Record explicit block ranges from dwarf2read.c
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2018 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2read.h"
33 #include "dwarf-index-cache.h"
34 #include "dwarf-index-common.h"
35 #include "bfd.h"
36 #include "elf-bfd.h"
37 #include "symtab.h"
38 #include "gdbtypes.h"
39 #include "objfiles.h"
40 #include "dwarf2.h"
41 #include "buildsym.h"
42 #include "demangle.h"
43 #include "gdb-demangle.h"
44 #include "expression.h"
45 #include "filenames.h" /* for DOSish file names */
46 #include "macrotab.h"
47 #include "language.h"
48 #include "complaints.h"
49 #include "bcache.h"
50 #include "dwarf2expr.h"
51 #include "dwarf2loc.h"
52 #include "cp-support.h"
53 #include "hashtab.h"
54 #include "command.h"
55 #include "gdbcmd.h"
56 #include "block.h"
57 #include "addrmap.h"
58 #include "typeprint.h"
59 #include "psympriv.h"
60 #include <sys/stat.h>
61 #include "completer.h"
62 #include "vec.h"
63 #include "c-lang.h"
64 #include "go-lang.h"
65 #include "valprint.h"
66 #include "gdbcore.h" /* for gnutarget */
67 #include "gdb/gdb-index.h"
68 #include <ctype.h>
69 #include "gdb_bfd.h"
70 #include "f-lang.h"
71 #include "source.h"
72 #include "filestuff.h"
73 #include "build-id.h"
74 #include "namespace.h"
75 #include "common/gdb_unlinker.h"
76 #include "common/function-view.h"
77 #include "common/gdb_optional.h"
78 #include "common/underlying.h"
79 #include "common/byte-vector.h"
80 #include "common/hash_enum.h"
81 #include "filename-seen-cache.h"
82 #include "producer.h"
83 #include <fcntl.h>
84 #include <sys/types.h>
85 #include <algorithm>
86 #include <unordered_set>
87 #include <unordered_map>
88 #include "selftest.h"
89 #include <cmath>
90 #include <set>
91 #include <forward_list>
92 #include "rust-lang.h"
93 #include "common/pathstuff.h"
94
95 /* When == 1, print basic high level tracing messages.
96 When > 1, be more verbose.
97 This is in contrast to the low level DIE reading of dwarf_die_debug. */
98 static unsigned int dwarf_read_debug = 0;
99
100 /* When non-zero, dump DIEs after they are read in. */
101 static unsigned int dwarf_die_debug = 0;
102
103 /* When non-zero, dump line number entries as they are read in. */
104 static unsigned int dwarf_line_debug = 0;
105
106 /* When non-zero, cross-check physname against demangler. */
107 static int check_physname = 0;
108
109 /* When non-zero, do not reject deprecated .gdb_index sections. */
110 static int use_deprecated_index_sections = 0;
111
112 static const struct objfile_data *dwarf2_objfile_data_key;
113
114 /* The "aclass" indices for various kinds of computed DWARF symbols. */
115
116 static int dwarf2_locexpr_index;
117 static int dwarf2_loclist_index;
118 static int dwarf2_locexpr_block_index;
119 static int dwarf2_loclist_block_index;
120
121 /* An index into a (C++) symbol name component in a symbol name as
122 recorded in the mapped_index's symbol table. For each C++ symbol
123 in the symbol table, we record one entry for the start of each
124 component in the symbol in a table of name components, and then
125 sort the table, in order to be able to binary search symbol names,
126 ignoring leading namespaces, both completion and regular look up.
127 For example, for symbol "A::B::C", we'll have an entry that points
128 to "A::B::C", another that points to "B::C", and another for "C".
129 Note that function symbols in GDB index have no parameter
130 information, just the function/method names. You can convert a
131 name_component to a "const char *" using the
132 'mapped_index::symbol_name_at(offset_type)' method. */
133
134 struct name_component
135 {
136 /* Offset in the symbol name where the component starts. Stored as
137 a (32-bit) offset instead of a pointer to save memory and improve
138 locality on 64-bit architectures. */
139 offset_type name_offset;
140
141 /* The symbol's index in the symbol and constant pool tables of a
142 mapped_index. */
143 offset_type idx;
144 };
145
146 /* Base class containing bits shared by both .gdb_index and
147 .debug_name indexes. */
148
149 struct mapped_index_base
150 {
151 mapped_index_base () = default;
152 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
153
154 /* The name_component table (a sorted vector). See name_component's
155 description above. */
156 std::vector<name_component> name_components;
157
158 /* How NAME_COMPONENTS is sorted. */
159 enum case_sensitivity name_components_casing;
160
161 /* Return the number of names in the symbol table. */
162 virtual size_t symbol_name_count () const = 0;
163
164 /* Get the name of the symbol at IDX in the symbol table. */
165 virtual const char *symbol_name_at (offset_type idx) const = 0;
166
167 /* Return whether the name at IDX in the symbol table should be
168 ignored. */
169 virtual bool symbol_name_slot_invalid (offset_type idx) const
170 {
171 return false;
172 }
173
174 /* Build the symbol name component sorted vector, if we haven't
175 yet. */
176 void build_name_components ();
177
178 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
179 possible matches for LN_NO_PARAMS in the name component
180 vector. */
181 std::pair<std::vector<name_component>::const_iterator,
182 std::vector<name_component>::const_iterator>
183 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
184
185 /* Prevent deleting/destroying via a base class pointer. */
186 protected:
187 ~mapped_index_base() = default;
188 };
189
190 /* A description of the mapped index. The file format is described in
191 a comment by the code that writes the index. */
192 struct mapped_index final : public mapped_index_base
193 {
194 /* A slot/bucket in the symbol table hash. */
195 struct symbol_table_slot
196 {
197 const offset_type name;
198 const offset_type vec;
199 };
200
201 /* Index data format version. */
202 int version = 0;
203
204 /* The address table data. */
205 gdb::array_view<const gdb_byte> address_table;
206
207 /* The symbol table, implemented as a hash table. */
208 gdb::array_view<symbol_table_slot> symbol_table;
209
210 /* A pointer to the constant pool. */
211 const char *constant_pool = nullptr;
212
213 bool symbol_name_slot_invalid (offset_type idx) const override
214 {
215 const auto &bucket = this->symbol_table[idx];
216 return bucket.name == 0 && bucket.vec;
217 }
218
219 /* Convenience method to get at the name of the symbol at IDX in the
220 symbol table. */
221 const char *symbol_name_at (offset_type idx) const override
222 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
223
224 size_t symbol_name_count () const override
225 { return this->symbol_table.size (); }
226 };
227
228 /* A description of the mapped .debug_names.
229 Uninitialized map has CU_COUNT 0. */
230 struct mapped_debug_names final : public mapped_index_base
231 {
232 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
233 : dwarf2_per_objfile (dwarf2_per_objfile_)
234 {}
235
236 struct dwarf2_per_objfile *dwarf2_per_objfile;
237 bfd_endian dwarf5_byte_order;
238 bool dwarf5_is_dwarf64;
239 bool augmentation_is_gdb;
240 uint8_t offset_size;
241 uint32_t cu_count = 0;
242 uint32_t tu_count, bucket_count, name_count;
243 const gdb_byte *cu_table_reordered, *tu_table_reordered;
244 const uint32_t *bucket_table_reordered, *hash_table_reordered;
245 const gdb_byte *name_table_string_offs_reordered;
246 const gdb_byte *name_table_entry_offs_reordered;
247 const gdb_byte *entry_pool;
248
249 struct index_val
250 {
251 ULONGEST dwarf_tag;
252 struct attr
253 {
254 /* Attribute name DW_IDX_*. */
255 ULONGEST dw_idx;
256
257 /* Attribute form DW_FORM_*. */
258 ULONGEST form;
259
260 /* Value if FORM is DW_FORM_implicit_const. */
261 LONGEST implicit_const;
262 };
263 std::vector<attr> attr_vec;
264 };
265
266 std::unordered_map<ULONGEST, index_val> abbrev_map;
267
268 const char *namei_to_name (uint32_t namei) const;
269
270 /* Implementation of the mapped_index_base virtual interface, for
271 the name_components cache. */
272
273 const char *symbol_name_at (offset_type idx) const override
274 { return namei_to_name (idx); }
275
276 size_t symbol_name_count () const override
277 { return this->name_count; }
278 };
279
280 /* See dwarf2read.h. */
281
282 dwarf2_per_objfile *
283 get_dwarf2_per_objfile (struct objfile *objfile)
284 {
285 return ((struct dwarf2_per_objfile *)
286 objfile_data (objfile, dwarf2_objfile_data_key));
287 }
288
289 /* Set the dwarf2_per_objfile associated to OBJFILE. */
290
291 void
292 set_dwarf2_per_objfile (struct objfile *objfile,
293 struct dwarf2_per_objfile *dwarf2_per_objfile)
294 {
295 gdb_assert (get_dwarf2_per_objfile (objfile) == NULL);
296 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
297 }
298
299 /* Default names of the debugging sections. */
300
301 /* Note that if the debugging section has been compressed, it might
302 have a name like .zdebug_info. */
303
304 static const struct dwarf2_debug_sections dwarf2_elf_names =
305 {
306 { ".debug_info", ".zdebug_info" },
307 { ".debug_abbrev", ".zdebug_abbrev" },
308 { ".debug_line", ".zdebug_line" },
309 { ".debug_loc", ".zdebug_loc" },
310 { ".debug_loclists", ".zdebug_loclists" },
311 { ".debug_macinfo", ".zdebug_macinfo" },
312 { ".debug_macro", ".zdebug_macro" },
313 { ".debug_str", ".zdebug_str" },
314 { ".debug_line_str", ".zdebug_line_str" },
315 { ".debug_ranges", ".zdebug_ranges" },
316 { ".debug_rnglists", ".zdebug_rnglists" },
317 { ".debug_types", ".zdebug_types" },
318 { ".debug_addr", ".zdebug_addr" },
319 { ".debug_frame", ".zdebug_frame" },
320 { ".eh_frame", NULL },
321 { ".gdb_index", ".zgdb_index" },
322 { ".debug_names", ".zdebug_names" },
323 { ".debug_aranges", ".zdebug_aranges" },
324 23
325 };
326
327 /* List of DWO/DWP sections. */
328
329 static const struct dwop_section_names
330 {
331 struct dwarf2_section_names abbrev_dwo;
332 struct dwarf2_section_names info_dwo;
333 struct dwarf2_section_names line_dwo;
334 struct dwarf2_section_names loc_dwo;
335 struct dwarf2_section_names loclists_dwo;
336 struct dwarf2_section_names macinfo_dwo;
337 struct dwarf2_section_names macro_dwo;
338 struct dwarf2_section_names str_dwo;
339 struct dwarf2_section_names str_offsets_dwo;
340 struct dwarf2_section_names types_dwo;
341 struct dwarf2_section_names cu_index;
342 struct dwarf2_section_names tu_index;
343 }
344 dwop_section_names =
345 {
346 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
347 { ".debug_info.dwo", ".zdebug_info.dwo" },
348 { ".debug_line.dwo", ".zdebug_line.dwo" },
349 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
350 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
351 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
352 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
353 { ".debug_str.dwo", ".zdebug_str.dwo" },
354 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
355 { ".debug_types.dwo", ".zdebug_types.dwo" },
356 { ".debug_cu_index", ".zdebug_cu_index" },
357 { ".debug_tu_index", ".zdebug_tu_index" },
358 };
359
360 /* local data types */
361
362 /* The data in a compilation unit header, after target2host
363 translation, looks like this. */
364 struct comp_unit_head
365 {
366 unsigned int length;
367 short version;
368 unsigned char addr_size;
369 unsigned char signed_addr_p;
370 sect_offset abbrev_sect_off;
371
372 /* Size of file offsets; either 4 or 8. */
373 unsigned int offset_size;
374
375 /* Size of the length field; either 4 or 12. */
376 unsigned int initial_length_size;
377
378 enum dwarf_unit_type unit_type;
379
380 /* Offset to the first byte of this compilation unit header in the
381 .debug_info section, for resolving relative reference dies. */
382 sect_offset sect_off;
383
384 /* Offset to first die in this cu from the start of the cu.
385 This will be the first byte following the compilation unit header. */
386 cu_offset first_die_cu_offset;
387
388 /* 64-bit signature of this type unit - it is valid only for
389 UNIT_TYPE DW_UT_type. */
390 ULONGEST signature;
391
392 /* For types, offset in the type's DIE of the type defined by this TU. */
393 cu_offset type_cu_offset_in_tu;
394 };
395
396 /* Type used for delaying computation of method physnames.
397 See comments for compute_delayed_physnames. */
398 struct delayed_method_info
399 {
400 /* The type to which the method is attached, i.e., its parent class. */
401 struct type *type;
402
403 /* The index of the method in the type's function fieldlists. */
404 int fnfield_index;
405
406 /* The index of the method in the fieldlist. */
407 int index;
408
409 /* The name of the DIE. */
410 const char *name;
411
412 /* The DIE associated with this method. */
413 struct die_info *die;
414 };
415
416 /* Internal state when decoding a particular compilation unit. */
417 struct dwarf2_cu
418 {
419 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
420 ~dwarf2_cu ();
421
422 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
423
424 /* The header of the compilation unit. */
425 struct comp_unit_head header {};
426
427 /* Base address of this compilation unit. */
428 CORE_ADDR base_address = 0;
429
430 /* Non-zero if base_address has been set. */
431 int base_known = 0;
432
433 /* The language we are debugging. */
434 enum language language = language_unknown;
435 const struct language_defn *language_defn = nullptr;
436
437 const char *producer = nullptr;
438
439 /* The symtab builder for this CU. This is only non-NULL when full
440 symbols are being read. */
441 std::unique_ptr<buildsym_compunit> builder;
442
443 /* The generic symbol table building routines have separate lists for
444 file scope symbols and all all other scopes (local scopes). So
445 we need to select the right one to pass to add_symbol_to_list().
446 We do it by keeping a pointer to the correct list in list_in_scope.
447
448 FIXME: The original dwarf code just treated the file scope as the
449 first local scope, and all other local scopes as nested local
450 scopes, and worked fine. Check to see if we really need to
451 distinguish these in buildsym.c. */
452 struct pending **list_in_scope = nullptr;
453
454 /* Hash table holding all the loaded partial DIEs
455 with partial_die->offset.SECT_OFF as hash. */
456 htab_t partial_dies = nullptr;
457
458 /* Storage for things with the same lifetime as this read-in compilation
459 unit, including partial DIEs. */
460 auto_obstack comp_unit_obstack;
461
462 /* When multiple dwarf2_cu structures are living in memory, this field
463 chains them all together, so that they can be released efficiently.
464 We will probably also want a generation counter so that most-recently-used
465 compilation units are cached... */
466 struct dwarf2_per_cu_data *read_in_chain = nullptr;
467
468 /* Backlink to our per_cu entry. */
469 struct dwarf2_per_cu_data *per_cu;
470
471 /* How many compilation units ago was this CU last referenced? */
472 int last_used = 0;
473
474 /* A hash table of DIE cu_offset for following references with
475 die_info->offset.sect_off as hash. */
476 htab_t die_hash = nullptr;
477
478 /* Full DIEs if read in. */
479 struct die_info *dies = nullptr;
480
481 /* A set of pointers to dwarf2_per_cu_data objects for compilation
482 units referenced by this one. Only set during full symbol processing;
483 partial symbol tables do not have dependencies. */
484 htab_t dependencies = nullptr;
485
486 /* Header data from the line table, during full symbol processing. */
487 struct line_header *line_header = nullptr;
488 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
489 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
490 this is the DW_TAG_compile_unit die for this CU. We'll hold on
491 to the line header as long as this DIE is being processed. See
492 process_die_scope. */
493 die_info *line_header_die_owner = nullptr;
494
495 /* A list of methods which need to have physnames computed
496 after all type information has been read. */
497 std::vector<delayed_method_info> method_list;
498
499 /* To be copied to symtab->call_site_htab. */
500 htab_t call_site_htab = nullptr;
501
502 /* Non-NULL if this CU came from a DWO file.
503 There is an invariant here that is important to remember:
504 Except for attributes copied from the top level DIE in the "main"
505 (or "stub") file in preparation for reading the DWO file
506 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
507 Either there isn't a DWO file (in which case this is NULL and the point
508 is moot), or there is and either we're not going to read it (in which
509 case this is NULL) or there is and we are reading it (in which case this
510 is non-NULL). */
511 struct dwo_unit *dwo_unit = nullptr;
512
513 /* The DW_AT_addr_base attribute if present, zero otherwise
514 (zero is a valid value though).
515 Note this value comes from the Fission stub CU/TU's DIE. */
516 ULONGEST addr_base = 0;
517
518 /* The DW_AT_ranges_base attribute if present, zero otherwise
519 (zero is a valid value though).
520 Note this value comes from the Fission stub CU/TU's DIE.
521 Also note that the value is zero in the non-DWO case so this value can
522 be used without needing to know whether DWO files are in use or not.
523 N.B. This does not apply to DW_AT_ranges appearing in
524 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
525 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
526 DW_AT_ranges_base *would* have to be applied, and we'd have to care
527 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
528 ULONGEST ranges_base = 0;
529
530 /* When reading debug info generated by older versions of rustc, we
531 have to rewrite some union types to be struct types with a
532 variant part. This rewriting must be done after the CU is fully
533 read in, because otherwise at the point of rewriting some struct
534 type might not have been fully processed. So, we keep a list of
535 all such types here and process them after expansion. */
536 std::vector<struct type *> rust_unions;
537
538 /* Mark used when releasing cached dies. */
539 unsigned int mark : 1;
540
541 /* This CU references .debug_loc. See the symtab->locations_valid field.
542 This test is imperfect as there may exist optimized debug code not using
543 any location list and still facing inlining issues if handled as
544 unoptimized code. For a future better test see GCC PR other/32998. */
545 unsigned int has_loclist : 1;
546
547 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
548 if all the producer_is_* fields are valid. This information is cached
549 because profiling CU expansion showed excessive time spent in
550 producer_is_gxx_lt_4_6. */
551 unsigned int checked_producer : 1;
552 unsigned int producer_is_gxx_lt_4_6 : 1;
553 unsigned int producer_is_gcc_lt_4_3 : 1;
554 unsigned int producer_is_icc_lt_14 : 1;
555
556 /* When set, the file that we're processing is known to have
557 debugging info for C++ namespaces. GCC 3.3.x did not produce
558 this information, but later versions do. */
559
560 unsigned int processing_has_namespace_info : 1;
561
562 struct partial_die_info *find_partial_die (sect_offset sect_off);
563 };
564
565 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
566 This includes type_unit_group and quick_file_names. */
567
568 struct stmt_list_hash
569 {
570 /* The DWO unit this table is from or NULL if there is none. */
571 struct dwo_unit *dwo_unit;
572
573 /* Offset in .debug_line or .debug_line.dwo. */
574 sect_offset line_sect_off;
575 };
576
577 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
578 an object of this type. */
579
580 struct type_unit_group
581 {
582 /* dwarf2read.c's main "handle" on a TU symtab.
583 To simplify things we create an artificial CU that "includes" all the
584 type units using this stmt_list so that the rest of the code still has
585 a "per_cu" handle on the symtab.
586 This PER_CU is recognized by having no section. */
587 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
588 struct dwarf2_per_cu_data per_cu;
589
590 /* The TUs that share this DW_AT_stmt_list entry.
591 This is added to while parsing type units to build partial symtabs,
592 and is deleted afterwards and not used again. */
593 VEC (sig_type_ptr) *tus;
594
595 /* The compunit symtab.
596 Type units in a group needn't all be defined in the same source file,
597 so we create an essentially anonymous symtab as the compunit symtab. */
598 struct compunit_symtab *compunit_symtab;
599
600 /* The data used to construct the hash key. */
601 struct stmt_list_hash hash;
602
603 /* The number of symtabs from the line header.
604 The value here must match line_header.num_file_names. */
605 unsigned int num_symtabs;
606
607 /* The symbol tables for this TU (obtained from the files listed in
608 DW_AT_stmt_list).
609 WARNING: The order of entries here must match the order of entries
610 in the line header. After the first TU using this type_unit_group, the
611 line header for the subsequent TUs is recreated from this. This is done
612 because we need to use the same symtabs for each TU using the same
613 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
614 there's no guarantee the line header doesn't have duplicate entries. */
615 struct symtab **symtabs;
616 };
617
618 /* These sections are what may appear in a (real or virtual) DWO file. */
619
620 struct dwo_sections
621 {
622 struct dwarf2_section_info abbrev;
623 struct dwarf2_section_info line;
624 struct dwarf2_section_info loc;
625 struct dwarf2_section_info loclists;
626 struct dwarf2_section_info macinfo;
627 struct dwarf2_section_info macro;
628 struct dwarf2_section_info str;
629 struct dwarf2_section_info str_offsets;
630 /* In the case of a virtual DWO file, these two are unused. */
631 struct dwarf2_section_info info;
632 VEC (dwarf2_section_info_def) *types;
633 };
634
635 /* CUs/TUs in DWP/DWO files. */
636
637 struct dwo_unit
638 {
639 /* Backlink to the containing struct dwo_file. */
640 struct dwo_file *dwo_file;
641
642 /* The "id" that distinguishes this CU/TU.
643 .debug_info calls this "dwo_id", .debug_types calls this "signature".
644 Since signatures came first, we stick with it for consistency. */
645 ULONGEST signature;
646
647 /* The section this CU/TU lives in, in the DWO file. */
648 struct dwarf2_section_info *section;
649
650 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
651 sect_offset sect_off;
652 unsigned int length;
653
654 /* For types, offset in the type's DIE of the type defined by this TU. */
655 cu_offset type_offset_in_tu;
656 };
657
658 /* include/dwarf2.h defines the DWP section codes.
659 It defines a max value but it doesn't define a min value, which we
660 use for error checking, so provide one. */
661
662 enum dwp_v2_section_ids
663 {
664 DW_SECT_MIN = 1
665 };
666
667 /* Data for one DWO file.
668
669 This includes virtual DWO files (a virtual DWO file is a DWO file as it
670 appears in a DWP file). DWP files don't really have DWO files per se -
671 comdat folding of types "loses" the DWO file they came from, and from
672 a high level view DWP files appear to contain a mass of random types.
673 However, to maintain consistency with the non-DWP case we pretend DWP
674 files contain virtual DWO files, and we assign each TU with one virtual
675 DWO file (generally based on the line and abbrev section offsets -
676 a heuristic that seems to work in practice). */
677
678 struct dwo_file
679 {
680 /* The DW_AT_GNU_dwo_name attribute.
681 For virtual DWO files the name is constructed from the section offsets
682 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
683 from related CU+TUs. */
684 const char *dwo_name;
685
686 /* The DW_AT_comp_dir attribute. */
687 const char *comp_dir;
688
689 /* The bfd, when the file is open. Otherwise this is NULL.
690 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
691 bfd *dbfd;
692
693 /* The sections that make up this DWO file.
694 Remember that for virtual DWO files in DWP V2, these are virtual
695 sections (for lack of a better name). */
696 struct dwo_sections sections;
697
698 /* The CUs in the file.
699 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
700 an extension to handle LLVM's Link Time Optimization output (where
701 multiple source files may be compiled into a single object/dwo pair). */
702 htab_t cus;
703
704 /* Table of TUs in the file.
705 Each element is a struct dwo_unit. */
706 htab_t tus;
707 };
708
709 /* These sections are what may appear in a DWP file. */
710
711 struct dwp_sections
712 {
713 /* These are used by both DWP version 1 and 2. */
714 struct dwarf2_section_info str;
715 struct dwarf2_section_info cu_index;
716 struct dwarf2_section_info tu_index;
717
718 /* These are only used by DWP version 2 files.
719 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
720 sections are referenced by section number, and are not recorded here.
721 In DWP version 2 there is at most one copy of all these sections, each
722 section being (effectively) comprised of the concatenation of all of the
723 individual sections that exist in the version 1 format.
724 To keep the code simple we treat each of these concatenated pieces as a
725 section itself (a virtual section?). */
726 struct dwarf2_section_info abbrev;
727 struct dwarf2_section_info info;
728 struct dwarf2_section_info line;
729 struct dwarf2_section_info loc;
730 struct dwarf2_section_info macinfo;
731 struct dwarf2_section_info macro;
732 struct dwarf2_section_info str_offsets;
733 struct dwarf2_section_info types;
734 };
735
736 /* These sections are what may appear in a virtual DWO file in DWP version 1.
737 A virtual DWO file is a DWO file as it appears in a DWP file. */
738
739 struct virtual_v1_dwo_sections
740 {
741 struct dwarf2_section_info abbrev;
742 struct dwarf2_section_info line;
743 struct dwarf2_section_info loc;
744 struct dwarf2_section_info macinfo;
745 struct dwarf2_section_info macro;
746 struct dwarf2_section_info str_offsets;
747 /* Each DWP hash table entry records one CU or one TU.
748 That is recorded here, and copied to dwo_unit.section. */
749 struct dwarf2_section_info info_or_types;
750 };
751
752 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
753 In version 2, the sections of the DWO files are concatenated together
754 and stored in one section of that name. Thus each ELF section contains
755 several "virtual" sections. */
756
757 struct virtual_v2_dwo_sections
758 {
759 bfd_size_type abbrev_offset;
760 bfd_size_type abbrev_size;
761
762 bfd_size_type line_offset;
763 bfd_size_type line_size;
764
765 bfd_size_type loc_offset;
766 bfd_size_type loc_size;
767
768 bfd_size_type macinfo_offset;
769 bfd_size_type macinfo_size;
770
771 bfd_size_type macro_offset;
772 bfd_size_type macro_size;
773
774 bfd_size_type str_offsets_offset;
775 bfd_size_type str_offsets_size;
776
777 /* Each DWP hash table entry records one CU or one TU.
778 That is recorded here, and copied to dwo_unit.section. */
779 bfd_size_type info_or_types_offset;
780 bfd_size_type info_or_types_size;
781 };
782
783 /* Contents of DWP hash tables. */
784
785 struct dwp_hash_table
786 {
787 uint32_t version, nr_columns;
788 uint32_t nr_units, nr_slots;
789 const gdb_byte *hash_table, *unit_table;
790 union
791 {
792 struct
793 {
794 const gdb_byte *indices;
795 } v1;
796 struct
797 {
798 /* This is indexed by column number and gives the id of the section
799 in that column. */
800 #define MAX_NR_V2_DWO_SECTIONS \
801 (1 /* .debug_info or .debug_types */ \
802 + 1 /* .debug_abbrev */ \
803 + 1 /* .debug_line */ \
804 + 1 /* .debug_loc */ \
805 + 1 /* .debug_str_offsets */ \
806 + 1 /* .debug_macro or .debug_macinfo */)
807 int section_ids[MAX_NR_V2_DWO_SECTIONS];
808 const gdb_byte *offsets;
809 const gdb_byte *sizes;
810 } v2;
811 } section_pool;
812 };
813
814 /* Data for one DWP file. */
815
816 struct dwp_file
817 {
818 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
819 : name (name_),
820 dbfd (std::move (abfd))
821 {
822 }
823
824 /* Name of the file. */
825 const char *name;
826
827 /* File format version. */
828 int version = 0;
829
830 /* The bfd. */
831 gdb_bfd_ref_ptr dbfd;
832
833 /* Section info for this file. */
834 struct dwp_sections sections {};
835
836 /* Table of CUs in the file. */
837 const struct dwp_hash_table *cus = nullptr;
838
839 /* Table of TUs in the file. */
840 const struct dwp_hash_table *tus = nullptr;
841
842 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
843 htab_t loaded_cus {};
844 htab_t loaded_tus {};
845
846 /* Table to map ELF section numbers to their sections.
847 This is only needed for the DWP V1 file format. */
848 unsigned int num_sections = 0;
849 asection **elf_sections = nullptr;
850 };
851
852 /* This represents a '.dwz' file. */
853
854 struct dwz_file
855 {
856 dwz_file (gdb_bfd_ref_ptr &&bfd)
857 : dwz_bfd (std::move (bfd))
858 {
859 }
860
861 /* A dwz file can only contain a few sections. */
862 struct dwarf2_section_info abbrev {};
863 struct dwarf2_section_info info {};
864 struct dwarf2_section_info str {};
865 struct dwarf2_section_info line {};
866 struct dwarf2_section_info macro {};
867 struct dwarf2_section_info gdb_index {};
868 struct dwarf2_section_info debug_names {};
869
870 /* The dwz's BFD. */
871 gdb_bfd_ref_ptr dwz_bfd;
872
873 /* If we loaded the index from an external file, this contains the
874 resources associated to the open file, memory mapping, etc. */
875 std::unique_ptr<index_cache_resource> index_cache_res;
876 };
877
878 /* Struct used to pass misc. parameters to read_die_and_children, et
879 al. which are used for both .debug_info and .debug_types dies.
880 All parameters here are unchanging for the life of the call. This
881 struct exists to abstract away the constant parameters of die reading. */
882
883 struct die_reader_specs
884 {
885 /* The bfd of die_section. */
886 bfd* abfd;
887
888 /* The CU of the DIE we are parsing. */
889 struct dwarf2_cu *cu;
890
891 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
892 struct dwo_file *dwo_file;
893
894 /* The section the die comes from.
895 This is either .debug_info or .debug_types, or the .dwo variants. */
896 struct dwarf2_section_info *die_section;
897
898 /* die_section->buffer. */
899 const gdb_byte *buffer;
900
901 /* The end of the buffer. */
902 const gdb_byte *buffer_end;
903
904 /* The value of the DW_AT_comp_dir attribute. */
905 const char *comp_dir;
906
907 /* The abbreviation table to use when reading the DIEs. */
908 struct abbrev_table *abbrev_table;
909 };
910
911 /* Type of function passed to init_cutu_and_read_dies, et.al. */
912 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
913 const gdb_byte *info_ptr,
914 struct die_info *comp_unit_die,
915 int has_children,
916 void *data);
917
918 /* A 1-based directory index. This is a strong typedef to prevent
919 accidentally using a directory index as a 0-based index into an
920 array/vector. */
921 enum class dir_index : unsigned int {};
922
923 /* Likewise, a 1-based file name index. */
924 enum class file_name_index : unsigned int {};
925
926 struct file_entry
927 {
928 file_entry () = default;
929
930 file_entry (const char *name_, dir_index d_index_,
931 unsigned int mod_time_, unsigned int length_)
932 : name (name_),
933 d_index (d_index_),
934 mod_time (mod_time_),
935 length (length_)
936 {}
937
938 /* Return the include directory at D_INDEX stored in LH. Returns
939 NULL if D_INDEX is out of bounds. */
940 const char *include_dir (const line_header *lh) const;
941
942 /* The file name. Note this is an observing pointer. The memory is
943 owned by debug_line_buffer. */
944 const char *name {};
945
946 /* The directory index (1-based). */
947 dir_index d_index {};
948
949 unsigned int mod_time {};
950
951 unsigned int length {};
952
953 /* True if referenced by the Line Number Program. */
954 bool included_p {};
955
956 /* The associated symbol table, if any. */
957 struct symtab *symtab {};
958 };
959
960 /* The line number information for a compilation unit (found in the
961 .debug_line section) begins with a "statement program header",
962 which contains the following information. */
963 struct line_header
964 {
965 line_header ()
966 : offset_in_dwz {}
967 {}
968
969 /* Add an entry to the include directory table. */
970 void add_include_dir (const char *include_dir);
971
972 /* Add an entry to the file name table. */
973 void add_file_name (const char *name, dir_index d_index,
974 unsigned int mod_time, unsigned int length);
975
976 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
977 is out of bounds. */
978 const char *include_dir_at (dir_index index) const
979 {
980 /* Convert directory index number (1-based) to vector index
981 (0-based). */
982 size_t vec_index = to_underlying (index) - 1;
983
984 if (vec_index >= include_dirs.size ())
985 return NULL;
986 return include_dirs[vec_index];
987 }
988
989 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
990 is out of bounds. */
991 file_entry *file_name_at (file_name_index index)
992 {
993 /* Convert file name index number (1-based) to vector index
994 (0-based). */
995 size_t vec_index = to_underlying (index) - 1;
996
997 if (vec_index >= file_names.size ())
998 return NULL;
999 return &file_names[vec_index];
1000 }
1001
1002 /* Const version of the above. */
1003 const file_entry *file_name_at (unsigned int index) const
1004 {
1005 if (index >= file_names.size ())
1006 return NULL;
1007 return &file_names[index];
1008 }
1009
1010 /* Offset of line number information in .debug_line section. */
1011 sect_offset sect_off {};
1012
1013 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1014 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1015
1016 unsigned int total_length {};
1017 unsigned short version {};
1018 unsigned int header_length {};
1019 unsigned char minimum_instruction_length {};
1020 unsigned char maximum_ops_per_instruction {};
1021 unsigned char default_is_stmt {};
1022 int line_base {};
1023 unsigned char line_range {};
1024 unsigned char opcode_base {};
1025
1026 /* standard_opcode_lengths[i] is the number of operands for the
1027 standard opcode whose value is i. This means that
1028 standard_opcode_lengths[0] is unused, and the last meaningful
1029 element is standard_opcode_lengths[opcode_base - 1]. */
1030 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1031
1032 /* The include_directories table. Note these are observing
1033 pointers. The memory is owned by debug_line_buffer. */
1034 std::vector<const char *> include_dirs;
1035
1036 /* The file_names table. */
1037 std::vector<file_entry> file_names;
1038
1039 /* The start and end of the statement program following this
1040 header. These point into dwarf2_per_objfile->line_buffer. */
1041 const gdb_byte *statement_program_start {}, *statement_program_end {};
1042 };
1043
1044 typedef std::unique_ptr<line_header> line_header_up;
1045
1046 const char *
1047 file_entry::include_dir (const line_header *lh) const
1048 {
1049 return lh->include_dir_at (d_index);
1050 }
1051
1052 /* When we construct a partial symbol table entry we only
1053 need this much information. */
1054 struct partial_die_info : public allocate_on_obstack
1055 {
1056 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1057
1058 /* Disable assign but still keep copy ctor, which is needed
1059 load_partial_dies. */
1060 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1061
1062 /* Adjust the partial die before generating a symbol for it. This
1063 function may set the is_external flag or change the DIE's
1064 name. */
1065 void fixup (struct dwarf2_cu *cu);
1066
1067 /* Read a minimal amount of information into the minimal die
1068 structure. */
1069 const gdb_byte *read (const struct die_reader_specs *reader,
1070 const struct abbrev_info &abbrev,
1071 const gdb_byte *info_ptr);
1072
1073 /* Offset of this DIE. */
1074 const sect_offset sect_off;
1075
1076 /* DWARF-2 tag for this DIE. */
1077 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1078
1079 /* Assorted flags describing the data found in this DIE. */
1080 const unsigned int has_children : 1;
1081
1082 unsigned int is_external : 1;
1083 unsigned int is_declaration : 1;
1084 unsigned int has_type : 1;
1085 unsigned int has_specification : 1;
1086 unsigned int has_pc_info : 1;
1087 unsigned int may_be_inlined : 1;
1088
1089 /* This DIE has been marked DW_AT_main_subprogram. */
1090 unsigned int main_subprogram : 1;
1091
1092 /* Flag set if the SCOPE field of this structure has been
1093 computed. */
1094 unsigned int scope_set : 1;
1095
1096 /* Flag set if the DIE has a byte_size attribute. */
1097 unsigned int has_byte_size : 1;
1098
1099 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1100 unsigned int has_const_value : 1;
1101
1102 /* Flag set if any of the DIE's children are template arguments. */
1103 unsigned int has_template_arguments : 1;
1104
1105 /* Flag set if fixup has been called on this die. */
1106 unsigned int fixup_called : 1;
1107
1108 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1109 unsigned int is_dwz : 1;
1110
1111 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1112 unsigned int spec_is_dwz : 1;
1113
1114 /* The name of this DIE. Normally the value of DW_AT_name, but
1115 sometimes a default name for unnamed DIEs. */
1116 const char *name = nullptr;
1117
1118 /* The linkage name, if present. */
1119 const char *linkage_name = nullptr;
1120
1121 /* The scope to prepend to our children. This is generally
1122 allocated on the comp_unit_obstack, so will disappear
1123 when this compilation unit leaves the cache. */
1124 const char *scope = nullptr;
1125
1126 /* Some data associated with the partial DIE. The tag determines
1127 which field is live. */
1128 union
1129 {
1130 /* The location description associated with this DIE, if any. */
1131 struct dwarf_block *locdesc;
1132 /* The offset of an import, for DW_TAG_imported_unit. */
1133 sect_offset sect_off;
1134 } d {};
1135
1136 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1137 CORE_ADDR lowpc = 0;
1138 CORE_ADDR highpc = 0;
1139
1140 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1141 DW_AT_sibling, if any. */
1142 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1143 could return DW_AT_sibling values to its caller load_partial_dies. */
1144 const gdb_byte *sibling = nullptr;
1145
1146 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1147 DW_AT_specification (or DW_AT_abstract_origin or
1148 DW_AT_extension). */
1149 sect_offset spec_offset {};
1150
1151 /* Pointers to this DIE's parent, first child, and next sibling,
1152 if any. */
1153 struct partial_die_info *die_parent = nullptr;
1154 struct partial_die_info *die_child = nullptr;
1155 struct partial_die_info *die_sibling = nullptr;
1156
1157 friend struct partial_die_info *
1158 dwarf2_cu::find_partial_die (sect_offset sect_off);
1159
1160 private:
1161 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1162 partial_die_info (sect_offset sect_off)
1163 : partial_die_info (sect_off, DW_TAG_padding, 0)
1164 {
1165 }
1166
1167 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1168 int has_children_)
1169 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1170 {
1171 is_external = 0;
1172 is_declaration = 0;
1173 has_type = 0;
1174 has_specification = 0;
1175 has_pc_info = 0;
1176 may_be_inlined = 0;
1177 main_subprogram = 0;
1178 scope_set = 0;
1179 has_byte_size = 0;
1180 has_const_value = 0;
1181 has_template_arguments = 0;
1182 fixup_called = 0;
1183 is_dwz = 0;
1184 spec_is_dwz = 0;
1185 }
1186 };
1187
1188 /* This data structure holds the information of an abbrev. */
1189 struct abbrev_info
1190 {
1191 unsigned int number; /* number identifying abbrev */
1192 enum dwarf_tag tag; /* dwarf tag */
1193 unsigned short has_children; /* boolean */
1194 unsigned short num_attrs; /* number of attributes */
1195 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1196 struct abbrev_info *next; /* next in chain */
1197 };
1198
1199 struct attr_abbrev
1200 {
1201 ENUM_BITFIELD(dwarf_attribute) name : 16;
1202 ENUM_BITFIELD(dwarf_form) form : 16;
1203
1204 /* It is valid only if FORM is DW_FORM_implicit_const. */
1205 LONGEST implicit_const;
1206 };
1207
1208 /* Size of abbrev_table.abbrev_hash_table. */
1209 #define ABBREV_HASH_SIZE 121
1210
1211 /* Top level data structure to contain an abbreviation table. */
1212
1213 struct abbrev_table
1214 {
1215 explicit abbrev_table (sect_offset off)
1216 : sect_off (off)
1217 {
1218 m_abbrevs =
1219 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1220 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1221 }
1222
1223 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1224
1225 /* Allocate space for a struct abbrev_info object in
1226 ABBREV_TABLE. */
1227 struct abbrev_info *alloc_abbrev ();
1228
1229 /* Add an abbreviation to the table. */
1230 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1231
1232 /* Look up an abbrev in the table.
1233 Returns NULL if the abbrev is not found. */
1234
1235 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1236
1237
1238 /* Where the abbrev table came from.
1239 This is used as a sanity check when the table is used. */
1240 const sect_offset sect_off;
1241
1242 /* Storage for the abbrev table. */
1243 auto_obstack abbrev_obstack;
1244
1245 private:
1246
1247 /* Hash table of abbrevs.
1248 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1249 It could be statically allocated, but the previous code didn't so we
1250 don't either. */
1251 struct abbrev_info **m_abbrevs;
1252 };
1253
1254 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1255
1256 /* Attributes have a name and a value. */
1257 struct attribute
1258 {
1259 ENUM_BITFIELD(dwarf_attribute) name : 16;
1260 ENUM_BITFIELD(dwarf_form) form : 15;
1261
1262 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1263 field should be in u.str (existing only for DW_STRING) but it is kept
1264 here for better struct attribute alignment. */
1265 unsigned int string_is_canonical : 1;
1266
1267 union
1268 {
1269 const char *str;
1270 struct dwarf_block *blk;
1271 ULONGEST unsnd;
1272 LONGEST snd;
1273 CORE_ADDR addr;
1274 ULONGEST signature;
1275 }
1276 u;
1277 };
1278
1279 /* This data structure holds a complete die structure. */
1280 struct die_info
1281 {
1282 /* DWARF-2 tag for this DIE. */
1283 ENUM_BITFIELD(dwarf_tag) tag : 16;
1284
1285 /* Number of attributes */
1286 unsigned char num_attrs;
1287
1288 /* True if we're presently building the full type name for the
1289 type derived from this DIE. */
1290 unsigned char building_fullname : 1;
1291
1292 /* True if this die is in process. PR 16581. */
1293 unsigned char in_process : 1;
1294
1295 /* Abbrev number */
1296 unsigned int abbrev;
1297
1298 /* Offset in .debug_info or .debug_types section. */
1299 sect_offset sect_off;
1300
1301 /* The dies in a compilation unit form an n-ary tree. PARENT
1302 points to this die's parent; CHILD points to the first child of
1303 this node; and all the children of a given node are chained
1304 together via their SIBLING fields. */
1305 struct die_info *child; /* Its first child, if any. */
1306 struct die_info *sibling; /* Its next sibling, if any. */
1307 struct die_info *parent; /* Its parent, if any. */
1308
1309 /* An array of attributes, with NUM_ATTRS elements. There may be
1310 zero, but it's not common and zero-sized arrays are not
1311 sufficiently portable C. */
1312 struct attribute attrs[1];
1313 };
1314
1315 /* Get at parts of an attribute structure. */
1316
1317 #define DW_STRING(attr) ((attr)->u.str)
1318 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1319 #define DW_UNSND(attr) ((attr)->u.unsnd)
1320 #define DW_BLOCK(attr) ((attr)->u.blk)
1321 #define DW_SND(attr) ((attr)->u.snd)
1322 #define DW_ADDR(attr) ((attr)->u.addr)
1323 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1324
1325 /* Blocks are a bunch of untyped bytes. */
1326 struct dwarf_block
1327 {
1328 size_t size;
1329
1330 /* Valid only if SIZE is not zero. */
1331 const gdb_byte *data;
1332 };
1333
1334 #ifndef ATTR_ALLOC_CHUNK
1335 #define ATTR_ALLOC_CHUNK 4
1336 #endif
1337
1338 /* Allocate fields for structs, unions and enums in this size. */
1339 #ifndef DW_FIELD_ALLOC_CHUNK
1340 #define DW_FIELD_ALLOC_CHUNK 4
1341 #endif
1342
1343 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1344 but this would require a corresponding change in unpack_field_as_long
1345 and friends. */
1346 static int bits_per_byte = 8;
1347
1348 /* When reading a variant or variant part, we track a bit more
1349 information about the field, and store it in an object of this
1350 type. */
1351
1352 struct variant_field
1353 {
1354 /* If we see a DW_TAG_variant, then this will be the discriminant
1355 value. */
1356 ULONGEST discriminant_value;
1357 /* If we see a DW_TAG_variant, then this will be set if this is the
1358 default branch. */
1359 bool default_branch;
1360 /* While reading a DW_TAG_variant_part, this will be set if this
1361 field is the discriminant. */
1362 bool is_discriminant;
1363 };
1364
1365 struct nextfield
1366 {
1367 int accessibility = 0;
1368 int virtuality = 0;
1369 /* Extra information to describe a variant or variant part. */
1370 struct variant_field variant {};
1371 struct field field {};
1372 };
1373
1374 struct fnfieldlist
1375 {
1376 const char *name = nullptr;
1377 std::vector<struct fn_field> fnfields;
1378 };
1379
1380 /* The routines that read and process dies for a C struct or C++ class
1381 pass lists of data member fields and lists of member function fields
1382 in an instance of a field_info structure, as defined below. */
1383 struct field_info
1384 {
1385 /* List of data member and baseclasses fields. */
1386 std::vector<struct nextfield> fields;
1387 std::vector<struct nextfield> baseclasses;
1388
1389 /* Number of fields (including baseclasses). */
1390 int nfields = 0;
1391
1392 /* Set if the accesibility of one of the fields is not public. */
1393 int non_public_fields = 0;
1394
1395 /* Member function fieldlist array, contains name of possibly overloaded
1396 member function, number of overloaded member functions and a pointer
1397 to the head of the member function field chain. */
1398 std::vector<struct fnfieldlist> fnfieldlists;
1399
1400 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1401 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1402 std::vector<struct decl_field> typedef_field_list;
1403
1404 /* Nested types defined by this class and the number of elements in this
1405 list. */
1406 std::vector<struct decl_field> nested_types_list;
1407 };
1408
1409 /* One item on the queue of compilation units to read in full symbols
1410 for. */
1411 struct dwarf2_queue_item
1412 {
1413 struct dwarf2_per_cu_data *per_cu;
1414 enum language pretend_language;
1415 struct dwarf2_queue_item *next;
1416 };
1417
1418 /* The current queue. */
1419 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1420
1421 /* Loaded secondary compilation units are kept in memory until they
1422 have not been referenced for the processing of this many
1423 compilation units. Set this to zero to disable caching. Cache
1424 sizes of up to at least twenty will improve startup time for
1425 typical inter-CU-reference binaries, at an obvious memory cost. */
1426 static int dwarf_max_cache_age = 5;
1427 static void
1428 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1429 struct cmd_list_element *c, const char *value)
1430 {
1431 fprintf_filtered (file, _("The upper bound on the age of cached "
1432 "DWARF compilation units is %s.\n"),
1433 value);
1434 }
1435 \f
1436 /* local function prototypes */
1437
1438 static const char *get_section_name (const struct dwarf2_section_info *);
1439
1440 static const char *get_section_file_name (const struct dwarf2_section_info *);
1441
1442 static void dwarf2_find_base_address (struct die_info *die,
1443 struct dwarf2_cu *cu);
1444
1445 static struct partial_symtab *create_partial_symtab
1446 (struct dwarf2_per_cu_data *per_cu, const char *name);
1447
1448 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1449 const gdb_byte *info_ptr,
1450 struct die_info *type_unit_die,
1451 int has_children, void *data);
1452
1453 static void dwarf2_build_psymtabs_hard
1454 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1455
1456 static void scan_partial_symbols (struct partial_die_info *,
1457 CORE_ADDR *, CORE_ADDR *,
1458 int, struct dwarf2_cu *);
1459
1460 static void add_partial_symbol (struct partial_die_info *,
1461 struct dwarf2_cu *);
1462
1463 static void add_partial_namespace (struct partial_die_info *pdi,
1464 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1465 int set_addrmap, struct dwarf2_cu *cu);
1466
1467 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1468 CORE_ADDR *highpc, int set_addrmap,
1469 struct dwarf2_cu *cu);
1470
1471 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1472 struct dwarf2_cu *cu);
1473
1474 static void add_partial_subprogram (struct partial_die_info *pdi,
1475 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1476 int need_pc, struct dwarf2_cu *cu);
1477
1478 static void dwarf2_read_symtab (struct partial_symtab *,
1479 struct objfile *);
1480
1481 static void psymtab_to_symtab_1 (struct partial_symtab *);
1482
1483 static abbrev_table_up abbrev_table_read_table
1484 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1485 sect_offset);
1486
1487 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1488
1489 static struct partial_die_info *load_partial_dies
1490 (const struct die_reader_specs *, const gdb_byte *, int);
1491
1492 static struct partial_die_info *find_partial_die (sect_offset, int,
1493 struct dwarf2_cu *);
1494
1495 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1496 struct attribute *, struct attr_abbrev *,
1497 const gdb_byte *);
1498
1499 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1500
1501 static int read_1_signed_byte (bfd *, const gdb_byte *);
1502
1503 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1504
1505 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1506
1507 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1508
1509 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1510 unsigned int *);
1511
1512 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1513
1514 static LONGEST read_checked_initial_length_and_offset
1515 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1516 unsigned int *, unsigned int *);
1517
1518 static LONGEST read_offset (bfd *, const gdb_byte *,
1519 const struct comp_unit_head *,
1520 unsigned int *);
1521
1522 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1523
1524 static sect_offset read_abbrev_offset
1525 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1526 struct dwarf2_section_info *, sect_offset);
1527
1528 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1529
1530 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1531
1532 static const char *read_indirect_string
1533 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1534 const struct comp_unit_head *, unsigned int *);
1535
1536 static const char *read_indirect_line_string
1537 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1538 const struct comp_unit_head *, unsigned int *);
1539
1540 static const char *read_indirect_string_at_offset
1541 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1542 LONGEST str_offset);
1543
1544 static const char *read_indirect_string_from_dwz
1545 (struct objfile *objfile, struct dwz_file *, LONGEST);
1546
1547 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1548
1549 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1550 const gdb_byte *,
1551 unsigned int *);
1552
1553 static const char *read_str_index (const struct die_reader_specs *reader,
1554 ULONGEST str_index);
1555
1556 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1557
1558 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1559 struct dwarf2_cu *);
1560
1561 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1562 unsigned int);
1563
1564 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1565 struct dwarf2_cu *cu);
1566
1567 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1568 struct dwarf2_cu *cu);
1569
1570 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1571
1572 static struct die_info *die_specification (struct die_info *die,
1573 struct dwarf2_cu **);
1574
1575 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1576 struct dwarf2_cu *cu);
1577
1578 static void dwarf_decode_lines (struct line_header *, const char *,
1579 struct dwarf2_cu *, struct partial_symtab *,
1580 CORE_ADDR, int decode_mapping);
1581
1582 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1583 const char *);
1584
1585 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1586 const char *, const char *,
1587 CORE_ADDR);
1588
1589 static struct symbol *new_symbol (struct die_info *, struct type *,
1590 struct dwarf2_cu *, struct symbol * = NULL);
1591
1592 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1593 struct dwarf2_cu *);
1594
1595 static void dwarf2_const_value_attr (const struct attribute *attr,
1596 struct type *type,
1597 const char *name,
1598 struct obstack *obstack,
1599 struct dwarf2_cu *cu, LONGEST *value,
1600 const gdb_byte **bytes,
1601 struct dwarf2_locexpr_baton **baton);
1602
1603 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1604
1605 static int need_gnat_info (struct dwarf2_cu *);
1606
1607 static struct type *die_descriptive_type (struct die_info *,
1608 struct dwarf2_cu *);
1609
1610 static void set_descriptive_type (struct type *, struct die_info *,
1611 struct dwarf2_cu *);
1612
1613 static struct type *die_containing_type (struct die_info *,
1614 struct dwarf2_cu *);
1615
1616 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1617 struct dwarf2_cu *);
1618
1619 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1620
1621 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1622
1623 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1624
1625 static char *typename_concat (struct obstack *obs, const char *prefix,
1626 const char *suffix, int physname,
1627 struct dwarf2_cu *cu);
1628
1629 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1630
1631 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1632
1633 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1634
1635 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1636
1637 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1638
1639 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1640
1641 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1642 struct dwarf2_cu *, struct partial_symtab *);
1643
1644 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1645 values. Keep the items ordered with increasing constraints compliance. */
1646 enum pc_bounds_kind
1647 {
1648 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1649 PC_BOUNDS_NOT_PRESENT,
1650
1651 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1652 were present but they do not form a valid range of PC addresses. */
1653 PC_BOUNDS_INVALID,
1654
1655 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1656 PC_BOUNDS_RANGES,
1657
1658 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1659 PC_BOUNDS_HIGH_LOW,
1660 };
1661
1662 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1663 CORE_ADDR *, CORE_ADDR *,
1664 struct dwarf2_cu *,
1665 struct partial_symtab *);
1666
1667 static void get_scope_pc_bounds (struct die_info *,
1668 CORE_ADDR *, CORE_ADDR *,
1669 struct dwarf2_cu *);
1670
1671 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1672 CORE_ADDR, struct dwarf2_cu *);
1673
1674 static void dwarf2_add_field (struct field_info *, struct die_info *,
1675 struct dwarf2_cu *);
1676
1677 static void dwarf2_attach_fields_to_type (struct field_info *,
1678 struct type *, struct dwarf2_cu *);
1679
1680 static void dwarf2_add_member_fn (struct field_info *,
1681 struct die_info *, struct type *,
1682 struct dwarf2_cu *);
1683
1684 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1685 struct type *,
1686 struct dwarf2_cu *);
1687
1688 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1689
1690 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1691
1692 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1693
1694 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1695
1696 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1697
1698 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1699
1700 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1701
1702 static struct type *read_module_type (struct die_info *die,
1703 struct dwarf2_cu *cu);
1704
1705 static const char *namespace_name (struct die_info *die,
1706 int *is_anonymous, struct dwarf2_cu *);
1707
1708 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1709
1710 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1711
1712 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1713 struct dwarf2_cu *);
1714
1715 static struct die_info *read_die_and_siblings_1
1716 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1717 struct die_info *);
1718
1719 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1720 const gdb_byte *info_ptr,
1721 const gdb_byte **new_info_ptr,
1722 struct die_info *parent);
1723
1724 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1725 struct die_info **, const gdb_byte *,
1726 int *, int);
1727
1728 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1729 struct die_info **, const gdb_byte *,
1730 int *);
1731
1732 static void process_die (struct die_info *, struct dwarf2_cu *);
1733
1734 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1735 struct obstack *);
1736
1737 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1738
1739 static const char *dwarf2_full_name (const char *name,
1740 struct die_info *die,
1741 struct dwarf2_cu *cu);
1742
1743 static const char *dwarf2_physname (const char *name, struct die_info *die,
1744 struct dwarf2_cu *cu);
1745
1746 static struct die_info *dwarf2_extension (struct die_info *die,
1747 struct dwarf2_cu **);
1748
1749 static const char *dwarf_tag_name (unsigned int);
1750
1751 static const char *dwarf_attr_name (unsigned int);
1752
1753 static const char *dwarf_form_name (unsigned int);
1754
1755 static const char *dwarf_bool_name (unsigned int);
1756
1757 static const char *dwarf_type_encoding_name (unsigned int);
1758
1759 static struct die_info *sibling_die (struct die_info *);
1760
1761 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1762
1763 static void dump_die_for_error (struct die_info *);
1764
1765 static void dump_die_1 (struct ui_file *, int level, int max_level,
1766 struct die_info *);
1767
1768 /*static*/ void dump_die (struct die_info *, int max_level);
1769
1770 static void store_in_ref_table (struct die_info *,
1771 struct dwarf2_cu *);
1772
1773 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1774
1775 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1776
1777 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1778 const struct attribute *,
1779 struct dwarf2_cu **);
1780
1781 static struct die_info *follow_die_ref (struct die_info *,
1782 const struct attribute *,
1783 struct dwarf2_cu **);
1784
1785 static struct die_info *follow_die_sig (struct die_info *,
1786 const struct attribute *,
1787 struct dwarf2_cu **);
1788
1789 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1790 struct dwarf2_cu *);
1791
1792 static struct type *get_DW_AT_signature_type (struct die_info *,
1793 const struct attribute *,
1794 struct dwarf2_cu *);
1795
1796 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1797
1798 static void read_signatured_type (struct signatured_type *);
1799
1800 static int attr_to_dynamic_prop (const struct attribute *attr,
1801 struct die_info *die, struct dwarf2_cu *cu,
1802 struct dynamic_prop *prop);
1803
1804 /* memory allocation interface */
1805
1806 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1807
1808 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1809
1810 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1811
1812 static int attr_form_is_block (const struct attribute *);
1813
1814 static int attr_form_is_section_offset (const struct attribute *);
1815
1816 static int attr_form_is_constant (const struct attribute *);
1817
1818 static int attr_form_is_ref (const struct attribute *);
1819
1820 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1821 struct dwarf2_loclist_baton *baton,
1822 const struct attribute *attr);
1823
1824 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1825 struct symbol *sym,
1826 struct dwarf2_cu *cu,
1827 int is_block);
1828
1829 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1830 const gdb_byte *info_ptr,
1831 struct abbrev_info *abbrev);
1832
1833 static hashval_t partial_die_hash (const void *item);
1834
1835 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1836
1837 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1838 (sect_offset sect_off, unsigned int offset_in_dwz,
1839 struct dwarf2_per_objfile *dwarf2_per_objfile);
1840
1841 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1842 struct die_info *comp_unit_die,
1843 enum language pretend_language);
1844
1845 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1846
1847 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1848
1849 static struct type *set_die_type (struct die_info *, struct type *,
1850 struct dwarf2_cu *);
1851
1852 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1853
1854 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1855
1856 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1857 enum language);
1858
1859 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1860 enum language);
1861
1862 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1863 enum language);
1864
1865 static void dwarf2_add_dependence (struct dwarf2_cu *,
1866 struct dwarf2_per_cu_data *);
1867
1868 static void dwarf2_mark (struct dwarf2_cu *);
1869
1870 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1871
1872 static struct type *get_die_type_at_offset (sect_offset,
1873 struct dwarf2_per_cu_data *);
1874
1875 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1876
1877 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1878 enum language pretend_language);
1879
1880 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1881
1882 /* Class, the destructor of which frees all allocated queue entries. This
1883 will only have work to do if an error was thrown while processing the
1884 dwarf. If no error was thrown then the queue entries should have all
1885 been processed, and freed, as we went along. */
1886
1887 class dwarf2_queue_guard
1888 {
1889 public:
1890 dwarf2_queue_guard () = default;
1891
1892 /* Free any entries remaining on the queue. There should only be
1893 entries left if we hit an error while processing the dwarf. */
1894 ~dwarf2_queue_guard ()
1895 {
1896 struct dwarf2_queue_item *item, *last;
1897
1898 item = dwarf2_queue;
1899 while (item)
1900 {
1901 /* Anything still marked queued is likely to be in an
1902 inconsistent state, so discard it. */
1903 if (item->per_cu->queued)
1904 {
1905 if (item->per_cu->cu != NULL)
1906 free_one_cached_comp_unit (item->per_cu);
1907 item->per_cu->queued = 0;
1908 }
1909
1910 last = item;
1911 item = item->next;
1912 xfree (last);
1913 }
1914
1915 dwarf2_queue = dwarf2_queue_tail = NULL;
1916 }
1917 };
1918
1919 /* The return type of find_file_and_directory. Note, the enclosed
1920 string pointers are only valid while this object is valid. */
1921
1922 struct file_and_directory
1923 {
1924 /* The filename. This is never NULL. */
1925 const char *name;
1926
1927 /* The compilation directory. NULL if not known. If we needed to
1928 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1929 points directly to the DW_AT_comp_dir string attribute owned by
1930 the obstack that owns the DIE. */
1931 const char *comp_dir;
1932
1933 /* If we needed to build a new string for comp_dir, this is what
1934 owns the storage. */
1935 std::string comp_dir_storage;
1936 };
1937
1938 static file_and_directory find_file_and_directory (struct die_info *die,
1939 struct dwarf2_cu *cu);
1940
1941 static char *file_full_name (int file, struct line_header *lh,
1942 const char *comp_dir);
1943
1944 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1945 enum class rcuh_kind { COMPILE, TYPE };
1946
1947 static const gdb_byte *read_and_check_comp_unit_head
1948 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1949 struct comp_unit_head *header,
1950 struct dwarf2_section_info *section,
1951 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1952 rcuh_kind section_kind);
1953
1954 static void init_cutu_and_read_dies
1955 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1956 int use_existing_cu, int keep, bool skip_partial,
1957 die_reader_func_ftype *die_reader_func, void *data);
1958
1959 static void init_cutu_and_read_dies_simple
1960 (struct dwarf2_per_cu_data *this_cu,
1961 die_reader_func_ftype *die_reader_func, void *data);
1962
1963 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1964
1965 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1966
1967 static struct dwo_unit *lookup_dwo_unit_in_dwp
1968 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1969 struct dwp_file *dwp_file, const char *comp_dir,
1970 ULONGEST signature, int is_debug_types);
1971
1972 static struct dwp_file *get_dwp_file
1973 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1974
1975 static struct dwo_unit *lookup_dwo_comp_unit
1976 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1977
1978 static struct dwo_unit *lookup_dwo_type_unit
1979 (struct signatured_type *, const char *, const char *);
1980
1981 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1982
1983 static void free_dwo_file (struct dwo_file *);
1984
1985 /* A unique_ptr helper to free a dwo_file. */
1986
1987 struct dwo_file_deleter
1988 {
1989 void operator() (struct dwo_file *df) const
1990 {
1991 free_dwo_file (df);
1992 }
1993 };
1994
1995 /* A unique pointer to a dwo_file. */
1996
1997 typedef std::unique_ptr<struct dwo_file, dwo_file_deleter> dwo_file_up;
1998
1999 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
2000
2001 static void check_producer (struct dwarf2_cu *cu);
2002
2003 static void free_line_header_voidp (void *arg);
2004 \f
2005 /* Various complaints about symbol reading that don't abort the process. */
2006
2007 static void
2008 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2009 {
2010 complaint (_("statement list doesn't fit in .debug_line section"));
2011 }
2012
2013 static void
2014 dwarf2_debug_line_missing_file_complaint (void)
2015 {
2016 complaint (_(".debug_line section has line data without a file"));
2017 }
2018
2019 static void
2020 dwarf2_debug_line_missing_end_sequence_complaint (void)
2021 {
2022 complaint (_(".debug_line section has line "
2023 "program sequence without an end"));
2024 }
2025
2026 static void
2027 dwarf2_complex_location_expr_complaint (void)
2028 {
2029 complaint (_("location expression too complex"));
2030 }
2031
2032 static void
2033 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2034 int arg3)
2035 {
2036 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2037 arg1, arg2, arg3);
2038 }
2039
2040 static void
2041 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2042 {
2043 complaint (_("debug info runs off end of %s section"
2044 " [in module %s]"),
2045 get_section_name (section),
2046 get_section_file_name (section));
2047 }
2048
2049 static void
2050 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2051 {
2052 complaint (_("macro debug info contains a "
2053 "malformed macro definition:\n`%s'"),
2054 arg1);
2055 }
2056
2057 static void
2058 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2059 {
2060 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2061 arg1, arg2);
2062 }
2063
2064 /* Hash function for line_header_hash. */
2065
2066 static hashval_t
2067 line_header_hash (const struct line_header *ofs)
2068 {
2069 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2070 }
2071
2072 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2073
2074 static hashval_t
2075 line_header_hash_voidp (const void *item)
2076 {
2077 const struct line_header *ofs = (const struct line_header *) item;
2078
2079 return line_header_hash (ofs);
2080 }
2081
2082 /* Equality function for line_header_hash. */
2083
2084 static int
2085 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2086 {
2087 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2088 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2089
2090 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2091 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2092 }
2093
2094 \f
2095
2096 /* Read the given attribute value as an address, taking the attribute's
2097 form into account. */
2098
2099 static CORE_ADDR
2100 attr_value_as_address (struct attribute *attr)
2101 {
2102 CORE_ADDR addr;
2103
2104 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2105 {
2106 /* Aside from a few clearly defined exceptions, attributes that
2107 contain an address must always be in DW_FORM_addr form.
2108 Unfortunately, some compilers happen to be violating this
2109 requirement by encoding addresses using other forms, such
2110 as DW_FORM_data4 for example. For those broken compilers,
2111 we try to do our best, without any guarantee of success,
2112 to interpret the address correctly. It would also be nice
2113 to generate a complaint, but that would require us to maintain
2114 a list of legitimate cases where a non-address form is allowed,
2115 as well as update callers to pass in at least the CU's DWARF
2116 version. This is more overhead than what we're willing to
2117 expand for a pretty rare case. */
2118 addr = DW_UNSND (attr);
2119 }
2120 else
2121 addr = DW_ADDR (attr);
2122
2123 return addr;
2124 }
2125
2126 /* See declaration. */
2127
2128 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2129 const dwarf2_debug_sections *names)
2130 : objfile (objfile_)
2131 {
2132 if (names == NULL)
2133 names = &dwarf2_elf_names;
2134
2135 bfd *obfd = objfile->obfd;
2136
2137 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2138 locate_sections (obfd, sec, *names);
2139 }
2140
2141 static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2142
2143 dwarf2_per_objfile::~dwarf2_per_objfile ()
2144 {
2145 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2146 free_cached_comp_units ();
2147
2148 if (quick_file_names_table)
2149 htab_delete (quick_file_names_table);
2150
2151 if (line_header_hash)
2152 htab_delete (line_header_hash);
2153
2154 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2155 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2156
2157 for (signatured_type *sig_type : all_type_units)
2158 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2159
2160 VEC_free (dwarf2_section_info_def, types);
2161
2162 if (dwo_files != NULL)
2163 free_dwo_files (dwo_files, objfile);
2164
2165 /* Everything else should be on the objfile obstack. */
2166 }
2167
2168 /* See declaration. */
2169
2170 void
2171 dwarf2_per_objfile::free_cached_comp_units ()
2172 {
2173 dwarf2_per_cu_data *per_cu = read_in_chain;
2174 dwarf2_per_cu_data **last_chain = &read_in_chain;
2175 while (per_cu != NULL)
2176 {
2177 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2178
2179 delete per_cu->cu;
2180 *last_chain = next_cu;
2181 per_cu = next_cu;
2182 }
2183 }
2184
2185 /* A helper class that calls free_cached_comp_units on
2186 destruction. */
2187
2188 class free_cached_comp_units
2189 {
2190 public:
2191
2192 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2193 : m_per_objfile (per_objfile)
2194 {
2195 }
2196
2197 ~free_cached_comp_units ()
2198 {
2199 m_per_objfile->free_cached_comp_units ();
2200 }
2201
2202 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2203
2204 private:
2205
2206 dwarf2_per_objfile *m_per_objfile;
2207 };
2208
2209 /* Try to locate the sections we need for DWARF 2 debugging
2210 information and return true if we have enough to do something.
2211 NAMES points to the dwarf2 section names, or is NULL if the standard
2212 ELF names are used. */
2213
2214 int
2215 dwarf2_has_info (struct objfile *objfile,
2216 const struct dwarf2_debug_sections *names)
2217 {
2218 if (objfile->flags & OBJF_READNEVER)
2219 return 0;
2220
2221 struct dwarf2_per_objfile *dwarf2_per_objfile
2222 = get_dwarf2_per_objfile (objfile);
2223
2224 if (dwarf2_per_objfile == NULL)
2225 {
2226 /* Initialize per-objfile state. */
2227 dwarf2_per_objfile
2228 = new (&objfile->objfile_obstack) struct dwarf2_per_objfile (objfile,
2229 names);
2230 set_dwarf2_per_objfile (objfile, dwarf2_per_objfile);
2231 }
2232 return (!dwarf2_per_objfile->info.is_virtual
2233 && dwarf2_per_objfile->info.s.section != NULL
2234 && !dwarf2_per_objfile->abbrev.is_virtual
2235 && dwarf2_per_objfile->abbrev.s.section != NULL);
2236 }
2237
2238 /* Return the containing section of virtual section SECTION. */
2239
2240 static struct dwarf2_section_info *
2241 get_containing_section (const struct dwarf2_section_info *section)
2242 {
2243 gdb_assert (section->is_virtual);
2244 return section->s.containing_section;
2245 }
2246
2247 /* Return the bfd owner of SECTION. */
2248
2249 static struct bfd *
2250 get_section_bfd_owner (const struct dwarf2_section_info *section)
2251 {
2252 if (section->is_virtual)
2253 {
2254 section = get_containing_section (section);
2255 gdb_assert (!section->is_virtual);
2256 }
2257 return section->s.section->owner;
2258 }
2259
2260 /* Return the bfd section of SECTION.
2261 Returns NULL if the section is not present. */
2262
2263 static asection *
2264 get_section_bfd_section (const struct dwarf2_section_info *section)
2265 {
2266 if (section->is_virtual)
2267 {
2268 section = get_containing_section (section);
2269 gdb_assert (!section->is_virtual);
2270 }
2271 return section->s.section;
2272 }
2273
2274 /* Return the name of SECTION. */
2275
2276 static const char *
2277 get_section_name (const struct dwarf2_section_info *section)
2278 {
2279 asection *sectp = get_section_bfd_section (section);
2280
2281 gdb_assert (sectp != NULL);
2282 return bfd_section_name (get_section_bfd_owner (section), sectp);
2283 }
2284
2285 /* Return the name of the file SECTION is in. */
2286
2287 static const char *
2288 get_section_file_name (const struct dwarf2_section_info *section)
2289 {
2290 bfd *abfd = get_section_bfd_owner (section);
2291
2292 return bfd_get_filename (abfd);
2293 }
2294
2295 /* Return the id of SECTION.
2296 Returns 0 if SECTION doesn't exist. */
2297
2298 static int
2299 get_section_id (const struct dwarf2_section_info *section)
2300 {
2301 asection *sectp = get_section_bfd_section (section);
2302
2303 if (sectp == NULL)
2304 return 0;
2305 return sectp->id;
2306 }
2307
2308 /* Return the flags of SECTION.
2309 SECTION (or containing section if this is a virtual section) must exist. */
2310
2311 static int
2312 get_section_flags (const struct dwarf2_section_info *section)
2313 {
2314 asection *sectp = get_section_bfd_section (section);
2315
2316 gdb_assert (sectp != NULL);
2317 return bfd_get_section_flags (sectp->owner, sectp);
2318 }
2319
2320 /* When loading sections, we look either for uncompressed section or for
2321 compressed section names. */
2322
2323 static int
2324 section_is_p (const char *section_name,
2325 const struct dwarf2_section_names *names)
2326 {
2327 if (names->normal != NULL
2328 && strcmp (section_name, names->normal) == 0)
2329 return 1;
2330 if (names->compressed != NULL
2331 && strcmp (section_name, names->compressed) == 0)
2332 return 1;
2333 return 0;
2334 }
2335
2336 /* See declaration. */
2337
2338 void
2339 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2340 const dwarf2_debug_sections &names)
2341 {
2342 flagword aflag = bfd_get_section_flags (abfd, sectp);
2343
2344 if ((aflag & SEC_HAS_CONTENTS) == 0)
2345 {
2346 }
2347 else if (section_is_p (sectp->name, &names.info))
2348 {
2349 this->info.s.section = sectp;
2350 this->info.size = bfd_get_section_size (sectp);
2351 }
2352 else if (section_is_p (sectp->name, &names.abbrev))
2353 {
2354 this->abbrev.s.section = sectp;
2355 this->abbrev.size = bfd_get_section_size (sectp);
2356 }
2357 else if (section_is_p (sectp->name, &names.line))
2358 {
2359 this->line.s.section = sectp;
2360 this->line.size = bfd_get_section_size (sectp);
2361 }
2362 else if (section_is_p (sectp->name, &names.loc))
2363 {
2364 this->loc.s.section = sectp;
2365 this->loc.size = bfd_get_section_size (sectp);
2366 }
2367 else if (section_is_p (sectp->name, &names.loclists))
2368 {
2369 this->loclists.s.section = sectp;
2370 this->loclists.size = bfd_get_section_size (sectp);
2371 }
2372 else if (section_is_p (sectp->name, &names.macinfo))
2373 {
2374 this->macinfo.s.section = sectp;
2375 this->macinfo.size = bfd_get_section_size (sectp);
2376 }
2377 else if (section_is_p (sectp->name, &names.macro))
2378 {
2379 this->macro.s.section = sectp;
2380 this->macro.size = bfd_get_section_size (sectp);
2381 }
2382 else if (section_is_p (sectp->name, &names.str))
2383 {
2384 this->str.s.section = sectp;
2385 this->str.size = bfd_get_section_size (sectp);
2386 }
2387 else if (section_is_p (sectp->name, &names.line_str))
2388 {
2389 this->line_str.s.section = sectp;
2390 this->line_str.size = bfd_get_section_size (sectp);
2391 }
2392 else if (section_is_p (sectp->name, &names.addr))
2393 {
2394 this->addr.s.section = sectp;
2395 this->addr.size = bfd_get_section_size (sectp);
2396 }
2397 else if (section_is_p (sectp->name, &names.frame))
2398 {
2399 this->frame.s.section = sectp;
2400 this->frame.size = bfd_get_section_size (sectp);
2401 }
2402 else if (section_is_p (sectp->name, &names.eh_frame))
2403 {
2404 this->eh_frame.s.section = sectp;
2405 this->eh_frame.size = bfd_get_section_size (sectp);
2406 }
2407 else if (section_is_p (sectp->name, &names.ranges))
2408 {
2409 this->ranges.s.section = sectp;
2410 this->ranges.size = bfd_get_section_size (sectp);
2411 }
2412 else if (section_is_p (sectp->name, &names.rnglists))
2413 {
2414 this->rnglists.s.section = sectp;
2415 this->rnglists.size = bfd_get_section_size (sectp);
2416 }
2417 else if (section_is_p (sectp->name, &names.types))
2418 {
2419 struct dwarf2_section_info type_section;
2420
2421 memset (&type_section, 0, sizeof (type_section));
2422 type_section.s.section = sectp;
2423 type_section.size = bfd_get_section_size (sectp);
2424
2425 VEC_safe_push (dwarf2_section_info_def, this->types,
2426 &type_section);
2427 }
2428 else if (section_is_p (sectp->name, &names.gdb_index))
2429 {
2430 this->gdb_index.s.section = sectp;
2431 this->gdb_index.size = bfd_get_section_size (sectp);
2432 }
2433 else if (section_is_p (sectp->name, &names.debug_names))
2434 {
2435 this->debug_names.s.section = sectp;
2436 this->debug_names.size = bfd_get_section_size (sectp);
2437 }
2438 else if (section_is_p (sectp->name, &names.debug_aranges))
2439 {
2440 this->debug_aranges.s.section = sectp;
2441 this->debug_aranges.size = bfd_get_section_size (sectp);
2442 }
2443
2444 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2445 && bfd_section_vma (abfd, sectp) == 0)
2446 this->has_section_at_zero = true;
2447 }
2448
2449 /* A helper function that decides whether a section is empty,
2450 or not present. */
2451
2452 static int
2453 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2454 {
2455 if (section->is_virtual)
2456 return section->size == 0;
2457 return section->s.section == NULL || section->size == 0;
2458 }
2459
2460 /* See dwarf2read.h. */
2461
2462 void
2463 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2464 {
2465 asection *sectp;
2466 bfd *abfd;
2467 gdb_byte *buf, *retbuf;
2468
2469 if (info->readin)
2470 return;
2471 info->buffer = NULL;
2472 info->readin = 1;
2473
2474 if (dwarf2_section_empty_p (info))
2475 return;
2476
2477 sectp = get_section_bfd_section (info);
2478
2479 /* If this is a virtual section we need to read in the real one first. */
2480 if (info->is_virtual)
2481 {
2482 struct dwarf2_section_info *containing_section =
2483 get_containing_section (info);
2484
2485 gdb_assert (sectp != NULL);
2486 if ((sectp->flags & SEC_RELOC) != 0)
2487 {
2488 error (_("Dwarf Error: DWP format V2 with relocations is not"
2489 " supported in section %s [in module %s]"),
2490 get_section_name (info), get_section_file_name (info));
2491 }
2492 dwarf2_read_section (objfile, containing_section);
2493 /* Other code should have already caught virtual sections that don't
2494 fit. */
2495 gdb_assert (info->virtual_offset + info->size
2496 <= containing_section->size);
2497 /* If the real section is empty or there was a problem reading the
2498 section we shouldn't get here. */
2499 gdb_assert (containing_section->buffer != NULL);
2500 info->buffer = containing_section->buffer + info->virtual_offset;
2501 return;
2502 }
2503
2504 /* If the section has relocations, we must read it ourselves.
2505 Otherwise we attach it to the BFD. */
2506 if ((sectp->flags & SEC_RELOC) == 0)
2507 {
2508 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2509 return;
2510 }
2511
2512 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2513 info->buffer = buf;
2514
2515 /* When debugging .o files, we may need to apply relocations; see
2516 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2517 We never compress sections in .o files, so we only need to
2518 try this when the section is not compressed. */
2519 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2520 if (retbuf != NULL)
2521 {
2522 info->buffer = retbuf;
2523 return;
2524 }
2525
2526 abfd = get_section_bfd_owner (info);
2527 gdb_assert (abfd != NULL);
2528
2529 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2530 || bfd_bread (buf, info->size, abfd) != info->size)
2531 {
2532 error (_("Dwarf Error: Can't read DWARF data"
2533 " in section %s [in module %s]"),
2534 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2535 }
2536 }
2537
2538 /* A helper function that returns the size of a section in a safe way.
2539 If you are positive that the section has been read before using the
2540 size, then it is safe to refer to the dwarf2_section_info object's
2541 "size" field directly. In other cases, you must call this
2542 function, because for compressed sections the size field is not set
2543 correctly until the section has been read. */
2544
2545 static bfd_size_type
2546 dwarf2_section_size (struct objfile *objfile,
2547 struct dwarf2_section_info *info)
2548 {
2549 if (!info->readin)
2550 dwarf2_read_section (objfile, info);
2551 return info->size;
2552 }
2553
2554 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2555 SECTION_NAME. */
2556
2557 void
2558 dwarf2_get_section_info (struct objfile *objfile,
2559 enum dwarf2_section_enum sect,
2560 asection **sectp, const gdb_byte **bufp,
2561 bfd_size_type *sizep)
2562 {
2563 struct dwarf2_per_objfile *data
2564 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2565 dwarf2_objfile_data_key);
2566 struct dwarf2_section_info *info;
2567
2568 /* We may see an objfile without any DWARF, in which case we just
2569 return nothing. */
2570 if (data == NULL)
2571 {
2572 *sectp = NULL;
2573 *bufp = NULL;
2574 *sizep = 0;
2575 return;
2576 }
2577 switch (sect)
2578 {
2579 case DWARF2_DEBUG_FRAME:
2580 info = &data->frame;
2581 break;
2582 case DWARF2_EH_FRAME:
2583 info = &data->eh_frame;
2584 break;
2585 default:
2586 gdb_assert_not_reached ("unexpected section");
2587 }
2588
2589 dwarf2_read_section (objfile, info);
2590
2591 *sectp = get_section_bfd_section (info);
2592 *bufp = info->buffer;
2593 *sizep = info->size;
2594 }
2595
2596 /* A helper function to find the sections for a .dwz file. */
2597
2598 static void
2599 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2600 {
2601 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2602
2603 /* Note that we only support the standard ELF names, because .dwz
2604 is ELF-only (at the time of writing). */
2605 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2606 {
2607 dwz_file->abbrev.s.section = sectp;
2608 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2609 }
2610 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2611 {
2612 dwz_file->info.s.section = sectp;
2613 dwz_file->info.size = bfd_get_section_size (sectp);
2614 }
2615 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2616 {
2617 dwz_file->str.s.section = sectp;
2618 dwz_file->str.size = bfd_get_section_size (sectp);
2619 }
2620 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2621 {
2622 dwz_file->line.s.section = sectp;
2623 dwz_file->line.size = bfd_get_section_size (sectp);
2624 }
2625 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2626 {
2627 dwz_file->macro.s.section = sectp;
2628 dwz_file->macro.size = bfd_get_section_size (sectp);
2629 }
2630 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2631 {
2632 dwz_file->gdb_index.s.section = sectp;
2633 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2634 }
2635 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2636 {
2637 dwz_file->debug_names.s.section = sectp;
2638 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2639 }
2640 }
2641
2642 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2643 there is no .gnu_debugaltlink section in the file. Error if there
2644 is such a section but the file cannot be found. */
2645
2646 static struct dwz_file *
2647 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2648 {
2649 const char *filename;
2650 bfd_size_type buildid_len_arg;
2651 size_t buildid_len;
2652 bfd_byte *buildid;
2653
2654 if (dwarf2_per_objfile->dwz_file != NULL)
2655 return dwarf2_per_objfile->dwz_file.get ();
2656
2657 bfd_set_error (bfd_error_no_error);
2658 gdb::unique_xmalloc_ptr<char> data
2659 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2660 &buildid_len_arg, &buildid));
2661 if (data == NULL)
2662 {
2663 if (bfd_get_error () == bfd_error_no_error)
2664 return NULL;
2665 error (_("could not read '.gnu_debugaltlink' section: %s"),
2666 bfd_errmsg (bfd_get_error ()));
2667 }
2668
2669 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2670
2671 buildid_len = (size_t) buildid_len_arg;
2672
2673 filename = data.get ();
2674
2675 std::string abs_storage;
2676 if (!IS_ABSOLUTE_PATH (filename))
2677 {
2678 gdb::unique_xmalloc_ptr<char> abs
2679 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2680
2681 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2682 filename = abs_storage.c_str ();
2683 }
2684
2685 /* First try the file name given in the section. If that doesn't
2686 work, try to use the build-id instead. */
2687 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2688 if (dwz_bfd != NULL)
2689 {
2690 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2691 dwz_bfd.release ();
2692 }
2693
2694 if (dwz_bfd == NULL)
2695 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2696
2697 if (dwz_bfd == NULL)
2698 error (_("could not find '.gnu_debugaltlink' file for %s"),
2699 objfile_name (dwarf2_per_objfile->objfile));
2700
2701 std::unique_ptr<struct dwz_file> result
2702 (new struct dwz_file (std::move (dwz_bfd)));
2703
2704 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2705 result.get ());
2706
2707 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2708 result->dwz_bfd.get ());
2709 dwarf2_per_objfile->dwz_file = std::move (result);
2710 return dwarf2_per_objfile->dwz_file.get ();
2711 }
2712 \f
2713 /* DWARF quick_symbols_functions support. */
2714
2715 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2716 unique line tables, so we maintain a separate table of all .debug_line
2717 derived entries to support the sharing.
2718 All the quick functions need is the list of file names. We discard the
2719 line_header when we're done and don't need to record it here. */
2720 struct quick_file_names
2721 {
2722 /* The data used to construct the hash key. */
2723 struct stmt_list_hash hash;
2724
2725 /* The number of entries in file_names, real_names. */
2726 unsigned int num_file_names;
2727
2728 /* The file names from the line table, after being run through
2729 file_full_name. */
2730 const char **file_names;
2731
2732 /* The file names from the line table after being run through
2733 gdb_realpath. These are computed lazily. */
2734 const char **real_names;
2735 };
2736
2737 /* When using the index (and thus not using psymtabs), each CU has an
2738 object of this type. This is used to hold information needed by
2739 the various "quick" methods. */
2740 struct dwarf2_per_cu_quick_data
2741 {
2742 /* The file table. This can be NULL if there was no file table
2743 or it's currently not read in.
2744 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2745 struct quick_file_names *file_names;
2746
2747 /* The corresponding symbol table. This is NULL if symbols for this
2748 CU have not yet been read. */
2749 struct compunit_symtab *compunit_symtab;
2750
2751 /* A temporary mark bit used when iterating over all CUs in
2752 expand_symtabs_matching. */
2753 unsigned int mark : 1;
2754
2755 /* True if we've tried to read the file table and found there isn't one.
2756 There will be no point in trying to read it again next time. */
2757 unsigned int no_file_data : 1;
2758 };
2759
2760 /* Utility hash function for a stmt_list_hash. */
2761
2762 static hashval_t
2763 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2764 {
2765 hashval_t v = 0;
2766
2767 if (stmt_list_hash->dwo_unit != NULL)
2768 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2769 v += to_underlying (stmt_list_hash->line_sect_off);
2770 return v;
2771 }
2772
2773 /* Utility equality function for a stmt_list_hash. */
2774
2775 static int
2776 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2777 const struct stmt_list_hash *rhs)
2778 {
2779 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2780 return 0;
2781 if (lhs->dwo_unit != NULL
2782 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2783 return 0;
2784
2785 return lhs->line_sect_off == rhs->line_sect_off;
2786 }
2787
2788 /* Hash function for a quick_file_names. */
2789
2790 static hashval_t
2791 hash_file_name_entry (const void *e)
2792 {
2793 const struct quick_file_names *file_data
2794 = (const struct quick_file_names *) e;
2795
2796 return hash_stmt_list_entry (&file_data->hash);
2797 }
2798
2799 /* Equality function for a quick_file_names. */
2800
2801 static int
2802 eq_file_name_entry (const void *a, const void *b)
2803 {
2804 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2805 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2806
2807 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2808 }
2809
2810 /* Delete function for a quick_file_names. */
2811
2812 static void
2813 delete_file_name_entry (void *e)
2814 {
2815 struct quick_file_names *file_data = (struct quick_file_names *) e;
2816 int i;
2817
2818 for (i = 0; i < file_data->num_file_names; ++i)
2819 {
2820 xfree ((void*) file_data->file_names[i]);
2821 if (file_data->real_names)
2822 xfree ((void*) file_data->real_names[i]);
2823 }
2824
2825 /* The space for the struct itself lives on objfile_obstack,
2826 so we don't free it here. */
2827 }
2828
2829 /* Create a quick_file_names hash table. */
2830
2831 static htab_t
2832 create_quick_file_names_table (unsigned int nr_initial_entries)
2833 {
2834 return htab_create_alloc (nr_initial_entries,
2835 hash_file_name_entry, eq_file_name_entry,
2836 delete_file_name_entry, xcalloc, xfree);
2837 }
2838
2839 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2840 have to be created afterwards. You should call age_cached_comp_units after
2841 processing PER_CU->CU. dw2_setup must have been already called. */
2842
2843 static void
2844 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2845 {
2846 if (per_cu->is_debug_types)
2847 load_full_type_unit (per_cu);
2848 else
2849 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2850
2851 if (per_cu->cu == NULL)
2852 return; /* Dummy CU. */
2853
2854 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2855 }
2856
2857 /* Read in the symbols for PER_CU. */
2858
2859 static void
2860 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2861 {
2862 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2863
2864 /* Skip type_unit_groups, reading the type units they contain
2865 is handled elsewhere. */
2866 if (IS_TYPE_UNIT_GROUP (per_cu))
2867 return;
2868
2869 /* The destructor of dwarf2_queue_guard frees any entries left on
2870 the queue. After this point we're guaranteed to leave this function
2871 with the dwarf queue empty. */
2872 dwarf2_queue_guard q_guard;
2873
2874 if (dwarf2_per_objfile->using_index
2875 ? per_cu->v.quick->compunit_symtab == NULL
2876 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2877 {
2878 queue_comp_unit (per_cu, language_minimal);
2879 load_cu (per_cu, skip_partial);
2880
2881 /* If we just loaded a CU from a DWO, and we're working with an index
2882 that may badly handle TUs, load all the TUs in that DWO as well.
2883 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2884 if (!per_cu->is_debug_types
2885 && per_cu->cu != NULL
2886 && per_cu->cu->dwo_unit != NULL
2887 && dwarf2_per_objfile->index_table != NULL
2888 && dwarf2_per_objfile->index_table->version <= 7
2889 /* DWP files aren't supported yet. */
2890 && get_dwp_file (dwarf2_per_objfile) == NULL)
2891 queue_and_load_all_dwo_tus (per_cu);
2892 }
2893
2894 process_queue (dwarf2_per_objfile);
2895
2896 /* Age the cache, releasing compilation units that have not
2897 been used recently. */
2898 age_cached_comp_units (dwarf2_per_objfile);
2899 }
2900
2901 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2902 the objfile from which this CU came. Returns the resulting symbol
2903 table. */
2904
2905 static struct compunit_symtab *
2906 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2907 {
2908 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2909
2910 gdb_assert (dwarf2_per_objfile->using_index);
2911 if (!per_cu->v.quick->compunit_symtab)
2912 {
2913 free_cached_comp_units freer (dwarf2_per_objfile);
2914 scoped_restore decrementer = increment_reading_symtab ();
2915 dw2_do_instantiate_symtab (per_cu, skip_partial);
2916 process_cu_includes (dwarf2_per_objfile);
2917 }
2918
2919 return per_cu->v.quick->compunit_symtab;
2920 }
2921
2922 /* See declaration. */
2923
2924 dwarf2_per_cu_data *
2925 dwarf2_per_objfile::get_cutu (int index)
2926 {
2927 if (index >= this->all_comp_units.size ())
2928 {
2929 index -= this->all_comp_units.size ();
2930 gdb_assert (index < this->all_type_units.size ());
2931 return &this->all_type_units[index]->per_cu;
2932 }
2933
2934 return this->all_comp_units[index];
2935 }
2936
2937 /* See declaration. */
2938
2939 dwarf2_per_cu_data *
2940 dwarf2_per_objfile::get_cu (int index)
2941 {
2942 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2943
2944 return this->all_comp_units[index];
2945 }
2946
2947 /* See declaration. */
2948
2949 signatured_type *
2950 dwarf2_per_objfile::get_tu (int index)
2951 {
2952 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2953
2954 return this->all_type_units[index];
2955 }
2956
2957 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2958 objfile_obstack, and constructed with the specified field
2959 values. */
2960
2961 static dwarf2_per_cu_data *
2962 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2963 struct dwarf2_section_info *section,
2964 int is_dwz,
2965 sect_offset sect_off, ULONGEST length)
2966 {
2967 struct objfile *objfile = dwarf2_per_objfile->objfile;
2968 dwarf2_per_cu_data *the_cu
2969 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2970 struct dwarf2_per_cu_data);
2971 the_cu->sect_off = sect_off;
2972 the_cu->length = length;
2973 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2974 the_cu->section = section;
2975 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2976 struct dwarf2_per_cu_quick_data);
2977 the_cu->is_dwz = is_dwz;
2978 return the_cu;
2979 }
2980
2981 /* A helper for create_cus_from_index that handles a given list of
2982 CUs. */
2983
2984 static void
2985 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2986 const gdb_byte *cu_list, offset_type n_elements,
2987 struct dwarf2_section_info *section,
2988 int is_dwz)
2989 {
2990 for (offset_type i = 0; i < n_elements; i += 2)
2991 {
2992 gdb_static_assert (sizeof (ULONGEST) >= 8);
2993
2994 sect_offset sect_off
2995 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2996 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2997 cu_list += 2 * 8;
2998
2999 dwarf2_per_cu_data *per_cu
3000 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
3001 sect_off, length);
3002 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
3003 }
3004 }
3005
3006 /* Read the CU list from the mapped index, and use it to create all
3007 the CU objects for this objfile. */
3008
3009 static void
3010 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3011 const gdb_byte *cu_list, offset_type cu_list_elements,
3012 const gdb_byte *dwz_list, offset_type dwz_elements)
3013 {
3014 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3015 dwarf2_per_objfile->all_comp_units.reserve
3016 ((cu_list_elements + dwz_elements) / 2);
3017
3018 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3019 &dwarf2_per_objfile->info, 0);
3020
3021 if (dwz_elements == 0)
3022 return;
3023
3024 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3025 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3026 &dwz->info, 1);
3027 }
3028
3029 /* Create the signatured type hash table from the index. */
3030
3031 static void
3032 create_signatured_type_table_from_index
3033 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3034 struct dwarf2_section_info *section,
3035 const gdb_byte *bytes,
3036 offset_type elements)
3037 {
3038 struct objfile *objfile = dwarf2_per_objfile->objfile;
3039
3040 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3041 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3042
3043 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3044
3045 for (offset_type i = 0; i < elements; i += 3)
3046 {
3047 struct signatured_type *sig_type;
3048 ULONGEST signature;
3049 void **slot;
3050 cu_offset type_offset_in_tu;
3051
3052 gdb_static_assert (sizeof (ULONGEST) >= 8);
3053 sect_offset sect_off
3054 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3055 type_offset_in_tu
3056 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3057 BFD_ENDIAN_LITTLE);
3058 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3059 bytes += 3 * 8;
3060
3061 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3062 struct signatured_type);
3063 sig_type->signature = signature;
3064 sig_type->type_offset_in_tu = type_offset_in_tu;
3065 sig_type->per_cu.is_debug_types = 1;
3066 sig_type->per_cu.section = section;
3067 sig_type->per_cu.sect_off = sect_off;
3068 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3069 sig_type->per_cu.v.quick
3070 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3071 struct dwarf2_per_cu_quick_data);
3072
3073 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3074 *slot = sig_type;
3075
3076 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3077 }
3078
3079 dwarf2_per_objfile->signatured_types = sig_types_hash;
3080 }
3081
3082 /* Create the signatured type hash table from .debug_names. */
3083
3084 static void
3085 create_signatured_type_table_from_debug_names
3086 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3087 const mapped_debug_names &map,
3088 struct dwarf2_section_info *section,
3089 struct dwarf2_section_info *abbrev_section)
3090 {
3091 struct objfile *objfile = dwarf2_per_objfile->objfile;
3092
3093 dwarf2_read_section (objfile, section);
3094 dwarf2_read_section (objfile, abbrev_section);
3095
3096 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3097 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3098
3099 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3100
3101 for (uint32_t i = 0; i < map.tu_count; ++i)
3102 {
3103 struct signatured_type *sig_type;
3104 void **slot;
3105
3106 sect_offset sect_off
3107 = (sect_offset) (extract_unsigned_integer
3108 (map.tu_table_reordered + i * map.offset_size,
3109 map.offset_size,
3110 map.dwarf5_byte_order));
3111
3112 comp_unit_head cu_header;
3113 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3114 abbrev_section,
3115 section->buffer + to_underlying (sect_off),
3116 rcuh_kind::TYPE);
3117
3118 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3119 struct signatured_type);
3120 sig_type->signature = cu_header.signature;
3121 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3122 sig_type->per_cu.is_debug_types = 1;
3123 sig_type->per_cu.section = section;
3124 sig_type->per_cu.sect_off = sect_off;
3125 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3126 sig_type->per_cu.v.quick
3127 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3128 struct dwarf2_per_cu_quick_data);
3129
3130 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3131 *slot = sig_type;
3132
3133 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3134 }
3135
3136 dwarf2_per_objfile->signatured_types = sig_types_hash;
3137 }
3138
3139 /* Read the address map data from the mapped index, and use it to
3140 populate the objfile's psymtabs_addrmap. */
3141
3142 static void
3143 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3144 struct mapped_index *index)
3145 {
3146 struct objfile *objfile = dwarf2_per_objfile->objfile;
3147 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3148 const gdb_byte *iter, *end;
3149 struct addrmap *mutable_map;
3150 CORE_ADDR baseaddr;
3151
3152 auto_obstack temp_obstack;
3153
3154 mutable_map = addrmap_create_mutable (&temp_obstack);
3155
3156 iter = index->address_table.data ();
3157 end = iter + index->address_table.size ();
3158
3159 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3160
3161 while (iter < end)
3162 {
3163 ULONGEST hi, lo, cu_index;
3164 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3165 iter += 8;
3166 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3167 iter += 8;
3168 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3169 iter += 4;
3170
3171 if (lo > hi)
3172 {
3173 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3174 hex_string (lo), hex_string (hi));
3175 continue;
3176 }
3177
3178 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3179 {
3180 complaint (_(".gdb_index address table has invalid CU number %u"),
3181 (unsigned) cu_index);
3182 continue;
3183 }
3184
3185 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
3186 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
3187 addrmap_set_empty (mutable_map, lo, hi - 1,
3188 dwarf2_per_objfile->get_cu (cu_index));
3189 }
3190
3191 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3192 &objfile->objfile_obstack);
3193 }
3194
3195 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3196 populate the objfile's psymtabs_addrmap. */
3197
3198 static void
3199 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3200 struct dwarf2_section_info *section)
3201 {
3202 struct objfile *objfile = dwarf2_per_objfile->objfile;
3203 bfd *abfd = objfile->obfd;
3204 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3205 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3206 SECT_OFF_TEXT (objfile));
3207
3208 auto_obstack temp_obstack;
3209 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3210
3211 std::unordered_map<sect_offset,
3212 dwarf2_per_cu_data *,
3213 gdb::hash_enum<sect_offset>>
3214 debug_info_offset_to_per_cu;
3215 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3216 {
3217 const auto insertpair
3218 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3219 if (!insertpair.second)
3220 {
3221 warning (_("Section .debug_aranges in %s has duplicate "
3222 "debug_info_offset %s, ignoring .debug_aranges."),
3223 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3224 return;
3225 }
3226 }
3227
3228 dwarf2_read_section (objfile, section);
3229
3230 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3231
3232 const gdb_byte *addr = section->buffer;
3233
3234 while (addr < section->buffer + section->size)
3235 {
3236 const gdb_byte *const entry_addr = addr;
3237 unsigned int bytes_read;
3238
3239 const LONGEST entry_length = read_initial_length (abfd, addr,
3240 &bytes_read);
3241 addr += bytes_read;
3242
3243 const gdb_byte *const entry_end = addr + entry_length;
3244 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3245 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3246 if (addr + entry_length > section->buffer + section->size)
3247 {
3248 warning (_("Section .debug_aranges in %s entry at offset %zu "
3249 "length %s exceeds section length %s, "
3250 "ignoring .debug_aranges."),
3251 objfile_name (objfile), entry_addr - section->buffer,
3252 plongest (bytes_read + entry_length),
3253 pulongest (section->size));
3254 return;
3255 }
3256
3257 /* The version number. */
3258 const uint16_t version = read_2_bytes (abfd, addr);
3259 addr += 2;
3260 if (version != 2)
3261 {
3262 warning (_("Section .debug_aranges in %s entry at offset %zu "
3263 "has unsupported version %d, ignoring .debug_aranges."),
3264 objfile_name (objfile), entry_addr - section->buffer,
3265 version);
3266 return;
3267 }
3268
3269 const uint64_t debug_info_offset
3270 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3271 addr += offset_size;
3272 const auto per_cu_it
3273 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3274 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3275 {
3276 warning (_("Section .debug_aranges in %s entry at offset %zu "
3277 "debug_info_offset %s does not exists, "
3278 "ignoring .debug_aranges."),
3279 objfile_name (objfile), entry_addr - section->buffer,
3280 pulongest (debug_info_offset));
3281 return;
3282 }
3283 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3284
3285 const uint8_t address_size = *addr++;
3286 if (address_size < 1 || address_size > 8)
3287 {
3288 warning (_("Section .debug_aranges in %s entry at offset %zu "
3289 "address_size %u is invalid, ignoring .debug_aranges."),
3290 objfile_name (objfile), entry_addr - section->buffer,
3291 address_size);
3292 return;
3293 }
3294
3295 const uint8_t segment_selector_size = *addr++;
3296 if (segment_selector_size != 0)
3297 {
3298 warning (_("Section .debug_aranges in %s entry at offset %zu "
3299 "segment_selector_size %u is not supported, "
3300 "ignoring .debug_aranges."),
3301 objfile_name (objfile), entry_addr - section->buffer,
3302 segment_selector_size);
3303 return;
3304 }
3305
3306 /* Must pad to an alignment boundary that is twice the address
3307 size. It is undocumented by the DWARF standard but GCC does
3308 use it. */
3309 for (size_t padding = ((-(addr - section->buffer))
3310 & (2 * address_size - 1));
3311 padding > 0; padding--)
3312 if (*addr++ != 0)
3313 {
3314 warning (_("Section .debug_aranges in %s entry at offset %zu "
3315 "padding is not zero, ignoring .debug_aranges."),
3316 objfile_name (objfile), entry_addr - section->buffer);
3317 return;
3318 }
3319
3320 for (;;)
3321 {
3322 if (addr + 2 * address_size > entry_end)
3323 {
3324 warning (_("Section .debug_aranges in %s entry at offset %zu "
3325 "address list is not properly terminated, "
3326 "ignoring .debug_aranges."),
3327 objfile_name (objfile), entry_addr - section->buffer);
3328 return;
3329 }
3330 ULONGEST start = extract_unsigned_integer (addr, address_size,
3331 dwarf5_byte_order);
3332 addr += address_size;
3333 ULONGEST length = extract_unsigned_integer (addr, address_size,
3334 dwarf5_byte_order);
3335 addr += address_size;
3336 if (start == 0 && length == 0)
3337 break;
3338 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3339 {
3340 /* Symbol was eliminated due to a COMDAT group. */
3341 continue;
3342 }
3343 ULONGEST end = start + length;
3344 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3345 - baseaddr);
3346 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3347 - baseaddr);
3348 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3349 }
3350 }
3351
3352 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3353 &objfile->objfile_obstack);
3354 }
3355
3356 /* Find a slot in the mapped index INDEX for the object named NAME.
3357 If NAME is found, set *VEC_OUT to point to the CU vector in the
3358 constant pool and return true. If NAME cannot be found, return
3359 false. */
3360
3361 static bool
3362 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3363 offset_type **vec_out)
3364 {
3365 offset_type hash;
3366 offset_type slot, step;
3367 int (*cmp) (const char *, const char *);
3368
3369 gdb::unique_xmalloc_ptr<char> without_params;
3370 if (current_language->la_language == language_cplus
3371 || current_language->la_language == language_fortran
3372 || current_language->la_language == language_d)
3373 {
3374 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3375 not contain any. */
3376
3377 if (strchr (name, '(') != NULL)
3378 {
3379 without_params = cp_remove_params (name);
3380
3381 if (without_params != NULL)
3382 name = without_params.get ();
3383 }
3384 }
3385
3386 /* Index version 4 did not support case insensitive searches. But the
3387 indices for case insensitive languages are built in lowercase, therefore
3388 simulate our NAME being searched is also lowercased. */
3389 hash = mapped_index_string_hash ((index->version == 4
3390 && case_sensitivity == case_sensitive_off
3391 ? 5 : index->version),
3392 name);
3393
3394 slot = hash & (index->symbol_table.size () - 1);
3395 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3396 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3397
3398 for (;;)
3399 {
3400 const char *str;
3401
3402 const auto &bucket = index->symbol_table[slot];
3403 if (bucket.name == 0 && bucket.vec == 0)
3404 return false;
3405
3406 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3407 if (!cmp (name, str))
3408 {
3409 *vec_out = (offset_type *) (index->constant_pool
3410 + MAYBE_SWAP (bucket.vec));
3411 return true;
3412 }
3413
3414 slot = (slot + step) & (index->symbol_table.size () - 1);
3415 }
3416 }
3417
3418 /* A helper function that reads the .gdb_index from BUFFER and fills
3419 in MAP. FILENAME is the name of the file containing the data;
3420 it is used for error reporting. DEPRECATED_OK is true if it is
3421 ok to use deprecated sections.
3422
3423 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3424 out parameters that are filled in with information about the CU and
3425 TU lists in the section.
3426
3427 Returns true if all went well, false otherwise. */
3428
3429 static bool
3430 read_gdb_index_from_buffer (struct objfile *objfile,
3431 const char *filename,
3432 bool deprecated_ok,
3433 gdb::array_view<const gdb_byte> buffer,
3434 struct mapped_index *map,
3435 const gdb_byte **cu_list,
3436 offset_type *cu_list_elements,
3437 const gdb_byte **types_list,
3438 offset_type *types_list_elements)
3439 {
3440 const gdb_byte *addr = &buffer[0];
3441
3442 /* Version check. */
3443 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
3444 /* Versions earlier than 3 emitted every copy of a psymbol. This
3445 causes the index to behave very poorly for certain requests. Version 3
3446 contained incomplete addrmap. So, it seems better to just ignore such
3447 indices. */
3448 if (version < 4)
3449 {
3450 static int warning_printed = 0;
3451 if (!warning_printed)
3452 {
3453 warning (_("Skipping obsolete .gdb_index section in %s."),
3454 filename);
3455 warning_printed = 1;
3456 }
3457 return 0;
3458 }
3459 /* Index version 4 uses a different hash function than index version
3460 5 and later.
3461
3462 Versions earlier than 6 did not emit psymbols for inlined
3463 functions. Using these files will cause GDB not to be able to
3464 set breakpoints on inlined functions by name, so we ignore these
3465 indices unless the user has done
3466 "set use-deprecated-index-sections on". */
3467 if (version < 6 && !deprecated_ok)
3468 {
3469 static int warning_printed = 0;
3470 if (!warning_printed)
3471 {
3472 warning (_("\
3473 Skipping deprecated .gdb_index section in %s.\n\
3474 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3475 to use the section anyway."),
3476 filename);
3477 warning_printed = 1;
3478 }
3479 return 0;
3480 }
3481 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3482 of the TU (for symbols coming from TUs),
3483 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3484 Plus gold-generated indices can have duplicate entries for global symbols,
3485 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3486 These are just performance bugs, and we can't distinguish gdb-generated
3487 indices from gold-generated ones, so issue no warning here. */
3488
3489 /* Indexes with higher version than the one supported by GDB may be no
3490 longer backward compatible. */
3491 if (version > 8)
3492 return 0;
3493
3494 map->version = version;
3495
3496 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3497
3498 int i = 0;
3499 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3500 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3501 / 8);
3502 ++i;
3503
3504 *types_list = addr + MAYBE_SWAP (metadata[i]);
3505 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3506 - MAYBE_SWAP (metadata[i]))
3507 / 8);
3508 ++i;
3509
3510 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3511 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3512 map->address_table
3513 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3514 ++i;
3515
3516 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3517 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3518 map->symbol_table
3519 = gdb::array_view<mapped_index::symbol_table_slot>
3520 ((mapped_index::symbol_table_slot *) symbol_table,
3521 (mapped_index::symbol_table_slot *) symbol_table_end);
3522
3523 ++i;
3524 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3525
3526 return 1;
3527 }
3528
3529 /* Callback types for dwarf2_read_gdb_index. */
3530
3531 typedef gdb::function_view
3532 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3533 get_gdb_index_contents_ftype;
3534 typedef gdb::function_view
3535 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3536 get_gdb_index_contents_dwz_ftype;
3537
3538 /* Read .gdb_index. If everything went ok, initialize the "quick"
3539 elements of all the CUs and return 1. Otherwise, return 0. */
3540
3541 static int
3542 dwarf2_read_gdb_index
3543 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3544 get_gdb_index_contents_ftype get_gdb_index_contents,
3545 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3546 {
3547 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3548 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3549 struct dwz_file *dwz;
3550 struct objfile *objfile = dwarf2_per_objfile->objfile;
3551
3552 gdb::array_view<const gdb_byte> main_index_contents
3553 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3554
3555 if (main_index_contents.empty ())
3556 return 0;
3557
3558 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3559 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3560 use_deprecated_index_sections,
3561 main_index_contents, map.get (), &cu_list,
3562 &cu_list_elements, &types_list,
3563 &types_list_elements))
3564 return 0;
3565
3566 /* Don't use the index if it's empty. */
3567 if (map->symbol_table.empty ())
3568 return 0;
3569
3570 /* If there is a .dwz file, read it so we can get its CU list as
3571 well. */
3572 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3573 if (dwz != NULL)
3574 {
3575 struct mapped_index dwz_map;
3576 const gdb_byte *dwz_types_ignore;
3577 offset_type dwz_types_elements_ignore;
3578
3579 gdb::array_view<const gdb_byte> dwz_index_content
3580 = get_gdb_index_contents_dwz (objfile, dwz);
3581
3582 if (dwz_index_content.empty ())
3583 return 0;
3584
3585 if (!read_gdb_index_from_buffer (objfile,
3586 bfd_get_filename (dwz->dwz_bfd), 1,
3587 dwz_index_content, &dwz_map,
3588 &dwz_list, &dwz_list_elements,
3589 &dwz_types_ignore,
3590 &dwz_types_elements_ignore))
3591 {
3592 warning (_("could not read '.gdb_index' section from %s; skipping"),
3593 bfd_get_filename (dwz->dwz_bfd));
3594 return 0;
3595 }
3596 }
3597
3598 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3599 dwz_list, dwz_list_elements);
3600
3601 if (types_list_elements)
3602 {
3603 struct dwarf2_section_info *section;
3604
3605 /* We can only handle a single .debug_types when we have an
3606 index. */
3607 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3608 return 0;
3609
3610 section = VEC_index (dwarf2_section_info_def,
3611 dwarf2_per_objfile->types, 0);
3612
3613 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3614 types_list, types_list_elements);
3615 }
3616
3617 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3618
3619 dwarf2_per_objfile->index_table = std::move (map);
3620 dwarf2_per_objfile->using_index = 1;
3621 dwarf2_per_objfile->quick_file_names_table =
3622 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3623
3624 return 1;
3625 }
3626
3627 /* die_reader_func for dw2_get_file_names. */
3628
3629 static void
3630 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3631 const gdb_byte *info_ptr,
3632 struct die_info *comp_unit_die,
3633 int has_children,
3634 void *data)
3635 {
3636 struct dwarf2_cu *cu = reader->cu;
3637 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3638 struct dwarf2_per_objfile *dwarf2_per_objfile
3639 = cu->per_cu->dwarf2_per_objfile;
3640 struct objfile *objfile = dwarf2_per_objfile->objfile;
3641 struct dwarf2_per_cu_data *lh_cu;
3642 struct attribute *attr;
3643 int i;
3644 void **slot;
3645 struct quick_file_names *qfn;
3646
3647 gdb_assert (! this_cu->is_debug_types);
3648
3649 /* Our callers never want to match partial units -- instead they
3650 will match the enclosing full CU. */
3651 if (comp_unit_die->tag == DW_TAG_partial_unit)
3652 {
3653 this_cu->v.quick->no_file_data = 1;
3654 return;
3655 }
3656
3657 lh_cu = this_cu;
3658 slot = NULL;
3659
3660 line_header_up lh;
3661 sect_offset line_offset {};
3662
3663 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3664 if (attr)
3665 {
3666 struct quick_file_names find_entry;
3667
3668 line_offset = (sect_offset) DW_UNSND (attr);
3669
3670 /* We may have already read in this line header (TU line header sharing).
3671 If we have we're done. */
3672 find_entry.hash.dwo_unit = cu->dwo_unit;
3673 find_entry.hash.line_sect_off = line_offset;
3674 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3675 &find_entry, INSERT);
3676 if (*slot != NULL)
3677 {
3678 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3679 return;
3680 }
3681
3682 lh = dwarf_decode_line_header (line_offset, cu);
3683 }
3684 if (lh == NULL)
3685 {
3686 lh_cu->v.quick->no_file_data = 1;
3687 return;
3688 }
3689
3690 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3691 qfn->hash.dwo_unit = cu->dwo_unit;
3692 qfn->hash.line_sect_off = line_offset;
3693 gdb_assert (slot != NULL);
3694 *slot = qfn;
3695
3696 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3697
3698 qfn->num_file_names = lh->file_names.size ();
3699 qfn->file_names =
3700 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3701 for (i = 0; i < lh->file_names.size (); ++i)
3702 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3703 qfn->real_names = NULL;
3704
3705 lh_cu->v.quick->file_names = qfn;
3706 }
3707
3708 /* A helper for the "quick" functions which attempts to read the line
3709 table for THIS_CU. */
3710
3711 static struct quick_file_names *
3712 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3713 {
3714 /* This should never be called for TUs. */
3715 gdb_assert (! this_cu->is_debug_types);
3716 /* Nor type unit groups. */
3717 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3718
3719 if (this_cu->v.quick->file_names != NULL)
3720 return this_cu->v.quick->file_names;
3721 /* If we know there is no line data, no point in looking again. */
3722 if (this_cu->v.quick->no_file_data)
3723 return NULL;
3724
3725 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3726
3727 if (this_cu->v.quick->no_file_data)
3728 return NULL;
3729 return this_cu->v.quick->file_names;
3730 }
3731
3732 /* A helper for the "quick" functions which computes and caches the
3733 real path for a given file name from the line table. */
3734
3735 static const char *
3736 dw2_get_real_path (struct objfile *objfile,
3737 struct quick_file_names *qfn, int index)
3738 {
3739 if (qfn->real_names == NULL)
3740 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3741 qfn->num_file_names, const char *);
3742
3743 if (qfn->real_names[index] == NULL)
3744 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3745
3746 return qfn->real_names[index];
3747 }
3748
3749 static struct symtab *
3750 dw2_find_last_source_symtab (struct objfile *objfile)
3751 {
3752 struct dwarf2_per_objfile *dwarf2_per_objfile
3753 = get_dwarf2_per_objfile (objfile);
3754 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3755 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3756
3757 if (cust == NULL)
3758 return NULL;
3759
3760 return compunit_primary_filetab (cust);
3761 }
3762
3763 /* Traversal function for dw2_forget_cached_source_info. */
3764
3765 static int
3766 dw2_free_cached_file_names (void **slot, void *info)
3767 {
3768 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3769
3770 if (file_data->real_names)
3771 {
3772 int i;
3773
3774 for (i = 0; i < file_data->num_file_names; ++i)
3775 {
3776 xfree ((void*) file_data->real_names[i]);
3777 file_data->real_names[i] = NULL;
3778 }
3779 }
3780
3781 return 1;
3782 }
3783
3784 static void
3785 dw2_forget_cached_source_info (struct objfile *objfile)
3786 {
3787 struct dwarf2_per_objfile *dwarf2_per_objfile
3788 = get_dwarf2_per_objfile (objfile);
3789
3790 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3791 dw2_free_cached_file_names, NULL);
3792 }
3793
3794 /* Helper function for dw2_map_symtabs_matching_filename that expands
3795 the symtabs and calls the iterator. */
3796
3797 static int
3798 dw2_map_expand_apply (struct objfile *objfile,
3799 struct dwarf2_per_cu_data *per_cu,
3800 const char *name, const char *real_path,
3801 gdb::function_view<bool (symtab *)> callback)
3802 {
3803 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3804
3805 /* Don't visit already-expanded CUs. */
3806 if (per_cu->v.quick->compunit_symtab)
3807 return 0;
3808
3809 /* This may expand more than one symtab, and we want to iterate over
3810 all of them. */
3811 dw2_instantiate_symtab (per_cu, false);
3812
3813 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3814 last_made, callback);
3815 }
3816
3817 /* Implementation of the map_symtabs_matching_filename method. */
3818
3819 static bool
3820 dw2_map_symtabs_matching_filename
3821 (struct objfile *objfile, const char *name, const char *real_path,
3822 gdb::function_view<bool (symtab *)> callback)
3823 {
3824 const char *name_basename = lbasename (name);
3825 struct dwarf2_per_objfile *dwarf2_per_objfile
3826 = get_dwarf2_per_objfile (objfile);
3827
3828 /* The rule is CUs specify all the files, including those used by
3829 any TU, so there's no need to scan TUs here. */
3830
3831 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3832 {
3833 /* We only need to look at symtabs not already expanded. */
3834 if (per_cu->v.quick->compunit_symtab)
3835 continue;
3836
3837 quick_file_names *file_data = dw2_get_file_names (per_cu);
3838 if (file_data == NULL)
3839 continue;
3840
3841 for (int j = 0; j < file_data->num_file_names; ++j)
3842 {
3843 const char *this_name = file_data->file_names[j];
3844 const char *this_real_name;
3845
3846 if (compare_filenames_for_search (this_name, name))
3847 {
3848 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3849 callback))
3850 return true;
3851 continue;
3852 }
3853
3854 /* Before we invoke realpath, which can get expensive when many
3855 files are involved, do a quick comparison of the basenames. */
3856 if (! basenames_may_differ
3857 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3858 continue;
3859
3860 this_real_name = dw2_get_real_path (objfile, file_data, j);
3861 if (compare_filenames_for_search (this_real_name, name))
3862 {
3863 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3864 callback))
3865 return true;
3866 continue;
3867 }
3868
3869 if (real_path != NULL)
3870 {
3871 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3872 gdb_assert (IS_ABSOLUTE_PATH (name));
3873 if (this_real_name != NULL
3874 && FILENAME_CMP (real_path, this_real_name) == 0)
3875 {
3876 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3877 callback))
3878 return true;
3879 continue;
3880 }
3881 }
3882 }
3883 }
3884
3885 return false;
3886 }
3887
3888 /* Struct used to manage iterating over all CUs looking for a symbol. */
3889
3890 struct dw2_symtab_iterator
3891 {
3892 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3893 struct dwarf2_per_objfile *dwarf2_per_objfile;
3894 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3895 int want_specific_block;
3896 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3897 Unused if !WANT_SPECIFIC_BLOCK. */
3898 int block_index;
3899 /* The kind of symbol we're looking for. */
3900 domain_enum domain;
3901 /* The list of CUs from the index entry of the symbol,
3902 or NULL if not found. */
3903 offset_type *vec;
3904 /* The next element in VEC to look at. */
3905 int next;
3906 /* The number of elements in VEC, or zero if there is no match. */
3907 int length;
3908 /* Have we seen a global version of the symbol?
3909 If so we can ignore all further global instances.
3910 This is to work around gold/15646, inefficient gold-generated
3911 indices. */
3912 int global_seen;
3913 };
3914
3915 /* Initialize the index symtab iterator ITER.
3916 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3917 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3918
3919 static void
3920 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3921 struct dwarf2_per_objfile *dwarf2_per_objfile,
3922 int want_specific_block,
3923 int block_index,
3924 domain_enum domain,
3925 const char *name)
3926 {
3927 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3928 iter->want_specific_block = want_specific_block;
3929 iter->block_index = block_index;
3930 iter->domain = domain;
3931 iter->next = 0;
3932 iter->global_seen = 0;
3933
3934 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3935
3936 /* index is NULL if OBJF_READNOW. */
3937 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3938 iter->length = MAYBE_SWAP (*iter->vec);
3939 else
3940 {
3941 iter->vec = NULL;
3942 iter->length = 0;
3943 }
3944 }
3945
3946 /* Return the next matching CU or NULL if there are no more. */
3947
3948 static struct dwarf2_per_cu_data *
3949 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3950 {
3951 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3952
3953 for ( ; iter->next < iter->length; ++iter->next)
3954 {
3955 offset_type cu_index_and_attrs =
3956 MAYBE_SWAP (iter->vec[iter->next + 1]);
3957 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3958 int want_static = iter->block_index != GLOBAL_BLOCK;
3959 /* This value is only valid for index versions >= 7. */
3960 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3961 gdb_index_symbol_kind symbol_kind =
3962 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3963 /* Only check the symbol attributes if they're present.
3964 Indices prior to version 7 don't record them,
3965 and indices >= 7 may elide them for certain symbols
3966 (gold does this). */
3967 int attrs_valid =
3968 (dwarf2_per_objfile->index_table->version >= 7
3969 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3970
3971 /* Don't crash on bad data. */
3972 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3973 + dwarf2_per_objfile->all_type_units.size ()))
3974 {
3975 complaint (_(".gdb_index entry has bad CU index"
3976 " [in module %s]"),
3977 objfile_name (dwarf2_per_objfile->objfile));
3978 continue;
3979 }
3980
3981 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3982
3983 /* Skip if already read in. */
3984 if (per_cu->v.quick->compunit_symtab)
3985 continue;
3986
3987 /* Check static vs global. */
3988 if (attrs_valid)
3989 {
3990 if (iter->want_specific_block
3991 && want_static != is_static)
3992 continue;
3993 /* Work around gold/15646. */
3994 if (!is_static && iter->global_seen)
3995 continue;
3996 if (!is_static)
3997 iter->global_seen = 1;
3998 }
3999
4000 /* Only check the symbol's kind if it has one. */
4001 if (attrs_valid)
4002 {
4003 switch (iter->domain)
4004 {
4005 case VAR_DOMAIN:
4006 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
4007 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
4008 /* Some types are also in VAR_DOMAIN. */
4009 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4010 continue;
4011 break;
4012 case STRUCT_DOMAIN:
4013 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4014 continue;
4015 break;
4016 case LABEL_DOMAIN:
4017 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4018 continue;
4019 break;
4020 default:
4021 break;
4022 }
4023 }
4024
4025 ++iter->next;
4026 return per_cu;
4027 }
4028
4029 return NULL;
4030 }
4031
4032 static struct compunit_symtab *
4033 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4034 const char *name, domain_enum domain)
4035 {
4036 struct compunit_symtab *stab_best = NULL;
4037 struct dwarf2_per_objfile *dwarf2_per_objfile
4038 = get_dwarf2_per_objfile (objfile);
4039
4040 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4041
4042 struct dw2_symtab_iterator iter;
4043 struct dwarf2_per_cu_data *per_cu;
4044
4045 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4046
4047 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4048 {
4049 struct symbol *sym, *with_opaque = NULL;
4050 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4051 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4052 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4053
4054 sym = block_find_symbol (block, name, domain,
4055 block_find_non_opaque_type_preferred,
4056 &with_opaque);
4057
4058 /* Some caution must be observed with overloaded functions
4059 and methods, since the index will not contain any overload
4060 information (but NAME might contain it). */
4061
4062 if (sym != NULL
4063 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4064 return stab;
4065 if (with_opaque != NULL
4066 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4067 stab_best = stab;
4068
4069 /* Keep looking through other CUs. */
4070 }
4071
4072 return stab_best;
4073 }
4074
4075 static void
4076 dw2_print_stats (struct objfile *objfile)
4077 {
4078 struct dwarf2_per_objfile *dwarf2_per_objfile
4079 = get_dwarf2_per_objfile (objfile);
4080 int total = (dwarf2_per_objfile->all_comp_units.size ()
4081 + dwarf2_per_objfile->all_type_units.size ());
4082 int count = 0;
4083
4084 for (int i = 0; i < total; ++i)
4085 {
4086 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4087
4088 if (!per_cu->v.quick->compunit_symtab)
4089 ++count;
4090 }
4091 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4092 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4093 }
4094
4095 /* This dumps minimal information about the index.
4096 It is called via "mt print objfiles".
4097 One use is to verify .gdb_index has been loaded by the
4098 gdb.dwarf2/gdb-index.exp testcase. */
4099
4100 static void
4101 dw2_dump (struct objfile *objfile)
4102 {
4103 struct dwarf2_per_objfile *dwarf2_per_objfile
4104 = get_dwarf2_per_objfile (objfile);
4105
4106 gdb_assert (dwarf2_per_objfile->using_index);
4107 printf_filtered (".gdb_index:");
4108 if (dwarf2_per_objfile->index_table != NULL)
4109 {
4110 printf_filtered (" version %d\n",
4111 dwarf2_per_objfile->index_table->version);
4112 }
4113 else
4114 printf_filtered (" faked for \"readnow\"\n");
4115 printf_filtered ("\n");
4116 }
4117
4118 static void
4119 dw2_expand_symtabs_for_function (struct objfile *objfile,
4120 const char *func_name)
4121 {
4122 struct dwarf2_per_objfile *dwarf2_per_objfile
4123 = get_dwarf2_per_objfile (objfile);
4124
4125 struct dw2_symtab_iterator iter;
4126 struct dwarf2_per_cu_data *per_cu;
4127
4128 /* Note: It doesn't matter what we pass for block_index here. */
4129 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4130 func_name);
4131
4132 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4133 dw2_instantiate_symtab (per_cu, false);
4134
4135 }
4136
4137 static void
4138 dw2_expand_all_symtabs (struct objfile *objfile)
4139 {
4140 struct dwarf2_per_objfile *dwarf2_per_objfile
4141 = get_dwarf2_per_objfile (objfile);
4142 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4143 + dwarf2_per_objfile->all_type_units.size ());
4144
4145 for (int i = 0; i < total_units; ++i)
4146 {
4147 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4148
4149 /* We don't want to directly expand a partial CU, because if we
4150 read it with the wrong language, then assertion failures can
4151 be triggered later on. See PR symtab/23010. So, tell
4152 dw2_instantiate_symtab to skip partial CUs -- any important
4153 partial CU will be read via DW_TAG_imported_unit anyway. */
4154 dw2_instantiate_symtab (per_cu, true);
4155 }
4156 }
4157
4158 static void
4159 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4160 const char *fullname)
4161 {
4162 struct dwarf2_per_objfile *dwarf2_per_objfile
4163 = get_dwarf2_per_objfile (objfile);
4164
4165 /* We don't need to consider type units here.
4166 This is only called for examining code, e.g. expand_line_sal.
4167 There can be an order of magnitude (or more) more type units
4168 than comp units, and we avoid them if we can. */
4169
4170 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4171 {
4172 /* We only need to look at symtabs not already expanded. */
4173 if (per_cu->v.quick->compunit_symtab)
4174 continue;
4175
4176 quick_file_names *file_data = dw2_get_file_names (per_cu);
4177 if (file_data == NULL)
4178 continue;
4179
4180 for (int j = 0; j < file_data->num_file_names; ++j)
4181 {
4182 const char *this_fullname = file_data->file_names[j];
4183
4184 if (filename_cmp (this_fullname, fullname) == 0)
4185 {
4186 dw2_instantiate_symtab (per_cu, false);
4187 break;
4188 }
4189 }
4190 }
4191 }
4192
4193 static void
4194 dw2_map_matching_symbols (struct objfile *objfile,
4195 const char * name, domain_enum domain,
4196 int global,
4197 int (*callback) (struct block *,
4198 struct symbol *, void *),
4199 void *data, symbol_name_match_type match,
4200 symbol_compare_ftype *ordered_compare)
4201 {
4202 /* Currently unimplemented; used for Ada. The function can be called if the
4203 current language is Ada for a non-Ada objfile using GNU index. As Ada
4204 does not look for non-Ada symbols this function should just return. */
4205 }
4206
4207 /* Symbol name matcher for .gdb_index names.
4208
4209 Symbol names in .gdb_index have a few particularities:
4210
4211 - There's no indication of which is the language of each symbol.
4212
4213 Since each language has its own symbol name matching algorithm,
4214 and we don't know which language is the right one, we must match
4215 each symbol against all languages. This would be a potential
4216 performance problem if it were not mitigated by the
4217 mapped_index::name_components lookup table, which significantly
4218 reduces the number of times we need to call into this matcher,
4219 making it a non-issue.
4220
4221 - Symbol names in the index have no overload (parameter)
4222 information. I.e., in C++, "foo(int)" and "foo(long)" both
4223 appear as "foo" in the index, for example.
4224
4225 This means that the lookup names passed to the symbol name
4226 matcher functions must have no parameter information either
4227 because (e.g.) symbol search name "foo" does not match
4228 lookup-name "foo(int)" [while swapping search name for lookup
4229 name would match].
4230 */
4231 class gdb_index_symbol_name_matcher
4232 {
4233 public:
4234 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4235 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4236
4237 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4238 Returns true if any matcher matches. */
4239 bool matches (const char *symbol_name);
4240
4241 private:
4242 /* A reference to the lookup name we're matching against. */
4243 const lookup_name_info &m_lookup_name;
4244
4245 /* A vector holding all the different symbol name matchers, for all
4246 languages. */
4247 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4248 };
4249
4250 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4251 (const lookup_name_info &lookup_name)
4252 : m_lookup_name (lookup_name)
4253 {
4254 /* Prepare the vector of comparison functions upfront, to avoid
4255 doing the same work for each symbol. Care is taken to avoid
4256 matching with the same matcher more than once if/when multiple
4257 languages use the same matcher function. */
4258 auto &matchers = m_symbol_name_matcher_funcs;
4259 matchers.reserve (nr_languages);
4260
4261 matchers.push_back (default_symbol_name_matcher);
4262
4263 for (int i = 0; i < nr_languages; i++)
4264 {
4265 const language_defn *lang = language_def ((enum language) i);
4266 symbol_name_matcher_ftype *name_matcher
4267 = get_symbol_name_matcher (lang, m_lookup_name);
4268
4269 /* Don't insert the same comparison routine more than once.
4270 Note that we do this linear walk instead of a seemingly
4271 cheaper sorted insert, or use a std::set or something like
4272 that, because relative order of function addresses is not
4273 stable. This is not a problem in practice because the number
4274 of supported languages is low, and the cost here is tiny
4275 compared to the number of searches we'll do afterwards using
4276 this object. */
4277 if (name_matcher != default_symbol_name_matcher
4278 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4279 == matchers.end ()))
4280 matchers.push_back (name_matcher);
4281 }
4282 }
4283
4284 bool
4285 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4286 {
4287 for (auto matches_name : m_symbol_name_matcher_funcs)
4288 if (matches_name (symbol_name, m_lookup_name, NULL))
4289 return true;
4290
4291 return false;
4292 }
4293
4294 /* Starting from a search name, return the string that finds the upper
4295 bound of all strings that start with SEARCH_NAME in a sorted name
4296 list. Returns the empty string to indicate that the upper bound is
4297 the end of the list. */
4298
4299 static std::string
4300 make_sort_after_prefix_name (const char *search_name)
4301 {
4302 /* When looking to complete "func", we find the upper bound of all
4303 symbols that start with "func" by looking for where we'd insert
4304 the closest string that would follow "func" in lexicographical
4305 order. Usually, that's "func"-with-last-character-incremented,
4306 i.e. "fund". Mind non-ASCII characters, though. Usually those
4307 will be UTF-8 multi-byte sequences, but we can't be certain.
4308 Especially mind the 0xff character, which is a valid character in
4309 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4310 rule out compilers allowing it in identifiers. Note that
4311 conveniently, strcmp/strcasecmp are specified to compare
4312 characters interpreted as unsigned char. So what we do is treat
4313 the whole string as a base 256 number composed of a sequence of
4314 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4315 to 0, and carries 1 to the following more-significant position.
4316 If the very first character in SEARCH_NAME ends up incremented
4317 and carries/overflows, then the upper bound is the end of the
4318 list. The string after the empty string is also the empty
4319 string.
4320
4321 Some examples of this operation:
4322
4323 SEARCH_NAME => "+1" RESULT
4324
4325 "abc" => "abd"
4326 "ab\xff" => "ac"
4327 "\xff" "a" "\xff" => "\xff" "b"
4328 "\xff" => ""
4329 "\xff\xff" => ""
4330 "" => ""
4331
4332 Then, with these symbols for example:
4333
4334 func
4335 func1
4336 fund
4337
4338 completing "func" looks for symbols between "func" and
4339 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4340 which finds "func" and "func1", but not "fund".
4341
4342 And with:
4343
4344 funcÿ (Latin1 'ÿ' [0xff])
4345 funcÿ1
4346 fund
4347
4348 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4349 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4350
4351 And with:
4352
4353 ÿÿ (Latin1 'ÿ' [0xff])
4354 ÿÿ1
4355
4356 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4357 the end of the list.
4358 */
4359 std::string after = search_name;
4360 while (!after.empty () && (unsigned char) after.back () == 0xff)
4361 after.pop_back ();
4362 if (!after.empty ())
4363 after.back () = (unsigned char) after.back () + 1;
4364 return after;
4365 }
4366
4367 /* See declaration. */
4368
4369 std::pair<std::vector<name_component>::const_iterator,
4370 std::vector<name_component>::const_iterator>
4371 mapped_index_base::find_name_components_bounds
4372 (const lookup_name_info &lookup_name_without_params) const
4373 {
4374 auto *name_cmp
4375 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4376
4377 const char *cplus
4378 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4379
4380 /* Comparison function object for lower_bound that matches against a
4381 given symbol name. */
4382 auto lookup_compare_lower = [&] (const name_component &elem,
4383 const char *name)
4384 {
4385 const char *elem_qualified = this->symbol_name_at (elem.idx);
4386 const char *elem_name = elem_qualified + elem.name_offset;
4387 return name_cmp (elem_name, name) < 0;
4388 };
4389
4390 /* Comparison function object for upper_bound that matches against a
4391 given symbol name. */
4392 auto lookup_compare_upper = [&] (const char *name,
4393 const name_component &elem)
4394 {
4395 const char *elem_qualified = this->symbol_name_at (elem.idx);
4396 const char *elem_name = elem_qualified + elem.name_offset;
4397 return name_cmp (name, elem_name) < 0;
4398 };
4399
4400 auto begin = this->name_components.begin ();
4401 auto end = this->name_components.end ();
4402
4403 /* Find the lower bound. */
4404 auto lower = [&] ()
4405 {
4406 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4407 return begin;
4408 else
4409 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4410 } ();
4411
4412 /* Find the upper bound. */
4413 auto upper = [&] ()
4414 {
4415 if (lookup_name_without_params.completion_mode ())
4416 {
4417 /* In completion mode, we want UPPER to point past all
4418 symbols names that have the same prefix. I.e., with
4419 these symbols, and completing "func":
4420
4421 function << lower bound
4422 function1
4423 other_function << upper bound
4424
4425 We find the upper bound by looking for the insertion
4426 point of "func"-with-last-character-incremented,
4427 i.e. "fund". */
4428 std::string after = make_sort_after_prefix_name (cplus);
4429 if (after.empty ())
4430 return end;
4431 return std::lower_bound (lower, end, after.c_str (),
4432 lookup_compare_lower);
4433 }
4434 else
4435 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4436 } ();
4437
4438 return {lower, upper};
4439 }
4440
4441 /* See declaration. */
4442
4443 void
4444 mapped_index_base::build_name_components ()
4445 {
4446 if (!this->name_components.empty ())
4447 return;
4448
4449 this->name_components_casing = case_sensitivity;
4450 auto *name_cmp
4451 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4452
4453 /* The code below only knows how to break apart components of C++
4454 symbol names (and other languages that use '::' as
4455 namespace/module separator). If we add support for wild matching
4456 to some language that uses some other operator (E.g., Ada, Go and
4457 D use '.'), then we'll need to try splitting the symbol name
4458 according to that language too. Note that Ada does support wild
4459 matching, but doesn't currently support .gdb_index. */
4460 auto count = this->symbol_name_count ();
4461 for (offset_type idx = 0; idx < count; idx++)
4462 {
4463 if (this->symbol_name_slot_invalid (idx))
4464 continue;
4465
4466 const char *name = this->symbol_name_at (idx);
4467
4468 /* Add each name component to the name component table. */
4469 unsigned int previous_len = 0;
4470 for (unsigned int current_len = cp_find_first_component (name);
4471 name[current_len] != '\0';
4472 current_len += cp_find_first_component (name + current_len))
4473 {
4474 gdb_assert (name[current_len] == ':');
4475 this->name_components.push_back ({previous_len, idx});
4476 /* Skip the '::'. */
4477 current_len += 2;
4478 previous_len = current_len;
4479 }
4480 this->name_components.push_back ({previous_len, idx});
4481 }
4482
4483 /* Sort name_components elements by name. */
4484 auto name_comp_compare = [&] (const name_component &left,
4485 const name_component &right)
4486 {
4487 const char *left_qualified = this->symbol_name_at (left.idx);
4488 const char *right_qualified = this->symbol_name_at (right.idx);
4489
4490 const char *left_name = left_qualified + left.name_offset;
4491 const char *right_name = right_qualified + right.name_offset;
4492
4493 return name_cmp (left_name, right_name) < 0;
4494 };
4495
4496 std::sort (this->name_components.begin (),
4497 this->name_components.end (),
4498 name_comp_compare);
4499 }
4500
4501 /* Helper for dw2_expand_symtabs_matching that works with a
4502 mapped_index_base instead of the containing objfile. This is split
4503 to a separate function in order to be able to unit test the
4504 name_components matching using a mock mapped_index_base. For each
4505 symbol name that matches, calls MATCH_CALLBACK, passing it the
4506 symbol's index in the mapped_index_base symbol table. */
4507
4508 static void
4509 dw2_expand_symtabs_matching_symbol
4510 (mapped_index_base &index,
4511 const lookup_name_info &lookup_name_in,
4512 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4513 enum search_domain kind,
4514 gdb::function_view<void (offset_type)> match_callback)
4515 {
4516 lookup_name_info lookup_name_without_params
4517 = lookup_name_in.make_ignore_params ();
4518 gdb_index_symbol_name_matcher lookup_name_matcher
4519 (lookup_name_without_params);
4520
4521 /* Build the symbol name component sorted vector, if we haven't
4522 yet. */
4523 index.build_name_components ();
4524
4525 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4526
4527 /* Now for each symbol name in range, check to see if we have a name
4528 match, and if so, call the MATCH_CALLBACK callback. */
4529
4530 /* The same symbol may appear more than once in the range though.
4531 E.g., if we're looking for symbols that complete "w", and we have
4532 a symbol named "w1::w2", we'll find the two name components for
4533 that same symbol in the range. To be sure we only call the
4534 callback once per symbol, we first collect the symbol name
4535 indexes that matched in a temporary vector and ignore
4536 duplicates. */
4537 std::vector<offset_type> matches;
4538 matches.reserve (std::distance (bounds.first, bounds.second));
4539
4540 for (; bounds.first != bounds.second; ++bounds.first)
4541 {
4542 const char *qualified = index.symbol_name_at (bounds.first->idx);
4543
4544 if (!lookup_name_matcher.matches (qualified)
4545 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4546 continue;
4547
4548 matches.push_back (bounds.first->idx);
4549 }
4550
4551 std::sort (matches.begin (), matches.end ());
4552
4553 /* Finally call the callback, once per match. */
4554 ULONGEST prev = -1;
4555 for (offset_type idx : matches)
4556 {
4557 if (prev != idx)
4558 {
4559 match_callback (idx);
4560 prev = idx;
4561 }
4562 }
4563
4564 /* Above we use a type wider than idx's for 'prev', since 0 and
4565 (offset_type)-1 are both possible values. */
4566 static_assert (sizeof (prev) > sizeof (offset_type), "");
4567 }
4568
4569 #if GDB_SELF_TEST
4570
4571 namespace selftests { namespace dw2_expand_symtabs_matching {
4572
4573 /* A mock .gdb_index/.debug_names-like name index table, enough to
4574 exercise dw2_expand_symtabs_matching_symbol, which works with the
4575 mapped_index_base interface. Builds an index from the symbol list
4576 passed as parameter to the constructor. */
4577 class mock_mapped_index : public mapped_index_base
4578 {
4579 public:
4580 mock_mapped_index (gdb::array_view<const char *> symbols)
4581 : m_symbol_table (symbols)
4582 {}
4583
4584 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4585
4586 /* Return the number of names in the symbol table. */
4587 size_t symbol_name_count () const override
4588 {
4589 return m_symbol_table.size ();
4590 }
4591
4592 /* Get the name of the symbol at IDX in the symbol table. */
4593 const char *symbol_name_at (offset_type idx) const override
4594 {
4595 return m_symbol_table[idx];
4596 }
4597
4598 private:
4599 gdb::array_view<const char *> m_symbol_table;
4600 };
4601
4602 /* Convenience function that converts a NULL pointer to a "<null>"
4603 string, to pass to print routines. */
4604
4605 static const char *
4606 string_or_null (const char *str)
4607 {
4608 return str != NULL ? str : "<null>";
4609 }
4610
4611 /* Check if a lookup_name_info built from
4612 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4613 index. EXPECTED_LIST is the list of expected matches, in expected
4614 matching order. If no match expected, then an empty list is
4615 specified. Returns true on success. On failure prints a warning
4616 indicating the file:line that failed, and returns false. */
4617
4618 static bool
4619 check_match (const char *file, int line,
4620 mock_mapped_index &mock_index,
4621 const char *name, symbol_name_match_type match_type,
4622 bool completion_mode,
4623 std::initializer_list<const char *> expected_list)
4624 {
4625 lookup_name_info lookup_name (name, match_type, completion_mode);
4626
4627 bool matched = true;
4628
4629 auto mismatch = [&] (const char *expected_str,
4630 const char *got)
4631 {
4632 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4633 "expected=\"%s\", got=\"%s\"\n"),
4634 file, line,
4635 (match_type == symbol_name_match_type::FULL
4636 ? "FULL" : "WILD"),
4637 name, string_or_null (expected_str), string_or_null (got));
4638 matched = false;
4639 };
4640
4641 auto expected_it = expected_list.begin ();
4642 auto expected_end = expected_list.end ();
4643
4644 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4645 NULL, ALL_DOMAIN,
4646 [&] (offset_type idx)
4647 {
4648 const char *matched_name = mock_index.symbol_name_at (idx);
4649 const char *expected_str
4650 = expected_it == expected_end ? NULL : *expected_it++;
4651
4652 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4653 mismatch (expected_str, matched_name);
4654 });
4655
4656 const char *expected_str
4657 = expected_it == expected_end ? NULL : *expected_it++;
4658 if (expected_str != NULL)
4659 mismatch (expected_str, NULL);
4660
4661 return matched;
4662 }
4663
4664 /* The symbols added to the mock mapped_index for testing (in
4665 canonical form). */
4666 static const char *test_symbols[] = {
4667 "function",
4668 "std::bar",
4669 "std::zfunction",
4670 "std::zfunction2",
4671 "w1::w2",
4672 "ns::foo<char*>",
4673 "ns::foo<int>",
4674 "ns::foo<long>",
4675 "ns2::tmpl<int>::foo2",
4676 "(anonymous namespace)::A::B::C",
4677
4678 /* These are used to check that the increment-last-char in the
4679 matching algorithm for completion doesn't match "t1_fund" when
4680 completing "t1_func". */
4681 "t1_func",
4682 "t1_func1",
4683 "t1_fund",
4684 "t1_fund1",
4685
4686 /* A UTF-8 name with multi-byte sequences to make sure that
4687 cp-name-parser understands this as a single identifier ("função"
4688 is "function" in PT). */
4689 u8"u8função",
4690
4691 /* \377 (0xff) is Latin1 'ÿ'. */
4692 "yfunc\377",
4693
4694 /* \377 (0xff) is Latin1 'ÿ'. */
4695 "\377",
4696 "\377\377123",
4697
4698 /* A name with all sorts of complications. Starts with "z" to make
4699 it easier for the completion tests below. */
4700 #define Z_SYM_NAME \
4701 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4702 "::tuple<(anonymous namespace)::ui*, " \
4703 "std::default_delete<(anonymous namespace)::ui>, void>"
4704
4705 Z_SYM_NAME
4706 };
4707
4708 /* Returns true if the mapped_index_base::find_name_component_bounds
4709 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4710 in completion mode. */
4711
4712 static bool
4713 check_find_bounds_finds (mapped_index_base &index,
4714 const char *search_name,
4715 gdb::array_view<const char *> expected_syms)
4716 {
4717 lookup_name_info lookup_name (search_name,
4718 symbol_name_match_type::FULL, true);
4719
4720 auto bounds = index.find_name_components_bounds (lookup_name);
4721
4722 size_t distance = std::distance (bounds.first, bounds.second);
4723 if (distance != expected_syms.size ())
4724 return false;
4725
4726 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4727 {
4728 auto nc_elem = bounds.first + exp_elem;
4729 const char *qualified = index.symbol_name_at (nc_elem->idx);
4730 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4731 return false;
4732 }
4733
4734 return true;
4735 }
4736
4737 /* Test the lower-level mapped_index::find_name_component_bounds
4738 method. */
4739
4740 static void
4741 test_mapped_index_find_name_component_bounds ()
4742 {
4743 mock_mapped_index mock_index (test_symbols);
4744
4745 mock_index.build_name_components ();
4746
4747 /* Test the lower-level mapped_index::find_name_component_bounds
4748 method in completion mode. */
4749 {
4750 static const char *expected_syms[] = {
4751 "t1_func",
4752 "t1_func1",
4753 };
4754
4755 SELF_CHECK (check_find_bounds_finds (mock_index,
4756 "t1_func", expected_syms));
4757 }
4758
4759 /* Check that the increment-last-char in the name matching algorithm
4760 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4761 {
4762 static const char *expected_syms1[] = {
4763 "\377",
4764 "\377\377123",
4765 };
4766 SELF_CHECK (check_find_bounds_finds (mock_index,
4767 "\377", expected_syms1));
4768
4769 static const char *expected_syms2[] = {
4770 "\377\377123",
4771 };
4772 SELF_CHECK (check_find_bounds_finds (mock_index,
4773 "\377\377", expected_syms2));
4774 }
4775 }
4776
4777 /* Test dw2_expand_symtabs_matching_symbol. */
4778
4779 static void
4780 test_dw2_expand_symtabs_matching_symbol ()
4781 {
4782 mock_mapped_index mock_index (test_symbols);
4783
4784 /* We let all tests run until the end even if some fails, for debug
4785 convenience. */
4786 bool any_mismatch = false;
4787
4788 /* Create the expected symbols list (an initializer_list). Needed
4789 because lists have commas, and we need to pass them to CHECK,
4790 which is a macro. */
4791 #define EXPECT(...) { __VA_ARGS__ }
4792
4793 /* Wrapper for check_match that passes down the current
4794 __FILE__/__LINE__. */
4795 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4796 any_mismatch |= !check_match (__FILE__, __LINE__, \
4797 mock_index, \
4798 NAME, MATCH_TYPE, COMPLETION_MODE, \
4799 EXPECTED_LIST)
4800
4801 /* Identity checks. */
4802 for (const char *sym : test_symbols)
4803 {
4804 /* Should be able to match all existing symbols. */
4805 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4806 EXPECT (sym));
4807
4808 /* Should be able to match all existing symbols with
4809 parameters. */
4810 std::string with_params = std::string (sym) + "(int)";
4811 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4812 EXPECT (sym));
4813
4814 /* Should be able to match all existing symbols with
4815 parameters and qualifiers. */
4816 with_params = std::string (sym) + " ( int ) const";
4817 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4818 EXPECT (sym));
4819
4820 /* This should really find sym, but cp-name-parser.y doesn't
4821 know about lvalue/rvalue qualifiers yet. */
4822 with_params = std::string (sym) + " ( int ) &&";
4823 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4824 {});
4825 }
4826
4827 /* Check that the name matching algorithm for completion doesn't get
4828 confused with Latin1 'ÿ' / 0xff. */
4829 {
4830 static const char str[] = "\377";
4831 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4832 EXPECT ("\377", "\377\377123"));
4833 }
4834
4835 /* Check that the increment-last-char in the matching algorithm for
4836 completion doesn't match "t1_fund" when completing "t1_func". */
4837 {
4838 static const char str[] = "t1_func";
4839 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4840 EXPECT ("t1_func", "t1_func1"));
4841 }
4842
4843 /* Check that completion mode works at each prefix of the expected
4844 symbol name. */
4845 {
4846 static const char str[] = "function(int)";
4847 size_t len = strlen (str);
4848 std::string lookup;
4849
4850 for (size_t i = 1; i < len; i++)
4851 {
4852 lookup.assign (str, i);
4853 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4854 EXPECT ("function"));
4855 }
4856 }
4857
4858 /* While "w" is a prefix of both components, the match function
4859 should still only be called once. */
4860 {
4861 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4862 EXPECT ("w1::w2"));
4863 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4864 EXPECT ("w1::w2"));
4865 }
4866
4867 /* Same, with a "complicated" symbol. */
4868 {
4869 static const char str[] = Z_SYM_NAME;
4870 size_t len = strlen (str);
4871 std::string lookup;
4872
4873 for (size_t i = 1; i < len; i++)
4874 {
4875 lookup.assign (str, i);
4876 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4877 EXPECT (Z_SYM_NAME));
4878 }
4879 }
4880
4881 /* In FULL mode, an incomplete symbol doesn't match. */
4882 {
4883 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4884 {});
4885 }
4886
4887 /* A complete symbol with parameters matches any overload, since the
4888 index has no overload info. */
4889 {
4890 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4891 EXPECT ("std::zfunction", "std::zfunction2"));
4892 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4893 EXPECT ("std::zfunction", "std::zfunction2"));
4894 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4895 EXPECT ("std::zfunction", "std::zfunction2"));
4896 }
4897
4898 /* Check that whitespace is ignored appropriately. A symbol with a
4899 template argument list. */
4900 {
4901 static const char expected[] = "ns::foo<int>";
4902 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4903 EXPECT (expected));
4904 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4905 EXPECT (expected));
4906 }
4907
4908 /* Check that whitespace is ignored appropriately. A symbol with a
4909 template argument list that includes a pointer. */
4910 {
4911 static const char expected[] = "ns::foo<char*>";
4912 /* Try both completion and non-completion modes. */
4913 static const bool completion_mode[2] = {false, true};
4914 for (size_t i = 0; i < 2; i++)
4915 {
4916 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4917 completion_mode[i], EXPECT (expected));
4918 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4919 completion_mode[i], EXPECT (expected));
4920
4921 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4922 completion_mode[i], EXPECT (expected));
4923 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4924 completion_mode[i], EXPECT (expected));
4925 }
4926 }
4927
4928 {
4929 /* Check method qualifiers are ignored. */
4930 static const char expected[] = "ns::foo<char*>";
4931 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4932 symbol_name_match_type::FULL, true, EXPECT (expected));
4933 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4934 symbol_name_match_type::FULL, true, EXPECT (expected));
4935 CHECK_MATCH ("foo < char * > ( int ) const",
4936 symbol_name_match_type::WILD, true, EXPECT (expected));
4937 CHECK_MATCH ("foo < char * > ( int ) &&",
4938 symbol_name_match_type::WILD, true, EXPECT (expected));
4939 }
4940
4941 /* Test lookup names that don't match anything. */
4942 {
4943 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4944 {});
4945
4946 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4947 {});
4948 }
4949
4950 /* Some wild matching tests, exercising "(anonymous namespace)",
4951 which should not be confused with a parameter list. */
4952 {
4953 static const char *syms[] = {
4954 "A::B::C",
4955 "B::C",
4956 "C",
4957 "A :: B :: C ( int )",
4958 "B :: C ( int )",
4959 "C ( int )",
4960 };
4961
4962 for (const char *s : syms)
4963 {
4964 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4965 EXPECT ("(anonymous namespace)::A::B::C"));
4966 }
4967 }
4968
4969 {
4970 static const char expected[] = "ns2::tmpl<int>::foo2";
4971 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4972 EXPECT (expected));
4973 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4974 EXPECT (expected));
4975 }
4976
4977 SELF_CHECK (!any_mismatch);
4978
4979 #undef EXPECT
4980 #undef CHECK_MATCH
4981 }
4982
4983 static void
4984 run_test ()
4985 {
4986 test_mapped_index_find_name_component_bounds ();
4987 test_dw2_expand_symtabs_matching_symbol ();
4988 }
4989
4990 }} // namespace selftests::dw2_expand_symtabs_matching
4991
4992 #endif /* GDB_SELF_TEST */
4993
4994 /* If FILE_MATCHER is NULL or if PER_CU has
4995 dwarf2_per_cu_quick_data::MARK set (see
4996 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4997 EXPANSION_NOTIFY on it. */
4998
4999 static void
5000 dw2_expand_symtabs_matching_one
5001 (struct dwarf2_per_cu_data *per_cu,
5002 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5003 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
5004 {
5005 if (file_matcher == NULL || per_cu->v.quick->mark)
5006 {
5007 bool symtab_was_null
5008 = (per_cu->v.quick->compunit_symtab == NULL);
5009
5010 dw2_instantiate_symtab (per_cu, false);
5011
5012 if (expansion_notify != NULL
5013 && symtab_was_null
5014 && per_cu->v.quick->compunit_symtab != NULL)
5015 expansion_notify (per_cu->v.quick->compunit_symtab);
5016 }
5017 }
5018
5019 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5020 matched, to expand corresponding CUs that were marked. IDX is the
5021 index of the symbol name that matched. */
5022
5023 static void
5024 dw2_expand_marked_cus
5025 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5026 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5027 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5028 search_domain kind)
5029 {
5030 offset_type *vec, vec_len, vec_idx;
5031 bool global_seen = false;
5032 mapped_index &index = *dwarf2_per_objfile->index_table;
5033
5034 vec = (offset_type *) (index.constant_pool
5035 + MAYBE_SWAP (index.symbol_table[idx].vec));
5036 vec_len = MAYBE_SWAP (vec[0]);
5037 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5038 {
5039 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5040 /* This value is only valid for index versions >= 7. */
5041 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5042 gdb_index_symbol_kind symbol_kind =
5043 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5044 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5045 /* Only check the symbol attributes if they're present.
5046 Indices prior to version 7 don't record them,
5047 and indices >= 7 may elide them for certain symbols
5048 (gold does this). */
5049 int attrs_valid =
5050 (index.version >= 7
5051 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5052
5053 /* Work around gold/15646. */
5054 if (attrs_valid)
5055 {
5056 if (!is_static && global_seen)
5057 continue;
5058 if (!is_static)
5059 global_seen = true;
5060 }
5061
5062 /* Only check the symbol's kind if it has one. */
5063 if (attrs_valid)
5064 {
5065 switch (kind)
5066 {
5067 case VARIABLES_DOMAIN:
5068 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5069 continue;
5070 break;
5071 case FUNCTIONS_DOMAIN:
5072 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5073 continue;
5074 break;
5075 case TYPES_DOMAIN:
5076 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5077 continue;
5078 break;
5079 default:
5080 break;
5081 }
5082 }
5083
5084 /* Don't crash on bad data. */
5085 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5086 + dwarf2_per_objfile->all_type_units.size ()))
5087 {
5088 complaint (_(".gdb_index entry has bad CU index"
5089 " [in module %s]"),
5090 objfile_name (dwarf2_per_objfile->objfile));
5091 continue;
5092 }
5093
5094 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5095 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5096 expansion_notify);
5097 }
5098 }
5099
5100 /* If FILE_MATCHER is non-NULL, set all the
5101 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5102 that match FILE_MATCHER. */
5103
5104 static void
5105 dw_expand_symtabs_matching_file_matcher
5106 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5107 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5108 {
5109 if (file_matcher == NULL)
5110 return;
5111
5112 objfile *const objfile = dwarf2_per_objfile->objfile;
5113
5114 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5115 htab_eq_pointer,
5116 NULL, xcalloc, xfree));
5117 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5118 htab_eq_pointer,
5119 NULL, xcalloc, xfree));
5120
5121 /* The rule is CUs specify all the files, including those used by
5122 any TU, so there's no need to scan TUs here. */
5123
5124 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5125 {
5126 QUIT;
5127
5128 per_cu->v.quick->mark = 0;
5129
5130 /* We only need to look at symtabs not already expanded. */
5131 if (per_cu->v.quick->compunit_symtab)
5132 continue;
5133
5134 quick_file_names *file_data = dw2_get_file_names (per_cu);
5135 if (file_data == NULL)
5136 continue;
5137
5138 if (htab_find (visited_not_found.get (), file_data) != NULL)
5139 continue;
5140 else if (htab_find (visited_found.get (), file_data) != NULL)
5141 {
5142 per_cu->v.quick->mark = 1;
5143 continue;
5144 }
5145
5146 for (int j = 0; j < file_data->num_file_names; ++j)
5147 {
5148 const char *this_real_name;
5149
5150 if (file_matcher (file_data->file_names[j], false))
5151 {
5152 per_cu->v.quick->mark = 1;
5153 break;
5154 }
5155
5156 /* Before we invoke realpath, which can get expensive when many
5157 files are involved, do a quick comparison of the basenames. */
5158 if (!basenames_may_differ
5159 && !file_matcher (lbasename (file_data->file_names[j]),
5160 true))
5161 continue;
5162
5163 this_real_name = dw2_get_real_path (objfile, file_data, j);
5164 if (file_matcher (this_real_name, false))
5165 {
5166 per_cu->v.quick->mark = 1;
5167 break;
5168 }
5169 }
5170
5171 void **slot = htab_find_slot (per_cu->v.quick->mark
5172 ? visited_found.get ()
5173 : visited_not_found.get (),
5174 file_data, INSERT);
5175 *slot = file_data;
5176 }
5177 }
5178
5179 static void
5180 dw2_expand_symtabs_matching
5181 (struct objfile *objfile,
5182 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5183 const lookup_name_info &lookup_name,
5184 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5185 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5186 enum search_domain kind)
5187 {
5188 struct dwarf2_per_objfile *dwarf2_per_objfile
5189 = get_dwarf2_per_objfile (objfile);
5190
5191 /* index_table is NULL if OBJF_READNOW. */
5192 if (!dwarf2_per_objfile->index_table)
5193 return;
5194
5195 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5196
5197 mapped_index &index = *dwarf2_per_objfile->index_table;
5198
5199 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5200 symbol_matcher,
5201 kind, [&] (offset_type idx)
5202 {
5203 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5204 expansion_notify, kind);
5205 });
5206 }
5207
5208 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5209 symtab. */
5210
5211 static struct compunit_symtab *
5212 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5213 CORE_ADDR pc)
5214 {
5215 int i;
5216
5217 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5218 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5219 return cust;
5220
5221 if (cust->includes == NULL)
5222 return NULL;
5223
5224 for (i = 0; cust->includes[i]; ++i)
5225 {
5226 struct compunit_symtab *s = cust->includes[i];
5227
5228 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5229 if (s != NULL)
5230 return s;
5231 }
5232
5233 return NULL;
5234 }
5235
5236 static struct compunit_symtab *
5237 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5238 struct bound_minimal_symbol msymbol,
5239 CORE_ADDR pc,
5240 struct obj_section *section,
5241 int warn_if_readin)
5242 {
5243 struct dwarf2_per_cu_data *data;
5244 struct compunit_symtab *result;
5245
5246 if (!objfile->psymtabs_addrmap)
5247 return NULL;
5248
5249 CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
5250 SECT_OFF_TEXT (objfile));
5251 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
5252 pc - baseaddr);
5253 if (!data)
5254 return NULL;
5255
5256 if (warn_if_readin && data->v.quick->compunit_symtab)
5257 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5258 paddress (get_objfile_arch (objfile), pc));
5259
5260 result
5261 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5262 false),
5263 pc);
5264 gdb_assert (result != NULL);
5265 return result;
5266 }
5267
5268 static void
5269 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5270 void *data, int need_fullname)
5271 {
5272 struct dwarf2_per_objfile *dwarf2_per_objfile
5273 = get_dwarf2_per_objfile (objfile);
5274
5275 if (!dwarf2_per_objfile->filenames_cache)
5276 {
5277 dwarf2_per_objfile->filenames_cache.emplace ();
5278
5279 htab_up visited (htab_create_alloc (10,
5280 htab_hash_pointer, htab_eq_pointer,
5281 NULL, xcalloc, xfree));
5282
5283 /* The rule is CUs specify all the files, including those used
5284 by any TU, so there's no need to scan TUs here. We can
5285 ignore file names coming from already-expanded CUs. */
5286
5287 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5288 {
5289 if (per_cu->v.quick->compunit_symtab)
5290 {
5291 void **slot = htab_find_slot (visited.get (),
5292 per_cu->v.quick->file_names,
5293 INSERT);
5294
5295 *slot = per_cu->v.quick->file_names;
5296 }
5297 }
5298
5299 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5300 {
5301 /* We only need to look at symtabs not already expanded. */
5302 if (per_cu->v.quick->compunit_symtab)
5303 continue;
5304
5305 quick_file_names *file_data = dw2_get_file_names (per_cu);
5306 if (file_data == NULL)
5307 continue;
5308
5309 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5310 if (*slot)
5311 {
5312 /* Already visited. */
5313 continue;
5314 }
5315 *slot = file_data;
5316
5317 for (int j = 0; j < file_data->num_file_names; ++j)
5318 {
5319 const char *filename = file_data->file_names[j];
5320 dwarf2_per_objfile->filenames_cache->seen (filename);
5321 }
5322 }
5323 }
5324
5325 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5326 {
5327 gdb::unique_xmalloc_ptr<char> this_real_name;
5328
5329 if (need_fullname)
5330 this_real_name = gdb_realpath (filename);
5331 (*fun) (filename, this_real_name.get (), data);
5332 });
5333 }
5334
5335 static int
5336 dw2_has_symbols (struct objfile *objfile)
5337 {
5338 return 1;
5339 }
5340
5341 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5342 {
5343 dw2_has_symbols,
5344 dw2_find_last_source_symtab,
5345 dw2_forget_cached_source_info,
5346 dw2_map_symtabs_matching_filename,
5347 dw2_lookup_symbol,
5348 dw2_print_stats,
5349 dw2_dump,
5350 dw2_expand_symtabs_for_function,
5351 dw2_expand_all_symtabs,
5352 dw2_expand_symtabs_with_fullname,
5353 dw2_map_matching_symbols,
5354 dw2_expand_symtabs_matching,
5355 dw2_find_pc_sect_compunit_symtab,
5356 NULL,
5357 dw2_map_symbol_filenames
5358 };
5359
5360 /* DWARF-5 debug_names reader. */
5361
5362 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5363 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5364
5365 /* A helper function that reads the .debug_names section in SECTION
5366 and fills in MAP. FILENAME is the name of the file containing the
5367 section; it is used for error reporting.
5368
5369 Returns true if all went well, false otherwise. */
5370
5371 static bool
5372 read_debug_names_from_section (struct objfile *objfile,
5373 const char *filename,
5374 struct dwarf2_section_info *section,
5375 mapped_debug_names &map)
5376 {
5377 if (dwarf2_section_empty_p (section))
5378 return false;
5379
5380 /* Older elfutils strip versions could keep the section in the main
5381 executable while splitting it for the separate debug info file. */
5382 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5383 return false;
5384
5385 dwarf2_read_section (objfile, section);
5386
5387 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5388
5389 const gdb_byte *addr = section->buffer;
5390
5391 bfd *const abfd = get_section_bfd_owner (section);
5392
5393 unsigned int bytes_read;
5394 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5395 addr += bytes_read;
5396
5397 map.dwarf5_is_dwarf64 = bytes_read != 4;
5398 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5399 if (bytes_read + length != section->size)
5400 {
5401 /* There may be multiple per-CU indices. */
5402 warning (_("Section .debug_names in %s length %s does not match "
5403 "section length %s, ignoring .debug_names."),
5404 filename, plongest (bytes_read + length),
5405 pulongest (section->size));
5406 return false;
5407 }
5408
5409 /* The version number. */
5410 uint16_t version = read_2_bytes (abfd, addr);
5411 addr += 2;
5412 if (version != 5)
5413 {
5414 warning (_("Section .debug_names in %s has unsupported version %d, "
5415 "ignoring .debug_names."),
5416 filename, version);
5417 return false;
5418 }
5419
5420 /* Padding. */
5421 uint16_t padding = read_2_bytes (abfd, addr);
5422 addr += 2;
5423 if (padding != 0)
5424 {
5425 warning (_("Section .debug_names in %s has unsupported padding %d, "
5426 "ignoring .debug_names."),
5427 filename, padding);
5428 return false;
5429 }
5430
5431 /* comp_unit_count - The number of CUs in the CU list. */
5432 map.cu_count = read_4_bytes (abfd, addr);
5433 addr += 4;
5434
5435 /* local_type_unit_count - The number of TUs in the local TU
5436 list. */
5437 map.tu_count = read_4_bytes (abfd, addr);
5438 addr += 4;
5439
5440 /* foreign_type_unit_count - The number of TUs in the foreign TU
5441 list. */
5442 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5443 addr += 4;
5444 if (foreign_tu_count != 0)
5445 {
5446 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5447 "ignoring .debug_names."),
5448 filename, static_cast<unsigned long> (foreign_tu_count));
5449 return false;
5450 }
5451
5452 /* bucket_count - The number of hash buckets in the hash lookup
5453 table. */
5454 map.bucket_count = read_4_bytes (abfd, addr);
5455 addr += 4;
5456
5457 /* name_count - The number of unique names in the index. */
5458 map.name_count = read_4_bytes (abfd, addr);
5459 addr += 4;
5460
5461 /* abbrev_table_size - The size in bytes of the abbreviations
5462 table. */
5463 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5464 addr += 4;
5465
5466 /* augmentation_string_size - The size in bytes of the augmentation
5467 string. This value is rounded up to a multiple of 4. */
5468 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5469 addr += 4;
5470 map.augmentation_is_gdb = ((augmentation_string_size
5471 == sizeof (dwarf5_augmentation))
5472 && memcmp (addr, dwarf5_augmentation,
5473 sizeof (dwarf5_augmentation)) == 0);
5474 augmentation_string_size += (-augmentation_string_size) & 3;
5475 addr += augmentation_string_size;
5476
5477 /* List of CUs */
5478 map.cu_table_reordered = addr;
5479 addr += map.cu_count * map.offset_size;
5480
5481 /* List of Local TUs */
5482 map.tu_table_reordered = addr;
5483 addr += map.tu_count * map.offset_size;
5484
5485 /* Hash Lookup Table */
5486 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5487 addr += map.bucket_count * 4;
5488 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5489 addr += map.name_count * 4;
5490
5491 /* Name Table */
5492 map.name_table_string_offs_reordered = addr;
5493 addr += map.name_count * map.offset_size;
5494 map.name_table_entry_offs_reordered = addr;
5495 addr += map.name_count * map.offset_size;
5496
5497 const gdb_byte *abbrev_table_start = addr;
5498 for (;;)
5499 {
5500 unsigned int bytes_read;
5501 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5502 addr += bytes_read;
5503 if (index_num == 0)
5504 break;
5505
5506 const auto insertpair
5507 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5508 if (!insertpair.second)
5509 {
5510 warning (_("Section .debug_names in %s has duplicate index %s, "
5511 "ignoring .debug_names."),
5512 filename, pulongest (index_num));
5513 return false;
5514 }
5515 mapped_debug_names::index_val &indexval = insertpair.first->second;
5516 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5517 addr += bytes_read;
5518
5519 for (;;)
5520 {
5521 mapped_debug_names::index_val::attr attr;
5522 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5523 addr += bytes_read;
5524 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5525 addr += bytes_read;
5526 if (attr.form == DW_FORM_implicit_const)
5527 {
5528 attr.implicit_const = read_signed_leb128 (abfd, addr,
5529 &bytes_read);
5530 addr += bytes_read;
5531 }
5532 if (attr.dw_idx == 0 && attr.form == 0)
5533 break;
5534 indexval.attr_vec.push_back (std::move (attr));
5535 }
5536 }
5537 if (addr != abbrev_table_start + abbrev_table_size)
5538 {
5539 warning (_("Section .debug_names in %s has abbreviation_table "
5540 "of size %zu vs. written as %u, ignoring .debug_names."),
5541 filename, addr - abbrev_table_start, abbrev_table_size);
5542 return false;
5543 }
5544 map.entry_pool = addr;
5545
5546 return true;
5547 }
5548
5549 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5550 list. */
5551
5552 static void
5553 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5554 const mapped_debug_names &map,
5555 dwarf2_section_info &section,
5556 bool is_dwz)
5557 {
5558 sect_offset sect_off_prev;
5559 for (uint32_t i = 0; i <= map.cu_count; ++i)
5560 {
5561 sect_offset sect_off_next;
5562 if (i < map.cu_count)
5563 {
5564 sect_off_next
5565 = (sect_offset) (extract_unsigned_integer
5566 (map.cu_table_reordered + i * map.offset_size,
5567 map.offset_size,
5568 map.dwarf5_byte_order));
5569 }
5570 else
5571 sect_off_next = (sect_offset) section.size;
5572 if (i >= 1)
5573 {
5574 const ULONGEST length = sect_off_next - sect_off_prev;
5575 dwarf2_per_cu_data *per_cu
5576 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5577 sect_off_prev, length);
5578 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5579 }
5580 sect_off_prev = sect_off_next;
5581 }
5582 }
5583
5584 /* Read the CU list from the mapped index, and use it to create all
5585 the CU objects for this dwarf2_per_objfile. */
5586
5587 static void
5588 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5589 const mapped_debug_names &map,
5590 const mapped_debug_names &dwz_map)
5591 {
5592 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5593 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5594
5595 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5596 dwarf2_per_objfile->info,
5597 false /* is_dwz */);
5598
5599 if (dwz_map.cu_count == 0)
5600 return;
5601
5602 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5603 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5604 true /* is_dwz */);
5605 }
5606
5607 /* Read .debug_names. If everything went ok, initialize the "quick"
5608 elements of all the CUs and return true. Otherwise, return false. */
5609
5610 static bool
5611 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5612 {
5613 std::unique_ptr<mapped_debug_names> map
5614 (new mapped_debug_names (dwarf2_per_objfile));
5615 mapped_debug_names dwz_map (dwarf2_per_objfile);
5616 struct objfile *objfile = dwarf2_per_objfile->objfile;
5617
5618 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5619 &dwarf2_per_objfile->debug_names,
5620 *map))
5621 return false;
5622
5623 /* Don't use the index if it's empty. */
5624 if (map->name_count == 0)
5625 return false;
5626
5627 /* If there is a .dwz file, read it so we can get its CU list as
5628 well. */
5629 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5630 if (dwz != NULL)
5631 {
5632 if (!read_debug_names_from_section (objfile,
5633 bfd_get_filename (dwz->dwz_bfd),
5634 &dwz->debug_names, dwz_map))
5635 {
5636 warning (_("could not read '.debug_names' section from %s; skipping"),
5637 bfd_get_filename (dwz->dwz_bfd));
5638 return false;
5639 }
5640 }
5641
5642 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5643
5644 if (map->tu_count != 0)
5645 {
5646 /* We can only handle a single .debug_types when we have an
5647 index. */
5648 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
5649 return false;
5650
5651 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
5652 dwarf2_per_objfile->types, 0);
5653
5654 create_signatured_type_table_from_debug_names
5655 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5656 }
5657
5658 create_addrmap_from_aranges (dwarf2_per_objfile,
5659 &dwarf2_per_objfile->debug_aranges);
5660
5661 dwarf2_per_objfile->debug_names_table = std::move (map);
5662 dwarf2_per_objfile->using_index = 1;
5663 dwarf2_per_objfile->quick_file_names_table =
5664 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5665
5666 return true;
5667 }
5668
5669 /* Type used to manage iterating over all CUs looking for a symbol for
5670 .debug_names. */
5671
5672 class dw2_debug_names_iterator
5673 {
5674 public:
5675 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5676 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5677 dw2_debug_names_iterator (const mapped_debug_names &map,
5678 bool want_specific_block,
5679 block_enum block_index, domain_enum domain,
5680 const char *name)
5681 : m_map (map), m_want_specific_block (want_specific_block),
5682 m_block_index (block_index), m_domain (domain),
5683 m_addr (find_vec_in_debug_names (map, name))
5684 {}
5685
5686 dw2_debug_names_iterator (const mapped_debug_names &map,
5687 search_domain search, uint32_t namei)
5688 : m_map (map),
5689 m_search (search),
5690 m_addr (find_vec_in_debug_names (map, namei))
5691 {}
5692
5693 /* Return the next matching CU or NULL if there are no more. */
5694 dwarf2_per_cu_data *next ();
5695
5696 private:
5697 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5698 const char *name);
5699 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5700 uint32_t namei);
5701
5702 /* The internalized form of .debug_names. */
5703 const mapped_debug_names &m_map;
5704
5705 /* If true, only look for symbols that match BLOCK_INDEX. */
5706 const bool m_want_specific_block = false;
5707
5708 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5709 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5710 value. */
5711 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5712
5713 /* The kind of symbol we're looking for. */
5714 const domain_enum m_domain = UNDEF_DOMAIN;
5715 const search_domain m_search = ALL_DOMAIN;
5716
5717 /* The list of CUs from the index entry of the symbol, or NULL if
5718 not found. */
5719 const gdb_byte *m_addr;
5720 };
5721
5722 const char *
5723 mapped_debug_names::namei_to_name (uint32_t namei) const
5724 {
5725 const ULONGEST namei_string_offs
5726 = extract_unsigned_integer ((name_table_string_offs_reordered
5727 + namei * offset_size),
5728 offset_size,
5729 dwarf5_byte_order);
5730 return read_indirect_string_at_offset
5731 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5732 }
5733
5734 /* Find a slot in .debug_names for the object named NAME. If NAME is
5735 found, return pointer to its pool data. If NAME cannot be found,
5736 return NULL. */
5737
5738 const gdb_byte *
5739 dw2_debug_names_iterator::find_vec_in_debug_names
5740 (const mapped_debug_names &map, const char *name)
5741 {
5742 int (*cmp) (const char *, const char *);
5743
5744 if (current_language->la_language == language_cplus
5745 || current_language->la_language == language_fortran
5746 || current_language->la_language == language_d)
5747 {
5748 /* NAME is already canonical. Drop any qualifiers as
5749 .debug_names does not contain any. */
5750
5751 if (strchr (name, '(') != NULL)
5752 {
5753 gdb::unique_xmalloc_ptr<char> without_params
5754 = cp_remove_params (name);
5755
5756 if (without_params != NULL)
5757 {
5758 name = without_params.get();
5759 }
5760 }
5761 }
5762
5763 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5764
5765 const uint32_t full_hash = dwarf5_djb_hash (name);
5766 uint32_t namei
5767 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5768 (map.bucket_table_reordered
5769 + (full_hash % map.bucket_count)), 4,
5770 map.dwarf5_byte_order);
5771 if (namei == 0)
5772 return NULL;
5773 --namei;
5774 if (namei >= map.name_count)
5775 {
5776 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5777 "[in module %s]"),
5778 namei, map.name_count,
5779 objfile_name (map.dwarf2_per_objfile->objfile));
5780 return NULL;
5781 }
5782
5783 for (;;)
5784 {
5785 const uint32_t namei_full_hash
5786 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5787 (map.hash_table_reordered + namei), 4,
5788 map.dwarf5_byte_order);
5789 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5790 return NULL;
5791
5792 if (full_hash == namei_full_hash)
5793 {
5794 const char *const namei_string = map.namei_to_name (namei);
5795
5796 #if 0 /* An expensive sanity check. */
5797 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5798 {
5799 complaint (_("Wrong .debug_names hash for string at index %u "
5800 "[in module %s]"),
5801 namei, objfile_name (dwarf2_per_objfile->objfile));
5802 return NULL;
5803 }
5804 #endif
5805
5806 if (cmp (namei_string, name) == 0)
5807 {
5808 const ULONGEST namei_entry_offs
5809 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5810 + namei * map.offset_size),
5811 map.offset_size, map.dwarf5_byte_order);
5812 return map.entry_pool + namei_entry_offs;
5813 }
5814 }
5815
5816 ++namei;
5817 if (namei >= map.name_count)
5818 return NULL;
5819 }
5820 }
5821
5822 const gdb_byte *
5823 dw2_debug_names_iterator::find_vec_in_debug_names
5824 (const mapped_debug_names &map, uint32_t namei)
5825 {
5826 if (namei >= map.name_count)
5827 {
5828 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5829 "[in module %s]"),
5830 namei, map.name_count,
5831 objfile_name (map.dwarf2_per_objfile->objfile));
5832 return NULL;
5833 }
5834
5835 const ULONGEST namei_entry_offs
5836 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5837 + namei * map.offset_size),
5838 map.offset_size, map.dwarf5_byte_order);
5839 return map.entry_pool + namei_entry_offs;
5840 }
5841
5842 /* See dw2_debug_names_iterator. */
5843
5844 dwarf2_per_cu_data *
5845 dw2_debug_names_iterator::next ()
5846 {
5847 if (m_addr == NULL)
5848 return NULL;
5849
5850 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5851 struct objfile *objfile = dwarf2_per_objfile->objfile;
5852 bfd *const abfd = objfile->obfd;
5853
5854 again:
5855
5856 unsigned int bytes_read;
5857 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5858 m_addr += bytes_read;
5859 if (abbrev == 0)
5860 return NULL;
5861
5862 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5863 if (indexval_it == m_map.abbrev_map.cend ())
5864 {
5865 complaint (_("Wrong .debug_names undefined abbrev code %s "
5866 "[in module %s]"),
5867 pulongest (abbrev), objfile_name (objfile));
5868 return NULL;
5869 }
5870 const mapped_debug_names::index_val &indexval = indexval_it->second;
5871 bool have_is_static = false;
5872 bool is_static;
5873 dwarf2_per_cu_data *per_cu = NULL;
5874 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5875 {
5876 ULONGEST ull;
5877 switch (attr.form)
5878 {
5879 case DW_FORM_implicit_const:
5880 ull = attr.implicit_const;
5881 break;
5882 case DW_FORM_flag_present:
5883 ull = 1;
5884 break;
5885 case DW_FORM_udata:
5886 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5887 m_addr += bytes_read;
5888 break;
5889 default:
5890 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5891 dwarf_form_name (attr.form),
5892 objfile_name (objfile));
5893 return NULL;
5894 }
5895 switch (attr.dw_idx)
5896 {
5897 case DW_IDX_compile_unit:
5898 /* Don't crash on bad data. */
5899 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5900 {
5901 complaint (_(".debug_names entry has bad CU index %s"
5902 " [in module %s]"),
5903 pulongest (ull),
5904 objfile_name (dwarf2_per_objfile->objfile));
5905 continue;
5906 }
5907 per_cu = dwarf2_per_objfile->get_cutu (ull);
5908 break;
5909 case DW_IDX_type_unit:
5910 /* Don't crash on bad data. */
5911 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5912 {
5913 complaint (_(".debug_names entry has bad TU index %s"
5914 " [in module %s]"),
5915 pulongest (ull),
5916 objfile_name (dwarf2_per_objfile->objfile));
5917 continue;
5918 }
5919 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5920 break;
5921 case DW_IDX_GNU_internal:
5922 if (!m_map.augmentation_is_gdb)
5923 break;
5924 have_is_static = true;
5925 is_static = true;
5926 break;
5927 case DW_IDX_GNU_external:
5928 if (!m_map.augmentation_is_gdb)
5929 break;
5930 have_is_static = true;
5931 is_static = false;
5932 break;
5933 }
5934 }
5935
5936 /* Skip if already read in. */
5937 if (per_cu->v.quick->compunit_symtab)
5938 goto again;
5939
5940 /* Check static vs global. */
5941 if (have_is_static)
5942 {
5943 const bool want_static = m_block_index != GLOBAL_BLOCK;
5944 if (m_want_specific_block && want_static != is_static)
5945 goto again;
5946 }
5947
5948 /* Match dw2_symtab_iter_next, symbol_kind
5949 and debug_names::psymbol_tag. */
5950 switch (m_domain)
5951 {
5952 case VAR_DOMAIN:
5953 switch (indexval.dwarf_tag)
5954 {
5955 case DW_TAG_variable:
5956 case DW_TAG_subprogram:
5957 /* Some types are also in VAR_DOMAIN. */
5958 case DW_TAG_typedef:
5959 case DW_TAG_structure_type:
5960 break;
5961 default:
5962 goto again;
5963 }
5964 break;
5965 case STRUCT_DOMAIN:
5966 switch (indexval.dwarf_tag)
5967 {
5968 case DW_TAG_typedef:
5969 case DW_TAG_structure_type:
5970 break;
5971 default:
5972 goto again;
5973 }
5974 break;
5975 case LABEL_DOMAIN:
5976 switch (indexval.dwarf_tag)
5977 {
5978 case 0:
5979 case DW_TAG_variable:
5980 break;
5981 default:
5982 goto again;
5983 }
5984 break;
5985 default:
5986 break;
5987 }
5988
5989 /* Match dw2_expand_symtabs_matching, symbol_kind and
5990 debug_names::psymbol_tag. */
5991 switch (m_search)
5992 {
5993 case VARIABLES_DOMAIN:
5994 switch (indexval.dwarf_tag)
5995 {
5996 case DW_TAG_variable:
5997 break;
5998 default:
5999 goto again;
6000 }
6001 break;
6002 case FUNCTIONS_DOMAIN:
6003 switch (indexval.dwarf_tag)
6004 {
6005 case DW_TAG_subprogram:
6006 break;
6007 default:
6008 goto again;
6009 }
6010 break;
6011 case TYPES_DOMAIN:
6012 switch (indexval.dwarf_tag)
6013 {
6014 case DW_TAG_typedef:
6015 case DW_TAG_structure_type:
6016 break;
6017 default:
6018 goto again;
6019 }
6020 break;
6021 default:
6022 break;
6023 }
6024
6025 return per_cu;
6026 }
6027
6028 static struct compunit_symtab *
6029 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6030 const char *name, domain_enum domain)
6031 {
6032 const block_enum block_index = static_cast<block_enum> (block_index_int);
6033 struct dwarf2_per_objfile *dwarf2_per_objfile
6034 = get_dwarf2_per_objfile (objfile);
6035
6036 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6037 if (!mapp)
6038 {
6039 /* index is NULL if OBJF_READNOW. */
6040 return NULL;
6041 }
6042 const auto &map = *mapp;
6043
6044 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6045 block_index, domain, name);
6046
6047 struct compunit_symtab *stab_best = NULL;
6048 struct dwarf2_per_cu_data *per_cu;
6049 while ((per_cu = iter.next ()) != NULL)
6050 {
6051 struct symbol *sym, *with_opaque = NULL;
6052 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6053 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6054 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6055
6056 sym = block_find_symbol (block, name, domain,
6057 block_find_non_opaque_type_preferred,
6058 &with_opaque);
6059
6060 /* Some caution must be observed with overloaded functions and
6061 methods, since the index will not contain any overload
6062 information (but NAME might contain it). */
6063
6064 if (sym != NULL
6065 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6066 return stab;
6067 if (with_opaque != NULL
6068 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6069 stab_best = stab;
6070
6071 /* Keep looking through other CUs. */
6072 }
6073
6074 return stab_best;
6075 }
6076
6077 /* This dumps minimal information about .debug_names. It is called
6078 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6079 uses this to verify that .debug_names has been loaded. */
6080
6081 static void
6082 dw2_debug_names_dump (struct objfile *objfile)
6083 {
6084 struct dwarf2_per_objfile *dwarf2_per_objfile
6085 = get_dwarf2_per_objfile (objfile);
6086
6087 gdb_assert (dwarf2_per_objfile->using_index);
6088 printf_filtered (".debug_names:");
6089 if (dwarf2_per_objfile->debug_names_table)
6090 printf_filtered (" exists\n");
6091 else
6092 printf_filtered (" faked for \"readnow\"\n");
6093 printf_filtered ("\n");
6094 }
6095
6096 static void
6097 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6098 const char *func_name)
6099 {
6100 struct dwarf2_per_objfile *dwarf2_per_objfile
6101 = get_dwarf2_per_objfile (objfile);
6102
6103 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6104 if (dwarf2_per_objfile->debug_names_table)
6105 {
6106 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6107
6108 /* Note: It doesn't matter what we pass for block_index here. */
6109 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6110 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6111
6112 struct dwarf2_per_cu_data *per_cu;
6113 while ((per_cu = iter.next ()) != NULL)
6114 dw2_instantiate_symtab (per_cu, false);
6115 }
6116 }
6117
6118 static void
6119 dw2_debug_names_expand_symtabs_matching
6120 (struct objfile *objfile,
6121 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6122 const lookup_name_info &lookup_name,
6123 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6124 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6125 enum search_domain kind)
6126 {
6127 struct dwarf2_per_objfile *dwarf2_per_objfile
6128 = get_dwarf2_per_objfile (objfile);
6129
6130 /* debug_names_table is NULL if OBJF_READNOW. */
6131 if (!dwarf2_per_objfile->debug_names_table)
6132 return;
6133
6134 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6135
6136 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6137
6138 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6139 symbol_matcher,
6140 kind, [&] (offset_type namei)
6141 {
6142 /* The name was matched, now expand corresponding CUs that were
6143 marked. */
6144 dw2_debug_names_iterator iter (map, kind, namei);
6145
6146 struct dwarf2_per_cu_data *per_cu;
6147 while ((per_cu = iter.next ()) != NULL)
6148 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6149 expansion_notify);
6150 });
6151 }
6152
6153 const struct quick_symbol_functions dwarf2_debug_names_functions =
6154 {
6155 dw2_has_symbols,
6156 dw2_find_last_source_symtab,
6157 dw2_forget_cached_source_info,
6158 dw2_map_symtabs_matching_filename,
6159 dw2_debug_names_lookup_symbol,
6160 dw2_print_stats,
6161 dw2_debug_names_dump,
6162 dw2_debug_names_expand_symtabs_for_function,
6163 dw2_expand_all_symtabs,
6164 dw2_expand_symtabs_with_fullname,
6165 dw2_map_matching_symbols,
6166 dw2_debug_names_expand_symtabs_matching,
6167 dw2_find_pc_sect_compunit_symtab,
6168 NULL,
6169 dw2_map_symbol_filenames
6170 };
6171
6172 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
6173 to either a dwarf2_per_objfile or dwz_file object. */
6174
6175 template <typename T>
6176 static gdb::array_view<const gdb_byte>
6177 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
6178 {
6179 dwarf2_section_info *section = &section_owner->gdb_index;
6180
6181 if (dwarf2_section_empty_p (section))
6182 return {};
6183
6184 /* Older elfutils strip versions could keep the section in the main
6185 executable while splitting it for the separate debug info file. */
6186 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
6187 return {};
6188
6189 dwarf2_read_section (obj, section);
6190
6191 return {section->buffer, section->size};
6192 }
6193
6194 /* Lookup the index cache for the contents of the index associated to
6195 DWARF2_OBJ. */
6196
6197 static gdb::array_view<const gdb_byte>
6198 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
6199 {
6200 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
6201 if (build_id == nullptr)
6202 return {};
6203
6204 return global_index_cache.lookup_gdb_index (build_id,
6205 &dwarf2_obj->index_cache_res);
6206 }
6207
6208 /* Same as the above, but for DWZ. */
6209
6210 static gdb::array_view<const gdb_byte>
6211 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
6212 {
6213 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
6214 if (build_id == nullptr)
6215 return {};
6216
6217 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
6218 }
6219
6220 /* See symfile.h. */
6221
6222 bool
6223 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6224 {
6225 struct dwarf2_per_objfile *dwarf2_per_objfile
6226 = get_dwarf2_per_objfile (objfile);
6227
6228 /* If we're about to read full symbols, don't bother with the
6229 indices. In this case we also don't care if some other debug
6230 format is making psymtabs, because they are all about to be
6231 expanded anyway. */
6232 if ((objfile->flags & OBJF_READNOW))
6233 {
6234 dwarf2_per_objfile->using_index = 1;
6235 create_all_comp_units (dwarf2_per_objfile);
6236 create_all_type_units (dwarf2_per_objfile);
6237 dwarf2_per_objfile->quick_file_names_table
6238 = create_quick_file_names_table
6239 (dwarf2_per_objfile->all_comp_units.size ());
6240
6241 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6242 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6243 {
6244 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6245
6246 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6247 struct dwarf2_per_cu_quick_data);
6248 }
6249
6250 /* Return 1 so that gdb sees the "quick" functions. However,
6251 these functions will be no-ops because we will have expanded
6252 all symtabs. */
6253 *index_kind = dw_index_kind::GDB_INDEX;
6254 return true;
6255 }
6256
6257 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6258 {
6259 *index_kind = dw_index_kind::DEBUG_NAMES;
6260 return true;
6261 }
6262
6263 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6264 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6265 get_gdb_index_contents_from_section<dwz_file>))
6266 {
6267 *index_kind = dw_index_kind::GDB_INDEX;
6268 return true;
6269 }
6270
6271 /* ... otherwise, try to find the index in the index cache. */
6272 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6273 get_gdb_index_contents_from_cache,
6274 get_gdb_index_contents_from_cache_dwz))
6275 {
6276 global_index_cache.hit ();
6277 *index_kind = dw_index_kind::GDB_INDEX;
6278 return true;
6279 }
6280
6281 global_index_cache.miss ();
6282 return false;
6283 }
6284
6285 \f
6286
6287 /* Build a partial symbol table. */
6288
6289 void
6290 dwarf2_build_psymtabs (struct objfile *objfile)
6291 {
6292 struct dwarf2_per_objfile *dwarf2_per_objfile
6293 = get_dwarf2_per_objfile (objfile);
6294
6295 if (objfile->global_psymbols.capacity () == 0
6296 && objfile->static_psymbols.capacity () == 0)
6297 init_psymbol_list (objfile, 1024);
6298
6299 TRY
6300 {
6301 /* This isn't really ideal: all the data we allocate on the
6302 objfile's obstack is still uselessly kept around. However,
6303 freeing it seems unsafe. */
6304 psymtab_discarder psymtabs (objfile);
6305 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6306 psymtabs.keep ();
6307
6308 /* (maybe) store an index in the cache. */
6309 global_index_cache.store (dwarf2_per_objfile);
6310 }
6311 CATCH (except, RETURN_MASK_ERROR)
6312 {
6313 exception_print (gdb_stderr, except);
6314 }
6315 END_CATCH
6316 }
6317
6318 /* Return the total length of the CU described by HEADER. */
6319
6320 static unsigned int
6321 get_cu_length (const struct comp_unit_head *header)
6322 {
6323 return header->initial_length_size + header->length;
6324 }
6325
6326 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6327
6328 static inline bool
6329 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6330 {
6331 sect_offset bottom = cu_header->sect_off;
6332 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6333
6334 return sect_off >= bottom && sect_off < top;
6335 }
6336
6337 /* Find the base address of the compilation unit for range lists and
6338 location lists. It will normally be specified by DW_AT_low_pc.
6339 In DWARF-3 draft 4, the base address could be overridden by
6340 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6341 compilation units with discontinuous ranges. */
6342
6343 static void
6344 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6345 {
6346 struct attribute *attr;
6347
6348 cu->base_known = 0;
6349 cu->base_address = 0;
6350
6351 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6352 if (attr)
6353 {
6354 cu->base_address = attr_value_as_address (attr);
6355 cu->base_known = 1;
6356 }
6357 else
6358 {
6359 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6360 if (attr)
6361 {
6362 cu->base_address = attr_value_as_address (attr);
6363 cu->base_known = 1;
6364 }
6365 }
6366 }
6367
6368 /* Read in the comp unit header information from the debug_info at info_ptr.
6369 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6370 NOTE: This leaves members offset, first_die_offset to be filled in
6371 by the caller. */
6372
6373 static const gdb_byte *
6374 read_comp_unit_head (struct comp_unit_head *cu_header,
6375 const gdb_byte *info_ptr,
6376 struct dwarf2_section_info *section,
6377 rcuh_kind section_kind)
6378 {
6379 int signed_addr;
6380 unsigned int bytes_read;
6381 const char *filename = get_section_file_name (section);
6382 bfd *abfd = get_section_bfd_owner (section);
6383
6384 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6385 cu_header->initial_length_size = bytes_read;
6386 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6387 info_ptr += bytes_read;
6388 cu_header->version = read_2_bytes (abfd, info_ptr);
6389 if (cu_header->version < 2 || cu_header->version > 5)
6390 error (_("Dwarf Error: wrong version in compilation unit header "
6391 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6392 cu_header->version, filename);
6393 info_ptr += 2;
6394 if (cu_header->version < 5)
6395 switch (section_kind)
6396 {
6397 case rcuh_kind::COMPILE:
6398 cu_header->unit_type = DW_UT_compile;
6399 break;
6400 case rcuh_kind::TYPE:
6401 cu_header->unit_type = DW_UT_type;
6402 break;
6403 default:
6404 internal_error (__FILE__, __LINE__,
6405 _("read_comp_unit_head: invalid section_kind"));
6406 }
6407 else
6408 {
6409 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6410 (read_1_byte (abfd, info_ptr));
6411 info_ptr += 1;
6412 switch (cu_header->unit_type)
6413 {
6414 case DW_UT_compile:
6415 if (section_kind != rcuh_kind::COMPILE)
6416 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6417 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6418 filename);
6419 break;
6420 case DW_UT_type:
6421 section_kind = rcuh_kind::TYPE;
6422 break;
6423 default:
6424 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6425 "(is %d, should be %d or %d) [in module %s]"),
6426 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6427 }
6428
6429 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6430 info_ptr += 1;
6431 }
6432 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6433 cu_header,
6434 &bytes_read);
6435 info_ptr += bytes_read;
6436 if (cu_header->version < 5)
6437 {
6438 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6439 info_ptr += 1;
6440 }
6441 signed_addr = bfd_get_sign_extend_vma (abfd);
6442 if (signed_addr < 0)
6443 internal_error (__FILE__, __LINE__,
6444 _("read_comp_unit_head: dwarf from non elf file"));
6445 cu_header->signed_addr_p = signed_addr;
6446
6447 if (section_kind == rcuh_kind::TYPE)
6448 {
6449 LONGEST type_offset;
6450
6451 cu_header->signature = read_8_bytes (abfd, info_ptr);
6452 info_ptr += 8;
6453
6454 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6455 info_ptr += bytes_read;
6456 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6457 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6458 error (_("Dwarf Error: Too big type_offset in compilation unit "
6459 "header (is %s) [in module %s]"), plongest (type_offset),
6460 filename);
6461 }
6462
6463 return info_ptr;
6464 }
6465
6466 /* Helper function that returns the proper abbrev section for
6467 THIS_CU. */
6468
6469 static struct dwarf2_section_info *
6470 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6471 {
6472 struct dwarf2_section_info *abbrev;
6473 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6474
6475 if (this_cu->is_dwz)
6476 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6477 else
6478 abbrev = &dwarf2_per_objfile->abbrev;
6479
6480 return abbrev;
6481 }
6482
6483 /* Subroutine of read_and_check_comp_unit_head and
6484 read_and_check_type_unit_head to simplify them.
6485 Perform various error checking on the header. */
6486
6487 static void
6488 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6489 struct comp_unit_head *header,
6490 struct dwarf2_section_info *section,
6491 struct dwarf2_section_info *abbrev_section)
6492 {
6493 const char *filename = get_section_file_name (section);
6494
6495 if (to_underlying (header->abbrev_sect_off)
6496 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6497 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6498 "(offset %s + 6) [in module %s]"),
6499 sect_offset_str (header->abbrev_sect_off),
6500 sect_offset_str (header->sect_off),
6501 filename);
6502
6503 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6504 avoid potential 32-bit overflow. */
6505 if (((ULONGEST) header->sect_off + get_cu_length (header))
6506 > section->size)
6507 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6508 "(offset %s + 0) [in module %s]"),
6509 header->length, sect_offset_str (header->sect_off),
6510 filename);
6511 }
6512
6513 /* Read in a CU/TU header and perform some basic error checking.
6514 The contents of the header are stored in HEADER.
6515 The result is a pointer to the start of the first DIE. */
6516
6517 static const gdb_byte *
6518 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6519 struct comp_unit_head *header,
6520 struct dwarf2_section_info *section,
6521 struct dwarf2_section_info *abbrev_section,
6522 const gdb_byte *info_ptr,
6523 rcuh_kind section_kind)
6524 {
6525 const gdb_byte *beg_of_comp_unit = info_ptr;
6526
6527 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6528
6529 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6530
6531 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6532
6533 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6534 abbrev_section);
6535
6536 return info_ptr;
6537 }
6538
6539 /* Fetch the abbreviation table offset from a comp or type unit header. */
6540
6541 static sect_offset
6542 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6543 struct dwarf2_section_info *section,
6544 sect_offset sect_off)
6545 {
6546 bfd *abfd = get_section_bfd_owner (section);
6547 const gdb_byte *info_ptr;
6548 unsigned int initial_length_size, offset_size;
6549 uint16_t version;
6550
6551 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6552 info_ptr = section->buffer + to_underlying (sect_off);
6553 read_initial_length (abfd, info_ptr, &initial_length_size);
6554 offset_size = initial_length_size == 4 ? 4 : 8;
6555 info_ptr += initial_length_size;
6556
6557 version = read_2_bytes (abfd, info_ptr);
6558 info_ptr += 2;
6559 if (version >= 5)
6560 {
6561 /* Skip unit type and address size. */
6562 info_ptr += 2;
6563 }
6564
6565 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6566 }
6567
6568 /* Allocate a new partial symtab for file named NAME and mark this new
6569 partial symtab as being an include of PST. */
6570
6571 static void
6572 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6573 struct objfile *objfile)
6574 {
6575 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6576
6577 if (!IS_ABSOLUTE_PATH (subpst->filename))
6578 {
6579 /* It shares objfile->objfile_obstack. */
6580 subpst->dirname = pst->dirname;
6581 }
6582
6583 subpst->dependencies
6584 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
6585 subpst->dependencies[0] = pst;
6586 subpst->number_of_dependencies = 1;
6587
6588 subpst->globals_offset = 0;
6589 subpst->n_global_syms = 0;
6590 subpst->statics_offset = 0;
6591 subpst->n_static_syms = 0;
6592 subpst->compunit_symtab = NULL;
6593 subpst->read_symtab = pst->read_symtab;
6594 subpst->readin = 0;
6595
6596 /* No private part is necessary for include psymtabs. This property
6597 can be used to differentiate between such include psymtabs and
6598 the regular ones. */
6599 subpst->read_symtab_private = NULL;
6600 }
6601
6602 /* Read the Line Number Program data and extract the list of files
6603 included by the source file represented by PST. Build an include
6604 partial symtab for each of these included files. */
6605
6606 static void
6607 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6608 struct die_info *die,
6609 struct partial_symtab *pst)
6610 {
6611 line_header_up lh;
6612 struct attribute *attr;
6613
6614 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6615 if (attr)
6616 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6617 if (lh == NULL)
6618 return; /* No linetable, so no includes. */
6619
6620 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6621 that we pass in the raw text_low here; that is ok because we're
6622 only decoding the line table to make include partial symtabs, and
6623 so the addresses aren't really used. */
6624 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6625 pst->raw_text_low (), 1);
6626 }
6627
6628 static hashval_t
6629 hash_signatured_type (const void *item)
6630 {
6631 const struct signatured_type *sig_type
6632 = (const struct signatured_type *) item;
6633
6634 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6635 return sig_type->signature;
6636 }
6637
6638 static int
6639 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6640 {
6641 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6642 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6643
6644 return lhs->signature == rhs->signature;
6645 }
6646
6647 /* Allocate a hash table for signatured types. */
6648
6649 static htab_t
6650 allocate_signatured_type_table (struct objfile *objfile)
6651 {
6652 return htab_create_alloc_ex (41,
6653 hash_signatured_type,
6654 eq_signatured_type,
6655 NULL,
6656 &objfile->objfile_obstack,
6657 hashtab_obstack_allocate,
6658 dummy_obstack_deallocate);
6659 }
6660
6661 /* A helper function to add a signatured type CU to a table. */
6662
6663 static int
6664 add_signatured_type_cu_to_table (void **slot, void *datum)
6665 {
6666 struct signatured_type *sigt = (struct signatured_type *) *slot;
6667 std::vector<signatured_type *> *all_type_units
6668 = (std::vector<signatured_type *> *) datum;
6669
6670 all_type_units->push_back (sigt);
6671
6672 return 1;
6673 }
6674
6675 /* A helper for create_debug_types_hash_table. Read types from SECTION
6676 and fill them into TYPES_HTAB. It will process only type units,
6677 therefore DW_UT_type. */
6678
6679 static void
6680 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6681 struct dwo_file *dwo_file,
6682 dwarf2_section_info *section, htab_t &types_htab,
6683 rcuh_kind section_kind)
6684 {
6685 struct objfile *objfile = dwarf2_per_objfile->objfile;
6686 struct dwarf2_section_info *abbrev_section;
6687 bfd *abfd;
6688 const gdb_byte *info_ptr, *end_ptr;
6689
6690 abbrev_section = (dwo_file != NULL
6691 ? &dwo_file->sections.abbrev
6692 : &dwarf2_per_objfile->abbrev);
6693
6694 if (dwarf_read_debug)
6695 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6696 get_section_name (section),
6697 get_section_file_name (abbrev_section));
6698
6699 dwarf2_read_section (objfile, section);
6700 info_ptr = section->buffer;
6701
6702 if (info_ptr == NULL)
6703 return;
6704
6705 /* We can't set abfd until now because the section may be empty or
6706 not present, in which case the bfd is unknown. */
6707 abfd = get_section_bfd_owner (section);
6708
6709 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6710 because we don't need to read any dies: the signature is in the
6711 header. */
6712
6713 end_ptr = info_ptr + section->size;
6714 while (info_ptr < end_ptr)
6715 {
6716 struct signatured_type *sig_type;
6717 struct dwo_unit *dwo_tu;
6718 void **slot;
6719 const gdb_byte *ptr = info_ptr;
6720 struct comp_unit_head header;
6721 unsigned int length;
6722
6723 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6724
6725 /* Initialize it due to a false compiler warning. */
6726 header.signature = -1;
6727 header.type_cu_offset_in_tu = (cu_offset) -1;
6728
6729 /* We need to read the type's signature in order to build the hash
6730 table, but we don't need anything else just yet. */
6731
6732 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6733 abbrev_section, ptr, section_kind);
6734
6735 length = get_cu_length (&header);
6736
6737 /* Skip dummy type units. */
6738 if (ptr >= info_ptr + length
6739 || peek_abbrev_code (abfd, ptr) == 0
6740 || header.unit_type != DW_UT_type)
6741 {
6742 info_ptr += length;
6743 continue;
6744 }
6745
6746 if (types_htab == NULL)
6747 {
6748 if (dwo_file)
6749 types_htab = allocate_dwo_unit_table (objfile);
6750 else
6751 types_htab = allocate_signatured_type_table (objfile);
6752 }
6753
6754 if (dwo_file)
6755 {
6756 sig_type = NULL;
6757 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6758 struct dwo_unit);
6759 dwo_tu->dwo_file = dwo_file;
6760 dwo_tu->signature = header.signature;
6761 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6762 dwo_tu->section = section;
6763 dwo_tu->sect_off = sect_off;
6764 dwo_tu->length = length;
6765 }
6766 else
6767 {
6768 /* N.B.: type_offset is not usable if this type uses a DWO file.
6769 The real type_offset is in the DWO file. */
6770 dwo_tu = NULL;
6771 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6772 struct signatured_type);
6773 sig_type->signature = header.signature;
6774 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6775 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6776 sig_type->per_cu.is_debug_types = 1;
6777 sig_type->per_cu.section = section;
6778 sig_type->per_cu.sect_off = sect_off;
6779 sig_type->per_cu.length = length;
6780 }
6781
6782 slot = htab_find_slot (types_htab,
6783 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6784 INSERT);
6785 gdb_assert (slot != NULL);
6786 if (*slot != NULL)
6787 {
6788 sect_offset dup_sect_off;
6789
6790 if (dwo_file)
6791 {
6792 const struct dwo_unit *dup_tu
6793 = (const struct dwo_unit *) *slot;
6794
6795 dup_sect_off = dup_tu->sect_off;
6796 }
6797 else
6798 {
6799 const struct signatured_type *dup_tu
6800 = (const struct signatured_type *) *slot;
6801
6802 dup_sect_off = dup_tu->per_cu.sect_off;
6803 }
6804
6805 complaint (_("debug type entry at offset %s is duplicate to"
6806 " the entry at offset %s, signature %s"),
6807 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6808 hex_string (header.signature));
6809 }
6810 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6811
6812 if (dwarf_read_debug > 1)
6813 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6814 sect_offset_str (sect_off),
6815 hex_string (header.signature));
6816
6817 info_ptr += length;
6818 }
6819 }
6820
6821 /* Create the hash table of all entries in the .debug_types
6822 (or .debug_types.dwo) section(s).
6823 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6824 otherwise it is NULL.
6825
6826 The result is a pointer to the hash table or NULL if there are no types.
6827
6828 Note: This function processes DWO files only, not DWP files. */
6829
6830 static void
6831 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6832 struct dwo_file *dwo_file,
6833 VEC (dwarf2_section_info_def) *types,
6834 htab_t &types_htab)
6835 {
6836 int ix;
6837 struct dwarf2_section_info *section;
6838
6839 if (VEC_empty (dwarf2_section_info_def, types))
6840 return;
6841
6842 for (ix = 0;
6843 VEC_iterate (dwarf2_section_info_def, types, ix, section);
6844 ++ix)
6845 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
6846 types_htab, rcuh_kind::TYPE);
6847 }
6848
6849 /* Create the hash table of all entries in the .debug_types section,
6850 and initialize all_type_units.
6851 The result is zero if there is an error (e.g. missing .debug_types section),
6852 otherwise non-zero. */
6853
6854 static int
6855 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6856 {
6857 htab_t types_htab = NULL;
6858
6859 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6860 &dwarf2_per_objfile->info, types_htab,
6861 rcuh_kind::COMPILE);
6862 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6863 dwarf2_per_objfile->types, types_htab);
6864 if (types_htab == NULL)
6865 {
6866 dwarf2_per_objfile->signatured_types = NULL;
6867 return 0;
6868 }
6869
6870 dwarf2_per_objfile->signatured_types = types_htab;
6871
6872 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6873 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6874
6875 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6876 &dwarf2_per_objfile->all_type_units);
6877
6878 return 1;
6879 }
6880
6881 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6882 If SLOT is non-NULL, it is the entry to use in the hash table.
6883 Otherwise we find one. */
6884
6885 static struct signatured_type *
6886 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6887 void **slot)
6888 {
6889 struct objfile *objfile = dwarf2_per_objfile->objfile;
6890
6891 if (dwarf2_per_objfile->all_type_units.size ()
6892 == dwarf2_per_objfile->all_type_units.capacity ())
6893 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6894
6895 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6896 struct signatured_type);
6897
6898 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6899 sig_type->signature = sig;
6900 sig_type->per_cu.is_debug_types = 1;
6901 if (dwarf2_per_objfile->using_index)
6902 {
6903 sig_type->per_cu.v.quick =
6904 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6905 struct dwarf2_per_cu_quick_data);
6906 }
6907
6908 if (slot == NULL)
6909 {
6910 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6911 sig_type, INSERT);
6912 }
6913 gdb_assert (*slot == NULL);
6914 *slot = sig_type;
6915 /* The rest of sig_type must be filled in by the caller. */
6916 return sig_type;
6917 }
6918
6919 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6920 Fill in SIG_ENTRY with DWO_ENTRY. */
6921
6922 static void
6923 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6924 struct signatured_type *sig_entry,
6925 struct dwo_unit *dwo_entry)
6926 {
6927 /* Make sure we're not clobbering something we don't expect to. */
6928 gdb_assert (! sig_entry->per_cu.queued);
6929 gdb_assert (sig_entry->per_cu.cu == NULL);
6930 if (dwarf2_per_objfile->using_index)
6931 {
6932 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6933 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6934 }
6935 else
6936 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6937 gdb_assert (sig_entry->signature == dwo_entry->signature);
6938 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6939 gdb_assert (sig_entry->type_unit_group == NULL);
6940 gdb_assert (sig_entry->dwo_unit == NULL);
6941
6942 sig_entry->per_cu.section = dwo_entry->section;
6943 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6944 sig_entry->per_cu.length = dwo_entry->length;
6945 sig_entry->per_cu.reading_dwo_directly = 1;
6946 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6947 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6948 sig_entry->dwo_unit = dwo_entry;
6949 }
6950
6951 /* Subroutine of lookup_signatured_type.
6952 If we haven't read the TU yet, create the signatured_type data structure
6953 for a TU to be read in directly from a DWO file, bypassing the stub.
6954 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6955 using .gdb_index, then when reading a CU we want to stay in the DWO file
6956 containing that CU. Otherwise we could end up reading several other DWO
6957 files (due to comdat folding) to process the transitive closure of all the
6958 mentioned TUs, and that can be slow. The current DWO file will have every
6959 type signature that it needs.
6960 We only do this for .gdb_index because in the psymtab case we already have
6961 to read all the DWOs to build the type unit groups. */
6962
6963 static struct signatured_type *
6964 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6965 {
6966 struct dwarf2_per_objfile *dwarf2_per_objfile
6967 = cu->per_cu->dwarf2_per_objfile;
6968 struct objfile *objfile = dwarf2_per_objfile->objfile;
6969 struct dwo_file *dwo_file;
6970 struct dwo_unit find_dwo_entry, *dwo_entry;
6971 struct signatured_type find_sig_entry, *sig_entry;
6972 void **slot;
6973
6974 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6975
6976 /* If TU skeletons have been removed then we may not have read in any
6977 TUs yet. */
6978 if (dwarf2_per_objfile->signatured_types == NULL)
6979 {
6980 dwarf2_per_objfile->signatured_types
6981 = allocate_signatured_type_table (objfile);
6982 }
6983
6984 /* We only ever need to read in one copy of a signatured type.
6985 Use the global signatured_types array to do our own comdat-folding
6986 of types. If this is the first time we're reading this TU, and
6987 the TU has an entry in .gdb_index, replace the recorded data from
6988 .gdb_index with this TU. */
6989
6990 find_sig_entry.signature = sig;
6991 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6992 &find_sig_entry, INSERT);
6993 sig_entry = (struct signatured_type *) *slot;
6994
6995 /* We can get here with the TU already read, *or* in the process of being
6996 read. Don't reassign the global entry to point to this DWO if that's
6997 the case. Also note that if the TU is already being read, it may not
6998 have come from a DWO, the program may be a mix of Fission-compiled
6999 code and non-Fission-compiled code. */
7000
7001 /* Have we already tried to read this TU?
7002 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7003 needn't exist in the global table yet). */
7004 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
7005 return sig_entry;
7006
7007 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
7008 dwo_unit of the TU itself. */
7009 dwo_file = cu->dwo_unit->dwo_file;
7010
7011 /* Ok, this is the first time we're reading this TU. */
7012 if (dwo_file->tus == NULL)
7013 return NULL;
7014 find_dwo_entry.signature = sig;
7015 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
7016 if (dwo_entry == NULL)
7017 return NULL;
7018
7019 /* If the global table doesn't have an entry for this TU, add one. */
7020 if (sig_entry == NULL)
7021 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7022
7023 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7024 sig_entry->per_cu.tu_read = 1;
7025 return sig_entry;
7026 }
7027
7028 /* Subroutine of lookup_signatured_type.
7029 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
7030 then try the DWP file. If the TU stub (skeleton) has been removed then
7031 it won't be in .gdb_index. */
7032
7033 static struct signatured_type *
7034 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7035 {
7036 struct dwarf2_per_objfile *dwarf2_per_objfile
7037 = cu->per_cu->dwarf2_per_objfile;
7038 struct objfile *objfile = dwarf2_per_objfile->objfile;
7039 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
7040 struct dwo_unit *dwo_entry;
7041 struct signatured_type find_sig_entry, *sig_entry;
7042 void **slot;
7043
7044 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7045 gdb_assert (dwp_file != NULL);
7046
7047 /* If TU skeletons have been removed then we may not have read in any
7048 TUs yet. */
7049 if (dwarf2_per_objfile->signatured_types == NULL)
7050 {
7051 dwarf2_per_objfile->signatured_types
7052 = allocate_signatured_type_table (objfile);
7053 }
7054
7055 find_sig_entry.signature = sig;
7056 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7057 &find_sig_entry, INSERT);
7058 sig_entry = (struct signatured_type *) *slot;
7059
7060 /* Have we already tried to read this TU?
7061 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7062 needn't exist in the global table yet). */
7063 if (sig_entry != NULL)
7064 return sig_entry;
7065
7066 if (dwp_file->tus == NULL)
7067 return NULL;
7068 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7069 sig, 1 /* is_debug_types */);
7070 if (dwo_entry == NULL)
7071 return NULL;
7072
7073 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7074 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7075
7076 return sig_entry;
7077 }
7078
7079 /* Lookup a signature based type for DW_FORM_ref_sig8.
7080 Returns NULL if signature SIG is not present in the table.
7081 It is up to the caller to complain about this. */
7082
7083 static struct signatured_type *
7084 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7085 {
7086 struct dwarf2_per_objfile *dwarf2_per_objfile
7087 = cu->per_cu->dwarf2_per_objfile;
7088
7089 if (cu->dwo_unit
7090 && dwarf2_per_objfile->using_index)
7091 {
7092 /* We're in a DWO/DWP file, and we're using .gdb_index.
7093 These cases require special processing. */
7094 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7095 return lookup_dwo_signatured_type (cu, sig);
7096 else
7097 return lookup_dwp_signatured_type (cu, sig);
7098 }
7099 else
7100 {
7101 struct signatured_type find_entry, *entry;
7102
7103 if (dwarf2_per_objfile->signatured_types == NULL)
7104 return NULL;
7105 find_entry.signature = sig;
7106 entry = ((struct signatured_type *)
7107 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7108 return entry;
7109 }
7110 }
7111 \f
7112 /* Low level DIE reading support. */
7113
7114 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7115
7116 static void
7117 init_cu_die_reader (struct die_reader_specs *reader,
7118 struct dwarf2_cu *cu,
7119 struct dwarf2_section_info *section,
7120 struct dwo_file *dwo_file,
7121 struct abbrev_table *abbrev_table)
7122 {
7123 gdb_assert (section->readin && section->buffer != NULL);
7124 reader->abfd = get_section_bfd_owner (section);
7125 reader->cu = cu;
7126 reader->dwo_file = dwo_file;
7127 reader->die_section = section;
7128 reader->buffer = section->buffer;
7129 reader->buffer_end = section->buffer + section->size;
7130 reader->comp_dir = NULL;
7131 reader->abbrev_table = abbrev_table;
7132 }
7133
7134 /* Subroutine of init_cutu_and_read_dies to simplify it.
7135 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7136 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7137 already.
7138
7139 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7140 from it to the DIE in the DWO. If NULL we are skipping the stub.
7141 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7142 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7143 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7144 STUB_COMP_DIR may be non-NULL.
7145 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7146 are filled in with the info of the DIE from the DWO file.
7147 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7148 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7149 kept around for at least as long as *RESULT_READER.
7150
7151 The result is non-zero if a valid (non-dummy) DIE was found. */
7152
7153 static int
7154 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7155 struct dwo_unit *dwo_unit,
7156 struct die_info *stub_comp_unit_die,
7157 const char *stub_comp_dir,
7158 struct die_reader_specs *result_reader,
7159 const gdb_byte **result_info_ptr,
7160 struct die_info **result_comp_unit_die,
7161 int *result_has_children,
7162 abbrev_table_up *result_dwo_abbrev_table)
7163 {
7164 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7165 struct objfile *objfile = dwarf2_per_objfile->objfile;
7166 struct dwarf2_cu *cu = this_cu->cu;
7167 bfd *abfd;
7168 const gdb_byte *begin_info_ptr, *info_ptr;
7169 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7170 int i,num_extra_attrs;
7171 struct dwarf2_section_info *dwo_abbrev_section;
7172 struct attribute *attr;
7173 struct die_info *comp_unit_die;
7174
7175 /* At most one of these may be provided. */
7176 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7177
7178 /* These attributes aren't processed until later:
7179 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7180 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7181 referenced later. However, these attributes are found in the stub
7182 which we won't have later. In order to not impose this complication
7183 on the rest of the code, we read them here and copy them to the
7184 DWO CU/TU die. */
7185
7186 stmt_list = NULL;
7187 low_pc = NULL;
7188 high_pc = NULL;
7189 ranges = NULL;
7190 comp_dir = NULL;
7191
7192 if (stub_comp_unit_die != NULL)
7193 {
7194 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7195 DWO file. */
7196 if (! this_cu->is_debug_types)
7197 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7198 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7199 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7200 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7201 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7202
7203 /* There should be a DW_AT_addr_base attribute here (if needed).
7204 We need the value before we can process DW_FORM_GNU_addr_index. */
7205 cu->addr_base = 0;
7206 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7207 if (attr)
7208 cu->addr_base = DW_UNSND (attr);
7209
7210 /* There should be a DW_AT_ranges_base attribute here (if needed).
7211 We need the value before we can process DW_AT_ranges. */
7212 cu->ranges_base = 0;
7213 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7214 if (attr)
7215 cu->ranges_base = DW_UNSND (attr);
7216 }
7217 else if (stub_comp_dir != NULL)
7218 {
7219 /* Reconstruct the comp_dir attribute to simplify the code below. */
7220 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7221 comp_dir->name = DW_AT_comp_dir;
7222 comp_dir->form = DW_FORM_string;
7223 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7224 DW_STRING (comp_dir) = stub_comp_dir;
7225 }
7226
7227 /* Set up for reading the DWO CU/TU. */
7228 cu->dwo_unit = dwo_unit;
7229 dwarf2_section_info *section = dwo_unit->section;
7230 dwarf2_read_section (objfile, section);
7231 abfd = get_section_bfd_owner (section);
7232 begin_info_ptr = info_ptr = (section->buffer
7233 + to_underlying (dwo_unit->sect_off));
7234 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7235
7236 if (this_cu->is_debug_types)
7237 {
7238 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7239
7240 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7241 &cu->header, section,
7242 dwo_abbrev_section,
7243 info_ptr, rcuh_kind::TYPE);
7244 /* This is not an assert because it can be caused by bad debug info. */
7245 if (sig_type->signature != cu->header.signature)
7246 {
7247 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7248 " TU at offset %s [in module %s]"),
7249 hex_string (sig_type->signature),
7250 hex_string (cu->header.signature),
7251 sect_offset_str (dwo_unit->sect_off),
7252 bfd_get_filename (abfd));
7253 }
7254 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7255 /* For DWOs coming from DWP files, we don't know the CU length
7256 nor the type's offset in the TU until now. */
7257 dwo_unit->length = get_cu_length (&cu->header);
7258 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7259
7260 /* Establish the type offset that can be used to lookup the type.
7261 For DWO files, we don't know it until now. */
7262 sig_type->type_offset_in_section
7263 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7264 }
7265 else
7266 {
7267 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7268 &cu->header, section,
7269 dwo_abbrev_section,
7270 info_ptr, rcuh_kind::COMPILE);
7271 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7272 /* For DWOs coming from DWP files, we don't know the CU length
7273 until now. */
7274 dwo_unit->length = get_cu_length (&cu->header);
7275 }
7276
7277 *result_dwo_abbrev_table
7278 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7279 cu->header.abbrev_sect_off);
7280 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7281 result_dwo_abbrev_table->get ());
7282
7283 /* Read in the die, but leave space to copy over the attributes
7284 from the stub. This has the benefit of simplifying the rest of
7285 the code - all the work to maintain the illusion of a single
7286 DW_TAG_{compile,type}_unit DIE is done here. */
7287 num_extra_attrs = ((stmt_list != NULL)
7288 + (low_pc != NULL)
7289 + (high_pc != NULL)
7290 + (ranges != NULL)
7291 + (comp_dir != NULL));
7292 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7293 result_has_children, num_extra_attrs);
7294
7295 /* Copy over the attributes from the stub to the DIE we just read in. */
7296 comp_unit_die = *result_comp_unit_die;
7297 i = comp_unit_die->num_attrs;
7298 if (stmt_list != NULL)
7299 comp_unit_die->attrs[i++] = *stmt_list;
7300 if (low_pc != NULL)
7301 comp_unit_die->attrs[i++] = *low_pc;
7302 if (high_pc != NULL)
7303 comp_unit_die->attrs[i++] = *high_pc;
7304 if (ranges != NULL)
7305 comp_unit_die->attrs[i++] = *ranges;
7306 if (comp_dir != NULL)
7307 comp_unit_die->attrs[i++] = *comp_dir;
7308 comp_unit_die->num_attrs += num_extra_attrs;
7309
7310 if (dwarf_die_debug)
7311 {
7312 fprintf_unfiltered (gdb_stdlog,
7313 "Read die from %s@0x%x of %s:\n",
7314 get_section_name (section),
7315 (unsigned) (begin_info_ptr - section->buffer),
7316 bfd_get_filename (abfd));
7317 dump_die (comp_unit_die, dwarf_die_debug);
7318 }
7319
7320 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7321 TUs by skipping the stub and going directly to the entry in the DWO file.
7322 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7323 to get it via circuitous means. Blech. */
7324 if (comp_dir != NULL)
7325 result_reader->comp_dir = DW_STRING (comp_dir);
7326
7327 /* Skip dummy compilation units. */
7328 if (info_ptr >= begin_info_ptr + dwo_unit->length
7329 || peek_abbrev_code (abfd, info_ptr) == 0)
7330 return 0;
7331
7332 *result_info_ptr = info_ptr;
7333 return 1;
7334 }
7335
7336 /* Subroutine of init_cutu_and_read_dies to simplify it.
7337 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7338 Returns NULL if the specified DWO unit cannot be found. */
7339
7340 static struct dwo_unit *
7341 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7342 struct die_info *comp_unit_die)
7343 {
7344 struct dwarf2_cu *cu = this_cu->cu;
7345 ULONGEST signature;
7346 struct dwo_unit *dwo_unit;
7347 const char *comp_dir, *dwo_name;
7348
7349 gdb_assert (cu != NULL);
7350
7351 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7352 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7353 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7354
7355 if (this_cu->is_debug_types)
7356 {
7357 struct signatured_type *sig_type;
7358
7359 /* Since this_cu is the first member of struct signatured_type,
7360 we can go from a pointer to one to a pointer to the other. */
7361 sig_type = (struct signatured_type *) this_cu;
7362 signature = sig_type->signature;
7363 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7364 }
7365 else
7366 {
7367 struct attribute *attr;
7368
7369 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7370 if (! attr)
7371 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7372 " [in module %s]"),
7373 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7374 signature = DW_UNSND (attr);
7375 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7376 signature);
7377 }
7378
7379 return dwo_unit;
7380 }
7381
7382 /* Subroutine of init_cutu_and_read_dies to simplify it.
7383 See it for a description of the parameters.
7384 Read a TU directly from a DWO file, bypassing the stub. */
7385
7386 static void
7387 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7388 int use_existing_cu, int keep,
7389 die_reader_func_ftype *die_reader_func,
7390 void *data)
7391 {
7392 std::unique_ptr<dwarf2_cu> new_cu;
7393 struct signatured_type *sig_type;
7394 struct die_reader_specs reader;
7395 const gdb_byte *info_ptr;
7396 struct die_info *comp_unit_die;
7397 int has_children;
7398 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7399
7400 /* Verify we can do the following downcast, and that we have the
7401 data we need. */
7402 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7403 sig_type = (struct signatured_type *) this_cu;
7404 gdb_assert (sig_type->dwo_unit != NULL);
7405
7406 if (use_existing_cu && this_cu->cu != NULL)
7407 {
7408 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7409 /* There's no need to do the rereading_dwo_cu handling that
7410 init_cutu_and_read_dies does since we don't read the stub. */
7411 }
7412 else
7413 {
7414 /* If !use_existing_cu, this_cu->cu must be NULL. */
7415 gdb_assert (this_cu->cu == NULL);
7416 new_cu.reset (new dwarf2_cu (this_cu));
7417 }
7418
7419 /* A future optimization, if needed, would be to use an existing
7420 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7421 could share abbrev tables. */
7422
7423 /* The abbreviation table used by READER, this must live at least as long as
7424 READER. */
7425 abbrev_table_up dwo_abbrev_table;
7426
7427 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7428 NULL /* stub_comp_unit_die */,
7429 sig_type->dwo_unit->dwo_file->comp_dir,
7430 &reader, &info_ptr,
7431 &comp_unit_die, &has_children,
7432 &dwo_abbrev_table) == 0)
7433 {
7434 /* Dummy die. */
7435 return;
7436 }
7437
7438 /* All the "real" work is done here. */
7439 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7440
7441 /* This duplicates the code in init_cutu_and_read_dies,
7442 but the alternative is making the latter more complex.
7443 This function is only for the special case of using DWO files directly:
7444 no point in overly complicating the general case just to handle this. */
7445 if (new_cu != NULL && keep)
7446 {
7447 /* Link this CU into read_in_chain. */
7448 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7449 dwarf2_per_objfile->read_in_chain = this_cu;
7450 /* The chain owns it now. */
7451 new_cu.release ();
7452 }
7453 }
7454
7455 /* Initialize a CU (or TU) and read its DIEs.
7456 If the CU defers to a DWO file, read the DWO file as well.
7457
7458 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7459 Otherwise the table specified in the comp unit header is read in and used.
7460 This is an optimization for when we already have the abbrev table.
7461
7462 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7463 Otherwise, a new CU is allocated with xmalloc.
7464
7465 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7466 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7467
7468 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7469 linker) then DIE_READER_FUNC will not get called. */
7470
7471 static void
7472 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7473 struct abbrev_table *abbrev_table,
7474 int use_existing_cu, int keep,
7475 bool skip_partial,
7476 die_reader_func_ftype *die_reader_func,
7477 void *data)
7478 {
7479 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7480 struct objfile *objfile = dwarf2_per_objfile->objfile;
7481 struct dwarf2_section_info *section = this_cu->section;
7482 bfd *abfd = get_section_bfd_owner (section);
7483 struct dwarf2_cu *cu;
7484 const gdb_byte *begin_info_ptr, *info_ptr;
7485 struct die_reader_specs reader;
7486 struct die_info *comp_unit_die;
7487 int has_children;
7488 struct attribute *attr;
7489 struct signatured_type *sig_type = NULL;
7490 struct dwarf2_section_info *abbrev_section;
7491 /* Non-zero if CU currently points to a DWO file and we need to
7492 reread it. When this happens we need to reread the skeleton die
7493 before we can reread the DWO file (this only applies to CUs, not TUs). */
7494 int rereading_dwo_cu = 0;
7495
7496 if (dwarf_die_debug)
7497 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7498 this_cu->is_debug_types ? "type" : "comp",
7499 sect_offset_str (this_cu->sect_off));
7500
7501 if (use_existing_cu)
7502 gdb_assert (keep);
7503
7504 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7505 file (instead of going through the stub), short-circuit all of this. */
7506 if (this_cu->reading_dwo_directly)
7507 {
7508 /* Narrow down the scope of possibilities to have to understand. */
7509 gdb_assert (this_cu->is_debug_types);
7510 gdb_assert (abbrev_table == NULL);
7511 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7512 die_reader_func, data);
7513 return;
7514 }
7515
7516 /* This is cheap if the section is already read in. */
7517 dwarf2_read_section (objfile, section);
7518
7519 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7520
7521 abbrev_section = get_abbrev_section_for_cu (this_cu);
7522
7523 std::unique_ptr<dwarf2_cu> new_cu;
7524 if (use_existing_cu && this_cu->cu != NULL)
7525 {
7526 cu = this_cu->cu;
7527 /* If this CU is from a DWO file we need to start over, we need to
7528 refetch the attributes from the skeleton CU.
7529 This could be optimized by retrieving those attributes from when we
7530 were here the first time: the previous comp_unit_die was stored in
7531 comp_unit_obstack. But there's no data yet that we need this
7532 optimization. */
7533 if (cu->dwo_unit != NULL)
7534 rereading_dwo_cu = 1;
7535 }
7536 else
7537 {
7538 /* If !use_existing_cu, this_cu->cu must be NULL. */
7539 gdb_assert (this_cu->cu == NULL);
7540 new_cu.reset (new dwarf2_cu (this_cu));
7541 cu = new_cu.get ();
7542 }
7543
7544 /* Get the header. */
7545 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7546 {
7547 /* We already have the header, there's no need to read it in again. */
7548 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7549 }
7550 else
7551 {
7552 if (this_cu->is_debug_types)
7553 {
7554 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7555 &cu->header, section,
7556 abbrev_section, info_ptr,
7557 rcuh_kind::TYPE);
7558
7559 /* Since per_cu is the first member of struct signatured_type,
7560 we can go from a pointer to one to a pointer to the other. */
7561 sig_type = (struct signatured_type *) this_cu;
7562 gdb_assert (sig_type->signature == cu->header.signature);
7563 gdb_assert (sig_type->type_offset_in_tu
7564 == cu->header.type_cu_offset_in_tu);
7565 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7566
7567 /* LENGTH has not been set yet for type units if we're
7568 using .gdb_index. */
7569 this_cu->length = get_cu_length (&cu->header);
7570
7571 /* Establish the type offset that can be used to lookup the type. */
7572 sig_type->type_offset_in_section =
7573 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7574
7575 this_cu->dwarf_version = cu->header.version;
7576 }
7577 else
7578 {
7579 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7580 &cu->header, section,
7581 abbrev_section,
7582 info_ptr,
7583 rcuh_kind::COMPILE);
7584
7585 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7586 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7587 this_cu->dwarf_version = cu->header.version;
7588 }
7589 }
7590
7591 /* Skip dummy compilation units. */
7592 if (info_ptr >= begin_info_ptr + this_cu->length
7593 || peek_abbrev_code (abfd, info_ptr) == 0)
7594 return;
7595
7596 /* If we don't have them yet, read the abbrevs for this compilation unit.
7597 And if we need to read them now, make sure they're freed when we're
7598 done (own the table through ABBREV_TABLE_HOLDER). */
7599 abbrev_table_up abbrev_table_holder;
7600 if (abbrev_table != NULL)
7601 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7602 else
7603 {
7604 abbrev_table_holder
7605 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7606 cu->header.abbrev_sect_off);
7607 abbrev_table = abbrev_table_holder.get ();
7608 }
7609
7610 /* Read the top level CU/TU die. */
7611 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7612 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7613
7614 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7615 return;
7616
7617 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7618 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7619 table from the DWO file and pass the ownership over to us. It will be
7620 referenced from READER, so we must make sure to free it after we're done
7621 with READER.
7622
7623 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7624 DWO CU, that this test will fail (the attribute will not be present). */
7625 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7626 abbrev_table_up dwo_abbrev_table;
7627 if (attr)
7628 {
7629 struct dwo_unit *dwo_unit;
7630 struct die_info *dwo_comp_unit_die;
7631
7632 if (has_children)
7633 {
7634 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7635 " has children (offset %s) [in module %s]"),
7636 sect_offset_str (this_cu->sect_off),
7637 bfd_get_filename (abfd));
7638 }
7639 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7640 if (dwo_unit != NULL)
7641 {
7642 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7643 comp_unit_die, NULL,
7644 &reader, &info_ptr,
7645 &dwo_comp_unit_die, &has_children,
7646 &dwo_abbrev_table) == 0)
7647 {
7648 /* Dummy die. */
7649 return;
7650 }
7651 comp_unit_die = dwo_comp_unit_die;
7652 }
7653 else
7654 {
7655 /* Yikes, we couldn't find the rest of the DIE, we only have
7656 the stub. A complaint has already been logged. There's
7657 not much more we can do except pass on the stub DIE to
7658 die_reader_func. We don't want to throw an error on bad
7659 debug info. */
7660 }
7661 }
7662
7663 /* All of the above is setup for this call. Yikes. */
7664 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7665
7666 /* Done, clean up. */
7667 if (new_cu != NULL && keep)
7668 {
7669 /* Link this CU into read_in_chain. */
7670 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7671 dwarf2_per_objfile->read_in_chain = this_cu;
7672 /* The chain owns it now. */
7673 new_cu.release ();
7674 }
7675 }
7676
7677 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7678 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7679 to have already done the lookup to find the DWO file).
7680
7681 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7682 THIS_CU->is_debug_types, but nothing else.
7683
7684 We fill in THIS_CU->length.
7685
7686 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7687 linker) then DIE_READER_FUNC will not get called.
7688
7689 THIS_CU->cu is always freed when done.
7690 This is done in order to not leave THIS_CU->cu in a state where we have
7691 to care whether it refers to the "main" CU or the DWO CU. */
7692
7693 static void
7694 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7695 struct dwo_file *dwo_file,
7696 die_reader_func_ftype *die_reader_func,
7697 void *data)
7698 {
7699 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7700 struct objfile *objfile = dwarf2_per_objfile->objfile;
7701 struct dwarf2_section_info *section = this_cu->section;
7702 bfd *abfd = get_section_bfd_owner (section);
7703 struct dwarf2_section_info *abbrev_section;
7704 const gdb_byte *begin_info_ptr, *info_ptr;
7705 struct die_reader_specs reader;
7706 struct die_info *comp_unit_die;
7707 int has_children;
7708
7709 if (dwarf_die_debug)
7710 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7711 this_cu->is_debug_types ? "type" : "comp",
7712 sect_offset_str (this_cu->sect_off));
7713
7714 gdb_assert (this_cu->cu == NULL);
7715
7716 abbrev_section = (dwo_file != NULL
7717 ? &dwo_file->sections.abbrev
7718 : get_abbrev_section_for_cu (this_cu));
7719
7720 /* This is cheap if the section is already read in. */
7721 dwarf2_read_section (objfile, section);
7722
7723 struct dwarf2_cu cu (this_cu);
7724
7725 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7726 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7727 &cu.header, section,
7728 abbrev_section, info_ptr,
7729 (this_cu->is_debug_types
7730 ? rcuh_kind::TYPE
7731 : rcuh_kind::COMPILE));
7732
7733 this_cu->length = get_cu_length (&cu.header);
7734
7735 /* Skip dummy compilation units. */
7736 if (info_ptr >= begin_info_ptr + this_cu->length
7737 || peek_abbrev_code (abfd, info_ptr) == 0)
7738 return;
7739
7740 abbrev_table_up abbrev_table
7741 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7742 cu.header.abbrev_sect_off);
7743
7744 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7745 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7746
7747 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7748 }
7749
7750 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7751 does not lookup the specified DWO file.
7752 This cannot be used to read DWO files.
7753
7754 THIS_CU->cu is always freed when done.
7755 This is done in order to not leave THIS_CU->cu in a state where we have
7756 to care whether it refers to the "main" CU or the DWO CU.
7757 We can revisit this if the data shows there's a performance issue. */
7758
7759 static void
7760 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7761 die_reader_func_ftype *die_reader_func,
7762 void *data)
7763 {
7764 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7765 }
7766 \f
7767 /* Type Unit Groups.
7768
7769 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7770 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7771 so that all types coming from the same compilation (.o file) are grouped
7772 together. A future step could be to put the types in the same symtab as
7773 the CU the types ultimately came from. */
7774
7775 static hashval_t
7776 hash_type_unit_group (const void *item)
7777 {
7778 const struct type_unit_group *tu_group
7779 = (const struct type_unit_group *) item;
7780
7781 return hash_stmt_list_entry (&tu_group->hash);
7782 }
7783
7784 static int
7785 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7786 {
7787 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7788 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7789
7790 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7791 }
7792
7793 /* Allocate a hash table for type unit groups. */
7794
7795 static htab_t
7796 allocate_type_unit_groups_table (struct objfile *objfile)
7797 {
7798 return htab_create_alloc_ex (3,
7799 hash_type_unit_group,
7800 eq_type_unit_group,
7801 NULL,
7802 &objfile->objfile_obstack,
7803 hashtab_obstack_allocate,
7804 dummy_obstack_deallocate);
7805 }
7806
7807 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7808 partial symtabs. We combine several TUs per psymtab to not let the size
7809 of any one psymtab grow too big. */
7810 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7811 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7812
7813 /* Helper routine for get_type_unit_group.
7814 Create the type_unit_group object used to hold one or more TUs. */
7815
7816 static struct type_unit_group *
7817 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7818 {
7819 struct dwarf2_per_objfile *dwarf2_per_objfile
7820 = cu->per_cu->dwarf2_per_objfile;
7821 struct objfile *objfile = dwarf2_per_objfile->objfile;
7822 struct dwarf2_per_cu_data *per_cu;
7823 struct type_unit_group *tu_group;
7824
7825 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7826 struct type_unit_group);
7827 per_cu = &tu_group->per_cu;
7828 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7829
7830 if (dwarf2_per_objfile->using_index)
7831 {
7832 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7833 struct dwarf2_per_cu_quick_data);
7834 }
7835 else
7836 {
7837 unsigned int line_offset = to_underlying (line_offset_struct);
7838 struct partial_symtab *pst;
7839 std::string name;
7840
7841 /* Give the symtab a useful name for debug purposes. */
7842 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7843 name = string_printf ("<type_units_%d>",
7844 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7845 else
7846 name = string_printf ("<type_units_at_0x%x>", line_offset);
7847
7848 pst = create_partial_symtab (per_cu, name.c_str ());
7849 pst->anonymous = 1;
7850 }
7851
7852 tu_group->hash.dwo_unit = cu->dwo_unit;
7853 tu_group->hash.line_sect_off = line_offset_struct;
7854
7855 return tu_group;
7856 }
7857
7858 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7859 STMT_LIST is a DW_AT_stmt_list attribute. */
7860
7861 static struct type_unit_group *
7862 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7863 {
7864 struct dwarf2_per_objfile *dwarf2_per_objfile
7865 = cu->per_cu->dwarf2_per_objfile;
7866 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7867 struct type_unit_group *tu_group;
7868 void **slot;
7869 unsigned int line_offset;
7870 struct type_unit_group type_unit_group_for_lookup;
7871
7872 if (dwarf2_per_objfile->type_unit_groups == NULL)
7873 {
7874 dwarf2_per_objfile->type_unit_groups =
7875 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7876 }
7877
7878 /* Do we need to create a new group, or can we use an existing one? */
7879
7880 if (stmt_list)
7881 {
7882 line_offset = DW_UNSND (stmt_list);
7883 ++tu_stats->nr_symtab_sharers;
7884 }
7885 else
7886 {
7887 /* Ugh, no stmt_list. Rare, but we have to handle it.
7888 We can do various things here like create one group per TU or
7889 spread them over multiple groups to split up the expansion work.
7890 To avoid worst case scenarios (too many groups or too large groups)
7891 we, umm, group them in bunches. */
7892 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7893 | (tu_stats->nr_stmt_less_type_units
7894 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7895 ++tu_stats->nr_stmt_less_type_units;
7896 }
7897
7898 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7899 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7900 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7901 &type_unit_group_for_lookup, INSERT);
7902 if (*slot != NULL)
7903 {
7904 tu_group = (struct type_unit_group *) *slot;
7905 gdb_assert (tu_group != NULL);
7906 }
7907 else
7908 {
7909 sect_offset line_offset_struct = (sect_offset) line_offset;
7910 tu_group = create_type_unit_group (cu, line_offset_struct);
7911 *slot = tu_group;
7912 ++tu_stats->nr_symtabs;
7913 }
7914
7915 return tu_group;
7916 }
7917 \f
7918 /* Partial symbol tables. */
7919
7920 /* Create a psymtab named NAME and assign it to PER_CU.
7921
7922 The caller must fill in the following details:
7923 dirname, textlow, texthigh. */
7924
7925 static struct partial_symtab *
7926 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7927 {
7928 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7929 struct partial_symtab *pst;
7930
7931 pst = start_psymtab_common (objfile, name, 0,
7932 objfile->global_psymbols,
7933 objfile->static_psymbols);
7934
7935 pst->psymtabs_addrmap_supported = 1;
7936
7937 /* This is the glue that links PST into GDB's symbol API. */
7938 pst->read_symtab_private = per_cu;
7939 pst->read_symtab = dwarf2_read_symtab;
7940 per_cu->v.psymtab = pst;
7941
7942 return pst;
7943 }
7944
7945 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7946 type. */
7947
7948 struct process_psymtab_comp_unit_data
7949 {
7950 /* True if we are reading a DW_TAG_partial_unit. */
7951
7952 int want_partial_unit;
7953
7954 /* The "pretend" language that is used if the CU doesn't declare a
7955 language. */
7956
7957 enum language pretend_language;
7958 };
7959
7960 /* die_reader_func for process_psymtab_comp_unit. */
7961
7962 static void
7963 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7964 const gdb_byte *info_ptr,
7965 struct die_info *comp_unit_die,
7966 int has_children,
7967 void *data)
7968 {
7969 struct dwarf2_cu *cu = reader->cu;
7970 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7971 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7972 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7973 CORE_ADDR baseaddr;
7974 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7975 struct partial_symtab *pst;
7976 enum pc_bounds_kind cu_bounds_kind;
7977 const char *filename;
7978 struct process_psymtab_comp_unit_data *info
7979 = (struct process_psymtab_comp_unit_data *) data;
7980
7981 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
7982 return;
7983
7984 gdb_assert (! per_cu->is_debug_types);
7985
7986 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
7987
7988 /* Allocate a new partial symbol table structure. */
7989 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7990 if (filename == NULL)
7991 filename = "";
7992
7993 pst = create_partial_symtab (per_cu, filename);
7994
7995 /* This must be done before calling dwarf2_build_include_psymtabs. */
7996 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7997
7998 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7999
8000 dwarf2_find_base_address (comp_unit_die, cu);
8001
8002 /* Possibly set the default values of LOWPC and HIGHPC from
8003 `DW_AT_ranges'. */
8004 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
8005 &best_highpc, cu, pst);
8006 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
8007 {
8008 CORE_ADDR low
8009 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
8010 - baseaddr);
8011 CORE_ADDR high
8012 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
8013 - baseaddr - 1);
8014 /* Store the contiguous range if it is not empty; it can be
8015 empty for CUs with no code. */
8016 addrmap_set_empty (objfile->psymtabs_addrmap, low, high, pst);
8017 }
8018
8019 /* Check if comp unit has_children.
8020 If so, read the rest of the partial symbols from this comp unit.
8021 If not, there's no more debug_info for this comp unit. */
8022 if (has_children)
8023 {
8024 struct partial_die_info *first_die;
8025 CORE_ADDR lowpc, highpc;
8026
8027 lowpc = ((CORE_ADDR) -1);
8028 highpc = ((CORE_ADDR) 0);
8029
8030 first_die = load_partial_dies (reader, info_ptr, 1);
8031
8032 scan_partial_symbols (first_die, &lowpc, &highpc,
8033 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
8034
8035 /* If we didn't find a lowpc, set it to highpc to avoid
8036 complaints from `maint check'. */
8037 if (lowpc == ((CORE_ADDR) -1))
8038 lowpc = highpc;
8039
8040 /* If the compilation unit didn't have an explicit address range,
8041 then use the information extracted from its child dies. */
8042 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8043 {
8044 best_lowpc = lowpc;
8045 best_highpc = highpc;
8046 }
8047 }
8048 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
8049 best_lowpc + baseaddr)
8050 - baseaddr);
8051 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
8052 best_highpc + baseaddr)
8053 - baseaddr);
8054
8055 end_psymtab_common (objfile, pst);
8056
8057 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8058 {
8059 int i;
8060 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8061 struct dwarf2_per_cu_data *iter;
8062
8063 /* Fill in 'dependencies' here; we fill in 'users' in a
8064 post-pass. */
8065 pst->number_of_dependencies = len;
8066 pst->dependencies =
8067 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8068 for (i = 0;
8069 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8070 i, iter);
8071 ++i)
8072 pst->dependencies[i] = iter->v.psymtab;
8073
8074 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8075 }
8076
8077 /* Get the list of files included in the current compilation unit,
8078 and build a psymtab for each of them. */
8079 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8080
8081 if (dwarf_read_debug)
8082 {
8083 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8084
8085 fprintf_unfiltered (gdb_stdlog,
8086 "Psymtab for %s unit @%s: %s - %s"
8087 ", %d global, %d static syms\n",
8088 per_cu->is_debug_types ? "type" : "comp",
8089 sect_offset_str (per_cu->sect_off),
8090 paddress (gdbarch, pst->text_low (objfile)),
8091 paddress (gdbarch, pst->text_high (objfile)),
8092 pst->n_global_syms, pst->n_static_syms);
8093 }
8094 }
8095
8096 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8097 Process compilation unit THIS_CU for a psymtab. */
8098
8099 static void
8100 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8101 int want_partial_unit,
8102 enum language pretend_language)
8103 {
8104 /* If this compilation unit was already read in, free the
8105 cached copy in order to read it in again. This is
8106 necessary because we skipped some symbols when we first
8107 read in the compilation unit (see load_partial_dies).
8108 This problem could be avoided, but the benefit is unclear. */
8109 if (this_cu->cu != NULL)
8110 free_one_cached_comp_unit (this_cu);
8111
8112 if (this_cu->is_debug_types)
8113 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8114 build_type_psymtabs_reader, NULL);
8115 else
8116 {
8117 process_psymtab_comp_unit_data info;
8118 info.want_partial_unit = want_partial_unit;
8119 info.pretend_language = pretend_language;
8120 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8121 process_psymtab_comp_unit_reader, &info);
8122 }
8123
8124 /* Age out any secondary CUs. */
8125 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8126 }
8127
8128 /* Reader function for build_type_psymtabs. */
8129
8130 static void
8131 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8132 const gdb_byte *info_ptr,
8133 struct die_info *type_unit_die,
8134 int has_children,
8135 void *data)
8136 {
8137 struct dwarf2_per_objfile *dwarf2_per_objfile
8138 = reader->cu->per_cu->dwarf2_per_objfile;
8139 struct objfile *objfile = dwarf2_per_objfile->objfile;
8140 struct dwarf2_cu *cu = reader->cu;
8141 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8142 struct signatured_type *sig_type;
8143 struct type_unit_group *tu_group;
8144 struct attribute *attr;
8145 struct partial_die_info *first_die;
8146 CORE_ADDR lowpc, highpc;
8147 struct partial_symtab *pst;
8148
8149 gdb_assert (data == NULL);
8150 gdb_assert (per_cu->is_debug_types);
8151 sig_type = (struct signatured_type *) per_cu;
8152
8153 if (! has_children)
8154 return;
8155
8156 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8157 tu_group = get_type_unit_group (cu, attr);
8158
8159 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8160
8161 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8162 pst = create_partial_symtab (per_cu, "");
8163 pst->anonymous = 1;
8164
8165 first_die = load_partial_dies (reader, info_ptr, 1);
8166
8167 lowpc = (CORE_ADDR) -1;
8168 highpc = (CORE_ADDR) 0;
8169 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8170
8171 end_psymtab_common (objfile, pst);
8172 }
8173
8174 /* Struct used to sort TUs by their abbreviation table offset. */
8175
8176 struct tu_abbrev_offset
8177 {
8178 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8179 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8180 {}
8181
8182 signatured_type *sig_type;
8183 sect_offset abbrev_offset;
8184 };
8185
8186 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8187
8188 static bool
8189 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8190 const struct tu_abbrev_offset &b)
8191 {
8192 return a.abbrev_offset < b.abbrev_offset;
8193 }
8194
8195 /* Efficiently read all the type units.
8196 This does the bulk of the work for build_type_psymtabs.
8197
8198 The efficiency is because we sort TUs by the abbrev table they use and
8199 only read each abbrev table once. In one program there are 200K TUs
8200 sharing 8K abbrev tables.
8201
8202 The main purpose of this function is to support building the
8203 dwarf2_per_objfile->type_unit_groups table.
8204 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8205 can collapse the search space by grouping them by stmt_list.
8206 The savings can be significant, in the same program from above the 200K TUs
8207 share 8K stmt_list tables.
8208
8209 FUNC is expected to call get_type_unit_group, which will create the
8210 struct type_unit_group if necessary and add it to
8211 dwarf2_per_objfile->type_unit_groups. */
8212
8213 static void
8214 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8215 {
8216 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8217 abbrev_table_up abbrev_table;
8218 sect_offset abbrev_offset;
8219
8220 /* It's up to the caller to not call us multiple times. */
8221 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8222
8223 if (dwarf2_per_objfile->all_type_units.empty ())
8224 return;
8225
8226 /* TUs typically share abbrev tables, and there can be way more TUs than
8227 abbrev tables. Sort by abbrev table to reduce the number of times we
8228 read each abbrev table in.
8229 Alternatives are to punt or to maintain a cache of abbrev tables.
8230 This is simpler and efficient enough for now.
8231
8232 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8233 symtab to use). Typically TUs with the same abbrev offset have the same
8234 stmt_list value too so in practice this should work well.
8235
8236 The basic algorithm here is:
8237
8238 sort TUs by abbrev table
8239 for each TU with same abbrev table:
8240 read abbrev table if first user
8241 read TU top level DIE
8242 [IWBN if DWO skeletons had DW_AT_stmt_list]
8243 call FUNC */
8244
8245 if (dwarf_read_debug)
8246 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8247
8248 /* Sort in a separate table to maintain the order of all_type_units
8249 for .gdb_index: TU indices directly index all_type_units. */
8250 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8251 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8252
8253 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8254 sorted_by_abbrev.emplace_back
8255 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8256 sig_type->per_cu.section,
8257 sig_type->per_cu.sect_off));
8258
8259 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8260 sort_tu_by_abbrev_offset);
8261
8262 abbrev_offset = (sect_offset) ~(unsigned) 0;
8263
8264 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8265 {
8266 /* Switch to the next abbrev table if necessary. */
8267 if (abbrev_table == NULL
8268 || tu.abbrev_offset != abbrev_offset)
8269 {
8270 abbrev_offset = tu.abbrev_offset;
8271 abbrev_table =
8272 abbrev_table_read_table (dwarf2_per_objfile,
8273 &dwarf2_per_objfile->abbrev,
8274 abbrev_offset);
8275 ++tu_stats->nr_uniq_abbrev_tables;
8276 }
8277
8278 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8279 0, 0, false, build_type_psymtabs_reader, NULL);
8280 }
8281 }
8282
8283 /* Print collected type unit statistics. */
8284
8285 static void
8286 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8287 {
8288 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8289
8290 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8291 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8292 dwarf2_per_objfile->all_type_units.size ());
8293 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8294 tu_stats->nr_uniq_abbrev_tables);
8295 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8296 tu_stats->nr_symtabs);
8297 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8298 tu_stats->nr_symtab_sharers);
8299 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8300 tu_stats->nr_stmt_less_type_units);
8301 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8302 tu_stats->nr_all_type_units_reallocs);
8303 }
8304
8305 /* Traversal function for build_type_psymtabs. */
8306
8307 static int
8308 build_type_psymtab_dependencies (void **slot, void *info)
8309 {
8310 struct dwarf2_per_objfile *dwarf2_per_objfile
8311 = (struct dwarf2_per_objfile *) info;
8312 struct objfile *objfile = dwarf2_per_objfile->objfile;
8313 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8314 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8315 struct partial_symtab *pst = per_cu->v.psymtab;
8316 int len = VEC_length (sig_type_ptr, tu_group->tus);
8317 struct signatured_type *iter;
8318 int i;
8319
8320 gdb_assert (len > 0);
8321 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8322
8323 pst->number_of_dependencies = len;
8324 pst->dependencies =
8325 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8326 for (i = 0;
8327 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8328 ++i)
8329 {
8330 gdb_assert (iter->per_cu.is_debug_types);
8331 pst->dependencies[i] = iter->per_cu.v.psymtab;
8332 iter->type_unit_group = tu_group;
8333 }
8334
8335 VEC_free (sig_type_ptr, tu_group->tus);
8336
8337 return 1;
8338 }
8339
8340 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8341 Build partial symbol tables for the .debug_types comp-units. */
8342
8343 static void
8344 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8345 {
8346 if (! create_all_type_units (dwarf2_per_objfile))
8347 return;
8348
8349 build_type_psymtabs_1 (dwarf2_per_objfile);
8350 }
8351
8352 /* Traversal function for process_skeletonless_type_unit.
8353 Read a TU in a DWO file and build partial symbols for it. */
8354
8355 static int
8356 process_skeletonless_type_unit (void **slot, void *info)
8357 {
8358 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8359 struct dwarf2_per_objfile *dwarf2_per_objfile
8360 = (struct dwarf2_per_objfile *) info;
8361 struct signatured_type find_entry, *entry;
8362
8363 /* If this TU doesn't exist in the global table, add it and read it in. */
8364
8365 if (dwarf2_per_objfile->signatured_types == NULL)
8366 {
8367 dwarf2_per_objfile->signatured_types
8368 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8369 }
8370
8371 find_entry.signature = dwo_unit->signature;
8372 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8373 INSERT);
8374 /* If we've already seen this type there's nothing to do. What's happening
8375 is we're doing our own version of comdat-folding here. */
8376 if (*slot != NULL)
8377 return 1;
8378
8379 /* This does the job that create_all_type_units would have done for
8380 this TU. */
8381 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8382 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8383 *slot = entry;
8384
8385 /* This does the job that build_type_psymtabs_1 would have done. */
8386 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8387 build_type_psymtabs_reader, NULL);
8388
8389 return 1;
8390 }
8391
8392 /* Traversal function for process_skeletonless_type_units. */
8393
8394 static int
8395 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8396 {
8397 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8398
8399 if (dwo_file->tus != NULL)
8400 {
8401 htab_traverse_noresize (dwo_file->tus,
8402 process_skeletonless_type_unit, info);
8403 }
8404
8405 return 1;
8406 }
8407
8408 /* Scan all TUs of DWO files, verifying we've processed them.
8409 This is needed in case a TU was emitted without its skeleton.
8410 Note: This can't be done until we know what all the DWO files are. */
8411
8412 static void
8413 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8414 {
8415 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8416 if (get_dwp_file (dwarf2_per_objfile) == NULL
8417 && dwarf2_per_objfile->dwo_files != NULL)
8418 {
8419 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8420 process_dwo_file_for_skeletonless_type_units,
8421 dwarf2_per_objfile);
8422 }
8423 }
8424
8425 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8426
8427 static void
8428 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8429 {
8430 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8431 {
8432 struct partial_symtab *pst = per_cu->v.psymtab;
8433
8434 if (pst == NULL)
8435 continue;
8436
8437 for (int j = 0; j < pst->number_of_dependencies; ++j)
8438 {
8439 /* Set the 'user' field only if it is not already set. */
8440 if (pst->dependencies[j]->user == NULL)
8441 pst->dependencies[j]->user = pst;
8442 }
8443 }
8444 }
8445
8446 /* Build the partial symbol table by doing a quick pass through the
8447 .debug_info and .debug_abbrev sections. */
8448
8449 static void
8450 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8451 {
8452 struct objfile *objfile = dwarf2_per_objfile->objfile;
8453
8454 if (dwarf_read_debug)
8455 {
8456 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8457 objfile_name (objfile));
8458 }
8459
8460 dwarf2_per_objfile->reading_partial_symbols = 1;
8461
8462 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8463
8464 /* Any cached compilation units will be linked by the per-objfile
8465 read_in_chain. Make sure to free them when we're done. */
8466 free_cached_comp_units freer (dwarf2_per_objfile);
8467
8468 build_type_psymtabs (dwarf2_per_objfile);
8469
8470 create_all_comp_units (dwarf2_per_objfile);
8471
8472 /* Create a temporary address map on a temporary obstack. We later
8473 copy this to the final obstack. */
8474 auto_obstack temp_obstack;
8475
8476 scoped_restore save_psymtabs_addrmap
8477 = make_scoped_restore (&objfile->psymtabs_addrmap,
8478 addrmap_create_mutable (&temp_obstack));
8479
8480 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8481 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8482
8483 /* This has to wait until we read the CUs, we need the list of DWOs. */
8484 process_skeletonless_type_units (dwarf2_per_objfile);
8485
8486 /* Now that all TUs have been processed we can fill in the dependencies. */
8487 if (dwarf2_per_objfile->type_unit_groups != NULL)
8488 {
8489 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8490 build_type_psymtab_dependencies, dwarf2_per_objfile);
8491 }
8492
8493 if (dwarf_read_debug)
8494 print_tu_stats (dwarf2_per_objfile);
8495
8496 set_partial_user (dwarf2_per_objfile);
8497
8498 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
8499 &objfile->objfile_obstack);
8500 /* At this point we want to keep the address map. */
8501 save_psymtabs_addrmap.release ();
8502
8503 if (dwarf_read_debug)
8504 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8505 objfile_name (objfile));
8506 }
8507
8508 /* die_reader_func for load_partial_comp_unit. */
8509
8510 static void
8511 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8512 const gdb_byte *info_ptr,
8513 struct die_info *comp_unit_die,
8514 int has_children,
8515 void *data)
8516 {
8517 struct dwarf2_cu *cu = reader->cu;
8518
8519 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8520
8521 /* Check if comp unit has_children.
8522 If so, read the rest of the partial symbols from this comp unit.
8523 If not, there's no more debug_info for this comp unit. */
8524 if (has_children)
8525 load_partial_dies (reader, info_ptr, 0);
8526 }
8527
8528 /* Load the partial DIEs for a secondary CU into memory.
8529 This is also used when rereading a primary CU with load_all_dies. */
8530
8531 static void
8532 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8533 {
8534 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8535 load_partial_comp_unit_reader, NULL);
8536 }
8537
8538 static void
8539 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8540 struct dwarf2_section_info *section,
8541 struct dwarf2_section_info *abbrev_section,
8542 unsigned int is_dwz)
8543 {
8544 const gdb_byte *info_ptr;
8545 struct objfile *objfile = dwarf2_per_objfile->objfile;
8546
8547 if (dwarf_read_debug)
8548 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8549 get_section_name (section),
8550 get_section_file_name (section));
8551
8552 dwarf2_read_section (objfile, section);
8553
8554 info_ptr = section->buffer;
8555
8556 while (info_ptr < section->buffer + section->size)
8557 {
8558 struct dwarf2_per_cu_data *this_cu;
8559
8560 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8561
8562 comp_unit_head cu_header;
8563 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8564 abbrev_section, info_ptr,
8565 rcuh_kind::COMPILE);
8566
8567 /* Save the compilation unit for later lookup. */
8568 if (cu_header.unit_type != DW_UT_type)
8569 {
8570 this_cu = XOBNEW (&objfile->objfile_obstack,
8571 struct dwarf2_per_cu_data);
8572 memset (this_cu, 0, sizeof (*this_cu));
8573 }
8574 else
8575 {
8576 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8577 struct signatured_type);
8578 memset (sig_type, 0, sizeof (*sig_type));
8579 sig_type->signature = cu_header.signature;
8580 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8581 this_cu = &sig_type->per_cu;
8582 }
8583 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8584 this_cu->sect_off = sect_off;
8585 this_cu->length = cu_header.length + cu_header.initial_length_size;
8586 this_cu->is_dwz = is_dwz;
8587 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8588 this_cu->section = section;
8589
8590 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8591
8592 info_ptr = info_ptr + this_cu->length;
8593 }
8594 }
8595
8596 /* Create a list of all compilation units in OBJFILE.
8597 This is only done for -readnow and building partial symtabs. */
8598
8599 static void
8600 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8601 {
8602 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8603 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8604 &dwarf2_per_objfile->abbrev, 0);
8605
8606 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8607 if (dwz != NULL)
8608 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8609 1);
8610 }
8611
8612 /* Process all loaded DIEs for compilation unit CU, starting at
8613 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8614 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8615 DW_AT_ranges). See the comments of add_partial_subprogram on how
8616 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8617
8618 static void
8619 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8620 CORE_ADDR *highpc, int set_addrmap,
8621 struct dwarf2_cu *cu)
8622 {
8623 struct partial_die_info *pdi;
8624
8625 /* Now, march along the PDI's, descending into ones which have
8626 interesting children but skipping the children of the other ones,
8627 until we reach the end of the compilation unit. */
8628
8629 pdi = first_die;
8630
8631 while (pdi != NULL)
8632 {
8633 pdi->fixup (cu);
8634
8635 /* Anonymous namespaces or modules have no name but have interesting
8636 children, so we need to look at them. Ditto for anonymous
8637 enums. */
8638
8639 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8640 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8641 || pdi->tag == DW_TAG_imported_unit
8642 || pdi->tag == DW_TAG_inlined_subroutine)
8643 {
8644 switch (pdi->tag)
8645 {
8646 case DW_TAG_subprogram:
8647 case DW_TAG_inlined_subroutine:
8648 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8649 break;
8650 case DW_TAG_constant:
8651 case DW_TAG_variable:
8652 case DW_TAG_typedef:
8653 case DW_TAG_union_type:
8654 if (!pdi->is_declaration)
8655 {
8656 add_partial_symbol (pdi, cu);
8657 }
8658 break;
8659 case DW_TAG_class_type:
8660 case DW_TAG_interface_type:
8661 case DW_TAG_structure_type:
8662 if (!pdi->is_declaration)
8663 {
8664 add_partial_symbol (pdi, cu);
8665 }
8666 if ((cu->language == language_rust
8667 || cu->language == language_cplus) && pdi->has_children)
8668 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8669 set_addrmap, cu);
8670 break;
8671 case DW_TAG_enumeration_type:
8672 if (!pdi->is_declaration)
8673 add_partial_enumeration (pdi, cu);
8674 break;
8675 case DW_TAG_base_type:
8676 case DW_TAG_subrange_type:
8677 /* File scope base type definitions are added to the partial
8678 symbol table. */
8679 add_partial_symbol (pdi, cu);
8680 break;
8681 case DW_TAG_namespace:
8682 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8683 break;
8684 case DW_TAG_module:
8685 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8686 break;
8687 case DW_TAG_imported_unit:
8688 {
8689 struct dwarf2_per_cu_data *per_cu;
8690
8691 /* For now we don't handle imported units in type units. */
8692 if (cu->per_cu->is_debug_types)
8693 {
8694 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8695 " supported in type units [in module %s]"),
8696 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8697 }
8698
8699 per_cu = dwarf2_find_containing_comp_unit
8700 (pdi->d.sect_off, pdi->is_dwz,
8701 cu->per_cu->dwarf2_per_objfile);
8702
8703 /* Go read the partial unit, if needed. */
8704 if (per_cu->v.psymtab == NULL)
8705 process_psymtab_comp_unit (per_cu, 1, cu->language);
8706
8707 VEC_safe_push (dwarf2_per_cu_ptr,
8708 cu->per_cu->imported_symtabs, per_cu);
8709 }
8710 break;
8711 case DW_TAG_imported_declaration:
8712 add_partial_symbol (pdi, cu);
8713 break;
8714 default:
8715 break;
8716 }
8717 }
8718
8719 /* If the die has a sibling, skip to the sibling. */
8720
8721 pdi = pdi->die_sibling;
8722 }
8723 }
8724
8725 /* Functions used to compute the fully scoped name of a partial DIE.
8726
8727 Normally, this is simple. For C++, the parent DIE's fully scoped
8728 name is concatenated with "::" and the partial DIE's name.
8729 Enumerators are an exception; they use the scope of their parent
8730 enumeration type, i.e. the name of the enumeration type is not
8731 prepended to the enumerator.
8732
8733 There are two complexities. One is DW_AT_specification; in this
8734 case "parent" means the parent of the target of the specification,
8735 instead of the direct parent of the DIE. The other is compilers
8736 which do not emit DW_TAG_namespace; in this case we try to guess
8737 the fully qualified name of structure types from their members'
8738 linkage names. This must be done using the DIE's children rather
8739 than the children of any DW_AT_specification target. We only need
8740 to do this for structures at the top level, i.e. if the target of
8741 any DW_AT_specification (if any; otherwise the DIE itself) does not
8742 have a parent. */
8743
8744 /* Compute the scope prefix associated with PDI's parent, in
8745 compilation unit CU. The result will be allocated on CU's
8746 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8747 field. NULL is returned if no prefix is necessary. */
8748 static const char *
8749 partial_die_parent_scope (struct partial_die_info *pdi,
8750 struct dwarf2_cu *cu)
8751 {
8752 const char *grandparent_scope;
8753 struct partial_die_info *parent, *real_pdi;
8754
8755 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8756 then this means the parent of the specification DIE. */
8757
8758 real_pdi = pdi;
8759 while (real_pdi->has_specification)
8760 real_pdi = find_partial_die (real_pdi->spec_offset,
8761 real_pdi->spec_is_dwz, cu);
8762
8763 parent = real_pdi->die_parent;
8764 if (parent == NULL)
8765 return NULL;
8766
8767 if (parent->scope_set)
8768 return parent->scope;
8769
8770 parent->fixup (cu);
8771
8772 grandparent_scope = partial_die_parent_scope (parent, cu);
8773
8774 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8775 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8776 Work around this problem here. */
8777 if (cu->language == language_cplus
8778 && parent->tag == DW_TAG_namespace
8779 && strcmp (parent->name, "::") == 0
8780 && grandparent_scope == NULL)
8781 {
8782 parent->scope = NULL;
8783 parent->scope_set = 1;
8784 return NULL;
8785 }
8786
8787 if (pdi->tag == DW_TAG_enumerator)
8788 /* Enumerators should not get the name of the enumeration as a prefix. */
8789 parent->scope = grandparent_scope;
8790 else if (parent->tag == DW_TAG_namespace
8791 || parent->tag == DW_TAG_module
8792 || parent->tag == DW_TAG_structure_type
8793 || parent->tag == DW_TAG_class_type
8794 || parent->tag == DW_TAG_interface_type
8795 || parent->tag == DW_TAG_union_type
8796 || parent->tag == DW_TAG_enumeration_type)
8797 {
8798 if (grandparent_scope == NULL)
8799 parent->scope = parent->name;
8800 else
8801 parent->scope = typename_concat (&cu->comp_unit_obstack,
8802 grandparent_scope,
8803 parent->name, 0, cu);
8804 }
8805 else
8806 {
8807 /* FIXME drow/2004-04-01: What should we be doing with
8808 function-local names? For partial symbols, we should probably be
8809 ignoring them. */
8810 complaint (_("unhandled containing DIE tag %d for DIE at %s"),
8811 parent->tag, sect_offset_str (pdi->sect_off));
8812 parent->scope = grandparent_scope;
8813 }
8814
8815 parent->scope_set = 1;
8816 return parent->scope;
8817 }
8818
8819 /* Return the fully scoped name associated with PDI, from compilation unit
8820 CU. The result will be allocated with malloc. */
8821
8822 static char *
8823 partial_die_full_name (struct partial_die_info *pdi,
8824 struct dwarf2_cu *cu)
8825 {
8826 const char *parent_scope;
8827
8828 /* If this is a template instantiation, we can not work out the
8829 template arguments from partial DIEs. So, unfortunately, we have
8830 to go through the full DIEs. At least any work we do building
8831 types here will be reused if full symbols are loaded later. */
8832 if (pdi->has_template_arguments)
8833 {
8834 pdi->fixup (cu);
8835
8836 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8837 {
8838 struct die_info *die;
8839 struct attribute attr;
8840 struct dwarf2_cu *ref_cu = cu;
8841
8842 /* DW_FORM_ref_addr is using section offset. */
8843 attr.name = (enum dwarf_attribute) 0;
8844 attr.form = DW_FORM_ref_addr;
8845 attr.u.unsnd = to_underlying (pdi->sect_off);
8846 die = follow_die_ref (NULL, &attr, &ref_cu);
8847
8848 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8849 }
8850 }
8851
8852 parent_scope = partial_die_parent_scope (pdi, cu);
8853 if (parent_scope == NULL)
8854 return NULL;
8855 else
8856 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8857 }
8858
8859 static void
8860 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8861 {
8862 struct dwarf2_per_objfile *dwarf2_per_objfile
8863 = cu->per_cu->dwarf2_per_objfile;
8864 struct objfile *objfile = dwarf2_per_objfile->objfile;
8865 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8866 CORE_ADDR addr = 0;
8867 const char *actual_name = NULL;
8868 CORE_ADDR baseaddr;
8869 char *built_actual_name;
8870
8871 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8872
8873 built_actual_name = partial_die_full_name (pdi, cu);
8874 if (built_actual_name != NULL)
8875 actual_name = built_actual_name;
8876
8877 if (actual_name == NULL)
8878 actual_name = pdi->name;
8879
8880 switch (pdi->tag)
8881 {
8882 case DW_TAG_inlined_subroutine:
8883 case DW_TAG_subprogram:
8884 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8885 - baseaddr);
8886 if (pdi->is_external || cu->language == language_ada)
8887 {
8888 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8889 of the global scope. But in Ada, we want to be able to access
8890 nested procedures globally. So all Ada subprograms are stored
8891 in the global scope. */
8892 add_psymbol_to_list (actual_name, strlen (actual_name),
8893 built_actual_name != NULL,
8894 VAR_DOMAIN, LOC_BLOCK,
8895 SECT_OFF_TEXT (objfile),
8896 &objfile->global_psymbols,
8897 addr,
8898 cu->language, objfile);
8899 }
8900 else
8901 {
8902 add_psymbol_to_list (actual_name, strlen (actual_name),
8903 built_actual_name != NULL,
8904 VAR_DOMAIN, LOC_BLOCK,
8905 SECT_OFF_TEXT (objfile),
8906 &objfile->static_psymbols,
8907 addr, cu->language, objfile);
8908 }
8909
8910 if (pdi->main_subprogram && actual_name != NULL)
8911 set_objfile_main_name (objfile, actual_name, cu->language);
8912 break;
8913 case DW_TAG_constant:
8914 {
8915 std::vector<partial_symbol *> *list;
8916
8917 if (pdi->is_external)
8918 list = &objfile->global_psymbols;
8919 else
8920 list = &objfile->static_psymbols;
8921 add_psymbol_to_list (actual_name, strlen (actual_name),
8922 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8923 -1, list, 0, cu->language, objfile);
8924 }
8925 break;
8926 case DW_TAG_variable:
8927 if (pdi->d.locdesc)
8928 addr = decode_locdesc (pdi->d.locdesc, cu);
8929
8930 if (pdi->d.locdesc
8931 && addr == 0
8932 && !dwarf2_per_objfile->has_section_at_zero)
8933 {
8934 /* A global or static variable may also have been stripped
8935 out by the linker if unused, in which case its address
8936 will be nullified; do not add such variables into partial
8937 symbol table then. */
8938 }
8939 else if (pdi->is_external)
8940 {
8941 /* Global Variable.
8942 Don't enter into the minimal symbol tables as there is
8943 a minimal symbol table entry from the ELF symbols already.
8944 Enter into partial symbol table if it has a location
8945 descriptor or a type.
8946 If the location descriptor is missing, new_symbol will create
8947 a LOC_UNRESOLVED symbol, the address of the variable will then
8948 be determined from the minimal symbol table whenever the variable
8949 is referenced.
8950 The address for the partial symbol table entry is not
8951 used by GDB, but it comes in handy for debugging partial symbol
8952 table building. */
8953
8954 if (pdi->d.locdesc || pdi->has_type)
8955 add_psymbol_to_list (actual_name, strlen (actual_name),
8956 built_actual_name != NULL,
8957 VAR_DOMAIN, LOC_STATIC,
8958 SECT_OFF_TEXT (objfile),
8959 &objfile->global_psymbols,
8960 addr, cu->language, objfile);
8961 }
8962 else
8963 {
8964 int has_loc = pdi->d.locdesc != NULL;
8965
8966 /* Static Variable. Skip symbols whose value we cannot know (those
8967 without location descriptors or constant values). */
8968 if (!has_loc && !pdi->has_const_value)
8969 {
8970 xfree (built_actual_name);
8971 return;
8972 }
8973
8974 add_psymbol_to_list (actual_name, strlen (actual_name),
8975 built_actual_name != NULL,
8976 VAR_DOMAIN, LOC_STATIC,
8977 SECT_OFF_TEXT (objfile),
8978 &objfile->static_psymbols,
8979 has_loc ? addr : 0,
8980 cu->language, objfile);
8981 }
8982 break;
8983 case DW_TAG_typedef:
8984 case DW_TAG_base_type:
8985 case DW_TAG_subrange_type:
8986 add_psymbol_to_list (actual_name, strlen (actual_name),
8987 built_actual_name != NULL,
8988 VAR_DOMAIN, LOC_TYPEDEF, -1,
8989 &objfile->static_psymbols,
8990 0, cu->language, objfile);
8991 break;
8992 case DW_TAG_imported_declaration:
8993 case DW_TAG_namespace:
8994 add_psymbol_to_list (actual_name, strlen (actual_name),
8995 built_actual_name != NULL,
8996 VAR_DOMAIN, LOC_TYPEDEF, -1,
8997 &objfile->global_psymbols,
8998 0, cu->language, objfile);
8999 break;
9000 case DW_TAG_module:
9001 add_psymbol_to_list (actual_name, strlen (actual_name),
9002 built_actual_name != NULL,
9003 MODULE_DOMAIN, LOC_TYPEDEF, -1,
9004 &objfile->global_psymbols,
9005 0, cu->language, objfile);
9006 break;
9007 case DW_TAG_class_type:
9008 case DW_TAG_interface_type:
9009 case DW_TAG_structure_type:
9010 case DW_TAG_union_type:
9011 case DW_TAG_enumeration_type:
9012 /* Skip external references. The DWARF standard says in the section
9013 about "Structure, Union, and Class Type Entries": "An incomplete
9014 structure, union or class type is represented by a structure,
9015 union or class entry that does not have a byte size attribute
9016 and that has a DW_AT_declaration attribute." */
9017 if (!pdi->has_byte_size && pdi->is_declaration)
9018 {
9019 xfree (built_actual_name);
9020 return;
9021 }
9022
9023 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
9024 static vs. global. */
9025 add_psymbol_to_list (actual_name, strlen (actual_name),
9026 built_actual_name != NULL,
9027 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
9028 cu->language == language_cplus
9029 ? &objfile->global_psymbols
9030 : &objfile->static_psymbols,
9031 0, cu->language, objfile);
9032
9033 break;
9034 case DW_TAG_enumerator:
9035 add_psymbol_to_list (actual_name, strlen (actual_name),
9036 built_actual_name != NULL,
9037 VAR_DOMAIN, LOC_CONST, -1,
9038 cu->language == language_cplus
9039 ? &objfile->global_psymbols
9040 : &objfile->static_psymbols,
9041 0, cu->language, objfile);
9042 break;
9043 default:
9044 break;
9045 }
9046
9047 xfree (built_actual_name);
9048 }
9049
9050 /* Read a partial die corresponding to a namespace; also, add a symbol
9051 corresponding to that namespace to the symbol table. NAMESPACE is
9052 the name of the enclosing namespace. */
9053
9054 static void
9055 add_partial_namespace (struct partial_die_info *pdi,
9056 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9057 int set_addrmap, struct dwarf2_cu *cu)
9058 {
9059 /* Add a symbol for the namespace. */
9060
9061 add_partial_symbol (pdi, cu);
9062
9063 /* Now scan partial symbols in that namespace. */
9064
9065 if (pdi->has_children)
9066 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9067 }
9068
9069 /* Read a partial die corresponding to a Fortran module. */
9070
9071 static void
9072 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9073 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9074 {
9075 /* Add a symbol for the namespace. */
9076
9077 add_partial_symbol (pdi, cu);
9078
9079 /* Now scan partial symbols in that module. */
9080
9081 if (pdi->has_children)
9082 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9083 }
9084
9085 /* Read a partial die corresponding to a subprogram or an inlined
9086 subprogram and create a partial symbol for that subprogram.
9087 When the CU language allows it, this routine also defines a partial
9088 symbol for each nested subprogram that this subprogram contains.
9089 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9090 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9091
9092 PDI may also be a lexical block, in which case we simply search
9093 recursively for subprograms defined inside that lexical block.
9094 Again, this is only performed when the CU language allows this
9095 type of definitions. */
9096
9097 static void
9098 add_partial_subprogram (struct partial_die_info *pdi,
9099 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9100 int set_addrmap, struct dwarf2_cu *cu)
9101 {
9102 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9103 {
9104 if (pdi->has_pc_info)
9105 {
9106 if (pdi->lowpc < *lowpc)
9107 *lowpc = pdi->lowpc;
9108 if (pdi->highpc > *highpc)
9109 *highpc = pdi->highpc;
9110 if (set_addrmap)
9111 {
9112 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9113 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9114 CORE_ADDR baseaddr;
9115 CORE_ADDR highpc;
9116 CORE_ADDR lowpc;
9117
9118 baseaddr = ANOFFSET (objfile->section_offsets,
9119 SECT_OFF_TEXT (objfile));
9120 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
9121 pdi->lowpc + baseaddr)
9122 - baseaddr);
9123 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
9124 pdi->highpc + baseaddr)
9125 - baseaddr);
9126 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9127 cu->per_cu->v.psymtab);
9128 }
9129 }
9130
9131 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9132 {
9133 if (!pdi->is_declaration)
9134 /* Ignore subprogram DIEs that do not have a name, they are
9135 illegal. Do not emit a complaint at this point, we will
9136 do so when we convert this psymtab into a symtab. */
9137 if (pdi->name)
9138 add_partial_symbol (pdi, cu);
9139 }
9140 }
9141
9142 if (! pdi->has_children)
9143 return;
9144
9145 if (cu->language == language_ada)
9146 {
9147 pdi = pdi->die_child;
9148 while (pdi != NULL)
9149 {
9150 pdi->fixup (cu);
9151 if (pdi->tag == DW_TAG_subprogram
9152 || pdi->tag == DW_TAG_inlined_subroutine
9153 || pdi->tag == DW_TAG_lexical_block)
9154 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9155 pdi = pdi->die_sibling;
9156 }
9157 }
9158 }
9159
9160 /* Read a partial die corresponding to an enumeration type. */
9161
9162 static void
9163 add_partial_enumeration (struct partial_die_info *enum_pdi,
9164 struct dwarf2_cu *cu)
9165 {
9166 struct partial_die_info *pdi;
9167
9168 if (enum_pdi->name != NULL)
9169 add_partial_symbol (enum_pdi, cu);
9170
9171 pdi = enum_pdi->die_child;
9172 while (pdi)
9173 {
9174 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9175 complaint (_("malformed enumerator DIE ignored"));
9176 else
9177 add_partial_symbol (pdi, cu);
9178 pdi = pdi->die_sibling;
9179 }
9180 }
9181
9182 /* Return the initial uleb128 in the die at INFO_PTR. */
9183
9184 static unsigned int
9185 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9186 {
9187 unsigned int bytes_read;
9188
9189 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9190 }
9191
9192 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9193 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9194
9195 Return the corresponding abbrev, or NULL if the number is zero (indicating
9196 an empty DIE). In either case *BYTES_READ will be set to the length of
9197 the initial number. */
9198
9199 static struct abbrev_info *
9200 peek_die_abbrev (const die_reader_specs &reader,
9201 const gdb_byte *info_ptr, unsigned int *bytes_read)
9202 {
9203 dwarf2_cu *cu = reader.cu;
9204 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9205 unsigned int abbrev_number
9206 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9207
9208 if (abbrev_number == 0)
9209 return NULL;
9210
9211 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9212 if (!abbrev)
9213 {
9214 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9215 " at offset %s [in module %s]"),
9216 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9217 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9218 }
9219
9220 return abbrev;
9221 }
9222
9223 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9224 Returns a pointer to the end of a series of DIEs, terminated by an empty
9225 DIE. Any children of the skipped DIEs will also be skipped. */
9226
9227 static const gdb_byte *
9228 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9229 {
9230 while (1)
9231 {
9232 unsigned int bytes_read;
9233 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9234
9235 if (abbrev == NULL)
9236 return info_ptr + bytes_read;
9237 else
9238 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9239 }
9240 }
9241
9242 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9243 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9244 abbrev corresponding to that skipped uleb128 should be passed in
9245 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9246 children. */
9247
9248 static const gdb_byte *
9249 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9250 struct abbrev_info *abbrev)
9251 {
9252 unsigned int bytes_read;
9253 struct attribute attr;
9254 bfd *abfd = reader->abfd;
9255 struct dwarf2_cu *cu = reader->cu;
9256 const gdb_byte *buffer = reader->buffer;
9257 const gdb_byte *buffer_end = reader->buffer_end;
9258 unsigned int form, i;
9259
9260 for (i = 0; i < abbrev->num_attrs; i++)
9261 {
9262 /* The only abbrev we care about is DW_AT_sibling. */
9263 if (abbrev->attrs[i].name == DW_AT_sibling)
9264 {
9265 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9266 if (attr.form == DW_FORM_ref_addr)
9267 complaint (_("ignoring absolute DW_AT_sibling"));
9268 else
9269 {
9270 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9271 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9272
9273 if (sibling_ptr < info_ptr)
9274 complaint (_("DW_AT_sibling points backwards"));
9275 else if (sibling_ptr > reader->buffer_end)
9276 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9277 else
9278 return sibling_ptr;
9279 }
9280 }
9281
9282 /* If it isn't DW_AT_sibling, skip this attribute. */
9283 form = abbrev->attrs[i].form;
9284 skip_attribute:
9285 switch (form)
9286 {
9287 case DW_FORM_ref_addr:
9288 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9289 and later it is offset sized. */
9290 if (cu->header.version == 2)
9291 info_ptr += cu->header.addr_size;
9292 else
9293 info_ptr += cu->header.offset_size;
9294 break;
9295 case DW_FORM_GNU_ref_alt:
9296 info_ptr += cu->header.offset_size;
9297 break;
9298 case DW_FORM_addr:
9299 info_ptr += cu->header.addr_size;
9300 break;
9301 case DW_FORM_data1:
9302 case DW_FORM_ref1:
9303 case DW_FORM_flag:
9304 info_ptr += 1;
9305 break;
9306 case DW_FORM_flag_present:
9307 case DW_FORM_implicit_const:
9308 break;
9309 case DW_FORM_data2:
9310 case DW_FORM_ref2:
9311 info_ptr += 2;
9312 break;
9313 case DW_FORM_data4:
9314 case DW_FORM_ref4:
9315 info_ptr += 4;
9316 break;
9317 case DW_FORM_data8:
9318 case DW_FORM_ref8:
9319 case DW_FORM_ref_sig8:
9320 info_ptr += 8;
9321 break;
9322 case DW_FORM_data16:
9323 info_ptr += 16;
9324 break;
9325 case DW_FORM_string:
9326 read_direct_string (abfd, info_ptr, &bytes_read);
9327 info_ptr += bytes_read;
9328 break;
9329 case DW_FORM_sec_offset:
9330 case DW_FORM_strp:
9331 case DW_FORM_GNU_strp_alt:
9332 info_ptr += cu->header.offset_size;
9333 break;
9334 case DW_FORM_exprloc:
9335 case DW_FORM_block:
9336 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9337 info_ptr += bytes_read;
9338 break;
9339 case DW_FORM_block1:
9340 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9341 break;
9342 case DW_FORM_block2:
9343 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9344 break;
9345 case DW_FORM_block4:
9346 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9347 break;
9348 case DW_FORM_sdata:
9349 case DW_FORM_udata:
9350 case DW_FORM_ref_udata:
9351 case DW_FORM_GNU_addr_index:
9352 case DW_FORM_GNU_str_index:
9353 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9354 break;
9355 case DW_FORM_indirect:
9356 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9357 info_ptr += bytes_read;
9358 /* We need to continue parsing from here, so just go back to
9359 the top. */
9360 goto skip_attribute;
9361
9362 default:
9363 error (_("Dwarf Error: Cannot handle %s "
9364 "in DWARF reader [in module %s]"),
9365 dwarf_form_name (form),
9366 bfd_get_filename (abfd));
9367 }
9368 }
9369
9370 if (abbrev->has_children)
9371 return skip_children (reader, info_ptr);
9372 else
9373 return info_ptr;
9374 }
9375
9376 /* Locate ORIG_PDI's sibling.
9377 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9378
9379 static const gdb_byte *
9380 locate_pdi_sibling (const struct die_reader_specs *reader,
9381 struct partial_die_info *orig_pdi,
9382 const gdb_byte *info_ptr)
9383 {
9384 /* Do we know the sibling already? */
9385
9386 if (orig_pdi->sibling)
9387 return orig_pdi->sibling;
9388
9389 /* Are there any children to deal with? */
9390
9391 if (!orig_pdi->has_children)
9392 return info_ptr;
9393
9394 /* Skip the children the long way. */
9395
9396 return skip_children (reader, info_ptr);
9397 }
9398
9399 /* Expand this partial symbol table into a full symbol table. SELF is
9400 not NULL. */
9401
9402 static void
9403 dwarf2_read_symtab (struct partial_symtab *self,
9404 struct objfile *objfile)
9405 {
9406 struct dwarf2_per_objfile *dwarf2_per_objfile
9407 = get_dwarf2_per_objfile (objfile);
9408
9409 if (self->readin)
9410 {
9411 warning (_("bug: psymtab for %s is already read in."),
9412 self->filename);
9413 }
9414 else
9415 {
9416 if (info_verbose)
9417 {
9418 printf_filtered (_("Reading in symbols for %s..."),
9419 self->filename);
9420 gdb_flush (gdb_stdout);
9421 }
9422
9423 /* If this psymtab is constructed from a debug-only objfile, the
9424 has_section_at_zero flag will not necessarily be correct. We
9425 can get the correct value for this flag by looking at the data
9426 associated with the (presumably stripped) associated objfile. */
9427 if (objfile->separate_debug_objfile_backlink)
9428 {
9429 struct dwarf2_per_objfile *dpo_backlink
9430 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9431
9432 dwarf2_per_objfile->has_section_at_zero
9433 = dpo_backlink->has_section_at_zero;
9434 }
9435
9436 dwarf2_per_objfile->reading_partial_symbols = 0;
9437
9438 psymtab_to_symtab_1 (self);
9439
9440 /* Finish up the debug error message. */
9441 if (info_verbose)
9442 printf_filtered (_("done.\n"));
9443 }
9444
9445 process_cu_includes (dwarf2_per_objfile);
9446 }
9447 \f
9448 /* Reading in full CUs. */
9449
9450 /* Add PER_CU to the queue. */
9451
9452 static void
9453 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9454 enum language pretend_language)
9455 {
9456 struct dwarf2_queue_item *item;
9457
9458 per_cu->queued = 1;
9459 item = XNEW (struct dwarf2_queue_item);
9460 item->per_cu = per_cu;
9461 item->pretend_language = pretend_language;
9462 item->next = NULL;
9463
9464 if (dwarf2_queue == NULL)
9465 dwarf2_queue = item;
9466 else
9467 dwarf2_queue_tail->next = item;
9468
9469 dwarf2_queue_tail = item;
9470 }
9471
9472 /* If PER_CU is not yet queued, add it to the queue.
9473 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9474 dependency.
9475 The result is non-zero if PER_CU was queued, otherwise the result is zero
9476 meaning either PER_CU is already queued or it is already loaded.
9477
9478 N.B. There is an invariant here that if a CU is queued then it is loaded.
9479 The caller is required to load PER_CU if we return non-zero. */
9480
9481 static int
9482 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9483 struct dwarf2_per_cu_data *per_cu,
9484 enum language pretend_language)
9485 {
9486 /* We may arrive here during partial symbol reading, if we need full
9487 DIEs to process an unusual case (e.g. template arguments). Do
9488 not queue PER_CU, just tell our caller to load its DIEs. */
9489 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9490 {
9491 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9492 return 1;
9493 return 0;
9494 }
9495
9496 /* Mark the dependence relation so that we don't flush PER_CU
9497 too early. */
9498 if (dependent_cu != NULL)
9499 dwarf2_add_dependence (dependent_cu, per_cu);
9500
9501 /* If it's already on the queue, we have nothing to do. */
9502 if (per_cu->queued)
9503 return 0;
9504
9505 /* If the compilation unit is already loaded, just mark it as
9506 used. */
9507 if (per_cu->cu != NULL)
9508 {
9509 per_cu->cu->last_used = 0;
9510 return 0;
9511 }
9512
9513 /* Add it to the queue. */
9514 queue_comp_unit (per_cu, pretend_language);
9515
9516 return 1;
9517 }
9518
9519 /* Process the queue. */
9520
9521 static void
9522 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9523 {
9524 struct dwarf2_queue_item *item, *next_item;
9525
9526 if (dwarf_read_debug)
9527 {
9528 fprintf_unfiltered (gdb_stdlog,
9529 "Expanding one or more symtabs of objfile %s ...\n",
9530 objfile_name (dwarf2_per_objfile->objfile));
9531 }
9532
9533 /* The queue starts out with one item, but following a DIE reference
9534 may load a new CU, adding it to the end of the queue. */
9535 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9536 {
9537 if ((dwarf2_per_objfile->using_index
9538 ? !item->per_cu->v.quick->compunit_symtab
9539 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9540 /* Skip dummy CUs. */
9541 && item->per_cu->cu != NULL)
9542 {
9543 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9544 unsigned int debug_print_threshold;
9545 char buf[100];
9546
9547 if (per_cu->is_debug_types)
9548 {
9549 struct signatured_type *sig_type =
9550 (struct signatured_type *) per_cu;
9551
9552 sprintf (buf, "TU %s at offset %s",
9553 hex_string (sig_type->signature),
9554 sect_offset_str (per_cu->sect_off));
9555 /* There can be 100s of TUs.
9556 Only print them in verbose mode. */
9557 debug_print_threshold = 2;
9558 }
9559 else
9560 {
9561 sprintf (buf, "CU at offset %s",
9562 sect_offset_str (per_cu->sect_off));
9563 debug_print_threshold = 1;
9564 }
9565
9566 if (dwarf_read_debug >= debug_print_threshold)
9567 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9568
9569 if (per_cu->is_debug_types)
9570 process_full_type_unit (per_cu, item->pretend_language);
9571 else
9572 process_full_comp_unit (per_cu, item->pretend_language);
9573
9574 if (dwarf_read_debug >= debug_print_threshold)
9575 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9576 }
9577
9578 item->per_cu->queued = 0;
9579 next_item = item->next;
9580 xfree (item);
9581 }
9582
9583 dwarf2_queue_tail = NULL;
9584
9585 if (dwarf_read_debug)
9586 {
9587 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9588 objfile_name (dwarf2_per_objfile->objfile));
9589 }
9590 }
9591
9592 /* Read in full symbols for PST, and anything it depends on. */
9593
9594 static void
9595 psymtab_to_symtab_1 (struct partial_symtab *pst)
9596 {
9597 struct dwarf2_per_cu_data *per_cu;
9598 int i;
9599
9600 if (pst->readin)
9601 return;
9602
9603 for (i = 0; i < pst->number_of_dependencies; i++)
9604 if (!pst->dependencies[i]->readin
9605 && pst->dependencies[i]->user == NULL)
9606 {
9607 /* Inform about additional files that need to be read in. */
9608 if (info_verbose)
9609 {
9610 /* FIXME: i18n: Need to make this a single string. */
9611 fputs_filtered (" ", gdb_stdout);
9612 wrap_here ("");
9613 fputs_filtered ("and ", gdb_stdout);
9614 wrap_here ("");
9615 printf_filtered ("%s...", pst->dependencies[i]->filename);
9616 wrap_here (""); /* Flush output. */
9617 gdb_flush (gdb_stdout);
9618 }
9619 psymtab_to_symtab_1 (pst->dependencies[i]);
9620 }
9621
9622 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9623
9624 if (per_cu == NULL)
9625 {
9626 /* It's an include file, no symbols to read for it.
9627 Everything is in the parent symtab. */
9628 pst->readin = 1;
9629 return;
9630 }
9631
9632 dw2_do_instantiate_symtab (per_cu, false);
9633 }
9634
9635 /* Trivial hash function for die_info: the hash value of a DIE
9636 is its offset in .debug_info for this objfile. */
9637
9638 static hashval_t
9639 die_hash (const void *item)
9640 {
9641 const struct die_info *die = (const struct die_info *) item;
9642
9643 return to_underlying (die->sect_off);
9644 }
9645
9646 /* Trivial comparison function for die_info structures: two DIEs
9647 are equal if they have the same offset. */
9648
9649 static int
9650 die_eq (const void *item_lhs, const void *item_rhs)
9651 {
9652 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9653 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9654
9655 return die_lhs->sect_off == die_rhs->sect_off;
9656 }
9657
9658 /* die_reader_func for load_full_comp_unit.
9659 This is identical to read_signatured_type_reader,
9660 but is kept separate for now. */
9661
9662 static void
9663 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9664 const gdb_byte *info_ptr,
9665 struct die_info *comp_unit_die,
9666 int has_children,
9667 void *data)
9668 {
9669 struct dwarf2_cu *cu = reader->cu;
9670 enum language *language_ptr = (enum language *) data;
9671
9672 gdb_assert (cu->die_hash == NULL);
9673 cu->die_hash =
9674 htab_create_alloc_ex (cu->header.length / 12,
9675 die_hash,
9676 die_eq,
9677 NULL,
9678 &cu->comp_unit_obstack,
9679 hashtab_obstack_allocate,
9680 dummy_obstack_deallocate);
9681
9682 if (has_children)
9683 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9684 &info_ptr, comp_unit_die);
9685 cu->dies = comp_unit_die;
9686 /* comp_unit_die is not stored in die_hash, no need. */
9687
9688 /* We try not to read any attributes in this function, because not
9689 all CUs needed for references have been loaded yet, and symbol
9690 table processing isn't initialized. But we have to set the CU language,
9691 or we won't be able to build types correctly.
9692 Similarly, if we do not read the producer, we can not apply
9693 producer-specific interpretation. */
9694 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9695 }
9696
9697 /* Load the DIEs associated with PER_CU into memory. */
9698
9699 static void
9700 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9701 bool skip_partial,
9702 enum language pretend_language)
9703 {
9704 gdb_assert (! this_cu->is_debug_types);
9705
9706 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9707 load_full_comp_unit_reader, &pretend_language);
9708 }
9709
9710 /* Add a DIE to the delayed physname list. */
9711
9712 static void
9713 add_to_method_list (struct type *type, int fnfield_index, int index,
9714 const char *name, struct die_info *die,
9715 struct dwarf2_cu *cu)
9716 {
9717 struct delayed_method_info mi;
9718 mi.type = type;
9719 mi.fnfield_index = fnfield_index;
9720 mi.index = index;
9721 mi.name = name;
9722 mi.die = die;
9723 cu->method_list.push_back (mi);
9724 }
9725
9726 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9727 "const" / "volatile". If so, decrements LEN by the length of the
9728 modifier and return true. Otherwise return false. */
9729
9730 template<size_t N>
9731 static bool
9732 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9733 {
9734 size_t mod_len = sizeof (mod) - 1;
9735 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9736 {
9737 len -= mod_len;
9738 return true;
9739 }
9740 return false;
9741 }
9742
9743 /* Compute the physnames of any methods on the CU's method list.
9744
9745 The computation of method physnames is delayed in order to avoid the
9746 (bad) condition that one of the method's formal parameters is of an as yet
9747 incomplete type. */
9748
9749 static void
9750 compute_delayed_physnames (struct dwarf2_cu *cu)
9751 {
9752 /* Only C++ delays computing physnames. */
9753 if (cu->method_list.empty ())
9754 return;
9755 gdb_assert (cu->language == language_cplus);
9756
9757 for (const delayed_method_info &mi : cu->method_list)
9758 {
9759 const char *physname;
9760 struct fn_fieldlist *fn_flp
9761 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9762 physname = dwarf2_physname (mi.name, mi.die, cu);
9763 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9764 = physname ? physname : "";
9765
9766 /* Since there's no tag to indicate whether a method is a
9767 const/volatile overload, extract that information out of the
9768 demangled name. */
9769 if (physname != NULL)
9770 {
9771 size_t len = strlen (physname);
9772
9773 while (1)
9774 {
9775 if (physname[len] == ')') /* shortcut */
9776 break;
9777 else if (check_modifier (physname, len, " const"))
9778 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9779 else if (check_modifier (physname, len, " volatile"))
9780 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9781 else
9782 break;
9783 }
9784 }
9785 }
9786
9787 /* The list is no longer needed. */
9788 cu->method_list.clear ();
9789 }
9790
9791 /* A wrapper for add_symbol_to_list to ensure that SYMBOL's language is
9792 the same as all other symbols in LISTHEAD. If a new symbol is added
9793 with a different language, this function asserts. */
9794
9795 static inline void
9796 dw2_add_symbol_to_list (struct symbol *symbol, struct pending **listhead)
9797 {
9798 /* Only assert if LISTHEAD already contains symbols of a different
9799 language (dict_create_hashed/insert_symbol_hashed requires that all
9800 symbols in this list are of the same language). */
9801 gdb_assert ((*listhead) == NULL
9802 || (SYMBOL_LANGUAGE ((*listhead)->symbol[0])
9803 == SYMBOL_LANGUAGE (symbol)));
9804
9805 add_symbol_to_list (symbol, listhead);
9806 }
9807
9808 /* Go objects should be embedded in a DW_TAG_module DIE,
9809 and it's not clear if/how imported objects will appear.
9810 To keep Go support simple until that's worked out,
9811 go back through what we've read and create something usable.
9812 We could do this while processing each DIE, and feels kinda cleaner,
9813 but that way is more invasive.
9814 This is to, for example, allow the user to type "p var" or "b main"
9815 without having to specify the package name, and allow lookups
9816 of module.object to work in contexts that use the expression
9817 parser. */
9818
9819 static void
9820 fixup_go_packaging (struct dwarf2_cu *cu)
9821 {
9822 char *package_name = NULL;
9823 struct pending *list;
9824 int i;
9825
9826 for (list = *cu->builder->get_global_symbols ();
9827 list != NULL;
9828 list = list->next)
9829 {
9830 for (i = 0; i < list->nsyms; ++i)
9831 {
9832 struct symbol *sym = list->symbol[i];
9833
9834 if (SYMBOL_LANGUAGE (sym) == language_go
9835 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9836 {
9837 char *this_package_name = go_symbol_package_name (sym);
9838
9839 if (this_package_name == NULL)
9840 continue;
9841 if (package_name == NULL)
9842 package_name = this_package_name;
9843 else
9844 {
9845 struct objfile *objfile
9846 = cu->per_cu->dwarf2_per_objfile->objfile;
9847 if (strcmp (package_name, this_package_name) != 0)
9848 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9849 (symbol_symtab (sym) != NULL
9850 ? symtab_to_filename_for_display
9851 (symbol_symtab (sym))
9852 : objfile_name (objfile)),
9853 this_package_name, package_name);
9854 xfree (this_package_name);
9855 }
9856 }
9857 }
9858 }
9859
9860 if (package_name != NULL)
9861 {
9862 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9863 const char *saved_package_name
9864 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9865 package_name,
9866 strlen (package_name));
9867 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9868 saved_package_name);
9869 struct symbol *sym;
9870
9871 sym = allocate_symbol (objfile);
9872 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9873 SYMBOL_SET_NAMES (sym, saved_package_name,
9874 strlen (saved_package_name), 0, objfile);
9875 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9876 e.g., "main" finds the "main" module and not C's main(). */
9877 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9878 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9879 SYMBOL_TYPE (sym) = type;
9880
9881 dw2_add_symbol_to_list (sym, cu->builder->get_global_symbols ());
9882
9883 xfree (package_name);
9884 }
9885 }
9886
9887 /* Allocate a fully-qualified name consisting of the two parts on the
9888 obstack. */
9889
9890 static const char *
9891 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9892 {
9893 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9894 }
9895
9896 /* A helper that allocates a struct discriminant_info to attach to a
9897 union type. */
9898
9899 static struct discriminant_info *
9900 alloc_discriminant_info (struct type *type, int discriminant_index,
9901 int default_index)
9902 {
9903 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9904 gdb_assert (discriminant_index == -1
9905 || (discriminant_index >= 0
9906 && discriminant_index < TYPE_NFIELDS (type)));
9907 gdb_assert (default_index == -1
9908 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9909
9910 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9911
9912 struct discriminant_info *disc
9913 = ((struct discriminant_info *)
9914 TYPE_ZALLOC (type,
9915 offsetof (struct discriminant_info, discriminants)
9916 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9917 disc->default_index = default_index;
9918 disc->discriminant_index = discriminant_index;
9919
9920 struct dynamic_prop prop;
9921 prop.kind = PROP_UNDEFINED;
9922 prop.data.baton = disc;
9923
9924 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9925
9926 return disc;
9927 }
9928
9929 /* Some versions of rustc emitted enums in an unusual way.
9930
9931 Ordinary enums were emitted as unions. The first element of each
9932 structure in the union was named "RUST$ENUM$DISR". This element
9933 held the discriminant.
9934
9935 These versions of Rust also implemented the "non-zero"
9936 optimization. When the enum had two values, and one is empty and
9937 the other holds a pointer that cannot be zero, the pointer is used
9938 as the discriminant, with a zero value meaning the empty variant.
9939 Here, the union's first member is of the form
9940 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9941 where the fieldnos are the indices of the fields that should be
9942 traversed in order to find the field (which may be several fields deep)
9943 and the variantname is the name of the variant of the case when the
9944 field is zero.
9945
9946 This function recognizes whether TYPE is of one of these forms,
9947 and, if so, smashes it to be a variant type. */
9948
9949 static void
9950 quirk_rust_enum (struct type *type, struct objfile *objfile)
9951 {
9952 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9953
9954 /* We don't need to deal with empty enums. */
9955 if (TYPE_NFIELDS (type) == 0)
9956 return;
9957
9958 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9959 if (TYPE_NFIELDS (type) == 1
9960 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9961 {
9962 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9963
9964 /* Decode the field name to find the offset of the
9965 discriminant. */
9966 ULONGEST bit_offset = 0;
9967 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9968 while (name[0] >= '0' && name[0] <= '9')
9969 {
9970 char *tail;
9971 unsigned long index = strtoul (name, &tail, 10);
9972 name = tail;
9973 if (*name != '$'
9974 || index >= TYPE_NFIELDS (field_type)
9975 || (TYPE_FIELD_LOC_KIND (field_type, index)
9976 != FIELD_LOC_KIND_BITPOS))
9977 {
9978 complaint (_("Could not parse Rust enum encoding string \"%s\""
9979 "[in module %s]"),
9980 TYPE_FIELD_NAME (type, 0),
9981 objfile_name (objfile));
9982 return;
9983 }
9984 ++name;
9985
9986 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9987 field_type = TYPE_FIELD_TYPE (field_type, index);
9988 }
9989
9990 /* Make a union to hold the variants. */
9991 struct type *union_type = alloc_type (objfile);
9992 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9993 TYPE_NFIELDS (union_type) = 3;
9994 TYPE_FIELDS (union_type)
9995 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9996 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9997 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9998
9999 /* Put the discriminant must at index 0. */
10000 TYPE_FIELD_TYPE (union_type, 0) = field_type;
10001 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10002 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10003 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
10004
10005 /* The order of fields doesn't really matter, so put the real
10006 field at index 1 and the data-less field at index 2. */
10007 struct discriminant_info *disc
10008 = alloc_discriminant_info (union_type, 0, 1);
10009 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
10010 TYPE_FIELD_NAME (union_type, 1)
10011 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
10012 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
10013 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10014 TYPE_FIELD_NAME (union_type, 1));
10015
10016 const char *dataless_name
10017 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10018 name);
10019 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
10020 dataless_name);
10021 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
10022 /* NAME points into the original discriminant name, which
10023 already has the correct lifetime. */
10024 TYPE_FIELD_NAME (union_type, 2) = name;
10025 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
10026 disc->discriminants[2] = 0;
10027
10028 /* Smash this type to be a structure type. We have to do this
10029 because the type has already been recorded. */
10030 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10031 TYPE_NFIELDS (type) = 1;
10032 TYPE_FIELDS (type)
10033 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
10034
10035 /* Install the variant part. */
10036 TYPE_FIELD_TYPE (type, 0) = union_type;
10037 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10038 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10039 }
10040 else if (TYPE_NFIELDS (type) == 1)
10041 {
10042 /* We assume that a union with a single field is a univariant
10043 enum. */
10044 /* Smash this type to be a structure type. We have to do this
10045 because the type has already been recorded. */
10046 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10047
10048 /* Make a union to hold the variants. */
10049 struct type *union_type = alloc_type (objfile);
10050 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10051 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
10052 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10053 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10054 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10055
10056 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10057 const char *variant_name
10058 = rust_last_path_segment (TYPE_NAME (field_type));
10059 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10060 TYPE_NAME (field_type)
10061 = rust_fully_qualify (&objfile->objfile_obstack,
10062 TYPE_NAME (type), variant_name);
10063
10064 /* Install the union in the outer struct type. */
10065 TYPE_NFIELDS (type) = 1;
10066 TYPE_FIELDS (type)
10067 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10068 TYPE_FIELD_TYPE (type, 0) = union_type;
10069 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10070 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10071
10072 alloc_discriminant_info (union_type, -1, 0);
10073 }
10074 else
10075 {
10076 struct type *disr_type = nullptr;
10077 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10078 {
10079 disr_type = TYPE_FIELD_TYPE (type, i);
10080
10081 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
10082 {
10083 /* All fields of a true enum will be structs. */
10084 return;
10085 }
10086 else if (TYPE_NFIELDS (disr_type) == 0)
10087 {
10088 /* Could be data-less variant, so keep going. */
10089 disr_type = nullptr;
10090 }
10091 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10092 "RUST$ENUM$DISR") != 0)
10093 {
10094 /* Not a Rust enum. */
10095 return;
10096 }
10097 else
10098 {
10099 /* Found one. */
10100 break;
10101 }
10102 }
10103
10104 /* If we got here without a discriminant, then it's probably
10105 just a union. */
10106 if (disr_type == nullptr)
10107 return;
10108
10109 /* Smash this type to be a structure type. We have to do this
10110 because the type has already been recorded. */
10111 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10112
10113 /* Make a union to hold the variants. */
10114 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10115 struct type *union_type = alloc_type (objfile);
10116 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10117 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10118 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10119 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10120 TYPE_FIELDS (union_type)
10121 = (struct field *) TYPE_ZALLOC (union_type,
10122 (TYPE_NFIELDS (union_type)
10123 * sizeof (struct field)));
10124
10125 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10126 TYPE_NFIELDS (type) * sizeof (struct field));
10127
10128 /* Install the discriminant at index 0 in the union. */
10129 TYPE_FIELD (union_type, 0) = *disr_field;
10130 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10131 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10132
10133 /* Install the union in the outer struct type. */
10134 TYPE_FIELD_TYPE (type, 0) = union_type;
10135 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10136 TYPE_NFIELDS (type) = 1;
10137
10138 /* Set the size and offset of the union type. */
10139 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10140
10141 /* We need a way to find the correct discriminant given a
10142 variant name. For convenience we build a map here. */
10143 struct type *enum_type = FIELD_TYPE (*disr_field);
10144 std::unordered_map<std::string, ULONGEST> discriminant_map;
10145 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10146 {
10147 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10148 {
10149 const char *name
10150 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10151 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10152 }
10153 }
10154
10155 int n_fields = TYPE_NFIELDS (union_type);
10156 struct discriminant_info *disc
10157 = alloc_discriminant_info (union_type, 0, -1);
10158 /* Skip the discriminant here. */
10159 for (int i = 1; i < n_fields; ++i)
10160 {
10161 /* Find the final word in the name of this variant's type.
10162 That name can be used to look up the correct
10163 discriminant. */
10164 const char *variant_name
10165 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10166 i)));
10167
10168 auto iter = discriminant_map.find (variant_name);
10169 if (iter != discriminant_map.end ())
10170 disc->discriminants[i] = iter->second;
10171
10172 /* Remove the discriminant field, if it exists. */
10173 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10174 if (TYPE_NFIELDS (sub_type) > 0)
10175 {
10176 --TYPE_NFIELDS (sub_type);
10177 ++TYPE_FIELDS (sub_type);
10178 }
10179 TYPE_FIELD_NAME (union_type, i) = variant_name;
10180 TYPE_NAME (sub_type)
10181 = rust_fully_qualify (&objfile->objfile_obstack,
10182 TYPE_NAME (type), variant_name);
10183 }
10184 }
10185 }
10186
10187 /* Rewrite some Rust unions to be structures with variants parts. */
10188
10189 static void
10190 rust_union_quirks (struct dwarf2_cu *cu)
10191 {
10192 gdb_assert (cu->language == language_rust);
10193 for (type *type_ : cu->rust_unions)
10194 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10195 /* We don't need this any more. */
10196 cu->rust_unions.clear ();
10197 }
10198
10199 /* Return the symtab for PER_CU. This works properly regardless of
10200 whether we're using the index or psymtabs. */
10201
10202 static struct compunit_symtab *
10203 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10204 {
10205 return (per_cu->dwarf2_per_objfile->using_index
10206 ? per_cu->v.quick->compunit_symtab
10207 : per_cu->v.psymtab->compunit_symtab);
10208 }
10209
10210 /* A helper function for computing the list of all symbol tables
10211 included by PER_CU. */
10212
10213 static void
10214 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
10215 htab_t all_children, htab_t all_type_symtabs,
10216 struct dwarf2_per_cu_data *per_cu,
10217 struct compunit_symtab *immediate_parent)
10218 {
10219 void **slot;
10220 int ix;
10221 struct compunit_symtab *cust;
10222 struct dwarf2_per_cu_data *iter;
10223
10224 slot = htab_find_slot (all_children, per_cu, INSERT);
10225 if (*slot != NULL)
10226 {
10227 /* This inclusion and its children have been processed. */
10228 return;
10229 }
10230
10231 *slot = per_cu;
10232 /* Only add a CU if it has a symbol table. */
10233 cust = get_compunit_symtab (per_cu);
10234 if (cust != NULL)
10235 {
10236 /* If this is a type unit only add its symbol table if we haven't
10237 seen it yet (type unit per_cu's can share symtabs). */
10238 if (per_cu->is_debug_types)
10239 {
10240 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10241 if (*slot == NULL)
10242 {
10243 *slot = cust;
10244 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10245 if (cust->user == NULL)
10246 cust->user = immediate_parent;
10247 }
10248 }
10249 else
10250 {
10251 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10252 if (cust->user == NULL)
10253 cust->user = immediate_parent;
10254 }
10255 }
10256
10257 for (ix = 0;
10258 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10259 ++ix)
10260 {
10261 recursively_compute_inclusions (result, all_children,
10262 all_type_symtabs, iter, cust);
10263 }
10264 }
10265
10266 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10267 PER_CU. */
10268
10269 static void
10270 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10271 {
10272 gdb_assert (! per_cu->is_debug_types);
10273
10274 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10275 {
10276 int ix, len;
10277 struct dwarf2_per_cu_data *per_cu_iter;
10278 struct compunit_symtab *compunit_symtab_iter;
10279 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
10280 htab_t all_children, all_type_symtabs;
10281 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10282
10283 /* If we don't have a symtab, we can just skip this case. */
10284 if (cust == NULL)
10285 return;
10286
10287 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10288 NULL, xcalloc, xfree);
10289 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10290 NULL, xcalloc, xfree);
10291
10292 for (ix = 0;
10293 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10294 ix, per_cu_iter);
10295 ++ix)
10296 {
10297 recursively_compute_inclusions (&result_symtabs, all_children,
10298 all_type_symtabs, per_cu_iter,
10299 cust);
10300 }
10301
10302 /* Now we have a transitive closure of all the included symtabs. */
10303 len = VEC_length (compunit_symtab_ptr, result_symtabs);
10304 cust->includes
10305 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10306 struct compunit_symtab *, len + 1);
10307 for (ix = 0;
10308 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
10309 compunit_symtab_iter);
10310 ++ix)
10311 cust->includes[ix] = compunit_symtab_iter;
10312 cust->includes[len] = NULL;
10313
10314 VEC_free (compunit_symtab_ptr, result_symtabs);
10315 htab_delete (all_children);
10316 htab_delete (all_type_symtabs);
10317 }
10318 }
10319
10320 /* Compute the 'includes' field for the symtabs of all the CUs we just
10321 read. */
10322
10323 static void
10324 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10325 {
10326 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
10327 {
10328 if (! iter->is_debug_types)
10329 compute_compunit_symtab_includes (iter);
10330 }
10331
10332 dwarf2_per_objfile->just_read_cus.clear ();
10333 }
10334
10335 /* Generate full symbol information for PER_CU, whose DIEs have
10336 already been loaded into memory. */
10337
10338 static void
10339 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10340 enum language pretend_language)
10341 {
10342 struct dwarf2_cu *cu = per_cu->cu;
10343 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10344 struct objfile *objfile = dwarf2_per_objfile->objfile;
10345 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10346 CORE_ADDR lowpc, highpc;
10347 struct compunit_symtab *cust;
10348 CORE_ADDR baseaddr;
10349 struct block *static_block;
10350 CORE_ADDR addr;
10351
10352 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10353
10354 /* Clear the list here in case something was left over. */
10355 cu->method_list.clear ();
10356
10357 cu->language = pretend_language;
10358 cu->language_defn = language_def (cu->language);
10359
10360 /* Do line number decoding in read_file_scope () */
10361 process_die (cu->dies, cu);
10362
10363 /* For now fudge the Go package. */
10364 if (cu->language == language_go)
10365 fixup_go_packaging (cu);
10366
10367 /* Now that we have processed all the DIEs in the CU, all the types
10368 should be complete, and it should now be safe to compute all of the
10369 physnames. */
10370 compute_delayed_physnames (cu);
10371
10372 if (cu->language == language_rust)
10373 rust_union_quirks (cu);
10374
10375 /* Some compilers don't define a DW_AT_high_pc attribute for the
10376 compilation unit. If the DW_AT_high_pc is missing, synthesize
10377 it, by scanning the DIE's below the compilation unit. */
10378 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10379
10380 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10381 static_block = cu->builder->end_symtab_get_static_block (addr, 0, 1);
10382
10383 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10384 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10385 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10386 addrmap to help ensure it has an accurate map of pc values belonging to
10387 this comp unit. */
10388 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10389
10390 cust = cu->builder->end_symtab_from_static_block (static_block,
10391 SECT_OFF_TEXT (objfile),
10392 0);
10393
10394 if (cust != NULL)
10395 {
10396 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10397
10398 /* Set symtab language to language from DW_AT_language. If the
10399 compilation is from a C file generated by language preprocessors, do
10400 not set the language if it was already deduced by start_subfile. */
10401 if (!(cu->language == language_c
10402 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10403 COMPUNIT_FILETABS (cust)->language = cu->language;
10404
10405 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10406 produce DW_AT_location with location lists but it can be possibly
10407 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10408 there were bugs in prologue debug info, fixed later in GCC-4.5
10409 by "unwind info for epilogues" patch (which is not directly related).
10410
10411 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10412 needed, it would be wrong due to missing DW_AT_producer there.
10413
10414 Still one can confuse GDB by using non-standard GCC compilation
10415 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10416 */
10417 if (cu->has_loclist && gcc_4_minor >= 5)
10418 cust->locations_valid = 1;
10419
10420 if (gcc_4_minor >= 5)
10421 cust->epilogue_unwind_valid = 1;
10422
10423 cust->call_site_htab = cu->call_site_htab;
10424 }
10425
10426 if (dwarf2_per_objfile->using_index)
10427 per_cu->v.quick->compunit_symtab = cust;
10428 else
10429 {
10430 struct partial_symtab *pst = per_cu->v.psymtab;
10431 pst->compunit_symtab = cust;
10432 pst->readin = 1;
10433 }
10434
10435 /* Push it for inclusion processing later. */
10436 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10437
10438 /* Not needed any more. */
10439 cu->builder.reset ();
10440 }
10441
10442 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10443 already been loaded into memory. */
10444
10445 static void
10446 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10447 enum language pretend_language)
10448 {
10449 struct dwarf2_cu *cu = per_cu->cu;
10450 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10451 struct objfile *objfile = dwarf2_per_objfile->objfile;
10452 struct compunit_symtab *cust;
10453 struct signatured_type *sig_type;
10454
10455 gdb_assert (per_cu->is_debug_types);
10456 sig_type = (struct signatured_type *) per_cu;
10457
10458 /* Clear the list here in case something was left over. */
10459 cu->method_list.clear ();
10460
10461 cu->language = pretend_language;
10462 cu->language_defn = language_def (cu->language);
10463
10464 /* The symbol tables are set up in read_type_unit_scope. */
10465 process_die (cu->dies, cu);
10466
10467 /* For now fudge the Go package. */
10468 if (cu->language == language_go)
10469 fixup_go_packaging (cu);
10470
10471 /* Now that we have processed all the DIEs in the CU, all the types
10472 should be complete, and it should now be safe to compute all of the
10473 physnames. */
10474 compute_delayed_physnames (cu);
10475
10476 if (cu->language == language_rust)
10477 rust_union_quirks (cu);
10478
10479 /* TUs share symbol tables.
10480 If this is the first TU to use this symtab, complete the construction
10481 of it with end_expandable_symtab. Otherwise, complete the addition of
10482 this TU's symbols to the existing symtab. */
10483 if (sig_type->type_unit_group->compunit_symtab == NULL)
10484 {
10485 cust = cu->builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10486 sig_type->type_unit_group->compunit_symtab = cust;
10487
10488 if (cust != NULL)
10489 {
10490 /* Set symtab language to language from DW_AT_language. If the
10491 compilation is from a C file generated by language preprocessors,
10492 do not set the language if it was already deduced by
10493 start_subfile. */
10494 if (!(cu->language == language_c
10495 && COMPUNIT_FILETABS (cust)->language != language_c))
10496 COMPUNIT_FILETABS (cust)->language = cu->language;
10497 }
10498 }
10499 else
10500 {
10501 cu->builder->augment_type_symtab ();
10502 cust = sig_type->type_unit_group->compunit_symtab;
10503 }
10504
10505 if (dwarf2_per_objfile->using_index)
10506 per_cu->v.quick->compunit_symtab = cust;
10507 else
10508 {
10509 struct partial_symtab *pst = per_cu->v.psymtab;
10510 pst->compunit_symtab = cust;
10511 pst->readin = 1;
10512 }
10513
10514 /* Not needed any more. */
10515 cu->builder.reset ();
10516 }
10517
10518 /* Process an imported unit DIE. */
10519
10520 static void
10521 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10522 {
10523 struct attribute *attr;
10524
10525 /* For now we don't handle imported units in type units. */
10526 if (cu->per_cu->is_debug_types)
10527 {
10528 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10529 " supported in type units [in module %s]"),
10530 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10531 }
10532
10533 attr = dwarf2_attr (die, DW_AT_import, cu);
10534 if (attr != NULL)
10535 {
10536 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10537 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10538 dwarf2_per_cu_data *per_cu
10539 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10540 cu->per_cu->dwarf2_per_objfile);
10541
10542 /* If necessary, add it to the queue and load its DIEs. */
10543 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10544 load_full_comp_unit (per_cu, false, cu->language);
10545
10546 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10547 per_cu);
10548 }
10549 }
10550
10551 /* RAII object that represents a process_die scope: i.e.,
10552 starts/finishes processing a DIE. */
10553 class process_die_scope
10554 {
10555 public:
10556 process_die_scope (die_info *die, dwarf2_cu *cu)
10557 : m_die (die), m_cu (cu)
10558 {
10559 /* We should only be processing DIEs not already in process. */
10560 gdb_assert (!m_die->in_process);
10561 m_die->in_process = true;
10562 }
10563
10564 ~process_die_scope ()
10565 {
10566 m_die->in_process = false;
10567
10568 /* If we're done processing the DIE for the CU that owns the line
10569 header, we don't need the line header anymore. */
10570 if (m_cu->line_header_die_owner == m_die)
10571 {
10572 delete m_cu->line_header;
10573 m_cu->line_header = NULL;
10574 m_cu->line_header_die_owner = NULL;
10575 }
10576 }
10577
10578 private:
10579 die_info *m_die;
10580 dwarf2_cu *m_cu;
10581 };
10582
10583 /* Process a die and its children. */
10584
10585 static void
10586 process_die (struct die_info *die, struct dwarf2_cu *cu)
10587 {
10588 process_die_scope scope (die, cu);
10589
10590 switch (die->tag)
10591 {
10592 case DW_TAG_padding:
10593 break;
10594 case DW_TAG_compile_unit:
10595 case DW_TAG_partial_unit:
10596 read_file_scope (die, cu);
10597 break;
10598 case DW_TAG_type_unit:
10599 read_type_unit_scope (die, cu);
10600 break;
10601 case DW_TAG_subprogram:
10602 case DW_TAG_inlined_subroutine:
10603 read_func_scope (die, cu);
10604 break;
10605 case DW_TAG_lexical_block:
10606 case DW_TAG_try_block:
10607 case DW_TAG_catch_block:
10608 read_lexical_block_scope (die, cu);
10609 break;
10610 case DW_TAG_call_site:
10611 case DW_TAG_GNU_call_site:
10612 read_call_site_scope (die, cu);
10613 break;
10614 case DW_TAG_class_type:
10615 case DW_TAG_interface_type:
10616 case DW_TAG_structure_type:
10617 case DW_TAG_union_type:
10618 process_structure_scope (die, cu);
10619 break;
10620 case DW_TAG_enumeration_type:
10621 process_enumeration_scope (die, cu);
10622 break;
10623
10624 /* These dies have a type, but processing them does not create
10625 a symbol or recurse to process the children. Therefore we can
10626 read them on-demand through read_type_die. */
10627 case DW_TAG_subroutine_type:
10628 case DW_TAG_set_type:
10629 case DW_TAG_array_type:
10630 case DW_TAG_pointer_type:
10631 case DW_TAG_ptr_to_member_type:
10632 case DW_TAG_reference_type:
10633 case DW_TAG_rvalue_reference_type:
10634 case DW_TAG_string_type:
10635 break;
10636
10637 case DW_TAG_base_type:
10638 case DW_TAG_subrange_type:
10639 case DW_TAG_typedef:
10640 /* Add a typedef symbol for the type definition, if it has a
10641 DW_AT_name. */
10642 new_symbol (die, read_type_die (die, cu), cu);
10643 break;
10644 case DW_TAG_common_block:
10645 read_common_block (die, cu);
10646 break;
10647 case DW_TAG_common_inclusion:
10648 break;
10649 case DW_TAG_namespace:
10650 cu->processing_has_namespace_info = 1;
10651 read_namespace (die, cu);
10652 break;
10653 case DW_TAG_module:
10654 cu->processing_has_namespace_info = 1;
10655 read_module (die, cu);
10656 break;
10657 case DW_TAG_imported_declaration:
10658 cu->processing_has_namespace_info = 1;
10659 if (read_namespace_alias (die, cu))
10660 break;
10661 /* The declaration is not a global namespace alias. */
10662 /* Fall through. */
10663 case DW_TAG_imported_module:
10664 cu->processing_has_namespace_info = 1;
10665 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10666 || cu->language != language_fortran))
10667 complaint (_("Tag '%s' has unexpected children"),
10668 dwarf_tag_name (die->tag));
10669 read_import_statement (die, cu);
10670 break;
10671
10672 case DW_TAG_imported_unit:
10673 process_imported_unit_die (die, cu);
10674 break;
10675
10676 case DW_TAG_variable:
10677 read_variable (die, cu);
10678 break;
10679
10680 default:
10681 new_symbol (die, NULL, cu);
10682 break;
10683 }
10684 }
10685 \f
10686 /* DWARF name computation. */
10687
10688 /* A helper function for dwarf2_compute_name which determines whether DIE
10689 needs to have the name of the scope prepended to the name listed in the
10690 die. */
10691
10692 static int
10693 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10694 {
10695 struct attribute *attr;
10696
10697 switch (die->tag)
10698 {
10699 case DW_TAG_namespace:
10700 case DW_TAG_typedef:
10701 case DW_TAG_class_type:
10702 case DW_TAG_interface_type:
10703 case DW_TAG_structure_type:
10704 case DW_TAG_union_type:
10705 case DW_TAG_enumeration_type:
10706 case DW_TAG_enumerator:
10707 case DW_TAG_subprogram:
10708 case DW_TAG_inlined_subroutine:
10709 case DW_TAG_member:
10710 case DW_TAG_imported_declaration:
10711 return 1;
10712
10713 case DW_TAG_variable:
10714 case DW_TAG_constant:
10715 /* We only need to prefix "globally" visible variables. These include
10716 any variable marked with DW_AT_external or any variable that
10717 lives in a namespace. [Variables in anonymous namespaces
10718 require prefixing, but they are not DW_AT_external.] */
10719
10720 if (dwarf2_attr (die, DW_AT_specification, cu))
10721 {
10722 struct dwarf2_cu *spec_cu = cu;
10723
10724 return die_needs_namespace (die_specification (die, &spec_cu),
10725 spec_cu);
10726 }
10727
10728 attr = dwarf2_attr (die, DW_AT_external, cu);
10729 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10730 && die->parent->tag != DW_TAG_module)
10731 return 0;
10732 /* A variable in a lexical block of some kind does not need a
10733 namespace, even though in C++ such variables may be external
10734 and have a mangled name. */
10735 if (die->parent->tag == DW_TAG_lexical_block
10736 || die->parent->tag == DW_TAG_try_block
10737 || die->parent->tag == DW_TAG_catch_block
10738 || die->parent->tag == DW_TAG_subprogram)
10739 return 0;
10740 return 1;
10741
10742 default:
10743 return 0;
10744 }
10745 }
10746
10747 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10748 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10749 defined for the given DIE. */
10750
10751 static struct attribute *
10752 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10753 {
10754 struct attribute *attr;
10755
10756 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10757 if (attr == NULL)
10758 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10759
10760 return attr;
10761 }
10762
10763 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10764 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10765 defined for the given DIE. */
10766
10767 static const char *
10768 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10769 {
10770 const char *linkage_name;
10771
10772 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10773 if (linkage_name == NULL)
10774 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10775
10776 return linkage_name;
10777 }
10778
10779 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10780 compute the physname for the object, which include a method's:
10781 - formal parameters (C++),
10782 - receiver type (Go),
10783
10784 The term "physname" is a bit confusing.
10785 For C++, for example, it is the demangled name.
10786 For Go, for example, it's the mangled name.
10787
10788 For Ada, return the DIE's linkage name rather than the fully qualified
10789 name. PHYSNAME is ignored..
10790
10791 The result is allocated on the objfile_obstack and canonicalized. */
10792
10793 static const char *
10794 dwarf2_compute_name (const char *name,
10795 struct die_info *die, struct dwarf2_cu *cu,
10796 int physname)
10797 {
10798 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10799
10800 if (name == NULL)
10801 name = dwarf2_name (die, cu);
10802
10803 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10804 but otherwise compute it by typename_concat inside GDB.
10805 FIXME: Actually this is not really true, or at least not always true.
10806 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10807 Fortran names because there is no mangling standard. So new_symbol
10808 will set the demangled name to the result of dwarf2_full_name, and it is
10809 the demangled name that GDB uses if it exists. */
10810 if (cu->language == language_ada
10811 || (cu->language == language_fortran && physname))
10812 {
10813 /* For Ada unit, we prefer the linkage name over the name, as
10814 the former contains the exported name, which the user expects
10815 to be able to reference. Ideally, we want the user to be able
10816 to reference this entity using either natural or linkage name,
10817 but we haven't started looking at this enhancement yet. */
10818 const char *linkage_name = dw2_linkage_name (die, cu);
10819
10820 if (linkage_name != NULL)
10821 return linkage_name;
10822 }
10823
10824 /* These are the only languages we know how to qualify names in. */
10825 if (name != NULL
10826 && (cu->language == language_cplus
10827 || cu->language == language_fortran || cu->language == language_d
10828 || cu->language == language_rust))
10829 {
10830 if (die_needs_namespace (die, cu))
10831 {
10832 const char *prefix;
10833 const char *canonical_name = NULL;
10834
10835 string_file buf;
10836
10837 prefix = determine_prefix (die, cu);
10838 if (*prefix != '\0')
10839 {
10840 char *prefixed_name = typename_concat (NULL, prefix, name,
10841 physname, cu);
10842
10843 buf.puts (prefixed_name);
10844 xfree (prefixed_name);
10845 }
10846 else
10847 buf.puts (name);
10848
10849 /* Template parameters may be specified in the DIE's DW_AT_name, or
10850 as children with DW_TAG_template_type_param or
10851 DW_TAG_value_type_param. If the latter, add them to the name
10852 here. If the name already has template parameters, then
10853 skip this step; some versions of GCC emit both, and
10854 it is more efficient to use the pre-computed name.
10855
10856 Something to keep in mind about this process: it is very
10857 unlikely, or in some cases downright impossible, to produce
10858 something that will match the mangled name of a function.
10859 If the definition of the function has the same debug info,
10860 we should be able to match up with it anyway. But fallbacks
10861 using the minimal symbol, for instance to find a method
10862 implemented in a stripped copy of libstdc++, will not work.
10863 If we do not have debug info for the definition, we will have to
10864 match them up some other way.
10865
10866 When we do name matching there is a related problem with function
10867 templates; two instantiated function templates are allowed to
10868 differ only by their return types, which we do not add here. */
10869
10870 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10871 {
10872 struct attribute *attr;
10873 struct die_info *child;
10874 int first = 1;
10875
10876 die->building_fullname = 1;
10877
10878 for (child = die->child; child != NULL; child = child->sibling)
10879 {
10880 struct type *type;
10881 LONGEST value;
10882 const gdb_byte *bytes;
10883 struct dwarf2_locexpr_baton *baton;
10884 struct value *v;
10885
10886 if (child->tag != DW_TAG_template_type_param
10887 && child->tag != DW_TAG_template_value_param)
10888 continue;
10889
10890 if (first)
10891 {
10892 buf.puts ("<");
10893 first = 0;
10894 }
10895 else
10896 buf.puts (", ");
10897
10898 attr = dwarf2_attr (child, DW_AT_type, cu);
10899 if (attr == NULL)
10900 {
10901 complaint (_("template parameter missing DW_AT_type"));
10902 buf.puts ("UNKNOWN_TYPE");
10903 continue;
10904 }
10905 type = die_type (child, cu);
10906
10907 if (child->tag == DW_TAG_template_type_param)
10908 {
10909 c_print_type (type, "", &buf, -1, 0, cu->language,
10910 &type_print_raw_options);
10911 continue;
10912 }
10913
10914 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10915 if (attr == NULL)
10916 {
10917 complaint (_("template parameter missing "
10918 "DW_AT_const_value"));
10919 buf.puts ("UNKNOWN_VALUE");
10920 continue;
10921 }
10922
10923 dwarf2_const_value_attr (attr, type, name,
10924 &cu->comp_unit_obstack, cu,
10925 &value, &bytes, &baton);
10926
10927 if (TYPE_NOSIGN (type))
10928 /* GDB prints characters as NUMBER 'CHAR'. If that's
10929 changed, this can use value_print instead. */
10930 c_printchar (value, type, &buf);
10931 else
10932 {
10933 struct value_print_options opts;
10934
10935 if (baton != NULL)
10936 v = dwarf2_evaluate_loc_desc (type, NULL,
10937 baton->data,
10938 baton->size,
10939 baton->per_cu);
10940 else if (bytes != NULL)
10941 {
10942 v = allocate_value (type);
10943 memcpy (value_contents_writeable (v), bytes,
10944 TYPE_LENGTH (type));
10945 }
10946 else
10947 v = value_from_longest (type, value);
10948
10949 /* Specify decimal so that we do not depend on
10950 the radix. */
10951 get_formatted_print_options (&opts, 'd');
10952 opts.raw = 1;
10953 value_print (v, &buf, &opts);
10954 release_value (v);
10955 }
10956 }
10957
10958 die->building_fullname = 0;
10959
10960 if (!first)
10961 {
10962 /* Close the argument list, with a space if necessary
10963 (nested templates). */
10964 if (!buf.empty () && buf.string ().back () == '>')
10965 buf.puts (" >");
10966 else
10967 buf.puts (">");
10968 }
10969 }
10970
10971 /* For C++ methods, append formal parameter type
10972 information, if PHYSNAME. */
10973
10974 if (physname && die->tag == DW_TAG_subprogram
10975 && cu->language == language_cplus)
10976 {
10977 struct type *type = read_type_die (die, cu);
10978
10979 c_type_print_args (type, &buf, 1, cu->language,
10980 &type_print_raw_options);
10981
10982 if (cu->language == language_cplus)
10983 {
10984 /* Assume that an artificial first parameter is
10985 "this", but do not crash if it is not. RealView
10986 marks unnamed (and thus unused) parameters as
10987 artificial; there is no way to differentiate
10988 the two cases. */
10989 if (TYPE_NFIELDS (type) > 0
10990 && TYPE_FIELD_ARTIFICIAL (type, 0)
10991 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10992 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10993 0))))
10994 buf.puts (" const");
10995 }
10996 }
10997
10998 const std::string &intermediate_name = buf.string ();
10999
11000 if (cu->language == language_cplus)
11001 canonical_name
11002 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
11003 &objfile->per_bfd->storage_obstack);
11004
11005 /* If we only computed INTERMEDIATE_NAME, or if
11006 INTERMEDIATE_NAME is already canonical, then we need to
11007 copy it to the appropriate obstack. */
11008 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
11009 name = ((const char *)
11010 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11011 intermediate_name.c_str (),
11012 intermediate_name.length ()));
11013 else
11014 name = canonical_name;
11015 }
11016 }
11017
11018 return name;
11019 }
11020
11021 /* Return the fully qualified name of DIE, based on its DW_AT_name.
11022 If scope qualifiers are appropriate they will be added. The result
11023 will be allocated on the storage_obstack, or NULL if the DIE does
11024 not have a name. NAME may either be from a previous call to
11025 dwarf2_name or NULL.
11026
11027 The output string will be canonicalized (if C++). */
11028
11029 static const char *
11030 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11031 {
11032 return dwarf2_compute_name (name, die, cu, 0);
11033 }
11034
11035 /* Construct a physname for the given DIE in CU. NAME may either be
11036 from a previous call to dwarf2_name or NULL. The result will be
11037 allocated on the objfile_objstack or NULL if the DIE does not have a
11038 name.
11039
11040 The output string will be canonicalized (if C++). */
11041
11042 static const char *
11043 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11044 {
11045 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11046 const char *retval, *mangled = NULL, *canon = NULL;
11047 int need_copy = 1;
11048
11049 /* In this case dwarf2_compute_name is just a shortcut not building anything
11050 on its own. */
11051 if (!die_needs_namespace (die, cu))
11052 return dwarf2_compute_name (name, die, cu, 1);
11053
11054 mangled = dw2_linkage_name (die, cu);
11055
11056 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11057 See https://github.com/rust-lang/rust/issues/32925. */
11058 if (cu->language == language_rust && mangled != NULL
11059 && strchr (mangled, '{') != NULL)
11060 mangled = NULL;
11061
11062 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11063 has computed. */
11064 gdb::unique_xmalloc_ptr<char> demangled;
11065 if (mangled != NULL)
11066 {
11067
11068 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11069 {
11070 /* Do nothing (do not demangle the symbol name). */
11071 }
11072 else if (cu->language == language_go)
11073 {
11074 /* This is a lie, but we already lie to the caller new_symbol.
11075 new_symbol assumes we return the mangled name.
11076 This just undoes that lie until things are cleaned up. */
11077 }
11078 else
11079 {
11080 /* Use DMGL_RET_DROP for C++ template functions to suppress
11081 their return type. It is easier for GDB users to search
11082 for such functions as `name(params)' than `long name(params)'.
11083 In such case the minimal symbol names do not match the full
11084 symbol names but for template functions there is never a need
11085 to look up their definition from their declaration so
11086 the only disadvantage remains the minimal symbol variant
11087 `long name(params)' does not have the proper inferior type. */
11088 demangled.reset (gdb_demangle (mangled,
11089 (DMGL_PARAMS | DMGL_ANSI
11090 | DMGL_RET_DROP)));
11091 }
11092 if (demangled)
11093 canon = demangled.get ();
11094 else
11095 {
11096 canon = mangled;
11097 need_copy = 0;
11098 }
11099 }
11100
11101 if (canon == NULL || check_physname)
11102 {
11103 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11104
11105 if (canon != NULL && strcmp (physname, canon) != 0)
11106 {
11107 /* It may not mean a bug in GDB. The compiler could also
11108 compute DW_AT_linkage_name incorrectly. But in such case
11109 GDB would need to be bug-to-bug compatible. */
11110
11111 complaint (_("Computed physname <%s> does not match demangled <%s> "
11112 "(from linkage <%s>) - DIE at %s [in module %s]"),
11113 physname, canon, mangled, sect_offset_str (die->sect_off),
11114 objfile_name (objfile));
11115
11116 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11117 is available here - over computed PHYSNAME. It is safer
11118 against both buggy GDB and buggy compilers. */
11119
11120 retval = canon;
11121 }
11122 else
11123 {
11124 retval = physname;
11125 need_copy = 0;
11126 }
11127 }
11128 else
11129 retval = canon;
11130
11131 if (need_copy)
11132 retval = ((const char *)
11133 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11134 retval, strlen (retval)));
11135
11136 return retval;
11137 }
11138
11139 /* Inspect DIE in CU for a namespace alias. If one exists, record
11140 a new symbol for it.
11141
11142 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11143
11144 static int
11145 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11146 {
11147 struct attribute *attr;
11148
11149 /* If the die does not have a name, this is not a namespace
11150 alias. */
11151 attr = dwarf2_attr (die, DW_AT_name, cu);
11152 if (attr != NULL)
11153 {
11154 int num;
11155 struct die_info *d = die;
11156 struct dwarf2_cu *imported_cu = cu;
11157
11158 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11159 keep inspecting DIEs until we hit the underlying import. */
11160 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11161 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11162 {
11163 attr = dwarf2_attr (d, DW_AT_import, cu);
11164 if (attr == NULL)
11165 break;
11166
11167 d = follow_die_ref (d, attr, &imported_cu);
11168 if (d->tag != DW_TAG_imported_declaration)
11169 break;
11170 }
11171
11172 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11173 {
11174 complaint (_("DIE at %s has too many recursively imported "
11175 "declarations"), sect_offset_str (d->sect_off));
11176 return 0;
11177 }
11178
11179 if (attr != NULL)
11180 {
11181 struct type *type;
11182 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11183
11184 type = get_die_type_at_offset (sect_off, cu->per_cu);
11185 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11186 {
11187 /* This declaration is a global namespace alias. Add
11188 a symbol for it whose type is the aliased namespace. */
11189 new_symbol (die, type, cu);
11190 return 1;
11191 }
11192 }
11193 }
11194
11195 return 0;
11196 }
11197
11198 /* Return the using directives repository (global or local?) to use in the
11199 current context for CU.
11200
11201 For Ada, imported declarations can materialize renamings, which *may* be
11202 global. However it is impossible (for now?) in DWARF to distinguish
11203 "external" imported declarations and "static" ones. As all imported
11204 declarations seem to be static in all other languages, make them all CU-wide
11205 global only in Ada. */
11206
11207 static struct using_direct **
11208 using_directives (struct dwarf2_cu *cu)
11209 {
11210 if (cu->language == language_ada && cu->builder->outermost_context_p ())
11211 return cu->builder->get_global_using_directives ();
11212 else
11213 return cu->builder->get_local_using_directives ();
11214 }
11215
11216 /* Read the import statement specified by the given die and record it. */
11217
11218 static void
11219 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11220 {
11221 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11222 struct attribute *import_attr;
11223 struct die_info *imported_die, *child_die;
11224 struct dwarf2_cu *imported_cu;
11225 const char *imported_name;
11226 const char *imported_name_prefix;
11227 const char *canonical_name;
11228 const char *import_alias;
11229 const char *imported_declaration = NULL;
11230 const char *import_prefix;
11231 std::vector<const char *> excludes;
11232
11233 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11234 if (import_attr == NULL)
11235 {
11236 complaint (_("Tag '%s' has no DW_AT_import"),
11237 dwarf_tag_name (die->tag));
11238 return;
11239 }
11240
11241 imported_cu = cu;
11242 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11243 imported_name = dwarf2_name (imported_die, imported_cu);
11244 if (imported_name == NULL)
11245 {
11246 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11247
11248 The import in the following code:
11249 namespace A
11250 {
11251 typedef int B;
11252 }
11253
11254 int main ()
11255 {
11256 using A::B;
11257 B b;
11258 return b;
11259 }
11260
11261 ...
11262 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11263 <52> DW_AT_decl_file : 1
11264 <53> DW_AT_decl_line : 6
11265 <54> DW_AT_import : <0x75>
11266 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11267 <59> DW_AT_name : B
11268 <5b> DW_AT_decl_file : 1
11269 <5c> DW_AT_decl_line : 2
11270 <5d> DW_AT_type : <0x6e>
11271 ...
11272 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11273 <76> DW_AT_byte_size : 4
11274 <77> DW_AT_encoding : 5 (signed)
11275
11276 imports the wrong die ( 0x75 instead of 0x58 ).
11277 This case will be ignored until the gcc bug is fixed. */
11278 return;
11279 }
11280
11281 /* Figure out the local name after import. */
11282 import_alias = dwarf2_name (die, cu);
11283
11284 /* Figure out where the statement is being imported to. */
11285 import_prefix = determine_prefix (die, cu);
11286
11287 /* Figure out what the scope of the imported die is and prepend it
11288 to the name of the imported die. */
11289 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11290
11291 if (imported_die->tag != DW_TAG_namespace
11292 && imported_die->tag != DW_TAG_module)
11293 {
11294 imported_declaration = imported_name;
11295 canonical_name = imported_name_prefix;
11296 }
11297 else if (strlen (imported_name_prefix) > 0)
11298 canonical_name = obconcat (&objfile->objfile_obstack,
11299 imported_name_prefix,
11300 (cu->language == language_d ? "." : "::"),
11301 imported_name, (char *) NULL);
11302 else
11303 canonical_name = imported_name;
11304
11305 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11306 for (child_die = die->child; child_die && child_die->tag;
11307 child_die = sibling_die (child_die))
11308 {
11309 /* DWARF-4: A Fortran use statement with a “rename list” may be
11310 represented by an imported module entry with an import attribute
11311 referring to the module and owned entries corresponding to those
11312 entities that are renamed as part of being imported. */
11313
11314 if (child_die->tag != DW_TAG_imported_declaration)
11315 {
11316 complaint (_("child DW_TAG_imported_declaration expected "
11317 "- DIE at %s [in module %s]"),
11318 sect_offset_str (child_die->sect_off),
11319 objfile_name (objfile));
11320 continue;
11321 }
11322
11323 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11324 if (import_attr == NULL)
11325 {
11326 complaint (_("Tag '%s' has no DW_AT_import"),
11327 dwarf_tag_name (child_die->tag));
11328 continue;
11329 }
11330
11331 imported_cu = cu;
11332 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11333 &imported_cu);
11334 imported_name = dwarf2_name (imported_die, imported_cu);
11335 if (imported_name == NULL)
11336 {
11337 complaint (_("child DW_TAG_imported_declaration has unknown "
11338 "imported name - DIE at %s [in module %s]"),
11339 sect_offset_str (child_die->sect_off),
11340 objfile_name (objfile));
11341 continue;
11342 }
11343
11344 excludes.push_back (imported_name);
11345
11346 process_die (child_die, cu);
11347 }
11348
11349 add_using_directive (using_directives (cu),
11350 import_prefix,
11351 canonical_name,
11352 import_alias,
11353 imported_declaration,
11354 excludes,
11355 0,
11356 &objfile->objfile_obstack);
11357 }
11358
11359 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11360 types, but gives them a size of zero. Starting with version 14,
11361 ICC is compatible with GCC. */
11362
11363 static int
11364 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11365 {
11366 if (!cu->checked_producer)
11367 check_producer (cu);
11368
11369 return cu->producer_is_icc_lt_14;
11370 }
11371
11372 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11373 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11374 this, it was first present in GCC release 4.3.0. */
11375
11376 static int
11377 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11378 {
11379 if (!cu->checked_producer)
11380 check_producer (cu);
11381
11382 return cu->producer_is_gcc_lt_4_3;
11383 }
11384
11385 static file_and_directory
11386 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11387 {
11388 file_and_directory res;
11389
11390 /* Find the filename. Do not use dwarf2_name here, since the filename
11391 is not a source language identifier. */
11392 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11393 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11394
11395 if (res.comp_dir == NULL
11396 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11397 && IS_ABSOLUTE_PATH (res.name))
11398 {
11399 res.comp_dir_storage = ldirname (res.name);
11400 if (!res.comp_dir_storage.empty ())
11401 res.comp_dir = res.comp_dir_storage.c_str ();
11402 }
11403 if (res.comp_dir != NULL)
11404 {
11405 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11406 directory, get rid of it. */
11407 const char *cp = strchr (res.comp_dir, ':');
11408
11409 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11410 res.comp_dir = cp + 1;
11411 }
11412
11413 if (res.name == NULL)
11414 res.name = "<unknown>";
11415
11416 return res;
11417 }
11418
11419 /* Handle DW_AT_stmt_list for a compilation unit.
11420 DIE is the DW_TAG_compile_unit die for CU.
11421 COMP_DIR is the compilation directory. LOWPC is passed to
11422 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11423
11424 static void
11425 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11426 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11427 {
11428 struct dwarf2_per_objfile *dwarf2_per_objfile
11429 = cu->per_cu->dwarf2_per_objfile;
11430 struct objfile *objfile = dwarf2_per_objfile->objfile;
11431 struct attribute *attr;
11432 struct line_header line_header_local;
11433 hashval_t line_header_local_hash;
11434 void **slot;
11435 int decode_mapping;
11436
11437 gdb_assert (! cu->per_cu->is_debug_types);
11438
11439 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11440 if (attr == NULL)
11441 return;
11442
11443 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11444
11445 /* The line header hash table is only created if needed (it exists to
11446 prevent redundant reading of the line table for partial_units).
11447 If we're given a partial_unit, we'll need it. If we're given a
11448 compile_unit, then use the line header hash table if it's already
11449 created, but don't create one just yet. */
11450
11451 if (dwarf2_per_objfile->line_header_hash == NULL
11452 && die->tag == DW_TAG_partial_unit)
11453 {
11454 dwarf2_per_objfile->line_header_hash
11455 = htab_create_alloc_ex (127, line_header_hash_voidp,
11456 line_header_eq_voidp,
11457 free_line_header_voidp,
11458 &objfile->objfile_obstack,
11459 hashtab_obstack_allocate,
11460 dummy_obstack_deallocate);
11461 }
11462
11463 line_header_local.sect_off = line_offset;
11464 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11465 line_header_local_hash = line_header_hash (&line_header_local);
11466 if (dwarf2_per_objfile->line_header_hash != NULL)
11467 {
11468 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11469 &line_header_local,
11470 line_header_local_hash, NO_INSERT);
11471
11472 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11473 is not present in *SLOT (since if there is something in *SLOT then
11474 it will be for a partial_unit). */
11475 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11476 {
11477 gdb_assert (*slot != NULL);
11478 cu->line_header = (struct line_header *) *slot;
11479 return;
11480 }
11481 }
11482
11483 /* dwarf_decode_line_header does not yet provide sufficient information.
11484 We always have to call also dwarf_decode_lines for it. */
11485 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11486 if (lh == NULL)
11487 return;
11488
11489 cu->line_header = lh.release ();
11490 cu->line_header_die_owner = die;
11491
11492 if (dwarf2_per_objfile->line_header_hash == NULL)
11493 slot = NULL;
11494 else
11495 {
11496 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11497 &line_header_local,
11498 line_header_local_hash, INSERT);
11499 gdb_assert (slot != NULL);
11500 }
11501 if (slot != NULL && *slot == NULL)
11502 {
11503 /* This newly decoded line number information unit will be owned
11504 by line_header_hash hash table. */
11505 *slot = cu->line_header;
11506 cu->line_header_die_owner = NULL;
11507 }
11508 else
11509 {
11510 /* We cannot free any current entry in (*slot) as that struct line_header
11511 may be already used by multiple CUs. Create only temporary decoded
11512 line_header for this CU - it may happen at most once for each line
11513 number information unit. And if we're not using line_header_hash
11514 then this is what we want as well. */
11515 gdb_assert (die->tag != DW_TAG_partial_unit);
11516 }
11517 decode_mapping = (die->tag != DW_TAG_partial_unit);
11518 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11519 decode_mapping);
11520
11521 }
11522
11523 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11524
11525 static void
11526 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11527 {
11528 struct dwarf2_per_objfile *dwarf2_per_objfile
11529 = cu->per_cu->dwarf2_per_objfile;
11530 struct objfile *objfile = dwarf2_per_objfile->objfile;
11531 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11532 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11533 CORE_ADDR highpc = ((CORE_ADDR) 0);
11534 struct attribute *attr;
11535 struct die_info *child_die;
11536 CORE_ADDR baseaddr;
11537
11538 prepare_one_comp_unit (cu, die, cu->language);
11539 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11540
11541 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11542
11543 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11544 from finish_block. */
11545 if (lowpc == ((CORE_ADDR) -1))
11546 lowpc = highpc;
11547 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11548
11549 file_and_directory fnd = find_file_and_directory (die, cu);
11550
11551 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11552 standardised yet. As a workaround for the language detection we fall
11553 back to the DW_AT_producer string. */
11554 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11555 cu->language = language_opencl;
11556
11557 /* Similar hack for Go. */
11558 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11559 set_cu_language (DW_LANG_Go, cu);
11560
11561 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
11562
11563 /* Decode line number information if present. We do this before
11564 processing child DIEs, so that the line header table is available
11565 for DW_AT_decl_file. */
11566 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11567
11568 /* Process all dies in compilation unit. */
11569 if (die->child != NULL)
11570 {
11571 child_die = die->child;
11572 while (child_die && child_die->tag)
11573 {
11574 process_die (child_die, cu);
11575 child_die = sibling_die (child_die);
11576 }
11577 }
11578
11579 /* Decode macro information, if present. Dwarf 2 macro information
11580 refers to information in the line number info statement program
11581 header, so we can only read it if we've read the header
11582 successfully. */
11583 attr = dwarf2_attr (die, DW_AT_macros, cu);
11584 if (attr == NULL)
11585 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11586 if (attr && cu->line_header)
11587 {
11588 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11589 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11590
11591 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11592 }
11593 else
11594 {
11595 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11596 if (attr && cu->line_header)
11597 {
11598 unsigned int macro_offset = DW_UNSND (attr);
11599
11600 dwarf_decode_macros (cu, macro_offset, 0);
11601 }
11602 }
11603 }
11604
11605 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
11606 Create the set of symtabs used by this TU, or if this TU is sharing
11607 symtabs with another TU and the symtabs have already been created
11608 then restore those symtabs in the line header.
11609 We don't need the pc/line-number mapping for type units. */
11610
11611 static void
11612 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
11613 {
11614 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
11615 struct type_unit_group *tu_group;
11616 int first_time;
11617 struct attribute *attr;
11618 unsigned int i;
11619 struct signatured_type *sig_type;
11620
11621 gdb_assert (per_cu->is_debug_types);
11622 sig_type = (struct signatured_type *) per_cu;
11623
11624 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11625
11626 /* If we're using .gdb_index (includes -readnow) then
11627 per_cu->type_unit_group may not have been set up yet. */
11628 if (sig_type->type_unit_group == NULL)
11629 sig_type->type_unit_group = get_type_unit_group (cu, attr);
11630 tu_group = sig_type->type_unit_group;
11631
11632 /* If we've already processed this stmt_list there's no real need to
11633 do it again, we could fake it and just recreate the part we need
11634 (file name,index -> symtab mapping). If data shows this optimization
11635 is useful we can do it then. */
11636 first_time = tu_group->compunit_symtab == NULL;
11637
11638 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11639 debug info. */
11640 line_header_up lh;
11641 if (attr != NULL)
11642 {
11643 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11644 lh = dwarf_decode_line_header (line_offset, cu);
11645 }
11646 if (lh == NULL)
11647 {
11648 if (first_time)
11649 dwarf2_start_symtab (cu, "", NULL, 0);
11650 else
11651 {
11652 gdb_assert (tu_group->symtabs == NULL);
11653 gdb_assert (cu->builder == nullptr);
11654 struct compunit_symtab *cust = tu_group->compunit_symtab;
11655 cu->builder.reset (new struct buildsym_compunit
11656 (COMPUNIT_OBJFILE (cust), "",
11657 COMPUNIT_DIRNAME (cust),
11658 compunit_language (cust),
11659 0, cust));
11660 }
11661 return;
11662 }
11663
11664 cu->line_header = lh.release ();
11665 cu->line_header_die_owner = die;
11666
11667 if (first_time)
11668 {
11669 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
11670
11671 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11672 still initializing it, and our caller (a few levels up)
11673 process_full_type_unit still needs to know if this is the first
11674 time. */
11675
11676 tu_group->num_symtabs = cu->line_header->file_names.size ();
11677 tu_group->symtabs = XNEWVEC (struct symtab *,
11678 cu->line_header->file_names.size ());
11679
11680 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11681 {
11682 file_entry &fe = cu->line_header->file_names[i];
11683
11684 dwarf2_start_subfile (cu, fe.name, fe.include_dir (cu->line_header));
11685
11686 if (cu->builder->get_current_subfile ()->symtab == NULL)
11687 {
11688 /* NOTE: start_subfile will recognize when it's been
11689 passed a file it has already seen. So we can't
11690 assume there's a simple mapping from
11691 cu->line_header->file_names to subfiles, plus
11692 cu->line_header->file_names may contain dups. */
11693 cu->builder->get_current_subfile ()->symtab
11694 = allocate_symtab (cust,
11695 cu->builder->get_current_subfile ()->name);
11696 }
11697
11698 fe.symtab = cu->builder->get_current_subfile ()->symtab;
11699 tu_group->symtabs[i] = fe.symtab;
11700 }
11701 }
11702 else
11703 {
11704 gdb_assert (cu->builder == nullptr);
11705 struct compunit_symtab *cust = tu_group->compunit_symtab;
11706 cu->builder.reset (new struct buildsym_compunit
11707 (COMPUNIT_OBJFILE (cust), "",
11708 COMPUNIT_DIRNAME (cust),
11709 compunit_language (cust),
11710 0, cust));
11711
11712 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11713 {
11714 file_entry &fe = cu->line_header->file_names[i];
11715
11716 fe.symtab = tu_group->symtabs[i];
11717 }
11718 }
11719
11720 /* The main symtab is allocated last. Type units don't have DW_AT_name
11721 so they don't have a "real" (so to speak) symtab anyway.
11722 There is later code that will assign the main symtab to all symbols
11723 that don't have one. We need to handle the case of a symbol with a
11724 missing symtab (DW_AT_decl_file) anyway. */
11725 }
11726
11727 /* Process DW_TAG_type_unit.
11728 For TUs we want to skip the first top level sibling if it's not the
11729 actual type being defined by this TU. In this case the first top
11730 level sibling is there to provide context only. */
11731
11732 static void
11733 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11734 {
11735 struct die_info *child_die;
11736
11737 prepare_one_comp_unit (cu, die, language_minimal);
11738
11739 /* Initialize (or reinitialize) the machinery for building symtabs.
11740 We do this before processing child DIEs, so that the line header table
11741 is available for DW_AT_decl_file. */
11742 setup_type_unit_groups (die, cu);
11743
11744 if (die->child != NULL)
11745 {
11746 child_die = die->child;
11747 while (child_die && child_die->tag)
11748 {
11749 process_die (child_die, cu);
11750 child_die = sibling_die (child_die);
11751 }
11752 }
11753 }
11754 \f
11755 /* DWO/DWP files.
11756
11757 http://gcc.gnu.org/wiki/DebugFission
11758 http://gcc.gnu.org/wiki/DebugFissionDWP
11759
11760 To simplify handling of both DWO files ("object" files with the DWARF info)
11761 and DWP files (a file with the DWOs packaged up into one file), we treat
11762 DWP files as having a collection of virtual DWO files. */
11763
11764 static hashval_t
11765 hash_dwo_file (const void *item)
11766 {
11767 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11768 hashval_t hash;
11769
11770 hash = htab_hash_string (dwo_file->dwo_name);
11771 if (dwo_file->comp_dir != NULL)
11772 hash += htab_hash_string (dwo_file->comp_dir);
11773 return hash;
11774 }
11775
11776 static int
11777 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11778 {
11779 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11780 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11781
11782 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11783 return 0;
11784 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11785 return lhs->comp_dir == rhs->comp_dir;
11786 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11787 }
11788
11789 /* Allocate a hash table for DWO files. */
11790
11791 static htab_t
11792 allocate_dwo_file_hash_table (struct objfile *objfile)
11793 {
11794 return htab_create_alloc_ex (41,
11795 hash_dwo_file,
11796 eq_dwo_file,
11797 NULL,
11798 &objfile->objfile_obstack,
11799 hashtab_obstack_allocate,
11800 dummy_obstack_deallocate);
11801 }
11802
11803 /* Lookup DWO file DWO_NAME. */
11804
11805 static void **
11806 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11807 const char *dwo_name,
11808 const char *comp_dir)
11809 {
11810 struct dwo_file find_entry;
11811 void **slot;
11812
11813 if (dwarf2_per_objfile->dwo_files == NULL)
11814 dwarf2_per_objfile->dwo_files
11815 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11816
11817 memset (&find_entry, 0, sizeof (find_entry));
11818 find_entry.dwo_name = dwo_name;
11819 find_entry.comp_dir = comp_dir;
11820 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11821
11822 return slot;
11823 }
11824
11825 static hashval_t
11826 hash_dwo_unit (const void *item)
11827 {
11828 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11829
11830 /* This drops the top 32 bits of the id, but is ok for a hash. */
11831 return dwo_unit->signature;
11832 }
11833
11834 static int
11835 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11836 {
11837 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11838 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11839
11840 /* The signature is assumed to be unique within the DWO file.
11841 So while object file CU dwo_id's always have the value zero,
11842 that's OK, assuming each object file DWO file has only one CU,
11843 and that's the rule for now. */
11844 return lhs->signature == rhs->signature;
11845 }
11846
11847 /* Allocate a hash table for DWO CUs,TUs.
11848 There is one of these tables for each of CUs,TUs for each DWO file. */
11849
11850 static htab_t
11851 allocate_dwo_unit_table (struct objfile *objfile)
11852 {
11853 /* Start out with a pretty small number.
11854 Generally DWO files contain only one CU and maybe some TUs. */
11855 return htab_create_alloc_ex (3,
11856 hash_dwo_unit,
11857 eq_dwo_unit,
11858 NULL,
11859 &objfile->objfile_obstack,
11860 hashtab_obstack_allocate,
11861 dummy_obstack_deallocate);
11862 }
11863
11864 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11865
11866 struct create_dwo_cu_data
11867 {
11868 struct dwo_file *dwo_file;
11869 struct dwo_unit dwo_unit;
11870 };
11871
11872 /* die_reader_func for create_dwo_cu. */
11873
11874 static void
11875 create_dwo_cu_reader (const struct die_reader_specs *reader,
11876 const gdb_byte *info_ptr,
11877 struct die_info *comp_unit_die,
11878 int has_children,
11879 void *datap)
11880 {
11881 struct dwarf2_cu *cu = reader->cu;
11882 sect_offset sect_off = cu->per_cu->sect_off;
11883 struct dwarf2_section_info *section = cu->per_cu->section;
11884 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11885 struct dwo_file *dwo_file = data->dwo_file;
11886 struct dwo_unit *dwo_unit = &data->dwo_unit;
11887 struct attribute *attr;
11888
11889 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11890 if (attr == NULL)
11891 {
11892 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11893 " its dwo_id [in module %s]"),
11894 sect_offset_str (sect_off), dwo_file->dwo_name);
11895 return;
11896 }
11897
11898 dwo_unit->dwo_file = dwo_file;
11899 dwo_unit->signature = DW_UNSND (attr);
11900 dwo_unit->section = section;
11901 dwo_unit->sect_off = sect_off;
11902 dwo_unit->length = cu->per_cu->length;
11903
11904 if (dwarf_read_debug)
11905 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11906 sect_offset_str (sect_off),
11907 hex_string (dwo_unit->signature));
11908 }
11909
11910 /* Create the dwo_units for the CUs in a DWO_FILE.
11911 Note: This function processes DWO files only, not DWP files. */
11912
11913 static void
11914 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11915 struct dwo_file &dwo_file, dwarf2_section_info &section,
11916 htab_t &cus_htab)
11917 {
11918 struct objfile *objfile = dwarf2_per_objfile->objfile;
11919 const gdb_byte *info_ptr, *end_ptr;
11920
11921 dwarf2_read_section (objfile, &section);
11922 info_ptr = section.buffer;
11923
11924 if (info_ptr == NULL)
11925 return;
11926
11927 if (dwarf_read_debug)
11928 {
11929 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11930 get_section_name (&section),
11931 get_section_file_name (&section));
11932 }
11933
11934 end_ptr = info_ptr + section.size;
11935 while (info_ptr < end_ptr)
11936 {
11937 struct dwarf2_per_cu_data per_cu;
11938 struct create_dwo_cu_data create_dwo_cu_data;
11939 struct dwo_unit *dwo_unit;
11940 void **slot;
11941 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11942
11943 memset (&create_dwo_cu_data.dwo_unit, 0,
11944 sizeof (create_dwo_cu_data.dwo_unit));
11945 memset (&per_cu, 0, sizeof (per_cu));
11946 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11947 per_cu.is_debug_types = 0;
11948 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11949 per_cu.section = &section;
11950 create_dwo_cu_data.dwo_file = &dwo_file;
11951
11952 init_cutu_and_read_dies_no_follow (
11953 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11954 info_ptr += per_cu.length;
11955
11956 // If the unit could not be parsed, skip it.
11957 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11958 continue;
11959
11960 if (cus_htab == NULL)
11961 cus_htab = allocate_dwo_unit_table (objfile);
11962
11963 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11964 *dwo_unit = create_dwo_cu_data.dwo_unit;
11965 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11966 gdb_assert (slot != NULL);
11967 if (*slot != NULL)
11968 {
11969 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11970 sect_offset dup_sect_off = dup_cu->sect_off;
11971
11972 complaint (_("debug cu entry at offset %s is duplicate to"
11973 " the entry at offset %s, signature %s"),
11974 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11975 hex_string (dwo_unit->signature));
11976 }
11977 *slot = (void *)dwo_unit;
11978 }
11979 }
11980
11981 /* DWP file .debug_{cu,tu}_index section format:
11982 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11983
11984 DWP Version 1:
11985
11986 Both index sections have the same format, and serve to map a 64-bit
11987 signature to a set of section numbers. Each section begins with a header,
11988 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11989 indexes, and a pool of 32-bit section numbers. The index sections will be
11990 aligned at 8-byte boundaries in the file.
11991
11992 The index section header consists of:
11993
11994 V, 32 bit version number
11995 -, 32 bits unused
11996 N, 32 bit number of compilation units or type units in the index
11997 M, 32 bit number of slots in the hash table
11998
11999 Numbers are recorded using the byte order of the application binary.
12000
12001 The hash table begins at offset 16 in the section, and consists of an array
12002 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
12003 order of the application binary). Unused slots in the hash table are 0.
12004 (We rely on the extreme unlikeliness of a signature being exactly 0.)
12005
12006 The parallel table begins immediately after the hash table
12007 (at offset 16 + 8 * M from the beginning of the section), and consists of an
12008 array of 32-bit indexes (using the byte order of the application binary),
12009 corresponding 1-1 with slots in the hash table. Each entry in the parallel
12010 table contains a 32-bit index into the pool of section numbers. For unused
12011 hash table slots, the corresponding entry in the parallel table will be 0.
12012
12013 The pool of section numbers begins immediately following the hash table
12014 (at offset 16 + 12 * M from the beginning of the section). The pool of
12015 section numbers consists of an array of 32-bit words (using the byte order
12016 of the application binary). Each item in the array is indexed starting
12017 from 0. The hash table entry provides the index of the first section
12018 number in the set. Additional section numbers in the set follow, and the
12019 set is terminated by a 0 entry (section number 0 is not used in ELF).
12020
12021 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
12022 section must be the first entry in the set, and the .debug_abbrev.dwo must
12023 be the second entry. Other members of the set may follow in any order.
12024
12025 ---
12026
12027 DWP Version 2:
12028
12029 DWP Version 2 combines all the .debug_info, etc. sections into one,
12030 and the entries in the index tables are now offsets into these sections.
12031 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12032 section.
12033
12034 Index Section Contents:
12035 Header
12036 Hash Table of Signatures dwp_hash_table.hash_table
12037 Parallel Table of Indices dwp_hash_table.unit_table
12038 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12039 Table of Section Sizes dwp_hash_table.v2.sizes
12040
12041 The index section header consists of:
12042
12043 V, 32 bit version number
12044 L, 32 bit number of columns in the table of section offsets
12045 N, 32 bit number of compilation units or type units in the index
12046 M, 32 bit number of slots in the hash table
12047
12048 Numbers are recorded using the byte order of the application binary.
12049
12050 The hash table has the same format as version 1.
12051 The parallel table of indices has the same format as version 1,
12052 except that the entries are origin-1 indices into the table of sections
12053 offsets and the table of section sizes.
12054
12055 The table of offsets begins immediately following the parallel table
12056 (at offset 16 + 12 * M from the beginning of the section). The table is
12057 a two-dimensional array of 32-bit words (using the byte order of the
12058 application binary), with L columns and N+1 rows, in row-major order.
12059 Each row in the array is indexed starting from 0. The first row provides
12060 a key to the remaining rows: each column in this row provides an identifier
12061 for a debug section, and the offsets in the same column of subsequent rows
12062 refer to that section. The section identifiers are:
12063
12064 DW_SECT_INFO 1 .debug_info.dwo
12065 DW_SECT_TYPES 2 .debug_types.dwo
12066 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12067 DW_SECT_LINE 4 .debug_line.dwo
12068 DW_SECT_LOC 5 .debug_loc.dwo
12069 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12070 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12071 DW_SECT_MACRO 8 .debug_macro.dwo
12072
12073 The offsets provided by the CU and TU index sections are the base offsets
12074 for the contributions made by each CU or TU to the corresponding section
12075 in the package file. Each CU and TU header contains an abbrev_offset
12076 field, used to find the abbreviations table for that CU or TU within the
12077 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12078 be interpreted as relative to the base offset given in the index section.
12079 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12080 should be interpreted as relative to the base offset for .debug_line.dwo,
12081 and offsets into other debug sections obtained from DWARF attributes should
12082 also be interpreted as relative to the corresponding base offset.
12083
12084 The table of sizes begins immediately following the table of offsets.
12085 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12086 with L columns and N rows, in row-major order. Each row in the array is
12087 indexed starting from 1 (row 0 is shared by the two tables).
12088
12089 ---
12090
12091 Hash table lookup is handled the same in version 1 and 2:
12092
12093 We assume that N and M will not exceed 2^32 - 1.
12094 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12095
12096 Given a 64-bit compilation unit signature or a type signature S, an entry
12097 in the hash table is located as follows:
12098
12099 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12100 the low-order k bits all set to 1.
12101
12102 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12103
12104 3) If the hash table entry at index H matches the signature, use that
12105 entry. If the hash table entry at index H is unused (all zeroes),
12106 terminate the search: the signature is not present in the table.
12107
12108 4) Let H = (H + H') modulo M. Repeat at Step 3.
12109
12110 Because M > N and H' and M are relatively prime, the search is guaranteed
12111 to stop at an unused slot or find the match. */
12112
12113 /* Create a hash table to map DWO IDs to their CU/TU entry in
12114 .debug_{info,types}.dwo in DWP_FILE.
12115 Returns NULL if there isn't one.
12116 Note: This function processes DWP files only, not DWO files. */
12117
12118 static struct dwp_hash_table *
12119 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12120 struct dwp_file *dwp_file, int is_debug_types)
12121 {
12122 struct objfile *objfile = dwarf2_per_objfile->objfile;
12123 bfd *dbfd = dwp_file->dbfd.get ();
12124 const gdb_byte *index_ptr, *index_end;
12125 struct dwarf2_section_info *index;
12126 uint32_t version, nr_columns, nr_units, nr_slots;
12127 struct dwp_hash_table *htab;
12128
12129 if (is_debug_types)
12130 index = &dwp_file->sections.tu_index;
12131 else
12132 index = &dwp_file->sections.cu_index;
12133
12134 if (dwarf2_section_empty_p (index))
12135 return NULL;
12136 dwarf2_read_section (objfile, index);
12137
12138 index_ptr = index->buffer;
12139 index_end = index_ptr + index->size;
12140
12141 version = read_4_bytes (dbfd, index_ptr);
12142 index_ptr += 4;
12143 if (version == 2)
12144 nr_columns = read_4_bytes (dbfd, index_ptr);
12145 else
12146 nr_columns = 0;
12147 index_ptr += 4;
12148 nr_units = read_4_bytes (dbfd, index_ptr);
12149 index_ptr += 4;
12150 nr_slots = read_4_bytes (dbfd, index_ptr);
12151 index_ptr += 4;
12152
12153 if (version != 1 && version != 2)
12154 {
12155 error (_("Dwarf Error: unsupported DWP file version (%s)"
12156 " [in module %s]"),
12157 pulongest (version), dwp_file->name);
12158 }
12159 if (nr_slots != (nr_slots & -nr_slots))
12160 {
12161 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12162 " is not power of 2 [in module %s]"),
12163 pulongest (nr_slots), dwp_file->name);
12164 }
12165
12166 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12167 htab->version = version;
12168 htab->nr_columns = nr_columns;
12169 htab->nr_units = nr_units;
12170 htab->nr_slots = nr_slots;
12171 htab->hash_table = index_ptr;
12172 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12173
12174 /* Exit early if the table is empty. */
12175 if (nr_slots == 0 || nr_units == 0
12176 || (version == 2 && nr_columns == 0))
12177 {
12178 /* All must be zero. */
12179 if (nr_slots != 0 || nr_units != 0
12180 || (version == 2 && nr_columns != 0))
12181 {
12182 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12183 " all zero [in modules %s]"),
12184 dwp_file->name);
12185 }
12186 return htab;
12187 }
12188
12189 if (version == 1)
12190 {
12191 htab->section_pool.v1.indices =
12192 htab->unit_table + sizeof (uint32_t) * nr_slots;
12193 /* It's harder to decide whether the section is too small in v1.
12194 V1 is deprecated anyway so we punt. */
12195 }
12196 else
12197 {
12198 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12199 int *ids = htab->section_pool.v2.section_ids;
12200 /* Reverse map for error checking. */
12201 int ids_seen[DW_SECT_MAX + 1];
12202 int i;
12203
12204 if (nr_columns < 2)
12205 {
12206 error (_("Dwarf Error: bad DWP hash table, too few columns"
12207 " in section table [in module %s]"),
12208 dwp_file->name);
12209 }
12210 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12211 {
12212 error (_("Dwarf Error: bad DWP hash table, too many columns"
12213 " in section table [in module %s]"),
12214 dwp_file->name);
12215 }
12216 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12217 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12218 for (i = 0; i < nr_columns; ++i)
12219 {
12220 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12221
12222 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12223 {
12224 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12225 " in section table [in module %s]"),
12226 id, dwp_file->name);
12227 }
12228 if (ids_seen[id] != -1)
12229 {
12230 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12231 " id %d in section table [in module %s]"),
12232 id, dwp_file->name);
12233 }
12234 ids_seen[id] = i;
12235 ids[i] = id;
12236 }
12237 /* Must have exactly one info or types section. */
12238 if (((ids_seen[DW_SECT_INFO] != -1)
12239 + (ids_seen[DW_SECT_TYPES] != -1))
12240 != 1)
12241 {
12242 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12243 " DWO info/types section [in module %s]"),
12244 dwp_file->name);
12245 }
12246 /* Must have an abbrev section. */
12247 if (ids_seen[DW_SECT_ABBREV] == -1)
12248 {
12249 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12250 " section [in module %s]"),
12251 dwp_file->name);
12252 }
12253 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12254 htab->section_pool.v2.sizes =
12255 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12256 * nr_units * nr_columns);
12257 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12258 * nr_units * nr_columns))
12259 > index_end)
12260 {
12261 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12262 " [in module %s]"),
12263 dwp_file->name);
12264 }
12265 }
12266
12267 return htab;
12268 }
12269
12270 /* Update SECTIONS with the data from SECTP.
12271
12272 This function is like the other "locate" section routines that are
12273 passed to bfd_map_over_sections, but in this context the sections to
12274 read comes from the DWP V1 hash table, not the full ELF section table.
12275
12276 The result is non-zero for success, or zero if an error was found. */
12277
12278 static int
12279 locate_v1_virtual_dwo_sections (asection *sectp,
12280 struct virtual_v1_dwo_sections *sections)
12281 {
12282 const struct dwop_section_names *names = &dwop_section_names;
12283
12284 if (section_is_p (sectp->name, &names->abbrev_dwo))
12285 {
12286 /* There can be only one. */
12287 if (sections->abbrev.s.section != NULL)
12288 return 0;
12289 sections->abbrev.s.section = sectp;
12290 sections->abbrev.size = bfd_get_section_size (sectp);
12291 }
12292 else if (section_is_p (sectp->name, &names->info_dwo)
12293 || section_is_p (sectp->name, &names->types_dwo))
12294 {
12295 /* There can be only one. */
12296 if (sections->info_or_types.s.section != NULL)
12297 return 0;
12298 sections->info_or_types.s.section = sectp;
12299 sections->info_or_types.size = bfd_get_section_size (sectp);
12300 }
12301 else if (section_is_p (sectp->name, &names->line_dwo))
12302 {
12303 /* There can be only one. */
12304 if (sections->line.s.section != NULL)
12305 return 0;
12306 sections->line.s.section = sectp;
12307 sections->line.size = bfd_get_section_size (sectp);
12308 }
12309 else if (section_is_p (sectp->name, &names->loc_dwo))
12310 {
12311 /* There can be only one. */
12312 if (sections->loc.s.section != NULL)
12313 return 0;
12314 sections->loc.s.section = sectp;
12315 sections->loc.size = bfd_get_section_size (sectp);
12316 }
12317 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12318 {
12319 /* There can be only one. */
12320 if (sections->macinfo.s.section != NULL)
12321 return 0;
12322 sections->macinfo.s.section = sectp;
12323 sections->macinfo.size = bfd_get_section_size (sectp);
12324 }
12325 else if (section_is_p (sectp->name, &names->macro_dwo))
12326 {
12327 /* There can be only one. */
12328 if (sections->macro.s.section != NULL)
12329 return 0;
12330 sections->macro.s.section = sectp;
12331 sections->macro.size = bfd_get_section_size (sectp);
12332 }
12333 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12334 {
12335 /* There can be only one. */
12336 if (sections->str_offsets.s.section != NULL)
12337 return 0;
12338 sections->str_offsets.s.section = sectp;
12339 sections->str_offsets.size = bfd_get_section_size (sectp);
12340 }
12341 else
12342 {
12343 /* No other kind of section is valid. */
12344 return 0;
12345 }
12346
12347 return 1;
12348 }
12349
12350 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12351 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12352 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12353 This is for DWP version 1 files. */
12354
12355 static struct dwo_unit *
12356 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12357 struct dwp_file *dwp_file,
12358 uint32_t unit_index,
12359 const char *comp_dir,
12360 ULONGEST signature, int is_debug_types)
12361 {
12362 struct objfile *objfile = dwarf2_per_objfile->objfile;
12363 const struct dwp_hash_table *dwp_htab =
12364 is_debug_types ? dwp_file->tus : dwp_file->cus;
12365 bfd *dbfd = dwp_file->dbfd.get ();
12366 const char *kind = is_debug_types ? "TU" : "CU";
12367 struct dwo_file *dwo_file;
12368 struct dwo_unit *dwo_unit;
12369 struct virtual_v1_dwo_sections sections;
12370 void **dwo_file_slot;
12371 int i;
12372
12373 gdb_assert (dwp_file->version == 1);
12374
12375 if (dwarf_read_debug)
12376 {
12377 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12378 kind,
12379 pulongest (unit_index), hex_string (signature),
12380 dwp_file->name);
12381 }
12382
12383 /* Fetch the sections of this DWO unit.
12384 Put a limit on the number of sections we look for so that bad data
12385 doesn't cause us to loop forever. */
12386
12387 #define MAX_NR_V1_DWO_SECTIONS \
12388 (1 /* .debug_info or .debug_types */ \
12389 + 1 /* .debug_abbrev */ \
12390 + 1 /* .debug_line */ \
12391 + 1 /* .debug_loc */ \
12392 + 1 /* .debug_str_offsets */ \
12393 + 1 /* .debug_macro or .debug_macinfo */ \
12394 + 1 /* trailing zero */)
12395
12396 memset (&sections, 0, sizeof (sections));
12397
12398 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12399 {
12400 asection *sectp;
12401 uint32_t section_nr =
12402 read_4_bytes (dbfd,
12403 dwp_htab->section_pool.v1.indices
12404 + (unit_index + i) * sizeof (uint32_t));
12405
12406 if (section_nr == 0)
12407 break;
12408 if (section_nr >= dwp_file->num_sections)
12409 {
12410 error (_("Dwarf Error: bad DWP hash table, section number too large"
12411 " [in module %s]"),
12412 dwp_file->name);
12413 }
12414
12415 sectp = dwp_file->elf_sections[section_nr];
12416 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12417 {
12418 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12419 " [in module %s]"),
12420 dwp_file->name);
12421 }
12422 }
12423
12424 if (i < 2
12425 || dwarf2_section_empty_p (&sections.info_or_types)
12426 || dwarf2_section_empty_p (&sections.abbrev))
12427 {
12428 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12429 " [in module %s]"),
12430 dwp_file->name);
12431 }
12432 if (i == MAX_NR_V1_DWO_SECTIONS)
12433 {
12434 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12435 " [in module %s]"),
12436 dwp_file->name);
12437 }
12438
12439 /* It's easier for the rest of the code if we fake a struct dwo_file and
12440 have dwo_unit "live" in that. At least for now.
12441
12442 The DWP file can be made up of a random collection of CUs and TUs.
12443 However, for each CU + set of TUs that came from the same original DWO
12444 file, we can combine them back into a virtual DWO file to save space
12445 (fewer struct dwo_file objects to allocate). Remember that for really
12446 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12447
12448 std::string virtual_dwo_name =
12449 string_printf ("virtual-dwo/%d-%d-%d-%d",
12450 get_section_id (&sections.abbrev),
12451 get_section_id (&sections.line),
12452 get_section_id (&sections.loc),
12453 get_section_id (&sections.str_offsets));
12454 /* Can we use an existing virtual DWO file? */
12455 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12456 virtual_dwo_name.c_str (),
12457 comp_dir);
12458 /* Create one if necessary. */
12459 if (*dwo_file_slot == NULL)
12460 {
12461 if (dwarf_read_debug)
12462 {
12463 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12464 virtual_dwo_name.c_str ());
12465 }
12466 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12467 dwo_file->dwo_name
12468 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12469 virtual_dwo_name.c_str (),
12470 virtual_dwo_name.size ());
12471 dwo_file->comp_dir = comp_dir;
12472 dwo_file->sections.abbrev = sections.abbrev;
12473 dwo_file->sections.line = sections.line;
12474 dwo_file->sections.loc = sections.loc;
12475 dwo_file->sections.macinfo = sections.macinfo;
12476 dwo_file->sections.macro = sections.macro;
12477 dwo_file->sections.str_offsets = sections.str_offsets;
12478 /* The "str" section is global to the entire DWP file. */
12479 dwo_file->sections.str = dwp_file->sections.str;
12480 /* The info or types section is assigned below to dwo_unit,
12481 there's no need to record it in dwo_file.
12482 Also, we can't simply record type sections in dwo_file because
12483 we record a pointer into the vector in dwo_unit. As we collect more
12484 types we'll grow the vector and eventually have to reallocate space
12485 for it, invalidating all copies of pointers into the previous
12486 contents. */
12487 *dwo_file_slot = dwo_file;
12488 }
12489 else
12490 {
12491 if (dwarf_read_debug)
12492 {
12493 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12494 virtual_dwo_name.c_str ());
12495 }
12496 dwo_file = (struct dwo_file *) *dwo_file_slot;
12497 }
12498
12499 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12500 dwo_unit->dwo_file = dwo_file;
12501 dwo_unit->signature = signature;
12502 dwo_unit->section =
12503 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12504 *dwo_unit->section = sections.info_or_types;
12505 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12506
12507 return dwo_unit;
12508 }
12509
12510 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12511 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12512 piece within that section used by a TU/CU, return a virtual section
12513 of just that piece. */
12514
12515 static struct dwarf2_section_info
12516 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12517 struct dwarf2_section_info *section,
12518 bfd_size_type offset, bfd_size_type size)
12519 {
12520 struct dwarf2_section_info result;
12521 asection *sectp;
12522
12523 gdb_assert (section != NULL);
12524 gdb_assert (!section->is_virtual);
12525
12526 memset (&result, 0, sizeof (result));
12527 result.s.containing_section = section;
12528 result.is_virtual = 1;
12529
12530 if (size == 0)
12531 return result;
12532
12533 sectp = get_section_bfd_section (section);
12534
12535 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12536 bounds of the real section. This is a pretty-rare event, so just
12537 flag an error (easier) instead of a warning and trying to cope. */
12538 if (sectp == NULL
12539 || offset + size > bfd_get_section_size (sectp))
12540 {
12541 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12542 " in section %s [in module %s]"),
12543 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12544 objfile_name (dwarf2_per_objfile->objfile));
12545 }
12546
12547 result.virtual_offset = offset;
12548 result.size = size;
12549 return result;
12550 }
12551
12552 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12553 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12554 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12555 This is for DWP version 2 files. */
12556
12557 static struct dwo_unit *
12558 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12559 struct dwp_file *dwp_file,
12560 uint32_t unit_index,
12561 const char *comp_dir,
12562 ULONGEST signature, int is_debug_types)
12563 {
12564 struct objfile *objfile = dwarf2_per_objfile->objfile;
12565 const struct dwp_hash_table *dwp_htab =
12566 is_debug_types ? dwp_file->tus : dwp_file->cus;
12567 bfd *dbfd = dwp_file->dbfd.get ();
12568 const char *kind = is_debug_types ? "TU" : "CU";
12569 struct dwo_file *dwo_file;
12570 struct dwo_unit *dwo_unit;
12571 struct virtual_v2_dwo_sections sections;
12572 void **dwo_file_slot;
12573 int i;
12574
12575 gdb_assert (dwp_file->version == 2);
12576
12577 if (dwarf_read_debug)
12578 {
12579 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12580 kind,
12581 pulongest (unit_index), hex_string (signature),
12582 dwp_file->name);
12583 }
12584
12585 /* Fetch the section offsets of this DWO unit. */
12586
12587 memset (&sections, 0, sizeof (sections));
12588
12589 for (i = 0; i < dwp_htab->nr_columns; ++i)
12590 {
12591 uint32_t offset = read_4_bytes (dbfd,
12592 dwp_htab->section_pool.v2.offsets
12593 + (((unit_index - 1) * dwp_htab->nr_columns
12594 + i)
12595 * sizeof (uint32_t)));
12596 uint32_t size = read_4_bytes (dbfd,
12597 dwp_htab->section_pool.v2.sizes
12598 + (((unit_index - 1) * dwp_htab->nr_columns
12599 + i)
12600 * sizeof (uint32_t)));
12601
12602 switch (dwp_htab->section_pool.v2.section_ids[i])
12603 {
12604 case DW_SECT_INFO:
12605 case DW_SECT_TYPES:
12606 sections.info_or_types_offset = offset;
12607 sections.info_or_types_size = size;
12608 break;
12609 case DW_SECT_ABBREV:
12610 sections.abbrev_offset = offset;
12611 sections.abbrev_size = size;
12612 break;
12613 case DW_SECT_LINE:
12614 sections.line_offset = offset;
12615 sections.line_size = size;
12616 break;
12617 case DW_SECT_LOC:
12618 sections.loc_offset = offset;
12619 sections.loc_size = size;
12620 break;
12621 case DW_SECT_STR_OFFSETS:
12622 sections.str_offsets_offset = offset;
12623 sections.str_offsets_size = size;
12624 break;
12625 case DW_SECT_MACINFO:
12626 sections.macinfo_offset = offset;
12627 sections.macinfo_size = size;
12628 break;
12629 case DW_SECT_MACRO:
12630 sections.macro_offset = offset;
12631 sections.macro_size = size;
12632 break;
12633 }
12634 }
12635
12636 /* It's easier for the rest of the code if we fake a struct dwo_file and
12637 have dwo_unit "live" in that. At least for now.
12638
12639 The DWP file can be made up of a random collection of CUs and TUs.
12640 However, for each CU + set of TUs that came from the same original DWO
12641 file, we can combine them back into a virtual DWO file to save space
12642 (fewer struct dwo_file objects to allocate). Remember that for really
12643 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12644
12645 std::string virtual_dwo_name =
12646 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12647 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12648 (long) (sections.line_size ? sections.line_offset : 0),
12649 (long) (sections.loc_size ? sections.loc_offset : 0),
12650 (long) (sections.str_offsets_size
12651 ? sections.str_offsets_offset : 0));
12652 /* Can we use an existing virtual DWO file? */
12653 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12654 virtual_dwo_name.c_str (),
12655 comp_dir);
12656 /* Create one if necessary. */
12657 if (*dwo_file_slot == NULL)
12658 {
12659 if (dwarf_read_debug)
12660 {
12661 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12662 virtual_dwo_name.c_str ());
12663 }
12664 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12665 dwo_file->dwo_name
12666 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12667 virtual_dwo_name.c_str (),
12668 virtual_dwo_name.size ());
12669 dwo_file->comp_dir = comp_dir;
12670 dwo_file->sections.abbrev =
12671 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12672 sections.abbrev_offset, sections.abbrev_size);
12673 dwo_file->sections.line =
12674 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12675 sections.line_offset, sections.line_size);
12676 dwo_file->sections.loc =
12677 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12678 sections.loc_offset, sections.loc_size);
12679 dwo_file->sections.macinfo =
12680 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12681 sections.macinfo_offset, sections.macinfo_size);
12682 dwo_file->sections.macro =
12683 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12684 sections.macro_offset, sections.macro_size);
12685 dwo_file->sections.str_offsets =
12686 create_dwp_v2_section (dwarf2_per_objfile,
12687 &dwp_file->sections.str_offsets,
12688 sections.str_offsets_offset,
12689 sections.str_offsets_size);
12690 /* The "str" section is global to the entire DWP file. */
12691 dwo_file->sections.str = dwp_file->sections.str;
12692 /* The info or types section is assigned below to dwo_unit,
12693 there's no need to record it in dwo_file.
12694 Also, we can't simply record type sections in dwo_file because
12695 we record a pointer into the vector in dwo_unit. As we collect more
12696 types we'll grow the vector and eventually have to reallocate space
12697 for it, invalidating all copies of pointers into the previous
12698 contents. */
12699 *dwo_file_slot = dwo_file;
12700 }
12701 else
12702 {
12703 if (dwarf_read_debug)
12704 {
12705 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12706 virtual_dwo_name.c_str ());
12707 }
12708 dwo_file = (struct dwo_file *) *dwo_file_slot;
12709 }
12710
12711 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12712 dwo_unit->dwo_file = dwo_file;
12713 dwo_unit->signature = signature;
12714 dwo_unit->section =
12715 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12716 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12717 is_debug_types
12718 ? &dwp_file->sections.types
12719 : &dwp_file->sections.info,
12720 sections.info_or_types_offset,
12721 sections.info_or_types_size);
12722 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12723
12724 return dwo_unit;
12725 }
12726
12727 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12728 Returns NULL if the signature isn't found. */
12729
12730 static struct dwo_unit *
12731 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12732 struct dwp_file *dwp_file, const char *comp_dir,
12733 ULONGEST signature, int is_debug_types)
12734 {
12735 const struct dwp_hash_table *dwp_htab =
12736 is_debug_types ? dwp_file->tus : dwp_file->cus;
12737 bfd *dbfd = dwp_file->dbfd.get ();
12738 uint32_t mask = dwp_htab->nr_slots - 1;
12739 uint32_t hash = signature & mask;
12740 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12741 unsigned int i;
12742 void **slot;
12743 struct dwo_unit find_dwo_cu;
12744
12745 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12746 find_dwo_cu.signature = signature;
12747 slot = htab_find_slot (is_debug_types
12748 ? dwp_file->loaded_tus
12749 : dwp_file->loaded_cus,
12750 &find_dwo_cu, INSERT);
12751
12752 if (*slot != NULL)
12753 return (struct dwo_unit *) *slot;
12754
12755 /* Use a for loop so that we don't loop forever on bad debug info. */
12756 for (i = 0; i < dwp_htab->nr_slots; ++i)
12757 {
12758 ULONGEST signature_in_table;
12759
12760 signature_in_table =
12761 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12762 if (signature_in_table == signature)
12763 {
12764 uint32_t unit_index =
12765 read_4_bytes (dbfd,
12766 dwp_htab->unit_table + hash * sizeof (uint32_t));
12767
12768 if (dwp_file->version == 1)
12769 {
12770 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12771 dwp_file, unit_index,
12772 comp_dir, signature,
12773 is_debug_types);
12774 }
12775 else
12776 {
12777 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12778 dwp_file, unit_index,
12779 comp_dir, signature,
12780 is_debug_types);
12781 }
12782 return (struct dwo_unit *) *slot;
12783 }
12784 if (signature_in_table == 0)
12785 return NULL;
12786 hash = (hash + hash2) & mask;
12787 }
12788
12789 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12790 " [in module %s]"),
12791 dwp_file->name);
12792 }
12793
12794 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12795 Open the file specified by FILE_NAME and hand it off to BFD for
12796 preliminary analysis. Return a newly initialized bfd *, which
12797 includes a canonicalized copy of FILE_NAME.
12798 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12799 SEARCH_CWD is true if the current directory is to be searched.
12800 It will be searched before debug-file-directory.
12801 If successful, the file is added to the bfd include table of the
12802 objfile's bfd (see gdb_bfd_record_inclusion).
12803 If unable to find/open the file, return NULL.
12804 NOTE: This function is derived from symfile_bfd_open. */
12805
12806 static gdb_bfd_ref_ptr
12807 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12808 const char *file_name, int is_dwp, int search_cwd)
12809 {
12810 int desc;
12811 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12812 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12813 to debug_file_directory. */
12814 const char *search_path;
12815 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12816
12817 gdb::unique_xmalloc_ptr<char> search_path_holder;
12818 if (search_cwd)
12819 {
12820 if (*debug_file_directory != '\0')
12821 {
12822 search_path_holder.reset (concat (".", dirname_separator_string,
12823 debug_file_directory,
12824 (char *) NULL));
12825 search_path = search_path_holder.get ();
12826 }
12827 else
12828 search_path = ".";
12829 }
12830 else
12831 search_path = debug_file_directory;
12832
12833 openp_flags flags = OPF_RETURN_REALPATH;
12834 if (is_dwp)
12835 flags |= OPF_SEARCH_IN_PATH;
12836
12837 gdb::unique_xmalloc_ptr<char> absolute_name;
12838 desc = openp (search_path, flags, file_name,
12839 O_RDONLY | O_BINARY, &absolute_name);
12840 if (desc < 0)
12841 return NULL;
12842
12843 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12844 gnutarget, desc));
12845 if (sym_bfd == NULL)
12846 return NULL;
12847 bfd_set_cacheable (sym_bfd.get (), 1);
12848
12849 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12850 return NULL;
12851
12852 /* Success. Record the bfd as having been included by the objfile's bfd.
12853 This is important because things like demangled_names_hash lives in the
12854 objfile's per_bfd space and may have references to things like symbol
12855 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12856 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12857
12858 return sym_bfd;
12859 }
12860
12861 /* Try to open DWO file FILE_NAME.
12862 COMP_DIR is the DW_AT_comp_dir attribute.
12863 The result is the bfd handle of the file.
12864 If there is a problem finding or opening the file, return NULL.
12865 Upon success, the canonicalized path of the file is stored in the bfd,
12866 same as symfile_bfd_open. */
12867
12868 static gdb_bfd_ref_ptr
12869 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12870 const char *file_name, const char *comp_dir)
12871 {
12872 if (IS_ABSOLUTE_PATH (file_name))
12873 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12874 0 /*is_dwp*/, 0 /*search_cwd*/);
12875
12876 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12877
12878 if (comp_dir != NULL)
12879 {
12880 char *path_to_try = concat (comp_dir, SLASH_STRING,
12881 file_name, (char *) NULL);
12882
12883 /* NOTE: If comp_dir is a relative path, this will also try the
12884 search path, which seems useful. */
12885 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12886 path_to_try,
12887 0 /*is_dwp*/,
12888 1 /*search_cwd*/));
12889 xfree (path_to_try);
12890 if (abfd != NULL)
12891 return abfd;
12892 }
12893
12894 /* That didn't work, try debug-file-directory, which, despite its name,
12895 is a list of paths. */
12896
12897 if (*debug_file_directory == '\0')
12898 return NULL;
12899
12900 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12901 0 /*is_dwp*/, 1 /*search_cwd*/);
12902 }
12903
12904 /* This function is mapped across the sections and remembers the offset and
12905 size of each of the DWO debugging sections we are interested in. */
12906
12907 static void
12908 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12909 {
12910 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12911 const struct dwop_section_names *names = &dwop_section_names;
12912
12913 if (section_is_p (sectp->name, &names->abbrev_dwo))
12914 {
12915 dwo_sections->abbrev.s.section = sectp;
12916 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12917 }
12918 else if (section_is_p (sectp->name, &names->info_dwo))
12919 {
12920 dwo_sections->info.s.section = sectp;
12921 dwo_sections->info.size = bfd_get_section_size (sectp);
12922 }
12923 else if (section_is_p (sectp->name, &names->line_dwo))
12924 {
12925 dwo_sections->line.s.section = sectp;
12926 dwo_sections->line.size = bfd_get_section_size (sectp);
12927 }
12928 else if (section_is_p (sectp->name, &names->loc_dwo))
12929 {
12930 dwo_sections->loc.s.section = sectp;
12931 dwo_sections->loc.size = bfd_get_section_size (sectp);
12932 }
12933 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12934 {
12935 dwo_sections->macinfo.s.section = sectp;
12936 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12937 }
12938 else if (section_is_p (sectp->name, &names->macro_dwo))
12939 {
12940 dwo_sections->macro.s.section = sectp;
12941 dwo_sections->macro.size = bfd_get_section_size (sectp);
12942 }
12943 else if (section_is_p (sectp->name, &names->str_dwo))
12944 {
12945 dwo_sections->str.s.section = sectp;
12946 dwo_sections->str.size = bfd_get_section_size (sectp);
12947 }
12948 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12949 {
12950 dwo_sections->str_offsets.s.section = sectp;
12951 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12952 }
12953 else if (section_is_p (sectp->name, &names->types_dwo))
12954 {
12955 struct dwarf2_section_info type_section;
12956
12957 memset (&type_section, 0, sizeof (type_section));
12958 type_section.s.section = sectp;
12959 type_section.size = bfd_get_section_size (sectp);
12960 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
12961 &type_section);
12962 }
12963 }
12964
12965 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12966 by PER_CU. This is for the non-DWP case.
12967 The result is NULL if DWO_NAME can't be found. */
12968
12969 static struct dwo_file *
12970 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12971 const char *dwo_name, const char *comp_dir)
12972 {
12973 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12974 struct objfile *objfile = dwarf2_per_objfile->objfile;
12975
12976 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
12977 if (dbfd == NULL)
12978 {
12979 if (dwarf_read_debug)
12980 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12981 return NULL;
12982 }
12983
12984 /* We use a unique pointer here, despite the obstack allocation,
12985 because a dwo_file needs some cleanup if it is abandoned. */
12986 dwo_file_up dwo_file (OBSTACK_ZALLOC (&objfile->objfile_obstack,
12987 struct dwo_file));
12988 dwo_file->dwo_name = dwo_name;
12989 dwo_file->comp_dir = comp_dir;
12990 dwo_file->dbfd = dbfd.release ();
12991
12992 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
12993 &dwo_file->sections);
12994
12995 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
12996 dwo_file->cus);
12997
12998 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12999 dwo_file->sections.types, dwo_file->tus);
13000
13001 if (dwarf_read_debug)
13002 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
13003
13004 return dwo_file.release ();
13005 }
13006
13007 /* This function is mapped across the sections and remembers the offset and
13008 size of each of the DWP debugging sections common to version 1 and 2 that
13009 we are interested in. */
13010
13011 static void
13012 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
13013 void *dwp_file_ptr)
13014 {
13015 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13016 const struct dwop_section_names *names = &dwop_section_names;
13017 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13018
13019 /* Record the ELF section number for later lookup: this is what the
13020 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13021 gdb_assert (elf_section_nr < dwp_file->num_sections);
13022 dwp_file->elf_sections[elf_section_nr] = sectp;
13023
13024 /* Look for specific sections that we need. */
13025 if (section_is_p (sectp->name, &names->str_dwo))
13026 {
13027 dwp_file->sections.str.s.section = sectp;
13028 dwp_file->sections.str.size = bfd_get_section_size (sectp);
13029 }
13030 else if (section_is_p (sectp->name, &names->cu_index))
13031 {
13032 dwp_file->sections.cu_index.s.section = sectp;
13033 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
13034 }
13035 else if (section_is_p (sectp->name, &names->tu_index))
13036 {
13037 dwp_file->sections.tu_index.s.section = sectp;
13038 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
13039 }
13040 }
13041
13042 /* This function is mapped across the sections and remembers the offset and
13043 size of each of the DWP version 2 debugging sections that we are interested
13044 in. This is split into a separate function because we don't know if we
13045 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13046
13047 static void
13048 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13049 {
13050 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13051 const struct dwop_section_names *names = &dwop_section_names;
13052 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13053
13054 /* Record the ELF section number for later lookup: this is what the
13055 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13056 gdb_assert (elf_section_nr < dwp_file->num_sections);
13057 dwp_file->elf_sections[elf_section_nr] = sectp;
13058
13059 /* Look for specific sections that we need. */
13060 if (section_is_p (sectp->name, &names->abbrev_dwo))
13061 {
13062 dwp_file->sections.abbrev.s.section = sectp;
13063 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
13064 }
13065 else if (section_is_p (sectp->name, &names->info_dwo))
13066 {
13067 dwp_file->sections.info.s.section = sectp;
13068 dwp_file->sections.info.size = bfd_get_section_size (sectp);
13069 }
13070 else if (section_is_p (sectp->name, &names->line_dwo))
13071 {
13072 dwp_file->sections.line.s.section = sectp;
13073 dwp_file->sections.line.size = bfd_get_section_size (sectp);
13074 }
13075 else if (section_is_p (sectp->name, &names->loc_dwo))
13076 {
13077 dwp_file->sections.loc.s.section = sectp;
13078 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
13079 }
13080 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13081 {
13082 dwp_file->sections.macinfo.s.section = sectp;
13083 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13084 }
13085 else if (section_is_p (sectp->name, &names->macro_dwo))
13086 {
13087 dwp_file->sections.macro.s.section = sectp;
13088 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13089 }
13090 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13091 {
13092 dwp_file->sections.str_offsets.s.section = sectp;
13093 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13094 }
13095 else if (section_is_p (sectp->name, &names->types_dwo))
13096 {
13097 dwp_file->sections.types.s.section = sectp;
13098 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13099 }
13100 }
13101
13102 /* Hash function for dwp_file loaded CUs/TUs. */
13103
13104 static hashval_t
13105 hash_dwp_loaded_cutus (const void *item)
13106 {
13107 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13108
13109 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13110 return dwo_unit->signature;
13111 }
13112
13113 /* Equality function for dwp_file loaded CUs/TUs. */
13114
13115 static int
13116 eq_dwp_loaded_cutus (const void *a, const void *b)
13117 {
13118 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13119 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13120
13121 return dua->signature == dub->signature;
13122 }
13123
13124 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13125
13126 static htab_t
13127 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13128 {
13129 return htab_create_alloc_ex (3,
13130 hash_dwp_loaded_cutus,
13131 eq_dwp_loaded_cutus,
13132 NULL,
13133 &objfile->objfile_obstack,
13134 hashtab_obstack_allocate,
13135 dummy_obstack_deallocate);
13136 }
13137
13138 /* Try to open DWP file FILE_NAME.
13139 The result is the bfd handle of the file.
13140 If there is a problem finding or opening the file, return NULL.
13141 Upon success, the canonicalized path of the file is stored in the bfd,
13142 same as symfile_bfd_open. */
13143
13144 static gdb_bfd_ref_ptr
13145 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13146 const char *file_name)
13147 {
13148 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13149 1 /*is_dwp*/,
13150 1 /*search_cwd*/));
13151 if (abfd != NULL)
13152 return abfd;
13153
13154 /* Work around upstream bug 15652.
13155 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13156 [Whether that's a "bug" is debatable, but it is getting in our way.]
13157 We have no real idea where the dwp file is, because gdb's realpath-ing
13158 of the executable's path may have discarded the needed info.
13159 [IWBN if the dwp file name was recorded in the executable, akin to
13160 .gnu_debuglink, but that doesn't exist yet.]
13161 Strip the directory from FILE_NAME and search again. */
13162 if (*debug_file_directory != '\0')
13163 {
13164 /* Don't implicitly search the current directory here.
13165 If the user wants to search "." to handle this case,
13166 it must be added to debug-file-directory. */
13167 return try_open_dwop_file (dwarf2_per_objfile,
13168 lbasename (file_name), 1 /*is_dwp*/,
13169 0 /*search_cwd*/);
13170 }
13171
13172 return NULL;
13173 }
13174
13175 /* Initialize the use of the DWP file for the current objfile.
13176 By convention the name of the DWP file is ${objfile}.dwp.
13177 The result is NULL if it can't be found. */
13178
13179 static std::unique_ptr<struct dwp_file>
13180 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13181 {
13182 struct objfile *objfile = dwarf2_per_objfile->objfile;
13183
13184 /* Try to find first .dwp for the binary file before any symbolic links
13185 resolving. */
13186
13187 /* If the objfile is a debug file, find the name of the real binary
13188 file and get the name of dwp file from there. */
13189 std::string dwp_name;
13190 if (objfile->separate_debug_objfile_backlink != NULL)
13191 {
13192 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13193 const char *backlink_basename = lbasename (backlink->original_name);
13194
13195 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13196 }
13197 else
13198 dwp_name = objfile->original_name;
13199
13200 dwp_name += ".dwp";
13201
13202 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13203 if (dbfd == NULL
13204 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13205 {
13206 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13207 dwp_name = objfile_name (objfile);
13208 dwp_name += ".dwp";
13209 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13210 }
13211
13212 if (dbfd == NULL)
13213 {
13214 if (dwarf_read_debug)
13215 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13216 return std::unique_ptr<dwp_file> ();
13217 }
13218
13219 const char *name = bfd_get_filename (dbfd.get ());
13220 std::unique_ptr<struct dwp_file> dwp_file
13221 (new struct dwp_file (name, std::move (dbfd)));
13222
13223 /* +1: section 0 is unused */
13224 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
13225 dwp_file->elf_sections =
13226 OBSTACK_CALLOC (&objfile->objfile_obstack,
13227 dwp_file->num_sections, asection *);
13228
13229 bfd_map_over_sections (dwp_file->dbfd.get (),
13230 dwarf2_locate_common_dwp_sections,
13231 dwp_file.get ());
13232
13233 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13234 0);
13235
13236 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13237 1);
13238
13239 /* The DWP file version is stored in the hash table. Oh well. */
13240 if (dwp_file->cus && dwp_file->tus
13241 && dwp_file->cus->version != dwp_file->tus->version)
13242 {
13243 /* Technically speaking, we should try to limp along, but this is
13244 pretty bizarre. We use pulongest here because that's the established
13245 portability solution (e.g, we cannot use %u for uint32_t). */
13246 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13247 " TU version %s [in DWP file %s]"),
13248 pulongest (dwp_file->cus->version),
13249 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13250 }
13251
13252 if (dwp_file->cus)
13253 dwp_file->version = dwp_file->cus->version;
13254 else if (dwp_file->tus)
13255 dwp_file->version = dwp_file->tus->version;
13256 else
13257 dwp_file->version = 2;
13258
13259 if (dwp_file->version == 2)
13260 bfd_map_over_sections (dwp_file->dbfd.get (),
13261 dwarf2_locate_v2_dwp_sections,
13262 dwp_file.get ());
13263
13264 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13265 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13266
13267 if (dwarf_read_debug)
13268 {
13269 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13270 fprintf_unfiltered (gdb_stdlog,
13271 " %s CUs, %s TUs\n",
13272 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13273 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13274 }
13275
13276 return dwp_file;
13277 }
13278
13279 /* Wrapper around open_and_init_dwp_file, only open it once. */
13280
13281 static struct dwp_file *
13282 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13283 {
13284 if (! dwarf2_per_objfile->dwp_checked)
13285 {
13286 dwarf2_per_objfile->dwp_file
13287 = open_and_init_dwp_file (dwarf2_per_objfile);
13288 dwarf2_per_objfile->dwp_checked = 1;
13289 }
13290 return dwarf2_per_objfile->dwp_file.get ();
13291 }
13292
13293 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13294 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13295 or in the DWP file for the objfile, referenced by THIS_UNIT.
13296 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13297 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13298
13299 This is called, for example, when wanting to read a variable with a
13300 complex location. Therefore we don't want to do file i/o for every call.
13301 Therefore we don't want to look for a DWO file on every call.
13302 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13303 then we check if we've already seen DWO_NAME, and only THEN do we check
13304 for a DWO file.
13305
13306 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13307 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13308
13309 static struct dwo_unit *
13310 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13311 const char *dwo_name, const char *comp_dir,
13312 ULONGEST signature, int is_debug_types)
13313 {
13314 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13315 struct objfile *objfile = dwarf2_per_objfile->objfile;
13316 const char *kind = is_debug_types ? "TU" : "CU";
13317 void **dwo_file_slot;
13318 struct dwo_file *dwo_file;
13319 struct dwp_file *dwp_file;
13320
13321 /* First see if there's a DWP file.
13322 If we have a DWP file but didn't find the DWO inside it, don't
13323 look for the original DWO file. It makes gdb behave differently
13324 depending on whether one is debugging in the build tree. */
13325
13326 dwp_file = get_dwp_file (dwarf2_per_objfile);
13327 if (dwp_file != NULL)
13328 {
13329 const struct dwp_hash_table *dwp_htab =
13330 is_debug_types ? dwp_file->tus : dwp_file->cus;
13331
13332 if (dwp_htab != NULL)
13333 {
13334 struct dwo_unit *dwo_cutu =
13335 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13336 signature, is_debug_types);
13337
13338 if (dwo_cutu != NULL)
13339 {
13340 if (dwarf_read_debug)
13341 {
13342 fprintf_unfiltered (gdb_stdlog,
13343 "Virtual DWO %s %s found: @%s\n",
13344 kind, hex_string (signature),
13345 host_address_to_string (dwo_cutu));
13346 }
13347 return dwo_cutu;
13348 }
13349 }
13350 }
13351 else
13352 {
13353 /* No DWP file, look for the DWO file. */
13354
13355 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13356 dwo_name, comp_dir);
13357 if (*dwo_file_slot == NULL)
13358 {
13359 /* Read in the file and build a table of the CUs/TUs it contains. */
13360 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13361 }
13362 /* NOTE: This will be NULL if unable to open the file. */
13363 dwo_file = (struct dwo_file *) *dwo_file_slot;
13364
13365 if (dwo_file != NULL)
13366 {
13367 struct dwo_unit *dwo_cutu = NULL;
13368
13369 if (is_debug_types && dwo_file->tus)
13370 {
13371 struct dwo_unit find_dwo_cutu;
13372
13373 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13374 find_dwo_cutu.signature = signature;
13375 dwo_cutu
13376 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13377 }
13378 else if (!is_debug_types && dwo_file->cus)
13379 {
13380 struct dwo_unit find_dwo_cutu;
13381
13382 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13383 find_dwo_cutu.signature = signature;
13384 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13385 &find_dwo_cutu);
13386 }
13387
13388 if (dwo_cutu != NULL)
13389 {
13390 if (dwarf_read_debug)
13391 {
13392 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13393 kind, dwo_name, hex_string (signature),
13394 host_address_to_string (dwo_cutu));
13395 }
13396 return dwo_cutu;
13397 }
13398 }
13399 }
13400
13401 /* We didn't find it. This could mean a dwo_id mismatch, or
13402 someone deleted the DWO/DWP file, or the search path isn't set up
13403 correctly to find the file. */
13404
13405 if (dwarf_read_debug)
13406 {
13407 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13408 kind, dwo_name, hex_string (signature));
13409 }
13410
13411 /* This is a warning and not a complaint because it can be caused by
13412 pilot error (e.g., user accidentally deleting the DWO). */
13413 {
13414 /* Print the name of the DWP file if we looked there, helps the user
13415 better diagnose the problem. */
13416 std::string dwp_text;
13417
13418 if (dwp_file != NULL)
13419 dwp_text = string_printf (" [in DWP file %s]",
13420 lbasename (dwp_file->name));
13421
13422 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13423 " [in module %s]"),
13424 kind, dwo_name, hex_string (signature),
13425 dwp_text.c_str (),
13426 this_unit->is_debug_types ? "TU" : "CU",
13427 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13428 }
13429 return NULL;
13430 }
13431
13432 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13433 See lookup_dwo_cutu_unit for details. */
13434
13435 static struct dwo_unit *
13436 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13437 const char *dwo_name, const char *comp_dir,
13438 ULONGEST signature)
13439 {
13440 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13441 }
13442
13443 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13444 See lookup_dwo_cutu_unit for details. */
13445
13446 static struct dwo_unit *
13447 lookup_dwo_type_unit (struct signatured_type *this_tu,
13448 const char *dwo_name, const char *comp_dir)
13449 {
13450 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13451 }
13452
13453 /* Traversal function for queue_and_load_all_dwo_tus. */
13454
13455 static int
13456 queue_and_load_dwo_tu (void **slot, void *info)
13457 {
13458 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13459 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13460 ULONGEST signature = dwo_unit->signature;
13461 struct signatured_type *sig_type =
13462 lookup_dwo_signatured_type (per_cu->cu, signature);
13463
13464 if (sig_type != NULL)
13465 {
13466 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13467
13468 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13469 a real dependency of PER_CU on SIG_TYPE. That is detected later
13470 while processing PER_CU. */
13471 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13472 load_full_type_unit (sig_cu);
13473 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13474 }
13475
13476 return 1;
13477 }
13478
13479 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13480 The DWO may have the only definition of the type, though it may not be
13481 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13482 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13483
13484 static void
13485 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13486 {
13487 struct dwo_unit *dwo_unit;
13488 struct dwo_file *dwo_file;
13489
13490 gdb_assert (!per_cu->is_debug_types);
13491 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13492 gdb_assert (per_cu->cu != NULL);
13493
13494 dwo_unit = per_cu->cu->dwo_unit;
13495 gdb_assert (dwo_unit != NULL);
13496
13497 dwo_file = dwo_unit->dwo_file;
13498 if (dwo_file->tus != NULL)
13499 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13500 }
13501
13502 /* Free all resources associated with DWO_FILE.
13503 Close the DWO file and munmap the sections. */
13504
13505 static void
13506 free_dwo_file (struct dwo_file *dwo_file)
13507 {
13508 /* Note: dbfd is NULL for virtual DWO files. */
13509 gdb_bfd_unref (dwo_file->dbfd);
13510
13511 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13512 }
13513
13514 /* Traversal function for free_dwo_files. */
13515
13516 static int
13517 free_dwo_file_from_slot (void **slot, void *info)
13518 {
13519 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13520
13521 free_dwo_file (dwo_file);
13522
13523 return 1;
13524 }
13525
13526 /* Free all resources associated with DWO_FILES. */
13527
13528 static void
13529 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13530 {
13531 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
13532 }
13533 \f
13534 /* Read in various DIEs. */
13535
13536 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13537 Inherit only the children of the DW_AT_abstract_origin DIE not being
13538 already referenced by DW_AT_abstract_origin from the children of the
13539 current DIE. */
13540
13541 static void
13542 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13543 {
13544 struct die_info *child_die;
13545 sect_offset *offsetp;
13546 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13547 struct die_info *origin_die;
13548 /* Iterator of the ORIGIN_DIE children. */
13549 struct die_info *origin_child_die;
13550 struct attribute *attr;
13551 struct dwarf2_cu *origin_cu;
13552 struct pending **origin_previous_list_in_scope;
13553
13554 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13555 if (!attr)
13556 return;
13557
13558 /* Note that following die references may follow to a die in a
13559 different cu. */
13560
13561 origin_cu = cu;
13562 origin_die = follow_die_ref (die, attr, &origin_cu);
13563
13564 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13565 symbols in. */
13566 origin_previous_list_in_scope = origin_cu->list_in_scope;
13567 origin_cu->list_in_scope = cu->list_in_scope;
13568
13569 if (die->tag != origin_die->tag
13570 && !(die->tag == DW_TAG_inlined_subroutine
13571 && origin_die->tag == DW_TAG_subprogram))
13572 complaint (_("DIE %s and its abstract origin %s have different tags"),
13573 sect_offset_str (die->sect_off),
13574 sect_offset_str (origin_die->sect_off));
13575
13576 std::vector<sect_offset> offsets;
13577
13578 for (child_die = die->child;
13579 child_die && child_die->tag;
13580 child_die = sibling_die (child_die))
13581 {
13582 struct die_info *child_origin_die;
13583 struct dwarf2_cu *child_origin_cu;
13584
13585 /* We are trying to process concrete instance entries:
13586 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13587 it's not relevant to our analysis here. i.e. detecting DIEs that are
13588 present in the abstract instance but not referenced in the concrete
13589 one. */
13590 if (child_die->tag == DW_TAG_call_site
13591 || child_die->tag == DW_TAG_GNU_call_site)
13592 continue;
13593
13594 /* For each CHILD_DIE, find the corresponding child of
13595 ORIGIN_DIE. If there is more than one layer of
13596 DW_AT_abstract_origin, follow them all; there shouldn't be,
13597 but GCC versions at least through 4.4 generate this (GCC PR
13598 40573). */
13599 child_origin_die = child_die;
13600 child_origin_cu = cu;
13601 while (1)
13602 {
13603 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13604 child_origin_cu);
13605 if (attr == NULL)
13606 break;
13607 child_origin_die = follow_die_ref (child_origin_die, attr,
13608 &child_origin_cu);
13609 }
13610
13611 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13612 counterpart may exist. */
13613 if (child_origin_die != child_die)
13614 {
13615 if (child_die->tag != child_origin_die->tag
13616 && !(child_die->tag == DW_TAG_inlined_subroutine
13617 && child_origin_die->tag == DW_TAG_subprogram))
13618 complaint (_("Child DIE %s and its abstract origin %s have "
13619 "different tags"),
13620 sect_offset_str (child_die->sect_off),
13621 sect_offset_str (child_origin_die->sect_off));
13622 if (child_origin_die->parent != origin_die)
13623 complaint (_("Child DIE %s and its abstract origin %s have "
13624 "different parents"),
13625 sect_offset_str (child_die->sect_off),
13626 sect_offset_str (child_origin_die->sect_off));
13627 else
13628 offsets.push_back (child_origin_die->sect_off);
13629 }
13630 }
13631 std::sort (offsets.begin (), offsets.end ());
13632 sect_offset *offsets_end = offsets.data () + offsets.size ();
13633 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13634 if (offsetp[-1] == *offsetp)
13635 complaint (_("Multiple children of DIE %s refer "
13636 "to DIE %s as their abstract origin"),
13637 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13638
13639 offsetp = offsets.data ();
13640 origin_child_die = origin_die->child;
13641 while (origin_child_die && origin_child_die->tag)
13642 {
13643 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13644 while (offsetp < offsets_end
13645 && *offsetp < origin_child_die->sect_off)
13646 offsetp++;
13647 if (offsetp >= offsets_end
13648 || *offsetp > origin_child_die->sect_off)
13649 {
13650 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13651 Check whether we're already processing ORIGIN_CHILD_DIE.
13652 This can happen with mutually referenced abstract_origins.
13653 PR 16581. */
13654 if (!origin_child_die->in_process)
13655 process_die (origin_child_die, origin_cu);
13656 }
13657 origin_child_die = sibling_die (origin_child_die);
13658 }
13659 origin_cu->list_in_scope = origin_previous_list_in_scope;
13660 }
13661
13662 static void
13663 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13664 {
13665 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13666 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13667 struct context_stack *newobj;
13668 CORE_ADDR lowpc;
13669 CORE_ADDR highpc;
13670 struct die_info *child_die;
13671 struct attribute *attr, *call_line, *call_file;
13672 const char *name;
13673 CORE_ADDR baseaddr;
13674 struct block *block;
13675 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13676 std::vector<struct symbol *> template_args;
13677 struct template_symbol *templ_func = NULL;
13678
13679 if (inlined_func)
13680 {
13681 /* If we do not have call site information, we can't show the
13682 caller of this inlined function. That's too confusing, so
13683 only use the scope for local variables. */
13684 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13685 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13686 if (call_line == NULL || call_file == NULL)
13687 {
13688 read_lexical_block_scope (die, cu);
13689 return;
13690 }
13691 }
13692
13693 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13694
13695 name = dwarf2_name (die, cu);
13696
13697 /* Ignore functions with missing or empty names. These are actually
13698 illegal according to the DWARF standard. */
13699 if (name == NULL)
13700 {
13701 complaint (_("missing name for subprogram DIE at %s"),
13702 sect_offset_str (die->sect_off));
13703 return;
13704 }
13705
13706 /* Ignore functions with missing or invalid low and high pc attributes. */
13707 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13708 <= PC_BOUNDS_INVALID)
13709 {
13710 attr = dwarf2_attr (die, DW_AT_external, cu);
13711 if (!attr || !DW_UNSND (attr))
13712 complaint (_("cannot get low and high bounds "
13713 "for subprogram DIE at %s"),
13714 sect_offset_str (die->sect_off));
13715 return;
13716 }
13717
13718 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13719 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13720
13721 /* If we have any template arguments, then we must allocate a
13722 different sort of symbol. */
13723 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13724 {
13725 if (child_die->tag == DW_TAG_template_type_param
13726 || child_die->tag == DW_TAG_template_value_param)
13727 {
13728 templ_func = allocate_template_symbol (objfile);
13729 templ_func->subclass = SYMBOL_TEMPLATE;
13730 break;
13731 }
13732 }
13733
13734 newobj = cu->builder->push_context (0, lowpc);
13735 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13736 (struct symbol *) templ_func);
13737
13738 /* If there is a location expression for DW_AT_frame_base, record
13739 it. */
13740 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13741 if (attr)
13742 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13743
13744 /* If there is a location for the static link, record it. */
13745 newobj->static_link = NULL;
13746 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13747 if (attr)
13748 {
13749 newobj->static_link
13750 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13751 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13752 }
13753
13754 cu->list_in_scope = cu->builder->get_local_symbols ();
13755
13756 if (die->child != NULL)
13757 {
13758 child_die = die->child;
13759 while (child_die && child_die->tag)
13760 {
13761 if (child_die->tag == DW_TAG_template_type_param
13762 || child_die->tag == DW_TAG_template_value_param)
13763 {
13764 struct symbol *arg = new_symbol (child_die, NULL, cu);
13765
13766 if (arg != NULL)
13767 template_args.push_back (arg);
13768 }
13769 else
13770 process_die (child_die, cu);
13771 child_die = sibling_die (child_die);
13772 }
13773 }
13774
13775 inherit_abstract_dies (die, cu);
13776
13777 /* If we have a DW_AT_specification, we might need to import using
13778 directives from the context of the specification DIE. See the
13779 comment in determine_prefix. */
13780 if (cu->language == language_cplus
13781 && dwarf2_attr (die, DW_AT_specification, cu))
13782 {
13783 struct dwarf2_cu *spec_cu = cu;
13784 struct die_info *spec_die = die_specification (die, &spec_cu);
13785
13786 while (spec_die)
13787 {
13788 child_die = spec_die->child;
13789 while (child_die && child_die->tag)
13790 {
13791 if (child_die->tag == DW_TAG_imported_module)
13792 process_die (child_die, spec_cu);
13793 child_die = sibling_die (child_die);
13794 }
13795
13796 /* In some cases, GCC generates specification DIEs that
13797 themselves contain DW_AT_specification attributes. */
13798 spec_die = die_specification (spec_die, &spec_cu);
13799 }
13800 }
13801
13802 struct context_stack cstk = cu->builder->pop_context ();
13803 /* Make a block for the local symbols within. */
13804 block = cu->builder->finish_block (cstk.name, cstk.old_blocks,
13805 cstk.static_link, lowpc, highpc);
13806
13807 /* For C++, set the block's scope. */
13808 if ((cu->language == language_cplus
13809 || cu->language == language_fortran
13810 || cu->language == language_d
13811 || cu->language == language_rust)
13812 && cu->processing_has_namespace_info)
13813 block_set_scope (block, determine_prefix (die, cu),
13814 &objfile->objfile_obstack);
13815
13816 /* If we have address ranges, record them. */
13817 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13818
13819 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13820
13821 /* Attach template arguments to function. */
13822 if (!template_args.empty ())
13823 {
13824 gdb_assert (templ_func != NULL);
13825
13826 templ_func->n_template_arguments = template_args.size ();
13827 templ_func->template_arguments
13828 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13829 templ_func->n_template_arguments);
13830 memcpy (templ_func->template_arguments,
13831 template_args.data (),
13832 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13833
13834 /* Make sure that the symtab is set on the new symbols. Even
13835 though they don't appear in this symtab directly, other parts
13836 of gdb assume that symbols do, and this is reasonably
13837 true. */
13838 for (struct symbol *sym : template_args)
13839 symbol_set_symtab (sym, symbol_symtab (templ_func));
13840 }
13841
13842 /* In C++, we can have functions nested inside functions (e.g., when
13843 a function declares a class that has methods). This means that
13844 when we finish processing a function scope, we may need to go
13845 back to building a containing block's symbol lists. */
13846 *cu->builder->get_local_symbols () = cstk.locals;
13847 cu->builder->set_local_using_directives (cstk.local_using_directives);
13848
13849 /* If we've finished processing a top-level function, subsequent
13850 symbols go in the file symbol list. */
13851 if (cu->builder->outermost_context_p ())
13852 cu->list_in_scope = cu->builder->get_file_symbols ();
13853 }
13854
13855 /* Process all the DIES contained within a lexical block scope. Start
13856 a new scope, process the dies, and then close the scope. */
13857
13858 static void
13859 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13860 {
13861 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13862 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13863 CORE_ADDR lowpc, highpc;
13864 struct die_info *child_die;
13865 CORE_ADDR baseaddr;
13866
13867 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13868
13869 /* Ignore blocks with missing or invalid low and high pc attributes. */
13870 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13871 as multiple lexical blocks? Handling children in a sane way would
13872 be nasty. Might be easier to properly extend generic blocks to
13873 describe ranges. */
13874 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13875 {
13876 case PC_BOUNDS_NOT_PRESENT:
13877 /* DW_TAG_lexical_block has no attributes, process its children as if
13878 there was no wrapping by that DW_TAG_lexical_block.
13879 GCC does no longer produces such DWARF since GCC r224161. */
13880 for (child_die = die->child;
13881 child_die != NULL && child_die->tag;
13882 child_die = sibling_die (child_die))
13883 process_die (child_die, cu);
13884 return;
13885 case PC_BOUNDS_INVALID:
13886 return;
13887 }
13888 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13889 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13890
13891 cu->builder->push_context (0, lowpc);
13892 if (die->child != NULL)
13893 {
13894 child_die = die->child;
13895 while (child_die && child_die->tag)
13896 {
13897 process_die (child_die, cu);
13898 child_die = sibling_die (child_die);
13899 }
13900 }
13901 inherit_abstract_dies (die, cu);
13902 struct context_stack cstk = cu->builder->pop_context ();
13903
13904 if (*cu->builder->get_local_symbols () != NULL
13905 || (*cu->builder->get_local_using_directives ()) != NULL)
13906 {
13907 struct block *block
13908 = cu->builder->finish_block (0, cstk.old_blocks, NULL,
13909 cstk.start_addr, highpc);
13910
13911 /* Note that recording ranges after traversing children, as we
13912 do here, means that recording a parent's ranges entails
13913 walking across all its children's ranges as they appear in
13914 the address map, which is quadratic behavior.
13915
13916 It would be nicer to record the parent's ranges before
13917 traversing its children, simply overriding whatever you find
13918 there. But since we don't even decide whether to create a
13919 block until after we've traversed its children, that's hard
13920 to do. */
13921 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13922 }
13923 *cu->builder->get_local_symbols () = cstk.locals;
13924 cu->builder->set_local_using_directives (cstk.local_using_directives);
13925 }
13926
13927 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13928
13929 static void
13930 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13931 {
13932 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13933 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13934 CORE_ADDR pc, baseaddr;
13935 struct attribute *attr;
13936 struct call_site *call_site, call_site_local;
13937 void **slot;
13938 int nparams;
13939 struct die_info *child_die;
13940
13941 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13942
13943 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13944 if (attr == NULL)
13945 {
13946 /* This was a pre-DWARF-5 GNU extension alias
13947 for DW_AT_call_return_pc. */
13948 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13949 }
13950 if (!attr)
13951 {
13952 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13953 "DIE %s [in module %s]"),
13954 sect_offset_str (die->sect_off), objfile_name (objfile));
13955 return;
13956 }
13957 pc = attr_value_as_address (attr) + baseaddr;
13958 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13959
13960 if (cu->call_site_htab == NULL)
13961 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13962 NULL, &objfile->objfile_obstack,
13963 hashtab_obstack_allocate, NULL);
13964 call_site_local.pc = pc;
13965 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13966 if (*slot != NULL)
13967 {
13968 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13969 "DIE %s [in module %s]"),
13970 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13971 objfile_name (objfile));
13972 return;
13973 }
13974
13975 /* Count parameters at the caller. */
13976
13977 nparams = 0;
13978 for (child_die = die->child; child_die && child_die->tag;
13979 child_die = sibling_die (child_die))
13980 {
13981 if (child_die->tag != DW_TAG_call_site_parameter
13982 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13983 {
13984 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13985 "DW_TAG_call_site child DIE %s [in module %s]"),
13986 child_die->tag, sect_offset_str (child_die->sect_off),
13987 objfile_name (objfile));
13988 continue;
13989 }
13990
13991 nparams++;
13992 }
13993
13994 call_site
13995 = ((struct call_site *)
13996 obstack_alloc (&objfile->objfile_obstack,
13997 sizeof (*call_site)
13998 + (sizeof (*call_site->parameter) * (nparams - 1))));
13999 *slot = call_site;
14000 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
14001 call_site->pc = pc;
14002
14003 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
14004 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
14005 {
14006 struct die_info *func_die;
14007
14008 /* Skip also over DW_TAG_inlined_subroutine. */
14009 for (func_die = die->parent;
14010 func_die && func_die->tag != DW_TAG_subprogram
14011 && func_die->tag != DW_TAG_subroutine_type;
14012 func_die = func_die->parent);
14013
14014 /* DW_AT_call_all_calls is a superset
14015 of DW_AT_call_all_tail_calls. */
14016 if (func_die
14017 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
14018 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
14019 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
14020 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
14021 {
14022 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
14023 not complete. But keep CALL_SITE for look ups via call_site_htab,
14024 both the initial caller containing the real return address PC and
14025 the final callee containing the current PC of a chain of tail
14026 calls do not need to have the tail call list complete. But any
14027 function candidate for a virtual tail call frame searched via
14028 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
14029 determined unambiguously. */
14030 }
14031 else
14032 {
14033 struct type *func_type = NULL;
14034
14035 if (func_die)
14036 func_type = get_die_type (func_die, cu);
14037 if (func_type != NULL)
14038 {
14039 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
14040
14041 /* Enlist this call site to the function. */
14042 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
14043 TYPE_TAIL_CALL_LIST (func_type) = call_site;
14044 }
14045 else
14046 complaint (_("Cannot find function owning DW_TAG_call_site "
14047 "DIE %s [in module %s]"),
14048 sect_offset_str (die->sect_off), objfile_name (objfile));
14049 }
14050 }
14051
14052 attr = dwarf2_attr (die, DW_AT_call_target, cu);
14053 if (attr == NULL)
14054 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
14055 if (attr == NULL)
14056 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
14057 if (attr == NULL)
14058 {
14059 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
14060 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14061 }
14062 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
14063 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
14064 /* Keep NULL DWARF_BLOCK. */;
14065 else if (attr_form_is_block (attr))
14066 {
14067 struct dwarf2_locexpr_baton *dlbaton;
14068
14069 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14070 dlbaton->data = DW_BLOCK (attr)->data;
14071 dlbaton->size = DW_BLOCK (attr)->size;
14072 dlbaton->per_cu = cu->per_cu;
14073
14074 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14075 }
14076 else if (attr_form_is_ref (attr))
14077 {
14078 struct dwarf2_cu *target_cu = cu;
14079 struct die_info *target_die;
14080
14081 target_die = follow_die_ref (die, attr, &target_cu);
14082 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14083 if (die_is_declaration (target_die, target_cu))
14084 {
14085 const char *target_physname;
14086
14087 /* Prefer the mangled name; otherwise compute the demangled one. */
14088 target_physname = dw2_linkage_name (target_die, target_cu);
14089 if (target_physname == NULL)
14090 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14091 if (target_physname == NULL)
14092 complaint (_("DW_AT_call_target target DIE has invalid "
14093 "physname, for referencing DIE %s [in module %s]"),
14094 sect_offset_str (die->sect_off), objfile_name (objfile));
14095 else
14096 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14097 }
14098 else
14099 {
14100 CORE_ADDR lowpc;
14101
14102 /* DW_AT_entry_pc should be preferred. */
14103 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14104 <= PC_BOUNDS_INVALID)
14105 complaint (_("DW_AT_call_target target DIE has invalid "
14106 "low pc, for referencing DIE %s [in module %s]"),
14107 sect_offset_str (die->sect_off), objfile_name (objfile));
14108 else
14109 {
14110 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14111 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14112 }
14113 }
14114 }
14115 else
14116 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
14117 "block nor reference, for DIE %s [in module %s]"),
14118 sect_offset_str (die->sect_off), objfile_name (objfile));
14119
14120 call_site->per_cu = cu->per_cu;
14121
14122 for (child_die = die->child;
14123 child_die && child_die->tag;
14124 child_die = sibling_die (child_die))
14125 {
14126 struct call_site_parameter *parameter;
14127 struct attribute *loc, *origin;
14128
14129 if (child_die->tag != DW_TAG_call_site_parameter
14130 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14131 {
14132 /* Already printed the complaint above. */
14133 continue;
14134 }
14135
14136 gdb_assert (call_site->parameter_count < nparams);
14137 parameter = &call_site->parameter[call_site->parameter_count];
14138
14139 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14140 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14141 register is contained in DW_AT_call_value. */
14142
14143 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14144 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14145 if (origin == NULL)
14146 {
14147 /* This was a pre-DWARF-5 GNU extension alias
14148 for DW_AT_call_parameter. */
14149 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14150 }
14151 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14152 {
14153 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14154
14155 sect_offset sect_off
14156 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14157 if (!offset_in_cu_p (&cu->header, sect_off))
14158 {
14159 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14160 binding can be done only inside one CU. Such referenced DIE
14161 therefore cannot be even moved to DW_TAG_partial_unit. */
14162 complaint (_("DW_AT_call_parameter offset is not in CU for "
14163 "DW_TAG_call_site child DIE %s [in module %s]"),
14164 sect_offset_str (child_die->sect_off),
14165 objfile_name (objfile));
14166 continue;
14167 }
14168 parameter->u.param_cu_off
14169 = (cu_offset) (sect_off - cu->header.sect_off);
14170 }
14171 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14172 {
14173 complaint (_("No DW_FORM_block* DW_AT_location for "
14174 "DW_TAG_call_site child DIE %s [in module %s]"),
14175 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14176 continue;
14177 }
14178 else
14179 {
14180 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14181 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14182 if (parameter->u.dwarf_reg != -1)
14183 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14184 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14185 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14186 &parameter->u.fb_offset))
14187 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14188 else
14189 {
14190 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14191 "for DW_FORM_block* DW_AT_location is supported for "
14192 "DW_TAG_call_site child DIE %s "
14193 "[in module %s]"),
14194 sect_offset_str (child_die->sect_off),
14195 objfile_name (objfile));
14196 continue;
14197 }
14198 }
14199
14200 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14201 if (attr == NULL)
14202 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14203 if (!attr_form_is_block (attr))
14204 {
14205 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14206 "DW_TAG_call_site child DIE %s [in module %s]"),
14207 sect_offset_str (child_die->sect_off),
14208 objfile_name (objfile));
14209 continue;
14210 }
14211 parameter->value = DW_BLOCK (attr)->data;
14212 parameter->value_size = DW_BLOCK (attr)->size;
14213
14214 /* Parameters are not pre-cleared by memset above. */
14215 parameter->data_value = NULL;
14216 parameter->data_value_size = 0;
14217 call_site->parameter_count++;
14218
14219 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14220 if (attr == NULL)
14221 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14222 if (attr)
14223 {
14224 if (!attr_form_is_block (attr))
14225 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14226 "DW_TAG_call_site child DIE %s [in module %s]"),
14227 sect_offset_str (child_die->sect_off),
14228 objfile_name (objfile));
14229 else
14230 {
14231 parameter->data_value = DW_BLOCK (attr)->data;
14232 parameter->data_value_size = DW_BLOCK (attr)->size;
14233 }
14234 }
14235 }
14236 }
14237
14238 /* Helper function for read_variable. If DIE represents a virtual
14239 table, then return the type of the concrete object that is
14240 associated with the virtual table. Otherwise, return NULL. */
14241
14242 static struct type *
14243 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14244 {
14245 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14246 if (attr == NULL)
14247 return NULL;
14248
14249 /* Find the type DIE. */
14250 struct die_info *type_die = NULL;
14251 struct dwarf2_cu *type_cu = cu;
14252
14253 if (attr_form_is_ref (attr))
14254 type_die = follow_die_ref (die, attr, &type_cu);
14255 if (type_die == NULL)
14256 return NULL;
14257
14258 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14259 return NULL;
14260 return die_containing_type (type_die, type_cu);
14261 }
14262
14263 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14264
14265 static void
14266 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14267 {
14268 struct rust_vtable_symbol *storage = NULL;
14269
14270 if (cu->language == language_rust)
14271 {
14272 struct type *containing_type = rust_containing_type (die, cu);
14273
14274 if (containing_type != NULL)
14275 {
14276 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14277
14278 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14279 struct rust_vtable_symbol);
14280 initialize_objfile_symbol (storage);
14281 storage->concrete_type = containing_type;
14282 storage->subclass = SYMBOL_RUST_VTABLE;
14283 }
14284 }
14285
14286 new_symbol (die, NULL, cu, storage);
14287 }
14288
14289 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14290 reading .debug_rnglists.
14291 Callback's type should be:
14292 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14293 Return true if the attributes are present and valid, otherwise,
14294 return false. */
14295
14296 template <typename Callback>
14297 static bool
14298 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14299 Callback &&callback)
14300 {
14301 struct dwarf2_per_objfile *dwarf2_per_objfile
14302 = cu->per_cu->dwarf2_per_objfile;
14303 struct objfile *objfile = dwarf2_per_objfile->objfile;
14304 bfd *obfd = objfile->obfd;
14305 /* Base address selection entry. */
14306 CORE_ADDR base;
14307 int found_base;
14308 const gdb_byte *buffer;
14309 CORE_ADDR baseaddr;
14310 bool overflow = false;
14311
14312 found_base = cu->base_known;
14313 base = cu->base_address;
14314
14315 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14316 if (offset >= dwarf2_per_objfile->rnglists.size)
14317 {
14318 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14319 offset);
14320 return false;
14321 }
14322 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14323
14324 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14325
14326 while (1)
14327 {
14328 /* Initialize it due to a false compiler warning. */
14329 CORE_ADDR range_beginning = 0, range_end = 0;
14330 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14331 + dwarf2_per_objfile->rnglists.size);
14332 unsigned int bytes_read;
14333
14334 if (buffer == buf_end)
14335 {
14336 overflow = true;
14337 break;
14338 }
14339 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14340 switch (rlet)
14341 {
14342 case DW_RLE_end_of_list:
14343 break;
14344 case DW_RLE_base_address:
14345 if (buffer + cu->header.addr_size > buf_end)
14346 {
14347 overflow = true;
14348 break;
14349 }
14350 base = read_address (obfd, buffer, cu, &bytes_read);
14351 found_base = 1;
14352 buffer += bytes_read;
14353 break;
14354 case DW_RLE_start_length:
14355 if (buffer + cu->header.addr_size > buf_end)
14356 {
14357 overflow = true;
14358 break;
14359 }
14360 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14361 buffer += bytes_read;
14362 range_end = (range_beginning
14363 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14364 buffer += bytes_read;
14365 if (buffer > buf_end)
14366 {
14367 overflow = true;
14368 break;
14369 }
14370 break;
14371 case DW_RLE_offset_pair:
14372 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14373 buffer += bytes_read;
14374 if (buffer > buf_end)
14375 {
14376 overflow = true;
14377 break;
14378 }
14379 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14380 buffer += bytes_read;
14381 if (buffer > buf_end)
14382 {
14383 overflow = true;
14384 break;
14385 }
14386 break;
14387 case DW_RLE_start_end:
14388 if (buffer + 2 * cu->header.addr_size > buf_end)
14389 {
14390 overflow = true;
14391 break;
14392 }
14393 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14394 buffer += bytes_read;
14395 range_end = read_address (obfd, buffer, cu, &bytes_read);
14396 buffer += bytes_read;
14397 break;
14398 default:
14399 complaint (_("Invalid .debug_rnglists data (no base address)"));
14400 return false;
14401 }
14402 if (rlet == DW_RLE_end_of_list || overflow)
14403 break;
14404 if (rlet == DW_RLE_base_address)
14405 continue;
14406
14407 if (!found_base)
14408 {
14409 /* We have no valid base address for the ranges
14410 data. */
14411 complaint (_("Invalid .debug_rnglists data (no base address)"));
14412 return false;
14413 }
14414
14415 if (range_beginning > range_end)
14416 {
14417 /* Inverted range entries are invalid. */
14418 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14419 return false;
14420 }
14421
14422 /* Empty range entries have no effect. */
14423 if (range_beginning == range_end)
14424 continue;
14425
14426 range_beginning += base;
14427 range_end += base;
14428
14429 /* A not-uncommon case of bad debug info.
14430 Don't pollute the addrmap with bad data. */
14431 if (range_beginning + baseaddr == 0
14432 && !dwarf2_per_objfile->has_section_at_zero)
14433 {
14434 complaint (_(".debug_rnglists entry has start address of zero"
14435 " [in module %s]"), objfile_name (objfile));
14436 continue;
14437 }
14438
14439 callback (range_beginning, range_end);
14440 }
14441
14442 if (overflow)
14443 {
14444 complaint (_("Offset %d is not terminated "
14445 "for DW_AT_ranges attribute"),
14446 offset);
14447 return false;
14448 }
14449
14450 return true;
14451 }
14452
14453 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14454 Callback's type should be:
14455 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14456 Return 1 if the attributes are present and valid, otherwise, return 0. */
14457
14458 template <typename Callback>
14459 static int
14460 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14461 Callback &&callback)
14462 {
14463 struct dwarf2_per_objfile *dwarf2_per_objfile
14464 = cu->per_cu->dwarf2_per_objfile;
14465 struct objfile *objfile = dwarf2_per_objfile->objfile;
14466 struct comp_unit_head *cu_header = &cu->header;
14467 bfd *obfd = objfile->obfd;
14468 unsigned int addr_size = cu_header->addr_size;
14469 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14470 /* Base address selection entry. */
14471 CORE_ADDR base;
14472 int found_base;
14473 unsigned int dummy;
14474 const gdb_byte *buffer;
14475 CORE_ADDR baseaddr;
14476
14477 if (cu_header->version >= 5)
14478 return dwarf2_rnglists_process (offset, cu, callback);
14479
14480 found_base = cu->base_known;
14481 base = cu->base_address;
14482
14483 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14484 if (offset >= dwarf2_per_objfile->ranges.size)
14485 {
14486 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14487 offset);
14488 return 0;
14489 }
14490 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14491
14492 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14493
14494 while (1)
14495 {
14496 CORE_ADDR range_beginning, range_end;
14497
14498 range_beginning = read_address (obfd, buffer, cu, &dummy);
14499 buffer += addr_size;
14500 range_end = read_address (obfd, buffer, cu, &dummy);
14501 buffer += addr_size;
14502 offset += 2 * addr_size;
14503
14504 /* An end of list marker is a pair of zero addresses. */
14505 if (range_beginning == 0 && range_end == 0)
14506 /* Found the end of list entry. */
14507 break;
14508
14509 /* Each base address selection entry is a pair of 2 values.
14510 The first is the largest possible address, the second is
14511 the base address. Check for a base address here. */
14512 if ((range_beginning & mask) == mask)
14513 {
14514 /* If we found the largest possible address, then we already
14515 have the base address in range_end. */
14516 base = range_end;
14517 found_base = 1;
14518 continue;
14519 }
14520
14521 if (!found_base)
14522 {
14523 /* We have no valid base address for the ranges
14524 data. */
14525 complaint (_("Invalid .debug_ranges data (no base address)"));
14526 return 0;
14527 }
14528
14529 if (range_beginning > range_end)
14530 {
14531 /* Inverted range entries are invalid. */
14532 complaint (_("Invalid .debug_ranges data (inverted range)"));
14533 return 0;
14534 }
14535
14536 /* Empty range entries have no effect. */
14537 if (range_beginning == range_end)
14538 continue;
14539
14540 range_beginning += base;
14541 range_end += base;
14542
14543 /* A not-uncommon case of bad debug info.
14544 Don't pollute the addrmap with bad data. */
14545 if (range_beginning + baseaddr == 0
14546 && !dwarf2_per_objfile->has_section_at_zero)
14547 {
14548 complaint (_(".debug_ranges entry has start address of zero"
14549 " [in module %s]"), objfile_name (objfile));
14550 continue;
14551 }
14552
14553 callback (range_beginning, range_end);
14554 }
14555
14556 return 1;
14557 }
14558
14559 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14560 Return 1 if the attributes are present and valid, otherwise, return 0.
14561 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14562
14563 static int
14564 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14565 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14566 struct partial_symtab *ranges_pst)
14567 {
14568 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14569 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14570 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14571 SECT_OFF_TEXT (objfile));
14572 int low_set = 0;
14573 CORE_ADDR low = 0;
14574 CORE_ADDR high = 0;
14575 int retval;
14576
14577 retval = dwarf2_ranges_process (offset, cu,
14578 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14579 {
14580 if (ranges_pst != NULL)
14581 {
14582 CORE_ADDR lowpc;
14583 CORE_ADDR highpc;
14584
14585 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14586 range_beginning + baseaddr)
14587 - baseaddr);
14588 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14589 range_end + baseaddr)
14590 - baseaddr);
14591 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
14592 ranges_pst);
14593 }
14594
14595 /* FIXME: This is recording everything as a low-high
14596 segment of consecutive addresses. We should have a
14597 data structure for discontiguous block ranges
14598 instead. */
14599 if (! low_set)
14600 {
14601 low = range_beginning;
14602 high = range_end;
14603 low_set = 1;
14604 }
14605 else
14606 {
14607 if (range_beginning < low)
14608 low = range_beginning;
14609 if (range_end > high)
14610 high = range_end;
14611 }
14612 });
14613 if (!retval)
14614 return 0;
14615
14616 if (! low_set)
14617 /* If the first entry is an end-of-list marker, the range
14618 describes an empty scope, i.e. no instructions. */
14619 return 0;
14620
14621 if (low_return)
14622 *low_return = low;
14623 if (high_return)
14624 *high_return = high;
14625 return 1;
14626 }
14627
14628 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14629 definition for the return value. *LOWPC and *HIGHPC are set iff
14630 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14631
14632 static enum pc_bounds_kind
14633 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14634 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14635 struct partial_symtab *pst)
14636 {
14637 struct dwarf2_per_objfile *dwarf2_per_objfile
14638 = cu->per_cu->dwarf2_per_objfile;
14639 struct attribute *attr;
14640 struct attribute *attr_high;
14641 CORE_ADDR low = 0;
14642 CORE_ADDR high = 0;
14643 enum pc_bounds_kind ret;
14644
14645 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14646 if (attr_high)
14647 {
14648 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14649 if (attr)
14650 {
14651 low = attr_value_as_address (attr);
14652 high = attr_value_as_address (attr_high);
14653 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14654 high += low;
14655 }
14656 else
14657 /* Found high w/o low attribute. */
14658 return PC_BOUNDS_INVALID;
14659
14660 /* Found consecutive range of addresses. */
14661 ret = PC_BOUNDS_HIGH_LOW;
14662 }
14663 else
14664 {
14665 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14666 if (attr != NULL)
14667 {
14668 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14669 We take advantage of the fact that DW_AT_ranges does not appear
14670 in DW_TAG_compile_unit of DWO files. */
14671 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14672 unsigned int ranges_offset = (DW_UNSND (attr)
14673 + (need_ranges_base
14674 ? cu->ranges_base
14675 : 0));
14676
14677 /* Value of the DW_AT_ranges attribute is the offset in the
14678 .debug_ranges section. */
14679 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14680 return PC_BOUNDS_INVALID;
14681 /* Found discontinuous range of addresses. */
14682 ret = PC_BOUNDS_RANGES;
14683 }
14684 else
14685 return PC_BOUNDS_NOT_PRESENT;
14686 }
14687
14688 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14689 if (high <= low)
14690 return PC_BOUNDS_INVALID;
14691
14692 /* When using the GNU linker, .gnu.linkonce. sections are used to
14693 eliminate duplicate copies of functions and vtables and such.
14694 The linker will arbitrarily choose one and discard the others.
14695 The AT_*_pc values for such functions refer to local labels in
14696 these sections. If the section from that file was discarded, the
14697 labels are not in the output, so the relocs get a value of 0.
14698 If this is a discarded function, mark the pc bounds as invalid,
14699 so that GDB will ignore it. */
14700 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14701 return PC_BOUNDS_INVALID;
14702
14703 *lowpc = low;
14704 if (highpc)
14705 *highpc = high;
14706 return ret;
14707 }
14708
14709 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14710 its low and high PC addresses. Do nothing if these addresses could not
14711 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14712 and HIGHPC to the high address if greater than HIGHPC. */
14713
14714 static void
14715 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14716 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14717 struct dwarf2_cu *cu)
14718 {
14719 CORE_ADDR low, high;
14720 struct die_info *child = die->child;
14721
14722 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14723 {
14724 *lowpc = std::min (*lowpc, low);
14725 *highpc = std::max (*highpc, high);
14726 }
14727
14728 /* If the language does not allow nested subprograms (either inside
14729 subprograms or lexical blocks), we're done. */
14730 if (cu->language != language_ada)
14731 return;
14732
14733 /* Check all the children of the given DIE. If it contains nested
14734 subprograms, then check their pc bounds. Likewise, we need to
14735 check lexical blocks as well, as they may also contain subprogram
14736 definitions. */
14737 while (child && child->tag)
14738 {
14739 if (child->tag == DW_TAG_subprogram
14740 || child->tag == DW_TAG_lexical_block)
14741 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14742 child = sibling_die (child);
14743 }
14744 }
14745
14746 /* Get the low and high pc's represented by the scope DIE, and store
14747 them in *LOWPC and *HIGHPC. If the correct values can't be
14748 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14749
14750 static void
14751 get_scope_pc_bounds (struct die_info *die,
14752 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14753 struct dwarf2_cu *cu)
14754 {
14755 CORE_ADDR best_low = (CORE_ADDR) -1;
14756 CORE_ADDR best_high = (CORE_ADDR) 0;
14757 CORE_ADDR current_low, current_high;
14758
14759 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14760 >= PC_BOUNDS_RANGES)
14761 {
14762 best_low = current_low;
14763 best_high = current_high;
14764 }
14765 else
14766 {
14767 struct die_info *child = die->child;
14768
14769 while (child && child->tag)
14770 {
14771 switch (child->tag) {
14772 case DW_TAG_subprogram:
14773 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14774 break;
14775 case DW_TAG_namespace:
14776 case DW_TAG_module:
14777 /* FIXME: carlton/2004-01-16: Should we do this for
14778 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14779 that current GCC's always emit the DIEs corresponding
14780 to definitions of methods of classes as children of a
14781 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14782 the DIEs giving the declarations, which could be
14783 anywhere). But I don't see any reason why the
14784 standards says that they have to be there. */
14785 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14786
14787 if (current_low != ((CORE_ADDR) -1))
14788 {
14789 best_low = std::min (best_low, current_low);
14790 best_high = std::max (best_high, current_high);
14791 }
14792 break;
14793 default:
14794 /* Ignore. */
14795 break;
14796 }
14797
14798 child = sibling_die (child);
14799 }
14800 }
14801
14802 *lowpc = best_low;
14803 *highpc = best_high;
14804 }
14805
14806 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14807 in DIE. */
14808
14809 static void
14810 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14811 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14812 {
14813 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14814 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14815 struct attribute *attr;
14816 struct attribute *attr_high;
14817
14818 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14819 if (attr_high)
14820 {
14821 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14822 if (attr)
14823 {
14824 CORE_ADDR low = attr_value_as_address (attr);
14825 CORE_ADDR high = attr_value_as_address (attr_high);
14826
14827 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14828 high += low;
14829
14830 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14831 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14832 cu->builder->record_block_range (block, low, high - 1);
14833 }
14834 }
14835
14836 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14837 if (attr)
14838 {
14839 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14840 We take advantage of the fact that DW_AT_ranges does not appear
14841 in DW_TAG_compile_unit of DWO files. */
14842 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14843
14844 /* The value of the DW_AT_ranges attribute is the offset of the
14845 address range list in the .debug_ranges section. */
14846 unsigned long offset = (DW_UNSND (attr)
14847 + (need_ranges_base ? cu->ranges_base : 0));
14848
14849 std::vector<blockrange> blockvec;
14850 dwarf2_ranges_process (offset, cu,
14851 [&] (CORE_ADDR start, CORE_ADDR end)
14852 {
14853 start += baseaddr;
14854 end += baseaddr;
14855 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14856 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14857 cu->builder->record_block_range (block, start, end - 1);
14858 blockvec.emplace_back (start, end);
14859 });
14860
14861 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14862 }
14863 }
14864
14865 /* Check whether the producer field indicates either of GCC < 4.6, or the
14866 Intel C/C++ compiler, and cache the result in CU. */
14867
14868 static void
14869 check_producer (struct dwarf2_cu *cu)
14870 {
14871 int major, minor;
14872
14873 if (cu->producer == NULL)
14874 {
14875 /* For unknown compilers expect their behavior is DWARF version
14876 compliant.
14877
14878 GCC started to support .debug_types sections by -gdwarf-4 since
14879 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14880 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14881 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14882 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14883 }
14884 else if (producer_is_gcc (cu->producer, &major, &minor))
14885 {
14886 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14887 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14888 }
14889 else if (producer_is_icc (cu->producer, &major, &minor))
14890 cu->producer_is_icc_lt_14 = major < 14;
14891 else
14892 {
14893 /* For other non-GCC compilers, expect their behavior is DWARF version
14894 compliant. */
14895 }
14896
14897 cu->checked_producer = 1;
14898 }
14899
14900 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14901 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14902 during 4.6.0 experimental. */
14903
14904 static int
14905 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14906 {
14907 if (!cu->checked_producer)
14908 check_producer (cu);
14909
14910 return cu->producer_is_gxx_lt_4_6;
14911 }
14912
14913 /* Return the default accessibility type if it is not overriden by
14914 DW_AT_accessibility. */
14915
14916 static enum dwarf_access_attribute
14917 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14918 {
14919 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14920 {
14921 /* The default DWARF 2 accessibility for members is public, the default
14922 accessibility for inheritance is private. */
14923
14924 if (die->tag != DW_TAG_inheritance)
14925 return DW_ACCESS_public;
14926 else
14927 return DW_ACCESS_private;
14928 }
14929 else
14930 {
14931 /* DWARF 3+ defines the default accessibility a different way. The same
14932 rules apply now for DW_TAG_inheritance as for the members and it only
14933 depends on the container kind. */
14934
14935 if (die->parent->tag == DW_TAG_class_type)
14936 return DW_ACCESS_private;
14937 else
14938 return DW_ACCESS_public;
14939 }
14940 }
14941
14942 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14943 offset. If the attribute was not found return 0, otherwise return
14944 1. If it was found but could not properly be handled, set *OFFSET
14945 to 0. */
14946
14947 static int
14948 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14949 LONGEST *offset)
14950 {
14951 struct attribute *attr;
14952
14953 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14954 if (attr != NULL)
14955 {
14956 *offset = 0;
14957
14958 /* Note that we do not check for a section offset first here.
14959 This is because DW_AT_data_member_location is new in DWARF 4,
14960 so if we see it, we can assume that a constant form is really
14961 a constant and not a section offset. */
14962 if (attr_form_is_constant (attr))
14963 *offset = dwarf2_get_attr_constant_value (attr, 0);
14964 else if (attr_form_is_section_offset (attr))
14965 dwarf2_complex_location_expr_complaint ();
14966 else if (attr_form_is_block (attr))
14967 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14968 else
14969 dwarf2_complex_location_expr_complaint ();
14970
14971 return 1;
14972 }
14973
14974 return 0;
14975 }
14976
14977 /* Add an aggregate field to the field list. */
14978
14979 static void
14980 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14981 struct dwarf2_cu *cu)
14982 {
14983 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14984 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14985 struct nextfield *new_field;
14986 struct attribute *attr;
14987 struct field *fp;
14988 const char *fieldname = "";
14989
14990 if (die->tag == DW_TAG_inheritance)
14991 {
14992 fip->baseclasses.emplace_back ();
14993 new_field = &fip->baseclasses.back ();
14994 }
14995 else
14996 {
14997 fip->fields.emplace_back ();
14998 new_field = &fip->fields.back ();
14999 }
15000
15001 fip->nfields++;
15002
15003 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15004 if (attr)
15005 new_field->accessibility = DW_UNSND (attr);
15006 else
15007 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
15008 if (new_field->accessibility != DW_ACCESS_public)
15009 fip->non_public_fields = 1;
15010
15011 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15012 if (attr)
15013 new_field->virtuality = DW_UNSND (attr);
15014 else
15015 new_field->virtuality = DW_VIRTUALITY_none;
15016
15017 fp = &new_field->field;
15018
15019 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
15020 {
15021 LONGEST offset;
15022
15023 /* Data member other than a C++ static data member. */
15024
15025 /* Get type of field. */
15026 fp->type = die_type (die, cu);
15027
15028 SET_FIELD_BITPOS (*fp, 0);
15029
15030 /* Get bit size of field (zero if none). */
15031 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
15032 if (attr)
15033 {
15034 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15035 }
15036 else
15037 {
15038 FIELD_BITSIZE (*fp) = 0;
15039 }
15040
15041 /* Get bit offset of field. */
15042 if (handle_data_member_location (die, cu, &offset))
15043 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15044 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15045 if (attr)
15046 {
15047 if (gdbarch_bits_big_endian (gdbarch))
15048 {
15049 /* For big endian bits, the DW_AT_bit_offset gives the
15050 additional bit offset from the MSB of the containing
15051 anonymous object to the MSB of the field. We don't
15052 have to do anything special since we don't need to
15053 know the size of the anonymous object. */
15054 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15055 }
15056 else
15057 {
15058 /* For little endian bits, compute the bit offset to the
15059 MSB of the anonymous object, subtract off the number of
15060 bits from the MSB of the field to the MSB of the
15061 object, and then subtract off the number of bits of
15062 the field itself. The result is the bit offset of
15063 the LSB of the field. */
15064 int anonymous_size;
15065 int bit_offset = DW_UNSND (attr);
15066
15067 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15068 if (attr)
15069 {
15070 /* The size of the anonymous object containing
15071 the bit field is explicit, so use the
15072 indicated size (in bytes). */
15073 anonymous_size = DW_UNSND (attr);
15074 }
15075 else
15076 {
15077 /* The size of the anonymous object containing
15078 the bit field must be inferred from the type
15079 attribute of the data member containing the
15080 bit field. */
15081 anonymous_size = TYPE_LENGTH (fp->type);
15082 }
15083 SET_FIELD_BITPOS (*fp,
15084 (FIELD_BITPOS (*fp)
15085 + anonymous_size * bits_per_byte
15086 - bit_offset - FIELD_BITSIZE (*fp)));
15087 }
15088 }
15089 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15090 if (attr != NULL)
15091 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15092 + dwarf2_get_attr_constant_value (attr, 0)));
15093
15094 /* Get name of field. */
15095 fieldname = dwarf2_name (die, cu);
15096 if (fieldname == NULL)
15097 fieldname = "";
15098
15099 /* The name is already allocated along with this objfile, so we don't
15100 need to duplicate it for the type. */
15101 fp->name = fieldname;
15102
15103 /* Change accessibility for artificial fields (e.g. virtual table
15104 pointer or virtual base class pointer) to private. */
15105 if (dwarf2_attr (die, DW_AT_artificial, cu))
15106 {
15107 FIELD_ARTIFICIAL (*fp) = 1;
15108 new_field->accessibility = DW_ACCESS_private;
15109 fip->non_public_fields = 1;
15110 }
15111 }
15112 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15113 {
15114 /* C++ static member. */
15115
15116 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15117 is a declaration, but all versions of G++ as of this writing
15118 (so through at least 3.2.1) incorrectly generate
15119 DW_TAG_variable tags. */
15120
15121 const char *physname;
15122
15123 /* Get name of field. */
15124 fieldname = dwarf2_name (die, cu);
15125 if (fieldname == NULL)
15126 return;
15127
15128 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15129 if (attr
15130 /* Only create a symbol if this is an external value.
15131 new_symbol checks this and puts the value in the global symbol
15132 table, which we want. If it is not external, new_symbol
15133 will try to put the value in cu->list_in_scope which is wrong. */
15134 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15135 {
15136 /* A static const member, not much different than an enum as far as
15137 we're concerned, except that we can support more types. */
15138 new_symbol (die, NULL, cu);
15139 }
15140
15141 /* Get physical name. */
15142 physname = dwarf2_physname (fieldname, die, cu);
15143
15144 /* The name is already allocated along with this objfile, so we don't
15145 need to duplicate it for the type. */
15146 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15147 FIELD_TYPE (*fp) = die_type (die, cu);
15148 FIELD_NAME (*fp) = fieldname;
15149 }
15150 else if (die->tag == DW_TAG_inheritance)
15151 {
15152 LONGEST offset;
15153
15154 /* C++ base class field. */
15155 if (handle_data_member_location (die, cu, &offset))
15156 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15157 FIELD_BITSIZE (*fp) = 0;
15158 FIELD_TYPE (*fp) = die_type (die, cu);
15159 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
15160 }
15161 else if (die->tag == DW_TAG_variant_part)
15162 {
15163 /* process_structure_scope will treat this DIE as a union. */
15164 process_structure_scope (die, cu);
15165
15166 /* The variant part is relative to the start of the enclosing
15167 structure. */
15168 SET_FIELD_BITPOS (*fp, 0);
15169 fp->type = get_die_type (die, cu);
15170 fp->artificial = 1;
15171 fp->name = "<<variant>>";
15172 }
15173 else
15174 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15175 }
15176
15177 /* Can the type given by DIE define another type? */
15178
15179 static bool
15180 type_can_define_types (const struct die_info *die)
15181 {
15182 switch (die->tag)
15183 {
15184 case DW_TAG_typedef:
15185 case DW_TAG_class_type:
15186 case DW_TAG_structure_type:
15187 case DW_TAG_union_type:
15188 case DW_TAG_enumeration_type:
15189 return true;
15190
15191 default:
15192 return false;
15193 }
15194 }
15195
15196 /* Add a type definition defined in the scope of the FIP's class. */
15197
15198 static void
15199 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15200 struct dwarf2_cu *cu)
15201 {
15202 struct decl_field fp;
15203 memset (&fp, 0, sizeof (fp));
15204
15205 gdb_assert (type_can_define_types (die));
15206
15207 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15208 fp.name = dwarf2_name (die, cu);
15209 fp.type = read_type_die (die, cu);
15210
15211 /* Save accessibility. */
15212 enum dwarf_access_attribute accessibility;
15213 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15214 if (attr != NULL)
15215 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15216 else
15217 accessibility = dwarf2_default_access_attribute (die, cu);
15218 switch (accessibility)
15219 {
15220 case DW_ACCESS_public:
15221 /* The assumed value if neither private nor protected. */
15222 break;
15223 case DW_ACCESS_private:
15224 fp.is_private = 1;
15225 break;
15226 case DW_ACCESS_protected:
15227 fp.is_protected = 1;
15228 break;
15229 default:
15230 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15231 }
15232
15233 if (die->tag == DW_TAG_typedef)
15234 fip->typedef_field_list.push_back (fp);
15235 else
15236 fip->nested_types_list.push_back (fp);
15237 }
15238
15239 /* Create the vector of fields, and attach it to the type. */
15240
15241 static void
15242 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15243 struct dwarf2_cu *cu)
15244 {
15245 int nfields = fip->nfields;
15246
15247 /* Record the field count, allocate space for the array of fields,
15248 and create blank accessibility bitfields if necessary. */
15249 TYPE_NFIELDS (type) = nfields;
15250 TYPE_FIELDS (type) = (struct field *)
15251 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15252
15253 if (fip->non_public_fields && cu->language != language_ada)
15254 {
15255 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15256
15257 TYPE_FIELD_PRIVATE_BITS (type) =
15258 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15259 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15260
15261 TYPE_FIELD_PROTECTED_BITS (type) =
15262 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15263 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15264
15265 TYPE_FIELD_IGNORE_BITS (type) =
15266 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15267 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15268 }
15269
15270 /* If the type has baseclasses, allocate and clear a bit vector for
15271 TYPE_FIELD_VIRTUAL_BITS. */
15272 if (!fip->baseclasses.empty () && cu->language != language_ada)
15273 {
15274 int num_bytes = B_BYTES (fip->baseclasses.size ());
15275 unsigned char *pointer;
15276
15277 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15278 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15279 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15280 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15281 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15282 }
15283
15284 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15285 {
15286 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15287
15288 for (int index = 0; index < nfields; ++index)
15289 {
15290 struct nextfield &field = fip->fields[index];
15291
15292 if (field.variant.is_discriminant)
15293 di->discriminant_index = index;
15294 else if (field.variant.default_branch)
15295 di->default_index = index;
15296 else
15297 di->discriminants[index] = field.variant.discriminant_value;
15298 }
15299 }
15300
15301 /* Copy the saved-up fields into the field vector. */
15302 for (int i = 0; i < nfields; ++i)
15303 {
15304 struct nextfield &field
15305 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15306 : fip->fields[i - fip->baseclasses.size ()]);
15307
15308 TYPE_FIELD (type, i) = field.field;
15309 switch (field.accessibility)
15310 {
15311 case DW_ACCESS_private:
15312 if (cu->language != language_ada)
15313 SET_TYPE_FIELD_PRIVATE (type, i);
15314 break;
15315
15316 case DW_ACCESS_protected:
15317 if (cu->language != language_ada)
15318 SET_TYPE_FIELD_PROTECTED (type, i);
15319 break;
15320
15321 case DW_ACCESS_public:
15322 break;
15323
15324 default:
15325 /* Unknown accessibility. Complain and treat it as public. */
15326 {
15327 complaint (_("unsupported accessibility %d"),
15328 field.accessibility);
15329 }
15330 break;
15331 }
15332 if (i < fip->baseclasses.size ())
15333 {
15334 switch (field.virtuality)
15335 {
15336 case DW_VIRTUALITY_virtual:
15337 case DW_VIRTUALITY_pure_virtual:
15338 if (cu->language == language_ada)
15339 error (_("unexpected virtuality in component of Ada type"));
15340 SET_TYPE_FIELD_VIRTUAL (type, i);
15341 break;
15342 }
15343 }
15344 }
15345 }
15346
15347 /* Return true if this member function is a constructor, false
15348 otherwise. */
15349
15350 static int
15351 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15352 {
15353 const char *fieldname;
15354 const char *type_name;
15355 int len;
15356
15357 if (die->parent == NULL)
15358 return 0;
15359
15360 if (die->parent->tag != DW_TAG_structure_type
15361 && die->parent->tag != DW_TAG_union_type
15362 && die->parent->tag != DW_TAG_class_type)
15363 return 0;
15364
15365 fieldname = dwarf2_name (die, cu);
15366 type_name = dwarf2_name (die->parent, cu);
15367 if (fieldname == NULL || type_name == NULL)
15368 return 0;
15369
15370 len = strlen (fieldname);
15371 return (strncmp (fieldname, type_name, len) == 0
15372 && (type_name[len] == '\0' || type_name[len] == '<'));
15373 }
15374
15375 /* Add a member function to the proper fieldlist. */
15376
15377 static void
15378 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15379 struct type *type, struct dwarf2_cu *cu)
15380 {
15381 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15382 struct attribute *attr;
15383 int i;
15384 struct fnfieldlist *flp = nullptr;
15385 struct fn_field *fnp;
15386 const char *fieldname;
15387 struct type *this_type;
15388 enum dwarf_access_attribute accessibility;
15389
15390 if (cu->language == language_ada)
15391 error (_("unexpected member function in Ada type"));
15392
15393 /* Get name of member function. */
15394 fieldname = dwarf2_name (die, cu);
15395 if (fieldname == NULL)
15396 return;
15397
15398 /* Look up member function name in fieldlist. */
15399 for (i = 0; i < fip->fnfieldlists.size (); i++)
15400 {
15401 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15402 {
15403 flp = &fip->fnfieldlists[i];
15404 break;
15405 }
15406 }
15407
15408 /* Create a new fnfieldlist if necessary. */
15409 if (flp == nullptr)
15410 {
15411 fip->fnfieldlists.emplace_back ();
15412 flp = &fip->fnfieldlists.back ();
15413 flp->name = fieldname;
15414 i = fip->fnfieldlists.size () - 1;
15415 }
15416
15417 /* Create a new member function field and add it to the vector of
15418 fnfieldlists. */
15419 flp->fnfields.emplace_back ();
15420 fnp = &flp->fnfields.back ();
15421
15422 /* Delay processing of the physname until later. */
15423 if (cu->language == language_cplus)
15424 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15425 die, cu);
15426 else
15427 {
15428 const char *physname = dwarf2_physname (fieldname, die, cu);
15429 fnp->physname = physname ? physname : "";
15430 }
15431
15432 fnp->type = alloc_type (objfile);
15433 this_type = read_type_die (die, cu);
15434 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15435 {
15436 int nparams = TYPE_NFIELDS (this_type);
15437
15438 /* TYPE is the domain of this method, and THIS_TYPE is the type
15439 of the method itself (TYPE_CODE_METHOD). */
15440 smash_to_method_type (fnp->type, type,
15441 TYPE_TARGET_TYPE (this_type),
15442 TYPE_FIELDS (this_type),
15443 TYPE_NFIELDS (this_type),
15444 TYPE_VARARGS (this_type));
15445
15446 /* Handle static member functions.
15447 Dwarf2 has no clean way to discern C++ static and non-static
15448 member functions. G++ helps GDB by marking the first
15449 parameter for non-static member functions (which is the this
15450 pointer) as artificial. We obtain this information from
15451 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15452 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15453 fnp->voffset = VOFFSET_STATIC;
15454 }
15455 else
15456 complaint (_("member function type missing for '%s'"),
15457 dwarf2_full_name (fieldname, die, cu));
15458
15459 /* Get fcontext from DW_AT_containing_type if present. */
15460 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15461 fnp->fcontext = die_containing_type (die, cu);
15462
15463 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15464 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15465
15466 /* Get accessibility. */
15467 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15468 if (attr)
15469 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15470 else
15471 accessibility = dwarf2_default_access_attribute (die, cu);
15472 switch (accessibility)
15473 {
15474 case DW_ACCESS_private:
15475 fnp->is_private = 1;
15476 break;
15477 case DW_ACCESS_protected:
15478 fnp->is_protected = 1;
15479 break;
15480 }
15481
15482 /* Check for artificial methods. */
15483 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15484 if (attr && DW_UNSND (attr) != 0)
15485 fnp->is_artificial = 1;
15486
15487 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15488
15489 /* Get index in virtual function table if it is a virtual member
15490 function. For older versions of GCC, this is an offset in the
15491 appropriate virtual table, as specified by DW_AT_containing_type.
15492 For everyone else, it is an expression to be evaluated relative
15493 to the object address. */
15494
15495 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15496 if (attr)
15497 {
15498 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15499 {
15500 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15501 {
15502 /* Old-style GCC. */
15503 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15504 }
15505 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15506 || (DW_BLOCK (attr)->size > 1
15507 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15508 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15509 {
15510 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15511 if ((fnp->voffset % cu->header.addr_size) != 0)
15512 dwarf2_complex_location_expr_complaint ();
15513 else
15514 fnp->voffset /= cu->header.addr_size;
15515 fnp->voffset += 2;
15516 }
15517 else
15518 dwarf2_complex_location_expr_complaint ();
15519
15520 if (!fnp->fcontext)
15521 {
15522 /* If there is no `this' field and no DW_AT_containing_type,
15523 we cannot actually find a base class context for the
15524 vtable! */
15525 if (TYPE_NFIELDS (this_type) == 0
15526 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15527 {
15528 complaint (_("cannot determine context for virtual member "
15529 "function \"%s\" (offset %s)"),
15530 fieldname, sect_offset_str (die->sect_off));
15531 }
15532 else
15533 {
15534 fnp->fcontext
15535 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15536 }
15537 }
15538 }
15539 else if (attr_form_is_section_offset (attr))
15540 {
15541 dwarf2_complex_location_expr_complaint ();
15542 }
15543 else
15544 {
15545 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15546 fieldname);
15547 }
15548 }
15549 else
15550 {
15551 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15552 if (attr && DW_UNSND (attr))
15553 {
15554 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15555 complaint (_("Member function \"%s\" (offset %s) is virtual "
15556 "but the vtable offset is not specified"),
15557 fieldname, sect_offset_str (die->sect_off));
15558 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15559 TYPE_CPLUS_DYNAMIC (type) = 1;
15560 }
15561 }
15562 }
15563
15564 /* Create the vector of member function fields, and attach it to the type. */
15565
15566 static void
15567 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15568 struct dwarf2_cu *cu)
15569 {
15570 if (cu->language == language_ada)
15571 error (_("unexpected member functions in Ada type"));
15572
15573 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15574 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15575 TYPE_ALLOC (type,
15576 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15577
15578 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15579 {
15580 struct fnfieldlist &nf = fip->fnfieldlists[i];
15581 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15582
15583 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15584 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15585 fn_flp->fn_fields = (struct fn_field *)
15586 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15587
15588 for (int k = 0; k < nf.fnfields.size (); ++k)
15589 fn_flp->fn_fields[k] = nf.fnfields[k];
15590 }
15591
15592 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15593 }
15594
15595 /* Returns non-zero if NAME is the name of a vtable member in CU's
15596 language, zero otherwise. */
15597 static int
15598 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15599 {
15600 static const char vptr[] = "_vptr";
15601
15602 /* Look for the C++ form of the vtable. */
15603 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15604 return 1;
15605
15606 return 0;
15607 }
15608
15609 /* GCC outputs unnamed structures that are really pointers to member
15610 functions, with the ABI-specified layout. If TYPE describes
15611 such a structure, smash it into a member function type.
15612
15613 GCC shouldn't do this; it should just output pointer to member DIEs.
15614 This is GCC PR debug/28767. */
15615
15616 static void
15617 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15618 {
15619 struct type *pfn_type, *self_type, *new_type;
15620
15621 /* Check for a structure with no name and two children. */
15622 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15623 return;
15624
15625 /* Check for __pfn and __delta members. */
15626 if (TYPE_FIELD_NAME (type, 0) == NULL
15627 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15628 || TYPE_FIELD_NAME (type, 1) == NULL
15629 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15630 return;
15631
15632 /* Find the type of the method. */
15633 pfn_type = TYPE_FIELD_TYPE (type, 0);
15634 if (pfn_type == NULL
15635 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15636 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15637 return;
15638
15639 /* Look for the "this" argument. */
15640 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15641 if (TYPE_NFIELDS (pfn_type) == 0
15642 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15643 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15644 return;
15645
15646 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15647 new_type = alloc_type (objfile);
15648 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15649 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15650 TYPE_VARARGS (pfn_type));
15651 smash_to_methodptr_type (type, new_type);
15652 }
15653
15654 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15655 appropriate error checking and issuing complaints if there is a
15656 problem. */
15657
15658 static ULONGEST
15659 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15660 {
15661 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15662
15663 if (attr == nullptr)
15664 return 0;
15665
15666 if (!attr_form_is_constant (attr))
15667 {
15668 complaint (_("DW_AT_alignment must have constant form"
15669 " - DIE at %s [in module %s]"),
15670 sect_offset_str (die->sect_off),
15671 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15672 return 0;
15673 }
15674
15675 ULONGEST align;
15676 if (attr->form == DW_FORM_sdata)
15677 {
15678 LONGEST val = DW_SND (attr);
15679 if (val < 0)
15680 {
15681 complaint (_("DW_AT_alignment value must not be negative"
15682 " - DIE at %s [in module %s]"),
15683 sect_offset_str (die->sect_off),
15684 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15685 return 0;
15686 }
15687 align = val;
15688 }
15689 else
15690 align = DW_UNSND (attr);
15691
15692 if (align == 0)
15693 {
15694 complaint (_("DW_AT_alignment value must not be zero"
15695 " - DIE at %s [in module %s]"),
15696 sect_offset_str (die->sect_off),
15697 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15698 return 0;
15699 }
15700 if ((align & (align - 1)) != 0)
15701 {
15702 complaint (_("DW_AT_alignment value must be a power of 2"
15703 " - DIE at %s [in module %s]"),
15704 sect_offset_str (die->sect_off),
15705 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15706 return 0;
15707 }
15708
15709 return align;
15710 }
15711
15712 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15713 the alignment for TYPE. */
15714
15715 static void
15716 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15717 struct type *type)
15718 {
15719 if (!set_type_align (type, get_alignment (cu, die)))
15720 complaint (_("DW_AT_alignment value too large"
15721 " - DIE at %s [in module %s]"),
15722 sect_offset_str (die->sect_off),
15723 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15724 }
15725
15726 /* Called when we find the DIE that starts a structure or union scope
15727 (definition) to create a type for the structure or union. Fill in
15728 the type's name and general properties; the members will not be
15729 processed until process_structure_scope. A symbol table entry for
15730 the type will also not be done until process_structure_scope (assuming
15731 the type has a name).
15732
15733 NOTE: we need to call these functions regardless of whether or not the
15734 DIE has a DW_AT_name attribute, since it might be an anonymous
15735 structure or union. This gets the type entered into our set of
15736 user defined types. */
15737
15738 static struct type *
15739 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15740 {
15741 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15742 struct type *type;
15743 struct attribute *attr;
15744 const char *name;
15745
15746 /* If the definition of this type lives in .debug_types, read that type.
15747 Don't follow DW_AT_specification though, that will take us back up
15748 the chain and we want to go down. */
15749 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15750 if (attr)
15751 {
15752 type = get_DW_AT_signature_type (die, attr, cu);
15753
15754 /* The type's CU may not be the same as CU.
15755 Ensure TYPE is recorded with CU in die_type_hash. */
15756 return set_die_type (die, type, cu);
15757 }
15758
15759 type = alloc_type (objfile);
15760 INIT_CPLUS_SPECIFIC (type);
15761
15762 name = dwarf2_name (die, cu);
15763 if (name != NULL)
15764 {
15765 if (cu->language == language_cplus
15766 || cu->language == language_d
15767 || cu->language == language_rust)
15768 {
15769 const char *full_name = dwarf2_full_name (name, die, cu);
15770
15771 /* dwarf2_full_name might have already finished building the DIE's
15772 type. If so, there is no need to continue. */
15773 if (get_die_type (die, cu) != NULL)
15774 return get_die_type (die, cu);
15775
15776 TYPE_NAME (type) = full_name;
15777 }
15778 else
15779 {
15780 /* The name is already allocated along with this objfile, so
15781 we don't need to duplicate it for the type. */
15782 TYPE_NAME (type) = name;
15783 }
15784 }
15785
15786 if (die->tag == DW_TAG_structure_type)
15787 {
15788 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15789 }
15790 else if (die->tag == DW_TAG_union_type)
15791 {
15792 TYPE_CODE (type) = TYPE_CODE_UNION;
15793 }
15794 else if (die->tag == DW_TAG_variant_part)
15795 {
15796 TYPE_CODE (type) = TYPE_CODE_UNION;
15797 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15798 }
15799 else
15800 {
15801 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15802 }
15803
15804 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15805 TYPE_DECLARED_CLASS (type) = 1;
15806
15807 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15808 if (attr)
15809 {
15810 if (attr_form_is_constant (attr))
15811 TYPE_LENGTH (type) = DW_UNSND (attr);
15812 else
15813 {
15814 /* For the moment, dynamic type sizes are not supported
15815 by GDB's struct type. The actual size is determined
15816 on-demand when resolving the type of a given object,
15817 so set the type's length to zero for now. Otherwise,
15818 we record an expression as the length, and that expression
15819 could lead to a very large value, which could eventually
15820 lead to us trying to allocate that much memory when creating
15821 a value of that type. */
15822 TYPE_LENGTH (type) = 0;
15823 }
15824 }
15825 else
15826 {
15827 TYPE_LENGTH (type) = 0;
15828 }
15829
15830 maybe_set_alignment (cu, die, type);
15831
15832 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15833 {
15834 /* ICC<14 does not output the required DW_AT_declaration on
15835 incomplete types, but gives them a size of zero. */
15836 TYPE_STUB (type) = 1;
15837 }
15838 else
15839 TYPE_STUB_SUPPORTED (type) = 1;
15840
15841 if (die_is_declaration (die, cu))
15842 TYPE_STUB (type) = 1;
15843 else if (attr == NULL && die->child == NULL
15844 && producer_is_realview (cu->producer))
15845 /* RealView does not output the required DW_AT_declaration
15846 on incomplete types. */
15847 TYPE_STUB (type) = 1;
15848
15849 /* We need to add the type field to the die immediately so we don't
15850 infinitely recurse when dealing with pointers to the structure
15851 type within the structure itself. */
15852 set_die_type (die, type, cu);
15853
15854 /* set_die_type should be already done. */
15855 set_descriptive_type (type, die, cu);
15856
15857 return type;
15858 }
15859
15860 /* A helper for process_structure_scope that handles a single member
15861 DIE. */
15862
15863 static void
15864 handle_struct_member_die (struct die_info *child_die, struct type *type,
15865 struct field_info *fi,
15866 std::vector<struct symbol *> *template_args,
15867 struct dwarf2_cu *cu)
15868 {
15869 if (child_die->tag == DW_TAG_member
15870 || child_die->tag == DW_TAG_variable
15871 || child_die->tag == DW_TAG_variant_part)
15872 {
15873 /* NOTE: carlton/2002-11-05: A C++ static data member
15874 should be a DW_TAG_member that is a declaration, but
15875 all versions of G++ as of this writing (so through at
15876 least 3.2.1) incorrectly generate DW_TAG_variable
15877 tags for them instead. */
15878 dwarf2_add_field (fi, child_die, cu);
15879 }
15880 else if (child_die->tag == DW_TAG_subprogram)
15881 {
15882 /* Rust doesn't have member functions in the C++ sense.
15883 However, it does emit ordinary functions as children
15884 of a struct DIE. */
15885 if (cu->language == language_rust)
15886 read_func_scope (child_die, cu);
15887 else
15888 {
15889 /* C++ member function. */
15890 dwarf2_add_member_fn (fi, child_die, type, cu);
15891 }
15892 }
15893 else if (child_die->tag == DW_TAG_inheritance)
15894 {
15895 /* C++ base class field. */
15896 dwarf2_add_field (fi, child_die, cu);
15897 }
15898 else if (type_can_define_types (child_die))
15899 dwarf2_add_type_defn (fi, child_die, cu);
15900 else if (child_die->tag == DW_TAG_template_type_param
15901 || child_die->tag == DW_TAG_template_value_param)
15902 {
15903 struct symbol *arg = new_symbol (child_die, NULL, cu);
15904
15905 if (arg != NULL)
15906 template_args->push_back (arg);
15907 }
15908 else if (child_die->tag == DW_TAG_variant)
15909 {
15910 /* In a variant we want to get the discriminant and also add a
15911 field for our sole member child. */
15912 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15913
15914 for (struct die_info *variant_child = child_die->child;
15915 variant_child != NULL;
15916 variant_child = sibling_die (variant_child))
15917 {
15918 if (variant_child->tag == DW_TAG_member)
15919 {
15920 handle_struct_member_die (variant_child, type, fi,
15921 template_args, cu);
15922 /* Only handle the one. */
15923 break;
15924 }
15925 }
15926
15927 /* We don't handle this but we might as well report it if we see
15928 it. */
15929 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15930 complaint (_("DW_AT_discr_list is not supported yet"
15931 " - DIE at %s [in module %s]"),
15932 sect_offset_str (child_die->sect_off),
15933 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15934
15935 /* The first field was just added, so we can stash the
15936 discriminant there. */
15937 gdb_assert (!fi->fields.empty ());
15938 if (discr == NULL)
15939 fi->fields.back ().variant.default_branch = true;
15940 else
15941 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15942 }
15943 }
15944
15945 /* Finish creating a structure or union type, including filling in
15946 its members and creating a symbol for it. */
15947
15948 static void
15949 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15950 {
15951 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15952 struct die_info *child_die;
15953 struct type *type;
15954
15955 type = get_die_type (die, cu);
15956 if (type == NULL)
15957 type = read_structure_type (die, cu);
15958
15959 /* When reading a DW_TAG_variant_part, we need to notice when we
15960 read the discriminant member, so we can record it later in the
15961 discriminant_info. */
15962 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
15963 sect_offset discr_offset;
15964 bool has_template_parameters = false;
15965
15966 if (is_variant_part)
15967 {
15968 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15969 if (discr == NULL)
15970 {
15971 /* Maybe it's a univariant form, an extension we support.
15972 In this case arrange not to check the offset. */
15973 is_variant_part = false;
15974 }
15975 else if (attr_form_is_ref (discr))
15976 {
15977 struct dwarf2_cu *target_cu = cu;
15978 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15979
15980 discr_offset = target_die->sect_off;
15981 }
15982 else
15983 {
15984 complaint (_("DW_AT_discr does not have DIE reference form"
15985 " - DIE at %s [in module %s]"),
15986 sect_offset_str (die->sect_off),
15987 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15988 is_variant_part = false;
15989 }
15990 }
15991
15992 if (die->child != NULL && ! die_is_declaration (die, cu))
15993 {
15994 struct field_info fi;
15995 std::vector<struct symbol *> template_args;
15996
15997 child_die = die->child;
15998
15999 while (child_die && child_die->tag)
16000 {
16001 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
16002
16003 if (is_variant_part && discr_offset == child_die->sect_off)
16004 fi.fields.back ().variant.is_discriminant = true;
16005
16006 child_die = sibling_die (child_die);
16007 }
16008
16009 /* Attach template arguments to type. */
16010 if (!template_args.empty ())
16011 {
16012 has_template_parameters = true;
16013 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16014 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
16015 TYPE_TEMPLATE_ARGUMENTS (type)
16016 = XOBNEWVEC (&objfile->objfile_obstack,
16017 struct symbol *,
16018 TYPE_N_TEMPLATE_ARGUMENTS (type));
16019 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
16020 template_args.data (),
16021 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16022 * sizeof (struct symbol *)));
16023 }
16024
16025 /* Attach fields and member functions to the type. */
16026 if (fi.nfields)
16027 dwarf2_attach_fields_to_type (&fi, type, cu);
16028 if (!fi.fnfieldlists.empty ())
16029 {
16030 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
16031
16032 /* Get the type which refers to the base class (possibly this
16033 class itself) which contains the vtable pointer for the current
16034 class from the DW_AT_containing_type attribute. This use of
16035 DW_AT_containing_type is a GNU extension. */
16036
16037 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16038 {
16039 struct type *t = die_containing_type (die, cu);
16040
16041 set_type_vptr_basetype (type, t);
16042 if (type == t)
16043 {
16044 int i;
16045
16046 /* Our own class provides vtbl ptr. */
16047 for (i = TYPE_NFIELDS (t) - 1;
16048 i >= TYPE_N_BASECLASSES (t);
16049 --i)
16050 {
16051 const char *fieldname = TYPE_FIELD_NAME (t, i);
16052
16053 if (is_vtable_name (fieldname, cu))
16054 {
16055 set_type_vptr_fieldno (type, i);
16056 break;
16057 }
16058 }
16059
16060 /* Complain if virtual function table field not found. */
16061 if (i < TYPE_N_BASECLASSES (t))
16062 complaint (_("virtual function table pointer "
16063 "not found when defining class '%s'"),
16064 TYPE_NAME (type) ? TYPE_NAME (type) : "");
16065 }
16066 else
16067 {
16068 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16069 }
16070 }
16071 else if (cu->producer
16072 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16073 {
16074 /* The IBM XLC compiler does not provide direct indication
16075 of the containing type, but the vtable pointer is
16076 always named __vfp. */
16077
16078 int i;
16079
16080 for (i = TYPE_NFIELDS (type) - 1;
16081 i >= TYPE_N_BASECLASSES (type);
16082 --i)
16083 {
16084 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16085 {
16086 set_type_vptr_fieldno (type, i);
16087 set_type_vptr_basetype (type, type);
16088 break;
16089 }
16090 }
16091 }
16092 }
16093
16094 /* Copy fi.typedef_field_list linked list elements content into the
16095 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16096 if (!fi.typedef_field_list.empty ())
16097 {
16098 int count = fi.typedef_field_list.size ();
16099
16100 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16101 TYPE_TYPEDEF_FIELD_ARRAY (type)
16102 = ((struct decl_field *)
16103 TYPE_ALLOC (type,
16104 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16105 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16106
16107 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16108 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16109 }
16110
16111 /* Copy fi.nested_types_list linked list elements content into the
16112 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16113 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16114 {
16115 int count = fi.nested_types_list.size ();
16116
16117 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16118 TYPE_NESTED_TYPES_ARRAY (type)
16119 = ((struct decl_field *)
16120 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16121 TYPE_NESTED_TYPES_COUNT (type) = count;
16122
16123 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16124 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16125 }
16126 }
16127
16128 quirk_gcc_member_function_pointer (type, objfile);
16129 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16130 cu->rust_unions.push_back (type);
16131
16132 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16133 snapshots) has been known to create a die giving a declaration
16134 for a class that has, as a child, a die giving a definition for a
16135 nested class. So we have to process our children even if the
16136 current die is a declaration. Normally, of course, a declaration
16137 won't have any children at all. */
16138
16139 child_die = die->child;
16140
16141 while (child_die != NULL && child_die->tag)
16142 {
16143 if (child_die->tag == DW_TAG_member
16144 || child_die->tag == DW_TAG_variable
16145 || child_die->tag == DW_TAG_inheritance
16146 || child_die->tag == DW_TAG_template_value_param
16147 || child_die->tag == DW_TAG_template_type_param)
16148 {
16149 /* Do nothing. */
16150 }
16151 else
16152 process_die (child_die, cu);
16153
16154 child_die = sibling_die (child_die);
16155 }
16156
16157 /* Do not consider external references. According to the DWARF standard,
16158 these DIEs are identified by the fact that they have no byte_size
16159 attribute, and a declaration attribute. */
16160 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16161 || !die_is_declaration (die, cu))
16162 {
16163 struct symbol *sym = new_symbol (die, type, cu);
16164
16165 if (has_template_parameters)
16166 {
16167 /* Make sure that the symtab is set on the new symbols.
16168 Even though they don't appear in this symtab directly,
16169 other parts of gdb assume that symbols do, and this is
16170 reasonably true. */
16171 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16172 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i),
16173 symbol_symtab (sym));
16174 }
16175 }
16176 }
16177
16178 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16179 update TYPE using some information only available in DIE's children. */
16180
16181 static void
16182 update_enumeration_type_from_children (struct die_info *die,
16183 struct type *type,
16184 struct dwarf2_cu *cu)
16185 {
16186 struct die_info *child_die;
16187 int unsigned_enum = 1;
16188 int flag_enum = 1;
16189 ULONGEST mask = 0;
16190
16191 auto_obstack obstack;
16192
16193 for (child_die = die->child;
16194 child_die != NULL && child_die->tag;
16195 child_die = sibling_die (child_die))
16196 {
16197 struct attribute *attr;
16198 LONGEST value;
16199 const gdb_byte *bytes;
16200 struct dwarf2_locexpr_baton *baton;
16201 const char *name;
16202
16203 if (child_die->tag != DW_TAG_enumerator)
16204 continue;
16205
16206 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16207 if (attr == NULL)
16208 continue;
16209
16210 name = dwarf2_name (child_die, cu);
16211 if (name == NULL)
16212 name = "<anonymous enumerator>";
16213
16214 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16215 &value, &bytes, &baton);
16216 if (value < 0)
16217 {
16218 unsigned_enum = 0;
16219 flag_enum = 0;
16220 }
16221 else if ((mask & value) != 0)
16222 flag_enum = 0;
16223 else
16224 mask |= value;
16225
16226 /* If we already know that the enum type is neither unsigned, nor
16227 a flag type, no need to look at the rest of the enumerates. */
16228 if (!unsigned_enum && !flag_enum)
16229 break;
16230 }
16231
16232 if (unsigned_enum)
16233 TYPE_UNSIGNED (type) = 1;
16234 if (flag_enum)
16235 TYPE_FLAG_ENUM (type) = 1;
16236 }
16237
16238 /* Given a DW_AT_enumeration_type die, set its type. We do not
16239 complete the type's fields yet, or create any symbols. */
16240
16241 static struct type *
16242 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16243 {
16244 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16245 struct type *type;
16246 struct attribute *attr;
16247 const char *name;
16248
16249 /* If the definition of this type lives in .debug_types, read that type.
16250 Don't follow DW_AT_specification though, that will take us back up
16251 the chain and we want to go down. */
16252 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16253 if (attr)
16254 {
16255 type = get_DW_AT_signature_type (die, attr, cu);
16256
16257 /* The type's CU may not be the same as CU.
16258 Ensure TYPE is recorded with CU in die_type_hash. */
16259 return set_die_type (die, type, cu);
16260 }
16261
16262 type = alloc_type (objfile);
16263
16264 TYPE_CODE (type) = TYPE_CODE_ENUM;
16265 name = dwarf2_full_name (NULL, die, cu);
16266 if (name != NULL)
16267 TYPE_NAME (type) = name;
16268
16269 attr = dwarf2_attr (die, DW_AT_type, cu);
16270 if (attr != NULL)
16271 {
16272 struct type *underlying_type = die_type (die, cu);
16273
16274 TYPE_TARGET_TYPE (type) = underlying_type;
16275 }
16276
16277 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16278 if (attr)
16279 {
16280 TYPE_LENGTH (type) = DW_UNSND (attr);
16281 }
16282 else
16283 {
16284 TYPE_LENGTH (type) = 0;
16285 }
16286
16287 maybe_set_alignment (cu, die, type);
16288
16289 /* The enumeration DIE can be incomplete. In Ada, any type can be
16290 declared as private in the package spec, and then defined only
16291 inside the package body. Such types are known as Taft Amendment
16292 Types. When another package uses such a type, an incomplete DIE
16293 may be generated by the compiler. */
16294 if (die_is_declaration (die, cu))
16295 TYPE_STUB (type) = 1;
16296
16297 /* Finish the creation of this type by using the enum's children.
16298 We must call this even when the underlying type has been provided
16299 so that we can determine if we're looking at a "flag" enum. */
16300 update_enumeration_type_from_children (die, type, cu);
16301
16302 /* If this type has an underlying type that is not a stub, then we
16303 may use its attributes. We always use the "unsigned" attribute
16304 in this situation, because ordinarily we guess whether the type
16305 is unsigned -- but the guess can be wrong and the underlying type
16306 can tell us the reality. However, we defer to a local size
16307 attribute if one exists, because this lets the compiler override
16308 the underlying type if needed. */
16309 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16310 {
16311 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16312 if (TYPE_LENGTH (type) == 0)
16313 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16314 if (TYPE_RAW_ALIGN (type) == 0
16315 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16316 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16317 }
16318
16319 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16320
16321 return set_die_type (die, type, cu);
16322 }
16323
16324 /* Given a pointer to a die which begins an enumeration, process all
16325 the dies that define the members of the enumeration, and create the
16326 symbol for the enumeration type.
16327
16328 NOTE: We reverse the order of the element list. */
16329
16330 static void
16331 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16332 {
16333 struct type *this_type;
16334
16335 this_type = get_die_type (die, cu);
16336 if (this_type == NULL)
16337 this_type = read_enumeration_type (die, cu);
16338
16339 if (die->child != NULL)
16340 {
16341 struct die_info *child_die;
16342 struct symbol *sym;
16343 struct field *fields = NULL;
16344 int num_fields = 0;
16345 const char *name;
16346
16347 child_die = die->child;
16348 while (child_die && child_die->tag)
16349 {
16350 if (child_die->tag != DW_TAG_enumerator)
16351 {
16352 process_die (child_die, cu);
16353 }
16354 else
16355 {
16356 name = dwarf2_name (child_die, cu);
16357 if (name)
16358 {
16359 sym = new_symbol (child_die, this_type, cu);
16360
16361 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16362 {
16363 fields = (struct field *)
16364 xrealloc (fields,
16365 (num_fields + DW_FIELD_ALLOC_CHUNK)
16366 * sizeof (struct field));
16367 }
16368
16369 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16370 FIELD_TYPE (fields[num_fields]) = NULL;
16371 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16372 FIELD_BITSIZE (fields[num_fields]) = 0;
16373
16374 num_fields++;
16375 }
16376 }
16377
16378 child_die = sibling_die (child_die);
16379 }
16380
16381 if (num_fields)
16382 {
16383 TYPE_NFIELDS (this_type) = num_fields;
16384 TYPE_FIELDS (this_type) = (struct field *)
16385 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16386 memcpy (TYPE_FIELDS (this_type), fields,
16387 sizeof (struct field) * num_fields);
16388 xfree (fields);
16389 }
16390 }
16391
16392 /* If we are reading an enum from a .debug_types unit, and the enum
16393 is a declaration, and the enum is not the signatured type in the
16394 unit, then we do not want to add a symbol for it. Adding a
16395 symbol would in some cases obscure the true definition of the
16396 enum, giving users an incomplete type when the definition is
16397 actually available. Note that we do not want to do this for all
16398 enums which are just declarations, because C++0x allows forward
16399 enum declarations. */
16400 if (cu->per_cu->is_debug_types
16401 && die_is_declaration (die, cu))
16402 {
16403 struct signatured_type *sig_type;
16404
16405 sig_type = (struct signatured_type *) cu->per_cu;
16406 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16407 if (sig_type->type_offset_in_section != die->sect_off)
16408 return;
16409 }
16410
16411 new_symbol (die, this_type, cu);
16412 }
16413
16414 /* Extract all information from a DW_TAG_array_type DIE and put it in
16415 the DIE's type field. For now, this only handles one dimensional
16416 arrays. */
16417
16418 static struct type *
16419 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16420 {
16421 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16422 struct die_info *child_die;
16423 struct type *type;
16424 struct type *element_type, *range_type, *index_type;
16425 struct attribute *attr;
16426 const char *name;
16427 struct dynamic_prop *byte_stride_prop = NULL;
16428 unsigned int bit_stride = 0;
16429
16430 element_type = die_type (die, cu);
16431
16432 /* The die_type call above may have already set the type for this DIE. */
16433 type = get_die_type (die, cu);
16434 if (type)
16435 return type;
16436
16437 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16438 if (attr != NULL)
16439 {
16440 int stride_ok;
16441
16442 byte_stride_prop
16443 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16444 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16445 if (!stride_ok)
16446 {
16447 complaint (_("unable to read array DW_AT_byte_stride "
16448 " - DIE at %s [in module %s]"),
16449 sect_offset_str (die->sect_off),
16450 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16451 /* Ignore this attribute. We will likely not be able to print
16452 arrays of this type correctly, but there is little we can do
16453 to help if we cannot read the attribute's value. */
16454 byte_stride_prop = NULL;
16455 }
16456 }
16457
16458 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16459 if (attr != NULL)
16460 bit_stride = DW_UNSND (attr);
16461
16462 /* Irix 6.2 native cc creates array types without children for
16463 arrays with unspecified length. */
16464 if (die->child == NULL)
16465 {
16466 index_type = objfile_type (objfile)->builtin_int;
16467 range_type = create_static_range_type (NULL, index_type, 0, -1);
16468 type = create_array_type_with_stride (NULL, element_type, range_type,
16469 byte_stride_prop, bit_stride);
16470 return set_die_type (die, type, cu);
16471 }
16472
16473 std::vector<struct type *> range_types;
16474 child_die = die->child;
16475 while (child_die && child_die->tag)
16476 {
16477 if (child_die->tag == DW_TAG_subrange_type)
16478 {
16479 struct type *child_type = read_type_die (child_die, cu);
16480
16481 if (child_type != NULL)
16482 {
16483 /* The range type was succesfully read. Save it for the
16484 array type creation. */
16485 range_types.push_back (child_type);
16486 }
16487 }
16488 child_die = sibling_die (child_die);
16489 }
16490
16491 /* Dwarf2 dimensions are output from left to right, create the
16492 necessary array types in backwards order. */
16493
16494 type = element_type;
16495
16496 if (read_array_order (die, cu) == DW_ORD_col_major)
16497 {
16498 int i = 0;
16499
16500 while (i < range_types.size ())
16501 type = create_array_type_with_stride (NULL, type, range_types[i++],
16502 byte_stride_prop, bit_stride);
16503 }
16504 else
16505 {
16506 size_t ndim = range_types.size ();
16507 while (ndim-- > 0)
16508 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16509 byte_stride_prop, bit_stride);
16510 }
16511
16512 /* Understand Dwarf2 support for vector types (like they occur on
16513 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16514 array type. This is not part of the Dwarf2/3 standard yet, but a
16515 custom vendor extension. The main difference between a regular
16516 array and the vector variant is that vectors are passed by value
16517 to functions. */
16518 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16519 if (attr)
16520 make_vector_type (type);
16521
16522 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16523 implementation may choose to implement triple vectors using this
16524 attribute. */
16525 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16526 if (attr)
16527 {
16528 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16529 TYPE_LENGTH (type) = DW_UNSND (attr);
16530 else
16531 complaint (_("DW_AT_byte_size for array type smaller "
16532 "than the total size of elements"));
16533 }
16534
16535 name = dwarf2_name (die, cu);
16536 if (name)
16537 TYPE_NAME (type) = name;
16538
16539 maybe_set_alignment (cu, die, type);
16540
16541 /* Install the type in the die. */
16542 set_die_type (die, type, cu);
16543
16544 /* set_die_type should be already done. */
16545 set_descriptive_type (type, die, cu);
16546
16547 return type;
16548 }
16549
16550 static enum dwarf_array_dim_ordering
16551 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16552 {
16553 struct attribute *attr;
16554
16555 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16556
16557 if (attr)
16558 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16559
16560 /* GNU F77 is a special case, as at 08/2004 array type info is the
16561 opposite order to the dwarf2 specification, but data is still
16562 laid out as per normal fortran.
16563
16564 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16565 version checking. */
16566
16567 if (cu->language == language_fortran
16568 && cu->producer && strstr (cu->producer, "GNU F77"))
16569 {
16570 return DW_ORD_row_major;
16571 }
16572
16573 switch (cu->language_defn->la_array_ordering)
16574 {
16575 case array_column_major:
16576 return DW_ORD_col_major;
16577 case array_row_major:
16578 default:
16579 return DW_ORD_row_major;
16580 };
16581 }
16582
16583 /* Extract all information from a DW_TAG_set_type DIE and put it in
16584 the DIE's type field. */
16585
16586 static struct type *
16587 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16588 {
16589 struct type *domain_type, *set_type;
16590 struct attribute *attr;
16591
16592 domain_type = die_type (die, cu);
16593
16594 /* The die_type call above may have already set the type for this DIE. */
16595 set_type = get_die_type (die, cu);
16596 if (set_type)
16597 return set_type;
16598
16599 set_type = create_set_type (NULL, domain_type);
16600
16601 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16602 if (attr)
16603 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16604
16605 maybe_set_alignment (cu, die, set_type);
16606
16607 return set_die_type (die, set_type, cu);
16608 }
16609
16610 /* A helper for read_common_block that creates a locexpr baton.
16611 SYM is the symbol which we are marking as computed.
16612 COMMON_DIE is the DIE for the common block.
16613 COMMON_LOC is the location expression attribute for the common
16614 block itself.
16615 MEMBER_LOC is the location expression attribute for the particular
16616 member of the common block that we are processing.
16617 CU is the CU from which the above come. */
16618
16619 static void
16620 mark_common_block_symbol_computed (struct symbol *sym,
16621 struct die_info *common_die,
16622 struct attribute *common_loc,
16623 struct attribute *member_loc,
16624 struct dwarf2_cu *cu)
16625 {
16626 struct dwarf2_per_objfile *dwarf2_per_objfile
16627 = cu->per_cu->dwarf2_per_objfile;
16628 struct objfile *objfile = dwarf2_per_objfile->objfile;
16629 struct dwarf2_locexpr_baton *baton;
16630 gdb_byte *ptr;
16631 unsigned int cu_off;
16632 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16633 LONGEST offset = 0;
16634
16635 gdb_assert (common_loc && member_loc);
16636 gdb_assert (attr_form_is_block (common_loc));
16637 gdb_assert (attr_form_is_block (member_loc)
16638 || attr_form_is_constant (member_loc));
16639
16640 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16641 baton->per_cu = cu->per_cu;
16642 gdb_assert (baton->per_cu);
16643
16644 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16645
16646 if (attr_form_is_constant (member_loc))
16647 {
16648 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16649 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16650 }
16651 else
16652 baton->size += DW_BLOCK (member_loc)->size;
16653
16654 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16655 baton->data = ptr;
16656
16657 *ptr++ = DW_OP_call4;
16658 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16659 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16660 ptr += 4;
16661
16662 if (attr_form_is_constant (member_loc))
16663 {
16664 *ptr++ = DW_OP_addr;
16665 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16666 ptr += cu->header.addr_size;
16667 }
16668 else
16669 {
16670 /* We have to copy the data here, because DW_OP_call4 will only
16671 use a DW_AT_location attribute. */
16672 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16673 ptr += DW_BLOCK (member_loc)->size;
16674 }
16675
16676 *ptr++ = DW_OP_plus;
16677 gdb_assert (ptr - baton->data == baton->size);
16678
16679 SYMBOL_LOCATION_BATON (sym) = baton;
16680 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16681 }
16682
16683 /* Create appropriate locally-scoped variables for all the
16684 DW_TAG_common_block entries. Also create a struct common_block
16685 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16686 is used to sepate the common blocks name namespace from regular
16687 variable names. */
16688
16689 static void
16690 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16691 {
16692 struct attribute *attr;
16693
16694 attr = dwarf2_attr (die, DW_AT_location, cu);
16695 if (attr)
16696 {
16697 /* Support the .debug_loc offsets. */
16698 if (attr_form_is_block (attr))
16699 {
16700 /* Ok. */
16701 }
16702 else if (attr_form_is_section_offset (attr))
16703 {
16704 dwarf2_complex_location_expr_complaint ();
16705 attr = NULL;
16706 }
16707 else
16708 {
16709 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16710 "common block member");
16711 attr = NULL;
16712 }
16713 }
16714
16715 if (die->child != NULL)
16716 {
16717 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16718 struct die_info *child_die;
16719 size_t n_entries = 0, size;
16720 struct common_block *common_block;
16721 struct symbol *sym;
16722
16723 for (child_die = die->child;
16724 child_die && child_die->tag;
16725 child_die = sibling_die (child_die))
16726 ++n_entries;
16727
16728 size = (sizeof (struct common_block)
16729 + (n_entries - 1) * sizeof (struct symbol *));
16730 common_block
16731 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16732 size);
16733 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16734 common_block->n_entries = 0;
16735
16736 for (child_die = die->child;
16737 child_die && child_die->tag;
16738 child_die = sibling_die (child_die))
16739 {
16740 /* Create the symbol in the DW_TAG_common_block block in the current
16741 symbol scope. */
16742 sym = new_symbol (child_die, NULL, cu);
16743 if (sym != NULL)
16744 {
16745 struct attribute *member_loc;
16746
16747 common_block->contents[common_block->n_entries++] = sym;
16748
16749 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16750 cu);
16751 if (member_loc)
16752 {
16753 /* GDB has handled this for a long time, but it is
16754 not specified by DWARF. It seems to have been
16755 emitted by gfortran at least as recently as:
16756 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16757 complaint (_("Variable in common block has "
16758 "DW_AT_data_member_location "
16759 "- DIE at %s [in module %s]"),
16760 sect_offset_str (child_die->sect_off),
16761 objfile_name (objfile));
16762
16763 if (attr_form_is_section_offset (member_loc))
16764 dwarf2_complex_location_expr_complaint ();
16765 else if (attr_form_is_constant (member_loc)
16766 || attr_form_is_block (member_loc))
16767 {
16768 if (attr)
16769 mark_common_block_symbol_computed (sym, die, attr,
16770 member_loc, cu);
16771 }
16772 else
16773 dwarf2_complex_location_expr_complaint ();
16774 }
16775 }
16776 }
16777
16778 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16779 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16780 }
16781 }
16782
16783 /* Create a type for a C++ namespace. */
16784
16785 static struct type *
16786 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16787 {
16788 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16789 const char *previous_prefix, *name;
16790 int is_anonymous;
16791 struct type *type;
16792
16793 /* For extensions, reuse the type of the original namespace. */
16794 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16795 {
16796 struct die_info *ext_die;
16797 struct dwarf2_cu *ext_cu = cu;
16798
16799 ext_die = dwarf2_extension (die, &ext_cu);
16800 type = read_type_die (ext_die, ext_cu);
16801
16802 /* EXT_CU may not be the same as CU.
16803 Ensure TYPE is recorded with CU in die_type_hash. */
16804 return set_die_type (die, type, cu);
16805 }
16806
16807 name = namespace_name (die, &is_anonymous, cu);
16808
16809 /* Now build the name of the current namespace. */
16810
16811 previous_prefix = determine_prefix (die, cu);
16812 if (previous_prefix[0] != '\0')
16813 name = typename_concat (&objfile->objfile_obstack,
16814 previous_prefix, name, 0, cu);
16815
16816 /* Create the type. */
16817 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16818
16819 return set_die_type (die, type, cu);
16820 }
16821
16822 /* Read a namespace scope. */
16823
16824 static void
16825 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16826 {
16827 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16828 int is_anonymous;
16829
16830 /* Add a symbol associated to this if we haven't seen the namespace
16831 before. Also, add a using directive if it's an anonymous
16832 namespace. */
16833
16834 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16835 {
16836 struct type *type;
16837
16838 type = read_type_die (die, cu);
16839 new_symbol (die, type, cu);
16840
16841 namespace_name (die, &is_anonymous, cu);
16842 if (is_anonymous)
16843 {
16844 const char *previous_prefix = determine_prefix (die, cu);
16845
16846 std::vector<const char *> excludes;
16847 add_using_directive (using_directives (cu),
16848 previous_prefix, TYPE_NAME (type), NULL,
16849 NULL, excludes, 0, &objfile->objfile_obstack);
16850 }
16851 }
16852
16853 if (die->child != NULL)
16854 {
16855 struct die_info *child_die = die->child;
16856
16857 while (child_die && child_die->tag)
16858 {
16859 process_die (child_die, cu);
16860 child_die = sibling_die (child_die);
16861 }
16862 }
16863 }
16864
16865 /* Read a Fortran module as type. This DIE can be only a declaration used for
16866 imported module. Still we need that type as local Fortran "use ... only"
16867 declaration imports depend on the created type in determine_prefix. */
16868
16869 static struct type *
16870 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16871 {
16872 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16873 const char *module_name;
16874 struct type *type;
16875
16876 module_name = dwarf2_name (die, cu);
16877 if (!module_name)
16878 complaint (_("DW_TAG_module has no name, offset %s"),
16879 sect_offset_str (die->sect_off));
16880 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16881
16882 return set_die_type (die, type, cu);
16883 }
16884
16885 /* Read a Fortran module. */
16886
16887 static void
16888 read_module (struct die_info *die, struct dwarf2_cu *cu)
16889 {
16890 struct die_info *child_die = die->child;
16891 struct type *type;
16892
16893 type = read_type_die (die, cu);
16894 new_symbol (die, type, cu);
16895
16896 while (child_die && child_die->tag)
16897 {
16898 process_die (child_die, cu);
16899 child_die = sibling_die (child_die);
16900 }
16901 }
16902
16903 /* Return the name of the namespace represented by DIE. Set
16904 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16905 namespace. */
16906
16907 static const char *
16908 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16909 {
16910 struct die_info *current_die;
16911 const char *name = NULL;
16912
16913 /* Loop through the extensions until we find a name. */
16914
16915 for (current_die = die;
16916 current_die != NULL;
16917 current_die = dwarf2_extension (die, &cu))
16918 {
16919 /* We don't use dwarf2_name here so that we can detect the absence
16920 of a name -> anonymous namespace. */
16921 name = dwarf2_string_attr (die, DW_AT_name, cu);
16922
16923 if (name != NULL)
16924 break;
16925 }
16926
16927 /* Is it an anonymous namespace? */
16928
16929 *is_anonymous = (name == NULL);
16930 if (*is_anonymous)
16931 name = CP_ANONYMOUS_NAMESPACE_STR;
16932
16933 return name;
16934 }
16935
16936 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16937 the user defined type vector. */
16938
16939 static struct type *
16940 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16941 {
16942 struct gdbarch *gdbarch
16943 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16944 struct comp_unit_head *cu_header = &cu->header;
16945 struct type *type;
16946 struct attribute *attr_byte_size;
16947 struct attribute *attr_address_class;
16948 int byte_size, addr_class;
16949 struct type *target_type;
16950
16951 target_type = die_type (die, cu);
16952
16953 /* The die_type call above may have already set the type for this DIE. */
16954 type = get_die_type (die, cu);
16955 if (type)
16956 return type;
16957
16958 type = lookup_pointer_type (target_type);
16959
16960 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16961 if (attr_byte_size)
16962 byte_size = DW_UNSND (attr_byte_size);
16963 else
16964 byte_size = cu_header->addr_size;
16965
16966 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16967 if (attr_address_class)
16968 addr_class = DW_UNSND (attr_address_class);
16969 else
16970 addr_class = DW_ADDR_none;
16971
16972 ULONGEST alignment = get_alignment (cu, die);
16973
16974 /* If the pointer size, alignment, or address class is different
16975 than the default, create a type variant marked as such and set
16976 the length accordingly. */
16977 if (TYPE_LENGTH (type) != byte_size
16978 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
16979 && alignment != TYPE_RAW_ALIGN (type))
16980 || addr_class != DW_ADDR_none)
16981 {
16982 if (gdbarch_address_class_type_flags_p (gdbarch))
16983 {
16984 int type_flags;
16985
16986 type_flags = gdbarch_address_class_type_flags
16987 (gdbarch, byte_size, addr_class);
16988 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16989 == 0);
16990 type = make_type_with_address_space (type, type_flags);
16991 }
16992 else if (TYPE_LENGTH (type) != byte_size)
16993 {
16994 complaint (_("invalid pointer size %d"), byte_size);
16995 }
16996 else if (TYPE_RAW_ALIGN (type) != alignment)
16997 {
16998 complaint (_("Invalid DW_AT_alignment"
16999 " - DIE at %s [in module %s]"),
17000 sect_offset_str (die->sect_off),
17001 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17002 }
17003 else
17004 {
17005 /* Should we also complain about unhandled address classes? */
17006 }
17007 }
17008
17009 TYPE_LENGTH (type) = byte_size;
17010 set_type_align (type, alignment);
17011 return set_die_type (die, type, cu);
17012 }
17013
17014 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17015 the user defined type vector. */
17016
17017 static struct type *
17018 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17019 {
17020 struct type *type;
17021 struct type *to_type;
17022 struct type *domain;
17023
17024 to_type = die_type (die, cu);
17025 domain = die_containing_type (die, cu);
17026
17027 /* The calls above may have already set the type for this DIE. */
17028 type = get_die_type (die, cu);
17029 if (type)
17030 return type;
17031
17032 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17033 type = lookup_methodptr_type (to_type);
17034 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17035 {
17036 struct type *new_type
17037 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
17038
17039 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17040 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17041 TYPE_VARARGS (to_type));
17042 type = lookup_methodptr_type (new_type);
17043 }
17044 else
17045 type = lookup_memberptr_type (to_type, domain);
17046
17047 return set_die_type (die, type, cu);
17048 }
17049
17050 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17051 the user defined type vector. */
17052
17053 static struct type *
17054 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17055 enum type_code refcode)
17056 {
17057 struct comp_unit_head *cu_header = &cu->header;
17058 struct type *type, *target_type;
17059 struct attribute *attr;
17060
17061 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17062
17063 target_type = die_type (die, cu);
17064
17065 /* The die_type call above may have already set the type for this DIE. */
17066 type = get_die_type (die, cu);
17067 if (type)
17068 return type;
17069
17070 type = lookup_reference_type (target_type, refcode);
17071 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17072 if (attr)
17073 {
17074 TYPE_LENGTH (type) = DW_UNSND (attr);
17075 }
17076 else
17077 {
17078 TYPE_LENGTH (type) = cu_header->addr_size;
17079 }
17080 maybe_set_alignment (cu, die, type);
17081 return set_die_type (die, type, cu);
17082 }
17083
17084 /* Add the given cv-qualifiers to the element type of the array. GCC
17085 outputs DWARF type qualifiers that apply to an array, not the
17086 element type. But GDB relies on the array element type to carry
17087 the cv-qualifiers. This mimics section 6.7.3 of the C99
17088 specification. */
17089
17090 static struct type *
17091 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17092 struct type *base_type, int cnst, int voltl)
17093 {
17094 struct type *el_type, *inner_array;
17095
17096 base_type = copy_type (base_type);
17097 inner_array = base_type;
17098
17099 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17100 {
17101 TYPE_TARGET_TYPE (inner_array) =
17102 copy_type (TYPE_TARGET_TYPE (inner_array));
17103 inner_array = TYPE_TARGET_TYPE (inner_array);
17104 }
17105
17106 el_type = TYPE_TARGET_TYPE (inner_array);
17107 cnst |= TYPE_CONST (el_type);
17108 voltl |= TYPE_VOLATILE (el_type);
17109 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17110
17111 return set_die_type (die, base_type, cu);
17112 }
17113
17114 static struct type *
17115 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17116 {
17117 struct type *base_type, *cv_type;
17118
17119 base_type = die_type (die, cu);
17120
17121 /* The die_type call above may have already set the type for this DIE. */
17122 cv_type = get_die_type (die, cu);
17123 if (cv_type)
17124 return cv_type;
17125
17126 /* In case the const qualifier is applied to an array type, the element type
17127 is so qualified, not the array type (section 6.7.3 of C99). */
17128 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17129 return add_array_cv_type (die, cu, base_type, 1, 0);
17130
17131 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17132 return set_die_type (die, cv_type, cu);
17133 }
17134
17135 static struct type *
17136 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17137 {
17138 struct type *base_type, *cv_type;
17139
17140 base_type = die_type (die, cu);
17141
17142 /* The die_type call above may have already set the type for this DIE. */
17143 cv_type = get_die_type (die, cu);
17144 if (cv_type)
17145 return cv_type;
17146
17147 /* In case the volatile qualifier is applied to an array type, the
17148 element type is so qualified, not the array type (section 6.7.3
17149 of C99). */
17150 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17151 return add_array_cv_type (die, cu, base_type, 0, 1);
17152
17153 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17154 return set_die_type (die, cv_type, cu);
17155 }
17156
17157 /* Handle DW_TAG_restrict_type. */
17158
17159 static struct type *
17160 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17161 {
17162 struct type *base_type, *cv_type;
17163
17164 base_type = die_type (die, cu);
17165
17166 /* The die_type call above may have already set the type for this DIE. */
17167 cv_type = get_die_type (die, cu);
17168 if (cv_type)
17169 return cv_type;
17170
17171 cv_type = make_restrict_type (base_type);
17172 return set_die_type (die, cv_type, cu);
17173 }
17174
17175 /* Handle DW_TAG_atomic_type. */
17176
17177 static struct type *
17178 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17179 {
17180 struct type *base_type, *cv_type;
17181
17182 base_type = die_type (die, cu);
17183
17184 /* The die_type call above may have already set the type for this DIE. */
17185 cv_type = get_die_type (die, cu);
17186 if (cv_type)
17187 return cv_type;
17188
17189 cv_type = make_atomic_type (base_type);
17190 return set_die_type (die, cv_type, cu);
17191 }
17192
17193 /* Extract all information from a DW_TAG_string_type DIE and add to
17194 the user defined type vector. It isn't really a user defined type,
17195 but it behaves like one, with other DIE's using an AT_user_def_type
17196 attribute to reference it. */
17197
17198 static struct type *
17199 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17200 {
17201 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17202 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17203 struct type *type, *range_type, *index_type, *char_type;
17204 struct attribute *attr;
17205 unsigned int length;
17206
17207 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17208 if (attr)
17209 {
17210 length = DW_UNSND (attr);
17211 }
17212 else
17213 {
17214 /* Check for the DW_AT_byte_size attribute. */
17215 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17216 if (attr)
17217 {
17218 length = DW_UNSND (attr);
17219 }
17220 else
17221 {
17222 length = 1;
17223 }
17224 }
17225
17226 index_type = objfile_type (objfile)->builtin_int;
17227 range_type = create_static_range_type (NULL, index_type, 1, length);
17228 char_type = language_string_char_type (cu->language_defn, gdbarch);
17229 type = create_string_type (NULL, char_type, range_type);
17230
17231 return set_die_type (die, type, cu);
17232 }
17233
17234 /* Assuming that DIE corresponds to a function, returns nonzero
17235 if the function is prototyped. */
17236
17237 static int
17238 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17239 {
17240 struct attribute *attr;
17241
17242 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17243 if (attr && (DW_UNSND (attr) != 0))
17244 return 1;
17245
17246 /* The DWARF standard implies that the DW_AT_prototyped attribute
17247 is only meaninful for C, but the concept also extends to other
17248 languages that allow unprototyped functions (Eg: Objective C).
17249 For all other languages, assume that functions are always
17250 prototyped. */
17251 if (cu->language != language_c
17252 && cu->language != language_objc
17253 && cu->language != language_opencl)
17254 return 1;
17255
17256 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17257 prototyped and unprototyped functions; default to prototyped,
17258 since that is more common in modern code (and RealView warns
17259 about unprototyped functions). */
17260 if (producer_is_realview (cu->producer))
17261 return 1;
17262
17263 return 0;
17264 }
17265
17266 /* Handle DIES due to C code like:
17267
17268 struct foo
17269 {
17270 int (*funcp)(int a, long l);
17271 int b;
17272 };
17273
17274 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17275
17276 static struct type *
17277 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17278 {
17279 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17280 struct type *type; /* Type that this function returns. */
17281 struct type *ftype; /* Function that returns above type. */
17282 struct attribute *attr;
17283
17284 type = die_type (die, cu);
17285
17286 /* The die_type call above may have already set the type for this DIE. */
17287 ftype = get_die_type (die, cu);
17288 if (ftype)
17289 return ftype;
17290
17291 ftype = lookup_function_type (type);
17292
17293 if (prototyped_function_p (die, cu))
17294 TYPE_PROTOTYPED (ftype) = 1;
17295
17296 /* Store the calling convention in the type if it's available in
17297 the subroutine die. Otherwise set the calling convention to
17298 the default value DW_CC_normal. */
17299 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17300 if (attr)
17301 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17302 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17303 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17304 else
17305 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17306
17307 /* Record whether the function returns normally to its caller or not
17308 if the DWARF producer set that information. */
17309 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17310 if (attr && (DW_UNSND (attr) != 0))
17311 TYPE_NO_RETURN (ftype) = 1;
17312
17313 /* We need to add the subroutine type to the die immediately so
17314 we don't infinitely recurse when dealing with parameters
17315 declared as the same subroutine type. */
17316 set_die_type (die, ftype, cu);
17317
17318 if (die->child != NULL)
17319 {
17320 struct type *void_type = objfile_type (objfile)->builtin_void;
17321 struct die_info *child_die;
17322 int nparams, iparams;
17323
17324 /* Count the number of parameters.
17325 FIXME: GDB currently ignores vararg functions, but knows about
17326 vararg member functions. */
17327 nparams = 0;
17328 child_die = die->child;
17329 while (child_die && child_die->tag)
17330 {
17331 if (child_die->tag == DW_TAG_formal_parameter)
17332 nparams++;
17333 else if (child_die->tag == DW_TAG_unspecified_parameters)
17334 TYPE_VARARGS (ftype) = 1;
17335 child_die = sibling_die (child_die);
17336 }
17337
17338 /* Allocate storage for parameters and fill them in. */
17339 TYPE_NFIELDS (ftype) = nparams;
17340 TYPE_FIELDS (ftype) = (struct field *)
17341 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17342
17343 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17344 even if we error out during the parameters reading below. */
17345 for (iparams = 0; iparams < nparams; iparams++)
17346 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17347
17348 iparams = 0;
17349 child_die = die->child;
17350 while (child_die && child_die->tag)
17351 {
17352 if (child_die->tag == DW_TAG_formal_parameter)
17353 {
17354 struct type *arg_type;
17355
17356 /* DWARF version 2 has no clean way to discern C++
17357 static and non-static member functions. G++ helps
17358 GDB by marking the first parameter for non-static
17359 member functions (which is the this pointer) as
17360 artificial. We pass this information to
17361 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17362
17363 DWARF version 3 added DW_AT_object_pointer, which GCC
17364 4.5 does not yet generate. */
17365 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17366 if (attr)
17367 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17368 else
17369 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17370 arg_type = die_type (child_die, cu);
17371
17372 /* RealView does not mark THIS as const, which the testsuite
17373 expects. GCC marks THIS as const in method definitions,
17374 but not in the class specifications (GCC PR 43053). */
17375 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17376 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17377 {
17378 int is_this = 0;
17379 struct dwarf2_cu *arg_cu = cu;
17380 const char *name = dwarf2_name (child_die, cu);
17381
17382 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17383 if (attr)
17384 {
17385 /* If the compiler emits this, use it. */
17386 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17387 is_this = 1;
17388 }
17389 else if (name && strcmp (name, "this") == 0)
17390 /* Function definitions will have the argument names. */
17391 is_this = 1;
17392 else if (name == NULL && iparams == 0)
17393 /* Declarations may not have the names, so like
17394 elsewhere in GDB, assume an artificial first
17395 argument is "this". */
17396 is_this = 1;
17397
17398 if (is_this)
17399 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17400 arg_type, 0);
17401 }
17402
17403 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17404 iparams++;
17405 }
17406 child_die = sibling_die (child_die);
17407 }
17408 }
17409
17410 return ftype;
17411 }
17412
17413 static struct type *
17414 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17415 {
17416 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17417 const char *name = NULL;
17418 struct type *this_type, *target_type;
17419
17420 name = dwarf2_full_name (NULL, die, cu);
17421 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17422 TYPE_TARGET_STUB (this_type) = 1;
17423 set_die_type (die, this_type, cu);
17424 target_type = die_type (die, cu);
17425 if (target_type != this_type)
17426 TYPE_TARGET_TYPE (this_type) = target_type;
17427 else
17428 {
17429 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17430 spec and cause infinite loops in GDB. */
17431 complaint (_("Self-referential DW_TAG_typedef "
17432 "- DIE at %s [in module %s]"),
17433 sect_offset_str (die->sect_off), objfile_name (objfile));
17434 TYPE_TARGET_TYPE (this_type) = NULL;
17435 }
17436 return this_type;
17437 }
17438
17439 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17440 (which may be different from NAME) to the architecture back-end to allow
17441 it to guess the correct format if necessary. */
17442
17443 static struct type *
17444 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17445 const char *name_hint)
17446 {
17447 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17448 const struct floatformat **format;
17449 struct type *type;
17450
17451 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17452 if (format)
17453 type = init_float_type (objfile, bits, name, format);
17454 else
17455 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17456
17457 return type;
17458 }
17459
17460 /* Find a representation of a given base type and install
17461 it in the TYPE field of the die. */
17462
17463 static struct type *
17464 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17465 {
17466 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17467 struct type *type;
17468 struct attribute *attr;
17469 int encoding = 0, bits = 0;
17470 const char *name;
17471
17472 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17473 if (attr)
17474 {
17475 encoding = DW_UNSND (attr);
17476 }
17477 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17478 if (attr)
17479 {
17480 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17481 }
17482 name = dwarf2_name (die, cu);
17483 if (!name)
17484 {
17485 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17486 }
17487
17488 switch (encoding)
17489 {
17490 case DW_ATE_address:
17491 /* Turn DW_ATE_address into a void * pointer. */
17492 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17493 type = init_pointer_type (objfile, bits, name, type);
17494 break;
17495 case DW_ATE_boolean:
17496 type = init_boolean_type (objfile, bits, 1, name);
17497 break;
17498 case DW_ATE_complex_float:
17499 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
17500 type = init_complex_type (objfile, name, type);
17501 break;
17502 case DW_ATE_decimal_float:
17503 type = init_decfloat_type (objfile, bits, name);
17504 break;
17505 case DW_ATE_float:
17506 type = dwarf2_init_float_type (objfile, bits, name, name);
17507 break;
17508 case DW_ATE_signed:
17509 type = init_integer_type (objfile, bits, 0, name);
17510 break;
17511 case DW_ATE_unsigned:
17512 if (cu->language == language_fortran
17513 && name
17514 && startswith (name, "character("))
17515 type = init_character_type (objfile, bits, 1, name);
17516 else
17517 type = init_integer_type (objfile, bits, 1, name);
17518 break;
17519 case DW_ATE_signed_char:
17520 if (cu->language == language_ada || cu->language == language_m2
17521 || cu->language == language_pascal
17522 || cu->language == language_fortran)
17523 type = init_character_type (objfile, bits, 0, name);
17524 else
17525 type = init_integer_type (objfile, bits, 0, name);
17526 break;
17527 case DW_ATE_unsigned_char:
17528 if (cu->language == language_ada || cu->language == language_m2
17529 || cu->language == language_pascal
17530 || cu->language == language_fortran
17531 || cu->language == language_rust)
17532 type = init_character_type (objfile, bits, 1, name);
17533 else
17534 type = init_integer_type (objfile, bits, 1, name);
17535 break;
17536 case DW_ATE_UTF:
17537 {
17538 gdbarch *arch = get_objfile_arch (objfile);
17539
17540 if (bits == 16)
17541 type = builtin_type (arch)->builtin_char16;
17542 else if (bits == 32)
17543 type = builtin_type (arch)->builtin_char32;
17544 else
17545 {
17546 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17547 bits);
17548 type = init_integer_type (objfile, bits, 1, name);
17549 }
17550 return set_die_type (die, type, cu);
17551 }
17552 break;
17553
17554 default:
17555 complaint (_("unsupported DW_AT_encoding: '%s'"),
17556 dwarf_type_encoding_name (encoding));
17557 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17558 break;
17559 }
17560
17561 if (name && strcmp (name, "char") == 0)
17562 TYPE_NOSIGN (type) = 1;
17563
17564 maybe_set_alignment (cu, die, type);
17565
17566 return set_die_type (die, type, cu);
17567 }
17568
17569 /* Parse dwarf attribute if it's a block, reference or constant and put the
17570 resulting value of the attribute into struct bound_prop.
17571 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17572
17573 static int
17574 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17575 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17576 {
17577 struct dwarf2_property_baton *baton;
17578 struct obstack *obstack
17579 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17580
17581 if (attr == NULL || prop == NULL)
17582 return 0;
17583
17584 if (attr_form_is_block (attr))
17585 {
17586 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17587 baton->referenced_type = NULL;
17588 baton->locexpr.per_cu = cu->per_cu;
17589 baton->locexpr.size = DW_BLOCK (attr)->size;
17590 baton->locexpr.data = DW_BLOCK (attr)->data;
17591 prop->data.baton = baton;
17592 prop->kind = PROP_LOCEXPR;
17593 gdb_assert (prop->data.baton != NULL);
17594 }
17595 else if (attr_form_is_ref (attr))
17596 {
17597 struct dwarf2_cu *target_cu = cu;
17598 struct die_info *target_die;
17599 struct attribute *target_attr;
17600
17601 target_die = follow_die_ref (die, attr, &target_cu);
17602 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17603 if (target_attr == NULL)
17604 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17605 target_cu);
17606 if (target_attr == NULL)
17607 return 0;
17608
17609 switch (target_attr->name)
17610 {
17611 case DW_AT_location:
17612 if (attr_form_is_section_offset (target_attr))
17613 {
17614 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17615 baton->referenced_type = die_type (target_die, target_cu);
17616 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17617 prop->data.baton = baton;
17618 prop->kind = PROP_LOCLIST;
17619 gdb_assert (prop->data.baton != NULL);
17620 }
17621 else if (attr_form_is_block (target_attr))
17622 {
17623 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17624 baton->referenced_type = die_type (target_die, target_cu);
17625 baton->locexpr.per_cu = cu->per_cu;
17626 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17627 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17628 prop->data.baton = baton;
17629 prop->kind = PROP_LOCEXPR;
17630 gdb_assert (prop->data.baton != NULL);
17631 }
17632 else
17633 {
17634 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17635 "dynamic property");
17636 return 0;
17637 }
17638 break;
17639 case DW_AT_data_member_location:
17640 {
17641 LONGEST offset;
17642
17643 if (!handle_data_member_location (target_die, target_cu,
17644 &offset))
17645 return 0;
17646
17647 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17648 baton->referenced_type = read_type_die (target_die->parent,
17649 target_cu);
17650 baton->offset_info.offset = offset;
17651 baton->offset_info.type = die_type (target_die, target_cu);
17652 prop->data.baton = baton;
17653 prop->kind = PROP_ADDR_OFFSET;
17654 break;
17655 }
17656 }
17657 }
17658 else if (attr_form_is_constant (attr))
17659 {
17660 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17661 prop->kind = PROP_CONST;
17662 }
17663 else
17664 {
17665 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17666 dwarf2_name (die, cu));
17667 return 0;
17668 }
17669
17670 return 1;
17671 }
17672
17673 /* Read the given DW_AT_subrange DIE. */
17674
17675 static struct type *
17676 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17677 {
17678 struct type *base_type, *orig_base_type;
17679 struct type *range_type;
17680 struct attribute *attr;
17681 struct dynamic_prop low, high;
17682 int low_default_is_valid;
17683 int high_bound_is_count = 0;
17684 const char *name;
17685 LONGEST negative_mask;
17686
17687 orig_base_type = die_type (die, cu);
17688 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17689 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17690 creating the range type, but we use the result of check_typedef
17691 when examining properties of the type. */
17692 base_type = check_typedef (orig_base_type);
17693
17694 /* The die_type call above may have already set the type for this DIE. */
17695 range_type = get_die_type (die, cu);
17696 if (range_type)
17697 return range_type;
17698
17699 low.kind = PROP_CONST;
17700 high.kind = PROP_CONST;
17701 high.data.const_val = 0;
17702
17703 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17704 omitting DW_AT_lower_bound. */
17705 switch (cu->language)
17706 {
17707 case language_c:
17708 case language_cplus:
17709 low.data.const_val = 0;
17710 low_default_is_valid = 1;
17711 break;
17712 case language_fortran:
17713 low.data.const_val = 1;
17714 low_default_is_valid = 1;
17715 break;
17716 case language_d:
17717 case language_objc:
17718 case language_rust:
17719 low.data.const_val = 0;
17720 low_default_is_valid = (cu->header.version >= 4);
17721 break;
17722 case language_ada:
17723 case language_m2:
17724 case language_pascal:
17725 low.data.const_val = 1;
17726 low_default_is_valid = (cu->header.version >= 4);
17727 break;
17728 default:
17729 low.data.const_val = 0;
17730 low_default_is_valid = 0;
17731 break;
17732 }
17733
17734 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17735 if (attr)
17736 attr_to_dynamic_prop (attr, die, cu, &low);
17737 else if (!low_default_is_valid)
17738 complaint (_("Missing DW_AT_lower_bound "
17739 "- DIE at %s [in module %s]"),
17740 sect_offset_str (die->sect_off),
17741 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17742
17743 struct attribute *attr_ub, *attr_count;
17744 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17745 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17746 {
17747 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17748 if (attr_to_dynamic_prop (attr, die, cu, &high))
17749 {
17750 /* If bounds are constant do the final calculation here. */
17751 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17752 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17753 else
17754 high_bound_is_count = 1;
17755 }
17756 else
17757 {
17758 if (attr_ub != NULL)
17759 complaint (_("Unresolved DW_AT_upper_bound "
17760 "- DIE at %s [in module %s]"),
17761 sect_offset_str (die->sect_off),
17762 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17763 if (attr_count != NULL)
17764 complaint (_("Unresolved DW_AT_count "
17765 "- DIE at %s [in module %s]"),
17766 sect_offset_str (die->sect_off),
17767 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17768 }
17769
17770 }
17771
17772 /* Dwarf-2 specifications explicitly allows to create subrange types
17773 without specifying a base type.
17774 In that case, the base type must be set to the type of
17775 the lower bound, upper bound or count, in that order, if any of these
17776 three attributes references an object that has a type.
17777 If no base type is found, the Dwarf-2 specifications say that
17778 a signed integer type of size equal to the size of an address should
17779 be used.
17780 For the following C code: `extern char gdb_int [];'
17781 GCC produces an empty range DIE.
17782 FIXME: muller/2010-05-28: Possible references to object for low bound,
17783 high bound or count are not yet handled by this code. */
17784 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17785 {
17786 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17787 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17788 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17789 struct type *int_type = objfile_type (objfile)->builtin_int;
17790
17791 /* Test "int", "long int", and "long long int" objfile types,
17792 and select the first one having a size above or equal to the
17793 architecture address size. */
17794 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17795 base_type = int_type;
17796 else
17797 {
17798 int_type = objfile_type (objfile)->builtin_long;
17799 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17800 base_type = int_type;
17801 else
17802 {
17803 int_type = objfile_type (objfile)->builtin_long_long;
17804 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17805 base_type = int_type;
17806 }
17807 }
17808 }
17809
17810 /* Normally, the DWARF producers are expected to use a signed
17811 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17812 But this is unfortunately not always the case, as witnessed
17813 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17814 is used instead. To work around that ambiguity, we treat
17815 the bounds as signed, and thus sign-extend their values, when
17816 the base type is signed. */
17817 negative_mask =
17818 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17819 if (low.kind == PROP_CONST
17820 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17821 low.data.const_val |= negative_mask;
17822 if (high.kind == PROP_CONST
17823 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17824 high.data.const_val |= negative_mask;
17825
17826 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17827
17828 if (high_bound_is_count)
17829 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17830
17831 /* Ada expects an empty array on no boundary attributes. */
17832 if (attr == NULL && cu->language != language_ada)
17833 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17834
17835 name = dwarf2_name (die, cu);
17836 if (name)
17837 TYPE_NAME (range_type) = name;
17838
17839 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17840 if (attr)
17841 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17842
17843 maybe_set_alignment (cu, die, range_type);
17844
17845 set_die_type (die, range_type, cu);
17846
17847 /* set_die_type should be already done. */
17848 set_descriptive_type (range_type, die, cu);
17849
17850 return range_type;
17851 }
17852
17853 static struct type *
17854 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17855 {
17856 struct type *type;
17857
17858 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17859 NULL);
17860 TYPE_NAME (type) = dwarf2_name (die, cu);
17861
17862 /* In Ada, an unspecified type is typically used when the description
17863 of the type is defered to a different unit. When encountering
17864 such a type, we treat it as a stub, and try to resolve it later on,
17865 when needed. */
17866 if (cu->language == language_ada)
17867 TYPE_STUB (type) = 1;
17868
17869 return set_die_type (die, type, cu);
17870 }
17871
17872 /* Read a single die and all its descendents. Set the die's sibling
17873 field to NULL; set other fields in the die correctly, and set all
17874 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17875 location of the info_ptr after reading all of those dies. PARENT
17876 is the parent of the die in question. */
17877
17878 static struct die_info *
17879 read_die_and_children (const struct die_reader_specs *reader,
17880 const gdb_byte *info_ptr,
17881 const gdb_byte **new_info_ptr,
17882 struct die_info *parent)
17883 {
17884 struct die_info *die;
17885 const gdb_byte *cur_ptr;
17886 int has_children;
17887
17888 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
17889 if (die == NULL)
17890 {
17891 *new_info_ptr = cur_ptr;
17892 return NULL;
17893 }
17894 store_in_ref_table (die, reader->cu);
17895
17896 if (has_children)
17897 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17898 else
17899 {
17900 die->child = NULL;
17901 *new_info_ptr = cur_ptr;
17902 }
17903
17904 die->sibling = NULL;
17905 die->parent = parent;
17906 return die;
17907 }
17908
17909 /* Read a die, all of its descendents, and all of its siblings; set
17910 all of the fields of all of the dies correctly. Arguments are as
17911 in read_die_and_children. */
17912
17913 static struct die_info *
17914 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17915 const gdb_byte *info_ptr,
17916 const gdb_byte **new_info_ptr,
17917 struct die_info *parent)
17918 {
17919 struct die_info *first_die, *last_sibling;
17920 const gdb_byte *cur_ptr;
17921
17922 cur_ptr = info_ptr;
17923 first_die = last_sibling = NULL;
17924
17925 while (1)
17926 {
17927 struct die_info *die
17928 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
17929
17930 if (die == NULL)
17931 {
17932 *new_info_ptr = cur_ptr;
17933 return first_die;
17934 }
17935
17936 if (!first_die)
17937 first_die = die;
17938 else
17939 last_sibling->sibling = die;
17940
17941 last_sibling = die;
17942 }
17943 }
17944
17945 /* Read a die, all of its descendents, and all of its siblings; set
17946 all of the fields of all of the dies correctly. Arguments are as
17947 in read_die_and_children.
17948 This the main entry point for reading a DIE and all its children. */
17949
17950 static struct die_info *
17951 read_die_and_siblings (const struct die_reader_specs *reader,
17952 const gdb_byte *info_ptr,
17953 const gdb_byte **new_info_ptr,
17954 struct die_info *parent)
17955 {
17956 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
17957 new_info_ptr, parent);
17958
17959 if (dwarf_die_debug)
17960 {
17961 fprintf_unfiltered (gdb_stdlog,
17962 "Read die from %s@0x%x of %s:\n",
17963 get_section_name (reader->die_section),
17964 (unsigned) (info_ptr - reader->die_section->buffer),
17965 bfd_get_filename (reader->abfd));
17966 dump_die (die, dwarf_die_debug);
17967 }
17968
17969 return die;
17970 }
17971
17972 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
17973 attributes.
17974 The caller is responsible for filling in the extra attributes
17975 and updating (*DIEP)->num_attrs.
17976 Set DIEP to point to a newly allocated die with its information,
17977 except for its child, sibling, and parent fields.
17978 Set HAS_CHILDREN to tell whether the die has children or not. */
17979
17980 static const gdb_byte *
17981 read_full_die_1 (const struct die_reader_specs *reader,
17982 struct die_info **diep, const gdb_byte *info_ptr,
17983 int *has_children, int num_extra_attrs)
17984 {
17985 unsigned int abbrev_number, bytes_read, i;
17986 struct abbrev_info *abbrev;
17987 struct die_info *die;
17988 struct dwarf2_cu *cu = reader->cu;
17989 bfd *abfd = reader->abfd;
17990
17991 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
17992 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17993 info_ptr += bytes_read;
17994 if (!abbrev_number)
17995 {
17996 *diep = NULL;
17997 *has_children = 0;
17998 return info_ptr;
17999 }
18000
18001 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18002 if (!abbrev)
18003 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18004 abbrev_number,
18005 bfd_get_filename (abfd));
18006
18007 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18008 die->sect_off = sect_off;
18009 die->tag = abbrev->tag;
18010 die->abbrev = abbrev_number;
18011
18012 /* Make the result usable.
18013 The caller needs to update num_attrs after adding the extra
18014 attributes. */
18015 die->num_attrs = abbrev->num_attrs;
18016
18017 for (i = 0; i < abbrev->num_attrs; ++i)
18018 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18019 info_ptr);
18020
18021 *diep = die;
18022 *has_children = abbrev->has_children;
18023 return info_ptr;
18024 }
18025
18026 /* Read a die and all its attributes.
18027 Set DIEP to point to a newly allocated die with its information,
18028 except for its child, sibling, and parent fields.
18029 Set HAS_CHILDREN to tell whether the die has children or not. */
18030
18031 static const gdb_byte *
18032 read_full_die (const struct die_reader_specs *reader,
18033 struct die_info **diep, const gdb_byte *info_ptr,
18034 int *has_children)
18035 {
18036 const gdb_byte *result;
18037
18038 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18039
18040 if (dwarf_die_debug)
18041 {
18042 fprintf_unfiltered (gdb_stdlog,
18043 "Read die from %s@0x%x of %s:\n",
18044 get_section_name (reader->die_section),
18045 (unsigned) (info_ptr - reader->die_section->buffer),
18046 bfd_get_filename (reader->abfd));
18047 dump_die (*diep, dwarf_die_debug);
18048 }
18049
18050 return result;
18051 }
18052 \f
18053 /* Abbreviation tables.
18054
18055 In DWARF version 2, the description of the debugging information is
18056 stored in a separate .debug_abbrev section. Before we read any
18057 dies from a section we read in all abbreviations and install them
18058 in a hash table. */
18059
18060 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18061
18062 struct abbrev_info *
18063 abbrev_table::alloc_abbrev ()
18064 {
18065 struct abbrev_info *abbrev;
18066
18067 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18068 memset (abbrev, 0, sizeof (struct abbrev_info));
18069
18070 return abbrev;
18071 }
18072
18073 /* Add an abbreviation to the table. */
18074
18075 void
18076 abbrev_table::add_abbrev (unsigned int abbrev_number,
18077 struct abbrev_info *abbrev)
18078 {
18079 unsigned int hash_number;
18080
18081 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18082 abbrev->next = m_abbrevs[hash_number];
18083 m_abbrevs[hash_number] = abbrev;
18084 }
18085
18086 /* Look up an abbrev in the table.
18087 Returns NULL if the abbrev is not found. */
18088
18089 struct abbrev_info *
18090 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18091 {
18092 unsigned int hash_number;
18093 struct abbrev_info *abbrev;
18094
18095 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18096 abbrev = m_abbrevs[hash_number];
18097
18098 while (abbrev)
18099 {
18100 if (abbrev->number == abbrev_number)
18101 return abbrev;
18102 abbrev = abbrev->next;
18103 }
18104 return NULL;
18105 }
18106
18107 /* Read in an abbrev table. */
18108
18109 static abbrev_table_up
18110 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18111 struct dwarf2_section_info *section,
18112 sect_offset sect_off)
18113 {
18114 struct objfile *objfile = dwarf2_per_objfile->objfile;
18115 bfd *abfd = get_section_bfd_owner (section);
18116 const gdb_byte *abbrev_ptr;
18117 struct abbrev_info *cur_abbrev;
18118 unsigned int abbrev_number, bytes_read, abbrev_name;
18119 unsigned int abbrev_form;
18120 struct attr_abbrev *cur_attrs;
18121 unsigned int allocated_attrs;
18122
18123 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18124
18125 dwarf2_read_section (objfile, section);
18126 abbrev_ptr = section->buffer + to_underlying (sect_off);
18127 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18128 abbrev_ptr += bytes_read;
18129
18130 allocated_attrs = ATTR_ALLOC_CHUNK;
18131 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18132
18133 /* Loop until we reach an abbrev number of 0. */
18134 while (abbrev_number)
18135 {
18136 cur_abbrev = abbrev_table->alloc_abbrev ();
18137
18138 /* read in abbrev header */
18139 cur_abbrev->number = abbrev_number;
18140 cur_abbrev->tag
18141 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18142 abbrev_ptr += bytes_read;
18143 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18144 abbrev_ptr += 1;
18145
18146 /* now read in declarations */
18147 for (;;)
18148 {
18149 LONGEST implicit_const;
18150
18151 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18152 abbrev_ptr += bytes_read;
18153 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18154 abbrev_ptr += bytes_read;
18155 if (abbrev_form == DW_FORM_implicit_const)
18156 {
18157 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18158 &bytes_read);
18159 abbrev_ptr += bytes_read;
18160 }
18161 else
18162 {
18163 /* Initialize it due to a false compiler warning. */
18164 implicit_const = -1;
18165 }
18166
18167 if (abbrev_name == 0)
18168 break;
18169
18170 if (cur_abbrev->num_attrs == allocated_attrs)
18171 {
18172 allocated_attrs += ATTR_ALLOC_CHUNK;
18173 cur_attrs
18174 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18175 }
18176
18177 cur_attrs[cur_abbrev->num_attrs].name
18178 = (enum dwarf_attribute) abbrev_name;
18179 cur_attrs[cur_abbrev->num_attrs].form
18180 = (enum dwarf_form) abbrev_form;
18181 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18182 ++cur_abbrev->num_attrs;
18183 }
18184
18185 cur_abbrev->attrs =
18186 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18187 cur_abbrev->num_attrs);
18188 memcpy (cur_abbrev->attrs, cur_attrs,
18189 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18190
18191 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18192
18193 /* Get next abbreviation.
18194 Under Irix6 the abbreviations for a compilation unit are not
18195 always properly terminated with an abbrev number of 0.
18196 Exit loop if we encounter an abbreviation which we have
18197 already read (which means we are about to read the abbreviations
18198 for the next compile unit) or if the end of the abbreviation
18199 table is reached. */
18200 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18201 break;
18202 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18203 abbrev_ptr += bytes_read;
18204 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18205 break;
18206 }
18207
18208 xfree (cur_attrs);
18209 return abbrev_table;
18210 }
18211
18212 /* Returns nonzero if TAG represents a type that we might generate a partial
18213 symbol for. */
18214
18215 static int
18216 is_type_tag_for_partial (int tag)
18217 {
18218 switch (tag)
18219 {
18220 #if 0
18221 /* Some types that would be reasonable to generate partial symbols for,
18222 that we don't at present. */
18223 case DW_TAG_array_type:
18224 case DW_TAG_file_type:
18225 case DW_TAG_ptr_to_member_type:
18226 case DW_TAG_set_type:
18227 case DW_TAG_string_type:
18228 case DW_TAG_subroutine_type:
18229 #endif
18230 case DW_TAG_base_type:
18231 case DW_TAG_class_type:
18232 case DW_TAG_interface_type:
18233 case DW_TAG_enumeration_type:
18234 case DW_TAG_structure_type:
18235 case DW_TAG_subrange_type:
18236 case DW_TAG_typedef:
18237 case DW_TAG_union_type:
18238 return 1;
18239 default:
18240 return 0;
18241 }
18242 }
18243
18244 /* Load all DIEs that are interesting for partial symbols into memory. */
18245
18246 static struct partial_die_info *
18247 load_partial_dies (const struct die_reader_specs *reader,
18248 const gdb_byte *info_ptr, int building_psymtab)
18249 {
18250 struct dwarf2_cu *cu = reader->cu;
18251 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18252 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18253 unsigned int bytes_read;
18254 unsigned int load_all = 0;
18255 int nesting_level = 1;
18256
18257 parent_die = NULL;
18258 last_die = NULL;
18259
18260 gdb_assert (cu->per_cu != NULL);
18261 if (cu->per_cu->load_all_dies)
18262 load_all = 1;
18263
18264 cu->partial_dies
18265 = htab_create_alloc_ex (cu->header.length / 12,
18266 partial_die_hash,
18267 partial_die_eq,
18268 NULL,
18269 &cu->comp_unit_obstack,
18270 hashtab_obstack_allocate,
18271 dummy_obstack_deallocate);
18272
18273 while (1)
18274 {
18275 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18276
18277 /* A NULL abbrev means the end of a series of children. */
18278 if (abbrev == NULL)
18279 {
18280 if (--nesting_level == 0)
18281 return first_die;
18282
18283 info_ptr += bytes_read;
18284 last_die = parent_die;
18285 parent_die = parent_die->die_parent;
18286 continue;
18287 }
18288
18289 /* Check for template arguments. We never save these; if
18290 they're seen, we just mark the parent, and go on our way. */
18291 if (parent_die != NULL
18292 && cu->language == language_cplus
18293 && (abbrev->tag == DW_TAG_template_type_param
18294 || abbrev->tag == DW_TAG_template_value_param))
18295 {
18296 parent_die->has_template_arguments = 1;
18297
18298 if (!load_all)
18299 {
18300 /* We don't need a partial DIE for the template argument. */
18301 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18302 continue;
18303 }
18304 }
18305
18306 /* We only recurse into c++ subprograms looking for template arguments.
18307 Skip their other children. */
18308 if (!load_all
18309 && cu->language == language_cplus
18310 && parent_die != NULL
18311 && parent_die->tag == DW_TAG_subprogram)
18312 {
18313 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18314 continue;
18315 }
18316
18317 /* Check whether this DIE is interesting enough to save. Normally
18318 we would not be interested in members here, but there may be
18319 later variables referencing them via DW_AT_specification (for
18320 static members). */
18321 if (!load_all
18322 && !is_type_tag_for_partial (abbrev->tag)
18323 && abbrev->tag != DW_TAG_constant
18324 && abbrev->tag != DW_TAG_enumerator
18325 && abbrev->tag != DW_TAG_subprogram
18326 && abbrev->tag != DW_TAG_inlined_subroutine
18327 && abbrev->tag != DW_TAG_lexical_block
18328 && abbrev->tag != DW_TAG_variable
18329 && abbrev->tag != DW_TAG_namespace
18330 && abbrev->tag != DW_TAG_module
18331 && abbrev->tag != DW_TAG_member
18332 && abbrev->tag != DW_TAG_imported_unit
18333 && abbrev->tag != DW_TAG_imported_declaration)
18334 {
18335 /* Otherwise we skip to the next sibling, if any. */
18336 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18337 continue;
18338 }
18339
18340 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18341 abbrev);
18342
18343 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18344
18345 /* This two-pass algorithm for processing partial symbols has a
18346 high cost in cache pressure. Thus, handle some simple cases
18347 here which cover the majority of C partial symbols. DIEs
18348 which neither have specification tags in them, nor could have
18349 specification tags elsewhere pointing at them, can simply be
18350 processed and discarded.
18351
18352 This segment is also optional; scan_partial_symbols and
18353 add_partial_symbol will handle these DIEs if we chain
18354 them in normally. When compilers which do not emit large
18355 quantities of duplicate debug information are more common,
18356 this code can probably be removed. */
18357
18358 /* Any complete simple types at the top level (pretty much all
18359 of them, for a language without namespaces), can be processed
18360 directly. */
18361 if (parent_die == NULL
18362 && pdi.has_specification == 0
18363 && pdi.is_declaration == 0
18364 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18365 || pdi.tag == DW_TAG_base_type
18366 || pdi.tag == DW_TAG_subrange_type))
18367 {
18368 if (building_psymtab && pdi.name != NULL)
18369 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18370 VAR_DOMAIN, LOC_TYPEDEF, -1,
18371 &objfile->static_psymbols,
18372 0, cu->language, objfile);
18373 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18374 continue;
18375 }
18376
18377 /* The exception for DW_TAG_typedef with has_children above is
18378 a workaround of GCC PR debug/47510. In the case of this complaint
18379 type_name_or_error will error on such types later.
18380
18381 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18382 it could not find the child DIEs referenced later, this is checked
18383 above. In correct DWARF DW_TAG_typedef should have no children. */
18384
18385 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18386 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18387 "- DIE at %s [in module %s]"),
18388 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18389
18390 /* If we're at the second level, and we're an enumerator, and
18391 our parent has no specification (meaning possibly lives in a
18392 namespace elsewhere), then we can add the partial symbol now
18393 instead of queueing it. */
18394 if (pdi.tag == DW_TAG_enumerator
18395 && parent_die != NULL
18396 && parent_die->die_parent == NULL
18397 && parent_die->tag == DW_TAG_enumeration_type
18398 && parent_die->has_specification == 0)
18399 {
18400 if (pdi.name == NULL)
18401 complaint (_("malformed enumerator DIE ignored"));
18402 else if (building_psymtab)
18403 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18404 VAR_DOMAIN, LOC_CONST, -1,
18405 cu->language == language_cplus
18406 ? &objfile->global_psymbols
18407 : &objfile->static_psymbols,
18408 0, cu->language, objfile);
18409
18410 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18411 continue;
18412 }
18413
18414 struct partial_die_info *part_die
18415 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18416
18417 /* We'll save this DIE so link it in. */
18418 part_die->die_parent = parent_die;
18419 part_die->die_sibling = NULL;
18420 part_die->die_child = NULL;
18421
18422 if (last_die && last_die == parent_die)
18423 last_die->die_child = part_die;
18424 else if (last_die)
18425 last_die->die_sibling = part_die;
18426
18427 last_die = part_die;
18428
18429 if (first_die == NULL)
18430 first_die = part_die;
18431
18432 /* Maybe add the DIE to the hash table. Not all DIEs that we
18433 find interesting need to be in the hash table, because we
18434 also have the parent/sibling/child chains; only those that we
18435 might refer to by offset later during partial symbol reading.
18436
18437 For now this means things that might have be the target of a
18438 DW_AT_specification, DW_AT_abstract_origin, or
18439 DW_AT_extension. DW_AT_extension will refer only to
18440 namespaces; DW_AT_abstract_origin refers to functions (and
18441 many things under the function DIE, but we do not recurse
18442 into function DIEs during partial symbol reading) and
18443 possibly variables as well; DW_AT_specification refers to
18444 declarations. Declarations ought to have the DW_AT_declaration
18445 flag. It happens that GCC forgets to put it in sometimes, but
18446 only for functions, not for types.
18447
18448 Adding more things than necessary to the hash table is harmless
18449 except for the performance cost. Adding too few will result in
18450 wasted time in find_partial_die, when we reread the compilation
18451 unit with load_all_dies set. */
18452
18453 if (load_all
18454 || abbrev->tag == DW_TAG_constant
18455 || abbrev->tag == DW_TAG_subprogram
18456 || abbrev->tag == DW_TAG_variable
18457 || abbrev->tag == DW_TAG_namespace
18458 || part_die->is_declaration)
18459 {
18460 void **slot;
18461
18462 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18463 to_underlying (part_die->sect_off),
18464 INSERT);
18465 *slot = part_die;
18466 }
18467
18468 /* For some DIEs we want to follow their children (if any). For C
18469 we have no reason to follow the children of structures; for other
18470 languages we have to, so that we can get at method physnames
18471 to infer fully qualified class names, for DW_AT_specification,
18472 and for C++ template arguments. For C++, we also look one level
18473 inside functions to find template arguments (if the name of the
18474 function does not already contain the template arguments).
18475
18476 For Ada, we need to scan the children of subprograms and lexical
18477 blocks as well because Ada allows the definition of nested
18478 entities that could be interesting for the debugger, such as
18479 nested subprograms for instance. */
18480 if (last_die->has_children
18481 && (load_all
18482 || last_die->tag == DW_TAG_namespace
18483 || last_die->tag == DW_TAG_module
18484 || last_die->tag == DW_TAG_enumeration_type
18485 || (cu->language == language_cplus
18486 && last_die->tag == DW_TAG_subprogram
18487 && (last_die->name == NULL
18488 || strchr (last_die->name, '<') == NULL))
18489 || (cu->language != language_c
18490 && (last_die->tag == DW_TAG_class_type
18491 || last_die->tag == DW_TAG_interface_type
18492 || last_die->tag == DW_TAG_structure_type
18493 || last_die->tag == DW_TAG_union_type))
18494 || (cu->language == language_ada
18495 && (last_die->tag == DW_TAG_subprogram
18496 || last_die->tag == DW_TAG_lexical_block))))
18497 {
18498 nesting_level++;
18499 parent_die = last_die;
18500 continue;
18501 }
18502
18503 /* Otherwise we skip to the next sibling, if any. */
18504 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18505
18506 /* Back to the top, do it again. */
18507 }
18508 }
18509
18510 partial_die_info::partial_die_info (sect_offset sect_off_,
18511 struct abbrev_info *abbrev)
18512 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18513 {
18514 }
18515
18516 /* Read a minimal amount of information into the minimal die structure.
18517 INFO_PTR should point just after the initial uleb128 of a DIE. */
18518
18519 const gdb_byte *
18520 partial_die_info::read (const struct die_reader_specs *reader,
18521 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18522 {
18523 struct dwarf2_cu *cu = reader->cu;
18524 struct dwarf2_per_objfile *dwarf2_per_objfile
18525 = cu->per_cu->dwarf2_per_objfile;
18526 unsigned int i;
18527 int has_low_pc_attr = 0;
18528 int has_high_pc_attr = 0;
18529 int high_pc_relative = 0;
18530
18531 for (i = 0; i < abbrev.num_attrs; ++i)
18532 {
18533 struct attribute attr;
18534
18535 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18536
18537 /* Store the data if it is of an attribute we want to keep in a
18538 partial symbol table. */
18539 switch (attr.name)
18540 {
18541 case DW_AT_name:
18542 switch (tag)
18543 {
18544 case DW_TAG_compile_unit:
18545 case DW_TAG_partial_unit:
18546 case DW_TAG_type_unit:
18547 /* Compilation units have a DW_AT_name that is a filename, not
18548 a source language identifier. */
18549 case DW_TAG_enumeration_type:
18550 case DW_TAG_enumerator:
18551 /* These tags always have simple identifiers already; no need
18552 to canonicalize them. */
18553 name = DW_STRING (&attr);
18554 break;
18555 default:
18556 {
18557 struct objfile *objfile = dwarf2_per_objfile->objfile;
18558
18559 name
18560 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18561 &objfile->per_bfd->storage_obstack);
18562 }
18563 break;
18564 }
18565 break;
18566 case DW_AT_linkage_name:
18567 case DW_AT_MIPS_linkage_name:
18568 /* Note that both forms of linkage name might appear. We
18569 assume they will be the same, and we only store the last
18570 one we see. */
18571 if (cu->language == language_ada)
18572 name = DW_STRING (&attr);
18573 linkage_name = DW_STRING (&attr);
18574 break;
18575 case DW_AT_low_pc:
18576 has_low_pc_attr = 1;
18577 lowpc = attr_value_as_address (&attr);
18578 break;
18579 case DW_AT_high_pc:
18580 has_high_pc_attr = 1;
18581 highpc = attr_value_as_address (&attr);
18582 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18583 high_pc_relative = 1;
18584 break;
18585 case DW_AT_location:
18586 /* Support the .debug_loc offsets. */
18587 if (attr_form_is_block (&attr))
18588 {
18589 d.locdesc = DW_BLOCK (&attr);
18590 }
18591 else if (attr_form_is_section_offset (&attr))
18592 {
18593 dwarf2_complex_location_expr_complaint ();
18594 }
18595 else
18596 {
18597 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18598 "partial symbol information");
18599 }
18600 break;
18601 case DW_AT_external:
18602 is_external = DW_UNSND (&attr);
18603 break;
18604 case DW_AT_declaration:
18605 is_declaration = DW_UNSND (&attr);
18606 break;
18607 case DW_AT_type:
18608 has_type = 1;
18609 break;
18610 case DW_AT_abstract_origin:
18611 case DW_AT_specification:
18612 case DW_AT_extension:
18613 has_specification = 1;
18614 spec_offset = dwarf2_get_ref_die_offset (&attr);
18615 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18616 || cu->per_cu->is_dwz);
18617 break;
18618 case DW_AT_sibling:
18619 /* Ignore absolute siblings, they might point outside of
18620 the current compile unit. */
18621 if (attr.form == DW_FORM_ref_addr)
18622 complaint (_("ignoring absolute DW_AT_sibling"));
18623 else
18624 {
18625 const gdb_byte *buffer = reader->buffer;
18626 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18627 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18628
18629 if (sibling_ptr < info_ptr)
18630 complaint (_("DW_AT_sibling points backwards"));
18631 else if (sibling_ptr > reader->buffer_end)
18632 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18633 else
18634 sibling = sibling_ptr;
18635 }
18636 break;
18637 case DW_AT_byte_size:
18638 has_byte_size = 1;
18639 break;
18640 case DW_AT_const_value:
18641 has_const_value = 1;
18642 break;
18643 case DW_AT_calling_convention:
18644 /* DWARF doesn't provide a way to identify a program's source-level
18645 entry point. DW_AT_calling_convention attributes are only meant
18646 to describe functions' calling conventions.
18647
18648 However, because it's a necessary piece of information in
18649 Fortran, and before DWARF 4 DW_CC_program was the only
18650 piece of debugging information whose definition refers to
18651 a 'main program' at all, several compilers marked Fortran
18652 main programs with DW_CC_program --- even when those
18653 functions use the standard calling conventions.
18654
18655 Although DWARF now specifies a way to provide this
18656 information, we support this practice for backward
18657 compatibility. */
18658 if (DW_UNSND (&attr) == DW_CC_program
18659 && cu->language == language_fortran)
18660 main_subprogram = 1;
18661 break;
18662 case DW_AT_inline:
18663 if (DW_UNSND (&attr) == DW_INL_inlined
18664 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18665 may_be_inlined = 1;
18666 break;
18667
18668 case DW_AT_import:
18669 if (tag == DW_TAG_imported_unit)
18670 {
18671 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18672 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18673 || cu->per_cu->is_dwz);
18674 }
18675 break;
18676
18677 case DW_AT_main_subprogram:
18678 main_subprogram = DW_UNSND (&attr);
18679 break;
18680
18681 default:
18682 break;
18683 }
18684 }
18685
18686 if (high_pc_relative)
18687 highpc += lowpc;
18688
18689 if (has_low_pc_attr && has_high_pc_attr)
18690 {
18691 /* When using the GNU linker, .gnu.linkonce. sections are used to
18692 eliminate duplicate copies of functions and vtables and such.
18693 The linker will arbitrarily choose one and discard the others.
18694 The AT_*_pc values for such functions refer to local labels in
18695 these sections. If the section from that file was discarded, the
18696 labels are not in the output, so the relocs get a value of 0.
18697 If this is a discarded function, mark the pc bounds as invalid,
18698 so that GDB will ignore it. */
18699 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18700 {
18701 struct objfile *objfile = dwarf2_per_objfile->objfile;
18702 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18703
18704 complaint (_("DW_AT_low_pc %s is zero "
18705 "for DIE at %s [in module %s]"),
18706 paddress (gdbarch, lowpc),
18707 sect_offset_str (sect_off),
18708 objfile_name (objfile));
18709 }
18710 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18711 else if (lowpc >= highpc)
18712 {
18713 struct objfile *objfile = dwarf2_per_objfile->objfile;
18714 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18715
18716 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18717 "for DIE at %s [in module %s]"),
18718 paddress (gdbarch, lowpc),
18719 paddress (gdbarch, highpc),
18720 sect_offset_str (sect_off),
18721 objfile_name (objfile));
18722 }
18723 else
18724 has_pc_info = 1;
18725 }
18726
18727 return info_ptr;
18728 }
18729
18730 /* Find a cached partial DIE at OFFSET in CU. */
18731
18732 struct partial_die_info *
18733 dwarf2_cu::find_partial_die (sect_offset sect_off)
18734 {
18735 struct partial_die_info *lookup_die = NULL;
18736 struct partial_die_info part_die (sect_off);
18737
18738 lookup_die = ((struct partial_die_info *)
18739 htab_find_with_hash (partial_dies, &part_die,
18740 to_underlying (sect_off)));
18741
18742 return lookup_die;
18743 }
18744
18745 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18746 except in the case of .debug_types DIEs which do not reference
18747 outside their CU (they do however referencing other types via
18748 DW_FORM_ref_sig8). */
18749
18750 static struct partial_die_info *
18751 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18752 {
18753 struct dwarf2_per_objfile *dwarf2_per_objfile
18754 = cu->per_cu->dwarf2_per_objfile;
18755 struct objfile *objfile = dwarf2_per_objfile->objfile;
18756 struct dwarf2_per_cu_data *per_cu = NULL;
18757 struct partial_die_info *pd = NULL;
18758
18759 if (offset_in_dwz == cu->per_cu->is_dwz
18760 && offset_in_cu_p (&cu->header, sect_off))
18761 {
18762 pd = cu->find_partial_die (sect_off);
18763 if (pd != NULL)
18764 return pd;
18765 /* We missed recording what we needed.
18766 Load all dies and try again. */
18767 per_cu = cu->per_cu;
18768 }
18769 else
18770 {
18771 /* TUs don't reference other CUs/TUs (except via type signatures). */
18772 if (cu->per_cu->is_debug_types)
18773 {
18774 error (_("Dwarf Error: Type Unit at offset %s contains"
18775 " external reference to offset %s [in module %s].\n"),
18776 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18777 bfd_get_filename (objfile->obfd));
18778 }
18779 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18780 dwarf2_per_objfile);
18781
18782 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18783 load_partial_comp_unit (per_cu);
18784
18785 per_cu->cu->last_used = 0;
18786 pd = per_cu->cu->find_partial_die (sect_off);
18787 }
18788
18789 /* If we didn't find it, and not all dies have been loaded,
18790 load them all and try again. */
18791
18792 if (pd == NULL && per_cu->load_all_dies == 0)
18793 {
18794 per_cu->load_all_dies = 1;
18795
18796 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18797 THIS_CU->cu may already be in use. So we can't just free it and
18798 replace its DIEs with the ones we read in. Instead, we leave those
18799 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18800 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18801 set. */
18802 load_partial_comp_unit (per_cu);
18803
18804 pd = per_cu->cu->find_partial_die (sect_off);
18805 }
18806
18807 if (pd == NULL)
18808 internal_error (__FILE__, __LINE__,
18809 _("could not find partial DIE %s "
18810 "in cache [from module %s]\n"),
18811 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18812 return pd;
18813 }
18814
18815 /* See if we can figure out if the class lives in a namespace. We do
18816 this by looking for a member function; its demangled name will
18817 contain namespace info, if there is any. */
18818
18819 static void
18820 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18821 struct dwarf2_cu *cu)
18822 {
18823 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18824 what template types look like, because the demangler
18825 frequently doesn't give the same name as the debug info. We
18826 could fix this by only using the demangled name to get the
18827 prefix (but see comment in read_structure_type). */
18828
18829 struct partial_die_info *real_pdi;
18830 struct partial_die_info *child_pdi;
18831
18832 /* If this DIE (this DIE's specification, if any) has a parent, then
18833 we should not do this. We'll prepend the parent's fully qualified
18834 name when we create the partial symbol. */
18835
18836 real_pdi = struct_pdi;
18837 while (real_pdi->has_specification)
18838 real_pdi = find_partial_die (real_pdi->spec_offset,
18839 real_pdi->spec_is_dwz, cu);
18840
18841 if (real_pdi->die_parent != NULL)
18842 return;
18843
18844 for (child_pdi = struct_pdi->die_child;
18845 child_pdi != NULL;
18846 child_pdi = child_pdi->die_sibling)
18847 {
18848 if (child_pdi->tag == DW_TAG_subprogram
18849 && child_pdi->linkage_name != NULL)
18850 {
18851 char *actual_class_name
18852 = language_class_name_from_physname (cu->language_defn,
18853 child_pdi->linkage_name);
18854 if (actual_class_name != NULL)
18855 {
18856 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18857 struct_pdi->name
18858 = ((const char *)
18859 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18860 actual_class_name,
18861 strlen (actual_class_name)));
18862 xfree (actual_class_name);
18863 }
18864 break;
18865 }
18866 }
18867 }
18868
18869 void
18870 partial_die_info::fixup (struct dwarf2_cu *cu)
18871 {
18872 /* Once we've fixed up a die, there's no point in doing so again.
18873 This also avoids a memory leak if we were to call
18874 guess_partial_die_structure_name multiple times. */
18875 if (fixup_called)
18876 return;
18877
18878 /* If we found a reference attribute and the DIE has no name, try
18879 to find a name in the referred to DIE. */
18880
18881 if (name == NULL && has_specification)
18882 {
18883 struct partial_die_info *spec_die;
18884
18885 spec_die = find_partial_die (spec_offset, spec_is_dwz, cu);
18886
18887 spec_die->fixup (cu);
18888
18889 if (spec_die->name)
18890 {
18891 name = spec_die->name;
18892
18893 /* Copy DW_AT_external attribute if it is set. */
18894 if (spec_die->is_external)
18895 is_external = spec_die->is_external;
18896 }
18897 }
18898
18899 /* Set default names for some unnamed DIEs. */
18900
18901 if (name == NULL && tag == DW_TAG_namespace)
18902 name = CP_ANONYMOUS_NAMESPACE_STR;
18903
18904 /* If there is no parent die to provide a namespace, and there are
18905 children, see if we can determine the namespace from their linkage
18906 name. */
18907 if (cu->language == language_cplus
18908 && !VEC_empty (dwarf2_section_info_def,
18909 cu->per_cu->dwarf2_per_objfile->types)
18910 && die_parent == NULL
18911 && has_children
18912 && (tag == DW_TAG_class_type
18913 || tag == DW_TAG_structure_type
18914 || tag == DW_TAG_union_type))
18915 guess_partial_die_structure_name (this, cu);
18916
18917 /* GCC might emit a nameless struct or union that has a linkage
18918 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18919 if (name == NULL
18920 && (tag == DW_TAG_class_type
18921 || tag == DW_TAG_interface_type
18922 || tag == DW_TAG_structure_type
18923 || tag == DW_TAG_union_type)
18924 && linkage_name != NULL)
18925 {
18926 char *demangled;
18927
18928 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
18929 if (demangled)
18930 {
18931 const char *base;
18932
18933 /* Strip any leading namespaces/classes, keep only the base name.
18934 DW_AT_name for named DIEs does not contain the prefixes. */
18935 base = strrchr (demangled, ':');
18936 if (base && base > demangled && base[-1] == ':')
18937 base++;
18938 else
18939 base = demangled;
18940
18941 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18942 name
18943 = ((const char *)
18944 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18945 base, strlen (base)));
18946 xfree (demangled);
18947 }
18948 }
18949
18950 fixup_called = 1;
18951 }
18952
18953 /* Read an attribute value described by an attribute form. */
18954
18955 static const gdb_byte *
18956 read_attribute_value (const struct die_reader_specs *reader,
18957 struct attribute *attr, unsigned form,
18958 LONGEST implicit_const, const gdb_byte *info_ptr)
18959 {
18960 struct dwarf2_cu *cu = reader->cu;
18961 struct dwarf2_per_objfile *dwarf2_per_objfile
18962 = cu->per_cu->dwarf2_per_objfile;
18963 struct objfile *objfile = dwarf2_per_objfile->objfile;
18964 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18965 bfd *abfd = reader->abfd;
18966 struct comp_unit_head *cu_header = &cu->header;
18967 unsigned int bytes_read;
18968 struct dwarf_block *blk;
18969
18970 attr->form = (enum dwarf_form) form;
18971 switch (form)
18972 {
18973 case DW_FORM_ref_addr:
18974 if (cu->header.version == 2)
18975 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18976 else
18977 DW_UNSND (attr) = read_offset (abfd, info_ptr,
18978 &cu->header, &bytes_read);
18979 info_ptr += bytes_read;
18980 break;
18981 case DW_FORM_GNU_ref_alt:
18982 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
18983 info_ptr += bytes_read;
18984 break;
18985 case DW_FORM_addr:
18986 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18987 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
18988 info_ptr += bytes_read;
18989 break;
18990 case DW_FORM_block2:
18991 blk = dwarf_alloc_block (cu);
18992 blk->size = read_2_bytes (abfd, info_ptr);
18993 info_ptr += 2;
18994 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18995 info_ptr += blk->size;
18996 DW_BLOCK (attr) = blk;
18997 break;
18998 case DW_FORM_block4:
18999 blk = dwarf_alloc_block (cu);
19000 blk->size = read_4_bytes (abfd, info_ptr);
19001 info_ptr += 4;
19002 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19003 info_ptr += blk->size;
19004 DW_BLOCK (attr) = blk;
19005 break;
19006 case DW_FORM_data2:
19007 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19008 info_ptr += 2;
19009 break;
19010 case DW_FORM_data4:
19011 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19012 info_ptr += 4;
19013 break;
19014 case DW_FORM_data8:
19015 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19016 info_ptr += 8;
19017 break;
19018 case DW_FORM_data16:
19019 blk = dwarf_alloc_block (cu);
19020 blk->size = 16;
19021 blk->data = read_n_bytes (abfd, info_ptr, 16);
19022 info_ptr += 16;
19023 DW_BLOCK (attr) = blk;
19024 break;
19025 case DW_FORM_sec_offset:
19026 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19027 info_ptr += bytes_read;
19028 break;
19029 case DW_FORM_string:
19030 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19031 DW_STRING_IS_CANONICAL (attr) = 0;
19032 info_ptr += bytes_read;
19033 break;
19034 case DW_FORM_strp:
19035 if (!cu->per_cu->is_dwz)
19036 {
19037 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19038 abfd, info_ptr, cu_header,
19039 &bytes_read);
19040 DW_STRING_IS_CANONICAL (attr) = 0;
19041 info_ptr += bytes_read;
19042 break;
19043 }
19044 /* FALLTHROUGH */
19045 case DW_FORM_line_strp:
19046 if (!cu->per_cu->is_dwz)
19047 {
19048 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19049 abfd, info_ptr,
19050 cu_header, &bytes_read);
19051 DW_STRING_IS_CANONICAL (attr) = 0;
19052 info_ptr += bytes_read;
19053 break;
19054 }
19055 /* FALLTHROUGH */
19056 case DW_FORM_GNU_strp_alt:
19057 {
19058 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19059 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19060 &bytes_read);
19061
19062 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19063 dwz, str_offset);
19064 DW_STRING_IS_CANONICAL (attr) = 0;
19065 info_ptr += bytes_read;
19066 }
19067 break;
19068 case DW_FORM_exprloc:
19069 case DW_FORM_block:
19070 blk = dwarf_alloc_block (cu);
19071 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19072 info_ptr += bytes_read;
19073 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19074 info_ptr += blk->size;
19075 DW_BLOCK (attr) = blk;
19076 break;
19077 case DW_FORM_block1:
19078 blk = dwarf_alloc_block (cu);
19079 blk->size = read_1_byte (abfd, info_ptr);
19080 info_ptr += 1;
19081 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19082 info_ptr += blk->size;
19083 DW_BLOCK (attr) = blk;
19084 break;
19085 case DW_FORM_data1:
19086 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19087 info_ptr += 1;
19088 break;
19089 case DW_FORM_flag:
19090 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19091 info_ptr += 1;
19092 break;
19093 case DW_FORM_flag_present:
19094 DW_UNSND (attr) = 1;
19095 break;
19096 case DW_FORM_sdata:
19097 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19098 info_ptr += bytes_read;
19099 break;
19100 case DW_FORM_udata:
19101 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19102 info_ptr += bytes_read;
19103 break;
19104 case DW_FORM_ref1:
19105 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19106 + read_1_byte (abfd, info_ptr));
19107 info_ptr += 1;
19108 break;
19109 case DW_FORM_ref2:
19110 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19111 + read_2_bytes (abfd, info_ptr));
19112 info_ptr += 2;
19113 break;
19114 case DW_FORM_ref4:
19115 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19116 + read_4_bytes (abfd, info_ptr));
19117 info_ptr += 4;
19118 break;
19119 case DW_FORM_ref8:
19120 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19121 + read_8_bytes (abfd, info_ptr));
19122 info_ptr += 8;
19123 break;
19124 case DW_FORM_ref_sig8:
19125 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19126 info_ptr += 8;
19127 break;
19128 case DW_FORM_ref_udata:
19129 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19130 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19131 info_ptr += bytes_read;
19132 break;
19133 case DW_FORM_indirect:
19134 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19135 info_ptr += bytes_read;
19136 if (form == DW_FORM_implicit_const)
19137 {
19138 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19139 info_ptr += bytes_read;
19140 }
19141 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19142 info_ptr);
19143 break;
19144 case DW_FORM_implicit_const:
19145 DW_SND (attr) = implicit_const;
19146 break;
19147 case DW_FORM_GNU_addr_index:
19148 if (reader->dwo_file == NULL)
19149 {
19150 /* For now flag a hard error.
19151 Later we can turn this into a complaint. */
19152 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19153 dwarf_form_name (form),
19154 bfd_get_filename (abfd));
19155 }
19156 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19157 info_ptr += bytes_read;
19158 break;
19159 case DW_FORM_GNU_str_index:
19160 if (reader->dwo_file == NULL)
19161 {
19162 /* For now flag a hard error.
19163 Later we can turn this into a complaint if warranted. */
19164 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19165 dwarf_form_name (form),
19166 bfd_get_filename (abfd));
19167 }
19168 {
19169 ULONGEST str_index =
19170 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19171
19172 DW_STRING (attr) = read_str_index (reader, str_index);
19173 DW_STRING_IS_CANONICAL (attr) = 0;
19174 info_ptr += bytes_read;
19175 }
19176 break;
19177 default:
19178 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19179 dwarf_form_name (form),
19180 bfd_get_filename (abfd));
19181 }
19182
19183 /* Super hack. */
19184 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19185 attr->form = DW_FORM_GNU_ref_alt;
19186
19187 /* We have seen instances where the compiler tried to emit a byte
19188 size attribute of -1 which ended up being encoded as an unsigned
19189 0xffffffff. Although 0xffffffff is technically a valid size value,
19190 an object of this size seems pretty unlikely so we can relatively
19191 safely treat these cases as if the size attribute was invalid and
19192 treat them as zero by default. */
19193 if (attr->name == DW_AT_byte_size
19194 && form == DW_FORM_data4
19195 && DW_UNSND (attr) >= 0xffffffff)
19196 {
19197 complaint
19198 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19199 hex_string (DW_UNSND (attr)));
19200 DW_UNSND (attr) = 0;
19201 }
19202
19203 return info_ptr;
19204 }
19205
19206 /* Read an attribute described by an abbreviated attribute. */
19207
19208 static const gdb_byte *
19209 read_attribute (const struct die_reader_specs *reader,
19210 struct attribute *attr, struct attr_abbrev *abbrev,
19211 const gdb_byte *info_ptr)
19212 {
19213 attr->name = abbrev->name;
19214 return read_attribute_value (reader, attr, abbrev->form,
19215 abbrev->implicit_const, info_ptr);
19216 }
19217
19218 /* Read dwarf information from a buffer. */
19219
19220 static unsigned int
19221 read_1_byte (bfd *abfd, const gdb_byte *buf)
19222 {
19223 return bfd_get_8 (abfd, buf);
19224 }
19225
19226 static int
19227 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19228 {
19229 return bfd_get_signed_8 (abfd, buf);
19230 }
19231
19232 static unsigned int
19233 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19234 {
19235 return bfd_get_16 (abfd, buf);
19236 }
19237
19238 static int
19239 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19240 {
19241 return bfd_get_signed_16 (abfd, buf);
19242 }
19243
19244 static unsigned int
19245 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19246 {
19247 return bfd_get_32 (abfd, buf);
19248 }
19249
19250 static int
19251 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19252 {
19253 return bfd_get_signed_32 (abfd, buf);
19254 }
19255
19256 static ULONGEST
19257 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19258 {
19259 return bfd_get_64 (abfd, buf);
19260 }
19261
19262 static CORE_ADDR
19263 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19264 unsigned int *bytes_read)
19265 {
19266 struct comp_unit_head *cu_header = &cu->header;
19267 CORE_ADDR retval = 0;
19268
19269 if (cu_header->signed_addr_p)
19270 {
19271 switch (cu_header->addr_size)
19272 {
19273 case 2:
19274 retval = bfd_get_signed_16 (abfd, buf);
19275 break;
19276 case 4:
19277 retval = bfd_get_signed_32 (abfd, buf);
19278 break;
19279 case 8:
19280 retval = bfd_get_signed_64 (abfd, buf);
19281 break;
19282 default:
19283 internal_error (__FILE__, __LINE__,
19284 _("read_address: bad switch, signed [in module %s]"),
19285 bfd_get_filename (abfd));
19286 }
19287 }
19288 else
19289 {
19290 switch (cu_header->addr_size)
19291 {
19292 case 2:
19293 retval = bfd_get_16 (abfd, buf);
19294 break;
19295 case 4:
19296 retval = bfd_get_32 (abfd, buf);
19297 break;
19298 case 8:
19299 retval = bfd_get_64 (abfd, buf);
19300 break;
19301 default:
19302 internal_error (__FILE__, __LINE__,
19303 _("read_address: bad switch, "
19304 "unsigned [in module %s]"),
19305 bfd_get_filename (abfd));
19306 }
19307 }
19308
19309 *bytes_read = cu_header->addr_size;
19310 return retval;
19311 }
19312
19313 /* Read the initial length from a section. The (draft) DWARF 3
19314 specification allows the initial length to take up either 4 bytes
19315 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19316 bytes describe the length and all offsets will be 8 bytes in length
19317 instead of 4.
19318
19319 An older, non-standard 64-bit format is also handled by this
19320 function. The older format in question stores the initial length
19321 as an 8-byte quantity without an escape value. Lengths greater
19322 than 2^32 aren't very common which means that the initial 4 bytes
19323 is almost always zero. Since a length value of zero doesn't make
19324 sense for the 32-bit format, this initial zero can be considered to
19325 be an escape value which indicates the presence of the older 64-bit
19326 format. As written, the code can't detect (old format) lengths
19327 greater than 4GB. If it becomes necessary to handle lengths
19328 somewhat larger than 4GB, we could allow other small values (such
19329 as the non-sensical values of 1, 2, and 3) to also be used as
19330 escape values indicating the presence of the old format.
19331
19332 The value returned via bytes_read should be used to increment the
19333 relevant pointer after calling read_initial_length().
19334
19335 [ Note: read_initial_length() and read_offset() are based on the
19336 document entitled "DWARF Debugging Information Format", revision
19337 3, draft 8, dated November 19, 2001. This document was obtained
19338 from:
19339
19340 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19341
19342 This document is only a draft and is subject to change. (So beware.)
19343
19344 Details regarding the older, non-standard 64-bit format were
19345 determined empirically by examining 64-bit ELF files produced by
19346 the SGI toolchain on an IRIX 6.5 machine.
19347
19348 - Kevin, July 16, 2002
19349 ] */
19350
19351 static LONGEST
19352 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19353 {
19354 LONGEST length = bfd_get_32 (abfd, buf);
19355
19356 if (length == 0xffffffff)
19357 {
19358 length = bfd_get_64 (abfd, buf + 4);
19359 *bytes_read = 12;
19360 }
19361 else if (length == 0)
19362 {
19363 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19364 length = bfd_get_64 (abfd, buf);
19365 *bytes_read = 8;
19366 }
19367 else
19368 {
19369 *bytes_read = 4;
19370 }
19371
19372 return length;
19373 }
19374
19375 /* Cover function for read_initial_length.
19376 Returns the length of the object at BUF, and stores the size of the
19377 initial length in *BYTES_READ and stores the size that offsets will be in
19378 *OFFSET_SIZE.
19379 If the initial length size is not equivalent to that specified in
19380 CU_HEADER then issue a complaint.
19381 This is useful when reading non-comp-unit headers. */
19382
19383 static LONGEST
19384 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19385 const struct comp_unit_head *cu_header,
19386 unsigned int *bytes_read,
19387 unsigned int *offset_size)
19388 {
19389 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19390
19391 gdb_assert (cu_header->initial_length_size == 4
19392 || cu_header->initial_length_size == 8
19393 || cu_header->initial_length_size == 12);
19394
19395 if (cu_header->initial_length_size != *bytes_read)
19396 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19397
19398 *offset_size = (*bytes_read == 4) ? 4 : 8;
19399 return length;
19400 }
19401
19402 /* Read an offset from the data stream. The size of the offset is
19403 given by cu_header->offset_size. */
19404
19405 static LONGEST
19406 read_offset (bfd *abfd, const gdb_byte *buf,
19407 const struct comp_unit_head *cu_header,
19408 unsigned int *bytes_read)
19409 {
19410 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19411
19412 *bytes_read = cu_header->offset_size;
19413 return offset;
19414 }
19415
19416 /* Read an offset from the data stream. */
19417
19418 static LONGEST
19419 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19420 {
19421 LONGEST retval = 0;
19422
19423 switch (offset_size)
19424 {
19425 case 4:
19426 retval = bfd_get_32 (abfd, buf);
19427 break;
19428 case 8:
19429 retval = bfd_get_64 (abfd, buf);
19430 break;
19431 default:
19432 internal_error (__FILE__, __LINE__,
19433 _("read_offset_1: bad switch [in module %s]"),
19434 bfd_get_filename (abfd));
19435 }
19436
19437 return retval;
19438 }
19439
19440 static const gdb_byte *
19441 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19442 {
19443 /* If the size of a host char is 8 bits, we can return a pointer
19444 to the buffer, otherwise we have to copy the data to a buffer
19445 allocated on the temporary obstack. */
19446 gdb_assert (HOST_CHAR_BIT == 8);
19447 return buf;
19448 }
19449
19450 static const char *
19451 read_direct_string (bfd *abfd, const gdb_byte *buf,
19452 unsigned int *bytes_read_ptr)
19453 {
19454 /* If the size of a host char is 8 bits, we can return a pointer
19455 to the string, otherwise we have to copy the string to a buffer
19456 allocated on the temporary obstack. */
19457 gdb_assert (HOST_CHAR_BIT == 8);
19458 if (*buf == '\0')
19459 {
19460 *bytes_read_ptr = 1;
19461 return NULL;
19462 }
19463 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19464 return (const char *) buf;
19465 }
19466
19467 /* Return pointer to string at section SECT offset STR_OFFSET with error
19468 reporting strings FORM_NAME and SECT_NAME. */
19469
19470 static const char *
19471 read_indirect_string_at_offset_from (struct objfile *objfile,
19472 bfd *abfd, LONGEST str_offset,
19473 struct dwarf2_section_info *sect,
19474 const char *form_name,
19475 const char *sect_name)
19476 {
19477 dwarf2_read_section (objfile, sect);
19478 if (sect->buffer == NULL)
19479 error (_("%s used without %s section [in module %s]"),
19480 form_name, sect_name, bfd_get_filename (abfd));
19481 if (str_offset >= sect->size)
19482 error (_("%s pointing outside of %s section [in module %s]"),
19483 form_name, sect_name, bfd_get_filename (abfd));
19484 gdb_assert (HOST_CHAR_BIT == 8);
19485 if (sect->buffer[str_offset] == '\0')
19486 return NULL;
19487 return (const char *) (sect->buffer + str_offset);
19488 }
19489
19490 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19491
19492 static const char *
19493 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19494 bfd *abfd, LONGEST str_offset)
19495 {
19496 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19497 abfd, str_offset,
19498 &dwarf2_per_objfile->str,
19499 "DW_FORM_strp", ".debug_str");
19500 }
19501
19502 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19503
19504 static const char *
19505 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19506 bfd *abfd, LONGEST str_offset)
19507 {
19508 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19509 abfd, str_offset,
19510 &dwarf2_per_objfile->line_str,
19511 "DW_FORM_line_strp",
19512 ".debug_line_str");
19513 }
19514
19515 /* Read a string at offset STR_OFFSET in the .debug_str section from
19516 the .dwz file DWZ. Throw an error if the offset is too large. If
19517 the string consists of a single NUL byte, return NULL; otherwise
19518 return a pointer to the string. */
19519
19520 static const char *
19521 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19522 LONGEST str_offset)
19523 {
19524 dwarf2_read_section (objfile, &dwz->str);
19525
19526 if (dwz->str.buffer == NULL)
19527 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19528 "section [in module %s]"),
19529 bfd_get_filename (dwz->dwz_bfd));
19530 if (str_offset >= dwz->str.size)
19531 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19532 ".debug_str section [in module %s]"),
19533 bfd_get_filename (dwz->dwz_bfd));
19534 gdb_assert (HOST_CHAR_BIT == 8);
19535 if (dwz->str.buffer[str_offset] == '\0')
19536 return NULL;
19537 return (const char *) (dwz->str.buffer + str_offset);
19538 }
19539
19540 /* Return pointer to string at .debug_str offset as read from BUF.
19541 BUF is assumed to be in a compilation unit described by CU_HEADER.
19542 Return *BYTES_READ_PTR count of bytes read from BUF. */
19543
19544 static const char *
19545 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19546 const gdb_byte *buf,
19547 const struct comp_unit_head *cu_header,
19548 unsigned int *bytes_read_ptr)
19549 {
19550 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19551
19552 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19553 }
19554
19555 /* Return pointer to string at .debug_line_str offset as read from BUF.
19556 BUF is assumed to be in a compilation unit described by CU_HEADER.
19557 Return *BYTES_READ_PTR count of bytes read from BUF. */
19558
19559 static const char *
19560 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19561 bfd *abfd, const gdb_byte *buf,
19562 const struct comp_unit_head *cu_header,
19563 unsigned int *bytes_read_ptr)
19564 {
19565 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19566
19567 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19568 str_offset);
19569 }
19570
19571 ULONGEST
19572 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19573 unsigned int *bytes_read_ptr)
19574 {
19575 ULONGEST result;
19576 unsigned int num_read;
19577 int shift;
19578 unsigned char byte;
19579
19580 result = 0;
19581 shift = 0;
19582 num_read = 0;
19583 while (1)
19584 {
19585 byte = bfd_get_8 (abfd, buf);
19586 buf++;
19587 num_read++;
19588 result |= ((ULONGEST) (byte & 127) << shift);
19589 if ((byte & 128) == 0)
19590 {
19591 break;
19592 }
19593 shift += 7;
19594 }
19595 *bytes_read_ptr = num_read;
19596 return result;
19597 }
19598
19599 static LONGEST
19600 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19601 unsigned int *bytes_read_ptr)
19602 {
19603 LONGEST result;
19604 int shift, num_read;
19605 unsigned char byte;
19606
19607 result = 0;
19608 shift = 0;
19609 num_read = 0;
19610 while (1)
19611 {
19612 byte = bfd_get_8 (abfd, buf);
19613 buf++;
19614 num_read++;
19615 result |= ((LONGEST) (byte & 127) << shift);
19616 shift += 7;
19617 if ((byte & 128) == 0)
19618 {
19619 break;
19620 }
19621 }
19622 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19623 result |= -(((LONGEST) 1) << shift);
19624 *bytes_read_ptr = num_read;
19625 return result;
19626 }
19627
19628 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19629 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19630 ADDR_SIZE is the size of addresses from the CU header. */
19631
19632 static CORE_ADDR
19633 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19634 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19635 {
19636 struct objfile *objfile = dwarf2_per_objfile->objfile;
19637 bfd *abfd = objfile->obfd;
19638 const gdb_byte *info_ptr;
19639
19640 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19641 if (dwarf2_per_objfile->addr.buffer == NULL)
19642 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19643 objfile_name (objfile));
19644 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19645 error (_("DW_FORM_addr_index pointing outside of "
19646 ".debug_addr section [in module %s]"),
19647 objfile_name (objfile));
19648 info_ptr = (dwarf2_per_objfile->addr.buffer
19649 + addr_base + addr_index * addr_size);
19650 if (addr_size == 4)
19651 return bfd_get_32 (abfd, info_ptr);
19652 else
19653 return bfd_get_64 (abfd, info_ptr);
19654 }
19655
19656 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19657
19658 static CORE_ADDR
19659 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19660 {
19661 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19662 cu->addr_base, cu->header.addr_size);
19663 }
19664
19665 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19666
19667 static CORE_ADDR
19668 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19669 unsigned int *bytes_read)
19670 {
19671 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19672 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19673
19674 return read_addr_index (cu, addr_index);
19675 }
19676
19677 /* Data structure to pass results from dwarf2_read_addr_index_reader
19678 back to dwarf2_read_addr_index. */
19679
19680 struct dwarf2_read_addr_index_data
19681 {
19682 ULONGEST addr_base;
19683 int addr_size;
19684 };
19685
19686 /* die_reader_func for dwarf2_read_addr_index. */
19687
19688 static void
19689 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19690 const gdb_byte *info_ptr,
19691 struct die_info *comp_unit_die,
19692 int has_children,
19693 void *data)
19694 {
19695 struct dwarf2_cu *cu = reader->cu;
19696 struct dwarf2_read_addr_index_data *aidata =
19697 (struct dwarf2_read_addr_index_data *) data;
19698
19699 aidata->addr_base = cu->addr_base;
19700 aidata->addr_size = cu->header.addr_size;
19701 }
19702
19703 /* Given an index in .debug_addr, fetch the value.
19704 NOTE: This can be called during dwarf expression evaluation,
19705 long after the debug information has been read, and thus per_cu->cu
19706 may no longer exist. */
19707
19708 CORE_ADDR
19709 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19710 unsigned int addr_index)
19711 {
19712 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19713 struct dwarf2_cu *cu = per_cu->cu;
19714 ULONGEST addr_base;
19715 int addr_size;
19716
19717 /* We need addr_base and addr_size.
19718 If we don't have PER_CU->cu, we have to get it.
19719 Nasty, but the alternative is storing the needed info in PER_CU,
19720 which at this point doesn't seem justified: it's not clear how frequently
19721 it would get used and it would increase the size of every PER_CU.
19722 Entry points like dwarf2_per_cu_addr_size do a similar thing
19723 so we're not in uncharted territory here.
19724 Alas we need to be a bit more complicated as addr_base is contained
19725 in the DIE.
19726
19727 We don't need to read the entire CU(/TU).
19728 We just need the header and top level die.
19729
19730 IWBN to use the aging mechanism to let us lazily later discard the CU.
19731 For now we skip this optimization. */
19732
19733 if (cu != NULL)
19734 {
19735 addr_base = cu->addr_base;
19736 addr_size = cu->header.addr_size;
19737 }
19738 else
19739 {
19740 struct dwarf2_read_addr_index_data aidata;
19741
19742 /* Note: We can't use init_cutu_and_read_dies_simple here,
19743 we need addr_base. */
19744 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
19745 dwarf2_read_addr_index_reader, &aidata);
19746 addr_base = aidata.addr_base;
19747 addr_size = aidata.addr_size;
19748 }
19749
19750 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19751 addr_size);
19752 }
19753
19754 /* Given a DW_FORM_GNU_str_index, fetch the string.
19755 This is only used by the Fission support. */
19756
19757 static const char *
19758 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19759 {
19760 struct dwarf2_cu *cu = reader->cu;
19761 struct dwarf2_per_objfile *dwarf2_per_objfile
19762 = cu->per_cu->dwarf2_per_objfile;
19763 struct objfile *objfile = dwarf2_per_objfile->objfile;
19764 const char *objf_name = objfile_name (objfile);
19765 bfd *abfd = objfile->obfd;
19766 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19767 struct dwarf2_section_info *str_offsets_section =
19768 &reader->dwo_file->sections.str_offsets;
19769 const gdb_byte *info_ptr;
19770 ULONGEST str_offset;
19771 static const char form_name[] = "DW_FORM_GNU_str_index";
19772
19773 dwarf2_read_section (objfile, str_section);
19774 dwarf2_read_section (objfile, str_offsets_section);
19775 if (str_section->buffer == NULL)
19776 error (_("%s used without .debug_str.dwo section"
19777 " in CU at offset %s [in module %s]"),
19778 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19779 if (str_offsets_section->buffer == NULL)
19780 error (_("%s used without .debug_str_offsets.dwo section"
19781 " in CU at offset %s [in module %s]"),
19782 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19783 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19784 error (_("%s pointing outside of .debug_str_offsets.dwo"
19785 " section in CU at offset %s [in module %s]"),
19786 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19787 info_ptr = (str_offsets_section->buffer
19788 + str_index * cu->header.offset_size);
19789 if (cu->header.offset_size == 4)
19790 str_offset = bfd_get_32 (abfd, info_ptr);
19791 else
19792 str_offset = bfd_get_64 (abfd, info_ptr);
19793 if (str_offset >= str_section->size)
19794 error (_("Offset from %s pointing outside of"
19795 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19796 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19797 return (const char *) (str_section->buffer + str_offset);
19798 }
19799
19800 /* Return the length of an LEB128 number in BUF. */
19801
19802 static int
19803 leb128_size (const gdb_byte *buf)
19804 {
19805 const gdb_byte *begin = buf;
19806 gdb_byte byte;
19807
19808 while (1)
19809 {
19810 byte = *buf++;
19811 if ((byte & 128) == 0)
19812 return buf - begin;
19813 }
19814 }
19815
19816 static void
19817 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19818 {
19819 switch (lang)
19820 {
19821 case DW_LANG_C89:
19822 case DW_LANG_C99:
19823 case DW_LANG_C11:
19824 case DW_LANG_C:
19825 case DW_LANG_UPC:
19826 cu->language = language_c;
19827 break;
19828 case DW_LANG_Java:
19829 case DW_LANG_C_plus_plus:
19830 case DW_LANG_C_plus_plus_11:
19831 case DW_LANG_C_plus_plus_14:
19832 cu->language = language_cplus;
19833 break;
19834 case DW_LANG_D:
19835 cu->language = language_d;
19836 break;
19837 case DW_LANG_Fortran77:
19838 case DW_LANG_Fortran90:
19839 case DW_LANG_Fortran95:
19840 case DW_LANG_Fortran03:
19841 case DW_LANG_Fortran08:
19842 cu->language = language_fortran;
19843 break;
19844 case DW_LANG_Go:
19845 cu->language = language_go;
19846 break;
19847 case DW_LANG_Mips_Assembler:
19848 cu->language = language_asm;
19849 break;
19850 case DW_LANG_Ada83:
19851 case DW_LANG_Ada95:
19852 cu->language = language_ada;
19853 break;
19854 case DW_LANG_Modula2:
19855 cu->language = language_m2;
19856 break;
19857 case DW_LANG_Pascal83:
19858 cu->language = language_pascal;
19859 break;
19860 case DW_LANG_ObjC:
19861 cu->language = language_objc;
19862 break;
19863 case DW_LANG_Rust:
19864 case DW_LANG_Rust_old:
19865 cu->language = language_rust;
19866 break;
19867 case DW_LANG_Cobol74:
19868 case DW_LANG_Cobol85:
19869 default:
19870 cu->language = language_minimal;
19871 break;
19872 }
19873 cu->language_defn = language_def (cu->language);
19874 }
19875
19876 /* Return the named attribute or NULL if not there. */
19877
19878 static struct attribute *
19879 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19880 {
19881 for (;;)
19882 {
19883 unsigned int i;
19884 struct attribute *spec = NULL;
19885
19886 for (i = 0; i < die->num_attrs; ++i)
19887 {
19888 if (die->attrs[i].name == name)
19889 return &die->attrs[i];
19890 if (die->attrs[i].name == DW_AT_specification
19891 || die->attrs[i].name == DW_AT_abstract_origin)
19892 spec = &die->attrs[i];
19893 }
19894
19895 if (!spec)
19896 break;
19897
19898 die = follow_die_ref (die, spec, &cu);
19899 }
19900
19901 return NULL;
19902 }
19903
19904 /* Return the named attribute or NULL if not there,
19905 but do not follow DW_AT_specification, etc.
19906 This is for use in contexts where we're reading .debug_types dies.
19907 Following DW_AT_specification, DW_AT_abstract_origin will take us
19908 back up the chain, and we want to go down. */
19909
19910 static struct attribute *
19911 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
19912 {
19913 unsigned int i;
19914
19915 for (i = 0; i < die->num_attrs; ++i)
19916 if (die->attrs[i].name == name)
19917 return &die->attrs[i];
19918
19919 return NULL;
19920 }
19921
19922 /* Return the string associated with a string-typed attribute, or NULL if it
19923 is either not found or is of an incorrect type. */
19924
19925 static const char *
19926 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19927 {
19928 struct attribute *attr;
19929 const char *str = NULL;
19930
19931 attr = dwarf2_attr (die, name, cu);
19932
19933 if (attr != NULL)
19934 {
19935 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
19936 || attr->form == DW_FORM_string
19937 || attr->form == DW_FORM_GNU_str_index
19938 || attr->form == DW_FORM_GNU_strp_alt)
19939 str = DW_STRING (attr);
19940 else
19941 complaint (_("string type expected for attribute %s for "
19942 "DIE at %s in module %s"),
19943 dwarf_attr_name (name), sect_offset_str (die->sect_off),
19944 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
19945 }
19946
19947 return str;
19948 }
19949
19950 /* Return non-zero iff the attribute NAME is defined for the given DIE,
19951 and holds a non-zero value. This function should only be used for
19952 DW_FORM_flag or DW_FORM_flag_present attributes. */
19953
19954 static int
19955 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
19956 {
19957 struct attribute *attr = dwarf2_attr (die, name, cu);
19958
19959 return (attr && DW_UNSND (attr));
19960 }
19961
19962 static int
19963 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
19964 {
19965 /* A DIE is a declaration if it has a DW_AT_declaration attribute
19966 which value is non-zero. However, we have to be careful with
19967 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
19968 (via dwarf2_flag_true_p) follows this attribute. So we may
19969 end up accidently finding a declaration attribute that belongs
19970 to a different DIE referenced by the specification attribute,
19971 even though the given DIE does not have a declaration attribute. */
19972 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
19973 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
19974 }
19975
19976 /* Return the die giving the specification for DIE, if there is
19977 one. *SPEC_CU is the CU containing DIE on input, and the CU
19978 containing the return value on output. If there is no
19979 specification, but there is an abstract origin, that is
19980 returned. */
19981
19982 static struct die_info *
19983 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
19984 {
19985 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
19986 *spec_cu);
19987
19988 if (spec_attr == NULL)
19989 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
19990
19991 if (spec_attr == NULL)
19992 return NULL;
19993 else
19994 return follow_die_ref (die, spec_attr, spec_cu);
19995 }
19996
19997 /* Stub for free_line_header to match void * callback types. */
19998
19999 static void
20000 free_line_header_voidp (void *arg)
20001 {
20002 struct line_header *lh = (struct line_header *) arg;
20003
20004 delete lh;
20005 }
20006
20007 void
20008 line_header::add_include_dir (const char *include_dir)
20009 {
20010 if (dwarf_line_debug >= 2)
20011 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20012 include_dirs.size () + 1, include_dir);
20013
20014 include_dirs.push_back (include_dir);
20015 }
20016
20017 void
20018 line_header::add_file_name (const char *name,
20019 dir_index d_index,
20020 unsigned int mod_time,
20021 unsigned int length)
20022 {
20023 if (dwarf_line_debug >= 2)
20024 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
20025 (unsigned) file_names.size () + 1, name);
20026
20027 file_names.emplace_back (name, d_index, mod_time, length);
20028 }
20029
20030 /* A convenience function to find the proper .debug_line section for a CU. */
20031
20032 static struct dwarf2_section_info *
20033 get_debug_line_section (struct dwarf2_cu *cu)
20034 {
20035 struct dwarf2_section_info *section;
20036 struct dwarf2_per_objfile *dwarf2_per_objfile
20037 = cu->per_cu->dwarf2_per_objfile;
20038
20039 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20040 DWO file. */
20041 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20042 section = &cu->dwo_unit->dwo_file->sections.line;
20043 else if (cu->per_cu->is_dwz)
20044 {
20045 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
20046
20047 section = &dwz->line;
20048 }
20049 else
20050 section = &dwarf2_per_objfile->line;
20051
20052 return section;
20053 }
20054
20055 /* Read directory or file name entry format, starting with byte of
20056 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20057 entries count and the entries themselves in the described entry
20058 format. */
20059
20060 static void
20061 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20062 bfd *abfd, const gdb_byte **bufp,
20063 struct line_header *lh,
20064 const struct comp_unit_head *cu_header,
20065 void (*callback) (struct line_header *lh,
20066 const char *name,
20067 dir_index d_index,
20068 unsigned int mod_time,
20069 unsigned int length))
20070 {
20071 gdb_byte format_count, formati;
20072 ULONGEST data_count, datai;
20073 const gdb_byte *buf = *bufp;
20074 const gdb_byte *format_header_data;
20075 unsigned int bytes_read;
20076
20077 format_count = read_1_byte (abfd, buf);
20078 buf += 1;
20079 format_header_data = buf;
20080 for (formati = 0; formati < format_count; formati++)
20081 {
20082 read_unsigned_leb128 (abfd, buf, &bytes_read);
20083 buf += bytes_read;
20084 read_unsigned_leb128 (abfd, buf, &bytes_read);
20085 buf += bytes_read;
20086 }
20087
20088 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20089 buf += bytes_read;
20090 for (datai = 0; datai < data_count; datai++)
20091 {
20092 const gdb_byte *format = format_header_data;
20093 struct file_entry fe;
20094
20095 for (formati = 0; formati < format_count; formati++)
20096 {
20097 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20098 format += bytes_read;
20099
20100 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20101 format += bytes_read;
20102
20103 gdb::optional<const char *> string;
20104 gdb::optional<unsigned int> uint;
20105
20106 switch (form)
20107 {
20108 case DW_FORM_string:
20109 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20110 buf += bytes_read;
20111 break;
20112
20113 case DW_FORM_line_strp:
20114 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20115 abfd, buf,
20116 cu_header,
20117 &bytes_read));
20118 buf += bytes_read;
20119 break;
20120
20121 case DW_FORM_data1:
20122 uint.emplace (read_1_byte (abfd, buf));
20123 buf += 1;
20124 break;
20125
20126 case DW_FORM_data2:
20127 uint.emplace (read_2_bytes (abfd, buf));
20128 buf += 2;
20129 break;
20130
20131 case DW_FORM_data4:
20132 uint.emplace (read_4_bytes (abfd, buf));
20133 buf += 4;
20134 break;
20135
20136 case DW_FORM_data8:
20137 uint.emplace (read_8_bytes (abfd, buf));
20138 buf += 8;
20139 break;
20140
20141 case DW_FORM_udata:
20142 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20143 buf += bytes_read;
20144 break;
20145
20146 case DW_FORM_block:
20147 /* It is valid only for DW_LNCT_timestamp which is ignored by
20148 current GDB. */
20149 break;
20150 }
20151
20152 switch (content_type)
20153 {
20154 case DW_LNCT_path:
20155 if (string.has_value ())
20156 fe.name = *string;
20157 break;
20158 case DW_LNCT_directory_index:
20159 if (uint.has_value ())
20160 fe.d_index = (dir_index) *uint;
20161 break;
20162 case DW_LNCT_timestamp:
20163 if (uint.has_value ())
20164 fe.mod_time = *uint;
20165 break;
20166 case DW_LNCT_size:
20167 if (uint.has_value ())
20168 fe.length = *uint;
20169 break;
20170 case DW_LNCT_MD5:
20171 break;
20172 default:
20173 complaint (_("Unknown format content type %s"),
20174 pulongest (content_type));
20175 }
20176 }
20177
20178 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20179 }
20180
20181 *bufp = buf;
20182 }
20183
20184 /* Read the statement program header starting at OFFSET in
20185 .debug_line, or .debug_line.dwo. Return a pointer
20186 to a struct line_header, allocated using xmalloc.
20187 Returns NULL if there is a problem reading the header, e.g., if it
20188 has a version we don't understand.
20189
20190 NOTE: the strings in the include directory and file name tables of
20191 the returned object point into the dwarf line section buffer,
20192 and must not be freed. */
20193
20194 static line_header_up
20195 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20196 {
20197 const gdb_byte *line_ptr;
20198 unsigned int bytes_read, offset_size;
20199 int i;
20200 const char *cur_dir, *cur_file;
20201 struct dwarf2_section_info *section;
20202 bfd *abfd;
20203 struct dwarf2_per_objfile *dwarf2_per_objfile
20204 = cu->per_cu->dwarf2_per_objfile;
20205
20206 section = get_debug_line_section (cu);
20207 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20208 if (section->buffer == NULL)
20209 {
20210 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20211 complaint (_("missing .debug_line.dwo section"));
20212 else
20213 complaint (_("missing .debug_line section"));
20214 return 0;
20215 }
20216
20217 /* We can't do this until we know the section is non-empty.
20218 Only then do we know we have such a section. */
20219 abfd = get_section_bfd_owner (section);
20220
20221 /* Make sure that at least there's room for the total_length field.
20222 That could be 12 bytes long, but we're just going to fudge that. */
20223 if (to_underlying (sect_off) + 4 >= section->size)
20224 {
20225 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20226 return 0;
20227 }
20228
20229 line_header_up lh (new line_header ());
20230
20231 lh->sect_off = sect_off;
20232 lh->offset_in_dwz = cu->per_cu->is_dwz;
20233
20234 line_ptr = section->buffer + to_underlying (sect_off);
20235
20236 /* Read in the header. */
20237 lh->total_length =
20238 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20239 &bytes_read, &offset_size);
20240 line_ptr += bytes_read;
20241 if (line_ptr + lh->total_length > (section->buffer + section->size))
20242 {
20243 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20244 return 0;
20245 }
20246 lh->statement_program_end = line_ptr + lh->total_length;
20247 lh->version = read_2_bytes (abfd, line_ptr);
20248 line_ptr += 2;
20249 if (lh->version > 5)
20250 {
20251 /* This is a version we don't understand. The format could have
20252 changed in ways we don't handle properly so just punt. */
20253 complaint (_("unsupported version in .debug_line section"));
20254 return NULL;
20255 }
20256 if (lh->version >= 5)
20257 {
20258 gdb_byte segment_selector_size;
20259
20260 /* Skip address size. */
20261 read_1_byte (abfd, line_ptr);
20262 line_ptr += 1;
20263
20264 segment_selector_size = read_1_byte (abfd, line_ptr);
20265 line_ptr += 1;
20266 if (segment_selector_size != 0)
20267 {
20268 complaint (_("unsupported segment selector size %u "
20269 "in .debug_line section"),
20270 segment_selector_size);
20271 return NULL;
20272 }
20273 }
20274 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20275 line_ptr += offset_size;
20276 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20277 line_ptr += 1;
20278 if (lh->version >= 4)
20279 {
20280 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20281 line_ptr += 1;
20282 }
20283 else
20284 lh->maximum_ops_per_instruction = 1;
20285
20286 if (lh->maximum_ops_per_instruction == 0)
20287 {
20288 lh->maximum_ops_per_instruction = 1;
20289 complaint (_("invalid maximum_ops_per_instruction "
20290 "in `.debug_line' section"));
20291 }
20292
20293 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20294 line_ptr += 1;
20295 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20296 line_ptr += 1;
20297 lh->line_range = read_1_byte (abfd, line_ptr);
20298 line_ptr += 1;
20299 lh->opcode_base = read_1_byte (abfd, line_ptr);
20300 line_ptr += 1;
20301 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20302
20303 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20304 for (i = 1; i < lh->opcode_base; ++i)
20305 {
20306 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20307 line_ptr += 1;
20308 }
20309
20310 if (lh->version >= 5)
20311 {
20312 /* Read directory table. */
20313 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20314 &cu->header,
20315 [] (struct line_header *lh, const char *name,
20316 dir_index d_index, unsigned int mod_time,
20317 unsigned int length)
20318 {
20319 lh->add_include_dir (name);
20320 });
20321
20322 /* Read file name table. */
20323 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20324 &cu->header,
20325 [] (struct line_header *lh, const char *name,
20326 dir_index d_index, unsigned int mod_time,
20327 unsigned int length)
20328 {
20329 lh->add_file_name (name, d_index, mod_time, length);
20330 });
20331 }
20332 else
20333 {
20334 /* Read directory table. */
20335 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20336 {
20337 line_ptr += bytes_read;
20338 lh->add_include_dir (cur_dir);
20339 }
20340 line_ptr += bytes_read;
20341
20342 /* Read file name table. */
20343 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20344 {
20345 unsigned int mod_time, length;
20346 dir_index d_index;
20347
20348 line_ptr += bytes_read;
20349 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20350 line_ptr += bytes_read;
20351 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20352 line_ptr += bytes_read;
20353 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20354 line_ptr += bytes_read;
20355
20356 lh->add_file_name (cur_file, d_index, mod_time, length);
20357 }
20358 line_ptr += bytes_read;
20359 }
20360 lh->statement_program_start = line_ptr;
20361
20362 if (line_ptr > (section->buffer + section->size))
20363 complaint (_("line number info header doesn't "
20364 "fit in `.debug_line' section"));
20365
20366 return lh;
20367 }
20368
20369 /* Subroutine of dwarf_decode_lines to simplify it.
20370 Return the file name of the psymtab for included file FILE_INDEX
20371 in line header LH of PST.
20372 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20373 If space for the result is malloc'd, *NAME_HOLDER will be set.
20374 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20375
20376 static const char *
20377 psymtab_include_file_name (const struct line_header *lh, int file_index,
20378 const struct partial_symtab *pst,
20379 const char *comp_dir,
20380 gdb::unique_xmalloc_ptr<char> *name_holder)
20381 {
20382 const file_entry &fe = lh->file_names[file_index];
20383 const char *include_name = fe.name;
20384 const char *include_name_to_compare = include_name;
20385 const char *pst_filename;
20386 int file_is_pst;
20387
20388 const char *dir_name = fe.include_dir (lh);
20389
20390 gdb::unique_xmalloc_ptr<char> hold_compare;
20391 if (!IS_ABSOLUTE_PATH (include_name)
20392 && (dir_name != NULL || comp_dir != NULL))
20393 {
20394 /* Avoid creating a duplicate psymtab for PST.
20395 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20396 Before we do the comparison, however, we need to account
20397 for DIR_NAME and COMP_DIR.
20398 First prepend dir_name (if non-NULL). If we still don't
20399 have an absolute path prepend comp_dir (if non-NULL).
20400 However, the directory we record in the include-file's
20401 psymtab does not contain COMP_DIR (to match the
20402 corresponding symtab(s)).
20403
20404 Example:
20405
20406 bash$ cd /tmp
20407 bash$ gcc -g ./hello.c
20408 include_name = "hello.c"
20409 dir_name = "."
20410 DW_AT_comp_dir = comp_dir = "/tmp"
20411 DW_AT_name = "./hello.c"
20412
20413 */
20414
20415 if (dir_name != NULL)
20416 {
20417 name_holder->reset (concat (dir_name, SLASH_STRING,
20418 include_name, (char *) NULL));
20419 include_name = name_holder->get ();
20420 include_name_to_compare = include_name;
20421 }
20422 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20423 {
20424 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20425 include_name, (char *) NULL));
20426 include_name_to_compare = hold_compare.get ();
20427 }
20428 }
20429
20430 pst_filename = pst->filename;
20431 gdb::unique_xmalloc_ptr<char> copied_name;
20432 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20433 {
20434 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20435 pst_filename, (char *) NULL));
20436 pst_filename = copied_name.get ();
20437 }
20438
20439 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20440
20441 if (file_is_pst)
20442 return NULL;
20443 return include_name;
20444 }
20445
20446 /* State machine to track the state of the line number program. */
20447
20448 class lnp_state_machine
20449 {
20450 public:
20451 /* Initialize a machine state for the start of a line number
20452 program. */
20453 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20454 bool record_lines_p);
20455
20456 file_entry *current_file ()
20457 {
20458 /* lh->file_names is 0-based, but the file name numbers in the
20459 statement program are 1-based. */
20460 return m_line_header->file_name_at (m_file);
20461 }
20462
20463 /* Record the line in the state machine. END_SEQUENCE is true if
20464 we're processing the end of a sequence. */
20465 void record_line (bool end_sequence);
20466
20467 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20468 nop-out rest of the lines in this sequence. */
20469 void check_line_address (struct dwarf2_cu *cu,
20470 const gdb_byte *line_ptr,
20471 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20472
20473 void handle_set_discriminator (unsigned int discriminator)
20474 {
20475 m_discriminator = discriminator;
20476 m_line_has_non_zero_discriminator |= discriminator != 0;
20477 }
20478
20479 /* Handle DW_LNE_set_address. */
20480 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20481 {
20482 m_op_index = 0;
20483 address += baseaddr;
20484 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20485 }
20486
20487 /* Handle DW_LNS_advance_pc. */
20488 void handle_advance_pc (CORE_ADDR adjust);
20489
20490 /* Handle a special opcode. */
20491 void handle_special_opcode (unsigned char op_code);
20492
20493 /* Handle DW_LNS_advance_line. */
20494 void handle_advance_line (int line_delta)
20495 {
20496 advance_line (line_delta);
20497 }
20498
20499 /* Handle DW_LNS_set_file. */
20500 void handle_set_file (file_name_index file);
20501
20502 /* Handle DW_LNS_negate_stmt. */
20503 void handle_negate_stmt ()
20504 {
20505 m_is_stmt = !m_is_stmt;
20506 }
20507
20508 /* Handle DW_LNS_const_add_pc. */
20509 void handle_const_add_pc ();
20510
20511 /* Handle DW_LNS_fixed_advance_pc. */
20512 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20513 {
20514 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20515 m_op_index = 0;
20516 }
20517
20518 /* Handle DW_LNS_copy. */
20519 void handle_copy ()
20520 {
20521 record_line (false);
20522 m_discriminator = 0;
20523 }
20524
20525 /* Handle DW_LNE_end_sequence. */
20526 void handle_end_sequence ()
20527 {
20528 m_currently_recording_lines = true;
20529 }
20530
20531 private:
20532 /* Advance the line by LINE_DELTA. */
20533 void advance_line (int line_delta)
20534 {
20535 m_line += line_delta;
20536
20537 if (line_delta != 0)
20538 m_line_has_non_zero_discriminator = m_discriminator != 0;
20539 }
20540
20541 struct dwarf2_cu *m_cu;
20542
20543 gdbarch *m_gdbarch;
20544
20545 /* True if we're recording lines.
20546 Otherwise we're building partial symtabs and are just interested in
20547 finding include files mentioned by the line number program. */
20548 bool m_record_lines_p;
20549
20550 /* The line number header. */
20551 line_header *m_line_header;
20552
20553 /* These are part of the standard DWARF line number state machine,
20554 and initialized according to the DWARF spec. */
20555
20556 unsigned char m_op_index = 0;
20557 /* The line table index (1-based) of the current file. */
20558 file_name_index m_file = (file_name_index) 1;
20559 unsigned int m_line = 1;
20560
20561 /* These are initialized in the constructor. */
20562
20563 CORE_ADDR m_address;
20564 bool m_is_stmt;
20565 unsigned int m_discriminator;
20566
20567 /* Additional bits of state we need to track. */
20568
20569 /* The last file that we called dwarf2_start_subfile for.
20570 This is only used for TLLs. */
20571 unsigned int m_last_file = 0;
20572 /* The last file a line number was recorded for. */
20573 struct subfile *m_last_subfile = NULL;
20574
20575 /* When true, record the lines we decode. */
20576 bool m_currently_recording_lines = false;
20577
20578 /* The last line number that was recorded, used to coalesce
20579 consecutive entries for the same line. This can happen, for
20580 example, when discriminators are present. PR 17276. */
20581 unsigned int m_last_line = 0;
20582 bool m_line_has_non_zero_discriminator = false;
20583 };
20584
20585 void
20586 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20587 {
20588 CORE_ADDR addr_adj = (((m_op_index + adjust)
20589 / m_line_header->maximum_ops_per_instruction)
20590 * m_line_header->minimum_instruction_length);
20591 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20592 m_op_index = ((m_op_index + adjust)
20593 % m_line_header->maximum_ops_per_instruction);
20594 }
20595
20596 void
20597 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20598 {
20599 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20600 CORE_ADDR addr_adj = (((m_op_index
20601 + (adj_opcode / m_line_header->line_range))
20602 / m_line_header->maximum_ops_per_instruction)
20603 * m_line_header->minimum_instruction_length);
20604 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20605 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20606 % m_line_header->maximum_ops_per_instruction);
20607
20608 int line_delta = (m_line_header->line_base
20609 + (adj_opcode % m_line_header->line_range));
20610 advance_line (line_delta);
20611 record_line (false);
20612 m_discriminator = 0;
20613 }
20614
20615 void
20616 lnp_state_machine::handle_set_file (file_name_index file)
20617 {
20618 m_file = file;
20619
20620 const file_entry *fe = current_file ();
20621 if (fe == NULL)
20622 dwarf2_debug_line_missing_file_complaint ();
20623 else if (m_record_lines_p)
20624 {
20625 const char *dir = fe->include_dir (m_line_header);
20626
20627 m_last_subfile = m_cu->builder->get_current_subfile ();
20628 m_line_has_non_zero_discriminator = m_discriminator != 0;
20629 dwarf2_start_subfile (m_cu, fe->name, dir);
20630 }
20631 }
20632
20633 void
20634 lnp_state_machine::handle_const_add_pc ()
20635 {
20636 CORE_ADDR adjust
20637 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20638
20639 CORE_ADDR addr_adj
20640 = (((m_op_index + adjust)
20641 / m_line_header->maximum_ops_per_instruction)
20642 * m_line_header->minimum_instruction_length);
20643
20644 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20645 m_op_index = ((m_op_index + adjust)
20646 % m_line_header->maximum_ops_per_instruction);
20647 }
20648
20649 /* Return non-zero if we should add LINE to the line number table.
20650 LINE is the line to add, LAST_LINE is the last line that was added,
20651 LAST_SUBFILE is the subfile for LAST_LINE.
20652 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20653 had a non-zero discriminator.
20654
20655 We have to be careful in the presence of discriminators.
20656 E.g., for this line:
20657
20658 for (i = 0; i < 100000; i++);
20659
20660 clang can emit four line number entries for that one line,
20661 each with a different discriminator.
20662 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20663
20664 However, we want gdb to coalesce all four entries into one.
20665 Otherwise the user could stepi into the middle of the line and
20666 gdb would get confused about whether the pc really was in the
20667 middle of the line.
20668
20669 Things are further complicated by the fact that two consecutive
20670 line number entries for the same line is a heuristic used by gcc
20671 to denote the end of the prologue. So we can't just discard duplicate
20672 entries, we have to be selective about it. The heuristic we use is
20673 that we only collapse consecutive entries for the same line if at least
20674 one of those entries has a non-zero discriminator. PR 17276.
20675
20676 Note: Addresses in the line number state machine can never go backwards
20677 within one sequence, thus this coalescing is ok. */
20678
20679 static int
20680 dwarf_record_line_p (struct dwarf2_cu *cu,
20681 unsigned int line, unsigned int last_line,
20682 int line_has_non_zero_discriminator,
20683 struct subfile *last_subfile)
20684 {
20685 if (cu->builder->get_current_subfile () != last_subfile)
20686 return 1;
20687 if (line != last_line)
20688 return 1;
20689 /* Same line for the same file that we've seen already.
20690 As a last check, for pr 17276, only record the line if the line
20691 has never had a non-zero discriminator. */
20692 if (!line_has_non_zero_discriminator)
20693 return 1;
20694 return 0;
20695 }
20696
20697 /* Use the CU's builder to record line number LINE beginning at
20698 address ADDRESS in the line table of subfile SUBFILE. */
20699
20700 static void
20701 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20702 unsigned int line, CORE_ADDR address,
20703 struct dwarf2_cu *cu)
20704 {
20705 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20706
20707 if (dwarf_line_debug)
20708 {
20709 fprintf_unfiltered (gdb_stdlog,
20710 "Recording line %u, file %s, address %s\n",
20711 line, lbasename (subfile->name),
20712 paddress (gdbarch, address));
20713 }
20714
20715 if (cu != nullptr)
20716 cu->builder->record_line (subfile, line, addr);
20717 }
20718
20719 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20720 Mark the end of a set of line number records.
20721 The arguments are the same as for dwarf_record_line_1.
20722 If SUBFILE is NULL the request is ignored. */
20723
20724 static void
20725 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20726 CORE_ADDR address, struct dwarf2_cu *cu)
20727 {
20728 if (subfile == NULL)
20729 return;
20730
20731 if (dwarf_line_debug)
20732 {
20733 fprintf_unfiltered (gdb_stdlog,
20734 "Finishing current line, file %s, address %s\n",
20735 lbasename (subfile->name),
20736 paddress (gdbarch, address));
20737 }
20738
20739 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
20740 }
20741
20742 void
20743 lnp_state_machine::record_line (bool end_sequence)
20744 {
20745 if (dwarf_line_debug)
20746 {
20747 fprintf_unfiltered (gdb_stdlog,
20748 "Processing actual line %u: file %u,"
20749 " address %s, is_stmt %u, discrim %u\n",
20750 m_line, to_underlying (m_file),
20751 paddress (m_gdbarch, m_address),
20752 m_is_stmt, m_discriminator);
20753 }
20754
20755 file_entry *fe = current_file ();
20756
20757 if (fe == NULL)
20758 dwarf2_debug_line_missing_file_complaint ();
20759 /* For now we ignore lines not starting on an instruction boundary.
20760 But not when processing end_sequence for compatibility with the
20761 previous version of the code. */
20762 else if (m_op_index == 0 || end_sequence)
20763 {
20764 fe->included_p = 1;
20765 if (m_record_lines_p && m_is_stmt)
20766 {
20767 if (m_last_subfile != m_cu->builder->get_current_subfile ()
20768 || end_sequence)
20769 {
20770 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20771 m_currently_recording_lines ? m_cu : nullptr);
20772 }
20773
20774 if (!end_sequence)
20775 {
20776 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20777 m_line_has_non_zero_discriminator,
20778 m_last_subfile))
20779 {
20780 dwarf_record_line_1 (m_gdbarch,
20781 m_cu->builder->get_current_subfile (),
20782 m_line, m_address,
20783 m_currently_recording_lines ? m_cu : nullptr);
20784 }
20785 m_last_subfile = m_cu->builder->get_current_subfile ();
20786 m_last_line = m_line;
20787 }
20788 }
20789 }
20790 }
20791
20792 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20793 line_header *lh, bool record_lines_p)
20794 {
20795 m_cu = cu;
20796 m_gdbarch = arch;
20797 m_record_lines_p = record_lines_p;
20798 m_line_header = lh;
20799
20800 m_currently_recording_lines = true;
20801
20802 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20803 was a line entry for it so that the backend has a chance to adjust it
20804 and also record it in case it needs it. This is currently used by MIPS
20805 code, cf. `mips_adjust_dwarf2_line'. */
20806 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20807 m_is_stmt = lh->default_is_stmt;
20808 m_discriminator = 0;
20809 }
20810
20811 void
20812 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20813 const gdb_byte *line_ptr,
20814 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20815 {
20816 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20817 the pc range of the CU. However, we restrict the test to only ADDRESS
20818 values of zero to preserve GDB's previous behaviour which is to handle
20819 the specific case of a function being GC'd by the linker. */
20820
20821 if (address == 0 && address < unrelocated_lowpc)
20822 {
20823 /* This line table is for a function which has been
20824 GCd by the linker. Ignore it. PR gdb/12528 */
20825
20826 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20827 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20828
20829 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20830 line_offset, objfile_name (objfile));
20831 m_currently_recording_lines = false;
20832 /* Note: m_currently_recording_lines is left as false until we see
20833 DW_LNE_end_sequence. */
20834 }
20835 }
20836
20837 /* Subroutine of dwarf_decode_lines to simplify it.
20838 Process the line number information in LH.
20839 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20840 program in order to set included_p for every referenced header. */
20841
20842 static void
20843 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20844 const int decode_for_pst_p, CORE_ADDR lowpc)
20845 {
20846 const gdb_byte *line_ptr, *extended_end;
20847 const gdb_byte *line_end;
20848 unsigned int bytes_read, extended_len;
20849 unsigned char op_code, extended_op;
20850 CORE_ADDR baseaddr;
20851 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20852 bfd *abfd = objfile->obfd;
20853 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20854 /* True if we're recording line info (as opposed to building partial
20855 symtabs and just interested in finding include files mentioned by
20856 the line number program). */
20857 bool record_lines_p = !decode_for_pst_p;
20858
20859 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20860
20861 line_ptr = lh->statement_program_start;
20862 line_end = lh->statement_program_end;
20863
20864 /* Read the statement sequences until there's nothing left. */
20865 while (line_ptr < line_end)
20866 {
20867 /* The DWARF line number program state machine. Reset the state
20868 machine at the start of each sequence. */
20869 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
20870 bool end_sequence = false;
20871
20872 if (record_lines_p)
20873 {
20874 /* Start a subfile for the current file of the state
20875 machine. */
20876 const file_entry *fe = state_machine.current_file ();
20877
20878 if (fe != NULL)
20879 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
20880 }
20881
20882 /* Decode the table. */
20883 while (line_ptr < line_end && !end_sequence)
20884 {
20885 op_code = read_1_byte (abfd, line_ptr);
20886 line_ptr += 1;
20887
20888 if (op_code >= lh->opcode_base)
20889 {
20890 /* Special opcode. */
20891 state_machine.handle_special_opcode (op_code);
20892 }
20893 else switch (op_code)
20894 {
20895 case DW_LNS_extended_op:
20896 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20897 &bytes_read);
20898 line_ptr += bytes_read;
20899 extended_end = line_ptr + extended_len;
20900 extended_op = read_1_byte (abfd, line_ptr);
20901 line_ptr += 1;
20902 switch (extended_op)
20903 {
20904 case DW_LNE_end_sequence:
20905 state_machine.handle_end_sequence ();
20906 end_sequence = true;
20907 break;
20908 case DW_LNE_set_address:
20909 {
20910 CORE_ADDR address
20911 = read_address (abfd, line_ptr, cu, &bytes_read);
20912 line_ptr += bytes_read;
20913
20914 state_machine.check_line_address (cu, line_ptr,
20915 lowpc - baseaddr, address);
20916 state_machine.handle_set_address (baseaddr, address);
20917 }
20918 break;
20919 case DW_LNE_define_file:
20920 {
20921 const char *cur_file;
20922 unsigned int mod_time, length;
20923 dir_index dindex;
20924
20925 cur_file = read_direct_string (abfd, line_ptr,
20926 &bytes_read);
20927 line_ptr += bytes_read;
20928 dindex = (dir_index)
20929 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20930 line_ptr += bytes_read;
20931 mod_time =
20932 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20933 line_ptr += bytes_read;
20934 length =
20935 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20936 line_ptr += bytes_read;
20937 lh->add_file_name (cur_file, dindex, mod_time, length);
20938 }
20939 break;
20940 case DW_LNE_set_discriminator:
20941 {
20942 /* The discriminator is not interesting to the
20943 debugger; just ignore it. We still need to
20944 check its value though:
20945 if there are consecutive entries for the same
20946 (non-prologue) line we want to coalesce them.
20947 PR 17276. */
20948 unsigned int discr
20949 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20950 line_ptr += bytes_read;
20951
20952 state_machine.handle_set_discriminator (discr);
20953 }
20954 break;
20955 default:
20956 complaint (_("mangled .debug_line section"));
20957 return;
20958 }
20959 /* Make sure that we parsed the extended op correctly. If e.g.
20960 we expected a different address size than the producer used,
20961 we may have read the wrong number of bytes. */
20962 if (line_ptr != extended_end)
20963 {
20964 complaint (_("mangled .debug_line section"));
20965 return;
20966 }
20967 break;
20968 case DW_LNS_copy:
20969 state_machine.handle_copy ();
20970 break;
20971 case DW_LNS_advance_pc:
20972 {
20973 CORE_ADDR adjust
20974 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20975 line_ptr += bytes_read;
20976
20977 state_machine.handle_advance_pc (adjust);
20978 }
20979 break;
20980 case DW_LNS_advance_line:
20981 {
20982 int line_delta
20983 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
20984 line_ptr += bytes_read;
20985
20986 state_machine.handle_advance_line (line_delta);
20987 }
20988 break;
20989 case DW_LNS_set_file:
20990 {
20991 file_name_index file
20992 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
20993 &bytes_read);
20994 line_ptr += bytes_read;
20995
20996 state_machine.handle_set_file (file);
20997 }
20998 break;
20999 case DW_LNS_set_column:
21000 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21001 line_ptr += bytes_read;
21002 break;
21003 case DW_LNS_negate_stmt:
21004 state_machine.handle_negate_stmt ();
21005 break;
21006 case DW_LNS_set_basic_block:
21007 break;
21008 /* Add to the address register of the state machine the
21009 address increment value corresponding to special opcode
21010 255. I.e., this value is scaled by the minimum
21011 instruction length since special opcode 255 would have
21012 scaled the increment. */
21013 case DW_LNS_const_add_pc:
21014 state_machine.handle_const_add_pc ();
21015 break;
21016 case DW_LNS_fixed_advance_pc:
21017 {
21018 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21019 line_ptr += 2;
21020
21021 state_machine.handle_fixed_advance_pc (addr_adj);
21022 }
21023 break;
21024 default:
21025 {
21026 /* Unknown standard opcode, ignore it. */
21027 int i;
21028
21029 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21030 {
21031 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21032 line_ptr += bytes_read;
21033 }
21034 }
21035 }
21036 }
21037
21038 if (!end_sequence)
21039 dwarf2_debug_line_missing_end_sequence_complaint ();
21040
21041 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21042 in which case we still finish recording the last line). */
21043 state_machine.record_line (true);
21044 }
21045 }
21046
21047 /* Decode the Line Number Program (LNP) for the given line_header
21048 structure and CU. The actual information extracted and the type
21049 of structures created from the LNP depends on the value of PST.
21050
21051 1. If PST is NULL, then this procedure uses the data from the program
21052 to create all necessary symbol tables, and their linetables.
21053
21054 2. If PST is not NULL, this procedure reads the program to determine
21055 the list of files included by the unit represented by PST, and
21056 builds all the associated partial symbol tables.
21057
21058 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21059 It is used for relative paths in the line table.
21060 NOTE: When processing partial symtabs (pst != NULL),
21061 comp_dir == pst->dirname.
21062
21063 NOTE: It is important that psymtabs have the same file name (via strcmp)
21064 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21065 symtab we don't use it in the name of the psymtabs we create.
21066 E.g. expand_line_sal requires this when finding psymtabs to expand.
21067 A good testcase for this is mb-inline.exp.
21068
21069 LOWPC is the lowest address in CU (or 0 if not known).
21070
21071 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21072 for its PC<->lines mapping information. Otherwise only the filename
21073 table is read in. */
21074
21075 static void
21076 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21077 struct dwarf2_cu *cu, struct partial_symtab *pst,
21078 CORE_ADDR lowpc, int decode_mapping)
21079 {
21080 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21081 const int decode_for_pst_p = (pst != NULL);
21082
21083 if (decode_mapping)
21084 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21085
21086 if (decode_for_pst_p)
21087 {
21088 int file_index;
21089
21090 /* Now that we're done scanning the Line Header Program, we can
21091 create the psymtab of each included file. */
21092 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21093 if (lh->file_names[file_index].included_p == 1)
21094 {
21095 gdb::unique_xmalloc_ptr<char> name_holder;
21096 const char *include_name =
21097 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21098 &name_holder);
21099 if (include_name != NULL)
21100 dwarf2_create_include_psymtab (include_name, pst, objfile);
21101 }
21102 }
21103 else
21104 {
21105 /* Make sure a symtab is created for every file, even files
21106 which contain only variables (i.e. no code with associated
21107 line numbers). */
21108 struct compunit_symtab *cust = cu->builder->get_compunit_symtab ();
21109 int i;
21110
21111 for (i = 0; i < lh->file_names.size (); i++)
21112 {
21113 file_entry &fe = lh->file_names[i];
21114
21115 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
21116
21117 if (cu->builder->get_current_subfile ()->symtab == NULL)
21118 {
21119 cu->builder->get_current_subfile ()->symtab
21120 = allocate_symtab (cust,
21121 cu->builder->get_current_subfile ()->name);
21122 }
21123 fe.symtab = cu->builder->get_current_subfile ()->symtab;
21124 }
21125 }
21126 }
21127
21128 /* Start a subfile for DWARF. FILENAME is the name of the file and
21129 DIRNAME the name of the source directory which contains FILENAME
21130 or NULL if not known.
21131 This routine tries to keep line numbers from identical absolute and
21132 relative file names in a common subfile.
21133
21134 Using the `list' example from the GDB testsuite, which resides in
21135 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21136 of /srcdir/list0.c yields the following debugging information for list0.c:
21137
21138 DW_AT_name: /srcdir/list0.c
21139 DW_AT_comp_dir: /compdir
21140 files.files[0].name: list0.h
21141 files.files[0].dir: /srcdir
21142 files.files[1].name: list0.c
21143 files.files[1].dir: /srcdir
21144
21145 The line number information for list0.c has to end up in a single
21146 subfile, so that `break /srcdir/list0.c:1' works as expected.
21147 start_subfile will ensure that this happens provided that we pass the
21148 concatenation of files.files[1].dir and files.files[1].name as the
21149 subfile's name. */
21150
21151 static void
21152 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21153 const char *dirname)
21154 {
21155 char *copy = NULL;
21156
21157 /* In order not to lose the line information directory,
21158 we concatenate it to the filename when it makes sense.
21159 Note that the Dwarf3 standard says (speaking of filenames in line
21160 information): ``The directory index is ignored for file names
21161 that represent full path names''. Thus ignoring dirname in the
21162 `else' branch below isn't an issue. */
21163
21164 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21165 {
21166 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21167 filename = copy;
21168 }
21169
21170 cu->builder->start_subfile (filename);
21171
21172 if (copy != NULL)
21173 xfree (copy);
21174 }
21175
21176 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21177 buildsym_compunit constructor. */
21178
21179 static struct compunit_symtab *
21180 dwarf2_start_symtab (struct dwarf2_cu *cu,
21181 const char *name, const char *comp_dir, CORE_ADDR low_pc)
21182 {
21183 gdb_assert (cu->builder == nullptr);
21184
21185 cu->builder.reset (new struct buildsym_compunit
21186 (cu->per_cu->dwarf2_per_objfile->objfile,
21187 name, comp_dir, cu->language, low_pc));
21188
21189 cu->list_in_scope = cu->builder->get_file_symbols ();
21190
21191 cu->builder->record_debugformat ("DWARF 2");
21192 cu->builder->record_producer (cu->producer);
21193
21194 cu->processing_has_namespace_info = 0;
21195
21196 return cu->builder->get_compunit_symtab ();
21197 }
21198
21199 static void
21200 var_decode_location (struct attribute *attr, struct symbol *sym,
21201 struct dwarf2_cu *cu)
21202 {
21203 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21204 struct comp_unit_head *cu_header = &cu->header;
21205
21206 /* NOTE drow/2003-01-30: There used to be a comment and some special
21207 code here to turn a symbol with DW_AT_external and a
21208 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21209 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21210 with some versions of binutils) where shared libraries could have
21211 relocations against symbols in their debug information - the
21212 minimal symbol would have the right address, but the debug info
21213 would not. It's no longer necessary, because we will explicitly
21214 apply relocations when we read in the debug information now. */
21215
21216 /* A DW_AT_location attribute with no contents indicates that a
21217 variable has been optimized away. */
21218 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21219 {
21220 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21221 return;
21222 }
21223
21224 /* Handle one degenerate form of location expression specially, to
21225 preserve GDB's previous behavior when section offsets are
21226 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
21227 then mark this symbol as LOC_STATIC. */
21228
21229 if (attr_form_is_block (attr)
21230 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21231 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21232 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21233 && (DW_BLOCK (attr)->size
21234 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21235 {
21236 unsigned int dummy;
21237
21238 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21239 SYMBOL_VALUE_ADDRESS (sym) =
21240 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21241 else
21242 SYMBOL_VALUE_ADDRESS (sym) =
21243 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21244 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21245 fixup_symbol_section (sym, objfile);
21246 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21247 SYMBOL_SECTION (sym));
21248 return;
21249 }
21250
21251 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21252 expression evaluator, and use LOC_COMPUTED only when necessary
21253 (i.e. when the value of a register or memory location is
21254 referenced, or a thread-local block, etc.). Then again, it might
21255 not be worthwhile. I'm assuming that it isn't unless performance
21256 or memory numbers show me otherwise. */
21257
21258 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21259
21260 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21261 cu->has_loclist = 1;
21262 }
21263
21264 /* Given a pointer to a DWARF information entry, figure out if we need
21265 to make a symbol table entry for it, and if so, create a new entry
21266 and return a pointer to it.
21267 If TYPE is NULL, determine symbol type from the die, otherwise
21268 used the passed type.
21269 If SPACE is not NULL, use it to hold the new symbol. If it is
21270 NULL, allocate a new symbol on the objfile's obstack. */
21271
21272 static struct symbol *
21273 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21274 struct symbol *space)
21275 {
21276 struct dwarf2_per_objfile *dwarf2_per_objfile
21277 = cu->per_cu->dwarf2_per_objfile;
21278 struct objfile *objfile = dwarf2_per_objfile->objfile;
21279 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21280 struct symbol *sym = NULL;
21281 const char *name;
21282 struct attribute *attr = NULL;
21283 struct attribute *attr2 = NULL;
21284 CORE_ADDR baseaddr;
21285 struct pending **list_to_add = NULL;
21286
21287 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21288
21289 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21290
21291 name = dwarf2_name (die, cu);
21292 if (name)
21293 {
21294 const char *linkagename;
21295 int suppress_add = 0;
21296
21297 if (space)
21298 sym = space;
21299 else
21300 sym = allocate_symbol (objfile);
21301 OBJSTAT (objfile, n_syms++);
21302
21303 /* Cache this symbol's name and the name's demangled form (if any). */
21304 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21305 linkagename = dwarf2_physname (name, die, cu);
21306 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21307
21308 /* Fortran does not have mangling standard and the mangling does differ
21309 between gfortran, iFort etc. */
21310 if (cu->language == language_fortran
21311 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21312 symbol_set_demangled_name (&(sym->ginfo),
21313 dwarf2_full_name (name, die, cu),
21314 NULL);
21315
21316 /* Default assumptions.
21317 Use the passed type or decode it from the die. */
21318 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21319 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21320 if (type != NULL)
21321 SYMBOL_TYPE (sym) = type;
21322 else
21323 SYMBOL_TYPE (sym) = die_type (die, cu);
21324 attr = dwarf2_attr (die,
21325 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21326 cu);
21327 if (attr)
21328 {
21329 SYMBOL_LINE (sym) = DW_UNSND (attr);
21330 }
21331
21332 attr = dwarf2_attr (die,
21333 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21334 cu);
21335 if (attr)
21336 {
21337 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21338 struct file_entry *fe;
21339
21340 if (cu->line_header != NULL)
21341 fe = cu->line_header->file_name_at (file_index);
21342 else
21343 fe = NULL;
21344
21345 if (fe == NULL)
21346 complaint (_("file index out of range"));
21347 else
21348 symbol_set_symtab (sym, fe->symtab);
21349 }
21350
21351 switch (die->tag)
21352 {
21353 case DW_TAG_label:
21354 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21355 if (attr)
21356 {
21357 CORE_ADDR addr;
21358
21359 addr = attr_value_as_address (attr);
21360 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21361 SYMBOL_VALUE_ADDRESS (sym) = addr;
21362 }
21363 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21364 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21365 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21366 dw2_add_symbol_to_list (sym, cu->list_in_scope);
21367 break;
21368 case DW_TAG_subprogram:
21369 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21370 finish_block. */
21371 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21372 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21373 if ((attr2 && (DW_UNSND (attr2) != 0))
21374 || cu->language == language_ada)
21375 {
21376 /* Subprograms marked external are stored as a global symbol.
21377 Ada subprograms, whether marked external or not, are always
21378 stored as a global symbol, because we want to be able to
21379 access them globally. For instance, we want to be able
21380 to break on a nested subprogram without having to
21381 specify the context. */
21382 list_to_add = cu->builder->get_global_symbols ();
21383 }
21384 else
21385 {
21386 list_to_add = cu->list_in_scope;
21387 }
21388 break;
21389 case DW_TAG_inlined_subroutine:
21390 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21391 finish_block. */
21392 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21393 SYMBOL_INLINED (sym) = 1;
21394 list_to_add = cu->list_in_scope;
21395 break;
21396 case DW_TAG_template_value_param:
21397 suppress_add = 1;
21398 /* Fall through. */
21399 case DW_TAG_constant:
21400 case DW_TAG_variable:
21401 case DW_TAG_member:
21402 /* Compilation with minimal debug info may result in
21403 variables with missing type entries. Change the
21404 misleading `void' type to something sensible. */
21405 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21406 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21407
21408 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21409 /* In the case of DW_TAG_member, we should only be called for
21410 static const members. */
21411 if (die->tag == DW_TAG_member)
21412 {
21413 /* dwarf2_add_field uses die_is_declaration,
21414 so we do the same. */
21415 gdb_assert (die_is_declaration (die, cu));
21416 gdb_assert (attr);
21417 }
21418 if (attr)
21419 {
21420 dwarf2_const_value (attr, sym, cu);
21421 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21422 if (!suppress_add)
21423 {
21424 if (attr2 && (DW_UNSND (attr2) != 0))
21425 list_to_add = cu->builder->get_global_symbols ();
21426 else
21427 list_to_add = cu->list_in_scope;
21428 }
21429 break;
21430 }
21431 attr = dwarf2_attr (die, DW_AT_location, cu);
21432 if (attr)
21433 {
21434 var_decode_location (attr, sym, cu);
21435 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21436
21437 /* Fortran explicitly imports any global symbols to the local
21438 scope by DW_TAG_common_block. */
21439 if (cu->language == language_fortran && die->parent
21440 && die->parent->tag == DW_TAG_common_block)
21441 attr2 = NULL;
21442
21443 if (SYMBOL_CLASS (sym) == LOC_STATIC
21444 && SYMBOL_VALUE_ADDRESS (sym) == 0
21445 && !dwarf2_per_objfile->has_section_at_zero)
21446 {
21447 /* When a static variable is eliminated by the linker,
21448 the corresponding debug information is not stripped
21449 out, but the variable address is set to null;
21450 do not add such variables into symbol table. */
21451 }
21452 else if (attr2 && (DW_UNSND (attr2) != 0))
21453 {
21454 /* Workaround gfortran PR debug/40040 - it uses
21455 DW_AT_location for variables in -fPIC libraries which may
21456 get overriden by other libraries/executable and get
21457 a different address. Resolve it by the minimal symbol
21458 which may come from inferior's executable using copy
21459 relocation. Make this workaround only for gfortran as for
21460 other compilers GDB cannot guess the minimal symbol
21461 Fortran mangling kind. */
21462 if (cu->language == language_fortran && die->parent
21463 && die->parent->tag == DW_TAG_module
21464 && cu->producer
21465 && startswith (cu->producer, "GNU Fortran"))
21466 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21467
21468 /* A variable with DW_AT_external is never static,
21469 but it may be block-scoped. */
21470 list_to_add
21471 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21472 ? cu->builder->get_global_symbols ()
21473 : cu->list_in_scope);
21474 }
21475 else
21476 list_to_add = cu->list_in_scope;
21477 }
21478 else
21479 {
21480 /* We do not know the address of this symbol.
21481 If it is an external symbol and we have type information
21482 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21483 The address of the variable will then be determined from
21484 the minimal symbol table whenever the variable is
21485 referenced. */
21486 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21487
21488 /* Fortran explicitly imports any global symbols to the local
21489 scope by DW_TAG_common_block. */
21490 if (cu->language == language_fortran && die->parent
21491 && die->parent->tag == DW_TAG_common_block)
21492 {
21493 /* SYMBOL_CLASS doesn't matter here because
21494 read_common_block is going to reset it. */
21495 if (!suppress_add)
21496 list_to_add = cu->list_in_scope;
21497 }
21498 else if (attr2 && (DW_UNSND (attr2) != 0)
21499 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21500 {
21501 /* A variable with DW_AT_external is never static, but it
21502 may be block-scoped. */
21503 list_to_add
21504 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21505 ? cu->builder->get_global_symbols ()
21506 : cu->list_in_scope);
21507
21508 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21509 }
21510 else if (!die_is_declaration (die, cu))
21511 {
21512 /* Use the default LOC_OPTIMIZED_OUT class. */
21513 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21514 if (!suppress_add)
21515 list_to_add = cu->list_in_scope;
21516 }
21517 }
21518 break;
21519 case DW_TAG_formal_parameter:
21520 {
21521 /* If we are inside a function, mark this as an argument. If
21522 not, we might be looking at an argument to an inlined function
21523 when we do not have enough information to show inlined frames;
21524 pretend it's a local variable in that case so that the user can
21525 still see it. */
21526 struct context_stack *curr
21527 = cu->builder->get_current_context_stack ();
21528 if (curr != nullptr && curr->name != nullptr)
21529 SYMBOL_IS_ARGUMENT (sym) = 1;
21530 attr = dwarf2_attr (die, DW_AT_location, cu);
21531 if (attr)
21532 {
21533 var_decode_location (attr, sym, cu);
21534 }
21535 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21536 if (attr)
21537 {
21538 dwarf2_const_value (attr, sym, cu);
21539 }
21540
21541 list_to_add = cu->list_in_scope;
21542 }
21543 break;
21544 case DW_TAG_unspecified_parameters:
21545 /* From varargs functions; gdb doesn't seem to have any
21546 interest in this information, so just ignore it for now.
21547 (FIXME?) */
21548 break;
21549 case DW_TAG_template_type_param:
21550 suppress_add = 1;
21551 /* Fall through. */
21552 case DW_TAG_class_type:
21553 case DW_TAG_interface_type:
21554 case DW_TAG_structure_type:
21555 case DW_TAG_union_type:
21556 case DW_TAG_set_type:
21557 case DW_TAG_enumeration_type:
21558 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21559 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21560
21561 {
21562 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21563 really ever be static objects: otherwise, if you try
21564 to, say, break of a class's method and you're in a file
21565 which doesn't mention that class, it won't work unless
21566 the check for all static symbols in lookup_symbol_aux
21567 saves you. See the OtherFileClass tests in
21568 gdb.c++/namespace.exp. */
21569
21570 if (!suppress_add)
21571 {
21572 list_to_add
21573 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21574 && cu->language == language_cplus
21575 ? cu->builder->get_global_symbols ()
21576 : cu->list_in_scope);
21577
21578 /* The semantics of C++ state that "struct foo {
21579 ... }" also defines a typedef for "foo". */
21580 if (cu->language == language_cplus
21581 || cu->language == language_ada
21582 || cu->language == language_d
21583 || cu->language == language_rust)
21584 {
21585 /* The symbol's name is already allocated along
21586 with this objfile, so we don't need to
21587 duplicate it for the type. */
21588 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21589 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21590 }
21591 }
21592 }
21593 break;
21594 case DW_TAG_typedef:
21595 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21596 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21597 list_to_add = cu->list_in_scope;
21598 break;
21599 case DW_TAG_base_type:
21600 case DW_TAG_subrange_type:
21601 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21602 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21603 list_to_add = cu->list_in_scope;
21604 break;
21605 case DW_TAG_enumerator:
21606 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21607 if (attr)
21608 {
21609 dwarf2_const_value (attr, sym, cu);
21610 }
21611 {
21612 /* NOTE: carlton/2003-11-10: See comment above in the
21613 DW_TAG_class_type, etc. block. */
21614
21615 list_to_add
21616 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21617 && cu->language == language_cplus
21618 ? cu->builder->get_global_symbols ()
21619 : cu->list_in_scope);
21620 }
21621 break;
21622 case DW_TAG_imported_declaration:
21623 case DW_TAG_namespace:
21624 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21625 list_to_add = cu->builder->get_global_symbols ();
21626 break;
21627 case DW_TAG_module:
21628 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21629 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21630 list_to_add = cu->builder->get_global_symbols ();
21631 break;
21632 case DW_TAG_common_block:
21633 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21634 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21635 dw2_add_symbol_to_list (sym, cu->list_in_scope);
21636 break;
21637 default:
21638 /* Not a tag we recognize. Hopefully we aren't processing
21639 trash data, but since we must specifically ignore things
21640 we don't recognize, there is nothing else we should do at
21641 this point. */
21642 complaint (_("unsupported tag: '%s'"),
21643 dwarf_tag_name (die->tag));
21644 break;
21645 }
21646
21647 if (suppress_add)
21648 {
21649 sym->hash_next = objfile->template_symbols;
21650 objfile->template_symbols = sym;
21651 list_to_add = NULL;
21652 }
21653
21654 if (list_to_add != NULL)
21655 dw2_add_symbol_to_list (sym, list_to_add);
21656
21657 /* For the benefit of old versions of GCC, check for anonymous
21658 namespaces based on the demangled name. */
21659 if (!cu->processing_has_namespace_info
21660 && cu->language == language_cplus)
21661 cp_scan_for_anonymous_namespaces (cu->builder.get (), sym, objfile);
21662 }
21663 return (sym);
21664 }
21665
21666 /* Given an attr with a DW_FORM_dataN value in host byte order,
21667 zero-extend it as appropriate for the symbol's type. The DWARF
21668 standard (v4) is not entirely clear about the meaning of using
21669 DW_FORM_dataN for a constant with a signed type, where the type is
21670 wider than the data. The conclusion of a discussion on the DWARF
21671 list was that this is unspecified. We choose to always zero-extend
21672 because that is the interpretation long in use by GCC. */
21673
21674 static gdb_byte *
21675 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21676 struct dwarf2_cu *cu, LONGEST *value, int bits)
21677 {
21678 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21679 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21680 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21681 LONGEST l = DW_UNSND (attr);
21682
21683 if (bits < sizeof (*value) * 8)
21684 {
21685 l &= ((LONGEST) 1 << bits) - 1;
21686 *value = l;
21687 }
21688 else if (bits == sizeof (*value) * 8)
21689 *value = l;
21690 else
21691 {
21692 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21693 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21694 return bytes;
21695 }
21696
21697 return NULL;
21698 }
21699
21700 /* Read a constant value from an attribute. Either set *VALUE, or if
21701 the value does not fit in *VALUE, set *BYTES - either already
21702 allocated on the objfile obstack, or newly allocated on OBSTACK,
21703 or, set *BATON, if we translated the constant to a location
21704 expression. */
21705
21706 static void
21707 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21708 const char *name, struct obstack *obstack,
21709 struct dwarf2_cu *cu,
21710 LONGEST *value, const gdb_byte **bytes,
21711 struct dwarf2_locexpr_baton **baton)
21712 {
21713 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21714 struct comp_unit_head *cu_header = &cu->header;
21715 struct dwarf_block *blk;
21716 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21717 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21718
21719 *value = 0;
21720 *bytes = NULL;
21721 *baton = NULL;
21722
21723 switch (attr->form)
21724 {
21725 case DW_FORM_addr:
21726 case DW_FORM_GNU_addr_index:
21727 {
21728 gdb_byte *data;
21729
21730 if (TYPE_LENGTH (type) != cu_header->addr_size)
21731 dwarf2_const_value_length_mismatch_complaint (name,
21732 cu_header->addr_size,
21733 TYPE_LENGTH (type));
21734 /* Symbols of this form are reasonably rare, so we just
21735 piggyback on the existing location code rather than writing
21736 a new implementation of symbol_computed_ops. */
21737 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21738 (*baton)->per_cu = cu->per_cu;
21739 gdb_assert ((*baton)->per_cu);
21740
21741 (*baton)->size = 2 + cu_header->addr_size;
21742 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21743 (*baton)->data = data;
21744
21745 data[0] = DW_OP_addr;
21746 store_unsigned_integer (&data[1], cu_header->addr_size,
21747 byte_order, DW_ADDR (attr));
21748 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21749 }
21750 break;
21751 case DW_FORM_string:
21752 case DW_FORM_strp:
21753 case DW_FORM_GNU_str_index:
21754 case DW_FORM_GNU_strp_alt:
21755 /* DW_STRING is already allocated on the objfile obstack, point
21756 directly to it. */
21757 *bytes = (const gdb_byte *) DW_STRING (attr);
21758 break;
21759 case DW_FORM_block1:
21760 case DW_FORM_block2:
21761 case DW_FORM_block4:
21762 case DW_FORM_block:
21763 case DW_FORM_exprloc:
21764 case DW_FORM_data16:
21765 blk = DW_BLOCK (attr);
21766 if (TYPE_LENGTH (type) != blk->size)
21767 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21768 TYPE_LENGTH (type));
21769 *bytes = blk->data;
21770 break;
21771
21772 /* The DW_AT_const_value attributes are supposed to carry the
21773 symbol's value "represented as it would be on the target
21774 architecture." By the time we get here, it's already been
21775 converted to host endianness, so we just need to sign- or
21776 zero-extend it as appropriate. */
21777 case DW_FORM_data1:
21778 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21779 break;
21780 case DW_FORM_data2:
21781 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21782 break;
21783 case DW_FORM_data4:
21784 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21785 break;
21786 case DW_FORM_data8:
21787 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21788 break;
21789
21790 case DW_FORM_sdata:
21791 case DW_FORM_implicit_const:
21792 *value = DW_SND (attr);
21793 break;
21794
21795 case DW_FORM_udata:
21796 *value = DW_UNSND (attr);
21797 break;
21798
21799 default:
21800 complaint (_("unsupported const value attribute form: '%s'"),
21801 dwarf_form_name (attr->form));
21802 *value = 0;
21803 break;
21804 }
21805 }
21806
21807
21808 /* Copy constant value from an attribute to a symbol. */
21809
21810 static void
21811 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21812 struct dwarf2_cu *cu)
21813 {
21814 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21815 LONGEST value;
21816 const gdb_byte *bytes;
21817 struct dwarf2_locexpr_baton *baton;
21818
21819 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21820 SYMBOL_PRINT_NAME (sym),
21821 &objfile->objfile_obstack, cu,
21822 &value, &bytes, &baton);
21823
21824 if (baton != NULL)
21825 {
21826 SYMBOL_LOCATION_BATON (sym) = baton;
21827 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21828 }
21829 else if (bytes != NULL)
21830 {
21831 SYMBOL_VALUE_BYTES (sym) = bytes;
21832 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21833 }
21834 else
21835 {
21836 SYMBOL_VALUE (sym) = value;
21837 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21838 }
21839 }
21840
21841 /* Return the type of the die in question using its DW_AT_type attribute. */
21842
21843 static struct type *
21844 die_type (struct die_info *die, struct dwarf2_cu *cu)
21845 {
21846 struct attribute *type_attr;
21847
21848 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21849 if (!type_attr)
21850 {
21851 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21852 /* A missing DW_AT_type represents a void type. */
21853 return objfile_type (objfile)->builtin_void;
21854 }
21855
21856 return lookup_die_type (die, type_attr, cu);
21857 }
21858
21859 /* True iff CU's producer generates GNAT Ada auxiliary information
21860 that allows to find parallel types through that information instead
21861 of having to do expensive parallel lookups by type name. */
21862
21863 static int
21864 need_gnat_info (struct dwarf2_cu *cu)
21865 {
21866 /* Assume that the Ada compiler was GNAT, which always produces
21867 the auxiliary information. */
21868 return (cu->language == language_ada);
21869 }
21870
21871 /* Return the auxiliary type of the die in question using its
21872 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21873 attribute is not present. */
21874
21875 static struct type *
21876 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21877 {
21878 struct attribute *type_attr;
21879
21880 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21881 if (!type_attr)
21882 return NULL;
21883
21884 return lookup_die_type (die, type_attr, cu);
21885 }
21886
21887 /* If DIE has a descriptive_type attribute, then set the TYPE's
21888 descriptive type accordingly. */
21889
21890 static void
21891 set_descriptive_type (struct type *type, struct die_info *die,
21892 struct dwarf2_cu *cu)
21893 {
21894 struct type *descriptive_type = die_descriptive_type (die, cu);
21895
21896 if (descriptive_type)
21897 {
21898 ALLOCATE_GNAT_AUX_TYPE (type);
21899 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21900 }
21901 }
21902
21903 /* Return the containing type of the die in question using its
21904 DW_AT_containing_type attribute. */
21905
21906 static struct type *
21907 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21908 {
21909 struct attribute *type_attr;
21910 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21911
21912 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21913 if (!type_attr)
21914 error (_("Dwarf Error: Problem turning containing type into gdb type "
21915 "[in module %s]"), objfile_name (objfile));
21916
21917 return lookup_die_type (die, type_attr, cu);
21918 }
21919
21920 /* Return an error marker type to use for the ill formed type in DIE/CU. */
21921
21922 static struct type *
21923 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21924 {
21925 struct dwarf2_per_objfile *dwarf2_per_objfile
21926 = cu->per_cu->dwarf2_per_objfile;
21927 struct objfile *objfile = dwarf2_per_objfile->objfile;
21928 char *saved;
21929
21930 std::string message
21931 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
21932 objfile_name (objfile),
21933 sect_offset_str (cu->header.sect_off),
21934 sect_offset_str (die->sect_off));
21935 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
21936 message.c_str (), message.length ());
21937
21938 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
21939 }
21940
21941 /* Look up the type of DIE in CU using its type attribute ATTR.
21942 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
21943 DW_AT_containing_type.
21944 If there is no type substitute an error marker. */
21945
21946 static struct type *
21947 lookup_die_type (struct die_info *die, const struct attribute *attr,
21948 struct dwarf2_cu *cu)
21949 {
21950 struct dwarf2_per_objfile *dwarf2_per_objfile
21951 = cu->per_cu->dwarf2_per_objfile;
21952 struct objfile *objfile = dwarf2_per_objfile->objfile;
21953 struct type *this_type;
21954
21955 gdb_assert (attr->name == DW_AT_type
21956 || attr->name == DW_AT_GNAT_descriptive_type
21957 || attr->name == DW_AT_containing_type);
21958
21959 /* First see if we have it cached. */
21960
21961 if (attr->form == DW_FORM_GNU_ref_alt)
21962 {
21963 struct dwarf2_per_cu_data *per_cu;
21964 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21965
21966 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
21967 dwarf2_per_objfile);
21968 this_type = get_die_type_at_offset (sect_off, per_cu);
21969 }
21970 else if (attr_form_is_ref (attr))
21971 {
21972 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21973
21974 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
21975 }
21976 else if (attr->form == DW_FORM_ref_sig8)
21977 {
21978 ULONGEST signature = DW_SIGNATURE (attr);
21979
21980 return get_signatured_type (die, signature, cu);
21981 }
21982 else
21983 {
21984 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
21985 " at %s [in module %s]"),
21986 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
21987 objfile_name (objfile));
21988 return build_error_marker_type (cu, die);
21989 }
21990
21991 /* If not cached we need to read it in. */
21992
21993 if (this_type == NULL)
21994 {
21995 struct die_info *type_die = NULL;
21996 struct dwarf2_cu *type_cu = cu;
21997
21998 if (attr_form_is_ref (attr))
21999 type_die = follow_die_ref (die, attr, &type_cu);
22000 if (type_die == NULL)
22001 return build_error_marker_type (cu, die);
22002 /* If we find the type now, it's probably because the type came
22003 from an inter-CU reference and the type's CU got expanded before
22004 ours. */
22005 this_type = read_type_die (type_die, type_cu);
22006 }
22007
22008 /* If we still don't have a type use an error marker. */
22009
22010 if (this_type == NULL)
22011 return build_error_marker_type (cu, die);
22012
22013 return this_type;
22014 }
22015
22016 /* Return the type in DIE, CU.
22017 Returns NULL for invalid types.
22018
22019 This first does a lookup in die_type_hash,
22020 and only reads the die in if necessary.
22021
22022 NOTE: This can be called when reading in partial or full symbols. */
22023
22024 static struct type *
22025 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22026 {
22027 struct type *this_type;
22028
22029 this_type = get_die_type (die, cu);
22030 if (this_type)
22031 return this_type;
22032
22033 return read_type_die_1 (die, cu);
22034 }
22035
22036 /* Read the type in DIE, CU.
22037 Returns NULL for invalid types. */
22038
22039 static struct type *
22040 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22041 {
22042 struct type *this_type = NULL;
22043
22044 switch (die->tag)
22045 {
22046 case DW_TAG_class_type:
22047 case DW_TAG_interface_type:
22048 case DW_TAG_structure_type:
22049 case DW_TAG_union_type:
22050 this_type = read_structure_type (die, cu);
22051 break;
22052 case DW_TAG_enumeration_type:
22053 this_type = read_enumeration_type (die, cu);
22054 break;
22055 case DW_TAG_subprogram:
22056 case DW_TAG_subroutine_type:
22057 case DW_TAG_inlined_subroutine:
22058 this_type = read_subroutine_type (die, cu);
22059 break;
22060 case DW_TAG_array_type:
22061 this_type = read_array_type (die, cu);
22062 break;
22063 case DW_TAG_set_type:
22064 this_type = read_set_type (die, cu);
22065 break;
22066 case DW_TAG_pointer_type:
22067 this_type = read_tag_pointer_type (die, cu);
22068 break;
22069 case DW_TAG_ptr_to_member_type:
22070 this_type = read_tag_ptr_to_member_type (die, cu);
22071 break;
22072 case DW_TAG_reference_type:
22073 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22074 break;
22075 case DW_TAG_rvalue_reference_type:
22076 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22077 break;
22078 case DW_TAG_const_type:
22079 this_type = read_tag_const_type (die, cu);
22080 break;
22081 case DW_TAG_volatile_type:
22082 this_type = read_tag_volatile_type (die, cu);
22083 break;
22084 case DW_TAG_restrict_type:
22085 this_type = read_tag_restrict_type (die, cu);
22086 break;
22087 case DW_TAG_string_type:
22088 this_type = read_tag_string_type (die, cu);
22089 break;
22090 case DW_TAG_typedef:
22091 this_type = read_typedef (die, cu);
22092 break;
22093 case DW_TAG_subrange_type:
22094 this_type = read_subrange_type (die, cu);
22095 break;
22096 case DW_TAG_base_type:
22097 this_type = read_base_type (die, cu);
22098 break;
22099 case DW_TAG_unspecified_type:
22100 this_type = read_unspecified_type (die, cu);
22101 break;
22102 case DW_TAG_namespace:
22103 this_type = read_namespace_type (die, cu);
22104 break;
22105 case DW_TAG_module:
22106 this_type = read_module_type (die, cu);
22107 break;
22108 case DW_TAG_atomic_type:
22109 this_type = read_tag_atomic_type (die, cu);
22110 break;
22111 default:
22112 complaint (_("unexpected tag in read_type_die: '%s'"),
22113 dwarf_tag_name (die->tag));
22114 break;
22115 }
22116
22117 return this_type;
22118 }
22119
22120 /* See if we can figure out if the class lives in a namespace. We do
22121 this by looking for a member function; its demangled name will
22122 contain namespace info, if there is any.
22123 Return the computed name or NULL.
22124 Space for the result is allocated on the objfile's obstack.
22125 This is the full-die version of guess_partial_die_structure_name.
22126 In this case we know DIE has no useful parent. */
22127
22128 static char *
22129 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22130 {
22131 struct die_info *spec_die;
22132 struct dwarf2_cu *spec_cu;
22133 struct die_info *child;
22134 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22135
22136 spec_cu = cu;
22137 spec_die = die_specification (die, &spec_cu);
22138 if (spec_die != NULL)
22139 {
22140 die = spec_die;
22141 cu = spec_cu;
22142 }
22143
22144 for (child = die->child;
22145 child != NULL;
22146 child = child->sibling)
22147 {
22148 if (child->tag == DW_TAG_subprogram)
22149 {
22150 const char *linkage_name = dw2_linkage_name (child, cu);
22151
22152 if (linkage_name != NULL)
22153 {
22154 char *actual_name
22155 = language_class_name_from_physname (cu->language_defn,
22156 linkage_name);
22157 char *name = NULL;
22158
22159 if (actual_name != NULL)
22160 {
22161 const char *die_name = dwarf2_name (die, cu);
22162
22163 if (die_name != NULL
22164 && strcmp (die_name, actual_name) != 0)
22165 {
22166 /* Strip off the class name from the full name.
22167 We want the prefix. */
22168 int die_name_len = strlen (die_name);
22169 int actual_name_len = strlen (actual_name);
22170
22171 /* Test for '::' as a sanity check. */
22172 if (actual_name_len > die_name_len + 2
22173 && actual_name[actual_name_len
22174 - die_name_len - 1] == ':')
22175 name = (char *) obstack_copy0 (
22176 &objfile->per_bfd->storage_obstack,
22177 actual_name, actual_name_len - die_name_len - 2);
22178 }
22179 }
22180 xfree (actual_name);
22181 return name;
22182 }
22183 }
22184 }
22185
22186 return NULL;
22187 }
22188
22189 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22190 prefix part in such case. See
22191 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22192
22193 static const char *
22194 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22195 {
22196 struct attribute *attr;
22197 const char *base;
22198
22199 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22200 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22201 return NULL;
22202
22203 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22204 return NULL;
22205
22206 attr = dw2_linkage_name_attr (die, cu);
22207 if (attr == NULL || DW_STRING (attr) == NULL)
22208 return NULL;
22209
22210 /* dwarf2_name had to be already called. */
22211 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22212
22213 /* Strip the base name, keep any leading namespaces/classes. */
22214 base = strrchr (DW_STRING (attr), ':');
22215 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22216 return "";
22217
22218 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22219 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22220 DW_STRING (attr),
22221 &base[-1] - DW_STRING (attr));
22222 }
22223
22224 /* Return the name of the namespace/class that DIE is defined within,
22225 or "" if we can't tell. The caller should not xfree the result.
22226
22227 For example, if we're within the method foo() in the following
22228 code:
22229
22230 namespace N {
22231 class C {
22232 void foo () {
22233 }
22234 };
22235 }
22236
22237 then determine_prefix on foo's die will return "N::C". */
22238
22239 static const char *
22240 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22241 {
22242 struct dwarf2_per_objfile *dwarf2_per_objfile
22243 = cu->per_cu->dwarf2_per_objfile;
22244 struct die_info *parent, *spec_die;
22245 struct dwarf2_cu *spec_cu;
22246 struct type *parent_type;
22247 const char *retval;
22248
22249 if (cu->language != language_cplus
22250 && cu->language != language_fortran && cu->language != language_d
22251 && cu->language != language_rust)
22252 return "";
22253
22254 retval = anonymous_struct_prefix (die, cu);
22255 if (retval)
22256 return retval;
22257
22258 /* We have to be careful in the presence of DW_AT_specification.
22259 For example, with GCC 3.4, given the code
22260
22261 namespace N {
22262 void foo() {
22263 // Definition of N::foo.
22264 }
22265 }
22266
22267 then we'll have a tree of DIEs like this:
22268
22269 1: DW_TAG_compile_unit
22270 2: DW_TAG_namespace // N
22271 3: DW_TAG_subprogram // declaration of N::foo
22272 4: DW_TAG_subprogram // definition of N::foo
22273 DW_AT_specification // refers to die #3
22274
22275 Thus, when processing die #4, we have to pretend that we're in
22276 the context of its DW_AT_specification, namely the contex of die
22277 #3. */
22278 spec_cu = cu;
22279 spec_die = die_specification (die, &spec_cu);
22280 if (spec_die == NULL)
22281 parent = die->parent;
22282 else
22283 {
22284 parent = spec_die->parent;
22285 cu = spec_cu;
22286 }
22287
22288 if (parent == NULL)
22289 return "";
22290 else if (parent->building_fullname)
22291 {
22292 const char *name;
22293 const char *parent_name;
22294
22295 /* It has been seen on RealView 2.2 built binaries,
22296 DW_TAG_template_type_param types actually _defined_ as
22297 children of the parent class:
22298
22299 enum E {};
22300 template class <class Enum> Class{};
22301 Class<enum E> class_e;
22302
22303 1: DW_TAG_class_type (Class)
22304 2: DW_TAG_enumeration_type (E)
22305 3: DW_TAG_enumerator (enum1:0)
22306 3: DW_TAG_enumerator (enum2:1)
22307 ...
22308 2: DW_TAG_template_type_param
22309 DW_AT_type DW_FORM_ref_udata (E)
22310
22311 Besides being broken debug info, it can put GDB into an
22312 infinite loop. Consider:
22313
22314 When we're building the full name for Class<E>, we'll start
22315 at Class, and go look over its template type parameters,
22316 finding E. We'll then try to build the full name of E, and
22317 reach here. We're now trying to build the full name of E,
22318 and look over the parent DIE for containing scope. In the
22319 broken case, if we followed the parent DIE of E, we'd again
22320 find Class, and once again go look at its template type
22321 arguments, etc., etc. Simply don't consider such parent die
22322 as source-level parent of this die (it can't be, the language
22323 doesn't allow it), and break the loop here. */
22324 name = dwarf2_name (die, cu);
22325 parent_name = dwarf2_name (parent, cu);
22326 complaint (_("template param type '%s' defined within parent '%s'"),
22327 name ? name : "<unknown>",
22328 parent_name ? parent_name : "<unknown>");
22329 return "";
22330 }
22331 else
22332 switch (parent->tag)
22333 {
22334 case DW_TAG_namespace:
22335 parent_type = read_type_die (parent, cu);
22336 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22337 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22338 Work around this problem here. */
22339 if (cu->language == language_cplus
22340 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22341 return "";
22342 /* We give a name to even anonymous namespaces. */
22343 return TYPE_NAME (parent_type);
22344 case DW_TAG_class_type:
22345 case DW_TAG_interface_type:
22346 case DW_TAG_structure_type:
22347 case DW_TAG_union_type:
22348 case DW_TAG_module:
22349 parent_type = read_type_die (parent, cu);
22350 if (TYPE_NAME (parent_type) != NULL)
22351 return TYPE_NAME (parent_type);
22352 else
22353 /* An anonymous structure is only allowed non-static data
22354 members; no typedefs, no member functions, et cetera.
22355 So it does not need a prefix. */
22356 return "";
22357 case DW_TAG_compile_unit:
22358 case DW_TAG_partial_unit:
22359 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22360 if (cu->language == language_cplus
22361 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22362 && die->child != NULL
22363 && (die->tag == DW_TAG_class_type
22364 || die->tag == DW_TAG_structure_type
22365 || die->tag == DW_TAG_union_type))
22366 {
22367 char *name = guess_full_die_structure_name (die, cu);
22368 if (name != NULL)
22369 return name;
22370 }
22371 return "";
22372 case DW_TAG_enumeration_type:
22373 parent_type = read_type_die (parent, cu);
22374 if (TYPE_DECLARED_CLASS (parent_type))
22375 {
22376 if (TYPE_NAME (parent_type) != NULL)
22377 return TYPE_NAME (parent_type);
22378 return "";
22379 }
22380 /* Fall through. */
22381 default:
22382 return determine_prefix (parent, cu);
22383 }
22384 }
22385
22386 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22387 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22388 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22389 an obconcat, otherwise allocate storage for the result. The CU argument is
22390 used to determine the language and hence, the appropriate separator. */
22391
22392 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22393
22394 static char *
22395 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22396 int physname, struct dwarf2_cu *cu)
22397 {
22398 const char *lead = "";
22399 const char *sep;
22400
22401 if (suffix == NULL || suffix[0] == '\0'
22402 || prefix == NULL || prefix[0] == '\0')
22403 sep = "";
22404 else if (cu->language == language_d)
22405 {
22406 /* For D, the 'main' function could be defined in any module, but it
22407 should never be prefixed. */
22408 if (strcmp (suffix, "D main") == 0)
22409 {
22410 prefix = "";
22411 sep = "";
22412 }
22413 else
22414 sep = ".";
22415 }
22416 else if (cu->language == language_fortran && physname)
22417 {
22418 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22419 DW_AT_MIPS_linkage_name is preferred and used instead. */
22420
22421 lead = "__";
22422 sep = "_MOD_";
22423 }
22424 else
22425 sep = "::";
22426
22427 if (prefix == NULL)
22428 prefix = "";
22429 if (suffix == NULL)
22430 suffix = "";
22431
22432 if (obs == NULL)
22433 {
22434 char *retval
22435 = ((char *)
22436 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22437
22438 strcpy (retval, lead);
22439 strcat (retval, prefix);
22440 strcat (retval, sep);
22441 strcat (retval, suffix);
22442 return retval;
22443 }
22444 else
22445 {
22446 /* We have an obstack. */
22447 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22448 }
22449 }
22450
22451 /* Return sibling of die, NULL if no sibling. */
22452
22453 static struct die_info *
22454 sibling_die (struct die_info *die)
22455 {
22456 return die->sibling;
22457 }
22458
22459 /* Get name of a die, return NULL if not found. */
22460
22461 static const char *
22462 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22463 struct obstack *obstack)
22464 {
22465 if (name && cu->language == language_cplus)
22466 {
22467 std::string canon_name = cp_canonicalize_string (name);
22468
22469 if (!canon_name.empty ())
22470 {
22471 if (canon_name != name)
22472 name = (const char *) obstack_copy0 (obstack,
22473 canon_name.c_str (),
22474 canon_name.length ());
22475 }
22476 }
22477
22478 return name;
22479 }
22480
22481 /* Get name of a die, return NULL if not found.
22482 Anonymous namespaces are converted to their magic string. */
22483
22484 static const char *
22485 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22486 {
22487 struct attribute *attr;
22488 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22489
22490 attr = dwarf2_attr (die, DW_AT_name, cu);
22491 if ((!attr || !DW_STRING (attr))
22492 && die->tag != DW_TAG_namespace
22493 && die->tag != DW_TAG_class_type
22494 && die->tag != DW_TAG_interface_type
22495 && die->tag != DW_TAG_structure_type
22496 && die->tag != DW_TAG_union_type)
22497 return NULL;
22498
22499 switch (die->tag)
22500 {
22501 case DW_TAG_compile_unit:
22502 case DW_TAG_partial_unit:
22503 /* Compilation units have a DW_AT_name that is a filename, not
22504 a source language identifier. */
22505 case DW_TAG_enumeration_type:
22506 case DW_TAG_enumerator:
22507 /* These tags always have simple identifiers already; no need
22508 to canonicalize them. */
22509 return DW_STRING (attr);
22510
22511 case DW_TAG_namespace:
22512 if (attr != NULL && DW_STRING (attr) != NULL)
22513 return DW_STRING (attr);
22514 return CP_ANONYMOUS_NAMESPACE_STR;
22515
22516 case DW_TAG_class_type:
22517 case DW_TAG_interface_type:
22518 case DW_TAG_structure_type:
22519 case DW_TAG_union_type:
22520 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22521 structures or unions. These were of the form "._%d" in GCC 4.1,
22522 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22523 and GCC 4.4. We work around this problem by ignoring these. */
22524 if (attr && DW_STRING (attr)
22525 && (startswith (DW_STRING (attr), "._")
22526 || startswith (DW_STRING (attr), "<anonymous")))
22527 return NULL;
22528
22529 /* GCC might emit a nameless typedef that has a linkage name. See
22530 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22531 if (!attr || DW_STRING (attr) == NULL)
22532 {
22533 char *demangled = NULL;
22534
22535 attr = dw2_linkage_name_attr (die, cu);
22536 if (attr == NULL || DW_STRING (attr) == NULL)
22537 return NULL;
22538
22539 /* Avoid demangling DW_STRING (attr) the second time on a second
22540 call for the same DIE. */
22541 if (!DW_STRING_IS_CANONICAL (attr))
22542 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22543
22544 if (demangled)
22545 {
22546 const char *base;
22547
22548 /* FIXME: we already did this for the partial symbol... */
22549 DW_STRING (attr)
22550 = ((const char *)
22551 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22552 demangled, strlen (demangled)));
22553 DW_STRING_IS_CANONICAL (attr) = 1;
22554 xfree (demangled);
22555
22556 /* Strip any leading namespaces/classes, keep only the base name.
22557 DW_AT_name for named DIEs does not contain the prefixes. */
22558 base = strrchr (DW_STRING (attr), ':');
22559 if (base && base > DW_STRING (attr) && base[-1] == ':')
22560 return &base[1];
22561 else
22562 return DW_STRING (attr);
22563 }
22564 }
22565 break;
22566
22567 default:
22568 break;
22569 }
22570
22571 if (!DW_STRING_IS_CANONICAL (attr))
22572 {
22573 DW_STRING (attr)
22574 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22575 &objfile->per_bfd->storage_obstack);
22576 DW_STRING_IS_CANONICAL (attr) = 1;
22577 }
22578 return DW_STRING (attr);
22579 }
22580
22581 /* Return the die that this die in an extension of, or NULL if there
22582 is none. *EXT_CU is the CU containing DIE on input, and the CU
22583 containing the return value on output. */
22584
22585 static struct die_info *
22586 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22587 {
22588 struct attribute *attr;
22589
22590 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22591 if (attr == NULL)
22592 return NULL;
22593
22594 return follow_die_ref (die, attr, ext_cu);
22595 }
22596
22597 /* Convert a DIE tag into its string name. */
22598
22599 static const char *
22600 dwarf_tag_name (unsigned tag)
22601 {
22602 const char *name = get_DW_TAG_name (tag);
22603
22604 if (name == NULL)
22605 return "DW_TAG_<unknown>";
22606
22607 return name;
22608 }
22609
22610 /* Convert a DWARF attribute code into its string name. */
22611
22612 static const char *
22613 dwarf_attr_name (unsigned attr)
22614 {
22615 const char *name;
22616
22617 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22618 if (attr == DW_AT_MIPS_fde)
22619 return "DW_AT_MIPS_fde";
22620 #else
22621 if (attr == DW_AT_HP_block_index)
22622 return "DW_AT_HP_block_index";
22623 #endif
22624
22625 name = get_DW_AT_name (attr);
22626
22627 if (name == NULL)
22628 return "DW_AT_<unknown>";
22629
22630 return name;
22631 }
22632
22633 /* Convert a DWARF value form code into its string name. */
22634
22635 static const char *
22636 dwarf_form_name (unsigned form)
22637 {
22638 const char *name = get_DW_FORM_name (form);
22639
22640 if (name == NULL)
22641 return "DW_FORM_<unknown>";
22642
22643 return name;
22644 }
22645
22646 static const char *
22647 dwarf_bool_name (unsigned mybool)
22648 {
22649 if (mybool)
22650 return "TRUE";
22651 else
22652 return "FALSE";
22653 }
22654
22655 /* Convert a DWARF type code into its string name. */
22656
22657 static const char *
22658 dwarf_type_encoding_name (unsigned enc)
22659 {
22660 const char *name = get_DW_ATE_name (enc);
22661
22662 if (name == NULL)
22663 return "DW_ATE_<unknown>";
22664
22665 return name;
22666 }
22667
22668 static void
22669 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22670 {
22671 unsigned int i;
22672
22673 print_spaces (indent, f);
22674 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22675 dwarf_tag_name (die->tag), die->abbrev,
22676 sect_offset_str (die->sect_off));
22677
22678 if (die->parent != NULL)
22679 {
22680 print_spaces (indent, f);
22681 fprintf_unfiltered (f, " parent at offset: %s\n",
22682 sect_offset_str (die->parent->sect_off));
22683 }
22684
22685 print_spaces (indent, f);
22686 fprintf_unfiltered (f, " has children: %s\n",
22687 dwarf_bool_name (die->child != NULL));
22688
22689 print_spaces (indent, f);
22690 fprintf_unfiltered (f, " attributes:\n");
22691
22692 for (i = 0; i < die->num_attrs; ++i)
22693 {
22694 print_spaces (indent, f);
22695 fprintf_unfiltered (f, " %s (%s) ",
22696 dwarf_attr_name (die->attrs[i].name),
22697 dwarf_form_name (die->attrs[i].form));
22698
22699 switch (die->attrs[i].form)
22700 {
22701 case DW_FORM_addr:
22702 case DW_FORM_GNU_addr_index:
22703 fprintf_unfiltered (f, "address: ");
22704 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22705 break;
22706 case DW_FORM_block2:
22707 case DW_FORM_block4:
22708 case DW_FORM_block:
22709 case DW_FORM_block1:
22710 fprintf_unfiltered (f, "block: size %s",
22711 pulongest (DW_BLOCK (&die->attrs[i])->size));
22712 break;
22713 case DW_FORM_exprloc:
22714 fprintf_unfiltered (f, "expression: size %s",
22715 pulongest (DW_BLOCK (&die->attrs[i])->size));
22716 break;
22717 case DW_FORM_data16:
22718 fprintf_unfiltered (f, "constant of 16 bytes");
22719 break;
22720 case DW_FORM_ref_addr:
22721 fprintf_unfiltered (f, "ref address: ");
22722 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22723 break;
22724 case DW_FORM_GNU_ref_alt:
22725 fprintf_unfiltered (f, "alt ref address: ");
22726 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22727 break;
22728 case DW_FORM_ref1:
22729 case DW_FORM_ref2:
22730 case DW_FORM_ref4:
22731 case DW_FORM_ref8:
22732 case DW_FORM_ref_udata:
22733 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22734 (long) (DW_UNSND (&die->attrs[i])));
22735 break;
22736 case DW_FORM_data1:
22737 case DW_FORM_data2:
22738 case DW_FORM_data4:
22739 case DW_FORM_data8:
22740 case DW_FORM_udata:
22741 case DW_FORM_sdata:
22742 fprintf_unfiltered (f, "constant: %s",
22743 pulongest (DW_UNSND (&die->attrs[i])));
22744 break;
22745 case DW_FORM_sec_offset:
22746 fprintf_unfiltered (f, "section offset: %s",
22747 pulongest (DW_UNSND (&die->attrs[i])));
22748 break;
22749 case DW_FORM_ref_sig8:
22750 fprintf_unfiltered (f, "signature: %s",
22751 hex_string (DW_SIGNATURE (&die->attrs[i])));
22752 break;
22753 case DW_FORM_string:
22754 case DW_FORM_strp:
22755 case DW_FORM_line_strp:
22756 case DW_FORM_GNU_str_index:
22757 case DW_FORM_GNU_strp_alt:
22758 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22759 DW_STRING (&die->attrs[i])
22760 ? DW_STRING (&die->attrs[i]) : "",
22761 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22762 break;
22763 case DW_FORM_flag:
22764 if (DW_UNSND (&die->attrs[i]))
22765 fprintf_unfiltered (f, "flag: TRUE");
22766 else
22767 fprintf_unfiltered (f, "flag: FALSE");
22768 break;
22769 case DW_FORM_flag_present:
22770 fprintf_unfiltered (f, "flag: TRUE");
22771 break;
22772 case DW_FORM_indirect:
22773 /* The reader will have reduced the indirect form to
22774 the "base form" so this form should not occur. */
22775 fprintf_unfiltered (f,
22776 "unexpected attribute form: DW_FORM_indirect");
22777 break;
22778 case DW_FORM_implicit_const:
22779 fprintf_unfiltered (f, "constant: %s",
22780 plongest (DW_SND (&die->attrs[i])));
22781 break;
22782 default:
22783 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22784 die->attrs[i].form);
22785 break;
22786 }
22787 fprintf_unfiltered (f, "\n");
22788 }
22789 }
22790
22791 static void
22792 dump_die_for_error (struct die_info *die)
22793 {
22794 dump_die_shallow (gdb_stderr, 0, die);
22795 }
22796
22797 static void
22798 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22799 {
22800 int indent = level * 4;
22801
22802 gdb_assert (die != NULL);
22803
22804 if (level >= max_level)
22805 return;
22806
22807 dump_die_shallow (f, indent, die);
22808
22809 if (die->child != NULL)
22810 {
22811 print_spaces (indent, f);
22812 fprintf_unfiltered (f, " Children:");
22813 if (level + 1 < max_level)
22814 {
22815 fprintf_unfiltered (f, "\n");
22816 dump_die_1 (f, level + 1, max_level, die->child);
22817 }
22818 else
22819 {
22820 fprintf_unfiltered (f,
22821 " [not printed, max nesting level reached]\n");
22822 }
22823 }
22824
22825 if (die->sibling != NULL && level > 0)
22826 {
22827 dump_die_1 (f, level, max_level, die->sibling);
22828 }
22829 }
22830
22831 /* This is called from the pdie macro in gdbinit.in.
22832 It's not static so gcc will keep a copy callable from gdb. */
22833
22834 void
22835 dump_die (struct die_info *die, int max_level)
22836 {
22837 dump_die_1 (gdb_stdlog, 0, max_level, die);
22838 }
22839
22840 static void
22841 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22842 {
22843 void **slot;
22844
22845 slot = htab_find_slot_with_hash (cu->die_hash, die,
22846 to_underlying (die->sect_off),
22847 INSERT);
22848
22849 *slot = die;
22850 }
22851
22852 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22853 required kind. */
22854
22855 static sect_offset
22856 dwarf2_get_ref_die_offset (const struct attribute *attr)
22857 {
22858 if (attr_form_is_ref (attr))
22859 return (sect_offset) DW_UNSND (attr);
22860
22861 complaint (_("unsupported die ref attribute form: '%s'"),
22862 dwarf_form_name (attr->form));
22863 return {};
22864 }
22865
22866 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22867 * the value held by the attribute is not constant. */
22868
22869 static LONGEST
22870 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
22871 {
22872 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
22873 return DW_SND (attr);
22874 else if (attr->form == DW_FORM_udata
22875 || attr->form == DW_FORM_data1
22876 || attr->form == DW_FORM_data2
22877 || attr->form == DW_FORM_data4
22878 || attr->form == DW_FORM_data8)
22879 return DW_UNSND (attr);
22880 else
22881 {
22882 /* For DW_FORM_data16 see attr_form_is_constant. */
22883 complaint (_("Attribute value is not a constant (%s)"),
22884 dwarf_form_name (attr->form));
22885 return default_value;
22886 }
22887 }
22888
22889 /* Follow reference or signature attribute ATTR of SRC_DIE.
22890 On entry *REF_CU is the CU of SRC_DIE.
22891 On exit *REF_CU is the CU of the result. */
22892
22893 static struct die_info *
22894 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22895 struct dwarf2_cu **ref_cu)
22896 {
22897 struct die_info *die;
22898
22899 if (attr_form_is_ref (attr))
22900 die = follow_die_ref (src_die, attr, ref_cu);
22901 else if (attr->form == DW_FORM_ref_sig8)
22902 die = follow_die_sig (src_die, attr, ref_cu);
22903 else
22904 {
22905 dump_die_for_error (src_die);
22906 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22907 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22908 }
22909
22910 return die;
22911 }
22912
22913 /* Follow reference OFFSET.
22914 On entry *REF_CU is the CU of the source die referencing OFFSET.
22915 On exit *REF_CU is the CU of the result.
22916 Returns NULL if OFFSET is invalid. */
22917
22918 static struct die_info *
22919 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22920 struct dwarf2_cu **ref_cu)
22921 {
22922 struct die_info temp_die;
22923 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22924 struct dwarf2_per_objfile *dwarf2_per_objfile
22925 = cu->per_cu->dwarf2_per_objfile;
22926
22927 gdb_assert (cu->per_cu != NULL);
22928
22929 target_cu = cu;
22930
22931 if (cu->per_cu->is_debug_types)
22932 {
22933 /* .debug_types CUs cannot reference anything outside their CU.
22934 If they need to, they have to reference a signatured type via
22935 DW_FORM_ref_sig8. */
22936 if (!offset_in_cu_p (&cu->header, sect_off))
22937 return NULL;
22938 }
22939 else if (offset_in_dwz != cu->per_cu->is_dwz
22940 || !offset_in_cu_p (&cu->header, sect_off))
22941 {
22942 struct dwarf2_per_cu_data *per_cu;
22943
22944 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
22945 dwarf2_per_objfile);
22946
22947 /* If necessary, add it to the queue and load its DIEs. */
22948 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
22949 load_full_comp_unit (per_cu, false, cu->language);
22950
22951 target_cu = per_cu->cu;
22952 }
22953 else if (cu->dies == NULL)
22954 {
22955 /* We're loading full DIEs during partial symbol reading. */
22956 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
22957 load_full_comp_unit (cu->per_cu, false, language_minimal);
22958 }
22959
22960 *ref_cu = target_cu;
22961 temp_die.sect_off = sect_off;
22962 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
22963 &temp_die,
22964 to_underlying (sect_off));
22965 }
22966
22967 /* Follow reference attribute ATTR of SRC_DIE.
22968 On entry *REF_CU is the CU of SRC_DIE.
22969 On exit *REF_CU is the CU of the result. */
22970
22971 static struct die_info *
22972 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
22973 struct dwarf2_cu **ref_cu)
22974 {
22975 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22976 struct dwarf2_cu *cu = *ref_cu;
22977 struct die_info *die;
22978
22979 die = follow_die_offset (sect_off,
22980 (attr->form == DW_FORM_GNU_ref_alt
22981 || cu->per_cu->is_dwz),
22982 ref_cu);
22983 if (!die)
22984 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
22985 "at %s [in module %s]"),
22986 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
22987 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
22988
22989 return die;
22990 }
22991
22992 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
22993 Returned value is intended for DW_OP_call*. Returned
22994 dwarf2_locexpr_baton->data has lifetime of
22995 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
22996
22997 struct dwarf2_locexpr_baton
22998 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
22999 struct dwarf2_per_cu_data *per_cu,
23000 CORE_ADDR (*get_frame_pc) (void *baton),
23001 void *baton)
23002 {
23003 struct dwarf2_cu *cu;
23004 struct die_info *die;
23005 struct attribute *attr;
23006 struct dwarf2_locexpr_baton retval;
23007 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23008 struct objfile *objfile = dwarf2_per_objfile->objfile;
23009
23010 if (per_cu->cu == NULL)
23011 load_cu (per_cu, false);
23012 cu = per_cu->cu;
23013 if (cu == NULL)
23014 {
23015 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23016 Instead just throw an error, not much else we can do. */
23017 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23018 sect_offset_str (sect_off), objfile_name (objfile));
23019 }
23020
23021 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23022 if (!die)
23023 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23024 sect_offset_str (sect_off), objfile_name (objfile));
23025
23026 attr = dwarf2_attr (die, DW_AT_location, cu);
23027 if (!attr)
23028 {
23029 /* DWARF: "If there is no such attribute, then there is no effect.".
23030 DATA is ignored if SIZE is 0. */
23031
23032 retval.data = NULL;
23033 retval.size = 0;
23034 }
23035 else if (attr_form_is_section_offset (attr))
23036 {
23037 struct dwarf2_loclist_baton loclist_baton;
23038 CORE_ADDR pc = (*get_frame_pc) (baton);
23039 size_t size;
23040
23041 fill_in_loclist_baton (cu, &loclist_baton, attr);
23042
23043 retval.data = dwarf2_find_location_expression (&loclist_baton,
23044 &size, pc);
23045 retval.size = size;
23046 }
23047 else
23048 {
23049 if (!attr_form_is_block (attr))
23050 error (_("Dwarf Error: DIE at %s referenced in module %s "
23051 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23052 sect_offset_str (sect_off), objfile_name (objfile));
23053
23054 retval.data = DW_BLOCK (attr)->data;
23055 retval.size = DW_BLOCK (attr)->size;
23056 }
23057 retval.per_cu = cu->per_cu;
23058
23059 age_cached_comp_units (dwarf2_per_objfile);
23060
23061 return retval;
23062 }
23063
23064 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23065 offset. */
23066
23067 struct dwarf2_locexpr_baton
23068 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23069 struct dwarf2_per_cu_data *per_cu,
23070 CORE_ADDR (*get_frame_pc) (void *baton),
23071 void *baton)
23072 {
23073 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23074
23075 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23076 }
23077
23078 /* Write a constant of a given type as target-ordered bytes into
23079 OBSTACK. */
23080
23081 static const gdb_byte *
23082 write_constant_as_bytes (struct obstack *obstack,
23083 enum bfd_endian byte_order,
23084 struct type *type,
23085 ULONGEST value,
23086 LONGEST *len)
23087 {
23088 gdb_byte *result;
23089
23090 *len = TYPE_LENGTH (type);
23091 result = (gdb_byte *) obstack_alloc (obstack, *len);
23092 store_unsigned_integer (result, *len, byte_order, value);
23093
23094 return result;
23095 }
23096
23097 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23098 pointer to the constant bytes and set LEN to the length of the
23099 data. If memory is needed, allocate it on OBSTACK. If the DIE
23100 does not have a DW_AT_const_value, return NULL. */
23101
23102 const gdb_byte *
23103 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23104 struct dwarf2_per_cu_data *per_cu,
23105 struct obstack *obstack,
23106 LONGEST *len)
23107 {
23108 struct dwarf2_cu *cu;
23109 struct die_info *die;
23110 struct attribute *attr;
23111 const gdb_byte *result = NULL;
23112 struct type *type;
23113 LONGEST value;
23114 enum bfd_endian byte_order;
23115 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23116
23117 if (per_cu->cu == NULL)
23118 load_cu (per_cu, false);
23119 cu = per_cu->cu;
23120 if (cu == NULL)
23121 {
23122 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23123 Instead just throw an error, not much else we can do. */
23124 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23125 sect_offset_str (sect_off), objfile_name (objfile));
23126 }
23127
23128 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23129 if (!die)
23130 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23131 sect_offset_str (sect_off), objfile_name (objfile));
23132
23133 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23134 if (attr == NULL)
23135 return NULL;
23136
23137 byte_order = (bfd_big_endian (objfile->obfd)
23138 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23139
23140 switch (attr->form)
23141 {
23142 case DW_FORM_addr:
23143 case DW_FORM_GNU_addr_index:
23144 {
23145 gdb_byte *tem;
23146
23147 *len = cu->header.addr_size;
23148 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23149 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23150 result = tem;
23151 }
23152 break;
23153 case DW_FORM_string:
23154 case DW_FORM_strp:
23155 case DW_FORM_GNU_str_index:
23156 case DW_FORM_GNU_strp_alt:
23157 /* DW_STRING is already allocated on the objfile obstack, point
23158 directly to it. */
23159 result = (const gdb_byte *) DW_STRING (attr);
23160 *len = strlen (DW_STRING (attr));
23161 break;
23162 case DW_FORM_block1:
23163 case DW_FORM_block2:
23164 case DW_FORM_block4:
23165 case DW_FORM_block:
23166 case DW_FORM_exprloc:
23167 case DW_FORM_data16:
23168 result = DW_BLOCK (attr)->data;
23169 *len = DW_BLOCK (attr)->size;
23170 break;
23171
23172 /* The DW_AT_const_value attributes are supposed to carry the
23173 symbol's value "represented as it would be on the target
23174 architecture." By the time we get here, it's already been
23175 converted to host endianness, so we just need to sign- or
23176 zero-extend it as appropriate. */
23177 case DW_FORM_data1:
23178 type = die_type (die, cu);
23179 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23180 if (result == NULL)
23181 result = write_constant_as_bytes (obstack, byte_order,
23182 type, value, len);
23183 break;
23184 case DW_FORM_data2:
23185 type = die_type (die, cu);
23186 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23187 if (result == NULL)
23188 result = write_constant_as_bytes (obstack, byte_order,
23189 type, value, len);
23190 break;
23191 case DW_FORM_data4:
23192 type = die_type (die, cu);
23193 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23194 if (result == NULL)
23195 result = write_constant_as_bytes (obstack, byte_order,
23196 type, value, len);
23197 break;
23198 case DW_FORM_data8:
23199 type = die_type (die, cu);
23200 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23201 if (result == NULL)
23202 result = write_constant_as_bytes (obstack, byte_order,
23203 type, value, len);
23204 break;
23205
23206 case DW_FORM_sdata:
23207 case DW_FORM_implicit_const:
23208 type = die_type (die, cu);
23209 result = write_constant_as_bytes (obstack, byte_order,
23210 type, DW_SND (attr), len);
23211 break;
23212
23213 case DW_FORM_udata:
23214 type = die_type (die, cu);
23215 result = write_constant_as_bytes (obstack, byte_order,
23216 type, DW_UNSND (attr), len);
23217 break;
23218
23219 default:
23220 complaint (_("unsupported const value attribute form: '%s'"),
23221 dwarf_form_name (attr->form));
23222 break;
23223 }
23224
23225 return result;
23226 }
23227
23228 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23229 valid type for this die is found. */
23230
23231 struct type *
23232 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23233 struct dwarf2_per_cu_data *per_cu)
23234 {
23235 struct dwarf2_cu *cu;
23236 struct die_info *die;
23237
23238 if (per_cu->cu == NULL)
23239 load_cu (per_cu, false);
23240 cu = per_cu->cu;
23241 if (!cu)
23242 return NULL;
23243
23244 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23245 if (!die)
23246 return NULL;
23247
23248 return die_type (die, cu);
23249 }
23250
23251 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23252 PER_CU. */
23253
23254 struct type *
23255 dwarf2_get_die_type (cu_offset die_offset,
23256 struct dwarf2_per_cu_data *per_cu)
23257 {
23258 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23259 return get_die_type_at_offset (die_offset_sect, per_cu);
23260 }
23261
23262 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23263 On entry *REF_CU is the CU of SRC_DIE.
23264 On exit *REF_CU is the CU of the result.
23265 Returns NULL if the referenced DIE isn't found. */
23266
23267 static struct die_info *
23268 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23269 struct dwarf2_cu **ref_cu)
23270 {
23271 struct die_info temp_die;
23272 struct dwarf2_cu *sig_cu;
23273 struct die_info *die;
23274
23275 /* While it might be nice to assert sig_type->type == NULL here,
23276 we can get here for DW_AT_imported_declaration where we need
23277 the DIE not the type. */
23278
23279 /* If necessary, add it to the queue and load its DIEs. */
23280
23281 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23282 read_signatured_type (sig_type);
23283
23284 sig_cu = sig_type->per_cu.cu;
23285 gdb_assert (sig_cu != NULL);
23286 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23287 temp_die.sect_off = sig_type->type_offset_in_section;
23288 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23289 to_underlying (temp_die.sect_off));
23290 if (die)
23291 {
23292 struct dwarf2_per_objfile *dwarf2_per_objfile
23293 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23294
23295 /* For .gdb_index version 7 keep track of included TUs.
23296 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23297 if (dwarf2_per_objfile->index_table != NULL
23298 && dwarf2_per_objfile->index_table->version <= 7)
23299 {
23300 VEC_safe_push (dwarf2_per_cu_ptr,
23301 (*ref_cu)->per_cu->imported_symtabs,
23302 sig_cu->per_cu);
23303 }
23304
23305 *ref_cu = sig_cu;
23306 return die;
23307 }
23308
23309 return NULL;
23310 }
23311
23312 /* Follow signatured type referenced by ATTR in SRC_DIE.
23313 On entry *REF_CU is the CU of SRC_DIE.
23314 On exit *REF_CU is the CU of the result.
23315 The result is the DIE of the type.
23316 If the referenced type cannot be found an error is thrown. */
23317
23318 static struct die_info *
23319 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23320 struct dwarf2_cu **ref_cu)
23321 {
23322 ULONGEST signature = DW_SIGNATURE (attr);
23323 struct signatured_type *sig_type;
23324 struct die_info *die;
23325
23326 gdb_assert (attr->form == DW_FORM_ref_sig8);
23327
23328 sig_type = lookup_signatured_type (*ref_cu, signature);
23329 /* sig_type will be NULL if the signatured type is missing from
23330 the debug info. */
23331 if (sig_type == NULL)
23332 {
23333 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23334 " from DIE at %s [in module %s]"),
23335 hex_string (signature), sect_offset_str (src_die->sect_off),
23336 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23337 }
23338
23339 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23340 if (die == NULL)
23341 {
23342 dump_die_for_error (src_die);
23343 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23344 " from DIE at %s [in module %s]"),
23345 hex_string (signature), sect_offset_str (src_die->sect_off),
23346 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23347 }
23348
23349 return die;
23350 }
23351
23352 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23353 reading in and processing the type unit if necessary. */
23354
23355 static struct type *
23356 get_signatured_type (struct die_info *die, ULONGEST signature,
23357 struct dwarf2_cu *cu)
23358 {
23359 struct dwarf2_per_objfile *dwarf2_per_objfile
23360 = cu->per_cu->dwarf2_per_objfile;
23361 struct signatured_type *sig_type;
23362 struct dwarf2_cu *type_cu;
23363 struct die_info *type_die;
23364 struct type *type;
23365
23366 sig_type = lookup_signatured_type (cu, signature);
23367 /* sig_type will be NULL if the signatured type is missing from
23368 the debug info. */
23369 if (sig_type == NULL)
23370 {
23371 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23372 " from DIE at %s [in module %s]"),
23373 hex_string (signature), sect_offset_str (die->sect_off),
23374 objfile_name (dwarf2_per_objfile->objfile));
23375 return build_error_marker_type (cu, die);
23376 }
23377
23378 /* If we already know the type we're done. */
23379 if (sig_type->type != NULL)
23380 return sig_type->type;
23381
23382 type_cu = cu;
23383 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23384 if (type_die != NULL)
23385 {
23386 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23387 is created. This is important, for example, because for c++ classes
23388 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23389 type = read_type_die (type_die, type_cu);
23390 if (type == NULL)
23391 {
23392 complaint (_("Dwarf Error: Cannot build signatured type %s"
23393 " referenced from DIE at %s [in module %s]"),
23394 hex_string (signature), sect_offset_str (die->sect_off),
23395 objfile_name (dwarf2_per_objfile->objfile));
23396 type = build_error_marker_type (cu, die);
23397 }
23398 }
23399 else
23400 {
23401 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23402 " from DIE at %s [in module %s]"),
23403 hex_string (signature), sect_offset_str (die->sect_off),
23404 objfile_name (dwarf2_per_objfile->objfile));
23405 type = build_error_marker_type (cu, die);
23406 }
23407 sig_type->type = type;
23408
23409 return type;
23410 }
23411
23412 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23413 reading in and processing the type unit if necessary. */
23414
23415 static struct type *
23416 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23417 struct dwarf2_cu *cu) /* ARI: editCase function */
23418 {
23419 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23420 if (attr_form_is_ref (attr))
23421 {
23422 struct dwarf2_cu *type_cu = cu;
23423 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23424
23425 return read_type_die (type_die, type_cu);
23426 }
23427 else if (attr->form == DW_FORM_ref_sig8)
23428 {
23429 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23430 }
23431 else
23432 {
23433 struct dwarf2_per_objfile *dwarf2_per_objfile
23434 = cu->per_cu->dwarf2_per_objfile;
23435
23436 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23437 " at %s [in module %s]"),
23438 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23439 objfile_name (dwarf2_per_objfile->objfile));
23440 return build_error_marker_type (cu, die);
23441 }
23442 }
23443
23444 /* Load the DIEs associated with type unit PER_CU into memory. */
23445
23446 static void
23447 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23448 {
23449 struct signatured_type *sig_type;
23450
23451 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23452 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23453
23454 /* We have the per_cu, but we need the signatured_type.
23455 Fortunately this is an easy translation. */
23456 gdb_assert (per_cu->is_debug_types);
23457 sig_type = (struct signatured_type *) per_cu;
23458
23459 gdb_assert (per_cu->cu == NULL);
23460
23461 read_signatured_type (sig_type);
23462
23463 gdb_assert (per_cu->cu != NULL);
23464 }
23465
23466 /* die_reader_func for read_signatured_type.
23467 This is identical to load_full_comp_unit_reader,
23468 but is kept separate for now. */
23469
23470 static void
23471 read_signatured_type_reader (const struct die_reader_specs *reader,
23472 const gdb_byte *info_ptr,
23473 struct die_info *comp_unit_die,
23474 int has_children,
23475 void *data)
23476 {
23477 struct dwarf2_cu *cu = reader->cu;
23478
23479 gdb_assert (cu->die_hash == NULL);
23480 cu->die_hash =
23481 htab_create_alloc_ex (cu->header.length / 12,
23482 die_hash,
23483 die_eq,
23484 NULL,
23485 &cu->comp_unit_obstack,
23486 hashtab_obstack_allocate,
23487 dummy_obstack_deallocate);
23488
23489 if (has_children)
23490 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23491 &info_ptr, comp_unit_die);
23492 cu->dies = comp_unit_die;
23493 /* comp_unit_die is not stored in die_hash, no need. */
23494
23495 /* We try not to read any attributes in this function, because not
23496 all CUs needed for references have been loaded yet, and symbol
23497 table processing isn't initialized. But we have to set the CU language,
23498 or we won't be able to build types correctly.
23499 Similarly, if we do not read the producer, we can not apply
23500 producer-specific interpretation. */
23501 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23502 }
23503
23504 /* Read in a signatured type and build its CU and DIEs.
23505 If the type is a stub for the real type in a DWO file,
23506 read in the real type from the DWO file as well. */
23507
23508 static void
23509 read_signatured_type (struct signatured_type *sig_type)
23510 {
23511 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23512
23513 gdb_assert (per_cu->is_debug_types);
23514 gdb_assert (per_cu->cu == NULL);
23515
23516 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23517 read_signatured_type_reader, NULL);
23518 sig_type->per_cu.tu_read = 1;
23519 }
23520
23521 /* Decode simple location descriptions.
23522 Given a pointer to a dwarf block that defines a location, compute
23523 the location and return the value.
23524
23525 NOTE drow/2003-11-18: This function is called in two situations
23526 now: for the address of static or global variables (partial symbols
23527 only) and for offsets into structures which are expected to be
23528 (more or less) constant. The partial symbol case should go away,
23529 and only the constant case should remain. That will let this
23530 function complain more accurately. A few special modes are allowed
23531 without complaint for global variables (for instance, global
23532 register values and thread-local values).
23533
23534 A location description containing no operations indicates that the
23535 object is optimized out. The return value is 0 for that case.
23536 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23537 callers will only want a very basic result and this can become a
23538 complaint.
23539
23540 Note that stack[0] is unused except as a default error return. */
23541
23542 static CORE_ADDR
23543 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23544 {
23545 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23546 size_t i;
23547 size_t size = blk->size;
23548 const gdb_byte *data = blk->data;
23549 CORE_ADDR stack[64];
23550 int stacki;
23551 unsigned int bytes_read, unsnd;
23552 gdb_byte op;
23553
23554 i = 0;
23555 stacki = 0;
23556 stack[stacki] = 0;
23557 stack[++stacki] = 0;
23558
23559 while (i < size)
23560 {
23561 op = data[i++];
23562 switch (op)
23563 {
23564 case DW_OP_lit0:
23565 case DW_OP_lit1:
23566 case DW_OP_lit2:
23567 case DW_OP_lit3:
23568 case DW_OP_lit4:
23569 case DW_OP_lit5:
23570 case DW_OP_lit6:
23571 case DW_OP_lit7:
23572 case DW_OP_lit8:
23573 case DW_OP_lit9:
23574 case DW_OP_lit10:
23575 case DW_OP_lit11:
23576 case DW_OP_lit12:
23577 case DW_OP_lit13:
23578 case DW_OP_lit14:
23579 case DW_OP_lit15:
23580 case DW_OP_lit16:
23581 case DW_OP_lit17:
23582 case DW_OP_lit18:
23583 case DW_OP_lit19:
23584 case DW_OP_lit20:
23585 case DW_OP_lit21:
23586 case DW_OP_lit22:
23587 case DW_OP_lit23:
23588 case DW_OP_lit24:
23589 case DW_OP_lit25:
23590 case DW_OP_lit26:
23591 case DW_OP_lit27:
23592 case DW_OP_lit28:
23593 case DW_OP_lit29:
23594 case DW_OP_lit30:
23595 case DW_OP_lit31:
23596 stack[++stacki] = op - DW_OP_lit0;
23597 break;
23598
23599 case DW_OP_reg0:
23600 case DW_OP_reg1:
23601 case DW_OP_reg2:
23602 case DW_OP_reg3:
23603 case DW_OP_reg4:
23604 case DW_OP_reg5:
23605 case DW_OP_reg6:
23606 case DW_OP_reg7:
23607 case DW_OP_reg8:
23608 case DW_OP_reg9:
23609 case DW_OP_reg10:
23610 case DW_OP_reg11:
23611 case DW_OP_reg12:
23612 case DW_OP_reg13:
23613 case DW_OP_reg14:
23614 case DW_OP_reg15:
23615 case DW_OP_reg16:
23616 case DW_OP_reg17:
23617 case DW_OP_reg18:
23618 case DW_OP_reg19:
23619 case DW_OP_reg20:
23620 case DW_OP_reg21:
23621 case DW_OP_reg22:
23622 case DW_OP_reg23:
23623 case DW_OP_reg24:
23624 case DW_OP_reg25:
23625 case DW_OP_reg26:
23626 case DW_OP_reg27:
23627 case DW_OP_reg28:
23628 case DW_OP_reg29:
23629 case DW_OP_reg30:
23630 case DW_OP_reg31:
23631 stack[++stacki] = op - DW_OP_reg0;
23632 if (i < size)
23633 dwarf2_complex_location_expr_complaint ();
23634 break;
23635
23636 case DW_OP_regx:
23637 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23638 i += bytes_read;
23639 stack[++stacki] = unsnd;
23640 if (i < size)
23641 dwarf2_complex_location_expr_complaint ();
23642 break;
23643
23644 case DW_OP_addr:
23645 stack[++stacki] = read_address (objfile->obfd, &data[i],
23646 cu, &bytes_read);
23647 i += bytes_read;
23648 break;
23649
23650 case DW_OP_const1u:
23651 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23652 i += 1;
23653 break;
23654
23655 case DW_OP_const1s:
23656 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23657 i += 1;
23658 break;
23659
23660 case DW_OP_const2u:
23661 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23662 i += 2;
23663 break;
23664
23665 case DW_OP_const2s:
23666 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23667 i += 2;
23668 break;
23669
23670 case DW_OP_const4u:
23671 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23672 i += 4;
23673 break;
23674
23675 case DW_OP_const4s:
23676 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23677 i += 4;
23678 break;
23679
23680 case DW_OP_const8u:
23681 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23682 i += 8;
23683 break;
23684
23685 case DW_OP_constu:
23686 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23687 &bytes_read);
23688 i += bytes_read;
23689 break;
23690
23691 case DW_OP_consts:
23692 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23693 i += bytes_read;
23694 break;
23695
23696 case DW_OP_dup:
23697 stack[stacki + 1] = stack[stacki];
23698 stacki++;
23699 break;
23700
23701 case DW_OP_plus:
23702 stack[stacki - 1] += stack[stacki];
23703 stacki--;
23704 break;
23705
23706 case DW_OP_plus_uconst:
23707 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23708 &bytes_read);
23709 i += bytes_read;
23710 break;
23711
23712 case DW_OP_minus:
23713 stack[stacki - 1] -= stack[stacki];
23714 stacki--;
23715 break;
23716
23717 case DW_OP_deref:
23718 /* If we're not the last op, then we definitely can't encode
23719 this using GDB's address_class enum. This is valid for partial
23720 global symbols, although the variable's address will be bogus
23721 in the psymtab. */
23722 if (i < size)
23723 dwarf2_complex_location_expr_complaint ();
23724 break;
23725
23726 case DW_OP_GNU_push_tls_address:
23727 case DW_OP_form_tls_address:
23728 /* The top of the stack has the offset from the beginning
23729 of the thread control block at which the variable is located. */
23730 /* Nothing should follow this operator, so the top of stack would
23731 be returned. */
23732 /* This is valid for partial global symbols, but the variable's
23733 address will be bogus in the psymtab. Make it always at least
23734 non-zero to not look as a variable garbage collected by linker
23735 which have DW_OP_addr 0. */
23736 if (i < size)
23737 dwarf2_complex_location_expr_complaint ();
23738 stack[stacki]++;
23739 break;
23740
23741 case DW_OP_GNU_uninit:
23742 break;
23743
23744 case DW_OP_GNU_addr_index:
23745 case DW_OP_GNU_const_index:
23746 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23747 &bytes_read);
23748 i += bytes_read;
23749 break;
23750
23751 default:
23752 {
23753 const char *name = get_DW_OP_name (op);
23754
23755 if (name)
23756 complaint (_("unsupported stack op: '%s'"),
23757 name);
23758 else
23759 complaint (_("unsupported stack op: '%02x'"),
23760 op);
23761 }
23762
23763 return (stack[stacki]);
23764 }
23765
23766 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23767 outside of the allocated space. Also enforce minimum>0. */
23768 if (stacki >= ARRAY_SIZE (stack) - 1)
23769 {
23770 complaint (_("location description stack overflow"));
23771 return 0;
23772 }
23773
23774 if (stacki <= 0)
23775 {
23776 complaint (_("location description stack underflow"));
23777 return 0;
23778 }
23779 }
23780 return (stack[stacki]);
23781 }
23782
23783 /* memory allocation interface */
23784
23785 static struct dwarf_block *
23786 dwarf_alloc_block (struct dwarf2_cu *cu)
23787 {
23788 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23789 }
23790
23791 static struct die_info *
23792 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23793 {
23794 struct die_info *die;
23795 size_t size = sizeof (struct die_info);
23796
23797 if (num_attrs > 1)
23798 size += (num_attrs - 1) * sizeof (struct attribute);
23799
23800 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23801 memset (die, 0, sizeof (struct die_info));
23802 return (die);
23803 }
23804
23805 \f
23806 /* Macro support. */
23807
23808 /* Return file name relative to the compilation directory of file number I in
23809 *LH's file name table. The result is allocated using xmalloc; the caller is
23810 responsible for freeing it. */
23811
23812 static char *
23813 file_file_name (int file, struct line_header *lh)
23814 {
23815 /* Is the file number a valid index into the line header's file name
23816 table? Remember that file numbers start with one, not zero. */
23817 if (1 <= file && file <= lh->file_names.size ())
23818 {
23819 const file_entry &fe = lh->file_names[file - 1];
23820
23821 if (!IS_ABSOLUTE_PATH (fe.name))
23822 {
23823 const char *dir = fe.include_dir (lh);
23824 if (dir != NULL)
23825 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
23826 }
23827 return xstrdup (fe.name);
23828 }
23829 else
23830 {
23831 /* The compiler produced a bogus file number. We can at least
23832 record the macro definitions made in the file, even if we
23833 won't be able to find the file by name. */
23834 char fake_name[80];
23835
23836 xsnprintf (fake_name, sizeof (fake_name),
23837 "<bad macro file number %d>", file);
23838
23839 complaint (_("bad file number in macro information (%d)"),
23840 file);
23841
23842 return xstrdup (fake_name);
23843 }
23844 }
23845
23846 /* Return the full name of file number I in *LH's file name table.
23847 Use COMP_DIR as the name of the current directory of the
23848 compilation. The result is allocated using xmalloc; the caller is
23849 responsible for freeing it. */
23850 static char *
23851 file_full_name (int file, struct line_header *lh, const char *comp_dir)
23852 {
23853 /* Is the file number a valid index into the line header's file name
23854 table? Remember that file numbers start with one, not zero. */
23855 if (1 <= file && file <= lh->file_names.size ())
23856 {
23857 char *relative = file_file_name (file, lh);
23858
23859 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
23860 return relative;
23861 return reconcat (relative, comp_dir, SLASH_STRING,
23862 relative, (char *) NULL);
23863 }
23864 else
23865 return file_file_name (file, lh);
23866 }
23867
23868
23869 static struct macro_source_file *
23870 macro_start_file (struct dwarf2_cu *cu,
23871 int file, int line,
23872 struct macro_source_file *current_file,
23873 struct line_header *lh)
23874 {
23875 /* File name relative to the compilation directory of this source file. */
23876 char *file_name = file_file_name (file, lh);
23877
23878 if (! current_file)
23879 {
23880 /* Note: We don't create a macro table for this compilation unit
23881 at all until we actually get a filename. */
23882 struct macro_table *macro_table = cu->builder->get_macro_table ();
23883
23884 /* If we have no current file, then this must be the start_file
23885 directive for the compilation unit's main source file. */
23886 current_file = macro_set_main (macro_table, file_name);
23887 macro_define_special (macro_table);
23888 }
23889 else
23890 current_file = macro_include (current_file, line, file_name);
23891
23892 xfree (file_name);
23893
23894 return current_file;
23895 }
23896
23897 static const char *
23898 consume_improper_spaces (const char *p, const char *body)
23899 {
23900 if (*p == ' ')
23901 {
23902 complaint (_("macro definition contains spaces "
23903 "in formal argument list:\n`%s'"),
23904 body);
23905
23906 while (*p == ' ')
23907 p++;
23908 }
23909
23910 return p;
23911 }
23912
23913
23914 static void
23915 parse_macro_definition (struct macro_source_file *file, int line,
23916 const char *body)
23917 {
23918 const char *p;
23919
23920 /* The body string takes one of two forms. For object-like macro
23921 definitions, it should be:
23922
23923 <macro name> " " <definition>
23924
23925 For function-like macro definitions, it should be:
23926
23927 <macro name> "() " <definition>
23928 or
23929 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
23930
23931 Spaces may appear only where explicitly indicated, and in the
23932 <definition>.
23933
23934 The Dwarf 2 spec says that an object-like macro's name is always
23935 followed by a space, but versions of GCC around March 2002 omit
23936 the space when the macro's definition is the empty string.
23937
23938 The Dwarf 2 spec says that there should be no spaces between the
23939 formal arguments in a function-like macro's formal argument list,
23940 but versions of GCC around March 2002 include spaces after the
23941 commas. */
23942
23943
23944 /* Find the extent of the macro name. The macro name is terminated
23945 by either a space or null character (for an object-like macro) or
23946 an opening paren (for a function-like macro). */
23947 for (p = body; *p; p++)
23948 if (*p == ' ' || *p == '(')
23949 break;
23950
23951 if (*p == ' ' || *p == '\0')
23952 {
23953 /* It's an object-like macro. */
23954 int name_len = p - body;
23955 char *name = savestring (body, name_len);
23956 const char *replacement;
23957
23958 if (*p == ' ')
23959 replacement = body + name_len + 1;
23960 else
23961 {
23962 dwarf2_macro_malformed_definition_complaint (body);
23963 replacement = body + name_len;
23964 }
23965
23966 macro_define_object (file, line, name, replacement);
23967
23968 xfree (name);
23969 }
23970 else if (*p == '(')
23971 {
23972 /* It's a function-like macro. */
23973 char *name = savestring (body, p - body);
23974 int argc = 0;
23975 int argv_size = 1;
23976 char **argv = XNEWVEC (char *, argv_size);
23977
23978 p++;
23979
23980 p = consume_improper_spaces (p, body);
23981
23982 /* Parse the formal argument list. */
23983 while (*p && *p != ')')
23984 {
23985 /* Find the extent of the current argument name. */
23986 const char *arg_start = p;
23987
23988 while (*p && *p != ',' && *p != ')' && *p != ' ')
23989 p++;
23990
23991 if (! *p || p == arg_start)
23992 dwarf2_macro_malformed_definition_complaint (body);
23993 else
23994 {
23995 /* Make sure argv has room for the new argument. */
23996 if (argc >= argv_size)
23997 {
23998 argv_size *= 2;
23999 argv = XRESIZEVEC (char *, argv, argv_size);
24000 }
24001
24002 argv[argc++] = savestring (arg_start, p - arg_start);
24003 }
24004
24005 p = consume_improper_spaces (p, body);
24006
24007 /* Consume the comma, if present. */
24008 if (*p == ',')
24009 {
24010 p++;
24011
24012 p = consume_improper_spaces (p, body);
24013 }
24014 }
24015
24016 if (*p == ')')
24017 {
24018 p++;
24019
24020 if (*p == ' ')
24021 /* Perfectly formed definition, no complaints. */
24022 macro_define_function (file, line, name,
24023 argc, (const char **) argv,
24024 p + 1);
24025 else if (*p == '\0')
24026 {
24027 /* Complain, but do define it. */
24028 dwarf2_macro_malformed_definition_complaint (body);
24029 macro_define_function (file, line, name,
24030 argc, (const char **) argv,
24031 p);
24032 }
24033 else
24034 /* Just complain. */
24035 dwarf2_macro_malformed_definition_complaint (body);
24036 }
24037 else
24038 /* Just complain. */
24039 dwarf2_macro_malformed_definition_complaint (body);
24040
24041 xfree (name);
24042 {
24043 int i;
24044
24045 for (i = 0; i < argc; i++)
24046 xfree (argv[i]);
24047 }
24048 xfree (argv);
24049 }
24050 else
24051 dwarf2_macro_malformed_definition_complaint (body);
24052 }
24053
24054 /* Skip some bytes from BYTES according to the form given in FORM.
24055 Returns the new pointer. */
24056
24057 static const gdb_byte *
24058 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24059 enum dwarf_form form,
24060 unsigned int offset_size,
24061 struct dwarf2_section_info *section)
24062 {
24063 unsigned int bytes_read;
24064
24065 switch (form)
24066 {
24067 case DW_FORM_data1:
24068 case DW_FORM_flag:
24069 ++bytes;
24070 break;
24071
24072 case DW_FORM_data2:
24073 bytes += 2;
24074 break;
24075
24076 case DW_FORM_data4:
24077 bytes += 4;
24078 break;
24079
24080 case DW_FORM_data8:
24081 bytes += 8;
24082 break;
24083
24084 case DW_FORM_data16:
24085 bytes += 16;
24086 break;
24087
24088 case DW_FORM_string:
24089 read_direct_string (abfd, bytes, &bytes_read);
24090 bytes += bytes_read;
24091 break;
24092
24093 case DW_FORM_sec_offset:
24094 case DW_FORM_strp:
24095 case DW_FORM_GNU_strp_alt:
24096 bytes += offset_size;
24097 break;
24098
24099 case DW_FORM_block:
24100 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24101 bytes += bytes_read;
24102 break;
24103
24104 case DW_FORM_block1:
24105 bytes += 1 + read_1_byte (abfd, bytes);
24106 break;
24107 case DW_FORM_block2:
24108 bytes += 2 + read_2_bytes (abfd, bytes);
24109 break;
24110 case DW_FORM_block4:
24111 bytes += 4 + read_4_bytes (abfd, bytes);
24112 break;
24113
24114 case DW_FORM_sdata:
24115 case DW_FORM_udata:
24116 case DW_FORM_GNU_addr_index:
24117 case DW_FORM_GNU_str_index:
24118 bytes = gdb_skip_leb128 (bytes, buffer_end);
24119 if (bytes == NULL)
24120 {
24121 dwarf2_section_buffer_overflow_complaint (section);
24122 return NULL;
24123 }
24124 break;
24125
24126 case DW_FORM_implicit_const:
24127 break;
24128
24129 default:
24130 {
24131 complaint (_("invalid form 0x%x in `%s'"),
24132 form, get_section_name (section));
24133 return NULL;
24134 }
24135 }
24136
24137 return bytes;
24138 }
24139
24140 /* A helper for dwarf_decode_macros that handles skipping an unknown
24141 opcode. Returns an updated pointer to the macro data buffer; or,
24142 on error, issues a complaint and returns NULL. */
24143
24144 static const gdb_byte *
24145 skip_unknown_opcode (unsigned int opcode,
24146 const gdb_byte **opcode_definitions,
24147 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24148 bfd *abfd,
24149 unsigned int offset_size,
24150 struct dwarf2_section_info *section)
24151 {
24152 unsigned int bytes_read, i;
24153 unsigned long arg;
24154 const gdb_byte *defn;
24155
24156 if (opcode_definitions[opcode] == NULL)
24157 {
24158 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
24159 opcode);
24160 return NULL;
24161 }
24162
24163 defn = opcode_definitions[opcode];
24164 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24165 defn += bytes_read;
24166
24167 for (i = 0; i < arg; ++i)
24168 {
24169 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24170 (enum dwarf_form) defn[i], offset_size,
24171 section);
24172 if (mac_ptr == NULL)
24173 {
24174 /* skip_form_bytes already issued the complaint. */
24175 return NULL;
24176 }
24177 }
24178
24179 return mac_ptr;
24180 }
24181
24182 /* A helper function which parses the header of a macro section.
24183 If the macro section is the extended (for now called "GNU") type,
24184 then this updates *OFFSET_SIZE. Returns a pointer to just after
24185 the header, or issues a complaint and returns NULL on error. */
24186
24187 static const gdb_byte *
24188 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24189 bfd *abfd,
24190 const gdb_byte *mac_ptr,
24191 unsigned int *offset_size,
24192 int section_is_gnu)
24193 {
24194 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24195
24196 if (section_is_gnu)
24197 {
24198 unsigned int version, flags;
24199
24200 version = read_2_bytes (abfd, mac_ptr);
24201 if (version != 4 && version != 5)
24202 {
24203 complaint (_("unrecognized version `%d' in .debug_macro section"),
24204 version);
24205 return NULL;
24206 }
24207 mac_ptr += 2;
24208
24209 flags = read_1_byte (abfd, mac_ptr);
24210 ++mac_ptr;
24211 *offset_size = (flags & 1) ? 8 : 4;
24212
24213 if ((flags & 2) != 0)
24214 /* We don't need the line table offset. */
24215 mac_ptr += *offset_size;
24216
24217 /* Vendor opcode descriptions. */
24218 if ((flags & 4) != 0)
24219 {
24220 unsigned int i, count;
24221
24222 count = read_1_byte (abfd, mac_ptr);
24223 ++mac_ptr;
24224 for (i = 0; i < count; ++i)
24225 {
24226 unsigned int opcode, bytes_read;
24227 unsigned long arg;
24228
24229 opcode = read_1_byte (abfd, mac_ptr);
24230 ++mac_ptr;
24231 opcode_definitions[opcode] = mac_ptr;
24232 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24233 mac_ptr += bytes_read;
24234 mac_ptr += arg;
24235 }
24236 }
24237 }
24238
24239 return mac_ptr;
24240 }
24241
24242 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24243 including DW_MACRO_import. */
24244
24245 static void
24246 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
24247 bfd *abfd,
24248 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24249 struct macro_source_file *current_file,
24250 struct line_header *lh,
24251 struct dwarf2_section_info *section,
24252 int section_is_gnu, int section_is_dwz,
24253 unsigned int offset_size,
24254 htab_t include_hash)
24255 {
24256 struct dwarf2_per_objfile *dwarf2_per_objfile
24257 = cu->per_cu->dwarf2_per_objfile;
24258 struct objfile *objfile = dwarf2_per_objfile->objfile;
24259 enum dwarf_macro_record_type macinfo_type;
24260 int at_commandline;
24261 const gdb_byte *opcode_definitions[256];
24262
24263 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24264 &offset_size, section_is_gnu);
24265 if (mac_ptr == NULL)
24266 {
24267 /* We already issued a complaint. */
24268 return;
24269 }
24270
24271 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24272 GDB is still reading the definitions from command line. First
24273 DW_MACINFO_start_file will need to be ignored as it was already executed
24274 to create CURRENT_FILE for the main source holding also the command line
24275 definitions. On first met DW_MACINFO_start_file this flag is reset to
24276 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24277
24278 at_commandline = 1;
24279
24280 do
24281 {
24282 /* Do we at least have room for a macinfo type byte? */
24283 if (mac_ptr >= mac_end)
24284 {
24285 dwarf2_section_buffer_overflow_complaint (section);
24286 break;
24287 }
24288
24289 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24290 mac_ptr++;
24291
24292 /* Note that we rely on the fact that the corresponding GNU and
24293 DWARF constants are the same. */
24294 DIAGNOSTIC_PUSH
24295 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24296 switch (macinfo_type)
24297 {
24298 /* A zero macinfo type indicates the end of the macro
24299 information. */
24300 case 0:
24301 break;
24302
24303 case DW_MACRO_define:
24304 case DW_MACRO_undef:
24305 case DW_MACRO_define_strp:
24306 case DW_MACRO_undef_strp:
24307 case DW_MACRO_define_sup:
24308 case DW_MACRO_undef_sup:
24309 {
24310 unsigned int bytes_read;
24311 int line;
24312 const char *body;
24313 int is_define;
24314
24315 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24316 mac_ptr += bytes_read;
24317
24318 if (macinfo_type == DW_MACRO_define
24319 || macinfo_type == DW_MACRO_undef)
24320 {
24321 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24322 mac_ptr += bytes_read;
24323 }
24324 else
24325 {
24326 LONGEST str_offset;
24327
24328 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24329 mac_ptr += offset_size;
24330
24331 if (macinfo_type == DW_MACRO_define_sup
24332 || macinfo_type == DW_MACRO_undef_sup
24333 || section_is_dwz)
24334 {
24335 struct dwz_file *dwz
24336 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24337
24338 body = read_indirect_string_from_dwz (objfile,
24339 dwz, str_offset);
24340 }
24341 else
24342 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24343 abfd, str_offset);
24344 }
24345
24346 is_define = (macinfo_type == DW_MACRO_define
24347 || macinfo_type == DW_MACRO_define_strp
24348 || macinfo_type == DW_MACRO_define_sup);
24349 if (! current_file)
24350 {
24351 /* DWARF violation as no main source is present. */
24352 complaint (_("debug info with no main source gives macro %s "
24353 "on line %d: %s"),
24354 is_define ? _("definition") : _("undefinition"),
24355 line, body);
24356 break;
24357 }
24358 if ((line == 0 && !at_commandline)
24359 || (line != 0 && at_commandline))
24360 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24361 at_commandline ? _("command-line") : _("in-file"),
24362 is_define ? _("definition") : _("undefinition"),
24363 line == 0 ? _("zero") : _("non-zero"), line, body);
24364
24365 if (is_define)
24366 parse_macro_definition (current_file, line, body);
24367 else
24368 {
24369 gdb_assert (macinfo_type == DW_MACRO_undef
24370 || macinfo_type == DW_MACRO_undef_strp
24371 || macinfo_type == DW_MACRO_undef_sup);
24372 macro_undef (current_file, line, body);
24373 }
24374 }
24375 break;
24376
24377 case DW_MACRO_start_file:
24378 {
24379 unsigned int bytes_read;
24380 int line, file;
24381
24382 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24383 mac_ptr += bytes_read;
24384 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24385 mac_ptr += bytes_read;
24386
24387 if ((line == 0 && !at_commandline)
24388 || (line != 0 && at_commandline))
24389 complaint (_("debug info gives source %d included "
24390 "from %s at %s line %d"),
24391 file, at_commandline ? _("command-line") : _("file"),
24392 line == 0 ? _("zero") : _("non-zero"), line);
24393
24394 if (at_commandline)
24395 {
24396 /* This DW_MACRO_start_file was executed in the
24397 pass one. */
24398 at_commandline = 0;
24399 }
24400 else
24401 current_file = macro_start_file (cu, file, line, current_file,
24402 lh);
24403 }
24404 break;
24405
24406 case DW_MACRO_end_file:
24407 if (! current_file)
24408 complaint (_("macro debug info has an unmatched "
24409 "`close_file' directive"));
24410 else
24411 {
24412 current_file = current_file->included_by;
24413 if (! current_file)
24414 {
24415 enum dwarf_macro_record_type next_type;
24416
24417 /* GCC circa March 2002 doesn't produce the zero
24418 type byte marking the end of the compilation
24419 unit. Complain if it's not there, but exit no
24420 matter what. */
24421
24422 /* Do we at least have room for a macinfo type byte? */
24423 if (mac_ptr >= mac_end)
24424 {
24425 dwarf2_section_buffer_overflow_complaint (section);
24426 return;
24427 }
24428
24429 /* We don't increment mac_ptr here, so this is just
24430 a look-ahead. */
24431 next_type
24432 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24433 mac_ptr);
24434 if (next_type != 0)
24435 complaint (_("no terminating 0-type entry for "
24436 "macros in `.debug_macinfo' section"));
24437
24438 return;
24439 }
24440 }
24441 break;
24442
24443 case DW_MACRO_import:
24444 case DW_MACRO_import_sup:
24445 {
24446 LONGEST offset;
24447 void **slot;
24448 bfd *include_bfd = abfd;
24449 struct dwarf2_section_info *include_section = section;
24450 const gdb_byte *include_mac_end = mac_end;
24451 int is_dwz = section_is_dwz;
24452 const gdb_byte *new_mac_ptr;
24453
24454 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24455 mac_ptr += offset_size;
24456
24457 if (macinfo_type == DW_MACRO_import_sup)
24458 {
24459 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24460
24461 dwarf2_read_section (objfile, &dwz->macro);
24462
24463 include_section = &dwz->macro;
24464 include_bfd = get_section_bfd_owner (include_section);
24465 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24466 is_dwz = 1;
24467 }
24468
24469 new_mac_ptr = include_section->buffer + offset;
24470 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24471
24472 if (*slot != NULL)
24473 {
24474 /* This has actually happened; see
24475 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24476 complaint (_("recursive DW_MACRO_import in "
24477 ".debug_macro section"));
24478 }
24479 else
24480 {
24481 *slot = (void *) new_mac_ptr;
24482
24483 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
24484 include_mac_end, current_file, lh,
24485 section, section_is_gnu, is_dwz,
24486 offset_size, include_hash);
24487
24488 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24489 }
24490 }
24491 break;
24492
24493 case DW_MACINFO_vendor_ext:
24494 if (!section_is_gnu)
24495 {
24496 unsigned int bytes_read;
24497
24498 /* This reads the constant, but since we don't recognize
24499 any vendor extensions, we ignore it. */
24500 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24501 mac_ptr += bytes_read;
24502 read_direct_string (abfd, mac_ptr, &bytes_read);
24503 mac_ptr += bytes_read;
24504
24505 /* We don't recognize any vendor extensions. */
24506 break;
24507 }
24508 /* FALLTHROUGH */
24509
24510 default:
24511 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24512 mac_ptr, mac_end, abfd, offset_size,
24513 section);
24514 if (mac_ptr == NULL)
24515 return;
24516 break;
24517 }
24518 DIAGNOSTIC_POP
24519 } while (macinfo_type != 0);
24520 }
24521
24522 static void
24523 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24524 int section_is_gnu)
24525 {
24526 struct dwarf2_per_objfile *dwarf2_per_objfile
24527 = cu->per_cu->dwarf2_per_objfile;
24528 struct objfile *objfile = dwarf2_per_objfile->objfile;
24529 struct line_header *lh = cu->line_header;
24530 bfd *abfd;
24531 const gdb_byte *mac_ptr, *mac_end;
24532 struct macro_source_file *current_file = 0;
24533 enum dwarf_macro_record_type macinfo_type;
24534 unsigned int offset_size = cu->header.offset_size;
24535 const gdb_byte *opcode_definitions[256];
24536 void **slot;
24537 struct dwarf2_section_info *section;
24538 const char *section_name;
24539
24540 if (cu->dwo_unit != NULL)
24541 {
24542 if (section_is_gnu)
24543 {
24544 section = &cu->dwo_unit->dwo_file->sections.macro;
24545 section_name = ".debug_macro.dwo";
24546 }
24547 else
24548 {
24549 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24550 section_name = ".debug_macinfo.dwo";
24551 }
24552 }
24553 else
24554 {
24555 if (section_is_gnu)
24556 {
24557 section = &dwarf2_per_objfile->macro;
24558 section_name = ".debug_macro";
24559 }
24560 else
24561 {
24562 section = &dwarf2_per_objfile->macinfo;
24563 section_name = ".debug_macinfo";
24564 }
24565 }
24566
24567 dwarf2_read_section (objfile, section);
24568 if (section->buffer == NULL)
24569 {
24570 complaint (_("missing %s section"), section_name);
24571 return;
24572 }
24573 abfd = get_section_bfd_owner (section);
24574
24575 /* First pass: Find the name of the base filename.
24576 This filename is needed in order to process all macros whose definition
24577 (or undefinition) comes from the command line. These macros are defined
24578 before the first DW_MACINFO_start_file entry, and yet still need to be
24579 associated to the base file.
24580
24581 To determine the base file name, we scan the macro definitions until we
24582 reach the first DW_MACINFO_start_file entry. We then initialize
24583 CURRENT_FILE accordingly so that any macro definition found before the
24584 first DW_MACINFO_start_file can still be associated to the base file. */
24585
24586 mac_ptr = section->buffer + offset;
24587 mac_end = section->buffer + section->size;
24588
24589 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24590 &offset_size, section_is_gnu);
24591 if (mac_ptr == NULL)
24592 {
24593 /* We already issued a complaint. */
24594 return;
24595 }
24596
24597 do
24598 {
24599 /* Do we at least have room for a macinfo type byte? */
24600 if (mac_ptr >= mac_end)
24601 {
24602 /* Complaint is printed during the second pass as GDB will probably
24603 stop the first pass earlier upon finding
24604 DW_MACINFO_start_file. */
24605 break;
24606 }
24607
24608 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24609 mac_ptr++;
24610
24611 /* Note that we rely on the fact that the corresponding GNU and
24612 DWARF constants are the same. */
24613 DIAGNOSTIC_PUSH
24614 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24615 switch (macinfo_type)
24616 {
24617 /* A zero macinfo type indicates the end of the macro
24618 information. */
24619 case 0:
24620 break;
24621
24622 case DW_MACRO_define:
24623 case DW_MACRO_undef:
24624 /* Only skip the data by MAC_PTR. */
24625 {
24626 unsigned int bytes_read;
24627
24628 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24629 mac_ptr += bytes_read;
24630 read_direct_string (abfd, mac_ptr, &bytes_read);
24631 mac_ptr += bytes_read;
24632 }
24633 break;
24634
24635 case DW_MACRO_start_file:
24636 {
24637 unsigned int bytes_read;
24638 int line, file;
24639
24640 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24641 mac_ptr += bytes_read;
24642 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24643 mac_ptr += bytes_read;
24644
24645 current_file = macro_start_file (cu, file, line, current_file, lh);
24646 }
24647 break;
24648
24649 case DW_MACRO_end_file:
24650 /* No data to skip by MAC_PTR. */
24651 break;
24652
24653 case DW_MACRO_define_strp:
24654 case DW_MACRO_undef_strp:
24655 case DW_MACRO_define_sup:
24656 case DW_MACRO_undef_sup:
24657 {
24658 unsigned int bytes_read;
24659
24660 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24661 mac_ptr += bytes_read;
24662 mac_ptr += offset_size;
24663 }
24664 break;
24665
24666 case DW_MACRO_import:
24667 case DW_MACRO_import_sup:
24668 /* Note that, according to the spec, a transparent include
24669 chain cannot call DW_MACRO_start_file. So, we can just
24670 skip this opcode. */
24671 mac_ptr += offset_size;
24672 break;
24673
24674 case DW_MACINFO_vendor_ext:
24675 /* Only skip the data by MAC_PTR. */
24676 if (!section_is_gnu)
24677 {
24678 unsigned int bytes_read;
24679
24680 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24681 mac_ptr += bytes_read;
24682 read_direct_string (abfd, mac_ptr, &bytes_read);
24683 mac_ptr += bytes_read;
24684 }
24685 /* FALLTHROUGH */
24686
24687 default:
24688 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24689 mac_ptr, mac_end, abfd, offset_size,
24690 section);
24691 if (mac_ptr == NULL)
24692 return;
24693 break;
24694 }
24695 DIAGNOSTIC_POP
24696 } while (macinfo_type != 0 && current_file == NULL);
24697
24698 /* Second pass: Process all entries.
24699
24700 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24701 command-line macro definitions/undefinitions. This flag is unset when we
24702 reach the first DW_MACINFO_start_file entry. */
24703
24704 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24705 htab_eq_pointer,
24706 NULL, xcalloc, xfree));
24707 mac_ptr = section->buffer + offset;
24708 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24709 *slot = (void *) mac_ptr;
24710 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
24711 current_file, lh, section,
24712 section_is_gnu, 0, offset_size,
24713 include_hash.get ());
24714 }
24715
24716 /* Check if the attribute's form is a DW_FORM_block*
24717 if so return true else false. */
24718
24719 static int
24720 attr_form_is_block (const struct attribute *attr)
24721 {
24722 return (attr == NULL ? 0 :
24723 attr->form == DW_FORM_block1
24724 || attr->form == DW_FORM_block2
24725 || attr->form == DW_FORM_block4
24726 || attr->form == DW_FORM_block
24727 || attr->form == DW_FORM_exprloc);
24728 }
24729
24730 /* Return non-zero if ATTR's value is a section offset --- classes
24731 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24732 You may use DW_UNSND (attr) to retrieve such offsets.
24733
24734 Section 7.5.4, "Attribute Encodings", explains that no attribute
24735 may have a value that belongs to more than one of these classes; it
24736 would be ambiguous if we did, because we use the same forms for all
24737 of them. */
24738
24739 static int
24740 attr_form_is_section_offset (const struct attribute *attr)
24741 {
24742 return (attr->form == DW_FORM_data4
24743 || attr->form == DW_FORM_data8
24744 || attr->form == DW_FORM_sec_offset);
24745 }
24746
24747 /* Return non-zero if ATTR's value falls in the 'constant' class, or
24748 zero otherwise. When this function returns true, you can apply
24749 dwarf2_get_attr_constant_value to it.
24750
24751 However, note that for some attributes you must check
24752 attr_form_is_section_offset before using this test. DW_FORM_data4
24753 and DW_FORM_data8 are members of both the constant class, and of
24754 the classes that contain offsets into other debug sections
24755 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24756 that, if an attribute's can be either a constant or one of the
24757 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
24758 taken as section offsets, not constants.
24759
24760 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
24761 cannot handle that. */
24762
24763 static int
24764 attr_form_is_constant (const struct attribute *attr)
24765 {
24766 switch (attr->form)
24767 {
24768 case DW_FORM_sdata:
24769 case DW_FORM_udata:
24770 case DW_FORM_data1:
24771 case DW_FORM_data2:
24772 case DW_FORM_data4:
24773 case DW_FORM_data8:
24774 case DW_FORM_implicit_const:
24775 return 1;
24776 default:
24777 return 0;
24778 }
24779 }
24780
24781
24782 /* DW_ADDR is always stored already as sect_offset; despite for the forms
24783 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
24784
24785 static int
24786 attr_form_is_ref (const struct attribute *attr)
24787 {
24788 switch (attr->form)
24789 {
24790 case DW_FORM_ref_addr:
24791 case DW_FORM_ref1:
24792 case DW_FORM_ref2:
24793 case DW_FORM_ref4:
24794 case DW_FORM_ref8:
24795 case DW_FORM_ref_udata:
24796 case DW_FORM_GNU_ref_alt:
24797 return 1;
24798 default:
24799 return 0;
24800 }
24801 }
24802
24803 /* Return the .debug_loc section to use for CU.
24804 For DWO files use .debug_loc.dwo. */
24805
24806 static struct dwarf2_section_info *
24807 cu_debug_loc_section (struct dwarf2_cu *cu)
24808 {
24809 struct dwarf2_per_objfile *dwarf2_per_objfile
24810 = cu->per_cu->dwarf2_per_objfile;
24811
24812 if (cu->dwo_unit)
24813 {
24814 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24815
24816 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
24817 }
24818 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
24819 : &dwarf2_per_objfile->loc);
24820 }
24821
24822 /* A helper function that fills in a dwarf2_loclist_baton. */
24823
24824 static void
24825 fill_in_loclist_baton (struct dwarf2_cu *cu,
24826 struct dwarf2_loclist_baton *baton,
24827 const struct attribute *attr)
24828 {
24829 struct dwarf2_per_objfile *dwarf2_per_objfile
24830 = cu->per_cu->dwarf2_per_objfile;
24831 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24832
24833 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
24834
24835 baton->per_cu = cu->per_cu;
24836 gdb_assert (baton->per_cu);
24837 /* We don't know how long the location list is, but make sure we
24838 don't run off the edge of the section. */
24839 baton->size = section->size - DW_UNSND (attr);
24840 baton->data = section->buffer + DW_UNSND (attr);
24841 baton->base_address = cu->base_address;
24842 baton->from_dwo = cu->dwo_unit != NULL;
24843 }
24844
24845 static void
24846 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
24847 struct dwarf2_cu *cu, int is_block)
24848 {
24849 struct dwarf2_per_objfile *dwarf2_per_objfile
24850 = cu->per_cu->dwarf2_per_objfile;
24851 struct objfile *objfile = dwarf2_per_objfile->objfile;
24852 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24853
24854 if (attr_form_is_section_offset (attr)
24855 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
24856 the section. If so, fall through to the complaint in the
24857 other branch. */
24858 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
24859 {
24860 struct dwarf2_loclist_baton *baton;
24861
24862 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
24863
24864 fill_in_loclist_baton (cu, baton, attr);
24865
24866 if (cu->base_known == 0)
24867 complaint (_("Location list used without "
24868 "specifying the CU base address."));
24869
24870 SYMBOL_ACLASS_INDEX (sym) = (is_block
24871 ? dwarf2_loclist_block_index
24872 : dwarf2_loclist_index);
24873 SYMBOL_LOCATION_BATON (sym) = baton;
24874 }
24875 else
24876 {
24877 struct dwarf2_locexpr_baton *baton;
24878
24879 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
24880 baton->per_cu = cu->per_cu;
24881 gdb_assert (baton->per_cu);
24882
24883 if (attr_form_is_block (attr))
24884 {
24885 /* Note that we're just copying the block's data pointer
24886 here, not the actual data. We're still pointing into the
24887 info_buffer for SYM's objfile; right now we never release
24888 that buffer, but when we do clean up properly this may
24889 need to change. */
24890 baton->size = DW_BLOCK (attr)->size;
24891 baton->data = DW_BLOCK (attr)->data;
24892 }
24893 else
24894 {
24895 dwarf2_invalid_attrib_class_complaint ("location description",
24896 SYMBOL_NATURAL_NAME (sym));
24897 baton->size = 0;
24898 }
24899
24900 SYMBOL_ACLASS_INDEX (sym) = (is_block
24901 ? dwarf2_locexpr_block_index
24902 : dwarf2_locexpr_index);
24903 SYMBOL_LOCATION_BATON (sym) = baton;
24904 }
24905 }
24906
24907 /* Return the OBJFILE associated with the compilation unit CU. If CU
24908 came from a separate debuginfo file, then the master objfile is
24909 returned. */
24910
24911 struct objfile *
24912 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
24913 {
24914 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24915
24916 /* Return the master objfile, so that we can report and look up the
24917 correct file containing this variable. */
24918 if (objfile->separate_debug_objfile_backlink)
24919 objfile = objfile->separate_debug_objfile_backlink;
24920
24921 return objfile;
24922 }
24923
24924 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
24925 (CU_HEADERP is unused in such case) or prepare a temporary copy at
24926 CU_HEADERP first. */
24927
24928 static const struct comp_unit_head *
24929 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
24930 struct dwarf2_per_cu_data *per_cu)
24931 {
24932 const gdb_byte *info_ptr;
24933
24934 if (per_cu->cu)
24935 return &per_cu->cu->header;
24936
24937 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
24938
24939 memset (cu_headerp, 0, sizeof (*cu_headerp));
24940 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
24941 rcuh_kind::COMPILE);
24942
24943 return cu_headerp;
24944 }
24945
24946 /* Return the address size given in the compilation unit header for CU. */
24947
24948 int
24949 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
24950 {
24951 struct comp_unit_head cu_header_local;
24952 const struct comp_unit_head *cu_headerp;
24953
24954 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24955
24956 return cu_headerp->addr_size;
24957 }
24958
24959 /* Return the offset size given in the compilation unit header for CU. */
24960
24961 int
24962 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
24963 {
24964 struct comp_unit_head cu_header_local;
24965 const struct comp_unit_head *cu_headerp;
24966
24967 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24968
24969 return cu_headerp->offset_size;
24970 }
24971
24972 /* See its dwarf2loc.h declaration. */
24973
24974 int
24975 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
24976 {
24977 struct comp_unit_head cu_header_local;
24978 const struct comp_unit_head *cu_headerp;
24979
24980 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24981
24982 if (cu_headerp->version == 2)
24983 return cu_headerp->addr_size;
24984 else
24985 return cu_headerp->offset_size;
24986 }
24987
24988 /* Return the text offset of the CU. The returned offset comes from
24989 this CU's objfile. If this objfile came from a separate debuginfo
24990 file, then the offset may be different from the corresponding
24991 offset in the parent objfile. */
24992
24993 CORE_ADDR
24994 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
24995 {
24996 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24997
24998 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
24999 }
25000
25001 /* Return DWARF version number of PER_CU. */
25002
25003 short
25004 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25005 {
25006 return per_cu->dwarf_version;
25007 }
25008
25009 /* Locate the .debug_info compilation unit from CU's objfile which contains
25010 the DIE at OFFSET. Raises an error on failure. */
25011
25012 static struct dwarf2_per_cu_data *
25013 dwarf2_find_containing_comp_unit (sect_offset sect_off,
25014 unsigned int offset_in_dwz,
25015 struct dwarf2_per_objfile *dwarf2_per_objfile)
25016 {
25017 struct dwarf2_per_cu_data *this_cu;
25018 int low, high;
25019 const sect_offset *cu_off;
25020
25021 low = 0;
25022 high = dwarf2_per_objfile->all_comp_units.size () - 1;
25023 while (high > low)
25024 {
25025 struct dwarf2_per_cu_data *mid_cu;
25026 int mid = low + (high - low) / 2;
25027
25028 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25029 cu_off = &mid_cu->sect_off;
25030 if (mid_cu->is_dwz > offset_in_dwz
25031 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
25032 high = mid;
25033 else
25034 low = mid + 1;
25035 }
25036 gdb_assert (low == high);
25037 this_cu = dwarf2_per_objfile->all_comp_units[low];
25038 cu_off = &this_cu->sect_off;
25039 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
25040 {
25041 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25042 error (_("Dwarf Error: could not find partial DIE containing "
25043 "offset %s [in module %s]"),
25044 sect_offset_str (sect_off),
25045 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25046
25047 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25048 <= sect_off);
25049 return dwarf2_per_objfile->all_comp_units[low-1];
25050 }
25051 else
25052 {
25053 this_cu = dwarf2_per_objfile->all_comp_units[low];
25054 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
25055 && sect_off >= this_cu->sect_off + this_cu->length)
25056 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25057 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25058 return this_cu;
25059 }
25060 }
25061
25062 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25063
25064 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25065 : per_cu (per_cu_),
25066 mark (0),
25067 has_loclist (0),
25068 checked_producer (0),
25069 producer_is_gxx_lt_4_6 (0),
25070 producer_is_gcc_lt_4_3 (0),
25071 producer_is_icc_lt_14 (0),
25072 processing_has_namespace_info (0)
25073 {
25074 per_cu->cu = this;
25075 }
25076
25077 /* Destroy a dwarf2_cu. */
25078
25079 dwarf2_cu::~dwarf2_cu ()
25080 {
25081 per_cu->cu = NULL;
25082 }
25083
25084 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25085
25086 static void
25087 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25088 enum language pretend_language)
25089 {
25090 struct attribute *attr;
25091
25092 /* Set the language we're debugging. */
25093 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25094 if (attr)
25095 set_cu_language (DW_UNSND (attr), cu);
25096 else
25097 {
25098 cu->language = pretend_language;
25099 cu->language_defn = language_def (cu->language);
25100 }
25101
25102 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25103 }
25104
25105 /* Increase the age counter on each cached compilation unit, and free
25106 any that are too old. */
25107
25108 static void
25109 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25110 {
25111 struct dwarf2_per_cu_data *per_cu, **last_chain;
25112
25113 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25114 per_cu = dwarf2_per_objfile->read_in_chain;
25115 while (per_cu != NULL)
25116 {
25117 per_cu->cu->last_used ++;
25118 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25119 dwarf2_mark (per_cu->cu);
25120 per_cu = per_cu->cu->read_in_chain;
25121 }
25122
25123 per_cu = dwarf2_per_objfile->read_in_chain;
25124 last_chain = &dwarf2_per_objfile->read_in_chain;
25125 while (per_cu != NULL)
25126 {
25127 struct dwarf2_per_cu_data *next_cu;
25128
25129 next_cu = per_cu->cu->read_in_chain;
25130
25131 if (!per_cu->cu->mark)
25132 {
25133 delete per_cu->cu;
25134 *last_chain = next_cu;
25135 }
25136 else
25137 last_chain = &per_cu->cu->read_in_chain;
25138
25139 per_cu = next_cu;
25140 }
25141 }
25142
25143 /* Remove a single compilation unit from the cache. */
25144
25145 static void
25146 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25147 {
25148 struct dwarf2_per_cu_data *per_cu, **last_chain;
25149 struct dwarf2_per_objfile *dwarf2_per_objfile
25150 = target_per_cu->dwarf2_per_objfile;
25151
25152 per_cu = dwarf2_per_objfile->read_in_chain;
25153 last_chain = &dwarf2_per_objfile->read_in_chain;
25154 while (per_cu != NULL)
25155 {
25156 struct dwarf2_per_cu_data *next_cu;
25157
25158 next_cu = per_cu->cu->read_in_chain;
25159
25160 if (per_cu == target_per_cu)
25161 {
25162 delete per_cu->cu;
25163 per_cu->cu = NULL;
25164 *last_chain = next_cu;
25165 break;
25166 }
25167 else
25168 last_chain = &per_cu->cu->read_in_chain;
25169
25170 per_cu = next_cu;
25171 }
25172 }
25173
25174 /* Cleanup function for the dwarf2_per_objfile data. */
25175
25176 static void
25177 dwarf2_free_objfile (struct objfile *objfile, void *datum)
25178 {
25179 struct dwarf2_per_objfile *dwarf2_per_objfile
25180 = static_cast<struct dwarf2_per_objfile *> (datum);
25181
25182 delete dwarf2_per_objfile;
25183 }
25184
25185 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25186 We store these in a hash table separate from the DIEs, and preserve them
25187 when the DIEs are flushed out of cache.
25188
25189 The CU "per_cu" pointer is needed because offset alone is not enough to
25190 uniquely identify the type. A file may have multiple .debug_types sections,
25191 or the type may come from a DWO file. Furthermore, while it's more logical
25192 to use per_cu->section+offset, with Fission the section with the data is in
25193 the DWO file but we don't know that section at the point we need it.
25194 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25195 because we can enter the lookup routine, get_die_type_at_offset, from
25196 outside this file, and thus won't necessarily have PER_CU->cu.
25197 Fortunately, PER_CU is stable for the life of the objfile. */
25198
25199 struct dwarf2_per_cu_offset_and_type
25200 {
25201 const struct dwarf2_per_cu_data *per_cu;
25202 sect_offset sect_off;
25203 struct type *type;
25204 };
25205
25206 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25207
25208 static hashval_t
25209 per_cu_offset_and_type_hash (const void *item)
25210 {
25211 const struct dwarf2_per_cu_offset_and_type *ofs
25212 = (const struct dwarf2_per_cu_offset_and_type *) item;
25213
25214 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25215 }
25216
25217 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25218
25219 static int
25220 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25221 {
25222 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25223 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25224 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25225 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25226
25227 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25228 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25229 }
25230
25231 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25232 table if necessary. For convenience, return TYPE.
25233
25234 The DIEs reading must have careful ordering to:
25235 * Not cause infite loops trying to read in DIEs as a prerequisite for
25236 reading current DIE.
25237 * Not trying to dereference contents of still incompletely read in types
25238 while reading in other DIEs.
25239 * Enable referencing still incompletely read in types just by a pointer to
25240 the type without accessing its fields.
25241
25242 Therefore caller should follow these rules:
25243 * Try to fetch any prerequisite types we may need to build this DIE type
25244 before building the type and calling set_die_type.
25245 * After building type call set_die_type for current DIE as soon as
25246 possible before fetching more types to complete the current type.
25247 * Make the type as complete as possible before fetching more types. */
25248
25249 static struct type *
25250 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25251 {
25252 struct dwarf2_per_objfile *dwarf2_per_objfile
25253 = cu->per_cu->dwarf2_per_objfile;
25254 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25255 struct objfile *objfile = dwarf2_per_objfile->objfile;
25256 struct attribute *attr;
25257 struct dynamic_prop prop;
25258
25259 /* For Ada types, make sure that the gnat-specific data is always
25260 initialized (if not already set). There are a few types where
25261 we should not be doing so, because the type-specific area is
25262 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25263 where the type-specific area is used to store the floatformat).
25264 But this is not a problem, because the gnat-specific information
25265 is actually not needed for these types. */
25266 if (need_gnat_info (cu)
25267 && TYPE_CODE (type) != TYPE_CODE_FUNC
25268 && TYPE_CODE (type) != TYPE_CODE_FLT
25269 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25270 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25271 && TYPE_CODE (type) != TYPE_CODE_METHOD
25272 && !HAVE_GNAT_AUX_INFO (type))
25273 INIT_GNAT_SPECIFIC (type);
25274
25275 /* Read DW_AT_allocated and set in type. */
25276 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25277 if (attr_form_is_block (attr))
25278 {
25279 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25280 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25281 }
25282 else if (attr != NULL)
25283 {
25284 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25285 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25286 sect_offset_str (die->sect_off));
25287 }
25288
25289 /* Read DW_AT_associated and set in type. */
25290 attr = dwarf2_attr (die, DW_AT_associated, cu);
25291 if (attr_form_is_block (attr))
25292 {
25293 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25294 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25295 }
25296 else if (attr != NULL)
25297 {
25298 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25299 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25300 sect_offset_str (die->sect_off));
25301 }
25302
25303 /* Read DW_AT_data_location and set in type. */
25304 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25305 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25306 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25307
25308 if (dwarf2_per_objfile->die_type_hash == NULL)
25309 {
25310 dwarf2_per_objfile->die_type_hash =
25311 htab_create_alloc_ex (127,
25312 per_cu_offset_and_type_hash,
25313 per_cu_offset_and_type_eq,
25314 NULL,
25315 &objfile->objfile_obstack,
25316 hashtab_obstack_allocate,
25317 dummy_obstack_deallocate);
25318 }
25319
25320 ofs.per_cu = cu->per_cu;
25321 ofs.sect_off = die->sect_off;
25322 ofs.type = type;
25323 slot = (struct dwarf2_per_cu_offset_and_type **)
25324 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25325 if (*slot)
25326 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25327 sect_offset_str (die->sect_off));
25328 *slot = XOBNEW (&objfile->objfile_obstack,
25329 struct dwarf2_per_cu_offset_and_type);
25330 **slot = ofs;
25331 return type;
25332 }
25333
25334 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25335 or return NULL if the die does not have a saved type. */
25336
25337 static struct type *
25338 get_die_type_at_offset (sect_offset sect_off,
25339 struct dwarf2_per_cu_data *per_cu)
25340 {
25341 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25342 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25343
25344 if (dwarf2_per_objfile->die_type_hash == NULL)
25345 return NULL;
25346
25347 ofs.per_cu = per_cu;
25348 ofs.sect_off = sect_off;
25349 slot = ((struct dwarf2_per_cu_offset_and_type *)
25350 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25351 if (slot)
25352 return slot->type;
25353 else
25354 return NULL;
25355 }
25356
25357 /* Look up the type for DIE in CU in die_type_hash,
25358 or return NULL if DIE does not have a saved type. */
25359
25360 static struct type *
25361 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25362 {
25363 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25364 }
25365
25366 /* Add a dependence relationship from CU to REF_PER_CU. */
25367
25368 static void
25369 dwarf2_add_dependence (struct dwarf2_cu *cu,
25370 struct dwarf2_per_cu_data *ref_per_cu)
25371 {
25372 void **slot;
25373
25374 if (cu->dependencies == NULL)
25375 cu->dependencies
25376 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25377 NULL, &cu->comp_unit_obstack,
25378 hashtab_obstack_allocate,
25379 dummy_obstack_deallocate);
25380
25381 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25382 if (*slot == NULL)
25383 *slot = ref_per_cu;
25384 }
25385
25386 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25387 Set the mark field in every compilation unit in the
25388 cache that we must keep because we are keeping CU. */
25389
25390 static int
25391 dwarf2_mark_helper (void **slot, void *data)
25392 {
25393 struct dwarf2_per_cu_data *per_cu;
25394
25395 per_cu = (struct dwarf2_per_cu_data *) *slot;
25396
25397 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25398 reading of the chain. As such dependencies remain valid it is not much
25399 useful to track and undo them during QUIT cleanups. */
25400 if (per_cu->cu == NULL)
25401 return 1;
25402
25403 if (per_cu->cu->mark)
25404 return 1;
25405 per_cu->cu->mark = 1;
25406
25407 if (per_cu->cu->dependencies != NULL)
25408 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25409
25410 return 1;
25411 }
25412
25413 /* Set the mark field in CU and in every other compilation unit in the
25414 cache that we must keep because we are keeping CU. */
25415
25416 static void
25417 dwarf2_mark (struct dwarf2_cu *cu)
25418 {
25419 if (cu->mark)
25420 return;
25421 cu->mark = 1;
25422 if (cu->dependencies != NULL)
25423 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25424 }
25425
25426 static void
25427 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25428 {
25429 while (per_cu)
25430 {
25431 per_cu->cu->mark = 0;
25432 per_cu = per_cu->cu->read_in_chain;
25433 }
25434 }
25435
25436 /* Trivial hash function for partial_die_info: the hash value of a DIE
25437 is its offset in .debug_info for this objfile. */
25438
25439 static hashval_t
25440 partial_die_hash (const void *item)
25441 {
25442 const struct partial_die_info *part_die
25443 = (const struct partial_die_info *) item;
25444
25445 return to_underlying (part_die->sect_off);
25446 }
25447
25448 /* Trivial comparison function for partial_die_info structures: two DIEs
25449 are equal if they have the same offset. */
25450
25451 static int
25452 partial_die_eq (const void *item_lhs, const void *item_rhs)
25453 {
25454 const struct partial_die_info *part_die_lhs
25455 = (const struct partial_die_info *) item_lhs;
25456 const struct partial_die_info *part_die_rhs
25457 = (const struct partial_die_info *) item_rhs;
25458
25459 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25460 }
25461
25462 struct cmd_list_element *set_dwarf_cmdlist;
25463 struct cmd_list_element *show_dwarf_cmdlist;
25464
25465 static void
25466 set_dwarf_cmd (const char *args, int from_tty)
25467 {
25468 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25469 gdb_stdout);
25470 }
25471
25472 static void
25473 show_dwarf_cmd (const char *args, int from_tty)
25474 {
25475 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25476 }
25477
25478 int dwarf_always_disassemble;
25479
25480 static void
25481 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25482 struct cmd_list_element *c, const char *value)
25483 {
25484 fprintf_filtered (file,
25485 _("Whether to always disassemble "
25486 "DWARF expressions is %s.\n"),
25487 value);
25488 }
25489
25490 static void
25491 show_check_physname (struct ui_file *file, int from_tty,
25492 struct cmd_list_element *c, const char *value)
25493 {
25494 fprintf_filtered (file,
25495 _("Whether to check \"physname\" is %s.\n"),
25496 value);
25497 }
25498
25499 void
25500 _initialize_dwarf2_read (void)
25501 {
25502 dwarf2_objfile_data_key
25503 = register_objfile_data_with_cleanup (nullptr, dwarf2_free_objfile);
25504
25505 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25506 Set DWARF specific variables.\n\
25507 Configure DWARF variables such as the cache size"),
25508 &set_dwarf_cmdlist, "maintenance set dwarf ",
25509 0/*allow-unknown*/, &maintenance_set_cmdlist);
25510
25511 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25512 Show DWARF specific variables\n\
25513 Show DWARF variables such as the cache size"),
25514 &show_dwarf_cmdlist, "maintenance show dwarf ",
25515 0/*allow-unknown*/, &maintenance_show_cmdlist);
25516
25517 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25518 &dwarf_max_cache_age, _("\
25519 Set the upper bound on the age of cached DWARF compilation units."), _("\
25520 Show the upper bound on the age of cached DWARF compilation units."), _("\
25521 A higher limit means that cached compilation units will be stored\n\
25522 in memory longer, and more total memory will be used. Zero disables\n\
25523 caching, which can slow down startup."),
25524 NULL,
25525 show_dwarf_max_cache_age,
25526 &set_dwarf_cmdlist,
25527 &show_dwarf_cmdlist);
25528
25529 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25530 &dwarf_always_disassemble, _("\
25531 Set whether `info address' always disassembles DWARF expressions."), _("\
25532 Show whether `info address' always disassembles DWARF expressions."), _("\
25533 When enabled, DWARF expressions are always printed in an assembly-like\n\
25534 syntax. When disabled, expressions will be printed in a more\n\
25535 conversational style, when possible."),
25536 NULL,
25537 show_dwarf_always_disassemble,
25538 &set_dwarf_cmdlist,
25539 &show_dwarf_cmdlist);
25540
25541 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25542 Set debugging of the DWARF reader."), _("\
25543 Show debugging of the DWARF reader."), _("\
25544 When enabled (non-zero), debugging messages are printed during DWARF\n\
25545 reading and symtab expansion. A value of 1 (one) provides basic\n\
25546 information. A value greater than 1 provides more verbose information."),
25547 NULL,
25548 NULL,
25549 &setdebuglist, &showdebuglist);
25550
25551 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25552 Set debugging of the DWARF DIE reader."), _("\
25553 Show debugging of the DWARF DIE reader."), _("\
25554 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25555 The value is the maximum depth to print."),
25556 NULL,
25557 NULL,
25558 &setdebuglist, &showdebuglist);
25559
25560 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25561 Set debugging of the dwarf line reader."), _("\
25562 Show debugging of the dwarf line reader."), _("\
25563 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25564 A value of 1 (one) provides basic information.\n\
25565 A value greater than 1 provides more verbose information."),
25566 NULL,
25567 NULL,
25568 &setdebuglist, &showdebuglist);
25569
25570 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25571 Set cross-checking of \"physname\" code against demangler."), _("\
25572 Show cross-checking of \"physname\" code against demangler."), _("\
25573 When enabled, GDB's internal \"physname\" code is checked against\n\
25574 the demangler."),
25575 NULL, show_check_physname,
25576 &setdebuglist, &showdebuglist);
25577
25578 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25579 no_class, &use_deprecated_index_sections, _("\
25580 Set whether to use deprecated gdb_index sections."), _("\
25581 Show whether to use deprecated gdb_index sections."), _("\
25582 When enabled, deprecated .gdb_index sections are used anyway.\n\
25583 Normally they are ignored either because of a missing feature or\n\
25584 performance issue.\n\
25585 Warning: This option must be enabled before gdb reads the file."),
25586 NULL,
25587 NULL,
25588 &setlist, &showlist);
25589
25590 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25591 &dwarf2_locexpr_funcs);
25592 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25593 &dwarf2_loclist_funcs);
25594
25595 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25596 &dwarf2_block_frame_base_locexpr_funcs);
25597 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25598 &dwarf2_block_frame_base_loclist_funcs);
25599
25600 #if GDB_SELF_TEST
25601 selftests::register_test ("dw2_expand_symtabs_matching",
25602 selftests::dw2_expand_symtabs_matching::run_test);
25603 #endif
25604 }
This page took 0.559738 seconds and 5 git commands to generate.