[gdb] Fix s390x -m31 build
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2019 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2read.h"
33 #include "dwarf-index-cache.h"
34 #include "dwarf-index-common.h"
35 #include "bfd.h"
36 #include "elf-bfd.h"
37 #include "symtab.h"
38 #include "gdbtypes.h"
39 #include "objfiles.h"
40 #include "dwarf2.h"
41 #include "buildsym.h"
42 #include "demangle.h"
43 #include "gdb-demangle.h"
44 #include "expression.h"
45 #include "filenames.h" /* for DOSish file names */
46 #include "macrotab.h"
47 #include "language.h"
48 #include "complaints.h"
49 #include "dwarf2expr.h"
50 #include "dwarf2loc.h"
51 #include "cp-support.h"
52 #include "hashtab.h"
53 #include "command.h"
54 #include "gdbcmd.h"
55 #include "block.h"
56 #include "addrmap.h"
57 #include "typeprint.h"
58 #include "psympriv.h"
59 #include <sys/stat.h>
60 #include "completer.h"
61 #include "common/vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "common/filestuff.h"
72 #include "build-id.h"
73 #include "namespace.h"
74 #include "common/gdb_unlinker.h"
75 #include "common/function-view.h"
76 #include "common/gdb_optional.h"
77 #include "common/underlying.h"
78 #include "common/byte-vector.h"
79 #include "common/hash_enum.h"
80 #include "filename-seen-cache.h"
81 #include "producer.h"
82 #include <fcntl.h>
83 #include <sys/types.h>
84 #include <algorithm>
85 #include <unordered_set>
86 #include <unordered_map>
87 #include "common/selftest.h"
88 #include <cmath>
89 #include <set>
90 #include <forward_list>
91 #include "rust-lang.h"
92 #include "common/pathstuff.h"
93
94 /* When == 1, print basic high level tracing messages.
95 When > 1, be more verbose.
96 This is in contrast to the low level DIE reading of dwarf_die_debug. */
97 static unsigned int dwarf_read_debug = 0;
98
99 /* When non-zero, dump DIEs after they are read in. */
100 static unsigned int dwarf_die_debug = 0;
101
102 /* When non-zero, dump line number entries as they are read in. */
103 static unsigned int dwarf_line_debug = 0;
104
105 /* When non-zero, cross-check physname against demangler. */
106 static int check_physname = 0;
107
108 /* When non-zero, do not reject deprecated .gdb_index sections. */
109 static int use_deprecated_index_sections = 0;
110
111 static const struct objfile_key<dwarf2_per_objfile> dwarf2_objfile_data_key;
112
113 /* The "aclass" indices for various kinds of computed DWARF symbols. */
114
115 static int dwarf2_locexpr_index;
116 static int dwarf2_loclist_index;
117 static int dwarf2_locexpr_block_index;
118 static int dwarf2_loclist_block_index;
119
120 /* An index into a (C++) symbol name component in a symbol name as
121 recorded in the mapped_index's symbol table. For each C++ symbol
122 in the symbol table, we record one entry for the start of each
123 component in the symbol in a table of name components, and then
124 sort the table, in order to be able to binary search symbol names,
125 ignoring leading namespaces, both completion and regular look up.
126 For example, for symbol "A::B::C", we'll have an entry that points
127 to "A::B::C", another that points to "B::C", and another for "C".
128 Note that function symbols in GDB index have no parameter
129 information, just the function/method names. You can convert a
130 name_component to a "const char *" using the
131 'mapped_index::symbol_name_at(offset_type)' method. */
132
133 struct name_component
134 {
135 /* Offset in the symbol name where the component starts. Stored as
136 a (32-bit) offset instead of a pointer to save memory and improve
137 locality on 64-bit architectures. */
138 offset_type name_offset;
139
140 /* The symbol's index in the symbol and constant pool tables of a
141 mapped_index. */
142 offset_type idx;
143 };
144
145 /* Base class containing bits shared by both .gdb_index and
146 .debug_name indexes. */
147
148 struct mapped_index_base
149 {
150 mapped_index_base () = default;
151 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
152
153 /* The name_component table (a sorted vector). See name_component's
154 description above. */
155 std::vector<name_component> name_components;
156
157 /* How NAME_COMPONENTS is sorted. */
158 enum case_sensitivity name_components_casing;
159
160 /* Return the number of names in the symbol table. */
161 virtual size_t symbol_name_count () const = 0;
162
163 /* Get the name of the symbol at IDX in the symbol table. */
164 virtual const char *symbol_name_at (offset_type idx) const = 0;
165
166 /* Return whether the name at IDX in the symbol table should be
167 ignored. */
168 virtual bool symbol_name_slot_invalid (offset_type idx) const
169 {
170 return false;
171 }
172
173 /* Build the symbol name component sorted vector, if we haven't
174 yet. */
175 void build_name_components ();
176
177 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
178 possible matches for LN_NO_PARAMS in the name component
179 vector. */
180 std::pair<std::vector<name_component>::const_iterator,
181 std::vector<name_component>::const_iterator>
182 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
183
184 /* Prevent deleting/destroying via a base class pointer. */
185 protected:
186 ~mapped_index_base() = default;
187 };
188
189 /* A description of the mapped index. The file format is described in
190 a comment by the code that writes the index. */
191 struct mapped_index final : public mapped_index_base
192 {
193 /* A slot/bucket in the symbol table hash. */
194 struct symbol_table_slot
195 {
196 const offset_type name;
197 const offset_type vec;
198 };
199
200 /* Index data format version. */
201 int version = 0;
202
203 /* The address table data. */
204 gdb::array_view<const gdb_byte> address_table;
205
206 /* The symbol table, implemented as a hash table. */
207 gdb::array_view<symbol_table_slot> symbol_table;
208
209 /* A pointer to the constant pool. */
210 const char *constant_pool = nullptr;
211
212 bool symbol_name_slot_invalid (offset_type idx) const override
213 {
214 const auto &bucket = this->symbol_table[idx];
215 return bucket.name == 0 && bucket.vec == 0;
216 }
217
218 /* Convenience method to get at the name of the symbol at IDX in the
219 symbol table. */
220 const char *symbol_name_at (offset_type idx) const override
221 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
222
223 size_t symbol_name_count () const override
224 { return this->symbol_table.size (); }
225 };
226
227 /* A description of the mapped .debug_names.
228 Uninitialized map has CU_COUNT 0. */
229 struct mapped_debug_names final : public mapped_index_base
230 {
231 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
232 : dwarf2_per_objfile (dwarf2_per_objfile_)
233 {}
234
235 struct dwarf2_per_objfile *dwarf2_per_objfile;
236 bfd_endian dwarf5_byte_order;
237 bool dwarf5_is_dwarf64;
238 bool augmentation_is_gdb;
239 uint8_t offset_size;
240 uint32_t cu_count = 0;
241 uint32_t tu_count, bucket_count, name_count;
242 const gdb_byte *cu_table_reordered, *tu_table_reordered;
243 const uint32_t *bucket_table_reordered, *hash_table_reordered;
244 const gdb_byte *name_table_string_offs_reordered;
245 const gdb_byte *name_table_entry_offs_reordered;
246 const gdb_byte *entry_pool;
247
248 struct index_val
249 {
250 ULONGEST dwarf_tag;
251 struct attr
252 {
253 /* Attribute name DW_IDX_*. */
254 ULONGEST dw_idx;
255
256 /* Attribute form DW_FORM_*. */
257 ULONGEST form;
258
259 /* Value if FORM is DW_FORM_implicit_const. */
260 LONGEST implicit_const;
261 };
262 std::vector<attr> attr_vec;
263 };
264
265 std::unordered_map<ULONGEST, index_val> abbrev_map;
266
267 const char *namei_to_name (uint32_t namei) const;
268
269 /* Implementation of the mapped_index_base virtual interface, for
270 the name_components cache. */
271
272 const char *symbol_name_at (offset_type idx) const override
273 { return namei_to_name (idx); }
274
275 size_t symbol_name_count () const override
276 { return this->name_count; }
277 };
278
279 /* See dwarf2read.h. */
280
281 dwarf2_per_objfile *
282 get_dwarf2_per_objfile (struct objfile *objfile)
283 {
284 return dwarf2_objfile_data_key.get (objfile);
285 }
286
287 /* Default names of the debugging sections. */
288
289 /* Note that if the debugging section has been compressed, it might
290 have a name like .zdebug_info. */
291
292 static const struct dwarf2_debug_sections dwarf2_elf_names =
293 {
294 { ".debug_info", ".zdebug_info" },
295 { ".debug_abbrev", ".zdebug_abbrev" },
296 { ".debug_line", ".zdebug_line" },
297 { ".debug_loc", ".zdebug_loc" },
298 { ".debug_loclists", ".zdebug_loclists" },
299 { ".debug_macinfo", ".zdebug_macinfo" },
300 { ".debug_macro", ".zdebug_macro" },
301 { ".debug_str", ".zdebug_str" },
302 { ".debug_line_str", ".zdebug_line_str" },
303 { ".debug_ranges", ".zdebug_ranges" },
304 { ".debug_rnglists", ".zdebug_rnglists" },
305 { ".debug_types", ".zdebug_types" },
306 { ".debug_addr", ".zdebug_addr" },
307 { ".debug_frame", ".zdebug_frame" },
308 { ".eh_frame", NULL },
309 { ".gdb_index", ".zgdb_index" },
310 { ".debug_names", ".zdebug_names" },
311 { ".debug_aranges", ".zdebug_aranges" },
312 23
313 };
314
315 /* List of DWO/DWP sections. */
316
317 static const struct dwop_section_names
318 {
319 struct dwarf2_section_names abbrev_dwo;
320 struct dwarf2_section_names info_dwo;
321 struct dwarf2_section_names line_dwo;
322 struct dwarf2_section_names loc_dwo;
323 struct dwarf2_section_names loclists_dwo;
324 struct dwarf2_section_names macinfo_dwo;
325 struct dwarf2_section_names macro_dwo;
326 struct dwarf2_section_names str_dwo;
327 struct dwarf2_section_names str_offsets_dwo;
328 struct dwarf2_section_names types_dwo;
329 struct dwarf2_section_names cu_index;
330 struct dwarf2_section_names tu_index;
331 }
332 dwop_section_names =
333 {
334 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
335 { ".debug_info.dwo", ".zdebug_info.dwo" },
336 { ".debug_line.dwo", ".zdebug_line.dwo" },
337 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
338 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
339 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
340 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
341 { ".debug_str.dwo", ".zdebug_str.dwo" },
342 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
343 { ".debug_types.dwo", ".zdebug_types.dwo" },
344 { ".debug_cu_index", ".zdebug_cu_index" },
345 { ".debug_tu_index", ".zdebug_tu_index" },
346 };
347
348 /* local data types */
349
350 /* The data in a compilation unit header, after target2host
351 translation, looks like this. */
352 struct comp_unit_head
353 {
354 unsigned int length;
355 short version;
356 unsigned char addr_size;
357 unsigned char signed_addr_p;
358 sect_offset abbrev_sect_off;
359
360 /* Size of file offsets; either 4 or 8. */
361 unsigned int offset_size;
362
363 /* Size of the length field; either 4 or 12. */
364 unsigned int initial_length_size;
365
366 enum dwarf_unit_type unit_type;
367
368 /* Offset to the first byte of this compilation unit header in the
369 .debug_info section, for resolving relative reference dies. */
370 sect_offset sect_off;
371
372 /* Offset to first die in this cu from the start of the cu.
373 This will be the first byte following the compilation unit header. */
374 cu_offset first_die_cu_offset;
375
376 /* 64-bit signature of this type unit - it is valid only for
377 UNIT_TYPE DW_UT_type. */
378 ULONGEST signature;
379
380 /* For types, offset in the type's DIE of the type defined by this TU. */
381 cu_offset type_cu_offset_in_tu;
382 };
383
384 /* Type used for delaying computation of method physnames.
385 See comments for compute_delayed_physnames. */
386 struct delayed_method_info
387 {
388 /* The type to which the method is attached, i.e., its parent class. */
389 struct type *type;
390
391 /* The index of the method in the type's function fieldlists. */
392 int fnfield_index;
393
394 /* The index of the method in the fieldlist. */
395 int index;
396
397 /* The name of the DIE. */
398 const char *name;
399
400 /* The DIE associated with this method. */
401 struct die_info *die;
402 };
403
404 /* Internal state when decoding a particular compilation unit. */
405 struct dwarf2_cu
406 {
407 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
408 ~dwarf2_cu ();
409
410 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
411
412 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
413 Create the set of symtabs used by this TU, or if this TU is sharing
414 symtabs with another TU and the symtabs have already been created
415 then restore those symtabs in the line header.
416 We don't need the pc/line-number mapping for type units. */
417 void setup_type_unit_groups (struct die_info *die);
418
419 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
420 buildsym_compunit constructor. */
421 struct compunit_symtab *start_symtab (const char *name,
422 const char *comp_dir,
423 CORE_ADDR low_pc);
424
425 /* Reset the builder. */
426 void reset_builder () { m_builder.reset (); }
427
428 /* The header of the compilation unit. */
429 struct comp_unit_head header {};
430
431 /* Base address of this compilation unit. */
432 CORE_ADDR base_address = 0;
433
434 /* Non-zero if base_address has been set. */
435 int base_known = 0;
436
437 /* The language we are debugging. */
438 enum language language = language_unknown;
439 const struct language_defn *language_defn = nullptr;
440
441 const char *producer = nullptr;
442
443 private:
444 /* The symtab builder for this CU. This is only non-NULL when full
445 symbols are being read. */
446 std::unique_ptr<buildsym_compunit> m_builder;
447
448 public:
449 /* The generic symbol table building routines have separate lists for
450 file scope symbols and all all other scopes (local scopes). So
451 we need to select the right one to pass to add_symbol_to_list().
452 We do it by keeping a pointer to the correct list in list_in_scope.
453
454 FIXME: The original dwarf code just treated the file scope as the
455 first local scope, and all other local scopes as nested local
456 scopes, and worked fine. Check to see if we really need to
457 distinguish these in buildsym.c. */
458 struct pending **list_in_scope = nullptr;
459
460 /* Hash table holding all the loaded partial DIEs
461 with partial_die->offset.SECT_OFF as hash. */
462 htab_t partial_dies = nullptr;
463
464 /* Storage for things with the same lifetime as this read-in compilation
465 unit, including partial DIEs. */
466 auto_obstack comp_unit_obstack;
467
468 /* When multiple dwarf2_cu structures are living in memory, this field
469 chains them all together, so that they can be released efficiently.
470 We will probably also want a generation counter so that most-recently-used
471 compilation units are cached... */
472 struct dwarf2_per_cu_data *read_in_chain = nullptr;
473
474 /* Backlink to our per_cu entry. */
475 struct dwarf2_per_cu_data *per_cu;
476
477 /* How many compilation units ago was this CU last referenced? */
478 int last_used = 0;
479
480 /* A hash table of DIE cu_offset for following references with
481 die_info->offset.sect_off as hash. */
482 htab_t die_hash = nullptr;
483
484 /* Full DIEs if read in. */
485 struct die_info *dies = nullptr;
486
487 /* A set of pointers to dwarf2_per_cu_data objects for compilation
488 units referenced by this one. Only set during full symbol processing;
489 partial symbol tables do not have dependencies. */
490 htab_t dependencies = nullptr;
491
492 /* Header data from the line table, during full symbol processing. */
493 struct line_header *line_header = nullptr;
494 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
495 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
496 this is the DW_TAG_compile_unit die for this CU. We'll hold on
497 to the line header as long as this DIE is being processed. See
498 process_die_scope. */
499 die_info *line_header_die_owner = nullptr;
500
501 /* A list of methods which need to have physnames computed
502 after all type information has been read. */
503 std::vector<delayed_method_info> method_list;
504
505 /* To be copied to symtab->call_site_htab. */
506 htab_t call_site_htab = nullptr;
507
508 /* Non-NULL if this CU came from a DWO file.
509 There is an invariant here that is important to remember:
510 Except for attributes copied from the top level DIE in the "main"
511 (or "stub") file in preparation for reading the DWO file
512 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
513 Either there isn't a DWO file (in which case this is NULL and the point
514 is moot), or there is and either we're not going to read it (in which
515 case this is NULL) or there is and we are reading it (in which case this
516 is non-NULL). */
517 struct dwo_unit *dwo_unit = nullptr;
518
519 /* The DW_AT_addr_base attribute if present, zero otherwise
520 (zero is a valid value though).
521 Note this value comes from the Fission stub CU/TU's DIE. */
522 ULONGEST addr_base = 0;
523
524 /* The DW_AT_ranges_base attribute if present, zero otherwise
525 (zero is a valid value though).
526 Note this value comes from the Fission stub CU/TU's DIE.
527 Also note that the value is zero in the non-DWO case so this value can
528 be used without needing to know whether DWO files are in use or not.
529 N.B. This does not apply to DW_AT_ranges appearing in
530 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
531 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
532 DW_AT_ranges_base *would* have to be applied, and we'd have to care
533 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
534 ULONGEST ranges_base = 0;
535
536 /* When reading debug info generated by older versions of rustc, we
537 have to rewrite some union types to be struct types with a
538 variant part. This rewriting must be done after the CU is fully
539 read in, because otherwise at the point of rewriting some struct
540 type might not have been fully processed. So, we keep a list of
541 all such types here and process them after expansion. */
542 std::vector<struct type *> rust_unions;
543
544 /* Mark used when releasing cached dies. */
545 bool mark : 1;
546
547 /* This CU references .debug_loc. See the symtab->locations_valid field.
548 This test is imperfect as there may exist optimized debug code not using
549 any location list and still facing inlining issues if handled as
550 unoptimized code. For a future better test see GCC PR other/32998. */
551 bool has_loclist : 1;
552
553 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
554 if all the producer_is_* fields are valid. This information is cached
555 because profiling CU expansion showed excessive time spent in
556 producer_is_gxx_lt_4_6. */
557 bool checked_producer : 1;
558 bool producer_is_gxx_lt_4_6 : 1;
559 bool producer_is_gcc_lt_4_3 : 1;
560 bool producer_is_icc : 1;
561 bool producer_is_icc_lt_14 : 1;
562 bool producer_is_codewarrior : 1;
563
564 /* When true, the file that we're processing is known to have
565 debugging info for C++ namespaces. GCC 3.3.x did not produce
566 this information, but later versions do. */
567
568 bool processing_has_namespace_info : 1;
569
570 struct partial_die_info *find_partial_die (sect_offset sect_off);
571
572 /* If this CU was inherited by another CU (via specification,
573 abstract_origin, etc), this is the ancestor CU. */
574 dwarf2_cu *ancestor;
575
576 /* Get the buildsym_compunit for this CU. */
577 buildsym_compunit *get_builder ()
578 {
579 /* If this CU has a builder associated with it, use that. */
580 if (m_builder != nullptr)
581 return m_builder.get ();
582
583 /* Otherwise, search ancestors for a valid builder. */
584 if (ancestor != nullptr)
585 return ancestor->get_builder ();
586
587 return nullptr;
588 }
589 };
590
591 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
592 This includes type_unit_group and quick_file_names. */
593
594 struct stmt_list_hash
595 {
596 /* The DWO unit this table is from or NULL if there is none. */
597 struct dwo_unit *dwo_unit;
598
599 /* Offset in .debug_line or .debug_line.dwo. */
600 sect_offset line_sect_off;
601 };
602
603 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
604 an object of this type. */
605
606 struct type_unit_group
607 {
608 /* dwarf2read.c's main "handle" on a TU symtab.
609 To simplify things we create an artificial CU that "includes" all the
610 type units using this stmt_list so that the rest of the code still has
611 a "per_cu" handle on the symtab.
612 This PER_CU is recognized by having no section. */
613 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
614 struct dwarf2_per_cu_data per_cu;
615
616 /* The TUs that share this DW_AT_stmt_list entry.
617 This is added to while parsing type units to build partial symtabs,
618 and is deleted afterwards and not used again. */
619 VEC (sig_type_ptr) *tus;
620
621 /* The compunit symtab.
622 Type units in a group needn't all be defined in the same source file,
623 so we create an essentially anonymous symtab as the compunit symtab. */
624 struct compunit_symtab *compunit_symtab;
625
626 /* The data used to construct the hash key. */
627 struct stmt_list_hash hash;
628
629 /* The number of symtabs from the line header.
630 The value here must match line_header.num_file_names. */
631 unsigned int num_symtabs;
632
633 /* The symbol tables for this TU (obtained from the files listed in
634 DW_AT_stmt_list).
635 WARNING: The order of entries here must match the order of entries
636 in the line header. After the first TU using this type_unit_group, the
637 line header for the subsequent TUs is recreated from this. This is done
638 because we need to use the same symtabs for each TU using the same
639 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
640 there's no guarantee the line header doesn't have duplicate entries. */
641 struct symtab **symtabs;
642 };
643
644 /* These sections are what may appear in a (real or virtual) DWO file. */
645
646 struct dwo_sections
647 {
648 struct dwarf2_section_info abbrev;
649 struct dwarf2_section_info line;
650 struct dwarf2_section_info loc;
651 struct dwarf2_section_info loclists;
652 struct dwarf2_section_info macinfo;
653 struct dwarf2_section_info macro;
654 struct dwarf2_section_info str;
655 struct dwarf2_section_info str_offsets;
656 /* In the case of a virtual DWO file, these two are unused. */
657 struct dwarf2_section_info info;
658 std::vector<dwarf2_section_info> types;
659 };
660
661 /* CUs/TUs in DWP/DWO files. */
662
663 struct dwo_unit
664 {
665 /* Backlink to the containing struct dwo_file. */
666 struct dwo_file *dwo_file;
667
668 /* The "id" that distinguishes this CU/TU.
669 .debug_info calls this "dwo_id", .debug_types calls this "signature".
670 Since signatures came first, we stick with it for consistency. */
671 ULONGEST signature;
672
673 /* The section this CU/TU lives in, in the DWO file. */
674 struct dwarf2_section_info *section;
675
676 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
677 sect_offset sect_off;
678 unsigned int length;
679
680 /* For types, offset in the type's DIE of the type defined by this TU. */
681 cu_offset type_offset_in_tu;
682 };
683
684 /* include/dwarf2.h defines the DWP section codes.
685 It defines a max value but it doesn't define a min value, which we
686 use for error checking, so provide one. */
687
688 enum dwp_v2_section_ids
689 {
690 DW_SECT_MIN = 1
691 };
692
693 /* Data for one DWO file.
694
695 This includes virtual DWO files (a virtual DWO file is a DWO file as it
696 appears in a DWP file). DWP files don't really have DWO files per se -
697 comdat folding of types "loses" the DWO file they came from, and from
698 a high level view DWP files appear to contain a mass of random types.
699 However, to maintain consistency with the non-DWP case we pretend DWP
700 files contain virtual DWO files, and we assign each TU with one virtual
701 DWO file (generally based on the line and abbrev section offsets -
702 a heuristic that seems to work in practice). */
703
704 struct dwo_file
705 {
706 dwo_file () = default;
707 DISABLE_COPY_AND_ASSIGN (dwo_file);
708
709 /* The DW_AT_GNU_dwo_name attribute.
710 For virtual DWO files the name is constructed from the section offsets
711 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
712 from related CU+TUs. */
713 const char *dwo_name = nullptr;
714
715 /* The DW_AT_comp_dir attribute. */
716 const char *comp_dir = nullptr;
717
718 /* The bfd, when the file is open. Otherwise this is NULL.
719 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
720 gdb_bfd_ref_ptr dbfd;
721
722 /* The sections that make up this DWO file.
723 Remember that for virtual DWO files in DWP V2, these are virtual
724 sections (for lack of a better name). */
725 struct dwo_sections sections {};
726
727 /* The CUs in the file.
728 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
729 an extension to handle LLVM's Link Time Optimization output (where
730 multiple source files may be compiled into a single object/dwo pair). */
731 htab_t cus {};
732
733 /* Table of TUs in the file.
734 Each element is a struct dwo_unit. */
735 htab_t tus {};
736 };
737
738 /* These sections are what may appear in a DWP file. */
739
740 struct dwp_sections
741 {
742 /* These are used by both DWP version 1 and 2. */
743 struct dwarf2_section_info str;
744 struct dwarf2_section_info cu_index;
745 struct dwarf2_section_info tu_index;
746
747 /* These are only used by DWP version 2 files.
748 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
749 sections are referenced by section number, and are not recorded here.
750 In DWP version 2 there is at most one copy of all these sections, each
751 section being (effectively) comprised of the concatenation of all of the
752 individual sections that exist in the version 1 format.
753 To keep the code simple we treat each of these concatenated pieces as a
754 section itself (a virtual section?). */
755 struct dwarf2_section_info abbrev;
756 struct dwarf2_section_info info;
757 struct dwarf2_section_info line;
758 struct dwarf2_section_info loc;
759 struct dwarf2_section_info macinfo;
760 struct dwarf2_section_info macro;
761 struct dwarf2_section_info str_offsets;
762 struct dwarf2_section_info types;
763 };
764
765 /* These sections are what may appear in a virtual DWO file in DWP version 1.
766 A virtual DWO file is a DWO file as it appears in a DWP file. */
767
768 struct virtual_v1_dwo_sections
769 {
770 struct dwarf2_section_info abbrev;
771 struct dwarf2_section_info line;
772 struct dwarf2_section_info loc;
773 struct dwarf2_section_info macinfo;
774 struct dwarf2_section_info macro;
775 struct dwarf2_section_info str_offsets;
776 /* Each DWP hash table entry records one CU or one TU.
777 That is recorded here, and copied to dwo_unit.section. */
778 struct dwarf2_section_info info_or_types;
779 };
780
781 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
782 In version 2, the sections of the DWO files are concatenated together
783 and stored in one section of that name. Thus each ELF section contains
784 several "virtual" sections. */
785
786 struct virtual_v2_dwo_sections
787 {
788 bfd_size_type abbrev_offset;
789 bfd_size_type abbrev_size;
790
791 bfd_size_type line_offset;
792 bfd_size_type line_size;
793
794 bfd_size_type loc_offset;
795 bfd_size_type loc_size;
796
797 bfd_size_type macinfo_offset;
798 bfd_size_type macinfo_size;
799
800 bfd_size_type macro_offset;
801 bfd_size_type macro_size;
802
803 bfd_size_type str_offsets_offset;
804 bfd_size_type str_offsets_size;
805
806 /* Each DWP hash table entry records one CU or one TU.
807 That is recorded here, and copied to dwo_unit.section. */
808 bfd_size_type info_or_types_offset;
809 bfd_size_type info_or_types_size;
810 };
811
812 /* Contents of DWP hash tables. */
813
814 struct dwp_hash_table
815 {
816 uint32_t version, nr_columns;
817 uint32_t nr_units, nr_slots;
818 const gdb_byte *hash_table, *unit_table;
819 union
820 {
821 struct
822 {
823 const gdb_byte *indices;
824 } v1;
825 struct
826 {
827 /* This is indexed by column number and gives the id of the section
828 in that column. */
829 #define MAX_NR_V2_DWO_SECTIONS \
830 (1 /* .debug_info or .debug_types */ \
831 + 1 /* .debug_abbrev */ \
832 + 1 /* .debug_line */ \
833 + 1 /* .debug_loc */ \
834 + 1 /* .debug_str_offsets */ \
835 + 1 /* .debug_macro or .debug_macinfo */)
836 int section_ids[MAX_NR_V2_DWO_SECTIONS];
837 const gdb_byte *offsets;
838 const gdb_byte *sizes;
839 } v2;
840 } section_pool;
841 };
842
843 /* Data for one DWP file. */
844
845 struct dwp_file
846 {
847 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
848 : name (name_),
849 dbfd (std::move (abfd))
850 {
851 }
852
853 /* Name of the file. */
854 const char *name;
855
856 /* File format version. */
857 int version = 0;
858
859 /* The bfd. */
860 gdb_bfd_ref_ptr dbfd;
861
862 /* Section info for this file. */
863 struct dwp_sections sections {};
864
865 /* Table of CUs in the file. */
866 const struct dwp_hash_table *cus = nullptr;
867
868 /* Table of TUs in the file. */
869 const struct dwp_hash_table *tus = nullptr;
870
871 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
872 htab_t loaded_cus {};
873 htab_t loaded_tus {};
874
875 /* Table to map ELF section numbers to their sections.
876 This is only needed for the DWP V1 file format. */
877 unsigned int num_sections = 0;
878 asection **elf_sections = nullptr;
879 };
880
881 /* Struct used to pass misc. parameters to read_die_and_children, et
882 al. which are used for both .debug_info and .debug_types dies.
883 All parameters here are unchanging for the life of the call. This
884 struct exists to abstract away the constant parameters of die reading. */
885
886 struct die_reader_specs
887 {
888 /* The bfd of die_section. */
889 bfd* abfd;
890
891 /* The CU of the DIE we are parsing. */
892 struct dwarf2_cu *cu;
893
894 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
895 struct dwo_file *dwo_file;
896
897 /* The section the die comes from.
898 This is either .debug_info or .debug_types, or the .dwo variants. */
899 struct dwarf2_section_info *die_section;
900
901 /* die_section->buffer. */
902 const gdb_byte *buffer;
903
904 /* The end of the buffer. */
905 const gdb_byte *buffer_end;
906
907 /* The value of the DW_AT_comp_dir attribute. */
908 const char *comp_dir;
909
910 /* The abbreviation table to use when reading the DIEs. */
911 struct abbrev_table *abbrev_table;
912 };
913
914 /* Type of function passed to init_cutu_and_read_dies, et.al. */
915 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
916 const gdb_byte *info_ptr,
917 struct die_info *comp_unit_die,
918 int has_children,
919 void *data);
920
921 /* A 1-based directory index. This is a strong typedef to prevent
922 accidentally using a directory index as a 0-based index into an
923 array/vector. */
924 enum class dir_index : unsigned int {};
925
926 /* Likewise, a 1-based file name index. */
927 enum class file_name_index : unsigned int {};
928
929 struct file_entry
930 {
931 file_entry () = default;
932
933 file_entry (const char *name_, dir_index d_index_,
934 unsigned int mod_time_, unsigned int length_)
935 : name (name_),
936 d_index (d_index_),
937 mod_time (mod_time_),
938 length (length_)
939 {}
940
941 /* Return the include directory at D_INDEX stored in LH. Returns
942 NULL if D_INDEX is out of bounds. */
943 const char *include_dir (const line_header *lh) const;
944
945 /* The file name. Note this is an observing pointer. The memory is
946 owned by debug_line_buffer. */
947 const char *name {};
948
949 /* The directory index (1-based). */
950 dir_index d_index {};
951
952 unsigned int mod_time {};
953
954 unsigned int length {};
955
956 /* True if referenced by the Line Number Program. */
957 bool included_p {};
958
959 /* The associated symbol table, if any. */
960 struct symtab *symtab {};
961 };
962
963 /* The line number information for a compilation unit (found in the
964 .debug_line section) begins with a "statement program header",
965 which contains the following information. */
966 struct line_header
967 {
968 line_header ()
969 : offset_in_dwz {}
970 {}
971
972 /* Add an entry to the include directory table. */
973 void add_include_dir (const char *include_dir);
974
975 /* Add an entry to the file name table. */
976 void add_file_name (const char *name, dir_index d_index,
977 unsigned int mod_time, unsigned int length);
978
979 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
980 is out of bounds. */
981 const char *include_dir_at (dir_index index) const
982 {
983 /* Convert directory index number (1-based) to vector index
984 (0-based). */
985 size_t vec_index = to_underlying (index) - 1;
986
987 if (vec_index >= include_dirs.size ())
988 return NULL;
989 return include_dirs[vec_index];
990 }
991
992 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
993 is out of bounds. */
994 file_entry *file_name_at (file_name_index index)
995 {
996 /* Convert file name index number (1-based) to vector index
997 (0-based). */
998 size_t vec_index = to_underlying (index) - 1;
999
1000 if (vec_index >= file_names.size ())
1001 return NULL;
1002 return &file_names[vec_index];
1003 }
1004
1005 /* Offset of line number information in .debug_line section. */
1006 sect_offset sect_off {};
1007
1008 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1009 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1010
1011 unsigned int total_length {};
1012 unsigned short version {};
1013 unsigned int header_length {};
1014 unsigned char minimum_instruction_length {};
1015 unsigned char maximum_ops_per_instruction {};
1016 unsigned char default_is_stmt {};
1017 int line_base {};
1018 unsigned char line_range {};
1019 unsigned char opcode_base {};
1020
1021 /* standard_opcode_lengths[i] is the number of operands for the
1022 standard opcode whose value is i. This means that
1023 standard_opcode_lengths[0] is unused, and the last meaningful
1024 element is standard_opcode_lengths[opcode_base - 1]. */
1025 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1026
1027 /* The include_directories table. Note these are observing
1028 pointers. The memory is owned by debug_line_buffer. */
1029 std::vector<const char *> include_dirs;
1030
1031 /* The file_names table. */
1032 std::vector<file_entry> file_names;
1033
1034 /* The start and end of the statement program following this
1035 header. These point into dwarf2_per_objfile->line_buffer. */
1036 const gdb_byte *statement_program_start {}, *statement_program_end {};
1037 };
1038
1039 typedef std::unique_ptr<line_header> line_header_up;
1040
1041 const char *
1042 file_entry::include_dir (const line_header *lh) const
1043 {
1044 return lh->include_dir_at (d_index);
1045 }
1046
1047 /* When we construct a partial symbol table entry we only
1048 need this much information. */
1049 struct partial_die_info : public allocate_on_obstack
1050 {
1051 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1052
1053 /* Disable assign but still keep copy ctor, which is needed
1054 load_partial_dies. */
1055 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1056
1057 /* Adjust the partial die before generating a symbol for it. This
1058 function may set the is_external flag or change the DIE's
1059 name. */
1060 void fixup (struct dwarf2_cu *cu);
1061
1062 /* Read a minimal amount of information into the minimal die
1063 structure. */
1064 const gdb_byte *read (const struct die_reader_specs *reader,
1065 const struct abbrev_info &abbrev,
1066 const gdb_byte *info_ptr);
1067
1068 /* Offset of this DIE. */
1069 const sect_offset sect_off;
1070
1071 /* DWARF-2 tag for this DIE. */
1072 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1073
1074 /* Assorted flags describing the data found in this DIE. */
1075 const unsigned int has_children : 1;
1076
1077 unsigned int is_external : 1;
1078 unsigned int is_declaration : 1;
1079 unsigned int has_type : 1;
1080 unsigned int has_specification : 1;
1081 unsigned int has_pc_info : 1;
1082 unsigned int may_be_inlined : 1;
1083
1084 /* This DIE has been marked DW_AT_main_subprogram. */
1085 unsigned int main_subprogram : 1;
1086
1087 /* Flag set if the SCOPE field of this structure has been
1088 computed. */
1089 unsigned int scope_set : 1;
1090
1091 /* Flag set if the DIE has a byte_size attribute. */
1092 unsigned int has_byte_size : 1;
1093
1094 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1095 unsigned int has_const_value : 1;
1096
1097 /* Flag set if any of the DIE's children are template arguments. */
1098 unsigned int has_template_arguments : 1;
1099
1100 /* Flag set if fixup has been called on this die. */
1101 unsigned int fixup_called : 1;
1102
1103 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1104 unsigned int is_dwz : 1;
1105
1106 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1107 unsigned int spec_is_dwz : 1;
1108
1109 /* The name of this DIE. Normally the value of DW_AT_name, but
1110 sometimes a default name for unnamed DIEs. */
1111 const char *name = nullptr;
1112
1113 /* The linkage name, if present. */
1114 const char *linkage_name = nullptr;
1115
1116 /* The scope to prepend to our children. This is generally
1117 allocated on the comp_unit_obstack, so will disappear
1118 when this compilation unit leaves the cache. */
1119 const char *scope = nullptr;
1120
1121 /* Some data associated with the partial DIE. The tag determines
1122 which field is live. */
1123 union
1124 {
1125 /* The location description associated with this DIE, if any. */
1126 struct dwarf_block *locdesc;
1127 /* The offset of an import, for DW_TAG_imported_unit. */
1128 sect_offset sect_off;
1129 } d {};
1130
1131 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1132 CORE_ADDR lowpc = 0;
1133 CORE_ADDR highpc = 0;
1134
1135 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1136 DW_AT_sibling, if any. */
1137 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1138 could return DW_AT_sibling values to its caller load_partial_dies. */
1139 const gdb_byte *sibling = nullptr;
1140
1141 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1142 DW_AT_specification (or DW_AT_abstract_origin or
1143 DW_AT_extension). */
1144 sect_offset spec_offset {};
1145
1146 /* Pointers to this DIE's parent, first child, and next sibling,
1147 if any. */
1148 struct partial_die_info *die_parent = nullptr;
1149 struct partial_die_info *die_child = nullptr;
1150 struct partial_die_info *die_sibling = nullptr;
1151
1152 friend struct partial_die_info *
1153 dwarf2_cu::find_partial_die (sect_offset sect_off);
1154
1155 private:
1156 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1157 partial_die_info (sect_offset sect_off)
1158 : partial_die_info (sect_off, DW_TAG_padding, 0)
1159 {
1160 }
1161
1162 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1163 int has_children_)
1164 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1165 {
1166 is_external = 0;
1167 is_declaration = 0;
1168 has_type = 0;
1169 has_specification = 0;
1170 has_pc_info = 0;
1171 may_be_inlined = 0;
1172 main_subprogram = 0;
1173 scope_set = 0;
1174 has_byte_size = 0;
1175 has_const_value = 0;
1176 has_template_arguments = 0;
1177 fixup_called = 0;
1178 is_dwz = 0;
1179 spec_is_dwz = 0;
1180 }
1181 };
1182
1183 /* This data structure holds the information of an abbrev. */
1184 struct abbrev_info
1185 {
1186 unsigned int number; /* number identifying abbrev */
1187 enum dwarf_tag tag; /* dwarf tag */
1188 unsigned short has_children; /* boolean */
1189 unsigned short num_attrs; /* number of attributes */
1190 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1191 struct abbrev_info *next; /* next in chain */
1192 };
1193
1194 struct attr_abbrev
1195 {
1196 ENUM_BITFIELD(dwarf_attribute) name : 16;
1197 ENUM_BITFIELD(dwarf_form) form : 16;
1198
1199 /* It is valid only if FORM is DW_FORM_implicit_const. */
1200 LONGEST implicit_const;
1201 };
1202
1203 /* Size of abbrev_table.abbrev_hash_table. */
1204 #define ABBREV_HASH_SIZE 121
1205
1206 /* Top level data structure to contain an abbreviation table. */
1207
1208 struct abbrev_table
1209 {
1210 explicit abbrev_table (sect_offset off)
1211 : sect_off (off)
1212 {
1213 m_abbrevs =
1214 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1215 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1216 }
1217
1218 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1219
1220 /* Allocate space for a struct abbrev_info object in
1221 ABBREV_TABLE. */
1222 struct abbrev_info *alloc_abbrev ();
1223
1224 /* Add an abbreviation to the table. */
1225 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1226
1227 /* Look up an abbrev in the table.
1228 Returns NULL if the abbrev is not found. */
1229
1230 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1231
1232
1233 /* Where the abbrev table came from.
1234 This is used as a sanity check when the table is used. */
1235 const sect_offset sect_off;
1236
1237 /* Storage for the abbrev table. */
1238 auto_obstack abbrev_obstack;
1239
1240 private:
1241
1242 /* Hash table of abbrevs.
1243 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1244 It could be statically allocated, but the previous code didn't so we
1245 don't either. */
1246 struct abbrev_info **m_abbrevs;
1247 };
1248
1249 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1250
1251 /* Attributes have a name and a value. */
1252 struct attribute
1253 {
1254 ENUM_BITFIELD(dwarf_attribute) name : 16;
1255 ENUM_BITFIELD(dwarf_form) form : 15;
1256
1257 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1258 field should be in u.str (existing only for DW_STRING) but it is kept
1259 here for better struct attribute alignment. */
1260 unsigned int string_is_canonical : 1;
1261
1262 union
1263 {
1264 const char *str;
1265 struct dwarf_block *blk;
1266 ULONGEST unsnd;
1267 LONGEST snd;
1268 CORE_ADDR addr;
1269 ULONGEST signature;
1270 }
1271 u;
1272 };
1273
1274 /* This data structure holds a complete die structure. */
1275 struct die_info
1276 {
1277 /* DWARF-2 tag for this DIE. */
1278 ENUM_BITFIELD(dwarf_tag) tag : 16;
1279
1280 /* Number of attributes */
1281 unsigned char num_attrs;
1282
1283 /* True if we're presently building the full type name for the
1284 type derived from this DIE. */
1285 unsigned char building_fullname : 1;
1286
1287 /* True if this die is in process. PR 16581. */
1288 unsigned char in_process : 1;
1289
1290 /* Abbrev number */
1291 unsigned int abbrev;
1292
1293 /* Offset in .debug_info or .debug_types section. */
1294 sect_offset sect_off;
1295
1296 /* The dies in a compilation unit form an n-ary tree. PARENT
1297 points to this die's parent; CHILD points to the first child of
1298 this node; and all the children of a given node are chained
1299 together via their SIBLING fields. */
1300 struct die_info *child; /* Its first child, if any. */
1301 struct die_info *sibling; /* Its next sibling, if any. */
1302 struct die_info *parent; /* Its parent, if any. */
1303
1304 /* An array of attributes, with NUM_ATTRS elements. There may be
1305 zero, but it's not common and zero-sized arrays are not
1306 sufficiently portable C. */
1307 struct attribute attrs[1];
1308 };
1309
1310 /* Get at parts of an attribute structure. */
1311
1312 #define DW_STRING(attr) ((attr)->u.str)
1313 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1314 #define DW_UNSND(attr) ((attr)->u.unsnd)
1315 #define DW_BLOCK(attr) ((attr)->u.blk)
1316 #define DW_SND(attr) ((attr)->u.snd)
1317 #define DW_ADDR(attr) ((attr)->u.addr)
1318 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1319
1320 /* Blocks are a bunch of untyped bytes. */
1321 struct dwarf_block
1322 {
1323 size_t size;
1324
1325 /* Valid only if SIZE is not zero. */
1326 const gdb_byte *data;
1327 };
1328
1329 #ifndef ATTR_ALLOC_CHUNK
1330 #define ATTR_ALLOC_CHUNK 4
1331 #endif
1332
1333 /* Allocate fields for structs, unions and enums in this size. */
1334 #ifndef DW_FIELD_ALLOC_CHUNK
1335 #define DW_FIELD_ALLOC_CHUNK 4
1336 #endif
1337
1338 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1339 but this would require a corresponding change in unpack_field_as_long
1340 and friends. */
1341 static int bits_per_byte = 8;
1342
1343 /* When reading a variant or variant part, we track a bit more
1344 information about the field, and store it in an object of this
1345 type. */
1346
1347 struct variant_field
1348 {
1349 /* If we see a DW_TAG_variant, then this will be the discriminant
1350 value. */
1351 ULONGEST discriminant_value;
1352 /* If we see a DW_TAG_variant, then this will be set if this is the
1353 default branch. */
1354 bool default_branch;
1355 /* While reading a DW_TAG_variant_part, this will be set if this
1356 field is the discriminant. */
1357 bool is_discriminant;
1358 };
1359
1360 struct nextfield
1361 {
1362 int accessibility = 0;
1363 int virtuality = 0;
1364 /* Extra information to describe a variant or variant part. */
1365 struct variant_field variant {};
1366 struct field field {};
1367 };
1368
1369 struct fnfieldlist
1370 {
1371 const char *name = nullptr;
1372 std::vector<struct fn_field> fnfields;
1373 };
1374
1375 /* The routines that read and process dies for a C struct or C++ class
1376 pass lists of data member fields and lists of member function fields
1377 in an instance of a field_info structure, as defined below. */
1378 struct field_info
1379 {
1380 /* List of data member and baseclasses fields. */
1381 std::vector<struct nextfield> fields;
1382 std::vector<struct nextfield> baseclasses;
1383
1384 /* Number of fields (including baseclasses). */
1385 int nfields = 0;
1386
1387 /* Set if the accesibility of one of the fields is not public. */
1388 int non_public_fields = 0;
1389
1390 /* Member function fieldlist array, contains name of possibly overloaded
1391 member function, number of overloaded member functions and a pointer
1392 to the head of the member function field chain. */
1393 std::vector<struct fnfieldlist> fnfieldlists;
1394
1395 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1396 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1397 std::vector<struct decl_field> typedef_field_list;
1398
1399 /* Nested types defined by this class and the number of elements in this
1400 list. */
1401 std::vector<struct decl_field> nested_types_list;
1402 };
1403
1404 /* One item on the queue of compilation units to read in full symbols
1405 for. */
1406 struct dwarf2_queue_item
1407 {
1408 struct dwarf2_per_cu_data *per_cu;
1409 enum language pretend_language;
1410 struct dwarf2_queue_item *next;
1411 };
1412
1413 /* The current queue. */
1414 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1415
1416 /* Loaded secondary compilation units are kept in memory until they
1417 have not been referenced for the processing of this many
1418 compilation units. Set this to zero to disable caching. Cache
1419 sizes of up to at least twenty will improve startup time for
1420 typical inter-CU-reference binaries, at an obvious memory cost. */
1421 static int dwarf_max_cache_age = 5;
1422 static void
1423 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1424 struct cmd_list_element *c, const char *value)
1425 {
1426 fprintf_filtered (file, _("The upper bound on the age of cached "
1427 "DWARF compilation units is %s.\n"),
1428 value);
1429 }
1430 \f
1431 /* local function prototypes */
1432
1433 static const char *get_section_name (const struct dwarf2_section_info *);
1434
1435 static const char *get_section_file_name (const struct dwarf2_section_info *);
1436
1437 static void dwarf2_find_base_address (struct die_info *die,
1438 struct dwarf2_cu *cu);
1439
1440 static struct partial_symtab *create_partial_symtab
1441 (struct dwarf2_per_cu_data *per_cu, const char *name);
1442
1443 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1444 const gdb_byte *info_ptr,
1445 struct die_info *type_unit_die,
1446 int has_children, void *data);
1447
1448 static void dwarf2_build_psymtabs_hard
1449 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1450
1451 static void scan_partial_symbols (struct partial_die_info *,
1452 CORE_ADDR *, CORE_ADDR *,
1453 int, struct dwarf2_cu *);
1454
1455 static void add_partial_symbol (struct partial_die_info *,
1456 struct dwarf2_cu *);
1457
1458 static void add_partial_namespace (struct partial_die_info *pdi,
1459 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1460 int set_addrmap, struct dwarf2_cu *cu);
1461
1462 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1463 CORE_ADDR *highpc, int set_addrmap,
1464 struct dwarf2_cu *cu);
1465
1466 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1467 struct dwarf2_cu *cu);
1468
1469 static void add_partial_subprogram (struct partial_die_info *pdi,
1470 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1471 int need_pc, struct dwarf2_cu *cu);
1472
1473 static void dwarf2_read_symtab (struct partial_symtab *,
1474 struct objfile *);
1475
1476 static void psymtab_to_symtab_1 (struct partial_symtab *);
1477
1478 static abbrev_table_up abbrev_table_read_table
1479 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1480 sect_offset);
1481
1482 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1483
1484 static struct partial_die_info *load_partial_dies
1485 (const struct die_reader_specs *, const gdb_byte *, int);
1486
1487 /* A pair of partial_die_info and compilation unit. */
1488 struct cu_partial_die_info
1489 {
1490 /* The compilation unit of the partial_die_info. */
1491 struct dwarf2_cu *cu;
1492 /* A partial_die_info. */
1493 struct partial_die_info *pdi;
1494
1495 cu_partial_die_info (struct dwarf2_cu *cu, struct partial_die_info *pdi)
1496 : cu (cu),
1497 pdi (pdi)
1498 { /* Nothhing. */ }
1499
1500 private:
1501 cu_partial_die_info () = delete;
1502 };
1503
1504 static const struct cu_partial_die_info find_partial_die (sect_offset, int,
1505 struct dwarf2_cu *);
1506
1507 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1508 struct attribute *, struct attr_abbrev *,
1509 const gdb_byte *);
1510
1511 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1512
1513 static int read_1_signed_byte (bfd *, const gdb_byte *);
1514
1515 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1516
1517 /* Read the next three bytes (little-endian order) as an unsigned integer. */
1518 static unsigned int read_3_bytes (bfd *, const gdb_byte *);
1519
1520 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1521
1522 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1523
1524 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1525 unsigned int *);
1526
1527 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1528
1529 static LONGEST read_checked_initial_length_and_offset
1530 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1531 unsigned int *, unsigned int *);
1532
1533 static LONGEST read_offset (bfd *, const gdb_byte *,
1534 const struct comp_unit_head *,
1535 unsigned int *);
1536
1537 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1538
1539 static sect_offset read_abbrev_offset
1540 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1541 struct dwarf2_section_info *, sect_offset);
1542
1543 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1544
1545 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1546
1547 static const char *read_indirect_string
1548 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1549 const struct comp_unit_head *, unsigned int *);
1550
1551 static const char *read_indirect_line_string
1552 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1553 const struct comp_unit_head *, unsigned int *);
1554
1555 static const char *read_indirect_string_at_offset
1556 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1557 LONGEST str_offset);
1558
1559 static const char *read_indirect_string_from_dwz
1560 (struct objfile *objfile, struct dwz_file *, LONGEST);
1561
1562 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1563
1564 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1565 const gdb_byte *,
1566 unsigned int *);
1567
1568 static const char *read_str_index (const struct die_reader_specs *reader,
1569 ULONGEST str_index);
1570
1571 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1572
1573 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1574 struct dwarf2_cu *);
1575
1576 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1577 unsigned int);
1578
1579 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1580 struct dwarf2_cu *cu);
1581
1582 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1583 struct dwarf2_cu *cu);
1584
1585 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1586
1587 static struct die_info *die_specification (struct die_info *die,
1588 struct dwarf2_cu **);
1589
1590 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1591 struct dwarf2_cu *cu);
1592
1593 static void dwarf_decode_lines (struct line_header *, const char *,
1594 struct dwarf2_cu *, struct partial_symtab *,
1595 CORE_ADDR, int decode_mapping);
1596
1597 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1598 const char *);
1599
1600 static struct symbol *new_symbol (struct die_info *, struct type *,
1601 struct dwarf2_cu *, struct symbol * = NULL);
1602
1603 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1604 struct dwarf2_cu *);
1605
1606 static void dwarf2_const_value_attr (const struct attribute *attr,
1607 struct type *type,
1608 const char *name,
1609 struct obstack *obstack,
1610 struct dwarf2_cu *cu, LONGEST *value,
1611 const gdb_byte **bytes,
1612 struct dwarf2_locexpr_baton **baton);
1613
1614 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1615
1616 static int need_gnat_info (struct dwarf2_cu *);
1617
1618 static struct type *die_descriptive_type (struct die_info *,
1619 struct dwarf2_cu *);
1620
1621 static void set_descriptive_type (struct type *, struct die_info *,
1622 struct dwarf2_cu *);
1623
1624 static struct type *die_containing_type (struct die_info *,
1625 struct dwarf2_cu *);
1626
1627 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1628 struct dwarf2_cu *);
1629
1630 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1631
1632 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1633
1634 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1635
1636 static char *typename_concat (struct obstack *obs, const char *prefix,
1637 const char *suffix, int physname,
1638 struct dwarf2_cu *cu);
1639
1640 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1641
1642 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1643
1644 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1645
1646 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1647
1648 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1649
1650 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1651
1652 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1653 struct dwarf2_cu *, struct partial_symtab *);
1654
1655 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1656 values. Keep the items ordered with increasing constraints compliance. */
1657 enum pc_bounds_kind
1658 {
1659 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1660 PC_BOUNDS_NOT_PRESENT,
1661
1662 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1663 were present but they do not form a valid range of PC addresses. */
1664 PC_BOUNDS_INVALID,
1665
1666 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1667 PC_BOUNDS_RANGES,
1668
1669 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1670 PC_BOUNDS_HIGH_LOW,
1671 };
1672
1673 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1674 CORE_ADDR *, CORE_ADDR *,
1675 struct dwarf2_cu *,
1676 struct partial_symtab *);
1677
1678 static void get_scope_pc_bounds (struct die_info *,
1679 CORE_ADDR *, CORE_ADDR *,
1680 struct dwarf2_cu *);
1681
1682 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1683 CORE_ADDR, struct dwarf2_cu *);
1684
1685 static void dwarf2_add_field (struct field_info *, struct die_info *,
1686 struct dwarf2_cu *);
1687
1688 static void dwarf2_attach_fields_to_type (struct field_info *,
1689 struct type *, struct dwarf2_cu *);
1690
1691 static void dwarf2_add_member_fn (struct field_info *,
1692 struct die_info *, struct type *,
1693 struct dwarf2_cu *);
1694
1695 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1696 struct type *,
1697 struct dwarf2_cu *);
1698
1699 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1700
1701 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1702
1703 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1704
1705 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1706
1707 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1708
1709 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1710
1711 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1712
1713 static struct type *read_module_type (struct die_info *die,
1714 struct dwarf2_cu *cu);
1715
1716 static const char *namespace_name (struct die_info *die,
1717 int *is_anonymous, struct dwarf2_cu *);
1718
1719 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1720
1721 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1722
1723 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1724 struct dwarf2_cu *);
1725
1726 static struct die_info *read_die_and_siblings_1
1727 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1728 struct die_info *);
1729
1730 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1731 const gdb_byte *info_ptr,
1732 const gdb_byte **new_info_ptr,
1733 struct die_info *parent);
1734
1735 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1736 struct die_info **, const gdb_byte *,
1737 int *, int);
1738
1739 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1740 struct die_info **, const gdb_byte *,
1741 int *);
1742
1743 static void process_die (struct die_info *, struct dwarf2_cu *);
1744
1745 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1746 struct obstack *);
1747
1748 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1749
1750 static const char *dwarf2_full_name (const char *name,
1751 struct die_info *die,
1752 struct dwarf2_cu *cu);
1753
1754 static const char *dwarf2_physname (const char *name, struct die_info *die,
1755 struct dwarf2_cu *cu);
1756
1757 static struct die_info *dwarf2_extension (struct die_info *die,
1758 struct dwarf2_cu **);
1759
1760 static const char *dwarf_tag_name (unsigned int);
1761
1762 static const char *dwarf_attr_name (unsigned int);
1763
1764 static const char *dwarf_form_name (unsigned int);
1765
1766 static const char *dwarf_bool_name (unsigned int);
1767
1768 static const char *dwarf_type_encoding_name (unsigned int);
1769
1770 static struct die_info *sibling_die (struct die_info *);
1771
1772 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1773
1774 static void dump_die_for_error (struct die_info *);
1775
1776 static void dump_die_1 (struct ui_file *, int level, int max_level,
1777 struct die_info *);
1778
1779 /*static*/ void dump_die (struct die_info *, int max_level);
1780
1781 static void store_in_ref_table (struct die_info *,
1782 struct dwarf2_cu *);
1783
1784 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1785
1786 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1787
1788 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1789 const struct attribute *,
1790 struct dwarf2_cu **);
1791
1792 static struct die_info *follow_die_ref (struct die_info *,
1793 const struct attribute *,
1794 struct dwarf2_cu **);
1795
1796 static struct die_info *follow_die_sig (struct die_info *,
1797 const struct attribute *,
1798 struct dwarf2_cu **);
1799
1800 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1801 struct dwarf2_cu *);
1802
1803 static struct type *get_DW_AT_signature_type (struct die_info *,
1804 const struct attribute *,
1805 struct dwarf2_cu *);
1806
1807 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1808
1809 static void read_signatured_type (struct signatured_type *);
1810
1811 static int attr_to_dynamic_prop (const struct attribute *attr,
1812 struct die_info *die, struct dwarf2_cu *cu,
1813 struct dynamic_prop *prop);
1814
1815 /* memory allocation interface */
1816
1817 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1818
1819 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1820
1821 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1822
1823 static int attr_form_is_block (const struct attribute *);
1824
1825 static int attr_form_is_section_offset (const struct attribute *);
1826
1827 static int attr_form_is_constant (const struct attribute *);
1828
1829 static int attr_form_is_ref (const struct attribute *);
1830
1831 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1832 struct dwarf2_loclist_baton *baton,
1833 const struct attribute *attr);
1834
1835 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1836 struct symbol *sym,
1837 struct dwarf2_cu *cu,
1838 int is_block);
1839
1840 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1841 const gdb_byte *info_ptr,
1842 struct abbrev_info *abbrev);
1843
1844 static hashval_t partial_die_hash (const void *item);
1845
1846 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1847
1848 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1849 (sect_offset sect_off, unsigned int offset_in_dwz,
1850 struct dwarf2_per_objfile *dwarf2_per_objfile);
1851
1852 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1853 struct die_info *comp_unit_die,
1854 enum language pretend_language);
1855
1856 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1857
1858 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1859
1860 static struct type *set_die_type (struct die_info *, struct type *,
1861 struct dwarf2_cu *);
1862
1863 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1864
1865 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1866
1867 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1868 enum language);
1869
1870 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1871 enum language);
1872
1873 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1874 enum language);
1875
1876 static void dwarf2_add_dependence (struct dwarf2_cu *,
1877 struct dwarf2_per_cu_data *);
1878
1879 static void dwarf2_mark (struct dwarf2_cu *);
1880
1881 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1882
1883 static struct type *get_die_type_at_offset (sect_offset,
1884 struct dwarf2_per_cu_data *);
1885
1886 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1887
1888 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1889 enum language pretend_language);
1890
1891 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1892
1893 /* Class, the destructor of which frees all allocated queue entries. This
1894 will only have work to do if an error was thrown while processing the
1895 dwarf. If no error was thrown then the queue entries should have all
1896 been processed, and freed, as we went along. */
1897
1898 class dwarf2_queue_guard
1899 {
1900 public:
1901 dwarf2_queue_guard () = default;
1902
1903 /* Free any entries remaining on the queue. There should only be
1904 entries left if we hit an error while processing the dwarf. */
1905 ~dwarf2_queue_guard ()
1906 {
1907 struct dwarf2_queue_item *item, *last;
1908
1909 item = dwarf2_queue;
1910 while (item)
1911 {
1912 /* Anything still marked queued is likely to be in an
1913 inconsistent state, so discard it. */
1914 if (item->per_cu->queued)
1915 {
1916 if (item->per_cu->cu != NULL)
1917 free_one_cached_comp_unit (item->per_cu);
1918 item->per_cu->queued = 0;
1919 }
1920
1921 last = item;
1922 item = item->next;
1923 xfree (last);
1924 }
1925
1926 dwarf2_queue = dwarf2_queue_tail = NULL;
1927 }
1928 };
1929
1930 /* The return type of find_file_and_directory. Note, the enclosed
1931 string pointers are only valid while this object is valid. */
1932
1933 struct file_and_directory
1934 {
1935 /* The filename. This is never NULL. */
1936 const char *name;
1937
1938 /* The compilation directory. NULL if not known. If we needed to
1939 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1940 points directly to the DW_AT_comp_dir string attribute owned by
1941 the obstack that owns the DIE. */
1942 const char *comp_dir;
1943
1944 /* If we needed to build a new string for comp_dir, this is what
1945 owns the storage. */
1946 std::string comp_dir_storage;
1947 };
1948
1949 static file_and_directory find_file_and_directory (struct die_info *die,
1950 struct dwarf2_cu *cu);
1951
1952 static char *file_full_name (int file, struct line_header *lh,
1953 const char *comp_dir);
1954
1955 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1956 enum class rcuh_kind { COMPILE, TYPE };
1957
1958 static const gdb_byte *read_and_check_comp_unit_head
1959 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1960 struct comp_unit_head *header,
1961 struct dwarf2_section_info *section,
1962 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1963 rcuh_kind section_kind);
1964
1965 static void init_cutu_and_read_dies
1966 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1967 int use_existing_cu, int keep, bool skip_partial,
1968 die_reader_func_ftype *die_reader_func, void *data);
1969
1970 static void init_cutu_and_read_dies_simple
1971 (struct dwarf2_per_cu_data *this_cu,
1972 die_reader_func_ftype *die_reader_func, void *data);
1973
1974 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1975
1976 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1977
1978 static struct dwo_unit *lookup_dwo_unit_in_dwp
1979 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1980 struct dwp_file *dwp_file, const char *comp_dir,
1981 ULONGEST signature, int is_debug_types);
1982
1983 static struct dwp_file *get_dwp_file
1984 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1985
1986 static struct dwo_unit *lookup_dwo_comp_unit
1987 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1988
1989 static struct dwo_unit *lookup_dwo_type_unit
1990 (struct signatured_type *, const char *, const char *);
1991
1992 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1993
1994 /* A unique pointer to a dwo_file. */
1995
1996 typedef std::unique_ptr<struct dwo_file> dwo_file_up;
1997
1998 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
1999
2000 static void check_producer (struct dwarf2_cu *cu);
2001
2002 static void free_line_header_voidp (void *arg);
2003 \f
2004 /* Various complaints about symbol reading that don't abort the process. */
2005
2006 static void
2007 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2008 {
2009 complaint (_("statement list doesn't fit in .debug_line section"));
2010 }
2011
2012 static void
2013 dwarf2_debug_line_missing_file_complaint (void)
2014 {
2015 complaint (_(".debug_line section has line data without a file"));
2016 }
2017
2018 static void
2019 dwarf2_debug_line_missing_end_sequence_complaint (void)
2020 {
2021 complaint (_(".debug_line section has line "
2022 "program sequence without an end"));
2023 }
2024
2025 static void
2026 dwarf2_complex_location_expr_complaint (void)
2027 {
2028 complaint (_("location expression too complex"));
2029 }
2030
2031 static void
2032 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2033 int arg3)
2034 {
2035 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2036 arg1, arg2, arg3);
2037 }
2038
2039 static void
2040 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2041 {
2042 complaint (_("debug info runs off end of %s section"
2043 " [in module %s]"),
2044 get_section_name (section),
2045 get_section_file_name (section));
2046 }
2047
2048 static void
2049 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2050 {
2051 complaint (_("macro debug info contains a "
2052 "malformed macro definition:\n`%s'"),
2053 arg1);
2054 }
2055
2056 static void
2057 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2058 {
2059 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2060 arg1, arg2);
2061 }
2062
2063 /* Hash function for line_header_hash. */
2064
2065 static hashval_t
2066 line_header_hash (const struct line_header *ofs)
2067 {
2068 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2069 }
2070
2071 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2072
2073 static hashval_t
2074 line_header_hash_voidp (const void *item)
2075 {
2076 const struct line_header *ofs = (const struct line_header *) item;
2077
2078 return line_header_hash (ofs);
2079 }
2080
2081 /* Equality function for line_header_hash. */
2082
2083 static int
2084 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2085 {
2086 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2087 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2088
2089 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2090 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2091 }
2092
2093 \f
2094
2095 /* Read the given attribute value as an address, taking the attribute's
2096 form into account. */
2097
2098 static CORE_ADDR
2099 attr_value_as_address (struct attribute *attr)
2100 {
2101 CORE_ADDR addr;
2102
2103 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_addrx
2104 && attr->form != DW_FORM_GNU_addr_index)
2105 {
2106 /* Aside from a few clearly defined exceptions, attributes that
2107 contain an address must always be in DW_FORM_addr form.
2108 Unfortunately, some compilers happen to be violating this
2109 requirement by encoding addresses using other forms, such
2110 as DW_FORM_data4 for example. For those broken compilers,
2111 we try to do our best, without any guarantee of success,
2112 to interpret the address correctly. It would also be nice
2113 to generate a complaint, but that would require us to maintain
2114 a list of legitimate cases where a non-address form is allowed,
2115 as well as update callers to pass in at least the CU's DWARF
2116 version. This is more overhead than what we're willing to
2117 expand for a pretty rare case. */
2118 addr = DW_UNSND (attr);
2119 }
2120 else
2121 addr = DW_ADDR (attr);
2122
2123 return addr;
2124 }
2125
2126 /* See declaration. */
2127
2128 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2129 const dwarf2_debug_sections *names)
2130 : objfile (objfile_)
2131 {
2132 if (names == NULL)
2133 names = &dwarf2_elf_names;
2134
2135 bfd *obfd = objfile->obfd;
2136
2137 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2138 locate_sections (obfd, sec, *names);
2139 }
2140
2141 dwarf2_per_objfile::~dwarf2_per_objfile ()
2142 {
2143 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2144 free_cached_comp_units ();
2145
2146 if (quick_file_names_table)
2147 htab_delete (quick_file_names_table);
2148
2149 if (line_header_hash)
2150 htab_delete (line_header_hash);
2151
2152 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2153 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2154
2155 for (signatured_type *sig_type : all_type_units)
2156 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2157
2158 /* Everything else should be on the objfile obstack. */
2159 }
2160
2161 /* See declaration. */
2162
2163 void
2164 dwarf2_per_objfile::free_cached_comp_units ()
2165 {
2166 dwarf2_per_cu_data *per_cu = read_in_chain;
2167 dwarf2_per_cu_data **last_chain = &read_in_chain;
2168 while (per_cu != NULL)
2169 {
2170 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2171
2172 delete per_cu->cu;
2173 *last_chain = next_cu;
2174 per_cu = next_cu;
2175 }
2176 }
2177
2178 /* A helper class that calls free_cached_comp_units on
2179 destruction. */
2180
2181 class free_cached_comp_units
2182 {
2183 public:
2184
2185 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2186 : m_per_objfile (per_objfile)
2187 {
2188 }
2189
2190 ~free_cached_comp_units ()
2191 {
2192 m_per_objfile->free_cached_comp_units ();
2193 }
2194
2195 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2196
2197 private:
2198
2199 dwarf2_per_objfile *m_per_objfile;
2200 };
2201
2202 /* Try to locate the sections we need for DWARF 2 debugging
2203 information and return true if we have enough to do something.
2204 NAMES points to the dwarf2 section names, or is NULL if the standard
2205 ELF names are used. */
2206
2207 int
2208 dwarf2_has_info (struct objfile *objfile,
2209 const struct dwarf2_debug_sections *names)
2210 {
2211 if (objfile->flags & OBJF_READNEVER)
2212 return 0;
2213
2214 struct dwarf2_per_objfile *dwarf2_per_objfile
2215 = get_dwarf2_per_objfile (objfile);
2216
2217 if (dwarf2_per_objfile == NULL)
2218 dwarf2_per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile,
2219 names);
2220
2221 return (!dwarf2_per_objfile->info.is_virtual
2222 && dwarf2_per_objfile->info.s.section != NULL
2223 && !dwarf2_per_objfile->abbrev.is_virtual
2224 && dwarf2_per_objfile->abbrev.s.section != NULL);
2225 }
2226
2227 /* Return the containing section of virtual section SECTION. */
2228
2229 static struct dwarf2_section_info *
2230 get_containing_section (const struct dwarf2_section_info *section)
2231 {
2232 gdb_assert (section->is_virtual);
2233 return section->s.containing_section;
2234 }
2235
2236 /* Return the bfd owner of SECTION. */
2237
2238 static struct bfd *
2239 get_section_bfd_owner (const struct dwarf2_section_info *section)
2240 {
2241 if (section->is_virtual)
2242 {
2243 section = get_containing_section (section);
2244 gdb_assert (!section->is_virtual);
2245 }
2246 return section->s.section->owner;
2247 }
2248
2249 /* Return the bfd section of SECTION.
2250 Returns NULL if the section is not present. */
2251
2252 static asection *
2253 get_section_bfd_section (const struct dwarf2_section_info *section)
2254 {
2255 if (section->is_virtual)
2256 {
2257 section = get_containing_section (section);
2258 gdb_assert (!section->is_virtual);
2259 }
2260 return section->s.section;
2261 }
2262
2263 /* Return the name of SECTION. */
2264
2265 static const char *
2266 get_section_name (const struct dwarf2_section_info *section)
2267 {
2268 asection *sectp = get_section_bfd_section (section);
2269
2270 gdb_assert (sectp != NULL);
2271 return bfd_section_name (get_section_bfd_owner (section), sectp);
2272 }
2273
2274 /* Return the name of the file SECTION is in. */
2275
2276 static const char *
2277 get_section_file_name (const struct dwarf2_section_info *section)
2278 {
2279 bfd *abfd = get_section_bfd_owner (section);
2280
2281 return bfd_get_filename (abfd);
2282 }
2283
2284 /* Return the id of SECTION.
2285 Returns 0 if SECTION doesn't exist. */
2286
2287 static int
2288 get_section_id (const struct dwarf2_section_info *section)
2289 {
2290 asection *sectp = get_section_bfd_section (section);
2291
2292 if (sectp == NULL)
2293 return 0;
2294 return sectp->id;
2295 }
2296
2297 /* Return the flags of SECTION.
2298 SECTION (or containing section if this is a virtual section) must exist. */
2299
2300 static int
2301 get_section_flags (const struct dwarf2_section_info *section)
2302 {
2303 asection *sectp = get_section_bfd_section (section);
2304
2305 gdb_assert (sectp != NULL);
2306 return bfd_get_section_flags (sectp->owner, sectp);
2307 }
2308
2309 /* When loading sections, we look either for uncompressed section or for
2310 compressed section names. */
2311
2312 static int
2313 section_is_p (const char *section_name,
2314 const struct dwarf2_section_names *names)
2315 {
2316 if (names->normal != NULL
2317 && strcmp (section_name, names->normal) == 0)
2318 return 1;
2319 if (names->compressed != NULL
2320 && strcmp (section_name, names->compressed) == 0)
2321 return 1;
2322 return 0;
2323 }
2324
2325 /* See declaration. */
2326
2327 void
2328 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2329 const dwarf2_debug_sections &names)
2330 {
2331 flagword aflag = bfd_get_section_flags (abfd, sectp);
2332
2333 if ((aflag & SEC_HAS_CONTENTS) == 0)
2334 {
2335 }
2336 else if (section_is_p (sectp->name, &names.info))
2337 {
2338 this->info.s.section = sectp;
2339 this->info.size = bfd_get_section_size (sectp);
2340 }
2341 else if (section_is_p (sectp->name, &names.abbrev))
2342 {
2343 this->abbrev.s.section = sectp;
2344 this->abbrev.size = bfd_get_section_size (sectp);
2345 }
2346 else if (section_is_p (sectp->name, &names.line))
2347 {
2348 this->line.s.section = sectp;
2349 this->line.size = bfd_get_section_size (sectp);
2350 }
2351 else if (section_is_p (sectp->name, &names.loc))
2352 {
2353 this->loc.s.section = sectp;
2354 this->loc.size = bfd_get_section_size (sectp);
2355 }
2356 else if (section_is_p (sectp->name, &names.loclists))
2357 {
2358 this->loclists.s.section = sectp;
2359 this->loclists.size = bfd_get_section_size (sectp);
2360 }
2361 else if (section_is_p (sectp->name, &names.macinfo))
2362 {
2363 this->macinfo.s.section = sectp;
2364 this->macinfo.size = bfd_get_section_size (sectp);
2365 }
2366 else if (section_is_p (sectp->name, &names.macro))
2367 {
2368 this->macro.s.section = sectp;
2369 this->macro.size = bfd_get_section_size (sectp);
2370 }
2371 else if (section_is_p (sectp->name, &names.str))
2372 {
2373 this->str.s.section = sectp;
2374 this->str.size = bfd_get_section_size (sectp);
2375 }
2376 else if (section_is_p (sectp->name, &names.line_str))
2377 {
2378 this->line_str.s.section = sectp;
2379 this->line_str.size = bfd_get_section_size (sectp);
2380 }
2381 else if (section_is_p (sectp->name, &names.addr))
2382 {
2383 this->addr.s.section = sectp;
2384 this->addr.size = bfd_get_section_size (sectp);
2385 }
2386 else if (section_is_p (sectp->name, &names.frame))
2387 {
2388 this->frame.s.section = sectp;
2389 this->frame.size = bfd_get_section_size (sectp);
2390 }
2391 else if (section_is_p (sectp->name, &names.eh_frame))
2392 {
2393 this->eh_frame.s.section = sectp;
2394 this->eh_frame.size = bfd_get_section_size (sectp);
2395 }
2396 else if (section_is_p (sectp->name, &names.ranges))
2397 {
2398 this->ranges.s.section = sectp;
2399 this->ranges.size = bfd_get_section_size (sectp);
2400 }
2401 else if (section_is_p (sectp->name, &names.rnglists))
2402 {
2403 this->rnglists.s.section = sectp;
2404 this->rnglists.size = bfd_get_section_size (sectp);
2405 }
2406 else if (section_is_p (sectp->name, &names.types))
2407 {
2408 struct dwarf2_section_info type_section;
2409
2410 memset (&type_section, 0, sizeof (type_section));
2411 type_section.s.section = sectp;
2412 type_section.size = bfd_get_section_size (sectp);
2413
2414 this->types.push_back (type_section);
2415 }
2416 else if (section_is_p (sectp->name, &names.gdb_index))
2417 {
2418 this->gdb_index.s.section = sectp;
2419 this->gdb_index.size = bfd_get_section_size (sectp);
2420 }
2421 else if (section_is_p (sectp->name, &names.debug_names))
2422 {
2423 this->debug_names.s.section = sectp;
2424 this->debug_names.size = bfd_get_section_size (sectp);
2425 }
2426 else if (section_is_p (sectp->name, &names.debug_aranges))
2427 {
2428 this->debug_aranges.s.section = sectp;
2429 this->debug_aranges.size = bfd_get_section_size (sectp);
2430 }
2431
2432 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2433 && bfd_section_vma (abfd, sectp) == 0)
2434 this->has_section_at_zero = true;
2435 }
2436
2437 /* A helper function that decides whether a section is empty,
2438 or not present. */
2439
2440 static int
2441 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2442 {
2443 if (section->is_virtual)
2444 return section->size == 0;
2445 return section->s.section == NULL || section->size == 0;
2446 }
2447
2448 /* See dwarf2read.h. */
2449
2450 void
2451 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2452 {
2453 asection *sectp;
2454 bfd *abfd;
2455 gdb_byte *buf, *retbuf;
2456
2457 if (info->readin)
2458 return;
2459 info->buffer = NULL;
2460 info->readin = true;
2461
2462 if (dwarf2_section_empty_p (info))
2463 return;
2464
2465 sectp = get_section_bfd_section (info);
2466
2467 /* If this is a virtual section we need to read in the real one first. */
2468 if (info->is_virtual)
2469 {
2470 struct dwarf2_section_info *containing_section =
2471 get_containing_section (info);
2472
2473 gdb_assert (sectp != NULL);
2474 if ((sectp->flags & SEC_RELOC) != 0)
2475 {
2476 error (_("Dwarf Error: DWP format V2 with relocations is not"
2477 " supported in section %s [in module %s]"),
2478 get_section_name (info), get_section_file_name (info));
2479 }
2480 dwarf2_read_section (objfile, containing_section);
2481 /* Other code should have already caught virtual sections that don't
2482 fit. */
2483 gdb_assert (info->virtual_offset + info->size
2484 <= containing_section->size);
2485 /* If the real section is empty or there was a problem reading the
2486 section we shouldn't get here. */
2487 gdb_assert (containing_section->buffer != NULL);
2488 info->buffer = containing_section->buffer + info->virtual_offset;
2489 return;
2490 }
2491
2492 /* If the section has relocations, we must read it ourselves.
2493 Otherwise we attach it to the BFD. */
2494 if ((sectp->flags & SEC_RELOC) == 0)
2495 {
2496 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2497 return;
2498 }
2499
2500 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2501 info->buffer = buf;
2502
2503 /* When debugging .o files, we may need to apply relocations; see
2504 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2505 We never compress sections in .o files, so we only need to
2506 try this when the section is not compressed. */
2507 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2508 if (retbuf != NULL)
2509 {
2510 info->buffer = retbuf;
2511 return;
2512 }
2513
2514 abfd = get_section_bfd_owner (info);
2515 gdb_assert (abfd != NULL);
2516
2517 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2518 || bfd_bread (buf, info->size, abfd) != info->size)
2519 {
2520 error (_("Dwarf Error: Can't read DWARF data"
2521 " in section %s [in module %s]"),
2522 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2523 }
2524 }
2525
2526 /* A helper function that returns the size of a section in a safe way.
2527 If you are positive that the section has been read before using the
2528 size, then it is safe to refer to the dwarf2_section_info object's
2529 "size" field directly. In other cases, you must call this
2530 function, because for compressed sections the size field is not set
2531 correctly until the section has been read. */
2532
2533 static bfd_size_type
2534 dwarf2_section_size (struct objfile *objfile,
2535 struct dwarf2_section_info *info)
2536 {
2537 if (!info->readin)
2538 dwarf2_read_section (objfile, info);
2539 return info->size;
2540 }
2541
2542 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2543 SECTION_NAME. */
2544
2545 void
2546 dwarf2_get_section_info (struct objfile *objfile,
2547 enum dwarf2_section_enum sect,
2548 asection **sectp, const gdb_byte **bufp,
2549 bfd_size_type *sizep)
2550 {
2551 struct dwarf2_per_objfile *data = dwarf2_objfile_data_key.get (objfile);
2552 struct dwarf2_section_info *info;
2553
2554 /* We may see an objfile without any DWARF, in which case we just
2555 return nothing. */
2556 if (data == NULL)
2557 {
2558 *sectp = NULL;
2559 *bufp = NULL;
2560 *sizep = 0;
2561 return;
2562 }
2563 switch (sect)
2564 {
2565 case DWARF2_DEBUG_FRAME:
2566 info = &data->frame;
2567 break;
2568 case DWARF2_EH_FRAME:
2569 info = &data->eh_frame;
2570 break;
2571 default:
2572 gdb_assert_not_reached ("unexpected section");
2573 }
2574
2575 dwarf2_read_section (objfile, info);
2576
2577 *sectp = get_section_bfd_section (info);
2578 *bufp = info->buffer;
2579 *sizep = info->size;
2580 }
2581
2582 /* A helper function to find the sections for a .dwz file. */
2583
2584 static void
2585 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2586 {
2587 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2588
2589 /* Note that we only support the standard ELF names, because .dwz
2590 is ELF-only (at the time of writing). */
2591 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2592 {
2593 dwz_file->abbrev.s.section = sectp;
2594 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2595 }
2596 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2597 {
2598 dwz_file->info.s.section = sectp;
2599 dwz_file->info.size = bfd_get_section_size (sectp);
2600 }
2601 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2602 {
2603 dwz_file->str.s.section = sectp;
2604 dwz_file->str.size = bfd_get_section_size (sectp);
2605 }
2606 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2607 {
2608 dwz_file->line.s.section = sectp;
2609 dwz_file->line.size = bfd_get_section_size (sectp);
2610 }
2611 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2612 {
2613 dwz_file->macro.s.section = sectp;
2614 dwz_file->macro.size = bfd_get_section_size (sectp);
2615 }
2616 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2617 {
2618 dwz_file->gdb_index.s.section = sectp;
2619 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2620 }
2621 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2622 {
2623 dwz_file->debug_names.s.section = sectp;
2624 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2625 }
2626 }
2627
2628 /* See dwarf2read.h. */
2629
2630 struct dwz_file *
2631 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2632 {
2633 const char *filename;
2634 bfd_size_type buildid_len_arg;
2635 size_t buildid_len;
2636 bfd_byte *buildid;
2637
2638 if (dwarf2_per_objfile->dwz_file != NULL)
2639 return dwarf2_per_objfile->dwz_file.get ();
2640
2641 bfd_set_error (bfd_error_no_error);
2642 gdb::unique_xmalloc_ptr<char> data
2643 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2644 &buildid_len_arg, &buildid));
2645 if (data == NULL)
2646 {
2647 if (bfd_get_error () == bfd_error_no_error)
2648 return NULL;
2649 error (_("could not read '.gnu_debugaltlink' section: %s"),
2650 bfd_errmsg (bfd_get_error ()));
2651 }
2652
2653 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2654
2655 buildid_len = (size_t) buildid_len_arg;
2656
2657 filename = data.get ();
2658
2659 std::string abs_storage;
2660 if (!IS_ABSOLUTE_PATH (filename))
2661 {
2662 gdb::unique_xmalloc_ptr<char> abs
2663 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2664
2665 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2666 filename = abs_storage.c_str ();
2667 }
2668
2669 /* First try the file name given in the section. If that doesn't
2670 work, try to use the build-id instead. */
2671 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2672 if (dwz_bfd != NULL)
2673 {
2674 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2675 dwz_bfd.reset (nullptr);
2676 }
2677
2678 if (dwz_bfd == NULL)
2679 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2680
2681 if (dwz_bfd == NULL)
2682 error (_("could not find '.gnu_debugaltlink' file for %s"),
2683 objfile_name (dwarf2_per_objfile->objfile));
2684
2685 std::unique_ptr<struct dwz_file> result
2686 (new struct dwz_file (std::move (dwz_bfd)));
2687
2688 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2689 result.get ());
2690
2691 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2692 result->dwz_bfd.get ());
2693 dwarf2_per_objfile->dwz_file = std::move (result);
2694 return dwarf2_per_objfile->dwz_file.get ();
2695 }
2696 \f
2697 /* DWARF quick_symbols_functions support. */
2698
2699 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2700 unique line tables, so we maintain a separate table of all .debug_line
2701 derived entries to support the sharing.
2702 All the quick functions need is the list of file names. We discard the
2703 line_header when we're done and don't need to record it here. */
2704 struct quick_file_names
2705 {
2706 /* The data used to construct the hash key. */
2707 struct stmt_list_hash hash;
2708
2709 /* The number of entries in file_names, real_names. */
2710 unsigned int num_file_names;
2711
2712 /* The file names from the line table, after being run through
2713 file_full_name. */
2714 const char **file_names;
2715
2716 /* The file names from the line table after being run through
2717 gdb_realpath. These are computed lazily. */
2718 const char **real_names;
2719 };
2720
2721 /* When using the index (and thus not using psymtabs), each CU has an
2722 object of this type. This is used to hold information needed by
2723 the various "quick" methods. */
2724 struct dwarf2_per_cu_quick_data
2725 {
2726 /* The file table. This can be NULL if there was no file table
2727 or it's currently not read in.
2728 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2729 struct quick_file_names *file_names;
2730
2731 /* The corresponding symbol table. This is NULL if symbols for this
2732 CU have not yet been read. */
2733 struct compunit_symtab *compunit_symtab;
2734
2735 /* A temporary mark bit used when iterating over all CUs in
2736 expand_symtabs_matching. */
2737 unsigned int mark : 1;
2738
2739 /* True if we've tried to read the file table and found there isn't one.
2740 There will be no point in trying to read it again next time. */
2741 unsigned int no_file_data : 1;
2742 };
2743
2744 /* Utility hash function for a stmt_list_hash. */
2745
2746 static hashval_t
2747 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2748 {
2749 hashval_t v = 0;
2750
2751 if (stmt_list_hash->dwo_unit != NULL)
2752 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2753 v += to_underlying (stmt_list_hash->line_sect_off);
2754 return v;
2755 }
2756
2757 /* Utility equality function for a stmt_list_hash. */
2758
2759 static int
2760 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2761 const struct stmt_list_hash *rhs)
2762 {
2763 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2764 return 0;
2765 if (lhs->dwo_unit != NULL
2766 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2767 return 0;
2768
2769 return lhs->line_sect_off == rhs->line_sect_off;
2770 }
2771
2772 /* Hash function for a quick_file_names. */
2773
2774 static hashval_t
2775 hash_file_name_entry (const void *e)
2776 {
2777 const struct quick_file_names *file_data
2778 = (const struct quick_file_names *) e;
2779
2780 return hash_stmt_list_entry (&file_data->hash);
2781 }
2782
2783 /* Equality function for a quick_file_names. */
2784
2785 static int
2786 eq_file_name_entry (const void *a, const void *b)
2787 {
2788 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2789 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2790
2791 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2792 }
2793
2794 /* Delete function for a quick_file_names. */
2795
2796 static void
2797 delete_file_name_entry (void *e)
2798 {
2799 struct quick_file_names *file_data = (struct quick_file_names *) e;
2800 int i;
2801
2802 for (i = 0; i < file_data->num_file_names; ++i)
2803 {
2804 xfree ((void*) file_data->file_names[i]);
2805 if (file_data->real_names)
2806 xfree ((void*) file_data->real_names[i]);
2807 }
2808
2809 /* The space for the struct itself lives on objfile_obstack,
2810 so we don't free it here. */
2811 }
2812
2813 /* Create a quick_file_names hash table. */
2814
2815 static htab_t
2816 create_quick_file_names_table (unsigned int nr_initial_entries)
2817 {
2818 return htab_create_alloc (nr_initial_entries,
2819 hash_file_name_entry, eq_file_name_entry,
2820 delete_file_name_entry, xcalloc, xfree);
2821 }
2822
2823 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2824 have to be created afterwards. You should call age_cached_comp_units after
2825 processing PER_CU->CU. dw2_setup must have been already called. */
2826
2827 static void
2828 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2829 {
2830 if (per_cu->is_debug_types)
2831 load_full_type_unit (per_cu);
2832 else
2833 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2834
2835 if (per_cu->cu == NULL)
2836 return; /* Dummy CU. */
2837
2838 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2839 }
2840
2841 /* Read in the symbols for PER_CU. */
2842
2843 static void
2844 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2845 {
2846 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2847
2848 /* Skip type_unit_groups, reading the type units they contain
2849 is handled elsewhere. */
2850 if (IS_TYPE_UNIT_GROUP (per_cu))
2851 return;
2852
2853 /* The destructor of dwarf2_queue_guard frees any entries left on
2854 the queue. After this point we're guaranteed to leave this function
2855 with the dwarf queue empty. */
2856 dwarf2_queue_guard q_guard;
2857
2858 if (dwarf2_per_objfile->using_index
2859 ? per_cu->v.quick->compunit_symtab == NULL
2860 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2861 {
2862 queue_comp_unit (per_cu, language_minimal);
2863 load_cu (per_cu, skip_partial);
2864
2865 /* If we just loaded a CU from a DWO, and we're working with an index
2866 that may badly handle TUs, load all the TUs in that DWO as well.
2867 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2868 if (!per_cu->is_debug_types
2869 && per_cu->cu != NULL
2870 && per_cu->cu->dwo_unit != NULL
2871 && dwarf2_per_objfile->index_table != NULL
2872 && dwarf2_per_objfile->index_table->version <= 7
2873 /* DWP files aren't supported yet. */
2874 && get_dwp_file (dwarf2_per_objfile) == NULL)
2875 queue_and_load_all_dwo_tus (per_cu);
2876 }
2877
2878 process_queue (dwarf2_per_objfile);
2879
2880 /* Age the cache, releasing compilation units that have not
2881 been used recently. */
2882 age_cached_comp_units (dwarf2_per_objfile);
2883 }
2884
2885 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2886 the objfile from which this CU came. Returns the resulting symbol
2887 table. */
2888
2889 static struct compunit_symtab *
2890 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2891 {
2892 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2893
2894 gdb_assert (dwarf2_per_objfile->using_index);
2895 if (!per_cu->v.quick->compunit_symtab)
2896 {
2897 free_cached_comp_units freer (dwarf2_per_objfile);
2898 scoped_restore decrementer = increment_reading_symtab ();
2899 dw2_do_instantiate_symtab (per_cu, skip_partial);
2900 process_cu_includes (dwarf2_per_objfile);
2901 }
2902
2903 return per_cu->v.quick->compunit_symtab;
2904 }
2905
2906 /* See declaration. */
2907
2908 dwarf2_per_cu_data *
2909 dwarf2_per_objfile::get_cutu (int index)
2910 {
2911 if (index >= this->all_comp_units.size ())
2912 {
2913 index -= this->all_comp_units.size ();
2914 gdb_assert (index < this->all_type_units.size ());
2915 return &this->all_type_units[index]->per_cu;
2916 }
2917
2918 return this->all_comp_units[index];
2919 }
2920
2921 /* See declaration. */
2922
2923 dwarf2_per_cu_data *
2924 dwarf2_per_objfile::get_cu (int index)
2925 {
2926 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2927
2928 return this->all_comp_units[index];
2929 }
2930
2931 /* See declaration. */
2932
2933 signatured_type *
2934 dwarf2_per_objfile::get_tu (int index)
2935 {
2936 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2937
2938 return this->all_type_units[index];
2939 }
2940
2941 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2942 objfile_obstack, and constructed with the specified field
2943 values. */
2944
2945 static dwarf2_per_cu_data *
2946 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2947 struct dwarf2_section_info *section,
2948 int is_dwz,
2949 sect_offset sect_off, ULONGEST length)
2950 {
2951 struct objfile *objfile = dwarf2_per_objfile->objfile;
2952 dwarf2_per_cu_data *the_cu
2953 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2954 struct dwarf2_per_cu_data);
2955 the_cu->sect_off = sect_off;
2956 the_cu->length = length;
2957 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2958 the_cu->section = section;
2959 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2960 struct dwarf2_per_cu_quick_data);
2961 the_cu->is_dwz = is_dwz;
2962 return the_cu;
2963 }
2964
2965 /* A helper for create_cus_from_index that handles a given list of
2966 CUs. */
2967
2968 static void
2969 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2970 const gdb_byte *cu_list, offset_type n_elements,
2971 struct dwarf2_section_info *section,
2972 int is_dwz)
2973 {
2974 for (offset_type i = 0; i < n_elements; i += 2)
2975 {
2976 gdb_static_assert (sizeof (ULONGEST) >= 8);
2977
2978 sect_offset sect_off
2979 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2980 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2981 cu_list += 2 * 8;
2982
2983 dwarf2_per_cu_data *per_cu
2984 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
2985 sect_off, length);
2986 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
2987 }
2988 }
2989
2990 /* Read the CU list from the mapped index, and use it to create all
2991 the CU objects for this objfile. */
2992
2993 static void
2994 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2995 const gdb_byte *cu_list, offset_type cu_list_elements,
2996 const gdb_byte *dwz_list, offset_type dwz_elements)
2997 {
2998 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
2999 dwarf2_per_objfile->all_comp_units.reserve
3000 ((cu_list_elements + dwz_elements) / 2);
3001
3002 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3003 &dwarf2_per_objfile->info, 0);
3004
3005 if (dwz_elements == 0)
3006 return;
3007
3008 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3009 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3010 &dwz->info, 1);
3011 }
3012
3013 /* Create the signatured type hash table from the index. */
3014
3015 static void
3016 create_signatured_type_table_from_index
3017 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3018 struct dwarf2_section_info *section,
3019 const gdb_byte *bytes,
3020 offset_type elements)
3021 {
3022 struct objfile *objfile = dwarf2_per_objfile->objfile;
3023
3024 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3025 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3026
3027 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3028
3029 for (offset_type i = 0; i < elements; i += 3)
3030 {
3031 struct signatured_type *sig_type;
3032 ULONGEST signature;
3033 void **slot;
3034 cu_offset type_offset_in_tu;
3035
3036 gdb_static_assert (sizeof (ULONGEST) >= 8);
3037 sect_offset sect_off
3038 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3039 type_offset_in_tu
3040 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3041 BFD_ENDIAN_LITTLE);
3042 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3043 bytes += 3 * 8;
3044
3045 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3046 struct signatured_type);
3047 sig_type->signature = signature;
3048 sig_type->type_offset_in_tu = type_offset_in_tu;
3049 sig_type->per_cu.is_debug_types = 1;
3050 sig_type->per_cu.section = section;
3051 sig_type->per_cu.sect_off = sect_off;
3052 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3053 sig_type->per_cu.v.quick
3054 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3055 struct dwarf2_per_cu_quick_data);
3056
3057 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3058 *slot = sig_type;
3059
3060 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3061 }
3062
3063 dwarf2_per_objfile->signatured_types = sig_types_hash;
3064 }
3065
3066 /* Create the signatured type hash table from .debug_names. */
3067
3068 static void
3069 create_signatured_type_table_from_debug_names
3070 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3071 const mapped_debug_names &map,
3072 struct dwarf2_section_info *section,
3073 struct dwarf2_section_info *abbrev_section)
3074 {
3075 struct objfile *objfile = dwarf2_per_objfile->objfile;
3076
3077 dwarf2_read_section (objfile, section);
3078 dwarf2_read_section (objfile, abbrev_section);
3079
3080 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3081 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3082
3083 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3084
3085 for (uint32_t i = 0; i < map.tu_count; ++i)
3086 {
3087 struct signatured_type *sig_type;
3088 void **slot;
3089
3090 sect_offset sect_off
3091 = (sect_offset) (extract_unsigned_integer
3092 (map.tu_table_reordered + i * map.offset_size,
3093 map.offset_size,
3094 map.dwarf5_byte_order));
3095
3096 comp_unit_head cu_header;
3097 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3098 abbrev_section,
3099 section->buffer + to_underlying (sect_off),
3100 rcuh_kind::TYPE);
3101
3102 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3103 struct signatured_type);
3104 sig_type->signature = cu_header.signature;
3105 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3106 sig_type->per_cu.is_debug_types = 1;
3107 sig_type->per_cu.section = section;
3108 sig_type->per_cu.sect_off = sect_off;
3109 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3110 sig_type->per_cu.v.quick
3111 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3112 struct dwarf2_per_cu_quick_data);
3113
3114 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3115 *slot = sig_type;
3116
3117 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3118 }
3119
3120 dwarf2_per_objfile->signatured_types = sig_types_hash;
3121 }
3122
3123 /* Read the address map data from the mapped index, and use it to
3124 populate the objfile's psymtabs_addrmap. */
3125
3126 static void
3127 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3128 struct mapped_index *index)
3129 {
3130 struct objfile *objfile = dwarf2_per_objfile->objfile;
3131 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3132 const gdb_byte *iter, *end;
3133 struct addrmap *mutable_map;
3134 CORE_ADDR baseaddr;
3135
3136 auto_obstack temp_obstack;
3137
3138 mutable_map = addrmap_create_mutable (&temp_obstack);
3139
3140 iter = index->address_table.data ();
3141 end = iter + index->address_table.size ();
3142
3143 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3144
3145 while (iter < end)
3146 {
3147 ULONGEST hi, lo, cu_index;
3148 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3149 iter += 8;
3150 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3151 iter += 8;
3152 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3153 iter += 4;
3154
3155 if (lo > hi)
3156 {
3157 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3158 hex_string (lo), hex_string (hi));
3159 continue;
3160 }
3161
3162 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3163 {
3164 complaint (_(".gdb_index address table has invalid CU number %u"),
3165 (unsigned) cu_index);
3166 continue;
3167 }
3168
3169 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
3170 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
3171 addrmap_set_empty (mutable_map, lo, hi - 1,
3172 dwarf2_per_objfile->get_cu (cu_index));
3173 }
3174
3175 objfile->partial_symtabs->psymtabs_addrmap
3176 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3177 }
3178
3179 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3180 populate the objfile's psymtabs_addrmap. */
3181
3182 static void
3183 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3184 struct dwarf2_section_info *section)
3185 {
3186 struct objfile *objfile = dwarf2_per_objfile->objfile;
3187 bfd *abfd = objfile->obfd;
3188 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3189 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3190 SECT_OFF_TEXT (objfile));
3191
3192 auto_obstack temp_obstack;
3193 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3194
3195 std::unordered_map<sect_offset,
3196 dwarf2_per_cu_data *,
3197 gdb::hash_enum<sect_offset>>
3198 debug_info_offset_to_per_cu;
3199 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3200 {
3201 const auto insertpair
3202 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3203 if (!insertpair.second)
3204 {
3205 warning (_("Section .debug_aranges in %s has duplicate "
3206 "debug_info_offset %s, ignoring .debug_aranges."),
3207 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3208 return;
3209 }
3210 }
3211
3212 dwarf2_read_section (objfile, section);
3213
3214 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3215
3216 const gdb_byte *addr = section->buffer;
3217
3218 while (addr < section->buffer + section->size)
3219 {
3220 const gdb_byte *const entry_addr = addr;
3221 unsigned int bytes_read;
3222
3223 const LONGEST entry_length = read_initial_length (abfd, addr,
3224 &bytes_read);
3225 addr += bytes_read;
3226
3227 const gdb_byte *const entry_end = addr + entry_length;
3228 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3229 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3230 if (addr + entry_length > section->buffer + section->size)
3231 {
3232 warning (_("Section .debug_aranges in %s entry at offset %s "
3233 "length %s exceeds section length %s, "
3234 "ignoring .debug_aranges."),
3235 objfile_name (objfile),
3236 plongest (entry_addr - section->buffer),
3237 plongest (bytes_read + entry_length),
3238 pulongest (section->size));
3239 return;
3240 }
3241
3242 /* The version number. */
3243 const uint16_t version = read_2_bytes (abfd, addr);
3244 addr += 2;
3245 if (version != 2)
3246 {
3247 warning (_("Section .debug_aranges in %s entry at offset %s "
3248 "has unsupported version %d, ignoring .debug_aranges."),
3249 objfile_name (objfile),
3250 plongest (entry_addr - section->buffer), version);
3251 return;
3252 }
3253
3254 const uint64_t debug_info_offset
3255 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3256 addr += offset_size;
3257 const auto per_cu_it
3258 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3259 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3260 {
3261 warning (_("Section .debug_aranges in %s entry at offset %s "
3262 "debug_info_offset %s does not exists, "
3263 "ignoring .debug_aranges."),
3264 objfile_name (objfile),
3265 plongest (entry_addr - section->buffer),
3266 pulongest (debug_info_offset));
3267 return;
3268 }
3269 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3270
3271 const uint8_t address_size = *addr++;
3272 if (address_size < 1 || address_size > 8)
3273 {
3274 warning (_("Section .debug_aranges in %s entry at offset %s "
3275 "address_size %u is invalid, ignoring .debug_aranges."),
3276 objfile_name (objfile),
3277 plongest (entry_addr - section->buffer), address_size);
3278 return;
3279 }
3280
3281 const uint8_t segment_selector_size = *addr++;
3282 if (segment_selector_size != 0)
3283 {
3284 warning (_("Section .debug_aranges in %s entry at offset %s "
3285 "segment_selector_size %u is not supported, "
3286 "ignoring .debug_aranges."),
3287 objfile_name (objfile),
3288 plongest (entry_addr - section->buffer),
3289 segment_selector_size);
3290 return;
3291 }
3292
3293 /* Must pad to an alignment boundary that is twice the address
3294 size. It is undocumented by the DWARF standard but GCC does
3295 use it. */
3296 for (size_t padding = ((-(addr - section->buffer))
3297 & (2 * address_size - 1));
3298 padding > 0; padding--)
3299 if (*addr++ != 0)
3300 {
3301 warning (_("Section .debug_aranges in %s entry at offset %s "
3302 "padding is not zero, ignoring .debug_aranges."),
3303 objfile_name (objfile),
3304 plongest (entry_addr - section->buffer));
3305 return;
3306 }
3307
3308 for (;;)
3309 {
3310 if (addr + 2 * address_size > entry_end)
3311 {
3312 warning (_("Section .debug_aranges in %s entry at offset %s "
3313 "address list is not properly terminated, "
3314 "ignoring .debug_aranges."),
3315 objfile_name (objfile),
3316 plongest (entry_addr - section->buffer));
3317 return;
3318 }
3319 ULONGEST start = extract_unsigned_integer (addr, address_size,
3320 dwarf5_byte_order);
3321 addr += address_size;
3322 ULONGEST length = extract_unsigned_integer (addr, address_size,
3323 dwarf5_byte_order);
3324 addr += address_size;
3325 if (start == 0 && length == 0)
3326 break;
3327 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3328 {
3329 /* Symbol was eliminated due to a COMDAT group. */
3330 continue;
3331 }
3332 ULONGEST end = start + length;
3333 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3334 - baseaddr);
3335 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3336 - baseaddr);
3337 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3338 }
3339 }
3340
3341 objfile->partial_symtabs->psymtabs_addrmap
3342 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3343 }
3344
3345 /* Find a slot in the mapped index INDEX for the object named NAME.
3346 If NAME is found, set *VEC_OUT to point to the CU vector in the
3347 constant pool and return true. If NAME cannot be found, return
3348 false. */
3349
3350 static bool
3351 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3352 offset_type **vec_out)
3353 {
3354 offset_type hash;
3355 offset_type slot, step;
3356 int (*cmp) (const char *, const char *);
3357
3358 gdb::unique_xmalloc_ptr<char> without_params;
3359 if (current_language->la_language == language_cplus
3360 || current_language->la_language == language_fortran
3361 || current_language->la_language == language_d)
3362 {
3363 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3364 not contain any. */
3365
3366 if (strchr (name, '(') != NULL)
3367 {
3368 without_params = cp_remove_params (name);
3369
3370 if (without_params != NULL)
3371 name = without_params.get ();
3372 }
3373 }
3374
3375 /* Index version 4 did not support case insensitive searches. But the
3376 indices for case insensitive languages are built in lowercase, therefore
3377 simulate our NAME being searched is also lowercased. */
3378 hash = mapped_index_string_hash ((index->version == 4
3379 && case_sensitivity == case_sensitive_off
3380 ? 5 : index->version),
3381 name);
3382
3383 slot = hash & (index->symbol_table.size () - 1);
3384 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3385 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3386
3387 for (;;)
3388 {
3389 const char *str;
3390
3391 const auto &bucket = index->symbol_table[slot];
3392 if (bucket.name == 0 && bucket.vec == 0)
3393 return false;
3394
3395 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3396 if (!cmp (name, str))
3397 {
3398 *vec_out = (offset_type *) (index->constant_pool
3399 + MAYBE_SWAP (bucket.vec));
3400 return true;
3401 }
3402
3403 slot = (slot + step) & (index->symbol_table.size () - 1);
3404 }
3405 }
3406
3407 /* A helper function that reads the .gdb_index from BUFFER and fills
3408 in MAP. FILENAME is the name of the file containing the data;
3409 it is used for error reporting. DEPRECATED_OK is true if it is
3410 ok to use deprecated sections.
3411
3412 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3413 out parameters that are filled in with information about the CU and
3414 TU lists in the section.
3415
3416 Returns true if all went well, false otherwise. */
3417
3418 static bool
3419 read_gdb_index_from_buffer (struct objfile *objfile,
3420 const char *filename,
3421 bool deprecated_ok,
3422 gdb::array_view<const gdb_byte> buffer,
3423 struct mapped_index *map,
3424 const gdb_byte **cu_list,
3425 offset_type *cu_list_elements,
3426 const gdb_byte **types_list,
3427 offset_type *types_list_elements)
3428 {
3429 const gdb_byte *addr = &buffer[0];
3430
3431 /* Version check. */
3432 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
3433 /* Versions earlier than 3 emitted every copy of a psymbol. This
3434 causes the index to behave very poorly for certain requests. Version 3
3435 contained incomplete addrmap. So, it seems better to just ignore such
3436 indices. */
3437 if (version < 4)
3438 {
3439 static int warning_printed = 0;
3440 if (!warning_printed)
3441 {
3442 warning (_("Skipping obsolete .gdb_index section in %s."),
3443 filename);
3444 warning_printed = 1;
3445 }
3446 return 0;
3447 }
3448 /* Index version 4 uses a different hash function than index version
3449 5 and later.
3450
3451 Versions earlier than 6 did not emit psymbols for inlined
3452 functions. Using these files will cause GDB not to be able to
3453 set breakpoints on inlined functions by name, so we ignore these
3454 indices unless the user has done
3455 "set use-deprecated-index-sections on". */
3456 if (version < 6 && !deprecated_ok)
3457 {
3458 static int warning_printed = 0;
3459 if (!warning_printed)
3460 {
3461 warning (_("\
3462 Skipping deprecated .gdb_index section in %s.\n\
3463 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3464 to use the section anyway."),
3465 filename);
3466 warning_printed = 1;
3467 }
3468 return 0;
3469 }
3470 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3471 of the TU (for symbols coming from TUs),
3472 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3473 Plus gold-generated indices can have duplicate entries for global symbols,
3474 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3475 These are just performance bugs, and we can't distinguish gdb-generated
3476 indices from gold-generated ones, so issue no warning here. */
3477
3478 /* Indexes with higher version than the one supported by GDB may be no
3479 longer backward compatible. */
3480 if (version > 8)
3481 return 0;
3482
3483 map->version = version;
3484
3485 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3486
3487 int i = 0;
3488 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3489 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3490 / 8);
3491 ++i;
3492
3493 *types_list = addr + MAYBE_SWAP (metadata[i]);
3494 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3495 - MAYBE_SWAP (metadata[i]))
3496 / 8);
3497 ++i;
3498
3499 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3500 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3501 map->address_table
3502 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3503 ++i;
3504
3505 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3506 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3507 map->symbol_table
3508 = gdb::array_view<mapped_index::symbol_table_slot>
3509 ((mapped_index::symbol_table_slot *) symbol_table,
3510 (mapped_index::symbol_table_slot *) symbol_table_end);
3511
3512 ++i;
3513 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3514
3515 return 1;
3516 }
3517
3518 /* Callback types for dwarf2_read_gdb_index. */
3519
3520 typedef gdb::function_view
3521 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3522 get_gdb_index_contents_ftype;
3523 typedef gdb::function_view
3524 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3525 get_gdb_index_contents_dwz_ftype;
3526
3527 /* Read .gdb_index. If everything went ok, initialize the "quick"
3528 elements of all the CUs and return 1. Otherwise, return 0. */
3529
3530 static int
3531 dwarf2_read_gdb_index
3532 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3533 get_gdb_index_contents_ftype get_gdb_index_contents,
3534 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3535 {
3536 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3537 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3538 struct dwz_file *dwz;
3539 struct objfile *objfile = dwarf2_per_objfile->objfile;
3540
3541 gdb::array_view<const gdb_byte> main_index_contents
3542 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3543
3544 if (main_index_contents.empty ())
3545 return 0;
3546
3547 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3548 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3549 use_deprecated_index_sections,
3550 main_index_contents, map.get (), &cu_list,
3551 &cu_list_elements, &types_list,
3552 &types_list_elements))
3553 return 0;
3554
3555 /* Don't use the index if it's empty. */
3556 if (map->symbol_table.empty ())
3557 return 0;
3558
3559 /* If there is a .dwz file, read it so we can get its CU list as
3560 well. */
3561 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3562 if (dwz != NULL)
3563 {
3564 struct mapped_index dwz_map;
3565 const gdb_byte *dwz_types_ignore;
3566 offset_type dwz_types_elements_ignore;
3567
3568 gdb::array_view<const gdb_byte> dwz_index_content
3569 = get_gdb_index_contents_dwz (objfile, dwz);
3570
3571 if (dwz_index_content.empty ())
3572 return 0;
3573
3574 if (!read_gdb_index_from_buffer (objfile,
3575 bfd_get_filename (dwz->dwz_bfd), 1,
3576 dwz_index_content, &dwz_map,
3577 &dwz_list, &dwz_list_elements,
3578 &dwz_types_ignore,
3579 &dwz_types_elements_ignore))
3580 {
3581 warning (_("could not read '.gdb_index' section from %s; skipping"),
3582 bfd_get_filename (dwz->dwz_bfd));
3583 return 0;
3584 }
3585 }
3586
3587 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3588 dwz_list, dwz_list_elements);
3589
3590 if (types_list_elements)
3591 {
3592 /* We can only handle a single .debug_types when we have an
3593 index. */
3594 if (dwarf2_per_objfile->types.size () != 1)
3595 return 0;
3596
3597 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
3598
3599 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3600 types_list, types_list_elements);
3601 }
3602
3603 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3604
3605 dwarf2_per_objfile->index_table = std::move (map);
3606 dwarf2_per_objfile->using_index = 1;
3607 dwarf2_per_objfile->quick_file_names_table =
3608 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3609
3610 return 1;
3611 }
3612
3613 /* die_reader_func for dw2_get_file_names. */
3614
3615 static void
3616 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3617 const gdb_byte *info_ptr,
3618 struct die_info *comp_unit_die,
3619 int has_children,
3620 void *data)
3621 {
3622 struct dwarf2_cu *cu = reader->cu;
3623 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3624 struct dwarf2_per_objfile *dwarf2_per_objfile
3625 = cu->per_cu->dwarf2_per_objfile;
3626 struct objfile *objfile = dwarf2_per_objfile->objfile;
3627 struct dwarf2_per_cu_data *lh_cu;
3628 struct attribute *attr;
3629 int i;
3630 void **slot;
3631 struct quick_file_names *qfn;
3632
3633 gdb_assert (! this_cu->is_debug_types);
3634
3635 /* Our callers never want to match partial units -- instead they
3636 will match the enclosing full CU. */
3637 if (comp_unit_die->tag == DW_TAG_partial_unit)
3638 {
3639 this_cu->v.quick->no_file_data = 1;
3640 return;
3641 }
3642
3643 lh_cu = this_cu;
3644 slot = NULL;
3645
3646 line_header_up lh;
3647 sect_offset line_offset {};
3648
3649 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3650 if (attr)
3651 {
3652 struct quick_file_names find_entry;
3653
3654 line_offset = (sect_offset) DW_UNSND (attr);
3655
3656 /* We may have already read in this line header (TU line header sharing).
3657 If we have we're done. */
3658 find_entry.hash.dwo_unit = cu->dwo_unit;
3659 find_entry.hash.line_sect_off = line_offset;
3660 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3661 &find_entry, INSERT);
3662 if (*slot != NULL)
3663 {
3664 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3665 return;
3666 }
3667
3668 lh = dwarf_decode_line_header (line_offset, cu);
3669 }
3670 if (lh == NULL)
3671 {
3672 lh_cu->v.quick->no_file_data = 1;
3673 return;
3674 }
3675
3676 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3677 qfn->hash.dwo_unit = cu->dwo_unit;
3678 qfn->hash.line_sect_off = line_offset;
3679 gdb_assert (slot != NULL);
3680 *slot = qfn;
3681
3682 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3683
3684 qfn->num_file_names = lh->file_names.size ();
3685 qfn->file_names =
3686 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3687 for (i = 0; i < lh->file_names.size (); ++i)
3688 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3689 qfn->real_names = NULL;
3690
3691 lh_cu->v.quick->file_names = qfn;
3692 }
3693
3694 /* A helper for the "quick" functions which attempts to read the line
3695 table for THIS_CU. */
3696
3697 static struct quick_file_names *
3698 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3699 {
3700 /* This should never be called for TUs. */
3701 gdb_assert (! this_cu->is_debug_types);
3702 /* Nor type unit groups. */
3703 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3704
3705 if (this_cu->v.quick->file_names != NULL)
3706 return this_cu->v.quick->file_names;
3707 /* If we know there is no line data, no point in looking again. */
3708 if (this_cu->v.quick->no_file_data)
3709 return NULL;
3710
3711 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3712
3713 if (this_cu->v.quick->no_file_data)
3714 return NULL;
3715 return this_cu->v.quick->file_names;
3716 }
3717
3718 /* A helper for the "quick" functions which computes and caches the
3719 real path for a given file name from the line table. */
3720
3721 static const char *
3722 dw2_get_real_path (struct objfile *objfile,
3723 struct quick_file_names *qfn, int index)
3724 {
3725 if (qfn->real_names == NULL)
3726 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3727 qfn->num_file_names, const char *);
3728
3729 if (qfn->real_names[index] == NULL)
3730 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3731
3732 return qfn->real_names[index];
3733 }
3734
3735 static struct symtab *
3736 dw2_find_last_source_symtab (struct objfile *objfile)
3737 {
3738 struct dwarf2_per_objfile *dwarf2_per_objfile
3739 = get_dwarf2_per_objfile (objfile);
3740 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3741 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3742
3743 if (cust == NULL)
3744 return NULL;
3745
3746 return compunit_primary_filetab (cust);
3747 }
3748
3749 /* Traversal function for dw2_forget_cached_source_info. */
3750
3751 static int
3752 dw2_free_cached_file_names (void **slot, void *info)
3753 {
3754 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3755
3756 if (file_data->real_names)
3757 {
3758 int i;
3759
3760 for (i = 0; i < file_data->num_file_names; ++i)
3761 {
3762 xfree ((void*) file_data->real_names[i]);
3763 file_data->real_names[i] = NULL;
3764 }
3765 }
3766
3767 return 1;
3768 }
3769
3770 static void
3771 dw2_forget_cached_source_info (struct objfile *objfile)
3772 {
3773 struct dwarf2_per_objfile *dwarf2_per_objfile
3774 = get_dwarf2_per_objfile (objfile);
3775
3776 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3777 dw2_free_cached_file_names, NULL);
3778 }
3779
3780 /* Helper function for dw2_map_symtabs_matching_filename that expands
3781 the symtabs and calls the iterator. */
3782
3783 static int
3784 dw2_map_expand_apply (struct objfile *objfile,
3785 struct dwarf2_per_cu_data *per_cu,
3786 const char *name, const char *real_path,
3787 gdb::function_view<bool (symtab *)> callback)
3788 {
3789 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3790
3791 /* Don't visit already-expanded CUs. */
3792 if (per_cu->v.quick->compunit_symtab)
3793 return 0;
3794
3795 /* This may expand more than one symtab, and we want to iterate over
3796 all of them. */
3797 dw2_instantiate_symtab (per_cu, false);
3798
3799 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3800 last_made, callback);
3801 }
3802
3803 /* Implementation of the map_symtabs_matching_filename method. */
3804
3805 static bool
3806 dw2_map_symtabs_matching_filename
3807 (struct objfile *objfile, const char *name, const char *real_path,
3808 gdb::function_view<bool (symtab *)> callback)
3809 {
3810 const char *name_basename = lbasename (name);
3811 struct dwarf2_per_objfile *dwarf2_per_objfile
3812 = get_dwarf2_per_objfile (objfile);
3813
3814 /* The rule is CUs specify all the files, including those used by
3815 any TU, so there's no need to scan TUs here. */
3816
3817 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3818 {
3819 /* We only need to look at symtabs not already expanded. */
3820 if (per_cu->v.quick->compunit_symtab)
3821 continue;
3822
3823 quick_file_names *file_data = dw2_get_file_names (per_cu);
3824 if (file_data == NULL)
3825 continue;
3826
3827 for (int j = 0; j < file_data->num_file_names; ++j)
3828 {
3829 const char *this_name = file_data->file_names[j];
3830 const char *this_real_name;
3831
3832 if (compare_filenames_for_search (this_name, name))
3833 {
3834 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3835 callback))
3836 return true;
3837 continue;
3838 }
3839
3840 /* Before we invoke realpath, which can get expensive when many
3841 files are involved, do a quick comparison of the basenames. */
3842 if (! basenames_may_differ
3843 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3844 continue;
3845
3846 this_real_name = dw2_get_real_path (objfile, file_data, j);
3847 if (compare_filenames_for_search (this_real_name, name))
3848 {
3849 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3850 callback))
3851 return true;
3852 continue;
3853 }
3854
3855 if (real_path != NULL)
3856 {
3857 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3858 gdb_assert (IS_ABSOLUTE_PATH (name));
3859 if (this_real_name != NULL
3860 && FILENAME_CMP (real_path, this_real_name) == 0)
3861 {
3862 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3863 callback))
3864 return true;
3865 continue;
3866 }
3867 }
3868 }
3869 }
3870
3871 return false;
3872 }
3873
3874 /* Struct used to manage iterating over all CUs looking for a symbol. */
3875
3876 struct dw2_symtab_iterator
3877 {
3878 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3879 struct dwarf2_per_objfile *dwarf2_per_objfile;
3880 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3881 int want_specific_block;
3882 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3883 Unused if !WANT_SPECIFIC_BLOCK. */
3884 int block_index;
3885 /* The kind of symbol we're looking for. */
3886 domain_enum domain;
3887 /* The list of CUs from the index entry of the symbol,
3888 or NULL if not found. */
3889 offset_type *vec;
3890 /* The next element in VEC to look at. */
3891 int next;
3892 /* The number of elements in VEC, or zero if there is no match. */
3893 int length;
3894 /* Have we seen a global version of the symbol?
3895 If so we can ignore all further global instances.
3896 This is to work around gold/15646, inefficient gold-generated
3897 indices. */
3898 int global_seen;
3899 };
3900
3901 /* Initialize the index symtab iterator ITER.
3902 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3903 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3904
3905 static void
3906 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3907 struct dwarf2_per_objfile *dwarf2_per_objfile,
3908 int want_specific_block,
3909 int block_index,
3910 domain_enum domain,
3911 const char *name)
3912 {
3913 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3914 iter->want_specific_block = want_specific_block;
3915 iter->block_index = block_index;
3916 iter->domain = domain;
3917 iter->next = 0;
3918 iter->global_seen = 0;
3919
3920 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3921
3922 /* index is NULL if OBJF_READNOW. */
3923 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3924 iter->length = MAYBE_SWAP (*iter->vec);
3925 else
3926 {
3927 iter->vec = NULL;
3928 iter->length = 0;
3929 }
3930 }
3931
3932 /* Return the next matching CU or NULL if there are no more. */
3933
3934 static struct dwarf2_per_cu_data *
3935 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3936 {
3937 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3938
3939 for ( ; iter->next < iter->length; ++iter->next)
3940 {
3941 offset_type cu_index_and_attrs =
3942 MAYBE_SWAP (iter->vec[iter->next + 1]);
3943 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3944 int want_static = iter->block_index != GLOBAL_BLOCK;
3945 /* This value is only valid for index versions >= 7. */
3946 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3947 gdb_index_symbol_kind symbol_kind =
3948 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3949 /* Only check the symbol attributes if they're present.
3950 Indices prior to version 7 don't record them,
3951 and indices >= 7 may elide them for certain symbols
3952 (gold does this). */
3953 int attrs_valid =
3954 (dwarf2_per_objfile->index_table->version >= 7
3955 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3956
3957 /* Don't crash on bad data. */
3958 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3959 + dwarf2_per_objfile->all_type_units.size ()))
3960 {
3961 complaint (_(".gdb_index entry has bad CU index"
3962 " [in module %s]"),
3963 objfile_name (dwarf2_per_objfile->objfile));
3964 continue;
3965 }
3966
3967 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3968
3969 /* Skip if already read in. */
3970 if (per_cu->v.quick->compunit_symtab)
3971 continue;
3972
3973 /* Check static vs global. */
3974 if (attrs_valid)
3975 {
3976 if (iter->want_specific_block
3977 && want_static != is_static)
3978 continue;
3979 /* Work around gold/15646. */
3980 if (!is_static && iter->global_seen)
3981 continue;
3982 if (!is_static)
3983 iter->global_seen = 1;
3984 }
3985
3986 /* Only check the symbol's kind if it has one. */
3987 if (attrs_valid)
3988 {
3989 switch (iter->domain)
3990 {
3991 case VAR_DOMAIN:
3992 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3993 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3994 /* Some types are also in VAR_DOMAIN. */
3995 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3996 continue;
3997 break;
3998 case STRUCT_DOMAIN:
3999 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4000 continue;
4001 break;
4002 case LABEL_DOMAIN:
4003 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4004 continue;
4005 break;
4006 default:
4007 break;
4008 }
4009 }
4010
4011 ++iter->next;
4012 return per_cu;
4013 }
4014
4015 return NULL;
4016 }
4017
4018 static struct compunit_symtab *
4019 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4020 const char *name, domain_enum domain)
4021 {
4022 struct compunit_symtab *stab_best = NULL;
4023 struct dwarf2_per_objfile *dwarf2_per_objfile
4024 = get_dwarf2_per_objfile (objfile);
4025
4026 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4027
4028 struct dw2_symtab_iterator iter;
4029 struct dwarf2_per_cu_data *per_cu;
4030
4031 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4032
4033 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4034 {
4035 struct symbol *sym, *with_opaque = NULL;
4036 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4037 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4038 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4039
4040 sym = block_find_symbol (block, name, domain,
4041 block_find_non_opaque_type_preferred,
4042 &with_opaque);
4043
4044 /* Some caution must be observed with overloaded functions
4045 and methods, since the index will not contain any overload
4046 information (but NAME might contain it). */
4047
4048 if (sym != NULL
4049 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4050 return stab;
4051 if (with_opaque != NULL
4052 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4053 stab_best = stab;
4054
4055 /* Keep looking through other CUs. */
4056 }
4057
4058 return stab_best;
4059 }
4060
4061 static void
4062 dw2_print_stats (struct objfile *objfile)
4063 {
4064 struct dwarf2_per_objfile *dwarf2_per_objfile
4065 = get_dwarf2_per_objfile (objfile);
4066 int total = (dwarf2_per_objfile->all_comp_units.size ()
4067 + dwarf2_per_objfile->all_type_units.size ());
4068 int count = 0;
4069
4070 for (int i = 0; i < total; ++i)
4071 {
4072 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4073
4074 if (!per_cu->v.quick->compunit_symtab)
4075 ++count;
4076 }
4077 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4078 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4079 }
4080
4081 /* This dumps minimal information about the index.
4082 It is called via "mt print objfiles".
4083 One use is to verify .gdb_index has been loaded by the
4084 gdb.dwarf2/gdb-index.exp testcase. */
4085
4086 static void
4087 dw2_dump (struct objfile *objfile)
4088 {
4089 struct dwarf2_per_objfile *dwarf2_per_objfile
4090 = get_dwarf2_per_objfile (objfile);
4091
4092 gdb_assert (dwarf2_per_objfile->using_index);
4093 printf_filtered (".gdb_index:");
4094 if (dwarf2_per_objfile->index_table != NULL)
4095 {
4096 printf_filtered (" version %d\n",
4097 dwarf2_per_objfile->index_table->version);
4098 }
4099 else
4100 printf_filtered (" faked for \"readnow\"\n");
4101 printf_filtered ("\n");
4102 }
4103
4104 static void
4105 dw2_expand_symtabs_for_function (struct objfile *objfile,
4106 const char *func_name)
4107 {
4108 struct dwarf2_per_objfile *dwarf2_per_objfile
4109 = get_dwarf2_per_objfile (objfile);
4110
4111 struct dw2_symtab_iterator iter;
4112 struct dwarf2_per_cu_data *per_cu;
4113
4114 /* Note: It doesn't matter what we pass for block_index here. */
4115 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4116 func_name);
4117
4118 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4119 dw2_instantiate_symtab (per_cu, false);
4120
4121 }
4122
4123 static void
4124 dw2_expand_all_symtabs (struct objfile *objfile)
4125 {
4126 struct dwarf2_per_objfile *dwarf2_per_objfile
4127 = get_dwarf2_per_objfile (objfile);
4128 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4129 + dwarf2_per_objfile->all_type_units.size ());
4130
4131 for (int i = 0; i < total_units; ++i)
4132 {
4133 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4134
4135 /* We don't want to directly expand a partial CU, because if we
4136 read it with the wrong language, then assertion failures can
4137 be triggered later on. See PR symtab/23010. So, tell
4138 dw2_instantiate_symtab to skip partial CUs -- any important
4139 partial CU will be read via DW_TAG_imported_unit anyway. */
4140 dw2_instantiate_symtab (per_cu, true);
4141 }
4142 }
4143
4144 static void
4145 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4146 const char *fullname)
4147 {
4148 struct dwarf2_per_objfile *dwarf2_per_objfile
4149 = get_dwarf2_per_objfile (objfile);
4150
4151 /* We don't need to consider type units here.
4152 This is only called for examining code, e.g. expand_line_sal.
4153 There can be an order of magnitude (or more) more type units
4154 than comp units, and we avoid them if we can. */
4155
4156 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4157 {
4158 /* We only need to look at symtabs not already expanded. */
4159 if (per_cu->v.quick->compunit_symtab)
4160 continue;
4161
4162 quick_file_names *file_data = dw2_get_file_names (per_cu);
4163 if (file_data == NULL)
4164 continue;
4165
4166 for (int j = 0; j < file_data->num_file_names; ++j)
4167 {
4168 const char *this_fullname = file_data->file_names[j];
4169
4170 if (filename_cmp (this_fullname, fullname) == 0)
4171 {
4172 dw2_instantiate_symtab (per_cu, false);
4173 break;
4174 }
4175 }
4176 }
4177 }
4178
4179 static void
4180 dw2_map_matching_symbols (struct objfile *objfile,
4181 const char * name, domain_enum domain,
4182 int global,
4183 int (*callback) (const struct block *,
4184 struct symbol *, void *),
4185 void *data, symbol_name_match_type match,
4186 symbol_compare_ftype *ordered_compare)
4187 {
4188 /* Currently unimplemented; used for Ada. The function can be called if the
4189 current language is Ada for a non-Ada objfile using GNU index. As Ada
4190 does not look for non-Ada symbols this function should just return. */
4191 }
4192
4193 /* Symbol name matcher for .gdb_index names.
4194
4195 Symbol names in .gdb_index have a few particularities:
4196
4197 - There's no indication of which is the language of each symbol.
4198
4199 Since each language has its own symbol name matching algorithm,
4200 and we don't know which language is the right one, we must match
4201 each symbol against all languages. This would be a potential
4202 performance problem if it were not mitigated by the
4203 mapped_index::name_components lookup table, which significantly
4204 reduces the number of times we need to call into this matcher,
4205 making it a non-issue.
4206
4207 - Symbol names in the index have no overload (parameter)
4208 information. I.e., in C++, "foo(int)" and "foo(long)" both
4209 appear as "foo" in the index, for example.
4210
4211 This means that the lookup names passed to the symbol name
4212 matcher functions must have no parameter information either
4213 because (e.g.) symbol search name "foo" does not match
4214 lookup-name "foo(int)" [while swapping search name for lookup
4215 name would match].
4216 */
4217 class gdb_index_symbol_name_matcher
4218 {
4219 public:
4220 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4221 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4222
4223 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4224 Returns true if any matcher matches. */
4225 bool matches (const char *symbol_name);
4226
4227 private:
4228 /* A reference to the lookup name we're matching against. */
4229 const lookup_name_info &m_lookup_name;
4230
4231 /* A vector holding all the different symbol name matchers, for all
4232 languages. */
4233 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4234 };
4235
4236 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4237 (const lookup_name_info &lookup_name)
4238 : m_lookup_name (lookup_name)
4239 {
4240 /* Prepare the vector of comparison functions upfront, to avoid
4241 doing the same work for each symbol. Care is taken to avoid
4242 matching with the same matcher more than once if/when multiple
4243 languages use the same matcher function. */
4244 auto &matchers = m_symbol_name_matcher_funcs;
4245 matchers.reserve (nr_languages);
4246
4247 matchers.push_back (default_symbol_name_matcher);
4248
4249 for (int i = 0; i < nr_languages; i++)
4250 {
4251 const language_defn *lang = language_def ((enum language) i);
4252 symbol_name_matcher_ftype *name_matcher
4253 = get_symbol_name_matcher (lang, m_lookup_name);
4254
4255 /* Don't insert the same comparison routine more than once.
4256 Note that we do this linear walk instead of a seemingly
4257 cheaper sorted insert, or use a std::set or something like
4258 that, because relative order of function addresses is not
4259 stable. This is not a problem in practice because the number
4260 of supported languages is low, and the cost here is tiny
4261 compared to the number of searches we'll do afterwards using
4262 this object. */
4263 if (name_matcher != default_symbol_name_matcher
4264 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4265 == matchers.end ()))
4266 matchers.push_back (name_matcher);
4267 }
4268 }
4269
4270 bool
4271 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4272 {
4273 for (auto matches_name : m_symbol_name_matcher_funcs)
4274 if (matches_name (symbol_name, m_lookup_name, NULL))
4275 return true;
4276
4277 return false;
4278 }
4279
4280 /* Starting from a search name, return the string that finds the upper
4281 bound of all strings that start with SEARCH_NAME in a sorted name
4282 list. Returns the empty string to indicate that the upper bound is
4283 the end of the list. */
4284
4285 static std::string
4286 make_sort_after_prefix_name (const char *search_name)
4287 {
4288 /* When looking to complete "func", we find the upper bound of all
4289 symbols that start with "func" by looking for where we'd insert
4290 the closest string that would follow "func" in lexicographical
4291 order. Usually, that's "func"-with-last-character-incremented,
4292 i.e. "fund". Mind non-ASCII characters, though. Usually those
4293 will be UTF-8 multi-byte sequences, but we can't be certain.
4294 Especially mind the 0xff character, which is a valid character in
4295 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4296 rule out compilers allowing it in identifiers. Note that
4297 conveniently, strcmp/strcasecmp are specified to compare
4298 characters interpreted as unsigned char. So what we do is treat
4299 the whole string as a base 256 number composed of a sequence of
4300 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4301 to 0, and carries 1 to the following more-significant position.
4302 If the very first character in SEARCH_NAME ends up incremented
4303 and carries/overflows, then the upper bound is the end of the
4304 list. The string after the empty string is also the empty
4305 string.
4306
4307 Some examples of this operation:
4308
4309 SEARCH_NAME => "+1" RESULT
4310
4311 "abc" => "abd"
4312 "ab\xff" => "ac"
4313 "\xff" "a" "\xff" => "\xff" "b"
4314 "\xff" => ""
4315 "\xff\xff" => ""
4316 "" => ""
4317
4318 Then, with these symbols for example:
4319
4320 func
4321 func1
4322 fund
4323
4324 completing "func" looks for symbols between "func" and
4325 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4326 which finds "func" and "func1", but not "fund".
4327
4328 And with:
4329
4330 funcÿ (Latin1 'ÿ' [0xff])
4331 funcÿ1
4332 fund
4333
4334 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4335 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4336
4337 And with:
4338
4339 ÿÿ (Latin1 'ÿ' [0xff])
4340 ÿÿ1
4341
4342 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4343 the end of the list.
4344 */
4345 std::string after = search_name;
4346 while (!after.empty () && (unsigned char) after.back () == 0xff)
4347 after.pop_back ();
4348 if (!after.empty ())
4349 after.back () = (unsigned char) after.back () + 1;
4350 return after;
4351 }
4352
4353 /* See declaration. */
4354
4355 std::pair<std::vector<name_component>::const_iterator,
4356 std::vector<name_component>::const_iterator>
4357 mapped_index_base::find_name_components_bounds
4358 (const lookup_name_info &lookup_name_without_params) const
4359 {
4360 auto *name_cmp
4361 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4362
4363 const char *cplus
4364 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4365
4366 /* Comparison function object for lower_bound that matches against a
4367 given symbol name. */
4368 auto lookup_compare_lower = [&] (const name_component &elem,
4369 const char *name)
4370 {
4371 const char *elem_qualified = this->symbol_name_at (elem.idx);
4372 const char *elem_name = elem_qualified + elem.name_offset;
4373 return name_cmp (elem_name, name) < 0;
4374 };
4375
4376 /* Comparison function object for upper_bound that matches against a
4377 given symbol name. */
4378 auto lookup_compare_upper = [&] (const char *name,
4379 const name_component &elem)
4380 {
4381 const char *elem_qualified = this->symbol_name_at (elem.idx);
4382 const char *elem_name = elem_qualified + elem.name_offset;
4383 return name_cmp (name, elem_name) < 0;
4384 };
4385
4386 auto begin = this->name_components.begin ();
4387 auto end = this->name_components.end ();
4388
4389 /* Find the lower bound. */
4390 auto lower = [&] ()
4391 {
4392 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4393 return begin;
4394 else
4395 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4396 } ();
4397
4398 /* Find the upper bound. */
4399 auto upper = [&] ()
4400 {
4401 if (lookup_name_without_params.completion_mode ())
4402 {
4403 /* In completion mode, we want UPPER to point past all
4404 symbols names that have the same prefix. I.e., with
4405 these symbols, and completing "func":
4406
4407 function << lower bound
4408 function1
4409 other_function << upper bound
4410
4411 We find the upper bound by looking for the insertion
4412 point of "func"-with-last-character-incremented,
4413 i.e. "fund". */
4414 std::string after = make_sort_after_prefix_name (cplus);
4415 if (after.empty ())
4416 return end;
4417 return std::lower_bound (lower, end, after.c_str (),
4418 lookup_compare_lower);
4419 }
4420 else
4421 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4422 } ();
4423
4424 return {lower, upper};
4425 }
4426
4427 /* See declaration. */
4428
4429 void
4430 mapped_index_base::build_name_components ()
4431 {
4432 if (!this->name_components.empty ())
4433 return;
4434
4435 this->name_components_casing = case_sensitivity;
4436 auto *name_cmp
4437 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4438
4439 /* The code below only knows how to break apart components of C++
4440 symbol names (and other languages that use '::' as
4441 namespace/module separator). If we add support for wild matching
4442 to some language that uses some other operator (E.g., Ada, Go and
4443 D use '.'), then we'll need to try splitting the symbol name
4444 according to that language too. Note that Ada does support wild
4445 matching, but doesn't currently support .gdb_index. */
4446 auto count = this->symbol_name_count ();
4447 for (offset_type idx = 0; idx < count; idx++)
4448 {
4449 if (this->symbol_name_slot_invalid (idx))
4450 continue;
4451
4452 const char *name = this->symbol_name_at (idx);
4453
4454 /* Add each name component to the name component table. */
4455 unsigned int previous_len = 0;
4456 for (unsigned int current_len = cp_find_first_component (name);
4457 name[current_len] != '\0';
4458 current_len += cp_find_first_component (name + current_len))
4459 {
4460 gdb_assert (name[current_len] == ':');
4461 this->name_components.push_back ({previous_len, idx});
4462 /* Skip the '::'. */
4463 current_len += 2;
4464 previous_len = current_len;
4465 }
4466 this->name_components.push_back ({previous_len, idx});
4467 }
4468
4469 /* Sort name_components elements by name. */
4470 auto name_comp_compare = [&] (const name_component &left,
4471 const name_component &right)
4472 {
4473 const char *left_qualified = this->symbol_name_at (left.idx);
4474 const char *right_qualified = this->symbol_name_at (right.idx);
4475
4476 const char *left_name = left_qualified + left.name_offset;
4477 const char *right_name = right_qualified + right.name_offset;
4478
4479 return name_cmp (left_name, right_name) < 0;
4480 };
4481
4482 std::sort (this->name_components.begin (),
4483 this->name_components.end (),
4484 name_comp_compare);
4485 }
4486
4487 /* Helper for dw2_expand_symtabs_matching that works with a
4488 mapped_index_base instead of the containing objfile. This is split
4489 to a separate function in order to be able to unit test the
4490 name_components matching using a mock mapped_index_base. For each
4491 symbol name that matches, calls MATCH_CALLBACK, passing it the
4492 symbol's index in the mapped_index_base symbol table. */
4493
4494 static void
4495 dw2_expand_symtabs_matching_symbol
4496 (mapped_index_base &index,
4497 const lookup_name_info &lookup_name_in,
4498 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4499 enum search_domain kind,
4500 gdb::function_view<void (offset_type)> match_callback)
4501 {
4502 lookup_name_info lookup_name_without_params
4503 = lookup_name_in.make_ignore_params ();
4504 gdb_index_symbol_name_matcher lookup_name_matcher
4505 (lookup_name_without_params);
4506
4507 /* Build the symbol name component sorted vector, if we haven't
4508 yet. */
4509 index.build_name_components ();
4510
4511 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4512
4513 /* Now for each symbol name in range, check to see if we have a name
4514 match, and if so, call the MATCH_CALLBACK callback. */
4515
4516 /* The same symbol may appear more than once in the range though.
4517 E.g., if we're looking for symbols that complete "w", and we have
4518 a symbol named "w1::w2", we'll find the two name components for
4519 that same symbol in the range. To be sure we only call the
4520 callback once per symbol, we first collect the symbol name
4521 indexes that matched in a temporary vector and ignore
4522 duplicates. */
4523 std::vector<offset_type> matches;
4524 matches.reserve (std::distance (bounds.first, bounds.second));
4525
4526 for (; bounds.first != bounds.second; ++bounds.first)
4527 {
4528 const char *qualified = index.symbol_name_at (bounds.first->idx);
4529
4530 if (!lookup_name_matcher.matches (qualified)
4531 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4532 continue;
4533
4534 matches.push_back (bounds.first->idx);
4535 }
4536
4537 std::sort (matches.begin (), matches.end ());
4538
4539 /* Finally call the callback, once per match. */
4540 ULONGEST prev = -1;
4541 for (offset_type idx : matches)
4542 {
4543 if (prev != idx)
4544 {
4545 match_callback (idx);
4546 prev = idx;
4547 }
4548 }
4549
4550 /* Above we use a type wider than idx's for 'prev', since 0 and
4551 (offset_type)-1 are both possible values. */
4552 static_assert (sizeof (prev) > sizeof (offset_type), "");
4553 }
4554
4555 #if GDB_SELF_TEST
4556
4557 namespace selftests { namespace dw2_expand_symtabs_matching {
4558
4559 /* A mock .gdb_index/.debug_names-like name index table, enough to
4560 exercise dw2_expand_symtabs_matching_symbol, which works with the
4561 mapped_index_base interface. Builds an index from the symbol list
4562 passed as parameter to the constructor. */
4563 class mock_mapped_index : public mapped_index_base
4564 {
4565 public:
4566 mock_mapped_index (gdb::array_view<const char *> symbols)
4567 : m_symbol_table (symbols)
4568 {}
4569
4570 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4571
4572 /* Return the number of names in the symbol table. */
4573 size_t symbol_name_count () const override
4574 {
4575 return m_symbol_table.size ();
4576 }
4577
4578 /* Get the name of the symbol at IDX in the symbol table. */
4579 const char *symbol_name_at (offset_type idx) const override
4580 {
4581 return m_symbol_table[idx];
4582 }
4583
4584 private:
4585 gdb::array_view<const char *> m_symbol_table;
4586 };
4587
4588 /* Convenience function that converts a NULL pointer to a "<null>"
4589 string, to pass to print routines. */
4590
4591 static const char *
4592 string_or_null (const char *str)
4593 {
4594 return str != NULL ? str : "<null>";
4595 }
4596
4597 /* Check if a lookup_name_info built from
4598 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4599 index. EXPECTED_LIST is the list of expected matches, in expected
4600 matching order. If no match expected, then an empty list is
4601 specified. Returns true on success. On failure prints a warning
4602 indicating the file:line that failed, and returns false. */
4603
4604 static bool
4605 check_match (const char *file, int line,
4606 mock_mapped_index &mock_index,
4607 const char *name, symbol_name_match_type match_type,
4608 bool completion_mode,
4609 std::initializer_list<const char *> expected_list)
4610 {
4611 lookup_name_info lookup_name (name, match_type, completion_mode);
4612
4613 bool matched = true;
4614
4615 auto mismatch = [&] (const char *expected_str,
4616 const char *got)
4617 {
4618 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4619 "expected=\"%s\", got=\"%s\"\n"),
4620 file, line,
4621 (match_type == symbol_name_match_type::FULL
4622 ? "FULL" : "WILD"),
4623 name, string_or_null (expected_str), string_or_null (got));
4624 matched = false;
4625 };
4626
4627 auto expected_it = expected_list.begin ();
4628 auto expected_end = expected_list.end ();
4629
4630 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4631 NULL, ALL_DOMAIN,
4632 [&] (offset_type idx)
4633 {
4634 const char *matched_name = mock_index.symbol_name_at (idx);
4635 const char *expected_str
4636 = expected_it == expected_end ? NULL : *expected_it++;
4637
4638 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4639 mismatch (expected_str, matched_name);
4640 });
4641
4642 const char *expected_str
4643 = expected_it == expected_end ? NULL : *expected_it++;
4644 if (expected_str != NULL)
4645 mismatch (expected_str, NULL);
4646
4647 return matched;
4648 }
4649
4650 /* The symbols added to the mock mapped_index for testing (in
4651 canonical form). */
4652 static const char *test_symbols[] = {
4653 "function",
4654 "std::bar",
4655 "std::zfunction",
4656 "std::zfunction2",
4657 "w1::w2",
4658 "ns::foo<char*>",
4659 "ns::foo<int>",
4660 "ns::foo<long>",
4661 "ns2::tmpl<int>::foo2",
4662 "(anonymous namespace)::A::B::C",
4663
4664 /* These are used to check that the increment-last-char in the
4665 matching algorithm for completion doesn't match "t1_fund" when
4666 completing "t1_func". */
4667 "t1_func",
4668 "t1_func1",
4669 "t1_fund",
4670 "t1_fund1",
4671
4672 /* A UTF-8 name with multi-byte sequences to make sure that
4673 cp-name-parser understands this as a single identifier ("função"
4674 is "function" in PT). */
4675 u8"u8função",
4676
4677 /* \377 (0xff) is Latin1 'ÿ'. */
4678 "yfunc\377",
4679
4680 /* \377 (0xff) is Latin1 'ÿ'. */
4681 "\377",
4682 "\377\377123",
4683
4684 /* A name with all sorts of complications. Starts with "z" to make
4685 it easier for the completion tests below. */
4686 #define Z_SYM_NAME \
4687 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4688 "::tuple<(anonymous namespace)::ui*, " \
4689 "std::default_delete<(anonymous namespace)::ui>, void>"
4690
4691 Z_SYM_NAME
4692 };
4693
4694 /* Returns true if the mapped_index_base::find_name_component_bounds
4695 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4696 in completion mode. */
4697
4698 static bool
4699 check_find_bounds_finds (mapped_index_base &index,
4700 const char *search_name,
4701 gdb::array_view<const char *> expected_syms)
4702 {
4703 lookup_name_info lookup_name (search_name,
4704 symbol_name_match_type::FULL, true);
4705
4706 auto bounds = index.find_name_components_bounds (lookup_name);
4707
4708 size_t distance = std::distance (bounds.first, bounds.second);
4709 if (distance != expected_syms.size ())
4710 return false;
4711
4712 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4713 {
4714 auto nc_elem = bounds.first + exp_elem;
4715 const char *qualified = index.symbol_name_at (nc_elem->idx);
4716 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4717 return false;
4718 }
4719
4720 return true;
4721 }
4722
4723 /* Test the lower-level mapped_index::find_name_component_bounds
4724 method. */
4725
4726 static void
4727 test_mapped_index_find_name_component_bounds ()
4728 {
4729 mock_mapped_index mock_index (test_symbols);
4730
4731 mock_index.build_name_components ();
4732
4733 /* Test the lower-level mapped_index::find_name_component_bounds
4734 method in completion mode. */
4735 {
4736 static const char *expected_syms[] = {
4737 "t1_func",
4738 "t1_func1",
4739 };
4740
4741 SELF_CHECK (check_find_bounds_finds (mock_index,
4742 "t1_func", expected_syms));
4743 }
4744
4745 /* Check that the increment-last-char in the name matching algorithm
4746 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4747 {
4748 static const char *expected_syms1[] = {
4749 "\377",
4750 "\377\377123",
4751 };
4752 SELF_CHECK (check_find_bounds_finds (mock_index,
4753 "\377", expected_syms1));
4754
4755 static const char *expected_syms2[] = {
4756 "\377\377123",
4757 };
4758 SELF_CHECK (check_find_bounds_finds (mock_index,
4759 "\377\377", expected_syms2));
4760 }
4761 }
4762
4763 /* Test dw2_expand_symtabs_matching_symbol. */
4764
4765 static void
4766 test_dw2_expand_symtabs_matching_symbol ()
4767 {
4768 mock_mapped_index mock_index (test_symbols);
4769
4770 /* We let all tests run until the end even if some fails, for debug
4771 convenience. */
4772 bool any_mismatch = false;
4773
4774 /* Create the expected symbols list (an initializer_list). Needed
4775 because lists have commas, and we need to pass them to CHECK,
4776 which is a macro. */
4777 #define EXPECT(...) { __VA_ARGS__ }
4778
4779 /* Wrapper for check_match that passes down the current
4780 __FILE__/__LINE__. */
4781 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4782 any_mismatch |= !check_match (__FILE__, __LINE__, \
4783 mock_index, \
4784 NAME, MATCH_TYPE, COMPLETION_MODE, \
4785 EXPECTED_LIST)
4786
4787 /* Identity checks. */
4788 for (const char *sym : test_symbols)
4789 {
4790 /* Should be able to match all existing symbols. */
4791 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4792 EXPECT (sym));
4793
4794 /* Should be able to match all existing symbols with
4795 parameters. */
4796 std::string with_params = std::string (sym) + "(int)";
4797 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4798 EXPECT (sym));
4799
4800 /* Should be able to match all existing symbols with
4801 parameters and qualifiers. */
4802 with_params = std::string (sym) + " ( int ) const";
4803 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4804 EXPECT (sym));
4805
4806 /* This should really find sym, but cp-name-parser.y doesn't
4807 know about lvalue/rvalue qualifiers yet. */
4808 with_params = std::string (sym) + " ( int ) &&";
4809 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4810 {});
4811 }
4812
4813 /* Check that the name matching algorithm for completion doesn't get
4814 confused with Latin1 'ÿ' / 0xff. */
4815 {
4816 static const char str[] = "\377";
4817 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4818 EXPECT ("\377", "\377\377123"));
4819 }
4820
4821 /* Check that the increment-last-char in the matching algorithm for
4822 completion doesn't match "t1_fund" when completing "t1_func". */
4823 {
4824 static const char str[] = "t1_func";
4825 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4826 EXPECT ("t1_func", "t1_func1"));
4827 }
4828
4829 /* Check that completion mode works at each prefix of the expected
4830 symbol name. */
4831 {
4832 static const char str[] = "function(int)";
4833 size_t len = strlen (str);
4834 std::string lookup;
4835
4836 for (size_t i = 1; i < len; i++)
4837 {
4838 lookup.assign (str, i);
4839 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4840 EXPECT ("function"));
4841 }
4842 }
4843
4844 /* While "w" is a prefix of both components, the match function
4845 should still only be called once. */
4846 {
4847 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4848 EXPECT ("w1::w2"));
4849 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4850 EXPECT ("w1::w2"));
4851 }
4852
4853 /* Same, with a "complicated" symbol. */
4854 {
4855 static const char str[] = Z_SYM_NAME;
4856 size_t len = strlen (str);
4857 std::string lookup;
4858
4859 for (size_t i = 1; i < len; i++)
4860 {
4861 lookup.assign (str, i);
4862 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4863 EXPECT (Z_SYM_NAME));
4864 }
4865 }
4866
4867 /* In FULL mode, an incomplete symbol doesn't match. */
4868 {
4869 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4870 {});
4871 }
4872
4873 /* A complete symbol with parameters matches any overload, since the
4874 index has no overload info. */
4875 {
4876 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4877 EXPECT ("std::zfunction", "std::zfunction2"));
4878 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4879 EXPECT ("std::zfunction", "std::zfunction2"));
4880 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4881 EXPECT ("std::zfunction", "std::zfunction2"));
4882 }
4883
4884 /* Check that whitespace is ignored appropriately. A symbol with a
4885 template argument list. */
4886 {
4887 static const char expected[] = "ns::foo<int>";
4888 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4889 EXPECT (expected));
4890 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4891 EXPECT (expected));
4892 }
4893
4894 /* Check that whitespace is ignored appropriately. A symbol with a
4895 template argument list that includes a pointer. */
4896 {
4897 static const char expected[] = "ns::foo<char*>";
4898 /* Try both completion and non-completion modes. */
4899 static const bool completion_mode[2] = {false, true};
4900 for (size_t i = 0; i < 2; i++)
4901 {
4902 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4903 completion_mode[i], EXPECT (expected));
4904 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4905 completion_mode[i], EXPECT (expected));
4906
4907 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4908 completion_mode[i], EXPECT (expected));
4909 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4910 completion_mode[i], EXPECT (expected));
4911 }
4912 }
4913
4914 {
4915 /* Check method qualifiers are ignored. */
4916 static const char expected[] = "ns::foo<char*>";
4917 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4918 symbol_name_match_type::FULL, true, EXPECT (expected));
4919 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4920 symbol_name_match_type::FULL, true, EXPECT (expected));
4921 CHECK_MATCH ("foo < char * > ( int ) const",
4922 symbol_name_match_type::WILD, true, EXPECT (expected));
4923 CHECK_MATCH ("foo < char * > ( int ) &&",
4924 symbol_name_match_type::WILD, true, EXPECT (expected));
4925 }
4926
4927 /* Test lookup names that don't match anything. */
4928 {
4929 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4930 {});
4931
4932 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4933 {});
4934 }
4935
4936 /* Some wild matching tests, exercising "(anonymous namespace)",
4937 which should not be confused with a parameter list. */
4938 {
4939 static const char *syms[] = {
4940 "A::B::C",
4941 "B::C",
4942 "C",
4943 "A :: B :: C ( int )",
4944 "B :: C ( int )",
4945 "C ( int )",
4946 };
4947
4948 for (const char *s : syms)
4949 {
4950 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4951 EXPECT ("(anonymous namespace)::A::B::C"));
4952 }
4953 }
4954
4955 {
4956 static const char expected[] = "ns2::tmpl<int>::foo2";
4957 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4958 EXPECT (expected));
4959 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4960 EXPECT (expected));
4961 }
4962
4963 SELF_CHECK (!any_mismatch);
4964
4965 #undef EXPECT
4966 #undef CHECK_MATCH
4967 }
4968
4969 static void
4970 run_test ()
4971 {
4972 test_mapped_index_find_name_component_bounds ();
4973 test_dw2_expand_symtabs_matching_symbol ();
4974 }
4975
4976 }} // namespace selftests::dw2_expand_symtabs_matching
4977
4978 #endif /* GDB_SELF_TEST */
4979
4980 /* If FILE_MATCHER is NULL or if PER_CU has
4981 dwarf2_per_cu_quick_data::MARK set (see
4982 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4983 EXPANSION_NOTIFY on it. */
4984
4985 static void
4986 dw2_expand_symtabs_matching_one
4987 (struct dwarf2_per_cu_data *per_cu,
4988 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4989 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4990 {
4991 if (file_matcher == NULL || per_cu->v.quick->mark)
4992 {
4993 bool symtab_was_null
4994 = (per_cu->v.quick->compunit_symtab == NULL);
4995
4996 dw2_instantiate_symtab (per_cu, false);
4997
4998 if (expansion_notify != NULL
4999 && symtab_was_null
5000 && per_cu->v.quick->compunit_symtab != NULL)
5001 expansion_notify (per_cu->v.quick->compunit_symtab);
5002 }
5003 }
5004
5005 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5006 matched, to expand corresponding CUs that were marked. IDX is the
5007 index of the symbol name that matched. */
5008
5009 static void
5010 dw2_expand_marked_cus
5011 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5012 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5013 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5014 search_domain kind)
5015 {
5016 offset_type *vec, vec_len, vec_idx;
5017 bool global_seen = false;
5018 mapped_index &index = *dwarf2_per_objfile->index_table;
5019
5020 vec = (offset_type *) (index.constant_pool
5021 + MAYBE_SWAP (index.symbol_table[idx].vec));
5022 vec_len = MAYBE_SWAP (vec[0]);
5023 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5024 {
5025 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5026 /* This value is only valid for index versions >= 7. */
5027 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5028 gdb_index_symbol_kind symbol_kind =
5029 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5030 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5031 /* Only check the symbol attributes if they're present.
5032 Indices prior to version 7 don't record them,
5033 and indices >= 7 may elide them for certain symbols
5034 (gold does this). */
5035 int attrs_valid =
5036 (index.version >= 7
5037 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5038
5039 /* Work around gold/15646. */
5040 if (attrs_valid)
5041 {
5042 if (!is_static && global_seen)
5043 continue;
5044 if (!is_static)
5045 global_seen = true;
5046 }
5047
5048 /* Only check the symbol's kind if it has one. */
5049 if (attrs_valid)
5050 {
5051 switch (kind)
5052 {
5053 case VARIABLES_DOMAIN:
5054 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5055 continue;
5056 break;
5057 case FUNCTIONS_DOMAIN:
5058 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5059 continue;
5060 break;
5061 case TYPES_DOMAIN:
5062 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5063 continue;
5064 break;
5065 default:
5066 break;
5067 }
5068 }
5069
5070 /* Don't crash on bad data. */
5071 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5072 + dwarf2_per_objfile->all_type_units.size ()))
5073 {
5074 complaint (_(".gdb_index entry has bad CU index"
5075 " [in module %s]"),
5076 objfile_name (dwarf2_per_objfile->objfile));
5077 continue;
5078 }
5079
5080 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5081 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5082 expansion_notify);
5083 }
5084 }
5085
5086 /* If FILE_MATCHER is non-NULL, set all the
5087 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5088 that match FILE_MATCHER. */
5089
5090 static void
5091 dw_expand_symtabs_matching_file_matcher
5092 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5093 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5094 {
5095 if (file_matcher == NULL)
5096 return;
5097
5098 objfile *const objfile = dwarf2_per_objfile->objfile;
5099
5100 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5101 htab_eq_pointer,
5102 NULL, xcalloc, xfree));
5103 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5104 htab_eq_pointer,
5105 NULL, xcalloc, xfree));
5106
5107 /* The rule is CUs specify all the files, including those used by
5108 any TU, so there's no need to scan TUs here. */
5109
5110 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5111 {
5112 QUIT;
5113
5114 per_cu->v.quick->mark = 0;
5115
5116 /* We only need to look at symtabs not already expanded. */
5117 if (per_cu->v.quick->compunit_symtab)
5118 continue;
5119
5120 quick_file_names *file_data = dw2_get_file_names (per_cu);
5121 if (file_data == NULL)
5122 continue;
5123
5124 if (htab_find (visited_not_found.get (), file_data) != NULL)
5125 continue;
5126 else if (htab_find (visited_found.get (), file_data) != NULL)
5127 {
5128 per_cu->v.quick->mark = 1;
5129 continue;
5130 }
5131
5132 for (int j = 0; j < file_data->num_file_names; ++j)
5133 {
5134 const char *this_real_name;
5135
5136 if (file_matcher (file_data->file_names[j], false))
5137 {
5138 per_cu->v.quick->mark = 1;
5139 break;
5140 }
5141
5142 /* Before we invoke realpath, which can get expensive when many
5143 files are involved, do a quick comparison of the basenames. */
5144 if (!basenames_may_differ
5145 && !file_matcher (lbasename (file_data->file_names[j]),
5146 true))
5147 continue;
5148
5149 this_real_name = dw2_get_real_path (objfile, file_data, j);
5150 if (file_matcher (this_real_name, false))
5151 {
5152 per_cu->v.quick->mark = 1;
5153 break;
5154 }
5155 }
5156
5157 void **slot = htab_find_slot (per_cu->v.quick->mark
5158 ? visited_found.get ()
5159 : visited_not_found.get (),
5160 file_data, INSERT);
5161 *slot = file_data;
5162 }
5163 }
5164
5165 static void
5166 dw2_expand_symtabs_matching
5167 (struct objfile *objfile,
5168 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5169 const lookup_name_info &lookup_name,
5170 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5171 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5172 enum search_domain kind)
5173 {
5174 struct dwarf2_per_objfile *dwarf2_per_objfile
5175 = get_dwarf2_per_objfile (objfile);
5176
5177 /* index_table is NULL if OBJF_READNOW. */
5178 if (!dwarf2_per_objfile->index_table)
5179 return;
5180
5181 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5182
5183 mapped_index &index = *dwarf2_per_objfile->index_table;
5184
5185 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5186 symbol_matcher,
5187 kind, [&] (offset_type idx)
5188 {
5189 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5190 expansion_notify, kind);
5191 });
5192 }
5193
5194 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5195 symtab. */
5196
5197 static struct compunit_symtab *
5198 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5199 CORE_ADDR pc)
5200 {
5201 int i;
5202
5203 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5204 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5205 return cust;
5206
5207 if (cust->includes == NULL)
5208 return NULL;
5209
5210 for (i = 0; cust->includes[i]; ++i)
5211 {
5212 struct compunit_symtab *s = cust->includes[i];
5213
5214 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5215 if (s != NULL)
5216 return s;
5217 }
5218
5219 return NULL;
5220 }
5221
5222 static struct compunit_symtab *
5223 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5224 struct bound_minimal_symbol msymbol,
5225 CORE_ADDR pc,
5226 struct obj_section *section,
5227 int warn_if_readin)
5228 {
5229 struct dwarf2_per_cu_data *data;
5230 struct compunit_symtab *result;
5231
5232 if (!objfile->partial_symtabs->psymtabs_addrmap)
5233 return NULL;
5234
5235 CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
5236 SECT_OFF_TEXT (objfile));
5237 data = (struct dwarf2_per_cu_data *) addrmap_find
5238 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
5239 if (!data)
5240 return NULL;
5241
5242 if (warn_if_readin && data->v.quick->compunit_symtab)
5243 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5244 paddress (get_objfile_arch (objfile), pc));
5245
5246 result
5247 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5248 false),
5249 pc);
5250 gdb_assert (result != NULL);
5251 return result;
5252 }
5253
5254 static void
5255 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5256 void *data, int need_fullname)
5257 {
5258 struct dwarf2_per_objfile *dwarf2_per_objfile
5259 = get_dwarf2_per_objfile (objfile);
5260
5261 if (!dwarf2_per_objfile->filenames_cache)
5262 {
5263 dwarf2_per_objfile->filenames_cache.emplace ();
5264
5265 htab_up visited (htab_create_alloc (10,
5266 htab_hash_pointer, htab_eq_pointer,
5267 NULL, xcalloc, xfree));
5268
5269 /* The rule is CUs specify all the files, including those used
5270 by any TU, so there's no need to scan TUs here. We can
5271 ignore file names coming from already-expanded CUs. */
5272
5273 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5274 {
5275 if (per_cu->v.quick->compunit_symtab)
5276 {
5277 void **slot = htab_find_slot (visited.get (),
5278 per_cu->v.quick->file_names,
5279 INSERT);
5280
5281 *slot = per_cu->v.quick->file_names;
5282 }
5283 }
5284
5285 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5286 {
5287 /* We only need to look at symtabs not already expanded. */
5288 if (per_cu->v.quick->compunit_symtab)
5289 continue;
5290
5291 quick_file_names *file_data = dw2_get_file_names (per_cu);
5292 if (file_data == NULL)
5293 continue;
5294
5295 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5296 if (*slot)
5297 {
5298 /* Already visited. */
5299 continue;
5300 }
5301 *slot = file_data;
5302
5303 for (int j = 0; j < file_data->num_file_names; ++j)
5304 {
5305 const char *filename = file_data->file_names[j];
5306 dwarf2_per_objfile->filenames_cache->seen (filename);
5307 }
5308 }
5309 }
5310
5311 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5312 {
5313 gdb::unique_xmalloc_ptr<char> this_real_name;
5314
5315 if (need_fullname)
5316 this_real_name = gdb_realpath (filename);
5317 (*fun) (filename, this_real_name.get (), data);
5318 });
5319 }
5320
5321 static int
5322 dw2_has_symbols (struct objfile *objfile)
5323 {
5324 return 1;
5325 }
5326
5327 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5328 {
5329 dw2_has_symbols,
5330 dw2_find_last_source_symtab,
5331 dw2_forget_cached_source_info,
5332 dw2_map_symtabs_matching_filename,
5333 dw2_lookup_symbol,
5334 dw2_print_stats,
5335 dw2_dump,
5336 dw2_expand_symtabs_for_function,
5337 dw2_expand_all_symtabs,
5338 dw2_expand_symtabs_with_fullname,
5339 dw2_map_matching_symbols,
5340 dw2_expand_symtabs_matching,
5341 dw2_find_pc_sect_compunit_symtab,
5342 NULL,
5343 dw2_map_symbol_filenames
5344 };
5345
5346 /* DWARF-5 debug_names reader. */
5347
5348 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5349 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5350
5351 /* A helper function that reads the .debug_names section in SECTION
5352 and fills in MAP. FILENAME is the name of the file containing the
5353 section; it is used for error reporting.
5354
5355 Returns true if all went well, false otherwise. */
5356
5357 static bool
5358 read_debug_names_from_section (struct objfile *objfile,
5359 const char *filename,
5360 struct dwarf2_section_info *section,
5361 mapped_debug_names &map)
5362 {
5363 if (dwarf2_section_empty_p (section))
5364 return false;
5365
5366 /* Older elfutils strip versions could keep the section in the main
5367 executable while splitting it for the separate debug info file. */
5368 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5369 return false;
5370
5371 dwarf2_read_section (objfile, section);
5372
5373 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5374
5375 const gdb_byte *addr = section->buffer;
5376
5377 bfd *const abfd = get_section_bfd_owner (section);
5378
5379 unsigned int bytes_read;
5380 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5381 addr += bytes_read;
5382
5383 map.dwarf5_is_dwarf64 = bytes_read != 4;
5384 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5385 if (bytes_read + length != section->size)
5386 {
5387 /* There may be multiple per-CU indices. */
5388 warning (_("Section .debug_names in %s length %s does not match "
5389 "section length %s, ignoring .debug_names."),
5390 filename, plongest (bytes_read + length),
5391 pulongest (section->size));
5392 return false;
5393 }
5394
5395 /* The version number. */
5396 uint16_t version = read_2_bytes (abfd, addr);
5397 addr += 2;
5398 if (version != 5)
5399 {
5400 warning (_("Section .debug_names in %s has unsupported version %d, "
5401 "ignoring .debug_names."),
5402 filename, version);
5403 return false;
5404 }
5405
5406 /* Padding. */
5407 uint16_t padding = read_2_bytes (abfd, addr);
5408 addr += 2;
5409 if (padding != 0)
5410 {
5411 warning (_("Section .debug_names in %s has unsupported padding %d, "
5412 "ignoring .debug_names."),
5413 filename, padding);
5414 return false;
5415 }
5416
5417 /* comp_unit_count - The number of CUs in the CU list. */
5418 map.cu_count = read_4_bytes (abfd, addr);
5419 addr += 4;
5420
5421 /* local_type_unit_count - The number of TUs in the local TU
5422 list. */
5423 map.tu_count = read_4_bytes (abfd, addr);
5424 addr += 4;
5425
5426 /* foreign_type_unit_count - The number of TUs in the foreign TU
5427 list. */
5428 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5429 addr += 4;
5430 if (foreign_tu_count != 0)
5431 {
5432 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5433 "ignoring .debug_names."),
5434 filename, static_cast<unsigned long> (foreign_tu_count));
5435 return false;
5436 }
5437
5438 /* bucket_count - The number of hash buckets in the hash lookup
5439 table. */
5440 map.bucket_count = read_4_bytes (abfd, addr);
5441 addr += 4;
5442
5443 /* name_count - The number of unique names in the index. */
5444 map.name_count = read_4_bytes (abfd, addr);
5445 addr += 4;
5446
5447 /* abbrev_table_size - The size in bytes of the abbreviations
5448 table. */
5449 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5450 addr += 4;
5451
5452 /* augmentation_string_size - The size in bytes of the augmentation
5453 string. This value is rounded up to a multiple of 4. */
5454 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5455 addr += 4;
5456 map.augmentation_is_gdb = ((augmentation_string_size
5457 == sizeof (dwarf5_augmentation))
5458 && memcmp (addr, dwarf5_augmentation,
5459 sizeof (dwarf5_augmentation)) == 0);
5460 augmentation_string_size += (-augmentation_string_size) & 3;
5461 addr += augmentation_string_size;
5462
5463 /* List of CUs */
5464 map.cu_table_reordered = addr;
5465 addr += map.cu_count * map.offset_size;
5466
5467 /* List of Local TUs */
5468 map.tu_table_reordered = addr;
5469 addr += map.tu_count * map.offset_size;
5470
5471 /* Hash Lookup Table */
5472 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5473 addr += map.bucket_count * 4;
5474 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5475 addr += map.name_count * 4;
5476
5477 /* Name Table */
5478 map.name_table_string_offs_reordered = addr;
5479 addr += map.name_count * map.offset_size;
5480 map.name_table_entry_offs_reordered = addr;
5481 addr += map.name_count * map.offset_size;
5482
5483 const gdb_byte *abbrev_table_start = addr;
5484 for (;;)
5485 {
5486 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5487 addr += bytes_read;
5488 if (index_num == 0)
5489 break;
5490
5491 const auto insertpair
5492 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5493 if (!insertpair.second)
5494 {
5495 warning (_("Section .debug_names in %s has duplicate index %s, "
5496 "ignoring .debug_names."),
5497 filename, pulongest (index_num));
5498 return false;
5499 }
5500 mapped_debug_names::index_val &indexval = insertpair.first->second;
5501 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5502 addr += bytes_read;
5503
5504 for (;;)
5505 {
5506 mapped_debug_names::index_val::attr attr;
5507 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5508 addr += bytes_read;
5509 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5510 addr += bytes_read;
5511 if (attr.form == DW_FORM_implicit_const)
5512 {
5513 attr.implicit_const = read_signed_leb128 (abfd, addr,
5514 &bytes_read);
5515 addr += bytes_read;
5516 }
5517 if (attr.dw_idx == 0 && attr.form == 0)
5518 break;
5519 indexval.attr_vec.push_back (std::move (attr));
5520 }
5521 }
5522 if (addr != abbrev_table_start + abbrev_table_size)
5523 {
5524 warning (_("Section .debug_names in %s has abbreviation_table "
5525 "of size %s vs. written as %u, ignoring .debug_names."),
5526 filename, plongest (addr - abbrev_table_start),
5527 abbrev_table_size);
5528 return false;
5529 }
5530 map.entry_pool = addr;
5531
5532 return true;
5533 }
5534
5535 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5536 list. */
5537
5538 static void
5539 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5540 const mapped_debug_names &map,
5541 dwarf2_section_info &section,
5542 bool is_dwz)
5543 {
5544 sect_offset sect_off_prev;
5545 for (uint32_t i = 0; i <= map.cu_count; ++i)
5546 {
5547 sect_offset sect_off_next;
5548 if (i < map.cu_count)
5549 {
5550 sect_off_next
5551 = (sect_offset) (extract_unsigned_integer
5552 (map.cu_table_reordered + i * map.offset_size,
5553 map.offset_size,
5554 map.dwarf5_byte_order));
5555 }
5556 else
5557 sect_off_next = (sect_offset) section.size;
5558 if (i >= 1)
5559 {
5560 const ULONGEST length = sect_off_next - sect_off_prev;
5561 dwarf2_per_cu_data *per_cu
5562 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5563 sect_off_prev, length);
5564 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5565 }
5566 sect_off_prev = sect_off_next;
5567 }
5568 }
5569
5570 /* Read the CU list from the mapped index, and use it to create all
5571 the CU objects for this dwarf2_per_objfile. */
5572
5573 static void
5574 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5575 const mapped_debug_names &map,
5576 const mapped_debug_names &dwz_map)
5577 {
5578 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5579 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5580
5581 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5582 dwarf2_per_objfile->info,
5583 false /* is_dwz */);
5584
5585 if (dwz_map.cu_count == 0)
5586 return;
5587
5588 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5589 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5590 true /* is_dwz */);
5591 }
5592
5593 /* Read .debug_names. If everything went ok, initialize the "quick"
5594 elements of all the CUs and return true. Otherwise, return false. */
5595
5596 static bool
5597 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5598 {
5599 std::unique_ptr<mapped_debug_names> map
5600 (new mapped_debug_names (dwarf2_per_objfile));
5601 mapped_debug_names dwz_map (dwarf2_per_objfile);
5602 struct objfile *objfile = dwarf2_per_objfile->objfile;
5603
5604 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5605 &dwarf2_per_objfile->debug_names,
5606 *map))
5607 return false;
5608
5609 /* Don't use the index if it's empty. */
5610 if (map->name_count == 0)
5611 return false;
5612
5613 /* If there is a .dwz file, read it so we can get its CU list as
5614 well. */
5615 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5616 if (dwz != NULL)
5617 {
5618 if (!read_debug_names_from_section (objfile,
5619 bfd_get_filename (dwz->dwz_bfd),
5620 &dwz->debug_names, dwz_map))
5621 {
5622 warning (_("could not read '.debug_names' section from %s; skipping"),
5623 bfd_get_filename (dwz->dwz_bfd));
5624 return false;
5625 }
5626 }
5627
5628 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5629
5630 if (map->tu_count != 0)
5631 {
5632 /* We can only handle a single .debug_types when we have an
5633 index. */
5634 if (dwarf2_per_objfile->types.size () != 1)
5635 return false;
5636
5637 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
5638
5639 create_signatured_type_table_from_debug_names
5640 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5641 }
5642
5643 create_addrmap_from_aranges (dwarf2_per_objfile,
5644 &dwarf2_per_objfile->debug_aranges);
5645
5646 dwarf2_per_objfile->debug_names_table = std::move (map);
5647 dwarf2_per_objfile->using_index = 1;
5648 dwarf2_per_objfile->quick_file_names_table =
5649 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5650
5651 return true;
5652 }
5653
5654 /* Type used to manage iterating over all CUs looking for a symbol for
5655 .debug_names. */
5656
5657 class dw2_debug_names_iterator
5658 {
5659 public:
5660 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5661 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5662 dw2_debug_names_iterator (const mapped_debug_names &map,
5663 bool want_specific_block,
5664 block_enum block_index, domain_enum domain,
5665 const char *name)
5666 : m_map (map), m_want_specific_block (want_specific_block),
5667 m_block_index (block_index), m_domain (domain),
5668 m_addr (find_vec_in_debug_names (map, name))
5669 {}
5670
5671 dw2_debug_names_iterator (const mapped_debug_names &map,
5672 search_domain search, uint32_t namei)
5673 : m_map (map),
5674 m_search (search),
5675 m_addr (find_vec_in_debug_names (map, namei))
5676 {}
5677
5678 /* Return the next matching CU or NULL if there are no more. */
5679 dwarf2_per_cu_data *next ();
5680
5681 private:
5682 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5683 const char *name);
5684 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5685 uint32_t namei);
5686
5687 /* The internalized form of .debug_names. */
5688 const mapped_debug_names &m_map;
5689
5690 /* If true, only look for symbols that match BLOCK_INDEX. */
5691 const bool m_want_specific_block = false;
5692
5693 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5694 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5695 value. */
5696 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5697
5698 /* The kind of symbol we're looking for. */
5699 const domain_enum m_domain = UNDEF_DOMAIN;
5700 const search_domain m_search = ALL_DOMAIN;
5701
5702 /* The list of CUs from the index entry of the symbol, or NULL if
5703 not found. */
5704 const gdb_byte *m_addr;
5705 };
5706
5707 const char *
5708 mapped_debug_names::namei_to_name (uint32_t namei) const
5709 {
5710 const ULONGEST namei_string_offs
5711 = extract_unsigned_integer ((name_table_string_offs_reordered
5712 + namei * offset_size),
5713 offset_size,
5714 dwarf5_byte_order);
5715 return read_indirect_string_at_offset
5716 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5717 }
5718
5719 /* Find a slot in .debug_names for the object named NAME. If NAME is
5720 found, return pointer to its pool data. If NAME cannot be found,
5721 return NULL. */
5722
5723 const gdb_byte *
5724 dw2_debug_names_iterator::find_vec_in_debug_names
5725 (const mapped_debug_names &map, const char *name)
5726 {
5727 int (*cmp) (const char *, const char *);
5728
5729 if (current_language->la_language == language_cplus
5730 || current_language->la_language == language_fortran
5731 || current_language->la_language == language_d)
5732 {
5733 /* NAME is already canonical. Drop any qualifiers as
5734 .debug_names does not contain any. */
5735
5736 if (strchr (name, '(') != NULL)
5737 {
5738 gdb::unique_xmalloc_ptr<char> without_params
5739 = cp_remove_params (name);
5740
5741 if (without_params != NULL)
5742 {
5743 name = without_params.get();
5744 }
5745 }
5746 }
5747
5748 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5749
5750 const uint32_t full_hash = dwarf5_djb_hash (name);
5751 uint32_t namei
5752 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5753 (map.bucket_table_reordered
5754 + (full_hash % map.bucket_count)), 4,
5755 map.dwarf5_byte_order);
5756 if (namei == 0)
5757 return NULL;
5758 --namei;
5759 if (namei >= map.name_count)
5760 {
5761 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5762 "[in module %s]"),
5763 namei, map.name_count,
5764 objfile_name (map.dwarf2_per_objfile->objfile));
5765 return NULL;
5766 }
5767
5768 for (;;)
5769 {
5770 const uint32_t namei_full_hash
5771 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5772 (map.hash_table_reordered + namei), 4,
5773 map.dwarf5_byte_order);
5774 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5775 return NULL;
5776
5777 if (full_hash == namei_full_hash)
5778 {
5779 const char *const namei_string = map.namei_to_name (namei);
5780
5781 #if 0 /* An expensive sanity check. */
5782 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5783 {
5784 complaint (_("Wrong .debug_names hash for string at index %u "
5785 "[in module %s]"),
5786 namei, objfile_name (dwarf2_per_objfile->objfile));
5787 return NULL;
5788 }
5789 #endif
5790
5791 if (cmp (namei_string, name) == 0)
5792 {
5793 const ULONGEST namei_entry_offs
5794 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5795 + namei * map.offset_size),
5796 map.offset_size, map.dwarf5_byte_order);
5797 return map.entry_pool + namei_entry_offs;
5798 }
5799 }
5800
5801 ++namei;
5802 if (namei >= map.name_count)
5803 return NULL;
5804 }
5805 }
5806
5807 const gdb_byte *
5808 dw2_debug_names_iterator::find_vec_in_debug_names
5809 (const mapped_debug_names &map, uint32_t namei)
5810 {
5811 if (namei >= map.name_count)
5812 {
5813 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5814 "[in module %s]"),
5815 namei, map.name_count,
5816 objfile_name (map.dwarf2_per_objfile->objfile));
5817 return NULL;
5818 }
5819
5820 const ULONGEST namei_entry_offs
5821 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5822 + namei * map.offset_size),
5823 map.offset_size, map.dwarf5_byte_order);
5824 return map.entry_pool + namei_entry_offs;
5825 }
5826
5827 /* See dw2_debug_names_iterator. */
5828
5829 dwarf2_per_cu_data *
5830 dw2_debug_names_iterator::next ()
5831 {
5832 if (m_addr == NULL)
5833 return NULL;
5834
5835 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5836 struct objfile *objfile = dwarf2_per_objfile->objfile;
5837 bfd *const abfd = objfile->obfd;
5838
5839 again:
5840
5841 unsigned int bytes_read;
5842 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5843 m_addr += bytes_read;
5844 if (abbrev == 0)
5845 return NULL;
5846
5847 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5848 if (indexval_it == m_map.abbrev_map.cend ())
5849 {
5850 complaint (_("Wrong .debug_names undefined abbrev code %s "
5851 "[in module %s]"),
5852 pulongest (abbrev), objfile_name (objfile));
5853 return NULL;
5854 }
5855 const mapped_debug_names::index_val &indexval = indexval_it->second;
5856 bool have_is_static = false;
5857 bool is_static;
5858 dwarf2_per_cu_data *per_cu = NULL;
5859 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5860 {
5861 ULONGEST ull;
5862 switch (attr.form)
5863 {
5864 case DW_FORM_implicit_const:
5865 ull = attr.implicit_const;
5866 break;
5867 case DW_FORM_flag_present:
5868 ull = 1;
5869 break;
5870 case DW_FORM_udata:
5871 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5872 m_addr += bytes_read;
5873 break;
5874 default:
5875 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5876 dwarf_form_name (attr.form),
5877 objfile_name (objfile));
5878 return NULL;
5879 }
5880 switch (attr.dw_idx)
5881 {
5882 case DW_IDX_compile_unit:
5883 /* Don't crash on bad data. */
5884 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5885 {
5886 complaint (_(".debug_names entry has bad CU index %s"
5887 " [in module %s]"),
5888 pulongest (ull),
5889 objfile_name (dwarf2_per_objfile->objfile));
5890 continue;
5891 }
5892 per_cu = dwarf2_per_objfile->get_cutu (ull);
5893 break;
5894 case DW_IDX_type_unit:
5895 /* Don't crash on bad data. */
5896 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5897 {
5898 complaint (_(".debug_names entry has bad TU index %s"
5899 " [in module %s]"),
5900 pulongest (ull),
5901 objfile_name (dwarf2_per_objfile->objfile));
5902 continue;
5903 }
5904 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5905 break;
5906 case DW_IDX_GNU_internal:
5907 if (!m_map.augmentation_is_gdb)
5908 break;
5909 have_is_static = true;
5910 is_static = true;
5911 break;
5912 case DW_IDX_GNU_external:
5913 if (!m_map.augmentation_is_gdb)
5914 break;
5915 have_is_static = true;
5916 is_static = false;
5917 break;
5918 }
5919 }
5920
5921 /* Skip if already read in. */
5922 if (per_cu->v.quick->compunit_symtab)
5923 goto again;
5924
5925 /* Check static vs global. */
5926 if (have_is_static)
5927 {
5928 const bool want_static = m_block_index != GLOBAL_BLOCK;
5929 if (m_want_specific_block && want_static != is_static)
5930 goto again;
5931 }
5932
5933 /* Match dw2_symtab_iter_next, symbol_kind
5934 and debug_names::psymbol_tag. */
5935 switch (m_domain)
5936 {
5937 case VAR_DOMAIN:
5938 switch (indexval.dwarf_tag)
5939 {
5940 case DW_TAG_variable:
5941 case DW_TAG_subprogram:
5942 /* Some types are also in VAR_DOMAIN. */
5943 case DW_TAG_typedef:
5944 case DW_TAG_structure_type:
5945 break;
5946 default:
5947 goto again;
5948 }
5949 break;
5950 case STRUCT_DOMAIN:
5951 switch (indexval.dwarf_tag)
5952 {
5953 case DW_TAG_typedef:
5954 case DW_TAG_structure_type:
5955 break;
5956 default:
5957 goto again;
5958 }
5959 break;
5960 case LABEL_DOMAIN:
5961 switch (indexval.dwarf_tag)
5962 {
5963 case 0:
5964 case DW_TAG_variable:
5965 break;
5966 default:
5967 goto again;
5968 }
5969 break;
5970 default:
5971 break;
5972 }
5973
5974 /* Match dw2_expand_symtabs_matching, symbol_kind and
5975 debug_names::psymbol_tag. */
5976 switch (m_search)
5977 {
5978 case VARIABLES_DOMAIN:
5979 switch (indexval.dwarf_tag)
5980 {
5981 case DW_TAG_variable:
5982 break;
5983 default:
5984 goto again;
5985 }
5986 break;
5987 case FUNCTIONS_DOMAIN:
5988 switch (indexval.dwarf_tag)
5989 {
5990 case DW_TAG_subprogram:
5991 break;
5992 default:
5993 goto again;
5994 }
5995 break;
5996 case TYPES_DOMAIN:
5997 switch (indexval.dwarf_tag)
5998 {
5999 case DW_TAG_typedef:
6000 case DW_TAG_structure_type:
6001 break;
6002 default:
6003 goto again;
6004 }
6005 break;
6006 default:
6007 break;
6008 }
6009
6010 return per_cu;
6011 }
6012
6013 static struct compunit_symtab *
6014 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6015 const char *name, domain_enum domain)
6016 {
6017 const block_enum block_index = static_cast<block_enum> (block_index_int);
6018 struct dwarf2_per_objfile *dwarf2_per_objfile
6019 = get_dwarf2_per_objfile (objfile);
6020
6021 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6022 if (!mapp)
6023 {
6024 /* index is NULL if OBJF_READNOW. */
6025 return NULL;
6026 }
6027 const auto &map = *mapp;
6028
6029 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6030 block_index, domain, name);
6031
6032 struct compunit_symtab *stab_best = NULL;
6033 struct dwarf2_per_cu_data *per_cu;
6034 while ((per_cu = iter.next ()) != NULL)
6035 {
6036 struct symbol *sym, *with_opaque = NULL;
6037 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6038 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6039 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6040
6041 sym = block_find_symbol (block, name, domain,
6042 block_find_non_opaque_type_preferred,
6043 &with_opaque);
6044
6045 /* Some caution must be observed with overloaded functions and
6046 methods, since the index will not contain any overload
6047 information (but NAME might contain it). */
6048
6049 if (sym != NULL
6050 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6051 return stab;
6052 if (with_opaque != NULL
6053 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6054 stab_best = stab;
6055
6056 /* Keep looking through other CUs. */
6057 }
6058
6059 return stab_best;
6060 }
6061
6062 /* This dumps minimal information about .debug_names. It is called
6063 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6064 uses this to verify that .debug_names has been loaded. */
6065
6066 static void
6067 dw2_debug_names_dump (struct objfile *objfile)
6068 {
6069 struct dwarf2_per_objfile *dwarf2_per_objfile
6070 = get_dwarf2_per_objfile (objfile);
6071
6072 gdb_assert (dwarf2_per_objfile->using_index);
6073 printf_filtered (".debug_names:");
6074 if (dwarf2_per_objfile->debug_names_table)
6075 printf_filtered (" exists\n");
6076 else
6077 printf_filtered (" faked for \"readnow\"\n");
6078 printf_filtered ("\n");
6079 }
6080
6081 static void
6082 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6083 const char *func_name)
6084 {
6085 struct dwarf2_per_objfile *dwarf2_per_objfile
6086 = get_dwarf2_per_objfile (objfile);
6087
6088 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6089 if (dwarf2_per_objfile->debug_names_table)
6090 {
6091 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6092
6093 /* Note: It doesn't matter what we pass for block_index here. */
6094 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6095 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6096
6097 struct dwarf2_per_cu_data *per_cu;
6098 while ((per_cu = iter.next ()) != NULL)
6099 dw2_instantiate_symtab (per_cu, false);
6100 }
6101 }
6102
6103 static void
6104 dw2_debug_names_expand_symtabs_matching
6105 (struct objfile *objfile,
6106 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6107 const lookup_name_info &lookup_name,
6108 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6109 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6110 enum search_domain kind)
6111 {
6112 struct dwarf2_per_objfile *dwarf2_per_objfile
6113 = get_dwarf2_per_objfile (objfile);
6114
6115 /* debug_names_table is NULL if OBJF_READNOW. */
6116 if (!dwarf2_per_objfile->debug_names_table)
6117 return;
6118
6119 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6120
6121 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6122
6123 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6124 symbol_matcher,
6125 kind, [&] (offset_type namei)
6126 {
6127 /* The name was matched, now expand corresponding CUs that were
6128 marked. */
6129 dw2_debug_names_iterator iter (map, kind, namei);
6130
6131 struct dwarf2_per_cu_data *per_cu;
6132 while ((per_cu = iter.next ()) != NULL)
6133 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6134 expansion_notify);
6135 });
6136 }
6137
6138 const struct quick_symbol_functions dwarf2_debug_names_functions =
6139 {
6140 dw2_has_symbols,
6141 dw2_find_last_source_symtab,
6142 dw2_forget_cached_source_info,
6143 dw2_map_symtabs_matching_filename,
6144 dw2_debug_names_lookup_symbol,
6145 dw2_print_stats,
6146 dw2_debug_names_dump,
6147 dw2_debug_names_expand_symtabs_for_function,
6148 dw2_expand_all_symtabs,
6149 dw2_expand_symtabs_with_fullname,
6150 dw2_map_matching_symbols,
6151 dw2_debug_names_expand_symtabs_matching,
6152 dw2_find_pc_sect_compunit_symtab,
6153 NULL,
6154 dw2_map_symbol_filenames
6155 };
6156
6157 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
6158 to either a dwarf2_per_objfile or dwz_file object. */
6159
6160 template <typename T>
6161 static gdb::array_view<const gdb_byte>
6162 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
6163 {
6164 dwarf2_section_info *section = &section_owner->gdb_index;
6165
6166 if (dwarf2_section_empty_p (section))
6167 return {};
6168
6169 /* Older elfutils strip versions could keep the section in the main
6170 executable while splitting it for the separate debug info file. */
6171 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
6172 return {};
6173
6174 dwarf2_read_section (obj, section);
6175
6176 /* dwarf2_section_info::size is a bfd_size_type, while
6177 gdb::array_view works with size_t. On 32-bit hosts, with
6178 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
6179 is 32-bit. So we need an explicit narrowing conversion here.
6180 This is fine, because it's impossible to allocate or mmap an
6181 array/buffer larger than what size_t can represent. */
6182 return gdb::make_array_view (section->buffer, section->size);
6183 }
6184
6185 /* Lookup the index cache for the contents of the index associated to
6186 DWARF2_OBJ. */
6187
6188 static gdb::array_view<const gdb_byte>
6189 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
6190 {
6191 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
6192 if (build_id == nullptr)
6193 return {};
6194
6195 return global_index_cache.lookup_gdb_index (build_id,
6196 &dwarf2_obj->index_cache_res);
6197 }
6198
6199 /* Same as the above, but for DWZ. */
6200
6201 static gdb::array_view<const gdb_byte>
6202 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
6203 {
6204 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
6205 if (build_id == nullptr)
6206 return {};
6207
6208 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
6209 }
6210
6211 /* See symfile.h. */
6212
6213 bool
6214 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6215 {
6216 struct dwarf2_per_objfile *dwarf2_per_objfile
6217 = get_dwarf2_per_objfile (objfile);
6218
6219 /* If we're about to read full symbols, don't bother with the
6220 indices. In this case we also don't care if some other debug
6221 format is making psymtabs, because they are all about to be
6222 expanded anyway. */
6223 if ((objfile->flags & OBJF_READNOW))
6224 {
6225 dwarf2_per_objfile->using_index = 1;
6226 create_all_comp_units (dwarf2_per_objfile);
6227 create_all_type_units (dwarf2_per_objfile);
6228 dwarf2_per_objfile->quick_file_names_table
6229 = create_quick_file_names_table
6230 (dwarf2_per_objfile->all_comp_units.size ());
6231
6232 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6233 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6234 {
6235 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6236
6237 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6238 struct dwarf2_per_cu_quick_data);
6239 }
6240
6241 /* Return 1 so that gdb sees the "quick" functions. However,
6242 these functions will be no-ops because we will have expanded
6243 all symtabs. */
6244 *index_kind = dw_index_kind::GDB_INDEX;
6245 return true;
6246 }
6247
6248 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6249 {
6250 *index_kind = dw_index_kind::DEBUG_NAMES;
6251 return true;
6252 }
6253
6254 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6255 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6256 get_gdb_index_contents_from_section<dwz_file>))
6257 {
6258 *index_kind = dw_index_kind::GDB_INDEX;
6259 return true;
6260 }
6261
6262 /* ... otherwise, try to find the index in the index cache. */
6263 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6264 get_gdb_index_contents_from_cache,
6265 get_gdb_index_contents_from_cache_dwz))
6266 {
6267 global_index_cache.hit ();
6268 *index_kind = dw_index_kind::GDB_INDEX;
6269 return true;
6270 }
6271
6272 global_index_cache.miss ();
6273 return false;
6274 }
6275
6276 \f
6277
6278 /* Build a partial symbol table. */
6279
6280 void
6281 dwarf2_build_psymtabs (struct objfile *objfile)
6282 {
6283 struct dwarf2_per_objfile *dwarf2_per_objfile
6284 = get_dwarf2_per_objfile (objfile);
6285
6286 init_psymbol_list (objfile, 1024);
6287
6288 try
6289 {
6290 /* This isn't really ideal: all the data we allocate on the
6291 objfile's obstack is still uselessly kept around. However,
6292 freeing it seems unsafe. */
6293 psymtab_discarder psymtabs (objfile);
6294 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6295 psymtabs.keep ();
6296
6297 /* (maybe) store an index in the cache. */
6298 global_index_cache.store (dwarf2_per_objfile);
6299 }
6300 catch (const gdb_exception_error &except)
6301 {
6302 exception_print (gdb_stderr, except);
6303 }
6304 }
6305
6306 /* Return the total length of the CU described by HEADER. */
6307
6308 static unsigned int
6309 get_cu_length (const struct comp_unit_head *header)
6310 {
6311 return header->initial_length_size + header->length;
6312 }
6313
6314 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6315
6316 static inline bool
6317 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6318 {
6319 sect_offset bottom = cu_header->sect_off;
6320 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6321
6322 return sect_off >= bottom && sect_off < top;
6323 }
6324
6325 /* Find the base address of the compilation unit for range lists and
6326 location lists. It will normally be specified by DW_AT_low_pc.
6327 In DWARF-3 draft 4, the base address could be overridden by
6328 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6329 compilation units with discontinuous ranges. */
6330
6331 static void
6332 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6333 {
6334 struct attribute *attr;
6335
6336 cu->base_known = 0;
6337 cu->base_address = 0;
6338
6339 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6340 if (attr)
6341 {
6342 cu->base_address = attr_value_as_address (attr);
6343 cu->base_known = 1;
6344 }
6345 else
6346 {
6347 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6348 if (attr)
6349 {
6350 cu->base_address = attr_value_as_address (attr);
6351 cu->base_known = 1;
6352 }
6353 }
6354 }
6355
6356 /* Read in the comp unit header information from the debug_info at info_ptr.
6357 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6358 NOTE: This leaves members offset, first_die_offset to be filled in
6359 by the caller. */
6360
6361 static const gdb_byte *
6362 read_comp_unit_head (struct comp_unit_head *cu_header,
6363 const gdb_byte *info_ptr,
6364 struct dwarf2_section_info *section,
6365 rcuh_kind section_kind)
6366 {
6367 int signed_addr;
6368 unsigned int bytes_read;
6369 const char *filename = get_section_file_name (section);
6370 bfd *abfd = get_section_bfd_owner (section);
6371
6372 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6373 cu_header->initial_length_size = bytes_read;
6374 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6375 info_ptr += bytes_read;
6376 cu_header->version = read_2_bytes (abfd, info_ptr);
6377 if (cu_header->version < 2 || cu_header->version > 5)
6378 error (_("Dwarf Error: wrong version in compilation unit header "
6379 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6380 cu_header->version, filename);
6381 info_ptr += 2;
6382 if (cu_header->version < 5)
6383 switch (section_kind)
6384 {
6385 case rcuh_kind::COMPILE:
6386 cu_header->unit_type = DW_UT_compile;
6387 break;
6388 case rcuh_kind::TYPE:
6389 cu_header->unit_type = DW_UT_type;
6390 break;
6391 default:
6392 internal_error (__FILE__, __LINE__,
6393 _("read_comp_unit_head: invalid section_kind"));
6394 }
6395 else
6396 {
6397 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6398 (read_1_byte (abfd, info_ptr));
6399 info_ptr += 1;
6400 switch (cu_header->unit_type)
6401 {
6402 case DW_UT_compile:
6403 if (section_kind != rcuh_kind::COMPILE)
6404 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6405 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6406 filename);
6407 break;
6408 case DW_UT_type:
6409 section_kind = rcuh_kind::TYPE;
6410 break;
6411 default:
6412 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6413 "(is %d, should be %d or %d) [in module %s]"),
6414 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6415 }
6416
6417 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6418 info_ptr += 1;
6419 }
6420 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6421 cu_header,
6422 &bytes_read);
6423 info_ptr += bytes_read;
6424 if (cu_header->version < 5)
6425 {
6426 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6427 info_ptr += 1;
6428 }
6429 signed_addr = bfd_get_sign_extend_vma (abfd);
6430 if (signed_addr < 0)
6431 internal_error (__FILE__, __LINE__,
6432 _("read_comp_unit_head: dwarf from non elf file"));
6433 cu_header->signed_addr_p = signed_addr;
6434
6435 if (section_kind == rcuh_kind::TYPE)
6436 {
6437 LONGEST type_offset;
6438
6439 cu_header->signature = read_8_bytes (abfd, info_ptr);
6440 info_ptr += 8;
6441
6442 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6443 info_ptr += bytes_read;
6444 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6445 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6446 error (_("Dwarf Error: Too big type_offset in compilation unit "
6447 "header (is %s) [in module %s]"), plongest (type_offset),
6448 filename);
6449 }
6450
6451 return info_ptr;
6452 }
6453
6454 /* Helper function that returns the proper abbrev section for
6455 THIS_CU. */
6456
6457 static struct dwarf2_section_info *
6458 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6459 {
6460 struct dwarf2_section_info *abbrev;
6461 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6462
6463 if (this_cu->is_dwz)
6464 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6465 else
6466 abbrev = &dwarf2_per_objfile->abbrev;
6467
6468 return abbrev;
6469 }
6470
6471 /* Subroutine of read_and_check_comp_unit_head and
6472 read_and_check_type_unit_head to simplify them.
6473 Perform various error checking on the header. */
6474
6475 static void
6476 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6477 struct comp_unit_head *header,
6478 struct dwarf2_section_info *section,
6479 struct dwarf2_section_info *abbrev_section)
6480 {
6481 const char *filename = get_section_file_name (section);
6482
6483 if (to_underlying (header->abbrev_sect_off)
6484 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6485 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6486 "(offset %s + 6) [in module %s]"),
6487 sect_offset_str (header->abbrev_sect_off),
6488 sect_offset_str (header->sect_off),
6489 filename);
6490
6491 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6492 avoid potential 32-bit overflow. */
6493 if (((ULONGEST) header->sect_off + get_cu_length (header))
6494 > section->size)
6495 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6496 "(offset %s + 0) [in module %s]"),
6497 header->length, sect_offset_str (header->sect_off),
6498 filename);
6499 }
6500
6501 /* Read in a CU/TU header and perform some basic error checking.
6502 The contents of the header are stored in HEADER.
6503 The result is a pointer to the start of the first DIE. */
6504
6505 static const gdb_byte *
6506 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6507 struct comp_unit_head *header,
6508 struct dwarf2_section_info *section,
6509 struct dwarf2_section_info *abbrev_section,
6510 const gdb_byte *info_ptr,
6511 rcuh_kind section_kind)
6512 {
6513 const gdb_byte *beg_of_comp_unit = info_ptr;
6514
6515 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6516
6517 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6518
6519 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6520
6521 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6522 abbrev_section);
6523
6524 return info_ptr;
6525 }
6526
6527 /* Fetch the abbreviation table offset from a comp or type unit header. */
6528
6529 static sect_offset
6530 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6531 struct dwarf2_section_info *section,
6532 sect_offset sect_off)
6533 {
6534 bfd *abfd = get_section_bfd_owner (section);
6535 const gdb_byte *info_ptr;
6536 unsigned int initial_length_size, offset_size;
6537 uint16_t version;
6538
6539 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6540 info_ptr = section->buffer + to_underlying (sect_off);
6541 read_initial_length (abfd, info_ptr, &initial_length_size);
6542 offset_size = initial_length_size == 4 ? 4 : 8;
6543 info_ptr += initial_length_size;
6544
6545 version = read_2_bytes (abfd, info_ptr);
6546 info_ptr += 2;
6547 if (version >= 5)
6548 {
6549 /* Skip unit type and address size. */
6550 info_ptr += 2;
6551 }
6552
6553 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6554 }
6555
6556 /* Allocate a new partial symtab for file named NAME and mark this new
6557 partial symtab as being an include of PST. */
6558
6559 static void
6560 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6561 struct objfile *objfile)
6562 {
6563 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6564
6565 if (!IS_ABSOLUTE_PATH (subpst->filename))
6566 {
6567 /* It shares objfile->objfile_obstack. */
6568 subpst->dirname = pst->dirname;
6569 }
6570
6571 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
6572 subpst->dependencies[0] = pst;
6573 subpst->number_of_dependencies = 1;
6574
6575 subpst->read_symtab = pst->read_symtab;
6576
6577 /* No private part is necessary for include psymtabs. This property
6578 can be used to differentiate between such include psymtabs and
6579 the regular ones. */
6580 subpst->read_symtab_private = NULL;
6581 }
6582
6583 /* Read the Line Number Program data and extract the list of files
6584 included by the source file represented by PST. Build an include
6585 partial symtab for each of these included files. */
6586
6587 static void
6588 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6589 struct die_info *die,
6590 struct partial_symtab *pst)
6591 {
6592 line_header_up lh;
6593 struct attribute *attr;
6594
6595 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6596 if (attr)
6597 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6598 if (lh == NULL)
6599 return; /* No linetable, so no includes. */
6600
6601 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6602 that we pass in the raw text_low here; that is ok because we're
6603 only decoding the line table to make include partial symtabs, and
6604 so the addresses aren't really used. */
6605 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6606 pst->raw_text_low (), 1);
6607 }
6608
6609 static hashval_t
6610 hash_signatured_type (const void *item)
6611 {
6612 const struct signatured_type *sig_type
6613 = (const struct signatured_type *) item;
6614
6615 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6616 return sig_type->signature;
6617 }
6618
6619 static int
6620 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6621 {
6622 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6623 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6624
6625 return lhs->signature == rhs->signature;
6626 }
6627
6628 /* Allocate a hash table for signatured types. */
6629
6630 static htab_t
6631 allocate_signatured_type_table (struct objfile *objfile)
6632 {
6633 return htab_create_alloc_ex (41,
6634 hash_signatured_type,
6635 eq_signatured_type,
6636 NULL,
6637 &objfile->objfile_obstack,
6638 hashtab_obstack_allocate,
6639 dummy_obstack_deallocate);
6640 }
6641
6642 /* A helper function to add a signatured type CU to a table. */
6643
6644 static int
6645 add_signatured_type_cu_to_table (void **slot, void *datum)
6646 {
6647 struct signatured_type *sigt = (struct signatured_type *) *slot;
6648 std::vector<signatured_type *> *all_type_units
6649 = (std::vector<signatured_type *> *) datum;
6650
6651 all_type_units->push_back (sigt);
6652
6653 return 1;
6654 }
6655
6656 /* A helper for create_debug_types_hash_table. Read types from SECTION
6657 and fill them into TYPES_HTAB. It will process only type units,
6658 therefore DW_UT_type. */
6659
6660 static void
6661 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6662 struct dwo_file *dwo_file,
6663 dwarf2_section_info *section, htab_t &types_htab,
6664 rcuh_kind section_kind)
6665 {
6666 struct objfile *objfile = dwarf2_per_objfile->objfile;
6667 struct dwarf2_section_info *abbrev_section;
6668 bfd *abfd;
6669 const gdb_byte *info_ptr, *end_ptr;
6670
6671 abbrev_section = (dwo_file != NULL
6672 ? &dwo_file->sections.abbrev
6673 : &dwarf2_per_objfile->abbrev);
6674
6675 if (dwarf_read_debug)
6676 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6677 get_section_name (section),
6678 get_section_file_name (abbrev_section));
6679
6680 dwarf2_read_section (objfile, section);
6681 info_ptr = section->buffer;
6682
6683 if (info_ptr == NULL)
6684 return;
6685
6686 /* We can't set abfd until now because the section may be empty or
6687 not present, in which case the bfd is unknown. */
6688 abfd = get_section_bfd_owner (section);
6689
6690 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6691 because we don't need to read any dies: the signature is in the
6692 header. */
6693
6694 end_ptr = info_ptr + section->size;
6695 while (info_ptr < end_ptr)
6696 {
6697 struct signatured_type *sig_type;
6698 struct dwo_unit *dwo_tu;
6699 void **slot;
6700 const gdb_byte *ptr = info_ptr;
6701 struct comp_unit_head header;
6702 unsigned int length;
6703
6704 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6705
6706 /* Initialize it due to a false compiler warning. */
6707 header.signature = -1;
6708 header.type_cu_offset_in_tu = (cu_offset) -1;
6709
6710 /* We need to read the type's signature in order to build the hash
6711 table, but we don't need anything else just yet. */
6712
6713 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6714 abbrev_section, ptr, section_kind);
6715
6716 length = get_cu_length (&header);
6717
6718 /* Skip dummy type units. */
6719 if (ptr >= info_ptr + length
6720 || peek_abbrev_code (abfd, ptr) == 0
6721 || header.unit_type != DW_UT_type)
6722 {
6723 info_ptr += length;
6724 continue;
6725 }
6726
6727 if (types_htab == NULL)
6728 {
6729 if (dwo_file)
6730 types_htab = allocate_dwo_unit_table (objfile);
6731 else
6732 types_htab = allocate_signatured_type_table (objfile);
6733 }
6734
6735 if (dwo_file)
6736 {
6737 sig_type = NULL;
6738 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6739 struct dwo_unit);
6740 dwo_tu->dwo_file = dwo_file;
6741 dwo_tu->signature = header.signature;
6742 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6743 dwo_tu->section = section;
6744 dwo_tu->sect_off = sect_off;
6745 dwo_tu->length = length;
6746 }
6747 else
6748 {
6749 /* N.B.: type_offset is not usable if this type uses a DWO file.
6750 The real type_offset is in the DWO file. */
6751 dwo_tu = NULL;
6752 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6753 struct signatured_type);
6754 sig_type->signature = header.signature;
6755 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6756 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6757 sig_type->per_cu.is_debug_types = 1;
6758 sig_type->per_cu.section = section;
6759 sig_type->per_cu.sect_off = sect_off;
6760 sig_type->per_cu.length = length;
6761 }
6762
6763 slot = htab_find_slot (types_htab,
6764 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6765 INSERT);
6766 gdb_assert (slot != NULL);
6767 if (*slot != NULL)
6768 {
6769 sect_offset dup_sect_off;
6770
6771 if (dwo_file)
6772 {
6773 const struct dwo_unit *dup_tu
6774 = (const struct dwo_unit *) *slot;
6775
6776 dup_sect_off = dup_tu->sect_off;
6777 }
6778 else
6779 {
6780 const struct signatured_type *dup_tu
6781 = (const struct signatured_type *) *slot;
6782
6783 dup_sect_off = dup_tu->per_cu.sect_off;
6784 }
6785
6786 complaint (_("debug type entry at offset %s is duplicate to"
6787 " the entry at offset %s, signature %s"),
6788 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6789 hex_string (header.signature));
6790 }
6791 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6792
6793 if (dwarf_read_debug > 1)
6794 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6795 sect_offset_str (sect_off),
6796 hex_string (header.signature));
6797
6798 info_ptr += length;
6799 }
6800 }
6801
6802 /* Create the hash table of all entries in the .debug_types
6803 (or .debug_types.dwo) section(s).
6804 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6805 otherwise it is NULL.
6806
6807 The result is a pointer to the hash table or NULL if there are no types.
6808
6809 Note: This function processes DWO files only, not DWP files. */
6810
6811 static void
6812 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6813 struct dwo_file *dwo_file,
6814 gdb::array_view<dwarf2_section_info> type_sections,
6815 htab_t &types_htab)
6816 {
6817 for (dwarf2_section_info &section : type_sections)
6818 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, &section,
6819 types_htab, rcuh_kind::TYPE);
6820 }
6821
6822 /* Create the hash table of all entries in the .debug_types section,
6823 and initialize all_type_units.
6824 The result is zero if there is an error (e.g. missing .debug_types section),
6825 otherwise non-zero. */
6826
6827 static int
6828 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6829 {
6830 htab_t types_htab = NULL;
6831
6832 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6833 &dwarf2_per_objfile->info, types_htab,
6834 rcuh_kind::COMPILE);
6835 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6836 dwarf2_per_objfile->types, types_htab);
6837 if (types_htab == NULL)
6838 {
6839 dwarf2_per_objfile->signatured_types = NULL;
6840 return 0;
6841 }
6842
6843 dwarf2_per_objfile->signatured_types = types_htab;
6844
6845 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6846 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6847
6848 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6849 &dwarf2_per_objfile->all_type_units);
6850
6851 return 1;
6852 }
6853
6854 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6855 If SLOT is non-NULL, it is the entry to use in the hash table.
6856 Otherwise we find one. */
6857
6858 static struct signatured_type *
6859 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6860 void **slot)
6861 {
6862 struct objfile *objfile = dwarf2_per_objfile->objfile;
6863
6864 if (dwarf2_per_objfile->all_type_units.size ()
6865 == dwarf2_per_objfile->all_type_units.capacity ())
6866 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6867
6868 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6869 struct signatured_type);
6870
6871 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6872 sig_type->signature = sig;
6873 sig_type->per_cu.is_debug_types = 1;
6874 if (dwarf2_per_objfile->using_index)
6875 {
6876 sig_type->per_cu.v.quick =
6877 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6878 struct dwarf2_per_cu_quick_data);
6879 }
6880
6881 if (slot == NULL)
6882 {
6883 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6884 sig_type, INSERT);
6885 }
6886 gdb_assert (*slot == NULL);
6887 *slot = sig_type;
6888 /* The rest of sig_type must be filled in by the caller. */
6889 return sig_type;
6890 }
6891
6892 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6893 Fill in SIG_ENTRY with DWO_ENTRY. */
6894
6895 static void
6896 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6897 struct signatured_type *sig_entry,
6898 struct dwo_unit *dwo_entry)
6899 {
6900 /* Make sure we're not clobbering something we don't expect to. */
6901 gdb_assert (! sig_entry->per_cu.queued);
6902 gdb_assert (sig_entry->per_cu.cu == NULL);
6903 if (dwarf2_per_objfile->using_index)
6904 {
6905 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6906 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6907 }
6908 else
6909 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6910 gdb_assert (sig_entry->signature == dwo_entry->signature);
6911 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6912 gdb_assert (sig_entry->type_unit_group == NULL);
6913 gdb_assert (sig_entry->dwo_unit == NULL);
6914
6915 sig_entry->per_cu.section = dwo_entry->section;
6916 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6917 sig_entry->per_cu.length = dwo_entry->length;
6918 sig_entry->per_cu.reading_dwo_directly = 1;
6919 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6920 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6921 sig_entry->dwo_unit = dwo_entry;
6922 }
6923
6924 /* Subroutine of lookup_signatured_type.
6925 If we haven't read the TU yet, create the signatured_type data structure
6926 for a TU to be read in directly from a DWO file, bypassing the stub.
6927 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6928 using .gdb_index, then when reading a CU we want to stay in the DWO file
6929 containing that CU. Otherwise we could end up reading several other DWO
6930 files (due to comdat folding) to process the transitive closure of all the
6931 mentioned TUs, and that can be slow. The current DWO file will have every
6932 type signature that it needs.
6933 We only do this for .gdb_index because in the psymtab case we already have
6934 to read all the DWOs to build the type unit groups. */
6935
6936 static struct signatured_type *
6937 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6938 {
6939 struct dwarf2_per_objfile *dwarf2_per_objfile
6940 = cu->per_cu->dwarf2_per_objfile;
6941 struct objfile *objfile = dwarf2_per_objfile->objfile;
6942 struct dwo_file *dwo_file;
6943 struct dwo_unit find_dwo_entry, *dwo_entry;
6944 struct signatured_type find_sig_entry, *sig_entry;
6945 void **slot;
6946
6947 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6948
6949 /* If TU skeletons have been removed then we may not have read in any
6950 TUs yet. */
6951 if (dwarf2_per_objfile->signatured_types == NULL)
6952 {
6953 dwarf2_per_objfile->signatured_types
6954 = allocate_signatured_type_table (objfile);
6955 }
6956
6957 /* We only ever need to read in one copy of a signatured type.
6958 Use the global signatured_types array to do our own comdat-folding
6959 of types. If this is the first time we're reading this TU, and
6960 the TU has an entry in .gdb_index, replace the recorded data from
6961 .gdb_index with this TU. */
6962
6963 find_sig_entry.signature = sig;
6964 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6965 &find_sig_entry, INSERT);
6966 sig_entry = (struct signatured_type *) *slot;
6967
6968 /* We can get here with the TU already read, *or* in the process of being
6969 read. Don't reassign the global entry to point to this DWO if that's
6970 the case. Also note that if the TU is already being read, it may not
6971 have come from a DWO, the program may be a mix of Fission-compiled
6972 code and non-Fission-compiled code. */
6973
6974 /* Have we already tried to read this TU?
6975 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6976 needn't exist in the global table yet). */
6977 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
6978 return sig_entry;
6979
6980 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6981 dwo_unit of the TU itself. */
6982 dwo_file = cu->dwo_unit->dwo_file;
6983
6984 /* Ok, this is the first time we're reading this TU. */
6985 if (dwo_file->tus == NULL)
6986 return NULL;
6987 find_dwo_entry.signature = sig;
6988 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
6989 if (dwo_entry == NULL)
6990 return NULL;
6991
6992 /* If the global table doesn't have an entry for this TU, add one. */
6993 if (sig_entry == NULL)
6994 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6995
6996 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6997 sig_entry->per_cu.tu_read = 1;
6998 return sig_entry;
6999 }
7000
7001 /* Subroutine of lookup_signatured_type.
7002 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
7003 then try the DWP file. If the TU stub (skeleton) has been removed then
7004 it won't be in .gdb_index. */
7005
7006 static struct signatured_type *
7007 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7008 {
7009 struct dwarf2_per_objfile *dwarf2_per_objfile
7010 = cu->per_cu->dwarf2_per_objfile;
7011 struct objfile *objfile = dwarf2_per_objfile->objfile;
7012 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
7013 struct dwo_unit *dwo_entry;
7014 struct signatured_type find_sig_entry, *sig_entry;
7015 void **slot;
7016
7017 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7018 gdb_assert (dwp_file != NULL);
7019
7020 /* If TU skeletons have been removed then we may not have read in any
7021 TUs yet. */
7022 if (dwarf2_per_objfile->signatured_types == NULL)
7023 {
7024 dwarf2_per_objfile->signatured_types
7025 = allocate_signatured_type_table (objfile);
7026 }
7027
7028 find_sig_entry.signature = sig;
7029 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7030 &find_sig_entry, INSERT);
7031 sig_entry = (struct signatured_type *) *slot;
7032
7033 /* Have we already tried to read this TU?
7034 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7035 needn't exist in the global table yet). */
7036 if (sig_entry != NULL)
7037 return sig_entry;
7038
7039 if (dwp_file->tus == NULL)
7040 return NULL;
7041 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7042 sig, 1 /* is_debug_types */);
7043 if (dwo_entry == NULL)
7044 return NULL;
7045
7046 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7047 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7048
7049 return sig_entry;
7050 }
7051
7052 /* Lookup a signature based type for DW_FORM_ref_sig8.
7053 Returns NULL if signature SIG is not present in the table.
7054 It is up to the caller to complain about this. */
7055
7056 static struct signatured_type *
7057 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7058 {
7059 struct dwarf2_per_objfile *dwarf2_per_objfile
7060 = cu->per_cu->dwarf2_per_objfile;
7061
7062 if (cu->dwo_unit
7063 && dwarf2_per_objfile->using_index)
7064 {
7065 /* We're in a DWO/DWP file, and we're using .gdb_index.
7066 These cases require special processing. */
7067 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7068 return lookup_dwo_signatured_type (cu, sig);
7069 else
7070 return lookup_dwp_signatured_type (cu, sig);
7071 }
7072 else
7073 {
7074 struct signatured_type find_entry, *entry;
7075
7076 if (dwarf2_per_objfile->signatured_types == NULL)
7077 return NULL;
7078 find_entry.signature = sig;
7079 entry = ((struct signatured_type *)
7080 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7081 return entry;
7082 }
7083 }
7084 \f
7085 /* Low level DIE reading support. */
7086
7087 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7088
7089 static void
7090 init_cu_die_reader (struct die_reader_specs *reader,
7091 struct dwarf2_cu *cu,
7092 struct dwarf2_section_info *section,
7093 struct dwo_file *dwo_file,
7094 struct abbrev_table *abbrev_table)
7095 {
7096 gdb_assert (section->readin && section->buffer != NULL);
7097 reader->abfd = get_section_bfd_owner (section);
7098 reader->cu = cu;
7099 reader->dwo_file = dwo_file;
7100 reader->die_section = section;
7101 reader->buffer = section->buffer;
7102 reader->buffer_end = section->buffer + section->size;
7103 reader->comp_dir = NULL;
7104 reader->abbrev_table = abbrev_table;
7105 }
7106
7107 /* Subroutine of init_cutu_and_read_dies to simplify it.
7108 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7109 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7110 already.
7111
7112 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7113 from it to the DIE in the DWO. If NULL we are skipping the stub.
7114 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7115 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7116 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7117 STUB_COMP_DIR may be non-NULL.
7118 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7119 are filled in with the info of the DIE from the DWO file.
7120 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7121 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7122 kept around for at least as long as *RESULT_READER.
7123
7124 The result is non-zero if a valid (non-dummy) DIE was found. */
7125
7126 static int
7127 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7128 struct dwo_unit *dwo_unit,
7129 struct die_info *stub_comp_unit_die,
7130 const char *stub_comp_dir,
7131 struct die_reader_specs *result_reader,
7132 const gdb_byte **result_info_ptr,
7133 struct die_info **result_comp_unit_die,
7134 int *result_has_children,
7135 abbrev_table_up *result_dwo_abbrev_table)
7136 {
7137 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7138 struct objfile *objfile = dwarf2_per_objfile->objfile;
7139 struct dwarf2_cu *cu = this_cu->cu;
7140 bfd *abfd;
7141 const gdb_byte *begin_info_ptr, *info_ptr;
7142 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7143 int i,num_extra_attrs;
7144 struct dwarf2_section_info *dwo_abbrev_section;
7145 struct attribute *attr;
7146 struct die_info *comp_unit_die;
7147
7148 /* At most one of these may be provided. */
7149 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7150
7151 /* These attributes aren't processed until later:
7152 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7153 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7154 referenced later. However, these attributes are found in the stub
7155 which we won't have later. In order to not impose this complication
7156 on the rest of the code, we read them here and copy them to the
7157 DWO CU/TU die. */
7158
7159 stmt_list = NULL;
7160 low_pc = NULL;
7161 high_pc = NULL;
7162 ranges = NULL;
7163 comp_dir = NULL;
7164
7165 if (stub_comp_unit_die != NULL)
7166 {
7167 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7168 DWO file. */
7169 if (! this_cu->is_debug_types)
7170 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7171 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7172 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7173 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7174 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7175
7176 /* There should be a DW_AT_addr_base attribute here (if needed).
7177 We need the value before we can process DW_FORM_GNU_addr_index
7178 or DW_FORM_addrx. */
7179 cu->addr_base = 0;
7180 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7181 if (attr)
7182 cu->addr_base = DW_UNSND (attr);
7183
7184 /* There should be a DW_AT_ranges_base attribute here (if needed).
7185 We need the value before we can process DW_AT_ranges. */
7186 cu->ranges_base = 0;
7187 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7188 if (attr)
7189 cu->ranges_base = DW_UNSND (attr);
7190 }
7191 else if (stub_comp_dir != NULL)
7192 {
7193 /* Reconstruct the comp_dir attribute to simplify the code below. */
7194 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7195 comp_dir->name = DW_AT_comp_dir;
7196 comp_dir->form = DW_FORM_string;
7197 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7198 DW_STRING (comp_dir) = stub_comp_dir;
7199 }
7200
7201 /* Set up for reading the DWO CU/TU. */
7202 cu->dwo_unit = dwo_unit;
7203 dwarf2_section_info *section = dwo_unit->section;
7204 dwarf2_read_section (objfile, section);
7205 abfd = get_section_bfd_owner (section);
7206 begin_info_ptr = info_ptr = (section->buffer
7207 + to_underlying (dwo_unit->sect_off));
7208 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7209
7210 if (this_cu->is_debug_types)
7211 {
7212 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7213
7214 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7215 &cu->header, section,
7216 dwo_abbrev_section,
7217 info_ptr, rcuh_kind::TYPE);
7218 /* This is not an assert because it can be caused by bad debug info. */
7219 if (sig_type->signature != cu->header.signature)
7220 {
7221 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7222 " TU at offset %s [in module %s]"),
7223 hex_string (sig_type->signature),
7224 hex_string (cu->header.signature),
7225 sect_offset_str (dwo_unit->sect_off),
7226 bfd_get_filename (abfd));
7227 }
7228 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7229 /* For DWOs coming from DWP files, we don't know the CU length
7230 nor the type's offset in the TU until now. */
7231 dwo_unit->length = get_cu_length (&cu->header);
7232 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7233
7234 /* Establish the type offset that can be used to lookup the type.
7235 For DWO files, we don't know it until now. */
7236 sig_type->type_offset_in_section
7237 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7238 }
7239 else
7240 {
7241 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7242 &cu->header, section,
7243 dwo_abbrev_section,
7244 info_ptr, rcuh_kind::COMPILE);
7245 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7246 /* For DWOs coming from DWP files, we don't know the CU length
7247 until now. */
7248 dwo_unit->length = get_cu_length (&cu->header);
7249 }
7250
7251 *result_dwo_abbrev_table
7252 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7253 cu->header.abbrev_sect_off);
7254 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7255 result_dwo_abbrev_table->get ());
7256
7257 /* Read in the die, but leave space to copy over the attributes
7258 from the stub. This has the benefit of simplifying the rest of
7259 the code - all the work to maintain the illusion of a single
7260 DW_TAG_{compile,type}_unit DIE is done here. */
7261 num_extra_attrs = ((stmt_list != NULL)
7262 + (low_pc != NULL)
7263 + (high_pc != NULL)
7264 + (ranges != NULL)
7265 + (comp_dir != NULL));
7266 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7267 result_has_children, num_extra_attrs);
7268
7269 /* Copy over the attributes from the stub to the DIE we just read in. */
7270 comp_unit_die = *result_comp_unit_die;
7271 i = comp_unit_die->num_attrs;
7272 if (stmt_list != NULL)
7273 comp_unit_die->attrs[i++] = *stmt_list;
7274 if (low_pc != NULL)
7275 comp_unit_die->attrs[i++] = *low_pc;
7276 if (high_pc != NULL)
7277 comp_unit_die->attrs[i++] = *high_pc;
7278 if (ranges != NULL)
7279 comp_unit_die->attrs[i++] = *ranges;
7280 if (comp_dir != NULL)
7281 comp_unit_die->attrs[i++] = *comp_dir;
7282 comp_unit_die->num_attrs += num_extra_attrs;
7283
7284 if (dwarf_die_debug)
7285 {
7286 fprintf_unfiltered (gdb_stdlog,
7287 "Read die from %s@0x%x of %s:\n",
7288 get_section_name (section),
7289 (unsigned) (begin_info_ptr - section->buffer),
7290 bfd_get_filename (abfd));
7291 dump_die (comp_unit_die, dwarf_die_debug);
7292 }
7293
7294 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7295 TUs by skipping the stub and going directly to the entry in the DWO file.
7296 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7297 to get it via circuitous means. Blech. */
7298 if (comp_dir != NULL)
7299 result_reader->comp_dir = DW_STRING (comp_dir);
7300
7301 /* Skip dummy compilation units. */
7302 if (info_ptr >= begin_info_ptr + dwo_unit->length
7303 || peek_abbrev_code (abfd, info_ptr) == 0)
7304 return 0;
7305
7306 *result_info_ptr = info_ptr;
7307 return 1;
7308 }
7309
7310 /* Subroutine of init_cutu_and_read_dies to simplify it.
7311 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7312 Returns NULL if the specified DWO unit cannot be found. */
7313
7314 static struct dwo_unit *
7315 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7316 struct die_info *comp_unit_die)
7317 {
7318 struct dwarf2_cu *cu = this_cu->cu;
7319 ULONGEST signature;
7320 struct dwo_unit *dwo_unit;
7321 const char *comp_dir, *dwo_name;
7322
7323 gdb_assert (cu != NULL);
7324
7325 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7326 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7327 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7328
7329 if (this_cu->is_debug_types)
7330 {
7331 struct signatured_type *sig_type;
7332
7333 /* Since this_cu is the first member of struct signatured_type,
7334 we can go from a pointer to one to a pointer to the other. */
7335 sig_type = (struct signatured_type *) this_cu;
7336 signature = sig_type->signature;
7337 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7338 }
7339 else
7340 {
7341 struct attribute *attr;
7342
7343 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7344 if (! attr)
7345 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7346 " [in module %s]"),
7347 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7348 signature = DW_UNSND (attr);
7349 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7350 signature);
7351 }
7352
7353 return dwo_unit;
7354 }
7355
7356 /* Subroutine of init_cutu_and_read_dies to simplify it.
7357 See it for a description of the parameters.
7358 Read a TU directly from a DWO file, bypassing the stub. */
7359
7360 static void
7361 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7362 int use_existing_cu, int keep,
7363 die_reader_func_ftype *die_reader_func,
7364 void *data)
7365 {
7366 std::unique_ptr<dwarf2_cu> new_cu;
7367 struct signatured_type *sig_type;
7368 struct die_reader_specs reader;
7369 const gdb_byte *info_ptr;
7370 struct die_info *comp_unit_die;
7371 int has_children;
7372 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7373
7374 /* Verify we can do the following downcast, and that we have the
7375 data we need. */
7376 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7377 sig_type = (struct signatured_type *) this_cu;
7378 gdb_assert (sig_type->dwo_unit != NULL);
7379
7380 if (use_existing_cu && this_cu->cu != NULL)
7381 {
7382 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7383 /* There's no need to do the rereading_dwo_cu handling that
7384 init_cutu_and_read_dies does since we don't read the stub. */
7385 }
7386 else
7387 {
7388 /* If !use_existing_cu, this_cu->cu must be NULL. */
7389 gdb_assert (this_cu->cu == NULL);
7390 new_cu.reset (new dwarf2_cu (this_cu));
7391 }
7392
7393 /* A future optimization, if needed, would be to use an existing
7394 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7395 could share abbrev tables. */
7396
7397 /* The abbreviation table used by READER, this must live at least as long as
7398 READER. */
7399 abbrev_table_up dwo_abbrev_table;
7400
7401 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7402 NULL /* stub_comp_unit_die */,
7403 sig_type->dwo_unit->dwo_file->comp_dir,
7404 &reader, &info_ptr,
7405 &comp_unit_die, &has_children,
7406 &dwo_abbrev_table) == 0)
7407 {
7408 /* Dummy die. */
7409 return;
7410 }
7411
7412 /* All the "real" work is done here. */
7413 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7414
7415 /* This duplicates the code in init_cutu_and_read_dies,
7416 but the alternative is making the latter more complex.
7417 This function is only for the special case of using DWO files directly:
7418 no point in overly complicating the general case just to handle this. */
7419 if (new_cu != NULL && keep)
7420 {
7421 /* Link this CU into read_in_chain. */
7422 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7423 dwarf2_per_objfile->read_in_chain = this_cu;
7424 /* The chain owns it now. */
7425 new_cu.release ();
7426 }
7427 }
7428
7429 /* Initialize a CU (or TU) and read its DIEs.
7430 If the CU defers to a DWO file, read the DWO file as well.
7431
7432 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7433 Otherwise the table specified in the comp unit header is read in and used.
7434 This is an optimization for when we already have the abbrev table.
7435
7436 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7437 Otherwise, a new CU is allocated with xmalloc.
7438
7439 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7440 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7441
7442 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7443 linker) then DIE_READER_FUNC will not get called. */
7444
7445 static void
7446 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7447 struct abbrev_table *abbrev_table,
7448 int use_existing_cu, int keep,
7449 bool skip_partial,
7450 die_reader_func_ftype *die_reader_func,
7451 void *data)
7452 {
7453 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7454 struct objfile *objfile = dwarf2_per_objfile->objfile;
7455 struct dwarf2_section_info *section = this_cu->section;
7456 bfd *abfd = get_section_bfd_owner (section);
7457 struct dwarf2_cu *cu;
7458 const gdb_byte *begin_info_ptr, *info_ptr;
7459 struct die_reader_specs reader;
7460 struct die_info *comp_unit_die;
7461 int has_children;
7462 struct attribute *attr;
7463 struct signatured_type *sig_type = NULL;
7464 struct dwarf2_section_info *abbrev_section;
7465 /* Non-zero if CU currently points to a DWO file and we need to
7466 reread it. When this happens we need to reread the skeleton die
7467 before we can reread the DWO file (this only applies to CUs, not TUs). */
7468 int rereading_dwo_cu = 0;
7469
7470 if (dwarf_die_debug)
7471 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7472 this_cu->is_debug_types ? "type" : "comp",
7473 sect_offset_str (this_cu->sect_off));
7474
7475 if (use_existing_cu)
7476 gdb_assert (keep);
7477
7478 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7479 file (instead of going through the stub), short-circuit all of this. */
7480 if (this_cu->reading_dwo_directly)
7481 {
7482 /* Narrow down the scope of possibilities to have to understand. */
7483 gdb_assert (this_cu->is_debug_types);
7484 gdb_assert (abbrev_table == NULL);
7485 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7486 die_reader_func, data);
7487 return;
7488 }
7489
7490 /* This is cheap if the section is already read in. */
7491 dwarf2_read_section (objfile, section);
7492
7493 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7494
7495 abbrev_section = get_abbrev_section_for_cu (this_cu);
7496
7497 std::unique_ptr<dwarf2_cu> new_cu;
7498 if (use_existing_cu && this_cu->cu != NULL)
7499 {
7500 cu = this_cu->cu;
7501 /* If this CU is from a DWO file we need to start over, we need to
7502 refetch the attributes from the skeleton CU.
7503 This could be optimized by retrieving those attributes from when we
7504 were here the first time: the previous comp_unit_die was stored in
7505 comp_unit_obstack. But there's no data yet that we need this
7506 optimization. */
7507 if (cu->dwo_unit != NULL)
7508 rereading_dwo_cu = 1;
7509 }
7510 else
7511 {
7512 /* If !use_existing_cu, this_cu->cu must be NULL. */
7513 gdb_assert (this_cu->cu == NULL);
7514 new_cu.reset (new dwarf2_cu (this_cu));
7515 cu = new_cu.get ();
7516 }
7517
7518 /* Get the header. */
7519 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7520 {
7521 /* We already have the header, there's no need to read it in again. */
7522 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7523 }
7524 else
7525 {
7526 if (this_cu->is_debug_types)
7527 {
7528 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7529 &cu->header, section,
7530 abbrev_section, info_ptr,
7531 rcuh_kind::TYPE);
7532
7533 /* Since per_cu is the first member of struct signatured_type,
7534 we can go from a pointer to one to a pointer to the other. */
7535 sig_type = (struct signatured_type *) this_cu;
7536 gdb_assert (sig_type->signature == cu->header.signature);
7537 gdb_assert (sig_type->type_offset_in_tu
7538 == cu->header.type_cu_offset_in_tu);
7539 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7540
7541 /* LENGTH has not been set yet for type units if we're
7542 using .gdb_index. */
7543 this_cu->length = get_cu_length (&cu->header);
7544
7545 /* Establish the type offset that can be used to lookup the type. */
7546 sig_type->type_offset_in_section =
7547 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7548
7549 this_cu->dwarf_version = cu->header.version;
7550 }
7551 else
7552 {
7553 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7554 &cu->header, section,
7555 abbrev_section,
7556 info_ptr,
7557 rcuh_kind::COMPILE);
7558
7559 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7560 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7561 this_cu->dwarf_version = cu->header.version;
7562 }
7563 }
7564
7565 /* Skip dummy compilation units. */
7566 if (info_ptr >= begin_info_ptr + this_cu->length
7567 || peek_abbrev_code (abfd, info_ptr) == 0)
7568 return;
7569
7570 /* If we don't have them yet, read the abbrevs for this compilation unit.
7571 And if we need to read them now, make sure they're freed when we're
7572 done (own the table through ABBREV_TABLE_HOLDER). */
7573 abbrev_table_up abbrev_table_holder;
7574 if (abbrev_table != NULL)
7575 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7576 else
7577 {
7578 abbrev_table_holder
7579 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7580 cu->header.abbrev_sect_off);
7581 abbrev_table = abbrev_table_holder.get ();
7582 }
7583
7584 /* Read the top level CU/TU die. */
7585 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7586 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7587
7588 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7589 return;
7590
7591 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7592 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7593 table from the DWO file and pass the ownership over to us. It will be
7594 referenced from READER, so we must make sure to free it after we're done
7595 with READER.
7596
7597 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7598 DWO CU, that this test will fail (the attribute will not be present). */
7599 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7600 abbrev_table_up dwo_abbrev_table;
7601 if (attr)
7602 {
7603 struct dwo_unit *dwo_unit;
7604 struct die_info *dwo_comp_unit_die;
7605
7606 if (has_children)
7607 {
7608 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7609 " has children (offset %s) [in module %s]"),
7610 sect_offset_str (this_cu->sect_off),
7611 bfd_get_filename (abfd));
7612 }
7613 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7614 if (dwo_unit != NULL)
7615 {
7616 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7617 comp_unit_die, NULL,
7618 &reader, &info_ptr,
7619 &dwo_comp_unit_die, &has_children,
7620 &dwo_abbrev_table) == 0)
7621 {
7622 /* Dummy die. */
7623 return;
7624 }
7625 comp_unit_die = dwo_comp_unit_die;
7626 }
7627 else
7628 {
7629 /* Yikes, we couldn't find the rest of the DIE, we only have
7630 the stub. A complaint has already been logged. There's
7631 not much more we can do except pass on the stub DIE to
7632 die_reader_func. We don't want to throw an error on bad
7633 debug info. */
7634 }
7635 }
7636
7637 /* All of the above is setup for this call. Yikes. */
7638 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7639
7640 /* Done, clean up. */
7641 if (new_cu != NULL && keep)
7642 {
7643 /* Link this CU into read_in_chain. */
7644 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7645 dwarf2_per_objfile->read_in_chain = this_cu;
7646 /* The chain owns it now. */
7647 new_cu.release ();
7648 }
7649 }
7650
7651 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7652 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7653 to have already done the lookup to find the DWO file).
7654
7655 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7656 THIS_CU->is_debug_types, but nothing else.
7657
7658 We fill in THIS_CU->length.
7659
7660 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7661 linker) then DIE_READER_FUNC will not get called.
7662
7663 THIS_CU->cu is always freed when done.
7664 This is done in order to not leave THIS_CU->cu in a state where we have
7665 to care whether it refers to the "main" CU or the DWO CU. */
7666
7667 static void
7668 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7669 struct dwo_file *dwo_file,
7670 die_reader_func_ftype *die_reader_func,
7671 void *data)
7672 {
7673 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7674 struct objfile *objfile = dwarf2_per_objfile->objfile;
7675 struct dwarf2_section_info *section = this_cu->section;
7676 bfd *abfd = get_section_bfd_owner (section);
7677 struct dwarf2_section_info *abbrev_section;
7678 const gdb_byte *begin_info_ptr, *info_ptr;
7679 struct die_reader_specs reader;
7680 struct die_info *comp_unit_die;
7681 int has_children;
7682
7683 if (dwarf_die_debug)
7684 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7685 this_cu->is_debug_types ? "type" : "comp",
7686 sect_offset_str (this_cu->sect_off));
7687
7688 gdb_assert (this_cu->cu == NULL);
7689
7690 abbrev_section = (dwo_file != NULL
7691 ? &dwo_file->sections.abbrev
7692 : get_abbrev_section_for_cu (this_cu));
7693
7694 /* This is cheap if the section is already read in. */
7695 dwarf2_read_section (objfile, section);
7696
7697 struct dwarf2_cu cu (this_cu);
7698
7699 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7700 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7701 &cu.header, section,
7702 abbrev_section, info_ptr,
7703 (this_cu->is_debug_types
7704 ? rcuh_kind::TYPE
7705 : rcuh_kind::COMPILE));
7706
7707 this_cu->length = get_cu_length (&cu.header);
7708
7709 /* Skip dummy compilation units. */
7710 if (info_ptr >= begin_info_ptr + this_cu->length
7711 || peek_abbrev_code (abfd, info_ptr) == 0)
7712 return;
7713
7714 abbrev_table_up abbrev_table
7715 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7716 cu.header.abbrev_sect_off);
7717
7718 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7719 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7720
7721 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7722 }
7723
7724 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7725 does not lookup the specified DWO file.
7726 This cannot be used to read DWO files.
7727
7728 THIS_CU->cu is always freed when done.
7729 This is done in order to not leave THIS_CU->cu in a state where we have
7730 to care whether it refers to the "main" CU or the DWO CU.
7731 We can revisit this if the data shows there's a performance issue. */
7732
7733 static void
7734 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7735 die_reader_func_ftype *die_reader_func,
7736 void *data)
7737 {
7738 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7739 }
7740 \f
7741 /* Type Unit Groups.
7742
7743 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7744 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7745 so that all types coming from the same compilation (.o file) are grouped
7746 together. A future step could be to put the types in the same symtab as
7747 the CU the types ultimately came from. */
7748
7749 static hashval_t
7750 hash_type_unit_group (const void *item)
7751 {
7752 const struct type_unit_group *tu_group
7753 = (const struct type_unit_group *) item;
7754
7755 return hash_stmt_list_entry (&tu_group->hash);
7756 }
7757
7758 static int
7759 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7760 {
7761 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7762 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7763
7764 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7765 }
7766
7767 /* Allocate a hash table for type unit groups. */
7768
7769 static htab_t
7770 allocate_type_unit_groups_table (struct objfile *objfile)
7771 {
7772 return htab_create_alloc_ex (3,
7773 hash_type_unit_group,
7774 eq_type_unit_group,
7775 NULL,
7776 &objfile->objfile_obstack,
7777 hashtab_obstack_allocate,
7778 dummy_obstack_deallocate);
7779 }
7780
7781 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7782 partial symtabs. We combine several TUs per psymtab to not let the size
7783 of any one psymtab grow too big. */
7784 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7785 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7786
7787 /* Helper routine for get_type_unit_group.
7788 Create the type_unit_group object used to hold one or more TUs. */
7789
7790 static struct type_unit_group *
7791 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7792 {
7793 struct dwarf2_per_objfile *dwarf2_per_objfile
7794 = cu->per_cu->dwarf2_per_objfile;
7795 struct objfile *objfile = dwarf2_per_objfile->objfile;
7796 struct dwarf2_per_cu_data *per_cu;
7797 struct type_unit_group *tu_group;
7798
7799 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7800 struct type_unit_group);
7801 per_cu = &tu_group->per_cu;
7802 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7803
7804 if (dwarf2_per_objfile->using_index)
7805 {
7806 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7807 struct dwarf2_per_cu_quick_data);
7808 }
7809 else
7810 {
7811 unsigned int line_offset = to_underlying (line_offset_struct);
7812 struct partial_symtab *pst;
7813 std::string name;
7814
7815 /* Give the symtab a useful name for debug purposes. */
7816 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7817 name = string_printf ("<type_units_%d>",
7818 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7819 else
7820 name = string_printf ("<type_units_at_0x%x>", line_offset);
7821
7822 pst = create_partial_symtab (per_cu, name.c_str ());
7823 pst->anonymous = 1;
7824 }
7825
7826 tu_group->hash.dwo_unit = cu->dwo_unit;
7827 tu_group->hash.line_sect_off = line_offset_struct;
7828
7829 return tu_group;
7830 }
7831
7832 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7833 STMT_LIST is a DW_AT_stmt_list attribute. */
7834
7835 static struct type_unit_group *
7836 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7837 {
7838 struct dwarf2_per_objfile *dwarf2_per_objfile
7839 = cu->per_cu->dwarf2_per_objfile;
7840 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7841 struct type_unit_group *tu_group;
7842 void **slot;
7843 unsigned int line_offset;
7844 struct type_unit_group type_unit_group_for_lookup;
7845
7846 if (dwarf2_per_objfile->type_unit_groups == NULL)
7847 {
7848 dwarf2_per_objfile->type_unit_groups =
7849 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7850 }
7851
7852 /* Do we need to create a new group, or can we use an existing one? */
7853
7854 if (stmt_list)
7855 {
7856 line_offset = DW_UNSND (stmt_list);
7857 ++tu_stats->nr_symtab_sharers;
7858 }
7859 else
7860 {
7861 /* Ugh, no stmt_list. Rare, but we have to handle it.
7862 We can do various things here like create one group per TU or
7863 spread them over multiple groups to split up the expansion work.
7864 To avoid worst case scenarios (too many groups or too large groups)
7865 we, umm, group them in bunches. */
7866 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7867 | (tu_stats->nr_stmt_less_type_units
7868 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7869 ++tu_stats->nr_stmt_less_type_units;
7870 }
7871
7872 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7873 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7874 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7875 &type_unit_group_for_lookup, INSERT);
7876 if (*slot != NULL)
7877 {
7878 tu_group = (struct type_unit_group *) *slot;
7879 gdb_assert (tu_group != NULL);
7880 }
7881 else
7882 {
7883 sect_offset line_offset_struct = (sect_offset) line_offset;
7884 tu_group = create_type_unit_group (cu, line_offset_struct);
7885 *slot = tu_group;
7886 ++tu_stats->nr_symtabs;
7887 }
7888
7889 return tu_group;
7890 }
7891 \f
7892 /* Partial symbol tables. */
7893
7894 /* Create a psymtab named NAME and assign it to PER_CU.
7895
7896 The caller must fill in the following details:
7897 dirname, textlow, texthigh. */
7898
7899 static struct partial_symtab *
7900 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7901 {
7902 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7903 struct partial_symtab *pst;
7904
7905 pst = start_psymtab_common (objfile, name, 0);
7906
7907 pst->psymtabs_addrmap_supported = 1;
7908
7909 /* This is the glue that links PST into GDB's symbol API. */
7910 pst->read_symtab_private = per_cu;
7911 pst->read_symtab = dwarf2_read_symtab;
7912 per_cu->v.psymtab = pst;
7913
7914 return pst;
7915 }
7916
7917 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7918 type. */
7919
7920 struct process_psymtab_comp_unit_data
7921 {
7922 /* True if we are reading a DW_TAG_partial_unit. */
7923
7924 int want_partial_unit;
7925
7926 /* The "pretend" language that is used if the CU doesn't declare a
7927 language. */
7928
7929 enum language pretend_language;
7930 };
7931
7932 /* die_reader_func for process_psymtab_comp_unit. */
7933
7934 static void
7935 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7936 const gdb_byte *info_ptr,
7937 struct die_info *comp_unit_die,
7938 int has_children,
7939 void *data)
7940 {
7941 struct dwarf2_cu *cu = reader->cu;
7942 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7943 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7944 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7945 CORE_ADDR baseaddr;
7946 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7947 struct partial_symtab *pst;
7948 enum pc_bounds_kind cu_bounds_kind;
7949 const char *filename;
7950 struct process_psymtab_comp_unit_data *info
7951 = (struct process_psymtab_comp_unit_data *) data;
7952
7953 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
7954 return;
7955
7956 gdb_assert (! per_cu->is_debug_types);
7957
7958 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
7959
7960 /* Allocate a new partial symbol table structure. */
7961 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7962 if (filename == NULL)
7963 filename = "";
7964
7965 pst = create_partial_symtab (per_cu, filename);
7966
7967 /* This must be done before calling dwarf2_build_include_psymtabs. */
7968 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7969
7970 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7971
7972 dwarf2_find_base_address (comp_unit_die, cu);
7973
7974 /* Possibly set the default values of LOWPC and HIGHPC from
7975 `DW_AT_ranges'. */
7976 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7977 &best_highpc, cu, pst);
7978 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7979 {
7980 CORE_ADDR low
7981 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
7982 - baseaddr);
7983 CORE_ADDR high
7984 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
7985 - baseaddr - 1);
7986 /* Store the contiguous range if it is not empty; it can be
7987 empty for CUs with no code. */
7988 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
7989 low, high, pst);
7990 }
7991
7992 /* Check if comp unit has_children.
7993 If so, read the rest of the partial symbols from this comp unit.
7994 If not, there's no more debug_info for this comp unit. */
7995 if (has_children)
7996 {
7997 struct partial_die_info *first_die;
7998 CORE_ADDR lowpc, highpc;
7999
8000 lowpc = ((CORE_ADDR) -1);
8001 highpc = ((CORE_ADDR) 0);
8002
8003 first_die = load_partial_dies (reader, info_ptr, 1);
8004
8005 scan_partial_symbols (first_die, &lowpc, &highpc,
8006 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
8007
8008 /* If we didn't find a lowpc, set it to highpc to avoid
8009 complaints from `maint check'. */
8010 if (lowpc == ((CORE_ADDR) -1))
8011 lowpc = highpc;
8012
8013 /* If the compilation unit didn't have an explicit address range,
8014 then use the information extracted from its child dies. */
8015 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8016 {
8017 best_lowpc = lowpc;
8018 best_highpc = highpc;
8019 }
8020 }
8021 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
8022 best_lowpc + baseaddr)
8023 - baseaddr);
8024 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
8025 best_highpc + baseaddr)
8026 - baseaddr);
8027
8028 end_psymtab_common (objfile, pst);
8029
8030 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8031 {
8032 int i;
8033 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8034 struct dwarf2_per_cu_data *iter;
8035
8036 /* Fill in 'dependencies' here; we fill in 'users' in a
8037 post-pass. */
8038 pst->number_of_dependencies = len;
8039 pst->dependencies
8040 = objfile->partial_symtabs->allocate_dependencies (len);
8041 for (i = 0;
8042 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8043 i, iter);
8044 ++i)
8045 pst->dependencies[i] = iter->v.psymtab;
8046
8047 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8048 }
8049
8050 /* Get the list of files included in the current compilation unit,
8051 and build a psymtab for each of them. */
8052 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8053
8054 if (dwarf_read_debug)
8055 fprintf_unfiltered (gdb_stdlog,
8056 "Psymtab for %s unit @%s: %s - %s"
8057 ", %d global, %d static syms\n",
8058 per_cu->is_debug_types ? "type" : "comp",
8059 sect_offset_str (per_cu->sect_off),
8060 paddress (gdbarch, pst->text_low (objfile)),
8061 paddress (gdbarch, pst->text_high (objfile)),
8062 pst->n_global_syms, pst->n_static_syms);
8063 }
8064
8065 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8066 Process compilation unit THIS_CU for a psymtab. */
8067
8068 static void
8069 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8070 int want_partial_unit,
8071 enum language pretend_language)
8072 {
8073 /* If this compilation unit was already read in, free the
8074 cached copy in order to read it in again. This is
8075 necessary because we skipped some symbols when we first
8076 read in the compilation unit (see load_partial_dies).
8077 This problem could be avoided, but the benefit is unclear. */
8078 if (this_cu->cu != NULL)
8079 free_one_cached_comp_unit (this_cu);
8080
8081 if (this_cu->is_debug_types)
8082 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8083 build_type_psymtabs_reader, NULL);
8084 else
8085 {
8086 process_psymtab_comp_unit_data info;
8087 info.want_partial_unit = want_partial_unit;
8088 info.pretend_language = pretend_language;
8089 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8090 process_psymtab_comp_unit_reader, &info);
8091 }
8092
8093 /* Age out any secondary CUs. */
8094 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8095 }
8096
8097 /* Reader function for build_type_psymtabs. */
8098
8099 static void
8100 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8101 const gdb_byte *info_ptr,
8102 struct die_info *type_unit_die,
8103 int has_children,
8104 void *data)
8105 {
8106 struct dwarf2_per_objfile *dwarf2_per_objfile
8107 = reader->cu->per_cu->dwarf2_per_objfile;
8108 struct objfile *objfile = dwarf2_per_objfile->objfile;
8109 struct dwarf2_cu *cu = reader->cu;
8110 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8111 struct signatured_type *sig_type;
8112 struct type_unit_group *tu_group;
8113 struct attribute *attr;
8114 struct partial_die_info *first_die;
8115 CORE_ADDR lowpc, highpc;
8116 struct partial_symtab *pst;
8117
8118 gdb_assert (data == NULL);
8119 gdb_assert (per_cu->is_debug_types);
8120 sig_type = (struct signatured_type *) per_cu;
8121
8122 if (! has_children)
8123 return;
8124
8125 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8126 tu_group = get_type_unit_group (cu, attr);
8127
8128 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8129
8130 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8131 pst = create_partial_symtab (per_cu, "");
8132 pst->anonymous = 1;
8133
8134 first_die = load_partial_dies (reader, info_ptr, 1);
8135
8136 lowpc = (CORE_ADDR) -1;
8137 highpc = (CORE_ADDR) 0;
8138 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8139
8140 end_psymtab_common (objfile, pst);
8141 }
8142
8143 /* Struct used to sort TUs by their abbreviation table offset. */
8144
8145 struct tu_abbrev_offset
8146 {
8147 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8148 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8149 {}
8150
8151 signatured_type *sig_type;
8152 sect_offset abbrev_offset;
8153 };
8154
8155 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8156
8157 static bool
8158 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8159 const struct tu_abbrev_offset &b)
8160 {
8161 return a.abbrev_offset < b.abbrev_offset;
8162 }
8163
8164 /* Efficiently read all the type units.
8165 This does the bulk of the work for build_type_psymtabs.
8166
8167 The efficiency is because we sort TUs by the abbrev table they use and
8168 only read each abbrev table once. In one program there are 200K TUs
8169 sharing 8K abbrev tables.
8170
8171 The main purpose of this function is to support building the
8172 dwarf2_per_objfile->type_unit_groups table.
8173 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8174 can collapse the search space by grouping them by stmt_list.
8175 The savings can be significant, in the same program from above the 200K TUs
8176 share 8K stmt_list tables.
8177
8178 FUNC is expected to call get_type_unit_group, which will create the
8179 struct type_unit_group if necessary and add it to
8180 dwarf2_per_objfile->type_unit_groups. */
8181
8182 static void
8183 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8184 {
8185 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8186 abbrev_table_up abbrev_table;
8187 sect_offset abbrev_offset;
8188
8189 /* It's up to the caller to not call us multiple times. */
8190 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8191
8192 if (dwarf2_per_objfile->all_type_units.empty ())
8193 return;
8194
8195 /* TUs typically share abbrev tables, and there can be way more TUs than
8196 abbrev tables. Sort by abbrev table to reduce the number of times we
8197 read each abbrev table in.
8198 Alternatives are to punt or to maintain a cache of abbrev tables.
8199 This is simpler and efficient enough for now.
8200
8201 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8202 symtab to use). Typically TUs with the same abbrev offset have the same
8203 stmt_list value too so in practice this should work well.
8204
8205 The basic algorithm here is:
8206
8207 sort TUs by abbrev table
8208 for each TU with same abbrev table:
8209 read abbrev table if first user
8210 read TU top level DIE
8211 [IWBN if DWO skeletons had DW_AT_stmt_list]
8212 call FUNC */
8213
8214 if (dwarf_read_debug)
8215 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8216
8217 /* Sort in a separate table to maintain the order of all_type_units
8218 for .gdb_index: TU indices directly index all_type_units. */
8219 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8220 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8221
8222 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8223 sorted_by_abbrev.emplace_back
8224 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8225 sig_type->per_cu.section,
8226 sig_type->per_cu.sect_off));
8227
8228 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8229 sort_tu_by_abbrev_offset);
8230
8231 abbrev_offset = (sect_offset) ~(unsigned) 0;
8232
8233 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8234 {
8235 /* Switch to the next abbrev table if necessary. */
8236 if (abbrev_table == NULL
8237 || tu.abbrev_offset != abbrev_offset)
8238 {
8239 abbrev_offset = tu.abbrev_offset;
8240 abbrev_table =
8241 abbrev_table_read_table (dwarf2_per_objfile,
8242 &dwarf2_per_objfile->abbrev,
8243 abbrev_offset);
8244 ++tu_stats->nr_uniq_abbrev_tables;
8245 }
8246
8247 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8248 0, 0, false, build_type_psymtabs_reader, NULL);
8249 }
8250 }
8251
8252 /* Print collected type unit statistics. */
8253
8254 static void
8255 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8256 {
8257 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8258
8259 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8260 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8261 dwarf2_per_objfile->all_type_units.size ());
8262 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8263 tu_stats->nr_uniq_abbrev_tables);
8264 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8265 tu_stats->nr_symtabs);
8266 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8267 tu_stats->nr_symtab_sharers);
8268 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8269 tu_stats->nr_stmt_less_type_units);
8270 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8271 tu_stats->nr_all_type_units_reallocs);
8272 }
8273
8274 /* Traversal function for build_type_psymtabs. */
8275
8276 static int
8277 build_type_psymtab_dependencies (void **slot, void *info)
8278 {
8279 struct dwarf2_per_objfile *dwarf2_per_objfile
8280 = (struct dwarf2_per_objfile *) info;
8281 struct objfile *objfile = dwarf2_per_objfile->objfile;
8282 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8283 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8284 struct partial_symtab *pst = per_cu->v.psymtab;
8285 int len = VEC_length (sig_type_ptr, tu_group->tus);
8286 struct signatured_type *iter;
8287 int i;
8288
8289 gdb_assert (len > 0);
8290 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8291
8292 pst->number_of_dependencies = len;
8293 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
8294 for (i = 0;
8295 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8296 ++i)
8297 {
8298 gdb_assert (iter->per_cu.is_debug_types);
8299 pst->dependencies[i] = iter->per_cu.v.psymtab;
8300 iter->type_unit_group = tu_group;
8301 }
8302
8303 VEC_free (sig_type_ptr, tu_group->tus);
8304
8305 return 1;
8306 }
8307
8308 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8309 Build partial symbol tables for the .debug_types comp-units. */
8310
8311 static void
8312 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8313 {
8314 if (! create_all_type_units (dwarf2_per_objfile))
8315 return;
8316
8317 build_type_psymtabs_1 (dwarf2_per_objfile);
8318 }
8319
8320 /* Traversal function for process_skeletonless_type_unit.
8321 Read a TU in a DWO file and build partial symbols for it. */
8322
8323 static int
8324 process_skeletonless_type_unit (void **slot, void *info)
8325 {
8326 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8327 struct dwarf2_per_objfile *dwarf2_per_objfile
8328 = (struct dwarf2_per_objfile *) info;
8329 struct signatured_type find_entry, *entry;
8330
8331 /* If this TU doesn't exist in the global table, add it and read it in. */
8332
8333 if (dwarf2_per_objfile->signatured_types == NULL)
8334 {
8335 dwarf2_per_objfile->signatured_types
8336 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8337 }
8338
8339 find_entry.signature = dwo_unit->signature;
8340 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8341 INSERT);
8342 /* If we've already seen this type there's nothing to do. What's happening
8343 is we're doing our own version of comdat-folding here. */
8344 if (*slot != NULL)
8345 return 1;
8346
8347 /* This does the job that create_all_type_units would have done for
8348 this TU. */
8349 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8350 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8351 *slot = entry;
8352
8353 /* This does the job that build_type_psymtabs_1 would have done. */
8354 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8355 build_type_psymtabs_reader, NULL);
8356
8357 return 1;
8358 }
8359
8360 /* Traversal function for process_skeletonless_type_units. */
8361
8362 static int
8363 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8364 {
8365 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8366
8367 if (dwo_file->tus != NULL)
8368 {
8369 htab_traverse_noresize (dwo_file->tus,
8370 process_skeletonless_type_unit, info);
8371 }
8372
8373 return 1;
8374 }
8375
8376 /* Scan all TUs of DWO files, verifying we've processed them.
8377 This is needed in case a TU was emitted without its skeleton.
8378 Note: This can't be done until we know what all the DWO files are. */
8379
8380 static void
8381 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8382 {
8383 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8384 if (get_dwp_file (dwarf2_per_objfile) == NULL
8385 && dwarf2_per_objfile->dwo_files != NULL)
8386 {
8387 htab_traverse_noresize (dwarf2_per_objfile->dwo_files.get (),
8388 process_dwo_file_for_skeletonless_type_units,
8389 dwarf2_per_objfile);
8390 }
8391 }
8392
8393 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8394
8395 static void
8396 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8397 {
8398 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8399 {
8400 struct partial_symtab *pst = per_cu->v.psymtab;
8401
8402 if (pst == NULL)
8403 continue;
8404
8405 for (int j = 0; j < pst->number_of_dependencies; ++j)
8406 {
8407 /* Set the 'user' field only if it is not already set. */
8408 if (pst->dependencies[j]->user == NULL)
8409 pst->dependencies[j]->user = pst;
8410 }
8411 }
8412 }
8413
8414 /* Build the partial symbol table by doing a quick pass through the
8415 .debug_info and .debug_abbrev sections. */
8416
8417 static void
8418 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8419 {
8420 struct objfile *objfile = dwarf2_per_objfile->objfile;
8421
8422 if (dwarf_read_debug)
8423 {
8424 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8425 objfile_name (objfile));
8426 }
8427
8428 dwarf2_per_objfile->reading_partial_symbols = 1;
8429
8430 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8431
8432 /* Any cached compilation units will be linked by the per-objfile
8433 read_in_chain. Make sure to free them when we're done. */
8434 free_cached_comp_units freer (dwarf2_per_objfile);
8435
8436 build_type_psymtabs (dwarf2_per_objfile);
8437
8438 create_all_comp_units (dwarf2_per_objfile);
8439
8440 /* Create a temporary address map on a temporary obstack. We later
8441 copy this to the final obstack. */
8442 auto_obstack temp_obstack;
8443
8444 scoped_restore save_psymtabs_addrmap
8445 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
8446 addrmap_create_mutable (&temp_obstack));
8447
8448 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8449 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8450
8451 /* This has to wait until we read the CUs, we need the list of DWOs. */
8452 process_skeletonless_type_units (dwarf2_per_objfile);
8453
8454 /* Now that all TUs have been processed we can fill in the dependencies. */
8455 if (dwarf2_per_objfile->type_unit_groups != NULL)
8456 {
8457 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8458 build_type_psymtab_dependencies, dwarf2_per_objfile);
8459 }
8460
8461 if (dwarf_read_debug)
8462 print_tu_stats (dwarf2_per_objfile);
8463
8464 set_partial_user (dwarf2_per_objfile);
8465
8466 objfile->partial_symtabs->psymtabs_addrmap
8467 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
8468 objfile->partial_symtabs->obstack ());
8469 /* At this point we want to keep the address map. */
8470 save_psymtabs_addrmap.release ();
8471
8472 if (dwarf_read_debug)
8473 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8474 objfile_name (objfile));
8475 }
8476
8477 /* die_reader_func for load_partial_comp_unit. */
8478
8479 static void
8480 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8481 const gdb_byte *info_ptr,
8482 struct die_info *comp_unit_die,
8483 int has_children,
8484 void *data)
8485 {
8486 struct dwarf2_cu *cu = reader->cu;
8487
8488 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8489
8490 /* Check if comp unit has_children.
8491 If so, read the rest of the partial symbols from this comp unit.
8492 If not, there's no more debug_info for this comp unit. */
8493 if (has_children)
8494 load_partial_dies (reader, info_ptr, 0);
8495 }
8496
8497 /* Load the partial DIEs for a secondary CU into memory.
8498 This is also used when rereading a primary CU with load_all_dies. */
8499
8500 static void
8501 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8502 {
8503 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8504 load_partial_comp_unit_reader, NULL);
8505 }
8506
8507 static void
8508 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8509 struct dwarf2_section_info *section,
8510 struct dwarf2_section_info *abbrev_section,
8511 unsigned int is_dwz)
8512 {
8513 const gdb_byte *info_ptr;
8514 struct objfile *objfile = dwarf2_per_objfile->objfile;
8515
8516 if (dwarf_read_debug)
8517 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8518 get_section_name (section),
8519 get_section_file_name (section));
8520
8521 dwarf2_read_section (objfile, section);
8522
8523 info_ptr = section->buffer;
8524
8525 while (info_ptr < section->buffer + section->size)
8526 {
8527 struct dwarf2_per_cu_data *this_cu;
8528
8529 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8530
8531 comp_unit_head cu_header;
8532 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8533 abbrev_section, info_ptr,
8534 rcuh_kind::COMPILE);
8535
8536 /* Save the compilation unit for later lookup. */
8537 if (cu_header.unit_type != DW_UT_type)
8538 {
8539 this_cu = XOBNEW (&objfile->objfile_obstack,
8540 struct dwarf2_per_cu_data);
8541 memset (this_cu, 0, sizeof (*this_cu));
8542 }
8543 else
8544 {
8545 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8546 struct signatured_type);
8547 memset (sig_type, 0, sizeof (*sig_type));
8548 sig_type->signature = cu_header.signature;
8549 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8550 this_cu = &sig_type->per_cu;
8551 }
8552 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8553 this_cu->sect_off = sect_off;
8554 this_cu->length = cu_header.length + cu_header.initial_length_size;
8555 this_cu->is_dwz = is_dwz;
8556 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8557 this_cu->section = section;
8558
8559 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8560
8561 info_ptr = info_ptr + this_cu->length;
8562 }
8563 }
8564
8565 /* Create a list of all compilation units in OBJFILE.
8566 This is only done for -readnow and building partial symtabs. */
8567
8568 static void
8569 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8570 {
8571 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8572 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8573 &dwarf2_per_objfile->abbrev, 0);
8574
8575 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8576 if (dwz != NULL)
8577 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8578 1);
8579 }
8580
8581 /* Process all loaded DIEs for compilation unit CU, starting at
8582 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8583 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8584 DW_AT_ranges). See the comments of add_partial_subprogram on how
8585 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8586
8587 static void
8588 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8589 CORE_ADDR *highpc, int set_addrmap,
8590 struct dwarf2_cu *cu)
8591 {
8592 struct partial_die_info *pdi;
8593
8594 /* Now, march along the PDI's, descending into ones which have
8595 interesting children but skipping the children of the other ones,
8596 until we reach the end of the compilation unit. */
8597
8598 pdi = first_die;
8599
8600 while (pdi != NULL)
8601 {
8602 pdi->fixup (cu);
8603
8604 /* Anonymous namespaces or modules have no name but have interesting
8605 children, so we need to look at them. Ditto for anonymous
8606 enums. */
8607
8608 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8609 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8610 || pdi->tag == DW_TAG_imported_unit
8611 || pdi->tag == DW_TAG_inlined_subroutine)
8612 {
8613 switch (pdi->tag)
8614 {
8615 case DW_TAG_subprogram:
8616 case DW_TAG_inlined_subroutine:
8617 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8618 break;
8619 case DW_TAG_constant:
8620 case DW_TAG_variable:
8621 case DW_TAG_typedef:
8622 case DW_TAG_union_type:
8623 if (!pdi->is_declaration)
8624 {
8625 add_partial_symbol (pdi, cu);
8626 }
8627 break;
8628 case DW_TAG_class_type:
8629 case DW_TAG_interface_type:
8630 case DW_TAG_structure_type:
8631 if (!pdi->is_declaration)
8632 {
8633 add_partial_symbol (pdi, cu);
8634 }
8635 if ((cu->language == language_rust
8636 || cu->language == language_cplus) && pdi->has_children)
8637 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8638 set_addrmap, cu);
8639 break;
8640 case DW_TAG_enumeration_type:
8641 if (!pdi->is_declaration)
8642 add_partial_enumeration (pdi, cu);
8643 break;
8644 case DW_TAG_base_type:
8645 case DW_TAG_subrange_type:
8646 /* File scope base type definitions are added to the partial
8647 symbol table. */
8648 add_partial_symbol (pdi, cu);
8649 break;
8650 case DW_TAG_namespace:
8651 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8652 break;
8653 case DW_TAG_module:
8654 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8655 break;
8656 case DW_TAG_imported_unit:
8657 {
8658 struct dwarf2_per_cu_data *per_cu;
8659
8660 /* For now we don't handle imported units in type units. */
8661 if (cu->per_cu->is_debug_types)
8662 {
8663 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8664 " supported in type units [in module %s]"),
8665 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8666 }
8667
8668 per_cu = dwarf2_find_containing_comp_unit
8669 (pdi->d.sect_off, pdi->is_dwz,
8670 cu->per_cu->dwarf2_per_objfile);
8671
8672 /* Go read the partial unit, if needed. */
8673 if (per_cu->v.psymtab == NULL)
8674 process_psymtab_comp_unit (per_cu, 1, cu->language);
8675
8676 VEC_safe_push (dwarf2_per_cu_ptr,
8677 cu->per_cu->imported_symtabs, per_cu);
8678 }
8679 break;
8680 case DW_TAG_imported_declaration:
8681 add_partial_symbol (pdi, cu);
8682 break;
8683 default:
8684 break;
8685 }
8686 }
8687
8688 /* If the die has a sibling, skip to the sibling. */
8689
8690 pdi = pdi->die_sibling;
8691 }
8692 }
8693
8694 /* Functions used to compute the fully scoped name of a partial DIE.
8695
8696 Normally, this is simple. For C++, the parent DIE's fully scoped
8697 name is concatenated with "::" and the partial DIE's name.
8698 Enumerators are an exception; they use the scope of their parent
8699 enumeration type, i.e. the name of the enumeration type is not
8700 prepended to the enumerator.
8701
8702 There are two complexities. One is DW_AT_specification; in this
8703 case "parent" means the parent of the target of the specification,
8704 instead of the direct parent of the DIE. The other is compilers
8705 which do not emit DW_TAG_namespace; in this case we try to guess
8706 the fully qualified name of structure types from their members'
8707 linkage names. This must be done using the DIE's children rather
8708 than the children of any DW_AT_specification target. We only need
8709 to do this for structures at the top level, i.e. if the target of
8710 any DW_AT_specification (if any; otherwise the DIE itself) does not
8711 have a parent. */
8712
8713 /* Compute the scope prefix associated with PDI's parent, in
8714 compilation unit CU. The result will be allocated on CU's
8715 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8716 field. NULL is returned if no prefix is necessary. */
8717 static const char *
8718 partial_die_parent_scope (struct partial_die_info *pdi,
8719 struct dwarf2_cu *cu)
8720 {
8721 const char *grandparent_scope;
8722 struct partial_die_info *parent, *real_pdi;
8723
8724 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8725 then this means the parent of the specification DIE. */
8726
8727 real_pdi = pdi;
8728 while (real_pdi->has_specification)
8729 {
8730 auto res = find_partial_die (real_pdi->spec_offset,
8731 real_pdi->spec_is_dwz, cu);
8732 real_pdi = res.pdi;
8733 cu = res.cu;
8734 }
8735
8736 parent = real_pdi->die_parent;
8737 if (parent == NULL)
8738 return NULL;
8739
8740 if (parent->scope_set)
8741 return parent->scope;
8742
8743 parent->fixup (cu);
8744
8745 grandparent_scope = partial_die_parent_scope (parent, cu);
8746
8747 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8748 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8749 Work around this problem here. */
8750 if (cu->language == language_cplus
8751 && parent->tag == DW_TAG_namespace
8752 && strcmp (parent->name, "::") == 0
8753 && grandparent_scope == NULL)
8754 {
8755 parent->scope = NULL;
8756 parent->scope_set = 1;
8757 return NULL;
8758 }
8759
8760 if (pdi->tag == DW_TAG_enumerator)
8761 /* Enumerators should not get the name of the enumeration as a prefix. */
8762 parent->scope = grandparent_scope;
8763 else if (parent->tag == DW_TAG_namespace
8764 || parent->tag == DW_TAG_module
8765 || parent->tag == DW_TAG_structure_type
8766 || parent->tag == DW_TAG_class_type
8767 || parent->tag == DW_TAG_interface_type
8768 || parent->tag == DW_TAG_union_type
8769 || parent->tag == DW_TAG_enumeration_type)
8770 {
8771 if (grandparent_scope == NULL)
8772 parent->scope = parent->name;
8773 else
8774 parent->scope = typename_concat (&cu->comp_unit_obstack,
8775 grandparent_scope,
8776 parent->name, 0, cu);
8777 }
8778 else
8779 {
8780 /* FIXME drow/2004-04-01: What should we be doing with
8781 function-local names? For partial symbols, we should probably be
8782 ignoring them. */
8783 complaint (_("unhandled containing DIE tag %s for DIE at %s"),
8784 dwarf_tag_name (parent->tag),
8785 sect_offset_str (pdi->sect_off));
8786 parent->scope = grandparent_scope;
8787 }
8788
8789 parent->scope_set = 1;
8790 return parent->scope;
8791 }
8792
8793 /* Return the fully scoped name associated with PDI, from compilation unit
8794 CU. The result will be allocated with malloc. */
8795
8796 static char *
8797 partial_die_full_name (struct partial_die_info *pdi,
8798 struct dwarf2_cu *cu)
8799 {
8800 const char *parent_scope;
8801
8802 /* If this is a template instantiation, we can not work out the
8803 template arguments from partial DIEs. So, unfortunately, we have
8804 to go through the full DIEs. At least any work we do building
8805 types here will be reused if full symbols are loaded later. */
8806 if (pdi->has_template_arguments)
8807 {
8808 pdi->fixup (cu);
8809
8810 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8811 {
8812 struct die_info *die;
8813 struct attribute attr;
8814 struct dwarf2_cu *ref_cu = cu;
8815
8816 /* DW_FORM_ref_addr is using section offset. */
8817 attr.name = (enum dwarf_attribute) 0;
8818 attr.form = DW_FORM_ref_addr;
8819 attr.u.unsnd = to_underlying (pdi->sect_off);
8820 die = follow_die_ref (NULL, &attr, &ref_cu);
8821
8822 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8823 }
8824 }
8825
8826 parent_scope = partial_die_parent_scope (pdi, cu);
8827 if (parent_scope == NULL)
8828 return NULL;
8829 else
8830 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8831 }
8832
8833 static void
8834 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8835 {
8836 struct dwarf2_per_objfile *dwarf2_per_objfile
8837 = cu->per_cu->dwarf2_per_objfile;
8838 struct objfile *objfile = dwarf2_per_objfile->objfile;
8839 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8840 CORE_ADDR addr = 0;
8841 const char *actual_name = NULL;
8842 CORE_ADDR baseaddr;
8843 char *built_actual_name;
8844
8845 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8846
8847 built_actual_name = partial_die_full_name (pdi, cu);
8848 if (built_actual_name != NULL)
8849 actual_name = built_actual_name;
8850
8851 if (actual_name == NULL)
8852 actual_name = pdi->name;
8853
8854 switch (pdi->tag)
8855 {
8856 case DW_TAG_inlined_subroutine:
8857 case DW_TAG_subprogram:
8858 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8859 - baseaddr);
8860 if (pdi->is_external || cu->language == language_ada)
8861 {
8862 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8863 of the global scope. But in Ada, we want to be able to access
8864 nested procedures globally. So all Ada subprograms are stored
8865 in the global scope. */
8866 add_psymbol_to_list (actual_name, strlen (actual_name),
8867 built_actual_name != NULL,
8868 VAR_DOMAIN, LOC_BLOCK,
8869 SECT_OFF_TEXT (objfile),
8870 psymbol_placement::GLOBAL,
8871 addr,
8872 cu->language, objfile);
8873 }
8874 else
8875 {
8876 add_psymbol_to_list (actual_name, strlen (actual_name),
8877 built_actual_name != NULL,
8878 VAR_DOMAIN, LOC_BLOCK,
8879 SECT_OFF_TEXT (objfile),
8880 psymbol_placement::STATIC,
8881 addr, cu->language, objfile);
8882 }
8883
8884 if (pdi->main_subprogram && actual_name != NULL)
8885 set_objfile_main_name (objfile, actual_name, cu->language);
8886 break;
8887 case DW_TAG_constant:
8888 add_psymbol_to_list (actual_name, strlen (actual_name),
8889 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8890 -1, (pdi->is_external
8891 ? psymbol_placement::GLOBAL
8892 : psymbol_placement::STATIC),
8893 0, cu->language, objfile);
8894 break;
8895 case DW_TAG_variable:
8896 if (pdi->d.locdesc)
8897 addr = decode_locdesc (pdi->d.locdesc, cu);
8898
8899 if (pdi->d.locdesc
8900 && addr == 0
8901 && !dwarf2_per_objfile->has_section_at_zero)
8902 {
8903 /* A global or static variable may also have been stripped
8904 out by the linker if unused, in which case its address
8905 will be nullified; do not add such variables into partial
8906 symbol table then. */
8907 }
8908 else if (pdi->is_external)
8909 {
8910 /* Global Variable.
8911 Don't enter into the minimal symbol tables as there is
8912 a minimal symbol table entry from the ELF symbols already.
8913 Enter into partial symbol table if it has a location
8914 descriptor or a type.
8915 If the location descriptor is missing, new_symbol will create
8916 a LOC_UNRESOLVED symbol, the address of the variable will then
8917 be determined from the minimal symbol table whenever the variable
8918 is referenced.
8919 The address for the partial symbol table entry is not
8920 used by GDB, but it comes in handy for debugging partial symbol
8921 table building. */
8922
8923 if (pdi->d.locdesc || pdi->has_type)
8924 add_psymbol_to_list (actual_name, strlen (actual_name),
8925 built_actual_name != NULL,
8926 VAR_DOMAIN, LOC_STATIC,
8927 SECT_OFF_TEXT (objfile),
8928 psymbol_placement::GLOBAL,
8929 addr, cu->language, objfile);
8930 }
8931 else
8932 {
8933 int has_loc = pdi->d.locdesc != NULL;
8934
8935 /* Static Variable. Skip symbols whose value we cannot know (those
8936 without location descriptors or constant values). */
8937 if (!has_loc && !pdi->has_const_value)
8938 {
8939 xfree (built_actual_name);
8940 return;
8941 }
8942
8943 add_psymbol_to_list (actual_name, strlen (actual_name),
8944 built_actual_name != NULL,
8945 VAR_DOMAIN, LOC_STATIC,
8946 SECT_OFF_TEXT (objfile),
8947 psymbol_placement::STATIC,
8948 has_loc ? addr : 0,
8949 cu->language, objfile);
8950 }
8951 break;
8952 case DW_TAG_typedef:
8953 case DW_TAG_base_type:
8954 case DW_TAG_subrange_type:
8955 add_psymbol_to_list (actual_name, strlen (actual_name),
8956 built_actual_name != NULL,
8957 VAR_DOMAIN, LOC_TYPEDEF, -1,
8958 psymbol_placement::STATIC,
8959 0, cu->language, objfile);
8960 break;
8961 case DW_TAG_imported_declaration:
8962 case DW_TAG_namespace:
8963 add_psymbol_to_list (actual_name, strlen (actual_name),
8964 built_actual_name != NULL,
8965 VAR_DOMAIN, LOC_TYPEDEF, -1,
8966 psymbol_placement::GLOBAL,
8967 0, cu->language, objfile);
8968 break;
8969 case DW_TAG_module:
8970 /* With Fortran 77 there might be a "BLOCK DATA" module
8971 available without any name. If so, we skip the module as it
8972 doesn't bring any value. */
8973 if (actual_name != nullptr)
8974 add_psymbol_to_list (actual_name, strlen (actual_name),
8975 built_actual_name != NULL,
8976 MODULE_DOMAIN, LOC_TYPEDEF, -1,
8977 psymbol_placement::GLOBAL,
8978 0, cu->language, objfile);
8979 break;
8980 case DW_TAG_class_type:
8981 case DW_TAG_interface_type:
8982 case DW_TAG_structure_type:
8983 case DW_TAG_union_type:
8984 case DW_TAG_enumeration_type:
8985 /* Skip external references. The DWARF standard says in the section
8986 about "Structure, Union, and Class Type Entries": "An incomplete
8987 structure, union or class type is represented by a structure,
8988 union or class entry that does not have a byte size attribute
8989 and that has a DW_AT_declaration attribute." */
8990 if (!pdi->has_byte_size && pdi->is_declaration)
8991 {
8992 xfree (built_actual_name);
8993 return;
8994 }
8995
8996 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8997 static vs. global. */
8998 add_psymbol_to_list (actual_name, strlen (actual_name),
8999 built_actual_name != NULL,
9000 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
9001 cu->language == language_cplus
9002 ? psymbol_placement::GLOBAL
9003 : psymbol_placement::STATIC,
9004 0, cu->language, objfile);
9005
9006 break;
9007 case DW_TAG_enumerator:
9008 add_psymbol_to_list (actual_name, strlen (actual_name),
9009 built_actual_name != NULL,
9010 VAR_DOMAIN, LOC_CONST, -1,
9011 cu->language == language_cplus
9012 ? psymbol_placement::GLOBAL
9013 : psymbol_placement::STATIC,
9014 0, cu->language, objfile);
9015 break;
9016 default:
9017 break;
9018 }
9019
9020 xfree (built_actual_name);
9021 }
9022
9023 /* Read a partial die corresponding to a namespace; also, add a symbol
9024 corresponding to that namespace to the symbol table. NAMESPACE is
9025 the name of the enclosing namespace. */
9026
9027 static void
9028 add_partial_namespace (struct partial_die_info *pdi,
9029 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9030 int set_addrmap, struct dwarf2_cu *cu)
9031 {
9032 /* Add a symbol for the namespace. */
9033
9034 add_partial_symbol (pdi, cu);
9035
9036 /* Now scan partial symbols in that namespace. */
9037
9038 if (pdi->has_children)
9039 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9040 }
9041
9042 /* Read a partial die corresponding to a Fortran module. */
9043
9044 static void
9045 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9046 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9047 {
9048 /* Add a symbol for the namespace. */
9049
9050 add_partial_symbol (pdi, cu);
9051
9052 /* Now scan partial symbols in that module. */
9053
9054 if (pdi->has_children)
9055 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9056 }
9057
9058 /* Read a partial die corresponding to a subprogram or an inlined
9059 subprogram and create a partial symbol for that subprogram.
9060 When the CU language allows it, this routine also defines a partial
9061 symbol for each nested subprogram that this subprogram contains.
9062 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9063 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9064
9065 PDI may also be a lexical block, in which case we simply search
9066 recursively for subprograms defined inside that lexical block.
9067 Again, this is only performed when the CU language allows this
9068 type of definitions. */
9069
9070 static void
9071 add_partial_subprogram (struct partial_die_info *pdi,
9072 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9073 int set_addrmap, struct dwarf2_cu *cu)
9074 {
9075 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9076 {
9077 if (pdi->has_pc_info)
9078 {
9079 if (pdi->lowpc < *lowpc)
9080 *lowpc = pdi->lowpc;
9081 if (pdi->highpc > *highpc)
9082 *highpc = pdi->highpc;
9083 if (set_addrmap)
9084 {
9085 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9086 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9087 CORE_ADDR baseaddr;
9088 CORE_ADDR this_highpc;
9089 CORE_ADDR this_lowpc;
9090
9091 baseaddr = ANOFFSET (objfile->section_offsets,
9092 SECT_OFF_TEXT (objfile));
9093 this_lowpc
9094 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9095 pdi->lowpc + baseaddr)
9096 - baseaddr);
9097 this_highpc
9098 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9099 pdi->highpc + baseaddr)
9100 - baseaddr);
9101 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
9102 this_lowpc, this_highpc - 1,
9103 cu->per_cu->v.psymtab);
9104 }
9105 }
9106
9107 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9108 {
9109 if (!pdi->is_declaration)
9110 /* Ignore subprogram DIEs that do not have a name, they are
9111 illegal. Do not emit a complaint at this point, we will
9112 do so when we convert this psymtab into a symtab. */
9113 if (pdi->name)
9114 add_partial_symbol (pdi, cu);
9115 }
9116 }
9117
9118 if (! pdi->has_children)
9119 return;
9120
9121 if (cu->language == language_ada)
9122 {
9123 pdi = pdi->die_child;
9124 while (pdi != NULL)
9125 {
9126 pdi->fixup (cu);
9127 if (pdi->tag == DW_TAG_subprogram
9128 || pdi->tag == DW_TAG_inlined_subroutine
9129 || pdi->tag == DW_TAG_lexical_block)
9130 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9131 pdi = pdi->die_sibling;
9132 }
9133 }
9134 }
9135
9136 /* Read a partial die corresponding to an enumeration type. */
9137
9138 static void
9139 add_partial_enumeration (struct partial_die_info *enum_pdi,
9140 struct dwarf2_cu *cu)
9141 {
9142 struct partial_die_info *pdi;
9143
9144 if (enum_pdi->name != NULL)
9145 add_partial_symbol (enum_pdi, cu);
9146
9147 pdi = enum_pdi->die_child;
9148 while (pdi)
9149 {
9150 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9151 complaint (_("malformed enumerator DIE ignored"));
9152 else
9153 add_partial_symbol (pdi, cu);
9154 pdi = pdi->die_sibling;
9155 }
9156 }
9157
9158 /* Return the initial uleb128 in the die at INFO_PTR. */
9159
9160 static unsigned int
9161 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9162 {
9163 unsigned int bytes_read;
9164
9165 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9166 }
9167
9168 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9169 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9170
9171 Return the corresponding abbrev, or NULL if the number is zero (indicating
9172 an empty DIE). In either case *BYTES_READ will be set to the length of
9173 the initial number. */
9174
9175 static struct abbrev_info *
9176 peek_die_abbrev (const die_reader_specs &reader,
9177 const gdb_byte *info_ptr, unsigned int *bytes_read)
9178 {
9179 dwarf2_cu *cu = reader.cu;
9180 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9181 unsigned int abbrev_number
9182 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9183
9184 if (abbrev_number == 0)
9185 return NULL;
9186
9187 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9188 if (!abbrev)
9189 {
9190 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9191 " at offset %s [in module %s]"),
9192 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9193 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9194 }
9195
9196 return abbrev;
9197 }
9198
9199 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9200 Returns a pointer to the end of a series of DIEs, terminated by an empty
9201 DIE. Any children of the skipped DIEs will also be skipped. */
9202
9203 static const gdb_byte *
9204 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9205 {
9206 while (1)
9207 {
9208 unsigned int bytes_read;
9209 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9210
9211 if (abbrev == NULL)
9212 return info_ptr + bytes_read;
9213 else
9214 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9215 }
9216 }
9217
9218 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9219 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9220 abbrev corresponding to that skipped uleb128 should be passed in
9221 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9222 children. */
9223
9224 static const gdb_byte *
9225 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9226 struct abbrev_info *abbrev)
9227 {
9228 unsigned int bytes_read;
9229 struct attribute attr;
9230 bfd *abfd = reader->abfd;
9231 struct dwarf2_cu *cu = reader->cu;
9232 const gdb_byte *buffer = reader->buffer;
9233 const gdb_byte *buffer_end = reader->buffer_end;
9234 unsigned int form, i;
9235
9236 for (i = 0; i < abbrev->num_attrs; i++)
9237 {
9238 /* The only abbrev we care about is DW_AT_sibling. */
9239 if (abbrev->attrs[i].name == DW_AT_sibling)
9240 {
9241 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9242 if (attr.form == DW_FORM_ref_addr)
9243 complaint (_("ignoring absolute DW_AT_sibling"));
9244 else
9245 {
9246 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9247 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9248
9249 if (sibling_ptr < info_ptr)
9250 complaint (_("DW_AT_sibling points backwards"));
9251 else if (sibling_ptr > reader->buffer_end)
9252 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9253 else
9254 return sibling_ptr;
9255 }
9256 }
9257
9258 /* If it isn't DW_AT_sibling, skip this attribute. */
9259 form = abbrev->attrs[i].form;
9260 skip_attribute:
9261 switch (form)
9262 {
9263 case DW_FORM_ref_addr:
9264 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9265 and later it is offset sized. */
9266 if (cu->header.version == 2)
9267 info_ptr += cu->header.addr_size;
9268 else
9269 info_ptr += cu->header.offset_size;
9270 break;
9271 case DW_FORM_GNU_ref_alt:
9272 info_ptr += cu->header.offset_size;
9273 break;
9274 case DW_FORM_addr:
9275 info_ptr += cu->header.addr_size;
9276 break;
9277 case DW_FORM_data1:
9278 case DW_FORM_ref1:
9279 case DW_FORM_flag:
9280 info_ptr += 1;
9281 break;
9282 case DW_FORM_flag_present:
9283 case DW_FORM_implicit_const:
9284 break;
9285 case DW_FORM_data2:
9286 case DW_FORM_ref2:
9287 info_ptr += 2;
9288 break;
9289 case DW_FORM_data4:
9290 case DW_FORM_ref4:
9291 info_ptr += 4;
9292 break;
9293 case DW_FORM_data8:
9294 case DW_FORM_ref8:
9295 case DW_FORM_ref_sig8:
9296 info_ptr += 8;
9297 break;
9298 case DW_FORM_data16:
9299 info_ptr += 16;
9300 break;
9301 case DW_FORM_string:
9302 read_direct_string (abfd, info_ptr, &bytes_read);
9303 info_ptr += bytes_read;
9304 break;
9305 case DW_FORM_sec_offset:
9306 case DW_FORM_strp:
9307 case DW_FORM_GNU_strp_alt:
9308 info_ptr += cu->header.offset_size;
9309 break;
9310 case DW_FORM_exprloc:
9311 case DW_FORM_block:
9312 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9313 info_ptr += bytes_read;
9314 break;
9315 case DW_FORM_block1:
9316 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9317 break;
9318 case DW_FORM_block2:
9319 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9320 break;
9321 case DW_FORM_block4:
9322 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9323 break;
9324 case DW_FORM_addrx:
9325 case DW_FORM_strx:
9326 case DW_FORM_sdata:
9327 case DW_FORM_udata:
9328 case DW_FORM_ref_udata:
9329 case DW_FORM_GNU_addr_index:
9330 case DW_FORM_GNU_str_index:
9331 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9332 break;
9333 case DW_FORM_indirect:
9334 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9335 info_ptr += bytes_read;
9336 /* We need to continue parsing from here, so just go back to
9337 the top. */
9338 goto skip_attribute;
9339
9340 default:
9341 error (_("Dwarf Error: Cannot handle %s "
9342 "in DWARF reader [in module %s]"),
9343 dwarf_form_name (form),
9344 bfd_get_filename (abfd));
9345 }
9346 }
9347
9348 if (abbrev->has_children)
9349 return skip_children (reader, info_ptr);
9350 else
9351 return info_ptr;
9352 }
9353
9354 /* Locate ORIG_PDI's sibling.
9355 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9356
9357 static const gdb_byte *
9358 locate_pdi_sibling (const struct die_reader_specs *reader,
9359 struct partial_die_info *orig_pdi,
9360 const gdb_byte *info_ptr)
9361 {
9362 /* Do we know the sibling already? */
9363
9364 if (orig_pdi->sibling)
9365 return orig_pdi->sibling;
9366
9367 /* Are there any children to deal with? */
9368
9369 if (!orig_pdi->has_children)
9370 return info_ptr;
9371
9372 /* Skip the children the long way. */
9373
9374 return skip_children (reader, info_ptr);
9375 }
9376
9377 /* Expand this partial symbol table into a full symbol table. SELF is
9378 not NULL. */
9379
9380 static void
9381 dwarf2_read_symtab (struct partial_symtab *self,
9382 struct objfile *objfile)
9383 {
9384 struct dwarf2_per_objfile *dwarf2_per_objfile
9385 = get_dwarf2_per_objfile (objfile);
9386
9387 if (self->readin)
9388 {
9389 warning (_("bug: psymtab for %s is already read in."),
9390 self->filename);
9391 }
9392 else
9393 {
9394 if (info_verbose)
9395 {
9396 printf_filtered (_("Reading in symbols for %s..."),
9397 self->filename);
9398 gdb_flush (gdb_stdout);
9399 }
9400
9401 /* If this psymtab is constructed from a debug-only objfile, the
9402 has_section_at_zero flag will not necessarily be correct. We
9403 can get the correct value for this flag by looking at the data
9404 associated with the (presumably stripped) associated objfile. */
9405 if (objfile->separate_debug_objfile_backlink)
9406 {
9407 struct dwarf2_per_objfile *dpo_backlink
9408 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9409
9410 dwarf2_per_objfile->has_section_at_zero
9411 = dpo_backlink->has_section_at_zero;
9412 }
9413
9414 dwarf2_per_objfile->reading_partial_symbols = 0;
9415
9416 psymtab_to_symtab_1 (self);
9417
9418 /* Finish up the debug error message. */
9419 if (info_verbose)
9420 printf_filtered (_("done.\n"));
9421 }
9422
9423 process_cu_includes (dwarf2_per_objfile);
9424 }
9425 \f
9426 /* Reading in full CUs. */
9427
9428 /* Add PER_CU to the queue. */
9429
9430 static void
9431 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9432 enum language pretend_language)
9433 {
9434 struct dwarf2_queue_item *item;
9435
9436 per_cu->queued = 1;
9437 item = XNEW (struct dwarf2_queue_item);
9438 item->per_cu = per_cu;
9439 item->pretend_language = pretend_language;
9440 item->next = NULL;
9441
9442 if (dwarf2_queue == NULL)
9443 dwarf2_queue = item;
9444 else
9445 dwarf2_queue_tail->next = item;
9446
9447 dwarf2_queue_tail = item;
9448 }
9449
9450 /* If PER_CU is not yet queued, add it to the queue.
9451 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9452 dependency.
9453 The result is non-zero if PER_CU was queued, otherwise the result is zero
9454 meaning either PER_CU is already queued or it is already loaded.
9455
9456 N.B. There is an invariant here that if a CU is queued then it is loaded.
9457 The caller is required to load PER_CU if we return non-zero. */
9458
9459 static int
9460 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9461 struct dwarf2_per_cu_data *per_cu,
9462 enum language pretend_language)
9463 {
9464 /* We may arrive here during partial symbol reading, if we need full
9465 DIEs to process an unusual case (e.g. template arguments). Do
9466 not queue PER_CU, just tell our caller to load its DIEs. */
9467 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9468 {
9469 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9470 return 1;
9471 return 0;
9472 }
9473
9474 /* Mark the dependence relation so that we don't flush PER_CU
9475 too early. */
9476 if (dependent_cu != NULL)
9477 dwarf2_add_dependence (dependent_cu, per_cu);
9478
9479 /* If it's already on the queue, we have nothing to do. */
9480 if (per_cu->queued)
9481 return 0;
9482
9483 /* If the compilation unit is already loaded, just mark it as
9484 used. */
9485 if (per_cu->cu != NULL)
9486 {
9487 per_cu->cu->last_used = 0;
9488 return 0;
9489 }
9490
9491 /* Add it to the queue. */
9492 queue_comp_unit (per_cu, pretend_language);
9493
9494 return 1;
9495 }
9496
9497 /* Process the queue. */
9498
9499 static void
9500 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9501 {
9502 struct dwarf2_queue_item *item, *next_item;
9503
9504 if (dwarf_read_debug)
9505 {
9506 fprintf_unfiltered (gdb_stdlog,
9507 "Expanding one or more symtabs of objfile %s ...\n",
9508 objfile_name (dwarf2_per_objfile->objfile));
9509 }
9510
9511 /* The queue starts out with one item, but following a DIE reference
9512 may load a new CU, adding it to the end of the queue. */
9513 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9514 {
9515 if ((dwarf2_per_objfile->using_index
9516 ? !item->per_cu->v.quick->compunit_symtab
9517 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9518 /* Skip dummy CUs. */
9519 && item->per_cu->cu != NULL)
9520 {
9521 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9522 unsigned int debug_print_threshold;
9523 char buf[100];
9524
9525 if (per_cu->is_debug_types)
9526 {
9527 struct signatured_type *sig_type =
9528 (struct signatured_type *) per_cu;
9529
9530 sprintf (buf, "TU %s at offset %s",
9531 hex_string (sig_type->signature),
9532 sect_offset_str (per_cu->sect_off));
9533 /* There can be 100s of TUs.
9534 Only print them in verbose mode. */
9535 debug_print_threshold = 2;
9536 }
9537 else
9538 {
9539 sprintf (buf, "CU at offset %s",
9540 sect_offset_str (per_cu->sect_off));
9541 debug_print_threshold = 1;
9542 }
9543
9544 if (dwarf_read_debug >= debug_print_threshold)
9545 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9546
9547 if (per_cu->is_debug_types)
9548 process_full_type_unit (per_cu, item->pretend_language);
9549 else
9550 process_full_comp_unit (per_cu, item->pretend_language);
9551
9552 if (dwarf_read_debug >= debug_print_threshold)
9553 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9554 }
9555
9556 item->per_cu->queued = 0;
9557 next_item = item->next;
9558 xfree (item);
9559 }
9560
9561 dwarf2_queue_tail = NULL;
9562
9563 if (dwarf_read_debug)
9564 {
9565 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9566 objfile_name (dwarf2_per_objfile->objfile));
9567 }
9568 }
9569
9570 /* Read in full symbols for PST, and anything it depends on. */
9571
9572 static void
9573 psymtab_to_symtab_1 (struct partial_symtab *pst)
9574 {
9575 struct dwarf2_per_cu_data *per_cu;
9576 int i;
9577
9578 if (pst->readin)
9579 return;
9580
9581 for (i = 0; i < pst->number_of_dependencies; i++)
9582 if (!pst->dependencies[i]->readin
9583 && pst->dependencies[i]->user == NULL)
9584 {
9585 /* Inform about additional files that need to be read in. */
9586 if (info_verbose)
9587 {
9588 /* FIXME: i18n: Need to make this a single string. */
9589 fputs_filtered (" ", gdb_stdout);
9590 wrap_here ("");
9591 fputs_filtered ("and ", gdb_stdout);
9592 wrap_here ("");
9593 printf_filtered ("%s...", pst->dependencies[i]->filename);
9594 wrap_here (""); /* Flush output. */
9595 gdb_flush (gdb_stdout);
9596 }
9597 psymtab_to_symtab_1 (pst->dependencies[i]);
9598 }
9599
9600 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9601
9602 if (per_cu == NULL)
9603 {
9604 /* It's an include file, no symbols to read for it.
9605 Everything is in the parent symtab. */
9606 pst->readin = 1;
9607 return;
9608 }
9609
9610 dw2_do_instantiate_symtab (per_cu, false);
9611 }
9612
9613 /* Trivial hash function for die_info: the hash value of a DIE
9614 is its offset in .debug_info for this objfile. */
9615
9616 static hashval_t
9617 die_hash (const void *item)
9618 {
9619 const struct die_info *die = (const struct die_info *) item;
9620
9621 return to_underlying (die->sect_off);
9622 }
9623
9624 /* Trivial comparison function for die_info structures: two DIEs
9625 are equal if they have the same offset. */
9626
9627 static int
9628 die_eq (const void *item_lhs, const void *item_rhs)
9629 {
9630 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9631 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9632
9633 return die_lhs->sect_off == die_rhs->sect_off;
9634 }
9635
9636 /* die_reader_func for load_full_comp_unit.
9637 This is identical to read_signatured_type_reader,
9638 but is kept separate for now. */
9639
9640 static void
9641 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9642 const gdb_byte *info_ptr,
9643 struct die_info *comp_unit_die,
9644 int has_children,
9645 void *data)
9646 {
9647 struct dwarf2_cu *cu = reader->cu;
9648 enum language *language_ptr = (enum language *) data;
9649
9650 gdb_assert (cu->die_hash == NULL);
9651 cu->die_hash =
9652 htab_create_alloc_ex (cu->header.length / 12,
9653 die_hash,
9654 die_eq,
9655 NULL,
9656 &cu->comp_unit_obstack,
9657 hashtab_obstack_allocate,
9658 dummy_obstack_deallocate);
9659
9660 if (has_children)
9661 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9662 &info_ptr, comp_unit_die);
9663 cu->dies = comp_unit_die;
9664 /* comp_unit_die is not stored in die_hash, no need. */
9665
9666 /* We try not to read any attributes in this function, because not
9667 all CUs needed for references have been loaded yet, and symbol
9668 table processing isn't initialized. But we have to set the CU language,
9669 or we won't be able to build types correctly.
9670 Similarly, if we do not read the producer, we can not apply
9671 producer-specific interpretation. */
9672 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9673 }
9674
9675 /* Load the DIEs associated with PER_CU into memory. */
9676
9677 static void
9678 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9679 bool skip_partial,
9680 enum language pretend_language)
9681 {
9682 gdb_assert (! this_cu->is_debug_types);
9683
9684 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9685 load_full_comp_unit_reader, &pretend_language);
9686 }
9687
9688 /* Add a DIE to the delayed physname list. */
9689
9690 static void
9691 add_to_method_list (struct type *type, int fnfield_index, int index,
9692 const char *name, struct die_info *die,
9693 struct dwarf2_cu *cu)
9694 {
9695 struct delayed_method_info mi;
9696 mi.type = type;
9697 mi.fnfield_index = fnfield_index;
9698 mi.index = index;
9699 mi.name = name;
9700 mi.die = die;
9701 cu->method_list.push_back (mi);
9702 }
9703
9704 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9705 "const" / "volatile". If so, decrements LEN by the length of the
9706 modifier and return true. Otherwise return false. */
9707
9708 template<size_t N>
9709 static bool
9710 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9711 {
9712 size_t mod_len = sizeof (mod) - 1;
9713 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9714 {
9715 len -= mod_len;
9716 return true;
9717 }
9718 return false;
9719 }
9720
9721 /* Compute the physnames of any methods on the CU's method list.
9722
9723 The computation of method physnames is delayed in order to avoid the
9724 (bad) condition that one of the method's formal parameters is of an as yet
9725 incomplete type. */
9726
9727 static void
9728 compute_delayed_physnames (struct dwarf2_cu *cu)
9729 {
9730 /* Only C++ delays computing physnames. */
9731 if (cu->method_list.empty ())
9732 return;
9733 gdb_assert (cu->language == language_cplus);
9734
9735 for (const delayed_method_info &mi : cu->method_list)
9736 {
9737 const char *physname;
9738 struct fn_fieldlist *fn_flp
9739 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9740 physname = dwarf2_physname (mi.name, mi.die, cu);
9741 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9742 = physname ? physname : "";
9743
9744 /* Since there's no tag to indicate whether a method is a
9745 const/volatile overload, extract that information out of the
9746 demangled name. */
9747 if (physname != NULL)
9748 {
9749 size_t len = strlen (physname);
9750
9751 while (1)
9752 {
9753 if (physname[len] == ')') /* shortcut */
9754 break;
9755 else if (check_modifier (physname, len, " const"))
9756 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9757 else if (check_modifier (physname, len, " volatile"))
9758 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9759 else
9760 break;
9761 }
9762 }
9763 }
9764
9765 /* The list is no longer needed. */
9766 cu->method_list.clear ();
9767 }
9768
9769 /* Go objects should be embedded in a DW_TAG_module DIE,
9770 and it's not clear if/how imported objects will appear.
9771 To keep Go support simple until that's worked out,
9772 go back through what we've read and create something usable.
9773 We could do this while processing each DIE, and feels kinda cleaner,
9774 but that way is more invasive.
9775 This is to, for example, allow the user to type "p var" or "b main"
9776 without having to specify the package name, and allow lookups
9777 of module.object to work in contexts that use the expression
9778 parser. */
9779
9780 static void
9781 fixup_go_packaging (struct dwarf2_cu *cu)
9782 {
9783 char *package_name = NULL;
9784 struct pending *list;
9785 int i;
9786
9787 for (list = *cu->get_builder ()->get_global_symbols ();
9788 list != NULL;
9789 list = list->next)
9790 {
9791 for (i = 0; i < list->nsyms; ++i)
9792 {
9793 struct symbol *sym = list->symbol[i];
9794
9795 if (SYMBOL_LANGUAGE (sym) == language_go
9796 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9797 {
9798 char *this_package_name = go_symbol_package_name (sym);
9799
9800 if (this_package_name == NULL)
9801 continue;
9802 if (package_name == NULL)
9803 package_name = this_package_name;
9804 else
9805 {
9806 struct objfile *objfile
9807 = cu->per_cu->dwarf2_per_objfile->objfile;
9808 if (strcmp (package_name, this_package_name) != 0)
9809 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9810 (symbol_symtab (sym) != NULL
9811 ? symtab_to_filename_for_display
9812 (symbol_symtab (sym))
9813 : objfile_name (objfile)),
9814 this_package_name, package_name);
9815 xfree (this_package_name);
9816 }
9817 }
9818 }
9819 }
9820
9821 if (package_name != NULL)
9822 {
9823 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9824 const char *saved_package_name
9825 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9826 package_name,
9827 strlen (package_name));
9828 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9829 saved_package_name);
9830 struct symbol *sym;
9831
9832 sym = allocate_symbol (objfile);
9833 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9834 SYMBOL_SET_NAMES (sym, saved_package_name,
9835 strlen (saved_package_name), 0, objfile);
9836 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9837 e.g., "main" finds the "main" module and not C's main(). */
9838 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9839 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9840 SYMBOL_TYPE (sym) = type;
9841
9842 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9843
9844 xfree (package_name);
9845 }
9846 }
9847
9848 /* Allocate a fully-qualified name consisting of the two parts on the
9849 obstack. */
9850
9851 static const char *
9852 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9853 {
9854 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9855 }
9856
9857 /* A helper that allocates a struct discriminant_info to attach to a
9858 union type. */
9859
9860 static struct discriminant_info *
9861 alloc_discriminant_info (struct type *type, int discriminant_index,
9862 int default_index)
9863 {
9864 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9865 gdb_assert (discriminant_index == -1
9866 || (discriminant_index >= 0
9867 && discriminant_index < TYPE_NFIELDS (type)));
9868 gdb_assert (default_index == -1
9869 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9870
9871 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9872
9873 struct discriminant_info *disc
9874 = ((struct discriminant_info *)
9875 TYPE_ZALLOC (type,
9876 offsetof (struct discriminant_info, discriminants)
9877 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9878 disc->default_index = default_index;
9879 disc->discriminant_index = discriminant_index;
9880
9881 struct dynamic_prop prop;
9882 prop.kind = PROP_UNDEFINED;
9883 prop.data.baton = disc;
9884
9885 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9886
9887 return disc;
9888 }
9889
9890 /* Some versions of rustc emitted enums in an unusual way.
9891
9892 Ordinary enums were emitted as unions. The first element of each
9893 structure in the union was named "RUST$ENUM$DISR". This element
9894 held the discriminant.
9895
9896 These versions of Rust also implemented the "non-zero"
9897 optimization. When the enum had two values, and one is empty and
9898 the other holds a pointer that cannot be zero, the pointer is used
9899 as the discriminant, with a zero value meaning the empty variant.
9900 Here, the union's first member is of the form
9901 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9902 where the fieldnos are the indices of the fields that should be
9903 traversed in order to find the field (which may be several fields deep)
9904 and the variantname is the name of the variant of the case when the
9905 field is zero.
9906
9907 This function recognizes whether TYPE is of one of these forms,
9908 and, if so, smashes it to be a variant type. */
9909
9910 static void
9911 quirk_rust_enum (struct type *type, struct objfile *objfile)
9912 {
9913 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9914
9915 /* We don't need to deal with empty enums. */
9916 if (TYPE_NFIELDS (type) == 0)
9917 return;
9918
9919 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9920 if (TYPE_NFIELDS (type) == 1
9921 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9922 {
9923 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9924
9925 /* Decode the field name to find the offset of the
9926 discriminant. */
9927 ULONGEST bit_offset = 0;
9928 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9929 while (name[0] >= '0' && name[0] <= '9')
9930 {
9931 char *tail;
9932 unsigned long index = strtoul (name, &tail, 10);
9933 name = tail;
9934 if (*name != '$'
9935 || index >= TYPE_NFIELDS (field_type)
9936 || (TYPE_FIELD_LOC_KIND (field_type, index)
9937 != FIELD_LOC_KIND_BITPOS))
9938 {
9939 complaint (_("Could not parse Rust enum encoding string \"%s\""
9940 "[in module %s]"),
9941 TYPE_FIELD_NAME (type, 0),
9942 objfile_name (objfile));
9943 return;
9944 }
9945 ++name;
9946
9947 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9948 field_type = TYPE_FIELD_TYPE (field_type, index);
9949 }
9950
9951 /* Make a union to hold the variants. */
9952 struct type *union_type = alloc_type (objfile);
9953 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9954 TYPE_NFIELDS (union_type) = 3;
9955 TYPE_FIELDS (union_type)
9956 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9957 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9958 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9959
9960 /* Put the discriminant must at index 0. */
9961 TYPE_FIELD_TYPE (union_type, 0) = field_type;
9962 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9963 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9964 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
9965
9966 /* The order of fields doesn't really matter, so put the real
9967 field at index 1 and the data-less field at index 2. */
9968 struct discriminant_info *disc
9969 = alloc_discriminant_info (union_type, 0, 1);
9970 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
9971 TYPE_FIELD_NAME (union_type, 1)
9972 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
9973 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
9974 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9975 TYPE_FIELD_NAME (union_type, 1));
9976
9977 const char *dataless_name
9978 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9979 name);
9980 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
9981 dataless_name);
9982 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
9983 /* NAME points into the original discriminant name, which
9984 already has the correct lifetime. */
9985 TYPE_FIELD_NAME (union_type, 2) = name;
9986 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
9987 disc->discriminants[2] = 0;
9988
9989 /* Smash this type to be a structure type. We have to do this
9990 because the type has already been recorded. */
9991 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9992 TYPE_NFIELDS (type) = 1;
9993 TYPE_FIELDS (type)
9994 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
9995
9996 /* Install the variant part. */
9997 TYPE_FIELD_TYPE (type, 0) = union_type;
9998 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9999 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10000 }
10001 else if (TYPE_NFIELDS (type) == 1)
10002 {
10003 /* We assume that a union with a single field is a univariant
10004 enum. */
10005 /* Smash this type to be a structure type. We have to do this
10006 because the type has already been recorded. */
10007 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10008
10009 /* Make a union to hold the variants. */
10010 struct type *union_type = alloc_type (objfile);
10011 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10012 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
10013 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10014 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10015 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10016
10017 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10018 const char *variant_name
10019 = rust_last_path_segment (TYPE_NAME (field_type));
10020 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10021 TYPE_NAME (field_type)
10022 = rust_fully_qualify (&objfile->objfile_obstack,
10023 TYPE_NAME (type), variant_name);
10024
10025 /* Install the union in the outer struct type. */
10026 TYPE_NFIELDS (type) = 1;
10027 TYPE_FIELDS (type)
10028 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10029 TYPE_FIELD_TYPE (type, 0) = union_type;
10030 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10031 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10032
10033 alloc_discriminant_info (union_type, -1, 0);
10034 }
10035 else
10036 {
10037 struct type *disr_type = nullptr;
10038 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10039 {
10040 disr_type = TYPE_FIELD_TYPE (type, i);
10041
10042 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
10043 {
10044 /* All fields of a true enum will be structs. */
10045 return;
10046 }
10047 else if (TYPE_NFIELDS (disr_type) == 0)
10048 {
10049 /* Could be data-less variant, so keep going. */
10050 disr_type = nullptr;
10051 }
10052 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10053 "RUST$ENUM$DISR") != 0)
10054 {
10055 /* Not a Rust enum. */
10056 return;
10057 }
10058 else
10059 {
10060 /* Found one. */
10061 break;
10062 }
10063 }
10064
10065 /* If we got here without a discriminant, then it's probably
10066 just a union. */
10067 if (disr_type == nullptr)
10068 return;
10069
10070 /* Smash this type to be a structure type. We have to do this
10071 because the type has already been recorded. */
10072 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10073
10074 /* Make a union to hold the variants. */
10075 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10076 struct type *union_type = alloc_type (objfile);
10077 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10078 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10079 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10080 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10081 TYPE_FIELDS (union_type)
10082 = (struct field *) TYPE_ZALLOC (union_type,
10083 (TYPE_NFIELDS (union_type)
10084 * sizeof (struct field)));
10085
10086 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10087 TYPE_NFIELDS (type) * sizeof (struct field));
10088
10089 /* Install the discriminant at index 0 in the union. */
10090 TYPE_FIELD (union_type, 0) = *disr_field;
10091 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10092 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10093
10094 /* Install the union in the outer struct type. */
10095 TYPE_FIELD_TYPE (type, 0) = union_type;
10096 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10097 TYPE_NFIELDS (type) = 1;
10098
10099 /* Set the size and offset of the union type. */
10100 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10101
10102 /* We need a way to find the correct discriminant given a
10103 variant name. For convenience we build a map here. */
10104 struct type *enum_type = FIELD_TYPE (*disr_field);
10105 std::unordered_map<std::string, ULONGEST> discriminant_map;
10106 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10107 {
10108 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10109 {
10110 const char *name
10111 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10112 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10113 }
10114 }
10115
10116 int n_fields = TYPE_NFIELDS (union_type);
10117 struct discriminant_info *disc
10118 = alloc_discriminant_info (union_type, 0, -1);
10119 /* Skip the discriminant here. */
10120 for (int i = 1; i < n_fields; ++i)
10121 {
10122 /* Find the final word in the name of this variant's type.
10123 That name can be used to look up the correct
10124 discriminant. */
10125 const char *variant_name
10126 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10127 i)));
10128
10129 auto iter = discriminant_map.find (variant_name);
10130 if (iter != discriminant_map.end ())
10131 disc->discriminants[i] = iter->second;
10132
10133 /* Remove the discriminant field, if it exists. */
10134 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10135 if (TYPE_NFIELDS (sub_type) > 0)
10136 {
10137 --TYPE_NFIELDS (sub_type);
10138 ++TYPE_FIELDS (sub_type);
10139 }
10140 TYPE_FIELD_NAME (union_type, i) = variant_name;
10141 TYPE_NAME (sub_type)
10142 = rust_fully_qualify (&objfile->objfile_obstack,
10143 TYPE_NAME (type), variant_name);
10144 }
10145 }
10146 }
10147
10148 /* Rewrite some Rust unions to be structures with variants parts. */
10149
10150 static void
10151 rust_union_quirks (struct dwarf2_cu *cu)
10152 {
10153 gdb_assert (cu->language == language_rust);
10154 for (type *type_ : cu->rust_unions)
10155 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10156 /* We don't need this any more. */
10157 cu->rust_unions.clear ();
10158 }
10159
10160 /* Return the symtab for PER_CU. This works properly regardless of
10161 whether we're using the index or psymtabs. */
10162
10163 static struct compunit_symtab *
10164 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10165 {
10166 return (per_cu->dwarf2_per_objfile->using_index
10167 ? per_cu->v.quick->compunit_symtab
10168 : per_cu->v.psymtab->compunit_symtab);
10169 }
10170
10171 /* A helper function for computing the list of all symbol tables
10172 included by PER_CU. */
10173
10174 static void
10175 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
10176 htab_t all_children, htab_t all_type_symtabs,
10177 struct dwarf2_per_cu_data *per_cu,
10178 struct compunit_symtab *immediate_parent)
10179 {
10180 void **slot;
10181 int ix;
10182 struct compunit_symtab *cust;
10183 struct dwarf2_per_cu_data *iter;
10184
10185 slot = htab_find_slot (all_children, per_cu, INSERT);
10186 if (*slot != NULL)
10187 {
10188 /* This inclusion and its children have been processed. */
10189 return;
10190 }
10191
10192 *slot = per_cu;
10193 /* Only add a CU if it has a symbol table. */
10194 cust = get_compunit_symtab (per_cu);
10195 if (cust != NULL)
10196 {
10197 /* If this is a type unit only add its symbol table if we haven't
10198 seen it yet (type unit per_cu's can share symtabs). */
10199 if (per_cu->is_debug_types)
10200 {
10201 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10202 if (*slot == NULL)
10203 {
10204 *slot = cust;
10205 result->push_back (cust);
10206 if (cust->user == NULL)
10207 cust->user = immediate_parent;
10208 }
10209 }
10210 else
10211 {
10212 result->push_back (cust);
10213 if (cust->user == NULL)
10214 cust->user = immediate_parent;
10215 }
10216 }
10217
10218 for (ix = 0;
10219 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10220 ++ix)
10221 {
10222 recursively_compute_inclusions (result, all_children,
10223 all_type_symtabs, iter, cust);
10224 }
10225 }
10226
10227 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10228 PER_CU. */
10229
10230 static void
10231 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10232 {
10233 gdb_assert (! per_cu->is_debug_types);
10234
10235 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10236 {
10237 int ix, len;
10238 struct dwarf2_per_cu_data *per_cu_iter;
10239 std::vector<compunit_symtab *> result_symtabs;
10240 htab_t all_children, all_type_symtabs;
10241 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10242
10243 /* If we don't have a symtab, we can just skip this case. */
10244 if (cust == NULL)
10245 return;
10246
10247 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10248 NULL, xcalloc, xfree);
10249 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10250 NULL, xcalloc, xfree);
10251
10252 for (ix = 0;
10253 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10254 ix, per_cu_iter);
10255 ++ix)
10256 {
10257 recursively_compute_inclusions (&result_symtabs, all_children,
10258 all_type_symtabs, per_cu_iter,
10259 cust);
10260 }
10261
10262 /* Now we have a transitive closure of all the included symtabs. */
10263 len = result_symtabs.size ();
10264 cust->includes
10265 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10266 struct compunit_symtab *, len + 1);
10267 memcpy (cust->includes, result_symtabs.data (),
10268 len * sizeof (compunit_symtab *));
10269 cust->includes[len] = NULL;
10270
10271 htab_delete (all_children);
10272 htab_delete (all_type_symtabs);
10273 }
10274 }
10275
10276 /* Compute the 'includes' field for the symtabs of all the CUs we just
10277 read. */
10278
10279 static void
10280 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10281 {
10282 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
10283 {
10284 if (! iter->is_debug_types)
10285 compute_compunit_symtab_includes (iter);
10286 }
10287
10288 dwarf2_per_objfile->just_read_cus.clear ();
10289 }
10290
10291 /* Generate full symbol information for PER_CU, whose DIEs have
10292 already been loaded into memory. */
10293
10294 static void
10295 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10296 enum language pretend_language)
10297 {
10298 struct dwarf2_cu *cu = per_cu->cu;
10299 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10300 struct objfile *objfile = dwarf2_per_objfile->objfile;
10301 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10302 CORE_ADDR lowpc, highpc;
10303 struct compunit_symtab *cust;
10304 CORE_ADDR baseaddr;
10305 struct block *static_block;
10306 CORE_ADDR addr;
10307
10308 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10309
10310 /* Clear the list here in case something was left over. */
10311 cu->method_list.clear ();
10312
10313 cu->language = pretend_language;
10314 cu->language_defn = language_def (cu->language);
10315
10316 /* Do line number decoding in read_file_scope () */
10317 process_die (cu->dies, cu);
10318
10319 /* For now fudge the Go package. */
10320 if (cu->language == language_go)
10321 fixup_go_packaging (cu);
10322
10323 /* Now that we have processed all the DIEs in the CU, all the types
10324 should be complete, and it should now be safe to compute all of the
10325 physnames. */
10326 compute_delayed_physnames (cu);
10327
10328 if (cu->language == language_rust)
10329 rust_union_quirks (cu);
10330
10331 /* Some compilers don't define a DW_AT_high_pc attribute for the
10332 compilation unit. If the DW_AT_high_pc is missing, synthesize
10333 it, by scanning the DIE's below the compilation unit. */
10334 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10335
10336 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10337 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
10338
10339 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10340 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10341 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10342 addrmap to help ensure it has an accurate map of pc values belonging to
10343 this comp unit. */
10344 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10345
10346 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
10347 SECT_OFF_TEXT (objfile),
10348 0);
10349
10350 if (cust != NULL)
10351 {
10352 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10353
10354 /* Set symtab language to language from DW_AT_language. If the
10355 compilation is from a C file generated by language preprocessors, do
10356 not set the language if it was already deduced by start_subfile. */
10357 if (!(cu->language == language_c
10358 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10359 COMPUNIT_FILETABS (cust)->language = cu->language;
10360
10361 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10362 produce DW_AT_location with location lists but it can be possibly
10363 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10364 there were bugs in prologue debug info, fixed later in GCC-4.5
10365 by "unwind info for epilogues" patch (which is not directly related).
10366
10367 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10368 needed, it would be wrong due to missing DW_AT_producer there.
10369
10370 Still one can confuse GDB by using non-standard GCC compilation
10371 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10372 */
10373 if (cu->has_loclist && gcc_4_minor >= 5)
10374 cust->locations_valid = 1;
10375
10376 if (gcc_4_minor >= 5)
10377 cust->epilogue_unwind_valid = 1;
10378
10379 cust->call_site_htab = cu->call_site_htab;
10380 }
10381
10382 if (dwarf2_per_objfile->using_index)
10383 per_cu->v.quick->compunit_symtab = cust;
10384 else
10385 {
10386 struct partial_symtab *pst = per_cu->v.psymtab;
10387 pst->compunit_symtab = cust;
10388 pst->readin = 1;
10389 }
10390
10391 /* Push it for inclusion processing later. */
10392 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10393
10394 /* Not needed any more. */
10395 cu->reset_builder ();
10396 }
10397
10398 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10399 already been loaded into memory. */
10400
10401 static void
10402 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10403 enum language pretend_language)
10404 {
10405 struct dwarf2_cu *cu = per_cu->cu;
10406 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10407 struct objfile *objfile = dwarf2_per_objfile->objfile;
10408 struct compunit_symtab *cust;
10409 struct signatured_type *sig_type;
10410
10411 gdb_assert (per_cu->is_debug_types);
10412 sig_type = (struct signatured_type *) per_cu;
10413
10414 /* Clear the list here in case something was left over. */
10415 cu->method_list.clear ();
10416
10417 cu->language = pretend_language;
10418 cu->language_defn = language_def (cu->language);
10419
10420 /* The symbol tables are set up in read_type_unit_scope. */
10421 process_die (cu->dies, cu);
10422
10423 /* For now fudge the Go package. */
10424 if (cu->language == language_go)
10425 fixup_go_packaging (cu);
10426
10427 /* Now that we have processed all the DIEs in the CU, all the types
10428 should be complete, and it should now be safe to compute all of the
10429 physnames. */
10430 compute_delayed_physnames (cu);
10431
10432 if (cu->language == language_rust)
10433 rust_union_quirks (cu);
10434
10435 /* TUs share symbol tables.
10436 If this is the first TU to use this symtab, complete the construction
10437 of it with end_expandable_symtab. Otherwise, complete the addition of
10438 this TU's symbols to the existing symtab. */
10439 if (sig_type->type_unit_group->compunit_symtab == NULL)
10440 {
10441 buildsym_compunit *builder = cu->get_builder ();
10442 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10443 sig_type->type_unit_group->compunit_symtab = cust;
10444
10445 if (cust != NULL)
10446 {
10447 /* Set symtab language to language from DW_AT_language. If the
10448 compilation is from a C file generated by language preprocessors,
10449 do not set the language if it was already deduced by
10450 start_subfile. */
10451 if (!(cu->language == language_c
10452 && COMPUNIT_FILETABS (cust)->language != language_c))
10453 COMPUNIT_FILETABS (cust)->language = cu->language;
10454 }
10455 }
10456 else
10457 {
10458 cu->get_builder ()->augment_type_symtab ();
10459 cust = sig_type->type_unit_group->compunit_symtab;
10460 }
10461
10462 if (dwarf2_per_objfile->using_index)
10463 per_cu->v.quick->compunit_symtab = cust;
10464 else
10465 {
10466 struct partial_symtab *pst = per_cu->v.psymtab;
10467 pst->compunit_symtab = cust;
10468 pst->readin = 1;
10469 }
10470
10471 /* Not needed any more. */
10472 cu->reset_builder ();
10473 }
10474
10475 /* Process an imported unit DIE. */
10476
10477 static void
10478 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10479 {
10480 struct attribute *attr;
10481
10482 /* For now we don't handle imported units in type units. */
10483 if (cu->per_cu->is_debug_types)
10484 {
10485 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10486 " supported in type units [in module %s]"),
10487 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10488 }
10489
10490 attr = dwarf2_attr (die, DW_AT_import, cu);
10491 if (attr != NULL)
10492 {
10493 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10494 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10495 dwarf2_per_cu_data *per_cu
10496 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10497 cu->per_cu->dwarf2_per_objfile);
10498
10499 /* If necessary, add it to the queue and load its DIEs. */
10500 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10501 load_full_comp_unit (per_cu, false, cu->language);
10502
10503 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10504 per_cu);
10505 }
10506 }
10507
10508 /* RAII object that represents a process_die scope: i.e.,
10509 starts/finishes processing a DIE. */
10510 class process_die_scope
10511 {
10512 public:
10513 process_die_scope (die_info *die, dwarf2_cu *cu)
10514 : m_die (die), m_cu (cu)
10515 {
10516 /* We should only be processing DIEs not already in process. */
10517 gdb_assert (!m_die->in_process);
10518 m_die->in_process = true;
10519 }
10520
10521 ~process_die_scope ()
10522 {
10523 m_die->in_process = false;
10524
10525 /* If we're done processing the DIE for the CU that owns the line
10526 header, we don't need the line header anymore. */
10527 if (m_cu->line_header_die_owner == m_die)
10528 {
10529 delete m_cu->line_header;
10530 m_cu->line_header = NULL;
10531 m_cu->line_header_die_owner = NULL;
10532 }
10533 }
10534
10535 private:
10536 die_info *m_die;
10537 dwarf2_cu *m_cu;
10538 };
10539
10540 /* Process a die and its children. */
10541
10542 static void
10543 process_die (struct die_info *die, struct dwarf2_cu *cu)
10544 {
10545 process_die_scope scope (die, cu);
10546
10547 switch (die->tag)
10548 {
10549 case DW_TAG_padding:
10550 break;
10551 case DW_TAG_compile_unit:
10552 case DW_TAG_partial_unit:
10553 read_file_scope (die, cu);
10554 break;
10555 case DW_TAG_type_unit:
10556 read_type_unit_scope (die, cu);
10557 break;
10558 case DW_TAG_subprogram:
10559 case DW_TAG_inlined_subroutine:
10560 read_func_scope (die, cu);
10561 break;
10562 case DW_TAG_lexical_block:
10563 case DW_TAG_try_block:
10564 case DW_TAG_catch_block:
10565 read_lexical_block_scope (die, cu);
10566 break;
10567 case DW_TAG_call_site:
10568 case DW_TAG_GNU_call_site:
10569 read_call_site_scope (die, cu);
10570 break;
10571 case DW_TAG_class_type:
10572 case DW_TAG_interface_type:
10573 case DW_TAG_structure_type:
10574 case DW_TAG_union_type:
10575 process_structure_scope (die, cu);
10576 break;
10577 case DW_TAG_enumeration_type:
10578 process_enumeration_scope (die, cu);
10579 break;
10580
10581 /* These dies have a type, but processing them does not create
10582 a symbol or recurse to process the children. Therefore we can
10583 read them on-demand through read_type_die. */
10584 case DW_TAG_subroutine_type:
10585 case DW_TAG_set_type:
10586 case DW_TAG_array_type:
10587 case DW_TAG_pointer_type:
10588 case DW_TAG_ptr_to_member_type:
10589 case DW_TAG_reference_type:
10590 case DW_TAG_rvalue_reference_type:
10591 case DW_TAG_string_type:
10592 break;
10593
10594 case DW_TAG_base_type:
10595 case DW_TAG_subrange_type:
10596 case DW_TAG_typedef:
10597 /* Add a typedef symbol for the type definition, if it has a
10598 DW_AT_name. */
10599 new_symbol (die, read_type_die (die, cu), cu);
10600 break;
10601 case DW_TAG_common_block:
10602 read_common_block (die, cu);
10603 break;
10604 case DW_TAG_common_inclusion:
10605 break;
10606 case DW_TAG_namespace:
10607 cu->processing_has_namespace_info = true;
10608 read_namespace (die, cu);
10609 break;
10610 case DW_TAG_module:
10611 cu->processing_has_namespace_info = true;
10612 read_module (die, cu);
10613 break;
10614 case DW_TAG_imported_declaration:
10615 cu->processing_has_namespace_info = true;
10616 if (read_namespace_alias (die, cu))
10617 break;
10618 /* The declaration is not a global namespace alias. */
10619 /* Fall through. */
10620 case DW_TAG_imported_module:
10621 cu->processing_has_namespace_info = true;
10622 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10623 || cu->language != language_fortran))
10624 complaint (_("Tag '%s' has unexpected children"),
10625 dwarf_tag_name (die->tag));
10626 read_import_statement (die, cu);
10627 break;
10628
10629 case DW_TAG_imported_unit:
10630 process_imported_unit_die (die, cu);
10631 break;
10632
10633 case DW_TAG_variable:
10634 read_variable (die, cu);
10635 break;
10636
10637 default:
10638 new_symbol (die, NULL, cu);
10639 break;
10640 }
10641 }
10642 \f
10643 /* DWARF name computation. */
10644
10645 /* A helper function for dwarf2_compute_name which determines whether DIE
10646 needs to have the name of the scope prepended to the name listed in the
10647 die. */
10648
10649 static int
10650 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10651 {
10652 struct attribute *attr;
10653
10654 switch (die->tag)
10655 {
10656 case DW_TAG_namespace:
10657 case DW_TAG_typedef:
10658 case DW_TAG_class_type:
10659 case DW_TAG_interface_type:
10660 case DW_TAG_structure_type:
10661 case DW_TAG_union_type:
10662 case DW_TAG_enumeration_type:
10663 case DW_TAG_enumerator:
10664 case DW_TAG_subprogram:
10665 case DW_TAG_inlined_subroutine:
10666 case DW_TAG_member:
10667 case DW_TAG_imported_declaration:
10668 return 1;
10669
10670 case DW_TAG_variable:
10671 case DW_TAG_constant:
10672 /* We only need to prefix "globally" visible variables. These include
10673 any variable marked with DW_AT_external or any variable that
10674 lives in a namespace. [Variables in anonymous namespaces
10675 require prefixing, but they are not DW_AT_external.] */
10676
10677 if (dwarf2_attr (die, DW_AT_specification, cu))
10678 {
10679 struct dwarf2_cu *spec_cu = cu;
10680
10681 return die_needs_namespace (die_specification (die, &spec_cu),
10682 spec_cu);
10683 }
10684
10685 attr = dwarf2_attr (die, DW_AT_external, cu);
10686 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10687 && die->parent->tag != DW_TAG_module)
10688 return 0;
10689 /* A variable in a lexical block of some kind does not need a
10690 namespace, even though in C++ such variables may be external
10691 and have a mangled name. */
10692 if (die->parent->tag == DW_TAG_lexical_block
10693 || die->parent->tag == DW_TAG_try_block
10694 || die->parent->tag == DW_TAG_catch_block
10695 || die->parent->tag == DW_TAG_subprogram)
10696 return 0;
10697 return 1;
10698
10699 default:
10700 return 0;
10701 }
10702 }
10703
10704 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10705 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10706 defined for the given DIE. */
10707
10708 static struct attribute *
10709 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10710 {
10711 struct attribute *attr;
10712
10713 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10714 if (attr == NULL)
10715 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10716
10717 return attr;
10718 }
10719
10720 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10721 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10722 defined for the given DIE. */
10723
10724 static const char *
10725 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10726 {
10727 const char *linkage_name;
10728
10729 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10730 if (linkage_name == NULL)
10731 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10732
10733 return linkage_name;
10734 }
10735
10736 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10737 compute the physname for the object, which include a method's:
10738 - formal parameters (C++),
10739 - receiver type (Go),
10740
10741 The term "physname" is a bit confusing.
10742 For C++, for example, it is the demangled name.
10743 For Go, for example, it's the mangled name.
10744
10745 For Ada, return the DIE's linkage name rather than the fully qualified
10746 name. PHYSNAME is ignored..
10747
10748 The result is allocated on the objfile_obstack and canonicalized. */
10749
10750 static const char *
10751 dwarf2_compute_name (const char *name,
10752 struct die_info *die, struct dwarf2_cu *cu,
10753 int physname)
10754 {
10755 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10756
10757 if (name == NULL)
10758 name = dwarf2_name (die, cu);
10759
10760 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10761 but otherwise compute it by typename_concat inside GDB.
10762 FIXME: Actually this is not really true, or at least not always true.
10763 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10764 Fortran names because there is no mangling standard. So new_symbol
10765 will set the demangled name to the result of dwarf2_full_name, and it is
10766 the demangled name that GDB uses if it exists. */
10767 if (cu->language == language_ada
10768 || (cu->language == language_fortran && physname))
10769 {
10770 /* For Ada unit, we prefer the linkage name over the name, as
10771 the former contains the exported name, which the user expects
10772 to be able to reference. Ideally, we want the user to be able
10773 to reference this entity using either natural or linkage name,
10774 but we haven't started looking at this enhancement yet. */
10775 const char *linkage_name = dw2_linkage_name (die, cu);
10776
10777 if (linkage_name != NULL)
10778 return linkage_name;
10779 }
10780
10781 /* These are the only languages we know how to qualify names in. */
10782 if (name != NULL
10783 && (cu->language == language_cplus
10784 || cu->language == language_fortran || cu->language == language_d
10785 || cu->language == language_rust))
10786 {
10787 if (die_needs_namespace (die, cu))
10788 {
10789 const char *prefix;
10790 const char *canonical_name = NULL;
10791
10792 string_file buf;
10793
10794 prefix = determine_prefix (die, cu);
10795 if (*prefix != '\0')
10796 {
10797 char *prefixed_name = typename_concat (NULL, prefix, name,
10798 physname, cu);
10799
10800 buf.puts (prefixed_name);
10801 xfree (prefixed_name);
10802 }
10803 else
10804 buf.puts (name);
10805
10806 /* Template parameters may be specified in the DIE's DW_AT_name, or
10807 as children with DW_TAG_template_type_param or
10808 DW_TAG_value_type_param. If the latter, add them to the name
10809 here. If the name already has template parameters, then
10810 skip this step; some versions of GCC emit both, and
10811 it is more efficient to use the pre-computed name.
10812
10813 Something to keep in mind about this process: it is very
10814 unlikely, or in some cases downright impossible, to produce
10815 something that will match the mangled name of a function.
10816 If the definition of the function has the same debug info,
10817 we should be able to match up with it anyway. But fallbacks
10818 using the minimal symbol, for instance to find a method
10819 implemented in a stripped copy of libstdc++, will not work.
10820 If we do not have debug info for the definition, we will have to
10821 match them up some other way.
10822
10823 When we do name matching there is a related problem with function
10824 templates; two instantiated function templates are allowed to
10825 differ only by their return types, which we do not add here. */
10826
10827 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10828 {
10829 struct attribute *attr;
10830 struct die_info *child;
10831 int first = 1;
10832
10833 die->building_fullname = 1;
10834
10835 for (child = die->child; child != NULL; child = child->sibling)
10836 {
10837 struct type *type;
10838 LONGEST value;
10839 const gdb_byte *bytes;
10840 struct dwarf2_locexpr_baton *baton;
10841 struct value *v;
10842
10843 if (child->tag != DW_TAG_template_type_param
10844 && child->tag != DW_TAG_template_value_param)
10845 continue;
10846
10847 if (first)
10848 {
10849 buf.puts ("<");
10850 first = 0;
10851 }
10852 else
10853 buf.puts (", ");
10854
10855 attr = dwarf2_attr (child, DW_AT_type, cu);
10856 if (attr == NULL)
10857 {
10858 complaint (_("template parameter missing DW_AT_type"));
10859 buf.puts ("UNKNOWN_TYPE");
10860 continue;
10861 }
10862 type = die_type (child, cu);
10863
10864 if (child->tag == DW_TAG_template_type_param)
10865 {
10866 c_print_type (type, "", &buf, -1, 0, cu->language,
10867 &type_print_raw_options);
10868 continue;
10869 }
10870
10871 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10872 if (attr == NULL)
10873 {
10874 complaint (_("template parameter missing "
10875 "DW_AT_const_value"));
10876 buf.puts ("UNKNOWN_VALUE");
10877 continue;
10878 }
10879
10880 dwarf2_const_value_attr (attr, type, name,
10881 &cu->comp_unit_obstack, cu,
10882 &value, &bytes, &baton);
10883
10884 if (TYPE_NOSIGN (type))
10885 /* GDB prints characters as NUMBER 'CHAR'. If that's
10886 changed, this can use value_print instead. */
10887 c_printchar (value, type, &buf);
10888 else
10889 {
10890 struct value_print_options opts;
10891
10892 if (baton != NULL)
10893 v = dwarf2_evaluate_loc_desc (type, NULL,
10894 baton->data,
10895 baton->size,
10896 baton->per_cu);
10897 else if (bytes != NULL)
10898 {
10899 v = allocate_value (type);
10900 memcpy (value_contents_writeable (v), bytes,
10901 TYPE_LENGTH (type));
10902 }
10903 else
10904 v = value_from_longest (type, value);
10905
10906 /* Specify decimal so that we do not depend on
10907 the radix. */
10908 get_formatted_print_options (&opts, 'd');
10909 opts.raw = 1;
10910 value_print (v, &buf, &opts);
10911 release_value (v);
10912 }
10913 }
10914
10915 die->building_fullname = 0;
10916
10917 if (!first)
10918 {
10919 /* Close the argument list, with a space if necessary
10920 (nested templates). */
10921 if (!buf.empty () && buf.string ().back () == '>')
10922 buf.puts (" >");
10923 else
10924 buf.puts (">");
10925 }
10926 }
10927
10928 /* For C++ methods, append formal parameter type
10929 information, if PHYSNAME. */
10930
10931 if (physname && die->tag == DW_TAG_subprogram
10932 && cu->language == language_cplus)
10933 {
10934 struct type *type = read_type_die (die, cu);
10935
10936 c_type_print_args (type, &buf, 1, cu->language,
10937 &type_print_raw_options);
10938
10939 if (cu->language == language_cplus)
10940 {
10941 /* Assume that an artificial first parameter is
10942 "this", but do not crash if it is not. RealView
10943 marks unnamed (and thus unused) parameters as
10944 artificial; there is no way to differentiate
10945 the two cases. */
10946 if (TYPE_NFIELDS (type) > 0
10947 && TYPE_FIELD_ARTIFICIAL (type, 0)
10948 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10949 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10950 0))))
10951 buf.puts (" const");
10952 }
10953 }
10954
10955 const std::string &intermediate_name = buf.string ();
10956
10957 if (cu->language == language_cplus)
10958 canonical_name
10959 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10960 &objfile->per_bfd->storage_obstack);
10961
10962 /* If we only computed INTERMEDIATE_NAME, or if
10963 INTERMEDIATE_NAME is already canonical, then we need to
10964 copy it to the appropriate obstack. */
10965 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10966 name = ((const char *)
10967 obstack_copy0 (&objfile->per_bfd->storage_obstack,
10968 intermediate_name.c_str (),
10969 intermediate_name.length ()));
10970 else
10971 name = canonical_name;
10972 }
10973 }
10974
10975 return name;
10976 }
10977
10978 /* Return the fully qualified name of DIE, based on its DW_AT_name.
10979 If scope qualifiers are appropriate they will be added. The result
10980 will be allocated on the storage_obstack, or NULL if the DIE does
10981 not have a name. NAME may either be from a previous call to
10982 dwarf2_name or NULL.
10983
10984 The output string will be canonicalized (if C++). */
10985
10986 static const char *
10987 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10988 {
10989 return dwarf2_compute_name (name, die, cu, 0);
10990 }
10991
10992 /* Construct a physname for the given DIE in CU. NAME may either be
10993 from a previous call to dwarf2_name or NULL. The result will be
10994 allocated on the objfile_objstack or NULL if the DIE does not have a
10995 name.
10996
10997 The output string will be canonicalized (if C++). */
10998
10999 static const char *
11000 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11001 {
11002 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11003 const char *retval, *mangled = NULL, *canon = NULL;
11004 int need_copy = 1;
11005
11006 /* In this case dwarf2_compute_name is just a shortcut not building anything
11007 on its own. */
11008 if (!die_needs_namespace (die, cu))
11009 return dwarf2_compute_name (name, die, cu, 1);
11010
11011 mangled = dw2_linkage_name (die, cu);
11012
11013 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11014 See https://github.com/rust-lang/rust/issues/32925. */
11015 if (cu->language == language_rust && mangled != NULL
11016 && strchr (mangled, '{') != NULL)
11017 mangled = NULL;
11018
11019 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11020 has computed. */
11021 gdb::unique_xmalloc_ptr<char> demangled;
11022 if (mangled != NULL)
11023 {
11024
11025 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11026 {
11027 /* Do nothing (do not demangle the symbol name). */
11028 }
11029 else if (cu->language == language_go)
11030 {
11031 /* This is a lie, but we already lie to the caller new_symbol.
11032 new_symbol assumes we return the mangled name.
11033 This just undoes that lie until things are cleaned up. */
11034 }
11035 else
11036 {
11037 /* Use DMGL_RET_DROP for C++ template functions to suppress
11038 their return type. It is easier for GDB users to search
11039 for such functions as `name(params)' than `long name(params)'.
11040 In such case the minimal symbol names do not match the full
11041 symbol names but for template functions there is never a need
11042 to look up their definition from their declaration so
11043 the only disadvantage remains the minimal symbol variant
11044 `long name(params)' does not have the proper inferior type. */
11045 demangled.reset (gdb_demangle (mangled,
11046 (DMGL_PARAMS | DMGL_ANSI
11047 | DMGL_RET_DROP)));
11048 }
11049 if (demangled)
11050 canon = demangled.get ();
11051 else
11052 {
11053 canon = mangled;
11054 need_copy = 0;
11055 }
11056 }
11057
11058 if (canon == NULL || check_physname)
11059 {
11060 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11061
11062 if (canon != NULL && strcmp (physname, canon) != 0)
11063 {
11064 /* It may not mean a bug in GDB. The compiler could also
11065 compute DW_AT_linkage_name incorrectly. But in such case
11066 GDB would need to be bug-to-bug compatible. */
11067
11068 complaint (_("Computed physname <%s> does not match demangled <%s> "
11069 "(from linkage <%s>) - DIE at %s [in module %s]"),
11070 physname, canon, mangled, sect_offset_str (die->sect_off),
11071 objfile_name (objfile));
11072
11073 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11074 is available here - over computed PHYSNAME. It is safer
11075 against both buggy GDB and buggy compilers. */
11076
11077 retval = canon;
11078 }
11079 else
11080 {
11081 retval = physname;
11082 need_copy = 0;
11083 }
11084 }
11085 else
11086 retval = canon;
11087
11088 if (need_copy)
11089 retval = ((const char *)
11090 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11091 retval, strlen (retval)));
11092
11093 return retval;
11094 }
11095
11096 /* Inspect DIE in CU for a namespace alias. If one exists, record
11097 a new symbol for it.
11098
11099 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11100
11101 static int
11102 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11103 {
11104 struct attribute *attr;
11105
11106 /* If the die does not have a name, this is not a namespace
11107 alias. */
11108 attr = dwarf2_attr (die, DW_AT_name, cu);
11109 if (attr != NULL)
11110 {
11111 int num;
11112 struct die_info *d = die;
11113 struct dwarf2_cu *imported_cu = cu;
11114
11115 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11116 keep inspecting DIEs until we hit the underlying import. */
11117 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11118 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11119 {
11120 attr = dwarf2_attr (d, DW_AT_import, cu);
11121 if (attr == NULL)
11122 break;
11123
11124 d = follow_die_ref (d, attr, &imported_cu);
11125 if (d->tag != DW_TAG_imported_declaration)
11126 break;
11127 }
11128
11129 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11130 {
11131 complaint (_("DIE at %s has too many recursively imported "
11132 "declarations"), sect_offset_str (d->sect_off));
11133 return 0;
11134 }
11135
11136 if (attr != NULL)
11137 {
11138 struct type *type;
11139 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11140
11141 type = get_die_type_at_offset (sect_off, cu->per_cu);
11142 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11143 {
11144 /* This declaration is a global namespace alias. Add
11145 a symbol for it whose type is the aliased namespace. */
11146 new_symbol (die, type, cu);
11147 return 1;
11148 }
11149 }
11150 }
11151
11152 return 0;
11153 }
11154
11155 /* Return the using directives repository (global or local?) to use in the
11156 current context for CU.
11157
11158 For Ada, imported declarations can materialize renamings, which *may* be
11159 global. However it is impossible (for now?) in DWARF to distinguish
11160 "external" imported declarations and "static" ones. As all imported
11161 declarations seem to be static in all other languages, make them all CU-wide
11162 global only in Ada. */
11163
11164 static struct using_direct **
11165 using_directives (struct dwarf2_cu *cu)
11166 {
11167 if (cu->language == language_ada
11168 && cu->get_builder ()->outermost_context_p ())
11169 return cu->get_builder ()->get_global_using_directives ();
11170 else
11171 return cu->get_builder ()->get_local_using_directives ();
11172 }
11173
11174 /* Read the import statement specified by the given die and record it. */
11175
11176 static void
11177 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11178 {
11179 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11180 struct attribute *import_attr;
11181 struct die_info *imported_die, *child_die;
11182 struct dwarf2_cu *imported_cu;
11183 const char *imported_name;
11184 const char *imported_name_prefix;
11185 const char *canonical_name;
11186 const char *import_alias;
11187 const char *imported_declaration = NULL;
11188 const char *import_prefix;
11189 std::vector<const char *> excludes;
11190
11191 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11192 if (import_attr == NULL)
11193 {
11194 complaint (_("Tag '%s' has no DW_AT_import"),
11195 dwarf_tag_name (die->tag));
11196 return;
11197 }
11198
11199 imported_cu = cu;
11200 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11201 imported_name = dwarf2_name (imported_die, imported_cu);
11202 if (imported_name == NULL)
11203 {
11204 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11205
11206 The import in the following code:
11207 namespace A
11208 {
11209 typedef int B;
11210 }
11211
11212 int main ()
11213 {
11214 using A::B;
11215 B b;
11216 return b;
11217 }
11218
11219 ...
11220 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11221 <52> DW_AT_decl_file : 1
11222 <53> DW_AT_decl_line : 6
11223 <54> DW_AT_import : <0x75>
11224 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11225 <59> DW_AT_name : B
11226 <5b> DW_AT_decl_file : 1
11227 <5c> DW_AT_decl_line : 2
11228 <5d> DW_AT_type : <0x6e>
11229 ...
11230 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11231 <76> DW_AT_byte_size : 4
11232 <77> DW_AT_encoding : 5 (signed)
11233
11234 imports the wrong die ( 0x75 instead of 0x58 ).
11235 This case will be ignored until the gcc bug is fixed. */
11236 return;
11237 }
11238
11239 /* Figure out the local name after import. */
11240 import_alias = dwarf2_name (die, cu);
11241
11242 /* Figure out where the statement is being imported to. */
11243 import_prefix = determine_prefix (die, cu);
11244
11245 /* Figure out what the scope of the imported die is and prepend it
11246 to the name of the imported die. */
11247 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11248
11249 if (imported_die->tag != DW_TAG_namespace
11250 && imported_die->tag != DW_TAG_module)
11251 {
11252 imported_declaration = imported_name;
11253 canonical_name = imported_name_prefix;
11254 }
11255 else if (strlen (imported_name_prefix) > 0)
11256 canonical_name = obconcat (&objfile->objfile_obstack,
11257 imported_name_prefix,
11258 (cu->language == language_d ? "." : "::"),
11259 imported_name, (char *) NULL);
11260 else
11261 canonical_name = imported_name;
11262
11263 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11264 for (child_die = die->child; child_die && child_die->tag;
11265 child_die = sibling_die (child_die))
11266 {
11267 /* DWARF-4: A Fortran use statement with a “rename list” may be
11268 represented by an imported module entry with an import attribute
11269 referring to the module and owned entries corresponding to those
11270 entities that are renamed as part of being imported. */
11271
11272 if (child_die->tag != DW_TAG_imported_declaration)
11273 {
11274 complaint (_("child DW_TAG_imported_declaration expected "
11275 "- DIE at %s [in module %s]"),
11276 sect_offset_str (child_die->sect_off),
11277 objfile_name (objfile));
11278 continue;
11279 }
11280
11281 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11282 if (import_attr == NULL)
11283 {
11284 complaint (_("Tag '%s' has no DW_AT_import"),
11285 dwarf_tag_name (child_die->tag));
11286 continue;
11287 }
11288
11289 imported_cu = cu;
11290 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11291 &imported_cu);
11292 imported_name = dwarf2_name (imported_die, imported_cu);
11293 if (imported_name == NULL)
11294 {
11295 complaint (_("child DW_TAG_imported_declaration has unknown "
11296 "imported name - DIE at %s [in module %s]"),
11297 sect_offset_str (child_die->sect_off),
11298 objfile_name (objfile));
11299 continue;
11300 }
11301
11302 excludes.push_back (imported_name);
11303
11304 process_die (child_die, cu);
11305 }
11306
11307 add_using_directive (using_directives (cu),
11308 import_prefix,
11309 canonical_name,
11310 import_alias,
11311 imported_declaration,
11312 excludes,
11313 0,
11314 &objfile->objfile_obstack);
11315 }
11316
11317 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11318 types, but gives them a size of zero. Starting with version 14,
11319 ICC is compatible with GCC. */
11320
11321 static bool
11322 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11323 {
11324 if (!cu->checked_producer)
11325 check_producer (cu);
11326
11327 return cu->producer_is_icc_lt_14;
11328 }
11329
11330 /* ICC generates a DW_AT_type for C void functions. This was observed on
11331 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
11332 which says that void functions should not have a DW_AT_type. */
11333
11334 static bool
11335 producer_is_icc (struct dwarf2_cu *cu)
11336 {
11337 if (!cu->checked_producer)
11338 check_producer (cu);
11339
11340 return cu->producer_is_icc;
11341 }
11342
11343 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11344 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11345 this, it was first present in GCC release 4.3.0. */
11346
11347 static bool
11348 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11349 {
11350 if (!cu->checked_producer)
11351 check_producer (cu);
11352
11353 return cu->producer_is_gcc_lt_4_3;
11354 }
11355
11356 static file_and_directory
11357 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11358 {
11359 file_and_directory res;
11360
11361 /* Find the filename. Do not use dwarf2_name here, since the filename
11362 is not a source language identifier. */
11363 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11364 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11365
11366 if (res.comp_dir == NULL
11367 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11368 && IS_ABSOLUTE_PATH (res.name))
11369 {
11370 res.comp_dir_storage = ldirname (res.name);
11371 if (!res.comp_dir_storage.empty ())
11372 res.comp_dir = res.comp_dir_storage.c_str ();
11373 }
11374 if (res.comp_dir != NULL)
11375 {
11376 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11377 directory, get rid of it. */
11378 const char *cp = strchr (res.comp_dir, ':');
11379
11380 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11381 res.comp_dir = cp + 1;
11382 }
11383
11384 if (res.name == NULL)
11385 res.name = "<unknown>";
11386
11387 return res;
11388 }
11389
11390 /* Handle DW_AT_stmt_list for a compilation unit.
11391 DIE is the DW_TAG_compile_unit die for CU.
11392 COMP_DIR is the compilation directory. LOWPC is passed to
11393 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11394
11395 static void
11396 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11397 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11398 {
11399 struct dwarf2_per_objfile *dwarf2_per_objfile
11400 = cu->per_cu->dwarf2_per_objfile;
11401 struct objfile *objfile = dwarf2_per_objfile->objfile;
11402 struct attribute *attr;
11403 struct line_header line_header_local;
11404 hashval_t line_header_local_hash;
11405 void **slot;
11406 int decode_mapping;
11407
11408 gdb_assert (! cu->per_cu->is_debug_types);
11409
11410 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11411 if (attr == NULL)
11412 return;
11413
11414 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11415
11416 /* The line header hash table is only created if needed (it exists to
11417 prevent redundant reading of the line table for partial_units).
11418 If we're given a partial_unit, we'll need it. If we're given a
11419 compile_unit, then use the line header hash table if it's already
11420 created, but don't create one just yet. */
11421
11422 if (dwarf2_per_objfile->line_header_hash == NULL
11423 && die->tag == DW_TAG_partial_unit)
11424 {
11425 dwarf2_per_objfile->line_header_hash
11426 = htab_create_alloc_ex (127, line_header_hash_voidp,
11427 line_header_eq_voidp,
11428 free_line_header_voidp,
11429 &objfile->objfile_obstack,
11430 hashtab_obstack_allocate,
11431 dummy_obstack_deallocate);
11432 }
11433
11434 line_header_local.sect_off = line_offset;
11435 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11436 line_header_local_hash = line_header_hash (&line_header_local);
11437 if (dwarf2_per_objfile->line_header_hash != NULL)
11438 {
11439 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11440 &line_header_local,
11441 line_header_local_hash, NO_INSERT);
11442
11443 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11444 is not present in *SLOT (since if there is something in *SLOT then
11445 it will be for a partial_unit). */
11446 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11447 {
11448 gdb_assert (*slot != NULL);
11449 cu->line_header = (struct line_header *) *slot;
11450 return;
11451 }
11452 }
11453
11454 /* dwarf_decode_line_header does not yet provide sufficient information.
11455 We always have to call also dwarf_decode_lines for it. */
11456 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11457 if (lh == NULL)
11458 return;
11459
11460 cu->line_header = lh.release ();
11461 cu->line_header_die_owner = die;
11462
11463 if (dwarf2_per_objfile->line_header_hash == NULL)
11464 slot = NULL;
11465 else
11466 {
11467 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11468 &line_header_local,
11469 line_header_local_hash, INSERT);
11470 gdb_assert (slot != NULL);
11471 }
11472 if (slot != NULL && *slot == NULL)
11473 {
11474 /* This newly decoded line number information unit will be owned
11475 by line_header_hash hash table. */
11476 *slot = cu->line_header;
11477 cu->line_header_die_owner = NULL;
11478 }
11479 else
11480 {
11481 /* We cannot free any current entry in (*slot) as that struct line_header
11482 may be already used by multiple CUs. Create only temporary decoded
11483 line_header for this CU - it may happen at most once for each line
11484 number information unit. And if we're not using line_header_hash
11485 then this is what we want as well. */
11486 gdb_assert (die->tag != DW_TAG_partial_unit);
11487 }
11488 decode_mapping = (die->tag != DW_TAG_partial_unit);
11489 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11490 decode_mapping);
11491
11492 }
11493
11494 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11495
11496 static void
11497 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11498 {
11499 struct dwarf2_per_objfile *dwarf2_per_objfile
11500 = cu->per_cu->dwarf2_per_objfile;
11501 struct objfile *objfile = dwarf2_per_objfile->objfile;
11502 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11503 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11504 CORE_ADDR highpc = ((CORE_ADDR) 0);
11505 struct attribute *attr;
11506 struct die_info *child_die;
11507 CORE_ADDR baseaddr;
11508
11509 prepare_one_comp_unit (cu, die, cu->language);
11510 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11511
11512 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11513
11514 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11515 from finish_block. */
11516 if (lowpc == ((CORE_ADDR) -1))
11517 lowpc = highpc;
11518 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11519
11520 file_and_directory fnd = find_file_and_directory (die, cu);
11521
11522 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11523 standardised yet. As a workaround for the language detection we fall
11524 back to the DW_AT_producer string. */
11525 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11526 cu->language = language_opencl;
11527
11528 /* Similar hack for Go. */
11529 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11530 set_cu_language (DW_LANG_Go, cu);
11531
11532 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
11533
11534 /* Decode line number information if present. We do this before
11535 processing child DIEs, so that the line header table is available
11536 for DW_AT_decl_file. */
11537 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11538
11539 /* Process all dies in compilation unit. */
11540 if (die->child != NULL)
11541 {
11542 child_die = die->child;
11543 while (child_die && child_die->tag)
11544 {
11545 process_die (child_die, cu);
11546 child_die = sibling_die (child_die);
11547 }
11548 }
11549
11550 /* Decode macro information, if present. Dwarf 2 macro information
11551 refers to information in the line number info statement program
11552 header, so we can only read it if we've read the header
11553 successfully. */
11554 attr = dwarf2_attr (die, DW_AT_macros, cu);
11555 if (attr == NULL)
11556 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11557 if (attr && cu->line_header)
11558 {
11559 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11560 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11561
11562 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11563 }
11564 else
11565 {
11566 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11567 if (attr && cu->line_header)
11568 {
11569 unsigned int macro_offset = DW_UNSND (attr);
11570
11571 dwarf_decode_macros (cu, macro_offset, 0);
11572 }
11573 }
11574 }
11575
11576 void
11577 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
11578 {
11579 struct type_unit_group *tu_group;
11580 int first_time;
11581 struct attribute *attr;
11582 unsigned int i;
11583 struct signatured_type *sig_type;
11584
11585 gdb_assert (per_cu->is_debug_types);
11586 sig_type = (struct signatured_type *) per_cu;
11587
11588 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
11589
11590 /* If we're using .gdb_index (includes -readnow) then
11591 per_cu->type_unit_group may not have been set up yet. */
11592 if (sig_type->type_unit_group == NULL)
11593 sig_type->type_unit_group = get_type_unit_group (this, attr);
11594 tu_group = sig_type->type_unit_group;
11595
11596 /* If we've already processed this stmt_list there's no real need to
11597 do it again, we could fake it and just recreate the part we need
11598 (file name,index -> symtab mapping). If data shows this optimization
11599 is useful we can do it then. */
11600 first_time = tu_group->compunit_symtab == NULL;
11601
11602 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11603 debug info. */
11604 line_header_up lh;
11605 if (attr != NULL)
11606 {
11607 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11608 lh = dwarf_decode_line_header (line_offset, this);
11609 }
11610 if (lh == NULL)
11611 {
11612 if (first_time)
11613 start_symtab ("", NULL, 0);
11614 else
11615 {
11616 gdb_assert (tu_group->symtabs == NULL);
11617 gdb_assert (m_builder == nullptr);
11618 struct compunit_symtab *cust = tu_group->compunit_symtab;
11619 m_builder.reset (new struct buildsym_compunit
11620 (COMPUNIT_OBJFILE (cust), "",
11621 COMPUNIT_DIRNAME (cust),
11622 compunit_language (cust),
11623 0, cust));
11624 }
11625 return;
11626 }
11627
11628 line_header = lh.release ();
11629 line_header_die_owner = die;
11630
11631 if (first_time)
11632 {
11633 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
11634
11635 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11636 still initializing it, and our caller (a few levels up)
11637 process_full_type_unit still needs to know if this is the first
11638 time. */
11639
11640 tu_group->num_symtabs = line_header->file_names.size ();
11641 tu_group->symtabs = XNEWVEC (struct symtab *,
11642 line_header->file_names.size ());
11643
11644 for (i = 0; i < line_header->file_names.size (); ++i)
11645 {
11646 file_entry &fe = line_header->file_names[i];
11647
11648 dwarf2_start_subfile (this, fe.name,
11649 fe.include_dir (line_header));
11650 buildsym_compunit *b = get_builder ();
11651 if (b->get_current_subfile ()->symtab == NULL)
11652 {
11653 /* NOTE: start_subfile will recognize when it's been
11654 passed a file it has already seen. So we can't
11655 assume there's a simple mapping from
11656 cu->line_header->file_names to subfiles, plus
11657 cu->line_header->file_names may contain dups. */
11658 b->get_current_subfile ()->symtab
11659 = allocate_symtab (cust, b->get_current_subfile ()->name);
11660 }
11661
11662 fe.symtab = b->get_current_subfile ()->symtab;
11663 tu_group->symtabs[i] = fe.symtab;
11664 }
11665 }
11666 else
11667 {
11668 gdb_assert (m_builder == nullptr);
11669 struct compunit_symtab *cust = tu_group->compunit_symtab;
11670 m_builder.reset (new struct buildsym_compunit
11671 (COMPUNIT_OBJFILE (cust), "",
11672 COMPUNIT_DIRNAME (cust),
11673 compunit_language (cust),
11674 0, cust));
11675
11676 for (i = 0; i < line_header->file_names.size (); ++i)
11677 {
11678 file_entry &fe = line_header->file_names[i];
11679
11680 fe.symtab = tu_group->symtabs[i];
11681 }
11682 }
11683
11684 /* The main symtab is allocated last. Type units don't have DW_AT_name
11685 so they don't have a "real" (so to speak) symtab anyway.
11686 There is later code that will assign the main symtab to all symbols
11687 that don't have one. We need to handle the case of a symbol with a
11688 missing symtab (DW_AT_decl_file) anyway. */
11689 }
11690
11691 /* Process DW_TAG_type_unit.
11692 For TUs we want to skip the first top level sibling if it's not the
11693 actual type being defined by this TU. In this case the first top
11694 level sibling is there to provide context only. */
11695
11696 static void
11697 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11698 {
11699 struct die_info *child_die;
11700
11701 prepare_one_comp_unit (cu, die, language_minimal);
11702
11703 /* Initialize (or reinitialize) the machinery for building symtabs.
11704 We do this before processing child DIEs, so that the line header table
11705 is available for DW_AT_decl_file. */
11706 cu->setup_type_unit_groups (die);
11707
11708 if (die->child != NULL)
11709 {
11710 child_die = die->child;
11711 while (child_die && child_die->tag)
11712 {
11713 process_die (child_die, cu);
11714 child_die = sibling_die (child_die);
11715 }
11716 }
11717 }
11718 \f
11719 /* DWO/DWP files.
11720
11721 http://gcc.gnu.org/wiki/DebugFission
11722 http://gcc.gnu.org/wiki/DebugFissionDWP
11723
11724 To simplify handling of both DWO files ("object" files with the DWARF info)
11725 and DWP files (a file with the DWOs packaged up into one file), we treat
11726 DWP files as having a collection of virtual DWO files. */
11727
11728 static hashval_t
11729 hash_dwo_file (const void *item)
11730 {
11731 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11732 hashval_t hash;
11733
11734 hash = htab_hash_string (dwo_file->dwo_name);
11735 if (dwo_file->comp_dir != NULL)
11736 hash += htab_hash_string (dwo_file->comp_dir);
11737 return hash;
11738 }
11739
11740 static int
11741 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11742 {
11743 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11744 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11745
11746 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11747 return 0;
11748 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11749 return lhs->comp_dir == rhs->comp_dir;
11750 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11751 }
11752
11753 /* Allocate a hash table for DWO files. */
11754
11755 static htab_up
11756 allocate_dwo_file_hash_table (struct objfile *objfile)
11757 {
11758 auto delete_dwo_file = [] (void *item)
11759 {
11760 struct dwo_file *dwo_file = (struct dwo_file *) item;
11761
11762 delete dwo_file;
11763 };
11764
11765 return htab_up (htab_create_alloc_ex (41,
11766 hash_dwo_file,
11767 eq_dwo_file,
11768 delete_dwo_file,
11769 &objfile->objfile_obstack,
11770 hashtab_obstack_allocate,
11771 dummy_obstack_deallocate));
11772 }
11773
11774 /* Lookup DWO file DWO_NAME. */
11775
11776 static void **
11777 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11778 const char *dwo_name,
11779 const char *comp_dir)
11780 {
11781 struct dwo_file find_entry;
11782 void **slot;
11783
11784 if (dwarf2_per_objfile->dwo_files == NULL)
11785 dwarf2_per_objfile->dwo_files
11786 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11787
11788 find_entry.dwo_name = dwo_name;
11789 find_entry.comp_dir = comp_dir;
11790 slot = htab_find_slot (dwarf2_per_objfile->dwo_files.get (), &find_entry,
11791 INSERT);
11792
11793 return slot;
11794 }
11795
11796 static hashval_t
11797 hash_dwo_unit (const void *item)
11798 {
11799 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11800
11801 /* This drops the top 32 bits of the id, but is ok for a hash. */
11802 return dwo_unit->signature;
11803 }
11804
11805 static int
11806 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11807 {
11808 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11809 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11810
11811 /* The signature is assumed to be unique within the DWO file.
11812 So while object file CU dwo_id's always have the value zero,
11813 that's OK, assuming each object file DWO file has only one CU,
11814 and that's the rule for now. */
11815 return lhs->signature == rhs->signature;
11816 }
11817
11818 /* Allocate a hash table for DWO CUs,TUs.
11819 There is one of these tables for each of CUs,TUs for each DWO file. */
11820
11821 static htab_t
11822 allocate_dwo_unit_table (struct objfile *objfile)
11823 {
11824 /* Start out with a pretty small number.
11825 Generally DWO files contain only one CU and maybe some TUs. */
11826 return htab_create_alloc_ex (3,
11827 hash_dwo_unit,
11828 eq_dwo_unit,
11829 NULL,
11830 &objfile->objfile_obstack,
11831 hashtab_obstack_allocate,
11832 dummy_obstack_deallocate);
11833 }
11834
11835 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11836
11837 struct create_dwo_cu_data
11838 {
11839 struct dwo_file *dwo_file;
11840 struct dwo_unit dwo_unit;
11841 };
11842
11843 /* die_reader_func for create_dwo_cu. */
11844
11845 static void
11846 create_dwo_cu_reader (const struct die_reader_specs *reader,
11847 const gdb_byte *info_ptr,
11848 struct die_info *comp_unit_die,
11849 int has_children,
11850 void *datap)
11851 {
11852 struct dwarf2_cu *cu = reader->cu;
11853 sect_offset sect_off = cu->per_cu->sect_off;
11854 struct dwarf2_section_info *section = cu->per_cu->section;
11855 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11856 struct dwo_file *dwo_file = data->dwo_file;
11857 struct dwo_unit *dwo_unit = &data->dwo_unit;
11858 struct attribute *attr;
11859
11860 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11861 if (attr == NULL)
11862 {
11863 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11864 " its dwo_id [in module %s]"),
11865 sect_offset_str (sect_off), dwo_file->dwo_name);
11866 return;
11867 }
11868
11869 dwo_unit->dwo_file = dwo_file;
11870 dwo_unit->signature = DW_UNSND (attr);
11871 dwo_unit->section = section;
11872 dwo_unit->sect_off = sect_off;
11873 dwo_unit->length = cu->per_cu->length;
11874
11875 if (dwarf_read_debug)
11876 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11877 sect_offset_str (sect_off),
11878 hex_string (dwo_unit->signature));
11879 }
11880
11881 /* Create the dwo_units for the CUs in a DWO_FILE.
11882 Note: This function processes DWO files only, not DWP files. */
11883
11884 static void
11885 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11886 struct dwo_file &dwo_file, dwarf2_section_info &section,
11887 htab_t &cus_htab)
11888 {
11889 struct objfile *objfile = dwarf2_per_objfile->objfile;
11890 const gdb_byte *info_ptr, *end_ptr;
11891
11892 dwarf2_read_section (objfile, &section);
11893 info_ptr = section.buffer;
11894
11895 if (info_ptr == NULL)
11896 return;
11897
11898 if (dwarf_read_debug)
11899 {
11900 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11901 get_section_name (&section),
11902 get_section_file_name (&section));
11903 }
11904
11905 end_ptr = info_ptr + section.size;
11906 while (info_ptr < end_ptr)
11907 {
11908 struct dwarf2_per_cu_data per_cu;
11909 struct create_dwo_cu_data create_dwo_cu_data;
11910 struct dwo_unit *dwo_unit;
11911 void **slot;
11912 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11913
11914 memset (&create_dwo_cu_data.dwo_unit, 0,
11915 sizeof (create_dwo_cu_data.dwo_unit));
11916 memset (&per_cu, 0, sizeof (per_cu));
11917 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11918 per_cu.is_debug_types = 0;
11919 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11920 per_cu.section = &section;
11921 create_dwo_cu_data.dwo_file = &dwo_file;
11922
11923 init_cutu_and_read_dies_no_follow (
11924 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11925 info_ptr += per_cu.length;
11926
11927 // If the unit could not be parsed, skip it.
11928 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11929 continue;
11930
11931 if (cus_htab == NULL)
11932 cus_htab = allocate_dwo_unit_table (objfile);
11933
11934 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11935 *dwo_unit = create_dwo_cu_data.dwo_unit;
11936 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11937 gdb_assert (slot != NULL);
11938 if (*slot != NULL)
11939 {
11940 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11941 sect_offset dup_sect_off = dup_cu->sect_off;
11942
11943 complaint (_("debug cu entry at offset %s is duplicate to"
11944 " the entry at offset %s, signature %s"),
11945 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11946 hex_string (dwo_unit->signature));
11947 }
11948 *slot = (void *)dwo_unit;
11949 }
11950 }
11951
11952 /* DWP file .debug_{cu,tu}_index section format:
11953 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11954
11955 DWP Version 1:
11956
11957 Both index sections have the same format, and serve to map a 64-bit
11958 signature to a set of section numbers. Each section begins with a header,
11959 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11960 indexes, and a pool of 32-bit section numbers. The index sections will be
11961 aligned at 8-byte boundaries in the file.
11962
11963 The index section header consists of:
11964
11965 V, 32 bit version number
11966 -, 32 bits unused
11967 N, 32 bit number of compilation units or type units in the index
11968 M, 32 bit number of slots in the hash table
11969
11970 Numbers are recorded using the byte order of the application binary.
11971
11972 The hash table begins at offset 16 in the section, and consists of an array
11973 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11974 order of the application binary). Unused slots in the hash table are 0.
11975 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11976
11977 The parallel table begins immediately after the hash table
11978 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11979 array of 32-bit indexes (using the byte order of the application binary),
11980 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11981 table contains a 32-bit index into the pool of section numbers. For unused
11982 hash table slots, the corresponding entry in the parallel table will be 0.
11983
11984 The pool of section numbers begins immediately following the hash table
11985 (at offset 16 + 12 * M from the beginning of the section). The pool of
11986 section numbers consists of an array of 32-bit words (using the byte order
11987 of the application binary). Each item in the array is indexed starting
11988 from 0. The hash table entry provides the index of the first section
11989 number in the set. Additional section numbers in the set follow, and the
11990 set is terminated by a 0 entry (section number 0 is not used in ELF).
11991
11992 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
11993 section must be the first entry in the set, and the .debug_abbrev.dwo must
11994 be the second entry. Other members of the set may follow in any order.
11995
11996 ---
11997
11998 DWP Version 2:
11999
12000 DWP Version 2 combines all the .debug_info, etc. sections into one,
12001 and the entries in the index tables are now offsets into these sections.
12002 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12003 section.
12004
12005 Index Section Contents:
12006 Header
12007 Hash Table of Signatures dwp_hash_table.hash_table
12008 Parallel Table of Indices dwp_hash_table.unit_table
12009 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12010 Table of Section Sizes dwp_hash_table.v2.sizes
12011
12012 The index section header consists of:
12013
12014 V, 32 bit version number
12015 L, 32 bit number of columns in the table of section offsets
12016 N, 32 bit number of compilation units or type units in the index
12017 M, 32 bit number of slots in the hash table
12018
12019 Numbers are recorded using the byte order of the application binary.
12020
12021 The hash table has the same format as version 1.
12022 The parallel table of indices has the same format as version 1,
12023 except that the entries are origin-1 indices into the table of sections
12024 offsets and the table of section sizes.
12025
12026 The table of offsets begins immediately following the parallel table
12027 (at offset 16 + 12 * M from the beginning of the section). The table is
12028 a two-dimensional array of 32-bit words (using the byte order of the
12029 application binary), with L columns and N+1 rows, in row-major order.
12030 Each row in the array is indexed starting from 0. The first row provides
12031 a key to the remaining rows: each column in this row provides an identifier
12032 for a debug section, and the offsets in the same column of subsequent rows
12033 refer to that section. The section identifiers are:
12034
12035 DW_SECT_INFO 1 .debug_info.dwo
12036 DW_SECT_TYPES 2 .debug_types.dwo
12037 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12038 DW_SECT_LINE 4 .debug_line.dwo
12039 DW_SECT_LOC 5 .debug_loc.dwo
12040 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12041 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12042 DW_SECT_MACRO 8 .debug_macro.dwo
12043
12044 The offsets provided by the CU and TU index sections are the base offsets
12045 for the contributions made by each CU or TU to the corresponding section
12046 in the package file. Each CU and TU header contains an abbrev_offset
12047 field, used to find the abbreviations table for that CU or TU within the
12048 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12049 be interpreted as relative to the base offset given in the index section.
12050 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12051 should be interpreted as relative to the base offset for .debug_line.dwo,
12052 and offsets into other debug sections obtained from DWARF attributes should
12053 also be interpreted as relative to the corresponding base offset.
12054
12055 The table of sizes begins immediately following the table of offsets.
12056 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12057 with L columns and N rows, in row-major order. Each row in the array is
12058 indexed starting from 1 (row 0 is shared by the two tables).
12059
12060 ---
12061
12062 Hash table lookup is handled the same in version 1 and 2:
12063
12064 We assume that N and M will not exceed 2^32 - 1.
12065 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12066
12067 Given a 64-bit compilation unit signature or a type signature S, an entry
12068 in the hash table is located as follows:
12069
12070 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12071 the low-order k bits all set to 1.
12072
12073 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12074
12075 3) If the hash table entry at index H matches the signature, use that
12076 entry. If the hash table entry at index H is unused (all zeroes),
12077 terminate the search: the signature is not present in the table.
12078
12079 4) Let H = (H + H') modulo M. Repeat at Step 3.
12080
12081 Because M > N and H' and M are relatively prime, the search is guaranteed
12082 to stop at an unused slot or find the match. */
12083
12084 /* Create a hash table to map DWO IDs to their CU/TU entry in
12085 .debug_{info,types}.dwo in DWP_FILE.
12086 Returns NULL if there isn't one.
12087 Note: This function processes DWP files only, not DWO files. */
12088
12089 static struct dwp_hash_table *
12090 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12091 struct dwp_file *dwp_file, int is_debug_types)
12092 {
12093 struct objfile *objfile = dwarf2_per_objfile->objfile;
12094 bfd *dbfd = dwp_file->dbfd.get ();
12095 const gdb_byte *index_ptr, *index_end;
12096 struct dwarf2_section_info *index;
12097 uint32_t version, nr_columns, nr_units, nr_slots;
12098 struct dwp_hash_table *htab;
12099
12100 if (is_debug_types)
12101 index = &dwp_file->sections.tu_index;
12102 else
12103 index = &dwp_file->sections.cu_index;
12104
12105 if (dwarf2_section_empty_p (index))
12106 return NULL;
12107 dwarf2_read_section (objfile, index);
12108
12109 index_ptr = index->buffer;
12110 index_end = index_ptr + index->size;
12111
12112 version = read_4_bytes (dbfd, index_ptr);
12113 index_ptr += 4;
12114 if (version == 2)
12115 nr_columns = read_4_bytes (dbfd, index_ptr);
12116 else
12117 nr_columns = 0;
12118 index_ptr += 4;
12119 nr_units = read_4_bytes (dbfd, index_ptr);
12120 index_ptr += 4;
12121 nr_slots = read_4_bytes (dbfd, index_ptr);
12122 index_ptr += 4;
12123
12124 if (version != 1 && version != 2)
12125 {
12126 error (_("Dwarf Error: unsupported DWP file version (%s)"
12127 " [in module %s]"),
12128 pulongest (version), dwp_file->name);
12129 }
12130 if (nr_slots != (nr_slots & -nr_slots))
12131 {
12132 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12133 " is not power of 2 [in module %s]"),
12134 pulongest (nr_slots), dwp_file->name);
12135 }
12136
12137 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12138 htab->version = version;
12139 htab->nr_columns = nr_columns;
12140 htab->nr_units = nr_units;
12141 htab->nr_slots = nr_slots;
12142 htab->hash_table = index_ptr;
12143 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12144
12145 /* Exit early if the table is empty. */
12146 if (nr_slots == 0 || nr_units == 0
12147 || (version == 2 && nr_columns == 0))
12148 {
12149 /* All must be zero. */
12150 if (nr_slots != 0 || nr_units != 0
12151 || (version == 2 && nr_columns != 0))
12152 {
12153 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12154 " all zero [in modules %s]"),
12155 dwp_file->name);
12156 }
12157 return htab;
12158 }
12159
12160 if (version == 1)
12161 {
12162 htab->section_pool.v1.indices =
12163 htab->unit_table + sizeof (uint32_t) * nr_slots;
12164 /* It's harder to decide whether the section is too small in v1.
12165 V1 is deprecated anyway so we punt. */
12166 }
12167 else
12168 {
12169 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12170 int *ids = htab->section_pool.v2.section_ids;
12171 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
12172 /* Reverse map for error checking. */
12173 int ids_seen[DW_SECT_MAX + 1];
12174 int i;
12175
12176 if (nr_columns < 2)
12177 {
12178 error (_("Dwarf Error: bad DWP hash table, too few columns"
12179 " in section table [in module %s]"),
12180 dwp_file->name);
12181 }
12182 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12183 {
12184 error (_("Dwarf Error: bad DWP hash table, too many columns"
12185 " in section table [in module %s]"),
12186 dwp_file->name);
12187 }
12188 memset (ids, 255, sizeof_ids);
12189 memset (ids_seen, 255, sizeof (ids_seen));
12190 for (i = 0; i < nr_columns; ++i)
12191 {
12192 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12193
12194 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12195 {
12196 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12197 " in section table [in module %s]"),
12198 id, dwp_file->name);
12199 }
12200 if (ids_seen[id] != -1)
12201 {
12202 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12203 " id %d in section table [in module %s]"),
12204 id, dwp_file->name);
12205 }
12206 ids_seen[id] = i;
12207 ids[i] = id;
12208 }
12209 /* Must have exactly one info or types section. */
12210 if (((ids_seen[DW_SECT_INFO] != -1)
12211 + (ids_seen[DW_SECT_TYPES] != -1))
12212 != 1)
12213 {
12214 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12215 " DWO info/types section [in module %s]"),
12216 dwp_file->name);
12217 }
12218 /* Must have an abbrev section. */
12219 if (ids_seen[DW_SECT_ABBREV] == -1)
12220 {
12221 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12222 " section [in module %s]"),
12223 dwp_file->name);
12224 }
12225 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12226 htab->section_pool.v2.sizes =
12227 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12228 * nr_units * nr_columns);
12229 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12230 * nr_units * nr_columns))
12231 > index_end)
12232 {
12233 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12234 " [in module %s]"),
12235 dwp_file->name);
12236 }
12237 }
12238
12239 return htab;
12240 }
12241
12242 /* Update SECTIONS with the data from SECTP.
12243
12244 This function is like the other "locate" section routines that are
12245 passed to bfd_map_over_sections, but in this context the sections to
12246 read comes from the DWP V1 hash table, not the full ELF section table.
12247
12248 The result is non-zero for success, or zero if an error was found. */
12249
12250 static int
12251 locate_v1_virtual_dwo_sections (asection *sectp,
12252 struct virtual_v1_dwo_sections *sections)
12253 {
12254 const struct dwop_section_names *names = &dwop_section_names;
12255
12256 if (section_is_p (sectp->name, &names->abbrev_dwo))
12257 {
12258 /* There can be only one. */
12259 if (sections->abbrev.s.section != NULL)
12260 return 0;
12261 sections->abbrev.s.section = sectp;
12262 sections->abbrev.size = bfd_get_section_size (sectp);
12263 }
12264 else if (section_is_p (sectp->name, &names->info_dwo)
12265 || section_is_p (sectp->name, &names->types_dwo))
12266 {
12267 /* There can be only one. */
12268 if (sections->info_or_types.s.section != NULL)
12269 return 0;
12270 sections->info_or_types.s.section = sectp;
12271 sections->info_or_types.size = bfd_get_section_size (sectp);
12272 }
12273 else if (section_is_p (sectp->name, &names->line_dwo))
12274 {
12275 /* There can be only one. */
12276 if (sections->line.s.section != NULL)
12277 return 0;
12278 sections->line.s.section = sectp;
12279 sections->line.size = bfd_get_section_size (sectp);
12280 }
12281 else if (section_is_p (sectp->name, &names->loc_dwo))
12282 {
12283 /* There can be only one. */
12284 if (sections->loc.s.section != NULL)
12285 return 0;
12286 sections->loc.s.section = sectp;
12287 sections->loc.size = bfd_get_section_size (sectp);
12288 }
12289 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12290 {
12291 /* There can be only one. */
12292 if (sections->macinfo.s.section != NULL)
12293 return 0;
12294 sections->macinfo.s.section = sectp;
12295 sections->macinfo.size = bfd_get_section_size (sectp);
12296 }
12297 else if (section_is_p (sectp->name, &names->macro_dwo))
12298 {
12299 /* There can be only one. */
12300 if (sections->macro.s.section != NULL)
12301 return 0;
12302 sections->macro.s.section = sectp;
12303 sections->macro.size = bfd_get_section_size (sectp);
12304 }
12305 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12306 {
12307 /* There can be only one. */
12308 if (sections->str_offsets.s.section != NULL)
12309 return 0;
12310 sections->str_offsets.s.section = sectp;
12311 sections->str_offsets.size = bfd_get_section_size (sectp);
12312 }
12313 else
12314 {
12315 /* No other kind of section is valid. */
12316 return 0;
12317 }
12318
12319 return 1;
12320 }
12321
12322 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12323 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12324 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12325 This is for DWP version 1 files. */
12326
12327 static struct dwo_unit *
12328 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12329 struct dwp_file *dwp_file,
12330 uint32_t unit_index,
12331 const char *comp_dir,
12332 ULONGEST signature, int is_debug_types)
12333 {
12334 struct objfile *objfile = dwarf2_per_objfile->objfile;
12335 const struct dwp_hash_table *dwp_htab =
12336 is_debug_types ? dwp_file->tus : dwp_file->cus;
12337 bfd *dbfd = dwp_file->dbfd.get ();
12338 const char *kind = is_debug_types ? "TU" : "CU";
12339 struct dwo_file *dwo_file;
12340 struct dwo_unit *dwo_unit;
12341 struct virtual_v1_dwo_sections sections;
12342 void **dwo_file_slot;
12343 int i;
12344
12345 gdb_assert (dwp_file->version == 1);
12346
12347 if (dwarf_read_debug)
12348 {
12349 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12350 kind,
12351 pulongest (unit_index), hex_string (signature),
12352 dwp_file->name);
12353 }
12354
12355 /* Fetch the sections of this DWO unit.
12356 Put a limit on the number of sections we look for so that bad data
12357 doesn't cause us to loop forever. */
12358
12359 #define MAX_NR_V1_DWO_SECTIONS \
12360 (1 /* .debug_info or .debug_types */ \
12361 + 1 /* .debug_abbrev */ \
12362 + 1 /* .debug_line */ \
12363 + 1 /* .debug_loc */ \
12364 + 1 /* .debug_str_offsets */ \
12365 + 1 /* .debug_macro or .debug_macinfo */ \
12366 + 1 /* trailing zero */)
12367
12368 memset (&sections, 0, sizeof (sections));
12369
12370 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12371 {
12372 asection *sectp;
12373 uint32_t section_nr =
12374 read_4_bytes (dbfd,
12375 dwp_htab->section_pool.v1.indices
12376 + (unit_index + i) * sizeof (uint32_t));
12377
12378 if (section_nr == 0)
12379 break;
12380 if (section_nr >= dwp_file->num_sections)
12381 {
12382 error (_("Dwarf Error: bad DWP hash table, section number too large"
12383 " [in module %s]"),
12384 dwp_file->name);
12385 }
12386
12387 sectp = dwp_file->elf_sections[section_nr];
12388 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12389 {
12390 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12391 " [in module %s]"),
12392 dwp_file->name);
12393 }
12394 }
12395
12396 if (i < 2
12397 || dwarf2_section_empty_p (&sections.info_or_types)
12398 || dwarf2_section_empty_p (&sections.abbrev))
12399 {
12400 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12401 " [in module %s]"),
12402 dwp_file->name);
12403 }
12404 if (i == MAX_NR_V1_DWO_SECTIONS)
12405 {
12406 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12407 " [in module %s]"),
12408 dwp_file->name);
12409 }
12410
12411 /* It's easier for the rest of the code if we fake a struct dwo_file and
12412 have dwo_unit "live" in that. At least for now.
12413
12414 The DWP file can be made up of a random collection of CUs and TUs.
12415 However, for each CU + set of TUs that came from the same original DWO
12416 file, we can combine them back into a virtual DWO file to save space
12417 (fewer struct dwo_file objects to allocate). Remember that for really
12418 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12419
12420 std::string virtual_dwo_name =
12421 string_printf ("virtual-dwo/%d-%d-%d-%d",
12422 get_section_id (&sections.abbrev),
12423 get_section_id (&sections.line),
12424 get_section_id (&sections.loc),
12425 get_section_id (&sections.str_offsets));
12426 /* Can we use an existing virtual DWO file? */
12427 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12428 virtual_dwo_name.c_str (),
12429 comp_dir);
12430 /* Create one if necessary. */
12431 if (*dwo_file_slot == NULL)
12432 {
12433 if (dwarf_read_debug)
12434 {
12435 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12436 virtual_dwo_name.c_str ());
12437 }
12438 dwo_file = new struct dwo_file;
12439 dwo_file->dwo_name
12440 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12441 virtual_dwo_name.c_str (),
12442 virtual_dwo_name.size ());
12443 dwo_file->comp_dir = comp_dir;
12444 dwo_file->sections.abbrev = sections.abbrev;
12445 dwo_file->sections.line = sections.line;
12446 dwo_file->sections.loc = sections.loc;
12447 dwo_file->sections.macinfo = sections.macinfo;
12448 dwo_file->sections.macro = sections.macro;
12449 dwo_file->sections.str_offsets = sections.str_offsets;
12450 /* The "str" section is global to the entire DWP file. */
12451 dwo_file->sections.str = dwp_file->sections.str;
12452 /* The info or types section is assigned below to dwo_unit,
12453 there's no need to record it in dwo_file.
12454 Also, we can't simply record type sections in dwo_file because
12455 we record a pointer into the vector in dwo_unit. As we collect more
12456 types we'll grow the vector and eventually have to reallocate space
12457 for it, invalidating all copies of pointers into the previous
12458 contents. */
12459 *dwo_file_slot = dwo_file;
12460 }
12461 else
12462 {
12463 if (dwarf_read_debug)
12464 {
12465 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12466 virtual_dwo_name.c_str ());
12467 }
12468 dwo_file = (struct dwo_file *) *dwo_file_slot;
12469 }
12470
12471 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12472 dwo_unit->dwo_file = dwo_file;
12473 dwo_unit->signature = signature;
12474 dwo_unit->section =
12475 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12476 *dwo_unit->section = sections.info_or_types;
12477 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12478
12479 return dwo_unit;
12480 }
12481
12482 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12483 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12484 piece within that section used by a TU/CU, return a virtual section
12485 of just that piece. */
12486
12487 static struct dwarf2_section_info
12488 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12489 struct dwarf2_section_info *section,
12490 bfd_size_type offset, bfd_size_type size)
12491 {
12492 struct dwarf2_section_info result;
12493 asection *sectp;
12494
12495 gdb_assert (section != NULL);
12496 gdb_assert (!section->is_virtual);
12497
12498 memset (&result, 0, sizeof (result));
12499 result.s.containing_section = section;
12500 result.is_virtual = true;
12501
12502 if (size == 0)
12503 return result;
12504
12505 sectp = get_section_bfd_section (section);
12506
12507 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12508 bounds of the real section. This is a pretty-rare event, so just
12509 flag an error (easier) instead of a warning and trying to cope. */
12510 if (sectp == NULL
12511 || offset + size > bfd_get_section_size (sectp))
12512 {
12513 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12514 " in section %s [in module %s]"),
12515 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12516 objfile_name (dwarf2_per_objfile->objfile));
12517 }
12518
12519 result.virtual_offset = offset;
12520 result.size = size;
12521 return result;
12522 }
12523
12524 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12525 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12526 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12527 This is for DWP version 2 files. */
12528
12529 static struct dwo_unit *
12530 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12531 struct dwp_file *dwp_file,
12532 uint32_t unit_index,
12533 const char *comp_dir,
12534 ULONGEST signature, int is_debug_types)
12535 {
12536 struct objfile *objfile = dwarf2_per_objfile->objfile;
12537 const struct dwp_hash_table *dwp_htab =
12538 is_debug_types ? dwp_file->tus : dwp_file->cus;
12539 bfd *dbfd = dwp_file->dbfd.get ();
12540 const char *kind = is_debug_types ? "TU" : "CU";
12541 struct dwo_file *dwo_file;
12542 struct dwo_unit *dwo_unit;
12543 struct virtual_v2_dwo_sections sections;
12544 void **dwo_file_slot;
12545 int i;
12546
12547 gdb_assert (dwp_file->version == 2);
12548
12549 if (dwarf_read_debug)
12550 {
12551 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12552 kind,
12553 pulongest (unit_index), hex_string (signature),
12554 dwp_file->name);
12555 }
12556
12557 /* Fetch the section offsets of this DWO unit. */
12558
12559 memset (&sections, 0, sizeof (sections));
12560
12561 for (i = 0; i < dwp_htab->nr_columns; ++i)
12562 {
12563 uint32_t offset = read_4_bytes (dbfd,
12564 dwp_htab->section_pool.v2.offsets
12565 + (((unit_index - 1) * dwp_htab->nr_columns
12566 + i)
12567 * sizeof (uint32_t)));
12568 uint32_t size = read_4_bytes (dbfd,
12569 dwp_htab->section_pool.v2.sizes
12570 + (((unit_index - 1) * dwp_htab->nr_columns
12571 + i)
12572 * sizeof (uint32_t)));
12573
12574 switch (dwp_htab->section_pool.v2.section_ids[i])
12575 {
12576 case DW_SECT_INFO:
12577 case DW_SECT_TYPES:
12578 sections.info_or_types_offset = offset;
12579 sections.info_or_types_size = size;
12580 break;
12581 case DW_SECT_ABBREV:
12582 sections.abbrev_offset = offset;
12583 sections.abbrev_size = size;
12584 break;
12585 case DW_SECT_LINE:
12586 sections.line_offset = offset;
12587 sections.line_size = size;
12588 break;
12589 case DW_SECT_LOC:
12590 sections.loc_offset = offset;
12591 sections.loc_size = size;
12592 break;
12593 case DW_SECT_STR_OFFSETS:
12594 sections.str_offsets_offset = offset;
12595 sections.str_offsets_size = size;
12596 break;
12597 case DW_SECT_MACINFO:
12598 sections.macinfo_offset = offset;
12599 sections.macinfo_size = size;
12600 break;
12601 case DW_SECT_MACRO:
12602 sections.macro_offset = offset;
12603 sections.macro_size = size;
12604 break;
12605 }
12606 }
12607
12608 /* It's easier for the rest of the code if we fake a struct dwo_file and
12609 have dwo_unit "live" in that. At least for now.
12610
12611 The DWP file can be made up of a random collection of CUs and TUs.
12612 However, for each CU + set of TUs that came from the same original DWO
12613 file, we can combine them back into a virtual DWO file to save space
12614 (fewer struct dwo_file objects to allocate). Remember that for really
12615 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12616
12617 std::string virtual_dwo_name =
12618 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12619 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12620 (long) (sections.line_size ? sections.line_offset : 0),
12621 (long) (sections.loc_size ? sections.loc_offset : 0),
12622 (long) (sections.str_offsets_size
12623 ? sections.str_offsets_offset : 0));
12624 /* Can we use an existing virtual DWO file? */
12625 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12626 virtual_dwo_name.c_str (),
12627 comp_dir);
12628 /* Create one if necessary. */
12629 if (*dwo_file_slot == NULL)
12630 {
12631 if (dwarf_read_debug)
12632 {
12633 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12634 virtual_dwo_name.c_str ());
12635 }
12636 dwo_file = new struct dwo_file;
12637 dwo_file->dwo_name
12638 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12639 virtual_dwo_name.c_str (),
12640 virtual_dwo_name.size ());
12641 dwo_file->comp_dir = comp_dir;
12642 dwo_file->sections.abbrev =
12643 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12644 sections.abbrev_offset, sections.abbrev_size);
12645 dwo_file->sections.line =
12646 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12647 sections.line_offset, sections.line_size);
12648 dwo_file->sections.loc =
12649 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12650 sections.loc_offset, sections.loc_size);
12651 dwo_file->sections.macinfo =
12652 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12653 sections.macinfo_offset, sections.macinfo_size);
12654 dwo_file->sections.macro =
12655 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12656 sections.macro_offset, sections.macro_size);
12657 dwo_file->sections.str_offsets =
12658 create_dwp_v2_section (dwarf2_per_objfile,
12659 &dwp_file->sections.str_offsets,
12660 sections.str_offsets_offset,
12661 sections.str_offsets_size);
12662 /* The "str" section is global to the entire DWP file. */
12663 dwo_file->sections.str = dwp_file->sections.str;
12664 /* The info or types section is assigned below to dwo_unit,
12665 there's no need to record it in dwo_file.
12666 Also, we can't simply record type sections in dwo_file because
12667 we record a pointer into the vector in dwo_unit. As we collect more
12668 types we'll grow the vector and eventually have to reallocate space
12669 for it, invalidating all copies of pointers into the previous
12670 contents. */
12671 *dwo_file_slot = dwo_file;
12672 }
12673 else
12674 {
12675 if (dwarf_read_debug)
12676 {
12677 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12678 virtual_dwo_name.c_str ());
12679 }
12680 dwo_file = (struct dwo_file *) *dwo_file_slot;
12681 }
12682
12683 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12684 dwo_unit->dwo_file = dwo_file;
12685 dwo_unit->signature = signature;
12686 dwo_unit->section =
12687 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12688 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12689 is_debug_types
12690 ? &dwp_file->sections.types
12691 : &dwp_file->sections.info,
12692 sections.info_or_types_offset,
12693 sections.info_or_types_size);
12694 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12695
12696 return dwo_unit;
12697 }
12698
12699 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12700 Returns NULL if the signature isn't found. */
12701
12702 static struct dwo_unit *
12703 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12704 struct dwp_file *dwp_file, const char *comp_dir,
12705 ULONGEST signature, int is_debug_types)
12706 {
12707 const struct dwp_hash_table *dwp_htab =
12708 is_debug_types ? dwp_file->tus : dwp_file->cus;
12709 bfd *dbfd = dwp_file->dbfd.get ();
12710 uint32_t mask = dwp_htab->nr_slots - 1;
12711 uint32_t hash = signature & mask;
12712 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12713 unsigned int i;
12714 void **slot;
12715 struct dwo_unit find_dwo_cu;
12716
12717 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12718 find_dwo_cu.signature = signature;
12719 slot = htab_find_slot (is_debug_types
12720 ? dwp_file->loaded_tus
12721 : dwp_file->loaded_cus,
12722 &find_dwo_cu, INSERT);
12723
12724 if (*slot != NULL)
12725 return (struct dwo_unit *) *slot;
12726
12727 /* Use a for loop so that we don't loop forever on bad debug info. */
12728 for (i = 0; i < dwp_htab->nr_slots; ++i)
12729 {
12730 ULONGEST signature_in_table;
12731
12732 signature_in_table =
12733 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12734 if (signature_in_table == signature)
12735 {
12736 uint32_t unit_index =
12737 read_4_bytes (dbfd,
12738 dwp_htab->unit_table + hash * sizeof (uint32_t));
12739
12740 if (dwp_file->version == 1)
12741 {
12742 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12743 dwp_file, unit_index,
12744 comp_dir, signature,
12745 is_debug_types);
12746 }
12747 else
12748 {
12749 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12750 dwp_file, unit_index,
12751 comp_dir, signature,
12752 is_debug_types);
12753 }
12754 return (struct dwo_unit *) *slot;
12755 }
12756 if (signature_in_table == 0)
12757 return NULL;
12758 hash = (hash + hash2) & mask;
12759 }
12760
12761 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12762 " [in module %s]"),
12763 dwp_file->name);
12764 }
12765
12766 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12767 Open the file specified by FILE_NAME and hand it off to BFD for
12768 preliminary analysis. Return a newly initialized bfd *, which
12769 includes a canonicalized copy of FILE_NAME.
12770 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12771 SEARCH_CWD is true if the current directory is to be searched.
12772 It will be searched before debug-file-directory.
12773 If successful, the file is added to the bfd include table of the
12774 objfile's bfd (see gdb_bfd_record_inclusion).
12775 If unable to find/open the file, return NULL.
12776 NOTE: This function is derived from symfile_bfd_open. */
12777
12778 static gdb_bfd_ref_ptr
12779 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12780 const char *file_name, int is_dwp, int search_cwd)
12781 {
12782 int desc;
12783 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12784 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12785 to debug_file_directory. */
12786 const char *search_path;
12787 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12788
12789 gdb::unique_xmalloc_ptr<char> search_path_holder;
12790 if (search_cwd)
12791 {
12792 if (*debug_file_directory != '\0')
12793 {
12794 search_path_holder.reset (concat (".", dirname_separator_string,
12795 debug_file_directory,
12796 (char *) NULL));
12797 search_path = search_path_holder.get ();
12798 }
12799 else
12800 search_path = ".";
12801 }
12802 else
12803 search_path = debug_file_directory;
12804
12805 openp_flags flags = OPF_RETURN_REALPATH;
12806 if (is_dwp)
12807 flags |= OPF_SEARCH_IN_PATH;
12808
12809 gdb::unique_xmalloc_ptr<char> absolute_name;
12810 desc = openp (search_path, flags, file_name,
12811 O_RDONLY | O_BINARY, &absolute_name);
12812 if (desc < 0)
12813 return NULL;
12814
12815 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12816 gnutarget, desc));
12817 if (sym_bfd == NULL)
12818 return NULL;
12819 bfd_set_cacheable (sym_bfd.get (), 1);
12820
12821 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12822 return NULL;
12823
12824 /* Success. Record the bfd as having been included by the objfile's bfd.
12825 This is important because things like demangled_names_hash lives in the
12826 objfile's per_bfd space and may have references to things like symbol
12827 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12828 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12829
12830 return sym_bfd;
12831 }
12832
12833 /* Try to open DWO file FILE_NAME.
12834 COMP_DIR is the DW_AT_comp_dir attribute.
12835 The result is the bfd handle of the file.
12836 If there is a problem finding or opening the file, return NULL.
12837 Upon success, the canonicalized path of the file is stored in the bfd,
12838 same as symfile_bfd_open. */
12839
12840 static gdb_bfd_ref_ptr
12841 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12842 const char *file_name, const char *comp_dir)
12843 {
12844 if (IS_ABSOLUTE_PATH (file_name))
12845 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12846 0 /*is_dwp*/, 0 /*search_cwd*/);
12847
12848 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12849
12850 if (comp_dir != NULL)
12851 {
12852 char *path_to_try = concat (comp_dir, SLASH_STRING,
12853 file_name, (char *) NULL);
12854
12855 /* NOTE: If comp_dir is a relative path, this will also try the
12856 search path, which seems useful. */
12857 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12858 path_to_try,
12859 0 /*is_dwp*/,
12860 1 /*search_cwd*/));
12861 xfree (path_to_try);
12862 if (abfd != NULL)
12863 return abfd;
12864 }
12865
12866 /* That didn't work, try debug-file-directory, which, despite its name,
12867 is a list of paths. */
12868
12869 if (*debug_file_directory == '\0')
12870 return NULL;
12871
12872 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12873 0 /*is_dwp*/, 1 /*search_cwd*/);
12874 }
12875
12876 /* This function is mapped across the sections and remembers the offset and
12877 size of each of the DWO debugging sections we are interested in. */
12878
12879 static void
12880 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12881 {
12882 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12883 const struct dwop_section_names *names = &dwop_section_names;
12884
12885 if (section_is_p (sectp->name, &names->abbrev_dwo))
12886 {
12887 dwo_sections->abbrev.s.section = sectp;
12888 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12889 }
12890 else if (section_is_p (sectp->name, &names->info_dwo))
12891 {
12892 dwo_sections->info.s.section = sectp;
12893 dwo_sections->info.size = bfd_get_section_size (sectp);
12894 }
12895 else if (section_is_p (sectp->name, &names->line_dwo))
12896 {
12897 dwo_sections->line.s.section = sectp;
12898 dwo_sections->line.size = bfd_get_section_size (sectp);
12899 }
12900 else if (section_is_p (sectp->name, &names->loc_dwo))
12901 {
12902 dwo_sections->loc.s.section = sectp;
12903 dwo_sections->loc.size = bfd_get_section_size (sectp);
12904 }
12905 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12906 {
12907 dwo_sections->macinfo.s.section = sectp;
12908 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12909 }
12910 else if (section_is_p (sectp->name, &names->macro_dwo))
12911 {
12912 dwo_sections->macro.s.section = sectp;
12913 dwo_sections->macro.size = bfd_get_section_size (sectp);
12914 }
12915 else if (section_is_p (sectp->name, &names->str_dwo))
12916 {
12917 dwo_sections->str.s.section = sectp;
12918 dwo_sections->str.size = bfd_get_section_size (sectp);
12919 }
12920 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12921 {
12922 dwo_sections->str_offsets.s.section = sectp;
12923 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12924 }
12925 else if (section_is_p (sectp->name, &names->types_dwo))
12926 {
12927 struct dwarf2_section_info type_section;
12928
12929 memset (&type_section, 0, sizeof (type_section));
12930 type_section.s.section = sectp;
12931 type_section.size = bfd_get_section_size (sectp);
12932 dwo_sections->types.push_back (type_section);
12933 }
12934 }
12935
12936 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12937 by PER_CU. This is for the non-DWP case.
12938 The result is NULL if DWO_NAME can't be found. */
12939
12940 static struct dwo_file *
12941 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12942 const char *dwo_name, const char *comp_dir)
12943 {
12944 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12945
12946 gdb_bfd_ref_ptr dbfd = open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir);
12947 if (dbfd == NULL)
12948 {
12949 if (dwarf_read_debug)
12950 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12951 return NULL;
12952 }
12953
12954 dwo_file_up dwo_file (new struct dwo_file);
12955 dwo_file->dwo_name = dwo_name;
12956 dwo_file->comp_dir = comp_dir;
12957 dwo_file->dbfd = std::move (dbfd);
12958
12959 bfd_map_over_sections (dwo_file->dbfd.get (), dwarf2_locate_dwo_sections,
12960 &dwo_file->sections);
12961
12962 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
12963 dwo_file->cus);
12964
12965 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12966 dwo_file->sections.types, dwo_file->tus);
12967
12968 if (dwarf_read_debug)
12969 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12970
12971 return dwo_file.release ();
12972 }
12973
12974 /* This function is mapped across the sections and remembers the offset and
12975 size of each of the DWP debugging sections common to version 1 and 2 that
12976 we are interested in. */
12977
12978 static void
12979 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12980 void *dwp_file_ptr)
12981 {
12982 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12983 const struct dwop_section_names *names = &dwop_section_names;
12984 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12985
12986 /* Record the ELF section number for later lookup: this is what the
12987 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12988 gdb_assert (elf_section_nr < dwp_file->num_sections);
12989 dwp_file->elf_sections[elf_section_nr] = sectp;
12990
12991 /* Look for specific sections that we need. */
12992 if (section_is_p (sectp->name, &names->str_dwo))
12993 {
12994 dwp_file->sections.str.s.section = sectp;
12995 dwp_file->sections.str.size = bfd_get_section_size (sectp);
12996 }
12997 else if (section_is_p (sectp->name, &names->cu_index))
12998 {
12999 dwp_file->sections.cu_index.s.section = sectp;
13000 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
13001 }
13002 else if (section_is_p (sectp->name, &names->tu_index))
13003 {
13004 dwp_file->sections.tu_index.s.section = sectp;
13005 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
13006 }
13007 }
13008
13009 /* This function is mapped across the sections and remembers the offset and
13010 size of each of the DWP version 2 debugging sections that we are interested
13011 in. This is split into a separate function because we don't know if we
13012 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13013
13014 static void
13015 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13016 {
13017 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13018 const struct dwop_section_names *names = &dwop_section_names;
13019 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13020
13021 /* Record the ELF section number for later lookup: this is what the
13022 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13023 gdb_assert (elf_section_nr < dwp_file->num_sections);
13024 dwp_file->elf_sections[elf_section_nr] = sectp;
13025
13026 /* Look for specific sections that we need. */
13027 if (section_is_p (sectp->name, &names->abbrev_dwo))
13028 {
13029 dwp_file->sections.abbrev.s.section = sectp;
13030 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
13031 }
13032 else if (section_is_p (sectp->name, &names->info_dwo))
13033 {
13034 dwp_file->sections.info.s.section = sectp;
13035 dwp_file->sections.info.size = bfd_get_section_size (sectp);
13036 }
13037 else if (section_is_p (sectp->name, &names->line_dwo))
13038 {
13039 dwp_file->sections.line.s.section = sectp;
13040 dwp_file->sections.line.size = bfd_get_section_size (sectp);
13041 }
13042 else if (section_is_p (sectp->name, &names->loc_dwo))
13043 {
13044 dwp_file->sections.loc.s.section = sectp;
13045 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
13046 }
13047 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13048 {
13049 dwp_file->sections.macinfo.s.section = sectp;
13050 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13051 }
13052 else if (section_is_p (sectp->name, &names->macro_dwo))
13053 {
13054 dwp_file->sections.macro.s.section = sectp;
13055 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13056 }
13057 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13058 {
13059 dwp_file->sections.str_offsets.s.section = sectp;
13060 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13061 }
13062 else if (section_is_p (sectp->name, &names->types_dwo))
13063 {
13064 dwp_file->sections.types.s.section = sectp;
13065 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13066 }
13067 }
13068
13069 /* Hash function for dwp_file loaded CUs/TUs. */
13070
13071 static hashval_t
13072 hash_dwp_loaded_cutus (const void *item)
13073 {
13074 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13075
13076 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13077 return dwo_unit->signature;
13078 }
13079
13080 /* Equality function for dwp_file loaded CUs/TUs. */
13081
13082 static int
13083 eq_dwp_loaded_cutus (const void *a, const void *b)
13084 {
13085 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13086 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13087
13088 return dua->signature == dub->signature;
13089 }
13090
13091 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13092
13093 static htab_t
13094 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13095 {
13096 return htab_create_alloc_ex (3,
13097 hash_dwp_loaded_cutus,
13098 eq_dwp_loaded_cutus,
13099 NULL,
13100 &objfile->objfile_obstack,
13101 hashtab_obstack_allocate,
13102 dummy_obstack_deallocate);
13103 }
13104
13105 /* Try to open DWP file FILE_NAME.
13106 The result is the bfd handle of the file.
13107 If there is a problem finding or opening the file, return NULL.
13108 Upon success, the canonicalized path of the file is stored in the bfd,
13109 same as symfile_bfd_open. */
13110
13111 static gdb_bfd_ref_ptr
13112 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13113 const char *file_name)
13114 {
13115 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13116 1 /*is_dwp*/,
13117 1 /*search_cwd*/));
13118 if (abfd != NULL)
13119 return abfd;
13120
13121 /* Work around upstream bug 15652.
13122 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13123 [Whether that's a "bug" is debatable, but it is getting in our way.]
13124 We have no real idea where the dwp file is, because gdb's realpath-ing
13125 of the executable's path may have discarded the needed info.
13126 [IWBN if the dwp file name was recorded in the executable, akin to
13127 .gnu_debuglink, but that doesn't exist yet.]
13128 Strip the directory from FILE_NAME and search again. */
13129 if (*debug_file_directory != '\0')
13130 {
13131 /* Don't implicitly search the current directory here.
13132 If the user wants to search "." to handle this case,
13133 it must be added to debug-file-directory. */
13134 return try_open_dwop_file (dwarf2_per_objfile,
13135 lbasename (file_name), 1 /*is_dwp*/,
13136 0 /*search_cwd*/);
13137 }
13138
13139 return NULL;
13140 }
13141
13142 /* Initialize the use of the DWP file for the current objfile.
13143 By convention the name of the DWP file is ${objfile}.dwp.
13144 The result is NULL if it can't be found. */
13145
13146 static std::unique_ptr<struct dwp_file>
13147 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13148 {
13149 struct objfile *objfile = dwarf2_per_objfile->objfile;
13150
13151 /* Try to find first .dwp for the binary file before any symbolic links
13152 resolving. */
13153
13154 /* If the objfile is a debug file, find the name of the real binary
13155 file and get the name of dwp file from there. */
13156 std::string dwp_name;
13157 if (objfile->separate_debug_objfile_backlink != NULL)
13158 {
13159 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13160 const char *backlink_basename = lbasename (backlink->original_name);
13161
13162 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13163 }
13164 else
13165 dwp_name = objfile->original_name;
13166
13167 dwp_name += ".dwp";
13168
13169 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13170 if (dbfd == NULL
13171 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13172 {
13173 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13174 dwp_name = objfile_name (objfile);
13175 dwp_name += ".dwp";
13176 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13177 }
13178
13179 if (dbfd == NULL)
13180 {
13181 if (dwarf_read_debug)
13182 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13183 return std::unique_ptr<dwp_file> ();
13184 }
13185
13186 const char *name = bfd_get_filename (dbfd.get ());
13187 std::unique_ptr<struct dwp_file> dwp_file
13188 (new struct dwp_file (name, std::move (dbfd)));
13189
13190 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
13191 dwp_file->elf_sections =
13192 OBSTACK_CALLOC (&objfile->objfile_obstack,
13193 dwp_file->num_sections, asection *);
13194
13195 bfd_map_over_sections (dwp_file->dbfd.get (),
13196 dwarf2_locate_common_dwp_sections,
13197 dwp_file.get ());
13198
13199 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13200 0);
13201
13202 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13203 1);
13204
13205 /* The DWP file version is stored in the hash table. Oh well. */
13206 if (dwp_file->cus && dwp_file->tus
13207 && dwp_file->cus->version != dwp_file->tus->version)
13208 {
13209 /* Technically speaking, we should try to limp along, but this is
13210 pretty bizarre. We use pulongest here because that's the established
13211 portability solution (e.g, we cannot use %u for uint32_t). */
13212 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13213 " TU version %s [in DWP file %s]"),
13214 pulongest (dwp_file->cus->version),
13215 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13216 }
13217
13218 if (dwp_file->cus)
13219 dwp_file->version = dwp_file->cus->version;
13220 else if (dwp_file->tus)
13221 dwp_file->version = dwp_file->tus->version;
13222 else
13223 dwp_file->version = 2;
13224
13225 if (dwp_file->version == 2)
13226 bfd_map_over_sections (dwp_file->dbfd.get (),
13227 dwarf2_locate_v2_dwp_sections,
13228 dwp_file.get ());
13229
13230 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13231 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13232
13233 if (dwarf_read_debug)
13234 {
13235 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13236 fprintf_unfiltered (gdb_stdlog,
13237 " %s CUs, %s TUs\n",
13238 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13239 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13240 }
13241
13242 return dwp_file;
13243 }
13244
13245 /* Wrapper around open_and_init_dwp_file, only open it once. */
13246
13247 static struct dwp_file *
13248 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13249 {
13250 if (! dwarf2_per_objfile->dwp_checked)
13251 {
13252 dwarf2_per_objfile->dwp_file
13253 = open_and_init_dwp_file (dwarf2_per_objfile);
13254 dwarf2_per_objfile->dwp_checked = 1;
13255 }
13256 return dwarf2_per_objfile->dwp_file.get ();
13257 }
13258
13259 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13260 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13261 or in the DWP file for the objfile, referenced by THIS_UNIT.
13262 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13263 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13264
13265 This is called, for example, when wanting to read a variable with a
13266 complex location. Therefore we don't want to do file i/o for every call.
13267 Therefore we don't want to look for a DWO file on every call.
13268 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13269 then we check if we've already seen DWO_NAME, and only THEN do we check
13270 for a DWO file.
13271
13272 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13273 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13274
13275 static struct dwo_unit *
13276 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13277 const char *dwo_name, const char *comp_dir,
13278 ULONGEST signature, int is_debug_types)
13279 {
13280 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13281 struct objfile *objfile = dwarf2_per_objfile->objfile;
13282 const char *kind = is_debug_types ? "TU" : "CU";
13283 void **dwo_file_slot;
13284 struct dwo_file *dwo_file;
13285 struct dwp_file *dwp_file;
13286
13287 /* First see if there's a DWP file.
13288 If we have a DWP file but didn't find the DWO inside it, don't
13289 look for the original DWO file. It makes gdb behave differently
13290 depending on whether one is debugging in the build tree. */
13291
13292 dwp_file = get_dwp_file (dwarf2_per_objfile);
13293 if (dwp_file != NULL)
13294 {
13295 const struct dwp_hash_table *dwp_htab =
13296 is_debug_types ? dwp_file->tus : dwp_file->cus;
13297
13298 if (dwp_htab != NULL)
13299 {
13300 struct dwo_unit *dwo_cutu =
13301 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13302 signature, is_debug_types);
13303
13304 if (dwo_cutu != NULL)
13305 {
13306 if (dwarf_read_debug)
13307 {
13308 fprintf_unfiltered (gdb_stdlog,
13309 "Virtual DWO %s %s found: @%s\n",
13310 kind, hex_string (signature),
13311 host_address_to_string (dwo_cutu));
13312 }
13313 return dwo_cutu;
13314 }
13315 }
13316 }
13317 else
13318 {
13319 /* No DWP file, look for the DWO file. */
13320
13321 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13322 dwo_name, comp_dir);
13323 if (*dwo_file_slot == NULL)
13324 {
13325 /* Read in the file and build a table of the CUs/TUs it contains. */
13326 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13327 }
13328 /* NOTE: This will be NULL if unable to open the file. */
13329 dwo_file = (struct dwo_file *) *dwo_file_slot;
13330
13331 if (dwo_file != NULL)
13332 {
13333 struct dwo_unit *dwo_cutu = NULL;
13334
13335 if (is_debug_types && dwo_file->tus)
13336 {
13337 struct dwo_unit find_dwo_cutu;
13338
13339 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13340 find_dwo_cutu.signature = signature;
13341 dwo_cutu
13342 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13343 }
13344 else if (!is_debug_types && dwo_file->cus)
13345 {
13346 struct dwo_unit find_dwo_cutu;
13347
13348 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13349 find_dwo_cutu.signature = signature;
13350 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13351 &find_dwo_cutu);
13352 }
13353
13354 if (dwo_cutu != NULL)
13355 {
13356 if (dwarf_read_debug)
13357 {
13358 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13359 kind, dwo_name, hex_string (signature),
13360 host_address_to_string (dwo_cutu));
13361 }
13362 return dwo_cutu;
13363 }
13364 }
13365 }
13366
13367 /* We didn't find it. This could mean a dwo_id mismatch, or
13368 someone deleted the DWO/DWP file, or the search path isn't set up
13369 correctly to find the file. */
13370
13371 if (dwarf_read_debug)
13372 {
13373 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13374 kind, dwo_name, hex_string (signature));
13375 }
13376
13377 /* This is a warning and not a complaint because it can be caused by
13378 pilot error (e.g., user accidentally deleting the DWO). */
13379 {
13380 /* Print the name of the DWP file if we looked there, helps the user
13381 better diagnose the problem. */
13382 std::string dwp_text;
13383
13384 if (dwp_file != NULL)
13385 dwp_text = string_printf (" [in DWP file %s]",
13386 lbasename (dwp_file->name));
13387
13388 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13389 " [in module %s]"),
13390 kind, dwo_name, hex_string (signature),
13391 dwp_text.c_str (),
13392 this_unit->is_debug_types ? "TU" : "CU",
13393 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13394 }
13395 return NULL;
13396 }
13397
13398 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13399 See lookup_dwo_cutu_unit for details. */
13400
13401 static struct dwo_unit *
13402 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13403 const char *dwo_name, const char *comp_dir,
13404 ULONGEST signature)
13405 {
13406 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13407 }
13408
13409 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13410 See lookup_dwo_cutu_unit for details. */
13411
13412 static struct dwo_unit *
13413 lookup_dwo_type_unit (struct signatured_type *this_tu,
13414 const char *dwo_name, const char *comp_dir)
13415 {
13416 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13417 }
13418
13419 /* Traversal function for queue_and_load_all_dwo_tus. */
13420
13421 static int
13422 queue_and_load_dwo_tu (void **slot, void *info)
13423 {
13424 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13425 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13426 ULONGEST signature = dwo_unit->signature;
13427 struct signatured_type *sig_type =
13428 lookup_dwo_signatured_type (per_cu->cu, signature);
13429
13430 if (sig_type != NULL)
13431 {
13432 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13433
13434 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13435 a real dependency of PER_CU on SIG_TYPE. That is detected later
13436 while processing PER_CU. */
13437 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13438 load_full_type_unit (sig_cu);
13439 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13440 }
13441
13442 return 1;
13443 }
13444
13445 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13446 The DWO may have the only definition of the type, though it may not be
13447 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13448 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13449
13450 static void
13451 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13452 {
13453 struct dwo_unit *dwo_unit;
13454 struct dwo_file *dwo_file;
13455
13456 gdb_assert (!per_cu->is_debug_types);
13457 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13458 gdb_assert (per_cu->cu != NULL);
13459
13460 dwo_unit = per_cu->cu->dwo_unit;
13461 gdb_assert (dwo_unit != NULL);
13462
13463 dwo_file = dwo_unit->dwo_file;
13464 if (dwo_file->tus != NULL)
13465 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13466 }
13467
13468 /* Read in various DIEs. */
13469
13470 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13471 Inherit only the children of the DW_AT_abstract_origin DIE not being
13472 already referenced by DW_AT_abstract_origin from the children of the
13473 current DIE. */
13474
13475 static void
13476 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13477 {
13478 struct die_info *child_die;
13479 sect_offset *offsetp;
13480 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13481 struct die_info *origin_die;
13482 /* Iterator of the ORIGIN_DIE children. */
13483 struct die_info *origin_child_die;
13484 struct attribute *attr;
13485 struct dwarf2_cu *origin_cu;
13486 struct pending **origin_previous_list_in_scope;
13487
13488 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13489 if (!attr)
13490 return;
13491
13492 /* Note that following die references may follow to a die in a
13493 different cu. */
13494
13495 origin_cu = cu;
13496 origin_die = follow_die_ref (die, attr, &origin_cu);
13497
13498 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13499 symbols in. */
13500 origin_previous_list_in_scope = origin_cu->list_in_scope;
13501 origin_cu->list_in_scope = cu->list_in_scope;
13502
13503 if (die->tag != origin_die->tag
13504 && !(die->tag == DW_TAG_inlined_subroutine
13505 && origin_die->tag == DW_TAG_subprogram))
13506 complaint (_("DIE %s and its abstract origin %s have different tags"),
13507 sect_offset_str (die->sect_off),
13508 sect_offset_str (origin_die->sect_off));
13509
13510 std::vector<sect_offset> offsets;
13511
13512 for (child_die = die->child;
13513 child_die && child_die->tag;
13514 child_die = sibling_die (child_die))
13515 {
13516 struct die_info *child_origin_die;
13517 struct dwarf2_cu *child_origin_cu;
13518
13519 /* We are trying to process concrete instance entries:
13520 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13521 it's not relevant to our analysis here. i.e. detecting DIEs that are
13522 present in the abstract instance but not referenced in the concrete
13523 one. */
13524 if (child_die->tag == DW_TAG_call_site
13525 || child_die->tag == DW_TAG_GNU_call_site)
13526 continue;
13527
13528 /* For each CHILD_DIE, find the corresponding child of
13529 ORIGIN_DIE. If there is more than one layer of
13530 DW_AT_abstract_origin, follow them all; there shouldn't be,
13531 but GCC versions at least through 4.4 generate this (GCC PR
13532 40573). */
13533 child_origin_die = child_die;
13534 child_origin_cu = cu;
13535 while (1)
13536 {
13537 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13538 child_origin_cu);
13539 if (attr == NULL)
13540 break;
13541 child_origin_die = follow_die_ref (child_origin_die, attr,
13542 &child_origin_cu);
13543 }
13544
13545 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13546 counterpart may exist. */
13547 if (child_origin_die != child_die)
13548 {
13549 if (child_die->tag != child_origin_die->tag
13550 && !(child_die->tag == DW_TAG_inlined_subroutine
13551 && child_origin_die->tag == DW_TAG_subprogram))
13552 complaint (_("Child DIE %s and its abstract origin %s have "
13553 "different tags"),
13554 sect_offset_str (child_die->sect_off),
13555 sect_offset_str (child_origin_die->sect_off));
13556 if (child_origin_die->parent != origin_die)
13557 complaint (_("Child DIE %s and its abstract origin %s have "
13558 "different parents"),
13559 sect_offset_str (child_die->sect_off),
13560 sect_offset_str (child_origin_die->sect_off));
13561 else
13562 offsets.push_back (child_origin_die->sect_off);
13563 }
13564 }
13565 std::sort (offsets.begin (), offsets.end ());
13566 sect_offset *offsets_end = offsets.data () + offsets.size ();
13567 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13568 if (offsetp[-1] == *offsetp)
13569 complaint (_("Multiple children of DIE %s refer "
13570 "to DIE %s as their abstract origin"),
13571 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13572
13573 offsetp = offsets.data ();
13574 origin_child_die = origin_die->child;
13575 while (origin_child_die && origin_child_die->tag)
13576 {
13577 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13578 while (offsetp < offsets_end
13579 && *offsetp < origin_child_die->sect_off)
13580 offsetp++;
13581 if (offsetp >= offsets_end
13582 || *offsetp > origin_child_die->sect_off)
13583 {
13584 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13585 Check whether we're already processing ORIGIN_CHILD_DIE.
13586 This can happen with mutually referenced abstract_origins.
13587 PR 16581. */
13588 if (!origin_child_die->in_process)
13589 process_die (origin_child_die, origin_cu);
13590 }
13591 origin_child_die = sibling_die (origin_child_die);
13592 }
13593 origin_cu->list_in_scope = origin_previous_list_in_scope;
13594 }
13595
13596 static void
13597 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13598 {
13599 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13600 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13601 struct context_stack *newobj;
13602 CORE_ADDR lowpc;
13603 CORE_ADDR highpc;
13604 struct die_info *child_die;
13605 struct attribute *attr, *call_line, *call_file;
13606 const char *name;
13607 CORE_ADDR baseaddr;
13608 struct block *block;
13609 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13610 std::vector<struct symbol *> template_args;
13611 struct template_symbol *templ_func = NULL;
13612
13613 if (inlined_func)
13614 {
13615 /* If we do not have call site information, we can't show the
13616 caller of this inlined function. That's too confusing, so
13617 only use the scope for local variables. */
13618 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13619 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13620 if (call_line == NULL || call_file == NULL)
13621 {
13622 read_lexical_block_scope (die, cu);
13623 return;
13624 }
13625 }
13626
13627 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13628
13629 name = dwarf2_name (die, cu);
13630
13631 /* Ignore functions with missing or empty names. These are actually
13632 illegal according to the DWARF standard. */
13633 if (name == NULL)
13634 {
13635 complaint (_("missing name for subprogram DIE at %s"),
13636 sect_offset_str (die->sect_off));
13637 return;
13638 }
13639
13640 /* Ignore functions with missing or invalid low and high pc attributes. */
13641 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13642 <= PC_BOUNDS_INVALID)
13643 {
13644 attr = dwarf2_attr (die, DW_AT_external, cu);
13645 if (!attr || !DW_UNSND (attr))
13646 complaint (_("cannot get low and high bounds "
13647 "for subprogram DIE at %s"),
13648 sect_offset_str (die->sect_off));
13649 return;
13650 }
13651
13652 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13653 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13654
13655 /* If we have any template arguments, then we must allocate a
13656 different sort of symbol. */
13657 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13658 {
13659 if (child_die->tag == DW_TAG_template_type_param
13660 || child_die->tag == DW_TAG_template_value_param)
13661 {
13662 templ_func = allocate_template_symbol (objfile);
13663 templ_func->subclass = SYMBOL_TEMPLATE;
13664 break;
13665 }
13666 }
13667
13668 newobj = cu->get_builder ()->push_context (0, lowpc);
13669 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13670 (struct symbol *) templ_func);
13671
13672 if (dwarf2_flag_true_p (die, DW_AT_main_subprogram, cu))
13673 set_objfile_main_name (objfile, SYMBOL_LINKAGE_NAME (newobj->name),
13674 cu->language);
13675
13676 /* If there is a location expression for DW_AT_frame_base, record
13677 it. */
13678 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13679 if (attr)
13680 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13681
13682 /* If there is a location for the static link, record it. */
13683 newobj->static_link = NULL;
13684 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13685 if (attr)
13686 {
13687 newobj->static_link
13688 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13689 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13690 }
13691
13692 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
13693
13694 if (die->child != NULL)
13695 {
13696 child_die = die->child;
13697 while (child_die && child_die->tag)
13698 {
13699 if (child_die->tag == DW_TAG_template_type_param
13700 || child_die->tag == DW_TAG_template_value_param)
13701 {
13702 struct symbol *arg = new_symbol (child_die, NULL, cu);
13703
13704 if (arg != NULL)
13705 template_args.push_back (arg);
13706 }
13707 else
13708 process_die (child_die, cu);
13709 child_die = sibling_die (child_die);
13710 }
13711 }
13712
13713 inherit_abstract_dies (die, cu);
13714
13715 /* If we have a DW_AT_specification, we might need to import using
13716 directives from the context of the specification DIE. See the
13717 comment in determine_prefix. */
13718 if (cu->language == language_cplus
13719 && dwarf2_attr (die, DW_AT_specification, cu))
13720 {
13721 struct dwarf2_cu *spec_cu = cu;
13722 struct die_info *spec_die = die_specification (die, &spec_cu);
13723
13724 while (spec_die)
13725 {
13726 child_die = spec_die->child;
13727 while (child_die && child_die->tag)
13728 {
13729 if (child_die->tag == DW_TAG_imported_module)
13730 process_die (child_die, spec_cu);
13731 child_die = sibling_die (child_die);
13732 }
13733
13734 /* In some cases, GCC generates specification DIEs that
13735 themselves contain DW_AT_specification attributes. */
13736 spec_die = die_specification (spec_die, &spec_cu);
13737 }
13738 }
13739
13740 struct context_stack cstk = cu->get_builder ()->pop_context ();
13741 /* Make a block for the local symbols within. */
13742 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
13743 cstk.static_link, lowpc, highpc);
13744
13745 /* For C++, set the block's scope. */
13746 if ((cu->language == language_cplus
13747 || cu->language == language_fortran
13748 || cu->language == language_d
13749 || cu->language == language_rust)
13750 && cu->processing_has_namespace_info)
13751 block_set_scope (block, determine_prefix (die, cu),
13752 &objfile->objfile_obstack);
13753
13754 /* If we have address ranges, record them. */
13755 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13756
13757 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13758
13759 /* Attach template arguments to function. */
13760 if (!template_args.empty ())
13761 {
13762 gdb_assert (templ_func != NULL);
13763
13764 templ_func->n_template_arguments = template_args.size ();
13765 templ_func->template_arguments
13766 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13767 templ_func->n_template_arguments);
13768 memcpy (templ_func->template_arguments,
13769 template_args.data (),
13770 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13771
13772 /* Make sure that the symtab is set on the new symbols. Even
13773 though they don't appear in this symtab directly, other parts
13774 of gdb assume that symbols do, and this is reasonably
13775 true. */
13776 for (symbol *sym : template_args)
13777 symbol_set_symtab (sym, symbol_symtab (templ_func));
13778 }
13779
13780 /* In C++, we can have functions nested inside functions (e.g., when
13781 a function declares a class that has methods). This means that
13782 when we finish processing a function scope, we may need to go
13783 back to building a containing block's symbol lists. */
13784 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13785 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13786
13787 /* If we've finished processing a top-level function, subsequent
13788 symbols go in the file symbol list. */
13789 if (cu->get_builder ()->outermost_context_p ())
13790 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13791 }
13792
13793 /* Process all the DIES contained within a lexical block scope. Start
13794 a new scope, process the dies, and then close the scope. */
13795
13796 static void
13797 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13798 {
13799 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13800 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13801 CORE_ADDR lowpc, highpc;
13802 struct die_info *child_die;
13803 CORE_ADDR baseaddr;
13804
13805 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13806
13807 /* Ignore blocks with missing or invalid low and high pc attributes. */
13808 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13809 as multiple lexical blocks? Handling children in a sane way would
13810 be nasty. Might be easier to properly extend generic blocks to
13811 describe ranges. */
13812 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13813 {
13814 case PC_BOUNDS_NOT_PRESENT:
13815 /* DW_TAG_lexical_block has no attributes, process its children as if
13816 there was no wrapping by that DW_TAG_lexical_block.
13817 GCC does no longer produces such DWARF since GCC r224161. */
13818 for (child_die = die->child;
13819 child_die != NULL && child_die->tag;
13820 child_die = sibling_die (child_die))
13821 process_die (child_die, cu);
13822 return;
13823 case PC_BOUNDS_INVALID:
13824 return;
13825 }
13826 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13827 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13828
13829 cu->get_builder ()->push_context (0, lowpc);
13830 if (die->child != NULL)
13831 {
13832 child_die = die->child;
13833 while (child_die && child_die->tag)
13834 {
13835 process_die (child_die, cu);
13836 child_die = sibling_die (child_die);
13837 }
13838 }
13839 inherit_abstract_dies (die, cu);
13840 struct context_stack cstk = cu->get_builder ()->pop_context ();
13841
13842 if (*cu->get_builder ()->get_local_symbols () != NULL
13843 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13844 {
13845 struct block *block
13846 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13847 cstk.start_addr, highpc);
13848
13849 /* Note that recording ranges after traversing children, as we
13850 do here, means that recording a parent's ranges entails
13851 walking across all its children's ranges as they appear in
13852 the address map, which is quadratic behavior.
13853
13854 It would be nicer to record the parent's ranges before
13855 traversing its children, simply overriding whatever you find
13856 there. But since we don't even decide whether to create a
13857 block until after we've traversed its children, that's hard
13858 to do. */
13859 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13860 }
13861 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13862 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13863 }
13864
13865 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13866
13867 static void
13868 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13869 {
13870 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13871 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13872 CORE_ADDR pc, baseaddr;
13873 struct attribute *attr;
13874 struct call_site *call_site, call_site_local;
13875 void **slot;
13876 int nparams;
13877 struct die_info *child_die;
13878
13879 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13880
13881 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13882 if (attr == NULL)
13883 {
13884 /* This was a pre-DWARF-5 GNU extension alias
13885 for DW_AT_call_return_pc. */
13886 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13887 }
13888 if (!attr)
13889 {
13890 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13891 "DIE %s [in module %s]"),
13892 sect_offset_str (die->sect_off), objfile_name (objfile));
13893 return;
13894 }
13895 pc = attr_value_as_address (attr) + baseaddr;
13896 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13897
13898 if (cu->call_site_htab == NULL)
13899 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13900 NULL, &objfile->objfile_obstack,
13901 hashtab_obstack_allocate, NULL);
13902 call_site_local.pc = pc;
13903 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13904 if (*slot != NULL)
13905 {
13906 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13907 "DIE %s [in module %s]"),
13908 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13909 objfile_name (objfile));
13910 return;
13911 }
13912
13913 /* Count parameters at the caller. */
13914
13915 nparams = 0;
13916 for (child_die = die->child; child_die && child_die->tag;
13917 child_die = sibling_die (child_die))
13918 {
13919 if (child_die->tag != DW_TAG_call_site_parameter
13920 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13921 {
13922 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13923 "DW_TAG_call_site child DIE %s [in module %s]"),
13924 child_die->tag, sect_offset_str (child_die->sect_off),
13925 objfile_name (objfile));
13926 continue;
13927 }
13928
13929 nparams++;
13930 }
13931
13932 call_site
13933 = ((struct call_site *)
13934 obstack_alloc (&objfile->objfile_obstack,
13935 sizeof (*call_site)
13936 + (sizeof (*call_site->parameter) * (nparams - 1))));
13937 *slot = call_site;
13938 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13939 call_site->pc = pc;
13940
13941 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13942 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13943 {
13944 struct die_info *func_die;
13945
13946 /* Skip also over DW_TAG_inlined_subroutine. */
13947 for (func_die = die->parent;
13948 func_die && func_die->tag != DW_TAG_subprogram
13949 && func_die->tag != DW_TAG_subroutine_type;
13950 func_die = func_die->parent);
13951
13952 /* DW_AT_call_all_calls is a superset
13953 of DW_AT_call_all_tail_calls. */
13954 if (func_die
13955 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
13956 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
13957 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
13958 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13959 {
13960 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13961 not complete. But keep CALL_SITE for look ups via call_site_htab,
13962 both the initial caller containing the real return address PC and
13963 the final callee containing the current PC of a chain of tail
13964 calls do not need to have the tail call list complete. But any
13965 function candidate for a virtual tail call frame searched via
13966 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13967 determined unambiguously. */
13968 }
13969 else
13970 {
13971 struct type *func_type = NULL;
13972
13973 if (func_die)
13974 func_type = get_die_type (func_die, cu);
13975 if (func_type != NULL)
13976 {
13977 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
13978
13979 /* Enlist this call site to the function. */
13980 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13981 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13982 }
13983 else
13984 complaint (_("Cannot find function owning DW_TAG_call_site "
13985 "DIE %s [in module %s]"),
13986 sect_offset_str (die->sect_off), objfile_name (objfile));
13987 }
13988 }
13989
13990 attr = dwarf2_attr (die, DW_AT_call_target, cu);
13991 if (attr == NULL)
13992 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
13993 if (attr == NULL)
13994 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
13995 if (attr == NULL)
13996 {
13997 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
13998 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13999 }
14000 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
14001 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
14002 /* Keep NULL DWARF_BLOCK. */;
14003 else if (attr_form_is_block (attr))
14004 {
14005 struct dwarf2_locexpr_baton *dlbaton;
14006
14007 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14008 dlbaton->data = DW_BLOCK (attr)->data;
14009 dlbaton->size = DW_BLOCK (attr)->size;
14010 dlbaton->per_cu = cu->per_cu;
14011
14012 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14013 }
14014 else if (attr_form_is_ref (attr))
14015 {
14016 struct dwarf2_cu *target_cu = cu;
14017 struct die_info *target_die;
14018
14019 target_die = follow_die_ref (die, attr, &target_cu);
14020 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14021 if (die_is_declaration (target_die, target_cu))
14022 {
14023 const char *target_physname;
14024
14025 /* Prefer the mangled name; otherwise compute the demangled one. */
14026 target_physname = dw2_linkage_name (target_die, target_cu);
14027 if (target_physname == NULL)
14028 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14029 if (target_physname == NULL)
14030 complaint (_("DW_AT_call_target target DIE has invalid "
14031 "physname, for referencing DIE %s [in module %s]"),
14032 sect_offset_str (die->sect_off), objfile_name (objfile));
14033 else
14034 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14035 }
14036 else
14037 {
14038 CORE_ADDR lowpc;
14039
14040 /* DW_AT_entry_pc should be preferred. */
14041 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14042 <= PC_BOUNDS_INVALID)
14043 complaint (_("DW_AT_call_target target DIE has invalid "
14044 "low pc, for referencing DIE %s [in module %s]"),
14045 sect_offset_str (die->sect_off), objfile_name (objfile));
14046 else
14047 {
14048 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14049 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14050 }
14051 }
14052 }
14053 else
14054 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
14055 "block nor reference, for DIE %s [in module %s]"),
14056 sect_offset_str (die->sect_off), objfile_name (objfile));
14057
14058 call_site->per_cu = cu->per_cu;
14059
14060 for (child_die = die->child;
14061 child_die && child_die->tag;
14062 child_die = sibling_die (child_die))
14063 {
14064 struct call_site_parameter *parameter;
14065 struct attribute *loc, *origin;
14066
14067 if (child_die->tag != DW_TAG_call_site_parameter
14068 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14069 {
14070 /* Already printed the complaint above. */
14071 continue;
14072 }
14073
14074 gdb_assert (call_site->parameter_count < nparams);
14075 parameter = &call_site->parameter[call_site->parameter_count];
14076
14077 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14078 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14079 register is contained in DW_AT_call_value. */
14080
14081 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14082 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14083 if (origin == NULL)
14084 {
14085 /* This was a pre-DWARF-5 GNU extension alias
14086 for DW_AT_call_parameter. */
14087 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14088 }
14089 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14090 {
14091 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14092
14093 sect_offset sect_off
14094 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14095 if (!offset_in_cu_p (&cu->header, sect_off))
14096 {
14097 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14098 binding can be done only inside one CU. Such referenced DIE
14099 therefore cannot be even moved to DW_TAG_partial_unit. */
14100 complaint (_("DW_AT_call_parameter offset is not in CU for "
14101 "DW_TAG_call_site child DIE %s [in module %s]"),
14102 sect_offset_str (child_die->sect_off),
14103 objfile_name (objfile));
14104 continue;
14105 }
14106 parameter->u.param_cu_off
14107 = (cu_offset) (sect_off - cu->header.sect_off);
14108 }
14109 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14110 {
14111 complaint (_("No DW_FORM_block* DW_AT_location for "
14112 "DW_TAG_call_site child DIE %s [in module %s]"),
14113 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14114 continue;
14115 }
14116 else
14117 {
14118 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14119 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14120 if (parameter->u.dwarf_reg != -1)
14121 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14122 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14123 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14124 &parameter->u.fb_offset))
14125 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14126 else
14127 {
14128 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14129 "for DW_FORM_block* DW_AT_location is supported for "
14130 "DW_TAG_call_site child DIE %s "
14131 "[in module %s]"),
14132 sect_offset_str (child_die->sect_off),
14133 objfile_name (objfile));
14134 continue;
14135 }
14136 }
14137
14138 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14139 if (attr == NULL)
14140 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14141 if (!attr_form_is_block (attr))
14142 {
14143 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14144 "DW_TAG_call_site child DIE %s [in module %s]"),
14145 sect_offset_str (child_die->sect_off),
14146 objfile_name (objfile));
14147 continue;
14148 }
14149 parameter->value = DW_BLOCK (attr)->data;
14150 parameter->value_size = DW_BLOCK (attr)->size;
14151
14152 /* Parameters are not pre-cleared by memset above. */
14153 parameter->data_value = NULL;
14154 parameter->data_value_size = 0;
14155 call_site->parameter_count++;
14156
14157 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14158 if (attr == NULL)
14159 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14160 if (attr)
14161 {
14162 if (!attr_form_is_block (attr))
14163 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14164 "DW_TAG_call_site child DIE %s [in module %s]"),
14165 sect_offset_str (child_die->sect_off),
14166 objfile_name (objfile));
14167 else
14168 {
14169 parameter->data_value = DW_BLOCK (attr)->data;
14170 parameter->data_value_size = DW_BLOCK (attr)->size;
14171 }
14172 }
14173 }
14174 }
14175
14176 /* Helper function for read_variable. If DIE represents a virtual
14177 table, then return the type of the concrete object that is
14178 associated with the virtual table. Otherwise, return NULL. */
14179
14180 static struct type *
14181 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14182 {
14183 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14184 if (attr == NULL)
14185 return NULL;
14186
14187 /* Find the type DIE. */
14188 struct die_info *type_die = NULL;
14189 struct dwarf2_cu *type_cu = cu;
14190
14191 if (attr_form_is_ref (attr))
14192 type_die = follow_die_ref (die, attr, &type_cu);
14193 if (type_die == NULL)
14194 return NULL;
14195
14196 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14197 return NULL;
14198 return die_containing_type (type_die, type_cu);
14199 }
14200
14201 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14202
14203 static void
14204 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14205 {
14206 struct rust_vtable_symbol *storage = NULL;
14207
14208 if (cu->language == language_rust)
14209 {
14210 struct type *containing_type = rust_containing_type (die, cu);
14211
14212 if (containing_type != NULL)
14213 {
14214 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14215
14216 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14217 struct rust_vtable_symbol);
14218 initialize_objfile_symbol (storage);
14219 storage->concrete_type = containing_type;
14220 storage->subclass = SYMBOL_RUST_VTABLE;
14221 }
14222 }
14223
14224 struct symbol *res = new_symbol (die, NULL, cu, storage);
14225 struct attribute *abstract_origin
14226 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14227 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
14228 if (res == NULL && loc && abstract_origin)
14229 {
14230 /* We have a variable without a name, but with a location and an abstract
14231 origin. This may be a concrete instance of an abstract variable
14232 referenced from an DW_OP_GNU_variable_value, so save it to find it back
14233 later. */
14234 struct dwarf2_cu *origin_cu = cu;
14235 struct die_info *origin_die
14236 = follow_die_ref (die, abstract_origin, &origin_cu);
14237 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
14238 dpo->abstract_to_concrete[origin_die->sect_off].push_back (die->sect_off);
14239 }
14240 }
14241
14242 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14243 reading .debug_rnglists.
14244 Callback's type should be:
14245 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14246 Return true if the attributes are present and valid, otherwise,
14247 return false. */
14248
14249 template <typename Callback>
14250 static bool
14251 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14252 Callback &&callback)
14253 {
14254 struct dwarf2_per_objfile *dwarf2_per_objfile
14255 = cu->per_cu->dwarf2_per_objfile;
14256 struct objfile *objfile = dwarf2_per_objfile->objfile;
14257 bfd *obfd = objfile->obfd;
14258 /* Base address selection entry. */
14259 CORE_ADDR base;
14260 int found_base;
14261 const gdb_byte *buffer;
14262 CORE_ADDR baseaddr;
14263 bool overflow = false;
14264
14265 found_base = cu->base_known;
14266 base = cu->base_address;
14267
14268 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14269 if (offset >= dwarf2_per_objfile->rnglists.size)
14270 {
14271 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14272 offset);
14273 return false;
14274 }
14275 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14276
14277 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14278
14279 while (1)
14280 {
14281 /* Initialize it due to a false compiler warning. */
14282 CORE_ADDR range_beginning = 0, range_end = 0;
14283 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14284 + dwarf2_per_objfile->rnglists.size);
14285 unsigned int bytes_read;
14286
14287 if (buffer == buf_end)
14288 {
14289 overflow = true;
14290 break;
14291 }
14292 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14293 switch (rlet)
14294 {
14295 case DW_RLE_end_of_list:
14296 break;
14297 case DW_RLE_base_address:
14298 if (buffer + cu->header.addr_size > buf_end)
14299 {
14300 overflow = true;
14301 break;
14302 }
14303 base = read_address (obfd, buffer, cu, &bytes_read);
14304 found_base = 1;
14305 buffer += bytes_read;
14306 break;
14307 case DW_RLE_start_length:
14308 if (buffer + cu->header.addr_size > buf_end)
14309 {
14310 overflow = true;
14311 break;
14312 }
14313 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14314 buffer += bytes_read;
14315 range_end = (range_beginning
14316 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14317 buffer += bytes_read;
14318 if (buffer > buf_end)
14319 {
14320 overflow = true;
14321 break;
14322 }
14323 break;
14324 case DW_RLE_offset_pair:
14325 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14326 buffer += bytes_read;
14327 if (buffer > buf_end)
14328 {
14329 overflow = true;
14330 break;
14331 }
14332 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14333 buffer += bytes_read;
14334 if (buffer > buf_end)
14335 {
14336 overflow = true;
14337 break;
14338 }
14339 break;
14340 case DW_RLE_start_end:
14341 if (buffer + 2 * cu->header.addr_size > buf_end)
14342 {
14343 overflow = true;
14344 break;
14345 }
14346 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14347 buffer += bytes_read;
14348 range_end = read_address (obfd, buffer, cu, &bytes_read);
14349 buffer += bytes_read;
14350 break;
14351 default:
14352 complaint (_("Invalid .debug_rnglists data (no base address)"));
14353 return false;
14354 }
14355 if (rlet == DW_RLE_end_of_list || overflow)
14356 break;
14357 if (rlet == DW_RLE_base_address)
14358 continue;
14359
14360 if (!found_base)
14361 {
14362 /* We have no valid base address for the ranges
14363 data. */
14364 complaint (_("Invalid .debug_rnglists data (no base address)"));
14365 return false;
14366 }
14367
14368 if (range_beginning > range_end)
14369 {
14370 /* Inverted range entries are invalid. */
14371 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14372 return false;
14373 }
14374
14375 /* Empty range entries have no effect. */
14376 if (range_beginning == range_end)
14377 continue;
14378
14379 range_beginning += base;
14380 range_end += base;
14381
14382 /* A not-uncommon case of bad debug info.
14383 Don't pollute the addrmap with bad data. */
14384 if (range_beginning + baseaddr == 0
14385 && !dwarf2_per_objfile->has_section_at_zero)
14386 {
14387 complaint (_(".debug_rnglists entry has start address of zero"
14388 " [in module %s]"), objfile_name (objfile));
14389 continue;
14390 }
14391
14392 callback (range_beginning, range_end);
14393 }
14394
14395 if (overflow)
14396 {
14397 complaint (_("Offset %d is not terminated "
14398 "for DW_AT_ranges attribute"),
14399 offset);
14400 return false;
14401 }
14402
14403 return true;
14404 }
14405
14406 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14407 Callback's type should be:
14408 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14409 Return 1 if the attributes are present and valid, otherwise, return 0. */
14410
14411 template <typename Callback>
14412 static int
14413 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14414 Callback &&callback)
14415 {
14416 struct dwarf2_per_objfile *dwarf2_per_objfile
14417 = cu->per_cu->dwarf2_per_objfile;
14418 struct objfile *objfile = dwarf2_per_objfile->objfile;
14419 struct comp_unit_head *cu_header = &cu->header;
14420 bfd *obfd = objfile->obfd;
14421 unsigned int addr_size = cu_header->addr_size;
14422 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14423 /* Base address selection entry. */
14424 CORE_ADDR base;
14425 int found_base;
14426 unsigned int dummy;
14427 const gdb_byte *buffer;
14428 CORE_ADDR baseaddr;
14429
14430 if (cu_header->version >= 5)
14431 return dwarf2_rnglists_process (offset, cu, callback);
14432
14433 found_base = cu->base_known;
14434 base = cu->base_address;
14435
14436 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14437 if (offset >= dwarf2_per_objfile->ranges.size)
14438 {
14439 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14440 offset);
14441 return 0;
14442 }
14443 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14444
14445 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14446
14447 while (1)
14448 {
14449 CORE_ADDR range_beginning, range_end;
14450
14451 range_beginning = read_address (obfd, buffer, cu, &dummy);
14452 buffer += addr_size;
14453 range_end = read_address (obfd, buffer, cu, &dummy);
14454 buffer += addr_size;
14455 offset += 2 * addr_size;
14456
14457 /* An end of list marker is a pair of zero addresses. */
14458 if (range_beginning == 0 && range_end == 0)
14459 /* Found the end of list entry. */
14460 break;
14461
14462 /* Each base address selection entry is a pair of 2 values.
14463 The first is the largest possible address, the second is
14464 the base address. Check for a base address here. */
14465 if ((range_beginning & mask) == mask)
14466 {
14467 /* If we found the largest possible address, then we already
14468 have the base address in range_end. */
14469 base = range_end;
14470 found_base = 1;
14471 continue;
14472 }
14473
14474 if (!found_base)
14475 {
14476 /* We have no valid base address for the ranges
14477 data. */
14478 complaint (_("Invalid .debug_ranges data (no base address)"));
14479 return 0;
14480 }
14481
14482 if (range_beginning > range_end)
14483 {
14484 /* Inverted range entries are invalid. */
14485 complaint (_("Invalid .debug_ranges data (inverted range)"));
14486 return 0;
14487 }
14488
14489 /* Empty range entries have no effect. */
14490 if (range_beginning == range_end)
14491 continue;
14492
14493 range_beginning += base;
14494 range_end += base;
14495
14496 /* A not-uncommon case of bad debug info.
14497 Don't pollute the addrmap with bad data. */
14498 if (range_beginning + baseaddr == 0
14499 && !dwarf2_per_objfile->has_section_at_zero)
14500 {
14501 complaint (_(".debug_ranges entry has start address of zero"
14502 " [in module %s]"), objfile_name (objfile));
14503 continue;
14504 }
14505
14506 callback (range_beginning, range_end);
14507 }
14508
14509 return 1;
14510 }
14511
14512 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14513 Return 1 if the attributes are present and valid, otherwise, return 0.
14514 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14515
14516 static int
14517 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14518 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14519 struct partial_symtab *ranges_pst)
14520 {
14521 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14522 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14523 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14524 SECT_OFF_TEXT (objfile));
14525 int low_set = 0;
14526 CORE_ADDR low = 0;
14527 CORE_ADDR high = 0;
14528 int retval;
14529
14530 retval = dwarf2_ranges_process (offset, cu,
14531 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14532 {
14533 if (ranges_pst != NULL)
14534 {
14535 CORE_ADDR lowpc;
14536 CORE_ADDR highpc;
14537
14538 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14539 range_beginning + baseaddr)
14540 - baseaddr);
14541 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14542 range_end + baseaddr)
14543 - baseaddr);
14544 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
14545 lowpc, highpc - 1, ranges_pst);
14546 }
14547
14548 /* FIXME: This is recording everything as a low-high
14549 segment of consecutive addresses. We should have a
14550 data structure for discontiguous block ranges
14551 instead. */
14552 if (! low_set)
14553 {
14554 low = range_beginning;
14555 high = range_end;
14556 low_set = 1;
14557 }
14558 else
14559 {
14560 if (range_beginning < low)
14561 low = range_beginning;
14562 if (range_end > high)
14563 high = range_end;
14564 }
14565 });
14566 if (!retval)
14567 return 0;
14568
14569 if (! low_set)
14570 /* If the first entry is an end-of-list marker, the range
14571 describes an empty scope, i.e. no instructions. */
14572 return 0;
14573
14574 if (low_return)
14575 *low_return = low;
14576 if (high_return)
14577 *high_return = high;
14578 return 1;
14579 }
14580
14581 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14582 definition for the return value. *LOWPC and *HIGHPC are set iff
14583 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14584
14585 static enum pc_bounds_kind
14586 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14587 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14588 struct partial_symtab *pst)
14589 {
14590 struct dwarf2_per_objfile *dwarf2_per_objfile
14591 = cu->per_cu->dwarf2_per_objfile;
14592 struct attribute *attr;
14593 struct attribute *attr_high;
14594 CORE_ADDR low = 0;
14595 CORE_ADDR high = 0;
14596 enum pc_bounds_kind ret;
14597
14598 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14599 if (attr_high)
14600 {
14601 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14602 if (attr)
14603 {
14604 low = attr_value_as_address (attr);
14605 high = attr_value_as_address (attr_high);
14606 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14607 high += low;
14608 }
14609 else
14610 /* Found high w/o low attribute. */
14611 return PC_BOUNDS_INVALID;
14612
14613 /* Found consecutive range of addresses. */
14614 ret = PC_BOUNDS_HIGH_LOW;
14615 }
14616 else
14617 {
14618 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14619 if (attr != NULL)
14620 {
14621 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14622 We take advantage of the fact that DW_AT_ranges does not appear
14623 in DW_TAG_compile_unit of DWO files. */
14624 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14625 unsigned int ranges_offset = (DW_UNSND (attr)
14626 + (need_ranges_base
14627 ? cu->ranges_base
14628 : 0));
14629
14630 /* Value of the DW_AT_ranges attribute is the offset in the
14631 .debug_ranges section. */
14632 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14633 return PC_BOUNDS_INVALID;
14634 /* Found discontinuous range of addresses. */
14635 ret = PC_BOUNDS_RANGES;
14636 }
14637 else
14638 return PC_BOUNDS_NOT_PRESENT;
14639 }
14640
14641 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14642 if (high <= low)
14643 return PC_BOUNDS_INVALID;
14644
14645 /* When using the GNU linker, .gnu.linkonce. sections are used to
14646 eliminate duplicate copies of functions and vtables and such.
14647 The linker will arbitrarily choose one and discard the others.
14648 The AT_*_pc values for such functions refer to local labels in
14649 these sections. If the section from that file was discarded, the
14650 labels are not in the output, so the relocs get a value of 0.
14651 If this is a discarded function, mark the pc bounds as invalid,
14652 so that GDB will ignore it. */
14653 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14654 return PC_BOUNDS_INVALID;
14655
14656 *lowpc = low;
14657 if (highpc)
14658 *highpc = high;
14659 return ret;
14660 }
14661
14662 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14663 its low and high PC addresses. Do nothing if these addresses could not
14664 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14665 and HIGHPC to the high address if greater than HIGHPC. */
14666
14667 static void
14668 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14669 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14670 struct dwarf2_cu *cu)
14671 {
14672 CORE_ADDR low, high;
14673 struct die_info *child = die->child;
14674
14675 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14676 {
14677 *lowpc = std::min (*lowpc, low);
14678 *highpc = std::max (*highpc, high);
14679 }
14680
14681 /* If the language does not allow nested subprograms (either inside
14682 subprograms or lexical blocks), we're done. */
14683 if (cu->language != language_ada)
14684 return;
14685
14686 /* Check all the children of the given DIE. If it contains nested
14687 subprograms, then check their pc bounds. Likewise, we need to
14688 check lexical blocks as well, as they may also contain subprogram
14689 definitions. */
14690 while (child && child->tag)
14691 {
14692 if (child->tag == DW_TAG_subprogram
14693 || child->tag == DW_TAG_lexical_block)
14694 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14695 child = sibling_die (child);
14696 }
14697 }
14698
14699 /* Get the low and high pc's represented by the scope DIE, and store
14700 them in *LOWPC and *HIGHPC. If the correct values can't be
14701 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14702
14703 static void
14704 get_scope_pc_bounds (struct die_info *die,
14705 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14706 struct dwarf2_cu *cu)
14707 {
14708 CORE_ADDR best_low = (CORE_ADDR) -1;
14709 CORE_ADDR best_high = (CORE_ADDR) 0;
14710 CORE_ADDR current_low, current_high;
14711
14712 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14713 >= PC_BOUNDS_RANGES)
14714 {
14715 best_low = current_low;
14716 best_high = current_high;
14717 }
14718 else
14719 {
14720 struct die_info *child = die->child;
14721
14722 while (child && child->tag)
14723 {
14724 switch (child->tag) {
14725 case DW_TAG_subprogram:
14726 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14727 break;
14728 case DW_TAG_namespace:
14729 case DW_TAG_module:
14730 /* FIXME: carlton/2004-01-16: Should we do this for
14731 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14732 that current GCC's always emit the DIEs corresponding
14733 to definitions of methods of classes as children of a
14734 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14735 the DIEs giving the declarations, which could be
14736 anywhere). But I don't see any reason why the
14737 standards says that they have to be there. */
14738 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14739
14740 if (current_low != ((CORE_ADDR) -1))
14741 {
14742 best_low = std::min (best_low, current_low);
14743 best_high = std::max (best_high, current_high);
14744 }
14745 break;
14746 default:
14747 /* Ignore. */
14748 break;
14749 }
14750
14751 child = sibling_die (child);
14752 }
14753 }
14754
14755 *lowpc = best_low;
14756 *highpc = best_high;
14757 }
14758
14759 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14760 in DIE. */
14761
14762 static void
14763 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14764 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14765 {
14766 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14767 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14768 struct attribute *attr;
14769 struct attribute *attr_high;
14770
14771 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14772 if (attr_high)
14773 {
14774 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14775 if (attr)
14776 {
14777 CORE_ADDR low = attr_value_as_address (attr);
14778 CORE_ADDR high = attr_value_as_address (attr_high);
14779
14780 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14781 high += low;
14782
14783 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14784 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14785 cu->get_builder ()->record_block_range (block, low, high - 1);
14786 }
14787 }
14788
14789 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14790 if (attr)
14791 {
14792 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14793 We take advantage of the fact that DW_AT_ranges does not appear
14794 in DW_TAG_compile_unit of DWO files. */
14795 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14796
14797 /* The value of the DW_AT_ranges attribute is the offset of the
14798 address range list in the .debug_ranges section. */
14799 unsigned long offset = (DW_UNSND (attr)
14800 + (need_ranges_base ? cu->ranges_base : 0));
14801
14802 std::vector<blockrange> blockvec;
14803 dwarf2_ranges_process (offset, cu,
14804 [&] (CORE_ADDR start, CORE_ADDR end)
14805 {
14806 start += baseaddr;
14807 end += baseaddr;
14808 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14809 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14810 cu->get_builder ()->record_block_range (block, start, end - 1);
14811 blockvec.emplace_back (start, end);
14812 });
14813
14814 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14815 }
14816 }
14817
14818 /* Check whether the producer field indicates either of GCC < 4.6, or the
14819 Intel C/C++ compiler, and cache the result in CU. */
14820
14821 static void
14822 check_producer (struct dwarf2_cu *cu)
14823 {
14824 int major, minor;
14825
14826 if (cu->producer == NULL)
14827 {
14828 /* For unknown compilers expect their behavior is DWARF version
14829 compliant.
14830
14831 GCC started to support .debug_types sections by -gdwarf-4 since
14832 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14833 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14834 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14835 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14836 }
14837 else if (producer_is_gcc (cu->producer, &major, &minor))
14838 {
14839 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14840 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14841 }
14842 else if (producer_is_icc (cu->producer, &major, &minor))
14843 {
14844 cu->producer_is_icc = true;
14845 cu->producer_is_icc_lt_14 = major < 14;
14846 }
14847 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14848 cu->producer_is_codewarrior = true;
14849 else
14850 {
14851 /* For other non-GCC compilers, expect their behavior is DWARF version
14852 compliant. */
14853 }
14854
14855 cu->checked_producer = true;
14856 }
14857
14858 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14859 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14860 during 4.6.0 experimental. */
14861
14862 static bool
14863 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14864 {
14865 if (!cu->checked_producer)
14866 check_producer (cu);
14867
14868 return cu->producer_is_gxx_lt_4_6;
14869 }
14870
14871
14872 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14873 with incorrect is_stmt attributes. */
14874
14875 static bool
14876 producer_is_codewarrior (struct dwarf2_cu *cu)
14877 {
14878 if (!cu->checked_producer)
14879 check_producer (cu);
14880
14881 return cu->producer_is_codewarrior;
14882 }
14883
14884 /* Return the default accessibility type if it is not overriden by
14885 DW_AT_accessibility. */
14886
14887 static enum dwarf_access_attribute
14888 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14889 {
14890 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14891 {
14892 /* The default DWARF 2 accessibility for members is public, the default
14893 accessibility for inheritance is private. */
14894
14895 if (die->tag != DW_TAG_inheritance)
14896 return DW_ACCESS_public;
14897 else
14898 return DW_ACCESS_private;
14899 }
14900 else
14901 {
14902 /* DWARF 3+ defines the default accessibility a different way. The same
14903 rules apply now for DW_TAG_inheritance as for the members and it only
14904 depends on the container kind. */
14905
14906 if (die->parent->tag == DW_TAG_class_type)
14907 return DW_ACCESS_private;
14908 else
14909 return DW_ACCESS_public;
14910 }
14911 }
14912
14913 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14914 offset. If the attribute was not found return 0, otherwise return
14915 1. If it was found but could not properly be handled, set *OFFSET
14916 to 0. */
14917
14918 static int
14919 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14920 LONGEST *offset)
14921 {
14922 struct attribute *attr;
14923
14924 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14925 if (attr != NULL)
14926 {
14927 *offset = 0;
14928
14929 /* Note that we do not check for a section offset first here.
14930 This is because DW_AT_data_member_location is new in DWARF 4,
14931 so if we see it, we can assume that a constant form is really
14932 a constant and not a section offset. */
14933 if (attr_form_is_constant (attr))
14934 *offset = dwarf2_get_attr_constant_value (attr, 0);
14935 else if (attr_form_is_section_offset (attr))
14936 dwarf2_complex_location_expr_complaint ();
14937 else if (attr_form_is_block (attr))
14938 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14939 else
14940 dwarf2_complex_location_expr_complaint ();
14941
14942 return 1;
14943 }
14944
14945 return 0;
14946 }
14947
14948 /* Add an aggregate field to the field list. */
14949
14950 static void
14951 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14952 struct dwarf2_cu *cu)
14953 {
14954 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14955 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14956 struct nextfield *new_field;
14957 struct attribute *attr;
14958 struct field *fp;
14959 const char *fieldname = "";
14960
14961 if (die->tag == DW_TAG_inheritance)
14962 {
14963 fip->baseclasses.emplace_back ();
14964 new_field = &fip->baseclasses.back ();
14965 }
14966 else
14967 {
14968 fip->fields.emplace_back ();
14969 new_field = &fip->fields.back ();
14970 }
14971
14972 fip->nfields++;
14973
14974 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14975 if (attr)
14976 new_field->accessibility = DW_UNSND (attr);
14977 else
14978 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
14979 if (new_field->accessibility != DW_ACCESS_public)
14980 fip->non_public_fields = 1;
14981
14982 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14983 if (attr)
14984 new_field->virtuality = DW_UNSND (attr);
14985 else
14986 new_field->virtuality = DW_VIRTUALITY_none;
14987
14988 fp = &new_field->field;
14989
14990 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
14991 {
14992 LONGEST offset;
14993
14994 /* Data member other than a C++ static data member. */
14995
14996 /* Get type of field. */
14997 fp->type = die_type (die, cu);
14998
14999 SET_FIELD_BITPOS (*fp, 0);
15000
15001 /* Get bit size of field (zero if none). */
15002 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
15003 if (attr)
15004 {
15005 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15006 }
15007 else
15008 {
15009 FIELD_BITSIZE (*fp) = 0;
15010 }
15011
15012 /* Get bit offset of field. */
15013 if (handle_data_member_location (die, cu, &offset))
15014 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15015 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15016 if (attr)
15017 {
15018 if (gdbarch_bits_big_endian (gdbarch))
15019 {
15020 /* For big endian bits, the DW_AT_bit_offset gives the
15021 additional bit offset from the MSB of the containing
15022 anonymous object to the MSB of the field. We don't
15023 have to do anything special since we don't need to
15024 know the size of the anonymous object. */
15025 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15026 }
15027 else
15028 {
15029 /* For little endian bits, compute the bit offset to the
15030 MSB of the anonymous object, subtract off the number of
15031 bits from the MSB of the field to the MSB of the
15032 object, and then subtract off the number of bits of
15033 the field itself. The result is the bit offset of
15034 the LSB of the field. */
15035 int anonymous_size;
15036 int bit_offset = DW_UNSND (attr);
15037
15038 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15039 if (attr)
15040 {
15041 /* The size of the anonymous object containing
15042 the bit field is explicit, so use the
15043 indicated size (in bytes). */
15044 anonymous_size = DW_UNSND (attr);
15045 }
15046 else
15047 {
15048 /* The size of the anonymous object containing
15049 the bit field must be inferred from the type
15050 attribute of the data member containing the
15051 bit field. */
15052 anonymous_size = TYPE_LENGTH (fp->type);
15053 }
15054 SET_FIELD_BITPOS (*fp,
15055 (FIELD_BITPOS (*fp)
15056 + anonymous_size * bits_per_byte
15057 - bit_offset - FIELD_BITSIZE (*fp)));
15058 }
15059 }
15060 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15061 if (attr != NULL)
15062 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15063 + dwarf2_get_attr_constant_value (attr, 0)));
15064
15065 /* Get name of field. */
15066 fieldname = dwarf2_name (die, cu);
15067 if (fieldname == NULL)
15068 fieldname = "";
15069
15070 /* The name is already allocated along with this objfile, so we don't
15071 need to duplicate it for the type. */
15072 fp->name = fieldname;
15073
15074 /* Change accessibility for artificial fields (e.g. virtual table
15075 pointer or virtual base class pointer) to private. */
15076 if (dwarf2_attr (die, DW_AT_artificial, cu))
15077 {
15078 FIELD_ARTIFICIAL (*fp) = 1;
15079 new_field->accessibility = DW_ACCESS_private;
15080 fip->non_public_fields = 1;
15081 }
15082 }
15083 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15084 {
15085 /* C++ static member. */
15086
15087 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15088 is a declaration, but all versions of G++ as of this writing
15089 (so through at least 3.2.1) incorrectly generate
15090 DW_TAG_variable tags. */
15091
15092 const char *physname;
15093
15094 /* Get name of field. */
15095 fieldname = dwarf2_name (die, cu);
15096 if (fieldname == NULL)
15097 return;
15098
15099 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15100 if (attr
15101 /* Only create a symbol if this is an external value.
15102 new_symbol checks this and puts the value in the global symbol
15103 table, which we want. If it is not external, new_symbol
15104 will try to put the value in cu->list_in_scope which is wrong. */
15105 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15106 {
15107 /* A static const member, not much different than an enum as far as
15108 we're concerned, except that we can support more types. */
15109 new_symbol (die, NULL, cu);
15110 }
15111
15112 /* Get physical name. */
15113 physname = dwarf2_physname (fieldname, die, cu);
15114
15115 /* The name is already allocated along with this objfile, so we don't
15116 need to duplicate it for the type. */
15117 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15118 FIELD_TYPE (*fp) = die_type (die, cu);
15119 FIELD_NAME (*fp) = fieldname;
15120 }
15121 else if (die->tag == DW_TAG_inheritance)
15122 {
15123 LONGEST offset;
15124
15125 /* C++ base class field. */
15126 if (handle_data_member_location (die, cu, &offset))
15127 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15128 FIELD_BITSIZE (*fp) = 0;
15129 FIELD_TYPE (*fp) = die_type (die, cu);
15130 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
15131 }
15132 else if (die->tag == DW_TAG_variant_part)
15133 {
15134 /* process_structure_scope will treat this DIE as a union. */
15135 process_structure_scope (die, cu);
15136
15137 /* The variant part is relative to the start of the enclosing
15138 structure. */
15139 SET_FIELD_BITPOS (*fp, 0);
15140 fp->type = get_die_type (die, cu);
15141 fp->artificial = 1;
15142 fp->name = "<<variant>>";
15143
15144 /* Normally a DW_TAG_variant_part won't have a size, but our
15145 representation requires one, so set it to the maximum of the
15146 child sizes. */
15147 if (TYPE_LENGTH (fp->type) == 0)
15148 {
15149 unsigned max = 0;
15150 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
15151 if (TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)) > max)
15152 max = TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i));
15153 TYPE_LENGTH (fp->type) = max;
15154 }
15155 }
15156 else
15157 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15158 }
15159
15160 /* Can the type given by DIE define another type? */
15161
15162 static bool
15163 type_can_define_types (const struct die_info *die)
15164 {
15165 switch (die->tag)
15166 {
15167 case DW_TAG_typedef:
15168 case DW_TAG_class_type:
15169 case DW_TAG_structure_type:
15170 case DW_TAG_union_type:
15171 case DW_TAG_enumeration_type:
15172 return true;
15173
15174 default:
15175 return false;
15176 }
15177 }
15178
15179 /* Add a type definition defined in the scope of the FIP's class. */
15180
15181 static void
15182 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15183 struct dwarf2_cu *cu)
15184 {
15185 struct decl_field fp;
15186 memset (&fp, 0, sizeof (fp));
15187
15188 gdb_assert (type_can_define_types (die));
15189
15190 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15191 fp.name = dwarf2_name (die, cu);
15192 fp.type = read_type_die (die, cu);
15193
15194 /* Save accessibility. */
15195 enum dwarf_access_attribute accessibility;
15196 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15197 if (attr != NULL)
15198 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15199 else
15200 accessibility = dwarf2_default_access_attribute (die, cu);
15201 switch (accessibility)
15202 {
15203 case DW_ACCESS_public:
15204 /* The assumed value if neither private nor protected. */
15205 break;
15206 case DW_ACCESS_private:
15207 fp.is_private = 1;
15208 break;
15209 case DW_ACCESS_protected:
15210 fp.is_protected = 1;
15211 break;
15212 default:
15213 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15214 }
15215
15216 if (die->tag == DW_TAG_typedef)
15217 fip->typedef_field_list.push_back (fp);
15218 else
15219 fip->nested_types_list.push_back (fp);
15220 }
15221
15222 /* Create the vector of fields, and attach it to the type. */
15223
15224 static void
15225 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15226 struct dwarf2_cu *cu)
15227 {
15228 int nfields = fip->nfields;
15229
15230 /* Record the field count, allocate space for the array of fields,
15231 and create blank accessibility bitfields if necessary. */
15232 TYPE_NFIELDS (type) = nfields;
15233 TYPE_FIELDS (type) = (struct field *)
15234 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15235
15236 if (fip->non_public_fields && cu->language != language_ada)
15237 {
15238 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15239
15240 TYPE_FIELD_PRIVATE_BITS (type) =
15241 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15242 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15243
15244 TYPE_FIELD_PROTECTED_BITS (type) =
15245 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15246 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15247
15248 TYPE_FIELD_IGNORE_BITS (type) =
15249 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15250 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15251 }
15252
15253 /* If the type has baseclasses, allocate and clear a bit vector for
15254 TYPE_FIELD_VIRTUAL_BITS. */
15255 if (!fip->baseclasses.empty () && cu->language != language_ada)
15256 {
15257 int num_bytes = B_BYTES (fip->baseclasses.size ());
15258 unsigned char *pointer;
15259
15260 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15261 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15262 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15263 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15264 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15265 }
15266
15267 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15268 {
15269 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15270
15271 for (int index = 0; index < nfields; ++index)
15272 {
15273 struct nextfield &field = fip->fields[index];
15274
15275 if (field.variant.is_discriminant)
15276 di->discriminant_index = index;
15277 else if (field.variant.default_branch)
15278 di->default_index = index;
15279 else
15280 di->discriminants[index] = field.variant.discriminant_value;
15281 }
15282 }
15283
15284 /* Copy the saved-up fields into the field vector. */
15285 for (int i = 0; i < nfields; ++i)
15286 {
15287 struct nextfield &field
15288 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15289 : fip->fields[i - fip->baseclasses.size ()]);
15290
15291 TYPE_FIELD (type, i) = field.field;
15292 switch (field.accessibility)
15293 {
15294 case DW_ACCESS_private:
15295 if (cu->language != language_ada)
15296 SET_TYPE_FIELD_PRIVATE (type, i);
15297 break;
15298
15299 case DW_ACCESS_protected:
15300 if (cu->language != language_ada)
15301 SET_TYPE_FIELD_PROTECTED (type, i);
15302 break;
15303
15304 case DW_ACCESS_public:
15305 break;
15306
15307 default:
15308 /* Unknown accessibility. Complain and treat it as public. */
15309 {
15310 complaint (_("unsupported accessibility %d"),
15311 field.accessibility);
15312 }
15313 break;
15314 }
15315 if (i < fip->baseclasses.size ())
15316 {
15317 switch (field.virtuality)
15318 {
15319 case DW_VIRTUALITY_virtual:
15320 case DW_VIRTUALITY_pure_virtual:
15321 if (cu->language == language_ada)
15322 error (_("unexpected virtuality in component of Ada type"));
15323 SET_TYPE_FIELD_VIRTUAL (type, i);
15324 break;
15325 }
15326 }
15327 }
15328 }
15329
15330 /* Return true if this member function is a constructor, false
15331 otherwise. */
15332
15333 static int
15334 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15335 {
15336 const char *fieldname;
15337 const char *type_name;
15338 int len;
15339
15340 if (die->parent == NULL)
15341 return 0;
15342
15343 if (die->parent->tag != DW_TAG_structure_type
15344 && die->parent->tag != DW_TAG_union_type
15345 && die->parent->tag != DW_TAG_class_type)
15346 return 0;
15347
15348 fieldname = dwarf2_name (die, cu);
15349 type_name = dwarf2_name (die->parent, cu);
15350 if (fieldname == NULL || type_name == NULL)
15351 return 0;
15352
15353 len = strlen (fieldname);
15354 return (strncmp (fieldname, type_name, len) == 0
15355 && (type_name[len] == '\0' || type_name[len] == '<'));
15356 }
15357
15358 /* Add a member function to the proper fieldlist. */
15359
15360 static void
15361 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15362 struct type *type, struct dwarf2_cu *cu)
15363 {
15364 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15365 struct attribute *attr;
15366 int i;
15367 struct fnfieldlist *flp = nullptr;
15368 struct fn_field *fnp;
15369 const char *fieldname;
15370 struct type *this_type;
15371 enum dwarf_access_attribute accessibility;
15372
15373 if (cu->language == language_ada)
15374 error (_("unexpected member function in Ada type"));
15375
15376 /* Get name of member function. */
15377 fieldname = dwarf2_name (die, cu);
15378 if (fieldname == NULL)
15379 return;
15380
15381 /* Look up member function name in fieldlist. */
15382 for (i = 0; i < fip->fnfieldlists.size (); i++)
15383 {
15384 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15385 {
15386 flp = &fip->fnfieldlists[i];
15387 break;
15388 }
15389 }
15390
15391 /* Create a new fnfieldlist if necessary. */
15392 if (flp == nullptr)
15393 {
15394 fip->fnfieldlists.emplace_back ();
15395 flp = &fip->fnfieldlists.back ();
15396 flp->name = fieldname;
15397 i = fip->fnfieldlists.size () - 1;
15398 }
15399
15400 /* Create a new member function field and add it to the vector of
15401 fnfieldlists. */
15402 flp->fnfields.emplace_back ();
15403 fnp = &flp->fnfields.back ();
15404
15405 /* Delay processing of the physname until later. */
15406 if (cu->language == language_cplus)
15407 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15408 die, cu);
15409 else
15410 {
15411 const char *physname = dwarf2_physname (fieldname, die, cu);
15412 fnp->physname = physname ? physname : "";
15413 }
15414
15415 fnp->type = alloc_type (objfile);
15416 this_type = read_type_die (die, cu);
15417 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15418 {
15419 int nparams = TYPE_NFIELDS (this_type);
15420
15421 /* TYPE is the domain of this method, and THIS_TYPE is the type
15422 of the method itself (TYPE_CODE_METHOD). */
15423 smash_to_method_type (fnp->type, type,
15424 TYPE_TARGET_TYPE (this_type),
15425 TYPE_FIELDS (this_type),
15426 TYPE_NFIELDS (this_type),
15427 TYPE_VARARGS (this_type));
15428
15429 /* Handle static member functions.
15430 Dwarf2 has no clean way to discern C++ static and non-static
15431 member functions. G++ helps GDB by marking the first
15432 parameter for non-static member functions (which is the this
15433 pointer) as artificial. We obtain this information from
15434 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15435 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15436 fnp->voffset = VOFFSET_STATIC;
15437 }
15438 else
15439 complaint (_("member function type missing for '%s'"),
15440 dwarf2_full_name (fieldname, die, cu));
15441
15442 /* Get fcontext from DW_AT_containing_type if present. */
15443 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15444 fnp->fcontext = die_containing_type (die, cu);
15445
15446 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15447 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15448
15449 /* Get accessibility. */
15450 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15451 if (attr)
15452 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15453 else
15454 accessibility = dwarf2_default_access_attribute (die, cu);
15455 switch (accessibility)
15456 {
15457 case DW_ACCESS_private:
15458 fnp->is_private = 1;
15459 break;
15460 case DW_ACCESS_protected:
15461 fnp->is_protected = 1;
15462 break;
15463 }
15464
15465 /* Check for artificial methods. */
15466 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15467 if (attr && DW_UNSND (attr) != 0)
15468 fnp->is_artificial = 1;
15469
15470 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15471
15472 /* Get index in virtual function table if it is a virtual member
15473 function. For older versions of GCC, this is an offset in the
15474 appropriate virtual table, as specified by DW_AT_containing_type.
15475 For everyone else, it is an expression to be evaluated relative
15476 to the object address. */
15477
15478 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15479 if (attr)
15480 {
15481 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15482 {
15483 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15484 {
15485 /* Old-style GCC. */
15486 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15487 }
15488 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15489 || (DW_BLOCK (attr)->size > 1
15490 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15491 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15492 {
15493 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15494 if ((fnp->voffset % cu->header.addr_size) != 0)
15495 dwarf2_complex_location_expr_complaint ();
15496 else
15497 fnp->voffset /= cu->header.addr_size;
15498 fnp->voffset += 2;
15499 }
15500 else
15501 dwarf2_complex_location_expr_complaint ();
15502
15503 if (!fnp->fcontext)
15504 {
15505 /* If there is no `this' field and no DW_AT_containing_type,
15506 we cannot actually find a base class context for the
15507 vtable! */
15508 if (TYPE_NFIELDS (this_type) == 0
15509 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15510 {
15511 complaint (_("cannot determine context for virtual member "
15512 "function \"%s\" (offset %s)"),
15513 fieldname, sect_offset_str (die->sect_off));
15514 }
15515 else
15516 {
15517 fnp->fcontext
15518 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15519 }
15520 }
15521 }
15522 else if (attr_form_is_section_offset (attr))
15523 {
15524 dwarf2_complex_location_expr_complaint ();
15525 }
15526 else
15527 {
15528 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15529 fieldname);
15530 }
15531 }
15532 else
15533 {
15534 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15535 if (attr && DW_UNSND (attr))
15536 {
15537 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15538 complaint (_("Member function \"%s\" (offset %s) is virtual "
15539 "but the vtable offset is not specified"),
15540 fieldname, sect_offset_str (die->sect_off));
15541 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15542 TYPE_CPLUS_DYNAMIC (type) = 1;
15543 }
15544 }
15545 }
15546
15547 /* Create the vector of member function fields, and attach it to the type. */
15548
15549 static void
15550 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15551 struct dwarf2_cu *cu)
15552 {
15553 if (cu->language == language_ada)
15554 error (_("unexpected member functions in Ada type"));
15555
15556 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15557 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15558 TYPE_ALLOC (type,
15559 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15560
15561 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15562 {
15563 struct fnfieldlist &nf = fip->fnfieldlists[i];
15564 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15565
15566 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15567 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15568 fn_flp->fn_fields = (struct fn_field *)
15569 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15570
15571 for (int k = 0; k < nf.fnfields.size (); ++k)
15572 fn_flp->fn_fields[k] = nf.fnfields[k];
15573 }
15574
15575 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15576 }
15577
15578 /* Returns non-zero if NAME is the name of a vtable member in CU's
15579 language, zero otherwise. */
15580 static int
15581 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15582 {
15583 static const char vptr[] = "_vptr";
15584
15585 /* Look for the C++ form of the vtable. */
15586 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15587 return 1;
15588
15589 return 0;
15590 }
15591
15592 /* GCC outputs unnamed structures that are really pointers to member
15593 functions, with the ABI-specified layout. If TYPE describes
15594 such a structure, smash it into a member function type.
15595
15596 GCC shouldn't do this; it should just output pointer to member DIEs.
15597 This is GCC PR debug/28767. */
15598
15599 static void
15600 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15601 {
15602 struct type *pfn_type, *self_type, *new_type;
15603
15604 /* Check for a structure with no name and two children. */
15605 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15606 return;
15607
15608 /* Check for __pfn and __delta members. */
15609 if (TYPE_FIELD_NAME (type, 0) == NULL
15610 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15611 || TYPE_FIELD_NAME (type, 1) == NULL
15612 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15613 return;
15614
15615 /* Find the type of the method. */
15616 pfn_type = TYPE_FIELD_TYPE (type, 0);
15617 if (pfn_type == NULL
15618 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15619 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15620 return;
15621
15622 /* Look for the "this" argument. */
15623 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15624 if (TYPE_NFIELDS (pfn_type) == 0
15625 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15626 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15627 return;
15628
15629 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15630 new_type = alloc_type (objfile);
15631 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15632 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15633 TYPE_VARARGS (pfn_type));
15634 smash_to_methodptr_type (type, new_type);
15635 }
15636
15637 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15638 appropriate error checking and issuing complaints if there is a
15639 problem. */
15640
15641 static ULONGEST
15642 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15643 {
15644 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15645
15646 if (attr == nullptr)
15647 return 0;
15648
15649 if (!attr_form_is_constant (attr))
15650 {
15651 complaint (_("DW_AT_alignment must have constant form"
15652 " - DIE at %s [in module %s]"),
15653 sect_offset_str (die->sect_off),
15654 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15655 return 0;
15656 }
15657
15658 ULONGEST align;
15659 if (attr->form == DW_FORM_sdata)
15660 {
15661 LONGEST val = DW_SND (attr);
15662 if (val < 0)
15663 {
15664 complaint (_("DW_AT_alignment value must not be negative"
15665 " - DIE at %s [in module %s]"),
15666 sect_offset_str (die->sect_off),
15667 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15668 return 0;
15669 }
15670 align = val;
15671 }
15672 else
15673 align = DW_UNSND (attr);
15674
15675 if (align == 0)
15676 {
15677 complaint (_("DW_AT_alignment value must not be zero"
15678 " - DIE at %s [in module %s]"),
15679 sect_offset_str (die->sect_off),
15680 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15681 return 0;
15682 }
15683 if ((align & (align - 1)) != 0)
15684 {
15685 complaint (_("DW_AT_alignment value must be a power of 2"
15686 " - DIE at %s [in module %s]"),
15687 sect_offset_str (die->sect_off),
15688 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15689 return 0;
15690 }
15691
15692 return align;
15693 }
15694
15695 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15696 the alignment for TYPE. */
15697
15698 static void
15699 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15700 struct type *type)
15701 {
15702 if (!set_type_align (type, get_alignment (cu, die)))
15703 complaint (_("DW_AT_alignment value too large"
15704 " - DIE at %s [in module %s]"),
15705 sect_offset_str (die->sect_off),
15706 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15707 }
15708
15709 /* Called when we find the DIE that starts a structure or union scope
15710 (definition) to create a type for the structure or union. Fill in
15711 the type's name and general properties; the members will not be
15712 processed until process_structure_scope. A symbol table entry for
15713 the type will also not be done until process_structure_scope (assuming
15714 the type has a name).
15715
15716 NOTE: we need to call these functions regardless of whether or not the
15717 DIE has a DW_AT_name attribute, since it might be an anonymous
15718 structure or union. This gets the type entered into our set of
15719 user defined types. */
15720
15721 static struct type *
15722 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15723 {
15724 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15725 struct type *type;
15726 struct attribute *attr;
15727 const char *name;
15728
15729 /* If the definition of this type lives in .debug_types, read that type.
15730 Don't follow DW_AT_specification though, that will take us back up
15731 the chain and we want to go down. */
15732 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15733 if (attr)
15734 {
15735 type = get_DW_AT_signature_type (die, attr, cu);
15736
15737 /* The type's CU may not be the same as CU.
15738 Ensure TYPE is recorded with CU in die_type_hash. */
15739 return set_die_type (die, type, cu);
15740 }
15741
15742 type = alloc_type (objfile);
15743 INIT_CPLUS_SPECIFIC (type);
15744
15745 name = dwarf2_name (die, cu);
15746 if (name != NULL)
15747 {
15748 if (cu->language == language_cplus
15749 || cu->language == language_d
15750 || cu->language == language_rust)
15751 {
15752 const char *full_name = dwarf2_full_name (name, die, cu);
15753
15754 /* dwarf2_full_name might have already finished building the DIE's
15755 type. If so, there is no need to continue. */
15756 if (get_die_type (die, cu) != NULL)
15757 return get_die_type (die, cu);
15758
15759 TYPE_NAME (type) = full_name;
15760 }
15761 else
15762 {
15763 /* The name is already allocated along with this objfile, so
15764 we don't need to duplicate it for the type. */
15765 TYPE_NAME (type) = name;
15766 }
15767 }
15768
15769 if (die->tag == DW_TAG_structure_type)
15770 {
15771 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15772 }
15773 else if (die->tag == DW_TAG_union_type)
15774 {
15775 TYPE_CODE (type) = TYPE_CODE_UNION;
15776 }
15777 else if (die->tag == DW_TAG_variant_part)
15778 {
15779 TYPE_CODE (type) = TYPE_CODE_UNION;
15780 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15781 }
15782 else
15783 {
15784 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15785 }
15786
15787 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15788 TYPE_DECLARED_CLASS (type) = 1;
15789
15790 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15791 if (attr)
15792 {
15793 if (attr_form_is_constant (attr))
15794 TYPE_LENGTH (type) = DW_UNSND (attr);
15795 else
15796 {
15797 /* For the moment, dynamic type sizes are not supported
15798 by GDB's struct type. The actual size is determined
15799 on-demand when resolving the type of a given object,
15800 so set the type's length to zero for now. Otherwise,
15801 we record an expression as the length, and that expression
15802 could lead to a very large value, which could eventually
15803 lead to us trying to allocate that much memory when creating
15804 a value of that type. */
15805 TYPE_LENGTH (type) = 0;
15806 }
15807 }
15808 else
15809 {
15810 TYPE_LENGTH (type) = 0;
15811 }
15812
15813 maybe_set_alignment (cu, die, type);
15814
15815 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15816 {
15817 /* ICC<14 does not output the required DW_AT_declaration on
15818 incomplete types, but gives them a size of zero. */
15819 TYPE_STUB (type) = 1;
15820 }
15821 else
15822 TYPE_STUB_SUPPORTED (type) = 1;
15823
15824 if (die_is_declaration (die, cu))
15825 TYPE_STUB (type) = 1;
15826 else if (attr == NULL && die->child == NULL
15827 && producer_is_realview (cu->producer))
15828 /* RealView does not output the required DW_AT_declaration
15829 on incomplete types. */
15830 TYPE_STUB (type) = 1;
15831
15832 /* We need to add the type field to the die immediately so we don't
15833 infinitely recurse when dealing with pointers to the structure
15834 type within the structure itself. */
15835 set_die_type (die, type, cu);
15836
15837 /* set_die_type should be already done. */
15838 set_descriptive_type (type, die, cu);
15839
15840 return type;
15841 }
15842
15843 /* A helper for process_structure_scope that handles a single member
15844 DIE. */
15845
15846 static void
15847 handle_struct_member_die (struct die_info *child_die, struct type *type,
15848 struct field_info *fi,
15849 std::vector<struct symbol *> *template_args,
15850 struct dwarf2_cu *cu)
15851 {
15852 if (child_die->tag == DW_TAG_member
15853 || child_die->tag == DW_TAG_variable
15854 || child_die->tag == DW_TAG_variant_part)
15855 {
15856 /* NOTE: carlton/2002-11-05: A C++ static data member
15857 should be a DW_TAG_member that is a declaration, but
15858 all versions of G++ as of this writing (so through at
15859 least 3.2.1) incorrectly generate DW_TAG_variable
15860 tags for them instead. */
15861 dwarf2_add_field (fi, child_die, cu);
15862 }
15863 else if (child_die->tag == DW_TAG_subprogram)
15864 {
15865 /* Rust doesn't have member functions in the C++ sense.
15866 However, it does emit ordinary functions as children
15867 of a struct DIE. */
15868 if (cu->language == language_rust)
15869 read_func_scope (child_die, cu);
15870 else
15871 {
15872 /* C++ member function. */
15873 dwarf2_add_member_fn (fi, child_die, type, cu);
15874 }
15875 }
15876 else if (child_die->tag == DW_TAG_inheritance)
15877 {
15878 /* C++ base class field. */
15879 dwarf2_add_field (fi, child_die, cu);
15880 }
15881 else if (type_can_define_types (child_die))
15882 dwarf2_add_type_defn (fi, child_die, cu);
15883 else if (child_die->tag == DW_TAG_template_type_param
15884 || child_die->tag == DW_TAG_template_value_param)
15885 {
15886 struct symbol *arg = new_symbol (child_die, NULL, cu);
15887
15888 if (arg != NULL)
15889 template_args->push_back (arg);
15890 }
15891 else if (child_die->tag == DW_TAG_variant)
15892 {
15893 /* In a variant we want to get the discriminant and also add a
15894 field for our sole member child. */
15895 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15896
15897 for (die_info *variant_child = child_die->child;
15898 variant_child != NULL;
15899 variant_child = sibling_die (variant_child))
15900 {
15901 if (variant_child->tag == DW_TAG_member)
15902 {
15903 handle_struct_member_die (variant_child, type, fi,
15904 template_args, cu);
15905 /* Only handle the one. */
15906 break;
15907 }
15908 }
15909
15910 /* We don't handle this but we might as well report it if we see
15911 it. */
15912 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15913 complaint (_("DW_AT_discr_list is not supported yet"
15914 " - DIE at %s [in module %s]"),
15915 sect_offset_str (child_die->sect_off),
15916 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15917
15918 /* The first field was just added, so we can stash the
15919 discriminant there. */
15920 gdb_assert (!fi->fields.empty ());
15921 if (discr == NULL)
15922 fi->fields.back ().variant.default_branch = true;
15923 else
15924 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15925 }
15926 }
15927
15928 /* Finish creating a structure or union type, including filling in
15929 its members and creating a symbol for it. */
15930
15931 static void
15932 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15933 {
15934 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15935 struct die_info *child_die;
15936 struct type *type;
15937
15938 type = get_die_type (die, cu);
15939 if (type == NULL)
15940 type = read_structure_type (die, cu);
15941
15942 /* When reading a DW_TAG_variant_part, we need to notice when we
15943 read the discriminant member, so we can record it later in the
15944 discriminant_info. */
15945 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
15946 sect_offset discr_offset;
15947 bool has_template_parameters = false;
15948
15949 if (is_variant_part)
15950 {
15951 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15952 if (discr == NULL)
15953 {
15954 /* Maybe it's a univariant form, an extension we support.
15955 In this case arrange not to check the offset. */
15956 is_variant_part = false;
15957 }
15958 else if (attr_form_is_ref (discr))
15959 {
15960 struct dwarf2_cu *target_cu = cu;
15961 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15962
15963 discr_offset = target_die->sect_off;
15964 }
15965 else
15966 {
15967 complaint (_("DW_AT_discr does not have DIE reference form"
15968 " - DIE at %s [in module %s]"),
15969 sect_offset_str (die->sect_off),
15970 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15971 is_variant_part = false;
15972 }
15973 }
15974
15975 if (die->child != NULL && ! die_is_declaration (die, cu))
15976 {
15977 struct field_info fi;
15978 std::vector<struct symbol *> template_args;
15979
15980 child_die = die->child;
15981
15982 while (child_die && child_die->tag)
15983 {
15984 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
15985
15986 if (is_variant_part && discr_offset == child_die->sect_off)
15987 fi.fields.back ().variant.is_discriminant = true;
15988
15989 child_die = sibling_die (child_die);
15990 }
15991
15992 /* Attach template arguments to type. */
15993 if (!template_args.empty ())
15994 {
15995 has_template_parameters = true;
15996 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15997 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
15998 TYPE_TEMPLATE_ARGUMENTS (type)
15999 = XOBNEWVEC (&objfile->objfile_obstack,
16000 struct symbol *,
16001 TYPE_N_TEMPLATE_ARGUMENTS (type));
16002 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
16003 template_args.data (),
16004 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16005 * sizeof (struct symbol *)));
16006 }
16007
16008 /* Attach fields and member functions to the type. */
16009 if (fi.nfields)
16010 dwarf2_attach_fields_to_type (&fi, type, cu);
16011 if (!fi.fnfieldlists.empty ())
16012 {
16013 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
16014
16015 /* Get the type which refers to the base class (possibly this
16016 class itself) which contains the vtable pointer for the current
16017 class from the DW_AT_containing_type attribute. This use of
16018 DW_AT_containing_type is a GNU extension. */
16019
16020 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16021 {
16022 struct type *t = die_containing_type (die, cu);
16023
16024 set_type_vptr_basetype (type, t);
16025 if (type == t)
16026 {
16027 int i;
16028
16029 /* Our own class provides vtbl ptr. */
16030 for (i = TYPE_NFIELDS (t) - 1;
16031 i >= TYPE_N_BASECLASSES (t);
16032 --i)
16033 {
16034 const char *fieldname = TYPE_FIELD_NAME (t, i);
16035
16036 if (is_vtable_name (fieldname, cu))
16037 {
16038 set_type_vptr_fieldno (type, i);
16039 break;
16040 }
16041 }
16042
16043 /* Complain if virtual function table field not found. */
16044 if (i < TYPE_N_BASECLASSES (t))
16045 complaint (_("virtual function table pointer "
16046 "not found when defining class '%s'"),
16047 TYPE_NAME (type) ? TYPE_NAME (type) : "");
16048 }
16049 else
16050 {
16051 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16052 }
16053 }
16054 else if (cu->producer
16055 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16056 {
16057 /* The IBM XLC compiler does not provide direct indication
16058 of the containing type, but the vtable pointer is
16059 always named __vfp. */
16060
16061 int i;
16062
16063 for (i = TYPE_NFIELDS (type) - 1;
16064 i >= TYPE_N_BASECLASSES (type);
16065 --i)
16066 {
16067 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16068 {
16069 set_type_vptr_fieldno (type, i);
16070 set_type_vptr_basetype (type, type);
16071 break;
16072 }
16073 }
16074 }
16075 }
16076
16077 /* Copy fi.typedef_field_list linked list elements content into the
16078 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16079 if (!fi.typedef_field_list.empty ())
16080 {
16081 int count = fi.typedef_field_list.size ();
16082
16083 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16084 TYPE_TYPEDEF_FIELD_ARRAY (type)
16085 = ((struct decl_field *)
16086 TYPE_ALLOC (type,
16087 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16088 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16089
16090 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16091 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16092 }
16093
16094 /* Copy fi.nested_types_list linked list elements content into the
16095 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16096 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16097 {
16098 int count = fi.nested_types_list.size ();
16099
16100 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16101 TYPE_NESTED_TYPES_ARRAY (type)
16102 = ((struct decl_field *)
16103 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16104 TYPE_NESTED_TYPES_COUNT (type) = count;
16105
16106 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16107 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16108 }
16109 }
16110
16111 quirk_gcc_member_function_pointer (type, objfile);
16112 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16113 cu->rust_unions.push_back (type);
16114
16115 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16116 snapshots) has been known to create a die giving a declaration
16117 for a class that has, as a child, a die giving a definition for a
16118 nested class. So we have to process our children even if the
16119 current die is a declaration. Normally, of course, a declaration
16120 won't have any children at all. */
16121
16122 child_die = die->child;
16123
16124 while (child_die != NULL && child_die->tag)
16125 {
16126 if (child_die->tag == DW_TAG_member
16127 || child_die->tag == DW_TAG_variable
16128 || child_die->tag == DW_TAG_inheritance
16129 || child_die->tag == DW_TAG_template_value_param
16130 || child_die->tag == DW_TAG_template_type_param)
16131 {
16132 /* Do nothing. */
16133 }
16134 else
16135 process_die (child_die, cu);
16136
16137 child_die = sibling_die (child_die);
16138 }
16139
16140 /* Do not consider external references. According to the DWARF standard,
16141 these DIEs are identified by the fact that they have no byte_size
16142 attribute, and a declaration attribute. */
16143 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16144 || !die_is_declaration (die, cu))
16145 {
16146 struct symbol *sym = new_symbol (die, type, cu);
16147
16148 if (has_template_parameters)
16149 {
16150 struct symtab *symtab;
16151 if (sym != nullptr)
16152 symtab = symbol_symtab (sym);
16153 else if (cu->line_header != nullptr)
16154 {
16155 /* Any related symtab will do. */
16156 symtab
16157 = cu->line_header->file_name_at (file_name_index (1))->symtab;
16158 }
16159 else
16160 {
16161 symtab = nullptr;
16162 complaint (_("could not find suitable "
16163 "symtab for template parameter"
16164 " - DIE at %s [in module %s]"),
16165 sect_offset_str (die->sect_off),
16166 objfile_name (objfile));
16167 }
16168
16169 if (symtab != nullptr)
16170 {
16171 /* Make sure that the symtab is set on the new symbols.
16172 Even though they don't appear in this symtab directly,
16173 other parts of gdb assume that symbols do, and this is
16174 reasonably true. */
16175 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16176 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
16177 }
16178 }
16179 }
16180 }
16181
16182 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16183 update TYPE using some information only available in DIE's children. */
16184
16185 static void
16186 update_enumeration_type_from_children (struct die_info *die,
16187 struct type *type,
16188 struct dwarf2_cu *cu)
16189 {
16190 struct die_info *child_die;
16191 int unsigned_enum = 1;
16192 int flag_enum = 1;
16193 ULONGEST mask = 0;
16194
16195 auto_obstack obstack;
16196
16197 for (child_die = die->child;
16198 child_die != NULL && child_die->tag;
16199 child_die = sibling_die (child_die))
16200 {
16201 struct attribute *attr;
16202 LONGEST value;
16203 const gdb_byte *bytes;
16204 struct dwarf2_locexpr_baton *baton;
16205 const char *name;
16206
16207 if (child_die->tag != DW_TAG_enumerator)
16208 continue;
16209
16210 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16211 if (attr == NULL)
16212 continue;
16213
16214 name = dwarf2_name (child_die, cu);
16215 if (name == NULL)
16216 name = "<anonymous enumerator>";
16217
16218 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16219 &value, &bytes, &baton);
16220 if (value < 0)
16221 {
16222 unsigned_enum = 0;
16223 flag_enum = 0;
16224 }
16225 else if ((mask & value) != 0)
16226 flag_enum = 0;
16227 else
16228 mask |= value;
16229
16230 /* If we already know that the enum type is neither unsigned, nor
16231 a flag type, no need to look at the rest of the enumerates. */
16232 if (!unsigned_enum && !flag_enum)
16233 break;
16234 }
16235
16236 if (unsigned_enum)
16237 TYPE_UNSIGNED (type) = 1;
16238 if (flag_enum)
16239 TYPE_FLAG_ENUM (type) = 1;
16240 }
16241
16242 /* Given a DW_AT_enumeration_type die, set its type. We do not
16243 complete the type's fields yet, or create any symbols. */
16244
16245 static struct type *
16246 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16247 {
16248 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16249 struct type *type;
16250 struct attribute *attr;
16251 const char *name;
16252
16253 /* If the definition of this type lives in .debug_types, read that type.
16254 Don't follow DW_AT_specification though, that will take us back up
16255 the chain and we want to go down. */
16256 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16257 if (attr)
16258 {
16259 type = get_DW_AT_signature_type (die, attr, cu);
16260
16261 /* The type's CU may not be the same as CU.
16262 Ensure TYPE is recorded with CU in die_type_hash. */
16263 return set_die_type (die, type, cu);
16264 }
16265
16266 type = alloc_type (objfile);
16267
16268 TYPE_CODE (type) = TYPE_CODE_ENUM;
16269 name = dwarf2_full_name (NULL, die, cu);
16270 if (name != NULL)
16271 TYPE_NAME (type) = name;
16272
16273 attr = dwarf2_attr (die, DW_AT_type, cu);
16274 if (attr != NULL)
16275 {
16276 struct type *underlying_type = die_type (die, cu);
16277
16278 TYPE_TARGET_TYPE (type) = underlying_type;
16279 }
16280
16281 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16282 if (attr)
16283 {
16284 TYPE_LENGTH (type) = DW_UNSND (attr);
16285 }
16286 else
16287 {
16288 TYPE_LENGTH (type) = 0;
16289 }
16290
16291 maybe_set_alignment (cu, die, type);
16292
16293 /* The enumeration DIE can be incomplete. In Ada, any type can be
16294 declared as private in the package spec, and then defined only
16295 inside the package body. Such types are known as Taft Amendment
16296 Types. When another package uses such a type, an incomplete DIE
16297 may be generated by the compiler. */
16298 if (die_is_declaration (die, cu))
16299 TYPE_STUB (type) = 1;
16300
16301 /* Finish the creation of this type by using the enum's children.
16302 We must call this even when the underlying type has been provided
16303 so that we can determine if we're looking at a "flag" enum. */
16304 update_enumeration_type_from_children (die, type, cu);
16305
16306 /* If this type has an underlying type that is not a stub, then we
16307 may use its attributes. We always use the "unsigned" attribute
16308 in this situation, because ordinarily we guess whether the type
16309 is unsigned -- but the guess can be wrong and the underlying type
16310 can tell us the reality. However, we defer to a local size
16311 attribute if one exists, because this lets the compiler override
16312 the underlying type if needed. */
16313 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16314 {
16315 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16316 if (TYPE_LENGTH (type) == 0)
16317 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16318 if (TYPE_RAW_ALIGN (type) == 0
16319 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16320 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16321 }
16322
16323 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16324
16325 return set_die_type (die, type, cu);
16326 }
16327
16328 /* Given a pointer to a die which begins an enumeration, process all
16329 the dies that define the members of the enumeration, and create the
16330 symbol for the enumeration type.
16331
16332 NOTE: We reverse the order of the element list. */
16333
16334 static void
16335 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16336 {
16337 struct type *this_type;
16338
16339 this_type = get_die_type (die, cu);
16340 if (this_type == NULL)
16341 this_type = read_enumeration_type (die, cu);
16342
16343 if (die->child != NULL)
16344 {
16345 struct die_info *child_die;
16346 struct symbol *sym;
16347 struct field *fields = NULL;
16348 int num_fields = 0;
16349 const char *name;
16350
16351 child_die = die->child;
16352 while (child_die && child_die->tag)
16353 {
16354 if (child_die->tag != DW_TAG_enumerator)
16355 {
16356 process_die (child_die, cu);
16357 }
16358 else
16359 {
16360 name = dwarf2_name (child_die, cu);
16361 if (name)
16362 {
16363 sym = new_symbol (child_die, this_type, cu);
16364
16365 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16366 {
16367 fields = (struct field *)
16368 xrealloc (fields,
16369 (num_fields + DW_FIELD_ALLOC_CHUNK)
16370 * sizeof (struct field));
16371 }
16372
16373 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16374 FIELD_TYPE (fields[num_fields]) = NULL;
16375 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16376 FIELD_BITSIZE (fields[num_fields]) = 0;
16377
16378 num_fields++;
16379 }
16380 }
16381
16382 child_die = sibling_die (child_die);
16383 }
16384
16385 if (num_fields)
16386 {
16387 TYPE_NFIELDS (this_type) = num_fields;
16388 TYPE_FIELDS (this_type) = (struct field *)
16389 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16390 memcpy (TYPE_FIELDS (this_type), fields,
16391 sizeof (struct field) * num_fields);
16392 xfree (fields);
16393 }
16394 }
16395
16396 /* If we are reading an enum from a .debug_types unit, and the enum
16397 is a declaration, and the enum is not the signatured type in the
16398 unit, then we do not want to add a symbol for it. Adding a
16399 symbol would in some cases obscure the true definition of the
16400 enum, giving users an incomplete type when the definition is
16401 actually available. Note that we do not want to do this for all
16402 enums which are just declarations, because C++0x allows forward
16403 enum declarations. */
16404 if (cu->per_cu->is_debug_types
16405 && die_is_declaration (die, cu))
16406 {
16407 struct signatured_type *sig_type;
16408
16409 sig_type = (struct signatured_type *) cu->per_cu;
16410 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16411 if (sig_type->type_offset_in_section != die->sect_off)
16412 return;
16413 }
16414
16415 new_symbol (die, this_type, cu);
16416 }
16417
16418 /* Extract all information from a DW_TAG_array_type DIE and put it in
16419 the DIE's type field. For now, this only handles one dimensional
16420 arrays. */
16421
16422 static struct type *
16423 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16424 {
16425 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16426 struct die_info *child_die;
16427 struct type *type;
16428 struct type *element_type, *range_type, *index_type;
16429 struct attribute *attr;
16430 const char *name;
16431 struct dynamic_prop *byte_stride_prop = NULL;
16432 unsigned int bit_stride = 0;
16433
16434 element_type = die_type (die, cu);
16435
16436 /* The die_type call above may have already set the type for this DIE. */
16437 type = get_die_type (die, cu);
16438 if (type)
16439 return type;
16440
16441 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16442 if (attr != NULL)
16443 {
16444 int stride_ok;
16445
16446 byte_stride_prop
16447 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16448 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16449 if (!stride_ok)
16450 {
16451 complaint (_("unable to read array DW_AT_byte_stride "
16452 " - DIE at %s [in module %s]"),
16453 sect_offset_str (die->sect_off),
16454 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16455 /* Ignore this attribute. We will likely not be able to print
16456 arrays of this type correctly, but there is little we can do
16457 to help if we cannot read the attribute's value. */
16458 byte_stride_prop = NULL;
16459 }
16460 }
16461
16462 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16463 if (attr != NULL)
16464 bit_stride = DW_UNSND (attr);
16465
16466 /* Irix 6.2 native cc creates array types without children for
16467 arrays with unspecified length. */
16468 if (die->child == NULL)
16469 {
16470 index_type = objfile_type (objfile)->builtin_int;
16471 range_type = create_static_range_type (NULL, index_type, 0, -1);
16472 type = create_array_type_with_stride (NULL, element_type, range_type,
16473 byte_stride_prop, bit_stride);
16474 return set_die_type (die, type, cu);
16475 }
16476
16477 std::vector<struct type *> range_types;
16478 child_die = die->child;
16479 while (child_die && child_die->tag)
16480 {
16481 if (child_die->tag == DW_TAG_subrange_type)
16482 {
16483 struct type *child_type = read_type_die (child_die, cu);
16484
16485 if (child_type != NULL)
16486 {
16487 /* The range type was succesfully read. Save it for the
16488 array type creation. */
16489 range_types.push_back (child_type);
16490 }
16491 }
16492 child_die = sibling_die (child_die);
16493 }
16494
16495 /* Dwarf2 dimensions are output from left to right, create the
16496 necessary array types in backwards order. */
16497
16498 type = element_type;
16499
16500 if (read_array_order (die, cu) == DW_ORD_col_major)
16501 {
16502 int i = 0;
16503
16504 while (i < range_types.size ())
16505 type = create_array_type_with_stride (NULL, type, range_types[i++],
16506 byte_stride_prop, bit_stride);
16507 }
16508 else
16509 {
16510 size_t ndim = range_types.size ();
16511 while (ndim-- > 0)
16512 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16513 byte_stride_prop, bit_stride);
16514 }
16515
16516 /* Understand Dwarf2 support for vector types (like they occur on
16517 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16518 array type. This is not part of the Dwarf2/3 standard yet, but a
16519 custom vendor extension. The main difference between a regular
16520 array and the vector variant is that vectors are passed by value
16521 to functions. */
16522 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16523 if (attr)
16524 make_vector_type (type);
16525
16526 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16527 implementation may choose to implement triple vectors using this
16528 attribute. */
16529 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16530 if (attr)
16531 {
16532 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16533 TYPE_LENGTH (type) = DW_UNSND (attr);
16534 else
16535 complaint (_("DW_AT_byte_size for array type smaller "
16536 "than the total size of elements"));
16537 }
16538
16539 name = dwarf2_name (die, cu);
16540 if (name)
16541 TYPE_NAME (type) = name;
16542
16543 maybe_set_alignment (cu, die, type);
16544
16545 /* Install the type in the die. */
16546 set_die_type (die, type, cu);
16547
16548 /* set_die_type should be already done. */
16549 set_descriptive_type (type, die, cu);
16550
16551 return type;
16552 }
16553
16554 static enum dwarf_array_dim_ordering
16555 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16556 {
16557 struct attribute *attr;
16558
16559 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16560
16561 if (attr)
16562 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16563
16564 /* GNU F77 is a special case, as at 08/2004 array type info is the
16565 opposite order to the dwarf2 specification, but data is still
16566 laid out as per normal fortran.
16567
16568 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16569 version checking. */
16570
16571 if (cu->language == language_fortran
16572 && cu->producer && strstr (cu->producer, "GNU F77"))
16573 {
16574 return DW_ORD_row_major;
16575 }
16576
16577 switch (cu->language_defn->la_array_ordering)
16578 {
16579 case array_column_major:
16580 return DW_ORD_col_major;
16581 case array_row_major:
16582 default:
16583 return DW_ORD_row_major;
16584 };
16585 }
16586
16587 /* Extract all information from a DW_TAG_set_type DIE and put it in
16588 the DIE's type field. */
16589
16590 static struct type *
16591 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16592 {
16593 struct type *domain_type, *set_type;
16594 struct attribute *attr;
16595
16596 domain_type = die_type (die, cu);
16597
16598 /* The die_type call above may have already set the type for this DIE. */
16599 set_type = get_die_type (die, cu);
16600 if (set_type)
16601 return set_type;
16602
16603 set_type = create_set_type (NULL, domain_type);
16604
16605 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16606 if (attr)
16607 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16608
16609 maybe_set_alignment (cu, die, set_type);
16610
16611 return set_die_type (die, set_type, cu);
16612 }
16613
16614 /* A helper for read_common_block that creates a locexpr baton.
16615 SYM is the symbol which we are marking as computed.
16616 COMMON_DIE is the DIE for the common block.
16617 COMMON_LOC is the location expression attribute for the common
16618 block itself.
16619 MEMBER_LOC is the location expression attribute for the particular
16620 member of the common block that we are processing.
16621 CU is the CU from which the above come. */
16622
16623 static void
16624 mark_common_block_symbol_computed (struct symbol *sym,
16625 struct die_info *common_die,
16626 struct attribute *common_loc,
16627 struct attribute *member_loc,
16628 struct dwarf2_cu *cu)
16629 {
16630 struct dwarf2_per_objfile *dwarf2_per_objfile
16631 = cu->per_cu->dwarf2_per_objfile;
16632 struct objfile *objfile = dwarf2_per_objfile->objfile;
16633 struct dwarf2_locexpr_baton *baton;
16634 gdb_byte *ptr;
16635 unsigned int cu_off;
16636 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16637 LONGEST offset = 0;
16638
16639 gdb_assert (common_loc && member_loc);
16640 gdb_assert (attr_form_is_block (common_loc));
16641 gdb_assert (attr_form_is_block (member_loc)
16642 || attr_form_is_constant (member_loc));
16643
16644 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16645 baton->per_cu = cu->per_cu;
16646 gdb_assert (baton->per_cu);
16647
16648 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16649
16650 if (attr_form_is_constant (member_loc))
16651 {
16652 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16653 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16654 }
16655 else
16656 baton->size += DW_BLOCK (member_loc)->size;
16657
16658 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16659 baton->data = ptr;
16660
16661 *ptr++ = DW_OP_call4;
16662 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16663 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16664 ptr += 4;
16665
16666 if (attr_form_is_constant (member_loc))
16667 {
16668 *ptr++ = DW_OP_addr;
16669 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16670 ptr += cu->header.addr_size;
16671 }
16672 else
16673 {
16674 /* We have to copy the data here, because DW_OP_call4 will only
16675 use a DW_AT_location attribute. */
16676 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16677 ptr += DW_BLOCK (member_loc)->size;
16678 }
16679
16680 *ptr++ = DW_OP_plus;
16681 gdb_assert (ptr - baton->data == baton->size);
16682
16683 SYMBOL_LOCATION_BATON (sym) = baton;
16684 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16685 }
16686
16687 /* Create appropriate locally-scoped variables for all the
16688 DW_TAG_common_block entries. Also create a struct common_block
16689 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16690 is used to sepate the common blocks name namespace from regular
16691 variable names. */
16692
16693 static void
16694 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16695 {
16696 struct attribute *attr;
16697
16698 attr = dwarf2_attr (die, DW_AT_location, cu);
16699 if (attr)
16700 {
16701 /* Support the .debug_loc offsets. */
16702 if (attr_form_is_block (attr))
16703 {
16704 /* Ok. */
16705 }
16706 else if (attr_form_is_section_offset (attr))
16707 {
16708 dwarf2_complex_location_expr_complaint ();
16709 attr = NULL;
16710 }
16711 else
16712 {
16713 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16714 "common block member");
16715 attr = NULL;
16716 }
16717 }
16718
16719 if (die->child != NULL)
16720 {
16721 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16722 struct die_info *child_die;
16723 size_t n_entries = 0, size;
16724 struct common_block *common_block;
16725 struct symbol *sym;
16726
16727 for (child_die = die->child;
16728 child_die && child_die->tag;
16729 child_die = sibling_die (child_die))
16730 ++n_entries;
16731
16732 size = (sizeof (struct common_block)
16733 + (n_entries - 1) * sizeof (struct symbol *));
16734 common_block
16735 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16736 size);
16737 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16738 common_block->n_entries = 0;
16739
16740 for (child_die = die->child;
16741 child_die && child_die->tag;
16742 child_die = sibling_die (child_die))
16743 {
16744 /* Create the symbol in the DW_TAG_common_block block in the current
16745 symbol scope. */
16746 sym = new_symbol (child_die, NULL, cu);
16747 if (sym != NULL)
16748 {
16749 struct attribute *member_loc;
16750
16751 common_block->contents[common_block->n_entries++] = sym;
16752
16753 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16754 cu);
16755 if (member_loc)
16756 {
16757 /* GDB has handled this for a long time, but it is
16758 not specified by DWARF. It seems to have been
16759 emitted by gfortran at least as recently as:
16760 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16761 complaint (_("Variable in common block has "
16762 "DW_AT_data_member_location "
16763 "- DIE at %s [in module %s]"),
16764 sect_offset_str (child_die->sect_off),
16765 objfile_name (objfile));
16766
16767 if (attr_form_is_section_offset (member_loc))
16768 dwarf2_complex_location_expr_complaint ();
16769 else if (attr_form_is_constant (member_loc)
16770 || attr_form_is_block (member_loc))
16771 {
16772 if (attr)
16773 mark_common_block_symbol_computed (sym, die, attr,
16774 member_loc, cu);
16775 }
16776 else
16777 dwarf2_complex_location_expr_complaint ();
16778 }
16779 }
16780 }
16781
16782 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16783 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16784 }
16785 }
16786
16787 /* Create a type for a C++ namespace. */
16788
16789 static struct type *
16790 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16791 {
16792 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16793 const char *previous_prefix, *name;
16794 int is_anonymous;
16795 struct type *type;
16796
16797 /* For extensions, reuse the type of the original namespace. */
16798 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16799 {
16800 struct die_info *ext_die;
16801 struct dwarf2_cu *ext_cu = cu;
16802
16803 ext_die = dwarf2_extension (die, &ext_cu);
16804 type = read_type_die (ext_die, ext_cu);
16805
16806 /* EXT_CU may not be the same as CU.
16807 Ensure TYPE is recorded with CU in die_type_hash. */
16808 return set_die_type (die, type, cu);
16809 }
16810
16811 name = namespace_name (die, &is_anonymous, cu);
16812
16813 /* Now build the name of the current namespace. */
16814
16815 previous_prefix = determine_prefix (die, cu);
16816 if (previous_prefix[0] != '\0')
16817 name = typename_concat (&objfile->objfile_obstack,
16818 previous_prefix, name, 0, cu);
16819
16820 /* Create the type. */
16821 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16822
16823 return set_die_type (die, type, cu);
16824 }
16825
16826 /* Read a namespace scope. */
16827
16828 static void
16829 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16830 {
16831 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16832 int is_anonymous;
16833
16834 /* Add a symbol associated to this if we haven't seen the namespace
16835 before. Also, add a using directive if it's an anonymous
16836 namespace. */
16837
16838 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16839 {
16840 struct type *type;
16841
16842 type = read_type_die (die, cu);
16843 new_symbol (die, type, cu);
16844
16845 namespace_name (die, &is_anonymous, cu);
16846 if (is_anonymous)
16847 {
16848 const char *previous_prefix = determine_prefix (die, cu);
16849
16850 std::vector<const char *> excludes;
16851 add_using_directive (using_directives (cu),
16852 previous_prefix, TYPE_NAME (type), NULL,
16853 NULL, excludes, 0, &objfile->objfile_obstack);
16854 }
16855 }
16856
16857 if (die->child != NULL)
16858 {
16859 struct die_info *child_die = die->child;
16860
16861 while (child_die && child_die->tag)
16862 {
16863 process_die (child_die, cu);
16864 child_die = sibling_die (child_die);
16865 }
16866 }
16867 }
16868
16869 /* Read a Fortran module as type. This DIE can be only a declaration used for
16870 imported module. Still we need that type as local Fortran "use ... only"
16871 declaration imports depend on the created type in determine_prefix. */
16872
16873 static struct type *
16874 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16875 {
16876 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16877 const char *module_name;
16878 struct type *type;
16879
16880 module_name = dwarf2_name (die, cu);
16881 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16882
16883 return set_die_type (die, type, cu);
16884 }
16885
16886 /* Read a Fortran module. */
16887
16888 static void
16889 read_module (struct die_info *die, struct dwarf2_cu *cu)
16890 {
16891 struct die_info *child_die = die->child;
16892 struct type *type;
16893
16894 type = read_type_die (die, cu);
16895 new_symbol (die, type, cu);
16896
16897 while (child_die && child_die->tag)
16898 {
16899 process_die (child_die, cu);
16900 child_die = sibling_die (child_die);
16901 }
16902 }
16903
16904 /* Return the name of the namespace represented by DIE. Set
16905 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16906 namespace. */
16907
16908 static const char *
16909 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16910 {
16911 struct die_info *current_die;
16912 const char *name = NULL;
16913
16914 /* Loop through the extensions until we find a name. */
16915
16916 for (current_die = die;
16917 current_die != NULL;
16918 current_die = dwarf2_extension (die, &cu))
16919 {
16920 /* We don't use dwarf2_name here so that we can detect the absence
16921 of a name -> anonymous namespace. */
16922 name = dwarf2_string_attr (die, DW_AT_name, cu);
16923
16924 if (name != NULL)
16925 break;
16926 }
16927
16928 /* Is it an anonymous namespace? */
16929
16930 *is_anonymous = (name == NULL);
16931 if (*is_anonymous)
16932 name = CP_ANONYMOUS_NAMESPACE_STR;
16933
16934 return name;
16935 }
16936
16937 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16938 the user defined type vector. */
16939
16940 static struct type *
16941 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16942 {
16943 struct gdbarch *gdbarch
16944 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16945 struct comp_unit_head *cu_header = &cu->header;
16946 struct type *type;
16947 struct attribute *attr_byte_size;
16948 struct attribute *attr_address_class;
16949 int byte_size, addr_class;
16950 struct type *target_type;
16951
16952 target_type = die_type (die, cu);
16953
16954 /* The die_type call above may have already set the type for this DIE. */
16955 type = get_die_type (die, cu);
16956 if (type)
16957 return type;
16958
16959 type = lookup_pointer_type (target_type);
16960
16961 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16962 if (attr_byte_size)
16963 byte_size = DW_UNSND (attr_byte_size);
16964 else
16965 byte_size = cu_header->addr_size;
16966
16967 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16968 if (attr_address_class)
16969 addr_class = DW_UNSND (attr_address_class);
16970 else
16971 addr_class = DW_ADDR_none;
16972
16973 ULONGEST alignment = get_alignment (cu, die);
16974
16975 /* If the pointer size, alignment, or address class is different
16976 than the default, create a type variant marked as such and set
16977 the length accordingly. */
16978 if (TYPE_LENGTH (type) != byte_size
16979 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
16980 && alignment != TYPE_RAW_ALIGN (type))
16981 || addr_class != DW_ADDR_none)
16982 {
16983 if (gdbarch_address_class_type_flags_p (gdbarch))
16984 {
16985 int type_flags;
16986
16987 type_flags = gdbarch_address_class_type_flags
16988 (gdbarch, byte_size, addr_class);
16989 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16990 == 0);
16991 type = make_type_with_address_space (type, type_flags);
16992 }
16993 else if (TYPE_LENGTH (type) != byte_size)
16994 {
16995 complaint (_("invalid pointer size %d"), byte_size);
16996 }
16997 else if (TYPE_RAW_ALIGN (type) != alignment)
16998 {
16999 complaint (_("Invalid DW_AT_alignment"
17000 " - DIE at %s [in module %s]"),
17001 sect_offset_str (die->sect_off),
17002 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17003 }
17004 else
17005 {
17006 /* Should we also complain about unhandled address classes? */
17007 }
17008 }
17009
17010 TYPE_LENGTH (type) = byte_size;
17011 set_type_align (type, alignment);
17012 return set_die_type (die, type, cu);
17013 }
17014
17015 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17016 the user defined type vector. */
17017
17018 static struct type *
17019 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17020 {
17021 struct type *type;
17022 struct type *to_type;
17023 struct type *domain;
17024
17025 to_type = die_type (die, cu);
17026 domain = die_containing_type (die, cu);
17027
17028 /* The calls above may have already set the type for this DIE. */
17029 type = get_die_type (die, cu);
17030 if (type)
17031 return type;
17032
17033 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17034 type = lookup_methodptr_type (to_type);
17035 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17036 {
17037 struct type *new_type
17038 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
17039
17040 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17041 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17042 TYPE_VARARGS (to_type));
17043 type = lookup_methodptr_type (new_type);
17044 }
17045 else
17046 type = lookup_memberptr_type (to_type, domain);
17047
17048 return set_die_type (die, type, cu);
17049 }
17050
17051 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17052 the user defined type vector. */
17053
17054 static struct type *
17055 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17056 enum type_code refcode)
17057 {
17058 struct comp_unit_head *cu_header = &cu->header;
17059 struct type *type, *target_type;
17060 struct attribute *attr;
17061
17062 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17063
17064 target_type = die_type (die, cu);
17065
17066 /* The die_type call above may have already set the type for this DIE. */
17067 type = get_die_type (die, cu);
17068 if (type)
17069 return type;
17070
17071 type = lookup_reference_type (target_type, refcode);
17072 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17073 if (attr)
17074 {
17075 TYPE_LENGTH (type) = DW_UNSND (attr);
17076 }
17077 else
17078 {
17079 TYPE_LENGTH (type) = cu_header->addr_size;
17080 }
17081 maybe_set_alignment (cu, die, type);
17082 return set_die_type (die, type, cu);
17083 }
17084
17085 /* Add the given cv-qualifiers to the element type of the array. GCC
17086 outputs DWARF type qualifiers that apply to an array, not the
17087 element type. But GDB relies on the array element type to carry
17088 the cv-qualifiers. This mimics section 6.7.3 of the C99
17089 specification. */
17090
17091 static struct type *
17092 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17093 struct type *base_type, int cnst, int voltl)
17094 {
17095 struct type *el_type, *inner_array;
17096
17097 base_type = copy_type (base_type);
17098 inner_array = base_type;
17099
17100 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17101 {
17102 TYPE_TARGET_TYPE (inner_array) =
17103 copy_type (TYPE_TARGET_TYPE (inner_array));
17104 inner_array = TYPE_TARGET_TYPE (inner_array);
17105 }
17106
17107 el_type = TYPE_TARGET_TYPE (inner_array);
17108 cnst |= TYPE_CONST (el_type);
17109 voltl |= TYPE_VOLATILE (el_type);
17110 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17111
17112 return set_die_type (die, base_type, cu);
17113 }
17114
17115 static struct type *
17116 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17117 {
17118 struct type *base_type, *cv_type;
17119
17120 base_type = die_type (die, cu);
17121
17122 /* The die_type call above may have already set the type for this DIE. */
17123 cv_type = get_die_type (die, cu);
17124 if (cv_type)
17125 return cv_type;
17126
17127 /* In case the const qualifier is applied to an array type, the element type
17128 is so qualified, not the array type (section 6.7.3 of C99). */
17129 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17130 return add_array_cv_type (die, cu, base_type, 1, 0);
17131
17132 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17133 return set_die_type (die, cv_type, cu);
17134 }
17135
17136 static struct type *
17137 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17138 {
17139 struct type *base_type, *cv_type;
17140
17141 base_type = die_type (die, cu);
17142
17143 /* The die_type call above may have already set the type for this DIE. */
17144 cv_type = get_die_type (die, cu);
17145 if (cv_type)
17146 return cv_type;
17147
17148 /* In case the volatile qualifier is applied to an array type, the
17149 element type is so qualified, not the array type (section 6.7.3
17150 of C99). */
17151 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17152 return add_array_cv_type (die, cu, base_type, 0, 1);
17153
17154 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17155 return set_die_type (die, cv_type, cu);
17156 }
17157
17158 /* Handle DW_TAG_restrict_type. */
17159
17160 static struct type *
17161 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17162 {
17163 struct type *base_type, *cv_type;
17164
17165 base_type = die_type (die, cu);
17166
17167 /* The die_type call above may have already set the type for this DIE. */
17168 cv_type = get_die_type (die, cu);
17169 if (cv_type)
17170 return cv_type;
17171
17172 cv_type = make_restrict_type (base_type);
17173 return set_die_type (die, cv_type, cu);
17174 }
17175
17176 /* Handle DW_TAG_atomic_type. */
17177
17178 static struct type *
17179 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17180 {
17181 struct type *base_type, *cv_type;
17182
17183 base_type = die_type (die, cu);
17184
17185 /* The die_type call above may have already set the type for this DIE. */
17186 cv_type = get_die_type (die, cu);
17187 if (cv_type)
17188 return cv_type;
17189
17190 cv_type = make_atomic_type (base_type);
17191 return set_die_type (die, cv_type, cu);
17192 }
17193
17194 /* Extract all information from a DW_TAG_string_type DIE and add to
17195 the user defined type vector. It isn't really a user defined type,
17196 but it behaves like one, with other DIE's using an AT_user_def_type
17197 attribute to reference it. */
17198
17199 static struct type *
17200 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17201 {
17202 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17203 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17204 struct type *type, *range_type, *index_type, *char_type;
17205 struct attribute *attr;
17206 unsigned int length;
17207
17208 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17209 if (attr)
17210 {
17211 length = DW_UNSND (attr);
17212 }
17213 else
17214 {
17215 /* Check for the DW_AT_byte_size attribute. */
17216 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17217 if (attr)
17218 {
17219 length = DW_UNSND (attr);
17220 }
17221 else
17222 {
17223 length = 1;
17224 }
17225 }
17226
17227 index_type = objfile_type (objfile)->builtin_int;
17228 range_type = create_static_range_type (NULL, index_type, 1, length);
17229 char_type = language_string_char_type (cu->language_defn, gdbarch);
17230 type = create_string_type (NULL, char_type, range_type);
17231
17232 return set_die_type (die, type, cu);
17233 }
17234
17235 /* Assuming that DIE corresponds to a function, returns nonzero
17236 if the function is prototyped. */
17237
17238 static int
17239 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17240 {
17241 struct attribute *attr;
17242
17243 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17244 if (attr && (DW_UNSND (attr) != 0))
17245 return 1;
17246
17247 /* The DWARF standard implies that the DW_AT_prototyped attribute
17248 is only meaninful for C, but the concept also extends to other
17249 languages that allow unprototyped functions (Eg: Objective C).
17250 For all other languages, assume that functions are always
17251 prototyped. */
17252 if (cu->language != language_c
17253 && cu->language != language_objc
17254 && cu->language != language_opencl)
17255 return 1;
17256
17257 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17258 prototyped and unprototyped functions; default to prototyped,
17259 since that is more common in modern code (and RealView warns
17260 about unprototyped functions). */
17261 if (producer_is_realview (cu->producer))
17262 return 1;
17263
17264 return 0;
17265 }
17266
17267 /* Handle DIES due to C code like:
17268
17269 struct foo
17270 {
17271 int (*funcp)(int a, long l);
17272 int b;
17273 };
17274
17275 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17276
17277 static struct type *
17278 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17279 {
17280 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17281 struct type *type; /* Type that this function returns. */
17282 struct type *ftype; /* Function that returns above type. */
17283 struct attribute *attr;
17284
17285 type = die_type (die, cu);
17286
17287 /* The die_type call above may have already set the type for this DIE. */
17288 ftype = get_die_type (die, cu);
17289 if (ftype)
17290 return ftype;
17291
17292 ftype = lookup_function_type (type);
17293
17294 if (prototyped_function_p (die, cu))
17295 TYPE_PROTOTYPED (ftype) = 1;
17296
17297 /* Store the calling convention in the type if it's available in
17298 the subroutine die. Otherwise set the calling convention to
17299 the default value DW_CC_normal. */
17300 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17301 if (attr)
17302 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17303 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17304 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17305 else
17306 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17307
17308 /* Record whether the function returns normally to its caller or not
17309 if the DWARF producer set that information. */
17310 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17311 if (attr && (DW_UNSND (attr) != 0))
17312 TYPE_NO_RETURN (ftype) = 1;
17313
17314 /* We need to add the subroutine type to the die immediately so
17315 we don't infinitely recurse when dealing with parameters
17316 declared as the same subroutine type. */
17317 set_die_type (die, ftype, cu);
17318
17319 if (die->child != NULL)
17320 {
17321 struct type *void_type = objfile_type (objfile)->builtin_void;
17322 struct die_info *child_die;
17323 int nparams, iparams;
17324
17325 /* Count the number of parameters.
17326 FIXME: GDB currently ignores vararg functions, but knows about
17327 vararg member functions. */
17328 nparams = 0;
17329 child_die = die->child;
17330 while (child_die && child_die->tag)
17331 {
17332 if (child_die->tag == DW_TAG_formal_parameter)
17333 nparams++;
17334 else if (child_die->tag == DW_TAG_unspecified_parameters)
17335 TYPE_VARARGS (ftype) = 1;
17336 child_die = sibling_die (child_die);
17337 }
17338
17339 /* Allocate storage for parameters and fill them in. */
17340 TYPE_NFIELDS (ftype) = nparams;
17341 TYPE_FIELDS (ftype) = (struct field *)
17342 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17343
17344 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17345 even if we error out during the parameters reading below. */
17346 for (iparams = 0; iparams < nparams; iparams++)
17347 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17348
17349 iparams = 0;
17350 child_die = die->child;
17351 while (child_die && child_die->tag)
17352 {
17353 if (child_die->tag == DW_TAG_formal_parameter)
17354 {
17355 struct type *arg_type;
17356
17357 /* DWARF version 2 has no clean way to discern C++
17358 static and non-static member functions. G++ helps
17359 GDB by marking the first parameter for non-static
17360 member functions (which is the this pointer) as
17361 artificial. We pass this information to
17362 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17363
17364 DWARF version 3 added DW_AT_object_pointer, which GCC
17365 4.5 does not yet generate. */
17366 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17367 if (attr)
17368 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17369 else
17370 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17371 arg_type = die_type (child_die, cu);
17372
17373 /* RealView does not mark THIS as const, which the testsuite
17374 expects. GCC marks THIS as const in method definitions,
17375 but not in the class specifications (GCC PR 43053). */
17376 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17377 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17378 {
17379 int is_this = 0;
17380 struct dwarf2_cu *arg_cu = cu;
17381 const char *name = dwarf2_name (child_die, cu);
17382
17383 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17384 if (attr)
17385 {
17386 /* If the compiler emits this, use it. */
17387 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17388 is_this = 1;
17389 }
17390 else if (name && strcmp (name, "this") == 0)
17391 /* Function definitions will have the argument names. */
17392 is_this = 1;
17393 else if (name == NULL && iparams == 0)
17394 /* Declarations may not have the names, so like
17395 elsewhere in GDB, assume an artificial first
17396 argument is "this". */
17397 is_this = 1;
17398
17399 if (is_this)
17400 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17401 arg_type, 0);
17402 }
17403
17404 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17405 iparams++;
17406 }
17407 child_die = sibling_die (child_die);
17408 }
17409 }
17410
17411 return ftype;
17412 }
17413
17414 static struct type *
17415 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17416 {
17417 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17418 const char *name = NULL;
17419 struct type *this_type, *target_type;
17420
17421 name = dwarf2_full_name (NULL, die, cu);
17422 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17423 TYPE_TARGET_STUB (this_type) = 1;
17424 set_die_type (die, this_type, cu);
17425 target_type = die_type (die, cu);
17426 if (target_type != this_type)
17427 TYPE_TARGET_TYPE (this_type) = target_type;
17428 else
17429 {
17430 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17431 spec and cause infinite loops in GDB. */
17432 complaint (_("Self-referential DW_TAG_typedef "
17433 "- DIE at %s [in module %s]"),
17434 sect_offset_str (die->sect_off), objfile_name (objfile));
17435 TYPE_TARGET_TYPE (this_type) = NULL;
17436 }
17437 return this_type;
17438 }
17439
17440 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17441 (which may be different from NAME) to the architecture back-end to allow
17442 it to guess the correct format if necessary. */
17443
17444 static struct type *
17445 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17446 const char *name_hint)
17447 {
17448 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17449 const struct floatformat **format;
17450 struct type *type;
17451
17452 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17453 if (format)
17454 type = init_float_type (objfile, bits, name, format);
17455 else
17456 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17457
17458 return type;
17459 }
17460
17461 /* Allocate an integer type of size BITS and name NAME. */
17462
17463 static struct type *
17464 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17465 int bits, int unsigned_p, const char *name)
17466 {
17467 struct type *type;
17468
17469 /* Versions of Intel's C Compiler generate an integer type called "void"
17470 instead of using DW_TAG_unspecified_type. This has been seen on
17471 at least versions 14, 17, and 18. */
17472 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17473 && strcmp (name, "void") == 0)
17474 type = objfile_type (objfile)->builtin_void;
17475 else
17476 type = init_integer_type (objfile, bits, unsigned_p, name);
17477
17478 return type;
17479 }
17480
17481 /* Initialise and return a floating point type of size BITS suitable for
17482 use as a component of a complex number. The NAME_HINT is passed through
17483 when initialising the floating point type and is the name of the complex
17484 type.
17485
17486 As DWARF doesn't currently provide an explicit name for the components
17487 of a complex number, but it can be helpful to have these components
17488 named, we try to select a suitable name based on the size of the
17489 component. */
17490 static struct type *
17491 dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
17492 struct objfile *objfile,
17493 int bits, const char *name_hint)
17494 {
17495 gdbarch *gdbarch = get_objfile_arch (objfile);
17496 struct type *tt = nullptr;
17497
17498 /* Try to find a suitable floating point builtin type of size BITS.
17499 We're going to use the name of this type as the name for the complex
17500 target type that we are about to create. */
17501 switch (cu->language)
17502 {
17503 case language_fortran:
17504 switch (bits)
17505 {
17506 case 32:
17507 tt = builtin_f_type (gdbarch)->builtin_real;
17508 break;
17509 case 64:
17510 tt = builtin_f_type (gdbarch)->builtin_real_s8;
17511 break;
17512 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17513 case 128:
17514 tt = builtin_f_type (gdbarch)->builtin_real_s16;
17515 break;
17516 }
17517 break;
17518 default:
17519 switch (bits)
17520 {
17521 case 32:
17522 tt = builtin_type (gdbarch)->builtin_float;
17523 break;
17524 case 64:
17525 tt = builtin_type (gdbarch)->builtin_double;
17526 break;
17527 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17528 case 128:
17529 tt = builtin_type (gdbarch)->builtin_long_double;
17530 break;
17531 }
17532 break;
17533 }
17534
17535 /* If the type we found doesn't match the size we were looking for, then
17536 pretend we didn't find a type at all, the complex target type we
17537 create will then be nameless. */
17538 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
17539 tt = nullptr;
17540
17541 const char *name = (tt == nullptr) ? nullptr : TYPE_NAME (tt);
17542 return dwarf2_init_float_type (objfile, bits, name, name_hint);
17543 }
17544
17545 /* Find a representation of a given base type and install
17546 it in the TYPE field of the die. */
17547
17548 static struct type *
17549 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17550 {
17551 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17552 struct type *type;
17553 struct attribute *attr;
17554 int encoding = 0, bits = 0;
17555 const char *name;
17556
17557 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17558 if (attr)
17559 {
17560 encoding = DW_UNSND (attr);
17561 }
17562 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17563 if (attr)
17564 {
17565 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17566 }
17567 name = dwarf2_name (die, cu);
17568 if (!name)
17569 {
17570 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17571 }
17572
17573 switch (encoding)
17574 {
17575 case DW_ATE_address:
17576 /* Turn DW_ATE_address into a void * pointer. */
17577 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17578 type = init_pointer_type (objfile, bits, name, type);
17579 break;
17580 case DW_ATE_boolean:
17581 type = init_boolean_type (objfile, bits, 1, name);
17582 break;
17583 case DW_ATE_complex_float:
17584 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name);
17585 type = init_complex_type (objfile, name, type);
17586 break;
17587 case DW_ATE_decimal_float:
17588 type = init_decfloat_type (objfile, bits, name);
17589 break;
17590 case DW_ATE_float:
17591 type = dwarf2_init_float_type (objfile, bits, name, name);
17592 break;
17593 case DW_ATE_signed:
17594 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17595 break;
17596 case DW_ATE_unsigned:
17597 if (cu->language == language_fortran
17598 && name
17599 && startswith (name, "character("))
17600 type = init_character_type (objfile, bits, 1, name);
17601 else
17602 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17603 break;
17604 case DW_ATE_signed_char:
17605 if (cu->language == language_ada || cu->language == language_m2
17606 || cu->language == language_pascal
17607 || cu->language == language_fortran)
17608 type = init_character_type (objfile, bits, 0, name);
17609 else
17610 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17611 break;
17612 case DW_ATE_unsigned_char:
17613 if (cu->language == language_ada || cu->language == language_m2
17614 || cu->language == language_pascal
17615 || cu->language == language_fortran
17616 || cu->language == language_rust)
17617 type = init_character_type (objfile, bits, 1, name);
17618 else
17619 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17620 break;
17621 case DW_ATE_UTF:
17622 {
17623 gdbarch *arch = get_objfile_arch (objfile);
17624
17625 if (bits == 16)
17626 type = builtin_type (arch)->builtin_char16;
17627 else if (bits == 32)
17628 type = builtin_type (arch)->builtin_char32;
17629 else
17630 {
17631 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17632 bits);
17633 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17634 }
17635 return set_die_type (die, type, cu);
17636 }
17637 break;
17638
17639 default:
17640 complaint (_("unsupported DW_AT_encoding: '%s'"),
17641 dwarf_type_encoding_name (encoding));
17642 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17643 break;
17644 }
17645
17646 if (name && strcmp (name, "char") == 0)
17647 TYPE_NOSIGN (type) = 1;
17648
17649 maybe_set_alignment (cu, die, type);
17650
17651 return set_die_type (die, type, cu);
17652 }
17653
17654 /* Parse dwarf attribute if it's a block, reference or constant and put the
17655 resulting value of the attribute into struct bound_prop.
17656 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17657
17658 static int
17659 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17660 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17661 {
17662 struct dwarf2_property_baton *baton;
17663 struct obstack *obstack
17664 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17665
17666 if (attr == NULL || prop == NULL)
17667 return 0;
17668
17669 if (attr_form_is_block (attr))
17670 {
17671 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17672 baton->referenced_type = NULL;
17673 baton->locexpr.per_cu = cu->per_cu;
17674 baton->locexpr.size = DW_BLOCK (attr)->size;
17675 baton->locexpr.data = DW_BLOCK (attr)->data;
17676 prop->data.baton = baton;
17677 prop->kind = PROP_LOCEXPR;
17678 gdb_assert (prop->data.baton != NULL);
17679 }
17680 else if (attr_form_is_ref (attr))
17681 {
17682 struct dwarf2_cu *target_cu = cu;
17683 struct die_info *target_die;
17684 struct attribute *target_attr;
17685
17686 target_die = follow_die_ref (die, attr, &target_cu);
17687 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17688 if (target_attr == NULL)
17689 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17690 target_cu);
17691 if (target_attr == NULL)
17692 return 0;
17693
17694 switch (target_attr->name)
17695 {
17696 case DW_AT_location:
17697 if (attr_form_is_section_offset (target_attr))
17698 {
17699 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17700 baton->referenced_type = die_type (target_die, target_cu);
17701 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17702 prop->data.baton = baton;
17703 prop->kind = PROP_LOCLIST;
17704 gdb_assert (prop->data.baton != NULL);
17705 }
17706 else if (attr_form_is_block (target_attr))
17707 {
17708 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17709 baton->referenced_type = die_type (target_die, target_cu);
17710 baton->locexpr.per_cu = cu->per_cu;
17711 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17712 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17713 prop->data.baton = baton;
17714 prop->kind = PROP_LOCEXPR;
17715 gdb_assert (prop->data.baton != NULL);
17716 }
17717 else
17718 {
17719 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17720 "dynamic property");
17721 return 0;
17722 }
17723 break;
17724 case DW_AT_data_member_location:
17725 {
17726 LONGEST offset;
17727
17728 if (!handle_data_member_location (target_die, target_cu,
17729 &offset))
17730 return 0;
17731
17732 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17733 baton->referenced_type = read_type_die (target_die->parent,
17734 target_cu);
17735 baton->offset_info.offset = offset;
17736 baton->offset_info.type = die_type (target_die, target_cu);
17737 prop->data.baton = baton;
17738 prop->kind = PROP_ADDR_OFFSET;
17739 break;
17740 }
17741 }
17742 }
17743 else if (attr_form_is_constant (attr))
17744 {
17745 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17746 prop->kind = PROP_CONST;
17747 }
17748 else
17749 {
17750 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17751 dwarf2_name (die, cu));
17752 return 0;
17753 }
17754
17755 return 1;
17756 }
17757
17758 /* Read the given DW_AT_subrange DIE. */
17759
17760 static struct type *
17761 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17762 {
17763 struct type *base_type, *orig_base_type;
17764 struct type *range_type;
17765 struct attribute *attr;
17766 struct dynamic_prop low, high;
17767 int low_default_is_valid;
17768 int high_bound_is_count = 0;
17769 const char *name;
17770 ULONGEST negative_mask;
17771
17772 orig_base_type = die_type (die, cu);
17773 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17774 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17775 creating the range type, but we use the result of check_typedef
17776 when examining properties of the type. */
17777 base_type = check_typedef (orig_base_type);
17778
17779 /* The die_type call above may have already set the type for this DIE. */
17780 range_type = get_die_type (die, cu);
17781 if (range_type)
17782 return range_type;
17783
17784 low.kind = PROP_CONST;
17785 high.kind = PROP_CONST;
17786 high.data.const_val = 0;
17787
17788 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17789 omitting DW_AT_lower_bound. */
17790 switch (cu->language)
17791 {
17792 case language_c:
17793 case language_cplus:
17794 low.data.const_val = 0;
17795 low_default_is_valid = 1;
17796 break;
17797 case language_fortran:
17798 low.data.const_val = 1;
17799 low_default_is_valid = 1;
17800 break;
17801 case language_d:
17802 case language_objc:
17803 case language_rust:
17804 low.data.const_val = 0;
17805 low_default_is_valid = (cu->header.version >= 4);
17806 break;
17807 case language_ada:
17808 case language_m2:
17809 case language_pascal:
17810 low.data.const_val = 1;
17811 low_default_is_valid = (cu->header.version >= 4);
17812 break;
17813 default:
17814 low.data.const_val = 0;
17815 low_default_is_valid = 0;
17816 break;
17817 }
17818
17819 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17820 if (attr)
17821 attr_to_dynamic_prop (attr, die, cu, &low);
17822 else if (!low_default_is_valid)
17823 complaint (_("Missing DW_AT_lower_bound "
17824 "- DIE at %s [in module %s]"),
17825 sect_offset_str (die->sect_off),
17826 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17827
17828 struct attribute *attr_ub, *attr_count;
17829 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17830 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17831 {
17832 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17833 if (attr_to_dynamic_prop (attr, die, cu, &high))
17834 {
17835 /* If bounds are constant do the final calculation here. */
17836 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17837 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17838 else
17839 high_bound_is_count = 1;
17840 }
17841 else
17842 {
17843 if (attr_ub != NULL)
17844 complaint (_("Unresolved DW_AT_upper_bound "
17845 "- DIE at %s [in module %s]"),
17846 sect_offset_str (die->sect_off),
17847 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17848 if (attr_count != NULL)
17849 complaint (_("Unresolved DW_AT_count "
17850 "- DIE at %s [in module %s]"),
17851 sect_offset_str (die->sect_off),
17852 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17853 }
17854
17855 }
17856
17857 /* Dwarf-2 specifications explicitly allows to create subrange types
17858 without specifying a base type.
17859 In that case, the base type must be set to the type of
17860 the lower bound, upper bound or count, in that order, if any of these
17861 three attributes references an object that has a type.
17862 If no base type is found, the Dwarf-2 specifications say that
17863 a signed integer type of size equal to the size of an address should
17864 be used.
17865 For the following C code: `extern char gdb_int [];'
17866 GCC produces an empty range DIE.
17867 FIXME: muller/2010-05-28: Possible references to object for low bound,
17868 high bound or count are not yet handled by this code. */
17869 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17870 {
17871 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17872 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17873 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17874 struct type *int_type = objfile_type (objfile)->builtin_int;
17875
17876 /* Test "int", "long int", and "long long int" objfile types,
17877 and select the first one having a size above or equal to the
17878 architecture address size. */
17879 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17880 base_type = int_type;
17881 else
17882 {
17883 int_type = objfile_type (objfile)->builtin_long;
17884 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17885 base_type = int_type;
17886 else
17887 {
17888 int_type = objfile_type (objfile)->builtin_long_long;
17889 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17890 base_type = int_type;
17891 }
17892 }
17893 }
17894
17895 /* Normally, the DWARF producers are expected to use a signed
17896 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17897 But this is unfortunately not always the case, as witnessed
17898 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17899 is used instead. To work around that ambiguity, we treat
17900 the bounds as signed, and thus sign-extend their values, when
17901 the base type is signed. */
17902 negative_mask =
17903 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17904 if (low.kind == PROP_CONST
17905 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17906 low.data.const_val |= negative_mask;
17907 if (high.kind == PROP_CONST
17908 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17909 high.data.const_val |= negative_mask;
17910
17911 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17912
17913 if (high_bound_is_count)
17914 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17915
17916 /* Ada expects an empty array on no boundary attributes. */
17917 if (attr == NULL && cu->language != language_ada)
17918 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17919
17920 name = dwarf2_name (die, cu);
17921 if (name)
17922 TYPE_NAME (range_type) = name;
17923
17924 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17925 if (attr)
17926 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17927
17928 maybe_set_alignment (cu, die, range_type);
17929
17930 set_die_type (die, range_type, cu);
17931
17932 /* set_die_type should be already done. */
17933 set_descriptive_type (range_type, die, cu);
17934
17935 return range_type;
17936 }
17937
17938 static struct type *
17939 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17940 {
17941 struct type *type;
17942
17943 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17944 NULL);
17945 TYPE_NAME (type) = dwarf2_name (die, cu);
17946
17947 /* In Ada, an unspecified type is typically used when the description
17948 of the type is defered to a different unit. When encountering
17949 such a type, we treat it as a stub, and try to resolve it later on,
17950 when needed. */
17951 if (cu->language == language_ada)
17952 TYPE_STUB (type) = 1;
17953
17954 return set_die_type (die, type, cu);
17955 }
17956
17957 /* Read a single die and all its descendents. Set the die's sibling
17958 field to NULL; set other fields in the die correctly, and set all
17959 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17960 location of the info_ptr after reading all of those dies. PARENT
17961 is the parent of the die in question. */
17962
17963 static struct die_info *
17964 read_die_and_children (const struct die_reader_specs *reader,
17965 const gdb_byte *info_ptr,
17966 const gdb_byte **new_info_ptr,
17967 struct die_info *parent)
17968 {
17969 struct die_info *die;
17970 const gdb_byte *cur_ptr;
17971 int has_children;
17972
17973 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
17974 if (die == NULL)
17975 {
17976 *new_info_ptr = cur_ptr;
17977 return NULL;
17978 }
17979 store_in_ref_table (die, reader->cu);
17980
17981 if (has_children)
17982 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17983 else
17984 {
17985 die->child = NULL;
17986 *new_info_ptr = cur_ptr;
17987 }
17988
17989 die->sibling = NULL;
17990 die->parent = parent;
17991 return die;
17992 }
17993
17994 /* Read a die, all of its descendents, and all of its siblings; set
17995 all of the fields of all of the dies correctly. Arguments are as
17996 in read_die_and_children. */
17997
17998 static struct die_info *
17999 read_die_and_siblings_1 (const struct die_reader_specs *reader,
18000 const gdb_byte *info_ptr,
18001 const gdb_byte **new_info_ptr,
18002 struct die_info *parent)
18003 {
18004 struct die_info *first_die, *last_sibling;
18005 const gdb_byte *cur_ptr;
18006
18007 cur_ptr = info_ptr;
18008 first_die = last_sibling = NULL;
18009
18010 while (1)
18011 {
18012 struct die_info *die
18013 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
18014
18015 if (die == NULL)
18016 {
18017 *new_info_ptr = cur_ptr;
18018 return first_die;
18019 }
18020
18021 if (!first_die)
18022 first_die = die;
18023 else
18024 last_sibling->sibling = die;
18025
18026 last_sibling = die;
18027 }
18028 }
18029
18030 /* Read a die, all of its descendents, and all of its siblings; set
18031 all of the fields of all of the dies correctly. Arguments are as
18032 in read_die_and_children.
18033 This the main entry point for reading a DIE and all its children. */
18034
18035 static struct die_info *
18036 read_die_and_siblings (const struct die_reader_specs *reader,
18037 const gdb_byte *info_ptr,
18038 const gdb_byte **new_info_ptr,
18039 struct die_info *parent)
18040 {
18041 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
18042 new_info_ptr, parent);
18043
18044 if (dwarf_die_debug)
18045 {
18046 fprintf_unfiltered (gdb_stdlog,
18047 "Read die from %s@0x%x of %s:\n",
18048 get_section_name (reader->die_section),
18049 (unsigned) (info_ptr - reader->die_section->buffer),
18050 bfd_get_filename (reader->abfd));
18051 dump_die (die, dwarf_die_debug);
18052 }
18053
18054 return die;
18055 }
18056
18057 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18058 attributes.
18059 The caller is responsible for filling in the extra attributes
18060 and updating (*DIEP)->num_attrs.
18061 Set DIEP to point to a newly allocated die with its information,
18062 except for its child, sibling, and parent fields.
18063 Set HAS_CHILDREN to tell whether the die has children or not. */
18064
18065 static const gdb_byte *
18066 read_full_die_1 (const struct die_reader_specs *reader,
18067 struct die_info **diep, const gdb_byte *info_ptr,
18068 int *has_children, int num_extra_attrs)
18069 {
18070 unsigned int abbrev_number, bytes_read, i;
18071 struct abbrev_info *abbrev;
18072 struct die_info *die;
18073 struct dwarf2_cu *cu = reader->cu;
18074 bfd *abfd = reader->abfd;
18075
18076 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18077 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18078 info_ptr += bytes_read;
18079 if (!abbrev_number)
18080 {
18081 *diep = NULL;
18082 *has_children = 0;
18083 return info_ptr;
18084 }
18085
18086 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18087 if (!abbrev)
18088 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18089 abbrev_number,
18090 bfd_get_filename (abfd));
18091
18092 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18093 die->sect_off = sect_off;
18094 die->tag = abbrev->tag;
18095 die->abbrev = abbrev_number;
18096
18097 /* Make the result usable.
18098 The caller needs to update num_attrs after adding the extra
18099 attributes. */
18100 die->num_attrs = abbrev->num_attrs;
18101
18102 for (i = 0; i < abbrev->num_attrs; ++i)
18103 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18104 info_ptr);
18105
18106 *diep = die;
18107 *has_children = abbrev->has_children;
18108 return info_ptr;
18109 }
18110
18111 /* Read a die and all its attributes.
18112 Set DIEP to point to a newly allocated die with its information,
18113 except for its child, sibling, and parent fields.
18114 Set HAS_CHILDREN to tell whether the die has children or not. */
18115
18116 static const gdb_byte *
18117 read_full_die (const struct die_reader_specs *reader,
18118 struct die_info **diep, const gdb_byte *info_ptr,
18119 int *has_children)
18120 {
18121 const gdb_byte *result;
18122
18123 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18124
18125 if (dwarf_die_debug)
18126 {
18127 fprintf_unfiltered (gdb_stdlog,
18128 "Read die from %s@0x%x of %s:\n",
18129 get_section_name (reader->die_section),
18130 (unsigned) (info_ptr - reader->die_section->buffer),
18131 bfd_get_filename (reader->abfd));
18132 dump_die (*diep, dwarf_die_debug);
18133 }
18134
18135 return result;
18136 }
18137 \f
18138 /* Abbreviation tables.
18139
18140 In DWARF version 2, the description of the debugging information is
18141 stored in a separate .debug_abbrev section. Before we read any
18142 dies from a section we read in all abbreviations and install them
18143 in a hash table. */
18144
18145 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18146
18147 struct abbrev_info *
18148 abbrev_table::alloc_abbrev ()
18149 {
18150 struct abbrev_info *abbrev;
18151
18152 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18153 memset (abbrev, 0, sizeof (struct abbrev_info));
18154
18155 return abbrev;
18156 }
18157
18158 /* Add an abbreviation to the table. */
18159
18160 void
18161 abbrev_table::add_abbrev (unsigned int abbrev_number,
18162 struct abbrev_info *abbrev)
18163 {
18164 unsigned int hash_number;
18165
18166 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18167 abbrev->next = m_abbrevs[hash_number];
18168 m_abbrevs[hash_number] = abbrev;
18169 }
18170
18171 /* Look up an abbrev in the table.
18172 Returns NULL if the abbrev is not found. */
18173
18174 struct abbrev_info *
18175 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18176 {
18177 unsigned int hash_number;
18178 struct abbrev_info *abbrev;
18179
18180 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18181 abbrev = m_abbrevs[hash_number];
18182
18183 while (abbrev)
18184 {
18185 if (abbrev->number == abbrev_number)
18186 return abbrev;
18187 abbrev = abbrev->next;
18188 }
18189 return NULL;
18190 }
18191
18192 /* Read in an abbrev table. */
18193
18194 static abbrev_table_up
18195 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18196 struct dwarf2_section_info *section,
18197 sect_offset sect_off)
18198 {
18199 struct objfile *objfile = dwarf2_per_objfile->objfile;
18200 bfd *abfd = get_section_bfd_owner (section);
18201 const gdb_byte *abbrev_ptr;
18202 struct abbrev_info *cur_abbrev;
18203 unsigned int abbrev_number, bytes_read, abbrev_name;
18204 unsigned int abbrev_form;
18205 struct attr_abbrev *cur_attrs;
18206 unsigned int allocated_attrs;
18207
18208 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18209
18210 dwarf2_read_section (objfile, section);
18211 abbrev_ptr = section->buffer + to_underlying (sect_off);
18212 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18213 abbrev_ptr += bytes_read;
18214
18215 allocated_attrs = ATTR_ALLOC_CHUNK;
18216 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18217
18218 /* Loop until we reach an abbrev number of 0. */
18219 while (abbrev_number)
18220 {
18221 cur_abbrev = abbrev_table->alloc_abbrev ();
18222
18223 /* read in abbrev header */
18224 cur_abbrev->number = abbrev_number;
18225 cur_abbrev->tag
18226 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18227 abbrev_ptr += bytes_read;
18228 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18229 abbrev_ptr += 1;
18230
18231 /* now read in declarations */
18232 for (;;)
18233 {
18234 LONGEST implicit_const;
18235
18236 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18237 abbrev_ptr += bytes_read;
18238 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18239 abbrev_ptr += bytes_read;
18240 if (abbrev_form == DW_FORM_implicit_const)
18241 {
18242 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18243 &bytes_read);
18244 abbrev_ptr += bytes_read;
18245 }
18246 else
18247 {
18248 /* Initialize it due to a false compiler warning. */
18249 implicit_const = -1;
18250 }
18251
18252 if (abbrev_name == 0)
18253 break;
18254
18255 if (cur_abbrev->num_attrs == allocated_attrs)
18256 {
18257 allocated_attrs += ATTR_ALLOC_CHUNK;
18258 cur_attrs
18259 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18260 }
18261
18262 cur_attrs[cur_abbrev->num_attrs].name
18263 = (enum dwarf_attribute) abbrev_name;
18264 cur_attrs[cur_abbrev->num_attrs].form
18265 = (enum dwarf_form) abbrev_form;
18266 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18267 ++cur_abbrev->num_attrs;
18268 }
18269
18270 cur_abbrev->attrs =
18271 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18272 cur_abbrev->num_attrs);
18273 memcpy (cur_abbrev->attrs, cur_attrs,
18274 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18275
18276 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18277
18278 /* Get next abbreviation.
18279 Under Irix6 the abbreviations for a compilation unit are not
18280 always properly terminated with an abbrev number of 0.
18281 Exit loop if we encounter an abbreviation which we have
18282 already read (which means we are about to read the abbreviations
18283 for the next compile unit) or if the end of the abbreviation
18284 table is reached. */
18285 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18286 break;
18287 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18288 abbrev_ptr += bytes_read;
18289 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18290 break;
18291 }
18292
18293 xfree (cur_attrs);
18294 return abbrev_table;
18295 }
18296
18297 /* Returns nonzero if TAG represents a type that we might generate a partial
18298 symbol for. */
18299
18300 static int
18301 is_type_tag_for_partial (int tag)
18302 {
18303 switch (tag)
18304 {
18305 #if 0
18306 /* Some types that would be reasonable to generate partial symbols for,
18307 that we don't at present. */
18308 case DW_TAG_array_type:
18309 case DW_TAG_file_type:
18310 case DW_TAG_ptr_to_member_type:
18311 case DW_TAG_set_type:
18312 case DW_TAG_string_type:
18313 case DW_TAG_subroutine_type:
18314 #endif
18315 case DW_TAG_base_type:
18316 case DW_TAG_class_type:
18317 case DW_TAG_interface_type:
18318 case DW_TAG_enumeration_type:
18319 case DW_TAG_structure_type:
18320 case DW_TAG_subrange_type:
18321 case DW_TAG_typedef:
18322 case DW_TAG_union_type:
18323 return 1;
18324 default:
18325 return 0;
18326 }
18327 }
18328
18329 /* Load all DIEs that are interesting for partial symbols into memory. */
18330
18331 static struct partial_die_info *
18332 load_partial_dies (const struct die_reader_specs *reader,
18333 const gdb_byte *info_ptr, int building_psymtab)
18334 {
18335 struct dwarf2_cu *cu = reader->cu;
18336 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18337 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18338 unsigned int bytes_read;
18339 unsigned int load_all = 0;
18340 int nesting_level = 1;
18341
18342 parent_die = NULL;
18343 last_die = NULL;
18344
18345 gdb_assert (cu->per_cu != NULL);
18346 if (cu->per_cu->load_all_dies)
18347 load_all = 1;
18348
18349 cu->partial_dies
18350 = htab_create_alloc_ex (cu->header.length / 12,
18351 partial_die_hash,
18352 partial_die_eq,
18353 NULL,
18354 &cu->comp_unit_obstack,
18355 hashtab_obstack_allocate,
18356 dummy_obstack_deallocate);
18357
18358 while (1)
18359 {
18360 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18361
18362 /* A NULL abbrev means the end of a series of children. */
18363 if (abbrev == NULL)
18364 {
18365 if (--nesting_level == 0)
18366 return first_die;
18367
18368 info_ptr += bytes_read;
18369 last_die = parent_die;
18370 parent_die = parent_die->die_parent;
18371 continue;
18372 }
18373
18374 /* Check for template arguments. We never save these; if
18375 they're seen, we just mark the parent, and go on our way. */
18376 if (parent_die != NULL
18377 && cu->language == language_cplus
18378 && (abbrev->tag == DW_TAG_template_type_param
18379 || abbrev->tag == DW_TAG_template_value_param))
18380 {
18381 parent_die->has_template_arguments = 1;
18382
18383 if (!load_all)
18384 {
18385 /* We don't need a partial DIE for the template argument. */
18386 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18387 continue;
18388 }
18389 }
18390
18391 /* We only recurse into c++ subprograms looking for template arguments.
18392 Skip their other children. */
18393 if (!load_all
18394 && cu->language == language_cplus
18395 && parent_die != NULL
18396 && parent_die->tag == DW_TAG_subprogram)
18397 {
18398 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18399 continue;
18400 }
18401
18402 /* Check whether this DIE is interesting enough to save. Normally
18403 we would not be interested in members here, but there may be
18404 later variables referencing them via DW_AT_specification (for
18405 static members). */
18406 if (!load_all
18407 && !is_type_tag_for_partial (abbrev->tag)
18408 && abbrev->tag != DW_TAG_constant
18409 && abbrev->tag != DW_TAG_enumerator
18410 && abbrev->tag != DW_TAG_subprogram
18411 && abbrev->tag != DW_TAG_inlined_subroutine
18412 && abbrev->tag != DW_TAG_lexical_block
18413 && abbrev->tag != DW_TAG_variable
18414 && abbrev->tag != DW_TAG_namespace
18415 && abbrev->tag != DW_TAG_module
18416 && abbrev->tag != DW_TAG_member
18417 && abbrev->tag != DW_TAG_imported_unit
18418 && abbrev->tag != DW_TAG_imported_declaration)
18419 {
18420 /* Otherwise we skip to the next sibling, if any. */
18421 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18422 continue;
18423 }
18424
18425 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18426 abbrev);
18427
18428 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18429
18430 /* This two-pass algorithm for processing partial symbols has a
18431 high cost in cache pressure. Thus, handle some simple cases
18432 here which cover the majority of C partial symbols. DIEs
18433 which neither have specification tags in them, nor could have
18434 specification tags elsewhere pointing at them, can simply be
18435 processed and discarded.
18436
18437 This segment is also optional; scan_partial_symbols and
18438 add_partial_symbol will handle these DIEs if we chain
18439 them in normally. When compilers which do not emit large
18440 quantities of duplicate debug information are more common,
18441 this code can probably be removed. */
18442
18443 /* Any complete simple types at the top level (pretty much all
18444 of them, for a language without namespaces), can be processed
18445 directly. */
18446 if (parent_die == NULL
18447 && pdi.has_specification == 0
18448 && pdi.is_declaration == 0
18449 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18450 || pdi.tag == DW_TAG_base_type
18451 || pdi.tag == DW_TAG_subrange_type))
18452 {
18453 if (building_psymtab && pdi.name != NULL)
18454 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18455 VAR_DOMAIN, LOC_TYPEDEF, -1,
18456 psymbol_placement::STATIC,
18457 0, cu->language, objfile);
18458 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18459 continue;
18460 }
18461
18462 /* The exception for DW_TAG_typedef with has_children above is
18463 a workaround of GCC PR debug/47510. In the case of this complaint
18464 type_name_or_error will error on such types later.
18465
18466 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18467 it could not find the child DIEs referenced later, this is checked
18468 above. In correct DWARF DW_TAG_typedef should have no children. */
18469
18470 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18471 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18472 "- DIE at %s [in module %s]"),
18473 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18474
18475 /* If we're at the second level, and we're an enumerator, and
18476 our parent has no specification (meaning possibly lives in a
18477 namespace elsewhere), then we can add the partial symbol now
18478 instead of queueing it. */
18479 if (pdi.tag == DW_TAG_enumerator
18480 && parent_die != NULL
18481 && parent_die->die_parent == NULL
18482 && parent_die->tag == DW_TAG_enumeration_type
18483 && parent_die->has_specification == 0)
18484 {
18485 if (pdi.name == NULL)
18486 complaint (_("malformed enumerator DIE ignored"));
18487 else if (building_psymtab)
18488 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18489 VAR_DOMAIN, LOC_CONST, -1,
18490 cu->language == language_cplus
18491 ? psymbol_placement::GLOBAL
18492 : psymbol_placement::STATIC,
18493 0, cu->language, objfile);
18494
18495 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18496 continue;
18497 }
18498
18499 struct partial_die_info *part_die
18500 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18501
18502 /* We'll save this DIE so link it in. */
18503 part_die->die_parent = parent_die;
18504 part_die->die_sibling = NULL;
18505 part_die->die_child = NULL;
18506
18507 if (last_die && last_die == parent_die)
18508 last_die->die_child = part_die;
18509 else if (last_die)
18510 last_die->die_sibling = part_die;
18511
18512 last_die = part_die;
18513
18514 if (first_die == NULL)
18515 first_die = part_die;
18516
18517 /* Maybe add the DIE to the hash table. Not all DIEs that we
18518 find interesting need to be in the hash table, because we
18519 also have the parent/sibling/child chains; only those that we
18520 might refer to by offset later during partial symbol reading.
18521
18522 For now this means things that might have be the target of a
18523 DW_AT_specification, DW_AT_abstract_origin, or
18524 DW_AT_extension. DW_AT_extension will refer only to
18525 namespaces; DW_AT_abstract_origin refers to functions (and
18526 many things under the function DIE, but we do not recurse
18527 into function DIEs during partial symbol reading) and
18528 possibly variables as well; DW_AT_specification refers to
18529 declarations. Declarations ought to have the DW_AT_declaration
18530 flag. It happens that GCC forgets to put it in sometimes, but
18531 only for functions, not for types.
18532
18533 Adding more things than necessary to the hash table is harmless
18534 except for the performance cost. Adding too few will result in
18535 wasted time in find_partial_die, when we reread the compilation
18536 unit with load_all_dies set. */
18537
18538 if (load_all
18539 || abbrev->tag == DW_TAG_constant
18540 || abbrev->tag == DW_TAG_subprogram
18541 || abbrev->tag == DW_TAG_variable
18542 || abbrev->tag == DW_TAG_namespace
18543 || part_die->is_declaration)
18544 {
18545 void **slot;
18546
18547 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18548 to_underlying (part_die->sect_off),
18549 INSERT);
18550 *slot = part_die;
18551 }
18552
18553 /* For some DIEs we want to follow their children (if any). For C
18554 we have no reason to follow the children of structures; for other
18555 languages we have to, so that we can get at method physnames
18556 to infer fully qualified class names, for DW_AT_specification,
18557 and for C++ template arguments. For C++, we also look one level
18558 inside functions to find template arguments (if the name of the
18559 function does not already contain the template arguments).
18560
18561 For Ada, we need to scan the children of subprograms and lexical
18562 blocks as well because Ada allows the definition of nested
18563 entities that could be interesting for the debugger, such as
18564 nested subprograms for instance. */
18565 if (last_die->has_children
18566 && (load_all
18567 || last_die->tag == DW_TAG_namespace
18568 || last_die->tag == DW_TAG_module
18569 || last_die->tag == DW_TAG_enumeration_type
18570 || (cu->language == language_cplus
18571 && last_die->tag == DW_TAG_subprogram
18572 && (last_die->name == NULL
18573 || strchr (last_die->name, '<') == NULL))
18574 || (cu->language != language_c
18575 && (last_die->tag == DW_TAG_class_type
18576 || last_die->tag == DW_TAG_interface_type
18577 || last_die->tag == DW_TAG_structure_type
18578 || last_die->tag == DW_TAG_union_type))
18579 || (cu->language == language_ada
18580 && (last_die->tag == DW_TAG_subprogram
18581 || last_die->tag == DW_TAG_lexical_block))))
18582 {
18583 nesting_level++;
18584 parent_die = last_die;
18585 continue;
18586 }
18587
18588 /* Otherwise we skip to the next sibling, if any. */
18589 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18590
18591 /* Back to the top, do it again. */
18592 }
18593 }
18594
18595 partial_die_info::partial_die_info (sect_offset sect_off_,
18596 struct abbrev_info *abbrev)
18597 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18598 {
18599 }
18600
18601 /* Read a minimal amount of information into the minimal die structure.
18602 INFO_PTR should point just after the initial uleb128 of a DIE. */
18603
18604 const gdb_byte *
18605 partial_die_info::read (const struct die_reader_specs *reader,
18606 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18607 {
18608 struct dwarf2_cu *cu = reader->cu;
18609 struct dwarf2_per_objfile *dwarf2_per_objfile
18610 = cu->per_cu->dwarf2_per_objfile;
18611 unsigned int i;
18612 int has_low_pc_attr = 0;
18613 int has_high_pc_attr = 0;
18614 int high_pc_relative = 0;
18615
18616 for (i = 0; i < abbrev.num_attrs; ++i)
18617 {
18618 struct attribute attr;
18619
18620 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18621
18622 /* Store the data if it is of an attribute we want to keep in a
18623 partial symbol table. */
18624 switch (attr.name)
18625 {
18626 case DW_AT_name:
18627 switch (tag)
18628 {
18629 case DW_TAG_compile_unit:
18630 case DW_TAG_partial_unit:
18631 case DW_TAG_type_unit:
18632 /* Compilation units have a DW_AT_name that is a filename, not
18633 a source language identifier. */
18634 case DW_TAG_enumeration_type:
18635 case DW_TAG_enumerator:
18636 /* These tags always have simple identifiers already; no need
18637 to canonicalize them. */
18638 name = DW_STRING (&attr);
18639 break;
18640 default:
18641 {
18642 struct objfile *objfile = dwarf2_per_objfile->objfile;
18643
18644 name
18645 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18646 &objfile->per_bfd->storage_obstack);
18647 }
18648 break;
18649 }
18650 break;
18651 case DW_AT_linkage_name:
18652 case DW_AT_MIPS_linkage_name:
18653 /* Note that both forms of linkage name might appear. We
18654 assume they will be the same, and we only store the last
18655 one we see. */
18656 if (cu->language == language_ada)
18657 name = DW_STRING (&attr);
18658 linkage_name = DW_STRING (&attr);
18659 break;
18660 case DW_AT_low_pc:
18661 has_low_pc_attr = 1;
18662 lowpc = attr_value_as_address (&attr);
18663 break;
18664 case DW_AT_high_pc:
18665 has_high_pc_attr = 1;
18666 highpc = attr_value_as_address (&attr);
18667 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18668 high_pc_relative = 1;
18669 break;
18670 case DW_AT_location:
18671 /* Support the .debug_loc offsets. */
18672 if (attr_form_is_block (&attr))
18673 {
18674 d.locdesc = DW_BLOCK (&attr);
18675 }
18676 else if (attr_form_is_section_offset (&attr))
18677 {
18678 dwarf2_complex_location_expr_complaint ();
18679 }
18680 else
18681 {
18682 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18683 "partial symbol information");
18684 }
18685 break;
18686 case DW_AT_external:
18687 is_external = DW_UNSND (&attr);
18688 break;
18689 case DW_AT_declaration:
18690 is_declaration = DW_UNSND (&attr);
18691 break;
18692 case DW_AT_type:
18693 has_type = 1;
18694 break;
18695 case DW_AT_abstract_origin:
18696 case DW_AT_specification:
18697 case DW_AT_extension:
18698 has_specification = 1;
18699 spec_offset = dwarf2_get_ref_die_offset (&attr);
18700 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18701 || cu->per_cu->is_dwz);
18702 break;
18703 case DW_AT_sibling:
18704 /* Ignore absolute siblings, they might point outside of
18705 the current compile unit. */
18706 if (attr.form == DW_FORM_ref_addr)
18707 complaint (_("ignoring absolute DW_AT_sibling"));
18708 else
18709 {
18710 const gdb_byte *buffer = reader->buffer;
18711 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18712 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18713
18714 if (sibling_ptr < info_ptr)
18715 complaint (_("DW_AT_sibling points backwards"));
18716 else if (sibling_ptr > reader->buffer_end)
18717 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18718 else
18719 sibling = sibling_ptr;
18720 }
18721 break;
18722 case DW_AT_byte_size:
18723 has_byte_size = 1;
18724 break;
18725 case DW_AT_const_value:
18726 has_const_value = 1;
18727 break;
18728 case DW_AT_calling_convention:
18729 /* DWARF doesn't provide a way to identify a program's source-level
18730 entry point. DW_AT_calling_convention attributes are only meant
18731 to describe functions' calling conventions.
18732
18733 However, because it's a necessary piece of information in
18734 Fortran, and before DWARF 4 DW_CC_program was the only
18735 piece of debugging information whose definition refers to
18736 a 'main program' at all, several compilers marked Fortran
18737 main programs with DW_CC_program --- even when those
18738 functions use the standard calling conventions.
18739
18740 Although DWARF now specifies a way to provide this
18741 information, we support this practice for backward
18742 compatibility. */
18743 if (DW_UNSND (&attr) == DW_CC_program
18744 && cu->language == language_fortran)
18745 main_subprogram = 1;
18746 break;
18747 case DW_AT_inline:
18748 if (DW_UNSND (&attr) == DW_INL_inlined
18749 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18750 may_be_inlined = 1;
18751 break;
18752
18753 case DW_AT_import:
18754 if (tag == DW_TAG_imported_unit)
18755 {
18756 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18757 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18758 || cu->per_cu->is_dwz);
18759 }
18760 break;
18761
18762 case DW_AT_main_subprogram:
18763 main_subprogram = DW_UNSND (&attr);
18764 break;
18765
18766 case DW_AT_ranges:
18767 {
18768 /* It would be nice to reuse dwarf2_get_pc_bounds here,
18769 but that requires a full DIE, so instead we just
18770 reimplement it. */
18771 int need_ranges_base = tag != DW_TAG_compile_unit;
18772 unsigned int ranges_offset = (DW_UNSND (&attr)
18773 + (need_ranges_base
18774 ? cu->ranges_base
18775 : 0));
18776
18777 /* Value of the DW_AT_ranges attribute is the offset in the
18778 .debug_ranges section. */
18779 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
18780 nullptr))
18781 has_pc_info = 1;
18782 }
18783 break;
18784
18785 default:
18786 break;
18787 }
18788 }
18789
18790 if (high_pc_relative)
18791 highpc += lowpc;
18792
18793 if (has_low_pc_attr && has_high_pc_attr)
18794 {
18795 /* When using the GNU linker, .gnu.linkonce. sections are used to
18796 eliminate duplicate copies of functions and vtables and such.
18797 The linker will arbitrarily choose one and discard the others.
18798 The AT_*_pc values for such functions refer to local labels in
18799 these sections. If the section from that file was discarded, the
18800 labels are not in the output, so the relocs get a value of 0.
18801 If this is a discarded function, mark the pc bounds as invalid,
18802 so that GDB will ignore it. */
18803 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18804 {
18805 struct objfile *objfile = dwarf2_per_objfile->objfile;
18806 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18807
18808 complaint (_("DW_AT_low_pc %s is zero "
18809 "for DIE at %s [in module %s]"),
18810 paddress (gdbarch, lowpc),
18811 sect_offset_str (sect_off),
18812 objfile_name (objfile));
18813 }
18814 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18815 else if (lowpc >= highpc)
18816 {
18817 struct objfile *objfile = dwarf2_per_objfile->objfile;
18818 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18819
18820 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18821 "for DIE at %s [in module %s]"),
18822 paddress (gdbarch, lowpc),
18823 paddress (gdbarch, highpc),
18824 sect_offset_str (sect_off),
18825 objfile_name (objfile));
18826 }
18827 else
18828 has_pc_info = 1;
18829 }
18830
18831 return info_ptr;
18832 }
18833
18834 /* Find a cached partial DIE at OFFSET in CU. */
18835
18836 struct partial_die_info *
18837 dwarf2_cu::find_partial_die (sect_offset sect_off)
18838 {
18839 struct partial_die_info *lookup_die = NULL;
18840 struct partial_die_info part_die (sect_off);
18841
18842 lookup_die = ((struct partial_die_info *)
18843 htab_find_with_hash (partial_dies, &part_die,
18844 to_underlying (sect_off)));
18845
18846 return lookup_die;
18847 }
18848
18849 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18850 except in the case of .debug_types DIEs which do not reference
18851 outside their CU (they do however referencing other types via
18852 DW_FORM_ref_sig8). */
18853
18854 static const struct cu_partial_die_info
18855 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18856 {
18857 struct dwarf2_per_objfile *dwarf2_per_objfile
18858 = cu->per_cu->dwarf2_per_objfile;
18859 struct objfile *objfile = dwarf2_per_objfile->objfile;
18860 struct dwarf2_per_cu_data *per_cu = NULL;
18861 struct partial_die_info *pd = NULL;
18862
18863 if (offset_in_dwz == cu->per_cu->is_dwz
18864 && offset_in_cu_p (&cu->header, sect_off))
18865 {
18866 pd = cu->find_partial_die (sect_off);
18867 if (pd != NULL)
18868 return { cu, pd };
18869 /* We missed recording what we needed.
18870 Load all dies and try again. */
18871 per_cu = cu->per_cu;
18872 }
18873 else
18874 {
18875 /* TUs don't reference other CUs/TUs (except via type signatures). */
18876 if (cu->per_cu->is_debug_types)
18877 {
18878 error (_("Dwarf Error: Type Unit at offset %s contains"
18879 " external reference to offset %s [in module %s].\n"),
18880 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18881 bfd_get_filename (objfile->obfd));
18882 }
18883 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18884 dwarf2_per_objfile);
18885
18886 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18887 load_partial_comp_unit (per_cu);
18888
18889 per_cu->cu->last_used = 0;
18890 pd = per_cu->cu->find_partial_die (sect_off);
18891 }
18892
18893 /* If we didn't find it, and not all dies have been loaded,
18894 load them all and try again. */
18895
18896 if (pd == NULL && per_cu->load_all_dies == 0)
18897 {
18898 per_cu->load_all_dies = 1;
18899
18900 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18901 THIS_CU->cu may already be in use. So we can't just free it and
18902 replace its DIEs with the ones we read in. Instead, we leave those
18903 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18904 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18905 set. */
18906 load_partial_comp_unit (per_cu);
18907
18908 pd = per_cu->cu->find_partial_die (sect_off);
18909 }
18910
18911 if (pd == NULL)
18912 internal_error (__FILE__, __LINE__,
18913 _("could not find partial DIE %s "
18914 "in cache [from module %s]\n"),
18915 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18916 return { per_cu->cu, pd };
18917 }
18918
18919 /* See if we can figure out if the class lives in a namespace. We do
18920 this by looking for a member function; its demangled name will
18921 contain namespace info, if there is any. */
18922
18923 static void
18924 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18925 struct dwarf2_cu *cu)
18926 {
18927 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18928 what template types look like, because the demangler
18929 frequently doesn't give the same name as the debug info. We
18930 could fix this by only using the demangled name to get the
18931 prefix (but see comment in read_structure_type). */
18932
18933 struct partial_die_info *real_pdi;
18934 struct partial_die_info *child_pdi;
18935
18936 /* If this DIE (this DIE's specification, if any) has a parent, then
18937 we should not do this. We'll prepend the parent's fully qualified
18938 name when we create the partial symbol. */
18939
18940 real_pdi = struct_pdi;
18941 while (real_pdi->has_specification)
18942 {
18943 auto res = find_partial_die (real_pdi->spec_offset,
18944 real_pdi->spec_is_dwz, cu);
18945 real_pdi = res.pdi;
18946 cu = res.cu;
18947 }
18948
18949 if (real_pdi->die_parent != NULL)
18950 return;
18951
18952 for (child_pdi = struct_pdi->die_child;
18953 child_pdi != NULL;
18954 child_pdi = child_pdi->die_sibling)
18955 {
18956 if (child_pdi->tag == DW_TAG_subprogram
18957 && child_pdi->linkage_name != NULL)
18958 {
18959 char *actual_class_name
18960 = language_class_name_from_physname (cu->language_defn,
18961 child_pdi->linkage_name);
18962 if (actual_class_name != NULL)
18963 {
18964 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18965 struct_pdi->name
18966 = ((const char *)
18967 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18968 actual_class_name,
18969 strlen (actual_class_name)));
18970 xfree (actual_class_name);
18971 }
18972 break;
18973 }
18974 }
18975 }
18976
18977 void
18978 partial_die_info::fixup (struct dwarf2_cu *cu)
18979 {
18980 /* Once we've fixed up a die, there's no point in doing so again.
18981 This also avoids a memory leak if we were to call
18982 guess_partial_die_structure_name multiple times. */
18983 if (fixup_called)
18984 return;
18985
18986 /* If we found a reference attribute and the DIE has no name, try
18987 to find a name in the referred to DIE. */
18988
18989 if (name == NULL && has_specification)
18990 {
18991 struct partial_die_info *spec_die;
18992
18993 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
18994 spec_die = res.pdi;
18995 cu = res.cu;
18996
18997 spec_die->fixup (cu);
18998
18999 if (spec_die->name)
19000 {
19001 name = spec_die->name;
19002
19003 /* Copy DW_AT_external attribute if it is set. */
19004 if (spec_die->is_external)
19005 is_external = spec_die->is_external;
19006 }
19007 }
19008
19009 /* Set default names for some unnamed DIEs. */
19010
19011 if (name == NULL && tag == DW_TAG_namespace)
19012 name = CP_ANONYMOUS_NAMESPACE_STR;
19013
19014 /* If there is no parent die to provide a namespace, and there are
19015 children, see if we can determine the namespace from their linkage
19016 name. */
19017 if (cu->language == language_cplus
19018 && !cu->per_cu->dwarf2_per_objfile->types.empty ()
19019 && die_parent == NULL
19020 && has_children
19021 && (tag == DW_TAG_class_type
19022 || tag == DW_TAG_structure_type
19023 || tag == DW_TAG_union_type))
19024 guess_partial_die_structure_name (this, cu);
19025
19026 /* GCC might emit a nameless struct or union that has a linkage
19027 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19028 if (name == NULL
19029 && (tag == DW_TAG_class_type
19030 || tag == DW_TAG_interface_type
19031 || tag == DW_TAG_structure_type
19032 || tag == DW_TAG_union_type)
19033 && linkage_name != NULL)
19034 {
19035 char *demangled;
19036
19037 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
19038 if (demangled)
19039 {
19040 const char *base;
19041
19042 /* Strip any leading namespaces/classes, keep only the base name.
19043 DW_AT_name for named DIEs does not contain the prefixes. */
19044 base = strrchr (demangled, ':');
19045 if (base && base > demangled && base[-1] == ':')
19046 base++;
19047 else
19048 base = demangled;
19049
19050 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19051 name
19052 = ((const char *)
19053 obstack_copy0 (&objfile->per_bfd->storage_obstack,
19054 base, strlen (base)));
19055 xfree (demangled);
19056 }
19057 }
19058
19059 fixup_called = 1;
19060 }
19061
19062 /* Read an attribute value described by an attribute form. */
19063
19064 static const gdb_byte *
19065 read_attribute_value (const struct die_reader_specs *reader,
19066 struct attribute *attr, unsigned form,
19067 LONGEST implicit_const, const gdb_byte *info_ptr)
19068 {
19069 struct dwarf2_cu *cu = reader->cu;
19070 struct dwarf2_per_objfile *dwarf2_per_objfile
19071 = cu->per_cu->dwarf2_per_objfile;
19072 struct objfile *objfile = dwarf2_per_objfile->objfile;
19073 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19074 bfd *abfd = reader->abfd;
19075 struct comp_unit_head *cu_header = &cu->header;
19076 unsigned int bytes_read;
19077 struct dwarf_block *blk;
19078
19079 attr->form = (enum dwarf_form) form;
19080 switch (form)
19081 {
19082 case DW_FORM_ref_addr:
19083 if (cu->header.version == 2)
19084 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19085 else
19086 DW_UNSND (attr) = read_offset (abfd, info_ptr,
19087 &cu->header, &bytes_read);
19088 info_ptr += bytes_read;
19089 break;
19090 case DW_FORM_GNU_ref_alt:
19091 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19092 info_ptr += bytes_read;
19093 break;
19094 case DW_FORM_addr:
19095 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19096 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
19097 info_ptr += bytes_read;
19098 break;
19099 case DW_FORM_block2:
19100 blk = dwarf_alloc_block (cu);
19101 blk->size = read_2_bytes (abfd, info_ptr);
19102 info_ptr += 2;
19103 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19104 info_ptr += blk->size;
19105 DW_BLOCK (attr) = blk;
19106 break;
19107 case DW_FORM_block4:
19108 blk = dwarf_alloc_block (cu);
19109 blk->size = read_4_bytes (abfd, info_ptr);
19110 info_ptr += 4;
19111 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19112 info_ptr += blk->size;
19113 DW_BLOCK (attr) = blk;
19114 break;
19115 case DW_FORM_data2:
19116 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19117 info_ptr += 2;
19118 break;
19119 case DW_FORM_data4:
19120 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19121 info_ptr += 4;
19122 break;
19123 case DW_FORM_data8:
19124 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19125 info_ptr += 8;
19126 break;
19127 case DW_FORM_data16:
19128 blk = dwarf_alloc_block (cu);
19129 blk->size = 16;
19130 blk->data = read_n_bytes (abfd, info_ptr, 16);
19131 info_ptr += 16;
19132 DW_BLOCK (attr) = blk;
19133 break;
19134 case DW_FORM_sec_offset:
19135 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19136 info_ptr += bytes_read;
19137 break;
19138 case DW_FORM_string:
19139 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19140 DW_STRING_IS_CANONICAL (attr) = 0;
19141 info_ptr += bytes_read;
19142 break;
19143 case DW_FORM_strp:
19144 if (!cu->per_cu->is_dwz)
19145 {
19146 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19147 abfd, info_ptr, cu_header,
19148 &bytes_read);
19149 DW_STRING_IS_CANONICAL (attr) = 0;
19150 info_ptr += bytes_read;
19151 break;
19152 }
19153 /* FALLTHROUGH */
19154 case DW_FORM_line_strp:
19155 if (!cu->per_cu->is_dwz)
19156 {
19157 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19158 abfd, info_ptr,
19159 cu_header, &bytes_read);
19160 DW_STRING_IS_CANONICAL (attr) = 0;
19161 info_ptr += bytes_read;
19162 break;
19163 }
19164 /* FALLTHROUGH */
19165 case DW_FORM_GNU_strp_alt:
19166 {
19167 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19168 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19169 &bytes_read);
19170
19171 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19172 dwz, str_offset);
19173 DW_STRING_IS_CANONICAL (attr) = 0;
19174 info_ptr += bytes_read;
19175 }
19176 break;
19177 case DW_FORM_exprloc:
19178 case DW_FORM_block:
19179 blk = dwarf_alloc_block (cu);
19180 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19181 info_ptr += bytes_read;
19182 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19183 info_ptr += blk->size;
19184 DW_BLOCK (attr) = blk;
19185 break;
19186 case DW_FORM_block1:
19187 blk = dwarf_alloc_block (cu);
19188 blk->size = read_1_byte (abfd, info_ptr);
19189 info_ptr += 1;
19190 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19191 info_ptr += blk->size;
19192 DW_BLOCK (attr) = blk;
19193 break;
19194 case DW_FORM_data1:
19195 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19196 info_ptr += 1;
19197 break;
19198 case DW_FORM_flag:
19199 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19200 info_ptr += 1;
19201 break;
19202 case DW_FORM_flag_present:
19203 DW_UNSND (attr) = 1;
19204 break;
19205 case DW_FORM_sdata:
19206 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19207 info_ptr += bytes_read;
19208 break;
19209 case DW_FORM_udata:
19210 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19211 info_ptr += bytes_read;
19212 break;
19213 case DW_FORM_ref1:
19214 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19215 + read_1_byte (abfd, info_ptr));
19216 info_ptr += 1;
19217 break;
19218 case DW_FORM_ref2:
19219 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19220 + read_2_bytes (abfd, info_ptr));
19221 info_ptr += 2;
19222 break;
19223 case DW_FORM_ref4:
19224 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19225 + read_4_bytes (abfd, info_ptr));
19226 info_ptr += 4;
19227 break;
19228 case DW_FORM_ref8:
19229 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19230 + read_8_bytes (abfd, info_ptr));
19231 info_ptr += 8;
19232 break;
19233 case DW_FORM_ref_sig8:
19234 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19235 info_ptr += 8;
19236 break;
19237 case DW_FORM_ref_udata:
19238 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19239 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19240 info_ptr += bytes_read;
19241 break;
19242 case DW_FORM_indirect:
19243 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19244 info_ptr += bytes_read;
19245 if (form == DW_FORM_implicit_const)
19246 {
19247 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19248 info_ptr += bytes_read;
19249 }
19250 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19251 info_ptr);
19252 break;
19253 case DW_FORM_implicit_const:
19254 DW_SND (attr) = implicit_const;
19255 break;
19256 case DW_FORM_addrx:
19257 case DW_FORM_GNU_addr_index:
19258 if (reader->dwo_file == NULL)
19259 {
19260 /* For now flag a hard error.
19261 Later we can turn this into a complaint. */
19262 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19263 dwarf_form_name (form),
19264 bfd_get_filename (abfd));
19265 }
19266 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19267 info_ptr += bytes_read;
19268 break;
19269 case DW_FORM_strx:
19270 case DW_FORM_strx1:
19271 case DW_FORM_strx2:
19272 case DW_FORM_strx3:
19273 case DW_FORM_strx4:
19274 case DW_FORM_GNU_str_index:
19275 if (reader->dwo_file == NULL)
19276 {
19277 /* For now flag a hard error.
19278 Later we can turn this into a complaint if warranted. */
19279 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19280 dwarf_form_name (form),
19281 bfd_get_filename (abfd));
19282 }
19283 {
19284 ULONGEST str_index;
19285 if (form == DW_FORM_strx1)
19286 {
19287 str_index = read_1_byte (abfd, info_ptr);
19288 info_ptr += 1;
19289 }
19290 else if (form == DW_FORM_strx2)
19291 {
19292 str_index = read_2_bytes (abfd, info_ptr);
19293 info_ptr += 2;
19294 }
19295 else if (form == DW_FORM_strx3)
19296 {
19297 str_index = read_3_bytes (abfd, info_ptr);
19298 info_ptr += 3;
19299 }
19300 else if (form == DW_FORM_strx4)
19301 {
19302 str_index = read_4_bytes (abfd, info_ptr);
19303 info_ptr += 4;
19304 }
19305 else
19306 {
19307 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19308 info_ptr += bytes_read;
19309 }
19310 DW_STRING (attr) = read_str_index (reader, str_index);
19311 DW_STRING_IS_CANONICAL (attr) = 0;
19312 }
19313 break;
19314 default:
19315 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19316 dwarf_form_name (form),
19317 bfd_get_filename (abfd));
19318 }
19319
19320 /* Super hack. */
19321 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19322 attr->form = DW_FORM_GNU_ref_alt;
19323
19324 /* We have seen instances where the compiler tried to emit a byte
19325 size attribute of -1 which ended up being encoded as an unsigned
19326 0xffffffff. Although 0xffffffff is technically a valid size value,
19327 an object of this size seems pretty unlikely so we can relatively
19328 safely treat these cases as if the size attribute was invalid and
19329 treat them as zero by default. */
19330 if (attr->name == DW_AT_byte_size
19331 && form == DW_FORM_data4
19332 && DW_UNSND (attr) >= 0xffffffff)
19333 {
19334 complaint
19335 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19336 hex_string (DW_UNSND (attr)));
19337 DW_UNSND (attr) = 0;
19338 }
19339
19340 return info_ptr;
19341 }
19342
19343 /* Read an attribute described by an abbreviated attribute. */
19344
19345 static const gdb_byte *
19346 read_attribute (const struct die_reader_specs *reader,
19347 struct attribute *attr, struct attr_abbrev *abbrev,
19348 const gdb_byte *info_ptr)
19349 {
19350 attr->name = abbrev->name;
19351 return read_attribute_value (reader, attr, abbrev->form,
19352 abbrev->implicit_const, info_ptr);
19353 }
19354
19355 /* Read dwarf information from a buffer. */
19356
19357 static unsigned int
19358 read_1_byte (bfd *abfd, const gdb_byte *buf)
19359 {
19360 return bfd_get_8 (abfd, buf);
19361 }
19362
19363 static int
19364 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19365 {
19366 return bfd_get_signed_8 (abfd, buf);
19367 }
19368
19369 static unsigned int
19370 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19371 {
19372 return bfd_get_16 (abfd, buf);
19373 }
19374
19375 static int
19376 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19377 {
19378 return bfd_get_signed_16 (abfd, buf);
19379 }
19380
19381 static unsigned int
19382 read_3_bytes (bfd *abfd, const gdb_byte *buf)
19383 {
19384 unsigned int result = 0;
19385 for (int i = 0; i < 3; ++i)
19386 {
19387 unsigned char byte = bfd_get_8 (abfd, buf);
19388 buf++;
19389 result |= ((unsigned int) byte << (i * 8));
19390 }
19391 return result;
19392 }
19393
19394 static unsigned int
19395 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19396 {
19397 return bfd_get_32 (abfd, buf);
19398 }
19399
19400 static int
19401 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19402 {
19403 return bfd_get_signed_32 (abfd, buf);
19404 }
19405
19406 static ULONGEST
19407 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19408 {
19409 return bfd_get_64 (abfd, buf);
19410 }
19411
19412 static CORE_ADDR
19413 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19414 unsigned int *bytes_read)
19415 {
19416 struct comp_unit_head *cu_header = &cu->header;
19417 CORE_ADDR retval = 0;
19418
19419 if (cu_header->signed_addr_p)
19420 {
19421 switch (cu_header->addr_size)
19422 {
19423 case 2:
19424 retval = bfd_get_signed_16 (abfd, buf);
19425 break;
19426 case 4:
19427 retval = bfd_get_signed_32 (abfd, buf);
19428 break;
19429 case 8:
19430 retval = bfd_get_signed_64 (abfd, buf);
19431 break;
19432 default:
19433 internal_error (__FILE__, __LINE__,
19434 _("read_address: bad switch, signed [in module %s]"),
19435 bfd_get_filename (abfd));
19436 }
19437 }
19438 else
19439 {
19440 switch (cu_header->addr_size)
19441 {
19442 case 2:
19443 retval = bfd_get_16 (abfd, buf);
19444 break;
19445 case 4:
19446 retval = bfd_get_32 (abfd, buf);
19447 break;
19448 case 8:
19449 retval = bfd_get_64 (abfd, buf);
19450 break;
19451 default:
19452 internal_error (__FILE__, __LINE__,
19453 _("read_address: bad switch, "
19454 "unsigned [in module %s]"),
19455 bfd_get_filename (abfd));
19456 }
19457 }
19458
19459 *bytes_read = cu_header->addr_size;
19460 return retval;
19461 }
19462
19463 /* Read the initial length from a section. The (draft) DWARF 3
19464 specification allows the initial length to take up either 4 bytes
19465 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19466 bytes describe the length and all offsets will be 8 bytes in length
19467 instead of 4.
19468
19469 An older, non-standard 64-bit format is also handled by this
19470 function. The older format in question stores the initial length
19471 as an 8-byte quantity without an escape value. Lengths greater
19472 than 2^32 aren't very common which means that the initial 4 bytes
19473 is almost always zero. Since a length value of zero doesn't make
19474 sense for the 32-bit format, this initial zero can be considered to
19475 be an escape value which indicates the presence of the older 64-bit
19476 format. As written, the code can't detect (old format) lengths
19477 greater than 4GB. If it becomes necessary to handle lengths
19478 somewhat larger than 4GB, we could allow other small values (such
19479 as the non-sensical values of 1, 2, and 3) to also be used as
19480 escape values indicating the presence of the old format.
19481
19482 The value returned via bytes_read should be used to increment the
19483 relevant pointer after calling read_initial_length().
19484
19485 [ Note: read_initial_length() and read_offset() are based on the
19486 document entitled "DWARF Debugging Information Format", revision
19487 3, draft 8, dated November 19, 2001. This document was obtained
19488 from:
19489
19490 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19491
19492 This document is only a draft and is subject to change. (So beware.)
19493
19494 Details regarding the older, non-standard 64-bit format were
19495 determined empirically by examining 64-bit ELF files produced by
19496 the SGI toolchain on an IRIX 6.5 machine.
19497
19498 - Kevin, July 16, 2002
19499 ] */
19500
19501 static LONGEST
19502 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19503 {
19504 LONGEST length = bfd_get_32 (abfd, buf);
19505
19506 if (length == 0xffffffff)
19507 {
19508 length = bfd_get_64 (abfd, buf + 4);
19509 *bytes_read = 12;
19510 }
19511 else if (length == 0)
19512 {
19513 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19514 length = bfd_get_64 (abfd, buf);
19515 *bytes_read = 8;
19516 }
19517 else
19518 {
19519 *bytes_read = 4;
19520 }
19521
19522 return length;
19523 }
19524
19525 /* Cover function for read_initial_length.
19526 Returns the length of the object at BUF, and stores the size of the
19527 initial length in *BYTES_READ and stores the size that offsets will be in
19528 *OFFSET_SIZE.
19529 If the initial length size is not equivalent to that specified in
19530 CU_HEADER then issue a complaint.
19531 This is useful when reading non-comp-unit headers. */
19532
19533 static LONGEST
19534 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19535 const struct comp_unit_head *cu_header,
19536 unsigned int *bytes_read,
19537 unsigned int *offset_size)
19538 {
19539 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19540
19541 gdb_assert (cu_header->initial_length_size == 4
19542 || cu_header->initial_length_size == 8
19543 || cu_header->initial_length_size == 12);
19544
19545 if (cu_header->initial_length_size != *bytes_read)
19546 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19547
19548 *offset_size = (*bytes_read == 4) ? 4 : 8;
19549 return length;
19550 }
19551
19552 /* Read an offset from the data stream. The size of the offset is
19553 given by cu_header->offset_size. */
19554
19555 static LONGEST
19556 read_offset (bfd *abfd, const gdb_byte *buf,
19557 const struct comp_unit_head *cu_header,
19558 unsigned int *bytes_read)
19559 {
19560 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19561
19562 *bytes_read = cu_header->offset_size;
19563 return offset;
19564 }
19565
19566 /* Read an offset from the data stream. */
19567
19568 static LONGEST
19569 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19570 {
19571 LONGEST retval = 0;
19572
19573 switch (offset_size)
19574 {
19575 case 4:
19576 retval = bfd_get_32 (abfd, buf);
19577 break;
19578 case 8:
19579 retval = bfd_get_64 (abfd, buf);
19580 break;
19581 default:
19582 internal_error (__FILE__, __LINE__,
19583 _("read_offset_1: bad switch [in module %s]"),
19584 bfd_get_filename (abfd));
19585 }
19586
19587 return retval;
19588 }
19589
19590 static const gdb_byte *
19591 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19592 {
19593 /* If the size of a host char is 8 bits, we can return a pointer
19594 to the buffer, otherwise we have to copy the data to a buffer
19595 allocated on the temporary obstack. */
19596 gdb_assert (HOST_CHAR_BIT == 8);
19597 return buf;
19598 }
19599
19600 static const char *
19601 read_direct_string (bfd *abfd, const gdb_byte *buf,
19602 unsigned int *bytes_read_ptr)
19603 {
19604 /* If the size of a host char is 8 bits, we can return a pointer
19605 to the string, otherwise we have to copy the string to a buffer
19606 allocated on the temporary obstack. */
19607 gdb_assert (HOST_CHAR_BIT == 8);
19608 if (*buf == '\0')
19609 {
19610 *bytes_read_ptr = 1;
19611 return NULL;
19612 }
19613 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19614 return (const char *) buf;
19615 }
19616
19617 /* Return pointer to string at section SECT offset STR_OFFSET with error
19618 reporting strings FORM_NAME and SECT_NAME. */
19619
19620 static const char *
19621 read_indirect_string_at_offset_from (struct objfile *objfile,
19622 bfd *abfd, LONGEST str_offset,
19623 struct dwarf2_section_info *sect,
19624 const char *form_name,
19625 const char *sect_name)
19626 {
19627 dwarf2_read_section (objfile, sect);
19628 if (sect->buffer == NULL)
19629 error (_("%s used without %s section [in module %s]"),
19630 form_name, sect_name, bfd_get_filename (abfd));
19631 if (str_offset >= sect->size)
19632 error (_("%s pointing outside of %s section [in module %s]"),
19633 form_name, sect_name, bfd_get_filename (abfd));
19634 gdb_assert (HOST_CHAR_BIT == 8);
19635 if (sect->buffer[str_offset] == '\0')
19636 return NULL;
19637 return (const char *) (sect->buffer + str_offset);
19638 }
19639
19640 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19641
19642 static const char *
19643 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19644 bfd *abfd, LONGEST str_offset)
19645 {
19646 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19647 abfd, str_offset,
19648 &dwarf2_per_objfile->str,
19649 "DW_FORM_strp", ".debug_str");
19650 }
19651
19652 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19653
19654 static const char *
19655 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19656 bfd *abfd, LONGEST str_offset)
19657 {
19658 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19659 abfd, str_offset,
19660 &dwarf2_per_objfile->line_str,
19661 "DW_FORM_line_strp",
19662 ".debug_line_str");
19663 }
19664
19665 /* Read a string at offset STR_OFFSET in the .debug_str section from
19666 the .dwz file DWZ. Throw an error if the offset is too large. If
19667 the string consists of a single NUL byte, return NULL; otherwise
19668 return a pointer to the string. */
19669
19670 static const char *
19671 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19672 LONGEST str_offset)
19673 {
19674 dwarf2_read_section (objfile, &dwz->str);
19675
19676 if (dwz->str.buffer == NULL)
19677 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19678 "section [in module %s]"),
19679 bfd_get_filename (dwz->dwz_bfd));
19680 if (str_offset >= dwz->str.size)
19681 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19682 ".debug_str section [in module %s]"),
19683 bfd_get_filename (dwz->dwz_bfd));
19684 gdb_assert (HOST_CHAR_BIT == 8);
19685 if (dwz->str.buffer[str_offset] == '\0')
19686 return NULL;
19687 return (const char *) (dwz->str.buffer + str_offset);
19688 }
19689
19690 /* Return pointer to string at .debug_str offset as read from BUF.
19691 BUF is assumed to be in a compilation unit described by CU_HEADER.
19692 Return *BYTES_READ_PTR count of bytes read from BUF. */
19693
19694 static const char *
19695 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19696 const gdb_byte *buf,
19697 const struct comp_unit_head *cu_header,
19698 unsigned int *bytes_read_ptr)
19699 {
19700 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19701
19702 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19703 }
19704
19705 /* Return pointer to string at .debug_line_str offset as read from BUF.
19706 BUF is assumed to be in a compilation unit described by CU_HEADER.
19707 Return *BYTES_READ_PTR count of bytes read from BUF. */
19708
19709 static const char *
19710 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19711 bfd *abfd, const gdb_byte *buf,
19712 const struct comp_unit_head *cu_header,
19713 unsigned int *bytes_read_ptr)
19714 {
19715 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19716
19717 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19718 str_offset);
19719 }
19720
19721 ULONGEST
19722 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19723 unsigned int *bytes_read_ptr)
19724 {
19725 ULONGEST result;
19726 unsigned int num_read;
19727 int shift;
19728 unsigned char byte;
19729
19730 result = 0;
19731 shift = 0;
19732 num_read = 0;
19733 while (1)
19734 {
19735 byte = bfd_get_8 (abfd, buf);
19736 buf++;
19737 num_read++;
19738 result |= ((ULONGEST) (byte & 127) << shift);
19739 if ((byte & 128) == 0)
19740 {
19741 break;
19742 }
19743 shift += 7;
19744 }
19745 *bytes_read_ptr = num_read;
19746 return result;
19747 }
19748
19749 static LONGEST
19750 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19751 unsigned int *bytes_read_ptr)
19752 {
19753 ULONGEST result;
19754 int shift, num_read;
19755 unsigned char byte;
19756
19757 result = 0;
19758 shift = 0;
19759 num_read = 0;
19760 while (1)
19761 {
19762 byte = bfd_get_8 (abfd, buf);
19763 buf++;
19764 num_read++;
19765 result |= ((ULONGEST) (byte & 127) << shift);
19766 shift += 7;
19767 if ((byte & 128) == 0)
19768 {
19769 break;
19770 }
19771 }
19772 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19773 result |= -(((ULONGEST) 1) << shift);
19774 *bytes_read_ptr = num_read;
19775 return result;
19776 }
19777
19778 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19779 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19780 ADDR_SIZE is the size of addresses from the CU header. */
19781
19782 static CORE_ADDR
19783 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19784 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19785 {
19786 struct objfile *objfile = dwarf2_per_objfile->objfile;
19787 bfd *abfd = objfile->obfd;
19788 const gdb_byte *info_ptr;
19789
19790 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19791 if (dwarf2_per_objfile->addr.buffer == NULL)
19792 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19793 objfile_name (objfile));
19794 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19795 error (_("DW_FORM_addr_index pointing outside of "
19796 ".debug_addr section [in module %s]"),
19797 objfile_name (objfile));
19798 info_ptr = (dwarf2_per_objfile->addr.buffer
19799 + addr_base + addr_index * addr_size);
19800 if (addr_size == 4)
19801 return bfd_get_32 (abfd, info_ptr);
19802 else
19803 return bfd_get_64 (abfd, info_ptr);
19804 }
19805
19806 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19807
19808 static CORE_ADDR
19809 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19810 {
19811 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19812 cu->addr_base, cu->header.addr_size);
19813 }
19814
19815 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19816
19817 static CORE_ADDR
19818 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19819 unsigned int *bytes_read)
19820 {
19821 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19822 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19823
19824 return read_addr_index (cu, addr_index);
19825 }
19826
19827 /* Data structure to pass results from dwarf2_read_addr_index_reader
19828 back to dwarf2_read_addr_index. */
19829
19830 struct dwarf2_read_addr_index_data
19831 {
19832 ULONGEST addr_base;
19833 int addr_size;
19834 };
19835
19836 /* die_reader_func for dwarf2_read_addr_index. */
19837
19838 static void
19839 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19840 const gdb_byte *info_ptr,
19841 struct die_info *comp_unit_die,
19842 int has_children,
19843 void *data)
19844 {
19845 struct dwarf2_cu *cu = reader->cu;
19846 struct dwarf2_read_addr_index_data *aidata =
19847 (struct dwarf2_read_addr_index_data *) data;
19848
19849 aidata->addr_base = cu->addr_base;
19850 aidata->addr_size = cu->header.addr_size;
19851 }
19852
19853 /* Given an index in .debug_addr, fetch the value.
19854 NOTE: This can be called during dwarf expression evaluation,
19855 long after the debug information has been read, and thus per_cu->cu
19856 may no longer exist. */
19857
19858 CORE_ADDR
19859 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19860 unsigned int addr_index)
19861 {
19862 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19863 struct dwarf2_cu *cu = per_cu->cu;
19864 ULONGEST addr_base;
19865 int addr_size;
19866
19867 /* We need addr_base and addr_size.
19868 If we don't have PER_CU->cu, we have to get it.
19869 Nasty, but the alternative is storing the needed info in PER_CU,
19870 which at this point doesn't seem justified: it's not clear how frequently
19871 it would get used and it would increase the size of every PER_CU.
19872 Entry points like dwarf2_per_cu_addr_size do a similar thing
19873 so we're not in uncharted territory here.
19874 Alas we need to be a bit more complicated as addr_base is contained
19875 in the DIE.
19876
19877 We don't need to read the entire CU(/TU).
19878 We just need the header and top level die.
19879
19880 IWBN to use the aging mechanism to let us lazily later discard the CU.
19881 For now we skip this optimization. */
19882
19883 if (cu != NULL)
19884 {
19885 addr_base = cu->addr_base;
19886 addr_size = cu->header.addr_size;
19887 }
19888 else
19889 {
19890 struct dwarf2_read_addr_index_data aidata;
19891
19892 /* Note: We can't use init_cutu_and_read_dies_simple here,
19893 we need addr_base. */
19894 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
19895 dwarf2_read_addr_index_reader, &aidata);
19896 addr_base = aidata.addr_base;
19897 addr_size = aidata.addr_size;
19898 }
19899
19900 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19901 addr_size);
19902 }
19903
19904 /* Given a DW_FORM_GNU_str_index or DW_FORM_strx, fetch the string.
19905 This is only used by the Fission support. */
19906
19907 static const char *
19908 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19909 {
19910 struct dwarf2_cu *cu = reader->cu;
19911 struct dwarf2_per_objfile *dwarf2_per_objfile
19912 = cu->per_cu->dwarf2_per_objfile;
19913 struct objfile *objfile = dwarf2_per_objfile->objfile;
19914 const char *objf_name = objfile_name (objfile);
19915 bfd *abfd = objfile->obfd;
19916 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19917 struct dwarf2_section_info *str_offsets_section =
19918 &reader->dwo_file->sections.str_offsets;
19919 const gdb_byte *info_ptr;
19920 ULONGEST str_offset;
19921 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
19922
19923 dwarf2_read_section (objfile, str_section);
19924 dwarf2_read_section (objfile, str_offsets_section);
19925 if (str_section->buffer == NULL)
19926 error (_("%s used without .debug_str.dwo section"
19927 " in CU at offset %s [in module %s]"),
19928 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19929 if (str_offsets_section->buffer == NULL)
19930 error (_("%s used without .debug_str_offsets.dwo section"
19931 " in CU at offset %s [in module %s]"),
19932 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19933 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19934 error (_("%s pointing outside of .debug_str_offsets.dwo"
19935 " section in CU at offset %s [in module %s]"),
19936 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19937 info_ptr = (str_offsets_section->buffer
19938 + str_index * cu->header.offset_size);
19939 if (cu->header.offset_size == 4)
19940 str_offset = bfd_get_32 (abfd, info_ptr);
19941 else
19942 str_offset = bfd_get_64 (abfd, info_ptr);
19943 if (str_offset >= str_section->size)
19944 error (_("Offset from %s pointing outside of"
19945 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19946 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19947 return (const char *) (str_section->buffer + str_offset);
19948 }
19949
19950 /* Return the length of an LEB128 number in BUF. */
19951
19952 static int
19953 leb128_size (const gdb_byte *buf)
19954 {
19955 const gdb_byte *begin = buf;
19956 gdb_byte byte;
19957
19958 while (1)
19959 {
19960 byte = *buf++;
19961 if ((byte & 128) == 0)
19962 return buf - begin;
19963 }
19964 }
19965
19966 static void
19967 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19968 {
19969 switch (lang)
19970 {
19971 case DW_LANG_C89:
19972 case DW_LANG_C99:
19973 case DW_LANG_C11:
19974 case DW_LANG_C:
19975 case DW_LANG_UPC:
19976 cu->language = language_c;
19977 break;
19978 case DW_LANG_Java:
19979 case DW_LANG_C_plus_plus:
19980 case DW_LANG_C_plus_plus_11:
19981 case DW_LANG_C_plus_plus_14:
19982 cu->language = language_cplus;
19983 break;
19984 case DW_LANG_D:
19985 cu->language = language_d;
19986 break;
19987 case DW_LANG_Fortran77:
19988 case DW_LANG_Fortran90:
19989 case DW_LANG_Fortran95:
19990 case DW_LANG_Fortran03:
19991 case DW_LANG_Fortran08:
19992 cu->language = language_fortran;
19993 break;
19994 case DW_LANG_Go:
19995 cu->language = language_go;
19996 break;
19997 case DW_LANG_Mips_Assembler:
19998 cu->language = language_asm;
19999 break;
20000 case DW_LANG_Ada83:
20001 case DW_LANG_Ada95:
20002 cu->language = language_ada;
20003 break;
20004 case DW_LANG_Modula2:
20005 cu->language = language_m2;
20006 break;
20007 case DW_LANG_Pascal83:
20008 cu->language = language_pascal;
20009 break;
20010 case DW_LANG_ObjC:
20011 cu->language = language_objc;
20012 break;
20013 case DW_LANG_Rust:
20014 case DW_LANG_Rust_old:
20015 cu->language = language_rust;
20016 break;
20017 case DW_LANG_Cobol74:
20018 case DW_LANG_Cobol85:
20019 default:
20020 cu->language = language_minimal;
20021 break;
20022 }
20023 cu->language_defn = language_def (cu->language);
20024 }
20025
20026 /* Return the named attribute or NULL if not there. */
20027
20028 static struct attribute *
20029 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20030 {
20031 for (;;)
20032 {
20033 unsigned int i;
20034 struct attribute *spec = NULL;
20035
20036 for (i = 0; i < die->num_attrs; ++i)
20037 {
20038 if (die->attrs[i].name == name)
20039 return &die->attrs[i];
20040 if (die->attrs[i].name == DW_AT_specification
20041 || die->attrs[i].name == DW_AT_abstract_origin)
20042 spec = &die->attrs[i];
20043 }
20044
20045 if (!spec)
20046 break;
20047
20048 die = follow_die_ref (die, spec, &cu);
20049 }
20050
20051 return NULL;
20052 }
20053
20054 /* Return the named attribute or NULL if not there,
20055 but do not follow DW_AT_specification, etc.
20056 This is for use in contexts where we're reading .debug_types dies.
20057 Following DW_AT_specification, DW_AT_abstract_origin will take us
20058 back up the chain, and we want to go down. */
20059
20060 static struct attribute *
20061 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
20062 {
20063 unsigned int i;
20064
20065 for (i = 0; i < die->num_attrs; ++i)
20066 if (die->attrs[i].name == name)
20067 return &die->attrs[i];
20068
20069 return NULL;
20070 }
20071
20072 /* Return the string associated with a string-typed attribute, or NULL if it
20073 is either not found or is of an incorrect type. */
20074
20075 static const char *
20076 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20077 {
20078 struct attribute *attr;
20079 const char *str = NULL;
20080
20081 attr = dwarf2_attr (die, name, cu);
20082
20083 if (attr != NULL)
20084 {
20085 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
20086 || attr->form == DW_FORM_string
20087 || attr->form == DW_FORM_strx
20088 || attr->form == DW_FORM_GNU_str_index
20089 || attr->form == DW_FORM_GNU_strp_alt)
20090 str = DW_STRING (attr);
20091 else
20092 complaint (_("string type expected for attribute %s for "
20093 "DIE at %s in module %s"),
20094 dwarf_attr_name (name), sect_offset_str (die->sect_off),
20095 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
20096 }
20097
20098 return str;
20099 }
20100
20101 /* Return non-zero iff the attribute NAME is defined for the given DIE,
20102 and holds a non-zero value. This function should only be used for
20103 DW_FORM_flag or DW_FORM_flag_present attributes. */
20104
20105 static int
20106 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
20107 {
20108 struct attribute *attr = dwarf2_attr (die, name, cu);
20109
20110 return (attr && DW_UNSND (attr));
20111 }
20112
20113 static int
20114 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
20115 {
20116 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20117 which value is non-zero. However, we have to be careful with
20118 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20119 (via dwarf2_flag_true_p) follows this attribute. So we may
20120 end up accidently finding a declaration attribute that belongs
20121 to a different DIE referenced by the specification attribute,
20122 even though the given DIE does not have a declaration attribute. */
20123 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20124 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
20125 }
20126
20127 /* Return the die giving the specification for DIE, if there is
20128 one. *SPEC_CU is the CU containing DIE on input, and the CU
20129 containing the return value on output. If there is no
20130 specification, but there is an abstract origin, that is
20131 returned. */
20132
20133 static struct die_info *
20134 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20135 {
20136 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20137 *spec_cu);
20138
20139 if (spec_attr == NULL)
20140 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20141
20142 if (spec_attr == NULL)
20143 return NULL;
20144 else
20145 return follow_die_ref (die, spec_attr, spec_cu);
20146 }
20147
20148 /* Stub for free_line_header to match void * callback types. */
20149
20150 static void
20151 free_line_header_voidp (void *arg)
20152 {
20153 struct line_header *lh = (struct line_header *) arg;
20154
20155 delete lh;
20156 }
20157
20158 void
20159 line_header::add_include_dir (const char *include_dir)
20160 {
20161 if (dwarf_line_debug >= 2)
20162 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20163 include_dirs.size () + 1, include_dir);
20164
20165 include_dirs.push_back (include_dir);
20166 }
20167
20168 void
20169 line_header::add_file_name (const char *name,
20170 dir_index d_index,
20171 unsigned int mod_time,
20172 unsigned int length)
20173 {
20174 if (dwarf_line_debug >= 2)
20175 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
20176 (unsigned) file_names.size () + 1, name);
20177
20178 file_names.emplace_back (name, d_index, mod_time, length);
20179 }
20180
20181 /* A convenience function to find the proper .debug_line section for a CU. */
20182
20183 static struct dwarf2_section_info *
20184 get_debug_line_section (struct dwarf2_cu *cu)
20185 {
20186 struct dwarf2_section_info *section;
20187 struct dwarf2_per_objfile *dwarf2_per_objfile
20188 = cu->per_cu->dwarf2_per_objfile;
20189
20190 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20191 DWO file. */
20192 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20193 section = &cu->dwo_unit->dwo_file->sections.line;
20194 else if (cu->per_cu->is_dwz)
20195 {
20196 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
20197
20198 section = &dwz->line;
20199 }
20200 else
20201 section = &dwarf2_per_objfile->line;
20202
20203 return section;
20204 }
20205
20206 /* Read directory or file name entry format, starting with byte of
20207 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20208 entries count and the entries themselves in the described entry
20209 format. */
20210
20211 static void
20212 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20213 bfd *abfd, const gdb_byte **bufp,
20214 struct line_header *lh,
20215 const struct comp_unit_head *cu_header,
20216 void (*callback) (struct line_header *lh,
20217 const char *name,
20218 dir_index d_index,
20219 unsigned int mod_time,
20220 unsigned int length))
20221 {
20222 gdb_byte format_count, formati;
20223 ULONGEST data_count, datai;
20224 const gdb_byte *buf = *bufp;
20225 const gdb_byte *format_header_data;
20226 unsigned int bytes_read;
20227
20228 format_count = read_1_byte (abfd, buf);
20229 buf += 1;
20230 format_header_data = buf;
20231 for (formati = 0; formati < format_count; formati++)
20232 {
20233 read_unsigned_leb128 (abfd, buf, &bytes_read);
20234 buf += bytes_read;
20235 read_unsigned_leb128 (abfd, buf, &bytes_read);
20236 buf += bytes_read;
20237 }
20238
20239 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20240 buf += bytes_read;
20241 for (datai = 0; datai < data_count; datai++)
20242 {
20243 const gdb_byte *format = format_header_data;
20244 struct file_entry fe;
20245
20246 for (formati = 0; formati < format_count; formati++)
20247 {
20248 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20249 format += bytes_read;
20250
20251 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20252 format += bytes_read;
20253
20254 gdb::optional<const char *> string;
20255 gdb::optional<unsigned int> uint;
20256
20257 switch (form)
20258 {
20259 case DW_FORM_string:
20260 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20261 buf += bytes_read;
20262 break;
20263
20264 case DW_FORM_line_strp:
20265 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20266 abfd, buf,
20267 cu_header,
20268 &bytes_read));
20269 buf += bytes_read;
20270 break;
20271
20272 case DW_FORM_data1:
20273 uint.emplace (read_1_byte (abfd, buf));
20274 buf += 1;
20275 break;
20276
20277 case DW_FORM_data2:
20278 uint.emplace (read_2_bytes (abfd, buf));
20279 buf += 2;
20280 break;
20281
20282 case DW_FORM_data4:
20283 uint.emplace (read_4_bytes (abfd, buf));
20284 buf += 4;
20285 break;
20286
20287 case DW_FORM_data8:
20288 uint.emplace (read_8_bytes (abfd, buf));
20289 buf += 8;
20290 break;
20291
20292 case DW_FORM_udata:
20293 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20294 buf += bytes_read;
20295 break;
20296
20297 case DW_FORM_block:
20298 /* It is valid only for DW_LNCT_timestamp which is ignored by
20299 current GDB. */
20300 break;
20301 }
20302
20303 switch (content_type)
20304 {
20305 case DW_LNCT_path:
20306 if (string.has_value ())
20307 fe.name = *string;
20308 break;
20309 case DW_LNCT_directory_index:
20310 if (uint.has_value ())
20311 fe.d_index = (dir_index) *uint;
20312 break;
20313 case DW_LNCT_timestamp:
20314 if (uint.has_value ())
20315 fe.mod_time = *uint;
20316 break;
20317 case DW_LNCT_size:
20318 if (uint.has_value ())
20319 fe.length = *uint;
20320 break;
20321 case DW_LNCT_MD5:
20322 break;
20323 default:
20324 complaint (_("Unknown format content type %s"),
20325 pulongest (content_type));
20326 }
20327 }
20328
20329 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20330 }
20331
20332 *bufp = buf;
20333 }
20334
20335 /* Read the statement program header starting at OFFSET in
20336 .debug_line, or .debug_line.dwo. Return a pointer
20337 to a struct line_header, allocated using xmalloc.
20338 Returns NULL if there is a problem reading the header, e.g., if it
20339 has a version we don't understand.
20340
20341 NOTE: the strings in the include directory and file name tables of
20342 the returned object point into the dwarf line section buffer,
20343 and must not be freed. */
20344
20345 static line_header_up
20346 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20347 {
20348 const gdb_byte *line_ptr;
20349 unsigned int bytes_read, offset_size;
20350 int i;
20351 const char *cur_dir, *cur_file;
20352 struct dwarf2_section_info *section;
20353 bfd *abfd;
20354 struct dwarf2_per_objfile *dwarf2_per_objfile
20355 = cu->per_cu->dwarf2_per_objfile;
20356
20357 section = get_debug_line_section (cu);
20358 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20359 if (section->buffer == NULL)
20360 {
20361 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20362 complaint (_("missing .debug_line.dwo section"));
20363 else
20364 complaint (_("missing .debug_line section"));
20365 return 0;
20366 }
20367
20368 /* We can't do this until we know the section is non-empty.
20369 Only then do we know we have such a section. */
20370 abfd = get_section_bfd_owner (section);
20371
20372 /* Make sure that at least there's room for the total_length field.
20373 That could be 12 bytes long, but we're just going to fudge that. */
20374 if (to_underlying (sect_off) + 4 >= section->size)
20375 {
20376 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20377 return 0;
20378 }
20379
20380 line_header_up lh (new line_header ());
20381
20382 lh->sect_off = sect_off;
20383 lh->offset_in_dwz = cu->per_cu->is_dwz;
20384
20385 line_ptr = section->buffer + to_underlying (sect_off);
20386
20387 /* Read in the header. */
20388 lh->total_length =
20389 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20390 &bytes_read, &offset_size);
20391 line_ptr += bytes_read;
20392 if (line_ptr + lh->total_length > (section->buffer + section->size))
20393 {
20394 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20395 return 0;
20396 }
20397 lh->statement_program_end = line_ptr + lh->total_length;
20398 lh->version = read_2_bytes (abfd, line_ptr);
20399 line_ptr += 2;
20400 if (lh->version > 5)
20401 {
20402 /* This is a version we don't understand. The format could have
20403 changed in ways we don't handle properly so just punt. */
20404 complaint (_("unsupported version in .debug_line section"));
20405 return NULL;
20406 }
20407 if (lh->version >= 5)
20408 {
20409 gdb_byte segment_selector_size;
20410
20411 /* Skip address size. */
20412 read_1_byte (abfd, line_ptr);
20413 line_ptr += 1;
20414
20415 segment_selector_size = read_1_byte (abfd, line_ptr);
20416 line_ptr += 1;
20417 if (segment_selector_size != 0)
20418 {
20419 complaint (_("unsupported segment selector size %u "
20420 "in .debug_line section"),
20421 segment_selector_size);
20422 return NULL;
20423 }
20424 }
20425 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20426 line_ptr += offset_size;
20427 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20428 line_ptr += 1;
20429 if (lh->version >= 4)
20430 {
20431 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20432 line_ptr += 1;
20433 }
20434 else
20435 lh->maximum_ops_per_instruction = 1;
20436
20437 if (lh->maximum_ops_per_instruction == 0)
20438 {
20439 lh->maximum_ops_per_instruction = 1;
20440 complaint (_("invalid maximum_ops_per_instruction "
20441 "in `.debug_line' section"));
20442 }
20443
20444 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20445 line_ptr += 1;
20446 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20447 line_ptr += 1;
20448 lh->line_range = read_1_byte (abfd, line_ptr);
20449 line_ptr += 1;
20450 lh->opcode_base = read_1_byte (abfd, line_ptr);
20451 line_ptr += 1;
20452 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20453
20454 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20455 for (i = 1; i < lh->opcode_base; ++i)
20456 {
20457 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20458 line_ptr += 1;
20459 }
20460
20461 if (lh->version >= 5)
20462 {
20463 /* Read directory table. */
20464 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20465 &cu->header,
20466 [] (struct line_header *header, const char *name,
20467 dir_index d_index, unsigned int mod_time,
20468 unsigned int length)
20469 {
20470 header->add_include_dir (name);
20471 });
20472
20473 /* Read file name table. */
20474 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20475 &cu->header,
20476 [] (struct line_header *header, const char *name,
20477 dir_index d_index, unsigned int mod_time,
20478 unsigned int length)
20479 {
20480 header->add_file_name (name, d_index, mod_time, length);
20481 });
20482 }
20483 else
20484 {
20485 /* Read directory table. */
20486 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20487 {
20488 line_ptr += bytes_read;
20489 lh->add_include_dir (cur_dir);
20490 }
20491 line_ptr += bytes_read;
20492
20493 /* Read file name table. */
20494 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20495 {
20496 unsigned int mod_time, length;
20497 dir_index d_index;
20498
20499 line_ptr += bytes_read;
20500 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20501 line_ptr += bytes_read;
20502 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20503 line_ptr += bytes_read;
20504 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20505 line_ptr += bytes_read;
20506
20507 lh->add_file_name (cur_file, d_index, mod_time, length);
20508 }
20509 line_ptr += bytes_read;
20510 }
20511 lh->statement_program_start = line_ptr;
20512
20513 if (line_ptr > (section->buffer + section->size))
20514 complaint (_("line number info header doesn't "
20515 "fit in `.debug_line' section"));
20516
20517 return lh;
20518 }
20519
20520 /* Subroutine of dwarf_decode_lines to simplify it.
20521 Return the file name of the psymtab for included file FILE_INDEX
20522 in line header LH of PST.
20523 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20524 If space for the result is malloc'd, *NAME_HOLDER will be set.
20525 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20526
20527 static const char *
20528 psymtab_include_file_name (const struct line_header *lh, int file_index,
20529 const struct partial_symtab *pst,
20530 const char *comp_dir,
20531 gdb::unique_xmalloc_ptr<char> *name_holder)
20532 {
20533 const file_entry &fe = lh->file_names[file_index];
20534 const char *include_name = fe.name;
20535 const char *include_name_to_compare = include_name;
20536 const char *pst_filename;
20537 int file_is_pst;
20538
20539 const char *dir_name = fe.include_dir (lh);
20540
20541 gdb::unique_xmalloc_ptr<char> hold_compare;
20542 if (!IS_ABSOLUTE_PATH (include_name)
20543 && (dir_name != NULL || comp_dir != NULL))
20544 {
20545 /* Avoid creating a duplicate psymtab for PST.
20546 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20547 Before we do the comparison, however, we need to account
20548 for DIR_NAME and COMP_DIR.
20549 First prepend dir_name (if non-NULL). If we still don't
20550 have an absolute path prepend comp_dir (if non-NULL).
20551 However, the directory we record in the include-file's
20552 psymtab does not contain COMP_DIR (to match the
20553 corresponding symtab(s)).
20554
20555 Example:
20556
20557 bash$ cd /tmp
20558 bash$ gcc -g ./hello.c
20559 include_name = "hello.c"
20560 dir_name = "."
20561 DW_AT_comp_dir = comp_dir = "/tmp"
20562 DW_AT_name = "./hello.c"
20563
20564 */
20565
20566 if (dir_name != NULL)
20567 {
20568 name_holder->reset (concat (dir_name, SLASH_STRING,
20569 include_name, (char *) NULL));
20570 include_name = name_holder->get ();
20571 include_name_to_compare = include_name;
20572 }
20573 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20574 {
20575 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20576 include_name, (char *) NULL));
20577 include_name_to_compare = hold_compare.get ();
20578 }
20579 }
20580
20581 pst_filename = pst->filename;
20582 gdb::unique_xmalloc_ptr<char> copied_name;
20583 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20584 {
20585 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20586 pst_filename, (char *) NULL));
20587 pst_filename = copied_name.get ();
20588 }
20589
20590 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20591
20592 if (file_is_pst)
20593 return NULL;
20594 return include_name;
20595 }
20596
20597 /* State machine to track the state of the line number program. */
20598
20599 class lnp_state_machine
20600 {
20601 public:
20602 /* Initialize a machine state for the start of a line number
20603 program. */
20604 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20605 bool record_lines_p);
20606
20607 file_entry *current_file ()
20608 {
20609 /* lh->file_names is 0-based, but the file name numbers in the
20610 statement program are 1-based. */
20611 return m_line_header->file_name_at (m_file);
20612 }
20613
20614 /* Record the line in the state machine. END_SEQUENCE is true if
20615 we're processing the end of a sequence. */
20616 void record_line (bool end_sequence);
20617
20618 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20619 nop-out rest of the lines in this sequence. */
20620 void check_line_address (struct dwarf2_cu *cu,
20621 const gdb_byte *line_ptr,
20622 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20623
20624 void handle_set_discriminator (unsigned int discriminator)
20625 {
20626 m_discriminator = discriminator;
20627 m_line_has_non_zero_discriminator |= discriminator != 0;
20628 }
20629
20630 /* Handle DW_LNE_set_address. */
20631 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20632 {
20633 m_op_index = 0;
20634 address += baseaddr;
20635 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20636 }
20637
20638 /* Handle DW_LNS_advance_pc. */
20639 void handle_advance_pc (CORE_ADDR adjust);
20640
20641 /* Handle a special opcode. */
20642 void handle_special_opcode (unsigned char op_code);
20643
20644 /* Handle DW_LNS_advance_line. */
20645 void handle_advance_line (int line_delta)
20646 {
20647 advance_line (line_delta);
20648 }
20649
20650 /* Handle DW_LNS_set_file. */
20651 void handle_set_file (file_name_index file);
20652
20653 /* Handle DW_LNS_negate_stmt. */
20654 void handle_negate_stmt ()
20655 {
20656 m_is_stmt = !m_is_stmt;
20657 }
20658
20659 /* Handle DW_LNS_const_add_pc. */
20660 void handle_const_add_pc ();
20661
20662 /* Handle DW_LNS_fixed_advance_pc. */
20663 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20664 {
20665 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20666 m_op_index = 0;
20667 }
20668
20669 /* Handle DW_LNS_copy. */
20670 void handle_copy ()
20671 {
20672 record_line (false);
20673 m_discriminator = 0;
20674 }
20675
20676 /* Handle DW_LNE_end_sequence. */
20677 void handle_end_sequence ()
20678 {
20679 m_currently_recording_lines = true;
20680 }
20681
20682 private:
20683 /* Advance the line by LINE_DELTA. */
20684 void advance_line (int line_delta)
20685 {
20686 m_line += line_delta;
20687
20688 if (line_delta != 0)
20689 m_line_has_non_zero_discriminator = m_discriminator != 0;
20690 }
20691
20692 struct dwarf2_cu *m_cu;
20693
20694 gdbarch *m_gdbarch;
20695
20696 /* True if we're recording lines.
20697 Otherwise we're building partial symtabs and are just interested in
20698 finding include files mentioned by the line number program. */
20699 bool m_record_lines_p;
20700
20701 /* The line number header. */
20702 line_header *m_line_header;
20703
20704 /* These are part of the standard DWARF line number state machine,
20705 and initialized according to the DWARF spec. */
20706
20707 unsigned char m_op_index = 0;
20708 /* The line table index (1-based) of the current file. */
20709 file_name_index m_file = (file_name_index) 1;
20710 unsigned int m_line = 1;
20711
20712 /* These are initialized in the constructor. */
20713
20714 CORE_ADDR m_address;
20715 bool m_is_stmt;
20716 unsigned int m_discriminator;
20717
20718 /* Additional bits of state we need to track. */
20719
20720 /* The last file that we called dwarf2_start_subfile for.
20721 This is only used for TLLs. */
20722 unsigned int m_last_file = 0;
20723 /* The last file a line number was recorded for. */
20724 struct subfile *m_last_subfile = NULL;
20725
20726 /* When true, record the lines we decode. */
20727 bool m_currently_recording_lines = false;
20728
20729 /* The last line number that was recorded, used to coalesce
20730 consecutive entries for the same line. This can happen, for
20731 example, when discriminators are present. PR 17276. */
20732 unsigned int m_last_line = 0;
20733 bool m_line_has_non_zero_discriminator = false;
20734 };
20735
20736 void
20737 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20738 {
20739 CORE_ADDR addr_adj = (((m_op_index + adjust)
20740 / m_line_header->maximum_ops_per_instruction)
20741 * m_line_header->minimum_instruction_length);
20742 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20743 m_op_index = ((m_op_index + adjust)
20744 % m_line_header->maximum_ops_per_instruction);
20745 }
20746
20747 void
20748 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20749 {
20750 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20751 CORE_ADDR addr_adj = (((m_op_index
20752 + (adj_opcode / m_line_header->line_range))
20753 / m_line_header->maximum_ops_per_instruction)
20754 * m_line_header->minimum_instruction_length);
20755 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20756 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20757 % m_line_header->maximum_ops_per_instruction);
20758
20759 int line_delta = (m_line_header->line_base
20760 + (adj_opcode % m_line_header->line_range));
20761 advance_line (line_delta);
20762 record_line (false);
20763 m_discriminator = 0;
20764 }
20765
20766 void
20767 lnp_state_machine::handle_set_file (file_name_index file)
20768 {
20769 m_file = file;
20770
20771 const file_entry *fe = current_file ();
20772 if (fe == NULL)
20773 dwarf2_debug_line_missing_file_complaint ();
20774 else if (m_record_lines_p)
20775 {
20776 const char *dir = fe->include_dir (m_line_header);
20777
20778 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20779 m_line_has_non_zero_discriminator = m_discriminator != 0;
20780 dwarf2_start_subfile (m_cu, fe->name, dir);
20781 }
20782 }
20783
20784 void
20785 lnp_state_machine::handle_const_add_pc ()
20786 {
20787 CORE_ADDR adjust
20788 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20789
20790 CORE_ADDR addr_adj
20791 = (((m_op_index + adjust)
20792 / m_line_header->maximum_ops_per_instruction)
20793 * m_line_header->minimum_instruction_length);
20794
20795 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20796 m_op_index = ((m_op_index + adjust)
20797 % m_line_header->maximum_ops_per_instruction);
20798 }
20799
20800 /* Return non-zero if we should add LINE to the line number table.
20801 LINE is the line to add, LAST_LINE is the last line that was added,
20802 LAST_SUBFILE is the subfile for LAST_LINE.
20803 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20804 had a non-zero discriminator.
20805
20806 We have to be careful in the presence of discriminators.
20807 E.g., for this line:
20808
20809 for (i = 0; i < 100000; i++);
20810
20811 clang can emit four line number entries for that one line,
20812 each with a different discriminator.
20813 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20814
20815 However, we want gdb to coalesce all four entries into one.
20816 Otherwise the user could stepi into the middle of the line and
20817 gdb would get confused about whether the pc really was in the
20818 middle of the line.
20819
20820 Things are further complicated by the fact that two consecutive
20821 line number entries for the same line is a heuristic used by gcc
20822 to denote the end of the prologue. So we can't just discard duplicate
20823 entries, we have to be selective about it. The heuristic we use is
20824 that we only collapse consecutive entries for the same line if at least
20825 one of those entries has a non-zero discriminator. PR 17276.
20826
20827 Note: Addresses in the line number state machine can never go backwards
20828 within one sequence, thus this coalescing is ok. */
20829
20830 static int
20831 dwarf_record_line_p (struct dwarf2_cu *cu,
20832 unsigned int line, unsigned int last_line,
20833 int line_has_non_zero_discriminator,
20834 struct subfile *last_subfile)
20835 {
20836 if (cu->get_builder ()->get_current_subfile () != last_subfile)
20837 return 1;
20838 if (line != last_line)
20839 return 1;
20840 /* Same line for the same file that we've seen already.
20841 As a last check, for pr 17276, only record the line if the line
20842 has never had a non-zero discriminator. */
20843 if (!line_has_non_zero_discriminator)
20844 return 1;
20845 return 0;
20846 }
20847
20848 /* Use the CU's builder to record line number LINE beginning at
20849 address ADDRESS in the line table of subfile SUBFILE. */
20850
20851 static void
20852 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20853 unsigned int line, CORE_ADDR address,
20854 struct dwarf2_cu *cu)
20855 {
20856 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20857
20858 if (dwarf_line_debug)
20859 {
20860 fprintf_unfiltered (gdb_stdlog,
20861 "Recording line %u, file %s, address %s\n",
20862 line, lbasename (subfile->name),
20863 paddress (gdbarch, address));
20864 }
20865
20866 if (cu != nullptr)
20867 cu->get_builder ()->record_line (subfile, line, addr);
20868 }
20869
20870 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20871 Mark the end of a set of line number records.
20872 The arguments are the same as for dwarf_record_line_1.
20873 If SUBFILE is NULL the request is ignored. */
20874
20875 static void
20876 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20877 CORE_ADDR address, struct dwarf2_cu *cu)
20878 {
20879 if (subfile == NULL)
20880 return;
20881
20882 if (dwarf_line_debug)
20883 {
20884 fprintf_unfiltered (gdb_stdlog,
20885 "Finishing current line, file %s, address %s\n",
20886 lbasename (subfile->name),
20887 paddress (gdbarch, address));
20888 }
20889
20890 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
20891 }
20892
20893 void
20894 lnp_state_machine::record_line (bool end_sequence)
20895 {
20896 if (dwarf_line_debug)
20897 {
20898 fprintf_unfiltered (gdb_stdlog,
20899 "Processing actual line %u: file %u,"
20900 " address %s, is_stmt %u, discrim %u\n",
20901 m_line, to_underlying (m_file),
20902 paddress (m_gdbarch, m_address),
20903 m_is_stmt, m_discriminator);
20904 }
20905
20906 file_entry *fe = current_file ();
20907
20908 if (fe == NULL)
20909 dwarf2_debug_line_missing_file_complaint ();
20910 /* For now we ignore lines not starting on an instruction boundary.
20911 But not when processing end_sequence for compatibility with the
20912 previous version of the code. */
20913 else if (m_op_index == 0 || end_sequence)
20914 {
20915 fe->included_p = 1;
20916 if (m_record_lines_p && (producer_is_codewarrior (m_cu) || m_is_stmt))
20917 {
20918 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
20919 || end_sequence)
20920 {
20921 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20922 m_currently_recording_lines ? m_cu : nullptr);
20923 }
20924
20925 if (!end_sequence)
20926 {
20927 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20928 m_line_has_non_zero_discriminator,
20929 m_last_subfile))
20930 {
20931 buildsym_compunit *builder = m_cu->get_builder ();
20932 dwarf_record_line_1 (m_gdbarch,
20933 builder->get_current_subfile (),
20934 m_line, m_address,
20935 m_currently_recording_lines ? m_cu : nullptr);
20936 }
20937 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20938 m_last_line = m_line;
20939 }
20940 }
20941 }
20942 }
20943
20944 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20945 line_header *lh, bool record_lines_p)
20946 {
20947 m_cu = cu;
20948 m_gdbarch = arch;
20949 m_record_lines_p = record_lines_p;
20950 m_line_header = lh;
20951
20952 m_currently_recording_lines = true;
20953
20954 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20955 was a line entry for it so that the backend has a chance to adjust it
20956 and also record it in case it needs it. This is currently used by MIPS
20957 code, cf. `mips_adjust_dwarf2_line'. */
20958 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20959 m_is_stmt = lh->default_is_stmt;
20960 m_discriminator = 0;
20961 }
20962
20963 void
20964 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20965 const gdb_byte *line_ptr,
20966 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20967 {
20968 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20969 the pc range of the CU. However, we restrict the test to only ADDRESS
20970 values of zero to preserve GDB's previous behaviour which is to handle
20971 the specific case of a function being GC'd by the linker. */
20972
20973 if (address == 0 && address < unrelocated_lowpc)
20974 {
20975 /* This line table is for a function which has been
20976 GCd by the linker. Ignore it. PR gdb/12528 */
20977
20978 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20979 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20980
20981 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20982 line_offset, objfile_name (objfile));
20983 m_currently_recording_lines = false;
20984 /* Note: m_currently_recording_lines is left as false until we see
20985 DW_LNE_end_sequence. */
20986 }
20987 }
20988
20989 /* Subroutine of dwarf_decode_lines to simplify it.
20990 Process the line number information in LH.
20991 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20992 program in order to set included_p for every referenced header. */
20993
20994 static void
20995 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20996 const int decode_for_pst_p, CORE_ADDR lowpc)
20997 {
20998 const gdb_byte *line_ptr, *extended_end;
20999 const gdb_byte *line_end;
21000 unsigned int bytes_read, extended_len;
21001 unsigned char op_code, extended_op;
21002 CORE_ADDR baseaddr;
21003 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21004 bfd *abfd = objfile->obfd;
21005 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21006 /* True if we're recording line info (as opposed to building partial
21007 symtabs and just interested in finding include files mentioned by
21008 the line number program). */
21009 bool record_lines_p = !decode_for_pst_p;
21010
21011 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21012
21013 line_ptr = lh->statement_program_start;
21014 line_end = lh->statement_program_end;
21015
21016 /* Read the statement sequences until there's nothing left. */
21017 while (line_ptr < line_end)
21018 {
21019 /* The DWARF line number program state machine. Reset the state
21020 machine at the start of each sequence. */
21021 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
21022 bool end_sequence = false;
21023
21024 if (record_lines_p)
21025 {
21026 /* Start a subfile for the current file of the state
21027 machine. */
21028 const file_entry *fe = state_machine.current_file ();
21029
21030 if (fe != NULL)
21031 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
21032 }
21033
21034 /* Decode the table. */
21035 while (line_ptr < line_end && !end_sequence)
21036 {
21037 op_code = read_1_byte (abfd, line_ptr);
21038 line_ptr += 1;
21039
21040 if (op_code >= lh->opcode_base)
21041 {
21042 /* Special opcode. */
21043 state_machine.handle_special_opcode (op_code);
21044 }
21045 else switch (op_code)
21046 {
21047 case DW_LNS_extended_op:
21048 extended_len = read_unsigned_leb128 (abfd, line_ptr,
21049 &bytes_read);
21050 line_ptr += bytes_read;
21051 extended_end = line_ptr + extended_len;
21052 extended_op = read_1_byte (abfd, line_ptr);
21053 line_ptr += 1;
21054 switch (extended_op)
21055 {
21056 case DW_LNE_end_sequence:
21057 state_machine.handle_end_sequence ();
21058 end_sequence = true;
21059 break;
21060 case DW_LNE_set_address:
21061 {
21062 CORE_ADDR address
21063 = read_address (abfd, line_ptr, cu, &bytes_read);
21064 line_ptr += bytes_read;
21065
21066 state_machine.check_line_address (cu, line_ptr,
21067 lowpc - baseaddr, address);
21068 state_machine.handle_set_address (baseaddr, address);
21069 }
21070 break;
21071 case DW_LNE_define_file:
21072 {
21073 const char *cur_file;
21074 unsigned int mod_time, length;
21075 dir_index dindex;
21076
21077 cur_file = read_direct_string (abfd, line_ptr,
21078 &bytes_read);
21079 line_ptr += bytes_read;
21080 dindex = (dir_index)
21081 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21082 line_ptr += bytes_read;
21083 mod_time =
21084 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21085 line_ptr += bytes_read;
21086 length =
21087 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21088 line_ptr += bytes_read;
21089 lh->add_file_name (cur_file, dindex, mod_time, length);
21090 }
21091 break;
21092 case DW_LNE_set_discriminator:
21093 {
21094 /* The discriminator is not interesting to the
21095 debugger; just ignore it. We still need to
21096 check its value though:
21097 if there are consecutive entries for the same
21098 (non-prologue) line we want to coalesce them.
21099 PR 17276. */
21100 unsigned int discr
21101 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21102 line_ptr += bytes_read;
21103
21104 state_machine.handle_set_discriminator (discr);
21105 }
21106 break;
21107 default:
21108 complaint (_("mangled .debug_line section"));
21109 return;
21110 }
21111 /* Make sure that we parsed the extended op correctly. If e.g.
21112 we expected a different address size than the producer used,
21113 we may have read the wrong number of bytes. */
21114 if (line_ptr != extended_end)
21115 {
21116 complaint (_("mangled .debug_line section"));
21117 return;
21118 }
21119 break;
21120 case DW_LNS_copy:
21121 state_machine.handle_copy ();
21122 break;
21123 case DW_LNS_advance_pc:
21124 {
21125 CORE_ADDR adjust
21126 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21127 line_ptr += bytes_read;
21128
21129 state_machine.handle_advance_pc (adjust);
21130 }
21131 break;
21132 case DW_LNS_advance_line:
21133 {
21134 int line_delta
21135 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21136 line_ptr += bytes_read;
21137
21138 state_machine.handle_advance_line (line_delta);
21139 }
21140 break;
21141 case DW_LNS_set_file:
21142 {
21143 file_name_index file
21144 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21145 &bytes_read);
21146 line_ptr += bytes_read;
21147
21148 state_machine.handle_set_file (file);
21149 }
21150 break;
21151 case DW_LNS_set_column:
21152 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21153 line_ptr += bytes_read;
21154 break;
21155 case DW_LNS_negate_stmt:
21156 state_machine.handle_negate_stmt ();
21157 break;
21158 case DW_LNS_set_basic_block:
21159 break;
21160 /* Add to the address register of the state machine the
21161 address increment value corresponding to special opcode
21162 255. I.e., this value is scaled by the minimum
21163 instruction length since special opcode 255 would have
21164 scaled the increment. */
21165 case DW_LNS_const_add_pc:
21166 state_machine.handle_const_add_pc ();
21167 break;
21168 case DW_LNS_fixed_advance_pc:
21169 {
21170 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21171 line_ptr += 2;
21172
21173 state_machine.handle_fixed_advance_pc (addr_adj);
21174 }
21175 break;
21176 default:
21177 {
21178 /* Unknown standard opcode, ignore it. */
21179 int i;
21180
21181 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21182 {
21183 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21184 line_ptr += bytes_read;
21185 }
21186 }
21187 }
21188 }
21189
21190 if (!end_sequence)
21191 dwarf2_debug_line_missing_end_sequence_complaint ();
21192
21193 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21194 in which case we still finish recording the last line). */
21195 state_machine.record_line (true);
21196 }
21197 }
21198
21199 /* Decode the Line Number Program (LNP) for the given line_header
21200 structure and CU. The actual information extracted and the type
21201 of structures created from the LNP depends on the value of PST.
21202
21203 1. If PST is NULL, then this procedure uses the data from the program
21204 to create all necessary symbol tables, and their linetables.
21205
21206 2. If PST is not NULL, this procedure reads the program to determine
21207 the list of files included by the unit represented by PST, and
21208 builds all the associated partial symbol tables.
21209
21210 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21211 It is used for relative paths in the line table.
21212 NOTE: When processing partial symtabs (pst != NULL),
21213 comp_dir == pst->dirname.
21214
21215 NOTE: It is important that psymtabs have the same file name (via strcmp)
21216 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21217 symtab we don't use it in the name of the psymtabs we create.
21218 E.g. expand_line_sal requires this when finding psymtabs to expand.
21219 A good testcase for this is mb-inline.exp.
21220
21221 LOWPC is the lowest address in CU (or 0 if not known).
21222
21223 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21224 for its PC<->lines mapping information. Otherwise only the filename
21225 table is read in. */
21226
21227 static void
21228 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21229 struct dwarf2_cu *cu, struct partial_symtab *pst,
21230 CORE_ADDR lowpc, int decode_mapping)
21231 {
21232 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21233 const int decode_for_pst_p = (pst != NULL);
21234
21235 if (decode_mapping)
21236 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21237
21238 if (decode_for_pst_p)
21239 {
21240 int file_index;
21241
21242 /* Now that we're done scanning the Line Header Program, we can
21243 create the psymtab of each included file. */
21244 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21245 if (lh->file_names[file_index].included_p == 1)
21246 {
21247 gdb::unique_xmalloc_ptr<char> name_holder;
21248 const char *include_name =
21249 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21250 &name_holder);
21251 if (include_name != NULL)
21252 dwarf2_create_include_psymtab (include_name, pst, objfile);
21253 }
21254 }
21255 else
21256 {
21257 /* Make sure a symtab is created for every file, even files
21258 which contain only variables (i.e. no code with associated
21259 line numbers). */
21260 buildsym_compunit *builder = cu->get_builder ();
21261 struct compunit_symtab *cust = builder->get_compunit_symtab ();
21262 int i;
21263
21264 for (i = 0; i < lh->file_names.size (); i++)
21265 {
21266 file_entry &fe = lh->file_names[i];
21267
21268 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
21269
21270 if (builder->get_current_subfile ()->symtab == NULL)
21271 {
21272 builder->get_current_subfile ()->symtab
21273 = allocate_symtab (cust,
21274 builder->get_current_subfile ()->name);
21275 }
21276 fe.symtab = builder->get_current_subfile ()->symtab;
21277 }
21278 }
21279 }
21280
21281 /* Start a subfile for DWARF. FILENAME is the name of the file and
21282 DIRNAME the name of the source directory which contains FILENAME
21283 or NULL if not known.
21284 This routine tries to keep line numbers from identical absolute and
21285 relative file names in a common subfile.
21286
21287 Using the `list' example from the GDB testsuite, which resides in
21288 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21289 of /srcdir/list0.c yields the following debugging information for list0.c:
21290
21291 DW_AT_name: /srcdir/list0.c
21292 DW_AT_comp_dir: /compdir
21293 files.files[0].name: list0.h
21294 files.files[0].dir: /srcdir
21295 files.files[1].name: list0.c
21296 files.files[1].dir: /srcdir
21297
21298 The line number information for list0.c has to end up in a single
21299 subfile, so that `break /srcdir/list0.c:1' works as expected.
21300 start_subfile will ensure that this happens provided that we pass the
21301 concatenation of files.files[1].dir and files.files[1].name as the
21302 subfile's name. */
21303
21304 static void
21305 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21306 const char *dirname)
21307 {
21308 char *copy = NULL;
21309
21310 /* In order not to lose the line information directory,
21311 we concatenate it to the filename when it makes sense.
21312 Note that the Dwarf3 standard says (speaking of filenames in line
21313 information): ``The directory index is ignored for file names
21314 that represent full path names''. Thus ignoring dirname in the
21315 `else' branch below isn't an issue. */
21316
21317 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21318 {
21319 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21320 filename = copy;
21321 }
21322
21323 cu->get_builder ()->start_subfile (filename);
21324
21325 if (copy != NULL)
21326 xfree (copy);
21327 }
21328
21329 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21330 buildsym_compunit constructor. */
21331
21332 struct compunit_symtab *
21333 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
21334 CORE_ADDR low_pc)
21335 {
21336 gdb_assert (m_builder == nullptr);
21337
21338 m_builder.reset (new struct buildsym_compunit
21339 (per_cu->dwarf2_per_objfile->objfile,
21340 name, comp_dir, language, low_pc));
21341
21342 list_in_scope = get_builder ()->get_file_symbols ();
21343
21344 get_builder ()->record_debugformat ("DWARF 2");
21345 get_builder ()->record_producer (producer);
21346
21347 processing_has_namespace_info = false;
21348
21349 return get_builder ()->get_compunit_symtab ();
21350 }
21351
21352 static void
21353 var_decode_location (struct attribute *attr, struct symbol *sym,
21354 struct dwarf2_cu *cu)
21355 {
21356 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21357 struct comp_unit_head *cu_header = &cu->header;
21358
21359 /* NOTE drow/2003-01-30: There used to be a comment and some special
21360 code here to turn a symbol with DW_AT_external and a
21361 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21362 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21363 with some versions of binutils) where shared libraries could have
21364 relocations against symbols in their debug information - the
21365 minimal symbol would have the right address, but the debug info
21366 would not. It's no longer necessary, because we will explicitly
21367 apply relocations when we read in the debug information now. */
21368
21369 /* A DW_AT_location attribute with no contents indicates that a
21370 variable has been optimized away. */
21371 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21372 {
21373 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21374 return;
21375 }
21376
21377 /* Handle one degenerate form of location expression specially, to
21378 preserve GDB's previous behavior when section offsets are
21379 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
21380 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
21381
21382 if (attr_form_is_block (attr)
21383 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21384 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21385 || ((DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21386 || DW_BLOCK (attr)->data[0] == DW_OP_addrx)
21387 && (DW_BLOCK (attr)->size
21388 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21389 {
21390 unsigned int dummy;
21391
21392 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21393 SYMBOL_VALUE_ADDRESS (sym) =
21394 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21395 else
21396 SYMBOL_VALUE_ADDRESS (sym) =
21397 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21398 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21399 fixup_symbol_section (sym, objfile);
21400 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21401 SYMBOL_SECTION (sym));
21402 return;
21403 }
21404
21405 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21406 expression evaluator, and use LOC_COMPUTED only when necessary
21407 (i.e. when the value of a register or memory location is
21408 referenced, or a thread-local block, etc.). Then again, it might
21409 not be worthwhile. I'm assuming that it isn't unless performance
21410 or memory numbers show me otherwise. */
21411
21412 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21413
21414 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21415 cu->has_loclist = true;
21416 }
21417
21418 /* Given a pointer to a DWARF information entry, figure out if we need
21419 to make a symbol table entry for it, and if so, create a new entry
21420 and return a pointer to it.
21421 If TYPE is NULL, determine symbol type from the die, otherwise
21422 used the passed type.
21423 If SPACE is not NULL, use it to hold the new symbol. If it is
21424 NULL, allocate a new symbol on the objfile's obstack. */
21425
21426 static struct symbol *
21427 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21428 struct symbol *space)
21429 {
21430 struct dwarf2_per_objfile *dwarf2_per_objfile
21431 = cu->per_cu->dwarf2_per_objfile;
21432 struct objfile *objfile = dwarf2_per_objfile->objfile;
21433 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21434 struct symbol *sym = NULL;
21435 const char *name;
21436 struct attribute *attr = NULL;
21437 struct attribute *attr2 = NULL;
21438 CORE_ADDR baseaddr;
21439 struct pending **list_to_add = NULL;
21440
21441 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21442
21443 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21444
21445 name = dwarf2_name (die, cu);
21446 if (name)
21447 {
21448 const char *linkagename;
21449 int suppress_add = 0;
21450
21451 if (space)
21452 sym = space;
21453 else
21454 sym = allocate_symbol (objfile);
21455 OBJSTAT (objfile, n_syms++);
21456
21457 /* Cache this symbol's name and the name's demangled form (if any). */
21458 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21459 linkagename = dwarf2_physname (name, die, cu);
21460 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21461
21462 /* Fortran does not have mangling standard and the mangling does differ
21463 between gfortran, iFort etc. */
21464 if (cu->language == language_fortran
21465 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21466 symbol_set_demangled_name (&(sym->ginfo),
21467 dwarf2_full_name (name, die, cu),
21468 NULL);
21469
21470 /* Default assumptions.
21471 Use the passed type or decode it from the die. */
21472 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21473 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21474 if (type != NULL)
21475 SYMBOL_TYPE (sym) = type;
21476 else
21477 SYMBOL_TYPE (sym) = die_type (die, cu);
21478 attr = dwarf2_attr (die,
21479 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21480 cu);
21481 if (attr)
21482 {
21483 SYMBOL_LINE (sym) = DW_UNSND (attr);
21484 }
21485
21486 attr = dwarf2_attr (die,
21487 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21488 cu);
21489 if (attr)
21490 {
21491 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21492 struct file_entry *fe;
21493
21494 if (cu->line_header != NULL)
21495 fe = cu->line_header->file_name_at (file_index);
21496 else
21497 fe = NULL;
21498
21499 if (fe == NULL)
21500 complaint (_("file index out of range"));
21501 else
21502 symbol_set_symtab (sym, fe->symtab);
21503 }
21504
21505 switch (die->tag)
21506 {
21507 case DW_TAG_label:
21508 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21509 if (attr)
21510 {
21511 CORE_ADDR addr;
21512
21513 addr = attr_value_as_address (attr);
21514 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21515 SYMBOL_VALUE_ADDRESS (sym) = addr;
21516 }
21517 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21518 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21519 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21520 add_symbol_to_list (sym, cu->list_in_scope);
21521 break;
21522 case DW_TAG_subprogram:
21523 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21524 finish_block. */
21525 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21526 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21527 if ((attr2 && (DW_UNSND (attr2) != 0))
21528 || cu->language == language_ada)
21529 {
21530 /* Subprograms marked external are stored as a global symbol.
21531 Ada subprograms, whether marked external or not, are always
21532 stored as a global symbol, because we want to be able to
21533 access them globally. For instance, we want to be able
21534 to break on a nested subprogram without having to
21535 specify the context. */
21536 list_to_add = cu->get_builder ()->get_global_symbols ();
21537 }
21538 else
21539 {
21540 list_to_add = cu->list_in_scope;
21541 }
21542 break;
21543 case DW_TAG_inlined_subroutine:
21544 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21545 finish_block. */
21546 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21547 SYMBOL_INLINED (sym) = 1;
21548 list_to_add = cu->list_in_scope;
21549 break;
21550 case DW_TAG_template_value_param:
21551 suppress_add = 1;
21552 /* Fall through. */
21553 case DW_TAG_constant:
21554 case DW_TAG_variable:
21555 case DW_TAG_member:
21556 /* Compilation with minimal debug info may result in
21557 variables with missing type entries. Change the
21558 misleading `void' type to something sensible. */
21559 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21560 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21561
21562 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21563 /* In the case of DW_TAG_member, we should only be called for
21564 static const members. */
21565 if (die->tag == DW_TAG_member)
21566 {
21567 /* dwarf2_add_field uses die_is_declaration,
21568 so we do the same. */
21569 gdb_assert (die_is_declaration (die, cu));
21570 gdb_assert (attr);
21571 }
21572 if (attr)
21573 {
21574 dwarf2_const_value (attr, sym, cu);
21575 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21576 if (!suppress_add)
21577 {
21578 if (attr2 && (DW_UNSND (attr2) != 0))
21579 list_to_add = cu->get_builder ()->get_global_symbols ();
21580 else
21581 list_to_add = cu->list_in_scope;
21582 }
21583 break;
21584 }
21585 attr = dwarf2_attr (die, DW_AT_location, cu);
21586 if (attr)
21587 {
21588 var_decode_location (attr, sym, cu);
21589 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21590
21591 /* Fortran explicitly imports any global symbols to the local
21592 scope by DW_TAG_common_block. */
21593 if (cu->language == language_fortran && die->parent
21594 && die->parent->tag == DW_TAG_common_block)
21595 attr2 = NULL;
21596
21597 if (SYMBOL_CLASS (sym) == LOC_STATIC
21598 && SYMBOL_VALUE_ADDRESS (sym) == 0
21599 && !dwarf2_per_objfile->has_section_at_zero)
21600 {
21601 /* When a static variable is eliminated by the linker,
21602 the corresponding debug information is not stripped
21603 out, but the variable address is set to null;
21604 do not add such variables into symbol table. */
21605 }
21606 else if (attr2 && (DW_UNSND (attr2) != 0))
21607 {
21608 /* Workaround gfortran PR debug/40040 - it uses
21609 DW_AT_location for variables in -fPIC libraries which may
21610 get overriden by other libraries/executable and get
21611 a different address. Resolve it by the minimal symbol
21612 which may come from inferior's executable using copy
21613 relocation. Make this workaround only for gfortran as for
21614 other compilers GDB cannot guess the minimal symbol
21615 Fortran mangling kind. */
21616 if (cu->language == language_fortran && die->parent
21617 && die->parent->tag == DW_TAG_module
21618 && cu->producer
21619 && startswith (cu->producer, "GNU Fortran"))
21620 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21621
21622 /* A variable with DW_AT_external is never static,
21623 but it may be block-scoped. */
21624 list_to_add
21625 = ((cu->list_in_scope
21626 == cu->get_builder ()->get_file_symbols ())
21627 ? cu->get_builder ()->get_global_symbols ()
21628 : cu->list_in_scope);
21629 }
21630 else
21631 list_to_add = cu->list_in_scope;
21632 }
21633 else
21634 {
21635 /* We do not know the address of this symbol.
21636 If it is an external symbol and we have type information
21637 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21638 The address of the variable will then be determined from
21639 the minimal symbol table whenever the variable is
21640 referenced. */
21641 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21642
21643 /* Fortran explicitly imports any global symbols to the local
21644 scope by DW_TAG_common_block. */
21645 if (cu->language == language_fortran && die->parent
21646 && die->parent->tag == DW_TAG_common_block)
21647 {
21648 /* SYMBOL_CLASS doesn't matter here because
21649 read_common_block is going to reset it. */
21650 if (!suppress_add)
21651 list_to_add = cu->list_in_scope;
21652 }
21653 else if (attr2 && (DW_UNSND (attr2) != 0)
21654 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21655 {
21656 /* A variable with DW_AT_external is never static, but it
21657 may be block-scoped. */
21658 list_to_add
21659 = ((cu->list_in_scope
21660 == cu->get_builder ()->get_file_symbols ())
21661 ? cu->get_builder ()->get_global_symbols ()
21662 : cu->list_in_scope);
21663
21664 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21665 }
21666 else if (!die_is_declaration (die, cu))
21667 {
21668 /* Use the default LOC_OPTIMIZED_OUT class. */
21669 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21670 if (!suppress_add)
21671 list_to_add = cu->list_in_scope;
21672 }
21673 }
21674 break;
21675 case DW_TAG_formal_parameter:
21676 {
21677 /* If we are inside a function, mark this as an argument. If
21678 not, we might be looking at an argument to an inlined function
21679 when we do not have enough information to show inlined frames;
21680 pretend it's a local variable in that case so that the user can
21681 still see it. */
21682 struct context_stack *curr
21683 = cu->get_builder ()->get_current_context_stack ();
21684 if (curr != nullptr && curr->name != nullptr)
21685 SYMBOL_IS_ARGUMENT (sym) = 1;
21686 attr = dwarf2_attr (die, DW_AT_location, cu);
21687 if (attr)
21688 {
21689 var_decode_location (attr, sym, cu);
21690 }
21691 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21692 if (attr)
21693 {
21694 dwarf2_const_value (attr, sym, cu);
21695 }
21696
21697 list_to_add = cu->list_in_scope;
21698 }
21699 break;
21700 case DW_TAG_unspecified_parameters:
21701 /* From varargs functions; gdb doesn't seem to have any
21702 interest in this information, so just ignore it for now.
21703 (FIXME?) */
21704 break;
21705 case DW_TAG_template_type_param:
21706 suppress_add = 1;
21707 /* Fall through. */
21708 case DW_TAG_class_type:
21709 case DW_TAG_interface_type:
21710 case DW_TAG_structure_type:
21711 case DW_TAG_union_type:
21712 case DW_TAG_set_type:
21713 case DW_TAG_enumeration_type:
21714 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21715 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21716
21717 {
21718 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21719 really ever be static objects: otherwise, if you try
21720 to, say, break of a class's method and you're in a file
21721 which doesn't mention that class, it won't work unless
21722 the check for all static symbols in lookup_symbol_aux
21723 saves you. See the OtherFileClass tests in
21724 gdb.c++/namespace.exp. */
21725
21726 if (!suppress_add)
21727 {
21728 buildsym_compunit *builder = cu->get_builder ();
21729 list_to_add
21730 = (cu->list_in_scope == builder->get_file_symbols ()
21731 && cu->language == language_cplus
21732 ? builder->get_global_symbols ()
21733 : cu->list_in_scope);
21734
21735 /* The semantics of C++ state that "struct foo {
21736 ... }" also defines a typedef for "foo". */
21737 if (cu->language == language_cplus
21738 || cu->language == language_ada
21739 || cu->language == language_d
21740 || cu->language == language_rust)
21741 {
21742 /* The symbol's name is already allocated along
21743 with this objfile, so we don't need to
21744 duplicate it for the type. */
21745 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21746 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21747 }
21748 }
21749 }
21750 break;
21751 case DW_TAG_typedef:
21752 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21753 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21754 list_to_add = cu->list_in_scope;
21755 break;
21756 case DW_TAG_base_type:
21757 case DW_TAG_subrange_type:
21758 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21759 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21760 list_to_add = cu->list_in_scope;
21761 break;
21762 case DW_TAG_enumerator:
21763 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21764 if (attr)
21765 {
21766 dwarf2_const_value (attr, sym, cu);
21767 }
21768 {
21769 /* NOTE: carlton/2003-11-10: See comment above in the
21770 DW_TAG_class_type, etc. block. */
21771
21772 list_to_add
21773 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
21774 && cu->language == language_cplus
21775 ? cu->get_builder ()->get_global_symbols ()
21776 : cu->list_in_scope);
21777 }
21778 break;
21779 case DW_TAG_imported_declaration:
21780 case DW_TAG_namespace:
21781 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21782 list_to_add = cu->get_builder ()->get_global_symbols ();
21783 break;
21784 case DW_TAG_module:
21785 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21786 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21787 list_to_add = cu->get_builder ()->get_global_symbols ();
21788 break;
21789 case DW_TAG_common_block:
21790 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21791 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21792 add_symbol_to_list (sym, cu->list_in_scope);
21793 break;
21794 default:
21795 /* Not a tag we recognize. Hopefully we aren't processing
21796 trash data, but since we must specifically ignore things
21797 we don't recognize, there is nothing else we should do at
21798 this point. */
21799 complaint (_("unsupported tag: '%s'"),
21800 dwarf_tag_name (die->tag));
21801 break;
21802 }
21803
21804 if (suppress_add)
21805 {
21806 sym->hash_next = objfile->template_symbols;
21807 objfile->template_symbols = sym;
21808 list_to_add = NULL;
21809 }
21810
21811 if (list_to_add != NULL)
21812 add_symbol_to_list (sym, list_to_add);
21813
21814 /* For the benefit of old versions of GCC, check for anonymous
21815 namespaces based on the demangled name. */
21816 if (!cu->processing_has_namespace_info
21817 && cu->language == language_cplus)
21818 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
21819 }
21820 return (sym);
21821 }
21822
21823 /* Given an attr with a DW_FORM_dataN value in host byte order,
21824 zero-extend it as appropriate for the symbol's type. The DWARF
21825 standard (v4) is not entirely clear about the meaning of using
21826 DW_FORM_dataN for a constant with a signed type, where the type is
21827 wider than the data. The conclusion of a discussion on the DWARF
21828 list was that this is unspecified. We choose to always zero-extend
21829 because that is the interpretation long in use by GCC. */
21830
21831 static gdb_byte *
21832 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21833 struct dwarf2_cu *cu, LONGEST *value, int bits)
21834 {
21835 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21836 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21837 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21838 LONGEST l = DW_UNSND (attr);
21839
21840 if (bits < sizeof (*value) * 8)
21841 {
21842 l &= ((LONGEST) 1 << bits) - 1;
21843 *value = l;
21844 }
21845 else if (bits == sizeof (*value) * 8)
21846 *value = l;
21847 else
21848 {
21849 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21850 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21851 return bytes;
21852 }
21853
21854 return NULL;
21855 }
21856
21857 /* Read a constant value from an attribute. Either set *VALUE, or if
21858 the value does not fit in *VALUE, set *BYTES - either already
21859 allocated on the objfile obstack, or newly allocated on OBSTACK,
21860 or, set *BATON, if we translated the constant to a location
21861 expression. */
21862
21863 static void
21864 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21865 const char *name, struct obstack *obstack,
21866 struct dwarf2_cu *cu,
21867 LONGEST *value, const gdb_byte **bytes,
21868 struct dwarf2_locexpr_baton **baton)
21869 {
21870 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21871 struct comp_unit_head *cu_header = &cu->header;
21872 struct dwarf_block *blk;
21873 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21874 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21875
21876 *value = 0;
21877 *bytes = NULL;
21878 *baton = NULL;
21879
21880 switch (attr->form)
21881 {
21882 case DW_FORM_addr:
21883 case DW_FORM_addrx:
21884 case DW_FORM_GNU_addr_index:
21885 {
21886 gdb_byte *data;
21887
21888 if (TYPE_LENGTH (type) != cu_header->addr_size)
21889 dwarf2_const_value_length_mismatch_complaint (name,
21890 cu_header->addr_size,
21891 TYPE_LENGTH (type));
21892 /* Symbols of this form are reasonably rare, so we just
21893 piggyback on the existing location code rather than writing
21894 a new implementation of symbol_computed_ops. */
21895 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21896 (*baton)->per_cu = cu->per_cu;
21897 gdb_assert ((*baton)->per_cu);
21898
21899 (*baton)->size = 2 + cu_header->addr_size;
21900 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21901 (*baton)->data = data;
21902
21903 data[0] = DW_OP_addr;
21904 store_unsigned_integer (&data[1], cu_header->addr_size,
21905 byte_order, DW_ADDR (attr));
21906 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21907 }
21908 break;
21909 case DW_FORM_string:
21910 case DW_FORM_strp:
21911 case DW_FORM_strx:
21912 case DW_FORM_GNU_str_index:
21913 case DW_FORM_GNU_strp_alt:
21914 /* DW_STRING is already allocated on the objfile obstack, point
21915 directly to it. */
21916 *bytes = (const gdb_byte *) DW_STRING (attr);
21917 break;
21918 case DW_FORM_block1:
21919 case DW_FORM_block2:
21920 case DW_FORM_block4:
21921 case DW_FORM_block:
21922 case DW_FORM_exprloc:
21923 case DW_FORM_data16:
21924 blk = DW_BLOCK (attr);
21925 if (TYPE_LENGTH (type) != blk->size)
21926 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21927 TYPE_LENGTH (type));
21928 *bytes = blk->data;
21929 break;
21930
21931 /* The DW_AT_const_value attributes are supposed to carry the
21932 symbol's value "represented as it would be on the target
21933 architecture." By the time we get here, it's already been
21934 converted to host endianness, so we just need to sign- or
21935 zero-extend it as appropriate. */
21936 case DW_FORM_data1:
21937 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21938 break;
21939 case DW_FORM_data2:
21940 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21941 break;
21942 case DW_FORM_data4:
21943 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21944 break;
21945 case DW_FORM_data8:
21946 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21947 break;
21948
21949 case DW_FORM_sdata:
21950 case DW_FORM_implicit_const:
21951 *value = DW_SND (attr);
21952 break;
21953
21954 case DW_FORM_udata:
21955 *value = DW_UNSND (attr);
21956 break;
21957
21958 default:
21959 complaint (_("unsupported const value attribute form: '%s'"),
21960 dwarf_form_name (attr->form));
21961 *value = 0;
21962 break;
21963 }
21964 }
21965
21966
21967 /* Copy constant value from an attribute to a symbol. */
21968
21969 static void
21970 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21971 struct dwarf2_cu *cu)
21972 {
21973 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21974 LONGEST value;
21975 const gdb_byte *bytes;
21976 struct dwarf2_locexpr_baton *baton;
21977
21978 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21979 SYMBOL_PRINT_NAME (sym),
21980 &objfile->objfile_obstack, cu,
21981 &value, &bytes, &baton);
21982
21983 if (baton != NULL)
21984 {
21985 SYMBOL_LOCATION_BATON (sym) = baton;
21986 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21987 }
21988 else if (bytes != NULL)
21989 {
21990 SYMBOL_VALUE_BYTES (sym) = bytes;
21991 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21992 }
21993 else
21994 {
21995 SYMBOL_VALUE (sym) = value;
21996 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21997 }
21998 }
21999
22000 /* Return the type of the die in question using its DW_AT_type attribute. */
22001
22002 static struct type *
22003 die_type (struct die_info *die, struct dwarf2_cu *cu)
22004 {
22005 struct attribute *type_attr;
22006
22007 type_attr = dwarf2_attr (die, DW_AT_type, cu);
22008 if (!type_attr)
22009 {
22010 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22011 /* A missing DW_AT_type represents a void type. */
22012 return objfile_type (objfile)->builtin_void;
22013 }
22014
22015 return lookup_die_type (die, type_attr, cu);
22016 }
22017
22018 /* True iff CU's producer generates GNAT Ada auxiliary information
22019 that allows to find parallel types through that information instead
22020 of having to do expensive parallel lookups by type name. */
22021
22022 static int
22023 need_gnat_info (struct dwarf2_cu *cu)
22024 {
22025 /* Assume that the Ada compiler was GNAT, which always produces
22026 the auxiliary information. */
22027 return (cu->language == language_ada);
22028 }
22029
22030 /* Return the auxiliary type of the die in question using its
22031 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
22032 attribute is not present. */
22033
22034 static struct type *
22035 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
22036 {
22037 struct attribute *type_attr;
22038
22039 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
22040 if (!type_attr)
22041 return NULL;
22042
22043 return lookup_die_type (die, type_attr, cu);
22044 }
22045
22046 /* If DIE has a descriptive_type attribute, then set the TYPE's
22047 descriptive type accordingly. */
22048
22049 static void
22050 set_descriptive_type (struct type *type, struct die_info *die,
22051 struct dwarf2_cu *cu)
22052 {
22053 struct type *descriptive_type = die_descriptive_type (die, cu);
22054
22055 if (descriptive_type)
22056 {
22057 ALLOCATE_GNAT_AUX_TYPE (type);
22058 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
22059 }
22060 }
22061
22062 /* Return the containing type of the die in question using its
22063 DW_AT_containing_type attribute. */
22064
22065 static struct type *
22066 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
22067 {
22068 struct attribute *type_attr;
22069 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22070
22071 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
22072 if (!type_attr)
22073 error (_("Dwarf Error: Problem turning containing type into gdb type "
22074 "[in module %s]"), objfile_name (objfile));
22075
22076 return lookup_die_type (die, type_attr, cu);
22077 }
22078
22079 /* Return an error marker type to use for the ill formed type in DIE/CU. */
22080
22081 static struct type *
22082 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
22083 {
22084 struct dwarf2_per_objfile *dwarf2_per_objfile
22085 = cu->per_cu->dwarf2_per_objfile;
22086 struct objfile *objfile = dwarf2_per_objfile->objfile;
22087 char *saved;
22088
22089 std::string message
22090 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
22091 objfile_name (objfile),
22092 sect_offset_str (cu->header.sect_off),
22093 sect_offset_str (die->sect_off));
22094 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
22095 message.c_str (), message.length ());
22096
22097 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
22098 }
22099
22100 /* Look up the type of DIE in CU using its type attribute ATTR.
22101 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
22102 DW_AT_containing_type.
22103 If there is no type substitute an error marker. */
22104
22105 static struct type *
22106 lookup_die_type (struct die_info *die, const struct attribute *attr,
22107 struct dwarf2_cu *cu)
22108 {
22109 struct dwarf2_per_objfile *dwarf2_per_objfile
22110 = cu->per_cu->dwarf2_per_objfile;
22111 struct objfile *objfile = dwarf2_per_objfile->objfile;
22112 struct type *this_type;
22113
22114 gdb_assert (attr->name == DW_AT_type
22115 || attr->name == DW_AT_GNAT_descriptive_type
22116 || attr->name == DW_AT_containing_type);
22117
22118 /* First see if we have it cached. */
22119
22120 if (attr->form == DW_FORM_GNU_ref_alt)
22121 {
22122 struct dwarf2_per_cu_data *per_cu;
22123 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22124
22125 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
22126 dwarf2_per_objfile);
22127 this_type = get_die_type_at_offset (sect_off, per_cu);
22128 }
22129 else if (attr_form_is_ref (attr))
22130 {
22131 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22132
22133 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
22134 }
22135 else if (attr->form == DW_FORM_ref_sig8)
22136 {
22137 ULONGEST signature = DW_SIGNATURE (attr);
22138
22139 return get_signatured_type (die, signature, cu);
22140 }
22141 else
22142 {
22143 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
22144 " at %s [in module %s]"),
22145 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22146 objfile_name (objfile));
22147 return build_error_marker_type (cu, die);
22148 }
22149
22150 /* If not cached we need to read it in. */
22151
22152 if (this_type == NULL)
22153 {
22154 struct die_info *type_die = NULL;
22155 struct dwarf2_cu *type_cu = cu;
22156
22157 if (attr_form_is_ref (attr))
22158 type_die = follow_die_ref (die, attr, &type_cu);
22159 if (type_die == NULL)
22160 return build_error_marker_type (cu, die);
22161 /* If we find the type now, it's probably because the type came
22162 from an inter-CU reference and the type's CU got expanded before
22163 ours. */
22164 this_type = read_type_die (type_die, type_cu);
22165 }
22166
22167 /* If we still don't have a type use an error marker. */
22168
22169 if (this_type == NULL)
22170 return build_error_marker_type (cu, die);
22171
22172 return this_type;
22173 }
22174
22175 /* Return the type in DIE, CU.
22176 Returns NULL for invalid types.
22177
22178 This first does a lookup in die_type_hash,
22179 and only reads the die in if necessary.
22180
22181 NOTE: This can be called when reading in partial or full symbols. */
22182
22183 static struct type *
22184 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22185 {
22186 struct type *this_type;
22187
22188 this_type = get_die_type (die, cu);
22189 if (this_type)
22190 return this_type;
22191
22192 return read_type_die_1 (die, cu);
22193 }
22194
22195 /* Read the type in DIE, CU.
22196 Returns NULL for invalid types. */
22197
22198 static struct type *
22199 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22200 {
22201 struct type *this_type = NULL;
22202
22203 switch (die->tag)
22204 {
22205 case DW_TAG_class_type:
22206 case DW_TAG_interface_type:
22207 case DW_TAG_structure_type:
22208 case DW_TAG_union_type:
22209 this_type = read_structure_type (die, cu);
22210 break;
22211 case DW_TAG_enumeration_type:
22212 this_type = read_enumeration_type (die, cu);
22213 break;
22214 case DW_TAG_subprogram:
22215 case DW_TAG_subroutine_type:
22216 case DW_TAG_inlined_subroutine:
22217 this_type = read_subroutine_type (die, cu);
22218 break;
22219 case DW_TAG_array_type:
22220 this_type = read_array_type (die, cu);
22221 break;
22222 case DW_TAG_set_type:
22223 this_type = read_set_type (die, cu);
22224 break;
22225 case DW_TAG_pointer_type:
22226 this_type = read_tag_pointer_type (die, cu);
22227 break;
22228 case DW_TAG_ptr_to_member_type:
22229 this_type = read_tag_ptr_to_member_type (die, cu);
22230 break;
22231 case DW_TAG_reference_type:
22232 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22233 break;
22234 case DW_TAG_rvalue_reference_type:
22235 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22236 break;
22237 case DW_TAG_const_type:
22238 this_type = read_tag_const_type (die, cu);
22239 break;
22240 case DW_TAG_volatile_type:
22241 this_type = read_tag_volatile_type (die, cu);
22242 break;
22243 case DW_TAG_restrict_type:
22244 this_type = read_tag_restrict_type (die, cu);
22245 break;
22246 case DW_TAG_string_type:
22247 this_type = read_tag_string_type (die, cu);
22248 break;
22249 case DW_TAG_typedef:
22250 this_type = read_typedef (die, cu);
22251 break;
22252 case DW_TAG_subrange_type:
22253 this_type = read_subrange_type (die, cu);
22254 break;
22255 case DW_TAG_base_type:
22256 this_type = read_base_type (die, cu);
22257 break;
22258 case DW_TAG_unspecified_type:
22259 this_type = read_unspecified_type (die, cu);
22260 break;
22261 case DW_TAG_namespace:
22262 this_type = read_namespace_type (die, cu);
22263 break;
22264 case DW_TAG_module:
22265 this_type = read_module_type (die, cu);
22266 break;
22267 case DW_TAG_atomic_type:
22268 this_type = read_tag_atomic_type (die, cu);
22269 break;
22270 default:
22271 complaint (_("unexpected tag in read_type_die: '%s'"),
22272 dwarf_tag_name (die->tag));
22273 break;
22274 }
22275
22276 return this_type;
22277 }
22278
22279 /* See if we can figure out if the class lives in a namespace. We do
22280 this by looking for a member function; its demangled name will
22281 contain namespace info, if there is any.
22282 Return the computed name or NULL.
22283 Space for the result is allocated on the objfile's obstack.
22284 This is the full-die version of guess_partial_die_structure_name.
22285 In this case we know DIE has no useful parent. */
22286
22287 static char *
22288 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22289 {
22290 struct die_info *spec_die;
22291 struct dwarf2_cu *spec_cu;
22292 struct die_info *child;
22293 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22294
22295 spec_cu = cu;
22296 spec_die = die_specification (die, &spec_cu);
22297 if (spec_die != NULL)
22298 {
22299 die = spec_die;
22300 cu = spec_cu;
22301 }
22302
22303 for (child = die->child;
22304 child != NULL;
22305 child = child->sibling)
22306 {
22307 if (child->tag == DW_TAG_subprogram)
22308 {
22309 const char *linkage_name = dw2_linkage_name (child, cu);
22310
22311 if (linkage_name != NULL)
22312 {
22313 char *actual_name
22314 = language_class_name_from_physname (cu->language_defn,
22315 linkage_name);
22316 char *name = NULL;
22317
22318 if (actual_name != NULL)
22319 {
22320 const char *die_name = dwarf2_name (die, cu);
22321
22322 if (die_name != NULL
22323 && strcmp (die_name, actual_name) != 0)
22324 {
22325 /* Strip off the class name from the full name.
22326 We want the prefix. */
22327 int die_name_len = strlen (die_name);
22328 int actual_name_len = strlen (actual_name);
22329
22330 /* Test for '::' as a sanity check. */
22331 if (actual_name_len > die_name_len + 2
22332 && actual_name[actual_name_len
22333 - die_name_len - 1] == ':')
22334 name = (char *) obstack_copy0 (
22335 &objfile->per_bfd->storage_obstack,
22336 actual_name, actual_name_len - die_name_len - 2);
22337 }
22338 }
22339 xfree (actual_name);
22340 return name;
22341 }
22342 }
22343 }
22344
22345 return NULL;
22346 }
22347
22348 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22349 prefix part in such case. See
22350 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22351
22352 static const char *
22353 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22354 {
22355 struct attribute *attr;
22356 const char *base;
22357
22358 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22359 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22360 return NULL;
22361
22362 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22363 return NULL;
22364
22365 attr = dw2_linkage_name_attr (die, cu);
22366 if (attr == NULL || DW_STRING (attr) == NULL)
22367 return NULL;
22368
22369 /* dwarf2_name had to be already called. */
22370 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22371
22372 /* Strip the base name, keep any leading namespaces/classes. */
22373 base = strrchr (DW_STRING (attr), ':');
22374 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22375 return "";
22376
22377 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22378 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22379 DW_STRING (attr),
22380 &base[-1] - DW_STRING (attr));
22381 }
22382
22383 /* Return the name of the namespace/class that DIE is defined within,
22384 or "" if we can't tell. The caller should not xfree the result.
22385
22386 For example, if we're within the method foo() in the following
22387 code:
22388
22389 namespace N {
22390 class C {
22391 void foo () {
22392 }
22393 };
22394 }
22395
22396 then determine_prefix on foo's die will return "N::C". */
22397
22398 static const char *
22399 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22400 {
22401 struct dwarf2_per_objfile *dwarf2_per_objfile
22402 = cu->per_cu->dwarf2_per_objfile;
22403 struct die_info *parent, *spec_die;
22404 struct dwarf2_cu *spec_cu;
22405 struct type *parent_type;
22406 const char *retval;
22407
22408 if (cu->language != language_cplus
22409 && cu->language != language_fortran && cu->language != language_d
22410 && cu->language != language_rust)
22411 return "";
22412
22413 retval = anonymous_struct_prefix (die, cu);
22414 if (retval)
22415 return retval;
22416
22417 /* We have to be careful in the presence of DW_AT_specification.
22418 For example, with GCC 3.4, given the code
22419
22420 namespace N {
22421 void foo() {
22422 // Definition of N::foo.
22423 }
22424 }
22425
22426 then we'll have a tree of DIEs like this:
22427
22428 1: DW_TAG_compile_unit
22429 2: DW_TAG_namespace // N
22430 3: DW_TAG_subprogram // declaration of N::foo
22431 4: DW_TAG_subprogram // definition of N::foo
22432 DW_AT_specification // refers to die #3
22433
22434 Thus, when processing die #4, we have to pretend that we're in
22435 the context of its DW_AT_specification, namely the contex of die
22436 #3. */
22437 spec_cu = cu;
22438 spec_die = die_specification (die, &spec_cu);
22439 if (spec_die == NULL)
22440 parent = die->parent;
22441 else
22442 {
22443 parent = spec_die->parent;
22444 cu = spec_cu;
22445 }
22446
22447 if (parent == NULL)
22448 return "";
22449 else if (parent->building_fullname)
22450 {
22451 const char *name;
22452 const char *parent_name;
22453
22454 /* It has been seen on RealView 2.2 built binaries,
22455 DW_TAG_template_type_param types actually _defined_ as
22456 children of the parent class:
22457
22458 enum E {};
22459 template class <class Enum> Class{};
22460 Class<enum E> class_e;
22461
22462 1: DW_TAG_class_type (Class)
22463 2: DW_TAG_enumeration_type (E)
22464 3: DW_TAG_enumerator (enum1:0)
22465 3: DW_TAG_enumerator (enum2:1)
22466 ...
22467 2: DW_TAG_template_type_param
22468 DW_AT_type DW_FORM_ref_udata (E)
22469
22470 Besides being broken debug info, it can put GDB into an
22471 infinite loop. Consider:
22472
22473 When we're building the full name for Class<E>, we'll start
22474 at Class, and go look over its template type parameters,
22475 finding E. We'll then try to build the full name of E, and
22476 reach here. We're now trying to build the full name of E,
22477 and look over the parent DIE for containing scope. In the
22478 broken case, if we followed the parent DIE of E, we'd again
22479 find Class, and once again go look at its template type
22480 arguments, etc., etc. Simply don't consider such parent die
22481 as source-level parent of this die (it can't be, the language
22482 doesn't allow it), and break the loop here. */
22483 name = dwarf2_name (die, cu);
22484 parent_name = dwarf2_name (parent, cu);
22485 complaint (_("template param type '%s' defined within parent '%s'"),
22486 name ? name : "<unknown>",
22487 parent_name ? parent_name : "<unknown>");
22488 return "";
22489 }
22490 else
22491 switch (parent->tag)
22492 {
22493 case DW_TAG_namespace:
22494 parent_type = read_type_die (parent, cu);
22495 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22496 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22497 Work around this problem here. */
22498 if (cu->language == language_cplus
22499 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22500 return "";
22501 /* We give a name to even anonymous namespaces. */
22502 return TYPE_NAME (parent_type);
22503 case DW_TAG_class_type:
22504 case DW_TAG_interface_type:
22505 case DW_TAG_structure_type:
22506 case DW_TAG_union_type:
22507 case DW_TAG_module:
22508 parent_type = read_type_die (parent, cu);
22509 if (TYPE_NAME (parent_type) != NULL)
22510 return TYPE_NAME (parent_type);
22511 else
22512 /* An anonymous structure is only allowed non-static data
22513 members; no typedefs, no member functions, et cetera.
22514 So it does not need a prefix. */
22515 return "";
22516 case DW_TAG_compile_unit:
22517 case DW_TAG_partial_unit:
22518 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22519 if (cu->language == language_cplus
22520 && !dwarf2_per_objfile->types.empty ()
22521 && die->child != NULL
22522 && (die->tag == DW_TAG_class_type
22523 || die->tag == DW_TAG_structure_type
22524 || die->tag == DW_TAG_union_type))
22525 {
22526 char *name = guess_full_die_structure_name (die, cu);
22527 if (name != NULL)
22528 return name;
22529 }
22530 return "";
22531 case DW_TAG_enumeration_type:
22532 parent_type = read_type_die (parent, cu);
22533 if (TYPE_DECLARED_CLASS (parent_type))
22534 {
22535 if (TYPE_NAME (parent_type) != NULL)
22536 return TYPE_NAME (parent_type);
22537 return "";
22538 }
22539 /* Fall through. */
22540 default:
22541 return determine_prefix (parent, cu);
22542 }
22543 }
22544
22545 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22546 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22547 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22548 an obconcat, otherwise allocate storage for the result. The CU argument is
22549 used to determine the language and hence, the appropriate separator. */
22550
22551 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22552
22553 static char *
22554 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22555 int physname, struct dwarf2_cu *cu)
22556 {
22557 const char *lead = "";
22558 const char *sep;
22559
22560 if (suffix == NULL || suffix[0] == '\0'
22561 || prefix == NULL || prefix[0] == '\0')
22562 sep = "";
22563 else if (cu->language == language_d)
22564 {
22565 /* For D, the 'main' function could be defined in any module, but it
22566 should never be prefixed. */
22567 if (strcmp (suffix, "D main") == 0)
22568 {
22569 prefix = "";
22570 sep = "";
22571 }
22572 else
22573 sep = ".";
22574 }
22575 else if (cu->language == language_fortran && physname)
22576 {
22577 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22578 DW_AT_MIPS_linkage_name is preferred and used instead. */
22579
22580 lead = "__";
22581 sep = "_MOD_";
22582 }
22583 else
22584 sep = "::";
22585
22586 if (prefix == NULL)
22587 prefix = "";
22588 if (suffix == NULL)
22589 suffix = "";
22590
22591 if (obs == NULL)
22592 {
22593 char *retval
22594 = ((char *)
22595 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22596
22597 strcpy (retval, lead);
22598 strcat (retval, prefix);
22599 strcat (retval, sep);
22600 strcat (retval, suffix);
22601 return retval;
22602 }
22603 else
22604 {
22605 /* We have an obstack. */
22606 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22607 }
22608 }
22609
22610 /* Return sibling of die, NULL if no sibling. */
22611
22612 static struct die_info *
22613 sibling_die (struct die_info *die)
22614 {
22615 return die->sibling;
22616 }
22617
22618 /* Get name of a die, return NULL if not found. */
22619
22620 static const char *
22621 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22622 struct obstack *obstack)
22623 {
22624 if (name && cu->language == language_cplus)
22625 {
22626 std::string canon_name = cp_canonicalize_string (name);
22627
22628 if (!canon_name.empty ())
22629 {
22630 if (canon_name != name)
22631 name = (const char *) obstack_copy0 (obstack,
22632 canon_name.c_str (),
22633 canon_name.length ());
22634 }
22635 }
22636
22637 return name;
22638 }
22639
22640 /* Get name of a die, return NULL if not found.
22641 Anonymous namespaces are converted to their magic string. */
22642
22643 static const char *
22644 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22645 {
22646 struct attribute *attr;
22647 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22648
22649 attr = dwarf2_attr (die, DW_AT_name, cu);
22650 if ((!attr || !DW_STRING (attr))
22651 && die->tag != DW_TAG_namespace
22652 && die->tag != DW_TAG_class_type
22653 && die->tag != DW_TAG_interface_type
22654 && die->tag != DW_TAG_structure_type
22655 && die->tag != DW_TAG_union_type)
22656 return NULL;
22657
22658 switch (die->tag)
22659 {
22660 case DW_TAG_compile_unit:
22661 case DW_TAG_partial_unit:
22662 /* Compilation units have a DW_AT_name that is a filename, not
22663 a source language identifier. */
22664 case DW_TAG_enumeration_type:
22665 case DW_TAG_enumerator:
22666 /* These tags always have simple identifiers already; no need
22667 to canonicalize them. */
22668 return DW_STRING (attr);
22669
22670 case DW_TAG_namespace:
22671 if (attr != NULL && DW_STRING (attr) != NULL)
22672 return DW_STRING (attr);
22673 return CP_ANONYMOUS_NAMESPACE_STR;
22674
22675 case DW_TAG_class_type:
22676 case DW_TAG_interface_type:
22677 case DW_TAG_structure_type:
22678 case DW_TAG_union_type:
22679 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22680 structures or unions. These were of the form "._%d" in GCC 4.1,
22681 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22682 and GCC 4.4. We work around this problem by ignoring these. */
22683 if (attr && DW_STRING (attr)
22684 && (startswith (DW_STRING (attr), "._")
22685 || startswith (DW_STRING (attr), "<anonymous")))
22686 return NULL;
22687
22688 /* GCC might emit a nameless typedef that has a linkage name. See
22689 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22690 if (!attr || DW_STRING (attr) == NULL)
22691 {
22692 char *demangled = NULL;
22693
22694 attr = dw2_linkage_name_attr (die, cu);
22695 if (attr == NULL || DW_STRING (attr) == NULL)
22696 return NULL;
22697
22698 /* Avoid demangling DW_STRING (attr) the second time on a second
22699 call for the same DIE. */
22700 if (!DW_STRING_IS_CANONICAL (attr))
22701 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22702
22703 if (demangled)
22704 {
22705 const char *base;
22706
22707 /* FIXME: we already did this for the partial symbol... */
22708 DW_STRING (attr)
22709 = ((const char *)
22710 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22711 demangled, strlen (demangled)));
22712 DW_STRING_IS_CANONICAL (attr) = 1;
22713 xfree (demangled);
22714
22715 /* Strip any leading namespaces/classes, keep only the base name.
22716 DW_AT_name for named DIEs does not contain the prefixes. */
22717 base = strrchr (DW_STRING (attr), ':');
22718 if (base && base > DW_STRING (attr) && base[-1] == ':')
22719 return &base[1];
22720 else
22721 return DW_STRING (attr);
22722 }
22723 }
22724 break;
22725
22726 default:
22727 break;
22728 }
22729
22730 if (!DW_STRING_IS_CANONICAL (attr))
22731 {
22732 DW_STRING (attr)
22733 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22734 &objfile->per_bfd->storage_obstack);
22735 DW_STRING_IS_CANONICAL (attr) = 1;
22736 }
22737 return DW_STRING (attr);
22738 }
22739
22740 /* Return the die that this die in an extension of, or NULL if there
22741 is none. *EXT_CU is the CU containing DIE on input, and the CU
22742 containing the return value on output. */
22743
22744 static struct die_info *
22745 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22746 {
22747 struct attribute *attr;
22748
22749 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22750 if (attr == NULL)
22751 return NULL;
22752
22753 return follow_die_ref (die, attr, ext_cu);
22754 }
22755
22756 /* A convenience function that returns an "unknown" DWARF name,
22757 including the value of V. STR is the name of the entity being
22758 printed, e.g., "TAG". */
22759
22760 static const char *
22761 dwarf_unknown (const char *str, unsigned v)
22762 {
22763 char *cell = get_print_cell ();
22764 xsnprintf (cell, PRINT_CELL_SIZE, "DW_%s_<unknown: %u>", str, v);
22765 return cell;
22766 }
22767
22768 /* Convert a DIE tag into its string name. */
22769
22770 static const char *
22771 dwarf_tag_name (unsigned tag)
22772 {
22773 const char *name = get_DW_TAG_name (tag);
22774
22775 if (name == NULL)
22776 return dwarf_unknown ("TAG", tag);
22777
22778 return name;
22779 }
22780
22781 /* Convert a DWARF attribute code into its string name. */
22782
22783 static const char *
22784 dwarf_attr_name (unsigned attr)
22785 {
22786 const char *name;
22787
22788 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22789 if (attr == DW_AT_MIPS_fde)
22790 return "DW_AT_MIPS_fde";
22791 #else
22792 if (attr == DW_AT_HP_block_index)
22793 return "DW_AT_HP_block_index";
22794 #endif
22795
22796 name = get_DW_AT_name (attr);
22797
22798 if (name == NULL)
22799 return dwarf_unknown ("AT", attr);
22800
22801 return name;
22802 }
22803
22804 /* Convert a DWARF value form code into its string name. */
22805
22806 static const char *
22807 dwarf_form_name (unsigned form)
22808 {
22809 const char *name = get_DW_FORM_name (form);
22810
22811 if (name == NULL)
22812 return dwarf_unknown ("FORM", form);
22813
22814 return name;
22815 }
22816
22817 static const char *
22818 dwarf_bool_name (unsigned mybool)
22819 {
22820 if (mybool)
22821 return "TRUE";
22822 else
22823 return "FALSE";
22824 }
22825
22826 /* Convert a DWARF type code into its string name. */
22827
22828 static const char *
22829 dwarf_type_encoding_name (unsigned enc)
22830 {
22831 const char *name = get_DW_ATE_name (enc);
22832
22833 if (name == NULL)
22834 return dwarf_unknown ("ATE", enc);
22835
22836 return name;
22837 }
22838
22839 static void
22840 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22841 {
22842 unsigned int i;
22843
22844 print_spaces (indent, f);
22845 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22846 dwarf_tag_name (die->tag), die->abbrev,
22847 sect_offset_str (die->sect_off));
22848
22849 if (die->parent != NULL)
22850 {
22851 print_spaces (indent, f);
22852 fprintf_unfiltered (f, " parent at offset: %s\n",
22853 sect_offset_str (die->parent->sect_off));
22854 }
22855
22856 print_spaces (indent, f);
22857 fprintf_unfiltered (f, " has children: %s\n",
22858 dwarf_bool_name (die->child != NULL));
22859
22860 print_spaces (indent, f);
22861 fprintf_unfiltered (f, " attributes:\n");
22862
22863 for (i = 0; i < die->num_attrs; ++i)
22864 {
22865 print_spaces (indent, f);
22866 fprintf_unfiltered (f, " %s (%s) ",
22867 dwarf_attr_name (die->attrs[i].name),
22868 dwarf_form_name (die->attrs[i].form));
22869
22870 switch (die->attrs[i].form)
22871 {
22872 case DW_FORM_addr:
22873 case DW_FORM_addrx:
22874 case DW_FORM_GNU_addr_index:
22875 fprintf_unfiltered (f, "address: ");
22876 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22877 break;
22878 case DW_FORM_block2:
22879 case DW_FORM_block4:
22880 case DW_FORM_block:
22881 case DW_FORM_block1:
22882 fprintf_unfiltered (f, "block: size %s",
22883 pulongest (DW_BLOCK (&die->attrs[i])->size));
22884 break;
22885 case DW_FORM_exprloc:
22886 fprintf_unfiltered (f, "expression: size %s",
22887 pulongest (DW_BLOCK (&die->attrs[i])->size));
22888 break;
22889 case DW_FORM_data16:
22890 fprintf_unfiltered (f, "constant of 16 bytes");
22891 break;
22892 case DW_FORM_ref_addr:
22893 fprintf_unfiltered (f, "ref address: ");
22894 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22895 break;
22896 case DW_FORM_GNU_ref_alt:
22897 fprintf_unfiltered (f, "alt ref address: ");
22898 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22899 break;
22900 case DW_FORM_ref1:
22901 case DW_FORM_ref2:
22902 case DW_FORM_ref4:
22903 case DW_FORM_ref8:
22904 case DW_FORM_ref_udata:
22905 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22906 (long) (DW_UNSND (&die->attrs[i])));
22907 break;
22908 case DW_FORM_data1:
22909 case DW_FORM_data2:
22910 case DW_FORM_data4:
22911 case DW_FORM_data8:
22912 case DW_FORM_udata:
22913 case DW_FORM_sdata:
22914 fprintf_unfiltered (f, "constant: %s",
22915 pulongest (DW_UNSND (&die->attrs[i])));
22916 break;
22917 case DW_FORM_sec_offset:
22918 fprintf_unfiltered (f, "section offset: %s",
22919 pulongest (DW_UNSND (&die->attrs[i])));
22920 break;
22921 case DW_FORM_ref_sig8:
22922 fprintf_unfiltered (f, "signature: %s",
22923 hex_string (DW_SIGNATURE (&die->attrs[i])));
22924 break;
22925 case DW_FORM_string:
22926 case DW_FORM_strp:
22927 case DW_FORM_line_strp:
22928 case DW_FORM_strx:
22929 case DW_FORM_GNU_str_index:
22930 case DW_FORM_GNU_strp_alt:
22931 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22932 DW_STRING (&die->attrs[i])
22933 ? DW_STRING (&die->attrs[i]) : "",
22934 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22935 break;
22936 case DW_FORM_flag:
22937 if (DW_UNSND (&die->attrs[i]))
22938 fprintf_unfiltered (f, "flag: TRUE");
22939 else
22940 fprintf_unfiltered (f, "flag: FALSE");
22941 break;
22942 case DW_FORM_flag_present:
22943 fprintf_unfiltered (f, "flag: TRUE");
22944 break;
22945 case DW_FORM_indirect:
22946 /* The reader will have reduced the indirect form to
22947 the "base form" so this form should not occur. */
22948 fprintf_unfiltered (f,
22949 "unexpected attribute form: DW_FORM_indirect");
22950 break;
22951 case DW_FORM_implicit_const:
22952 fprintf_unfiltered (f, "constant: %s",
22953 plongest (DW_SND (&die->attrs[i])));
22954 break;
22955 default:
22956 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22957 die->attrs[i].form);
22958 break;
22959 }
22960 fprintf_unfiltered (f, "\n");
22961 }
22962 }
22963
22964 static void
22965 dump_die_for_error (struct die_info *die)
22966 {
22967 dump_die_shallow (gdb_stderr, 0, die);
22968 }
22969
22970 static void
22971 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22972 {
22973 int indent = level * 4;
22974
22975 gdb_assert (die != NULL);
22976
22977 if (level >= max_level)
22978 return;
22979
22980 dump_die_shallow (f, indent, die);
22981
22982 if (die->child != NULL)
22983 {
22984 print_spaces (indent, f);
22985 fprintf_unfiltered (f, " Children:");
22986 if (level + 1 < max_level)
22987 {
22988 fprintf_unfiltered (f, "\n");
22989 dump_die_1 (f, level + 1, max_level, die->child);
22990 }
22991 else
22992 {
22993 fprintf_unfiltered (f,
22994 " [not printed, max nesting level reached]\n");
22995 }
22996 }
22997
22998 if (die->sibling != NULL && level > 0)
22999 {
23000 dump_die_1 (f, level, max_level, die->sibling);
23001 }
23002 }
23003
23004 /* This is called from the pdie macro in gdbinit.in.
23005 It's not static so gcc will keep a copy callable from gdb. */
23006
23007 void
23008 dump_die (struct die_info *die, int max_level)
23009 {
23010 dump_die_1 (gdb_stdlog, 0, max_level, die);
23011 }
23012
23013 static void
23014 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
23015 {
23016 void **slot;
23017
23018 slot = htab_find_slot_with_hash (cu->die_hash, die,
23019 to_underlying (die->sect_off),
23020 INSERT);
23021
23022 *slot = die;
23023 }
23024
23025 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
23026 required kind. */
23027
23028 static sect_offset
23029 dwarf2_get_ref_die_offset (const struct attribute *attr)
23030 {
23031 if (attr_form_is_ref (attr))
23032 return (sect_offset) DW_UNSND (attr);
23033
23034 complaint (_("unsupported die ref attribute form: '%s'"),
23035 dwarf_form_name (attr->form));
23036 return {};
23037 }
23038
23039 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
23040 * the value held by the attribute is not constant. */
23041
23042 static LONGEST
23043 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
23044 {
23045 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
23046 return DW_SND (attr);
23047 else if (attr->form == DW_FORM_udata
23048 || attr->form == DW_FORM_data1
23049 || attr->form == DW_FORM_data2
23050 || attr->form == DW_FORM_data4
23051 || attr->form == DW_FORM_data8)
23052 return DW_UNSND (attr);
23053 else
23054 {
23055 /* For DW_FORM_data16 see attr_form_is_constant. */
23056 complaint (_("Attribute value is not a constant (%s)"),
23057 dwarf_form_name (attr->form));
23058 return default_value;
23059 }
23060 }
23061
23062 /* Follow reference or signature attribute ATTR of SRC_DIE.
23063 On entry *REF_CU is the CU of SRC_DIE.
23064 On exit *REF_CU is the CU of the result. */
23065
23066 static struct die_info *
23067 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
23068 struct dwarf2_cu **ref_cu)
23069 {
23070 struct die_info *die;
23071
23072 if (attr_form_is_ref (attr))
23073 die = follow_die_ref (src_die, attr, ref_cu);
23074 else if (attr->form == DW_FORM_ref_sig8)
23075 die = follow_die_sig (src_die, attr, ref_cu);
23076 else
23077 {
23078 dump_die_for_error (src_die);
23079 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
23080 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23081 }
23082
23083 return die;
23084 }
23085
23086 /* Follow reference OFFSET.
23087 On entry *REF_CU is the CU of the source die referencing OFFSET.
23088 On exit *REF_CU is the CU of the result.
23089 Returns NULL if OFFSET is invalid. */
23090
23091 static struct die_info *
23092 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
23093 struct dwarf2_cu **ref_cu)
23094 {
23095 struct die_info temp_die;
23096 struct dwarf2_cu *target_cu, *cu = *ref_cu;
23097 struct dwarf2_per_objfile *dwarf2_per_objfile
23098 = cu->per_cu->dwarf2_per_objfile;
23099
23100 gdb_assert (cu->per_cu != NULL);
23101
23102 target_cu = cu;
23103
23104 if (cu->per_cu->is_debug_types)
23105 {
23106 /* .debug_types CUs cannot reference anything outside their CU.
23107 If they need to, they have to reference a signatured type via
23108 DW_FORM_ref_sig8. */
23109 if (!offset_in_cu_p (&cu->header, sect_off))
23110 return NULL;
23111 }
23112 else if (offset_in_dwz != cu->per_cu->is_dwz
23113 || !offset_in_cu_p (&cu->header, sect_off))
23114 {
23115 struct dwarf2_per_cu_data *per_cu;
23116
23117 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23118 dwarf2_per_objfile);
23119
23120 /* If necessary, add it to the queue and load its DIEs. */
23121 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
23122 load_full_comp_unit (per_cu, false, cu->language);
23123
23124 target_cu = per_cu->cu;
23125 }
23126 else if (cu->dies == NULL)
23127 {
23128 /* We're loading full DIEs during partial symbol reading. */
23129 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
23130 load_full_comp_unit (cu->per_cu, false, language_minimal);
23131 }
23132
23133 *ref_cu = target_cu;
23134 temp_die.sect_off = sect_off;
23135
23136 if (target_cu != cu)
23137 target_cu->ancestor = cu;
23138
23139 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
23140 &temp_die,
23141 to_underlying (sect_off));
23142 }
23143
23144 /* Follow reference attribute ATTR of SRC_DIE.
23145 On entry *REF_CU is the CU of SRC_DIE.
23146 On exit *REF_CU is the CU of the result. */
23147
23148 static struct die_info *
23149 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
23150 struct dwarf2_cu **ref_cu)
23151 {
23152 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
23153 struct dwarf2_cu *cu = *ref_cu;
23154 struct die_info *die;
23155
23156 die = follow_die_offset (sect_off,
23157 (attr->form == DW_FORM_GNU_ref_alt
23158 || cu->per_cu->is_dwz),
23159 ref_cu);
23160 if (!die)
23161 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23162 "at %s [in module %s]"),
23163 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
23164 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
23165
23166 return die;
23167 }
23168
23169 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
23170 Returned value is intended for DW_OP_call*. Returned
23171 dwarf2_locexpr_baton->data has lifetime of
23172 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
23173
23174 struct dwarf2_locexpr_baton
23175 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
23176 struct dwarf2_per_cu_data *per_cu,
23177 CORE_ADDR (*get_frame_pc) (void *baton),
23178 void *baton, bool resolve_abstract_p)
23179 {
23180 struct dwarf2_cu *cu;
23181 struct die_info *die;
23182 struct attribute *attr;
23183 struct dwarf2_locexpr_baton retval;
23184 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23185 struct objfile *objfile = dwarf2_per_objfile->objfile;
23186
23187 if (per_cu->cu == NULL)
23188 load_cu (per_cu, false);
23189 cu = per_cu->cu;
23190 if (cu == NULL)
23191 {
23192 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23193 Instead just throw an error, not much else we can do. */
23194 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23195 sect_offset_str (sect_off), objfile_name (objfile));
23196 }
23197
23198 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23199 if (!die)
23200 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23201 sect_offset_str (sect_off), objfile_name (objfile));
23202
23203 attr = dwarf2_attr (die, DW_AT_location, cu);
23204 if (!attr && resolve_abstract_p
23205 && (dwarf2_per_objfile->abstract_to_concrete.find (die->sect_off)
23206 != dwarf2_per_objfile->abstract_to_concrete.end ()))
23207 {
23208 CORE_ADDR pc = (*get_frame_pc) (baton);
23209
23210 for (const auto &cand_off
23211 : dwarf2_per_objfile->abstract_to_concrete[die->sect_off])
23212 {
23213 struct dwarf2_cu *cand_cu = cu;
23214 struct die_info *cand
23215 = follow_die_offset (cand_off, per_cu->is_dwz, &cand_cu);
23216 if (!cand
23217 || !cand->parent
23218 || cand->parent->tag != DW_TAG_subprogram)
23219 continue;
23220
23221 CORE_ADDR pc_low, pc_high;
23222 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
23223 if (pc_low == ((CORE_ADDR) -1)
23224 || !(pc_low <= pc && pc < pc_high))
23225 continue;
23226
23227 die = cand;
23228 attr = dwarf2_attr (die, DW_AT_location, cu);
23229 break;
23230 }
23231 }
23232
23233 if (!attr)
23234 {
23235 /* DWARF: "If there is no such attribute, then there is no effect.".
23236 DATA is ignored if SIZE is 0. */
23237
23238 retval.data = NULL;
23239 retval.size = 0;
23240 }
23241 else if (attr_form_is_section_offset (attr))
23242 {
23243 struct dwarf2_loclist_baton loclist_baton;
23244 CORE_ADDR pc = (*get_frame_pc) (baton);
23245 size_t size;
23246
23247 fill_in_loclist_baton (cu, &loclist_baton, attr);
23248
23249 retval.data = dwarf2_find_location_expression (&loclist_baton,
23250 &size, pc);
23251 retval.size = size;
23252 }
23253 else
23254 {
23255 if (!attr_form_is_block (attr))
23256 error (_("Dwarf Error: DIE at %s referenced in module %s "
23257 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23258 sect_offset_str (sect_off), objfile_name (objfile));
23259
23260 retval.data = DW_BLOCK (attr)->data;
23261 retval.size = DW_BLOCK (attr)->size;
23262 }
23263 retval.per_cu = cu->per_cu;
23264
23265 age_cached_comp_units (dwarf2_per_objfile);
23266
23267 return retval;
23268 }
23269
23270 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23271 offset. */
23272
23273 struct dwarf2_locexpr_baton
23274 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23275 struct dwarf2_per_cu_data *per_cu,
23276 CORE_ADDR (*get_frame_pc) (void *baton),
23277 void *baton)
23278 {
23279 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23280
23281 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23282 }
23283
23284 /* Write a constant of a given type as target-ordered bytes into
23285 OBSTACK. */
23286
23287 static const gdb_byte *
23288 write_constant_as_bytes (struct obstack *obstack,
23289 enum bfd_endian byte_order,
23290 struct type *type,
23291 ULONGEST value,
23292 LONGEST *len)
23293 {
23294 gdb_byte *result;
23295
23296 *len = TYPE_LENGTH (type);
23297 result = (gdb_byte *) obstack_alloc (obstack, *len);
23298 store_unsigned_integer (result, *len, byte_order, value);
23299
23300 return result;
23301 }
23302
23303 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23304 pointer to the constant bytes and set LEN to the length of the
23305 data. If memory is needed, allocate it on OBSTACK. If the DIE
23306 does not have a DW_AT_const_value, return NULL. */
23307
23308 const gdb_byte *
23309 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23310 struct dwarf2_per_cu_data *per_cu,
23311 struct obstack *obstack,
23312 LONGEST *len)
23313 {
23314 struct dwarf2_cu *cu;
23315 struct die_info *die;
23316 struct attribute *attr;
23317 const gdb_byte *result = NULL;
23318 struct type *type;
23319 LONGEST value;
23320 enum bfd_endian byte_order;
23321 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23322
23323 if (per_cu->cu == NULL)
23324 load_cu (per_cu, false);
23325 cu = per_cu->cu;
23326 if (cu == NULL)
23327 {
23328 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23329 Instead just throw an error, not much else we can do. */
23330 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23331 sect_offset_str (sect_off), objfile_name (objfile));
23332 }
23333
23334 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23335 if (!die)
23336 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23337 sect_offset_str (sect_off), objfile_name (objfile));
23338
23339 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23340 if (attr == NULL)
23341 return NULL;
23342
23343 byte_order = (bfd_big_endian (objfile->obfd)
23344 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23345
23346 switch (attr->form)
23347 {
23348 case DW_FORM_addr:
23349 case DW_FORM_addrx:
23350 case DW_FORM_GNU_addr_index:
23351 {
23352 gdb_byte *tem;
23353
23354 *len = cu->header.addr_size;
23355 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23356 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23357 result = tem;
23358 }
23359 break;
23360 case DW_FORM_string:
23361 case DW_FORM_strp:
23362 case DW_FORM_strx:
23363 case DW_FORM_GNU_str_index:
23364 case DW_FORM_GNU_strp_alt:
23365 /* DW_STRING is already allocated on the objfile obstack, point
23366 directly to it. */
23367 result = (const gdb_byte *) DW_STRING (attr);
23368 *len = strlen (DW_STRING (attr));
23369 break;
23370 case DW_FORM_block1:
23371 case DW_FORM_block2:
23372 case DW_FORM_block4:
23373 case DW_FORM_block:
23374 case DW_FORM_exprloc:
23375 case DW_FORM_data16:
23376 result = DW_BLOCK (attr)->data;
23377 *len = DW_BLOCK (attr)->size;
23378 break;
23379
23380 /* The DW_AT_const_value attributes are supposed to carry the
23381 symbol's value "represented as it would be on the target
23382 architecture." By the time we get here, it's already been
23383 converted to host endianness, so we just need to sign- or
23384 zero-extend it as appropriate. */
23385 case DW_FORM_data1:
23386 type = die_type (die, cu);
23387 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23388 if (result == NULL)
23389 result = write_constant_as_bytes (obstack, byte_order,
23390 type, value, len);
23391 break;
23392 case DW_FORM_data2:
23393 type = die_type (die, cu);
23394 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23395 if (result == NULL)
23396 result = write_constant_as_bytes (obstack, byte_order,
23397 type, value, len);
23398 break;
23399 case DW_FORM_data4:
23400 type = die_type (die, cu);
23401 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23402 if (result == NULL)
23403 result = write_constant_as_bytes (obstack, byte_order,
23404 type, value, len);
23405 break;
23406 case DW_FORM_data8:
23407 type = die_type (die, cu);
23408 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23409 if (result == NULL)
23410 result = write_constant_as_bytes (obstack, byte_order,
23411 type, value, len);
23412 break;
23413
23414 case DW_FORM_sdata:
23415 case DW_FORM_implicit_const:
23416 type = die_type (die, cu);
23417 result = write_constant_as_bytes (obstack, byte_order,
23418 type, DW_SND (attr), len);
23419 break;
23420
23421 case DW_FORM_udata:
23422 type = die_type (die, cu);
23423 result = write_constant_as_bytes (obstack, byte_order,
23424 type, DW_UNSND (attr), len);
23425 break;
23426
23427 default:
23428 complaint (_("unsupported const value attribute form: '%s'"),
23429 dwarf_form_name (attr->form));
23430 break;
23431 }
23432
23433 return result;
23434 }
23435
23436 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23437 valid type for this die is found. */
23438
23439 struct type *
23440 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23441 struct dwarf2_per_cu_data *per_cu)
23442 {
23443 struct dwarf2_cu *cu;
23444 struct die_info *die;
23445
23446 if (per_cu->cu == NULL)
23447 load_cu (per_cu, false);
23448 cu = per_cu->cu;
23449 if (!cu)
23450 return NULL;
23451
23452 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23453 if (!die)
23454 return NULL;
23455
23456 return die_type (die, cu);
23457 }
23458
23459 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23460 PER_CU. */
23461
23462 struct type *
23463 dwarf2_get_die_type (cu_offset die_offset,
23464 struct dwarf2_per_cu_data *per_cu)
23465 {
23466 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23467 return get_die_type_at_offset (die_offset_sect, per_cu);
23468 }
23469
23470 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23471 On entry *REF_CU is the CU of SRC_DIE.
23472 On exit *REF_CU is the CU of the result.
23473 Returns NULL if the referenced DIE isn't found. */
23474
23475 static struct die_info *
23476 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23477 struct dwarf2_cu **ref_cu)
23478 {
23479 struct die_info temp_die;
23480 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
23481 struct die_info *die;
23482
23483 /* While it might be nice to assert sig_type->type == NULL here,
23484 we can get here for DW_AT_imported_declaration where we need
23485 the DIE not the type. */
23486
23487 /* If necessary, add it to the queue and load its DIEs. */
23488
23489 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23490 read_signatured_type (sig_type);
23491
23492 sig_cu = sig_type->per_cu.cu;
23493 gdb_assert (sig_cu != NULL);
23494 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23495 temp_die.sect_off = sig_type->type_offset_in_section;
23496 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23497 to_underlying (temp_die.sect_off));
23498 if (die)
23499 {
23500 struct dwarf2_per_objfile *dwarf2_per_objfile
23501 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23502
23503 /* For .gdb_index version 7 keep track of included TUs.
23504 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23505 if (dwarf2_per_objfile->index_table != NULL
23506 && dwarf2_per_objfile->index_table->version <= 7)
23507 {
23508 VEC_safe_push (dwarf2_per_cu_ptr,
23509 (*ref_cu)->per_cu->imported_symtabs,
23510 sig_cu->per_cu);
23511 }
23512
23513 *ref_cu = sig_cu;
23514 if (sig_cu != cu)
23515 sig_cu->ancestor = cu;
23516
23517 return die;
23518 }
23519
23520 return NULL;
23521 }
23522
23523 /* Follow signatured type referenced by ATTR in SRC_DIE.
23524 On entry *REF_CU is the CU of SRC_DIE.
23525 On exit *REF_CU is the CU of the result.
23526 The result is the DIE of the type.
23527 If the referenced type cannot be found an error is thrown. */
23528
23529 static struct die_info *
23530 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23531 struct dwarf2_cu **ref_cu)
23532 {
23533 ULONGEST signature = DW_SIGNATURE (attr);
23534 struct signatured_type *sig_type;
23535 struct die_info *die;
23536
23537 gdb_assert (attr->form == DW_FORM_ref_sig8);
23538
23539 sig_type = lookup_signatured_type (*ref_cu, signature);
23540 /* sig_type will be NULL if the signatured type is missing from
23541 the debug info. */
23542 if (sig_type == NULL)
23543 {
23544 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23545 " from DIE at %s [in module %s]"),
23546 hex_string (signature), sect_offset_str (src_die->sect_off),
23547 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23548 }
23549
23550 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23551 if (die == NULL)
23552 {
23553 dump_die_for_error (src_die);
23554 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23555 " from DIE at %s [in module %s]"),
23556 hex_string (signature), sect_offset_str (src_die->sect_off),
23557 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23558 }
23559
23560 return die;
23561 }
23562
23563 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23564 reading in and processing the type unit if necessary. */
23565
23566 static struct type *
23567 get_signatured_type (struct die_info *die, ULONGEST signature,
23568 struct dwarf2_cu *cu)
23569 {
23570 struct dwarf2_per_objfile *dwarf2_per_objfile
23571 = cu->per_cu->dwarf2_per_objfile;
23572 struct signatured_type *sig_type;
23573 struct dwarf2_cu *type_cu;
23574 struct die_info *type_die;
23575 struct type *type;
23576
23577 sig_type = lookup_signatured_type (cu, signature);
23578 /* sig_type will be NULL if the signatured type is missing from
23579 the debug info. */
23580 if (sig_type == NULL)
23581 {
23582 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23583 " from DIE at %s [in module %s]"),
23584 hex_string (signature), sect_offset_str (die->sect_off),
23585 objfile_name (dwarf2_per_objfile->objfile));
23586 return build_error_marker_type (cu, die);
23587 }
23588
23589 /* If we already know the type we're done. */
23590 if (sig_type->type != NULL)
23591 return sig_type->type;
23592
23593 type_cu = cu;
23594 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23595 if (type_die != NULL)
23596 {
23597 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23598 is created. This is important, for example, because for c++ classes
23599 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23600 type = read_type_die (type_die, type_cu);
23601 if (type == NULL)
23602 {
23603 complaint (_("Dwarf Error: Cannot build signatured type %s"
23604 " referenced from DIE at %s [in module %s]"),
23605 hex_string (signature), sect_offset_str (die->sect_off),
23606 objfile_name (dwarf2_per_objfile->objfile));
23607 type = build_error_marker_type (cu, die);
23608 }
23609 }
23610 else
23611 {
23612 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23613 " from DIE at %s [in module %s]"),
23614 hex_string (signature), sect_offset_str (die->sect_off),
23615 objfile_name (dwarf2_per_objfile->objfile));
23616 type = build_error_marker_type (cu, die);
23617 }
23618 sig_type->type = type;
23619
23620 return type;
23621 }
23622
23623 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23624 reading in and processing the type unit if necessary. */
23625
23626 static struct type *
23627 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23628 struct dwarf2_cu *cu) /* ARI: editCase function */
23629 {
23630 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23631 if (attr_form_is_ref (attr))
23632 {
23633 struct dwarf2_cu *type_cu = cu;
23634 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23635
23636 return read_type_die (type_die, type_cu);
23637 }
23638 else if (attr->form == DW_FORM_ref_sig8)
23639 {
23640 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23641 }
23642 else
23643 {
23644 struct dwarf2_per_objfile *dwarf2_per_objfile
23645 = cu->per_cu->dwarf2_per_objfile;
23646
23647 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23648 " at %s [in module %s]"),
23649 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23650 objfile_name (dwarf2_per_objfile->objfile));
23651 return build_error_marker_type (cu, die);
23652 }
23653 }
23654
23655 /* Load the DIEs associated with type unit PER_CU into memory. */
23656
23657 static void
23658 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23659 {
23660 struct signatured_type *sig_type;
23661
23662 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23663 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23664
23665 /* We have the per_cu, but we need the signatured_type.
23666 Fortunately this is an easy translation. */
23667 gdb_assert (per_cu->is_debug_types);
23668 sig_type = (struct signatured_type *) per_cu;
23669
23670 gdb_assert (per_cu->cu == NULL);
23671
23672 read_signatured_type (sig_type);
23673
23674 gdb_assert (per_cu->cu != NULL);
23675 }
23676
23677 /* die_reader_func for read_signatured_type.
23678 This is identical to load_full_comp_unit_reader,
23679 but is kept separate for now. */
23680
23681 static void
23682 read_signatured_type_reader (const struct die_reader_specs *reader,
23683 const gdb_byte *info_ptr,
23684 struct die_info *comp_unit_die,
23685 int has_children,
23686 void *data)
23687 {
23688 struct dwarf2_cu *cu = reader->cu;
23689
23690 gdb_assert (cu->die_hash == NULL);
23691 cu->die_hash =
23692 htab_create_alloc_ex (cu->header.length / 12,
23693 die_hash,
23694 die_eq,
23695 NULL,
23696 &cu->comp_unit_obstack,
23697 hashtab_obstack_allocate,
23698 dummy_obstack_deallocate);
23699
23700 if (has_children)
23701 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23702 &info_ptr, comp_unit_die);
23703 cu->dies = comp_unit_die;
23704 /* comp_unit_die is not stored in die_hash, no need. */
23705
23706 /* We try not to read any attributes in this function, because not
23707 all CUs needed for references have been loaded yet, and symbol
23708 table processing isn't initialized. But we have to set the CU language,
23709 or we won't be able to build types correctly.
23710 Similarly, if we do not read the producer, we can not apply
23711 producer-specific interpretation. */
23712 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23713 }
23714
23715 /* Read in a signatured type and build its CU and DIEs.
23716 If the type is a stub for the real type in a DWO file,
23717 read in the real type from the DWO file as well. */
23718
23719 static void
23720 read_signatured_type (struct signatured_type *sig_type)
23721 {
23722 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23723
23724 gdb_assert (per_cu->is_debug_types);
23725 gdb_assert (per_cu->cu == NULL);
23726
23727 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23728 read_signatured_type_reader, NULL);
23729 sig_type->per_cu.tu_read = 1;
23730 }
23731
23732 /* Decode simple location descriptions.
23733 Given a pointer to a dwarf block that defines a location, compute
23734 the location and return the value.
23735
23736 NOTE drow/2003-11-18: This function is called in two situations
23737 now: for the address of static or global variables (partial symbols
23738 only) and for offsets into structures which are expected to be
23739 (more or less) constant. The partial symbol case should go away,
23740 and only the constant case should remain. That will let this
23741 function complain more accurately. A few special modes are allowed
23742 without complaint for global variables (for instance, global
23743 register values and thread-local values).
23744
23745 A location description containing no operations indicates that the
23746 object is optimized out. The return value is 0 for that case.
23747 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23748 callers will only want a very basic result and this can become a
23749 complaint.
23750
23751 Note that stack[0] is unused except as a default error return. */
23752
23753 static CORE_ADDR
23754 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23755 {
23756 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23757 size_t i;
23758 size_t size = blk->size;
23759 const gdb_byte *data = blk->data;
23760 CORE_ADDR stack[64];
23761 int stacki;
23762 unsigned int bytes_read, unsnd;
23763 gdb_byte op;
23764
23765 i = 0;
23766 stacki = 0;
23767 stack[stacki] = 0;
23768 stack[++stacki] = 0;
23769
23770 while (i < size)
23771 {
23772 op = data[i++];
23773 switch (op)
23774 {
23775 case DW_OP_lit0:
23776 case DW_OP_lit1:
23777 case DW_OP_lit2:
23778 case DW_OP_lit3:
23779 case DW_OP_lit4:
23780 case DW_OP_lit5:
23781 case DW_OP_lit6:
23782 case DW_OP_lit7:
23783 case DW_OP_lit8:
23784 case DW_OP_lit9:
23785 case DW_OP_lit10:
23786 case DW_OP_lit11:
23787 case DW_OP_lit12:
23788 case DW_OP_lit13:
23789 case DW_OP_lit14:
23790 case DW_OP_lit15:
23791 case DW_OP_lit16:
23792 case DW_OP_lit17:
23793 case DW_OP_lit18:
23794 case DW_OP_lit19:
23795 case DW_OP_lit20:
23796 case DW_OP_lit21:
23797 case DW_OP_lit22:
23798 case DW_OP_lit23:
23799 case DW_OP_lit24:
23800 case DW_OP_lit25:
23801 case DW_OP_lit26:
23802 case DW_OP_lit27:
23803 case DW_OP_lit28:
23804 case DW_OP_lit29:
23805 case DW_OP_lit30:
23806 case DW_OP_lit31:
23807 stack[++stacki] = op - DW_OP_lit0;
23808 break;
23809
23810 case DW_OP_reg0:
23811 case DW_OP_reg1:
23812 case DW_OP_reg2:
23813 case DW_OP_reg3:
23814 case DW_OP_reg4:
23815 case DW_OP_reg5:
23816 case DW_OP_reg6:
23817 case DW_OP_reg7:
23818 case DW_OP_reg8:
23819 case DW_OP_reg9:
23820 case DW_OP_reg10:
23821 case DW_OP_reg11:
23822 case DW_OP_reg12:
23823 case DW_OP_reg13:
23824 case DW_OP_reg14:
23825 case DW_OP_reg15:
23826 case DW_OP_reg16:
23827 case DW_OP_reg17:
23828 case DW_OP_reg18:
23829 case DW_OP_reg19:
23830 case DW_OP_reg20:
23831 case DW_OP_reg21:
23832 case DW_OP_reg22:
23833 case DW_OP_reg23:
23834 case DW_OP_reg24:
23835 case DW_OP_reg25:
23836 case DW_OP_reg26:
23837 case DW_OP_reg27:
23838 case DW_OP_reg28:
23839 case DW_OP_reg29:
23840 case DW_OP_reg30:
23841 case DW_OP_reg31:
23842 stack[++stacki] = op - DW_OP_reg0;
23843 if (i < size)
23844 dwarf2_complex_location_expr_complaint ();
23845 break;
23846
23847 case DW_OP_regx:
23848 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23849 i += bytes_read;
23850 stack[++stacki] = unsnd;
23851 if (i < size)
23852 dwarf2_complex_location_expr_complaint ();
23853 break;
23854
23855 case DW_OP_addr:
23856 stack[++stacki] = read_address (objfile->obfd, &data[i],
23857 cu, &bytes_read);
23858 i += bytes_read;
23859 break;
23860
23861 case DW_OP_const1u:
23862 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23863 i += 1;
23864 break;
23865
23866 case DW_OP_const1s:
23867 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23868 i += 1;
23869 break;
23870
23871 case DW_OP_const2u:
23872 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23873 i += 2;
23874 break;
23875
23876 case DW_OP_const2s:
23877 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23878 i += 2;
23879 break;
23880
23881 case DW_OP_const4u:
23882 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23883 i += 4;
23884 break;
23885
23886 case DW_OP_const4s:
23887 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23888 i += 4;
23889 break;
23890
23891 case DW_OP_const8u:
23892 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23893 i += 8;
23894 break;
23895
23896 case DW_OP_constu:
23897 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23898 &bytes_read);
23899 i += bytes_read;
23900 break;
23901
23902 case DW_OP_consts:
23903 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23904 i += bytes_read;
23905 break;
23906
23907 case DW_OP_dup:
23908 stack[stacki + 1] = stack[stacki];
23909 stacki++;
23910 break;
23911
23912 case DW_OP_plus:
23913 stack[stacki - 1] += stack[stacki];
23914 stacki--;
23915 break;
23916
23917 case DW_OP_plus_uconst:
23918 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23919 &bytes_read);
23920 i += bytes_read;
23921 break;
23922
23923 case DW_OP_minus:
23924 stack[stacki - 1] -= stack[stacki];
23925 stacki--;
23926 break;
23927
23928 case DW_OP_deref:
23929 /* If we're not the last op, then we definitely can't encode
23930 this using GDB's address_class enum. This is valid for partial
23931 global symbols, although the variable's address will be bogus
23932 in the psymtab. */
23933 if (i < size)
23934 dwarf2_complex_location_expr_complaint ();
23935 break;
23936
23937 case DW_OP_GNU_push_tls_address:
23938 case DW_OP_form_tls_address:
23939 /* The top of the stack has the offset from the beginning
23940 of the thread control block at which the variable is located. */
23941 /* Nothing should follow this operator, so the top of stack would
23942 be returned. */
23943 /* This is valid for partial global symbols, but the variable's
23944 address will be bogus in the psymtab. Make it always at least
23945 non-zero to not look as a variable garbage collected by linker
23946 which have DW_OP_addr 0. */
23947 if (i < size)
23948 dwarf2_complex_location_expr_complaint ();
23949 stack[stacki]++;
23950 break;
23951
23952 case DW_OP_GNU_uninit:
23953 break;
23954
23955 case DW_OP_addrx:
23956 case DW_OP_GNU_addr_index:
23957 case DW_OP_GNU_const_index:
23958 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23959 &bytes_read);
23960 i += bytes_read;
23961 break;
23962
23963 default:
23964 {
23965 const char *name = get_DW_OP_name (op);
23966
23967 if (name)
23968 complaint (_("unsupported stack op: '%s'"),
23969 name);
23970 else
23971 complaint (_("unsupported stack op: '%02x'"),
23972 op);
23973 }
23974
23975 return (stack[stacki]);
23976 }
23977
23978 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23979 outside of the allocated space. Also enforce minimum>0. */
23980 if (stacki >= ARRAY_SIZE (stack) - 1)
23981 {
23982 complaint (_("location description stack overflow"));
23983 return 0;
23984 }
23985
23986 if (stacki <= 0)
23987 {
23988 complaint (_("location description stack underflow"));
23989 return 0;
23990 }
23991 }
23992 return (stack[stacki]);
23993 }
23994
23995 /* memory allocation interface */
23996
23997 static struct dwarf_block *
23998 dwarf_alloc_block (struct dwarf2_cu *cu)
23999 {
24000 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
24001 }
24002
24003 static struct die_info *
24004 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
24005 {
24006 struct die_info *die;
24007 size_t size = sizeof (struct die_info);
24008
24009 if (num_attrs > 1)
24010 size += (num_attrs - 1) * sizeof (struct attribute);
24011
24012 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
24013 memset (die, 0, sizeof (struct die_info));
24014 return (die);
24015 }
24016
24017 \f
24018 /* Macro support. */
24019
24020 /* Return file name relative to the compilation directory of file number I in
24021 *LH's file name table. The result is allocated using xmalloc; the caller is
24022 responsible for freeing it. */
24023
24024 static char *
24025 file_file_name (int file, struct line_header *lh)
24026 {
24027 /* Is the file number a valid index into the line header's file name
24028 table? Remember that file numbers start with one, not zero. */
24029 if (1 <= file && file <= lh->file_names.size ())
24030 {
24031 const file_entry &fe = lh->file_names[file - 1];
24032
24033 if (!IS_ABSOLUTE_PATH (fe.name))
24034 {
24035 const char *dir = fe.include_dir (lh);
24036 if (dir != NULL)
24037 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
24038 }
24039 return xstrdup (fe.name);
24040 }
24041 else
24042 {
24043 /* The compiler produced a bogus file number. We can at least
24044 record the macro definitions made in the file, even if we
24045 won't be able to find the file by name. */
24046 char fake_name[80];
24047
24048 xsnprintf (fake_name, sizeof (fake_name),
24049 "<bad macro file number %d>", file);
24050
24051 complaint (_("bad file number in macro information (%d)"),
24052 file);
24053
24054 return xstrdup (fake_name);
24055 }
24056 }
24057
24058 /* Return the full name of file number I in *LH's file name table.
24059 Use COMP_DIR as the name of the current directory of the
24060 compilation. The result is allocated using xmalloc; the caller is
24061 responsible for freeing it. */
24062 static char *
24063 file_full_name (int file, struct line_header *lh, const char *comp_dir)
24064 {
24065 /* Is the file number a valid index into the line header's file name
24066 table? Remember that file numbers start with one, not zero. */
24067 if (1 <= file && file <= lh->file_names.size ())
24068 {
24069 char *relative = file_file_name (file, lh);
24070
24071 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
24072 return relative;
24073 return reconcat (relative, comp_dir, SLASH_STRING,
24074 relative, (char *) NULL);
24075 }
24076 else
24077 return file_file_name (file, lh);
24078 }
24079
24080
24081 static struct macro_source_file *
24082 macro_start_file (struct dwarf2_cu *cu,
24083 int file, int line,
24084 struct macro_source_file *current_file,
24085 struct line_header *lh)
24086 {
24087 /* File name relative to the compilation directory of this source file. */
24088 char *file_name = file_file_name (file, lh);
24089
24090 if (! current_file)
24091 {
24092 /* Note: We don't create a macro table for this compilation unit
24093 at all until we actually get a filename. */
24094 struct macro_table *macro_table = cu->get_builder ()->get_macro_table ();
24095
24096 /* If we have no current file, then this must be the start_file
24097 directive for the compilation unit's main source file. */
24098 current_file = macro_set_main (macro_table, file_name);
24099 macro_define_special (macro_table);
24100 }
24101 else
24102 current_file = macro_include (current_file, line, file_name);
24103
24104 xfree (file_name);
24105
24106 return current_file;
24107 }
24108
24109 static const char *
24110 consume_improper_spaces (const char *p, const char *body)
24111 {
24112 if (*p == ' ')
24113 {
24114 complaint (_("macro definition contains spaces "
24115 "in formal argument list:\n`%s'"),
24116 body);
24117
24118 while (*p == ' ')
24119 p++;
24120 }
24121
24122 return p;
24123 }
24124
24125
24126 static void
24127 parse_macro_definition (struct macro_source_file *file, int line,
24128 const char *body)
24129 {
24130 const char *p;
24131
24132 /* The body string takes one of two forms. For object-like macro
24133 definitions, it should be:
24134
24135 <macro name> " " <definition>
24136
24137 For function-like macro definitions, it should be:
24138
24139 <macro name> "() " <definition>
24140 or
24141 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
24142
24143 Spaces may appear only where explicitly indicated, and in the
24144 <definition>.
24145
24146 The Dwarf 2 spec says that an object-like macro's name is always
24147 followed by a space, but versions of GCC around March 2002 omit
24148 the space when the macro's definition is the empty string.
24149
24150 The Dwarf 2 spec says that there should be no spaces between the
24151 formal arguments in a function-like macro's formal argument list,
24152 but versions of GCC around March 2002 include spaces after the
24153 commas. */
24154
24155
24156 /* Find the extent of the macro name. The macro name is terminated
24157 by either a space or null character (for an object-like macro) or
24158 an opening paren (for a function-like macro). */
24159 for (p = body; *p; p++)
24160 if (*p == ' ' || *p == '(')
24161 break;
24162
24163 if (*p == ' ' || *p == '\0')
24164 {
24165 /* It's an object-like macro. */
24166 int name_len = p - body;
24167 char *name = savestring (body, name_len);
24168 const char *replacement;
24169
24170 if (*p == ' ')
24171 replacement = body + name_len + 1;
24172 else
24173 {
24174 dwarf2_macro_malformed_definition_complaint (body);
24175 replacement = body + name_len;
24176 }
24177
24178 macro_define_object (file, line, name, replacement);
24179
24180 xfree (name);
24181 }
24182 else if (*p == '(')
24183 {
24184 /* It's a function-like macro. */
24185 char *name = savestring (body, p - body);
24186 int argc = 0;
24187 int argv_size = 1;
24188 char **argv = XNEWVEC (char *, argv_size);
24189
24190 p++;
24191
24192 p = consume_improper_spaces (p, body);
24193
24194 /* Parse the formal argument list. */
24195 while (*p && *p != ')')
24196 {
24197 /* Find the extent of the current argument name. */
24198 const char *arg_start = p;
24199
24200 while (*p && *p != ',' && *p != ')' && *p != ' ')
24201 p++;
24202
24203 if (! *p || p == arg_start)
24204 dwarf2_macro_malformed_definition_complaint (body);
24205 else
24206 {
24207 /* Make sure argv has room for the new argument. */
24208 if (argc >= argv_size)
24209 {
24210 argv_size *= 2;
24211 argv = XRESIZEVEC (char *, argv, argv_size);
24212 }
24213
24214 argv[argc++] = savestring (arg_start, p - arg_start);
24215 }
24216
24217 p = consume_improper_spaces (p, body);
24218
24219 /* Consume the comma, if present. */
24220 if (*p == ',')
24221 {
24222 p++;
24223
24224 p = consume_improper_spaces (p, body);
24225 }
24226 }
24227
24228 if (*p == ')')
24229 {
24230 p++;
24231
24232 if (*p == ' ')
24233 /* Perfectly formed definition, no complaints. */
24234 macro_define_function (file, line, name,
24235 argc, (const char **) argv,
24236 p + 1);
24237 else if (*p == '\0')
24238 {
24239 /* Complain, but do define it. */
24240 dwarf2_macro_malformed_definition_complaint (body);
24241 macro_define_function (file, line, name,
24242 argc, (const char **) argv,
24243 p);
24244 }
24245 else
24246 /* Just complain. */
24247 dwarf2_macro_malformed_definition_complaint (body);
24248 }
24249 else
24250 /* Just complain. */
24251 dwarf2_macro_malformed_definition_complaint (body);
24252
24253 xfree (name);
24254 {
24255 int i;
24256
24257 for (i = 0; i < argc; i++)
24258 xfree (argv[i]);
24259 }
24260 xfree (argv);
24261 }
24262 else
24263 dwarf2_macro_malformed_definition_complaint (body);
24264 }
24265
24266 /* Skip some bytes from BYTES according to the form given in FORM.
24267 Returns the new pointer. */
24268
24269 static const gdb_byte *
24270 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24271 enum dwarf_form form,
24272 unsigned int offset_size,
24273 struct dwarf2_section_info *section)
24274 {
24275 unsigned int bytes_read;
24276
24277 switch (form)
24278 {
24279 case DW_FORM_data1:
24280 case DW_FORM_flag:
24281 ++bytes;
24282 break;
24283
24284 case DW_FORM_data2:
24285 bytes += 2;
24286 break;
24287
24288 case DW_FORM_data4:
24289 bytes += 4;
24290 break;
24291
24292 case DW_FORM_data8:
24293 bytes += 8;
24294 break;
24295
24296 case DW_FORM_data16:
24297 bytes += 16;
24298 break;
24299
24300 case DW_FORM_string:
24301 read_direct_string (abfd, bytes, &bytes_read);
24302 bytes += bytes_read;
24303 break;
24304
24305 case DW_FORM_sec_offset:
24306 case DW_FORM_strp:
24307 case DW_FORM_GNU_strp_alt:
24308 bytes += offset_size;
24309 break;
24310
24311 case DW_FORM_block:
24312 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24313 bytes += bytes_read;
24314 break;
24315
24316 case DW_FORM_block1:
24317 bytes += 1 + read_1_byte (abfd, bytes);
24318 break;
24319 case DW_FORM_block2:
24320 bytes += 2 + read_2_bytes (abfd, bytes);
24321 break;
24322 case DW_FORM_block4:
24323 bytes += 4 + read_4_bytes (abfd, bytes);
24324 break;
24325
24326 case DW_FORM_addrx:
24327 case DW_FORM_sdata:
24328 case DW_FORM_strx:
24329 case DW_FORM_udata:
24330 case DW_FORM_GNU_addr_index:
24331 case DW_FORM_GNU_str_index:
24332 bytes = gdb_skip_leb128 (bytes, buffer_end);
24333 if (bytes == NULL)
24334 {
24335 dwarf2_section_buffer_overflow_complaint (section);
24336 return NULL;
24337 }
24338 break;
24339
24340 case DW_FORM_implicit_const:
24341 break;
24342
24343 default:
24344 {
24345 complaint (_("invalid form 0x%x in `%s'"),
24346 form, get_section_name (section));
24347 return NULL;
24348 }
24349 }
24350
24351 return bytes;
24352 }
24353
24354 /* A helper for dwarf_decode_macros that handles skipping an unknown
24355 opcode. Returns an updated pointer to the macro data buffer; or,
24356 on error, issues a complaint and returns NULL. */
24357
24358 static const gdb_byte *
24359 skip_unknown_opcode (unsigned int opcode,
24360 const gdb_byte **opcode_definitions,
24361 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24362 bfd *abfd,
24363 unsigned int offset_size,
24364 struct dwarf2_section_info *section)
24365 {
24366 unsigned int bytes_read, i;
24367 unsigned long arg;
24368 const gdb_byte *defn;
24369
24370 if (opcode_definitions[opcode] == NULL)
24371 {
24372 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
24373 opcode);
24374 return NULL;
24375 }
24376
24377 defn = opcode_definitions[opcode];
24378 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24379 defn += bytes_read;
24380
24381 for (i = 0; i < arg; ++i)
24382 {
24383 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24384 (enum dwarf_form) defn[i], offset_size,
24385 section);
24386 if (mac_ptr == NULL)
24387 {
24388 /* skip_form_bytes already issued the complaint. */
24389 return NULL;
24390 }
24391 }
24392
24393 return mac_ptr;
24394 }
24395
24396 /* A helper function which parses the header of a macro section.
24397 If the macro section is the extended (for now called "GNU") type,
24398 then this updates *OFFSET_SIZE. Returns a pointer to just after
24399 the header, or issues a complaint and returns NULL on error. */
24400
24401 static const gdb_byte *
24402 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24403 bfd *abfd,
24404 const gdb_byte *mac_ptr,
24405 unsigned int *offset_size,
24406 int section_is_gnu)
24407 {
24408 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24409
24410 if (section_is_gnu)
24411 {
24412 unsigned int version, flags;
24413
24414 version = read_2_bytes (abfd, mac_ptr);
24415 if (version != 4 && version != 5)
24416 {
24417 complaint (_("unrecognized version `%d' in .debug_macro section"),
24418 version);
24419 return NULL;
24420 }
24421 mac_ptr += 2;
24422
24423 flags = read_1_byte (abfd, mac_ptr);
24424 ++mac_ptr;
24425 *offset_size = (flags & 1) ? 8 : 4;
24426
24427 if ((flags & 2) != 0)
24428 /* We don't need the line table offset. */
24429 mac_ptr += *offset_size;
24430
24431 /* Vendor opcode descriptions. */
24432 if ((flags & 4) != 0)
24433 {
24434 unsigned int i, count;
24435
24436 count = read_1_byte (abfd, mac_ptr);
24437 ++mac_ptr;
24438 for (i = 0; i < count; ++i)
24439 {
24440 unsigned int opcode, bytes_read;
24441 unsigned long arg;
24442
24443 opcode = read_1_byte (abfd, mac_ptr);
24444 ++mac_ptr;
24445 opcode_definitions[opcode] = mac_ptr;
24446 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24447 mac_ptr += bytes_read;
24448 mac_ptr += arg;
24449 }
24450 }
24451 }
24452
24453 return mac_ptr;
24454 }
24455
24456 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24457 including DW_MACRO_import. */
24458
24459 static void
24460 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
24461 bfd *abfd,
24462 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24463 struct macro_source_file *current_file,
24464 struct line_header *lh,
24465 struct dwarf2_section_info *section,
24466 int section_is_gnu, int section_is_dwz,
24467 unsigned int offset_size,
24468 htab_t include_hash)
24469 {
24470 struct dwarf2_per_objfile *dwarf2_per_objfile
24471 = cu->per_cu->dwarf2_per_objfile;
24472 struct objfile *objfile = dwarf2_per_objfile->objfile;
24473 enum dwarf_macro_record_type macinfo_type;
24474 int at_commandline;
24475 const gdb_byte *opcode_definitions[256];
24476
24477 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24478 &offset_size, section_is_gnu);
24479 if (mac_ptr == NULL)
24480 {
24481 /* We already issued a complaint. */
24482 return;
24483 }
24484
24485 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24486 GDB is still reading the definitions from command line. First
24487 DW_MACINFO_start_file will need to be ignored as it was already executed
24488 to create CURRENT_FILE for the main source holding also the command line
24489 definitions. On first met DW_MACINFO_start_file this flag is reset to
24490 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24491
24492 at_commandline = 1;
24493
24494 do
24495 {
24496 /* Do we at least have room for a macinfo type byte? */
24497 if (mac_ptr >= mac_end)
24498 {
24499 dwarf2_section_buffer_overflow_complaint (section);
24500 break;
24501 }
24502
24503 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24504 mac_ptr++;
24505
24506 /* Note that we rely on the fact that the corresponding GNU and
24507 DWARF constants are the same. */
24508 DIAGNOSTIC_PUSH
24509 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24510 switch (macinfo_type)
24511 {
24512 /* A zero macinfo type indicates the end of the macro
24513 information. */
24514 case 0:
24515 break;
24516
24517 case DW_MACRO_define:
24518 case DW_MACRO_undef:
24519 case DW_MACRO_define_strp:
24520 case DW_MACRO_undef_strp:
24521 case DW_MACRO_define_sup:
24522 case DW_MACRO_undef_sup:
24523 {
24524 unsigned int bytes_read;
24525 int line;
24526 const char *body;
24527 int is_define;
24528
24529 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24530 mac_ptr += bytes_read;
24531
24532 if (macinfo_type == DW_MACRO_define
24533 || macinfo_type == DW_MACRO_undef)
24534 {
24535 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24536 mac_ptr += bytes_read;
24537 }
24538 else
24539 {
24540 LONGEST str_offset;
24541
24542 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24543 mac_ptr += offset_size;
24544
24545 if (macinfo_type == DW_MACRO_define_sup
24546 || macinfo_type == DW_MACRO_undef_sup
24547 || section_is_dwz)
24548 {
24549 struct dwz_file *dwz
24550 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24551
24552 body = read_indirect_string_from_dwz (objfile,
24553 dwz, str_offset);
24554 }
24555 else
24556 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24557 abfd, str_offset);
24558 }
24559
24560 is_define = (macinfo_type == DW_MACRO_define
24561 || macinfo_type == DW_MACRO_define_strp
24562 || macinfo_type == DW_MACRO_define_sup);
24563 if (! current_file)
24564 {
24565 /* DWARF violation as no main source is present. */
24566 complaint (_("debug info with no main source gives macro %s "
24567 "on line %d: %s"),
24568 is_define ? _("definition") : _("undefinition"),
24569 line, body);
24570 break;
24571 }
24572 if ((line == 0 && !at_commandline)
24573 || (line != 0 && at_commandline))
24574 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24575 at_commandline ? _("command-line") : _("in-file"),
24576 is_define ? _("definition") : _("undefinition"),
24577 line == 0 ? _("zero") : _("non-zero"), line, body);
24578
24579 if (body == NULL)
24580 {
24581 /* Fedora's rpm-build's "debugedit" binary
24582 corrupted .debug_macro sections.
24583
24584 For more info, see
24585 https://bugzilla.redhat.com/show_bug.cgi?id=1708786 */
24586 complaint (_("debug info gives %s invalid macro %s "
24587 "without body (corrupted?) at line %d "
24588 "on file %s"),
24589 at_commandline ? _("command-line") : _("in-file"),
24590 is_define ? _("definition") : _("undefinition"),
24591 line, current_file->filename);
24592 }
24593 else if (is_define)
24594 parse_macro_definition (current_file, line, body);
24595 else
24596 {
24597 gdb_assert (macinfo_type == DW_MACRO_undef
24598 || macinfo_type == DW_MACRO_undef_strp
24599 || macinfo_type == DW_MACRO_undef_sup);
24600 macro_undef (current_file, line, body);
24601 }
24602 }
24603 break;
24604
24605 case DW_MACRO_start_file:
24606 {
24607 unsigned int bytes_read;
24608 int line, file;
24609
24610 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24611 mac_ptr += bytes_read;
24612 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24613 mac_ptr += bytes_read;
24614
24615 if ((line == 0 && !at_commandline)
24616 || (line != 0 && at_commandline))
24617 complaint (_("debug info gives source %d included "
24618 "from %s at %s line %d"),
24619 file, at_commandline ? _("command-line") : _("file"),
24620 line == 0 ? _("zero") : _("non-zero"), line);
24621
24622 if (at_commandline)
24623 {
24624 /* This DW_MACRO_start_file was executed in the
24625 pass one. */
24626 at_commandline = 0;
24627 }
24628 else
24629 current_file = macro_start_file (cu, file, line, current_file,
24630 lh);
24631 }
24632 break;
24633
24634 case DW_MACRO_end_file:
24635 if (! current_file)
24636 complaint (_("macro debug info has an unmatched "
24637 "`close_file' directive"));
24638 else
24639 {
24640 current_file = current_file->included_by;
24641 if (! current_file)
24642 {
24643 enum dwarf_macro_record_type next_type;
24644
24645 /* GCC circa March 2002 doesn't produce the zero
24646 type byte marking the end of the compilation
24647 unit. Complain if it's not there, but exit no
24648 matter what. */
24649
24650 /* Do we at least have room for a macinfo type byte? */
24651 if (mac_ptr >= mac_end)
24652 {
24653 dwarf2_section_buffer_overflow_complaint (section);
24654 return;
24655 }
24656
24657 /* We don't increment mac_ptr here, so this is just
24658 a look-ahead. */
24659 next_type
24660 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24661 mac_ptr);
24662 if (next_type != 0)
24663 complaint (_("no terminating 0-type entry for "
24664 "macros in `.debug_macinfo' section"));
24665
24666 return;
24667 }
24668 }
24669 break;
24670
24671 case DW_MACRO_import:
24672 case DW_MACRO_import_sup:
24673 {
24674 LONGEST offset;
24675 void **slot;
24676 bfd *include_bfd = abfd;
24677 struct dwarf2_section_info *include_section = section;
24678 const gdb_byte *include_mac_end = mac_end;
24679 int is_dwz = section_is_dwz;
24680 const gdb_byte *new_mac_ptr;
24681
24682 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24683 mac_ptr += offset_size;
24684
24685 if (macinfo_type == DW_MACRO_import_sup)
24686 {
24687 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24688
24689 dwarf2_read_section (objfile, &dwz->macro);
24690
24691 include_section = &dwz->macro;
24692 include_bfd = get_section_bfd_owner (include_section);
24693 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24694 is_dwz = 1;
24695 }
24696
24697 new_mac_ptr = include_section->buffer + offset;
24698 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24699
24700 if (*slot != NULL)
24701 {
24702 /* This has actually happened; see
24703 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24704 complaint (_("recursive DW_MACRO_import in "
24705 ".debug_macro section"));
24706 }
24707 else
24708 {
24709 *slot = (void *) new_mac_ptr;
24710
24711 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
24712 include_mac_end, current_file, lh,
24713 section, section_is_gnu, is_dwz,
24714 offset_size, include_hash);
24715
24716 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24717 }
24718 }
24719 break;
24720
24721 case DW_MACINFO_vendor_ext:
24722 if (!section_is_gnu)
24723 {
24724 unsigned int bytes_read;
24725
24726 /* This reads the constant, but since we don't recognize
24727 any vendor extensions, we ignore it. */
24728 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24729 mac_ptr += bytes_read;
24730 read_direct_string (abfd, mac_ptr, &bytes_read);
24731 mac_ptr += bytes_read;
24732
24733 /* We don't recognize any vendor extensions. */
24734 break;
24735 }
24736 /* FALLTHROUGH */
24737
24738 default:
24739 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24740 mac_ptr, mac_end, abfd, offset_size,
24741 section);
24742 if (mac_ptr == NULL)
24743 return;
24744 break;
24745 }
24746 DIAGNOSTIC_POP
24747 } while (macinfo_type != 0);
24748 }
24749
24750 static void
24751 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24752 int section_is_gnu)
24753 {
24754 struct dwarf2_per_objfile *dwarf2_per_objfile
24755 = cu->per_cu->dwarf2_per_objfile;
24756 struct objfile *objfile = dwarf2_per_objfile->objfile;
24757 struct line_header *lh = cu->line_header;
24758 bfd *abfd;
24759 const gdb_byte *mac_ptr, *mac_end;
24760 struct macro_source_file *current_file = 0;
24761 enum dwarf_macro_record_type macinfo_type;
24762 unsigned int offset_size = cu->header.offset_size;
24763 const gdb_byte *opcode_definitions[256];
24764 void **slot;
24765 struct dwarf2_section_info *section;
24766 const char *section_name;
24767
24768 if (cu->dwo_unit != NULL)
24769 {
24770 if (section_is_gnu)
24771 {
24772 section = &cu->dwo_unit->dwo_file->sections.macro;
24773 section_name = ".debug_macro.dwo";
24774 }
24775 else
24776 {
24777 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24778 section_name = ".debug_macinfo.dwo";
24779 }
24780 }
24781 else
24782 {
24783 if (section_is_gnu)
24784 {
24785 section = &dwarf2_per_objfile->macro;
24786 section_name = ".debug_macro";
24787 }
24788 else
24789 {
24790 section = &dwarf2_per_objfile->macinfo;
24791 section_name = ".debug_macinfo";
24792 }
24793 }
24794
24795 dwarf2_read_section (objfile, section);
24796 if (section->buffer == NULL)
24797 {
24798 complaint (_("missing %s section"), section_name);
24799 return;
24800 }
24801 abfd = get_section_bfd_owner (section);
24802
24803 /* First pass: Find the name of the base filename.
24804 This filename is needed in order to process all macros whose definition
24805 (or undefinition) comes from the command line. These macros are defined
24806 before the first DW_MACINFO_start_file entry, and yet still need to be
24807 associated to the base file.
24808
24809 To determine the base file name, we scan the macro definitions until we
24810 reach the first DW_MACINFO_start_file entry. We then initialize
24811 CURRENT_FILE accordingly so that any macro definition found before the
24812 first DW_MACINFO_start_file can still be associated to the base file. */
24813
24814 mac_ptr = section->buffer + offset;
24815 mac_end = section->buffer + section->size;
24816
24817 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24818 &offset_size, section_is_gnu);
24819 if (mac_ptr == NULL)
24820 {
24821 /* We already issued a complaint. */
24822 return;
24823 }
24824
24825 do
24826 {
24827 /* Do we at least have room for a macinfo type byte? */
24828 if (mac_ptr >= mac_end)
24829 {
24830 /* Complaint is printed during the second pass as GDB will probably
24831 stop the first pass earlier upon finding
24832 DW_MACINFO_start_file. */
24833 break;
24834 }
24835
24836 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24837 mac_ptr++;
24838
24839 /* Note that we rely on the fact that the corresponding GNU and
24840 DWARF constants are the same. */
24841 DIAGNOSTIC_PUSH
24842 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24843 switch (macinfo_type)
24844 {
24845 /* A zero macinfo type indicates the end of the macro
24846 information. */
24847 case 0:
24848 break;
24849
24850 case DW_MACRO_define:
24851 case DW_MACRO_undef:
24852 /* Only skip the data by MAC_PTR. */
24853 {
24854 unsigned int bytes_read;
24855
24856 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24857 mac_ptr += bytes_read;
24858 read_direct_string (abfd, mac_ptr, &bytes_read);
24859 mac_ptr += bytes_read;
24860 }
24861 break;
24862
24863 case DW_MACRO_start_file:
24864 {
24865 unsigned int bytes_read;
24866 int line, file;
24867
24868 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24869 mac_ptr += bytes_read;
24870 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24871 mac_ptr += bytes_read;
24872
24873 current_file = macro_start_file (cu, file, line, current_file, lh);
24874 }
24875 break;
24876
24877 case DW_MACRO_end_file:
24878 /* No data to skip by MAC_PTR. */
24879 break;
24880
24881 case DW_MACRO_define_strp:
24882 case DW_MACRO_undef_strp:
24883 case DW_MACRO_define_sup:
24884 case DW_MACRO_undef_sup:
24885 {
24886 unsigned int bytes_read;
24887
24888 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24889 mac_ptr += bytes_read;
24890 mac_ptr += offset_size;
24891 }
24892 break;
24893
24894 case DW_MACRO_import:
24895 case DW_MACRO_import_sup:
24896 /* Note that, according to the spec, a transparent include
24897 chain cannot call DW_MACRO_start_file. So, we can just
24898 skip this opcode. */
24899 mac_ptr += offset_size;
24900 break;
24901
24902 case DW_MACINFO_vendor_ext:
24903 /* Only skip the data by MAC_PTR. */
24904 if (!section_is_gnu)
24905 {
24906 unsigned int bytes_read;
24907
24908 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24909 mac_ptr += bytes_read;
24910 read_direct_string (abfd, mac_ptr, &bytes_read);
24911 mac_ptr += bytes_read;
24912 }
24913 /* FALLTHROUGH */
24914
24915 default:
24916 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24917 mac_ptr, mac_end, abfd, offset_size,
24918 section);
24919 if (mac_ptr == NULL)
24920 return;
24921 break;
24922 }
24923 DIAGNOSTIC_POP
24924 } while (macinfo_type != 0 && current_file == NULL);
24925
24926 /* Second pass: Process all entries.
24927
24928 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24929 command-line macro definitions/undefinitions. This flag is unset when we
24930 reach the first DW_MACINFO_start_file entry. */
24931
24932 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24933 htab_eq_pointer,
24934 NULL, xcalloc, xfree));
24935 mac_ptr = section->buffer + offset;
24936 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24937 *slot = (void *) mac_ptr;
24938 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
24939 current_file, lh, section,
24940 section_is_gnu, 0, offset_size,
24941 include_hash.get ());
24942 }
24943
24944 /* Check if the attribute's form is a DW_FORM_block*
24945 if so return true else false. */
24946
24947 static int
24948 attr_form_is_block (const struct attribute *attr)
24949 {
24950 return (attr == NULL ? 0 :
24951 attr->form == DW_FORM_block1
24952 || attr->form == DW_FORM_block2
24953 || attr->form == DW_FORM_block4
24954 || attr->form == DW_FORM_block
24955 || attr->form == DW_FORM_exprloc);
24956 }
24957
24958 /* Return non-zero if ATTR's value is a section offset --- classes
24959 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24960 You may use DW_UNSND (attr) to retrieve such offsets.
24961
24962 Section 7.5.4, "Attribute Encodings", explains that no attribute
24963 may have a value that belongs to more than one of these classes; it
24964 would be ambiguous if we did, because we use the same forms for all
24965 of them. */
24966
24967 static int
24968 attr_form_is_section_offset (const struct attribute *attr)
24969 {
24970 return (attr->form == DW_FORM_data4
24971 || attr->form == DW_FORM_data8
24972 || attr->form == DW_FORM_sec_offset);
24973 }
24974
24975 /* Return non-zero if ATTR's value falls in the 'constant' class, or
24976 zero otherwise. When this function returns true, you can apply
24977 dwarf2_get_attr_constant_value to it.
24978
24979 However, note that for some attributes you must check
24980 attr_form_is_section_offset before using this test. DW_FORM_data4
24981 and DW_FORM_data8 are members of both the constant class, and of
24982 the classes that contain offsets into other debug sections
24983 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24984 that, if an attribute's can be either a constant or one of the
24985 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
24986 taken as section offsets, not constants.
24987
24988 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
24989 cannot handle that. */
24990
24991 static int
24992 attr_form_is_constant (const struct attribute *attr)
24993 {
24994 switch (attr->form)
24995 {
24996 case DW_FORM_sdata:
24997 case DW_FORM_udata:
24998 case DW_FORM_data1:
24999 case DW_FORM_data2:
25000 case DW_FORM_data4:
25001 case DW_FORM_data8:
25002 case DW_FORM_implicit_const:
25003 return 1;
25004 default:
25005 return 0;
25006 }
25007 }
25008
25009
25010 /* DW_ADDR is always stored already as sect_offset; despite for the forms
25011 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
25012
25013 static int
25014 attr_form_is_ref (const struct attribute *attr)
25015 {
25016 switch (attr->form)
25017 {
25018 case DW_FORM_ref_addr:
25019 case DW_FORM_ref1:
25020 case DW_FORM_ref2:
25021 case DW_FORM_ref4:
25022 case DW_FORM_ref8:
25023 case DW_FORM_ref_udata:
25024 case DW_FORM_GNU_ref_alt:
25025 return 1;
25026 default:
25027 return 0;
25028 }
25029 }
25030
25031 /* Return the .debug_loc section to use for CU.
25032 For DWO files use .debug_loc.dwo. */
25033
25034 static struct dwarf2_section_info *
25035 cu_debug_loc_section (struct dwarf2_cu *cu)
25036 {
25037 struct dwarf2_per_objfile *dwarf2_per_objfile
25038 = cu->per_cu->dwarf2_per_objfile;
25039
25040 if (cu->dwo_unit)
25041 {
25042 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
25043
25044 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
25045 }
25046 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
25047 : &dwarf2_per_objfile->loc);
25048 }
25049
25050 /* A helper function that fills in a dwarf2_loclist_baton. */
25051
25052 static void
25053 fill_in_loclist_baton (struct dwarf2_cu *cu,
25054 struct dwarf2_loclist_baton *baton,
25055 const struct attribute *attr)
25056 {
25057 struct dwarf2_per_objfile *dwarf2_per_objfile
25058 = cu->per_cu->dwarf2_per_objfile;
25059 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25060
25061 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
25062
25063 baton->per_cu = cu->per_cu;
25064 gdb_assert (baton->per_cu);
25065 /* We don't know how long the location list is, but make sure we
25066 don't run off the edge of the section. */
25067 baton->size = section->size - DW_UNSND (attr);
25068 baton->data = section->buffer + DW_UNSND (attr);
25069 baton->base_address = cu->base_address;
25070 baton->from_dwo = cu->dwo_unit != NULL;
25071 }
25072
25073 static void
25074 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
25075 struct dwarf2_cu *cu, int is_block)
25076 {
25077 struct dwarf2_per_objfile *dwarf2_per_objfile
25078 = cu->per_cu->dwarf2_per_objfile;
25079 struct objfile *objfile = dwarf2_per_objfile->objfile;
25080 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25081
25082 if (attr_form_is_section_offset (attr)
25083 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
25084 the section. If so, fall through to the complaint in the
25085 other branch. */
25086 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
25087 {
25088 struct dwarf2_loclist_baton *baton;
25089
25090 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
25091
25092 fill_in_loclist_baton (cu, baton, attr);
25093
25094 if (cu->base_known == 0)
25095 complaint (_("Location list used without "
25096 "specifying the CU base address."));
25097
25098 SYMBOL_ACLASS_INDEX (sym) = (is_block
25099 ? dwarf2_loclist_block_index
25100 : dwarf2_loclist_index);
25101 SYMBOL_LOCATION_BATON (sym) = baton;
25102 }
25103 else
25104 {
25105 struct dwarf2_locexpr_baton *baton;
25106
25107 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
25108 baton->per_cu = cu->per_cu;
25109 gdb_assert (baton->per_cu);
25110
25111 if (attr_form_is_block (attr))
25112 {
25113 /* Note that we're just copying the block's data pointer
25114 here, not the actual data. We're still pointing into the
25115 info_buffer for SYM's objfile; right now we never release
25116 that buffer, but when we do clean up properly this may
25117 need to change. */
25118 baton->size = DW_BLOCK (attr)->size;
25119 baton->data = DW_BLOCK (attr)->data;
25120 }
25121 else
25122 {
25123 dwarf2_invalid_attrib_class_complaint ("location description",
25124 SYMBOL_NATURAL_NAME (sym));
25125 baton->size = 0;
25126 }
25127
25128 SYMBOL_ACLASS_INDEX (sym) = (is_block
25129 ? dwarf2_locexpr_block_index
25130 : dwarf2_locexpr_index);
25131 SYMBOL_LOCATION_BATON (sym) = baton;
25132 }
25133 }
25134
25135 /* Return the OBJFILE associated with the compilation unit CU. If CU
25136 came from a separate debuginfo file, then the master objfile is
25137 returned. */
25138
25139 struct objfile *
25140 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
25141 {
25142 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25143
25144 /* Return the master objfile, so that we can report and look up the
25145 correct file containing this variable. */
25146 if (objfile->separate_debug_objfile_backlink)
25147 objfile = objfile->separate_debug_objfile_backlink;
25148
25149 return objfile;
25150 }
25151
25152 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
25153 (CU_HEADERP is unused in such case) or prepare a temporary copy at
25154 CU_HEADERP first. */
25155
25156 static const struct comp_unit_head *
25157 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
25158 struct dwarf2_per_cu_data *per_cu)
25159 {
25160 const gdb_byte *info_ptr;
25161
25162 if (per_cu->cu)
25163 return &per_cu->cu->header;
25164
25165 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
25166
25167 memset (cu_headerp, 0, sizeof (*cu_headerp));
25168 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
25169 rcuh_kind::COMPILE);
25170
25171 return cu_headerp;
25172 }
25173
25174 /* Return the address size given in the compilation unit header for CU. */
25175
25176 int
25177 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
25178 {
25179 struct comp_unit_head cu_header_local;
25180 const struct comp_unit_head *cu_headerp;
25181
25182 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25183
25184 return cu_headerp->addr_size;
25185 }
25186
25187 /* Return the offset size given in the compilation unit header for CU. */
25188
25189 int
25190 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
25191 {
25192 struct comp_unit_head cu_header_local;
25193 const struct comp_unit_head *cu_headerp;
25194
25195 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25196
25197 return cu_headerp->offset_size;
25198 }
25199
25200 /* See its dwarf2loc.h declaration. */
25201
25202 int
25203 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
25204 {
25205 struct comp_unit_head cu_header_local;
25206 const struct comp_unit_head *cu_headerp;
25207
25208 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25209
25210 if (cu_headerp->version == 2)
25211 return cu_headerp->addr_size;
25212 else
25213 return cu_headerp->offset_size;
25214 }
25215
25216 /* Return the text offset of the CU. The returned offset comes from
25217 this CU's objfile. If this objfile came from a separate debuginfo
25218 file, then the offset may be different from the corresponding
25219 offset in the parent objfile. */
25220
25221 CORE_ADDR
25222 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25223 {
25224 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25225
25226 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25227 }
25228
25229 /* Return DWARF version number of PER_CU. */
25230
25231 short
25232 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25233 {
25234 return per_cu->dwarf_version;
25235 }
25236
25237 /* Locate the .debug_info compilation unit from CU's objfile which contains
25238 the DIE at OFFSET. Raises an error on failure. */
25239
25240 static struct dwarf2_per_cu_data *
25241 dwarf2_find_containing_comp_unit (sect_offset sect_off,
25242 unsigned int offset_in_dwz,
25243 struct dwarf2_per_objfile *dwarf2_per_objfile)
25244 {
25245 struct dwarf2_per_cu_data *this_cu;
25246 int low, high;
25247
25248 low = 0;
25249 high = dwarf2_per_objfile->all_comp_units.size () - 1;
25250 while (high > low)
25251 {
25252 struct dwarf2_per_cu_data *mid_cu;
25253 int mid = low + (high - low) / 2;
25254
25255 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25256 if (mid_cu->is_dwz > offset_in_dwz
25257 || (mid_cu->is_dwz == offset_in_dwz
25258 && mid_cu->sect_off + mid_cu->length >= sect_off))
25259 high = mid;
25260 else
25261 low = mid + 1;
25262 }
25263 gdb_assert (low == high);
25264 this_cu = dwarf2_per_objfile->all_comp_units[low];
25265 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
25266 {
25267 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25268 error (_("Dwarf Error: could not find partial DIE containing "
25269 "offset %s [in module %s]"),
25270 sect_offset_str (sect_off),
25271 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25272
25273 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25274 <= sect_off);
25275 return dwarf2_per_objfile->all_comp_units[low-1];
25276 }
25277 else
25278 {
25279 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
25280 && sect_off >= this_cu->sect_off + this_cu->length)
25281 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25282 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25283 return this_cu;
25284 }
25285 }
25286
25287 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25288
25289 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25290 : per_cu (per_cu_),
25291 mark (false),
25292 has_loclist (false),
25293 checked_producer (false),
25294 producer_is_gxx_lt_4_6 (false),
25295 producer_is_gcc_lt_4_3 (false),
25296 producer_is_icc (false),
25297 producer_is_icc_lt_14 (false),
25298 producer_is_codewarrior (false),
25299 processing_has_namespace_info (false)
25300 {
25301 per_cu->cu = this;
25302 }
25303
25304 /* Destroy a dwarf2_cu. */
25305
25306 dwarf2_cu::~dwarf2_cu ()
25307 {
25308 per_cu->cu = NULL;
25309 }
25310
25311 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25312
25313 static void
25314 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25315 enum language pretend_language)
25316 {
25317 struct attribute *attr;
25318
25319 /* Set the language we're debugging. */
25320 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25321 if (attr)
25322 set_cu_language (DW_UNSND (attr), cu);
25323 else
25324 {
25325 cu->language = pretend_language;
25326 cu->language_defn = language_def (cu->language);
25327 }
25328
25329 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25330 }
25331
25332 /* Increase the age counter on each cached compilation unit, and free
25333 any that are too old. */
25334
25335 static void
25336 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25337 {
25338 struct dwarf2_per_cu_data *per_cu, **last_chain;
25339
25340 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25341 per_cu = dwarf2_per_objfile->read_in_chain;
25342 while (per_cu != NULL)
25343 {
25344 per_cu->cu->last_used ++;
25345 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25346 dwarf2_mark (per_cu->cu);
25347 per_cu = per_cu->cu->read_in_chain;
25348 }
25349
25350 per_cu = dwarf2_per_objfile->read_in_chain;
25351 last_chain = &dwarf2_per_objfile->read_in_chain;
25352 while (per_cu != NULL)
25353 {
25354 struct dwarf2_per_cu_data *next_cu;
25355
25356 next_cu = per_cu->cu->read_in_chain;
25357
25358 if (!per_cu->cu->mark)
25359 {
25360 delete per_cu->cu;
25361 *last_chain = next_cu;
25362 }
25363 else
25364 last_chain = &per_cu->cu->read_in_chain;
25365
25366 per_cu = next_cu;
25367 }
25368 }
25369
25370 /* Remove a single compilation unit from the cache. */
25371
25372 static void
25373 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25374 {
25375 struct dwarf2_per_cu_data *per_cu, **last_chain;
25376 struct dwarf2_per_objfile *dwarf2_per_objfile
25377 = target_per_cu->dwarf2_per_objfile;
25378
25379 per_cu = dwarf2_per_objfile->read_in_chain;
25380 last_chain = &dwarf2_per_objfile->read_in_chain;
25381 while (per_cu != NULL)
25382 {
25383 struct dwarf2_per_cu_data *next_cu;
25384
25385 next_cu = per_cu->cu->read_in_chain;
25386
25387 if (per_cu == target_per_cu)
25388 {
25389 delete per_cu->cu;
25390 per_cu->cu = NULL;
25391 *last_chain = next_cu;
25392 break;
25393 }
25394 else
25395 last_chain = &per_cu->cu->read_in_chain;
25396
25397 per_cu = next_cu;
25398 }
25399 }
25400
25401 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25402 We store these in a hash table separate from the DIEs, and preserve them
25403 when the DIEs are flushed out of cache.
25404
25405 The CU "per_cu" pointer is needed because offset alone is not enough to
25406 uniquely identify the type. A file may have multiple .debug_types sections,
25407 or the type may come from a DWO file. Furthermore, while it's more logical
25408 to use per_cu->section+offset, with Fission the section with the data is in
25409 the DWO file but we don't know that section at the point we need it.
25410 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25411 because we can enter the lookup routine, get_die_type_at_offset, from
25412 outside this file, and thus won't necessarily have PER_CU->cu.
25413 Fortunately, PER_CU is stable for the life of the objfile. */
25414
25415 struct dwarf2_per_cu_offset_and_type
25416 {
25417 const struct dwarf2_per_cu_data *per_cu;
25418 sect_offset sect_off;
25419 struct type *type;
25420 };
25421
25422 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25423
25424 static hashval_t
25425 per_cu_offset_and_type_hash (const void *item)
25426 {
25427 const struct dwarf2_per_cu_offset_and_type *ofs
25428 = (const struct dwarf2_per_cu_offset_and_type *) item;
25429
25430 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25431 }
25432
25433 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25434
25435 static int
25436 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25437 {
25438 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25439 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25440 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25441 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25442
25443 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25444 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25445 }
25446
25447 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25448 table if necessary. For convenience, return TYPE.
25449
25450 The DIEs reading must have careful ordering to:
25451 * Not cause infite loops trying to read in DIEs as a prerequisite for
25452 reading current DIE.
25453 * Not trying to dereference contents of still incompletely read in types
25454 while reading in other DIEs.
25455 * Enable referencing still incompletely read in types just by a pointer to
25456 the type without accessing its fields.
25457
25458 Therefore caller should follow these rules:
25459 * Try to fetch any prerequisite types we may need to build this DIE type
25460 before building the type and calling set_die_type.
25461 * After building type call set_die_type for current DIE as soon as
25462 possible before fetching more types to complete the current type.
25463 * Make the type as complete as possible before fetching more types. */
25464
25465 static struct type *
25466 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25467 {
25468 struct dwarf2_per_objfile *dwarf2_per_objfile
25469 = cu->per_cu->dwarf2_per_objfile;
25470 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25471 struct objfile *objfile = dwarf2_per_objfile->objfile;
25472 struct attribute *attr;
25473 struct dynamic_prop prop;
25474
25475 /* For Ada types, make sure that the gnat-specific data is always
25476 initialized (if not already set). There are a few types where
25477 we should not be doing so, because the type-specific area is
25478 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25479 where the type-specific area is used to store the floatformat).
25480 But this is not a problem, because the gnat-specific information
25481 is actually not needed for these types. */
25482 if (need_gnat_info (cu)
25483 && TYPE_CODE (type) != TYPE_CODE_FUNC
25484 && TYPE_CODE (type) != TYPE_CODE_FLT
25485 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25486 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25487 && TYPE_CODE (type) != TYPE_CODE_METHOD
25488 && !HAVE_GNAT_AUX_INFO (type))
25489 INIT_GNAT_SPECIFIC (type);
25490
25491 /* Read DW_AT_allocated and set in type. */
25492 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25493 if (attr_form_is_block (attr))
25494 {
25495 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25496 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25497 }
25498 else if (attr != NULL)
25499 {
25500 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25501 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25502 sect_offset_str (die->sect_off));
25503 }
25504
25505 /* Read DW_AT_associated and set in type. */
25506 attr = dwarf2_attr (die, DW_AT_associated, cu);
25507 if (attr_form_is_block (attr))
25508 {
25509 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25510 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25511 }
25512 else if (attr != NULL)
25513 {
25514 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25515 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25516 sect_offset_str (die->sect_off));
25517 }
25518
25519 /* Read DW_AT_data_location and set in type. */
25520 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25521 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25522 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25523
25524 if (dwarf2_per_objfile->die_type_hash == NULL)
25525 {
25526 dwarf2_per_objfile->die_type_hash =
25527 htab_create_alloc_ex (127,
25528 per_cu_offset_and_type_hash,
25529 per_cu_offset_and_type_eq,
25530 NULL,
25531 &objfile->objfile_obstack,
25532 hashtab_obstack_allocate,
25533 dummy_obstack_deallocate);
25534 }
25535
25536 ofs.per_cu = cu->per_cu;
25537 ofs.sect_off = die->sect_off;
25538 ofs.type = type;
25539 slot = (struct dwarf2_per_cu_offset_and_type **)
25540 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25541 if (*slot)
25542 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25543 sect_offset_str (die->sect_off));
25544 *slot = XOBNEW (&objfile->objfile_obstack,
25545 struct dwarf2_per_cu_offset_and_type);
25546 **slot = ofs;
25547 return type;
25548 }
25549
25550 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25551 or return NULL if the die does not have a saved type. */
25552
25553 static struct type *
25554 get_die_type_at_offset (sect_offset sect_off,
25555 struct dwarf2_per_cu_data *per_cu)
25556 {
25557 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25558 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25559
25560 if (dwarf2_per_objfile->die_type_hash == NULL)
25561 return NULL;
25562
25563 ofs.per_cu = per_cu;
25564 ofs.sect_off = sect_off;
25565 slot = ((struct dwarf2_per_cu_offset_and_type *)
25566 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25567 if (slot)
25568 return slot->type;
25569 else
25570 return NULL;
25571 }
25572
25573 /* Look up the type for DIE in CU in die_type_hash,
25574 or return NULL if DIE does not have a saved type. */
25575
25576 static struct type *
25577 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25578 {
25579 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25580 }
25581
25582 /* Add a dependence relationship from CU to REF_PER_CU. */
25583
25584 static void
25585 dwarf2_add_dependence (struct dwarf2_cu *cu,
25586 struct dwarf2_per_cu_data *ref_per_cu)
25587 {
25588 void **slot;
25589
25590 if (cu->dependencies == NULL)
25591 cu->dependencies
25592 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25593 NULL, &cu->comp_unit_obstack,
25594 hashtab_obstack_allocate,
25595 dummy_obstack_deallocate);
25596
25597 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25598 if (*slot == NULL)
25599 *slot = ref_per_cu;
25600 }
25601
25602 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25603 Set the mark field in every compilation unit in the
25604 cache that we must keep because we are keeping CU. */
25605
25606 static int
25607 dwarf2_mark_helper (void **slot, void *data)
25608 {
25609 struct dwarf2_per_cu_data *per_cu;
25610
25611 per_cu = (struct dwarf2_per_cu_data *) *slot;
25612
25613 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25614 reading of the chain. As such dependencies remain valid it is not much
25615 useful to track and undo them during QUIT cleanups. */
25616 if (per_cu->cu == NULL)
25617 return 1;
25618
25619 if (per_cu->cu->mark)
25620 return 1;
25621 per_cu->cu->mark = true;
25622
25623 if (per_cu->cu->dependencies != NULL)
25624 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25625
25626 return 1;
25627 }
25628
25629 /* Set the mark field in CU and in every other compilation unit in the
25630 cache that we must keep because we are keeping CU. */
25631
25632 static void
25633 dwarf2_mark (struct dwarf2_cu *cu)
25634 {
25635 if (cu->mark)
25636 return;
25637 cu->mark = true;
25638 if (cu->dependencies != NULL)
25639 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25640 }
25641
25642 static void
25643 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25644 {
25645 while (per_cu)
25646 {
25647 per_cu->cu->mark = false;
25648 per_cu = per_cu->cu->read_in_chain;
25649 }
25650 }
25651
25652 /* Trivial hash function for partial_die_info: the hash value of a DIE
25653 is its offset in .debug_info for this objfile. */
25654
25655 static hashval_t
25656 partial_die_hash (const void *item)
25657 {
25658 const struct partial_die_info *part_die
25659 = (const struct partial_die_info *) item;
25660
25661 return to_underlying (part_die->sect_off);
25662 }
25663
25664 /* Trivial comparison function for partial_die_info structures: two DIEs
25665 are equal if they have the same offset. */
25666
25667 static int
25668 partial_die_eq (const void *item_lhs, const void *item_rhs)
25669 {
25670 const struct partial_die_info *part_die_lhs
25671 = (const struct partial_die_info *) item_lhs;
25672 const struct partial_die_info *part_die_rhs
25673 = (const struct partial_die_info *) item_rhs;
25674
25675 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25676 }
25677
25678 struct cmd_list_element *set_dwarf_cmdlist;
25679 struct cmd_list_element *show_dwarf_cmdlist;
25680
25681 static void
25682 set_dwarf_cmd (const char *args, int from_tty)
25683 {
25684 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25685 gdb_stdout);
25686 }
25687
25688 static void
25689 show_dwarf_cmd (const char *args, int from_tty)
25690 {
25691 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25692 }
25693
25694 int dwarf_always_disassemble;
25695
25696 static void
25697 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25698 struct cmd_list_element *c, const char *value)
25699 {
25700 fprintf_filtered (file,
25701 _("Whether to always disassemble "
25702 "DWARF expressions is %s.\n"),
25703 value);
25704 }
25705
25706 static void
25707 show_check_physname (struct ui_file *file, int from_tty,
25708 struct cmd_list_element *c, const char *value)
25709 {
25710 fprintf_filtered (file,
25711 _("Whether to check \"physname\" is %s.\n"),
25712 value);
25713 }
25714
25715 void
25716 _initialize_dwarf2_read (void)
25717 {
25718 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25719 Set DWARF specific variables.\n\
25720 Configure DWARF variables such as the cache size"),
25721 &set_dwarf_cmdlist, "maintenance set dwarf ",
25722 0/*allow-unknown*/, &maintenance_set_cmdlist);
25723
25724 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25725 Show DWARF specific variables\n\
25726 Show DWARF variables such as the cache size"),
25727 &show_dwarf_cmdlist, "maintenance show dwarf ",
25728 0/*allow-unknown*/, &maintenance_show_cmdlist);
25729
25730 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25731 &dwarf_max_cache_age, _("\
25732 Set the upper bound on the age of cached DWARF compilation units."), _("\
25733 Show the upper bound on the age of cached DWARF compilation units."), _("\
25734 A higher limit means that cached compilation units will be stored\n\
25735 in memory longer, and more total memory will be used. Zero disables\n\
25736 caching, which can slow down startup."),
25737 NULL,
25738 show_dwarf_max_cache_age,
25739 &set_dwarf_cmdlist,
25740 &show_dwarf_cmdlist);
25741
25742 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25743 &dwarf_always_disassemble, _("\
25744 Set whether `info address' always disassembles DWARF expressions."), _("\
25745 Show whether `info address' always disassembles DWARF expressions."), _("\
25746 When enabled, DWARF expressions are always printed in an assembly-like\n\
25747 syntax. When disabled, expressions will be printed in a more\n\
25748 conversational style, when possible."),
25749 NULL,
25750 show_dwarf_always_disassemble,
25751 &set_dwarf_cmdlist,
25752 &show_dwarf_cmdlist);
25753
25754 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25755 Set debugging of the DWARF reader."), _("\
25756 Show debugging of the DWARF reader."), _("\
25757 When enabled (non-zero), debugging messages are printed during DWARF\n\
25758 reading and symtab expansion. A value of 1 (one) provides basic\n\
25759 information. A value greater than 1 provides more verbose information."),
25760 NULL,
25761 NULL,
25762 &setdebuglist, &showdebuglist);
25763
25764 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25765 Set debugging of the DWARF DIE reader."), _("\
25766 Show debugging of the DWARF DIE reader."), _("\
25767 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25768 The value is the maximum depth to print."),
25769 NULL,
25770 NULL,
25771 &setdebuglist, &showdebuglist);
25772
25773 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25774 Set debugging of the dwarf line reader."), _("\
25775 Show debugging of the dwarf line reader."), _("\
25776 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25777 A value of 1 (one) provides basic information.\n\
25778 A value greater than 1 provides more verbose information."),
25779 NULL,
25780 NULL,
25781 &setdebuglist, &showdebuglist);
25782
25783 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25784 Set cross-checking of \"physname\" code against demangler."), _("\
25785 Show cross-checking of \"physname\" code against demangler."), _("\
25786 When enabled, GDB's internal \"physname\" code is checked against\n\
25787 the demangler."),
25788 NULL, show_check_physname,
25789 &setdebuglist, &showdebuglist);
25790
25791 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25792 no_class, &use_deprecated_index_sections, _("\
25793 Set whether to use deprecated gdb_index sections."), _("\
25794 Show whether to use deprecated gdb_index sections."), _("\
25795 When enabled, deprecated .gdb_index sections are used anyway.\n\
25796 Normally they are ignored either because of a missing feature or\n\
25797 performance issue.\n\
25798 Warning: This option must be enabled before gdb reads the file."),
25799 NULL,
25800 NULL,
25801 &setlist, &showlist);
25802
25803 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25804 &dwarf2_locexpr_funcs);
25805 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25806 &dwarf2_loclist_funcs);
25807
25808 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25809 &dwarf2_block_frame_base_locexpr_funcs);
25810 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25811 &dwarf2_block_frame_base_loclist_funcs);
25812
25813 #if GDB_SELF_TEST
25814 selftests::register_test ("dw2_expand_symtabs_matching",
25815 selftests::dw2_expand_symtabs_matching::run_test);
25816 #endif
25817 }
This page took 0.601213 seconds and 5 git commands to generate.