12686 lh->line_range = read_1_byte (abfd, line_ptr);
12687 line_ptr += 1;
12688 lh->opcode_base = read_1_byte (abfd, line_ptr);
12689 line_ptr += 1;
12690 lh->standard_opcode_lengths
12691 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
12692
12693 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
12694 for (i = 1; i < lh->opcode_base; ++i)
12695 {
12696 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
12697 line_ptr += 1;
12698 }
12699
12700 /* Read directory table. */
12701 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
12702 {
12703 line_ptr += bytes_read;
12704 add_include_dir (lh, cur_dir);
12705 }
12706 line_ptr += bytes_read;
12707
12708 /* Read file name table. */
12709 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
12710 {
12711 unsigned int dir_index, mod_time, length;
12712
12713 line_ptr += bytes_read;
12714 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
12715 line_ptr += bytes_read;
12716 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
12717 line_ptr += bytes_read;
12718 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
12719 line_ptr += bytes_read;
12720
12721 add_file_name (lh, cur_file, dir_index, mod_time, length);
12722 }
12723 line_ptr += bytes_read;
12724 lh->statement_program_start = line_ptr;
12725
12726 if (line_ptr > (section->buffer + section->size))
12727 complaint (&symfile_complaints,
12728 _("line number info header doesn't "
12729 "fit in `.debug_line' section"));
12730
12731 discard_cleanups (back_to);
12732 return lh;
12733 }
12734
12735 /* Subroutine of dwarf_decode_lines to simplify it.
12736 Return the file name of the psymtab for included file FILE_INDEX
12737 in line header LH of PST.
12738 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
12739 If space for the result is malloc'd, it will be freed by a cleanup.
12740 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
12741
12742 static char *
12743 psymtab_include_file_name (const struct line_header *lh, int file_index,
12744 const struct partial_symtab *pst,
12745 const char *comp_dir)
12746 {
12747 const struct file_entry fe = lh->file_names [file_index];
12748 char *include_name = fe.name;
12749 char *include_name_to_compare = include_name;
12750 char *dir_name = NULL;
12751 const char *pst_filename;
12752 char *copied_name = NULL;
12753 int file_is_pst;
12754
12755 if (fe.dir_index)
12756 dir_name = lh->include_dirs[fe.dir_index - 1];
12757
12758 if (!IS_ABSOLUTE_PATH (include_name)
12759 && (dir_name != NULL || comp_dir != NULL))
12760 {
12761 /* Avoid creating a duplicate psymtab for PST.
12762 We do this by comparing INCLUDE_NAME and PST_FILENAME.
12763 Before we do the comparison, however, we need to account
12764 for DIR_NAME and COMP_DIR.
12765 First prepend dir_name (if non-NULL). If we still don't
12766 have an absolute path prepend comp_dir (if non-NULL).
12767 However, the directory we record in the include-file's
12768 psymtab does not contain COMP_DIR (to match the
12769 corresponding symtab(s)).
12770
12771 Example:
12772
12773 bash$ cd /tmp
12774 bash$ gcc -g ./hello.c
12775 include_name = "hello.c"
12776 dir_name = "."
12777 DW_AT_comp_dir = comp_dir = "/tmp"
12778 DW_AT_name = "./hello.c" */
12779
12780 if (dir_name != NULL)
12781 {
12782 include_name = concat (dir_name, SLASH_STRING,
12783 include_name, (char *)NULL);
12784 include_name_to_compare = include_name;
12785 make_cleanup (xfree, include_name);
12786 }
12787 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
12788 {
12789 include_name_to_compare = concat (comp_dir, SLASH_STRING,
12790 include_name, (char *)NULL);
12791 }
12792 }
12793
12794 pst_filename = pst->filename;
12795 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
12796 {
12797 copied_name = concat (pst->dirname, SLASH_STRING,
12798 pst_filename, (char *)NULL);
12799 pst_filename = copied_name;
12800 }
12801
12802 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
12803
12804 if (include_name_to_compare != include_name)
12805 xfree (include_name_to_compare);
12806 if (copied_name != NULL)
12807 xfree (copied_name);
12808
12809 if (file_is_pst)
12810 return NULL;
12811 return include_name;
12812 }
12813
12814 /* Ignore this record_line request. */
12815
12816 static void
12817 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
12818 {
12819 return;
12820 }
12821
12822 /* Subroutine of dwarf_decode_lines to simplify it.
12823 Process the line number information in LH. */
12824
12825 static void
12826 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
12827 struct dwarf2_cu *cu, struct partial_symtab *pst)
12828 {
12829 gdb_byte *line_ptr, *extended_end;
12830 gdb_byte *line_end;
12831 unsigned int bytes_read, extended_len;
12832 unsigned char op_code, extended_op, adj_opcode;
12833 CORE_ADDR baseaddr;
12834 struct objfile *objfile = cu->objfile;
12835 bfd *abfd = objfile->obfd;
12836 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12837 const int decode_for_pst_p = (pst != NULL);
12838 struct subfile *last_subfile = NULL;
12839 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
12840 = record_line;
12841
12842 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12843
12844 line_ptr = lh->statement_program_start;
12845 line_end = lh->statement_program_end;
12846
12847 /* Read the statement sequences until there's nothing left. */
12848 while (line_ptr < line_end)
12849 {
12850 /* state machine registers */
12851 CORE_ADDR address = 0;
12852 unsigned int file = 1;
12853 unsigned int line = 1;
12854 unsigned int column = 0;
12855 int is_stmt = lh->default_is_stmt;
12856 int basic_block = 0;
12857 int end_sequence = 0;
12858 CORE_ADDR addr;
12859 unsigned char op_index = 0;
12860
12861 if (!decode_for_pst_p && lh->num_file_names >= file)
12862 {
12863 /* Start a subfile for the current file of the state machine. */
12864 /* lh->include_dirs and lh->file_names are 0-based, but the
12865 directory and file name numbers in the statement program
12866 are 1-based. */
12867 struct file_entry *fe = &lh->file_names[file - 1];
12868 char *dir = NULL;
12869
12870 if (fe->dir_index)
12871 dir = lh->include_dirs[fe->dir_index - 1];
12872
12873 dwarf2_start_subfile (fe->name, dir, comp_dir);
12874 }
12875
12876 /* Decode the table. */
12877 while (!end_sequence)
12878 {
12879 op_code = read_1_byte (abfd, line_ptr);
12880 line_ptr += 1;
12881 if (line_ptr > line_end)
12882 {
12883 dwarf2_debug_line_missing_end_sequence_complaint ();
12884 break;
12885 }
12886
12887 if (op_code >= lh->opcode_base)
12888 {
12889 /* Special operand. */
12890 adj_opcode = op_code - lh->opcode_base;
12891 address += (((op_index + (adj_opcode / lh->line_range))
12892 / lh->maximum_ops_per_instruction)
12893 * lh->minimum_instruction_length);
12894 op_index = ((op_index + (adj_opcode / lh->line_range))
12895 % lh->maximum_ops_per_instruction);
12896 line += lh->line_base + (adj_opcode % lh->line_range);
12897 if (lh->num_file_names < file || file == 0)
12898 dwarf2_debug_line_missing_file_complaint ();
12899 /* For now we ignore lines not starting on an
12900 instruction boundary. */
12901 else if (op_index == 0)
12902 {
12903 lh->file_names[file - 1].included_p = 1;
12904 if (!decode_for_pst_p && is_stmt)
12905 {
12906 if (last_subfile != current_subfile)
12907 {
12908 addr = gdbarch_addr_bits_remove (gdbarch, address);
12909 if (last_subfile)
12910 (*p_record_line) (last_subfile, 0, addr);
12911 last_subfile = current_subfile;
12912 }
12913 /* Append row to matrix using current values. */
12914 addr = gdbarch_addr_bits_remove (gdbarch, address);
12915 (*p_record_line) (current_subfile, line, addr);
12916 }
12917 }
12918 basic_block = 0;
12919 }
12920 else switch (op_code)
12921 {
12922 case DW_LNS_extended_op:
12923 extended_len = read_unsigned_leb128 (abfd, line_ptr,
12924 &bytes_read);
12925 line_ptr += bytes_read;
12926 extended_end = line_ptr + extended_len;
12927 extended_op = read_1_byte (abfd, line_ptr);
12928 line_ptr += 1;
12929 switch (extended_op)
12930 {
12931 case DW_LNE_end_sequence:
12932 p_record_line = record_line;
12933 end_sequence = 1;
12934 break;
12935 case DW_LNE_set_address:
12936 address = read_address (abfd, line_ptr, cu, &bytes_read);
12937
12938 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
12939 {
12940 /* This line table is for a function which has been
12941 GCd by the linker. Ignore it. PR gdb/12528 */
12942
12943 long line_offset
12944 = line_ptr - dwarf2_per_objfile->line.buffer;
12945
12946 complaint (&symfile_complaints,
12947 _(".debug_line address at offset 0x%lx is 0 "
12948 "[in module %s]"),
12949 line_offset, objfile->name);
12950 p_record_line = noop_record_line;
12951 }
12952
12953 op_index = 0;
12954 line_ptr += bytes_read;
12955 address += baseaddr;
12956 break;
12957 case DW_LNE_define_file:
12958 {
12959 char *cur_file;
12960 unsigned int dir_index, mod_time, length;
12961
12962 cur_file = read_direct_string (abfd, line_ptr,
12963 &bytes_read);
12964 line_ptr += bytes_read;
12965 dir_index =
12966 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
12967 line_ptr += bytes_read;
12968 mod_time =
12969 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
12970 line_ptr += bytes_read;
12971 length =
12972 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
12973 line_ptr += bytes_read;
12974 add_file_name (lh, cur_file, dir_index, mod_time, length);
12975 }
12976 break;
12977 case DW_LNE_set_discriminator:
12978 /* The discriminator is not interesting to the debugger;
12979 just ignore it. */
12980 line_ptr = extended_end;
12981 break;
12982 default:
12983 complaint (&symfile_complaints,
12984 _("mangled .debug_line section"));
12985 return;
12986 }
12987 /* Make sure that we parsed the extended op correctly. If e.g.
12988 we expected a different address size than the producer used,
12989 we may have read the wrong number of bytes. */
12990 if (line_ptr != extended_end)
12991 {
12992 complaint (&symfile_complaints,
12993 _("mangled .debug_line section"));
12994 return;
12995 }
12996 break;
12997 case DW_LNS_copy:
12998 if (lh->num_file_names < file || file == 0)
12999 dwarf2_debug_line_missing_file_complaint ();
13000 else
13001 {
13002 lh->file_names[file - 1].included_p = 1;
13003 if (!decode_for_pst_p && is_stmt)
13004 {
13005 if (last_subfile != current_subfile)
13006 {
13007 addr = gdbarch_addr_bits_remove (gdbarch, address);
13008 if (last_subfile)
13009 (*p_record_line) (last_subfile, 0, addr);
13010 last_subfile = current_subfile;
13011 }
13012 addr = gdbarch_addr_bits_remove (gdbarch, address);
13013 (*p_record_line) (current_subfile, line, addr);
13014 }
13015 }
13016 basic_block = 0;
13017 break;
13018 case DW_LNS_advance_pc:
13019 {
13020 CORE_ADDR adjust
13021 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
13022
13023 address += (((op_index + adjust)
13024 / lh->maximum_ops_per_instruction)
13025 * lh->minimum_instruction_length);
13026 op_index = ((op_index + adjust)
13027 % lh->maximum_ops_per_instruction);
13028 line_ptr += bytes_read;
13029 }
13030 break;
13031 case DW_LNS_advance_line:
13032 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
13033 line_ptr += bytes_read;
13034 break;
13035 case DW_LNS_set_file:
13036 {
13037 /* The arrays lh->include_dirs and lh->file_names are
13038 0-based, but the directory and file name numbers in
13039 the statement program are 1-based. */
13040 struct file_entry *fe;
13041 char *dir = NULL;
13042
13043 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
13044 line_ptr += bytes_read;
13045 if (lh->num_file_names < file || file == 0)
13046 dwarf2_debug_line_missing_file_complaint ();
13047 else
13048 {
13049 fe = &lh->file_names[file - 1];
13050 if (fe->dir_index)
13051 dir = lh->include_dirs[fe->dir_index - 1];
13052 if (!decode_for_pst_p)
13053 {
13054 last_subfile = current_subfile;
13055 dwarf2_start_subfile (fe->name, dir, comp_dir);
13056 }
13057 }
13058 }
13059 break;
13060 case DW_LNS_set_column:
13061 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
13062 line_ptr += bytes_read;
13063 break;
13064 case DW_LNS_negate_stmt:
13065 is_stmt = (!is_stmt);
13066 break;
13067 case DW_LNS_set_basic_block:
13068 basic_block = 1;
13069 break;
13070 /* Add to the address register of the state machine the
13071 address increment value corresponding to special opcode
13072 255. I.e., this value is scaled by the minimum
13073 instruction length since special opcode 255 would have
13074 scaled the increment. */
13075 case DW_LNS_const_add_pc:
13076 {
13077 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
13078
13079 address += (((op_index + adjust)
13080 / lh->maximum_ops_per_instruction)
13081 * lh->minimum_instruction_length);
13082 op_index = ((op_index + adjust)
13083 % lh->maximum_ops_per_instruction);
13084 }
13085 break;
13086 case DW_LNS_fixed_advance_pc:
13087 address += read_2_bytes (abfd, line_ptr);
13088 op_index = 0;
13089 line_ptr += 2;
13090 break;
13091 default:
13092 {
13093 /* Unknown standard opcode, ignore it. */
13094 int i;
13095
13096 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
13097 {
13098 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
13099 line_ptr += bytes_read;
13100 }
13101 }
13102 }
13103 }
13104 if (lh->num_file_names < file || file == 0)
13105 dwarf2_debug_line_missing_file_complaint ();
13106 else
13107 {
13108 lh->file_names[file - 1].included_p = 1;
13109 if (!decode_for_pst_p)
13110 {
13111 addr = gdbarch_addr_bits_remove (gdbarch, address);
13112 (*p_record_line) (current_subfile, 0, addr);
13113 }
13114 }
13115 }
13116 }
13117
13118 /* Decode the Line Number Program (LNP) for the given line_header
13119 structure and CU. The actual information extracted and the type
13120 of structures created from the LNP depends on the value of PST.
13121
13122 1. If PST is NULL, then this procedure uses the data from the program
13123 to create all necessary symbol tables, and their linetables.
13124
13125 2. If PST is not NULL, this procedure reads the program to determine
13126 the list of files included by the unit represented by PST, and
13127 builds all the associated partial symbol tables.
13128
13129 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
13130 It is used for relative paths in the line table.
13131 NOTE: When processing partial symtabs (pst != NULL),
13132 comp_dir == pst->dirname.
13133
13134 NOTE: It is important that psymtabs have the same file name (via strcmp)
13135 as the corresponding symtab. Since COMP_DIR is not used in the name of the
13136 symtab we don't use it in the name of the psymtabs we create.
13137 E.g. expand_line_sal requires this when finding psymtabs to expand.
13138 A good testcase for this is mb-inline.exp. */
13139
13140 static void
13141 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
13142 struct dwarf2_cu *cu, struct partial_symtab *pst,
13143 int want_line_info)
13144 {
13145 struct objfile *objfile = cu->objfile;
13146 const int decode_for_pst_p = (pst != NULL);
13147 struct subfile *first_subfile = current_subfile;
13148
13149 if (want_line_info)
13150 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
13151
13152 if (decode_for_pst_p)
13153 {
13154 int file_index;
13155
13156 /* Now that we're done scanning the Line Header Program, we can
13157 create the psymtab of each included file. */
13158 for (file_index = 0; file_index < lh->num_file_names; file_index++)
13159 if (lh->file_names[file_index].included_p == 1)
13160 {
13161 char *include_name =
13162 psymtab_include_file_name (lh, file_index, pst, comp_dir);
13163 if (include_name != NULL)
13164 dwarf2_create_include_psymtab (include_name, pst, objfile);
13165 }
13166 }
13167 else
13168 {
13169 /* Make sure a symtab is created for every file, even files
13170 which contain only variables (i.e. no code with associated
13171 line numbers). */
13172 int i;
13173
13174 for (i = 0; i < lh->num_file_names; i++)
13175 {
13176 char *dir = NULL;
13177 struct file_entry *fe;
13178
13179 fe = &lh->file_names[i];
13180 if (fe->dir_index)
13181 dir = lh->include_dirs[fe->dir_index - 1];
13182 dwarf2_start_subfile (fe->name, dir, comp_dir);
13183
13184 /* Skip the main file; we don't need it, and it must be
13185 allocated last, so that it will show up before the
13186 non-primary symtabs in the objfile's symtab list. */
13187 if (current_subfile == first_subfile)
13188 continue;
13189
13190 if (current_subfile->symtab == NULL)
13191 current_subfile->symtab = allocate_symtab (current_subfile->name,
13192 objfile);
13193 fe->symtab = current_subfile->symtab;
13194 }
13195 }
13196 }
13197
13198 /* Start a subfile for DWARF. FILENAME is the name of the file and
13199 DIRNAME the name of the source directory which contains FILENAME
13200 or NULL if not known. COMP_DIR is the compilation directory for the
13201 linetable's compilation unit or NULL if not known.
13202 This routine tries to keep line numbers from identical absolute and
13203 relative file names in a common subfile.
13204
13205 Using the `list' example from the GDB testsuite, which resides in
13206 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
13207 of /srcdir/list0.c yields the following debugging information for list0.c:
13208
13209 DW_AT_name: /srcdir/list0.c
13210 DW_AT_comp_dir: /compdir
13211 files.files[0].name: list0.h
13212 files.files[0].dir: /srcdir
13213 files.files[1].name: list0.c
13214 files.files[1].dir: /srcdir
13215
13216 The line number information for list0.c has to end up in a single
13217 subfile, so that `break /srcdir/list0.c:1' works as expected.
13218 start_subfile will ensure that this happens provided that we pass the
13219 concatenation of files.files[1].dir and files.files[1].name as the
13220 subfile's name. */
13221
13222 static void
13223 dwarf2_start_subfile (char *filename, const char *dirname,
13224 const char *comp_dir)
13225 {
13226 char *fullname;
13227
13228 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
13229 `start_symtab' will always pass the contents of DW_AT_comp_dir as
13230 second argument to start_subfile. To be consistent, we do the
13231 same here. In order not to lose the line information directory,
13232 we concatenate it to the filename when it makes sense.
13233 Note that the Dwarf3 standard says (speaking of filenames in line
13234 information): ``The directory index is ignored for file names
13235 that represent full path names''. Thus ignoring dirname in the
13236 `else' branch below isn't an issue. */
13237
13238 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
13239 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
13240 else
13241 fullname = filename;
13242
13243 start_subfile (fullname, comp_dir);
13244
13245 if (fullname != filename)
13246 xfree (fullname);
13247 }
13248
13249 static void
13250 var_decode_location (struct attribute *attr, struct symbol *sym,
13251 struct dwarf2_cu *cu)
13252 {
13253 struct objfile *objfile = cu->objfile;
13254 struct comp_unit_head *cu_header = &cu->header;
13255
13256 /* NOTE drow/2003-01-30: There used to be a comment and some special
13257 code here to turn a symbol with DW_AT_external and a
13258 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
13259 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
13260 with some versions of binutils) where shared libraries could have
13261 relocations against symbols in their debug information - the
13262 minimal symbol would have the right address, but the debug info
13263 would not. It's no longer necessary, because we will explicitly
13264 apply relocations when we read in the debug information now. */
13265
13266 /* A DW_AT_location attribute with no contents indicates that a
13267 variable has been optimized away. */
13268 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
13269 {
13270 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
13271 return;
13272 }
13273
13274 /* Handle one degenerate form of location expression specially, to
13275 preserve GDB's previous behavior when section offsets are
13276 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
13277 then mark this symbol as LOC_STATIC. */
13278
13279 if (attr_form_is_block (attr)
13280 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
13281 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
13282 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
13283 && (DW_BLOCK (attr)->size
13284 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
13285 {
13286 unsigned int dummy;
13287
13288 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
13289 SYMBOL_VALUE_ADDRESS (sym) =
13290 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
13291 else
13292 SYMBOL_VALUE_ADDRESS (sym) =
13293 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
13294 SYMBOL_CLASS (sym) = LOC_STATIC;
13295 fixup_symbol_section (sym, objfile);
13296 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
13297 SYMBOL_SECTION (sym));
13298 return;
13299 }
13300
13301 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
13302 expression evaluator, and use LOC_COMPUTED only when necessary
13303 (i.e. when the value of a register or memory location is
13304 referenced, or a thread-local block, etc.). Then again, it might
13305 not be worthwhile. I'm assuming that it isn't unless performance
13306 or memory numbers show me otherwise. */
13307
13308 dwarf2_symbol_mark_computed (attr, sym, cu);
13309 SYMBOL_CLASS (sym) = LOC_COMPUTED;
13310
13311 if (SYMBOL_COMPUTED_OPS (sym) == &dwarf2_loclist_funcs)
13312 cu->has_loclist = 1;
13313 }
13314
13315 /* Given a pointer to a DWARF information entry, figure out if we need
13316 to make a symbol table entry for it, and if so, create a new entry
13317 and return a pointer to it.
13318 If TYPE is NULL, determine symbol type from the die, otherwise
13319 used the passed type.
13320 If SPACE is not NULL, use it to hold the new symbol. If it is
13321 NULL, allocate a new symbol on the objfile's obstack. */
13322
13323 static struct symbol *
13324 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
13325 struct symbol *space)
13326 {
13327 struct objfile *objfile = cu->objfile;
13328 struct symbol *sym = NULL;
13329 char *name;
13330 struct attribute *attr = NULL;
13331 struct attribute *attr2 = NULL;
13332 CORE_ADDR baseaddr;
13333 struct pending **list_to_add = NULL;
13334
13335 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13336
13337 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13338
13339 name = dwarf2_name (die, cu);
13340 if (name)
13341 {
13342 const char *linkagename;
13343 int suppress_add = 0;
13344
13345 if (space)
13346 sym = space;
13347 else
13348 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
13349 OBJSTAT (objfile, n_syms++);
13350
13351 /* Cache this symbol's name and the name's demangled form (if any). */
13352 SYMBOL_SET_LANGUAGE (sym, cu->language);
13353 linkagename = dwarf2_physname (name, die, cu);
13354 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
13355
13356 /* Fortran does not have mangling standard and the mangling does differ
13357 between gfortran, iFort etc. */
13358 if (cu->language == language_fortran
13359 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
13360 symbol_set_demangled_name (&(sym->ginfo),
13361 (char *) dwarf2_full_name (name, die, cu),
13362 NULL);
13363
13364 /* Default assumptions.
13365 Use the passed type or decode it from the die. */
13366 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
13367 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
13368 if (type != NULL)
13369 SYMBOL_TYPE (sym) = type;
13370 else
13371 SYMBOL_TYPE (sym) = die_type (die, cu);
13372 attr = dwarf2_attr (die,
13373 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
13374 cu);
13375 if (attr)
13376 {
13377 SYMBOL_LINE (sym) = DW_UNSND (attr);
13378 }
13379
13380 attr = dwarf2_attr (die,
13381 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
13382 cu);
13383 if (attr)
13384 {
13385 int file_index = DW_UNSND (attr);
13386
13387 if (cu->line_header == NULL
13388 || file_index > cu->line_header->num_file_names)
13389 complaint (&symfile_complaints,
13390 _("file index out of range"));
13391 else if (file_index > 0)
13392 {
13393 struct file_entry *fe;
13394
13395 fe = &cu->line_header->file_names[file_index - 1];
13396 SYMBOL_SYMTAB (sym) = fe->symtab;
13397 }
13398 }
13399
13400 switch (die->tag)
13401 {
13402 case DW_TAG_label:
13403 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13404 if (attr)
13405 {
13406 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
13407 }
13408 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
13409 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
13410 SYMBOL_CLASS (sym) = LOC_LABEL;
13411 add_symbol_to_list (sym, cu->list_in_scope);
13412 break;
13413 case DW_TAG_subprogram:
13414 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
13415 finish_block. */
13416 SYMBOL_CLASS (sym) = LOC_BLOCK;
13417 attr2 = dwarf2_attr (die, DW_AT_external, cu);
13418 if ((attr2 && (DW_UNSND (attr2) != 0))
13419 || cu->language == language_ada)
13420 {
13421 /* Subprograms marked external are stored as a global symbol.
13422 Ada subprograms, whether marked external or not, are always
13423 stored as a global symbol, because we want to be able to
13424 access them globally. For instance, we want to be able
13425 to break on a nested subprogram without having to
13426 specify the context. */
13427 list_to_add = &global_symbols;
13428 }
13429 else
13430 {
13431 list_to_add = cu->list_in_scope;
13432 }
13433 break;
13434 case DW_TAG_inlined_subroutine:
13435 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
13436 finish_block. */
13437 SYMBOL_CLASS (sym) = LOC_BLOCK;
13438 SYMBOL_INLINED (sym) = 1;
13439 list_to_add = cu->list_in_scope;
13440 break;
13441 case DW_TAG_template_value_param:
13442 suppress_add = 1;
13443 /* Fall through. */
13444 case DW_TAG_constant:
13445 case DW_TAG_variable:
13446 case DW_TAG_member:
13447 /* Compilation with minimal debug info may result in
13448 variables with missing type entries. Change the
13449 misleading `void' type to something sensible. */
13450 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
13451 SYMBOL_TYPE (sym)
13452 = objfile_type (objfile)->nodebug_data_symbol;
13453
13454 attr = dwarf2_attr (die, DW_AT_const_value, cu);
13455 /* In the case of DW_TAG_member, we should only be called for
13456 static const members. */
13457 if (die->tag == DW_TAG_member)
13458 {
13459 /* dwarf2_add_field uses die_is_declaration,
13460 so we do the same. */
13461 gdb_assert (die_is_declaration (die, cu));
13462 gdb_assert (attr);
13463 }
13464 if (attr)
13465 {
13466 dwarf2_const_value (attr, sym, cu);
13467 attr2 = dwarf2_attr (die, DW_AT_external, cu);
13468 if (!suppress_add)
13469 {
13470 if (attr2 && (DW_UNSND (attr2) != 0))
13471 list_to_add = &global_symbols;
13472 else
13473 list_to_add = cu->list_in_scope;
13474 }
13475 break;
13476 }
13477 attr = dwarf2_attr (die, DW_AT_location, cu);
13478 if (attr)
13479 {
13480 var_decode_location (attr, sym, cu);
13481 attr2 = dwarf2_attr (die, DW_AT_external, cu);
13482 if (SYMBOL_CLASS (sym) == LOC_STATIC
13483 && SYMBOL_VALUE_ADDRESS (sym) == 0
13484 && !dwarf2_per_objfile->has_section_at_zero)
13485 {
13486 /* When a static variable is eliminated by the linker,
13487 the corresponding debug information is not stripped
13488 out, but the variable address is set to null;
13489 do not add such variables into symbol table. */
13490 }
13491 else if (attr2 && (DW_UNSND (attr2) != 0))
13492 {
13493 /* Workaround gfortran PR debug/40040 - it uses
13494 DW_AT_location for variables in -fPIC libraries which may
13495 get overriden by other libraries/executable and get
13496 a different address. Resolve it by the minimal symbol
13497 which may come from inferior's executable using copy
13498 relocation. Make this workaround only for gfortran as for
13499 other compilers GDB cannot guess the minimal symbol
13500 Fortran mangling kind. */
13501 if (cu->language == language_fortran && die->parent
13502 && die->parent->tag == DW_TAG_module
13503 && cu->producer
13504 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
13505 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
13506
13507 /* A variable with DW_AT_external is never static,
13508 but it may be block-scoped. */
13509 list_to_add = (cu->list_in_scope == &file_symbols
13510 ? &global_symbols : cu->list_in_scope);
13511 }
13512 else
13513 list_to_add = cu->list_in_scope;
13514 }
13515 else
13516 {
13517 /* We do not know the address of this symbol.
13518 If it is an external symbol and we have type information
13519 for it, enter the symbol as a LOC_UNRESOLVED symbol.
13520 The address of the variable will then be determined from
13521 the minimal symbol table whenever the variable is
13522 referenced. */
13523 attr2 = dwarf2_attr (die, DW_AT_external, cu);
13524 if (attr2 && (DW_UNSND (attr2) != 0)
13525 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
13526 {
13527 /* A variable with DW_AT_external is never static, but it
13528 may be block-scoped. */
13529 list_to_add = (cu->list_in_scope == &file_symbols
13530 ? &global_symbols : cu->list_in_scope);
13531
13532 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
13533 }
13534 else if (!die_is_declaration (die, cu))
13535 {
13536 /* Use the default LOC_OPTIMIZED_OUT class. */
13537 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
13538 if (!suppress_add)
13539 list_to_add = cu->list_in_scope;
13540 }
13541 }
13542 break;
13543 case DW_TAG_formal_parameter:
13544 /* If we are inside a function, mark this as an argument. If
13545 not, we might be looking at an argument to an inlined function
13546 when we do not have enough information to show inlined frames;
13547 pretend it's a local variable in that case so that the user can
13548 still see it. */
13549 if (context_stack_depth > 0
13550 && context_stack[context_stack_depth - 1].name != NULL)
13551 SYMBOL_IS_ARGUMENT (sym) = 1;
13552 attr = dwarf2_attr (die, DW_AT_location, cu);
13553 if (attr)
13554 {
13555 var_decode_location (attr, sym, cu);
13556 }
13557 attr = dwarf2_attr (die, DW_AT_const_value, cu);
13558 if (attr)
13559 {
13560 dwarf2_const_value (attr, sym, cu);
13561 }
13562
13563 list_to_add = cu->list_in_scope;
13564 break;
13565 case DW_TAG_unspecified_parameters:
13566 /* From varargs functions; gdb doesn't seem to have any
13567 interest in this information, so just ignore it for now.
13568 (FIXME?) */
13569 break;
13570 case DW_TAG_template_type_param:
13571 suppress_add = 1;
13572 /* Fall through. */
13573 case DW_TAG_class_type:
13574 case DW_TAG_interface_type:
13575 case DW_TAG_structure_type:
13576 case DW_TAG_union_type:
13577 case DW_TAG_set_type:
13578 case DW_TAG_enumeration_type:
13579 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
13580 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
13581
13582 {
13583 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
13584 really ever be static objects: otherwise, if you try
13585 to, say, break of a class's method and you're in a file
13586 which doesn't mention that class, it won't work unless
13587 the check for all static symbols in lookup_symbol_aux
13588 saves you. See the OtherFileClass tests in
13589 gdb.c++/namespace.exp. */
13590
13591 if (!suppress_add)
13592 {
13593 list_to_add = (cu->list_in_scope == &file_symbols
13594 && (cu->language == language_cplus
13595 || cu->language == language_java)
13596 ? &global_symbols : cu->list_in_scope);
13597
13598 /* The semantics of C++ state that "struct foo {
13599 ... }" also defines a typedef for "foo". A Java
13600 class declaration also defines a typedef for the
13601 class. */
13602 if (cu->language == language_cplus
13603 || cu->language == language_java
13604 || cu->language == language_ada)
13605 {
13606 /* The symbol's name is already allocated along
13607 with this objfile, so we don't need to
13608 duplicate it for the type. */
13609 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
13610 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
13611 }
13612 }
13613 }
13614 break;
13615 case DW_TAG_typedef:
13616 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
13617 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
13618 list_to_add = cu->list_in_scope;
13619 break;
13620 case DW_TAG_base_type:
13621 case DW_TAG_subrange_type:
13622 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
13623 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
13624 list_to_add = cu->list_in_scope;
13625 break;
13626 case DW_TAG_enumerator:
13627 attr = dwarf2_attr (die, DW_AT_const_value, cu);
13628 if (attr)
13629 {
13630 dwarf2_const_value (attr, sym, cu);
13631 }
13632 {
13633 /* NOTE: carlton/2003-11-10: See comment above in the
13634 DW_TAG_class_type, etc. block. */
13635
13636 list_to_add = (cu->list_in_scope == &file_symbols
13637 && (cu->language == language_cplus
13638 || cu->language == language_java)
13639 ? &global_symbols : cu->list_in_scope);
13640 }
13641 break;
13642 case DW_TAG_namespace:
13643 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
13644 list_to_add = &global_symbols;
13645 break;
13646 default:
13647 /* Not a tag we recognize. Hopefully we aren't processing
13648 trash data, but since we must specifically ignore things
13649 we don't recognize, there is nothing else we should do at
13650 this point. */
13651 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
13652 dwarf_tag_name (die->tag));
13653 break;
13654 }
13655
13656 if (suppress_add)
13657 {
13658 sym->hash_next = objfile->template_symbols;
13659 objfile->template_symbols = sym;
13660 list_to_add = NULL;
13661 }
13662
13663 if (list_to_add != NULL)
13664 add_symbol_to_list (sym, list_to_add);
13665
13666 /* For the benefit of old versions of GCC, check for anonymous
13667 namespaces based on the demangled name. */
13668 if (!processing_has_namespace_info
13669 && cu->language == language_cplus)
13670 cp_scan_for_anonymous_namespaces (sym, objfile);
13671 }
13672 return (sym);
13673 }
13674
13675 /* A wrapper for new_symbol_full that always allocates a new symbol. */
13676
13677 static struct symbol *
13678 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
13679 {
13680 return new_symbol_full (die, type, cu, NULL);
13681 }
13682
13683 /* Given an attr with a DW_FORM_dataN value in host byte order,
13684 zero-extend it as appropriate for the symbol's type. The DWARF
13685 standard (v4) is not entirely clear about the meaning of using
13686 DW_FORM_dataN for a constant with a signed type, where the type is
13687 wider than the data. The conclusion of a discussion on the DWARF
13688 list was that this is unspecified. We choose to always zero-extend
13689 because that is the interpretation long in use by GCC. */
13690
13691 static gdb_byte *
13692 dwarf2_const_value_data (struct attribute *attr, struct type *type,
13693 const char *name, struct obstack *obstack,
13694 struct dwarf2_cu *cu, LONGEST *value, int bits)
13695 {
13696 struct objfile *objfile = cu->objfile;
13697 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
13698 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
13699 LONGEST l = DW_UNSND (attr);
13700
13701 if (bits < sizeof (*value) * 8)
13702 {
13703 l &= ((LONGEST) 1 << bits) - 1;
13704 *value = l;
13705 }
13706 else if (bits == sizeof (*value) * 8)
13707 *value = l;
13708 else
13709 {
13710 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
13711 store_unsigned_integer (bytes, bits / 8, byte_order, l);
13712 return bytes;
13713 }
13714
13715 return NULL;
13716 }
13717
13718 /* Read a constant value from an attribute. Either set *VALUE, or if
13719 the value does not fit in *VALUE, set *BYTES - either already
13720 allocated on the objfile obstack, or newly allocated on OBSTACK,
13721 or, set *BATON, if we translated the constant to a location
13722 expression. */
13723
13724 static void
13725 dwarf2_const_value_attr (struct attribute *attr, struct type *type,
13726 const char *name, struct obstack *obstack,
13727 struct dwarf2_cu *cu,
13728 LONGEST *value, gdb_byte **bytes,
13729 struct dwarf2_locexpr_baton **baton)
13730 {
13731 struct objfile *objfile = cu->objfile;
13732 struct comp_unit_head *cu_header = &cu->header;
13733 struct dwarf_block *blk;
13734 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
13735 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
13736
13737 *value = 0;
13738 *bytes = NULL;
13739 *baton = NULL;
13740
13741 switch (attr->form)
13742 {
13743 case DW_FORM_addr:
13744 case DW_FORM_GNU_addr_index:
13745 {
13746 gdb_byte *data;
13747
13748 if (TYPE_LENGTH (type) != cu_header->addr_size)
13749 dwarf2_const_value_length_mismatch_complaint (name,
13750 cu_header->addr_size,
13751 TYPE_LENGTH (type));
13752 /* Symbols of this form are reasonably rare, so we just
13753 piggyback on the existing location code rather than writing
13754 a new implementation of symbol_computed_ops. */
13755 *baton = obstack_alloc (&objfile->objfile_obstack,
13756 sizeof (struct dwarf2_locexpr_baton));
13757 (*baton)->per_cu = cu->per_cu;
13758 gdb_assert ((*baton)->per_cu);
13759
13760 (*baton)->size = 2 + cu_header->addr_size;
13761 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
13762 (*baton)->data = data;
13763
13764 data[0] = DW_OP_addr;
13765 store_unsigned_integer (&data[1], cu_header->addr_size,
13766 byte_order, DW_ADDR (attr));
13767 data[cu_header->addr_size + 1] = DW_OP_stack_value;
13768 }
13769 break;
13770 case DW_FORM_string:
13771 case DW_FORM_strp:
13772 case DW_FORM_GNU_str_index:
13773 /* DW_STRING is already allocated on the objfile obstack, point
13774 directly to it. */
13775 *bytes = (gdb_byte *) DW_STRING (attr);
13776 break;
13777 case DW_FORM_block1:
13778 case DW_FORM_block2:
13779 case DW_FORM_block4:
13780 case DW_FORM_block:
13781 case DW_FORM_exprloc:
13782 blk = DW_BLOCK (attr);
13783 if (TYPE_LENGTH (type) != blk->size)
13784 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
13785 TYPE_LENGTH (type));
13786 *bytes = blk->data;
13787 break;
13788
13789 /* The DW_AT_const_value attributes are supposed to carry the
13790 symbol's value "represented as it would be on the target
13791 architecture." By the time we get here, it's already been
13792 converted to host endianness, so we just need to sign- or
13793 zero-extend it as appropriate. */
13794 case DW_FORM_data1:
13795 *bytes = dwarf2_const_value_data (attr, type, name,
13796 obstack, cu, value, 8);
13797 break;
13798 case DW_FORM_data2:
13799 *bytes = dwarf2_const_value_data (attr, type, name,
13800 obstack, cu, value, 16);
13801 break;
13802 case DW_FORM_data4:
13803 *bytes = dwarf2_const_value_data (attr, type, name,
13804 obstack, cu, value, 32);
13805 break;
13806 case DW_FORM_data8:
13807 *bytes = dwarf2_const_value_data (attr, type, name,
13808 obstack, cu, value, 64);
13809 break;
13810
13811 case DW_FORM_sdata:
13812 *value = DW_SND (attr);
13813 break;
13814
13815 case DW_FORM_udata:
13816 *value = DW_UNSND (attr);
13817 break;
13818
13819 default:
13820 complaint (&symfile_complaints,
13821 _("unsupported const value attribute form: '%s'"),
13822 dwarf_form_name (attr->form));
13823 *value = 0;
13824 break;
13825 }
13826 }
13827
13828
13829 /* Copy constant value from an attribute to a symbol. */
13830
13831 static void
13832 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
13833 struct dwarf2_cu *cu)
13834 {
13835 struct objfile *objfile = cu->objfile;
13836 struct comp_unit_head *cu_header = &cu->header;
13837 LONGEST value;
13838 gdb_byte *bytes;
13839 struct dwarf2_locexpr_baton *baton;
13840
13841 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
13842 SYMBOL_PRINT_NAME (sym),
13843 &objfile->objfile_obstack, cu,
13844 &value, &bytes, &baton);
13845
13846 if (baton != NULL)
13847 {
13848 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
13849 SYMBOL_LOCATION_BATON (sym) = baton;
13850 SYMBOL_CLASS (sym) = LOC_COMPUTED;
13851 }
13852 else if (bytes != NULL)
13853 {
13854 SYMBOL_VALUE_BYTES (sym) = bytes;
13855 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
13856 }
13857 else
13858 {
13859 SYMBOL_VALUE (sym) = value;
13860 SYMBOL_CLASS (sym) = LOC_CONST;
13861 }
13862 }
13863
13864 /* Return the type of the die in question using its DW_AT_type attribute. */
13865
13866 static struct type *
13867 die_type (struct die_info *die, struct dwarf2_cu *cu)
13868 {
13869 struct attribute *type_attr;
13870
13871 type_attr = dwarf2_attr (die, DW_AT_type, cu);
13872 if (!type_attr)
13873 {
13874 /* A missing DW_AT_type represents a void type. */
13875 return objfile_type (cu->objfile)->builtin_void;
13876 }
13877
13878 return lookup_die_type (die, type_attr, cu);
13879 }
13880
13881 /* True iff CU's producer generates GNAT Ada auxiliary information
13882 that allows to find parallel types through that information instead
13883 of having to do expensive parallel lookups by type name. */
13884
13885 static int
13886 need_gnat_info (struct dwarf2_cu *cu)
13887 {
13888 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
13889 of GNAT produces this auxiliary information, without any indication
13890 that it is produced. Part of enhancing the FSF version of GNAT
13891 to produce that information will be to put in place an indicator
13892 that we can use in order to determine whether the descriptive type
13893 info is available or not. One suggestion that has been made is
13894 to use a new attribute, attached to the CU die. For now, assume
13895 that the descriptive type info is not available. */
13896 return 0;
13897 }
13898
13899 /* Return the auxiliary type of the die in question using its
13900 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
13901 attribute is not present. */
13902
13903 static struct type *
13904 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
13905 {
13906 struct attribute *type_attr;
13907
13908 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
13909 if (!type_attr)
13910 return NULL;
13911
13912 return lookup_die_type (die, type_attr, cu);
13913 }
13914
13915 /* If DIE has a descriptive_type attribute, then set the TYPE's
13916 descriptive type accordingly. */
13917
13918 static void
13919 set_descriptive_type (struct type *type, struct die_info *die,
13920 struct dwarf2_cu *cu)
13921 {
13922 struct type *descriptive_type = die_descriptive_type (die, cu);
13923
13924 if (descriptive_type)
13925 {
13926 ALLOCATE_GNAT_AUX_TYPE (type);
13927 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
13928 }
13929 }
13930
13931 /* Return the containing type of the die in question using its
13932 DW_AT_containing_type attribute. */
13933
13934 static struct type *
13935 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
13936 {
13937 struct attribute *type_attr;
13938
13939 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
13940 if (!type_attr)
13941 error (_("Dwarf Error: Problem turning containing type into gdb type "
13942 "[in module %s]"), cu->objfile->name);
13943
13944 return lookup_die_type (die, type_attr, cu);
13945 }
13946
13947 /* Look up the type of DIE in CU using its type attribute ATTR.
13948 If there is no type substitute an error marker. */
13949
13950 static struct type *
13951 lookup_die_type (struct die_info *die, struct attribute *attr,
13952 struct dwarf2_cu *cu)
13953 {
13954 struct objfile *objfile = cu->objfile;
13955 struct type *this_type;
13956
13957 /* First see if we have it cached. */
13958
13959 if (is_ref_attr (attr))
13960 {
13961 sect_offset offset = dwarf2_get_ref_die_offset (attr);
13962
13963 this_type = get_die_type_at_offset (offset, cu->per_cu);
13964 }
13965 else if (attr->form == DW_FORM_ref_sig8)
13966 {
13967 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
13968
13969 /* sig_type will be NULL if the signatured type is missing from
13970 the debug info. */
13971 if (sig_type == NULL)
13972 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
13973 "at 0x%x [in module %s]"),
13974 die->offset.sect_off, objfile->name);
13975
13976 gdb_assert (sig_type->per_cu.is_debug_types);
13977 /* If we haven't filled in type_offset_in_section yet, then we
13978 haven't read the type in yet. */
13979 this_type = NULL;
13980 if (sig_type->type_offset_in_section.sect_off != 0)
13981 {
13982 this_type =
13983 get_die_type_at_offset (sig_type->type_offset_in_section,
13984 &sig_type->per_cu);
13985 }
13986 }
13987 else
13988 {
13989 dump_die_for_error (die);
13990 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
13991 dwarf_attr_name (attr->name), objfile->name);
13992 }
13993
13994 /* If not cached we need to read it in. */
13995
13996 if (this_type == NULL)
13997 {
13998 struct die_info *type_die;
13999 struct dwarf2_cu *type_cu = cu;
14000
14001 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
14002 /* If we found the type now, it's probably because the type came
14003 from an inter-CU reference and the type's CU got expanded before
14004 ours. */
14005 this_type = get_die_type (type_die, type_cu);
14006 if (this_type == NULL)
14007 this_type = read_type_die_1 (type_die, type_cu);
14008 }
14009
14010 /* If we still don't have a type use an error marker. */
14011
14012 if (this_type == NULL)
14013 {
14014 char *message, *saved;
14015
14016 /* read_type_die already issued a complaint. */
14017 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
14018 objfile->name,
14019 cu->header.offset.sect_off,
14020 die->offset.sect_off);
14021 saved = obstack_copy0 (&objfile->objfile_obstack,
14022 message, strlen (message));
14023 xfree (message);
14024
14025 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
14026 }
14027
14028 return this_type;
14029 }
14030
14031 /* Return the type in DIE, CU.
14032 Returns NULL for invalid types.
14033
14034 This first does a lookup in the appropriate type_hash table,
14035 and only reads the die in if necessary.
14036
14037 NOTE: This can be called when reading in partial or full symbols. */
14038
14039 static struct type *
14040 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
14041 {
14042 struct type *this_type;
14043
14044 this_type = get_die_type (die, cu);
14045 if (this_type)
14046 return this_type;
14047
14048 return read_type_die_1 (die, cu);
14049 }
14050
14051 /* Read the type in DIE, CU.
14052 Returns NULL for invalid types. */
14053
14054 static struct type *
14055 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
14056 {
14057 struct type *this_type = NULL;
14058
14059 switch (die->tag)
14060 {
14061 case DW_TAG_class_type:
14062 case DW_TAG_interface_type:
14063 case DW_TAG_structure_type:
14064 case DW_TAG_union_type:
14065 this_type = read_structure_type (die, cu);
14066 break;
14067 case DW_TAG_enumeration_type:
14068 this_type = read_enumeration_type (die, cu);
14069 break;
14070 case DW_TAG_subprogram:
14071 case DW_TAG_subroutine_type:
14072 case DW_TAG_inlined_subroutine:
14073 this_type = read_subroutine_type (die, cu);
14074 break;
14075 case DW_TAG_array_type:
14076 this_type = read_array_type (die, cu);
14077 break;
14078 case DW_TAG_set_type:
14079 this_type = read_set_type (die, cu);
14080 break;
14081 case DW_TAG_pointer_type:
14082 this_type = read_tag_pointer_type (die, cu);
14083 break;
14084 case DW_TAG_ptr_to_member_type:
14085 this_type = read_tag_ptr_to_member_type (die, cu);
14086 break;
14087 case DW_TAG_reference_type:
14088 this_type = read_tag_reference_type (die, cu);
14089 break;
14090 case DW_TAG_const_type:
14091 this_type = read_tag_const_type (die, cu);
14092 break;
14093 case DW_TAG_volatile_type:
14094 this_type = read_tag_volatile_type (die, cu);
14095 break;
14096 case DW_TAG_string_type:
14097 this_type = read_tag_string_type (die, cu);
14098 break;
14099 case DW_TAG_typedef:
14100 this_type = read_typedef (die, cu);
14101 break;
14102 case DW_TAG_subrange_type:
14103 this_type = read_subrange_type (die, cu);
14104 break;
14105 case DW_TAG_base_type:
14106 this_type = read_base_type (die, cu);
14107 break;
14108 case DW_TAG_unspecified_type:
14109 this_type = read_unspecified_type (die, cu);
14110 break;
14111 case DW_TAG_namespace:
14112 this_type = read_namespace_type (die, cu);
14113 break;
14114 case DW_TAG_module:
14115 this_type = read_module_type (die, cu);
14116 break;
14117 default:
14118 complaint (&symfile_complaints,
14119 _("unexpected tag in read_type_die: '%s'"),
14120 dwarf_tag_name (die->tag));
14121 break;
14122 }
14123
14124 return this_type;
14125 }
14126
14127 /* See if we can figure out if the class lives in a namespace. We do
14128 this by looking for a member function; its demangled name will
14129 contain namespace info, if there is any.
14130 Return the computed name or NULL.
14131 Space for the result is allocated on the objfile's obstack.
14132 This is the full-die version of guess_partial_die_structure_name.
14133 In this case we know DIE has no useful parent. */
14134
14135 static char *
14136 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
14137 {
14138 struct die_info *spec_die;
14139 struct dwarf2_cu *spec_cu;
14140 struct die_info *child;
14141
14142 spec_cu = cu;
14143 spec_die = die_specification (die, &spec_cu);
14144 if (spec_die != NULL)
14145 {
14146 die = spec_die;
14147 cu = spec_cu;
14148 }
14149
14150 for (child = die->child;
14151 child != NULL;
14152 child = child->sibling)
14153 {
14154 if (child->tag == DW_TAG_subprogram)
14155 {
14156 struct attribute *attr;
14157
14158 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
14159 if (attr == NULL)
14160 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
14161 if (attr != NULL)
14162 {
14163 char *actual_name
14164 = language_class_name_from_physname (cu->language_defn,
14165 DW_STRING (attr));
14166 char *name = NULL;
14167
14168 if (actual_name != NULL)
14169 {
14170 char *die_name = dwarf2_name (die, cu);
14171
14172 if (die_name != NULL
14173 && strcmp (die_name, actual_name) != 0)
14174 {
14175 /* Strip off the class name from the full name.
14176 We want the prefix. */
14177 int die_name_len = strlen (die_name);
14178 int actual_name_len = strlen (actual_name);
14179
14180 /* Test for '::' as a sanity check. */
14181 if (actual_name_len > die_name_len + 2
14182 && actual_name[actual_name_len
14183 - die_name_len - 1] == ':')
14184 name =
14185 obsavestring (actual_name,
14186 actual_name_len - die_name_len - 2,
14187 &cu->objfile->objfile_obstack);
14188 }
14189 }
14190 xfree (actual_name);
14191 return name;
14192 }
14193 }
14194 }
14195
14196 return NULL;
14197 }
14198
14199 /* GCC might emit a nameless typedef that has a linkage name. Determine the
14200 prefix part in such case. See
14201 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
14202
14203 static char *
14204 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
14205 {
14206 struct attribute *attr;
14207 char *base;
14208
14209 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
14210 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
14211 return NULL;
14212
14213 attr = dwarf2_attr (die, DW_AT_name, cu);
14214 if (attr != NULL && DW_STRING (attr) != NULL)
14215 return NULL;
14216
14217 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
14218 if (attr == NULL)
14219 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
14220 if (attr == NULL || DW_STRING (attr) == NULL)
14221 return NULL;
14222
14223 /* dwarf2_name had to be already called. */
14224 gdb_assert (DW_STRING_IS_CANONICAL (attr));
14225
14226 /* Strip the base name, keep any leading namespaces/classes. */
14227 base = strrchr (DW_STRING (attr), ':');
14228 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
14229 return "";
14230
14231 return obsavestring (DW_STRING (attr), &base[-1] - DW_STRING (attr),
14232 &cu->objfile->objfile_obstack);
14233 }
14234
14235 /* Return the name of the namespace/class that DIE is defined within,
14236 or "" if we can't tell. The caller should not xfree the result.
14237
14238 For example, if we're within the method foo() in the following
14239 code:
14240
14241 namespace N {
14242 class C {
14243 void foo () {
14244 }
14245 };
14246 }
14247
14248 then determine_prefix on foo's die will return "N::C". */
14249
14250 static const char *
14251 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
14252 {
14253 struct die_info *parent, *spec_die;
14254 struct dwarf2_cu *spec_cu;
14255 struct type *parent_type;
14256 char *retval;
14257
14258 if (cu->language != language_cplus && cu->language != language_java
14259 && cu->language != language_fortran)
14260 return "";
14261
14262 retval = anonymous_struct_prefix (die, cu);
14263 if (retval)
14264 return retval;
14265
14266 /* We have to be careful in the presence of DW_AT_specification.
14267 For example, with GCC 3.4, given the code
14268
14269 namespace N {
14270 void foo() {
14271 // Definition of N::foo.
14272 }
14273 }
14274
14275 then we'll have a tree of DIEs like this:
14276
14277 1: DW_TAG_compile_unit
14278 2: DW_TAG_namespace // N
14279 3: DW_TAG_subprogram // declaration of N::foo
14280 4: DW_TAG_subprogram // definition of N::foo
14281 DW_AT_specification // refers to die #3
14282
14283 Thus, when processing die #4, we have to pretend that we're in
14284 the context of its DW_AT_specification, namely the contex of die
14285 #3. */
14286 spec_cu = cu;
14287 spec_die = die_specification (die, &spec_cu);
14288 if (spec_die == NULL)
14289 parent = die->parent;
14290 else
14291 {
14292 parent = spec_die->parent;
14293 cu = spec_cu;
14294 }
14295
14296 if (parent == NULL)
14297 return "";
14298 else if (parent->building_fullname)
14299 {
14300 const char *name;
14301 const char *parent_name;
14302
14303 /* It has been seen on RealView 2.2 built binaries,
14304 DW_TAG_template_type_param types actually _defined_ as
14305 children of the parent class:
14306
14307 enum E {};
14308 template class <class Enum> Class{};
14309 Class<enum E> class_e;
14310
14311 1: DW_TAG_class_type (Class)
14312 2: DW_TAG_enumeration_type (E)
14313 3: DW_TAG_enumerator (enum1:0)
14314 3: DW_TAG_enumerator (enum2:1)
14315 ...
14316 2: DW_TAG_template_type_param
14317 DW_AT_type DW_FORM_ref_udata (E)
14318
14319 Besides being broken debug info, it can put GDB into an
14320 infinite loop. Consider:
14321
14322 When we're building the full name for Class<E>, we'll start
14323 at Class, and go look over its template type parameters,
14324 finding E. We'll then try to build the full name of E, and
14325 reach here. We're now trying to build the full name of E,
14326 and look over the parent DIE for containing scope. In the
14327 broken case, if we followed the parent DIE of E, we'd again
14328 find Class, and once again go look at its template type
14329 arguments, etc., etc. Simply don't consider such parent die
14330 as source-level parent of this die (it can't be, the language
14331 doesn't allow it), and break the loop here. */
14332 name = dwarf2_name (die, cu);
14333 parent_name = dwarf2_name (parent, cu);
14334 complaint (&symfile_complaints,
14335 _("template param type '%s' defined within parent '%s'"),
14336 name ? name : "<unknown>",
14337 parent_name ? parent_name : "<unknown>");
14338 return "";
14339 }
14340 else
14341 switch (parent->tag)
14342 {
14343 case DW_TAG_namespace:
14344 parent_type = read_type_die (parent, cu);
14345 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
14346 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
14347 Work around this problem here. */
14348 if (cu->language == language_cplus
14349 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
14350 return "";
14351 /* We give a name to even anonymous namespaces. */
14352 return TYPE_TAG_NAME (parent_type);
14353 case DW_TAG_class_type:
14354 case DW_TAG_interface_type:
14355 case DW_TAG_structure_type:
14356 case DW_TAG_union_type:
14357 case DW_TAG_module:
14358 parent_type = read_type_die (parent, cu);
14359 if (TYPE_TAG_NAME (parent_type) != NULL)
14360 return TYPE_TAG_NAME (parent_type);
14361 else
14362 /* An anonymous structure is only allowed non-static data
14363 members; no typedefs, no member functions, et cetera.
14364 So it does not need a prefix. */
14365 return "";
14366 case DW_TAG_compile_unit:
14367 case DW_TAG_partial_unit:
14368 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
14369 if (cu->language == language_cplus
14370 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
14371 && die->child != NULL
14372 && (die->tag == DW_TAG_class_type
14373 || die->tag == DW_TAG_structure_type
14374 || die->tag == DW_TAG_union_type))
14375 {
14376 char *name = guess_full_die_structure_name (die, cu);
14377 if (name != NULL)
14378 return name;
14379 }
14380 return "";
14381 default:
14382 return determine_prefix (parent, cu);
14383 }
14384 }
14385
14386 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
14387 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
14388 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
14389 an obconcat, otherwise allocate storage for the result. The CU argument is
14390 used to determine the language and hence, the appropriate separator. */
14391
14392 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
14393
14394 static char *
14395 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
14396 int physname, struct dwarf2_cu *cu)
14397 {
14398 const char *lead = "";
14399 const char *sep;
14400
14401 if (suffix == NULL || suffix[0] == '\0'
14402 || prefix == NULL || prefix[0] == '\0')
14403 sep = "";
14404 else if (cu->language == language_java)
14405 sep = ".";
14406 else if (cu->language == language_fortran && physname)
14407 {
14408 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
14409 DW_AT_MIPS_linkage_name is preferred and used instead. */
14410
14411 lead = "__";
14412 sep = "_MOD_";
14413 }
14414 else
14415 sep = "::";
14416
14417 if (prefix == NULL)
14418 prefix = "";
14419 if (suffix == NULL)
14420 suffix = "";
14421
14422 if (obs == NULL)
14423 {
14424 char *retval
14425 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
14426
14427 strcpy (retval, lead);
14428 strcat (retval, prefix);
14429 strcat (retval, sep);
14430 strcat (retval, suffix);
14431 return retval;
14432 }
14433 else
14434 {
14435 /* We have an obstack. */
14436 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
14437 }
14438 }
14439
14440 /* Return sibling of die, NULL if no sibling. */
14441
14442 static struct die_info *
14443 sibling_die (struct die_info *die)
14444 {
14445 return die->sibling;
14446 }
14447
14448 /* Get name of a die, return NULL if not found. */
14449
14450 static char *
14451 dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
14452 struct obstack *obstack)
14453 {
14454 if (name && cu->language == language_cplus)
14455 {
14456 char *canon_name = cp_canonicalize_string (name);
14457
14458 if (canon_name != NULL)
14459 {
14460 if (strcmp (canon_name, name) != 0)
14461 name = obsavestring (canon_name, strlen (canon_name),
14462 obstack);
14463 xfree (canon_name);
14464 }
14465 }
14466
14467 return name;
14468 }
14469
14470 /* Get name of a die, return NULL if not found. */
14471
14472 static char *
14473 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
14474 {
14475 struct attribute *attr;
14476
14477 attr = dwarf2_attr (die, DW_AT_name, cu);
14478 if ((!attr || !DW_STRING (attr))
14479 && die->tag != DW_TAG_class_type
14480 && die->tag != DW_TAG_interface_type
14481 && die->tag != DW_TAG_structure_type
14482 && die->tag != DW_TAG_union_type)
14483 return NULL;
14484
14485 switch (die->tag)
14486 {
14487 case DW_TAG_compile_unit:
14488 case DW_TAG_partial_unit:
14489 /* Compilation units have a DW_AT_name that is a filename, not
14490 a source language identifier. */
14491 case DW_TAG_enumeration_type:
14492 case DW_TAG_enumerator:
14493 /* These tags always have simple identifiers already; no need
14494 to canonicalize them. */
14495 return DW_STRING (attr);
14496
14497 case DW_TAG_subprogram:
14498 /* Java constructors will all be named "<init>", so return
14499 the class name when we see this special case. */
14500 if (cu->language == language_java
14501 && DW_STRING (attr) != NULL
14502 && strcmp (DW_STRING (attr), "<init>") == 0)
14503 {
14504 struct dwarf2_cu *spec_cu = cu;
14505 struct die_info *spec_die;
14506
14507 /* GCJ will output '<init>' for Java constructor names.
14508 For this special case, return the name of the parent class. */
14509
14510 /* GCJ may output suprogram DIEs with AT_specification set.
14511 If so, use the name of the specified DIE. */
14512 spec_die = die_specification (die, &spec_cu);
14513 if (spec_die != NULL)
14514 return dwarf2_name (spec_die, spec_cu);
14515
14516 do
14517 {
14518 die = die->parent;
14519 if (die->tag == DW_TAG_class_type)
14520 return dwarf2_name (die, cu);
14521 }
14522 while (die->tag != DW_TAG_compile_unit
14523 && die->tag != DW_TAG_partial_unit);
14524 }
14525 break;
14526
14527 case DW_TAG_class_type:
14528 case DW_TAG_interface_type:
14529 case DW_TAG_structure_type:
14530 case DW_TAG_union_type:
14531 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
14532 structures or unions. These were of the form "._%d" in GCC 4.1,
14533 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
14534 and GCC 4.4. We work around this problem by ignoring these. */
14535 if (attr && DW_STRING (attr)
14536 && (strncmp (DW_STRING (attr), "._", 2) == 0
14537 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
14538 return NULL;
14539
14540 /* GCC might emit a nameless typedef that has a linkage name. See
14541 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
14542 if (!attr || DW_STRING (attr) == NULL)
14543 {
14544 char *demangled = NULL;
14545
14546 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
14547 if (attr == NULL)
14548 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
14549
14550 if (attr == NULL || DW_STRING (attr) == NULL)
14551 return NULL;
14552
14553 /* Avoid demangling DW_STRING (attr) the second time on a second
14554 call for the same DIE. */
14555 if (!DW_STRING_IS_CANONICAL (attr))
14556 demangled = cplus_demangle (DW_STRING (attr), DMGL_TYPES);
14557
14558 if (demangled)
14559 {
14560 char *base;
14561
14562 /* FIXME: we already did this for the partial symbol... */
14563 DW_STRING (attr) = obsavestring (demangled, strlen (demangled),
14564 &cu->objfile->objfile_obstack);
14565 DW_STRING_IS_CANONICAL (attr) = 1;
14566 xfree (demangled);
14567
14568 /* Strip any leading namespaces/classes, keep only the base name.
14569 DW_AT_name for named DIEs does not contain the prefixes. */
14570 base = strrchr (DW_STRING (attr), ':');
14571 if (base && base > DW_STRING (attr) && base[-1] == ':')
14572 return &base[1];
14573 else
14574 return DW_STRING (attr);
14575 }
14576 }
14577 break;
14578
14579 default:
14580 break;
14581 }
14582
14583 if (!DW_STRING_IS_CANONICAL (attr))
14584 {
14585 DW_STRING (attr)
14586 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
14587 &cu->objfile->objfile_obstack);
14588 DW_STRING_IS_CANONICAL (attr) = 1;
14589 }
14590 return DW_STRING (attr);
14591 }
14592
14593 /* Return the die that this die in an extension of, or NULL if there
14594 is none. *EXT_CU is the CU containing DIE on input, and the CU
14595 containing the return value on output. */
14596
14597 static struct die_info *
14598 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
14599 {
14600 struct attribute *attr;
14601
14602 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
14603 if (attr == NULL)
14604 return NULL;
14605
14606 return follow_die_ref (die, attr, ext_cu);
14607 }
14608
14609 /* Convert a DIE tag into its string name. */
14610
14611 static const char *
14612 dwarf_tag_name (unsigned tag)
14613 {
14614 const char *name = get_DW_TAG_name (tag);
14615
14616 if (name == NULL)
14617 return "DW_TAG_<unknown>";
14618
14619 return name;
14620 }
14621
14622 /* Convert a DWARF attribute code into its string name. */
14623
14624 static const char *
14625 dwarf_attr_name (unsigned attr)
14626 {
14627 const char *name;
14628
14629 #ifdef MIPS /* collides with DW_AT_HP_block_index */
14630 if (attr == DW_AT_MIPS_fde)
14631 return "DW_AT_MIPS_fde";
14632 #else
14633 if (attr == DW_AT_HP_block_index)
14634 return "DW_AT_HP_block_index";
14635 #endif
14636
14637 name = get_DW_AT_name (attr);
14638
14639 if (name == NULL)
14640 return "DW_AT_<unknown>";
14641
14642 return name;
14643 }
14644
14645 /* Convert a DWARF value form code into its string name. */
14646
14647 static const char *
14648 dwarf_form_name (unsigned form)
14649 {
14650 const char *name = get_DW_FORM_name (form);
14651
14652 if (name == NULL)
14653 return "DW_FORM_<unknown>";
14654
14655 return name;
14656 }
14657
14658 static char *
14659 dwarf_bool_name (unsigned mybool)
14660 {
14661 if (mybool)
14662 return "TRUE";
14663 else
14664 return "FALSE";
14665 }
14666
14667 /* Convert a DWARF type code into its string name. */
14668
14669 static const char *
14670 dwarf_type_encoding_name (unsigned enc)
14671 {
14672 const char *name = get_DW_ATE_name (enc);
14673
14674 if (name == NULL)
14675 return "DW_ATE_<unknown>";
14676
14677 return name;
14678 }
14679
14680 static void
14681 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
14682 {
14683 unsigned int i;
14684
14685 print_spaces (indent, f);
14686 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
14687 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
14688
14689 if (die->parent != NULL)
14690 {
14691 print_spaces (indent, f);
14692 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
14693 die->parent->offset.sect_off);
14694 }
14695
14696 print_spaces (indent, f);
14697 fprintf_unfiltered (f, " has children: %s\n",
14698 dwarf_bool_name (die->child != NULL));
14699
14700 print_spaces (indent, f);
14701 fprintf_unfiltered (f, " attributes:\n");
14702
14703 for (i = 0; i < die->num_attrs; ++i)
14704 {
14705 print_spaces (indent, f);
14706 fprintf_unfiltered (f, " %s (%s) ",
14707 dwarf_attr_name (die->attrs[i].name),
14708 dwarf_form_name (die->attrs[i].form));
14709
14710 switch (die->attrs[i].form)
14711 {
14712 case DW_FORM_addr:
14713 case DW_FORM_GNU_addr_index:
14714 fprintf_unfiltered (f, "address: ");
14715 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
14716 break;
14717 case DW_FORM_block2:
14718 case DW_FORM_block4:
14719 case DW_FORM_block:
14720 case DW_FORM_block1:
14721 fprintf_unfiltered (f, "block: size %d",
14722 DW_BLOCK (&die->attrs[i])->size);
14723 break;
14724 case DW_FORM_exprloc:
14725 fprintf_unfiltered (f, "expression: size %u",
14726 DW_BLOCK (&die->attrs[i])->size);
14727 break;
14728 case DW_FORM_ref_addr:
14729 fprintf_unfiltered (f, "ref address: ");
14730 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
14731 break;
14732 case DW_FORM_ref1:
14733 case DW_FORM_ref2:
14734 case DW_FORM_ref4:
14735 case DW_FORM_ref8:
14736 case DW_FORM_ref_udata:
14737 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
14738 (long) (DW_UNSND (&die->attrs[i])));
14739 break;
14740 case DW_FORM_data1:
14741 case DW_FORM_data2:
14742 case DW_FORM_data4:
14743 case DW_FORM_data8:
14744 case DW_FORM_udata:
14745 case DW_FORM_sdata:
14746 fprintf_unfiltered (f, "constant: %s",
14747 pulongest (DW_UNSND (&die->attrs[i])));
14748 break;
14749 case DW_FORM_sec_offset:
14750 fprintf_unfiltered (f, "section offset: %s",
14751 pulongest (DW_UNSND (&die->attrs[i])));
14752 break;
14753 case DW_FORM_ref_sig8:
14754 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
14755 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
14756 DW_SIGNATURED_TYPE (&die->attrs[i])->per_cu.offset.sect_off);
14757 else
14758 fprintf_unfiltered (f, "signatured type, offset: unknown");
14759 break;
14760 case DW_FORM_string:
14761 case DW_FORM_strp:
14762 case DW_FORM_GNU_str_index:
14763 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
14764 DW_STRING (&die->attrs[i])
14765 ? DW_STRING (&die->attrs[i]) : "",
14766 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
14767 break;
14768 case DW_FORM_flag:
14769 if (DW_UNSND (&die->attrs[i]))
14770 fprintf_unfiltered (f, "flag: TRUE");
14771 else
14772 fprintf_unfiltered (f, "flag: FALSE");
14773 break;
14774 case DW_FORM_flag_present:
14775 fprintf_unfiltered (f, "flag: TRUE");
14776 break;
14777 case DW_FORM_indirect:
14778 /* The reader will have reduced the indirect form to
14779 the "base form" so this form should not occur. */
14780 fprintf_unfiltered (f,
14781 "unexpected attribute form: DW_FORM_indirect");
14782 break;
14783 default:
14784 fprintf_unfiltered (f, "unsupported attribute form: %d.",
14785 die->attrs[i].form);
14786 break;
14787 }
14788 fprintf_unfiltered (f, "\n");
14789 }
14790 }
14791
14792 static void
14793 dump_die_for_error (struct die_info *die)
14794 {
14795 dump_die_shallow (gdb_stderr, 0, die);
14796 }
14797
14798 static void
14799 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
14800 {
14801 int indent = level * 4;
14802
14803 gdb_assert (die != NULL);
14804
14805 if (level >= max_level)
14806 return;
14807
14808 dump_die_shallow (f, indent, die);
14809
14810 if (die->child != NULL)
14811 {
14812 print_spaces (indent, f);
14813 fprintf_unfiltered (f, " Children:");
14814 if (level + 1 < max_level)
14815 {
14816 fprintf_unfiltered (f, "\n");
14817 dump_die_1 (f, level + 1, max_level, die->child);
14818 }
14819 else
14820 {
14821 fprintf_unfiltered (f,
14822 " [not printed, max nesting level reached]\n");
14823 }
14824 }
14825
14826 if (die->sibling != NULL && level > 0)
14827 {
14828 dump_die_1 (f, level, max_level, die->sibling);
14829 }
14830 }
14831
14832 /* This is called from the pdie macro in gdbinit.in.
14833 It's not static so gcc will keep a copy callable from gdb. */
14834
14835 void
14836 dump_die (struct die_info *die, int max_level)
14837 {
14838 dump_die_1 (gdb_stdlog, 0, max_level, die);
14839 }
14840
14841 static void
14842 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
14843 {
14844 void **slot;
14845
14846 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
14847 INSERT);
14848
14849 *slot = die;
14850 }
14851
14852 /* DW_ADDR is always stored already as sect_offset; despite for the forms
14853 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
14854
14855 static int
14856 is_ref_attr (struct attribute *attr)
14857 {
14858 switch (attr->form)
14859 {
14860 case DW_FORM_ref_addr:
14861 case DW_FORM_ref1:
14862 case DW_FORM_ref2:
14863 case DW_FORM_ref4:
14864 case DW_FORM_ref8:
14865 case DW_FORM_ref_udata:
14866 return 1;
14867 default:
14868 return 0;
14869 }
14870 }
14871
14872 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
14873 required kind. */
14874
14875 static sect_offset
14876 dwarf2_get_ref_die_offset (struct attribute *attr)
14877 {
14878 sect_offset retval = { DW_UNSND (attr) };
14879
14880 if (is_ref_attr (attr))
14881 return retval;
14882
14883 retval.sect_off = 0;
14884 complaint (&symfile_complaints,
14885 _("unsupported die ref attribute form: '%s'"),
14886 dwarf_form_name (attr->form));
14887 return retval;
14888 }
14889
14890 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
14891 * the value held by the attribute is not constant. */
14892
14893 static LONGEST
14894 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
14895 {
14896 if (attr->form == DW_FORM_sdata)
14897 return DW_SND (attr);
14898 else if (attr->form == DW_FORM_udata
14899 || attr->form == DW_FORM_data1
14900 || attr->form == DW_FORM_data2
14901 || attr->form == DW_FORM_data4
14902 || attr->form == DW_FORM_data8)
14903 return DW_UNSND (attr);
14904 else
14905 {
14906 complaint (&symfile_complaints,
14907 _("Attribute value is not a constant (%s)"),
14908 dwarf_form_name (attr->form));
14909 return default_value;
14910 }
14911 }
14912
14913 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
14914 unit and add it to our queue.
14915 The result is non-zero if PER_CU was queued, otherwise the result is zero
14916 meaning either PER_CU is already queued or it is already loaded. */
14917
14918 static int
14919 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
14920 struct dwarf2_per_cu_data *per_cu,
14921 enum language pretend_language)
14922 {
14923 /* We may arrive here during partial symbol reading, if we need full
14924 DIEs to process an unusual case (e.g. template arguments). Do
14925 not queue PER_CU, just tell our caller to load its DIEs. */
14926 if (dwarf2_per_objfile->reading_partial_symbols)
14927 {
14928 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
14929 return 1;
14930 return 0;
14931 }
14932
14933 /* Mark the dependence relation so that we don't flush PER_CU
14934 too early. */
14935 dwarf2_add_dependence (this_cu, per_cu);
14936
14937 /* If it's already on the queue, we have nothing to do. */
14938 if (per_cu->queued)
14939 return 0;
14940
14941 /* If the compilation unit is already loaded, just mark it as
14942 used. */
14943 if (per_cu->cu != NULL)
14944 {
14945 per_cu->cu->last_used = 0;
14946 return 0;
14947 }
14948
14949 /* Add it to the queue. */
14950 queue_comp_unit (per_cu, pretend_language);
14951
14952 return 1;
14953 }
14954
14955 /* Follow reference or signature attribute ATTR of SRC_DIE.
14956 On entry *REF_CU is the CU of SRC_DIE.
14957 On exit *REF_CU is the CU of the result. */
14958
14959 static struct die_info *
14960 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
14961 struct dwarf2_cu **ref_cu)
14962 {
14963 struct die_info *die;
14964
14965 if (is_ref_attr (attr))
14966 die = follow_die_ref (src_die, attr, ref_cu);
14967 else if (attr->form == DW_FORM_ref_sig8)
14968 die = follow_die_sig (src_die, attr, ref_cu);
14969 else
14970 {
14971 dump_die_for_error (src_die);
14972 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
14973 (*ref_cu)->objfile->name);
14974 }
14975
14976 return die;
14977 }
14978
14979 /* Follow reference OFFSET.
14980 On entry *REF_CU is the CU of the source die referencing OFFSET.
14981 On exit *REF_CU is the CU of the result.
14982 Returns NULL if OFFSET is invalid. */
14983
14984 static struct die_info *
14985 follow_die_offset (sect_offset offset, struct dwarf2_cu **ref_cu)
14986 {
14987 struct die_info temp_die;
14988 struct dwarf2_cu *target_cu, *cu = *ref_cu;
14989
14990 gdb_assert (cu->per_cu != NULL);
14991
14992 target_cu = cu;
14993
14994 if (cu->per_cu->is_debug_types)
14995 {
14996 /* .debug_types CUs cannot reference anything outside their CU.
14997 If they need to, they have to reference a signatured type via
14998 DW_FORM_ref_sig8. */
14999 if (! offset_in_cu_p (&cu->header, offset))
15000 return NULL;
15001 }
15002 else if (! offset_in_cu_p (&cu->header, offset))
15003 {
15004 struct dwarf2_per_cu_data *per_cu;
15005
15006 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
15007
15008 /* If necessary, add it to the queue and load its DIEs. */
15009 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
15010 load_full_comp_unit (per_cu, cu->language);
15011
15012 target_cu = per_cu->cu;
15013 }
15014 else if (cu->dies == NULL)
15015 {
15016 /* We're loading full DIEs during partial symbol reading. */
15017 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
15018 load_full_comp_unit (cu->per_cu, language_minimal);
15019 }
15020
15021 *ref_cu = target_cu;
15022 temp_die.offset = offset;
15023 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
15024 }
15025
15026 /* Follow reference attribute ATTR of SRC_DIE.
15027 On entry *REF_CU is the CU of SRC_DIE.
15028 On exit *REF_CU is the CU of the result. */
15029
15030 static struct die_info *
15031 follow_die_ref (struct die_info *src_die, struct attribute *attr,
15032 struct dwarf2_cu **ref_cu)
15033 {
15034 sect_offset offset = dwarf2_get_ref_die_offset (attr);
15035 struct dwarf2_cu *cu = *ref_cu;
15036 struct die_info *die;
15037
15038 die = follow_die_offset (offset, ref_cu);
15039 if (!die)
15040 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
15041 "at 0x%x [in module %s]"),
15042 offset.sect_off, src_die->offset.sect_off, cu->objfile->name);
15043
15044 return die;
15045 }
15046
15047 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
15048 Returned value is intended for DW_OP_call*. Returned
15049 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
15050
15051 struct dwarf2_locexpr_baton
15052 dwarf2_fetch_die_location_block (cu_offset offset_in_cu,
15053 struct dwarf2_per_cu_data *per_cu,
15054 CORE_ADDR (*get_frame_pc) (void *baton),
15055 void *baton)
15056 {
15057 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
15058 struct dwarf2_cu *cu;
15059 struct die_info *die;
15060 struct attribute *attr;
15061 struct dwarf2_locexpr_baton retval;
15062
15063 dw2_setup (per_cu->objfile);
15064
15065 if (per_cu->cu == NULL)
15066 load_cu (per_cu);
15067 cu = per_cu->cu;
15068
15069 die = follow_die_offset (offset, &cu);
15070 if (!die)
15071 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
15072 offset.sect_off, per_cu->objfile->name);
15073
15074 attr = dwarf2_attr (die, DW_AT_location, cu);
15075 if (!attr)
15076 {
15077 /* DWARF: "If there is no such attribute, then there is no effect.".
15078 DATA is ignored if SIZE is 0. */
15079
15080 retval.data = NULL;
15081 retval.size = 0;
15082 }
15083 else if (attr_form_is_section_offset (attr))
15084 {
15085 struct dwarf2_loclist_baton loclist_baton;
15086 CORE_ADDR pc = (*get_frame_pc) (baton);
15087 size_t size;
15088
15089 fill_in_loclist_baton (cu, &loclist_baton, attr);
15090
15091 retval.data = dwarf2_find_location_expression (&loclist_baton,
15092 &size, pc);
15093 retval.size = size;
15094 }
15095 else
15096 {
15097 if (!attr_form_is_block (attr))
15098 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
15099 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
15100 offset.sect_off, per_cu->objfile->name);
15101
15102 retval.data = DW_BLOCK (attr)->data;
15103 retval.size = DW_BLOCK (attr)->size;
15104 }
15105 retval.per_cu = cu->per_cu;
15106
15107 age_cached_comp_units ();
15108
15109 return retval;
15110 }
15111
15112 /* Return the type of the DIE at DIE_OFFSET in the CU named by
15113 PER_CU. */
15114
15115 struct type *
15116 dwarf2_get_die_type (cu_offset die_offset,
15117 struct dwarf2_per_cu_data *per_cu)
15118 {
15119 sect_offset die_offset_sect;
15120
15121 dw2_setup (per_cu->objfile);
15122
15123 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
15124 return get_die_type_at_offset (die_offset_sect, per_cu);
15125 }
15126
15127 /* Follow the signature attribute ATTR in SRC_DIE.
15128 On entry *REF_CU is the CU of SRC_DIE.
15129 On exit *REF_CU is the CU of the result. */
15130
15131 static struct die_info *
15132 follow_die_sig (struct die_info *src_die, struct attribute *attr,
15133 struct dwarf2_cu **ref_cu)
15134 {
15135 struct objfile *objfile = (*ref_cu)->objfile;
15136 struct die_info temp_die;
15137 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
15138 struct dwarf2_cu *sig_cu;
15139 struct die_info *die;
15140
15141 /* sig_type will be NULL if the signatured type is missing from
15142 the debug info. */
15143 if (sig_type == NULL)
15144 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
15145 "at 0x%x [in module %s]"),
15146 src_die->offset.sect_off, objfile->name);
15147
15148 /* If necessary, add it to the queue and load its DIEs. */
15149
15150 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
15151 read_signatured_type (sig_type);
15152
15153 gdb_assert (sig_type->per_cu.cu != NULL);
15154
15155 sig_cu = sig_type->per_cu.cu;
15156 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
15157 temp_die.offset = sig_type->type_offset_in_section;
15158 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
15159 temp_die.offset.sect_off);
15160 if (die)
15161 {
15162 *ref_cu = sig_cu;
15163 return die;
15164 }
15165
15166 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced "
15167 "from DIE at 0x%x [in module %s]"),
15168 temp_die.offset.sect_off, src_die->offset.sect_off, objfile->name);
15169 }
15170
15171 /* Given an offset of a signatured type, return its signatured_type. */
15172
15173 static struct signatured_type *
15174 lookup_signatured_type_at_offset (struct objfile *objfile,
15175 struct dwarf2_section_info *section,
15176 sect_offset offset)
15177 {
15178 gdb_byte *info_ptr = section->buffer + offset.sect_off;
15179 unsigned int length, initial_length_size;
15180 unsigned int sig_offset;
15181 struct signatured_type find_entry, *sig_type;
15182
15183 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
15184 sig_offset = (initial_length_size
15185 + 2 /*version*/
15186 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
15187 + 1 /*address_size*/);
15188 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
15189 sig_type = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
15190
15191 /* This is only used to lookup previously recorded types.
15192 If we didn't find it, it's our bug. */
15193 gdb_assert (sig_type != NULL);
15194 gdb_assert (offset.sect_off == sig_type->per_cu.offset.sect_off);
15195
15196 return sig_type;
15197 }
15198
15199 /* Load the DIEs associated with type unit PER_CU into memory. */
15200
15201 static void
15202 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
15203 {
15204 struct objfile *objfile = per_cu->objfile;
15205 struct dwarf2_section_info *sect = per_cu->info_or_types_section;
15206 sect_offset offset = per_cu->offset;
15207 struct signatured_type *sig_type;
15208
15209 dwarf2_read_section (objfile, sect);
15210
15211 /* We have the section offset, but we need the signature to do the
15212 hash table lookup. */
15213 /* FIXME: This is sorta unnecessary, read_signatured_type only uses
15214 the signature to assert we found the right one.
15215 Ok, but it's a lot of work. We should simplify things so any needed
15216 assert doesn't require all this clumsiness. */
15217 sig_type = lookup_signatured_type_at_offset (objfile, sect, offset);
15218
15219 gdb_assert (&sig_type->per_cu == per_cu);
15220 gdb_assert (sig_type->per_cu.cu == NULL);
15221
15222 read_signatured_type (sig_type);
15223
15224 gdb_assert (sig_type->per_cu.cu != NULL);
15225 }
15226
15227 /* die_reader_func for read_signatured_type.
15228 This is identical to load_full_comp_unit_reader,
15229 but is kept separate for now. */
15230
15231 static void
15232 read_signatured_type_reader (const struct die_reader_specs *reader,
15233 gdb_byte *info_ptr,
15234 struct die_info *comp_unit_die,
15235 int has_children,
15236 void *data)
15237 {
15238 struct dwarf2_cu *cu = reader->cu;
15239
15240 gdb_assert (cu->die_hash == NULL);
15241 cu->die_hash =
15242 htab_create_alloc_ex (cu->header.length / 12,
15243 die_hash,
15244 die_eq,
15245 NULL,
15246 &cu->comp_unit_obstack,
15247 hashtab_obstack_allocate,
15248 dummy_obstack_deallocate);
15249
15250 if (has_children)
15251 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
15252 &info_ptr, comp_unit_die);
15253 cu->dies = comp_unit_die;
15254 /* comp_unit_die is not stored in die_hash, no need. */
15255
15256 /* We try not to read any attributes in this function, because not
15257 all CUs needed for references have been loaded yet, and symbol
15258 table processing isn't initialized. But we have to set the CU language,
15259 or we won't be able to build types correctly.
15260 Similarly, if we do not read the producer, we can not apply
15261 producer-specific interpretation. */
15262 prepare_one_comp_unit (cu, cu->dies, language_minimal);
15263 }
15264
15265 /* Read in a signatured type and build its CU and DIEs.
15266 If the type is a stub for the real type in a DWO file,
15267 read in the real type from the DWO file as well. */
15268
15269 static void
15270 read_signatured_type (struct signatured_type *sig_type)
15271 {
15272 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
15273
15274 gdb_assert (per_cu->is_debug_types);
15275 gdb_assert (per_cu->cu == NULL);
15276
15277 init_cutu_and_read_dies (per_cu, 0, 1, read_signatured_type_reader, NULL);
15278 }
15279
15280 /* Decode simple location descriptions.
15281 Given a pointer to a dwarf block that defines a location, compute
15282 the location and return the value.
15283
15284 NOTE drow/2003-11-18: This function is called in two situations
15285 now: for the address of static or global variables (partial symbols
15286 only) and for offsets into structures which are expected to be
15287 (more or less) constant. The partial symbol case should go away,
15288 and only the constant case should remain. That will let this
15289 function complain more accurately. A few special modes are allowed
15290 without complaint for global variables (for instance, global
15291 register values and thread-local values).
15292
15293 A location description containing no operations indicates that the
15294 object is optimized out. The return value is 0 for that case.
15295 FIXME drow/2003-11-16: No callers check for this case any more; soon all
15296 callers will only want a very basic result and this can become a
15297 complaint.
15298
15299 Note that stack[0] is unused except as a default error return. */
15300
15301 static CORE_ADDR
15302 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
15303 {
15304 struct objfile *objfile = cu->objfile;
15305 int i;
15306 int size = blk->size;
15307 gdb_byte *data = blk->data;
15308 CORE_ADDR stack[64];
15309 int stacki;
15310 unsigned int bytes_read, unsnd;
15311 gdb_byte op;
15312
15313 i = 0;
15314 stacki = 0;
15315 stack[stacki] = 0;
15316 stack[++stacki] = 0;
15317
15318 while (i < size)
15319 {
15320 op = data[i++];
15321 switch (op)
15322 {
15323 case DW_OP_lit0:
15324 case DW_OP_lit1:
15325 case DW_OP_lit2:
15326 case DW_OP_lit3:
15327 case DW_OP_lit4:
15328 case DW_OP_lit5:
15329 case DW_OP_lit6:
15330 case DW_OP_lit7:
15331 case DW_OP_lit8:
15332 case DW_OP_lit9:
15333 case DW_OP_lit10:
15334 case DW_OP_lit11:
15335 case DW_OP_lit12:
15336 case DW_OP_lit13:
15337 case DW_OP_lit14:
15338 case DW_OP_lit15:
15339 case DW_OP_lit16:
15340 case DW_OP_lit17:
15341 case DW_OP_lit18:
15342 case DW_OP_lit19:
15343 case DW_OP_lit20:
15344 case DW_OP_lit21:
15345 case DW_OP_lit22:
15346 case DW_OP_lit23:
15347 case DW_OP_lit24:
15348 case DW_OP_lit25:
15349 case DW_OP_lit26:
15350 case DW_OP_lit27:
15351 case DW_OP_lit28:
15352 case DW_OP_lit29:
15353 case DW_OP_lit30:
15354 case DW_OP_lit31:
15355 stack[++stacki] = op - DW_OP_lit0;
15356 break;
15357
15358 case DW_OP_reg0:
15359 case DW_OP_reg1:
15360 case DW_OP_reg2:
15361 case DW_OP_reg3:
15362 case DW_OP_reg4:
15363 case DW_OP_reg5:
15364 case DW_OP_reg6:
15365 case DW_OP_reg7:
15366 case DW_OP_reg8:
15367 case DW_OP_reg9:
15368 case DW_OP_reg10:
15369 case DW_OP_reg11:
15370 case DW_OP_reg12:
15371 case DW_OP_reg13:
15372 case DW_OP_reg14:
15373 case DW_OP_reg15:
15374 case DW_OP_reg16:
15375 case DW_OP_reg17:
15376 case DW_OP_reg18:
15377 case DW_OP_reg19:
15378 case DW_OP_reg20:
15379 case DW_OP_reg21:
15380 case DW_OP_reg22:
15381 case DW_OP_reg23:
15382 case DW_OP_reg24:
15383 case DW_OP_reg25:
15384 case DW_OP_reg26:
15385 case DW_OP_reg27:
15386 case DW_OP_reg28:
15387 case DW_OP_reg29:
15388 case DW_OP_reg30:
15389 case DW_OP_reg31:
15390 stack[++stacki] = op - DW_OP_reg0;
15391 if (i < size)
15392 dwarf2_complex_location_expr_complaint ();
15393 break;
15394
15395 case DW_OP_regx:
15396 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
15397 i += bytes_read;
15398 stack[++stacki] = unsnd;
15399 if (i < size)
15400 dwarf2_complex_location_expr_complaint ();
15401 break;
15402
15403 case DW_OP_addr:
15404 stack[++stacki] = read_address (objfile->obfd, &data[i],
15405 cu, &bytes_read);
15406 i += bytes_read;
15407 break;
15408
15409 case DW_OP_const1u:
15410 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
15411 i += 1;
15412 break;
15413
15414 case DW_OP_const1s:
15415 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
15416 i += 1;
15417 break;
15418
15419 case DW_OP_const2u:
15420 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
15421 i += 2;
15422 break;
15423
15424 case DW_OP_const2s:
15425 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
15426 i += 2;
15427 break;
15428
15429 case DW_OP_const4u:
15430 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
15431 i += 4;
15432 break;
15433
15434 case DW_OP_const4s:
15435 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
15436 i += 4;
15437 break;
15438
15439 case DW_OP_const8u:
15440 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
15441 i += 8;
15442 break;
15443
15444 case DW_OP_constu:
15445 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
15446 &bytes_read);
15447 i += bytes_read;
15448 break;
15449
15450 case DW_OP_consts:
15451 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
15452 i += bytes_read;
15453 break;
15454
15455 case DW_OP_dup:
15456 stack[stacki + 1] = stack[stacki];
15457 stacki++;
15458 break;
15459
15460 case DW_OP_plus:
15461 stack[stacki - 1] += stack[stacki];
15462 stacki--;
15463 break;
15464
15465 case DW_OP_plus_uconst:
15466 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
15467 &bytes_read);
15468 i += bytes_read;
15469 break;
15470
15471 case DW_OP_minus:
15472 stack[stacki - 1] -= stack[stacki];
15473 stacki--;
15474 break;
15475
15476 case DW_OP_deref:
15477 /* If we're not the last op, then we definitely can't encode
15478 this using GDB's address_class enum. This is valid for partial
15479 global symbols, although the variable's address will be bogus
15480 in the psymtab. */
15481 if (i < size)
15482 dwarf2_complex_location_expr_complaint ();
15483 break;
15484
15485 case DW_OP_GNU_push_tls_address:
15486 /* The top of the stack has the offset from the beginning
15487 of the thread control block at which the variable is located. */
15488 /* Nothing should follow this operator, so the top of stack would
15489 be returned. */
15490 /* This is valid for partial global symbols, but the variable's
15491 address will be bogus in the psymtab. Make it always at least
15492 non-zero to not look as a variable garbage collected by linker
15493 which have DW_OP_addr 0. */
15494 if (i < size)
15495 dwarf2_complex_location_expr_complaint ();
15496 stack[stacki]++;
15497 break;
15498
15499 case DW_OP_GNU_uninit:
15500 break;
15501
15502 case DW_OP_GNU_addr_index:
15503 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
15504 &bytes_read);
15505 i += bytes_read;
15506 break;
15507
15508 default:
15509 {
15510 const char *name = get_DW_OP_name (op);
15511
15512 if (name)
15513 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
15514 name);
15515 else
15516 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
15517 op);
15518 }
15519
15520 return (stack[stacki]);
15521 }
15522
15523 /* Enforce maximum stack depth of SIZE-1 to avoid writing
15524 outside of the allocated space. Also enforce minimum>0. */
15525 if (stacki >= ARRAY_SIZE (stack) - 1)
15526 {
15527 complaint (&symfile_complaints,
15528 _("location description stack overflow"));
15529 return 0;
15530 }
15531
15532 if (stacki <= 0)
15533 {
15534 complaint (&symfile_complaints,
15535 _("location description stack underflow"));
15536 return 0;
15537 }
15538 }
15539 return (stack[stacki]);
15540 }
15541
15542 /* memory allocation interface */
15543
15544 static struct dwarf_block *
15545 dwarf_alloc_block (struct dwarf2_cu *cu)
15546 {
15547 struct dwarf_block *blk;
15548
15549 blk = (struct dwarf_block *)
15550 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
15551 return (blk);
15552 }
15553
15554 static struct abbrev_info *
15555 dwarf_alloc_abbrev (struct dwarf2_cu *cu)
15556 {
15557 struct abbrev_info *abbrev;
15558
15559 abbrev = (struct abbrev_info *)
15560 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
15561 memset (abbrev, 0, sizeof (struct abbrev_info));
15562 return (abbrev);
15563 }
15564
15565 static struct die_info *
15566 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
15567 {
15568 struct die_info *die;
15569 size_t size = sizeof (struct die_info);
15570
15571 if (num_attrs > 1)
15572 size += (num_attrs - 1) * sizeof (struct attribute);
15573
15574 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
15575 memset (die, 0, sizeof (struct die_info));
15576 return (die);
15577 }
15578
15579 \f
15580 /* Macro support. */
15581
15582 /* Return the full name of file number I in *LH's file name table.
15583 Use COMP_DIR as the name of the current directory of the
15584 compilation. The result is allocated using xmalloc; the caller is
15585 responsible for freeing it. */
15586 static char *
15587 file_full_name (int file, struct line_header *lh, const char *comp_dir)
15588 {
15589 /* Is the file number a valid index into the line header's file name
15590 table? Remember that file numbers start with one, not zero. */
15591 if (1 <= file && file <= lh->num_file_names)
15592 {
15593 struct file_entry *fe = &lh->file_names[file - 1];
15594
15595 if (IS_ABSOLUTE_PATH (fe->name))
15596 return xstrdup (fe->name);
15597 else
15598 {
15599 const char *dir;
15600 int dir_len;
15601 char *full_name;
15602
15603 if (fe->dir_index)
15604 dir = lh->include_dirs[fe->dir_index - 1];
15605 else
15606 dir = comp_dir;
15607
15608 if (dir)
15609 {
15610 dir_len = strlen (dir);
15611 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
15612 strcpy (full_name, dir);
15613 full_name[dir_len] = '/';
15614 strcpy (full_name + dir_len + 1, fe->name);
15615 return full_name;
15616 }
15617 else
15618 return xstrdup (fe->name);
15619 }
15620 }
15621 else
15622 {
15623 /* The compiler produced a bogus file number. We can at least
15624 record the macro definitions made in the file, even if we
15625 won't be able to find the file by name. */
15626 char fake_name[80];
15627
15628 sprintf (fake_name, "<bad macro file number %d>", file);
15629
15630 complaint (&symfile_complaints,
15631 _("bad file number in macro information (%d)"),
15632 file);
15633
15634 return xstrdup (fake_name);
15635 }
15636 }
15637
15638
15639 static struct macro_source_file *
15640 macro_start_file (int file, int line,
15641 struct macro_source_file *current_file,
15642 const char *comp_dir,
15643 struct line_header *lh, struct objfile *objfile)
15644 {
15645 /* The full name of this source file. */
15646 char *full_name = file_full_name (file, lh, comp_dir);
15647
15648 /* We don't create a macro table for this compilation unit
15649 at all until we actually get a filename. */
15650 if (! pending_macros)
15651 pending_macros = new_macro_table (&objfile->objfile_obstack,
15652 objfile->macro_cache);
15653
15654 if (! current_file)
15655 {
15656 /* If we have no current file, then this must be the start_file
15657 directive for the compilation unit's main source file. */
15658 current_file = macro_set_main (pending_macros, full_name);
15659 macro_define_special (pending_macros);
15660 }
15661 else
15662 current_file = macro_include (current_file, line, full_name);
15663
15664 xfree (full_name);
15665
15666 return current_file;
15667 }
15668
15669
15670 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
15671 followed by a null byte. */
15672 static char *
15673 copy_string (const char *buf, int len)
15674 {
15675 char *s = xmalloc (len + 1);
15676
15677 memcpy (s, buf, len);
15678 s[len] = '\0';
15679 return s;
15680 }
15681
15682
15683 static const char *
15684 consume_improper_spaces (const char *p, const char *body)
15685 {
15686 if (*p == ' ')
15687 {
15688 complaint (&symfile_complaints,
15689 _("macro definition contains spaces "
15690 "in formal argument list:\n`%s'"),
15691 body);
15692
15693 while (*p == ' ')
15694 p++;
15695 }
15696
15697 return p;
15698 }
15699
15700
15701 static void
15702 parse_macro_definition (struct macro_source_file *file, int line,
15703 const char *body)
15704 {
15705 const char *p;
15706
15707 /* The body string takes one of two forms. For object-like macro
15708 definitions, it should be:
15709
15710 <macro name> " " <definition>
15711
15712 For function-like macro definitions, it should be:
15713
15714 <macro name> "() " <definition>
15715 or
15716 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
15717
15718 Spaces may appear only where explicitly indicated, and in the
15719 <definition>.
15720
15721 The Dwarf 2 spec says that an object-like macro's name is always
15722 followed by a space, but versions of GCC around March 2002 omit
15723 the space when the macro's definition is the empty string.
15724
15725 The Dwarf 2 spec says that there should be no spaces between the
15726 formal arguments in a function-like macro's formal argument list,
15727 but versions of GCC around March 2002 include spaces after the
15728 commas. */
15729
15730
15731 /* Find the extent of the macro name. The macro name is terminated
15732 by either a space or null character (for an object-like macro) or
15733 an opening paren (for a function-like macro). */
15734 for (p = body; *p; p++)
15735 if (*p == ' ' || *p == '(')
15736 break;
15737
15738 if (*p == ' ' || *p == '\0')
15739 {
15740 /* It's an object-like macro. */
15741 int name_len = p - body;
15742 char *name = copy_string (body, name_len);
15743 const char *replacement;
15744
15745 if (*p == ' ')
15746 replacement = body + name_len + 1;
15747 else
15748 {
15749 dwarf2_macro_malformed_definition_complaint (body);
15750 replacement = body + name_len;
15751 }
15752
15753 macro_define_object (file, line, name, replacement);
15754
15755 xfree (name);
15756 }
15757 else if (*p == '(')
15758 {
15759 /* It's a function-like macro. */
15760 char *name = copy_string (body, p - body);
15761 int argc = 0;
15762 int argv_size = 1;
15763 char **argv = xmalloc (argv_size * sizeof (*argv));
15764
15765 p++;
15766
15767 p = consume_improper_spaces (p, body);
15768
15769 /* Parse the formal argument list. */
15770 while (*p && *p != ')')
15771 {
15772 /* Find the extent of the current argument name. */
15773 const char *arg_start = p;
15774
15775 while (*p && *p != ',' && *p != ')' && *p != ' ')
15776 p++;
15777
15778 if (! *p || p == arg_start)
15779 dwarf2_macro_malformed_definition_complaint (body);
15780 else
15781 {
15782 /* Make sure argv has room for the new argument. */
15783 if (argc >= argv_size)
15784 {
15785 argv_size *= 2;
15786 argv = xrealloc (argv, argv_size * sizeof (*argv));
15787 }
15788
15789 argv[argc++] = copy_string (arg_start, p - arg_start);
15790 }
15791
15792 p = consume_improper_spaces (p, body);
15793
15794 /* Consume the comma, if present. */
15795 if (*p == ',')
15796 {
15797 p++;
15798
15799 p = consume_improper_spaces (p, body);
15800 }
15801 }
15802
15803 if (*p == ')')
15804 {
15805 p++;
15806
15807 if (*p == ' ')
15808 /* Perfectly formed definition, no complaints. */
15809 macro_define_function (file, line, name,
15810 argc, (const char **) argv,
15811 p + 1);
15812 else if (*p == '\0')
15813 {
15814 /* Complain, but do define it. */
15815 dwarf2_macro_malformed_definition_complaint (body);
15816 macro_define_function (file, line, name,
15817 argc, (const char **) argv,
15818 p);
15819 }
15820 else
15821 /* Just complain. */
15822 dwarf2_macro_malformed_definition_complaint (body);
15823 }
15824 else
15825 /* Just complain. */
15826 dwarf2_macro_malformed_definition_complaint (body);
15827
15828 xfree (name);
15829 {
15830 int i;
15831
15832 for (i = 0; i < argc; i++)
15833 xfree (argv[i]);
15834 }
15835 xfree (argv);
15836 }
15837 else
15838 dwarf2_macro_malformed_definition_complaint (body);
15839 }
15840
15841 /* Skip some bytes from BYTES according to the form given in FORM.
15842 Returns the new pointer. */
15843
15844 static gdb_byte *
15845 skip_form_bytes (bfd *abfd, gdb_byte *bytes, gdb_byte *buffer_end,
15846 enum dwarf_form form,
15847 unsigned int offset_size,
15848 struct dwarf2_section_info *section)
15849 {
15850 unsigned int bytes_read;
15851
15852 switch (form)
15853 {
15854 case DW_FORM_data1:
15855 case DW_FORM_flag:
15856 ++bytes;
15857 break;
15858
15859 case DW_FORM_data2:
15860 bytes += 2;
15861 break;
15862
15863 case DW_FORM_data4:
15864 bytes += 4;
15865 break;
15866
15867 case DW_FORM_data8:
15868 bytes += 8;
15869 break;
15870
15871 case DW_FORM_string:
15872 read_direct_string (abfd, bytes, &bytes_read);
15873 bytes += bytes_read;
15874 break;
15875
15876 case DW_FORM_sec_offset:
15877 case DW_FORM_strp:
15878 bytes += offset_size;
15879 break;
15880
15881 case DW_FORM_block:
15882 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
15883 bytes += bytes_read;
15884 break;
15885
15886 case DW_FORM_block1:
15887 bytes += 1 + read_1_byte (abfd, bytes);
15888 break;
15889 case DW_FORM_block2:
15890 bytes += 2 + read_2_bytes (abfd, bytes);
15891 break;
15892 case DW_FORM_block4:
15893 bytes += 4 + read_4_bytes (abfd, bytes);
15894 break;
15895
15896 case DW_FORM_sdata:
15897 case DW_FORM_udata:
15898 case DW_FORM_GNU_addr_index:
15899 case DW_FORM_GNU_str_index:
15900 bytes = (gdb_byte *) gdb_skip_leb128 (bytes, buffer_end);
15901 if (bytes == NULL)
15902 {
15903 dwarf2_section_buffer_overflow_complaint (section);
15904 return NULL;
15905 }
15906 break;
15907
15908 default:
15909 {
15910 complain:
15911 complaint (&symfile_complaints,
15912 _("invalid form 0x%x in `%s'"),
15913 form,
15914 section->asection->name);
15915 return NULL;
15916 }
15917 }
15918
15919 return bytes;
15920 }
15921
15922 /* A helper for dwarf_decode_macros that handles skipping an unknown
15923 opcode. Returns an updated pointer to the macro data buffer; or,
15924 on error, issues a complaint and returns NULL. */
15925
15926 static gdb_byte *
15927 skip_unknown_opcode (unsigned int opcode,
15928 gdb_byte **opcode_definitions,
15929 gdb_byte *mac_ptr, gdb_byte *mac_end,
15930 bfd *abfd,
15931 unsigned int offset_size,
15932 struct dwarf2_section_info *section)
15933 {
15934 unsigned int bytes_read, i;
15935 unsigned long arg;
15936 gdb_byte *defn;
15937
15938 if (opcode_definitions[opcode] == NULL)
15939 {
15940 complaint (&symfile_complaints,
15941 _("unrecognized DW_MACFINO opcode 0x%x"),
15942 opcode);
15943 return NULL;
15944 }
15945
15946 defn = opcode_definitions[opcode];
15947 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
15948 defn += bytes_read;
15949
15950 for (i = 0; i < arg; ++i)
15951 {
15952 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
15953 section);
15954 if (mac_ptr == NULL)
15955 {
15956 /* skip_form_bytes already issued the complaint. */
15957 return NULL;
15958 }
15959 }
15960
15961 return mac_ptr;
15962 }
15963
15964 /* A helper function which parses the header of a macro section.
15965 If the macro section is the extended (for now called "GNU") type,
15966 then this updates *OFFSET_SIZE. Returns a pointer to just after
15967 the header, or issues a complaint and returns NULL on error. */
15968
15969 static gdb_byte *
15970 dwarf_parse_macro_header (gdb_byte **opcode_definitions,
15971 bfd *abfd,
15972 gdb_byte *mac_ptr,
15973 unsigned int *offset_size,
15974 int section_is_gnu)
15975 {
15976 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
15977
15978 if (section_is_gnu)
15979 {
15980 unsigned int version, flags;
15981
15982 version = read_2_bytes (abfd, mac_ptr);
15983 if (version != 4)
15984 {
15985 complaint (&symfile_complaints,
15986 _("unrecognized version `%d' in .debug_macro section"),
15987 version);
15988 return NULL;
15989 }
15990 mac_ptr += 2;
15991
15992 flags = read_1_byte (abfd, mac_ptr);
15993 ++mac_ptr;
15994 *offset_size = (flags & 1) ? 8 : 4;
15995
15996 if ((flags & 2) != 0)
15997 /* We don't need the line table offset. */
15998 mac_ptr += *offset_size;
15999
16000 /* Vendor opcode descriptions. */
16001 if ((flags & 4) != 0)
16002 {
16003 unsigned int i, count;
16004
16005 count = read_1_byte (abfd, mac_ptr);
16006 ++mac_ptr;
16007 for (i = 0; i < count; ++i)
16008 {
16009 unsigned int opcode, bytes_read;
16010 unsigned long arg;
16011
16012 opcode = read_1_byte (abfd, mac_ptr);
16013 ++mac_ptr;
16014 opcode_definitions[opcode] = mac_ptr;
16015 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
16016 mac_ptr += bytes_read;
16017 mac_ptr += arg;
16018 }
16019 }
16020 }
16021
16022 return mac_ptr;
16023 }
16024
16025 /* A helper for dwarf_decode_macros that handles the GNU extensions,
16026 including DW_MACRO_GNU_transparent_include. */
16027
16028 static void
16029 dwarf_decode_macro_bytes (bfd *abfd, gdb_byte *mac_ptr, gdb_byte *mac_end,
16030 struct macro_source_file *current_file,
16031 struct line_header *lh, char *comp_dir,
16032 struct dwarf2_section_info *section,
16033 int section_is_gnu,
16034 unsigned int offset_size,
16035 struct objfile *objfile,
16036 htab_t include_hash)
16037 {
16038 enum dwarf_macro_record_type macinfo_type;
16039 int at_commandline;
16040 gdb_byte *opcode_definitions[256];
16041
16042 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
16043 &offset_size, section_is_gnu);
16044 if (mac_ptr == NULL)
16045 {
16046 /* We already issued a complaint. */
16047 return;
16048 }
16049
16050 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
16051 GDB is still reading the definitions from command line. First
16052 DW_MACINFO_start_file will need to be ignored as it was already executed
16053 to create CURRENT_FILE for the main source holding also the command line
16054 definitions. On first met DW_MACINFO_start_file this flag is reset to
16055 normally execute all the remaining DW_MACINFO_start_file macinfos. */
16056
16057 at_commandline = 1;
16058
16059 do
16060 {
16061 /* Do we at least have room for a macinfo type byte? */
16062 if (mac_ptr >= mac_end)
16063 {
16064 dwarf2_section_buffer_overflow_complaint (section);
16065 break;
16066 }
16067
16068 macinfo_type = read_1_byte (abfd, mac_ptr);
16069 mac_ptr++;
16070
16071 /* Note that we rely on the fact that the corresponding GNU and
16072 DWARF constants are the same. */
16073 switch (macinfo_type)
16074 {
16075 /* A zero macinfo type indicates the end of the macro
16076 information. */
16077 case 0:
16078 break;
16079
16080 case DW_MACRO_GNU_define:
16081 case DW_MACRO_GNU_undef:
16082 case DW_MACRO_GNU_define_indirect:
16083 case DW_MACRO_GNU_undef_indirect:
16084 {
16085 unsigned int bytes_read;
16086 int line;
16087 char *body;
16088 int is_define;
16089
16090 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
16091 mac_ptr += bytes_read;
16092
16093 if (macinfo_type == DW_MACRO_GNU_define
16094 || macinfo_type == DW_MACRO_GNU_undef)
16095 {
16096 body = read_direct_string (abfd, mac_ptr, &bytes_read);
16097 mac_ptr += bytes_read;
16098 }
16099 else
16100 {
16101 LONGEST str_offset;
16102
16103 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
16104 mac_ptr += offset_size;
16105
16106 body = read_indirect_string_at_offset (abfd, str_offset);
16107 }
16108
16109 is_define = (macinfo_type == DW_MACRO_GNU_define
16110 || macinfo_type == DW_MACRO_GNU_define_indirect);
16111 if (! current_file)
16112 {
16113 /* DWARF violation as no main source is present. */
16114 complaint (&symfile_complaints,
16115 _("debug info with no main source gives macro %s "
16116 "on line %d: %s"),
16117 is_define ? _("definition") : _("undefinition"),
16118 line, body);
16119 break;
16120 }
16121 if ((line == 0 && !at_commandline)
16122 || (line != 0 && at_commandline))
16123 complaint (&symfile_complaints,
16124 _("debug info gives %s macro %s with %s line %d: %s"),
16125 at_commandline ? _("command-line") : _("in-file"),
16126 is_define ? _("definition") : _("undefinition"),
16127 line == 0 ? _("zero") : _("non-zero"), line, body);
16128
16129 if (is_define)
16130 parse_macro_definition (current_file, line, body);
16131 else
16132 {
16133 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
16134 || macinfo_type == DW_MACRO_GNU_undef_indirect);
16135 macro_undef (current_file, line, body);
16136 }
16137 }
16138 break;
16139
16140 case DW_MACRO_GNU_start_file:
16141 {
16142 unsigned int bytes_read;
16143 int line, file;
16144
16145 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
16146 mac_ptr += bytes_read;
16147 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
16148 mac_ptr += bytes_read;
16149
16150 if ((line == 0 && !at_commandline)
16151 || (line != 0 && at_commandline))
16152 complaint (&symfile_complaints,
16153 _("debug info gives source %d included "
16154 "from %s at %s line %d"),
16155 file, at_commandline ? _("command-line") : _("file"),
16156 line == 0 ? _("zero") : _("non-zero"), line);
16157
16158 if (at_commandline)
16159 {
16160 /* This DW_MACRO_GNU_start_file was executed in the
16161 pass one. */
16162 at_commandline = 0;
16163 }
16164 else
16165 current_file = macro_start_file (file, line,
16166 current_file, comp_dir,
16167 lh, objfile);
16168 }
16169 break;
16170
16171 case DW_MACRO_GNU_end_file:
16172 if (! current_file)
16173 complaint (&symfile_complaints,
16174 _("macro debug info has an unmatched "
16175 "`close_file' directive"));
16176 else
16177 {
16178 current_file = current_file->included_by;
16179 if (! current_file)
16180 {
16181 enum dwarf_macro_record_type next_type;
16182
16183 /* GCC circa March 2002 doesn't produce the zero
16184 type byte marking the end of the compilation
16185 unit. Complain if it's not there, but exit no
16186 matter what. */
16187
16188 /* Do we at least have room for a macinfo type byte? */
16189 if (mac_ptr >= mac_end)
16190 {
16191 dwarf2_section_buffer_overflow_complaint (section);
16192 return;
16193 }
16194
16195 /* We don't increment mac_ptr here, so this is just
16196 a look-ahead. */
16197 next_type = read_1_byte (abfd, mac_ptr);
16198 if (next_type != 0)
16199 complaint (&symfile_complaints,
16200 _("no terminating 0-type entry for "
16201 "macros in `.debug_macinfo' section"));
16202
16203 return;
16204 }
16205 }
16206 break;
16207
16208 case DW_MACRO_GNU_transparent_include:
16209 {
16210 LONGEST offset;
16211 void **slot;
16212
16213 offset = read_offset_1 (abfd, mac_ptr, offset_size);
16214 mac_ptr += offset_size;
16215
16216 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
16217 if (*slot != NULL)
16218 {
16219 /* This has actually happened; see
16220 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
16221 complaint (&symfile_complaints,
16222 _("recursive DW_MACRO_GNU_transparent_include in "
16223 ".debug_macro section"));
16224 }
16225 else
16226 {
16227 *slot = mac_ptr;
16228
16229 dwarf_decode_macro_bytes (abfd,
16230 section->buffer + offset,
16231 mac_end, current_file,
16232 lh, comp_dir,
16233 section, section_is_gnu,
16234 offset_size, objfile, include_hash);
16235
16236 htab_remove_elt (include_hash, mac_ptr);
16237 }
16238 }
16239 break;
16240
16241 case DW_MACINFO_vendor_ext:
16242 if (!section_is_gnu)
16243 {
16244 unsigned int bytes_read;
16245 int constant;
16246
16247 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
16248 mac_ptr += bytes_read;
16249 read_direct_string (abfd, mac_ptr, &bytes_read);
16250 mac_ptr += bytes_read;
16251
16252 /* We don't recognize any vendor extensions. */
16253 break;
16254 }
16255 /* FALLTHROUGH */
16256
16257 default:
16258 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
16259 mac_ptr, mac_end, abfd, offset_size,
16260 section);
16261 if (mac_ptr == NULL)
16262 return;
16263 break;
16264 }
16265 } while (macinfo_type != 0);
16266 }
16267
16268 static void
16269 dwarf_decode_macros (struct line_header *lh, unsigned int offset,
16270 char *comp_dir, bfd *abfd,
16271 struct dwarf2_cu *cu,
16272 struct dwarf2_section_info *section,
16273 int section_is_gnu, const char *section_name)
16274 {
16275 struct objfile *objfile = dwarf2_per_objfile->objfile;
16276 gdb_byte *mac_ptr, *mac_end;
16277 struct macro_source_file *current_file = 0;
16278 enum dwarf_macro_record_type macinfo_type;
16279 unsigned int offset_size = cu->header.offset_size;
16280 gdb_byte *opcode_definitions[256];
16281 struct cleanup *cleanup;
16282 htab_t include_hash;
16283 void **slot;
16284
16285 dwarf2_read_section (objfile, section);
16286 if (section->buffer == NULL)
16287 {
16288 complaint (&symfile_complaints, _("missing %s section"), section_name);
16289 return;
16290 }
16291
16292 /* First pass: Find the name of the base filename.
16293 This filename is needed in order to process all macros whose definition
16294 (or undefinition) comes from the command line. These macros are defined
16295 before the first DW_MACINFO_start_file entry, and yet still need to be
16296 associated to the base file.
16297
16298 To determine the base file name, we scan the macro definitions until we
16299 reach the first DW_MACINFO_start_file entry. We then initialize
16300 CURRENT_FILE accordingly so that any macro definition found before the
16301 first DW_MACINFO_start_file can still be associated to the base file. */
16302
16303 mac_ptr = section->buffer + offset;
16304 mac_end = section->buffer + section->size;
16305
16306 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
16307 &offset_size, section_is_gnu);
16308 if (mac_ptr == NULL)
16309 {
16310 /* We already issued a complaint. */
16311 return;
16312 }
16313
16314 do
16315 {
16316 /* Do we at least have room for a macinfo type byte? */
16317 if (mac_ptr >= mac_end)
16318 {
16319 /* Complaint is printed during the second pass as GDB will probably
16320 stop the first pass earlier upon finding
16321 DW_MACINFO_start_file. */
16322 break;
16323 }
16324
16325 macinfo_type = read_1_byte (abfd, mac_ptr);
16326 mac_ptr++;
16327
16328 /* Note that we rely on the fact that the corresponding GNU and
16329 DWARF constants are the same. */
16330 switch (macinfo_type)
16331 {
16332 /* A zero macinfo type indicates the end of the macro
16333 information. */
16334 case 0:
16335 break;
16336
16337 case DW_MACRO_GNU_define:
16338 case DW_MACRO_GNU_undef:
16339 /* Only skip the data by MAC_PTR. */
16340 {
16341 unsigned int bytes_read;
16342
16343 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
16344 mac_ptr += bytes_read;
16345 read_direct_string (abfd, mac_ptr, &bytes_read);
16346 mac_ptr += bytes_read;
16347 }
16348 break;
16349
16350 case DW_MACRO_GNU_start_file:
16351 {
16352 unsigned int bytes_read;
16353 int line, file;
16354
16355 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
16356 mac_ptr += bytes_read;
16357 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
16358 mac_ptr += bytes_read;
16359
16360 current_file = macro_start_file (file, line, current_file,
16361 comp_dir, lh, objfile);
16362 }
16363 break;
16364
16365 case DW_MACRO_GNU_end_file:
16366 /* No data to skip by MAC_PTR. */
16367 break;
16368
16369 case DW_MACRO_GNU_define_indirect:
16370 case DW_MACRO_GNU_undef_indirect:
16371 {
16372 unsigned int bytes_read;
16373
16374 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
16375 mac_ptr += bytes_read;
16376 mac_ptr += offset_size;
16377 }
16378 break;
16379
16380 case DW_MACRO_GNU_transparent_include:
16381 /* Note that, according to the spec, a transparent include
16382 chain cannot call DW_MACRO_GNU_start_file. So, we can just
16383 skip this opcode. */
16384 mac_ptr += offset_size;
16385 break;
16386
16387 case DW_MACINFO_vendor_ext:
16388 /* Only skip the data by MAC_PTR. */
16389 if (!section_is_gnu)
16390 {
16391 unsigned int bytes_read;
16392
16393 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
16394 mac_ptr += bytes_read;
16395 read_direct_string (abfd, mac_ptr, &bytes_read);
16396 mac_ptr += bytes_read;
16397 }
16398 /* FALLTHROUGH */
16399
16400 default:
16401 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
16402 mac_ptr, mac_end, abfd, offset_size,
16403 section);
16404 if (mac_ptr == NULL)
16405 return;
16406 break;
16407 }
16408 } while (macinfo_type != 0 && current_file == NULL);
16409
16410 /* Second pass: Process all entries.
16411
16412 Use the AT_COMMAND_LINE flag to determine whether we are still processing
16413 command-line macro definitions/undefinitions. This flag is unset when we
16414 reach the first DW_MACINFO_start_file entry. */
16415
16416 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
16417 NULL, xcalloc, xfree);
16418 cleanup = make_cleanup_htab_delete (include_hash);
16419 mac_ptr = section->buffer + offset;
16420 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
16421 *slot = mac_ptr;
16422 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
16423 current_file, lh, comp_dir, section, section_is_gnu,
16424 offset_size, objfile, include_hash);
16425 do_cleanups (cleanup);
16426 }
16427
16428 /* Check if the attribute's form is a DW_FORM_block*
16429 if so return true else false. */
16430
16431 static int
16432 attr_form_is_block (struct attribute *attr)
16433 {
16434 return (attr == NULL ? 0 :
16435 attr->form == DW_FORM_block1
16436 || attr->form == DW_FORM_block2
16437 || attr->form == DW_FORM_block4
16438 || attr->form == DW_FORM_block
16439 || attr->form == DW_FORM_exprloc);
16440 }
16441
16442 /* Return non-zero if ATTR's value is a section offset --- classes
16443 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
16444 You may use DW_UNSND (attr) to retrieve such offsets.
16445
16446 Section 7.5.4, "Attribute Encodings", explains that no attribute
16447 may have a value that belongs to more than one of these classes; it
16448 would be ambiguous if we did, because we use the same forms for all
16449 of them. */
16450
16451 static int
16452 attr_form_is_section_offset (struct attribute *attr)
16453 {
16454 return (attr->form == DW_FORM_data4
16455 || attr->form == DW_FORM_data8
16456 || attr->form == DW_FORM_sec_offset);
16457 }
16458
16459 /* Return non-zero if ATTR's value falls in the 'constant' class, or
16460 zero otherwise. When this function returns true, you can apply
16461 dwarf2_get_attr_constant_value to it.
16462
16463 However, note that for some attributes you must check
16464 attr_form_is_section_offset before using this test. DW_FORM_data4
16465 and DW_FORM_data8 are members of both the constant class, and of
16466 the classes that contain offsets into other debug sections
16467 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
16468 that, if an attribute's can be either a constant or one of the
16469 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
16470 taken as section offsets, not constants. */
16471
16472 static int
16473 attr_form_is_constant (struct attribute *attr)
16474 {
16475 switch (attr->form)
16476 {
16477 case DW_FORM_sdata:
16478 case DW_FORM_udata:
16479 case DW_FORM_data1:
16480 case DW_FORM_data2:
16481 case DW_FORM_data4:
16482 case DW_FORM_data8:
16483 return 1;
16484 default:
16485 return 0;
16486 }
16487 }
16488
16489 /* Return the .debug_loc section to use for CU.
16490 For DWO files use .debug_loc.dwo. */
16491
16492 static struct dwarf2_section_info *
16493 cu_debug_loc_section (struct dwarf2_cu *cu)
16494 {
16495 if (cu->dwo_unit)
16496 return &cu->dwo_unit->dwo_file->sections.loc;
16497 return &dwarf2_per_objfile->loc;
16498 }
16499
16500 /* A helper function that fills in a dwarf2_loclist_baton. */
16501
16502 static void
16503 fill_in_loclist_baton (struct dwarf2_cu *cu,
16504 struct dwarf2_loclist_baton *baton,
16505 struct attribute *attr)
16506 {
16507 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
16508
16509 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
16510
16511 baton->per_cu = cu->per_cu;
16512 gdb_assert (baton->per_cu);
16513 /* We don't know how long the location list is, but make sure we
16514 don't run off the edge of the section. */
16515 baton->size = section->size - DW_UNSND (attr);
16516 baton->data = section->buffer + DW_UNSND (attr);
16517 baton->base_address = cu->base_address;
16518 baton->from_dwo = cu->dwo_unit != NULL;
16519 }
16520
16521 static void
16522 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
16523 struct dwarf2_cu *cu)
16524 {
16525 struct objfile *objfile = dwarf2_per_objfile->objfile;
16526 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
16527
16528 if (attr_form_is_section_offset (attr)
16529 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
16530 the section. If so, fall through to the complaint in the
16531 other branch. */
16532 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
16533 {
16534 struct dwarf2_loclist_baton *baton;
16535
16536 baton = obstack_alloc (&objfile->objfile_obstack,
16537 sizeof (struct dwarf2_loclist_baton));
16538
16539 fill_in_loclist_baton (cu, baton, attr);
16540
16541 if (cu->base_known == 0)
16542 complaint (&symfile_complaints,
16543 _("Location list used without "
16544 "specifying the CU base address."));
16545
16546 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
16547 SYMBOL_LOCATION_BATON (sym) = baton;
16548 }
16549 else
16550 {
16551 struct dwarf2_locexpr_baton *baton;
16552
16553 baton = obstack_alloc (&objfile->objfile_obstack,
16554 sizeof (struct dwarf2_locexpr_baton));
16555 baton->per_cu = cu->per_cu;
16556 gdb_assert (baton->per_cu);
16557
16558 if (attr_form_is_block (attr))
16559 {
16560 /* Note that we're just copying the block's data pointer
16561 here, not the actual data. We're still pointing into the
16562 info_buffer for SYM's objfile; right now we never release
16563 that buffer, but when we do clean up properly this may
16564 need to change. */
16565 baton->size = DW_BLOCK (attr)->size;
16566 baton->data = DW_BLOCK (attr)->data;
16567 }
16568 else
16569 {
16570 dwarf2_invalid_attrib_class_complaint ("location description",
16571 SYMBOL_NATURAL_NAME (sym));
16572 baton->size = 0;
16573 }
16574
16575 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
16576 SYMBOL_LOCATION_BATON (sym) = baton;
16577 }
16578 }
16579
16580 /* Return the OBJFILE associated with the compilation unit CU. If CU
16581 came from a separate debuginfo file, then the master objfile is
16582 returned. */
16583
16584 struct objfile *
16585 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
16586 {
16587 struct objfile *objfile = per_cu->objfile;
16588
16589 /* Return the master objfile, so that we can report and look up the
16590 correct file containing this variable. */
16591 if (objfile->separate_debug_objfile_backlink)
16592 objfile = objfile->separate_debug_objfile_backlink;
16593
16594 return objfile;
16595 }
16596
16597 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
16598 (CU_HEADERP is unused in such case) or prepare a temporary copy at
16599 CU_HEADERP first. */
16600
16601 static const struct comp_unit_head *
16602 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
16603 struct dwarf2_per_cu_data *per_cu)
16604 {
16605 struct objfile *objfile;
16606 struct dwarf2_per_objfile *per_objfile;
16607 gdb_byte *info_ptr;
16608
16609 if (per_cu->cu)
16610 return &per_cu->cu->header;
16611
16612 objfile = per_cu->objfile;
16613 per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
16614 info_ptr = per_objfile->info.buffer + per_cu->offset.sect_off;
16615
16616 memset (cu_headerp, 0, sizeof (*cu_headerp));
16617 read_comp_unit_head (cu_headerp, info_ptr, objfile->obfd);
16618
16619 return cu_headerp;
16620 }
16621
16622 /* Return the address size given in the compilation unit header for CU. */
16623
16624 int
16625 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
16626 {
16627 struct comp_unit_head cu_header_local;
16628 const struct comp_unit_head *cu_headerp;
16629
16630 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
16631
16632 return cu_headerp->addr_size;
16633 }
16634
16635 /* Return the offset size given in the compilation unit header for CU. */
16636
16637 int
16638 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
16639 {
16640 struct comp_unit_head cu_header_local;
16641 const struct comp_unit_head *cu_headerp;
16642
16643 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
16644
16645 return cu_headerp->offset_size;
16646 }
16647
16648 /* See its dwarf2loc.h declaration. */
16649
16650 int
16651 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
16652 {
16653 struct comp_unit_head cu_header_local;
16654 const struct comp_unit_head *cu_headerp;
16655
16656 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
16657
16658 if (cu_headerp->version == 2)
16659 return cu_headerp->addr_size;
16660 else
16661 return cu_headerp->offset_size;
16662 }
16663
16664 /* Return the text offset of the CU. The returned offset comes from
16665 this CU's objfile. If this objfile came from a separate debuginfo
16666 file, then the offset may be different from the corresponding
16667 offset in the parent objfile. */
16668
16669 CORE_ADDR
16670 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
16671 {
16672 struct objfile *objfile = per_cu->objfile;
16673
16674 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
16675 }
16676
16677 /* Locate the .debug_info compilation unit from CU's objfile which contains
16678 the DIE at OFFSET. Raises an error on failure. */
16679
16680 static struct dwarf2_per_cu_data *
16681 dwarf2_find_containing_comp_unit (sect_offset offset,
16682 struct objfile *objfile)
16683 {
16684 struct dwarf2_per_cu_data *this_cu;
16685 int low, high;
16686
16687 low = 0;
16688 high = dwarf2_per_objfile->n_comp_units - 1;
16689 while (high > low)
16690 {
16691 int mid = low + (high - low) / 2;
16692
16693 if (dwarf2_per_objfile->all_comp_units[mid]->offset.sect_off
16694 >= offset.sect_off)
16695 high = mid;
16696 else
16697 low = mid + 1;
16698 }
16699 gdb_assert (low == high);
16700 if (dwarf2_per_objfile->all_comp_units[low]->offset.sect_off
16701 > offset.sect_off)
16702 {
16703 if (low == 0)
16704 error (_("Dwarf Error: could not find partial DIE containing "
16705 "offset 0x%lx [in module %s]"),
16706 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
16707
16708 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
16709 <= offset.sect_off);
16710 return dwarf2_per_objfile->all_comp_units[low-1];
16711 }
16712 else
16713 {
16714 this_cu = dwarf2_per_objfile->all_comp_units[low];
16715 if (low == dwarf2_per_objfile->n_comp_units - 1
16716 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
16717 error (_("invalid dwarf2 offset %u"), offset.sect_off);
16718 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
16719 return this_cu;
16720 }
16721 }
16722
16723 /* Initialize dwarf2_cu CU, owned by PER_CU. */
16724
16725 static void
16726 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
16727 {
16728 memset (cu, 0, sizeof (*cu));
16729 per_cu->cu = cu;
16730 cu->per_cu = per_cu;
16731 cu->objfile = per_cu->objfile;
16732 obstack_init (&cu->comp_unit_obstack);
16733 }
16734
16735 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
16736
16737 static void
16738 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
16739 enum language pretend_language)
16740 {
16741 struct attribute *attr;
16742
16743 /* Set the language we're debugging. */
16744 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
16745 if (attr)
16746 set_cu_language (DW_UNSND (attr), cu);
16747 else
16748 {
16749 cu->language = pretend_language;
16750 cu->language_defn = language_def (cu->language);
16751 }
16752
16753 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
16754 if (attr)
16755 cu->producer = DW_STRING (attr);
16756 }
16757
16758 /* Release one cached compilation unit, CU. We unlink it from the tree
16759 of compilation units, but we don't remove it from the read_in_chain;
16760 the caller is responsible for that.
16761 NOTE: DATA is a void * because this function is also used as a
16762 cleanup routine. */
16763
16764 static void
16765 free_heap_comp_unit (void *data)
16766 {
16767 struct dwarf2_cu *cu = data;
16768
16769 gdb_assert (cu->per_cu != NULL);
16770 cu->per_cu->cu = NULL;
16771 cu->per_cu = NULL;
16772
16773 obstack_free (&cu->comp_unit_obstack, NULL);
16774
16775 xfree (cu);
16776 }
16777
16778 /* This cleanup function is passed the address of a dwarf2_cu on the stack
16779 when we're finished with it. We can't free the pointer itself, but be
16780 sure to unlink it from the cache. Also release any associated storage. */
16781
16782 static void
16783 free_stack_comp_unit (void *data)
16784 {
16785 struct dwarf2_cu *cu = data;
16786
16787 gdb_assert (cu->per_cu != NULL);
16788 cu->per_cu->cu = NULL;
16789 cu->per_cu = NULL;
16790
16791 obstack_free (&cu->comp_unit_obstack, NULL);
16792 cu->partial_dies = NULL;
16793 }
16794
16795 /* Free all cached compilation units. */
16796
16797 static void
16798 free_cached_comp_units (void *data)
16799 {
16800 struct dwarf2_per_cu_data *per_cu, **last_chain;
16801
16802 per_cu = dwarf2_per_objfile->read_in_chain;
16803 last_chain = &dwarf2_per_objfile->read_in_chain;
16804 while (per_cu != NULL)
16805 {
16806 struct dwarf2_per_cu_data *next_cu;
16807
16808 next_cu = per_cu->cu->read_in_chain;
16809
16810 free_heap_comp_unit (per_cu->cu);
16811 *last_chain = next_cu;
16812
16813 per_cu = next_cu;
16814 }
16815 }
16816
16817 /* Increase the age counter on each cached compilation unit, and free
16818 any that are too old. */
16819
16820 static void
16821 age_cached_comp_units (void)
16822 {
16823 struct dwarf2_per_cu_data *per_cu, **last_chain;
16824
16825 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
16826 per_cu = dwarf2_per_objfile->read_in_chain;
16827 while (per_cu != NULL)
16828 {
16829 per_cu->cu->last_used ++;
16830 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
16831 dwarf2_mark (per_cu->cu);
16832 per_cu = per_cu->cu->read_in_chain;
16833 }
16834
16835 per_cu = dwarf2_per_objfile->read_in_chain;
16836 last_chain = &dwarf2_per_objfile->read_in_chain;
16837 while (per_cu != NULL)
16838 {
16839 struct dwarf2_per_cu_data *next_cu;
16840
16841 next_cu = per_cu->cu->read_in_chain;
16842
16843 if (!per_cu->cu->mark)
16844 {
16845 free_heap_comp_unit (per_cu->cu);
16846 *last_chain = next_cu;
16847 }
16848 else
16849 last_chain = &per_cu->cu->read_in_chain;
16850
16851 per_cu = next_cu;
16852 }
16853 }
16854
16855 /* Remove a single compilation unit from the cache. */
16856
16857 static void
16858 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
16859 {
16860 struct dwarf2_per_cu_data *per_cu, **last_chain;
16861
16862 per_cu = dwarf2_per_objfile->read_in_chain;
16863 last_chain = &dwarf2_per_objfile->read_in_chain;
16864 while (per_cu != NULL)
16865 {
16866 struct dwarf2_per_cu_data *next_cu;
16867
16868 next_cu = per_cu->cu->read_in_chain;
16869
16870 if (per_cu == target_per_cu)
16871 {
16872 free_heap_comp_unit (per_cu->cu);
16873 per_cu->cu = NULL;
16874 *last_chain = next_cu;
16875 break;
16876 }
16877 else
16878 last_chain = &per_cu->cu->read_in_chain;
16879
16880 per_cu = next_cu;
16881 }
16882 }
16883
16884 /* Release all extra memory associated with OBJFILE. */
16885
16886 void
16887 dwarf2_free_objfile (struct objfile *objfile)
16888 {
16889 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
16890
16891 if (dwarf2_per_objfile == NULL)
16892 return;
16893
16894 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
16895 free_cached_comp_units (NULL);
16896
16897 if (dwarf2_per_objfile->quick_file_names_table)
16898 htab_delete (dwarf2_per_objfile->quick_file_names_table);
16899
16900 /* Everything else should be on the objfile obstack. */
16901 }
16902
16903 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
16904 We store these in a hash table separate from the DIEs, and preserve them
16905 when the DIEs are flushed out of cache.
16906
16907 The CU "per_cu" pointer is needed because offset alone is not enough to
16908 uniquely identify the type. A file may have multiple .debug_types sections,
16909 or the type may come from a DWO file. We have to use something in
16910 dwarf2_per_cu_data (or the pointer to it) because we can enter the lookup
16911 routine, get_die_type_at_offset, from outside this file, and thus won't
16912 necessarily have PER_CU->cu. Fortunately, PER_CU is stable for the life
16913 of the objfile. */
16914
16915 struct dwarf2_per_cu_offset_and_type
16916 {
16917 const struct dwarf2_per_cu_data *per_cu;
16918 sect_offset offset;
16919 struct type *type;
16920 };
16921
16922 /* Hash function for a dwarf2_per_cu_offset_and_type. */
16923
16924 static hashval_t
16925 per_cu_offset_and_type_hash (const void *item)
16926 {
16927 const struct dwarf2_per_cu_offset_and_type *ofs = item;
16928
16929 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
16930 }
16931
16932 /* Equality function for a dwarf2_per_cu_offset_and_type. */
16933
16934 static int
16935 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
16936 {
16937 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
16938 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
16939
16940 return (ofs_lhs->per_cu == ofs_rhs->per_cu
16941 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
16942 }
16943
16944 /* Set the type associated with DIE to TYPE. Save it in CU's hash
16945 table if necessary. For convenience, return TYPE.
16946
16947 The DIEs reading must have careful ordering to:
16948 * Not cause infite loops trying to read in DIEs as a prerequisite for
16949 reading current DIE.
16950 * Not trying to dereference contents of still incompletely read in types
16951 while reading in other DIEs.
16952 * Enable referencing still incompletely read in types just by a pointer to
16953 the type without accessing its fields.
16954
16955 Therefore caller should follow these rules:
16956 * Try to fetch any prerequisite types we may need to build this DIE type
16957 before building the type and calling set_die_type.
16958 * After building type call set_die_type for current DIE as soon as
16959 possible before fetching more types to complete the current type.
16960 * Make the type as complete as possible before fetching more types. */
16961
16962 static struct type *
16963 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
16964 {
16965 struct dwarf2_per_cu_offset_and_type **slot, ofs;
16966 struct objfile *objfile = cu->objfile;
16967
16968 /* For Ada types, make sure that the gnat-specific data is always
16969 initialized (if not already set). There are a few types where
16970 we should not be doing so, because the type-specific area is
16971 already used to hold some other piece of info (eg: TYPE_CODE_FLT
16972 where the type-specific area is used to store the floatformat).
16973 But this is not a problem, because the gnat-specific information
16974 is actually not needed for these types. */
16975 if (need_gnat_info (cu)
16976 && TYPE_CODE (type) != TYPE_CODE_FUNC
16977 && TYPE_CODE (type) != TYPE_CODE_FLT
16978 && !HAVE_GNAT_AUX_INFO (type))
16979 INIT_GNAT_SPECIFIC (type);
16980
16981 if (dwarf2_per_objfile->die_type_hash == NULL)
16982 {
16983 dwarf2_per_objfile->die_type_hash =
16984 htab_create_alloc_ex (127,
16985 per_cu_offset_and_type_hash,
16986 per_cu_offset_and_type_eq,
16987 NULL,
16988 &objfile->objfile_obstack,
16989 hashtab_obstack_allocate,
16990 dummy_obstack_deallocate);
16991 }
16992
16993 ofs.per_cu = cu->per_cu;
16994 ofs.offset = die->offset;
16995 ofs.type = type;
16996 slot = (struct dwarf2_per_cu_offset_and_type **)
16997 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
16998 if (*slot)
16999 complaint (&symfile_complaints,
17000 _("A problem internal to GDB: DIE 0x%x has type already set"),
17001 die->offset.sect_off);
17002 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
17003 **slot = ofs;
17004 return type;
17005 }
17006
17007 /* Look up the type for the die at OFFSET in the appropriate type_hash
17008 table, or return NULL if the die does not have a saved type. */
17009
17010 static struct type *
17011 get_die_type_at_offset (sect_offset offset,
17012 struct dwarf2_per_cu_data *per_cu)
17013 {
17014 struct dwarf2_per_cu_offset_and_type *slot, ofs;
17015
17016 if (dwarf2_per_objfile->die_type_hash == NULL)
17017 return NULL;
17018
17019 ofs.per_cu = per_cu;
17020 ofs.offset = offset;
17021 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
17022 if (slot)
17023 return slot->type;
17024 else
17025 return NULL;
17026 }
17027
17028 /* Look up the type for DIE in the appropriate type_hash table,
17029 or return NULL if DIE does not have a saved type. */
17030
17031 static struct type *
17032 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
17033 {
17034 return get_die_type_at_offset (die->offset, cu->per_cu);
17035 }
17036
17037 /* Add a dependence relationship from CU to REF_PER_CU. */
17038
17039 static void
17040 dwarf2_add_dependence (struct dwarf2_cu *cu,
17041 struct dwarf2_per_cu_data *ref_per_cu)
17042 {
17043 void **slot;
17044
17045 if (cu->dependencies == NULL)
17046 cu->dependencies
17047 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
17048 NULL, &cu->comp_unit_obstack,
17049 hashtab_obstack_allocate,
17050 dummy_obstack_deallocate);
17051
17052 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
17053 if (*slot == NULL)
17054 *slot = ref_per_cu;
17055 }
17056
17057 /* Subroutine of dwarf2_mark to pass to htab_traverse.
17058 Set the mark field in every compilation unit in the
17059 cache that we must keep because we are keeping CU. */
17060
17061 static int
17062 dwarf2_mark_helper (void **slot, void *data)
17063 {
17064 struct dwarf2_per_cu_data *per_cu;
17065
17066 per_cu = (struct dwarf2_per_cu_data *) *slot;
17067
17068 /* cu->dependencies references may not yet have been ever read if QUIT aborts
17069 reading of the chain. As such dependencies remain valid it is not much
17070 useful to track and undo them during QUIT cleanups. */
17071 if (per_cu->cu == NULL)
17072 return 1;
17073
17074 if (per_cu->cu->mark)
17075 return 1;
17076 per_cu->cu->mark = 1;
17077
17078 if (per_cu->cu->dependencies != NULL)
17079 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
17080
17081 return 1;
17082 }
17083
17084 /* Set the mark field in CU and in every other compilation unit in the
17085 cache that we must keep because we are keeping CU. */
17086
17087 static void
17088 dwarf2_mark (struct dwarf2_cu *cu)
17089 {
17090 if (cu->mark)
17091 return;
17092 cu->mark = 1;
17093 if (cu->dependencies != NULL)
17094 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
17095 }
17096
17097 static void
17098 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
17099 {
17100 while (per_cu)
17101 {
17102 per_cu->cu->mark = 0;
17103 per_cu = per_cu->cu->read_in_chain;
17104 }
17105 }
17106
17107 /* Trivial hash function for partial_die_info: the hash value of a DIE
17108 is its offset in .debug_info for this objfile. */
17109
17110 static hashval_t
17111 partial_die_hash (const void *item)
17112 {
17113 const struct partial_die_info *part_die = item;
17114
17115 return part_die->offset.sect_off;
17116 }
17117
17118 /* Trivial comparison function for partial_die_info structures: two DIEs
17119 are equal if they have the same offset. */
17120
17121 static int
17122 partial_die_eq (const void *item_lhs, const void *item_rhs)
17123 {
17124 const struct partial_die_info *part_die_lhs = item_lhs;
17125 const struct partial_die_info *part_die_rhs = item_rhs;
17126
17127 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
17128 }
17129
17130 static struct cmd_list_element *set_dwarf2_cmdlist;
17131 static struct cmd_list_element *show_dwarf2_cmdlist;
17132
17133 static void
17134 set_dwarf2_cmd (char *args, int from_tty)
17135 {
17136 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
17137 }
17138
17139 static void
17140 show_dwarf2_cmd (char *args, int from_tty)
17141 {
17142 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
17143 }
17144
17145 /* If section described by INFO was mmapped, munmap it now. */
17146
17147 static void
17148 munmap_section_buffer (struct dwarf2_section_info *info)
17149 {
17150 if (info->map_addr != NULL)
17151 {
17152 #ifdef HAVE_MMAP
17153 int res;
17154
17155 res = munmap (info->map_addr, info->map_len);
17156 gdb_assert (res == 0);
17157 #else
17158 /* Without HAVE_MMAP, we should never be here to begin with. */
17159 gdb_assert_not_reached ("no mmap support");
17160 #endif
17161 }
17162 }
17163
17164 /* munmap debug sections for OBJFILE, if necessary. */
17165
17166 static void
17167 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
17168 {
17169 struct dwarf2_per_objfile *data = d;
17170 int ix;
17171 struct dwarf2_section_info *section;
17172
17173 /* This is sorted according to the order they're defined in to make it easier
17174 to keep in sync. */
17175 munmap_section_buffer (&data->info);
17176 munmap_section_buffer (&data->abbrev);
17177 munmap_section_buffer (&data->line);
17178 munmap_section_buffer (&data->loc);
17179 munmap_section_buffer (&data->macinfo);
17180 munmap_section_buffer (&data->macro);
17181 munmap_section_buffer (&data->str);
17182 munmap_section_buffer (&data->ranges);
17183 munmap_section_buffer (&data->addr);
17184 munmap_section_buffer (&data->frame);
17185 munmap_section_buffer (&data->eh_frame);
17186 munmap_section_buffer (&data->gdb_index);
17187
17188 for (ix = 0;
17189 VEC_iterate (dwarf2_section_info_def, data->types, ix, section);
17190 ++ix)
17191 munmap_section_buffer (section);
17192
17193 for (ix = 0; ix < dwarf2_per_objfile->n_comp_units; ++ix)
17194 VEC_free (dwarf2_per_cu_ptr,
17195 dwarf2_per_objfile->all_comp_units[ix]->imported_symtabs);
17196
17197 VEC_free (dwarf2_section_info_def, data->types);
17198
17199 if (data->dwo_files)
17200 free_dwo_files (data->dwo_files, objfile);
17201 }
17202
17203 \f
17204 /* The "save gdb-index" command. */
17205
17206 /* The contents of the hash table we create when building the string
17207 table. */
17208 struct strtab_entry
17209 {
17210 offset_type offset;
17211 const char *str;
17212 };
17213
17214 /* Hash function for a strtab_entry.
17215
17216 Function is used only during write_hash_table so no index format backward
17217 compatibility is needed. */
17218
17219 static hashval_t
17220 hash_strtab_entry (const void *e)
17221 {
17222 const struct strtab_entry *entry = e;
17223 return mapped_index_string_hash (INT_MAX, entry->str);
17224 }
17225
17226 /* Equality function for a strtab_entry. */
17227
17228 static int
17229 eq_strtab_entry (const void *a, const void *b)
17230 {
17231 const struct strtab_entry *ea = a;
17232 const struct strtab_entry *eb = b;
17233 return !strcmp (ea->str, eb->str);
17234 }
17235
17236 /* Create a strtab_entry hash table. */
17237
17238 static htab_t
17239 create_strtab (void)
17240 {
17241 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
17242 xfree, xcalloc, xfree);
17243 }
17244
17245 /* Add a string to the constant pool. Return the string's offset in
17246 host order. */
17247
17248 static offset_type
17249 add_string (htab_t table, struct obstack *cpool, const char *str)
17250 {
17251 void **slot;
17252 struct strtab_entry entry;
17253 struct strtab_entry *result;
17254
17255 entry.str = str;
17256 slot = htab_find_slot (table, &entry, INSERT);
17257 if (*slot)
17258 result = *slot;
17259 else
17260 {
17261 result = XNEW (struct strtab_entry);
17262 result->offset = obstack_object_size (cpool);
17263 result->str = str;
17264 obstack_grow_str0 (cpool, str);
17265 *slot = result;
17266 }
17267 return result->offset;
17268 }
17269
17270 /* An entry in the symbol table. */
17271 struct symtab_index_entry
17272 {
17273 /* The name of the symbol. */
17274 const char *name;
17275 /* The offset of the name in the constant pool. */
17276 offset_type index_offset;
17277 /* A sorted vector of the indices of all the CUs that hold an object
17278 of this name. */
17279 VEC (offset_type) *cu_indices;
17280 };
17281
17282 /* The symbol table. This is a power-of-2-sized hash table. */
17283 struct mapped_symtab
17284 {
17285 offset_type n_elements;
17286 offset_type size;
17287 struct symtab_index_entry **data;
17288 };
17289
17290 /* Hash function for a symtab_index_entry. */
17291
17292 static hashval_t
17293 hash_symtab_entry (const void *e)
17294 {
17295 const struct symtab_index_entry *entry = e;
17296 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
17297 sizeof (offset_type) * VEC_length (offset_type,
17298 entry->cu_indices),
17299 0);
17300 }
17301
17302 /* Equality function for a symtab_index_entry. */
17303
17304 static int
17305 eq_symtab_entry (const void *a, const void *b)
17306 {
17307 const struct symtab_index_entry *ea = a;
17308 const struct symtab_index_entry *eb = b;
17309 int len = VEC_length (offset_type, ea->cu_indices);
17310 if (len != VEC_length (offset_type, eb->cu_indices))
17311 return 0;
17312 return !memcmp (VEC_address (offset_type, ea->cu_indices),
17313 VEC_address (offset_type, eb->cu_indices),
17314 sizeof (offset_type) * len);
17315 }
17316
17317 /* Destroy a symtab_index_entry. */
17318
17319 static void
17320 delete_symtab_entry (void *p)
17321 {
17322 struct symtab_index_entry *entry = p;
17323 VEC_free (offset_type, entry->cu_indices);
17324 xfree (entry);
17325 }
17326
17327 /* Create a hash table holding symtab_index_entry objects. */
17328
17329 static htab_t
17330 create_symbol_hash_table (void)
17331 {
17332 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
17333 delete_symtab_entry, xcalloc, xfree);
17334 }
17335
17336 /* Create a new mapped symtab object. */
17337
17338 static struct mapped_symtab *
17339 create_mapped_symtab (void)
17340 {
17341 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
17342 symtab->n_elements = 0;
17343 symtab->size = 1024;
17344 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
17345 return symtab;
17346 }
17347
17348 /* Destroy a mapped_symtab. */
17349
17350 static void
17351 cleanup_mapped_symtab (void *p)
17352 {
17353 struct mapped_symtab *symtab = p;
17354 /* The contents of the array are freed when the other hash table is
17355 destroyed. */
17356 xfree (symtab->data);
17357 xfree (symtab);
17358 }
17359
17360 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
17361 the slot.
17362
17363 Function is used only during write_hash_table so no index format backward
17364 compatibility is needed. */
17365
17366 static struct symtab_index_entry **
17367 find_slot (struct mapped_symtab *symtab, const char *name)
17368 {
17369 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
17370
17371 index = hash & (symtab->size - 1);
17372 step = ((hash * 17) & (symtab->size - 1)) | 1;
17373
17374 for (;;)
17375 {
17376 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
17377 return &symtab->data[index];
17378 index = (index + step) & (symtab->size - 1);
17379 }
17380 }
17381
17382 /* Expand SYMTAB's hash table. */
17383
17384 static void
17385 hash_expand (struct mapped_symtab *symtab)
17386 {
17387 offset_type old_size = symtab->size;
17388 offset_type i;
17389 struct symtab_index_entry **old_entries = symtab->data;
17390
17391 symtab->size *= 2;
17392 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
17393
17394 for (i = 0; i < old_size; ++i)
17395 {
17396 if (old_entries[i])
17397 {
17398 struct symtab_index_entry **slot = find_slot (symtab,
17399 old_entries[i]->name);
17400 *slot = old_entries[i];
17401 }
17402 }
17403
17404 xfree (old_entries);
17405 }
17406
17407 /* Add an entry to SYMTAB. NAME is the name of the symbol. CU_INDEX
17408 is the index of the CU in which the symbol appears. */
17409
17410 static void
17411 add_index_entry (struct mapped_symtab *symtab, const char *name,
17412 offset_type cu_index)
17413 {
17414 struct symtab_index_entry **slot;
17415
17416 ++symtab->n_elements;
17417 if (4 * symtab->n_elements / 3 >= symtab->size)
17418 hash_expand (symtab);
17419
17420 slot = find_slot (symtab, name);
17421 if (!*slot)
17422 {
17423 *slot = XNEW (struct symtab_index_entry);
17424 (*slot)->name = name;
17425 (*slot)->cu_indices = NULL;
17426 }
17427 /* Don't push an index twice. Due to how we add entries we only
17428 have to check the last one. */
17429 if (VEC_empty (offset_type, (*slot)->cu_indices)
17430 || VEC_last (offset_type, (*slot)->cu_indices) != cu_index)
17431 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index);
17432 }
17433
17434 /* Add a vector of indices to the constant pool. */
17435
17436 static offset_type
17437 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
17438 struct symtab_index_entry *entry)
17439 {
17440 void **slot;
17441
17442 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
17443 if (!*slot)
17444 {
17445 offset_type len = VEC_length (offset_type, entry->cu_indices);
17446 offset_type val = MAYBE_SWAP (len);
17447 offset_type iter;
17448 int i;
17449
17450 *slot = entry;
17451 entry->index_offset = obstack_object_size (cpool);
17452
17453 obstack_grow (cpool, &val, sizeof (val));
17454 for (i = 0;
17455 VEC_iterate (offset_type, entry->cu_indices, i, iter);
17456 ++i)
17457 {
17458 val = MAYBE_SWAP (iter);
17459 obstack_grow (cpool, &val, sizeof (val));
17460 }
17461 }
17462 else
17463 {
17464 struct symtab_index_entry *old_entry = *slot;
17465 entry->index_offset = old_entry->index_offset;
17466 entry = old_entry;
17467 }
17468 return entry->index_offset;
17469 }
17470
17471 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
17472 constant pool entries going into the obstack CPOOL. */
17473
17474 static void
17475 write_hash_table (struct mapped_symtab *symtab,
17476 struct obstack *output, struct obstack *cpool)
17477 {
17478 offset_type i;
17479 htab_t symbol_hash_table;
17480 htab_t str_table;
17481
17482 symbol_hash_table = create_symbol_hash_table ();
17483 str_table = create_strtab ();
17484
17485 /* We add all the index vectors to the constant pool first, to
17486 ensure alignment is ok. */
17487 for (i = 0; i < symtab->size; ++i)
17488 {
17489 if (symtab->data[i])
17490 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
17491 }
17492
17493 /* Now write out the hash table. */
17494 for (i = 0; i < symtab->size; ++i)
17495 {
17496 offset_type str_off, vec_off;
17497
17498 if (symtab->data[i])
17499 {
17500 str_off = add_string (str_table, cpool, symtab->data[i]->name);
17501 vec_off = symtab->data[i]->index_offset;
17502 }
17503 else
17504 {
17505 /* While 0 is a valid constant pool index, it is not valid
17506 to have 0 for both offsets. */
17507 str_off = 0;
17508 vec_off = 0;
17509 }
17510
17511 str_off = MAYBE_SWAP (str_off);
17512 vec_off = MAYBE_SWAP (vec_off);
17513
17514 obstack_grow (output, &str_off, sizeof (str_off));
17515 obstack_grow (output, &vec_off, sizeof (vec_off));
17516 }
17517
17518 htab_delete (str_table);
17519 htab_delete (symbol_hash_table);
17520 }
17521
17522 /* Struct to map psymtab to CU index in the index file. */
17523 struct psymtab_cu_index_map
17524 {
17525 struct partial_symtab *psymtab;
17526 unsigned int cu_index;
17527 };
17528
17529 static hashval_t
17530 hash_psymtab_cu_index (const void *item)
17531 {
17532 const struct psymtab_cu_index_map *map = item;
17533
17534 return htab_hash_pointer (map->psymtab);
17535 }
17536
17537 static int
17538 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
17539 {
17540 const struct psymtab_cu_index_map *lhs = item_lhs;
17541 const struct psymtab_cu_index_map *rhs = item_rhs;
17542
17543 return lhs->psymtab == rhs->psymtab;
17544 }
17545
17546 /* Helper struct for building the address table. */
17547 struct addrmap_index_data
17548 {
17549 struct objfile *objfile;
17550 struct obstack *addr_obstack;
17551 htab_t cu_index_htab;
17552
17553 /* Non-zero if the previous_* fields are valid.
17554 We can't write an entry until we see the next entry (since it is only then
17555 that we know the end of the entry). */
17556 int previous_valid;
17557 /* Index of the CU in the table of all CUs in the index file. */
17558 unsigned int previous_cu_index;
17559 /* Start address of the CU. */
17560 CORE_ADDR previous_cu_start;
17561 };
17562
17563 /* Write an address entry to OBSTACK. */
17564
17565 static void
17566 add_address_entry (struct objfile *objfile, struct obstack *obstack,
17567 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
17568 {
17569 offset_type cu_index_to_write;
17570 char addr[8];
17571 CORE_ADDR baseaddr;
17572
17573 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17574
17575 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
17576 obstack_grow (obstack, addr, 8);
17577 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
17578 obstack_grow (obstack, addr, 8);
17579 cu_index_to_write = MAYBE_SWAP (cu_index);
17580 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
17581 }
17582
17583 /* Worker function for traversing an addrmap to build the address table. */
17584
17585 static int
17586 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
17587 {
17588 struct addrmap_index_data *data = datap;
17589 struct partial_symtab *pst = obj;
17590
17591 if (data->previous_valid)
17592 add_address_entry (data->objfile, data->addr_obstack,
17593 data->previous_cu_start, start_addr,
17594 data->previous_cu_index);
17595
17596 data->previous_cu_start = start_addr;
17597 if (pst != NULL)
17598 {
17599 struct psymtab_cu_index_map find_map, *map;
17600 find_map.psymtab = pst;
17601 map = htab_find (data->cu_index_htab, &find_map);
17602 gdb_assert (map != NULL);
17603 data->previous_cu_index = map->cu_index;
17604 data->previous_valid = 1;
17605 }
17606 else
17607 data->previous_valid = 0;
17608
17609 return 0;
17610 }
17611
17612 /* Write OBJFILE's address map to OBSTACK.
17613 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
17614 in the index file. */
17615
17616 static void
17617 write_address_map (struct objfile *objfile, struct obstack *obstack,
17618 htab_t cu_index_htab)
17619 {
17620 struct addrmap_index_data addrmap_index_data;
17621
17622 /* When writing the address table, we have to cope with the fact that
17623 the addrmap iterator only provides the start of a region; we have to
17624 wait until the next invocation to get the start of the next region. */
17625
17626 addrmap_index_data.objfile = objfile;
17627 addrmap_index_data.addr_obstack = obstack;
17628 addrmap_index_data.cu_index_htab = cu_index_htab;
17629 addrmap_index_data.previous_valid = 0;
17630
17631 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
17632 &addrmap_index_data);
17633
17634 /* It's highly unlikely the last entry (end address = 0xff...ff)
17635 is valid, but we should still handle it.
17636 The end address is recorded as the start of the next region, but that
17637 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
17638 anyway. */
17639 if (addrmap_index_data.previous_valid)
17640 add_address_entry (objfile, obstack,
17641 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
17642 addrmap_index_data.previous_cu_index);
17643 }
17644
17645 /* Add a list of partial symbols to SYMTAB. */
17646
17647 static void
17648 write_psymbols (struct mapped_symtab *symtab,
17649 htab_t psyms_seen,
17650 struct partial_symbol **psymp,
17651 int count,
17652 offset_type cu_index,
17653 int is_static)
17654 {
17655 for (; count-- > 0; ++psymp)
17656 {
17657 void **slot, *lookup;
17658
17659 if (SYMBOL_LANGUAGE (*psymp) == language_ada)
17660 error (_("Ada is not currently supported by the index"));
17661
17662 /* We only want to add a given psymbol once. However, we also
17663 want to account for whether it is global or static. So, we
17664 may add it twice, using slightly different values. */
17665 if (is_static)
17666 {
17667 uintptr_t val = 1 | (uintptr_t) *psymp;
17668
17669 lookup = (void *) val;
17670 }
17671 else
17672 lookup = *psymp;
17673
17674 /* Only add a given psymbol once. */
17675 slot = htab_find_slot (psyms_seen, lookup, INSERT);
17676 if (!*slot)
17677 {
17678 *slot = lookup;
17679 add_index_entry (symtab, SYMBOL_SEARCH_NAME (*psymp), cu_index);
17680 }
17681 }
17682 }
17683
17684 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
17685 exception if there is an error. */
17686
17687 static void
17688 write_obstack (FILE *file, struct obstack *obstack)
17689 {
17690 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
17691 file)
17692 != obstack_object_size (obstack))
17693 error (_("couldn't data write to file"));
17694 }
17695
17696 /* Unlink a file if the argument is not NULL. */
17697
17698 static void
17699 unlink_if_set (void *p)
17700 {
17701 char **filename = p;
17702 if (*filename)
17703 unlink (*filename);
17704 }
17705
17706 /* A helper struct used when iterating over debug_types. */
17707 struct signatured_type_index_data
17708 {
17709 struct objfile *objfile;
17710 struct mapped_symtab *symtab;
17711 struct obstack *types_list;
17712 htab_t psyms_seen;
17713 int cu_index;
17714 };
17715
17716 /* A helper function that writes a single signatured_type to an
17717 obstack. */
17718
17719 static int
17720 write_one_signatured_type (void **slot, void *d)
17721 {
17722 struct signatured_type_index_data *info = d;
17723 struct signatured_type *entry = (struct signatured_type *) *slot;
17724 struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
17725 struct partial_symtab *psymtab = per_cu->v.psymtab;
17726 gdb_byte val[8];
17727
17728 write_psymbols (info->symtab,
17729 info->psyms_seen,
17730 info->objfile->global_psymbols.list
17731 + psymtab->globals_offset,
17732 psymtab->n_global_syms, info->cu_index,
17733 0);
17734 write_psymbols (info->symtab,
17735 info->psyms_seen,
17736 info->objfile->static_psymbols.list
17737 + psymtab->statics_offset,
17738 psymtab->n_static_syms, info->cu_index,
17739 1);
17740
17741 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
17742 entry->per_cu.offset.sect_off);
17743 obstack_grow (info->types_list, val, 8);
17744 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
17745 entry->type_offset_in_tu.cu_off);
17746 obstack_grow (info->types_list, val, 8);
17747 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
17748 obstack_grow (info->types_list, val, 8);
17749
17750 ++info->cu_index;
17751
17752 return 1;
17753 }
17754
17755 /* Recurse into all "included" dependencies and write their symbols as
17756 if they appeared in this psymtab. */
17757
17758 static void
17759 recursively_write_psymbols (struct objfile *objfile,
17760 struct partial_symtab *psymtab,
17761 struct mapped_symtab *symtab,
17762 htab_t psyms_seen,
17763 offset_type cu_index)
17764 {
17765 int i;
17766
17767 for (i = 0; i < psymtab->number_of_dependencies; ++i)
17768 if (psymtab->dependencies[i]->user != NULL)
17769 recursively_write_psymbols (objfile, psymtab->dependencies[i],
17770 symtab, psyms_seen, cu_index);
17771
17772 write_psymbols (symtab,
17773 psyms_seen,
17774 objfile->global_psymbols.list + psymtab->globals_offset,
17775 psymtab->n_global_syms, cu_index,
17776 0);
17777 write_psymbols (symtab,
17778 psyms_seen,
17779 objfile->static_psymbols.list + psymtab->statics_offset,
17780 psymtab->n_static_syms, cu_index,
17781 1);
17782 }
17783
17784 /* Create an index file for OBJFILE in the directory DIR. */
17785
17786 static void
17787 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
17788 {
17789 struct cleanup *cleanup;
17790 char *filename, *cleanup_filename;
17791 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
17792 struct obstack cu_list, types_cu_list;
17793 int i;
17794 FILE *out_file;
17795 struct mapped_symtab *symtab;
17796 offset_type val, size_of_contents, total_len;
17797 struct stat st;
17798 htab_t psyms_seen;
17799 htab_t cu_index_htab;
17800 struct psymtab_cu_index_map *psymtab_cu_index_map;
17801
17802 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
17803 return;
17804
17805 if (dwarf2_per_objfile->using_index)
17806 error (_("Cannot use an index to create the index"));
17807
17808 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
17809 error (_("Cannot make an index when the file has multiple .debug_types sections"));
17810
17811 if (stat (objfile->name, &st) < 0)
17812 perror_with_name (objfile->name);
17813
17814 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
17815 INDEX_SUFFIX, (char *) NULL);
17816 cleanup = make_cleanup (xfree, filename);
17817
17818 out_file = fopen (filename, "wb");
17819 if (!out_file)
17820 error (_("Can't open `%s' for writing"), filename);
17821
17822 cleanup_filename = filename;
17823 make_cleanup (unlink_if_set, &cleanup_filename);
17824
17825 symtab = create_mapped_symtab ();
17826 make_cleanup (cleanup_mapped_symtab, symtab);
17827
17828 obstack_init (&addr_obstack);
17829 make_cleanup_obstack_free (&addr_obstack);
17830
17831 obstack_init (&cu_list);
17832 make_cleanup_obstack_free (&cu_list);
17833
17834 obstack_init (&types_cu_list);
17835 make_cleanup_obstack_free (&types_cu_list);
17836
17837 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
17838 NULL, xcalloc, xfree);
17839 make_cleanup_htab_delete (psyms_seen);
17840
17841 /* While we're scanning CU's create a table that maps a psymtab pointer
17842 (which is what addrmap records) to its index (which is what is recorded
17843 in the index file). This will later be needed to write the address
17844 table. */
17845 cu_index_htab = htab_create_alloc (100,
17846 hash_psymtab_cu_index,
17847 eq_psymtab_cu_index,
17848 NULL, xcalloc, xfree);
17849 make_cleanup_htab_delete (cu_index_htab);
17850 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
17851 xmalloc (sizeof (struct psymtab_cu_index_map)
17852 * dwarf2_per_objfile->n_comp_units);
17853 make_cleanup (xfree, psymtab_cu_index_map);
17854
17855 /* The CU list is already sorted, so we don't need to do additional
17856 work here. Also, the debug_types entries do not appear in
17857 all_comp_units, but only in their own hash table. */
17858 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
17859 {
17860 struct dwarf2_per_cu_data *per_cu
17861 = dwarf2_per_objfile->all_comp_units[i];
17862 struct partial_symtab *psymtab = per_cu->v.psymtab;
17863 gdb_byte val[8];
17864 struct psymtab_cu_index_map *map;
17865 void **slot;
17866
17867 if (psymtab->user == NULL)
17868 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
17869
17870 map = &psymtab_cu_index_map[i];
17871 map->psymtab = psymtab;
17872 map->cu_index = i;
17873 slot = htab_find_slot (cu_index_htab, map, INSERT);
17874 gdb_assert (slot != NULL);
17875 gdb_assert (*slot == NULL);
17876 *slot = map;
17877
17878 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
17879 per_cu->offset.sect_off);
17880 obstack_grow (&cu_list, val, 8);
17881 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
17882 obstack_grow (&cu_list, val, 8);
17883 }
17884
17885 /* Dump the address map. */
17886 write_address_map (objfile, &addr_obstack, cu_index_htab);
17887
17888 /* Write out the .debug_type entries, if any. */
17889 if (dwarf2_per_objfile->signatured_types)
17890 {
17891 struct signatured_type_index_data sig_data;
17892
17893 sig_data.objfile = objfile;
17894 sig_data.symtab = symtab;
17895 sig_data.types_list = &types_cu_list;
17896 sig_data.psyms_seen = psyms_seen;
17897 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
17898 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
17899 write_one_signatured_type, &sig_data);
17900 }
17901
17902 obstack_init (&constant_pool);
17903 make_cleanup_obstack_free (&constant_pool);
17904 obstack_init (&symtab_obstack);
17905 make_cleanup_obstack_free (&symtab_obstack);
17906 write_hash_table (symtab, &symtab_obstack, &constant_pool);
17907
17908 obstack_init (&contents);
17909 make_cleanup_obstack_free (&contents);
17910 size_of_contents = 6 * sizeof (offset_type);
17911 total_len = size_of_contents;
17912
17913 /* The version number. */
17914 val = MAYBE_SWAP (6);
17915 obstack_grow (&contents, &val, sizeof (val));
17916
17917 /* The offset of the CU list from the start of the file. */
17918 val = MAYBE_SWAP (total_len);
17919 obstack_grow (&contents, &val, sizeof (val));
17920 total_len += obstack_object_size (&cu_list);
17921
17922 /* The offset of the types CU list from the start of the file. */
17923 val = MAYBE_SWAP (total_len);
17924 obstack_grow (&contents, &val, sizeof (val));
17925 total_len += obstack_object_size (&types_cu_list);
17926
17927 /* The offset of the address table from the start of the file. */
17928 val = MAYBE_SWAP (total_len);
17929 obstack_grow (&contents, &val, sizeof (val));
17930 total_len += obstack_object_size (&addr_obstack);
17931
17932 /* The offset of the symbol table from the start of the file. */
17933 val = MAYBE_SWAP (total_len);
17934 obstack_grow (&contents, &val, sizeof (val));
17935 total_len += obstack_object_size (&symtab_obstack);
17936
17937 /* The offset of the constant pool from the start of the file. */
17938 val = MAYBE_SWAP (total_len);
17939 obstack_grow (&contents, &val, sizeof (val));
17940 total_len += obstack_object_size (&constant_pool);
17941
17942 gdb_assert (obstack_object_size (&contents) == size_of_contents);
17943
17944 write_obstack (out_file, &contents);
17945 write_obstack (out_file, &cu_list);
17946 write_obstack (out_file, &types_cu_list);
17947 write_obstack (out_file, &addr_obstack);
17948 write_obstack (out_file, &symtab_obstack);
17949 write_obstack (out_file, &constant_pool);
17950
17951 fclose (out_file);
17952
17953 /* We want to keep the file, so we set cleanup_filename to NULL
17954 here. See unlink_if_set. */
17955 cleanup_filename = NULL;
17956
17957 do_cleanups (cleanup);
17958 }
17959
17960 /* Implementation of the `save gdb-index' command.
17961
17962 Note that the file format used by this command is documented in the
17963 GDB manual. Any changes here must be documented there. */
17964
17965 static void
17966 save_gdb_index_command (char *arg, int from_tty)
17967 {
17968 struct objfile *objfile;
17969
17970 if (!arg || !*arg)
17971 error (_("usage: save gdb-index DIRECTORY"));
17972
17973 ALL_OBJFILES (objfile)
17974 {
17975 struct stat st;
17976
17977 /* If the objfile does not correspond to an actual file, skip it. */
17978 if (stat (objfile->name, &st) < 0)
17979 continue;
17980
17981 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
17982 if (dwarf2_per_objfile)
17983 {
17984 volatile struct gdb_exception except;
17985
17986 TRY_CATCH (except, RETURN_MASK_ERROR)
17987 {
17988 write_psymtabs_to_index (objfile, arg);
17989 }
17990 if (except.reason < 0)
17991 exception_fprintf (gdb_stderr, except,
17992 _("Error while writing index for `%s': "),
17993 objfile->name);
17994 }
17995 }
17996 }
17997
17998 \f
17999
18000 int dwarf2_always_disassemble;
18001
18002 static void
18003 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
18004 struct cmd_list_element *c, const char *value)
18005 {
18006 fprintf_filtered (file,
18007 _("Whether to always disassemble "
18008 "DWARF expressions is %s.\n"),
18009 value);
18010 }
18011
18012 static void
18013 show_check_physname (struct ui_file *file, int from_tty,
18014 struct cmd_list_element *c, const char *value)
18015 {
18016 fprintf_filtered (file,
18017 _("Whether to check \"physname\" is %s.\n"),
18018 value);
18019 }
18020
18021 void _initialize_dwarf2_read (void);
18022
18023 void
18024 _initialize_dwarf2_read (void)
18025 {
18026 struct cmd_list_element *c;
18027
18028 dwarf2_objfile_data_key
18029 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
18030
18031 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
18032 Set DWARF 2 specific variables.\n\
18033 Configure DWARF 2 variables such as the cache size"),
18034 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
18035 0/*allow-unknown*/, &maintenance_set_cmdlist);
18036
18037 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
18038 Show DWARF 2 specific variables\n\
18039 Show DWARF 2 variables such as the cache size"),
18040 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
18041 0/*allow-unknown*/, &maintenance_show_cmdlist);
18042
18043 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
18044 &dwarf2_max_cache_age, _("\
18045 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
18046 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
18047 A higher limit means that cached compilation units will be stored\n\
18048 in memory longer, and more total memory will be used. Zero disables\n\
18049 caching, which can slow down startup."),
18050 NULL,
18051 show_dwarf2_max_cache_age,
18052 &set_dwarf2_cmdlist,
18053 &show_dwarf2_cmdlist);
18054
18055 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
18056 &dwarf2_always_disassemble, _("\
18057 Set whether `info address' always disassembles DWARF expressions."), _("\
18058 Show whether `info address' always disassembles DWARF expressions."), _("\
18059 When enabled, DWARF expressions are always printed in an assembly-like\n\
18060 syntax. When disabled, expressions will be printed in a more\n\
18061 conversational style, when possible."),
18062 NULL,
18063 show_dwarf2_always_disassemble,
18064 &set_dwarf2_cmdlist,
18065 &show_dwarf2_cmdlist);
18066
18067 add_setshow_zinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
18068 Set debugging of the dwarf2 DIE reader."), _("\
18069 Show debugging of the dwarf2 DIE reader."), _("\
18070 When enabled (non-zero), DIEs are dumped after they are read in.\n\
18071 The value is the maximum depth to print."),
18072 NULL,
18073 NULL,
18074 &setdebuglist, &showdebuglist);
18075
18076 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
18077 Set cross-checking of \"physname\" code against demangler."), _("\
18078 Show cross-checking of \"physname\" code against demangler."), _("\
18079 When enabled, GDB's internal \"physname\" code is checked against\n\
18080 the demangler."),
18081 NULL, show_check_physname,
18082 &setdebuglist, &showdebuglist);
18083
18084 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
18085 _("\
18086 Save a gdb-index file.\n\
18087 Usage: save gdb-index DIRECTORY"),
18088 &save_cmdlist);
18089 set_cmd_completer (c, filename_completer);
18090 }
This page took 0.380312 seconds and 5 git commands to generate.