Add initial type alignment support
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2018 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2read.h"
33 #include "dwarf-index-common.h"
34 #include "bfd.h"
35 #include "elf-bfd.h"
36 #include "symtab.h"
37 #include "gdbtypes.h"
38 #include "objfiles.h"
39 #include "dwarf2.h"
40 #include "buildsym.h"
41 #include "demangle.h"
42 #include "gdb-demangle.h"
43 #include "expression.h"
44 #include "filenames.h" /* for DOSish file names */
45 #include "macrotab.h"
46 #include "language.h"
47 #include "complaints.h"
48 #include "bcache.h"
49 #include "dwarf2expr.h"
50 #include "dwarf2loc.h"
51 #include "cp-support.h"
52 #include "hashtab.h"
53 #include "command.h"
54 #include "gdbcmd.h"
55 #include "block.h"
56 #include "addrmap.h"
57 #include "typeprint.h"
58 #include "psympriv.h"
59 #include <sys/stat.h>
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "filestuff.h"
72 #include "build-id.h"
73 #include "namespace.h"
74 #include "common/gdb_unlinker.h"
75 #include "common/function-view.h"
76 #include "common/gdb_optional.h"
77 #include "common/underlying.h"
78 #include "common/byte-vector.h"
79 #include "common/hash_enum.h"
80 #include "filename-seen-cache.h"
81 #include "producer.h"
82 #include <fcntl.h>
83 #include <sys/types.h>
84 #include <algorithm>
85 #include <unordered_set>
86 #include <unordered_map>
87 #include "selftest.h"
88 #include <cmath>
89 #include <set>
90 #include <forward_list>
91 #include "rust-lang.h"
92 #include "common/pathstuff.h"
93
94 /* When == 1, print basic high level tracing messages.
95 When > 1, be more verbose.
96 This is in contrast to the low level DIE reading of dwarf_die_debug. */
97 static unsigned int dwarf_read_debug = 0;
98
99 /* When non-zero, dump DIEs after they are read in. */
100 static unsigned int dwarf_die_debug = 0;
101
102 /* When non-zero, dump line number entries as they are read in. */
103 static unsigned int dwarf_line_debug = 0;
104
105 /* When non-zero, cross-check physname against demangler. */
106 static int check_physname = 0;
107
108 /* When non-zero, do not reject deprecated .gdb_index sections. */
109 static int use_deprecated_index_sections = 0;
110
111 static const struct objfile_data *dwarf2_objfile_data_key;
112
113 /* The "aclass" indices for various kinds of computed DWARF symbols. */
114
115 static int dwarf2_locexpr_index;
116 static int dwarf2_loclist_index;
117 static int dwarf2_locexpr_block_index;
118 static int dwarf2_loclist_block_index;
119
120 /* An index into a (C++) symbol name component in a symbol name as
121 recorded in the mapped_index's symbol table. For each C++ symbol
122 in the symbol table, we record one entry for the start of each
123 component in the symbol in a table of name components, and then
124 sort the table, in order to be able to binary search symbol names,
125 ignoring leading namespaces, both completion and regular look up.
126 For example, for symbol "A::B::C", we'll have an entry that points
127 to "A::B::C", another that points to "B::C", and another for "C".
128 Note that function symbols in GDB index have no parameter
129 information, just the function/method names. You can convert a
130 name_component to a "const char *" using the
131 'mapped_index::symbol_name_at(offset_type)' method. */
132
133 struct name_component
134 {
135 /* Offset in the symbol name where the component starts. Stored as
136 a (32-bit) offset instead of a pointer to save memory and improve
137 locality on 64-bit architectures. */
138 offset_type name_offset;
139
140 /* The symbol's index in the symbol and constant pool tables of a
141 mapped_index. */
142 offset_type idx;
143 };
144
145 /* Base class containing bits shared by both .gdb_index and
146 .debug_name indexes. */
147
148 struct mapped_index_base
149 {
150 /* The name_component table (a sorted vector). See name_component's
151 description above. */
152 std::vector<name_component> name_components;
153
154 /* How NAME_COMPONENTS is sorted. */
155 enum case_sensitivity name_components_casing;
156
157 /* Return the number of names in the symbol table. */
158 virtual size_t symbol_name_count () const = 0;
159
160 /* Get the name of the symbol at IDX in the symbol table. */
161 virtual const char *symbol_name_at (offset_type idx) const = 0;
162
163 /* Return whether the name at IDX in the symbol table should be
164 ignored. */
165 virtual bool symbol_name_slot_invalid (offset_type idx) const
166 {
167 return false;
168 }
169
170 /* Build the symbol name component sorted vector, if we haven't
171 yet. */
172 void build_name_components ();
173
174 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
175 possible matches for LN_NO_PARAMS in the name component
176 vector. */
177 std::pair<std::vector<name_component>::const_iterator,
178 std::vector<name_component>::const_iterator>
179 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
180
181 /* Prevent deleting/destroying via a base class pointer. */
182 protected:
183 ~mapped_index_base() = default;
184 };
185
186 /* A description of the mapped index. The file format is described in
187 a comment by the code that writes the index. */
188 struct mapped_index final : public mapped_index_base
189 {
190 /* A slot/bucket in the symbol table hash. */
191 struct symbol_table_slot
192 {
193 const offset_type name;
194 const offset_type vec;
195 };
196
197 /* Index data format version. */
198 int version;
199
200 /* The total length of the buffer. */
201 off_t total_size;
202
203 /* The address table data. */
204 gdb::array_view<const gdb_byte> address_table;
205
206 /* The symbol table, implemented as a hash table. */
207 gdb::array_view<symbol_table_slot> symbol_table;
208
209 /* A pointer to the constant pool. */
210 const char *constant_pool;
211
212 bool symbol_name_slot_invalid (offset_type idx) const override
213 {
214 const auto &bucket = this->symbol_table[idx];
215 return bucket.name == 0 && bucket.vec;
216 }
217
218 /* Convenience method to get at the name of the symbol at IDX in the
219 symbol table. */
220 const char *symbol_name_at (offset_type idx) const override
221 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
222
223 size_t symbol_name_count () const override
224 { return this->symbol_table.size (); }
225 };
226
227 /* A description of the mapped .debug_names.
228 Uninitialized map has CU_COUNT 0. */
229 struct mapped_debug_names final : public mapped_index_base
230 {
231 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
232 : dwarf2_per_objfile (dwarf2_per_objfile_)
233 {}
234
235 struct dwarf2_per_objfile *dwarf2_per_objfile;
236 bfd_endian dwarf5_byte_order;
237 bool dwarf5_is_dwarf64;
238 bool augmentation_is_gdb;
239 uint8_t offset_size;
240 uint32_t cu_count = 0;
241 uint32_t tu_count, bucket_count, name_count;
242 const gdb_byte *cu_table_reordered, *tu_table_reordered;
243 const uint32_t *bucket_table_reordered, *hash_table_reordered;
244 const gdb_byte *name_table_string_offs_reordered;
245 const gdb_byte *name_table_entry_offs_reordered;
246 const gdb_byte *entry_pool;
247
248 struct index_val
249 {
250 ULONGEST dwarf_tag;
251 struct attr
252 {
253 /* Attribute name DW_IDX_*. */
254 ULONGEST dw_idx;
255
256 /* Attribute form DW_FORM_*. */
257 ULONGEST form;
258
259 /* Value if FORM is DW_FORM_implicit_const. */
260 LONGEST implicit_const;
261 };
262 std::vector<attr> attr_vec;
263 };
264
265 std::unordered_map<ULONGEST, index_val> abbrev_map;
266
267 const char *namei_to_name (uint32_t namei) const;
268
269 /* Implementation of the mapped_index_base virtual interface, for
270 the name_components cache. */
271
272 const char *symbol_name_at (offset_type idx) const override
273 { return namei_to_name (idx); }
274
275 size_t symbol_name_count () const override
276 { return this->name_count; }
277 };
278
279 /* See dwarf2read.h. */
280
281 dwarf2_per_objfile *
282 get_dwarf2_per_objfile (struct objfile *objfile)
283 {
284 return ((struct dwarf2_per_objfile *)
285 objfile_data (objfile, dwarf2_objfile_data_key));
286 }
287
288 /* Set the dwarf2_per_objfile associated to OBJFILE. */
289
290 void
291 set_dwarf2_per_objfile (struct objfile *objfile,
292 struct dwarf2_per_objfile *dwarf2_per_objfile)
293 {
294 gdb_assert (get_dwarf2_per_objfile (objfile) == NULL);
295 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
296 }
297
298 /* Default names of the debugging sections. */
299
300 /* Note that if the debugging section has been compressed, it might
301 have a name like .zdebug_info. */
302
303 static const struct dwarf2_debug_sections dwarf2_elf_names =
304 {
305 { ".debug_info", ".zdebug_info" },
306 { ".debug_abbrev", ".zdebug_abbrev" },
307 { ".debug_line", ".zdebug_line" },
308 { ".debug_loc", ".zdebug_loc" },
309 { ".debug_loclists", ".zdebug_loclists" },
310 { ".debug_macinfo", ".zdebug_macinfo" },
311 { ".debug_macro", ".zdebug_macro" },
312 { ".debug_str", ".zdebug_str" },
313 { ".debug_line_str", ".zdebug_line_str" },
314 { ".debug_ranges", ".zdebug_ranges" },
315 { ".debug_rnglists", ".zdebug_rnglists" },
316 { ".debug_types", ".zdebug_types" },
317 { ".debug_addr", ".zdebug_addr" },
318 { ".debug_frame", ".zdebug_frame" },
319 { ".eh_frame", NULL },
320 { ".gdb_index", ".zgdb_index" },
321 { ".debug_names", ".zdebug_names" },
322 { ".debug_aranges", ".zdebug_aranges" },
323 23
324 };
325
326 /* List of DWO/DWP sections. */
327
328 static const struct dwop_section_names
329 {
330 struct dwarf2_section_names abbrev_dwo;
331 struct dwarf2_section_names info_dwo;
332 struct dwarf2_section_names line_dwo;
333 struct dwarf2_section_names loc_dwo;
334 struct dwarf2_section_names loclists_dwo;
335 struct dwarf2_section_names macinfo_dwo;
336 struct dwarf2_section_names macro_dwo;
337 struct dwarf2_section_names str_dwo;
338 struct dwarf2_section_names str_offsets_dwo;
339 struct dwarf2_section_names types_dwo;
340 struct dwarf2_section_names cu_index;
341 struct dwarf2_section_names tu_index;
342 }
343 dwop_section_names =
344 {
345 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
346 { ".debug_info.dwo", ".zdebug_info.dwo" },
347 { ".debug_line.dwo", ".zdebug_line.dwo" },
348 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
349 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
350 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
351 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
352 { ".debug_str.dwo", ".zdebug_str.dwo" },
353 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
354 { ".debug_types.dwo", ".zdebug_types.dwo" },
355 { ".debug_cu_index", ".zdebug_cu_index" },
356 { ".debug_tu_index", ".zdebug_tu_index" },
357 };
358
359 /* local data types */
360
361 /* The data in a compilation unit header, after target2host
362 translation, looks like this. */
363 struct comp_unit_head
364 {
365 unsigned int length;
366 short version;
367 unsigned char addr_size;
368 unsigned char signed_addr_p;
369 sect_offset abbrev_sect_off;
370
371 /* Size of file offsets; either 4 or 8. */
372 unsigned int offset_size;
373
374 /* Size of the length field; either 4 or 12. */
375 unsigned int initial_length_size;
376
377 enum dwarf_unit_type unit_type;
378
379 /* Offset to the first byte of this compilation unit header in the
380 .debug_info section, for resolving relative reference dies. */
381 sect_offset sect_off;
382
383 /* Offset to first die in this cu from the start of the cu.
384 This will be the first byte following the compilation unit header. */
385 cu_offset first_die_cu_offset;
386
387 /* 64-bit signature of this type unit - it is valid only for
388 UNIT_TYPE DW_UT_type. */
389 ULONGEST signature;
390
391 /* For types, offset in the type's DIE of the type defined by this TU. */
392 cu_offset type_cu_offset_in_tu;
393 };
394
395 /* Type used for delaying computation of method physnames.
396 See comments for compute_delayed_physnames. */
397 struct delayed_method_info
398 {
399 /* The type to which the method is attached, i.e., its parent class. */
400 struct type *type;
401
402 /* The index of the method in the type's function fieldlists. */
403 int fnfield_index;
404
405 /* The index of the method in the fieldlist. */
406 int index;
407
408 /* The name of the DIE. */
409 const char *name;
410
411 /* The DIE associated with this method. */
412 struct die_info *die;
413 };
414
415 /* Internal state when decoding a particular compilation unit. */
416 struct dwarf2_cu
417 {
418 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
419 ~dwarf2_cu ();
420
421 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
422
423 /* The header of the compilation unit. */
424 struct comp_unit_head header {};
425
426 /* Base address of this compilation unit. */
427 CORE_ADDR base_address = 0;
428
429 /* Non-zero if base_address has been set. */
430 int base_known = 0;
431
432 /* The language we are debugging. */
433 enum language language = language_unknown;
434 const struct language_defn *language_defn = nullptr;
435
436 const char *producer = nullptr;
437
438 /* The generic symbol table building routines have separate lists for
439 file scope symbols and all all other scopes (local scopes). So
440 we need to select the right one to pass to add_symbol_to_list().
441 We do it by keeping a pointer to the correct list in list_in_scope.
442
443 FIXME: The original dwarf code just treated the file scope as the
444 first local scope, and all other local scopes as nested local
445 scopes, and worked fine. Check to see if we really need to
446 distinguish these in buildsym.c. */
447 struct pending **list_in_scope = nullptr;
448
449 /* Hash table holding all the loaded partial DIEs
450 with partial_die->offset.SECT_OFF as hash. */
451 htab_t partial_dies = nullptr;
452
453 /* Storage for things with the same lifetime as this read-in compilation
454 unit, including partial DIEs. */
455 auto_obstack comp_unit_obstack;
456
457 /* When multiple dwarf2_cu structures are living in memory, this field
458 chains them all together, so that they can be released efficiently.
459 We will probably also want a generation counter so that most-recently-used
460 compilation units are cached... */
461 struct dwarf2_per_cu_data *read_in_chain = nullptr;
462
463 /* Backlink to our per_cu entry. */
464 struct dwarf2_per_cu_data *per_cu;
465
466 /* How many compilation units ago was this CU last referenced? */
467 int last_used = 0;
468
469 /* A hash table of DIE cu_offset for following references with
470 die_info->offset.sect_off as hash. */
471 htab_t die_hash = nullptr;
472
473 /* Full DIEs if read in. */
474 struct die_info *dies = nullptr;
475
476 /* A set of pointers to dwarf2_per_cu_data objects for compilation
477 units referenced by this one. Only set during full symbol processing;
478 partial symbol tables do not have dependencies. */
479 htab_t dependencies = nullptr;
480
481 /* Header data from the line table, during full symbol processing. */
482 struct line_header *line_header = nullptr;
483 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
484 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
485 this is the DW_TAG_compile_unit die for this CU. We'll hold on
486 to the line header as long as this DIE is being processed. See
487 process_die_scope. */
488 die_info *line_header_die_owner = nullptr;
489
490 /* A list of methods which need to have physnames computed
491 after all type information has been read. */
492 std::vector<delayed_method_info> method_list;
493
494 /* To be copied to symtab->call_site_htab. */
495 htab_t call_site_htab = nullptr;
496
497 /* Non-NULL if this CU came from a DWO file.
498 There is an invariant here that is important to remember:
499 Except for attributes copied from the top level DIE in the "main"
500 (or "stub") file in preparation for reading the DWO file
501 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
502 Either there isn't a DWO file (in which case this is NULL and the point
503 is moot), or there is and either we're not going to read it (in which
504 case this is NULL) or there is and we are reading it (in which case this
505 is non-NULL). */
506 struct dwo_unit *dwo_unit = nullptr;
507
508 /* The DW_AT_addr_base attribute if present, zero otherwise
509 (zero is a valid value though).
510 Note this value comes from the Fission stub CU/TU's DIE. */
511 ULONGEST addr_base = 0;
512
513 /* The DW_AT_ranges_base attribute if present, zero otherwise
514 (zero is a valid value though).
515 Note this value comes from the Fission stub CU/TU's DIE.
516 Also note that the value is zero in the non-DWO case so this value can
517 be used without needing to know whether DWO files are in use or not.
518 N.B. This does not apply to DW_AT_ranges appearing in
519 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
520 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
521 DW_AT_ranges_base *would* have to be applied, and we'd have to care
522 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
523 ULONGEST ranges_base = 0;
524
525 /* When reading debug info generated by older versions of rustc, we
526 have to rewrite some union types to be struct types with a
527 variant part. This rewriting must be done after the CU is fully
528 read in, because otherwise at the point of rewriting some struct
529 type might not have been fully processed. So, we keep a list of
530 all such types here and process them after expansion. */
531 std::vector<struct type *> rust_unions;
532
533 /* Mark used when releasing cached dies. */
534 unsigned int mark : 1;
535
536 /* This CU references .debug_loc. See the symtab->locations_valid field.
537 This test is imperfect as there may exist optimized debug code not using
538 any location list and still facing inlining issues if handled as
539 unoptimized code. For a future better test see GCC PR other/32998. */
540 unsigned int has_loclist : 1;
541
542 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
543 if all the producer_is_* fields are valid. This information is cached
544 because profiling CU expansion showed excessive time spent in
545 producer_is_gxx_lt_4_6. */
546 unsigned int checked_producer : 1;
547 unsigned int producer_is_gxx_lt_4_6 : 1;
548 unsigned int producer_is_gcc_lt_4_3 : 1;
549 unsigned int producer_is_icc_lt_14 : 1;
550
551 /* When set, the file that we're processing is known to have
552 debugging info for C++ namespaces. GCC 3.3.x did not produce
553 this information, but later versions do. */
554
555 unsigned int processing_has_namespace_info : 1;
556
557 struct partial_die_info *find_partial_die (sect_offset sect_off);
558 };
559
560 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
561 This includes type_unit_group and quick_file_names. */
562
563 struct stmt_list_hash
564 {
565 /* The DWO unit this table is from or NULL if there is none. */
566 struct dwo_unit *dwo_unit;
567
568 /* Offset in .debug_line or .debug_line.dwo. */
569 sect_offset line_sect_off;
570 };
571
572 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
573 an object of this type. */
574
575 struct type_unit_group
576 {
577 /* dwarf2read.c's main "handle" on a TU symtab.
578 To simplify things we create an artificial CU that "includes" all the
579 type units using this stmt_list so that the rest of the code still has
580 a "per_cu" handle on the symtab.
581 This PER_CU is recognized by having no section. */
582 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
583 struct dwarf2_per_cu_data per_cu;
584
585 /* The TUs that share this DW_AT_stmt_list entry.
586 This is added to while parsing type units to build partial symtabs,
587 and is deleted afterwards and not used again. */
588 VEC (sig_type_ptr) *tus;
589
590 /* The compunit symtab.
591 Type units in a group needn't all be defined in the same source file,
592 so we create an essentially anonymous symtab as the compunit symtab. */
593 struct compunit_symtab *compunit_symtab;
594
595 /* The data used to construct the hash key. */
596 struct stmt_list_hash hash;
597
598 /* The number of symtabs from the line header.
599 The value here must match line_header.num_file_names. */
600 unsigned int num_symtabs;
601
602 /* The symbol tables for this TU (obtained from the files listed in
603 DW_AT_stmt_list).
604 WARNING: The order of entries here must match the order of entries
605 in the line header. After the first TU using this type_unit_group, the
606 line header for the subsequent TUs is recreated from this. This is done
607 because we need to use the same symtabs for each TU using the same
608 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
609 there's no guarantee the line header doesn't have duplicate entries. */
610 struct symtab **symtabs;
611 };
612
613 /* These sections are what may appear in a (real or virtual) DWO file. */
614
615 struct dwo_sections
616 {
617 struct dwarf2_section_info abbrev;
618 struct dwarf2_section_info line;
619 struct dwarf2_section_info loc;
620 struct dwarf2_section_info loclists;
621 struct dwarf2_section_info macinfo;
622 struct dwarf2_section_info macro;
623 struct dwarf2_section_info str;
624 struct dwarf2_section_info str_offsets;
625 /* In the case of a virtual DWO file, these two are unused. */
626 struct dwarf2_section_info info;
627 VEC (dwarf2_section_info_def) *types;
628 };
629
630 /* CUs/TUs in DWP/DWO files. */
631
632 struct dwo_unit
633 {
634 /* Backlink to the containing struct dwo_file. */
635 struct dwo_file *dwo_file;
636
637 /* The "id" that distinguishes this CU/TU.
638 .debug_info calls this "dwo_id", .debug_types calls this "signature".
639 Since signatures came first, we stick with it for consistency. */
640 ULONGEST signature;
641
642 /* The section this CU/TU lives in, in the DWO file. */
643 struct dwarf2_section_info *section;
644
645 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
646 sect_offset sect_off;
647 unsigned int length;
648
649 /* For types, offset in the type's DIE of the type defined by this TU. */
650 cu_offset type_offset_in_tu;
651 };
652
653 /* include/dwarf2.h defines the DWP section codes.
654 It defines a max value but it doesn't define a min value, which we
655 use for error checking, so provide one. */
656
657 enum dwp_v2_section_ids
658 {
659 DW_SECT_MIN = 1
660 };
661
662 /* Data for one DWO file.
663
664 This includes virtual DWO files (a virtual DWO file is a DWO file as it
665 appears in a DWP file). DWP files don't really have DWO files per se -
666 comdat folding of types "loses" the DWO file they came from, and from
667 a high level view DWP files appear to contain a mass of random types.
668 However, to maintain consistency with the non-DWP case we pretend DWP
669 files contain virtual DWO files, and we assign each TU with one virtual
670 DWO file (generally based on the line and abbrev section offsets -
671 a heuristic that seems to work in practice). */
672
673 struct dwo_file
674 {
675 /* The DW_AT_GNU_dwo_name attribute.
676 For virtual DWO files the name is constructed from the section offsets
677 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
678 from related CU+TUs. */
679 const char *dwo_name;
680
681 /* The DW_AT_comp_dir attribute. */
682 const char *comp_dir;
683
684 /* The bfd, when the file is open. Otherwise this is NULL.
685 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
686 bfd *dbfd;
687
688 /* The sections that make up this DWO file.
689 Remember that for virtual DWO files in DWP V2, these are virtual
690 sections (for lack of a better name). */
691 struct dwo_sections sections;
692
693 /* The CUs in the file.
694 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
695 an extension to handle LLVM's Link Time Optimization output (where
696 multiple source files may be compiled into a single object/dwo pair). */
697 htab_t cus;
698
699 /* Table of TUs in the file.
700 Each element is a struct dwo_unit. */
701 htab_t tus;
702 };
703
704 /* These sections are what may appear in a DWP file. */
705
706 struct dwp_sections
707 {
708 /* These are used by both DWP version 1 and 2. */
709 struct dwarf2_section_info str;
710 struct dwarf2_section_info cu_index;
711 struct dwarf2_section_info tu_index;
712
713 /* These are only used by DWP version 2 files.
714 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
715 sections are referenced by section number, and are not recorded here.
716 In DWP version 2 there is at most one copy of all these sections, each
717 section being (effectively) comprised of the concatenation of all of the
718 individual sections that exist in the version 1 format.
719 To keep the code simple we treat each of these concatenated pieces as a
720 section itself (a virtual section?). */
721 struct dwarf2_section_info abbrev;
722 struct dwarf2_section_info info;
723 struct dwarf2_section_info line;
724 struct dwarf2_section_info loc;
725 struct dwarf2_section_info macinfo;
726 struct dwarf2_section_info macro;
727 struct dwarf2_section_info str_offsets;
728 struct dwarf2_section_info types;
729 };
730
731 /* These sections are what may appear in a virtual DWO file in DWP version 1.
732 A virtual DWO file is a DWO file as it appears in a DWP file. */
733
734 struct virtual_v1_dwo_sections
735 {
736 struct dwarf2_section_info abbrev;
737 struct dwarf2_section_info line;
738 struct dwarf2_section_info loc;
739 struct dwarf2_section_info macinfo;
740 struct dwarf2_section_info macro;
741 struct dwarf2_section_info str_offsets;
742 /* Each DWP hash table entry records one CU or one TU.
743 That is recorded here, and copied to dwo_unit.section. */
744 struct dwarf2_section_info info_or_types;
745 };
746
747 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
748 In version 2, the sections of the DWO files are concatenated together
749 and stored in one section of that name. Thus each ELF section contains
750 several "virtual" sections. */
751
752 struct virtual_v2_dwo_sections
753 {
754 bfd_size_type abbrev_offset;
755 bfd_size_type abbrev_size;
756
757 bfd_size_type line_offset;
758 bfd_size_type line_size;
759
760 bfd_size_type loc_offset;
761 bfd_size_type loc_size;
762
763 bfd_size_type macinfo_offset;
764 bfd_size_type macinfo_size;
765
766 bfd_size_type macro_offset;
767 bfd_size_type macro_size;
768
769 bfd_size_type str_offsets_offset;
770 bfd_size_type str_offsets_size;
771
772 /* Each DWP hash table entry records one CU or one TU.
773 That is recorded here, and copied to dwo_unit.section. */
774 bfd_size_type info_or_types_offset;
775 bfd_size_type info_or_types_size;
776 };
777
778 /* Contents of DWP hash tables. */
779
780 struct dwp_hash_table
781 {
782 uint32_t version, nr_columns;
783 uint32_t nr_units, nr_slots;
784 const gdb_byte *hash_table, *unit_table;
785 union
786 {
787 struct
788 {
789 const gdb_byte *indices;
790 } v1;
791 struct
792 {
793 /* This is indexed by column number and gives the id of the section
794 in that column. */
795 #define MAX_NR_V2_DWO_SECTIONS \
796 (1 /* .debug_info or .debug_types */ \
797 + 1 /* .debug_abbrev */ \
798 + 1 /* .debug_line */ \
799 + 1 /* .debug_loc */ \
800 + 1 /* .debug_str_offsets */ \
801 + 1 /* .debug_macro or .debug_macinfo */)
802 int section_ids[MAX_NR_V2_DWO_SECTIONS];
803 const gdb_byte *offsets;
804 const gdb_byte *sizes;
805 } v2;
806 } section_pool;
807 };
808
809 /* Data for one DWP file. */
810
811 struct dwp_file
812 {
813 /* Name of the file. */
814 const char *name;
815
816 /* File format version. */
817 int version;
818
819 /* The bfd. */
820 bfd *dbfd;
821
822 /* Section info for this file. */
823 struct dwp_sections sections;
824
825 /* Table of CUs in the file. */
826 const struct dwp_hash_table *cus;
827
828 /* Table of TUs in the file. */
829 const struct dwp_hash_table *tus;
830
831 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
832 htab_t loaded_cus;
833 htab_t loaded_tus;
834
835 /* Table to map ELF section numbers to their sections.
836 This is only needed for the DWP V1 file format. */
837 unsigned int num_sections;
838 asection **elf_sections;
839 };
840
841 /* This represents a '.dwz' file. */
842
843 struct dwz_file
844 {
845 /* A dwz file can only contain a few sections. */
846 struct dwarf2_section_info abbrev;
847 struct dwarf2_section_info info;
848 struct dwarf2_section_info str;
849 struct dwarf2_section_info line;
850 struct dwarf2_section_info macro;
851 struct dwarf2_section_info gdb_index;
852 struct dwarf2_section_info debug_names;
853
854 /* The dwz's BFD. */
855 bfd *dwz_bfd;
856 };
857
858 /* Struct used to pass misc. parameters to read_die_and_children, et
859 al. which are used for both .debug_info and .debug_types dies.
860 All parameters here are unchanging for the life of the call. This
861 struct exists to abstract away the constant parameters of die reading. */
862
863 struct die_reader_specs
864 {
865 /* The bfd of die_section. */
866 bfd* abfd;
867
868 /* The CU of the DIE we are parsing. */
869 struct dwarf2_cu *cu;
870
871 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
872 struct dwo_file *dwo_file;
873
874 /* The section the die comes from.
875 This is either .debug_info or .debug_types, or the .dwo variants. */
876 struct dwarf2_section_info *die_section;
877
878 /* die_section->buffer. */
879 const gdb_byte *buffer;
880
881 /* The end of the buffer. */
882 const gdb_byte *buffer_end;
883
884 /* The value of the DW_AT_comp_dir attribute. */
885 const char *comp_dir;
886
887 /* The abbreviation table to use when reading the DIEs. */
888 struct abbrev_table *abbrev_table;
889 };
890
891 /* Type of function passed to init_cutu_and_read_dies, et.al. */
892 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
893 const gdb_byte *info_ptr,
894 struct die_info *comp_unit_die,
895 int has_children,
896 void *data);
897
898 /* A 1-based directory index. This is a strong typedef to prevent
899 accidentally using a directory index as a 0-based index into an
900 array/vector. */
901 enum class dir_index : unsigned int {};
902
903 /* Likewise, a 1-based file name index. */
904 enum class file_name_index : unsigned int {};
905
906 struct file_entry
907 {
908 file_entry () = default;
909
910 file_entry (const char *name_, dir_index d_index_,
911 unsigned int mod_time_, unsigned int length_)
912 : name (name_),
913 d_index (d_index_),
914 mod_time (mod_time_),
915 length (length_)
916 {}
917
918 /* Return the include directory at D_INDEX stored in LH. Returns
919 NULL if D_INDEX is out of bounds. */
920 const char *include_dir (const line_header *lh) const;
921
922 /* The file name. Note this is an observing pointer. The memory is
923 owned by debug_line_buffer. */
924 const char *name {};
925
926 /* The directory index (1-based). */
927 dir_index d_index {};
928
929 unsigned int mod_time {};
930
931 unsigned int length {};
932
933 /* True if referenced by the Line Number Program. */
934 bool included_p {};
935
936 /* The associated symbol table, if any. */
937 struct symtab *symtab {};
938 };
939
940 /* The line number information for a compilation unit (found in the
941 .debug_line section) begins with a "statement program header",
942 which contains the following information. */
943 struct line_header
944 {
945 line_header ()
946 : offset_in_dwz {}
947 {}
948
949 /* Add an entry to the include directory table. */
950 void add_include_dir (const char *include_dir);
951
952 /* Add an entry to the file name table. */
953 void add_file_name (const char *name, dir_index d_index,
954 unsigned int mod_time, unsigned int length);
955
956 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
957 is out of bounds. */
958 const char *include_dir_at (dir_index index) const
959 {
960 /* Convert directory index number (1-based) to vector index
961 (0-based). */
962 size_t vec_index = to_underlying (index) - 1;
963
964 if (vec_index >= include_dirs.size ())
965 return NULL;
966 return include_dirs[vec_index];
967 }
968
969 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
970 is out of bounds. */
971 file_entry *file_name_at (file_name_index index)
972 {
973 /* Convert file name index number (1-based) to vector index
974 (0-based). */
975 size_t vec_index = to_underlying (index) - 1;
976
977 if (vec_index >= file_names.size ())
978 return NULL;
979 return &file_names[vec_index];
980 }
981
982 /* Const version of the above. */
983 const file_entry *file_name_at (unsigned int index) const
984 {
985 if (index >= file_names.size ())
986 return NULL;
987 return &file_names[index];
988 }
989
990 /* Offset of line number information in .debug_line section. */
991 sect_offset sect_off {};
992
993 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
994 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
995
996 unsigned int total_length {};
997 unsigned short version {};
998 unsigned int header_length {};
999 unsigned char minimum_instruction_length {};
1000 unsigned char maximum_ops_per_instruction {};
1001 unsigned char default_is_stmt {};
1002 int line_base {};
1003 unsigned char line_range {};
1004 unsigned char opcode_base {};
1005
1006 /* standard_opcode_lengths[i] is the number of operands for the
1007 standard opcode whose value is i. This means that
1008 standard_opcode_lengths[0] is unused, and the last meaningful
1009 element is standard_opcode_lengths[opcode_base - 1]. */
1010 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1011
1012 /* The include_directories table. Note these are observing
1013 pointers. The memory is owned by debug_line_buffer. */
1014 std::vector<const char *> include_dirs;
1015
1016 /* The file_names table. */
1017 std::vector<file_entry> file_names;
1018
1019 /* The start and end of the statement program following this
1020 header. These point into dwarf2_per_objfile->line_buffer. */
1021 const gdb_byte *statement_program_start {}, *statement_program_end {};
1022 };
1023
1024 typedef std::unique_ptr<line_header> line_header_up;
1025
1026 const char *
1027 file_entry::include_dir (const line_header *lh) const
1028 {
1029 return lh->include_dir_at (d_index);
1030 }
1031
1032 /* When we construct a partial symbol table entry we only
1033 need this much information. */
1034 struct partial_die_info : public allocate_on_obstack
1035 {
1036 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1037
1038 /* Disable assign but still keep copy ctor, which is needed
1039 load_partial_dies. */
1040 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1041
1042 /* Adjust the partial die before generating a symbol for it. This
1043 function may set the is_external flag or change the DIE's
1044 name. */
1045 void fixup (struct dwarf2_cu *cu);
1046
1047 /* Read a minimal amount of information into the minimal die
1048 structure. */
1049 const gdb_byte *read (const struct die_reader_specs *reader,
1050 const struct abbrev_info &abbrev,
1051 const gdb_byte *info_ptr);
1052
1053 /* Offset of this DIE. */
1054 const sect_offset sect_off;
1055
1056 /* DWARF-2 tag for this DIE. */
1057 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1058
1059 /* Assorted flags describing the data found in this DIE. */
1060 const unsigned int has_children : 1;
1061
1062 unsigned int is_external : 1;
1063 unsigned int is_declaration : 1;
1064 unsigned int has_type : 1;
1065 unsigned int has_specification : 1;
1066 unsigned int has_pc_info : 1;
1067 unsigned int may_be_inlined : 1;
1068
1069 /* This DIE has been marked DW_AT_main_subprogram. */
1070 unsigned int main_subprogram : 1;
1071
1072 /* Flag set if the SCOPE field of this structure has been
1073 computed. */
1074 unsigned int scope_set : 1;
1075
1076 /* Flag set if the DIE has a byte_size attribute. */
1077 unsigned int has_byte_size : 1;
1078
1079 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1080 unsigned int has_const_value : 1;
1081
1082 /* Flag set if any of the DIE's children are template arguments. */
1083 unsigned int has_template_arguments : 1;
1084
1085 /* Flag set if fixup has been called on this die. */
1086 unsigned int fixup_called : 1;
1087
1088 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1089 unsigned int is_dwz : 1;
1090
1091 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1092 unsigned int spec_is_dwz : 1;
1093
1094 /* The name of this DIE. Normally the value of DW_AT_name, but
1095 sometimes a default name for unnamed DIEs. */
1096 const char *name = nullptr;
1097
1098 /* The linkage name, if present. */
1099 const char *linkage_name = nullptr;
1100
1101 /* The scope to prepend to our children. This is generally
1102 allocated on the comp_unit_obstack, so will disappear
1103 when this compilation unit leaves the cache. */
1104 const char *scope = nullptr;
1105
1106 /* Some data associated with the partial DIE. The tag determines
1107 which field is live. */
1108 union
1109 {
1110 /* The location description associated with this DIE, if any. */
1111 struct dwarf_block *locdesc;
1112 /* The offset of an import, for DW_TAG_imported_unit. */
1113 sect_offset sect_off;
1114 } d {};
1115
1116 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1117 CORE_ADDR lowpc = 0;
1118 CORE_ADDR highpc = 0;
1119
1120 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1121 DW_AT_sibling, if any. */
1122 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1123 could return DW_AT_sibling values to its caller load_partial_dies. */
1124 const gdb_byte *sibling = nullptr;
1125
1126 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1127 DW_AT_specification (or DW_AT_abstract_origin or
1128 DW_AT_extension). */
1129 sect_offset spec_offset {};
1130
1131 /* Pointers to this DIE's parent, first child, and next sibling,
1132 if any. */
1133 struct partial_die_info *die_parent = nullptr;
1134 struct partial_die_info *die_child = nullptr;
1135 struct partial_die_info *die_sibling = nullptr;
1136
1137 friend struct partial_die_info *
1138 dwarf2_cu::find_partial_die (sect_offset sect_off);
1139
1140 private:
1141 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1142 partial_die_info (sect_offset sect_off)
1143 : partial_die_info (sect_off, DW_TAG_padding, 0)
1144 {
1145 }
1146
1147 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1148 int has_children_)
1149 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1150 {
1151 is_external = 0;
1152 is_declaration = 0;
1153 has_type = 0;
1154 has_specification = 0;
1155 has_pc_info = 0;
1156 may_be_inlined = 0;
1157 main_subprogram = 0;
1158 scope_set = 0;
1159 has_byte_size = 0;
1160 has_const_value = 0;
1161 has_template_arguments = 0;
1162 fixup_called = 0;
1163 is_dwz = 0;
1164 spec_is_dwz = 0;
1165 }
1166 };
1167
1168 /* This data structure holds the information of an abbrev. */
1169 struct abbrev_info
1170 {
1171 unsigned int number; /* number identifying abbrev */
1172 enum dwarf_tag tag; /* dwarf tag */
1173 unsigned short has_children; /* boolean */
1174 unsigned short num_attrs; /* number of attributes */
1175 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1176 struct abbrev_info *next; /* next in chain */
1177 };
1178
1179 struct attr_abbrev
1180 {
1181 ENUM_BITFIELD(dwarf_attribute) name : 16;
1182 ENUM_BITFIELD(dwarf_form) form : 16;
1183
1184 /* It is valid only if FORM is DW_FORM_implicit_const. */
1185 LONGEST implicit_const;
1186 };
1187
1188 /* Size of abbrev_table.abbrev_hash_table. */
1189 #define ABBREV_HASH_SIZE 121
1190
1191 /* Top level data structure to contain an abbreviation table. */
1192
1193 struct abbrev_table
1194 {
1195 explicit abbrev_table (sect_offset off)
1196 : sect_off (off)
1197 {
1198 m_abbrevs =
1199 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1200 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1201 }
1202
1203 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1204
1205 /* Allocate space for a struct abbrev_info object in
1206 ABBREV_TABLE. */
1207 struct abbrev_info *alloc_abbrev ();
1208
1209 /* Add an abbreviation to the table. */
1210 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1211
1212 /* Look up an abbrev in the table.
1213 Returns NULL if the abbrev is not found. */
1214
1215 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1216
1217
1218 /* Where the abbrev table came from.
1219 This is used as a sanity check when the table is used. */
1220 const sect_offset sect_off;
1221
1222 /* Storage for the abbrev table. */
1223 auto_obstack abbrev_obstack;
1224
1225 private:
1226
1227 /* Hash table of abbrevs.
1228 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1229 It could be statically allocated, but the previous code didn't so we
1230 don't either. */
1231 struct abbrev_info **m_abbrevs;
1232 };
1233
1234 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1235
1236 /* Attributes have a name and a value. */
1237 struct attribute
1238 {
1239 ENUM_BITFIELD(dwarf_attribute) name : 16;
1240 ENUM_BITFIELD(dwarf_form) form : 15;
1241
1242 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1243 field should be in u.str (existing only for DW_STRING) but it is kept
1244 here for better struct attribute alignment. */
1245 unsigned int string_is_canonical : 1;
1246
1247 union
1248 {
1249 const char *str;
1250 struct dwarf_block *blk;
1251 ULONGEST unsnd;
1252 LONGEST snd;
1253 CORE_ADDR addr;
1254 ULONGEST signature;
1255 }
1256 u;
1257 };
1258
1259 /* This data structure holds a complete die structure. */
1260 struct die_info
1261 {
1262 /* DWARF-2 tag for this DIE. */
1263 ENUM_BITFIELD(dwarf_tag) tag : 16;
1264
1265 /* Number of attributes */
1266 unsigned char num_attrs;
1267
1268 /* True if we're presently building the full type name for the
1269 type derived from this DIE. */
1270 unsigned char building_fullname : 1;
1271
1272 /* True if this die is in process. PR 16581. */
1273 unsigned char in_process : 1;
1274
1275 /* Abbrev number */
1276 unsigned int abbrev;
1277
1278 /* Offset in .debug_info or .debug_types section. */
1279 sect_offset sect_off;
1280
1281 /* The dies in a compilation unit form an n-ary tree. PARENT
1282 points to this die's parent; CHILD points to the first child of
1283 this node; and all the children of a given node are chained
1284 together via their SIBLING fields. */
1285 struct die_info *child; /* Its first child, if any. */
1286 struct die_info *sibling; /* Its next sibling, if any. */
1287 struct die_info *parent; /* Its parent, if any. */
1288
1289 /* An array of attributes, with NUM_ATTRS elements. There may be
1290 zero, but it's not common and zero-sized arrays are not
1291 sufficiently portable C. */
1292 struct attribute attrs[1];
1293 };
1294
1295 /* Get at parts of an attribute structure. */
1296
1297 #define DW_STRING(attr) ((attr)->u.str)
1298 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1299 #define DW_UNSND(attr) ((attr)->u.unsnd)
1300 #define DW_BLOCK(attr) ((attr)->u.blk)
1301 #define DW_SND(attr) ((attr)->u.snd)
1302 #define DW_ADDR(attr) ((attr)->u.addr)
1303 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1304
1305 /* Blocks are a bunch of untyped bytes. */
1306 struct dwarf_block
1307 {
1308 size_t size;
1309
1310 /* Valid only if SIZE is not zero. */
1311 const gdb_byte *data;
1312 };
1313
1314 #ifndef ATTR_ALLOC_CHUNK
1315 #define ATTR_ALLOC_CHUNK 4
1316 #endif
1317
1318 /* Allocate fields for structs, unions and enums in this size. */
1319 #ifndef DW_FIELD_ALLOC_CHUNK
1320 #define DW_FIELD_ALLOC_CHUNK 4
1321 #endif
1322
1323 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1324 but this would require a corresponding change in unpack_field_as_long
1325 and friends. */
1326 static int bits_per_byte = 8;
1327
1328 /* When reading a variant or variant part, we track a bit more
1329 information about the field, and store it in an object of this
1330 type. */
1331
1332 struct variant_field
1333 {
1334 /* If we see a DW_TAG_variant, then this will be the discriminant
1335 value. */
1336 ULONGEST discriminant_value;
1337 /* If we see a DW_TAG_variant, then this will be set if this is the
1338 default branch. */
1339 bool default_branch;
1340 /* While reading a DW_TAG_variant_part, this will be set if this
1341 field is the discriminant. */
1342 bool is_discriminant;
1343 };
1344
1345 struct nextfield
1346 {
1347 int accessibility = 0;
1348 int virtuality = 0;
1349 /* Extra information to describe a variant or variant part. */
1350 struct variant_field variant {};
1351 struct field field {};
1352 };
1353
1354 struct fnfieldlist
1355 {
1356 const char *name = nullptr;
1357 std::vector<struct fn_field> fnfields;
1358 };
1359
1360 /* The routines that read and process dies for a C struct or C++ class
1361 pass lists of data member fields and lists of member function fields
1362 in an instance of a field_info structure, as defined below. */
1363 struct field_info
1364 {
1365 /* List of data member and baseclasses fields. */
1366 std::vector<struct nextfield> fields;
1367 std::vector<struct nextfield> baseclasses;
1368
1369 /* Number of fields (including baseclasses). */
1370 int nfields = 0;
1371
1372 /* Set if the accesibility of one of the fields is not public. */
1373 int non_public_fields = 0;
1374
1375 /* Member function fieldlist array, contains name of possibly overloaded
1376 member function, number of overloaded member functions and a pointer
1377 to the head of the member function field chain. */
1378 std::vector<struct fnfieldlist> fnfieldlists;
1379
1380 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1381 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1382 std::vector<struct decl_field> typedef_field_list;
1383
1384 /* Nested types defined by this class and the number of elements in this
1385 list. */
1386 std::vector<struct decl_field> nested_types_list;
1387 };
1388
1389 /* One item on the queue of compilation units to read in full symbols
1390 for. */
1391 struct dwarf2_queue_item
1392 {
1393 struct dwarf2_per_cu_data *per_cu;
1394 enum language pretend_language;
1395 struct dwarf2_queue_item *next;
1396 };
1397
1398 /* The current queue. */
1399 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1400
1401 /* Loaded secondary compilation units are kept in memory until they
1402 have not been referenced for the processing of this many
1403 compilation units. Set this to zero to disable caching. Cache
1404 sizes of up to at least twenty will improve startup time for
1405 typical inter-CU-reference binaries, at an obvious memory cost. */
1406 static int dwarf_max_cache_age = 5;
1407 static void
1408 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1409 struct cmd_list_element *c, const char *value)
1410 {
1411 fprintf_filtered (file, _("The upper bound on the age of cached "
1412 "DWARF compilation units is %s.\n"),
1413 value);
1414 }
1415 \f
1416 /* local function prototypes */
1417
1418 static const char *get_section_name (const struct dwarf2_section_info *);
1419
1420 static const char *get_section_file_name (const struct dwarf2_section_info *);
1421
1422 static void dwarf2_find_base_address (struct die_info *die,
1423 struct dwarf2_cu *cu);
1424
1425 static struct partial_symtab *create_partial_symtab
1426 (struct dwarf2_per_cu_data *per_cu, const char *name);
1427
1428 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1429 const gdb_byte *info_ptr,
1430 struct die_info *type_unit_die,
1431 int has_children, void *data);
1432
1433 static void dwarf2_build_psymtabs_hard
1434 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1435
1436 static void scan_partial_symbols (struct partial_die_info *,
1437 CORE_ADDR *, CORE_ADDR *,
1438 int, struct dwarf2_cu *);
1439
1440 static void add_partial_symbol (struct partial_die_info *,
1441 struct dwarf2_cu *);
1442
1443 static void add_partial_namespace (struct partial_die_info *pdi,
1444 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1445 int set_addrmap, struct dwarf2_cu *cu);
1446
1447 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1448 CORE_ADDR *highpc, int set_addrmap,
1449 struct dwarf2_cu *cu);
1450
1451 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1452 struct dwarf2_cu *cu);
1453
1454 static void add_partial_subprogram (struct partial_die_info *pdi,
1455 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1456 int need_pc, struct dwarf2_cu *cu);
1457
1458 static void dwarf2_read_symtab (struct partial_symtab *,
1459 struct objfile *);
1460
1461 static void psymtab_to_symtab_1 (struct partial_symtab *);
1462
1463 static abbrev_table_up abbrev_table_read_table
1464 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1465 sect_offset);
1466
1467 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1468
1469 static struct partial_die_info *load_partial_dies
1470 (const struct die_reader_specs *, const gdb_byte *, int);
1471
1472 static struct partial_die_info *find_partial_die (sect_offset, int,
1473 struct dwarf2_cu *);
1474
1475 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1476 struct attribute *, struct attr_abbrev *,
1477 const gdb_byte *);
1478
1479 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1480
1481 static int read_1_signed_byte (bfd *, const gdb_byte *);
1482
1483 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1484
1485 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1486
1487 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1488
1489 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1490 unsigned int *);
1491
1492 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1493
1494 static LONGEST read_checked_initial_length_and_offset
1495 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1496 unsigned int *, unsigned int *);
1497
1498 static LONGEST read_offset (bfd *, const gdb_byte *,
1499 const struct comp_unit_head *,
1500 unsigned int *);
1501
1502 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1503
1504 static sect_offset read_abbrev_offset
1505 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1506 struct dwarf2_section_info *, sect_offset);
1507
1508 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1509
1510 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1511
1512 static const char *read_indirect_string
1513 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1514 const struct comp_unit_head *, unsigned int *);
1515
1516 static const char *read_indirect_line_string
1517 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1518 const struct comp_unit_head *, unsigned int *);
1519
1520 static const char *read_indirect_string_at_offset
1521 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1522 LONGEST str_offset);
1523
1524 static const char *read_indirect_string_from_dwz
1525 (struct objfile *objfile, struct dwz_file *, LONGEST);
1526
1527 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1528
1529 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1530 const gdb_byte *,
1531 unsigned int *);
1532
1533 static const char *read_str_index (const struct die_reader_specs *reader,
1534 ULONGEST str_index);
1535
1536 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1537
1538 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1539 struct dwarf2_cu *);
1540
1541 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1542 unsigned int);
1543
1544 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1545 struct dwarf2_cu *cu);
1546
1547 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1548 struct dwarf2_cu *cu);
1549
1550 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1551
1552 static struct die_info *die_specification (struct die_info *die,
1553 struct dwarf2_cu **);
1554
1555 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1556 struct dwarf2_cu *cu);
1557
1558 static void dwarf_decode_lines (struct line_header *, const char *,
1559 struct dwarf2_cu *, struct partial_symtab *,
1560 CORE_ADDR, int decode_mapping);
1561
1562 static void dwarf2_start_subfile (const char *, const char *);
1563
1564 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1565 const char *, const char *,
1566 CORE_ADDR);
1567
1568 static struct symbol *new_symbol (struct die_info *, struct type *,
1569 struct dwarf2_cu *, struct symbol * = NULL);
1570
1571 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1572 struct dwarf2_cu *);
1573
1574 static void dwarf2_const_value_attr (const struct attribute *attr,
1575 struct type *type,
1576 const char *name,
1577 struct obstack *obstack,
1578 struct dwarf2_cu *cu, LONGEST *value,
1579 const gdb_byte **bytes,
1580 struct dwarf2_locexpr_baton **baton);
1581
1582 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1583
1584 static int need_gnat_info (struct dwarf2_cu *);
1585
1586 static struct type *die_descriptive_type (struct die_info *,
1587 struct dwarf2_cu *);
1588
1589 static void set_descriptive_type (struct type *, struct die_info *,
1590 struct dwarf2_cu *);
1591
1592 static struct type *die_containing_type (struct die_info *,
1593 struct dwarf2_cu *);
1594
1595 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1596 struct dwarf2_cu *);
1597
1598 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1599
1600 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1601
1602 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1603
1604 static char *typename_concat (struct obstack *obs, const char *prefix,
1605 const char *suffix, int physname,
1606 struct dwarf2_cu *cu);
1607
1608 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1609
1610 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1611
1612 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1613
1614 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1615
1616 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1617
1618 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1619
1620 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1621 struct dwarf2_cu *, struct partial_symtab *);
1622
1623 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1624 values. Keep the items ordered with increasing constraints compliance. */
1625 enum pc_bounds_kind
1626 {
1627 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1628 PC_BOUNDS_NOT_PRESENT,
1629
1630 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1631 were present but they do not form a valid range of PC addresses. */
1632 PC_BOUNDS_INVALID,
1633
1634 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1635 PC_BOUNDS_RANGES,
1636
1637 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1638 PC_BOUNDS_HIGH_LOW,
1639 };
1640
1641 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1642 CORE_ADDR *, CORE_ADDR *,
1643 struct dwarf2_cu *,
1644 struct partial_symtab *);
1645
1646 static void get_scope_pc_bounds (struct die_info *,
1647 CORE_ADDR *, CORE_ADDR *,
1648 struct dwarf2_cu *);
1649
1650 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1651 CORE_ADDR, struct dwarf2_cu *);
1652
1653 static void dwarf2_add_field (struct field_info *, struct die_info *,
1654 struct dwarf2_cu *);
1655
1656 static void dwarf2_attach_fields_to_type (struct field_info *,
1657 struct type *, struct dwarf2_cu *);
1658
1659 static void dwarf2_add_member_fn (struct field_info *,
1660 struct die_info *, struct type *,
1661 struct dwarf2_cu *);
1662
1663 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1664 struct type *,
1665 struct dwarf2_cu *);
1666
1667 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1668
1669 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1670
1671 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1672
1673 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1674
1675 static struct using_direct **using_directives (enum language);
1676
1677 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1678
1679 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1680
1681 static struct type *read_module_type (struct die_info *die,
1682 struct dwarf2_cu *cu);
1683
1684 static const char *namespace_name (struct die_info *die,
1685 int *is_anonymous, struct dwarf2_cu *);
1686
1687 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1688
1689 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1690
1691 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1692 struct dwarf2_cu *);
1693
1694 static struct die_info *read_die_and_siblings_1
1695 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1696 struct die_info *);
1697
1698 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1699 const gdb_byte *info_ptr,
1700 const gdb_byte **new_info_ptr,
1701 struct die_info *parent);
1702
1703 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1704 struct die_info **, const gdb_byte *,
1705 int *, int);
1706
1707 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1708 struct die_info **, const gdb_byte *,
1709 int *);
1710
1711 static void process_die (struct die_info *, struct dwarf2_cu *);
1712
1713 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1714 struct obstack *);
1715
1716 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1717
1718 static const char *dwarf2_full_name (const char *name,
1719 struct die_info *die,
1720 struct dwarf2_cu *cu);
1721
1722 static const char *dwarf2_physname (const char *name, struct die_info *die,
1723 struct dwarf2_cu *cu);
1724
1725 static struct die_info *dwarf2_extension (struct die_info *die,
1726 struct dwarf2_cu **);
1727
1728 static const char *dwarf_tag_name (unsigned int);
1729
1730 static const char *dwarf_attr_name (unsigned int);
1731
1732 static const char *dwarf_form_name (unsigned int);
1733
1734 static const char *dwarf_bool_name (unsigned int);
1735
1736 static const char *dwarf_type_encoding_name (unsigned int);
1737
1738 static struct die_info *sibling_die (struct die_info *);
1739
1740 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1741
1742 static void dump_die_for_error (struct die_info *);
1743
1744 static void dump_die_1 (struct ui_file *, int level, int max_level,
1745 struct die_info *);
1746
1747 /*static*/ void dump_die (struct die_info *, int max_level);
1748
1749 static void store_in_ref_table (struct die_info *,
1750 struct dwarf2_cu *);
1751
1752 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1753
1754 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1755
1756 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1757 const struct attribute *,
1758 struct dwarf2_cu **);
1759
1760 static struct die_info *follow_die_ref (struct die_info *,
1761 const struct attribute *,
1762 struct dwarf2_cu **);
1763
1764 static struct die_info *follow_die_sig (struct die_info *,
1765 const struct attribute *,
1766 struct dwarf2_cu **);
1767
1768 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1769 struct dwarf2_cu *);
1770
1771 static struct type *get_DW_AT_signature_type (struct die_info *,
1772 const struct attribute *,
1773 struct dwarf2_cu *);
1774
1775 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1776
1777 static void read_signatured_type (struct signatured_type *);
1778
1779 static int attr_to_dynamic_prop (const struct attribute *attr,
1780 struct die_info *die, struct dwarf2_cu *cu,
1781 struct dynamic_prop *prop);
1782
1783 /* memory allocation interface */
1784
1785 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1786
1787 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1788
1789 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1790
1791 static int attr_form_is_block (const struct attribute *);
1792
1793 static int attr_form_is_section_offset (const struct attribute *);
1794
1795 static int attr_form_is_constant (const struct attribute *);
1796
1797 static int attr_form_is_ref (const struct attribute *);
1798
1799 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1800 struct dwarf2_loclist_baton *baton,
1801 const struct attribute *attr);
1802
1803 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1804 struct symbol *sym,
1805 struct dwarf2_cu *cu,
1806 int is_block);
1807
1808 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1809 const gdb_byte *info_ptr,
1810 struct abbrev_info *abbrev);
1811
1812 static hashval_t partial_die_hash (const void *item);
1813
1814 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1815
1816 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1817 (sect_offset sect_off, unsigned int offset_in_dwz,
1818 struct dwarf2_per_objfile *dwarf2_per_objfile);
1819
1820 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1821 struct die_info *comp_unit_die,
1822 enum language pretend_language);
1823
1824 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1825
1826 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1827
1828 static struct type *set_die_type (struct die_info *, struct type *,
1829 struct dwarf2_cu *);
1830
1831 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1832
1833 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1834
1835 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1836 enum language);
1837
1838 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1839 enum language);
1840
1841 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1842 enum language);
1843
1844 static void dwarf2_add_dependence (struct dwarf2_cu *,
1845 struct dwarf2_per_cu_data *);
1846
1847 static void dwarf2_mark (struct dwarf2_cu *);
1848
1849 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1850
1851 static struct type *get_die_type_at_offset (sect_offset,
1852 struct dwarf2_per_cu_data *);
1853
1854 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1855
1856 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1857 enum language pretend_language);
1858
1859 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1860
1861 /* Class, the destructor of which frees all allocated queue entries. This
1862 will only have work to do if an error was thrown while processing the
1863 dwarf. If no error was thrown then the queue entries should have all
1864 been processed, and freed, as we went along. */
1865
1866 class dwarf2_queue_guard
1867 {
1868 public:
1869 dwarf2_queue_guard () = default;
1870
1871 /* Free any entries remaining on the queue. There should only be
1872 entries left if we hit an error while processing the dwarf. */
1873 ~dwarf2_queue_guard ()
1874 {
1875 struct dwarf2_queue_item *item, *last;
1876
1877 item = dwarf2_queue;
1878 while (item)
1879 {
1880 /* Anything still marked queued is likely to be in an
1881 inconsistent state, so discard it. */
1882 if (item->per_cu->queued)
1883 {
1884 if (item->per_cu->cu != NULL)
1885 free_one_cached_comp_unit (item->per_cu);
1886 item->per_cu->queued = 0;
1887 }
1888
1889 last = item;
1890 item = item->next;
1891 xfree (last);
1892 }
1893
1894 dwarf2_queue = dwarf2_queue_tail = NULL;
1895 }
1896 };
1897
1898 /* The return type of find_file_and_directory. Note, the enclosed
1899 string pointers are only valid while this object is valid. */
1900
1901 struct file_and_directory
1902 {
1903 /* The filename. This is never NULL. */
1904 const char *name;
1905
1906 /* The compilation directory. NULL if not known. If we needed to
1907 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1908 points directly to the DW_AT_comp_dir string attribute owned by
1909 the obstack that owns the DIE. */
1910 const char *comp_dir;
1911
1912 /* If we needed to build a new string for comp_dir, this is what
1913 owns the storage. */
1914 std::string comp_dir_storage;
1915 };
1916
1917 static file_and_directory find_file_and_directory (struct die_info *die,
1918 struct dwarf2_cu *cu);
1919
1920 static char *file_full_name (int file, struct line_header *lh,
1921 const char *comp_dir);
1922
1923 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1924 enum class rcuh_kind { COMPILE, TYPE };
1925
1926 static const gdb_byte *read_and_check_comp_unit_head
1927 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1928 struct comp_unit_head *header,
1929 struct dwarf2_section_info *section,
1930 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1931 rcuh_kind section_kind);
1932
1933 static void init_cutu_and_read_dies
1934 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1935 int use_existing_cu, int keep,
1936 die_reader_func_ftype *die_reader_func, void *data);
1937
1938 static void init_cutu_and_read_dies_simple
1939 (struct dwarf2_per_cu_data *this_cu,
1940 die_reader_func_ftype *die_reader_func, void *data);
1941
1942 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1943
1944 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1945
1946 static struct dwo_unit *lookup_dwo_unit_in_dwp
1947 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1948 struct dwp_file *dwp_file, const char *comp_dir,
1949 ULONGEST signature, int is_debug_types);
1950
1951 static struct dwp_file *get_dwp_file
1952 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1953
1954 static struct dwo_unit *lookup_dwo_comp_unit
1955 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1956
1957 static struct dwo_unit *lookup_dwo_type_unit
1958 (struct signatured_type *, const char *, const char *);
1959
1960 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1961
1962 static void free_dwo_file (struct dwo_file *);
1963
1964 /* A unique_ptr helper to free a dwo_file. */
1965
1966 struct dwo_file_deleter
1967 {
1968 void operator() (struct dwo_file *df) const
1969 {
1970 free_dwo_file (df);
1971 }
1972 };
1973
1974 /* A unique pointer to a dwo_file. */
1975
1976 typedef std::unique_ptr<struct dwo_file, dwo_file_deleter> dwo_file_up;
1977
1978 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
1979
1980 static void check_producer (struct dwarf2_cu *cu);
1981
1982 static void free_line_header_voidp (void *arg);
1983 \f
1984 /* Various complaints about symbol reading that don't abort the process. */
1985
1986 static void
1987 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1988 {
1989 complaint (&symfile_complaints,
1990 _("statement list doesn't fit in .debug_line section"));
1991 }
1992
1993 static void
1994 dwarf2_debug_line_missing_file_complaint (void)
1995 {
1996 complaint (&symfile_complaints,
1997 _(".debug_line section has line data without a file"));
1998 }
1999
2000 static void
2001 dwarf2_debug_line_missing_end_sequence_complaint (void)
2002 {
2003 complaint (&symfile_complaints,
2004 _(".debug_line section has line "
2005 "program sequence without an end"));
2006 }
2007
2008 static void
2009 dwarf2_complex_location_expr_complaint (void)
2010 {
2011 complaint (&symfile_complaints, _("location expression too complex"));
2012 }
2013
2014 static void
2015 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2016 int arg3)
2017 {
2018 complaint (&symfile_complaints,
2019 _("const value length mismatch for '%s', got %d, expected %d"),
2020 arg1, arg2, arg3);
2021 }
2022
2023 static void
2024 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2025 {
2026 complaint (&symfile_complaints,
2027 _("debug info runs off end of %s section"
2028 " [in module %s]"),
2029 get_section_name (section),
2030 get_section_file_name (section));
2031 }
2032
2033 static void
2034 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2035 {
2036 complaint (&symfile_complaints,
2037 _("macro debug info contains a "
2038 "malformed macro definition:\n`%s'"),
2039 arg1);
2040 }
2041
2042 static void
2043 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2044 {
2045 complaint (&symfile_complaints,
2046 _("invalid attribute class or form for '%s' in '%s'"),
2047 arg1, arg2);
2048 }
2049
2050 /* Hash function for line_header_hash. */
2051
2052 static hashval_t
2053 line_header_hash (const struct line_header *ofs)
2054 {
2055 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2056 }
2057
2058 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2059
2060 static hashval_t
2061 line_header_hash_voidp (const void *item)
2062 {
2063 const struct line_header *ofs = (const struct line_header *) item;
2064
2065 return line_header_hash (ofs);
2066 }
2067
2068 /* Equality function for line_header_hash. */
2069
2070 static int
2071 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2072 {
2073 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2074 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2075
2076 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2077 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2078 }
2079
2080 \f
2081
2082 /* Read the given attribute value as an address, taking the attribute's
2083 form into account. */
2084
2085 static CORE_ADDR
2086 attr_value_as_address (struct attribute *attr)
2087 {
2088 CORE_ADDR addr;
2089
2090 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2091 {
2092 /* Aside from a few clearly defined exceptions, attributes that
2093 contain an address must always be in DW_FORM_addr form.
2094 Unfortunately, some compilers happen to be violating this
2095 requirement by encoding addresses using other forms, such
2096 as DW_FORM_data4 for example. For those broken compilers,
2097 we try to do our best, without any guarantee of success,
2098 to interpret the address correctly. It would also be nice
2099 to generate a complaint, but that would require us to maintain
2100 a list of legitimate cases where a non-address form is allowed,
2101 as well as update callers to pass in at least the CU's DWARF
2102 version. This is more overhead than what we're willing to
2103 expand for a pretty rare case. */
2104 addr = DW_UNSND (attr);
2105 }
2106 else
2107 addr = DW_ADDR (attr);
2108
2109 return addr;
2110 }
2111
2112 /* See declaration. */
2113
2114 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2115 const dwarf2_debug_sections *names)
2116 : objfile (objfile_)
2117 {
2118 if (names == NULL)
2119 names = &dwarf2_elf_names;
2120
2121 bfd *obfd = objfile->obfd;
2122
2123 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2124 locate_sections (obfd, sec, *names);
2125 }
2126
2127 static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2128
2129 dwarf2_per_objfile::~dwarf2_per_objfile ()
2130 {
2131 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2132 free_cached_comp_units ();
2133
2134 if (quick_file_names_table)
2135 htab_delete (quick_file_names_table);
2136
2137 if (line_header_hash)
2138 htab_delete (line_header_hash);
2139
2140 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2141 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2142
2143 for (signatured_type *sig_type : all_type_units)
2144 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2145
2146 VEC_free (dwarf2_section_info_def, types);
2147
2148 if (dwo_files != NULL)
2149 free_dwo_files (dwo_files, objfile);
2150 if (dwp_file != NULL)
2151 gdb_bfd_unref (dwp_file->dbfd);
2152
2153 if (dwz_file != NULL && dwz_file->dwz_bfd)
2154 gdb_bfd_unref (dwz_file->dwz_bfd);
2155
2156 if (index_table != NULL)
2157 index_table->~mapped_index ();
2158
2159 /* Everything else should be on the objfile obstack. */
2160 }
2161
2162 /* See declaration. */
2163
2164 void
2165 dwarf2_per_objfile::free_cached_comp_units ()
2166 {
2167 dwarf2_per_cu_data *per_cu = read_in_chain;
2168 dwarf2_per_cu_data **last_chain = &read_in_chain;
2169 while (per_cu != NULL)
2170 {
2171 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2172
2173 delete per_cu->cu;
2174 *last_chain = next_cu;
2175 per_cu = next_cu;
2176 }
2177 }
2178
2179 /* A helper class that calls free_cached_comp_units on
2180 destruction. */
2181
2182 class free_cached_comp_units
2183 {
2184 public:
2185
2186 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2187 : m_per_objfile (per_objfile)
2188 {
2189 }
2190
2191 ~free_cached_comp_units ()
2192 {
2193 m_per_objfile->free_cached_comp_units ();
2194 }
2195
2196 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2197
2198 private:
2199
2200 dwarf2_per_objfile *m_per_objfile;
2201 };
2202
2203 /* Try to locate the sections we need for DWARF 2 debugging
2204 information and return true if we have enough to do something.
2205 NAMES points to the dwarf2 section names, or is NULL if the standard
2206 ELF names are used. */
2207
2208 int
2209 dwarf2_has_info (struct objfile *objfile,
2210 const struct dwarf2_debug_sections *names)
2211 {
2212 if (objfile->flags & OBJF_READNEVER)
2213 return 0;
2214
2215 struct dwarf2_per_objfile *dwarf2_per_objfile
2216 = get_dwarf2_per_objfile (objfile);
2217
2218 if (dwarf2_per_objfile == NULL)
2219 {
2220 /* Initialize per-objfile state. */
2221 dwarf2_per_objfile
2222 = new (&objfile->objfile_obstack) struct dwarf2_per_objfile (objfile,
2223 names);
2224 set_dwarf2_per_objfile (objfile, dwarf2_per_objfile);
2225 }
2226 return (!dwarf2_per_objfile->info.is_virtual
2227 && dwarf2_per_objfile->info.s.section != NULL
2228 && !dwarf2_per_objfile->abbrev.is_virtual
2229 && dwarf2_per_objfile->abbrev.s.section != NULL);
2230 }
2231
2232 /* Return the containing section of virtual section SECTION. */
2233
2234 static struct dwarf2_section_info *
2235 get_containing_section (const struct dwarf2_section_info *section)
2236 {
2237 gdb_assert (section->is_virtual);
2238 return section->s.containing_section;
2239 }
2240
2241 /* Return the bfd owner of SECTION. */
2242
2243 static struct bfd *
2244 get_section_bfd_owner (const struct dwarf2_section_info *section)
2245 {
2246 if (section->is_virtual)
2247 {
2248 section = get_containing_section (section);
2249 gdb_assert (!section->is_virtual);
2250 }
2251 return section->s.section->owner;
2252 }
2253
2254 /* Return the bfd section of SECTION.
2255 Returns NULL if the section is not present. */
2256
2257 static asection *
2258 get_section_bfd_section (const struct dwarf2_section_info *section)
2259 {
2260 if (section->is_virtual)
2261 {
2262 section = get_containing_section (section);
2263 gdb_assert (!section->is_virtual);
2264 }
2265 return section->s.section;
2266 }
2267
2268 /* Return the name of SECTION. */
2269
2270 static const char *
2271 get_section_name (const struct dwarf2_section_info *section)
2272 {
2273 asection *sectp = get_section_bfd_section (section);
2274
2275 gdb_assert (sectp != NULL);
2276 return bfd_section_name (get_section_bfd_owner (section), sectp);
2277 }
2278
2279 /* Return the name of the file SECTION is in. */
2280
2281 static const char *
2282 get_section_file_name (const struct dwarf2_section_info *section)
2283 {
2284 bfd *abfd = get_section_bfd_owner (section);
2285
2286 return bfd_get_filename (abfd);
2287 }
2288
2289 /* Return the id of SECTION.
2290 Returns 0 if SECTION doesn't exist. */
2291
2292 static int
2293 get_section_id (const struct dwarf2_section_info *section)
2294 {
2295 asection *sectp = get_section_bfd_section (section);
2296
2297 if (sectp == NULL)
2298 return 0;
2299 return sectp->id;
2300 }
2301
2302 /* Return the flags of SECTION.
2303 SECTION (or containing section if this is a virtual section) must exist. */
2304
2305 static int
2306 get_section_flags (const struct dwarf2_section_info *section)
2307 {
2308 asection *sectp = get_section_bfd_section (section);
2309
2310 gdb_assert (sectp != NULL);
2311 return bfd_get_section_flags (sectp->owner, sectp);
2312 }
2313
2314 /* When loading sections, we look either for uncompressed section or for
2315 compressed section names. */
2316
2317 static int
2318 section_is_p (const char *section_name,
2319 const struct dwarf2_section_names *names)
2320 {
2321 if (names->normal != NULL
2322 && strcmp (section_name, names->normal) == 0)
2323 return 1;
2324 if (names->compressed != NULL
2325 && strcmp (section_name, names->compressed) == 0)
2326 return 1;
2327 return 0;
2328 }
2329
2330 /* See declaration. */
2331
2332 void
2333 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2334 const dwarf2_debug_sections &names)
2335 {
2336 flagword aflag = bfd_get_section_flags (abfd, sectp);
2337
2338 if ((aflag & SEC_HAS_CONTENTS) == 0)
2339 {
2340 }
2341 else if (section_is_p (sectp->name, &names.info))
2342 {
2343 this->info.s.section = sectp;
2344 this->info.size = bfd_get_section_size (sectp);
2345 }
2346 else if (section_is_p (sectp->name, &names.abbrev))
2347 {
2348 this->abbrev.s.section = sectp;
2349 this->abbrev.size = bfd_get_section_size (sectp);
2350 }
2351 else if (section_is_p (sectp->name, &names.line))
2352 {
2353 this->line.s.section = sectp;
2354 this->line.size = bfd_get_section_size (sectp);
2355 }
2356 else if (section_is_p (sectp->name, &names.loc))
2357 {
2358 this->loc.s.section = sectp;
2359 this->loc.size = bfd_get_section_size (sectp);
2360 }
2361 else if (section_is_p (sectp->name, &names.loclists))
2362 {
2363 this->loclists.s.section = sectp;
2364 this->loclists.size = bfd_get_section_size (sectp);
2365 }
2366 else if (section_is_p (sectp->name, &names.macinfo))
2367 {
2368 this->macinfo.s.section = sectp;
2369 this->macinfo.size = bfd_get_section_size (sectp);
2370 }
2371 else if (section_is_p (sectp->name, &names.macro))
2372 {
2373 this->macro.s.section = sectp;
2374 this->macro.size = bfd_get_section_size (sectp);
2375 }
2376 else if (section_is_p (sectp->name, &names.str))
2377 {
2378 this->str.s.section = sectp;
2379 this->str.size = bfd_get_section_size (sectp);
2380 }
2381 else if (section_is_p (sectp->name, &names.line_str))
2382 {
2383 this->line_str.s.section = sectp;
2384 this->line_str.size = bfd_get_section_size (sectp);
2385 }
2386 else if (section_is_p (sectp->name, &names.addr))
2387 {
2388 this->addr.s.section = sectp;
2389 this->addr.size = bfd_get_section_size (sectp);
2390 }
2391 else if (section_is_p (sectp->name, &names.frame))
2392 {
2393 this->frame.s.section = sectp;
2394 this->frame.size = bfd_get_section_size (sectp);
2395 }
2396 else if (section_is_p (sectp->name, &names.eh_frame))
2397 {
2398 this->eh_frame.s.section = sectp;
2399 this->eh_frame.size = bfd_get_section_size (sectp);
2400 }
2401 else if (section_is_p (sectp->name, &names.ranges))
2402 {
2403 this->ranges.s.section = sectp;
2404 this->ranges.size = bfd_get_section_size (sectp);
2405 }
2406 else if (section_is_p (sectp->name, &names.rnglists))
2407 {
2408 this->rnglists.s.section = sectp;
2409 this->rnglists.size = bfd_get_section_size (sectp);
2410 }
2411 else if (section_is_p (sectp->name, &names.types))
2412 {
2413 struct dwarf2_section_info type_section;
2414
2415 memset (&type_section, 0, sizeof (type_section));
2416 type_section.s.section = sectp;
2417 type_section.size = bfd_get_section_size (sectp);
2418
2419 VEC_safe_push (dwarf2_section_info_def, this->types,
2420 &type_section);
2421 }
2422 else if (section_is_p (sectp->name, &names.gdb_index))
2423 {
2424 this->gdb_index.s.section = sectp;
2425 this->gdb_index.size = bfd_get_section_size (sectp);
2426 }
2427 else if (section_is_p (sectp->name, &names.debug_names))
2428 {
2429 this->debug_names.s.section = sectp;
2430 this->debug_names.size = bfd_get_section_size (sectp);
2431 }
2432 else if (section_is_p (sectp->name, &names.debug_aranges))
2433 {
2434 this->debug_aranges.s.section = sectp;
2435 this->debug_aranges.size = bfd_get_section_size (sectp);
2436 }
2437
2438 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2439 && bfd_section_vma (abfd, sectp) == 0)
2440 this->has_section_at_zero = true;
2441 }
2442
2443 /* A helper function that decides whether a section is empty,
2444 or not present. */
2445
2446 static int
2447 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2448 {
2449 if (section->is_virtual)
2450 return section->size == 0;
2451 return section->s.section == NULL || section->size == 0;
2452 }
2453
2454 /* See dwarf2read.h. */
2455
2456 void
2457 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2458 {
2459 asection *sectp;
2460 bfd *abfd;
2461 gdb_byte *buf, *retbuf;
2462
2463 if (info->readin)
2464 return;
2465 info->buffer = NULL;
2466 info->readin = 1;
2467
2468 if (dwarf2_section_empty_p (info))
2469 return;
2470
2471 sectp = get_section_bfd_section (info);
2472
2473 /* If this is a virtual section we need to read in the real one first. */
2474 if (info->is_virtual)
2475 {
2476 struct dwarf2_section_info *containing_section =
2477 get_containing_section (info);
2478
2479 gdb_assert (sectp != NULL);
2480 if ((sectp->flags & SEC_RELOC) != 0)
2481 {
2482 error (_("Dwarf Error: DWP format V2 with relocations is not"
2483 " supported in section %s [in module %s]"),
2484 get_section_name (info), get_section_file_name (info));
2485 }
2486 dwarf2_read_section (objfile, containing_section);
2487 /* Other code should have already caught virtual sections that don't
2488 fit. */
2489 gdb_assert (info->virtual_offset + info->size
2490 <= containing_section->size);
2491 /* If the real section is empty or there was a problem reading the
2492 section we shouldn't get here. */
2493 gdb_assert (containing_section->buffer != NULL);
2494 info->buffer = containing_section->buffer + info->virtual_offset;
2495 return;
2496 }
2497
2498 /* If the section has relocations, we must read it ourselves.
2499 Otherwise we attach it to the BFD. */
2500 if ((sectp->flags & SEC_RELOC) == 0)
2501 {
2502 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2503 return;
2504 }
2505
2506 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2507 info->buffer = buf;
2508
2509 /* When debugging .o files, we may need to apply relocations; see
2510 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2511 We never compress sections in .o files, so we only need to
2512 try this when the section is not compressed. */
2513 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2514 if (retbuf != NULL)
2515 {
2516 info->buffer = retbuf;
2517 return;
2518 }
2519
2520 abfd = get_section_bfd_owner (info);
2521 gdb_assert (abfd != NULL);
2522
2523 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2524 || bfd_bread (buf, info->size, abfd) != info->size)
2525 {
2526 error (_("Dwarf Error: Can't read DWARF data"
2527 " in section %s [in module %s]"),
2528 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2529 }
2530 }
2531
2532 /* A helper function that returns the size of a section in a safe way.
2533 If you are positive that the section has been read before using the
2534 size, then it is safe to refer to the dwarf2_section_info object's
2535 "size" field directly. In other cases, you must call this
2536 function, because for compressed sections the size field is not set
2537 correctly until the section has been read. */
2538
2539 static bfd_size_type
2540 dwarf2_section_size (struct objfile *objfile,
2541 struct dwarf2_section_info *info)
2542 {
2543 if (!info->readin)
2544 dwarf2_read_section (objfile, info);
2545 return info->size;
2546 }
2547
2548 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2549 SECTION_NAME. */
2550
2551 void
2552 dwarf2_get_section_info (struct objfile *objfile,
2553 enum dwarf2_section_enum sect,
2554 asection **sectp, const gdb_byte **bufp,
2555 bfd_size_type *sizep)
2556 {
2557 struct dwarf2_per_objfile *data
2558 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2559 dwarf2_objfile_data_key);
2560 struct dwarf2_section_info *info;
2561
2562 /* We may see an objfile without any DWARF, in which case we just
2563 return nothing. */
2564 if (data == NULL)
2565 {
2566 *sectp = NULL;
2567 *bufp = NULL;
2568 *sizep = 0;
2569 return;
2570 }
2571 switch (sect)
2572 {
2573 case DWARF2_DEBUG_FRAME:
2574 info = &data->frame;
2575 break;
2576 case DWARF2_EH_FRAME:
2577 info = &data->eh_frame;
2578 break;
2579 default:
2580 gdb_assert_not_reached ("unexpected section");
2581 }
2582
2583 dwarf2_read_section (objfile, info);
2584
2585 *sectp = get_section_bfd_section (info);
2586 *bufp = info->buffer;
2587 *sizep = info->size;
2588 }
2589
2590 /* A helper function to find the sections for a .dwz file. */
2591
2592 static void
2593 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2594 {
2595 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2596
2597 /* Note that we only support the standard ELF names, because .dwz
2598 is ELF-only (at the time of writing). */
2599 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2600 {
2601 dwz_file->abbrev.s.section = sectp;
2602 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2603 }
2604 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2605 {
2606 dwz_file->info.s.section = sectp;
2607 dwz_file->info.size = bfd_get_section_size (sectp);
2608 }
2609 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2610 {
2611 dwz_file->str.s.section = sectp;
2612 dwz_file->str.size = bfd_get_section_size (sectp);
2613 }
2614 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2615 {
2616 dwz_file->line.s.section = sectp;
2617 dwz_file->line.size = bfd_get_section_size (sectp);
2618 }
2619 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2620 {
2621 dwz_file->macro.s.section = sectp;
2622 dwz_file->macro.size = bfd_get_section_size (sectp);
2623 }
2624 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2625 {
2626 dwz_file->gdb_index.s.section = sectp;
2627 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2628 }
2629 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2630 {
2631 dwz_file->debug_names.s.section = sectp;
2632 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2633 }
2634 }
2635
2636 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2637 there is no .gnu_debugaltlink section in the file. Error if there
2638 is such a section but the file cannot be found. */
2639
2640 static struct dwz_file *
2641 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2642 {
2643 const char *filename;
2644 struct dwz_file *result;
2645 bfd_size_type buildid_len_arg;
2646 size_t buildid_len;
2647 bfd_byte *buildid;
2648
2649 if (dwarf2_per_objfile->dwz_file != NULL)
2650 return dwarf2_per_objfile->dwz_file;
2651
2652 bfd_set_error (bfd_error_no_error);
2653 gdb::unique_xmalloc_ptr<char> data
2654 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2655 &buildid_len_arg, &buildid));
2656 if (data == NULL)
2657 {
2658 if (bfd_get_error () == bfd_error_no_error)
2659 return NULL;
2660 error (_("could not read '.gnu_debugaltlink' section: %s"),
2661 bfd_errmsg (bfd_get_error ()));
2662 }
2663
2664 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2665
2666 buildid_len = (size_t) buildid_len_arg;
2667
2668 filename = data.get ();
2669
2670 std::string abs_storage;
2671 if (!IS_ABSOLUTE_PATH (filename))
2672 {
2673 gdb::unique_xmalloc_ptr<char> abs
2674 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2675
2676 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2677 filename = abs_storage.c_str ();
2678 }
2679
2680 /* First try the file name given in the section. If that doesn't
2681 work, try to use the build-id instead. */
2682 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2683 if (dwz_bfd != NULL)
2684 {
2685 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2686 dwz_bfd.release ();
2687 }
2688
2689 if (dwz_bfd == NULL)
2690 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2691
2692 if (dwz_bfd == NULL)
2693 error (_("could not find '.gnu_debugaltlink' file for %s"),
2694 objfile_name (dwarf2_per_objfile->objfile));
2695
2696 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2697 struct dwz_file);
2698 result->dwz_bfd = dwz_bfd.release ();
2699
2700 bfd_map_over_sections (result->dwz_bfd, locate_dwz_sections, result);
2701
2702 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, result->dwz_bfd);
2703 dwarf2_per_objfile->dwz_file = result;
2704 return result;
2705 }
2706 \f
2707 /* DWARF quick_symbols_functions support. */
2708
2709 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2710 unique line tables, so we maintain a separate table of all .debug_line
2711 derived entries to support the sharing.
2712 All the quick functions need is the list of file names. We discard the
2713 line_header when we're done and don't need to record it here. */
2714 struct quick_file_names
2715 {
2716 /* The data used to construct the hash key. */
2717 struct stmt_list_hash hash;
2718
2719 /* The number of entries in file_names, real_names. */
2720 unsigned int num_file_names;
2721
2722 /* The file names from the line table, after being run through
2723 file_full_name. */
2724 const char **file_names;
2725
2726 /* The file names from the line table after being run through
2727 gdb_realpath. These are computed lazily. */
2728 const char **real_names;
2729 };
2730
2731 /* When using the index (and thus not using psymtabs), each CU has an
2732 object of this type. This is used to hold information needed by
2733 the various "quick" methods. */
2734 struct dwarf2_per_cu_quick_data
2735 {
2736 /* The file table. This can be NULL if there was no file table
2737 or it's currently not read in.
2738 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2739 struct quick_file_names *file_names;
2740
2741 /* The corresponding symbol table. This is NULL if symbols for this
2742 CU have not yet been read. */
2743 struct compunit_symtab *compunit_symtab;
2744
2745 /* A temporary mark bit used when iterating over all CUs in
2746 expand_symtabs_matching. */
2747 unsigned int mark : 1;
2748
2749 /* True if we've tried to read the file table and found there isn't one.
2750 There will be no point in trying to read it again next time. */
2751 unsigned int no_file_data : 1;
2752 };
2753
2754 /* Utility hash function for a stmt_list_hash. */
2755
2756 static hashval_t
2757 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2758 {
2759 hashval_t v = 0;
2760
2761 if (stmt_list_hash->dwo_unit != NULL)
2762 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2763 v += to_underlying (stmt_list_hash->line_sect_off);
2764 return v;
2765 }
2766
2767 /* Utility equality function for a stmt_list_hash. */
2768
2769 static int
2770 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2771 const struct stmt_list_hash *rhs)
2772 {
2773 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2774 return 0;
2775 if (lhs->dwo_unit != NULL
2776 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2777 return 0;
2778
2779 return lhs->line_sect_off == rhs->line_sect_off;
2780 }
2781
2782 /* Hash function for a quick_file_names. */
2783
2784 static hashval_t
2785 hash_file_name_entry (const void *e)
2786 {
2787 const struct quick_file_names *file_data
2788 = (const struct quick_file_names *) e;
2789
2790 return hash_stmt_list_entry (&file_data->hash);
2791 }
2792
2793 /* Equality function for a quick_file_names. */
2794
2795 static int
2796 eq_file_name_entry (const void *a, const void *b)
2797 {
2798 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2799 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2800
2801 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2802 }
2803
2804 /* Delete function for a quick_file_names. */
2805
2806 static void
2807 delete_file_name_entry (void *e)
2808 {
2809 struct quick_file_names *file_data = (struct quick_file_names *) e;
2810 int i;
2811
2812 for (i = 0; i < file_data->num_file_names; ++i)
2813 {
2814 xfree ((void*) file_data->file_names[i]);
2815 if (file_data->real_names)
2816 xfree ((void*) file_data->real_names[i]);
2817 }
2818
2819 /* The space for the struct itself lives on objfile_obstack,
2820 so we don't free it here. */
2821 }
2822
2823 /* Create a quick_file_names hash table. */
2824
2825 static htab_t
2826 create_quick_file_names_table (unsigned int nr_initial_entries)
2827 {
2828 return htab_create_alloc (nr_initial_entries,
2829 hash_file_name_entry, eq_file_name_entry,
2830 delete_file_name_entry, xcalloc, xfree);
2831 }
2832
2833 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2834 have to be created afterwards. You should call age_cached_comp_units after
2835 processing PER_CU->CU. dw2_setup must have been already called. */
2836
2837 static void
2838 load_cu (struct dwarf2_per_cu_data *per_cu)
2839 {
2840 if (per_cu->is_debug_types)
2841 load_full_type_unit (per_cu);
2842 else
2843 load_full_comp_unit (per_cu, language_minimal);
2844
2845 if (per_cu->cu == NULL)
2846 return; /* Dummy CU. */
2847
2848 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2849 }
2850
2851 /* Read in the symbols for PER_CU. */
2852
2853 static void
2854 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2855 {
2856 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2857
2858 /* Skip type_unit_groups, reading the type units they contain
2859 is handled elsewhere. */
2860 if (IS_TYPE_UNIT_GROUP (per_cu))
2861 return;
2862
2863 /* The destructor of dwarf2_queue_guard frees any entries left on
2864 the queue. After this point we're guaranteed to leave this function
2865 with the dwarf queue empty. */
2866 dwarf2_queue_guard q_guard;
2867
2868 if (dwarf2_per_objfile->using_index
2869 ? per_cu->v.quick->compunit_symtab == NULL
2870 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2871 {
2872 queue_comp_unit (per_cu, language_minimal);
2873 load_cu (per_cu);
2874
2875 /* If we just loaded a CU from a DWO, and we're working with an index
2876 that may badly handle TUs, load all the TUs in that DWO as well.
2877 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2878 if (!per_cu->is_debug_types
2879 && per_cu->cu != NULL
2880 && per_cu->cu->dwo_unit != NULL
2881 && dwarf2_per_objfile->index_table != NULL
2882 && dwarf2_per_objfile->index_table->version <= 7
2883 /* DWP files aren't supported yet. */
2884 && get_dwp_file (dwarf2_per_objfile) == NULL)
2885 queue_and_load_all_dwo_tus (per_cu);
2886 }
2887
2888 process_queue (dwarf2_per_objfile);
2889
2890 /* Age the cache, releasing compilation units that have not
2891 been used recently. */
2892 age_cached_comp_units (dwarf2_per_objfile);
2893 }
2894
2895 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2896 the objfile from which this CU came. Returns the resulting symbol
2897 table. */
2898
2899 static struct compunit_symtab *
2900 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2901 {
2902 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2903
2904 gdb_assert (dwarf2_per_objfile->using_index);
2905 if (!per_cu->v.quick->compunit_symtab)
2906 {
2907 free_cached_comp_units freer (dwarf2_per_objfile);
2908 scoped_restore decrementer = increment_reading_symtab ();
2909 dw2_do_instantiate_symtab (per_cu);
2910 process_cu_includes (dwarf2_per_objfile);
2911 }
2912
2913 return per_cu->v.quick->compunit_symtab;
2914 }
2915
2916 /* See declaration. */
2917
2918 dwarf2_per_cu_data *
2919 dwarf2_per_objfile::get_cutu (int index)
2920 {
2921 if (index >= this->all_comp_units.size ())
2922 {
2923 index -= this->all_comp_units.size ();
2924 gdb_assert (index < this->all_type_units.size ());
2925 return &this->all_type_units[index]->per_cu;
2926 }
2927
2928 return this->all_comp_units[index];
2929 }
2930
2931 /* See declaration. */
2932
2933 dwarf2_per_cu_data *
2934 dwarf2_per_objfile::get_cu (int index)
2935 {
2936 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2937
2938 return this->all_comp_units[index];
2939 }
2940
2941 /* See declaration. */
2942
2943 signatured_type *
2944 dwarf2_per_objfile::get_tu (int index)
2945 {
2946 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2947
2948 return this->all_type_units[index];
2949 }
2950
2951 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2952 objfile_obstack, and constructed with the specified field
2953 values. */
2954
2955 static dwarf2_per_cu_data *
2956 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2957 struct dwarf2_section_info *section,
2958 int is_dwz,
2959 sect_offset sect_off, ULONGEST length)
2960 {
2961 struct objfile *objfile = dwarf2_per_objfile->objfile;
2962 dwarf2_per_cu_data *the_cu
2963 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2964 struct dwarf2_per_cu_data);
2965 the_cu->sect_off = sect_off;
2966 the_cu->length = length;
2967 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2968 the_cu->section = section;
2969 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2970 struct dwarf2_per_cu_quick_data);
2971 the_cu->is_dwz = is_dwz;
2972 return the_cu;
2973 }
2974
2975 /* A helper for create_cus_from_index that handles a given list of
2976 CUs. */
2977
2978 static void
2979 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2980 const gdb_byte *cu_list, offset_type n_elements,
2981 struct dwarf2_section_info *section,
2982 int is_dwz)
2983 {
2984 for (offset_type i = 0; i < n_elements; i += 2)
2985 {
2986 gdb_static_assert (sizeof (ULONGEST) >= 8);
2987
2988 sect_offset sect_off
2989 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2990 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2991 cu_list += 2 * 8;
2992
2993 dwarf2_per_cu_data *per_cu
2994 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
2995 sect_off, length);
2996 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
2997 }
2998 }
2999
3000 /* Read the CU list from the mapped index, and use it to create all
3001 the CU objects for this objfile. */
3002
3003 static void
3004 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3005 const gdb_byte *cu_list, offset_type cu_list_elements,
3006 const gdb_byte *dwz_list, offset_type dwz_elements)
3007 {
3008 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3009 dwarf2_per_objfile->all_comp_units.reserve
3010 ((cu_list_elements + dwz_elements) / 2);
3011
3012 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3013 &dwarf2_per_objfile->info, 0);
3014
3015 if (dwz_elements == 0)
3016 return;
3017
3018 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3019 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3020 &dwz->info, 1);
3021 }
3022
3023 /* Create the signatured type hash table from the index. */
3024
3025 static void
3026 create_signatured_type_table_from_index
3027 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3028 struct dwarf2_section_info *section,
3029 const gdb_byte *bytes,
3030 offset_type elements)
3031 {
3032 struct objfile *objfile = dwarf2_per_objfile->objfile;
3033
3034 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3035 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3036
3037 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3038
3039 for (offset_type i = 0; i < elements; i += 3)
3040 {
3041 struct signatured_type *sig_type;
3042 ULONGEST signature;
3043 void **slot;
3044 cu_offset type_offset_in_tu;
3045
3046 gdb_static_assert (sizeof (ULONGEST) >= 8);
3047 sect_offset sect_off
3048 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3049 type_offset_in_tu
3050 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3051 BFD_ENDIAN_LITTLE);
3052 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3053 bytes += 3 * 8;
3054
3055 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3056 struct signatured_type);
3057 sig_type->signature = signature;
3058 sig_type->type_offset_in_tu = type_offset_in_tu;
3059 sig_type->per_cu.is_debug_types = 1;
3060 sig_type->per_cu.section = section;
3061 sig_type->per_cu.sect_off = sect_off;
3062 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3063 sig_type->per_cu.v.quick
3064 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3065 struct dwarf2_per_cu_quick_data);
3066
3067 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3068 *slot = sig_type;
3069
3070 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3071 }
3072
3073 dwarf2_per_objfile->signatured_types = sig_types_hash;
3074 }
3075
3076 /* Create the signatured type hash table from .debug_names. */
3077
3078 static void
3079 create_signatured_type_table_from_debug_names
3080 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3081 const mapped_debug_names &map,
3082 struct dwarf2_section_info *section,
3083 struct dwarf2_section_info *abbrev_section)
3084 {
3085 struct objfile *objfile = dwarf2_per_objfile->objfile;
3086
3087 dwarf2_read_section (objfile, section);
3088 dwarf2_read_section (objfile, abbrev_section);
3089
3090 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3091 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3092
3093 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3094
3095 for (uint32_t i = 0; i < map.tu_count; ++i)
3096 {
3097 struct signatured_type *sig_type;
3098 void **slot;
3099
3100 sect_offset sect_off
3101 = (sect_offset) (extract_unsigned_integer
3102 (map.tu_table_reordered + i * map.offset_size,
3103 map.offset_size,
3104 map.dwarf5_byte_order));
3105
3106 comp_unit_head cu_header;
3107 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3108 abbrev_section,
3109 section->buffer + to_underlying (sect_off),
3110 rcuh_kind::TYPE);
3111
3112 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3113 struct signatured_type);
3114 sig_type->signature = cu_header.signature;
3115 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3116 sig_type->per_cu.is_debug_types = 1;
3117 sig_type->per_cu.section = section;
3118 sig_type->per_cu.sect_off = sect_off;
3119 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3120 sig_type->per_cu.v.quick
3121 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3122 struct dwarf2_per_cu_quick_data);
3123
3124 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3125 *slot = sig_type;
3126
3127 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3128 }
3129
3130 dwarf2_per_objfile->signatured_types = sig_types_hash;
3131 }
3132
3133 /* Read the address map data from the mapped index, and use it to
3134 populate the objfile's psymtabs_addrmap. */
3135
3136 static void
3137 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3138 struct mapped_index *index)
3139 {
3140 struct objfile *objfile = dwarf2_per_objfile->objfile;
3141 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3142 const gdb_byte *iter, *end;
3143 struct addrmap *mutable_map;
3144 CORE_ADDR baseaddr;
3145
3146 auto_obstack temp_obstack;
3147
3148 mutable_map = addrmap_create_mutable (&temp_obstack);
3149
3150 iter = index->address_table.data ();
3151 end = iter + index->address_table.size ();
3152
3153 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3154
3155 while (iter < end)
3156 {
3157 ULONGEST hi, lo, cu_index;
3158 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3159 iter += 8;
3160 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3161 iter += 8;
3162 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3163 iter += 4;
3164
3165 if (lo > hi)
3166 {
3167 complaint (&symfile_complaints,
3168 _(".gdb_index address table has invalid range (%s - %s)"),
3169 hex_string (lo), hex_string (hi));
3170 continue;
3171 }
3172
3173 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3174 {
3175 complaint (&symfile_complaints,
3176 _(".gdb_index address table has invalid CU number %u"),
3177 (unsigned) cu_index);
3178 continue;
3179 }
3180
3181 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3182 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3183 addrmap_set_empty (mutable_map, lo, hi - 1,
3184 dwarf2_per_objfile->get_cu (cu_index));
3185 }
3186
3187 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3188 &objfile->objfile_obstack);
3189 }
3190
3191 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3192 populate the objfile's psymtabs_addrmap. */
3193
3194 static void
3195 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3196 struct dwarf2_section_info *section)
3197 {
3198 struct objfile *objfile = dwarf2_per_objfile->objfile;
3199 bfd *abfd = objfile->obfd;
3200 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3201 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3202 SECT_OFF_TEXT (objfile));
3203
3204 auto_obstack temp_obstack;
3205 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3206
3207 std::unordered_map<sect_offset,
3208 dwarf2_per_cu_data *,
3209 gdb::hash_enum<sect_offset>>
3210 debug_info_offset_to_per_cu;
3211 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3212 {
3213 const auto insertpair
3214 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3215 if (!insertpair.second)
3216 {
3217 warning (_("Section .debug_aranges in %s has duplicate "
3218 "debug_info_offset %s, ignoring .debug_aranges."),
3219 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3220 return;
3221 }
3222 }
3223
3224 dwarf2_read_section (objfile, section);
3225
3226 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3227
3228 const gdb_byte *addr = section->buffer;
3229
3230 while (addr < section->buffer + section->size)
3231 {
3232 const gdb_byte *const entry_addr = addr;
3233 unsigned int bytes_read;
3234
3235 const LONGEST entry_length = read_initial_length (abfd, addr,
3236 &bytes_read);
3237 addr += bytes_read;
3238
3239 const gdb_byte *const entry_end = addr + entry_length;
3240 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3241 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3242 if (addr + entry_length > section->buffer + section->size)
3243 {
3244 warning (_("Section .debug_aranges in %s entry at offset %zu "
3245 "length %s exceeds section length %s, "
3246 "ignoring .debug_aranges."),
3247 objfile_name (objfile), entry_addr - section->buffer,
3248 plongest (bytes_read + entry_length),
3249 pulongest (section->size));
3250 return;
3251 }
3252
3253 /* The version number. */
3254 const uint16_t version = read_2_bytes (abfd, addr);
3255 addr += 2;
3256 if (version != 2)
3257 {
3258 warning (_("Section .debug_aranges in %s entry at offset %zu "
3259 "has unsupported version %d, ignoring .debug_aranges."),
3260 objfile_name (objfile), entry_addr - section->buffer,
3261 version);
3262 return;
3263 }
3264
3265 const uint64_t debug_info_offset
3266 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3267 addr += offset_size;
3268 const auto per_cu_it
3269 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3270 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3271 {
3272 warning (_("Section .debug_aranges in %s entry at offset %zu "
3273 "debug_info_offset %s does not exists, "
3274 "ignoring .debug_aranges."),
3275 objfile_name (objfile), entry_addr - section->buffer,
3276 pulongest (debug_info_offset));
3277 return;
3278 }
3279 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3280
3281 const uint8_t address_size = *addr++;
3282 if (address_size < 1 || address_size > 8)
3283 {
3284 warning (_("Section .debug_aranges in %s entry at offset %zu "
3285 "address_size %u is invalid, ignoring .debug_aranges."),
3286 objfile_name (objfile), entry_addr - section->buffer,
3287 address_size);
3288 return;
3289 }
3290
3291 const uint8_t segment_selector_size = *addr++;
3292 if (segment_selector_size != 0)
3293 {
3294 warning (_("Section .debug_aranges in %s entry at offset %zu "
3295 "segment_selector_size %u is not supported, "
3296 "ignoring .debug_aranges."),
3297 objfile_name (objfile), entry_addr - section->buffer,
3298 segment_selector_size);
3299 return;
3300 }
3301
3302 /* Must pad to an alignment boundary that is twice the address
3303 size. It is undocumented by the DWARF standard but GCC does
3304 use it. */
3305 for (size_t padding = ((-(addr - section->buffer))
3306 & (2 * address_size - 1));
3307 padding > 0; padding--)
3308 if (*addr++ != 0)
3309 {
3310 warning (_("Section .debug_aranges in %s entry at offset %zu "
3311 "padding is not zero, ignoring .debug_aranges."),
3312 objfile_name (objfile), entry_addr - section->buffer);
3313 return;
3314 }
3315
3316 for (;;)
3317 {
3318 if (addr + 2 * address_size > entry_end)
3319 {
3320 warning (_("Section .debug_aranges in %s entry at offset %zu "
3321 "address list is not properly terminated, "
3322 "ignoring .debug_aranges."),
3323 objfile_name (objfile), entry_addr - section->buffer);
3324 return;
3325 }
3326 ULONGEST start = extract_unsigned_integer (addr, address_size,
3327 dwarf5_byte_order);
3328 addr += address_size;
3329 ULONGEST length = extract_unsigned_integer (addr, address_size,
3330 dwarf5_byte_order);
3331 addr += address_size;
3332 if (start == 0 && length == 0)
3333 break;
3334 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3335 {
3336 /* Symbol was eliminated due to a COMDAT group. */
3337 continue;
3338 }
3339 ULONGEST end = start + length;
3340 start = gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr);
3341 end = gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr);
3342 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3343 }
3344 }
3345
3346 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3347 &objfile->objfile_obstack);
3348 }
3349
3350 /* Find a slot in the mapped index INDEX for the object named NAME.
3351 If NAME is found, set *VEC_OUT to point to the CU vector in the
3352 constant pool and return true. If NAME cannot be found, return
3353 false. */
3354
3355 static bool
3356 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3357 offset_type **vec_out)
3358 {
3359 offset_type hash;
3360 offset_type slot, step;
3361 int (*cmp) (const char *, const char *);
3362
3363 gdb::unique_xmalloc_ptr<char> without_params;
3364 if (current_language->la_language == language_cplus
3365 || current_language->la_language == language_fortran
3366 || current_language->la_language == language_d)
3367 {
3368 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3369 not contain any. */
3370
3371 if (strchr (name, '(') != NULL)
3372 {
3373 without_params = cp_remove_params (name);
3374
3375 if (without_params != NULL)
3376 name = without_params.get ();
3377 }
3378 }
3379
3380 /* Index version 4 did not support case insensitive searches. But the
3381 indices for case insensitive languages are built in lowercase, therefore
3382 simulate our NAME being searched is also lowercased. */
3383 hash = mapped_index_string_hash ((index->version == 4
3384 && case_sensitivity == case_sensitive_off
3385 ? 5 : index->version),
3386 name);
3387
3388 slot = hash & (index->symbol_table.size () - 1);
3389 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3390 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3391
3392 for (;;)
3393 {
3394 const char *str;
3395
3396 const auto &bucket = index->symbol_table[slot];
3397 if (bucket.name == 0 && bucket.vec == 0)
3398 return false;
3399
3400 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3401 if (!cmp (name, str))
3402 {
3403 *vec_out = (offset_type *) (index->constant_pool
3404 + MAYBE_SWAP (bucket.vec));
3405 return true;
3406 }
3407
3408 slot = (slot + step) & (index->symbol_table.size () - 1);
3409 }
3410 }
3411
3412 /* A helper function that reads the .gdb_index from SECTION and fills
3413 in MAP. FILENAME is the name of the file containing the section;
3414 it is used for error reporting. DEPRECATED_OK is true if it is
3415 ok to use deprecated sections.
3416
3417 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3418 out parameters that are filled in with information about the CU and
3419 TU lists in the section.
3420
3421 Returns 1 if all went well, 0 otherwise. */
3422
3423 static bool
3424 read_index_from_section (struct objfile *objfile,
3425 const char *filename,
3426 bool deprecated_ok,
3427 struct dwarf2_section_info *section,
3428 struct mapped_index *map,
3429 const gdb_byte **cu_list,
3430 offset_type *cu_list_elements,
3431 const gdb_byte **types_list,
3432 offset_type *types_list_elements)
3433 {
3434 const gdb_byte *addr;
3435 offset_type version;
3436 offset_type *metadata;
3437 int i;
3438
3439 if (dwarf2_section_empty_p (section))
3440 return 0;
3441
3442 /* Older elfutils strip versions could keep the section in the main
3443 executable while splitting it for the separate debug info file. */
3444 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3445 return 0;
3446
3447 dwarf2_read_section (objfile, section);
3448
3449 addr = section->buffer;
3450 /* Version check. */
3451 version = MAYBE_SWAP (*(offset_type *) addr);
3452 /* Versions earlier than 3 emitted every copy of a psymbol. This
3453 causes the index to behave very poorly for certain requests. Version 3
3454 contained incomplete addrmap. So, it seems better to just ignore such
3455 indices. */
3456 if (version < 4)
3457 {
3458 static int warning_printed = 0;
3459 if (!warning_printed)
3460 {
3461 warning (_("Skipping obsolete .gdb_index section in %s."),
3462 filename);
3463 warning_printed = 1;
3464 }
3465 return 0;
3466 }
3467 /* Index version 4 uses a different hash function than index version
3468 5 and later.
3469
3470 Versions earlier than 6 did not emit psymbols for inlined
3471 functions. Using these files will cause GDB not to be able to
3472 set breakpoints on inlined functions by name, so we ignore these
3473 indices unless the user has done
3474 "set use-deprecated-index-sections on". */
3475 if (version < 6 && !deprecated_ok)
3476 {
3477 static int warning_printed = 0;
3478 if (!warning_printed)
3479 {
3480 warning (_("\
3481 Skipping deprecated .gdb_index section in %s.\n\
3482 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3483 to use the section anyway."),
3484 filename);
3485 warning_printed = 1;
3486 }
3487 return 0;
3488 }
3489 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3490 of the TU (for symbols coming from TUs),
3491 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3492 Plus gold-generated indices can have duplicate entries for global symbols,
3493 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3494 These are just performance bugs, and we can't distinguish gdb-generated
3495 indices from gold-generated ones, so issue no warning here. */
3496
3497 /* Indexes with higher version than the one supported by GDB may be no
3498 longer backward compatible. */
3499 if (version > 8)
3500 return 0;
3501
3502 map->version = version;
3503 map->total_size = section->size;
3504
3505 metadata = (offset_type *) (addr + sizeof (offset_type));
3506
3507 i = 0;
3508 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3509 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3510 / 8);
3511 ++i;
3512
3513 *types_list = addr + MAYBE_SWAP (metadata[i]);
3514 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3515 - MAYBE_SWAP (metadata[i]))
3516 / 8);
3517 ++i;
3518
3519 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3520 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3521 map->address_table
3522 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3523 ++i;
3524
3525 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3526 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3527 map->symbol_table
3528 = gdb::array_view<mapped_index::symbol_table_slot>
3529 ((mapped_index::symbol_table_slot *) symbol_table,
3530 (mapped_index::symbol_table_slot *) symbol_table_end);
3531
3532 ++i;
3533 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3534
3535 return 1;
3536 }
3537
3538 /* Read .gdb_index. If everything went ok, initialize the "quick"
3539 elements of all the CUs and return 1. Otherwise, return 0. */
3540
3541 static int
3542 dwarf2_read_index (struct dwarf2_per_objfile *dwarf2_per_objfile)
3543 {
3544 struct mapped_index local_map, *map;
3545 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3546 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3547 struct dwz_file *dwz;
3548 struct objfile *objfile = dwarf2_per_objfile->objfile;
3549
3550 if (!read_index_from_section (objfile, objfile_name (objfile),
3551 use_deprecated_index_sections,
3552 &dwarf2_per_objfile->gdb_index, &local_map,
3553 &cu_list, &cu_list_elements,
3554 &types_list, &types_list_elements))
3555 return 0;
3556
3557 /* Don't use the index if it's empty. */
3558 if (local_map.symbol_table.empty ())
3559 return 0;
3560
3561 /* If there is a .dwz file, read it so we can get its CU list as
3562 well. */
3563 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3564 if (dwz != NULL)
3565 {
3566 struct mapped_index dwz_map;
3567 const gdb_byte *dwz_types_ignore;
3568 offset_type dwz_types_elements_ignore;
3569
3570 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3571 1,
3572 &dwz->gdb_index, &dwz_map,
3573 &dwz_list, &dwz_list_elements,
3574 &dwz_types_ignore,
3575 &dwz_types_elements_ignore))
3576 {
3577 warning (_("could not read '.gdb_index' section from %s; skipping"),
3578 bfd_get_filename (dwz->dwz_bfd));
3579 return 0;
3580 }
3581 }
3582
3583 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3584 dwz_list, dwz_list_elements);
3585
3586 if (types_list_elements)
3587 {
3588 struct dwarf2_section_info *section;
3589
3590 /* We can only handle a single .debug_types when we have an
3591 index. */
3592 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3593 return 0;
3594
3595 section = VEC_index (dwarf2_section_info_def,
3596 dwarf2_per_objfile->types, 0);
3597
3598 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3599 types_list, types_list_elements);
3600 }
3601
3602 create_addrmap_from_index (dwarf2_per_objfile, &local_map);
3603
3604 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
3605 map = new (map) mapped_index ();
3606 *map = local_map;
3607
3608 dwarf2_per_objfile->index_table = map;
3609 dwarf2_per_objfile->using_index = 1;
3610 dwarf2_per_objfile->quick_file_names_table =
3611 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3612
3613 return 1;
3614 }
3615
3616 /* die_reader_func for dw2_get_file_names. */
3617
3618 static void
3619 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3620 const gdb_byte *info_ptr,
3621 struct die_info *comp_unit_die,
3622 int has_children,
3623 void *data)
3624 {
3625 struct dwarf2_cu *cu = reader->cu;
3626 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3627 struct dwarf2_per_objfile *dwarf2_per_objfile
3628 = cu->per_cu->dwarf2_per_objfile;
3629 struct objfile *objfile = dwarf2_per_objfile->objfile;
3630 struct dwarf2_per_cu_data *lh_cu;
3631 struct attribute *attr;
3632 int i;
3633 void **slot;
3634 struct quick_file_names *qfn;
3635
3636 gdb_assert (! this_cu->is_debug_types);
3637
3638 /* Our callers never want to match partial units -- instead they
3639 will match the enclosing full CU. */
3640 if (comp_unit_die->tag == DW_TAG_partial_unit)
3641 {
3642 this_cu->v.quick->no_file_data = 1;
3643 return;
3644 }
3645
3646 lh_cu = this_cu;
3647 slot = NULL;
3648
3649 line_header_up lh;
3650 sect_offset line_offset {};
3651
3652 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3653 if (attr)
3654 {
3655 struct quick_file_names find_entry;
3656
3657 line_offset = (sect_offset) DW_UNSND (attr);
3658
3659 /* We may have already read in this line header (TU line header sharing).
3660 If we have we're done. */
3661 find_entry.hash.dwo_unit = cu->dwo_unit;
3662 find_entry.hash.line_sect_off = line_offset;
3663 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3664 &find_entry, INSERT);
3665 if (*slot != NULL)
3666 {
3667 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3668 return;
3669 }
3670
3671 lh = dwarf_decode_line_header (line_offset, cu);
3672 }
3673 if (lh == NULL)
3674 {
3675 lh_cu->v.quick->no_file_data = 1;
3676 return;
3677 }
3678
3679 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3680 qfn->hash.dwo_unit = cu->dwo_unit;
3681 qfn->hash.line_sect_off = line_offset;
3682 gdb_assert (slot != NULL);
3683 *slot = qfn;
3684
3685 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3686
3687 qfn->num_file_names = lh->file_names.size ();
3688 qfn->file_names =
3689 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3690 for (i = 0; i < lh->file_names.size (); ++i)
3691 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3692 qfn->real_names = NULL;
3693
3694 lh_cu->v.quick->file_names = qfn;
3695 }
3696
3697 /* A helper for the "quick" functions which attempts to read the line
3698 table for THIS_CU. */
3699
3700 static struct quick_file_names *
3701 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3702 {
3703 /* This should never be called for TUs. */
3704 gdb_assert (! this_cu->is_debug_types);
3705 /* Nor type unit groups. */
3706 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3707
3708 if (this_cu->v.quick->file_names != NULL)
3709 return this_cu->v.quick->file_names;
3710 /* If we know there is no line data, no point in looking again. */
3711 if (this_cu->v.quick->no_file_data)
3712 return NULL;
3713
3714 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3715
3716 if (this_cu->v.quick->no_file_data)
3717 return NULL;
3718 return this_cu->v.quick->file_names;
3719 }
3720
3721 /* A helper for the "quick" functions which computes and caches the
3722 real path for a given file name from the line table. */
3723
3724 static const char *
3725 dw2_get_real_path (struct objfile *objfile,
3726 struct quick_file_names *qfn, int index)
3727 {
3728 if (qfn->real_names == NULL)
3729 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3730 qfn->num_file_names, const char *);
3731
3732 if (qfn->real_names[index] == NULL)
3733 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3734
3735 return qfn->real_names[index];
3736 }
3737
3738 static struct symtab *
3739 dw2_find_last_source_symtab (struct objfile *objfile)
3740 {
3741 struct dwarf2_per_objfile *dwarf2_per_objfile
3742 = get_dwarf2_per_objfile (objfile);
3743 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3744 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu);
3745
3746 if (cust == NULL)
3747 return NULL;
3748
3749 return compunit_primary_filetab (cust);
3750 }
3751
3752 /* Traversal function for dw2_forget_cached_source_info. */
3753
3754 static int
3755 dw2_free_cached_file_names (void **slot, void *info)
3756 {
3757 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3758
3759 if (file_data->real_names)
3760 {
3761 int i;
3762
3763 for (i = 0; i < file_data->num_file_names; ++i)
3764 {
3765 xfree ((void*) file_data->real_names[i]);
3766 file_data->real_names[i] = NULL;
3767 }
3768 }
3769
3770 return 1;
3771 }
3772
3773 static void
3774 dw2_forget_cached_source_info (struct objfile *objfile)
3775 {
3776 struct dwarf2_per_objfile *dwarf2_per_objfile
3777 = get_dwarf2_per_objfile (objfile);
3778
3779 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3780 dw2_free_cached_file_names, NULL);
3781 }
3782
3783 /* Helper function for dw2_map_symtabs_matching_filename that expands
3784 the symtabs and calls the iterator. */
3785
3786 static int
3787 dw2_map_expand_apply (struct objfile *objfile,
3788 struct dwarf2_per_cu_data *per_cu,
3789 const char *name, const char *real_path,
3790 gdb::function_view<bool (symtab *)> callback)
3791 {
3792 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3793
3794 /* Don't visit already-expanded CUs. */
3795 if (per_cu->v.quick->compunit_symtab)
3796 return 0;
3797
3798 /* This may expand more than one symtab, and we want to iterate over
3799 all of them. */
3800 dw2_instantiate_symtab (per_cu);
3801
3802 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3803 last_made, callback);
3804 }
3805
3806 /* Implementation of the map_symtabs_matching_filename method. */
3807
3808 static bool
3809 dw2_map_symtabs_matching_filename
3810 (struct objfile *objfile, const char *name, const char *real_path,
3811 gdb::function_view<bool (symtab *)> callback)
3812 {
3813 const char *name_basename = lbasename (name);
3814 struct dwarf2_per_objfile *dwarf2_per_objfile
3815 = get_dwarf2_per_objfile (objfile);
3816
3817 /* The rule is CUs specify all the files, including those used by
3818 any TU, so there's no need to scan TUs here. */
3819
3820 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3821 {
3822 /* We only need to look at symtabs not already expanded. */
3823 if (per_cu->v.quick->compunit_symtab)
3824 continue;
3825
3826 quick_file_names *file_data = dw2_get_file_names (per_cu);
3827 if (file_data == NULL)
3828 continue;
3829
3830 for (int j = 0; j < file_data->num_file_names; ++j)
3831 {
3832 const char *this_name = file_data->file_names[j];
3833 const char *this_real_name;
3834
3835 if (compare_filenames_for_search (this_name, name))
3836 {
3837 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3838 callback))
3839 return true;
3840 continue;
3841 }
3842
3843 /* Before we invoke realpath, which can get expensive when many
3844 files are involved, do a quick comparison of the basenames. */
3845 if (! basenames_may_differ
3846 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3847 continue;
3848
3849 this_real_name = dw2_get_real_path (objfile, file_data, j);
3850 if (compare_filenames_for_search (this_real_name, name))
3851 {
3852 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3853 callback))
3854 return true;
3855 continue;
3856 }
3857
3858 if (real_path != NULL)
3859 {
3860 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3861 gdb_assert (IS_ABSOLUTE_PATH (name));
3862 if (this_real_name != NULL
3863 && FILENAME_CMP (real_path, this_real_name) == 0)
3864 {
3865 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3866 callback))
3867 return true;
3868 continue;
3869 }
3870 }
3871 }
3872 }
3873
3874 return false;
3875 }
3876
3877 /* Struct used to manage iterating over all CUs looking for a symbol. */
3878
3879 struct dw2_symtab_iterator
3880 {
3881 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3882 struct dwarf2_per_objfile *dwarf2_per_objfile;
3883 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3884 int want_specific_block;
3885 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3886 Unused if !WANT_SPECIFIC_BLOCK. */
3887 int block_index;
3888 /* The kind of symbol we're looking for. */
3889 domain_enum domain;
3890 /* The list of CUs from the index entry of the symbol,
3891 or NULL if not found. */
3892 offset_type *vec;
3893 /* The next element in VEC to look at. */
3894 int next;
3895 /* The number of elements in VEC, or zero if there is no match. */
3896 int length;
3897 /* Have we seen a global version of the symbol?
3898 If so we can ignore all further global instances.
3899 This is to work around gold/15646, inefficient gold-generated
3900 indices. */
3901 int global_seen;
3902 };
3903
3904 /* Initialize the index symtab iterator ITER.
3905 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3906 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3907
3908 static void
3909 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3910 struct dwarf2_per_objfile *dwarf2_per_objfile,
3911 int want_specific_block,
3912 int block_index,
3913 domain_enum domain,
3914 const char *name)
3915 {
3916 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3917 iter->want_specific_block = want_specific_block;
3918 iter->block_index = block_index;
3919 iter->domain = domain;
3920 iter->next = 0;
3921 iter->global_seen = 0;
3922
3923 mapped_index *index = dwarf2_per_objfile->index_table;
3924
3925 /* index is NULL if OBJF_READNOW. */
3926 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3927 iter->length = MAYBE_SWAP (*iter->vec);
3928 else
3929 {
3930 iter->vec = NULL;
3931 iter->length = 0;
3932 }
3933 }
3934
3935 /* Return the next matching CU or NULL if there are no more. */
3936
3937 static struct dwarf2_per_cu_data *
3938 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3939 {
3940 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3941
3942 for ( ; iter->next < iter->length; ++iter->next)
3943 {
3944 offset_type cu_index_and_attrs =
3945 MAYBE_SWAP (iter->vec[iter->next + 1]);
3946 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3947 int want_static = iter->block_index != GLOBAL_BLOCK;
3948 /* This value is only valid for index versions >= 7. */
3949 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3950 gdb_index_symbol_kind symbol_kind =
3951 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3952 /* Only check the symbol attributes if they're present.
3953 Indices prior to version 7 don't record them,
3954 and indices >= 7 may elide them for certain symbols
3955 (gold does this). */
3956 int attrs_valid =
3957 (dwarf2_per_objfile->index_table->version >= 7
3958 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3959
3960 /* Don't crash on bad data. */
3961 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3962 + dwarf2_per_objfile->all_type_units.size ()))
3963 {
3964 complaint (&symfile_complaints,
3965 _(".gdb_index entry has bad CU index"
3966 " [in module %s]"),
3967 objfile_name (dwarf2_per_objfile->objfile));
3968 continue;
3969 }
3970
3971 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3972
3973 /* Skip if already read in. */
3974 if (per_cu->v.quick->compunit_symtab)
3975 continue;
3976
3977 /* Check static vs global. */
3978 if (attrs_valid)
3979 {
3980 if (iter->want_specific_block
3981 && want_static != is_static)
3982 continue;
3983 /* Work around gold/15646. */
3984 if (!is_static && iter->global_seen)
3985 continue;
3986 if (!is_static)
3987 iter->global_seen = 1;
3988 }
3989
3990 /* Only check the symbol's kind if it has one. */
3991 if (attrs_valid)
3992 {
3993 switch (iter->domain)
3994 {
3995 case VAR_DOMAIN:
3996 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3997 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3998 /* Some types are also in VAR_DOMAIN. */
3999 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4000 continue;
4001 break;
4002 case STRUCT_DOMAIN:
4003 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4004 continue;
4005 break;
4006 case LABEL_DOMAIN:
4007 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4008 continue;
4009 break;
4010 default:
4011 break;
4012 }
4013 }
4014
4015 ++iter->next;
4016 return per_cu;
4017 }
4018
4019 return NULL;
4020 }
4021
4022 static struct compunit_symtab *
4023 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4024 const char *name, domain_enum domain)
4025 {
4026 struct compunit_symtab *stab_best = NULL;
4027 struct dwarf2_per_objfile *dwarf2_per_objfile
4028 = get_dwarf2_per_objfile (objfile);
4029
4030 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4031
4032 struct dw2_symtab_iterator iter;
4033 struct dwarf2_per_cu_data *per_cu;
4034
4035 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4036
4037 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4038 {
4039 struct symbol *sym, *with_opaque = NULL;
4040 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
4041 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4042 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4043
4044 sym = block_find_symbol (block, name, domain,
4045 block_find_non_opaque_type_preferred,
4046 &with_opaque);
4047
4048 /* Some caution must be observed with overloaded functions
4049 and methods, since the index will not contain any overload
4050 information (but NAME might contain it). */
4051
4052 if (sym != NULL
4053 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4054 return stab;
4055 if (with_opaque != NULL
4056 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4057 stab_best = stab;
4058
4059 /* Keep looking through other CUs. */
4060 }
4061
4062 return stab_best;
4063 }
4064
4065 static void
4066 dw2_print_stats (struct objfile *objfile)
4067 {
4068 struct dwarf2_per_objfile *dwarf2_per_objfile
4069 = get_dwarf2_per_objfile (objfile);
4070 int total = (dwarf2_per_objfile->all_comp_units.size ()
4071 + dwarf2_per_objfile->all_type_units.size ());
4072 int count = 0;
4073
4074 for (int i = 0; i < total; ++i)
4075 {
4076 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4077
4078 if (!per_cu->v.quick->compunit_symtab)
4079 ++count;
4080 }
4081 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4082 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4083 }
4084
4085 /* This dumps minimal information about the index.
4086 It is called via "mt print objfiles".
4087 One use is to verify .gdb_index has been loaded by the
4088 gdb.dwarf2/gdb-index.exp testcase. */
4089
4090 static void
4091 dw2_dump (struct objfile *objfile)
4092 {
4093 struct dwarf2_per_objfile *dwarf2_per_objfile
4094 = get_dwarf2_per_objfile (objfile);
4095
4096 gdb_assert (dwarf2_per_objfile->using_index);
4097 printf_filtered (".gdb_index:");
4098 if (dwarf2_per_objfile->index_table != NULL)
4099 {
4100 printf_filtered (" version %d\n",
4101 dwarf2_per_objfile->index_table->version);
4102 }
4103 else
4104 printf_filtered (" faked for \"readnow\"\n");
4105 printf_filtered ("\n");
4106 }
4107
4108 static void
4109 dw2_relocate (struct objfile *objfile,
4110 const struct section_offsets *new_offsets,
4111 const struct section_offsets *delta)
4112 {
4113 /* There's nothing to relocate here. */
4114 }
4115
4116 static void
4117 dw2_expand_symtabs_for_function (struct objfile *objfile,
4118 const char *func_name)
4119 {
4120 struct dwarf2_per_objfile *dwarf2_per_objfile
4121 = get_dwarf2_per_objfile (objfile);
4122
4123 struct dw2_symtab_iterator iter;
4124 struct dwarf2_per_cu_data *per_cu;
4125
4126 /* Note: It doesn't matter what we pass for block_index here. */
4127 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4128 func_name);
4129
4130 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4131 dw2_instantiate_symtab (per_cu);
4132
4133 }
4134
4135 static void
4136 dw2_expand_all_symtabs (struct objfile *objfile)
4137 {
4138 struct dwarf2_per_objfile *dwarf2_per_objfile
4139 = get_dwarf2_per_objfile (objfile);
4140 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4141 + dwarf2_per_objfile->all_type_units.size ());
4142
4143 for (int i = 0; i < total_units; ++i)
4144 {
4145 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4146
4147 dw2_instantiate_symtab (per_cu);
4148 }
4149 }
4150
4151 static void
4152 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4153 const char *fullname)
4154 {
4155 struct dwarf2_per_objfile *dwarf2_per_objfile
4156 = get_dwarf2_per_objfile (objfile);
4157
4158 /* We don't need to consider type units here.
4159 This is only called for examining code, e.g. expand_line_sal.
4160 There can be an order of magnitude (or more) more type units
4161 than comp units, and we avoid them if we can. */
4162
4163 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4164 {
4165 /* We only need to look at symtabs not already expanded. */
4166 if (per_cu->v.quick->compunit_symtab)
4167 continue;
4168
4169 quick_file_names *file_data = dw2_get_file_names (per_cu);
4170 if (file_data == NULL)
4171 continue;
4172
4173 for (int j = 0; j < file_data->num_file_names; ++j)
4174 {
4175 const char *this_fullname = file_data->file_names[j];
4176
4177 if (filename_cmp (this_fullname, fullname) == 0)
4178 {
4179 dw2_instantiate_symtab (per_cu);
4180 break;
4181 }
4182 }
4183 }
4184 }
4185
4186 static void
4187 dw2_map_matching_symbols (struct objfile *objfile,
4188 const char * name, domain_enum domain,
4189 int global,
4190 int (*callback) (struct block *,
4191 struct symbol *, void *),
4192 void *data, symbol_name_match_type match,
4193 symbol_compare_ftype *ordered_compare)
4194 {
4195 /* Currently unimplemented; used for Ada. The function can be called if the
4196 current language is Ada for a non-Ada objfile using GNU index. As Ada
4197 does not look for non-Ada symbols this function should just return. */
4198 }
4199
4200 /* Symbol name matcher for .gdb_index names.
4201
4202 Symbol names in .gdb_index have a few particularities:
4203
4204 - There's no indication of which is the language of each symbol.
4205
4206 Since each language has its own symbol name matching algorithm,
4207 and we don't know which language is the right one, we must match
4208 each symbol against all languages. This would be a potential
4209 performance problem if it were not mitigated by the
4210 mapped_index::name_components lookup table, which significantly
4211 reduces the number of times we need to call into this matcher,
4212 making it a non-issue.
4213
4214 - Symbol names in the index have no overload (parameter)
4215 information. I.e., in C++, "foo(int)" and "foo(long)" both
4216 appear as "foo" in the index, for example.
4217
4218 This means that the lookup names passed to the symbol name
4219 matcher functions must have no parameter information either
4220 because (e.g.) symbol search name "foo" does not match
4221 lookup-name "foo(int)" [while swapping search name for lookup
4222 name would match].
4223 */
4224 class gdb_index_symbol_name_matcher
4225 {
4226 public:
4227 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4228 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4229
4230 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4231 Returns true if any matcher matches. */
4232 bool matches (const char *symbol_name);
4233
4234 private:
4235 /* A reference to the lookup name we're matching against. */
4236 const lookup_name_info &m_lookup_name;
4237
4238 /* A vector holding all the different symbol name matchers, for all
4239 languages. */
4240 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4241 };
4242
4243 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4244 (const lookup_name_info &lookup_name)
4245 : m_lookup_name (lookup_name)
4246 {
4247 /* Prepare the vector of comparison functions upfront, to avoid
4248 doing the same work for each symbol. Care is taken to avoid
4249 matching with the same matcher more than once if/when multiple
4250 languages use the same matcher function. */
4251 auto &matchers = m_symbol_name_matcher_funcs;
4252 matchers.reserve (nr_languages);
4253
4254 matchers.push_back (default_symbol_name_matcher);
4255
4256 for (int i = 0; i < nr_languages; i++)
4257 {
4258 const language_defn *lang = language_def ((enum language) i);
4259 symbol_name_matcher_ftype *name_matcher
4260 = get_symbol_name_matcher (lang, m_lookup_name);
4261
4262 /* Don't insert the same comparison routine more than once.
4263 Note that we do this linear walk instead of a seemingly
4264 cheaper sorted insert, or use a std::set or something like
4265 that, because relative order of function addresses is not
4266 stable. This is not a problem in practice because the number
4267 of supported languages is low, and the cost here is tiny
4268 compared to the number of searches we'll do afterwards using
4269 this object. */
4270 if (name_matcher != default_symbol_name_matcher
4271 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4272 == matchers.end ()))
4273 matchers.push_back (name_matcher);
4274 }
4275 }
4276
4277 bool
4278 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4279 {
4280 for (auto matches_name : m_symbol_name_matcher_funcs)
4281 if (matches_name (symbol_name, m_lookup_name, NULL))
4282 return true;
4283
4284 return false;
4285 }
4286
4287 /* Starting from a search name, return the string that finds the upper
4288 bound of all strings that start with SEARCH_NAME in a sorted name
4289 list. Returns the empty string to indicate that the upper bound is
4290 the end of the list. */
4291
4292 static std::string
4293 make_sort_after_prefix_name (const char *search_name)
4294 {
4295 /* When looking to complete "func", we find the upper bound of all
4296 symbols that start with "func" by looking for where we'd insert
4297 the closest string that would follow "func" in lexicographical
4298 order. Usually, that's "func"-with-last-character-incremented,
4299 i.e. "fund". Mind non-ASCII characters, though. Usually those
4300 will be UTF-8 multi-byte sequences, but we can't be certain.
4301 Especially mind the 0xff character, which is a valid character in
4302 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4303 rule out compilers allowing it in identifiers. Note that
4304 conveniently, strcmp/strcasecmp are specified to compare
4305 characters interpreted as unsigned char. So what we do is treat
4306 the whole string as a base 256 number composed of a sequence of
4307 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4308 to 0, and carries 1 to the following more-significant position.
4309 If the very first character in SEARCH_NAME ends up incremented
4310 and carries/overflows, then the upper bound is the end of the
4311 list. The string after the empty string is also the empty
4312 string.
4313
4314 Some examples of this operation:
4315
4316 SEARCH_NAME => "+1" RESULT
4317
4318 "abc" => "abd"
4319 "ab\xff" => "ac"
4320 "\xff" "a" "\xff" => "\xff" "b"
4321 "\xff" => ""
4322 "\xff\xff" => ""
4323 "" => ""
4324
4325 Then, with these symbols for example:
4326
4327 func
4328 func1
4329 fund
4330
4331 completing "func" looks for symbols between "func" and
4332 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4333 which finds "func" and "func1", but not "fund".
4334
4335 And with:
4336
4337 funcÿ (Latin1 'ÿ' [0xff])
4338 funcÿ1
4339 fund
4340
4341 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4342 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4343
4344 And with:
4345
4346 ÿÿ (Latin1 'ÿ' [0xff])
4347 ÿÿ1
4348
4349 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4350 the end of the list.
4351 */
4352 std::string after = search_name;
4353 while (!after.empty () && (unsigned char) after.back () == 0xff)
4354 after.pop_back ();
4355 if (!after.empty ())
4356 after.back () = (unsigned char) after.back () + 1;
4357 return after;
4358 }
4359
4360 /* See declaration. */
4361
4362 std::pair<std::vector<name_component>::const_iterator,
4363 std::vector<name_component>::const_iterator>
4364 mapped_index_base::find_name_components_bounds
4365 (const lookup_name_info &lookup_name_without_params) const
4366 {
4367 auto *name_cmp
4368 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4369
4370 const char *cplus
4371 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4372
4373 /* Comparison function object for lower_bound that matches against a
4374 given symbol name. */
4375 auto lookup_compare_lower = [&] (const name_component &elem,
4376 const char *name)
4377 {
4378 const char *elem_qualified = this->symbol_name_at (elem.idx);
4379 const char *elem_name = elem_qualified + elem.name_offset;
4380 return name_cmp (elem_name, name) < 0;
4381 };
4382
4383 /* Comparison function object for upper_bound that matches against a
4384 given symbol name. */
4385 auto lookup_compare_upper = [&] (const char *name,
4386 const name_component &elem)
4387 {
4388 const char *elem_qualified = this->symbol_name_at (elem.idx);
4389 const char *elem_name = elem_qualified + elem.name_offset;
4390 return name_cmp (name, elem_name) < 0;
4391 };
4392
4393 auto begin = this->name_components.begin ();
4394 auto end = this->name_components.end ();
4395
4396 /* Find the lower bound. */
4397 auto lower = [&] ()
4398 {
4399 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4400 return begin;
4401 else
4402 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4403 } ();
4404
4405 /* Find the upper bound. */
4406 auto upper = [&] ()
4407 {
4408 if (lookup_name_without_params.completion_mode ())
4409 {
4410 /* In completion mode, we want UPPER to point past all
4411 symbols names that have the same prefix. I.e., with
4412 these symbols, and completing "func":
4413
4414 function << lower bound
4415 function1
4416 other_function << upper bound
4417
4418 We find the upper bound by looking for the insertion
4419 point of "func"-with-last-character-incremented,
4420 i.e. "fund". */
4421 std::string after = make_sort_after_prefix_name (cplus);
4422 if (after.empty ())
4423 return end;
4424 return std::lower_bound (lower, end, after.c_str (),
4425 lookup_compare_lower);
4426 }
4427 else
4428 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4429 } ();
4430
4431 return {lower, upper};
4432 }
4433
4434 /* See declaration. */
4435
4436 void
4437 mapped_index_base::build_name_components ()
4438 {
4439 if (!this->name_components.empty ())
4440 return;
4441
4442 this->name_components_casing = case_sensitivity;
4443 auto *name_cmp
4444 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4445
4446 /* The code below only knows how to break apart components of C++
4447 symbol names (and other languages that use '::' as
4448 namespace/module separator). If we add support for wild matching
4449 to some language that uses some other operator (E.g., Ada, Go and
4450 D use '.'), then we'll need to try splitting the symbol name
4451 according to that language too. Note that Ada does support wild
4452 matching, but doesn't currently support .gdb_index. */
4453 auto count = this->symbol_name_count ();
4454 for (offset_type idx = 0; idx < count; idx++)
4455 {
4456 if (this->symbol_name_slot_invalid (idx))
4457 continue;
4458
4459 const char *name = this->symbol_name_at (idx);
4460
4461 /* Add each name component to the name component table. */
4462 unsigned int previous_len = 0;
4463 for (unsigned int current_len = cp_find_first_component (name);
4464 name[current_len] != '\0';
4465 current_len += cp_find_first_component (name + current_len))
4466 {
4467 gdb_assert (name[current_len] == ':');
4468 this->name_components.push_back ({previous_len, idx});
4469 /* Skip the '::'. */
4470 current_len += 2;
4471 previous_len = current_len;
4472 }
4473 this->name_components.push_back ({previous_len, idx});
4474 }
4475
4476 /* Sort name_components elements by name. */
4477 auto name_comp_compare = [&] (const name_component &left,
4478 const name_component &right)
4479 {
4480 const char *left_qualified = this->symbol_name_at (left.idx);
4481 const char *right_qualified = this->symbol_name_at (right.idx);
4482
4483 const char *left_name = left_qualified + left.name_offset;
4484 const char *right_name = right_qualified + right.name_offset;
4485
4486 return name_cmp (left_name, right_name) < 0;
4487 };
4488
4489 std::sort (this->name_components.begin (),
4490 this->name_components.end (),
4491 name_comp_compare);
4492 }
4493
4494 /* Helper for dw2_expand_symtabs_matching that works with a
4495 mapped_index_base instead of the containing objfile. This is split
4496 to a separate function in order to be able to unit test the
4497 name_components matching using a mock mapped_index_base. For each
4498 symbol name that matches, calls MATCH_CALLBACK, passing it the
4499 symbol's index in the mapped_index_base symbol table. */
4500
4501 static void
4502 dw2_expand_symtabs_matching_symbol
4503 (mapped_index_base &index,
4504 const lookup_name_info &lookup_name_in,
4505 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4506 enum search_domain kind,
4507 gdb::function_view<void (offset_type)> match_callback)
4508 {
4509 lookup_name_info lookup_name_without_params
4510 = lookup_name_in.make_ignore_params ();
4511 gdb_index_symbol_name_matcher lookup_name_matcher
4512 (lookup_name_without_params);
4513
4514 /* Build the symbol name component sorted vector, if we haven't
4515 yet. */
4516 index.build_name_components ();
4517
4518 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4519
4520 /* Now for each symbol name in range, check to see if we have a name
4521 match, and if so, call the MATCH_CALLBACK callback. */
4522
4523 /* The same symbol may appear more than once in the range though.
4524 E.g., if we're looking for symbols that complete "w", and we have
4525 a symbol named "w1::w2", we'll find the two name components for
4526 that same symbol in the range. To be sure we only call the
4527 callback once per symbol, we first collect the symbol name
4528 indexes that matched in a temporary vector and ignore
4529 duplicates. */
4530 std::vector<offset_type> matches;
4531 matches.reserve (std::distance (bounds.first, bounds.second));
4532
4533 for (; bounds.first != bounds.second; ++bounds.first)
4534 {
4535 const char *qualified = index.symbol_name_at (bounds.first->idx);
4536
4537 if (!lookup_name_matcher.matches (qualified)
4538 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4539 continue;
4540
4541 matches.push_back (bounds.first->idx);
4542 }
4543
4544 std::sort (matches.begin (), matches.end ());
4545
4546 /* Finally call the callback, once per match. */
4547 ULONGEST prev = -1;
4548 for (offset_type idx : matches)
4549 {
4550 if (prev != idx)
4551 {
4552 match_callback (idx);
4553 prev = idx;
4554 }
4555 }
4556
4557 /* Above we use a type wider than idx's for 'prev', since 0 and
4558 (offset_type)-1 are both possible values. */
4559 static_assert (sizeof (prev) > sizeof (offset_type), "");
4560 }
4561
4562 #if GDB_SELF_TEST
4563
4564 namespace selftests { namespace dw2_expand_symtabs_matching {
4565
4566 /* A mock .gdb_index/.debug_names-like name index table, enough to
4567 exercise dw2_expand_symtabs_matching_symbol, which works with the
4568 mapped_index_base interface. Builds an index from the symbol list
4569 passed as parameter to the constructor. */
4570 class mock_mapped_index : public mapped_index_base
4571 {
4572 public:
4573 mock_mapped_index (gdb::array_view<const char *> symbols)
4574 : m_symbol_table (symbols)
4575 {}
4576
4577 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4578
4579 /* Return the number of names in the symbol table. */
4580 size_t symbol_name_count () const override
4581 {
4582 return m_symbol_table.size ();
4583 }
4584
4585 /* Get the name of the symbol at IDX in the symbol table. */
4586 const char *symbol_name_at (offset_type idx) const override
4587 {
4588 return m_symbol_table[idx];
4589 }
4590
4591 private:
4592 gdb::array_view<const char *> m_symbol_table;
4593 };
4594
4595 /* Convenience function that converts a NULL pointer to a "<null>"
4596 string, to pass to print routines. */
4597
4598 static const char *
4599 string_or_null (const char *str)
4600 {
4601 return str != NULL ? str : "<null>";
4602 }
4603
4604 /* Check if a lookup_name_info built from
4605 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4606 index. EXPECTED_LIST is the list of expected matches, in expected
4607 matching order. If no match expected, then an empty list is
4608 specified. Returns true on success. On failure prints a warning
4609 indicating the file:line that failed, and returns false. */
4610
4611 static bool
4612 check_match (const char *file, int line,
4613 mock_mapped_index &mock_index,
4614 const char *name, symbol_name_match_type match_type,
4615 bool completion_mode,
4616 std::initializer_list<const char *> expected_list)
4617 {
4618 lookup_name_info lookup_name (name, match_type, completion_mode);
4619
4620 bool matched = true;
4621
4622 auto mismatch = [&] (const char *expected_str,
4623 const char *got)
4624 {
4625 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4626 "expected=\"%s\", got=\"%s\"\n"),
4627 file, line,
4628 (match_type == symbol_name_match_type::FULL
4629 ? "FULL" : "WILD"),
4630 name, string_or_null (expected_str), string_or_null (got));
4631 matched = false;
4632 };
4633
4634 auto expected_it = expected_list.begin ();
4635 auto expected_end = expected_list.end ();
4636
4637 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4638 NULL, ALL_DOMAIN,
4639 [&] (offset_type idx)
4640 {
4641 const char *matched_name = mock_index.symbol_name_at (idx);
4642 const char *expected_str
4643 = expected_it == expected_end ? NULL : *expected_it++;
4644
4645 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4646 mismatch (expected_str, matched_name);
4647 });
4648
4649 const char *expected_str
4650 = expected_it == expected_end ? NULL : *expected_it++;
4651 if (expected_str != NULL)
4652 mismatch (expected_str, NULL);
4653
4654 return matched;
4655 }
4656
4657 /* The symbols added to the mock mapped_index for testing (in
4658 canonical form). */
4659 static const char *test_symbols[] = {
4660 "function",
4661 "std::bar",
4662 "std::zfunction",
4663 "std::zfunction2",
4664 "w1::w2",
4665 "ns::foo<char*>",
4666 "ns::foo<int>",
4667 "ns::foo<long>",
4668 "ns2::tmpl<int>::foo2",
4669 "(anonymous namespace)::A::B::C",
4670
4671 /* These are used to check that the increment-last-char in the
4672 matching algorithm for completion doesn't match "t1_fund" when
4673 completing "t1_func". */
4674 "t1_func",
4675 "t1_func1",
4676 "t1_fund",
4677 "t1_fund1",
4678
4679 /* A UTF-8 name with multi-byte sequences to make sure that
4680 cp-name-parser understands this as a single identifier ("função"
4681 is "function" in PT). */
4682 u8"u8função",
4683
4684 /* \377 (0xff) is Latin1 'ÿ'. */
4685 "yfunc\377",
4686
4687 /* \377 (0xff) is Latin1 'ÿ'. */
4688 "\377",
4689 "\377\377123",
4690
4691 /* A name with all sorts of complications. Starts with "z" to make
4692 it easier for the completion tests below. */
4693 #define Z_SYM_NAME \
4694 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4695 "::tuple<(anonymous namespace)::ui*, " \
4696 "std::default_delete<(anonymous namespace)::ui>, void>"
4697
4698 Z_SYM_NAME
4699 };
4700
4701 /* Returns true if the mapped_index_base::find_name_component_bounds
4702 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4703 in completion mode. */
4704
4705 static bool
4706 check_find_bounds_finds (mapped_index_base &index,
4707 const char *search_name,
4708 gdb::array_view<const char *> expected_syms)
4709 {
4710 lookup_name_info lookup_name (search_name,
4711 symbol_name_match_type::FULL, true);
4712
4713 auto bounds = index.find_name_components_bounds (lookup_name);
4714
4715 size_t distance = std::distance (bounds.first, bounds.second);
4716 if (distance != expected_syms.size ())
4717 return false;
4718
4719 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4720 {
4721 auto nc_elem = bounds.first + exp_elem;
4722 const char *qualified = index.symbol_name_at (nc_elem->idx);
4723 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4724 return false;
4725 }
4726
4727 return true;
4728 }
4729
4730 /* Test the lower-level mapped_index::find_name_component_bounds
4731 method. */
4732
4733 static void
4734 test_mapped_index_find_name_component_bounds ()
4735 {
4736 mock_mapped_index mock_index (test_symbols);
4737
4738 mock_index.build_name_components ();
4739
4740 /* Test the lower-level mapped_index::find_name_component_bounds
4741 method in completion mode. */
4742 {
4743 static const char *expected_syms[] = {
4744 "t1_func",
4745 "t1_func1",
4746 };
4747
4748 SELF_CHECK (check_find_bounds_finds (mock_index,
4749 "t1_func", expected_syms));
4750 }
4751
4752 /* Check that the increment-last-char in the name matching algorithm
4753 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4754 {
4755 static const char *expected_syms1[] = {
4756 "\377",
4757 "\377\377123",
4758 };
4759 SELF_CHECK (check_find_bounds_finds (mock_index,
4760 "\377", expected_syms1));
4761
4762 static const char *expected_syms2[] = {
4763 "\377\377123",
4764 };
4765 SELF_CHECK (check_find_bounds_finds (mock_index,
4766 "\377\377", expected_syms2));
4767 }
4768 }
4769
4770 /* Test dw2_expand_symtabs_matching_symbol. */
4771
4772 static void
4773 test_dw2_expand_symtabs_matching_symbol ()
4774 {
4775 mock_mapped_index mock_index (test_symbols);
4776
4777 /* We let all tests run until the end even if some fails, for debug
4778 convenience. */
4779 bool any_mismatch = false;
4780
4781 /* Create the expected symbols list (an initializer_list). Needed
4782 because lists have commas, and we need to pass them to CHECK,
4783 which is a macro. */
4784 #define EXPECT(...) { __VA_ARGS__ }
4785
4786 /* Wrapper for check_match that passes down the current
4787 __FILE__/__LINE__. */
4788 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4789 any_mismatch |= !check_match (__FILE__, __LINE__, \
4790 mock_index, \
4791 NAME, MATCH_TYPE, COMPLETION_MODE, \
4792 EXPECTED_LIST)
4793
4794 /* Identity checks. */
4795 for (const char *sym : test_symbols)
4796 {
4797 /* Should be able to match all existing symbols. */
4798 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4799 EXPECT (sym));
4800
4801 /* Should be able to match all existing symbols with
4802 parameters. */
4803 std::string with_params = std::string (sym) + "(int)";
4804 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4805 EXPECT (sym));
4806
4807 /* Should be able to match all existing symbols with
4808 parameters and qualifiers. */
4809 with_params = std::string (sym) + " ( int ) const";
4810 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4811 EXPECT (sym));
4812
4813 /* This should really find sym, but cp-name-parser.y doesn't
4814 know about lvalue/rvalue qualifiers yet. */
4815 with_params = std::string (sym) + " ( int ) &&";
4816 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4817 {});
4818 }
4819
4820 /* Check that the name matching algorithm for completion doesn't get
4821 confused with Latin1 'ÿ' / 0xff. */
4822 {
4823 static const char str[] = "\377";
4824 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4825 EXPECT ("\377", "\377\377123"));
4826 }
4827
4828 /* Check that the increment-last-char in the matching algorithm for
4829 completion doesn't match "t1_fund" when completing "t1_func". */
4830 {
4831 static const char str[] = "t1_func";
4832 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4833 EXPECT ("t1_func", "t1_func1"));
4834 }
4835
4836 /* Check that completion mode works at each prefix of the expected
4837 symbol name. */
4838 {
4839 static const char str[] = "function(int)";
4840 size_t len = strlen (str);
4841 std::string lookup;
4842
4843 for (size_t i = 1; i < len; i++)
4844 {
4845 lookup.assign (str, i);
4846 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4847 EXPECT ("function"));
4848 }
4849 }
4850
4851 /* While "w" is a prefix of both components, the match function
4852 should still only be called once. */
4853 {
4854 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4855 EXPECT ("w1::w2"));
4856 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4857 EXPECT ("w1::w2"));
4858 }
4859
4860 /* Same, with a "complicated" symbol. */
4861 {
4862 static const char str[] = Z_SYM_NAME;
4863 size_t len = strlen (str);
4864 std::string lookup;
4865
4866 for (size_t i = 1; i < len; i++)
4867 {
4868 lookup.assign (str, i);
4869 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4870 EXPECT (Z_SYM_NAME));
4871 }
4872 }
4873
4874 /* In FULL mode, an incomplete symbol doesn't match. */
4875 {
4876 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4877 {});
4878 }
4879
4880 /* A complete symbol with parameters matches any overload, since the
4881 index has no overload info. */
4882 {
4883 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4884 EXPECT ("std::zfunction", "std::zfunction2"));
4885 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4886 EXPECT ("std::zfunction", "std::zfunction2"));
4887 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4888 EXPECT ("std::zfunction", "std::zfunction2"));
4889 }
4890
4891 /* Check that whitespace is ignored appropriately. A symbol with a
4892 template argument list. */
4893 {
4894 static const char expected[] = "ns::foo<int>";
4895 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4896 EXPECT (expected));
4897 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4898 EXPECT (expected));
4899 }
4900
4901 /* Check that whitespace is ignored appropriately. A symbol with a
4902 template argument list that includes a pointer. */
4903 {
4904 static const char expected[] = "ns::foo<char*>";
4905 /* Try both completion and non-completion modes. */
4906 static const bool completion_mode[2] = {false, true};
4907 for (size_t i = 0; i < 2; i++)
4908 {
4909 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4910 completion_mode[i], EXPECT (expected));
4911 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4912 completion_mode[i], EXPECT (expected));
4913
4914 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4915 completion_mode[i], EXPECT (expected));
4916 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4917 completion_mode[i], EXPECT (expected));
4918 }
4919 }
4920
4921 {
4922 /* Check method qualifiers are ignored. */
4923 static const char expected[] = "ns::foo<char*>";
4924 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4925 symbol_name_match_type::FULL, true, EXPECT (expected));
4926 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4927 symbol_name_match_type::FULL, true, EXPECT (expected));
4928 CHECK_MATCH ("foo < char * > ( int ) const",
4929 symbol_name_match_type::WILD, true, EXPECT (expected));
4930 CHECK_MATCH ("foo < char * > ( int ) &&",
4931 symbol_name_match_type::WILD, true, EXPECT (expected));
4932 }
4933
4934 /* Test lookup names that don't match anything. */
4935 {
4936 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4937 {});
4938
4939 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4940 {});
4941 }
4942
4943 /* Some wild matching tests, exercising "(anonymous namespace)",
4944 which should not be confused with a parameter list. */
4945 {
4946 static const char *syms[] = {
4947 "A::B::C",
4948 "B::C",
4949 "C",
4950 "A :: B :: C ( int )",
4951 "B :: C ( int )",
4952 "C ( int )",
4953 };
4954
4955 for (const char *s : syms)
4956 {
4957 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4958 EXPECT ("(anonymous namespace)::A::B::C"));
4959 }
4960 }
4961
4962 {
4963 static const char expected[] = "ns2::tmpl<int>::foo2";
4964 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4965 EXPECT (expected));
4966 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4967 EXPECT (expected));
4968 }
4969
4970 SELF_CHECK (!any_mismatch);
4971
4972 #undef EXPECT
4973 #undef CHECK_MATCH
4974 }
4975
4976 static void
4977 run_test ()
4978 {
4979 test_mapped_index_find_name_component_bounds ();
4980 test_dw2_expand_symtabs_matching_symbol ();
4981 }
4982
4983 }} // namespace selftests::dw2_expand_symtabs_matching
4984
4985 #endif /* GDB_SELF_TEST */
4986
4987 /* If FILE_MATCHER is NULL or if PER_CU has
4988 dwarf2_per_cu_quick_data::MARK set (see
4989 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4990 EXPANSION_NOTIFY on it. */
4991
4992 static void
4993 dw2_expand_symtabs_matching_one
4994 (struct dwarf2_per_cu_data *per_cu,
4995 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4996 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4997 {
4998 if (file_matcher == NULL || per_cu->v.quick->mark)
4999 {
5000 bool symtab_was_null
5001 = (per_cu->v.quick->compunit_symtab == NULL);
5002
5003 dw2_instantiate_symtab (per_cu);
5004
5005 if (expansion_notify != NULL
5006 && symtab_was_null
5007 && per_cu->v.quick->compunit_symtab != NULL)
5008 expansion_notify (per_cu->v.quick->compunit_symtab);
5009 }
5010 }
5011
5012 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5013 matched, to expand corresponding CUs that were marked. IDX is the
5014 index of the symbol name that matched. */
5015
5016 static void
5017 dw2_expand_marked_cus
5018 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5019 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5020 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5021 search_domain kind)
5022 {
5023 offset_type *vec, vec_len, vec_idx;
5024 bool global_seen = false;
5025 mapped_index &index = *dwarf2_per_objfile->index_table;
5026
5027 vec = (offset_type *) (index.constant_pool
5028 + MAYBE_SWAP (index.symbol_table[idx].vec));
5029 vec_len = MAYBE_SWAP (vec[0]);
5030 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5031 {
5032 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5033 /* This value is only valid for index versions >= 7. */
5034 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5035 gdb_index_symbol_kind symbol_kind =
5036 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5037 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5038 /* Only check the symbol attributes if they're present.
5039 Indices prior to version 7 don't record them,
5040 and indices >= 7 may elide them for certain symbols
5041 (gold does this). */
5042 int attrs_valid =
5043 (index.version >= 7
5044 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5045
5046 /* Work around gold/15646. */
5047 if (attrs_valid)
5048 {
5049 if (!is_static && global_seen)
5050 continue;
5051 if (!is_static)
5052 global_seen = true;
5053 }
5054
5055 /* Only check the symbol's kind if it has one. */
5056 if (attrs_valid)
5057 {
5058 switch (kind)
5059 {
5060 case VARIABLES_DOMAIN:
5061 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5062 continue;
5063 break;
5064 case FUNCTIONS_DOMAIN:
5065 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5066 continue;
5067 break;
5068 case TYPES_DOMAIN:
5069 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5070 continue;
5071 break;
5072 default:
5073 break;
5074 }
5075 }
5076
5077 /* Don't crash on bad data. */
5078 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5079 + dwarf2_per_objfile->all_type_units.size ()))
5080 {
5081 complaint (&symfile_complaints,
5082 _(".gdb_index entry has bad CU index"
5083 " [in module %s]"),
5084 objfile_name (dwarf2_per_objfile->objfile));
5085 continue;
5086 }
5087
5088 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5089 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5090 expansion_notify);
5091 }
5092 }
5093
5094 /* If FILE_MATCHER is non-NULL, set all the
5095 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5096 that match FILE_MATCHER. */
5097
5098 static void
5099 dw_expand_symtabs_matching_file_matcher
5100 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5101 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5102 {
5103 if (file_matcher == NULL)
5104 return;
5105
5106 objfile *const objfile = dwarf2_per_objfile->objfile;
5107
5108 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5109 htab_eq_pointer,
5110 NULL, xcalloc, xfree));
5111 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5112 htab_eq_pointer,
5113 NULL, xcalloc, xfree));
5114
5115 /* The rule is CUs specify all the files, including those used by
5116 any TU, so there's no need to scan TUs here. */
5117
5118 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5119 {
5120 QUIT;
5121
5122 per_cu->v.quick->mark = 0;
5123
5124 /* We only need to look at symtabs not already expanded. */
5125 if (per_cu->v.quick->compunit_symtab)
5126 continue;
5127
5128 quick_file_names *file_data = dw2_get_file_names (per_cu);
5129 if (file_data == NULL)
5130 continue;
5131
5132 if (htab_find (visited_not_found.get (), file_data) != NULL)
5133 continue;
5134 else if (htab_find (visited_found.get (), file_data) != NULL)
5135 {
5136 per_cu->v.quick->mark = 1;
5137 continue;
5138 }
5139
5140 for (int j = 0; j < file_data->num_file_names; ++j)
5141 {
5142 const char *this_real_name;
5143
5144 if (file_matcher (file_data->file_names[j], false))
5145 {
5146 per_cu->v.quick->mark = 1;
5147 break;
5148 }
5149
5150 /* Before we invoke realpath, which can get expensive when many
5151 files are involved, do a quick comparison of the basenames. */
5152 if (!basenames_may_differ
5153 && !file_matcher (lbasename (file_data->file_names[j]),
5154 true))
5155 continue;
5156
5157 this_real_name = dw2_get_real_path (objfile, file_data, j);
5158 if (file_matcher (this_real_name, false))
5159 {
5160 per_cu->v.quick->mark = 1;
5161 break;
5162 }
5163 }
5164
5165 void **slot = htab_find_slot (per_cu->v.quick->mark
5166 ? visited_found.get ()
5167 : visited_not_found.get (),
5168 file_data, INSERT);
5169 *slot = file_data;
5170 }
5171 }
5172
5173 static void
5174 dw2_expand_symtabs_matching
5175 (struct objfile *objfile,
5176 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5177 const lookup_name_info &lookup_name,
5178 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5179 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5180 enum search_domain kind)
5181 {
5182 struct dwarf2_per_objfile *dwarf2_per_objfile
5183 = get_dwarf2_per_objfile (objfile);
5184
5185 /* index_table is NULL if OBJF_READNOW. */
5186 if (!dwarf2_per_objfile->index_table)
5187 return;
5188
5189 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5190
5191 mapped_index &index = *dwarf2_per_objfile->index_table;
5192
5193 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5194 symbol_matcher,
5195 kind, [&] (offset_type idx)
5196 {
5197 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5198 expansion_notify, kind);
5199 });
5200 }
5201
5202 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5203 symtab. */
5204
5205 static struct compunit_symtab *
5206 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5207 CORE_ADDR pc)
5208 {
5209 int i;
5210
5211 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5212 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5213 return cust;
5214
5215 if (cust->includes == NULL)
5216 return NULL;
5217
5218 for (i = 0; cust->includes[i]; ++i)
5219 {
5220 struct compunit_symtab *s = cust->includes[i];
5221
5222 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5223 if (s != NULL)
5224 return s;
5225 }
5226
5227 return NULL;
5228 }
5229
5230 static struct compunit_symtab *
5231 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5232 struct bound_minimal_symbol msymbol,
5233 CORE_ADDR pc,
5234 struct obj_section *section,
5235 int warn_if_readin)
5236 {
5237 struct dwarf2_per_cu_data *data;
5238 struct compunit_symtab *result;
5239
5240 if (!objfile->psymtabs_addrmap)
5241 return NULL;
5242
5243 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
5244 pc);
5245 if (!data)
5246 return NULL;
5247
5248 if (warn_if_readin && data->v.quick->compunit_symtab)
5249 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5250 paddress (get_objfile_arch (objfile), pc));
5251
5252 result
5253 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
5254 pc);
5255 gdb_assert (result != NULL);
5256 return result;
5257 }
5258
5259 static void
5260 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5261 void *data, int need_fullname)
5262 {
5263 struct dwarf2_per_objfile *dwarf2_per_objfile
5264 = get_dwarf2_per_objfile (objfile);
5265
5266 if (!dwarf2_per_objfile->filenames_cache)
5267 {
5268 dwarf2_per_objfile->filenames_cache.emplace ();
5269
5270 htab_up visited (htab_create_alloc (10,
5271 htab_hash_pointer, htab_eq_pointer,
5272 NULL, xcalloc, xfree));
5273
5274 /* The rule is CUs specify all the files, including those used
5275 by any TU, so there's no need to scan TUs here. We can
5276 ignore file names coming from already-expanded CUs. */
5277
5278 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5279 {
5280 if (per_cu->v.quick->compunit_symtab)
5281 {
5282 void **slot = htab_find_slot (visited.get (),
5283 per_cu->v.quick->file_names,
5284 INSERT);
5285
5286 *slot = per_cu->v.quick->file_names;
5287 }
5288 }
5289
5290 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5291 {
5292 /* We only need to look at symtabs not already expanded. */
5293 if (per_cu->v.quick->compunit_symtab)
5294 continue;
5295
5296 quick_file_names *file_data = dw2_get_file_names (per_cu);
5297 if (file_data == NULL)
5298 continue;
5299
5300 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5301 if (*slot)
5302 {
5303 /* Already visited. */
5304 continue;
5305 }
5306 *slot = file_data;
5307
5308 for (int j = 0; j < file_data->num_file_names; ++j)
5309 {
5310 const char *filename = file_data->file_names[j];
5311 dwarf2_per_objfile->filenames_cache->seen (filename);
5312 }
5313 }
5314 }
5315
5316 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5317 {
5318 gdb::unique_xmalloc_ptr<char> this_real_name;
5319
5320 if (need_fullname)
5321 this_real_name = gdb_realpath (filename);
5322 (*fun) (filename, this_real_name.get (), data);
5323 });
5324 }
5325
5326 static int
5327 dw2_has_symbols (struct objfile *objfile)
5328 {
5329 return 1;
5330 }
5331
5332 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5333 {
5334 dw2_has_symbols,
5335 dw2_find_last_source_symtab,
5336 dw2_forget_cached_source_info,
5337 dw2_map_symtabs_matching_filename,
5338 dw2_lookup_symbol,
5339 dw2_print_stats,
5340 dw2_dump,
5341 dw2_relocate,
5342 dw2_expand_symtabs_for_function,
5343 dw2_expand_all_symtabs,
5344 dw2_expand_symtabs_with_fullname,
5345 dw2_map_matching_symbols,
5346 dw2_expand_symtabs_matching,
5347 dw2_find_pc_sect_compunit_symtab,
5348 NULL,
5349 dw2_map_symbol_filenames
5350 };
5351
5352 /* DWARF-5 debug_names reader. */
5353
5354 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5355 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5356
5357 /* A helper function that reads the .debug_names section in SECTION
5358 and fills in MAP. FILENAME is the name of the file containing the
5359 section; it is used for error reporting.
5360
5361 Returns true if all went well, false otherwise. */
5362
5363 static bool
5364 read_debug_names_from_section (struct objfile *objfile,
5365 const char *filename,
5366 struct dwarf2_section_info *section,
5367 mapped_debug_names &map)
5368 {
5369 if (dwarf2_section_empty_p (section))
5370 return false;
5371
5372 /* Older elfutils strip versions could keep the section in the main
5373 executable while splitting it for the separate debug info file. */
5374 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5375 return false;
5376
5377 dwarf2_read_section (objfile, section);
5378
5379 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5380
5381 const gdb_byte *addr = section->buffer;
5382
5383 bfd *const abfd = get_section_bfd_owner (section);
5384
5385 unsigned int bytes_read;
5386 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5387 addr += bytes_read;
5388
5389 map.dwarf5_is_dwarf64 = bytes_read != 4;
5390 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5391 if (bytes_read + length != section->size)
5392 {
5393 /* There may be multiple per-CU indices. */
5394 warning (_("Section .debug_names in %s length %s does not match "
5395 "section length %s, ignoring .debug_names."),
5396 filename, plongest (bytes_read + length),
5397 pulongest (section->size));
5398 return false;
5399 }
5400
5401 /* The version number. */
5402 uint16_t version = read_2_bytes (abfd, addr);
5403 addr += 2;
5404 if (version != 5)
5405 {
5406 warning (_("Section .debug_names in %s has unsupported version %d, "
5407 "ignoring .debug_names."),
5408 filename, version);
5409 return false;
5410 }
5411
5412 /* Padding. */
5413 uint16_t padding = read_2_bytes (abfd, addr);
5414 addr += 2;
5415 if (padding != 0)
5416 {
5417 warning (_("Section .debug_names in %s has unsupported padding %d, "
5418 "ignoring .debug_names."),
5419 filename, padding);
5420 return false;
5421 }
5422
5423 /* comp_unit_count - The number of CUs in the CU list. */
5424 map.cu_count = read_4_bytes (abfd, addr);
5425 addr += 4;
5426
5427 /* local_type_unit_count - The number of TUs in the local TU
5428 list. */
5429 map.tu_count = read_4_bytes (abfd, addr);
5430 addr += 4;
5431
5432 /* foreign_type_unit_count - The number of TUs in the foreign TU
5433 list. */
5434 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5435 addr += 4;
5436 if (foreign_tu_count != 0)
5437 {
5438 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5439 "ignoring .debug_names."),
5440 filename, static_cast<unsigned long> (foreign_tu_count));
5441 return false;
5442 }
5443
5444 /* bucket_count - The number of hash buckets in the hash lookup
5445 table. */
5446 map.bucket_count = read_4_bytes (abfd, addr);
5447 addr += 4;
5448
5449 /* name_count - The number of unique names in the index. */
5450 map.name_count = read_4_bytes (abfd, addr);
5451 addr += 4;
5452
5453 /* abbrev_table_size - The size in bytes of the abbreviations
5454 table. */
5455 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5456 addr += 4;
5457
5458 /* augmentation_string_size - The size in bytes of the augmentation
5459 string. This value is rounded up to a multiple of 4. */
5460 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5461 addr += 4;
5462 map.augmentation_is_gdb = ((augmentation_string_size
5463 == sizeof (dwarf5_augmentation))
5464 && memcmp (addr, dwarf5_augmentation,
5465 sizeof (dwarf5_augmentation)) == 0);
5466 augmentation_string_size += (-augmentation_string_size) & 3;
5467 addr += augmentation_string_size;
5468
5469 /* List of CUs */
5470 map.cu_table_reordered = addr;
5471 addr += map.cu_count * map.offset_size;
5472
5473 /* List of Local TUs */
5474 map.tu_table_reordered = addr;
5475 addr += map.tu_count * map.offset_size;
5476
5477 /* Hash Lookup Table */
5478 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5479 addr += map.bucket_count * 4;
5480 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5481 addr += map.name_count * 4;
5482
5483 /* Name Table */
5484 map.name_table_string_offs_reordered = addr;
5485 addr += map.name_count * map.offset_size;
5486 map.name_table_entry_offs_reordered = addr;
5487 addr += map.name_count * map.offset_size;
5488
5489 const gdb_byte *abbrev_table_start = addr;
5490 for (;;)
5491 {
5492 unsigned int bytes_read;
5493 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5494 addr += bytes_read;
5495 if (index_num == 0)
5496 break;
5497
5498 const auto insertpair
5499 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5500 if (!insertpair.second)
5501 {
5502 warning (_("Section .debug_names in %s has duplicate index %s, "
5503 "ignoring .debug_names."),
5504 filename, pulongest (index_num));
5505 return false;
5506 }
5507 mapped_debug_names::index_val &indexval = insertpair.first->second;
5508 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5509 addr += bytes_read;
5510
5511 for (;;)
5512 {
5513 mapped_debug_names::index_val::attr attr;
5514 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5515 addr += bytes_read;
5516 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5517 addr += bytes_read;
5518 if (attr.form == DW_FORM_implicit_const)
5519 {
5520 attr.implicit_const = read_signed_leb128 (abfd, addr,
5521 &bytes_read);
5522 addr += bytes_read;
5523 }
5524 if (attr.dw_idx == 0 && attr.form == 0)
5525 break;
5526 indexval.attr_vec.push_back (std::move (attr));
5527 }
5528 }
5529 if (addr != abbrev_table_start + abbrev_table_size)
5530 {
5531 warning (_("Section .debug_names in %s has abbreviation_table "
5532 "of size %zu vs. written as %u, ignoring .debug_names."),
5533 filename, addr - abbrev_table_start, abbrev_table_size);
5534 return false;
5535 }
5536 map.entry_pool = addr;
5537
5538 return true;
5539 }
5540
5541 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5542 list. */
5543
5544 static void
5545 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5546 const mapped_debug_names &map,
5547 dwarf2_section_info &section,
5548 bool is_dwz)
5549 {
5550 sect_offset sect_off_prev;
5551 for (uint32_t i = 0; i <= map.cu_count; ++i)
5552 {
5553 sect_offset sect_off_next;
5554 if (i < map.cu_count)
5555 {
5556 sect_off_next
5557 = (sect_offset) (extract_unsigned_integer
5558 (map.cu_table_reordered + i * map.offset_size,
5559 map.offset_size,
5560 map.dwarf5_byte_order));
5561 }
5562 else
5563 sect_off_next = (sect_offset) section.size;
5564 if (i >= 1)
5565 {
5566 const ULONGEST length = sect_off_next - sect_off_prev;
5567 dwarf2_per_cu_data *per_cu
5568 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5569 sect_off_prev, length);
5570 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5571 }
5572 sect_off_prev = sect_off_next;
5573 }
5574 }
5575
5576 /* Read the CU list from the mapped index, and use it to create all
5577 the CU objects for this dwarf2_per_objfile. */
5578
5579 static void
5580 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5581 const mapped_debug_names &map,
5582 const mapped_debug_names &dwz_map)
5583 {
5584 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5585 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5586
5587 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5588 dwarf2_per_objfile->info,
5589 false /* is_dwz */);
5590
5591 if (dwz_map.cu_count == 0)
5592 return;
5593
5594 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5595 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5596 true /* is_dwz */);
5597 }
5598
5599 /* Read .debug_names. If everything went ok, initialize the "quick"
5600 elements of all the CUs and return true. Otherwise, return false. */
5601
5602 static bool
5603 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5604 {
5605 mapped_debug_names local_map (dwarf2_per_objfile);
5606 mapped_debug_names dwz_map (dwarf2_per_objfile);
5607 struct objfile *objfile = dwarf2_per_objfile->objfile;
5608
5609 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5610 &dwarf2_per_objfile->debug_names,
5611 local_map))
5612 return false;
5613
5614 /* Don't use the index if it's empty. */
5615 if (local_map.name_count == 0)
5616 return false;
5617
5618 /* If there is a .dwz file, read it so we can get its CU list as
5619 well. */
5620 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5621 if (dwz != NULL)
5622 {
5623 if (!read_debug_names_from_section (objfile,
5624 bfd_get_filename (dwz->dwz_bfd),
5625 &dwz->debug_names, dwz_map))
5626 {
5627 warning (_("could not read '.debug_names' section from %s; skipping"),
5628 bfd_get_filename (dwz->dwz_bfd));
5629 return false;
5630 }
5631 }
5632
5633 create_cus_from_debug_names (dwarf2_per_objfile, local_map, dwz_map);
5634
5635 if (local_map.tu_count != 0)
5636 {
5637 /* We can only handle a single .debug_types when we have an
5638 index. */
5639 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
5640 return false;
5641
5642 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
5643 dwarf2_per_objfile->types, 0);
5644
5645 create_signatured_type_table_from_debug_names
5646 (dwarf2_per_objfile, local_map, section, &dwarf2_per_objfile->abbrev);
5647 }
5648
5649 create_addrmap_from_aranges (dwarf2_per_objfile,
5650 &dwarf2_per_objfile->debug_aranges);
5651
5652 dwarf2_per_objfile->debug_names_table.reset
5653 (new mapped_debug_names (dwarf2_per_objfile));
5654 *dwarf2_per_objfile->debug_names_table = std::move (local_map);
5655 dwarf2_per_objfile->using_index = 1;
5656 dwarf2_per_objfile->quick_file_names_table =
5657 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5658
5659 return true;
5660 }
5661
5662 /* Type used to manage iterating over all CUs looking for a symbol for
5663 .debug_names. */
5664
5665 class dw2_debug_names_iterator
5666 {
5667 public:
5668 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5669 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5670 dw2_debug_names_iterator (const mapped_debug_names &map,
5671 bool want_specific_block,
5672 block_enum block_index, domain_enum domain,
5673 const char *name)
5674 : m_map (map), m_want_specific_block (want_specific_block),
5675 m_block_index (block_index), m_domain (domain),
5676 m_addr (find_vec_in_debug_names (map, name))
5677 {}
5678
5679 dw2_debug_names_iterator (const mapped_debug_names &map,
5680 search_domain search, uint32_t namei)
5681 : m_map (map),
5682 m_search (search),
5683 m_addr (find_vec_in_debug_names (map, namei))
5684 {}
5685
5686 /* Return the next matching CU or NULL if there are no more. */
5687 dwarf2_per_cu_data *next ();
5688
5689 private:
5690 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5691 const char *name);
5692 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5693 uint32_t namei);
5694
5695 /* The internalized form of .debug_names. */
5696 const mapped_debug_names &m_map;
5697
5698 /* If true, only look for symbols that match BLOCK_INDEX. */
5699 const bool m_want_specific_block = false;
5700
5701 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5702 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5703 value. */
5704 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5705
5706 /* The kind of symbol we're looking for. */
5707 const domain_enum m_domain = UNDEF_DOMAIN;
5708 const search_domain m_search = ALL_DOMAIN;
5709
5710 /* The list of CUs from the index entry of the symbol, or NULL if
5711 not found. */
5712 const gdb_byte *m_addr;
5713 };
5714
5715 const char *
5716 mapped_debug_names::namei_to_name (uint32_t namei) const
5717 {
5718 const ULONGEST namei_string_offs
5719 = extract_unsigned_integer ((name_table_string_offs_reordered
5720 + namei * offset_size),
5721 offset_size,
5722 dwarf5_byte_order);
5723 return read_indirect_string_at_offset
5724 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5725 }
5726
5727 /* Find a slot in .debug_names for the object named NAME. If NAME is
5728 found, return pointer to its pool data. If NAME cannot be found,
5729 return NULL. */
5730
5731 const gdb_byte *
5732 dw2_debug_names_iterator::find_vec_in_debug_names
5733 (const mapped_debug_names &map, const char *name)
5734 {
5735 int (*cmp) (const char *, const char *);
5736
5737 if (current_language->la_language == language_cplus
5738 || current_language->la_language == language_fortran
5739 || current_language->la_language == language_d)
5740 {
5741 /* NAME is already canonical. Drop any qualifiers as
5742 .debug_names does not contain any. */
5743
5744 if (strchr (name, '(') != NULL)
5745 {
5746 gdb::unique_xmalloc_ptr<char> without_params
5747 = cp_remove_params (name);
5748
5749 if (without_params != NULL)
5750 {
5751 name = without_params.get();
5752 }
5753 }
5754 }
5755
5756 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5757
5758 const uint32_t full_hash = dwarf5_djb_hash (name);
5759 uint32_t namei
5760 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5761 (map.bucket_table_reordered
5762 + (full_hash % map.bucket_count)), 4,
5763 map.dwarf5_byte_order);
5764 if (namei == 0)
5765 return NULL;
5766 --namei;
5767 if (namei >= map.name_count)
5768 {
5769 complaint (&symfile_complaints,
5770 _("Wrong .debug_names with name index %u but name_count=%u "
5771 "[in module %s]"),
5772 namei, map.name_count,
5773 objfile_name (map.dwarf2_per_objfile->objfile));
5774 return NULL;
5775 }
5776
5777 for (;;)
5778 {
5779 const uint32_t namei_full_hash
5780 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5781 (map.hash_table_reordered + namei), 4,
5782 map.dwarf5_byte_order);
5783 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5784 return NULL;
5785
5786 if (full_hash == namei_full_hash)
5787 {
5788 const char *const namei_string = map.namei_to_name (namei);
5789
5790 #if 0 /* An expensive sanity check. */
5791 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5792 {
5793 complaint (&symfile_complaints,
5794 _("Wrong .debug_names hash for string at index %u "
5795 "[in module %s]"),
5796 namei, objfile_name (dwarf2_per_objfile->objfile));
5797 return NULL;
5798 }
5799 #endif
5800
5801 if (cmp (namei_string, name) == 0)
5802 {
5803 const ULONGEST namei_entry_offs
5804 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5805 + namei * map.offset_size),
5806 map.offset_size, map.dwarf5_byte_order);
5807 return map.entry_pool + namei_entry_offs;
5808 }
5809 }
5810
5811 ++namei;
5812 if (namei >= map.name_count)
5813 return NULL;
5814 }
5815 }
5816
5817 const gdb_byte *
5818 dw2_debug_names_iterator::find_vec_in_debug_names
5819 (const mapped_debug_names &map, uint32_t namei)
5820 {
5821 if (namei >= map.name_count)
5822 {
5823 complaint (&symfile_complaints,
5824 _("Wrong .debug_names with name index %u but name_count=%u "
5825 "[in module %s]"),
5826 namei, map.name_count,
5827 objfile_name (map.dwarf2_per_objfile->objfile));
5828 return NULL;
5829 }
5830
5831 const ULONGEST namei_entry_offs
5832 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5833 + namei * map.offset_size),
5834 map.offset_size, map.dwarf5_byte_order);
5835 return map.entry_pool + namei_entry_offs;
5836 }
5837
5838 /* See dw2_debug_names_iterator. */
5839
5840 dwarf2_per_cu_data *
5841 dw2_debug_names_iterator::next ()
5842 {
5843 if (m_addr == NULL)
5844 return NULL;
5845
5846 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5847 struct objfile *objfile = dwarf2_per_objfile->objfile;
5848 bfd *const abfd = objfile->obfd;
5849
5850 again:
5851
5852 unsigned int bytes_read;
5853 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5854 m_addr += bytes_read;
5855 if (abbrev == 0)
5856 return NULL;
5857
5858 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5859 if (indexval_it == m_map.abbrev_map.cend ())
5860 {
5861 complaint (&symfile_complaints,
5862 _("Wrong .debug_names undefined abbrev code %s "
5863 "[in module %s]"),
5864 pulongest (abbrev), objfile_name (objfile));
5865 return NULL;
5866 }
5867 const mapped_debug_names::index_val &indexval = indexval_it->second;
5868 bool have_is_static = false;
5869 bool is_static;
5870 dwarf2_per_cu_data *per_cu = NULL;
5871 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5872 {
5873 ULONGEST ull;
5874 switch (attr.form)
5875 {
5876 case DW_FORM_implicit_const:
5877 ull = attr.implicit_const;
5878 break;
5879 case DW_FORM_flag_present:
5880 ull = 1;
5881 break;
5882 case DW_FORM_udata:
5883 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5884 m_addr += bytes_read;
5885 break;
5886 default:
5887 complaint (&symfile_complaints,
5888 _("Unsupported .debug_names form %s [in module %s]"),
5889 dwarf_form_name (attr.form),
5890 objfile_name (objfile));
5891 return NULL;
5892 }
5893 switch (attr.dw_idx)
5894 {
5895 case DW_IDX_compile_unit:
5896 /* Don't crash on bad data. */
5897 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5898 {
5899 complaint (&symfile_complaints,
5900 _(".debug_names entry has bad CU index %s"
5901 " [in module %s]"),
5902 pulongest (ull),
5903 objfile_name (dwarf2_per_objfile->objfile));
5904 continue;
5905 }
5906 per_cu = dwarf2_per_objfile->get_cutu (ull);
5907 break;
5908 case DW_IDX_type_unit:
5909 /* Don't crash on bad data. */
5910 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5911 {
5912 complaint (&symfile_complaints,
5913 _(".debug_names entry has bad TU index %s"
5914 " [in module %s]"),
5915 pulongest (ull),
5916 objfile_name (dwarf2_per_objfile->objfile));
5917 continue;
5918 }
5919 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5920 break;
5921 case DW_IDX_GNU_internal:
5922 if (!m_map.augmentation_is_gdb)
5923 break;
5924 have_is_static = true;
5925 is_static = true;
5926 break;
5927 case DW_IDX_GNU_external:
5928 if (!m_map.augmentation_is_gdb)
5929 break;
5930 have_is_static = true;
5931 is_static = false;
5932 break;
5933 }
5934 }
5935
5936 /* Skip if already read in. */
5937 if (per_cu->v.quick->compunit_symtab)
5938 goto again;
5939
5940 /* Check static vs global. */
5941 if (have_is_static)
5942 {
5943 const bool want_static = m_block_index != GLOBAL_BLOCK;
5944 if (m_want_specific_block && want_static != is_static)
5945 goto again;
5946 }
5947
5948 /* Match dw2_symtab_iter_next, symbol_kind
5949 and debug_names::psymbol_tag. */
5950 switch (m_domain)
5951 {
5952 case VAR_DOMAIN:
5953 switch (indexval.dwarf_tag)
5954 {
5955 case DW_TAG_variable:
5956 case DW_TAG_subprogram:
5957 /* Some types are also in VAR_DOMAIN. */
5958 case DW_TAG_typedef:
5959 case DW_TAG_structure_type:
5960 break;
5961 default:
5962 goto again;
5963 }
5964 break;
5965 case STRUCT_DOMAIN:
5966 switch (indexval.dwarf_tag)
5967 {
5968 case DW_TAG_typedef:
5969 case DW_TAG_structure_type:
5970 break;
5971 default:
5972 goto again;
5973 }
5974 break;
5975 case LABEL_DOMAIN:
5976 switch (indexval.dwarf_tag)
5977 {
5978 case 0:
5979 case DW_TAG_variable:
5980 break;
5981 default:
5982 goto again;
5983 }
5984 break;
5985 default:
5986 break;
5987 }
5988
5989 /* Match dw2_expand_symtabs_matching, symbol_kind and
5990 debug_names::psymbol_tag. */
5991 switch (m_search)
5992 {
5993 case VARIABLES_DOMAIN:
5994 switch (indexval.dwarf_tag)
5995 {
5996 case DW_TAG_variable:
5997 break;
5998 default:
5999 goto again;
6000 }
6001 break;
6002 case FUNCTIONS_DOMAIN:
6003 switch (indexval.dwarf_tag)
6004 {
6005 case DW_TAG_subprogram:
6006 break;
6007 default:
6008 goto again;
6009 }
6010 break;
6011 case TYPES_DOMAIN:
6012 switch (indexval.dwarf_tag)
6013 {
6014 case DW_TAG_typedef:
6015 case DW_TAG_structure_type:
6016 break;
6017 default:
6018 goto again;
6019 }
6020 break;
6021 default:
6022 break;
6023 }
6024
6025 return per_cu;
6026 }
6027
6028 static struct compunit_symtab *
6029 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6030 const char *name, domain_enum domain)
6031 {
6032 const block_enum block_index = static_cast<block_enum> (block_index_int);
6033 struct dwarf2_per_objfile *dwarf2_per_objfile
6034 = get_dwarf2_per_objfile (objfile);
6035
6036 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6037 if (!mapp)
6038 {
6039 /* index is NULL if OBJF_READNOW. */
6040 return NULL;
6041 }
6042 const auto &map = *mapp;
6043
6044 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6045 block_index, domain, name);
6046
6047 struct compunit_symtab *stab_best = NULL;
6048 struct dwarf2_per_cu_data *per_cu;
6049 while ((per_cu = iter.next ()) != NULL)
6050 {
6051 struct symbol *sym, *with_opaque = NULL;
6052 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
6053 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6054 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6055
6056 sym = block_find_symbol (block, name, domain,
6057 block_find_non_opaque_type_preferred,
6058 &with_opaque);
6059
6060 /* Some caution must be observed with overloaded functions and
6061 methods, since the index will not contain any overload
6062 information (but NAME might contain it). */
6063
6064 if (sym != NULL
6065 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6066 return stab;
6067 if (with_opaque != NULL
6068 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6069 stab_best = stab;
6070
6071 /* Keep looking through other CUs. */
6072 }
6073
6074 return stab_best;
6075 }
6076
6077 /* This dumps minimal information about .debug_names. It is called
6078 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6079 uses this to verify that .debug_names has been loaded. */
6080
6081 static void
6082 dw2_debug_names_dump (struct objfile *objfile)
6083 {
6084 struct dwarf2_per_objfile *dwarf2_per_objfile
6085 = get_dwarf2_per_objfile (objfile);
6086
6087 gdb_assert (dwarf2_per_objfile->using_index);
6088 printf_filtered (".debug_names:");
6089 if (dwarf2_per_objfile->debug_names_table)
6090 printf_filtered (" exists\n");
6091 else
6092 printf_filtered (" faked for \"readnow\"\n");
6093 printf_filtered ("\n");
6094 }
6095
6096 static void
6097 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6098 const char *func_name)
6099 {
6100 struct dwarf2_per_objfile *dwarf2_per_objfile
6101 = get_dwarf2_per_objfile (objfile);
6102
6103 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6104 if (dwarf2_per_objfile->debug_names_table)
6105 {
6106 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6107
6108 /* Note: It doesn't matter what we pass for block_index here. */
6109 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6110 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6111
6112 struct dwarf2_per_cu_data *per_cu;
6113 while ((per_cu = iter.next ()) != NULL)
6114 dw2_instantiate_symtab (per_cu);
6115 }
6116 }
6117
6118 static void
6119 dw2_debug_names_expand_symtabs_matching
6120 (struct objfile *objfile,
6121 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6122 const lookup_name_info &lookup_name,
6123 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6124 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6125 enum search_domain kind)
6126 {
6127 struct dwarf2_per_objfile *dwarf2_per_objfile
6128 = get_dwarf2_per_objfile (objfile);
6129
6130 /* debug_names_table is NULL if OBJF_READNOW. */
6131 if (!dwarf2_per_objfile->debug_names_table)
6132 return;
6133
6134 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6135
6136 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6137
6138 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6139 symbol_matcher,
6140 kind, [&] (offset_type namei)
6141 {
6142 /* The name was matched, now expand corresponding CUs that were
6143 marked. */
6144 dw2_debug_names_iterator iter (map, kind, namei);
6145
6146 struct dwarf2_per_cu_data *per_cu;
6147 while ((per_cu = iter.next ()) != NULL)
6148 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6149 expansion_notify);
6150 });
6151 }
6152
6153 const struct quick_symbol_functions dwarf2_debug_names_functions =
6154 {
6155 dw2_has_symbols,
6156 dw2_find_last_source_symtab,
6157 dw2_forget_cached_source_info,
6158 dw2_map_symtabs_matching_filename,
6159 dw2_debug_names_lookup_symbol,
6160 dw2_print_stats,
6161 dw2_debug_names_dump,
6162 dw2_relocate,
6163 dw2_debug_names_expand_symtabs_for_function,
6164 dw2_expand_all_symtabs,
6165 dw2_expand_symtabs_with_fullname,
6166 dw2_map_matching_symbols,
6167 dw2_debug_names_expand_symtabs_matching,
6168 dw2_find_pc_sect_compunit_symtab,
6169 NULL,
6170 dw2_map_symbol_filenames
6171 };
6172
6173 /* See symfile.h. */
6174
6175 bool
6176 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6177 {
6178 struct dwarf2_per_objfile *dwarf2_per_objfile
6179 = get_dwarf2_per_objfile (objfile);
6180
6181 /* If we're about to read full symbols, don't bother with the
6182 indices. In this case we also don't care if some other debug
6183 format is making psymtabs, because they are all about to be
6184 expanded anyway. */
6185 if ((objfile->flags & OBJF_READNOW))
6186 {
6187 dwarf2_per_objfile->using_index = 1;
6188 create_all_comp_units (dwarf2_per_objfile);
6189 create_all_type_units (dwarf2_per_objfile);
6190 dwarf2_per_objfile->quick_file_names_table
6191 = create_quick_file_names_table
6192 (dwarf2_per_objfile->all_comp_units.size ());
6193
6194 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6195 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6196 {
6197 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6198
6199 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6200 struct dwarf2_per_cu_quick_data);
6201 }
6202
6203 /* Return 1 so that gdb sees the "quick" functions. However,
6204 these functions will be no-ops because we will have expanded
6205 all symtabs. */
6206 *index_kind = dw_index_kind::GDB_INDEX;
6207 return true;
6208 }
6209
6210 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6211 {
6212 *index_kind = dw_index_kind::DEBUG_NAMES;
6213 return true;
6214 }
6215
6216 if (dwarf2_read_index (dwarf2_per_objfile))
6217 {
6218 *index_kind = dw_index_kind::GDB_INDEX;
6219 return true;
6220 }
6221
6222 return false;
6223 }
6224
6225 \f
6226
6227 /* Build a partial symbol table. */
6228
6229 void
6230 dwarf2_build_psymtabs (struct objfile *objfile)
6231 {
6232 struct dwarf2_per_objfile *dwarf2_per_objfile
6233 = get_dwarf2_per_objfile (objfile);
6234
6235 if (objfile->global_psymbols.capacity () == 0
6236 && objfile->static_psymbols.capacity () == 0)
6237 init_psymbol_list (objfile, 1024);
6238
6239 TRY
6240 {
6241 /* This isn't really ideal: all the data we allocate on the
6242 objfile's obstack is still uselessly kept around. However,
6243 freeing it seems unsafe. */
6244 psymtab_discarder psymtabs (objfile);
6245 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6246 psymtabs.keep ();
6247 }
6248 CATCH (except, RETURN_MASK_ERROR)
6249 {
6250 exception_print (gdb_stderr, except);
6251 }
6252 END_CATCH
6253 }
6254
6255 /* Return the total length of the CU described by HEADER. */
6256
6257 static unsigned int
6258 get_cu_length (const struct comp_unit_head *header)
6259 {
6260 return header->initial_length_size + header->length;
6261 }
6262
6263 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6264
6265 static inline bool
6266 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6267 {
6268 sect_offset bottom = cu_header->sect_off;
6269 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6270
6271 return sect_off >= bottom && sect_off < top;
6272 }
6273
6274 /* Find the base address of the compilation unit for range lists and
6275 location lists. It will normally be specified by DW_AT_low_pc.
6276 In DWARF-3 draft 4, the base address could be overridden by
6277 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6278 compilation units with discontinuous ranges. */
6279
6280 static void
6281 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6282 {
6283 struct attribute *attr;
6284
6285 cu->base_known = 0;
6286 cu->base_address = 0;
6287
6288 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6289 if (attr)
6290 {
6291 cu->base_address = attr_value_as_address (attr);
6292 cu->base_known = 1;
6293 }
6294 else
6295 {
6296 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6297 if (attr)
6298 {
6299 cu->base_address = attr_value_as_address (attr);
6300 cu->base_known = 1;
6301 }
6302 }
6303 }
6304
6305 /* Read in the comp unit header information from the debug_info at info_ptr.
6306 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6307 NOTE: This leaves members offset, first_die_offset to be filled in
6308 by the caller. */
6309
6310 static const gdb_byte *
6311 read_comp_unit_head (struct comp_unit_head *cu_header,
6312 const gdb_byte *info_ptr,
6313 struct dwarf2_section_info *section,
6314 rcuh_kind section_kind)
6315 {
6316 int signed_addr;
6317 unsigned int bytes_read;
6318 const char *filename = get_section_file_name (section);
6319 bfd *abfd = get_section_bfd_owner (section);
6320
6321 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6322 cu_header->initial_length_size = bytes_read;
6323 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6324 info_ptr += bytes_read;
6325 cu_header->version = read_2_bytes (abfd, info_ptr);
6326 info_ptr += 2;
6327 if (cu_header->version < 5)
6328 switch (section_kind)
6329 {
6330 case rcuh_kind::COMPILE:
6331 cu_header->unit_type = DW_UT_compile;
6332 break;
6333 case rcuh_kind::TYPE:
6334 cu_header->unit_type = DW_UT_type;
6335 break;
6336 default:
6337 internal_error (__FILE__, __LINE__,
6338 _("read_comp_unit_head: invalid section_kind"));
6339 }
6340 else
6341 {
6342 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6343 (read_1_byte (abfd, info_ptr));
6344 info_ptr += 1;
6345 switch (cu_header->unit_type)
6346 {
6347 case DW_UT_compile:
6348 if (section_kind != rcuh_kind::COMPILE)
6349 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6350 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6351 filename);
6352 break;
6353 case DW_UT_type:
6354 section_kind = rcuh_kind::TYPE;
6355 break;
6356 default:
6357 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6358 "(is %d, should be %d or %d) [in module %s]"),
6359 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6360 }
6361
6362 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6363 info_ptr += 1;
6364 }
6365 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6366 cu_header,
6367 &bytes_read);
6368 info_ptr += bytes_read;
6369 if (cu_header->version < 5)
6370 {
6371 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6372 info_ptr += 1;
6373 }
6374 signed_addr = bfd_get_sign_extend_vma (abfd);
6375 if (signed_addr < 0)
6376 internal_error (__FILE__, __LINE__,
6377 _("read_comp_unit_head: dwarf from non elf file"));
6378 cu_header->signed_addr_p = signed_addr;
6379
6380 if (section_kind == rcuh_kind::TYPE)
6381 {
6382 LONGEST type_offset;
6383
6384 cu_header->signature = read_8_bytes (abfd, info_ptr);
6385 info_ptr += 8;
6386
6387 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6388 info_ptr += bytes_read;
6389 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6390 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6391 error (_("Dwarf Error: Too big type_offset in compilation unit "
6392 "header (is %s) [in module %s]"), plongest (type_offset),
6393 filename);
6394 }
6395
6396 return info_ptr;
6397 }
6398
6399 /* Helper function that returns the proper abbrev section for
6400 THIS_CU. */
6401
6402 static struct dwarf2_section_info *
6403 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6404 {
6405 struct dwarf2_section_info *abbrev;
6406 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6407
6408 if (this_cu->is_dwz)
6409 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6410 else
6411 abbrev = &dwarf2_per_objfile->abbrev;
6412
6413 return abbrev;
6414 }
6415
6416 /* Subroutine of read_and_check_comp_unit_head and
6417 read_and_check_type_unit_head to simplify them.
6418 Perform various error checking on the header. */
6419
6420 static void
6421 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6422 struct comp_unit_head *header,
6423 struct dwarf2_section_info *section,
6424 struct dwarf2_section_info *abbrev_section)
6425 {
6426 const char *filename = get_section_file_name (section);
6427
6428 if (header->version < 2 || header->version > 5)
6429 error (_("Dwarf Error: wrong version in compilation unit header "
6430 "(is %d, should be 2, 3, 4 or 5) [in module %s]"), header->version,
6431 filename);
6432
6433 if (to_underlying (header->abbrev_sect_off)
6434 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6435 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6436 "(offset %s + 6) [in module %s]"),
6437 sect_offset_str (header->abbrev_sect_off),
6438 sect_offset_str (header->sect_off),
6439 filename);
6440
6441 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6442 avoid potential 32-bit overflow. */
6443 if (((ULONGEST) header->sect_off + get_cu_length (header))
6444 > section->size)
6445 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6446 "(offset %s + 0) [in module %s]"),
6447 header->length, sect_offset_str (header->sect_off),
6448 filename);
6449 }
6450
6451 /* Read in a CU/TU header and perform some basic error checking.
6452 The contents of the header are stored in HEADER.
6453 The result is a pointer to the start of the first DIE. */
6454
6455 static const gdb_byte *
6456 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6457 struct comp_unit_head *header,
6458 struct dwarf2_section_info *section,
6459 struct dwarf2_section_info *abbrev_section,
6460 const gdb_byte *info_ptr,
6461 rcuh_kind section_kind)
6462 {
6463 const gdb_byte *beg_of_comp_unit = info_ptr;
6464
6465 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6466
6467 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6468
6469 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6470
6471 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6472 abbrev_section);
6473
6474 return info_ptr;
6475 }
6476
6477 /* Fetch the abbreviation table offset from a comp or type unit header. */
6478
6479 static sect_offset
6480 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6481 struct dwarf2_section_info *section,
6482 sect_offset sect_off)
6483 {
6484 bfd *abfd = get_section_bfd_owner (section);
6485 const gdb_byte *info_ptr;
6486 unsigned int initial_length_size, offset_size;
6487 uint16_t version;
6488
6489 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6490 info_ptr = section->buffer + to_underlying (sect_off);
6491 read_initial_length (abfd, info_ptr, &initial_length_size);
6492 offset_size = initial_length_size == 4 ? 4 : 8;
6493 info_ptr += initial_length_size;
6494
6495 version = read_2_bytes (abfd, info_ptr);
6496 info_ptr += 2;
6497 if (version >= 5)
6498 {
6499 /* Skip unit type and address size. */
6500 info_ptr += 2;
6501 }
6502
6503 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6504 }
6505
6506 /* Allocate a new partial symtab for file named NAME and mark this new
6507 partial symtab as being an include of PST. */
6508
6509 static void
6510 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6511 struct objfile *objfile)
6512 {
6513 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6514
6515 if (!IS_ABSOLUTE_PATH (subpst->filename))
6516 {
6517 /* It shares objfile->objfile_obstack. */
6518 subpst->dirname = pst->dirname;
6519 }
6520
6521 subpst->textlow = 0;
6522 subpst->texthigh = 0;
6523
6524 subpst->dependencies
6525 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
6526 subpst->dependencies[0] = pst;
6527 subpst->number_of_dependencies = 1;
6528
6529 subpst->globals_offset = 0;
6530 subpst->n_global_syms = 0;
6531 subpst->statics_offset = 0;
6532 subpst->n_static_syms = 0;
6533 subpst->compunit_symtab = NULL;
6534 subpst->read_symtab = pst->read_symtab;
6535 subpst->readin = 0;
6536
6537 /* No private part is necessary for include psymtabs. This property
6538 can be used to differentiate between such include psymtabs and
6539 the regular ones. */
6540 subpst->read_symtab_private = NULL;
6541 }
6542
6543 /* Read the Line Number Program data and extract the list of files
6544 included by the source file represented by PST. Build an include
6545 partial symtab for each of these included files. */
6546
6547 static void
6548 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6549 struct die_info *die,
6550 struct partial_symtab *pst)
6551 {
6552 line_header_up lh;
6553 struct attribute *attr;
6554
6555 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6556 if (attr)
6557 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6558 if (lh == NULL)
6559 return; /* No linetable, so no includes. */
6560
6561 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
6562 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst, pst->textlow, 1);
6563 }
6564
6565 static hashval_t
6566 hash_signatured_type (const void *item)
6567 {
6568 const struct signatured_type *sig_type
6569 = (const struct signatured_type *) item;
6570
6571 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6572 return sig_type->signature;
6573 }
6574
6575 static int
6576 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6577 {
6578 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6579 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6580
6581 return lhs->signature == rhs->signature;
6582 }
6583
6584 /* Allocate a hash table for signatured types. */
6585
6586 static htab_t
6587 allocate_signatured_type_table (struct objfile *objfile)
6588 {
6589 return htab_create_alloc_ex (41,
6590 hash_signatured_type,
6591 eq_signatured_type,
6592 NULL,
6593 &objfile->objfile_obstack,
6594 hashtab_obstack_allocate,
6595 dummy_obstack_deallocate);
6596 }
6597
6598 /* A helper function to add a signatured type CU to a table. */
6599
6600 static int
6601 add_signatured_type_cu_to_table (void **slot, void *datum)
6602 {
6603 struct signatured_type *sigt = (struct signatured_type *) *slot;
6604 std::vector<signatured_type *> *all_type_units
6605 = (std::vector<signatured_type *> *) datum;
6606
6607 all_type_units->push_back (sigt);
6608
6609 return 1;
6610 }
6611
6612 /* A helper for create_debug_types_hash_table. Read types from SECTION
6613 and fill them into TYPES_HTAB. It will process only type units,
6614 therefore DW_UT_type. */
6615
6616 static void
6617 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6618 struct dwo_file *dwo_file,
6619 dwarf2_section_info *section, htab_t &types_htab,
6620 rcuh_kind section_kind)
6621 {
6622 struct objfile *objfile = dwarf2_per_objfile->objfile;
6623 struct dwarf2_section_info *abbrev_section;
6624 bfd *abfd;
6625 const gdb_byte *info_ptr, *end_ptr;
6626
6627 abbrev_section = (dwo_file != NULL
6628 ? &dwo_file->sections.abbrev
6629 : &dwarf2_per_objfile->abbrev);
6630
6631 if (dwarf_read_debug)
6632 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6633 get_section_name (section),
6634 get_section_file_name (abbrev_section));
6635
6636 dwarf2_read_section (objfile, section);
6637 info_ptr = section->buffer;
6638
6639 if (info_ptr == NULL)
6640 return;
6641
6642 /* We can't set abfd until now because the section may be empty or
6643 not present, in which case the bfd is unknown. */
6644 abfd = get_section_bfd_owner (section);
6645
6646 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6647 because we don't need to read any dies: the signature is in the
6648 header. */
6649
6650 end_ptr = info_ptr + section->size;
6651 while (info_ptr < end_ptr)
6652 {
6653 struct signatured_type *sig_type;
6654 struct dwo_unit *dwo_tu;
6655 void **slot;
6656 const gdb_byte *ptr = info_ptr;
6657 struct comp_unit_head header;
6658 unsigned int length;
6659
6660 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6661
6662 /* Initialize it due to a false compiler warning. */
6663 header.signature = -1;
6664 header.type_cu_offset_in_tu = (cu_offset) -1;
6665
6666 /* We need to read the type's signature in order to build the hash
6667 table, but we don't need anything else just yet. */
6668
6669 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6670 abbrev_section, ptr, section_kind);
6671
6672 length = get_cu_length (&header);
6673
6674 /* Skip dummy type units. */
6675 if (ptr >= info_ptr + length
6676 || peek_abbrev_code (abfd, ptr) == 0
6677 || header.unit_type != DW_UT_type)
6678 {
6679 info_ptr += length;
6680 continue;
6681 }
6682
6683 if (types_htab == NULL)
6684 {
6685 if (dwo_file)
6686 types_htab = allocate_dwo_unit_table (objfile);
6687 else
6688 types_htab = allocate_signatured_type_table (objfile);
6689 }
6690
6691 if (dwo_file)
6692 {
6693 sig_type = NULL;
6694 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6695 struct dwo_unit);
6696 dwo_tu->dwo_file = dwo_file;
6697 dwo_tu->signature = header.signature;
6698 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6699 dwo_tu->section = section;
6700 dwo_tu->sect_off = sect_off;
6701 dwo_tu->length = length;
6702 }
6703 else
6704 {
6705 /* N.B.: type_offset is not usable if this type uses a DWO file.
6706 The real type_offset is in the DWO file. */
6707 dwo_tu = NULL;
6708 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6709 struct signatured_type);
6710 sig_type->signature = header.signature;
6711 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6712 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6713 sig_type->per_cu.is_debug_types = 1;
6714 sig_type->per_cu.section = section;
6715 sig_type->per_cu.sect_off = sect_off;
6716 sig_type->per_cu.length = length;
6717 }
6718
6719 slot = htab_find_slot (types_htab,
6720 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6721 INSERT);
6722 gdb_assert (slot != NULL);
6723 if (*slot != NULL)
6724 {
6725 sect_offset dup_sect_off;
6726
6727 if (dwo_file)
6728 {
6729 const struct dwo_unit *dup_tu
6730 = (const struct dwo_unit *) *slot;
6731
6732 dup_sect_off = dup_tu->sect_off;
6733 }
6734 else
6735 {
6736 const struct signatured_type *dup_tu
6737 = (const struct signatured_type *) *slot;
6738
6739 dup_sect_off = dup_tu->per_cu.sect_off;
6740 }
6741
6742 complaint (&symfile_complaints,
6743 _("debug type entry at offset %s is duplicate to"
6744 " the entry at offset %s, signature %s"),
6745 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6746 hex_string (header.signature));
6747 }
6748 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6749
6750 if (dwarf_read_debug > 1)
6751 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6752 sect_offset_str (sect_off),
6753 hex_string (header.signature));
6754
6755 info_ptr += length;
6756 }
6757 }
6758
6759 /* Create the hash table of all entries in the .debug_types
6760 (or .debug_types.dwo) section(s).
6761 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6762 otherwise it is NULL.
6763
6764 The result is a pointer to the hash table or NULL if there are no types.
6765
6766 Note: This function processes DWO files only, not DWP files. */
6767
6768 static void
6769 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6770 struct dwo_file *dwo_file,
6771 VEC (dwarf2_section_info_def) *types,
6772 htab_t &types_htab)
6773 {
6774 int ix;
6775 struct dwarf2_section_info *section;
6776
6777 if (VEC_empty (dwarf2_section_info_def, types))
6778 return;
6779
6780 for (ix = 0;
6781 VEC_iterate (dwarf2_section_info_def, types, ix, section);
6782 ++ix)
6783 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
6784 types_htab, rcuh_kind::TYPE);
6785 }
6786
6787 /* Create the hash table of all entries in the .debug_types section,
6788 and initialize all_type_units.
6789 The result is zero if there is an error (e.g. missing .debug_types section),
6790 otherwise non-zero. */
6791
6792 static int
6793 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6794 {
6795 htab_t types_htab = NULL;
6796
6797 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6798 &dwarf2_per_objfile->info, types_htab,
6799 rcuh_kind::COMPILE);
6800 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6801 dwarf2_per_objfile->types, types_htab);
6802 if (types_htab == NULL)
6803 {
6804 dwarf2_per_objfile->signatured_types = NULL;
6805 return 0;
6806 }
6807
6808 dwarf2_per_objfile->signatured_types = types_htab;
6809
6810 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6811 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6812
6813 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6814 &dwarf2_per_objfile->all_type_units);
6815
6816 return 1;
6817 }
6818
6819 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6820 If SLOT is non-NULL, it is the entry to use in the hash table.
6821 Otherwise we find one. */
6822
6823 static struct signatured_type *
6824 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6825 void **slot)
6826 {
6827 struct objfile *objfile = dwarf2_per_objfile->objfile;
6828
6829 if (dwarf2_per_objfile->all_type_units.size ()
6830 == dwarf2_per_objfile->all_type_units.capacity ())
6831 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6832
6833 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6834 struct signatured_type);
6835
6836 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6837 sig_type->signature = sig;
6838 sig_type->per_cu.is_debug_types = 1;
6839 if (dwarf2_per_objfile->using_index)
6840 {
6841 sig_type->per_cu.v.quick =
6842 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6843 struct dwarf2_per_cu_quick_data);
6844 }
6845
6846 if (slot == NULL)
6847 {
6848 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6849 sig_type, INSERT);
6850 }
6851 gdb_assert (*slot == NULL);
6852 *slot = sig_type;
6853 /* The rest of sig_type must be filled in by the caller. */
6854 return sig_type;
6855 }
6856
6857 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6858 Fill in SIG_ENTRY with DWO_ENTRY. */
6859
6860 static void
6861 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6862 struct signatured_type *sig_entry,
6863 struct dwo_unit *dwo_entry)
6864 {
6865 /* Make sure we're not clobbering something we don't expect to. */
6866 gdb_assert (! sig_entry->per_cu.queued);
6867 gdb_assert (sig_entry->per_cu.cu == NULL);
6868 if (dwarf2_per_objfile->using_index)
6869 {
6870 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6871 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6872 }
6873 else
6874 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6875 gdb_assert (sig_entry->signature == dwo_entry->signature);
6876 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6877 gdb_assert (sig_entry->type_unit_group == NULL);
6878 gdb_assert (sig_entry->dwo_unit == NULL);
6879
6880 sig_entry->per_cu.section = dwo_entry->section;
6881 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6882 sig_entry->per_cu.length = dwo_entry->length;
6883 sig_entry->per_cu.reading_dwo_directly = 1;
6884 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6885 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6886 sig_entry->dwo_unit = dwo_entry;
6887 }
6888
6889 /* Subroutine of lookup_signatured_type.
6890 If we haven't read the TU yet, create the signatured_type data structure
6891 for a TU to be read in directly from a DWO file, bypassing the stub.
6892 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6893 using .gdb_index, then when reading a CU we want to stay in the DWO file
6894 containing that CU. Otherwise we could end up reading several other DWO
6895 files (due to comdat folding) to process the transitive closure of all the
6896 mentioned TUs, and that can be slow. The current DWO file will have every
6897 type signature that it needs.
6898 We only do this for .gdb_index because in the psymtab case we already have
6899 to read all the DWOs to build the type unit groups. */
6900
6901 static struct signatured_type *
6902 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6903 {
6904 struct dwarf2_per_objfile *dwarf2_per_objfile
6905 = cu->per_cu->dwarf2_per_objfile;
6906 struct objfile *objfile = dwarf2_per_objfile->objfile;
6907 struct dwo_file *dwo_file;
6908 struct dwo_unit find_dwo_entry, *dwo_entry;
6909 struct signatured_type find_sig_entry, *sig_entry;
6910 void **slot;
6911
6912 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6913
6914 /* If TU skeletons have been removed then we may not have read in any
6915 TUs yet. */
6916 if (dwarf2_per_objfile->signatured_types == NULL)
6917 {
6918 dwarf2_per_objfile->signatured_types
6919 = allocate_signatured_type_table (objfile);
6920 }
6921
6922 /* We only ever need to read in one copy of a signatured type.
6923 Use the global signatured_types array to do our own comdat-folding
6924 of types. If this is the first time we're reading this TU, and
6925 the TU has an entry in .gdb_index, replace the recorded data from
6926 .gdb_index with this TU. */
6927
6928 find_sig_entry.signature = sig;
6929 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6930 &find_sig_entry, INSERT);
6931 sig_entry = (struct signatured_type *) *slot;
6932
6933 /* We can get here with the TU already read, *or* in the process of being
6934 read. Don't reassign the global entry to point to this DWO if that's
6935 the case. Also note that if the TU is already being read, it may not
6936 have come from a DWO, the program may be a mix of Fission-compiled
6937 code and non-Fission-compiled code. */
6938
6939 /* Have we already tried to read this TU?
6940 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6941 needn't exist in the global table yet). */
6942 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
6943 return sig_entry;
6944
6945 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6946 dwo_unit of the TU itself. */
6947 dwo_file = cu->dwo_unit->dwo_file;
6948
6949 /* Ok, this is the first time we're reading this TU. */
6950 if (dwo_file->tus == NULL)
6951 return NULL;
6952 find_dwo_entry.signature = sig;
6953 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
6954 if (dwo_entry == NULL)
6955 return NULL;
6956
6957 /* If the global table doesn't have an entry for this TU, add one. */
6958 if (sig_entry == NULL)
6959 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6960
6961 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6962 sig_entry->per_cu.tu_read = 1;
6963 return sig_entry;
6964 }
6965
6966 /* Subroutine of lookup_signatured_type.
6967 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6968 then try the DWP file. If the TU stub (skeleton) has been removed then
6969 it won't be in .gdb_index. */
6970
6971 static struct signatured_type *
6972 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6973 {
6974 struct dwarf2_per_objfile *dwarf2_per_objfile
6975 = cu->per_cu->dwarf2_per_objfile;
6976 struct objfile *objfile = dwarf2_per_objfile->objfile;
6977 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
6978 struct dwo_unit *dwo_entry;
6979 struct signatured_type find_sig_entry, *sig_entry;
6980 void **slot;
6981
6982 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6983 gdb_assert (dwp_file != NULL);
6984
6985 /* If TU skeletons have been removed then we may not have read in any
6986 TUs yet. */
6987 if (dwarf2_per_objfile->signatured_types == NULL)
6988 {
6989 dwarf2_per_objfile->signatured_types
6990 = allocate_signatured_type_table (objfile);
6991 }
6992
6993 find_sig_entry.signature = sig;
6994 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6995 &find_sig_entry, INSERT);
6996 sig_entry = (struct signatured_type *) *slot;
6997
6998 /* Have we already tried to read this TU?
6999 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7000 needn't exist in the global table yet). */
7001 if (sig_entry != NULL)
7002 return sig_entry;
7003
7004 if (dwp_file->tus == NULL)
7005 return NULL;
7006 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7007 sig, 1 /* is_debug_types */);
7008 if (dwo_entry == NULL)
7009 return NULL;
7010
7011 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7012 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7013
7014 return sig_entry;
7015 }
7016
7017 /* Lookup a signature based type for DW_FORM_ref_sig8.
7018 Returns NULL if signature SIG is not present in the table.
7019 It is up to the caller to complain about this. */
7020
7021 static struct signatured_type *
7022 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7023 {
7024 struct dwarf2_per_objfile *dwarf2_per_objfile
7025 = cu->per_cu->dwarf2_per_objfile;
7026
7027 if (cu->dwo_unit
7028 && dwarf2_per_objfile->using_index)
7029 {
7030 /* We're in a DWO/DWP file, and we're using .gdb_index.
7031 These cases require special processing. */
7032 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7033 return lookup_dwo_signatured_type (cu, sig);
7034 else
7035 return lookup_dwp_signatured_type (cu, sig);
7036 }
7037 else
7038 {
7039 struct signatured_type find_entry, *entry;
7040
7041 if (dwarf2_per_objfile->signatured_types == NULL)
7042 return NULL;
7043 find_entry.signature = sig;
7044 entry = ((struct signatured_type *)
7045 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7046 return entry;
7047 }
7048 }
7049 \f
7050 /* Low level DIE reading support. */
7051
7052 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7053
7054 static void
7055 init_cu_die_reader (struct die_reader_specs *reader,
7056 struct dwarf2_cu *cu,
7057 struct dwarf2_section_info *section,
7058 struct dwo_file *dwo_file,
7059 struct abbrev_table *abbrev_table)
7060 {
7061 gdb_assert (section->readin && section->buffer != NULL);
7062 reader->abfd = get_section_bfd_owner (section);
7063 reader->cu = cu;
7064 reader->dwo_file = dwo_file;
7065 reader->die_section = section;
7066 reader->buffer = section->buffer;
7067 reader->buffer_end = section->buffer + section->size;
7068 reader->comp_dir = NULL;
7069 reader->abbrev_table = abbrev_table;
7070 }
7071
7072 /* Subroutine of init_cutu_and_read_dies to simplify it.
7073 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7074 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7075 already.
7076
7077 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7078 from it to the DIE in the DWO. If NULL we are skipping the stub.
7079 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7080 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7081 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7082 STUB_COMP_DIR may be non-NULL.
7083 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7084 are filled in with the info of the DIE from the DWO file.
7085 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7086 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7087 kept around for at least as long as *RESULT_READER.
7088
7089 The result is non-zero if a valid (non-dummy) DIE was found. */
7090
7091 static int
7092 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7093 struct dwo_unit *dwo_unit,
7094 struct die_info *stub_comp_unit_die,
7095 const char *stub_comp_dir,
7096 struct die_reader_specs *result_reader,
7097 const gdb_byte **result_info_ptr,
7098 struct die_info **result_comp_unit_die,
7099 int *result_has_children,
7100 abbrev_table_up *result_dwo_abbrev_table)
7101 {
7102 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7103 struct objfile *objfile = dwarf2_per_objfile->objfile;
7104 struct dwarf2_cu *cu = this_cu->cu;
7105 bfd *abfd;
7106 const gdb_byte *begin_info_ptr, *info_ptr;
7107 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7108 int i,num_extra_attrs;
7109 struct dwarf2_section_info *dwo_abbrev_section;
7110 struct attribute *attr;
7111 struct die_info *comp_unit_die;
7112
7113 /* At most one of these may be provided. */
7114 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7115
7116 /* These attributes aren't processed until later:
7117 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7118 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7119 referenced later. However, these attributes are found in the stub
7120 which we won't have later. In order to not impose this complication
7121 on the rest of the code, we read them here and copy them to the
7122 DWO CU/TU die. */
7123
7124 stmt_list = NULL;
7125 low_pc = NULL;
7126 high_pc = NULL;
7127 ranges = NULL;
7128 comp_dir = NULL;
7129
7130 if (stub_comp_unit_die != NULL)
7131 {
7132 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7133 DWO file. */
7134 if (! this_cu->is_debug_types)
7135 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7136 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7137 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7138 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7139 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7140
7141 /* There should be a DW_AT_addr_base attribute here (if needed).
7142 We need the value before we can process DW_FORM_GNU_addr_index. */
7143 cu->addr_base = 0;
7144 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7145 if (attr)
7146 cu->addr_base = DW_UNSND (attr);
7147
7148 /* There should be a DW_AT_ranges_base attribute here (if needed).
7149 We need the value before we can process DW_AT_ranges. */
7150 cu->ranges_base = 0;
7151 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7152 if (attr)
7153 cu->ranges_base = DW_UNSND (attr);
7154 }
7155 else if (stub_comp_dir != NULL)
7156 {
7157 /* Reconstruct the comp_dir attribute to simplify the code below. */
7158 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7159 comp_dir->name = DW_AT_comp_dir;
7160 comp_dir->form = DW_FORM_string;
7161 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7162 DW_STRING (comp_dir) = stub_comp_dir;
7163 }
7164
7165 /* Set up for reading the DWO CU/TU. */
7166 cu->dwo_unit = dwo_unit;
7167 dwarf2_section_info *section = dwo_unit->section;
7168 dwarf2_read_section (objfile, section);
7169 abfd = get_section_bfd_owner (section);
7170 begin_info_ptr = info_ptr = (section->buffer
7171 + to_underlying (dwo_unit->sect_off));
7172 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7173
7174 if (this_cu->is_debug_types)
7175 {
7176 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7177
7178 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7179 &cu->header, section,
7180 dwo_abbrev_section,
7181 info_ptr, rcuh_kind::TYPE);
7182 /* This is not an assert because it can be caused by bad debug info. */
7183 if (sig_type->signature != cu->header.signature)
7184 {
7185 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7186 " TU at offset %s [in module %s]"),
7187 hex_string (sig_type->signature),
7188 hex_string (cu->header.signature),
7189 sect_offset_str (dwo_unit->sect_off),
7190 bfd_get_filename (abfd));
7191 }
7192 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7193 /* For DWOs coming from DWP files, we don't know the CU length
7194 nor the type's offset in the TU until now. */
7195 dwo_unit->length = get_cu_length (&cu->header);
7196 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7197
7198 /* Establish the type offset that can be used to lookup the type.
7199 For DWO files, we don't know it until now. */
7200 sig_type->type_offset_in_section
7201 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7202 }
7203 else
7204 {
7205 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7206 &cu->header, section,
7207 dwo_abbrev_section,
7208 info_ptr, rcuh_kind::COMPILE);
7209 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7210 /* For DWOs coming from DWP files, we don't know the CU length
7211 until now. */
7212 dwo_unit->length = get_cu_length (&cu->header);
7213 }
7214
7215 *result_dwo_abbrev_table
7216 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7217 cu->header.abbrev_sect_off);
7218 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7219 result_dwo_abbrev_table->get ());
7220
7221 /* Read in the die, but leave space to copy over the attributes
7222 from the stub. This has the benefit of simplifying the rest of
7223 the code - all the work to maintain the illusion of a single
7224 DW_TAG_{compile,type}_unit DIE is done here. */
7225 num_extra_attrs = ((stmt_list != NULL)
7226 + (low_pc != NULL)
7227 + (high_pc != NULL)
7228 + (ranges != NULL)
7229 + (comp_dir != NULL));
7230 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7231 result_has_children, num_extra_attrs);
7232
7233 /* Copy over the attributes from the stub to the DIE we just read in. */
7234 comp_unit_die = *result_comp_unit_die;
7235 i = comp_unit_die->num_attrs;
7236 if (stmt_list != NULL)
7237 comp_unit_die->attrs[i++] = *stmt_list;
7238 if (low_pc != NULL)
7239 comp_unit_die->attrs[i++] = *low_pc;
7240 if (high_pc != NULL)
7241 comp_unit_die->attrs[i++] = *high_pc;
7242 if (ranges != NULL)
7243 comp_unit_die->attrs[i++] = *ranges;
7244 if (comp_dir != NULL)
7245 comp_unit_die->attrs[i++] = *comp_dir;
7246 comp_unit_die->num_attrs += num_extra_attrs;
7247
7248 if (dwarf_die_debug)
7249 {
7250 fprintf_unfiltered (gdb_stdlog,
7251 "Read die from %s@0x%x of %s:\n",
7252 get_section_name (section),
7253 (unsigned) (begin_info_ptr - section->buffer),
7254 bfd_get_filename (abfd));
7255 dump_die (comp_unit_die, dwarf_die_debug);
7256 }
7257
7258 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7259 TUs by skipping the stub and going directly to the entry in the DWO file.
7260 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7261 to get it via circuitous means. Blech. */
7262 if (comp_dir != NULL)
7263 result_reader->comp_dir = DW_STRING (comp_dir);
7264
7265 /* Skip dummy compilation units. */
7266 if (info_ptr >= begin_info_ptr + dwo_unit->length
7267 || peek_abbrev_code (abfd, info_ptr) == 0)
7268 return 0;
7269
7270 *result_info_ptr = info_ptr;
7271 return 1;
7272 }
7273
7274 /* Subroutine of init_cutu_and_read_dies to simplify it.
7275 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7276 Returns NULL if the specified DWO unit cannot be found. */
7277
7278 static struct dwo_unit *
7279 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7280 struct die_info *comp_unit_die)
7281 {
7282 struct dwarf2_cu *cu = this_cu->cu;
7283 ULONGEST signature;
7284 struct dwo_unit *dwo_unit;
7285 const char *comp_dir, *dwo_name;
7286
7287 gdb_assert (cu != NULL);
7288
7289 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7290 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7291 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7292
7293 if (this_cu->is_debug_types)
7294 {
7295 struct signatured_type *sig_type;
7296
7297 /* Since this_cu is the first member of struct signatured_type,
7298 we can go from a pointer to one to a pointer to the other. */
7299 sig_type = (struct signatured_type *) this_cu;
7300 signature = sig_type->signature;
7301 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7302 }
7303 else
7304 {
7305 struct attribute *attr;
7306
7307 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7308 if (! attr)
7309 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7310 " [in module %s]"),
7311 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7312 signature = DW_UNSND (attr);
7313 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7314 signature);
7315 }
7316
7317 return dwo_unit;
7318 }
7319
7320 /* Subroutine of init_cutu_and_read_dies to simplify it.
7321 See it for a description of the parameters.
7322 Read a TU directly from a DWO file, bypassing the stub. */
7323
7324 static void
7325 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7326 int use_existing_cu, int keep,
7327 die_reader_func_ftype *die_reader_func,
7328 void *data)
7329 {
7330 std::unique_ptr<dwarf2_cu> new_cu;
7331 struct signatured_type *sig_type;
7332 struct die_reader_specs reader;
7333 const gdb_byte *info_ptr;
7334 struct die_info *comp_unit_die;
7335 int has_children;
7336 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7337
7338 /* Verify we can do the following downcast, and that we have the
7339 data we need. */
7340 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7341 sig_type = (struct signatured_type *) this_cu;
7342 gdb_assert (sig_type->dwo_unit != NULL);
7343
7344 if (use_existing_cu && this_cu->cu != NULL)
7345 {
7346 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7347 /* There's no need to do the rereading_dwo_cu handling that
7348 init_cutu_and_read_dies does since we don't read the stub. */
7349 }
7350 else
7351 {
7352 /* If !use_existing_cu, this_cu->cu must be NULL. */
7353 gdb_assert (this_cu->cu == NULL);
7354 new_cu.reset (new dwarf2_cu (this_cu));
7355 }
7356
7357 /* A future optimization, if needed, would be to use an existing
7358 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7359 could share abbrev tables. */
7360
7361 /* The abbreviation table used by READER, this must live at least as long as
7362 READER. */
7363 abbrev_table_up dwo_abbrev_table;
7364
7365 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7366 NULL /* stub_comp_unit_die */,
7367 sig_type->dwo_unit->dwo_file->comp_dir,
7368 &reader, &info_ptr,
7369 &comp_unit_die, &has_children,
7370 &dwo_abbrev_table) == 0)
7371 {
7372 /* Dummy die. */
7373 return;
7374 }
7375
7376 /* All the "real" work is done here. */
7377 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7378
7379 /* This duplicates the code in init_cutu_and_read_dies,
7380 but the alternative is making the latter more complex.
7381 This function is only for the special case of using DWO files directly:
7382 no point in overly complicating the general case just to handle this. */
7383 if (new_cu != NULL && keep)
7384 {
7385 /* Link this CU into read_in_chain. */
7386 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7387 dwarf2_per_objfile->read_in_chain = this_cu;
7388 /* The chain owns it now. */
7389 new_cu.release ();
7390 }
7391 }
7392
7393 /* Initialize a CU (or TU) and read its DIEs.
7394 If the CU defers to a DWO file, read the DWO file as well.
7395
7396 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7397 Otherwise the table specified in the comp unit header is read in and used.
7398 This is an optimization for when we already have the abbrev table.
7399
7400 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7401 Otherwise, a new CU is allocated with xmalloc.
7402
7403 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7404 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7405
7406 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7407 linker) then DIE_READER_FUNC will not get called. */
7408
7409 static void
7410 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7411 struct abbrev_table *abbrev_table,
7412 int use_existing_cu, int keep,
7413 die_reader_func_ftype *die_reader_func,
7414 void *data)
7415 {
7416 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7417 struct objfile *objfile = dwarf2_per_objfile->objfile;
7418 struct dwarf2_section_info *section = this_cu->section;
7419 bfd *abfd = get_section_bfd_owner (section);
7420 struct dwarf2_cu *cu;
7421 const gdb_byte *begin_info_ptr, *info_ptr;
7422 struct die_reader_specs reader;
7423 struct die_info *comp_unit_die;
7424 int has_children;
7425 struct attribute *attr;
7426 struct signatured_type *sig_type = NULL;
7427 struct dwarf2_section_info *abbrev_section;
7428 /* Non-zero if CU currently points to a DWO file and we need to
7429 reread it. When this happens we need to reread the skeleton die
7430 before we can reread the DWO file (this only applies to CUs, not TUs). */
7431 int rereading_dwo_cu = 0;
7432
7433 if (dwarf_die_debug)
7434 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7435 this_cu->is_debug_types ? "type" : "comp",
7436 sect_offset_str (this_cu->sect_off));
7437
7438 if (use_existing_cu)
7439 gdb_assert (keep);
7440
7441 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7442 file (instead of going through the stub), short-circuit all of this. */
7443 if (this_cu->reading_dwo_directly)
7444 {
7445 /* Narrow down the scope of possibilities to have to understand. */
7446 gdb_assert (this_cu->is_debug_types);
7447 gdb_assert (abbrev_table == NULL);
7448 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7449 die_reader_func, data);
7450 return;
7451 }
7452
7453 /* This is cheap if the section is already read in. */
7454 dwarf2_read_section (objfile, section);
7455
7456 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7457
7458 abbrev_section = get_abbrev_section_for_cu (this_cu);
7459
7460 std::unique_ptr<dwarf2_cu> new_cu;
7461 if (use_existing_cu && this_cu->cu != NULL)
7462 {
7463 cu = this_cu->cu;
7464 /* If this CU is from a DWO file we need to start over, we need to
7465 refetch the attributes from the skeleton CU.
7466 This could be optimized by retrieving those attributes from when we
7467 were here the first time: the previous comp_unit_die was stored in
7468 comp_unit_obstack. But there's no data yet that we need this
7469 optimization. */
7470 if (cu->dwo_unit != NULL)
7471 rereading_dwo_cu = 1;
7472 }
7473 else
7474 {
7475 /* If !use_existing_cu, this_cu->cu must be NULL. */
7476 gdb_assert (this_cu->cu == NULL);
7477 new_cu.reset (new dwarf2_cu (this_cu));
7478 cu = new_cu.get ();
7479 }
7480
7481 /* Get the header. */
7482 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7483 {
7484 /* We already have the header, there's no need to read it in again. */
7485 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7486 }
7487 else
7488 {
7489 if (this_cu->is_debug_types)
7490 {
7491 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7492 &cu->header, section,
7493 abbrev_section, info_ptr,
7494 rcuh_kind::TYPE);
7495
7496 /* Since per_cu is the first member of struct signatured_type,
7497 we can go from a pointer to one to a pointer to the other. */
7498 sig_type = (struct signatured_type *) this_cu;
7499 gdb_assert (sig_type->signature == cu->header.signature);
7500 gdb_assert (sig_type->type_offset_in_tu
7501 == cu->header.type_cu_offset_in_tu);
7502 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7503
7504 /* LENGTH has not been set yet for type units if we're
7505 using .gdb_index. */
7506 this_cu->length = get_cu_length (&cu->header);
7507
7508 /* Establish the type offset that can be used to lookup the type. */
7509 sig_type->type_offset_in_section =
7510 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7511
7512 this_cu->dwarf_version = cu->header.version;
7513 }
7514 else
7515 {
7516 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7517 &cu->header, section,
7518 abbrev_section,
7519 info_ptr,
7520 rcuh_kind::COMPILE);
7521
7522 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7523 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7524 this_cu->dwarf_version = cu->header.version;
7525 }
7526 }
7527
7528 /* Skip dummy compilation units. */
7529 if (info_ptr >= begin_info_ptr + this_cu->length
7530 || peek_abbrev_code (abfd, info_ptr) == 0)
7531 return;
7532
7533 /* If we don't have them yet, read the abbrevs for this compilation unit.
7534 And if we need to read them now, make sure they're freed when we're
7535 done (own the table through ABBREV_TABLE_HOLDER). */
7536 abbrev_table_up abbrev_table_holder;
7537 if (abbrev_table != NULL)
7538 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7539 else
7540 {
7541 abbrev_table_holder
7542 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7543 cu->header.abbrev_sect_off);
7544 abbrev_table = abbrev_table_holder.get ();
7545 }
7546
7547 /* Read the top level CU/TU die. */
7548 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7549 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7550
7551 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7552 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7553 table from the DWO file and pass the ownership over to us. It will be
7554 referenced from READER, so we must make sure to free it after we're done
7555 with READER.
7556
7557 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7558 DWO CU, that this test will fail (the attribute will not be present). */
7559 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7560 abbrev_table_up dwo_abbrev_table;
7561 if (attr)
7562 {
7563 struct dwo_unit *dwo_unit;
7564 struct die_info *dwo_comp_unit_die;
7565
7566 if (has_children)
7567 {
7568 complaint (&symfile_complaints,
7569 _("compilation unit with DW_AT_GNU_dwo_name"
7570 " has children (offset %s) [in module %s]"),
7571 sect_offset_str (this_cu->sect_off),
7572 bfd_get_filename (abfd));
7573 }
7574 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7575 if (dwo_unit != NULL)
7576 {
7577 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7578 comp_unit_die, NULL,
7579 &reader, &info_ptr,
7580 &dwo_comp_unit_die, &has_children,
7581 &dwo_abbrev_table) == 0)
7582 {
7583 /* Dummy die. */
7584 return;
7585 }
7586 comp_unit_die = dwo_comp_unit_die;
7587 }
7588 else
7589 {
7590 /* Yikes, we couldn't find the rest of the DIE, we only have
7591 the stub. A complaint has already been logged. There's
7592 not much more we can do except pass on the stub DIE to
7593 die_reader_func. We don't want to throw an error on bad
7594 debug info. */
7595 }
7596 }
7597
7598 /* All of the above is setup for this call. Yikes. */
7599 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7600
7601 /* Done, clean up. */
7602 if (new_cu != NULL && keep)
7603 {
7604 /* Link this CU into read_in_chain. */
7605 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7606 dwarf2_per_objfile->read_in_chain = this_cu;
7607 /* The chain owns it now. */
7608 new_cu.release ();
7609 }
7610 }
7611
7612 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7613 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7614 to have already done the lookup to find the DWO file).
7615
7616 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7617 THIS_CU->is_debug_types, but nothing else.
7618
7619 We fill in THIS_CU->length.
7620
7621 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7622 linker) then DIE_READER_FUNC will not get called.
7623
7624 THIS_CU->cu is always freed when done.
7625 This is done in order to not leave THIS_CU->cu in a state where we have
7626 to care whether it refers to the "main" CU or the DWO CU. */
7627
7628 static void
7629 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7630 struct dwo_file *dwo_file,
7631 die_reader_func_ftype *die_reader_func,
7632 void *data)
7633 {
7634 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7635 struct objfile *objfile = dwarf2_per_objfile->objfile;
7636 struct dwarf2_section_info *section = this_cu->section;
7637 bfd *abfd = get_section_bfd_owner (section);
7638 struct dwarf2_section_info *abbrev_section;
7639 const gdb_byte *begin_info_ptr, *info_ptr;
7640 struct die_reader_specs reader;
7641 struct die_info *comp_unit_die;
7642 int has_children;
7643
7644 if (dwarf_die_debug)
7645 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7646 this_cu->is_debug_types ? "type" : "comp",
7647 sect_offset_str (this_cu->sect_off));
7648
7649 gdb_assert (this_cu->cu == NULL);
7650
7651 abbrev_section = (dwo_file != NULL
7652 ? &dwo_file->sections.abbrev
7653 : get_abbrev_section_for_cu (this_cu));
7654
7655 /* This is cheap if the section is already read in. */
7656 dwarf2_read_section (objfile, section);
7657
7658 struct dwarf2_cu cu (this_cu);
7659
7660 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7661 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7662 &cu.header, section,
7663 abbrev_section, info_ptr,
7664 (this_cu->is_debug_types
7665 ? rcuh_kind::TYPE
7666 : rcuh_kind::COMPILE));
7667
7668 this_cu->length = get_cu_length (&cu.header);
7669
7670 /* Skip dummy compilation units. */
7671 if (info_ptr >= begin_info_ptr + this_cu->length
7672 || peek_abbrev_code (abfd, info_ptr) == 0)
7673 return;
7674
7675 abbrev_table_up abbrev_table
7676 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7677 cu.header.abbrev_sect_off);
7678
7679 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7680 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7681
7682 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7683 }
7684
7685 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7686 does not lookup the specified DWO file.
7687 This cannot be used to read DWO files.
7688
7689 THIS_CU->cu is always freed when done.
7690 This is done in order to not leave THIS_CU->cu in a state where we have
7691 to care whether it refers to the "main" CU or the DWO CU.
7692 We can revisit this if the data shows there's a performance issue. */
7693
7694 static void
7695 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7696 die_reader_func_ftype *die_reader_func,
7697 void *data)
7698 {
7699 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7700 }
7701 \f
7702 /* Type Unit Groups.
7703
7704 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7705 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7706 so that all types coming from the same compilation (.o file) are grouped
7707 together. A future step could be to put the types in the same symtab as
7708 the CU the types ultimately came from. */
7709
7710 static hashval_t
7711 hash_type_unit_group (const void *item)
7712 {
7713 const struct type_unit_group *tu_group
7714 = (const struct type_unit_group *) item;
7715
7716 return hash_stmt_list_entry (&tu_group->hash);
7717 }
7718
7719 static int
7720 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7721 {
7722 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7723 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7724
7725 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7726 }
7727
7728 /* Allocate a hash table for type unit groups. */
7729
7730 static htab_t
7731 allocate_type_unit_groups_table (struct objfile *objfile)
7732 {
7733 return htab_create_alloc_ex (3,
7734 hash_type_unit_group,
7735 eq_type_unit_group,
7736 NULL,
7737 &objfile->objfile_obstack,
7738 hashtab_obstack_allocate,
7739 dummy_obstack_deallocate);
7740 }
7741
7742 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7743 partial symtabs. We combine several TUs per psymtab to not let the size
7744 of any one psymtab grow too big. */
7745 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7746 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7747
7748 /* Helper routine for get_type_unit_group.
7749 Create the type_unit_group object used to hold one or more TUs. */
7750
7751 static struct type_unit_group *
7752 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7753 {
7754 struct dwarf2_per_objfile *dwarf2_per_objfile
7755 = cu->per_cu->dwarf2_per_objfile;
7756 struct objfile *objfile = dwarf2_per_objfile->objfile;
7757 struct dwarf2_per_cu_data *per_cu;
7758 struct type_unit_group *tu_group;
7759
7760 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7761 struct type_unit_group);
7762 per_cu = &tu_group->per_cu;
7763 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7764
7765 if (dwarf2_per_objfile->using_index)
7766 {
7767 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7768 struct dwarf2_per_cu_quick_data);
7769 }
7770 else
7771 {
7772 unsigned int line_offset = to_underlying (line_offset_struct);
7773 struct partial_symtab *pst;
7774 char *name;
7775
7776 /* Give the symtab a useful name for debug purposes. */
7777 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7778 name = xstrprintf ("<type_units_%d>",
7779 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7780 else
7781 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
7782
7783 pst = create_partial_symtab (per_cu, name);
7784 pst->anonymous = 1;
7785
7786 xfree (name);
7787 }
7788
7789 tu_group->hash.dwo_unit = cu->dwo_unit;
7790 tu_group->hash.line_sect_off = line_offset_struct;
7791
7792 return tu_group;
7793 }
7794
7795 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7796 STMT_LIST is a DW_AT_stmt_list attribute. */
7797
7798 static struct type_unit_group *
7799 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7800 {
7801 struct dwarf2_per_objfile *dwarf2_per_objfile
7802 = cu->per_cu->dwarf2_per_objfile;
7803 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7804 struct type_unit_group *tu_group;
7805 void **slot;
7806 unsigned int line_offset;
7807 struct type_unit_group type_unit_group_for_lookup;
7808
7809 if (dwarf2_per_objfile->type_unit_groups == NULL)
7810 {
7811 dwarf2_per_objfile->type_unit_groups =
7812 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7813 }
7814
7815 /* Do we need to create a new group, or can we use an existing one? */
7816
7817 if (stmt_list)
7818 {
7819 line_offset = DW_UNSND (stmt_list);
7820 ++tu_stats->nr_symtab_sharers;
7821 }
7822 else
7823 {
7824 /* Ugh, no stmt_list. Rare, but we have to handle it.
7825 We can do various things here like create one group per TU or
7826 spread them over multiple groups to split up the expansion work.
7827 To avoid worst case scenarios (too many groups or too large groups)
7828 we, umm, group them in bunches. */
7829 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7830 | (tu_stats->nr_stmt_less_type_units
7831 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7832 ++tu_stats->nr_stmt_less_type_units;
7833 }
7834
7835 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7836 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7837 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7838 &type_unit_group_for_lookup, INSERT);
7839 if (*slot != NULL)
7840 {
7841 tu_group = (struct type_unit_group *) *slot;
7842 gdb_assert (tu_group != NULL);
7843 }
7844 else
7845 {
7846 sect_offset line_offset_struct = (sect_offset) line_offset;
7847 tu_group = create_type_unit_group (cu, line_offset_struct);
7848 *slot = tu_group;
7849 ++tu_stats->nr_symtabs;
7850 }
7851
7852 return tu_group;
7853 }
7854 \f
7855 /* Partial symbol tables. */
7856
7857 /* Create a psymtab named NAME and assign it to PER_CU.
7858
7859 The caller must fill in the following details:
7860 dirname, textlow, texthigh. */
7861
7862 static struct partial_symtab *
7863 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7864 {
7865 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7866 struct partial_symtab *pst;
7867
7868 pst = start_psymtab_common (objfile, name, 0,
7869 objfile->global_psymbols,
7870 objfile->static_psymbols);
7871
7872 pst->psymtabs_addrmap_supported = 1;
7873
7874 /* This is the glue that links PST into GDB's symbol API. */
7875 pst->read_symtab_private = per_cu;
7876 pst->read_symtab = dwarf2_read_symtab;
7877 per_cu->v.psymtab = pst;
7878
7879 return pst;
7880 }
7881
7882 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7883 type. */
7884
7885 struct process_psymtab_comp_unit_data
7886 {
7887 /* True if we are reading a DW_TAG_partial_unit. */
7888
7889 int want_partial_unit;
7890
7891 /* The "pretend" language that is used if the CU doesn't declare a
7892 language. */
7893
7894 enum language pretend_language;
7895 };
7896
7897 /* die_reader_func for process_psymtab_comp_unit. */
7898
7899 static void
7900 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7901 const gdb_byte *info_ptr,
7902 struct die_info *comp_unit_die,
7903 int has_children,
7904 void *data)
7905 {
7906 struct dwarf2_cu *cu = reader->cu;
7907 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7908 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7909 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7910 CORE_ADDR baseaddr;
7911 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7912 struct partial_symtab *pst;
7913 enum pc_bounds_kind cu_bounds_kind;
7914 const char *filename;
7915 struct process_psymtab_comp_unit_data *info
7916 = (struct process_psymtab_comp_unit_data *) data;
7917
7918 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
7919 return;
7920
7921 gdb_assert (! per_cu->is_debug_types);
7922
7923 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
7924
7925 cu->list_in_scope = &file_symbols;
7926
7927 /* Allocate a new partial symbol table structure. */
7928 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7929 if (filename == NULL)
7930 filename = "";
7931
7932 pst = create_partial_symtab (per_cu, filename);
7933
7934 /* This must be done before calling dwarf2_build_include_psymtabs. */
7935 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7936
7937 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7938
7939 dwarf2_find_base_address (comp_unit_die, cu);
7940
7941 /* Possibly set the default values of LOWPC and HIGHPC from
7942 `DW_AT_ranges'. */
7943 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7944 &best_highpc, cu, pst);
7945 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7946 /* Store the contiguous range if it is not empty; it can be empty for
7947 CUs with no code. */
7948 addrmap_set_empty (objfile->psymtabs_addrmap,
7949 gdbarch_adjust_dwarf2_addr (gdbarch,
7950 best_lowpc + baseaddr),
7951 gdbarch_adjust_dwarf2_addr (gdbarch,
7952 best_highpc + baseaddr) - 1,
7953 pst);
7954
7955 /* Check if comp unit has_children.
7956 If so, read the rest of the partial symbols from this comp unit.
7957 If not, there's no more debug_info for this comp unit. */
7958 if (has_children)
7959 {
7960 struct partial_die_info *first_die;
7961 CORE_ADDR lowpc, highpc;
7962
7963 lowpc = ((CORE_ADDR) -1);
7964 highpc = ((CORE_ADDR) 0);
7965
7966 first_die = load_partial_dies (reader, info_ptr, 1);
7967
7968 scan_partial_symbols (first_die, &lowpc, &highpc,
7969 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
7970
7971 /* If we didn't find a lowpc, set it to highpc to avoid
7972 complaints from `maint check'. */
7973 if (lowpc == ((CORE_ADDR) -1))
7974 lowpc = highpc;
7975
7976 /* If the compilation unit didn't have an explicit address range,
7977 then use the information extracted from its child dies. */
7978 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
7979 {
7980 best_lowpc = lowpc;
7981 best_highpc = highpc;
7982 }
7983 }
7984 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
7985 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
7986
7987 end_psymtab_common (objfile, pst);
7988
7989 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
7990 {
7991 int i;
7992 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
7993 struct dwarf2_per_cu_data *iter;
7994
7995 /* Fill in 'dependencies' here; we fill in 'users' in a
7996 post-pass. */
7997 pst->number_of_dependencies = len;
7998 pst->dependencies =
7999 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8000 for (i = 0;
8001 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8002 i, iter);
8003 ++i)
8004 pst->dependencies[i] = iter->v.psymtab;
8005
8006 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8007 }
8008
8009 /* Get the list of files included in the current compilation unit,
8010 and build a psymtab for each of them. */
8011 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8012
8013 if (dwarf_read_debug)
8014 {
8015 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8016
8017 fprintf_unfiltered (gdb_stdlog,
8018 "Psymtab for %s unit @%s: %s - %s"
8019 ", %d global, %d static syms\n",
8020 per_cu->is_debug_types ? "type" : "comp",
8021 sect_offset_str (per_cu->sect_off),
8022 paddress (gdbarch, pst->textlow),
8023 paddress (gdbarch, pst->texthigh),
8024 pst->n_global_syms, pst->n_static_syms);
8025 }
8026 }
8027
8028 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8029 Process compilation unit THIS_CU for a psymtab. */
8030
8031 static void
8032 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8033 int want_partial_unit,
8034 enum language pretend_language)
8035 {
8036 /* If this compilation unit was already read in, free the
8037 cached copy in order to read it in again. This is
8038 necessary because we skipped some symbols when we first
8039 read in the compilation unit (see load_partial_dies).
8040 This problem could be avoided, but the benefit is unclear. */
8041 if (this_cu->cu != NULL)
8042 free_one_cached_comp_unit (this_cu);
8043
8044 if (this_cu->is_debug_types)
8045 init_cutu_and_read_dies (this_cu, NULL, 0, 0, build_type_psymtabs_reader,
8046 NULL);
8047 else
8048 {
8049 process_psymtab_comp_unit_data info;
8050 info.want_partial_unit = want_partial_unit;
8051 info.pretend_language = pretend_language;
8052 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
8053 process_psymtab_comp_unit_reader, &info);
8054 }
8055
8056 /* Age out any secondary CUs. */
8057 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8058 }
8059
8060 /* Reader function for build_type_psymtabs. */
8061
8062 static void
8063 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8064 const gdb_byte *info_ptr,
8065 struct die_info *type_unit_die,
8066 int has_children,
8067 void *data)
8068 {
8069 struct dwarf2_per_objfile *dwarf2_per_objfile
8070 = reader->cu->per_cu->dwarf2_per_objfile;
8071 struct objfile *objfile = dwarf2_per_objfile->objfile;
8072 struct dwarf2_cu *cu = reader->cu;
8073 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8074 struct signatured_type *sig_type;
8075 struct type_unit_group *tu_group;
8076 struct attribute *attr;
8077 struct partial_die_info *first_die;
8078 CORE_ADDR lowpc, highpc;
8079 struct partial_symtab *pst;
8080
8081 gdb_assert (data == NULL);
8082 gdb_assert (per_cu->is_debug_types);
8083 sig_type = (struct signatured_type *) per_cu;
8084
8085 if (! has_children)
8086 return;
8087
8088 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8089 tu_group = get_type_unit_group (cu, attr);
8090
8091 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8092
8093 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8094 cu->list_in_scope = &file_symbols;
8095 pst = create_partial_symtab (per_cu, "");
8096 pst->anonymous = 1;
8097
8098 first_die = load_partial_dies (reader, info_ptr, 1);
8099
8100 lowpc = (CORE_ADDR) -1;
8101 highpc = (CORE_ADDR) 0;
8102 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8103
8104 end_psymtab_common (objfile, pst);
8105 }
8106
8107 /* Struct used to sort TUs by their abbreviation table offset. */
8108
8109 struct tu_abbrev_offset
8110 {
8111 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8112 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8113 {}
8114
8115 signatured_type *sig_type;
8116 sect_offset abbrev_offset;
8117 };
8118
8119 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8120
8121 static bool
8122 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8123 const struct tu_abbrev_offset &b)
8124 {
8125 return a.abbrev_offset < b.abbrev_offset;
8126 }
8127
8128 /* Efficiently read all the type units.
8129 This does the bulk of the work for build_type_psymtabs.
8130
8131 The efficiency is because we sort TUs by the abbrev table they use and
8132 only read each abbrev table once. In one program there are 200K TUs
8133 sharing 8K abbrev tables.
8134
8135 The main purpose of this function is to support building the
8136 dwarf2_per_objfile->type_unit_groups table.
8137 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8138 can collapse the search space by grouping them by stmt_list.
8139 The savings can be significant, in the same program from above the 200K TUs
8140 share 8K stmt_list tables.
8141
8142 FUNC is expected to call get_type_unit_group, which will create the
8143 struct type_unit_group if necessary and add it to
8144 dwarf2_per_objfile->type_unit_groups. */
8145
8146 static void
8147 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8148 {
8149 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8150 abbrev_table_up abbrev_table;
8151 sect_offset abbrev_offset;
8152
8153 /* It's up to the caller to not call us multiple times. */
8154 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8155
8156 if (dwarf2_per_objfile->all_type_units.empty ())
8157 return;
8158
8159 /* TUs typically share abbrev tables, and there can be way more TUs than
8160 abbrev tables. Sort by abbrev table to reduce the number of times we
8161 read each abbrev table in.
8162 Alternatives are to punt or to maintain a cache of abbrev tables.
8163 This is simpler and efficient enough for now.
8164
8165 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8166 symtab to use). Typically TUs with the same abbrev offset have the same
8167 stmt_list value too so in practice this should work well.
8168
8169 The basic algorithm here is:
8170
8171 sort TUs by abbrev table
8172 for each TU with same abbrev table:
8173 read abbrev table if first user
8174 read TU top level DIE
8175 [IWBN if DWO skeletons had DW_AT_stmt_list]
8176 call FUNC */
8177
8178 if (dwarf_read_debug)
8179 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8180
8181 /* Sort in a separate table to maintain the order of all_type_units
8182 for .gdb_index: TU indices directly index all_type_units. */
8183 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8184 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8185
8186 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8187 sorted_by_abbrev.emplace_back
8188 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8189 sig_type->per_cu.section,
8190 sig_type->per_cu.sect_off));
8191
8192 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8193 sort_tu_by_abbrev_offset);
8194
8195 abbrev_offset = (sect_offset) ~(unsigned) 0;
8196
8197 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8198 {
8199 /* Switch to the next abbrev table if necessary. */
8200 if (abbrev_table == NULL
8201 || tu.abbrev_offset != abbrev_offset)
8202 {
8203 abbrev_offset = tu.abbrev_offset;
8204 abbrev_table =
8205 abbrev_table_read_table (dwarf2_per_objfile,
8206 &dwarf2_per_objfile->abbrev,
8207 abbrev_offset);
8208 ++tu_stats->nr_uniq_abbrev_tables;
8209 }
8210
8211 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8212 0, 0, build_type_psymtabs_reader, NULL);
8213 }
8214 }
8215
8216 /* Print collected type unit statistics. */
8217
8218 static void
8219 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8220 {
8221 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8222
8223 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8224 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8225 dwarf2_per_objfile->all_type_units.size ());
8226 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8227 tu_stats->nr_uniq_abbrev_tables);
8228 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8229 tu_stats->nr_symtabs);
8230 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8231 tu_stats->nr_symtab_sharers);
8232 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8233 tu_stats->nr_stmt_less_type_units);
8234 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8235 tu_stats->nr_all_type_units_reallocs);
8236 }
8237
8238 /* Traversal function for build_type_psymtabs. */
8239
8240 static int
8241 build_type_psymtab_dependencies (void **slot, void *info)
8242 {
8243 struct dwarf2_per_objfile *dwarf2_per_objfile
8244 = (struct dwarf2_per_objfile *) info;
8245 struct objfile *objfile = dwarf2_per_objfile->objfile;
8246 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8247 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8248 struct partial_symtab *pst = per_cu->v.psymtab;
8249 int len = VEC_length (sig_type_ptr, tu_group->tus);
8250 struct signatured_type *iter;
8251 int i;
8252
8253 gdb_assert (len > 0);
8254 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8255
8256 pst->number_of_dependencies = len;
8257 pst->dependencies =
8258 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8259 for (i = 0;
8260 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8261 ++i)
8262 {
8263 gdb_assert (iter->per_cu.is_debug_types);
8264 pst->dependencies[i] = iter->per_cu.v.psymtab;
8265 iter->type_unit_group = tu_group;
8266 }
8267
8268 VEC_free (sig_type_ptr, tu_group->tus);
8269
8270 return 1;
8271 }
8272
8273 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8274 Build partial symbol tables for the .debug_types comp-units. */
8275
8276 static void
8277 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8278 {
8279 if (! create_all_type_units (dwarf2_per_objfile))
8280 return;
8281
8282 build_type_psymtabs_1 (dwarf2_per_objfile);
8283 }
8284
8285 /* Traversal function for process_skeletonless_type_unit.
8286 Read a TU in a DWO file and build partial symbols for it. */
8287
8288 static int
8289 process_skeletonless_type_unit (void **slot, void *info)
8290 {
8291 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8292 struct dwarf2_per_objfile *dwarf2_per_objfile
8293 = (struct dwarf2_per_objfile *) info;
8294 struct signatured_type find_entry, *entry;
8295
8296 /* If this TU doesn't exist in the global table, add it and read it in. */
8297
8298 if (dwarf2_per_objfile->signatured_types == NULL)
8299 {
8300 dwarf2_per_objfile->signatured_types
8301 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8302 }
8303
8304 find_entry.signature = dwo_unit->signature;
8305 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8306 INSERT);
8307 /* If we've already seen this type there's nothing to do. What's happening
8308 is we're doing our own version of comdat-folding here. */
8309 if (*slot != NULL)
8310 return 1;
8311
8312 /* This does the job that create_all_type_units would have done for
8313 this TU. */
8314 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8315 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8316 *slot = entry;
8317
8318 /* This does the job that build_type_psymtabs_1 would have done. */
8319 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
8320 build_type_psymtabs_reader, NULL);
8321
8322 return 1;
8323 }
8324
8325 /* Traversal function for process_skeletonless_type_units. */
8326
8327 static int
8328 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8329 {
8330 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8331
8332 if (dwo_file->tus != NULL)
8333 {
8334 htab_traverse_noresize (dwo_file->tus,
8335 process_skeletonless_type_unit, info);
8336 }
8337
8338 return 1;
8339 }
8340
8341 /* Scan all TUs of DWO files, verifying we've processed them.
8342 This is needed in case a TU was emitted without its skeleton.
8343 Note: This can't be done until we know what all the DWO files are. */
8344
8345 static void
8346 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8347 {
8348 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8349 if (get_dwp_file (dwarf2_per_objfile) == NULL
8350 && dwarf2_per_objfile->dwo_files != NULL)
8351 {
8352 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8353 process_dwo_file_for_skeletonless_type_units,
8354 dwarf2_per_objfile);
8355 }
8356 }
8357
8358 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8359
8360 static void
8361 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8362 {
8363 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8364 {
8365 struct partial_symtab *pst = per_cu->v.psymtab;
8366
8367 if (pst == NULL)
8368 continue;
8369
8370 for (int j = 0; j < pst->number_of_dependencies; ++j)
8371 {
8372 /* Set the 'user' field only if it is not already set. */
8373 if (pst->dependencies[j]->user == NULL)
8374 pst->dependencies[j]->user = pst;
8375 }
8376 }
8377 }
8378
8379 /* Build the partial symbol table by doing a quick pass through the
8380 .debug_info and .debug_abbrev sections. */
8381
8382 static void
8383 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8384 {
8385 struct objfile *objfile = dwarf2_per_objfile->objfile;
8386
8387 if (dwarf_read_debug)
8388 {
8389 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8390 objfile_name (objfile));
8391 }
8392
8393 dwarf2_per_objfile->reading_partial_symbols = 1;
8394
8395 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8396
8397 /* Any cached compilation units will be linked by the per-objfile
8398 read_in_chain. Make sure to free them when we're done. */
8399 free_cached_comp_units freer (dwarf2_per_objfile);
8400
8401 build_type_psymtabs (dwarf2_per_objfile);
8402
8403 create_all_comp_units (dwarf2_per_objfile);
8404
8405 /* Create a temporary address map on a temporary obstack. We later
8406 copy this to the final obstack. */
8407 auto_obstack temp_obstack;
8408
8409 scoped_restore save_psymtabs_addrmap
8410 = make_scoped_restore (&objfile->psymtabs_addrmap,
8411 addrmap_create_mutable (&temp_obstack));
8412
8413 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8414 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8415
8416 /* This has to wait until we read the CUs, we need the list of DWOs. */
8417 process_skeletonless_type_units (dwarf2_per_objfile);
8418
8419 /* Now that all TUs have been processed we can fill in the dependencies. */
8420 if (dwarf2_per_objfile->type_unit_groups != NULL)
8421 {
8422 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8423 build_type_psymtab_dependencies, dwarf2_per_objfile);
8424 }
8425
8426 if (dwarf_read_debug)
8427 print_tu_stats (dwarf2_per_objfile);
8428
8429 set_partial_user (dwarf2_per_objfile);
8430
8431 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
8432 &objfile->objfile_obstack);
8433 /* At this point we want to keep the address map. */
8434 save_psymtabs_addrmap.release ();
8435
8436 if (dwarf_read_debug)
8437 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8438 objfile_name (objfile));
8439 }
8440
8441 /* die_reader_func for load_partial_comp_unit. */
8442
8443 static void
8444 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8445 const gdb_byte *info_ptr,
8446 struct die_info *comp_unit_die,
8447 int has_children,
8448 void *data)
8449 {
8450 struct dwarf2_cu *cu = reader->cu;
8451
8452 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8453
8454 /* Check if comp unit has_children.
8455 If so, read the rest of the partial symbols from this comp unit.
8456 If not, there's no more debug_info for this comp unit. */
8457 if (has_children)
8458 load_partial_dies (reader, info_ptr, 0);
8459 }
8460
8461 /* Load the partial DIEs for a secondary CU into memory.
8462 This is also used when rereading a primary CU with load_all_dies. */
8463
8464 static void
8465 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8466 {
8467 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
8468 load_partial_comp_unit_reader, NULL);
8469 }
8470
8471 static void
8472 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8473 struct dwarf2_section_info *section,
8474 struct dwarf2_section_info *abbrev_section,
8475 unsigned int is_dwz)
8476 {
8477 const gdb_byte *info_ptr;
8478 struct objfile *objfile = dwarf2_per_objfile->objfile;
8479
8480 if (dwarf_read_debug)
8481 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8482 get_section_name (section),
8483 get_section_file_name (section));
8484
8485 dwarf2_read_section (objfile, section);
8486
8487 info_ptr = section->buffer;
8488
8489 while (info_ptr < section->buffer + section->size)
8490 {
8491 struct dwarf2_per_cu_data *this_cu;
8492
8493 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8494
8495 comp_unit_head cu_header;
8496 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8497 abbrev_section, info_ptr,
8498 rcuh_kind::COMPILE);
8499
8500 /* Save the compilation unit for later lookup. */
8501 if (cu_header.unit_type != DW_UT_type)
8502 {
8503 this_cu = XOBNEW (&objfile->objfile_obstack,
8504 struct dwarf2_per_cu_data);
8505 memset (this_cu, 0, sizeof (*this_cu));
8506 }
8507 else
8508 {
8509 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8510 struct signatured_type);
8511 memset (sig_type, 0, sizeof (*sig_type));
8512 sig_type->signature = cu_header.signature;
8513 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8514 this_cu = &sig_type->per_cu;
8515 }
8516 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8517 this_cu->sect_off = sect_off;
8518 this_cu->length = cu_header.length + cu_header.initial_length_size;
8519 this_cu->is_dwz = is_dwz;
8520 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8521 this_cu->section = section;
8522
8523 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8524
8525 info_ptr = info_ptr + this_cu->length;
8526 }
8527 }
8528
8529 /* Create a list of all compilation units in OBJFILE.
8530 This is only done for -readnow and building partial symtabs. */
8531
8532 static void
8533 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8534 {
8535 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8536 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8537 &dwarf2_per_objfile->abbrev, 0);
8538
8539 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8540 if (dwz != NULL)
8541 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8542 1);
8543 }
8544
8545 /* Process all loaded DIEs for compilation unit CU, starting at
8546 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8547 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8548 DW_AT_ranges). See the comments of add_partial_subprogram on how
8549 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8550
8551 static void
8552 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8553 CORE_ADDR *highpc, int set_addrmap,
8554 struct dwarf2_cu *cu)
8555 {
8556 struct partial_die_info *pdi;
8557
8558 /* Now, march along the PDI's, descending into ones which have
8559 interesting children but skipping the children of the other ones,
8560 until we reach the end of the compilation unit. */
8561
8562 pdi = first_die;
8563
8564 while (pdi != NULL)
8565 {
8566 pdi->fixup (cu);
8567
8568 /* Anonymous namespaces or modules have no name but have interesting
8569 children, so we need to look at them. Ditto for anonymous
8570 enums. */
8571
8572 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8573 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8574 || pdi->tag == DW_TAG_imported_unit
8575 || pdi->tag == DW_TAG_inlined_subroutine)
8576 {
8577 switch (pdi->tag)
8578 {
8579 case DW_TAG_subprogram:
8580 case DW_TAG_inlined_subroutine:
8581 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8582 break;
8583 case DW_TAG_constant:
8584 case DW_TAG_variable:
8585 case DW_TAG_typedef:
8586 case DW_TAG_union_type:
8587 if (!pdi->is_declaration)
8588 {
8589 add_partial_symbol (pdi, cu);
8590 }
8591 break;
8592 case DW_TAG_class_type:
8593 case DW_TAG_interface_type:
8594 case DW_TAG_structure_type:
8595 if (!pdi->is_declaration)
8596 {
8597 add_partial_symbol (pdi, cu);
8598 }
8599 if ((cu->language == language_rust
8600 || cu->language == language_cplus) && pdi->has_children)
8601 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8602 set_addrmap, cu);
8603 break;
8604 case DW_TAG_enumeration_type:
8605 if (!pdi->is_declaration)
8606 add_partial_enumeration (pdi, cu);
8607 break;
8608 case DW_TAG_base_type:
8609 case DW_TAG_subrange_type:
8610 /* File scope base type definitions are added to the partial
8611 symbol table. */
8612 add_partial_symbol (pdi, cu);
8613 break;
8614 case DW_TAG_namespace:
8615 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8616 break;
8617 case DW_TAG_module:
8618 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8619 break;
8620 case DW_TAG_imported_unit:
8621 {
8622 struct dwarf2_per_cu_data *per_cu;
8623
8624 /* For now we don't handle imported units in type units. */
8625 if (cu->per_cu->is_debug_types)
8626 {
8627 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8628 " supported in type units [in module %s]"),
8629 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8630 }
8631
8632 per_cu = dwarf2_find_containing_comp_unit
8633 (pdi->d.sect_off, pdi->is_dwz,
8634 cu->per_cu->dwarf2_per_objfile);
8635
8636 /* Go read the partial unit, if needed. */
8637 if (per_cu->v.psymtab == NULL)
8638 process_psymtab_comp_unit (per_cu, 1, cu->language);
8639
8640 VEC_safe_push (dwarf2_per_cu_ptr,
8641 cu->per_cu->imported_symtabs, per_cu);
8642 }
8643 break;
8644 case DW_TAG_imported_declaration:
8645 add_partial_symbol (pdi, cu);
8646 break;
8647 default:
8648 break;
8649 }
8650 }
8651
8652 /* If the die has a sibling, skip to the sibling. */
8653
8654 pdi = pdi->die_sibling;
8655 }
8656 }
8657
8658 /* Functions used to compute the fully scoped name of a partial DIE.
8659
8660 Normally, this is simple. For C++, the parent DIE's fully scoped
8661 name is concatenated with "::" and the partial DIE's name.
8662 Enumerators are an exception; they use the scope of their parent
8663 enumeration type, i.e. the name of the enumeration type is not
8664 prepended to the enumerator.
8665
8666 There are two complexities. One is DW_AT_specification; in this
8667 case "parent" means the parent of the target of the specification,
8668 instead of the direct parent of the DIE. The other is compilers
8669 which do not emit DW_TAG_namespace; in this case we try to guess
8670 the fully qualified name of structure types from their members'
8671 linkage names. This must be done using the DIE's children rather
8672 than the children of any DW_AT_specification target. We only need
8673 to do this for structures at the top level, i.e. if the target of
8674 any DW_AT_specification (if any; otherwise the DIE itself) does not
8675 have a parent. */
8676
8677 /* Compute the scope prefix associated with PDI's parent, in
8678 compilation unit CU. The result will be allocated on CU's
8679 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8680 field. NULL is returned if no prefix is necessary. */
8681 static const char *
8682 partial_die_parent_scope (struct partial_die_info *pdi,
8683 struct dwarf2_cu *cu)
8684 {
8685 const char *grandparent_scope;
8686 struct partial_die_info *parent, *real_pdi;
8687
8688 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8689 then this means the parent of the specification DIE. */
8690
8691 real_pdi = pdi;
8692 while (real_pdi->has_specification)
8693 real_pdi = find_partial_die (real_pdi->spec_offset,
8694 real_pdi->spec_is_dwz, cu);
8695
8696 parent = real_pdi->die_parent;
8697 if (parent == NULL)
8698 return NULL;
8699
8700 if (parent->scope_set)
8701 return parent->scope;
8702
8703 parent->fixup (cu);
8704
8705 grandparent_scope = partial_die_parent_scope (parent, cu);
8706
8707 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8708 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8709 Work around this problem here. */
8710 if (cu->language == language_cplus
8711 && parent->tag == DW_TAG_namespace
8712 && strcmp (parent->name, "::") == 0
8713 && grandparent_scope == NULL)
8714 {
8715 parent->scope = NULL;
8716 parent->scope_set = 1;
8717 return NULL;
8718 }
8719
8720 if (pdi->tag == DW_TAG_enumerator)
8721 /* Enumerators should not get the name of the enumeration as a prefix. */
8722 parent->scope = grandparent_scope;
8723 else if (parent->tag == DW_TAG_namespace
8724 || parent->tag == DW_TAG_module
8725 || parent->tag == DW_TAG_structure_type
8726 || parent->tag == DW_TAG_class_type
8727 || parent->tag == DW_TAG_interface_type
8728 || parent->tag == DW_TAG_union_type
8729 || parent->tag == DW_TAG_enumeration_type)
8730 {
8731 if (grandparent_scope == NULL)
8732 parent->scope = parent->name;
8733 else
8734 parent->scope = typename_concat (&cu->comp_unit_obstack,
8735 grandparent_scope,
8736 parent->name, 0, cu);
8737 }
8738 else
8739 {
8740 /* FIXME drow/2004-04-01: What should we be doing with
8741 function-local names? For partial symbols, we should probably be
8742 ignoring them. */
8743 complaint (&symfile_complaints,
8744 _("unhandled containing DIE tag %d for DIE at %s"),
8745 parent->tag, sect_offset_str (pdi->sect_off));
8746 parent->scope = grandparent_scope;
8747 }
8748
8749 parent->scope_set = 1;
8750 return parent->scope;
8751 }
8752
8753 /* Return the fully scoped name associated with PDI, from compilation unit
8754 CU. The result will be allocated with malloc. */
8755
8756 static char *
8757 partial_die_full_name (struct partial_die_info *pdi,
8758 struct dwarf2_cu *cu)
8759 {
8760 const char *parent_scope;
8761
8762 /* If this is a template instantiation, we can not work out the
8763 template arguments from partial DIEs. So, unfortunately, we have
8764 to go through the full DIEs. At least any work we do building
8765 types here will be reused if full symbols are loaded later. */
8766 if (pdi->has_template_arguments)
8767 {
8768 pdi->fixup (cu);
8769
8770 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8771 {
8772 struct die_info *die;
8773 struct attribute attr;
8774 struct dwarf2_cu *ref_cu = cu;
8775
8776 /* DW_FORM_ref_addr is using section offset. */
8777 attr.name = (enum dwarf_attribute) 0;
8778 attr.form = DW_FORM_ref_addr;
8779 attr.u.unsnd = to_underlying (pdi->sect_off);
8780 die = follow_die_ref (NULL, &attr, &ref_cu);
8781
8782 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8783 }
8784 }
8785
8786 parent_scope = partial_die_parent_scope (pdi, cu);
8787 if (parent_scope == NULL)
8788 return NULL;
8789 else
8790 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8791 }
8792
8793 static void
8794 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8795 {
8796 struct dwarf2_per_objfile *dwarf2_per_objfile
8797 = cu->per_cu->dwarf2_per_objfile;
8798 struct objfile *objfile = dwarf2_per_objfile->objfile;
8799 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8800 CORE_ADDR addr = 0;
8801 const char *actual_name = NULL;
8802 CORE_ADDR baseaddr;
8803 char *built_actual_name;
8804
8805 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8806
8807 built_actual_name = partial_die_full_name (pdi, cu);
8808 if (built_actual_name != NULL)
8809 actual_name = built_actual_name;
8810
8811 if (actual_name == NULL)
8812 actual_name = pdi->name;
8813
8814 switch (pdi->tag)
8815 {
8816 case DW_TAG_inlined_subroutine:
8817 case DW_TAG_subprogram:
8818 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
8819 if (pdi->is_external || cu->language == language_ada)
8820 {
8821 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8822 of the global scope. But in Ada, we want to be able to access
8823 nested procedures globally. So all Ada subprograms are stored
8824 in the global scope. */
8825 add_psymbol_to_list (actual_name, strlen (actual_name),
8826 built_actual_name != NULL,
8827 VAR_DOMAIN, LOC_BLOCK,
8828 &objfile->global_psymbols,
8829 addr, cu->language, objfile);
8830 }
8831 else
8832 {
8833 add_psymbol_to_list (actual_name, strlen (actual_name),
8834 built_actual_name != NULL,
8835 VAR_DOMAIN, LOC_BLOCK,
8836 &objfile->static_psymbols,
8837 addr, cu->language, objfile);
8838 }
8839
8840 if (pdi->main_subprogram && actual_name != NULL)
8841 set_objfile_main_name (objfile, actual_name, cu->language);
8842 break;
8843 case DW_TAG_constant:
8844 {
8845 std::vector<partial_symbol *> *list;
8846
8847 if (pdi->is_external)
8848 list = &objfile->global_psymbols;
8849 else
8850 list = &objfile->static_psymbols;
8851 add_psymbol_to_list (actual_name, strlen (actual_name),
8852 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8853 list, 0, cu->language, objfile);
8854 }
8855 break;
8856 case DW_TAG_variable:
8857 if (pdi->d.locdesc)
8858 addr = decode_locdesc (pdi->d.locdesc, cu);
8859
8860 if (pdi->d.locdesc
8861 && addr == 0
8862 && !dwarf2_per_objfile->has_section_at_zero)
8863 {
8864 /* A global or static variable may also have been stripped
8865 out by the linker if unused, in which case its address
8866 will be nullified; do not add such variables into partial
8867 symbol table then. */
8868 }
8869 else if (pdi->is_external)
8870 {
8871 /* Global Variable.
8872 Don't enter into the minimal symbol tables as there is
8873 a minimal symbol table entry from the ELF symbols already.
8874 Enter into partial symbol table if it has a location
8875 descriptor or a type.
8876 If the location descriptor is missing, new_symbol will create
8877 a LOC_UNRESOLVED symbol, the address of the variable will then
8878 be determined from the minimal symbol table whenever the variable
8879 is referenced.
8880 The address for the partial symbol table entry is not
8881 used by GDB, but it comes in handy for debugging partial symbol
8882 table building. */
8883
8884 if (pdi->d.locdesc || pdi->has_type)
8885 add_psymbol_to_list (actual_name, strlen (actual_name),
8886 built_actual_name != NULL,
8887 VAR_DOMAIN, LOC_STATIC,
8888 &objfile->global_psymbols,
8889 addr + baseaddr,
8890 cu->language, objfile);
8891 }
8892 else
8893 {
8894 int has_loc = pdi->d.locdesc != NULL;
8895
8896 /* Static Variable. Skip symbols whose value we cannot know (those
8897 without location descriptors or constant values). */
8898 if (!has_loc && !pdi->has_const_value)
8899 {
8900 xfree (built_actual_name);
8901 return;
8902 }
8903
8904 add_psymbol_to_list (actual_name, strlen (actual_name),
8905 built_actual_name != NULL,
8906 VAR_DOMAIN, LOC_STATIC,
8907 &objfile->static_psymbols,
8908 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
8909 cu->language, objfile);
8910 }
8911 break;
8912 case DW_TAG_typedef:
8913 case DW_TAG_base_type:
8914 case DW_TAG_subrange_type:
8915 add_psymbol_to_list (actual_name, strlen (actual_name),
8916 built_actual_name != NULL,
8917 VAR_DOMAIN, LOC_TYPEDEF,
8918 &objfile->static_psymbols,
8919 0, cu->language, objfile);
8920 break;
8921 case DW_TAG_imported_declaration:
8922 case DW_TAG_namespace:
8923 add_psymbol_to_list (actual_name, strlen (actual_name),
8924 built_actual_name != NULL,
8925 VAR_DOMAIN, LOC_TYPEDEF,
8926 &objfile->global_psymbols,
8927 0, cu->language, objfile);
8928 break;
8929 case DW_TAG_module:
8930 add_psymbol_to_list (actual_name, strlen (actual_name),
8931 built_actual_name != NULL,
8932 MODULE_DOMAIN, LOC_TYPEDEF,
8933 &objfile->global_psymbols,
8934 0, cu->language, objfile);
8935 break;
8936 case DW_TAG_class_type:
8937 case DW_TAG_interface_type:
8938 case DW_TAG_structure_type:
8939 case DW_TAG_union_type:
8940 case DW_TAG_enumeration_type:
8941 /* Skip external references. The DWARF standard says in the section
8942 about "Structure, Union, and Class Type Entries": "An incomplete
8943 structure, union or class type is represented by a structure,
8944 union or class entry that does not have a byte size attribute
8945 and that has a DW_AT_declaration attribute." */
8946 if (!pdi->has_byte_size && pdi->is_declaration)
8947 {
8948 xfree (built_actual_name);
8949 return;
8950 }
8951
8952 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8953 static vs. global. */
8954 add_psymbol_to_list (actual_name, strlen (actual_name),
8955 built_actual_name != NULL,
8956 STRUCT_DOMAIN, LOC_TYPEDEF,
8957 cu->language == language_cplus
8958 ? &objfile->global_psymbols
8959 : &objfile->static_psymbols,
8960 0, cu->language, objfile);
8961
8962 break;
8963 case DW_TAG_enumerator:
8964 add_psymbol_to_list (actual_name, strlen (actual_name),
8965 built_actual_name != NULL,
8966 VAR_DOMAIN, LOC_CONST,
8967 cu->language == language_cplus
8968 ? &objfile->global_psymbols
8969 : &objfile->static_psymbols,
8970 0, cu->language, objfile);
8971 break;
8972 default:
8973 break;
8974 }
8975
8976 xfree (built_actual_name);
8977 }
8978
8979 /* Read a partial die corresponding to a namespace; also, add a symbol
8980 corresponding to that namespace to the symbol table. NAMESPACE is
8981 the name of the enclosing namespace. */
8982
8983 static void
8984 add_partial_namespace (struct partial_die_info *pdi,
8985 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8986 int set_addrmap, struct dwarf2_cu *cu)
8987 {
8988 /* Add a symbol for the namespace. */
8989
8990 add_partial_symbol (pdi, cu);
8991
8992 /* Now scan partial symbols in that namespace. */
8993
8994 if (pdi->has_children)
8995 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8996 }
8997
8998 /* Read a partial die corresponding to a Fortran module. */
8999
9000 static void
9001 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9002 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9003 {
9004 /* Add a symbol for the namespace. */
9005
9006 add_partial_symbol (pdi, cu);
9007
9008 /* Now scan partial symbols in that module. */
9009
9010 if (pdi->has_children)
9011 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9012 }
9013
9014 /* Read a partial die corresponding to a subprogram or an inlined
9015 subprogram and create a partial symbol for that subprogram.
9016 When the CU language allows it, this routine also defines a partial
9017 symbol for each nested subprogram that this subprogram contains.
9018 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9019 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9020
9021 PDI may also be a lexical block, in which case we simply search
9022 recursively for subprograms defined inside that lexical block.
9023 Again, this is only performed when the CU language allows this
9024 type of definitions. */
9025
9026 static void
9027 add_partial_subprogram (struct partial_die_info *pdi,
9028 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9029 int set_addrmap, struct dwarf2_cu *cu)
9030 {
9031 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9032 {
9033 if (pdi->has_pc_info)
9034 {
9035 if (pdi->lowpc < *lowpc)
9036 *lowpc = pdi->lowpc;
9037 if (pdi->highpc > *highpc)
9038 *highpc = pdi->highpc;
9039 if (set_addrmap)
9040 {
9041 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9042 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9043 CORE_ADDR baseaddr;
9044 CORE_ADDR highpc;
9045 CORE_ADDR lowpc;
9046
9047 baseaddr = ANOFFSET (objfile->section_offsets,
9048 SECT_OFF_TEXT (objfile));
9049 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9050 pdi->lowpc + baseaddr);
9051 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9052 pdi->highpc + baseaddr);
9053 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9054 cu->per_cu->v.psymtab);
9055 }
9056 }
9057
9058 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9059 {
9060 if (!pdi->is_declaration)
9061 /* Ignore subprogram DIEs that do not have a name, they are
9062 illegal. Do not emit a complaint at this point, we will
9063 do so when we convert this psymtab into a symtab. */
9064 if (pdi->name)
9065 add_partial_symbol (pdi, cu);
9066 }
9067 }
9068
9069 if (! pdi->has_children)
9070 return;
9071
9072 if (cu->language == language_ada)
9073 {
9074 pdi = pdi->die_child;
9075 while (pdi != NULL)
9076 {
9077 pdi->fixup (cu);
9078 if (pdi->tag == DW_TAG_subprogram
9079 || pdi->tag == DW_TAG_inlined_subroutine
9080 || pdi->tag == DW_TAG_lexical_block)
9081 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9082 pdi = pdi->die_sibling;
9083 }
9084 }
9085 }
9086
9087 /* Read a partial die corresponding to an enumeration type. */
9088
9089 static void
9090 add_partial_enumeration (struct partial_die_info *enum_pdi,
9091 struct dwarf2_cu *cu)
9092 {
9093 struct partial_die_info *pdi;
9094
9095 if (enum_pdi->name != NULL)
9096 add_partial_symbol (enum_pdi, cu);
9097
9098 pdi = enum_pdi->die_child;
9099 while (pdi)
9100 {
9101 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9102 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
9103 else
9104 add_partial_symbol (pdi, cu);
9105 pdi = pdi->die_sibling;
9106 }
9107 }
9108
9109 /* Return the initial uleb128 in the die at INFO_PTR. */
9110
9111 static unsigned int
9112 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9113 {
9114 unsigned int bytes_read;
9115
9116 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9117 }
9118
9119 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9120 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9121
9122 Return the corresponding abbrev, or NULL if the number is zero (indicating
9123 an empty DIE). In either case *BYTES_READ will be set to the length of
9124 the initial number. */
9125
9126 static struct abbrev_info *
9127 peek_die_abbrev (const die_reader_specs &reader,
9128 const gdb_byte *info_ptr, unsigned int *bytes_read)
9129 {
9130 dwarf2_cu *cu = reader.cu;
9131 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9132 unsigned int abbrev_number
9133 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9134
9135 if (abbrev_number == 0)
9136 return NULL;
9137
9138 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9139 if (!abbrev)
9140 {
9141 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9142 " at offset %s [in module %s]"),
9143 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9144 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9145 }
9146
9147 return abbrev;
9148 }
9149
9150 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9151 Returns a pointer to the end of a series of DIEs, terminated by an empty
9152 DIE. Any children of the skipped DIEs will also be skipped. */
9153
9154 static const gdb_byte *
9155 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9156 {
9157 while (1)
9158 {
9159 unsigned int bytes_read;
9160 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9161
9162 if (abbrev == NULL)
9163 return info_ptr + bytes_read;
9164 else
9165 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9166 }
9167 }
9168
9169 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9170 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9171 abbrev corresponding to that skipped uleb128 should be passed in
9172 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9173 children. */
9174
9175 static const gdb_byte *
9176 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9177 struct abbrev_info *abbrev)
9178 {
9179 unsigned int bytes_read;
9180 struct attribute attr;
9181 bfd *abfd = reader->abfd;
9182 struct dwarf2_cu *cu = reader->cu;
9183 const gdb_byte *buffer = reader->buffer;
9184 const gdb_byte *buffer_end = reader->buffer_end;
9185 unsigned int form, i;
9186
9187 for (i = 0; i < abbrev->num_attrs; i++)
9188 {
9189 /* The only abbrev we care about is DW_AT_sibling. */
9190 if (abbrev->attrs[i].name == DW_AT_sibling)
9191 {
9192 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9193 if (attr.form == DW_FORM_ref_addr)
9194 complaint (&symfile_complaints,
9195 _("ignoring absolute DW_AT_sibling"));
9196 else
9197 {
9198 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9199 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9200
9201 if (sibling_ptr < info_ptr)
9202 complaint (&symfile_complaints,
9203 _("DW_AT_sibling points backwards"));
9204 else if (sibling_ptr > reader->buffer_end)
9205 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9206 else
9207 return sibling_ptr;
9208 }
9209 }
9210
9211 /* If it isn't DW_AT_sibling, skip this attribute. */
9212 form = abbrev->attrs[i].form;
9213 skip_attribute:
9214 switch (form)
9215 {
9216 case DW_FORM_ref_addr:
9217 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9218 and later it is offset sized. */
9219 if (cu->header.version == 2)
9220 info_ptr += cu->header.addr_size;
9221 else
9222 info_ptr += cu->header.offset_size;
9223 break;
9224 case DW_FORM_GNU_ref_alt:
9225 info_ptr += cu->header.offset_size;
9226 break;
9227 case DW_FORM_addr:
9228 info_ptr += cu->header.addr_size;
9229 break;
9230 case DW_FORM_data1:
9231 case DW_FORM_ref1:
9232 case DW_FORM_flag:
9233 info_ptr += 1;
9234 break;
9235 case DW_FORM_flag_present:
9236 case DW_FORM_implicit_const:
9237 break;
9238 case DW_FORM_data2:
9239 case DW_FORM_ref2:
9240 info_ptr += 2;
9241 break;
9242 case DW_FORM_data4:
9243 case DW_FORM_ref4:
9244 info_ptr += 4;
9245 break;
9246 case DW_FORM_data8:
9247 case DW_FORM_ref8:
9248 case DW_FORM_ref_sig8:
9249 info_ptr += 8;
9250 break;
9251 case DW_FORM_data16:
9252 info_ptr += 16;
9253 break;
9254 case DW_FORM_string:
9255 read_direct_string (abfd, info_ptr, &bytes_read);
9256 info_ptr += bytes_read;
9257 break;
9258 case DW_FORM_sec_offset:
9259 case DW_FORM_strp:
9260 case DW_FORM_GNU_strp_alt:
9261 info_ptr += cu->header.offset_size;
9262 break;
9263 case DW_FORM_exprloc:
9264 case DW_FORM_block:
9265 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9266 info_ptr += bytes_read;
9267 break;
9268 case DW_FORM_block1:
9269 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9270 break;
9271 case DW_FORM_block2:
9272 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9273 break;
9274 case DW_FORM_block4:
9275 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9276 break;
9277 case DW_FORM_sdata:
9278 case DW_FORM_udata:
9279 case DW_FORM_ref_udata:
9280 case DW_FORM_GNU_addr_index:
9281 case DW_FORM_GNU_str_index:
9282 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9283 break;
9284 case DW_FORM_indirect:
9285 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9286 info_ptr += bytes_read;
9287 /* We need to continue parsing from here, so just go back to
9288 the top. */
9289 goto skip_attribute;
9290
9291 default:
9292 error (_("Dwarf Error: Cannot handle %s "
9293 "in DWARF reader [in module %s]"),
9294 dwarf_form_name (form),
9295 bfd_get_filename (abfd));
9296 }
9297 }
9298
9299 if (abbrev->has_children)
9300 return skip_children (reader, info_ptr);
9301 else
9302 return info_ptr;
9303 }
9304
9305 /* Locate ORIG_PDI's sibling.
9306 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9307
9308 static const gdb_byte *
9309 locate_pdi_sibling (const struct die_reader_specs *reader,
9310 struct partial_die_info *orig_pdi,
9311 const gdb_byte *info_ptr)
9312 {
9313 /* Do we know the sibling already? */
9314
9315 if (orig_pdi->sibling)
9316 return orig_pdi->sibling;
9317
9318 /* Are there any children to deal with? */
9319
9320 if (!orig_pdi->has_children)
9321 return info_ptr;
9322
9323 /* Skip the children the long way. */
9324
9325 return skip_children (reader, info_ptr);
9326 }
9327
9328 /* Expand this partial symbol table into a full symbol table. SELF is
9329 not NULL. */
9330
9331 static void
9332 dwarf2_read_symtab (struct partial_symtab *self,
9333 struct objfile *objfile)
9334 {
9335 struct dwarf2_per_objfile *dwarf2_per_objfile
9336 = get_dwarf2_per_objfile (objfile);
9337
9338 if (self->readin)
9339 {
9340 warning (_("bug: psymtab for %s is already read in."),
9341 self->filename);
9342 }
9343 else
9344 {
9345 if (info_verbose)
9346 {
9347 printf_filtered (_("Reading in symbols for %s..."),
9348 self->filename);
9349 gdb_flush (gdb_stdout);
9350 }
9351
9352 /* If this psymtab is constructed from a debug-only objfile, the
9353 has_section_at_zero flag will not necessarily be correct. We
9354 can get the correct value for this flag by looking at the data
9355 associated with the (presumably stripped) associated objfile. */
9356 if (objfile->separate_debug_objfile_backlink)
9357 {
9358 struct dwarf2_per_objfile *dpo_backlink
9359 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9360
9361 dwarf2_per_objfile->has_section_at_zero
9362 = dpo_backlink->has_section_at_zero;
9363 }
9364
9365 dwarf2_per_objfile->reading_partial_symbols = 0;
9366
9367 psymtab_to_symtab_1 (self);
9368
9369 /* Finish up the debug error message. */
9370 if (info_verbose)
9371 printf_filtered (_("done.\n"));
9372 }
9373
9374 process_cu_includes (dwarf2_per_objfile);
9375 }
9376 \f
9377 /* Reading in full CUs. */
9378
9379 /* Add PER_CU to the queue. */
9380
9381 static void
9382 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9383 enum language pretend_language)
9384 {
9385 struct dwarf2_queue_item *item;
9386
9387 per_cu->queued = 1;
9388 item = XNEW (struct dwarf2_queue_item);
9389 item->per_cu = per_cu;
9390 item->pretend_language = pretend_language;
9391 item->next = NULL;
9392
9393 if (dwarf2_queue == NULL)
9394 dwarf2_queue = item;
9395 else
9396 dwarf2_queue_tail->next = item;
9397
9398 dwarf2_queue_tail = item;
9399 }
9400
9401 /* If PER_CU is not yet queued, add it to the queue.
9402 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9403 dependency.
9404 The result is non-zero if PER_CU was queued, otherwise the result is zero
9405 meaning either PER_CU is already queued or it is already loaded.
9406
9407 N.B. There is an invariant here that if a CU is queued then it is loaded.
9408 The caller is required to load PER_CU if we return non-zero. */
9409
9410 static int
9411 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9412 struct dwarf2_per_cu_data *per_cu,
9413 enum language pretend_language)
9414 {
9415 /* We may arrive here during partial symbol reading, if we need full
9416 DIEs to process an unusual case (e.g. template arguments). Do
9417 not queue PER_CU, just tell our caller to load its DIEs. */
9418 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9419 {
9420 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9421 return 1;
9422 return 0;
9423 }
9424
9425 /* Mark the dependence relation so that we don't flush PER_CU
9426 too early. */
9427 if (dependent_cu != NULL)
9428 dwarf2_add_dependence (dependent_cu, per_cu);
9429
9430 /* If it's already on the queue, we have nothing to do. */
9431 if (per_cu->queued)
9432 return 0;
9433
9434 /* If the compilation unit is already loaded, just mark it as
9435 used. */
9436 if (per_cu->cu != NULL)
9437 {
9438 per_cu->cu->last_used = 0;
9439 return 0;
9440 }
9441
9442 /* Add it to the queue. */
9443 queue_comp_unit (per_cu, pretend_language);
9444
9445 return 1;
9446 }
9447
9448 /* Process the queue. */
9449
9450 static void
9451 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9452 {
9453 struct dwarf2_queue_item *item, *next_item;
9454
9455 if (dwarf_read_debug)
9456 {
9457 fprintf_unfiltered (gdb_stdlog,
9458 "Expanding one or more symtabs of objfile %s ...\n",
9459 objfile_name (dwarf2_per_objfile->objfile));
9460 }
9461
9462 /* The queue starts out with one item, but following a DIE reference
9463 may load a new CU, adding it to the end of the queue. */
9464 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9465 {
9466 if ((dwarf2_per_objfile->using_index
9467 ? !item->per_cu->v.quick->compunit_symtab
9468 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9469 /* Skip dummy CUs. */
9470 && item->per_cu->cu != NULL)
9471 {
9472 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9473 unsigned int debug_print_threshold;
9474 char buf[100];
9475
9476 if (per_cu->is_debug_types)
9477 {
9478 struct signatured_type *sig_type =
9479 (struct signatured_type *) per_cu;
9480
9481 sprintf (buf, "TU %s at offset %s",
9482 hex_string (sig_type->signature),
9483 sect_offset_str (per_cu->sect_off));
9484 /* There can be 100s of TUs.
9485 Only print them in verbose mode. */
9486 debug_print_threshold = 2;
9487 }
9488 else
9489 {
9490 sprintf (buf, "CU at offset %s",
9491 sect_offset_str (per_cu->sect_off));
9492 debug_print_threshold = 1;
9493 }
9494
9495 if (dwarf_read_debug >= debug_print_threshold)
9496 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9497
9498 if (per_cu->is_debug_types)
9499 process_full_type_unit (per_cu, item->pretend_language);
9500 else
9501 process_full_comp_unit (per_cu, item->pretend_language);
9502
9503 if (dwarf_read_debug >= debug_print_threshold)
9504 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9505 }
9506
9507 item->per_cu->queued = 0;
9508 next_item = item->next;
9509 xfree (item);
9510 }
9511
9512 dwarf2_queue_tail = NULL;
9513
9514 if (dwarf_read_debug)
9515 {
9516 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9517 objfile_name (dwarf2_per_objfile->objfile));
9518 }
9519 }
9520
9521 /* Read in full symbols for PST, and anything it depends on. */
9522
9523 static void
9524 psymtab_to_symtab_1 (struct partial_symtab *pst)
9525 {
9526 struct dwarf2_per_cu_data *per_cu;
9527 int i;
9528
9529 if (pst->readin)
9530 return;
9531
9532 for (i = 0; i < pst->number_of_dependencies; i++)
9533 if (!pst->dependencies[i]->readin
9534 && pst->dependencies[i]->user == NULL)
9535 {
9536 /* Inform about additional files that need to be read in. */
9537 if (info_verbose)
9538 {
9539 /* FIXME: i18n: Need to make this a single string. */
9540 fputs_filtered (" ", gdb_stdout);
9541 wrap_here ("");
9542 fputs_filtered ("and ", gdb_stdout);
9543 wrap_here ("");
9544 printf_filtered ("%s...", pst->dependencies[i]->filename);
9545 wrap_here (""); /* Flush output. */
9546 gdb_flush (gdb_stdout);
9547 }
9548 psymtab_to_symtab_1 (pst->dependencies[i]);
9549 }
9550
9551 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9552
9553 if (per_cu == NULL)
9554 {
9555 /* It's an include file, no symbols to read for it.
9556 Everything is in the parent symtab. */
9557 pst->readin = 1;
9558 return;
9559 }
9560
9561 dw2_do_instantiate_symtab (per_cu);
9562 }
9563
9564 /* Trivial hash function for die_info: the hash value of a DIE
9565 is its offset in .debug_info for this objfile. */
9566
9567 static hashval_t
9568 die_hash (const void *item)
9569 {
9570 const struct die_info *die = (const struct die_info *) item;
9571
9572 return to_underlying (die->sect_off);
9573 }
9574
9575 /* Trivial comparison function for die_info structures: two DIEs
9576 are equal if they have the same offset. */
9577
9578 static int
9579 die_eq (const void *item_lhs, const void *item_rhs)
9580 {
9581 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9582 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9583
9584 return die_lhs->sect_off == die_rhs->sect_off;
9585 }
9586
9587 /* die_reader_func for load_full_comp_unit.
9588 This is identical to read_signatured_type_reader,
9589 but is kept separate for now. */
9590
9591 static void
9592 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9593 const gdb_byte *info_ptr,
9594 struct die_info *comp_unit_die,
9595 int has_children,
9596 void *data)
9597 {
9598 struct dwarf2_cu *cu = reader->cu;
9599 enum language *language_ptr = (enum language *) data;
9600
9601 gdb_assert (cu->die_hash == NULL);
9602 cu->die_hash =
9603 htab_create_alloc_ex (cu->header.length / 12,
9604 die_hash,
9605 die_eq,
9606 NULL,
9607 &cu->comp_unit_obstack,
9608 hashtab_obstack_allocate,
9609 dummy_obstack_deallocate);
9610
9611 if (has_children)
9612 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9613 &info_ptr, comp_unit_die);
9614 cu->dies = comp_unit_die;
9615 /* comp_unit_die is not stored in die_hash, no need. */
9616
9617 /* We try not to read any attributes in this function, because not
9618 all CUs needed for references have been loaded yet, and symbol
9619 table processing isn't initialized. But we have to set the CU language,
9620 or we won't be able to build types correctly.
9621 Similarly, if we do not read the producer, we can not apply
9622 producer-specific interpretation. */
9623 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9624 }
9625
9626 /* Load the DIEs associated with PER_CU into memory. */
9627
9628 static void
9629 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9630 enum language pretend_language)
9631 {
9632 gdb_assert (! this_cu->is_debug_types);
9633
9634 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
9635 load_full_comp_unit_reader, &pretend_language);
9636 }
9637
9638 /* Add a DIE to the delayed physname list. */
9639
9640 static void
9641 add_to_method_list (struct type *type, int fnfield_index, int index,
9642 const char *name, struct die_info *die,
9643 struct dwarf2_cu *cu)
9644 {
9645 struct delayed_method_info mi;
9646 mi.type = type;
9647 mi.fnfield_index = fnfield_index;
9648 mi.index = index;
9649 mi.name = name;
9650 mi.die = die;
9651 cu->method_list.push_back (mi);
9652 }
9653
9654 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9655 "const" / "volatile". If so, decrements LEN by the length of the
9656 modifier and return true. Otherwise return false. */
9657
9658 template<size_t N>
9659 static bool
9660 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9661 {
9662 size_t mod_len = sizeof (mod) - 1;
9663 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9664 {
9665 len -= mod_len;
9666 return true;
9667 }
9668 return false;
9669 }
9670
9671 /* Compute the physnames of any methods on the CU's method list.
9672
9673 The computation of method physnames is delayed in order to avoid the
9674 (bad) condition that one of the method's formal parameters is of an as yet
9675 incomplete type. */
9676
9677 static void
9678 compute_delayed_physnames (struct dwarf2_cu *cu)
9679 {
9680 /* Only C++ delays computing physnames. */
9681 if (cu->method_list.empty ())
9682 return;
9683 gdb_assert (cu->language == language_cplus);
9684
9685 for (struct delayed_method_info &mi : cu->method_list)
9686 {
9687 const char *physname;
9688 struct fn_fieldlist *fn_flp
9689 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9690 physname = dwarf2_physname (mi.name, mi.die, cu);
9691 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9692 = physname ? physname : "";
9693
9694 /* Since there's no tag to indicate whether a method is a
9695 const/volatile overload, extract that information out of the
9696 demangled name. */
9697 if (physname != NULL)
9698 {
9699 size_t len = strlen (physname);
9700
9701 while (1)
9702 {
9703 if (physname[len] == ')') /* shortcut */
9704 break;
9705 else if (check_modifier (physname, len, " const"))
9706 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9707 else if (check_modifier (physname, len, " volatile"))
9708 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9709 else
9710 break;
9711 }
9712 }
9713 }
9714
9715 /* The list is no longer needed. */
9716 cu->method_list.clear ();
9717 }
9718
9719 /* Go objects should be embedded in a DW_TAG_module DIE,
9720 and it's not clear if/how imported objects will appear.
9721 To keep Go support simple until that's worked out,
9722 go back through what we've read and create something usable.
9723 We could do this while processing each DIE, and feels kinda cleaner,
9724 but that way is more invasive.
9725 This is to, for example, allow the user to type "p var" or "b main"
9726 without having to specify the package name, and allow lookups
9727 of module.object to work in contexts that use the expression
9728 parser. */
9729
9730 static void
9731 fixup_go_packaging (struct dwarf2_cu *cu)
9732 {
9733 char *package_name = NULL;
9734 struct pending *list;
9735 int i;
9736
9737 for (list = global_symbols; list != NULL; list = list->next)
9738 {
9739 for (i = 0; i < list->nsyms; ++i)
9740 {
9741 struct symbol *sym = list->symbol[i];
9742
9743 if (SYMBOL_LANGUAGE (sym) == language_go
9744 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9745 {
9746 char *this_package_name = go_symbol_package_name (sym);
9747
9748 if (this_package_name == NULL)
9749 continue;
9750 if (package_name == NULL)
9751 package_name = this_package_name;
9752 else
9753 {
9754 struct objfile *objfile
9755 = cu->per_cu->dwarf2_per_objfile->objfile;
9756 if (strcmp (package_name, this_package_name) != 0)
9757 complaint (&symfile_complaints,
9758 _("Symtab %s has objects from two different Go packages: %s and %s"),
9759 (symbol_symtab (sym) != NULL
9760 ? symtab_to_filename_for_display
9761 (symbol_symtab (sym))
9762 : objfile_name (objfile)),
9763 this_package_name, package_name);
9764 xfree (this_package_name);
9765 }
9766 }
9767 }
9768 }
9769
9770 if (package_name != NULL)
9771 {
9772 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9773 const char *saved_package_name
9774 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9775 package_name,
9776 strlen (package_name));
9777 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9778 saved_package_name);
9779 struct symbol *sym;
9780
9781 TYPE_TAG_NAME (type) = TYPE_NAME (type);
9782
9783 sym = allocate_symbol (objfile);
9784 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9785 SYMBOL_SET_NAMES (sym, saved_package_name,
9786 strlen (saved_package_name), 0, objfile);
9787 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9788 e.g., "main" finds the "main" module and not C's main(). */
9789 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9790 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9791 SYMBOL_TYPE (sym) = type;
9792
9793 add_symbol_to_list (sym, &global_symbols);
9794
9795 xfree (package_name);
9796 }
9797 }
9798
9799 /* Allocate a fully-qualified name consisting of the two parts on the
9800 obstack. */
9801
9802 static const char *
9803 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9804 {
9805 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9806 }
9807
9808 /* A helper that allocates a struct discriminant_info to attach to a
9809 union type. */
9810
9811 static struct discriminant_info *
9812 alloc_discriminant_info (struct type *type, int discriminant_index,
9813 int default_index)
9814 {
9815 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9816 gdb_assert (discriminant_index == -1
9817 || (discriminant_index >= 0
9818 && discriminant_index < TYPE_NFIELDS (type)));
9819 gdb_assert (default_index == -1
9820 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9821
9822 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9823
9824 struct discriminant_info *disc
9825 = ((struct discriminant_info *)
9826 TYPE_ZALLOC (type,
9827 offsetof (struct discriminant_info, discriminants)
9828 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9829 disc->default_index = default_index;
9830 disc->discriminant_index = discriminant_index;
9831
9832 struct dynamic_prop prop;
9833 prop.kind = PROP_UNDEFINED;
9834 prop.data.baton = disc;
9835
9836 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9837
9838 return disc;
9839 }
9840
9841 /* Some versions of rustc emitted enums in an unusual way.
9842
9843 Ordinary enums were emitted as unions. The first element of each
9844 structure in the union was named "RUST$ENUM$DISR". This element
9845 held the discriminant.
9846
9847 These versions of Rust also implemented the "non-zero"
9848 optimization. When the enum had two values, and one is empty and
9849 the other holds a pointer that cannot be zero, the pointer is used
9850 as the discriminant, with a zero value meaning the empty variant.
9851 Here, the union's first member is of the form
9852 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9853 where the fieldnos are the indices of the fields that should be
9854 traversed in order to find the field (which may be several fields deep)
9855 and the variantname is the name of the variant of the case when the
9856 field is zero.
9857
9858 This function recognizes whether TYPE is of one of these forms,
9859 and, if so, smashes it to be a variant type. */
9860
9861 static void
9862 quirk_rust_enum (struct type *type, struct objfile *objfile)
9863 {
9864 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9865
9866 /* We don't need to deal with empty enums. */
9867 if (TYPE_NFIELDS (type) == 0)
9868 return;
9869
9870 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9871 if (TYPE_NFIELDS (type) == 1
9872 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9873 {
9874 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9875
9876 /* Decode the field name to find the offset of the
9877 discriminant. */
9878 ULONGEST bit_offset = 0;
9879 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9880 while (name[0] >= '0' && name[0] <= '9')
9881 {
9882 char *tail;
9883 unsigned long index = strtoul (name, &tail, 10);
9884 name = tail;
9885 if (*name != '$'
9886 || index >= TYPE_NFIELDS (field_type)
9887 || (TYPE_FIELD_LOC_KIND (field_type, index)
9888 != FIELD_LOC_KIND_BITPOS))
9889 {
9890 complaint (&symfile_complaints,
9891 _("Could not parse Rust enum encoding string \"%s\""
9892 "[in module %s]"),
9893 TYPE_FIELD_NAME (type, 0),
9894 objfile_name (objfile));
9895 return;
9896 }
9897 ++name;
9898
9899 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9900 field_type = TYPE_FIELD_TYPE (field_type, index);
9901 }
9902
9903 /* Make a union to hold the variants. */
9904 struct type *union_type = alloc_type (objfile);
9905 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9906 TYPE_NFIELDS (union_type) = 3;
9907 TYPE_FIELDS (union_type)
9908 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9909 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9910 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9911
9912 /* Put the discriminant must at index 0. */
9913 TYPE_FIELD_TYPE (union_type, 0) = field_type;
9914 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9915 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9916 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
9917
9918 /* The order of fields doesn't really matter, so put the real
9919 field at index 1 and the data-less field at index 2. */
9920 struct discriminant_info *disc
9921 = alloc_discriminant_info (union_type, 0, 1);
9922 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
9923 TYPE_FIELD_NAME (union_type, 1)
9924 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
9925 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
9926 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9927 TYPE_FIELD_NAME (union_type, 1));
9928
9929 const char *dataless_name
9930 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9931 name);
9932 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
9933 dataless_name);
9934 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
9935 /* NAME points into the original discriminant name, which
9936 already has the correct lifetime. */
9937 TYPE_FIELD_NAME (union_type, 2) = name;
9938 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
9939 disc->discriminants[2] = 0;
9940
9941 /* Smash this type to be a structure type. We have to do this
9942 because the type has already been recorded. */
9943 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9944 TYPE_NFIELDS (type) = 1;
9945 TYPE_FIELDS (type)
9946 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
9947
9948 /* Install the variant part. */
9949 TYPE_FIELD_TYPE (type, 0) = union_type;
9950 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9951 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9952 }
9953 else if (TYPE_NFIELDS (type) == 1)
9954 {
9955 /* We assume that a union with a single field is a univariant
9956 enum. */
9957 /* Smash this type to be a structure type. We have to do this
9958 because the type has already been recorded. */
9959 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9960
9961 /* Make a union to hold the variants. */
9962 struct type *union_type = alloc_type (objfile);
9963 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9964 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
9965 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9966 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9967 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
9968
9969 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
9970 const char *variant_name
9971 = rust_last_path_segment (TYPE_NAME (field_type));
9972 TYPE_FIELD_NAME (union_type, 0) = variant_name;
9973 TYPE_NAME (field_type)
9974 = rust_fully_qualify (&objfile->objfile_obstack,
9975 TYPE_NAME (type), variant_name);
9976
9977 /* Install the union in the outer struct type. */
9978 TYPE_NFIELDS (type) = 1;
9979 TYPE_FIELDS (type)
9980 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
9981 TYPE_FIELD_TYPE (type, 0) = union_type;
9982 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9983 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9984
9985 alloc_discriminant_info (union_type, -1, 0);
9986 }
9987 else
9988 {
9989 struct type *disr_type = nullptr;
9990 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
9991 {
9992 disr_type = TYPE_FIELD_TYPE (type, i);
9993
9994 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
9995 {
9996 /* All fields of a true enum will be structs. */
9997 return;
9998 }
9999 else if (TYPE_NFIELDS (disr_type) == 0)
10000 {
10001 /* Could be data-less variant, so keep going. */
10002 disr_type = nullptr;
10003 }
10004 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10005 "RUST$ENUM$DISR") != 0)
10006 {
10007 /* Not a Rust enum. */
10008 return;
10009 }
10010 else
10011 {
10012 /* Found one. */
10013 break;
10014 }
10015 }
10016
10017 /* If we got here without a discriminant, then it's probably
10018 just a union. */
10019 if (disr_type == nullptr)
10020 return;
10021
10022 /* Smash this type to be a structure type. We have to do this
10023 because the type has already been recorded. */
10024 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10025
10026 /* Make a union to hold the variants. */
10027 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10028 struct type *union_type = alloc_type (objfile);
10029 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10030 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10031 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10032 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10033 TYPE_FIELDS (union_type)
10034 = (struct field *) TYPE_ZALLOC (union_type,
10035 (TYPE_NFIELDS (union_type)
10036 * sizeof (struct field)));
10037
10038 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10039 TYPE_NFIELDS (type) * sizeof (struct field));
10040
10041 /* Install the discriminant at index 0 in the union. */
10042 TYPE_FIELD (union_type, 0) = *disr_field;
10043 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10044 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10045
10046 /* Install the union in the outer struct type. */
10047 TYPE_FIELD_TYPE (type, 0) = union_type;
10048 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10049 TYPE_NFIELDS (type) = 1;
10050
10051 /* Set the size and offset of the union type. */
10052 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10053
10054 /* We need a way to find the correct discriminant given a
10055 variant name. For convenience we build a map here. */
10056 struct type *enum_type = FIELD_TYPE (*disr_field);
10057 std::unordered_map<std::string, ULONGEST> discriminant_map;
10058 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10059 {
10060 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10061 {
10062 const char *name
10063 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10064 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10065 }
10066 }
10067
10068 int n_fields = TYPE_NFIELDS (union_type);
10069 struct discriminant_info *disc
10070 = alloc_discriminant_info (union_type, 0, -1);
10071 /* Skip the discriminant here. */
10072 for (int i = 1; i < n_fields; ++i)
10073 {
10074 /* Find the final word in the name of this variant's type.
10075 That name can be used to look up the correct
10076 discriminant. */
10077 const char *variant_name
10078 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10079 i)));
10080
10081 auto iter = discriminant_map.find (variant_name);
10082 if (iter != discriminant_map.end ())
10083 disc->discriminants[i] = iter->second;
10084
10085 /* Remove the discriminant field, if it exists. */
10086 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10087 if (TYPE_NFIELDS (sub_type) > 0)
10088 {
10089 --TYPE_NFIELDS (sub_type);
10090 ++TYPE_FIELDS (sub_type);
10091 }
10092 TYPE_FIELD_NAME (union_type, i) = variant_name;
10093 TYPE_NAME (sub_type)
10094 = rust_fully_qualify (&objfile->objfile_obstack,
10095 TYPE_NAME (type), variant_name);
10096 }
10097 }
10098 }
10099
10100 /* Rewrite some Rust unions to be structures with variants parts. */
10101
10102 static void
10103 rust_union_quirks (struct dwarf2_cu *cu)
10104 {
10105 gdb_assert (cu->language == language_rust);
10106 for (struct type *type : cu->rust_unions)
10107 quirk_rust_enum (type, cu->per_cu->dwarf2_per_objfile->objfile);
10108 }
10109
10110 /* Return the symtab for PER_CU. This works properly regardless of
10111 whether we're using the index or psymtabs. */
10112
10113 static struct compunit_symtab *
10114 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10115 {
10116 return (per_cu->dwarf2_per_objfile->using_index
10117 ? per_cu->v.quick->compunit_symtab
10118 : per_cu->v.psymtab->compunit_symtab);
10119 }
10120
10121 /* A helper function for computing the list of all symbol tables
10122 included by PER_CU. */
10123
10124 static void
10125 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
10126 htab_t all_children, htab_t all_type_symtabs,
10127 struct dwarf2_per_cu_data *per_cu,
10128 struct compunit_symtab *immediate_parent)
10129 {
10130 void **slot;
10131 int ix;
10132 struct compunit_symtab *cust;
10133 struct dwarf2_per_cu_data *iter;
10134
10135 slot = htab_find_slot (all_children, per_cu, INSERT);
10136 if (*slot != NULL)
10137 {
10138 /* This inclusion and its children have been processed. */
10139 return;
10140 }
10141
10142 *slot = per_cu;
10143 /* Only add a CU if it has a symbol table. */
10144 cust = get_compunit_symtab (per_cu);
10145 if (cust != NULL)
10146 {
10147 /* If this is a type unit only add its symbol table if we haven't
10148 seen it yet (type unit per_cu's can share symtabs). */
10149 if (per_cu->is_debug_types)
10150 {
10151 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10152 if (*slot == NULL)
10153 {
10154 *slot = cust;
10155 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10156 if (cust->user == NULL)
10157 cust->user = immediate_parent;
10158 }
10159 }
10160 else
10161 {
10162 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10163 if (cust->user == NULL)
10164 cust->user = immediate_parent;
10165 }
10166 }
10167
10168 for (ix = 0;
10169 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10170 ++ix)
10171 {
10172 recursively_compute_inclusions (result, all_children,
10173 all_type_symtabs, iter, cust);
10174 }
10175 }
10176
10177 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10178 PER_CU. */
10179
10180 static void
10181 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10182 {
10183 gdb_assert (! per_cu->is_debug_types);
10184
10185 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10186 {
10187 int ix, len;
10188 struct dwarf2_per_cu_data *per_cu_iter;
10189 struct compunit_symtab *compunit_symtab_iter;
10190 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
10191 htab_t all_children, all_type_symtabs;
10192 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10193
10194 /* If we don't have a symtab, we can just skip this case. */
10195 if (cust == NULL)
10196 return;
10197
10198 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10199 NULL, xcalloc, xfree);
10200 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10201 NULL, xcalloc, xfree);
10202
10203 for (ix = 0;
10204 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10205 ix, per_cu_iter);
10206 ++ix)
10207 {
10208 recursively_compute_inclusions (&result_symtabs, all_children,
10209 all_type_symtabs, per_cu_iter,
10210 cust);
10211 }
10212
10213 /* Now we have a transitive closure of all the included symtabs. */
10214 len = VEC_length (compunit_symtab_ptr, result_symtabs);
10215 cust->includes
10216 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10217 struct compunit_symtab *, len + 1);
10218 for (ix = 0;
10219 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
10220 compunit_symtab_iter);
10221 ++ix)
10222 cust->includes[ix] = compunit_symtab_iter;
10223 cust->includes[len] = NULL;
10224
10225 VEC_free (compunit_symtab_ptr, result_symtabs);
10226 htab_delete (all_children);
10227 htab_delete (all_type_symtabs);
10228 }
10229 }
10230
10231 /* Compute the 'includes' field for the symtabs of all the CUs we just
10232 read. */
10233
10234 static void
10235 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10236 {
10237 int ix;
10238 struct dwarf2_per_cu_data *iter;
10239
10240 for (ix = 0;
10241 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
10242 ix, iter);
10243 ++ix)
10244 {
10245 if (! iter->is_debug_types)
10246 compute_compunit_symtab_includes (iter);
10247 }
10248
10249 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
10250 }
10251
10252 /* Generate full symbol information for PER_CU, whose DIEs have
10253 already been loaded into memory. */
10254
10255 static void
10256 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10257 enum language pretend_language)
10258 {
10259 struct dwarf2_cu *cu = per_cu->cu;
10260 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10261 struct objfile *objfile = dwarf2_per_objfile->objfile;
10262 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10263 CORE_ADDR lowpc, highpc;
10264 struct compunit_symtab *cust;
10265 CORE_ADDR baseaddr;
10266 struct block *static_block;
10267 CORE_ADDR addr;
10268
10269 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10270
10271 buildsym_init ();
10272 scoped_free_pendings free_pending;
10273
10274 /* Clear the list here in case something was left over. */
10275 cu->method_list.clear ();
10276
10277 cu->list_in_scope = &file_symbols;
10278
10279 cu->language = pretend_language;
10280 cu->language_defn = language_def (cu->language);
10281
10282 /* Do line number decoding in read_file_scope () */
10283 process_die (cu->dies, cu);
10284
10285 /* For now fudge the Go package. */
10286 if (cu->language == language_go)
10287 fixup_go_packaging (cu);
10288
10289 /* Now that we have processed all the DIEs in the CU, all the types
10290 should be complete, and it should now be safe to compute all of the
10291 physnames. */
10292 compute_delayed_physnames (cu);
10293
10294 if (cu->language == language_rust)
10295 rust_union_quirks (cu);
10296
10297 /* Some compilers don't define a DW_AT_high_pc attribute for the
10298 compilation unit. If the DW_AT_high_pc is missing, synthesize
10299 it, by scanning the DIE's below the compilation unit. */
10300 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10301
10302 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10303 static_block = end_symtab_get_static_block (addr, 0, 1);
10304
10305 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10306 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10307 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10308 addrmap to help ensure it has an accurate map of pc values belonging to
10309 this comp unit. */
10310 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10311
10312 cust = end_symtab_from_static_block (static_block,
10313 SECT_OFF_TEXT (objfile), 0);
10314
10315 if (cust != NULL)
10316 {
10317 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10318
10319 /* Set symtab language to language from DW_AT_language. If the
10320 compilation is from a C file generated by language preprocessors, do
10321 not set the language if it was already deduced by start_subfile. */
10322 if (!(cu->language == language_c
10323 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10324 COMPUNIT_FILETABS (cust)->language = cu->language;
10325
10326 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10327 produce DW_AT_location with location lists but it can be possibly
10328 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10329 there were bugs in prologue debug info, fixed later in GCC-4.5
10330 by "unwind info for epilogues" patch (which is not directly related).
10331
10332 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10333 needed, it would be wrong due to missing DW_AT_producer there.
10334
10335 Still one can confuse GDB by using non-standard GCC compilation
10336 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10337 */
10338 if (cu->has_loclist && gcc_4_minor >= 5)
10339 cust->locations_valid = 1;
10340
10341 if (gcc_4_minor >= 5)
10342 cust->epilogue_unwind_valid = 1;
10343
10344 cust->call_site_htab = cu->call_site_htab;
10345 }
10346
10347 if (dwarf2_per_objfile->using_index)
10348 per_cu->v.quick->compunit_symtab = cust;
10349 else
10350 {
10351 struct partial_symtab *pst = per_cu->v.psymtab;
10352 pst->compunit_symtab = cust;
10353 pst->readin = 1;
10354 }
10355
10356 /* Push it for inclusion processing later. */
10357 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
10358 }
10359
10360 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10361 already been loaded into memory. */
10362
10363 static void
10364 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10365 enum language pretend_language)
10366 {
10367 struct dwarf2_cu *cu = per_cu->cu;
10368 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10369 struct objfile *objfile = dwarf2_per_objfile->objfile;
10370 struct compunit_symtab *cust;
10371 struct signatured_type *sig_type;
10372
10373 gdb_assert (per_cu->is_debug_types);
10374 sig_type = (struct signatured_type *) per_cu;
10375
10376 buildsym_init ();
10377 scoped_free_pendings free_pending;
10378
10379 /* Clear the list here in case something was left over. */
10380 cu->method_list.clear ();
10381
10382 cu->list_in_scope = &file_symbols;
10383
10384 cu->language = pretend_language;
10385 cu->language_defn = language_def (cu->language);
10386
10387 /* The symbol tables are set up in read_type_unit_scope. */
10388 process_die (cu->dies, cu);
10389
10390 /* For now fudge the Go package. */
10391 if (cu->language == language_go)
10392 fixup_go_packaging (cu);
10393
10394 /* Now that we have processed all the DIEs in the CU, all the types
10395 should be complete, and it should now be safe to compute all of the
10396 physnames. */
10397 compute_delayed_physnames (cu);
10398
10399 if (cu->language == language_rust)
10400 rust_union_quirks (cu);
10401
10402 /* TUs share symbol tables.
10403 If this is the first TU to use this symtab, complete the construction
10404 of it with end_expandable_symtab. Otherwise, complete the addition of
10405 this TU's symbols to the existing symtab. */
10406 if (sig_type->type_unit_group->compunit_symtab == NULL)
10407 {
10408 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10409 sig_type->type_unit_group->compunit_symtab = cust;
10410
10411 if (cust != NULL)
10412 {
10413 /* Set symtab language to language from DW_AT_language. If the
10414 compilation is from a C file generated by language preprocessors,
10415 do not set the language if it was already deduced by
10416 start_subfile. */
10417 if (!(cu->language == language_c
10418 && COMPUNIT_FILETABS (cust)->language != language_c))
10419 COMPUNIT_FILETABS (cust)->language = cu->language;
10420 }
10421 }
10422 else
10423 {
10424 augment_type_symtab ();
10425 cust = sig_type->type_unit_group->compunit_symtab;
10426 }
10427
10428 if (dwarf2_per_objfile->using_index)
10429 per_cu->v.quick->compunit_symtab = cust;
10430 else
10431 {
10432 struct partial_symtab *pst = per_cu->v.psymtab;
10433 pst->compunit_symtab = cust;
10434 pst->readin = 1;
10435 }
10436 }
10437
10438 /* Process an imported unit DIE. */
10439
10440 static void
10441 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10442 {
10443 struct attribute *attr;
10444
10445 /* For now we don't handle imported units in type units. */
10446 if (cu->per_cu->is_debug_types)
10447 {
10448 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10449 " supported in type units [in module %s]"),
10450 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10451 }
10452
10453 attr = dwarf2_attr (die, DW_AT_import, cu);
10454 if (attr != NULL)
10455 {
10456 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10457 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10458 dwarf2_per_cu_data *per_cu
10459 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10460 cu->per_cu->dwarf2_per_objfile);
10461
10462 /* If necessary, add it to the queue and load its DIEs. */
10463 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10464 load_full_comp_unit (per_cu, cu->language);
10465
10466 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10467 per_cu);
10468 }
10469 }
10470
10471 /* RAII object that represents a process_die scope: i.e.,
10472 starts/finishes processing a DIE. */
10473 class process_die_scope
10474 {
10475 public:
10476 process_die_scope (die_info *die, dwarf2_cu *cu)
10477 : m_die (die), m_cu (cu)
10478 {
10479 /* We should only be processing DIEs not already in process. */
10480 gdb_assert (!m_die->in_process);
10481 m_die->in_process = true;
10482 }
10483
10484 ~process_die_scope ()
10485 {
10486 m_die->in_process = false;
10487
10488 /* If we're done processing the DIE for the CU that owns the line
10489 header, we don't need the line header anymore. */
10490 if (m_cu->line_header_die_owner == m_die)
10491 {
10492 delete m_cu->line_header;
10493 m_cu->line_header = NULL;
10494 m_cu->line_header_die_owner = NULL;
10495 }
10496 }
10497
10498 private:
10499 die_info *m_die;
10500 dwarf2_cu *m_cu;
10501 };
10502
10503 /* Process a die and its children. */
10504
10505 static void
10506 process_die (struct die_info *die, struct dwarf2_cu *cu)
10507 {
10508 process_die_scope scope (die, cu);
10509
10510 switch (die->tag)
10511 {
10512 case DW_TAG_padding:
10513 break;
10514 case DW_TAG_compile_unit:
10515 case DW_TAG_partial_unit:
10516 read_file_scope (die, cu);
10517 break;
10518 case DW_TAG_type_unit:
10519 read_type_unit_scope (die, cu);
10520 break;
10521 case DW_TAG_subprogram:
10522 case DW_TAG_inlined_subroutine:
10523 read_func_scope (die, cu);
10524 break;
10525 case DW_TAG_lexical_block:
10526 case DW_TAG_try_block:
10527 case DW_TAG_catch_block:
10528 read_lexical_block_scope (die, cu);
10529 break;
10530 case DW_TAG_call_site:
10531 case DW_TAG_GNU_call_site:
10532 read_call_site_scope (die, cu);
10533 break;
10534 case DW_TAG_class_type:
10535 case DW_TAG_interface_type:
10536 case DW_TAG_structure_type:
10537 case DW_TAG_union_type:
10538 process_structure_scope (die, cu);
10539 break;
10540 case DW_TAG_enumeration_type:
10541 process_enumeration_scope (die, cu);
10542 break;
10543
10544 /* These dies have a type, but processing them does not create
10545 a symbol or recurse to process the children. Therefore we can
10546 read them on-demand through read_type_die. */
10547 case DW_TAG_subroutine_type:
10548 case DW_TAG_set_type:
10549 case DW_TAG_array_type:
10550 case DW_TAG_pointer_type:
10551 case DW_TAG_ptr_to_member_type:
10552 case DW_TAG_reference_type:
10553 case DW_TAG_rvalue_reference_type:
10554 case DW_TAG_string_type:
10555 break;
10556
10557 case DW_TAG_base_type:
10558 case DW_TAG_subrange_type:
10559 case DW_TAG_typedef:
10560 /* Add a typedef symbol for the type definition, if it has a
10561 DW_AT_name. */
10562 new_symbol (die, read_type_die (die, cu), cu);
10563 break;
10564 case DW_TAG_common_block:
10565 read_common_block (die, cu);
10566 break;
10567 case DW_TAG_common_inclusion:
10568 break;
10569 case DW_TAG_namespace:
10570 cu->processing_has_namespace_info = 1;
10571 read_namespace (die, cu);
10572 break;
10573 case DW_TAG_module:
10574 cu->processing_has_namespace_info = 1;
10575 read_module (die, cu);
10576 break;
10577 case DW_TAG_imported_declaration:
10578 cu->processing_has_namespace_info = 1;
10579 if (read_namespace_alias (die, cu))
10580 break;
10581 /* The declaration is not a global namespace alias: fall through. */
10582 case DW_TAG_imported_module:
10583 cu->processing_has_namespace_info = 1;
10584 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10585 || cu->language != language_fortran))
10586 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
10587 dwarf_tag_name (die->tag));
10588 read_import_statement (die, cu);
10589 break;
10590
10591 case DW_TAG_imported_unit:
10592 process_imported_unit_die (die, cu);
10593 break;
10594
10595 case DW_TAG_variable:
10596 read_variable (die, cu);
10597 break;
10598
10599 default:
10600 new_symbol (die, NULL, cu);
10601 break;
10602 }
10603 }
10604 \f
10605 /* DWARF name computation. */
10606
10607 /* A helper function for dwarf2_compute_name which determines whether DIE
10608 needs to have the name of the scope prepended to the name listed in the
10609 die. */
10610
10611 static int
10612 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10613 {
10614 struct attribute *attr;
10615
10616 switch (die->tag)
10617 {
10618 case DW_TAG_namespace:
10619 case DW_TAG_typedef:
10620 case DW_TAG_class_type:
10621 case DW_TAG_interface_type:
10622 case DW_TAG_structure_type:
10623 case DW_TAG_union_type:
10624 case DW_TAG_enumeration_type:
10625 case DW_TAG_enumerator:
10626 case DW_TAG_subprogram:
10627 case DW_TAG_inlined_subroutine:
10628 case DW_TAG_member:
10629 case DW_TAG_imported_declaration:
10630 return 1;
10631
10632 case DW_TAG_variable:
10633 case DW_TAG_constant:
10634 /* We only need to prefix "globally" visible variables. These include
10635 any variable marked with DW_AT_external or any variable that
10636 lives in a namespace. [Variables in anonymous namespaces
10637 require prefixing, but they are not DW_AT_external.] */
10638
10639 if (dwarf2_attr (die, DW_AT_specification, cu))
10640 {
10641 struct dwarf2_cu *spec_cu = cu;
10642
10643 return die_needs_namespace (die_specification (die, &spec_cu),
10644 spec_cu);
10645 }
10646
10647 attr = dwarf2_attr (die, DW_AT_external, cu);
10648 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10649 && die->parent->tag != DW_TAG_module)
10650 return 0;
10651 /* A variable in a lexical block of some kind does not need a
10652 namespace, even though in C++ such variables may be external
10653 and have a mangled name. */
10654 if (die->parent->tag == DW_TAG_lexical_block
10655 || die->parent->tag == DW_TAG_try_block
10656 || die->parent->tag == DW_TAG_catch_block
10657 || die->parent->tag == DW_TAG_subprogram)
10658 return 0;
10659 return 1;
10660
10661 default:
10662 return 0;
10663 }
10664 }
10665
10666 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10667 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10668 defined for the given DIE. */
10669
10670 static struct attribute *
10671 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10672 {
10673 struct attribute *attr;
10674
10675 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10676 if (attr == NULL)
10677 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10678
10679 return attr;
10680 }
10681
10682 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10683 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10684 defined for the given DIE. */
10685
10686 static const char *
10687 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10688 {
10689 const char *linkage_name;
10690
10691 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10692 if (linkage_name == NULL)
10693 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10694
10695 return linkage_name;
10696 }
10697
10698 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10699 compute the physname for the object, which include a method's:
10700 - formal parameters (C++),
10701 - receiver type (Go),
10702
10703 The term "physname" is a bit confusing.
10704 For C++, for example, it is the demangled name.
10705 For Go, for example, it's the mangled name.
10706
10707 For Ada, return the DIE's linkage name rather than the fully qualified
10708 name. PHYSNAME is ignored..
10709
10710 The result is allocated on the objfile_obstack and canonicalized. */
10711
10712 static const char *
10713 dwarf2_compute_name (const char *name,
10714 struct die_info *die, struct dwarf2_cu *cu,
10715 int physname)
10716 {
10717 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10718
10719 if (name == NULL)
10720 name = dwarf2_name (die, cu);
10721
10722 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10723 but otherwise compute it by typename_concat inside GDB.
10724 FIXME: Actually this is not really true, or at least not always true.
10725 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10726 Fortran names because there is no mangling standard. So new_symbol
10727 will set the demangled name to the result of dwarf2_full_name, and it is
10728 the demangled name that GDB uses if it exists. */
10729 if (cu->language == language_ada
10730 || (cu->language == language_fortran && physname))
10731 {
10732 /* For Ada unit, we prefer the linkage name over the name, as
10733 the former contains the exported name, which the user expects
10734 to be able to reference. Ideally, we want the user to be able
10735 to reference this entity using either natural or linkage name,
10736 but we haven't started looking at this enhancement yet. */
10737 const char *linkage_name = dw2_linkage_name (die, cu);
10738
10739 if (linkage_name != NULL)
10740 return linkage_name;
10741 }
10742
10743 /* These are the only languages we know how to qualify names in. */
10744 if (name != NULL
10745 && (cu->language == language_cplus
10746 || cu->language == language_fortran || cu->language == language_d
10747 || cu->language == language_rust))
10748 {
10749 if (die_needs_namespace (die, cu))
10750 {
10751 const char *prefix;
10752 const char *canonical_name = NULL;
10753
10754 string_file buf;
10755
10756 prefix = determine_prefix (die, cu);
10757 if (*prefix != '\0')
10758 {
10759 char *prefixed_name = typename_concat (NULL, prefix, name,
10760 physname, cu);
10761
10762 buf.puts (prefixed_name);
10763 xfree (prefixed_name);
10764 }
10765 else
10766 buf.puts (name);
10767
10768 /* Template parameters may be specified in the DIE's DW_AT_name, or
10769 as children with DW_TAG_template_type_param or
10770 DW_TAG_value_type_param. If the latter, add them to the name
10771 here. If the name already has template parameters, then
10772 skip this step; some versions of GCC emit both, and
10773 it is more efficient to use the pre-computed name.
10774
10775 Something to keep in mind about this process: it is very
10776 unlikely, or in some cases downright impossible, to produce
10777 something that will match the mangled name of a function.
10778 If the definition of the function has the same debug info,
10779 we should be able to match up with it anyway. But fallbacks
10780 using the minimal symbol, for instance to find a method
10781 implemented in a stripped copy of libstdc++, will not work.
10782 If we do not have debug info for the definition, we will have to
10783 match them up some other way.
10784
10785 When we do name matching there is a related problem with function
10786 templates; two instantiated function templates are allowed to
10787 differ only by their return types, which we do not add here. */
10788
10789 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10790 {
10791 struct attribute *attr;
10792 struct die_info *child;
10793 int first = 1;
10794
10795 die->building_fullname = 1;
10796
10797 for (child = die->child; child != NULL; child = child->sibling)
10798 {
10799 struct type *type;
10800 LONGEST value;
10801 const gdb_byte *bytes;
10802 struct dwarf2_locexpr_baton *baton;
10803 struct value *v;
10804
10805 if (child->tag != DW_TAG_template_type_param
10806 && child->tag != DW_TAG_template_value_param)
10807 continue;
10808
10809 if (first)
10810 {
10811 buf.puts ("<");
10812 first = 0;
10813 }
10814 else
10815 buf.puts (", ");
10816
10817 attr = dwarf2_attr (child, DW_AT_type, cu);
10818 if (attr == NULL)
10819 {
10820 complaint (&symfile_complaints,
10821 _("template parameter missing DW_AT_type"));
10822 buf.puts ("UNKNOWN_TYPE");
10823 continue;
10824 }
10825 type = die_type (child, cu);
10826
10827 if (child->tag == DW_TAG_template_type_param)
10828 {
10829 c_print_type (type, "", &buf, -1, 0, &type_print_raw_options);
10830 continue;
10831 }
10832
10833 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10834 if (attr == NULL)
10835 {
10836 complaint (&symfile_complaints,
10837 _("template parameter missing "
10838 "DW_AT_const_value"));
10839 buf.puts ("UNKNOWN_VALUE");
10840 continue;
10841 }
10842
10843 dwarf2_const_value_attr (attr, type, name,
10844 &cu->comp_unit_obstack, cu,
10845 &value, &bytes, &baton);
10846
10847 if (TYPE_NOSIGN (type))
10848 /* GDB prints characters as NUMBER 'CHAR'. If that's
10849 changed, this can use value_print instead. */
10850 c_printchar (value, type, &buf);
10851 else
10852 {
10853 struct value_print_options opts;
10854
10855 if (baton != NULL)
10856 v = dwarf2_evaluate_loc_desc (type, NULL,
10857 baton->data,
10858 baton->size,
10859 baton->per_cu);
10860 else if (bytes != NULL)
10861 {
10862 v = allocate_value (type);
10863 memcpy (value_contents_writeable (v), bytes,
10864 TYPE_LENGTH (type));
10865 }
10866 else
10867 v = value_from_longest (type, value);
10868
10869 /* Specify decimal so that we do not depend on
10870 the radix. */
10871 get_formatted_print_options (&opts, 'd');
10872 opts.raw = 1;
10873 value_print (v, &buf, &opts);
10874 release_value (v);
10875 }
10876 }
10877
10878 die->building_fullname = 0;
10879
10880 if (!first)
10881 {
10882 /* Close the argument list, with a space if necessary
10883 (nested templates). */
10884 if (!buf.empty () && buf.string ().back () == '>')
10885 buf.puts (" >");
10886 else
10887 buf.puts (">");
10888 }
10889 }
10890
10891 /* For C++ methods, append formal parameter type
10892 information, if PHYSNAME. */
10893
10894 if (physname && die->tag == DW_TAG_subprogram
10895 && cu->language == language_cplus)
10896 {
10897 struct type *type = read_type_die (die, cu);
10898
10899 c_type_print_args (type, &buf, 1, cu->language,
10900 &type_print_raw_options);
10901
10902 if (cu->language == language_cplus)
10903 {
10904 /* Assume that an artificial first parameter is
10905 "this", but do not crash if it is not. RealView
10906 marks unnamed (and thus unused) parameters as
10907 artificial; there is no way to differentiate
10908 the two cases. */
10909 if (TYPE_NFIELDS (type) > 0
10910 && TYPE_FIELD_ARTIFICIAL (type, 0)
10911 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10912 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10913 0))))
10914 buf.puts (" const");
10915 }
10916 }
10917
10918 const std::string &intermediate_name = buf.string ();
10919
10920 if (cu->language == language_cplus)
10921 canonical_name
10922 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10923 &objfile->per_bfd->storage_obstack);
10924
10925 /* If we only computed INTERMEDIATE_NAME, or if
10926 INTERMEDIATE_NAME is already canonical, then we need to
10927 copy it to the appropriate obstack. */
10928 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10929 name = ((const char *)
10930 obstack_copy0 (&objfile->per_bfd->storage_obstack,
10931 intermediate_name.c_str (),
10932 intermediate_name.length ()));
10933 else
10934 name = canonical_name;
10935 }
10936 }
10937
10938 return name;
10939 }
10940
10941 /* Return the fully qualified name of DIE, based on its DW_AT_name.
10942 If scope qualifiers are appropriate they will be added. The result
10943 will be allocated on the storage_obstack, or NULL if the DIE does
10944 not have a name. NAME may either be from a previous call to
10945 dwarf2_name or NULL.
10946
10947 The output string will be canonicalized (if C++). */
10948
10949 static const char *
10950 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10951 {
10952 return dwarf2_compute_name (name, die, cu, 0);
10953 }
10954
10955 /* Construct a physname for the given DIE in CU. NAME may either be
10956 from a previous call to dwarf2_name or NULL. The result will be
10957 allocated on the objfile_objstack or NULL if the DIE does not have a
10958 name.
10959
10960 The output string will be canonicalized (if C++). */
10961
10962 static const char *
10963 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10964 {
10965 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10966 const char *retval, *mangled = NULL, *canon = NULL;
10967 int need_copy = 1;
10968
10969 /* In this case dwarf2_compute_name is just a shortcut not building anything
10970 on its own. */
10971 if (!die_needs_namespace (die, cu))
10972 return dwarf2_compute_name (name, die, cu, 1);
10973
10974 mangled = dw2_linkage_name (die, cu);
10975
10976 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
10977 See https://github.com/rust-lang/rust/issues/32925. */
10978 if (cu->language == language_rust && mangled != NULL
10979 && strchr (mangled, '{') != NULL)
10980 mangled = NULL;
10981
10982 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
10983 has computed. */
10984 gdb::unique_xmalloc_ptr<char> demangled;
10985 if (mangled != NULL)
10986 {
10987
10988 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
10989 {
10990 /* Do nothing (do not demangle the symbol name). */
10991 }
10992 else if (cu->language == language_go)
10993 {
10994 /* This is a lie, but we already lie to the caller new_symbol.
10995 new_symbol assumes we return the mangled name.
10996 This just undoes that lie until things are cleaned up. */
10997 }
10998 else
10999 {
11000 /* Use DMGL_RET_DROP for C++ template functions to suppress
11001 their return type. It is easier for GDB users to search
11002 for such functions as `name(params)' than `long name(params)'.
11003 In such case the minimal symbol names do not match the full
11004 symbol names but for template functions there is never a need
11005 to look up their definition from their declaration so
11006 the only disadvantage remains the minimal symbol variant
11007 `long name(params)' does not have the proper inferior type. */
11008 demangled.reset (gdb_demangle (mangled,
11009 (DMGL_PARAMS | DMGL_ANSI
11010 | DMGL_RET_DROP)));
11011 }
11012 if (demangled)
11013 canon = demangled.get ();
11014 else
11015 {
11016 canon = mangled;
11017 need_copy = 0;
11018 }
11019 }
11020
11021 if (canon == NULL || check_physname)
11022 {
11023 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11024
11025 if (canon != NULL && strcmp (physname, canon) != 0)
11026 {
11027 /* It may not mean a bug in GDB. The compiler could also
11028 compute DW_AT_linkage_name incorrectly. But in such case
11029 GDB would need to be bug-to-bug compatible. */
11030
11031 complaint (&symfile_complaints,
11032 _("Computed physname <%s> does not match demangled <%s> "
11033 "(from linkage <%s>) - DIE at %s [in module %s]"),
11034 physname, canon, mangled, sect_offset_str (die->sect_off),
11035 objfile_name (objfile));
11036
11037 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11038 is available here - over computed PHYSNAME. It is safer
11039 against both buggy GDB and buggy compilers. */
11040
11041 retval = canon;
11042 }
11043 else
11044 {
11045 retval = physname;
11046 need_copy = 0;
11047 }
11048 }
11049 else
11050 retval = canon;
11051
11052 if (need_copy)
11053 retval = ((const char *)
11054 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11055 retval, strlen (retval)));
11056
11057 return retval;
11058 }
11059
11060 /* Inspect DIE in CU for a namespace alias. If one exists, record
11061 a new symbol for it.
11062
11063 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11064
11065 static int
11066 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11067 {
11068 struct attribute *attr;
11069
11070 /* If the die does not have a name, this is not a namespace
11071 alias. */
11072 attr = dwarf2_attr (die, DW_AT_name, cu);
11073 if (attr != NULL)
11074 {
11075 int num;
11076 struct die_info *d = die;
11077 struct dwarf2_cu *imported_cu = cu;
11078
11079 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11080 keep inspecting DIEs until we hit the underlying import. */
11081 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11082 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11083 {
11084 attr = dwarf2_attr (d, DW_AT_import, cu);
11085 if (attr == NULL)
11086 break;
11087
11088 d = follow_die_ref (d, attr, &imported_cu);
11089 if (d->tag != DW_TAG_imported_declaration)
11090 break;
11091 }
11092
11093 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11094 {
11095 complaint (&symfile_complaints,
11096 _("DIE at %s has too many recursively imported "
11097 "declarations"), sect_offset_str (d->sect_off));
11098 return 0;
11099 }
11100
11101 if (attr != NULL)
11102 {
11103 struct type *type;
11104 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11105
11106 type = get_die_type_at_offset (sect_off, cu->per_cu);
11107 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11108 {
11109 /* This declaration is a global namespace alias. Add
11110 a symbol for it whose type is the aliased namespace. */
11111 new_symbol (die, type, cu);
11112 return 1;
11113 }
11114 }
11115 }
11116
11117 return 0;
11118 }
11119
11120 /* Return the using directives repository (global or local?) to use in the
11121 current context for LANGUAGE.
11122
11123 For Ada, imported declarations can materialize renamings, which *may* be
11124 global. However it is impossible (for now?) in DWARF to distinguish
11125 "external" imported declarations and "static" ones. As all imported
11126 declarations seem to be static in all other languages, make them all CU-wide
11127 global only in Ada. */
11128
11129 static struct using_direct **
11130 using_directives (enum language language)
11131 {
11132 if (language == language_ada && context_stack_depth == 0)
11133 return &global_using_directives;
11134 else
11135 return &local_using_directives;
11136 }
11137
11138 /* Read the import statement specified by the given die and record it. */
11139
11140 static void
11141 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11142 {
11143 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11144 struct attribute *import_attr;
11145 struct die_info *imported_die, *child_die;
11146 struct dwarf2_cu *imported_cu;
11147 const char *imported_name;
11148 const char *imported_name_prefix;
11149 const char *canonical_name;
11150 const char *import_alias;
11151 const char *imported_declaration = NULL;
11152 const char *import_prefix;
11153 std::vector<const char *> excludes;
11154
11155 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11156 if (import_attr == NULL)
11157 {
11158 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
11159 dwarf_tag_name (die->tag));
11160 return;
11161 }
11162
11163 imported_cu = cu;
11164 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11165 imported_name = dwarf2_name (imported_die, imported_cu);
11166 if (imported_name == NULL)
11167 {
11168 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11169
11170 The import in the following code:
11171 namespace A
11172 {
11173 typedef int B;
11174 }
11175
11176 int main ()
11177 {
11178 using A::B;
11179 B b;
11180 return b;
11181 }
11182
11183 ...
11184 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11185 <52> DW_AT_decl_file : 1
11186 <53> DW_AT_decl_line : 6
11187 <54> DW_AT_import : <0x75>
11188 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11189 <59> DW_AT_name : B
11190 <5b> DW_AT_decl_file : 1
11191 <5c> DW_AT_decl_line : 2
11192 <5d> DW_AT_type : <0x6e>
11193 ...
11194 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11195 <76> DW_AT_byte_size : 4
11196 <77> DW_AT_encoding : 5 (signed)
11197
11198 imports the wrong die ( 0x75 instead of 0x58 ).
11199 This case will be ignored until the gcc bug is fixed. */
11200 return;
11201 }
11202
11203 /* Figure out the local name after import. */
11204 import_alias = dwarf2_name (die, cu);
11205
11206 /* Figure out where the statement is being imported to. */
11207 import_prefix = determine_prefix (die, cu);
11208
11209 /* Figure out what the scope of the imported die is and prepend it
11210 to the name of the imported die. */
11211 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11212
11213 if (imported_die->tag != DW_TAG_namespace
11214 && imported_die->tag != DW_TAG_module)
11215 {
11216 imported_declaration = imported_name;
11217 canonical_name = imported_name_prefix;
11218 }
11219 else if (strlen (imported_name_prefix) > 0)
11220 canonical_name = obconcat (&objfile->objfile_obstack,
11221 imported_name_prefix,
11222 (cu->language == language_d ? "." : "::"),
11223 imported_name, (char *) NULL);
11224 else
11225 canonical_name = imported_name;
11226
11227 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11228 for (child_die = die->child; child_die && child_die->tag;
11229 child_die = sibling_die (child_die))
11230 {
11231 /* DWARF-4: A Fortran use statement with a “rename list” may be
11232 represented by an imported module entry with an import attribute
11233 referring to the module and owned entries corresponding to those
11234 entities that are renamed as part of being imported. */
11235
11236 if (child_die->tag != DW_TAG_imported_declaration)
11237 {
11238 complaint (&symfile_complaints,
11239 _("child DW_TAG_imported_declaration expected "
11240 "- DIE at %s [in module %s]"),
11241 sect_offset_str (child_die->sect_off),
11242 objfile_name (objfile));
11243 continue;
11244 }
11245
11246 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11247 if (import_attr == NULL)
11248 {
11249 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
11250 dwarf_tag_name (child_die->tag));
11251 continue;
11252 }
11253
11254 imported_cu = cu;
11255 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11256 &imported_cu);
11257 imported_name = dwarf2_name (imported_die, imported_cu);
11258 if (imported_name == NULL)
11259 {
11260 complaint (&symfile_complaints,
11261 _("child DW_TAG_imported_declaration has unknown "
11262 "imported name - DIE at %s [in module %s]"),
11263 sect_offset_str (child_die->sect_off),
11264 objfile_name (objfile));
11265 continue;
11266 }
11267
11268 excludes.push_back (imported_name);
11269
11270 process_die (child_die, cu);
11271 }
11272
11273 add_using_directive (using_directives (cu->language),
11274 import_prefix,
11275 canonical_name,
11276 import_alias,
11277 imported_declaration,
11278 excludes,
11279 0,
11280 &objfile->objfile_obstack);
11281 }
11282
11283 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11284 types, but gives them a size of zero. Starting with version 14,
11285 ICC is compatible with GCC. */
11286
11287 static int
11288 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11289 {
11290 if (!cu->checked_producer)
11291 check_producer (cu);
11292
11293 return cu->producer_is_icc_lt_14;
11294 }
11295
11296 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11297 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11298 this, it was first present in GCC release 4.3.0. */
11299
11300 static int
11301 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11302 {
11303 if (!cu->checked_producer)
11304 check_producer (cu);
11305
11306 return cu->producer_is_gcc_lt_4_3;
11307 }
11308
11309 static file_and_directory
11310 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11311 {
11312 file_and_directory res;
11313
11314 /* Find the filename. Do not use dwarf2_name here, since the filename
11315 is not a source language identifier. */
11316 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11317 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11318
11319 if (res.comp_dir == NULL
11320 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11321 && IS_ABSOLUTE_PATH (res.name))
11322 {
11323 res.comp_dir_storage = ldirname (res.name);
11324 if (!res.comp_dir_storage.empty ())
11325 res.comp_dir = res.comp_dir_storage.c_str ();
11326 }
11327 if (res.comp_dir != NULL)
11328 {
11329 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11330 directory, get rid of it. */
11331 const char *cp = strchr (res.comp_dir, ':');
11332
11333 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11334 res.comp_dir = cp + 1;
11335 }
11336
11337 if (res.name == NULL)
11338 res.name = "<unknown>";
11339
11340 return res;
11341 }
11342
11343 /* Handle DW_AT_stmt_list for a compilation unit.
11344 DIE is the DW_TAG_compile_unit die for CU.
11345 COMP_DIR is the compilation directory. LOWPC is passed to
11346 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11347
11348 static void
11349 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11350 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11351 {
11352 struct dwarf2_per_objfile *dwarf2_per_objfile
11353 = cu->per_cu->dwarf2_per_objfile;
11354 struct objfile *objfile = dwarf2_per_objfile->objfile;
11355 struct attribute *attr;
11356 struct line_header line_header_local;
11357 hashval_t line_header_local_hash;
11358 void **slot;
11359 int decode_mapping;
11360
11361 gdb_assert (! cu->per_cu->is_debug_types);
11362
11363 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11364 if (attr == NULL)
11365 return;
11366
11367 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11368
11369 /* The line header hash table is only created if needed (it exists to
11370 prevent redundant reading of the line table for partial_units).
11371 If we're given a partial_unit, we'll need it. If we're given a
11372 compile_unit, then use the line header hash table if it's already
11373 created, but don't create one just yet. */
11374
11375 if (dwarf2_per_objfile->line_header_hash == NULL
11376 && die->tag == DW_TAG_partial_unit)
11377 {
11378 dwarf2_per_objfile->line_header_hash
11379 = htab_create_alloc_ex (127, line_header_hash_voidp,
11380 line_header_eq_voidp,
11381 free_line_header_voidp,
11382 &objfile->objfile_obstack,
11383 hashtab_obstack_allocate,
11384 dummy_obstack_deallocate);
11385 }
11386
11387 line_header_local.sect_off = line_offset;
11388 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11389 line_header_local_hash = line_header_hash (&line_header_local);
11390 if (dwarf2_per_objfile->line_header_hash != NULL)
11391 {
11392 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11393 &line_header_local,
11394 line_header_local_hash, NO_INSERT);
11395
11396 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11397 is not present in *SLOT (since if there is something in *SLOT then
11398 it will be for a partial_unit). */
11399 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11400 {
11401 gdb_assert (*slot != NULL);
11402 cu->line_header = (struct line_header *) *slot;
11403 return;
11404 }
11405 }
11406
11407 /* dwarf_decode_line_header does not yet provide sufficient information.
11408 We always have to call also dwarf_decode_lines for it. */
11409 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11410 if (lh == NULL)
11411 return;
11412
11413 cu->line_header = lh.release ();
11414 cu->line_header_die_owner = die;
11415
11416 if (dwarf2_per_objfile->line_header_hash == NULL)
11417 slot = NULL;
11418 else
11419 {
11420 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11421 &line_header_local,
11422 line_header_local_hash, INSERT);
11423 gdb_assert (slot != NULL);
11424 }
11425 if (slot != NULL && *slot == NULL)
11426 {
11427 /* This newly decoded line number information unit will be owned
11428 by line_header_hash hash table. */
11429 *slot = cu->line_header;
11430 cu->line_header_die_owner = NULL;
11431 }
11432 else
11433 {
11434 /* We cannot free any current entry in (*slot) as that struct line_header
11435 may be already used by multiple CUs. Create only temporary decoded
11436 line_header for this CU - it may happen at most once for each line
11437 number information unit. And if we're not using line_header_hash
11438 then this is what we want as well. */
11439 gdb_assert (die->tag != DW_TAG_partial_unit);
11440 }
11441 decode_mapping = (die->tag != DW_TAG_partial_unit);
11442 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11443 decode_mapping);
11444
11445 }
11446
11447 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11448
11449 static void
11450 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11451 {
11452 struct dwarf2_per_objfile *dwarf2_per_objfile
11453 = cu->per_cu->dwarf2_per_objfile;
11454 struct objfile *objfile = dwarf2_per_objfile->objfile;
11455 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11456 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11457 CORE_ADDR highpc = ((CORE_ADDR) 0);
11458 struct attribute *attr;
11459 struct die_info *child_die;
11460 CORE_ADDR baseaddr;
11461
11462 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11463
11464 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11465
11466 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11467 from finish_block. */
11468 if (lowpc == ((CORE_ADDR) -1))
11469 lowpc = highpc;
11470 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11471
11472 file_and_directory fnd = find_file_and_directory (die, cu);
11473
11474 prepare_one_comp_unit (cu, die, cu->language);
11475
11476 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11477 standardised yet. As a workaround for the language detection we fall
11478 back to the DW_AT_producer string. */
11479 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11480 cu->language = language_opencl;
11481
11482 /* Similar hack for Go. */
11483 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11484 set_cu_language (DW_LANG_Go, cu);
11485
11486 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
11487
11488 /* Decode line number information if present. We do this before
11489 processing child DIEs, so that the line header table is available
11490 for DW_AT_decl_file. */
11491 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11492
11493 /* Process all dies in compilation unit. */
11494 if (die->child != NULL)
11495 {
11496 child_die = die->child;
11497 while (child_die && child_die->tag)
11498 {
11499 process_die (child_die, cu);
11500 child_die = sibling_die (child_die);
11501 }
11502 }
11503
11504 /* Decode macro information, if present. Dwarf 2 macro information
11505 refers to information in the line number info statement program
11506 header, so we can only read it if we've read the header
11507 successfully. */
11508 attr = dwarf2_attr (die, DW_AT_macros, cu);
11509 if (attr == NULL)
11510 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11511 if (attr && cu->line_header)
11512 {
11513 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11514 complaint (&symfile_complaints,
11515 _("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11516
11517 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11518 }
11519 else
11520 {
11521 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11522 if (attr && cu->line_header)
11523 {
11524 unsigned int macro_offset = DW_UNSND (attr);
11525
11526 dwarf_decode_macros (cu, macro_offset, 0);
11527 }
11528 }
11529 }
11530
11531 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
11532 Create the set of symtabs used by this TU, or if this TU is sharing
11533 symtabs with another TU and the symtabs have already been created
11534 then restore those symtabs in the line header.
11535 We don't need the pc/line-number mapping for type units. */
11536
11537 static void
11538 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
11539 {
11540 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
11541 struct type_unit_group *tu_group;
11542 int first_time;
11543 struct attribute *attr;
11544 unsigned int i;
11545 struct signatured_type *sig_type;
11546
11547 gdb_assert (per_cu->is_debug_types);
11548 sig_type = (struct signatured_type *) per_cu;
11549
11550 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11551
11552 /* If we're using .gdb_index (includes -readnow) then
11553 per_cu->type_unit_group may not have been set up yet. */
11554 if (sig_type->type_unit_group == NULL)
11555 sig_type->type_unit_group = get_type_unit_group (cu, attr);
11556 tu_group = sig_type->type_unit_group;
11557
11558 /* If we've already processed this stmt_list there's no real need to
11559 do it again, we could fake it and just recreate the part we need
11560 (file name,index -> symtab mapping). If data shows this optimization
11561 is useful we can do it then. */
11562 first_time = tu_group->compunit_symtab == NULL;
11563
11564 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11565 debug info. */
11566 line_header_up lh;
11567 if (attr != NULL)
11568 {
11569 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11570 lh = dwarf_decode_line_header (line_offset, cu);
11571 }
11572 if (lh == NULL)
11573 {
11574 if (first_time)
11575 dwarf2_start_symtab (cu, "", NULL, 0);
11576 else
11577 {
11578 gdb_assert (tu_group->symtabs == NULL);
11579 restart_symtab (tu_group->compunit_symtab, "", 0);
11580 }
11581 return;
11582 }
11583
11584 cu->line_header = lh.release ();
11585 cu->line_header_die_owner = die;
11586
11587 if (first_time)
11588 {
11589 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
11590
11591 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11592 still initializing it, and our caller (a few levels up)
11593 process_full_type_unit still needs to know if this is the first
11594 time. */
11595
11596 tu_group->num_symtabs = cu->line_header->file_names.size ();
11597 tu_group->symtabs = XNEWVEC (struct symtab *,
11598 cu->line_header->file_names.size ());
11599
11600 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11601 {
11602 file_entry &fe = cu->line_header->file_names[i];
11603
11604 dwarf2_start_subfile (fe.name, fe.include_dir (cu->line_header));
11605
11606 if (current_subfile->symtab == NULL)
11607 {
11608 /* NOTE: start_subfile will recognize when it's been
11609 passed a file it has already seen. So we can't
11610 assume there's a simple mapping from
11611 cu->line_header->file_names to subfiles, plus
11612 cu->line_header->file_names may contain dups. */
11613 current_subfile->symtab
11614 = allocate_symtab (cust, current_subfile->name);
11615 }
11616
11617 fe.symtab = current_subfile->symtab;
11618 tu_group->symtabs[i] = fe.symtab;
11619 }
11620 }
11621 else
11622 {
11623 restart_symtab (tu_group->compunit_symtab, "", 0);
11624
11625 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11626 {
11627 file_entry &fe = cu->line_header->file_names[i];
11628
11629 fe.symtab = tu_group->symtabs[i];
11630 }
11631 }
11632
11633 /* The main symtab is allocated last. Type units don't have DW_AT_name
11634 so they don't have a "real" (so to speak) symtab anyway.
11635 There is later code that will assign the main symtab to all symbols
11636 that don't have one. We need to handle the case of a symbol with a
11637 missing symtab (DW_AT_decl_file) anyway. */
11638 }
11639
11640 /* Process DW_TAG_type_unit.
11641 For TUs we want to skip the first top level sibling if it's not the
11642 actual type being defined by this TU. In this case the first top
11643 level sibling is there to provide context only. */
11644
11645 static void
11646 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11647 {
11648 struct die_info *child_die;
11649
11650 prepare_one_comp_unit (cu, die, language_minimal);
11651
11652 /* Initialize (or reinitialize) the machinery for building symtabs.
11653 We do this before processing child DIEs, so that the line header table
11654 is available for DW_AT_decl_file. */
11655 setup_type_unit_groups (die, cu);
11656
11657 if (die->child != NULL)
11658 {
11659 child_die = die->child;
11660 while (child_die && child_die->tag)
11661 {
11662 process_die (child_die, cu);
11663 child_die = sibling_die (child_die);
11664 }
11665 }
11666 }
11667 \f
11668 /* DWO/DWP files.
11669
11670 http://gcc.gnu.org/wiki/DebugFission
11671 http://gcc.gnu.org/wiki/DebugFissionDWP
11672
11673 To simplify handling of both DWO files ("object" files with the DWARF info)
11674 and DWP files (a file with the DWOs packaged up into one file), we treat
11675 DWP files as having a collection of virtual DWO files. */
11676
11677 static hashval_t
11678 hash_dwo_file (const void *item)
11679 {
11680 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11681 hashval_t hash;
11682
11683 hash = htab_hash_string (dwo_file->dwo_name);
11684 if (dwo_file->comp_dir != NULL)
11685 hash += htab_hash_string (dwo_file->comp_dir);
11686 return hash;
11687 }
11688
11689 static int
11690 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11691 {
11692 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11693 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11694
11695 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11696 return 0;
11697 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11698 return lhs->comp_dir == rhs->comp_dir;
11699 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11700 }
11701
11702 /* Allocate a hash table for DWO files. */
11703
11704 static htab_t
11705 allocate_dwo_file_hash_table (struct objfile *objfile)
11706 {
11707 return htab_create_alloc_ex (41,
11708 hash_dwo_file,
11709 eq_dwo_file,
11710 NULL,
11711 &objfile->objfile_obstack,
11712 hashtab_obstack_allocate,
11713 dummy_obstack_deallocate);
11714 }
11715
11716 /* Lookup DWO file DWO_NAME. */
11717
11718 static void **
11719 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11720 const char *dwo_name,
11721 const char *comp_dir)
11722 {
11723 struct dwo_file find_entry;
11724 void **slot;
11725
11726 if (dwarf2_per_objfile->dwo_files == NULL)
11727 dwarf2_per_objfile->dwo_files
11728 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11729
11730 memset (&find_entry, 0, sizeof (find_entry));
11731 find_entry.dwo_name = dwo_name;
11732 find_entry.comp_dir = comp_dir;
11733 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11734
11735 return slot;
11736 }
11737
11738 static hashval_t
11739 hash_dwo_unit (const void *item)
11740 {
11741 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11742
11743 /* This drops the top 32 bits of the id, but is ok for a hash. */
11744 return dwo_unit->signature;
11745 }
11746
11747 static int
11748 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11749 {
11750 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11751 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11752
11753 /* The signature is assumed to be unique within the DWO file.
11754 So while object file CU dwo_id's always have the value zero,
11755 that's OK, assuming each object file DWO file has only one CU,
11756 and that's the rule for now. */
11757 return lhs->signature == rhs->signature;
11758 }
11759
11760 /* Allocate a hash table for DWO CUs,TUs.
11761 There is one of these tables for each of CUs,TUs for each DWO file. */
11762
11763 static htab_t
11764 allocate_dwo_unit_table (struct objfile *objfile)
11765 {
11766 /* Start out with a pretty small number.
11767 Generally DWO files contain only one CU and maybe some TUs. */
11768 return htab_create_alloc_ex (3,
11769 hash_dwo_unit,
11770 eq_dwo_unit,
11771 NULL,
11772 &objfile->objfile_obstack,
11773 hashtab_obstack_allocate,
11774 dummy_obstack_deallocate);
11775 }
11776
11777 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11778
11779 struct create_dwo_cu_data
11780 {
11781 struct dwo_file *dwo_file;
11782 struct dwo_unit dwo_unit;
11783 };
11784
11785 /* die_reader_func for create_dwo_cu. */
11786
11787 static void
11788 create_dwo_cu_reader (const struct die_reader_specs *reader,
11789 const gdb_byte *info_ptr,
11790 struct die_info *comp_unit_die,
11791 int has_children,
11792 void *datap)
11793 {
11794 struct dwarf2_cu *cu = reader->cu;
11795 sect_offset sect_off = cu->per_cu->sect_off;
11796 struct dwarf2_section_info *section = cu->per_cu->section;
11797 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11798 struct dwo_file *dwo_file = data->dwo_file;
11799 struct dwo_unit *dwo_unit = &data->dwo_unit;
11800 struct attribute *attr;
11801
11802 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11803 if (attr == NULL)
11804 {
11805 complaint (&symfile_complaints,
11806 _("Dwarf Error: debug entry at offset %s is missing"
11807 " its dwo_id [in module %s]"),
11808 sect_offset_str (sect_off), dwo_file->dwo_name);
11809 return;
11810 }
11811
11812 dwo_unit->dwo_file = dwo_file;
11813 dwo_unit->signature = DW_UNSND (attr);
11814 dwo_unit->section = section;
11815 dwo_unit->sect_off = sect_off;
11816 dwo_unit->length = cu->per_cu->length;
11817
11818 if (dwarf_read_debug)
11819 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11820 sect_offset_str (sect_off),
11821 hex_string (dwo_unit->signature));
11822 }
11823
11824 /* Create the dwo_units for the CUs in a DWO_FILE.
11825 Note: This function processes DWO files only, not DWP files. */
11826
11827 static void
11828 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11829 struct dwo_file &dwo_file, dwarf2_section_info &section,
11830 htab_t &cus_htab)
11831 {
11832 struct objfile *objfile = dwarf2_per_objfile->objfile;
11833 const gdb_byte *info_ptr, *end_ptr;
11834
11835 dwarf2_read_section (objfile, &section);
11836 info_ptr = section.buffer;
11837
11838 if (info_ptr == NULL)
11839 return;
11840
11841 if (dwarf_read_debug)
11842 {
11843 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11844 get_section_name (&section),
11845 get_section_file_name (&section));
11846 }
11847
11848 end_ptr = info_ptr + section.size;
11849 while (info_ptr < end_ptr)
11850 {
11851 struct dwarf2_per_cu_data per_cu;
11852 struct create_dwo_cu_data create_dwo_cu_data;
11853 struct dwo_unit *dwo_unit;
11854 void **slot;
11855 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11856
11857 memset (&create_dwo_cu_data.dwo_unit, 0,
11858 sizeof (create_dwo_cu_data.dwo_unit));
11859 memset (&per_cu, 0, sizeof (per_cu));
11860 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11861 per_cu.is_debug_types = 0;
11862 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11863 per_cu.section = &section;
11864 create_dwo_cu_data.dwo_file = &dwo_file;
11865
11866 init_cutu_and_read_dies_no_follow (
11867 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11868 info_ptr += per_cu.length;
11869
11870 // If the unit could not be parsed, skip it.
11871 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11872 continue;
11873
11874 if (cus_htab == NULL)
11875 cus_htab = allocate_dwo_unit_table (objfile);
11876
11877 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11878 *dwo_unit = create_dwo_cu_data.dwo_unit;
11879 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11880 gdb_assert (slot != NULL);
11881 if (*slot != NULL)
11882 {
11883 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11884 sect_offset dup_sect_off = dup_cu->sect_off;
11885
11886 complaint (&symfile_complaints,
11887 _("debug cu entry at offset %s is duplicate to"
11888 " the entry at offset %s, signature %s"),
11889 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11890 hex_string (dwo_unit->signature));
11891 }
11892 *slot = (void *)dwo_unit;
11893 }
11894 }
11895
11896 /* DWP file .debug_{cu,tu}_index section format:
11897 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11898
11899 DWP Version 1:
11900
11901 Both index sections have the same format, and serve to map a 64-bit
11902 signature to a set of section numbers. Each section begins with a header,
11903 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11904 indexes, and a pool of 32-bit section numbers. The index sections will be
11905 aligned at 8-byte boundaries in the file.
11906
11907 The index section header consists of:
11908
11909 V, 32 bit version number
11910 -, 32 bits unused
11911 N, 32 bit number of compilation units or type units in the index
11912 M, 32 bit number of slots in the hash table
11913
11914 Numbers are recorded using the byte order of the application binary.
11915
11916 The hash table begins at offset 16 in the section, and consists of an array
11917 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11918 order of the application binary). Unused slots in the hash table are 0.
11919 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11920
11921 The parallel table begins immediately after the hash table
11922 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11923 array of 32-bit indexes (using the byte order of the application binary),
11924 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11925 table contains a 32-bit index into the pool of section numbers. For unused
11926 hash table slots, the corresponding entry in the parallel table will be 0.
11927
11928 The pool of section numbers begins immediately following the hash table
11929 (at offset 16 + 12 * M from the beginning of the section). The pool of
11930 section numbers consists of an array of 32-bit words (using the byte order
11931 of the application binary). Each item in the array is indexed starting
11932 from 0. The hash table entry provides the index of the first section
11933 number in the set. Additional section numbers in the set follow, and the
11934 set is terminated by a 0 entry (section number 0 is not used in ELF).
11935
11936 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
11937 section must be the first entry in the set, and the .debug_abbrev.dwo must
11938 be the second entry. Other members of the set may follow in any order.
11939
11940 ---
11941
11942 DWP Version 2:
11943
11944 DWP Version 2 combines all the .debug_info, etc. sections into one,
11945 and the entries in the index tables are now offsets into these sections.
11946 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
11947 section.
11948
11949 Index Section Contents:
11950 Header
11951 Hash Table of Signatures dwp_hash_table.hash_table
11952 Parallel Table of Indices dwp_hash_table.unit_table
11953 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
11954 Table of Section Sizes dwp_hash_table.v2.sizes
11955
11956 The index section header consists of:
11957
11958 V, 32 bit version number
11959 L, 32 bit number of columns in the table of section offsets
11960 N, 32 bit number of compilation units or type units in the index
11961 M, 32 bit number of slots in the hash table
11962
11963 Numbers are recorded using the byte order of the application binary.
11964
11965 The hash table has the same format as version 1.
11966 The parallel table of indices has the same format as version 1,
11967 except that the entries are origin-1 indices into the table of sections
11968 offsets and the table of section sizes.
11969
11970 The table of offsets begins immediately following the parallel table
11971 (at offset 16 + 12 * M from the beginning of the section). The table is
11972 a two-dimensional array of 32-bit words (using the byte order of the
11973 application binary), with L columns and N+1 rows, in row-major order.
11974 Each row in the array is indexed starting from 0. The first row provides
11975 a key to the remaining rows: each column in this row provides an identifier
11976 for a debug section, and the offsets in the same column of subsequent rows
11977 refer to that section. The section identifiers are:
11978
11979 DW_SECT_INFO 1 .debug_info.dwo
11980 DW_SECT_TYPES 2 .debug_types.dwo
11981 DW_SECT_ABBREV 3 .debug_abbrev.dwo
11982 DW_SECT_LINE 4 .debug_line.dwo
11983 DW_SECT_LOC 5 .debug_loc.dwo
11984 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
11985 DW_SECT_MACINFO 7 .debug_macinfo.dwo
11986 DW_SECT_MACRO 8 .debug_macro.dwo
11987
11988 The offsets provided by the CU and TU index sections are the base offsets
11989 for the contributions made by each CU or TU to the corresponding section
11990 in the package file. Each CU and TU header contains an abbrev_offset
11991 field, used to find the abbreviations table for that CU or TU within the
11992 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
11993 be interpreted as relative to the base offset given in the index section.
11994 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
11995 should be interpreted as relative to the base offset for .debug_line.dwo,
11996 and offsets into other debug sections obtained from DWARF attributes should
11997 also be interpreted as relative to the corresponding base offset.
11998
11999 The table of sizes begins immediately following the table of offsets.
12000 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12001 with L columns and N rows, in row-major order. Each row in the array is
12002 indexed starting from 1 (row 0 is shared by the two tables).
12003
12004 ---
12005
12006 Hash table lookup is handled the same in version 1 and 2:
12007
12008 We assume that N and M will not exceed 2^32 - 1.
12009 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12010
12011 Given a 64-bit compilation unit signature or a type signature S, an entry
12012 in the hash table is located as follows:
12013
12014 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12015 the low-order k bits all set to 1.
12016
12017 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12018
12019 3) If the hash table entry at index H matches the signature, use that
12020 entry. If the hash table entry at index H is unused (all zeroes),
12021 terminate the search: the signature is not present in the table.
12022
12023 4) Let H = (H + H') modulo M. Repeat at Step 3.
12024
12025 Because M > N and H' and M are relatively prime, the search is guaranteed
12026 to stop at an unused slot or find the match. */
12027
12028 /* Create a hash table to map DWO IDs to their CU/TU entry in
12029 .debug_{info,types}.dwo in DWP_FILE.
12030 Returns NULL if there isn't one.
12031 Note: This function processes DWP files only, not DWO files. */
12032
12033 static struct dwp_hash_table *
12034 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12035 struct dwp_file *dwp_file, int is_debug_types)
12036 {
12037 struct objfile *objfile = dwarf2_per_objfile->objfile;
12038 bfd *dbfd = dwp_file->dbfd;
12039 const gdb_byte *index_ptr, *index_end;
12040 struct dwarf2_section_info *index;
12041 uint32_t version, nr_columns, nr_units, nr_slots;
12042 struct dwp_hash_table *htab;
12043
12044 if (is_debug_types)
12045 index = &dwp_file->sections.tu_index;
12046 else
12047 index = &dwp_file->sections.cu_index;
12048
12049 if (dwarf2_section_empty_p (index))
12050 return NULL;
12051 dwarf2_read_section (objfile, index);
12052
12053 index_ptr = index->buffer;
12054 index_end = index_ptr + index->size;
12055
12056 version = read_4_bytes (dbfd, index_ptr);
12057 index_ptr += 4;
12058 if (version == 2)
12059 nr_columns = read_4_bytes (dbfd, index_ptr);
12060 else
12061 nr_columns = 0;
12062 index_ptr += 4;
12063 nr_units = read_4_bytes (dbfd, index_ptr);
12064 index_ptr += 4;
12065 nr_slots = read_4_bytes (dbfd, index_ptr);
12066 index_ptr += 4;
12067
12068 if (version != 1 && version != 2)
12069 {
12070 error (_("Dwarf Error: unsupported DWP file version (%s)"
12071 " [in module %s]"),
12072 pulongest (version), dwp_file->name);
12073 }
12074 if (nr_slots != (nr_slots & -nr_slots))
12075 {
12076 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12077 " is not power of 2 [in module %s]"),
12078 pulongest (nr_slots), dwp_file->name);
12079 }
12080
12081 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12082 htab->version = version;
12083 htab->nr_columns = nr_columns;
12084 htab->nr_units = nr_units;
12085 htab->nr_slots = nr_slots;
12086 htab->hash_table = index_ptr;
12087 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12088
12089 /* Exit early if the table is empty. */
12090 if (nr_slots == 0 || nr_units == 0
12091 || (version == 2 && nr_columns == 0))
12092 {
12093 /* All must be zero. */
12094 if (nr_slots != 0 || nr_units != 0
12095 || (version == 2 && nr_columns != 0))
12096 {
12097 complaint (&symfile_complaints,
12098 _("Empty DWP but nr_slots,nr_units,nr_columns not"
12099 " all zero [in modules %s]"),
12100 dwp_file->name);
12101 }
12102 return htab;
12103 }
12104
12105 if (version == 1)
12106 {
12107 htab->section_pool.v1.indices =
12108 htab->unit_table + sizeof (uint32_t) * nr_slots;
12109 /* It's harder to decide whether the section is too small in v1.
12110 V1 is deprecated anyway so we punt. */
12111 }
12112 else
12113 {
12114 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12115 int *ids = htab->section_pool.v2.section_ids;
12116 /* Reverse map for error checking. */
12117 int ids_seen[DW_SECT_MAX + 1];
12118 int i;
12119
12120 if (nr_columns < 2)
12121 {
12122 error (_("Dwarf Error: bad DWP hash table, too few columns"
12123 " in section table [in module %s]"),
12124 dwp_file->name);
12125 }
12126 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12127 {
12128 error (_("Dwarf Error: bad DWP hash table, too many columns"
12129 " in section table [in module %s]"),
12130 dwp_file->name);
12131 }
12132 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12133 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12134 for (i = 0; i < nr_columns; ++i)
12135 {
12136 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12137
12138 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12139 {
12140 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12141 " in section table [in module %s]"),
12142 id, dwp_file->name);
12143 }
12144 if (ids_seen[id] != -1)
12145 {
12146 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12147 " id %d in section table [in module %s]"),
12148 id, dwp_file->name);
12149 }
12150 ids_seen[id] = i;
12151 ids[i] = id;
12152 }
12153 /* Must have exactly one info or types section. */
12154 if (((ids_seen[DW_SECT_INFO] != -1)
12155 + (ids_seen[DW_SECT_TYPES] != -1))
12156 != 1)
12157 {
12158 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12159 " DWO info/types section [in module %s]"),
12160 dwp_file->name);
12161 }
12162 /* Must have an abbrev section. */
12163 if (ids_seen[DW_SECT_ABBREV] == -1)
12164 {
12165 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12166 " section [in module %s]"),
12167 dwp_file->name);
12168 }
12169 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12170 htab->section_pool.v2.sizes =
12171 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12172 * nr_units * nr_columns);
12173 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12174 * nr_units * nr_columns))
12175 > index_end)
12176 {
12177 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12178 " [in module %s]"),
12179 dwp_file->name);
12180 }
12181 }
12182
12183 return htab;
12184 }
12185
12186 /* Update SECTIONS with the data from SECTP.
12187
12188 This function is like the other "locate" section routines that are
12189 passed to bfd_map_over_sections, but in this context the sections to
12190 read comes from the DWP V1 hash table, not the full ELF section table.
12191
12192 The result is non-zero for success, or zero if an error was found. */
12193
12194 static int
12195 locate_v1_virtual_dwo_sections (asection *sectp,
12196 struct virtual_v1_dwo_sections *sections)
12197 {
12198 const struct dwop_section_names *names = &dwop_section_names;
12199
12200 if (section_is_p (sectp->name, &names->abbrev_dwo))
12201 {
12202 /* There can be only one. */
12203 if (sections->abbrev.s.section != NULL)
12204 return 0;
12205 sections->abbrev.s.section = sectp;
12206 sections->abbrev.size = bfd_get_section_size (sectp);
12207 }
12208 else if (section_is_p (sectp->name, &names->info_dwo)
12209 || section_is_p (sectp->name, &names->types_dwo))
12210 {
12211 /* There can be only one. */
12212 if (sections->info_or_types.s.section != NULL)
12213 return 0;
12214 sections->info_or_types.s.section = sectp;
12215 sections->info_or_types.size = bfd_get_section_size (sectp);
12216 }
12217 else if (section_is_p (sectp->name, &names->line_dwo))
12218 {
12219 /* There can be only one. */
12220 if (sections->line.s.section != NULL)
12221 return 0;
12222 sections->line.s.section = sectp;
12223 sections->line.size = bfd_get_section_size (sectp);
12224 }
12225 else if (section_is_p (sectp->name, &names->loc_dwo))
12226 {
12227 /* There can be only one. */
12228 if (sections->loc.s.section != NULL)
12229 return 0;
12230 sections->loc.s.section = sectp;
12231 sections->loc.size = bfd_get_section_size (sectp);
12232 }
12233 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12234 {
12235 /* There can be only one. */
12236 if (sections->macinfo.s.section != NULL)
12237 return 0;
12238 sections->macinfo.s.section = sectp;
12239 sections->macinfo.size = bfd_get_section_size (sectp);
12240 }
12241 else if (section_is_p (sectp->name, &names->macro_dwo))
12242 {
12243 /* There can be only one. */
12244 if (sections->macro.s.section != NULL)
12245 return 0;
12246 sections->macro.s.section = sectp;
12247 sections->macro.size = bfd_get_section_size (sectp);
12248 }
12249 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12250 {
12251 /* There can be only one. */
12252 if (sections->str_offsets.s.section != NULL)
12253 return 0;
12254 sections->str_offsets.s.section = sectp;
12255 sections->str_offsets.size = bfd_get_section_size (sectp);
12256 }
12257 else
12258 {
12259 /* No other kind of section is valid. */
12260 return 0;
12261 }
12262
12263 return 1;
12264 }
12265
12266 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12267 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12268 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12269 This is for DWP version 1 files. */
12270
12271 static struct dwo_unit *
12272 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12273 struct dwp_file *dwp_file,
12274 uint32_t unit_index,
12275 const char *comp_dir,
12276 ULONGEST signature, int is_debug_types)
12277 {
12278 struct objfile *objfile = dwarf2_per_objfile->objfile;
12279 const struct dwp_hash_table *dwp_htab =
12280 is_debug_types ? dwp_file->tus : dwp_file->cus;
12281 bfd *dbfd = dwp_file->dbfd;
12282 const char *kind = is_debug_types ? "TU" : "CU";
12283 struct dwo_file *dwo_file;
12284 struct dwo_unit *dwo_unit;
12285 struct virtual_v1_dwo_sections sections;
12286 void **dwo_file_slot;
12287 int i;
12288
12289 gdb_assert (dwp_file->version == 1);
12290
12291 if (dwarf_read_debug)
12292 {
12293 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12294 kind,
12295 pulongest (unit_index), hex_string (signature),
12296 dwp_file->name);
12297 }
12298
12299 /* Fetch the sections of this DWO unit.
12300 Put a limit on the number of sections we look for so that bad data
12301 doesn't cause us to loop forever. */
12302
12303 #define MAX_NR_V1_DWO_SECTIONS \
12304 (1 /* .debug_info or .debug_types */ \
12305 + 1 /* .debug_abbrev */ \
12306 + 1 /* .debug_line */ \
12307 + 1 /* .debug_loc */ \
12308 + 1 /* .debug_str_offsets */ \
12309 + 1 /* .debug_macro or .debug_macinfo */ \
12310 + 1 /* trailing zero */)
12311
12312 memset (&sections, 0, sizeof (sections));
12313
12314 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12315 {
12316 asection *sectp;
12317 uint32_t section_nr =
12318 read_4_bytes (dbfd,
12319 dwp_htab->section_pool.v1.indices
12320 + (unit_index + i) * sizeof (uint32_t));
12321
12322 if (section_nr == 0)
12323 break;
12324 if (section_nr >= dwp_file->num_sections)
12325 {
12326 error (_("Dwarf Error: bad DWP hash table, section number too large"
12327 " [in module %s]"),
12328 dwp_file->name);
12329 }
12330
12331 sectp = dwp_file->elf_sections[section_nr];
12332 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12333 {
12334 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12335 " [in module %s]"),
12336 dwp_file->name);
12337 }
12338 }
12339
12340 if (i < 2
12341 || dwarf2_section_empty_p (&sections.info_or_types)
12342 || dwarf2_section_empty_p (&sections.abbrev))
12343 {
12344 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12345 " [in module %s]"),
12346 dwp_file->name);
12347 }
12348 if (i == MAX_NR_V1_DWO_SECTIONS)
12349 {
12350 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12351 " [in module %s]"),
12352 dwp_file->name);
12353 }
12354
12355 /* It's easier for the rest of the code if we fake a struct dwo_file and
12356 have dwo_unit "live" in that. At least for now.
12357
12358 The DWP file can be made up of a random collection of CUs and TUs.
12359 However, for each CU + set of TUs that came from the same original DWO
12360 file, we can combine them back into a virtual DWO file to save space
12361 (fewer struct dwo_file objects to allocate). Remember that for really
12362 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12363
12364 std::string virtual_dwo_name =
12365 string_printf ("virtual-dwo/%d-%d-%d-%d",
12366 get_section_id (&sections.abbrev),
12367 get_section_id (&sections.line),
12368 get_section_id (&sections.loc),
12369 get_section_id (&sections.str_offsets));
12370 /* Can we use an existing virtual DWO file? */
12371 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12372 virtual_dwo_name.c_str (),
12373 comp_dir);
12374 /* Create one if necessary. */
12375 if (*dwo_file_slot == NULL)
12376 {
12377 if (dwarf_read_debug)
12378 {
12379 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12380 virtual_dwo_name.c_str ());
12381 }
12382 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12383 dwo_file->dwo_name
12384 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12385 virtual_dwo_name.c_str (),
12386 virtual_dwo_name.size ());
12387 dwo_file->comp_dir = comp_dir;
12388 dwo_file->sections.abbrev = sections.abbrev;
12389 dwo_file->sections.line = sections.line;
12390 dwo_file->sections.loc = sections.loc;
12391 dwo_file->sections.macinfo = sections.macinfo;
12392 dwo_file->sections.macro = sections.macro;
12393 dwo_file->sections.str_offsets = sections.str_offsets;
12394 /* The "str" section is global to the entire DWP file. */
12395 dwo_file->sections.str = dwp_file->sections.str;
12396 /* The info or types section is assigned below to dwo_unit,
12397 there's no need to record it in dwo_file.
12398 Also, we can't simply record type sections in dwo_file because
12399 we record a pointer into the vector in dwo_unit. As we collect more
12400 types we'll grow the vector and eventually have to reallocate space
12401 for it, invalidating all copies of pointers into the previous
12402 contents. */
12403 *dwo_file_slot = dwo_file;
12404 }
12405 else
12406 {
12407 if (dwarf_read_debug)
12408 {
12409 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12410 virtual_dwo_name.c_str ());
12411 }
12412 dwo_file = (struct dwo_file *) *dwo_file_slot;
12413 }
12414
12415 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12416 dwo_unit->dwo_file = dwo_file;
12417 dwo_unit->signature = signature;
12418 dwo_unit->section =
12419 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12420 *dwo_unit->section = sections.info_or_types;
12421 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12422
12423 return dwo_unit;
12424 }
12425
12426 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12427 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12428 piece within that section used by a TU/CU, return a virtual section
12429 of just that piece. */
12430
12431 static struct dwarf2_section_info
12432 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12433 struct dwarf2_section_info *section,
12434 bfd_size_type offset, bfd_size_type size)
12435 {
12436 struct dwarf2_section_info result;
12437 asection *sectp;
12438
12439 gdb_assert (section != NULL);
12440 gdb_assert (!section->is_virtual);
12441
12442 memset (&result, 0, sizeof (result));
12443 result.s.containing_section = section;
12444 result.is_virtual = 1;
12445
12446 if (size == 0)
12447 return result;
12448
12449 sectp = get_section_bfd_section (section);
12450
12451 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12452 bounds of the real section. This is a pretty-rare event, so just
12453 flag an error (easier) instead of a warning and trying to cope. */
12454 if (sectp == NULL
12455 || offset + size > bfd_get_section_size (sectp))
12456 {
12457 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12458 " in section %s [in module %s]"),
12459 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12460 objfile_name (dwarf2_per_objfile->objfile));
12461 }
12462
12463 result.virtual_offset = offset;
12464 result.size = size;
12465 return result;
12466 }
12467
12468 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12469 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12470 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12471 This is for DWP version 2 files. */
12472
12473 static struct dwo_unit *
12474 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12475 struct dwp_file *dwp_file,
12476 uint32_t unit_index,
12477 const char *comp_dir,
12478 ULONGEST signature, int is_debug_types)
12479 {
12480 struct objfile *objfile = dwarf2_per_objfile->objfile;
12481 const struct dwp_hash_table *dwp_htab =
12482 is_debug_types ? dwp_file->tus : dwp_file->cus;
12483 bfd *dbfd = dwp_file->dbfd;
12484 const char *kind = is_debug_types ? "TU" : "CU";
12485 struct dwo_file *dwo_file;
12486 struct dwo_unit *dwo_unit;
12487 struct virtual_v2_dwo_sections sections;
12488 void **dwo_file_slot;
12489 int i;
12490
12491 gdb_assert (dwp_file->version == 2);
12492
12493 if (dwarf_read_debug)
12494 {
12495 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12496 kind,
12497 pulongest (unit_index), hex_string (signature),
12498 dwp_file->name);
12499 }
12500
12501 /* Fetch the section offsets of this DWO unit. */
12502
12503 memset (&sections, 0, sizeof (sections));
12504
12505 for (i = 0; i < dwp_htab->nr_columns; ++i)
12506 {
12507 uint32_t offset = read_4_bytes (dbfd,
12508 dwp_htab->section_pool.v2.offsets
12509 + (((unit_index - 1) * dwp_htab->nr_columns
12510 + i)
12511 * sizeof (uint32_t)));
12512 uint32_t size = read_4_bytes (dbfd,
12513 dwp_htab->section_pool.v2.sizes
12514 + (((unit_index - 1) * dwp_htab->nr_columns
12515 + i)
12516 * sizeof (uint32_t)));
12517
12518 switch (dwp_htab->section_pool.v2.section_ids[i])
12519 {
12520 case DW_SECT_INFO:
12521 case DW_SECT_TYPES:
12522 sections.info_or_types_offset = offset;
12523 sections.info_or_types_size = size;
12524 break;
12525 case DW_SECT_ABBREV:
12526 sections.abbrev_offset = offset;
12527 sections.abbrev_size = size;
12528 break;
12529 case DW_SECT_LINE:
12530 sections.line_offset = offset;
12531 sections.line_size = size;
12532 break;
12533 case DW_SECT_LOC:
12534 sections.loc_offset = offset;
12535 sections.loc_size = size;
12536 break;
12537 case DW_SECT_STR_OFFSETS:
12538 sections.str_offsets_offset = offset;
12539 sections.str_offsets_size = size;
12540 break;
12541 case DW_SECT_MACINFO:
12542 sections.macinfo_offset = offset;
12543 sections.macinfo_size = size;
12544 break;
12545 case DW_SECT_MACRO:
12546 sections.macro_offset = offset;
12547 sections.macro_size = size;
12548 break;
12549 }
12550 }
12551
12552 /* It's easier for the rest of the code if we fake a struct dwo_file and
12553 have dwo_unit "live" in that. At least for now.
12554
12555 The DWP file can be made up of a random collection of CUs and TUs.
12556 However, for each CU + set of TUs that came from the same original DWO
12557 file, we can combine them back into a virtual DWO file to save space
12558 (fewer struct dwo_file objects to allocate). Remember that for really
12559 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12560
12561 std::string virtual_dwo_name =
12562 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12563 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12564 (long) (sections.line_size ? sections.line_offset : 0),
12565 (long) (sections.loc_size ? sections.loc_offset : 0),
12566 (long) (sections.str_offsets_size
12567 ? sections.str_offsets_offset : 0));
12568 /* Can we use an existing virtual DWO file? */
12569 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12570 virtual_dwo_name.c_str (),
12571 comp_dir);
12572 /* Create one if necessary. */
12573 if (*dwo_file_slot == NULL)
12574 {
12575 if (dwarf_read_debug)
12576 {
12577 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12578 virtual_dwo_name.c_str ());
12579 }
12580 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12581 dwo_file->dwo_name
12582 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12583 virtual_dwo_name.c_str (),
12584 virtual_dwo_name.size ());
12585 dwo_file->comp_dir = comp_dir;
12586 dwo_file->sections.abbrev =
12587 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12588 sections.abbrev_offset, sections.abbrev_size);
12589 dwo_file->sections.line =
12590 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12591 sections.line_offset, sections.line_size);
12592 dwo_file->sections.loc =
12593 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12594 sections.loc_offset, sections.loc_size);
12595 dwo_file->sections.macinfo =
12596 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12597 sections.macinfo_offset, sections.macinfo_size);
12598 dwo_file->sections.macro =
12599 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12600 sections.macro_offset, sections.macro_size);
12601 dwo_file->sections.str_offsets =
12602 create_dwp_v2_section (dwarf2_per_objfile,
12603 &dwp_file->sections.str_offsets,
12604 sections.str_offsets_offset,
12605 sections.str_offsets_size);
12606 /* The "str" section is global to the entire DWP file. */
12607 dwo_file->sections.str = dwp_file->sections.str;
12608 /* The info or types section is assigned below to dwo_unit,
12609 there's no need to record it in dwo_file.
12610 Also, we can't simply record type sections in dwo_file because
12611 we record a pointer into the vector in dwo_unit. As we collect more
12612 types we'll grow the vector and eventually have to reallocate space
12613 for it, invalidating all copies of pointers into the previous
12614 contents. */
12615 *dwo_file_slot = dwo_file;
12616 }
12617 else
12618 {
12619 if (dwarf_read_debug)
12620 {
12621 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12622 virtual_dwo_name.c_str ());
12623 }
12624 dwo_file = (struct dwo_file *) *dwo_file_slot;
12625 }
12626
12627 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12628 dwo_unit->dwo_file = dwo_file;
12629 dwo_unit->signature = signature;
12630 dwo_unit->section =
12631 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12632 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12633 is_debug_types
12634 ? &dwp_file->sections.types
12635 : &dwp_file->sections.info,
12636 sections.info_or_types_offset,
12637 sections.info_or_types_size);
12638 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12639
12640 return dwo_unit;
12641 }
12642
12643 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12644 Returns NULL if the signature isn't found. */
12645
12646 static struct dwo_unit *
12647 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12648 struct dwp_file *dwp_file, const char *comp_dir,
12649 ULONGEST signature, int is_debug_types)
12650 {
12651 const struct dwp_hash_table *dwp_htab =
12652 is_debug_types ? dwp_file->tus : dwp_file->cus;
12653 bfd *dbfd = dwp_file->dbfd;
12654 uint32_t mask = dwp_htab->nr_slots - 1;
12655 uint32_t hash = signature & mask;
12656 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12657 unsigned int i;
12658 void **slot;
12659 struct dwo_unit find_dwo_cu;
12660
12661 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12662 find_dwo_cu.signature = signature;
12663 slot = htab_find_slot (is_debug_types
12664 ? dwp_file->loaded_tus
12665 : dwp_file->loaded_cus,
12666 &find_dwo_cu, INSERT);
12667
12668 if (*slot != NULL)
12669 return (struct dwo_unit *) *slot;
12670
12671 /* Use a for loop so that we don't loop forever on bad debug info. */
12672 for (i = 0; i < dwp_htab->nr_slots; ++i)
12673 {
12674 ULONGEST signature_in_table;
12675
12676 signature_in_table =
12677 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12678 if (signature_in_table == signature)
12679 {
12680 uint32_t unit_index =
12681 read_4_bytes (dbfd,
12682 dwp_htab->unit_table + hash * sizeof (uint32_t));
12683
12684 if (dwp_file->version == 1)
12685 {
12686 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12687 dwp_file, unit_index,
12688 comp_dir, signature,
12689 is_debug_types);
12690 }
12691 else
12692 {
12693 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12694 dwp_file, unit_index,
12695 comp_dir, signature,
12696 is_debug_types);
12697 }
12698 return (struct dwo_unit *) *slot;
12699 }
12700 if (signature_in_table == 0)
12701 return NULL;
12702 hash = (hash + hash2) & mask;
12703 }
12704
12705 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12706 " [in module %s]"),
12707 dwp_file->name);
12708 }
12709
12710 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12711 Open the file specified by FILE_NAME and hand it off to BFD for
12712 preliminary analysis. Return a newly initialized bfd *, which
12713 includes a canonicalized copy of FILE_NAME.
12714 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12715 SEARCH_CWD is true if the current directory is to be searched.
12716 It will be searched before debug-file-directory.
12717 If successful, the file is added to the bfd include table of the
12718 objfile's bfd (see gdb_bfd_record_inclusion).
12719 If unable to find/open the file, return NULL.
12720 NOTE: This function is derived from symfile_bfd_open. */
12721
12722 static gdb_bfd_ref_ptr
12723 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12724 const char *file_name, int is_dwp, int search_cwd)
12725 {
12726 int desc;
12727 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12728 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12729 to debug_file_directory. */
12730 const char *search_path;
12731 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12732
12733 gdb::unique_xmalloc_ptr<char> search_path_holder;
12734 if (search_cwd)
12735 {
12736 if (*debug_file_directory != '\0')
12737 {
12738 search_path_holder.reset (concat (".", dirname_separator_string,
12739 debug_file_directory,
12740 (char *) NULL));
12741 search_path = search_path_holder.get ();
12742 }
12743 else
12744 search_path = ".";
12745 }
12746 else
12747 search_path = debug_file_directory;
12748
12749 openp_flags flags = OPF_RETURN_REALPATH;
12750 if (is_dwp)
12751 flags |= OPF_SEARCH_IN_PATH;
12752
12753 gdb::unique_xmalloc_ptr<char> absolute_name;
12754 desc = openp (search_path, flags, file_name,
12755 O_RDONLY | O_BINARY, &absolute_name);
12756 if (desc < 0)
12757 return NULL;
12758
12759 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12760 gnutarget, desc));
12761 if (sym_bfd == NULL)
12762 return NULL;
12763 bfd_set_cacheable (sym_bfd.get (), 1);
12764
12765 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12766 return NULL;
12767
12768 /* Success. Record the bfd as having been included by the objfile's bfd.
12769 This is important because things like demangled_names_hash lives in the
12770 objfile's per_bfd space and may have references to things like symbol
12771 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12772 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12773
12774 return sym_bfd;
12775 }
12776
12777 /* Try to open DWO file FILE_NAME.
12778 COMP_DIR is the DW_AT_comp_dir attribute.
12779 The result is the bfd handle of the file.
12780 If there is a problem finding or opening the file, return NULL.
12781 Upon success, the canonicalized path of the file is stored in the bfd,
12782 same as symfile_bfd_open. */
12783
12784 static gdb_bfd_ref_ptr
12785 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12786 const char *file_name, const char *comp_dir)
12787 {
12788 if (IS_ABSOLUTE_PATH (file_name))
12789 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12790 0 /*is_dwp*/, 0 /*search_cwd*/);
12791
12792 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12793
12794 if (comp_dir != NULL)
12795 {
12796 char *path_to_try = concat (comp_dir, SLASH_STRING,
12797 file_name, (char *) NULL);
12798
12799 /* NOTE: If comp_dir is a relative path, this will also try the
12800 search path, which seems useful. */
12801 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12802 path_to_try,
12803 0 /*is_dwp*/,
12804 1 /*search_cwd*/));
12805 xfree (path_to_try);
12806 if (abfd != NULL)
12807 return abfd;
12808 }
12809
12810 /* That didn't work, try debug-file-directory, which, despite its name,
12811 is a list of paths. */
12812
12813 if (*debug_file_directory == '\0')
12814 return NULL;
12815
12816 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12817 0 /*is_dwp*/, 1 /*search_cwd*/);
12818 }
12819
12820 /* This function is mapped across the sections and remembers the offset and
12821 size of each of the DWO debugging sections we are interested in. */
12822
12823 static void
12824 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12825 {
12826 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12827 const struct dwop_section_names *names = &dwop_section_names;
12828
12829 if (section_is_p (sectp->name, &names->abbrev_dwo))
12830 {
12831 dwo_sections->abbrev.s.section = sectp;
12832 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12833 }
12834 else if (section_is_p (sectp->name, &names->info_dwo))
12835 {
12836 dwo_sections->info.s.section = sectp;
12837 dwo_sections->info.size = bfd_get_section_size (sectp);
12838 }
12839 else if (section_is_p (sectp->name, &names->line_dwo))
12840 {
12841 dwo_sections->line.s.section = sectp;
12842 dwo_sections->line.size = bfd_get_section_size (sectp);
12843 }
12844 else if (section_is_p (sectp->name, &names->loc_dwo))
12845 {
12846 dwo_sections->loc.s.section = sectp;
12847 dwo_sections->loc.size = bfd_get_section_size (sectp);
12848 }
12849 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12850 {
12851 dwo_sections->macinfo.s.section = sectp;
12852 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12853 }
12854 else if (section_is_p (sectp->name, &names->macro_dwo))
12855 {
12856 dwo_sections->macro.s.section = sectp;
12857 dwo_sections->macro.size = bfd_get_section_size (sectp);
12858 }
12859 else if (section_is_p (sectp->name, &names->str_dwo))
12860 {
12861 dwo_sections->str.s.section = sectp;
12862 dwo_sections->str.size = bfd_get_section_size (sectp);
12863 }
12864 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12865 {
12866 dwo_sections->str_offsets.s.section = sectp;
12867 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12868 }
12869 else if (section_is_p (sectp->name, &names->types_dwo))
12870 {
12871 struct dwarf2_section_info type_section;
12872
12873 memset (&type_section, 0, sizeof (type_section));
12874 type_section.s.section = sectp;
12875 type_section.size = bfd_get_section_size (sectp);
12876 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
12877 &type_section);
12878 }
12879 }
12880
12881 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12882 by PER_CU. This is for the non-DWP case.
12883 The result is NULL if DWO_NAME can't be found. */
12884
12885 static struct dwo_file *
12886 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12887 const char *dwo_name, const char *comp_dir)
12888 {
12889 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12890 struct objfile *objfile = dwarf2_per_objfile->objfile;
12891
12892 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
12893 if (dbfd == NULL)
12894 {
12895 if (dwarf_read_debug)
12896 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12897 return NULL;
12898 }
12899
12900 /* We use a unique pointer here, despite the obstack allocation,
12901 because a dwo_file needs some cleanup if it is abandoned. */
12902 dwo_file_up dwo_file (OBSTACK_ZALLOC (&objfile->objfile_obstack,
12903 struct dwo_file));
12904 dwo_file->dwo_name = dwo_name;
12905 dwo_file->comp_dir = comp_dir;
12906 dwo_file->dbfd = dbfd.release ();
12907
12908 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
12909 &dwo_file->sections);
12910
12911 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
12912 dwo_file->cus);
12913
12914 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12915 dwo_file->sections.types, dwo_file->tus);
12916
12917 if (dwarf_read_debug)
12918 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12919
12920 return dwo_file.release ();
12921 }
12922
12923 /* This function is mapped across the sections and remembers the offset and
12924 size of each of the DWP debugging sections common to version 1 and 2 that
12925 we are interested in. */
12926
12927 static void
12928 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12929 void *dwp_file_ptr)
12930 {
12931 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12932 const struct dwop_section_names *names = &dwop_section_names;
12933 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12934
12935 /* Record the ELF section number for later lookup: this is what the
12936 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12937 gdb_assert (elf_section_nr < dwp_file->num_sections);
12938 dwp_file->elf_sections[elf_section_nr] = sectp;
12939
12940 /* Look for specific sections that we need. */
12941 if (section_is_p (sectp->name, &names->str_dwo))
12942 {
12943 dwp_file->sections.str.s.section = sectp;
12944 dwp_file->sections.str.size = bfd_get_section_size (sectp);
12945 }
12946 else if (section_is_p (sectp->name, &names->cu_index))
12947 {
12948 dwp_file->sections.cu_index.s.section = sectp;
12949 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
12950 }
12951 else if (section_is_p (sectp->name, &names->tu_index))
12952 {
12953 dwp_file->sections.tu_index.s.section = sectp;
12954 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
12955 }
12956 }
12957
12958 /* This function is mapped across the sections and remembers the offset and
12959 size of each of the DWP version 2 debugging sections that we are interested
12960 in. This is split into a separate function because we don't know if we
12961 have version 1 or 2 until we parse the cu_index/tu_index sections. */
12962
12963 static void
12964 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
12965 {
12966 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12967 const struct dwop_section_names *names = &dwop_section_names;
12968 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12969
12970 /* Record the ELF section number for later lookup: this is what the
12971 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12972 gdb_assert (elf_section_nr < dwp_file->num_sections);
12973 dwp_file->elf_sections[elf_section_nr] = sectp;
12974
12975 /* Look for specific sections that we need. */
12976 if (section_is_p (sectp->name, &names->abbrev_dwo))
12977 {
12978 dwp_file->sections.abbrev.s.section = sectp;
12979 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
12980 }
12981 else if (section_is_p (sectp->name, &names->info_dwo))
12982 {
12983 dwp_file->sections.info.s.section = sectp;
12984 dwp_file->sections.info.size = bfd_get_section_size (sectp);
12985 }
12986 else if (section_is_p (sectp->name, &names->line_dwo))
12987 {
12988 dwp_file->sections.line.s.section = sectp;
12989 dwp_file->sections.line.size = bfd_get_section_size (sectp);
12990 }
12991 else if (section_is_p (sectp->name, &names->loc_dwo))
12992 {
12993 dwp_file->sections.loc.s.section = sectp;
12994 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
12995 }
12996 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12997 {
12998 dwp_file->sections.macinfo.s.section = sectp;
12999 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13000 }
13001 else if (section_is_p (sectp->name, &names->macro_dwo))
13002 {
13003 dwp_file->sections.macro.s.section = sectp;
13004 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13005 }
13006 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13007 {
13008 dwp_file->sections.str_offsets.s.section = sectp;
13009 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13010 }
13011 else if (section_is_p (sectp->name, &names->types_dwo))
13012 {
13013 dwp_file->sections.types.s.section = sectp;
13014 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13015 }
13016 }
13017
13018 /* Hash function for dwp_file loaded CUs/TUs. */
13019
13020 static hashval_t
13021 hash_dwp_loaded_cutus (const void *item)
13022 {
13023 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13024
13025 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13026 return dwo_unit->signature;
13027 }
13028
13029 /* Equality function for dwp_file loaded CUs/TUs. */
13030
13031 static int
13032 eq_dwp_loaded_cutus (const void *a, const void *b)
13033 {
13034 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13035 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13036
13037 return dua->signature == dub->signature;
13038 }
13039
13040 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13041
13042 static htab_t
13043 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13044 {
13045 return htab_create_alloc_ex (3,
13046 hash_dwp_loaded_cutus,
13047 eq_dwp_loaded_cutus,
13048 NULL,
13049 &objfile->objfile_obstack,
13050 hashtab_obstack_allocate,
13051 dummy_obstack_deallocate);
13052 }
13053
13054 /* Try to open DWP file FILE_NAME.
13055 The result is the bfd handle of the file.
13056 If there is a problem finding or opening the file, return NULL.
13057 Upon success, the canonicalized path of the file is stored in the bfd,
13058 same as symfile_bfd_open. */
13059
13060 static gdb_bfd_ref_ptr
13061 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13062 const char *file_name)
13063 {
13064 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13065 1 /*is_dwp*/,
13066 1 /*search_cwd*/));
13067 if (abfd != NULL)
13068 return abfd;
13069
13070 /* Work around upstream bug 15652.
13071 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13072 [Whether that's a "bug" is debatable, but it is getting in our way.]
13073 We have no real idea where the dwp file is, because gdb's realpath-ing
13074 of the executable's path may have discarded the needed info.
13075 [IWBN if the dwp file name was recorded in the executable, akin to
13076 .gnu_debuglink, but that doesn't exist yet.]
13077 Strip the directory from FILE_NAME and search again. */
13078 if (*debug_file_directory != '\0')
13079 {
13080 /* Don't implicitly search the current directory here.
13081 If the user wants to search "." to handle this case,
13082 it must be added to debug-file-directory. */
13083 return try_open_dwop_file (dwarf2_per_objfile,
13084 lbasename (file_name), 1 /*is_dwp*/,
13085 0 /*search_cwd*/);
13086 }
13087
13088 return NULL;
13089 }
13090
13091 /* Initialize the use of the DWP file for the current objfile.
13092 By convention the name of the DWP file is ${objfile}.dwp.
13093 The result is NULL if it can't be found. */
13094
13095 static struct dwp_file *
13096 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13097 {
13098 struct objfile *objfile = dwarf2_per_objfile->objfile;
13099 struct dwp_file *dwp_file;
13100
13101 /* Try to find first .dwp for the binary file before any symbolic links
13102 resolving. */
13103
13104 /* If the objfile is a debug file, find the name of the real binary
13105 file and get the name of dwp file from there. */
13106 std::string dwp_name;
13107 if (objfile->separate_debug_objfile_backlink != NULL)
13108 {
13109 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13110 const char *backlink_basename = lbasename (backlink->original_name);
13111
13112 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13113 }
13114 else
13115 dwp_name = objfile->original_name;
13116
13117 dwp_name += ".dwp";
13118
13119 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13120 if (dbfd == NULL
13121 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13122 {
13123 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13124 dwp_name = objfile_name (objfile);
13125 dwp_name += ".dwp";
13126 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13127 }
13128
13129 if (dbfd == NULL)
13130 {
13131 if (dwarf_read_debug)
13132 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13133 return NULL;
13134 }
13135 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
13136 dwp_file->name = bfd_get_filename (dbfd.get ());
13137 dwp_file->dbfd = dbfd.release ();
13138
13139 /* +1: section 0 is unused */
13140 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
13141 dwp_file->elf_sections =
13142 OBSTACK_CALLOC (&objfile->objfile_obstack,
13143 dwp_file->num_sections, asection *);
13144
13145 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_common_dwp_sections,
13146 dwp_file);
13147
13148 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file, 0);
13149
13150 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file, 1);
13151
13152 /* The DWP file version is stored in the hash table. Oh well. */
13153 if (dwp_file->cus && dwp_file->tus
13154 && dwp_file->cus->version != dwp_file->tus->version)
13155 {
13156 /* Technically speaking, we should try to limp along, but this is
13157 pretty bizarre. We use pulongest here because that's the established
13158 portability solution (e.g, we cannot use %u for uint32_t). */
13159 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13160 " TU version %s [in DWP file %s]"),
13161 pulongest (dwp_file->cus->version),
13162 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13163 }
13164
13165 if (dwp_file->cus)
13166 dwp_file->version = dwp_file->cus->version;
13167 else if (dwp_file->tus)
13168 dwp_file->version = dwp_file->tus->version;
13169 else
13170 dwp_file->version = 2;
13171
13172 if (dwp_file->version == 2)
13173 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_v2_dwp_sections,
13174 dwp_file);
13175
13176 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13177 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13178
13179 if (dwarf_read_debug)
13180 {
13181 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13182 fprintf_unfiltered (gdb_stdlog,
13183 " %s CUs, %s TUs\n",
13184 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13185 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13186 }
13187
13188 return dwp_file;
13189 }
13190
13191 /* Wrapper around open_and_init_dwp_file, only open it once. */
13192
13193 static struct dwp_file *
13194 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13195 {
13196 if (! dwarf2_per_objfile->dwp_checked)
13197 {
13198 dwarf2_per_objfile->dwp_file
13199 = open_and_init_dwp_file (dwarf2_per_objfile);
13200 dwarf2_per_objfile->dwp_checked = 1;
13201 }
13202 return dwarf2_per_objfile->dwp_file;
13203 }
13204
13205 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13206 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13207 or in the DWP file for the objfile, referenced by THIS_UNIT.
13208 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13209 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13210
13211 This is called, for example, when wanting to read a variable with a
13212 complex location. Therefore we don't want to do file i/o for every call.
13213 Therefore we don't want to look for a DWO file on every call.
13214 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13215 then we check if we've already seen DWO_NAME, and only THEN do we check
13216 for a DWO file.
13217
13218 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13219 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13220
13221 static struct dwo_unit *
13222 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13223 const char *dwo_name, const char *comp_dir,
13224 ULONGEST signature, int is_debug_types)
13225 {
13226 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13227 struct objfile *objfile = dwarf2_per_objfile->objfile;
13228 const char *kind = is_debug_types ? "TU" : "CU";
13229 void **dwo_file_slot;
13230 struct dwo_file *dwo_file;
13231 struct dwp_file *dwp_file;
13232
13233 /* First see if there's a DWP file.
13234 If we have a DWP file but didn't find the DWO inside it, don't
13235 look for the original DWO file. It makes gdb behave differently
13236 depending on whether one is debugging in the build tree. */
13237
13238 dwp_file = get_dwp_file (dwarf2_per_objfile);
13239 if (dwp_file != NULL)
13240 {
13241 const struct dwp_hash_table *dwp_htab =
13242 is_debug_types ? dwp_file->tus : dwp_file->cus;
13243
13244 if (dwp_htab != NULL)
13245 {
13246 struct dwo_unit *dwo_cutu =
13247 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13248 signature, is_debug_types);
13249
13250 if (dwo_cutu != NULL)
13251 {
13252 if (dwarf_read_debug)
13253 {
13254 fprintf_unfiltered (gdb_stdlog,
13255 "Virtual DWO %s %s found: @%s\n",
13256 kind, hex_string (signature),
13257 host_address_to_string (dwo_cutu));
13258 }
13259 return dwo_cutu;
13260 }
13261 }
13262 }
13263 else
13264 {
13265 /* No DWP file, look for the DWO file. */
13266
13267 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13268 dwo_name, comp_dir);
13269 if (*dwo_file_slot == NULL)
13270 {
13271 /* Read in the file and build a table of the CUs/TUs it contains. */
13272 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13273 }
13274 /* NOTE: This will be NULL if unable to open the file. */
13275 dwo_file = (struct dwo_file *) *dwo_file_slot;
13276
13277 if (dwo_file != NULL)
13278 {
13279 struct dwo_unit *dwo_cutu = NULL;
13280
13281 if (is_debug_types && dwo_file->tus)
13282 {
13283 struct dwo_unit find_dwo_cutu;
13284
13285 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13286 find_dwo_cutu.signature = signature;
13287 dwo_cutu
13288 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13289 }
13290 else if (!is_debug_types && dwo_file->cus)
13291 {
13292 struct dwo_unit find_dwo_cutu;
13293
13294 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13295 find_dwo_cutu.signature = signature;
13296 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13297 &find_dwo_cutu);
13298 }
13299
13300 if (dwo_cutu != NULL)
13301 {
13302 if (dwarf_read_debug)
13303 {
13304 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13305 kind, dwo_name, hex_string (signature),
13306 host_address_to_string (dwo_cutu));
13307 }
13308 return dwo_cutu;
13309 }
13310 }
13311 }
13312
13313 /* We didn't find it. This could mean a dwo_id mismatch, or
13314 someone deleted the DWO/DWP file, or the search path isn't set up
13315 correctly to find the file. */
13316
13317 if (dwarf_read_debug)
13318 {
13319 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13320 kind, dwo_name, hex_string (signature));
13321 }
13322
13323 /* This is a warning and not a complaint because it can be caused by
13324 pilot error (e.g., user accidentally deleting the DWO). */
13325 {
13326 /* Print the name of the DWP file if we looked there, helps the user
13327 better diagnose the problem. */
13328 std::string dwp_text;
13329
13330 if (dwp_file != NULL)
13331 dwp_text = string_printf (" [in DWP file %s]",
13332 lbasename (dwp_file->name));
13333
13334 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13335 " [in module %s]"),
13336 kind, dwo_name, hex_string (signature),
13337 dwp_text.c_str (),
13338 this_unit->is_debug_types ? "TU" : "CU",
13339 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13340 }
13341 return NULL;
13342 }
13343
13344 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13345 See lookup_dwo_cutu_unit for details. */
13346
13347 static struct dwo_unit *
13348 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13349 const char *dwo_name, const char *comp_dir,
13350 ULONGEST signature)
13351 {
13352 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13353 }
13354
13355 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13356 See lookup_dwo_cutu_unit for details. */
13357
13358 static struct dwo_unit *
13359 lookup_dwo_type_unit (struct signatured_type *this_tu,
13360 const char *dwo_name, const char *comp_dir)
13361 {
13362 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13363 }
13364
13365 /* Traversal function for queue_and_load_all_dwo_tus. */
13366
13367 static int
13368 queue_and_load_dwo_tu (void **slot, void *info)
13369 {
13370 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13371 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13372 ULONGEST signature = dwo_unit->signature;
13373 struct signatured_type *sig_type =
13374 lookup_dwo_signatured_type (per_cu->cu, signature);
13375
13376 if (sig_type != NULL)
13377 {
13378 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13379
13380 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13381 a real dependency of PER_CU on SIG_TYPE. That is detected later
13382 while processing PER_CU. */
13383 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13384 load_full_type_unit (sig_cu);
13385 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13386 }
13387
13388 return 1;
13389 }
13390
13391 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13392 The DWO may have the only definition of the type, though it may not be
13393 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13394 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13395
13396 static void
13397 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13398 {
13399 struct dwo_unit *dwo_unit;
13400 struct dwo_file *dwo_file;
13401
13402 gdb_assert (!per_cu->is_debug_types);
13403 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13404 gdb_assert (per_cu->cu != NULL);
13405
13406 dwo_unit = per_cu->cu->dwo_unit;
13407 gdb_assert (dwo_unit != NULL);
13408
13409 dwo_file = dwo_unit->dwo_file;
13410 if (dwo_file->tus != NULL)
13411 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13412 }
13413
13414 /* Free all resources associated with DWO_FILE.
13415 Close the DWO file and munmap the sections. */
13416
13417 static void
13418 free_dwo_file (struct dwo_file *dwo_file)
13419 {
13420 /* Note: dbfd is NULL for virtual DWO files. */
13421 gdb_bfd_unref (dwo_file->dbfd);
13422
13423 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13424 }
13425
13426 /* Traversal function for free_dwo_files. */
13427
13428 static int
13429 free_dwo_file_from_slot (void **slot, void *info)
13430 {
13431 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13432
13433 free_dwo_file (dwo_file);
13434
13435 return 1;
13436 }
13437
13438 /* Free all resources associated with DWO_FILES. */
13439
13440 static void
13441 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13442 {
13443 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
13444 }
13445 \f
13446 /* Read in various DIEs. */
13447
13448 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13449 Inherit only the children of the DW_AT_abstract_origin DIE not being
13450 already referenced by DW_AT_abstract_origin from the children of the
13451 current DIE. */
13452
13453 static void
13454 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13455 {
13456 struct die_info *child_die;
13457 sect_offset *offsetp;
13458 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13459 struct die_info *origin_die;
13460 /* Iterator of the ORIGIN_DIE children. */
13461 struct die_info *origin_child_die;
13462 struct attribute *attr;
13463 struct dwarf2_cu *origin_cu;
13464 struct pending **origin_previous_list_in_scope;
13465
13466 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13467 if (!attr)
13468 return;
13469
13470 /* Note that following die references may follow to a die in a
13471 different cu. */
13472
13473 origin_cu = cu;
13474 origin_die = follow_die_ref (die, attr, &origin_cu);
13475
13476 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13477 symbols in. */
13478 origin_previous_list_in_scope = origin_cu->list_in_scope;
13479 origin_cu->list_in_scope = cu->list_in_scope;
13480
13481 if (die->tag != origin_die->tag
13482 && !(die->tag == DW_TAG_inlined_subroutine
13483 && origin_die->tag == DW_TAG_subprogram))
13484 complaint (&symfile_complaints,
13485 _("DIE %s and its abstract origin %s have different tags"),
13486 sect_offset_str (die->sect_off),
13487 sect_offset_str (origin_die->sect_off));
13488
13489 std::vector<sect_offset> offsets;
13490
13491 for (child_die = die->child;
13492 child_die && child_die->tag;
13493 child_die = sibling_die (child_die))
13494 {
13495 struct die_info *child_origin_die;
13496 struct dwarf2_cu *child_origin_cu;
13497
13498 /* We are trying to process concrete instance entries:
13499 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13500 it's not relevant to our analysis here. i.e. detecting DIEs that are
13501 present in the abstract instance but not referenced in the concrete
13502 one. */
13503 if (child_die->tag == DW_TAG_call_site
13504 || child_die->tag == DW_TAG_GNU_call_site)
13505 continue;
13506
13507 /* For each CHILD_DIE, find the corresponding child of
13508 ORIGIN_DIE. If there is more than one layer of
13509 DW_AT_abstract_origin, follow them all; there shouldn't be,
13510 but GCC versions at least through 4.4 generate this (GCC PR
13511 40573). */
13512 child_origin_die = child_die;
13513 child_origin_cu = cu;
13514 while (1)
13515 {
13516 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13517 child_origin_cu);
13518 if (attr == NULL)
13519 break;
13520 child_origin_die = follow_die_ref (child_origin_die, attr,
13521 &child_origin_cu);
13522 }
13523
13524 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13525 counterpart may exist. */
13526 if (child_origin_die != child_die)
13527 {
13528 if (child_die->tag != child_origin_die->tag
13529 && !(child_die->tag == DW_TAG_inlined_subroutine
13530 && child_origin_die->tag == DW_TAG_subprogram))
13531 complaint (&symfile_complaints,
13532 _("Child DIE %s and its abstract origin %s have "
13533 "different tags"),
13534 sect_offset_str (child_die->sect_off),
13535 sect_offset_str (child_origin_die->sect_off));
13536 if (child_origin_die->parent != origin_die)
13537 complaint (&symfile_complaints,
13538 _("Child DIE %s and its abstract origin %s have "
13539 "different parents"),
13540 sect_offset_str (child_die->sect_off),
13541 sect_offset_str (child_origin_die->sect_off));
13542 else
13543 offsets.push_back (child_origin_die->sect_off);
13544 }
13545 }
13546 std::sort (offsets.begin (), offsets.end ());
13547 sect_offset *offsets_end = offsets.data () + offsets.size ();
13548 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13549 if (offsetp[-1] == *offsetp)
13550 complaint (&symfile_complaints,
13551 _("Multiple children of DIE %s refer "
13552 "to DIE %s as their abstract origin"),
13553 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13554
13555 offsetp = offsets.data ();
13556 origin_child_die = origin_die->child;
13557 while (origin_child_die && origin_child_die->tag)
13558 {
13559 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13560 while (offsetp < offsets_end
13561 && *offsetp < origin_child_die->sect_off)
13562 offsetp++;
13563 if (offsetp >= offsets_end
13564 || *offsetp > origin_child_die->sect_off)
13565 {
13566 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13567 Check whether we're already processing ORIGIN_CHILD_DIE.
13568 This can happen with mutually referenced abstract_origins.
13569 PR 16581. */
13570 if (!origin_child_die->in_process)
13571 process_die (origin_child_die, origin_cu);
13572 }
13573 origin_child_die = sibling_die (origin_child_die);
13574 }
13575 origin_cu->list_in_scope = origin_previous_list_in_scope;
13576 }
13577
13578 static void
13579 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13580 {
13581 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13582 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13583 struct context_stack *newobj;
13584 CORE_ADDR lowpc;
13585 CORE_ADDR highpc;
13586 struct die_info *child_die;
13587 struct attribute *attr, *call_line, *call_file;
13588 const char *name;
13589 CORE_ADDR baseaddr;
13590 struct block *block;
13591 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13592 std::vector<struct symbol *> template_args;
13593 struct template_symbol *templ_func = NULL;
13594
13595 if (inlined_func)
13596 {
13597 /* If we do not have call site information, we can't show the
13598 caller of this inlined function. That's too confusing, so
13599 only use the scope for local variables. */
13600 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13601 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13602 if (call_line == NULL || call_file == NULL)
13603 {
13604 read_lexical_block_scope (die, cu);
13605 return;
13606 }
13607 }
13608
13609 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13610
13611 name = dwarf2_name (die, cu);
13612
13613 /* Ignore functions with missing or empty names. These are actually
13614 illegal according to the DWARF standard. */
13615 if (name == NULL)
13616 {
13617 complaint (&symfile_complaints,
13618 _("missing name for subprogram DIE at %s"),
13619 sect_offset_str (die->sect_off));
13620 return;
13621 }
13622
13623 /* Ignore functions with missing or invalid low and high pc attributes. */
13624 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13625 <= PC_BOUNDS_INVALID)
13626 {
13627 attr = dwarf2_attr (die, DW_AT_external, cu);
13628 if (!attr || !DW_UNSND (attr))
13629 complaint (&symfile_complaints,
13630 _("cannot get low and high bounds "
13631 "for subprogram DIE at %s"),
13632 sect_offset_str (die->sect_off));
13633 return;
13634 }
13635
13636 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13637 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13638
13639 /* If we have any template arguments, then we must allocate a
13640 different sort of symbol. */
13641 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13642 {
13643 if (child_die->tag == DW_TAG_template_type_param
13644 || child_die->tag == DW_TAG_template_value_param)
13645 {
13646 templ_func = allocate_template_symbol (objfile);
13647 templ_func->subclass = SYMBOL_TEMPLATE;
13648 break;
13649 }
13650 }
13651
13652 newobj = push_context (0, lowpc);
13653 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13654 (struct symbol *) templ_func);
13655
13656 /* If there is a location expression for DW_AT_frame_base, record
13657 it. */
13658 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13659 if (attr)
13660 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13661
13662 /* If there is a location for the static link, record it. */
13663 newobj->static_link = NULL;
13664 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13665 if (attr)
13666 {
13667 newobj->static_link
13668 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13669 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13670 }
13671
13672 cu->list_in_scope = &local_symbols;
13673
13674 if (die->child != NULL)
13675 {
13676 child_die = die->child;
13677 while (child_die && child_die->tag)
13678 {
13679 if (child_die->tag == DW_TAG_template_type_param
13680 || child_die->tag == DW_TAG_template_value_param)
13681 {
13682 struct symbol *arg = new_symbol (child_die, NULL, cu);
13683
13684 if (arg != NULL)
13685 template_args.push_back (arg);
13686 }
13687 else
13688 process_die (child_die, cu);
13689 child_die = sibling_die (child_die);
13690 }
13691 }
13692
13693 inherit_abstract_dies (die, cu);
13694
13695 /* If we have a DW_AT_specification, we might need to import using
13696 directives from the context of the specification DIE. See the
13697 comment in determine_prefix. */
13698 if (cu->language == language_cplus
13699 && dwarf2_attr (die, DW_AT_specification, cu))
13700 {
13701 struct dwarf2_cu *spec_cu = cu;
13702 struct die_info *spec_die = die_specification (die, &spec_cu);
13703
13704 while (spec_die)
13705 {
13706 child_die = spec_die->child;
13707 while (child_die && child_die->tag)
13708 {
13709 if (child_die->tag == DW_TAG_imported_module)
13710 process_die (child_die, spec_cu);
13711 child_die = sibling_die (child_die);
13712 }
13713
13714 /* In some cases, GCC generates specification DIEs that
13715 themselves contain DW_AT_specification attributes. */
13716 spec_die = die_specification (spec_die, &spec_cu);
13717 }
13718 }
13719
13720 newobj = pop_context ();
13721 /* Make a block for the local symbols within. */
13722 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
13723 newobj->static_link, lowpc, highpc);
13724
13725 /* For C++, set the block's scope. */
13726 if ((cu->language == language_cplus
13727 || cu->language == language_fortran
13728 || cu->language == language_d
13729 || cu->language == language_rust)
13730 && cu->processing_has_namespace_info)
13731 block_set_scope (block, determine_prefix (die, cu),
13732 &objfile->objfile_obstack);
13733
13734 /* If we have address ranges, record them. */
13735 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13736
13737 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
13738
13739 /* Attach template arguments to function. */
13740 if (!template_args.empty ())
13741 {
13742 gdb_assert (templ_func != NULL);
13743
13744 templ_func->n_template_arguments = template_args.size ();
13745 templ_func->template_arguments
13746 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13747 templ_func->n_template_arguments);
13748 memcpy (templ_func->template_arguments,
13749 template_args.data (),
13750 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13751 }
13752
13753 /* In C++, we can have functions nested inside functions (e.g., when
13754 a function declares a class that has methods). This means that
13755 when we finish processing a function scope, we may need to go
13756 back to building a containing block's symbol lists. */
13757 local_symbols = newobj->locals;
13758 local_using_directives = newobj->local_using_directives;
13759
13760 /* If we've finished processing a top-level function, subsequent
13761 symbols go in the file symbol list. */
13762 if (outermost_context_p ())
13763 cu->list_in_scope = &file_symbols;
13764 }
13765
13766 /* Process all the DIES contained within a lexical block scope. Start
13767 a new scope, process the dies, and then close the scope. */
13768
13769 static void
13770 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13771 {
13772 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13773 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13774 struct context_stack *newobj;
13775 CORE_ADDR lowpc, highpc;
13776 struct die_info *child_die;
13777 CORE_ADDR baseaddr;
13778
13779 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13780
13781 /* Ignore blocks with missing or invalid low and high pc attributes. */
13782 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13783 as multiple lexical blocks? Handling children in a sane way would
13784 be nasty. Might be easier to properly extend generic blocks to
13785 describe ranges. */
13786 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13787 {
13788 case PC_BOUNDS_NOT_PRESENT:
13789 /* DW_TAG_lexical_block has no attributes, process its children as if
13790 there was no wrapping by that DW_TAG_lexical_block.
13791 GCC does no longer produces such DWARF since GCC r224161. */
13792 for (child_die = die->child;
13793 child_die != NULL && child_die->tag;
13794 child_die = sibling_die (child_die))
13795 process_die (child_die, cu);
13796 return;
13797 case PC_BOUNDS_INVALID:
13798 return;
13799 }
13800 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13801 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13802
13803 push_context (0, lowpc);
13804 if (die->child != NULL)
13805 {
13806 child_die = die->child;
13807 while (child_die && child_die->tag)
13808 {
13809 process_die (child_die, cu);
13810 child_die = sibling_die (child_die);
13811 }
13812 }
13813 inherit_abstract_dies (die, cu);
13814 newobj = pop_context ();
13815
13816 if (local_symbols != NULL || local_using_directives != NULL)
13817 {
13818 struct block *block
13819 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
13820 newobj->start_addr, highpc);
13821
13822 /* Note that recording ranges after traversing children, as we
13823 do here, means that recording a parent's ranges entails
13824 walking across all its children's ranges as they appear in
13825 the address map, which is quadratic behavior.
13826
13827 It would be nicer to record the parent's ranges before
13828 traversing its children, simply overriding whatever you find
13829 there. But since we don't even decide whether to create a
13830 block until after we've traversed its children, that's hard
13831 to do. */
13832 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13833 }
13834 local_symbols = newobj->locals;
13835 local_using_directives = newobj->local_using_directives;
13836 }
13837
13838 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13839
13840 static void
13841 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13842 {
13843 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13844 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13845 CORE_ADDR pc, baseaddr;
13846 struct attribute *attr;
13847 struct call_site *call_site, call_site_local;
13848 void **slot;
13849 int nparams;
13850 struct die_info *child_die;
13851
13852 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13853
13854 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13855 if (attr == NULL)
13856 {
13857 /* This was a pre-DWARF-5 GNU extension alias
13858 for DW_AT_call_return_pc. */
13859 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13860 }
13861 if (!attr)
13862 {
13863 complaint (&symfile_complaints,
13864 _("missing DW_AT_call_return_pc for DW_TAG_call_site "
13865 "DIE %s [in module %s]"),
13866 sect_offset_str (die->sect_off), objfile_name (objfile));
13867 return;
13868 }
13869 pc = attr_value_as_address (attr) + baseaddr;
13870 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13871
13872 if (cu->call_site_htab == NULL)
13873 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13874 NULL, &objfile->objfile_obstack,
13875 hashtab_obstack_allocate, NULL);
13876 call_site_local.pc = pc;
13877 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13878 if (*slot != NULL)
13879 {
13880 complaint (&symfile_complaints,
13881 _("Duplicate PC %s for DW_TAG_call_site "
13882 "DIE %s [in module %s]"),
13883 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13884 objfile_name (objfile));
13885 return;
13886 }
13887
13888 /* Count parameters at the caller. */
13889
13890 nparams = 0;
13891 for (child_die = die->child; child_die && child_die->tag;
13892 child_die = sibling_die (child_die))
13893 {
13894 if (child_die->tag != DW_TAG_call_site_parameter
13895 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13896 {
13897 complaint (&symfile_complaints,
13898 _("Tag %d is not DW_TAG_call_site_parameter in "
13899 "DW_TAG_call_site child DIE %s [in module %s]"),
13900 child_die->tag, sect_offset_str (child_die->sect_off),
13901 objfile_name (objfile));
13902 continue;
13903 }
13904
13905 nparams++;
13906 }
13907
13908 call_site
13909 = ((struct call_site *)
13910 obstack_alloc (&objfile->objfile_obstack,
13911 sizeof (*call_site)
13912 + (sizeof (*call_site->parameter) * (nparams - 1))));
13913 *slot = call_site;
13914 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13915 call_site->pc = pc;
13916
13917 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13918 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13919 {
13920 struct die_info *func_die;
13921
13922 /* Skip also over DW_TAG_inlined_subroutine. */
13923 for (func_die = die->parent;
13924 func_die && func_die->tag != DW_TAG_subprogram
13925 && func_die->tag != DW_TAG_subroutine_type;
13926 func_die = func_die->parent);
13927
13928 /* DW_AT_call_all_calls is a superset
13929 of DW_AT_call_all_tail_calls. */
13930 if (func_die
13931 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
13932 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
13933 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
13934 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13935 {
13936 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13937 not complete. But keep CALL_SITE for look ups via call_site_htab,
13938 both the initial caller containing the real return address PC and
13939 the final callee containing the current PC of a chain of tail
13940 calls do not need to have the tail call list complete. But any
13941 function candidate for a virtual tail call frame searched via
13942 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13943 determined unambiguously. */
13944 }
13945 else
13946 {
13947 struct type *func_type = NULL;
13948
13949 if (func_die)
13950 func_type = get_die_type (func_die, cu);
13951 if (func_type != NULL)
13952 {
13953 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
13954
13955 /* Enlist this call site to the function. */
13956 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13957 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13958 }
13959 else
13960 complaint (&symfile_complaints,
13961 _("Cannot find function owning DW_TAG_call_site "
13962 "DIE %s [in module %s]"),
13963 sect_offset_str (die->sect_off), objfile_name (objfile));
13964 }
13965 }
13966
13967 attr = dwarf2_attr (die, DW_AT_call_target, cu);
13968 if (attr == NULL)
13969 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
13970 if (attr == NULL)
13971 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
13972 if (attr == NULL)
13973 {
13974 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
13975 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13976 }
13977 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
13978 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
13979 /* Keep NULL DWARF_BLOCK. */;
13980 else if (attr_form_is_block (attr))
13981 {
13982 struct dwarf2_locexpr_baton *dlbaton;
13983
13984 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13985 dlbaton->data = DW_BLOCK (attr)->data;
13986 dlbaton->size = DW_BLOCK (attr)->size;
13987 dlbaton->per_cu = cu->per_cu;
13988
13989 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
13990 }
13991 else if (attr_form_is_ref (attr))
13992 {
13993 struct dwarf2_cu *target_cu = cu;
13994 struct die_info *target_die;
13995
13996 target_die = follow_die_ref (die, attr, &target_cu);
13997 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
13998 if (die_is_declaration (target_die, target_cu))
13999 {
14000 const char *target_physname;
14001
14002 /* Prefer the mangled name; otherwise compute the demangled one. */
14003 target_physname = dw2_linkage_name (target_die, target_cu);
14004 if (target_physname == NULL)
14005 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14006 if (target_physname == NULL)
14007 complaint (&symfile_complaints,
14008 _("DW_AT_call_target target DIE has invalid "
14009 "physname, for referencing DIE %s [in module %s]"),
14010 sect_offset_str (die->sect_off), objfile_name (objfile));
14011 else
14012 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14013 }
14014 else
14015 {
14016 CORE_ADDR lowpc;
14017
14018 /* DW_AT_entry_pc should be preferred. */
14019 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14020 <= PC_BOUNDS_INVALID)
14021 complaint (&symfile_complaints,
14022 _("DW_AT_call_target target DIE has invalid "
14023 "low pc, for referencing DIE %s [in module %s]"),
14024 sect_offset_str (die->sect_off), objfile_name (objfile));
14025 else
14026 {
14027 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14028 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14029 }
14030 }
14031 }
14032 else
14033 complaint (&symfile_complaints,
14034 _("DW_TAG_call_site DW_AT_call_target is neither "
14035 "block nor reference, for DIE %s [in module %s]"),
14036 sect_offset_str (die->sect_off), objfile_name (objfile));
14037
14038 call_site->per_cu = cu->per_cu;
14039
14040 for (child_die = die->child;
14041 child_die && child_die->tag;
14042 child_die = sibling_die (child_die))
14043 {
14044 struct call_site_parameter *parameter;
14045 struct attribute *loc, *origin;
14046
14047 if (child_die->tag != DW_TAG_call_site_parameter
14048 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14049 {
14050 /* Already printed the complaint above. */
14051 continue;
14052 }
14053
14054 gdb_assert (call_site->parameter_count < nparams);
14055 parameter = &call_site->parameter[call_site->parameter_count];
14056
14057 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14058 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14059 register is contained in DW_AT_call_value. */
14060
14061 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14062 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14063 if (origin == NULL)
14064 {
14065 /* This was a pre-DWARF-5 GNU extension alias
14066 for DW_AT_call_parameter. */
14067 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14068 }
14069 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14070 {
14071 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14072
14073 sect_offset sect_off
14074 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14075 if (!offset_in_cu_p (&cu->header, sect_off))
14076 {
14077 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14078 binding can be done only inside one CU. Such referenced DIE
14079 therefore cannot be even moved to DW_TAG_partial_unit. */
14080 complaint (&symfile_complaints,
14081 _("DW_AT_call_parameter offset is not in CU for "
14082 "DW_TAG_call_site child DIE %s [in module %s]"),
14083 sect_offset_str (child_die->sect_off),
14084 objfile_name (objfile));
14085 continue;
14086 }
14087 parameter->u.param_cu_off
14088 = (cu_offset) (sect_off - cu->header.sect_off);
14089 }
14090 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14091 {
14092 complaint (&symfile_complaints,
14093 _("No DW_FORM_block* DW_AT_location for "
14094 "DW_TAG_call_site child DIE %s [in module %s]"),
14095 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14096 continue;
14097 }
14098 else
14099 {
14100 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14101 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14102 if (parameter->u.dwarf_reg != -1)
14103 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14104 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14105 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14106 &parameter->u.fb_offset))
14107 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14108 else
14109 {
14110 complaint (&symfile_complaints,
14111 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
14112 "for DW_FORM_block* DW_AT_location is supported for "
14113 "DW_TAG_call_site child DIE %s "
14114 "[in module %s]"),
14115 sect_offset_str (child_die->sect_off),
14116 objfile_name (objfile));
14117 continue;
14118 }
14119 }
14120
14121 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14122 if (attr == NULL)
14123 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14124 if (!attr_form_is_block (attr))
14125 {
14126 complaint (&symfile_complaints,
14127 _("No DW_FORM_block* DW_AT_call_value for "
14128 "DW_TAG_call_site child DIE %s [in module %s]"),
14129 sect_offset_str (child_die->sect_off),
14130 objfile_name (objfile));
14131 continue;
14132 }
14133 parameter->value = DW_BLOCK (attr)->data;
14134 parameter->value_size = DW_BLOCK (attr)->size;
14135
14136 /* Parameters are not pre-cleared by memset above. */
14137 parameter->data_value = NULL;
14138 parameter->data_value_size = 0;
14139 call_site->parameter_count++;
14140
14141 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14142 if (attr == NULL)
14143 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14144 if (attr)
14145 {
14146 if (!attr_form_is_block (attr))
14147 complaint (&symfile_complaints,
14148 _("No DW_FORM_block* DW_AT_call_data_value for "
14149 "DW_TAG_call_site child DIE %s [in module %s]"),
14150 sect_offset_str (child_die->sect_off),
14151 objfile_name (objfile));
14152 else
14153 {
14154 parameter->data_value = DW_BLOCK (attr)->data;
14155 parameter->data_value_size = DW_BLOCK (attr)->size;
14156 }
14157 }
14158 }
14159 }
14160
14161 /* Helper function for read_variable. If DIE represents a virtual
14162 table, then return the type of the concrete object that is
14163 associated with the virtual table. Otherwise, return NULL. */
14164
14165 static struct type *
14166 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14167 {
14168 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14169 if (attr == NULL)
14170 return NULL;
14171
14172 /* Find the type DIE. */
14173 struct die_info *type_die = NULL;
14174 struct dwarf2_cu *type_cu = cu;
14175
14176 if (attr_form_is_ref (attr))
14177 type_die = follow_die_ref (die, attr, &type_cu);
14178 if (type_die == NULL)
14179 return NULL;
14180
14181 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14182 return NULL;
14183 return die_containing_type (type_die, type_cu);
14184 }
14185
14186 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14187
14188 static void
14189 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14190 {
14191 struct rust_vtable_symbol *storage = NULL;
14192
14193 if (cu->language == language_rust)
14194 {
14195 struct type *containing_type = rust_containing_type (die, cu);
14196
14197 if (containing_type != NULL)
14198 {
14199 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14200
14201 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14202 struct rust_vtable_symbol);
14203 initialize_objfile_symbol (storage);
14204 storage->concrete_type = containing_type;
14205 storage->subclass = SYMBOL_RUST_VTABLE;
14206 }
14207 }
14208
14209 new_symbol (die, NULL, cu, storage);
14210 }
14211
14212 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14213 reading .debug_rnglists.
14214 Callback's type should be:
14215 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14216 Return true if the attributes are present and valid, otherwise,
14217 return false. */
14218
14219 template <typename Callback>
14220 static bool
14221 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14222 Callback &&callback)
14223 {
14224 struct dwarf2_per_objfile *dwarf2_per_objfile
14225 = cu->per_cu->dwarf2_per_objfile;
14226 struct objfile *objfile = dwarf2_per_objfile->objfile;
14227 bfd *obfd = objfile->obfd;
14228 /* Base address selection entry. */
14229 CORE_ADDR base;
14230 int found_base;
14231 const gdb_byte *buffer;
14232 CORE_ADDR baseaddr;
14233 bool overflow = false;
14234
14235 found_base = cu->base_known;
14236 base = cu->base_address;
14237
14238 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14239 if (offset >= dwarf2_per_objfile->rnglists.size)
14240 {
14241 complaint (&symfile_complaints,
14242 _("Offset %d out of bounds for DW_AT_ranges attribute"),
14243 offset);
14244 return false;
14245 }
14246 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14247
14248 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14249
14250 while (1)
14251 {
14252 /* Initialize it due to a false compiler warning. */
14253 CORE_ADDR range_beginning = 0, range_end = 0;
14254 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14255 + dwarf2_per_objfile->rnglists.size);
14256 unsigned int bytes_read;
14257
14258 if (buffer == buf_end)
14259 {
14260 overflow = true;
14261 break;
14262 }
14263 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14264 switch (rlet)
14265 {
14266 case DW_RLE_end_of_list:
14267 break;
14268 case DW_RLE_base_address:
14269 if (buffer + cu->header.addr_size > buf_end)
14270 {
14271 overflow = true;
14272 break;
14273 }
14274 base = read_address (obfd, buffer, cu, &bytes_read);
14275 found_base = 1;
14276 buffer += bytes_read;
14277 break;
14278 case DW_RLE_start_length:
14279 if (buffer + cu->header.addr_size > buf_end)
14280 {
14281 overflow = true;
14282 break;
14283 }
14284 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14285 buffer += bytes_read;
14286 range_end = (range_beginning
14287 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14288 buffer += bytes_read;
14289 if (buffer > buf_end)
14290 {
14291 overflow = true;
14292 break;
14293 }
14294 break;
14295 case DW_RLE_offset_pair:
14296 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14297 buffer += bytes_read;
14298 if (buffer > buf_end)
14299 {
14300 overflow = true;
14301 break;
14302 }
14303 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14304 buffer += bytes_read;
14305 if (buffer > buf_end)
14306 {
14307 overflow = true;
14308 break;
14309 }
14310 break;
14311 case DW_RLE_start_end:
14312 if (buffer + 2 * cu->header.addr_size > buf_end)
14313 {
14314 overflow = true;
14315 break;
14316 }
14317 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14318 buffer += bytes_read;
14319 range_end = read_address (obfd, buffer, cu, &bytes_read);
14320 buffer += bytes_read;
14321 break;
14322 default:
14323 complaint (&symfile_complaints,
14324 _("Invalid .debug_rnglists data (no base address)"));
14325 return false;
14326 }
14327 if (rlet == DW_RLE_end_of_list || overflow)
14328 break;
14329 if (rlet == DW_RLE_base_address)
14330 continue;
14331
14332 if (!found_base)
14333 {
14334 /* We have no valid base address for the ranges
14335 data. */
14336 complaint (&symfile_complaints,
14337 _("Invalid .debug_rnglists data (no base address)"));
14338 return false;
14339 }
14340
14341 if (range_beginning > range_end)
14342 {
14343 /* Inverted range entries are invalid. */
14344 complaint (&symfile_complaints,
14345 _("Invalid .debug_rnglists data (inverted range)"));
14346 return false;
14347 }
14348
14349 /* Empty range entries have no effect. */
14350 if (range_beginning == range_end)
14351 continue;
14352
14353 range_beginning += base;
14354 range_end += base;
14355
14356 /* A not-uncommon case of bad debug info.
14357 Don't pollute the addrmap with bad data. */
14358 if (range_beginning + baseaddr == 0
14359 && !dwarf2_per_objfile->has_section_at_zero)
14360 {
14361 complaint (&symfile_complaints,
14362 _(".debug_rnglists entry has start address of zero"
14363 " [in module %s]"), objfile_name (objfile));
14364 continue;
14365 }
14366
14367 callback (range_beginning, range_end);
14368 }
14369
14370 if (overflow)
14371 {
14372 complaint (&symfile_complaints,
14373 _("Offset %d is not terminated "
14374 "for DW_AT_ranges attribute"),
14375 offset);
14376 return false;
14377 }
14378
14379 return true;
14380 }
14381
14382 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14383 Callback's type should be:
14384 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14385 Return 1 if the attributes are present and valid, otherwise, return 0. */
14386
14387 template <typename Callback>
14388 static int
14389 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14390 Callback &&callback)
14391 {
14392 struct dwarf2_per_objfile *dwarf2_per_objfile
14393 = cu->per_cu->dwarf2_per_objfile;
14394 struct objfile *objfile = dwarf2_per_objfile->objfile;
14395 struct comp_unit_head *cu_header = &cu->header;
14396 bfd *obfd = objfile->obfd;
14397 unsigned int addr_size = cu_header->addr_size;
14398 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14399 /* Base address selection entry. */
14400 CORE_ADDR base;
14401 int found_base;
14402 unsigned int dummy;
14403 const gdb_byte *buffer;
14404 CORE_ADDR baseaddr;
14405
14406 if (cu_header->version >= 5)
14407 return dwarf2_rnglists_process (offset, cu, callback);
14408
14409 found_base = cu->base_known;
14410 base = cu->base_address;
14411
14412 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14413 if (offset >= dwarf2_per_objfile->ranges.size)
14414 {
14415 complaint (&symfile_complaints,
14416 _("Offset %d out of bounds for DW_AT_ranges attribute"),
14417 offset);
14418 return 0;
14419 }
14420 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14421
14422 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14423
14424 while (1)
14425 {
14426 CORE_ADDR range_beginning, range_end;
14427
14428 range_beginning = read_address (obfd, buffer, cu, &dummy);
14429 buffer += addr_size;
14430 range_end = read_address (obfd, buffer, cu, &dummy);
14431 buffer += addr_size;
14432 offset += 2 * addr_size;
14433
14434 /* An end of list marker is a pair of zero addresses. */
14435 if (range_beginning == 0 && range_end == 0)
14436 /* Found the end of list entry. */
14437 break;
14438
14439 /* Each base address selection entry is a pair of 2 values.
14440 The first is the largest possible address, the second is
14441 the base address. Check for a base address here. */
14442 if ((range_beginning & mask) == mask)
14443 {
14444 /* If we found the largest possible address, then we already
14445 have the base address in range_end. */
14446 base = range_end;
14447 found_base = 1;
14448 continue;
14449 }
14450
14451 if (!found_base)
14452 {
14453 /* We have no valid base address for the ranges
14454 data. */
14455 complaint (&symfile_complaints,
14456 _("Invalid .debug_ranges data (no base address)"));
14457 return 0;
14458 }
14459
14460 if (range_beginning > range_end)
14461 {
14462 /* Inverted range entries are invalid. */
14463 complaint (&symfile_complaints,
14464 _("Invalid .debug_ranges data (inverted range)"));
14465 return 0;
14466 }
14467
14468 /* Empty range entries have no effect. */
14469 if (range_beginning == range_end)
14470 continue;
14471
14472 range_beginning += base;
14473 range_end += base;
14474
14475 /* A not-uncommon case of bad debug info.
14476 Don't pollute the addrmap with bad data. */
14477 if (range_beginning + baseaddr == 0
14478 && !dwarf2_per_objfile->has_section_at_zero)
14479 {
14480 complaint (&symfile_complaints,
14481 _(".debug_ranges entry has start address of zero"
14482 " [in module %s]"), objfile_name (objfile));
14483 continue;
14484 }
14485
14486 callback (range_beginning, range_end);
14487 }
14488
14489 return 1;
14490 }
14491
14492 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14493 Return 1 if the attributes are present and valid, otherwise, return 0.
14494 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14495
14496 static int
14497 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14498 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14499 struct partial_symtab *ranges_pst)
14500 {
14501 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14502 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14503 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14504 SECT_OFF_TEXT (objfile));
14505 int low_set = 0;
14506 CORE_ADDR low = 0;
14507 CORE_ADDR high = 0;
14508 int retval;
14509
14510 retval = dwarf2_ranges_process (offset, cu,
14511 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14512 {
14513 if (ranges_pst != NULL)
14514 {
14515 CORE_ADDR lowpc;
14516 CORE_ADDR highpc;
14517
14518 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
14519 range_beginning + baseaddr);
14520 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
14521 range_end + baseaddr);
14522 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
14523 ranges_pst);
14524 }
14525
14526 /* FIXME: This is recording everything as a low-high
14527 segment of consecutive addresses. We should have a
14528 data structure for discontiguous block ranges
14529 instead. */
14530 if (! low_set)
14531 {
14532 low = range_beginning;
14533 high = range_end;
14534 low_set = 1;
14535 }
14536 else
14537 {
14538 if (range_beginning < low)
14539 low = range_beginning;
14540 if (range_end > high)
14541 high = range_end;
14542 }
14543 });
14544 if (!retval)
14545 return 0;
14546
14547 if (! low_set)
14548 /* If the first entry is an end-of-list marker, the range
14549 describes an empty scope, i.e. no instructions. */
14550 return 0;
14551
14552 if (low_return)
14553 *low_return = low;
14554 if (high_return)
14555 *high_return = high;
14556 return 1;
14557 }
14558
14559 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14560 definition for the return value. *LOWPC and *HIGHPC are set iff
14561 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14562
14563 static enum pc_bounds_kind
14564 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14565 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14566 struct partial_symtab *pst)
14567 {
14568 struct dwarf2_per_objfile *dwarf2_per_objfile
14569 = cu->per_cu->dwarf2_per_objfile;
14570 struct attribute *attr;
14571 struct attribute *attr_high;
14572 CORE_ADDR low = 0;
14573 CORE_ADDR high = 0;
14574 enum pc_bounds_kind ret;
14575
14576 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14577 if (attr_high)
14578 {
14579 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14580 if (attr)
14581 {
14582 low = attr_value_as_address (attr);
14583 high = attr_value_as_address (attr_high);
14584 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14585 high += low;
14586 }
14587 else
14588 /* Found high w/o low attribute. */
14589 return PC_BOUNDS_INVALID;
14590
14591 /* Found consecutive range of addresses. */
14592 ret = PC_BOUNDS_HIGH_LOW;
14593 }
14594 else
14595 {
14596 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14597 if (attr != NULL)
14598 {
14599 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14600 We take advantage of the fact that DW_AT_ranges does not appear
14601 in DW_TAG_compile_unit of DWO files. */
14602 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14603 unsigned int ranges_offset = (DW_UNSND (attr)
14604 + (need_ranges_base
14605 ? cu->ranges_base
14606 : 0));
14607
14608 /* Value of the DW_AT_ranges attribute is the offset in the
14609 .debug_ranges section. */
14610 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14611 return PC_BOUNDS_INVALID;
14612 /* Found discontinuous range of addresses. */
14613 ret = PC_BOUNDS_RANGES;
14614 }
14615 else
14616 return PC_BOUNDS_NOT_PRESENT;
14617 }
14618
14619 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14620 if (high <= low)
14621 return PC_BOUNDS_INVALID;
14622
14623 /* When using the GNU linker, .gnu.linkonce. sections are used to
14624 eliminate duplicate copies of functions and vtables and such.
14625 The linker will arbitrarily choose one and discard the others.
14626 The AT_*_pc values for such functions refer to local labels in
14627 these sections. If the section from that file was discarded, the
14628 labels are not in the output, so the relocs get a value of 0.
14629 If this is a discarded function, mark the pc bounds as invalid,
14630 so that GDB will ignore it. */
14631 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14632 return PC_BOUNDS_INVALID;
14633
14634 *lowpc = low;
14635 if (highpc)
14636 *highpc = high;
14637 return ret;
14638 }
14639
14640 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14641 its low and high PC addresses. Do nothing if these addresses could not
14642 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14643 and HIGHPC to the high address if greater than HIGHPC. */
14644
14645 static void
14646 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14647 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14648 struct dwarf2_cu *cu)
14649 {
14650 CORE_ADDR low, high;
14651 struct die_info *child = die->child;
14652
14653 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14654 {
14655 *lowpc = std::min (*lowpc, low);
14656 *highpc = std::max (*highpc, high);
14657 }
14658
14659 /* If the language does not allow nested subprograms (either inside
14660 subprograms or lexical blocks), we're done. */
14661 if (cu->language != language_ada)
14662 return;
14663
14664 /* Check all the children of the given DIE. If it contains nested
14665 subprograms, then check their pc bounds. Likewise, we need to
14666 check lexical blocks as well, as they may also contain subprogram
14667 definitions. */
14668 while (child && child->tag)
14669 {
14670 if (child->tag == DW_TAG_subprogram
14671 || child->tag == DW_TAG_lexical_block)
14672 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14673 child = sibling_die (child);
14674 }
14675 }
14676
14677 /* Get the low and high pc's represented by the scope DIE, and store
14678 them in *LOWPC and *HIGHPC. If the correct values can't be
14679 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14680
14681 static void
14682 get_scope_pc_bounds (struct die_info *die,
14683 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14684 struct dwarf2_cu *cu)
14685 {
14686 CORE_ADDR best_low = (CORE_ADDR) -1;
14687 CORE_ADDR best_high = (CORE_ADDR) 0;
14688 CORE_ADDR current_low, current_high;
14689
14690 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14691 >= PC_BOUNDS_RANGES)
14692 {
14693 best_low = current_low;
14694 best_high = current_high;
14695 }
14696 else
14697 {
14698 struct die_info *child = die->child;
14699
14700 while (child && child->tag)
14701 {
14702 switch (child->tag) {
14703 case DW_TAG_subprogram:
14704 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14705 break;
14706 case DW_TAG_namespace:
14707 case DW_TAG_module:
14708 /* FIXME: carlton/2004-01-16: Should we do this for
14709 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14710 that current GCC's always emit the DIEs corresponding
14711 to definitions of methods of classes as children of a
14712 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14713 the DIEs giving the declarations, which could be
14714 anywhere). But I don't see any reason why the
14715 standards says that they have to be there. */
14716 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14717
14718 if (current_low != ((CORE_ADDR) -1))
14719 {
14720 best_low = std::min (best_low, current_low);
14721 best_high = std::max (best_high, current_high);
14722 }
14723 break;
14724 default:
14725 /* Ignore. */
14726 break;
14727 }
14728
14729 child = sibling_die (child);
14730 }
14731 }
14732
14733 *lowpc = best_low;
14734 *highpc = best_high;
14735 }
14736
14737 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14738 in DIE. */
14739
14740 static void
14741 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14742 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14743 {
14744 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14745 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14746 struct attribute *attr;
14747 struct attribute *attr_high;
14748
14749 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14750 if (attr_high)
14751 {
14752 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14753 if (attr)
14754 {
14755 CORE_ADDR low = attr_value_as_address (attr);
14756 CORE_ADDR high = attr_value_as_address (attr_high);
14757
14758 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14759 high += low;
14760
14761 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14762 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14763 record_block_range (block, low, high - 1);
14764 }
14765 }
14766
14767 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14768 if (attr)
14769 {
14770 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14771 We take advantage of the fact that DW_AT_ranges does not appear
14772 in DW_TAG_compile_unit of DWO files. */
14773 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14774
14775 /* The value of the DW_AT_ranges attribute is the offset of the
14776 address range list in the .debug_ranges section. */
14777 unsigned long offset = (DW_UNSND (attr)
14778 + (need_ranges_base ? cu->ranges_base : 0));
14779
14780 dwarf2_ranges_process (offset, cu,
14781 [&] (CORE_ADDR start, CORE_ADDR end)
14782 {
14783 start += baseaddr;
14784 end += baseaddr;
14785 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14786 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14787 record_block_range (block, start, end - 1);
14788 });
14789 }
14790 }
14791
14792 /* Check whether the producer field indicates either of GCC < 4.6, or the
14793 Intel C/C++ compiler, and cache the result in CU. */
14794
14795 static void
14796 check_producer (struct dwarf2_cu *cu)
14797 {
14798 int major, minor;
14799
14800 if (cu->producer == NULL)
14801 {
14802 /* For unknown compilers expect their behavior is DWARF version
14803 compliant.
14804
14805 GCC started to support .debug_types sections by -gdwarf-4 since
14806 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14807 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14808 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14809 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14810 }
14811 else if (producer_is_gcc (cu->producer, &major, &minor))
14812 {
14813 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14814 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14815 }
14816 else if (producer_is_icc (cu->producer, &major, &minor))
14817 cu->producer_is_icc_lt_14 = major < 14;
14818 else
14819 {
14820 /* For other non-GCC compilers, expect their behavior is DWARF version
14821 compliant. */
14822 }
14823
14824 cu->checked_producer = 1;
14825 }
14826
14827 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14828 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14829 during 4.6.0 experimental. */
14830
14831 static int
14832 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14833 {
14834 if (!cu->checked_producer)
14835 check_producer (cu);
14836
14837 return cu->producer_is_gxx_lt_4_6;
14838 }
14839
14840 /* Return the default accessibility type if it is not overriden by
14841 DW_AT_accessibility. */
14842
14843 static enum dwarf_access_attribute
14844 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14845 {
14846 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14847 {
14848 /* The default DWARF 2 accessibility for members is public, the default
14849 accessibility for inheritance is private. */
14850
14851 if (die->tag != DW_TAG_inheritance)
14852 return DW_ACCESS_public;
14853 else
14854 return DW_ACCESS_private;
14855 }
14856 else
14857 {
14858 /* DWARF 3+ defines the default accessibility a different way. The same
14859 rules apply now for DW_TAG_inheritance as for the members and it only
14860 depends on the container kind. */
14861
14862 if (die->parent->tag == DW_TAG_class_type)
14863 return DW_ACCESS_private;
14864 else
14865 return DW_ACCESS_public;
14866 }
14867 }
14868
14869 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14870 offset. If the attribute was not found return 0, otherwise return
14871 1. If it was found but could not properly be handled, set *OFFSET
14872 to 0. */
14873
14874 static int
14875 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14876 LONGEST *offset)
14877 {
14878 struct attribute *attr;
14879
14880 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14881 if (attr != NULL)
14882 {
14883 *offset = 0;
14884
14885 /* Note that we do not check for a section offset first here.
14886 This is because DW_AT_data_member_location is new in DWARF 4,
14887 so if we see it, we can assume that a constant form is really
14888 a constant and not a section offset. */
14889 if (attr_form_is_constant (attr))
14890 *offset = dwarf2_get_attr_constant_value (attr, 0);
14891 else if (attr_form_is_section_offset (attr))
14892 dwarf2_complex_location_expr_complaint ();
14893 else if (attr_form_is_block (attr))
14894 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14895 else
14896 dwarf2_complex_location_expr_complaint ();
14897
14898 return 1;
14899 }
14900
14901 return 0;
14902 }
14903
14904 /* Add an aggregate field to the field list. */
14905
14906 static void
14907 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14908 struct dwarf2_cu *cu)
14909 {
14910 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14911 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14912 struct nextfield *new_field;
14913 struct attribute *attr;
14914 struct field *fp;
14915 const char *fieldname = "";
14916
14917 if (die->tag == DW_TAG_inheritance)
14918 {
14919 fip->baseclasses.emplace_back ();
14920 new_field = &fip->baseclasses.back ();
14921 }
14922 else
14923 {
14924 fip->fields.emplace_back ();
14925 new_field = &fip->fields.back ();
14926 }
14927
14928 fip->nfields++;
14929
14930 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14931 if (attr)
14932 new_field->accessibility = DW_UNSND (attr);
14933 else
14934 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
14935 if (new_field->accessibility != DW_ACCESS_public)
14936 fip->non_public_fields = 1;
14937
14938 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14939 if (attr)
14940 new_field->virtuality = DW_UNSND (attr);
14941 else
14942 new_field->virtuality = DW_VIRTUALITY_none;
14943
14944 fp = &new_field->field;
14945
14946 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
14947 {
14948 LONGEST offset;
14949
14950 /* Data member other than a C++ static data member. */
14951
14952 /* Get type of field. */
14953 fp->type = die_type (die, cu);
14954
14955 SET_FIELD_BITPOS (*fp, 0);
14956
14957 /* Get bit size of field (zero if none). */
14958 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
14959 if (attr)
14960 {
14961 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
14962 }
14963 else
14964 {
14965 FIELD_BITSIZE (*fp) = 0;
14966 }
14967
14968 /* Get bit offset of field. */
14969 if (handle_data_member_location (die, cu, &offset))
14970 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
14971 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
14972 if (attr)
14973 {
14974 if (gdbarch_bits_big_endian (gdbarch))
14975 {
14976 /* For big endian bits, the DW_AT_bit_offset gives the
14977 additional bit offset from the MSB of the containing
14978 anonymous object to the MSB of the field. We don't
14979 have to do anything special since we don't need to
14980 know the size of the anonymous object. */
14981 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
14982 }
14983 else
14984 {
14985 /* For little endian bits, compute the bit offset to the
14986 MSB of the anonymous object, subtract off the number of
14987 bits from the MSB of the field to the MSB of the
14988 object, and then subtract off the number of bits of
14989 the field itself. The result is the bit offset of
14990 the LSB of the field. */
14991 int anonymous_size;
14992 int bit_offset = DW_UNSND (attr);
14993
14994 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14995 if (attr)
14996 {
14997 /* The size of the anonymous object containing
14998 the bit field is explicit, so use the
14999 indicated size (in bytes). */
15000 anonymous_size = DW_UNSND (attr);
15001 }
15002 else
15003 {
15004 /* The size of the anonymous object containing
15005 the bit field must be inferred from the type
15006 attribute of the data member containing the
15007 bit field. */
15008 anonymous_size = TYPE_LENGTH (fp->type);
15009 }
15010 SET_FIELD_BITPOS (*fp,
15011 (FIELD_BITPOS (*fp)
15012 + anonymous_size * bits_per_byte
15013 - bit_offset - FIELD_BITSIZE (*fp)));
15014 }
15015 }
15016 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15017 if (attr != NULL)
15018 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15019 + dwarf2_get_attr_constant_value (attr, 0)));
15020
15021 /* Get name of field. */
15022 fieldname = dwarf2_name (die, cu);
15023 if (fieldname == NULL)
15024 fieldname = "";
15025
15026 /* The name is already allocated along with this objfile, so we don't
15027 need to duplicate it for the type. */
15028 fp->name = fieldname;
15029
15030 /* Change accessibility for artificial fields (e.g. virtual table
15031 pointer or virtual base class pointer) to private. */
15032 if (dwarf2_attr (die, DW_AT_artificial, cu))
15033 {
15034 FIELD_ARTIFICIAL (*fp) = 1;
15035 new_field->accessibility = DW_ACCESS_private;
15036 fip->non_public_fields = 1;
15037 }
15038 }
15039 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15040 {
15041 /* C++ static member. */
15042
15043 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15044 is a declaration, but all versions of G++ as of this writing
15045 (so through at least 3.2.1) incorrectly generate
15046 DW_TAG_variable tags. */
15047
15048 const char *physname;
15049
15050 /* Get name of field. */
15051 fieldname = dwarf2_name (die, cu);
15052 if (fieldname == NULL)
15053 return;
15054
15055 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15056 if (attr
15057 /* Only create a symbol if this is an external value.
15058 new_symbol checks this and puts the value in the global symbol
15059 table, which we want. If it is not external, new_symbol
15060 will try to put the value in cu->list_in_scope which is wrong. */
15061 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15062 {
15063 /* A static const member, not much different than an enum as far as
15064 we're concerned, except that we can support more types. */
15065 new_symbol (die, NULL, cu);
15066 }
15067
15068 /* Get physical name. */
15069 physname = dwarf2_physname (fieldname, die, cu);
15070
15071 /* The name is already allocated along with this objfile, so we don't
15072 need to duplicate it for the type. */
15073 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15074 FIELD_TYPE (*fp) = die_type (die, cu);
15075 FIELD_NAME (*fp) = fieldname;
15076 }
15077 else if (die->tag == DW_TAG_inheritance)
15078 {
15079 LONGEST offset;
15080
15081 /* C++ base class field. */
15082 if (handle_data_member_location (die, cu, &offset))
15083 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15084 FIELD_BITSIZE (*fp) = 0;
15085 FIELD_TYPE (*fp) = die_type (die, cu);
15086 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
15087 }
15088 else if (die->tag == DW_TAG_variant_part)
15089 {
15090 /* process_structure_scope will treat this DIE as a union. */
15091 process_structure_scope (die, cu);
15092
15093 /* The variant part is relative to the start of the enclosing
15094 structure. */
15095 SET_FIELD_BITPOS (*fp, 0);
15096 fp->type = get_die_type (die, cu);
15097 fp->artificial = 1;
15098 fp->name = "<<variant>>";
15099 }
15100 else
15101 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15102 }
15103
15104 /* Can the type given by DIE define another type? */
15105
15106 static bool
15107 type_can_define_types (const struct die_info *die)
15108 {
15109 switch (die->tag)
15110 {
15111 case DW_TAG_typedef:
15112 case DW_TAG_class_type:
15113 case DW_TAG_structure_type:
15114 case DW_TAG_union_type:
15115 case DW_TAG_enumeration_type:
15116 return true;
15117
15118 default:
15119 return false;
15120 }
15121 }
15122
15123 /* Add a type definition defined in the scope of the FIP's class. */
15124
15125 static void
15126 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15127 struct dwarf2_cu *cu)
15128 {
15129 struct decl_field fp;
15130 memset (&fp, 0, sizeof (fp));
15131
15132 gdb_assert (type_can_define_types (die));
15133
15134 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15135 fp.name = dwarf2_name (die, cu);
15136 fp.type = read_type_die (die, cu);
15137
15138 /* Save accessibility. */
15139 enum dwarf_access_attribute accessibility;
15140 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15141 if (attr != NULL)
15142 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15143 else
15144 accessibility = dwarf2_default_access_attribute (die, cu);
15145 switch (accessibility)
15146 {
15147 case DW_ACCESS_public:
15148 /* The assumed value if neither private nor protected. */
15149 break;
15150 case DW_ACCESS_private:
15151 fp.is_private = 1;
15152 break;
15153 case DW_ACCESS_protected:
15154 fp.is_protected = 1;
15155 break;
15156 default:
15157 complaint (&symfile_complaints,
15158 _("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15159 }
15160
15161 if (die->tag == DW_TAG_typedef)
15162 fip->typedef_field_list.push_back (fp);
15163 else
15164 fip->nested_types_list.push_back (fp);
15165 }
15166
15167 /* Create the vector of fields, and attach it to the type. */
15168
15169 static void
15170 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15171 struct dwarf2_cu *cu)
15172 {
15173 int nfields = fip->nfields;
15174
15175 /* Record the field count, allocate space for the array of fields,
15176 and create blank accessibility bitfields if necessary. */
15177 TYPE_NFIELDS (type) = nfields;
15178 TYPE_FIELDS (type) = (struct field *)
15179 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15180
15181 if (fip->non_public_fields && cu->language != language_ada)
15182 {
15183 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15184
15185 TYPE_FIELD_PRIVATE_BITS (type) =
15186 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15187 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15188
15189 TYPE_FIELD_PROTECTED_BITS (type) =
15190 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15191 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15192
15193 TYPE_FIELD_IGNORE_BITS (type) =
15194 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15195 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15196 }
15197
15198 /* If the type has baseclasses, allocate and clear a bit vector for
15199 TYPE_FIELD_VIRTUAL_BITS. */
15200 if (!fip->baseclasses.empty () && cu->language != language_ada)
15201 {
15202 int num_bytes = B_BYTES (fip->baseclasses.size ());
15203 unsigned char *pointer;
15204
15205 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15206 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15207 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15208 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15209 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15210 }
15211
15212 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15213 {
15214 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15215
15216 for (int index = 0; index < nfields; ++index)
15217 {
15218 struct nextfield &field = fip->fields[index];
15219
15220 if (field.variant.is_discriminant)
15221 di->discriminant_index = index;
15222 else if (field.variant.default_branch)
15223 di->default_index = index;
15224 else
15225 di->discriminants[index] = field.variant.discriminant_value;
15226 }
15227 }
15228
15229 /* Copy the saved-up fields into the field vector. */
15230 for (int i = 0; i < nfields; ++i)
15231 {
15232 struct nextfield &field
15233 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15234 : fip->fields[i - fip->baseclasses.size ()]);
15235
15236 TYPE_FIELD (type, i) = field.field;
15237 switch (field.accessibility)
15238 {
15239 case DW_ACCESS_private:
15240 if (cu->language != language_ada)
15241 SET_TYPE_FIELD_PRIVATE (type, i);
15242 break;
15243
15244 case DW_ACCESS_protected:
15245 if (cu->language != language_ada)
15246 SET_TYPE_FIELD_PROTECTED (type, i);
15247 break;
15248
15249 case DW_ACCESS_public:
15250 break;
15251
15252 default:
15253 /* Unknown accessibility. Complain and treat it as public. */
15254 {
15255 complaint (&symfile_complaints, _("unsupported accessibility %d"),
15256 field.accessibility);
15257 }
15258 break;
15259 }
15260 if (i < fip->baseclasses.size ())
15261 {
15262 switch (field.virtuality)
15263 {
15264 case DW_VIRTUALITY_virtual:
15265 case DW_VIRTUALITY_pure_virtual:
15266 if (cu->language == language_ada)
15267 error (_("unexpected virtuality in component of Ada type"));
15268 SET_TYPE_FIELD_VIRTUAL (type, i);
15269 break;
15270 }
15271 }
15272 }
15273 }
15274
15275 /* Return true if this member function is a constructor, false
15276 otherwise. */
15277
15278 static int
15279 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15280 {
15281 const char *fieldname;
15282 const char *type_name;
15283 int len;
15284
15285 if (die->parent == NULL)
15286 return 0;
15287
15288 if (die->parent->tag != DW_TAG_structure_type
15289 && die->parent->tag != DW_TAG_union_type
15290 && die->parent->tag != DW_TAG_class_type)
15291 return 0;
15292
15293 fieldname = dwarf2_name (die, cu);
15294 type_name = dwarf2_name (die->parent, cu);
15295 if (fieldname == NULL || type_name == NULL)
15296 return 0;
15297
15298 len = strlen (fieldname);
15299 return (strncmp (fieldname, type_name, len) == 0
15300 && (type_name[len] == '\0' || type_name[len] == '<'));
15301 }
15302
15303 /* Add a member function to the proper fieldlist. */
15304
15305 static void
15306 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15307 struct type *type, struct dwarf2_cu *cu)
15308 {
15309 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15310 struct attribute *attr;
15311 int i;
15312 struct fnfieldlist *flp = nullptr;
15313 struct fn_field *fnp;
15314 const char *fieldname;
15315 struct type *this_type;
15316 enum dwarf_access_attribute accessibility;
15317
15318 if (cu->language == language_ada)
15319 error (_("unexpected member function in Ada type"));
15320
15321 /* Get name of member function. */
15322 fieldname = dwarf2_name (die, cu);
15323 if (fieldname == NULL)
15324 return;
15325
15326 /* Look up member function name in fieldlist. */
15327 for (i = 0; i < fip->fnfieldlists.size (); i++)
15328 {
15329 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15330 {
15331 flp = &fip->fnfieldlists[i];
15332 break;
15333 }
15334 }
15335
15336 /* Create a new fnfieldlist if necessary. */
15337 if (flp == nullptr)
15338 {
15339 fip->fnfieldlists.emplace_back ();
15340 flp = &fip->fnfieldlists.back ();
15341 flp->name = fieldname;
15342 i = fip->fnfieldlists.size () - 1;
15343 }
15344
15345 /* Create a new member function field and add it to the vector of
15346 fnfieldlists. */
15347 flp->fnfields.emplace_back ();
15348 fnp = &flp->fnfields.back ();
15349
15350 /* Delay processing of the physname until later. */
15351 if (cu->language == language_cplus)
15352 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15353 die, cu);
15354 else
15355 {
15356 const char *physname = dwarf2_physname (fieldname, die, cu);
15357 fnp->physname = physname ? physname : "";
15358 }
15359
15360 fnp->type = alloc_type (objfile);
15361 this_type = read_type_die (die, cu);
15362 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15363 {
15364 int nparams = TYPE_NFIELDS (this_type);
15365
15366 /* TYPE is the domain of this method, and THIS_TYPE is the type
15367 of the method itself (TYPE_CODE_METHOD). */
15368 smash_to_method_type (fnp->type, type,
15369 TYPE_TARGET_TYPE (this_type),
15370 TYPE_FIELDS (this_type),
15371 TYPE_NFIELDS (this_type),
15372 TYPE_VARARGS (this_type));
15373
15374 /* Handle static member functions.
15375 Dwarf2 has no clean way to discern C++ static and non-static
15376 member functions. G++ helps GDB by marking the first
15377 parameter for non-static member functions (which is the this
15378 pointer) as artificial. We obtain this information from
15379 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15380 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15381 fnp->voffset = VOFFSET_STATIC;
15382 }
15383 else
15384 complaint (&symfile_complaints, _("member function type missing for '%s'"),
15385 dwarf2_full_name (fieldname, die, cu));
15386
15387 /* Get fcontext from DW_AT_containing_type if present. */
15388 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15389 fnp->fcontext = die_containing_type (die, cu);
15390
15391 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15392 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15393
15394 /* Get accessibility. */
15395 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15396 if (attr)
15397 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15398 else
15399 accessibility = dwarf2_default_access_attribute (die, cu);
15400 switch (accessibility)
15401 {
15402 case DW_ACCESS_private:
15403 fnp->is_private = 1;
15404 break;
15405 case DW_ACCESS_protected:
15406 fnp->is_protected = 1;
15407 break;
15408 }
15409
15410 /* Check for artificial methods. */
15411 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15412 if (attr && DW_UNSND (attr) != 0)
15413 fnp->is_artificial = 1;
15414
15415 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15416
15417 /* Get index in virtual function table if it is a virtual member
15418 function. For older versions of GCC, this is an offset in the
15419 appropriate virtual table, as specified by DW_AT_containing_type.
15420 For everyone else, it is an expression to be evaluated relative
15421 to the object address. */
15422
15423 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15424 if (attr)
15425 {
15426 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15427 {
15428 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15429 {
15430 /* Old-style GCC. */
15431 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15432 }
15433 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15434 || (DW_BLOCK (attr)->size > 1
15435 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15436 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15437 {
15438 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15439 if ((fnp->voffset % cu->header.addr_size) != 0)
15440 dwarf2_complex_location_expr_complaint ();
15441 else
15442 fnp->voffset /= cu->header.addr_size;
15443 fnp->voffset += 2;
15444 }
15445 else
15446 dwarf2_complex_location_expr_complaint ();
15447
15448 if (!fnp->fcontext)
15449 {
15450 /* If there is no `this' field and no DW_AT_containing_type,
15451 we cannot actually find a base class context for the
15452 vtable! */
15453 if (TYPE_NFIELDS (this_type) == 0
15454 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15455 {
15456 complaint (&symfile_complaints,
15457 _("cannot determine context for virtual member "
15458 "function \"%s\" (offset %s)"),
15459 fieldname, sect_offset_str (die->sect_off));
15460 }
15461 else
15462 {
15463 fnp->fcontext
15464 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15465 }
15466 }
15467 }
15468 else if (attr_form_is_section_offset (attr))
15469 {
15470 dwarf2_complex_location_expr_complaint ();
15471 }
15472 else
15473 {
15474 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15475 fieldname);
15476 }
15477 }
15478 else
15479 {
15480 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15481 if (attr && DW_UNSND (attr))
15482 {
15483 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15484 complaint (&symfile_complaints,
15485 _("Member function \"%s\" (offset %s) is virtual "
15486 "but the vtable offset is not specified"),
15487 fieldname, sect_offset_str (die->sect_off));
15488 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15489 TYPE_CPLUS_DYNAMIC (type) = 1;
15490 }
15491 }
15492 }
15493
15494 /* Create the vector of member function fields, and attach it to the type. */
15495
15496 static void
15497 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15498 struct dwarf2_cu *cu)
15499 {
15500 if (cu->language == language_ada)
15501 error (_("unexpected member functions in Ada type"));
15502
15503 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15504 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15505 TYPE_ALLOC (type,
15506 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15507
15508 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15509 {
15510 struct fnfieldlist &nf = fip->fnfieldlists[i];
15511 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15512
15513 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15514 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15515 fn_flp->fn_fields = (struct fn_field *)
15516 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15517
15518 for (int k = 0; k < nf.fnfields.size (); ++k)
15519 fn_flp->fn_fields[k] = nf.fnfields[k];
15520 }
15521
15522 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15523 }
15524
15525 /* Returns non-zero if NAME is the name of a vtable member in CU's
15526 language, zero otherwise. */
15527 static int
15528 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15529 {
15530 static const char vptr[] = "_vptr";
15531
15532 /* Look for the C++ form of the vtable. */
15533 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15534 return 1;
15535
15536 return 0;
15537 }
15538
15539 /* GCC outputs unnamed structures that are really pointers to member
15540 functions, with the ABI-specified layout. If TYPE describes
15541 such a structure, smash it into a member function type.
15542
15543 GCC shouldn't do this; it should just output pointer to member DIEs.
15544 This is GCC PR debug/28767. */
15545
15546 static void
15547 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15548 {
15549 struct type *pfn_type, *self_type, *new_type;
15550
15551 /* Check for a structure with no name and two children. */
15552 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15553 return;
15554
15555 /* Check for __pfn and __delta members. */
15556 if (TYPE_FIELD_NAME (type, 0) == NULL
15557 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15558 || TYPE_FIELD_NAME (type, 1) == NULL
15559 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15560 return;
15561
15562 /* Find the type of the method. */
15563 pfn_type = TYPE_FIELD_TYPE (type, 0);
15564 if (pfn_type == NULL
15565 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15566 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15567 return;
15568
15569 /* Look for the "this" argument. */
15570 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15571 if (TYPE_NFIELDS (pfn_type) == 0
15572 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15573 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15574 return;
15575
15576 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15577 new_type = alloc_type (objfile);
15578 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15579 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15580 TYPE_VARARGS (pfn_type));
15581 smash_to_methodptr_type (type, new_type);
15582 }
15583
15584 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15585 appropriate error checking and issuing complaints if there is a
15586 problem. */
15587
15588 static ULONGEST
15589 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15590 {
15591 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15592
15593 if (attr == nullptr)
15594 return 0;
15595
15596 if (!attr_form_is_constant (attr))
15597 {
15598 complaint (&symfile_complaints,
15599 _("DW_AT_alignment must have constant form"
15600 " - DIE at %s [in module %s]"),
15601 sect_offset_str (die->sect_off),
15602 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15603 return 0;
15604 }
15605
15606 ULONGEST align;
15607 if (attr->form == DW_FORM_sdata)
15608 {
15609 LONGEST val = DW_SND (attr);
15610 if (val < 0)
15611 {
15612 complaint (&symfile_complaints,
15613 _("DW_AT_alignment value must not be negative"
15614 " - DIE at %s [in module %s]"),
15615 sect_offset_str (die->sect_off),
15616 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15617 return 0;
15618 }
15619 align = val;
15620 }
15621 else
15622 align = DW_UNSND (attr);
15623
15624 if (align == 0)
15625 {
15626 complaint (&symfile_complaints,
15627 _("DW_AT_alignment value must not be zero"
15628 " - DIE at %s [in module %s]"),
15629 sect_offset_str (die->sect_off),
15630 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15631 return 0;
15632 }
15633 if ((align & (align - 1)) != 0)
15634 {
15635 complaint (&symfile_complaints,
15636 _("DW_AT_alignment value must be a power of 2"
15637 " - DIE at %s [in module %s]"),
15638 sect_offset_str (die->sect_off),
15639 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15640 return 0;
15641 }
15642
15643 return align;
15644 }
15645
15646 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15647 the alignment for TYPE. */
15648
15649 static void
15650 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15651 struct type *type)
15652 {
15653 if (!set_type_align (type, get_alignment (cu, die)))
15654 complaint (&symfile_complaints,
15655 _("DW_AT_alignment value too large"
15656 " - DIE at %s [in module %s]"),
15657 sect_offset_str (die->sect_off),
15658 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15659 }
15660
15661 /* Called when we find the DIE that starts a structure or union scope
15662 (definition) to create a type for the structure or union. Fill in
15663 the type's name and general properties; the members will not be
15664 processed until process_structure_scope. A symbol table entry for
15665 the type will also not be done until process_structure_scope (assuming
15666 the type has a name).
15667
15668 NOTE: we need to call these functions regardless of whether or not the
15669 DIE has a DW_AT_name attribute, since it might be an anonymous
15670 structure or union. This gets the type entered into our set of
15671 user defined types. */
15672
15673 static struct type *
15674 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15675 {
15676 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15677 struct type *type;
15678 struct attribute *attr;
15679 const char *name;
15680
15681 /* If the definition of this type lives in .debug_types, read that type.
15682 Don't follow DW_AT_specification though, that will take us back up
15683 the chain and we want to go down. */
15684 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15685 if (attr)
15686 {
15687 type = get_DW_AT_signature_type (die, attr, cu);
15688
15689 /* The type's CU may not be the same as CU.
15690 Ensure TYPE is recorded with CU in die_type_hash. */
15691 return set_die_type (die, type, cu);
15692 }
15693
15694 type = alloc_type (objfile);
15695 INIT_CPLUS_SPECIFIC (type);
15696
15697 name = dwarf2_name (die, cu);
15698 if (name != NULL)
15699 {
15700 if (cu->language == language_cplus
15701 || cu->language == language_d
15702 || cu->language == language_rust)
15703 {
15704 const char *full_name = dwarf2_full_name (name, die, cu);
15705
15706 /* dwarf2_full_name might have already finished building the DIE's
15707 type. If so, there is no need to continue. */
15708 if (get_die_type (die, cu) != NULL)
15709 return get_die_type (die, cu);
15710
15711 TYPE_TAG_NAME (type) = full_name;
15712 if (die->tag == DW_TAG_structure_type
15713 || die->tag == DW_TAG_class_type)
15714 TYPE_NAME (type) = TYPE_TAG_NAME (type);
15715 }
15716 else
15717 {
15718 /* The name is already allocated along with this objfile, so
15719 we don't need to duplicate it for the type. */
15720 TYPE_TAG_NAME (type) = name;
15721 if (die->tag == DW_TAG_class_type)
15722 TYPE_NAME (type) = TYPE_TAG_NAME (type);
15723 }
15724 }
15725
15726 if (die->tag == DW_TAG_structure_type)
15727 {
15728 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15729 }
15730 else if (die->tag == DW_TAG_union_type)
15731 {
15732 TYPE_CODE (type) = TYPE_CODE_UNION;
15733 }
15734 else if (die->tag == DW_TAG_variant_part)
15735 {
15736 TYPE_CODE (type) = TYPE_CODE_UNION;
15737 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15738 }
15739 else
15740 {
15741 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15742 }
15743
15744 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15745 TYPE_DECLARED_CLASS (type) = 1;
15746
15747 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15748 if (attr)
15749 {
15750 if (attr_form_is_constant (attr))
15751 TYPE_LENGTH (type) = DW_UNSND (attr);
15752 else
15753 {
15754 /* For the moment, dynamic type sizes are not supported
15755 by GDB's struct type. The actual size is determined
15756 on-demand when resolving the type of a given object,
15757 so set the type's length to zero for now. Otherwise,
15758 we record an expression as the length, and that expression
15759 could lead to a very large value, which could eventually
15760 lead to us trying to allocate that much memory when creating
15761 a value of that type. */
15762 TYPE_LENGTH (type) = 0;
15763 }
15764 }
15765 else
15766 {
15767 TYPE_LENGTH (type) = 0;
15768 }
15769
15770 maybe_set_alignment (cu, die, type);
15771
15772 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15773 {
15774 /* ICC<14 does not output the required DW_AT_declaration on
15775 incomplete types, but gives them a size of zero. */
15776 TYPE_STUB (type) = 1;
15777 }
15778 else
15779 TYPE_STUB_SUPPORTED (type) = 1;
15780
15781 if (die_is_declaration (die, cu))
15782 TYPE_STUB (type) = 1;
15783 else if (attr == NULL && die->child == NULL
15784 && producer_is_realview (cu->producer))
15785 /* RealView does not output the required DW_AT_declaration
15786 on incomplete types. */
15787 TYPE_STUB (type) = 1;
15788
15789 /* We need to add the type field to the die immediately so we don't
15790 infinitely recurse when dealing with pointers to the structure
15791 type within the structure itself. */
15792 set_die_type (die, type, cu);
15793
15794 /* set_die_type should be already done. */
15795 set_descriptive_type (type, die, cu);
15796
15797 return type;
15798 }
15799
15800 /* A helper for process_structure_scope that handles a single member
15801 DIE. */
15802
15803 static void
15804 handle_struct_member_die (struct die_info *child_die, struct type *type,
15805 struct field_info *fi,
15806 std::vector<struct symbol *> *template_args,
15807 struct dwarf2_cu *cu)
15808 {
15809 if (child_die->tag == DW_TAG_member
15810 || child_die->tag == DW_TAG_variable
15811 || child_die->tag == DW_TAG_variant_part)
15812 {
15813 /* NOTE: carlton/2002-11-05: A C++ static data member
15814 should be a DW_TAG_member that is a declaration, but
15815 all versions of G++ as of this writing (so through at
15816 least 3.2.1) incorrectly generate DW_TAG_variable
15817 tags for them instead. */
15818 dwarf2_add_field (fi, child_die, cu);
15819 }
15820 else if (child_die->tag == DW_TAG_subprogram)
15821 {
15822 /* Rust doesn't have member functions in the C++ sense.
15823 However, it does emit ordinary functions as children
15824 of a struct DIE. */
15825 if (cu->language == language_rust)
15826 read_func_scope (child_die, cu);
15827 else
15828 {
15829 /* C++ member function. */
15830 dwarf2_add_member_fn (fi, child_die, type, cu);
15831 }
15832 }
15833 else if (child_die->tag == DW_TAG_inheritance)
15834 {
15835 /* C++ base class field. */
15836 dwarf2_add_field (fi, child_die, cu);
15837 }
15838 else if (type_can_define_types (child_die))
15839 dwarf2_add_type_defn (fi, child_die, cu);
15840 else if (child_die->tag == DW_TAG_template_type_param
15841 || child_die->tag == DW_TAG_template_value_param)
15842 {
15843 struct symbol *arg = new_symbol (child_die, NULL, cu);
15844
15845 if (arg != NULL)
15846 template_args->push_back (arg);
15847 }
15848 else if (child_die->tag == DW_TAG_variant)
15849 {
15850 /* In a variant we want to get the discriminant and also add a
15851 field for our sole member child. */
15852 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15853
15854 for (struct die_info *variant_child = child_die->child;
15855 variant_child != NULL;
15856 variant_child = sibling_die (variant_child))
15857 {
15858 if (variant_child->tag == DW_TAG_member)
15859 {
15860 handle_struct_member_die (variant_child, type, fi,
15861 template_args, cu);
15862 /* Only handle the one. */
15863 break;
15864 }
15865 }
15866
15867 /* We don't handle this but we might as well report it if we see
15868 it. */
15869 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15870 complaint (&symfile_complaints,
15871 _("DW_AT_discr_list is not supported yet"
15872 " - DIE at %s [in module %s]"),
15873 sect_offset_str (child_die->sect_off),
15874 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15875
15876 /* The first field was just added, so we can stash the
15877 discriminant there. */
15878 gdb_assert (!fi->fields.empty ());
15879 if (discr == NULL)
15880 fi->fields.back ().variant.default_branch = true;
15881 else
15882 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15883 }
15884 }
15885
15886 /* Finish creating a structure or union type, including filling in
15887 its members and creating a symbol for it. */
15888
15889 static void
15890 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15891 {
15892 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15893 struct die_info *child_die;
15894 struct type *type;
15895
15896 type = get_die_type (die, cu);
15897 if (type == NULL)
15898 type = read_structure_type (die, cu);
15899
15900 /* When reading a DW_TAG_variant_part, we need to notice when we
15901 read the discriminant member, so we can record it later in the
15902 discriminant_info. */
15903 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
15904 sect_offset discr_offset;
15905
15906 if (is_variant_part)
15907 {
15908 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15909 if (discr == NULL)
15910 {
15911 /* Maybe it's a univariant form, an extension we support.
15912 In this case arrange not to check the offset. */
15913 is_variant_part = false;
15914 }
15915 else if (attr_form_is_ref (discr))
15916 {
15917 struct dwarf2_cu *target_cu = cu;
15918 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15919
15920 discr_offset = target_die->sect_off;
15921 }
15922 else
15923 {
15924 complaint (&symfile_complaints,
15925 _("DW_AT_discr does not have DIE reference form"
15926 " - DIE at %s [in module %s]"),
15927 sect_offset_str (die->sect_off),
15928 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15929 is_variant_part = false;
15930 }
15931 }
15932
15933 if (die->child != NULL && ! die_is_declaration (die, cu))
15934 {
15935 struct field_info fi;
15936 std::vector<struct symbol *> template_args;
15937
15938 child_die = die->child;
15939
15940 while (child_die && child_die->tag)
15941 {
15942 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
15943
15944 if (is_variant_part && discr_offset == child_die->sect_off)
15945 fi.fields.back ().variant.is_discriminant = true;
15946
15947 child_die = sibling_die (child_die);
15948 }
15949
15950 /* Attach template arguments to type. */
15951 if (!template_args.empty ())
15952 {
15953 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15954 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
15955 TYPE_TEMPLATE_ARGUMENTS (type)
15956 = XOBNEWVEC (&objfile->objfile_obstack,
15957 struct symbol *,
15958 TYPE_N_TEMPLATE_ARGUMENTS (type));
15959 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
15960 template_args.data (),
15961 (TYPE_N_TEMPLATE_ARGUMENTS (type)
15962 * sizeof (struct symbol *)));
15963 }
15964
15965 /* Attach fields and member functions to the type. */
15966 if (fi.nfields)
15967 dwarf2_attach_fields_to_type (&fi, type, cu);
15968 if (!fi.fnfieldlists.empty ())
15969 {
15970 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
15971
15972 /* Get the type which refers to the base class (possibly this
15973 class itself) which contains the vtable pointer for the current
15974 class from the DW_AT_containing_type attribute. This use of
15975 DW_AT_containing_type is a GNU extension. */
15976
15977 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15978 {
15979 struct type *t = die_containing_type (die, cu);
15980
15981 set_type_vptr_basetype (type, t);
15982 if (type == t)
15983 {
15984 int i;
15985
15986 /* Our own class provides vtbl ptr. */
15987 for (i = TYPE_NFIELDS (t) - 1;
15988 i >= TYPE_N_BASECLASSES (t);
15989 --i)
15990 {
15991 const char *fieldname = TYPE_FIELD_NAME (t, i);
15992
15993 if (is_vtable_name (fieldname, cu))
15994 {
15995 set_type_vptr_fieldno (type, i);
15996 break;
15997 }
15998 }
15999
16000 /* Complain if virtual function table field not found. */
16001 if (i < TYPE_N_BASECLASSES (t))
16002 complaint (&symfile_complaints,
16003 _("virtual function table pointer "
16004 "not found when defining class '%s'"),
16005 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
16006 "");
16007 }
16008 else
16009 {
16010 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16011 }
16012 }
16013 else if (cu->producer
16014 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16015 {
16016 /* The IBM XLC compiler does not provide direct indication
16017 of the containing type, but the vtable pointer is
16018 always named __vfp. */
16019
16020 int i;
16021
16022 for (i = TYPE_NFIELDS (type) - 1;
16023 i >= TYPE_N_BASECLASSES (type);
16024 --i)
16025 {
16026 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16027 {
16028 set_type_vptr_fieldno (type, i);
16029 set_type_vptr_basetype (type, type);
16030 break;
16031 }
16032 }
16033 }
16034 }
16035
16036 /* Copy fi.typedef_field_list linked list elements content into the
16037 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16038 if (!fi.typedef_field_list.empty ())
16039 {
16040 int count = fi.typedef_field_list.size ();
16041
16042 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16043 TYPE_TYPEDEF_FIELD_ARRAY (type)
16044 = ((struct decl_field *)
16045 TYPE_ALLOC (type,
16046 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16047 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16048
16049 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16050 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16051 }
16052
16053 /* Copy fi.nested_types_list linked list elements content into the
16054 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16055 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16056 {
16057 int count = fi.nested_types_list.size ();
16058
16059 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16060 TYPE_NESTED_TYPES_ARRAY (type)
16061 = ((struct decl_field *)
16062 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16063 TYPE_NESTED_TYPES_COUNT (type) = count;
16064
16065 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16066 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16067 }
16068 }
16069
16070 quirk_gcc_member_function_pointer (type, objfile);
16071 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16072 cu->rust_unions.push_back (type);
16073
16074 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16075 snapshots) has been known to create a die giving a declaration
16076 for a class that has, as a child, a die giving a definition for a
16077 nested class. So we have to process our children even if the
16078 current die is a declaration. Normally, of course, a declaration
16079 won't have any children at all. */
16080
16081 child_die = die->child;
16082
16083 while (child_die != NULL && child_die->tag)
16084 {
16085 if (child_die->tag == DW_TAG_member
16086 || child_die->tag == DW_TAG_variable
16087 || child_die->tag == DW_TAG_inheritance
16088 || child_die->tag == DW_TAG_template_value_param
16089 || child_die->tag == DW_TAG_template_type_param)
16090 {
16091 /* Do nothing. */
16092 }
16093 else
16094 process_die (child_die, cu);
16095
16096 child_die = sibling_die (child_die);
16097 }
16098
16099 /* Do not consider external references. According to the DWARF standard,
16100 these DIEs are identified by the fact that they have no byte_size
16101 attribute, and a declaration attribute. */
16102 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16103 || !die_is_declaration (die, cu))
16104 new_symbol (die, type, cu);
16105 }
16106
16107 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16108 update TYPE using some information only available in DIE's children. */
16109
16110 static void
16111 update_enumeration_type_from_children (struct die_info *die,
16112 struct type *type,
16113 struct dwarf2_cu *cu)
16114 {
16115 struct die_info *child_die;
16116 int unsigned_enum = 1;
16117 int flag_enum = 1;
16118 ULONGEST mask = 0;
16119
16120 auto_obstack obstack;
16121
16122 for (child_die = die->child;
16123 child_die != NULL && child_die->tag;
16124 child_die = sibling_die (child_die))
16125 {
16126 struct attribute *attr;
16127 LONGEST value;
16128 const gdb_byte *bytes;
16129 struct dwarf2_locexpr_baton *baton;
16130 const char *name;
16131
16132 if (child_die->tag != DW_TAG_enumerator)
16133 continue;
16134
16135 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16136 if (attr == NULL)
16137 continue;
16138
16139 name = dwarf2_name (child_die, cu);
16140 if (name == NULL)
16141 name = "<anonymous enumerator>";
16142
16143 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16144 &value, &bytes, &baton);
16145 if (value < 0)
16146 {
16147 unsigned_enum = 0;
16148 flag_enum = 0;
16149 }
16150 else if ((mask & value) != 0)
16151 flag_enum = 0;
16152 else
16153 mask |= value;
16154
16155 /* If we already know that the enum type is neither unsigned, nor
16156 a flag type, no need to look at the rest of the enumerates. */
16157 if (!unsigned_enum && !flag_enum)
16158 break;
16159 }
16160
16161 if (unsigned_enum)
16162 TYPE_UNSIGNED (type) = 1;
16163 if (flag_enum)
16164 TYPE_FLAG_ENUM (type) = 1;
16165 }
16166
16167 /* Given a DW_AT_enumeration_type die, set its type. We do not
16168 complete the type's fields yet, or create any symbols. */
16169
16170 static struct type *
16171 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16172 {
16173 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16174 struct type *type;
16175 struct attribute *attr;
16176 const char *name;
16177
16178 /* If the definition of this type lives in .debug_types, read that type.
16179 Don't follow DW_AT_specification though, that will take us back up
16180 the chain and we want to go down. */
16181 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16182 if (attr)
16183 {
16184 type = get_DW_AT_signature_type (die, attr, cu);
16185
16186 /* The type's CU may not be the same as CU.
16187 Ensure TYPE is recorded with CU in die_type_hash. */
16188 return set_die_type (die, type, cu);
16189 }
16190
16191 type = alloc_type (objfile);
16192
16193 TYPE_CODE (type) = TYPE_CODE_ENUM;
16194 name = dwarf2_full_name (NULL, die, cu);
16195 if (name != NULL)
16196 TYPE_TAG_NAME (type) = name;
16197
16198 attr = dwarf2_attr (die, DW_AT_type, cu);
16199 if (attr != NULL)
16200 {
16201 struct type *underlying_type = die_type (die, cu);
16202
16203 TYPE_TARGET_TYPE (type) = underlying_type;
16204 }
16205
16206 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16207 if (attr)
16208 {
16209 TYPE_LENGTH (type) = DW_UNSND (attr);
16210 }
16211 else
16212 {
16213 TYPE_LENGTH (type) = 0;
16214 }
16215
16216 maybe_set_alignment (cu, die, type);
16217
16218 /* The enumeration DIE can be incomplete. In Ada, any type can be
16219 declared as private in the package spec, and then defined only
16220 inside the package body. Such types are known as Taft Amendment
16221 Types. When another package uses such a type, an incomplete DIE
16222 may be generated by the compiler. */
16223 if (die_is_declaration (die, cu))
16224 TYPE_STUB (type) = 1;
16225
16226 /* Finish the creation of this type by using the enum's children.
16227 We must call this even when the underlying type has been provided
16228 so that we can determine if we're looking at a "flag" enum. */
16229 update_enumeration_type_from_children (die, type, cu);
16230
16231 /* If this type has an underlying type that is not a stub, then we
16232 may use its attributes. We always use the "unsigned" attribute
16233 in this situation, because ordinarily we guess whether the type
16234 is unsigned -- but the guess can be wrong and the underlying type
16235 can tell us the reality. However, we defer to a local size
16236 attribute if one exists, because this lets the compiler override
16237 the underlying type if needed. */
16238 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16239 {
16240 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16241 if (TYPE_LENGTH (type) == 0)
16242 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16243 if (TYPE_RAW_ALIGN (type) == 0
16244 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16245 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16246 }
16247
16248 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16249
16250 return set_die_type (die, type, cu);
16251 }
16252
16253 /* Given a pointer to a die which begins an enumeration, process all
16254 the dies that define the members of the enumeration, and create the
16255 symbol for the enumeration type.
16256
16257 NOTE: We reverse the order of the element list. */
16258
16259 static void
16260 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16261 {
16262 struct type *this_type;
16263
16264 this_type = get_die_type (die, cu);
16265 if (this_type == NULL)
16266 this_type = read_enumeration_type (die, cu);
16267
16268 if (die->child != NULL)
16269 {
16270 struct die_info *child_die;
16271 struct symbol *sym;
16272 struct field *fields = NULL;
16273 int num_fields = 0;
16274 const char *name;
16275
16276 child_die = die->child;
16277 while (child_die && child_die->tag)
16278 {
16279 if (child_die->tag != DW_TAG_enumerator)
16280 {
16281 process_die (child_die, cu);
16282 }
16283 else
16284 {
16285 name = dwarf2_name (child_die, cu);
16286 if (name)
16287 {
16288 sym = new_symbol (child_die, this_type, cu);
16289
16290 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16291 {
16292 fields = (struct field *)
16293 xrealloc (fields,
16294 (num_fields + DW_FIELD_ALLOC_CHUNK)
16295 * sizeof (struct field));
16296 }
16297
16298 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16299 FIELD_TYPE (fields[num_fields]) = NULL;
16300 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16301 FIELD_BITSIZE (fields[num_fields]) = 0;
16302
16303 num_fields++;
16304 }
16305 }
16306
16307 child_die = sibling_die (child_die);
16308 }
16309
16310 if (num_fields)
16311 {
16312 TYPE_NFIELDS (this_type) = num_fields;
16313 TYPE_FIELDS (this_type) = (struct field *)
16314 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16315 memcpy (TYPE_FIELDS (this_type), fields,
16316 sizeof (struct field) * num_fields);
16317 xfree (fields);
16318 }
16319 }
16320
16321 /* If we are reading an enum from a .debug_types unit, and the enum
16322 is a declaration, and the enum is not the signatured type in the
16323 unit, then we do not want to add a symbol for it. Adding a
16324 symbol would in some cases obscure the true definition of the
16325 enum, giving users an incomplete type when the definition is
16326 actually available. Note that we do not want to do this for all
16327 enums which are just declarations, because C++0x allows forward
16328 enum declarations. */
16329 if (cu->per_cu->is_debug_types
16330 && die_is_declaration (die, cu))
16331 {
16332 struct signatured_type *sig_type;
16333
16334 sig_type = (struct signatured_type *) cu->per_cu;
16335 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16336 if (sig_type->type_offset_in_section != die->sect_off)
16337 return;
16338 }
16339
16340 new_symbol (die, this_type, cu);
16341 }
16342
16343 /* Extract all information from a DW_TAG_array_type DIE and put it in
16344 the DIE's type field. For now, this only handles one dimensional
16345 arrays. */
16346
16347 static struct type *
16348 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16349 {
16350 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16351 struct die_info *child_die;
16352 struct type *type;
16353 struct type *element_type, *range_type, *index_type;
16354 struct attribute *attr;
16355 const char *name;
16356 struct dynamic_prop *byte_stride_prop = NULL;
16357 unsigned int bit_stride = 0;
16358
16359 element_type = die_type (die, cu);
16360
16361 /* The die_type call above may have already set the type for this DIE. */
16362 type = get_die_type (die, cu);
16363 if (type)
16364 return type;
16365
16366 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16367 if (attr != NULL)
16368 {
16369 int stride_ok;
16370
16371 byte_stride_prop
16372 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16373 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16374 if (!stride_ok)
16375 {
16376 complaint (&symfile_complaints,
16377 _("unable to read array DW_AT_byte_stride "
16378 " - DIE at %s [in module %s]"),
16379 sect_offset_str (die->sect_off),
16380 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16381 /* Ignore this attribute. We will likely not be able to print
16382 arrays of this type correctly, but there is little we can do
16383 to help if we cannot read the attribute's value. */
16384 byte_stride_prop = NULL;
16385 }
16386 }
16387
16388 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16389 if (attr != NULL)
16390 bit_stride = DW_UNSND (attr);
16391
16392 /* Irix 6.2 native cc creates array types without children for
16393 arrays with unspecified length. */
16394 if (die->child == NULL)
16395 {
16396 index_type = objfile_type (objfile)->builtin_int;
16397 range_type = create_static_range_type (NULL, index_type, 0, -1);
16398 type = create_array_type_with_stride (NULL, element_type, range_type,
16399 byte_stride_prop, bit_stride);
16400 return set_die_type (die, type, cu);
16401 }
16402
16403 std::vector<struct type *> range_types;
16404 child_die = die->child;
16405 while (child_die && child_die->tag)
16406 {
16407 if (child_die->tag == DW_TAG_subrange_type)
16408 {
16409 struct type *child_type = read_type_die (child_die, cu);
16410
16411 if (child_type != NULL)
16412 {
16413 /* The range type was succesfully read. Save it for the
16414 array type creation. */
16415 range_types.push_back (child_type);
16416 }
16417 }
16418 child_die = sibling_die (child_die);
16419 }
16420
16421 /* Dwarf2 dimensions are output from left to right, create the
16422 necessary array types in backwards order. */
16423
16424 type = element_type;
16425
16426 if (read_array_order (die, cu) == DW_ORD_col_major)
16427 {
16428 int i = 0;
16429
16430 while (i < range_types.size ())
16431 type = create_array_type_with_stride (NULL, type, range_types[i++],
16432 byte_stride_prop, bit_stride);
16433 }
16434 else
16435 {
16436 size_t ndim = range_types.size ();
16437 while (ndim-- > 0)
16438 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16439 byte_stride_prop, bit_stride);
16440 }
16441
16442 /* Understand Dwarf2 support for vector types (like they occur on
16443 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16444 array type. This is not part of the Dwarf2/3 standard yet, but a
16445 custom vendor extension. The main difference between a regular
16446 array and the vector variant is that vectors are passed by value
16447 to functions. */
16448 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16449 if (attr)
16450 make_vector_type (type);
16451
16452 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16453 implementation may choose to implement triple vectors using this
16454 attribute. */
16455 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16456 if (attr)
16457 {
16458 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16459 TYPE_LENGTH (type) = DW_UNSND (attr);
16460 else
16461 complaint (&symfile_complaints,
16462 _("DW_AT_byte_size for array type smaller "
16463 "than the total size of elements"));
16464 }
16465
16466 name = dwarf2_name (die, cu);
16467 if (name)
16468 TYPE_NAME (type) = name;
16469
16470 maybe_set_alignment (cu, die, type);
16471
16472 /* Install the type in the die. */
16473 set_die_type (die, type, cu);
16474
16475 /* set_die_type should be already done. */
16476 set_descriptive_type (type, die, cu);
16477
16478 return type;
16479 }
16480
16481 static enum dwarf_array_dim_ordering
16482 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16483 {
16484 struct attribute *attr;
16485
16486 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16487
16488 if (attr)
16489 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16490
16491 /* GNU F77 is a special case, as at 08/2004 array type info is the
16492 opposite order to the dwarf2 specification, but data is still
16493 laid out as per normal fortran.
16494
16495 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16496 version checking. */
16497
16498 if (cu->language == language_fortran
16499 && cu->producer && strstr (cu->producer, "GNU F77"))
16500 {
16501 return DW_ORD_row_major;
16502 }
16503
16504 switch (cu->language_defn->la_array_ordering)
16505 {
16506 case array_column_major:
16507 return DW_ORD_col_major;
16508 case array_row_major:
16509 default:
16510 return DW_ORD_row_major;
16511 };
16512 }
16513
16514 /* Extract all information from a DW_TAG_set_type DIE and put it in
16515 the DIE's type field. */
16516
16517 static struct type *
16518 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16519 {
16520 struct type *domain_type, *set_type;
16521 struct attribute *attr;
16522
16523 domain_type = die_type (die, cu);
16524
16525 /* The die_type call above may have already set the type for this DIE. */
16526 set_type = get_die_type (die, cu);
16527 if (set_type)
16528 return set_type;
16529
16530 set_type = create_set_type (NULL, domain_type);
16531
16532 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16533 if (attr)
16534 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16535
16536 maybe_set_alignment (cu, die, set_type);
16537
16538 return set_die_type (die, set_type, cu);
16539 }
16540
16541 /* A helper for read_common_block that creates a locexpr baton.
16542 SYM is the symbol which we are marking as computed.
16543 COMMON_DIE is the DIE for the common block.
16544 COMMON_LOC is the location expression attribute for the common
16545 block itself.
16546 MEMBER_LOC is the location expression attribute for the particular
16547 member of the common block that we are processing.
16548 CU is the CU from which the above come. */
16549
16550 static void
16551 mark_common_block_symbol_computed (struct symbol *sym,
16552 struct die_info *common_die,
16553 struct attribute *common_loc,
16554 struct attribute *member_loc,
16555 struct dwarf2_cu *cu)
16556 {
16557 struct dwarf2_per_objfile *dwarf2_per_objfile
16558 = cu->per_cu->dwarf2_per_objfile;
16559 struct objfile *objfile = dwarf2_per_objfile->objfile;
16560 struct dwarf2_locexpr_baton *baton;
16561 gdb_byte *ptr;
16562 unsigned int cu_off;
16563 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16564 LONGEST offset = 0;
16565
16566 gdb_assert (common_loc && member_loc);
16567 gdb_assert (attr_form_is_block (common_loc));
16568 gdb_assert (attr_form_is_block (member_loc)
16569 || attr_form_is_constant (member_loc));
16570
16571 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16572 baton->per_cu = cu->per_cu;
16573 gdb_assert (baton->per_cu);
16574
16575 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16576
16577 if (attr_form_is_constant (member_loc))
16578 {
16579 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16580 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16581 }
16582 else
16583 baton->size += DW_BLOCK (member_loc)->size;
16584
16585 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16586 baton->data = ptr;
16587
16588 *ptr++ = DW_OP_call4;
16589 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16590 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16591 ptr += 4;
16592
16593 if (attr_form_is_constant (member_loc))
16594 {
16595 *ptr++ = DW_OP_addr;
16596 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16597 ptr += cu->header.addr_size;
16598 }
16599 else
16600 {
16601 /* We have to copy the data here, because DW_OP_call4 will only
16602 use a DW_AT_location attribute. */
16603 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16604 ptr += DW_BLOCK (member_loc)->size;
16605 }
16606
16607 *ptr++ = DW_OP_plus;
16608 gdb_assert (ptr - baton->data == baton->size);
16609
16610 SYMBOL_LOCATION_BATON (sym) = baton;
16611 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16612 }
16613
16614 /* Create appropriate locally-scoped variables for all the
16615 DW_TAG_common_block entries. Also create a struct common_block
16616 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16617 is used to sepate the common blocks name namespace from regular
16618 variable names. */
16619
16620 static void
16621 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16622 {
16623 struct attribute *attr;
16624
16625 attr = dwarf2_attr (die, DW_AT_location, cu);
16626 if (attr)
16627 {
16628 /* Support the .debug_loc offsets. */
16629 if (attr_form_is_block (attr))
16630 {
16631 /* Ok. */
16632 }
16633 else if (attr_form_is_section_offset (attr))
16634 {
16635 dwarf2_complex_location_expr_complaint ();
16636 attr = NULL;
16637 }
16638 else
16639 {
16640 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16641 "common block member");
16642 attr = NULL;
16643 }
16644 }
16645
16646 if (die->child != NULL)
16647 {
16648 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16649 struct die_info *child_die;
16650 size_t n_entries = 0, size;
16651 struct common_block *common_block;
16652 struct symbol *sym;
16653
16654 for (child_die = die->child;
16655 child_die && child_die->tag;
16656 child_die = sibling_die (child_die))
16657 ++n_entries;
16658
16659 size = (sizeof (struct common_block)
16660 + (n_entries - 1) * sizeof (struct symbol *));
16661 common_block
16662 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16663 size);
16664 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16665 common_block->n_entries = 0;
16666
16667 for (child_die = die->child;
16668 child_die && child_die->tag;
16669 child_die = sibling_die (child_die))
16670 {
16671 /* Create the symbol in the DW_TAG_common_block block in the current
16672 symbol scope. */
16673 sym = new_symbol (child_die, NULL, cu);
16674 if (sym != NULL)
16675 {
16676 struct attribute *member_loc;
16677
16678 common_block->contents[common_block->n_entries++] = sym;
16679
16680 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16681 cu);
16682 if (member_loc)
16683 {
16684 /* GDB has handled this for a long time, but it is
16685 not specified by DWARF. It seems to have been
16686 emitted by gfortran at least as recently as:
16687 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16688 complaint (&symfile_complaints,
16689 _("Variable in common block has "
16690 "DW_AT_data_member_location "
16691 "- DIE at %s [in module %s]"),
16692 sect_offset_str (child_die->sect_off),
16693 objfile_name (objfile));
16694
16695 if (attr_form_is_section_offset (member_loc))
16696 dwarf2_complex_location_expr_complaint ();
16697 else if (attr_form_is_constant (member_loc)
16698 || attr_form_is_block (member_loc))
16699 {
16700 if (attr)
16701 mark_common_block_symbol_computed (sym, die, attr,
16702 member_loc, cu);
16703 }
16704 else
16705 dwarf2_complex_location_expr_complaint ();
16706 }
16707 }
16708 }
16709
16710 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16711 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16712 }
16713 }
16714
16715 /* Create a type for a C++ namespace. */
16716
16717 static struct type *
16718 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16719 {
16720 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16721 const char *previous_prefix, *name;
16722 int is_anonymous;
16723 struct type *type;
16724
16725 /* For extensions, reuse the type of the original namespace. */
16726 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16727 {
16728 struct die_info *ext_die;
16729 struct dwarf2_cu *ext_cu = cu;
16730
16731 ext_die = dwarf2_extension (die, &ext_cu);
16732 type = read_type_die (ext_die, ext_cu);
16733
16734 /* EXT_CU may not be the same as CU.
16735 Ensure TYPE is recorded with CU in die_type_hash. */
16736 return set_die_type (die, type, cu);
16737 }
16738
16739 name = namespace_name (die, &is_anonymous, cu);
16740
16741 /* Now build the name of the current namespace. */
16742
16743 previous_prefix = determine_prefix (die, cu);
16744 if (previous_prefix[0] != '\0')
16745 name = typename_concat (&objfile->objfile_obstack,
16746 previous_prefix, name, 0, cu);
16747
16748 /* Create the type. */
16749 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16750 TYPE_TAG_NAME (type) = TYPE_NAME (type);
16751
16752 return set_die_type (die, type, cu);
16753 }
16754
16755 /* Read a namespace scope. */
16756
16757 static void
16758 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16759 {
16760 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16761 int is_anonymous;
16762
16763 /* Add a symbol associated to this if we haven't seen the namespace
16764 before. Also, add a using directive if it's an anonymous
16765 namespace. */
16766
16767 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16768 {
16769 struct type *type;
16770
16771 type = read_type_die (die, cu);
16772 new_symbol (die, type, cu);
16773
16774 namespace_name (die, &is_anonymous, cu);
16775 if (is_anonymous)
16776 {
16777 const char *previous_prefix = determine_prefix (die, cu);
16778
16779 std::vector<const char *> excludes;
16780 add_using_directive (using_directives (cu->language),
16781 previous_prefix, TYPE_NAME (type), NULL,
16782 NULL, excludes, 0, &objfile->objfile_obstack);
16783 }
16784 }
16785
16786 if (die->child != NULL)
16787 {
16788 struct die_info *child_die = die->child;
16789
16790 while (child_die && child_die->tag)
16791 {
16792 process_die (child_die, cu);
16793 child_die = sibling_die (child_die);
16794 }
16795 }
16796 }
16797
16798 /* Read a Fortran module as type. This DIE can be only a declaration used for
16799 imported module. Still we need that type as local Fortran "use ... only"
16800 declaration imports depend on the created type in determine_prefix. */
16801
16802 static struct type *
16803 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16804 {
16805 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16806 const char *module_name;
16807 struct type *type;
16808
16809 module_name = dwarf2_name (die, cu);
16810 if (!module_name)
16811 complaint (&symfile_complaints,
16812 _("DW_TAG_module has no name, offset %s"),
16813 sect_offset_str (die->sect_off));
16814 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16815
16816 /* determine_prefix uses TYPE_TAG_NAME. */
16817 TYPE_TAG_NAME (type) = TYPE_NAME (type);
16818
16819 return set_die_type (die, type, cu);
16820 }
16821
16822 /* Read a Fortran module. */
16823
16824 static void
16825 read_module (struct die_info *die, struct dwarf2_cu *cu)
16826 {
16827 struct die_info *child_die = die->child;
16828 struct type *type;
16829
16830 type = read_type_die (die, cu);
16831 new_symbol (die, type, cu);
16832
16833 while (child_die && child_die->tag)
16834 {
16835 process_die (child_die, cu);
16836 child_die = sibling_die (child_die);
16837 }
16838 }
16839
16840 /* Return the name of the namespace represented by DIE. Set
16841 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16842 namespace. */
16843
16844 static const char *
16845 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16846 {
16847 struct die_info *current_die;
16848 const char *name = NULL;
16849
16850 /* Loop through the extensions until we find a name. */
16851
16852 for (current_die = die;
16853 current_die != NULL;
16854 current_die = dwarf2_extension (die, &cu))
16855 {
16856 /* We don't use dwarf2_name here so that we can detect the absence
16857 of a name -> anonymous namespace. */
16858 name = dwarf2_string_attr (die, DW_AT_name, cu);
16859
16860 if (name != NULL)
16861 break;
16862 }
16863
16864 /* Is it an anonymous namespace? */
16865
16866 *is_anonymous = (name == NULL);
16867 if (*is_anonymous)
16868 name = CP_ANONYMOUS_NAMESPACE_STR;
16869
16870 return name;
16871 }
16872
16873 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16874 the user defined type vector. */
16875
16876 static struct type *
16877 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16878 {
16879 struct gdbarch *gdbarch
16880 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16881 struct comp_unit_head *cu_header = &cu->header;
16882 struct type *type;
16883 struct attribute *attr_byte_size;
16884 struct attribute *attr_address_class;
16885 int byte_size, addr_class;
16886 struct type *target_type;
16887
16888 target_type = die_type (die, cu);
16889
16890 /* The die_type call above may have already set the type for this DIE. */
16891 type = get_die_type (die, cu);
16892 if (type)
16893 return type;
16894
16895 type = lookup_pointer_type (target_type);
16896
16897 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16898 if (attr_byte_size)
16899 byte_size = DW_UNSND (attr_byte_size);
16900 else
16901 byte_size = cu_header->addr_size;
16902
16903 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16904 if (attr_address_class)
16905 addr_class = DW_UNSND (attr_address_class);
16906 else
16907 addr_class = DW_ADDR_none;
16908
16909 ULONGEST alignment = get_alignment (cu, die);
16910
16911 /* If the pointer size, alignment, or address class is different
16912 than the default, create a type variant marked as such and set
16913 the length accordingly. */
16914 if (TYPE_LENGTH (type) != byte_size
16915 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
16916 && alignment != TYPE_RAW_ALIGN (type))
16917 || addr_class != DW_ADDR_none)
16918 {
16919 if (gdbarch_address_class_type_flags_p (gdbarch))
16920 {
16921 int type_flags;
16922
16923 type_flags = gdbarch_address_class_type_flags
16924 (gdbarch, byte_size, addr_class);
16925 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16926 == 0);
16927 type = make_type_with_address_space (type, type_flags);
16928 }
16929 else if (TYPE_LENGTH (type) != byte_size)
16930 {
16931 complaint (&symfile_complaints,
16932 _("invalid pointer size %d"), byte_size);
16933 }
16934 else if (TYPE_RAW_ALIGN (type) != alignment)
16935 {
16936 complaint (&symfile_complaints,
16937 _("Invalid DW_AT_alignment"
16938 " - DIE at %s [in module %s]"),
16939 sect_offset_str (die->sect_off),
16940 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16941 }
16942 else
16943 {
16944 /* Should we also complain about unhandled address classes? */
16945 }
16946 }
16947
16948 TYPE_LENGTH (type) = byte_size;
16949 set_type_align (type, alignment);
16950 return set_die_type (die, type, cu);
16951 }
16952
16953 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
16954 the user defined type vector. */
16955
16956 static struct type *
16957 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
16958 {
16959 struct type *type;
16960 struct type *to_type;
16961 struct type *domain;
16962
16963 to_type = die_type (die, cu);
16964 domain = die_containing_type (die, cu);
16965
16966 /* The calls above may have already set the type for this DIE. */
16967 type = get_die_type (die, cu);
16968 if (type)
16969 return type;
16970
16971 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
16972 type = lookup_methodptr_type (to_type);
16973 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
16974 {
16975 struct type *new_type
16976 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
16977
16978 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
16979 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
16980 TYPE_VARARGS (to_type));
16981 type = lookup_methodptr_type (new_type);
16982 }
16983 else
16984 type = lookup_memberptr_type (to_type, domain);
16985
16986 return set_die_type (die, type, cu);
16987 }
16988
16989 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
16990 the user defined type vector. */
16991
16992 static struct type *
16993 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
16994 enum type_code refcode)
16995 {
16996 struct comp_unit_head *cu_header = &cu->header;
16997 struct type *type, *target_type;
16998 struct attribute *attr;
16999
17000 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17001
17002 target_type = die_type (die, cu);
17003
17004 /* The die_type call above may have already set the type for this DIE. */
17005 type = get_die_type (die, cu);
17006 if (type)
17007 return type;
17008
17009 type = lookup_reference_type (target_type, refcode);
17010 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17011 if (attr)
17012 {
17013 TYPE_LENGTH (type) = DW_UNSND (attr);
17014 }
17015 else
17016 {
17017 TYPE_LENGTH (type) = cu_header->addr_size;
17018 }
17019 maybe_set_alignment (cu, die, type);
17020 return set_die_type (die, type, cu);
17021 }
17022
17023 /* Add the given cv-qualifiers to the element type of the array. GCC
17024 outputs DWARF type qualifiers that apply to an array, not the
17025 element type. But GDB relies on the array element type to carry
17026 the cv-qualifiers. This mimics section 6.7.3 of the C99
17027 specification. */
17028
17029 static struct type *
17030 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17031 struct type *base_type, int cnst, int voltl)
17032 {
17033 struct type *el_type, *inner_array;
17034
17035 base_type = copy_type (base_type);
17036 inner_array = base_type;
17037
17038 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17039 {
17040 TYPE_TARGET_TYPE (inner_array) =
17041 copy_type (TYPE_TARGET_TYPE (inner_array));
17042 inner_array = TYPE_TARGET_TYPE (inner_array);
17043 }
17044
17045 el_type = TYPE_TARGET_TYPE (inner_array);
17046 cnst |= TYPE_CONST (el_type);
17047 voltl |= TYPE_VOLATILE (el_type);
17048 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17049
17050 return set_die_type (die, base_type, cu);
17051 }
17052
17053 static struct type *
17054 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17055 {
17056 struct type *base_type, *cv_type;
17057
17058 base_type = die_type (die, cu);
17059
17060 /* The die_type call above may have already set the type for this DIE. */
17061 cv_type = get_die_type (die, cu);
17062 if (cv_type)
17063 return cv_type;
17064
17065 /* In case the const qualifier is applied to an array type, the element type
17066 is so qualified, not the array type (section 6.7.3 of C99). */
17067 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17068 return add_array_cv_type (die, cu, base_type, 1, 0);
17069
17070 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17071 return set_die_type (die, cv_type, cu);
17072 }
17073
17074 static struct type *
17075 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17076 {
17077 struct type *base_type, *cv_type;
17078
17079 base_type = die_type (die, cu);
17080
17081 /* The die_type call above may have already set the type for this DIE. */
17082 cv_type = get_die_type (die, cu);
17083 if (cv_type)
17084 return cv_type;
17085
17086 /* In case the volatile qualifier is applied to an array type, the
17087 element type is so qualified, not the array type (section 6.7.3
17088 of C99). */
17089 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17090 return add_array_cv_type (die, cu, base_type, 0, 1);
17091
17092 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17093 return set_die_type (die, cv_type, cu);
17094 }
17095
17096 /* Handle DW_TAG_restrict_type. */
17097
17098 static struct type *
17099 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17100 {
17101 struct type *base_type, *cv_type;
17102
17103 base_type = die_type (die, cu);
17104
17105 /* The die_type call above may have already set the type for this DIE. */
17106 cv_type = get_die_type (die, cu);
17107 if (cv_type)
17108 return cv_type;
17109
17110 cv_type = make_restrict_type (base_type);
17111 return set_die_type (die, cv_type, cu);
17112 }
17113
17114 /* Handle DW_TAG_atomic_type. */
17115
17116 static struct type *
17117 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17118 {
17119 struct type *base_type, *cv_type;
17120
17121 base_type = die_type (die, cu);
17122
17123 /* The die_type call above may have already set the type for this DIE. */
17124 cv_type = get_die_type (die, cu);
17125 if (cv_type)
17126 return cv_type;
17127
17128 cv_type = make_atomic_type (base_type);
17129 return set_die_type (die, cv_type, cu);
17130 }
17131
17132 /* Extract all information from a DW_TAG_string_type DIE and add to
17133 the user defined type vector. It isn't really a user defined type,
17134 but it behaves like one, with other DIE's using an AT_user_def_type
17135 attribute to reference it. */
17136
17137 static struct type *
17138 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17139 {
17140 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17141 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17142 struct type *type, *range_type, *index_type, *char_type;
17143 struct attribute *attr;
17144 unsigned int length;
17145
17146 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17147 if (attr)
17148 {
17149 length = DW_UNSND (attr);
17150 }
17151 else
17152 {
17153 /* Check for the DW_AT_byte_size attribute. */
17154 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17155 if (attr)
17156 {
17157 length = DW_UNSND (attr);
17158 }
17159 else
17160 {
17161 length = 1;
17162 }
17163 }
17164
17165 index_type = objfile_type (objfile)->builtin_int;
17166 range_type = create_static_range_type (NULL, index_type, 1, length);
17167 char_type = language_string_char_type (cu->language_defn, gdbarch);
17168 type = create_string_type (NULL, char_type, range_type);
17169
17170 return set_die_type (die, type, cu);
17171 }
17172
17173 /* Assuming that DIE corresponds to a function, returns nonzero
17174 if the function is prototyped. */
17175
17176 static int
17177 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17178 {
17179 struct attribute *attr;
17180
17181 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17182 if (attr && (DW_UNSND (attr) != 0))
17183 return 1;
17184
17185 /* The DWARF standard implies that the DW_AT_prototyped attribute
17186 is only meaninful for C, but the concept also extends to other
17187 languages that allow unprototyped functions (Eg: Objective C).
17188 For all other languages, assume that functions are always
17189 prototyped. */
17190 if (cu->language != language_c
17191 && cu->language != language_objc
17192 && cu->language != language_opencl)
17193 return 1;
17194
17195 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17196 prototyped and unprototyped functions; default to prototyped,
17197 since that is more common in modern code (and RealView warns
17198 about unprototyped functions). */
17199 if (producer_is_realview (cu->producer))
17200 return 1;
17201
17202 return 0;
17203 }
17204
17205 /* Handle DIES due to C code like:
17206
17207 struct foo
17208 {
17209 int (*funcp)(int a, long l);
17210 int b;
17211 };
17212
17213 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17214
17215 static struct type *
17216 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17217 {
17218 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17219 struct type *type; /* Type that this function returns. */
17220 struct type *ftype; /* Function that returns above type. */
17221 struct attribute *attr;
17222
17223 type = die_type (die, cu);
17224
17225 /* The die_type call above may have already set the type for this DIE. */
17226 ftype = get_die_type (die, cu);
17227 if (ftype)
17228 return ftype;
17229
17230 ftype = lookup_function_type (type);
17231
17232 if (prototyped_function_p (die, cu))
17233 TYPE_PROTOTYPED (ftype) = 1;
17234
17235 /* Store the calling convention in the type if it's available in
17236 the subroutine die. Otherwise set the calling convention to
17237 the default value DW_CC_normal. */
17238 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17239 if (attr)
17240 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17241 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17242 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17243 else
17244 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17245
17246 /* Record whether the function returns normally to its caller or not
17247 if the DWARF producer set that information. */
17248 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17249 if (attr && (DW_UNSND (attr) != 0))
17250 TYPE_NO_RETURN (ftype) = 1;
17251
17252 /* We need to add the subroutine type to the die immediately so
17253 we don't infinitely recurse when dealing with parameters
17254 declared as the same subroutine type. */
17255 set_die_type (die, ftype, cu);
17256
17257 if (die->child != NULL)
17258 {
17259 struct type *void_type = objfile_type (objfile)->builtin_void;
17260 struct die_info *child_die;
17261 int nparams, iparams;
17262
17263 /* Count the number of parameters.
17264 FIXME: GDB currently ignores vararg functions, but knows about
17265 vararg member functions. */
17266 nparams = 0;
17267 child_die = die->child;
17268 while (child_die && child_die->tag)
17269 {
17270 if (child_die->tag == DW_TAG_formal_parameter)
17271 nparams++;
17272 else if (child_die->tag == DW_TAG_unspecified_parameters)
17273 TYPE_VARARGS (ftype) = 1;
17274 child_die = sibling_die (child_die);
17275 }
17276
17277 /* Allocate storage for parameters and fill them in. */
17278 TYPE_NFIELDS (ftype) = nparams;
17279 TYPE_FIELDS (ftype) = (struct field *)
17280 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17281
17282 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17283 even if we error out during the parameters reading below. */
17284 for (iparams = 0; iparams < nparams; iparams++)
17285 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17286
17287 iparams = 0;
17288 child_die = die->child;
17289 while (child_die && child_die->tag)
17290 {
17291 if (child_die->tag == DW_TAG_formal_parameter)
17292 {
17293 struct type *arg_type;
17294
17295 /* DWARF version 2 has no clean way to discern C++
17296 static and non-static member functions. G++ helps
17297 GDB by marking the first parameter for non-static
17298 member functions (which is the this pointer) as
17299 artificial. We pass this information to
17300 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17301
17302 DWARF version 3 added DW_AT_object_pointer, which GCC
17303 4.5 does not yet generate. */
17304 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17305 if (attr)
17306 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17307 else
17308 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17309 arg_type = die_type (child_die, cu);
17310
17311 /* RealView does not mark THIS as const, which the testsuite
17312 expects. GCC marks THIS as const in method definitions,
17313 but not in the class specifications (GCC PR 43053). */
17314 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17315 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17316 {
17317 int is_this = 0;
17318 struct dwarf2_cu *arg_cu = cu;
17319 const char *name = dwarf2_name (child_die, cu);
17320
17321 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17322 if (attr)
17323 {
17324 /* If the compiler emits this, use it. */
17325 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17326 is_this = 1;
17327 }
17328 else if (name && strcmp (name, "this") == 0)
17329 /* Function definitions will have the argument names. */
17330 is_this = 1;
17331 else if (name == NULL && iparams == 0)
17332 /* Declarations may not have the names, so like
17333 elsewhere in GDB, assume an artificial first
17334 argument is "this". */
17335 is_this = 1;
17336
17337 if (is_this)
17338 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17339 arg_type, 0);
17340 }
17341
17342 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17343 iparams++;
17344 }
17345 child_die = sibling_die (child_die);
17346 }
17347 }
17348
17349 return ftype;
17350 }
17351
17352 static struct type *
17353 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17354 {
17355 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17356 const char *name = NULL;
17357 struct type *this_type, *target_type;
17358
17359 name = dwarf2_full_name (NULL, die, cu);
17360 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17361 TYPE_TARGET_STUB (this_type) = 1;
17362 set_die_type (die, this_type, cu);
17363 target_type = die_type (die, cu);
17364 if (target_type != this_type)
17365 TYPE_TARGET_TYPE (this_type) = target_type;
17366 else
17367 {
17368 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17369 spec and cause infinite loops in GDB. */
17370 complaint (&symfile_complaints,
17371 _("Self-referential DW_TAG_typedef "
17372 "- DIE at %s [in module %s]"),
17373 sect_offset_str (die->sect_off), objfile_name (objfile));
17374 TYPE_TARGET_TYPE (this_type) = NULL;
17375 }
17376 return this_type;
17377 }
17378
17379 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17380 (which may be different from NAME) to the architecture back-end to allow
17381 it to guess the correct format if necessary. */
17382
17383 static struct type *
17384 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17385 const char *name_hint)
17386 {
17387 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17388 const struct floatformat **format;
17389 struct type *type;
17390
17391 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17392 if (format)
17393 type = init_float_type (objfile, bits, name, format);
17394 else
17395 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17396
17397 return type;
17398 }
17399
17400 /* Find a representation of a given base type and install
17401 it in the TYPE field of the die. */
17402
17403 static struct type *
17404 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17405 {
17406 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17407 struct type *type;
17408 struct attribute *attr;
17409 int encoding = 0, bits = 0;
17410 const char *name;
17411
17412 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17413 if (attr)
17414 {
17415 encoding = DW_UNSND (attr);
17416 }
17417 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17418 if (attr)
17419 {
17420 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17421 }
17422 name = dwarf2_name (die, cu);
17423 if (!name)
17424 {
17425 complaint (&symfile_complaints,
17426 _("DW_AT_name missing from DW_TAG_base_type"));
17427 }
17428
17429 switch (encoding)
17430 {
17431 case DW_ATE_address:
17432 /* Turn DW_ATE_address into a void * pointer. */
17433 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17434 type = init_pointer_type (objfile, bits, name, type);
17435 break;
17436 case DW_ATE_boolean:
17437 type = init_boolean_type (objfile, bits, 1, name);
17438 break;
17439 case DW_ATE_complex_float:
17440 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
17441 type = init_complex_type (objfile, name, type);
17442 break;
17443 case DW_ATE_decimal_float:
17444 type = init_decfloat_type (objfile, bits, name);
17445 break;
17446 case DW_ATE_float:
17447 type = dwarf2_init_float_type (objfile, bits, name, name);
17448 break;
17449 case DW_ATE_signed:
17450 type = init_integer_type (objfile, bits, 0, name);
17451 break;
17452 case DW_ATE_unsigned:
17453 if (cu->language == language_fortran
17454 && name
17455 && startswith (name, "character("))
17456 type = init_character_type (objfile, bits, 1, name);
17457 else
17458 type = init_integer_type (objfile, bits, 1, name);
17459 break;
17460 case DW_ATE_signed_char:
17461 if (cu->language == language_ada || cu->language == language_m2
17462 || cu->language == language_pascal
17463 || cu->language == language_fortran)
17464 type = init_character_type (objfile, bits, 0, name);
17465 else
17466 type = init_integer_type (objfile, bits, 0, name);
17467 break;
17468 case DW_ATE_unsigned_char:
17469 if (cu->language == language_ada || cu->language == language_m2
17470 || cu->language == language_pascal
17471 || cu->language == language_fortran
17472 || cu->language == language_rust)
17473 type = init_character_type (objfile, bits, 1, name);
17474 else
17475 type = init_integer_type (objfile, bits, 1, name);
17476 break;
17477 case DW_ATE_UTF:
17478 {
17479 gdbarch *arch = get_objfile_arch (objfile);
17480
17481 if (bits == 16)
17482 type = builtin_type (arch)->builtin_char16;
17483 else if (bits == 32)
17484 type = builtin_type (arch)->builtin_char32;
17485 else
17486 {
17487 complaint (&symfile_complaints,
17488 _("unsupported DW_ATE_UTF bit size: '%d'"),
17489 bits);
17490 type = init_integer_type (objfile, bits, 1, name);
17491 }
17492 return set_die_type (die, type, cu);
17493 }
17494 break;
17495
17496 default:
17497 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
17498 dwarf_type_encoding_name (encoding));
17499 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17500 break;
17501 }
17502
17503 if (name && strcmp (name, "char") == 0)
17504 TYPE_NOSIGN (type) = 1;
17505
17506 maybe_set_alignment (cu, die, type);
17507
17508 return set_die_type (die, type, cu);
17509 }
17510
17511 /* Parse dwarf attribute if it's a block, reference or constant and put the
17512 resulting value of the attribute into struct bound_prop.
17513 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17514
17515 static int
17516 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17517 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17518 {
17519 struct dwarf2_property_baton *baton;
17520 struct obstack *obstack
17521 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17522
17523 if (attr == NULL || prop == NULL)
17524 return 0;
17525
17526 if (attr_form_is_block (attr))
17527 {
17528 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17529 baton->referenced_type = NULL;
17530 baton->locexpr.per_cu = cu->per_cu;
17531 baton->locexpr.size = DW_BLOCK (attr)->size;
17532 baton->locexpr.data = DW_BLOCK (attr)->data;
17533 prop->data.baton = baton;
17534 prop->kind = PROP_LOCEXPR;
17535 gdb_assert (prop->data.baton != NULL);
17536 }
17537 else if (attr_form_is_ref (attr))
17538 {
17539 struct dwarf2_cu *target_cu = cu;
17540 struct die_info *target_die;
17541 struct attribute *target_attr;
17542
17543 target_die = follow_die_ref (die, attr, &target_cu);
17544 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17545 if (target_attr == NULL)
17546 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17547 target_cu);
17548 if (target_attr == NULL)
17549 return 0;
17550
17551 switch (target_attr->name)
17552 {
17553 case DW_AT_location:
17554 if (attr_form_is_section_offset (target_attr))
17555 {
17556 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17557 baton->referenced_type = die_type (target_die, target_cu);
17558 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17559 prop->data.baton = baton;
17560 prop->kind = PROP_LOCLIST;
17561 gdb_assert (prop->data.baton != NULL);
17562 }
17563 else if (attr_form_is_block (target_attr))
17564 {
17565 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17566 baton->referenced_type = die_type (target_die, target_cu);
17567 baton->locexpr.per_cu = cu->per_cu;
17568 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17569 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17570 prop->data.baton = baton;
17571 prop->kind = PROP_LOCEXPR;
17572 gdb_assert (prop->data.baton != NULL);
17573 }
17574 else
17575 {
17576 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17577 "dynamic property");
17578 return 0;
17579 }
17580 break;
17581 case DW_AT_data_member_location:
17582 {
17583 LONGEST offset;
17584
17585 if (!handle_data_member_location (target_die, target_cu,
17586 &offset))
17587 return 0;
17588
17589 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17590 baton->referenced_type = read_type_die (target_die->parent,
17591 target_cu);
17592 baton->offset_info.offset = offset;
17593 baton->offset_info.type = die_type (target_die, target_cu);
17594 prop->data.baton = baton;
17595 prop->kind = PROP_ADDR_OFFSET;
17596 break;
17597 }
17598 }
17599 }
17600 else if (attr_form_is_constant (attr))
17601 {
17602 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17603 prop->kind = PROP_CONST;
17604 }
17605 else
17606 {
17607 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17608 dwarf2_name (die, cu));
17609 return 0;
17610 }
17611
17612 return 1;
17613 }
17614
17615 /* Read the given DW_AT_subrange DIE. */
17616
17617 static struct type *
17618 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17619 {
17620 struct type *base_type, *orig_base_type;
17621 struct type *range_type;
17622 struct attribute *attr;
17623 struct dynamic_prop low, high;
17624 int low_default_is_valid;
17625 int high_bound_is_count = 0;
17626 const char *name;
17627 LONGEST negative_mask;
17628
17629 orig_base_type = die_type (die, cu);
17630 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17631 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17632 creating the range type, but we use the result of check_typedef
17633 when examining properties of the type. */
17634 base_type = check_typedef (orig_base_type);
17635
17636 /* The die_type call above may have already set the type for this DIE. */
17637 range_type = get_die_type (die, cu);
17638 if (range_type)
17639 return range_type;
17640
17641 low.kind = PROP_CONST;
17642 high.kind = PROP_CONST;
17643 high.data.const_val = 0;
17644
17645 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17646 omitting DW_AT_lower_bound. */
17647 switch (cu->language)
17648 {
17649 case language_c:
17650 case language_cplus:
17651 low.data.const_val = 0;
17652 low_default_is_valid = 1;
17653 break;
17654 case language_fortran:
17655 low.data.const_val = 1;
17656 low_default_is_valid = 1;
17657 break;
17658 case language_d:
17659 case language_objc:
17660 case language_rust:
17661 low.data.const_val = 0;
17662 low_default_is_valid = (cu->header.version >= 4);
17663 break;
17664 case language_ada:
17665 case language_m2:
17666 case language_pascal:
17667 low.data.const_val = 1;
17668 low_default_is_valid = (cu->header.version >= 4);
17669 break;
17670 default:
17671 low.data.const_val = 0;
17672 low_default_is_valid = 0;
17673 break;
17674 }
17675
17676 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17677 if (attr)
17678 attr_to_dynamic_prop (attr, die, cu, &low);
17679 else if (!low_default_is_valid)
17680 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
17681 "- DIE at %s [in module %s]"),
17682 sect_offset_str (die->sect_off),
17683 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17684
17685 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
17686 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17687 {
17688 attr = dwarf2_attr (die, DW_AT_count, cu);
17689 if (attr_to_dynamic_prop (attr, die, cu, &high))
17690 {
17691 /* If bounds are constant do the final calculation here. */
17692 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17693 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17694 else
17695 high_bound_is_count = 1;
17696 }
17697 }
17698
17699 /* Dwarf-2 specifications explicitly allows to create subrange types
17700 without specifying a base type.
17701 In that case, the base type must be set to the type of
17702 the lower bound, upper bound or count, in that order, if any of these
17703 three attributes references an object that has a type.
17704 If no base type is found, the Dwarf-2 specifications say that
17705 a signed integer type of size equal to the size of an address should
17706 be used.
17707 For the following C code: `extern char gdb_int [];'
17708 GCC produces an empty range DIE.
17709 FIXME: muller/2010-05-28: Possible references to object for low bound,
17710 high bound or count are not yet handled by this code. */
17711 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17712 {
17713 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17714 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17715 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17716 struct type *int_type = objfile_type (objfile)->builtin_int;
17717
17718 /* Test "int", "long int", and "long long int" objfile types,
17719 and select the first one having a size above or equal to the
17720 architecture address size. */
17721 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17722 base_type = int_type;
17723 else
17724 {
17725 int_type = objfile_type (objfile)->builtin_long;
17726 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17727 base_type = int_type;
17728 else
17729 {
17730 int_type = objfile_type (objfile)->builtin_long_long;
17731 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17732 base_type = int_type;
17733 }
17734 }
17735 }
17736
17737 /* Normally, the DWARF producers are expected to use a signed
17738 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17739 But this is unfortunately not always the case, as witnessed
17740 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17741 is used instead. To work around that ambiguity, we treat
17742 the bounds as signed, and thus sign-extend their values, when
17743 the base type is signed. */
17744 negative_mask =
17745 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17746 if (low.kind == PROP_CONST
17747 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17748 low.data.const_val |= negative_mask;
17749 if (high.kind == PROP_CONST
17750 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17751 high.data.const_val |= negative_mask;
17752
17753 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17754
17755 if (high_bound_is_count)
17756 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17757
17758 /* Ada expects an empty array on no boundary attributes. */
17759 if (attr == NULL && cu->language != language_ada)
17760 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17761
17762 name = dwarf2_name (die, cu);
17763 if (name)
17764 TYPE_NAME (range_type) = name;
17765
17766 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17767 if (attr)
17768 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17769
17770 maybe_set_alignment (cu, die, range_type);
17771
17772 set_die_type (die, range_type, cu);
17773
17774 /* set_die_type should be already done. */
17775 set_descriptive_type (range_type, die, cu);
17776
17777 return range_type;
17778 }
17779
17780 static struct type *
17781 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17782 {
17783 struct type *type;
17784
17785 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17786 NULL);
17787 TYPE_NAME (type) = dwarf2_name (die, cu);
17788
17789 /* In Ada, an unspecified type is typically used when the description
17790 of the type is defered to a different unit. When encountering
17791 such a type, we treat it as a stub, and try to resolve it later on,
17792 when needed. */
17793 if (cu->language == language_ada)
17794 TYPE_STUB (type) = 1;
17795
17796 return set_die_type (die, type, cu);
17797 }
17798
17799 /* Read a single die and all its descendents. Set the die's sibling
17800 field to NULL; set other fields in the die correctly, and set all
17801 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17802 location of the info_ptr after reading all of those dies. PARENT
17803 is the parent of the die in question. */
17804
17805 static struct die_info *
17806 read_die_and_children (const struct die_reader_specs *reader,
17807 const gdb_byte *info_ptr,
17808 const gdb_byte **new_info_ptr,
17809 struct die_info *parent)
17810 {
17811 struct die_info *die;
17812 const gdb_byte *cur_ptr;
17813 int has_children;
17814
17815 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
17816 if (die == NULL)
17817 {
17818 *new_info_ptr = cur_ptr;
17819 return NULL;
17820 }
17821 store_in_ref_table (die, reader->cu);
17822
17823 if (has_children)
17824 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17825 else
17826 {
17827 die->child = NULL;
17828 *new_info_ptr = cur_ptr;
17829 }
17830
17831 die->sibling = NULL;
17832 die->parent = parent;
17833 return die;
17834 }
17835
17836 /* Read a die, all of its descendents, and all of its siblings; set
17837 all of the fields of all of the dies correctly. Arguments are as
17838 in read_die_and_children. */
17839
17840 static struct die_info *
17841 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17842 const gdb_byte *info_ptr,
17843 const gdb_byte **new_info_ptr,
17844 struct die_info *parent)
17845 {
17846 struct die_info *first_die, *last_sibling;
17847 const gdb_byte *cur_ptr;
17848
17849 cur_ptr = info_ptr;
17850 first_die = last_sibling = NULL;
17851
17852 while (1)
17853 {
17854 struct die_info *die
17855 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
17856
17857 if (die == NULL)
17858 {
17859 *new_info_ptr = cur_ptr;
17860 return first_die;
17861 }
17862
17863 if (!first_die)
17864 first_die = die;
17865 else
17866 last_sibling->sibling = die;
17867
17868 last_sibling = die;
17869 }
17870 }
17871
17872 /* Read a die, all of its descendents, and all of its siblings; set
17873 all of the fields of all of the dies correctly. Arguments are as
17874 in read_die_and_children.
17875 This the main entry point for reading a DIE and all its children. */
17876
17877 static struct die_info *
17878 read_die_and_siblings (const struct die_reader_specs *reader,
17879 const gdb_byte *info_ptr,
17880 const gdb_byte **new_info_ptr,
17881 struct die_info *parent)
17882 {
17883 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
17884 new_info_ptr, parent);
17885
17886 if (dwarf_die_debug)
17887 {
17888 fprintf_unfiltered (gdb_stdlog,
17889 "Read die from %s@0x%x of %s:\n",
17890 get_section_name (reader->die_section),
17891 (unsigned) (info_ptr - reader->die_section->buffer),
17892 bfd_get_filename (reader->abfd));
17893 dump_die (die, dwarf_die_debug);
17894 }
17895
17896 return die;
17897 }
17898
17899 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
17900 attributes.
17901 The caller is responsible for filling in the extra attributes
17902 and updating (*DIEP)->num_attrs.
17903 Set DIEP to point to a newly allocated die with its information,
17904 except for its child, sibling, and parent fields.
17905 Set HAS_CHILDREN to tell whether the die has children or not. */
17906
17907 static const gdb_byte *
17908 read_full_die_1 (const struct die_reader_specs *reader,
17909 struct die_info **diep, const gdb_byte *info_ptr,
17910 int *has_children, int num_extra_attrs)
17911 {
17912 unsigned int abbrev_number, bytes_read, i;
17913 struct abbrev_info *abbrev;
17914 struct die_info *die;
17915 struct dwarf2_cu *cu = reader->cu;
17916 bfd *abfd = reader->abfd;
17917
17918 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
17919 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17920 info_ptr += bytes_read;
17921 if (!abbrev_number)
17922 {
17923 *diep = NULL;
17924 *has_children = 0;
17925 return info_ptr;
17926 }
17927
17928 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
17929 if (!abbrev)
17930 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
17931 abbrev_number,
17932 bfd_get_filename (abfd));
17933
17934 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
17935 die->sect_off = sect_off;
17936 die->tag = abbrev->tag;
17937 die->abbrev = abbrev_number;
17938
17939 /* Make the result usable.
17940 The caller needs to update num_attrs after adding the extra
17941 attributes. */
17942 die->num_attrs = abbrev->num_attrs;
17943
17944 for (i = 0; i < abbrev->num_attrs; ++i)
17945 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
17946 info_ptr);
17947
17948 *diep = die;
17949 *has_children = abbrev->has_children;
17950 return info_ptr;
17951 }
17952
17953 /* Read a die and all its attributes.
17954 Set DIEP to point to a newly allocated die with its information,
17955 except for its child, sibling, and parent fields.
17956 Set HAS_CHILDREN to tell whether the die has children or not. */
17957
17958 static const gdb_byte *
17959 read_full_die (const struct die_reader_specs *reader,
17960 struct die_info **diep, const gdb_byte *info_ptr,
17961 int *has_children)
17962 {
17963 const gdb_byte *result;
17964
17965 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
17966
17967 if (dwarf_die_debug)
17968 {
17969 fprintf_unfiltered (gdb_stdlog,
17970 "Read die from %s@0x%x of %s:\n",
17971 get_section_name (reader->die_section),
17972 (unsigned) (info_ptr - reader->die_section->buffer),
17973 bfd_get_filename (reader->abfd));
17974 dump_die (*diep, dwarf_die_debug);
17975 }
17976
17977 return result;
17978 }
17979 \f
17980 /* Abbreviation tables.
17981
17982 In DWARF version 2, the description of the debugging information is
17983 stored in a separate .debug_abbrev section. Before we read any
17984 dies from a section we read in all abbreviations and install them
17985 in a hash table. */
17986
17987 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
17988
17989 struct abbrev_info *
17990 abbrev_table::alloc_abbrev ()
17991 {
17992 struct abbrev_info *abbrev;
17993
17994 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
17995 memset (abbrev, 0, sizeof (struct abbrev_info));
17996
17997 return abbrev;
17998 }
17999
18000 /* Add an abbreviation to the table. */
18001
18002 void
18003 abbrev_table::add_abbrev (unsigned int abbrev_number,
18004 struct abbrev_info *abbrev)
18005 {
18006 unsigned int hash_number;
18007
18008 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18009 abbrev->next = m_abbrevs[hash_number];
18010 m_abbrevs[hash_number] = abbrev;
18011 }
18012
18013 /* Look up an abbrev in the table.
18014 Returns NULL if the abbrev is not found. */
18015
18016 struct abbrev_info *
18017 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18018 {
18019 unsigned int hash_number;
18020 struct abbrev_info *abbrev;
18021
18022 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18023 abbrev = m_abbrevs[hash_number];
18024
18025 while (abbrev)
18026 {
18027 if (abbrev->number == abbrev_number)
18028 return abbrev;
18029 abbrev = abbrev->next;
18030 }
18031 return NULL;
18032 }
18033
18034 /* Read in an abbrev table. */
18035
18036 static abbrev_table_up
18037 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18038 struct dwarf2_section_info *section,
18039 sect_offset sect_off)
18040 {
18041 struct objfile *objfile = dwarf2_per_objfile->objfile;
18042 bfd *abfd = get_section_bfd_owner (section);
18043 const gdb_byte *abbrev_ptr;
18044 struct abbrev_info *cur_abbrev;
18045 unsigned int abbrev_number, bytes_read, abbrev_name;
18046 unsigned int abbrev_form;
18047 struct attr_abbrev *cur_attrs;
18048 unsigned int allocated_attrs;
18049
18050 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18051
18052 dwarf2_read_section (objfile, section);
18053 abbrev_ptr = section->buffer + to_underlying (sect_off);
18054 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18055 abbrev_ptr += bytes_read;
18056
18057 allocated_attrs = ATTR_ALLOC_CHUNK;
18058 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18059
18060 /* Loop until we reach an abbrev number of 0. */
18061 while (abbrev_number)
18062 {
18063 cur_abbrev = abbrev_table->alloc_abbrev ();
18064
18065 /* read in abbrev header */
18066 cur_abbrev->number = abbrev_number;
18067 cur_abbrev->tag
18068 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18069 abbrev_ptr += bytes_read;
18070 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18071 abbrev_ptr += 1;
18072
18073 /* now read in declarations */
18074 for (;;)
18075 {
18076 LONGEST implicit_const;
18077
18078 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18079 abbrev_ptr += bytes_read;
18080 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18081 abbrev_ptr += bytes_read;
18082 if (abbrev_form == DW_FORM_implicit_const)
18083 {
18084 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18085 &bytes_read);
18086 abbrev_ptr += bytes_read;
18087 }
18088 else
18089 {
18090 /* Initialize it due to a false compiler warning. */
18091 implicit_const = -1;
18092 }
18093
18094 if (abbrev_name == 0)
18095 break;
18096
18097 if (cur_abbrev->num_attrs == allocated_attrs)
18098 {
18099 allocated_attrs += ATTR_ALLOC_CHUNK;
18100 cur_attrs
18101 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18102 }
18103
18104 cur_attrs[cur_abbrev->num_attrs].name
18105 = (enum dwarf_attribute) abbrev_name;
18106 cur_attrs[cur_abbrev->num_attrs].form
18107 = (enum dwarf_form) abbrev_form;
18108 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18109 ++cur_abbrev->num_attrs;
18110 }
18111
18112 cur_abbrev->attrs =
18113 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18114 cur_abbrev->num_attrs);
18115 memcpy (cur_abbrev->attrs, cur_attrs,
18116 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18117
18118 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18119
18120 /* Get next abbreviation.
18121 Under Irix6 the abbreviations for a compilation unit are not
18122 always properly terminated with an abbrev number of 0.
18123 Exit loop if we encounter an abbreviation which we have
18124 already read (which means we are about to read the abbreviations
18125 for the next compile unit) or if the end of the abbreviation
18126 table is reached. */
18127 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18128 break;
18129 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18130 abbrev_ptr += bytes_read;
18131 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18132 break;
18133 }
18134
18135 xfree (cur_attrs);
18136 return abbrev_table;
18137 }
18138
18139 /* Returns nonzero if TAG represents a type that we might generate a partial
18140 symbol for. */
18141
18142 static int
18143 is_type_tag_for_partial (int tag)
18144 {
18145 switch (tag)
18146 {
18147 #if 0
18148 /* Some types that would be reasonable to generate partial symbols for,
18149 that we don't at present. */
18150 case DW_TAG_array_type:
18151 case DW_TAG_file_type:
18152 case DW_TAG_ptr_to_member_type:
18153 case DW_TAG_set_type:
18154 case DW_TAG_string_type:
18155 case DW_TAG_subroutine_type:
18156 #endif
18157 case DW_TAG_base_type:
18158 case DW_TAG_class_type:
18159 case DW_TAG_interface_type:
18160 case DW_TAG_enumeration_type:
18161 case DW_TAG_structure_type:
18162 case DW_TAG_subrange_type:
18163 case DW_TAG_typedef:
18164 case DW_TAG_union_type:
18165 return 1;
18166 default:
18167 return 0;
18168 }
18169 }
18170
18171 /* Load all DIEs that are interesting for partial symbols into memory. */
18172
18173 static struct partial_die_info *
18174 load_partial_dies (const struct die_reader_specs *reader,
18175 const gdb_byte *info_ptr, int building_psymtab)
18176 {
18177 struct dwarf2_cu *cu = reader->cu;
18178 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18179 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18180 unsigned int bytes_read;
18181 unsigned int load_all = 0;
18182 int nesting_level = 1;
18183
18184 parent_die = NULL;
18185 last_die = NULL;
18186
18187 gdb_assert (cu->per_cu != NULL);
18188 if (cu->per_cu->load_all_dies)
18189 load_all = 1;
18190
18191 cu->partial_dies
18192 = htab_create_alloc_ex (cu->header.length / 12,
18193 partial_die_hash,
18194 partial_die_eq,
18195 NULL,
18196 &cu->comp_unit_obstack,
18197 hashtab_obstack_allocate,
18198 dummy_obstack_deallocate);
18199
18200 while (1)
18201 {
18202 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18203
18204 /* A NULL abbrev means the end of a series of children. */
18205 if (abbrev == NULL)
18206 {
18207 if (--nesting_level == 0)
18208 return first_die;
18209
18210 info_ptr += bytes_read;
18211 last_die = parent_die;
18212 parent_die = parent_die->die_parent;
18213 continue;
18214 }
18215
18216 /* Check for template arguments. We never save these; if
18217 they're seen, we just mark the parent, and go on our way. */
18218 if (parent_die != NULL
18219 && cu->language == language_cplus
18220 && (abbrev->tag == DW_TAG_template_type_param
18221 || abbrev->tag == DW_TAG_template_value_param))
18222 {
18223 parent_die->has_template_arguments = 1;
18224
18225 if (!load_all)
18226 {
18227 /* We don't need a partial DIE for the template argument. */
18228 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18229 continue;
18230 }
18231 }
18232
18233 /* We only recurse into c++ subprograms looking for template arguments.
18234 Skip their other children. */
18235 if (!load_all
18236 && cu->language == language_cplus
18237 && parent_die != NULL
18238 && parent_die->tag == DW_TAG_subprogram)
18239 {
18240 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18241 continue;
18242 }
18243
18244 /* Check whether this DIE is interesting enough to save. Normally
18245 we would not be interested in members here, but there may be
18246 later variables referencing them via DW_AT_specification (for
18247 static members). */
18248 if (!load_all
18249 && !is_type_tag_for_partial (abbrev->tag)
18250 && abbrev->tag != DW_TAG_constant
18251 && abbrev->tag != DW_TAG_enumerator
18252 && abbrev->tag != DW_TAG_subprogram
18253 && abbrev->tag != DW_TAG_inlined_subroutine
18254 && abbrev->tag != DW_TAG_lexical_block
18255 && abbrev->tag != DW_TAG_variable
18256 && abbrev->tag != DW_TAG_namespace
18257 && abbrev->tag != DW_TAG_module
18258 && abbrev->tag != DW_TAG_member
18259 && abbrev->tag != DW_TAG_imported_unit
18260 && abbrev->tag != DW_TAG_imported_declaration)
18261 {
18262 /* Otherwise we skip to the next sibling, if any. */
18263 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18264 continue;
18265 }
18266
18267 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18268 abbrev);
18269
18270 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18271
18272 /* This two-pass algorithm for processing partial symbols has a
18273 high cost in cache pressure. Thus, handle some simple cases
18274 here which cover the majority of C partial symbols. DIEs
18275 which neither have specification tags in them, nor could have
18276 specification tags elsewhere pointing at them, can simply be
18277 processed and discarded.
18278
18279 This segment is also optional; scan_partial_symbols and
18280 add_partial_symbol will handle these DIEs if we chain
18281 them in normally. When compilers which do not emit large
18282 quantities of duplicate debug information are more common,
18283 this code can probably be removed. */
18284
18285 /* Any complete simple types at the top level (pretty much all
18286 of them, for a language without namespaces), can be processed
18287 directly. */
18288 if (parent_die == NULL
18289 && pdi.has_specification == 0
18290 && pdi.is_declaration == 0
18291 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18292 || pdi.tag == DW_TAG_base_type
18293 || pdi.tag == DW_TAG_subrange_type))
18294 {
18295 if (building_psymtab && pdi.name != NULL)
18296 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18297 VAR_DOMAIN, LOC_TYPEDEF,
18298 &objfile->static_psymbols,
18299 0, cu->language, objfile);
18300 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18301 continue;
18302 }
18303
18304 /* The exception for DW_TAG_typedef with has_children above is
18305 a workaround of GCC PR debug/47510. In the case of this complaint
18306 type_name_no_tag_or_error will error on such types later.
18307
18308 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18309 it could not find the child DIEs referenced later, this is checked
18310 above. In correct DWARF DW_TAG_typedef should have no children. */
18311
18312 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18313 complaint (&symfile_complaints,
18314 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18315 "- DIE at %s [in module %s]"),
18316 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18317
18318 /* If we're at the second level, and we're an enumerator, and
18319 our parent has no specification (meaning possibly lives in a
18320 namespace elsewhere), then we can add the partial symbol now
18321 instead of queueing it. */
18322 if (pdi.tag == DW_TAG_enumerator
18323 && parent_die != NULL
18324 && parent_die->die_parent == NULL
18325 && parent_die->tag == DW_TAG_enumeration_type
18326 && parent_die->has_specification == 0)
18327 {
18328 if (pdi.name == NULL)
18329 complaint (&symfile_complaints,
18330 _("malformed enumerator DIE ignored"));
18331 else if (building_psymtab)
18332 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18333 VAR_DOMAIN, LOC_CONST,
18334 cu->language == language_cplus
18335 ? &objfile->global_psymbols
18336 : &objfile->static_psymbols,
18337 0, cu->language, objfile);
18338
18339 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18340 continue;
18341 }
18342
18343 struct partial_die_info *part_die
18344 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18345
18346 /* We'll save this DIE so link it in. */
18347 part_die->die_parent = parent_die;
18348 part_die->die_sibling = NULL;
18349 part_die->die_child = NULL;
18350
18351 if (last_die && last_die == parent_die)
18352 last_die->die_child = part_die;
18353 else if (last_die)
18354 last_die->die_sibling = part_die;
18355
18356 last_die = part_die;
18357
18358 if (first_die == NULL)
18359 first_die = part_die;
18360
18361 /* Maybe add the DIE to the hash table. Not all DIEs that we
18362 find interesting need to be in the hash table, because we
18363 also have the parent/sibling/child chains; only those that we
18364 might refer to by offset later during partial symbol reading.
18365
18366 For now this means things that might have be the target of a
18367 DW_AT_specification, DW_AT_abstract_origin, or
18368 DW_AT_extension. DW_AT_extension will refer only to
18369 namespaces; DW_AT_abstract_origin refers to functions (and
18370 many things under the function DIE, but we do not recurse
18371 into function DIEs during partial symbol reading) and
18372 possibly variables as well; DW_AT_specification refers to
18373 declarations. Declarations ought to have the DW_AT_declaration
18374 flag. It happens that GCC forgets to put it in sometimes, but
18375 only for functions, not for types.
18376
18377 Adding more things than necessary to the hash table is harmless
18378 except for the performance cost. Adding too few will result in
18379 wasted time in find_partial_die, when we reread the compilation
18380 unit with load_all_dies set. */
18381
18382 if (load_all
18383 || abbrev->tag == DW_TAG_constant
18384 || abbrev->tag == DW_TAG_subprogram
18385 || abbrev->tag == DW_TAG_variable
18386 || abbrev->tag == DW_TAG_namespace
18387 || part_die->is_declaration)
18388 {
18389 void **slot;
18390
18391 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18392 to_underlying (part_die->sect_off),
18393 INSERT);
18394 *slot = part_die;
18395 }
18396
18397 /* For some DIEs we want to follow their children (if any). For C
18398 we have no reason to follow the children of structures; for other
18399 languages we have to, so that we can get at method physnames
18400 to infer fully qualified class names, for DW_AT_specification,
18401 and for C++ template arguments. For C++, we also look one level
18402 inside functions to find template arguments (if the name of the
18403 function does not already contain the template arguments).
18404
18405 For Ada, we need to scan the children of subprograms and lexical
18406 blocks as well because Ada allows the definition of nested
18407 entities that could be interesting for the debugger, such as
18408 nested subprograms for instance. */
18409 if (last_die->has_children
18410 && (load_all
18411 || last_die->tag == DW_TAG_namespace
18412 || last_die->tag == DW_TAG_module
18413 || last_die->tag == DW_TAG_enumeration_type
18414 || (cu->language == language_cplus
18415 && last_die->tag == DW_TAG_subprogram
18416 && (last_die->name == NULL
18417 || strchr (last_die->name, '<') == NULL))
18418 || (cu->language != language_c
18419 && (last_die->tag == DW_TAG_class_type
18420 || last_die->tag == DW_TAG_interface_type
18421 || last_die->tag == DW_TAG_structure_type
18422 || last_die->tag == DW_TAG_union_type))
18423 || (cu->language == language_ada
18424 && (last_die->tag == DW_TAG_subprogram
18425 || last_die->tag == DW_TAG_lexical_block))))
18426 {
18427 nesting_level++;
18428 parent_die = last_die;
18429 continue;
18430 }
18431
18432 /* Otherwise we skip to the next sibling, if any. */
18433 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18434
18435 /* Back to the top, do it again. */
18436 }
18437 }
18438
18439 partial_die_info::partial_die_info (sect_offset sect_off_,
18440 struct abbrev_info *abbrev)
18441 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18442 {
18443 }
18444
18445 /* Read a minimal amount of information into the minimal die structure.
18446 INFO_PTR should point just after the initial uleb128 of a DIE. */
18447
18448 const gdb_byte *
18449 partial_die_info::read (const struct die_reader_specs *reader,
18450 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18451 {
18452 struct dwarf2_cu *cu = reader->cu;
18453 struct dwarf2_per_objfile *dwarf2_per_objfile
18454 = cu->per_cu->dwarf2_per_objfile;
18455 unsigned int i;
18456 int has_low_pc_attr = 0;
18457 int has_high_pc_attr = 0;
18458 int high_pc_relative = 0;
18459
18460 for (i = 0; i < abbrev.num_attrs; ++i)
18461 {
18462 struct attribute attr;
18463
18464 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18465
18466 /* Store the data if it is of an attribute we want to keep in a
18467 partial symbol table. */
18468 switch (attr.name)
18469 {
18470 case DW_AT_name:
18471 switch (tag)
18472 {
18473 case DW_TAG_compile_unit:
18474 case DW_TAG_partial_unit:
18475 case DW_TAG_type_unit:
18476 /* Compilation units have a DW_AT_name that is a filename, not
18477 a source language identifier. */
18478 case DW_TAG_enumeration_type:
18479 case DW_TAG_enumerator:
18480 /* These tags always have simple identifiers already; no need
18481 to canonicalize them. */
18482 name = DW_STRING (&attr);
18483 break;
18484 default:
18485 {
18486 struct objfile *objfile = dwarf2_per_objfile->objfile;
18487
18488 name
18489 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18490 &objfile->per_bfd->storage_obstack);
18491 }
18492 break;
18493 }
18494 break;
18495 case DW_AT_linkage_name:
18496 case DW_AT_MIPS_linkage_name:
18497 /* Note that both forms of linkage name might appear. We
18498 assume they will be the same, and we only store the last
18499 one we see. */
18500 if (cu->language == language_ada)
18501 name = DW_STRING (&attr);
18502 linkage_name = DW_STRING (&attr);
18503 break;
18504 case DW_AT_low_pc:
18505 has_low_pc_attr = 1;
18506 lowpc = attr_value_as_address (&attr);
18507 break;
18508 case DW_AT_high_pc:
18509 has_high_pc_attr = 1;
18510 highpc = attr_value_as_address (&attr);
18511 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18512 high_pc_relative = 1;
18513 break;
18514 case DW_AT_location:
18515 /* Support the .debug_loc offsets. */
18516 if (attr_form_is_block (&attr))
18517 {
18518 d.locdesc = DW_BLOCK (&attr);
18519 }
18520 else if (attr_form_is_section_offset (&attr))
18521 {
18522 dwarf2_complex_location_expr_complaint ();
18523 }
18524 else
18525 {
18526 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18527 "partial symbol information");
18528 }
18529 break;
18530 case DW_AT_external:
18531 is_external = DW_UNSND (&attr);
18532 break;
18533 case DW_AT_declaration:
18534 is_declaration = DW_UNSND (&attr);
18535 break;
18536 case DW_AT_type:
18537 has_type = 1;
18538 break;
18539 case DW_AT_abstract_origin:
18540 case DW_AT_specification:
18541 case DW_AT_extension:
18542 has_specification = 1;
18543 spec_offset = dwarf2_get_ref_die_offset (&attr);
18544 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18545 || cu->per_cu->is_dwz);
18546 break;
18547 case DW_AT_sibling:
18548 /* Ignore absolute siblings, they might point outside of
18549 the current compile unit. */
18550 if (attr.form == DW_FORM_ref_addr)
18551 complaint (&symfile_complaints,
18552 _("ignoring absolute DW_AT_sibling"));
18553 else
18554 {
18555 const gdb_byte *buffer = reader->buffer;
18556 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18557 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18558
18559 if (sibling_ptr < info_ptr)
18560 complaint (&symfile_complaints,
18561 _("DW_AT_sibling points backwards"));
18562 else if (sibling_ptr > reader->buffer_end)
18563 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18564 else
18565 sibling = sibling_ptr;
18566 }
18567 break;
18568 case DW_AT_byte_size:
18569 has_byte_size = 1;
18570 break;
18571 case DW_AT_const_value:
18572 has_const_value = 1;
18573 break;
18574 case DW_AT_calling_convention:
18575 /* DWARF doesn't provide a way to identify a program's source-level
18576 entry point. DW_AT_calling_convention attributes are only meant
18577 to describe functions' calling conventions.
18578
18579 However, because it's a necessary piece of information in
18580 Fortran, and before DWARF 4 DW_CC_program was the only
18581 piece of debugging information whose definition refers to
18582 a 'main program' at all, several compilers marked Fortran
18583 main programs with DW_CC_program --- even when those
18584 functions use the standard calling conventions.
18585
18586 Although DWARF now specifies a way to provide this
18587 information, we support this practice for backward
18588 compatibility. */
18589 if (DW_UNSND (&attr) == DW_CC_program
18590 && cu->language == language_fortran)
18591 main_subprogram = 1;
18592 break;
18593 case DW_AT_inline:
18594 if (DW_UNSND (&attr) == DW_INL_inlined
18595 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18596 may_be_inlined = 1;
18597 break;
18598
18599 case DW_AT_import:
18600 if (tag == DW_TAG_imported_unit)
18601 {
18602 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18603 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18604 || cu->per_cu->is_dwz);
18605 }
18606 break;
18607
18608 case DW_AT_main_subprogram:
18609 main_subprogram = DW_UNSND (&attr);
18610 break;
18611
18612 default:
18613 break;
18614 }
18615 }
18616
18617 if (high_pc_relative)
18618 highpc += lowpc;
18619
18620 if (has_low_pc_attr && has_high_pc_attr)
18621 {
18622 /* When using the GNU linker, .gnu.linkonce. sections are used to
18623 eliminate duplicate copies of functions and vtables and such.
18624 The linker will arbitrarily choose one and discard the others.
18625 The AT_*_pc values for such functions refer to local labels in
18626 these sections. If the section from that file was discarded, the
18627 labels are not in the output, so the relocs get a value of 0.
18628 If this is a discarded function, mark the pc bounds as invalid,
18629 so that GDB will ignore it. */
18630 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18631 {
18632 struct objfile *objfile = dwarf2_per_objfile->objfile;
18633 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18634
18635 complaint (&symfile_complaints,
18636 _("DW_AT_low_pc %s is zero "
18637 "for DIE at %s [in module %s]"),
18638 paddress (gdbarch, lowpc),
18639 sect_offset_str (sect_off),
18640 objfile_name (objfile));
18641 }
18642 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18643 else if (lowpc >= highpc)
18644 {
18645 struct objfile *objfile = dwarf2_per_objfile->objfile;
18646 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18647
18648 complaint (&symfile_complaints,
18649 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18650 "for DIE at %s [in module %s]"),
18651 paddress (gdbarch, lowpc),
18652 paddress (gdbarch, highpc),
18653 sect_offset_str (sect_off),
18654 objfile_name (objfile));
18655 }
18656 else
18657 has_pc_info = 1;
18658 }
18659
18660 return info_ptr;
18661 }
18662
18663 /* Find a cached partial DIE at OFFSET in CU. */
18664
18665 struct partial_die_info *
18666 dwarf2_cu::find_partial_die (sect_offset sect_off)
18667 {
18668 struct partial_die_info *lookup_die = NULL;
18669 struct partial_die_info part_die (sect_off);
18670
18671 lookup_die = ((struct partial_die_info *)
18672 htab_find_with_hash (partial_dies, &part_die,
18673 to_underlying (sect_off)));
18674
18675 return lookup_die;
18676 }
18677
18678 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18679 except in the case of .debug_types DIEs which do not reference
18680 outside their CU (they do however referencing other types via
18681 DW_FORM_ref_sig8). */
18682
18683 static struct partial_die_info *
18684 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18685 {
18686 struct dwarf2_per_objfile *dwarf2_per_objfile
18687 = cu->per_cu->dwarf2_per_objfile;
18688 struct objfile *objfile = dwarf2_per_objfile->objfile;
18689 struct dwarf2_per_cu_data *per_cu = NULL;
18690 struct partial_die_info *pd = NULL;
18691
18692 if (offset_in_dwz == cu->per_cu->is_dwz
18693 && offset_in_cu_p (&cu->header, sect_off))
18694 {
18695 pd = cu->find_partial_die (sect_off);
18696 if (pd != NULL)
18697 return pd;
18698 /* We missed recording what we needed.
18699 Load all dies and try again. */
18700 per_cu = cu->per_cu;
18701 }
18702 else
18703 {
18704 /* TUs don't reference other CUs/TUs (except via type signatures). */
18705 if (cu->per_cu->is_debug_types)
18706 {
18707 error (_("Dwarf Error: Type Unit at offset %s contains"
18708 " external reference to offset %s [in module %s].\n"),
18709 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18710 bfd_get_filename (objfile->obfd));
18711 }
18712 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18713 dwarf2_per_objfile);
18714
18715 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18716 load_partial_comp_unit (per_cu);
18717
18718 per_cu->cu->last_used = 0;
18719 pd = per_cu->cu->find_partial_die (sect_off);
18720 }
18721
18722 /* If we didn't find it, and not all dies have been loaded,
18723 load them all and try again. */
18724
18725 if (pd == NULL && per_cu->load_all_dies == 0)
18726 {
18727 per_cu->load_all_dies = 1;
18728
18729 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18730 THIS_CU->cu may already be in use. So we can't just free it and
18731 replace its DIEs with the ones we read in. Instead, we leave those
18732 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18733 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18734 set. */
18735 load_partial_comp_unit (per_cu);
18736
18737 pd = per_cu->cu->find_partial_die (sect_off);
18738 }
18739
18740 if (pd == NULL)
18741 internal_error (__FILE__, __LINE__,
18742 _("could not find partial DIE %s "
18743 "in cache [from module %s]\n"),
18744 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18745 return pd;
18746 }
18747
18748 /* See if we can figure out if the class lives in a namespace. We do
18749 this by looking for a member function; its demangled name will
18750 contain namespace info, if there is any. */
18751
18752 static void
18753 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18754 struct dwarf2_cu *cu)
18755 {
18756 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18757 what template types look like, because the demangler
18758 frequently doesn't give the same name as the debug info. We
18759 could fix this by only using the demangled name to get the
18760 prefix (but see comment in read_structure_type). */
18761
18762 struct partial_die_info *real_pdi;
18763 struct partial_die_info *child_pdi;
18764
18765 /* If this DIE (this DIE's specification, if any) has a parent, then
18766 we should not do this. We'll prepend the parent's fully qualified
18767 name when we create the partial symbol. */
18768
18769 real_pdi = struct_pdi;
18770 while (real_pdi->has_specification)
18771 real_pdi = find_partial_die (real_pdi->spec_offset,
18772 real_pdi->spec_is_dwz, cu);
18773
18774 if (real_pdi->die_parent != NULL)
18775 return;
18776
18777 for (child_pdi = struct_pdi->die_child;
18778 child_pdi != NULL;
18779 child_pdi = child_pdi->die_sibling)
18780 {
18781 if (child_pdi->tag == DW_TAG_subprogram
18782 && child_pdi->linkage_name != NULL)
18783 {
18784 char *actual_class_name
18785 = language_class_name_from_physname (cu->language_defn,
18786 child_pdi->linkage_name);
18787 if (actual_class_name != NULL)
18788 {
18789 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18790 struct_pdi->name
18791 = ((const char *)
18792 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18793 actual_class_name,
18794 strlen (actual_class_name)));
18795 xfree (actual_class_name);
18796 }
18797 break;
18798 }
18799 }
18800 }
18801
18802 void
18803 partial_die_info::fixup (struct dwarf2_cu *cu)
18804 {
18805 /* Once we've fixed up a die, there's no point in doing so again.
18806 This also avoids a memory leak if we were to call
18807 guess_partial_die_structure_name multiple times. */
18808 if (fixup_called)
18809 return;
18810
18811 /* If we found a reference attribute and the DIE has no name, try
18812 to find a name in the referred to DIE. */
18813
18814 if (name == NULL && has_specification)
18815 {
18816 struct partial_die_info *spec_die;
18817
18818 spec_die = find_partial_die (spec_offset, spec_is_dwz, cu);
18819
18820 spec_die->fixup (cu);
18821
18822 if (spec_die->name)
18823 {
18824 name = spec_die->name;
18825
18826 /* Copy DW_AT_external attribute if it is set. */
18827 if (spec_die->is_external)
18828 is_external = spec_die->is_external;
18829 }
18830 }
18831
18832 /* Set default names for some unnamed DIEs. */
18833
18834 if (name == NULL && tag == DW_TAG_namespace)
18835 name = CP_ANONYMOUS_NAMESPACE_STR;
18836
18837 /* If there is no parent die to provide a namespace, and there are
18838 children, see if we can determine the namespace from their linkage
18839 name. */
18840 if (cu->language == language_cplus
18841 && !VEC_empty (dwarf2_section_info_def,
18842 cu->per_cu->dwarf2_per_objfile->types)
18843 && die_parent == NULL
18844 && has_children
18845 && (tag == DW_TAG_class_type
18846 || tag == DW_TAG_structure_type
18847 || tag == DW_TAG_union_type))
18848 guess_partial_die_structure_name (this, cu);
18849
18850 /* GCC might emit a nameless struct or union that has a linkage
18851 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18852 if (name == NULL
18853 && (tag == DW_TAG_class_type
18854 || tag == DW_TAG_interface_type
18855 || tag == DW_TAG_structure_type
18856 || tag == DW_TAG_union_type)
18857 && linkage_name != NULL)
18858 {
18859 char *demangled;
18860
18861 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
18862 if (demangled)
18863 {
18864 const char *base;
18865
18866 /* Strip any leading namespaces/classes, keep only the base name.
18867 DW_AT_name for named DIEs does not contain the prefixes. */
18868 base = strrchr (demangled, ':');
18869 if (base && base > demangled && base[-1] == ':')
18870 base++;
18871 else
18872 base = demangled;
18873
18874 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18875 name
18876 = ((const char *)
18877 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18878 base, strlen (base)));
18879 xfree (demangled);
18880 }
18881 }
18882
18883 fixup_called = 1;
18884 }
18885
18886 /* Read an attribute value described by an attribute form. */
18887
18888 static const gdb_byte *
18889 read_attribute_value (const struct die_reader_specs *reader,
18890 struct attribute *attr, unsigned form,
18891 LONGEST implicit_const, const gdb_byte *info_ptr)
18892 {
18893 struct dwarf2_cu *cu = reader->cu;
18894 struct dwarf2_per_objfile *dwarf2_per_objfile
18895 = cu->per_cu->dwarf2_per_objfile;
18896 struct objfile *objfile = dwarf2_per_objfile->objfile;
18897 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18898 bfd *abfd = reader->abfd;
18899 struct comp_unit_head *cu_header = &cu->header;
18900 unsigned int bytes_read;
18901 struct dwarf_block *blk;
18902
18903 attr->form = (enum dwarf_form) form;
18904 switch (form)
18905 {
18906 case DW_FORM_ref_addr:
18907 if (cu->header.version == 2)
18908 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18909 else
18910 DW_UNSND (attr) = read_offset (abfd, info_ptr,
18911 &cu->header, &bytes_read);
18912 info_ptr += bytes_read;
18913 break;
18914 case DW_FORM_GNU_ref_alt:
18915 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
18916 info_ptr += bytes_read;
18917 break;
18918 case DW_FORM_addr:
18919 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18920 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
18921 info_ptr += bytes_read;
18922 break;
18923 case DW_FORM_block2:
18924 blk = dwarf_alloc_block (cu);
18925 blk->size = read_2_bytes (abfd, info_ptr);
18926 info_ptr += 2;
18927 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18928 info_ptr += blk->size;
18929 DW_BLOCK (attr) = blk;
18930 break;
18931 case DW_FORM_block4:
18932 blk = dwarf_alloc_block (cu);
18933 blk->size = read_4_bytes (abfd, info_ptr);
18934 info_ptr += 4;
18935 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18936 info_ptr += blk->size;
18937 DW_BLOCK (attr) = blk;
18938 break;
18939 case DW_FORM_data2:
18940 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
18941 info_ptr += 2;
18942 break;
18943 case DW_FORM_data4:
18944 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
18945 info_ptr += 4;
18946 break;
18947 case DW_FORM_data8:
18948 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
18949 info_ptr += 8;
18950 break;
18951 case DW_FORM_data16:
18952 blk = dwarf_alloc_block (cu);
18953 blk->size = 16;
18954 blk->data = read_n_bytes (abfd, info_ptr, 16);
18955 info_ptr += 16;
18956 DW_BLOCK (attr) = blk;
18957 break;
18958 case DW_FORM_sec_offset:
18959 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
18960 info_ptr += bytes_read;
18961 break;
18962 case DW_FORM_string:
18963 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
18964 DW_STRING_IS_CANONICAL (attr) = 0;
18965 info_ptr += bytes_read;
18966 break;
18967 case DW_FORM_strp:
18968 if (!cu->per_cu->is_dwz)
18969 {
18970 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
18971 abfd, info_ptr, cu_header,
18972 &bytes_read);
18973 DW_STRING_IS_CANONICAL (attr) = 0;
18974 info_ptr += bytes_read;
18975 break;
18976 }
18977 /* FALLTHROUGH */
18978 case DW_FORM_line_strp:
18979 if (!cu->per_cu->is_dwz)
18980 {
18981 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
18982 abfd, info_ptr,
18983 cu_header, &bytes_read);
18984 DW_STRING_IS_CANONICAL (attr) = 0;
18985 info_ptr += bytes_read;
18986 break;
18987 }
18988 /* FALLTHROUGH */
18989 case DW_FORM_GNU_strp_alt:
18990 {
18991 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
18992 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
18993 &bytes_read);
18994
18995 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
18996 dwz, str_offset);
18997 DW_STRING_IS_CANONICAL (attr) = 0;
18998 info_ptr += bytes_read;
18999 }
19000 break;
19001 case DW_FORM_exprloc:
19002 case DW_FORM_block:
19003 blk = dwarf_alloc_block (cu);
19004 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19005 info_ptr += bytes_read;
19006 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19007 info_ptr += blk->size;
19008 DW_BLOCK (attr) = blk;
19009 break;
19010 case DW_FORM_block1:
19011 blk = dwarf_alloc_block (cu);
19012 blk->size = read_1_byte (abfd, info_ptr);
19013 info_ptr += 1;
19014 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19015 info_ptr += blk->size;
19016 DW_BLOCK (attr) = blk;
19017 break;
19018 case DW_FORM_data1:
19019 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19020 info_ptr += 1;
19021 break;
19022 case DW_FORM_flag:
19023 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19024 info_ptr += 1;
19025 break;
19026 case DW_FORM_flag_present:
19027 DW_UNSND (attr) = 1;
19028 break;
19029 case DW_FORM_sdata:
19030 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19031 info_ptr += bytes_read;
19032 break;
19033 case DW_FORM_udata:
19034 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19035 info_ptr += bytes_read;
19036 break;
19037 case DW_FORM_ref1:
19038 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19039 + read_1_byte (abfd, info_ptr));
19040 info_ptr += 1;
19041 break;
19042 case DW_FORM_ref2:
19043 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19044 + read_2_bytes (abfd, info_ptr));
19045 info_ptr += 2;
19046 break;
19047 case DW_FORM_ref4:
19048 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19049 + read_4_bytes (abfd, info_ptr));
19050 info_ptr += 4;
19051 break;
19052 case DW_FORM_ref8:
19053 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19054 + read_8_bytes (abfd, info_ptr));
19055 info_ptr += 8;
19056 break;
19057 case DW_FORM_ref_sig8:
19058 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19059 info_ptr += 8;
19060 break;
19061 case DW_FORM_ref_udata:
19062 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19063 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19064 info_ptr += bytes_read;
19065 break;
19066 case DW_FORM_indirect:
19067 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19068 info_ptr += bytes_read;
19069 if (form == DW_FORM_implicit_const)
19070 {
19071 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19072 info_ptr += bytes_read;
19073 }
19074 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19075 info_ptr);
19076 break;
19077 case DW_FORM_implicit_const:
19078 DW_SND (attr) = implicit_const;
19079 break;
19080 case DW_FORM_GNU_addr_index:
19081 if (reader->dwo_file == NULL)
19082 {
19083 /* For now flag a hard error.
19084 Later we can turn this into a complaint. */
19085 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19086 dwarf_form_name (form),
19087 bfd_get_filename (abfd));
19088 }
19089 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19090 info_ptr += bytes_read;
19091 break;
19092 case DW_FORM_GNU_str_index:
19093 if (reader->dwo_file == NULL)
19094 {
19095 /* For now flag a hard error.
19096 Later we can turn this into a complaint if warranted. */
19097 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19098 dwarf_form_name (form),
19099 bfd_get_filename (abfd));
19100 }
19101 {
19102 ULONGEST str_index =
19103 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19104
19105 DW_STRING (attr) = read_str_index (reader, str_index);
19106 DW_STRING_IS_CANONICAL (attr) = 0;
19107 info_ptr += bytes_read;
19108 }
19109 break;
19110 default:
19111 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19112 dwarf_form_name (form),
19113 bfd_get_filename (abfd));
19114 }
19115
19116 /* Super hack. */
19117 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19118 attr->form = DW_FORM_GNU_ref_alt;
19119
19120 /* We have seen instances where the compiler tried to emit a byte
19121 size attribute of -1 which ended up being encoded as an unsigned
19122 0xffffffff. Although 0xffffffff is technically a valid size value,
19123 an object of this size seems pretty unlikely so we can relatively
19124 safely treat these cases as if the size attribute was invalid and
19125 treat them as zero by default. */
19126 if (attr->name == DW_AT_byte_size
19127 && form == DW_FORM_data4
19128 && DW_UNSND (attr) >= 0xffffffff)
19129 {
19130 complaint
19131 (&symfile_complaints,
19132 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19133 hex_string (DW_UNSND (attr)));
19134 DW_UNSND (attr) = 0;
19135 }
19136
19137 return info_ptr;
19138 }
19139
19140 /* Read an attribute described by an abbreviated attribute. */
19141
19142 static const gdb_byte *
19143 read_attribute (const struct die_reader_specs *reader,
19144 struct attribute *attr, struct attr_abbrev *abbrev,
19145 const gdb_byte *info_ptr)
19146 {
19147 attr->name = abbrev->name;
19148 return read_attribute_value (reader, attr, abbrev->form,
19149 abbrev->implicit_const, info_ptr);
19150 }
19151
19152 /* Read dwarf information from a buffer. */
19153
19154 static unsigned int
19155 read_1_byte (bfd *abfd, const gdb_byte *buf)
19156 {
19157 return bfd_get_8 (abfd, buf);
19158 }
19159
19160 static int
19161 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19162 {
19163 return bfd_get_signed_8 (abfd, buf);
19164 }
19165
19166 static unsigned int
19167 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19168 {
19169 return bfd_get_16 (abfd, buf);
19170 }
19171
19172 static int
19173 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19174 {
19175 return bfd_get_signed_16 (abfd, buf);
19176 }
19177
19178 static unsigned int
19179 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19180 {
19181 return bfd_get_32 (abfd, buf);
19182 }
19183
19184 static int
19185 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19186 {
19187 return bfd_get_signed_32 (abfd, buf);
19188 }
19189
19190 static ULONGEST
19191 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19192 {
19193 return bfd_get_64 (abfd, buf);
19194 }
19195
19196 static CORE_ADDR
19197 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19198 unsigned int *bytes_read)
19199 {
19200 struct comp_unit_head *cu_header = &cu->header;
19201 CORE_ADDR retval = 0;
19202
19203 if (cu_header->signed_addr_p)
19204 {
19205 switch (cu_header->addr_size)
19206 {
19207 case 2:
19208 retval = bfd_get_signed_16 (abfd, buf);
19209 break;
19210 case 4:
19211 retval = bfd_get_signed_32 (abfd, buf);
19212 break;
19213 case 8:
19214 retval = bfd_get_signed_64 (abfd, buf);
19215 break;
19216 default:
19217 internal_error (__FILE__, __LINE__,
19218 _("read_address: bad switch, signed [in module %s]"),
19219 bfd_get_filename (abfd));
19220 }
19221 }
19222 else
19223 {
19224 switch (cu_header->addr_size)
19225 {
19226 case 2:
19227 retval = bfd_get_16 (abfd, buf);
19228 break;
19229 case 4:
19230 retval = bfd_get_32 (abfd, buf);
19231 break;
19232 case 8:
19233 retval = bfd_get_64 (abfd, buf);
19234 break;
19235 default:
19236 internal_error (__FILE__, __LINE__,
19237 _("read_address: bad switch, "
19238 "unsigned [in module %s]"),
19239 bfd_get_filename (abfd));
19240 }
19241 }
19242
19243 *bytes_read = cu_header->addr_size;
19244 return retval;
19245 }
19246
19247 /* Read the initial length from a section. The (draft) DWARF 3
19248 specification allows the initial length to take up either 4 bytes
19249 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19250 bytes describe the length and all offsets will be 8 bytes in length
19251 instead of 4.
19252
19253 An older, non-standard 64-bit format is also handled by this
19254 function. The older format in question stores the initial length
19255 as an 8-byte quantity without an escape value. Lengths greater
19256 than 2^32 aren't very common which means that the initial 4 bytes
19257 is almost always zero. Since a length value of zero doesn't make
19258 sense for the 32-bit format, this initial zero can be considered to
19259 be an escape value which indicates the presence of the older 64-bit
19260 format. As written, the code can't detect (old format) lengths
19261 greater than 4GB. If it becomes necessary to handle lengths
19262 somewhat larger than 4GB, we could allow other small values (such
19263 as the non-sensical values of 1, 2, and 3) to also be used as
19264 escape values indicating the presence of the old format.
19265
19266 The value returned via bytes_read should be used to increment the
19267 relevant pointer after calling read_initial_length().
19268
19269 [ Note: read_initial_length() and read_offset() are based on the
19270 document entitled "DWARF Debugging Information Format", revision
19271 3, draft 8, dated November 19, 2001. This document was obtained
19272 from:
19273
19274 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19275
19276 This document is only a draft and is subject to change. (So beware.)
19277
19278 Details regarding the older, non-standard 64-bit format were
19279 determined empirically by examining 64-bit ELF files produced by
19280 the SGI toolchain on an IRIX 6.5 machine.
19281
19282 - Kevin, July 16, 2002
19283 ] */
19284
19285 static LONGEST
19286 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19287 {
19288 LONGEST length = bfd_get_32 (abfd, buf);
19289
19290 if (length == 0xffffffff)
19291 {
19292 length = bfd_get_64 (abfd, buf + 4);
19293 *bytes_read = 12;
19294 }
19295 else if (length == 0)
19296 {
19297 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19298 length = bfd_get_64 (abfd, buf);
19299 *bytes_read = 8;
19300 }
19301 else
19302 {
19303 *bytes_read = 4;
19304 }
19305
19306 return length;
19307 }
19308
19309 /* Cover function for read_initial_length.
19310 Returns the length of the object at BUF, and stores the size of the
19311 initial length in *BYTES_READ and stores the size that offsets will be in
19312 *OFFSET_SIZE.
19313 If the initial length size is not equivalent to that specified in
19314 CU_HEADER then issue a complaint.
19315 This is useful when reading non-comp-unit headers. */
19316
19317 static LONGEST
19318 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19319 const struct comp_unit_head *cu_header,
19320 unsigned int *bytes_read,
19321 unsigned int *offset_size)
19322 {
19323 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19324
19325 gdb_assert (cu_header->initial_length_size == 4
19326 || cu_header->initial_length_size == 8
19327 || cu_header->initial_length_size == 12);
19328
19329 if (cu_header->initial_length_size != *bytes_read)
19330 complaint (&symfile_complaints,
19331 _("intermixed 32-bit and 64-bit DWARF sections"));
19332
19333 *offset_size = (*bytes_read == 4) ? 4 : 8;
19334 return length;
19335 }
19336
19337 /* Read an offset from the data stream. The size of the offset is
19338 given by cu_header->offset_size. */
19339
19340 static LONGEST
19341 read_offset (bfd *abfd, const gdb_byte *buf,
19342 const struct comp_unit_head *cu_header,
19343 unsigned int *bytes_read)
19344 {
19345 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19346
19347 *bytes_read = cu_header->offset_size;
19348 return offset;
19349 }
19350
19351 /* Read an offset from the data stream. */
19352
19353 static LONGEST
19354 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19355 {
19356 LONGEST retval = 0;
19357
19358 switch (offset_size)
19359 {
19360 case 4:
19361 retval = bfd_get_32 (abfd, buf);
19362 break;
19363 case 8:
19364 retval = bfd_get_64 (abfd, buf);
19365 break;
19366 default:
19367 internal_error (__FILE__, __LINE__,
19368 _("read_offset_1: bad switch [in module %s]"),
19369 bfd_get_filename (abfd));
19370 }
19371
19372 return retval;
19373 }
19374
19375 static const gdb_byte *
19376 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19377 {
19378 /* If the size of a host char is 8 bits, we can return a pointer
19379 to the buffer, otherwise we have to copy the data to a buffer
19380 allocated on the temporary obstack. */
19381 gdb_assert (HOST_CHAR_BIT == 8);
19382 return buf;
19383 }
19384
19385 static const char *
19386 read_direct_string (bfd *abfd, const gdb_byte *buf,
19387 unsigned int *bytes_read_ptr)
19388 {
19389 /* If the size of a host char is 8 bits, we can return a pointer
19390 to the string, otherwise we have to copy the string to a buffer
19391 allocated on the temporary obstack. */
19392 gdb_assert (HOST_CHAR_BIT == 8);
19393 if (*buf == '\0')
19394 {
19395 *bytes_read_ptr = 1;
19396 return NULL;
19397 }
19398 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19399 return (const char *) buf;
19400 }
19401
19402 /* Return pointer to string at section SECT offset STR_OFFSET with error
19403 reporting strings FORM_NAME and SECT_NAME. */
19404
19405 static const char *
19406 read_indirect_string_at_offset_from (struct objfile *objfile,
19407 bfd *abfd, LONGEST str_offset,
19408 struct dwarf2_section_info *sect,
19409 const char *form_name,
19410 const char *sect_name)
19411 {
19412 dwarf2_read_section (objfile, sect);
19413 if (sect->buffer == NULL)
19414 error (_("%s used without %s section [in module %s]"),
19415 form_name, sect_name, bfd_get_filename (abfd));
19416 if (str_offset >= sect->size)
19417 error (_("%s pointing outside of %s section [in module %s]"),
19418 form_name, sect_name, bfd_get_filename (abfd));
19419 gdb_assert (HOST_CHAR_BIT == 8);
19420 if (sect->buffer[str_offset] == '\0')
19421 return NULL;
19422 return (const char *) (sect->buffer + str_offset);
19423 }
19424
19425 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19426
19427 static const char *
19428 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19429 bfd *abfd, LONGEST str_offset)
19430 {
19431 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19432 abfd, str_offset,
19433 &dwarf2_per_objfile->str,
19434 "DW_FORM_strp", ".debug_str");
19435 }
19436
19437 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19438
19439 static const char *
19440 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19441 bfd *abfd, LONGEST str_offset)
19442 {
19443 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19444 abfd, str_offset,
19445 &dwarf2_per_objfile->line_str,
19446 "DW_FORM_line_strp",
19447 ".debug_line_str");
19448 }
19449
19450 /* Read a string at offset STR_OFFSET in the .debug_str section from
19451 the .dwz file DWZ. Throw an error if the offset is too large. If
19452 the string consists of a single NUL byte, return NULL; otherwise
19453 return a pointer to the string. */
19454
19455 static const char *
19456 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19457 LONGEST str_offset)
19458 {
19459 dwarf2_read_section (objfile, &dwz->str);
19460
19461 if (dwz->str.buffer == NULL)
19462 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19463 "section [in module %s]"),
19464 bfd_get_filename (dwz->dwz_bfd));
19465 if (str_offset >= dwz->str.size)
19466 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19467 ".debug_str section [in module %s]"),
19468 bfd_get_filename (dwz->dwz_bfd));
19469 gdb_assert (HOST_CHAR_BIT == 8);
19470 if (dwz->str.buffer[str_offset] == '\0')
19471 return NULL;
19472 return (const char *) (dwz->str.buffer + str_offset);
19473 }
19474
19475 /* Return pointer to string at .debug_str offset as read from BUF.
19476 BUF is assumed to be in a compilation unit described by CU_HEADER.
19477 Return *BYTES_READ_PTR count of bytes read from BUF. */
19478
19479 static const char *
19480 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19481 const gdb_byte *buf,
19482 const struct comp_unit_head *cu_header,
19483 unsigned int *bytes_read_ptr)
19484 {
19485 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19486
19487 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19488 }
19489
19490 /* Return pointer to string at .debug_line_str offset as read from BUF.
19491 BUF is assumed to be in a compilation unit described by CU_HEADER.
19492 Return *BYTES_READ_PTR count of bytes read from BUF. */
19493
19494 static const char *
19495 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19496 bfd *abfd, const gdb_byte *buf,
19497 const struct comp_unit_head *cu_header,
19498 unsigned int *bytes_read_ptr)
19499 {
19500 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19501
19502 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19503 str_offset);
19504 }
19505
19506 ULONGEST
19507 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19508 unsigned int *bytes_read_ptr)
19509 {
19510 ULONGEST result;
19511 unsigned int num_read;
19512 int shift;
19513 unsigned char byte;
19514
19515 result = 0;
19516 shift = 0;
19517 num_read = 0;
19518 while (1)
19519 {
19520 byte = bfd_get_8 (abfd, buf);
19521 buf++;
19522 num_read++;
19523 result |= ((ULONGEST) (byte & 127) << shift);
19524 if ((byte & 128) == 0)
19525 {
19526 break;
19527 }
19528 shift += 7;
19529 }
19530 *bytes_read_ptr = num_read;
19531 return result;
19532 }
19533
19534 static LONGEST
19535 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19536 unsigned int *bytes_read_ptr)
19537 {
19538 LONGEST result;
19539 int shift, num_read;
19540 unsigned char byte;
19541
19542 result = 0;
19543 shift = 0;
19544 num_read = 0;
19545 while (1)
19546 {
19547 byte = bfd_get_8 (abfd, buf);
19548 buf++;
19549 num_read++;
19550 result |= ((LONGEST) (byte & 127) << shift);
19551 shift += 7;
19552 if ((byte & 128) == 0)
19553 {
19554 break;
19555 }
19556 }
19557 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19558 result |= -(((LONGEST) 1) << shift);
19559 *bytes_read_ptr = num_read;
19560 return result;
19561 }
19562
19563 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19564 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19565 ADDR_SIZE is the size of addresses from the CU header. */
19566
19567 static CORE_ADDR
19568 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19569 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19570 {
19571 struct objfile *objfile = dwarf2_per_objfile->objfile;
19572 bfd *abfd = objfile->obfd;
19573 const gdb_byte *info_ptr;
19574
19575 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19576 if (dwarf2_per_objfile->addr.buffer == NULL)
19577 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19578 objfile_name (objfile));
19579 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19580 error (_("DW_FORM_addr_index pointing outside of "
19581 ".debug_addr section [in module %s]"),
19582 objfile_name (objfile));
19583 info_ptr = (dwarf2_per_objfile->addr.buffer
19584 + addr_base + addr_index * addr_size);
19585 if (addr_size == 4)
19586 return bfd_get_32 (abfd, info_ptr);
19587 else
19588 return bfd_get_64 (abfd, info_ptr);
19589 }
19590
19591 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19592
19593 static CORE_ADDR
19594 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19595 {
19596 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19597 cu->addr_base, cu->header.addr_size);
19598 }
19599
19600 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19601
19602 static CORE_ADDR
19603 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19604 unsigned int *bytes_read)
19605 {
19606 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19607 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19608
19609 return read_addr_index (cu, addr_index);
19610 }
19611
19612 /* Data structure to pass results from dwarf2_read_addr_index_reader
19613 back to dwarf2_read_addr_index. */
19614
19615 struct dwarf2_read_addr_index_data
19616 {
19617 ULONGEST addr_base;
19618 int addr_size;
19619 };
19620
19621 /* die_reader_func for dwarf2_read_addr_index. */
19622
19623 static void
19624 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19625 const gdb_byte *info_ptr,
19626 struct die_info *comp_unit_die,
19627 int has_children,
19628 void *data)
19629 {
19630 struct dwarf2_cu *cu = reader->cu;
19631 struct dwarf2_read_addr_index_data *aidata =
19632 (struct dwarf2_read_addr_index_data *) data;
19633
19634 aidata->addr_base = cu->addr_base;
19635 aidata->addr_size = cu->header.addr_size;
19636 }
19637
19638 /* Given an index in .debug_addr, fetch the value.
19639 NOTE: This can be called during dwarf expression evaluation,
19640 long after the debug information has been read, and thus per_cu->cu
19641 may no longer exist. */
19642
19643 CORE_ADDR
19644 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19645 unsigned int addr_index)
19646 {
19647 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19648 struct dwarf2_cu *cu = per_cu->cu;
19649 ULONGEST addr_base;
19650 int addr_size;
19651
19652 /* We need addr_base and addr_size.
19653 If we don't have PER_CU->cu, we have to get it.
19654 Nasty, but the alternative is storing the needed info in PER_CU,
19655 which at this point doesn't seem justified: it's not clear how frequently
19656 it would get used and it would increase the size of every PER_CU.
19657 Entry points like dwarf2_per_cu_addr_size do a similar thing
19658 so we're not in uncharted territory here.
19659 Alas we need to be a bit more complicated as addr_base is contained
19660 in the DIE.
19661
19662 We don't need to read the entire CU(/TU).
19663 We just need the header and top level die.
19664
19665 IWBN to use the aging mechanism to let us lazily later discard the CU.
19666 For now we skip this optimization. */
19667
19668 if (cu != NULL)
19669 {
19670 addr_base = cu->addr_base;
19671 addr_size = cu->header.addr_size;
19672 }
19673 else
19674 {
19675 struct dwarf2_read_addr_index_data aidata;
19676
19677 /* Note: We can't use init_cutu_and_read_dies_simple here,
19678 we need addr_base. */
19679 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
19680 dwarf2_read_addr_index_reader, &aidata);
19681 addr_base = aidata.addr_base;
19682 addr_size = aidata.addr_size;
19683 }
19684
19685 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19686 addr_size);
19687 }
19688
19689 /* Given a DW_FORM_GNU_str_index, fetch the string.
19690 This is only used by the Fission support. */
19691
19692 static const char *
19693 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19694 {
19695 struct dwarf2_cu *cu = reader->cu;
19696 struct dwarf2_per_objfile *dwarf2_per_objfile
19697 = cu->per_cu->dwarf2_per_objfile;
19698 struct objfile *objfile = dwarf2_per_objfile->objfile;
19699 const char *objf_name = objfile_name (objfile);
19700 bfd *abfd = objfile->obfd;
19701 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19702 struct dwarf2_section_info *str_offsets_section =
19703 &reader->dwo_file->sections.str_offsets;
19704 const gdb_byte *info_ptr;
19705 ULONGEST str_offset;
19706 static const char form_name[] = "DW_FORM_GNU_str_index";
19707
19708 dwarf2_read_section (objfile, str_section);
19709 dwarf2_read_section (objfile, str_offsets_section);
19710 if (str_section->buffer == NULL)
19711 error (_("%s used without .debug_str.dwo section"
19712 " in CU at offset %s [in module %s]"),
19713 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19714 if (str_offsets_section->buffer == NULL)
19715 error (_("%s used without .debug_str_offsets.dwo section"
19716 " in CU at offset %s [in module %s]"),
19717 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19718 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19719 error (_("%s pointing outside of .debug_str_offsets.dwo"
19720 " section in CU at offset %s [in module %s]"),
19721 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19722 info_ptr = (str_offsets_section->buffer
19723 + str_index * cu->header.offset_size);
19724 if (cu->header.offset_size == 4)
19725 str_offset = bfd_get_32 (abfd, info_ptr);
19726 else
19727 str_offset = bfd_get_64 (abfd, info_ptr);
19728 if (str_offset >= str_section->size)
19729 error (_("Offset from %s pointing outside of"
19730 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19731 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19732 return (const char *) (str_section->buffer + str_offset);
19733 }
19734
19735 /* Return the length of an LEB128 number in BUF. */
19736
19737 static int
19738 leb128_size (const gdb_byte *buf)
19739 {
19740 const gdb_byte *begin = buf;
19741 gdb_byte byte;
19742
19743 while (1)
19744 {
19745 byte = *buf++;
19746 if ((byte & 128) == 0)
19747 return buf - begin;
19748 }
19749 }
19750
19751 static void
19752 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19753 {
19754 switch (lang)
19755 {
19756 case DW_LANG_C89:
19757 case DW_LANG_C99:
19758 case DW_LANG_C11:
19759 case DW_LANG_C:
19760 case DW_LANG_UPC:
19761 cu->language = language_c;
19762 break;
19763 case DW_LANG_Java:
19764 case DW_LANG_C_plus_plus:
19765 case DW_LANG_C_plus_plus_11:
19766 case DW_LANG_C_plus_plus_14:
19767 cu->language = language_cplus;
19768 break;
19769 case DW_LANG_D:
19770 cu->language = language_d;
19771 break;
19772 case DW_LANG_Fortran77:
19773 case DW_LANG_Fortran90:
19774 case DW_LANG_Fortran95:
19775 case DW_LANG_Fortran03:
19776 case DW_LANG_Fortran08:
19777 cu->language = language_fortran;
19778 break;
19779 case DW_LANG_Go:
19780 cu->language = language_go;
19781 break;
19782 case DW_LANG_Mips_Assembler:
19783 cu->language = language_asm;
19784 break;
19785 case DW_LANG_Ada83:
19786 case DW_LANG_Ada95:
19787 cu->language = language_ada;
19788 break;
19789 case DW_LANG_Modula2:
19790 cu->language = language_m2;
19791 break;
19792 case DW_LANG_Pascal83:
19793 cu->language = language_pascal;
19794 break;
19795 case DW_LANG_ObjC:
19796 cu->language = language_objc;
19797 break;
19798 case DW_LANG_Rust:
19799 case DW_LANG_Rust_old:
19800 cu->language = language_rust;
19801 break;
19802 case DW_LANG_Cobol74:
19803 case DW_LANG_Cobol85:
19804 default:
19805 cu->language = language_minimal;
19806 break;
19807 }
19808 cu->language_defn = language_def (cu->language);
19809 }
19810
19811 /* Return the named attribute or NULL if not there. */
19812
19813 static struct attribute *
19814 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19815 {
19816 for (;;)
19817 {
19818 unsigned int i;
19819 struct attribute *spec = NULL;
19820
19821 for (i = 0; i < die->num_attrs; ++i)
19822 {
19823 if (die->attrs[i].name == name)
19824 return &die->attrs[i];
19825 if (die->attrs[i].name == DW_AT_specification
19826 || die->attrs[i].name == DW_AT_abstract_origin)
19827 spec = &die->attrs[i];
19828 }
19829
19830 if (!spec)
19831 break;
19832
19833 die = follow_die_ref (die, spec, &cu);
19834 }
19835
19836 return NULL;
19837 }
19838
19839 /* Return the named attribute or NULL if not there,
19840 but do not follow DW_AT_specification, etc.
19841 This is for use in contexts where we're reading .debug_types dies.
19842 Following DW_AT_specification, DW_AT_abstract_origin will take us
19843 back up the chain, and we want to go down. */
19844
19845 static struct attribute *
19846 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
19847 {
19848 unsigned int i;
19849
19850 for (i = 0; i < die->num_attrs; ++i)
19851 if (die->attrs[i].name == name)
19852 return &die->attrs[i];
19853
19854 return NULL;
19855 }
19856
19857 /* Return the string associated with a string-typed attribute, or NULL if it
19858 is either not found or is of an incorrect type. */
19859
19860 static const char *
19861 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19862 {
19863 struct attribute *attr;
19864 const char *str = NULL;
19865
19866 attr = dwarf2_attr (die, name, cu);
19867
19868 if (attr != NULL)
19869 {
19870 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
19871 || attr->form == DW_FORM_string
19872 || attr->form == DW_FORM_GNU_str_index
19873 || attr->form == DW_FORM_GNU_strp_alt)
19874 str = DW_STRING (attr);
19875 else
19876 complaint (&symfile_complaints,
19877 _("string type expected for attribute %s for "
19878 "DIE at %s in module %s"),
19879 dwarf_attr_name (name), sect_offset_str (die->sect_off),
19880 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
19881 }
19882
19883 return str;
19884 }
19885
19886 /* Return non-zero iff the attribute NAME is defined for the given DIE,
19887 and holds a non-zero value. This function should only be used for
19888 DW_FORM_flag or DW_FORM_flag_present attributes. */
19889
19890 static int
19891 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
19892 {
19893 struct attribute *attr = dwarf2_attr (die, name, cu);
19894
19895 return (attr && DW_UNSND (attr));
19896 }
19897
19898 static int
19899 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
19900 {
19901 /* A DIE is a declaration if it has a DW_AT_declaration attribute
19902 which value is non-zero. However, we have to be careful with
19903 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
19904 (via dwarf2_flag_true_p) follows this attribute. So we may
19905 end up accidently finding a declaration attribute that belongs
19906 to a different DIE referenced by the specification attribute,
19907 even though the given DIE does not have a declaration attribute. */
19908 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
19909 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
19910 }
19911
19912 /* Return the die giving the specification for DIE, if there is
19913 one. *SPEC_CU is the CU containing DIE on input, and the CU
19914 containing the return value on output. If there is no
19915 specification, but there is an abstract origin, that is
19916 returned. */
19917
19918 static struct die_info *
19919 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
19920 {
19921 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
19922 *spec_cu);
19923
19924 if (spec_attr == NULL)
19925 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
19926
19927 if (spec_attr == NULL)
19928 return NULL;
19929 else
19930 return follow_die_ref (die, spec_attr, spec_cu);
19931 }
19932
19933 /* Stub for free_line_header to match void * callback types. */
19934
19935 static void
19936 free_line_header_voidp (void *arg)
19937 {
19938 struct line_header *lh = (struct line_header *) arg;
19939
19940 delete lh;
19941 }
19942
19943 void
19944 line_header::add_include_dir (const char *include_dir)
19945 {
19946 if (dwarf_line_debug >= 2)
19947 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
19948 include_dirs.size () + 1, include_dir);
19949
19950 include_dirs.push_back (include_dir);
19951 }
19952
19953 void
19954 line_header::add_file_name (const char *name,
19955 dir_index d_index,
19956 unsigned int mod_time,
19957 unsigned int length)
19958 {
19959 if (dwarf_line_debug >= 2)
19960 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
19961 (unsigned) file_names.size () + 1, name);
19962
19963 file_names.emplace_back (name, d_index, mod_time, length);
19964 }
19965
19966 /* A convenience function to find the proper .debug_line section for a CU. */
19967
19968 static struct dwarf2_section_info *
19969 get_debug_line_section (struct dwarf2_cu *cu)
19970 {
19971 struct dwarf2_section_info *section;
19972 struct dwarf2_per_objfile *dwarf2_per_objfile
19973 = cu->per_cu->dwarf2_per_objfile;
19974
19975 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
19976 DWO file. */
19977 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19978 section = &cu->dwo_unit->dwo_file->sections.line;
19979 else if (cu->per_cu->is_dwz)
19980 {
19981 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19982
19983 section = &dwz->line;
19984 }
19985 else
19986 section = &dwarf2_per_objfile->line;
19987
19988 return section;
19989 }
19990
19991 /* Read directory or file name entry format, starting with byte of
19992 format count entries, ULEB128 pairs of entry formats, ULEB128 of
19993 entries count and the entries themselves in the described entry
19994 format. */
19995
19996 static void
19997 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
19998 bfd *abfd, const gdb_byte **bufp,
19999 struct line_header *lh,
20000 const struct comp_unit_head *cu_header,
20001 void (*callback) (struct line_header *lh,
20002 const char *name,
20003 dir_index d_index,
20004 unsigned int mod_time,
20005 unsigned int length))
20006 {
20007 gdb_byte format_count, formati;
20008 ULONGEST data_count, datai;
20009 const gdb_byte *buf = *bufp;
20010 const gdb_byte *format_header_data;
20011 unsigned int bytes_read;
20012
20013 format_count = read_1_byte (abfd, buf);
20014 buf += 1;
20015 format_header_data = buf;
20016 for (formati = 0; formati < format_count; formati++)
20017 {
20018 read_unsigned_leb128 (abfd, buf, &bytes_read);
20019 buf += bytes_read;
20020 read_unsigned_leb128 (abfd, buf, &bytes_read);
20021 buf += bytes_read;
20022 }
20023
20024 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20025 buf += bytes_read;
20026 for (datai = 0; datai < data_count; datai++)
20027 {
20028 const gdb_byte *format = format_header_data;
20029 struct file_entry fe;
20030
20031 for (formati = 0; formati < format_count; formati++)
20032 {
20033 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20034 format += bytes_read;
20035
20036 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20037 format += bytes_read;
20038
20039 gdb::optional<const char *> string;
20040 gdb::optional<unsigned int> uint;
20041
20042 switch (form)
20043 {
20044 case DW_FORM_string:
20045 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20046 buf += bytes_read;
20047 break;
20048
20049 case DW_FORM_line_strp:
20050 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20051 abfd, buf,
20052 cu_header,
20053 &bytes_read));
20054 buf += bytes_read;
20055 break;
20056
20057 case DW_FORM_data1:
20058 uint.emplace (read_1_byte (abfd, buf));
20059 buf += 1;
20060 break;
20061
20062 case DW_FORM_data2:
20063 uint.emplace (read_2_bytes (abfd, buf));
20064 buf += 2;
20065 break;
20066
20067 case DW_FORM_data4:
20068 uint.emplace (read_4_bytes (abfd, buf));
20069 buf += 4;
20070 break;
20071
20072 case DW_FORM_data8:
20073 uint.emplace (read_8_bytes (abfd, buf));
20074 buf += 8;
20075 break;
20076
20077 case DW_FORM_udata:
20078 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20079 buf += bytes_read;
20080 break;
20081
20082 case DW_FORM_block:
20083 /* It is valid only for DW_LNCT_timestamp which is ignored by
20084 current GDB. */
20085 break;
20086 }
20087
20088 switch (content_type)
20089 {
20090 case DW_LNCT_path:
20091 if (string.has_value ())
20092 fe.name = *string;
20093 break;
20094 case DW_LNCT_directory_index:
20095 if (uint.has_value ())
20096 fe.d_index = (dir_index) *uint;
20097 break;
20098 case DW_LNCT_timestamp:
20099 if (uint.has_value ())
20100 fe.mod_time = *uint;
20101 break;
20102 case DW_LNCT_size:
20103 if (uint.has_value ())
20104 fe.length = *uint;
20105 break;
20106 case DW_LNCT_MD5:
20107 break;
20108 default:
20109 complaint (&symfile_complaints,
20110 _("Unknown format content type %s"),
20111 pulongest (content_type));
20112 }
20113 }
20114
20115 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20116 }
20117
20118 *bufp = buf;
20119 }
20120
20121 /* Read the statement program header starting at OFFSET in
20122 .debug_line, or .debug_line.dwo. Return a pointer
20123 to a struct line_header, allocated using xmalloc.
20124 Returns NULL if there is a problem reading the header, e.g., if it
20125 has a version we don't understand.
20126
20127 NOTE: the strings in the include directory and file name tables of
20128 the returned object point into the dwarf line section buffer,
20129 and must not be freed. */
20130
20131 static line_header_up
20132 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20133 {
20134 const gdb_byte *line_ptr;
20135 unsigned int bytes_read, offset_size;
20136 int i;
20137 const char *cur_dir, *cur_file;
20138 struct dwarf2_section_info *section;
20139 bfd *abfd;
20140 struct dwarf2_per_objfile *dwarf2_per_objfile
20141 = cu->per_cu->dwarf2_per_objfile;
20142
20143 section = get_debug_line_section (cu);
20144 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20145 if (section->buffer == NULL)
20146 {
20147 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20148 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
20149 else
20150 complaint (&symfile_complaints, _("missing .debug_line section"));
20151 return 0;
20152 }
20153
20154 /* We can't do this until we know the section is non-empty.
20155 Only then do we know we have such a section. */
20156 abfd = get_section_bfd_owner (section);
20157
20158 /* Make sure that at least there's room for the total_length field.
20159 That could be 12 bytes long, but we're just going to fudge that. */
20160 if (to_underlying (sect_off) + 4 >= section->size)
20161 {
20162 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20163 return 0;
20164 }
20165
20166 line_header_up lh (new line_header ());
20167
20168 lh->sect_off = sect_off;
20169 lh->offset_in_dwz = cu->per_cu->is_dwz;
20170
20171 line_ptr = section->buffer + to_underlying (sect_off);
20172
20173 /* Read in the header. */
20174 lh->total_length =
20175 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20176 &bytes_read, &offset_size);
20177 line_ptr += bytes_read;
20178 if (line_ptr + lh->total_length > (section->buffer + section->size))
20179 {
20180 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20181 return 0;
20182 }
20183 lh->statement_program_end = line_ptr + lh->total_length;
20184 lh->version = read_2_bytes (abfd, line_ptr);
20185 line_ptr += 2;
20186 if (lh->version > 5)
20187 {
20188 /* This is a version we don't understand. The format could have
20189 changed in ways we don't handle properly so just punt. */
20190 complaint (&symfile_complaints,
20191 _("unsupported version in .debug_line section"));
20192 return NULL;
20193 }
20194 if (lh->version >= 5)
20195 {
20196 gdb_byte segment_selector_size;
20197
20198 /* Skip address size. */
20199 read_1_byte (abfd, line_ptr);
20200 line_ptr += 1;
20201
20202 segment_selector_size = read_1_byte (abfd, line_ptr);
20203 line_ptr += 1;
20204 if (segment_selector_size != 0)
20205 {
20206 complaint (&symfile_complaints,
20207 _("unsupported segment selector size %u "
20208 "in .debug_line section"),
20209 segment_selector_size);
20210 return NULL;
20211 }
20212 }
20213 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20214 line_ptr += offset_size;
20215 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20216 line_ptr += 1;
20217 if (lh->version >= 4)
20218 {
20219 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20220 line_ptr += 1;
20221 }
20222 else
20223 lh->maximum_ops_per_instruction = 1;
20224
20225 if (lh->maximum_ops_per_instruction == 0)
20226 {
20227 lh->maximum_ops_per_instruction = 1;
20228 complaint (&symfile_complaints,
20229 _("invalid maximum_ops_per_instruction "
20230 "in `.debug_line' section"));
20231 }
20232
20233 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20234 line_ptr += 1;
20235 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20236 line_ptr += 1;
20237 lh->line_range = read_1_byte (abfd, line_ptr);
20238 line_ptr += 1;
20239 lh->opcode_base = read_1_byte (abfd, line_ptr);
20240 line_ptr += 1;
20241 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20242
20243 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20244 for (i = 1; i < lh->opcode_base; ++i)
20245 {
20246 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20247 line_ptr += 1;
20248 }
20249
20250 if (lh->version >= 5)
20251 {
20252 /* Read directory table. */
20253 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20254 &cu->header,
20255 [] (struct line_header *lh, const char *name,
20256 dir_index d_index, unsigned int mod_time,
20257 unsigned int length)
20258 {
20259 lh->add_include_dir (name);
20260 });
20261
20262 /* Read file name table. */
20263 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20264 &cu->header,
20265 [] (struct line_header *lh, const char *name,
20266 dir_index d_index, unsigned int mod_time,
20267 unsigned int length)
20268 {
20269 lh->add_file_name (name, d_index, mod_time, length);
20270 });
20271 }
20272 else
20273 {
20274 /* Read directory table. */
20275 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20276 {
20277 line_ptr += bytes_read;
20278 lh->add_include_dir (cur_dir);
20279 }
20280 line_ptr += bytes_read;
20281
20282 /* Read file name table. */
20283 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20284 {
20285 unsigned int mod_time, length;
20286 dir_index d_index;
20287
20288 line_ptr += bytes_read;
20289 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20290 line_ptr += bytes_read;
20291 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20292 line_ptr += bytes_read;
20293 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20294 line_ptr += bytes_read;
20295
20296 lh->add_file_name (cur_file, d_index, mod_time, length);
20297 }
20298 line_ptr += bytes_read;
20299 }
20300 lh->statement_program_start = line_ptr;
20301
20302 if (line_ptr > (section->buffer + section->size))
20303 complaint (&symfile_complaints,
20304 _("line number info header doesn't "
20305 "fit in `.debug_line' section"));
20306
20307 return lh;
20308 }
20309
20310 /* Subroutine of dwarf_decode_lines to simplify it.
20311 Return the file name of the psymtab for included file FILE_INDEX
20312 in line header LH of PST.
20313 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20314 If space for the result is malloc'd, *NAME_HOLDER will be set.
20315 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20316
20317 static const char *
20318 psymtab_include_file_name (const struct line_header *lh, int file_index,
20319 const struct partial_symtab *pst,
20320 const char *comp_dir,
20321 gdb::unique_xmalloc_ptr<char> *name_holder)
20322 {
20323 const file_entry &fe = lh->file_names[file_index];
20324 const char *include_name = fe.name;
20325 const char *include_name_to_compare = include_name;
20326 const char *pst_filename;
20327 int file_is_pst;
20328
20329 const char *dir_name = fe.include_dir (lh);
20330
20331 gdb::unique_xmalloc_ptr<char> hold_compare;
20332 if (!IS_ABSOLUTE_PATH (include_name)
20333 && (dir_name != NULL || comp_dir != NULL))
20334 {
20335 /* Avoid creating a duplicate psymtab for PST.
20336 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20337 Before we do the comparison, however, we need to account
20338 for DIR_NAME and COMP_DIR.
20339 First prepend dir_name (if non-NULL). If we still don't
20340 have an absolute path prepend comp_dir (if non-NULL).
20341 However, the directory we record in the include-file's
20342 psymtab does not contain COMP_DIR (to match the
20343 corresponding symtab(s)).
20344
20345 Example:
20346
20347 bash$ cd /tmp
20348 bash$ gcc -g ./hello.c
20349 include_name = "hello.c"
20350 dir_name = "."
20351 DW_AT_comp_dir = comp_dir = "/tmp"
20352 DW_AT_name = "./hello.c"
20353
20354 */
20355
20356 if (dir_name != NULL)
20357 {
20358 name_holder->reset (concat (dir_name, SLASH_STRING,
20359 include_name, (char *) NULL));
20360 include_name = name_holder->get ();
20361 include_name_to_compare = include_name;
20362 }
20363 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20364 {
20365 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20366 include_name, (char *) NULL));
20367 include_name_to_compare = hold_compare.get ();
20368 }
20369 }
20370
20371 pst_filename = pst->filename;
20372 gdb::unique_xmalloc_ptr<char> copied_name;
20373 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20374 {
20375 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20376 pst_filename, (char *) NULL));
20377 pst_filename = copied_name.get ();
20378 }
20379
20380 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20381
20382 if (file_is_pst)
20383 return NULL;
20384 return include_name;
20385 }
20386
20387 /* State machine to track the state of the line number program. */
20388
20389 class lnp_state_machine
20390 {
20391 public:
20392 /* Initialize a machine state for the start of a line number
20393 program. */
20394 lnp_state_machine (gdbarch *arch, line_header *lh, bool record_lines_p);
20395
20396 file_entry *current_file ()
20397 {
20398 /* lh->file_names is 0-based, but the file name numbers in the
20399 statement program are 1-based. */
20400 return m_line_header->file_name_at (m_file);
20401 }
20402
20403 /* Record the line in the state machine. END_SEQUENCE is true if
20404 we're processing the end of a sequence. */
20405 void record_line (bool end_sequence);
20406
20407 /* Check address and if invalid nop-out the rest of the lines in this
20408 sequence. */
20409 void check_line_address (struct dwarf2_cu *cu,
20410 const gdb_byte *line_ptr,
20411 CORE_ADDR lowpc, CORE_ADDR address);
20412
20413 void handle_set_discriminator (unsigned int discriminator)
20414 {
20415 m_discriminator = discriminator;
20416 m_line_has_non_zero_discriminator |= discriminator != 0;
20417 }
20418
20419 /* Handle DW_LNE_set_address. */
20420 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20421 {
20422 m_op_index = 0;
20423 address += baseaddr;
20424 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20425 }
20426
20427 /* Handle DW_LNS_advance_pc. */
20428 void handle_advance_pc (CORE_ADDR adjust);
20429
20430 /* Handle a special opcode. */
20431 void handle_special_opcode (unsigned char op_code);
20432
20433 /* Handle DW_LNS_advance_line. */
20434 void handle_advance_line (int line_delta)
20435 {
20436 advance_line (line_delta);
20437 }
20438
20439 /* Handle DW_LNS_set_file. */
20440 void handle_set_file (file_name_index file);
20441
20442 /* Handle DW_LNS_negate_stmt. */
20443 void handle_negate_stmt ()
20444 {
20445 m_is_stmt = !m_is_stmt;
20446 }
20447
20448 /* Handle DW_LNS_const_add_pc. */
20449 void handle_const_add_pc ();
20450
20451 /* Handle DW_LNS_fixed_advance_pc. */
20452 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20453 {
20454 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20455 m_op_index = 0;
20456 }
20457
20458 /* Handle DW_LNS_copy. */
20459 void handle_copy ()
20460 {
20461 record_line (false);
20462 m_discriminator = 0;
20463 }
20464
20465 /* Handle DW_LNE_end_sequence. */
20466 void handle_end_sequence ()
20467 {
20468 m_record_line_callback = ::record_line;
20469 }
20470
20471 private:
20472 /* Advance the line by LINE_DELTA. */
20473 void advance_line (int line_delta)
20474 {
20475 m_line += line_delta;
20476
20477 if (line_delta != 0)
20478 m_line_has_non_zero_discriminator = m_discriminator != 0;
20479 }
20480
20481 gdbarch *m_gdbarch;
20482
20483 /* True if we're recording lines.
20484 Otherwise we're building partial symtabs and are just interested in
20485 finding include files mentioned by the line number program. */
20486 bool m_record_lines_p;
20487
20488 /* The line number header. */
20489 line_header *m_line_header;
20490
20491 /* These are part of the standard DWARF line number state machine,
20492 and initialized according to the DWARF spec. */
20493
20494 unsigned char m_op_index = 0;
20495 /* The line table index (1-based) of the current file. */
20496 file_name_index m_file = (file_name_index) 1;
20497 unsigned int m_line = 1;
20498
20499 /* These are initialized in the constructor. */
20500
20501 CORE_ADDR m_address;
20502 bool m_is_stmt;
20503 unsigned int m_discriminator;
20504
20505 /* Additional bits of state we need to track. */
20506
20507 /* The last file that we called dwarf2_start_subfile for.
20508 This is only used for TLLs. */
20509 unsigned int m_last_file = 0;
20510 /* The last file a line number was recorded for. */
20511 struct subfile *m_last_subfile = NULL;
20512
20513 /* The function to call to record a line. */
20514 record_line_ftype *m_record_line_callback = NULL;
20515
20516 /* The last line number that was recorded, used to coalesce
20517 consecutive entries for the same line. This can happen, for
20518 example, when discriminators are present. PR 17276. */
20519 unsigned int m_last_line = 0;
20520 bool m_line_has_non_zero_discriminator = false;
20521 };
20522
20523 void
20524 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20525 {
20526 CORE_ADDR addr_adj = (((m_op_index + adjust)
20527 / m_line_header->maximum_ops_per_instruction)
20528 * m_line_header->minimum_instruction_length);
20529 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20530 m_op_index = ((m_op_index + adjust)
20531 % m_line_header->maximum_ops_per_instruction);
20532 }
20533
20534 void
20535 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20536 {
20537 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20538 CORE_ADDR addr_adj = (((m_op_index
20539 + (adj_opcode / m_line_header->line_range))
20540 / m_line_header->maximum_ops_per_instruction)
20541 * m_line_header->minimum_instruction_length);
20542 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20543 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20544 % m_line_header->maximum_ops_per_instruction);
20545
20546 int line_delta = (m_line_header->line_base
20547 + (adj_opcode % m_line_header->line_range));
20548 advance_line (line_delta);
20549 record_line (false);
20550 m_discriminator = 0;
20551 }
20552
20553 void
20554 lnp_state_machine::handle_set_file (file_name_index file)
20555 {
20556 m_file = file;
20557
20558 const file_entry *fe = current_file ();
20559 if (fe == NULL)
20560 dwarf2_debug_line_missing_file_complaint ();
20561 else if (m_record_lines_p)
20562 {
20563 const char *dir = fe->include_dir (m_line_header);
20564
20565 m_last_subfile = current_subfile;
20566 m_line_has_non_zero_discriminator = m_discriminator != 0;
20567 dwarf2_start_subfile (fe->name, dir);
20568 }
20569 }
20570
20571 void
20572 lnp_state_machine::handle_const_add_pc ()
20573 {
20574 CORE_ADDR adjust
20575 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20576
20577 CORE_ADDR addr_adj
20578 = (((m_op_index + adjust)
20579 / m_line_header->maximum_ops_per_instruction)
20580 * m_line_header->minimum_instruction_length);
20581
20582 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20583 m_op_index = ((m_op_index + adjust)
20584 % m_line_header->maximum_ops_per_instruction);
20585 }
20586
20587 /* Ignore this record_line request. */
20588
20589 static void
20590 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
20591 {
20592 return;
20593 }
20594
20595 /* Return non-zero if we should add LINE to the line number table.
20596 LINE is the line to add, LAST_LINE is the last line that was added,
20597 LAST_SUBFILE is the subfile for LAST_LINE.
20598 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20599 had a non-zero discriminator.
20600
20601 We have to be careful in the presence of discriminators.
20602 E.g., for this line:
20603
20604 for (i = 0; i < 100000; i++);
20605
20606 clang can emit four line number entries for that one line,
20607 each with a different discriminator.
20608 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20609
20610 However, we want gdb to coalesce all four entries into one.
20611 Otherwise the user could stepi into the middle of the line and
20612 gdb would get confused about whether the pc really was in the
20613 middle of the line.
20614
20615 Things are further complicated by the fact that two consecutive
20616 line number entries for the same line is a heuristic used by gcc
20617 to denote the end of the prologue. So we can't just discard duplicate
20618 entries, we have to be selective about it. The heuristic we use is
20619 that we only collapse consecutive entries for the same line if at least
20620 one of those entries has a non-zero discriminator. PR 17276.
20621
20622 Note: Addresses in the line number state machine can never go backwards
20623 within one sequence, thus this coalescing is ok. */
20624
20625 static int
20626 dwarf_record_line_p (unsigned int line, unsigned int last_line,
20627 int line_has_non_zero_discriminator,
20628 struct subfile *last_subfile)
20629 {
20630 if (current_subfile != last_subfile)
20631 return 1;
20632 if (line != last_line)
20633 return 1;
20634 /* Same line for the same file that we've seen already.
20635 As a last check, for pr 17276, only record the line if the line
20636 has never had a non-zero discriminator. */
20637 if (!line_has_non_zero_discriminator)
20638 return 1;
20639 return 0;
20640 }
20641
20642 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
20643 in the line table of subfile SUBFILE. */
20644
20645 static void
20646 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20647 unsigned int line, CORE_ADDR address,
20648 record_line_ftype p_record_line)
20649 {
20650 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20651
20652 if (dwarf_line_debug)
20653 {
20654 fprintf_unfiltered (gdb_stdlog,
20655 "Recording line %u, file %s, address %s\n",
20656 line, lbasename (subfile->name),
20657 paddress (gdbarch, address));
20658 }
20659
20660 (*p_record_line) (subfile, line, addr);
20661 }
20662
20663 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20664 Mark the end of a set of line number records.
20665 The arguments are the same as for dwarf_record_line_1.
20666 If SUBFILE is NULL the request is ignored. */
20667
20668 static void
20669 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20670 CORE_ADDR address, record_line_ftype p_record_line)
20671 {
20672 if (subfile == NULL)
20673 return;
20674
20675 if (dwarf_line_debug)
20676 {
20677 fprintf_unfiltered (gdb_stdlog,
20678 "Finishing current line, file %s, address %s\n",
20679 lbasename (subfile->name),
20680 paddress (gdbarch, address));
20681 }
20682
20683 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
20684 }
20685
20686 void
20687 lnp_state_machine::record_line (bool end_sequence)
20688 {
20689 if (dwarf_line_debug)
20690 {
20691 fprintf_unfiltered (gdb_stdlog,
20692 "Processing actual line %u: file %u,"
20693 " address %s, is_stmt %u, discrim %u\n",
20694 m_line, to_underlying (m_file),
20695 paddress (m_gdbarch, m_address),
20696 m_is_stmt, m_discriminator);
20697 }
20698
20699 file_entry *fe = current_file ();
20700
20701 if (fe == NULL)
20702 dwarf2_debug_line_missing_file_complaint ();
20703 /* For now we ignore lines not starting on an instruction boundary.
20704 But not when processing end_sequence for compatibility with the
20705 previous version of the code. */
20706 else if (m_op_index == 0 || end_sequence)
20707 {
20708 fe->included_p = 1;
20709 if (m_record_lines_p && m_is_stmt)
20710 {
20711 if (m_last_subfile != current_subfile || end_sequence)
20712 {
20713 dwarf_finish_line (m_gdbarch, m_last_subfile,
20714 m_address, m_record_line_callback);
20715 }
20716
20717 if (!end_sequence)
20718 {
20719 if (dwarf_record_line_p (m_line, m_last_line,
20720 m_line_has_non_zero_discriminator,
20721 m_last_subfile))
20722 {
20723 dwarf_record_line_1 (m_gdbarch, current_subfile,
20724 m_line, m_address,
20725 m_record_line_callback);
20726 }
20727 m_last_subfile = current_subfile;
20728 m_last_line = m_line;
20729 }
20730 }
20731 }
20732 }
20733
20734 lnp_state_machine::lnp_state_machine (gdbarch *arch, line_header *lh,
20735 bool record_lines_p)
20736 {
20737 m_gdbarch = arch;
20738 m_record_lines_p = record_lines_p;
20739 m_line_header = lh;
20740
20741 m_record_line_callback = ::record_line;
20742
20743 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20744 was a line entry for it so that the backend has a chance to adjust it
20745 and also record it in case it needs it. This is currently used by MIPS
20746 code, cf. `mips_adjust_dwarf2_line'. */
20747 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20748 m_is_stmt = lh->default_is_stmt;
20749 m_discriminator = 0;
20750 }
20751
20752 void
20753 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20754 const gdb_byte *line_ptr,
20755 CORE_ADDR lowpc, CORE_ADDR address)
20756 {
20757 /* If address < lowpc then it's not a usable value, it's outside the
20758 pc range of the CU. However, we restrict the test to only address
20759 values of zero to preserve GDB's previous behaviour which is to
20760 handle the specific case of a function being GC'd by the linker. */
20761
20762 if (address == 0 && address < lowpc)
20763 {
20764 /* This line table is for a function which has been
20765 GCd by the linker. Ignore it. PR gdb/12528 */
20766
20767 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20768 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20769
20770 complaint (&symfile_complaints,
20771 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20772 line_offset, objfile_name (objfile));
20773 m_record_line_callback = noop_record_line;
20774 /* Note: record_line_callback is left as noop_record_line until
20775 we see DW_LNE_end_sequence. */
20776 }
20777 }
20778
20779 /* Subroutine of dwarf_decode_lines to simplify it.
20780 Process the line number information in LH.
20781 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20782 program in order to set included_p for every referenced header. */
20783
20784 static void
20785 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20786 const int decode_for_pst_p, CORE_ADDR lowpc)
20787 {
20788 const gdb_byte *line_ptr, *extended_end;
20789 const gdb_byte *line_end;
20790 unsigned int bytes_read, extended_len;
20791 unsigned char op_code, extended_op;
20792 CORE_ADDR baseaddr;
20793 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20794 bfd *abfd = objfile->obfd;
20795 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20796 /* True if we're recording line info (as opposed to building partial
20797 symtabs and just interested in finding include files mentioned by
20798 the line number program). */
20799 bool record_lines_p = !decode_for_pst_p;
20800
20801 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20802
20803 line_ptr = lh->statement_program_start;
20804 line_end = lh->statement_program_end;
20805
20806 /* Read the statement sequences until there's nothing left. */
20807 while (line_ptr < line_end)
20808 {
20809 /* The DWARF line number program state machine. Reset the state
20810 machine at the start of each sequence. */
20811 lnp_state_machine state_machine (gdbarch, lh, record_lines_p);
20812 bool end_sequence = false;
20813
20814 if (record_lines_p)
20815 {
20816 /* Start a subfile for the current file of the state
20817 machine. */
20818 const file_entry *fe = state_machine.current_file ();
20819
20820 if (fe != NULL)
20821 dwarf2_start_subfile (fe->name, fe->include_dir (lh));
20822 }
20823
20824 /* Decode the table. */
20825 while (line_ptr < line_end && !end_sequence)
20826 {
20827 op_code = read_1_byte (abfd, line_ptr);
20828 line_ptr += 1;
20829
20830 if (op_code >= lh->opcode_base)
20831 {
20832 /* Special opcode. */
20833 state_machine.handle_special_opcode (op_code);
20834 }
20835 else switch (op_code)
20836 {
20837 case DW_LNS_extended_op:
20838 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20839 &bytes_read);
20840 line_ptr += bytes_read;
20841 extended_end = line_ptr + extended_len;
20842 extended_op = read_1_byte (abfd, line_ptr);
20843 line_ptr += 1;
20844 switch (extended_op)
20845 {
20846 case DW_LNE_end_sequence:
20847 state_machine.handle_end_sequence ();
20848 end_sequence = true;
20849 break;
20850 case DW_LNE_set_address:
20851 {
20852 CORE_ADDR address
20853 = read_address (abfd, line_ptr, cu, &bytes_read);
20854 line_ptr += bytes_read;
20855
20856 state_machine.check_line_address (cu, line_ptr,
20857 lowpc, address);
20858 state_machine.handle_set_address (baseaddr, address);
20859 }
20860 break;
20861 case DW_LNE_define_file:
20862 {
20863 const char *cur_file;
20864 unsigned int mod_time, length;
20865 dir_index dindex;
20866
20867 cur_file = read_direct_string (abfd, line_ptr,
20868 &bytes_read);
20869 line_ptr += bytes_read;
20870 dindex = (dir_index)
20871 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20872 line_ptr += bytes_read;
20873 mod_time =
20874 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20875 line_ptr += bytes_read;
20876 length =
20877 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20878 line_ptr += bytes_read;
20879 lh->add_file_name (cur_file, dindex, mod_time, length);
20880 }
20881 break;
20882 case DW_LNE_set_discriminator:
20883 {
20884 /* The discriminator is not interesting to the
20885 debugger; just ignore it. We still need to
20886 check its value though:
20887 if there are consecutive entries for the same
20888 (non-prologue) line we want to coalesce them.
20889 PR 17276. */
20890 unsigned int discr
20891 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20892 line_ptr += bytes_read;
20893
20894 state_machine.handle_set_discriminator (discr);
20895 }
20896 break;
20897 default:
20898 complaint (&symfile_complaints,
20899 _("mangled .debug_line section"));
20900 return;
20901 }
20902 /* Make sure that we parsed the extended op correctly. If e.g.
20903 we expected a different address size than the producer used,
20904 we may have read the wrong number of bytes. */
20905 if (line_ptr != extended_end)
20906 {
20907 complaint (&symfile_complaints,
20908 _("mangled .debug_line section"));
20909 return;
20910 }
20911 break;
20912 case DW_LNS_copy:
20913 state_machine.handle_copy ();
20914 break;
20915 case DW_LNS_advance_pc:
20916 {
20917 CORE_ADDR adjust
20918 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20919 line_ptr += bytes_read;
20920
20921 state_machine.handle_advance_pc (adjust);
20922 }
20923 break;
20924 case DW_LNS_advance_line:
20925 {
20926 int line_delta
20927 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
20928 line_ptr += bytes_read;
20929
20930 state_machine.handle_advance_line (line_delta);
20931 }
20932 break;
20933 case DW_LNS_set_file:
20934 {
20935 file_name_index file
20936 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
20937 &bytes_read);
20938 line_ptr += bytes_read;
20939
20940 state_machine.handle_set_file (file);
20941 }
20942 break;
20943 case DW_LNS_set_column:
20944 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20945 line_ptr += bytes_read;
20946 break;
20947 case DW_LNS_negate_stmt:
20948 state_machine.handle_negate_stmt ();
20949 break;
20950 case DW_LNS_set_basic_block:
20951 break;
20952 /* Add to the address register of the state machine the
20953 address increment value corresponding to special opcode
20954 255. I.e., this value is scaled by the minimum
20955 instruction length since special opcode 255 would have
20956 scaled the increment. */
20957 case DW_LNS_const_add_pc:
20958 state_machine.handle_const_add_pc ();
20959 break;
20960 case DW_LNS_fixed_advance_pc:
20961 {
20962 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
20963 line_ptr += 2;
20964
20965 state_machine.handle_fixed_advance_pc (addr_adj);
20966 }
20967 break;
20968 default:
20969 {
20970 /* Unknown standard opcode, ignore it. */
20971 int i;
20972
20973 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
20974 {
20975 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20976 line_ptr += bytes_read;
20977 }
20978 }
20979 }
20980 }
20981
20982 if (!end_sequence)
20983 dwarf2_debug_line_missing_end_sequence_complaint ();
20984
20985 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
20986 in which case we still finish recording the last line). */
20987 state_machine.record_line (true);
20988 }
20989 }
20990
20991 /* Decode the Line Number Program (LNP) for the given line_header
20992 structure and CU. The actual information extracted and the type
20993 of structures created from the LNP depends on the value of PST.
20994
20995 1. If PST is NULL, then this procedure uses the data from the program
20996 to create all necessary symbol tables, and their linetables.
20997
20998 2. If PST is not NULL, this procedure reads the program to determine
20999 the list of files included by the unit represented by PST, and
21000 builds all the associated partial symbol tables.
21001
21002 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21003 It is used for relative paths in the line table.
21004 NOTE: When processing partial symtabs (pst != NULL),
21005 comp_dir == pst->dirname.
21006
21007 NOTE: It is important that psymtabs have the same file name (via strcmp)
21008 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21009 symtab we don't use it in the name of the psymtabs we create.
21010 E.g. expand_line_sal requires this when finding psymtabs to expand.
21011 A good testcase for this is mb-inline.exp.
21012
21013 LOWPC is the lowest address in CU (or 0 if not known).
21014
21015 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21016 for its PC<->lines mapping information. Otherwise only the filename
21017 table is read in. */
21018
21019 static void
21020 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21021 struct dwarf2_cu *cu, struct partial_symtab *pst,
21022 CORE_ADDR lowpc, int decode_mapping)
21023 {
21024 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21025 const int decode_for_pst_p = (pst != NULL);
21026
21027 if (decode_mapping)
21028 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21029
21030 if (decode_for_pst_p)
21031 {
21032 int file_index;
21033
21034 /* Now that we're done scanning the Line Header Program, we can
21035 create the psymtab of each included file. */
21036 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21037 if (lh->file_names[file_index].included_p == 1)
21038 {
21039 gdb::unique_xmalloc_ptr<char> name_holder;
21040 const char *include_name =
21041 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21042 &name_holder);
21043 if (include_name != NULL)
21044 dwarf2_create_include_psymtab (include_name, pst, objfile);
21045 }
21046 }
21047 else
21048 {
21049 /* Make sure a symtab is created for every file, even files
21050 which contain only variables (i.e. no code with associated
21051 line numbers). */
21052 struct compunit_symtab *cust = buildsym_compunit_symtab ();
21053 int i;
21054
21055 for (i = 0; i < lh->file_names.size (); i++)
21056 {
21057 file_entry &fe = lh->file_names[i];
21058
21059 dwarf2_start_subfile (fe.name, fe.include_dir (lh));
21060
21061 if (current_subfile->symtab == NULL)
21062 {
21063 current_subfile->symtab
21064 = allocate_symtab (cust, current_subfile->name);
21065 }
21066 fe.symtab = current_subfile->symtab;
21067 }
21068 }
21069 }
21070
21071 /* Start a subfile for DWARF. FILENAME is the name of the file and
21072 DIRNAME the name of the source directory which contains FILENAME
21073 or NULL if not known.
21074 This routine tries to keep line numbers from identical absolute and
21075 relative file names in a common subfile.
21076
21077 Using the `list' example from the GDB testsuite, which resides in
21078 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21079 of /srcdir/list0.c yields the following debugging information for list0.c:
21080
21081 DW_AT_name: /srcdir/list0.c
21082 DW_AT_comp_dir: /compdir
21083 files.files[0].name: list0.h
21084 files.files[0].dir: /srcdir
21085 files.files[1].name: list0.c
21086 files.files[1].dir: /srcdir
21087
21088 The line number information for list0.c has to end up in a single
21089 subfile, so that `break /srcdir/list0.c:1' works as expected.
21090 start_subfile will ensure that this happens provided that we pass the
21091 concatenation of files.files[1].dir and files.files[1].name as the
21092 subfile's name. */
21093
21094 static void
21095 dwarf2_start_subfile (const char *filename, const char *dirname)
21096 {
21097 char *copy = NULL;
21098
21099 /* In order not to lose the line information directory,
21100 we concatenate it to the filename when it makes sense.
21101 Note that the Dwarf3 standard says (speaking of filenames in line
21102 information): ``The directory index is ignored for file names
21103 that represent full path names''. Thus ignoring dirname in the
21104 `else' branch below isn't an issue. */
21105
21106 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21107 {
21108 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21109 filename = copy;
21110 }
21111
21112 start_subfile (filename);
21113
21114 if (copy != NULL)
21115 xfree (copy);
21116 }
21117
21118 /* Start a symtab for DWARF.
21119 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
21120
21121 static struct compunit_symtab *
21122 dwarf2_start_symtab (struct dwarf2_cu *cu,
21123 const char *name, const char *comp_dir, CORE_ADDR low_pc)
21124 {
21125 struct compunit_symtab *cust
21126 = start_symtab (cu->per_cu->dwarf2_per_objfile->objfile, name, comp_dir,
21127 low_pc, cu->language);
21128
21129 record_debugformat ("DWARF 2");
21130 record_producer (cu->producer);
21131
21132 /* We assume that we're processing GCC output. */
21133 processing_gcc_compilation = 2;
21134
21135 cu->processing_has_namespace_info = 0;
21136
21137 return cust;
21138 }
21139
21140 static void
21141 var_decode_location (struct attribute *attr, struct symbol *sym,
21142 struct dwarf2_cu *cu)
21143 {
21144 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21145 struct comp_unit_head *cu_header = &cu->header;
21146
21147 /* NOTE drow/2003-01-30: There used to be a comment and some special
21148 code here to turn a symbol with DW_AT_external and a
21149 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21150 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21151 with some versions of binutils) where shared libraries could have
21152 relocations against symbols in their debug information - the
21153 minimal symbol would have the right address, but the debug info
21154 would not. It's no longer necessary, because we will explicitly
21155 apply relocations when we read in the debug information now. */
21156
21157 /* A DW_AT_location attribute with no contents indicates that a
21158 variable has been optimized away. */
21159 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21160 {
21161 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21162 return;
21163 }
21164
21165 /* Handle one degenerate form of location expression specially, to
21166 preserve GDB's previous behavior when section offsets are
21167 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
21168 then mark this symbol as LOC_STATIC. */
21169
21170 if (attr_form_is_block (attr)
21171 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21172 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21173 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21174 && (DW_BLOCK (attr)->size
21175 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21176 {
21177 unsigned int dummy;
21178
21179 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21180 SYMBOL_VALUE_ADDRESS (sym) =
21181 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21182 else
21183 SYMBOL_VALUE_ADDRESS (sym) =
21184 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21185 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21186 fixup_symbol_section (sym, objfile);
21187 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21188 SYMBOL_SECTION (sym));
21189 return;
21190 }
21191
21192 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21193 expression evaluator, and use LOC_COMPUTED only when necessary
21194 (i.e. when the value of a register or memory location is
21195 referenced, or a thread-local block, etc.). Then again, it might
21196 not be worthwhile. I'm assuming that it isn't unless performance
21197 or memory numbers show me otherwise. */
21198
21199 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21200
21201 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21202 cu->has_loclist = 1;
21203 }
21204
21205 /* Given a pointer to a DWARF information entry, figure out if we need
21206 to make a symbol table entry for it, and if so, create a new entry
21207 and return a pointer to it.
21208 If TYPE is NULL, determine symbol type from the die, otherwise
21209 used the passed type.
21210 If SPACE is not NULL, use it to hold the new symbol. If it is
21211 NULL, allocate a new symbol on the objfile's obstack. */
21212
21213 static struct symbol *
21214 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21215 struct symbol *space)
21216 {
21217 struct dwarf2_per_objfile *dwarf2_per_objfile
21218 = cu->per_cu->dwarf2_per_objfile;
21219 struct objfile *objfile = dwarf2_per_objfile->objfile;
21220 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21221 struct symbol *sym = NULL;
21222 const char *name;
21223 struct attribute *attr = NULL;
21224 struct attribute *attr2 = NULL;
21225 CORE_ADDR baseaddr;
21226 struct pending **list_to_add = NULL;
21227
21228 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21229
21230 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21231
21232 name = dwarf2_name (die, cu);
21233 if (name)
21234 {
21235 const char *linkagename;
21236 int suppress_add = 0;
21237
21238 if (space)
21239 sym = space;
21240 else
21241 sym = allocate_symbol (objfile);
21242 OBJSTAT (objfile, n_syms++);
21243
21244 /* Cache this symbol's name and the name's demangled form (if any). */
21245 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21246 linkagename = dwarf2_physname (name, die, cu);
21247 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21248
21249 /* Fortran does not have mangling standard and the mangling does differ
21250 between gfortran, iFort etc. */
21251 if (cu->language == language_fortran
21252 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21253 symbol_set_demangled_name (&(sym->ginfo),
21254 dwarf2_full_name (name, die, cu),
21255 NULL);
21256
21257 /* Default assumptions.
21258 Use the passed type or decode it from the die. */
21259 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21260 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21261 if (type != NULL)
21262 SYMBOL_TYPE (sym) = type;
21263 else
21264 SYMBOL_TYPE (sym) = die_type (die, cu);
21265 attr = dwarf2_attr (die,
21266 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21267 cu);
21268 if (attr)
21269 {
21270 SYMBOL_LINE (sym) = DW_UNSND (attr);
21271 }
21272
21273 attr = dwarf2_attr (die,
21274 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21275 cu);
21276 if (attr)
21277 {
21278 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21279 struct file_entry *fe;
21280
21281 if (cu->line_header != NULL)
21282 fe = cu->line_header->file_name_at (file_index);
21283 else
21284 fe = NULL;
21285
21286 if (fe == NULL)
21287 complaint (&symfile_complaints,
21288 _("file index out of range"));
21289 else
21290 symbol_set_symtab (sym, fe->symtab);
21291 }
21292
21293 switch (die->tag)
21294 {
21295 case DW_TAG_label:
21296 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21297 if (attr)
21298 {
21299 CORE_ADDR addr;
21300
21301 addr = attr_value_as_address (attr);
21302 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21303 SYMBOL_VALUE_ADDRESS (sym) = addr;
21304 }
21305 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21306 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21307 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21308 add_symbol_to_list (sym, cu->list_in_scope);
21309 break;
21310 case DW_TAG_subprogram:
21311 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21312 finish_block. */
21313 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21314 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21315 if ((attr2 && (DW_UNSND (attr2) != 0))
21316 || cu->language == language_ada)
21317 {
21318 /* Subprograms marked external are stored as a global symbol.
21319 Ada subprograms, whether marked external or not, are always
21320 stored as a global symbol, because we want to be able to
21321 access them globally. For instance, we want to be able
21322 to break on a nested subprogram without having to
21323 specify the context. */
21324 list_to_add = &global_symbols;
21325 }
21326 else
21327 {
21328 list_to_add = cu->list_in_scope;
21329 }
21330 break;
21331 case DW_TAG_inlined_subroutine:
21332 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21333 finish_block. */
21334 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21335 SYMBOL_INLINED (sym) = 1;
21336 list_to_add = cu->list_in_scope;
21337 break;
21338 case DW_TAG_template_value_param:
21339 suppress_add = 1;
21340 /* Fall through. */
21341 case DW_TAG_constant:
21342 case DW_TAG_variable:
21343 case DW_TAG_member:
21344 /* Compilation with minimal debug info may result in
21345 variables with missing type entries. Change the
21346 misleading `void' type to something sensible. */
21347 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21348 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21349
21350 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21351 /* In the case of DW_TAG_member, we should only be called for
21352 static const members. */
21353 if (die->tag == DW_TAG_member)
21354 {
21355 /* dwarf2_add_field uses die_is_declaration,
21356 so we do the same. */
21357 gdb_assert (die_is_declaration (die, cu));
21358 gdb_assert (attr);
21359 }
21360 if (attr)
21361 {
21362 dwarf2_const_value (attr, sym, cu);
21363 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21364 if (!suppress_add)
21365 {
21366 if (attr2 && (DW_UNSND (attr2) != 0))
21367 list_to_add = &global_symbols;
21368 else
21369 list_to_add = cu->list_in_scope;
21370 }
21371 break;
21372 }
21373 attr = dwarf2_attr (die, DW_AT_location, cu);
21374 if (attr)
21375 {
21376 var_decode_location (attr, sym, cu);
21377 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21378
21379 /* Fortran explicitly imports any global symbols to the local
21380 scope by DW_TAG_common_block. */
21381 if (cu->language == language_fortran && die->parent
21382 && die->parent->tag == DW_TAG_common_block)
21383 attr2 = NULL;
21384
21385 if (SYMBOL_CLASS (sym) == LOC_STATIC
21386 && SYMBOL_VALUE_ADDRESS (sym) == 0
21387 && !dwarf2_per_objfile->has_section_at_zero)
21388 {
21389 /* When a static variable is eliminated by the linker,
21390 the corresponding debug information is not stripped
21391 out, but the variable address is set to null;
21392 do not add such variables into symbol table. */
21393 }
21394 else if (attr2 && (DW_UNSND (attr2) != 0))
21395 {
21396 /* Workaround gfortran PR debug/40040 - it uses
21397 DW_AT_location for variables in -fPIC libraries which may
21398 get overriden by other libraries/executable and get
21399 a different address. Resolve it by the minimal symbol
21400 which may come from inferior's executable using copy
21401 relocation. Make this workaround only for gfortran as for
21402 other compilers GDB cannot guess the minimal symbol
21403 Fortran mangling kind. */
21404 if (cu->language == language_fortran && die->parent
21405 && die->parent->tag == DW_TAG_module
21406 && cu->producer
21407 && startswith (cu->producer, "GNU Fortran"))
21408 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21409
21410 /* A variable with DW_AT_external is never static,
21411 but it may be block-scoped. */
21412 list_to_add = (cu->list_in_scope == &file_symbols
21413 ? &global_symbols : cu->list_in_scope);
21414 }
21415 else
21416 list_to_add = cu->list_in_scope;
21417 }
21418 else
21419 {
21420 /* We do not know the address of this symbol.
21421 If it is an external symbol and we have type information
21422 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21423 The address of the variable will then be determined from
21424 the minimal symbol table whenever the variable is
21425 referenced. */
21426 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21427
21428 /* Fortran explicitly imports any global symbols to the local
21429 scope by DW_TAG_common_block. */
21430 if (cu->language == language_fortran && die->parent
21431 && die->parent->tag == DW_TAG_common_block)
21432 {
21433 /* SYMBOL_CLASS doesn't matter here because
21434 read_common_block is going to reset it. */
21435 if (!suppress_add)
21436 list_to_add = cu->list_in_scope;
21437 }
21438 else if (attr2 && (DW_UNSND (attr2) != 0)
21439 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21440 {
21441 /* A variable with DW_AT_external is never static, but it
21442 may be block-scoped. */
21443 list_to_add = (cu->list_in_scope == &file_symbols
21444 ? &global_symbols : cu->list_in_scope);
21445
21446 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21447 }
21448 else if (!die_is_declaration (die, cu))
21449 {
21450 /* Use the default LOC_OPTIMIZED_OUT class. */
21451 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21452 if (!suppress_add)
21453 list_to_add = cu->list_in_scope;
21454 }
21455 }
21456 break;
21457 case DW_TAG_formal_parameter:
21458 /* If we are inside a function, mark this as an argument. If
21459 not, we might be looking at an argument to an inlined function
21460 when we do not have enough information to show inlined frames;
21461 pretend it's a local variable in that case so that the user can
21462 still see it. */
21463 if (context_stack_depth > 0
21464 && context_stack[context_stack_depth - 1].name != NULL)
21465 SYMBOL_IS_ARGUMENT (sym) = 1;
21466 attr = dwarf2_attr (die, DW_AT_location, cu);
21467 if (attr)
21468 {
21469 var_decode_location (attr, sym, cu);
21470 }
21471 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21472 if (attr)
21473 {
21474 dwarf2_const_value (attr, sym, cu);
21475 }
21476
21477 list_to_add = cu->list_in_scope;
21478 break;
21479 case DW_TAG_unspecified_parameters:
21480 /* From varargs functions; gdb doesn't seem to have any
21481 interest in this information, so just ignore it for now.
21482 (FIXME?) */
21483 break;
21484 case DW_TAG_template_type_param:
21485 suppress_add = 1;
21486 /* Fall through. */
21487 case DW_TAG_class_type:
21488 case DW_TAG_interface_type:
21489 case DW_TAG_structure_type:
21490 case DW_TAG_union_type:
21491 case DW_TAG_set_type:
21492 case DW_TAG_enumeration_type:
21493 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21494 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21495
21496 {
21497 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21498 really ever be static objects: otherwise, if you try
21499 to, say, break of a class's method and you're in a file
21500 which doesn't mention that class, it won't work unless
21501 the check for all static symbols in lookup_symbol_aux
21502 saves you. See the OtherFileClass tests in
21503 gdb.c++/namespace.exp. */
21504
21505 if (!suppress_add)
21506 {
21507 list_to_add = (cu->list_in_scope == &file_symbols
21508 && cu->language == language_cplus
21509 ? &global_symbols : cu->list_in_scope);
21510
21511 /* The semantics of C++ state that "struct foo {
21512 ... }" also defines a typedef for "foo". */
21513 if (cu->language == language_cplus
21514 || cu->language == language_ada
21515 || cu->language == language_d
21516 || cu->language == language_rust)
21517 {
21518 /* The symbol's name is already allocated along
21519 with this objfile, so we don't need to
21520 duplicate it for the type. */
21521 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21522 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21523 }
21524 }
21525 }
21526 break;
21527 case DW_TAG_typedef:
21528 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21529 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21530 list_to_add = cu->list_in_scope;
21531 break;
21532 case DW_TAG_base_type:
21533 case DW_TAG_subrange_type:
21534 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21535 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21536 list_to_add = cu->list_in_scope;
21537 break;
21538 case DW_TAG_enumerator:
21539 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21540 if (attr)
21541 {
21542 dwarf2_const_value (attr, sym, cu);
21543 }
21544 {
21545 /* NOTE: carlton/2003-11-10: See comment above in the
21546 DW_TAG_class_type, etc. block. */
21547
21548 list_to_add = (cu->list_in_scope == &file_symbols
21549 && cu->language == language_cplus
21550 ? &global_symbols : cu->list_in_scope);
21551 }
21552 break;
21553 case DW_TAG_imported_declaration:
21554 case DW_TAG_namespace:
21555 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21556 list_to_add = &global_symbols;
21557 break;
21558 case DW_TAG_module:
21559 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21560 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21561 list_to_add = &global_symbols;
21562 break;
21563 case DW_TAG_common_block:
21564 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21565 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21566 add_symbol_to_list (sym, cu->list_in_scope);
21567 break;
21568 default:
21569 /* Not a tag we recognize. Hopefully we aren't processing
21570 trash data, but since we must specifically ignore things
21571 we don't recognize, there is nothing else we should do at
21572 this point. */
21573 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
21574 dwarf_tag_name (die->tag));
21575 break;
21576 }
21577
21578 if (suppress_add)
21579 {
21580 sym->hash_next = objfile->template_symbols;
21581 objfile->template_symbols = sym;
21582 list_to_add = NULL;
21583 }
21584
21585 if (list_to_add != NULL)
21586 add_symbol_to_list (sym, list_to_add);
21587
21588 /* For the benefit of old versions of GCC, check for anonymous
21589 namespaces based on the demangled name. */
21590 if (!cu->processing_has_namespace_info
21591 && cu->language == language_cplus)
21592 cp_scan_for_anonymous_namespaces (sym, objfile);
21593 }
21594 return (sym);
21595 }
21596
21597 /* Given an attr with a DW_FORM_dataN value in host byte order,
21598 zero-extend it as appropriate for the symbol's type. The DWARF
21599 standard (v4) is not entirely clear about the meaning of using
21600 DW_FORM_dataN for a constant with a signed type, where the type is
21601 wider than the data. The conclusion of a discussion on the DWARF
21602 list was that this is unspecified. We choose to always zero-extend
21603 because that is the interpretation long in use by GCC. */
21604
21605 static gdb_byte *
21606 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21607 struct dwarf2_cu *cu, LONGEST *value, int bits)
21608 {
21609 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21610 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21611 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21612 LONGEST l = DW_UNSND (attr);
21613
21614 if (bits < sizeof (*value) * 8)
21615 {
21616 l &= ((LONGEST) 1 << bits) - 1;
21617 *value = l;
21618 }
21619 else if (bits == sizeof (*value) * 8)
21620 *value = l;
21621 else
21622 {
21623 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21624 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21625 return bytes;
21626 }
21627
21628 return NULL;
21629 }
21630
21631 /* Read a constant value from an attribute. Either set *VALUE, or if
21632 the value does not fit in *VALUE, set *BYTES - either already
21633 allocated on the objfile obstack, or newly allocated on OBSTACK,
21634 or, set *BATON, if we translated the constant to a location
21635 expression. */
21636
21637 static void
21638 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21639 const char *name, struct obstack *obstack,
21640 struct dwarf2_cu *cu,
21641 LONGEST *value, const gdb_byte **bytes,
21642 struct dwarf2_locexpr_baton **baton)
21643 {
21644 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21645 struct comp_unit_head *cu_header = &cu->header;
21646 struct dwarf_block *blk;
21647 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21648 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21649
21650 *value = 0;
21651 *bytes = NULL;
21652 *baton = NULL;
21653
21654 switch (attr->form)
21655 {
21656 case DW_FORM_addr:
21657 case DW_FORM_GNU_addr_index:
21658 {
21659 gdb_byte *data;
21660
21661 if (TYPE_LENGTH (type) != cu_header->addr_size)
21662 dwarf2_const_value_length_mismatch_complaint (name,
21663 cu_header->addr_size,
21664 TYPE_LENGTH (type));
21665 /* Symbols of this form are reasonably rare, so we just
21666 piggyback on the existing location code rather than writing
21667 a new implementation of symbol_computed_ops. */
21668 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21669 (*baton)->per_cu = cu->per_cu;
21670 gdb_assert ((*baton)->per_cu);
21671
21672 (*baton)->size = 2 + cu_header->addr_size;
21673 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21674 (*baton)->data = data;
21675
21676 data[0] = DW_OP_addr;
21677 store_unsigned_integer (&data[1], cu_header->addr_size,
21678 byte_order, DW_ADDR (attr));
21679 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21680 }
21681 break;
21682 case DW_FORM_string:
21683 case DW_FORM_strp:
21684 case DW_FORM_GNU_str_index:
21685 case DW_FORM_GNU_strp_alt:
21686 /* DW_STRING is already allocated on the objfile obstack, point
21687 directly to it. */
21688 *bytes = (const gdb_byte *) DW_STRING (attr);
21689 break;
21690 case DW_FORM_block1:
21691 case DW_FORM_block2:
21692 case DW_FORM_block4:
21693 case DW_FORM_block:
21694 case DW_FORM_exprloc:
21695 case DW_FORM_data16:
21696 blk = DW_BLOCK (attr);
21697 if (TYPE_LENGTH (type) != blk->size)
21698 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21699 TYPE_LENGTH (type));
21700 *bytes = blk->data;
21701 break;
21702
21703 /* The DW_AT_const_value attributes are supposed to carry the
21704 symbol's value "represented as it would be on the target
21705 architecture." By the time we get here, it's already been
21706 converted to host endianness, so we just need to sign- or
21707 zero-extend it as appropriate. */
21708 case DW_FORM_data1:
21709 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21710 break;
21711 case DW_FORM_data2:
21712 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21713 break;
21714 case DW_FORM_data4:
21715 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21716 break;
21717 case DW_FORM_data8:
21718 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21719 break;
21720
21721 case DW_FORM_sdata:
21722 case DW_FORM_implicit_const:
21723 *value = DW_SND (attr);
21724 break;
21725
21726 case DW_FORM_udata:
21727 *value = DW_UNSND (attr);
21728 break;
21729
21730 default:
21731 complaint (&symfile_complaints,
21732 _("unsupported const value attribute form: '%s'"),
21733 dwarf_form_name (attr->form));
21734 *value = 0;
21735 break;
21736 }
21737 }
21738
21739
21740 /* Copy constant value from an attribute to a symbol. */
21741
21742 static void
21743 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21744 struct dwarf2_cu *cu)
21745 {
21746 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21747 LONGEST value;
21748 const gdb_byte *bytes;
21749 struct dwarf2_locexpr_baton *baton;
21750
21751 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21752 SYMBOL_PRINT_NAME (sym),
21753 &objfile->objfile_obstack, cu,
21754 &value, &bytes, &baton);
21755
21756 if (baton != NULL)
21757 {
21758 SYMBOL_LOCATION_BATON (sym) = baton;
21759 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21760 }
21761 else if (bytes != NULL)
21762 {
21763 SYMBOL_VALUE_BYTES (sym) = bytes;
21764 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21765 }
21766 else
21767 {
21768 SYMBOL_VALUE (sym) = value;
21769 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21770 }
21771 }
21772
21773 /* Return the type of the die in question using its DW_AT_type attribute. */
21774
21775 static struct type *
21776 die_type (struct die_info *die, struct dwarf2_cu *cu)
21777 {
21778 struct attribute *type_attr;
21779
21780 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21781 if (!type_attr)
21782 {
21783 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21784 /* A missing DW_AT_type represents a void type. */
21785 return objfile_type (objfile)->builtin_void;
21786 }
21787
21788 return lookup_die_type (die, type_attr, cu);
21789 }
21790
21791 /* True iff CU's producer generates GNAT Ada auxiliary information
21792 that allows to find parallel types through that information instead
21793 of having to do expensive parallel lookups by type name. */
21794
21795 static int
21796 need_gnat_info (struct dwarf2_cu *cu)
21797 {
21798 /* Assume that the Ada compiler was GNAT, which always produces
21799 the auxiliary information. */
21800 return (cu->language == language_ada);
21801 }
21802
21803 /* Return the auxiliary type of the die in question using its
21804 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21805 attribute is not present. */
21806
21807 static struct type *
21808 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21809 {
21810 struct attribute *type_attr;
21811
21812 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21813 if (!type_attr)
21814 return NULL;
21815
21816 return lookup_die_type (die, type_attr, cu);
21817 }
21818
21819 /* If DIE has a descriptive_type attribute, then set the TYPE's
21820 descriptive type accordingly. */
21821
21822 static void
21823 set_descriptive_type (struct type *type, struct die_info *die,
21824 struct dwarf2_cu *cu)
21825 {
21826 struct type *descriptive_type = die_descriptive_type (die, cu);
21827
21828 if (descriptive_type)
21829 {
21830 ALLOCATE_GNAT_AUX_TYPE (type);
21831 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21832 }
21833 }
21834
21835 /* Return the containing type of the die in question using its
21836 DW_AT_containing_type attribute. */
21837
21838 static struct type *
21839 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21840 {
21841 struct attribute *type_attr;
21842 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21843
21844 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21845 if (!type_attr)
21846 error (_("Dwarf Error: Problem turning containing type into gdb type "
21847 "[in module %s]"), objfile_name (objfile));
21848
21849 return lookup_die_type (die, type_attr, cu);
21850 }
21851
21852 /* Return an error marker type to use for the ill formed type in DIE/CU. */
21853
21854 static struct type *
21855 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21856 {
21857 struct dwarf2_per_objfile *dwarf2_per_objfile
21858 = cu->per_cu->dwarf2_per_objfile;
21859 struct objfile *objfile = dwarf2_per_objfile->objfile;
21860 char *message, *saved;
21861
21862 message = xstrprintf (_("<unknown type in %s, CU %s, DIE %s>"),
21863 objfile_name (objfile),
21864 sect_offset_str (cu->header.sect_off),
21865 sect_offset_str (die->sect_off));
21866 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
21867 message, strlen (message));
21868 xfree (message);
21869
21870 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
21871 }
21872
21873 /* Look up the type of DIE in CU using its type attribute ATTR.
21874 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
21875 DW_AT_containing_type.
21876 If there is no type substitute an error marker. */
21877
21878 static struct type *
21879 lookup_die_type (struct die_info *die, const struct attribute *attr,
21880 struct dwarf2_cu *cu)
21881 {
21882 struct dwarf2_per_objfile *dwarf2_per_objfile
21883 = cu->per_cu->dwarf2_per_objfile;
21884 struct objfile *objfile = dwarf2_per_objfile->objfile;
21885 struct type *this_type;
21886
21887 gdb_assert (attr->name == DW_AT_type
21888 || attr->name == DW_AT_GNAT_descriptive_type
21889 || attr->name == DW_AT_containing_type);
21890
21891 /* First see if we have it cached. */
21892
21893 if (attr->form == DW_FORM_GNU_ref_alt)
21894 {
21895 struct dwarf2_per_cu_data *per_cu;
21896 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21897
21898 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
21899 dwarf2_per_objfile);
21900 this_type = get_die_type_at_offset (sect_off, per_cu);
21901 }
21902 else if (attr_form_is_ref (attr))
21903 {
21904 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21905
21906 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
21907 }
21908 else if (attr->form == DW_FORM_ref_sig8)
21909 {
21910 ULONGEST signature = DW_SIGNATURE (attr);
21911
21912 return get_signatured_type (die, signature, cu);
21913 }
21914 else
21915 {
21916 complaint (&symfile_complaints,
21917 _("Dwarf Error: Bad type attribute %s in DIE"
21918 " at %s [in module %s]"),
21919 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
21920 objfile_name (objfile));
21921 return build_error_marker_type (cu, die);
21922 }
21923
21924 /* If not cached we need to read it in. */
21925
21926 if (this_type == NULL)
21927 {
21928 struct die_info *type_die = NULL;
21929 struct dwarf2_cu *type_cu = cu;
21930
21931 if (attr_form_is_ref (attr))
21932 type_die = follow_die_ref (die, attr, &type_cu);
21933 if (type_die == NULL)
21934 return build_error_marker_type (cu, die);
21935 /* If we find the type now, it's probably because the type came
21936 from an inter-CU reference and the type's CU got expanded before
21937 ours. */
21938 this_type = read_type_die (type_die, type_cu);
21939 }
21940
21941 /* If we still don't have a type use an error marker. */
21942
21943 if (this_type == NULL)
21944 return build_error_marker_type (cu, die);
21945
21946 return this_type;
21947 }
21948
21949 /* Return the type in DIE, CU.
21950 Returns NULL for invalid types.
21951
21952 This first does a lookup in die_type_hash,
21953 and only reads the die in if necessary.
21954
21955 NOTE: This can be called when reading in partial or full symbols. */
21956
21957 static struct type *
21958 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
21959 {
21960 struct type *this_type;
21961
21962 this_type = get_die_type (die, cu);
21963 if (this_type)
21964 return this_type;
21965
21966 return read_type_die_1 (die, cu);
21967 }
21968
21969 /* Read the type in DIE, CU.
21970 Returns NULL for invalid types. */
21971
21972 static struct type *
21973 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
21974 {
21975 struct type *this_type = NULL;
21976
21977 switch (die->tag)
21978 {
21979 case DW_TAG_class_type:
21980 case DW_TAG_interface_type:
21981 case DW_TAG_structure_type:
21982 case DW_TAG_union_type:
21983 this_type = read_structure_type (die, cu);
21984 break;
21985 case DW_TAG_enumeration_type:
21986 this_type = read_enumeration_type (die, cu);
21987 break;
21988 case DW_TAG_subprogram:
21989 case DW_TAG_subroutine_type:
21990 case DW_TAG_inlined_subroutine:
21991 this_type = read_subroutine_type (die, cu);
21992 break;
21993 case DW_TAG_array_type:
21994 this_type = read_array_type (die, cu);
21995 break;
21996 case DW_TAG_set_type:
21997 this_type = read_set_type (die, cu);
21998 break;
21999 case DW_TAG_pointer_type:
22000 this_type = read_tag_pointer_type (die, cu);
22001 break;
22002 case DW_TAG_ptr_to_member_type:
22003 this_type = read_tag_ptr_to_member_type (die, cu);
22004 break;
22005 case DW_TAG_reference_type:
22006 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22007 break;
22008 case DW_TAG_rvalue_reference_type:
22009 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22010 break;
22011 case DW_TAG_const_type:
22012 this_type = read_tag_const_type (die, cu);
22013 break;
22014 case DW_TAG_volatile_type:
22015 this_type = read_tag_volatile_type (die, cu);
22016 break;
22017 case DW_TAG_restrict_type:
22018 this_type = read_tag_restrict_type (die, cu);
22019 break;
22020 case DW_TAG_string_type:
22021 this_type = read_tag_string_type (die, cu);
22022 break;
22023 case DW_TAG_typedef:
22024 this_type = read_typedef (die, cu);
22025 break;
22026 case DW_TAG_subrange_type:
22027 this_type = read_subrange_type (die, cu);
22028 break;
22029 case DW_TAG_base_type:
22030 this_type = read_base_type (die, cu);
22031 break;
22032 case DW_TAG_unspecified_type:
22033 this_type = read_unspecified_type (die, cu);
22034 break;
22035 case DW_TAG_namespace:
22036 this_type = read_namespace_type (die, cu);
22037 break;
22038 case DW_TAG_module:
22039 this_type = read_module_type (die, cu);
22040 break;
22041 case DW_TAG_atomic_type:
22042 this_type = read_tag_atomic_type (die, cu);
22043 break;
22044 default:
22045 complaint (&symfile_complaints,
22046 _("unexpected tag in read_type_die: '%s'"),
22047 dwarf_tag_name (die->tag));
22048 break;
22049 }
22050
22051 return this_type;
22052 }
22053
22054 /* See if we can figure out if the class lives in a namespace. We do
22055 this by looking for a member function; its demangled name will
22056 contain namespace info, if there is any.
22057 Return the computed name or NULL.
22058 Space for the result is allocated on the objfile's obstack.
22059 This is the full-die version of guess_partial_die_structure_name.
22060 In this case we know DIE has no useful parent. */
22061
22062 static char *
22063 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22064 {
22065 struct die_info *spec_die;
22066 struct dwarf2_cu *spec_cu;
22067 struct die_info *child;
22068 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22069
22070 spec_cu = cu;
22071 spec_die = die_specification (die, &spec_cu);
22072 if (spec_die != NULL)
22073 {
22074 die = spec_die;
22075 cu = spec_cu;
22076 }
22077
22078 for (child = die->child;
22079 child != NULL;
22080 child = child->sibling)
22081 {
22082 if (child->tag == DW_TAG_subprogram)
22083 {
22084 const char *linkage_name = dw2_linkage_name (child, cu);
22085
22086 if (linkage_name != NULL)
22087 {
22088 char *actual_name
22089 = language_class_name_from_physname (cu->language_defn,
22090 linkage_name);
22091 char *name = NULL;
22092
22093 if (actual_name != NULL)
22094 {
22095 const char *die_name = dwarf2_name (die, cu);
22096
22097 if (die_name != NULL
22098 && strcmp (die_name, actual_name) != 0)
22099 {
22100 /* Strip off the class name from the full name.
22101 We want the prefix. */
22102 int die_name_len = strlen (die_name);
22103 int actual_name_len = strlen (actual_name);
22104
22105 /* Test for '::' as a sanity check. */
22106 if (actual_name_len > die_name_len + 2
22107 && actual_name[actual_name_len
22108 - die_name_len - 1] == ':')
22109 name = (char *) obstack_copy0 (
22110 &objfile->per_bfd->storage_obstack,
22111 actual_name, actual_name_len - die_name_len - 2);
22112 }
22113 }
22114 xfree (actual_name);
22115 return name;
22116 }
22117 }
22118 }
22119
22120 return NULL;
22121 }
22122
22123 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22124 prefix part in such case. See
22125 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22126
22127 static const char *
22128 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22129 {
22130 struct attribute *attr;
22131 const char *base;
22132
22133 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22134 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22135 return NULL;
22136
22137 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22138 return NULL;
22139
22140 attr = dw2_linkage_name_attr (die, cu);
22141 if (attr == NULL || DW_STRING (attr) == NULL)
22142 return NULL;
22143
22144 /* dwarf2_name had to be already called. */
22145 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22146
22147 /* Strip the base name, keep any leading namespaces/classes. */
22148 base = strrchr (DW_STRING (attr), ':');
22149 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22150 return "";
22151
22152 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22153 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22154 DW_STRING (attr),
22155 &base[-1] - DW_STRING (attr));
22156 }
22157
22158 /* Return the name of the namespace/class that DIE is defined within,
22159 or "" if we can't tell. The caller should not xfree the result.
22160
22161 For example, if we're within the method foo() in the following
22162 code:
22163
22164 namespace N {
22165 class C {
22166 void foo () {
22167 }
22168 };
22169 }
22170
22171 then determine_prefix on foo's die will return "N::C". */
22172
22173 static const char *
22174 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22175 {
22176 struct dwarf2_per_objfile *dwarf2_per_objfile
22177 = cu->per_cu->dwarf2_per_objfile;
22178 struct die_info *parent, *spec_die;
22179 struct dwarf2_cu *spec_cu;
22180 struct type *parent_type;
22181 const char *retval;
22182
22183 if (cu->language != language_cplus
22184 && cu->language != language_fortran && cu->language != language_d
22185 && cu->language != language_rust)
22186 return "";
22187
22188 retval = anonymous_struct_prefix (die, cu);
22189 if (retval)
22190 return retval;
22191
22192 /* We have to be careful in the presence of DW_AT_specification.
22193 For example, with GCC 3.4, given the code
22194
22195 namespace N {
22196 void foo() {
22197 // Definition of N::foo.
22198 }
22199 }
22200
22201 then we'll have a tree of DIEs like this:
22202
22203 1: DW_TAG_compile_unit
22204 2: DW_TAG_namespace // N
22205 3: DW_TAG_subprogram // declaration of N::foo
22206 4: DW_TAG_subprogram // definition of N::foo
22207 DW_AT_specification // refers to die #3
22208
22209 Thus, when processing die #4, we have to pretend that we're in
22210 the context of its DW_AT_specification, namely the contex of die
22211 #3. */
22212 spec_cu = cu;
22213 spec_die = die_specification (die, &spec_cu);
22214 if (spec_die == NULL)
22215 parent = die->parent;
22216 else
22217 {
22218 parent = spec_die->parent;
22219 cu = spec_cu;
22220 }
22221
22222 if (parent == NULL)
22223 return "";
22224 else if (parent->building_fullname)
22225 {
22226 const char *name;
22227 const char *parent_name;
22228
22229 /* It has been seen on RealView 2.2 built binaries,
22230 DW_TAG_template_type_param types actually _defined_ as
22231 children of the parent class:
22232
22233 enum E {};
22234 template class <class Enum> Class{};
22235 Class<enum E> class_e;
22236
22237 1: DW_TAG_class_type (Class)
22238 2: DW_TAG_enumeration_type (E)
22239 3: DW_TAG_enumerator (enum1:0)
22240 3: DW_TAG_enumerator (enum2:1)
22241 ...
22242 2: DW_TAG_template_type_param
22243 DW_AT_type DW_FORM_ref_udata (E)
22244
22245 Besides being broken debug info, it can put GDB into an
22246 infinite loop. Consider:
22247
22248 When we're building the full name for Class<E>, we'll start
22249 at Class, and go look over its template type parameters,
22250 finding E. We'll then try to build the full name of E, and
22251 reach here. We're now trying to build the full name of E,
22252 and look over the parent DIE for containing scope. In the
22253 broken case, if we followed the parent DIE of E, we'd again
22254 find Class, and once again go look at its template type
22255 arguments, etc., etc. Simply don't consider such parent die
22256 as source-level parent of this die (it can't be, the language
22257 doesn't allow it), and break the loop here. */
22258 name = dwarf2_name (die, cu);
22259 parent_name = dwarf2_name (parent, cu);
22260 complaint (&symfile_complaints,
22261 _("template param type '%s' defined within parent '%s'"),
22262 name ? name : "<unknown>",
22263 parent_name ? parent_name : "<unknown>");
22264 return "";
22265 }
22266 else
22267 switch (parent->tag)
22268 {
22269 case DW_TAG_namespace:
22270 parent_type = read_type_die (parent, cu);
22271 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22272 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22273 Work around this problem here. */
22274 if (cu->language == language_cplus
22275 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
22276 return "";
22277 /* We give a name to even anonymous namespaces. */
22278 return TYPE_TAG_NAME (parent_type);
22279 case DW_TAG_class_type:
22280 case DW_TAG_interface_type:
22281 case DW_TAG_structure_type:
22282 case DW_TAG_union_type:
22283 case DW_TAG_module:
22284 parent_type = read_type_die (parent, cu);
22285 if (TYPE_TAG_NAME (parent_type) != NULL)
22286 return TYPE_TAG_NAME (parent_type);
22287 else
22288 /* An anonymous structure is only allowed non-static data
22289 members; no typedefs, no member functions, et cetera.
22290 So it does not need a prefix. */
22291 return "";
22292 case DW_TAG_compile_unit:
22293 case DW_TAG_partial_unit:
22294 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22295 if (cu->language == language_cplus
22296 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22297 && die->child != NULL
22298 && (die->tag == DW_TAG_class_type
22299 || die->tag == DW_TAG_structure_type
22300 || die->tag == DW_TAG_union_type))
22301 {
22302 char *name = guess_full_die_structure_name (die, cu);
22303 if (name != NULL)
22304 return name;
22305 }
22306 return "";
22307 case DW_TAG_enumeration_type:
22308 parent_type = read_type_die (parent, cu);
22309 if (TYPE_DECLARED_CLASS (parent_type))
22310 {
22311 if (TYPE_TAG_NAME (parent_type) != NULL)
22312 return TYPE_TAG_NAME (parent_type);
22313 return "";
22314 }
22315 /* Fall through. */
22316 default:
22317 return determine_prefix (parent, cu);
22318 }
22319 }
22320
22321 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22322 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22323 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22324 an obconcat, otherwise allocate storage for the result. The CU argument is
22325 used to determine the language and hence, the appropriate separator. */
22326
22327 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22328
22329 static char *
22330 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22331 int physname, struct dwarf2_cu *cu)
22332 {
22333 const char *lead = "";
22334 const char *sep;
22335
22336 if (suffix == NULL || suffix[0] == '\0'
22337 || prefix == NULL || prefix[0] == '\0')
22338 sep = "";
22339 else if (cu->language == language_d)
22340 {
22341 /* For D, the 'main' function could be defined in any module, but it
22342 should never be prefixed. */
22343 if (strcmp (suffix, "D main") == 0)
22344 {
22345 prefix = "";
22346 sep = "";
22347 }
22348 else
22349 sep = ".";
22350 }
22351 else if (cu->language == language_fortran && physname)
22352 {
22353 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22354 DW_AT_MIPS_linkage_name is preferred and used instead. */
22355
22356 lead = "__";
22357 sep = "_MOD_";
22358 }
22359 else
22360 sep = "::";
22361
22362 if (prefix == NULL)
22363 prefix = "";
22364 if (suffix == NULL)
22365 suffix = "";
22366
22367 if (obs == NULL)
22368 {
22369 char *retval
22370 = ((char *)
22371 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22372
22373 strcpy (retval, lead);
22374 strcat (retval, prefix);
22375 strcat (retval, sep);
22376 strcat (retval, suffix);
22377 return retval;
22378 }
22379 else
22380 {
22381 /* We have an obstack. */
22382 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22383 }
22384 }
22385
22386 /* Return sibling of die, NULL if no sibling. */
22387
22388 static struct die_info *
22389 sibling_die (struct die_info *die)
22390 {
22391 return die->sibling;
22392 }
22393
22394 /* Get name of a die, return NULL if not found. */
22395
22396 static const char *
22397 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22398 struct obstack *obstack)
22399 {
22400 if (name && cu->language == language_cplus)
22401 {
22402 std::string canon_name = cp_canonicalize_string (name);
22403
22404 if (!canon_name.empty ())
22405 {
22406 if (canon_name != name)
22407 name = (const char *) obstack_copy0 (obstack,
22408 canon_name.c_str (),
22409 canon_name.length ());
22410 }
22411 }
22412
22413 return name;
22414 }
22415
22416 /* Get name of a die, return NULL if not found.
22417 Anonymous namespaces are converted to their magic string. */
22418
22419 static const char *
22420 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22421 {
22422 struct attribute *attr;
22423 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22424
22425 attr = dwarf2_attr (die, DW_AT_name, cu);
22426 if ((!attr || !DW_STRING (attr))
22427 && die->tag != DW_TAG_namespace
22428 && die->tag != DW_TAG_class_type
22429 && die->tag != DW_TAG_interface_type
22430 && die->tag != DW_TAG_structure_type
22431 && die->tag != DW_TAG_union_type)
22432 return NULL;
22433
22434 switch (die->tag)
22435 {
22436 case DW_TAG_compile_unit:
22437 case DW_TAG_partial_unit:
22438 /* Compilation units have a DW_AT_name that is a filename, not
22439 a source language identifier. */
22440 case DW_TAG_enumeration_type:
22441 case DW_TAG_enumerator:
22442 /* These tags always have simple identifiers already; no need
22443 to canonicalize them. */
22444 return DW_STRING (attr);
22445
22446 case DW_TAG_namespace:
22447 if (attr != NULL && DW_STRING (attr) != NULL)
22448 return DW_STRING (attr);
22449 return CP_ANONYMOUS_NAMESPACE_STR;
22450
22451 case DW_TAG_class_type:
22452 case DW_TAG_interface_type:
22453 case DW_TAG_structure_type:
22454 case DW_TAG_union_type:
22455 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22456 structures or unions. These were of the form "._%d" in GCC 4.1,
22457 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22458 and GCC 4.4. We work around this problem by ignoring these. */
22459 if (attr && DW_STRING (attr)
22460 && (startswith (DW_STRING (attr), "._")
22461 || startswith (DW_STRING (attr), "<anonymous")))
22462 return NULL;
22463
22464 /* GCC might emit a nameless typedef that has a linkage name. See
22465 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22466 if (!attr || DW_STRING (attr) == NULL)
22467 {
22468 char *demangled = NULL;
22469
22470 attr = dw2_linkage_name_attr (die, cu);
22471 if (attr == NULL || DW_STRING (attr) == NULL)
22472 return NULL;
22473
22474 /* Avoid demangling DW_STRING (attr) the second time on a second
22475 call for the same DIE. */
22476 if (!DW_STRING_IS_CANONICAL (attr))
22477 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22478
22479 if (demangled)
22480 {
22481 const char *base;
22482
22483 /* FIXME: we already did this for the partial symbol... */
22484 DW_STRING (attr)
22485 = ((const char *)
22486 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22487 demangled, strlen (demangled)));
22488 DW_STRING_IS_CANONICAL (attr) = 1;
22489 xfree (demangled);
22490
22491 /* Strip any leading namespaces/classes, keep only the base name.
22492 DW_AT_name for named DIEs does not contain the prefixes. */
22493 base = strrchr (DW_STRING (attr), ':');
22494 if (base && base > DW_STRING (attr) && base[-1] == ':')
22495 return &base[1];
22496 else
22497 return DW_STRING (attr);
22498 }
22499 }
22500 break;
22501
22502 default:
22503 break;
22504 }
22505
22506 if (!DW_STRING_IS_CANONICAL (attr))
22507 {
22508 DW_STRING (attr)
22509 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22510 &objfile->per_bfd->storage_obstack);
22511 DW_STRING_IS_CANONICAL (attr) = 1;
22512 }
22513 return DW_STRING (attr);
22514 }
22515
22516 /* Return the die that this die in an extension of, or NULL if there
22517 is none. *EXT_CU is the CU containing DIE on input, and the CU
22518 containing the return value on output. */
22519
22520 static struct die_info *
22521 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22522 {
22523 struct attribute *attr;
22524
22525 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22526 if (attr == NULL)
22527 return NULL;
22528
22529 return follow_die_ref (die, attr, ext_cu);
22530 }
22531
22532 /* Convert a DIE tag into its string name. */
22533
22534 static const char *
22535 dwarf_tag_name (unsigned tag)
22536 {
22537 const char *name = get_DW_TAG_name (tag);
22538
22539 if (name == NULL)
22540 return "DW_TAG_<unknown>";
22541
22542 return name;
22543 }
22544
22545 /* Convert a DWARF attribute code into its string name. */
22546
22547 static const char *
22548 dwarf_attr_name (unsigned attr)
22549 {
22550 const char *name;
22551
22552 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22553 if (attr == DW_AT_MIPS_fde)
22554 return "DW_AT_MIPS_fde";
22555 #else
22556 if (attr == DW_AT_HP_block_index)
22557 return "DW_AT_HP_block_index";
22558 #endif
22559
22560 name = get_DW_AT_name (attr);
22561
22562 if (name == NULL)
22563 return "DW_AT_<unknown>";
22564
22565 return name;
22566 }
22567
22568 /* Convert a DWARF value form code into its string name. */
22569
22570 static const char *
22571 dwarf_form_name (unsigned form)
22572 {
22573 const char *name = get_DW_FORM_name (form);
22574
22575 if (name == NULL)
22576 return "DW_FORM_<unknown>";
22577
22578 return name;
22579 }
22580
22581 static const char *
22582 dwarf_bool_name (unsigned mybool)
22583 {
22584 if (mybool)
22585 return "TRUE";
22586 else
22587 return "FALSE";
22588 }
22589
22590 /* Convert a DWARF type code into its string name. */
22591
22592 static const char *
22593 dwarf_type_encoding_name (unsigned enc)
22594 {
22595 const char *name = get_DW_ATE_name (enc);
22596
22597 if (name == NULL)
22598 return "DW_ATE_<unknown>";
22599
22600 return name;
22601 }
22602
22603 static void
22604 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22605 {
22606 unsigned int i;
22607
22608 print_spaces (indent, f);
22609 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22610 dwarf_tag_name (die->tag), die->abbrev,
22611 sect_offset_str (die->sect_off));
22612
22613 if (die->parent != NULL)
22614 {
22615 print_spaces (indent, f);
22616 fprintf_unfiltered (f, " parent at offset: %s\n",
22617 sect_offset_str (die->parent->sect_off));
22618 }
22619
22620 print_spaces (indent, f);
22621 fprintf_unfiltered (f, " has children: %s\n",
22622 dwarf_bool_name (die->child != NULL));
22623
22624 print_spaces (indent, f);
22625 fprintf_unfiltered (f, " attributes:\n");
22626
22627 for (i = 0; i < die->num_attrs; ++i)
22628 {
22629 print_spaces (indent, f);
22630 fprintf_unfiltered (f, " %s (%s) ",
22631 dwarf_attr_name (die->attrs[i].name),
22632 dwarf_form_name (die->attrs[i].form));
22633
22634 switch (die->attrs[i].form)
22635 {
22636 case DW_FORM_addr:
22637 case DW_FORM_GNU_addr_index:
22638 fprintf_unfiltered (f, "address: ");
22639 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22640 break;
22641 case DW_FORM_block2:
22642 case DW_FORM_block4:
22643 case DW_FORM_block:
22644 case DW_FORM_block1:
22645 fprintf_unfiltered (f, "block: size %s",
22646 pulongest (DW_BLOCK (&die->attrs[i])->size));
22647 break;
22648 case DW_FORM_exprloc:
22649 fprintf_unfiltered (f, "expression: size %s",
22650 pulongest (DW_BLOCK (&die->attrs[i])->size));
22651 break;
22652 case DW_FORM_data16:
22653 fprintf_unfiltered (f, "constant of 16 bytes");
22654 break;
22655 case DW_FORM_ref_addr:
22656 fprintf_unfiltered (f, "ref address: ");
22657 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22658 break;
22659 case DW_FORM_GNU_ref_alt:
22660 fprintf_unfiltered (f, "alt ref address: ");
22661 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22662 break;
22663 case DW_FORM_ref1:
22664 case DW_FORM_ref2:
22665 case DW_FORM_ref4:
22666 case DW_FORM_ref8:
22667 case DW_FORM_ref_udata:
22668 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22669 (long) (DW_UNSND (&die->attrs[i])));
22670 break;
22671 case DW_FORM_data1:
22672 case DW_FORM_data2:
22673 case DW_FORM_data4:
22674 case DW_FORM_data8:
22675 case DW_FORM_udata:
22676 case DW_FORM_sdata:
22677 fprintf_unfiltered (f, "constant: %s",
22678 pulongest (DW_UNSND (&die->attrs[i])));
22679 break;
22680 case DW_FORM_sec_offset:
22681 fprintf_unfiltered (f, "section offset: %s",
22682 pulongest (DW_UNSND (&die->attrs[i])));
22683 break;
22684 case DW_FORM_ref_sig8:
22685 fprintf_unfiltered (f, "signature: %s",
22686 hex_string (DW_SIGNATURE (&die->attrs[i])));
22687 break;
22688 case DW_FORM_string:
22689 case DW_FORM_strp:
22690 case DW_FORM_line_strp:
22691 case DW_FORM_GNU_str_index:
22692 case DW_FORM_GNU_strp_alt:
22693 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22694 DW_STRING (&die->attrs[i])
22695 ? DW_STRING (&die->attrs[i]) : "",
22696 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22697 break;
22698 case DW_FORM_flag:
22699 if (DW_UNSND (&die->attrs[i]))
22700 fprintf_unfiltered (f, "flag: TRUE");
22701 else
22702 fprintf_unfiltered (f, "flag: FALSE");
22703 break;
22704 case DW_FORM_flag_present:
22705 fprintf_unfiltered (f, "flag: TRUE");
22706 break;
22707 case DW_FORM_indirect:
22708 /* The reader will have reduced the indirect form to
22709 the "base form" so this form should not occur. */
22710 fprintf_unfiltered (f,
22711 "unexpected attribute form: DW_FORM_indirect");
22712 break;
22713 case DW_FORM_implicit_const:
22714 fprintf_unfiltered (f, "constant: %s",
22715 plongest (DW_SND (&die->attrs[i])));
22716 break;
22717 default:
22718 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22719 die->attrs[i].form);
22720 break;
22721 }
22722 fprintf_unfiltered (f, "\n");
22723 }
22724 }
22725
22726 static void
22727 dump_die_for_error (struct die_info *die)
22728 {
22729 dump_die_shallow (gdb_stderr, 0, die);
22730 }
22731
22732 static void
22733 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22734 {
22735 int indent = level * 4;
22736
22737 gdb_assert (die != NULL);
22738
22739 if (level >= max_level)
22740 return;
22741
22742 dump_die_shallow (f, indent, die);
22743
22744 if (die->child != NULL)
22745 {
22746 print_spaces (indent, f);
22747 fprintf_unfiltered (f, " Children:");
22748 if (level + 1 < max_level)
22749 {
22750 fprintf_unfiltered (f, "\n");
22751 dump_die_1 (f, level + 1, max_level, die->child);
22752 }
22753 else
22754 {
22755 fprintf_unfiltered (f,
22756 " [not printed, max nesting level reached]\n");
22757 }
22758 }
22759
22760 if (die->sibling != NULL && level > 0)
22761 {
22762 dump_die_1 (f, level, max_level, die->sibling);
22763 }
22764 }
22765
22766 /* This is called from the pdie macro in gdbinit.in.
22767 It's not static so gcc will keep a copy callable from gdb. */
22768
22769 void
22770 dump_die (struct die_info *die, int max_level)
22771 {
22772 dump_die_1 (gdb_stdlog, 0, max_level, die);
22773 }
22774
22775 static void
22776 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22777 {
22778 void **slot;
22779
22780 slot = htab_find_slot_with_hash (cu->die_hash, die,
22781 to_underlying (die->sect_off),
22782 INSERT);
22783
22784 *slot = die;
22785 }
22786
22787 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22788 required kind. */
22789
22790 static sect_offset
22791 dwarf2_get_ref_die_offset (const struct attribute *attr)
22792 {
22793 if (attr_form_is_ref (attr))
22794 return (sect_offset) DW_UNSND (attr);
22795
22796 complaint (&symfile_complaints,
22797 _("unsupported die ref attribute form: '%s'"),
22798 dwarf_form_name (attr->form));
22799 return {};
22800 }
22801
22802 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22803 * the value held by the attribute is not constant. */
22804
22805 static LONGEST
22806 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
22807 {
22808 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
22809 return DW_SND (attr);
22810 else if (attr->form == DW_FORM_udata
22811 || attr->form == DW_FORM_data1
22812 || attr->form == DW_FORM_data2
22813 || attr->form == DW_FORM_data4
22814 || attr->form == DW_FORM_data8)
22815 return DW_UNSND (attr);
22816 else
22817 {
22818 /* For DW_FORM_data16 see attr_form_is_constant. */
22819 complaint (&symfile_complaints,
22820 _("Attribute value is not a constant (%s)"),
22821 dwarf_form_name (attr->form));
22822 return default_value;
22823 }
22824 }
22825
22826 /* Follow reference or signature attribute ATTR of SRC_DIE.
22827 On entry *REF_CU is the CU of SRC_DIE.
22828 On exit *REF_CU is the CU of the result. */
22829
22830 static struct die_info *
22831 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22832 struct dwarf2_cu **ref_cu)
22833 {
22834 struct die_info *die;
22835
22836 if (attr_form_is_ref (attr))
22837 die = follow_die_ref (src_die, attr, ref_cu);
22838 else if (attr->form == DW_FORM_ref_sig8)
22839 die = follow_die_sig (src_die, attr, ref_cu);
22840 else
22841 {
22842 dump_die_for_error (src_die);
22843 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22844 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22845 }
22846
22847 return die;
22848 }
22849
22850 /* Follow reference OFFSET.
22851 On entry *REF_CU is the CU of the source die referencing OFFSET.
22852 On exit *REF_CU is the CU of the result.
22853 Returns NULL if OFFSET is invalid. */
22854
22855 static struct die_info *
22856 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22857 struct dwarf2_cu **ref_cu)
22858 {
22859 struct die_info temp_die;
22860 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22861 struct dwarf2_per_objfile *dwarf2_per_objfile
22862 = cu->per_cu->dwarf2_per_objfile;
22863
22864 gdb_assert (cu->per_cu != NULL);
22865
22866 target_cu = cu;
22867
22868 if (cu->per_cu->is_debug_types)
22869 {
22870 /* .debug_types CUs cannot reference anything outside their CU.
22871 If they need to, they have to reference a signatured type via
22872 DW_FORM_ref_sig8. */
22873 if (!offset_in_cu_p (&cu->header, sect_off))
22874 return NULL;
22875 }
22876 else if (offset_in_dwz != cu->per_cu->is_dwz
22877 || !offset_in_cu_p (&cu->header, sect_off))
22878 {
22879 struct dwarf2_per_cu_data *per_cu;
22880
22881 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
22882 dwarf2_per_objfile);
22883
22884 /* If necessary, add it to the queue and load its DIEs. */
22885 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
22886 load_full_comp_unit (per_cu, cu->language);
22887
22888 target_cu = per_cu->cu;
22889 }
22890 else if (cu->dies == NULL)
22891 {
22892 /* We're loading full DIEs during partial symbol reading. */
22893 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
22894 load_full_comp_unit (cu->per_cu, language_minimal);
22895 }
22896
22897 *ref_cu = target_cu;
22898 temp_die.sect_off = sect_off;
22899 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
22900 &temp_die,
22901 to_underlying (sect_off));
22902 }
22903
22904 /* Follow reference attribute ATTR of SRC_DIE.
22905 On entry *REF_CU is the CU of SRC_DIE.
22906 On exit *REF_CU is the CU of the result. */
22907
22908 static struct die_info *
22909 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
22910 struct dwarf2_cu **ref_cu)
22911 {
22912 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22913 struct dwarf2_cu *cu = *ref_cu;
22914 struct die_info *die;
22915
22916 die = follow_die_offset (sect_off,
22917 (attr->form == DW_FORM_GNU_ref_alt
22918 || cu->per_cu->is_dwz),
22919 ref_cu);
22920 if (!die)
22921 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
22922 "at %s [in module %s]"),
22923 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
22924 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
22925
22926 return die;
22927 }
22928
22929 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
22930 Returned value is intended for DW_OP_call*. Returned
22931 dwarf2_locexpr_baton->data has lifetime of
22932 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
22933
22934 struct dwarf2_locexpr_baton
22935 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
22936 struct dwarf2_per_cu_data *per_cu,
22937 CORE_ADDR (*get_frame_pc) (void *baton),
22938 void *baton)
22939 {
22940 struct dwarf2_cu *cu;
22941 struct die_info *die;
22942 struct attribute *attr;
22943 struct dwarf2_locexpr_baton retval;
22944 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
22945 struct objfile *objfile = dwarf2_per_objfile->objfile;
22946
22947 if (per_cu->cu == NULL)
22948 load_cu (per_cu);
22949 cu = per_cu->cu;
22950 if (cu == NULL)
22951 {
22952 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22953 Instead just throw an error, not much else we can do. */
22954 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22955 sect_offset_str (sect_off), objfile_name (objfile));
22956 }
22957
22958 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22959 if (!die)
22960 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22961 sect_offset_str (sect_off), objfile_name (objfile));
22962
22963 attr = dwarf2_attr (die, DW_AT_location, cu);
22964 if (!attr)
22965 {
22966 /* DWARF: "If there is no such attribute, then there is no effect.".
22967 DATA is ignored if SIZE is 0. */
22968
22969 retval.data = NULL;
22970 retval.size = 0;
22971 }
22972 else if (attr_form_is_section_offset (attr))
22973 {
22974 struct dwarf2_loclist_baton loclist_baton;
22975 CORE_ADDR pc = (*get_frame_pc) (baton);
22976 size_t size;
22977
22978 fill_in_loclist_baton (cu, &loclist_baton, attr);
22979
22980 retval.data = dwarf2_find_location_expression (&loclist_baton,
22981 &size, pc);
22982 retval.size = size;
22983 }
22984 else
22985 {
22986 if (!attr_form_is_block (attr))
22987 error (_("Dwarf Error: DIE at %s referenced in module %s "
22988 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
22989 sect_offset_str (sect_off), objfile_name (objfile));
22990
22991 retval.data = DW_BLOCK (attr)->data;
22992 retval.size = DW_BLOCK (attr)->size;
22993 }
22994 retval.per_cu = cu->per_cu;
22995
22996 age_cached_comp_units (dwarf2_per_objfile);
22997
22998 return retval;
22999 }
23000
23001 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23002 offset. */
23003
23004 struct dwarf2_locexpr_baton
23005 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23006 struct dwarf2_per_cu_data *per_cu,
23007 CORE_ADDR (*get_frame_pc) (void *baton),
23008 void *baton)
23009 {
23010 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23011
23012 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23013 }
23014
23015 /* Write a constant of a given type as target-ordered bytes into
23016 OBSTACK. */
23017
23018 static const gdb_byte *
23019 write_constant_as_bytes (struct obstack *obstack,
23020 enum bfd_endian byte_order,
23021 struct type *type,
23022 ULONGEST value,
23023 LONGEST *len)
23024 {
23025 gdb_byte *result;
23026
23027 *len = TYPE_LENGTH (type);
23028 result = (gdb_byte *) obstack_alloc (obstack, *len);
23029 store_unsigned_integer (result, *len, byte_order, value);
23030
23031 return result;
23032 }
23033
23034 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23035 pointer to the constant bytes and set LEN to the length of the
23036 data. If memory is needed, allocate it on OBSTACK. If the DIE
23037 does not have a DW_AT_const_value, return NULL. */
23038
23039 const gdb_byte *
23040 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23041 struct dwarf2_per_cu_data *per_cu,
23042 struct obstack *obstack,
23043 LONGEST *len)
23044 {
23045 struct dwarf2_cu *cu;
23046 struct die_info *die;
23047 struct attribute *attr;
23048 const gdb_byte *result = NULL;
23049 struct type *type;
23050 LONGEST value;
23051 enum bfd_endian byte_order;
23052 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23053
23054 if (per_cu->cu == NULL)
23055 load_cu (per_cu);
23056 cu = per_cu->cu;
23057 if (cu == NULL)
23058 {
23059 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23060 Instead just throw an error, not much else we can do. */
23061 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23062 sect_offset_str (sect_off), objfile_name (objfile));
23063 }
23064
23065 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23066 if (!die)
23067 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23068 sect_offset_str (sect_off), objfile_name (objfile));
23069
23070 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23071 if (attr == NULL)
23072 return NULL;
23073
23074 byte_order = (bfd_big_endian (objfile->obfd)
23075 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23076
23077 switch (attr->form)
23078 {
23079 case DW_FORM_addr:
23080 case DW_FORM_GNU_addr_index:
23081 {
23082 gdb_byte *tem;
23083
23084 *len = cu->header.addr_size;
23085 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23086 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23087 result = tem;
23088 }
23089 break;
23090 case DW_FORM_string:
23091 case DW_FORM_strp:
23092 case DW_FORM_GNU_str_index:
23093 case DW_FORM_GNU_strp_alt:
23094 /* DW_STRING is already allocated on the objfile obstack, point
23095 directly to it. */
23096 result = (const gdb_byte *) DW_STRING (attr);
23097 *len = strlen (DW_STRING (attr));
23098 break;
23099 case DW_FORM_block1:
23100 case DW_FORM_block2:
23101 case DW_FORM_block4:
23102 case DW_FORM_block:
23103 case DW_FORM_exprloc:
23104 case DW_FORM_data16:
23105 result = DW_BLOCK (attr)->data;
23106 *len = DW_BLOCK (attr)->size;
23107 break;
23108
23109 /* The DW_AT_const_value attributes are supposed to carry the
23110 symbol's value "represented as it would be on the target
23111 architecture." By the time we get here, it's already been
23112 converted to host endianness, so we just need to sign- or
23113 zero-extend it as appropriate. */
23114 case DW_FORM_data1:
23115 type = die_type (die, cu);
23116 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23117 if (result == NULL)
23118 result = write_constant_as_bytes (obstack, byte_order,
23119 type, value, len);
23120 break;
23121 case DW_FORM_data2:
23122 type = die_type (die, cu);
23123 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23124 if (result == NULL)
23125 result = write_constant_as_bytes (obstack, byte_order,
23126 type, value, len);
23127 break;
23128 case DW_FORM_data4:
23129 type = die_type (die, cu);
23130 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23131 if (result == NULL)
23132 result = write_constant_as_bytes (obstack, byte_order,
23133 type, value, len);
23134 break;
23135 case DW_FORM_data8:
23136 type = die_type (die, cu);
23137 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23138 if (result == NULL)
23139 result = write_constant_as_bytes (obstack, byte_order,
23140 type, value, len);
23141 break;
23142
23143 case DW_FORM_sdata:
23144 case DW_FORM_implicit_const:
23145 type = die_type (die, cu);
23146 result = write_constant_as_bytes (obstack, byte_order,
23147 type, DW_SND (attr), len);
23148 break;
23149
23150 case DW_FORM_udata:
23151 type = die_type (die, cu);
23152 result = write_constant_as_bytes (obstack, byte_order,
23153 type, DW_UNSND (attr), len);
23154 break;
23155
23156 default:
23157 complaint (&symfile_complaints,
23158 _("unsupported const value attribute form: '%s'"),
23159 dwarf_form_name (attr->form));
23160 break;
23161 }
23162
23163 return result;
23164 }
23165
23166 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23167 valid type for this die is found. */
23168
23169 struct type *
23170 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23171 struct dwarf2_per_cu_data *per_cu)
23172 {
23173 struct dwarf2_cu *cu;
23174 struct die_info *die;
23175
23176 if (per_cu->cu == NULL)
23177 load_cu (per_cu);
23178 cu = per_cu->cu;
23179 if (!cu)
23180 return NULL;
23181
23182 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23183 if (!die)
23184 return NULL;
23185
23186 return die_type (die, cu);
23187 }
23188
23189 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23190 PER_CU. */
23191
23192 struct type *
23193 dwarf2_get_die_type (cu_offset die_offset,
23194 struct dwarf2_per_cu_data *per_cu)
23195 {
23196 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23197 return get_die_type_at_offset (die_offset_sect, per_cu);
23198 }
23199
23200 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23201 On entry *REF_CU is the CU of SRC_DIE.
23202 On exit *REF_CU is the CU of the result.
23203 Returns NULL if the referenced DIE isn't found. */
23204
23205 static struct die_info *
23206 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23207 struct dwarf2_cu **ref_cu)
23208 {
23209 struct die_info temp_die;
23210 struct dwarf2_cu *sig_cu;
23211 struct die_info *die;
23212
23213 /* While it might be nice to assert sig_type->type == NULL here,
23214 we can get here for DW_AT_imported_declaration where we need
23215 the DIE not the type. */
23216
23217 /* If necessary, add it to the queue and load its DIEs. */
23218
23219 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23220 read_signatured_type (sig_type);
23221
23222 sig_cu = sig_type->per_cu.cu;
23223 gdb_assert (sig_cu != NULL);
23224 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23225 temp_die.sect_off = sig_type->type_offset_in_section;
23226 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23227 to_underlying (temp_die.sect_off));
23228 if (die)
23229 {
23230 struct dwarf2_per_objfile *dwarf2_per_objfile
23231 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23232
23233 /* For .gdb_index version 7 keep track of included TUs.
23234 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23235 if (dwarf2_per_objfile->index_table != NULL
23236 && dwarf2_per_objfile->index_table->version <= 7)
23237 {
23238 VEC_safe_push (dwarf2_per_cu_ptr,
23239 (*ref_cu)->per_cu->imported_symtabs,
23240 sig_cu->per_cu);
23241 }
23242
23243 *ref_cu = sig_cu;
23244 return die;
23245 }
23246
23247 return NULL;
23248 }
23249
23250 /* Follow signatured type referenced by ATTR in SRC_DIE.
23251 On entry *REF_CU is the CU of SRC_DIE.
23252 On exit *REF_CU is the CU of the result.
23253 The result is the DIE of the type.
23254 If the referenced type cannot be found an error is thrown. */
23255
23256 static struct die_info *
23257 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23258 struct dwarf2_cu **ref_cu)
23259 {
23260 ULONGEST signature = DW_SIGNATURE (attr);
23261 struct signatured_type *sig_type;
23262 struct die_info *die;
23263
23264 gdb_assert (attr->form == DW_FORM_ref_sig8);
23265
23266 sig_type = lookup_signatured_type (*ref_cu, signature);
23267 /* sig_type will be NULL if the signatured type is missing from
23268 the debug info. */
23269 if (sig_type == NULL)
23270 {
23271 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23272 " from DIE at %s [in module %s]"),
23273 hex_string (signature), sect_offset_str (src_die->sect_off),
23274 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23275 }
23276
23277 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23278 if (die == NULL)
23279 {
23280 dump_die_for_error (src_die);
23281 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23282 " from DIE at %s [in module %s]"),
23283 hex_string (signature), sect_offset_str (src_die->sect_off),
23284 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23285 }
23286
23287 return die;
23288 }
23289
23290 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23291 reading in and processing the type unit if necessary. */
23292
23293 static struct type *
23294 get_signatured_type (struct die_info *die, ULONGEST signature,
23295 struct dwarf2_cu *cu)
23296 {
23297 struct dwarf2_per_objfile *dwarf2_per_objfile
23298 = cu->per_cu->dwarf2_per_objfile;
23299 struct signatured_type *sig_type;
23300 struct dwarf2_cu *type_cu;
23301 struct die_info *type_die;
23302 struct type *type;
23303
23304 sig_type = lookup_signatured_type (cu, signature);
23305 /* sig_type will be NULL if the signatured type is missing from
23306 the debug info. */
23307 if (sig_type == NULL)
23308 {
23309 complaint (&symfile_complaints,
23310 _("Dwarf Error: Cannot find signatured DIE %s referenced"
23311 " from DIE at %s [in module %s]"),
23312 hex_string (signature), sect_offset_str (die->sect_off),
23313 objfile_name (dwarf2_per_objfile->objfile));
23314 return build_error_marker_type (cu, die);
23315 }
23316
23317 /* If we already know the type we're done. */
23318 if (sig_type->type != NULL)
23319 return sig_type->type;
23320
23321 type_cu = cu;
23322 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23323 if (type_die != NULL)
23324 {
23325 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23326 is created. This is important, for example, because for c++ classes
23327 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23328 type = read_type_die (type_die, type_cu);
23329 if (type == NULL)
23330 {
23331 complaint (&symfile_complaints,
23332 _("Dwarf Error: Cannot build signatured type %s"
23333 " referenced from DIE at %s [in module %s]"),
23334 hex_string (signature), sect_offset_str (die->sect_off),
23335 objfile_name (dwarf2_per_objfile->objfile));
23336 type = build_error_marker_type (cu, die);
23337 }
23338 }
23339 else
23340 {
23341 complaint (&symfile_complaints,
23342 _("Dwarf Error: Problem reading signatured DIE %s referenced"
23343 " from DIE at %s [in module %s]"),
23344 hex_string (signature), sect_offset_str (die->sect_off),
23345 objfile_name (dwarf2_per_objfile->objfile));
23346 type = build_error_marker_type (cu, die);
23347 }
23348 sig_type->type = type;
23349
23350 return type;
23351 }
23352
23353 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23354 reading in and processing the type unit if necessary. */
23355
23356 static struct type *
23357 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23358 struct dwarf2_cu *cu) /* ARI: editCase function */
23359 {
23360 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23361 if (attr_form_is_ref (attr))
23362 {
23363 struct dwarf2_cu *type_cu = cu;
23364 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23365
23366 return read_type_die (type_die, type_cu);
23367 }
23368 else if (attr->form == DW_FORM_ref_sig8)
23369 {
23370 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23371 }
23372 else
23373 {
23374 struct dwarf2_per_objfile *dwarf2_per_objfile
23375 = cu->per_cu->dwarf2_per_objfile;
23376
23377 complaint (&symfile_complaints,
23378 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23379 " at %s [in module %s]"),
23380 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23381 objfile_name (dwarf2_per_objfile->objfile));
23382 return build_error_marker_type (cu, die);
23383 }
23384 }
23385
23386 /* Load the DIEs associated with type unit PER_CU into memory. */
23387
23388 static void
23389 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23390 {
23391 struct signatured_type *sig_type;
23392
23393 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23394 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23395
23396 /* We have the per_cu, but we need the signatured_type.
23397 Fortunately this is an easy translation. */
23398 gdb_assert (per_cu->is_debug_types);
23399 sig_type = (struct signatured_type *) per_cu;
23400
23401 gdb_assert (per_cu->cu == NULL);
23402
23403 read_signatured_type (sig_type);
23404
23405 gdb_assert (per_cu->cu != NULL);
23406 }
23407
23408 /* die_reader_func for read_signatured_type.
23409 This is identical to load_full_comp_unit_reader,
23410 but is kept separate for now. */
23411
23412 static void
23413 read_signatured_type_reader (const struct die_reader_specs *reader,
23414 const gdb_byte *info_ptr,
23415 struct die_info *comp_unit_die,
23416 int has_children,
23417 void *data)
23418 {
23419 struct dwarf2_cu *cu = reader->cu;
23420
23421 gdb_assert (cu->die_hash == NULL);
23422 cu->die_hash =
23423 htab_create_alloc_ex (cu->header.length / 12,
23424 die_hash,
23425 die_eq,
23426 NULL,
23427 &cu->comp_unit_obstack,
23428 hashtab_obstack_allocate,
23429 dummy_obstack_deallocate);
23430
23431 if (has_children)
23432 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23433 &info_ptr, comp_unit_die);
23434 cu->dies = comp_unit_die;
23435 /* comp_unit_die is not stored in die_hash, no need. */
23436
23437 /* We try not to read any attributes in this function, because not
23438 all CUs needed for references have been loaded yet, and symbol
23439 table processing isn't initialized. But we have to set the CU language,
23440 or we won't be able to build types correctly.
23441 Similarly, if we do not read the producer, we can not apply
23442 producer-specific interpretation. */
23443 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23444 }
23445
23446 /* Read in a signatured type and build its CU and DIEs.
23447 If the type is a stub for the real type in a DWO file,
23448 read in the real type from the DWO file as well. */
23449
23450 static void
23451 read_signatured_type (struct signatured_type *sig_type)
23452 {
23453 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23454
23455 gdb_assert (per_cu->is_debug_types);
23456 gdb_assert (per_cu->cu == NULL);
23457
23458 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
23459 read_signatured_type_reader, NULL);
23460 sig_type->per_cu.tu_read = 1;
23461 }
23462
23463 /* Decode simple location descriptions.
23464 Given a pointer to a dwarf block that defines a location, compute
23465 the location and return the value.
23466
23467 NOTE drow/2003-11-18: This function is called in two situations
23468 now: for the address of static or global variables (partial symbols
23469 only) and for offsets into structures which are expected to be
23470 (more or less) constant. The partial symbol case should go away,
23471 and only the constant case should remain. That will let this
23472 function complain more accurately. A few special modes are allowed
23473 without complaint for global variables (for instance, global
23474 register values and thread-local values).
23475
23476 A location description containing no operations indicates that the
23477 object is optimized out. The return value is 0 for that case.
23478 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23479 callers will only want a very basic result and this can become a
23480 complaint.
23481
23482 Note that stack[0] is unused except as a default error return. */
23483
23484 static CORE_ADDR
23485 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23486 {
23487 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23488 size_t i;
23489 size_t size = blk->size;
23490 const gdb_byte *data = blk->data;
23491 CORE_ADDR stack[64];
23492 int stacki;
23493 unsigned int bytes_read, unsnd;
23494 gdb_byte op;
23495
23496 i = 0;
23497 stacki = 0;
23498 stack[stacki] = 0;
23499 stack[++stacki] = 0;
23500
23501 while (i < size)
23502 {
23503 op = data[i++];
23504 switch (op)
23505 {
23506 case DW_OP_lit0:
23507 case DW_OP_lit1:
23508 case DW_OP_lit2:
23509 case DW_OP_lit3:
23510 case DW_OP_lit4:
23511 case DW_OP_lit5:
23512 case DW_OP_lit6:
23513 case DW_OP_lit7:
23514 case DW_OP_lit8:
23515 case DW_OP_lit9:
23516 case DW_OP_lit10:
23517 case DW_OP_lit11:
23518 case DW_OP_lit12:
23519 case DW_OP_lit13:
23520 case DW_OP_lit14:
23521 case DW_OP_lit15:
23522 case DW_OP_lit16:
23523 case DW_OP_lit17:
23524 case DW_OP_lit18:
23525 case DW_OP_lit19:
23526 case DW_OP_lit20:
23527 case DW_OP_lit21:
23528 case DW_OP_lit22:
23529 case DW_OP_lit23:
23530 case DW_OP_lit24:
23531 case DW_OP_lit25:
23532 case DW_OP_lit26:
23533 case DW_OP_lit27:
23534 case DW_OP_lit28:
23535 case DW_OP_lit29:
23536 case DW_OP_lit30:
23537 case DW_OP_lit31:
23538 stack[++stacki] = op - DW_OP_lit0;
23539 break;
23540
23541 case DW_OP_reg0:
23542 case DW_OP_reg1:
23543 case DW_OP_reg2:
23544 case DW_OP_reg3:
23545 case DW_OP_reg4:
23546 case DW_OP_reg5:
23547 case DW_OP_reg6:
23548 case DW_OP_reg7:
23549 case DW_OP_reg8:
23550 case DW_OP_reg9:
23551 case DW_OP_reg10:
23552 case DW_OP_reg11:
23553 case DW_OP_reg12:
23554 case DW_OP_reg13:
23555 case DW_OP_reg14:
23556 case DW_OP_reg15:
23557 case DW_OP_reg16:
23558 case DW_OP_reg17:
23559 case DW_OP_reg18:
23560 case DW_OP_reg19:
23561 case DW_OP_reg20:
23562 case DW_OP_reg21:
23563 case DW_OP_reg22:
23564 case DW_OP_reg23:
23565 case DW_OP_reg24:
23566 case DW_OP_reg25:
23567 case DW_OP_reg26:
23568 case DW_OP_reg27:
23569 case DW_OP_reg28:
23570 case DW_OP_reg29:
23571 case DW_OP_reg30:
23572 case DW_OP_reg31:
23573 stack[++stacki] = op - DW_OP_reg0;
23574 if (i < size)
23575 dwarf2_complex_location_expr_complaint ();
23576 break;
23577
23578 case DW_OP_regx:
23579 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23580 i += bytes_read;
23581 stack[++stacki] = unsnd;
23582 if (i < size)
23583 dwarf2_complex_location_expr_complaint ();
23584 break;
23585
23586 case DW_OP_addr:
23587 stack[++stacki] = read_address (objfile->obfd, &data[i],
23588 cu, &bytes_read);
23589 i += bytes_read;
23590 break;
23591
23592 case DW_OP_const1u:
23593 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23594 i += 1;
23595 break;
23596
23597 case DW_OP_const1s:
23598 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23599 i += 1;
23600 break;
23601
23602 case DW_OP_const2u:
23603 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23604 i += 2;
23605 break;
23606
23607 case DW_OP_const2s:
23608 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23609 i += 2;
23610 break;
23611
23612 case DW_OP_const4u:
23613 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23614 i += 4;
23615 break;
23616
23617 case DW_OP_const4s:
23618 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23619 i += 4;
23620 break;
23621
23622 case DW_OP_const8u:
23623 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23624 i += 8;
23625 break;
23626
23627 case DW_OP_constu:
23628 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23629 &bytes_read);
23630 i += bytes_read;
23631 break;
23632
23633 case DW_OP_consts:
23634 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23635 i += bytes_read;
23636 break;
23637
23638 case DW_OP_dup:
23639 stack[stacki + 1] = stack[stacki];
23640 stacki++;
23641 break;
23642
23643 case DW_OP_plus:
23644 stack[stacki - 1] += stack[stacki];
23645 stacki--;
23646 break;
23647
23648 case DW_OP_plus_uconst:
23649 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23650 &bytes_read);
23651 i += bytes_read;
23652 break;
23653
23654 case DW_OP_minus:
23655 stack[stacki - 1] -= stack[stacki];
23656 stacki--;
23657 break;
23658
23659 case DW_OP_deref:
23660 /* If we're not the last op, then we definitely can't encode
23661 this using GDB's address_class enum. This is valid for partial
23662 global symbols, although the variable's address will be bogus
23663 in the psymtab. */
23664 if (i < size)
23665 dwarf2_complex_location_expr_complaint ();
23666 break;
23667
23668 case DW_OP_GNU_push_tls_address:
23669 case DW_OP_form_tls_address:
23670 /* The top of the stack has the offset from the beginning
23671 of the thread control block at which the variable is located. */
23672 /* Nothing should follow this operator, so the top of stack would
23673 be returned. */
23674 /* This is valid for partial global symbols, but the variable's
23675 address will be bogus in the psymtab. Make it always at least
23676 non-zero to not look as a variable garbage collected by linker
23677 which have DW_OP_addr 0. */
23678 if (i < size)
23679 dwarf2_complex_location_expr_complaint ();
23680 stack[stacki]++;
23681 break;
23682
23683 case DW_OP_GNU_uninit:
23684 break;
23685
23686 case DW_OP_GNU_addr_index:
23687 case DW_OP_GNU_const_index:
23688 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23689 &bytes_read);
23690 i += bytes_read;
23691 break;
23692
23693 default:
23694 {
23695 const char *name = get_DW_OP_name (op);
23696
23697 if (name)
23698 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
23699 name);
23700 else
23701 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
23702 op);
23703 }
23704
23705 return (stack[stacki]);
23706 }
23707
23708 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23709 outside of the allocated space. Also enforce minimum>0. */
23710 if (stacki >= ARRAY_SIZE (stack) - 1)
23711 {
23712 complaint (&symfile_complaints,
23713 _("location description stack overflow"));
23714 return 0;
23715 }
23716
23717 if (stacki <= 0)
23718 {
23719 complaint (&symfile_complaints,
23720 _("location description stack underflow"));
23721 return 0;
23722 }
23723 }
23724 return (stack[stacki]);
23725 }
23726
23727 /* memory allocation interface */
23728
23729 static struct dwarf_block *
23730 dwarf_alloc_block (struct dwarf2_cu *cu)
23731 {
23732 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23733 }
23734
23735 static struct die_info *
23736 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23737 {
23738 struct die_info *die;
23739 size_t size = sizeof (struct die_info);
23740
23741 if (num_attrs > 1)
23742 size += (num_attrs - 1) * sizeof (struct attribute);
23743
23744 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23745 memset (die, 0, sizeof (struct die_info));
23746 return (die);
23747 }
23748
23749 \f
23750 /* Macro support. */
23751
23752 /* Return file name relative to the compilation directory of file number I in
23753 *LH's file name table. The result is allocated using xmalloc; the caller is
23754 responsible for freeing it. */
23755
23756 static char *
23757 file_file_name (int file, struct line_header *lh)
23758 {
23759 /* Is the file number a valid index into the line header's file name
23760 table? Remember that file numbers start with one, not zero. */
23761 if (1 <= file && file <= lh->file_names.size ())
23762 {
23763 const file_entry &fe = lh->file_names[file - 1];
23764
23765 if (!IS_ABSOLUTE_PATH (fe.name))
23766 {
23767 const char *dir = fe.include_dir (lh);
23768 if (dir != NULL)
23769 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
23770 }
23771 return xstrdup (fe.name);
23772 }
23773 else
23774 {
23775 /* The compiler produced a bogus file number. We can at least
23776 record the macro definitions made in the file, even if we
23777 won't be able to find the file by name. */
23778 char fake_name[80];
23779
23780 xsnprintf (fake_name, sizeof (fake_name),
23781 "<bad macro file number %d>", file);
23782
23783 complaint (&symfile_complaints,
23784 _("bad file number in macro information (%d)"),
23785 file);
23786
23787 return xstrdup (fake_name);
23788 }
23789 }
23790
23791 /* Return the full name of file number I in *LH's file name table.
23792 Use COMP_DIR as the name of the current directory of the
23793 compilation. The result is allocated using xmalloc; the caller is
23794 responsible for freeing it. */
23795 static char *
23796 file_full_name (int file, struct line_header *lh, const char *comp_dir)
23797 {
23798 /* Is the file number a valid index into the line header's file name
23799 table? Remember that file numbers start with one, not zero. */
23800 if (1 <= file && file <= lh->file_names.size ())
23801 {
23802 char *relative = file_file_name (file, lh);
23803
23804 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
23805 return relative;
23806 return reconcat (relative, comp_dir, SLASH_STRING,
23807 relative, (char *) NULL);
23808 }
23809 else
23810 return file_file_name (file, lh);
23811 }
23812
23813
23814 static struct macro_source_file *
23815 macro_start_file (int file, int line,
23816 struct macro_source_file *current_file,
23817 struct line_header *lh)
23818 {
23819 /* File name relative to the compilation directory of this source file. */
23820 char *file_name = file_file_name (file, lh);
23821
23822 if (! current_file)
23823 {
23824 /* Note: We don't create a macro table for this compilation unit
23825 at all until we actually get a filename. */
23826 struct macro_table *macro_table = get_macro_table ();
23827
23828 /* If we have no current file, then this must be the start_file
23829 directive for the compilation unit's main source file. */
23830 current_file = macro_set_main (macro_table, file_name);
23831 macro_define_special (macro_table);
23832 }
23833 else
23834 current_file = macro_include (current_file, line, file_name);
23835
23836 xfree (file_name);
23837
23838 return current_file;
23839 }
23840
23841 static const char *
23842 consume_improper_spaces (const char *p, const char *body)
23843 {
23844 if (*p == ' ')
23845 {
23846 complaint (&symfile_complaints,
23847 _("macro definition contains spaces "
23848 "in formal argument list:\n`%s'"),
23849 body);
23850
23851 while (*p == ' ')
23852 p++;
23853 }
23854
23855 return p;
23856 }
23857
23858
23859 static void
23860 parse_macro_definition (struct macro_source_file *file, int line,
23861 const char *body)
23862 {
23863 const char *p;
23864
23865 /* The body string takes one of two forms. For object-like macro
23866 definitions, it should be:
23867
23868 <macro name> " " <definition>
23869
23870 For function-like macro definitions, it should be:
23871
23872 <macro name> "() " <definition>
23873 or
23874 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
23875
23876 Spaces may appear only where explicitly indicated, and in the
23877 <definition>.
23878
23879 The Dwarf 2 spec says that an object-like macro's name is always
23880 followed by a space, but versions of GCC around March 2002 omit
23881 the space when the macro's definition is the empty string.
23882
23883 The Dwarf 2 spec says that there should be no spaces between the
23884 formal arguments in a function-like macro's formal argument list,
23885 but versions of GCC around March 2002 include spaces after the
23886 commas. */
23887
23888
23889 /* Find the extent of the macro name. The macro name is terminated
23890 by either a space or null character (for an object-like macro) or
23891 an opening paren (for a function-like macro). */
23892 for (p = body; *p; p++)
23893 if (*p == ' ' || *p == '(')
23894 break;
23895
23896 if (*p == ' ' || *p == '\0')
23897 {
23898 /* It's an object-like macro. */
23899 int name_len = p - body;
23900 char *name = savestring (body, name_len);
23901 const char *replacement;
23902
23903 if (*p == ' ')
23904 replacement = body + name_len + 1;
23905 else
23906 {
23907 dwarf2_macro_malformed_definition_complaint (body);
23908 replacement = body + name_len;
23909 }
23910
23911 macro_define_object (file, line, name, replacement);
23912
23913 xfree (name);
23914 }
23915 else if (*p == '(')
23916 {
23917 /* It's a function-like macro. */
23918 char *name = savestring (body, p - body);
23919 int argc = 0;
23920 int argv_size = 1;
23921 char **argv = XNEWVEC (char *, argv_size);
23922
23923 p++;
23924
23925 p = consume_improper_spaces (p, body);
23926
23927 /* Parse the formal argument list. */
23928 while (*p && *p != ')')
23929 {
23930 /* Find the extent of the current argument name. */
23931 const char *arg_start = p;
23932
23933 while (*p && *p != ',' && *p != ')' && *p != ' ')
23934 p++;
23935
23936 if (! *p || p == arg_start)
23937 dwarf2_macro_malformed_definition_complaint (body);
23938 else
23939 {
23940 /* Make sure argv has room for the new argument. */
23941 if (argc >= argv_size)
23942 {
23943 argv_size *= 2;
23944 argv = XRESIZEVEC (char *, argv, argv_size);
23945 }
23946
23947 argv[argc++] = savestring (arg_start, p - arg_start);
23948 }
23949
23950 p = consume_improper_spaces (p, body);
23951
23952 /* Consume the comma, if present. */
23953 if (*p == ',')
23954 {
23955 p++;
23956
23957 p = consume_improper_spaces (p, body);
23958 }
23959 }
23960
23961 if (*p == ')')
23962 {
23963 p++;
23964
23965 if (*p == ' ')
23966 /* Perfectly formed definition, no complaints. */
23967 macro_define_function (file, line, name,
23968 argc, (const char **) argv,
23969 p + 1);
23970 else if (*p == '\0')
23971 {
23972 /* Complain, but do define it. */
23973 dwarf2_macro_malformed_definition_complaint (body);
23974 macro_define_function (file, line, name,
23975 argc, (const char **) argv,
23976 p);
23977 }
23978 else
23979 /* Just complain. */
23980 dwarf2_macro_malformed_definition_complaint (body);
23981 }
23982 else
23983 /* Just complain. */
23984 dwarf2_macro_malformed_definition_complaint (body);
23985
23986 xfree (name);
23987 {
23988 int i;
23989
23990 for (i = 0; i < argc; i++)
23991 xfree (argv[i]);
23992 }
23993 xfree (argv);
23994 }
23995 else
23996 dwarf2_macro_malformed_definition_complaint (body);
23997 }
23998
23999 /* Skip some bytes from BYTES according to the form given in FORM.
24000 Returns the new pointer. */
24001
24002 static const gdb_byte *
24003 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24004 enum dwarf_form form,
24005 unsigned int offset_size,
24006 struct dwarf2_section_info *section)
24007 {
24008 unsigned int bytes_read;
24009
24010 switch (form)
24011 {
24012 case DW_FORM_data1:
24013 case DW_FORM_flag:
24014 ++bytes;
24015 break;
24016
24017 case DW_FORM_data2:
24018 bytes += 2;
24019 break;
24020
24021 case DW_FORM_data4:
24022 bytes += 4;
24023 break;
24024
24025 case DW_FORM_data8:
24026 bytes += 8;
24027 break;
24028
24029 case DW_FORM_data16:
24030 bytes += 16;
24031 break;
24032
24033 case DW_FORM_string:
24034 read_direct_string (abfd, bytes, &bytes_read);
24035 bytes += bytes_read;
24036 break;
24037
24038 case DW_FORM_sec_offset:
24039 case DW_FORM_strp:
24040 case DW_FORM_GNU_strp_alt:
24041 bytes += offset_size;
24042 break;
24043
24044 case DW_FORM_block:
24045 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24046 bytes += bytes_read;
24047 break;
24048
24049 case DW_FORM_block1:
24050 bytes += 1 + read_1_byte (abfd, bytes);
24051 break;
24052 case DW_FORM_block2:
24053 bytes += 2 + read_2_bytes (abfd, bytes);
24054 break;
24055 case DW_FORM_block4:
24056 bytes += 4 + read_4_bytes (abfd, bytes);
24057 break;
24058
24059 case DW_FORM_sdata:
24060 case DW_FORM_udata:
24061 case DW_FORM_GNU_addr_index:
24062 case DW_FORM_GNU_str_index:
24063 bytes = gdb_skip_leb128 (bytes, buffer_end);
24064 if (bytes == NULL)
24065 {
24066 dwarf2_section_buffer_overflow_complaint (section);
24067 return NULL;
24068 }
24069 break;
24070
24071 case DW_FORM_implicit_const:
24072 break;
24073
24074 default:
24075 {
24076 complaint (&symfile_complaints,
24077 _("invalid form 0x%x in `%s'"),
24078 form, get_section_name (section));
24079 return NULL;
24080 }
24081 }
24082
24083 return bytes;
24084 }
24085
24086 /* A helper for dwarf_decode_macros that handles skipping an unknown
24087 opcode. Returns an updated pointer to the macro data buffer; or,
24088 on error, issues a complaint and returns NULL. */
24089
24090 static const gdb_byte *
24091 skip_unknown_opcode (unsigned int opcode,
24092 const gdb_byte **opcode_definitions,
24093 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24094 bfd *abfd,
24095 unsigned int offset_size,
24096 struct dwarf2_section_info *section)
24097 {
24098 unsigned int bytes_read, i;
24099 unsigned long arg;
24100 const gdb_byte *defn;
24101
24102 if (opcode_definitions[opcode] == NULL)
24103 {
24104 complaint (&symfile_complaints,
24105 _("unrecognized DW_MACFINO opcode 0x%x"),
24106 opcode);
24107 return NULL;
24108 }
24109
24110 defn = opcode_definitions[opcode];
24111 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24112 defn += bytes_read;
24113
24114 for (i = 0; i < arg; ++i)
24115 {
24116 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24117 (enum dwarf_form) defn[i], offset_size,
24118 section);
24119 if (mac_ptr == NULL)
24120 {
24121 /* skip_form_bytes already issued the complaint. */
24122 return NULL;
24123 }
24124 }
24125
24126 return mac_ptr;
24127 }
24128
24129 /* A helper function which parses the header of a macro section.
24130 If the macro section is the extended (for now called "GNU") type,
24131 then this updates *OFFSET_SIZE. Returns a pointer to just after
24132 the header, or issues a complaint and returns NULL on error. */
24133
24134 static const gdb_byte *
24135 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24136 bfd *abfd,
24137 const gdb_byte *mac_ptr,
24138 unsigned int *offset_size,
24139 int section_is_gnu)
24140 {
24141 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24142
24143 if (section_is_gnu)
24144 {
24145 unsigned int version, flags;
24146
24147 version = read_2_bytes (abfd, mac_ptr);
24148 if (version != 4 && version != 5)
24149 {
24150 complaint (&symfile_complaints,
24151 _("unrecognized version `%d' in .debug_macro section"),
24152 version);
24153 return NULL;
24154 }
24155 mac_ptr += 2;
24156
24157 flags = read_1_byte (abfd, mac_ptr);
24158 ++mac_ptr;
24159 *offset_size = (flags & 1) ? 8 : 4;
24160
24161 if ((flags & 2) != 0)
24162 /* We don't need the line table offset. */
24163 mac_ptr += *offset_size;
24164
24165 /* Vendor opcode descriptions. */
24166 if ((flags & 4) != 0)
24167 {
24168 unsigned int i, count;
24169
24170 count = read_1_byte (abfd, mac_ptr);
24171 ++mac_ptr;
24172 for (i = 0; i < count; ++i)
24173 {
24174 unsigned int opcode, bytes_read;
24175 unsigned long arg;
24176
24177 opcode = read_1_byte (abfd, mac_ptr);
24178 ++mac_ptr;
24179 opcode_definitions[opcode] = mac_ptr;
24180 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24181 mac_ptr += bytes_read;
24182 mac_ptr += arg;
24183 }
24184 }
24185 }
24186
24187 return mac_ptr;
24188 }
24189
24190 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24191 including DW_MACRO_import. */
24192
24193 static void
24194 dwarf_decode_macro_bytes (struct dwarf2_per_objfile *dwarf2_per_objfile,
24195 bfd *abfd,
24196 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24197 struct macro_source_file *current_file,
24198 struct line_header *lh,
24199 struct dwarf2_section_info *section,
24200 int section_is_gnu, int section_is_dwz,
24201 unsigned int offset_size,
24202 htab_t include_hash)
24203 {
24204 struct objfile *objfile = dwarf2_per_objfile->objfile;
24205 enum dwarf_macro_record_type macinfo_type;
24206 int at_commandline;
24207 const gdb_byte *opcode_definitions[256];
24208
24209 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24210 &offset_size, section_is_gnu);
24211 if (mac_ptr == NULL)
24212 {
24213 /* We already issued a complaint. */
24214 return;
24215 }
24216
24217 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24218 GDB is still reading the definitions from command line. First
24219 DW_MACINFO_start_file will need to be ignored as it was already executed
24220 to create CURRENT_FILE for the main source holding also the command line
24221 definitions. On first met DW_MACINFO_start_file this flag is reset to
24222 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24223
24224 at_commandline = 1;
24225
24226 do
24227 {
24228 /* Do we at least have room for a macinfo type byte? */
24229 if (mac_ptr >= mac_end)
24230 {
24231 dwarf2_section_buffer_overflow_complaint (section);
24232 break;
24233 }
24234
24235 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24236 mac_ptr++;
24237
24238 /* Note that we rely on the fact that the corresponding GNU and
24239 DWARF constants are the same. */
24240 DIAGNOSTIC_PUSH
24241 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24242 switch (macinfo_type)
24243 {
24244 /* A zero macinfo type indicates the end of the macro
24245 information. */
24246 case 0:
24247 break;
24248
24249 case DW_MACRO_define:
24250 case DW_MACRO_undef:
24251 case DW_MACRO_define_strp:
24252 case DW_MACRO_undef_strp:
24253 case DW_MACRO_define_sup:
24254 case DW_MACRO_undef_sup:
24255 {
24256 unsigned int bytes_read;
24257 int line;
24258 const char *body;
24259 int is_define;
24260
24261 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24262 mac_ptr += bytes_read;
24263
24264 if (macinfo_type == DW_MACRO_define
24265 || macinfo_type == DW_MACRO_undef)
24266 {
24267 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24268 mac_ptr += bytes_read;
24269 }
24270 else
24271 {
24272 LONGEST str_offset;
24273
24274 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24275 mac_ptr += offset_size;
24276
24277 if (macinfo_type == DW_MACRO_define_sup
24278 || macinfo_type == DW_MACRO_undef_sup
24279 || section_is_dwz)
24280 {
24281 struct dwz_file *dwz
24282 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24283
24284 body = read_indirect_string_from_dwz (objfile,
24285 dwz, str_offset);
24286 }
24287 else
24288 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24289 abfd, str_offset);
24290 }
24291
24292 is_define = (macinfo_type == DW_MACRO_define
24293 || macinfo_type == DW_MACRO_define_strp
24294 || macinfo_type == DW_MACRO_define_sup);
24295 if (! current_file)
24296 {
24297 /* DWARF violation as no main source is present. */
24298 complaint (&symfile_complaints,
24299 _("debug info with no main source gives macro %s "
24300 "on line %d: %s"),
24301 is_define ? _("definition") : _("undefinition"),
24302 line, body);
24303 break;
24304 }
24305 if ((line == 0 && !at_commandline)
24306 || (line != 0 && at_commandline))
24307 complaint (&symfile_complaints,
24308 _("debug info gives %s macro %s with %s line %d: %s"),
24309 at_commandline ? _("command-line") : _("in-file"),
24310 is_define ? _("definition") : _("undefinition"),
24311 line == 0 ? _("zero") : _("non-zero"), line, body);
24312
24313 if (is_define)
24314 parse_macro_definition (current_file, line, body);
24315 else
24316 {
24317 gdb_assert (macinfo_type == DW_MACRO_undef
24318 || macinfo_type == DW_MACRO_undef_strp
24319 || macinfo_type == DW_MACRO_undef_sup);
24320 macro_undef (current_file, line, body);
24321 }
24322 }
24323 break;
24324
24325 case DW_MACRO_start_file:
24326 {
24327 unsigned int bytes_read;
24328 int line, file;
24329
24330 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24331 mac_ptr += bytes_read;
24332 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24333 mac_ptr += bytes_read;
24334
24335 if ((line == 0 && !at_commandline)
24336 || (line != 0 && at_commandline))
24337 complaint (&symfile_complaints,
24338 _("debug info gives source %d included "
24339 "from %s at %s line %d"),
24340 file, at_commandline ? _("command-line") : _("file"),
24341 line == 0 ? _("zero") : _("non-zero"), line);
24342
24343 if (at_commandline)
24344 {
24345 /* This DW_MACRO_start_file was executed in the
24346 pass one. */
24347 at_commandline = 0;
24348 }
24349 else
24350 current_file = macro_start_file (file, line, current_file, lh);
24351 }
24352 break;
24353
24354 case DW_MACRO_end_file:
24355 if (! current_file)
24356 complaint (&symfile_complaints,
24357 _("macro debug info has an unmatched "
24358 "`close_file' directive"));
24359 else
24360 {
24361 current_file = current_file->included_by;
24362 if (! current_file)
24363 {
24364 enum dwarf_macro_record_type next_type;
24365
24366 /* GCC circa March 2002 doesn't produce the zero
24367 type byte marking the end of the compilation
24368 unit. Complain if it's not there, but exit no
24369 matter what. */
24370
24371 /* Do we at least have room for a macinfo type byte? */
24372 if (mac_ptr >= mac_end)
24373 {
24374 dwarf2_section_buffer_overflow_complaint (section);
24375 return;
24376 }
24377
24378 /* We don't increment mac_ptr here, so this is just
24379 a look-ahead. */
24380 next_type
24381 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24382 mac_ptr);
24383 if (next_type != 0)
24384 complaint (&symfile_complaints,
24385 _("no terminating 0-type entry for "
24386 "macros in `.debug_macinfo' section"));
24387
24388 return;
24389 }
24390 }
24391 break;
24392
24393 case DW_MACRO_import:
24394 case DW_MACRO_import_sup:
24395 {
24396 LONGEST offset;
24397 void **slot;
24398 bfd *include_bfd = abfd;
24399 struct dwarf2_section_info *include_section = section;
24400 const gdb_byte *include_mac_end = mac_end;
24401 int is_dwz = section_is_dwz;
24402 const gdb_byte *new_mac_ptr;
24403
24404 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24405 mac_ptr += offset_size;
24406
24407 if (macinfo_type == DW_MACRO_import_sup)
24408 {
24409 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24410
24411 dwarf2_read_section (objfile, &dwz->macro);
24412
24413 include_section = &dwz->macro;
24414 include_bfd = get_section_bfd_owner (include_section);
24415 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24416 is_dwz = 1;
24417 }
24418
24419 new_mac_ptr = include_section->buffer + offset;
24420 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24421
24422 if (*slot != NULL)
24423 {
24424 /* This has actually happened; see
24425 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24426 complaint (&symfile_complaints,
24427 _("recursive DW_MACRO_import in "
24428 ".debug_macro section"));
24429 }
24430 else
24431 {
24432 *slot = (void *) new_mac_ptr;
24433
24434 dwarf_decode_macro_bytes (dwarf2_per_objfile,
24435 include_bfd, new_mac_ptr,
24436 include_mac_end, current_file, lh,
24437 section, section_is_gnu, is_dwz,
24438 offset_size, include_hash);
24439
24440 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24441 }
24442 }
24443 break;
24444
24445 case DW_MACINFO_vendor_ext:
24446 if (!section_is_gnu)
24447 {
24448 unsigned int bytes_read;
24449
24450 /* This reads the constant, but since we don't recognize
24451 any vendor extensions, we ignore it. */
24452 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24453 mac_ptr += bytes_read;
24454 read_direct_string (abfd, mac_ptr, &bytes_read);
24455 mac_ptr += bytes_read;
24456
24457 /* We don't recognize any vendor extensions. */
24458 break;
24459 }
24460 /* FALLTHROUGH */
24461
24462 default:
24463 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24464 mac_ptr, mac_end, abfd, offset_size,
24465 section);
24466 if (mac_ptr == NULL)
24467 return;
24468 break;
24469 }
24470 DIAGNOSTIC_POP
24471 } while (macinfo_type != 0);
24472 }
24473
24474 static void
24475 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24476 int section_is_gnu)
24477 {
24478 struct dwarf2_per_objfile *dwarf2_per_objfile
24479 = cu->per_cu->dwarf2_per_objfile;
24480 struct objfile *objfile = dwarf2_per_objfile->objfile;
24481 struct line_header *lh = cu->line_header;
24482 bfd *abfd;
24483 const gdb_byte *mac_ptr, *mac_end;
24484 struct macro_source_file *current_file = 0;
24485 enum dwarf_macro_record_type macinfo_type;
24486 unsigned int offset_size = cu->header.offset_size;
24487 const gdb_byte *opcode_definitions[256];
24488 void **slot;
24489 struct dwarf2_section_info *section;
24490 const char *section_name;
24491
24492 if (cu->dwo_unit != NULL)
24493 {
24494 if (section_is_gnu)
24495 {
24496 section = &cu->dwo_unit->dwo_file->sections.macro;
24497 section_name = ".debug_macro.dwo";
24498 }
24499 else
24500 {
24501 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24502 section_name = ".debug_macinfo.dwo";
24503 }
24504 }
24505 else
24506 {
24507 if (section_is_gnu)
24508 {
24509 section = &dwarf2_per_objfile->macro;
24510 section_name = ".debug_macro";
24511 }
24512 else
24513 {
24514 section = &dwarf2_per_objfile->macinfo;
24515 section_name = ".debug_macinfo";
24516 }
24517 }
24518
24519 dwarf2_read_section (objfile, section);
24520 if (section->buffer == NULL)
24521 {
24522 complaint (&symfile_complaints, _("missing %s section"), section_name);
24523 return;
24524 }
24525 abfd = get_section_bfd_owner (section);
24526
24527 /* First pass: Find the name of the base filename.
24528 This filename is needed in order to process all macros whose definition
24529 (or undefinition) comes from the command line. These macros are defined
24530 before the first DW_MACINFO_start_file entry, and yet still need to be
24531 associated to the base file.
24532
24533 To determine the base file name, we scan the macro definitions until we
24534 reach the first DW_MACINFO_start_file entry. We then initialize
24535 CURRENT_FILE accordingly so that any macro definition found before the
24536 first DW_MACINFO_start_file can still be associated to the base file. */
24537
24538 mac_ptr = section->buffer + offset;
24539 mac_end = section->buffer + section->size;
24540
24541 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24542 &offset_size, section_is_gnu);
24543 if (mac_ptr == NULL)
24544 {
24545 /* We already issued a complaint. */
24546 return;
24547 }
24548
24549 do
24550 {
24551 /* Do we at least have room for a macinfo type byte? */
24552 if (mac_ptr >= mac_end)
24553 {
24554 /* Complaint is printed during the second pass as GDB will probably
24555 stop the first pass earlier upon finding
24556 DW_MACINFO_start_file. */
24557 break;
24558 }
24559
24560 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24561 mac_ptr++;
24562
24563 /* Note that we rely on the fact that the corresponding GNU and
24564 DWARF constants are the same. */
24565 DIAGNOSTIC_PUSH
24566 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24567 switch (macinfo_type)
24568 {
24569 /* A zero macinfo type indicates the end of the macro
24570 information. */
24571 case 0:
24572 break;
24573
24574 case DW_MACRO_define:
24575 case DW_MACRO_undef:
24576 /* Only skip the data by MAC_PTR. */
24577 {
24578 unsigned int bytes_read;
24579
24580 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24581 mac_ptr += bytes_read;
24582 read_direct_string (abfd, mac_ptr, &bytes_read);
24583 mac_ptr += bytes_read;
24584 }
24585 break;
24586
24587 case DW_MACRO_start_file:
24588 {
24589 unsigned int bytes_read;
24590 int line, file;
24591
24592 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24593 mac_ptr += bytes_read;
24594 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24595 mac_ptr += bytes_read;
24596
24597 current_file = macro_start_file (file, line, current_file, lh);
24598 }
24599 break;
24600
24601 case DW_MACRO_end_file:
24602 /* No data to skip by MAC_PTR. */
24603 break;
24604
24605 case DW_MACRO_define_strp:
24606 case DW_MACRO_undef_strp:
24607 case DW_MACRO_define_sup:
24608 case DW_MACRO_undef_sup:
24609 {
24610 unsigned int bytes_read;
24611
24612 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24613 mac_ptr += bytes_read;
24614 mac_ptr += offset_size;
24615 }
24616 break;
24617
24618 case DW_MACRO_import:
24619 case DW_MACRO_import_sup:
24620 /* Note that, according to the spec, a transparent include
24621 chain cannot call DW_MACRO_start_file. So, we can just
24622 skip this opcode. */
24623 mac_ptr += offset_size;
24624 break;
24625
24626 case DW_MACINFO_vendor_ext:
24627 /* Only skip the data by MAC_PTR. */
24628 if (!section_is_gnu)
24629 {
24630 unsigned int bytes_read;
24631
24632 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24633 mac_ptr += bytes_read;
24634 read_direct_string (abfd, mac_ptr, &bytes_read);
24635 mac_ptr += bytes_read;
24636 }
24637 /* FALLTHROUGH */
24638
24639 default:
24640 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24641 mac_ptr, mac_end, abfd, offset_size,
24642 section);
24643 if (mac_ptr == NULL)
24644 return;
24645 break;
24646 }
24647 DIAGNOSTIC_POP
24648 } while (macinfo_type != 0 && current_file == NULL);
24649
24650 /* Second pass: Process all entries.
24651
24652 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24653 command-line macro definitions/undefinitions. This flag is unset when we
24654 reach the first DW_MACINFO_start_file entry. */
24655
24656 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24657 htab_eq_pointer,
24658 NULL, xcalloc, xfree));
24659 mac_ptr = section->buffer + offset;
24660 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24661 *slot = (void *) mac_ptr;
24662 dwarf_decode_macro_bytes (dwarf2_per_objfile,
24663 abfd, mac_ptr, mac_end,
24664 current_file, lh, section,
24665 section_is_gnu, 0, offset_size,
24666 include_hash.get ());
24667 }
24668
24669 /* Check if the attribute's form is a DW_FORM_block*
24670 if so return true else false. */
24671
24672 static int
24673 attr_form_is_block (const struct attribute *attr)
24674 {
24675 return (attr == NULL ? 0 :
24676 attr->form == DW_FORM_block1
24677 || attr->form == DW_FORM_block2
24678 || attr->form == DW_FORM_block4
24679 || attr->form == DW_FORM_block
24680 || attr->form == DW_FORM_exprloc);
24681 }
24682
24683 /* Return non-zero if ATTR's value is a section offset --- classes
24684 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24685 You may use DW_UNSND (attr) to retrieve such offsets.
24686
24687 Section 7.5.4, "Attribute Encodings", explains that no attribute
24688 may have a value that belongs to more than one of these classes; it
24689 would be ambiguous if we did, because we use the same forms for all
24690 of them. */
24691
24692 static int
24693 attr_form_is_section_offset (const struct attribute *attr)
24694 {
24695 return (attr->form == DW_FORM_data4
24696 || attr->form == DW_FORM_data8
24697 || attr->form == DW_FORM_sec_offset);
24698 }
24699
24700 /* Return non-zero if ATTR's value falls in the 'constant' class, or
24701 zero otherwise. When this function returns true, you can apply
24702 dwarf2_get_attr_constant_value to it.
24703
24704 However, note that for some attributes you must check
24705 attr_form_is_section_offset before using this test. DW_FORM_data4
24706 and DW_FORM_data8 are members of both the constant class, and of
24707 the classes that contain offsets into other debug sections
24708 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24709 that, if an attribute's can be either a constant or one of the
24710 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
24711 taken as section offsets, not constants.
24712
24713 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
24714 cannot handle that. */
24715
24716 static int
24717 attr_form_is_constant (const struct attribute *attr)
24718 {
24719 switch (attr->form)
24720 {
24721 case DW_FORM_sdata:
24722 case DW_FORM_udata:
24723 case DW_FORM_data1:
24724 case DW_FORM_data2:
24725 case DW_FORM_data4:
24726 case DW_FORM_data8:
24727 case DW_FORM_implicit_const:
24728 return 1;
24729 default:
24730 return 0;
24731 }
24732 }
24733
24734
24735 /* DW_ADDR is always stored already as sect_offset; despite for the forms
24736 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
24737
24738 static int
24739 attr_form_is_ref (const struct attribute *attr)
24740 {
24741 switch (attr->form)
24742 {
24743 case DW_FORM_ref_addr:
24744 case DW_FORM_ref1:
24745 case DW_FORM_ref2:
24746 case DW_FORM_ref4:
24747 case DW_FORM_ref8:
24748 case DW_FORM_ref_udata:
24749 case DW_FORM_GNU_ref_alt:
24750 return 1;
24751 default:
24752 return 0;
24753 }
24754 }
24755
24756 /* Return the .debug_loc section to use for CU.
24757 For DWO files use .debug_loc.dwo. */
24758
24759 static struct dwarf2_section_info *
24760 cu_debug_loc_section (struct dwarf2_cu *cu)
24761 {
24762 struct dwarf2_per_objfile *dwarf2_per_objfile
24763 = cu->per_cu->dwarf2_per_objfile;
24764
24765 if (cu->dwo_unit)
24766 {
24767 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24768
24769 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
24770 }
24771 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
24772 : &dwarf2_per_objfile->loc);
24773 }
24774
24775 /* A helper function that fills in a dwarf2_loclist_baton. */
24776
24777 static void
24778 fill_in_loclist_baton (struct dwarf2_cu *cu,
24779 struct dwarf2_loclist_baton *baton,
24780 const struct attribute *attr)
24781 {
24782 struct dwarf2_per_objfile *dwarf2_per_objfile
24783 = cu->per_cu->dwarf2_per_objfile;
24784 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24785
24786 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
24787
24788 baton->per_cu = cu->per_cu;
24789 gdb_assert (baton->per_cu);
24790 /* We don't know how long the location list is, but make sure we
24791 don't run off the edge of the section. */
24792 baton->size = section->size - DW_UNSND (attr);
24793 baton->data = section->buffer + DW_UNSND (attr);
24794 baton->base_address = cu->base_address;
24795 baton->from_dwo = cu->dwo_unit != NULL;
24796 }
24797
24798 static void
24799 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
24800 struct dwarf2_cu *cu, int is_block)
24801 {
24802 struct dwarf2_per_objfile *dwarf2_per_objfile
24803 = cu->per_cu->dwarf2_per_objfile;
24804 struct objfile *objfile = dwarf2_per_objfile->objfile;
24805 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24806
24807 if (attr_form_is_section_offset (attr)
24808 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
24809 the section. If so, fall through to the complaint in the
24810 other branch. */
24811 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
24812 {
24813 struct dwarf2_loclist_baton *baton;
24814
24815 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
24816
24817 fill_in_loclist_baton (cu, baton, attr);
24818
24819 if (cu->base_known == 0)
24820 complaint (&symfile_complaints,
24821 _("Location list used without "
24822 "specifying the CU base address."));
24823
24824 SYMBOL_ACLASS_INDEX (sym) = (is_block
24825 ? dwarf2_loclist_block_index
24826 : dwarf2_loclist_index);
24827 SYMBOL_LOCATION_BATON (sym) = baton;
24828 }
24829 else
24830 {
24831 struct dwarf2_locexpr_baton *baton;
24832
24833 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
24834 baton->per_cu = cu->per_cu;
24835 gdb_assert (baton->per_cu);
24836
24837 if (attr_form_is_block (attr))
24838 {
24839 /* Note that we're just copying the block's data pointer
24840 here, not the actual data. We're still pointing into the
24841 info_buffer for SYM's objfile; right now we never release
24842 that buffer, but when we do clean up properly this may
24843 need to change. */
24844 baton->size = DW_BLOCK (attr)->size;
24845 baton->data = DW_BLOCK (attr)->data;
24846 }
24847 else
24848 {
24849 dwarf2_invalid_attrib_class_complaint ("location description",
24850 SYMBOL_NATURAL_NAME (sym));
24851 baton->size = 0;
24852 }
24853
24854 SYMBOL_ACLASS_INDEX (sym) = (is_block
24855 ? dwarf2_locexpr_block_index
24856 : dwarf2_locexpr_index);
24857 SYMBOL_LOCATION_BATON (sym) = baton;
24858 }
24859 }
24860
24861 /* Return the OBJFILE associated with the compilation unit CU. If CU
24862 came from a separate debuginfo file, then the master objfile is
24863 returned. */
24864
24865 struct objfile *
24866 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
24867 {
24868 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24869
24870 /* Return the master objfile, so that we can report and look up the
24871 correct file containing this variable. */
24872 if (objfile->separate_debug_objfile_backlink)
24873 objfile = objfile->separate_debug_objfile_backlink;
24874
24875 return objfile;
24876 }
24877
24878 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
24879 (CU_HEADERP is unused in such case) or prepare a temporary copy at
24880 CU_HEADERP first. */
24881
24882 static const struct comp_unit_head *
24883 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
24884 struct dwarf2_per_cu_data *per_cu)
24885 {
24886 const gdb_byte *info_ptr;
24887
24888 if (per_cu->cu)
24889 return &per_cu->cu->header;
24890
24891 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
24892
24893 memset (cu_headerp, 0, sizeof (*cu_headerp));
24894 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
24895 rcuh_kind::COMPILE);
24896
24897 return cu_headerp;
24898 }
24899
24900 /* Return the address size given in the compilation unit header for CU. */
24901
24902 int
24903 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
24904 {
24905 struct comp_unit_head cu_header_local;
24906 const struct comp_unit_head *cu_headerp;
24907
24908 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24909
24910 return cu_headerp->addr_size;
24911 }
24912
24913 /* Return the offset size given in the compilation unit header for CU. */
24914
24915 int
24916 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
24917 {
24918 struct comp_unit_head cu_header_local;
24919 const struct comp_unit_head *cu_headerp;
24920
24921 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24922
24923 return cu_headerp->offset_size;
24924 }
24925
24926 /* See its dwarf2loc.h declaration. */
24927
24928 int
24929 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
24930 {
24931 struct comp_unit_head cu_header_local;
24932 const struct comp_unit_head *cu_headerp;
24933
24934 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24935
24936 if (cu_headerp->version == 2)
24937 return cu_headerp->addr_size;
24938 else
24939 return cu_headerp->offset_size;
24940 }
24941
24942 /* Return the text offset of the CU. The returned offset comes from
24943 this CU's objfile. If this objfile came from a separate debuginfo
24944 file, then the offset may be different from the corresponding
24945 offset in the parent objfile. */
24946
24947 CORE_ADDR
24948 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
24949 {
24950 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24951
24952 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
24953 }
24954
24955 /* Return DWARF version number of PER_CU. */
24956
24957 short
24958 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
24959 {
24960 return per_cu->dwarf_version;
24961 }
24962
24963 /* Locate the .debug_info compilation unit from CU's objfile which contains
24964 the DIE at OFFSET. Raises an error on failure. */
24965
24966 static struct dwarf2_per_cu_data *
24967 dwarf2_find_containing_comp_unit (sect_offset sect_off,
24968 unsigned int offset_in_dwz,
24969 struct dwarf2_per_objfile *dwarf2_per_objfile)
24970 {
24971 struct dwarf2_per_cu_data *this_cu;
24972 int low, high;
24973 const sect_offset *cu_off;
24974
24975 low = 0;
24976 high = dwarf2_per_objfile->all_comp_units.size () - 1;
24977 while (high > low)
24978 {
24979 struct dwarf2_per_cu_data *mid_cu;
24980 int mid = low + (high - low) / 2;
24981
24982 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
24983 cu_off = &mid_cu->sect_off;
24984 if (mid_cu->is_dwz > offset_in_dwz
24985 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
24986 high = mid;
24987 else
24988 low = mid + 1;
24989 }
24990 gdb_assert (low == high);
24991 this_cu = dwarf2_per_objfile->all_comp_units[low];
24992 cu_off = &this_cu->sect_off;
24993 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
24994 {
24995 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
24996 error (_("Dwarf Error: could not find partial DIE containing "
24997 "offset %s [in module %s]"),
24998 sect_offset_str (sect_off),
24999 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25000
25001 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25002 <= sect_off);
25003 return dwarf2_per_objfile->all_comp_units[low-1];
25004 }
25005 else
25006 {
25007 this_cu = dwarf2_per_objfile->all_comp_units[low];
25008 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
25009 && sect_off >= this_cu->sect_off + this_cu->length)
25010 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25011 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25012 return this_cu;
25013 }
25014 }
25015
25016 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25017
25018 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25019 : per_cu (per_cu_),
25020 mark (0),
25021 has_loclist (0),
25022 checked_producer (0),
25023 producer_is_gxx_lt_4_6 (0),
25024 producer_is_gcc_lt_4_3 (0),
25025 producer_is_icc_lt_14 (0),
25026 processing_has_namespace_info (0)
25027 {
25028 per_cu->cu = this;
25029 }
25030
25031 /* Destroy a dwarf2_cu. */
25032
25033 dwarf2_cu::~dwarf2_cu ()
25034 {
25035 per_cu->cu = NULL;
25036 }
25037
25038 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25039
25040 static void
25041 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25042 enum language pretend_language)
25043 {
25044 struct attribute *attr;
25045
25046 /* Set the language we're debugging. */
25047 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25048 if (attr)
25049 set_cu_language (DW_UNSND (attr), cu);
25050 else
25051 {
25052 cu->language = pretend_language;
25053 cu->language_defn = language_def (cu->language);
25054 }
25055
25056 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25057 }
25058
25059 /* Increase the age counter on each cached compilation unit, and free
25060 any that are too old. */
25061
25062 static void
25063 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25064 {
25065 struct dwarf2_per_cu_data *per_cu, **last_chain;
25066
25067 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25068 per_cu = dwarf2_per_objfile->read_in_chain;
25069 while (per_cu != NULL)
25070 {
25071 per_cu->cu->last_used ++;
25072 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25073 dwarf2_mark (per_cu->cu);
25074 per_cu = per_cu->cu->read_in_chain;
25075 }
25076
25077 per_cu = dwarf2_per_objfile->read_in_chain;
25078 last_chain = &dwarf2_per_objfile->read_in_chain;
25079 while (per_cu != NULL)
25080 {
25081 struct dwarf2_per_cu_data *next_cu;
25082
25083 next_cu = per_cu->cu->read_in_chain;
25084
25085 if (!per_cu->cu->mark)
25086 {
25087 delete per_cu->cu;
25088 *last_chain = next_cu;
25089 }
25090 else
25091 last_chain = &per_cu->cu->read_in_chain;
25092
25093 per_cu = next_cu;
25094 }
25095 }
25096
25097 /* Remove a single compilation unit from the cache. */
25098
25099 static void
25100 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25101 {
25102 struct dwarf2_per_cu_data *per_cu, **last_chain;
25103 struct dwarf2_per_objfile *dwarf2_per_objfile
25104 = target_per_cu->dwarf2_per_objfile;
25105
25106 per_cu = dwarf2_per_objfile->read_in_chain;
25107 last_chain = &dwarf2_per_objfile->read_in_chain;
25108 while (per_cu != NULL)
25109 {
25110 struct dwarf2_per_cu_data *next_cu;
25111
25112 next_cu = per_cu->cu->read_in_chain;
25113
25114 if (per_cu == target_per_cu)
25115 {
25116 delete per_cu->cu;
25117 per_cu->cu = NULL;
25118 *last_chain = next_cu;
25119 break;
25120 }
25121 else
25122 last_chain = &per_cu->cu->read_in_chain;
25123
25124 per_cu = next_cu;
25125 }
25126 }
25127
25128 /* Release all extra memory associated with OBJFILE. */
25129
25130 void
25131 dwarf2_free_objfile (struct objfile *objfile)
25132 {
25133 struct dwarf2_per_objfile *dwarf2_per_objfile
25134 = get_dwarf2_per_objfile (objfile);
25135
25136 delete dwarf2_per_objfile;
25137 }
25138
25139 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25140 We store these in a hash table separate from the DIEs, and preserve them
25141 when the DIEs are flushed out of cache.
25142
25143 The CU "per_cu" pointer is needed because offset alone is not enough to
25144 uniquely identify the type. A file may have multiple .debug_types sections,
25145 or the type may come from a DWO file. Furthermore, while it's more logical
25146 to use per_cu->section+offset, with Fission the section with the data is in
25147 the DWO file but we don't know that section at the point we need it.
25148 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25149 because we can enter the lookup routine, get_die_type_at_offset, from
25150 outside this file, and thus won't necessarily have PER_CU->cu.
25151 Fortunately, PER_CU is stable for the life of the objfile. */
25152
25153 struct dwarf2_per_cu_offset_and_type
25154 {
25155 const struct dwarf2_per_cu_data *per_cu;
25156 sect_offset sect_off;
25157 struct type *type;
25158 };
25159
25160 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25161
25162 static hashval_t
25163 per_cu_offset_and_type_hash (const void *item)
25164 {
25165 const struct dwarf2_per_cu_offset_and_type *ofs
25166 = (const struct dwarf2_per_cu_offset_and_type *) item;
25167
25168 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25169 }
25170
25171 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25172
25173 static int
25174 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25175 {
25176 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25177 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25178 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25179 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25180
25181 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25182 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25183 }
25184
25185 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25186 table if necessary. For convenience, return TYPE.
25187
25188 The DIEs reading must have careful ordering to:
25189 * Not cause infite loops trying to read in DIEs as a prerequisite for
25190 reading current DIE.
25191 * Not trying to dereference contents of still incompletely read in types
25192 while reading in other DIEs.
25193 * Enable referencing still incompletely read in types just by a pointer to
25194 the type without accessing its fields.
25195
25196 Therefore caller should follow these rules:
25197 * Try to fetch any prerequisite types we may need to build this DIE type
25198 before building the type and calling set_die_type.
25199 * After building type call set_die_type for current DIE as soon as
25200 possible before fetching more types to complete the current type.
25201 * Make the type as complete as possible before fetching more types. */
25202
25203 static struct type *
25204 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25205 {
25206 struct dwarf2_per_objfile *dwarf2_per_objfile
25207 = cu->per_cu->dwarf2_per_objfile;
25208 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25209 struct objfile *objfile = dwarf2_per_objfile->objfile;
25210 struct attribute *attr;
25211 struct dynamic_prop prop;
25212
25213 /* For Ada types, make sure that the gnat-specific data is always
25214 initialized (if not already set). There are a few types where
25215 we should not be doing so, because the type-specific area is
25216 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25217 where the type-specific area is used to store the floatformat).
25218 But this is not a problem, because the gnat-specific information
25219 is actually not needed for these types. */
25220 if (need_gnat_info (cu)
25221 && TYPE_CODE (type) != TYPE_CODE_FUNC
25222 && TYPE_CODE (type) != TYPE_CODE_FLT
25223 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25224 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25225 && TYPE_CODE (type) != TYPE_CODE_METHOD
25226 && !HAVE_GNAT_AUX_INFO (type))
25227 INIT_GNAT_SPECIFIC (type);
25228
25229 /* Read DW_AT_allocated and set in type. */
25230 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25231 if (attr_form_is_block (attr))
25232 {
25233 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25234 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25235 }
25236 else if (attr != NULL)
25237 {
25238 complaint (&symfile_complaints,
25239 _("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25240 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25241 sect_offset_str (die->sect_off));
25242 }
25243
25244 /* Read DW_AT_associated and set in type. */
25245 attr = dwarf2_attr (die, DW_AT_associated, cu);
25246 if (attr_form_is_block (attr))
25247 {
25248 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25249 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25250 }
25251 else if (attr != NULL)
25252 {
25253 complaint (&symfile_complaints,
25254 _("DW_AT_associated has the wrong form (%s) at DIE %s"),
25255 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25256 sect_offset_str (die->sect_off));
25257 }
25258
25259 /* Read DW_AT_data_location and set in type. */
25260 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25261 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25262 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25263
25264 if (dwarf2_per_objfile->die_type_hash == NULL)
25265 {
25266 dwarf2_per_objfile->die_type_hash =
25267 htab_create_alloc_ex (127,
25268 per_cu_offset_and_type_hash,
25269 per_cu_offset_and_type_eq,
25270 NULL,
25271 &objfile->objfile_obstack,
25272 hashtab_obstack_allocate,
25273 dummy_obstack_deallocate);
25274 }
25275
25276 ofs.per_cu = cu->per_cu;
25277 ofs.sect_off = die->sect_off;
25278 ofs.type = type;
25279 slot = (struct dwarf2_per_cu_offset_and_type **)
25280 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25281 if (*slot)
25282 complaint (&symfile_complaints,
25283 _("A problem internal to GDB: DIE %s has type already set"),
25284 sect_offset_str (die->sect_off));
25285 *slot = XOBNEW (&objfile->objfile_obstack,
25286 struct dwarf2_per_cu_offset_and_type);
25287 **slot = ofs;
25288 return type;
25289 }
25290
25291 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25292 or return NULL if the die does not have a saved type. */
25293
25294 static struct type *
25295 get_die_type_at_offset (sect_offset sect_off,
25296 struct dwarf2_per_cu_data *per_cu)
25297 {
25298 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25299 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25300
25301 if (dwarf2_per_objfile->die_type_hash == NULL)
25302 return NULL;
25303
25304 ofs.per_cu = per_cu;
25305 ofs.sect_off = sect_off;
25306 slot = ((struct dwarf2_per_cu_offset_and_type *)
25307 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25308 if (slot)
25309 return slot->type;
25310 else
25311 return NULL;
25312 }
25313
25314 /* Look up the type for DIE in CU in die_type_hash,
25315 or return NULL if DIE does not have a saved type. */
25316
25317 static struct type *
25318 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25319 {
25320 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25321 }
25322
25323 /* Add a dependence relationship from CU to REF_PER_CU. */
25324
25325 static void
25326 dwarf2_add_dependence (struct dwarf2_cu *cu,
25327 struct dwarf2_per_cu_data *ref_per_cu)
25328 {
25329 void **slot;
25330
25331 if (cu->dependencies == NULL)
25332 cu->dependencies
25333 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25334 NULL, &cu->comp_unit_obstack,
25335 hashtab_obstack_allocate,
25336 dummy_obstack_deallocate);
25337
25338 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25339 if (*slot == NULL)
25340 *slot = ref_per_cu;
25341 }
25342
25343 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25344 Set the mark field in every compilation unit in the
25345 cache that we must keep because we are keeping CU. */
25346
25347 static int
25348 dwarf2_mark_helper (void **slot, void *data)
25349 {
25350 struct dwarf2_per_cu_data *per_cu;
25351
25352 per_cu = (struct dwarf2_per_cu_data *) *slot;
25353
25354 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25355 reading of the chain. As such dependencies remain valid it is not much
25356 useful to track and undo them during QUIT cleanups. */
25357 if (per_cu->cu == NULL)
25358 return 1;
25359
25360 if (per_cu->cu->mark)
25361 return 1;
25362 per_cu->cu->mark = 1;
25363
25364 if (per_cu->cu->dependencies != NULL)
25365 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25366
25367 return 1;
25368 }
25369
25370 /* Set the mark field in CU and in every other compilation unit in the
25371 cache that we must keep because we are keeping CU. */
25372
25373 static void
25374 dwarf2_mark (struct dwarf2_cu *cu)
25375 {
25376 if (cu->mark)
25377 return;
25378 cu->mark = 1;
25379 if (cu->dependencies != NULL)
25380 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25381 }
25382
25383 static void
25384 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25385 {
25386 while (per_cu)
25387 {
25388 per_cu->cu->mark = 0;
25389 per_cu = per_cu->cu->read_in_chain;
25390 }
25391 }
25392
25393 /* Trivial hash function for partial_die_info: the hash value of a DIE
25394 is its offset in .debug_info for this objfile. */
25395
25396 static hashval_t
25397 partial_die_hash (const void *item)
25398 {
25399 const struct partial_die_info *part_die
25400 = (const struct partial_die_info *) item;
25401
25402 return to_underlying (part_die->sect_off);
25403 }
25404
25405 /* Trivial comparison function for partial_die_info structures: two DIEs
25406 are equal if they have the same offset. */
25407
25408 static int
25409 partial_die_eq (const void *item_lhs, const void *item_rhs)
25410 {
25411 const struct partial_die_info *part_die_lhs
25412 = (const struct partial_die_info *) item_lhs;
25413 const struct partial_die_info *part_die_rhs
25414 = (const struct partial_die_info *) item_rhs;
25415
25416 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25417 }
25418
25419 static struct cmd_list_element *set_dwarf_cmdlist;
25420 static struct cmd_list_element *show_dwarf_cmdlist;
25421
25422 static void
25423 set_dwarf_cmd (const char *args, int from_tty)
25424 {
25425 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25426 gdb_stdout);
25427 }
25428
25429 static void
25430 show_dwarf_cmd (const char *args, int from_tty)
25431 {
25432 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25433 }
25434
25435 int dwarf_always_disassemble;
25436
25437 static void
25438 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25439 struct cmd_list_element *c, const char *value)
25440 {
25441 fprintf_filtered (file,
25442 _("Whether to always disassemble "
25443 "DWARF expressions is %s.\n"),
25444 value);
25445 }
25446
25447 static void
25448 show_check_physname (struct ui_file *file, int from_tty,
25449 struct cmd_list_element *c, const char *value)
25450 {
25451 fprintf_filtered (file,
25452 _("Whether to check \"physname\" is %s.\n"),
25453 value);
25454 }
25455
25456 void
25457 _initialize_dwarf2_read (void)
25458 {
25459
25460 dwarf2_objfile_data_key = register_objfile_data ();
25461
25462 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25463 Set DWARF specific variables.\n\
25464 Configure DWARF variables such as the cache size"),
25465 &set_dwarf_cmdlist, "maintenance set dwarf ",
25466 0/*allow-unknown*/, &maintenance_set_cmdlist);
25467
25468 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25469 Show DWARF specific variables\n\
25470 Show DWARF variables such as the cache size"),
25471 &show_dwarf_cmdlist, "maintenance show dwarf ",
25472 0/*allow-unknown*/, &maintenance_show_cmdlist);
25473
25474 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25475 &dwarf_max_cache_age, _("\
25476 Set the upper bound on the age of cached DWARF compilation units."), _("\
25477 Show the upper bound on the age of cached DWARF compilation units."), _("\
25478 A higher limit means that cached compilation units will be stored\n\
25479 in memory longer, and more total memory will be used. Zero disables\n\
25480 caching, which can slow down startup."),
25481 NULL,
25482 show_dwarf_max_cache_age,
25483 &set_dwarf_cmdlist,
25484 &show_dwarf_cmdlist);
25485
25486 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25487 &dwarf_always_disassemble, _("\
25488 Set whether `info address' always disassembles DWARF expressions."), _("\
25489 Show whether `info address' always disassembles DWARF expressions."), _("\
25490 When enabled, DWARF expressions are always printed in an assembly-like\n\
25491 syntax. When disabled, expressions will be printed in a more\n\
25492 conversational style, when possible."),
25493 NULL,
25494 show_dwarf_always_disassemble,
25495 &set_dwarf_cmdlist,
25496 &show_dwarf_cmdlist);
25497
25498 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25499 Set debugging of the DWARF reader."), _("\
25500 Show debugging of the DWARF reader."), _("\
25501 When enabled (non-zero), debugging messages are printed during DWARF\n\
25502 reading and symtab expansion. A value of 1 (one) provides basic\n\
25503 information. A value greater than 1 provides more verbose information."),
25504 NULL,
25505 NULL,
25506 &setdebuglist, &showdebuglist);
25507
25508 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25509 Set debugging of the DWARF DIE reader."), _("\
25510 Show debugging of the DWARF DIE reader."), _("\
25511 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25512 The value is the maximum depth to print."),
25513 NULL,
25514 NULL,
25515 &setdebuglist, &showdebuglist);
25516
25517 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25518 Set debugging of the dwarf line reader."), _("\
25519 Show debugging of the dwarf line reader."), _("\
25520 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25521 A value of 1 (one) provides basic information.\n\
25522 A value greater than 1 provides more verbose information."),
25523 NULL,
25524 NULL,
25525 &setdebuglist, &showdebuglist);
25526
25527 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25528 Set cross-checking of \"physname\" code against demangler."), _("\
25529 Show cross-checking of \"physname\" code against demangler."), _("\
25530 When enabled, GDB's internal \"physname\" code is checked against\n\
25531 the demangler."),
25532 NULL, show_check_physname,
25533 &setdebuglist, &showdebuglist);
25534
25535 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25536 no_class, &use_deprecated_index_sections, _("\
25537 Set whether to use deprecated gdb_index sections."), _("\
25538 Show whether to use deprecated gdb_index sections."), _("\
25539 When enabled, deprecated .gdb_index sections are used anyway.\n\
25540 Normally they are ignored either because of a missing feature or\n\
25541 performance issue.\n\
25542 Warning: This option must be enabled before gdb reads the file."),
25543 NULL,
25544 NULL,
25545 &setlist, &showlist);
25546
25547 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25548 &dwarf2_locexpr_funcs);
25549 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25550 &dwarf2_loclist_funcs);
25551
25552 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25553 &dwarf2_block_frame_base_locexpr_funcs);
25554 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25555 &dwarf2_block_frame_base_loclist_funcs);
25556
25557 #if GDB_SELF_TEST
25558 selftests::register_test ("dw2_expand_symtabs_matching",
25559 selftests::dw2_expand_symtabs_matching::run_test);
25560 #endif
25561 }
This page took 0.519187 seconds and 5 git commands to generate.