Use ui_file_as_string throughout more
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2016 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "psympriv.h"
57 #include <sys/stat.h>
58 #include "completer.h"
59 #include "vec.h"
60 #include "c-lang.h"
61 #include "go-lang.h"
62 #include "valprint.h"
63 #include "gdbcore.h" /* for gnutarget */
64 #include "gdb/gdb-index.h"
65 #include <ctype.h>
66 #include "gdb_bfd.h"
67 #include "f-lang.h"
68 #include "source.h"
69 #include "filestuff.h"
70 #include "build-id.h"
71 #include "namespace.h"
72
73 #include <fcntl.h>
74 #include <sys/types.h>
75 #include <algorithm>
76
77 typedef struct symbol *symbolp;
78 DEF_VEC_P (symbolp);
79
80 /* When == 1, print basic high level tracing messages.
81 When > 1, be more verbose.
82 This is in contrast to the low level DIE reading of dwarf_die_debug. */
83 static unsigned int dwarf_read_debug = 0;
84
85 /* When non-zero, dump DIEs after they are read in. */
86 static unsigned int dwarf_die_debug = 0;
87
88 /* When non-zero, dump line number entries as they are read in. */
89 static unsigned int dwarf_line_debug = 0;
90
91 /* When non-zero, cross-check physname against demangler. */
92 static int check_physname = 0;
93
94 /* When non-zero, do not reject deprecated .gdb_index sections. */
95 static int use_deprecated_index_sections = 0;
96
97 static const struct objfile_data *dwarf2_objfile_data_key;
98
99 /* The "aclass" indices for various kinds of computed DWARF symbols. */
100
101 static int dwarf2_locexpr_index;
102 static int dwarf2_loclist_index;
103 static int dwarf2_locexpr_block_index;
104 static int dwarf2_loclist_block_index;
105
106 /* A descriptor for dwarf sections.
107
108 S.ASECTION, SIZE are typically initialized when the objfile is first
109 scanned. BUFFER, READIN are filled in later when the section is read.
110 If the section contained compressed data then SIZE is updated to record
111 the uncompressed size of the section.
112
113 DWP file format V2 introduces a wrinkle that is easiest to handle by
114 creating the concept of virtual sections contained within a real section.
115 In DWP V2 the sections of the input DWO files are concatenated together
116 into one section, but section offsets are kept relative to the original
117 input section.
118 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
119 the real section this "virtual" section is contained in, and BUFFER,SIZE
120 describe the virtual section. */
121
122 struct dwarf2_section_info
123 {
124 union
125 {
126 /* If this is a real section, the bfd section. */
127 asection *section;
128 /* If this is a virtual section, pointer to the containing ("real")
129 section. */
130 struct dwarf2_section_info *containing_section;
131 } s;
132 /* Pointer to section data, only valid if readin. */
133 const gdb_byte *buffer;
134 /* The size of the section, real or virtual. */
135 bfd_size_type size;
136 /* If this is a virtual section, the offset in the real section.
137 Only valid if is_virtual. */
138 bfd_size_type virtual_offset;
139 /* True if we have tried to read this section. */
140 char readin;
141 /* True if this is a virtual section, False otherwise.
142 This specifies which of s.section and s.containing_section to use. */
143 char is_virtual;
144 };
145
146 typedef struct dwarf2_section_info dwarf2_section_info_def;
147 DEF_VEC_O (dwarf2_section_info_def);
148
149 /* All offsets in the index are of this type. It must be
150 architecture-independent. */
151 typedef uint32_t offset_type;
152
153 DEF_VEC_I (offset_type);
154
155 /* Ensure only legit values are used. */
156 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
157 do { \
158 gdb_assert ((unsigned int) (value) <= 1); \
159 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
160 } while (0)
161
162 /* Ensure only legit values are used. */
163 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
164 do { \
165 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
166 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
167 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
168 } while (0)
169
170 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
171 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
172 do { \
173 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
174 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
175 } while (0)
176
177 /* A description of the mapped index. The file format is described in
178 a comment by the code that writes the index. */
179 struct mapped_index
180 {
181 /* Index data format version. */
182 int version;
183
184 /* The total length of the buffer. */
185 off_t total_size;
186
187 /* A pointer to the address table data. */
188 const gdb_byte *address_table;
189
190 /* Size of the address table data in bytes. */
191 offset_type address_table_size;
192
193 /* The symbol table, implemented as a hash table. */
194 const offset_type *symbol_table;
195
196 /* Size in slots, each slot is 2 offset_types. */
197 offset_type symbol_table_slots;
198
199 /* A pointer to the constant pool. */
200 const char *constant_pool;
201 };
202
203 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
204 DEF_VEC_P (dwarf2_per_cu_ptr);
205
206 struct tu_stats
207 {
208 int nr_uniq_abbrev_tables;
209 int nr_symtabs;
210 int nr_symtab_sharers;
211 int nr_stmt_less_type_units;
212 int nr_all_type_units_reallocs;
213 };
214
215 /* Collection of data recorded per objfile.
216 This hangs off of dwarf2_objfile_data_key. */
217
218 struct dwarf2_per_objfile
219 {
220 struct dwarf2_section_info info;
221 struct dwarf2_section_info abbrev;
222 struct dwarf2_section_info line;
223 struct dwarf2_section_info loc;
224 struct dwarf2_section_info macinfo;
225 struct dwarf2_section_info macro;
226 struct dwarf2_section_info str;
227 struct dwarf2_section_info ranges;
228 struct dwarf2_section_info addr;
229 struct dwarf2_section_info frame;
230 struct dwarf2_section_info eh_frame;
231 struct dwarf2_section_info gdb_index;
232
233 VEC (dwarf2_section_info_def) *types;
234
235 /* Back link. */
236 struct objfile *objfile;
237
238 /* Table of all the compilation units. This is used to locate
239 the target compilation unit of a particular reference. */
240 struct dwarf2_per_cu_data **all_comp_units;
241
242 /* The number of compilation units in ALL_COMP_UNITS. */
243 int n_comp_units;
244
245 /* The number of .debug_types-related CUs. */
246 int n_type_units;
247
248 /* The number of elements allocated in all_type_units.
249 If there are skeleton-less TUs, we add them to all_type_units lazily. */
250 int n_allocated_type_units;
251
252 /* The .debug_types-related CUs (TUs).
253 This is stored in malloc space because we may realloc it. */
254 struct signatured_type **all_type_units;
255
256 /* Table of struct type_unit_group objects.
257 The hash key is the DW_AT_stmt_list value. */
258 htab_t type_unit_groups;
259
260 /* A table mapping .debug_types signatures to its signatured_type entry.
261 This is NULL if the .debug_types section hasn't been read in yet. */
262 htab_t signatured_types;
263
264 /* Type unit statistics, to see how well the scaling improvements
265 are doing. */
266 struct tu_stats tu_stats;
267
268 /* A chain of compilation units that are currently read in, so that
269 they can be freed later. */
270 struct dwarf2_per_cu_data *read_in_chain;
271
272 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
273 This is NULL if the table hasn't been allocated yet. */
274 htab_t dwo_files;
275
276 /* Non-zero if we've check for whether there is a DWP file. */
277 int dwp_checked;
278
279 /* The DWP file if there is one, or NULL. */
280 struct dwp_file *dwp_file;
281
282 /* The shared '.dwz' file, if one exists. This is used when the
283 original data was compressed using 'dwz -m'. */
284 struct dwz_file *dwz_file;
285
286 /* A flag indicating wether this objfile has a section loaded at a
287 VMA of 0. */
288 int has_section_at_zero;
289
290 /* True if we are using the mapped index,
291 or we are faking it for OBJF_READNOW's sake. */
292 unsigned char using_index;
293
294 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
295 struct mapped_index *index_table;
296
297 /* When using index_table, this keeps track of all quick_file_names entries.
298 TUs typically share line table entries with a CU, so we maintain a
299 separate table of all line table entries to support the sharing.
300 Note that while there can be way more TUs than CUs, we've already
301 sorted all the TUs into "type unit groups", grouped by their
302 DW_AT_stmt_list value. Therefore the only sharing done here is with a
303 CU and its associated TU group if there is one. */
304 htab_t quick_file_names_table;
305
306 /* Set during partial symbol reading, to prevent queueing of full
307 symbols. */
308 int reading_partial_symbols;
309
310 /* Table mapping type DIEs to their struct type *.
311 This is NULL if not allocated yet.
312 The mapping is done via (CU/TU + DIE offset) -> type. */
313 htab_t die_type_hash;
314
315 /* The CUs we recently read. */
316 VEC (dwarf2_per_cu_ptr) *just_read_cus;
317
318 /* Table containing line_header indexed by offset and offset_in_dwz. */
319 htab_t line_header_hash;
320 };
321
322 static struct dwarf2_per_objfile *dwarf2_per_objfile;
323
324 /* Default names of the debugging sections. */
325
326 /* Note that if the debugging section has been compressed, it might
327 have a name like .zdebug_info. */
328
329 static const struct dwarf2_debug_sections dwarf2_elf_names =
330 {
331 { ".debug_info", ".zdebug_info" },
332 { ".debug_abbrev", ".zdebug_abbrev" },
333 { ".debug_line", ".zdebug_line" },
334 { ".debug_loc", ".zdebug_loc" },
335 { ".debug_macinfo", ".zdebug_macinfo" },
336 { ".debug_macro", ".zdebug_macro" },
337 { ".debug_str", ".zdebug_str" },
338 { ".debug_ranges", ".zdebug_ranges" },
339 { ".debug_types", ".zdebug_types" },
340 { ".debug_addr", ".zdebug_addr" },
341 { ".debug_frame", ".zdebug_frame" },
342 { ".eh_frame", NULL },
343 { ".gdb_index", ".zgdb_index" },
344 23
345 };
346
347 /* List of DWO/DWP sections. */
348
349 static const struct dwop_section_names
350 {
351 struct dwarf2_section_names abbrev_dwo;
352 struct dwarf2_section_names info_dwo;
353 struct dwarf2_section_names line_dwo;
354 struct dwarf2_section_names loc_dwo;
355 struct dwarf2_section_names macinfo_dwo;
356 struct dwarf2_section_names macro_dwo;
357 struct dwarf2_section_names str_dwo;
358 struct dwarf2_section_names str_offsets_dwo;
359 struct dwarf2_section_names types_dwo;
360 struct dwarf2_section_names cu_index;
361 struct dwarf2_section_names tu_index;
362 }
363 dwop_section_names =
364 {
365 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
366 { ".debug_info.dwo", ".zdebug_info.dwo" },
367 { ".debug_line.dwo", ".zdebug_line.dwo" },
368 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
369 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
370 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
371 { ".debug_str.dwo", ".zdebug_str.dwo" },
372 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
373 { ".debug_types.dwo", ".zdebug_types.dwo" },
374 { ".debug_cu_index", ".zdebug_cu_index" },
375 { ".debug_tu_index", ".zdebug_tu_index" },
376 };
377
378 /* local data types */
379
380 /* The data in a compilation unit header, after target2host
381 translation, looks like this. */
382 struct comp_unit_head
383 {
384 unsigned int length;
385 short version;
386 unsigned char addr_size;
387 unsigned char signed_addr_p;
388 sect_offset abbrev_offset;
389
390 /* Size of file offsets; either 4 or 8. */
391 unsigned int offset_size;
392
393 /* Size of the length field; either 4 or 12. */
394 unsigned int initial_length_size;
395
396 /* Offset to the first byte of this compilation unit header in the
397 .debug_info section, for resolving relative reference dies. */
398 sect_offset offset;
399
400 /* Offset to first die in this cu from the start of the cu.
401 This will be the first byte following the compilation unit header. */
402 cu_offset first_die_offset;
403 };
404
405 /* Type used for delaying computation of method physnames.
406 See comments for compute_delayed_physnames. */
407 struct delayed_method_info
408 {
409 /* The type to which the method is attached, i.e., its parent class. */
410 struct type *type;
411
412 /* The index of the method in the type's function fieldlists. */
413 int fnfield_index;
414
415 /* The index of the method in the fieldlist. */
416 int index;
417
418 /* The name of the DIE. */
419 const char *name;
420
421 /* The DIE associated with this method. */
422 struct die_info *die;
423 };
424
425 typedef struct delayed_method_info delayed_method_info;
426 DEF_VEC_O (delayed_method_info);
427
428 /* Internal state when decoding a particular compilation unit. */
429 struct dwarf2_cu
430 {
431 /* The objfile containing this compilation unit. */
432 struct objfile *objfile;
433
434 /* The header of the compilation unit. */
435 struct comp_unit_head header;
436
437 /* Base address of this compilation unit. */
438 CORE_ADDR base_address;
439
440 /* Non-zero if base_address has been set. */
441 int base_known;
442
443 /* The language we are debugging. */
444 enum language language;
445 const struct language_defn *language_defn;
446
447 const char *producer;
448
449 /* The generic symbol table building routines have separate lists for
450 file scope symbols and all all other scopes (local scopes). So
451 we need to select the right one to pass to add_symbol_to_list().
452 We do it by keeping a pointer to the correct list in list_in_scope.
453
454 FIXME: The original dwarf code just treated the file scope as the
455 first local scope, and all other local scopes as nested local
456 scopes, and worked fine. Check to see if we really need to
457 distinguish these in buildsym.c. */
458 struct pending **list_in_scope;
459
460 /* The abbrev table for this CU.
461 Normally this points to the abbrev table in the objfile.
462 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
463 struct abbrev_table *abbrev_table;
464
465 /* Hash table holding all the loaded partial DIEs
466 with partial_die->offset.SECT_OFF as hash. */
467 htab_t partial_dies;
468
469 /* Storage for things with the same lifetime as this read-in compilation
470 unit, including partial DIEs. */
471 struct obstack comp_unit_obstack;
472
473 /* When multiple dwarf2_cu structures are living in memory, this field
474 chains them all together, so that they can be released efficiently.
475 We will probably also want a generation counter so that most-recently-used
476 compilation units are cached... */
477 struct dwarf2_per_cu_data *read_in_chain;
478
479 /* Backlink to our per_cu entry. */
480 struct dwarf2_per_cu_data *per_cu;
481
482 /* How many compilation units ago was this CU last referenced? */
483 int last_used;
484
485 /* A hash table of DIE cu_offset for following references with
486 die_info->offset.sect_off as hash. */
487 htab_t die_hash;
488
489 /* Full DIEs if read in. */
490 struct die_info *dies;
491
492 /* A set of pointers to dwarf2_per_cu_data objects for compilation
493 units referenced by this one. Only set during full symbol processing;
494 partial symbol tables do not have dependencies. */
495 htab_t dependencies;
496
497 /* Header data from the line table, during full symbol processing. */
498 struct line_header *line_header;
499
500 /* A list of methods which need to have physnames computed
501 after all type information has been read. */
502 VEC (delayed_method_info) *method_list;
503
504 /* To be copied to symtab->call_site_htab. */
505 htab_t call_site_htab;
506
507 /* Non-NULL if this CU came from a DWO file.
508 There is an invariant here that is important to remember:
509 Except for attributes copied from the top level DIE in the "main"
510 (or "stub") file in preparation for reading the DWO file
511 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
512 Either there isn't a DWO file (in which case this is NULL and the point
513 is moot), or there is and either we're not going to read it (in which
514 case this is NULL) or there is and we are reading it (in which case this
515 is non-NULL). */
516 struct dwo_unit *dwo_unit;
517
518 /* The DW_AT_addr_base attribute if present, zero otherwise
519 (zero is a valid value though).
520 Note this value comes from the Fission stub CU/TU's DIE. */
521 ULONGEST addr_base;
522
523 /* The DW_AT_ranges_base attribute if present, zero otherwise
524 (zero is a valid value though).
525 Note this value comes from the Fission stub CU/TU's DIE.
526 Also note that the value is zero in the non-DWO case so this value can
527 be used without needing to know whether DWO files are in use or not.
528 N.B. This does not apply to DW_AT_ranges appearing in
529 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
530 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
531 DW_AT_ranges_base *would* have to be applied, and we'd have to care
532 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
533 ULONGEST ranges_base;
534
535 /* Mark used when releasing cached dies. */
536 unsigned int mark : 1;
537
538 /* This CU references .debug_loc. See the symtab->locations_valid field.
539 This test is imperfect as there may exist optimized debug code not using
540 any location list and still facing inlining issues if handled as
541 unoptimized code. For a future better test see GCC PR other/32998. */
542 unsigned int has_loclist : 1;
543
544 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
545 if all the producer_is_* fields are valid. This information is cached
546 because profiling CU expansion showed excessive time spent in
547 producer_is_gxx_lt_4_6. */
548 unsigned int checked_producer : 1;
549 unsigned int producer_is_gxx_lt_4_6 : 1;
550 unsigned int producer_is_gcc_lt_4_3 : 1;
551 unsigned int producer_is_icc : 1;
552
553 /* When set, the file that we're processing is known to have
554 debugging info for C++ namespaces. GCC 3.3.x did not produce
555 this information, but later versions do. */
556
557 unsigned int processing_has_namespace_info : 1;
558 };
559
560 /* Persistent data held for a compilation unit, even when not
561 processing it. We put a pointer to this structure in the
562 read_symtab_private field of the psymtab. */
563
564 struct dwarf2_per_cu_data
565 {
566 /* The start offset and length of this compilation unit.
567 NOTE: Unlike comp_unit_head.length, this length includes
568 initial_length_size.
569 If the DIE refers to a DWO file, this is always of the original die,
570 not the DWO file. */
571 sect_offset offset;
572 unsigned int length;
573
574 /* Flag indicating this compilation unit will be read in before
575 any of the current compilation units are processed. */
576 unsigned int queued : 1;
577
578 /* This flag will be set when reading partial DIEs if we need to load
579 absolutely all DIEs for this compilation unit, instead of just the ones
580 we think are interesting. It gets set if we look for a DIE in the
581 hash table and don't find it. */
582 unsigned int load_all_dies : 1;
583
584 /* Non-zero if this CU is from .debug_types.
585 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
586 this is non-zero. */
587 unsigned int is_debug_types : 1;
588
589 /* Non-zero if this CU is from the .dwz file. */
590 unsigned int is_dwz : 1;
591
592 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
593 This flag is only valid if is_debug_types is true.
594 We can't read a CU directly from a DWO file: There are required
595 attributes in the stub. */
596 unsigned int reading_dwo_directly : 1;
597
598 /* Non-zero if the TU has been read.
599 This is used to assist the "Stay in DWO Optimization" for Fission:
600 When reading a DWO, it's faster to read TUs from the DWO instead of
601 fetching them from random other DWOs (due to comdat folding).
602 If the TU has already been read, the optimization is unnecessary
603 (and unwise - we don't want to change where gdb thinks the TU lives
604 "midflight").
605 This flag is only valid if is_debug_types is true. */
606 unsigned int tu_read : 1;
607
608 /* The section this CU/TU lives in.
609 If the DIE refers to a DWO file, this is always the original die,
610 not the DWO file. */
611 struct dwarf2_section_info *section;
612
613 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
614 of the CU cache it gets reset to NULL again. This is left as NULL for
615 dummy CUs (a CU header, but nothing else). */
616 struct dwarf2_cu *cu;
617
618 /* The corresponding objfile.
619 Normally we can get the objfile from dwarf2_per_objfile.
620 However we can enter this file with just a "per_cu" handle. */
621 struct objfile *objfile;
622
623 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
624 is active. Otherwise, the 'psymtab' field is active. */
625 union
626 {
627 /* The partial symbol table associated with this compilation unit,
628 or NULL for unread partial units. */
629 struct partial_symtab *psymtab;
630
631 /* Data needed by the "quick" functions. */
632 struct dwarf2_per_cu_quick_data *quick;
633 } v;
634
635 /* The CUs we import using DW_TAG_imported_unit. This is filled in
636 while reading psymtabs, used to compute the psymtab dependencies,
637 and then cleared. Then it is filled in again while reading full
638 symbols, and only deleted when the objfile is destroyed.
639
640 This is also used to work around a difference between the way gold
641 generates .gdb_index version <=7 and the way gdb does. Arguably this
642 is a gold bug. For symbols coming from TUs, gold records in the index
643 the CU that includes the TU instead of the TU itself. This breaks
644 dw2_lookup_symbol: It assumes that if the index says symbol X lives
645 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
646 will find X. Alas TUs live in their own symtab, so after expanding CU Y
647 we need to look in TU Z to find X. Fortunately, this is akin to
648 DW_TAG_imported_unit, so we just use the same mechanism: For
649 .gdb_index version <=7 this also records the TUs that the CU referred
650 to. Concurrently with this change gdb was modified to emit version 8
651 indices so we only pay a price for gold generated indices.
652 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
653 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
654 };
655
656 /* Entry in the signatured_types hash table. */
657
658 struct signatured_type
659 {
660 /* The "per_cu" object of this type.
661 This struct is used iff per_cu.is_debug_types.
662 N.B.: This is the first member so that it's easy to convert pointers
663 between them. */
664 struct dwarf2_per_cu_data per_cu;
665
666 /* The type's signature. */
667 ULONGEST signature;
668
669 /* Offset in the TU of the type's DIE, as read from the TU header.
670 If this TU is a DWO stub and the definition lives in a DWO file
671 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
672 cu_offset type_offset_in_tu;
673
674 /* Offset in the section of the type's DIE.
675 If the definition lives in a DWO file, this is the offset in the
676 .debug_types.dwo section.
677 The value is zero until the actual value is known.
678 Zero is otherwise not a valid section offset. */
679 sect_offset type_offset_in_section;
680
681 /* Type units are grouped by their DW_AT_stmt_list entry so that they
682 can share them. This points to the containing symtab. */
683 struct type_unit_group *type_unit_group;
684
685 /* The type.
686 The first time we encounter this type we fully read it in and install it
687 in the symbol tables. Subsequent times we only need the type. */
688 struct type *type;
689
690 /* Containing DWO unit.
691 This field is valid iff per_cu.reading_dwo_directly. */
692 struct dwo_unit *dwo_unit;
693 };
694
695 typedef struct signatured_type *sig_type_ptr;
696 DEF_VEC_P (sig_type_ptr);
697
698 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
699 This includes type_unit_group and quick_file_names. */
700
701 struct stmt_list_hash
702 {
703 /* The DWO unit this table is from or NULL if there is none. */
704 struct dwo_unit *dwo_unit;
705
706 /* Offset in .debug_line or .debug_line.dwo. */
707 sect_offset line_offset;
708 };
709
710 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
711 an object of this type. */
712
713 struct type_unit_group
714 {
715 /* dwarf2read.c's main "handle" on a TU symtab.
716 To simplify things we create an artificial CU that "includes" all the
717 type units using this stmt_list so that the rest of the code still has
718 a "per_cu" handle on the symtab.
719 This PER_CU is recognized by having no section. */
720 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
721 struct dwarf2_per_cu_data per_cu;
722
723 /* The TUs that share this DW_AT_stmt_list entry.
724 This is added to while parsing type units to build partial symtabs,
725 and is deleted afterwards and not used again. */
726 VEC (sig_type_ptr) *tus;
727
728 /* The compunit symtab.
729 Type units in a group needn't all be defined in the same source file,
730 so we create an essentially anonymous symtab as the compunit symtab. */
731 struct compunit_symtab *compunit_symtab;
732
733 /* The data used to construct the hash key. */
734 struct stmt_list_hash hash;
735
736 /* The number of symtabs from the line header.
737 The value here must match line_header.num_file_names. */
738 unsigned int num_symtabs;
739
740 /* The symbol tables for this TU (obtained from the files listed in
741 DW_AT_stmt_list).
742 WARNING: The order of entries here must match the order of entries
743 in the line header. After the first TU using this type_unit_group, the
744 line header for the subsequent TUs is recreated from this. This is done
745 because we need to use the same symtabs for each TU using the same
746 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
747 there's no guarantee the line header doesn't have duplicate entries. */
748 struct symtab **symtabs;
749 };
750
751 /* These sections are what may appear in a (real or virtual) DWO file. */
752
753 struct dwo_sections
754 {
755 struct dwarf2_section_info abbrev;
756 struct dwarf2_section_info line;
757 struct dwarf2_section_info loc;
758 struct dwarf2_section_info macinfo;
759 struct dwarf2_section_info macro;
760 struct dwarf2_section_info str;
761 struct dwarf2_section_info str_offsets;
762 /* In the case of a virtual DWO file, these two are unused. */
763 struct dwarf2_section_info info;
764 VEC (dwarf2_section_info_def) *types;
765 };
766
767 /* CUs/TUs in DWP/DWO files. */
768
769 struct dwo_unit
770 {
771 /* Backlink to the containing struct dwo_file. */
772 struct dwo_file *dwo_file;
773
774 /* The "id" that distinguishes this CU/TU.
775 .debug_info calls this "dwo_id", .debug_types calls this "signature".
776 Since signatures came first, we stick with it for consistency. */
777 ULONGEST signature;
778
779 /* The section this CU/TU lives in, in the DWO file. */
780 struct dwarf2_section_info *section;
781
782 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
783 sect_offset offset;
784 unsigned int length;
785
786 /* For types, offset in the type's DIE of the type defined by this TU. */
787 cu_offset type_offset_in_tu;
788 };
789
790 /* include/dwarf2.h defines the DWP section codes.
791 It defines a max value but it doesn't define a min value, which we
792 use for error checking, so provide one. */
793
794 enum dwp_v2_section_ids
795 {
796 DW_SECT_MIN = 1
797 };
798
799 /* Data for one DWO file.
800
801 This includes virtual DWO files (a virtual DWO file is a DWO file as it
802 appears in a DWP file). DWP files don't really have DWO files per se -
803 comdat folding of types "loses" the DWO file they came from, and from
804 a high level view DWP files appear to contain a mass of random types.
805 However, to maintain consistency with the non-DWP case we pretend DWP
806 files contain virtual DWO files, and we assign each TU with one virtual
807 DWO file (generally based on the line and abbrev section offsets -
808 a heuristic that seems to work in practice). */
809
810 struct dwo_file
811 {
812 /* The DW_AT_GNU_dwo_name attribute.
813 For virtual DWO files the name is constructed from the section offsets
814 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
815 from related CU+TUs. */
816 const char *dwo_name;
817
818 /* The DW_AT_comp_dir attribute. */
819 const char *comp_dir;
820
821 /* The bfd, when the file is open. Otherwise this is NULL.
822 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
823 bfd *dbfd;
824
825 /* The sections that make up this DWO file.
826 Remember that for virtual DWO files in DWP V2, these are virtual
827 sections (for lack of a better name). */
828 struct dwo_sections sections;
829
830 /* The CU in the file.
831 We only support one because having more than one requires hacking the
832 dwo_name of each to match, which is highly unlikely to happen.
833 Doing this means all TUs can share comp_dir: We also assume that
834 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
835 struct dwo_unit *cu;
836
837 /* Table of TUs in the file.
838 Each element is a struct dwo_unit. */
839 htab_t tus;
840 };
841
842 /* These sections are what may appear in a DWP file. */
843
844 struct dwp_sections
845 {
846 /* These are used by both DWP version 1 and 2. */
847 struct dwarf2_section_info str;
848 struct dwarf2_section_info cu_index;
849 struct dwarf2_section_info tu_index;
850
851 /* These are only used by DWP version 2 files.
852 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
853 sections are referenced by section number, and are not recorded here.
854 In DWP version 2 there is at most one copy of all these sections, each
855 section being (effectively) comprised of the concatenation of all of the
856 individual sections that exist in the version 1 format.
857 To keep the code simple we treat each of these concatenated pieces as a
858 section itself (a virtual section?). */
859 struct dwarf2_section_info abbrev;
860 struct dwarf2_section_info info;
861 struct dwarf2_section_info line;
862 struct dwarf2_section_info loc;
863 struct dwarf2_section_info macinfo;
864 struct dwarf2_section_info macro;
865 struct dwarf2_section_info str_offsets;
866 struct dwarf2_section_info types;
867 };
868
869 /* These sections are what may appear in a virtual DWO file in DWP version 1.
870 A virtual DWO file is a DWO file as it appears in a DWP file. */
871
872 struct virtual_v1_dwo_sections
873 {
874 struct dwarf2_section_info abbrev;
875 struct dwarf2_section_info line;
876 struct dwarf2_section_info loc;
877 struct dwarf2_section_info macinfo;
878 struct dwarf2_section_info macro;
879 struct dwarf2_section_info str_offsets;
880 /* Each DWP hash table entry records one CU or one TU.
881 That is recorded here, and copied to dwo_unit.section. */
882 struct dwarf2_section_info info_or_types;
883 };
884
885 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
886 In version 2, the sections of the DWO files are concatenated together
887 and stored in one section of that name. Thus each ELF section contains
888 several "virtual" sections. */
889
890 struct virtual_v2_dwo_sections
891 {
892 bfd_size_type abbrev_offset;
893 bfd_size_type abbrev_size;
894
895 bfd_size_type line_offset;
896 bfd_size_type line_size;
897
898 bfd_size_type loc_offset;
899 bfd_size_type loc_size;
900
901 bfd_size_type macinfo_offset;
902 bfd_size_type macinfo_size;
903
904 bfd_size_type macro_offset;
905 bfd_size_type macro_size;
906
907 bfd_size_type str_offsets_offset;
908 bfd_size_type str_offsets_size;
909
910 /* Each DWP hash table entry records one CU or one TU.
911 That is recorded here, and copied to dwo_unit.section. */
912 bfd_size_type info_or_types_offset;
913 bfd_size_type info_or_types_size;
914 };
915
916 /* Contents of DWP hash tables. */
917
918 struct dwp_hash_table
919 {
920 uint32_t version, nr_columns;
921 uint32_t nr_units, nr_slots;
922 const gdb_byte *hash_table, *unit_table;
923 union
924 {
925 struct
926 {
927 const gdb_byte *indices;
928 } v1;
929 struct
930 {
931 /* This is indexed by column number and gives the id of the section
932 in that column. */
933 #define MAX_NR_V2_DWO_SECTIONS \
934 (1 /* .debug_info or .debug_types */ \
935 + 1 /* .debug_abbrev */ \
936 + 1 /* .debug_line */ \
937 + 1 /* .debug_loc */ \
938 + 1 /* .debug_str_offsets */ \
939 + 1 /* .debug_macro or .debug_macinfo */)
940 int section_ids[MAX_NR_V2_DWO_SECTIONS];
941 const gdb_byte *offsets;
942 const gdb_byte *sizes;
943 } v2;
944 } section_pool;
945 };
946
947 /* Data for one DWP file. */
948
949 struct dwp_file
950 {
951 /* Name of the file. */
952 const char *name;
953
954 /* File format version. */
955 int version;
956
957 /* The bfd. */
958 bfd *dbfd;
959
960 /* Section info for this file. */
961 struct dwp_sections sections;
962
963 /* Table of CUs in the file. */
964 const struct dwp_hash_table *cus;
965
966 /* Table of TUs in the file. */
967 const struct dwp_hash_table *tus;
968
969 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
970 htab_t loaded_cus;
971 htab_t loaded_tus;
972
973 /* Table to map ELF section numbers to their sections.
974 This is only needed for the DWP V1 file format. */
975 unsigned int num_sections;
976 asection **elf_sections;
977 };
978
979 /* This represents a '.dwz' file. */
980
981 struct dwz_file
982 {
983 /* A dwz file can only contain a few sections. */
984 struct dwarf2_section_info abbrev;
985 struct dwarf2_section_info info;
986 struct dwarf2_section_info str;
987 struct dwarf2_section_info line;
988 struct dwarf2_section_info macro;
989 struct dwarf2_section_info gdb_index;
990
991 /* The dwz's BFD. */
992 bfd *dwz_bfd;
993 };
994
995 /* Struct used to pass misc. parameters to read_die_and_children, et
996 al. which are used for both .debug_info and .debug_types dies.
997 All parameters here are unchanging for the life of the call. This
998 struct exists to abstract away the constant parameters of die reading. */
999
1000 struct die_reader_specs
1001 {
1002 /* The bfd of die_section. */
1003 bfd* abfd;
1004
1005 /* The CU of the DIE we are parsing. */
1006 struct dwarf2_cu *cu;
1007
1008 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1009 struct dwo_file *dwo_file;
1010
1011 /* The section the die comes from.
1012 This is either .debug_info or .debug_types, or the .dwo variants. */
1013 struct dwarf2_section_info *die_section;
1014
1015 /* die_section->buffer. */
1016 const gdb_byte *buffer;
1017
1018 /* The end of the buffer. */
1019 const gdb_byte *buffer_end;
1020
1021 /* The value of the DW_AT_comp_dir attribute. */
1022 const char *comp_dir;
1023 };
1024
1025 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1026 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1027 const gdb_byte *info_ptr,
1028 struct die_info *comp_unit_die,
1029 int has_children,
1030 void *data);
1031
1032 struct file_entry
1033 {
1034 const char *name;
1035 unsigned int dir_index;
1036 unsigned int mod_time;
1037 unsigned int length;
1038 /* Non-zero if referenced by the Line Number Program. */
1039 int included_p;
1040 /* The associated symbol table, if any. */
1041 struct symtab *symtab;
1042 };
1043
1044 /* The line number information for a compilation unit (found in the
1045 .debug_line section) begins with a "statement program header",
1046 which contains the following information. */
1047 struct line_header
1048 {
1049 /* Offset of line number information in .debug_line section. */
1050 sect_offset offset;
1051
1052 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1053 unsigned offset_in_dwz : 1;
1054
1055 unsigned int total_length;
1056 unsigned short version;
1057 unsigned int header_length;
1058 unsigned char minimum_instruction_length;
1059 unsigned char maximum_ops_per_instruction;
1060 unsigned char default_is_stmt;
1061 int line_base;
1062 unsigned char line_range;
1063 unsigned char opcode_base;
1064
1065 /* standard_opcode_lengths[i] is the number of operands for the
1066 standard opcode whose value is i. This means that
1067 standard_opcode_lengths[0] is unused, and the last meaningful
1068 element is standard_opcode_lengths[opcode_base - 1]. */
1069 unsigned char *standard_opcode_lengths;
1070
1071 /* The include_directories table. NOTE! These strings are not
1072 allocated with xmalloc; instead, they are pointers into
1073 debug_line_buffer. If you try to free them, `free' will get
1074 indigestion. */
1075 unsigned int num_include_dirs, include_dirs_size;
1076 const char **include_dirs;
1077
1078 /* The file_names table. NOTE! These strings are not allocated
1079 with xmalloc; instead, they are pointers into debug_line_buffer.
1080 Don't try to free them directly. */
1081 unsigned int num_file_names, file_names_size;
1082 struct file_entry *file_names;
1083
1084 /* The start and end of the statement program following this
1085 header. These point into dwarf2_per_objfile->line_buffer. */
1086 const gdb_byte *statement_program_start, *statement_program_end;
1087 };
1088
1089 /* When we construct a partial symbol table entry we only
1090 need this much information. */
1091 struct partial_die_info
1092 {
1093 /* Offset of this DIE. */
1094 sect_offset offset;
1095
1096 /* DWARF-2 tag for this DIE. */
1097 ENUM_BITFIELD(dwarf_tag) tag : 16;
1098
1099 /* Assorted flags describing the data found in this DIE. */
1100 unsigned int has_children : 1;
1101 unsigned int is_external : 1;
1102 unsigned int is_declaration : 1;
1103 unsigned int has_type : 1;
1104 unsigned int has_specification : 1;
1105 unsigned int has_pc_info : 1;
1106 unsigned int may_be_inlined : 1;
1107
1108 /* Flag set if the SCOPE field of this structure has been
1109 computed. */
1110 unsigned int scope_set : 1;
1111
1112 /* Flag set if the DIE has a byte_size attribute. */
1113 unsigned int has_byte_size : 1;
1114
1115 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1116 unsigned int has_const_value : 1;
1117
1118 /* Flag set if any of the DIE's children are template arguments. */
1119 unsigned int has_template_arguments : 1;
1120
1121 /* Flag set if fixup_partial_die has been called on this die. */
1122 unsigned int fixup_called : 1;
1123
1124 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1125 unsigned int is_dwz : 1;
1126
1127 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1128 unsigned int spec_is_dwz : 1;
1129
1130 /* The name of this DIE. Normally the value of DW_AT_name, but
1131 sometimes a default name for unnamed DIEs. */
1132 const char *name;
1133
1134 /* The linkage name, if present. */
1135 const char *linkage_name;
1136
1137 /* The scope to prepend to our children. This is generally
1138 allocated on the comp_unit_obstack, so will disappear
1139 when this compilation unit leaves the cache. */
1140 const char *scope;
1141
1142 /* Some data associated with the partial DIE. The tag determines
1143 which field is live. */
1144 union
1145 {
1146 /* The location description associated with this DIE, if any. */
1147 struct dwarf_block *locdesc;
1148 /* The offset of an import, for DW_TAG_imported_unit. */
1149 sect_offset offset;
1150 } d;
1151
1152 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1153 CORE_ADDR lowpc;
1154 CORE_ADDR highpc;
1155
1156 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1157 DW_AT_sibling, if any. */
1158 /* NOTE: This member isn't strictly necessary, read_partial_die could
1159 return DW_AT_sibling values to its caller load_partial_dies. */
1160 const gdb_byte *sibling;
1161
1162 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1163 DW_AT_specification (or DW_AT_abstract_origin or
1164 DW_AT_extension). */
1165 sect_offset spec_offset;
1166
1167 /* Pointers to this DIE's parent, first child, and next sibling,
1168 if any. */
1169 struct partial_die_info *die_parent, *die_child, *die_sibling;
1170 };
1171
1172 /* This data structure holds the information of an abbrev. */
1173 struct abbrev_info
1174 {
1175 unsigned int number; /* number identifying abbrev */
1176 enum dwarf_tag tag; /* dwarf tag */
1177 unsigned short has_children; /* boolean */
1178 unsigned short num_attrs; /* number of attributes */
1179 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1180 struct abbrev_info *next; /* next in chain */
1181 };
1182
1183 struct attr_abbrev
1184 {
1185 ENUM_BITFIELD(dwarf_attribute) name : 16;
1186 ENUM_BITFIELD(dwarf_form) form : 16;
1187 };
1188
1189 /* Size of abbrev_table.abbrev_hash_table. */
1190 #define ABBREV_HASH_SIZE 121
1191
1192 /* Top level data structure to contain an abbreviation table. */
1193
1194 struct abbrev_table
1195 {
1196 /* Where the abbrev table came from.
1197 This is used as a sanity check when the table is used. */
1198 sect_offset offset;
1199
1200 /* Storage for the abbrev table. */
1201 struct obstack abbrev_obstack;
1202
1203 /* Hash table of abbrevs.
1204 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1205 It could be statically allocated, but the previous code didn't so we
1206 don't either. */
1207 struct abbrev_info **abbrevs;
1208 };
1209
1210 /* Attributes have a name and a value. */
1211 struct attribute
1212 {
1213 ENUM_BITFIELD(dwarf_attribute) name : 16;
1214 ENUM_BITFIELD(dwarf_form) form : 15;
1215
1216 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1217 field should be in u.str (existing only for DW_STRING) but it is kept
1218 here for better struct attribute alignment. */
1219 unsigned int string_is_canonical : 1;
1220
1221 union
1222 {
1223 const char *str;
1224 struct dwarf_block *blk;
1225 ULONGEST unsnd;
1226 LONGEST snd;
1227 CORE_ADDR addr;
1228 ULONGEST signature;
1229 }
1230 u;
1231 };
1232
1233 /* This data structure holds a complete die structure. */
1234 struct die_info
1235 {
1236 /* DWARF-2 tag for this DIE. */
1237 ENUM_BITFIELD(dwarf_tag) tag : 16;
1238
1239 /* Number of attributes */
1240 unsigned char num_attrs;
1241
1242 /* True if we're presently building the full type name for the
1243 type derived from this DIE. */
1244 unsigned char building_fullname : 1;
1245
1246 /* True if this die is in process. PR 16581. */
1247 unsigned char in_process : 1;
1248
1249 /* Abbrev number */
1250 unsigned int abbrev;
1251
1252 /* Offset in .debug_info or .debug_types section. */
1253 sect_offset offset;
1254
1255 /* The dies in a compilation unit form an n-ary tree. PARENT
1256 points to this die's parent; CHILD points to the first child of
1257 this node; and all the children of a given node are chained
1258 together via their SIBLING fields. */
1259 struct die_info *child; /* Its first child, if any. */
1260 struct die_info *sibling; /* Its next sibling, if any. */
1261 struct die_info *parent; /* Its parent, if any. */
1262
1263 /* An array of attributes, with NUM_ATTRS elements. There may be
1264 zero, but it's not common and zero-sized arrays are not
1265 sufficiently portable C. */
1266 struct attribute attrs[1];
1267 };
1268
1269 /* Get at parts of an attribute structure. */
1270
1271 #define DW_STRING(attr) ((attr)->u.str)
1272 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1273 #define DW_UNSND(attr) ((attr)->u.unsnd)
1274 #define DW_BLOCK(attr) ((attr)->u.blk)
1275 #define DW_SND(attr) ((attr)->u.snd)
1276 #define DW_ADDR(attr) ((attr)->u.addr)
1277 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1278
1279 /* Blocks are a bunch of untyped bytes. */
1280 struct dwarf_block
1281 {
1282 size_t size;
1283
1284 /* Valid only if SIZE is not zero. */
1285 const gdb_byte *data;
1286 };
1287
1288 #ifndef ATTR_ALLOC_CHUNK
1289 #define ATTR_ALLOC_CHUNK 4
1290 #endif
1291
1292 /* Allocate fields for structs, unions and enums in this size. */
1293 #ifndef DW_FIELD_ALLOC_CHUNK
1294 #define DW_FIELD_ALLOC_CHUNK 4
1295 #endif
1296
1297 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1298 but this would require a corresponding change in unpack_field_as_long
1299 and friends. */
1300 static int bits_per_byte = 8;
1301
1302 struct nextfield
1303 {
1304 struct nextfield *next;
1305 int accessibility;
1306 int virtuality;
1307 struct field field;
1308 };
1309
1310 struct nextfnfield
1311 {
1312 struct nextfnfield *next;
1313 struct fn_field fnfield;
1314 };
1315
1316 struct fnfieldlist
1317 {
1318 const char *name;
1319 int length;
1320 struct nextfnfield *head;
1321 };
1322
1323 struct typedef_field_list
1324 {
1325 struct typedef_field field;
1326 struct typedef_field_list *next;
1327 };
1328
1329 /* The routines that read and process dies for a C struct or C++ class
1330 pass lists of data member fields and lists of member function fields
1331 in an instance of a field_info structure, as defined below. */
1332 struct field_info
1333 {
1334 /* List of data member and baseclasses fields. */
1335 struct nextfield *fields, *baseclasses;
1336
1337 /* Number of fields (including baseclasses). */
1338 int nfields;
1339
1340 /* Number of baseclasses. */
1341 int nbaseclasses;
1342
1343 /* Set if the accesibility of one of the fields is not public. */
1344 int non_public_fields;
1345
1346 /* Member function fields array, entries are allocated in the order they
1347 are encountered in the object file. */
1348 struct nextfnfield *fnfields;
1349
1350 /* Member function fieldlist array, contains name of possibly overloaded
1351 member function, number of overloaded member functions and a pointer
1352 to the head of the member function field chain. */
1353 struct fnfieldlist *fnfieldlists;
1354
1355 /* Number of entries in the fnfieldlists array. */
1356 int nfnfields;
1357
1358 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1359 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1360 struct typedef_field_list *typedef_field_list;
1361 unsigned typedef_field_list_count;
1362 };
1363
1364 /* One item on the queue of compilation units to read in full symbols
1365 for. */
1366 struct dwarf2_queue_item
1367 {
1368 struct dwarf2_per_cu_data *per_cu;
1369 enum language pretend_language;
1370 struct dwarf2_queue_item *next;
1371 };
1372
1373 /* The current queue. */
1374 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1375
1376 /* Loaded secondary compilation units are kept in memory until they
1377 have not been referenced for the processing of this many
1378 compilation units. Set this to zero to disable caching. Cache
1379 sizes of up to at least twenty will improve startup time for
1380 typical inter-CU-reference binaries, at an obvious memory cost. */
1381 static int dwarf_max_cache_age = 5;
1382 static void
1383 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1384 struct cmd_list_element *c, const char *value)
1385 {
1386 fprintf_filtered (file, _("The upper bound on the age of cached "
1387 "DWARF compilation units is %s.\n"),
1388 value);
1389 }
1390 \f
1391 /* local function prototypes */
1392
1393 static const char *get_section_name (const struct dwarf2_section_info *);
1394
1395 static const char *get_section_file_name (const struct dwarf2_section_info *);
1396
1397 static void dwarf2_locate_sections (bfd *, asection *, void *);
1398
1399 static void dwarf2_find_base_address (struct die_info *die,
1400 struct dwarf2_cu *cu);
1401
1402 static struct partial_symtab *create_partial_symtab
1403 (struct dwarf2_per_cu_data *per_cu, const char *name);
1404
1405 static void dwarf2_build_psymtabs_hard (struct objfile *);
1406
1407 static void scan_partial_symbols (struct partial_die_info *,
1408 CORE_ADDR *, CORE_ADDR *,
1409 int, struct dwarf2_cu *);
1410
1411 static void add_partial_symbol (struct partial_die_info *,
1412 struct dwarf2_cu *);
1413
1414 static void add_partial_namespace (struct partial_die_info *pdi,
1415 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1416 int set_addrmap, struct dwarf2_cu *cu);
1417
1418 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1419 CORE_ADDR *highpc, int set_addrmap,
1420 struct dwarf2_cu *cu);
1421
1422 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1423 struct dwarf2_cu *cu);
1424
1425 static void add_partial_subprogram (struct partial_die_info *pdi,
1426 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1427 int need_pc, struct dwarf2_cu *cu);
1428
1429 static void dwarf2_read_symtab (struct partial_symtab *,
1430 struct objfile *);
1431
1432 static void psymtab_to_symtab_1 (struct partial_symtab *);
1433
1434 static struct abbrev_info *abbrev_table_lookup_abbrev
1435 (const struct abbrev_table *, unsigned int);
1436
1437 static struct abbrev_table *abbrev_table_read_table
1438 (struct dwarf2_section_info *, sect_offset);
1439
1440 static void abbrev_table_free (struct abbrev_table *);
1441
1442 static void abbrev_table_free_cleanup (void *);
1443
1444 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1445 struct dwarf2_section_info *);
1446
1447 static void dwarf2_free_abbrev_table (void *);
1448
1449 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1450
1451 static struct partial_die_info *load_partial_dies
1452 (const struct die_reader_specs *, const gdb_byte *, int);
1453
1454 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1455 struct partial_die_info *,
1456 struct abbrev_info *,
1457 unsigned int,
1458 const gdb_byte *);
1459
1460 static struct partial_die_info *find_partial_die (sect_offset, int,
1461 struct dwarf2_cu *);
1462
1463 static void fixup_partial_die (struct partial_die_info *,
1464 struct dwarf2_cu *);
1465
1466 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1467 struct attribute *, struct attr_abbrev *,
1468 const gdb_byte *);
1469
1470 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1471
1472 static int read_1_signed_byte (bfd *, const gdb_byte *);
1473
1474 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1475
1476 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1477
1478 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1479
1480 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1481 unsigned int *);
1482
1483 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1484
1485 static LONGEST read_checked_initial_length_and_offset
1486 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1487 unsigned int *, unsigned int *);
1488
1489 static LONGEST read_offset (bfd *, const gdb_byte *,
1490 const struct comp_unit_head *,
1491 unsigned int *);
1492
1493 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1494
1495 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1496 sect_offset);
1497
1498 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1499
1500 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1501
1502 static const char *read_indirect_string (bfd *, const gdb_byte *,
1503 const struct comp_unit_head *,
1504 unsigned int *);
1505
1506 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1507
1508 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1509
1510 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1511
1512 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1513 const gdb_byte *,
1514 unsigned int *);
1515
1516 static const char *read_str_index (const struct die_reader_specs *reader,
1517 ULONGEST str_index);
1518
1519 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1520
1521 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1522 struct dwarf2_cu *);
1523
1524 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1525 unsigned int);
1526
1527 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1528 struct dwarf2_cu *cu);
1529
1530 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1531 struct dwarf2_cu *cu);
1532
1533 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1534
1535 static struct die_info *die_specification (struct die_info *die,
1536 struct dwarf2_cu **);
1537
1538 static void free_line_header (struct line_header *lh);
1539
1540 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1541 struct dwarf2_cu *cu);
1542
1543 static void dwarf_decode_lines (struct line_header *, const char *,
1544 struct dwarf2_cu *, struct partial_symtab *,
1545 CORE_ADDR, int decode_mapping);
1546
1547 static void dwarf2_start_subfile (const char *, const char *);
1548
1549 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1550 const char *, const char *,
1551 CORE_ADDR);
1552
1553 static struct symbol *new_symbol (struct die_info *, struct type *,
1554 struct dwarf2_cu *);
1555
1556 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1557 struct dwarf2_cu *, struct symbol *);
1558
1559 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1560 struct dwarf2_cu *);
1561
1562 static void dwarf2_const_value_attr (const struct attribute *attr,
1563 struct type *type,
1564 const char *name,
1565 struct obstack *obstack,
1566 struct dwarf2_cu *cu, LONGEST *value,
1567 const gdb_byte **bytes,
1568 struct dwarf2_locexpr_baton **baton);
1569
1570 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1571
1572 static int need_gnat_info (struct dwarf2_cu *);
1573
1574 static struct type *die_descriptive_type (struct die_info *,
1575 struct dwarf2_cu *);
1576
1577 static void set_descriptive_type (struct type *, struct die_info *,
1578 struct dwarf2_cu *);
1579
1580 static struct type *die_containing_type (struct die_info *,
1581 struct dwarf2_cu *);
1582
1583 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1584 struct dwarf2_cu *);
1585
1586 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1587
1588 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1589
1590 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1591
1592 static char *typename_concat (struct obstack *obs, const char *prefix,
1593 const char *suffix, int physname,
1594 struct dwarf2_cu *cu);
1595
1596 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1597
1598 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1599
1600 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1601
1602 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1603
1604 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1605
1606 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1607 struct dwarf2_cu *, struct partial_symtab *);
1608
1609 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1610 values. Keep the items ordered with increasing constraints compliance. */
1611 enum pc_bounds_kind
1612 {
1613 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1614 PC_BOUNDS_NOT_PRESENT,
1615
1616 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1617 were present but they do not form a valid range of PC addresses. */
1618 PC_BOUNDS_INVALID,
1619
1620 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1621 PC_BOUNDS_RANGES,
1622
1623 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1624 PC_BOUNDS_HIGH_LOW,
1625 };
1626
1627 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1628 CORE_ADDR *, CORE_ADDR *,
1629 struct dwarf2_cu *,
1630 struct partial_symtab *);
1631
1632 static void get_scope_pc_bounds (struct die_info *,
1633 CORE_ADDR *, CORE_ADDR *,
1634 struct dwarf2_cu *);
1635
1636 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1637 CORE_ADDR, struct dwarf2_cu *);
1638
1639 static void dwarf2_add_field (struct field_info *, struct die_info *,
1640 struct dwarf2_cu *);
1641
1642 static void dwarf2_attach_fields_to_type (struct field_info *,
1643 struct type *, struct dwarf2_cu *);
1644
1645 static void dwarf2_add_member_fn (struct field_info *,
1646 struct die_info *, struct type *,
1647 struct dwarf2_cu *);
1648
1649 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1650 struct type *,
1651 struct dwarf2_cu *);
1652
1653 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1654
1655 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1656
1657 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1658
1659 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1660
1661 static struct using_direct **using_directives (enum language);
1662
1663 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1664
1665 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1666
1667 static struct type *read_module_type (struct die_info *die,
1668 struct dwarf2_cu *cu);
1669
1670 static const char *namespace_name (struct die_info *die,
1671 int *is_anonymous, struct dwarf2_cu *);
1672
1673 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1674
1675 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1676
1677 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1678 struct dwarf2_cu *);
1679
1680 static struct die_info *read_die_and_siblings_1
1681 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1682 struct die_info *);
1683
1684 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1685 const gdb_byte *info_ptr,
1686 const gdb_byte **new_info_ptr,
1687 struct die_info *parent);
1688
1689 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1690 struct die_info **, const gdb_byte *,
1691 int *, int);
1692
1693 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1694 struct die_info **, const gdb_byte *,
1695 int *);
1696
1697 static void process_die (struct die_info *, struct dwarf2_cu *);
1698
1699 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1700 struct obstack *);
1701
1702 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1703
1704 static const char *dwarf2_full_name (const char *name,
1705 struct die_info *die,
1706 struct dwarf2_cu *cu);
1707
1708 static const char *dwarf2_physname (const char *name, struct die_info *die,
1709 struct dwarf2_cu *cu);
1710
1711 static struct die_info *dwarf2_extension (struct die_info *die,
1712 struct dwarf2_cu **);
1713
1714 static const char *dwarf_tag_name (unsigned int);
1715
1716 static const char *dwarf_attr_name (unsigned int);
1717
1718 static const char *dwarf_form_name (unsigned int);
1719
1720 static char *dwarf_bool_name (unsigned int);
1721
1722 static const char *dwarf_type_encoding_name (unsigned int);
1723
1724 static struct die_info *sibling_die (struct die_info *);
1725
1726 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1727
1728 static void dump_die_for_error (struct die_info *);
1729
1730 static void dump_die_1 (struct ui_file *, int level, int max_level,
1731 struct die_info *);
1732
1733 /*static*/ void dump_die (struct die_info *, int max_level);
1734
1735 static void store_in_ref_table (struct die_info *,
1736 struct dwarf2_cu *);
1737
1738 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1739
1740 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1741
1742 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1743 const struct attribute *,
1744 struct dwarf2_cu **);
1745
1746 static struct die_info *follow_die_ref (struct die_info *,
1747 const struct attribute *,
1748 struct dwarf2_cu **);
1749
1750 static struct die_info *follow_die_sig (struct die_info *,
1751 const struct attribute *,
1752 struct dwarf2_cu **);
1753
1754 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1755 struct dwarf2_cu *);
1756
1757 static struct type *get_DW_AT_signature_type (struct die_info *,
1758 const struct attribute *,
1759 struct dwarf2_cu *);
1760
1761 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1762
1763 static void read_signatured_type (struct signatured_type *);
1764
1765 static int attr_to_dynamic_prop (const struct attribute *attr,
1766 struct die_info *die, struct dwarf2_cu *cu,
1767 struct dynamic_prop *prop);
1768
1769 /* memory allocation interface */
1770
1771 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1772
1773 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1774
1775 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1776
1777 static int attr_form_is_block (const struct attribute *);
1778
1779 static int attr_form_is_section_offset (const struct attribute *);
1780
1781 static int attr_form_is_constant (const struct attribute *);
1782
1783 static int attr_form_is_ref (const struct attribute *);
1784
1785 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1786 struct dwarf2_loclist_baton *baton,
1787 const struct attribute *attr);
1788
1789 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1790 struct symbol *sym,
1791 struct dwarf2_cu *cu,
1792 int is_block);
1793
1794 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1795 const gdb_byte *info_ptr,
1796 struct abbrev_info *abbrev);
1797
1798 static void free_stack_comp_unit (void *);
1799
1800 static hashval_t partial_die_hash (const void *item);
1801
1802 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1803
1804 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1805 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1806
1807 static void init_one_comp_unit (struct dwarf2_cu *cu,
1808 struct dwarf2_per_cu_data *per_cu);
1809
1810 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1811 struct die_info *comp_unit_die,
1812 enum language pretend_language);
1813
1814 static void free_heap_comp_unit (void *);
1815
1816 static void free_cached_comp_units (void *);
1817
1818 static void age_cached_comp_units (void);
1819
1820 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1821
1822 static struct type *set_die_type (struct die_info *, struct type *,
1823 struct dwarf2_cu *);
1824
1825 static void create_all_comp_units (struct objfile *);
1826
1827 static int create_all_type_units (struct objfile *);
1828
1829 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1830 enum language);
1831
1832 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1833 enum language);
1834
1835 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1836 enum language);
1837
1838 static void dwarf2_add_dependence (struct dwarf2_cu *,
1839 struct dwarf2_per_cu_data *);
1840
1841 static void dwarf2_mark (struct dwarf2_cu *);
1842
1843 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1844
1845 static struct type *get_die_type_at_offset (sect_offset,
1846 struct dwarf2_per_cu_data *);
1847
1848 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1849
1850 static void dwarf2_release_queue (void *dummy);
1851
1852 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1853 enum language pretend_language);
1854
1855 static void process_queue (void);
1856
1857 static void find_file_and_directory (struct die_info *die,
1858 struct dwarf2_cu *cu,
1859 const char **name, const char **comp_dir);
1860
1861 static char *file_full_name (int file, struct line_header *lh,
1862 const char *comp_dir);
1863
1864 static const gdb_byte *read_and_check_comp_unit_head
1865 (struct comp_unit_head *header,
1866 struct dwarf2_section_info *section,
1867 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1868 int is_debug_types_section);
1869
1870 static void init_cutu_and_read_dies
1871 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1872 int use_existing_cu, int keep,
1873 die_reader_func_ftype *die_reader_func, void *data);
1874
1875 static void init_cutu_and_read_dies_simple
1876 (struct dwarf2_per_cu_data *this_cu,
1877 die_reader_func_ftype *die_reader_func, void *data);
1878
1879 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1880
1881 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1882
1883 static struct dwo_unit *lookup_dwo_unit_in_dwp
1884 (struct dwp_file *dwp_file, const char *comp_dir,
1885 ULONGEST signature, int is_debug_types);
1886
1887 static struct dwp_file *get_dwp_file (void);
1888
1889 static struct dwo_unit *lookup_dwo_comp_unit
1890 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1891
1892 static struct dwo_unit *lookup_dwo_type_unit
1893 (struct signatured_type *, const char *, const char *);
1894
1895 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1896
1897 static void free_dwo_file_cleanup (void *);
1898
1899 static void process_cu_includes (void);
1900
1901 static void check_producer (struct dwarf2_cu *cu);
1902
1903 static void free_line_header_voidp (void *arg);
1904 \f
1905 /* Various complaints about symbol reading that don't abort the process. */
1906
1907 static void
1908 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1909 {
1910 complaint (&symfile_complaints,
1911 _("statement list doesn't fit in .debug_line section"));
1912 }
1913
1914 static void
1915 dwarf2_debug_line_missing_file_complaint (void)
1916 {
1917 complaint (&symfile_complaints,
1918 _(".debug_line section has line data without a file"));
1919 }
1920
1921 static void
1922 dwarf2_debug_line_missing_end_sequence_complaint (void)
1923 {
1924 complaint (&symfile_complaints,
1925 _(".debug_line section has line "
1926 "program sequence without an end"));
1927 }
1928
1929 static void
1930 dwarf2_complex_location_expr_complaint (void)
1931 {
1932 complaint (&symfile_complaints, _("location expression too complex"));
1933 }
1934
1935 static void
1936 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1937 int arg3)
1938 {
1939 complaint (&symfile_complaints,
1940 _("const value length mismatch for '%s', got %d, expected %d"),
1941 arg1, arg2, arg3);
1942 }
1943
1944 static void
1945 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1946 {
1947 complaint (&symfile_complaints,
1948 _("debug info runs off end of %s section"
1949 " [in module %s]"),
1950 get_section_name (section),
1951 get_section_file_name (section));
1952 }
1953
1954 static void
1955 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1956 {
1957 complaint (&symfile_complaints,
1958 _("macro debug info contains a "
1959 "malformed macro definition:\n`%s'"),
1960 arg1);
1961 }
1962
1963 static void
1964 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1965 {
1966 complaint (&symfile_complaints,
1967 _("invalid attribute class or form for '%s' in '%s'"),
1968 arg1, arg2);
1969 }
1970
1971 /* Hash function for line_header_hash. */
1972
1973 static hashval_t
1974 line_header_hash (const struct line_header *ofs)
1975 {
1976 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
1977 }
1978
1979 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1980
1981 static hashval_t
1982 line_header_hash_voidp (const void *item)
1983 {
1984 const struct line_header *ofs = (const struct line_header *) item;
1985
1986 return line_header_hash (ofs);
1987 }
1988
1989 /* Equality function for line_header_hash. */
1990
1991 static int
1992 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1993 {
1994 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
1995 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
1996
1997 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
1998 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1999 }
2000
2001 \f
2002 #if WORDS_BIGENDIAN
2003
2004 /* Convert VALUE between big- and little-endian. */
2005 static offset_type
2006 byte_swap (offset_type value)
2007 {
2008 offset_type result;
2009
2010 result = (value & 0xff) << 24;
2011 result |= (value & 0xff00) << 8;
2012 result |= (value & 0xff0000) >> 8;
2013 result |= (value & 0xff000000) >> 24;
2014 return result;
2015 }
2016
2017 #define MAYBE_SWAP(V) byte_swap (V)
2018
2019 #else
2020 #define MAYBE_SWAP(V) (V)
2021 #endif /* WORDS_BIGENDIAN */
2022
2023 /* Read the given attribute value as an address, taking the attribute's
2024 form into account. */
2025
2026 static CORE_ADDR
2027 attr_value_as_address (struct attribute *attr)
2028 {
2029 CORE_ADDR addr;
2030
2031 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2032 {
2033 /* Aside from a few clearly defined exceptions, attributes that
2034 contain an address must always be in DW_FORM_addr form.
2035 Unfortunately, some compilers happen to be violating this
2036 requirement by encoding addresses using other forms, such
2037 as DW_FORM_data4 for example. For those broken compilers,
2038 we try to do our best, without any guarantee of success,
2039 to interpret the address correctly. It would also be nice
2040 to generate a complaint, but that would require us to maintain
2041 a list of legitimate cases where a non-address form is allowed,
2042 as well as update callers to pass in at least the CU's DWARF
2043 version. This is more overhead than what we're willing to
2044 expand for a pretty rare case. */
2045 addr = DW_UNSND (attr);
2046 }
2047 else
2048 addr = DW_ADDR (attr);
2049
2050 return addr;
2051 }
2052
2053 /* The suffix for an index file. */
2054 #define INDEX_SUFFIX ".gdb-index"
2055
2056 /* Try to locate the sections we need for DWARF 2 debugging
2057 information and return true if we have enough to do something.
2058 NAMES points to the dwarf2 section names, or is NULL if the standard
2059 ELF names are used. */
2060
2061 int
2062 dwarf2_has_info (struct objfile *objfile,
2063 const struct dwarf2_debug_sections *names)
2064 {
2065 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2066 objfile_data (objfile, dwarf2_objfile_data_key));
2067 if (!dwarf2_per_objfile)
2068 {
2069 /* Initialize per-objfile state. */
2070 struct dwarf2_per_objfile *data
2071 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
2072
2073 memset (data, 0, sizeof (*data));
2074 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2075 dwarf2_per_objfile = data;
2076
2077 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2078 (void *) names);
2079 dwarf2_per_objfile->objfile = objfile;
2080 }
2081 return (!dwarf2_per_objfile->info.is_virtual
2082 && dwarf2_per_objfile->info.s.section != NULL
2083 && !dwarf2_per_objfile->abbrev.is_virtual
2084 && dwarf2_per_objfile->abbrev.s.section != NULL);
2085 }
2086
2087 /* Return the containing section of virtual section SECTION. */
2088
2089 static struct dwarf2_section_info *
2090 get_containing_section (const struct dwarf2_section_info *section)
2091 {
2092 gdb_assert (section->is_virtual);
2093 return section->s.containing_section;
2094 }
2095
2096 /* Return the bfd owner of SECTION. */
2097
2098 static struct bfd *
2099 get_section_bfd_owner (const struct dwarf2_section_info *section)
2100 {
2101 if (section->is_virtual)
2102 {
2103 section = get_containing_section (section);
2104 gdb_assert (!section->is_virtual);
2105 }
2106 return section->s.section->owner;
2107 }
2108
2109 /* Return the bfd section of SECTION.
2110 Returns NULL if the section is not present. */
2111
2112 static asection *
2113 get_section_bfd_section (const struct dwarf2_section_info *section)
2114 {
2115 if (section->is_virtual)
2116 {
2117 section = get_containing_section (section);
2118 gdb_assert (!section->is_virtual);
2119 }
2120 return section->s.section;
2121 }
2122
2123 /* Return the name of SECTION. */
2124
2125 static const char *
2126 get_section_name (const struct dwarf2_section_info *section)
2127 {
2128 asection *sectp = get_section_bfd_section (section);
2129
2130 gdb_assert (sectp != NULL);
2131 return bfd_section_name (get_section_bfd_owner (section), sectp);
2132 }
2133
2134 /* Return the name of the file SECTION is in. */
2135
2136 static const char *
2137 get_section_file_name (const struct dwarf2_section_info *section)
2138 {
2139 bfd *abfd = get_section_bfd_owner (section);
2140
2141 return bfd_get_filename (abfd);
2142 }
2143
2144 /* Return the id of SECTION.
2145 Returns 0 if SECTION doesn't exist. */
2146
2147 static int
2148 get_section_id (const struct dwarf2_section_info *section)
2149 {
2150 asection *sectp = get_section_bfd_section (section);
2151
2152 if (sectp == NULL)
2153 return 0;
2154 return sectp->id;
2155 }
2156
2157 /* Return the flags of SECTION.
2158 SECTION (or containing section if this is a virtual section) must exist. */
2159
2160 static int
2161 get_section_flags (const struct dwarf2_section_info *section)
2162 {
2163 asection *sectp = get_section_bfd_section (section);
2164
2165 gdb_assert (sectp != NULL);
2166 return bfd_get_section_flags (sectp->owner, sectp);
2167 }
2168
2169 /* When loading sections, we look either for uncompressed section or for
2170 compressed section names. */
2171
2172 static int
2173 section_is_p (const char *section_name,
2174 const struct dwarf2_section_names *names)
2175 {
2176 if (names->normal != NULL
2177 && strcmp (section_name, names->normal) == 0)
2178 return 1;
2179 if (names->compressed != NULL
2180 && strcmp (section_name, names->compressed) == 0)
2181 return 1;
2182 return 0;
2183 }
2184
2185 /* This function is mapped across the sections and remembers the
2186 offset and size of each of the debugging sections we are interested
2187 in. */
2188
2189 static void
2190 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2191 {
2192 const struct dwarf2_debug_sections *names;
2193 flagword aflag = bfd_get_section_flags (abfd, sectp);
2194
2195 if (vnames == NULL)
2196 names = &dwarf2_elf_names;
2197 else
2198 names = (const struct dwarf2_debug_sections *) vnames;
2199
2200 if ((aflag & SEC_HAS_CONTENTS) == 0)
2201 {
2202 }
2203 else if (section_is_p (sectp->name, &names->info))
2204 {
2205 dwarf2_per_objfile->info.s.section = sectp;
2206 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2207 }
2208 else if (section_is_p (sectp->name, &names->abbrev))
2209 {
2210 dwarf2_per_objfile->abbrev.s.section = sectp;
2211 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2212 }
2213 else if (section_is_p (sectp->name, &names->line))
2214 {
2215 dwarf2_per_objfile->line.s.section = sectp;
2216 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2217 }
2218 else if (section_is_p (sectp->name, &names->loc))
2219 {
2220 dwarf2_per_objfile->loc.s.section = sectp;
2221 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2222 }
2223 else if (section_is_p (sectp->name, &names->macinfo))
2224 {
2225 dwarf2_per_objfile->macinfo.s.section = sectp;
2226 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2227 }
2228 else if (section_is_p (sectp->name, &names->macro))
2229 {
2230 dwarf2_per_objfile->macro.s.section = sectp;
2231 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2232 }
2233 else if (section_is_p (sectp->name, &names->str))
2234 {
2235 dwarf2_per_objfile->str.s.section = sectp;
2236 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2237 }
2238 else if (section_is_p (sectp->name, &names->addr))
2239 {
2240 dwarf2_per_objfile->addr.s.section = sectp;
2241 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2242 }
2243 else if (section_is_p (sectp->name, &names->frame))
2244 {
2245 dwarf2_per_objfile->frame.s.section = sectp;
2246 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2247 }
2248 else if (section_is_p (sectp->name, &names->eh_frame))
2249 {
2250 dwarf2_per_objfile->eh_frame.s.section = sectp;
2251 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2252 }
2253 else if (section_is_p (sectp->name, &names->ranges))
2254 {
2255 dwarf2_per_objfile->ranges.s.section = sectp;
2256 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2257 }
2258 else if (section_is_p (sectp->name, &names->types))
2259 {
2260 struct dwarf2_section_info type_section;
2261
2262 memset (&type_section, 0, sizeof (type_section));
2263 type_section.s.section = sectp;
2264 type_section.size = bfd_get_section_size (sectp);
2265
2266 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2267 &type_section);
2268 }
2269 else if (section_is_p (sectp->name, &names->gdb_index))
2270 {
2271 dwarf2_per_objfile->gdb_index.s.section = sectp;
2272 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2273 }
2274
2275 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2276 && bfd_section_vma (abfd, sectp) == 0)
2277 dwarf2_per_objfile->has_section_at_zero = 1;
2278 }
2279
2280 /* A helper function that decides whether a section is empty,
2281 or not present. */
2282
2283 static int
2284 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2285 {
2286 if (section->is_virtual)
2287 return section->size == 0;
2288 return section->s.section == NULL || section->size == 0;
2289 }
2290
2291 /* Read the contents of the section INFO.
2292 OBJFILE is the main object file, but not necessarily the file where
2293 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2294 of the DWO file.
2295 If the section is compressed, uncompress it before returning. */
2296
2297 static void
2298 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2299 {
2300 asection *sectp;
2301 bfd *abfd;
2302 gdb_byte *buf, *retbuf;
2303
2304 if (info->readin)
2305 return;
2306 info->buffer = NULL;
2307 info->readin = 1;
2308
2309 if (dwarf2_section_empty_p (info))
2310 return;
2311
2312 sectp = get_section_bfd_section (info);
2313
2314 /* If this is a virtual section we need to read in the real one first. */
2315 if (info->is_virtual)
2316 {
2317 struct dwarf2_section_info *containing_section =
2318 get_containing_section (info);
2319
2320 gdb_assert (sectp != NULL);
2321 if ((sectp->flags & SEC_RELOC) != 0)
2322 {
2323 error (_("Dwarf Error: DWP format V2 with relocations is not"
2324 " supported in section %s [in module %s]"),
2325 get_section_name (info), get_section_file_name (info));
2326 }
2327 dwarf2_read_section (objfile, containing_section);
2328 /* Other code should have already caught virtual sections that don't
2329 fit. */
2330 gdb_assert (info->virtual_offset + info->size
2331 <= containing_section->size);
2332 /* If the real section is empty or there was a problem reading the
2333 section we shouldn't get here. */
2334 gdb_assert (containing_section->buffer != NULL);
2335 info->buffer = containing_section->buffer + info->virtual_offset;
2336 return;
2337 }
2338
2339 /* If the section has relocations, we must read it ourselves.
2340 Otherwise we attach it to the BFD. */
2341 if ((sectp->flags & SEC_RELOC) == 0)
2342 {
2343 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2344 return;
2345 }
2346
2347 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2348 info->buffer = buf;
2349
2350 /* When debugging .o files, we may need to apply relocations; see
2351 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2352 We never compress sections in .o files, so we only need to
2353 try this when the section is not compressed. */
2354 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2355 if (retbuf != NULL)
2356 {
2357 info->buffer = retbuf;
2358 return;
2359 }
2360
2361 abfd = get_section_bfd_owner (info);
2362 gdb_assert (abfd != NULL);
2363
2364 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2365 || bfd_bread (buf, info->size, abfd) != info->size)
2366 {
2367 error (_("Dwarf Error: Can't read DWARF data"
2368 " in section %s [in module %s]"),
2369 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2370 }
2371 }
2372
2373 /* A helper function that returns the size of a section in a safe way.
2374 If you are positive that the section has been read before using the
2375 size, then it is safe to refer to the dwarf2_section_info object's
2376 "size" field directly. In other cases, you must call this
2377 function, because for compressed sections the size field is not set
2378 correctly until the section has been read. */
2379
2380 static bfd_size_type
2381 dwarf2_section_size (struct objfile *objfile,
2382 struct dwarf2_section_info *info)
2383 {
2384 if (!info->readin)
2385 dwarf2_read_section (objfile, info);
2386 return info->size;
2387 }
2388
2389 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2390 SECTION_NAME. */
2391
2392 void
2393 dwarf2_get_section_info (struct objfile *objfile,
2394 enum dwarf2_section_enum sect,
2395 asection **sectp, const gdb_byte **bufp,
2396 bfd_size_type *sizep)
2397 {
2398 struct dwarf2_per_objfile *data
2399 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2400 dwarf2_objfile_data_key);
2401 struct dwarf2_section_info *info;
2402
2403 /* We may see an objfile without any DWARF, in which case we just
2404 return nothing. */
2405 if (data == NULL)
2406 {
2407 *sectp = NULL;
2408 *bufp = NULL;
2409 *sizep = 0;
2410 return;
2411 }
2412 switch (sect)
2413 {
2414 case DWARF2_DEBUG_FRAME:
2415 info = &data->frame;
2416 break;
2417 case DWARF2_EH_FRAME:
2418 info = &data->eh_frame;
2419 break;
2420 default:
2421 gdb_assert_not_reached ("unexpected section");
2422 }
2423
2424 dwarf2_read_section (objfile, info);
2425
2426 *sectp = get_section_bfd_section (info);
2427 *bufp = info->buffer;
2428 *sizep = info->size;
2429 }
2430
2431 /* A helper function to find the sections for a .dwz file. */
2432
2433 static void
2434 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2435 {
2436 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2437
2438 /* Note that we only support the standard ELF names, because .dwz
2439 is ELF-only (at the time of writing). */
2440 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2441 {
2442 dwz_file->abbrev.s.section = sectp;
2443 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2444 }
2445 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2446 {
2447 dwz_file->info.s.section = sectp;
2448 dwz_file->info.size = bfd_get_section_size (sectp);
2449 }
2450 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2451 {
2452 dwz_file->str.s.section = sectp;
2453 dwz_file->str.size = bfd_get_section_size (sectp);
2454 }
2455 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2456 {
2457 dwz_file->line.s.section = sectp;
2458 dwz_file->line.size = bfd_get_section_size (sectp);
2459 }
2460 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2461 {
2462 dwz_file->macro.s.section = sectp;
2463 dwz_file->macro.size = bfd_get_section_size (sectp);
2464 }
2465 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2466 {
2467 dwz_file->gdb_index.s.section = sectp;
2468 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2469 }
2470 }
2471
2472 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2473 there is no .gnu_debugaltlink section in the file. Error if there
2474 is such a section but the file cannot be found. */
2475
2476 static struct dwz_file *
2477 dwarf2_get_dwz_file (void)
2478 {
2479 bfd *dwz_bfd;
2480 char *data;
2481 struct cleanup *cleanup;
2482 const char *filename;
2483 struct dwz_file *result;
2484 bfd_size_type buildid_len_arg;
2485 size_t buildid_len;
2486 bfd_byte *buildid;
2487
2488 if (dwarf2_per_objfile->dwz_file != NULL)
2489 return dwarf2_per_objfile->dwz_file;
2490
2491 bfd_set_error (bfd_error_no_error);
2492 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2493 &buildid_len_arg, &buildid);
2494 if (data == NULL)
2495 {
2496 if (bfd_get_error () == bfd_error_no_error)
2497 return NULL;
2498 error (_("could not read '.gnu_debugaltlink' section: %s"),
2499 bfd_errmsg (bfd_get_error ()));
2500 }
2501 cleanup = make_cleanup (xfree, data);
2502 make_cleanup (xfree, buildid);
2503
2504 buildid_len = (size_t) buildid_len_arg;
2505
2506 filename = (const char *) data;
2507 if (!IS_ABSOLUTE_PATH (filename))
2508 {
2509 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2510 char *rel;
2511
2512 make_cleanup (xfree, abs);
2513 abs = ldirname (abs);
2514 make_cleanup (xfree, abs);
2515
2516 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2517 make_cleanup (xfree, rel);
2518 filename = rel;
2519 }
2520
2521 /* First try the file name given in the section. If that doesn't
2522 work, try to use the build-id instead. */
2523 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2524 if (dwz_bfd != NULL)
2525 {
2526 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2527 {
2528 gdb_bfd_unref (dwz_bfd);
2529 dwz_bfd = NULL;
2530 }
2531 }
2532
2533 if (dwz_bfd == NULL)
2534 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2535
2536 if (dwz_bfd == NULL)
2537 error (_("could not find '.gnu_debugaltlink' file for %s"),
2538 objfile_name (dwarf2_per_objfile->objfile));
2539
2540 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2541 struct dwz_file);
2542 result->dwz_bfd = dwz_bfd;
2543
2544 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2545
2546 do_cleanups (cleanup);
2547
2548 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2549 dwarf2_per_objfile->dwz_file = result;
2550 return result;
2551 }
2552 \f
2553 /* DWARF quick_symbols_functions support. */
2554
2555 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2556 unique line tables, so we maintain a separate table of all .debug_line
2557 derived entries to support the sharing.
2558 All the quick functions need is the list of file names. We discard the
2559 line_header when we're done and don't need to record it here. */
2560 struct quick_file_names
2561 {
2562 /* The data used to construct the hash key. */
2563 struct stmt_list_hash hash;
2564
2565 /* The number of entries in file_names, real_names. */
2566 unsigned int num_file_names;
2567
2568 /* The file names from the line table, after being run through
2569 file_full_name. */
2570 const char **file_names;
2571
2572 /* The file names from the line table after being run through
2573 gdb_realpath. These are computed lazily. */
2574 const char **real_names;
2575 };
2576
2577 /* When using the index (and thus not using psymtabs), each CU has an
2578 object of this type. This is used to hold information needed by
2579 the various "quick" methods. */
2580 struct dwarf2_per_cu_quick_data
2581 {
2582 /* The file table. This can be NULL if there was no file table
2583 or it's currently not read in.
2584 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2585 struct quick_file_names *file_names;
2586
2587 /* The corresponding symbol table. This is NULL if symbols for this
2588 CU have not yet been read. */
2589 struct compunit_symtab *compunit_symtab;
2590
2591 /* A temporary mark bit used when iterating over all CUs in
2592 expand_symtabs_matching. */
2593 unsigned int mark : 1;
2594
2595 /* True if we've tried to read the file table and found there isn't one.
2596 There will be no point in trying to read it again next time. */
2597 unsigned int no_file_data : 1;
2598 };
2599
2600 /* Utility hash function for a stmt_list_hash. */
2601
2602 static hashval_t
2603 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2604 {
2605 hashval_t v = 0;
2606
2607 if (stmt_list_hash->dwo_unit != NULL)
2608 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2609 v += stmt_list_hash->line_offset.sect_off;
2610 return v;
2611 }
2612
2613 /* Utility equality function for a stmt_list_hash. */
2614
2615 static int
2616 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2617 const struct stmt_list_hash *rhs)
2618 {
2619 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2620 return 0;
2621 if (lhs->dwo_unit != NULL
2622 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2623 return 0;
2624
2625 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2626 }
2627
2628 /* Hash function for a quick_file_names. */
2629
2630 static hashval_t
2631 hash_file_name_entry (const void *e)
2632 {
2633 const struct quick_file_names *file_data
2634 = (const struct quick_file_names *) e;
2635
2636 return hash_stmt_list_entry (&file_data->hash);
2637 }
2638
2639 /* Equality function for a quick_file_names. */
2640
2641 static int
2642 eq_file_name_entry (const void *a, const void *b)
2643 {
2644 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2645 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2646
2647 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2648 }
2649
2650 /* Delete function for a quick_file_names. */
2651
2652 static void
2653 delete_file_name_entry (void *e)
2654 {
2655 struct quick_file_names *file_data = (struct quick_file_names *) e;
2656 int i;
2657
2658 for (i = 0; i < file_data->num_file_names; ++i)
2659 {
2660 xfree ((void*) file_data->file_names[i]);
2661 if (file_data->real_names)
2662 xfree ((void*) file_data->real_names[i]);
2663 }
2664
2665 /* The space for the struct itself lives on objfile_obstack,
2666 so we don't free it here. */
2667 }
2668
2669 /* Create a quick_file_names hash table. */
2670
2671 static htab_t
2672 create_quick_file_names_table (unsigned int nr_initial_entries)
2673 {
2674 return htab_create_alloc (nr_initial_entries,
2675 hash_file_name_entry, eq_file_name_entry,
2676 delete_file_name_entry, xcalloc, xfree);
2677 }
2678
2679 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2680 have to be created afterwards. You should call age_cached_comp_units after
2681 processing PER_CU->CU. dw2_setup must have been already called. */
2682
2683 static void
2684 load_cu (struct dwarf2_per_cu_data *per_cu)
2685 {
2686 if (per_cu->is_debug_types)
2687 load_full_type_unit (per_cu);
2688 else
2689 load_full_comp_unit (per_cu, language_minimal);
2690
2691 if (per_cu->cu == NULL)
2692 return; /* Dummy CU. */
2693
2694 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2695 }
2696
2697 /* Read in the symbols for PER_CU. */
2698
2699 static void
2700 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2701 {
2702 struct cleanup *back_to;
2703
2704 /* Skip type_unit_groups, reading the type units they contain
2705 is handled elsewhere. */
2706 if (IS_TYPE_UNIT_GROUP (per_cu))
2707 return;
2708
2709 back_to = make_cleanup (dwarf2_release_queue, NULL);
2710
2711 if (dwarf2_per_objfile->using_index
2712 ? per_cu->v.quick->compunit_symtab == NULL
2713 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2714 {
2715 queue_comp_unit (per_cu, language_minimal);
2716 load_cu (per_cu);
2717
2718 /* If we just loaded a CU from a DWO, and we're working with an index
2719 that may badly handle TUs, load all the TUs in that DWO as well.
2720 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2721 if (!per_cu->is_debug_types
2722 && per_cu->cu != NULL
2723 && per_cu->cu->dwo_unit != NULL
2724 && dwarf2_per_objfile->index_table != NULL
2725 && dwarf2_per_objfile->index_table->version <= 7
2726 /* DWP files aren't supported yet. */
2727 && get_dwp_file () == NULL)
2728 queue_and_load_all_dwo_tus (per_cu);
2729 }
2730
2731 process_queue ();
2732
2733 /* Age the cache, releasing compilation units that have not
2734 been used recently. */
2735 age_cached_comp_units ();
2736
2737 do_cleanups (back_to);
2738 }
2739
2740 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2741 the objfile from which this CU came. Returns the resulting symbol
2742 table. */
2743
2744 static struct compunit_symtab *
2745 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2746 {
2747 gdb_assert (dwarf2_per_objfile->using_index);
2748 if (!per_cu->v.quick->compunit_symtab)
2749 {
2750 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2751 increment_reading_symtab ();
2752 dw2_do_instantiate_symtab (per_cu);
2753 process_cu_includes ();
2754 do_cleanups (back_to);
2755 }
2756
2757 return per_cu->v.quick->compunit_symtab;
2758 }
2759
2760 /* Return the CU/TU given its index.
2761
2762 This is intended for loops like:
2763
2764 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2765 + dwarf2_per_objfile->n_type_units); ++i)
2766 {
2767 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2768
2769 ...;
2770 }
2771 */
2772
2773 static struct dwarf2_per_cu_data *
2774 dw2_get_cutu (int index)
2775 {
2776 if (index >= dwarf2_per_objfile->n_comp_units)
2777 {
2778 index -= dwarf2_per_objfile->n_comp_units;
2779 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2780 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2781 }
2782
2783 return dwarf2_per_objfile->all_comp_units[index];
2784 }
2785
2786 /* Return the CU given its index.
2787 This differs from dw2_get_cutu in that it's for when you know INDEX
2788 refers to a CU. */
2789
2790 static struct dwarf2_per_cu_data *
2791 dw2_get_cu (int index)
2792 {
2793 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2794
2795 return dwarf2_per_objfile->all_comp_units[index];
2796 }
2797
2798 /* A helper for create_cus_from_index that handles a given list of
2799 CUs. */
2800
2801 static void
2802 create_cus_from_index_list (struct objfile *objfile,
2803 const gdb_byte *cu_list, offset_type n_elements,
2804 struct dwarf2_section_info *section,
2805 int is_dwz,
2806 int base_offset)
2807 {
2808 offset_type i;
2809
2810 for (i = 0; i < n_elements; i += 2)
2811 {
2812 struct dwarf2_per_cu_data *the_cu;
2813 ULONGEST offset, length;
2814
2815 gdb_static_assert (sizeof (ULONGEST) >= 8);
2816 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2817 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2818 cu_list += 2 * 8;
2819
2820 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2821 struct dwarf2_per_cu_data);
2822 the_cu->offset.sect_off = offset;
2823 the_cu->length = length;
2824 the_cu->objfile = objfile;
2825 the_cu->section = section;
2826 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2827 struct dwarf2_per_cu_quick_data);
2828 the_cu->is_dwz = is_dwz;
2829 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2830 }
2831 }
2832
2833 /* Read the CU list from the mapped index, and use it to create all
2834 the CU objects for this objfile. */
2835
2836 static void
2837 create_cus_from_index (struct objfile *objfile,
2838 const gdb_byte *cu_list, offset_type cu_list_elements,
2839 const gdb_byte *dwz_list, offset_type dwz_elements)
2840 {
2841 struct dwz_file *dwz;
2842
2843 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2844 dwarf2_per_objfile->all_comp_units =
2845 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
2846 dwarf2_per_objfile->n_comp_units);
2847
2848 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2849 &dwarf2_per_objfile->info, 0, 0);
2850
2851 if (dwz_elements == 0)
2852 return;
2853
2854 dwz = dwarf2_get_dwz_file ();
2855 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2856 cu_list_elements / 2);
2857 }
2858
2859 /* Create the signatured type hash table from the index. */
2860
2861 static void
2862 create_signatured_type_table_from_index (struct objfile *objfile,
2863 struct dwarf2_section_info *section,
2864 const gdb_byte *bytes,
2865 offset_type elements)
2866 {
2867 offset_type i;
2868 htab_t sig_types_hash;
2869
2870 dwarf2_per_objfile->n_type_units
2871 = dwarf2_per_objfile->n_allocated_type_units
2872 = elements / 3;
2873 dwarf2_per_objfile->all_type_units =
2874 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
2875
2876 sig_types_hash = allocate_signatured_type_table (objfile);
2877
2878 for (i = 0; i < elements; i += 3)
2879 {
2880 struct signatured_type *sig_type;
2881 ULONGEST offset, type_offset_in_tu, signature;
2882 void **slot;
2883
2884 gdb_static_assert (sizeof (ULONGEST) >= 8);
2885 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2886 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2887 BFD_ENDIAN_LITTLE);
2888 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2889 bytes += 3 * 8;
2890
2891 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2892 struct signatured_type);
2893 sig_type->signature = signature;
2894 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2895 sig_type->per_cu.is_debug_types = 1;
2896 sig_type->per_cu.section = section;
2897 sig_type->per_cu.offset.sect_off = offset;
2898 sig_type->per_cu.objfile = objfile;
2899 sig_type->per_cu.v.quick
2900 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2901 struct dwarf2_per_cu_quick_data);
2902
2903 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2904 *slot = sig_type;
2905
2906 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2907 }
2908
2909 dwarf2_per_objfile->signatured_types = sig_types_hash;
2910 }
2911
2912 /* Read the address map data from the mapped index, and use it to
2913 populate the objfile's psymtabs_addrmap. */
2914
2915 static void
2916 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2917 {
2918 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2919 const gdb_byte *iter, *end;
2920 struct obstack temp_obstack;
2921 struct addrmap *mutable_map;
2922 struct cleanup *cleanup;
2923 CORE_ADDR baseaddr;
2924
2925 obstack_init (&temp_obstack);
2926 cleanup = make_cleanup_obstack_free (&temp_obstack);
2927 mutable_map = addrmap_create_mutable (&temp_obstack);
2928
2929 iter = index->address_table;
2930 end = iter + index->address_table_size;
2931
2932 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2933
2934 while (iter < end)
2935 {
2936 ULONGEST hi, lo, cu_index;
2937 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2938 iter += 8;
2939 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2940 iter += 8;
2941 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2942 iter += 4;
2943
2944 if (lo > hi)
2945 {
2946 complaint (&symfile_complaints,
2947 _(".gdb_index address table has invalid range (%s - %s)"),
2948 hex_string (lo), hex_string (hi));
2949 continue;
2950 }
2951
2952 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2953 {
2954 complaint (&symfile_complaints,
2955 _(".gdb_index address table has invalid CU number %u"),
2956 (unsigned) cu_index);
2957 continue;
2958 }
2959
2960 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2961 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2962 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
2963 }
2964
2965 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2966 &objfile->objfile_obstack);
2967 do_cleanups (cleanup);
2968 }
2969
2970 /* The hash function for strings in the mapped index. This is the same as
2971 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2972 implementation. This is necessary because the hash function is tied to the
2973 format of the mapped index file. The hash values do not have to match with
2974 SYMBOL_HASH_NEXT.
2975
2976 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2977
2978 static hashval_t
2979 mapped_index_string_hash (int index_version, const void *p)
2980 {
2981 const unsigned char *str = (const unsigned char *) p;
2982 hashval_t r = 0;
2983 unsigned char c;
2984
2985 while ((c = *str++) != 0)
2986 {
2987 if (index_version >= 5)
2988 c = tolower (c);
2989 r = r * 67 + c - 113;
2990 }
2991
2992 return r;
2993 }
2994
2995 /* Find a slot in the mapped index INDEX for the object named NAME.
2996 If NAME is found, set *VEC_OUT to point to the CU vector in the
2997 constant pool and return 1. If NAME cannot be found, return 0. */
2998
2999 static int
3000 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3001 offset_type **vec_out)
3002 {
3003 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
3004 offset_type hash;
3005 offset_type slot, step;
3006 int (*cmp) (const char *, const char *);
3007
3008 if (current_language->la_language == language_cplus
3009 || current_language->la_language == language_fortran
3010 || current_language->la_language == language_d)
3011 {
3012 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3013 not contain any. */
3014
3015 if (strchr (name, '(') != NULL)
3016 {
3017 char *without_params = cp_remove_params (name);
3018
3019 if (without_params != NULL)
3020 {
3021 make_cleanup (xfree, without_params);
3022 name = without_params;
3023 }
3024 }
3025 }
3026
3027 /* Index version 4 did not support case insensitive searches. But the
3028 indices for case insensitive languages are built in lowercase, therefore
3029 simulate our NAME being searched is also lowercased. */
3030 hash = mapped_index_string_hash ((index->version == 4
3031 && case_sensitivity == case_sensitive_off
3032 ? 5 : index->version),
3033 name);
3034
3035 slot = hash & (index->symbol_table_slots - 1);
3036 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
3037 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3038
3039 for (;;)
3040 {
3041 /* Convert a slot number to an offset into the table. */
3042 offset_type i = 2 * slot;
3043 const char *str;
3044 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
3045 {
3046 do_cleanups (back_to);
3047 return 0;
3048 }
3049
3050 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3051 if (!cmp (name, str))
3052 {
3053 *vec_out = (offset_type *) (index->constant_pool
3054 + MAYBE_SWAP (index->symbol_table[i + 1]));
3055 do_cleanups (back_to);
3056 return 1;
3057 }
3058
3059 slot = (slot + step) & (index->symbol_table_slots - 1);
3060 }
3061 }
3062
3063 /* A helper function that reads the .gdb_index from SECTION and fills
3064 in MAP. FILENAME is the name of the file containing the section;
3065 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3066 ok to use deprecated sections.
3067
3068 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3069 out parameters that are filled in with information about the CU and
3070 TU lists in the section.
3071
3072 Returns 1 if all went well, 0 otherwise. */
3073
3074 static int
3075 read_index_from_section (struct objfile *objfile,
3076 const char *filename,
3077 int deprecated_ok,
3078 struct dwarf2_section_info *section,
3079 struct mapped_index *map,
3080 const gdb_byte **cu_list,
3081 offset_type *cu_list_elements,
3082 const gdb_byte **types_list,
3083 offset_type *types_list_elements)
3084 {
3085 const gdb_byte *addr;
3086 offset_type version;
3087 offset_type *metadata;
3088 int i;
3089
3090 if (dwarf2_section_empty_p (section))
3091 return 0;
3092
3093 /* Older elfutils strip versions could keep the section in the main
3094 executable while splitting it for the separate debug info file. */
3095 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3096 return 0;
3097
3098 dwarf2_read_section (objfile, section);
3099
3100 addr = section->buffer;
3101 /* Version check. */
3102 version = MAYBE_SWAP (*(offset_type *) addr);
3103 /* Versions earlier than 3 emitted every copy of a psymbol. This
3104 causes the index to behave very poorly for certain requests. Version 3
3105 contained incomplete addrmap. So, it seems better to just ignore such
3106 indices. */
3107 if (version < 4)
3108 {
3109 static int warning_printed = 0;
3110 if (!warning_printed)
3111 {
3112 warning (_("Skipping obsolete .gdb_index section in %s."),
3113 filename);
3114 warning_printed = 1;
3115 }
3116 return 0;
3117 }
3118 /* Index version 4 uses a different hash function than index version
3119 5 and later.
3120
3121 Versions earlier than 6 did not emit psymbols for inlined
3122 functions. Using these files will cause GDB not to be able to
3123 set breakpoints on inlined functions by name, so we ignore these
3124 indices unless the user has done
3125 "set use-deprecated-index-sections on". */
3126 if (version < 6 && !deprecated_ok)
3127 {
3128 static int warning_printed = 0;
3129 if (!warning_printed)
3130 {
3131 warning (_("\
3132 Skipping deprecated .gdb_index section in %s.\n\
3133 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3134 to use the section anyway."),
3135 filename);
3136 warning_printed = 1;
3137 }
3138 return 0;
3139 }
3140 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3141 of the TU (for symbols coming from TUs),
3142 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3143 Plus gold-generated indices can have duplicate entries for global symbols,
3144 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3145 These are just performance bugs, and we can't distinguish gdb-generated
3146 indices from gold-generated ones, so issue no warning here. */
3147
3148 /* Indexes with higher version than the one supported by GDB may be no
3149 longer backward compatible. */
3150 if (version > 8)
3151 return 0;
3152
3153 map->version = version;
3154 map->total_size = section->size;
3155
3156 metadata = (offset_type *) (addr + sizeof (offset_type));
3157
3158 i = 0;
3159 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3160 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3161 / 8);
3162 ++i;
3163
3164 *types_list = addr + MAYBE_SWAP (metadata[i]);
3165 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3166 - MAYBE_SWAP (metadata[i]))
3167 / 8);
3168 ++i;
3169
3170 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3171 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3172 - MAYBE_SWAP (metadata[i]));
3173 ++i;
3174
3175 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3176 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3177 - MAYBE_SWAP (metadata[i]))
3178 / (2 * sizeof (offset_type)));
3179 ++i;
3180
3181 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3182
3183 return 1;
3184 }
3185
3186
3187 /* Read the index file. If everything went ok, initialize the "quick"
3188 elements of all the CUs and return 1. Otherwise, return 0. */
3189
3190 static int
3191 dwarf2_read_index (struct objfile *objfile)
3192 {
3193 struct mapped_index local_map, *map;
3194 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3195 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3196 struct dwz_file *dwz;
3197
3198 if (!read_index_from_section (objfile, objfile_name (objfile),
3199 use_deprecated_index_sections,
3200 &dwarf2_per_objfile->gdb_index, &local_map,
3201 &cu_list, &cu_list_elements,
3202 &types_list, &types_list_elements))
3203 return 0;
3204
3205 /* Don't use the index if it's empty. */
3206 if (local_map.symbol_table_slots == 0)
3207 return 0;
3208
3209 /* If there is a .dwz file, read it so we can get its CU list as
3210 well. */
3211 dwz = dwarf2_get_dwz_file ();
3212 if (dwz != NULL)
3213 {
3214 struct mapped_index dwz_map;
3215 const gdb_byte *dwz_types_ignore;
3216 offset_type dwz_types_elements_ignore;
3217
3218 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3219 1,
3220 &dwz->gdb_index, &dwz_map,
3221 &dwz_list, &dwz_list_elements,
3222 &dwz_types_ignore,
3223 &dwz_types_elements_ignore))
3224 {
3225 warning (_("could not read '.gdb_index' section from %s; skipping"),
3226 bfd_get_filename (dwz->dwz_bfd));
3227 return 0;
3228 }
3229 }
3230
3231 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3232 dwz_list_elements);
3233
3234 if (types_list_elements)
3235 {
3236 struct dwarf2_section_info *section;
3237
3238 /* We can only handle a single .debug_types when we have an
3239 index. */
3240 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3241 return 0;
3242
3243 section = VEC_index (dwarf2_section_info_def,
3244 dwarf2_per_objfile->types, 0);
3245
3246 create_signatured_type_table_from_index (objfile, section, types_list,
3247 types_list_elements);
3248 }
3249
3250 create_addrmap_from_index (objfile, &local_map);
3251
3252 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
3253 *map = local_map;
3254
3255 dwarf2_per_objfile->index_table = map;
3256 dwarf2_per_objfile->using_index = 1;
3257 dwarf2_per_objfile->quick_file_names_table =
3258 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3259
3260 return 1;
3261 }
3262
3263 /* A helper for the "quick" functions which sets the global
3264 dwarf2_per_objfile according to OBJFILE. */
3265
3266 static void
3267 dw2_setup (struct objfile *objfile)
3268 {
3269 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3270 objfile_data (objfile, dwarf2_objfile_data_key));
3271 gdb_assert (dwarf2_per_objfile);
3272 }
3273
3274 /* die_reader_func for dw2_get_file_names. */
3275
3276 static void
3277 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3278 const gdb_byte *info_ptr,
3279 struct die_info *comp_unit_die,
3280 int has_children,
3281 void *data)
3282 {
3283 struct dwarf2_cu *cu = reader->cu;
3284 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3285 struct objfile *objfile = dwarf2_per_objfile->objfile;
3286 struct dwarf2_per_cu_data *lh_cu;
3287 struct line_header *lh;
3288 struct attribute *attr;
3289 int i;
3290 const char *name, *comp_dir;
3291 void **slot;
3292 struct quick_file_names *qfn;
3293 unsigned int line_offset;
3294
3295 gdb_assert (! this_cu->is_debug_types);
3296
3297 /* Our callers never want to match partial units -- instead they
3298 will match the enclosing full CU. */
3299 if (comp_unit_die->tag == DW_TAG_partial_unit)
3300 {
3301 this_cu->v.quick->no_file_data = 1;
3302 return;
3303 }
3304
3305 lh_cu = this_cu;
3306 lh = NULL;
3307 slot = NULL;
3308 line_offset = 0;
3309
3310 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3311 if (attr)
3312 {
3313 struct quick_file_names find_entry;
3314
3315 line_offset = DW_UNSND (attr);
3316
3317 /* We may have already read in this line header (TU line header sharing).
3318 If we have we're done. */
3319 find_entry.hash.dwo_unit = cu->dwo_unit;
3320 find_entry.hash.line_offset.sect_off = line_offset;
3321 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3322 &find_entry, INSERT);
3323 if (*slot != NULL)
3324 {
3325 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3326 return;
3327 }
3328
3329 lh = dwarf_decode_line_header (line_offset, cu);
3330 }
3331 if (lh == NULL)
3332 {
3333 lh_cu->v.quick->no_file_data = 1;
3334 return;
3335 }
3336
3337 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3338 qfn->hash.dwo_unit = cu->dwo_unit;
3339 qfn->hash.line_offset.sect_off = line_offset;
3340 gdb_assert (slot != NULL);
3341 *slot = qfn;
3342
3343 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3344
3345 qfn->num_file_names = lh->num_file_names;
3346 qfn->file_names =
3347 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->num_file_names);
3348 for (i = 0; i < lh->num_file_names; ++i)
3349 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3350 qfn->real_names = NULL;
3351
3352 free_line_header (lh);
3353
3354 lh_cu->v.quick->file_names = qfn;
3355 }
3356
3357 /* A helper for the "quick" functions which attempts to read the line
3358 table for THIS_CU. */
3359
3360 static struct quick_file_names *
3361 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3362 {
3363 /* This should never be called for TUs. */
3364 gdb_assert (! this_cu->is_debug_types);
3365 /* Nor type unit groups. */
3366 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3367
3368 if (this_cu->v.quick->file_names != NULL)
3369 return this_cu->v.quick->file_names;
3370 /* If we know there is no line data, no point in looking again. */
3371 if (this_cu->v.quick->no_file_data)
3372 return NULL;
3373
3374 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3375
3376 if (this_cu->v.quick->no_file_data)
3377 return NULL;
3378 return this_cu->v.quick->file_names;
3379 }
3380
3381 /* A helper for the "quick" functions which computes and caches the
3382 real path for a given file name from the line table. */
3383
3384 static const char *
3385 dw2_get_real_path (struct objfile *objfile,
3386 struct quick_file_names *qfn, int index)
3387 {
3388 if (qfn->real_names == NULL)
3389 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3390 qfn->num_file_names, const char *);
3391
3392 if (qfn->real_names[index] == NULL)
3393 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3394
3395 return qfn->real_names[index];
3396 }
3397
3398 static struct symtab *
3399 dw2_find_last_source_symtab (struct objfile *objfile)
3400 {
3401 struct compunit_symtab *cust;
3402 int index;
3403
3404 dw2_setup (objfile);
3405 index = dwarf2_per_objfile->n_comp_units - 1;
3406 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3407 if (cust == NULL)
3408 return NULL;
3409 return compunit_primary_filetab (cust);
3410 }
3411
3412 /* Traversal function for dw2_forget_cached_source_info. */
3413
3414 static int
3415 dw2_free_cached_file_names (void **slot, void *info)
3416 {
3417 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3418
3419 if (file_data->real_names)
3420 {
3421 int i;
3422
3423 for (i = 0; i < file_data->num_file_names; ++i)
3424 {
3425 xfree ((void*) file_data->real_names[i]);
3426 file_data->real_names[i] = NULL;
3427 }
3428 }
3429
3430 return 1;
3431 }
3432
3433 static void
3434 dw2_forget_cached_source_info (struct objfile *objfile)
3435 {
3436 dw2_setup (objfile);
3437
3438 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3439 dw2_free_cached_file_names, NULL);
3440 }
3441
3442 /* Helper function for dw2_map_symtabs_matching_filename that expands
3443 the symtabs and calls the iterator. */
3444
3445 static int
3446 dw2_map_expand_apply (struct objfile *objfile,
3447 struct dwarf2_per_cu_data *per_cu,
3448 const char *name, const char *real_path,
3449 int (*callback) (struct symtab *, void *),
3450 void *data)
3451 {
3452 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3453
3454 /* Don't visit already-expanded CUs. */
3455 if (per_cu->v.quick->compunit_symtab)
3456 return 0;
3457
3458 /* This may expand more than one symtab, and we want to iterate over
3459 all of them. */
3460 dw2_instantiate_symtab (per_cu);
3461
3462 return iterate_over_some_symtabs (name, real_path, callback, data,
3463 objfile->compunit_symtabs, last_made);
3464 }
3465
3466 /* Implementation of the map_symtabs_matching_filename method. */
3467
3468 static int
3469 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3470 const char *real_path,
3471 int (*callback) (struct symtab *, void *),
3472 void *data)
3473 {
3474 int i;
3475 const char *name_basename = lbasename (name);
3476
3477 dw2_setup (objfile);
3478
3479 /* The rule is CUs specify all the files, including those used by
3480 any TU, so there's no need to scan TUs here. */
3481
3482 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3483 {
3484 int j;
3485 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3486 struct quick_file_names *file_data;
3487
3488 /* We only need to look at symtabs not already expanded. */
3489 if (per_cu->v.quick->compunit_symtab)
3490 continue;
3491
3492 file_data = dw2_get_file_names (per_cu);
3493 if (file_data == NULL)
3494 continue;
3495
3496 for (j = 0; j < file_data->num_file_names; ++j)
3497 {
3498 const char *this_name = file_data->file_names[j];
3499 const char *this_real_name;
3500
3501 if (compare_filenames_for_search (this_name, name))
3502 {
3503 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3504 callback, data))
3505 return 1;
3506 continue;
3507 }
3508
3509 /* Before we invoke realpath, which can get expensive when many
3510 files are involved, do a quick comparison of the basenames. */
3511 if (! basenames_may_differ
3512 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3513 continue;
3514
3515 this_real_name = dw2_get_real_path (objfile, file_data, j);
3516 if (compare_filenames_for_search (this_real_name, name))
3517 {
3518 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3519 callback, data))
3520 return 1;
3521 continue;
3522 }
3523
3524 if (real_path != NULL)
3525 {
3526 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3527 gdb_assert (IS_ABSOLUTE_PATH (name));
3528 if (this_real_name != NULL
3529 && FILENAME_CMP (real_path, this_real_name) == 0)
3530 {
3531 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3532 callback, data))
3533 return 1;
3534 continue;
3535 }
3536 }
3537 }
3538 }
3539
3540 return 0;
3541 }
3542
3543 /* Struct used to manage iterating over all CUs looking for a symbol. */
3544
3545 struct dw2_symtab_iterator
3546 {
3547 /* The internalized form of .gdb_index. */
3548 struct mapped_index *index;
3549 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3550 int want_specific_block;
3551 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3552 Unused if !WANT_SPECIFIC_BLOCK. */
3553 int block_index;
3554 /* The kind of symbol we're looking for. */
3555 domain_enum domain;
3556 /* The list of CUs from the index entry of the symbol,
3557 or NULL if not found. */
3558 offset_type *vec;
3559 /* The next element in VEC to look at. */
3560 int next;
3561 /* The number of elements in VEC, or zero if there is no match. */
3562 int length;
3563 /* Have we seen a global version of the symbol?
3564 If so we can ignore all further global instances.
3565 This is to work around gold/15646, inefficient gold-generated
3566 indices. */
3567 int global_seen;
3568 };
3569
3570 /* Initialize the index symtab iterator ITER.
3571 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3572 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3573
3574 static void
3575 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3576 struct mapped_index *index,
3577 int want_specific_block,
3578 int block_index,
3579 domain_enum domain,
3580 const char *name)
3581 {
3582 iter->index = index;
3583 iter->want_specific_block = want_specific_block;
3584 iter->block_index = block_index;
3585 iter->domain = domain;
3586 iter->next = 0;
3587 iter->global_seen = 0;
3588
3589 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3590 iter->length = MAYBE_SWAP (*iter->vec);
3591 else
3592 {
3593 iter->vec = NULL;
3594 iter->length = 0;
3595 }
3596 }
3597
3598 /* Return the next matching CU or NULL if there are no more. */
3599
3600 static struct dwarf2_per_cu_data *
3601 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3602 {
3603 for ( ; iter->next < iter->length; ++iter->next)
3604 {
3605 offset_type cu_index_and_attrs =
3606 MAYBE_SWAP (iter->vec[iter->next + 1]);
3607 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3608 struct dwarf2_per_cu_data *per_cu;
3609 int want_static = iter->block_index != GLOBAL_BLOCK;
3610 /* This value is only valid for index versions >= 7. */
3611 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3612 gdb_index_symbol_kind symbol_kind =
3613 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3614 /* Only check the symbol attributes if they're present.
3615 Indices prior to version 7 don't record them,
3616 and indices >= 7 may elide them for certain symbols
3617 (gold does this). */
3618 int attrs_valid =
3619 (iter->index->version >= 7
3620 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3621
3622 /* Don't crash on bad data. */
3623 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3624 + dwarf2_per_objfile->n_type_units))
3625 {
3626 complaint (&symfile_complaints,
3627 _(".gdb_index entry has bad CU index"
3628 " [in module %s]"),
3629 objfile_name (dwarf2_per_objfile->objfile));
3630 continue;
3631 }
3632
3633 per_cu = dw2_get_cutu (cu_index);
3634
3635 /* Skip if already read in. */
3636 if (per_cu->v.quick->compunit_symtab)
3637 continue;
3638
3639 /* Check static vs global. */
3640 if (attrs_valid)
3641 {
3642 if (iter->want_specific_block
3643 && want_static != is_static)
3644 continue;
3645 /* Work around gold/15646. */
3646 if (!is_static && iter->global_seen)
3647 continue;
3648 if (!is_static)
3649 iter->global_seen = 1;
3650 }
3651
3652 /* Only check the symbol's kind if it has one. */
3653 if (attrs_valid)
3654 {
3655 switch (iter->domain)
3656 {
3657 case VAR_DOMAIN:
3658 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3659 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3660 /* Some types are also in VAR_DOMAIN. */
3661 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3662 continue;
3663 break;
3664 case STRUCT_DOMAIN:
3665 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3666 continue;
3667 break;
3668 case LABEL_DOMAIN:
3669 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3670 continue;
3671 break;
3672 default:
3673 break;
3674 }
3675 }
3676
3677 ++iter->next;
3678 return per_cu;
3679 }
3680
3681 return NULL;
3682 }
3683
3684 static struct compunit_symtab *
3685 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3686 const char *name, domain_enum domain)
3687 {
3688 struct compunit_symtab *stab_best = NULL;
3689 struct mapped_index *index;
3690
3691 dw2_setup (objfile);
3692
3693 index = dwarf2_per_objfile->index_table;
3694
3695 /* index is NULL if OBJF_READNOW. */
3696 if (index)
3697 {
3698 struct dw2_symtab_iterator iter;
3699 struct dwarf2_per_cu_data *per_cu;
3700
3701 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3702
3703 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3704 {
3705 struct symbol *sym, *with_opaque = NULL;
3706 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3707 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3708 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3709
3710 sym = block_find_symbol (block, name, domain,
3711 block_find_non_opaque_type_preferred,
3712 &with_opaque);
3713
3714 /* Some caution must be observed with overloaded functions
3715 and methods, since the index will not contain any overload
3716 information (but NAME might contain it). */
3717
3718 if (sym != NULL
3719 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3720 return stab;
3721 if (with_opaque != NULL
3722 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
3723 stab_best = stab;
3724
3725 /* Keep looking through other CUs. */
3726 }
3727 }
3728
3729 return stab_best;
3730 }
3731
3732 static void
3733 dw2_print_stats (struct objfile *objfile)
3734 {
3735 int i, total, count;
3736
3737 dw2_setup (objfile);
3738 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3739 count = 0;
3740 for (i = 0; i < total; ++i)
3741 {
3742 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3743
3744 if (!per_cu->v.quick->compunit_symtab)
3745 ++count;
3746 }
3747 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3748 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3749 }
3750
3751 /* This dumps minimal information about the index.
3752 It is called via "mt print objfiles".
3753 One use is to verify .gdb_index has been loaded by the
3754 gdb.dwarf2/gdb-index.exp testcase. */
3755
3756 static void
3757 dw2_dump (struct objfile *objfile)
3758 {
3759 dw2_setup (objfile);
3760 gdb_assert (dwarf2_per_objfile->using_index);
3761 printf_filtered (".gdb_index:");
3762 if (dwarf2_per_objfile->index_table != NULL)
3763 {
3764 printf_filtered (" version %d\n",
3765 dwarf2_per_objfile->index_table->version);
3766 }
3767 else
3768 printf_filtered (" faked for \"readnow\"\n");
3769 printf_filtered ("\n");
3770 }
3771
3772 static void
3773 dw2_relocate (struct objfile *objfile,
3774 const struct section_offsets *new_offsets,
3775 const struct section_offsets *delta)
3776 {
3777 /* There's nothing to relocate here. */
3778 }
3779
3780 static void
3781 dw2_expand_symtabs_for_function (struct objfile *objfile,
3782 const char *func_name)
3783 {
3784 struct mapped_index *index;
3785
3786 dw2_setup (objfile);
3787
3788 index = dwarf2_per_objfile->index_table;
3789
3790 /* index is NULL if OBJF_READNOW. */
3791 if (index)
3792 {
3793 struct dw2_symtab_iterator iter;
3794 struct dwarf2_per_cu_data *per_cu;
3795
3796 /* Note: It doesn't matter what we pass for block_index here. */
3797 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3798 func_name);
3799
3800 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3801 dw2_instantiate_symtab (per_cu);
3802 }
3803 }
3804
3805 static void
3806 dw2_expand_all_symtabs (struct objfile *objfile)
3807 {
3808 int i;
3809
3810 dw2_setup (objfile);
3811
3812 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3813 + dwarf2_per_objfile->n_type_units); ++i)
3814 {
3815 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3816
3817 dw2_instantiate_symtab (per_cu);
3818 }
3819 }
3820
3821 static void
3822 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3823 const char *fullname)
3824 {
3825 int i;
3826
3827 dw2_setup (objfile);
3828
3829 /* We don't need to consider type units here.
3830 This is only called for examining code, e.g. expand_line_sal.
3831 There can be an order of magnitude (or more) more type units
3832 than comp units, and we avoid them if we can. */
3833
3834 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3835 {
3836 int j;
3837 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3838 struct quick_file_names *file_data;
3839
3840 /* We only need to look at symtabs not already expanded. */
3841 if (per_cu->v.quick->compunit_symtab)
3842 continue;
3843
3844 file_data = dw2_get_file_names (per_cu);
3845 if (file_data == NULL)
3846 continue;
3847
3848 for (j = 0; j < file_data->num_file_names; ++j)
3849 {
3850 const char *this_fullname = file_data->file_names[j];
3851
3852 if (filename_cmp (this_fullname, fullname) == 0)
3853 {
3854 dw2_instantiate_symtab (per_cu);
3855 break;
3856 }
3857 }
3858 }
3859 }
3860
3861 static void
3862 dw2_map_matching_symbols (struct objfile *objfile,
3863 const char * name, domain_enum domain,
3864 int global,
3865 int (*callback) (struct block *,
3866 struct symbol *, void *),
3867 void *data, symbol_compare_ftype *match,
3868 symbol_compare_ftype *ordered_compare)
3869 {
3870 /* Currently unimplemented; used for Ada. The function can be called if the
3871 current language is Ada for a non-Ada objfile using GNU index. As Ada
3872 does not look for non-Ada symbols this function should just return. */
3873 }
3874
3875 static void
3876 dw2_expand_symtabs_matching
3877 (struct objfile *objfile,
3878 expand_symtabs_file_matcher_ftype *file_matcher,
3879 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3880 expand_symtabs_exp_notify_ftype *expansion_notify,
3881 enum search_domain kind,
3882 void *data)
3883 {
3884 int i;
3885 offset_type iter;
3886 struct mapped_index *index;
3887
3888 dw2_setup (objfile);
3889
3890 /* index_table is NULL if OBJF_READNOW. */
3891 if (!dwarf2_per_objfile->index_table)
3892 return;
3893 index = dwarf2_per_objfile->index_table;
3894
3895 if (file_matcher != NULL)
3896 {
3897 struct cleanup *cleanup;
3898 htab_t visited_found, visited_not_found;
3899
3900 visited_found = htab_create_alloc (10,
3901 htab_hash_pointer, htab_eq_pointer,
3902 NULL, xcalloc, xfree);
3903 cleanup = make_cleanup_htab_delete (visited_found);
3904 visited_not_found = htab_create_alloc (10,
3905 htab_hash_pointer, htab_eq_pointer,
3906 NULL, xcalloc, xfree);
3907 make_cleanup_htab_delete (visited_not_found);
3908
3909 /* The rule is CUs specify all the files, including those used by
3910 any TU, so there's no need to scan TUs here. */
3911
3912 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3913 {
3914 int j;
3915 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3916 struct quick_file_names *file_data;
3917 void **slot;
3918
3919 QUIT;
3920
3921 per_cu->v.quick->mark = 0;
3922
3923 /* We only need to look at symtabs not already expanded. */
3924 if (per_cu->v.quick->compunit_symtab)
3925 continue;
3926
3927 file_data = dw2_get_file_names (per_cu);
3928 if (file_data == NULL)
3929 continue;
3930
3931 if (htab_find (visited_not_found, file_data) != NULL)
3932 continue;
3933 else if (htab_find (visited_found, file_data) != NULL)
3934 {
3935 per_cu->v.quick->mark = 1;
3936 continue;
3937 }
3938
3939 for (j = 0; j < file_data->num_file_names; ++j)
3940 {
3941 const char *this_real_name;
3942
3943 if (file_matcher (file_data->file_names[j], data, 0))
3944 {
3945 per_cu->v.quick->mark = 1;
3946 break;
3947 }
3948
3949 /* Before we invoke realpath, which can get expensive when many
3950 files are involved, do a quick comparison of the basenames. */
3951 if (!basenames_may_differ
3952 && !file_matcher (lbasename (file_data->file_names[j]),
3953 data, 1))
3954 continue;
3955
3956 this_real_name = dw2_get_real_path (objfile, file_data, j);
3957 if (file_matcher (this_real_name, data, 0))
3958 {
3959 per_cu->v.quick->mark = 1;
3960 break;
3961 }
3962 }
3963
3964 slot = htab_find_slot (per_cu->v.quick->mark
3965 ? visited_found
3966 : visited_not_found,
3967 file_data, INSERT);
3968 *slot = file_data;
3969 }
3970
3971 do_cleanups (cleanup);
3972 }
3973
3974 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3975 {
3976 offset_type idx = 2 * iter;
3977 const char *name;
3978 offset_type *vec, vec_len, vec_idx;
3979 int global_seen = 0;
3980
3981 QUIT;
3982
3983 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3984 continue;
3985
3986 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3987
3988 if (! (*symbol_matcher) (name, data))
3989 continue;
3990
3991 /* The name was matched, now expand corresponding CUs that were
3992 marked. */
3993 vec = (offset_type *) (index->constant_pool
3994 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3995 vec_len = MAYBE_SWAP (vec[0]);
3996 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3997 {
3998 struct dwarf2_per_cu_data *per_cu;
3999 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
4000 /* This value is only valid for index versions >= 7. */
4001 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4002 gdb_index_symbol_kind symbol_kind =
4003 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4004 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4005 /* Only check the symbol attributes if they're present.
4006 Indices prior to version 7 don't record them,
4007 and indices >= 7 may elide them for certain symbols
4008 (gold does this). */
4009 int attrs_valid =
4010 (index->version >= 7
4011 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4012
4013 /* Work around gold/15646. */
4014 if (attrs_valid)
4015 {
4016 if (!is_static && global_seen)
4017 continue;
4018 if (!is_static)
4019 global_seen = 1;
4020 }
4021
4022 /* Only check the symbol's kind if it has one. */
4023 if (attrs_valid)
4024 {
4025 switch (kind)
4026 {
4027 case VARIABLES_DOMAIN:
4028 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4029 continue;
4030 break;
4031 case FUNCTIONS_DOMAIN:
4032 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4033 continue;
4034 break;
4035 case TYPES_DOMAIN:
4036 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4037 continue;
4038 break;
4039 default:
4040 break;
4041 }
4042 }
4043
4044 /* Don't crash on bad data. */
4045 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4046 + dwarf2_per_objfile->n_type_units))
4047 {
4048 complaint (&symfile_complaints,
4049 _(".gdb_index entry has bad CU index"
4050 " [in module %s]"), objfile_name (objfile));
4051 continue;
4052 }
4053
4054 per_cu = dw2_get_cutu (cu_index);
4055 if (file_matcher == NULL || per_cu->v.quick->mark)
4056 {
4057 int symtab_was_null =
4058 (per_cu->v.quick->compunit_symtab == NULL);
4059
4060 dw2_instantiate_symtab (per_cu);
4061
4062 if (expansion_notify != NULL
4063 && symtab_was_null
4064 && per_cu->v.quick->compunit_symtab != NULL)
4065 {
4066 expansion_notify (per_cu->v.quick->compunit_symtab,
4067 data);
4068 }
4069 }
4070 }
4071 }
4072 }
4073
4074 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4075 symtab. */
4076
4077 static struct compunit_symtab *
4078 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4079 CORE_ADDR pc)
4080 {
4081 int i;
4082
4083 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4084 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4085 return cust;
4086
4087 if (cust->includes == NULL)
4088 return NULL;
4089
4090 for (i = 0; cust->includes[i]; ++i)
4091 {
4092 struct compunit_symtab *s = cust->includes[i];
4093
4094 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4095 if (s != NULL)
4096 return s;
4097 }
4098
4099 return NULL;
4100 }
4101
4102 static struct compunit_symtab *
4103 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4104 struct bound_minimal_symbol msymbol,
4105 CORE_ADDR pc,
4106 struct obj_section *section,
4107 int warn_if_readin)
4108 {
4109 struct dwarf2_per_cu_data *data;
4110 struct compunit_symtab *result;
4111
4112 dw2_setup (objfile);
4113
4114 if (!objfile->psymtabs_addrmap)
4115 return NULL;
4116
4117 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
4118 pc);
4119 if (!data)
4120 return NULL;
4121
4122 if (warn_if_readin && data->v.quick->compunit_symtab)
4123 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4124 paddress (get_objfile_arch (objfile), pc));
4125
4126 result
4127 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4128 pc);
4129 gdb_assert (result != NULL);
4130 return result;
4131 }
4132
4133 static void
4134 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4135 void *data, int need_fullname)
4136 {
4137 int i;
4138 struct cleanup *cleanup;
4139 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4140 NULL, xcalloc, xfree);
4141
4142 cleanup = make_cleanup_htab_delete (visited);
4143 dw2_setup (objfile);
4144
4145 /* The rule is CUs specify all the files, including those used by
4146 any TU, so there's no need to scan TUs here.
4147 We can ignore file names coming from already-expanded CUs. */
4148
4149 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4150 {
4151 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4152
4153 if (per_cu->v.quick->compunit_symtab)
4154 {
4155 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4156 INSERT);
4157
4158 *slot = per_cu->v.quick->file_names;
4159 }
4160 }
4161
4162 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4163 {
4164 int j;
4165 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4166 struct quick_file_names *file_data;
4167 void **slot;
4168
4169 /* We only need to look at symtabs not already expanded. */
4170 if (per_cu->v.quick->compunit_symtab)
4171 continue;
4172
4173 file_data = dw2_get_file_names (per_cu);
4174 if (file_data == NULL)
4175 continue;
4176
4177 slot = htab_find_slot (visited, file_data, INSERT);
4178 if (*slot)
4179 {
4180 /* Already visited. */
4181 continue;
4182 }
4183 *slot = file_data;
4184
4185 for (j = 0; j < file_data->num_file_names; ++j)
4186 {
4187 const char *this_real_name;
4188
4189 if (need_fullname)
4190 this_real_name = dw2_get_real_path (objfile, file_data, j);
4191 else
4192 this_real_name = NULL;
4193 (*fun) (file_data->file_names[j], this_real_name, data);
4194 }
4195 }
4196
4197 do_cleanups (cleanup);
4198 }
4199
4200 static int
4201 dw2_has_symbols (struct objfile *objfile)
4202 {
4203 return 1;
4204 }
4205
4206 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4207 {
4208 dw2_has_symbols,
4209 dw2_find_last_source_symtab,
4210 dw2_forget_cached_source_info,
4211 dw2_map_symtabs_matching_filename,
4212 dw2_lookup_symbol,
4213 dw2_print_stats,
4214 dw2_dump,
4215 dw2_relocate,
4216 dw2_expand_symtabs_for_function,
4217 dw2_expand_all_symtabs,
4218 dw2_expand_symtabs_with_fullname,
4219 dw2_map_matching_symbols,
4220 dw2_expand_symtabs_matching,
4221 dw2_find_pc_sect_compunit_symtab,
4222 dw2_map_symbol_filenames
4223 };
4224
4225 /* Initialize for reading DWARF for this objfile. Return 0 if this
4226 file will use psymtabs, or 1 if using the GNU index. */
4227
4228 int
4229 dwarf2_initialize_objfile (struct objfile *objfile)
4230 {
4231 /* If we're about to read full symbols, don't bother with the
4232 indices. In this case we also don't care if some other debug
4233 format is making psymtabs, because they are all about to be
4234 expanded anyway. */
4235 if ((objfile->flags & OBJF_READNOW))
4236 {
4237 int i;
4238
4239 dwarf2_per_objfile->using_index = 1;
4240 create_all_comp_units (objfile);
4241 create_all_type_units (objfile);
4242 dwarf2_per_objfile->quick_file_names_table =
4243 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4244
4245 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4246 + dwarf2_per_objfile->n_type_units); ++i)
4247 {
4248 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4249
4250 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4251 struct dwarf2_per_cu_quick_data);
4252 }
4253
4254 /* Return 1 so that gdb sees the "quick" functions. However,
4255 these functions will be no-ops because we will have expanded
4256 all symtabs. */
4257 return 1;
4258 }
4259
4260 if (dwarf2_read_index (objfile))
4261 return 1;
4262
4263 return 0;
4264 }
4265
4266 \f
4267
4268 /* Build a partial symbol table. */
4269
4270 void
4271 dwarf2_build_psymtabs (struct objfile *objfile)
4272 {
4273
4274 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4275 {
4276 init_psymbol_list (objfile, 1024);
4277 }
4278
4279 TRY
4280 {
4281 /* This isn't really ideal: all the data we allocate on the
4282 objfile's obstack is still uselessly kept around. However,
4283 freeing it seems unsafe. */
4284 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4285
4286 dwarf2_build_psymtabs_hard (objfile);
4287 discard_cleanups (cleanups);
4288 }
4289 CATCH (except, RETURN_MASK_ERROR)
4290 {
4291 exception_print (gdb_stderr, except);
4292 }
4293 END_CATCH
4294 }
4295
4296 /* Return the total length of the CU described by HEADER. */
4297
4298 static unsigned int
4299 get_cu_length (const struct comp_unit_head *header)
4300 {
4301 return header->initial_length_size + header->length;
4302 }
4303
4304 /* Return TRUE if OFFSET is within CU_HEADER. */
4305
4306 static inline int
4307 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4308 {
4309 sect_offset bottom = { cu_header->offset.sect_off };
4310 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4311
4312 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4313 }
4314
4315 /* Find the base address of the compilation unit for range lists and
4316 location lists. It will normally be specified by DW_AT_low_pc.
4317 In DWARF-3 draft 4, the base address could be overridden by
4318 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4319 compilation units with discontinuous ranges. */
4320
4321 static void
4322 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4323 {
4324 struct attribute *attr;
4325
4326 cu->base_known = 0;
4327 cu->base_address = 0;
4328
4329 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4330 if (attr)
4331 {
4332 cu->base_address = attr_value_as_address (attr);
4333 cu->base_known = 1;
4334 }
4335 else
4336 {
4337 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4338 if (attr)
4339 {
4340 cu->base_address = attr_value_as_address (attr);
4341 cu->base_known = 1;
4342 }
4343 }
4344 }
4345
4346 /* Read in the comp unit header information from the debug_info at info_ptr.
4347 NOTE: This leaves members offset, first_die_offset to be filled in
4348 by the caller. */
4349
4350 static const gdb_byte *
4351 read_comp_unit_head (struct comp_unit_head *cu_header,
4352 const gdb_byte *info_ptr, bfd *abfd)
4353 {
4354 int signed_addr;
4355 unsigned int bytes_read;
4356
4357 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4358 cu_header->initial_length_size = bytes_read;
4359 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4360 info_ptr += bytes_read;
4361 cu_header->version = read_2_bytes (abfd, info_ptr);
4362 info_ptr += 2;
4363 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4364 &bytes_read);
4365 info_ptr += bytes_read;
4366 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4367 info_ptr += 1;
4368 signed_addr = bfd_get_sign_extend_vma (abfd);
4369 if (signed_addr < 0)
4370 internal_error (__FILE__, __LINE__,
4371 _("read_comp_unit_head: dwarf from non elf file"));
4372 cu_header->signed_addr_p = signed_addr;
4373
4374 return info_ptr;
4375 }
4376
4377 /* Helper function that returns the proper abbrev section for
4378 THIS_CU. */
4379
4380 static struct dwarf2_section_info *
4381 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4382 {
4383 struct dwarf2_section_info *abbrev;
4384
4385 if (this_cu->is_dwz)
4386 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4387 else
4388 abbrev = &dwarf2_per_objfile->abbrev;
4389
4390 return abbrev;
4391 }
4392
4393 /* Subroutine of read_and_check_comp_unit_head and
4394 read_and_check_type_unit_head to simplify them.
4395 Perform various error checking on the header. */
4396
4397 static void
4398 error_check_comp_unit_head (struct comp_unit_head *header,
4399 struct dwarf2_section_info *section,
4400 struct dwarf2_section_info *abbrev_section)
4401 {
4402 const char *filename = get_section_file_name (section);
4403
4404 if (header->version != 2 && header->version != 3 && header->version != 4)
4405 error (_("Dwarf Error: wrong version in compilation unit header "
4406 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4407 filename);
4408
4409 if (header->abbrev_offset.sect_off
4410 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4411 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4412 "(offset 0x%lx + 6) [in module %s]"),
4413 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4414 filename);
4415
4416 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4417 avoid potential 32-bit overflow. */
4418 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4419 > section->size)
4420 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4421 "(offset 0x%lx + 0) [in module %s]"),
4422 (long) header->length, (long) header->offset.sect_off,
4423 filename);
4424 }
4425
4426 /* Read in a CU/TU header and perform some basic error checking.
4427 The contents of the header are stored in HEADER.
4428 The result is a pointer to the start of the first DIE. */
4429
4430 static const gdb_byte *
4431 read_and_check_comp_unit_head (struct comp_unit_head *header,
4432 struct dwarf2_section_info *section,
4433 struct dwarf2_section_info *abbrev_section,
4434 const gdb_byte *info_ptr,
4435 int is_debug_types_section)
4436 {
4437 const gdb_byte *beg_of_comp_unit = info_ptr;
4438 bfd *abfd = get_section_bfd_owner (section);
4439
4440 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4441
4442 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4443
4444 /* If we're reading a type unit, skip over the signature and
4445 type_offset fields. */
4446 if (is_debug_types_section)
4447 info_ptr += 8 /*signature*/ + header->offset_size;
4448
4449 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4450
4451 error_check_comp_unit_head (header, section, abbrev_section);
4452
4453 return info_ptr;
4454 }
4455
4456 /* Read in the types comp unit header information from .debug_types entry at
4457 types_ptr. The result is a pointer to one past the end of the header. */
4458
4459 static const gdb_byte *
4460 read_and_check_type_unit_head (struct comp_unit_head *header,
4461 struct dwarf2_section_info *section,
4462 struct dwarf2_section_info *abbrev_section,
4463 const gdb_byte *info_ptr,
4464 ULONGEST *signature,
4465 cu_offset *type_offset_in_tu)
4466 {
4467 const gdb_byte *beg_of_comp_unit = info_ptr;
4468 bfd *abfd = get_section_bfd_owner (section);
4469
4470 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4471
4472 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4473
4474 /* If we're reading a type unit, skip over the signature and
4475 type_offset fields. */
4476 if (signature != NULL)
4477 *signature = read_8_bytes (abfd, info_ptr);
4478 info_ptr += 8;
4479 if (type_offset_in_tu != NULL)
4480 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4481 header->offset_size);
4482 info_ptr += header->offset_size;
4483
4484 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4485
4486 error_check_comp_unit_head (header, section, abbrev_section);
4487
4488 return info_ptr;
4489 }
4490
4491 /* Fetch the abbreviation table offset from a comp or type unit header. */
4492
4493 static sect_offset
4494 read_abbrev_offset (struct dwarf2_section_info *section,
4495 sect_offset offset)
4496 {
4497 bfd *abfd = get_section_bfd_owner (section);
4498 const gdb_byte *info_ptr;
4499 unsigned int initial_length_size, offset_size;
4500 sect_offset abbrev_offset;
4501
4502 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4503 info_ptr = section->buffer + offset.sect_off;
4504 read_initial_length (abfd, info_ptr, &initial_length_size);
4505 offset_size = initial_length_size == 4 ? 4 : 8;
4506 info_ptr += initial_length_size + 2 /*version*/;
4507 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4508 return abbrev_offset;
4509 }
4510
4511 /* Allocate a new partial symtab for file named NAME and mark this new
4512 partial symtab as being an include of PST. */
4513
4514 static void
4515 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4516 struct objfile *objfile)
4517 {
4518 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4519
4520 if (!IS_ABSOLUTE_PATH (subpst->filename))
4521 {
4522 /* It shares objfile->objfile_obstack. */
4523 subpst->dirname = pst->dirname;
4524 }
4525
4526 subpst->textlow = 0;
4527 subpst->texthigh = 0;
4528
4529 subpst->dependencies
4530 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
4531 subpst->dependencies[0] = pst;
4532 subpst->number_of_dependencies = 1;
4533
4534 subpst->globals_offset = 0;
4535 subpst->n_global_syms = 0;
4536 subpst->statics_offset = 0;
4537 subpst->n_static_syms = 0;
4538 subpst->compunit_symtab = NULL;
4539 subpst->read_symtab = pst->read_symtab;
4540 subpst->readin = 0;
4541
4542 /* No private part is necessary for include psymtabs. This property
4543 can be used to differentiate between such include psymtabs and
4544 the regular ones. */
4545 subpst->read_symtab_private = NULL;
4546 }
4547
4548 /* Read the Line Number Program data and extract the list of files
4549 included by the source file represented by PST. Build an include
4550 partial symtab for each of these included files. */
4551
4552 static void
4553 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4554 struct die_info *die,
4555 struct partial_symtab *pst)
4556 {
4557 struct line_header *lh = NULL;
4558 struct attribute *attr;
4559
4560 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4561 if (attr)
4562 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4563 if (lh == NULL)
4564 return; /* No linetable, so no includes. */
4565
4566 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4567 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
4568
4569 free_line_header (lh);
4570 }
4571
4572 static hashval_t
4573 hash_signatured_type (const void *item)
4574 {
4575 const struct signatured_type *sig_type
4576 = (const struct signatured_type *) item;
4577
4578 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4579 return sig_type->signature;
4580 }
4581
4582 static int
4583 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4584 {
4585 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
4586 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
4587
4588 return lhs->signature == rhs->signature;
4589 }
4590
4591 /* Allocate a hash table for signatured types. */
4592
4593 static htab_t
4594 allocate_signatured_type_table (struct objfile *objfile)
4595 {
4596 return htab_create_alloc_ex (41,
4597 hash_signatured_type,
4598 eq_signatured_type,
4599 NULL,
4600 &objfile->objfile_obstack,
4601 hashtab_obstack_allocate,
4602 dummy_obstack_deallocate);
4603 }
4604
4605 /* A helper function to add a signatured type CU to a table. */
4606
4607 static int
4608 add_signatured_type_cu_to_table (void **slot, void *datum)
4609 {
4610 struct signatured_type *sigt = (struct signatured_type *) *slot;
4611 struct signatured_type ***datap = (struct signatured_type ***) datum;
4612
4613 **datap = sigt;
4614 ++*datap;
4615
4616 return 1;
4617 }
4618
4619 /* Create the hash table of all entries in the .debug_types
4620 (or .debug_types.dwo) section(s).
4621 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4622 otherwise it is NULL.
4623
4624 The result is a pointer to the hash table or NULL if there are no types.
4625
4626 Note: This function processes DWO files only, not DWP files. */
4627
4628 static htab_t
4629 create_debug_types_hash_table (struct dwo_file *dwo_file,
4630 VEC (dwarf2_section_info_def) *types)
4631 {
4632 struct objfile *objfile = dwarf2_per_objfile->objfile;
4633 htab_t types_htab = NULL;
4634 int ix;
4635 struct dwarf2_section_info *section;
4636 struct dwarf2_section_info *abbrev_section;
4637
4638 if (VEC_empty (dwarf2_section_info_def, types))
4639 return NULL;
4640
4641 abbrev_section = (dwo_file != NULL
4642 ? &dwo_file->sections.abbrev
4643 : &dwarf2_per_objfile->abbrev);
4644
4645 if (dwarf_read_debug)
4646 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4647 dwo_file ? ".dwo" : "",
4648 get_section_file_name (abbrev_section));
4649
4650 for (ix = 0;
4651 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4652 ++ix)
4653 {
4654 bfd *abfd;
4655 const gdb_byte *info_ptr, *end_ptr;
4656
4657 dwarf2_read_section (objfile, section);
4658 info_ptr = section->buffer;
4659
4660 if (info_ptr == NULL)
4661 continue;
4662
4663 /* We can't set abfd until now because the section may be empty or
4664 not present, in which case the bfd is unknown. */
4665 abfd = get_section_bfd_owner (section);
4666
4667 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4668 because we don't need to read any dies: the signature is in the
4669 header. */
4670
4671 end_ptr = info_ptr + section->size;
4672 while (info_ptr < end_ptr)
4673 {
4674 sect_offset offset;
4675 cu_offset type_offset_in_tu;
4676 ULONGEST signature;
4677 struct signatured_type *sig_type;
4678 struct dwo_unit *dwo_tu;
4679 void **slot;
4680 const gdb_byte *ptr = info_ptr;
4681 struct comp_unit_head header;
4682 unsigned int length;
4683
4684 offset.sect_off = ptr - section->buffer;
4685
4686 /* We need to read the type's signature in order to build the hash
4687 table, but we don't need anything else just yet. */
4688
4689 ptr = read_and_check_type_unit_head (&header, section,
4690 abbrev_section, ptr,
4691 &signature, &type_offset_in_tu);
4692
4693 length = get_cu_length (&header);
4694
4695 /* Skip dummy type units. */
4696 if (ptr >= info_ptr + length
4697 || peek_abbrev_code (abfd, ptr) == 0)
4698 {
4699 info_ptr += length;
4700 continue;
4701 }
4702
4703 if (types_htab == NULL)
4704 {
4705 if (dwo_file)
4706 types_htab = allocate_dwo_unit_table (objfile);
4707 else
4708 types_htab = allocate_signatured_type_table (objfile);
4709 }
4710
4711 if (dwo_file)
4712 {
4713 sig_type = NULL;
4714 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4715 struct dwo_unit);
4716 dwo_tu->dwo_file = dwo_file;
4717 dwo_tu->signature = signature;
4718 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4719 dwo_tu->section = section;
4720 dwo_tu->offset = offset;
4721 dwo_tu->length = length;
4722 }
4723 else
4724 {
4725 /* N.B.: type_offset is not usable if this type uses a DWO file.
4726 The real type_offset is in the DWO file. */
4727 dwo_tu = NULL;
4728 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4729 struct signatured_type);
4730 sig_type->signature = signature;
4731 sig_type->type_offset_in_tu = type_offset_in_tu;
4732 sig_type->per_cu.objfile = objfile;
4733 sig_type->per_cu.is_debug_types = 1;
4734 sig_type->per_cu.section = section;
4735 sig_type->per_cu.offset = offset;
4736 sig_type->per_cu.length = length;
4737 }
4738
4739 slot = htab_find_slot (types_htab,
4740 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4741 INSERT);
4742 gdb_assert (slot != NULL);
4743 if (*slot != NULL)
4744 {
4745 sect_offset dup_offset;
4746
4747 if (dwo_file)
4748 {
4749 const struct dwo_unit *dup_tu
4750 = (const struct dwo_unit *) *slot;
4751
4752 dup_offset = dup_tu->offset;
4753 }
4754 else
4755 {
4756 const struct signatured_type *dup_tu
4757 = (const struct signatured_type *) *slot;
4758
4759 dup_offset = dup_tu->per_cu.offset;
4760 }
4761
4762 complaint (&symfile_complaints,
4763 _("debug type entry at offset 0x%x is duplicate to"
4764 " the entry at offset 0x%x, signature %s"),
4765 offset.sect_off, dup_offset.sect_off,
4766 hex_string (signature));
4767 }
4768 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4769
4770 if (dwarf_read_debug > 1)
4771 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4772 offset.sect_off,
4773 hex_string (signature));
4774
4775 info_ptr += length;
4776 }
4777 }
4778
4779 return types_htab;
4780 }
4781
4782 /* Create the hash table of all entries in the .debug_types section,
4783 and initialize all_type_units.
4784 The result is zero if there is an error (e.g. missing .debug_types section),
4785 otherwise non-zero. */
4786
4787 static int
4788 create_all_type_units (struct objfile *objfile)
4789 {
4790 htab_t types_htab;
4791 struct signatured_type **iter;
4792
4793 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4794 if (types_htab == NULL)
4795 {
4796 dwarf2_per_objfile->signatured_types = NULL;
4797 return 0;
4798 }
4799
4800 dwarf2_per_objfile->signatured_types = types_htab;
4801
4802 dwarf2_per_objfile->n_type_units
4803 = dwarf2_per_objfile->n_allocated_type_units
4804 = htab_elements (types_htab);
4805 dwarf2_per_objfile->all_type_units =
4806 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
4807 iter = &dwarf2_per_objfile->all_type_units[0];
4808 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4809 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4810 == dwarf2_per_objfile->n_type_units);
4811
4812 return 1;
4813 }
4814
4815 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4816 If SLOT is non-NULL, it is the entry to use in the hash table.
4817 Otherwise we find one. */
4818
4819 static struct signatured_type *
4820 add_type_unit (ULONGEST sig, void **slot)
4821 {
4822 struct objfile *objfile = dwarf2_per_objfile->objfile;
4823 int n_type_units = dwarf2_per_objfile->n_type_units;
4824 struct signatured_type *sig_type;
4825
4826 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4827 ++n_type_units;
4828 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4829 {
4830 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4831 dwarf2_per_objfile->n_allocated_type_units = 1;
4832 dwarf2_per_objfile->n_allocated_type_units *= 2;
4833 dwarf2_per_objfile->all_type_units
4834 = XRESIZEVEC (struct signatured_type *,
4835 dwarf2_per_objfile->all_type_units,
4836 dwarf2_per_objfile->n_allocated_type_units);
4837 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4838 }
4839 dwarf2_per_objfile->n_type_units = n_type_units;
4840
4841 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4842 struct signatured_type);
4843 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4844 sig_type->signature = sig;
4845 sig_type->per_cu.is_debug_types = 1;
4846 if (dwarf2_per_objfile->using_index)
4847 {
4848 sig_type->per_cu.v.quick =
4849 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4850 struct dwarf2_per_cu_quick_data);
4851 }
4852
4853 if (slot == NULL)
4854 {
4855 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4856 sig_type, INSERT);
4857 }
4858 gdb_assert (*slot == NULL);
4859 *slot = sig_type;
4860 /* The rest of sig_type must be filled in by the caller. */
4861 return sig_type;
4862 }
4863
4864 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4865 Fill in SIG_ENTRY with DWO_ENTRY. */
4866
4867 static void
4868 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4869 struct signatured_type *sig_entry,
4870 struct dwo_unit *dwo_entry)
4871 {
4872 /* Make sure we're not clobbering something we don't expect to. */
4873 gdb_assert (! sig_entry->per_cu.queued);
4874 gdb_assert (sig_entry->per_cu.cu == NULL);
4875 if (dwarf2_per_objfile->using_index)
4876 {
4877 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4878 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
4879 }
4880 else
4881 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4882 gdb_assert (sig_entry->signature == dwo_entry->signature);
4883 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4884 gdb_assert (sig_entry->type_unit_group == NULL);
4885 gdb_assert (sig_entry->dwo_unit == NULL);
4886
4887 sig_entry->per_cu.section = dwo_entry->section;
4888 sig_entry->per_cu.offset = dwo_entry->offset;
4889 sig_entry->per_cu.length = dwo_entry->length;
4890 sig_entry->per_cu.reading_dwo_directly = 1;
4891 sig_entry->per_cu.objfile = objfile;
4892 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4893 sig_entry->dwo_unit = dwo_entry;
4894 }
4895
4896 /* Subroutine of lookup_signatured_type.
4897 If we haven't read the TU yet, create the signatured_type data structure
4898 for a TU to be read in directly from a DWO file, bypassing the stub.
4899 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4900 using .gdb_index, then when reading a CU we want to stay in the DWO file
4901 containing that CU. Otherwise we could end up reading several other DWO
4902 files (due to comdat folding) to process the transitive closure of all the
4903 mentioned TUs, and that can be slow. The current DWO file will have every
4904 type signature that it needs.
4905 We only do this for .gdb_index because in the psymtab case we already have
4906 to read all the DWOs to build the type unit groups. */
4907
4908 static struct signatured_type *
4909 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4910 {
4911 struct objfile *objfile = dwarf2_per_objfile->objfile;
4912 struct dwo_file *dwo_file;
4913 struct dwo_unit find_dwo_entry, *dwo_entry;
4914 struct signatured_type find_sig_entry, *sig_entry;
4915 void **slot;
4916
4917 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4918
4919 /* If TU skeletons have been removed then we may not have read in any
4920 TUs yet. */
4921 if (dwarf2_per_objfile->signatured_types == NULL)
4922 {
4923 dwarf2_per_objfile->signatured_types
4924 = allocate_signatured_type_table (objfile);
4925 }
4926
4927 /* We only ever need to read in one copy of a signatured type.
4928 Use the global signatured_types array to do our own comdat-folding
4929 of types. If this is the first time we're reading this TU, and
4930 the TU has an entry in .gdb_index, replace the recorded data from
4931 .gdb_index with this TU. */
4932
4933 find_sig_entry.signature = sig;
4934 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4935 &find_sig_entry, INSERT);
4936 sig_entry = (struct signatured_type *) *slot;
4937
4938 /* We can get here with the TU already read, *or* in the process of being
4939 read. Don't reassign the global entry to point to this DWO if that's
4940 the case. Also note that if the TU is already being read, it may not
4941 have come from a DWO, the program may be a mix of Fission-compiled
4942 code and non-Fission-compiled code. */
4943
4944 /* Have we already tried to read this TU?
4945 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4946 needn't exist in the global table yet). */
4947 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
4948 return sig_entry;
4949
4950 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4951 dwo_unit of the TU itself. */
4952 dwo_file = cu->dwo_unit->dwo_file;
4953
4954 /* Ok, this is the first time we're reading this TU. */
4955 if (dwo_file->tus == NULL)
4956 return NULL;
4957 find_dwo_entry.signature = sig;
4958 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
4959 if (dwo_entry == NULL)
4960 return NULL;
4961
4962 /* If the global table doesn't have an entry for this TU, add one. */
4963 if (sig_entry == NULL)
4964 sig_entry = add_type_unit (sig, slot);
4965
4966 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4967 sig_entry->per_cu.tu_read = 1;
4968 return sig_entry;
4969 }
4970
4971 /* Subroutine of lookup_signatured_type.
4972 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4973 then try the DWP file. If the TU stub (skeleton) has been removed then
4974 it won't be in .gdb_index. */
4975
4976 static struct signatured_type *
4977 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4978 {
4979 struct objfile *objfile = dwarf2_per_objfile->objfile;
4980 struct dwp_file *dwp_file = get_dwp_file ();
4981 struct dwo_unit *dwo_entry;
4982 struct signatured_type find_sig_entry, *sig_entry;
4983 void **slot;
4984
4985 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4986 gdb_assert (dwp_file != NULL);
4987
4988 /* If TU skeletons have been removed then we may not have read in any
4989 TUs yet. */
4990 if (dwarf2_per_objfile->signatured_types == NULL)
4991 {
4992 dwarf2_per_objfile->signatured_types
4993 = allocate_signatured_type_table (objfile);
4994 }
4995
4996 find_sig_entry.signature = sig;
4997 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4998 &find_sig_entry, INSERT);
4999 sig_entry = (struct signatured_type *) *slot;
5000
5001 /* Have we already tried to read this TU?
5002 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5003 needn't exist in the global table yet). */
5004 if (sig_entry != NULL)
5005 return sig_entry;
5006
5007 if (dwp_file->tus == NULL)
5008 return NULL;
5009 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
5010 sig, 1 /* is_debug_types */);
5011 if (dwo_entry == NULL)
5012 return NULL;
5013
5014 sig_entry = add_type_unit (sig, slot);
5015 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5016
5017 return sig_entry;
5018 }
5019
5020 /* Lookup a signature based type for DW_FORM_ref_sig8.
5021 Returns NULL if signature SIG is not present in the table.
5022 It is up to the caller to complain about this. */
5023
5024 static struct signatured_type *
5025 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5026 {
5027 if (cu->dwo_unit
5028 && dwarf2_per_objfile->using_index)
5029 {
5030 /* We're in a DWO/DWP file, and we're using .gdb_index.
5031 These cases require special processing. */
5032 if (get_dwp_file () == NULL)
5033 return lookup_dwo_signatured_type (cu, sig);
5034 else
5035 return lookup_dwp_signatured_type (cu, sig);
5036 }
5037 else
5038 {
5039 struct signatured_type find_entry, *entry;
5040
5041 if (dwarf2_per_objfile->signatured_types == NULL)
5042 return NULL;
5043 find_entry.signature = sig;
5044 entry = ((struct signatured_type *)
5045 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
5046 return entry;
5047 }
5048 }
5049 \f
5050 /* Low level DIE reading support. */
5051
5052 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5053
5054 static void
5055 init_cu_die_reader (struct die_reader_specs *reader,
5056 struct dwarf2_cu *cu,
5057 struct dwarf2_section_info *section,
5058 struct dwo_file *dwo_file)
5059 {
5060 gdb_assert (section->readin && section->buffer != NULL);
5061 reader->abfd = get_section_bfd_owner (section);
5062 reader->cu = cu;
5063 reader->dwo_file = dwo_file;
5064 reader->die_section = section;
5065 reader->buffer = section->buffer;
5066 reader->buffer_end = section->buffer + section->size;
5067 reader->comp_dir = NULL;
5068 }
5069
5070 /* Subroutine of init_cutu_and_read_dies to simplify it.
5071 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5072 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5073 already.
5074
5075 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5076 from it to the DIE in the DWO. If NULL we are skipping the stub.
5077 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5078 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
5079 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5080 STUB_COMP_DIR may be non-NULL.
5081 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5082 are filled in with the info of the DIE from the DWO file.
5083 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5084 provided an abbrev table to use.
5085 The result is non-zero if a valid (non-dummy) DIE was found. */
5086
5087 static int
5088 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5089 struct dwo_unit *dwo_unit,
5090 int abbrev_table_provided,
5091 struct die_info *stub_comp_unit_die,
5092 const char *stub_comp_dir,
5093 struct die_reader_specs *result_reader,
5094 const gdb_byte **result_info_ptr,
5095 struct die_info **result_comp_unit_die,
5096 int *result_has_children)
5097 {
5098 struct objfile *objfile = dwarf2_per_objfile->objfile;
5099 struct dwarf2_cu *cu = this_cu->cu;
5100 struct dwarf2_section_info *section;
5101 bfd *abfd;
5102 const gdb_byte *begin_info_ptr, *info_ptr;
5103 ULONGEST signature; /* Or dwo_id. */
5104 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5105 int i,num_extra_attrs;
5106 struct dwarf2_section_info *dwo_abbrev_section;
5107 struct attribute *attr;
5108 struct die_info *comp_unit_die;
5109
5110 /* At most one of these may be provided. */
5111 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5112
5113 /* These attributes aren't processed until later:
5114 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5115 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5116 referenced later. However, these attributes are found in the stub
5117 which we won't have later. In order to not impose this complication
5118 on the rest of the code, we read them here and copy them to the
5119 DWO CU/TU die. */
5120
5121 stmt_list = NULL;
5122 low_pc = NULL;
5123 high_pc = NULL;
5124 ranges = NULL;
5125 comp_dir = NULL;
5126
5127 if (stub_comp_unit_die != NULL)
5128 {
5129 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5130 DWO file. */
5131 if (! this_cu->is_debug_types)
5132 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5133 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5134 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5135 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5136 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5137
5138 /* There should be a DW_AT_addr_base attribute here (if needed).
5139 We need the value before we can process DW_FORM_GNU_addr_index. */
5140 cu->addr_base = 0;
5141 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5142 if (attr)
5143 cu->addr_base = DW_UNSND (attr);
5144
5145 /* There should be a DW_AT_ranges_base attribute here (if needed).
5146 We need the value before we can process DW_AT_ranges. */
5147 cu->ranges_base = 0;
5148 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5149 if (attr)
5150 cu->ranges_base = DW_UNSND (attr);
5151 }
5152 else if (stub_comp_dir != NULL)
5153 {
5154 /* Reconstruct the comp_dir attribute to simplify the code below. */
5155 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
5156 comp_dir->name = DW_AT_comp_dir;
5157 comp_dir->form = DW_FORM_string;
5158 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5159 DW_STRING (comp_dir) = stub_comp_dir;
5160 }
5161
5162 /* Set up for reading the DWO CU/TU. */
5163 cu->dwo_unit = dwo_unit;
5164 section = dwo_unit->section;
5165 dwarf2_read_section (objfile, section);
5166 abfd = get_section_bfd_owner (section);
5167 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5168 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5169 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5170
5171 if (this_cu->is_debug_types)
5172 {
5173 ULONGEST header_signature;
5174 cu_offset type_offset_in_tu;
5175 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5176
5177 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5178 dwo_abbrev_section,
5179 info_ptr,
5180 &header_signature,
5181 &type_offset_in_tu);
5182 /* This is not an assert because it can be caused by bad debug info. */
5183 if (sig_type->signature != header_signature)
5184 {
5185 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5186 " TU at offset 0x%x [in module %s]"),
5187 hex_string (sig_type->signature),
5188 hex_string (header_signature),
5189 dwo_unit->offset.sect_off,
5190 bfd_get_filename (abfd));
5191 }
5192 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5193 /* For DWOs coming from DWP files, we don't know the CU length
5194 nor the type's offset in the TU until now. */
5195 dwo_unit->length = get_cu_length (&cu->header);
5196 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5197
5198 /* Establish the type offset that can be used to lookup the type.
5199 For DWO files, we don't know it until now. */
5200 sig_type->type_offset_in_section.sect_off =
5201 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5202 }
5203 else
5204 {
5205 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5206 dwo_abbrev_section,
5207 info_ptr, 0);
5208 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5209 /* For DWOs coming from DWP files, we don't know the CU length
5210 until now. */
5211 dwo_unit->length = get_cu_length (&cu->header);
5212 }
5213
5214 /* Replace the CU's original abbrev table with the DWO's.
5215 Reminder: We can't read the abbrev table until we've read the header. */
5216 if (abbrev_table_provided)
5217 {
5218 /* Don't free the provided abbrev table, the caller of
5219 init_cutu_and_read_dies owns it. */
5220 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5221 /* Ensure the DWO abbrev table gets freed. */
5222 make_cleanup (dwarf2_free_abbrev_table, cu);
5223 }
5224 else
5225 {
5226 dwarf2_free_abbrev_table (cu);
5227 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5228 /* Leave any existing abbrev table cleanup as is. */
5229 }
5230
5231 /* Read in the die, but leave space to copy over the attributes
5232 from the stub. This has the benefit of simplifying the rest of
5233 the code - all the work to maintain the illusion of a single
5234 DW_TAG_{compile,type}_unit DIE is done here. */
5235 num_extra_attrs = ((stmt_list != NULL)
5236 + (low_pc != NULL)
5237 + (high_pc != NULL)
5238 + (ranges != NULL)
5239 + (comp_dir != NULL));
5240 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5241 result_has_children, num_extra_attrs);
5242
5243 /* Copy over the attributes from the stub to the DIE we just read in. */
5244 comp_unit_die = *result_comp_unit_die;
5245 i = comp_unit_die->num_attrs;
5246 if (stmt_list != NULL)
5247 comp_unit_die->attrs[i++] = *stmt_list;
5248 if (low_pc != NULL)
5249 comp_unit_die->attrs[i++] = *low_pc;
5250 if (high_pc != NULL)
5251 comp_unit_die->attrs[i++] = *high_pc;
5252 if (ranges != NULL)
5253 comp_unit_die->attrs[i++] = *ranges;
5254 if (comp_dir != NULL)
5255 comp_unit_die->attrs[i++] = *comp_dir;
5256 comp_unit_die->num_attrs += num_extra_attrs;
5257
5258 if (dwarf_die_debug)
5259 {
5260 fprintf_unfiltered (gdb_stdlog,
5261 "Read die from %s@0x%x of %s:\n",
5262 get_section_name (section),
5263 (unsigned) (begin_info_ptr - section->buffer),
5264 bfd_get_filename (abfd));
5265 dump_die (comp_unit_die, dwarf_die_debug);
5266 }
5267
5268 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5269 TUs by skipping the stub and going directly to the entry in the DWO file.
5270 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5271 to get it via circuitous means. Blech. */
5272 if (comp_dir != NULL)
5273 result_reader->comp_dir = DW_STRING (comp_dir);
5274
5275 /* Skip dummy compilation units. */
5276 if (info_ptr >= begin_info_ptr + dwo_unit->length
5277 || peek_abbrev_code (abfd, info_ptr) == 0)
5278 return 0;
5279
5280 *result_info_ptr = info_ptr;
5281 return 1;
5282 }
5283
5284 /* Subroutine of init_cutu_and_read_dies to simplify it.
5285 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5286 Returns NULL if the specified DWO unit cannot be found. */
5287
5288 static struct dwo_unit *
5289 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5290 struct die_info *comp_unit_die)
5291 {
5292 struct dwarf2_cu *cu = this_cu->cu;
5293 struct attribute *attr;
5294 ULONGEST signature;
5295 struct dwo_unit *dwo_unit;
5296 const char *comp_dir, *dwo_name;
5297
5298 gdb_assert (cu != NULL);
5299
5300 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5301 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5302 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5303
5304 if (this_cu->is_debug_types)
5305 {
5306 struct signatured_type *sig_type;
5307
5308 /* Since this_cu is the first member of struct signatured_type,
5309 we can go from a pointer to one to a pointer to the other. */
5310 sig_type = (struct signatured_type *) this_cu;
5311 signature = sig_type->signature;
5312 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5313 }
5314 else
5315 {
5316 struct attribute *attr;
5317
5318 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5319 if (! attr)
5320 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5321 " [in module %s]"),
5322 dwo_name, objfile_name (this_cu->objfile));
5323 signature = DW_UNSND (attr);
5324 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5325 signature);
5326 }
5327
5328 return dwo_unit;
5329 }
5330
5331 /* Subroutine of init_cutu_and_read_dies to simplify it.
5332 See it for a description of the parameters.
5333 Read a TU directly from a DWO file, bypassing the stub.
5334
5335 Note: This function could be a little bit simpler if we shared cleanups
5336 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5337 to do, so we keep this function self-contained. Or we could move this
5338 into our caller, but it's complex enough already. */
5339
5340 static void
5341 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5342 int use_existing_cu, int keep,
5343 die_reader_func_ftype *die_reader_func,
5344 void *data)
5345 {
5346 struct dwarf2_cu *cu;
5347 struct signatured_type *sig_type;
5348 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5349 struct die_reader_specs reader;
5350 const gdb_byte *info_ptr;
5351 struct die_info *comp_unit_die;
5352 int has_children;
5353
5354 /* Verify we can do the following downcast, and that we have the
5355 data we need. */
5356 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5357 sig_type = (struct signatured_type *) this_cu;
5358 gdb_assert (sig_type->dwo_unit != NULL);
5359
5360 cleanups = make_cleanup (null_cleanup, NULL);
5361
5362 if (use_existing_cu && this_cu->cu != NULL)
5363 {
5364 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5365 cu = this_cu->cu;
5366 /* There's no need to do the rereading_dwo_cu handling that
5367 init_cutu_and_read_dies does since we don't read the stub. */
5368 }
5369 else
5370 {
5371 /* If !use_existing_cu, this_cu->cu must be NULL. */
5372 gdb_assert (this_cu->cu == NULL);
5373 cu = XNEW (struct dwarf2_cu);
5374 init_one_comp_unit (cu, this_cu);
5375 /* If an error occurs while loading, release our storage. */
5376 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5377 }
5378
5379 /* A future optimization, if needed, would be to use an existing
5380 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5381 could share abbrev tables. */
5382
5383 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5384 0 /* abbrev_table_provided */,
5385 NULL /* stub_comp_unit_die */,
5386 sig_type->dwo_unit->dwo_file->comp_dir,
5387 &reader, &info_ptr,
5388 &comp_unit_die, &has_children) == 0)
5389 {
5390 /* Dummy die. */
5391 do_cleanups (cleanups);
5392 return;
5393 }
5394
5395 /* All the "real" work is done here. */
5396 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5397
5398 /* This duplicates the code in init_cutu_and_read_dies,
5399 but the alternative is making the latter more complex.
5400 This function is only for the special case of using DWO files directly:
5401 no point in overly complicating the general case just to handle this. */
5402 if (free_cu_cleanup != NULL)
5403 {
5404 if (keep)
5405 {
5406 /* We've successfully allocated this compilation unit. Let our
5407 caller clean it up when finished with it. */
5408 discard_cleanups (free_cu_cleanup);
5409
5410 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5411 So we have to manually free the abbrev table. */
5412 dwarf2_free_abbrev_table (cu);
5413
5414 /* Link this CU into read_in_chain. */
5415 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5416 dwarf2_per_objfile->read_in_chain = this_cu;
5417 }
5418 else
5419 do_cleanups (free_cu_cleanup);
5420 }
5421
5422 do_cleanups (cleanups);
5423 }
5424
5425 /* Initialize a CU (or TU) and read its DIEs.
5426 If the CU defers to a DWO file, read the DWO file as well.
5427
5428 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5429 Otherwise the table specified in the comp unit header is read in and used.
5430 This is an optimization for when we already have the abbrev table.
5431
5432 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5433 Otherwise, a new CU is allocated with xmalloc.
5434
5435 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5436 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5437
5438 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5439 linker) then DIE_READER_FUNC will not get called. */
5440
5441 static void
5442 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5443 struct abbrev_table *abbrev_table,
5444 int use_existing_cu, int keep,
5445 die_reader_func_ftype *die_reader_func,
5446 void *data)
5447 {
5448 struct objfile *objfile = dwarf2_per_objfile->objfile;
5449 struct dwarf2_section_info *section = this_cu->section;
5450 bfd *abfd = get_section_bfd_owner (section);
5451 struct dwarf2_cu *cu;
5452 const gdb_byte *begin_info_ptr, *info_ptr;
5453 struct die_reader_specs reader;
5454 struct die_info *comp_unit_die;
5455 int has_children;
5456 struct attribute *attr;
5457 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5458 struct signatured_type *sig_type = NULL;
5459 struct dwarf2_section_info *abbrev_section;
5460 /* Non-zero if CU currently points to a DWO file and we need to
5461 reread it. When this happens we need to reread the skeleton die
5462 before we can reread the DWO file (this only applies to CUs, not TUs). */
5463 int rereading_dwo_cu = 0;
5464
5465 if (dwarf_die_debug)
5466 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5467 this_cu->is_debug_types ? "type" : "comp",
5468 this_cu->offset.sect_off);
5469
5470 if (use_existing_cu)
5471 gdb_assert (keep);
5472
5473 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5474 file (instead of going through the stub), short-circuit all of this. */
5475 if (this_cu->reading_dwo_directly)
5476 {
5477 /* Narrow down the scope of possibilities to have to understand. */
5478 gdb_assert (this_cu->is_debug_types);
5479 gdb_assert (abbrev_table == NULL);
5480 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5481 die_reader_func, data);
5482 return;
5483 }
5484
5485 cleanups = make_cleanup (null_cleanup, NULL);
5486
5487 /* This is cheap if the section is already read in. */
5488 dwarf2_read_section (objfile, section);
5489
5490 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5491
5492 abbrev_section = get_abbrev_section_for_cu (this_cu);
5493
5494 if (use_existing_cu && this_cu->cu != NULL)
5495 {
5496 cu = this_cu->cu;
5497 /* If this CU is from a DWO file we need to start over, we need to
5498 refetch the attributes from the skeleton CU.
5499 This could be optimized by retrieving those attributes from when we
5500 were here the first time: the previous comp_unit_die was stored in
5501 comp_unit_obstack. But there's no data yet that we need this
5502 optimization. */
5503 if (cu->dwo_unit != NULL)
5504 rereading_dwo_cu = 1;
5505 }
5506 else
5507 {
5508 /* If !use_existing_cu, this_cu->cu must be NULL. */
5509 gdb_assert (this_cu->cu == NULL);
5510 cu = XNEW (struct dwarf2_cu);
5511 init_one_comp_unit (cu, this_cu);
5512 /* If an error occurs while loading, release our storage. */
5513 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5514 }
5515
5516 /* Get the header. */
5517 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5518 {
5519 /* We already have the header, there's no need to read it in again. */
5520 info_ptr += cu->header.first_die_offset.cu_off;
5521 }
5522 else
5523 {
5524 if (this_cu->is_debug_types)
5525 {
5526 ULONGEST signature;
5527 cu_offset type_offset_in_tu;
5528
5529 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5530 abbrev_section, info_ptr,
5531 &signature,
5532 &type_offset_in_tu);
5533
5534 /* Since per_cu is the first member of struct signatured_type,
5535 we can go from a pointer to one to a pointer to the other. */
5536 sig_type = (struct signatured_type *) this_cu;
5537 gdb_assert (sig_type->signature == signature);
5538 gdb_assert (sig_type->type_offset_in_tu.cu_off
5539 == type_offset_in_tu.cu_off);
5540 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5541
5542 /* LENGTH has not been set yet for type units if we're
5543 using .gdb_index. */
5544 this_cu->length = get_cu_length (&cu->header);
5545
5546 /* Establish the type offset that can be used to lookup the type. */
5547 sig_type->type_offset_in_section.sect_off =
5548 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5549 }
5550 else
5551 {
5552 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5553 abbrev_section,
5554 info_ptr, 0);
5555
5556 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5557 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5558 }
5559 }
5560
5561 /* Skip dummy compilation units. */
5562 if (info_ptr >= begin_info_ptr + this_cu->length
5563 || peek_abbrev_code (abfd, info_ptr) == 0)
5564 {
5565 do_cleanups (cleanups);
5566 return;
5567 }
5568
5569 /* If we don't have them yet, read the abbrevs for this compilation unit.
5570 And if we need to read them now, make sure they're freed when we're
5571 done. Note that it's important that if the CU had an abbrev table
5572 on entry we don't free it when we're done: Somewhere up the call stack
5573 it may be in use. */
5574 if (abbrev_table != NULL)
5575 {
5576 gdb_assert (cu->abbrev_table == NULL);
5577 gdb_assert (cu->header.abbrev_offset.sect_off
5578 == abbrev_table->offset.sect_off);
5579 cu->abbrev_table = abbrev_table;
5580 }
5581 else if (cu->abbrev_table == NULL)
5582 {
5583 dwarf2_read_abbrevs (cu, abbrev_section);
5584 make_cleanup (dwarf2_free_abbrev_table, cu);
5585 }
5586 else if (rereading_dwo_cu)
5587 {
5588 dwarf2_free_abbrev_table (cu);
5589 dwarf2_read_abbrevs (cu, abbrev_section);
5590 }
5591
5592 /* Read the top level CU/TU die. */
5593 init_cu_die_reader (&reader, cu, section, NULL);
5594 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5595
5596 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5597 from the DWO file.
5598 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5599 DWO CU, that this test will fail (the attribute will not be present). */
5600 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5601 if (attr)
5602 {
5603 struct dwo_unit *dwo_unit;
5604 struct die_info *dwo_comp_unit_die;
5605
5606 if (has_children)
5607 {
5608 complaint (&symfile_complaints,
5609 _("compilation unit with DW_AT_GNU_dwo_name"
5610 " has children (offset 0x%x) [in module %s]"),
5611 this_cu->offset.sect_off, bfd_get_filename (abfd));
5612 }
5613 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5614 if (dwo_unit != NULL)
5615 {
5616 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5617 abbrev_table != NULL,
5618 comp_unit_die, NULL,
5619 &reader, &info_ptr,
5620 &dwo_comp_unit_die, &has_children) == 0)
5621 {
5622 /* Dummy die. */
5623 do_cleanups (cleanups);
5624 return;
5625 }
5626 comp_unit_die = dwo_comp_unit_die;
5627 }
5628 else
5629 {
5630 /* Yikes, we couldn't find the rest of the DIE, we only have
5631 the stub. A complaint has already been logged. There's
5632 not much more we can do except pass on the stub DIE to
5633 die_reader_func. We don't want to throw an error on bad
5634 debug info. */
5635 }
5636 }
5637
5638 /* All of the above is setup for this call. Yikes. */
5639 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5640
5641 /* Done, clean up. */
5642 if (free_cu_cleanup != NULL)
5643 {
5644 if (keep)
5645 {
5646 /* We've successfully allocated this compilation unit. Let our
5647 caller clean it up when finished with it. */
5648 discard_cleanups (free_cu_cleanup);
5649
5650 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5651 So we have to manually free the abbrev table. */
5652 dwarf2_free_abbrev_table (cu);
5653
5654 /* Link this CU into read_in_chain. */
5655 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5656 dwarf2_per_objfile->read_in_chain = this_cu;
5657 }
5658 else
5659 do_cleanups (free_cu_cleanup);
5660 }
5661
5662 do_cleanups (cleanups);
5663 }
5664
5665 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5666 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5667 to have already done the lookup to find the DWO file).
5668
5669 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5670 THIS_CU->is_debug_types, but nothing else.
5671
5672 We fill in THIS_CU->length.
5673
5674 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5675 linker) then DIE_READER_FUNC will not get called.
5676
5677 THIS_CU->cu is always freed when done.
5678 This is done in order to not leave THIS_CU->cu in a state where we have
5679 to care whether it refers to the "main" CU or the DWO CU. */
5680
5681 static void
5682 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5683 struct dwo_file *dwo_file,
5684 die_reader_func_ftype *die_reader_func,
5685 void *data)
5686 {
5687 struct objfile *objfile = dwarf2_per_objfile->objfile;
5688 struct dwarf2_section_info *section = this_cu->section;
5689 bfd *abfd = get_section_bfd_owner (section);
5690 struct dwarf2_section_info *abbrev_section;
5691 struct dwarf2_cu cu;
5692 const gdb_byte *begin_info_ptr, *info_ptr;
5693 struct die_reader_specs reader;
5694 struct cleanup *cleanups;
5695 struct die_info *comp_unit_die;
5696 int has_children;
5697
5698 if (dwarf_die_debug)
5699 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5700 this_cu->is_debug_types ? "type" : "comp",
5701 this_cu->offset.sect_off);
5702
5703 gdb_assert (this_cu->cu == NULL);
5704
5705 abbrev_section = (dwo_file != NULL
5706 ? &dwo_file->sections.abbrev
5707 : get_abbrev_section_for_cu (this_cu));
5708
5709 /* This is cheap if the section is already read in. */
5710 dwarf2_read_section (objfile, section);
5711
5712 init_one_comp_unit (&cu, this_cu);
5713
5714 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5715
5716 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5717 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5718 abbrev_section, info_ptr,
5719 this_cu->is_debug_types);
5720
5721 this_cu->length = get_cu_length (&cu.header);
5722
5723 /* Skip dummy compilation units. */
5724 if (info_ptr >= begin_info_ptr + this_cu->length
5725 || peek_abbrev_code (abfd, info_ptr) == 0)
5726 {
5727 do_cleanups (cleanups);
5728 return;
5729 }
5730
5731 dwarf2_read_abbrevs (&cu, abbrev_section);
5732 make_cleanup (dwarf2_free_abbrev_table, &cu);
5733
5734 init_cu_die_reader (&reader, &cu, section, dwo_file);
5735 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5736
5737 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5738
5739 do_cleanups (cleanups);
5740 }
5741
5742 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5743 does not lookup the specified DWO file.
5744 This cannot be used to read DWO files.
5745
5746 THIS_CU->cu is always freed when done.
5747 This is done in order to not leave THIS_CU->cu in a state where we have
5748 to care whether it refers to the "main" CU or the DWO CU.
5749 We can revisit this if the data shows there's a performance issue. */
5750
5751 static void
5752 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5753 die_reader_func_ftype *die_reader_func,
5754 void *data)
5755 {
5756 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5757 }
5758 \f
5759 /* Type Unit Groups.
5760
5761 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5762 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5763 so that all types coming from the same compilation (.o file) are grouped
5764 together. A future step could be to put the types in the same symtab as
5765 the CU the types ultimately came from. */
5766
5767 static hashval_t
5768 hash_type_unit_group (const void *item)
5769 {
5770 const struct type_unit_group *tu_group
5771 = (const struct type_unit_group *) item;
5772
5773 return hash_stmt_list_entry (&tu_group->hash);
5774 }
5775
5776 static int
5777 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5778 {
5779 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
5780 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
5781
5782 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5783 }
5784
5785 /* Allocate a hash table for type unit groups. */
5786
5787 static htab_t
5788 allocate_type_unit_groups_table (void)
5789 {
5790 return htab_create_alloc_ex (3,
5791 hash_type_unit_group,
5792 eq_type_unit_group,
5793 NULL,
5794 &dwarf2_per_objfile->objfile->objfile_obstack,
5795 hashtab_obstack_allocate,
5796 dummy_obstack_deallocate);
5797 }
5798
5799 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5800 partial symtabs. We combine several TUs per psymtab to not let the size
5801 of any one psymtab grow too big. */
5802 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5803 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5804
5805 /* Helper routine for get_type_unit_group.
5806 Create the type_unit_group object used to hold one or more TUs. */
5807
5808 static struct type_unit_group *
5809 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5810 {
5811 struct objfile *objfile = dwarf2_per_objfile->objfile;
5812 struct dwarf2_per_cu_data *per_cu;
5813 struct type_unit_group *tu_group;
5814
5815 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5816 struct type_unit_group);
5817 per_cu = &tu_group->per_cu;
5818 per_cu->objfile = objfile;
5819
5820 if (dwarf2_per_objfile->using_index)
5821 {
5822 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5823 struct dwarf2_per_cu_quick_data);
5824 }
5825 else
5826 {
5827 unsigned int line_offset = line_offset_struct.sect_off;
5828 struct partial_symtab *pst;
5829 char *name;
5830
5831 /* Give the symtab a useful name for debug purposes. */
5832 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5833 name = xstrprintf ("<type_units_%d>",
5834 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5835 else
5836 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5837
5838 pst = create_partial_symtab (per_cu, name);
5839 pst->anonymous = 1;
5840
5841 xfree (name);
5842 }
5843
5844 tu_group->hash.dwo_unit = cu->dwo_unit;
5845 tu_group->hash.line_offset = line_offset_struct;
5846
5847 return tu_group;
5848 }
5849
5850 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5851 STMT_LIST is a DW_AT_stmt_list attribute. */
5852
5853 static struct type_unit_group *
5854 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5855 {
5856 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5857 struct type_unit_group *tu_group;
5858 void **slot;
5859 unsigned int line_offset;
5860 struct type_unit_group type_unit_group_for_lookup;
5861
5862 if (dwarf2_per_objfile->type_unit_groups == NULL)
5863 {
5864 dwarf2_per_objfile->type_unit_groups =
5865 allocate_type_unit_groups_table ();
5866 }
5867
5868 /* Do we need to create a new group, or can we use an existing one? */
5869
5870 if (stmt_list)
5871 {
5872 line_offset = DW_UNSND (stmt_list);
5873 ++tu_stats->nr_symtab_sharers;
5874 }
5875 else
5876 {
5877 /* Ugh, no stmt_list. Rare, but we have to handle it.
5878 We can do various things here like create one group per TU or
5879 spread them over multiple groups to split up the expansion work.
5880 To avoid worst case scenarios (too many groups or too large groups)
5881 we, umm, group them in bunches. */
5882 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5883 | (tu_stats->nr_stmt_less_type_units
5884 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5885 ++tu_stats->nr_stmt_less_type_units;
5886 }
5887
5888 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5889 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5890 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5891 &type_unit_group_for_lookup, INSERT);
5892 if (*slot != NULL)
5893 {
5894 tu_group = (struct type_unit_group *) *slot;
5895 gdb_assert (tu_group != NULL);
5896 }
5897 else
5898 {
5899 sect_offset line_offset_struct;
5900
5901 line_offset_struct.sect_off = line_offset;
5902 tu_group = create_type_unit_group (cu, line_offset_struct);
5903 *slot = tu_group;
5904 ++tu_stats->nr_symtabs;
5905 }
5906
5907 return tu_group;
5908 }
5909 \f
5910 /* Partial symbol tables. */
5911
5912 /* Create a psymtab named NAME and assign it to PER_CU.
5913
5914 The caller must fill in the following details:
5915 dirname, textlow, texthigh. */
5916
5917 static struct partial_symtab *
5918 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5919 {
5920 struct objfile *objfile = per_cu->objfile;
5921 struct partial_symtab *pst;
5922
5923 pst = start_psymtab_common (objfile, name, 0,
5924 objfile->global_psymbols.next,
5925 objfile->static_psymbols.next);
5926
5927 pst->psymtabs_addrmap_supported = 1;
5928
5929 /* This is the glue that links PST into GDB's symbol API. */
5930 pst->read_symtab_private = per_cu;
5931 pst->read_symtab = dwarf2_read_symtab;
5932 per_cu->v.psymtab = pst;
5933
5934 return pst;
5935 }
5936
5937 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5938 type. */
5939
5940 struct process_psymtab_comp_unit_data
5941 {
5942 /* True if we are reading a DW_TAG_partial_unit. */
5943
5944 int want_partial_unit;
5945
5946 /* The "pretend" language that is used if the CU doesn't declare a
5947 language. */
5948
5949 enum language pretend_language;
5950 };
5951
5952 /* die_reader_func for process_psymtab_comp_unit. */
5953
5954 static void
5955 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5956 const gdb_byte *info_ptr,
5957 struct die_info *comp_unit_die,
5958 int has_children,
5959 void *data)
5960 {
5961 struct dwarf2_cu *cu = reader->cu;
5962 struct objfile *objfile = cu->objfile;
5963 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5964 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5965 CORE_ADDR baseaddr;
5966 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5967 struct partial_symtab *pst;
5968 enum pc_bounds_kind cu_bounds_kind;
5969 const char *filename;
5970 struct process_psymtab_comp_unit_data *info
5971 = (struct process_psymtab_comp_unit_data *) data;
5972
5973 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5974 return;
5975
5976 gdb_assert (! per_cu->is_debug_types);
5977
5978 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5979
5980 cu->list_in_scope = &file_symbols;
5981
5982 /* Allocate a new partial symbol table structure. */
5983 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
5984 if (filename == NULL)
5985 filename = "";
5986
5987 pst = create_partial_symtab (per_cu, filename);
5988
5989 /* This must be done before calling dwarf2_build_include_psymtabs. */
5990 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5991
5992 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5993
5994 dwarf2_find_base_address (comp_unit_die, cu);
5995
5996 /* Possibly set the default values of LOWPC and HIGHPC from
5997 `DW_AT_ranges'. */
5998 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5999 &best_highpc, cu, pst);
6000 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
6001 /* Store the contiguous range if it is not empty; it can be empty for
6002 CUs with no code. */
6003 addrmap_set_empty (objfile->psymtabs_addrmap,
6004 gdbarch_adjust_dwarf2_addr (gdbarch,
6005 best_lowpc + baseaddr),
6006 gdbarch_adjust_dwarf2_addr (gdbarch,
6007 best_highpc + baseaddr) - 1,
6008 pst);
6009
6010 /* Check if comp unit has_children.
6011 If so, read the rest of the partial symbols from this comp unit.
6012 If not, there's no more debug_info for this comp unit. */
6013 if (has_children)
6014 {
6015 struct partial_die_info *first_die;
6016 CORE_ADDR lowpc, highpc;
6017
6018 lowpc = ((CORE_ADDR) -1);
6019 highpc = ((CORE_ADDR) 0);
6020
6021 first_die = load_partial_dies (reader, info_ptr, 1);
6022
6023 scan_partial_symbols (first_die, &lowpc, &highpc,
6024 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
6025
6026 /* If we didn't find a lowpc, set it to highpc to avoid
6027 complaints from `maint check'. */
6028 if (lowpc == ((CORE_ADDR) -1))
6029 lowpc = highpc;
6030
6031 /* If the compilation unit didn't have an explicit address range,
6032 then use the information extracted from its child dies. */
6033 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
6034 {
6035 best_lowpc = lowpc;
6036 best_highpc = highpc;
6037 }
6038 }
6039 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6040 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
6041
6042 end_psymtab_common (objfile, pst);
6043
6044 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6045 {
6046 int i;
6047 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6048 struct dwarf2_per_cu_data *iter;
6049
6050 /* Fill in 'dependencies' here; we fill in 'users' in a
6051 post-pass. */
6052 pst->number_of_dependencies = len;
6053 pst->dependencies =
6054 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6055 for (i = 0;
6056 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6057 i, iter);
6058 ++i)
6059 pst->dependencies[i] = iter->v.psymtab;
6060
6061 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6062 }
6063
6064 /* Get the list of files included in the current compilation unit,
6065 and build a psymtab for each of them. */
6066 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6067
6068 if (dwarf_read_debug)
6069 {
6070 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6071
6072 fprintf_unfiltered (gdb_stdlog,
6073 "Psymtab for %s unit @0x%x: %s - %s"
6074 ", %d global, %d static syms\n",
6075 per_cu->is_debug_types ? "type" : "comp",
6076 per_cu->offset.sect_off,
6077 paddress (gdbarch, pst->textlow),
6078 paddress (gdbarch, pst->texthigh),
6079 pst->n_global_syms, pst->n_static_syms);
6080 }
6081 }
6082
6083 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6084 Process compilation unit THIS_CU for a psymtab. */
6085
6086 static void
6087 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6088 int want_partial_unit,
6089 enum language pretend_language)
6090 {
6091 struct process_psymtab_comp_unit_data info;
6092
6093 /* If this compilation unit was already read in, free the
6094 cached copy in order to read it in again. This is
6095 necessary because we skipped some symbols when we first
6096 read in the compilation unit (see load_partial_dies).
6097 This problem could be avoided, but the benefit is unclear. */
6098 if (this_cu->cu != NULL)
6099 free_one_cached_comp_unit (this_cu);
6100
6101 gdb_assert (! this_cu->is_debug_types);
6102 info.want_partial_unit = want_partial_unit;
6103 info.pretend_language = pretend_language;
6104 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6105 process_psymtab_comp_unit_reader,
6106 &info);
6107
6108 /* Age out any secondary CUs. */
6109 age_cached_comp_units ();
6110 }
6111
6112 /* Reader function for build_type_psymtabs. */
6113
6114 static void
6115 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6116 const gdb_byte *info_ptr,
6117 struct die_info *type_unit_die,
6118 int has_children,
6119 void *data)
6120 {
6121 struct objfile *objfile = dwarf2_per_objfile->objfile;
6122 struct dwarf2_cu *cu = reader->cu;
6123 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6124 struct signatured_type *sig_type;
6125 struct type_unit_group *tu_group;
6126 struct attribute *attr;
6127 struct partial_die_info *first_die;
6128 CORE_ADDR lowpc, highpc;
6129 struct partial_symtab *pst;
6130
6131 gdb_assert (data == NULL);
6132 gdb_assert (per_cu->is_debug_types);
6133 sig_type = (struct signatured_type *) per_cu;
6134
6135 if (! has_children)
6136 return;
6137
6138 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6139 tu_group = get_type_unit_group (cu, attr);
6140
6141 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6142
6143 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6144 cu->list_in_scope = &file_symbols;
6145 pst = create_partial_symtab (per_cu, "");
6146 pst->anonymous = 1;
6147
6148 first_die = load_partial_dies (reader, info_ptr, 1);
6149
6150 lowpc = (CORE_ADDR) -1;
6151 highpc = (CORE_ADDR) 0;
6152 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6153
6154 end_psymtab_common (objfile, pst);
6155 }
6156
6157 /* Struct used to sort TUs by their abbreviation table offset. */
6158
6159 struct tu_abbrev_offset
6160 {
6161 struct signatured_type *sig_type;
6162 sect_offset abbrev_offset;
6163 };
6164
6165 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6166
6167 static int
6168 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6169 {
6170 const struct tu_abbrev_offset * const *a
6171 = (const struct tu_abbrev_offset * const*) ap;
6172 const struct tu_abbrev_offset * const *b
6173 = (const struct tu_abbrev_offset * const*) bp;
6174 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6175 unsigned int boff = (*b)->abbrev_offset.sect_off;
6176
6177 return (aoff > boff) - (aoff < boff);
6178 }
6179
6180 /* Efficiently read all the type units.
6181 This does the bulk of the work for build_type_psymtabs.
6182
6183 The efficiency is because we sort TUs by the abbrev table they use and
6184 only read each abbrev table once. In one program there are 200K TUs
6185 sharing 8K abbrev tables.
6186
6187 The main purpose of this function is to support building the
6188 dwarf2_per_objfile->type_unit_groups table.
6189 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6190 can collapse the search space by grouping them by stmt_list.
6191 The savings can be significant, in the same program from above the 200K TUs
6192 share 8K stmt_list tables.
6193
6194 FUNC is expected to call get_type_unit_group, which will create the
6195 struct type_unit_group if necessary and add it to
6196 dwarf2_per_objfile->type_unit_groups. */
6197
6198 static void
6199 build_type_psymtabs_1 (void)
6200 {
6201 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6202 struct cleanup *cleanups;
6203 struct abbrev_table *abbrev_table;
6204 sect_offset abbrev_offset;
6205 struct tu_abbrev_offset *sorted_by_abbrev;
6206 int i;
6207
6208 /* It's up to the caller to not call us multiple times. */
6209 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6210
6211 if (dwarf2_per_objfile->n_type_units == 0)
6212 return;
6213
6214 /* TUs typically share abbrev tables, and there can be way more TUs than
6215 abbrev tables. Sort by abbrev table to reduce the number of times we
6216 read each abbrev table in.
6217 Alternatives are to punt or to maintain a cache of abbrev tables.
6218 This is simpler and efficient enough for now.
6219
6220 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6221 symtab to use). Typically TUs with the same abbrev offset have the same
6222 stmt_list value too so in practice this should work well.
6223
6224 The basic algorithm here is:
6225
6226 sort TUs by abbrev table
6227 for each TU with same abbrev table:
6228 read abbrev table if first user
6229 read TU top level DIE
6230 [IWBN if DWO skeletons had DW_AT_stmt_list]
6231 call FUNC */
6232
6233 if (dwarf_read_debug)
6234 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6235
6236 /* Sort in a separate table to maintain the order of all_type_units
6237 for .gdb_index: TU indices directly index all_type_units. */
6238 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6239 dwarf2_per_objfile->n_type_units);
6240 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6241 {
6242 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6243
6244 sorted_by_abbrev[i].sig_type = sig_type;
6245 sorted_by_abbrev[i].abbrev_offset =
6246 read_abbrev_offset (sig_type->per_cu.section,
6247 sig_type->per_cu.offset);
6248 }
6249 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6250 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6251 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6252
6253 abbrev_offset.sect_off = ~(unsigned) 0;
6254 abbrev_table = NULL;
6255 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6256
6257 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6258 {
6259 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6260
6261 /* Switch to the next abbrev table if necessary. */
6262 if (abbrev_table == NULL
6263 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6264 {
6265 if (abbrev_table != NULL)
6266 {
6267 abbrev_table_free (abbrev_table);
6268 /* Reset to NULL in case abbrev_table_read_table throws
6269 an error: abbrev_table_free_cleanup will get called. */
6270 abbrev_table = NULL;
6271 }
6272 abbrev_offset = tu->abbrev_offset;
6273 abbrev_table =
6274 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6275 abbrev_offset);
6276 ++tu_stats->nr_uniq_abbrev_tables;
6277 }
6278
6279 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6280 build_type_psymtabs_reader, NULL);
6281 }
6282
6283 do_cleanups (cleanups);
6284 }
6285
6286 /* Print collected type unit statistics. */
6287
6288 static void
6289 print_tu_stats (void)
6290 {
6291 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6292
6293 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6294 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6295 dwarf2_per_objfile->n_type_units);
6296 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6297 tu_stats->nr_uniq_abbrev_tables);
6298 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6299 tu_stats->nr_symtabs);
6300 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6301 tu_stats->nr_symtab_sharers);
6302 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6303 tu_stats->nr_stmt_less_type_units);
6304 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6305 tu_stats->nr_all_type_units_reallocs);
6306 }
6307
6308 /* Traversal function for build_type_psymtabs. */
6309
6310 static int
6311 build_type_psymtab_dependencies (void **slot, void *info)
6312 {
6313 struct objfile *objfile = dwarf2_per_objfile->objfile;
6314 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6315 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6316 struct partial_symtab *pst = per_cu->v.psymtab;
6317 int len = VEC_length (sig_type_ptr, tu_group->tus);
6318 struct signatured_type *iter;
6319 int i;
6320
6321 gdb_assert (len > 0);
6322 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6323
6324 pst->number_of_dependencies = len;
6325 pst->dependencies =
6326 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6327 for (i = 0;
6328 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6329 ++i)
6330 {
6331 gdb_assert (iter->per_cu.is_debug_types);
6332 pst->dependencies[i] = iter->per_cu.v.psymtab;
6333 iter->type_unit_group = tu_group;
6334 }
6335
6336 VEC_free (sig_type_ptr, tu_group->tus);
6337
6338 return 1;
6339 }
6340
6341 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6342 Build partial symbol tables for the .debug_types comp-units. */
6343
6344 static void
6345 build_type_psymtabs (struct objfile *objfile)
6346 {
6347 if (! create_all_type_units (objfile))
6348 return;
6349
6350 build_type_psymtabs_1 ();
6351 }
6352
6353 /* Traversal function for process_skeletonless_type_unit.
6354 Read a TU in a DWO file and build partial symbols for it. */
6355
6356 static int
6357 process_skeletonless_type_unit (void **slot, void *info)
6358 {
6359 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6360 struct objfile *objfile = (struct objfile *) info;
6361 struct signatured_type find_entry, *entry;
6362
6363 /* If this TU doesn't exist in the global table, add it and read it in. */
6364
6365 if (dwarf2_per_objfile->signatured_types == NULL)
6366 {
6367 dwarf2_per_objfile->signatured_types
6368 = allocate_signatured_type_table (objfile);
6369 }
6370
6371 find_entry.signature = dwo_unit->signature;
6372 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6373 INSERT);
6374 /* If we've already seen this type there's nothing to do. What's happening
6375 is we're doing our own version of comdat-folding here. */
6376 if (*slot != NULL)
6377 return 1;
6378
6379 /* This does the job that create_all_type_units would have done for
6380 this TU. */
6381 entry = add_type_unit (dwo_unit->signature, slot);
6382 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6383 *slot = entry;
6384
6385 /* This does the job that build_type_psymtabs_1 would have done. */
6386 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6387 build_type_psymtabs_reader, NULL);
6388
6389 return 1;
6390 }
6391
6392 /* Traversal function for process_skeletonless_type_units. */
6393
6394 static int
6395 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6396 {
6397 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6398
6399 if (dwo_file->tus != NULL)
6400 {
6401 htab_traverse_noresize (dwo_file->tus,
6402 process_skeletonless_type_unit, info);
6403 }
6404
6405 return 1;
6406 }
6407
6408 /* Scan all TUs of DWO files, verifying we've processed them.
6409 This is needed in case a TU was emitted without its skeleton.
6410 Note: This can't be done until we know what all the DWO files are. */
6411
6412 static void
6413 process_skeletonless_type_units (struct objfile *objfile)
6414 {
6415 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6416 if (get_dwp_file () == NULL
6417 && dwarf2_per_objfile->dwo_files != NULL)
6418 {
6419 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6420 process_dwo_file_for_skeletonless_type_units,
6421 objfile);
6422 }
6423 }
6424
6425 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6426
6427 static void
6428 psymtabs_addrmap_cleanup (void *o)
6429 {
6430 struct objfile *objfile = (struct objfile *) o;
6431
6432 objfile->psymtabs_addrmap = NULL;
6433 }
6434
6435 /* Compute the 'user' field for each psymtab in OBJFILE. */
6436
6437 static void
6438 set_partial_user (struct objfile *objfile)
6439 {
6440 int i;
6441
6442 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6443 {
6444 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6445 struct partial_symtab *pst = per_cu->v.psymtab;
6446 int j;
6447
6448 if (pst == NULL)
6449 continue;
6450
6451 for (j = 0; j < pst->number_of_dependencies; ++j)
6452 {
6453 /* Set the 'user' field only if it is not already set. */
6454 if (pst->dependencies[j]->user == NULL)
6455 pst->dependencies[j]->user = pst;
6456 }
6457 }
6458 }
6459
6460 /* Build the partial symbol table by doing a quick pass through the
6461 .debug_info and .debug_abbrev sections. */
6462
6463 static void
6464 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6465 {
6466 struct cleanup *back_to, *addrmap_cleanup;
6467 struct obstack temp_obstack;
6468 int i;
6469
6470 if (dwarf_read_debug)
6471 {
6472 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6473 objfile_name (objfile));
6474 }
6475
6476 dwarf2_per_objfile->reading_partial_symbols = 1;
6477
6478 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6479
6480 /* Any cached compilation units will be linked by the per-objfile
6481 read_in_chain. Make sure to free them when we're done. */
6482 back_to = make_cleanup (free_cached_comp_units, NULL);
6483
6484 build_type_psymtabs (objfile);
6485
6486 create_all_comp_units (objfile);
6487
6488 /* Create a temporary address map on a temporary obstack. We later
6489 copy this to the final obstack. */
6490 obstack_init (&temp_obstack);
6491 make_cleanup_obstack_free (&temp_obstack);
6492 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6493 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6494
6495 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6496 {
6497 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6498
6499 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6500 }
6501
6502 /* This has to wait until we read the CUs, we need the list of DWOs. */
6503 process_skeletonless_type_units (objfile);
6504
6505 /* Now that all TUs have been processed we can fill in the dependencies. */
6506 if (dwarf2_per_objfile->type_unit_groups != NULL)
6507 {
6508 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6509 build_type_psymtab_dependencies, NULL);
6510 }
6511
6512 if (dwarf_read_debug)
6513 print_tu_stats ();
6514
6515 set_partial_user (objfile);
6516
6517 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6518 &objfile->objfile_obstack);
6519 discard_cleanups (addrmap_cleanup);
6520
6521 do_cleanups (back_to);
6522
6523 if (dwarf_read_debug)
6524 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6525 objfile_name (objfile));
6526 }
6527
6528 /* die_reader_func for load_partial_comp_unit. */
6529
6530 static void
6531 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6532 const gdb_byte *info_ptr,
6533 struct die_info *comp_unit_die,
6534 int has_children,
6535 void *data)
6536 {
6537 struct dwarf2_cu *cu = reader->cu;
6538
6539 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6540
6541 /* Check if comp unit has_children.
6542 If so, read the rest of the partial symbols from this comp unit.
6543 If not, there's no more debug_info for this comp unit. */
6544 if (has_children)
6545 load_partial_dies (reader, info_ptr, 0);
6546 }
6547
6548 /* Load the partial DIEs for a secondary CU into memory.
6549 This is also used when rereading a primary CU with load_all_dies. */
6550
6551 static void
6552 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6553 {
6554 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6555 load_partial_comp_unit_reader, NULL);
6556 }
6557
6558 static void
6559 read_comp_units_from_section (struct objfile *objfile,
6560 struct dwarf2_section_info *section,
6561 unsigned int is_dwz,
6562 int *n_allocated,
6563 int *n_comp_units,
6564 struct dwarf2_per_cu_data ***all_comp_units)
6565 {
6566 const gdb_byte *info_ptr;
6567 bfd *abfd = get_section_bfd_owner (section);
6568
6569 if (dwarf_read_debug)
6570 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6571 get_section_name (section),
6572 get_section_file_name (section));
6573
6574 dwarf2_read_section (objfile, section);
6575
6576 info_ptr = section->buffer;
6577
6578 while (info_ptr < section->buffer + section->size)
6579 {
6580 unsigned int length, initial_length_size;
6581 struct dwarf2_per_cu_data *this_cu;
6582 sect_offset offset;
6583
6584 offset.sect_off = info_ptr - section->buffer;
6585
6586 /* Read just enough information to find out where the next
6587 compilation unit is. */
6588 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6589
6590 /* Save the compilation unit for later lookup. */
6591 this_cu = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_cu_data);
6592 memset (this_cu, 0, sizeof (*this_cu));
6593 this_cu->offset = offset;
6594 this_cu->length = length + initial_length_size;
6595 this_cu->is_dwz = is_dwz;
6596 this_cu->objfile = objfile;
6597 this_cu->section = section;
6598
6599 if (*n_comp_units == *n_allocated)
6600 {
6601 *n_allocated *= 2;
6602 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
6603 *all_comp_units, *n_allocated);
6604 }
6605 (*all_comp_units)[*n_comp_units] = this_cu;
6606 ++*n_comp_units;
6607
6608 info_ptr = info_ptr + this_cu->length;
6609 }
6610 }
6611
6612 /* Create a list of all compilation units in OBJFILE.
6613 This is only done for -readnow and building partial symtabs. */
6614
6615 static void
6616 create_all_comp_units (struct objfile *objfile)
6617 {
6618 int n_allocated;
6619 int n_comp_units;
6620 struct dwarf2_per_cu_data **all_comp_units;
6621 struct dwz_file *dwz;
6622
6623 n_comp_units = 0;
6624 n_allocated = 10;
6625 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
6626
6627 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6628 &n_allocated, &n_comp_units, &all_comp_units);
6629
6630 dwz = dwarf2_get_dwz_file ();
6631 if (dwz != NULL)
6632 read_comp_units_from_section (objfile, &dwz->info, 1,
6633 &n_allocated, &n_comp_units,
6634 &all_comp_units);
6635
6636 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6637 struct dwarf2_per_cu_data *,
6638 n_comp_units);
6639 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6640 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6641 xfree (all_comp_units);
6642 dwarf2_per_objfile->n_comp_units = n_comp_units;
6643 }
6644
6645 /* Process all loaded DIEs for compilation unit CU, starting at
6646 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6647 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6648 DW_AT_ranges). See the comments of add_partial_subprogram on how
6649 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6650
6651 static void
6652 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6653 CORE_ADDR *highpc, int set_addrmap,
6654 struct dwarf2_cu *cu)
6655 {
6656 struct partial_die_info *pdi;
6657
6658 /* Now, march along the PDI's, descending into ones which have
6659 interesting children but skipping the children of the other ones,
6660 until we reach the end of the compilation unit. */
6661
6662 pdi = first_die;
6663
6664 while (pdi != NULL)
6665 {
6666 fixup_partial_die (pdi, cu);
6667
6668 /* Anonymous namespaces or modules have no name but have interesting
6669 children, so we need to look at them. Ditto for anonymous
6670 enums. */
6671
6672 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6673 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6674 || pdi->tag == DW_TAG_imported_unit)
6675 {
6676 switch (pdi->tag)
6677 {
6678 case DW_TAG_subprogram:
6679 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6680 break;
6681 case DW_TAG_constant:
6682 case DW_TAG_variable:
6683 case DW_TAG_typedef:
6684 case DW_TAG_union_type:
6685 if (!pdi->is_declaration)
6686 {
6687 add_partial_symbol (pdi, cu);
6688 }
6689 break;
6690 case DW_TAG_class_type:
6691 case DW_TAG_interface_type:
6692 case DW_TAG_structure_type:
6693 if (!pdi->is_declaration)
6694 {
6695 add_partial_symbol (pdi, cu);
6696 }
6697 if (cu->language == language_rust && pdi->has_children)
6698 scan_partial_symbols (pdi->die_child, lowpc, highpc,
6699 set_addrmap, cu);
6700 break;
6701 case DW_TAG_enumeration_type:
6702 if (!pdi->is_declaration)
6703 add_partial_enumeration (pdi, cu);
6704 break;
6705 case DW_TAG_base_type:
6706 case DW_TAG_subrange_type:
6707 /* File scope base type definitions are added to the partial
6708 symbol table. */
6709 add_partial_symbol (pdi, cu);
6710 break;
6711 case DW_TAG_namespace:
6712 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6713 break;
6714 case DW_TAG_module:
6715 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6716 break;
6717 case DW_TAG_imported_unit:
6718 {
6719 struct dwarf2_per_cu_data *per_cu;
6720
6721 /* For now we don't handle imported units in type units. */
6722 if (cu->per_cu->is_debug_types)
6723 {
6724 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6725 " supported in type units [in module %s]"),
6726 objfile_name (cu->objfile));
6727 }
6728
6729 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6730 pdi->is_dwz,
6731 cu->objfile);
6732
6733 /* Go read the partial unit, if needed. */
6734 if (per_cu->v.psymtab == NULL)
6735 process_psymtab_comp_unit (per_cu, 1, cu->language);
6736
6737 VEC_safe_push (dwarf2_per_cu_ptr,
6738 cu->per_cu->imported_symtabs, per_cu);
6739 }
6740 break;
6741 case DW_TAG_imported_declaration:
6742 add_partial_symbol (pdi, cu);
6743 break;
6744 default:
6745 break;
6746 }
6747 }
6748
6749 /* If the die has a sibling, skip to the sibling. */
6750
6751 pdi = pdi->die_sibling;
6752 }
6753 }
6754
6755 /* Functions used to compute the fully scoped name of a partial DIE.
6756
6757 Normally, this is simple. For C++, the parent DIE's fully scoped
6758 name is concatenated with "::" and the partial DIE's name.
6759 Enumerators are an exception; they use the scope of their parent
6760 enumeration type, i.e. the name of the enumeration type is not
6761 prepended to the enumerator.
6762
6763 There are two complexities. One is DW_AT_specification; in this
6764 case "parent" means the parent of the target of the specification,
6765 instead of the direct parent of the DIE. The other is compilers
6766 which do not emit DW_TAG_namespace; in this case we try to guess
6767 the fully qualified name of structure types from their members'
6768 linkage names. This must be done using the DIE's children rather
6769 than the children of any DW_AT_specification target. We only need
6770 to do this for structures at the top level, i.e. if the target of
6771 any DW_AT_specification (if any; otherwise the DIE itself) does not
6772 have a parent. */
6773
6774 /* Compute the scope prefix associated with PDI's parent, in
6775 compilation unit CU. The result will be allocated on CU's
6776 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6777 field. NULL is returned if no prefix is necessary. */
6778 static const char *
6779 partial_die_parent_scope (struct partial_die_info *pdi,
6780 struct dwarf2_cu *cu)
6781 {
6782 const char *grandparent_scope;
6783 struct partial_die_info *parent, *real_pdi;
6784
6785 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6786 then this means the parent of the specification DIE. */
6787
6788 real_pdi = pdi;
6789 while (real_pdi->has_specification)
6790 real_pdi = find_partial_die (real_pdi->spec_offset,
6791 real_pdi->spec_is_dwz, cu);
6792
6793 parent = real_pdi->die_parent;
6794 if (parent == NULL)
6795 return NULL;
6796
6797 if (parent->scope_set)
6798 return parent->scope;
6799
6800 fixup_partial_die (parent, cu);
6801
6802 grandparent_scope = partial_die_parent_scope (parent, cu);
6803
6804 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6805 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6806 Work around this problem here. */
6807 if (cu->language == language_cplus
6808 && parent->tag == DW_TAG_namespace
6809 && strcmp (parent->name, "::") == 0
6810 && grandparent_scope == NULL)
6811 {
6812 parent->scope = NULL;
6813 parent->scope_set = 1;
6814 return NULL;
6815 }
6816
6817 if (pdi->tag == DW_TAG_enumerator)
6818 /* Enumerators should not get the name of the enumeration as a prefix. */
6819 parent->scope = grandparent_scope;
6820 else if (parent->tag == DW_TAG_namespace
6821 || parent->tag == DW_TAG_module
6822 || parent->tag == DW_TAG_structure_type
6823 || parent->tag == DW_TAG_class_type
6824 || parent->tag == DW_TAG_interface_type
6825 || parent->tag == DW_TAG_union_type
6826 || parent->tag == DW_TAG_enumeration_type)
6827 {
6828 if (grandparent_scope == NULL)
6829 parent->scope = parent->name;
6830 else
6831 parent->scope = typename_concat (&cu->comp_unit_obstack,
6832 grandparent_scope,
6833 parent->name, 0, cu);
6834 }
6835 else
6836 {
6837 /* FIXME drow/2004-04-01: What should we be doing with
6838 function-local names? For partial symbols, we should probably be
6839 ignoring them. */
6840 complaint (&symfile_complaints,
6841 _("unhandled containing DIE tag %d for DIE at %d"),
6842 parent->tag, pdi->offset.sect_off);
6843 parent->scope = grandparent_scope;
6844 }
6845
6846 parent->scope_set = 1;
6847 return parent->scope;
6848 }
6849
6850 /* Return the fully scoped name associated with PDI, from compilation unit
6851 CU. The result will be allocated with malloc. */
6852
6853 static char *
6854 partial_die_full_name (struct partial_die_info *pdi,
6855 struct dwarf2_cu *cu)
6856 {
6857 const char *parent_scope;
6858
6859 /* If this is a template instantiation, we can not work out the
6860 template arguments from partial DIEs. So, unfortunately, we have
6861 to go through the full DIEs. At least any work we do building
6862 types here will be reused if full symbols are loaded later. */
6863 if (pdi->has_template_arguments)
6864 {
6865 fixup_partial_die (pdi, cu);
6866
6867 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6868 {
6869 struct die_info *die;
6870 struct attribute attr;
6871 struct dwarf2_cu *ref_cu = cu;
6872
6873 /* DW_FORM_ref_addr is using section offset. */
6874 attr.name = (enum dwarf_attribute) 0;
6875 attr.form = DW_FORM_ref_addr;
6876 attr.u.unsnd = pdi->offset.sect_off;
6877 die = follow_die_ref (NULL, &attr, &ref_cu);
6878
6879 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6880 }
6881 }
6882
6883 parent_scope = partial_die_parent_scope (pdi, cu);
6884 if (parent_scope == NULL)
6885 return NULL;
6886 else
6887 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6888 }
6889
6890 static void
6891 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6892 {
6893 struct objfile *objfile = cu->objfile;
6894 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6895 CORE_ADDR addr = 0;
6896 const char *actual_name = NULL;
6897 CORE_ADDR baseaddr;
6898 char *built_actual_name;
6899
6900 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6901
6902 built_actual_name = partial_die_full_name (pdi, cu);
6903 if (built_actual_name != NULL)
6904 actual_name = built_actual_name;
6905
6906 if (actual_name == NULL)
6907 actual_name = pdi->name;
6908
6909 switch (pdi->tag)
6910 {
6911 case DW_TAG_subprogram:
6912 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
6913 if (pdi->is_external || cu->language == language_ada)
6914 {
6915 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6916 of the global scope. But in Ada, we want to be able to access
6917 nested procedures globally. So all Ada subprograms are stored
6918 in the global scope. */
6919 add_psymbol_to_list (actual_name, strlen (actual_name),
6920 built_actual_name != NULL,
6921 VAR_DOMAIN, LOC_BLOCK,
6922 &objfile->global_psymbols,
6923 addr, cu->language, objfile);
6924 }
6925 else
6926 {
6927 add_psymbol_to_list (actual_name, strlen (actual_name),
6928 built_actual_name != NULL,
6929 VAR_DOMAIN, LOC_BLOCK,
6930 &objfile->static_psymbols,
6931 addr, cu->language, objfile);
6932 }
6933 break;
6934 case DW_TAG_constant:
6935 {
6936 struct psymbol_allocation_list *list;
6937
6938 if (pdi->is_external)
6939 list = &objfile->global_psymbols;
6940 else
6941 list = &objfile->static_psymbols;
6942 add_psymbol_to_list (actual_name, strlen (actual_name),
6943 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6944 list, 0, cu->language, objfile);
6945 }
6946 break;
6947 case DW_TAG_variable:
6948 if (pdi->d.locdesc)
6949 addr = decode_locdesc (pdi->d.locdesc, cu);
6950
6951 if (pdi->d.locdesc
6952 && addr == 0
6953 && !dwarf2_per_objfile->has_section_at_zero)
6954 {
6955 /* A global or static variable may also have been stripped
6956 out by the linker if unused, in which case its address
6957 will be nullified; do not add such variables into partial
6958 symbol table then. */
6959 }
6960 else if (pdi->is_external)
6961 {
6962 /* Global Variable.
6963 Don't enter into the minimal symbol tables as there is
6964 a minimal symbol table entry from the ELF symbols already.
6965 Enter into partial symbol table if it has a location
6966 descriptor or a type.
6967 If the location descriptor is missing, new_symbol will create
6968 a LOC_UNRESOLVED symbol, the address of the variable will then
6969 be determined from the minimal symbol table whenever the variable
6970 is referenced.
6971 The address for the partial symbol table entry is not
6972 used by GDB, but it comes in handy for debugging partial symbol
6973 table building. */
6974
6975 if (pdi->d.locdesc || pdi->has_type)
6976 add_psymbol_to_list (actual_name, strlen (actual_name),
6977 built_actual_name != NULL,
6978 VAR_DOMAIN, LOC_STATIC,
6979 &objfile->global_psymbols,
6980 addr + baseaddr,
6981 cu->language, objfile);
6982 }
6983 else
6984 {
6985 int has_loc = pdi->d.locdesc != NULL;
6986
6987 /* Static Variable. Skip symbols whose value we cannot know (those
6988 without location descriptors or constant values). */
6989 if (!has_loc && !pdi->has_const_value)
6990 {
6991 xfree (built_actual_name);
6992 return;
6993 }
6994
6995 add_psymbol_to_list (actual_name, strlen (actual_name),
6996 built_actual_name != NULL,
6997 VAR_DOMAIN, LOC_STATIC,
6998 &objfile->static_psymbols,
6999 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
7000 cu->language, objfile);
7001 }
7002 break;
7003 case DW_TAG_typedef:
7004 case DW_TAG_base_type:
7005 case DW_TAG_subrange_type:
7006 add_psymbol_to_list (actual_name, strlen (actual_name),
7007 built_actual_name != NULL,
7008 VAR_DOMAIN, LOC_TYPEDEF,
7009 &objfile->static_psymbols,
7010 0, cu->language, objfile);
7011 break;
7012 case DW_TAG_imported_declaration:
7013 case DW_TAG_namespace:
7014 add_psymbol_to_list (actual_name, strlen (actual_name),
7015 built_actual_name != NULL,
7016 VAR_DOMAIN, LOC_TYPEDEF,
7017 &objfile->global_psymbols,
7018 0, cu->language, objfile);
7019 break;
7020 case DW_TAG_module:
7021 add_psymbol_to_list (actual_name, strlen (actual_name),
7022 built_actual_name != NULL,
7023 MODULE_DOMAIN, LOC_TYPEDEF,
7024 &objfile->global_psymbols,
7025 0, cu->language, objfile);
7026 break;
7027 case DW_TAG_class_type:
7028 case DW_TAG_interface_type:
7029 case DW_TAG_structure_type:
7030 case DW_TAG_union_type:
7031 case DW_TAG_enumeration_type:
7032 /* Skip external references. The DWARF standard says in the section
7033 about "Structure, Union, and Class Type Entries": "An incomplete
7034 structure, union or class type is represented by a structure,
7035 union or class entry that does not have a byte size attribute
7036 and that has a DW_AT_declaration attribute." */
7037 if (!pdi->has_byte_size && pdi->is_declaration)
7038 {
7039 xfree (built_actual_name);
7040 return;
7041 }
7042
7043 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7044 static vs. global. */
7045 add_psymbol_to_list (actual_name, strlen (actual_name),
7046 built_actual_name != NULL,
7047 STRUCT_DOMAIN, LOC_TYPEDEF,
7048 cu->language == language_cplus
7049 ? &objfile->global_psymbols
7050 : &objfile->static_psymbols,
7051 0, cu->language, objfile);
7052
7053 break;
7054 case DW_TAG_enumerator:
7055 add_psymbol_to_list (actual_name, strlen (actual_name),
7056 built_actual_name != NULL,
7057 VAR_DOMAIN, LOC_CONST,
7058 cu->language == language_cplus
7059 ? &objfile->global_psymbols
7060 : &objfile->static_psymbols,
7061 0, cu->language, objfile);
7062 break;
7063 default:
7064 break;
7065 }
7066
7067 xfree (built_actual_name);
7068 }
7069
7070 /* Read a partial die corresponding to a namespace; also, add a symbol
7071 corresponding to that namespace to the symbol table. NAMESPACE is
7072 the name of the enclosing namespace. */
7073
7074 static void
7075 add_partial_namespace (struct partial_die_info *pdi,
7076 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7077 int set_addrmap, struct dwarf2_cu *cu)
7078 {
7079 /* Add a symbol for the namespace. */
7080
7081 add_partial_symbol (pdi, cu);
7082
7083 /* Now scan partial symbols in that namespace. */
7084
7085 if (pdi->has_children)
7086 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7087 }
7088
7089 /* Read a partial die corresponding to a Fortran module. */
7090
7091 static void
7092 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7093 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7094 {
7095 /* Add a symbol for the namespace. */
7096
7097 add_partial_symbol (pdi, cu);
7098
7099 /* Now scan partial symbols in that module. */
7100
7101 if (pdi->has_children)
7102 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7103 }
7104
7105 /* Read a partial die corresponding to a subprogram and create a partial
7106 symbol for that subprogram. When the CU language allows it, this
7107 routine also defines a partial symbol for each nested subprogram
7108 that this subprogram contains. If SET_ADDRMAP is true, record the
7109 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7110 and highest PC values found in PDI.
7111
7112 PDI may also be a lexical block, in which case we simply search
7113 recursively for subprograms defined inside that lexical block.
7114 Again, this is only performed when the CU language allows this
7115 type of definitions. */
7116
7117 static void
7118 add_partial_subprogram (struct partial_die_info *pdi,
7119 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7120 int set_addrmap, struct dwarf2_cu *cu)
7121 {
7122 if (pdi->tag == DW_TAG_subprogram)
7123 {
7124 if (pdi->has_pc_info)
7125 {
7126 if (pdi->lowpc < *lowpc)
7127 *lowpc = pdi->lowpc;
7128 if (pdi->highpc > *highpc)
7129 *highpc = pdi->highpc;
7130 if (set_addrmap)
7131 {
7132 struct objfile *objfile = cu->objfile;
7133 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7134 CORE_ADDR baseaddr;
7135 CORE_ADDR highpc;
7136 CORE_ADDR lowpc;
7137
7138 baseaddr = ANOFFSET (objfile->section_offsets,
7139 SECT_OFF_TEXT (objfile));
7140 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7141 pdi->lowpc + baseaddr);
7142 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7143 pdi->highpc + baseaddr);
7144 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7145 cu->per_cu->v.psymtab);
7146 }
7147 }
7148
7149 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7150 {
7151 if (!pdi->is_declaration)
7152 /* Ignore subprogram DIEs that do not have a name, they are
7153 illegal. Do not emit a complaint at this point, we will
7154 do so when we convert this psymtab into a symtab. */
7155 if (pdi->name)
7156 add_partial_symbol (pdi, cu);
7157 }
7158 }
7159
7160 if (! pdi->has_children)
7161 return;
7162
7163 if (cu->language == language_ada)
7164 {
7165 pdi = pdi->die_child;
7166 while (pdi != NULL)
7167 {
7168 fixup_partial_die (pdi, cu);
7169 if (pdi->tag == DW_TAG_subprogram
7170 || pdi->tag == DW_TAG_lexical_block)
7171 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7172 pdi = pdi->die_sibling;
7173 }
7174 }
7175 }
7176
7177 /* Read a partial die corresponding to an enumeration type. */
7178
7179 static void
7180 add_partial_enumeration (struct partial_die_info *enum_pdi,
7181 struct dwarf2_cu *cu)
7182 {
7183 struct partial_die_info *pdi;
7184
7185 if (enum_pdi->name != NULL)
7186 add_partial_symbol (enum_pdi, cu);
7187
7188 pdi = enum_pdi->die_child;
7189 while (pdi)
7190 {
7191 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7192 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7193 else
7194 add_partial_symbol (pdi, cu);
7195 pdi = pdi->die_sibling;
7196 }
7197 }
7198
7199 /* Return the initial uleb128 in the die at INFO_PTR. */
7200
7201 static unsigned int
7202 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7203 {
7204 unsigned int bytes_read;
7205
7206 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7207 }
7208
7209 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7210 Return the corresponding abbrev, or NULL if the number is zero (indicating
7211 an empty DIE). In either case *BYTES_READ will be set to the length of
7212 the initial number. */
7213
7214 static struct abbrev_info *
7215 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7216 struct dwarf2_cu *cu)
7217 {
7218 bfd *abfd = cu->objfile->obfd;
7219 unsigned int abbrev_number;
7220 struct abbrev_info *abbrev;
7221
7222 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7223
7224 if (abbrev_number == 0)
7225 return NULL;
7226
7227 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7228 if (!abbrev)
7229 {
7230 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7231 " at offset 0x%x [in module %s]"),
7232 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7233 cu->header.offset.sect_off, bfd_get_filename (abfd));
7234 }
7235
7236 return abbrev;
7237 }
7238
7239 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7240 Returns a pointer to the end of a series of DIEs, terminated by an empty
7241 DIE. Any children of the skipped DIEs will also be skipped. */
7242
7243 static const gdb_byte *
7244 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7245 {
7246 struct dwarf2_cu *cu = reader->cu;
7247 struct abbrev_info *abbrev;
7248 unsigned int bytes_read;
7249
7250 while (1)
7251 {
7252 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7253 if (abbrev == NULL)
7254 return info_ptr + bytes_read;
7255 else
7256 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7257 }
7258 }
7259
7260 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7261 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7262 abbrev corresponding to that skipped uleb128 should be passed in
7263 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7264 children. */
7265
7266 static const gdb_byte *
7267 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7268 struct abbrev_info *abbrev)
7269 {
7270 unsigned int bytes_read;
7271 struct attribute attr;
7272 bfd *abfd = reader->abfd;
7273 struct dwarf2_cu *cu = reader->cu;
7274 const gdb_byte *buffer = reader->buffer;
7275 const gdb_byte *buffer_end = reader->buffer_end;
7276 unsigned int form, i;
7277
7278 for (i = 0; i < abbrev->num_attrs; i++)
7279 {
7280 /* The only abbrev we care about is DW_AT_sibling. */
7281 if (abbrev->attrs[i].name == DW_AT_sibling)
7282 {
7283 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7284 if (attr.form == DW_FORM_ref_addr)
7285 complaint (&symfile_complaints,
7286 _("ignoring absolute DW_AT_sibling"));
7287 else
7288 {
7289 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7290 const gdb_byte *sibling_ptr = buffer + off;
7291
7292 if (sibling_ptr < info_ptr)
7293 complaint (&symfile_complaints,
7294 _("DW_AT_sibling points backwards"));
7295 else if (sibling_ptr > reader->buffer_end)
7296 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7297 else
7298 return sibling_ptr;
7299 }
7300 }
7301
7302 /* If it isn't DW_AT_sibling, skip this attribute. */
7303 form = abbrev->attrs[i].form;
7304 skip_attribute:
7305 switch (form)
7306 {
7307 case DW_FORM_ref_addr:
7308 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7309 and later it is offset sized. */
7310 if (cu->header.version == 2)
7311 info_ptr += cu->header.addr_size;
7312 else
7313 info_ptr += cu->header.offset_size;
7314 break;
7315 case DW_FORM_GNU_ref_alt:
7316 info_ptr += cu->header.offset_size;
7317 break;
7318 case DW_FORM_addr:
7319 info_ptr += cu->header.addr_size;
7320 break;
7321 case DW_FORM_data1:
7322 case DW_FORM_ref1:
7323 case DW_FORM_flag:
7324 info_ptr += 1;
7325 break;
7326 case DW_FORM_flag_present:
7327 break;
7328 case DW_FORM_data2:
7329 case DW_FORM_ref2:
7330 info_ptr += 2;
7331 break;
7332 case DW_FORM_data4:
7333 case DW_FORM_ref4:
7334 info_ptr += 4;
7335 break;
7336 case DW_FORM_data8:
7337 case DW_FORM_ref8:
7338 case DW_FORM_ref_sig8:
7339 info_ptr += 8;
7340 break;
7341 case DW_FORM_string:
7342 read_direct_string (abfd, info_ptr, &bytes_read);
7343 info_ptr += bytes_read;
7344 break;
7345 case DW_FORM_sec_offset:
7346 case DW_FORM_strp:
7347 case DW_FORM_GNU_strp_alt:
7348 info_ptr += cu->header.offset_size;
7349 break;
7350 case DW_FORM_exprloc:
7351 case DW_FORM_block:
7352 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7353 info_ptr += bytes_read;
7354 break;
7355 case DW_FORM_block1:
7356 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7357 break;
7358 case DW_FORM_block2:
7359 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7360 break;
7361 case DW_FORM_block4:
7362 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7363 break;
7364 case DW_FORM_sdata:
7365 case DW_FORM_udata:
7366 case DW_FORM_ref_udata:
7367 case DW_FORM_GNU_addr_index:
7368 case DW_FORM_GNU_str_index:
7369 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7370 break;
7371 case DW_FORM_indirect:
7372 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7373 info_ptr += bytes_read;
7374 /* We need to continue parsing from here, so just go back to
7375 the top. */
7376 goto skip_attribute;
7377
7378 default:
7379 error (_("Dwarf Error: Cannot handle %s "
7380 "in DWARF reader [in module %s]"),
7381 dwarf_form_name (form),
7382 bfd_get_filename (abfd));
7383 }
7384 }
7385
7386 if (abbrev->has_children)
7387 return skip_children (reader, info_ptr);
7388 else
7389 return info_ptr;
7390 }
7391
7392 /* Locate ORIG_PDI's sibling.
7393 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7394
7395 static const gdb_byte *
7396 locate_pdi_sibling (const struct die_reader_specs *reader,
7397 struct partial_die_info *orig_pdi,
7398 const gdb_byte *info_ptr)
7399 {
7400 /* Do we know the sibling already? */
7401
7402 if (orig_pdi->sibling)
7403 return orig_pdi->sibling;
7404
7405 /* Are there any children to deal with? */
7406
7407 if (!orig_pdi->has_children)
7408 return info_ptr;
7409
7410 /* Skip the children the long way. */
7411
7412 return skip_children (reader, info_ptr);
7413 }
7414
7415 /* Expand this partial symbol table into a full symbol table. SELF is
7416 not NULL. */
7417
7418 static void
7419 dwarf2_read_symtab (struct partial_symtab *self,
7420 struct objfile *objfile)
7421 {
7422 if (self->readin)
7423 {
7424 warning (_("bug: psymtab for %s is already read in."),
7425 self->filename);
7426 }
7427 else
7428 {
7429 if (info_verbose)
7430 {
7431 printf_filtered (_("Reading in symbols for %s..."),
7432 self->filename);
7433 gdb_flush (gdb_stdout);
7434 }
7435
7436 /* Restore our global data. */
7437 dwarf2_per_objfile
7438 = (struct dwarf2_per_objfile *) objfile_data (objfile,
7439 dwarf2_objfile_data_key);
7440
7441 /* If this psymtab is constructed from a debug-only objfile, the
7442 has_section_at_zero flag will not necessarily be correct. We
7443 can get the correct value for this flag by looking at the data
7444 associated with the (presumably stripped) associated objfile. */
7445 if (objfile->separate_debug_objfile_backlink)
7446 {
7447 struct dwarf2_per_objfile *dpo_backlink
7448 = ((struct dwarf2_per_objfile *)
7449 objfile_data (objfile->separate_debug_objfile_backlink,
7450 dwarf2_objfile_data_key));
7451
7452 dwarf2_per_objfile->has_section_at_zero
7453 = dpo_backlink->has_section_at_zero;
7454 }
7455
7456 dwarf2_per_objfile->reading_partial_symbols = 0;
7457
7458 psymtab_to_symtab_1 (self);
7459
7460 /* Finish up the debug error message. */
7461 if (info_verbose)
7462 printf_filtered (_("done.\n"));
7463 }
7464
7465 process_cu_includes ();
7466 }
7467 \f
7468 /* Reading in full CUs. */
7469
7470 /* Add PER_CU to the queue. */
7471
7472 static void
7473 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7474 enum language pretend_language)
7475 {
7476 struct dwarf2_queue_item *item;
7477
7478 per_cu->queued = 1;
7479 item = XNEW (struct dwarf2_queue_item);
7480 item->per_cu = per_cu;
7481 item->pretend_language = pretend_language;
7482 item->next = NULL;
7483
7484 if (dwarf2_queue == NULL)
7485 dwarf2_queue = item;
7486 else
7487 dwarf2_queue_tail->next = item;
7488
7489 dwarf2_queue_tail = item;
7490 }
7491
7492 /* If PER_CU is not yet queued, add it to the queue.
7493 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7494 dependency.
7495 The result is non-zero if PER_CU was queued, otherwise the result is zero
7496 meaning either PER_CU is already queued or it is already loaded.
7497
7498 N.B. There is an invariant here that if a CU is queued then it is loaded.
7499 The caller is required to load PER_CU if we return non-zero. */
7500
7501 static int
7502 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7503 struct dwarf2_per_cu_data *per_cu,
7504 enum language pretend_language)
7505 {
7506 /* We may arrive here during partial symbol reading, if we need full
7507 DIEs to process an unusual case (e.g. template arguments). Do
7508 not queue PER_CU, just tell our caller to load its DIEs. */
7509 if (dwarf2_per_objfile->reading_partial_symbols)
7510 {
7511 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7512 return 1;
7513 return 0;
7514 }
7515
7516 /* Mark the dependence relation so that we don't flush PER_CU
7517 too early. */
7518 if (dependent_cu != NULL)
7519 dwarf2_add_dependence (dependent_cu, per_cu);
7520
7521 /* If it's already on the queue, we have nothing to do. */
7522 if (per_cu->queued)
7523 return 0;
7524
7525 /* If the compilation unit is already loaded, just mark it as
7526 used. */
7527 if (per_cu->cu != NULL)
7528 {
7529 per_cu->cu->last_used = 0;
7530 return 0;
7531 }
7532
7533 /* Add it to the queue. */
7534 queue_comp_unit (per_cu, pretend_language);
7535
7536 return 1;
7537 }
7538
7539 /* Process the queue. */
7540
7541 static void
7542 process_queue (void)
7543 {
7544 struct dwarf2_queue_item *item, *next_item;
7545
7546 if (dwarf_read_debug)
7547 {
7548 fprintf_unfiltered (gdb_stdlog,
7549 "Expanding one or more symtabs of objfile %s ...\n",
7550 objfile_name (dwarf2_per_objfile->objfile));
7551 }
7552
7553 /* The queue starts out with one item, but following a DIE reference
7554 may load a new CU, adding it to the end of the queue. */
7555 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7556 {
7557 if ((dwarf2_per_objfile->using_index
7558 ? !item->per_cu->v.quick->compunit_symtab
7559 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7560 /* Skip dummy CUs. */
7561 && item->per_cu->cu != NULL)
7562 {
7563 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7564 unsigned int debug_print_threshold;
7565 char buf[100];
7566
7567 if (per_cu->is_debug_types)
7568 {
7569 struct signatured_type *sig_type =
7570 (struct signatured_type *) per_cu;
7571
7572 sprintf (buf, "TU %s at offset 0x%x",
7573 hex_string (sig_type->signature),
7574 per_cu->offset.sect_off);
7575 /* There can be 100s of TUs.
7576 Only print them in verbose mode. */
7577 debug_print_threshold = 2;
7578 }
7579 else
7580 {
7581 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7582 debug_print_threshold = 1;
7583 }
7584
7585 if (dwarf_read_debug >= debug_print_threshold)
7586 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7587
7588 if (per_cu->is_debug_types)
7589 process_full_type_unit (per_cu, item->pretend_language);
7590 else
7591 process_full_comp_unit (per_cu, item->pretend_language);
7592
7593 if (dwarf_read_debug >= debug_print_threshold)
7594 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7595 }
7596
7597 item->per_cu->queued = 0;
7598 next_item = item->next;
7599 xfree (item);
7600 }
7601
7602 dwarf2_queue_tail = NULL;
7603
7604 if (dwarf_read_debug)
7605 {
7606 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7607 objfile_name (dwarf2_per_objfile->objfile));
7608 }
7609 }
7610
7611 /* Free all allocated queue entries. This function only releases anything if
7612 an error was thrown; if the queue was processed then it would have been
7613 freed as we went along. */
7614
7615 static void
7616 dwarf2_release_queue (void *dummy)
7617 {
7618 struct dwarf2_queue_item *item, *last;
7619
7620 item = dwarf2_queue;
7621 while (item)
7622 {
7623 /* Anything still marked queued is likely to be in an
7624 inconsistent state, so discard it. */
7625 if (item->per_cu->queued)
7626 {
7627 if (item->per_cu->cu != NULL)
7628 free_one_cached_comp_unit (item->per_cu);
7629 item->per_cu->queued = 0;
7630 }
7631
7632 last = item;
7633 item = item->next;
7634 xfree (last);
7635 }
7636
7637 dwarf2_queue = dwarf2_queue_tail = NULL;
7638 }
7639
7640 /* Read in full symbols for PST, and anything it depends on. */
7641
7642 static void
7643 psymtab_to_symtab_1 (struct partial_symtab *pst)
7644 {
7645 struct dwarf2_per_cu_data *per_cu;
7646 int i;
7647
7648 if (pst->readin)
7649 return;
7650
7651 for (i = 0; i < pst->number_of_dependencies; i++)
7652 if (!pst->dependencies[i]->readin
7653 && pst->dependencies[i]->user == NULL)
7654 {
7655 /* Inform about additional files that need to be read in. */
7656 if (info_verbose)
7657 {
7658 /* FIXME: i18n: Need to make this a single string. */
7659 fputs_filtered (" ", gdb_stdout);
7660 wrap_here ("");
7661 fputs_filtered ("and ", gdb_stdout);
7662 wrap_here ("");
7663 printf_filtered ("%s...", pst->dependencies[i]->filename);
7664 wrap_here (""); /* Flush output. */
7665 gdb_flush (gdb_stdout);
7666 }
7667 psymtab_to_symtab_1 (pst->dependencies[i]);
7668 }
7669
7670 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
7671
7672 if (per_cu == NULL)
7673 {
7674 /* It's an include file, no symbols to read for it.
7675 Everything is in the parent symtab. */
7676 pst->readin = 1;
7677 return;
7678 }
7679
7680 dw2_do_instantiate_symtab (per_cu);
7681 }
7682
7683 /* Trivial hash function for die_info: the hash value of a DIE
7684 is its offset in .debug_info for this objfile. */
7685
7686 static hashval_t
7687 die_hash (const void *item)
7688 {
7689 const struct die_info *die = (const struct die_info *) item;
7690
7691 return die->offset.sect_off;
7692 }
7693
7694 /* Trivial comparison function for die_info structures: two DIEs
7695 are equal if they have the same offset. */
7696
7697 static int
7698 die_eq (const void *item_lhs, const void *item_rhs)
7699 {
7700 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
7701 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
7702
7703 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7704 }
7705
7706 /* die_reader_func for load_full_comp_unit.
7707 This is identical to read_signatured_type_reader,
7708 but is kept separate for now. */
7709
7710 static void
7711 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7712 const gdb_byte *info_ptr,
7713 struct die_info *comp_unit_die,
7714 int has_children,
7715 void *data)
7716 {
7717 struct dwarf2_cu *cu = reader->cu;
7718 enum language *language_ptr = (enum language *) data;
7719
7720 gdb_assert (cu->die_hash == NULL);
7721 cu->die_hash =
7722 htab_create_alloc_ex (cu->header.length / 12,
7723 die_hash,
7724 die_eq,
7725 NULL,
7726 &cu->comp_unit_obstack,
7727 hashtab_obstack_allocate,
7728 dummy_obstack_deallocate);
7729
7730 if (has_children)
7731 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7732 &info_ptr, comp_unit_die);
7733 cu->dies = comp_unit_die;
7734 /* comp_unit_die is not stored in die_hash, no need. */
7735
7736 /* We try not to read any attributes in this function, because not
7737 all CUs needed for references have been loaded yet, and symbol
7738 table processing isn't initialized. But we have to set the CU language,
7739 or we won't be able to build types correctly.
7740 Similarly, if we do not read the producer, we can not apply
7741 producer-specific interpretation. */
7742 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7743 }
7744
7745 /* Load the DIEs associated with PER_CU into memory. */
7746
7747 static void
7748 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7749 enum language pretend_language)
7750 {
7751 gdb_assert (! this_cu->is_debug_types);
7752
7753 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7754 load_full_comp_unit_reader, &pretend_language);
7755 }
7756
7757 /* Add a DIE to the delayed physname list. */
7758
7759 static void
7760 add_to_method_list (struct type *type, int fnfield_index, int index,
7761 const char *name, struct die_info *die,
7762 struct dwarf2_cu *cu)
7763 {
7764 struct delayed_method_info mi;
7765 mi.type = type;
7766 mi.fnfield_index = fnfield_index;
7767 mi.index = index;
7768 mi.name = name;
7769 mi.die = die;
7770 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7771 }
7772
7773 /* A cleanup for freeing the delayed method list. */
7774
7775 static void
7776 free_delayed_list (void *ptr)
7777 {
7778 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7779 if (cu->method_list != NULL)
7780 {
7781 VEC_free (delayed_method_info, cu->method_list);
7782 cu->method_list = NULL;
7783 }
7784 }
7785
7786 /* Compute the physnames of any methods on the CU's method list.
7787
7788 The computation of method physnames is delayed in order to avoid the
7789 (bad) condition that one of the method's formal parameters is of an as yet
7790 incomplete type. */
7791
7792 static void
7793 compute_delayed_physnames (struct dwarf2_cu *cu)
7794 {
7795 int i;
7796 struct delayed_method_info *mi;
7797 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7798 {
7799 const char *physname;
7800 struct fn_fieldlist *fn_flp
7801 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7802 physname = dwarf2_physname (mi->name, mi->die, cu);
7803 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7804 = physname ? physname : "";
7805 }
7806 }
7807
7808 /* Go objects should be embedded in a DW_TAG_module DIE,
7809 and it's not clear if/how imported objects will appear.
7810 To keep Go support simple until that's worked out,
7811 go back through what we've read and create something usable.
7812 We could do this while processing each DIE, and feels kinda cleaner,
7813 but that way is more invasive.
7814 This is to, for example, allow the user to type "p var" or "b main"
7815 without having to specify the package name, and allow lookups
7816 of module.object to work in contexts that use the expression
7817 parser. */
7818
7819 static void
7820 fixup_go_packaging (struct dwarf2_cu *cu)
7821 {
7822 char *package_name = NULL;
7823 struct pending *list;
7824 int i;
7825
7826 for (list = global_symbols; list != NULL; list = list->next)
7827 {
7828 for (i = 0; i < list->nsyms; ++i)
7829 {
7830 struct symbol *sym = list->symbol[i];
7831
7832 if (SYMBOL_LANGUAGE (sym) == language_go
7833 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7834 {
7835 char *this_package_name = go_symbol_package_name (sym);
7836
7837 if (this_package_name == NULL)
7838 continue;
7839 if (package_name == NULL)
7840 package_name = this_package_name;
7841 else
7842 {
7843 if (strcmp (package_name, this_package_name) != 0)
7844 complaint (&symfile_complaints,
7845 _("Symtab %s has objects from two different Go packages: %s and %s"),
7846 (symbol_symtab (sym) != NULL
7847 ? symtab_to_filename_for_display
7848 (symbol_symtab (sym))
7849 : objfile_name (cu->objfile)),
7850 this_package_name, package_name);
7851 xfree (this_package_name);
7852 }
7853 }
7854 }
7855 }
7856
7857 if (package_name != NULL)
7858 {
7859 struct objfile *objfile = cu->objfile;
7860 const char *saved_package_name
7861 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
7862 package_name,
7863 strlen (package_name));
7864 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
7865 saved_package_name);
7866 struct symbol *sym;
7867
7868 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7869
7870 sym = allocate_symbol (objfile);
7871 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7872 SYMBOL_SET_NAMES (sym, saved_package_name,
7873 strlen (saved_package_name), 0, objfile);
7874 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7875 e.g., "main" finds the "main" module and not C's main(). */
7876 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7877 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7878 SYMBOL_TYPE (sym) = type;
7879
7880 add_symbol_to_list (sym, &global_symbols);
7881
7882 xfree (package_name);
7883 }
7884 }
7885
7886 /* Return the symtab for PER_CU. This works properly regardless of
7887 whether we're using the index or psymtabs. */
7888
7889 static struct compunit_symtab *
7890 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
7891 {
7892 return (dwarf2_per_objfile->using_index
7893 ? per_cu->v.quick->compunit_symtab
7894 : per_cu->v.psymtab->compunit_symtab);
7895 }
7896
7897 /* A helper function for computing the list of all symbol tables
7898 included by PER_CU. */
7899
7900 static void
7901 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
7902 htab_t all_children, htab_t all_type_symtabs,
7903 struct dwarf2_per_cu_data *per_cu,
7904 struct compunit_symtab *immediate_parent)
7905 {
7906 void **slot;
7907 int ix;
7908 struct compunit_symtab *cust;
7909 struct dwarf2_per_cu_data *iter;
7910
7911 slot = htab_find_slot (all_children, per_cu, INSERT);
7912 if (*slot != NULL)
7913 {
7914 /* This inclusion and its children have been processed. */
7915 return;
7916 }
7917
7918 *slot = per_cu;
7919 /* Only add a CU if it has a symbol table. */
7920 cust = get_compunit_symtab (per_cu);
7921 if (cust != NULL)
7922 {
7923 /* If this is a type unit only add its symbol table if we haven't
7924 seen it yet (type unit per_cu's can share symtabs). */
7925 if (per_cu->is_debug_types)
7926 {
7927 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
7928 if (*slot == NULL)
7929 {
7930 *slot = cust;
7931 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7932 if (cust->user == NULL)
7933 cust->user = immediate_parent;
7934 }
7935 }
7936 else
7937 {
7938 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7939 if (cust->user == NULL)
7940 cust->user = immediate_parent;
7941 }
7942 }
7943
7944 for (ix = 0;
7945 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7946 ++ix)
7947 {
7948 recursively_compute_inclusions (result, all_children,
7949 all_type_symtabs, iter, cust);
7950 }
7951 }
7952
7953 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
7954 PER_CU. */
7955
7956 static void
7957 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7958 {
7959 gdb_assert (! per_cu->is_debug_types);
7960
7961 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7962 {
7963 int ix, len;
7964 struct dwarf2_per_cu_data *per_cu_iter;
7965 struct compunit_symtab *compunit_symtab_iter;
7966 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
7967 htab_t all_children, all_type_symtabs;
7968 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
7969
7970 /* If we don't have a symtab, we can just skip this case. */
7971 if (cust == NULL)
7972 return;
7973
7974 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7975 NULL, xcalloc, xfree);
7976 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7977 NULL, xcalloc, xfree);
7978
7979 for (ix = 0;
7980 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7981 ix, per_cu_iter);
7982 ++ix)
7983 {
7984 recursively_compute_inclusions (&result_symtabs, all_children,
7985 all_type_symtabs, per_cu_iter,
7986 cust);
7987 }
7988
7989 /* Now we have a transitive closure of all the included symtabs. */
7990 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7991 cust->includes
7992 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
7993 struct compunit_symtab *, len + 1);
7994 for (ix = 0;
7995 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7996 compunit_symtab_iter);
7997 ++ix)
7998 cust->includes[ix] = compunit_symtab_iter;
7999 cust->includes[len] = NULL;
8000
8001 VEC_free (compunit_symtab_ptr, result_symtabs);
8002 htab_delete (all_children);
8003 htab_delete (all_type_symtabs);
8004 }
8005 }
8006
8007 /* Compute the 'includes' field for the symtabs of all the CUs we just
8008 read. */
8009
8010 static void
8011 process_cu_includes (void)
8012 {
8013 int ix;
8014 struct dwarf2_per_cu_data *iter;
8015
8016 for (ix = 0;
8017 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8018 ix, iter);
8019 ++ix)
8020 {
8021 if (! iter->is_debug_types)
8022 compute_compunit_symtab_includes (iter);
8023 }
8024
8025 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8026 }
8027
8028 /* Generate full symbol information for PER_CU, whose DIEs have
8029 already been loaded into memory. */
8030
8031 static void
8032 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8033 enum language pretend_language)
8034 {
8035 struct dwarf2_cu *cu = per_cu->cu;
8036 struct objfile *objfile = per_cu->objfile;
8037 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8038 CORE_ADDR lowpc, highpc;
8039 struct compunit_symtab *cust;
8040 struct cleanup *back_to, *delayed_list_cleanup;
8041 CORE_ADDR baseaddr;
8042 struct block *static_block;
8043 CORE_ADDR addr;
8044
8045 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8046
8047 buildsym_init ();
8048 back_to = make_cleanup (really_free_pendings, NULL);
8049 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8050
8051 cu->list_in_scope = &file_symbols;
8052
8053 cu->language = pretend_language;
8054 cu->language_defn = language_def (cu->language);
8055
8056 /* Do line number decoding in read_file_scope () */
8057 process_die (cu->dies, cu);
8058
8059 /* For now fudge the Go package. */
8060 if (cu->language == language_go)
8061 fixup_go_packaging (cu);
8062
8063 /* Now that we have processed all the DIEs in the CU, all the types
8064 should be complete, and it should now be safe to compute all of the
8065 physnames. */
8066 compute_delayed_physnames (cu);
8067 do_cleanups (delayed_list_cleanup);
8068
8069 /* Some compilers don't define a DW_AT_high_pc attribute for the
8070 compilation unit. If the DW_AT_high_pc is missing, synthesize
8071 it, by scanning the DIE's below the compilation unit. */
8072 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
8073
8074 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8075 static_block = end_symtab_get_static_block (addr, 0, 1);
8076
8077 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8078 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8079 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8080 addrmap to help ensure it has an accurate map of pc values belonging to
8081 this comp unit. */
8082 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8083
8084 cust = end_symtab_from_static_block (static_block,
8085 SECT_OFF_TEXT (objfile), 0);
8086
8087 if (cust != NULL)
8088 {
8089 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
8090
8091 /* Set symtab language to language from DW_AT_language. If the
8092 compilation is from a C file generated by language preprocessors, do
8093 not set the language if it was already deduced by start_subfile. */
8094 if (!(cu->language == language_c
8095 && COMPUNIT_FILETABS (cust)->language != language_unknown))
8096 COMPUNIT_FILETABS (cust)->language = cu->language;
8097
8098 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8099 produce DW_AT_location with location lists but it can be possibly
8100 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8101 there were bugs in prologue debug info, fixed later in GCC-4.5
8102 by "unwind info for epilogues" patch (which is not directly related).
8103
8104 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8105 needed, it would be wrong due to missing DW_AT_producer there.
8106
8107 Still one can confuse GDB by using non-standard GCC compilation
8108 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8109 */
8110 if (cu->has_loclist && gcc_4_minor >= 5)
8111 cust->locations_valid = 1;
8112
8113 if (gcc_4_minor >= 5)
8114 cust->epilogue_unwind_valid = 1;
8115
8116 cust->call_site_htab = cu->call_site_htab;
8117 }
8118
8119 if (dwarf2_per_objfile->using_index)
8120 per_cu->v.quick->compunit_symtab = cust;
8121 else
8122 {
8123 struct partial_symtab *pst = per_cu->v.psymtab;
8124 pst->compunit_symtab = cust;
8125 pst->readin = 1;
8126 }
8127
8128 /* Push it for inclusion processing later. */
8129 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8130
8131 do_cleanups (back_to);
8132 }
8133
8134 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8135 already been loaded into memory. */
8136
8137 static void
8138 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8139 enum language pretend_language)
8140 {
8141 struct dwarf2_cu *cu = per_cu->cu;
8142 struct objfile *objfile = per_cu->objfile;
8143 struct compunit_symtab *cust;
8144 struct cleanup *back_to, *delayed_list_cleanup;
8145 struct signatured_type *sig_type;
8146
8147 gdb_assert (per_cu->is_debug_types);
8148 sig_type = (struct signatured_type *) per_cu;
8149
8150 buildsym_init ();
8151 back_to = make_cleanup (really_free_pendings, NULL);
8152 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8153
8154 cu->list_in_scope = &file_symbols;
8155
8156 cu->language = pretend_language;
8157 cu->language_defn = language_def (cu->language);
8158
8159 /* The symbol tables are set up in read_type_unit_scope. */
8160 process_die (cu->dies, cu);
8161
8162 /* For now fudge the Go package. */
8163 if (cu->language == language_go)
8164 fixup_go_packaging (cu);
8165
8166 /* Now that we have processed all the DIEs in the CU, all the types
8167 should be complete, and it should now be safe to compute all of the
8168 physnames. */
8169 compute_delayed_physnames (cu);
8170 do_cleanups (delayed_list_cleanup);
8171
8172 /* TUs share symbol tables.
8173 If this is the first TU to use this symtab, complete the construction
8174 of it with end_expandable_symtab. Otherwise, complete the addition of
8175 this TU's symbols to the existing symtab. */
8176 if (sig_type->type_unit_group->compunit_symtab == NULL)
8177 {
8178 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8179 sig_type->type_unit_group->compunit_symtab = cust;
8180
8181 if (cust != NULL)
8182 {
8183 /* Set symtab language to language from DW_AT_language. If the
8184 compilation is from a C file generated by language preprocessors,
8185 do not set the language if it was already deduced by
8186 start_subfile. */
8187 if (!(cu->language == language_c
8188 && COMPUNIT_FILETABS (cust)->language != language_c))
8189 COMPUNIT_FILETABS (cust)->language = cu->language;
8190 }
8191 }
8192 else
8193 {
8194 augment_type_symtab ();
8195 cust = sig_type->type_unit_group->compunit_symtab;
8196 }
8197
8198 if (dwarf2_per_objfile->using_index)
8199 per_cu->v.quick->compunit_symtab = cust;
8200 else
8201 {
8202 struct partial_symtab *pst = per_cu->v.psymtab;
8203 pst->compunit_symtab = cust;
8204 pst->readin = 1;
8205 }
8206
8207 do_cleanups (back_to);
8208 }
8209
8210 /* Process an imported unit DIE. */
8211
8212 static void
8213 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8214 {
8215 struct attribute *attr;
8216
8217 /* For now we don't handle imported units in type units. */
8218 if (cu->per_cu->is_debug_types)
8219 {
8220 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8221 " supported in type units [in module %s]"),
8222 objfile_name (cu->objfile));
8223 }
8224
8225 attr = dwarf2_attr (die, DW_AT_import, cu);
8226 if (attr != NULL)
8227 {
8228 struct dwarf2_per_cu_data *per_cu;
8229 sect_offset offset;
8230 int is_dwz;
8231
8232 offset = dwarf2_get_ref_die_offset (attr);
8233 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8234 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8235
8236 /* If necessary, add it to the queue and load its DIEs. */
8237 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8238 load_full_comp_unit (per_cu, cu->language);
8239
8240 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8241 per_cu);
8242 }
8243 }
8244
8245 /* Reset the in_process bit of a die. */
8246
8247 static void
8248 reset_die_in_process (void *arg)
8249 {
8250 struct die_info *die = (struct die_info *) arg;
8251
8252 die->in_process = 0;
8253 }
8254
8255 /* Process a die and its children. */
8256
8257 static void
8258 process_die (struct die_info *die, struct dwarf2_cu *cu)
8259 {
8260 struct cleanup *in_process;
8261
8262 /* We should only be processing those not already in process. */
8263 gdb_assert (!die->in_process);
8264
8265 die->in_process = 1;
8266 in_process = make_cleanup (reset_die_in_process,die);
8267
8268 switch (die->tag)
8269 {
8270 case DW_TAG_padding:
8271 break;
8272 case DW_TAG_compile_unit:
8273 case DW_TAG_partial_unit:
8274 read_file_scope (die, cu);
8275 break;
8276 case DW_TAG_type_unit:
8277 read_type_unit_scope (die, cu);
8278 break;
8279 case DW_TAG_subprogram:
8280 case DW_TAG_inlined_subroutine:
8281 read_func_scope (die, cu);
8282 break;
8283 case DW_TAG_lexical_block:
8284 case DW_TAG_try_block:
8285 case DW_TAG_catch_block:
8286 read_lexical_block_scope (die, cu);
8287 break;
8288 case DW_TAG_GNU_call_site:
8289 read_call_site_scope (die, cu);
8290 break;
8291 case DW_TAG_class_type:
8292 case DW_TAG_interface_type:
8293 case DW_TAG_structure_type:
8294 case DW_TAG_union_type:
8295 process_structure_scope (die, cu);
8296 break;
8297 case DW_TAG_enumeration_type:
8298 process_enumeration_scope (die, cu);
8299 break;
8300
8301 /* These dies have a type, but processing them does not create
8302 a symbol or recurse to process the children. Therefore we can
8303 read them on-demand through read_type_die. */
8304 case DW_TAG_subroutine_type:
8305 case DW_TAG_set_type:
8306 case DW_TAG_array_type:
8307 case DW_TAG_pointer_type:
8308 case DW_TAG_ptr_to_member_type:
8309 case DW_TAG_reference_type:
8310 case DW_TAG_string_type:
8311 break;
8312
8313 case DW_TAG_base_type:
8314 case DW_TAG_subrange_type:
8315 case DW_TAG_typedef:
8316 /* Add a typedef symbol for the type definition, if it has a
8317 DW_AT_name. */
8318 new_symbol (die, read_type_die (die, cu), cu);
8319 break;
8320 case DW_TAG_common_block:
8321 read_common_block (die, cu);
8322 break;
8323 case DW_TAG_common_inclusion:
8324 break;
8325 case DW_TAG_namespace:
8326 cu->processing_has_namespace_info = 1;
8327 read_namespace (die, cu);
8328 break;
8329 case DW_TAG_module:
8330 cu->processing_has_namespace_info = 1;
8331 read_module (die, cu);
8332 break;
8333 case DW_TAG_imported_declaration:
8334 cu->processing_has_namespace_info = 1;
8335 if (read_namespace_alias (die, cu))
8336 break;
8337 /* The declaration is not a global namespace alias: fall through. */
8338 case DW_TAG_imported_module:
8339 cu->processing_has_namespace_info = 1;
8340 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8341 || cu->language != language_fortran))
8342 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8343 dwarf_tag_name (die->tag));
8344 read_import_statement (die, cu);
8345 break;
8346
8347 case DW_TAG_imported_unit:
8348 process_imported_unit_die (die, cu);
8349 break;
8350
8351 default:
8352 new_symbol (die, NULL, cu);
8353 break;
8354 }
8355
8356 do_cleanups (in_process);
8357 }
8358 \f
8359 /* DWARF name computation. */
8360
8361 /* A helper function for dwarf2_compute_name which determines whether DIE
8362 needs to have the name of the scope prepended to the name listed in the
8363 die. */
8364
8365 static int
8366 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8367 {
8368 struct attribute *attr;
8369
8370 switch (die->tag)
8371 {
8372 case DW_TAG_namespace:
8373 case DW_TAG_typedef:
8374 case DW_TAG_class_type:
8375 case DW_TAG_interface_type:
8376 case DW_TAG_structure_type:
8377 case DW_TAG_union_type:
8378 case DW_TAG_enumeration_type:
8379 case DW_TAG_enumerator:
8380 case DW_TAG_subprogram:
8381 case DW_TAG_inlined_subroutine:
8382 case DW_TAG_member:
8383 case DW_TAG_imported_declaration:
8384 return 1;
8385
8386 case DW_TAG_variable:
8387 case DW_TAG_constant:
8388 /* We only need to prefix "globally" visible variables. These include
8389 any variable marked with DW_AT_external or any variable that
8390 lives in a namespace. [Variables in anonymous namespaces
8391 require prefixing, but they are not DW_AT_external.] */
8392
8393 if (dwarf2_attr (die, DW_AT_specification, cu))
8394 {
8395 struct dwarf2_cu *spec_cu = cu;
8396
8397 return die_needs_namespace (die_specification (die, &spec_cu),
8398 spec_cu);
8399 }
8400
8401 attr = dwarf2_attr (die, DW_AT_external, cu);
8402 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8403 && die->parent->tag != DW_TAG_module)
8404 return 0;
8405 /* A variable in a lexical block of some kind does not need a
8406 namespace, even though in C++ such variables may be external
8407 and have a mangled name. */
8408 if (die->parent->tag == DW_TAG_lexical_block
8409 || die->parent->tag == DW_TAG_try_block
8410 || die->parent->tag == DW_TAG_catch_block
8411 || die->parent->tag == DW_TAG_subprogram)
8412 return 0;
8413 return 1;
8414
8415 default:
8416 return 0;
8417 }
8418 }
8419
8420 /* Retrieve the last character from a mem_file. */
8421
8422 static void
8423 do_ui_file_peek_last (void *object, const char *buffer, long length)
8424 {
8425 char *last_char_p = (char *) object;
8426
8427 if (length > 0)
8428 *last_char_p = buffer[length - 1];
8429 }
8430
8431 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8432 compute the physname for the object, which include a method's:
8433 - formal parameters (C++),
8434 - receiver type (Go),
8435
8436 The term "physname" is a bit confusing.
8437 For C++, for example, it is the demangled name.
8438 For Go, for example, it's the mangled name.
8439
8440 For Ada, return the DIE's linkage name rather than the fully qualified
8441 name. PHYSNAME is ignored..
8442
8443 The result is allocated on the objfile_obstack and canonicalized. */
8444
8445 static const char *
8446 dwarf2_compute_name (const char *name,
8447 struct die_info *die, struct dwarf2_cu *cu,
8448 int physname)
8449 {
8450 struct objfile *objfile = cu->objfile;
8451
8452 if (name == NULL)
8453 name = dwarf2_name (die, cu);
8454
8455 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8456 but otherwise compute it by typename_concat inside GDB.
8457 FIXME: Actually this is not really true, or at least not always true.
8458 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8459 Fortran names because there is no mangling standard. So new_symbol_full
8460 will set the demangled name to the result of dwarf2_full_name, and it is
8461 the demangled name that GDB uses if it exists. */
8462 if (cu->language == language_ada
8463 || (cu->language == language_fortran && physname))
8464 {
8465 /* For Ada unit, we prefer the linkage name over the name, as
8466 the former contains the exported name, which the user expects
8467 to be able to reference. Ideally, we want the user to be able
8468 to reference this entity using either natural or linkage name,
8469 but we haven't started looking at this enhancement yet. */
8470 const char *linkage_name;
8471
8472 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8473 if (linkage_name == NULL)
8474 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8475 if (linkage_name != NULL)
8476 return linkage_name;
8477 }
8478
8479 /* These are the only languages we know how to qualify names in. */
8480 if (name != NULL
8481 && (cu->language == language_cplus
8482 || cu->language == language_fortran || cu->language == language_d
8483 || cu->language == language_rust))
8484 {
8485 if (die_needs_namespace (die, cu))
8486 {
8487 long length;
8488 const char *prefix;
8489 struct ui_file *buf;
8490 const char *canonical_name = NULL;
8491
8492 prefix = determine_prefix (die, cu);
8493 buf = mem_fileopen ();
8494 if (*prefix != '\0')
8495 {
8496 char *prefixed_name = typename_concat (NULL, prefix, name,
8497 physname, cu);
8498
8499 fputs_unfiltered (prefixed_name, buf);
8500 xfree (prefixed_name);
8501 }
8502 else
8503 fputs_unfiltered (name, buf);
8504
8505 /* Template parameters may be specified in the DIE's DW_AT_name, or
8506 as children with DW_TAG_template_type_param or
8507 DW_TAG_value_type_param. If the latter, add them to the name
8508 here. If the name already has template parameters, then
8509 skip this step; some versions of GCC emit both, and
8510 it is more efficient to use the pre-computed name.
8511
8512 Something to keep in mind about this process: it is very
8513 unlikely, or in some cases downright impossible, to produce
8514 something that will match the mangled name of a function.
8515 If the definition of the function has the same debug info,
8516 we should be able to match up with it anyway. But fallbacks
8517 using the minimal symbol, for instance to find a method
8518 implemented in a stripped copy of libstdc++, will not work.
8519 If we do not have debug info for the definition, we will have to
8520 match them up some other way.
8521
8522 When we do name matching there is a related problem with function
8523 templates; two instantiated function templates are allowed to
8524 differ only by their return types, which we do not add here. */
8525
8526 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8527 {
8528 struct attribute *attr;
8529 struct die_info *child;
8530 int first = 1;
8531
8532 die->building_fullname = 1;
8533
8534 for (child = die->child; child != NULL; child = child->sibling)
8535 {
8536 struct type *type;
8537 LONGEST value;
8538 const gdb_byte *bytes;
8539 struct dwarf2_locexpr_baton *baton;
8540 struct value *v;
8541
8542 if (child->tag != DW_TAG_template_type_param
8543 && child->tag != DW_TAG_template_value_param)
8544 continue;
8545
8546 if (first)
8547 {
8548 fputs_unfiltered ("<", buf);
8549 first = 0;
8550 }
8551 else
8552 fputs_unfiltered (", ", buf);
8553
8554 attr = dwarf2_attr (child, DW_AT_type, cu);
8555 if (attr == NULL)
8556 {
8557 complaint (&symfile_complaints,
8558 _("template parameter missing DW_AT_type"));
8559 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8560 continue;
8561 }
8562 type = die_type (child, cu);
8563
8564 if (child->tag == DW_TAG_template_type_param)
8565 {
8566 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8567 continue;
8568 }
8569
8570 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8571 if (attr == NULL)
8572 {
8573 complaint (&symfile_complaints,
8574 _("template parameter missing "
8575 "DW_AT_const_value"));
8576 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8577 continue;
8578 }
8579
8580 dwarf2_const_value_attr (attr, type, name,
8581 &cu->comp_unit_obstack, cu,
8582 &value, &bytes, &baton);
8583
8584 if (TYPE_NOSIGN (type))
8585 /* GDB prints characters as NUMBER 'CHAR'. If that's
8586 changed, this can use value_print instead. */
8587 c_printchar (value, type, buf);
8588 else
8589 {
8590 struct value_print_options opts;
8591
8592 if (baton != NULL)
8593 v = dwarf2_evaluate_loc_desc (type, NULL,
8594 baton->data,
8595 baton->size,
8596 baton->per_cu);
8597 else if (bytes != NULL)
8598 {
8599 v = allocate_value (type);
8600 memcpy (value_contents_writeable (v), bytes,
8601 TYPE_LENGTH (type));
8602 }
8603 else
8604 v = value_from_longest (type, value);
8605
8606 /* Specify decimal so that we do not depend on
8607 the radix. */
8608 get_formatted_print_options (&opts, 'd');
8609 opts.raw = 1;
8610 value_print (v, buf, &opts);
8611 release_value (v);
8612 value_free (v);
8613 }
8614 }
8615
8616 die->building_fullname = 0;
8617
8618 if (!first)
8619 {
8620 /* Close the argument list, with a space if necessary
8621 (nested templates). */
8622 char last_char = '\0';
8623 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8624 if (last_char == '>')
8625 fputs_unfiltered (" >", buf);
8626 else
8627 fputs_unfiltered (">", buf);
8628 }
8629 }
8630
8631 /* For C++ methods, append formal parameter type
8632 information, if PHYSNAME. */
8633
8634 if (physname && die->tag == DW_TAG_subprogram
8635 && cu->language == language_cplus)
8636 {
8637 struct type *type = read_type_die (die, cu);
8638
8639 c_type_print_args (type, buf, 1, cu->language,
8640 &type_print_raw_options);
8641
8642 if (cu->language == language_cplus)
8643 {
8644 /* Assume that an artificial first parameter is
8645 "this", but do not crash if it is not. RealView
8646 marks unnamed (and thus unused) parameters as
8647 artificial; there is no way to differentiate
8648 the two cases. */
8649 if (TYPE_NFIELDS (type) > 0
8650 && TYPE_FIELD_ARTIFICIAL (type, 0)
8651 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8652 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8653 0))))
8654 fputs_unfiltered (" const", buf);
8655 }
8656 }
8657
8658 std::string intermediate_name = ui_file_as_string (buf);
8659 ui_file_delete (buf);
8660
8661 if (cu->language == language_cplus)
8662 canonical_name
8663 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
8664 &objfile->per_bfd->storage_obstack);
8665
8666 /* If we only computed INTERMEDIATE_NAME, or if
8667 INTERMEDIATE_NAME is already canonical, then we need to
8668 copy it to the appropriate obstack. */
8669 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
8670 name = ((const char *)
8671 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8672 intermediate_name.c_str (),
8673 intermediate_name.length ()));
8674 else
8675 name = canonical_name;
8676 }
8677 }
8678
8679 return name;
8680 }
8681
8682 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8683 If scope qualifiers are appropriate they will be added. The result
8684 will be allocated on the storage_obstack, or NULL if the DIE does
8685 not have a name. NAME may either be from a previous call to
8686 dwarf2_name or NULL.
8687
8688 The output string will be canonicalized (if C++). */
8689
8690 static const char *
8691 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8692 {
8693 return dwarf2_compute_name (name, die, cu, 0);
8694 }
8695
8696 /* Construct a physname for the given DIE in CU. NAME may either be
8697 from a previous call to dwarf2_name or NULL. The result will be
8698 allocated on the objfile_objstack or NULL if the DIE does not have a
8699 name.
8700
8701 The output string will be canonicalized (if C++). */
8702
8703 static const char *
8704 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8705 {
8706 struct objfile *objfile = cu->objfile;
8707 const char *retval, *mangled = NULL, *canon = NULL;
8708 struct cleanup *back_to;
8709 int need_copy = 1;
8710
8711 /* In this case dwarf2_compute_name is just a shortcut not building anything
8712 on its own. */
8713 if (!die_needs_namespace (die, cu))
8714 return dwarf2_compute_name (name, die, cu, 1);
8715
8716 back_to = make_cleanup (null_cleanup, NULL);
8717
8718 mangled = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8719 if (mangled == NULL)
8720 mangled = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8721
8722 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
8723 See https://github.com/rust-lang/rust/issues/32925. */
8724 if (cu->language == language_rust && mangled != NULL
8725 && strchr (mangled, '{') != NULL)
8726 mangled = NULL;
8727
8728 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8729 has computed. */
8730 if (mangled != NULL)
8731 {
8732 char *demangled;
8733
8734 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8735 type. It is easier for GDB users to search for such functions as
8736 `name(params)' than `long name(params)'. In such case the minimal
8737 symbol names do not match the full symbol names but for template
8738 functions there is never a need to look up their definition from their
8739 declaration so the only disadvantage remains the minimal symbol
8740 variant `long name(params)' does not have the proper inferior type.
8741 */
8742
8743 if (cu->language == language_go)
8744 {
8745 /* This is a lie, but we already lie to the caller new_symbol_full.
8746 new_symbol_full assumes we return the mangled name.
8747 This just undoes that lie until things are cleaned up. */
8748 demangled = NULL;
8749 }
8750 else
8751 {
8752 demangled = gdb_demangle (mangled,
8753 (DMGL_PARAMS | DMGL_ANSI | DMGL_RET_DROP));
8754 }
8755 if (demangled)
8756 {
8757 make_cleanup (xfree, demangled);
8758 canon = demangled;
8759 }
8760 else
8761 {
8762 canon = mangled;
8763 need_copy = 0;
8764 }
8765 }
8766
8767 if (canon == NULL || check_physname)
8768 {
8769 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8770
8771 if (canon != NULL && strcmp (physname, canon) != 0)
8772 {
8773 /* It may not mean a bug in GDB. The compiler could also
8774 compute DW_AT_linkage_name incorrectly. But in such case
8775 GDB would need to be bug-to-bug compatible. */
8776
8777 complaint (&symfile_complaints,
8778 _("Computed physname <%s> does not match demangled <%s> "
8779 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8780 physname, canon, mangled, die->offset.sect_off,
8781 objfile_name (objfile));
8782
8783 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8784 is available here - over computed PHYSNAME. It is safer
8785 against both buggy GDB and buggy compilers. */
8786
8787 retval = canon;
8788 }
8789 else
8790 {
8791 retval = physname;
8792 need_copy = 0;
8793 }
8794 }
8795 else
8796 retval = canon;
8797
8798 if (need_copy)
8799 retval = ((const char *)
8800 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8801 retval, strlen (retval)));
8802
8803 do_cleanups (back_to);
8804 return retval;
8805 }
8806
8807 /* Inspect DIE in CU for a namespace alias. If one exists, record
8808 a new symbol for it.
8809
8810 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8811
8812 static int
8813 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8814 {
8815 struct attribute *attr;
8816
8817 /* If the die does not have a name, this is not a namespace
8818 alias. */
8819 attr = dwarf2_attr (die, DW_AT_name, cu);
8820 if (attr != NULL)
8821 {
8822 int num;
8823 struct die_info *d = die;
8824 struct dwarf2_cu *imported_cu = cu;
8825
8826 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8827 keep inspecting DIEs until we hit the underlying import. */
8828 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8829 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8830 {
8831 attr = dwarf2_attr (d, DW_AT_import, cu);
8832 if (attr == NULL)
8833 break;
8834
8835 d = follow_die_ref (d, attr, &imported_cu);
8836 if (d->tag != DW_TAG_imported_declaration)
8837 break;
8838 }
8839
8840 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8841 {
8842 complaint (&symfile_complaints,
8843 _("DIE at 0x%x has too many recursively imported "
8844 "declarations"), d->offset.sect_off);
8845 return 0;
8846 }
8847
8848 if (attr != NULL)
8849 {
8850 struct type *type;
8851 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8852
8853 type = get_die_type_at_offset (offset, cu->per_cu);
8854 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8855 {
8856 /* This declaration is a global namespace alias. Add
8857 a symbol for it whose type is the aliased namespace. */
8858 new_symbol (die, type, cu);
8859 return 1;
8860 }
8861 }
8862 }
8863
8864 return 0;
8865 }
8866
8867 /* Return the using directives repository (global or local?) to use in the
8868 current context for LANGUAGE.
8869
8870 For Ada, imported declarations can materialize renamings, which *may* be
8871 global. However it is impossible (for now?) in DWARF to distinguish
8872 "external" imported declarations and "static" ones. As all imported
8873 declarations seem to be static in all other languages, make them all CU-wide
8874 global only in Ada. */
8875
8876 static struct using_direct **
8877 using_directives (enum language language)
8878 {
8879 if (language == language_ada && context_stack_depth == 0)
8880 return &global_using_directives;
8881 else
8882 return &local_using_directives;
8883 }
8884
8885 /* Read the import statement specified by the given die and record it. */
8886
8887 static void
8888 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8889 {
8890 struct objfile *objfile = cu->objfile;
8891 struct attribute *import_attr;
8892 struct die_info *imported_die, *child_die;
8893 struct dwarf2_cu *imported_cu;
8894 const char *imported_name;
8895 const char *imported_name_prefix;
8896 const char *canonical_name;
8897 const char *import_alias;
8898 const char *imported_declaration = NULL;
8899 const char *import_prefix;
8900 VEC (const_char_ptr) *excludes = NULL;
8901 struct cleanup *cleanups;
8902
8903 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8904 if (import_attr == NULL)
8905 {
8906 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8907 dwarf_tag_name (die->tag));
8908 return;
8909 }
8910
8911 imported_cu = cu;
8912 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8913 imported_name = dwarf2_name (imported_die, imported_cu);
8914 if (imported_name == NULL)
8915 {
8916 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8917
8918 The import in the following code:
8919 namespace A
8920 {
8921 typedef int B;
8922 }
8923
8924 int main ()
8925 {
8926 using A::B;
8927 B b;
8928 return b;
8929 }
8930
8931 ...
8932 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8933 <52> DW_AT_decl_file : 1
8934 <53> DW_AT_decl_line : 6
8935 <54> DW_AT_import : <0x75>
8936 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8937 <59> DW_AT_name : B
8938 <5b> DW_AT_decl_file : 1
8939 <5c> DW_AT_decl_line : 2
8940 <5d> DW_AT_type : <0x6e>
8941 ...
8942 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8943 <76> DW_AT_byte_size : 4
8944 <77> DW_AT_encoding : 5 (signed)
8945
8946 imports the wrong die ( 0x75 instead of 0x58 ).
8947 This case will be ignored until the gcc bug is fixed. */
8948 return;
8949 }
8950
8951 /* Figure out the local name after import. */
8952 import_alias = dwarf2_name (die, cu);
8953
8954 /* Figure out where the statement is being imported to. */
8955 import_prefix = determine_prefix (die, cu);
8956
8957 /* Figure out what the scope of the imported die is and prepend it
8958 to the name of the imported die. */
8959 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8960
8961 if (imported_die->tag != DW_TAG_namespace
8962 && imported_die->tag != DW_TAG_module)
8963 {
8964 imported_declaration = imported_name;
8965 canonical_name = imported_name_prefix;
8966 }
8967 else if (strlen (imported_name_prefix) > 0)
8968 canonical_name = obconcat (&objfile->objfile_obstack,
8969 imported_name_prefix,
8970 (cu->language == language_d ? "." : "::"),
8971 imported_name, (char *) NULL);
8972 else
8973 canonical_name = imported_name;
8974
8975 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8976
8977 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8978 for (child_die = die->child; child_die && child_die->tag;
8979 child_die = sibling_die (child_die))
8980 {
8981 /* DWARF-4: A Fortran use statement with a “rename list” may be
8982 represented by an imported module entry with an import attribute
8983 referring to the module and owned entries corresponding to those
8984 entities that are renamed as part of being imported. */
8985
8986 if (child_die->tag != DW_TAG_imported_declaration)
8987 {
8988 complaint (&symfile_complaints,
8989 _("child DW_TAG_imported_declaration expected "
8990 "- DIE at 0x%x [in module %s]"),
8991 child_die->offset.sect_off, objfile_name (objfile));
8992 continue;
8993 }
8994
8995 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8996 if (import_attr == NULL)
8997 {
8998 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8999 dwarf_tag_name (child_die->tag));
9000 continue;
9001 }
9002
9003 imported_cu = cu;
9004 imported_die = follow_die_ref_or_sig (child_die, import_attr,
9005 &imported_cu);
9006 imported_name = dwarf2_name (imported_die, imported_cu);
9007 if (imported_name == NULL)
9008 {
9009 complaint (&symfile_complaints,
9010 _("child DW_TAG_imported_declaration has unknown "
9011 "imported name - DIE at 0x%x [in module %s]"),
9012 child_die->offset.sect_off, objfile_name (objfile));
9013 continue;
9014 }
9015
9016 VEC_safe_push (const_char_ptr, excludes, imported_name);
9017
9018 process_die (child_die, cu);
9019 }
9020
9021 add_using_directive (using_directives (cu->language),
9022 import_prefix,
9023 canonical_name,
9024 import_alias,
9025 imported_declaration,
9026 excludes,
9027 0,
9028 &objfile->objfile_obstack);
9029
9030 do_cleanups (cleanups);
9031 }
9032
9033 /* Cleanup function for handle_DW_AT_stmt_list. */
9034
9035 static void
9036 free_cu_line_header (void *arg)
9037 {
9038 struct dwarf2_cu *cu = (struct dwarf2_cu *) arg;
9039
9040 free_line_header (cu->line_header);
9041 cu->line_header = NULL;
9042 }
9043
9044 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9045 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9046 this, it was first present in GCC release 4.3.0. */
9047
9048 static int
9049 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9050 {
9051 if (!cu->checked_producer)
9052 check_producer (cu);
9053
9054 return cu->producer_is_gcc_lt_4_3;
9055 }
9056
9057 static void
9058 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
9059 const char **name, const char **comp_dir)
9060 {
9061 /* Find the filename. Do not use dwarf2_name here, since the filename
9062 is not a source language identifier. */
9063 *name = dwarf2_string_attr (die, DW_AT_name, cu);
9064 *comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9065
9066 if (*comp_dir == NULL
9067 && producer_is_gcc_lt_4_3 (cu) && *name != NULL
9068 && IS_ABSOLUTE_PATH (*name))
9069 {
9070 char *d = ldirname (*name);
9071
9072 *comp_dir = d;
9073 if (d != NULL)
9074 make_cleanup (xfree, d);
9075 }
9076 if (*comp_dir != NULL)
9077 {
9078 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9079 directory, get rid of it. */
9080 const char *cp = strchr (*comp_dir, ':');
9081
9082 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9083 *comp_dir = cp + 1;
9084 }
9085
9086 if (*name == NULL)
9087 *name = "<unknown>";
9088 }
9089
9090 /* Handle DW_AT_stmt_list for a compilation unit.
9091 DIE is the DW_TAG_compile_unit die for CU.
9092 COMP_DIR is the compilation directory. LOWPC is passed to
9093 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
9094
9095 static void
9096 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
9097 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
9098 {
9099 struct objfile *objfile = dwarf2_per_objfile->objfile;
9100 struct attribute *attr;
9101 unsigned int line_offset;
9102 struct line_header line_header_local;
9103 hashval_t line_header_local_hash;
9104 unsigned u;
9105 void **slot;
9106 int decode_mapping;
9107
9108 gdb_assert (! cu->per_cu->is_debug_types);
9109
9110 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9111 if (attr == NULL)
9112 return;
9113
9114 line_offset = DW_UNSND (attr);
9115
9116 /* The line header hash table is only created if needed (it exists to
9117 prevent redundant reading of the line table for partial_units).
9118 If we're given a partial_unit, we'll need it. If we're given a
9119 compile_unit, then use the line header hash table if it's already
9120 created, but don't create one just yet. */
9121
9122 if (dwarf2_per_objfile->line_header_hash == NULL
9123 && die->tag == DW_TAG_partial_unit)
9124 {
9125 dwarf2_per_objfile->line_header_hash
9126 = htab_create_alloc_ex (127, line_header_hash_voidp,
9127 line_header_eq_voidp,
9128 free_line_header_voidp,
9129 &objfile->objfile_obstack,
9130 hashtab_obstack_allocate,
9131 dummy_obstack_deallocate);
9132 }
9133
9134 line_header_local.offset.sect_off = line_offset;
9135 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9136 line_header_local_hash = line_header_hash (&line_header_local);
9137 if (dwarf2_per_objfile->line_header_hash != NULL)
9138 {
9139 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9140 &line_header_local,
9141 line_header_local_hash, NO_INSERT);
9142
9143 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9144 is not present in *SLOT (since if there is something in *SLOT then
9145 it will be for a partial_unit). */
9146 if (die->tag == DW_TAG_partial_unit && slot != NULL)
9147 {
9148 gdb_assert (*slot != NULL);
9149 cu->line_header = (struct line_header *) *slot;
9150 return;
9151 }
9152 }
9153
9154 /* dwarf_decode_line_header does not yet provide sufficient information.
9155 We always have to call also dwarf_decode_lines for it. */
9156 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9157 if (cu->line_header == NULL)
9158 return;
9159
9160 if (dwarf2_per_objfile->line_header_hash == NULL)
9161 slot = NULL;
9162 else
9163 {
9164 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9165 &line_header_local,
9166 line_header_local_hash, INSERT);
9167 gdb_assert (slot != NULL);
9168 }
9169 if (slot != NULL && *slot == NULL)
9170 {
9171 /* This newly decoded line number information unit will be owned
9172 by line_header_hash hash table. */
9173 *slot = cu->line_header;
9174 }
9175 else
9176 {
9177 /* We cannot free any current entry in (*slot) as that struct line_header
9178 may be already used by multiple CUs. Create only temporary decoded
9179 line_header for this CU - it may happen at most once for each line
9180 number information unit. And if we're not using line_header_hash
9181 then this is what we want as well. */
9182 gdb_assert (die->tag != DW_TAG_partial_unit);
9183 make_cleanup (free_cu_line_header, cu);
9184 }
9185 decode_mapping = (die->tag != DW_TAG_partial_unit);
9186 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9187 decode_mapping);
9188 }
9189
9190 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9191
9192 static void
9193 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9194 {
9195 struct objfile *objfile = dwarf2_per_objfile->objfile;
9196 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9197 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9198 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9199 CORE_ADDR highpc = ((CORE_ADDR) 0);
9200 struct attribute *attr;
9201 const char *name = NULL;
9202 const char *comp_dir = NULL;
9203 struct die_info *child_die;
9204 CORE_ADDR baseaddr;
9205
9206 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9207
9208 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9209
9210 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9211 from finish_block. */
9212 if (lowpc == ((CORE_ADDR) -1))
9213 lowpc = highpc;
9214 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
9215
9216 find_file_and_directory (die, cu, &name, &comp_dir);
9217
9218 prepare_one_comp_unit (cu, die, cu->language);
9219
9220 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9221 standardised yet. As a workaround for the language detection we fall
9222 back to the DW_AT_producer string. */
9223 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9224 cu->language = language_opencl;
9225
9226 /* Similar hack for Go. */
9227 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9228 set_cu_language (DW_LANG_Go, cu);
9229
9230 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
9231
9232 /* Decode line number information if present. We do this before
9233 processing child DIEs, so that the line header table is available
9234 for DW_AT_decl_file. */
9235 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
9236
9237 /* Process all dies in compilation unit. */
9238 if (die->child != NULL)
9239 {
9240 child_die = die->child;
9241 while (child_die && child_die->tag)
9242 {
9243 process_die (child_die, cu);
9244 child_die = sibling_die (child_die);
9245 }
9246 }
9247
9248 /* Decode macro information, if present. Dwarf 2 macro information
9249 refers to information in the line number info statement program
9250 header, so we can only read it if we've read the header
9251 successfully. */
9252 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9253 if (attr && cu->line_header)
9254 {
9255 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9256 complaint (&symfile_complaints,
9257 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9258
9259 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9260 }
9261 else
9262 {
9263 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9264 if (attr && cu->line_header)
9265 {
9266 unsigned int macro_offset = DW_UNSND (attr);
9267
9268 dwarf_decode_macros (cu, macro_offset, 0);
9269 }
9270 }
9271
9272 do_cleanups (back_to);
9273 }
9274
9275 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9276 Create the set of symtabs used by this TU, or if this TU is sharing
9277 symtabs with another TU and the symtabs have already been created
9278 then restore those symtabs in the line header.
9279 We don't need the pc/line-number mapping for type units. */
9280
9281 static void
9282 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9283 {
9284 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9285 struct type_unit_group *tu_group;
9286 int first_time;
9287 struct line_header *lh;
9288 struct attribute *attr;
9289 unsigned int i, line_offset;
9290 struct signatured_type *sig_type;
9291
9292 gdb_assert (per_cu->is_debug_types);
9293 sig_type = (struct signatured_type *) per_cu;
9294
9295 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9296
9297 /* If we're using .gdb_index (includes -readnow) then
9298 per_cu->type_unit_group may not have been set up yet. */
9299 if (sig_type->type_unit_group == NULL)
9300 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9301 tu_group = sig_type->type_unit_group;
9302
9303 /* If we've already processed this stmt_list there's no real need to
9304 do it again, we could fake it and just recreate the part we need
9305 (file name,index -> symtab mapping). If data shows this optimization
9306 is useful we can do it then. */
9307 first_time = tu_group->compunit_symtab == NULL;
9308
9309 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9310 debug info. */
9311 lh = NULL;
9312 if (attr != NULL)
9313 {
9314 line_offset = DW_UNSND (attr);
9315 lh = dwarf_decode_line_header (line_offset, cu);
9316 }
9317 if (lh == NULL)
9318 {
9319 if (first_time)
9320 dwarf2_start_symtab (cu, "", NULL, 0);
9321 else
9322 {
9323 gdb_assert (tu_group->symtabs == NULL);
9324 restart_symtab (tu_group->compunit_symtab, "", 0);
9325 }
9326 return;
9327 }
9328
9329 cu->line_header = lh;
9330 make_cleanup (free_cu_line_header, cu);
9331
9332 if (first_time)
9333 {
9334 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9335
9336 /* Note: We don't assign tu_group->compunit_symtab yet because we're
9337 still initializing it, and our caller (a few levels up)
9338 process_full_type_unit still needs to know if this is the first
9339 time. */
9340
9341 tu_group->num_symtabs = lh->num_file_names;
9342 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9343
9344 for (i = 0; i < lh->num_file_names; ++i)
9345 {
9346 const char *dir = NULL;
9347 struct file_entry *fe = &lh->file_names[i];
9348
9349 if (fe->dir_index && lh->include_dirs != NULL)
9350 dir = lh->include_dirs[fe->dir_index - 1];
9351 dwarf2_start_subfile (fe->name, dir);
9352
9353 if (current_subfile->symtab == NULL)
9354 {
9355 /* NOTE: start_subfile will recognize when it's been passed
9356 a file it has already seen. So we can't assume there's a
9357 simple mapping from lh->file_names to subfiles, plus
9358 lh->file_names may contain dups. */
9359 current_subfile->symtab
9360 = allocate_symtab (cust, current_subfile->name);
9361 }
9362
9363 fe->symtab = current_subfile->symtab;
9364 tu_group->symtabs[i] = fe->symtab;
9365 }
9366 }
9367 else
9368 {
9369 restart_symtab (tu_group->compunit_symtab, "", 0);
9370
9371 for (i = 0; i < lh->num_file_names; ++i)
9372 {
9373 struct file_entry *fe = &lh->file_names[i];
9374
9375 fe->symtab = tu_group->symtabs[i];
9376 }
9377 }
9378
9379 /* The main symtab is allocated last. Type units don't have DW_AT_name
9380 so they don't have a "real" (so to speak) symtab anyway.
9381 There is later code that will assign the main symtab to all symbols
9382 that don't have one. We need to handle the case of a symbol with a
9383 missing symtab (DW_AT_decl_file) anyway. */
9384 }
9385
9386 /* Process DW_TAG_type_unit.
9387 For TUs we want to skip the first top level sibling if it's not the
9388 actual type being defined by this TU. In this case the first top
9389 level sibling is there to provide context only. */
9390
9391 static void
9392 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9393 {
9394 struct die_info *child_die;
9395
9396 prepare_one_comp_unit (cu, die, language_minimal);
9397
9398 /* Initialize (or reinitialize) the machinery for building symtabs.
9399 We do this before processing child DIEs, so that the line header table
9400 is available for DW_AT_decl_file. */
9401 setup_type_unit_groups (die, cu);
9402
9403 if (die->child != NULL)
9404 {
9405 child_die = die->child;
9406 while (child_die && child_die->tag)
9407 {
9408 process_die (child_die, cu);
9409 child_die = sibling_die (child_die);
9410 }
9411 }
9412 }
9413 \f
9414 /* DWO/DWP files.
9415
9416 http://gcc.gnu.org/wiki/DebugFission
9417 http://gcc.gnu.org/wiki/DebugFissionDWP
9418
9419 To simplify handling of both DWO files ("object" files with the DWARF info)
9420 and DWP files (a file with the DWOs packaged up into one file), we treat
9421 DWP files as having a collection of virtual DWO files. */
9422
9423 static hashval_t
9424 hash_dwo_file (const void *item)
9425 {
9426 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
9427 hashval_t hash;
9428
9429 hash = htab_hash_string (dwo_file->dwo_name);
9430 if (dwo_file->comp_dir != NULL)
9431 hash += htab_hash_string (dwo_file->comp_dir);
9432 return hash;
9433 }
9434
9435 static int
9436 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9437 {
9438 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
9439 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
9440
9441 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9442 return 0;
9443 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9444 return lhs->comp_dir == rhs->comp_dir;
9445 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9446 }
9447
9448 /* Allocate a hash table for DWO files. */
9449
9450 static htab_t
9451 allocate_dwo_file_hash_table (void)
9452 {
9453 struct objfile *objfile = dwarf2_per_objfile->objfile;
9454
9455 return htab_create_alloc_ex (41,
9456 hash_dwo_file,
9457 eq_dwo_file,
9458 NULL,
9459 &objfile->objfile_obstack,
9460 hashtab_obstack_allocate,
9461 dummy_obstack_deallocate);
9462 }
9463
9464 /* Lookup DWO file DWO_NAME. */
9465
9466 static void **
9467 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9468 {
9469 struct dwo_file find_entry;
9470 void **slot;
9471
9472 if (dwarf2_per_objfile->dwo_files == NULL)
9473 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9474
9475 memset (&find_entry, 0, sizeof (find_entry));
9476 find_entry.dwo_name = dwo_name;
9477 find_entry.comp_dir = comp_dir;
9478 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9479
9480 return slot;
9481 }
9482
9483 static hashval_t
9484 hash_dwo_unit (const void *item)
9485 {
9486 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
9487
9488 /* This drops the top 32 bits of the id, but is ok for a hash. */
9489 return dwo_unit->signature;
9490 }
9491
9492 static int
9493 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9494 {
9495 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
9496 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
9497
9498 /* The signature is assumed to be unique within the DWO file.
9499 So while object file CU dwo_id's always have the value zero,
9500 that's OK, assuming each object file DWO file has only one CU,
9501 and that's the rule for now. */
9502 return lhs->signature == rhs->signature;
9503 }
9504
9505 /* Allocate a hash table for DWO CUs,TUs.
9506 There is one of these tables for each of CUs,TUs for each DWO file. */
9507
9508 static htab_t
9509 allocate_dwo_unit_table (struct objfile *objfile)
9510 {
9511 /* Start out with a pretty small number.
9512 Generally DWO files contain only one CU and maybe some TUs. */
9513 return htab_create_alloc_ex (3,
9514 hash_dwo_unit,
9515 eq_dwo_unit,
9516 NULL,
9517 &objfile->objfile_obstack,
9518 hashtab_obstack_allocate,
9519 dummy_obstack_deallocate);
9520 }
9521
9522 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9523
9524 struct create_dwo_cu_data
9525 {
9526 struct dwo_file *dwo_file;
9527 struct dwo_unit dwo_unit;
9528 };
9529
9530 /* die_reader_func for create_dwo_cu. */
9531
9532 static void
9533 create_dwo_cu_reader (const struct die_reader_specs *reader,
9534 const gdb_byte *info_ptr,
9535 struct die_info *comp_unit_die,
9536 int has_children,
9537 void *datap)
9538 {
9539 struct dwarf2_cu *cu = reader->cu;
9540 sect_offset offset = cu->per_cu->offset;
9541 struct dwarf2_section_info *section = cu->per_cu->section;
9542 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
9543 struct dwo_file *dwo_file = data->dwo_file;
9544 struct dwo_unit *dwo_unit = &data->dwo_unit;
9545 struct attribute *attr;
9546
9547 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9548 if (attr == NULL)
9549 {
9550 complaint (&symfile_complaints,
9551 _("Dwarf Error: debug entry at offset 0x%x is missing"
9552 " its dwo_id [in module %s]"),
9553 offset.sect_off, dwo_file->dwo_name);
9554 return;
9555 }
9556
9557 dwo_unit->dwo_file = dwo_file;
9558 dwo_unit->signature = DW_UNSND (attr);
9559 dwo_unit->section = section;
9560 dwo_unit->offset = offset;
9561 dwo_unit->length = cu->per_cu->length;
9562
9563 if (dwarf_read_debug)
9564 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9565 offset.sect_off, hex_string (dwo_unit->signature));
9566 }
9567
9568 /* Create the dwo_unit for the lone CU in DWO_FILE.
9569 Note: This function processes DWO files only, not DWP files. */
9570
9571 static struct dwo_unit *
9572 create_dwo_cu (struct dwo_file *dwo_file)
9573 {
9574 struct objfile *objfile = dwarf2_per_objfile->objfile;
9575 struct dwarf2_section_info *section = &dwo_file->sections.info;
9576 const gdb_byte *info_ptr, *end_ptr;
9577 struct create_dwo_cu_data create_dwo_cu_data;
9578 struct dwo_unit *dwo_unit;
9579
9580 dwarf2_read_section (objfile, section);
9581 info_ptr = section->buffer;
9582
9583 if (info_ptr == NULL)
9584 return NULL;
9585
9586 if (dwarf_read_debug)
9587 {
9588 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9589 get_section_name (section),
9590 get_section_file_name (section));
9591 }
9592
9593 create_dwo_cu_data.dwo_file = dwo_file;
9594 dwo_unit = NULL;
9595
9596 end_ptr = info_ptr + section->size;
9597 while (info_ptr < end_ptr)
9598 {
9599 struct dwarf2_per_cu_data per_cu;
9600
9601 memset (&create_dwo_cu_data.dwo_unit, 0,
9602 sizeof (create_dwo_cu_data.dwo_unit));
9603 memset (&per_cu, 0, sizeof (per_cu));
9604 per_cu.objfile = objfile;
9605 per_cu.is_debug_types = 0;
9606 per_cu.offset.sect_off = info_ptr - section->buffer;
9607 per_cu.section = section;
9608
9609 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9610 create_dwo_cu_reader,
9611 &create_dwo_cu_data);
9612
9613 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9614 {
9615 /* If we've already found one, complain. We only support one
9616 because having more than one requires hacking the dwo_name of
9617 each to match, which is highly unlikely to happen. */
9618 if (dwo_unit != NULL)
9619 {
9620 complaint (&symfile_complaints,
9621 _("Multiple CUs in DWO file %s [in module %s]"),
9622 dwo_file->dwo_name, objfile_name (objfile));
9623 break;
9624 }
9625
9626 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9627 *dwo_unit = create_dwo_cu_data.dwo_unit;
9628 }
9629
9630 info_ptr += per_cu.length;
9631 }
9632
9633 return dwo_unit;
9634 }
9635
9636 /* DWP file .debug_{cu,tu}_index section format:
9637 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9638
9639 DWP Version 1:
9640
9641 Both index sections have the same format, and serve to map a 64-bit
9642 signature to a set of section numbers. Each section begins with a header,
9643 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9644 indexes, and a pool of 32-bit section numbers. The index sections will be
9645 aligned at 8-byte boundaries in the file.
9646
9647 The index section header consists of:
9648
9649 V, 32 bit version number
9650 -, 32 bits unused
9651 N, 32 bit number of compilation units or type units in the index
9652 M, 32 bit number of slots in the hash table
9653
9654 Numbers are recorded using the byte order of the application binary.
9655
9656 The hash table begins at offset 16 in the section, and consists of an array
9657 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9658 order of the application binary). Unused slots in the hash table are 0.
9659 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9660
9661 The parallel table begins immediately after the hash table
9662 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9663 array of 32-bit indexes (using the byte order of the application binary),
9664 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9665 table contains a 32-bit index into the pool of section numbers. For unused
9666 hash table slots, the corresponding entry in the parallel table will be 0.
9667
9668 The pool of section numbers begins immediately following the hash table
9669 (at offset 16 + 12 * M from the beginning of the section). The pool of
9670 section numbers consists of an array of 32-bit words (using the byte order
9671 of the application binary). Each item in the array is indexed starting
9672 from 0. The hash table entry provides the index of the first section
9673 number in the set. Additional section numbers in the set follow, and the
9674 set is terminated by a 0 entry (section number 0 is not used in ELF).
9675
9676 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9677 section must be the first entry in the set, and the .debug_abbrev.dwo must
9678 be the second entry. Other members of the set may follow in any order.
9679
9680 ---
9681
9682 DWP Version 2:
9683
9684 DWP Version 2 combines all the .debug_info, etc. sections into one,
9685 and the entries in the index tables are now offsets into these sections.
9686 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9687 section.
9688
9689 Index Section Contents:
9690 Header
9691 Hash Table of Signatures dwp_hash_table.hash_table
9692 Parallel Table of Indices dwp_hash_table.unit_table
9693 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9694 Table of Section Sizes dwp_hash_table.v2.sizes
9695
9696 The index section header consists of:
9697
9698 V, 32 bit version number
9699 L, 32 bit number of columns in the table of section offsets
9700 N, 32 bit number of compilation units or type units in the index
9701 M, 32 bit number of slots in the hash table
9702
9703 Numbers are recorded using the byte order of the application binary.
9704
9705 The hash table has the same format as version 1.
9706 The parallel table of indices has the same format as version 1,
9707 except that the entries are origin-1 indices into the table of sections
9708 offsets and the table of section sizes.
9709
9710 The table of offsets begins immediately following the parallel table
9711 (at offset 16 + 12 * M from the beginning of the section). The table is
9712 a two-dimensional array of 32-bit words (using the byte order of the
9713 application binary), with L columns and N+1 rows, in row-major order.
9714 Each row in the array is indexed starting from 0. The first row provides
9715 a key to the remaining rows: each column in this row provides an identifier
9716 for a debug section, and the offsets in the same column of subsequent rows
9717 refer to that section. The section identifiers are:
9718
9719 DW_SECT_INFO 1 .debug_info.dwo
9720 DW_SECT_TYPES 2 .debug_types.dwo
9721 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9722 DW_SECT_LINE 4 .debug_line.dwo
9723 DW_SECT_LOC 5 .debug_loc.dwo
9724 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9725 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9726 DW_SECT_MACRO 8 .debug_macro.dwo
9727
9728 The offsets provided by the CU and TU index sections are the base offsets
9729 for the contributions made by each CU or TU to the corresponding section
9730 in the package file. Each CU and TU header contains an abbrev_offset
9731 field, used to find the abbreviations table for that CU or TU within the
9732 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9733 be interpreted as relative to the base offset given in the index section.
9734 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9735 should be interpreted as relative to the base offset for .debug_line.dwo,
9736 and offsets into other debug sections obtained from DWARF attributes should
9737 also be interpreted as relative to the corresponding base offset.
9738
9739 The table of sizes begins immediately following the table of offsets.
9740 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9741 with L columns and N rows, in row-major order. Each row in the array is
9742 indexed starting from 1 (row 0 is shared by the two tables).
9743
9744 ---
9745
9746 Hash table lookup is handled the same in version 1 and 2:
9747
9748 We assume that N and M will not exceed 2^32 - 1.
9749 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9750
9751 Given a 64-bit compilation unit signature or a type signature S, an entry
9752 in the hash table is located as follows:
9753
9754 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9755 the low-order k bits all set to 1.
9756
9757 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9758
9759 3) If the hash table entry at index H matches the signature, use that
9760 entry. If the hash table entry at index H is unused (all zeroes),
9761 terminate the search: the signature is not present in the table.
9762
9763 4) Let H = (H + H') modulo M. Repeat at Step 3.
9764
9765 Because M > N and H' and M are relatively prime, the search is guaranteed
9766 to stop at an unused slot or find the match. */
9767
9768 /* Create a hash table to map DWO IDs to their CU/TU entry in
9769 .debug_{info,types}.dwo in DWP_FILE.
9770 Returns NULL if there isn't one.
9771 Note: This function processes DWP files only, not DWO files. */
9772
9773 static struct dwp_hash_table *
9774 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9775 {
9776 struct objfile *objfile = dwarf2_per_objfile->objfile;
9777 bfd *dbfd = dwp_file->dbfd;
9778 const gdb_byte *index_ptr, *index_end;
9779 struct dwarf2_section_info *index;
9780 uint32_t version, nr_columns, nr_units, nr_slots;
9781 struct dwp_hash_table *htab;
9782
9783 if (is_debug_types)
9784 index = &dwp_file->sections.tu_index;
9785 else
9786 index = &dwp_file->sections.cu_index;
9787
9788 if (dwarf2_section_empty_p (index))
9789 return NULL;
9790 dwarf2_read_section (objfile, index);
9791
9792 index_ptr = index->buffer;
9793 index_end = index_ptr + index->size;
9794
9795 version = read_4_bytes (dbfd, index_ptr);
9796 index_ptr += 4;
9797 if (version == 2)
9798 nr_columns = read_4_bytes (dbfd, index_ptr);
9799 else
9800 nr_columns = 0;
9801 index_ptr += 4;
9802 nr_units = read_4_bytes (dbfd, index_ptr);
9803 index_ptr += 4;
9804 nr_slots = read_4_bytes (dbfd, index_ptr);
9805 index_ptr += 4;
9806
9807 if (version != 1 && version != 2)
9808 {
9809 error (_("Dwarf Error: unsupported DWP file version (%s)"
9810 " [in module %s]"),
9811 pulongest (version), dwp_file->name);
9812 }
9813 if (nr_slots != (nr_slots & -nr_slots))
9814 {
9815 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9816 " is not power of 2 [in module %s]"),
9817 pulongest (nr_slots), dwp_file->name);
9818 }
9819
9820 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9821 htab->version = version;
9822 htab->nr_columns = nr_columns;
9823 htab->nr_units = nr_units;
9824 htab->nr_slots = nr_slots;
9825 htab->hash_table = index_ptr;
9826 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9827
9828 /* Exit early if the table is empty. */
9829 if (nr_slots == 0 || nr_units == 0
9830 || (version == 2 && nr_columns == 0))
9831 {
9832 /* All must be zero. */
9833 if (nr_slots != 0 || nr_units != 0
9834 || (version == 2 && nr_columns != 0))
9835 {
9836 complaint (&symfile_complaints,
9837 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9838 " all zero [in modules %s]"),
9839 dwp_file->name);
9840 }
9841 return htab;
9842 }
9843
9844 if (version == 1)
9845 {
9846 htab->section_pool.v1.indices =
9847 htab->unit_table + sizeof (uint32_t) * nr_slots;
9848 /* It's harder to decide whether the section is too small in v1.
9849 V1 is deprecated anyway so we punt. */
9850 }
9851 else
9852 {
9853 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9854 int *ids = htab->section_pool.v2.section_ids;
9855 /* Reverse map for error checking. */
9856 int ids_seen[DW_SECT_MAX + 1];
9857 int i;
9858
9859 if (nr_columns < 2)
9860 {
9861 error (_("Dwarf Error: bad DWP hash table, too few columns"
9862 " in section table [in module %s]"),
9863 dwp_file->name);
9864 }
9865 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9866 {
9867 error (_("Dwarf Error: bad DWP hash table, too many columns"
9868 " in section table [in module %s]"),
9869 dwp_file->name);
9870 }
9871 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9872 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9873 for (i = 0; i < nr_columns; ++i)
9874 {
9875 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9876
9877 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9878 {
9879 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9880 " in section table [in module %s]"),
9881 id, dwp_file->name);
9882 }
9883 if (ids_seen[id] != -1)
9884 {
9885 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9886 " id %d in section table [in module %s]"),
9887 id, dwp_file->name);
9888 }
9889 ids_seen[id] = i;
9890 ids[i] = id;
9891 }
9892 /* Must have exactly one info or types section. */
9893 if (((ids_seen[DW_SECT_INFO] != -1)
9894 + (ids_seen[DW_SECT_TYPES] != -1))
9895 != 1)
9896 {
9897 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9898 " DWO info/types section [in module %s]"),
9899 dwp_file->name);
9900 }
9901 /* Must have an abbrev section. */
9902 if (ids_seen[DW_SECT_ABBREV] == -1)
9903 {
9904 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9905 " section [in module %s]"),
9906 dwp_file->name);
9907 }
9908 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9909 htab->section_pool.v2.sizes =
9910 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9911 * nr_units * nr_columns);
9912 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9913 * nr_units * nr_columns))
9914 > index_end)
9915 {
9916 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9917 " [in module %s]"),
9918 dwp_file->name);
9919 }
9920 }
9921
9922 return htab;
9923 }
9924
9925 /* Update SECTIONS with the data from SECTP.
9926
9927 This function is like the other "locate" section routines that are
9928 passed to bfd_map_over_sections, but in this context the sections to
9929 read comes from the DWP V1 hash table, not the full ELF section table.
9930
9931 The result is non-zero for success, or zero if an error was found. */
9932
9933 static int
9934 locate_v1_virtual_dwo_sections (asection *sectp,
9935 struct virtual_v1_dwo_sections *sections)
9936 {
9937 const struct dwop_section_names *names = &dwop_section_names;
9938
9939 if (section_is_p (sectp->name, &names->abbrev_dwo))
9940 {
9941 /* There can be only one. */
9942 if (sections->abbrev.s.section != NULL)
9943 return 0;
9944 sections->abbrev.s.section = sectp;
9945 sections->abbrev.size = bfd_get_section_size (sectp);
9946 }
9947 else if (section_is_p (sectp->name, &names->info_dwo)
9948 || section_is_p (sectp->name, &names->types_dwo))
9949 {
9950 /* There can be only one. */
9951 if (sections->info_or_types.s.section != NULL)
9952 return 0;
9953 sections->info_or_types.s.section = sectp;
9954 sections->info_or_types.size = bfd_get_section_size (sectp);
9955 }
9956 else if (section_is_p (sectp->name, &names->line_dwo))
9957 {
9958 /* There can be only one. */
9959 if (sections->line.s.section != NULL)
9960 return 0;
9961 sections->line.s.section = sectp;
9962 sections->line.size = bfd_get_section_size (sectp);
9963 }
9964 else if (section_is_p (sectp->name, &names->loc_dwo))
9965 {
9966 /* There can be only one. */
9967 if (sections->loc.s.section != NULL)
9968 return 0;
9969 sections->loc.s.section = sectp;
9970 sections->loc.size = bfd_get_section_size (sectp);
9971 }
9972 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9973 {
9974 /* There can be only one. */
9975 if (sections->macinfo.s.section != NULL)
9976 return 0;
9977 sections->macinfo.s.section = sectp;
9978 sections->macinfo.size = bfd_get_section_size (sectp);
9979 }
9980 else if (section_is_p (sectp->name, &names->macro_dwo))
9981 {
9982 /* There can be only one. */
9983 if (sections->macro.s.section != NULL)
9984 return 0;
9985 sections->macro.s.section = sectp;
9986 sections->macro.size = bfd_get_section_size (sectp);
9987 }
9988 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9989 {
9990 /* There can be only one. */
9991 if (sections->str_offsets.s.section != NULL)
9992 return 0;
9993 sections->str_offsets.s.section = sectp;
9994 sections->str_offsets.size = bfd_get_section_size (sectp);
9995 }
9996 else
9997 {
9998 /* No other kind of section is valid. */
9999 return 0;
10000 }
10001
10002 return 1;
10003 }
10004
10005 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10006 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10007 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10008 This is for DWP version 1 files. */
10009
10010 static struct dwo_unit *
10011 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10012 uint32_t unit_index,
10013 const char *comp_dir,
10014 ULONGEST signature, int is_debug_types)
10015 {
10016 struct objfile *objfile = dwarf2_per_objfile->objfile;
10017 const struct dwp_hash_table *dwp_htab =
10018 is_debug_types ? dwp_file->tus : dwp_file->cus;
10019 bfd *dbfd = dwp_file->dbfd;
10020 const char *kind = is_debug_types ? "TU" : "CU";
10021 struct dwo_file *dwo_file;
10022 struct dwo_unit *dwo_unit;
10023 struct virtual_v1_dwo_sections sections;
10024 void **dwo_file_slot;
10025 char *virtual_dwo_name;
10026 struct cleanup *cleanups;
10027 int i;
10028
10029 gdb_assert (dwp_file->version == 1);
10030
10031 if (dwarf_read_debug)
10032 {
10033 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
10034 kind,
10035 pulongest (unit_index), hex_string (signature),
10036 dwp_file->name);
10037 }
10038
10039 /* Fetch the sections of this DWO unit.
10040 Put a limit on the number of sections we look for so that bad data
10041 doesn't cause us to loop forever. */
10042
10043 #define MAX_NR_V1_DWO_SECTIONS \
10044 (1 /* .debug_info or .debug_types */ \
10045 + 1 /* .debug_abbrev */ \
10046 + 1 /* .debug_line */ \
10047 + 1 /* .debug_loc */ \
10048 + 1 /* .debug_str_offsets */ \
10049 + 1 /* .debug_macro or .debug_macinfo */ \
10050 + 1 /* trailing zero */)
10051
10052 memset (&sections, 0, sizeof (sections));
10053 cleanups = make_cleanup (null_cleanup, 0);
10054
10055 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
10056 {
10057 asection *sectp;
10058 uint32_t section_nr =
10059 read_4_bytes (dbfd,
10060 dwp_htab->section_pool.v1.indices
10061 + (unit_index + i) * sizeof (uint32_t));
10062
10063 if (section_nr == 0)
10064 break;
10065 if (section_nr >= dwp_file->num_sections)
10066 {
10067 error (_("Dwarf Error: bad DWP hash table, section number too large"
10068 " [in module %s]"),
10069 dwp_file->name);
10070 }
10071
10072 sectp = dwp_file->elf_sections[section_nr];
10073 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
10074 {
10075 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10076 " [in module %s]"),
10077 dwp_file->name);
10078 }
10079 }
10080
10081 if (i < 2
10082 || dwarf2_section_empty_p (&sections.info_or_types)
10083 || dwarf2_section_empty_p (&sections.abbrev))
10084 {
10085 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10086 " [in module %s]"),
10087 dwp_file->name);
10088 }
10089 if (i == MAX_NR_V1_DWO_SECTIONS)
10090 {
10091 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10092 " [in module %s]"),
10093 dwp_file->name);
10094 }
10095
10096 /* It's easier for the rest of the code if we fake a struct dwo_file and
10097 have dwo_unit "live" in that. At least for now.
10098
10099 The DWP file can be made up of a random collection of CUs and TUs.
10100 However, for each CU + set of TUs that came from the same original DWO
10101 file, we can combine them back into a virtual DWO file to save space
10102 (fewer struct dwo_file objects to allocate). Remember that for really
10103 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10104
10105 virtual_dwo_name =
10106 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
10107 get_section_id (&sections.abbrev),
10108 get_section_id (&sections.line),
10109 get_section_id (&sections.loc),
10110 get_section_id (&sections.str_offsets));
10111 make_cleanup (xfree, virtual_dwo_name);
10112 /* Can we use an existing virtual DWO file? */
10113 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10114 /* Create one if necessary. */
10115 if (*dwo_file_slot == NULL)
10116 {
10117 if (dwarf_read_debug)
10118 {
10119 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10120 virtual_dwo_name);
10121 }
10122 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10123 dwo_file->dwo_name
10124 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10125 virtual_dwo_name,
10126 strlen (virtual_dwo_name));
10127 dwo_file->comp_dir = comp_dir;
10128 dwo_file->sections.abbrev = sections.abbrev;
10129 dwo_file->sections.line = sections.line;
10130 dwo_file->sections.loc = sections.loc;
10131 dwo_file->sections.macinfo = sections.macinfo;
10132 dwo_file->sections.macro = sections.macro;
10133 dwo_file->sections.str_offsets = sections.str_offsets;
10134 /* The "str" section is global to the entire DWP file. */
10135 dwo_file->sections.str = dwp_file->sections.str;
10136 /* The info or types section is assigned below to dwo_unit,
10137 there's no need to record it in dwo_file.
10138 Also, we can't simply record type sections in dwo_file because
10139 we record a pointer into the vector in dwo_unit. As we collect more
10140 types we'll grow the vector and eventually have to reallocate space
10141 for it, invalidating all copies of pointers into the previous
10142 contents. */
10143 *dwo_file_slot = dwo_file;
10144 }
10145 else
10146 {
10147 if (dwarf_read_debug)
10148 {
10149 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10150 virtual_dwo_name);
10151 }
10152 dwo_file = (struct dwo_file *) *dwo_file_slot;
10153 }
10154 do_cleanups (cleanups);
10155
10156 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10157 dwo_unit->dwo_file = dwo_file;
10158 dwo_unit->signature = signature;
10159 dwo_unit->section =
10160 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10161 *dwo_unit->section = sections.info_or_types;
10162 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10163
10164 return dwo_unit;
10165 }
10166
10167 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10168 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10169 piece within that section used by a TU/CU, return a virtual section
10170 of just that piece. */
10171
10172 static struct dwarf2_section_info
10173 create_dwp_v2_section (struct dwarf2_section_info *section,
10174 bfd_size_type offset, bfd_size_type size)
10175 {
10176 struct dwarf2_section_info result;
10177 asection *sectp;
10178
10179 gdb_assert (section != NULL);
10180 gdb_assert (!section->is_virtual);
10181
10182 memset (&result, 0, sizeof (result));
10183 result.s.containing_section = section;
10184 result.is_virtual = 1;
10185
10186 if (size == 0)
10187 return result;
10188
10189 sectp = get_section_bfd_section (section);
10190
10191 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10192 bounds of the real section. This is a pretty-rare event, so just
10193 flag an error (easier) instead of a warning and trying to cope. */
10194 if (sectp == NULL
10195 || offset + size > bfd_get_section_size (sectp))
10196 {
10197 bfd *abfd = sectp->owner;
10198
10199 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10200 " in section %s [in module %s]"),
10201 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10202 objfile_name (dwarf2_per_objfile->objfile));
10203 }
10204
10205 result.virtual_offset = offset;
10206 result.size = size;
10207 return result;
10208 }
10209
10210 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10211 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10212 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10213 This is for DWP version 2 files. */
10214
10215 static struct dwo_unit *
10216 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10217 uint32_t unit_index,
10218 const char *comp_dir,
10219 ULONGEST signature, int is_debug_types)
10220 {
10221 struct objfile *objfile = dwarf2_per_objfile->objfile;
10222 const struct dwp_hash_table *dwp_htab =
10223 is_debug_types ? dwp_file->tus : dwp_file->cus;
10224 bfd *dbfd = dwp_file->dbfd;
10225 const char *kind = is_debug_types ? "TU" : "CU";
10226 struct dwo_file *dwo_file;
10227 struct dwo_unit *dwo_unit;
10228 struct virtual_v2_dwo_sections sections;
10229 void **dwo_file_slot;
10230 char *virtual_dwo_name;
10231 struct cleanup *cleanups;
10232 int i;
10233
10234 gdb_assert (dwp_file->version == 2);
10235
10236 if (dwarf_read_debug)
10237 {
10238 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10239 kind,
10240 pulongest (unit_index), hex_string (signature),
10241 dwp_file->name);
10242 }
10243
10244 /* Fetch the section offsets of this DWO unit. */
10245
10246 memset (&sections, 0, sizeof (sections));
10247 cleanups = make_cleanup (null_cleanup, 0);
10248
10249 for (i = 0; i < dwp_htab->nr_columns; ++i)
10250 {
10251 uint32_t offset = read_4_bytes (dbfd,
10252 dwp_htab->section_pool.v2.offsets
10253 + (((unit_index - 1) * dwp_htab->nr_columns
10254 + i)
10255 * sizeof (uint32_t)));
10256 uint32_t size = read_4_bytes (dbfd,
10257 dwp_htab->section_pool.v2.sizes
10258 + (((unit_index - 1) * dwp_htab->nr_columns
10259 + i)
10260 * sizeof (uint32_t)));
10261
10262 switch (dwp_htab->section_pool.v2.section_ids[i])
10263 {
10264 case DW_SECT_INFO:
10265 case DW_SECT_TYPES:
10266 sections.info_or_types_offset = offset;
10267 sections.info_or_types_size = size;
10268 break;
10269 case DW_SECT_ABBREV:
10270 sections.abbrev_offset = offset;
10271 sections.abbrev_size = size;
10272 break;
10273 case DW_SECT_LINE:
10274 sections.line_offset = offset;
10275 sections.line_size = size;
10276 break;
10277 case DW_SECT_LOC:
10278 sections.loc_offset = offset;
10279 sections.loc_size = size;
10280 break;
10281 case DW_SECT_STR_OFFSETS:
10282 sections.str_offsets_offset = offset;
10283 sections.str_offsets_size = size;
10284 break;
10285 case DW_SECT_MACINFO:
10286 sections.macinfo_offset = offset;
10287 sections.macinfo_size = size;
10288 break;
10289 case DW_SECT_MACRO:
10290 sections.macro_offset = offset;
10291 sections.macro_size = size;
10292 break;
10293 }
10294 }
10295
10296 /* It's easier for the rest of the code if we fake a struct dwo_file and
10297 have dwo_unit "live" in that. At least for now.
10298
10299 The DWP file can be made up of a random collection of CUs and TUs.
10300 However, for each CU + set of TUs that came from the same original DWO
10301 file, we can combine them back into a virtual DWO file to save space
10302 (fewer struct dwo_file objects to allocate). Remember that for really
10303 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10304
10305 virtual_dwo_name =
10306 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10307 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10308 (long) (sections.line_size ? sections.line_offset : 0),
10309 (long) (sections.loc_size ? sections.loc_offset : 0),
10310 (long) (sections.str_offsets_size
10311 ? sections.str_offsets_offset : 0));
10312 make_cleanup (xfree, virtual_dwo_name);
10313 /* Can we use an existing virtual DWO file? */
10314 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10315 /* Create one if necessary. */
10316 if (*dwo_file_slot == NULL)
10317 {
10318 if (dwarf_read_debug)
10319 {
10320 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10321 virtual_dwo_name);
10322 }
10323 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10324 dwo_file->dwo_name
10325 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10326 virtual_dwo_name,
10327 strlen (virtual_dwo_name));
10328 dwo_file->comp_dir = comp_dir;
10329 dwo_file->sections.abbrev =
10330 create_dwp_v2_section (&dwp_file->sections.abbrev,
10331 sections.abbrev_offset, sections.abbrev_size);
10332 dwo_file->sections.line =
10333 create_dwp_v2_section (&dwp_file->sections.line,
10334 sections.line_offset, sections.line_size);
10335 dwo_file->sections.loc =
10336 create_dwp_v2_section (&dwp_file->sections.loc,
10337 sections.loc_offset, sections.loc_size);
10338 dwo_file->sections.macinfo =
10339 create_dwp_v2_section (&dwp_file->sections.macinfo,
10340 sections.macinfo_offset, sections.macinfo_size);
10341 dwo_file->sections.macro =
10342 create_dwp_v2_section (&dwp_file->sections.macro,
10343 sections.macro_offset, sections.macro_size);
10344 dwo_file->sections.str_offsets =
10345 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10346 sections.str_offsets_offset,
10347 sections.str_offsets_size);
10348 /* The "str" section is global to the entire DWP file. */
10349 dwo_file->sections.str = dwp_file->sections.str;
10350 /* The info or types section is assigned below to dwo_unit,
10351 there's no need to record it in dwo_file.
10352 Also, we can't simply record type sections in dwo_file because
10353 we record a pointer into the vector in dwo_unit. As we collect more
10354 types we'll grow the vector and eventually have to reallocate space
10355 for it, invalidating all copies of pointers into the previous
10356 contents. */
10357 *dwo_file_slot = dwo_file;
10358 }
10359 else
10360 {
10361 if (dwarf_read_debug)
10362 {
10363 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10364 virtual_dwo_name);
10365 }
10366 dwo_file = (struct dwo_file *) *dwo_file_slot;
10367 }
10368 do_cleanups (cleanups);
10369
10370 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10371 dwo_unit->dwo_file = dwo_file;
10372 dwo_unit->signature = signature;
10373 dwo_unit->section =
10374 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10375 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10376 ? &dwp_file->sections.types
10377 : &dwp_file->sections.info,
10378 sections.info_or_types_offset,
10379 sections.info_or_types_size);
10380 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10381
10382 return dwo_unit;
10383 }
10384
10385 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10386 Returns NULL if the signature isn't found. */
10387
10388 static struct dwo_unit *
10389 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10390 ULONGEST signature, int is_debug_types)
10391 {
10392 const struct dwp_hash_table *dwp_htab =
10393 is_debug_types ? dwp_file->tus : dwp_file->cus;
10394 bfd *dbfd = dwp_file->dbfd;
10395 uint32_t mask = dwp_htab->nr_slots - 1;
10396 uint32_t hash = signature & mask;
10397 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10398 unsigned int i;
10399 void **slot;
10400 struct dwo_unit find_dwo_cu;
10401
10402 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10403 find_dwo_cu.signature = signature;
10404 slot = htab_find_slot (is_debug_types
10405 ? dwp_file->loaded_tus
10406 : dwp_file->loaded_cus,
10407 &find_dwo_cu, INSERT);
10408
10409 if (*slot != NULL)
10410 return (struct dwo_unit *) *slot;
10411
10412 /* Use a for loop so that we don't loop forever on bad debug info. */
10413 for (i = 0; i < dwp_htab->nr_slots; ++i)
10414 {
10415 ULONGEST signature_in_table;
10416
10417 signature_in_table =
10418 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10419 if (signature_in_table == signature)
10420 {
10421 uint32_t unit_index =
10422 read_4_bytes (dbfd,
10423 dwp_htab->unit_table + hash * sizeof (uint32_t));
10424
10425 if (dwp_file->version == 1)
10426 {
10427 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10428 comp_dir, signature,
10429 is_debug_types);
10430 }
10431 else
10432 {
10433 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10434 comp_dir, signature,
10435 is_debug_types);
10436 }
10437 return (struct dwo_unit *) *slot;
10438 }
10439 if (signature_in_table == 0)
10440 return NULL;
10441 hash = (hash + hash2) & mask;
10442 }
10443
10444 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10445 " [in module %s]"),
10446 dwp_file->name);
10447 }
10448
10449 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10450 Open the file specified by FILE_NAME and hand it off to BFD for
10451 preliminary analysis. Return a newly initialized bfd *, which
10452 includes a canonicalized copy of FILE_NAME.
10453 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10454 SEARCH_CWD is true if the current directory is to be searched.
10455 It will be searched before debug-file-directory.
10456 If successful, the file is added to the bfd include table of the
10457 objfile's bfd (see gdb_bfd_record_inclusion).
10458 If unable to find/open the file, return NULL.
10459 NOTE: This function is derived from symfile_bfd_open. */
10460
10461 static bfd *
10462 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10463 {
10464 bfd *sym_bfd;
10465 int desc, flags;
10466 char *absolute_name;
10467 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10468 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10469 to debug_file_directory. */
10470 char *search_path;
10471 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10472
10473 if (search_cwd)
10474 {
10475 if (*debug_file_directory != '\0')
10476 search_path = concat (".", dirname_separator_string,
10477 debug_file_directory, (char *) NULL);
10478 else
10479 search_path = xstrdup (".");
10480 }
10481 else
10482 search_path = xstrdup (debug_file_directory);
10483
10484 flags = OPF_RETURN_REALPATH;
10485 if (is_dwp)
10486 flags |= OPF_SEARCH_IN_PATH;
10487 desc = openp (search_path, flags, file_name,
10488 O_RDONLY | O_BINARY, &absolute_name);
10489 xfree (search_path);
10490 if (desc < 0)
10491 return NULL;
10492
10493 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10494 xfree (absolute_name);
10495 if (sym_bfd == NULL)
10496 return NULL;
10497 bfd_set_cacheable (sym_bfd, 1);
10498
10499 if (!bfd_check_format (sym_bfd, bfd_object))
10500 {
10501 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10502 return NULL;
10503 }
10504
10505 /* Success. Record the bfd as having been included by the objfile's bfd.
10506 This is important because things like demangled_names_hash lives in the
10507 objfile's per_bfd space and may have references to things like symbol
10508 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10509 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10510
10511 return sym_bfd;
10512 }
10513
10514 /* Try to open DWO file FILE_NAME.
10515 COMP_DIR is the DW_AT_comp_dir attribute.
10516 The result is the bfd handle of the file.
10517 If there is a problem finding or opening the file, return NULL.
10518 Upon success, the canonicalized path of the file is stored in the bfd,
10519 same as symfile_bfd_open. */
10520
10521 static bfd *
10522 open_dwo_file (const char *file_name, const char *comp_dir)
10523 {
10524 bfd *abfd;
10525
10526 if (IS_ABSOLUTE_PATH (file_name))
10527 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10528
10529 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10530
10531 if (comp_dir != NULL)
10532 {
10533 char *path_to_try = concat (comp_dir, SLASH_STRING,
10534 file_name, (char *) NULL);
10535
10536 /* NOTE: If comp_dir is a relative path, this will also try the
10537 search path, which seems useful. */
10538 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10539 xfree (path_to_try);
10540 if (abfd != NULL)
10541 return abfd;
10542 }
10543
10544 /* That didn't work, try debug-file-directory, which, despite its name,
10545 is a list of paths. */
10546
10547 if (*debug_file_directory == '\0')
10548 return NULL;
10549
10550 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10551 }
10552
10553 /* This function is mapped across the sections and remembers the offset and
10554 size of each of the DWO debugging sections we are interested in. */
10555
10556 static void
10557 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10558 {
10559 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
10560 const struct dwop_section_names *names = &dwop_section_names;
10561
10562 if (section_is_p (sectp->name, &names->abbrev_dwo))
10563 {
10564 dwo_sections->abbrev.s.section = sectp;
10565 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10566 }
10567 else if (section_is_p (sectp->name, &names->info_dwo))
10568 {
10569 dwo_sections->info.s.section = sectp;
10570 dwo_sections->info.size = bfd_get_section_size (sectp);
10571 }
10572 else if (section_is_p (sectp->name, &names->line_dwo))
10573 {
10574 dwo_sections->line.s.section = sectp;
10575 dwo_sections->line.size = bfd_get_section_size (sectp);
10576 }
10577 else if (section_is_p (sectp->name, &names->loc_dwo))
10578 {
10579 dwo_sections->loc.s.section = sectp;
10580 dwo_sections->loc.size = bfd_get_section_size (sectp);
10581 }
10582 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10583 {
10584 dwo_sections->macinfo.s.section = sectp;
10585 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10586 }
10587 else if (section_is_p (sectp->name, &names->macro_dwo))
10588 {
10589 dwo_sections->macro.s.section = sectp;
10590 dwo_sections->macro.size = bfd_get_section_size (sectp);
10591 }
10592 else if (section_is_p (sectp->name, &names->str_dwo))
10593 {
10594 dwo_sections->str.s.section = sectp;
10595 dwo_sections->str.size = bfd_get_section_size (sectp);
10596 }
10597 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10598 {
10599 dwo_sections->str_offsets.s.section = sectp;
10600 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10601 }
10602 else if (section_is_p (sectp->name, &names->types_dwo))
10603 {
10604 struct dwarf2_section_info type_section;
10605
10606 memset (&type_section, 0, sizeof (type_section));
10607 type_section.s.section = sectp;
10608 type_section.size = bfd_get_section_size (sectp);
10609 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10610 &type_section);
10611 }
10612 }
10613
10614 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10615 by PER_CU. This is for the non-DWP case.
10616 The result is NULL if DWO_NAME can't be found. */
10617
10618 static struct dwo_file *
10619 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10620 const char *dwo_name, const char *comp_dir)
10621 {
10622 struct objfile *objfile = dwarf2_per_objfile->objfile;
10623 struct dwo_file *dwo_file;
10624 bfd *dbfd;
10625 struct cleanup *cleanups;
10626
10627 dbfd = open_dwo_file (dwo_name, comp_dir);
10628 if (dbfd == NULL)
10629 {
10630 if (dwarf_read_debug)
10631 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10632 return NULL;
10633 }
10634 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10635 dwo_file->dwo_name = dwo_name;
10636 dwo_file->comp_dir = comp_dir;
10637 dwo_file->dbfd = dbfd;
10638
10639 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10640
10641 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10642
10643 dwo_file->cu = create_dwo_cu (dwo_file);
10644
10645 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10646 dwo_file->sections.types);
10647
10648 discard_cleanups (cleanups);
10649
10650 if (dwarf_read_debug)
10651 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10652
10653 return dwo_file;
10654 }
10655
10656 /* This function is mapped across the sections and remembers the offset and
10657 size of each of the DWP debugging sections common to version 1 and 2 that
10658 we are interested in. */
10659
10660 static void
10661 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10662 void *dwp_file_ptr)
10663 {
10664 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10665 const struct dwop_section_names *names = &dwop_section_names;
10666 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10667
10668 /* Record the ELF section number for later lookup: this is what the
10669 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10670 gdb_assert (elf_section_nr < dwp_file->num_sections);
10671 dwp_file->elf_sections[elf_section_nr] = sectp;
10672
10673 /* Look for specific sections that we need. */
10674 if (section_is_p (sectp->name, &names->str_dwo))
10675 {
10676 dwp_file->sections.str.s.section = sectp;
10677 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10678 }
10679 else if (section_is_p (sectp->name, &names->cu_index))
10680 {
10681 dwp_file->sections.cu_index.s.section = sectp;
10682 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10683 }
10684 else if (section_is_p (sectp->name, &names->tu_index))
10685 {
10686 dwp_file->sections.tu_index.s.section = sectp;
10687 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10688 }
10689 }
10690
10691 /* This function is mapped across the sections and remembers the offset and
10692 size of each of the DWP version 2 debugging sections that we are interested
10693 in. This is split into a separate function because we don't know if we
10694 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10695
10696 static void
10697 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10698 {
10699 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10700 const struct dwop_section_names *names = &dwop_section_names;
10701 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10702
10703 /* Record the ELF section number for later lookup: this is what the
10704 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10705 gdb_assert (elf_section_nr < dwp_file->num_sections);
10706 dwp_file->elf_sections[elf_section_nr] = sectp;
10707
10708 /* Look for specific sections that we need. */
10709 if (section_is_p (sectp->name, &names->abbrev_dwo))
10710 {
10711 dwp_file->sections.abbrev.s.section = sectp;
10712 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10713 }
10714 else if (section_is_p (sectp->name, &names->info_dwo))
10715 {
10716 dwp_file->sections.info.s.section = sectp;
10717 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10718 }
10719 else if (section_is_p (sectp->name, &names->line_dwo))
10720 {
10721 dwp_file->sections.line.s.section = sectp;
10722 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10723 }
10724 else if (section_is_p (sectp->name, &names->loc_dwo))
10725 {
10726 dwp_file->sections.loc.s.section = sectp;
10727 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10728 }
10729 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10730 {
10731 dwp_file->sections.macinfo.s.section = sectp;
10732 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10733 }
10734 else if (section_is_p (sectp->name, &names->macro_dwo))
10735 {
10736 dwp_file->sections.macro.s.section = sectp;
10737 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10738 }
10739 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10740 {
10741 dwp_file->sections.str_offsets.s.section = sectp;
10742 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10743 }
10744 else if (section_is_p (sectp->name, &names->types_dwo))
10745 {
10746 dwp_file->sections.types.s.section = sectp;
10747 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10748 }
10749 }
10750
10751 /* Hash function for dwp_file loaded CUs/TUs. */
10752
10753 static hashval_t
10754 hash_dwp_loaded_cutus (const void *item)
10755 {
10756 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
10757
10758 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10759 return dwo_unit->signature;
10760 }
10761
10762 /* Equality function for dwp_file loaded CUs/TUs. */
10763
10764 static int
10765 eq_dwp_loaded_cutus (const void *a, const void *b)
10766 {
10767 const struct dwo_unit *dua = (const struct dwo_unit *) a;
10768 const struct dwo_unit *dub = (const struct dwo_unit *) b;
10769
10770 return dua->signature == dub->signature;
10771 }
10772
10773 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10774
10775 static htab_t
10776 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10777 {
10778 return htab_create_alloc_ex (3,
10779 hash_dwp_loaded_cutus,
10780 eq_dwp_loaded_cutus,
10781 NULL,
10782 &objfile->objfile_obstack,
10783 hashtab_obstack_allocate,
10784 dummy_obstack_deallocate);
10785 }
10786
10787 /* Try to open DWP file FILE_NAME.
10788 The result is the bfd handle of the file.
10789 If there is a problem finding or opening the file, return NULL.
10790 Upon success, the canonicalized path of the file is stored in the bfd,
10791 same as symfile_bfd_open. */
10792
10793 static bfd *
10794 open_dwp_file (const char *file_name)
10795 {
10796 bfd *abfd;
10797
10798 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10799 if (abfd != NULL)
10800 return abfd;
10801
10802 /* Work around upstream bug 15652.
10803 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10804 [Whether that's a "bug" is debatable, but it is getting in our way.]
10805 We have no real idea where the dwp file is, because gdb's realpath-ing
10806 of the executable's path may have discarded the needed info.
10807 [IWBN if the dwp file name was recorded in the executable, akin to
10808 .gnu_debuglink, but that doesn't exist yet.]
10809 Strip the directory from FILE_NAME and search again. */
10810 if (*debug_file_directory != '\0')
10811 {
10812 /* Don't implicitly search the current directory here.
10813 If the user wants to search "." to handle this case,
10814 it must be added to debug-file-directory. */
10815 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10816 0 /*search_cwd*/);
10817 }
10818
10819 return NULL;
10820 }
10821
10822 /* Initialize the use of the DWP file for the current objfile.
10823 By convention the name of the DWP file is ${objfile}.dwp.
10824 The result is NULL if it can't be found. */
10825
10826 static struct dwp_file *
10827 open_and_init_dwp_file (void)
10828 {
10829 struct objfile *objfile = dwarf2_per_objfile->objfile;
10830 struct dwp_file *dwp_file;
10831 char *dwp_name;
10832 bfd *dbfd;
10833 struct cleanup *cleanups = make_cleanup (null_cleanup, 0);
10834
10835 /* Try to find first .dwp for the binary file before any symbolic links
10836 resolving. */
10837
10838 /* If the objfile is a debug file, find the name of the real binary
10839 file and get the name of dwp file from there. */
10840 if (objfile->separate_debug_objfile_backlink != NULL)
10841 {
10842 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
10843 const char *backlink_basename = lbasename (backlink->original_name);
10844 char *debug_dirname = ldirname (objfile->original_name);
10845
10846 make_cleanup (xfree, debug_dirname);
10847 dwp_name = xstrprintf ("%s%s%s.dwp", debug_dirname,
10848 SLASH_STRING, backlink_basename);
10849 }
10850 else
10851 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10852 make_cleanup (xfree, dwp_name);
10853
10854 dbfd = open_dwp_file (dwp_name);
10855 if (dbfd == NULL
10856 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10857 {
10858 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10859 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10860 make_cleanup (xfree, dwp_name);
10861 dbfd = open_dwp_file (dwp_name);
10862 }
10863
10864 if (dbfd == NULL)
10865 {
10866 if (dwarf_read_debug)
10867 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10868 do_cleanups (cleanups);
10869 return NULL;
10870 }
10871 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10872 dwp_file->name = bfd_get_filename (dbfd);
10873 dwp_file->dbfd = dbfd;
10874 do_cleanups (cleanups);
10875
10876 /* +1: section 0 is unused */
10877 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10878 dwp_file->elf_sections =
10879 OBSTACK_CALLOC (&objfile->objfile_obstack,
10880 dwp_file->num_sections, asection *);
10881
10882 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10883
10884 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10885
10886 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10887
10888 /* The DWP file version is stored in the hash table. Oh well. */
10889 if (dwp_file->cus->version != dwp_file->tus->version)
10890 {
10891 /* Technically speaking, we should try to limp along, but this is
10892 pretty bizarre. We use pulongest here because that's the established
10893 portability solution (e.g, we cannot use %u for uint32_t). */
10894 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10895 " TU version %s [in DWP file %s]"),
10896 pulongest (dwp_file->cus->version),
10897 pulongest (dwp_file->tus->version), dwp_name);
10898 }
10899 dwp_file->version = dwp_file->cus->version;
10900
10901 if (dwp_file->version == 2)
10902 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10903
10904 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10905 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10906
10907 if (dwarf_read_debug)
10908 {
10909 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10910 fprintf_unfiltered (gdb_stdlog,
10911 " %s CUs, %s TUs\n",
10912 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10913 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10914 }
10915
10916 return dwp_file;
10917 }
10918
10919 /* Wrapper around open_and_init_dwp_file, only open it once. */
10920
10921 static struct dwp_file *
10922 get_dwp_file (void)
10923 {
10924 if (! dwarf2_per_objfile->dwp_checked)
10925 {
10926 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10927 dwarf2_per_objfile->dwp_checked = 1;
10928 }
10929 return dwarf2_per_objfile->dwp_file;
10930 }
10931
10932 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10933 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10934 or in the DWP file for the objfile, referenced by THIS_UNIT.
10935 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10936 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10937
10938 This is called, for example, when wanting to read a variable with a
10939 complex location. Therefore we don't want to do file i/o for every call.
10940 Therefore we don't want to look for a DWO file on every call.
10941 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10942 then we check if we've already seen DWO_NAME, and only THEN do we check
10943 for a DWO file.
10944
10945 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10946 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10947
10948 static struct dwo_unit *
10949 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10950 const char *dwo_name, const char *comp_dir,
10951 ULONGEST signature, int is_debug_types)
10952 {
10953 struct objfile *objfile = dwarf2_per_objfile->objfile;
10954 const char *kind = is_debug_types ? "TU" : "CU";
10955 void **dwo_file_slot;
10956 struct dwo_file *dwo_file;
10957 struct dwp_file *dwp_file;
10958
10959 /* First see if there's a DWP file.
10960 If we have a DWP file but didn't find the DWO inside it, don't
10961 look for the original DWO file. It makes gdb behave differently
10962 depending on whether one is debugging in the build tree. */
10963
10964 dwp_file = get_dwp_file ();
10965 if (dwp_file != NULL)
10966 {
10967 const struct dwp_hash_table *dwp_htab =
10968 is_debug_types ? dwp_file->tus : dwp_file->cus;
10969
10970 if (dwp_htab != NULL)
10971 {
10972 struct dwo_unit *dwo_cutu =
10973 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10974 signature, is_debug_types);
10975
10976 if (dwo_cutu != NULL)
10977 {
10978 if (dwarf_read_debug)
10979 {
10980 fprintf_unfiltered (gdb_stdlog,
10981 "Virtual DWO %s %s found: @%s\n",
10982 kind, hex_string (signature),
10983 host_address_to_string (dwo_cutu));
10984 }
10985 return dwo_cutu;
10986 }
10987 }
10988 }
10989 else
10990 {
10991 /* No DWP file, look for the DWO file. */
10992
10993 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10994 if (*dwo_file_slot == NULL)
10995 {
10996 /* Read in the file and build a table of the CUs/TUs it contains. */
10997 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10998 }
10999 /* NOTE: This will be NULL if unable to open the file. */
11000 dwo_file = (struct dwo_file *) *dwo_file_slot;
11001
11002 if (dwo_file != NULL)
11003 {
11004 struct dwo_unit *dwo_cutu = NULL;
11005
11006 if (is_debug_types && dwo_file->tus)
11007 {
11008 struct dwo_unit find_dwo_cutu;
11009
11010 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11011 find_dwo_cutu.signature = signature;
11012 dwo_cutu
11013 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
11014 }
11015 else if (!is_debug_types && dwo_file->cu)
11016 {
11017 if (signature == dwo_file->cu->signature)
11018 dwo_cutu = dwo_file->cu;
11019 }
11020
11021 if (dwo_cutu != NULL)
11022 {
11023 if (dwarf_read_debug)
11024 {
11025 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11026 kind, dwo_name, hex_string (signature),
11027 host_address_to_string (dwo_cutu));
11028 }
11029 return dwo_cutu;
11030 }
11031 }
11032 }
11033
11034 /* We didn't find it. This could mean a dwo_id mismatch, or
11035 someone deleted the DWO/DWP file, or the search path isn't set up
11036 correctly to find the file. */
11037
11038 if (dwarf_read_debug)
11039 {
11040 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11041 kind, dwo_name, hex_string (signature));
11042 }
11043
11044 /* This is a warning and not a complaint because it can be caused by
11045 pilot error (e.g., user accidentally deleting the DWO). */
11046 {
11047 /* Print the name of the DWP file if we looked there, helps the user
11048 better diagnose the problem. */
11049 char *dwp_text = NULL;
11050 struct cleanup *cleanups;
11051
11052 if (dwp_file != NULL)
11053 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11054 cleanups = make_cleanup (xfree, dwp_text);
11055
11056 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11057 " [in module %s]"),
11058 kind, dwo_name, hex_string (signature),
11059 dwp_text != NULL ? dwp_text : "",
11060 this_unit->is_debug_types ? "TU" : "CU",
11061 this_unit->offset.sect_off, objfile_name (objfile));
11062
11063 do_cleanups (cleanups);
11064 }
11065 return NULL;
11066 }
11067
11068 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11069 See lookup_dwo_cutu_unit for details. */
11070
11071 static struct dwo_unit *
11072 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11073 const char *dwo_name, const char *comp_dir,
11074 ULONGEST signature)
11075 {
11076 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11077 }
11078
11079 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11080 See lookup_dwo_cutu_unit for details. */
11081
11082 static struct dwo_unit *
11083 lookup_dwo_type_unit (struct signatured_type *this_tu,
11084 const char *dwo_name, const char *comp_dir)
11085 {
11086 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11087 }
11088
11089 /* Traversal function for queue_and_load_all_dwo_tus. */
11090
11091 static int
11092 queue_and_load_dwo_tu (void **slot, void *info)
11093 {
11094 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11095 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11096 ULONGEST signature = dwo_unit->signature;
11097 struct signatured_type *sig_type =
11098 lookup_dwo_signatured_type (per_cu->cu, signature);
11099
11100 if (sig_type != NULL)
11101 {
11102 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11103
11104 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11105 a real dependency of PER_CU on SIG_TYPE. That is detected later
11106 while processing PER_CU. */
11107 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11108 load_full_type_unit (sig_cu);
11109 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11110 }
11111
11112 return 1;
11113 }
11114
11115 /* Queue all TUs contained in the DWO of PER_CU to be read in.
11116 The DWO may have the only definition of the type, though it may not be
11117 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11118 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11119
11120 static void
11121 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11122 {
11123 struct dwo_unit *dwo_unit;
11124 struct dwo_file *dwo_file;
11125
11126 gdb_assert (!per_cu->is_debug_types);
11127 gdb_assert (get_dwp_file () == NULL);
11128 gdb_assert (per_cu->cu != NULL);
11129
11130 dwo_unit = per_cu->cu->dwo_unit;
11131 gdb_assert (dwo_unit != NULL);
11132
11133 dwo_file = dwo_unit->dwo_file;
11134 if (dwo_file->tus != NULL)
11135 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11136 }
11137
11138 /* Free all resources associated with DWO_FILE.
11139 Close the DWO file and munmap the sections.
11140 All memory should be on the objfile obstack. */
11141
11142 static void
11143 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
11144 {
11145
11146 /* Note: dbfd is NULL for virtual DWO files. */
11147 gdb_bfd_unref (dwo_file->dbfd);
11148
11149 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11150 }
11151
11152 /* Wrapper for free_dwo_file for use in cleanups. */
11153
11154 static void
11155 free_dwo_file_cleanup (void *arg)
11156 {
11157 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11158 struct objfile *objfile = dwarf2_per_objfile->objfile;
11159
11160 free_dwo_file (dwo_file, objfile);
11161 }
11162
11163 /* Traversal function for free_dwo_files. */
11164
11165 static int
11166 free_dwo_file_from_slot (void **slot, void *info)
11167 {
11168 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11169 struct objfile *objfile = (struct objfile *) info;
11170
11171 free_dwo_file (dwo_file, objfile);
11172
11173 return 1;
11174 }
11175
11176 /* Free all resources associated with DWO_FILES. */
11177
11178 static void
11179 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11180 {
11181 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
11182 }
11183 \f
11184 /* Read in various DIEs. */
11185
11186 /* qsort helper for inherit_abstract_dies. */
11187
11188 static int
11189 unsigned_int_compar (const void *ap, const void *bp)
11190 {
11191 unsigned int a = *(unsigned int *) ap;
11192 unsigned int b = *(unsigned int *) bp;
11193
11194 return (a > b) - (b > a);
11195 }
11196
11197 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11198 Inherit only the children of the DW_AT_abstract_origin DIE not being
11199 already referenced by DW_AT_abstract_origin from the children of the
11200 current DIE. */
11201
11202 static void
11203 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11204 {
11205 struct die_info *child_die;
11206 unsigned die_children_count;
11207 /* CU offsets which were referenced by children of the current DIE. */
11208 sect_offset *offsets;
11209 sect_offset *offsets_end, *offsetp;
11210 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11211 struct die_info *origin_die;
11212 /* Iterator of the ORIGIN_DIE children. */
11213 struct die_info *origin_child_die;
11214 struct cleanup *cleanups;
11215 struct attribute *attr;
11216 struct dwarf2_cu *origin_cu;
11217 struct pending **origin_previous_list_in_scope;
11218
11219 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11220 if (!attr)
11221 return;
11222
11223 /* Note that following die references may follow to a die in a
11224 different cu. */
11225
11226 origin_cu = cu;
11227 origin_die = follow_die_ref (die, attr, &origin_cu);
11228
11229 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11230 symbols in. */
11231 origin_previous_list_in_scope = origin_cu->list_in_scope;
11232 origin_cu->list_in_scope = cu->list_in_scope;
11233
11234 if (die->tag != origin_die->tag
11235 && !(die->tag == DW_TAG_inlined_subroutine
11236 && origin_die->tag == DW_TAG_subprogram))
11237 complaint (&symfile_complaints,
11238 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11239 die->offset.sect_off, origin_die->offset.sect_off);
11240
11241 child_die = die->child;
11242 die_children_count = 0;
11243 while (child_die && child_die->tag)
11244 {
11245 child_die = sibling_die (child_die);
11246 die_children_count++;
11247 }
11248 offsets = XNEWVEC (sect_offset, die_children_count);
11249 cleanups = make_cleanup (xfree, offsets);
11250
11251 offsets_end = offsets;
11252 for (child_die = die->child;
11253 child_die && child_die->tag;
11254 child_die = sibling_die (child_die))
11255 {
11256 struct die_info *child_origin_die;
11257 struct dwarf2_cu *child_origin_cu;
11258
11259 /* We are trying to process concrete instance entries:
11260 DW_TAG_GNU_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11261 it's not relevant to our analysis here. i.e. detecting DIEs that are
11262 present in the abstract instance but not referenced in the concrete
11263 one. */
11264 if (child_die->tag == DW_TAG_GNU_call_site)
11265 continue;
11266
11267 /* For each CHILD_DIE, find the corresponding child of
11268 ORIGIN_DIE. If there is more than one layer of
11269 DW_AT_abstract_origin, follow them all; there shouldn't be,
11270 but GCC versions at least through 4.4 generate this (GCC PR
11271 40573). */
11272 child_origin_die = child_die;
11273 child_origin_cu = cu;
11274 while (1)
11275 {
11276 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11277 child_origin_cu);
11278 if (attr == NULL)
11279 break;
11280 child_origin_die = follow_die_ref (child_origin_die, attr,
11281 &child_origin_cu);
11282 }
11283
11284 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11285 counterpart may exist. */
11286 if (child_origin_die != child_die)
11287 {
11288 if (child_die->tag != child_origin_die->tag
11289 && !(child_die->tag == DW_TAG_inlined_subroutine
11290 && child_origin_die->tag == DW_TAG_subprogram))
11291 complaint (&symfile_complaints,
11292 _("Child DIE 0x%x and its abstract origin 0x%x have "
11293 "different tags"), child_die->offset.sect_off,
11294 child_origin_die->offset.sect_off);
11295 if (child_origin_die->parent != origin_die)
11296 complaint (&symfile_complaints,
11297 _("Child DIE 0x%x and its abstract origin 0x%x have "
11298 "different parents"), child_die->offset.sect_off,
11299 child_origin_die->offset.sect_off);
11300 else
11301 *offsets_end++ = child_origin_die->offset;
11302 }
11303 }
11304 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11305 unsigned_int_compar);
11306 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11307 if (offsetp[-1].sect_off == offsetp->sect_off)
11308 complaint (&symfile_complaints,
11309 _("Multiple children of DIE 0x%x refer "
11310 "to DIE 0x%x as their abstract origin"),
11311 die->offset.sect_off, offsetp->sect_off);
11312
11313 offsetp = offsets;
11314 origin_child_die = origin_die->child;
11315 while (origin_child_die && origin_child_die->tag)
11316 {
11317 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11318 while (offsetp < offsets_end
11319 && offsetp->sect_off < origin_child_die->offset.sect_off)
11320 offsetp++;
11321 if (offsetp >= offsets_end
11322 || offsetp->sect_off > origin_child_die->offset.sect_off)
11323 {
11324 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11325 Check whether we're already processing ORIGIN_CHILD_DIE.
11326 This can happen with mutually referenced abstract_origins.
11327 PR 16581. */
11328 if (!origin_child_die->in_process)
11329 process_die (origin_child_die, origin_cu);
11330 }
11331 origin_child_die = sibling_die (origin_child_die);
11332 }
11333 origin_cu->list_in_scope = origin_previous_list_in_scope;
11334
11335 do_cleanups (cleanups);
11336 }
11337
11338 static void
11339 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11340 {
11341 struct objfile *objfile = cu->objfile;
11342 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11343 struct context_stack *newobj;
11344 CORE_ADDR lowpc;
11345 CORE_ADDR highpc;
11346 struct die_info *child_die;
11347 struct attribute *attr, *call_line, *call_file;
11348 const char *name;
11349 CORE_ADDR baseaddr;
11350 struct block *block;
11351 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11352 VEC (symbolp) *template_args = NULL;
11353 struct template_symbol *templ_func = NULL;
11354
11355 if (inlined_func)
11356 {
11357 /* If we do not have call site information, we can't show the
11358 caller of this inlined function. That's too confusing, so
11359 only use the scope for local variables. */
11360 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11361 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11362 if (call_line == NULL || call_file == NULL)
11363 {
11364 read_lexical_block_scope (die, cu);
11365 return;
11366 }
11367 }
11368
11369 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11370
11371 name = dwarf2_name (die, cu);
11372
11373 /* Ignore functions with missing or empty names. These are actually
11374 illegal according to the DWARF standard. */
11375 if (name == NULL)
11376 {
11377 complaint (&symfile_complaints,
11378 _("missing name for subprogram DIE at %d"),
11379 die->offset.sect_off);
11380 return;
11381 }
11382
11383 /* Ignore functions with missing or invalid low and high pc attributes. */
11384 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
11385 <= PC_BOUNDS_INVALID)
11386 {
11387 attr = dwarf2_attr (die, DW_AT_external, cu);
11388 if (!attr || !DW_UNSND (attr))
11389 complaint (&symfile_complaints,
11390 _("cannot get low and high bounds "
11391 "for subprogram DIE at %d"),
11392 die->offset.sect_off);
11393 return;
11394 }
11395
11396 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11397 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11398
11399 /* If we have any template arguments, then we must allocate a
11400 different sort of symbol. */
11401 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11402 {
11403 if (child_die->tag == DW_TAG_template_type_param
11404 || child_die->tag == DW_TAG_template_value_param)
11405 {
11406 templ_func = allocate_template_symbol (objfile);
11407 templ_func->base.is_cplus_template_function = 1;
11408 break;
11409 }
11410 }
11411
11412 newobj = push_context (0, lowpc);
11413 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
11414 (struct symbol *) templ_func);
11415
11416 /* If there is a location expression for DW_AT_frame_base, record
11417 it. */
11418 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11419 if (attr)
11420 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
11421
11422 /* If there is a location for the static link, record it. */
11423 newobj->static_link = NULL;
11424 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11425 if (attr)
11426 {
11427 newobj->static_link
11428 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
11429 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11430 }
11431
11432 cu->list_in_scope = &local_symbols;
11433
11434 if (die->child != NULL)
11435 {
11436 child_die = die->child;
11437 while (child_die && child_die->tag)
11438 {
11439 if (child_die->tag == DW_TAG_template_type_param
11440 || child_die->tag == DW_TAG_template_value_param)
11441 {
11442 struct symbol *arg = new_symbol (child_die, NULL, cu);
11443
11444 if (arg != NULL)
11445 VEC_safe_push (symbolp, template_args, arg);
11446 }
11447 else
11448 process_die (child_die, cu);
11449 child_die = sibling_die (child_die);
11450 }
11451 }
11452
11453 inherit_abstract_dies (die, cu);
11454
11455 /* If we have a DW_AT_specification, we might need to import using
11456 directives from the context of the specification DIE. See the
11457 comment in determine_prefix. */
11458 if (cu->language == language_cplus
11459 && dwarf2_attr (die, DW_AT_specification, cu))
11460 {
11461 struct dwarf2_cu *spec_cu = cu;
11462 struct die_info *spec_die = die_specification (die, &spec_cu);
11463
11464 while (spec_die)
11465 {
11466 child_die = spec_die->child;
11467 while (child_die && child_die->tag)
11468 {
11469 if (child_die->tag == DW_TAG_imported_module)
11470 process_die (child_die, spec_cu);
11471 child_die = sibling_die (child_die);
11472 }
11473
11474 /* In some cases, GCC generates specification DIEs that
11475 themselves contain DW_AT_specification attributes. */
11476 spec_die = die_specification (spec_die, &spec_cu);
11477 }
11478 }
11479
11480 newobj = pop_context ();
11481 /* Make a block for the local symbols within. */
11482 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
11483 newobj->static_link, lowpc, highpc);
11484
11485 /* For C++, set the block's scope. */
11486 if ((cu->language == language_cplus
11487 || cu->language == language_fortran
11488 || cu->language == language_d
11489 || cu->language == language_rust)
11490 && cu->processing_has_namespace_info)
11491 block_set_scope (block, determine_prefix (die, cu),
11492 &objfile->objfile_obstack);
11493
11494 /* If we have address ranges, record them. */
11495 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11496
11497 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
11498
11499 /* Attach template arguments to function. */
11500 if (! VEC_empty (symbolp, template_args))
11501 {
11502 gdb_assert (templ_func != NULL);
11503
11504 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11505 templ_func->template_arguments
11506 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11507 templ_func->n_template_arguments);
11508 memcpy (templ_func->template_arguments,
11509 VEC_address (symbolp, template_args),
11510 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11511 VEC_free (symbolp, template_args);
11512 }
11513
11514 /* In C++, we can have functions nested inside functions (e.g., when
11515 a function declares a class that has methods). This means that
11516 when we finish processing a function scope, we may need to go
11517 back to building a containing block's symbol lists. */
11518 local_symbols = newobj->locals;
11519 local_using_directives = newobj->local_using_directives;
11520
11521 /* If we've finished processing a top-level function, subsequent
11522 symbols go in the file symbol list. */
11523 if (outermost_context_p ())
11524 cu->list_in_scope = &file_symbols;
11525 }
11526
11527 /* Process all the DIES contained within a lexical block scope. Start
11528 a new scope, process the dies, and then close the scope. */
11529
11530 static void
11531 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11532 {
11533 struct objfile *objfile = cu->objfile;
11534 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11535 struct context_stack *newobj;
11536 CORE_ADDR lowpc, highpc;
11537 struct die_info *child_die;
11538 CORE_ADDR baseaddr;
11539
11540 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11541
11542 /* Ignore blocks with missing or invalid low and high pc attributes. */
11543 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11544 as multiple lexical blocks? Handling children in a sane way would
11545 be nasty. Might be easier to properly extend generic blocks to
11546 describe ranges. */
11547 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11548 {
11549 case PC_BOUNDS_NOT_PRESENT:
11550 /* DW_TAG_lexical_block has no attributes, process its children as if
11551 there was no wrapping by that DW_TAG_lexical_block.
11552 GCC does no longer produces such DWARF since GCC r224161. */
11553 for (child_die = die->child;
11554 child_die != NULL && child_die->tag;
11555 child_die = sibling_die (child_die))
11556 process_die (child_die, cu);
11557 return;
11558 case PC_BOUNDS_INVALID:
11559 return;
11560 }
11561 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11562 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11563
11564 push_context (0, lowpc);
11565 if (die->child != NULL)
11566 {
11567 child_die = die->child;
11568 while (child_die && child_die->tag)
11569 {
11570 process_die (child_die, cu);
11571 child_die = sibling_die (child_die);
11572 }
11573 }
11574 inherit_abstract_dies (die, cu);
11575 newobj = pop_context ();
11576
11577 if (local_symbols != NULL || local_using_directives != NULL)
11578 {
11579 struct block *block
11580 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
11581 newobj->start_addr, highpc);
11582
11583 /* Note that recording ranges after traversing children, as we
11584 do here, means that recording a parent's ranges entails
11585 walking across all its children's ranges as they appear in
11586 the address map, which is quadratic behavior.
11587
11588 It would be nicer to record the parent's ranges before
11589 traversing its children, simply overriding whatever you find
11590 there. But since we don't even decide whether to create a
11591 block until after we've traversed its children, that's hard
11592 to do. */
11593 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11594 }
11595 local_symbols = newobj->locals;
11596 local_using_directives = newobj->local_using_directives;
11597 }
11598
11599 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11600
11601 static void
11602 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11603 {
11604 struct objfile *objfile = cu->objfile;
11605 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11606 CORE_ADDR pc, baseaddr;
11607 struct attribute *attr;
11608 struct call_site *call_site, call_site_local;
11609 void **slot;
11610 int nparams;
11611 struct die_info *child_die;
11612
11613 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11614
11615 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11616 if (!attr)
11617 {
11618 complaint (&symfile_complaints,
11619 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11620 "DIE 0x%x [in module %s]"),
11621 die->offset.sect_off, objfile_name (objfile));
11622 return;
11623 }
11624 pc = attr_value_as_address (attr) + baseaddr;
11625 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
11626
11627 if (cu->call_site_htab == NULL)
11628 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11629 NULL, &objfile->objfile_obstack,
11630 hashtab_obstack_allocate, NULL);
11631 call_site_local.pc = pc;
11632 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11633 if (*slot != NULL)
11634 {
11635 complaint (&symfile_complaints,
11636 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11637 "DIE 0x%x [in module %s]"),
11638 paddress (gdbarch, pc), die->offset.sect_off,
11639 objfile_name (objfile));
11640 return;
11641 }
11642
11643 /* Count parameters at the caller. */
11644
11645 nparams = 0;
11646 for (child_die = die->child; child_die && child_die->tag;
11647 child_die = sibling_die (child_die))
11648 {
11649 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11650 {
11651 complaint (&symfile_complaints,
11652 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11653 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11654 child_die->tag, child_die->offset.sect_off,
11655 objfile_name (objfile));
11656 continue;
11657 }
11658
11659 nparams++;
11660 }
11661
11662 call_site
11663 = ((struct call_site *)
11664 obstack_alloc (&objfile->objfile_obstack,
11665 sizeof (*call_site)
11666 + (sizeof (*call_site->parameter) * (nparams - 1))));
11667 *slot = call_site;
11668 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11669 call_site->pc = pc;
11670
11671 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11672 {
11673 struct die_info *func_die;
11674
11675 /* Skip also over DW_TAG_inlined_subroutine. */
11676 for (func_die = die->parent;
11677 func_die && func_die->tag != DW_TAG_subprogram
11678 && func_die->tag != DW_TAG_subroutine_type;
11679 func_die = func_die->parent);
11680
11681 /* DW_AT_GNU_all_call_sites is a superset
11682 of DW_AT_GNU_all_tail_call_sites. */
11683 if (func_die
11684 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11685 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11686 {
11687 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11688 not complete. But keep CALL_SITE for look ups via call_site_htab,
11689 both the initial caller containing the real return address PC and
11690 the final callee containing the current PC of a chain of tail
11691 calls do not need to have the tail call list complete. But any
11692 function candidate for a virtual tail call frame searched via
11693 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11694 determined unambiguously. */
11695 }
11696 else
11697 {
11698 struct type *func_type = NULL;
11699
11700 if (func_die)
11701 func_type = get_die_type (func_die, cu);
11702 if (func_type != NULL)
11703 {
11704 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11705
11706 /* Enlist this call site to the function. */
11707 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11708 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11709 }
11710 else
11711 complaint (&symfile_complaints,
11712 _("Cannot find function owning DW_TAG_GNU_call_site "
11713 "DIE 0x%x [in module %s]"),
11714 die->offset.sect_off, objfile_name (objfile));
11715 }
11716 }
11717
11718 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11719 if (attr == NULL)
11720 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11721 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11722 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11723 /* Keep NULL DWARF_BLOCK. */;
11724 else if (attr_form_is_block (attr))
11725 {
11726 struct dwarf2_locexpr_baton *dlbaton;
11727
11728 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
11729 dlbaton->data = DW_BLOCK (attr)->data;
11730 dlbaton->size = DW_BLOCK (attr)->size;
11731 dlbaton->per_cu = cu->per_cu;
11732
11733 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11734 }
11735 else if (attr_form_is_ref (attr))
11736 {
11737 struct dwarf2_cu *target_cu = cu;
11738 struct die_info *target_die;
11739
11740 target_die = follow_die_ref (die, attr, &target_cu);
11741 gdb_assert (target_cu->objfile == objfile);
11742 if (die_is_declaration (target_die, target_cu))
11743 {
11744 const char *target_physname;
11745
11746 /* Prefer the mangled name; otherwise compute the demangled one. */
11747 target_physname = dwarf2_string_attr (target_die,
11748 DW_AT_linkage_name,
11749 target_cu);
11750 if (target_physname == NULL)
11751 target_physname = dwarf2_string_attr (target_die,
11752 DW_AT_MIPS_linkage_name,
11753 target_cu);
11754 if (target_physname == NULL)
11755 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11756 if (target_physname == NULL)
11757 complaint (&symfile_complaints,
11758 _("DW_AT_GNU_call_site_target target DIE has invalid "
11759 "physname, for referencing DIE 0x%x [in module %s]"),
11760 die->offset.sect_off, objfile_name (objfile));
11761 else
11762 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11763 }
11764 else
11765 {
11766 CORE_ADDR lowpc;
11767
11768 /* DW_AT_entry_pc should be preferred. */
11769 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
11770 <= PC_BOUNDS_INVALID)
11771 complaint (&symfile_complaints,
11772 _("DW_AT_GNU_call_site_target target DIE has invalid "
11773 "low pc, for referencing DIE 0x%x [in module %s]"),
11774 die->offset.sect_off, objfile_name (objfile));
11775 else
11776 {
11777 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11778 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11779 }
11780 }
11781 }
11782 else
11783 complaint (&symfile_complaints,
11784 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11785 "block nor reference, for DIE 0x%x [in module %s]"),
11786 die->offset.sect_off, objfile_name (objfile));
11787
11788 call_site->per_cu = cu->per_cu;
11789
11790 for (child_die = die->child;
11791 child_die && child_die->tag;
11792 child_die = sibling_die (child_die))
11793 {
11794 struct call_site_parameter *parameter;
11795 struct attribute *loc, *origin;
11796
11797 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11798 {
11799 /* Already printed the complaint above. */
11800 continue;
11801 }
11802
11803 gdb_assert (call_site->parameter_count < nparams);
11804 parameter = &call_site->parameter[call_site->parameter_count];
11805
11806 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11807 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11808 register is contained in DW_AT_GNU_call_site_value. */
11809
11810 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11811 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11812 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11813 {
11814 sect_offset offset;
11815
11816 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11817 offset = dwarf2_get_ref_die_offset (origin);
11818 if (!offset_in_cu_p (&cu->header, offset))
11819 {
11820 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11821 binding can be done only inside one CU. Such referenced DIE
11822 therefore cannot be even moved to DW_TAG_partial_unit. */
11823 complaint (&symfile_complaints,
11824 _("DW_AT_abstract_origin offset is not in CU for "
11825 "DW_TAG_GNU_call_site child DIE 0x%x "
11826 "[in module %s]"),
11827 child_die->offset.sect_off, objfile_name (objfile));
11828 continue;
11829 }
11830 parameter->u.param_offset.cu_off = (offset.sect_off
11831 - cu->header.offset.sect_off);
11832 }
11833 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11834 {
11835 complaint (&symfile_complaints,
11836 _("No DW_FORM_block* DW_AT_location for "
11837 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11838 child_die->offset.sect_off, objfile_name (objfile));
11839 continue;
11840 }
11841 else
11842 {
11843 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11844 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11845 if (parameter->u.dwarf_reg != -1)
11846 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11847 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11848 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11849 &parameter->u.fb_offset))
11850 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11851 else
11852 {
11853 complaint (&symfile_complaints,
11854 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11855 "for DW_FORM_block* DW_AT_location is supported for "
11856 "DW_TAG_GNU_call_site child DIE 0x%x "
11857 "[in module %s]"),
11858 child_die->offset.sect_off, objfile_name (objfile));
11859 continue;
11860 }
11861 }
11862
11863 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11864 if (!attr_form_is_block (attr))
11865 {
11866 complaint (&symfile_complaints,
11867 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11868 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11869 child_die->offset.sect_off, objfile_name (objfile));
11870 continue;
11871 }
11872 parameter->value = DW_BLOCK (attr)->data;
11873 parameter->value_size = DW_BLOCK (attr)->size;
11874
11875 /* Parameters are not pre-cleared by memset above. */
11876 parameter->data_value = NULL;
11877 parameter->data_value_size = 0;
11878 call_site->parameter_count++;
11879
11880 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11881 if (attr)
11882 {
11883 if (!attr_form_is_block (attr))
11884 complaint (&symfile_complaints,
11885 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11886 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11887 child_die->offset.sect_off, objfile_name (objfile));
11888 else
11889 {
11890 parameter->data_value = DW_BLOCK (attr)->data;
11891 parameter->data_value_size = DW_BLOCK (attr)->size;
11892 }
11893 }
11894 }
11895 }
11896
11897 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11898 Return 1 if the attributes are present and valid, otherwise, return 0.
11899 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11900
11901 static int
11902 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11903 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11904 struct partial_symtab *ranges_pst)
11905 {
11906 struct objfile *objfile = cu->objfile;
11907 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11908 struct comp_unit_head *cu_header = &cu->header;
11909 bfd *obfd = objfile->obfd;
11910 unsigned int addr_size = cu_header->addr_size;
11911 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11912 /* Base address selection entry. */
11913 CORE_ADDR base;
11914 int found_base;
11915 unsigned int dummy;
11916 const gdb_byte *buffer;
11917 int low_set;
11918 CORE_ADDR low = 0;
11919 CORE_ADDR high = 0;
11920 CORE_ADDR baseaddr;
11921
11922 found_base = cu->base_known;
11923 base = cu->base_address;
11924
11925 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11926 if (offset >= dwarf2_per_objfile->ranges.size)
11927 {
11928 complaint (&symfile_complaints,
11929 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11930 offset);
11931 return 0;
11932 }
11933 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11934
11935 low_set = 0;
11936
11937 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11938
11939 while (1)
11940 {
11941 CORE_ADDR range_beginning, range_end;
11942
11943 range_beginning = read_address (obfd, buffer, cu, &dummy);
11944 buffer += addr_size;
11945 range_end = read_address (obfd, buffer, cu, &dummy);
11946 buffer += addr_size;
11947 offset += 2 * addr_size;
11948
11949 /* An end of list marker is a pair of zero addresses. */
11950 if (range_beginning == 0 && range_end == 0)
11951 /* Found the end of list entry. */
11952 break;
11953
11954 /* Each base address selection entry is a pair of 2 values.
11955 The first is the largest possible address, the second is
11956 the base address. Check for a base address here. */
11957 if ((range_beginning & mask) == mask)
11958 {
11959 /* If we found the largest possible address, then we already
11960 have the base address in range_end. */
11961 base = range_end;
11962 found_base = 1;
11963 continue;
11964 }
11965
11966 if (!found_base)
11967 {
11968 /* We have no valid base address for the ranges
11969 data. */
11970 complaint (&symfile_complaints,
11971 _("Invalid .debug_ranges data (no base address)"));
11972 return 0;
11973 }
11974
11975 if (range_beginning > range_end)
11976 {
11977 /* Inverted range entries are invalid. */
11978 complaint (&symfile_complaints,
11979 _("Invalid .debug_ranges data (inverted range)"));
11980 return 0;
11981 }
11982
11983 /* Empty range entries have no effect. */
11984 if (range_beginning == range_end)
11985 continue;
11986
11987 range_beginning += base;
11988 range_end += base;
11989
11990 /* A not-uncommon case of bad debug info.
11991 Don't pollute the addrmap with bad data. */
11992 if (range_beginning + baseaddr == 0
11993 && !dwarf2_per_objfile->has_section_at_zero)
11994 {
11995 complaint (&symfile_complaints,
11996 _(".debug_ranges entry has start address of zero"
11997 " [in module %s]"), objfile_name (objfile));
11998 continue;
11999 }
12000
12001 if (ranges_pst != NULL)
12002 {
12003 CORE_ADDR lowpc;
12004 CORE_ADDR highpc;
12005
12006 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12007 range_beginning + baseaddr);
12008 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12009 range_end + baseaddr);
12010 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
12011 ranges_pst);
12012 }
12013
12014 /* FIXME: This is recording everything as a low-high
12015 segment of consecutive addresses. We should have a
12016 data structure for discontiguous block ranges
12017 instead. */
12018 if (! low_set)
12019 {
12020 low = range_beginning;
12021 high = range_end;
12022 low_set = 1;
12023 }
12024 else
12025 {
12026 if (range_beginning < low)
12027 low = range_beginning;
12028 if (range_end > high)
12029 high = range_end;
12030 }
12031 }
12032
12033 if (! low_set)
12034 /* If the first entry is an end-of-list marker, the range
12035 describes an empty scope, i.e. no instructions. */
12036 return 0;
12037
12038 if (low_return)
12039 *low_return = low;
12040 if (high_return)
12041 *high_return = high;
12042 return 1;
12043 }
12044
12045 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
12046 definition for the return value. *LOWPC and *HIGHPC are set iff
12047 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
12048
12049 static enum pc_bounds_kind
12050 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
12051 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12052 struct partial_symtab *pst)
12053 {
12054 struct attribute *attr;
12055 struct attribute *attr_high;
12056 CORE_ADDR low = 0;
12057 CORE_ADDR high = 0;
12058 enum pc_bounds_kind ret;
12059
12060 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12061 if (attr_high)
12062 {
12063 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12064 if (attr)
12065 {
12066 low = attr_value_as_address (attr);
12067 high = attr_value_as_address (attr_high);
12068 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12069 high += low;
12070 }
12071 else
12072 /* Found high w/o low attribute. */
12073 return PC_BOUNDS_INVALID;
12074
12075 /* Found consecutive range of addresses. */
12076 ret = PC_BOUNDS_HIGH_LOW;
12077 }
12078 else
12079 {
12080 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12081 if (attr != NULL)
12082 {
12083 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12084 We take advantage of the fact that DW_AT_ranges does not appear
12085 in DW_TAG_compile_unit of DWO files. */
12086 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12087 unsigned int ranges_offset = (DW_UNSND (attr)
12088 + (need_ranges_base
12089 ? cu->ranges_base
12090 : 0));
12091
12092 /* Value of the DW_AT_ranges attribute is the offset in the
12093 .debug_ranges section. */
12094 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
12095 return PC_BOUNDS_INVALID;
12096 /* Found discontinuous range of addresses. */
12097 ret = PC_BOUNDS_RANGES;
12098 }
12099 else
12100 return PC_BOUNDS_NOT_PRESENT;
12101 }
12102
12103 /* read_partial_die has also the strict LOW < HIGH requirement. */
12104 if (high <= low)
12105 return PC_BOUNDS_INVALID;
12106
12107 /* When using the GNU linker, .gnu.linkonce. sections are used to
12108 eliminate duplicate copies of functions and vtables and such.
12109 The linker will arbitrarily choose one and discard the others.
12110 The AT_*_pc values for such functions refer to local labels in
12111 these sections. If the section from that file was discarded, the
12112 labels are not in the output, so the relocs get a value of 0.
12113 If this is a discarded function, mark the pc bounds as invalid,
12114 so that GDB will ignore it. */
12115 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
12116 return PC_BOUNDS_INVALID;
12117
12118 *lowpc = low;
12119 if (highpc)
12120 *highpc = high;
12121 return ret;
12122 }
12123
12124 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
12125 its low and high PC addresses. Do nothing if these addresses could not
12126 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12127 and HIGHPC to the high address if greater than HIGHPC. */
12128
12129 static void
12130 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12131 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12132 struct dwarf2_cu *cu)
12133 {
12134 CORE_ADDR low, high;
12135 struct die_info *child = die->child;
12136
12137 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
12138 {
12139 *lowpc = std::min (*lowpc, low);
12140 *highpc = std::max (*highpc, high);
12141 }
12142
12143 /* If the language does not allow nested subprograms (either inside
12144 subprograms or lexical blocks), we're done. */
12145 if (cu->language != language_ada)
12146 return;
12147
12148 /* Check all the children of the given DIE. If it contains nested
12149 subprograms, then check their pc bounds. Likewise, we need to
12150 check lexical blocks as well, as they may also contain subprogram
12151 definitions. */
12152 while (child && child->tag)
12153 {
12154 if (child->tag == DW_TAG_subprogram
12155 || child->tag == DW_TAG_lexical_block)
12156 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12157 child = sibling_die (child);
12158 }
12159 }
12160
12161 /* Get the low and high pc's represented by the scope DIE, and store
12162 them in *LOWPC and *HIGHPC. If the correct values can't be
12163 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12164
12165 static void
12166 get_scope_pc_bounds (struct die_info *die,
12167 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12168 struct dwarf2_cu *cu)
12169 {
12170 CORE_ADDR best_low = (CORE_ADDR) -1;
12171 CORE_ADDR best_high = (CORE_ADDR) 0;
12172 CORE_ADDR current_low, current_high;
12173
12174 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
12175 >= PC_BOUNDS_RANGES)
12176 {
12177 best_low = current_low;
12178 best_high = current_high;
12179 }
12180 else
12181 {
12182 struct die_info *child = die->child;
12183
12184 while (child && child->tag)
12185 {
12186 switch (child->tag) {
12187 case DW_TAG_subprogram:
12188 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
12189 break;
12190 case DW_TAG_namespace:
12191 case DW_TAG_module:
12192 /* FIXME: carlton/2004-01-16: Should we do this for
12193 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12194 that current GCC's always emit the DIEs corresponding
12195 to definitions of methods of classes as children of a
12196 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12197 the DIEs giving the declarations, which could be
12198 anywhere). But I don't see any reason why the
12199 standards says that they have to be there. */
12200 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12201
12202 if (current_low != ((CORE_ADDR) -1))
12203 {
12204 best_low = std::min (best_low, current_low);
12205 best_high = std::max (best_high, current_high);
12206 }
12207 break;
12208 default:
12209 /* Ignore. */
12210 break;
12211 }
12212
12213 child = sibling_die (child);
12214 }
12215 }
12216
12217 *lowpc = best_low;
12218 *highpc = best_high;
12219 }
12220
12221 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
12222 in DIE. */
12223
12224 static void
12225 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12226 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12227 {
12228 struct objfile *objfile = cu->objfile;
12229 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12230 struct attribute *attr;
12231 struct attribute *attr_high;
12232
12233 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12234 if (attr_high)
12235 {
12236 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12237 if (attr)
12238 {
12239 CORE_ADDR low = attr_value_as_address (attr);
12240 CORE_ADDR high = attr_value_as_address (attr_high);
12241
12242 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12243 high += low;
12244
12245 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12246 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12247 record_block_range (block, low, high - 1);
12248 }
12249 }
12250
12251 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12252 if (attr)
12253 {
12254 bfd *obfd = objfile->obfd;
12255 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12256 We take advantage of the fact that DW_AT_ranges does not appear
12257 in DW_TAG_compile_unit of DWO files. */
12258 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12259
12260 /* The value of the DW_AT_ranges attribute is the offset of the
12261 address range list in the .debug_ranges section. */
12262 unsigned long offset = (DW_UNSND (attr)
12263 + (need_ranges_base ? cu->ranges_base : 0));
12264 const gdb_byte *buffer;
12265
12266 /* For some target architectures, but not others, the
12267 read_address function sign-extends the addresses it returns.
12268 To recognize base address selection entries, we need a
12269 mask. */
12270 unsigned int addr_size = cu->header.addr_size;
12271 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12272
12273 /* The base address, to which the next pair is relative. Note
12274 that this 'base' is a DWARF concept: most entries in a range
12275 list are relative, to reduce the number of relocs against the
12276 debugging information. This is separate from this function's
12277 'baseaddr' argument, which GDB uses to relocate debugging
12278 information from a shared library based on the address at
12279 which the library was loaded. */
12280 CORE_ADDR base = cu->base_address;
12281 int base_known = cu->base_known;
12282
12283 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12284 if (offset >= dwarf2_per_objfile->ranges.size)
12285 {
12286 complaint (&symfile_complaints,
12287 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12288 offset);
12289 return;
12290 }
12291 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12292
12293 for (;;)
12294 {
12295 unsigned int bytes_read;
12296 CORE_ADDR start, end;
12297
12298 start = read_address (obfd, buffer, cu, &bytes_read);
12299 buffer += bytes_read;
12300 end = read_address (obfd, buffer, cu, &bytes_read);
12301 buffer += bytes_read;
12302
12303 /* Did we find the end of the range list? */
12304 if (start == 0 && end == 0)
12305 break;
12306
12307 /* Did we find a base address selection entry? */
12308 else if ((start & base_select_mask) == base_select_mask)
12309 {
12310 base = end;
12311 base_known = 1;
12312 }
12313
12314 /* We found an ordinary address range. */
12315 else
12316 {
12317 if (!base_known)
12318 {
12319 complaint (&symfile_complaints,
12320 _("Invalid .debug_ranges data "
12321 "(no base address)"));
12322 return;
12323 }
12324
12325 if (start > end)
12326 {
12327 /* Inverted range entries are invalid. */
12328 complaint (&symfile_complaints,
12329 _("Invalid .debug_ranges data "
12330 "(inverted range)"));
12331 return;
12332 }
12333
12334 /* Empty range entries have no effect. */
12335 if (start == end)
12336 continue;
12337
12338 start += base + baseaddr;
12339 end += base + baseaddr;
12340
12341 /* A not-uncommon case of bad debug info.
12342 Don't pollute the addrmap with bad data. */
12343 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12344 {
12345 complaint (&symfile_complaints,
12346 _(".debug_ranges entry has start address of zero"
12347 " [in module %s]"), objfile_name (objfile));
12348 continue;
12349 }
12350
12351 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12352 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12353 record_block_range (block, start, end - 1);
12354 }
12355 }
12356 }
12357 }
12358
12359 /* Check whether the producer field indicates either of GCC < 4.6, or the
12360 Intel C/C++ compiler, and cache the result in CU. */
12361
12362 static void
12363 check_producer (struct dwarf2_cu *cu)
12364 {
12365 int major, minor;
12366
12367 if (cu->producer == NULL)
12368 {
12369 /* For unknown compilers expect their behavior is DWARF version
12370 compliant.
12371
12372 GCC started to support .debug_types sections by -gdwarf-4 since
12373 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12374 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12375 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12376 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12377 }
12378 else if (producer_is_gcc (cu->producer, &major, &minor))
12379 {
12380 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12381 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12382 }
12383 else if (startswith (cu->producer, "Intel(R) C"))
12384 cu->producer_is_icc = 1;
12385 else
12386 {
12387 /* For other non-GCC compilers, expect their behavior is DWARF version
12388 compliant. */
12389 }
12390
12391 cu->checked_producer = 1;
12392 }
12393
12394 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12395 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12396 during 4.6.0 experimental. */
12397
12398 static int
12399 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12400 {
12401 if (!cu->checked_producer)
12402 check_producer (cu);
12403
12404 return cu->producer_is_gxx_lt_4_6;
12405 }
12406
12407 /* Return the default accessibility type if it is not overriden by
12408 DW_AT_accessibility. */
12409
12410 static enum dwarf_access_attribute
12411 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12412 {
12413 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12414 {
12415 /* The default DWARF 2 accessibility for members is public, the default
12416 accessibility for inheritance is private. */
12417
12418 if (die->tag != DW_TAG_inheritance)
12419 return DW_ACCESS_public;
12420 else
12421 return DW_ACCESS_private;
12422 }
12423 else
12424 {
12425 /* DWARF 3+ defines the default accessibility a different way. The same
12426 rules apply now for DW_TAG_inheritance as for the members and it only
12427 depends on the container kind. */
12428
12429 if (die->parent->tag == DW_TAG_class_type)
12430 return DW_ACCESS_private;
12431 else
12432 return DW_ACCESS_public;
12433 }
12434 }
12435
12436 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12437 offset. If the attribute was not found return 0, otherwise return
12438 1. If it was found but could not properly be handled, set *OFFSET
12439 to 0. */
12440
12441 static int
12442 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12443 LONGEST *offset)
12444 {
12445 struct attribute *attr;
12446
12447 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12448 if (attr != NULL)
12449 {
12450 *offset = 0;
12451
12452 /* Note that we do not check for a section offset first here.
12453 This is because DW_AT_data_member_location is new in DWARF 4,
12454 so if we see it, we can assume that a constant form is really
12455 a constant and not a section offset. */
12456 if (attr_form_is_constant (attr))
12457 *offset = dwarf2_get_attr_constant_value (attr, 0);
12458 else if (attr_form_is_section_offset (attr))
12459 dwarf2_complex_location_expr_complaint ();
12460 else if (attr_form_is_block (attr))
12461 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12462 else
12463 dwarf2_complex_location_expr_complaint ();
12464
12465 return 1;
12466 }
12467
12468 return 0;
12469 }
12470
12471 /* Add an aggregate field to the field list. */
12472
12473 static void
12474 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12475 struct dwarf2_cu *cu)
12476 {
12477 struct objfile *objfile = cu->objfile;
12478 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12479 struct nextfield *new_field;
12480 struct attribute *attr;
12481 struct field *fp;
12482 const char *fieldname = "";
12483
12484 /* Allocate a new field list entry and link it in. */
12485 new_field = XNEW (struct nextfield);
12486 make_cleanup (xfree, new_field);
12487 memset (new_field, 0, sizeof (struct nextfield));
12488
12489 if (die->tag == DW_TAG_inheritance)
12490 {
12491 new_field->next = fip->baseclasses;
12492 fip->baseclasses = new_field;
12493 }
12494 else
12495 {
12496 new_field->next = fip->fields;
12497 fip->fields = new_field;
12498 }
12499 fip->nfields++;
12500
12501 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12502 if (attr)
12503 new_field->accessibility = DW_UNSND (attr);
12504 else
12505 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12506 if (new_field->accessibility != DW_ACCESS_public)
12507 fip->non_public_fields = 1;
12508
12509 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12510 if (attr)
12511 new_field->virtuality = DW_UNSND (attr);
12512 else
12513 new_field->virtuality = DW_VIRTUALITY_none;
12514
12515 fp = &new_field->field;
12516
12517 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12518 {
12519 LONGEST offset;
12520
12521 /* Data member other than a C++ static data member. */
12522
12523 /* Get type of field. */
12524 fp->type = die_type (die, cu);
12525
12526 SET_FIELD_BITPOS (*fp, 0);
12527
12528 /* Get bit size of field (zero if none). */
12529 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12530 if (attr)
12531 {
12532 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12533 }
12534 else
12535 {
12536 FIELD_BITSIZE (*fp) = 0;
12537 }
12538
12539 /* Get bit offset of field. */
12540 if (handle_data_member_location (die, cu, &offset))
12541 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12542 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12543 if (attr)
12544 {
12545 if (gdbarch_bits_big_endian (gdbarch))
12546 {
12547 /* For big endian bits, the DW_AT_bit_offset gives the
12548 additional bit offset from the MSB of the containing
12549 anonymous object to the MSB of the field. We don't
12550 have to do anything special since we don't need to
12551 know the size of the anonymous object. */
12552 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12553 }
12554 else
12555 {
12556 /* For little endian bits, compute the bit offset to the
12557 MSB of the anonymous object, subtract off the number of
12558 bits from the MSB of the field to the MSB of the
12559 object, and then subtract off the number of bits of
12560 the field itself. The result is the bit offset of
12561 the LSB of the field. */
12562 int anonymous_size;
12563 int bit_offset = DW_UNSND (attr);
12564
12565 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12566 if (attr)
12567 {
12568 /* The size of the anonymous object containing
12569 the bit field is explicit, so use the
12570 indicated size (in bytes). */
12571 anonymous_size = DW_UNSND (attr);
12572 }
12573 else
12574 {
12575 /* The size of the anonymous object containing
12576 the bit field must be inferred from the type
12577 attribute of the data member containing the
12578 bit field. */
12579 anonymous_size = TYPE_LENGTH (fp->type);
12580 }
12581 SET_FIELD_BITPOS (*fp,
12582 (FIELD_BITPOS (*fp)
12583 + anonymous_size * bits_per_byte
12584 - bit_offset - FIELD_BITSIZE (*fp)));
12585 }
12586 }
12587
12588 /* Get name of field. */
12589 fieldname = dwarf2_name (die, cu);
12590 if (fieldname == NULL)
12591 fieldname = "";
12592
12593 /* The name is already allocated along with this objfile, so we don't
12594 need to duplicate it for the type. */
12595 fp->name = fieldname;
12596
12597 /* Change accessibility for artificial fields (e.g. virtual table
12598 pointer or virtual base class pointer) to private. */
12599 if (dwarf2_attr (die, DW_AT_artificial, cu))
12600 {
12601 FIELD_ARTIFICIAL (*fp) = 1;
12602 new_field->accessibility = DW_ACCESS_private;
12603 fip->non_public_fields = 1;
12604 }
12605 }
12606 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12607 {
12608 /* C++ static member. */
12609
12610 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12611 is a declaration, but all versions of G++ as of this writing
12612 (so through at least 3.2.1) incorrectly generate
12613 DW_TAG_variable tags. */
12614
12615 const char *physname;
12616
12617 /* Get name of field. */
12618 fieldname = dwarf2_name (die, cu);
12619 if (fieldname == NULL)
12620 return;
12621
12622 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12623 if (attr
12624 /* Only create a symbol if this is an external value.
12625 new_symbol checks this and puts the value in the global symbol
12626 table, which we want. If it is not external, new_symbol
12627 will try to put the value in cu->list_in_scope which is wrong. */
12628 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12629 {
12630 /* A static const member, not much different than an enum as far as
12631 we're concerned, except that we can support more types. */
12632 new_symbol (die, NULL, cu);
12633 }
12634
12635 /* Get physical name. */
12636 physname = dwarf2_physname (fieldname, die, cu);
12637
12638 /* The name is already allocated along with this objfile, so we don't
12639 need to duplicate it for the type. */
12640 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12641 FIELD_TYPE (*fp) = die_type (die, cu);
12642 FIELD_NAME (*fp) = fieldname;
12643 }
12644 else if (die->tag == DW_TAG_inheritance)
12645 {
12646 LONGEST offset;
12647
12648 /* C++ base class field. */
12649 if (handle_data_member_location (die, cu, &offset))
12650 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12651 FIELD_BITSIZE (*fp) = 0;
12652 FIELD_TYPE (*fp) = die_type (die, cu);
12653 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12654 fip->nbaseclasses++;
12655 }
12656 }
12657
12658 /* Add a typedef defined in the scope of the FIP's class. */
12659
12660 static void
12661 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12662 struct dwarf2_cu *cu)
12663 {
12664 struct typedef_field_list *new_field;
12665 struct typedef_field *fp;
12666
12667 /* Allocate a new field list entry and link it in. */
12668 new_field = XCNEW (struct typedef_field_list);
12669 make_cleanup (xfree, new_field);
12670
12671 gdb_assert (die->tag == DW_TAG_typedef);
12672
12673 fp = &new_field->field;
12674
12675 /* Get name of field. */
12676 fp->name = dwarf2_name (die, cu);
12677 if (fp->name == NULL)
12678 return;
12679
12680 fp->type = read_type_die (die, cu);
12681
12682 new_field->next = fip->typedef_field_list;
12683 fip->typedef_field_list = new_field;
12684 fip->typedef_field_list_count++;
12685 }
12686
12687 /* Create the vector of fields, and attach it to the type. */
12688
12689 static void
12690 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12691 struct dwarf2_cu *cu)
12692 {
12693 int nfields = fip->nfields;
12694
12695 /* Record the field count, allocate space for the array of fields,
12696 and create blank accessibility bitfields if necessary. */
12697 TYPE_NFIELDS (type) = nfields;
12698 TYPE_FIELDS (type) = (struct field *)
12699 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12700 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12701
12702 if (fip->non_public_fields && cu->language != language_ada)
12703 {
12704 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12705
12706 TYPE_FIELD_PRIVATE_BITS (type) =
12707 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12708 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12709
12710 TYPE_FIELD_PROTECTED_BITS (type) =
12711 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12712 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12713
12714 TYPE_FIELD_IGNORE_BITS (type) =
12715 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12716 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12717 }
12718
12719 /* If the type has baseclasses, allocate and clear a bit vector for
12720 TYPE_FIELD_VIRTUAL_BITS. */
12721 if (fip->nbaseclasses && cu->language != language_ada)
12722 {
12723 int num_bytes = B_BYTES (fip->nbaseclasses);
12724 unsigned char *pointer;
12725
12726 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12727 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
12728 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12729 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12730 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12731 }
12732
12733 /* Copy the saved-up fields into the field vector. Start from the head of
12734 the list, adding to the tail of the field array, so that they end up in
12735 the same order in the array in which they were added to the list. */
12736 while (nfields-- > 0)
12737 {
12738 struct nextfield *fieldp;
12739
12740 if (fip->fields)
12741 {
12742 fieldp = fip->fields;
12743 fip->fields = fieldp->next;
12744 }
12745 else
12746 {
12747 fieldp = fip->baseclasses;
12748 fip->baseclasses = fieldp->next;
12749 }
12750
12751 TYPE_FIELD (type, nfields) = fieldp->field;
12752 switch (fieldp->accessibility)
12753 {
12754 case DW_ACCESS_private:
12755 if (cu->language != language_ada)
12756 SET_TYPE_FIELD_PRIVATE (type, nfields);
12757 break;
12758
12759 case DW_ACCESS_protected:
12760 if (cu->language != language_ada)
12761 SET_TYPE_FIELD_PROTECTED (type, nfields);
12762 break;
12763
12764 case DW_ACCESS_public:
12765 break;
12766
12767 default:
12768 /* Unknown accessibility. Complain and treat it as public. */
12769 {
12770 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12771 fieldp->accessibility);
12772 }
12773 break;
12774 }
12775 if (nfields < fip->nbaseclasses)
12776 {
12777 switch (fieldp->virtuality)
12778 {
12779 case DW_VIRTUALITY_virtual:
12780 case DW_VIRTUALITY_pure_virtual:
12781 if (cu->language == language_ada)
12782 error (_("unexpected virtuality in component of Ada type"));
12783 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12784 break;
12785 }
12786 }
12787 }
12788 }
12789
12790 /* Return true if this member function is a constructor, false
12791 otherwise. */
12792
12793 static int
12794 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12795 {
12796 const char *fieldname;
12797 const char *type_name;
12798 int len;
12799
12800 if (die->parent == NULL)
12801 return 0;
12802
12803 if (die->parent->tag != DW_TAG_structure_type
12804 && die->parent->tag != DW_TAG_union_type
12805 && die->parent->tag != DW_TAG_class_type)
12806 return 0;
12807
12808 fieldname = dwarf2_name (die, cu);
12809 type_name = dwarf2_name (die->parent, cu);
12810 if (fieldname == NULL || type_name == NULL)
12811 return 0;
12812
12813 len = strlen (fieldname);
12814 return (strncmp (fieldname, type_name, len) == 0
12815 && (type_name[len] == '\0' || type_name[len] == '<'));
12816 }
12817
12818 /* Add a member function to the proper fieldlist. */
12819
12820 static void
12821 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12822 struct type *type, struct dwarf2_cu *cu)
12823 {
12824 struct objfile *objfile = cu->objfile;
12825 struct attribute *attr;
12826 struct fnfieldlist *flp;
12827 int i;
12828 struct fn_field *fnp;
12829 const char *fieldname;
12830 struct nextfnfield *new_fnfield;
12831 struct type *this_type;
12832 enum dwarf_access_attribute accessibility;
12833
12834 if (cu->language == language_ada)
12835 error (_("unexpected member function in Ada type"));
12836
12837 /* Get name of member function. */
12838 fieldname = dwarf2_name (die, cu);
12839 if (fieldname == NULL)
12840 return;
12841
12842 /* Look up member function name in fieldlist. */
12843 for (i = 0; i < fip->nfnfields; i++)
12844 {
12845 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12846 break;
12847 }
12848
12849 /* Create new list element if necessary. */
12850 if (i < fip->nfnfields)
12851 flp = &fip->fnfieldlists[i];
12852 else
12853 {
12854 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12855 {
12856 fip->fnfieldlists = (struct fnfieldlist *)
12857 xrealloc (fip->fnfieldlists,
12858 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12859 * sizeof (struct fnfieldlist));
12860 if (fip->nfnfields == 0)
12861 make_cleanup (free_current_contents, &fip->fnfieldlists);
12862 }
12863 flp = &fip->fnfieldlists[fip->nfnfields];
12864 flp->name = fieldname;
12865 flp->length = 0;
12866 flp->head = NULL;
12867 i = fip->nfnfields++;
12868 }
12869
12870 /* Create a new member function field and chain it to the field list
12871 entry. */
12872 new_fnfield = XNEW (struct nextfnfield);
12873 make_cleanup (xfree, new_fnfield);
12874 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12875 new_fnfield->next = flp->head;
12876 flp->head = new_fnfield;
12877 flp->length++;
12878
12879 /* Fill in the member function field info. */
12880 fnp = &new_fnfield->fnfield;
12881
12882 /* Delay processing of the physname until later. */
12883 if (cu->language == language_cplus)
12884 {
12885 add_to_method_list (type, i, flp->length - 1, fieldname,
12886 die, cu);
12887 }
12888 else
12889 {
12890 const char *physname = dwarf2_physname (fieldname, die, cu);
12891 fnp->physname = physname ? physname : "";
12892 }
12893
12894 fnp->type = alloc_type (objfile);
12895 this_type = read_type_die (die, cu);
12896 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12897 {
12898 int nparams = TYPE_NFIELDS (this_type);
12899
12900 /* TYPE is the domain of this method, and THIS_TYPE is the type
12901 of the method itself (TYPE_CODE_METHOD). */
12902 smash_to_method_type (fnp->type, type,
12903 TYPE_TARGET_TYPE (this_type),
12904 TYPE_FIELDS (this_type),
12905 TYPE_NFIELDS (this_type),
12906 TYPE_VARARGS (this_type));
12907
12908 /* Handle static member functions.
12909 Dwarf2 has no clean way to discern C++ static and non-static
12910 member functions. G++ helps GDB by marking the first
12911 parameter for non-static member functions (which is the this
12912 pointer) as artificial. We obtain this information from
12913 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12914 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12915 fnp->voffset = VOFFSET_STATIC;
12916 }
12917 else
12918 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12919 dwarf2_full_name (fieldname, die, cu));
12920
12921 /* Get fcontext from DW_AT_containing_type if present. */
12922 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12923 fnp->fcontext = die_containing_type (die, cu);
12924
12925 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12926 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12927
12928 /* Get accessibility. */
12929 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12930 if (attr)
12931 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
12932 else
12933 accessibility = dwarf2_default_access_attribute (die, cu);
12934 switch (accessibility)
12935 {
12936 case DW_ACCESS_private:
12937 fnp->is_private = 1;
12938 break;
12939 case DW_ACCESS_protected:
12940 fnp->is_protected = 1;
12941 break;
12942 }
12943
12944 /* Check for artificial methods. */
12945 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12946 if (attr && DW_UNSND (attr) != 0)
12947 fnp->is_artificial = 1;
12948
12949 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12950
12951 /* Get index in virtual function table if it is a virtual member
12952 function. For older versions of GCC, this is an offset in the
12953 appropriate virtual table, as specified by DW_AT_containing_type.
12954 For everyone else, it is an expression to be evaluated relative
12955 to the object address. */
12956
12957 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12958 if (attr)
12959 {
12960 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12961 {
12962 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12963 {
12964 /* Old-style GCC. */
12965 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12966 }
12967 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12968 || (DW_BLOCK (attr)->size > 1
12969 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12970 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12971 {
12972 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12973 if ((fnp->voffset % cu->header.addr_size) != 0)
12974 dwarf2_complex_location_expr_complaint ();
12975 else
12976 fnp->voffset /= cu->header.addr_size;
12977 fnp->voffset += 2;
12978 }
12979 else
12980 dwarf2_complex_location_expr_complaint ();
12981
12982 if (!fnp->fcontext)
12983 {
12984 /* If there is no `this' field and no DW_AT_containing_type,
12985 we cannot actually find a base class context for the
12986 vtable! */
12987 if (TYPE_NFIELDS (this_type) == 0
12988 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
12989 {
12990 complaint (&symfile_complaints,
12991 _("cannot determine context for virtual member "
12992 "function \"%s\" (offset %d)"),
12993 fieldname, die->offset.sect_off);
12994 }
12995 else
12996 {
12997 fnp->fcontext
12998 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12999 }
13000 }
13001 }
13002 else if (attr_form_is_section_offset (attr))
13003 {
13004 dwarf2_complex_location_expr_complaint ();
13005 }
13006 else
13007 {
13008 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
13009 fieldname);
13010 }
13011 }
13012 else
13013 {
13014 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13015 if (attr && DW_UNSND (attr))
13016 {
13017 /* GCC does this, as of 2008-08-25; PR debug/37237. */
13018 complaint (&symfile_complaints,
13019 _("Member function \"%s\" (offset %d) is virtual "
13020 "but the vtable offset is not specified"),
13021 fieldname, die->offset.sect_off);
13022 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13023 TYPE_CPLUS_DYNAMIC (type) = 1;
13024 }
13025 }
13026 }
13027
13028 /* Create the vector of member function fields, and attach it to the type. */
13029
13030 static void
13031 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
13032 struct dwarf2_cu *cu)
13033 {
13034 struct fnfieldlist *flp;
13035 int i;
13036
13037 if (cu->language == language_ada)
13038 error (_("unexpected member functions in Ada type"));
13039
13040 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13041 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13042 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13043
13044 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13045 {
13046 struct nextfnfield *nfp = flp->head;
13047 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13048 int k;
13049
13050 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13051 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13052 fn_flp->fn_fields = (struct fn_field *)
13053 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13054 for (k = flp->length; (k--, nfp); nfp = nfp->next)
13055 fn_flp->fn_fields[k] = nfp->fnfield;
13056 }
13057
13058 TYPE_NFN_FIELDS (type) = fip->nfnfields;
13059 }
13060
13061 /* Returns non-zero if NAME is the name of a vtable member in CU's
13062 language, zero otherwise. */
13063 static int
13064 is_vtable_name (const char *name, struct dwarf2_cu *cu)
13065 {
13066 static const char vptr[] = "_vptr";
13067 static const char vtable[] = "vtable";
13068
13069 /* Look for the C++ form of the vtable. */
13070 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
13071 return 1;
13072
13073 return 0;
13074 }
13075
13076 /* GCC outputs unnamed structures that are really pointers to member
13077 functions, with the ABI-specified layout. If TYPE describes
13078 such a structure, smash it into a member function type.
13079
13080 GCC shouldn't do this; it should just output pointer to member DIEs.
13081 This is GCC PR debug/28767. */
13082
13083 static void
13084 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
13085 {
13086 struct type *pfn_type, *self_type, *new_type;
13087
13088 /* Check for a structure with no name and two children. */
13089 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13090 return;
13091
13092 /* Check for __pfn and __delta members. */
13093 if (TYPE_FIELD_NAME (type, 0) == NULL
13094 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13095 || TYPE_FIELD_NAME (type, 1) == NULL
13096 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13097 return;
13098
13099 /* Find the type of the method. */
13100 pfn_type = TYPE_FIELD_TYPE (type, 0);
13101 if (pfn_type == NULL
13102 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13103 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
13104 return;
13105
13106 /* Look for the "this" argument. */
13107 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13108 if (TYPE_NFIELDS (pfn_type) == 0
13109 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
13110 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
13111 return;
13112
13113 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
13114 new_type = alloc_type (objfile);
13115 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
13116 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13117 TYPE_VARARGS (pfn_type));
13118 smash_to_methodptr_type (type, new_type);
13119 }
13120
13121 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13122 (icc). */
13123
13124 static int
13125 producer_is_icc (struct dwarf2_cu *cu)
13126 {
13127 if (!cu->checked_producer)
13128 check_producer (cu);
13129
13130 return cu->producer_is_icc;
13131 }
13132
13133 /* Called when we find the DIE that starts a structure or union scope
13134 (definition) to create a type for the structure or union. Fill in
13135 the type's name and general properties; the members will not be
13136 processed until process_structure_scope. A symbol table entry for
13137 the type will also not be done until process_structure_scope (assuming
13138 the type has a name).
13139
13140 NOTE: we need to call these functions regardless of whether or not the
13141 DIE has a DW_AT_name attribute, since it might be an anonymous
13142 structure or union. This gets the type entered into our set of
13143 user defined types. */
13144
13145 static struct type *
13146 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
13147 {
13148 struct objfile *objfile = cu->objfile;
13149 struct type *type;
13150 struct attribute *attr;
13151 const char *name;
13152
13153 /* If the definition of this type lives in .debug_types, read that type.
13154 Don't follow DW_AT_specification though, that will take us back up
13155 the chain and we want to go down. */
13156 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13157 if (attr)
13158 {
13159 type = get_DW_AT_signature_type (die, attr, cu);
13160
13161 /* The type's CU may not be the same as CU.
13162 Ensure TYPE is recorded with CU in die_type_hash. */
13163 return set_die_type (die, type, cu);
13164 }
13165
13166 type = alloc_type (objfile);
13167 INIT_CPLUS_SPECIFIC (type);
13168
13169 name = dwarf2_name (die, cu);
13170 if (name != NULL)
13171 {
13172 if (cu->language == language_cplus
13173 || cu->language == language_d
13174 || cu->language == language_rust)
13175 {
13176 const char *full_name = dwarf2_full_name (name, die, cu);
13177
13178 /* dwarf2_full_name might have already finished building the DIE's
13179 type. If so, there is no need to continue. */
13180 if (get_die_type (die, cu) != NULL)
13181 return get_die_type (die, cu);
13182
13183 TYPE_TAG_NAME (type) = full_name;
13184 if (die->tag == DW_TAG_structure_type
13185 || die->tag == DW_TAG_class_type)
13186 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13187 }
13188 else
13189 {
13190 /* The name is already allocated along with this objfile, so
13191 we don't need to duplicate it for the type. */
13192 TYPE_TAG_NAME (type) = name;
13193 if (die->tag == DW_TAG_class_type)
13194 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13195 }
13196 }
13197
13198 if (die->tag == DW_TAG_structure_type)
13199 {
13200 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13201 }
13202 else if (die->tag == DW_TAG_union_type)
13203 {
13204 TYPE_CODE (type) = TYPE_CODE_UNION;
13205 }
13206 else
13207 {
13208 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13209 }
13210
13211 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13212 TYPE_DECLARED_CLASS (type) = 1;
13213
13214 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13215 if (attr)
13216 {
13217 if (attr_form_is_constant (attr))
13218 TYPE_LENGTH (type) = DW_UNSND (attr);
13219 else
13220 {
13221 /* For the moment, dynamic type sizes are not supported
13222 by GDB's struct type. The actual size is determined
13223 on-demand when resolving the type of a given object,
13224 so set the type's length to zero for now. Otherwise,
13225 we record an expression as the length, and that expression
13226 could lead to a very large value, which could eventually
13227 lead to us trying to allocate that much memory when creating
13228 a value of that type. */
13229 TYPE_LENGTH (type) = 0;
13230 }
13231 }
13232 else
13233 {
13234 TYPE_LENGTH (type) = 0;
13235 }
13236
13237 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
13238 {
13239 /* ICC does not output the required DW_AT_declaration
13240 on incomplete types, but gives them a size of zero. */
13241 TYPE_STUB (type) = 1;
13242 }
13243 else
13244 TYPE_STUB_SUPPORTED (type) = 1;
13245
13246 if (die_is_declaration (die, cu))
13247 TYPE_STUB (type) = 1;
13248 else if (attr == NULL && die->child == NULL
13249 && producer_is_realview (cu->producer))
13250 /* RealView does not output the required DW_AT_declaration
13251 on incomplete types. */
13252 TYPE_STUB (type) = 1;
13253
13254 /* We need to add the type field to the die immediately so we don't
13255 infinitely recurse when dealing with pointers to the structure
13256 type within the structure itself. */
13257 set_die_type (die, type, cu);
13258
13259 /* set_die_type should be already done. */
13260 set_descriptive_type (type, die, cu);
13261
13262 return type;
13263 }
13264
13265 /* Finish creating a structure or union type, including filling in
13266 its members and creating a symbol for it. */
13267
13268 static void
13269 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13270 {
13271 struct objfile *objfile = cu->objfile;
13272 struct die_info *child_die;
13273 struct type *type;
13274
13275 type = get_die_type (die, cu);
13276 if (type == NULL)
13277 type = read_structure_type (die, cu);
13278
13279 if (die->child != NULL && ! die_is_declaration (die, cu))
13280 {
13281 struct field_info fi;
13282 VEC (symbolp) *template_args = NULL;
13283 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13284
13285 memset (&fi, 0, sizeof (struct field_info));
13286
13287 child_die = die->child;
13288
13289 while (child_die && child_die->tag)
13290 {
13291 if (child_die->tag == DW_TAG_member
13292 || child_die->tag == DW_TAG_variable)
13293 {
13294 /* NOTE: carlton/2002-11-05: A C++ static data member
13295 should be a DW_TAG_member that is a declaration, but
13296 all versions of G++ as of this writing (so through at
13297 least 3.2.1) incorrectly generate DW_TAG_variable
13298 tags for them instead. */
13299 dwarf2_add_field (&fi, child_die, cu);
13300 }
13301 else if (child_die->tag == DW_TAG_subprogram)
13302 {
13303 /* Rust doesn't have member functions in the C++ sense.
13304 However, it does emit ordinary functions as children
13305 of a struct DIE. */
13306 if (cu->language == language_rust)
13307 read_func_scope (child_die, cu);
13308 else
13309 {
13310 /* C++ member function. */
13311 dwarf2_add_member_fn (&fi, child_die, type, cu);
13312 }
13313 }
13314 else if (child_die->tag == DW_TAG_inheritance)
13315 {
13316 /* C++ base class field. */
13317 dwarf2_add_field (&fi, child_die, cu);
13318 }
13319 else if (child_die->tag == DW_TAG_typedef)
13320 dwarf2_add_typedef (&fi, child_die, cu);
13321 else if (child_die->tag == DW_TAG_template_type_param
13322 || child_die->tag == DW_TAG_template_value_param)
13323 {
13324 struct symbol *arg = new_symbol (child_die, NULL, cu);
13325
13326 if (arg != NULL)
13327 VEC_safe_push (symbolp, template_args, arg);
13328 }
13329
13330 child_die = sibling_die (child_die);
13331 }
13332
13333 /* Attach template arguments to type. */
13334 if (! VEC_empty (symbolp, template_args))
13335 {
13336 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13337 TYPE_N_TEMPLATE_ARGUMENTS (type)
13338 = VEC_length (symbolp, template_args);
13339 TYPE_TEMPLATE_ARGUMENTS (type)
13340 = XOBNEWVEC (&objfile->objfile_obstack,
13341 struct symbol *,
13342 TYPE_N_TEMPLATE_ARGUMENTS (type));
13343 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13344 VEC_address (symbolp, template_args),
13345 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13346 * sizeof (struct symbol *)));
13347 VEC_free (symbolp, template_args);
13348 }
13349
13350 /* Attach fields and member functions to the type. */
13351 if (fi.nfields)
13352 dwarf2_attach_fields_to_type (&fi, type, cu);
13353 if (fi.nfnfields)
13354 {
13355 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13356
13357 /* Get the type which refers to the base class (possibly this
13358 class itself) which contains the vtable pointer for the current
13359 class from the DW_AT_containing_type attribute. This use of
13360 DW_AT_containing_type is a GNU extension. */
13361
13362 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13363 {
13364 struct type *t = die_containing_type (die, cu);
13365
13366 set_type_vptr_basetype (type, t);
13367 if (type == t)
13368 {
13369 int i;
13370
13371 /* Our own class provides vtbl ptr. */
13372 for (i = TYPE_NFIELDS (t) - 1;
13373 i >= TYPE_N_BASECLASSES (t);
13374 --i)
13375 {
13376 const char *fieldname = TYPE_FIELD_NAME (t, i);
13377
13378 if (is_vtable_name (fieldname, cu))
13379 {
13380 set_type_vptr_fieldno (type, i);
13381 break;
13382 }
13383 }
13384
13385 /* Complain if virtual function table field not found. */
13386 if (i < TYPE_N_BASECLASSES (t))
13387 complaint (&symfile_complaints,
13388 _("virtual function table pointer "
13389 "not found when defining class '%s'"),
13390 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13391 "");
13392 }
13393 else
13394 {
13395 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
13396 }
13397 }
13398 else if (cu->producer
13399 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
13400 {
13401 /* The IBM XLC compiler does not provide direct indication
13402 of the containing type, but the vtable pointer is
13403 always named __vfp. */
13404
13405 int i;
13406
13407 for (i = TYPE_NFIELDS (type) - 1;
13408 i >= TYPE_N_BASECLASSES (type);
13409 --i)
13410 {
13411 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13412 {
13413 set_type_vptr_fieldno (type, i);
13414 set_type_vptr_basetype (type, type);
13415 break;
13416 }
13417 }
13418 }
13419 }
13420
13421 /* Copy fi.typedef_field_list linked list elements content into the
13422 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13423 if (fi.typedef_field_list)
13424 {
13425 int i = fi.typedef_field_list_count;
13426
13427 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13428 TYPE_TYPEDEF_FIELD_ARRAY (type)
13429 = ((struct typedef_field *)
13430 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
13431 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13432
13433 /* Reverse the list order to keep the debug info elements order. */
13434 while (--i >= 0)
13435 {
13436 struct typedef_field *dest, *src;
13437
13438 dest = &TYPE_TYPEDEF_FIELD (type, i);
13439 src = &fi.typedef_field_list->field;
13440 fi.typedef_field_list = fi.typedef_field_list->next;
13441 *dest = *src;
13442 }
13443 }
13444
13445 do_cleanups (back_to);
13446 }
13447
13448 quirk_gcc_member_function_pointer (type, objfile);
13449
13450 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13451 snapshots) has been known to create a die giving a declaration
13452 for a class that has, as a child, a die giving a definition for a
13453 nested class. So we have to process our children even if the
13454 current die is a declaration. Normally, of course, a declaration
13455 won't have any children at all. */
13456
13457 child_die = die->child;
13458
13459 while (child_die != NULL && child_die->tag)
13460 {
13461 if (child_die->tag == DW_TAG_member
13462 || child_die->tag == DW_TAG_variable
13463 || child_die->tag == DW_TAG_inheritance
13464 || child_die->tag == DW_TAG_template_value_param
13465 || child_die->tag == DW_TAG_template_type_param)
13466 {
13467 /* Do nothing. */
13468 }
13469 else
13470 process_die (child_die, cu);
13471
13472 child_die = sibling_die (child_die);
13473 }
13474
13475 /* Do not consider external references. According to the DWARF standard,
13476 these DIEs are identified by the fact that they have no byte_size
13477 attribute, and a declaration attribute. */
13478 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13479 || !die_is_declaration (die, cu))
13480 new_symbol (die, type, cu);
13481 }
13482
13483 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13484 update TYPE using some information only available in DIE's children. */
13485
13486 static void
13487 update_enumeration_type_from_children (struct die_info *die,
13488 struct type *type,
13489 struct dwarf2_cu *cu)
13490 {
13491 struct obstack obstack;
13492 struct die_info *child_die;
13493 int unsigned_enum = 1;
13494 int flag_enum = 1;
13495 ULONGEST mask = 0;
13496 struct cleanup *old_chain;
13497
13498 obstack_init (&obstack);
13499 old_chain = make_cleanup_obstack_free (&obstack);
13500
13501 for (child_die = die->child;
13502 child_die != NULL && child_die->tag;
13503 child_die = sibling_die (child_die))
13504 {
13505 struct attribute *attr;
13506 LONGEST value;
13507 const gdb_byte *bytes;
13508 struct dwarf2_locexpr_baton *baton;
13509 const char *name;
13510
13511 if (child_die->tag != DW_TAG_enumerator)
13512 continue;
13513
13514 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13515 if (attr == NULL)
13516 continue;
13517
13518 name = dwarf2_name (child_die, cu);
13519 if (name == NULL)
13520 name = "<anonymous enumerator>";
13521
13522 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13523 &value, &bytes, &baton);
13524 if (value < 0)
13525 {
13526 unsigned_enum = 0;
13527 flag_enum = 0;
13528 }
13529 else if ((mask & value) != 0)
13530 flag_enum = 0;
13531 else
13532 mask |= value;
13533
13534 /* If we already know that the enum type is neither unsigned, nor
13535 a flag type, no need to look at the rest of the enumerates. */
13536 if (!unsigned_enum && !flag_enum)
13537 break;
13538 }
13539
13540 if (unsigned_enum)
13541 TYPE_UNSIGNED (type) = 1;
13542 if (flag_enum)
13543 TYPE_FLAG_ENUM (type) = 1;
13544
13545 do_cleanups (old_chain);
13546 }
13547
13548 /* Given a DW_AT_enumeration_type die, set its type. We do not
13549 complete the type's fields yet, or create any symbols. */
13550
13551 static struct type *
13552 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13553 {
13554 struct objfile *objfile = cu->objfile;
13555 struct type *type;
13556 struct attribute *attr;
13557 const char *name;
13558
13559 /* If the definition of this type lives in .debug_types, read that type.
13560 Don't follow DW_AT_specification though, that will take us back up
13561 the chain and we want to go down. */
13562 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13563 if (attr)
13564 {
13565 type = get_DW_AT_signature_type (die, attr, cu);
13566
13567 /* The type's CU may not be the same as CU.
13568 Ensure TYPE is recorded with CU in die_type_hash. */
13569 return set_die_type (die, type, cu);
13570 }
13571
13572 type = alloc_type (objfile);
13573
13574 TYPE_CODE (type) = TYPE_CODE_ENUM;
13575 name = dwarf2_full_name (NULL, die, cu);
13576 if (name != NULL)
13577 TYPE_TAG_NAME (type) = name;
13578
13579 attr = dwarf2_attr (die, DW_AT_type, cu);
13580 if (attr != NULL)
13581 {
13582 struct type *underlying_type = die_type (die, cu);
13583
13584 TYPE_TARGET_TYPE (type) = underlying_type;
13585 }
13586
13587 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13588 if (attr)
13589 {
13590 TYPE_LENGTH (type) = DW_UNSND (attr);
13591 }
13592 else
13593 {
13594 TYPE_LENGTH (type) = 0;
13595 }
13596
13597 /* The enumeration DIE can be incomplete. In Ada, any type can be
13598 declared as private in the package spec, and then defined only
13599 inside the package body. Such types are known as Taft Amendment
13600 Types. When another package uses such a type, an incomplete DIE
13601 may be generated by the compiler. */
13602 if (die_is_declaration (die, cu))
13603 TYPE_STUB (type) = 1;
13604
13605 /* Finish the creation of this type by using the enum's children.
13606 We must call this even when the underlying type has been provided
13607 so that we can determine if we're looking at a "flag" enum. */
13608 update_enumeration_type_from_children (die, type, cu);
13609
13610 /* If this type has an underlying type that is not a stub, then we
13611 may use its attributes. We always use the "unsigned" attribute
13612 in this situation, because ordinarily we guess whether the type
13613 is unsigned -- but the guess can be wrong and the underlying type
13614 can tell us the reality. However, we defer to a local size
13615 attribute if one exists, because this lets the compiler override
13616 the underlying type if needed. */
13617 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13618 {
13619 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13620 if (TYPE_LENGTH (type) == 0)
13621 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13622 }
13623
13624 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13625
13626 return set_die_type (die, type, cu);
13627 }
13628
13629 /* Given a pointer to a die which begins an enumeration, process all
13630 the dies that define the members of the enumeration, and create the
13631 symbol for the enumeration type.
13632
13633 NOTE: We reverse the order of the element list. */
13634
13635 static void
13636 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13637 {
13638 struct type *this_type;
13639
13640 this_type = get_die_type (die, cu);
13641 if (this_type == NULL)
13642 this_type = read_enumeration_type (die, cu);
13643
13644 if (die->child != NULL)
13645 {
13646 struct die_info *child_die;
13647 struct symbol *sym;
13648 struct field *fields = NULL;
13649 int num_fields = 0;
13650 const char *name;
13651
13652 child_die = die->child;
13653 while (child_die && child_die->tag)
13654 {
13655 if (child_die->tag != DW_TAG_enumerator)
13656 {
13657 process_die (child_die, cu);
13658 }
13659 else
13660 {
13661 name = dwarf2_name (child_die, cu);
13662 if (name)
13663 {
13664 sym = new_symbol (child_die, this_type, cu);
13665
13666 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13667 {
13668 fields = (struct field *)
13669 xrealloc (fields,
13670 (num_fields + DW_FIELD_ALLOC_CHUNK)
13671 * sizeof (struct field));
13672 }
13673
13674 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13675 FIELD_TYPE (fields[num_fields]) = NULL;
13676 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13677 FIELD_BITSIZE (fields[num_fields]) = 0;
13678
13679 num_fields++;
13680 }
13681 }
13682
13683 child_die = sibling_die (child_die);
13684 }
13685
13686 if (num_fields)
13687 {
13688 TYPE_NFIELDS (this_type) = num_fields;
13689 TYPE_FIELDS (this_type) = (struct field *)
13690 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13691 memcpy (TYPE_FIELDS (this_type), fields,
13692 sizeof (struct field) * num_fields);
13693 xfree (fields);
13694 }
13695 }
13696
13697 /* If we are reading an enum from a .debug_types unit, and the enum
13698 is a declaration, and the enum is not the signatured type in the
13699 unit, then we do not want to add a symbol for it. Adding a
13700 symbol would in some cases obscure the true definition of the
13701 enum, giving users an incomplete type when the definition is
13702 actually available. Note that we do not want to do this for all
13703 enums which are just declarations, because C++0x allows forward
13704 enum declarations. */
13705 if (cu->per_cu->is_debug_types
13706 && die_is_declaration (die, cu))
13707 {
13708 struct signatured_type *sig_type;
13709
13710 sig_type = (struct signatured_type *) cu->per_cu;
13711 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13712 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13713 return;
13714 }
13715
13716 new_symbol (die, this_type, cu);
13717 }
13718
13719 /* Extract all information from a DW_TAG_array_type DIE and put it in
13720 the DIE's type field. For now, this only handles one dimensional
13721 arrays. */
13722
13723 static struct type *
13724 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13725 {
13726 struct objfile *objfile = cu->objfile;
13727 struct die_info *child_die;
13728 struct type *type;
13729 struct type *element_type, *range_type, *index_type;
13730 struct type **range_types = NULL;
13731 struct attribute *attr;
13732 int ndim = 0;
13733 struct cleanup *back_to;
13734 const char *name;
13735 unsigned int bit_stride = 0;
13736
13737 element_type = die_type (die, cu);
13738
13739 /* The die_type call above may have already set the type for this DIE. */
13740 type = get_die_type (die, cu);
13741 if (type)
13742 return type;
13743
13744 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13745 if (attr != NULL)
13746 bit_stride = DW_UNSND (attr) * 8;
13747
13748 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13749 if (attr != NULL)
13750 bit_stride = DW_UNSND (attr);
13751
13752 /* Irix 6.2 native cc creates array types without children for
13753 arrays with unspecified length. */
13754 if (die->child == NULL)
13755 {
13756 index_type = objfile_type (objfile)->builtin_int;
13757 range_type = create_static_range_type (NULL, index_type, 0, -1);
13758 type = create_array_type_with_stride (NULL, element_type, range_type,
13759 bit_stride);
13760 return set_die_type (die, type, cu);
13761 }
13762
13763 back_to = make_cleanup (null_cleanup, NULL);
13764 child_die = die->child;
13765 while (child_die && child_die->tag)
13766 {
13767 if (child_die->tag == DW_TAG_subrange_type)
13768 {
13769 struct type *child_type = read_type_die (child_die, cu);
13770
13771 if (child_type != NULL)
13772 {
13773 /* The range type was succesfully read. Save it for the
13774 array type creation. */
13775 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13776 {
13777 range_types = (struct type **)
13778 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13779 * sizeof (struct type *));
13780 if (ndim == 0)
13781 make_cleanup (free_current_contents, &range_types);
13782 }
13783 range_types[ndim++] = child_type;
13784 }
13785 }
13786 child_die = sibling_die (child_die);
13787 }
13788
13789 /* Dwarf2 dimensions are output from left to right, create the
13790 necessary array types in backwards order. */
13791
13792 type = element_type;
13793
13794 if (read_array_order (die, cu) == DW_ORD_col_major)
13795 {
13796 int i = 0;
13797
13798 while (i < ndim)
13799 type = create_array_type_with_stride (NULL, type, range_types[i++],
13800 bit_stride);
13801 }
13802 else
13803 {
13804 while (ndim-- > 0)
13805 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13806 bit_stride);
13807 }
13808
13809 /* Understand Dwarf2 support for vector types (like they occur on
13810 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13811 array type. This is not part of the Dwarf2/3 standard yet, but a
13812 custom vendor extension. The main difference between a regular
13813 array and the vector variant is that vectors are passed by value
13814 to functions. */
13815 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13816 if (attr)
13817 make_vector_type (type);
13818
13819 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13820 implementation may choose to implement triple vectors using this
13821 attribute. */
13822 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13823 if (attr)
13824 {
13825 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13826 TYPE_LENGTH (type) = DW_UNSND (attr);
13827 else
13828 complaint (&symfile_complaints,
13829 _("DW_AT_byte_size for array type smaller "
13830 "than the total size of elements"));
13831 }
13832
13833 name = dwarf2_name (die, cu);
13834 if (name)
13835 TYPE_NAME (type) = name;
13836
13837 /* Install the type in the die. */
13838 set_die_type (die, type, cu);
13839
13840 /* set_die_type should be already done. */
13841 set_descriptive_type (type, die, cu);
13842
13843 do_cleanups (back_to);
13844
13845 return type;
13846 }
13847
13848 static enum dwarf_array_dim_ordering
13849 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13850 {
13851 struct attribute *attr;
13852
13853 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13854
13855 if (attr)
13856 return (enum dwarf_array_dim_ordering) DW_SND (attr);
13857
13858 /* GNU F77 is a special case, as at 08/2004 array type info is the
13859 opposite order to the dwarf2 specification, but data is still
13860 laid out as per normal fortran.
13861
13862 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13863 version checking. */
13864
13865 if (cu->language == language_fortran
13866 && cu->producer && strstr (cu->producer, "GNU F77"))
13867 {
13868 return DW_ORD_row_major;
13869 }
13870
13871 switch (cu->language_defn->la_array_ordering)
13872 {
13873 case array_column_major:
13874 return DW_ORD_col_major;
13875 case array_row_major:
13876 default:
13877 return DW_ORD_row_major;
13878 };
13879 }
13880
13881 /* Extract all information from a DW_TAG_set_type DIE and put it in
13882 the DIE's type field. */
13883
13884 static struct type *
13885 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13886 {
13887 struct type *domain_type, *set_type;
13888 struct attribute *attr;
13889
13890 domain_type = die_type (die, cu);
13891
13892 /* The die_type call above may have already set the type for this DIE. */
13893 set_type = get_die_type (die, cu);
13894 if (set_type)
13895 return set_type;
13896
13897 set_type = create_set_type (NULL, domain_type);
13898
13899 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13900 if (attr)
13901 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13902
13903 return set_die_type (die, set_type, cu);
13904 }
13905
13906 /* A helper for read_common_block that creates a locexpr baton.
13907 SYM is the symbol which we are marking as computed.
13908 COMMON_DIE is the DIE for the common block.
13909 COMMON_LOC is the location expression attribute for the common
13910 block itself.
13911 MEMBER_LOC is the location expression attribute for the particular
13912 member of the common block that we are processing.
13913 CU is the CU from which the above come. */
13914
13915 static void
13916 mark_common_block_symbol_computed (struct symbol *sym,
13917 struct die_info *common_die,
13918 struct attribute *common_loc,
13919 struct attribute *member_loc,
13920 struct dwarf2_cu *cu)
13921 {
13922 struct objfile *objfile = dwarf2_per_objfile->objfile;
13923 struct dwarf2_locexpr_baton *baton;
13924 gdb_byte *ptr;
13925 unsigned int cu_off;
13926 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13927 LONGEST offset = 0;
13928
13929 gdb_assert (common_loc && member_loc);
13930 gdb_assert (attr_form_is_block (common_loc));
13931 gdb_assert (attr_form_is_block (member_loc)
13932 || attr_form_is_constant (member_loc));
13933
13934 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13935 baton->per_cu = cu->per_cu;
13936 gdb_assert (baton->per_cu);
13937
13938 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13939
13940 if (attr_form_is_constant (member_loc))
13941 {
13942 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13943 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13944 }
13945 else
13946 baton->size += DW_BLOCK (member_loc)->size;
13947
13948 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
13949 baton->data = ptr;
13950
13951 *ptr++ = DW_OP_call4;
13952 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13953 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13954 ptr += 4;
13955
13956 if (attr_form_is_constant (member_loc))
13957 {
13958 *ptr++ = DW_OP_addr;
13959 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13960 ptr += cu->header.addr_size;
13961 }
13962 else
13963 {
13964 /* We have to copy the data here, because DW_OP_call4 will only
13965 use a DW_AT_location attribute. */
13966 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13967 ptr += DW_BLOCK (member_loc)->size;
13968 }
13969
13970 *ptr++ = DW_OP_plus;
13971 gdb_assert (ptr - baton->data == baton->size);
13972
13973 SYMBOL_LOCATION_BATON (sym) = baton;
13974 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13975 }
13976
13977 /* Create appropriate locally-scoped variables for all the
13978 DW_TAG_common_block entries. Also create a struct common_block
13979 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13980 is used to sepate the common blocks name namespace from regular
13981 variable names. */
13982
13983 static void
13984 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13985 {
13986 struct attribute *attr;
13987
13988 attr = dwarf2_attr (die, DW_AT_location, cu);
13989 if (attr)
13990 {
13991 /* Support the .debug_loc offsets. */
13992 if (attr_form_is_block (attr))
13993 {
13994 /* Ok. */
13995 }
13996 else if (attr_form_is_section_offset (attr))
13997 {
13998 dwarf2_complex_location_expr_complaint ();
13999 attr = NULL;
14000 }
14001 else
14002 {
14003 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14004 "common block member");
14005 attr = NULL;
14006 }
14007 }
14008
14009 if (die->child != NULL)
14010 {
14011 struct objfile *objfile = cu->objfile;
14012 struct die_info *child_die;
14013 size_t n_entries = 0, size;
14014 struct common_block *common_block;
14015 struct symbol *sym;
14016
14017 for (child_die = die->child;
14018 child_die && child_die->tag;
14019 child_die = sibling_die (child_die))
14020 ++n_entries;
14021
14022 size = (sizeof (struct common_block)
14023 + (n_entries - 1) * sizeof (struct symbol *));
14024 common_block
14025 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
14026 size);
14027 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
14028 common_block->n_entries = 0;
14029
14030 for (child_die = die->child;
14031 child_die && child_die->tag;
14032 child_die = sibling_die (child_die))
14033 {
14034 /* Create the symbol in the DW_TAG_common_block block in the current
14035 symbol scope. */
14036 sym = new_symbol (child_die, NULL, cu);
14037 if (sym != NULL)
14038 {
14039 struct attribute *member_loc;
14040
14041 common_block->contents[common_block->n_entries++] = sym;
14042
14043 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14044 cu);
14045 if (member_loc)
14046 {
14047 /* GDB has handled this for a long time, but it is
14048 not specified by DWARF. It seems to have been
14049 emitted by gfortran at least as recently as:
14050 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14051 complaint (&symfile_complaints,
14052 _("Variable in common block has "
14053 "DW_AT_data_member_location "
14054 "- DIE at 0x%x [in module %s]"),
14055 child_die->offset.sect_off,
14056 objfile_name (cu->objfile));
14057
14058 if (attr_form_is_section_offset (member_loc))
14059 dwarf2_complex_location_expr_complaint ();
14060 else if (attr_form_is_constant (member_loc)
14061 || attr_form_is_block (member_loc))
14062 {
14063 if (attr)
14064 mark_common_block_symbol_computed (sym, die, attr,
14065 member_loc, cu);
14066 }
14067 else
14068 dwarf2_complex_location_expr_complaint ();
14069 }
14070 }
14071 }
14072
14073 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14074 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
14075 }
14076 }
14077
14078 /* Create a type for a C++ namespace. */
14079
14080 static struct type *
14081 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
14082 {
14083 struct objfile *objfile = cu->objfile;
14084 const char *previous_prefix, *name;
14085 int is_anonymous;
14086 struct type *type;
14087
14088 /* For extensions, reuse the type of the original namespace. */
14089 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14090 {
14091 struct die_info *ext_die;
14092 struct dwarf2_cu *ext_cu = cu;
14093
14094 ext_die = dwarf2_extension (die, &ext_cu);
14095 type = read_type_die (ext_die, ext_cu);
14096
14097 /* EXT_CU may not be the same as CU.
14098 Ensure TYPE is recorded with CU in die_type_hash. */
14099 return set_die_type (die, type, cu);
14100 }
14101
14102 name = namespace_name (die, &is_anonymous, cu);
14103
14104 /* Now build the name of the current namespace. */
14105
14106 previous_prefix = determine_prefix (die, cu);
14107 if (previous_prefix[0] != '\0')
14108 name = typename_concat (&objfile->objfile_obstack,
14109 previous_prefix, name, 0, cu);
14110
14111 /* Create the type. */
14112 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
14113 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14114
14115 return set_die_type (die, type, cu);
14116 }
14117
14118 /* Read a namespace scope. */
14119
14120 static void
14121 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14122 {
14123 struct objfile *objfile = cu->objfile;
14124 int is_anonymous;
14125
14126 /* Add a symbol associated to this if we haven't seen the namespace
14127 before. Also, add a using directive if it's an anonymous
14128 namespace. */
14129
14130 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
14131 {
14132 struct type *type;
14133
14134 type = read_type_die (die, cu);
14135 new_symbol (die, type, cu);
14136
14137 namespace_name (die, &is_anonymous, cu);
14138 if (is_anonymous)
14139 {
14140 const char *previous_prefix = determine_prefix (die, cu);
14141
14142 add_using_directive (using_directives (cu->language),
14143 previous_prefix, TYPE_NAME (type), NULL,
14144 NULL, NULL, 0, &objfile->objfile_obstack);
14145 }
14146 }
14147
14148 if (die->child != NULL)
14149 {
14150 struct die_info *child_die = die->child;
14151
14152 while (child_die && child_die->tag)
14153 {
14154 process_die (child_die, cu);
14155 child_die = sibling_die (child_die);
14156 }
14157 }
14158 }
14159
14160 /* Read a Fortran module as type. This DIE can be only a declaration used for
14161 imported module. Still we need that type as local Fortran "use ... only"
14162 declaration imports depend on the created type in determine_prefix. */
14163
14164 static struct type *
14165 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14166 {
14167 struct objfile *objfile = cu->objfile;
14168 const char *module_name;
14169 struct type *type;
14170
14171 module_name = dwarf2_name (die, cu);
14172 if (!module_name)
14173 complaint (&symfile_complaints,
14174 _("DW_TAG_module has no name, offset 0x%x"),
14175 die->offset.sect_off);
14176 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
14177
14178 /* determine_prefix uses TYPE_TAG_NAME. */
14179 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14180
14181 return set_die_type (die, type, cu);
14182 }
14183
14184 /* Read a Fortran module. */
14185
14186 static void
14187 read_module (struct die_info *die, struct dwarf2_cu *cu)
14188 {
14189 struct die_info *child_die = die->child;
14190 struct type *type;
14191
14192 type = read_type_die (die, cu);
14193 new_symbol (die, type, cu);
14194
14195 while (child_die && child_die->tag)
14196 {
14197 process_die (child_die, cu);
14198 child_die = sibling_die (child_die);
14199 }
14200 }
14201
14202 /* Return the name of the namespace represented by DIE. Set
14203 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14204 namespace. */
14205
14206 static const char *
14207 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
14208 {
14209 struct die_info *current_die;
14210 const char *name = NULL;
14211
14212 /* Loop through the extensions until we find a name. */
14213
14214 for (current_die = die;
14215 current_die != NULL;
14216 current_die = dwarf2_extension (die, &cu))
14217 {
14218 /* We don't use dwarf2_name here so that we can detect the absence
14219 of a name -> anonymous namespace. */
14220 name = dwarf2_string_attr (die, DW_AT_name, cu);
14221
14222 if (name != NULL)
14223 break;
14224 }
14225
14226 /* Is it an anonymous namespace? */
14227
14228 *is_anonymous = (name == NULL);
14229 if (*is_anonymous)
14230 name = CP_ANONYMOUS_NAMESPACE_STR;
14231
14232 return name;
14233 }
14234
14235 /* Extract all information from a DW_TAG_pointer_type DIE and add to
14236 the user defined type vector. */
14237
14238 static struct type *
14239 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
14240 {
14241 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
14242 struct comp_unit_head *cu_header = &cu->header;
14243 struct type *type;
14244 struct attribute *attr_byte_size;
14245 struct attribute *attr_address_class;
14246 int byte_size, addr_class;
14247 struct type *target_type;
14248
14249 target_type = die_type (die, cu);
14250
14251 /* The die_type call above may have already set the type for this DIE. */
14252 type = get_die_type (die, cu);
14253 if (type)
14254 return type;
14255
14256 type = lookup_pointer_type (target_type);
14257
14258 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14259 if (attr_byte_size)
14260 byte_size = DW_UNSND (attr_byte_size);
14261 else
14262 byte_size = cu_header->addr_size;
14263
14264 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14265 if (attr_address_class)
14266 addr_class = DW_UNSND (attr_address_class);
14267 else
14268 addr_class = DW_ADDR_none;
14269
14270 /* If the pointer size or address class is different than the
14271 default, create a type variant marked as such and set the
14272 length accordingly. */
14273 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14274 {
14275 if (gdbarch_address_class_type_flags_p (gdbarch))
14276 {
14277 int type_flags;
14278
14279 type_flags = gdbarch_address_class_type_flags
14280 (gdbarch, byte_size, addr_class);
14281 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14282 == 0);
14283 type = make_type_with_address_space (type, type_flags);
14284 }
14285 else if (TYPE_LENGTH (type) != byte_size)
14286 {
14287 complaint (&symfile_complaints,
14288 _("invalid pointer size %d"), byte_size);
14289 }
14290 else
14291 {
14292 /* Should we also complain about unhandled address classes? */
14293 }
14294 }
14295
14296 TYPE_LENGTH (type) = byte_size;
14297 return set_die_type (die, type, cu);
14298 }
14299
14300 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14301 the user defined type vector. */
14302
14303 static struct type *
14304 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14305 {
14306 struct type *type;
14307 struct type *to_type;
14308 struct type *domain;
14309
14310 to_type = die_type (die, cu);
14311 domain = die_containing_type (die, cu);
14312
14313 /* The calls above may have already set the type for this DIE. */
14314 type = get_die_type (die, cu);
14315 if (type)
14316 return type;
14317
14318 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14319 type = lookup_methodptr_type (to_type);
14320 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14321 {
14322 struct type *new_type = alloc_type (cu->objfile);
14323
14324 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14325 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14326 TYPE_VARARGS (to_type));
14327 type = lookup_methodptr_type (new_type);
14328 }
14329 else
14330 type = lookup_memberptr_type (to_type, domain);
14331
14332 return set_die_type (die, type, cu);
14333 }
14334
14335 /* Extract all information from a DW_TAG_reference_type DIE and add to
14336 the user defined type vector. */
14337
14338 static struct type *
14339 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
14340 {
14341 struct comp_unit_head *cu_header = &cu->header;
14342 struct type *type, *target_type;
14343 struct attribute *attr;
14344
14345 target_type = die_type (die, cu);
14346
14347 /* The die_type call above may have already set the type for this DIE. */
14348 type = get_die_type (die, cu);
14349 if (type)
14350 return type;
14351
14352 type = lookup_reference_type (target_type);
14353 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14354 if (attr)
14355 {
14356 TYPE_LENGTH (type) = DW_UNSND (attr);
14357 }
14358 else
14359 {
14360 TYPE_LENGTH (type) = cu_header->addr_size;
14361 }
14362 return set_die_type (die, type, cu);
14363 }
14364
14365 /* Add the given cv-qualifiers to the element type of the array. GCC
14366 outputs DWARF type qualifiers that apply to an array, not the
14367 element type. But GDB relies on the array element type to carry
14368 the cv-qualifiers. This mimics section 6.7.3 of the C99
14369 specification. */
14370
14371 static struct type *
14372 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14373 struct type *base_type, int cnst, int voltl)
14374 {
14375 struct type *el_type, *inner_array;
14376
14377 base_type = copy_type (base_type);
14378 inner_array = base_type;
14379
14380 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14381 {
14382 TYPE_TARGET_TYPE (inner_array) =
14383 copy_type (TYPE_TARGET_TYPE (inner_array));
14384 inner_array = TYPE_TARGET_TYPE (inner_array);
14385 }
14386
14387 el_type = TYPE_TARGET_TYPE (inner_array);
14388 cnst |= TYPE_CONST (el_type);
14389 voltl |= TYPE_VOLATILE (el_type);
14390 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14391
14392 return set_die_type (die, base_type, cu);
14393 }
14394
14395 static struct type *
14396 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14397 {
14398 struct type *base_type, *cv_type;
14399
14400 base_type = die_type (die, cu);
14401
14402 /* The die_type call above may have already set the type for this DIE. */
14403 cv_type = get_die_type (die, cu);
14404 if (cv_type)
14405 return cv_type;
14406
14407 /* In case the const qualifier is applied to an array type, the element type
14408 is so qualified, not the array type (section 6.7.3 of C99). */
14409 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14410 return add_array_cv_type (die, cu, base_type, 1, 0);
14411
14412 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14413 return set_die_type (die, cv_type, cu);
14414 }
14415
14416 static struct type *
14417 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14418 {
14419 struct type *base_type, *cv_type;
14420
14421 base_type = die_type (die, cu);
14422
14423 /* The die_type call above may have already set the type for this DIE. */
14424 cv_type = get_die_type (die, cu);
14425 if (cv_type)
14426 return cv_type;
14427
14428 /* In case the volatile qualifier is applied to an array type, the
14429 element type is so qualified, not the array type (section 6.7.3
14430 of C99). */
14431 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14432 return add_array_cv_type (die, cu, base_type, 0, 1);
14433
14434 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14435 return set_die_type (die, cv_type, cu);
14436 }
14437
14438 /* Handle DW_TAG_restrict_type. */
14439
14440 static struct type *
14441 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14442 {
14443 struct type *base_type, *cv_type;
14444
14445 base_type = die_type (die, cu);
14446
14447 /* The die_type call above may have already set the type for this DIE. */
14448 cv_type = get_die_type (die, cu);
14449 if (cv_type)
14450 return cv_type;
14451
14452 cv_type = make_restrict_type (base_type);
14453 return set_die_type (die, cv_type, cu);
14454 }
14455
14456 /* Handle DW_TAG_atomic_type. */
14457
14458 static struct type *
14459 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14460 {
14461 struct type *base_type, *cv_type;
14462
14463 base_type = die_type (die, cu);
14464
14465 /* The die_type call above may have already set the type for this DIE. */
14466 cv_type = get_die_type (die, cu);
14467 if (cv_type)
14468 return cv_type;
14469
14470 cv_type = make_atomic_type (base_type);
14471 return set_die_type (die, cv_type, cu);
14472 }
14473
14474 /* Extract all information from a DW_TAG_string_type DIE and add to
14475 the user defined type vector. It isn't really a user defined type,
14476 but it behaves like one, with other DIE's using an AT_user_def_type
14477 attribute to reference it. */
14478
14479 static struct type *
14480 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14481 {
14482 struct objfile *objfile = cu->objfile;
14483 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14484 struct type *type, *range_type, *index_type, *char_type;
14485 struct attribute *attr;
14486 unsigned int length;
14487
14488 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14489 if (attr)
14490 {
14491 length = DW_UNSND (attr);
14492 }
14493 else
14494 {
14495 /* Check for the DW_AT_byte_size attribute. */
14496 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14497 if (attr)
14498 {
14499 length = DW_UNSND (attr);
14500 }
14501 else
14502 {
14503 length = 1;
14504 }
14505 }
14506
14507 index_type = objfile_type (objfile)->builtin_int;
14508 range_type = create_static_range_type (NULL, index_type, 1, length);
14509 char_type = language_string_char_type (cu->language_defn, gdbarch);
14510 type = create_string_type (NULL, char_type, range_type);
14511
14512 return set_die_type (die, type, cu);
14513 }
14514
14515 /* Assuming that DIE corresponds to a function, returns nonzero
14516 if the function is prototyped. */
14517
14518 static int
14519 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14520 {
14521 struct attribute *attr;
14522
14523 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14524 if (attr && (DW_UNSND (attr) != 0))
14525 return 1;
14526
14527 /* The DWARF standard implies that the DW_AT_prototyped attribute
14528 is only meaninful for C, but the concept also extends to other
14529 languages that allow unprototyped functions (Eg: Objective C).
14530 For all other languages, assume that functions are always
14531 prototyped. */
14532 if (cu->language != language_c
14533 && cu->language != language_objc
14534 && cu->language != language_opencl)
14535 return 1;
14536
14537 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14538 prototyped and unprototyped functions; default to prototyped,
14539 since that is more common in modern code (and RealView warns
14540 about unprototyped functions). */
14541 if (producer_is_realview (cu->producer))
14542 return 1;
14543
14544 return 0;
14545 }
14546
14547 /* Handle DIES due to C code like:
14548
14549 struct foo
14550 {
14551 int (*funcp)(int a, long l);
14552 int b;
14553 };
14554
14555 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14556
14557 static struct type *
14558 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14559 {
14560 struct objfile *objfile = cu->objfile;
14561 struct type *type; /* Type that this function returns. */
14562 struct type *ftype; /* Function that returns above type. */
14563 struct attribute *attr;
14564
14565 type = die_type (die, cu);
14566
14567 /* The die_type call above may have already set the type for this DIE. */
14568 ftype = get_die_type (die, cu);
14569 if (ftype)
14570 return ftype;
14571
14572 ftype = lookup_function_type (type);
14573
14574 if (prototyped_function_p (die, cu))
14575 TYPE_PROTOTYPED (ftype) = 1;
14576
14577 /* Store the calling convention in the type if it's available in
14578 the subroutine die. Otherwise set the calling convention to
14579 the default value DW_CC_normal. */
14580 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14581 if (attr)
14582 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14583 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14584 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14585 else
14586 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14587
14588 /* Record whether the function returns normally to its caller or not
14589 if the DWARF producer set that information. */
14590 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14591 if (attr && (DW_UNSND (attr) != 0))
14592 TYPE_NO_RETURN (ftype) = 1;
14593
14594 /* We need to add the subroutine type to the die immediately so
14595 we don't infinitely recurse when dealing with parameters
14596 declared as the same subroutine type. */
14597 set_die_type (die, ftype, cu);
14598
14599 if (die->child != NULL)
14600 {
14601 struct type *void_type = objfile_type (objfile)->builtin_void;
14602 struct die_info *child_die;
14603 int nparams, iparams;
14604
14605 /* Count the number of parameters.
14606 FIXME: GDB currently ignores vararg functions, but knows about
14607 vararg member functions. */
14608 nparams = 0;
14609 child_die = die->child;
14610 while (child_die && child_die->tag)
14611 {
14612 if (child_die->tag == DW_TAG_formal_parameter)
14613 nparams++;
14614 else if (child_die->tag == DW_TAG_unspecified_parameters)
14615 TYPE_VARARGS (ftype) = 1;
14616 child_die = sibling_die (child_die);
14617 }
14618
14619 /* Allocate storage for parameters and fill them in. */
14620 TYPE_NFIELDS (ftype) = nparams;
14621 TYPE_FIELDS (ftype) = (struct field *)
14622 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14623
14624 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14625 even if we error out during the parameters reading below. */
14626 for (iparams = 0; iparams < nparams; iparams++)
14627 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14628
14629 iparams = 0;
14630 child_die = die->child;
14631 while (child_die && child_die->tag)
14632 {
14633 if (child_die->tag == DW_TAG_formal_parameter)
14634 {
14635 struct type *arg_type;
14636
14637 /* DWARF version 2 has no clean way to discern C++
14638 static and non-static member functions. G++ helps
14639 GDB by marking the first parameter for non-static
14640 member functions (which is the this pointer) as
14641 artificial. We pass this information to
14642 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14643
14644 DWARF version 3 added DW_AT_object_pointer, which GCC
14645 4.5 does not yet generate. */
14646 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14647 if (attr)
14648 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14649 else
14650 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14651 arg_type = die_type (child_die, cu);
14652
14653 /* RealView does not mark THIS as const, which the testsuite
14654 expects. GCC marks THIS as const in method definitions,
14655 but not in the class specifications (GCC PR 43053). */
14656 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14657 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14658 {
14659 int is_this = 0;
14660 struct dwarf2_cu *arg_cu = cu;
14661 const char *name = dwarf2_name (child_die, cu);
14662
14663 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14664 if (attr)
14665 {
14666 /* If the compiler emits this, use it. */
14667 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14668 is_this = 1;
14669 }
14670 else if (name && strcmp (name, "this") == 0)
14671 /* Function definitions will have the argument names. */
14672 is_this = 1;
14673 else if (name == NULL && iparams == 0)
14674 /* Declarations may not have the names, so like
14675 elsewhere in GDB, assume an artificial first
14676 argument is "this". */
14677 is_this = 1;
14678
14679 if (is_this)
14680 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14681 arg_type, 0);
14682 }
14683
14684 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14685 iparams++;
14686 }
14687 child_die = sibling_die (child_die);
14688 }
14689 }
14690
14691 return ftype;
14692 }
14693
14694 static struct type *
14695 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14696 {
14697 struct objfile *objfile = cu->objfile;
14698 const char *name = NULL;
14699 struct type *this_type, *target_type;
14700
14701 name = dwarf2_full_name (NULL, die, cu);
14702 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
14703 TYPE_TARGET_STUB (this_type) = 1;
14704 set_die_type (die, this_type, cu);
14705 target_type = die_type (die, cu);
14706 if (target_type != this_type)
14707 TYPE_TARGET_TYPE (this_type) = target_type;
14708 else
14709 {
14710 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14711 spec and cause infinite loops in GDB. */
14712 complaint (&symfile_complaints,
14713 _("Self-referential DW_TAG_typedef "
14714 "- DIE at 0x%x [in module %s]"),
14715 die->offset.sect_off, objfile_name (objfile));
14716 TYPE_TARGET_TYPE (this_type) = NULL;
14717 }
14718 return this_type;
14719 }
14720
14721 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
14722 (which may be different from NAME) to the architecture back-end to allow
14723 it to guess the correct format if necessary. */
14724
14725 static struct type *
14726 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
14727 const char *name_hint)
14728 {
14729 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14730 const struct floatformat **format;
14731 struct type *type;
14732
14733 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
14734 if (format)
14735 type = init_float_type (objfile, bits, name, format);
14736 else
14737 type = init_type (objfile, TYPE_CODE_ERROR, bits / TARGET_CHAR_BIT, name);
14738
14739 return type;
14740 }
14741
14742 /* Find a representation of a given base type and install
14743 it in the TYPE field of the die. */
14744
14745 static struct type *
14746 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14747 {
14748 struct objfile *objfile = cu->objfile;
14749 struct type *type;
14750 struct attribute *attr;
14751 int encoding = 0, bits = 0;
14752 const char *name;
14753
14754 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14755 if (attr)
14756 {
14757 encoding = DW_UNSND (attr);
14758 }
14759 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14760 if (attr)
14761 {
14762 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
14763 }
14764 name = dwarf2_name (die, cu);
14765 if (!name)
14766 {
14767 complaint (&symfile_complaints,
14768 _("DW_AT_name missing from DW_TAG_base_type"));
14769 }
14770
14771 switch (encoding)
14772 {
14773 case DW_ATE_address:
14774 /* Turn DW_ATE_address into a void * pointer. */
14775 type = init_type (objfile, TYPE_CODE_VOID, 1, NULL);
14776 type = init_pointer_type (objfile, bits, name, type);
14777 break;
14778 case DW_ATE_boolean:
14779 type = init_boolean_type (objfile, bits, 1, name);
14780 break;
14781 case DW_ATE_complex_float:
14782 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
14783 type = init_complex_type (objfile, name, type);
14784 break;
14785 case DW_ATE_decimal_float:
14786 type = init_decfloat_type (objfile, bits, name);
14787 break;
14788 case DW_ATE_float:
14789 type = dwarf2_init_float_type (objfile, bits, name, name);
14790 break;
14791 case DW_ATE_signed:
14792 type = init_integer_type (objfile, bits, 0, name);
14793 break;
14794 case DW_ATE_unsigned:
14795 if (cu->language == language_fortran
14796 && name
14797 && startswith (name, "character("))
14798 type = init_character_type (objfile, bits, 1, name);
14799 else
14800 type = init_integer_type (objfile, bits, 1, name);
14801 break;
14802 case DW_ATE_signed_char:
14803 if (cu->language == language_ada || cu->language == language_m2
14804 || cu->language == language_pascal
14805 || cu->language == language_fortran)
14806 type = init_character_type (objfile, bits, 0, name);
14807 else
14808 type = init_integer_type (objfile, bits, 0, name);
14809 break;
14810 case DW_ATE_unsigned_char:
14811 if (cu->language == language_ada || cu->language == language_m2
14812 || cu->language == language_pascal
14813 || cu->language == language_fortran
14814 || cu->language == language_rust)
14815 type = init_character_type (objfile, bits, 1, name);
14816 else
14817 type = init_integer_type (objfile, bits, 1, name);
14818 break;
14819 case DW_ATE_UTF:
14820 /* We just treat this as an integer and then recognize the
14821 type by name elsewhere. */
14822 type = init_integer_type (objfile, bits, 0, name);
14823 break;
14824
14825 default:
14826 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14827 dwarf_type_encoding_name (encoding));
14828 type = init_type (objfile, TYPE_CODE_ERROR,
14829 bits / TARGET_CHAR_BIT, name);
14830 break;
14831 }
14832
14833 if (name && strcmp (name, "char") == 0)
14834 TYPE_NOSIGN (type) = 1;
14835
14836 return set_die_type (die, type, cu);
14837 }
14838
14839 /* Parse dwarf attribute if it's a block, reference or constant and put the
14840 resulting value of the attribute into struct bound_prop.
14841 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14842
14843 static int
14844 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14845 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14846 {
14847 struct dwarf2_property_baton *baton;
14848 struct obstack *obstack = &cu->objfile->objfile_obstack;
14849
14850 if (attr == NULL || prop == NULL)
14851 return 0;
14852
14853 if (attr_form_is_block (attr))
14854 {
14855 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14856 baton->referenced_type = NULL;
14857 baton->locexpr.per_cu = cu->per_cu;
14858 baton->locexpr.size = DW_BLOCK (attr)->size;
14859 baton->locexpr.data = DW_BLOCK (attr)->data;
14860 prop->data.baton = baton;
14861 prop->kind = PROP_LOCEXPR;
14862 gdb_assert (prop->data.baton != NULL);
14863 }
14864 else if (attr_form_is_ref (attr))
14865 {
14866 struct dwarf2_cu *target_cu = cu;
14867 struct die_info *target_die;
14868 struct attribute *target_attr;
14869
14870 target_die = follow_die_ref (die, attr, &target_cu);
14871 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14872 if (target_attr == NULL)
14873 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
14874 target_cu);
14875 if (target_attr == NULL)
14876 return 0;
14877
14878 switch (target_attr->name)
14879 {
14880 case DW_AT_location:
14881 if (attr_form_is_section_offset (target_attr))
14882 {
14883 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14884 baton->referenced_type = die_type (target_die, target_cu);
14885 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14886 prop->data.baton = baton;
14887 prop->kind = PROP_LOCLIST;
14888 gdb_assert (prop->data.baton != NULL);
14889 }
14890 else if (attr_form_is_block (target_attr))
14891 {
14892 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14893 baton->referenced_type = die_type (target_die, target_cu);
14894 baton->locexpr.per_cu = cu->per_cu;
14895 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14896 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14897 prop->data.baton = baton;
14898 prop->kind = PROP_LOCEXPR;
14899 gdb_assert (prop->data.baton != NULL);
14900 }
14901 else
14902 {
14903 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14904 "dynamic property");
14905 return 0;
14906 }
14907 break;
14908 case DW_AT_data_member_location:
14909 {
14910 LONGEST offset;
14911
14912 if (!handle_data_member_location (target_die, target_cu,
14913 &offset))
14914 return 0;
14915
14916 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14917 baton->referenced_type = read_type_die (target_die->parent,
14918 target_cu);
14919 baton->offset_info.offset = offset;
14920 baton->offset_info.type = die_type (target_die, target_cu);
14921 prop->data.baton = baton;
14922 prop->kind = PROP_ADDR_OFFSET;
14923 break;
14924 }
14925 }
14926 }
14927 else if (attr_form_is_constant (attr))
14928 {
14929 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14930 prop->kind = PROP_CONST;
14931 }
14932 else
14933 {
14934 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14935 dwarf2_name (die, cu));
14936 return 0;
14937 }
14938
14939 return 1;
14940 }
14941
14942 /* Read the given DW_AT_subrange DIE. */
14943
14944 static struct type *
14945 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14946 {
14947 struct type *base_type, *orig_base_type;
14948 struct type *range_type;
14949 struct attribute *attr;
14950 struct dynamic_prop low, high;
14951 int low_default_is_valid;
14952 int high_bound_is_count = 0;
14953 const char *name;
14954 LONGEST negative_mask;
14955
14956 orig_base_type = die_type (die, cu);
14957 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14958 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14959 creating the range type, but we use the result of check_typedef
14960 when examining properties of the type. */
14961 base_type = check_typedef (orig_base_type);
14962
14963 /* The die_type call above may have already set the type for this DIE. */
14964 range_type = get_die_type (die, cu);
14965 if (range_type)
14966 return range_type;
14967
14968 low.kind = PROP_CONST;
14969 high.kind = PROP_CONST;
14970 high.data.const_val = 0;
14971
14972 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14973 omitting DW_AT_lower_bound. */
14974 switch (cu->language)
14975 {
14976 case language_c:
14977 case language_cplus:
14978 low.data.const_val = 0;
14979 low_default_is_valid = 1;
14980 break;
14981 case language_fortran:
14982 low.data.const_val = 1;
14983 low_default_is_valid = 1;
14984 break;
14985 case language_d:
14986 case language_objc:
14987 case language_rust:
14988 low.data.const_val = 0;
14989 low_default_is_valid = (cu->header.version >= 4);
14990 break;
14991 case language_ada:
14992 case language_m2:
14993 case language_pascal:
14994 low.data.const_val = 1;
14995 low_default_is_valid = (cu->header.version >= 4);
14996 break;
14997 default:
14998 low.data.const_val = 0;
14999 low_default_is_valid = 0;
15000 break;
15001 }
15002
15003 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
15004 if (attr)
15005 attr_to_dynamic_prop (attr, die, cu, &low);
15006 else if (!low_default_is_valid)
15007 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
15008 "- DIE at 0x%x [in module %s]"),
15009 die->offset.sect_off, objfile_name (cu->objfile));
15010
15011 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
15012 if (!attr_to_dynamic_prop (attr, die, cu, &high))
15013 {
15014 attr = dwarf2_attr (die, DW_AT_count, cu);
15015 if (attr_to_dynamic_prop (attr, die, cu, &high))
15016 {
15017 /* If bounds are constant do the final calculation here. */
15018 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
15019 high.data.const_val = low.data.const_val + high.data.const_val - 1;
15020 else
15021 high_bound_is_count = 1;
15022 }
15023 }
15024
15025 /* Dwarf-2 specifications explicitly allows to create subrange types
15026 without specifying a base type.
15027 In that case, the base type must be set to the type of
15028 the lower bound, upper bound or count, in that order, if any of these
15029 three attributes references an object that has a type.
15030 If no base type is found, the Dwarf-2 specifications say that
15031 a signed integer type of size equal to the size of an address should
15032 be used.
15033 For the following C code: `extern char gdb_int [];'
15034 GCC produces an empty range DIE.
15035 FIXME: muller/2010-05-28: Possible references to object for low bound,
15036 high bound or count are not yet handled by this code. */
15037 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15038 {
15039 struct objfile *objfile = cu->objfile;
15040 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15041 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15042 struct type *int_type = objfile_type (objfile)->builtin_int;
15043
15044 /* Test "int", "long int", and "long long int" objfile types,
15045 and select the first one having a size above or equal to the
15046 architecture address size. */
15047 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15048 base_type = int_type;
15049 else
15050 {
15051 int_type = objfile_type (objfile)->builtin_long;
15052 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15053 base_type = int_type;
15054 else
15055 {
15056 int_type = objfile_type (objfile)->builtin_long_long;
15057 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15058 base_type = int_type;
15059 }
15060 }
15061 }
15062
15063 /* Normally, the DWARF producers are expected to use a signed
15064 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15065 But this is unfortunately not always the case, as witnessed
15066 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15067 is used instead. To work around that ambiguity, we treat
15068 the bounds as signed, and thus sign-extend their values, when
15069 the base type is signed. */
15070 negative_mask =
15071 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
15072 if (low.kind == PROP_CONST
15073 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15074 low.data.const_val |= negative_mask;
15075 if (high.kind == PROP_CONST
15076 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15077 high.data.const_val |= negative_mask;
15078
15079 range_type = create_range_type (NULL, orig_base_type, &low, &high);
15080
15081 if (high_bound_is_count)
15082 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15083
15084 /* Ada expects an empty array on no boundary attributes. */
15085 if (attr == NULL && cu->language != language_ada)
15086 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
15087
15088 name = dwarf2_name (die, cu);
15089 if (name)
15090 TYPE_NAME (range_type) = name;
15091
15092 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15093 if (attr)
15094 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15095
15096 set_die_type (die, range_type, cu);
15097
15098 /* set_die_type should be already done. */
15099 set_descriptive_type (range_type, die, cu);
15100
15101 return range_type;
15102 }
15103
15104 static struct type *
15105 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15106 {
15107 struct type *type;
15108
15109 /* For now, we only support the C meaning of an unspecified type: void. */
15110
15111 type = init_type (cu->objfile, TYPE_CODE_VOID, 0, NULL);
15112 TYPE_NAME (type) = dwarf2_name (die, cu);
15113
15114 return set_die_type (die, type, cu);
15115 }
15116
15117 /* Read a single die and all its descendents. Set the die's sibling
15118 field to NULL; set other fields in the die correctly, and set all
15119 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15120 location of the info_ptr after reading all of those dies. PARENT
15121 is the parent of the die in question. */
15122
15123 static struct die_info *
15124 read_die_and_children (const struct die_reader_specs *reader,
15125 const gdb_byte *info_ptr,
15126 const gdb_byte **new_info_ptr,
15127 struct die_info *parent)
15128 {
15129 struct die_info *die;
15130 const gdb_byte *cur_ptr;
15131 int has_children;
15132
15133 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
15134 if (die == NULL)
15135 {
15136 *new_info_ptr = cur_ptr;
15137 return NULL;
15138 }
15139 store_in_ref_table (die, reader->cu);
15140
15141 if (has_children)
15142 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
15143 else
15144 {
15145 die->child = NULL;
15146 *new_info_ptr = cur_ptr;
15147 }
15148
15149 die->sibling = NULL;
15150 die->parent = parent;
15151 return die;
15152 }
15153
15154 /* Read a die, all of its descendents, and all of its siblings; set
15155 all of the fields of all of the dies correctly. Arguments are as
15156 in read_die_and_children. */
15157
15158 static struct die_info *
15159 read_die_and_siblings_1 (const struct die_reader_specs *reader,
15160 const gdb_byte *info_ptr,
15161 const gdb_byte **new_info_ptr,
15162 struct die_info *parent)
15163 {
15164 struct die_info *first_die, *last_sibling;
15165 const gdb_byte *cur_ptr;
15166
15167 cur_ptr = info_ptr;
15168 first_die = last_sibling = NULL;
15169
15170 while (1)
15171 {
15172 struct die_info *die
15173 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
15174
15175 if (die == NULL)
15176 {
15177 *new_info_ptr = cur_ptr;
15178 return first_die;
15179 }
15180
15181 if (!first_die)
15182 first_die = die;
15183 else
15184 last_sibling->sibling = die;
15185
15186 last_sibling = die;
15187 }
15188 }
15189
15190 /* Read a die, all of its descendents, and all of its siblings; set
15191 all of the fields of all of the dies correctly. Arguments are as
15192 in read_die_and_children.
15193 This the main entry point for reading a DIE and all its children. */
15194
15195 static struct die_info *
15196 read_die_and_siblings (const struct die_reader_specs *reader,
15197 const gdb_byte *info_ptr,
15198 const gdb_byte **new_info_ptr,
15199 struct die_info *parent)
15200 {
15201 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15202 new_info_ptr, parent);
15203
15204 if (dwarf_die_debug)
15205 {
15206 fprintf_unfiltered (gdb_stdlog,
15207 "Read die from %s@0x%x of %s:\n",
15208 get_section_name (reader->die_section),
15209 (unsigned) (info_ptr - reader->die_section->buffer),
15210 bfd_get_filename (reader->abfd));
15211 dump_die (die, dwarf_die_debug);
15212 }
15213
15214 return die;
15215 }
15216
15217 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15218 attributes.
15219 The caller is responsible for filling in the extra attributes
15220 and updating (*DIEP)->num_attrs.
15221 Set DIEP to point to a newly allocated die with its information,
15222 except for its child, sibling, and parent fields.
15223 Set HAS_CHILDREN to tell whether the die has children or not. */
15224
15225 static const gdb_byte *
15226 read_full_die_1 (const struct die_reader_specs *reader,
15227 struct die_info **diep, const gdb_byte *info_ptr,
15228 int *has_children, int num_extra_attrs)
15229 {
15230 unsigned int abbrev_number, bytes_read, i;
15231 sect_offset offset;
15232 struct abbrev_info *abbrev;
15233 struct die_info *die;
15234 struct dwarf2_cu *cu = reader->cu;
15235 bfd *abfd = reader->abfd;
15236
15237 offset.sect_off = info_ptr - reader->buffer;
15238 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15239 info_ptr += bytes_read;
15240 if (!abbrev_number)
15241 {
15242 *diep = NULL;
15243 *has_children = 0;
15244 return info_ptr;
15245 }
15246
15247 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
15248 if (!abbrev)
15249 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15250 abbrev_number,
15251 bfd_get_filename (abfd));
15252
15253 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
15254 die->offset = offset;
15255 die->tag = abbrev->tag;
15256 die->abbrev = abbrev_number;
15257
15258 /* Make the result usable.
15259 The caller needs to update num_attrs after adding the extra
15260 attributes. */
15261 die->num_attrs = abbrev->num_attrs;
15262
15263 for (i = 0; i < abbrev->num_attrs; ++i)
15264 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15265 info_ptr);
15266
15267 *diep = die;
15268 *has_children = abbrev->has_children;
15269 return info_ptr;
15270 }
15271
15272 /* Read a die and all its attributes.
15273 Set DIEP to point to a newly allocated die with its information,
15274 except for its child, sibling, and parent fields.
15275 Set HAS_CHILDREN to tell whether the die has children or not. */
15276
15277 static const gdb_byte *
15278 read_full_die (const struct die_reader_specs *reader,
15279 struct die_info **diep, const gdb_byte *info_ptr,
15280 int *has_children)
15281 {
15282 const gdb_byte *result;
15283
15284 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15285
15286 if (dwarf_die_debug)
15287 {
15288 fprintf_unfiltered (gdb_stdlog,
15289 "Read die from %s@0x%x of %s:\n",
15290 get_section_name (reader->die_section),
15291 (unsigned) (info_ptr - reader->die_section->buffer),
15292 bfd_get_filename (reader->abfd));
15293 dump_die (*diep, dwarf_die_debug);
15294 }
15295
15296 return result;
15297 }
15298 \f
15299 /* Abbreviation tables.
15300
15301 In DWARF version 2, the description of the debugging information is
15302 stored in a separate .debug_abbrev section. Before we read any
15303 dies from a section we read in all abbreviations and install them
15304 in a hash table. */
15305
15306 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15307
15308 static struct abbrev_info *
15309 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15310 {
15311 struct abbrev_info *abbrev;
15312
15313 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
15314 memset (abbrev, 0, sizeof (struct abbrev_info));
15315
15316 return abbrev;
15317 }
15318
15319 /* Add an abbreviation to the table. */
15320
15321 static void
15322 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15323 unsigned int abbrev_number,
15324 struct abbrev_info *abbrev)
15325 {
15326 unsigned int hash_number;
15327
15328 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15329 abbrev->next = abbrev_table->abbrevs[hash_number];
15330 abbrev_table->abbrevs[hash_number] = abbrev;
15331 }
15332
15333 /* Look up an abbrev in the table.
15334 Returns NULL if the abbrev is not found. */
15335
15336 static struct abbrev_info *
15337 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15338 unsigned int abbrev_number)
15339 {
15340 unsigned int hash_number;
15341 struct abbrev_info *abbrev;
15342
15343 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15344 abbrev = abbrev_table->abbrevs[hash_number];
15345
15346 while (abbrev)
15347 {
15348 if (abbrev->number == abbrev_number)
15349 return abbrev;
15350 abbrev = abbrev->next;
15351 }
15352 return NULL;
15353 }
15354
15355 /* Read in an abbrev table. */
15356
15357 static struct abbrev_table *
15358 abbrev_table_read_table (struct dwarf2_section_info *section,
15359 sect_offset offset)
15360 {
15361 struct objfile *objfile = dwarf2_per_objfile->objfile;
15362 bfd *abfd = get_section_bfd_owner (section);
15363 struct abbrev_table *abbrev_table;
15364 const gdb_byte *abbrev_ptr;
15365 struct abbrev_info *cur_abbrev;
15366 unsigned int abbrev_number, bytes_read, abbrev_name;
15367 unsigned int abbrev_form;
15368 struct attr_abbrev *cur_attrs;
15369 unsigned int allocated_attrs;
15370
15371 abbrev_table = XNEW (struct abbrev_table);
15372 abbrev_table->offset = offset;
15373 obstack_init (&abbrev_table->abbrev_obstack);
15374 abbrev_table->abbrevs =
15375 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15376 ABBREV_HASH_SIZE);
15377 memset (abbrev_table->abbrevs, 0,
15378 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15379
15380 dwarf2_read_section (objfile, section);
15381 abbrev_ptr = section->buffer + offset.sect_off;
15382 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15383 abbrev_ptr += bytes_read;
15384
15385 allocated_attrs = ATTR_ALLOC_CHUNK;
15386 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
15387
15388 /* Loop until we reach an abbrev number of 0. */
15389 while (abbrev_number)
15390 {
15391 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15392
15393 /* read in abbrev header */
15394 cur_abbrev->number = abbrev_number;
15395 cur_abbrev->tag
15396 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15397 abbrev_ptr += bytes_read;
15398 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15399 abbrev_ptr += 1;
15400
15401 /* now read in declarations */
15402 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15403 abbrev_ptr += bytes_read;
15404 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15405 abbrev_ptr += bytes_read;
15406 while (abbrev_name)
15407 {
15408 if (cur_abbrev->num_attrs == allocated_attrs)
15409 {
15410 allocated_attrs += ATTR_ALLOC_CHUNK;
15411 cur_attrs
15412 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
15413 }
15414
15415 cur_attrs[cur_abbrev->num_attrs].name
15416 = (enum dwarf_attribute) abbrev_name;
15417 cur_attrs[cur_abbrev->num_attrs++].form
15418 = (enum dwarf_form) abbrev_form;
15419 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15420 abbrev_ptr += bytes_read;
15421 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15422 abbrev_ptr += bytes_read;
15423 }
15424
15425 cur_abbrev->attrs =
15426 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15427 cur_abbrev->num_attrs);
15428 memcpy (cur_abbrev->attrs, cur_attrs,
15429 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15430
15431 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15432
15433 /* Get next abbreviation.
15434 Under Irix6 the abbreviations for a compilation unit are not
15435 always properly terminated with an abbrev number of 0.
15436 Exit loop if we encounter an abbreviation which we have
15437 already read (which means we are about to read the abbreviations
15438 for the next compile unit) or if the end of the abbreviation
15439 table is reached. */
15440 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15441 break;
15442 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15443 abbrev_ptr += bytes_read;
15444 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15445 break;
15446 }
15447
15448 xfree (cur_attrs);
15449 return abbrev_table;
15450 }
15451
15452 /* Free the resources held by ABBREV_TABLE. */
15453
15454 static void
15455 abbrev_table_free (struct abbrev_table *abbrev_table)
15456 {
15457 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15458 xfree (abbrev_table);
15459 }
15460
15461 /* Same as abbrev_table_free but as a cleanup.
15462 We pass in a pointer to the pointer to the table so that we can
15463 set the pointer to NULL when we're done. It also simplifies
15464 build_type_psymtabs_1. */
15465
15466 static void
15467 abbrev_table_free_cleanup (void *table_ptr)
15468 {
15469 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
15470
15471 if (*abbrev_table_ptr != NULL)
15472 abbrev_table_free (*abbrev_table_ptr);
15473 *abbrev_table_ptr = NULL;
15474 }
15475
15476 /* Read the abbrev table for CU from ABBREV_SECTION. */
15477
15478 static void
15479 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15480 struct dwarf2_section_info *abbrev_section)
15481 {
15482 cu->abbrev_table =
15483 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15484 }
15485
15486 /* Release the memory used by the abbrev table for a compilation unit. */
15487
15488 static void
15489 dwarf2_free_abbrev_table (void *ptr_to_cu)
15490 {
15491 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
15492
15493 if (cu->abbrev_table != NULL)
15494 abbrev_table_free (cu->abbrev_table);
15495 /* Set this to NULL so that we SEGV if we try to read it later,
15496 and also because free_comp_unit verifies this is NULL. */
15497 cu->abbrev_table = NULL;
15498 }
15499 \f
15500 /* Returns nonzero if TAG represents a type that we might generate a partial
15501 symbol for. */
15502
15503 static int
15504 is_type_tag_for_partial (int tag)
15505 {
15506 switch (tag)
15507 {
15508 #if 0
15509 /* Some types that would be reasonable to generate partial symbols for,
15510 that we don't at present. */
15511 case DW_TAG_array_type:
15512 case DW_TAG_file_type:
15513 case DW_TAG_ptr_to_member_type:
15514 case DW_TAG_set_type:
15515 case DW_TAG_string_type:
15516 case DW_TAG_subroutine_type:
15517 #endif
15518 case DW_TAG_base_type:
15519 case DW_TAG_class_type:
15520 case DW_TAG_interface_type:
15521 case DW_TAG_enumeration_type:
15522 case DW_TAG_structure_type:
15523 case DW_TAG_subrange_type:
15524 case DW_TAG_typedef:
15525 case DW_TAG_union_type:
15526 return 1;
15527 default:
15528 return 0;
15529 }
15530 }
15531
15532 /* Load all DIEs that are interesting for partial symbols into memory. */
15533
15534 static struct partial_die_info *
15535 load_partial_dies (const struct die_reader_specs *reader,
15536 const gdb_byte *info_ptr, int building_psymtab)
15537 {
15538 struct dwarf2_cu *cu = reader->cu;
15539 struct objfile *objfile = cu->objfile;
15540 struct partial_die_info *part_die;
15541 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15542 struct abbrev_info *abbrev;
15543 unsigned int bytes_read;
15544 unsigned int load_all = 0;
15545 int nesting_level = 1;
15546
15547 parent_die = NULL;
15548 last_die = NULL;
15549
15550 gdb_assert (cu->per_cu != NULL);
15551 if (cu->per_cu->load_all_dies)
15552 load_all = 1;
15553
15554 cu->partial_dies
15555 = htab_create_alloc_ex (cu->header.length / 12,
15556 partial_die_hash,
15557 partial_die_eq,
15558 NULL,
15559 &cu->comp_unit_obstack,
15560 hashtab_obstack_allocate,
15561 dummy_obstack_deallocate);
15562
15563 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
15564
15565 while (1)
15566 {
15567 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15568
15569 /* A NULL abbrev means the end of a series of children. */
15570 if (abbrev == NULL)
15571 {
15572 if (--nesting_level == 0)
15573 {
15574 /* PART_DIE was probably the last thing allocated on the
15575 comp_unit_obstack, so we could call obstack_free
15576 here. We don't do that because the waste is small,
15577 and will be cleaned up when we're done with this
15578 compilation unit. This way, we're also more robust
15579 against other users of the comp_unit_obstack. */
15580 return first_die;
15581 }
15582 info_ptr += bytes_read;
15583 last_die = parent_die;
15584 parent_die = parent_die->die_parent;
15585 continue;
15586 }
15587
15588 /* Check for template arguments. We never save these; if
15589 they're seen, we just mark the parent, and go on our way. */
15590 if (parent_die != NULL
15591 && cu->language == language_cplus
15592 && (abbrev->tag == DW_TAG_template_type_param
15593 || abbrev->tag == DW_TAG_template_value_param))
15594 {
15595 parent_die->has_template_arguments = 1;
15596
15597 if (!load_all)
15598 {
15599 /* We don't need a partial DIE for the template argument. */
15600 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15601 continue;
15602 }
15603 }
15604
15605 /* We only recurse into c++ subprograms looking for template arguments.
15606 Skip their other children. */
15607 if (!load_all
15608 && cu->language == language_cplus
15609 && parent_die != NULL
15610 && parent_die->tag == DW_TAG_subprogram)
15611 {
15612 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15613 continue;
15614 }
15615
15616 /* Check whether this DIE is interesting enough to save. Normally
15617 we would not be interested in members here, but there may be
15618 later variables referencing them via DW_AT_specification (for
15619 static members). */
15620 if (!load_all
15621 && !is_type_tag_for_partial (abbrev->tag)
15622 && abbrev->tag != DW_TAG_constant
15623 && abbrev->tag != DW_TAG_enumerator
15624 && abbrev->tag != DW_TAG_subprogram
15625 && abbrev->tag != DW_TAG_lexical_block
15626 && abbrev->tag != DW_TAG_variable
15627 && abbrev->tag != DW_TAG_namespace
15628 && abbrev->tag != DW_TAG_module
15629 && abbrev->tag != DW_TAG_member
15630 && abbrev->tag != DW_TAG_imported_unit
15631 && abbrev->tag != DW_TAG_imported_declaration)
15632 {
15633 /* Otherwise we skip to the next sibling, if any. */
15634 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15635 continue;
15636 }
15637
15638 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15639 info_ptr);
15640
15641 /* This two-pass algorithm for processing partial symbols has a
15642 high cost in cache pressure. Thus, handle some simple cases
15643 here which cover the majority of C partial symbols. DIEs
15644 which neither have specification tags in them, nor could have
15645 specification tags elsewhere pointing at them, can simply be
15646 processed and discarded.
15647
15648 This segment is also optional; scan_partial_symbols and
15649 add_partial_symbol will handle these DIEs if we chain
15650 them in normally. When compilers which do not emit large
15651 quantities of duplicate debug information are more common,
15652 this code can probably be removed. */
15653
15654 /* Any complete simple types at the top level (pretty much all
15655 of them, for a language without namespaces), can be processed
15656 directly. */
15657 if (parent_die == NULL
15658 && part_die->has_specification == 0
15659 && part_die->is_declaration == 0
15660 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15661 || part_die->tag == DW_TAG_base_type
15662 || part_die->tag == DW_TAG_subrange_type))
15663 {
15664 if (building_psymtab && part_die->name != NULL)
15665 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15666 VAR_DOMAIN, LOC_TYPEDEF,
15667 &objfile->static_psymbols,
15668 0, cu->language, objfile);
15669 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15670 continue;
15671 }
15672
15673 /* The exception for DW_TAG_typedef with has_children above is
15674 a workaround of GCC PR debug/47510. In the case of this complaint
15675 type_name_no_tag_or_error will error on such types later.
15676
15677 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15678 it could not find the child DIEs referenced later, this is checked
15679 above. In correct DWARF DW_TAG_typedef should have no children. */
15680
15681 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15682 complaint (&symfile_complaints,
15683 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15684 "- DIE at 0x%x [in module %s]"),
15685 part_die->offset.sect_off, objfile_name (objfile));
15686
15687 /* If we're at the second level, and we're an enumerator, and
15688 our parent has no specification (meaning possibly lives in a
15689 namespace elsewhere), then we can add the partial symbol now
15690 instead of queueing it. */
15691 if (part_die->tag == DW_TAG_enumerator
15692 && parent_die != NULL
15693 && parent_die->die_parent == NULL
15694 && parent_die->tag == DW_TAG_enumeration_type
15695 && parent_die->has_specification == 0)
15696 {
15697 if (part_die->name == NULL)
15698 complaint (&symfile_complaints,
15699 _("malformed enumerator DIE ignored"));
15700 else if (building_psymtab)
15701 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15702 VAR_DOMAIN, LOC_CONST,
15703 cu->language == language_cplus
15704 ? &objfile->global_psymbols
15705 : &objfile->static_psymbols,
15706 0, cu->language, objfile);
15707
15708 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15709 continue;
15710 }
15711
15712 /* We'll save this DIE so link it in. */
15713 part_die->die_parent = parent_die;
15714 part_die->die_sibling = NULL;
15715 part_die->die_child = NULL;
15716
15717 if (last_die && last_die == parent_die)
15718 last_die->die_child = part_die;
15719 else if (last_die)
15720 last_die->die_sibling = part_die;
15721
15722 last_die = part_die;
15723
15724 if (first_die == NULL)
15725 first_die = part_die;
15726
15727 /* Maybe add the DIE to the hash table. Not all DIEs that we
15728 find interesting need to be in the hash table, because we
15729 also have the parent/sibling/child chains; only those that we
15730 might refer to by offset later during partial symbol reading.
15731
15732 For now this means things that might have be the target of a
15733 DW_AT_specification, DW_AT_abstract_origin, or
15734 DW_AT_extension. DW_AT_extension will refer only to
15735 namespaces; DW_AT_abstract_origin refers to functions (and
15736 many things under the function DIE, but we do not recurse
15737 into function DIEs during partial symbol reading) and
15738 possibly variables as well; DW_AT_specification refers to
15739 declarations. Declarations ought to have the DW_AT_declaration
15740 flag. It happens that GCC forgets to put it in sometimes, but
15741 only for functions, not for types.
15742
15743 Adding more things than necessary to the hash table is harmless
15744 except for the performance cost. Adding too few will result in
15745 wasted time in find_partial_die, when we reread the compilation
15746 unit with load_all_dies set. */
15747
15748 if (load_all
15749 || abbrev->tag == DW_TAG_constant
15750 || abbrev->tag == DW_TAG_subprogram
15751 || abbrev->tag == DW_TAG_variable
15752 || abbrev->tag == DW_TAG_namespace
15753 || part_die->is_declaration)
15754 {
15755 void **slot;
15756
15757 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15758 part_die->offset.sect_off, INSERT);
15759 *slot = part_die;
15760 }
15761
15762 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
15763
15764 /* For some DIEs we want to follow their children (if any). For C
15765 we have no reason to follow the children of structures; for other
15766 languages we have to, so that we can get at method physnames
15767 to infer fully qualified class names, for DW_AT_specification,
15768 and for C++ template arguments. For C++, we also look one level
15769 inside functions to find template arguments (if the name of the
15770 function does not already contain the template arguments).
15771
15772 For Ada, we need to scan the children of subprograms and lexical
15773 blocks as well because Ada allows the definition of nested
15774 entities that could be interesting for the debugger, such as
15775 nested subprograms for instance. */
15776 if (last_die->has_children
15777 && (load_all
15778 || last_die->tag == DW_TAG_namespace
15779 || last_die->tag == DW_TAG_module
15780 || last_die->tag == DW_TAG_enumeration_type
15781 || (cu->language == language_cplus
15782 && last_die->tag == DW_TAG_subprogram
15783 && (last_die->name == NULL
15784 || strchr (last_die->name, '<') == NULL))
15785 || (cu->language != language_c
15786 && (last_die->tag == DW_TAG_class_type
15787 || last_die->tag == DW_TAG_interface_type
15788 || last_die->tag == DW_TAG_structure_type
15789 || last_die->tag == DW_TAG_union_type))
15790 || (cu->language == language_ada
15791 && (last_die->tag == DW_TAG_subprogram
15792 || last_die->tag == DW_TAG_lexical_block))))
15793 {
15794 nesting_level++;
15795 parent_die = last_die;
15796 continue;
15797 }
15798
15799 /* Otherwise we skip to the next sibling, if any. */
15800 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15801
15802 /* Back to the top, do it again. */
15803 }
15804 }
15805
15806 /* Read a minimal amount of information into the minimal die structure. */
15807
15808 static const gdb_byte *
15809 read_partial_die (const struct die_reader_specs *reader,
15810 struct partial_die_info *part_die,
15811 struct abbrev_info *abbrev, unsigned int abbrev_len,
15812 const gdb_byte *info_ptr)
15813 {
15814 struct dwarf2_cu *cu = reader->cu;
15815 struct objfile *objfile = cu->objfile;
15816 const gdb_byte *buffer = reader->buffer;
15817 unsigned int i;
15818 struct attribute attr;
15819 int has_low_pc_attr = 0;
15820 int has_high_pc_attr = 0;
15821 int high_pc_relative = 0;
15822
15823 memset (part_die, 0, sizeof (struct partial_die_info));
15824
15825 part_die->offset.sect_off = info_ptr - buffer;
15826
15827 info_ptr += abbrev_len;
15828
15829 if (abbrev == NULL)
15830 return info_ptr;
15831
15832 part_die->tag = abbrev->tag;
15833 part_die->has_children = abbrev->has_children;
15834
15835 for (i = 0; i < abbrev->num_attrs; ++i)
15836 {
15837 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15838
15839 /* Store the data if it is of an attribute we want to keep in a
15840 partial symbol table. */
15841 switch (attr.name)
15842 {
15843 case DW_AT_name:
15844 switch (part_die->tag)
15845 {
15846 case DW_TAG_compile_unit:
15847 case DW_TAG_partial_unit:
15848 case DW_TAG_type_unit:
15849 /* Compilation units have a DW_AT_name that is a filename, not
15850 a source language identifier. */
15851 case DW_TAG_enumeration_type:
15852 case DW_TAG_enumerator:
15853 /* These tags always have simple identifiers already; no need
15854 to canonicalize them. */
15855 part_die->name = DW_STRING (&attr);
15856 break;
15857 default:
15858 part_die->name
15859 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15860 &objfile->per_bfd->storage_obstack);
15861 break;
15862 }
15863 break;
15864 case DW_AT_linkage_name:
15865 case DW_AT_MIPS_linkage_name:
15866 /* Note that both forms of linkage name might appear. We
15867 assume they will be the same, and we only store the last
15868 one we see. */
15869 if (cu->language == language_ada)
15870 part_die->name = DW_STRING (&attr);
15871 part_die->linkage_name = DW_STRING (&attr);
15872 break;
15873 case DW_AT_low_pc:
15874 has_low_pc_attr = 1;
15875 part_die->lowpc = attr_value_as_address (&attr);
15876 break;
15877 case DW_AT_high_pc:
15878 has_high_pc_attr = 1;
15879 part_die->highpc = attr_value_as_address (&attr);
15880 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15881 high_pc_relative = 1;
15882 break;
15883 case DW_AT_location:
15884 /* Support the .debug_loc offsets. */
15885 if (attr_form_is_block (&attr))
15886 {
15887 part_die->d.locdesc = DW_BLOCK (&attr);
15888 }
15889 else if (attr_form_is_section_offset (&attr))
15890 {
15891 dwarf2_complex_location_expr_complaint ();
15892 }
15893 else
15894 {
15895 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15896 "partial symbol information");
15897 }
15898 break;
15899 case DW_AT_external:
15900 part_die->is_external = DW_UNSND (&attr);
15901 break;
15902 case DW_AT_declaration:
15903 part_die->is_declaration = DW_UNSND (&attr);
15904 break;
15905 case DW_AT_type:
15906 part_die->has_type = 1;
15907 break;
15908 case DW_AT_abstract_origin:
15909 case DW_AT_specification:
15910 case DW_AT_extension:
15911 part_die->has_specification = 1;
15912 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15913 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15914 || cu->per_cu->is_dwz);
15915 break;
15916 case DW_AT_sibling:
15917 /* Ignore absolute siblings, they might point outside of
15918 the current compile unit. */
15919 if (attr.form == DW_FORM_ref_addr)
15920 complaint (&symfile_complaints,
15921 _("ignoring absolute DW_AT_sibling"));
15922 else
15923 {
15924 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15925 const gdb_byte *sibling_ptr = buffer + off;
15926
15927 if (sibling_ptr < info_ptr)
15928 complaint (&symfile_complaints,
15929 _("DW_AT_sibling points backwards"));
15930 else if (sibling_ptr > reader->buffer_end)
15931 dwarf2_section_buffer_overflow_complaint (reader->die_section);
15932 else
15933 part_die->sibling = sibling_ptr;
15934 }
15935 break;
15936 case DW_AT_byte_size:
15937 part_die->has_byte_size = 1;
15938 break;
15939 case DW_AT_const_value:
15940 part_die->has_const_value = 1;
15941 break;
15942 case DW_AT_calling_convention:
15943 /* DWARF doesn't provide a way to identify a program's source-level
15944 entry point. DW_AT_calling_convention attributes are only meant
15945 to describe functions' calling conventions.
15946
15947 However, because it's a necessary piece of information in
15948 Fortran, and because DW_CC_program is the only piece of debugging
15949 information whose definition refers to a 'main program' at all,
15950 several compilers have begun marking Fortran main programs with
15951 DW_CC_program --- even when those functions use the standard
15952 calling conventions.
15953
15954 So until DWARF specifies a way to provide this information and
15955 compilers pick up the new representation, we'll support this
15956 practice. */
15957 if (DW_UNSND (&attr) == DW_CC_program
15958 && cu->language == language_fortran
15959 && part_die->name != NULL)
15960 set_objfile_main_name (objfile, part_die->name, language_fortran);
15961 break;
15962 case DW_AT_inline:
15963 if (DW_UNSND (&attr) == DW_INL_inlined
15964 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15965 part_die->may_be_inlined = 1;
15966 break;
15967
15968 case DW_AT_import:
15969 if (part_die->tag == DW_TAG_imported_unit)
15970 {
15971 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15972 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15973 || cu->per_cu->is_dwz);
15974 }
15975 break;
15976
15977 default:
15978 break;
15979 }
15980 }
15981
15982 if (high_pc_relative)
15983 part_die->highpc += part_die->lowpc;
15984
15985 if (has_low_pc_attr && has_high_pc_attr)
15986 {
15987 /* When using the GNU linker, .gnu.linkonce. sections are used to
15988 eliminate duplicate copies of functions and vtables and such.
15989 The linker will arbitrarily choose one and discard the others.
15990 The AT_*_pc values for such functions refer to local labels in
15991 these sections. If the section from that file was discarded, the
15992 labels are not in the output, so the relocs get a value of 0.
15993 If this is a discarded function, mark the pc bounds as invalid,
15994 so that GDB will ignore it. */
15995 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15996 {
15997 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15998
15999 complaint (&symfile_complaints,
16000 _("DW_AT_low_pc %s is zero "
16001 "for DIE at 0x%x [in module %s]"),
16002 paddress (gdbarch, part_die->lowpc),
16003 part_die->offset.sect_off, objfile_name (objfile));
16004 }
16005 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
16006 else if (part_die->lowpc >= part_die->highpc)
16007 {
16008 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16009
16010 complaint (&symfile_complaints,
16011 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
16012 "for DIE at 0x%x [in module %s]"),
16013 paddress (gdbarch, part_die->lowpc),
16014 paddress (gdbarch, part_die->highpc),
16015 part_die->offset.sect_off, objfile_name (objfile));
16016 }
16017 else
16018 part_die->has_pc_info = 1;
16019 }
16020
16021 return info_ptr;
16022 }
16023
16024 /* Find a cached partial DIE at OFFSET in CU. */
16025
16026 static struct partial_die_info *
16027 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
16028 {
16029 struct partial_die_info *lookup_die = NULL;
16030 struct partial_die_info part_die;
16031
16032 part_die.offset = offset;
16033 lookup_die = ((struct partial_die_info *)
16034 htab_find_with_hash (cu->partial_dies, &part_die,
16035 offset.sect_off));
16036
16037 return lookup_die;
16038 }
16039
16040 /* Find a partial DIE at OFFSET, which may or may not be in CU,
16041 except in the case of .debug_types DIEs which do not reference
16042 outside their CU (they do however referencing other types via
16043 DW_FORM_ref_sig8). */
16044
16045 static struct partial_die_info *
16046 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
16047 {
16048 struct objfile *objfile = cu->objfile;
16049 struct dwarf2_per_cu_data *per_cu = NULL;
16050 struct partial_die_info *pd = NULL;
16051
16052 if (offset_in_dwz == cu->per_cu->is_dwz
16053 && offset_in_cu_p (&cu->header, offset))
16054 {
16055 pd = find_partial_die_in_comp_unit (offset, cu);
16056 if (pd != NULL)
16057 return pd;
16058 /* We missed recording what we needed.
16059 Load all dies and try again. */
16060 per_cu = cu->per_cu;
16061 }
16062 else
16063 {
16064 /* TUs don't reference other CUs/TUs (except via type signatures). */
16065 if (cu->per_cu->is_debug_types)
16066 {
16067 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
16068 " external reference to offset 0x%lx [in module %s].\n"),
16069 (long) cu->header.offset.sect_off, (long) offset.sect_off,
16070 bfd_get_filename (objfile->obfd));
16071 }
16072 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
16073 objfile);
16074
16075 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16076 load_partial_comp_unit (per_cu);
16077
16078 per_cu->cu->last_used = 0;
16079 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16080 }
16081
16082 /* If we didn't find it, and not all dies have been loaded,
16083 load them all and try again. */
16084
16085 if (pd == NULL && per_cu->load_all_dies == 0)
16086 {
16087 per_cu->load_all_dies = 1;
16088
16089 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16090 THIS_CU->cu may already be in use. So we can't just free it and
16091 replace its DIEs with the ones we read in. Instead, we leave those
16092 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16093 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16094 set. */
16095 load_partial_comp_unit (per_cu);
16096
16097 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16098 }
16099
16100 if (pd == NULL)
16101 internal_error (__FILE__, __LINE__,
16102 _("could not find partial DIE 0x%x "
16103 "in cache [from module %s]\n"),
16104 offset.sect_off, bfd_get_filename (objfile->obfd));
16105 return pd;
16106 }
16107
16108 /* See if we can figure out if the class lives in a namespace. We do
16109 this by looking for a member function; its demangled name will
16110 contain namespace info, if there is any. */
16111
16112 static void
16113 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16114 struct dwarf2_cu *cu)
16115 {
16116 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16117 what template types look like, because the demangler
16118 frequently doesn't give the same name as the debug info. We
16119 could fix this by only using the demangled name to get the
16120 prefix (but see comment in read_structure_type). */
16121
16122 struct partial_die_info *real_pdi;
16123 struct partial_die_info *child_pdi;
16124
16125 /* If this DIE (this DIE's specification, if any) has a parent, then
16126 we should not do this. We'll prepend the parent's fully qualified
16127 name when we create the partial symbol. */
16128
16129 real_pdi = struct_pdi;
16130 while (real_pdi->has_specification)
16131 real_pdi = find_partial_die (real_pdi->spec_offset,
16132 real_pdi->spec_is_dwz, cu);
16133
16134 if (real_pdi->die_parent != NULL)
16135 return;
16136
16137 for (child_pdi = struct_pdi->die_child;
16138 child_pdi != NULL;
16139 child_pdi = child_pdi->die_sibling)
16140 {
16141 if (child_pdi->tag == DW_TAG_subprogram
16142 && child_pdi->linkage_name != NULL)
16143 {
16144 char *actual_class_name
16145 = language_class_name_from_physname (cu->language_defn,
16146 child_pdi->linkage_name);
16147 if (actual_class_name != NULL)
16148 {
16149 struct_pdi->name
16150 = ((const char *)
16151 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16152 actual_class_name,
16153 strlen (actual_class_name)));
16154 xfree (actual_class_name);
16155 }
16156 break;
16157 }
16158 }
16159 }
16160
16161 /* Adjust PART_DIE before generating a symbol for it. This function
16162 may set the is_external flag or change the DIE's name. */
16163
16164 static void
16165 fixup_partial_die (struct partial_die_info *part_die,
16166 struct dwarf2_cu *cu)
16167 {
16168 /* Once we've fixed up a die, there's no point in doing so again.
16169 This also avoids a memory leak if we were to call
16170 guess_partial_die_structure_name multiple times. */
16171 if (part_die->fixup_called)
16172 return;
16173
16174 /* If we found a reference attribute and the DIE has no name, try
16175 to find a name in the referred to DIE. */
16176
16177 if (part_die->name == NULL && part_die->has_specification)
16178 {
16179 struct partial_die_info *spec_die;
16180
16181 spec_die = find_partial_die (part_die->spec_offset,
16182 part_die->spec_is_dwz, cu);
16183
16184 fixup_partial_die (spec_die, cu);
16185
16186 if (spec_die->name)
16187 {
16188 part_die->name = spec_die->name;
16189
16190 /* Copy DW_AT_external attribute if it is set. */
16191 if (spec_die->is_external)
16192 part_die->is_external = spec_die->is_external;
16193 }
16194 }
16195
16196 /* Set default names for some unnamed DIEs. */
16197
16198 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
16199 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
16200
16201 /* If there is no parent die to provide a namespace, and there are
16202 children, see if we can determine the namespace from their linkage
16203 name. */
16204 if (cu->language == language_cplus
16205 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16206 && part_die->die_parent == NULL
16207 && part_die->has_children
16208 && (part_die->tag == DW_TAG_class_type
16209 || part_die->tag == DW_TAG_structure_type
16210 || part_die->tag == DW_TAG_union_type))
16211 guess_partial_die_structure_name (part_die, cu);
16212
16213 /* GCC might emit a nameless struct or union that has a linkage
16214 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16215 if (part_die->name == NULL
16216 && (part_die->tag == DW_TAG_class_type
16217 || part_die->tag == DW_TAG_interface_type
16218 || part_die->tag == DW_TAG_structure_type
16219 || part_die->tag == DW_TAG_union_type)
16220 && part_die->linkage_name != NULL)
16221 {
16222 char *demangled;
16223
16224 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
16225 if (demangled)
16226 {
16227 const char *base;
16228
16229 /* Strip any leading namespaces/classes, keep only the base name.
16230 DW_AT_name for named DIEs does not contain the prefixes. */
16231 base = strrchr (demangled, ':');
16232 if (base && base > demangled && base[-1] == ':')
16233 base++;
16234 else
16235 base = demangled;
16236
16237 part_die->name
16238 = ((const char *)
16239 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16240 base, strlen (base)));
16241 xfree (demangled);
16242 }
16243 }
16244
16245 part_die->fixup_called = 1;
16246 }
16247
16248 /* Read an attribute value described by an attribute form. */
16249
16250 static const gdb_byte *
16251 read_attribute_value (const struct die_reader_specs *reader,
16252 struct attribute *attr, unsigned form,
16253 const gdb_byte *info_ptr)
16254 {
16255 struct dwarf2_cu *cu = reader->cu;
16256 struct objfile *objfile = cu->objfile;
16257 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16258 bfd *abfd = reader->abfd;
16259 struct comp_unit_head *cu_header = &cu->header;
16260 unsigned int bytes_read;
16261 struct dwarf_block *blk;
16262
16263 attr->form = (enum dwarf_form) form;
16264 switch (form)
16265 {
16266 case DW_FORM_ref_addr:
16267 if (cu->header.version == 2)
16268 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16269 else
16270 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16271 &cu->header, &bytes_read);
16272 info_ptr += bytes_read;
16273 break;
16274 case DW_FORM_GNU_ref_alt:
16275 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16276 info_ptr += bytes_read;
16277 break;
16278 case DW_FORM_addr:
16279 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16280 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
16281 info_ptr += bytes_read;
16282 break;
16283 case DW_FORM_block2:
16284 blk = dwarf_alloc_block (cu);
16285 blk->size = read_2_bytes (abfd, info_ptr);
16286 info_ptr += 2;
16287 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16288 info_ptr += blk->size;
16289 DW_BLOCK (attr) = blk;
16290 break;
16291 case DW_FORM_block4:
16292 blk = dwarf_alloc_block (cu);
16293 blk->size = read_4_bytes (abfd, info_ptr);
16294 info_ptr += 4;
16295 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16296 info_ptr += blk->size;
16297 DW_BLOCK (attr) = blk;
16298 break;
16299 case DW_FORM_data2:
16300 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16301 info_ptr += 2;
16302 break;
16303 case DW_FORM_data4:
16304 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16305 info_ptr += 4;
16306 break;
16307 case DW_FORM_data8:
16308 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16309 info_ptr += 8;
16310 break;
16311 case DW_FORM_sec_offset:
16312 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16313 info_ptr += bytes_read;
16314 break;
16315 case DW_FORM_string:
16316 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
16317 DW_STRING_IS_CANONICAL (attr) = 0;
16318 info_ptr += bytes_read;
16319 break;
16320 case DW_FORM_strp:
16321 if (!cu->per_cu->is_dwz)
16322 {
16323 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16324 &bytes_read);
16325 DW_STRING_IS_CANONICAL (attr) = 0;
16326 info_ptr += bytes_read;
16327 break;
16328 }
16329 /* FALLTHROUGH */
16330 case DW_FORM_GNU_strp_alt:
16331 {
16332 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16333 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16334 &bytes_read);
16335
16336 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16337 DW_STRING_IS_CANONICAL (attr) = 0;
16338 info_ptr += bytes_read;
16339 }
16340 break;
16341 case DW_FORM_exprloc:
16342 case DW_FORM_block:
16343 blk = dwarf_alloc_block (cu);
16344 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16345 info_ptr += bytes_read;
16346 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16347 info_ptr += blk->size;
16348 DW_BLOCK (attr) = blk;
16349 break;
16350 case DW_FORM_block1:
16351 blk = dwarf_alloc_block (cu);
16352 blk->size = read_1_byte (abfd, info_ptr);
16353 info_ptr += 1;
16354 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16355 info_ptr += blk->size;
16356 DW_BLOCK (attr) = blk;
16357 break;
16358 case DW_FORM_data1:
16359 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16360 info_ptr += 1;
16361 break;
16362 case DW_FORM_flag:
16363 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16364 info_ptr += 1;
16365 break;
16366 case DW_FORM_flag_present:
16367 DW_UNSND (attr) = 1;
16368 break;
16369 case DW_FORM_sdata:
16370 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16371 info_ptr += bytes_read;
16372 break;
16373 case DW_FORM_udata:
16374 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16375 info_ptr += bytes_read;
16376 break;
16377 case DW_FORM_ref1:
16378 DW_UNSND (attr) = (cu->header.offset.sect_off
16379 + read_1_byte (abfd, info_ptr));
16380 info_ptr += 1;
16381 break;
16382 case DW_FORM_ref2:
16383 DW_UNSND (attr) = (cu->header.offset.sect_off
16384 + read_2_bytes (abfd, info_ptr));
16385 info_ptr += 2;
16386 break;
16387 case DW_FORM_ref4:
16388 DW_UNSND (attr) = (cu->header.offset.sect_off
16389 + read_4_bytes (abfd, info_ptr));
16390 info_ptr += 4;
16391 break;
16392 case DW_FORM_ref8:
16393 DW_UNSND (attr) = (cu->header.offset.sect_off
16394 + read_8_bytes (abfd, info_ptr));
16395 info_ptr += 8;
16396 break;
16397 case DW_FORM_ref_sig8:
16398 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16399 info_ptr += 8;
16400 break;
16401 case DW_FORM_ref_udata:
16402 DW_UNSND (attr) = (cu->header.offset.sect_off
16403 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16404 info_ptr += bytes_read;
16405 break;
16406 case DW_FORM_indirect:
16407 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16408 info_ptr += bytes_read;
16409 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
16410 break;
16411 case DW_FORM_GNU_addr_index:
16412 if (reader->dwo_file == NULL)
16413 {
16414 /* For now flag a hard error.
16415 Later we can turn this into a complaint. */
16416 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16417 dwarf_form_name (form),
16418 bfd_get_filename (abfd));
16419 }
16420 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16421 info_ptr += bytes_read;
16422 break;
16423 case DW_FORM_GNU_str_index:
16424 if (reader->dwo_file == NULL)
16425 {
16426 /* For now flag a hard error.
16427 Later we can turn this into a complaint if warranted. */
16428 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16429 dwarf_form_name (form),
16430 bfd_get_filename (abfd));
16431 }
16432 {
16433 ULONGEST str_index =
16434 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16435
16436 DW_STRING (attr) = read_str_index (reader, str_index);
16437 DW_STRING_IS_CANONICAL (attr) = 0;
16438 info_ptr += bytes_read;
16439 }
16440 break;
16441 default:
16442 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16443 dwarf_form_name (form),
16444 bfd_get_filename (abfd));
16445 }
16446
16447 /* Super hack. */
16448 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16449 attr->form = DW_FORM_GNU_ref_alt;
16450
16451 /* We have seen instances where the compiler tried to emit a byte
16452 size attribute of -1 which ended up being encoded as an unsigned
16453 0xffffffff. Although 0xffffffff is technically a valid size value,
16454 an object of this size seems pretty unlikely so we can relatively
16455 safely treat these cases as if the size attribute was invalid and
16456 treat them as zero by default. */
16457 if (attr->name == DW_AT_byte_size
16458 && form == DW_FORM_data4
16459 && DW_UNSND (attr) >= 0xffffffff)
16460 {
16461 complaint
16462 (&symfile_complaints,
16463 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16464 hex_string (DW_UNSND (attr)));
16465 DW_UNSND (attr) = 0;
16466 }
16467
16468 return info_ptr;
16469 }
16470
16471 /* Read an attribute described by an abbreviated attribute. */
16472
16473 static const gdb_byte *
16474 read_attribute (const struct die_reader_specs *reader,
16475 struct attribute *attr, struct attr_abbrev *abbrev,
16476 const gdb_byte *info_ptr)
16477 {
16478 attr->name = abbrev->name;
16479 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
16480 }
16481
16482 /* Read dwarf information from a buffer. */
16483
16484 static unsigned int
16485 read_1_byte (bfd *abfd, const gdb_byte *buf)
16486 {
16487 return bfd_get_8 (abfd, buf);
16488 }
16489
16490 static int
16491 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16492 {
16493 return bfd_get_signed_8 (abfd, buf);
16494 }
16495
16496 static unsigned int
16497 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16498 {
16499 return bfd_get_16 (abfd, buf);
16500 }
16501
16502 static int
16503 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16504 {
16505 return bfd_get_signed_16 (abfd, buf);
16506 }
16507
16508 static unsigned int
16509 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16510 {
16511 return bfd_get_32 (abfd, buf);
16512 }
16513
16514 static int
16515 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16516 {
16517 return bfd_get_signed_32 (abfd, buf);
16518 }
16519
16520 static ULONGEST
16521 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16522 {
16523 return bfd_get_64 (abfd, buf);
16524 }
16525
16526 static CORE_ADDR
16527 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16528 unsigned int *bytes_read)
16529 {
16530 struct comp_unit_head *cu_header = &cu->header;
16531 CORE_ADDR retval = 0;
16532
16533 if (cu_header->signed_addr_p)
16534 {
16535 switch (cu_header->addr_size)
16536 {
16537 case 2:
16538 retval = bfd_get_signed_16 (abfd, buf);
16539 break;
16540 case 4:
16541 retval = bfd_get_signed_32 (abfd, buf);
16542 break;
16543 case 8:
16544 retval = bfd_get_signed_64 (abfd, buf);
16545 break;
16546 default:
16547 internal_error (__FILE__, __LINE__,
16548 _("read_address: bad switch, signed [in module %s]"),
16549 bfd_get_filename (abfd));
16550 }
16551 }
16552 else
16553 {
16554 switch (cu_header->addr_size)
16555 {
16556 case 2:
16557 retval = bfd_get_16 (abfd, buf);
16558 break;
16559 case 4:
16560 retval = bfd_get_32 (abfd, buf);
16561 break;
16562 case 8:
16563 retval = bfd_get_64 (abfd, buf);
16564 break;
16565 default:
16566 internal_error (__FILE__, __LINE__,
16567 _("read_address: bad switch, "
16568 "unsigned [in module %s]"),
16569 bfd_get_filename (abfd));
16570 }
16571 }
16572
16573 *bytes_read = cu_header->addr_size;
16574 return retval;
16575 }
16576
16577 /* Read the initial length from a section. The (draft) DWARF 3
16578 specification allows the initial length to take up either 4 bytes
16579 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16580 bytes describe the length and all offsets will be 8 bytes in length
16581 instead of 4.
16582
16583 An older, non-standard 64-bit format is also handled by this
16584 function. The older format in question stores the initial length
16585 as an 8-byte quantity without an escape value. Lengths greater
16586 than 2^32 aren't very common which means that the initial 4 bytes
16587 is almost always zero. Since a length value of zero doesn't make
16588 sense for the 32-bit format, this initial zero can be considered to
16589 be an escape value which indicates the presence of the older 64-bit
16590 format. As written, the code can't detect (old format) lengths
16591 greater than 4GB. If it becomes necessary to handle lengths
16592 somewhat larger than 4GB, we could allow other small values (such
16593 as the non-sensical values of 1, 2, and 3) to also be used as
16594 escape values indicating the presence of the old format.
16595
16596 The value returned via bytes_read should be used to increment the
16597 relevant pointer after calling read_initial_length().
16598
16599 [ Note: read_initial_length() and read_offset() are based on the
16600 document entitled "DWARF Debugging Information Format", revision
16601 3, draft 8, dated November 19, 2001. This document was obtained
16602 from:
16603
16604 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16605
16606 This document is only a draft and is subject to change. (So beware.)
16607
16608 Details regarding the older, non-standard 64-bit format were
16609 determined empirically by examining 64-bit ELF files produced by
16610 the SGI toolchain on an IRIX 6.5 machine.
16611
16612 - Kevin, July 16, 2002
16613 ] */
16614
16615 static LONGEST
16616 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16617 {
16618 LONGEST length = bfd_get_32 (abfd, buf);
16619
16620 if (length == 0xffffffff)
16621 {
16622 length = bfd_get_64 (abfd, buf + 4);
16623 *bytes_read = 12;
16624 }
16625 else if (length == 0)
16626 {
16627 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16628 length = bfd_get_64 (abfd, buf);
16629 *bytes_read = 8;
16630 }
16631 else
16632 {
16633 *bytes_read = 4;
16634 }
16635
16636 return length;
16637 }
16638
16639 /* Cover function for read_initial_length.
16640 Returns the length of the object at BUF, and stores the size of the
16641 initial length in *BYTES_READ and stores the size that offsets will be in
16642 *OFFSET_SIZE.
16643 If the initial length size is not equivalent to that specified in
16644 CU_HEADER then issue a complaint.
16645 This is useful when reading non-comp-unit headers. */
16646
16647 static LONGEST
16648 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16649 const struct comp_unit_head *cu_header,
16650 unsigned int *bytes_read,
16651 unsigned int *offset_size)
16652 {
16653 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16654
16655 gdb_assert (cu_header->initial_length_size == 4
16656 || cu_header->initial_length_size == 8
16657 || cu_header->initial_length_size == 12);
16658
16659 if (cu_header->initial_length_size != *bytes_read)
16660 complaint (&symfile_complaints,
16661 _("intermixed 32-bit and 64-bit DWARF sections"));
16662
16663 *offset_size = (*bytes_read == 4) ? 4 : 8;
16664 return length;
16665 }
16666
16667 /* Read an offset from the data stream. The size of the offset is
16668 given by cu_header->offset_size. */
16669
16670 static LONGEST
16671 read_offset (bfd *abfd, const gdb_byte *buf,
16672 const struct comp_unit_head *cu_header,
16673 unsigned int *bytes_read)
16674 {
16675 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16676
16677 *bytes_read = cu_header->offset_size;
16678 return offset;
16679 }
16680
16681 /* Read an offset from the data stream. */
16682
16683 static LONGEST
16684 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16685 {
16686 LONGEST retval = 0;
16687
16688 switch (offset_size)
16689 {
16690 case 4:
16691 retval = bfd_get_32 (abfd, buf);
16692 break;
16693 case 8:
16694 retval = bfd_get_64 (abfd, buf);
16695 break;
16696 default:
16697 internal_error (__FILE__, __LINE__,
16698 _("read_offset_1: bad switch [in module %s]"),
16699 bfd_get_filename (abfd));
16700 }
16701
16702 return retval;
16703 }
16704
16705 static const gdb_byte *
16706 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16707 {
16708 /* If the size of a host char is 8 bits, we can return a pointer
16709 to the buffer, otherwise we have to copy the data to a buffer
16710 allocated on the temporary obstack. */
16711 gdb_assert (HOST_CHAR_BIT == 8);
16712 return buf;
16713 }
16714
16715 static const char *
16716 read_direct_string (bfd *abfd, const gdb_byte *buf,
16717 unsigned int *bytes_read_ptr)
16718 {
16719 /* If the size of a host char is 8 bits, we can return a pointer
16720 to the string, otherwise we have to copy the string to a buffer
16721 allocated on the temporary obstack. */
16722 gdb_assert (HOST_CHAR_BIT == 8);
16723 if (*buf == '\0')
16724 {
16725 *bytes_read_ptr = 1;
16726 return NULL;
16727 }
16728 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16729 return (const char *) buf;
16730 }
16731
16732 static const char *
16733 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16734 {
16735 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16736 if (dwarf2_per_objfile->str.buffer == NULL)
16737 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16738 bfd_get_filename (abfd));
16739 if (str_offset >= dwarf2_per_objfile->str.size)
16740 error (_("DW_FORM_strp pointing outside of "
16741 ".debug_str section [in module %s]"),
16742 bfd_get_filename (abfd));
16743 gdb_assert (HOST_CHAR_BIT == 8);
16744 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16745 return NULL;
16746 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16747 }
16748
16749 /* Read a string at offset STR_OFFSET in the .debug_str section from
16750 the .dwz file DWZ. Throw an error if the offset is too large. If
16751 the string consists of a single NUL byte, return NULL; otherwise
16752 return a pointer to the string. */
16753
16754 static const char *
16755 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16756 {
16757 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16758
16759 if (dwz->str.buffer == NULL)
16760 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16761 "section [in module %s]"),
16762 bfd_get_filename (dwz->dwz_bfd));
16763 if (str_offset >= dwz->str.size)
16764 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16765 ".debug_str section [in module %s]"),
16766 bfd_get_filename (dwz->dwz_bfd));
16767 gdb_assert (HOST_CHAR_BIT == 8);
16768 if (dwz->str.buffer[str_offset] == '\0')
16769 return NULL;
16770 return (const char *) (dwz->str.buffer + str_offset);
16771 }
16772
16773 static const char *
16774 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16775 const struct comp_unit_head *cu_header,
16776 unsigned int *bytes_read_ptr)
16777 {
16778 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16779
16780 return read_indirect_string_at_offset (abfd, str_offset);
16781 }
16782
16783 static ULONGEST
16784 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16785 unsigned int *bytes_read_ptr)
16786 {
16787 ULONGEST result;
16788 unsigned int num_read;
16789 int shift;
16790 unsigned char byte;
16791
16792 result = 0;
16793 shift = 0;
16794 num_read = 0;
16795 while (1)
16796 {
16797 byte = bfd_get_8 (abfd, buf);
16798 buf++;
16799 num_read++;
16800 result |= ((ULONGEST) (byte & 127) << shift);
16801 if ((byte & 128) == 0)
16802 {
16803 break;
16804 }
16805 shift += 7;
16806 }
16807 *bytes_read_ptr = num_read;
16808 return result;
16809 }
16810
16811 static LONGEST
16812 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16813 unsigned int *bytes_read_ptr)
16814 {
16815 LONGEST result;
16816 int shift, num_read;
16817 unsigned char byte;
16818
16819 result = 0;
16820 shift = 0;
16821 num_read = 0;
16822 while (1)
16823 {
16824 byte = bfd_get_8 (abfd, buf);
16825 buf++;
16826 num_read++;
16827 result |= ((LONGEST) (byte & 127) << shift);
16828 shift += 7;
16829 if ((byte & 128) == 0)
16830 {
16831 break;
16832 }
16833 }
16834 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16835 result |= -(((LONGEST) 1) << shift);
16836 *bytes_read_ptr = num_read;
16837 return result;
16838 }
16839
16840 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16841 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16842 ADDR_SIZE is the size of addresses from the CU header. */
16843
16844 static CORE_ADDR
16845 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16846 {
16847 struct objfile *objfile = dwarf2_per_objfile->objfile;
16848 bfd *abfd = objfile->obfd;
16849 const gdb_byte *info_ptr;
16850
16851 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16852 if (dwarf2_per_objfile->addr.buffer == NULL)
16853 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16854 objfile_name (objfile));
16855 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16856 error (_("DW_FORM_addr_index pointing outside of "
16857 ".debug_addr section [in module %s]"),
16858 objfile_name (objfile));
16859 info_ptr = (dwarf2_per_objfile->addr.buffer
16860 + addr_base + addr_index * addr_size);
16861 if (addr_size == 4)
16862 return bfd_get_32 (abfd, info_ptr);
16863 else
16864 return bfd_get_64 (abfd, info_ptr);
16865 }
16866
16867 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16868
16869 static CORE_ADDR
16870 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16871 {
16872 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16873 }
16874
16875 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16876
16877 static CORE_ADDR
16878 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16879 unsigned int *bytes_read)
16880 {
16881 bfd *abfd = cu->objfile->obfd;
16882 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16883
16884 return read_addr_index (cu, addr_index);
16885 }
16886
16887 /* Data structure to pass results from dwarf2_read_addr_index_reader
16888 back to dwarf2_read_addr_index. */
16889
16890 struct dwarf2_read_addr_index_data
16891 {
16892 ULONGEST addr_base;
16893 int addr_size;
16894 };
16895
16896 /* die_reader_func for dwarf2_read_addr_index. */
16897
16898 static void
16899 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16900 const gdb_byte *info_ptr,
16901 struct die_info *comp_unit_die,
16902 int has_children,
16903 void *data)
16904 {
16905 struct dwarf2_cu *cu = reader->cu;
16906 struct dwarf2_read_addr_index_data *aidata =
16907 (struct dwarf2_read_addr_index_data *) data;
16908
16909 aidata->addr_base = cu->addr_base;
16910 aidata->addr_size = cu->header.addr_size;
16911 }
16912
16913 /* Given an index in .debug_addr, fetch the value.
16914 NOTE: This can be called during dwarf expression evaluation,
16915 long after the debug information has been read, and thus per_cu->cu
16916 may no longer exist. */
16917
16918 CORE_ADDR
16919 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16920 unsigned int addr_index)
16921 {
16922 struct objfile *objfile = per_cu->objfile;
16923 struct dwarf2_cu *cu = per_cu->cu;
16924 ULONGEST addr_base;
16925 int addr_size;
16926
16927 /* This is intended to be called from outside this file. */
16928 dw2_setup (objfile);
16929
16930 /* We need addr_base and addr_size.
16931 If we don't have PER_CU->cu, we have to get it.
16932 Nasty, but the alternative is storing the needed info in PER_CU,
16933 which at this point doesn't seem justified: it's not clear how frequently
16934 it would get used and it would increase the size of every PER_CU.
16935 Entry points like dwarf2_per_cu_addr_size do a similar thing
16936 so we're not in uncharted territory here.
16937 Alas we need to be a bit more complicated as addr_base is contained
16938 in the DIE.
16939
16940 We don't need to read the entire CU(/TU).
16941 We just need the header and top level die.
16942
16943 IWBN to use the aging mechanism to let us lazily later discard the CU.
16944 For now we skip this optimization. */
16945
16946 if (cu != NULL)
16947 {
16948 addr_base = cu->addr_base;
16949 addr_size = cu->header.addr_size;
16950 }
16951 else
16952 {
16953 struct dwarf2_read_addr_index_data aidata;
16954
16955 /* Note: We can't use init_cutu_and_read_dies_simple here,
16956 we need addr_base. */
16957 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16958 dwarf2_read_addr_index_reader, &aidata);
16959 addr_base = aidata.addr_base;
16960 addr_size = aidata.addr_size;
16961 }
16962
16963 return read_addr_index_1 (addr_index, addr_base, addr_size);
16964 }
16965
16966 /* Given a DW_FORM_GNU_str_index, fetch the string.
16967 This is only used by the Fission support. */
16968
16969 static const char *
16970 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
16971 {
16972 struct objfile *objfile = dwarf2_per_objfile->objfile;
16973 const char *objf_name = objfile_name (objfile);
16974 bfd *abfd = objfile->obfd;
16975 struct dwarf2_cu *cu = reader->cu;
16976 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16977 struct dwarf2_section_info *str_offsets_section =
16978 &reader->dwo_file->sections.str_offsets;
16979 const gdb_byte *info_ptr;
16980 ULONGEST str_offset;
16981 static const char form_name[] = "DW_FORM_GNU_str_index";
16982
16983 dwarf2_read_section (objfile, str_section);
16984 dwarf2_read_section (objfile, str_offsets_section);
16985 if (str_section->buffer == NULL)
16986 error (_("%s used without .debug_str.dwo section"
16987 " in CU at offset 0x%lx [in module %s]"),
16988 form_name, (long) cu->header.offset.sect_off, objf_name);
16989 if (str_offsets_section->buffer == NULL)
16990 error (_("%s used without .debug_str_offsets.dwo section"
16991 " in CU at offset 0x%lx [in module %s]"),
16992 form_name, (long) cu->header.offset.sect_off, objf_name);
16993 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16994 error (_("%s pointing outside of .debug_str_offsets.dwo"
16995 " section in CU at offset 0x%lx [in module %s]"),
16996 form_name, (long) cu->header.offset.sect_off, objf_name);
16997 info_ptr = (str_offsets_section->buffer
16998 + str_index * cu->header.offset_size);
16999 if (cu->header.offset_size == 4)
17000 str_offset = bfd_get_32 (abfd, info_ptr);
17001 else
17002 str_offset = bfd_get_64 (abfd, info_ptr);
17003 if (str_offset >= str_section->size)
17004 error (_("Offset from %s pointing outside of"
17005 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
17006 form_name, (long) cu->header.offset.sect_off, objf_name);
17007 return (const char *) (str_section->buffer + str_offset);
17008 }
17009
17010 /* Return the length of an LEB128 number in BUF. */
17011
17012 static int
17013 leb128_size (const gdb_byte *buf)
17014 {
17015 const gdb_byte *begin = buf;
17016 gdb_byte byte;
17017
17018 while (1)
17019 {
17020 byte = *buf++;
17021 if ((byte & 128) == 0)
17022 return buf - begin;
17023 }
17024 }
17025
17026 static void
17027 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
17028 {
17029 switch (lang)
17030 {
17031 case DW_LANG_C89:
17032 case DW_LANG_C99:
17033 case DW_LANG_C11:
17034 case DW_LANG_C:
17035 case DW_LANG_UPC:
17036 cu->language = language_c;
17037 break;
17038 case DW_LANG_Java:
17039 case DW_LANG_C_plus_plus:
17040 case DW_LANG_C_plus_plus_11:
17041 case DW_LANG_C_plus_plus_14:
17042 cu->language = language_cplus;
17043 break;
17044 case DW_LANG_D:
17045 cu->language = language_d;
17046 break;
17047 case DW_LANG_Fortran77:
17048 case DW_LANG_Fortran90:
17049 case DW_LANG_Fortran95:
17050 case DW_LANG_Fortran03:
17051 case DW_LANG_Fortran08:
17052 cu->language = language_fortran;
17053 break;
17054 case DW_LANG_Go:
17055 cu->language = language_go;
17056 break;
17057 case DW_LANG_Mips_Assembler:
17058 cu->language = language_asm;
17059 break;
17060 case DW_LANG_Ada83:
17061 case DW_LANG_Ada95:
17062 cu->language = language_ada;
17063 break;
17064 case DW_LANG_Modula2:
17065 cu->language = language_m2;
17066 break;
17067 case DW_LANG_Pascal83:
17068 cu->language = language_pascal;
17069 break;
17070 case DW_LANG_ObjC:
17071 cu->language = language_objc;
17072 break;
17073 case DW_LANG_Rust:
17074 case DW_LANG_Rust_old:
17075 cu->language = language_rust;
17076 break;
17077 case DW_LANG_Cobol74:
17078 case DW_LANG_Cobol85:
17079 default:
17080 cu->language = language_minimal;
17081 break;
17082 }
17083 cu->language_defn = language_def (cu->language);
17084 }
17085
17086 /* Return the named attribute or NULL if not there. */
17087
17088 static struct attribute *
17089 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17090 {
17091 for (;;)
17092 {
17093 unsigned int i;
17094 struct attribute *spec = NULL;
17095
17096 for (i = 0; i < die->num_attrs; ++i)
17097 {
17098 if (die->attrs[i].name == name)
17099 return &die->attrs[i];
17100 if (die->attrs[i].name == DW_AT_specification
17101 || die->attrs[i].name == DW_AT_abstract_origin)
17102 spec = &die->attrs[i];
17103 }
17104
17105 if (!spec)
17106 break;
17107
17108 die = follow_die_ref (die, spec, &cu);
17109 }
17110
17111 return NULL;
17112 }
17113
17114 /* Return the named attribute or NULL if not there,
17115 but do not follow DW_AT_specification, etc.
17116 This is for use in contexts where we're reading .debug_types dies.
17117 Following DW_AT_specification, DW_AT_abstract_origin will take us
17118 back up the chain, and we want to go down. */
17119
17120 static struct attribute *
17121 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
17122 {
17123 unsigned int i;
17124
17125 for (i = 0; i < die->num_attrs; ++i)
17126 if (die->attrs[i].name == name)
17127 return &die->attrs[i];
17128
17129 return NULL;
17130 }
17131
17132 /* Return the string associated with a string-typed attribute, or NULL if it
17133 is either not found or is of an incorrect type. */
17134
17135 static const char *
17136 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17137 {
17138 struct attribute *attr;
17139 const char *str = NULL;
17140
17141 attr = dwarf2_attr (die, name, cu);
17142
17143 if (attr != NULL)
17144 {
17145 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_string
17146 || attr->form == DW_FORM_GNU_strp_alt)
17147 str = DW_STRING (attr);
17148 else
17149 complaint (&symfile_complaints,
17150 _("string type expected for attribute %s for "
17151 "DIE at 0x%x in module %s"),
17152 dwarf_attr_name (name), die->offset.sect_off,
17153 objfile_name (cu->objfile));
17154 }
17155
17156 return str;
17157 }
17158
17159 /* Return non-zero iff the attribute NAME is defined for the given DIE,
17160 and holds a non-zero value. This function should only be used for
17161 DW_FORM_flag or DW_FORM_flag_present attributes. */
17162
17163 static int
17164 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17165 {
17166 struct attribute *attr = dwarf2_attr (die, name, cu);
17167
17168 return (attr && DW_UNSND (attr));
17169 }
17170
17171 static int
17172 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
17173 {
17174 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17175 which value is non-zero. However, we have to be careful with
17176 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17177 (via dwarf2_flag_true_p) follows this attribute. So we may
17178 end up accidently finding a declaration attribute that belongs
17179 to a different DIE referenced by the specification attribute,
17180 even though the given DIE does not have a declaration attribute. */
17181 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17182 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
17183 }
17184
17185 /* Return the die giving the specification for DIE, if there is
17186 one. *SPEC_CU is the CU containing DIE on input, and the CU
17187 containing the return value on output. If there is no
17188 specification, but there is an abstract origin, that is
17189 returned. */
17190
17191 static struct die_info *
17192 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
17193 {
17194 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17195 *spec_cu);
17196
17197 if (spec_attr == NULL)
17198 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17199
17200 if (spec_attr == NULL)
17201 return NULL;
17202 else
17203 return follow_die_ref (die, spec_attr, spec_cu);
17204 }
17205
17206 /* Free the line_header structure *LH, and any arrays and strings it
17207 refers to.
17208 NOTE: This is also used as a "cleanup" function. */
17209
17210 static void
17211 free_line_header (struct line_header *lh)
17212 {
17213 if (lh->standard_opcode_lengths)
17214 xfree (lh->standard_opcode_lengths);
17215
17216 /* Remember that all the lh->file_names[i].name pointers are
17217 pointers into debug_line_buffer, and don't need to be freed. */
17218 if (lh->file_names)
17219 xfree (lh->file_names);
17220
17221 /* Similarly for the include directory names. */
17222 if (lh->include_dirs)
17223 xfree (lh->include_dirs);
17224
17225 xfree (lh);
17226 }
17227
17228 /* Stub for free_line_header to match void * callback types. */
17229
17230 static void
17231 free_line_header_voidp (void *arg)
17232 {
17233 struct line_header *lh = (struct line_header *) arg;
17234
17235 free_line_header (lh);
17236 }
17237
17238 /* Add an entry to LH's include directory table. */
17239
17240 static void
17241 add_include_dir (struct line_header *lh, const char *include_dir)
17242 {
17243 if (dwarf_line_debug >= 2)
17244 fprintf_unfiltered (gdb_stdlog, "Adding dir %u: %s\n",
17245 lh->num_include_dirs + 1, include_dir);
17246
17247 /* Grow the array if necessary. */
17248 if (lh->include_dirs_size == 0)
17249 {
17250 lh->include_dirs_size = 1; /* for testing */
17251 lh->include_dirs = XNEWVEC (const char *, lh->include_dirs_size);
17252 }
17253 else if (lh->num_include_dirs >= lh->include_dirs_size)
17254 {
17255 lh->include_dirs_size *= 2;
17256 lh->include_dirs = XRESIZEVEC (const char *, lh->include_dirs,
17257 lh->include_dirs_size);
17258 }
17259
17260 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17261 }
17262
17263 /* Add an entry to LH's file name table. */
17264
17265 static void
17266 add_file_name (struct line_header *lh,
17267 const char *name,
17268 unsigned int dir_index,
17269 unsigned int mod_time,
17270 unsigned int length)
17271 {
17272 struct file_entry *fe;
17273
17274 if (dwarf_line_debug >= 2)
17275 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17276 lh->num_file_names + 1, name);
17277
17278 /* Grow the array if necessary. */
17279 if (lh->file_names_size == 0)
17280 {
17281 lh->file_names_size = 1; /* for testing */
17282 lh->file_names = XNEWVEC (struct file_entry, lh->file_names_size);
17283 }
17284 else if (lh->num_file_names >= lh->file_names_size)
17285 {
17286 lh->file_names_size *= 2;
17287 lh->file_names
17288 = XRESIZEVEC (struct file_entry, lh->file_names, lh->file_names_size);
17289 }
17290
17291 fe = &lh->file_names[lh->num_file_names++];
17292 fe->name = name;
17293 fe->dir_index = dir_index;
17294 fe->mod_time = mod_time;
17295 fe->length = length;
17296 fe->included_p = 0;
17297 fe->symtab = NULL;
17298 }
17299
17300 /* A convenience function to find the proper .debug_line section for a CU. */
17301
17302 static struct dwarf2_section_info *
17303 get_debug_line_section (struct dwarf2_cu *cu)
17304 {
17305 struct dwarf2_section_info *section;
17306
17307 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17308 DWO file. */
17309 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17310 section = &cu->dwo_unit->dwo_file->sections.line;
17311 else if (cu->per_cu->is_dwz)
17312 {
17313 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17314
17315 section = &dwz->line;
17316 }
17317 else
17318 section = &dwarf2_per_objfile->line;
17319
17320 return section;
17321 }
17322
17323 /* Read the statement program header starting at OFFSET in
17324 .debug_line, or .debug_line.dwo. Return a pointer
17325 to a struct line_header, allocated using xmalloc.
17326 Returns NULL if there is a problem reading the header, e.g., if it
17327 has a version we don't understand.
17328
17329 NOTE: the strings in the include directory and file name tables of
17330 the returned object point into the dwarf line section buffer,
17331 and must not be freed. */
17332
17333 static struct line_header *
17334 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
17335 {
17336 struct cleanup *back_to;
17337 struct line_header *lh;
17338 const gdb_byte *line_ptr;
17339 unsigned int bytes_read, offset_size;
17340 int i;
17341 const char *cur_dir, *cur_file;
17342 struct dwarf2_section_info *section;
17343 bfd *abfd;
17344
17345 section = get_debug_line_section (cu);
17346 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17347 if (section->buffer == NULL)
17348 {
17349 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17350 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17351 else
17352 complaint (&symfile_complaints, _("missing .debug_line section"));
17353 return 0;
17354 }
17355
17356 /* We can't do this until we know the section is non-empty.
17357 Only then do we know we have such a section. */
17358 abfd = get_section_bfd_owner (section);
17359
17360 /* Make sure that at least there's room for the total_length field.
17361 That could be 12 bytes long, but we're just going to fudge that. */
17362 if (offset + 4 >= section->size)
17363 {
17364 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17365 return 0;
17366 }
17367
17368 lh = XNEW (struct line_header);
17369 memset (lh, 0, sizeof (*lh));
17370 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17371 (void *) lh);
17372
17373 lh->offset.sect_off = offset;
17374 lh->offset_in_dwz = cu->per_cu->is_dwz;
17375
17376 line_ptr = section->buffer + offset;
17377
17378 /* Read in the header. */
17379 lh->total_length =
17380 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17381 &bytes_read, &offset_size);
17382 line_ptr += bytes_read;
17383 if (line_ptr + lh->total_length > (section->buffer + section->size))
17384 {
17385 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17386 do_cleanups (back_to);
17387 return 0;
17388 }
17389 lh->statement_program_end = line_ptr + lh->total_length;
17390 lh->version = read_2_bytes (abfd, line_ptr);
17391 line_ptr += 2;
17392 if (lh->version > 4)
17393 {
17394 /* This is a version we don't understand. The format could have
17395 changed in ways we don't handle properly so just punt. */
17396 complaint (&symfile_complaints,
17397 _("unsupported version in .debug_line section"));
17398 return NULL;
17399 }
17400 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17401 line_ptr += offset_size;
17402 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17403 line_ptr += 1;
17404 if (lh->version >= 4)
17405 {
17406 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17407 line_ptr += 1;
17408 }
17409 else
17410 lh->maximum_ops_per_instruction = 1;
17411
17412 if (lh->maximum_ops_per_instruction == 0)
17413 {
17414 lh->maximum_ops_per_instruction = 1;
17415 complaint (&symfile_complaints,
17416 _("invalid maximum_ops_per_instruction "
17417 "in `.debug_line' section"));
17418 }
17419
17420 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17421 line_ptr += 1;
17422 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17423 line_ptr += 1;
17424 lh->line_range = read_1_byte (abfd, line_ptr);
17425 line_ptr += 1;
17426 lh->opcode_base = read_1_byte (abfd, line_ptr);
17427 line_ptr += 1;
17428 lh->standard_opcode_lengths = XNEWVEC (unsigned char, lh->opcode_base);
17429
17430 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17431 for (i = 1; i < lh->opcode_base; ++i)
17432 {
17433 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17434 line_ptr += 1;
17435 }
17436
17437 /* Read directory table. */
17438 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17439 {
17440 line_ptr += bytes_read;
17441 add_include_dir (lh, cur_dir);
17442 }
17443 line_ptr += bytes_read;
17444
17445 /* Read file name table. */
17446 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17447 {
17448 unsigned int dir_index, mod_time, length;
17449
17450 line_ptr += bytes_read;
17451 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17452 line_ptr += bytes_read;
17453 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17454 line_ptr += bytes_read;
17455 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17456 line_ptr += bytes_read;
17457
17458 add_file_name (lh, cur_file, dir_index, mod_time, length);
17459 }
17460 line_ptr += bytes_read;
17461 lh->statement_program_start = line_ptr;
17462
17463 if (line_ptr > (section->buffer + section->size))
17464 complaint (&symfile_complaints,
17465 _("line number info header doesn't "
17466 "fit in `.debug_line' section"));
17467
17468 discard_cleanups (back_to);
17469 return lh;
17470 }
17471
17472 /* Subroutine of dwarf_decode_lines to simplify it.
17473 Return the file name of the psymtab for included file FILE_INDEX
17474 in line header LH of PST.
17475 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17476 If space for the result is malloc'd, it will be freed by a cleanup.
17477 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17478
17479 The function creates dangling cleanup registration. */
17480
17481 static const char *
17482 psymtab_include_file_name (const struct line_header *lh, int file_index,
17483 const struct partial_symtab *pst,
17484 const char *comp_dir)
17485 {
17486 const struct file_entry fe = lh->file_names [file_index];
17487 const char *include_name = fe.name;
17488 const char *include_name_to_compare = include_name;
17489 const char *dir_name = NULL;
17490 const char *pst_filename;
17491 char *copied_name = NULL;
17492 int file_is_pst;
17493
17494 if (fe.dir_index && lh->include_dirs != NULL)
17495 dir_name = lh->include_dirs[fe.dir_index - 1];
17496
17497 if (!IS_ABSOLUTE_PATH (include_name)
17498 && (dir_name != NULL || comp_dir != NULL))
17499 {
17500 /* Avoid creating a duplicate psymtab for PST.
17501 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17502 Before we do the comparison, however, we need to account
17503 for DIR_NAME and COMP_DIR.
17504 First prepend dir_name (if non-NULL). If we still don't
17505 have an absolute path prepend comp_dir (if non-NULL).
17506 However, the directory we record in the include-file's
17507 psymtab does not contain COMP_DIR (to match the
17508 corresponding symtab(s)).
17509
17510 Example:
17511
17512 bash$ cd /tmp
17513 bash$ gcc -g ./hello.c
17514 include_name = "hello.c"
17515 dir_name = "."
17516 DW_AT_comp_dir = comp_dir = "/tmp"
17517 DW_AT_name = "./hello.c"
17518
17519 */
17520
17521 if (dir_name != NULL)
17522 {
17523 char *tem = concat (dir_name, SLASH_STRING,
17524 include_name, (char *)NULL);
17525
17526 make_cleanup (xfree, tem);
17527 include_name = tem;
17528 include_name_to_compare = include_name;
17529 }
17530 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17531 {
17532 char *tem = concat (comp_dir, SLASH_STRING,
17533 include_name, (char *)NULL);
17534
17535 make_cleanup (xfree, tem);
17536 include_name_to_compare = tem;
17537 }
17538 }
17539
17540 pst_filename = pst->filename;
17541 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17542 {
17543 copied_name = concat (pst->dirname, SLASH_STRING,
17544 pst_filename, (char *)NULL);
17545 pst_filename = copied_name;
17546 }
17547
17548 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
17549
17550 if (copied_name != NULL)
17551 xfree (copied_name);
17552
17553 if (file_is_pst)
17554 return NULL;
17555 return include_name;
17556 }
17557
17558 /* State machine to track the state of the line number program. */
17559
17560 typedef struct
17561 {
17562 /* These are part of the standard DWARF line number state machine. */
17563
17564 unsigned char op_index;
17565 unsigned int file;
17566 unsigned int line;
17567 CORE_ADDR address;
17568 int is_stmt;
17569 unsigned int discriminator;
17570
17571 /* Additional bits of state we need to track. */
17572
17573 /* The last file that we called dwarf2_start_subfile for.
17574 This is only used for TLLs. */
17575 unsigned int last_file;
17576 /* The last file a line number was recorded for. */
17577 struct subfile *last_subfile;
17578
17579 /* The function to call to record a line. */
17580 record_line_ftype *record_line;
17581
17582 /* The last line number that was recorded, used to coalesce
17583 consecutive entries for the same line. This can happen, for
17584 example, when discriminators are present. PR 17276. */
17585 unsigned int last_line;
17586 int line_has_non_zero_discriminator;
17587 } lnp_state_machine;
17588
17589 /* There's a lot of static state to pass to dwarf_record_line.
17590 This keeps it all together. */
17591
17592 typedef struct
17593 {
17594 /* The gdbarch. */
17595 struct gdbarch *gdbarch;
17596
17597 /* The line number header. */
17598 struct line_header *line_header;
17599
17600 /* Non-zero if we're recording lines.
17601 Otherwise we're building partial symtabs and are just interested in
17602 finding include files mentioned by the line number program. */
17603 int record_lines_p;
17604 } lnp_reader_state;
17605
17606 /* Ignore this record_line request. */
17607
17608 static void
17609 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17610 {
17611 return;
17612 }
17613
17614 /* Return non-zero if we should add LINE to the line number table.
17615 LINE is the line to add, LAST_LINE is the last line that was added,
17616 LAST_SUBFILE is the subfile for LAST_LINE.
17617 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17618 had a non-zero discriminator.
17619
17620 We have to be careful in the presence of discriminators.
17621 E.g., for this line:
17622
17623 for (i = 0; i < 100000; i++);
17624
17625 clang can emit four line number entries for that one line,
17626 each with a different discriminator.
17627 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17628
17629 However, we want gdb to coalesce all four entries into one.
17630 Otherwise the user could stepi into the middle of the line and
17631 gdb would get confused about whether the pc really was in the
17632 middle of the line.
17633
17634 Things are further complicated by the fact that two consecutive
17635 line number entries for the same line is a heuristic used by gcc
17636 to denote the end of the prologue. So we can't just discard duplicate
17637 entries, we have to be selective about it. The heuristic we use is
17638 that we only collapse consecutive entries for the same line if at least
17639 one of those entries has a non-zero discriminator. PR 17276.
17640
17641 Note: Addresses in the line number state machine can never go backwards
17642 within one sequence, thus this coalescing is ok. */
17643
17644 static int
17645 dwarf_record_line_p (unsigned int line, unsigned int last_line,
17646 int line_has_non_zero_discriminator,
17647 struct subfile *last_subfile)
17648 {
17649 if (current_subfile != last_subfile)
17650 return 1;
17651 if (line != last_line)
17652 return 1;
17653 /* Same line for the same file that we've seen already.
17654 As a last check, for pr 17276, only record the line if the line
17655 has never had a non-zero discriminator. */
17656 if (!line_has_non_zero_discriminator)
17657 return 1;
17658 return 0;
17659 }
17660
17661 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17662 in the line table of subfile SUBFILE. */
17663
17664 static void
17665 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
17666 unsigned int line, CORE_ADDR address,
17667 record_line_ftype p_record_line)
17668 {
17669 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17670
17671 if (dwarf_line_debug)
17672 {
17673 fprintf_unfiltered (gdb_stdlog,
17674 "Recording line %u, file %s, address %s\n",
17675 line, lbasename (subfile->name),
17676 paddress (gdbarch, address));
17677 }
17678
17679 (*p_record_line) (subfile, line, addr);
17680 }
17681
17682 /* Subroutine of dwarf_decode_lines_1 to simplify it.
17683 Mark the end of a set of line number records.
17684 The arguments are the same as for dwarf_record_line_1.
17685 If SUBFILE is NULL the request is ignored. */
17686
17687 static void
17688 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17689 CORE_ADDR address, record_line_ftype p_record_line)
17690 {
17691 if (subfile == NULL)
17692 return;
17693
17694 if (dwarf_line_debug)
17695 {
17696 fprintf_unfiltered (gdb_stdlog,
17697 "Finishing current line, file %s, address %s\n",
17698 lbasename (subfile->name),
17699 paddress (gdbarch, address));
17700 }
17701
17702 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
17703 }
17704
17705 /* Record the line in STATE.
17706 END_SEQUENCE is non-zero if we're processing the end of a sequence. */
17707
17708 static void
17709 dwarf_record_line (lnp_reader_state *reader, lnp_state_machine *state,
17710 int end_sequence)
17711 {
17712 const struct line_header *lh = reader->line_header;
17713 unsigned int file, line, discriminator;
17714 int is_stmt;
17715
17716 file = state->file;
17717 line = state->line;
17718 is_stmt = state->is_stmt;
17719 discriminator = state->discriminator;
17720
17721 if (dwarf_line_debug)
17722 {
17723 fprintf_unfiltered (gdb_stdlog,
17724 "Processing actual line %u: file %u,"
17725 " address %s, is_stmt %u, discrim %u\n",
17726 line, file,
17727 paddress (reader->gdbarch, state->address),
17728 is_stmt, discriminator);
17729 }
17730
17731 if (file == 0 || file - 1 >= lh->num_file_names)
17732 dwarf2_debug_line_missing_file_complaint ();
17733 /* For now we ignore lines not starting on an instruction boundary.
17734 But not when processing end_sequence for compatibility with the
17735 previous version of the code. */
17736 else if (state->op_index == 0 || end_sequence)
17737 {
17738 lh->file_names[file - 1].included_p = 1;
17739 if (reader->record_lines_p && is_stmt)
17740 {
17741 if (state->last_subfile != current_subfile || end_sequence)
17742 {
17743 dwarf_finish_line (reader->gdbarch, state->last_subfile,
17744 state->address, state->record_line);
17745 }
17746
17747 if (!end_sequence)
17748 {
17749 if (dwarf_record_line_p (line, state->last_line,
17750 state->line_has_non_zero_discriminator,
17751 state->last_subfile))
17752 {
17753 dwarf_record_line_1 (reader->gdbarch, current_subfile,
17754 line, state->address,
17755 state->record_line);
17756 }
17757 state->last_subfile = current_subfile;
17758 state->last_line = line;
17759 }
17760 }
17761 }
17762 }
17763
17764 /* Initialize STATE for the start of a line number program. */
17765
17766 static void
17767 init_lnp_state_machine (lnp_state_machine *state,
17768 const lnp_reader_state *reader)
17769 {
17770 memset (state, 0, sizeof (*state));
17771
17772 /* Just starting, there is no "last file". */
17773 state->last_file = 0;
17774 state->last_subfile = NULL;
17775
17776 state->record_line = record_line;
17777
17778 state->last_line = 0;
17779 state->line_has_non_zero_discriminator = 0;
17780
17781 /* Initialize these according to the DWARF spec. */
17782 state->op_index = 0;
17783 state->file = 1;
17784 state->line = 1;
17785 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
17786 was a line entry for it so that the backend has a chance to adjust it
17787 and also record it in case it needs it. This is currently used by MIPS
17788 code, cf. `mips_adjust_dwarf2_line'. */
17789 state->address = gdbarch_adjust_dwarf2_line (reader->gdbarch, 0, 0);
17790 state->is_stmt = reader->line_header->default_is_stmt;
17791 state->discriminator = 0;
17792 }
17793
17794 /* Check address and if invalid nop-out the rest of the lines in this
17795 sequence. */
17796
17797 static void
17798 check_line_address (struct dwarf2_cu *cu, lnp_state_machine *state,
17799 const gdb_byte *line_ptr,
17800 CORE_ADDR lowpc, CORE_ADDR address)
17801 {
17802 /* If address < lowpc then it's not a usable value, it's outside the
17803 pc range of the CU. However, we restrict the test to only address
17804 values of zero to preserve GDB's previous behaviour which is to
17805 handle the specific case of a function being GC'd by the linker. */
17806
17807 if (address == 0 && address < lowpc)
17808 {
17809 /* This line table is for a function which has been
17810 GCd by the linker. Ignore it. PR gdb/12528 */
17811
17812 struct objfile *objfile = cu->objfile;
17813 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
17814
17815 complaint (&symfile_complaints,
17816 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
17817 line_offset, objfile_name (objfile));
17818 state->record_line = noop_record_line;
17819 /* Note: sm.record_line is left as noop_record_line
17820 until we see DW_LNE_end_sequence. */
17821 }
17822 }
17823
17824 /* Subroutine of dwarf_decode_lines to simplify it.
17825 Process the line number information in LH.
17826 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
17827 program in order to set included_p for every referenced header. */
17828
17829 static void
17830 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17831 const int decode_for_pst_p, CORE_ADDR lowpc)
17832 {
17833 const gdb_byte *line_ptr, *extended_end;
17834 const gdb_byte *line_end;
17835 unsigned int bytes_read, extended_len;
17836 unsigned char op_code, extended_op;
17837 CORE_ADDR baseaddr;
17838 struct objfile *objfile = cu->objfile;
17839 bfd *abfd = objfile->obfd;
17840 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17841 /* Non-zero if we're recording line info (as opposed to building partial
17842 symtabs). */
17843 int record_lines_p = !decode_for_pst_p;
17844 /* A collection of things we need to pass to dwarf_record_line. */
17845 lnp_reader_state reader_state;
17846
17847 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17848
17849 line_ptr = lh->statement_program_start;
17850 line_end = lh->statement_program_end;
17851
17852 reader_state.gdbarch = gdbarch;
17853 reader_state.line_header = lh;
17854 reader_state.record_lines_p = record_lines_p;
17855
17856 /* Read the statement sequences until there's nothing left. */
17857 while (line_ptr < line_end)
17858 {
17859 /* The DWARF line number program state machine. */
17860 lnp_state_machine state_machine;
17861 int end_sequence = 0;
17862
17863 /* Reset the state machine at the start of each sequence. */
17864 init_lnp_state_machine (&state_machine, &reader_state);
17865
17866 if (record_lines_p && lh->num_file_names >= state_machine.file)
17867 {
17868 /* Start a subfile for the current file of the state machine. */
17869 /* lh->include_dirs and lh->file_names are 0-based, but the
17870 directory and file name numbers in the statement program
17871 are 1-based. */
17872 struct file_entry *fe = &lh->file_names[state_machine.file - 1];
17873 const char *dir = NULL;
17874
17875 if (fe->dir_index && lh->include_dirs != NULL)
17876 dir = lh->include_dirs[fe->dir_index - 1];
17877
17878 dwarf2_start_subfile (fe->name, dir);
17879 }
17880
17881 /* Decode the table. */
17882 while (line_ptr < line_end && !end_sequence)
17883 {
17884 op_code = read_1_byte (abfd, line_ptr);
17885 line_ptr += 1;
17886
17887 if (op_code >= lh->opcode_base)
17888 {
17889 /* Special opcode. */
17890 unsigned char adj_opcode;
17891 CORE_ADDR addr_adj;
17892 int line_delta;
17893
17894 adj_opcode = op_code - lh->opcode_base;
17895 addr_adj = (((state_machine.op_index
17896 + (adj_opcode / lh->line_range))
17897 / lh->maximum_ops_per_instruction)
17898 * lh->minimum_instruction_length);
17899 state_machine.address
17900 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17901 state_machine.op_index = ((state_machine.op_index
17902 + (adj_opcode / lh->line_range))
17903 % lh->maximum_ops_per_instruction);
17904 line_delta = lh->line_base + (adj_opcode % lh->line_range);
17905 state_machine.line += line_delta;
17906 if (line_delta != 0)
17907 state_machine.line_has_non_zero_discriminator
17908 = state_machine.discriminator != 0;
17909
17910 dwarf_record_line (&reader_state, &state_machine, 0);
17911 state_machine.discriminator = 0;
17912 }
17913 else switch (op_code)
17914 {
17915 case DW_LNS_extended_op:
17916 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17917 &bytes_read);
17918 line_ptr += bytes_read;
17919 extended_end = line_ptr + extended_len;
17920 extended_op = read_1_byte (abfd, line_ptr);
17921 line_ptr += 1;
17922 switch (extended_op)
17923 {
17924 case DW_LNE_end_sequence:
17925 state_machine.record_line = record_line;
17926 end_sequence = 1;
17927 break;
17928 case DW_LNE_set_address:
17929 {
17930 CORE_ADDR address
17931 = read_address (abfd, line_ptr, cu, &bytes_read);
17932
17933 line_ptr += bytes_read;
17934 check_line_address (cu, &state_machine, line_ptr,
17935 lowpc, address);
17936 state_machine.op_index = 0;
17937 address += baseaddr;
17938 state_machine.address
17939 = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
17940 }
17941 break;
17942 case DW_LNE_define_file:
17943 {
17944 const char *cur_file;
17945 unsigned int dir_index, mod_time, length;
17946
17947 cur_file = read_direct_string (abfd, line_ptr,
17948 &bytes_read);
17949 line_ptr += bytes_read;
17950 dir_index =
17951 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17952 line_ptr += bytes_read;
17953 mod_time =
17954 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17955 line_ptr += bytes_read;
17956 length =
17957 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17958 line_ptr += bytes_read;
17959 add_file_name (lh, cur_file, dir_index, mod_time, length);
17960 }
17961 break;
17962 case DW_LNE_set_discriminator:
17963 /* The discriminator is not interesting to the debugger;
17964 just ignore it. We still need to check its value though:
17965 if there are consecutive entries for the same
17966 (non-prologue) line we want to coalesce them.
17967 PR 17276. */
17968 state_machine.discriminator
17969 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17970 state_machine.line_has_non_zero_discriminator
17971 |= state_machine.discriminator != 0;
17972 line_ptr += bytes_read;
17973 break;
17974 default:
17975 complaint (&symfile_complaints,
17976 _("mangled .debug_line section"));
17977 return;
17978 }
17979 /* Make sure that we parsed the extended op correctly. If e.g.
17980 we expected a different address size than the producer used,
17981 we may have read the wrong number of bytes. */
17982 if (line_ptr != extended_end)
17983 {
17984 complaint (&symfile_complaints,
17985 _("mangled .debug_line section"));
17986 return;
17987 }
17988 break;
17989 case DW_LNS_copy:
17990 dwarf_record_line (&reader_state, &state_machine, 0);
17991 state_machine.discriminator = 0;
17992 break;
17993 case DW_LNS_advance_pc:
17994 {
17995 CORE_ADDR adjust
17996 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17997 CORE_ADDR addr_adj;
17998
17999 addr_adj = (((state_machine.op_index + adjust)
18000 / lh->maximum_ops_per_instruction)
18001 * lh->minimum_instruction_length);
18002 state_machine.address
18003 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18004 state_machine.op_index = ((state_machine.op_index + adjust)
18005 % lh->maximum_ops_per_instruction);
18006 line_ptr += bytes_read;
18007 }
18008 break;
18009 case DW_LNS_advance_line:
18010 {
18011 int line_delta
18012 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
18013
18014 state_machine.line += line_delta;
18015 if (line_delta != 0)
18016 state_machine.line_has_non_zero_discriminator
18017 = state_machine.discriminator != 0;
18018 line_ptr += bytes_read;
18019 }
18020 break;
18021 case DW_LNS_set_file:
18022 {
18023 /* The arrays lh->include_dirs and lh->file_names are
18024 0-based, but the directory and file name numbers in
18025 the statement program are 1-based. */
18026 struct file_entry *fe;
18027 const char *dir = NULL;
18028
18029 state_machine.file = read_unsigned_leb128 (abfd, line_ptr,
18030 &bytes_read);
18031 line_ptr += bytes_read;
18032 if (state_machine.file == 0
18033 || state_machine.file - 1 >= lh->num_file_names)
18034 dwarf2_debug_line_missing_file_complaint ();
18035 else
18036 {
18037 fe = &lh->file_names[state_machine.file - 1];
18038 if (fe->dir_index && lh->include_dirs != NULL)
18039 dir = lh->include_dirs[fe->dir_index - 1];
18040 if (record_lines_p)
18041 {
18042 state_machine.last_subfile = current_subfile;
18043 state_machine.line_has_non_zero_discriminator
18044 = state_machine.discriminator != 0;
18045 dwarf2_start_subfile (fe->name, dir);
18046 }
18047 }
18048 }
18049 break;
18050 case DW_LNS_set_column:
18051 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18052 line_ptr += bytes_read;
18053 break;
18054 case DW_LNS_negate_stmt:
18055 state_machine.is_stmt = (!state_machine.is_stmt);
18056 break;
18057 case DW_LNS_set_basic_block:
18058 break;
18059 /* Add to the address register of the state machine the
18060 address increment value corresponding to special opcode
18061 255. I.e., this value is scaled by the minimum
18062 instruction length since special opcode 255 would have
18063 scaled the increment. */
18064 case DW_LNS_const_add_pc:
18065 {
18066 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
18067 CORE_ADDR addr_adj;
18068
18069 addr_adj = (((state_machine.op_index + adjust)
18070 / lh->maximum_ops_per_instruction)
18071 * lh->minimum_instruction_length);
18072 state_machine.address
18073 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18074 state_machine.op_index = ((state_machine.op_index + adjust)
18075 % lh->maximum_ops_per_instruction);
18076 }
18077 break;
18078 case DW_LNS_fixed_advance_pc:
18079 {
18080 CORE_ADDR addr_adj;
18081
18082 addr_adj = read_2_bytes (abfd, line_ptr);
18083 state_machine.address
18084 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18085 state_machine.op_index = 0;
18086 line_ptr += 2;
18087 }
18088 break;
18089 default:
18090 {
18091 /* Unknown standard opcode, ignore it. */
18092 int i;
18093
18094 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
18095 {
18096 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18097 line_ptr += bytes_read;
18098 }
18099 }
18100 }
18101 }
18102
18103 if (!end_sequence)
18104 dwarf2_debug_line_missing_end_sequence_complaint ();
18105
18106 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18107 in which case we still finish recording the last line). */
18108 dwarf_record_line (&reader_state, &state_machine, 1);
18109 }
18110 }
18111
18112 /* Decode the Line Number Program (LNP) for the given line_header
18113 structure and CU. The actual information extracted and the type
18114 of structures created from the LNP depends on the value of PST.
18115
18116 1. If PST is NULL, then this procedure uses the data from the program
18117 to create all necessary symbol tables, and their linetables.
18118
18119 2. If PST is not NULL, this procedure reads the program to determine
18120 the list of files included by the unit represented by PST, and
18121 builds all the associated partial symbol tables.
18122
18123 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18124 It is used for relative paths in the line table.
18125 NOTE: When processing partial symtabs (pst != NULL),
18126 comp_dir == pst->dirname.
18127
18128 NOTE: It is important that psymtabs have the same file name (via strcmp)
18129 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18130 symtab we don't use it in the name of the psymtabs we create.
18131 E.g. expand_line_sal requires this when finding psymtabs to expand.
18132 A good testcase for this is mb-inline.exp.
18133
18134 LOWPC is the lowest address in CU (or 0 if not known).
18135
18136 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18137 for its PC<->lines mapping information. Otherwise only the filename
18138 table is read in. */
18139
18140 static void
18141 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
18142 struct dwarf2_cu *cu, struct partial_symtab *pst,
18143 CORE_ADDR lowpc, int decode_mapping)
18144 {
18145 struct objfile *objfile = cu->objfile;
18146 const int decode_for_pst_p = (pst != NULL);
18147
18148 if (decode_mapping)
18149 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
18150
18151 if (decode_for_pst_p)
18152 {
18153 int file_index;
18154
18155 /* Now that we're done scanning the Line Header Program, we can
18156 create the psymtab of each included file. */
18157 for (file_index = 0; file_index < lh->num_file_names; file_index++)
18158 if (lh->file_names[file_index].included_p == 1)
18159 {
18160 const char *include_name =
18161 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18162 if (include_name != NULL)
18163 dwarf2_create_include_psymtab (include_name, pst, objfile);
18164 }
18165 }
18166 else
18167 {
18168 /* Make sure a symtab is created for every file, even files
18169 which contain only variables (i.e. no code with associated
18170 line numbers). */
18171 struct compunit_symtab *cust = buildsym_compunit_symtab ();
18172 int i;
18173
18174 for (i = 0; i < lh->num_file_names; i++)
18175 {
18176 const char *dir = NULL;
18177 struct file_entry *fe;
18178
18179 fe = &lh->file_names[i];
18180 if (fe->dir_index && lh->include_dirs != NULL)
18181 dir = lh->include_dirs[fe->dir_index - 1];
18182 dwarf2_start_subfile (fe->name, dir);
18183
18184 if (current_subfile->symtab == NULL)
18185 {
18186 current_subfile->symtab
18187 = allocate_symtab (cust, current_subfile->name);
18188 }
18189 fe->symtab = current_subfile->symtab;
18190 }
18191 }
18192 }
18193
18194 /* Start a subfile for DWARF. FILENAME is the name of the file and
18195 DIRNAME the name of the source directory which contains FILENAME
18196 or NULL if not known.
18197 This routine tries to keep line numbers from identical absolute and
18198 relative file names in a common subfile.
18199
18200 Using the `list' example from the GDB testsuite, which resides in
18201 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18202 of /srcdir/list0.c yields the following debugging information for list0.c:
18203
18204 DW_AT_name: /srcdir/list0.c
18205 DW_AT_comp_dir: /compdir
18206 files.files[0].name: list0.h
18207 files.files[0].dir: /srcdir
18208 files.files[1].name: list0.c
18209 files.files[1].dir: /srcdir
18210
18211 The line number information for list0.c has to end up in a single
18212 subfile, so that `break /srcdir/list0.c:1' works as expected.
18213 start_subfile will ensure that this happens provided that we pass the
18214 concatenation of files.files[1].dir and files.files[1].name as the
18215 subfile's name. */
18216
18217 static void
18218 dwarf2_start_subfile (const char *filename, const char *dirname)
18219 {
18220 char *copy = NULL;
18221
18222 /* In order not to lose the line information directory,
18223 we concatenate it to the filename when it makes sense.
18224 Note that the Dwarf3 standard says (speaking of filenames in line
18225 information): ``The directory index is ignored for file names
18226 that represent full path names''. Thus ignoring dirname in the
18227 `else' branch below isn't an issue. */
18228
18229 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
18230 {
18231 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18232 filename = copy;
18233 }
18234
18235 start_subfile (filename);
18236
18237 if (copy != NULL)
18238 xfree (copy);
18239 }
18240
18241 /* Start a symtab for DWARF.
18242 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18243
18244 static struct compunit_symtab *
18245 dwarf2_start_symtab (struct dwarf2_cu *cu,
18246 const char *name, const char *comp_dir, CORE_ADDR low_pc)
18247 {
18248 struct compunit_symtab *cust
18249 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18250
18251 record_debugformat ("DWARF 2");
18252 record_producer (cu->producer);
18253
18254 /* We assume that we're processing GCC output. */
18255 processing_gcc_compilation = 2;
18256
18257 cu->processing_has_namespace_info = 0;
18258
18259 return cust;
18260 }
18261
18262 static void
18263 var_decode_location (struct attribute *attr, struct symbol *sym,
18264 struct dwarf2_cu *cu)
18265 {
18266 struct objfile *objfile = cu->objfile;
18267 struct comp_unit_head *cu_header = &cu->header;
18268
18269 /* NOTE drow/2003-01-30: There used to be a comment and some special
18270 code here to turn a symbol with DW_AT_external and a
18271 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18272 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18273 with some versions of binutils) where shared libraries could have
18274 relocations against symbols in their debug information - the
18275 minimal symbol would have the right address, but the debug info
18276 would not. It's no longer necessary, because we will explicitly
18277 apply relocations when we read in the debug information now. */
18278
18279 /* A DW_AT_location attribute with no contents indicates that a
18280 variable has been optimized away. */
18281 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18282 {
18283 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18284 return;
18285 }
18286
18287 /* Handle one degenerate form of location expression specially, to
18288 preserve GDB's previous behavior when section offsets are
18289 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18290 then mark this symbol as LOC_STATIC. */
18291
18292 if (attr_form_is_block (attr)
18293 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18294 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18295 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18296 && (DW_BLOCK (attr)->size
18297 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
18298 {
18299 unsigned int dummy;
18300
18301 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18302 SYMBOL_VALUE_ADDRESS (sym) =
18303 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18304 else
18305 SYMBOL_VALUE_ADDRESS (sym) =
18306 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
18307 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
18308 fixup_symbol_section (sym, objfile);
18309 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18310 SYMBOL_SECTION (sym));
18311 return;
18312 }
18313
18314 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18315 expression evaluator, and use LOC_COMPUTED only when necessary
18316 (i.e. when the value of a register or memory location is
18317 referenced, or a thread-local block, etc.). Then again, it might
18318 not be worthwhile. I'm assuming that it isn't unless performance
18319 or memory numbers show me otherwise. */
18320
18321 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
18322
18323 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
18324 cu->has_loclist = 1;
18325 }
18326
18327 /* Given a pointer to a DWARF information entry, figure out if we need
18328 to make a symbol table entry for it, and if so, create a new entry
18329 and return a pointer to it.
18330 If TYPE is NULL, determine symbol type from the die, otherwise
18331 used the passed type.
18332 If SPACE is not NULL, use it to hold the new symbol. If it is
18333 NULL, allocate a new symbol on the objfile's obstack. */
18334
18335 static struct symbol *
18336 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18337 struct symbol *space)
18338 {
18339 struct objfile *objfile = cu->objfile;
18340 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18341 struct symbol *sym = NULL;
18342 const char *name;
18343 struct attribute *attr = NULL;
18344 struct attribute *attr2 = NULL;
18345 CORE_ADDR baseaddr;
18346 struct pending **list_to_add = NULL;
18347
18348 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
18349
18350 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18351
18352 name = dwarf2_name (die, cu);
18353 if (name)
18354 {
18355 const char *linkagename;
18356 int suppress_add = 0;
18357
18358 if (space)
18359 sym = space;
18360 else
18361 sym = allocate_symbol (objfile);
18362 OBJSTAT (objfile, n_syms++);
18363
18364 /* Cache this symbol's name and the name's demangled form (if any). */
18365 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
18366 linkagename = dwarf2_physname (name, die, cu);
18367 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
18368
18369 /* Fortran does not have mangling standard and the mangling does differ
18370 between gfortran, iFort etc. */
18371 if (cu->language == language_fortran
18372 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
18373 symbol_set_demangled_name (&(sym->ginfo),
18374 dwarf2_full_name (name, die, cu),
18375 NULL);
18376
18377 /* Default assumptions.
18378 Use the passed type or decode it from the die. */
18379 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18380 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18381 if (type != NULL)
18382 SYMBOL_TYPE (sym) = type;
18383 else
18384 SYMBOL_TYPE (sym) = die_type (die, cu);
18385 attr = dwarf2_attr (die,
18386 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18387 cu);
18388 if (attr)
18389 {
18390 SYMBOL_LINE (sym) = DW_UNSND (attr);
18391 }
18392
18393 attr = dwarf2_attr (die,
18394 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18395 cu);
18396 if (attr)
18397 {
18398 int file_index = DW_UNSND (attr);
18399
18400 if (cu->line_header == NULL
18401 || file_index > cu->line_header->num_file_names)
18402 complaint (&symfile_complaints,
18403 _("file index out of range"));
18404 else if (file_index > 0)
18405 {
18406 struct file_entry *fe;
18407
18408 fe = &cu->line_header->file_names[file_index - 1];
18409 symbol_set_symtab (sym, fe->symtab);
18410 }
18411 }
18412
18413 switch (die->tag)
18414 {
18415 case DW_TAG_label:
18416 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
18417 if (attr)
18418 {
18419 CORE_ADDR addr;
18420
18421 addr = attr_value_as_address (attr);
18422 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18423 SYMBOL_VALUE_ADDRESS (sym) = addr;
18424 }
18425 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18426 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
18427 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
18428 add_symbol_to_list (sym, cu->list_in_scope);
18429 break;
18430 case DW_TAG_subprogram:
18431 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18432 finish_block. */
18433 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18434 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18435 if ((attr2 && (DW_UNSND (attr2) != 0))
18436 || cu->language == language_ada)
18437 {
18438 /* Subprograms marked external are stored as a global symbol.
18439 Ada subprograms, whether marked external or not, are always
18440 stored as a global symbol, because we want to be able to
18441 access them globally. For instance, we want to be able
18442 to break on a nested subprogram without having to
18443 specify the context. */
18444 list_to_add = &global_symbols;
18445 }
18446 else
18447 {
18448 list_to_add = cu->list_in_scope;
18449 }
18450 break;
18451 case DW_TAG_inlined_subroutine:
18452 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18453 finish_block. */
18454 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18455 SYMBOL_INLINED (sym) = 1;
18456 list_to_add = cu->list_in_scope;
18457 break;
18458 case DW_TAG_template_value_param:
18459 suppress_add = 1;
18460 /* Fall through. */
18461 case DW_TAG_constant:
18462 case DW_TAG_variable:
18463 case DW_TAG_member:
18464 /* Compilation with minimal debug info may result in
18465 variables with missing type entries. Change the
18466 misleading `void' type to something sensible. */
18467 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
18468 SYMBOL_TYPE (sym)
18469 = objfile_type (objfile)->nodebug_data_symbol;
18470
18471 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18472 /* In the case of DW_TAG_member, we should only be called for
18473 static const members. */
18474 if (die->tag == DW_TAG_member)
18475 {
18476 /* dwarf2_add_field uses die_is_declaration,
18477 so we do the same. */
18478 gdb_assert (die_is_declaration (die, cu));
18479 gdb_assert (attr);
18480 }
18481 if (attr)
18482 {
18483 dwarf2_const_value (attr, sym, cu);
18484 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18485 if (!suppress_add)
18486 {
18487 if (attr2 && (DW_UNSND (attr2) != 0))
18488 list_to_add = &global_symbols;
18489 else
18490 list_to_add = cu->list_in_scope;
18491 }
18492 break;
18493 }
18494 attr = dwarf2_attr (die, DW_AT_location, cu);
18495 if (attr)
18496 {
18497 var_decode_location (attr, sym, cu);
18498 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18499
18500 /* Fortran explicitly imports any global symbols to the local
18501 scope by DW_TAG_common_block. */
18502 if (cu->language == language_fortran && die->parent
18503 && die->parent->tag == DW_TAG_common_block)
18504 attr2 = NULL;
18505
18506 if (SYMBOL_CLASS (sym) == LOC_STATIC
18507 && SYMBOL_VALUE_ADDRESS (sym) == 0
18508 && !dwarf2_per_objfile->has_section_at_zero)
18509 {
18510 /* When a static variable is eliminated by the linker,
18511 the corresponding debug information is not stripped
18512 out, but the variable address is set to null;
18513 do not add such variables into symbol table. */
18514 }
18515 else if (attr2 && (DW_UNSND (attr2) != 0))
18516 {
18517 /* Workaround gfortran PR debug/40040 - it uses
18518 DW_AT_location for variables in -fPIC libraries which may
18519 get overriden by other libraries/executable and get
18520 a different address. Resolve it by the minimal symbol
18521 which may come from inferior's executable using copy
18522 relocation. Make this workaround only for gfortran as for
18523 other compilers GDB cannot guess the minimal symbol
18524 Fortran mangling kind. */
18525 if (cu->language == language_fortran && die->parent
18526 && die->parent->tag == DW_TAG_module
18527 && cu->producer
18528 && startswith (cu->producer, "GNU Fortran"))
18529 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18530
18531 /* A variable with DW_AT_external is never static,
18532 but it may be block-scoped. */
18533 list_to_add = (cu->list_in_scope == &file_symbols
18534 ? &global_symbols : cu->list_in_scope);
18535 }
18536 else
18537 list_to_add = cu->list_in_scope;
18538 }
18539 else
18540 {
18541 /* We do not know the address of this symbol.
18542 If it is an external symbol and we have type information
18543 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18544 The address of the variable will then be determined from
18545 the minimal symbol table whenever the variable is
18546 referenced. */
18547 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18548
18549 /* Fortran explicitly imports any global symbols to the local
18550 scope by DW_TAG_common_block. */
18551 if (cu->language == language_fortran && die->parent
18552 && die->parent->tag == DW_TAG_common_block)
18553 {
18554 /* SYMBOL_CLASS doesn't matter here because
18555 read_common_block is going to reset it. */
18556 if (!suppress_add)
18557 list_to_add = cu->list_in_scope;
18558 }
18559 else if (attr2 && (DW_UNSND (attr2) != 0)
18560 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
18561 {
18562 /* A variable with DW_AT_external is never static, but it
18563 may be block-scoped. */
18564 list_to_add = (cu->list_in_scope == &file_symbols
18565 ? &global_symbols : cu->list_in_scope);
18566
18567 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18568 }
18569 else if (!die_is_declaration (die, cu))
18570 {
18571 /* Use the default LOC_OPTIMIZED_OUT class. */
18572 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
18573 if (!suppress_add)
18574 list_to_add = cu->list_in_scope;
18575 }
18576 }
18577 break;
18578 case DW_TAG_formal_parameter:
18579 /* If we are inside a function, mark this as an argument. If
18580 not, we might be looking at an argument to an inlined function
18581 when we do not have enough information to show inlined frames;
18582 pretend it's a local variable in that case so that the user can
18583 still see it. */
18584 if (context_stack_depth > 0
18585 && context_stack[context_stack_depth - 1].name != NULL)
18586 SYMBOL_IS_ARGUMENT (sym) = 1;
18587 attr = dwarf2_attr (die, DW_AT_location, cu);
18588 if (attr)
18589 {
18590 var_decode_location (attr, sym, cu);
18591 }
18592 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18593 if (attr)
18594 {
18595 dwarf2_const_value (attr, sym, cu);
18596 }
18597
18598 list_to_add = cu->list_in_scope;
18599 break;
18600 case DW_TAG_unspecified_parameters:
18601 /* From varargs functions; gdb doesn't seem to have any
18602 interest in this information, so just ignore it for now.
18603 (FIXME?) */
18604 break;
18605 case DW_TAG_template_type_param:
18606 suppress_add = 1;
18607 /* Fall through. */
18608 case DW_TAG_class_type:
18609 case DW_TAG_interface_type:
18610 case DW_TAG_structure_type:
18611 case DW_TAG_union_type:
18612 case DW_TAG_set_type:
18613 case DW_TAG_enumeration_type:
18614 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18615 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
18616
18617 {
18618 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
18619 really ever be static objects: otherwise, if you try
18620 to, say, break of a class's method and you're in a file
18621 which doesn't mention that class, it won't work unless
18622 the check for all static symbols in lookup_symbol_aux
18623 saves you. See the OtherFileClass tests in
18624 gdb.c++/namespace.exp. */
18625
18626 if (!suppress_add)
18627 {
18628 list_to_add = (cu->list_in_scope == &file_symbols
18629 && cu->language == language_cplus
18630 ? &global_symbols : cu->list_in_scope);
18631
18632 /* The semantics of C++ state that "struct foo {
18633 ... }" also defines a typedef for "foo". */
18634 if (cu->language == language_cplus
18635 || cu->language == language_ada
18636 || cu->language == language_d
18637 || cu->language == language_rust)
18638 {
18639 /* The symbol's name is already allocated along
18640 with this objfile, so we don't need to
18641 duplicate it for the type. */
18642 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18643 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18644 }
18645 }
18646 }
18647 break;
18648 case DW_TAG_typedef:
18649 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18650 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18651 list_to_add = cu->list_in_scope;
18652 break;
18653 case DW_TAG_base_type:
18654 case DW_TAG_subrange_type:
18655 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18656 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18657 list_to_add = cu->list_in_scope;
18658 break;
18659 case DW_TAG_enumerator:
18660 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18661 if (attr)
18662 {
18663 dwarf2_const_value (attr, sym, cu);
18664 }
18665 {
18666 /* NOTE: carlton/2003-11-10: See comment above in the
18667 DW_TAG_class_type, etc. block. */
18668
18669 list_to_add = (cu->list_in_scope == &file_symbols
18670 && cu->language == language_cplus
18671 ? &global_symbols : cu->list_in_scope);
18672 }
18673 break;
18674 case DW_TAG_imported_declaration:
18675 case DW_TAG_namespace:
18676 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18677 list_to_add = &global_symbols;
18678 break;
18679 case DW_TAG_module:
18680 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18681 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18682 list_to_add = &global_symbols;
18683 break;
18684 case DW_TAG_common_block:
18685 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
18686 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18687 add_symbol_to_list (sym, cu->list_in_scope);
18688 break;
18689 default:
18690 /* Not a tag we recognize. Hopefully we aren't processing
18691 trash data, but since we must specifically ignore things
18692 we don't recognize, there is nothing else we should do at
18693 this point. */
18694 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
18695 dwarf_tag_name (die->tag));
18696 break;
18697 }
18698
18699 if (suppress_add)
18700 {
18701 sym->hash_next = objfile->template_symbols;
18702 objfile->template_symbols = sym;
18703 list_to_add = NULL;
18704 }
18705
18706 if (list_to_add != NULL)
18707 add_symbol_to_list (sym, list_to_add);
18708
18709 /* For the benefit of old versions of GCC, check for anonymous
18710 namespaces based on the demangled name. */
18711 if (!cu->processing_has_namespace_info
18712 && cu->language == language_cplus)
18713 cp_scan_for_anonymous_namespaces (sym, objfile);
18714 }
18715 return (sym);
18716 }
18717
18718 /* A wrapper for new_symbol_full that always allocates a new symbol. */
18719
18720 static struct symbol *
18721 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18722 {
18723 return new_symbol_full (die, type, cu, NULL);
18724 }
18725
18726 /* Given an attr with a DW_FORM_dataN value in host byte order,
18727 zero-extend it as appropriate for the symbol's type. The DWARF
18728 standard (v4) is not entirely clear about the meaning of using
18729 DW_FORM_dataN for a constant with a signed type, where the type is
18730 wider than the data. The conclusion of a discussion on the DWARF
18731 list was that this is unspecified. We choose to always zero-extend
18732 because that is the interpretation long in use by GCC. */
18733
18734 static gdb_byte *
18735 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
18736 struct dwarf2_cu *cu, LONGEST *value, int bits)
18737 {
18738 struct objfile *objfile = cu->objfile;
18739 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18740 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
18741 LONGEST l = DW_UNSND (attr);
18742
18743 if (bits < sizeof (*value) * 8)
18744 {
18745 l &= ((LONGEST) 1 << bits) - 1;
18746 *value = l;
18747 }
18748 else if (bits == sizeof (*value) * 8)
18749 *value = l;
18750 else
18751 {
18752 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
18753 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18754 return bytes;
18755 }
18756
18757 return NULL;
18758 }
18759
18760 /* Read a constant value from an attribute. Either set *VALUE, or if
18761 the value does not fit in *VALUE, set *BYTES - either already
18762 allocated on the objfile obstack, or newly allocated on OBSTACK,
18763 or, set *BATON, if we translated the constant to a location
18764 expression. */
18765
18766 static void
18767 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
18768 const char *name, struct obstack *obstack,
18769 struct dwarf2_cu *cu,
18770 LONGEST *value, const gdb_byte **bytes,
18771 struct dwarf2_locexpr_baton **baton)
18772 {
18773 struct objfile *objfile = cu->objfile;
18774 struct comp_unit_head *cu_header = &cu->header;
18775 struct dwarf_block *blk;
18776 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18777 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18778
18779 *value = 0;
18780 *bytes = NULL;
18781 *baton = NULL;
18782
18783 switch (attr->form)
18784 {
18785 case DW_FORM_addr:
18786 case DW_FORM_GNU_addr_index:
18787 {
18788 gdb_byte *data;
18789
18790 if (TYPE_LENGTH (type) != cu_header->addr_size)
18791 dwarf2_const_value_length_mismatch_complaint (name,
18792 cu_header->addr_size,
18793 TYPE_LENGTH (type));
18794 /* Symbols of this form are reasonably rare, so we just
18795 piggyback on the existing location code rather than writing
18796 a new implementation of symbol_computed_ops. */
18797 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
18798 (*baton)->per_cu = cu->per_cu;
18799 gdb_assert ((*baton)->per_cu);
18800
18801 (*baton)->size = 2 + cu_header->addr_size;
18802 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
18803 (*baton)->data = data;
18804
18805 data[0] = DW_OP_addr;
18806 store_unsigned_integer (&data[1], cu_header->addr_size,
18807 byte_order, DW_ADDR (attr));
18808 data[cu_header->addr_size + 1] = DW_OP_stack_value;
18809 }
18810 break;
18811 case DW_FORM_string:
18812 case DW_FORM_strp:
18813 case DW_FORM_GNU_str_index:
18814 case DW_FORM_GNU_strp_alt:
18815 /* DW_STRING is already allocated on the objfile obstack, point
18816 directly to it. */
18817 *bytes = (const gdb_byte *) DW_STRING (attr);
18818 break;
18819 case DW_FORM_block1:
18820 case DW_FORM_block2:
18821 case DW_FORM_block4:
18822 case DW_FORM_block:
18823 case DW_FORM_exprloc:
18824 blk = DW_BLOCK (attr);
18825 if (TYPE_LENGTH (type) != blk->size)
18826 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18827 TYPE_LENGTH (type));
18828 *bytes = blk->data;
18829 break;
18830
18831 /* The DW_AT_const_value attributes are supposed to carry the
18832 symbol's value "represented as it would be on the target
18833 architecture." By the time we get here, it's already been
18834 converted to host endianness, so we just need to sign- or
18835 zero-extend it as appropriate. */
18836 case DW_FORM_data1:
18837 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
18838 break;
18839 case DW_FORM_data2:
18840 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18841 break;
18842 case DW_FORM_data4:
18843 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18844 break;
18845 case DW_FORM_data8:
18846 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18847 break;
18848
18849 case DW_FORM_sdata:
18850 *value = DW_SND (attr);
18851 break;
18852
18853 case DW_FORM_udata:
18854 *value = DW_UNSND (attr);
18855 break;
18856
18857 default:
18858 complaint (&symfile_complaints,
18859 _("unsupported const value attribute form: '%s'"),
18860 dwarf_form_name (attr->form));
18861 *value = 0;
18862 break;
18863 }
18864 }
18865
18866
18867 /* Copy constant value from an attribute to a symbol. */
18868
18869 static void
18870 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18871 struct dwarf2_cu *cu)
18872 {
18873 struct objfile *objfile = cu->objfile;
18874 LONGEST value;
18875 const gdb_byte *bytes;
18876 struct dwarf2_locexpr_baton *baton;
18877
18878 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18879 SYMBOL_PRINT_NAME (sym),
18880 &objfile->objfile_obstack, cu,
18881 &value, &bytes, &baton);
18882
18883 if (baton != NULL)
18884 {
18885 SYMBOL_LOCATION_BATON (sym) = baton;
18886 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18887 }
18888 else if (bytes != NULL)
18889 {
18890 SYMBOL_VALUE_BYTES (sym) = bytes;
18891 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18892 }
18893 else
18894 {
18895 SYMBOL_VALUE (sym) = value;
18896 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18897 }
18898 }
18899
18900 /* Return the type of the die in question using its DW_AT_type attribute. */
18901
18902 static struct type *
18903 die_type (struct die_info *die, struct dwarf2_cu *cu)
18904 {
18905 struct attribute *type_attr;
18906
18907 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18908 if (!type_attr)
18909 {
18910 /* A missing DW_AT_type represents a void type. */
18911 return objfile_type (cu->objfile)->builtin_void;
18912 }
18913
18914 return lookup_die_type (die, type_attr, cu);
18915 }
18916
18917 /* True iff CU's producer generates GNAT Ada auxiliary information
18918 that allows to find parallel types through that information instead
18919 of having to do expensive parallel lookups by type name. */
18920
18921 static int
18922 need_gnat_info (struct dwarf2_cu *cu)
18923 {
18924 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18925 of GNAT produces this auxiliary information, without any indication
18926 that it is produced. Part of enhancing the FSF version of GNAT
18927 to produce that information will be to put in place an indicator
18928 that we can use in order to determine whether the descriptive type
18929 info is available or not. One suggestion that has been made is
18930 to use a new attribute, attached to the CU die. For now, assume
18931 that the descriptive type info is not available. */
18932 return 0;
18933 }
18934
18935 /* Return the auxiliary type of the die in question using its
18936 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18937 attribute is not present. */
18938
18939 static struct type *
18940 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18941 {
18942 struct attribute *type_attr;
18943
18944 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18945 if (!type_attr)
18946 return NULL;
18947
18948 return lookup_die_type (die, type_attr, cu);
18949 }
18950
18951 /* If DIE has a descriptive_type attribute, then set the TYPE's
18952 descriptive type accordingly. */
18953
18954 static void
18955 set_descriptive_type (struct type *type, struct die_info *die,
18956 struct dwarf2_cu *cu)
18957 {
18958 struct type *descriptive_type = die_descriptive_type (die, cu);
18959
18960 if (descriptive_type)
18961 {
18962 ALLOCATE_GNAT_AUX_TYPE (type);
18963 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18964 }
18965 }
18966
18967 /* Return the containing type of the die in question using its
18968 DW_AT_containing_type attribute. */
18969
18970 static struct type *
18971 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18972 {
18973 struct attribute *type_attr;
18974
18975 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18976 if (!type_attr)
18977 error (_("Dwarf Error: Problem turning containing type into gdb type "
18978 "[in module %s]"), objfile_name (cu->objfile));
18979
18980 return lookup_die_type (die, type_attr, cu);
18981 }
18982
18983 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18984
18985 static struct type *
18986 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18987 {
18988 struct objfile *objfile = dwarf2_per_objfile->objfile;
18989 char *message, *saved;
18990
18991 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18992 objfile_name (objfile),
18993 cu->header.offset.sect_off,
18994 die->offset.sect_off);
18995 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
18996 message, strlen (message));
18997 xfree (message);
18998
18999 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
19000 }
19001
19002 /* Look up the type of DIE in CU using its type attribute ATTR.
19003 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
19004 DW_AT_containing_type.
19005 If there is no type substitute an error marker. */
19006
19007 static struct type *
19008 lookup_die_type (struct die_info *die, const struct attribute *attr,
19009 struct dwarf2_cu *cu)
19010 {
19011 struct objfile *objfile = cu->objfile;
19012 struct type *this_type;
19013
19014 gdb_assert (attr->name == DW_AT_type
19015 || attr->name == DW_AT_GNAT_descriptive_type
19016 || attr->name == DW_AT_containing_type);
19017
19018 /* First see if we have it cached. */
19019
19020 if (attr->form == DW_FORM_GNU_ref_alt)
19021 {
19022 struct dwarf2_per_cu_data *per_cu;
19023 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19024
19025 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
19026 this_type = get_die_type_at_offset (offset, per_cu);
19027 }
19028 else if (attr_form_is_ref (attr))
19029 {
19030 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19031
19032 this_type = get_die_type_at_offset (offset, cu->per_cu);
19033 }
19034 else if (attr->form == DW_FORM_ref_sig8)
19035 {
19036 ULONGEST signature = DW_SIGNATURE (attr);
19037
19038 return get_signatured_type (die, signature, cu);
19039 }
19040 else
19041 {
19042 complaint (&symfile_complaints,
19043 _("Dwarf Error: Bad type attribute %s in DIE"
19044 " at 0x%x [in module %s]"),
19045 dwarf_attr_name (attr->name), die->offset.sect_off,
19046 objfile_name (objfile));
19047 return build_error_marker_type (cu, die);
19048 }
19049
19050 /* If not cached we need to read it in. */
19051
19052 if (this_type == NULL)
19053 {
19054 struct die_info *type_die = NULL;
19055 struct dwarf2_cu *type_cu = cu;
19056
19057 if (attr_form_is_ref (attr))
19058 type_die = follow_die_ref (die, attr, &type_cu);
19059 if (type_die == NULL)
19060 return build_error_marker_type (cu, die);
19061 /* If we find the type now, it's probably because the type came
19062 from an inter-CU reference and the type's CU got expanded before
19063 ours. */
19064 this_type = read_type_die (type_die, type_cu);
19065 }
19066
19067 /* If we still don't have a type use an error marker. */
19068
19069 if (this_type == NULL)
19070 return build_error_marker_type (cu, die);
19071
19072 return this_type;
19073 }
19074
19075 /* Return the type in DIE, CU.
19076 Returns NULL for invalid types.
19077
19078 This first does a lookup in die_type_hash,
19079 and only reads the die in if necessary.
19080
19081 NOTE: This can be called when reading in partial or full symbols. */
19082
19083 static struct type *
19084 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
19085 {
19086 struct type *this_type;
19087
19088 this_type = get_die_type (die, cu);
19089 if (this_type)
19090 return this_type;
19091
19092 return read_type_die_1 (die, cu);
19093 }
19094
19095 /* Read the type in DIE, CU.
19096 Returns NULL for invalid types. */
19097
19098 static struct type *
19099 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19100 {
19101 struct type *this_type = NULL;
19102
19103 switch (die->tag)
19104 {
19105 case DW_TAG_class_type:
19106 case DW_TAG_interface_type:
19107 case DW_TAG_structure_type:
19108 case DW_TAG_union_type:
19109 this_type = read_structure_type (die, cu);
19110 break;
19111 case DW_TAG_enumeration_type:
19112 this_type = read_enumeration_type (die, cu);
19113 break;
19114 case DW_TAG_subprogram:
19115 case DW_TAG_subroutine_type:
19116 case DW_TAG_inlined_subroutine:
19117 this_type = read_subroutine_type (die, cu);
19118 break;
19119 case DW_TAG_array_type:
19120 this_type = read_array_type (die, cu);
19121 break;
19122 case DW_TAG_set_type:
19123 this_type = read_set_type (die, cu);
19124 break;
19125 case DW_TAG_pointer_type:
19126 this_type = read_tag_pointer_type (die, cu);
19127 break;
19128 case DW_TAG_ptr_to_member_type:
19129 this_type = read_tag_ptr_to_member_type (die, cu);
19130 break;
19131 case DW_TAG_reference_type:
19132 this_type = read_tag_reference_type (die, cu);
19133 break;
19134 case DW_TAG_const_type:
19135 this_type = read_tag_const_type (die, cu);
19136 break;
19137 case DW_TAG_volatile_type:
19138 this_type = read_tag_volatile_type (die, cu);
19139 break;
19140 case DW_TAG_restrict_type:
19141 this_type = read_tag_restrict_type (die, cu);
19142 break;
19143 case DW_TAG_string_type:
19144 this_type = read_tag_string_type (die, cu);
19145 break;
19146 case DW_TAG_typedef:
19147 this_type = read_typedef (die, cu);
19148 break;
19149 case DW_TAG_subrange_type:
19150 this_type = read_subrange_type (die, cu);
19151 break;
19152 case DW_TAG_base_type:
19153 this_type = read_base_type (die, cu);
19154 break;
19155 case DW_TAG_unspecified_type:
19156 this_type = read_unspecified_type (die, cu);
19157 break;
19158 case DW_TAG_namespace:
19159 this_type = read_namespace_type (die, cu);
19160 break;
19161 case DW_TAG_module:
19162 this_type = read_module_type (die, cu);
19163 break;
19164 case DW_TAG_atomic_type:
19165 this_type = read_tag_atomic_type (die, cu);
19166 break;
19167 default:
19168 complaint (&symfile_complaints,
19169 _("unexpected tag in read_type_die: '%s'"),
19170 dwarf_tag_name (die->tag));
19171 break;
19172 }
19173
19174 return this_type;
19175 }
19176
19177 /* See if we can figure out if the class lives in a namespace. We do
19178 this by looking for a member function; its demangled name will
19179 contain namespace info, if there is any.
19180 Return the computed name or NULL.
19181 Space for the result is allocated on the objfile's obstack.
19182 This is the full-die version of guess_partial_die_structure_name.
19183 In this case we know DIE has no useful parent. */
19184
19185 static char *
19186 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19187 {
19188 struct die_info *spec_die;
19189 struct dwarf2_cu *spec_cu;
19190 struct die_info *child;
19191
19192 spec_cu = cu;
19193 spec_die = die_specification (die, &spec_cu);
19194 if (spec_die != NULL)
19195 {
19196 die = spec_die;
19197 cu = spec_cu;
19198 }
19199
19200 for (child = die->child;
19201 child != NULL;
19202 child = child->sibling)
19203 {
19204 if (child->tag == DW_TAG_subprogram)
19205 {
19206 const char *linkage_name;
19207
19208 linkage_name = dwarf2_string_attr (child, DW_AT_linkage_name, cu);
19209 if (linkage_name == NULL)
19210 linkage_name = dwarf2_string_attr (child, DW_AT_MIPS_linkage_name,
19211 cu);
19212 if (linkage_name != NULL)
19213 {
19214 char *actual_name
19215 = language_class_name_from_physname (cu->language_defn,
19216 linkage_name);
19217 char *name = NULL;
19218
19219 if (actual_name != NULL)
19220 {
19221 const char *die_name = dwarf2_name (die, cu);
19222
19223 if (die_name != NULL
19224 && strcmp (die_name, actual_name) != 0)
19225 {
19226 /* Strip off the class name from the full name.
19227 We want the prefix. */
19228 int die_name_len = strlen (die_name);
19229 int actual_name_len = strlen (actual_name);
19230
19231 /* Test for '::' as a sanity check. */
19232 if (actual_name_len > die_name_len + 2
19233 && actual_name[actual_name_len
19234 - die_name_len - 1] == ':')
19235 name = (char *) obstack_copy0 (
19236 &cu->objfile->per_bfd->storage_obstack,
19237 actual_name, actual_name_len - die_name_len - 2);
19238 }
19239 }
19240 xfree (actual_name);
19241 return name;
19242 }
19243 }
19244 }
19245
19246 return NULL;
19247 }
19248
19249 /* GCC might emit a nameless typedef that has a linkage name. Determine the
19250 prefix part in such case. See
19251 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19252
19253 static char *
19254 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19255 {
19256 struct attribute *attr;
19257 const char *base;
19258
19259 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19260 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19261 return NULL;
19262
19263 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
19264 return NULL;
19265
19266 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19267 if (attr == NULL)
19268 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19269 if (attr == NULL || DW_STRING (attr) == NULL)
19270 return NULL;
19271
19272 /* dwarf2_name had to be already called. */
19273 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19274
19275 /* Strip the base name, keep any leading namespaces/classes. */
19276 base = strrchr (DW_STRING (attr), ':');
19277 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19278 return "";
19279
19280 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19281 DW_STRING (attr),
19282 &base[-1] - DW_STRING (attr));
19283 }
19284
19285 /* Return the name of the namespace/class that DIE is defined within,
19286 or "" if we can't tell. The caller should not xfree the result.
19287
19288 For example, if we're within the method foo() in the following
19289 code:
19290
19291 namespace N {
19292 class C {
19293 void foo () {
19294 }
19295 };
19296 }
19297
19298 then determine_prefix on foo's die will return "N::C". */
19299
19300 static const char *
19301 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
19302 {
19303 struct die_info *parent, *spec_die;
19304 struct dwarf2_cu *spec_cu;
19305 struct type *parent_type;
19306 char *retval;
19307
19308 if (cu->language != language_cplus
19309 && cu->language != language_fortran && cu->language != language_d
19310 && cu->language != language_rust)
19311 return "";
19312
19313 retval = anonymous_struct_prefix (die, cu);
19314 if (retval)
19315 return retval;
19316
19317 /* We have to be careful in the presence of DW_AT_specification.
19318 For example, with GCC 3.4, given the code
19319
19320 namespace N {
19321 void foo() {
19322 // Definition of N::foo.
19323 }
19324 }
19325
19326 then we'll have a tree of DIEs like this:
19327
19328 1: DW_TAG_compile_unit
19329 2: DW_TAG_namespace // N
19330 3: DW_TAG_subprogram // declaration of N::foo
19331 4: DW_TAG_subprogram // definition of N::foo
19332 DW_AT_specification // refers to die #3
19333
19334 Thus, when processing die #4, we have to pretend that we're in
19335 the context of its DW_AT_specification, namely the contex of die
19336 #3. */
19337 spec_cu = cu;
19338 spec_die = die_specification (die, &spec_cu);
19339 if (spec_die == NULL)
19340 parent = die->parent;
19341 else
19342 {
19343 parent = spec_die->parent;
19344 cu = spec_cu;
19345 }
19346
19347 if (parent == NULL)
19348 return "";
19349 else if (parent->building_fullname)
19350 {
19351 const char *name;
19352 const char *parent_name;
19353
19354 /* It has been seen on RealView 2.2 built binaries,
19355 DW_TAG_template_type_param types actually _defined_ as
19356 children of the parent class:
19357
19358 enum E {};
19359 template class <class Enum> Class{};
19360 Class<enum E> class_e;
19361
19362 1: DW_TAG_class_type (Class)
19363 2: DW_TAG_enumeration_type (E)
19364 3: DW_TAG_enumerator (enum1:0)
19365 3: DW_TAG_enumerator (enum2:1)
19366 ...
19367 2: DW_TAG_template_type_param
19368 DW_AT_type DW_FORM_ref_udata (E)
19369
19370 Besides being broken debug info, it can put GDB into an
19371 infinite loop. Consider:
19372
19373 When we're building the full name for Class<E>, we'll start
19374 at Class, and go look over its template type parameters,
19375 finding E. We'll then try to build the full name of E, and
19376 reach here. We're now trying to build the full name of E,
19377 and look over the parent DIE for containing scope. In the
19378 broken case, if we followed the parent DIE of E, we'd again
19379 find Class, and once again go look at its template type
19380 arguments, etc., etc. Simply don't consider such parent die
19381 as source-level parent of this die (it can't be, the language
19382 doesn't allow it), and break the loop here. */
19383 name = dwarf2_name (die, cu);
19384 parent_name = dwarf2_name (parent, cu);
19385 complaint (&symfile_complaints,
19386 _("template param type '%s' defined within parent '%s'"),
19387 name ? name : "<unknown>",
19388 parent_name ? parent_name : "<unknown>");
19389 return "";
19390 }
19391 else
19392 switch (parent->tag)
19393 {
19394 case DW_TAG_namespace:
19395 parent_type = read_type_die (parent, cu);
19396 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19397 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19398 Work around this problem here. */
19399 if (cu->language == language_cplus
19400 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19401 return "";
19402 /* We give a name to even anonymous namespaces. */
19403 return TYPE_TAG_NAME (parent_type);
19404 case DW_TAG_class_type:
19405 case DW_TAG_interface_type:
19406 case DW_TAG_structure_type:
19407 case DW_TAG_union_type:
19408 case DW_TAG_module:
19409 parent_type = read_type_die (parent, cu);
19410 if (TYPE_TAG_NAME (parent_type) != NULL)
19411 return TYPE_TAG_NAME (parent_type);
19412 else
19413 /* An anonymous structure is only allowed non-static data
19414 members; no typedefs, no member functions, et cetera.
19415 So it does not need a prefix. */
19416 return "";
19417 case DW_TAG_compile_unit:
19418 case DW_TAG_partial_unit:
19419 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19420 if (cu->language == language_cplus
19421 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
19422 && die->child != NULL
19423 && (die->tag == DW_TAG_class_type
19424 || die->tag == DW_TAG_structure_type
19425 || die->tag == DW_TAG_union_type))
19426 {
19427 char *name = guess_full_die_structure_name (die, cu);
19428 if (name != NULL)
19429 return name;
19430 }
19431 return "";
19432 case DW_TAG_enumeration_type:
19433 parent_type = read_type_die (parent, cu);
19434 if (TYPE_DECLARED_CLASS (parent_type))
19435 {
19436 if (TYPE_TAG_NAME (parent_type) != NULL)
19437 return TYPE_TAG_NAME (parent_type);
19438 return "";
19439 }
19440 /* Fall through. */
19441 default:
19442 return determine_prefix (parent, cu);
19443 }
19444 }
19445
19446 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19447 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19448 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19449 an obconcat, otherwise allocate storage for the result. The CU argument is
19450 used to determine the language and hence, the appropriate separator. */
19451
19452 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
19453
19454 static char *
19455 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19456 int physname, struct dwarf2_cu *cu)
19457 {
19458 const char *lead = "";
19459 const char *sep;
19460
19461 if (suffix == NULL || suffix[0] == '\0'
19462 || prefix == NULL || prefix[0] == '\0')
19463 sep = "";
19464 else if (cu->language == language_d)
19465 {
19466 /* For D, the 'main' function could be defined in any module, but it
19467 should never be prefixed. */
19468 if (strcmp (suffix, "D main") == 0)
19469 {
19470 prefix = "";
19471 sep = "";
19472 }
19473 else
19474 sep = ".";
19475 }
19476 else if (cu->language == language_fortran && physname)
19477 {
19478 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19479 DW_AT_MIPS_linkage_name is preferred and used instead. */
19480
19481 lead = "__";
19482 sep = "_MOD_";
19483 }
19484 else
19485 sep = "::";
19486
19487 if (prefix == NULL)
19488 prefix = "";
19489 if (suffix == NULL)
19490 suffix = "";
19491
19492 if (obs == NULL)
19493 {
19494 char *retval
19495 = ((char *)
19496 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
19497
19498 strcpy (retval, lead);
19499 strcat (retval, prefix);
19500 strcat (retval, sep);
19501 strcat (retval, suffix);
19502 return retval;
19503 }
19504 else
19505 {
19506 /* We have an obstack. */
19507 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
19508 }
19509 }
19510
19511 /* Return sibling of die, NULL if no sibling. */
19512
19513 static struct die_info *
19514 sibling_die (struct die_info *die)
19515 {
19516 return die->sibling;
19517 }
19518
19519 /* Get name of a die, return NULL if not found. */
19520
19521 static const char *
19522 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
19523 struct obstack *obstack)
19524 {
19525 if (name && cu->language == language_cplus)
19526 {
19527 std::string canon_name = cp_canonicalize_string (name);
19528
19529 if (!canon_name.empty ())
19530 {
19531 if (canon_name != name)
19532 name = (const char *) obstack_copy0 (obstack,
19533 canon_name.c_str (),
19534 canon_name.length ());
19535 }
19536 }
19537
19538 return name;
19539 }
19540
19541 /* Get name of a die, return NULL if not found.
19542 Anonymous namespaces are converted to their magic string. */
19543
19544 static const char *
19545 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
19546 {
19547 struct attribute *attr;
19548
19549 attr = dwarf2_attr (die, DW_AT_name, cu);
19550 if ((!attr || !DW_STRING (attr))
19551 && die->tag != DW_TAG_namespace
19552 && die->tag != DW_TAG_class_type
19553 && die->tag != DW_TAG_interface_type
19554 && die->tag != DW_TAG_structure_type
19555 && die->tag != DW_TAG_union_type)
19556 return NULL;
19557
19558 switch (die->tag)
19559 {
19560 case DW_TAG_compile_unit:
19561 case DW_TAG_partial_unit:
19562 /* Compilation units have a DW_AT_name that is a filename, not
19563 a source language identifier. */
19564 case DW_TAG_enumeration_type:
19565 case DW_TAG_enumerator:
19566 /* These tags always have simple identifiers already; no need
19567 to canonicalize them. */
19568 return DW_STRING (attr);
19569
19570 case DW_TAG_namespace:
19571 if (attr != NULL && DW_STRING (attr) != NULL)
19572 return DW_STRING (attr);
19573 return CP_ANONYMOUS_NAMESPACE_STR;
19574
19575 case DW_TAG_class_type:
19576 case DW_TAG_interface_type:
19577 case DW_TAG_structure_type:
19578 case DW_TAG_union_type:
19579 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19580 structures or unions. These were of the form "._%d" in GCC 4.1,
19581 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19582 and GCC 4.4. We work around this problem by ignoring these. */
19583 if (attr && DW_STRING (attr)
19584 && (startswith (DW_STRING (attr), "._")
19585 || startswith (DW_STRING (attr), "<anonymous")))
19586 return NULL;
19587
19588 /* GCC might emit a nameless typedef that has a linkage name. See
19589 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19590 if (!attr || DW_STRING (attr) == NULL)
19591 {
19592 char *demangled = NULL;
19593
19594 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19595 if (attr == NULL)
19596 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19597
19598 if (attr == NULL || DW_STRING (attr) == NULL)
19599 return NULL;
19600
19601 /* Avoid demangling DW_STRING (attr) the second time on a second
19602 call for the same DIE. */
19603 if (!DW_STRING_IS_CANONICAL (attr))
19604 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
19605
19606 if (demangled)
19607 {
19608 const char *base;
19609
19610 /* FIXME: we already did this for the partial symbol... */
19611 DW_STRING (attr)
19612 = ((const char *)
19613 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19614 demangled, strlen (demangled)));
19615 DW_STRING_IS_CANONICAL (attr) = 1;
19616 xfree (demangled);
19617
19618 /* Strip any leading namespaces/classes, keep only the base name.
19619 DW_AT_name for named DIEs does not contain the prefixes. */
19620 base = strrchr (DW_STRING (attr), ':');
19621 if (base && base > DW_STRING (attr) && base[-1] == ':')
19622 return &base[1];
19623 else
19624 return DW_STRING (attr);
19625 }
19626 }
19627 break;
19628
19629 default:
19630 break;
19631 }
19632
19633 if (!DW_STRING_IS_CANONICAL (attr))
19634 {
19635 DW_STRING (attr)
19636 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
19637 &cu->objfile->per_bfd->storage_obstack);
19638 DW_STRING_IS_CANONICAL (attr) = 1;
19639 }
19640 return DW_STRING (attr);
19641 }
19642
19643 /* Return the die that this die in an extension of, or NULL if there
19644 is none. *EXT_CU is the CU containing DIE on input, and the CU
19645 containing the return value on output. */
19646
19647 static struct die_info *
19648 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
19649 {
19650 struct attribute *attr;
19651
19652 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
19653 if (attr == NULL)
19654 return NULL;
19655
19656 return follow_die_ref (die, attr, ext_cu);
19657 }
19658
19659 /* Convert a DIE tag into its string name. */
19660
19661 static const char *
19662 dwarf_tag_name (unsigned tag)
19663 {
19664 const char *name = get_DW_TAG_name (tag);
19665
19666 if (name == NULL)
19667 return "DW_TAG_<unknown>";
19668
19669 return name;
19670 }
19671
19672 /* Convert a DWARF attribute code into its string name. */
19673
19674 static const char *
19675 dwarf_attr_name (unsigned attr)
19676 {
19677 const char *name;
19678
19679 #ifdef MIPS /* collides with DW_AT_HP_block_index */
19680 if (attr == DW_AT_MIPS_fde)
19681 return "DW_AT_MIPS_fde";
19682 #else
19683 if (attr == DW_AT_HP_block_index)
19684 return "DW_AT_HP_block_index";
19685 #endif
19686
19687 name = get_DW_AT_name (attr);
19688
19689 if (name == NULL)
19690 return "DW_AT_<unknown>";
19691
19692 return name;
19693 }
19694
19695 /* Convert a DWARF value form code into its string name. */
19696
19697 static const char *
19698 dwarf_form_name (unsigned form)
19699 {
19700 const char *name = get_DW_FORM_name (form);
19701
19702 if (name == NULL)
19703 return "DW_FORM_<unknown>";
19704
19705 return name;
19706 }
19707
19708 static char *
19709 dwarf_bool_name (unsigned mybool)
19710 {
19711 if (mybool)
19712 return "TRUE";
19713 else
19714 return "FALSE";
19715 }
19716
19717 /* Convert a DWARF type code into its string name. */
19718
19719 static const char *
19720 dwarf_type_encoding_name (unsigned enc)
19721 {
19722 const char *name = get_DW_ATE_name (enc);
19723
19724 if (name == NULL)
19725 return "DW_ATE_<unknown>";
19726
19727 return name;
19728 }
19729
19730 static void
19731 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
19732 {
19733 unsigned int i;
19734
19735 print_spaces (indent, f);
19736 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
19737 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
19738
19739 if (die->parent != NULL)
19740 {
19741 print_spaces (indent, f);
19742 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
19743 die->parent->offset.sect_off);
19744 }
19745
19746 print_spaces (indent, f);
19747 fprintf_unfiltered (f, " has children: %s\n",
19748 dwarf_bool_name (die->child != NULL));
19749
19750 print_spaces (indent, f);
19751 fprintf_unfiltered (f, " attributes:\n");
19752
19753 for (i = 0; i < die->num_attrs; ++i)
19754 {
19755 print_spaces (indent, f);
19756 fprintf_unfiltered (f, " %s (%s) ",
19757 dwarf_attr_name (die->attrs[i].name),
19758 dwarf_form_name (die->attrs[i].form));
19759
19760 switch (die->attrs[i].form)
19761 {
19762 case DW_FORM_addr:
19763 case DW_FORM_GNU_addr_index:
19764 fprintf_unfiltered (f, "address: ");
19765 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
19766 break;
19767 case DW_FORM_block2:
19768 case DW_FORM_block4:
19769 case DW_FORM_block:
19770 case DW_FORM_block1:
19771 fprintf_unfiltered (f, "block: size %s",
19772 pulongest (DW_BLOCK (&die->attrs[i])->size));
19773 break;
19774 case DW_FORM_exprloc:
19775 fprintf_unfiltered (f, "expression: size %s",
19776 pulongest (DW_BLOCK (&die->attrs[i])->size));
19777 break;
19778 case DW_FORM_ref_addr:
19779 fprintf_unfiltered (f, "ref address: ");
19780 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19781 break;
19782 case DW_FORM_GNU_ref_alt:
19783 fprintf_unfiltered (f, "alt ref address: ");
19784 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19785 break;
19786 case DW_FORM_ref1:
19787 case DW_FORM_ref2:
19788 case DW_FORM_ref4:
19789 case DW_FORM_ref8:
19790 case DW_FORM_ref_udata:
19791 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
19792 (long) (DW_UNSND (&die->attrs[i])));
19793 break;
19794 case DW_FORM_data1:
19795 case DW_FORM_data2:
19796 case DW_FORM_data4:
19797 case DW_FORM_data8:
19798 case DW_FORM_udata:
19799 case DW_FORM_sdata:
19800 fprintf_unfiltered (f, "constant: %s",
19801 pulongest (DW_UNSND (&die->attrs[i])));
19802 break;
19803 case DW_FORM_sec_offset:
19804 fprintf_unfiltered (f, "section offset: %s",
19805 pulongest (DW_UNSND (&die->attrs[i])));
19806 break;
19807 case DW_FORM_ref_sig8:
19808 fprintf_unfiltered (f, "signature: %s",
19809 hex_string (DW_SIGNATURE (&die->attrs[i])));
19810 break;
19811 case DW_FORM_string:
19812 case DW_FORM_strp:
19813 case DW_FORM_GNU_str_index:
19814 case DW_FORM_GNU_strp_alt:
19815 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
19816 DW_STRING (&die->attrs[i])
19817 ? DW_STRING (&die->attrs[i]) : "",
19818 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
19819 break;
19820 case DW_FORM_flag:
19821 if (DW_UNSND (&die->attrs[i]))
19822 fprintf_unfiltered (f, "flag: TRUE");
19823 else
19824 fprintf_unfiltered (f, "flag: FALSE");
19825 break;
19826 case DW_FORM_flag_present:
19827 fprintf_unfiltered (f, "flag: TRUE");
19828 break;
19829 case DW_FORM_indirect:
19830 /* The reader will have reduced the indirect form to
19831 the "base form" so this form should not occur. */
19832 fprintf_unfiltered (f,
19833 "unexpected attribute form: DW_FORM_indirect");
19834 break;
19835 default:
19836 fprintf_unfiltered (f, "unsupported attribute form: %d.",
19837 die->attrs[i].form);
19838 break;
19839 }
19840 fprintf_unfiltered (f, "\n");
19841 }
19842 }
19843
19844 static void
19845 dump_die_for_error (struct die_info *die)
19846 {
19847 dump_die_shallow (gdb_stderr, 0, die);
19848 }
19849
19850 static void
19851 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19852 {
19853 int indent = level * 4;
19854
19855 gdb_assert (die != NULL);
19856
19857 if (level >= max_level)
19858 return;
19859
19860 dump_die_shallow (f, indent, die);
19861
19862 if (die->child != NULL)
19863 {
19864 print_spaces (indent, f);
19865 fprintf_unfiltered (f, " Children:");
19866 if (level + 1 < max_level)
19867 {
19868 fprintf_unfiltered (f, "\n");
19869 dump_die_1 (f, level + 1, max_level, die->child);
19870 }
19871 else
19872 {
19873 fprintf_unfiltered (f,
19874 " [not printed, max nesting level reached]\n");
19875 }
19876 }
19877
19878 if (die->sibling != NULL && level > 0)
19879 {
19880 dump_die_1 (f, level, max_level, die->sibling);
19881 }
19882 }
19883
19884 /* This is called from the pdie macro in gdbinit.in.
19885 It's not static so gcc will keep a copy callable from gdb. */
19886
19887 void
19888 dump_die (struct die_info *die, int max_level)
19889 {
19890 dump_die_1 (gdb_stdlog, 0, max_level, die);
19891 }
19892
19893 static void
19894 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19895 {
19896 void **slot;
19897
19898 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19899 INSERT);
19900
19901 *slot = die;
19902 }
19903
19904 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19905 required kind. */
19906
19907 static sect_offset
19908 dwarf2_get_ref_die_offset (const struct attribute *attr)
19909 {
19910 sect_offset retval = { DW_UNSND (attr) };
19911
19912 if (attr_form_is_ref (attr))
19913 return retval;
19914
19915 retval.sect_off = 0;
19916 complaint (&symfile_complaints,
19917 _("unsupported die ref attribute form: '%s'"),
19918 dwarf_form_name (attr->form));
19919 return retval;
19920 }
19921
19922 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19923 * the value held by the attribute is not constant. */
19924
19925 static LONGEST
19926 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19927 {
19928 if (attr->form == DW_FORM_sdata)
19929 return DW_SND (attr);
19930 else if (attr->form == DW_FORM_udata
19931 || attr->form == DW_FORM_data1
19932 || attr->form == DW_FORM_data2
19933 || attr->form == DW_FORM_data4
19934 || attr->form == DW_FORM_data8)
19935 return DW_UNSND (attr);
19936 else
19937 {
19938 complaint (&symfile_complaints,
19939 _("Attribute value is not a constant (%s)"),
19940 dwarf_form_name (attr->form));
19941 return default_value;
19942 }
19943 }
19944
19945 /* Follow reference or signature attribute ATTR of SRC_DIE.
19946 On entry *REF_CU is the CU of SRC_DIE.
19947 On exit *REF_CU is the CU of the result. */
19948
19949 static struct die_info *
19950 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19951 struct dwarf2_cu **ref_cu)
19952 {
19953 struct die_info *die;
19954
19955 if (attr_form_is_ref (attr))
19956 die = follow_die_ref (src_die, attr, ref_cu);
19957 else if (attr->form == DW_FORM_ref_sig8)
19958 die = follow_die_sig (src_die, attr, ref_cu);
19959 else
19960 {
19961 dump_die_for_error (src_die);
19962 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19963 objfile_name ((*ref_cu)->objfile));
19964 }
19965
19966 return die;
19967 }
19968
19969 /* Follow reference OFFSET.
19970 On entry *REF_CU is the CU of the source die referencing OFFSET.
19971 On exit *REF_CU is the CU of the result.
19972 Returns NULL if OFFSET is invalid. */
19973
19974 static struct die_info *
19975 follow_die_offset (sect_offset offset, int offset_in_dwz,
19976 struct dwarf2_cu **ref_cu)
19977 {
19978 struct die_info temp_die;
19979 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19980
19981 gdb_assert (cu->per_cu != NULL);
19982
19983 target_cu = cu;
19984
19985 if (cu->per_cu->is_debug_types)
19986 {
19987 /* .debug_types CUs cannot reference anything outside their CU.
19988 If they need to, they have to reference a signatured type via
19989 DW_FORM_ref_sig8. */
19990 if (! offset_in_cu_p (&cu->header, offset))
19991 return NULL;
19992 }
19993 else if (offset_in_dwz != cu->per_cu->is_dwz
19994 || ! offset_in_cu_p (&cu->header, offset))
19995 {
19996 struct dwarf2_per_cu_data *per_cu;
19997
19998 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19999 cu->objfile);
20000
20001 /* If necessary, add it to the queue and load its DIEs. */
20002 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
20003 load_full_comp_unit (per_cu, cu->language);
20004
20005 target_cu = per_cu->cu;
20006 }
20007 else if (cu->dies == NULL)
20008 {
20009 /* We're loading full DIEs during partial symbol reading. */
20010 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
20011 load_full_comp_unit (cu->per_cu, language_minimal);
20012 }
20013
20014 *ref_cu = target_cu;
20015 temp_die.offset = offset;
20016 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
20017 &temp_die, offset.sect_off);
20018 }
20019
20020 /* Follow reference attribute ATTR of SRC_DIE.
20021 On entry *REF_CU is the CU of SRC_DIE.
20022 On exit *REF_CU is the CU of the result. */
20023
20024 static struct die_info *
20025 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
20026 struct dwarf2_cu **ref_cu)
20027 {
20028 sect_offset offset = dwarf2_get_ref_die_offset (attr);
20029 struct dwarf2_cu *cu = *ref_cu;
20030 struct die_info *die;
20031
20032 die = follow_die_offset (offset,
20033 (attr->form == DW_FORM_GNU_ref_alt
20034 || cu->per_cu->is_dwz),
20035 ref_cu);
20036 if (!die)
20037 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20038 "at 0x%x [in module %s]"),
20039 offset.sect_off, src_die->offset.sect_off,
20040 objfile_name (cu->objfile));
20041
20042 return die;
20043 }
20044
20045 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
20046 Returned value is intended for DW_OP_call*. Returned
20047 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
20048
20049 struct dwarf2_locexpr_baton
20050 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
20051 struct dwarf2_per_cu_data *per_cu,
20052 CORE_ADDR (*get_frame_pc) (void *baton),
20053 void *baton)
20054 {
20055 struct dwarf2_cu *cu;
20056 struct die_info *die;
20057 struct attribute *attr;
20058 struct dwarf2_locexpr_baton retval;
20059
20060 dw2_setup (per_cu->objfile);
20061
20062 if (per_cu->cu == NULL)
20063 load_cu (per_cu);
20064 cu = per_cu->cu;
20065 if (cu == NULL)
20066 {
20067 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20068 Instead just throw an error, not much else we can do. */
20069 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20070 offset.sect_off, objfile_name (per_cu->objfile));
20071 }
20072
20073 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20074 if (!die)
20075 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20076 offset.sect_off, objfile_name (per_cu->objfile));
20077
20078 attr = dwarf2_attr (die, DW_AT_location, cu);
20079 if (!attr)
20080 {
20081 /* DWARF: "If there is no such attribute, then there is no effect.".
20082 DATA is ignored if SIZE is 0. */
20083
20084 retval.data = NULL;
20085 retval.size = 0;
20086 }
20087 else if (attr_form_is_section_offset (attr))
20088 {
20089 struct dwarf2_loclist_baton loclist_baton;
20090 CORE_ADDR pc = (*get_frame_pc) (baton);
20091 size_t size;
20092
20093 fill_in_loclist_baton (cu, &loclist_baton, attr);
20094
20095 retval.data = dwarf2_find_location_expression (&loclist_baton,
20096 &size, pc);
20097 retval.size = size;
20098 }
20099 else
20100 {
20101 if (!attr_form_is_block (attr))
20102 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20103 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
20104 offset.sect_off, objfile_name (per_cu->objfile));
20105
20106 retval.data = DW_BLOCK (attr)->data;
20107 retval.size = DW_BLOCK (attr)->size;
20108 }
20109 retval.per_cu = cu->per_cu;
20110
20111 age_cached_comp_units ();
20112
20113 return retval;
20114 }
20115
20116 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20117 offset. */
20118
20119 struct dwarf2_locexpr_baton
20120 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20121 struct dwarf2_per_cu_data *per_cu,
20122 CORE_ADDR (*get_frame_pc) (void *baton),
20123 void *baton)
20124 {
20125 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
20126
20127 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
20128 }
20129
20130 /* Write a constant of a given type as target-ordered bytes into
20131 OBSTACK. */
20132
20133 static const gdb_byte *
20134 write_constant_as_bytes (struct obstack *obstack,
20135 enum bfd_endian byte_order,
20136 struct type *type,
20137 ULONGEST value,
20138 LONGEST *len)
20139 {
20140 gdb_byte *result;
20141
20142 *len = TYPE_LENGTH (type);
20143 result = (gdb_byte *) obstack_alloc (obstack, *len);
20144 store_unsigned_integer (result, *len, byte_order, value);
20145
20146 return result;
20147 }
20148
20149 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20150 pointer to the constant bytes and set LEN to the length of the
20151 data. If memory is needed, allocate it on OBSTACK. If the DIE
20152 does not have a DW_AT_const_value, return NULL. */
20153
20154 const gdb_byte *
20155 dwarf2_fetch_constant_bytes (sect_offset offset,
20156 struct dwarf2_per_cu_data *per_cu,
20157 struct obstack *obstack,
20158 LONGEST *len)
20159 {
20160 struct dwarf2_cu *cu;
20161 struct die_info *die;
20162 struct attribute *attr;
20163 const gdb_byte *result = NULL;
20164 struct type *type;
20165 LONGEST value;
20166 enum bfd_endian byte_order;
20167
20168 dw2_setup (per_cu->objfile);
20169
20170 if (per_cu->cu == NULL)
20171 load_cu (per_cu);
20172 cu = per_cu->cu;
20173 if (cu == NULL)
20174 {
20175 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20176 Instead just throw an error, not much else we can do. */
20177 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20178 offset.sect_off, objfile_name (per_cu->objfile));
20179 }
20180
20181 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20182 if (!die)
20183 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20184 offset.sect_off, objfile_name (per_cu->objfile));
20185
20186
20187 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20188 if (attr == NULL)
20189 return NULL;
20190
20191 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20192 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20193
20194 switch (attr->form)
20195 {
20196 case DW_FORM_addr:
20197 case DW_FORM_GNU_addr_index:
20198 {
20199 gdb_byte *tem;
20200
20201 *len = cu->header.addr_size;
20202 tem = (gdb_byte *) obstack_alloc (obstack, *len);
20203 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20204 result = tem;
20205 }
20206 break;
20207 case DW_FORM_string:
20208 case DW_FORM_strp:
20209 case DW_FORM_GNU_str_index:
20210 case DW_FORM_GNU_strp_alt:
20211 /* DW_STRING is already allocated on the objfile obstack, point
20212 directly to it. */
20213 result = (const gdb_byte *) DW_STRING (attr);
20214 *len = strlen (DW_STRING (attr));
20215 break;
20216 case DW_FORM_block1:
20217 case DW_FORM_block2:
20218 case DW_FORM_block4:
20219 case DW_FORM_block:
20220 case DW_FORM_exprloc:
20221 result = DW_BLOCK (attr)->data;
20222 *len = DW_BLOCK (attr)->size;
20223 break;
20224
20225 /* The DW_AT_const_value attributes are supposed to carry the
20226 symbol's value "represented as it would be on the target
20227 architecture." By the time we get here, it's already been
20228 converted to host endianness, so we just need to sign- or
20229 zero-extend it as appropriate. */
20230 case DW_FORM_data1:
20231 type = die_type (die, cu);
20232 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20233 if (result == NULL)
20234 result = write_constant_as_bytes (obstack, byte_order,
20235 type, value, len);
20236 break;
20237 case DW_FORM_data2:
20238 type = die_type (die, cu);
20239 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20240 if (result == NULL)
20241 result = write_constant_as_bytes (obstack, byte_order,
20242 type, value, len);
20243 break;
20244 case DW_FORM_data4:
20245 type = die_type (die, cu);
20246 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20247 if (result == NULL)
20248 result = write_constant_as_bytes (obstack, byte_order,
20249 type, value, len);
20250 break;
20251 case DW_FORM_data8:
20252 type = die_type (die, cu);
20253 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20254 if (result == NULL)
20255 result = write_constant_as_bytes (obstack, byte_order,
20256 type, value, len);
20257 break;
20258
20259 case DW_FORM_sdata:
20260 type = die_type (die, cu);
20261 result = write_constant_as_bytes (obstack, byte_order,
20262 type, DW_SND (attr), len);
20263 break;
20264
20265 case DW_FORM_udata:
20266 type = die_type (die, cu);
20267 result = write_constant_as_bytes (obstack, byte_order,
20268 type, DW_UNSND (attr), len);
20269 break;
20270
20271 default:
20272 complaint (&symfile_complaints,
20273 _("unsupported const value attribute form: '%s'"),
20274 dwarf_form_name (attr->form));
20275 break;
20276 }
20277
20278 return result;
20279 }
20280
20281 /* Return the type of the DIE at DIE_OFFSET in the CU named by
20282 PER_CU. */
20283
20284 struct type *
20285 dwarf2_get_die_type (cu_offset die_offset,
20286 struct dwarf2_per_cu_data *per_cu)
20287 {
20288 sect_offset die_offset_sect;
20289
20290 dw2_setup (per_cu->objfile);
20291
20292 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
20293 return get_die_type_at_offset (die_offset_sect, per_cu);
20294 }
20295
20296 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
20297 On entry *REF_CU is the CU of SRC_DIE.
20298 On exit *REF_CU is the CU of the result.
20299 Returns NULL if the referenced DIE isn't found. */
20300
20301 static struct die_info *
20302 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20303 struct dwarf2_cu **ref_cu)
20304 {
20305 struct die_info temp_die;
20306 struct dwarf2_cu *sig_cu;
20307 struct die_info *die;
20308
20309 /* While it might be nice to assert sig_type->type == NULL here,
20310 we can get here for DW_AT_imported_declaration where we need
20311 the DIE not the type. */
20312
20313 /* If necessary, add it to the queue and load its DIEs. */
20314
20315 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
20316 read_signatured_type (sig_type);
20317
20318 sig_cu = sig_type->per_cu.cu;
20319 gdb_assert (sig_cu != NULL);
20320 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20321 temp_die.offset = sig_type->type_offset_in_section;
20322 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
20323 temp_die.offset.sect_off);
20324 if (die)
20325 {
20326 /* For .gdb_index version 7 keep track of included TUs.
20327 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20328 if (dwarf2_per_objfile->index_table != NULL
20329 && dwarf2_per_objfile->index_table->version <= 7)
20330 {
20331 VEC_safe_push (dwarf2_per_cu_ptr,
20332 (*ref_cu)->per_cu->imported_symtabs,
20333 sig_cu->per_cu);
20334 }
20335
20336 *ref_cu = sig_cu;
20337 return die;
20338 }
20339
20340 return NULL;
20341 }
20342
20343 /* Follow signatured type referenced by ATTR in SRC_DIE.
20344 On entry *REF_CU is the CU of SRC_DIE.
20345 On exit *REF_CU is the CU of the result.
20346 The result is the DIE of the type.
20347 If the referenced type cannot be found an error is thrown. */
20348
20349 static struct die_info *
20350 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
20351 struct dwarf2_cu **ref_cu)
20352 {
20353 ULONGEST signature = DW_SIGNATURE (attr);
20354 struct signatured_type *sig_type;
20355 struct die_info *die;
20356
20357 gdb_assert (attr->form == DW_FORM_ref_sig8);
20358
20359 sig_type = lookup_signatured_type (*ref_cu, signature);
20360 /* sig_type will be NULL if the signatured type is missing from
20361 the debug info. */
20362 if (sig_type == NULL)
20363 {
20364 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20365 " from DIE at 0x%x [in module %s]"),
20366 hex_string (signature), src_die->offset.sect_off,
20367 objfile_name ((*ref_cu)->objfile));
20368 }
20369
20370 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20371 if (die == NULL)
20372 {
20373 dump_die_for_error (src_die);
20374 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20375 " from DIE at 0x%x [in module %s]"),
20376 hex_string (signature), src_die->offset.sect_off,
20377 objfile_name ((*ref_cu)->objfile));
20378 }
20379
20380 return die;
20381 }
20382
20383 /* Get the type specified by SIGNATURE referenced in DIE/CU,
20384 reading in and processing the type unit if necessary. */
20385
20386 static struct type *
20387 get_signatured_type (struct die_info *die, ULONGEST signature,
20388 struct dwarf2_cu *cu)
20389 {
20390 struct signatured_type *sig_type;
20391 struct dwarf2_cu *type_cu;
20392 struct die_info *type_die;
20393 struct type *type;
20394
20395 sig_type = lookup_signatured_type (cu, signature);
20396 /* sig_type will be NULL if the signatured type is missing from
20397 the debug info. */
20398 if (sig_type == NULL)
20399 {
20400 complaint (&symfile_complaints,
20401 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20402 " from DIE at 0x%x [in module %s]"),
20403 hex_string (signature), die->offset.sect_off,
20404 objfile_name (dwarf2_per_objfile->objfile));
20405 return build_error_marker_type (cu, die);
20406 }
20407
20408 /* If we already know the type we're done. */
20409 if (sig_type->type != NULL)
20410 return sig_type->type;
20411
20412 type_cu = cu;
20413 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20414 if (type_die != NULL)
20415 {
20416 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20417 is created. This is important, for example, because for c++ classes
20418 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20419 type = read_type_die (type_die, type_cu);
20420 if (type == NULL)
20421 {
20422 complaint (&symfile_complaints,
20423 _("Dwarf Error: Cannot build signatured type %s"
20424 " referenced from DIE at 0x%x [in module %s]"),
20425 hex_string (signature), die->offset.sect_off,
20426 objfile_name (dwarf2_per_objfile->objfile));
20427 type = build_error_marker_type (cu, die);
20428 }
20429 }
20430 else
20431 {
20432 complaint (&symfile_complaints,
20433 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20434 " from DIE at 0x%x [in module %s]"),
20435 hex_string (signature), die->offset.sect_off,
20436 objfile_name (dwarf2_per_objfile->objfile));
20437 type = build_error_marker_type (cu, die);
20438 }
20439 sig_type->type = type;
20440
20441 return type;
20442 }
20443
20444 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20445 reading in and processing the type unit if necessary. */
20446
20447 static struct type *
20448 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
20449 struct dwarf2_cu *cu) /* ARI: editCase function */
20450 {
20451 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
20452 if (attr_form_is_ref (attr))
20453 {
20454 struct dwarf2_cu *type_cu = cu;
20455 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20456
20457 return read_type_die (type_die, type_cu);
20458 }
20459 else if (attr->form == DW_FORM_ref_sig8)
20460 {
20461 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20462 }
20463 else
20464 {
20465 complaint (&symfile_complaints,
20466 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20467 " at 0x%x [in module %s]"),
20468 dwarf_form_name (attr->form), die->offset.sect_off,
20469 objfile_name (dwarf2_per_objfile->objfile));
20470 return build_error_marker_type (cu, die);
20471 }
20472 }
20473
20474 /* Load the DIEs associated with type unit PER_CU into memory. */
20475
20476 static void
20477 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
20478 {
20479 struct signatured_type *sig_type;
20480
20481 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20482 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20483
20484 /* We have the per_cu, but we need the signatured_type.
20485 Fortunately this is an easy translation. */
20486 gdb_assert (per_cu->is_debug_types);
20487 sig_type = (struct signatured_type *) per_cu;
20488
20489 gdb_assert (per_cu->cu == NULL);
20490
20491 read_signatured_type (sig_type);
20492
20493 gdb_assert (per_cu->cu != NULL);
20494 }
20495
20496 /* die_reader_func for read_signatured_type.
20497 This is identical to load_full_comp_unit_reader,
20498 but is kept separate for now. */
20499
20500 static void
20501 read_signatured_type_reader (const struct die_reader_specs *reader,
20502 const gdb_byte *info_ptr,
20503 struct die_info *comp_unit_die,
20504 int has_children,
20505 void *data)
20506 {
20507 struct dwarf2_cu *cu = reader->cu;
20508
20509 gdb_assert (cu->die_hash == NULL);
20510 cu->die_hash =
20511 htab_create_alloc_ex (cu->header.length / 12,
20512 die_hash,
20513 die_eq,
20514 NULL,
20515 &cu->comp_unit_obstack,
20516 hashtab_obstack_allocate,
20517 dummy_obstack_deallocate);
20518
20519 if (has_children)
20520 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20521 &info_ptr, comp_unit_die);
20522 cu->dies = comp_unit_die;
20523 /* comp_unit_die is not stored in die_hash, no need. */
20524
20525 /* We try not to read any attributes in this function, because not
20526 all CUs needed for references have been loaded yet, and symbol
20527 table processing isn't initialized. But we have to set the CU language,
20528 or we won't be able to build types correctly.
20529 Similarly, if we do not read the producer, we can not apply
20530 producer-specific interpretation. */
20531 prepare_one_comp_unit (cu, cu->dies, language_minimal);
20532 }
20533
20534 /* Read in a signatured type and build its CU and DIEs.
20535 If the type is a stub for the real type in a DWO file,
20536 read in the real type from the DWO file as well. */
20537
20538 static void
20539 read_signatured_type (struct signatured_type *sig_type)
20540 {
20541 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
20542
20543 gdb_assert (per_cu->is_debug_types);
20544 gdb_assert (per_cu->cu == NULL);
20545
20546 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20547 read_signatured_type_reader, NULL);
20548 sig_type->per_cu.tu_read = 1;
20549 }
20550
20551 /* Decode simple location descriptions.
20552 Given a pointer to a dwarf block that defines a location, compute
20553 the location and return the value.
20554
20555 NOTE drow/2003-11-18: This function is called in two situations
20556 now: for the address of static or global variables (partial symbols
20557 only) and for offsets into structures which are expected to be
20558 (more or less) constant. The partial symbol case should go away,
20559 and only the constant case should remain. That will let this
20560 function complain more accurately. A few special modes are allowed
20561 without complaint for global variables (for instance, global
20562 register values and thread-local values).
20563
20564 A location description containing no operations indicates that the
20565 object is optimized out. The return value is 0 for that case.
20566 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20567 callers will only want a very basic result and this can become a
20568 complaint.
20569
20570 Note that stack[0] is unused except as a default error return. */
20571
20572 static CORE_ADDR
20573 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
20574 {
20575 struct objfile *objfile = cu->objfile;
20576 size_t i;
20577 size_t size = blk->size;
20578 const gdb_byte *data = blk->data;
20579 CORE_ADDR stack[64];
20580 int stacki;
20581 unsigned int bytes_read, unsnd;
20582 gdb_byte op;
20583
20584 i = 0;
20585 stacki = 0;
20586 stack[stacki] = 0;
20587 stack[++stacki] = 0;
20588
20589 while (i < size)
20590 {
20591 op = data[i++];
20592 switch (op)
20593 {
20594 case DW_OP_lit0:
20595 case DW_OP_lit1:
20596 case DW_OP_lit2:
20597 case DW_OP_lit3:
20598 case DW_OP_lit4:
20599 case DW_OP_lit5:
20600 case DW_OP_lit6:
20601 case DW_OP_lit7:
20602 case DW_OP_lit8:
20603 case DW_OP_lit9:
20604 case DW_OP_lit10:
20605 case DW_OP_lit11:
20606 case DW_OP_lit12:
20607 case DW_OP_lit13:
20608 case DW_OP_lit14:
20609 case DW_OP_lit15:
20610 case DW_OP_lit16:
20611 case DW_OP_lit17:
20612 case DW_OP_lit18:
20613 case DW_OP_lit19:
20614 case DW_OP_lit20:
20615 case DW_OP_lit21:
20616 case DW_OP_lit22:
20617 case DW_OP_lit23:
20618 case DW_OP_lit24:
20619 case DW_OP_lit25:
20620 case DW_OP_lit26:
20621 case DW_OP_lit27:
20622 case DW_OP_lit28:
20623 case DW_OP_lit29:
20624 case DW_OP_lit30:
20625 case DW_OP_lit31:
20626 stack[++stacki] = op - DW_OP_lit0;
20627 break;
20628
20629 case DW_OP_reg0:
20630 case DW_OP_reg1:
20631 case DW_OP_reg2:
20632 case DW_OP_reg3:
20633 case DW_OP_reg4:
20634 case DW_OP_reg5:
20635 case DW_OP_reg6:
20636 case DW_OP_reg7:
20637 case DW_OP_reg8:
20638 case DW_OP_reg9:
20639 case DW_OP_reg10:
20640 case DW_OP_reg11:
20641 case DW_OP_reg12:
20642 case DW_OP_reg13:
20643 case DW_OP_reg14:
20644 case DW_OP_reg15:
20645 case DW_OP_reg16:
20646 case DW_OP_reg17:
20647 case DW_OP_reg18:
20648 case DW_OP_reg19:
20649 case DW_OP_reg20:
20650 case DW_OP_reg21:
20651 case DW_OP_reg22:
20652 case DW_OP_reg23:
20653 case DW_OP_reg24:
20654 case DW_OP_reg25:
20655 case DW_OP_reg26:
20656 case DW_OP_reg27:
20657 case DW_OP_reg28:
20658 case DW_OP_reg29:
20659 case DW_OP_reg30:
20660 case DW_OP_reg31:
20661 stack[++stacki] = op - DW_OP_reg0;
20662 if (i < size)
20663 dwarf2_complex_location_expr_complaint ();
20664 break;
20665
20666 case DW_OP_regx:
20667 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20668 i += bytes_read;
20669 stack[++stacki] = unsnd;
20670 if (i < size)
20671 dwarf2_complex_location_expr_complaint ();
20672 break;
20673
20674 case DW_OP_addr:
20675 stack[++stacki] = read_address (objfile->obfd, &data[i],
20676 cu, &bytes_read);
20677 i += bytes_read;
20678 break;
20679
20680 case DW_OP_const1u:
20681 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20682 i += 1;
20683 break;
20684
20685 case DW_OP_const1s:
20686 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20687 i += 1;
20688 break;
20689
20690 case DW_OP_const2u:
20691 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20692 i += 2;
20693 break;
20694
20695 case DW_OP_const2s:
20696 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20697 i += 2;
20698 break;
20699
20700 case DW_OP_const4u:
20701 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20702 i += 4;
20703 break;
20704
20705 case DW_OP_const4s:
20706 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20707 i += 4;
20708 break;
20709
20710 case DW_OP_const8u:
20711 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20712 i += 8;
20713 break;
20714
20715 case DW_OP_constu:
20716 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20717 &bytes_read);
20718 i += bytes_read;
20719 break;
20720
20721 case DW_OP_consts:
20722 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20723 i += bytes_read;
20724 break;
20725
20726 case DW_OP_dup:
20727 stack[stacki + 1] = stack[stacki];
20728 stacki++;
20729 break;
20730
20731 case DW_OP_plus:
20732 stack[stacki - 1] += stack[stacki];
20733 stacki--;
20734 break;
20735
20736 case DW_OP_plus_uconst:
20737 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20738 &bytes_read);
20739 i += bytes_read;
20740 break;
20741
20742 case DW_OP_minus:
20743 stack[stacki - 1] -= stack[stacki];
20744 stacki--;
20745 break;
20746
20747 case DW_OP_deref:
20748 /* If we're not the last op, then we definitely can't encode
20749 this using GDB's address_class enum. This is valid for partial
20750 global symbols, although the variable's address will be bogus
20751 in the psymtab. */
20752 if (i < size)
20753 dwarf2_complex_location_expr_complaint ();
20754 break;
20755
20756 case DW_OP_GNU_push_tls_address:
20757 case DW_OP_form_tls_address:
20758 /* The top of the stack has the offset from the beginning
20759 of the thread control block at which the variable is located. */
20760 /* Nothing should follow this operator, so the top of stack would
20761 be returned. */
20762 /* This is valid for partial global symbols, but the variable's
20763 address will be bogus in the psymtab. Make it always at least
20764 non-zero to not look as a variable garbage collected by linker
20765 which have DW_OP_addr 0. */
20766 if (i < size)
20767 dwarf2_complex_location_expr_complaint ();
20768 stack[stacki]++;
20769 break;
20770
20771 case DW_OP_GNU_uninit:
20772 break;
20773
20774 case DW_OP_GNU_addr_index:
20775 case DW_OP_GNU_const_index:
20776 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20777 &bytes_read);
20778 i += bytes_read;
20779 break;
20780
20781 default:
20782 {
20783 const char *name = get_DW_OP_name (op);
20784
20785 if (name)
20786 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20787 name);
20788 else
20789 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20790 op);
20791 }
20792
20793 return (stack[stacki]);
20794 }
20795
20796 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20797 outside of the allocated space. Also enforce minimum>0. */
20798 if (stacki >= ARRAY_SIZE (stack) - 1)
20799 {
20800 complaint (&symfile_complaints,
20801 _("location description stack overflow"));
20802 return 0;
20803 }
20804
20805 if (stacki <= 0)
20806 {
20807 complaint (&symfile_complaints,
20808 _("location description stack underflow"));
20809 return 0;
20810 }
20811 }
20812 return (stack[stacki]);
20813 }
20814
20815 /* memory allocation interface */
20816
20817 static struct dwarf_block *
20818 dwarf_alloc_block (struct dwarf2_cu *cu)
20819 {
20820 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
20821 }
20822
20823 static struct die_info *
20824 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
20825 {
20826 struct die_info *die;
20827 size_t size = sizeof (struct die_info);
20828
20829 if (num_attrs > 1)
20830 size += (num_attrs - 1) * sizeof (struct attribute);
20831
20832 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
20833 memset (die, 0, sizeof (struct die_info));
20834 return (die);
20835 }
20836
20837 \f
20838 /* Macro support. */
20839
20840 /* Return file name relative to the compilation directory of file number I in
20841 *LH's file name table. The result is allocated using xmalloc; the caller is
20842 responsible for freeing it. */
20843
20844 static char *
20845 file_file_name (int file, struct line_header *lh)
20846 {
20847 /* Is the file number a valid index into the line header's file name
20848 table? Remember that file numbers start with one, not zero. */
20849 if (1 <= file && file <= lh->num_file_names)
20850 {
20851 struct file_entry *fe = &lh->file_names[file - 1];
20852
20853 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0
20854 || lh->include_dirs == NULL)
20855 return xstrdup (fe->name);
20856 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20857 fe->name, (char *) NULL);
20858 }
20859 else
20860 {
20861 /* The compiler produced a bogus file number. We can at least
20862 record the macro definitions made in the file, even if we
20863 won't be able to find the file by name. */
20864 char fake_name[80];
20865
20866 xsnprintf (fake_name, sizeof (fake_name),
20867 "<bad macro file number %d>", file);
20868
20869 complaint (&symfile_complaints,
20870 _("bad file number in macro information (%d)"),
20871 file);
20872
20873 return xstrdup (fake_name);
20874 }
20875 }
20876
20877 /* Return the full name of file number I in *LH's file name table.
20878 Use COMP_DIR as the name of the current directory of the
20879 compilation. The result is allocated using xmalloc; the caller is
20880 responsible for freeing it. */
20881 static char *
20882 file_full_name (int file, struct line_header *lh, const char *comp_dir)
20883 {
20884 /* Is the file number a valid index into the line header's file name
20885 table? Remember that file numbers start with one, not zero. */
20886 if (1 <= file && file <= lh->num_file_names)
20887 {
20888 char *relative = file_file_name (file, lh);
20889
20890 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20891 return relative;
20892 return reconcat (relative, comp_dir, SLASH_STRING,
20893 relative, (char *) NULL);
20894 }
20895 else
20896 return file_file_name (file, lh);
20897 }
20898
20899
20900 static struct macro_source_file *
20901 macro_start_file (int file, int line,
20902 struct macro_source_file *current_file,
20903 struct line_header *lh)
20904 {
20905 /* File name relative to the compilation directory of this source file. */
20906 char *file_name = file_file_name (file, lh);
20907
20908 if (! current_file)
20909 {
20910 /* Note: We don't create a macro table for this compilation unit
20911 at all until we actually get a filename. */
20912 struct macro_table *macro_table = get_macro_table ();
20913
20914 /* If we have no current file, then this must be the start_file
20915 directive for the compilation unit's main source file. */
20916 current_file = macro_set_main (macro_table, file_name);
20917 macro_define_special (macro_table);
20918 }
20919 else
20920 current_file = macro_include (current_file, line, file_name);
20921
20922 xfree (file_name);
20923
20924 return current_file;
20925 }
20926
20927
20928 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20929 followed by a null byte. */
20930 static char *
20931 copy_string (const char *buf, int len)
20932 {
20933 char *s = (char *) xmalloc (len + 1);
20934
20935 memcpy (s, buf, len);
20936 s[len] = '\0';
20937 return s;
20938 }
20939
20940
20941 static const char *
20942 consume_improper_spaces (const char *p, const char *body)
20943 {
20944 if (*p == ' ')
20945 {
20946 complaint (&symfile_complaints,
20947 _("macro definition contains spaces "
20948 "in formal argument list:\n`%s'"),
20949 body);
20950
20951 while (*p == ' ')
20952 p++;
20953 }
20954
20955 return p;
20956 }
20957
20958
20959 static void
20960 parse_macro_definition (struct macro_source_file *file, int line,
20961 const char *body)
20962 {
20963 const char *p;
20964
20965 /* The body string takes one of two forms. For object-like macro
20966 definitions, it should be:
20967
20968 <macro name> " " <definition>
20969
20970 For function-like macro definitions, it should be:
20971
20972 <macro name> "() " <definition>
20973 or
20974 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20975
20976 Spaces may appear only where explicitly indicated, and in the
20977 <definition>.
20978
20979 The Dwarf 2 spec says that an object-like macro's name is always
20980 followed by a space, but versions of GCC around March 2002 omit
20981 the space when the macro's definition is the empty string.
20982
20983 The Dwarf 2 spec says that there should be no spaces between the
20984 formal arguments in a function-like macro's formal argument list,
20985 but versions of GCC around March 2002 include spaces after the
20986 commas. */
20987
20988
20989 /* Find the extent of the macro name. The macro name is terminated
20990 by either a space or null character (for an object-like macro) or
20991 an opening paren (for a function-like macro). */
20992 for (p = body; *p; p++)
20993 if (*p == ' ' || *p == '(')
20994 break;
20995
20996 if (*p == ' ' || *p == '\0')
20997 {
20998 /* It's an object-like macro. */
20999 int name_len = p - body;
21000 char *name = copy_string (body, name_len);
21001 const char *replacement;
21002
21003 if (*p == ' ')
21004 replacement = body + name_len + 1;
21005 else
21006 {
21007 dwarf2_macro_malformed_definition_complaint (body);
21008 replacement = body + name_len;
21009 }
21010
21011 macro_define_object (file, line, name, replacement);
21012
21013 xfree (name);
21014 }
21015 else if (*p == '(')
21016 {
21017 /* It's a function-like macro. */
21018 char *name = copy_string (body, p - body);
21019 int argc = 0;
21020 int argv_size = 1;
21021 char **argv = XNEWVEC (char *, argv_size);
21022
21023 p++;
21024
21025 p = consume_improper_spaces (p, body);
21026
21027 /* Parse the formal argument list. */
21028 while (*p && *p != ')')
21029 {
21030 /* Find the extent of the current argument name. */
21031 const char *arg_start = p;
21032
21033 while (*p && *p != ',' && *p != ')' && *p != ' ')
21034 p++;
21035
21036 if (! *p || p == arg_start)
21037 dwarf2_macro_malformed_definition_complaint (body);
21038 else
21039 {
21040 /* Make sure argv has room for the new argument. */
21041 if (argc >= argv_size)
21042 {
21043 argv_size *= 2;
21044 argv = XRESIZEVEC (char *, argv, argv_size);
21045 }
21046
21047 argv[argc++] = copy_string (arg_start, p - arg_start);
21048 }
21049
21050 p = consume_improper_spaces (p, body);
21051
21052 /* Consume the comma, if present. */
21053 if (*p == ',')
21054 {
21055 p++;
21056
21057 p = consume_improper_spaces (p, body);
21058 }
21059 }
21060
21061 if (*p == ')')
21062 {
21063 p++;
21064
21065 if (*p == ' ')
21066 /* Perfectly formed definition, no complaints. */
21067 macro_define_function (file, line, name,
21068 argc, (const char **) argv,
21069 p + 1);
21070 else if (*p == '\0')
21071 {
21072 /* Complain, but do define it. */
21073 dwarf2_macro_malformed_definition_complaint (body);
21074 macro_define_function (file, line, name,
21075 argc, (const char **) argv,
21076 p);
21077 }
21078 else
21079 /* Just complain. */
21080 dwarf2_macro_malformed_definition_complaint (body);
21081 }
21082 else
21083 /* Just complain. */
21084 dwarf2_macro_malformed_definition_complaint (body);
21085
21086 xfree (name);
21087 {
21088 int i;
21089
21090 for (i = 0; i < argc; i++)
21091 xfree (argv[i]);
21092 }
21093 xfree (argv);
21094 }
21095 else
21096 dwarf2_macro_malformed_definition_complaint (body);
21097 }
21098
21099 /* Skip some bytes from BYTES according to the form given in FORM.
21100 Returns the new pointer. */
21101
21102 static const gdb_byte *
21103 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
21104 enum dwarf_form form,
21105 unsigned int offset_size,
21106 struct dwarf2_section_info *section)
21107 {
21108 unsigned int bytes_read;
21109
21110 switch (form)
21111 {
21112 case DW_FORM_data1:
21113 case DW_FORM_flag:
21114 ++bytes;
21115 break;
21116
21117 case DW_FORM_data2:
21118 bytes += 2;
21119 break;
21120
21121 case DW_FORM_data4:
21122 bytes += 4;
21123 break;
21124
21125 case DW_FORM_data8:
21126 bytes += 8;
21127 break;
21128
21129 case DW_FORM_string:
21130 read_direct_string (abfd, bytes, &bytes_read);
21131 bytes += bytes_read;
21132 break;
21133
21134 case DW_FORM_sec_offset:
21135 case DW_FORM_strp:
21136 case DW_FORM_GNU_strp_alt:
21137 bytes += offset_size;
21138 break;
21139
21140 case DW_FORM_block:
21141 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21142 bytes += bytes_read;
21143 break;
21144
21145 case DW_FORM_block1:
21146 bytes += 1 + read_1_byte (abfd, bytes);
21147 break;
21148 case DW_FORM_block2:
21149 bytes += 2 + read_2_bytes (abfd, bytes);
21150 break;
21151 case DW_FORM_block4:
21152 bytes += 4 + read_4_bytes (abfd, bytes);
21153 break;
21154
21155 case DW_FORM_sdata:
21156 case DW_FORM_udata:
21157 case DW_FORM_GNU_addr_index:
21158 case DW_FORM_GNU_str_index:
21159 bytes = gdb_skip_leb128 (bytes, buffer_end);
21160 if (bytes == NULL)
21161 {
21162 dwarf2_section_buffer_overflow_complaint (section);
21163 return NULL;
21164 }
21165 break;
21166
21167 default:
21168 {
21169 complain:
21170 complaint (&symfile_complaints,
21171 _("invalid form 0x%x in `%s'"),
21172 form, get_section_name (section));
21173 return NULL;
21174 }
21175 }
21176
21177 return bytes;
21178 }
21179
21180 /* A helper for dwarf_decode_macros that handles skipping an unknown
21181 opcode. Returns an updated pointer to the macro data buffer; or,
21182 on error, issues a complaint and returns NULL. */
21183
21184 static const gdb_byte *
21185 skip_unknown_opcode (unsigned int opcode,
21186 const gdb_byte **opcode_definitions,
21187 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21188 bfd *abfd,
21189 unsigned int offset_size,
21190 struct dwarf2_section_info *section)
21191 {
21192 unsigned int bytes_read, i;
21193 unsigned long arg;
21194 const gdb_byte *defn;
21195
21196 if (opcode_definitions[opcode] == NULL)
21197 {
21198 complaint (&symfile_complaints,
21199 _("unrecognized DW_MACFINO opcode 0x%x"),
21200 opcode);
21201 return NULL;
21202 }
21203
21204 defn = opcode_definitions[opcode];
21205 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21206 defn += bytes_read;
21207
21208 for (i = 0; i < arg; ++i)
21209 {
21210 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21211 (enum dwarf_form) defn[i], offset_size,
21212 section);
21213 if (mac_ptr == NULL)
21214 {
21215 /* skip_form_bytes already issued the complaint. */
21216 return NULL;
21217 }
21218 }
21219
21220 return mac_ptr;
21221 }
21222
21223 /* A helper function which parses the header of a macro section.
21224 If the macro section is the extended (for now called "GNU") type,
21225 then this updates *OFFSET_SIZE. Returns a pointer to just after
21226 the header, or issues a complaint and returns NULL on error. */
21227
21228 static const gdb_byte *
21229 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
21230 bfd *abfd,
21231 const gdb_byte *mac_ptr,
21232 unsigned int *offset_size,
21233 int section_is_gnu)
21234 {
21235 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
21236
21237 if (section_is_gnu)
21238 {
21239 unsigned int version, flags;
21240
21241 version = read_2_bytes (abfd, mac_ptr);
21242 if (version != 4)
21243 {
21244 complaint (&symfile_complaints,
21245 _("unrecognized version `%d' in .debug_macro section"),
21246 version);
21247 return NULL;
21248 }
21249 mac_ptr += 2;
21250
21251 flags = read_1_byte (abfd, mac_ptr);
21252 ++mac_ptr;
21253 *offset_size = (flags & 1) ? 8 : 4;
21254
21255 if ((flags & 2) != 0)
21256 /* We don't need the line table offset. */
21257 mac_ptr += *offset_size;
21258
21259 /* Vendor opcode descriptions. */
21260 if ((flags & 4) != 0)
21261 {
21262 unsigned int i, count;
21263
21264 count = read_1_byte (abfd, mac_ptr);
21265 ++mac_ptr;
21266 for (i = 0; i < count; ++i)
21267 {
21268 unsigned int opcode, bytes_read;
21269 unsigned long arg;
21270
21271 opcode = read_1_byte (abfd, mac_ptr);
21272 ++mac_ptr;
21273 opcode_definitions[opcode] = mac_ptr;
21274 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21275 mac_ptr += bytes_read;
21276 mac_ptr += arg;
21277 }
21278 }
21279 }
21280
21281 return mac_ptr;
21282 }
21283
21284 /* A helper for dwarf_decode_macros that handles the GNU extensions,
21285 including DW_MACRO_GNU_transparent_include. */
21286
21287 static void
21288 dwarf_decode_macro_bytes (bfd *abfd,
21289 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21290 struct macro_source_file *current_file,
21291 struct line_header *lh,
21292 struct dwarf2_section_info *section,
21293 int section_is_gnu, int section_is_dwz,
21294 unsigned int offset_size,
21295 htab_t include_hash)
21296 {
21297 struct objfile *objfile = dwarf2_per_objfile->objfile;
21298 enum dwarf_macro_record_type macinfo_type;
21299 int at_commandline;
21300 const gdb_byte *opcode_definitions[256];
21301
21302 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21303 &offset_size, section_is_gnu);
21304 if (mac_ptr == NULL)
21305 {
21306 /* We already issued a complaint. */
21307 return;
21308 }
21309
21310 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21311 GDB is still reading the definitions from command line. First
21312 DW_MACINFO_start_file will need to be ignored as it was already executed
21313 to create CURRENT_FILE for the main source holding also the command line
21314 definitions. On first met DW_MACINFO_start_file this flag is reset to
21315 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21316
21317 at_commandline = 1;
21318
21319 do
21320 {
21321 /* Do we at least have room for a macinfo type byte? */
21322 if (mac_ptr >= mac_end)
21323 {
21324 dwarf2_section_buffer_overflow_complaint (section);
21325 break;
21326 }
21327
21328 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
21329 mac_ptr++;
21330
21331 /* Note that we rely on the fact that the corresponding GNU and
21332 DWARF constants are the same. */
21333 switch (macinfo_type)
21334 {
21335 /* A zero macinfo type indicates the end of the macro
21336 information. */
21337 case 0:
21338 break;
21339
21340 case DW_MACRO_GNU_define:
21341 case DW_MACRO_GNU_undef:
21342 case DW_MACRO_GNU_define_indirect:
21343 case DW_MACRO_GNU_undef_indirect:
21344 case DW_MACRO_GNU_define_indirect_alt:
21345 case DW_MACRO_GNU_undef_indirect_alt:
21346 {
21347 unsigned int bytes_read;
21348 int line;
21349 const char *body;
21350 int is_define;
21351
21352 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21353 mac_ptr += bytes_read;
21354
21355 if (macinfo_type == DW_MACRO_GNU_define
21356 || macinfo_type == DW_MACRO_GNU_undef)
21357 {
21358 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21359 mac_ptr += bytes_read;
21360 }
21361 else
21362 {
21363 LONGEST str_offset;
21364
21365 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21366 mac_ptr += offset_size;
21367
21368 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
21369 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
21370 || section_is_dwz)
21371 {
21372 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21373
21374 body = read_indirect_string_from_dwz (dwz, str_offset);
21375 }
21376 else
21377 body = read_indirect_string_at_offset (abfd, str_offset);
21378 }
21379
21380 is_define = (macinfo_type == DW_MACRO_GNU_define
21381 || macinfo_type == DW_MACRO_GNU_define_indirect
21382 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
21383 if (! current_file)
21384 {
21385 /* DWARF violation as no main source is present. */
21386 complaint (&symfile_complaints,
21387 _("debug info with no main source gives macro %s "
21388 "on line %d: %s"),
21389 is_define ? _("definition") : _("undefinition"),
21390 line, body);
21391 break;
21392 }
21393 if ((line == 0 && !at_commandline)
21394 || (line != 0 && at_commandline))
21395 complaint (&symfile_complaints,
21396 _("debug info gives %s macro %s with %s line %d: %s"),
21397 at_commandline ? _("command-line") : _("in-file"),
21398 is_define ? _("definition") : _("undefinition"),
21399 line == 0 ? _("zero") : _("non-zero"), line, body);
21400
21401 if (is_define)
21402 parse_macro_definition (current_file, line, body);
21403 else
21404 {
21405 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
21406 || macinfo_type == DW_MACRO_GNU_undef_indirect
21407 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
21408 macro_undef (current_file, line, body);
21409 }
21410 }
21411 break;
21412
21413 case DW_MACRO_GNU_start_file:
21414 {
21415 unsigned int bytes_read;
21416 int line, file;
21417
21418 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21419 mac_ptr += bytes_read;
21420 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21421 mac_ptr += bytes_read;
21422
21423 if ((line == 0 && !at_commandline)
21424 || (line != 0 && at_commandline))
21425 complaint (&symfile_complaints,
21426 _("debug info gives source %d included "
21427 "from %s at %s line %d"),
21428 file, at_commandline ? _("command-line") : _("file"),
21429 line == 0 ? _("zero") : _("non-zero"), line);
21430
21431 if (at_commandline)
21432 {
21433 /* This DW_MACRO_GNU_start_file was executed in the
21434 pass one. */
21435 at_commandline = 0;
21436 }
21437 else
21438 current_file = macro_start_file (file, line, current_file, lh);
21439 }
21440 break;
21441
21442 case DW_MACRO_GNU_end_file:
21443 if (! current_file)
21444 complaint (&symfile_complaints,
21445 _("macro debug info has an unmatched "
21446 "`close_file' directive"));
21447 else
21448 {
21449 current_file = current_file->included_by;
21450 if (! current_file)
21451 {
21452 enum dwarf_macro_record_type next_type;
21453
21454 /* GCC circa March 2002 doesn't produce the zero
21455 type byte marking the end of the compilation
21456 unit. Complain if it's not there, but exit no
21457 matter what. */
21458
21459 /* Do we at least have room for a macinfo type byte? */
21460 if (mac_ptr >= mac_end)
21461 {
21462 dwarf2_section_buffer_overflow_complaint (section);
21463 return;
21464 }
21465
21466 /* We don't increment mac_ptr here, so this is just
21467 a look-ahead. */
21468 next_type
21469 = (enum dwarf_macro_record_type) read_1_byte (abfd,
21470 mac_ptr);
21471 if (next_type != 0)
21472 complaint (&symfile_complaints,
21473 _("no terminating 0-type entry for "
21474 "macros in `.debug_macinfo' section"));
21475
21476 return;
21477 }
21478 }
21479 break;
21480
21481 case DW_MACRO_GNU_transparent_include:
21482 case DW_MACRO_GNU_transparent_include_alt:
21483 {
21484 LONGEST offset;
21485 void **slot;
21486 bfd *include_bfd = abfd;
21487 struct dwarf2_section_info *include_section = section;
21488 const gdb_byte *include_mac_end = mac_end;
21489 int is_dwz = section_is_dwz;
21490 const gdb_byte *new_mac_ptr;
21491
21492 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21493 mac_ptr += offset_size;
21494
21495 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21496 {
21497 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21498
21499 dwarf2_read_section (objfile, &dwz->macro);
21500
21501 include_section = &dwz->macro;
21502 include_bfd = get_section_bfd_owner (include_section);
21503 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21504 is_dwz = 1;
21505 }
21506
21507 new_mac_ptr = include_section->buffer + offset;
21508 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21509
21510 if (*slot != NULL)
21511 {
21512 /* This has actually happened; see
21513 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21514 complaint (&symfile_complaints,
21515 _("recursive DW_MACRO_GNU_transparent_include in "
21516 ".debug_macro section"));
21517 }
21518 else
21519 {
21520 *slot = (void *) new_mac_ptr;
21521
21522 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
21523 include_mac_end, current_file, lh,
21524 section, section_is_gnu, is_dwz,
21525 offset_size, include_hash);
21526
21527 htab_remove_elt (include_hash, (void *) new_mac_ptr);
21528 }
21529 }
21530 break;
21531
21532 case DW_MACINFO_vendor_ext:
21533 if (!section_is_gnu)
21534 {
21535 unsigned int bytes_read;
21536
21537 /* This reads the constant, but since we don't recognize
21538 any vendor extensions, we ignore it. */
21539 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21540 mac_ptr += bytes_read;
21541 read_direct_string (abfd, mac_ptr, &bytes_read);
21542 mac_ptr += bytes_read;
21543
21544 /* We don't recognize any vendor extensions. */
21545 break;
21546 }
21547 /* FALLTHROUGH */
21548
21549 default:
21550 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21551 mac_ptr, mac_end, abfd, offset_size,
21552 section);
21553 if (mac_ptr == NULL)
21554 return;
21555 break;
21556 }
21557 } while (macinfo_type != 0);
21558 }
21559
21560 static void
21561 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
21562 int section_is_gnu)
21563 {
21564 struct objfile *objfile = dwarf2_per_objfile->objfile;
21565 struct line_header *lh = cu->line_header;
21566 bfd *abfd;
21567 const gdb_byte *mac_ptr, *mac_end;
21568 struct macro_source_file *current_file = 0;
21569 enum dwarf_macro_record_type macinfo_type;
21570 unsigned int offset_size = cu->header.offset_size;
21571 const gdb_byte *opcode_definitions[256];
21572 struct cleanup *cleanup;
21573 htab_t include_hash;
21574 void **slot;
21575 struct dwarf2_section_info *section;
21576 const char *section_name;
21577
21578 if (cu->dwo_unit != NULL)
21579 {
21580 if (section_is_gnu)
21581 {
21582 section = &cu->dwo_unit->dwo_file->sections.macro;
21583 section_name = ".debug_macro.dwo";
21584 }
21585 else
21586 {
21587 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21588 section_name = ".debug_macinfo.dwo";
21589 }
21590 }
21591 else
21592 {
21593 if (section_is_gnu)
21594 {
21595 section = &dwarf2_per_objfile->macro;
21596 section_name = ".debug_macro";
21597 }
21598 else
21599 {
21600 section = &dwarf2_per_objfile->macinfo;
21601 section_name = ".debug_macinfo";
21602 }
21603 }
21604
21605 dwarf2_read_section (objfile, section);
21606 if (section->buffer == NULL)
21607 {
21608 complaint (&symfile_complaints, _("missing %s section"), section_name);
21609 return;
21610 }
21611 abfd = get_section_bfd_owner (section);
21612
21613 /* First pass: Find the name of the base filename.
21614 This filename is needed in order to process all macros whose definition
21615 (or undefinition) comes from the command line. These macros are defined
21616 before the first DW_MACINFO_start_file entry, and yet still need to be
21617 associated to the base file.
21618
21619 To determine the base file name, we scan the macro definitions until we
21620 reach the first DW_MACINFO_start_file entry. We then initialize
21621 CURRENT_FILE accordingly so that any macro definition found before the
21622 first DW_MACINFO_start_file can still be associated to the base file. */
21623
21624 mac_ptr = section->buffer + offset;
21625 mac_end = section->buffer + section->size;
21626
21627 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21628 &offset_size, section_is_gnu);
21629 if (mac_ptr == NULL)
21630 {
21631 /* We already issued a complaint. */
21632 return;
21633 }
21634
21635 do
21636 {
21637 /* Do we at least have room for a macinfo type byte? */
21638 if (mac_ptr >= mac_end)
21639 {
21640 /* Complaint is printed during the second pass as GDB will probably
21641 stop the first pass earlier upon finding
21642 DW_MACINFO_start_file. */
21643 break;
21644 }
21645
21646 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
21647 mac_ptr++;
21648
21649 /* Note that we rely on the fact that the corresponding GNU and
21650 DWARF constants are the same. */
21651 switch (macinfo_type)
21652 {
21653 /* A zero macinfo type indicates the end of the macro
21654 information. */
21655 case 0:
21656 break;
21657
21658 case DW_MACRO_GNU_define:
21659 case DW_MACRO_GNU_undef:
21660 /* Only skip the data by MAC_PTR. */
21661 {
21662 unsigned int bytes_read;
21663
21664 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21665 mac_ptr += bytes_read;
21666 read_direct_string (abfd, mac_ptr, &bytes_read);
21667 mac_ptr += bytes_read;
21668 }
21669 break;
21670
21671 case DW_MACRO_GNU_start_file:
21672 {
21673 unsigned int bytes_read;
21674 int line, file;
21675
21676 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21677 mac_ptr += bytes_read;
21678 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21679 mac_ptr += bytes_read;
21680
21681 current_file = macro_start_file (file, line, current_file, lh);
21682 }
21683 break;
21684
21685 case DW_MACRO_GNU_end_file:
21686 /* No data to skip by MAC_PTR. */
21687 break;
21688
21689 case DW_MACRO_GNU_define_indirect:
21690 case DW_MACRO_GNU_undef_indirect:
21691 case DW_MACRO_GNU_define_indirect_alt:
21692 case DW_MACRO_GNU_undef_indirect_alt:
21693 {
21694 unsigned int bytes_read;
21695
21696 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21697 mac_ptr += bytes_read;
21698 mac_ptr += offset_size;
21699 }
21700 break;
21701
21702 case DW_MACRO_GNU_transparent_include:
21703 case DW_MACRO_GNU_transparent_include_alt:
21704 /* Note that, according to the spec, a transparent include
21705 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21706 skip this opcode. */
21707 mac_ptr += offset_size;
21708 break;
21709
21710 case DW_MACINFO_vendor_ext:
21711 /* Only skip the data by MAC_PTR. */
21712 if (!section_is_gnu)
21713 {
21714 unsigned int bytes_read;
21715
21716 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21717 mac_ptr += bytes_read;
21718 read_direct_string (abfd, mac_ptr, &bytes_read);
21719 mac_ptr += bytes_read;
21720 }
21721 /* FALLTHROUGH */
21722
21723 default:
21724 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21725 mac_ptr, mac_end, abfd, offset_size,
21726 section);
21727 if (mac_ptr == NULL)
21728 return;
21729 break;
21730 }
21731 } while (macinfo_type != 0 && current_file == NULL);
21732
21733 /* Second pass: Process all entries.
21734
21735 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21736 command-line macro definitions/undefinitions. This flag is unset when we
21737 reach the first DW_MACINFO_start_file entry. */
21738
21739 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21740 NULL, xcalloc, xfree);
21741 cleanup = make_cleanup_htab_delete (include_hash);
21742 mac_ptr = section->buffer + offset;
21743 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
21744 *slot = (void *) mac_ptr;
21745 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
21746 current_file, lh, section,
21747 section_is_gnu, 0, offset_size, include_hash);
21748 do_cleanups (cleanup);
21749 }
21750
21751 /* Check if the attribute's form is a DW_FORM_block*
21752 if so return true else false. */
21753
21754 static int
21755 attr_form_is_block (const struct attribute *attr)
21756 {
21757 return (attr == NULL ? 0 :
21758 attr->form == DW_FORM_block1
21759 || attr->form == DW_FORM_block2
21760 || attr->form == DW_FORM_block4
21761 || attr->form == DW_FORM_block
21762 || attr->form == DW_FORM_exprloc);
21763 }
21764
21765 /* Return non-zero if ATTR's value is a section offset --- classes
21766 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21767 You may use DW_UNSND (attr) to retrieve such offsets.
21768
21769 Section 7.5.4, "Attribute Encodings", explains that no attribute
21770 may have a value that belongs to more than one of these classes; it
21771 would be ambiguous if we did, because we use the same forms for all
21772 of them. */
21773
21774 static int
21775 attr_form_is_section_offset (const struct attribute *attr)
21776 {
21777 return (attr->form == DW_FORM_data4
21778 || attr->form == DW_FORM_data8
21779 || attr->form == DW_FORM_sec_offset);
21780 }
21781
21782 /* Return non-zero if ATTR's value falls in the 'constant' class, or
21783 zero otherwise. When this function returns true, you can apply
21784 dwarf2_get_attr_constant_value to it.
21785
21786 However, note that for some attributes you must check
21787 attr_form_is_section_offset before using this test. DW_FORM_data4
21788 and DW_FORM_data8 are members of both the constant class, and of
21789 the classes that contain offsets into other debug sections
21790 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21791 that, if an attribute's can be either a constant or one of the
21792 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21793 taken as section offsets, not constants. */
21794
21795 static int
21796 attr_form_is_constant (const struct attribute *attr)
21797 {
21798 switch (attr->form)
21799 {
21800 case DW_FORM_sdata:
21801 case DW_FORM_udata:
21802 case DW_FORM_data1:
21803 case DW_FORM_data2:
21804 case DW_FORM_data4:
21805 case DW_FORM_data8:
21806 return 1;
21807 default:
21808 return 0;
21809 }
21810 }
21811
21812
21813 /* DW_ADDR is always stored already as sect_offset; despite for the forms
21814 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21815
21816 static int
21817 attr_form_is_ref (const struct attribute *attr)
21818 {
21819 switch (attr->form)
21820 {
21821 case DW_FORM_ref_addr:
21822 case DW_FORM_ref1:
21823 case DW_FORM_ref2:
21824 case DW_FORM_ref4:
21825 case DW_FORM_ref8:
21826 case DW_FORM_ref_udata:
21827 case DW_FORM_GNU_ref_alt:
21828 return 1;
21829 default:
21830 return 0;
21831 }
21832 }
21833
21834 /* Return the .debug_loc section to use for CU.
21835 For DWO files use .debug_loc.dwo. */
21836
21837 static struct dwarf2_section_info *
21838 cu_debug_loc_section (struct dwarf2_cu *cu)
21839 {
21840 if (cu->dwo_unit)
21841 return &cu->dwo_unit->dwo_file->sections.loc;
21842 return &dwarf2_per_objfile->loc;
21843 }
21844
21845 /* A helper function that fills in a dwarf2_loclist_baton. */
21846
21847 static void
21848 fill_in_loclist_baton (struct dwarf2_cu *cu,
21849 struct dwarf2_loclist_baton *baton,
21850 const struct attribute *attr)
21851 {
21852 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21853
21854 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21855
21856 baton->per_cu = cu->per_cu;
21857 gdb_assert (baton->per_cu);
21858 /* We don't know how long the location list is, but make sure we
21859 don't run off the edge of the section. */
21860 baton->size = section->size - DW_UNSND (attr);
21861 baton->data = section->buffer + DW_UNSND (attr);
21862 baton->base_address = cu->base_address;
21863 baton->from_dwo = cu->dwo_unit != NULL;
21864 }
21865
21866 static void
21867 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21868 struct dwarf2_cu *cu, int is_block)
21869 {
21870 struct objfile *objfile = dwarf2_per_objfile->objfile;
21871 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21872
21873 if (attr_form_is_section_offset (attr)
21874 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21875 the section. If so, fall through to the complaint in the
21876 other branch. */
21877 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21878 {
21879 struct dwarf2_loclist_baton *baton;
21880
21881 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
21882
21883 fill_in_loclist_baton (cu, baton, attr);
21884
21885 if (cu->base_known == 0)
21886 complaint (&symfile_complaints,
21887 _("Location list used without "
21888 "specifying the CU base address."));
21889
21890 SYMBOL_ACLASS_INDEX (sym) = (is_block
21891 ? dwarf2_loclist_block_index
21892 : dwarf2_loclist_index);
21893 SYMBOL_LOCATION_BATON (sym) = baton;
21894 }
21895 else
21896 {
21897 struct dwarf2_locexpr_baton *baton;
21898
21899 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
21900 baton->per_cu = cu->per_cu;
21901 gdb_assert (baton->per_cu);
21902
21903 if (attr_form_is_block (attr))
21904 {
21905 /* Note that we're just copying the block's data pointer
21906 here, not the actual data. We're still pointing into the
21907 info_buffer for SYM's objfile; right now we never release
21908 that buffer, but when we do clean up properly this may
21909 need to change. */
21910 baton->size = DW_BLOCK (attr)->size;
21911 baton->data = DW_BLOCK (attr)->data;
21912 }
21913 else
21914 {
21915 dwarf2_invalid_attrib_class_complaint ("location description",
21916 SYMBOL_NATURAL_NAME (sym));
21917 baton->size = 0;
21918 }
21919
21920 SYMBOL_ACLASS_INDEX (sym) = (is_block
21921 ? dwarf2_locexpr_block_index
21922 : dwarf2_locexpr_index);
21923 SYMBOL_LOCATION_BATON (sym) = baton;
21924 }
21925 }
21926
21927 /* Return the OBJFILE associated with the compilation unit CU. If CU
21928 came from a separate debuginfo file, then the master objfile is
21929 returned. */
21930
21931 struct objfile *
21932 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21933 {
21934 struct objfile *objfile = per_cu->objfile;
21935
21936 /* Return the master objfile, so that we can report and look up the
21937 correct file containing this variable. */
21938 if (objfile->separate_debug_objfile_backlink)
21939 objfile = objfile->separate_debug_objfile_backlink;
21940
21941 return objfile;
21942 }
21943
21944 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21945 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21946 CU_HEADERP first. */
21947
21948 static const struct comp_unit_head *
21949 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21950 struct dwarf2_per_cu_data *per_cu)
21951 {
21952 const gdb_byte *info_ptr;
21953
21954 if (per_cu->cu)
21955 return &per_cu->cu->header;
21956
21957 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21958
21959 memset (cu_headerp, 0, sizeof (*cu_headerp));
21960 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21961
21962 return cu_headerp;
21963 }
21964
21965 /* Return the address size given in the compilation unit header for CU. */
21966
21967 int
21968 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21969 {
21970 struct comp_unit_head cu_header_local;
21971 const struct comp_unit_head *cu_headerp;
21972
21973 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21974
21975 return cu_headerp->addr_size;
21976 }
21977
21978 /* Return the offset size given in the compilation unit header for CU. */
21979
21980 int
21981 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21982 {
21983 struct comp_unit_head cu_header_local;
21984 const struct comp_unit_head *cu_headerp;
21985
21986 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21987
21988 return cu_headerp->offset_size;
21989 }
21990
21991 /* See its dwarf2loc.h declaration. */
21992
21993 int
21994 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21995 {
21996 struct comp_unit_head cu_header_local;
21997 const struct comp_unit_head *cu_headerp;
21998
21999 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22000
22001 if (cu_headerp->version == 2)
22002 return cu_headerp->addr_size;
22003 else
22004 return cu_headerp->offset_size;
22005 }
22006
22007 /* Return the text offset of the CU. The returned offset comes from
22008 this CU's objfile. If this objfile came from a separate debuginfo
22009 file, then the offset may be different from the corresponding
22010 offset in the parent objfile. */
22011
22012 CORE_ADDR
22013 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
22014 {
22015 struct objfile *objfile = per_cu->objfile;
22016
22017 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22018 }
22019
22020 /* Locate the .debug_info compilation unit from CU's objfile which contains
22021 the DIE at OFFSET. Raises an error on failure. */
22022
22023 static struct dwarf2_per_cu_data *
22024 dwarf2_find_containing_comp_unit (sect_offset offset,
22025 unsigned int offset_in_dwz,
22026 struct objfile *objfile)
22027 {
22028 struct dwarf2_per_cu_data *this_cu;
22029 int low, high;
22030 const sect_offset *cu_off;
22031
22032 low = 0;
22033 high = dwarf2_per_objfile->n_comp_units - 1;
22034 while (high > low)
22035 {
22036 struct dwarf2_per_cu_data *mid_cu;
22037 int mid = low + (high - low) / 2;
22038
22039 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
22040 cu_off = &mid_cu->offset;
22041 if (mid_cu->is_dwz > offset_in_dwz
22042 || (mid_cu->is_dwz == offset_in_dwz
22043 && cu_off->sect_off >= offset.sect_off))
22044 high = mid;
22045 else
22046 low = mid + 1;
22047 }
22048 gdb_assert (low == high);
22049 this_cu = dwarf2_per_objfile->all_comp_units[low];
22050 cu_off = &this_cu->offset;
22051 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
22052 {
22053 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
22054 error (_("Dwarf Error: could not find partial DIE containing "
22055 "offset 0x%lx [in module %s]"),
22056 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
22057
22058 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
22059 <= offset.sect_off);
22060 return dwarf2_per_objfile->all_comp_units[low-1];
22061 }
22062 else
22063 {
22064 this_cu = dwarf2_per_objfile->all_comp_units[low];
22065 if (low == dwarf2_per_objfile->n_comp_units - 1
22066 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
22067 error (_("invalid dwarf2 offset %u"), offset.sect_off);
22068 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
22069 return this_cu;
22070 }
22071 }
22072
22073 /* Initialize dwarf2_cu CU, owned by PER_CU. */
22074
22075 static void
22076 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
22077 {
22078 memset (cu, 0, sizeof (*cu));
22079 per_cu->cu = cu;
22080 cu->per_cu = per_cu;
22081 cu->objfile = per_cu->objfile;
22082 obstack_init (&cu->comp_unit_obstack);
22083 }
22084
22085 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22086
22087 static void
22088 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22089 enum language pretend_language)
22090 {
22091 struct attribute *attr;
22092
22093 /* Set the language we're debugging. */
22094 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22095 if (attr)
22096 set_cu_language (DW_UNSND (attr), cu);
22097 else
22098 {
22099 cu->language = pretend_language;
22100 cu->language_defn = language_def (cu->language);
22101 }
22102
22103 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
22104 }
22105
22106 /* Release one cached compilation unit, CU. We unlink it from the tree
22107 of compilation units, but we don't remove it from the read_in_chain;
22108 the caller is responsible for that.
22109 NOTE: DATA is a void * because this function is also used as a
22110 cleanup routine. */
22111
22112 static void
22113 free_heap_comp_unit (void *data)
22114 {
22115 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22116
22117 gdb_assert (cu->per_cu != NULL);
22118 cu->per_cu->cu = NULL;
22119 cu->per_cu = NULL;
22120
22121 obstack_free (&cu->comp_unit_obstack, NULL);
22122
22123 xfree (cu);
22124 }
22125
22126 /* This cleanup function is passed the address of a dwarf2_cu on the stack
22127 when we're finished with it. We can't free the pointer itself, but be
22128 sure to unlink it from the cache. Also release any associated storage. */
22129
22130 static void
22131 free_stack_comp_unit (void *data)
22132 {
22133 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22134
22135 gdb_assert (cu->per_cu != NULL);
22136 cu->per_cu->cu = NULL;
22137 cu->per_cu = NULL;
22138
22139 obstack_free (&cu->comp_unit_obstack, NULL);
22140 cu->partial_dies = NULL;
22141 }
22142
22143 /* Free all cached compilation units. */
22144
22145 static void
22146 free_cached_comp_units (void *data)
22147 {
22148 struct dwarf2_per_cu_data *per_cu, **last_chain;
22149
22150 per_cu = dwarf2_per_objfile->read_in_chain;
22151 last_chain = &dwarf2_per_objfile->read_in_chain;
22152 while (per_cu != NULL)
22153 {
22154 struct dwarf2_per_cu_data *next_cu;
22155
22156 next_cu = per_cu->cu->read_in_chain;
22157
22158 free_heap_comp_unit (per_cu->cu);
22159 *last_chain = next_cu;
22160
22161 per_cu = next_cu;
22162 }
22163 }
22164
22165 /* Increase the age counter on each cached compilation unit, and free
22166 any that are too old. */
22167
22168 static void
22169 age_cached_comp_units (void)
22170 {
22171 struct dwarf2_per_cu_data *per_cu, **last_chain;
22172
22173 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22174 per_cu = dwarf2_per_objfile->read_in_chain;
22175 while (per_cu != NULL)
22176 {
22177 per_cu->cu->last_used ++;
22178 if (per_cu->cu->last_used <= dwarf_max_cache_age)
22179 dwarf2_mark (per_cu->cu);
22180 per_cu = per_cu->cu->read_in_chain;
22181 }
22182
22183 per_cu = dwarf2_per_objfile->read_in_chain;
22184 last_chain = &dwarf2_per_objfile->read_in_chain;
22185 while (per_cu != NULL)
22186 {
22187 struct dwarf2_per_cu_data *next_cu;
22188
22189 next_cu = per_cu->cu->read_in_chain;
22190
22191 if (!per_cu->cu->mark)
22192 {
22193 free_heap_comp_unit (per_cu->cu);
22194 *last_chain = next_cu;
22195 }
22196 else
22197 last_chain = &per_cu->cu->read_in_chain;
22198
22199 per_cu = next_cu;
22200 }
22201 }
22202
22203 /* Remove a single compilation unit from the cache. */
22204
22205 static void
22206 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
22207 {
22208 struct dwarf2_per_cu_data *per_cu, **last_chain;
22209
22210 per_cu = dwarf2_per_objfile->read_in_chain;
22211 last_chain = &dwarf2_per_objfile->read_in_chain;
22212 while (per_cu != NULL)
22213 {
22214 struct dwarf2_per_cu_data *next_cu;
22215
22216 next_cu = per_cu->cu->read_in_chain;
22217
22218 if (per_cu == target_per_cu)
22219 {
22220 free_heap_comp_unit (per_cu->cu);
22221 per_cu->cu = NULL;
22222 *last_chain = next_cu;
22223 break;
22224 }
22225 else
22226 last_chain = &per_cu->cu->read_in_chain;
22227
22228 per_cu = next_cu;
22229 }
22230 }
22231
22232 /* Release all extra memory associated with OBJFILE. */
22233
22234 void
22235 dwarf2_free_objfile (struct objfile *objfile)
22236 {
22237 dwarf2_per_objfile
22238 = (struct dwarf2_per_objfile *) objfile_data (objfile,
22239 dwarf2_objfile_data_key);
22240
22241 if (dwarf2_per_objfile == NULL)
22242 return;
22243
22244 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
22245 free_cached_comp_units (NULL);
22246
22247 if (dwarf2_per_objfile->quick_file_names_table)
22248 htab_delete (dwarf2_per_objfile->quick_file_names_table);
22249
22250 if (dwarf2_per_objfile->line_header_hash)
22251 htab_delete (dwarf2_per_objfile->line_header_hash);
22252
22253 /* Everything else should be on the objfile obstack. */
22254 }
22255
22256 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22257 We store these in a hash table separate from the DIEs, and preserve them
22258 when the DIEs are flushed out of cache.
22259
22260 The CU "per_cu" pointer is needed because offset alone is not enough to
22261 uniquely identify the type. A file may have multiple .debug_types sections,
22262 or the type may come from a DWO file. Furthermore, while it's more logical
22263 to use per_cu->section+offset, with Fission the section with the data is in
22264 the DWO file but we don't know that section at the point we need it.
22265 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22266 because we can enter the lookup routine, get_die_type_at_offset, from
22267 outside this file, and thus won't necessarily have PER_CU->cu.
22268 Fortunately, PER_CU is stable for the life of the objfile. */
22269
22270 struct dwarf2_per_cu_offset_and_type
22271 {
22272 const struct dwarf2_per_cu_data *per_cu;
22273 sect_offset offset;
22274 struct type *type;
22275 };
22276
22277 /* Hash function for a dwarf2_per_cu_offset_and_type. */
22278
22279 static hashval_t
22280 per_cu_offset_and_type_hash (const void *item)
22281 {
22282 const struct dwarf2_per_cu_offset_and_type *ofs
22283 = (const struct dwarf2_per_cu_offset_and_type *) item;
22284
22285 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
22286 }
22287
22288 /* Equality function for a dwarf2_per_cu_offset_and_type. */
22289
22290 static int
22291 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
22292 {
22293 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
22294 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
22295 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
22296 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
22297
22298 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22299 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
22300 }
22301
22302 /* Set the type associated with DIE to TYPE. Save it in CU's hash
22303 table if necessary. For convenience, return TYPE.
22304
22305 The DIEs reading must have careful ordering to:
22306 * Not cause infite loops trying to read in DIEs as a prerequisite for
22307 reading current DIE.
22308 * Not trying to dereference contents of still incompletely read in types
22309 while reading in other DIEs.
22310 * Enable referencing still incompletely read in types just by a pointer to
22311 the type without accessing its fields.
22312
22313 Therefore caller should follow these rules:
22314 * Try to fetch any prerequisite types we may need to build this DIE type
22315 before building the type and calling set_die_type.
22316 * After building type call set_die_type for current DIE as soon as
22317 possible before fetching more types to complete the current type.
22318 * Make the type as complete as possible before fetching more types. */
22319
22320 static struct type *
22321 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22322 {
22323 struct dwarf2_per_cu_offset_and_type **slot, ofs;
22324 struct objfile *objfile = cu->objfile;
22325 struct attribute *attr;
22326 struct dynamic_prop prop;
22327
22328 /* For Ada types, make sure that the gnat-specific data is always
22329 initialized (if not already set). There are a few types where
22330 we should not be doing so, because the type-specific area is
22331 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22332 where the type-specific area is used to store the floatformat).
22333 But this is not a problem, because the gnat-specific information
22334 is actually not needed for these types. */
22335 if (need_gnat_info (cu)
22336 && TYPE_CODE (type) != TYPE_CODE_FUNC
22337 && TYPE_CODE (type) != TYPE_CODE_FLT
22338 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22339 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22340 && TYPE_CODE (type) != TYPE_CODE_METHOD
22341 && !HAVE_GNAT_AUX_INFO (type))
22342 INIT_GNAT_SPECIFIC (type);
22343
22344 /* Read DW_AT_allocated and set in type. */
22345 attr = dwarf2_attr (die, DW_AT_allocated, cu);
22346 if (attr_form_is_block (attr))
22347 {
22348 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22349 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
22350 }
22351 else if (attr != NULL)
22352 {
22353 complaint (&symfile_complaints,
22354 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
22355 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22356 die->offset.sect_off);
22357 }
22358
22359 /* Read DW_AT_associated and set in type. */
22360 attr = dwarf2_attr (die, DW_AT_associated, cu);
22361 if (attr_form_is_block (attr))
22362 {
22363 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22364 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
22365 }
22366 else if (attr != NULL)
22367 {
22368 complaint (&symfile_complaints,
22369 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
22370 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22371 die->offset.sect_off);
22372 }
22373
22374 /* Read DW_AT_data_location and set in type. */
22375 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22376 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22377 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
22378
22379 if (dwarf2_per_objfile->die_type_hash == NULL)
22380 {
22381 dwarf2_per_objfile->die_type_hash =
22382 htab_create_alloc_ex (127,
22383 per_cu_offset_and_type_hash,
22384 per_cu_offset_and_type_eq,
22385 NULL,
22386 &objfile->objfile_obstack,
22387 hashtab_obstack_allocate,
22388 dummy_obstack_deallocate);
22389 }
22390
22391 ofs.per_cu = cu->per_cu;
22392 ofs.offset = die->offset;
22393 ofs.type = type;
22394 slot = (struct dwarf2_per_cu_offset_and_type **)
22395 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
22396 if (*slot)
22397 complaint (&symfile_complaints,
22398 _("A problem internal to GDB: DIE 0x%x has type already set"),
22399 die->offset.sect_off);
22400 *slot = XOBNEW (&objfile->objfile_obstack,
22401 struct dwarf2_per_cu_offset_and_type);
22402 **slot = ofs;
22403 return type;
22404 }
22405
22406 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22407 or return NULL if the die does not have a saved type. */
22408
22409 static struct type *
22410 get_die_type_at_offset (sect_offset offset,
22411 struct dwarf2_per_cu_data *per_cu)
22412 {
22413 struct dwarf2_per_cu_offset_and_type *slot, ofs;
22414
22415 if (dwarf2_per_objfile->die_type_hash == NULL)
22416 return NULL;
22417
22418 ofs.per_cu = per_cu;
22419 ofs.offset = offset;
22420 slot = ((struct dwarf2_per_cu_offset_and_type *)
22421 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
22422 if (slot)
22423 return slot->type;
22424 else
22425 return NULL;
22426 }
22427
22428 /* Look up the type for DIE in CU in die_type_hash,
22429 or return NULL if DIE does not have a saved type. */
22430
22431 static struct type *
22432 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22433 {
22434 return get_die_type_at_offset (die->offset, cu->per_cu);
22435 }
22436
22437 /* Add a dependence relationship from CU to REF_PER_CU. */
22438
22439 static void
22440 dwarf2_add_dependence (struct dwarf2_cu *cu,
22441 struct dwarf2_per_cu_data *ref_per_cu)
22442 {
22443 void **slot;
22444
22445 if (cu->dependencies == NULL)
22446 cu->dependencies
22447 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22448 NULL, &cu->comp_unit_obstack,
22449 hashtab_obstack_allocate,
22450 dummy_obstack_deallocate);
22451
22452 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22453 if (*slot == NULL)
22454 *slot = ref_per_cu;
22455 }
22456
22457 /* Subroutine of dwarf2_mark to pass to htab_traverse.
22458 Set the mark field in every compilation unit in the
22459 cache that we must keep because we are keeping CU. */
22460
22461 static int
22462 dwarf2_mark_helper (void **slot, void *data)
22463 {
22464 struct dwarf2_per_cu_data *per_cu;
22465
22466 per_cu = (struct dwarf2_per_cu_data *) *slot;
22467
22468 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22469 reading of the chain. As such dependencies remain valid it is not much
22470 useful to track and undo them during QUIT cleanups. */
22471 if (per_cu->cu == NULL)
22472 return 1;
22473
22474 if (per_cu->cu->mark)
22475 return 1;
22476 per_cu->cu->mark = 1;
22477
22478 if (per_cu->cu->dependencies != NULL)
22479 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22480
22481 return 1;
22482 }
22483
22484 /* Set the mark field in CU and in every other compilation unit in the
22485 cache that we must keep because we are keeping CU. */
22486
22487 static void
22488 dwarf2_mark (struct dwarf2_cu *cu)
22489 {
22490 if (cu->mark)
22491 return;
22492 cu->mark = 1;
22493 if (cu->dependencies != NULL)
22494 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
22495 }
22496
22497 static void
22498 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
22499 {
22500 while (per_cu)
22501 {
22502 per_cu->cu->mark = 0;
22503 per_cu = per_cu->cu->read_in_chain;
22504 }
22505 }
22506
22507 /* Trivial hash function for partial_die_info: the hash value of a DIE
22508 is its offset in .debug_info for this objfile. */
22509
22510 static hashval_t
22511 partial_die_hash (const void *item)
22512 {
22513 const struct partial_die_info *part_die
22514 = (const struct partial_die_info *) item;
22515
22516 return part_die->offset.sect_off;
22517 }
22518
22519 /* Trivial comparison function for partial_die_info structures: two DIEs
22520 are equal if they have the same offset. */
22521
22522 static int
22523 partial_die_eq (const void *item_lhs, const void *item_rhs)
22524 {
22525 const struct partial_die_info *part_die_lhs
22526 = (const struct partial_die_info *) item_lhs;
22527 const struct partial_die_info *part_die_rhs
22528 = (const struct partial_die_info *) item_rhs;
22529
22530 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
22531 }
22532
22533 static struct cmd_list_element *set_dwarf_cmdlist;
22534 static struct cmd_list_element *show_dwarf_cmdlist;
22535
22536 static void
22537 set_dwarf_cmd (char *args, int from_tty)
22538 {
22539 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
22540 gdb_stdout);
22541 }
22542
22543 static void
22544 show_dwarf_cmd (char *args, int from_tty)
22545 {
22546 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
22547 }
22548
22549 /* Free data associated with OBJFILE, if necessary. */
22550
22551 static void
22552 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
22553 {
22554 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
22555 int ix;
22556
22557 /* Make sure we don't accidentally use dwarf2_per_objfile while
22558 cleaning up. */
22559 dwarf2_per_objfile = NULL;
22560
22561 for (ix = 0; ix < data->n_comp_units; ++ix)
22562 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
22563
22564 for (ix = 0; ix < data->n_type_units; ++ix)
22565 VEC_free (dwarf2_per_cu_ptr,
22566 data->all_type_units[ix]->per_cu.imported_symtabs);
22567 xfree (data->all_type_units);
22568
22569 VEC_free (dwarf2_section_info_def, data->types);
22570
22571 if (data->dwo_files)
22572 free_dwo_files (data->dwo_files, objfile);
22573 if (data->dwp_file)
22574 gdb_bfd_unref (data->dwp_file->dbfd);
22575
22576 if (data->dwz_file && data->dwz_file->dwz_bfd)
22577 gdb_bfd_unref (data->dwz_file->dwz_bfd);
22578 }
22579
22580 \f
22581 /* The "save gdb-index" command. */
22582
22583 /* The contents of the hash table we create when building the string
22584 table. */
22585 struct strtab_entry
22586 {
22587 offset_type offset;
22588 const char *str;
22589 };
22590
22591 /* Hash function for a strtab_entry.
22592
22593 Function is used only during write_hash_table so no index format backward
22594 compatibility is needed. */
22595
22596 static hashval_t
22597 hash_strtab_entry (const void *e)
22598 {
22599 const struct strtab_entry *entry = (const struct strtab_entry *) e;
22600 return mapped_index_string_hash (INT_MAX, entry->str);
22601 }
22602
22603 /* Equality function for a strtab_entry. */
22604
22605 static int
22606 eq_strtab_entry (const void *a, const void *b)
22607 {
22608 const struct strtab_entry *ea = (const struct strtab_entry *) a;
22609 const struct strtab_entry *eb = (const struct strtab_entry *) b;
22610 return !strcmp (ea->str, eb->str);
22611 }
22612
22613 /* Create a strtab_entry hash table. */
22614
22615 static htab_t
22616 create_strtab (void)
22617 {
22618 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22619 xfree, xcalloc, xfree);
22620 }
22621
22622 /* Add a string to the constant pool. Return the string's offset in
22623 host order. */
22624
22625 static offset_type
22626 add_string (htab_t table, struct obstack *cpool, const char *str)
22627 {
22628 void **slot;
22629 struct strtab_entry entry;
22630 struct strtab_entry *result;
22631
22632 entry.str = str;
22633 slot = htab_find_slot (table, &entry, INSERT);
22634 if (*slot)
22635 result = (struct strtab_entry *) *slot;
22636 else
22637 {
22638 result = XNEW (struct strtab_entry);
22639 result->offset = obstack_object_size (cpool);
22640 result->str = str;
22641 obstack_grow_str0 (cpool, str);
22642 *slot = result;
22643 }
22644 return result->offset;
22645 }
22646
22647 /* An entry in the symbol table. */
22648 struct symtab_index_entry
22649 {
22650 /* The name of the symbol. */
22651 const char *name;
22652 /* The offset of the name in the constant pool. */
22653 offset_type index_offset;
22654 /* A sorted vector of the indices of all the CUs that hold an object
22655 of this name. */
22656 VEC (offset_type) *cu_indices;
22657 };
22658
22659 /* The symbol table. This is a power-of-2-sized hash table. */
22660 struct mapped_symtab
22661 {
22662 offset_type n_elements;
22663 offset_type size;
22664 struct symtab_index_entry **data;
22665 };
22666
22667 /* Hash function for a symtab_index_entry. */
22668
22669 static hashval_t
22670 hash_symtab_entry (const void *e)
22671 {
22672 const struct symtab_index_entry *entry
22673 = (const struct symtab_index_entry *) e;
22674 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22675 sizeof (offset_type) * VEC_length (offset_type,
22676 entry->cu_indices),
22677 0);
22678 }
22679
22680 /* Equality function for a symtab_index_entry. */
22681
22682 static int
22683 eq_symtab_entry (const void *a, const void *b)
22684 {
22685 const struct symtab_index_entry *ea = (const struct symtab_index_entry *) a;
22686 const struct symtab_index_entry *eb = (const struct symtab_index_entry *) b;
22687 int len = VEC_length (offset_type, ea->cu_indices);
22688 if (len != VEC_length (offset_type, eb->cu_indices))
22689 return 0;
22690 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22691 VEC_address (offset_type, eb->cu_indices),
22692 sizeof (offset_type) * len);
22693 }
22694
22695 /* Destroy a symtab_index_entry. */
22696
22697 static void
22698 delete_symtab_entry (void *p)
22699 {
22700 struct symtab_index_entry *entry = (struct symtab_index_entry *) p;
22701 VEC_free (offset_type, entry->cu_indices);
22702 xfree (entry);
22703 }
22704
22705 /* Create a hash table holding symtab_index_entry objects. */
22706
22707 static htab_t
22708 create_symbol_hash_table (void)
22709 {
22710 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22711 delete_symtab_entry, xcalloc, xfree);
22712 }
22713
22714 /* Create a new mapped symtab object. */
22715
22716 static struct mapped_symtab *
22717 create_mapped_symtab (void)
22718 {
22719 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22720 symtab->n_elements = 0;
22721 symtab->size = 1024;
22722 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22723 return symtab;
22724 }
22725
22726 /* Destroy a mapped_symtab. */
22727
22728 static void
22729 cleanup_mapped_symtab (void *p)
22730 {
22731 struct mapped_symtab *symtab = (struct mapped_symtab *) p;
22732 /* The contents of the array are freed when the other hash table is
22733 destroyed. */
22734 xfree (symtab->data);
22735 xfree (symtab);
22736 }
22737
22738 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
22739 the slot.
22740
22741 Function is used only during write_hash_table so no index format backward
22742 compatibility is needed. */
22743
22744 static struct symtab_index_entry **
22745 find_slot (struct mapped_symtab *symtab, const char *name)
22746 {
22747 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
22748
22749 index = hash & (symtab->size - 1);
22750 step = ((hash * 17) & (symtab->size - 1)) | 1;
22751
22752 for (;;)
22753 {
22754 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22755 return &symtab->data[index];
22756 index = (index + step) & (symtab->size - 1);
22757 }
22758 }
22759
22760 /* Expand SYMTAB's hash table. */
22761
22762 static void
22763 hash_expand (struct mapped_symtab *symtab)
22764 {
22765 offset_type old_size = symtab->size;
22766 offset_type i;
22767 struct symtab_index_entry **old_entries = symtab->data;
22768
22769 symtab->size *= 2;
22770 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22771
22772 for (i = 0; i < old_size; ++i)
22773 {
22774 if (old_entries[i])
22775 {
22776 struct symtab_index_entry **slot = find_slot (symtab,
22777 old_entries[i]->name);
22778 *slot = old_entries[i];
22779 }
22780 }
22781
22782 xfree (old_entries);
22783 }
22784
22785 /* Add an entry to SYMTAB. NAME is the name of the symbol.
22786 CU_INDEX is the index of the CU in which the symbol appears.
22787 IS_STATIC is one if the symbol is static, otherwise zero (global). */
22788
22789 static void
22790 add_index_entry (struct mapped_symtab *symtab, const char *name,
22791 int is_static, gdb_index_symbol_kind kind,
22792 offset_type cu_index)
22793 {
22794 struct symtab_index_entry **slot;
22795 offset_type cu_index_and_attrs;
22796
22797 ++symtab->n_elements;
22798 if (4 * symtab->n_elements / 3 >= symtab->size)
22799 hash_expand (symtab);
22800
22801 slot = find_slot (symtab, name);
22802 if (!*slot)
22803 {
22804 *slot = XNEW (struct symtab_index_entry);
22805 (*slot)->name = name;
22806 /* index_offset is set later. */
22807 (*slot)->cu_indices = NULL;
22808 }
22809
22810 cu_index_and_attrs = 0;
22811 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22812 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22813 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22814
22815 /* We don't want to record an index value twice as we want to avoid the
22816 duplication.
22817 We process all global symbols and then all static symbols
22818 (which would allow us to avoid the duplication by only having to check
22819 the last entry pushed), but a symbol could have multiple kinds in one CU.
22820 To keep things simple we don't worry about the duplication here and
22821 sort and uniqufy the list after we've processed all symbols. */
22822 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22823 }
22824
22825 /* qsort helper routine for uniquify_cu_indices. */
22826
22827 static int
22828 offset_type_compare (const void *ap, const void *bp)
22829 {
22830 offset_type a = *(offset_type *) ap;
22831 offset_type b = *(offset_type *) bp;
22832
22833 return (a > b) - (b > a);
22834 }
22835
22836 /* Sort and remove duplicates of all symbols' cu_indices lists. */
22837
22838 static void
22839 uniquify_cu_indices (struct mapped_symtab *symtab)
22840 {
22841 int i;
22842
22843 for (i = 0; i < symtab->size; ++i)
22844 {
22845 struct symtab_index_entry *entry = symtab->data[i];
22846
22847 if (entry
22848 && entry->cu_indices != NULL)
22849 {
22850 unsigned int next_to_insert, next_to_check;
22851 offset_type last_value;
22852
22853 qsort (VEC_address (offset_type, entry->cu_indices),
22854 VEC_length (offset_type, entry->cu_indices),
22855 sizeof (offset_type), offset_type_compare);
22856
22857 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22858 next_to_insert = 1;
22859 for (next_to_check = 1;
22860 next_to_check < VEC_length (offset_type, entry->cu_indices);
22861 ++next_to_check)
22862 {
22863 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22864 != last_value)
22865 {
22866 last_value = VEC_index (offset_type, entry->cu_indices,
22867 next_to_check);
22868 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22869 last_value);
22870 ++next_to_insert;
22871 }
22872 }
22873 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22874 }
22875 }
22876 }
22877
22878 /* Add a vector of indices to the constant pool. */
22879
22880 static offset_type
22881 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
22882 struct symtab_index_entry *entry)
22883 {
22884 void **slot;
22885
22886 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
22887 if (!*slot)
22888 {
22889 offset_type len = VEC_length (offset_type, entry->cu_indices);
22890 offset_type val = MAYBE_SWAP (len);
22891 offset_type iter;
22892 int i;
22893
22894 *slot = entry;
22895 entry->index_offset = obstack_object_size (cpool);
22896
22897 obstack_grow (cpool, &val, sizeof (val));
22898 for (i = 0;
22899 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22900 ++i)
22901 {
22902 val = MAYBE_SWAP (iter);
22903 obstack_grow (cpool, &val, sizeof (val));
22904 }
22905 }
22906 else
22907 {
22908 struct symtab_index_entry *old_entry
22909 = (struct symtab_index_entry *) *slot;
22910 entry->index_offset = old_entry->index_offset;
22911 entry = old_entry;
22912 }
22913 return entry->index_offset;
22914 }
22915
22916 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22917 constant pool entries going into the obstack CPOOL. */
22918
22919 static void
22920 write_hash_table (struct mapped_symtab *symtab,
22921 struct obstack *output, struct obstack *cpool)
22922 {
22923 offset_type i;
22924 htab_t symbol_hash_table;
22925 htab_t str_table;
22926
22927 symbol_hash_table = create_symbol_hash_table ();
22928 str_table = create_strtab ();
22929
22930 /* We add all the index vectors to the constant pool first, to
22931 ensure alignment is ok. */
22932 for (i = 0; i < symtab->size; ++i)
22933 {
22934 if (symtab->data[i])
22935 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22936 }
22937
22938 /* Now write out the hash table. */
22939 for (i = 0; i < symtab->size; ++i)
22940 {
22941 offset_type str_off, vec_off;
22942
22943 if (symtab->data[i])
22944 {
22945 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22946 vec_off = symtab->data[i]->index_offset;
22947 }
22948 else
22949 {
22950 /* While 0 is a valid constant pool index, it is not valid
22951 to have 0 for both offsets. */
22952 str_off = 0;
22953 vec_off = 0;
22954 }
22955
22956 str_off = MAYBE_SWAP (str_off);
22957 vec_off = MAYBE_SWAP (vec_off);
22958
22959 obstack_grow (output, &str_off, sizeof (str_off));
22960 obstack_grow (output, &vec_off, sizeof (vec_off));
22961 }
22962
22963 htab_delete (str_table);
22964 htab_delete (symbol_hash_table);
22965 }
22966
22967 /* Struct to map psymtab to CU index in the index file. */
22968 struct psymtab_cu_index_map
22969 {
22970 struct partial_symtab *psymtab;
22971 unsigned int cu_index;
22972 };
22973
22974 static hashval_t
22975 hash_psymtab_cu_index (const void *item)
22976 {
22977 const struct psymtab_cu_index_map *map
22978 = (const struct psymtab_cu_index_map *) item;
22979
22980 return htab_hash_pointer (map->psymtab);
22981 }
22982
22983 static int
22984 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22985 {
22986 const struct psymtab_cu_index_map *lhs
22987 = (const struct psymtab_cu_index_map *) item_lhs;
22988 const struct psymtab_cu_index_map *rhs
22989 = (const struct psymtab_cu_index_map *) item_rhs;
22990
22991 return lhs->psymtab == rhs->psymtab;
22992 }
22993
22994 /* Helper struct for building the address table. */
22995 struct addrmap_index_data
22996 {
22997 struct objfile *objfile;
22998 struct obstack *addr_obstack;
22999 htab_t cu_index_htab;
23000
23001 /* Non-zero if the previous_* fields are valid.
23002 We can't write an entry until we see the next entry (since it is only then
23003 that we know the end of the entry). */
23004 int previous_valid;
23005 /* Index of the CU in the table of all CUs in the index file. */
23006 unsigned int previous_cu_index;
23007 /* Start address of the CU. */
23008 CORE_ADDR previous_cu_start;
23009 };
23010
23011 /* Write an address entry to OBSTACK. */
23012
23013 static void
23014 add_address_entry (struct objfile *objfile, struct obstack *obstack,
23015 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
23016 {
23017 offset_type cu_index_to_write;
23018 gdb_byte addr[8];
23019 CORE_ADDR baseaddr;
23020
23021 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23022
23023 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
23024 obstack_grow (obstack, addr, 8);
23025 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
23026 obstack_grow (obstack, addr, 8);
23027 cu_index_to_write = MAYBE_SWAP (cu_index);
23028 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
23029 }
23030
23031 /* Worker function for traversing an addrmap to build the address table. */
23032
23033 static int
23034 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
23035 {
23036 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
23037 struct partial_symtab *pst = (struct partial_symtab *) obj;
23038
23039 if (data->previous_valid)
23040 add_address_entry (data->objfile, data->addr_obstack,
23041 data->previous_cu_start, start_addr,
23042 data->previous_cu_index);
23043
23044 data->previous_cu_start = start_addr;
23045 if (pst != NULL)
23046 {
23047 struct psymtab_cu_index_map find_map, *map;
23048 find_map.psymtab = pst;
23049 map = ((struct psymtab_cu_index_map *)
23050 htab_find (data->cu_index_htab, &find_map));
23051 gdb_assert (map != NULL);
23052 data->previous_cu_index = map->cu_index;
23053 data->previous_valid = 1;
23054 }
23055 else
23056 data->previous_valid = 0;
23057
23058 return 0;
23059 }
23060
23061 /* Write OBJFILE's address map to OBSTACK.
23062 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23063 in the index file. */
23064
23065 static void
23066 write_address_map (struct objfile *objfile, struct obstack *obstack,
23067 htab_t cu_index_htab)
23068 {
23069 struct addrmap_index_data addrmap_index_data;
23070
23071 /* When writing the address table, we have to cope with the fact that
23072 the addrmap iterator only provides the start of a region; we have to
23073 wait until the next invocation to get the start of the next region. */
23074
23075 addrmap_index_data.objfile = objfile;
23076 addrmap_index_data.addr_obstack = obstack;
23077 addrmap_index_data.cu_index_htab = cu_index_htab;
23078 addrmap_index_data.previous_valid = 0;
23079
23080 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23081 &addrmap_index_data);
23082
23083 /* It's highly unlikely the last entry (end address = 0xff...ff)
23084 is valid, but we should still handle it.
23085 The end address is recorded as the start of the next region, but that
23086 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23087 anyway. */
23088 if (addrmap_index_data.previous_valid)
23089 add_address_entry (objfile, obstack,
23090 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23091 addrmap_index_data.previous_cu_index);
23092 }
23093
23094 /* Return the symbol kind of PSYM. */
23095
23096 static gdb_index_symbol_kind
23097 symbol_kind (struct partial_symbol *psym)
23098 {
23099 domain_enum domain = PSYMBOL_DOMAIN (psym);
23100 enum address_class aclass = PSYMBOL_CLASS (psym);
23101
23102 switch (domain)
23103 {
23104 case VAR_DOMAIN:
23105 switch (aclass)
23106 {
23107 case LOC_BLOCK:
23108 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23109 case LOC_TYPEDEF:
23110 return GDB_INDEX_SYMBOL_KIND_TYPE;
23111 case LOC_COMPUTED:
23112 case LOC_CONST_BYTES:
23113 case LOC_OPTIMIZED_OUT:
23114 case LOC_STATIC:
23115 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23116 case LOC_CONST:
23117 /* Note: It's currently impossible to recognize psyms as enum values
23118 short of reading the type info. For now punt. */
23119 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23120 default:
23121 /* There are other LOC_FOO values that one might want to classify
23122 as variables, but dwarf2read.c doesn't currently use them. */
23123 return GDB_INDEX_SYMBOL_KIND_OTHER;
23124 }
23125 case STRUCT_DOMAIN:
23126 return GDB_INDEX_SYMBOL_KIND_TYPE;
23127 default:
23128 return GDB_INDEX_SYMBOL_KIND_OTHER;
23129 }
23130 }
23131
23132 /* Add a list of partial symbols to SYMTAB. */
23133
23134 static void
23135 write_psymbols (struct mapped_symtab *symtab,
23136 htab_t psyms_seen,
23137 struct partial_symbol **psymp,
23138 int count,
23139 offset_type cu_index,
23140 int is_static)
23141 {
23142 for (; count-- > 0; ++psymp)
23143 {
23144 struct partial_symbol *psym = *psymp;
23145 void **slot;
23146
23147 if (SYMBOL_LANGUAGE (psym) == language_ada)
23148 error (_("Ada is not currently supported by the index"));
23149
23150 /* Only add a given psymbol once. */
23151 slot = htab_find_slot (psyms_seen, psym, INSERT);
23152 if (!*slot)
23153 {
23154 gdb_index_symbol_kind kind = symbol_kind (psym);
23155
23156 *slot = psym;
23157 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23158 is_static, kind, cu_index);
23159 }
23160 }
23161 }
23162
23163 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
23164 exception if there is an error. */
23165
23166 static void
23167 write_obstack (FILE *file, struct obstack *obstack)
23168 {
23169 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
23170 file)
23171 != obstack_object_size (obstack))
23172 error (_("couldn't data write to file"));
23173 }
23174
23175 /* Unlink a file if the argument is not NULL. */
23176
23177 static void
23178 unlink_if_set (void *p)
23179 {
23180 char **filename = (char **) p;
23181 if (*filename)
23182 unlink (*filename);
23183 }
23184
23185 /* A helper struct used when iterating over debug_types. */
23186 struct signatured_type_index_data
23187 {
23188 struct objfile *objfile;
23189 struct mapped_symtab *symtab;
23190 struct obstack *types_list;
23191 htab_t psyms_seen;
23192 int cu_index;
23193 };
23194
23195 /* A helper function that writes a single signatured_type to an
23196 obstack. */
23197
23198 static int
23199 write_one_signatured_type (void **slot, void *d)
23200 {
23201 struct signatured_type_index_data *info
23202 = (struct signatured_type_index_data *) d;
23203 struct signatured_type *entry = (struct signatured_type *) *slot;
23204 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
23205 gdb_byte val[8];
23206
23207 write_psymbols (info->symtab,
23208 info->psyms_seen,
23209 info->objfile->global_psymbols.list
23210 + psymtab->globals_offset,
23211 psymtab->n_global_syms, info->cu_index,
23212 0);
23213 write_psymbols (info->symtab,
23214 info->psyms_seen,
23215 info->objfile->static_psymbols.list
23216 + psymtab->statics_offset,
23217 psymtab->n_static_syms, info->cu_index,
23218 1);
23219
23220 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23221 entry->per_cu.offset.sect_off);
23222 obstack_grow (info->types_list, val, 8);
23223 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23224 entry->type_offset_in_tu.cu_off);
23225 obstack_grow (info->types_list, val, 8);
23226 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
23227 obstack_grow (info->types_list, val, 8);
23228
23229 ++info->cu_index;
23230
23231 return 1;
23232 }
23233
23234 /* Recurse into all "included" dependencies and write their symbols as
23235 if they appeared in this psymtab. */
23236
23237 static void
23238 recursively_write_psymbols (struct objfile *objfile,
23239 struct partial_symtab *psymtab,
23240 struct mapped_symtab *symtab,
23241 htab_t psyms_seen,
23242 offset_type cu_index)
23243 {
23244 int i;
23245
23246 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23247 if (psymtab->dependencies[i]->user != NULL)
23248 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23249 symtab, psyms_seen, cu_index);
23250
23251 write_psymbols (symtab,
23252 psyms_seen,
23253 objfile->global_psymbols.list + psymtab->globals_offset,
23254 psymtab->n_global_syms, cu_index,
23255 0);
23256 write_psymbols (symtab,
23257 psyms_seen,
23258 objfile->static_psymbols.list + psymtab->statics_offset,
23259 psymtab->n_static_syms, cu_index,
23260 1);
23261 }
23262
23263 /* Create an index file for OBJFILE in the directory DIR. */
23264
23265 static void
23266 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23267 {
23268 struct cleanup *cleanup;
23269 char *filename, *cleanup_filename;
23270 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
23271 struct obstack cu_list, types_cu_list;
23272 int i;
23273 FILE *out_file;
23274 struct mapped_symtab *symtab;
23275 offset_type val, size_of_contents, total_len;
23276 struct stat st;
23277 htab_t psyms_seen;
23278 htab_t cu_index_htab;
23279 struct psymtab_cu_index_map *psymtab_cu_index_map;
23280
23281 if (dwarf2_per_objfile->using_index)
23282 error (_("Cannot use an index to create the index"));
23283
23284 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23285 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23286
23287 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23288 return;
23289
23290 if (stat (objfile_name (objfile), &st) < 0)
23291 perror_with_name (objfile_name (objfile));
23292
23293 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
23294 INDEX_SUFFIX, (char *) NULL);
23295 cleanup = make_cleanup (xfree, filename);
23296
23297 out_file = gdb_fopen_cloexec (filename, "wb");
23298 if (!out_file)
23299 error (_("Can't open `%s' for writing"), filename);
23300
23301 cleanup_filename = filename;
23302 make_cleanup (unlink_if_set, &cleanup_filename);
23303
23304 symtab = create_mapped_symtab ();
23305 make_cleanup (cleanup_mapped_symtab, symtab);
23306
23307 obstack_init (&addr_obstack);
23308 make_cleanup_obstack_free (&addr_obstack);
23309
23310 obstack_init (&cu_list);
23311 make_cleanup_obstack_free (&cu_list);
23312
23313 obstack_init (&types_cu_list);
23314 make_cleanup_obstack_free (&types_cu_list);
23315
23316 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
23317 NULL, xcalloc, xfree);
23318 make_cleanup_htab_delete (psyms_seen);
23319
23320 /* While we're scanning CU's create a table that maps a psymtab pointer
23321 (which is what addrmap records) to its index (which is what is recorded
23322 in the index file). This will later be needed to write the address
23323 table. */
23324 cu_index_htab = htab_create_alloc (100,
23325 hash_psymtab_cu_index,
23326 eq_psymtab_cu_index,
23327 NULL, xcalloc, xfree);
23328 make_cleanup_htab_delete (cu_index_htab);
23329 psymtab_cu_index_map = XNEWVEC (struct psymtab_cu_index_map,
23330 dwarf2_per_objfile->n_comp_units);
23331 make_cleanup (xfree, psymtab_cu_index_map);
23332
23333 /* The CU list is already sorted, so we don't need to do additional
23334 work here. Also, the debug_types entries do not appear in
23335 all_comp_units, but only in their own hash table. */
23336 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23337 {
23338 struct dwarf2_per_cu_data *per_cu
23339 = dwarf2_per_objfile->all_comp_units[i];
23340 struct partial_symtab *psymtab = per_cu->v.psymtab;
23341 gdb_byte val[8];
23342 struct psymtab_cu_index_map *map;
23343 void **slot;
23344
23345 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23346 It may be referenced from a local scope but in such case it does not
23347 need to be present in .gdb_index. */
23348 if (psymtab == NULL)
23349 continue;
23350
23351 if (psymtab->user == NULL)
23352 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
23353
23354 map = &psymtab_cu_index_map[i];
23355 map->psymtab = psymtab;
23356 map->cu_index = i;
23357 slot = htab_find_slot (cu_index_htab, map, INSERT);
23358 gdb_assert (slot != NULL);
23359 gdb_assert (*slot == NULL);
23360 *slot = map;
23361
23362 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23363 per_cu->offset.sect_off);
23364 obstack_grow (&cu_list, val, 8);
23365 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
23366 obstack_grow (&cu_list, val, 8);
23367 }
23368
23369 /* Dump the address map. */
23370 write_address_map (objfile, &addr_obstack, cu_index_htab);
23371
23372 /* Write out the .debug_type entries, if any. */
23373 if (dwarf2_per_objfile->signatured_types)
23374 {
23375 struct signatured_type_index_data sig_data;
23376
23377 sig_data.objfile = objfile;
23378 sig_data.symtab = symtab;
23379 sig_data.types_list = &types_cu_list;
23380 sig_data.psyms_seen = psyms_seen;
23381 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23382 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23383 write_one_signatured_type, &sig_data);
23384 }
23385
23386 /* Now that we've processed all symbols we can shrink their cu_indices
23387 lists. */
23388 uniquify_cu_indices (symtab);
23389
23390 obstack_init (&constant_pool);
23391 make_cleanup_obstack_free (&constant_pool);
23392 obstack_init (&symtab_obstack);
23393 make_cleanup_obstack_free (&symtab_obstack);
23394 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23395
23396 obstack_init (&contents);
23397 make_cleanup_obstack_free (&contents);
23398 size_of_contents = 6 * sizeof (offset_type);
23399 total_len = size_of_contents;
23400
23401 /* The version number. */
23402 val = MAYBE_SWAP (8);
23403 obstack_grow (&contents, &val, sizeof (val));
23404
23405 /* The offset of the CU list from the start of the file. */
23406 val = MAYBE_SWAP (total_len);
23407 obstack_grow (&contents, &val, sizeof (val));
23408 total_len += obstack_object_size (&cu_list);
23409
23410 /* The offset of the types CU list from the start of the file. */
23411 val = MAYBE_SWAP (total_len);
23412 obstack_grow (&contents, &val, sizeof (val));
23413 total_len += obstack_object_size (&types_cu_list);
23414
23415 /* The offset of the address table from the start of the file. */
23416 val = MAYBE_SWAP (total_len);
23417 obstack_grow (&contents, &val, sizeof (val));
23418 total_len += obstack_object_size (&addr_obstack);
23419
23420 /* The offset of the symbol table from the start of the file. */
23421 val = MAYBE_SWAP (total_len);
23422 obstack_grow (&contents, &val, sizeof (val));
23423 total_len += obstack_object_size (&symtab_obstack);
23424
23425 /* The offset of the constant pool from the start of the file. */
23426 val = MAYBE_SWAP (total_len);
23427 obstack_grow (&contents, &val, sizeof (val));
23428 total_len += obstack_object_size (&constant_pool);
23429
23430 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23431
23432 write_obstack (out_file, &contents);
23433 write_obstack (out_file, &cu_list);
23434 write_obstack (out_file, &types_cu_list);
23435 write_obstack (out_file, &addr_obstack);
23436 write_obstack (out_file, &symtab_obstack);
23437 write_obstack (out_file, &constant_pool);
23438
23439 fclose (out_file);
23440
23441 /* We want to keep the file, so we set cleanup_filename to NULL
23442 here. See unlink_if_set. */
23443 cleanup_filename = NULL;
23444
23445 do_cleanups (cleanup);
23446 }
23447
23448 /* Implementation of the `save gdb-index' command.
23449
23450 Note that the file format used by this command is documented in the
23451 GDB manual. Any changes here must be documented there. */
23452
23453 static void
23454 save_gdb_index_command (char *arg, int from_tty)
23455 {
23456 struct objfile *objfile;
23457
23458 if (!arg || !*arg)
23459 error (_("usage: save gdb-index DIRECTORY"));
23460
23461 ALL_OBJFILES (objfile)
23462 {
23463 struct stat st;
23464
23465 /* If the objfile does not correspond to an actual file, skip it. */
23466 if (stat (objfile_name (objfile), &st) < 0)
23467 continue;
23468
23469 dwarf2_per_objfile
23470 = (struct dwarf2_per_objfile *) objfile_data (objfile,
23471 dwarf2_objfile_data_key);
23472 if (dwarf2_per_objfile)
23473 {
23474
23475 TRY
23476 {
23477 write_psymtabs_to_index (objfile, arg);
23478 }
23479 CATCH (except, RETURN_MASK_ERROR)
23480 {
23481 exception_fprintf (gdb_stderr, except,
23482 _("Error while writing index for `%s': "),
23483 objfile_name (objfile));
23484 }
23485 END_CATCH
23486 }
23487 }
23488 }
23489
23490 \f
23491
23492 int dwarf_always_disassemble;
23493
23494 static void
23495 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
23496 struct cmd_list_element *c, const char *value)
23497 {
23498 fprintf_filtered (file,
23499 _("Whether to always disassemble "
23500 "DWARF expressions is %s.\n"),
23501 value);
23502 }
23503
23504 static void
23505 show_check_physname (struct ui_file *file, int from_tty,
23506 struct cmd_list_element *c, const char *value)
23507 {
23508 fprintf_filtered (file,
23509 _("Whether to check \"physname\" is %s.\n"),
23510 value);
23511 }
23512
23513 void _initialize_dwarf2_read (void);
23514
23515 void
23516 _initialize_dwarf2_read (void)
23517 {
23518 struct cmd_list_element *c;
23519
23520 dwarf2_objfile_data_key
23521 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
23522
23523 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
23524 Set DWARF specific variables.\n\
23525 Configure DWARF variables such as the cache size"),
23526 &set_dwarf_cmdlist, "maintenance set dwarf ",
23527 0/*allow-unknown*/, &maintenance_set_cmdlist);
23528
23529 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
23530 Show DWARF specific variables\n\
23531 Show DWARF variables such as the cache size"),
23532 &show_dwarf_cmdlist, "maintenance show dwarf ",
23533 0/*allow-unknown*/, &maintenance_show_cmdlist);
23534
23535 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
23536 &dwarf_max_cache_age, _("\
23537 Set the upper bound on the age of cached DWARF compilation units."), _("\
23538 Show the upper bound on the age of cached DWARF compilation units."), _("\
23539 A higher limit means that cached compilation units will be stored\n\
23540 in memory longer, and more total memory will be used. Zero disables\n\
23541 caching, which can slow down startup."),
23542 NULL,
23543 show_dwarf_max_cache_age,
23544 &set_dwarf_cmdlist,
23545 &show_dwarf_cmdlist);
23546
23547 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
23548 &dwarf_always_disassemble, _("\
23549 Set whether `info address' always disassembles DWARF expressions."), _("\
23550 Show whether `info address' always disassembles DWARF expressions."), _("\
23551 When enabled, DWARF expressions are always printed in an assembly-like\n\
23552 syntax. When disabled, expressions will be printed in a more\n\
23553 conversational style, when possible."),
23554 NULL,
23555 show_dwarf_always_disassemble,
23556 &set_dwarf_cmdlist,
23557 &show_dwarf_cmdlist);
23558
23559 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
23560 Set debugging of the DWARF reader."), _("\
23561 Show debugging of the DWARF reader."), _("\
23562 When enabled (non-zero), debugging messages are printed during DWARF\n\
23563 reading and symtab expansion. A value of 1 (one) provides basic\n\
23564 information. A value greater than 1 provides more verbose information."),
23565 NULL,
23566 NULL,
23567 &setdebuglist, &showdebuglist);
23568
23569 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
23570 Set debugging of the DWARF DIE reader."), _("\
23571 Show debugging of the DWARF DIE reader."), _("\
23572 When enabled (non-zero), DIEs are dumped after they are read in.\n\
23573 The value is the maximum depth to print."),
23574 NULL,
23575 NULL,
23576 &setdebuglist, &showdebuglist);
23577
23578 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
23579 Set debugging of the dwarf line reader."), _("\
23580 Show debugging of the dwarf line reader."), _("\
23581 When enabled (non-zero), line number entries are dumped as they are read in.\n\
23582 A value of 1 (one) provides basic information.\n\
23583 A value greater than 1 provides more verbose information."),
23584 NULL,
23585 NULL,
23586 &setdebuglist, &showdebuglist);
23587
23588 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23589 Set cross-checking of \"physname\" code against demangler."), _("\
23590 Show cross-checking of \"physname\" code against demangler."), _("\
23591 When enabled, GDB's internal \"physname\" code is checked against\n\
23592 the demangler."),
23593 NULL, show_check_physname,
23594 &setdebuglist, &showdebuglist);
23595
23596 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23597 no_class, &use_deprecated_index_sections, _("\
23598 Set whether to use deprecated gdb_index sections."), _("\
23599 Show whether to use deprecated gdb_index sections."), _("\
23600 When enabled, deprecated .gdb_index sections are used anyway.\n\
23601 Normally they are ignored either because of a missing feature or\n\
23602 performance issue.\n\
23603 Warning: This option must be enabled before gdb reads the file."),
23604 NULL,
23605 NULL,
23606 &setlist, &showlist);
23607
23608 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
23609 _("\
23610 Save a gdb-index file.\n\
23611 Usage: save gdb-index DIRECTORY"),
23612 &save_cmdlist);
23613 set_cmd_completer (c, filename_completer);
23614
23615 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23616 &dwarf2_locexpr_funcs);
23617 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23618 &dwarf2_loclist_funcs);
23619
23620 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23621 &dwarf2_block_frame_base_locexpr_funcs);
23622 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23623 &dwarf2_block_frame_base_loclist_funcs);
23624 }
This page took 0.556805 seconds and 5 git commands to generate.