Move read_partial_die to partial_die_info::read
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2018 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "psympriv.h"
57 #include <sys/stat.h>
58 #include "completer.h"
59 #include "vec.h"
60 #include "c-lang.h"
61 #include "go-lang.h"
62 #include "valprint.h"
63 #include "gdbcore.h" /* for gnutarget */
64 #include "gdb/gdb-index.h"
65 #include <ctype.h>
66 #include "gdb_bfd.h"
67 #include "f-lang.h"
68 #include "source.h"
69 #include "filestuff.h"
70 #include "build-id.h"
71 #include "namespace.h"
72 #include "common/gdb_unlinker.h"
73 #include "common/function-view.h"
74 #include "common/gdb_optional.h"
75 #include "common/underlying.h"
76 #include "common/byte-vector.h"
77 #include "common/hash_enum.h"
78 #include "filename-seen-cache.h"
79 #include "producer.h"
80 #include <fcntl.h>
81 #include <sys/types.h>
82 #include <algorithm>
83 #include <unordered_set>
84 #include <unordered_map>
85 #include "selftest.h"
86 #include <cmath>
87 #include <set>
88 #include <forward_list>
89
90 /* When == 1, print basic high level tracing messages.
91 When > 1, be more verbose.
92 This is in contrast to the low level DIE reading of dwarf_die_debug. */
93 static unsigned int dwarf_read_debug = 0;
94
95 /* When non-zero, dump DIEs after they are read in. */
96 static unsigned int dwarf_die_debug = 0;
97
98 /* When non-zero, dump line number entries as they are read in. */
99 static unsigned int dwarf_line_debug = 0;
100
101 /* When non-zero, cross-check physname against demangler. */
102 static int check_physname = 0;
103
104 /* When non-zero, do not reject deprecated .gdb_index sections. */
105 static int use_deprecated_index_sections = 0;
106
107 static const struct objfile_data *dwarf2_objfile_data_key;
108
109 /* The "aclass" indices for various kinds of computed DWARF symbols. */
110
111 static int dwarf2_locexpr_index;
112 static int dwarf2_loclist_index;
113 static int dwarf2_locexpr_block_index;
114 static int dwarf2_loclist_block_index;
115
116 /* A descriptor for dwarf sections.
117
118 S.ASECTION, SIZE are typically initialized when the objfile is first
119 scanned. BUFFER, READIN are filled in later when the section is read.
120 If the section contained compressed data then SIZE is updated to record
121 the uncompressed size of the section.
122
123 DWP file format V2 introduces a wrinkle that is easiest to handle by
124 creating the concept of virtual sections contained within a real section.
125 In DWP V2 the sections of the input DWO files are concatenated together
126 into one section, but section offsets are kept relative to the original
127 input section.
128 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
129 the real section this "virtual" section is contained in, and BUFFER,SIZE
130 describe the virtual section. */
131
132 struct dwarf2_section_info
133 {
134 union
135 {
136 /* If this is a real section, the bfd section. */
137 asection *section;
138 /* If this is a virtual section, pointer to the containing ("real")
139 section. */
140 struct dwarf2_section_info *containing_section;
141 } s;
142 /* Pointer to section data, only valid if readin. */
143 const gdb_byte *buffer;
144 /* The size of the section, real or virtual. */
145 bfd_size_type size;
146 /* If this is a virtual section, the offset in the real section.
147 Only valid if is_virtual. */
148 bfd_size_type virtual_offset;
149 /* True if we have tried to read this section. */
150 char readin;
151 /* True if this is a virtual section, False otherwise.
152 This specifies which of s.section and s.containing_section to use. */
153 char is_virtual;
154 };
155
156 typedef struct dwarf2_section_info dwarf2_section_info_def;
157 DEF_VEC_O (dwarf2_section_info_def);
158
159 /* All offsets in the index are of this type. It must be
160 architecture-independent. */
161 typedef uint32_t offset_type;
162
163 DEF_VEC_I (offset_type);
164
165 /* Ensure only legit values are used. */
166 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
167 do { \
168 gdb_assert ((unsigned int) (value) <= 1); \
169 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
170 } while (0)
171
172 /* Ensure only legit values are used. */
173 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
174 do { \
175 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
176 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
177 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
178 } while (0)
179
180 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
181 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
182 do { \
183 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
184 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
185 } while (0)
186
187 #if WORDS_BIGENDIAN
188
189 /* Convert VALUE between big- and little-endian. */
190
191 static offset_type
192 byte_swap (offset_type value)
193 {
194 offset_type result;
195
196 result = (value & 0xff) << 24;
197 result |= (value & 0xff00) << 8;
198 result |= (value & 0xff0000) >> 8;
199 result |= (value & 0xff000000) >> 24;
200 return result;
201 }
202
203 #define MAYBE_SWAP(V) byte_swap (V)
204
205 #else
206 #define MAYBE_SWAP(V) static_cast<offset_type> (V)
207 #endif /* WORDS_BIGENDIAN */
208
209 /* An index into a (C++) symbol name component in a symbol name as
210 recorded in the mapped_index's symbol table. For each C++ symbol
211 in the symbol table, we record one entry for the start of each
212 component in the symbol in a table of name components, and then
213 sort the table, in order to be able to binary search symbol names,
214 ignoring leading namespaces, both completion and regular look up.
215 For example, for symbol "A::B::C", we'll have an entry that points
216 to "A::B::C", another that points to "B::C", and another for "C".
217 Note that function symbols in GDB index have no parameter
218 information, just the function/method names. You can convert a
219 name_component to a "const char *" using the
220 'mapped_index::symbol_name_at(offset_type)' method. */
221
222 struct name_component
223 {
224 /* Offset in the symbol name where the component starts. Stored as
225 a (32-bit) offset instead of a pointer to save memory and improve
226 locality on 64-bit architectures. */
227 offset_type name_offset;
228
229 /* The symbol's index in the symbol and constant pool tables of a
230 mapped_index. */
231 offset_type idx;
232 };
233
234 /* Base class containing bits shared by both .gdb_index and
235 .debug_name indexes. */
236
237 struct mapped_index_base
238 {
239 /* The name_component table (a sorted vector). See name_component's
240 description above. */
241 std::vector<name_component> name_components;
242
243 /* How NAME_COMPONENTS is sorted. */
244 enum case_sensitivity name_components_casing;
245
246 /* Return the number of names in the symbol table. */
247 virtual size_t symbol_name_count () const = 0;
248
249 /* Get the name of the symbol at IDX in the symbol table. */
250 virtual const char *symbol_name_at (offset_type idx) const = 0;
251
252 /* Return whether the name at IDX in the symbol table should be
253 ignored. */
254 virtual bool symbol_name_slot_invalid (offset_type idx) const
255 {
256 return false;
257 }
258
259 /* Build the symbol name component sorted vector, if we haven't
260 yet. */
261 void build_name_components ();
262
263 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
264 possible matches for LN_NO_PARAMS in the name component
265 vector. */
266 std::pair<std::vector<name_component>::const_iterator,
267 std::vector<name_component>::const_iterator>
268 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
269
270 /* Prevent deleting/destroying via a base class pointer. */
271 protected:
272 ~mapped_index_base() = default;
273 };
274
275 /* A description of the mapped index. The file format is described in
276 a comment by the code that writes the index. */
277 struct mapped_index final : public mapped_index_base
278 {
279 /* A slot/bucket in the symbol table hash. */
280 struct symbol_table_slot
281 {
282 const offset_type name;
283 const offset_type vec;
284 };
285
286 /* Index data format version. */
287 int version;
288
289 /* The total length of the buffer. */
290 off_t total_size;
291
292 /* The address table data. */
293 gdb::array_view<const gdb_byte> address_table;
294
295 /* The symbol table, implemented as a hash table. */
296 gdb::array_view<symbol_table_slot> symbol_table;
297
298 /* A pointer to the constant pool. */
299 const char *constant_pool;
300
301 bool symbol_name_slot_invalid (offset_type idx) const override
302 {
303 const auto &bucket = this->symbol_table[idx];
304 return bucket.name == 0 && bucket.vec;
305 }
306
307 /* Convenience method to get at the name of the symbol at IDX in the
308 symbol table. */
309 const char *symbol_name_at (offset_type idx) const override
310 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
311
312 size_t symbol_name_count () const override
313 { return this->symbol_table.size (); }
314 };
315
316 /* A description of the mapped .debug_names.
317 Uninitialized map has CU_COUNT 0. */
318 struct mapped_debug_names final : public mapped_index_base
319 {
320 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
321 : dwarf2_per_objfile (dwarf2_per_objfile_)
322 {}
323
324 struct dwarf2_per_objfile *dwarf2_per_objfile;
325 bfd_endian dwarf5_byte_order;
326 bool dwarf5_is_dwarf64;
327 bool augmentation_is_gdb;
328 uint8_t offset_size;
329 uint32_t cu_count = 0;
330 uint32_t tu_count, bucket_count, name_count;
331 const gdb_byte *cu_table_reordered, *tu_table_reordered;
332 const uint32_t *bucket_table_reordered, *hash_table_reordered;
333 const gdb_byte *name_table_string_offs_reordered;
334 const gdb_byte *name_table_entry_offs_reordered;
335 const gdb_byte *entry_pool;
336
337 struct index_val
338 {
339 ULONGEST dwarf_tag;
340 struct attr
341 {
342 /* Attribute name DW_IDX_*. */
343 ULONGEST dw_idx;
344
345 /* Attribute form DW_FORM_*. */
346 ULONGEST form;
347
348 /* Value if FORM is DW_FORM_implicit_const. */
349 LONGEST implicit_const;
350 };
351 std::vector<attr> attr_vec;
352 };
353
354 std::unordered_map<ULONGEST, index_val> abbrev_map;
355
356 const char *namei_to_name (uint32_t namei) const;
357
358 /* Implementation of the mapped_index_base virtual interface, for
359 the name_components cache. */
360
361 const char *symbol_name_at (offset_type idx) const override
362 { return namei_to_name (idx); }
363
364 size_t symbol_name_count () const override
365 { return this->name_count; }
366 };
367
368 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
369 DEF_VEC_P (dwarf2_per_cu_ptr);
370
371 struct tu_stats
372 {
373 int nr_uniq_abbrev_tables;
374 int nr_symtabs;
375 int nr_symtab_sharers;
376 int nr_stmt_less_type_units;
377 int nr_all_type_units_reallocs;
378 };
379
380 /* Collection of data recorded per objfile.
381 This hangs off of dwarf2_objfile_data_key. */
382
383 struct dwarf2_per_objfile : public allocate_on_obstack
384 {
385 /* Construct a dwarf2_per_objfile for OBJFILE. NAMES points to the
386 dwarf2 section names, or is NULL if the standard ELF names are
387 used. */
388 dwarf2_per_objfile (struct objfile *objfile,
389 const dwarf2_debug_sections *names);
390
391 ~dwarf2_per_objfile ();
392
393 DISABLE_COPY_AND_ASSIGN (dwarf2_per_objfile);
394
395 /* Free all cached compilation units. */
396 void free_cached_comp_units ();
397 private:
398 /* This function is mapped across the sections and remembers the
399 offset and size of each of the debugging sections we are
400 interested in. */
401 void locate_sections (bfd *abfd, asection *sectp,
402 const dwarf2_debug_sections &names);
403
404 public:
405 dwarf2_section_info info {};
406 dwarf2_section_info abbrev {};
407 dwarf2_section_info line {};
408 dwarf2_section_info loc {};
409 dwarf2_section_info loclists {};
410 dwarf2_section_info macinfo {};
411 dwarf2_section_info macro {};
412 dwarf2_section_info str {};
413 dwarf2_section_info line_str {};
414 dwarf2_section_info ranges {};
415 dwarf2_section_info rnglists {};
416 dwarf2_section_info addr {};
417 dwarf2_section_info frame {};
418 dwarf2_section_info eh_frame {};
419 dwarf2_section_info gdb_index {};
420 dwarf2_section_info debug_names {};
421 dwarf2_section_info debug_aranges {};
422
423 VEC (dwarf2_section_info_def) *types = NULL;
424
425 /* Back link. */
426 struct objfile *objfile = NULL;
427
428 /* Table of all the compilation units. This is used to locate
429 the target compilation unit of a particular reference. */
430 struct dwarf2_per_cu_data **all_comp_units = NULL;
431
432 /* The number of compilation units in ALL_COMP_UNITS. */
433 int n_comp_units = 0;
434
435 /* The number of .debug_types-related CUs. */
436 int n_type_units = 0;
437
438 /* The number of elements allocated in all_type_units.
439 If there are skeleton-less TUs, we add them to all_type_units lazily. */
440 int n_allocated_type_units = 0;
441
442 /* The .debug_types-related CUs (TUs).
443 This is stored in malloc space because we may realloc it. */
444 struct signatured_type **all_type_units = NULL;
445
446 /* Table of struct type_unit_group objects.
447 The hash key is the DW_AT_stmt_list value. */
448 htab_t type_unit_groups {};
449
450 /* A table mapping .debug_types signatures to its signatured_type entry.
451 This is NULL if the .debug_types section hasn't been read in yet. */
452 htab_t signatured_types {};
453
454 /* Type unit statistics, to see how well the scaling improvements
455 are doing. */
456 struct tu_stats tu_stats {};
457
458 /* A chain of compilation units that are currently read in, so that
459 they can be freed later. */
460 dwarf2_per_cu_data *read_in_chain = NULL;
461
462 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
463 This is NULL if the table hasn't been allocated yet. */
464 htab_t dwo_files {};
465
466 /* True if we've checked for whether there is a DWP file. */
467 bool dwp_checked = false;
468
469 /* The DWP file if there is one, or NULL. */
470 struct dwp_file *dwp_file = NULL;
471
472 /* The shared '.dwz' file, if one exists. This is used when the
473 original data was compressed using 'dwz -m'. */
474 struct dwz_file *dwz_file = NULL;
475
476 /* A flag indicating whether this objfile has a section loaded at a
477 VMA of 0. */
478 bool has_section_at_zero = false;
479
480 /* True if we are using the mapped index,
481 or we are faking it for OBJF_READNOW's sake. */
482 bool using_index = false;
483
484 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
485 mapped_index *index_table = NULL;
486
487 /* The mapped index, or NULL if .debug_names is missing or not being used. */
488 std::unique_ptr<mapped_debug_names> debug_names_table;
489
490 /* When using index_table, this keeps track of all quick_file_names entries.
491 TUs typically share line table entries with a CU, so we maintain a
492 separate table of all line table entries to support the sharing.
493 Note that while there can be way more TUs than CUs, we've already
494 sorted all the TUs into "type unit groups", grouped by their
495 DW_AT_stmt_list value. Therefore the only sharing done here is with a
496 CU and its associated TU group if there is one. */
497 htab_t quick_file_names_table {};
498
499 /* Set during partial symbol reading, to prevent queueing of full
500 symbols. */
501 bool reading_partial_symbols = false;
502
503 /* Table mapping type DIEs to their struct type *.
504 This is NULL if not allocated yet.
505 The mapping is done via (CU/TU + DIE offset) -> type. */
506 htab_t die_type_hash {};
507
508 /* The CUs we recently read. */
509 VEC (dwarf2_per_cu_ptr) *just_read_cus = NULL;
510
511 /* Table containing line_header indexed by offset and offset_in_dwz. */
512 htab_t line_header_hash {};
513
514 /* Table containing all filenames. This is an optional because the
515 table is lazily constructed on first access. */
516 gdb::optional<filename_seen_cache> filenames_cache;
517 };
518
519 /* Get the dwarf2_per_objfile associated to OBJFILE. */
520
521 struct dwarf2_per_objfile *
522 get_dwarf2_per_objfile (struct objfile *objfile)
523 {
524 return ((struct dwarf2_per_objfile *)
525 objfile_data (objfile, dwarf2_objfile_data_key));
526 }
527
528 /* Set the dwarf2_per_objfile associated to OBJFILE. */
529
530 void
531 set_dwarf2_per_objfile (struct objfile *objfile,
532 struct dwarf2_per_objfile *dwarf2_per_objfile)
533 {
534 gdb_assert (get_dwarf2_per_objfile (objfile) == NULL);
535 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
536 }
537
538 /* Default names of the debugging sections. */
539
540 /* Note that if the debugging section has been compressed, it might
541 have a name like .zdebug_info. */
542
543 static const struct dwarf2_debug_sections dwarf2_elf_names =
544 {
545 { ".debug_info", ".zdebug_info" },
546 { ".debug_abbrev", ".zdebug_abbrev" },
547 { ".debug_line", ".zdebug_line" },
548 { ".debug_loc", ".zdebug_loc" },
549 { ".debug_loclists", ".zdebug_loclists" },
550 { ".debug_macinfo", ".zdebug_macinfo" },
551 { ".debug_macro", ".zdebug_macro" },
552 { ".debug_str", ".zdebug_str" },
553 { ".debug_line_str", ".zdebug_line_str" },
554 { ".debug_ranges", ".zdebug_ranges" },
555 { ".debug_rnglists", ".zdebug_rnglists" },
556 { ".debug_types", ".zdebug_types" },
557 { ".debug_addr", ".zdebug_addr" },
558 { ".debug_frame", ".zdebug_frame" },
559 { ".eh_frame", NULL },
560 { ".gdb_index", ".zgdb_index" },
561 { ".debug_names", ".zdebug_names" },
562 { ".debug_aranges", ".zdebug_aranges" },
563 23
564 };
565
566 /* List of DWO/DWP sections. */
567
568 static const struct dwop_section_names
569 {
570 struct dwarf2_section_names abbrev_dwo;
571 struct dwarf2_section_names info_dwo;
572 struct dwarf2_section_names line_dwo;
573 struct dwarf2_section_names loc_dwo;
574 struct dwarf2_section_names loclists_dwo;
575 struct dwarf2_section_names macinfo_dwo;
576 struct dwarf2_section_names macro_dwo;
577 struct dwarf2_section_names str_dwo;
578 struct dwarf2_section_names str_offsets_dwo;
579 struct dwarf2_section_names types_dwo;
580 struct dwarf2_section_names cu_index;
581 struct dwarf2_section_names tu_index;
582 }
583 dwop_section_names =
584 {
585 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
586 { ".debug_info.dwo", ".zdebug_info.dwo" },
587 { ".debug_line.dwo", ".zdebug_line.dwo" },
588 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
589 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
590 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
591 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
592 { ".debug_str.dwo", ".zdebug_str.dwo" },
593 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
594 { ".debug_types.dwo", ".zdebug_types.dwo" },
595 { ".debug_cu_index", ".zdebug_cu_index" },
596 { ".debug_tu_index", ".zdebug_tu_index" },
597 };
598
599 /* local data types */
600
601 /* The data in a compilation unit header, after target2host
602 translation, looks like this. */
603 struct comp_unit_head
604 {
605 unsigned int length;
606 short version;
607 unsigned char addr_size;
608 unsigned char signed_addr_p;
609 sect_offset abbrev_sect_off;
610
611 /* Size of file offsets; either 4 or 8. */
612 unsigned int offset_size;
613
614 /* Size of the length field; either 4 or 12. */
615 unsigned int initial_length_size;
616
617 enum dwarf_unit_type unit_type;
618
619 /* Offset to the first byte of this compilation unit header in the
620 .debug_info section, for resolving relative reference dies. */
621 sect_offset sect_off;
622
623 /* Offset to first die in this cu from the start of the cu.
624 This will be the first byte following the compilation unit header. */
625 cu_offset first_die_cu_offset;
626
627 /* 64-bit signature of this type unit - it is valid only for
628 UNIT_TYPE DW_UT_type. */
629 ULONGEST signature;
630
631 /* For types, offset in the type's DIE of the type defined by this TU. */
632 cu_offset type_cu_offset_in_tu;
633 };
634
635 /* Type used for delaying computation of method physnames.
636 See comments for compute_delayed_physnames. */
637 struct delayed_method_info
638 {
639 /* The type to which the method is attached, i.e., its parent class. */
640 struct type *type;
641
642 /* The index of the method in the type's function fieldlists. */
643 int fnfield_index;
644
645 /* The index of the method in the fieldlist. */
646 int index;
647
648 /* The name of the DIE. */
649 const char *name;
650
651 /* The DIE associated with this method. */
652 struct die_info *die;
653 };
654
655 /* Internal state when decoding a particular compilation unit. */
656 struct dwarf2_cu
657 {
658 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
659 ~dwarf2_cu ();
660
661 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
662
663 /* The header of the compilation unit. */
664 struct comp_unit_head header {};
665
666 /* Base address of this compilation unit. */
667 CORE_ADDR base_address = 0;
668
669 /* Non-zero if base_address has been set. */
670 int base_known = 0;
671
672 /* The language we are debugging. */
673 enum language language = language_unknown;
674 const struct language_defn *language_defn = nullptr;
675
676 const char *producer = nullptr;
677
678 /* The generic symbol table building routines have separate lists for
679 file scope symbols and all all other scopes (local scopes). So
680 we need to select the right one to pass to add_symbol_to_list().
681 We do it by keeping a pointer to the correct list in list_in_scope.
682
683 FIXME: The original dwarf code just treated the file scope as the
684 first local scope, and all other local scopes as nested local
685 scopes, and worked fine. Check to see if we really need to
686 distinguish these in buildsym.c. */
687 struct pending **list_in_scope = nullptr;
688
689 /* Hash table holding all the loaded partial DIEs
690 with partial_die->offset.SECT_OFF as hash. */
691 htab_t partial_dies = nullptr;
692
693 /* Storage for things with the same lifetime as this read-in compilation
694 unit, including partial DIEs. */
695 auto_obstack comp_unit_obstack;
696
697 /* When multiple dwarf2_cu structures are living in memory, this field
698 chains them all together, so that they can be released efficiently.
699 We will probably also want a generation counter so that most-recently-used
700 compilation units are cached... */
701 struct dwarf2_per_cu_data *read_in_chain = nullptr;
702
703 /* Backlink to our per_cu entry. */
704 struct dwarf2_per_cu_data *per_cu;
705
706 /* How many compilation units ago was this CU last referenced? */
707 int last_used = 0;
708
709 /* A hash table of DIE cu_offset for following references with
710 die_info->offset.sect_off as hash. */
711 htab_t die_hash = nullptr;
712
713 /* Full DIEs if read in. */
714 struct die_info *dies = nullptr;
715
716 /* A set of pointers to dwarf2_per_cu_data objects for compilation
717 units referenced by this one. Only set during full symbol processing;
718 partial symbol tables do not have dependencies. */
719 htab_t dependencies = nullptr;
720
721 /* Header data from the line table, during full symbol processing. */
722 struct line_header *line_header = nullptr;
723 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
724 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
725 this is the DW_TAG_compile_unit die for this CU. We'll hold on
726 to the line header as long as this DIE is being processed. See
727 process_die_scope. */
728 die_info *line_header_die_owner = nullptr;
729
730 /* A list of methods which need to have physnames computed
731 after all type information has been read. */
732 std::vector<delayed_method_info> method_list;
733
734 /* To be copied to symtab->call_site_htab. */
735 htab_t call_site_htab = nullptr;
736
737 /* Non-NULL if this CU came from a DWO file.
738 There is an invariant here that is important to remember:
739 Except for attributes copied from the top level DIE in the "main"
740 (or "stub") file in preparation for reading the DWO file
741 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
742 Either there isn't a DWO file (in which case this is NULL and the point
743 is moot), or there is and either we're not going to read it (in which
744 case this is NULL) or there is and we are reading it (in which case this
745 is non-NULL). */
746 struct dwo_unit *dwo_unit = nullptr;
747
748 /* The DW_AT_addr_base attribute if present, zero otherwise
749 (zero is a valid value though).
750 Note this value comes from the Fission stub CU/TU's DIE. */
751 ULONGEST addr_base = 0;
752
753 /* The DW_AT_ranges_base attribute if present, zero otherwise
754 (zero is a valid value though).
755 Note this value comes from the Fission stub CU/TU's DIE.
756 Also note that the value is zero in the non-DWO case so this value can
757 be used without needing to know whether DWO files are in use or not.
758 N.B. This does not apply to DW_AT_ranges appearing in
759 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
760 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
761 DW_AT_ranges_base *would* have to be applied, and we'd have to care
762 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
763 ULONGEST ranges_base = 0;
764
765 /* Mark used when releasing cached dies. */
766 unsigned int mark : 1;
767
768 /* This CU references .debug_loc. See the symtab->locations_valid field.
769 This test is imperfect as there may exist optimized debug code not using
770 any location list and still facing inlining issues if handled as
771 unoptimized code. For a future better test see GCC PR other/32998. */
772 unsigned int has_loclist : 1;
773
774 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
775 if all the producer_is_* fields are valid. This information is cached
776 because profiling CU expansion showed excessive time spent in
777 producer_is_gxx_lt_4_6. */
778 unsigned int checked_producer : 1;
779 unsigned int producer_is_gxx_lt_4_6 : 1;
780 unsigned int producer_is_gcc_lt_4_3 : 1;
781 unsigned int producer_is_icc_lt_14 : 1;
782
783 /* When set, the file that we're processing is known to have
784 debugging info for C++ namespaces. GCC 3.3.x did not produce
785 this information, but later versions do. */
786
787 unsigned int processing_has_namespace_info : 1;
788
789 struct partial_die_info *find_partial_die (sect_offset sect_off);
790 };
791
792 /* Persistent data held for a compilation unit, even when not
793 processing it. We put a pointer to this structure in the
794 read_symtab_private field of the psymtab. */
795
796 struct dwarf2_per_cu_data
797 {
798 /* The start offset and length of this compilation unit.
799 NOTE: Unlike comp_unit_head.length, this length includes
800 initial_length_size.
801 If the DIE refers to a DWO file, this is always of the original die,
802 not the DWO file. */
803 sect_offset sect_off;
804 unsigned int length;
805
806 /* DWARF standard version this data has been read from (such as 4 or 5). */
807 short dwarf_version;
808
809 /* Flag indicating this compilation unit will be read in before
810 any of the current compilation units are processed. */
811 unsigned int queued : 1;
812
813 /* This flag will be set when reading partial DIEs if we need to load
814 absolutely all DIEs for this compilation unit, instead of just the ones
815 we think are interesting. It gets set if we look for a DIE in the
816 hash table and don't find it. */
817 unsigned int load_all_dies : 1;
818
819 /* Non-zero if this CU is from .debug_types.
820 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
821 this is non-zero. */
822 unsigned int is_debug_types : 1;
823
824 /* Non-zero if this CU is from the .dwz file. */
825 unsigned int is_dwz : 1;
826
827 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
828 This flag is only valid if is_debug_types is true.
829 We can't read a CU directly from a DWO file: There are required
830 attributes in the stub. */
831 unsigned int reading_dwo_directly : 1;
832
833 /* Non-zero if the TU has been read.
834 This is used to assist the "Stay in DWO Optimization" for Fission:
835 When reading a DWO, it's faster to read TUs from the DWO instead of
836 fetching them from random other DWOs (due to comdat folding).
837 If the TU has already been read, the optimization is unnecessary
838 (and unwise - we don't want to change where gdb thinks the TU lives
839 "midflight").
840 This flag is only valid if is_debug_types is true. */
841 unsigned int tu_read : 1;
842
843 /* The section this CU/TU lives in.
844 If the DIE refers to a DWO file, this is always the original die,
845 not the DWO file. */
846 struct dwarf2_section_info *section;
847
848 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
849 of the CU cache it gets reset to NULL again. This is left as NULL for
850 dummy CUs (a CU header, but nothing else). */
851 struct dwarf2_cu *cu;
852
853 /* The corresponding dwarf2_per_objfile. */
854 struct dwarf2_per_objfile *dwarf2_per_objfile;
855
856 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
857 is active. Otherwise, the 'psymtab' field is active. */
858 union
859 {
860 /* The partial symbol table associated with this compilation unit,
861 or NULL for unread partial units. */
862 struct partial_symtab *psymtab;
863
864 /* Data needed by the "quick" functions. */
865 struct dwarf2_per_cu_quick_data *quick;
866 } v;
867
868 /* The CUs we import using DW_TAG_imported_unit. This is filled in
869 while reading psymtabs, used to compute the psymtab dependencies,
870 and then cleared. Then it is filled in again while reading full
871 symbols, and only deleted when the objfile is destroyed.
872
873 This is also used to work around a difference between the way gold
874 generates .gdb_index version <=7 and the way gdb does. Arguably this
875 is a gold bug. For symbols coming from TUs, gold records in the index
876 the CU that includes the TU instead of the TU itself. This breaks
877 dw2_lookup_symbol: It assumes that if the index says symbol X lives
878 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
879 will find X. Alas TUs live in their own symtab, so after expanding CU Y
880 we need to look in TU Z to find X. Fortunately, this is akin to
881 DW_TAG_imported_unit, so we just use the same mechanism: For
882 .gdb_index version <=7 this also records the TUs that the CU referred
883 to. Concurrently with this change gdb was modified to emit version 8
884 indices so we only pay a price for gold generated indices.
885 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
886 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
887 };
888
889 /* Entry in the signatured_types hash table. */
890
891 struct signatured_type
892 {
893 /* The "per_cu" object of this type.
894 This struct is used iff per_cu.is_debug_types.
895 N.B.: This is the first member so that it's easy to convert pointers
896 between them. */
897 struct dwarf2_per_cu_data per_cu;
898
899 /* The type's signature. */
900 ULONGEST signature;
901
902 /* Offset in the TU of the type's DIE, as read from the TU header.
903 If this TU is a DWO stub and the definition lives in a DWO file
904 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
905 cu_offset type_offset_in_tu;
906
907 /* Offset in the section of the type's DIE.
908 If the definition lives in a DWO file, this is the offset in the
909 .debug_types.dwo section.
910 The value is zero until the actual value is known.
911 Zero is otherwise not a valid section offset. */
912 sect_offset type_offset_in_section;
913
914 /* Type units are grouped by their DW_AT_stmt_list entry so that they
915 can share them. This points to the containing symtab. */
916 struct type_unit_group *type_unit_group;
917
918 /* The type.
919 The first time we encounter this type we fully read it in and install it
920 in the symbol tables. Subsequent times we only need the type. */
921 struct type *type;
922
923 /* Containing DWO unit.
924 This field is valid iff per_cu.reading_dwo_directly. */
925 struct dwo_unit *dwo_unit;
926 };
927
928 typedef struct signatured_type *sig_type_ptr;
929 DEF_VEC_P (sig_type_ptr);
930
931 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
932 This includes type_unit_group and quick_file_names. */
933
934 struct stmt_list_hash
935 {
936 /* The DWO unit this table is from or NULL if there is none. */
937 struct dwo_unit *dwo_unit;
938
939 /* Offset in .debug_line or .debug_line.dwo. */
940 sect_offset line_sect_off;
941 };
942
943 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
944 an object of this type. */
945
946 struct type_unit_group
947 {
948 /* dwarf2read.c's main "handle" on a TU symtab.
949 To simplify things we create an artificial CU that "includes" all the
950 type units using this stmt_list so that the rest of the code still has
951 a "per_cu" handle on the symtab.
952 This PER_CU is recognized by having no section. */
953 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
954 struct dwarf2_per_cu_data per_cu;
955
956 /* The TUs that share this DW_AT_stmt_list entry.
957 This is added to while parsing type units to build partial symtabs,
958 and is deleted afterwards and not used again. */
959 VEC (sig_type_ptr) *tus;
960
961 /* The compunit symtab.
962 Type units in a group needn't all be defined in the same source file,
963 so we create an essentially anonymous symtab as the compunit symtab. */
964 struct compunit_symtab *compunit_symtab;
965
966 /* The data used to construct the hash key. */
967 struct stmt_list_hash hash;
968
969 /* The number of symtabs from the line header.
970 The value here must match line_header.num_file_names. */
971 unsigned int num_symtabs;
972
973 /* The symbol tables for this TU (obtained from the files listed in
974 DW_AT_stmt_list).
975 WARNING: The order of entries here must match the order of entries
976 in the line header. After the first TU using this type_unit_group, the
977 line header for the subsequent TUs is recreated from this. This is done
978 because we need to use the same symtabs for each TU using the same
979 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
980 there's no guarantee the line header doesn't have duplicate entries. */
981 struct symtab **symtabs;
982 };
983
984 /* These sections are what may appear in a (real or virtual) DWO file. */
985
986 struct dwo_sections
987 {
988 struct dwarf2_section_info abbrev;
989 struct dwarf2_section_info line;
990 struct dwarf2_section_info loc;
991 struct dwarf2_section_info loclists;
992 struct dwarf2_section_info macinfo;
993 struct dwarf2_section_info macro;
994 struct dwarf2_section_info str;
995 struct dwarf2_section_info str_offsets;
996 /* In the case of a virtual DWO file, these two are unused. */
997 struct dwarf2_section_info info;
998 VEC (dwarf2_section_info_def) *types;
999 };
1000
1001 /* CUs/TUs in DWP/DWO files. */
1002
1003 struct dwo_unit
1004 {
1005 /* Backlink to the containing struct dwo_file. */
1006 struct dwo_file *dwo_file;
1007
1008 /* The "id" that distinguishes this CU/TU.
1009 .debug_info calls this "dwo_id", .debug_types calls this "signature".
1010 Since signatures came first, we stick with it for consistency. */
1011 ULONGEST signature;
1012
1013 /* The section this CU/TU lives in, in the DWO file. */
1014 struct dwarf2_section_info *section;
1015
1016 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
1017 sect_offset sect_off;
1018 unsigned int length;
1019
1020 /* For types, offset in the type's DIE of the type defined by this TU. */
1021 cu_offset type_offset_in_tu;
1022 };
1023
1024 /* include/dwarf2.h defines the DWP section codes.
1025 It defines a max value but it doesn't define a min value, which we
1026 use for error checking, so provide one. */
1027
1028 enum dwp_v2_section_ids
1029 {
1030 DW_SECT_MIN = 1
1031 };
1032
1033 /* Data for one DWO file.
1034
1035 This includes virtual DWO files (a virtual DWO file is a DWO file as it
1036 appears in a DWP file). DWP files don't really have DWO files per se -
1037 comdat folding of types "loses" the DWO file they came from, and from
1038 a high level view DWP files appear to contain a mass of random types.
1039 However, to maintain consistency with the non-DWP case we pretend DWP
1040 files contain virtual DWO files, and we assign each TU with one virtual
1041 DWO file (generally based on the line and abbrev section offsets -
1042 a heuristic that seems to work in practice). */
1043
1044 struct dwo_file
1045 {
1046 /* The DW_AT_GNU_dwo_name attribute.
1047 For virtual DWO files the name is constructed from the section offsets
1048 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
1049 from related CU+TUs. */
1050 const char *dwo_name;
1051
1052 /* The DW_AT_comp_dir attribute. */
1053 const char *comp_dir;
1054
1055 /* The bfd, when the file is open. Otherwise this is NULL.
1056 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
1057 bfd *dbfd;
1058
1059 /* The sections that make up this DWO file.
1060 Remember that for virtual DWO files in DWP V2, these are virtual
1061 sections (for lack of a better name). */
1062 struct dwo_sections sections;
1063
1064 /* The CUs in the file.
1065 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
1066 an extension to handle LLVM's Link Time Optimization output (where
1067 multiple source files may be compiled into a single object/dwo pair). */
1068 htab_t cus;
1069
1070 /* Table of TUs in the file.
1071 Each element is a struct dwo_unit. */
1072 htab_t tus;
1073 };
1074
1075 /* These sections are what may appear in a DWP file. */
1076
1077 struct dwp_sections
1078 {
1079 /* These are used by both DWP version 1 and 2. */
1080 struct dwarf2_section_info str;
1081 struct dwarf2_section_info cu_index;
1082 struct dwarf2_section_info tu_index;
1083
1084 /* These are only used by DWP version 2 files.
1085 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
1086 sections are referenced by section number, and are not recorded here.
1087 In DWP version 2 there is at most one copy of all these sections, each
1088 section being (effectively) comprised of the concatenation of all of the
1089 individual sections that exist in the version 1 format.
1090 To keep the code simple we treat each of these concatenated pieces as a
1091 section itself (a virtual section?). */
1092 struct dwarf2_section_info abbrev;
1093 struct dwarf2_section_info info;
1094 struct dwarf2_section_info line;
1095 struct dwarf2_section_info loc;
1096 struct dwarf2_section_info macinfo;
1097 struct dwarf2_section_info macro;
1098 struct dwarf2_section_info str_offsets;
1099 struct dwarf2_section_info types;
1100 };
1101
1102 /* These sections are what may appear in a virtual DWO file in DWP version 1.
1103 A virtual DWO file is a DWO file as it appears in a DWP file. */
1104
1105 struct virtual_v1_dwo_sections
1106 {
1107 struct dwarf2_section_info abbrev;
1108 struct dwarf2_section_info line;
1109 struct dwarf2_section_info loc;
1110 struct dwarf2_section_info macinfo;
1111 struct dwarf2_section_info macro;
1112 struct dwarf2_section_info str_offsets;
1113 /* Each DWP hash table entry records one CU or one TU.
1114 That is recorded here, and copied to dwo_unit.section. */
1115 struct dwarf2_section_info info_or_types;
1116 };
1117
1118 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
1119 In version 2, the sections of the DWO files are concatenated together
1120 and stored in one section of that name. Thus each ELF section contains
1121 several "virtual" sections. */
1122
1123 struct virtual_v2_dwo_sections
1124 {
1125 bfd_size_type abbrev_offset;
1126 bfd_size_type abbrev_size;
1127
1128 bfd_size_type line_offset;
1129 bfd_size_type line_size;
1130
1131 bfd_size_type loc_offset;
1132 bfd_size_type loc_size;
1133
1134 bfd_size_type macinfo_offset;
1135 bfd_size_type macinfo_size;
1136
1137 bfd_size_type macro_offset;
1138 bfd_size_type macro_size;
1139
1140 bfd_size_type str_offsets_offset;
1141 bfd_size_type str_offsets_size;
1142
1143 /* Each DWP hash table entry records one CU or one TU.
1144 That is recorded here, and copied to dwo_unit.section. */
1145 bfd_size_type info_or_types_offset;
1146 bfd_size_type info_or_types_size;
1147 };
1148
1149 /* Contents of DWP hash tables. */
1150
1151 struct dwp_hash_table
1152 {
1153 uint32_t version, nr_columns;
1154 uint32_t nr_units, nr_slots;
1155 const gdb_byte *hash_table, *unit_table;
1156 union
1157 {
1158 struct
1159 {
1160 const gdb_byte *indices;
1161 } v1;
1162 struct
1163 {
1164 /* This is indexed by column number and gives the id of the section
1165 in that column. */
1166 #define MAX_NR_V2_DWO_SECTIONS \
1167 (1 /* .debug_info or .debug_types */ \
1168 + 1 /* .debug_abbrev */ \
1169 + 1 /* .debug_line */ \
1170 + 1 /* .debug_loc */ \
1171 + 1 /* .debug_str_offsets */ \
1172 + 1 /* .debug_macro or .debug_macinfo */)
1173 int section_ids[MAX_NR_V2_DWO_SECTIONS];
1174 const gdb_byte *offsets;
1175 const gdb_byte *sizes;
1176 } v2;
1177 } section_pool;
1178 };
1179
1180 /* Data for one DWP file. */
1181
1182 struct dwp_file
1183 {
1184 /* Name of the file. */
1185 const char *name;
1186
1187 /* File format version. */
1188 int version;
1189
1190 /* The bfd. */
1191 bfd *dbfd;
1192
1193 /* Section info for this file. */
1194 struct dwp_sections sections;
1195
1196 /* Table of CUs in the file. */
1197 const struct dwp_hash_table *cus;
1198
1199 /* Table of TUs in the file. */
1200 const struct dwp_hash_table *tus;
1201
1202 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
1203 htab_t loaded_cus;
1204 htab_t loaded_tus;
1205
1206 /* Table to map ELF section numbers to their sections.
1207 This is only needed for the DWP V1 file format. */
1208 unsigned int num_sections;
1209 asection **elf_sections;
1210 };
1211
1212 /* This represents a '.dwz' file. */
1213
1214 struct dwz_file
1215 {
1216 /* A dwz file can only contain a few sections. */
1217 struct dwarf2_section_info abbrev;
1218 struct dwarf2_section_info info;
1219 struct dwarf2_section_info str;
1220 struct dwarf2_section_info line;
1221 struct dwarf2_section_info macro;
1222 struct dwarf2_section_info gdb_index;
1223 struct dwarf2_section_info debug_names;
1224
1225 /* The dwz's BFD. */
1226 bfd *dwz_bfd;
1227 };
1228
1229 /* Struct used to pass misc. parameters to read_die_and_children, et
1230 al. which are used for both .debug_info and .debug_types dies.
1231 All parameters here are unchanging for the life of the call. This
1232 struct exists to abstract away the constant parameters of die reading. */
1233
1234 struct die_reader_specs
1235 {
1236 /* The bfd of die_section. */
1237 bfd* abfd;
1238
1239 /* The CU of the DIE we are parsing. */
1240 struct dwarf2_cu *cu;
1241
1242 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1243 struct dwo_file *dwo_file;
1244
1245 /* The section the die comes from.
1246 This is either .debug_info or .debug_types, or the .dwo variants. */
1247 struct dwarf2_section_info *die_section;
1248
1249 /* die_section->buffer. */
1250 const gdb_byte *buffer;
1251
1252 /* The end of the buffer. */
1253 const gdb_byte *buffer_end;
1254
1255 /* The value of the DW_AT_comp_dir attribute. */
1256 const char *comp_dir;
1257
1258 /* The abbreviation table to use when reading the DIEs. */
1259 struct abbrev_table *abbrev_table;
1260 };
1261
1262 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1263 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1264 const gdb_byte *info_ptr,
1265 struct die_info *comp_unit_die,
1266 int has_children,
1267 void *data);
1268
1269 /* A 1-based directory index. This is a strong typedef to prevent
1270 accidentally using a directory index as a 0-based index into an
1271 array/vector. */
1272 enum class dir_index : unsigned int {};
1273
1274 /* Likewise, a 1-based file name index. */
1275 enum class file_name_index : unsigned int {};
1276
1277 struct file_entry
1278 {
1279 file_entry () = default;
1280
1281 file_entry (const char *name_, dir_index d_index_,
1282 unsigned int mod_time_, unsigned int length_)
1283 : name (name_),
1284 d_index (d_index_),
1285 mod_time (mod_time_),
1286 length (length_)
1287 {}
1288
1289 /* Return the include directory at D_INDEX stored in LH. Returns
1290 NULL if D_INDEX is out of bounds. */
1291 const char *include_dir (const line_header *lh) const;
1292
1293 /* The file name. Note this is an observing pointer. The memory is
1294 owned by debug_line_buffer. */
1295 const char *name {};
1296
1297 /* The directory index (1-based). */
1298 dir_index d_index {};
1299
1300 unsigned int mod_time {};
1301
1302 unsigned int length {};
1303
1304 /* True if referenced by the Line Number Program. */
1305 bool included_p {};
1306
1307 /* The associated symbol table, if any. */
1308 struct symtab *symtab {};
1309 };
1310
1311 /* The line number information for a compilation unit (found in the
1312 .debug_line section) begins with a "statement program header",
1313 which contains the following information. */
1314 struct line_header
1315 {
1316 line_header ()
1317 : offset_in_dwz {}
1318 {}
1319
1320 /* Add an entry to the include directory table. */
1321 void add_include_dir (const char *include_dir);
1322
1323 /* Add an entry to the file name table. */
1324 void add_file_name (const char *name, dir_index d_index,
1325 unsigned int mod_time, unsigned int length);
1326
1327 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
1328 is out of bounds. */
1329 const char *include_dir_at (dir_index index) const
1330 {
1331 /* Convert directory index number (1-based) to vector index
1332 (0-based). */
1333 size_t vec_index = to_underlying (index) - 1;
1334
1335 if (vec_index >= include_dirs.size ())
1336 return NULL;
1337 return include_dirs[vec_index];
1338 }
1339
1340 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
1341 is out of bounds. */
1342 file_entry *file_name_at (file_name_index index)
1343 {
1344 /* Convert file name index number (1-based) to vector index
1345 (0-based). */
1346 size_t vec_index = to_underlying (index) - 1;
1347
1348 if (vec_index >= file_names.size ())
1349 return NULL;
1350 return &file_names[vec_index];
1351 }
1352
1353 /* Const version of the above. */
1354 const file_entry *file_name_at (unsigned int index) const
1355 {
1356 if (index >= file_names.size ())
1357 return NULL;
1358 return &file_names[index];
1359 }
1360
1361 /* Offset of line number information in .debug_line section. */
1362 sect_offset sect_off {};
1363
1364 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1365 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1366
1367 unsigned int total_length {};
1368 unsigned short version {};
1369 unsigned int header_length {};
1370 unsigned char minimum_instruction_length {};
1371 unsigned char maximum_ops_per_instruction {};
1372 unsigned char default_is_stmt {};
1373 int line_base {};
1374 unsigned char line_range {};
1375 unsigned char opcode_base {};
1376
1377 /* standard_opcode_lengths[i] is the number of operands for the
1378 standard opcode whose value is i. This means that
1379 standard_opcode_lengths[0] is unused, and the last meaningful
1380 element is standard_opcode_lengths[opcode_base - 1]. */
1381 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1382
1383 /* The include_directories table. Note these are observing
1384 pointers. The memory is owned by debug_line_buffer. */
1385 std::vector<const char *> include_dirs;
1386
1387 /* The file_names table. */
1388 std::vector<file_entry> file_names;
1389
1390 /* The start and end of the statement program following this
1391 header. These point into dwarf2_per_objfile->line_buffer. */
1392 const gdb_byte *statement_program_start {}, *statement_program_end {};
1393 };
1394
1395 typedef std::unique_ptr<line_header> line_header_up;
1396
1397 const char *
1398 file_entry::include_dir (const line_header *lh) const
1399 {
1400 return lh->include_dir_at (d_index);
1401 }
1402
1403 /* When we construct a partial symbol table entry we only
1404 need this much information. */
1405 struct partial_die_info : public allocate_on_obstack
1406 {
1407 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1408
1409 /* Disable assign but still keep copy ctor, which is needed
1410 load_partial_dies. */
1411 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1412
1413 /* Adjust the partial die before generating a symbol for it. This
1414 function may set the is_external flag or change the DIE's
1415 name. */
1416 void fixup (struct dwarf2_cu *cu);
1417
1418 /* Read a minimal amount of information into the minimal die
1419 structure. */
1420 const gdb_byte *read (const struct die_reader_specs *reader,
1421 const struct abbrev_info &abbrev,
1422 const gdb_byte *info_ptr);
1423
1424 /* Offset of this DIE. */
1425 const sect_offset sect_off;
1426
1427 /* DWARF-2 tag for this DIE. */
1428 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1429
1430 /* Assorted flags describing the data found in this DIE. */
1431 const unsigned int has_children : 1;
1432
1433 unsigned int is_external : 1;
1434 unsigned int is_declaration : 1;
1435 unsigned int has_type : 1;
1436 unsigned int has_specification : 1;
1437 unsigned int has_pc_info : 1;
1438 unsigned int may_be_inlined : 1;
1439
1440 /* This DIE has been marked DW_AT_main_subprogram. */
1441 unsigned int main_subprogram : 1;
1442
1443 /* Flag set if the SCOPE field of this structure has been
1444 computed. */
1445 unsigned int scope_set : 1;
1446
1447 /* Flag set if the DIE has a byte_size attribute. */
1448 unsigned int has_byte_size : 1;
1449
1450 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1451 unsigned int has_const_value : 1;
1452
1453 /* Flag set if any of the DIE's children are template arguments. */
1454 unsigned int has_template_arguments : 1;
1455
1456 /* Flag set if fixup has been called on this die. */
1457 unsigned int fixup_called : 1;
1458
1459 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1460 unsigned int is_dwz : 1;
1461
1462 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1463 unsigned int spec_is_dwz : 1;
1464
1465 /* The name of this DIE. Normally the value of DW_AT_name, but
1466 sometimes a default name for unnamed DIEs. */
1467 const char *name = nullptr;
1468
1469 /* The linkage name, if present. */
1470 const char *linkage_name = nullptr;
1471
1472 /* The scope to prepend to our children. This is generally
1473 allocated on the comp_unit_obstack, so will disappear
1474 when this compilation unit leaves the cache. */
1475 const char *scope = nullptr;
1476
1477 /* Some data associated with the partial DIE. The tag determines
1478 which field is live. */
1479 union
1480 {
1481 /* The location description associated with this DIE, if any. */
1482 struct dwarf_block *locdesc;
1483 /* The offset of an import, for DW_TAG_imported_unit. */
1484 sect_offset sect_off;
1485 } d {};
1486
1487 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1488 CORE_ADDR lowpc = 0;
1489 CORE_ADDR highpc = 0;
1490
1491 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1492 DW_AT_sibling, if any. */
1493 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1494 could return DW_AT_sibling values to its caller load_partial_dies. */
1495 const gdb_byte *sibling = nullptr;
1496
1497 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1498 DW_AT_specification (or DW_AT_abstract_origin or
1499 DW_AT_extension). */
1500 sect_offset spec_offset {};
1501
1502 /* Pointers to this DIE's parent, first child, and next sibling,
1503 if any. */
1504 struct partial_die_info *die_parent = nullptr;
1505 struct partial_die_info *die_child = nullptr;
1506 struct partial_die_info *die_sibling = nullptr;
1507
1508 friend struct partial_die_info *
1509 dwarf2_cu::find_partial_die (sect_offset sect_off);
1510
1511 private:
1512 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1513 partial_die_info (sect_offset sect_off)
1514 : partial_die_info (sect_off, DW_TAG_padding, 0)
1515 {
1516 }
1517
1518 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1519 int has_children_)
1520 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1521 {
1522 is_external = 0;
1523 is_declaration = 0;
1524 has_type = 0;
1525 has_specification = 0;
1526 has_pc_info = 0;
1527 may_be_inlined = 0;
1528 main_subprogram = 0;
1529 scope_set = 0;
1530 has_byte_size = 0;
1531 has_const_value = 0;
1532 has_template_arguments = 0;
1533 fixup_called = 0;
1534 is_dwz = 0;
1535 spec_is_dwz = 0;
1536 }
1537 };
1538
1539 /* This data structure holds the information of an abbrev. */
1540 struct abbrev_info
1541 {
1542 unsigned int number; /* number identifying abbrev */
1543 enum dwarf_tag tag; /* dwarf tag */
1544 unsigned short has_children; /* boolean */
1545 unsigned short num_attrs; /* number of attributes */
1546 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1547 struct abbrev_info *next; /* next in chain */
1548 };
1549
1550 struct attr_abbrev
1551 {
1552 ENUM_BITFIELD(dwarf_attribute) name : 16;
1553 ENUM_BITFIELD(dwarf_form) form : 16;
1554
1555 /* It is valid only if FORM is DW_FORM_implicit_const. */
1556 LONGEST implicit_const;
1557 };
1558
1559 /* Size of abbrev_table.abbrev_hash_table. */
1560 #define ABBREV_HASH_SIZE 121
1561
1562 /* Top level data structure to contain an abbreviation table. */
1563
1564 struct abbrev_table
1565 {
1566 explicit abbrev_table (sect_offset off)
1567 : sect_off (off)
1568 {
1569 m_abbrevs =
1570 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1571 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1572 }
1573
1574 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1575
1576 /* Allocate space for a struct abbrev_info object in
1577 ABBREV_TABLE. */
1578 struct abbrev_info *alloc_abbrev ();
1579
1580 /* Add an abbreviation to the table. */
1581 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1582
1583 /* Look up an abbrev in the table.
1584 Returns NULL if the abbrev is not found. */
1585
1586 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1587
1588
1589 /* Where the abbrev table came from.
1590 This is used as a sanity check when the table is used. */
1591 const sect_offset sect_off;
1592
1593 /* Storage for the abbrev table. */
1594 auto_obstack abbrev_obstack;
1595
1596 private:
1597
1598 /* Hash table of abbrevs.
1599 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1600 It could be statically allocated, but the previous code didn't so we
1601 don't either. */
1602 struct abbrev_info **m_abbrevs;
1603 };
1604
1605 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1606
1607 /* Attributes have a name and a value. */
1608 struct attribute
1609 {
1610 ENUM_BITFIELD(dwarf_attribute) name : 16;
1611 ENUM_BITFIELD(dwarf_form) form : 15;
1612
1613 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1614 field should be in u.str (existing only for DW_STRING) but it is kept
1615 here for better struct attribute alignment. */
1616 unsigned int string_is_canonical : 1;
1617
1618 union
1619 {
1620 const char *str;
1621 struct dwarf_block *blk;
1622 ULONGEST unsnd;
1623 LONGEST snd;
1624 CORE_ADDR addr;
1625 ULONGEST signature;
1626 }
1627 u;
1628 };
1629
1630 /* This data structure holds a complete die structure. */
1631 struct die_info
1632 {
1633 /* DWARF-2 tag for this DIE. */
1634 ENUM_BITFIELD(dwarf_tag) tag : 16;
1635
1636 /* Number of attributes */
1637 unsigned char num_attrs;
1638
1639 /* True if we're presently building the full type name for the
1640 type derived from this DIE. */
1641 unsigned char building_fullname : 1;
1642
1643 /* True if this die is in process. PR 16581. */
1644 unsigned char in_process : 1;
1645
1646 /* Abbrev number */
1647 unsigned int abbrev;
1648
1649 /* Offset in .debug_info or .debug_types section. */
1650 sect_offset sect_off;
1651
1652 /* The dies in a compilation unit form an n-ary tree. PARENT
1653 points to this die's parent; CHILD points to the first child of
1654 this node; and all the children of a given node are chained
1655 together via their SIBLING fields. */
1656 struct die_info *child; /* Its first child, if any. */
1657 struct die_info *sibling; /* Its next sibling, if any. */
1658 struct die_info *parent; /* Its parent, if any. */
1659
1660 /* An array of attributes, with NUM_ATTRS elements. There may be
1661 zero, but it's not common and zero-sized arrays are not
1662 sufficiently portable C. */
1663 struct attribute attrs[1];
1664 };
1665
1666 /* Get at parts of an attribute structure. */
1667
1668 #define DW_STRING(attr) ((attr)->u.str)
1669 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1670 #define DW_UNSND(attr) ((attr)->u.unsnd)
1671 #define DW_BLOCK(attr) ((attr)->u.blk)
1672 #define DW_SND(attr) ((attr)->u.snd)
1673 #define DW_ADDR(attr) ((attr)->u.addr)
1674 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1675
1676 /* Blocks are a bunch of untyped bytes. */
1677 struct dwarf_block
1678 {
1679 size_t size;
1680
1681 /* Valid only if SIZE is not zero. */
1682 const gdb_byte *data;
1683 };
1684
1685 #ifndef ATTR_ALLOC_CHUNK
1686 #define ATTR_ALLOC_CHUNK 4
1687 #endif
1688
1689 /* Allocate fields for structs, unions and enums in this size. */
1690 #ifndef DW_FIELD_ALLOC_CHUNK
1691 #define DW_FIELD_ALLOC_CHUNK 4
1692 #endif
1693
1694 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1695 but this would require a corresponding change in unpack_field_as_long
1696 and friends. */
1697 static int bits_per_byte = 8;
1698
1699 struct nextfield
1700 {
1701 struct nextfield *next;
1702 int accessibility;
1703 int virtuality;
1704 struct field field;
1705 };
1706
1707 struct nextfnfield
1708 {
1709 struct nextfnfield *next;
1710 struct fn_field fnfield;
1711 };
1712
1713 struct fnfieldlist
1714 {
1715 const char *name;
1716 int length;
1717 struct nextfnfield *head;
1718 };
1719
1720 struct decl_field_list
1721 {
1722 struct decl_field field;
1723 struct decl_field_list *next;
1724 };
1725
1726 /* The routines that read and process dies for a C struct or C++ class
1727 pass lists of data member fields and lists of member function fields
1728 in an instance of a field_info structure, as defined below. */
1729 struct field_info
1730 {
1731 /* List of data member and baseclasses fields. */
1732 struct nextfield *fields, *baseclasses;
1733
1734 /* Number of fields (including baseclasses). */
1735 int nfields;
1736
1737 /* Number of baseclasses. */
1738 int nbaseclasses;
1739
1740 /* Set if the accesibility of one of the fields is not public. */
1741 int non_public_fields;
1742
1743 /* Member function fieldlist array, contains name of possibly overloaded
1744 member function, number of overloaded member functions and a pointer
1745 to the head of the member function field chain. */
1746 struct fnfieldlist *fnfieldlists;
1747
1748 /* Number of entries in the fnfieldlists array. */
1749 int nfnfields;
1750
1751 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1752 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1753 struct decl_field_list *typedef_field_list;
1754 unsigned typedef_field_list_count;
1755
1756 /* Nested types defined by this class and the number of elements in this
1757 list. */
1758 struct decl_field_list *nested_types_list;
1759 unsigned nested_types_list_count;
1760 };
1761
1762 /* One item on the queue of compilation units to read in full symbols
1763 for. */
1764 struct dwarf2_queue_item
1765 {
1766 struct dwarf2_per_cu_data *per_cu;
1767 enum language pretend_language;
1768 struct dwarf2_queue_item *next;
1769 };
1770
1771 /* The current queue. */
1772 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1773
1774 /* Loaded secondary compilation units are kept in memory until they
1775 have not been referenced for the processing of this many
1776 compilation units. Set this to zero to disable caching. Cache
1777 sizes of up to at least twenty will improve startup time for
1778 typical inter-CU-reference binaries, at an obvious memory cost. */
1779 static int dwarf_max_cache_age = 5;
1780 static void
1781 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1782 struct cmd_list_element *c, const char *value)
1783 {
1784 fprintf_filtered (file, _("The upper bound on the age of cached "
1785 "DWARF compilation units is %s.\n"),
1786 value);
1787 }
1788 \f
1789 /* local function prototypes */
1790
1791 static const char *get_section_name (const struct dwarf2_section_info *);
1792
1793 static const char *get_section_file_name (const struct dwarf2_section_info *);
1794
1795 static void dwarf2_find_base_address (struct die_info *die,
1796 struct dwarf2_cu *cu);
1797
1798 static struct partial_symtab *create_partial_symtab
1799 (struct dwarf2_per_cu_data *per_cu, const char *name);
1800
1801 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1802 const gdb_byte *info_ptr,
1803 struct die_info *type_unit_die,
1804 int has_children, void *data);
1805
1806 static void dwarf2_build_psymtabs_hard
1807 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1808
1809 static void scan_partial_symbols (struct partial_die_info *,
1810 CORE_ADDR *, CORE_ADDR *,
1811 int, struct dwarf2_cu *);
1812
1813 static void add_partial_symbol (struct partial_die_info *,
1814 struct dwarf2_cu *);
1815
1816 static void add_partial_namespace (struct partial_die_info *pdi,
1817 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1818 int set_addrmap, struct dwarf2_cu *cu);
1819
1820 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1821 CORE_ADDR *highpc, int set_addrmap,
1822 struct dwarf2_cu *cu);
1823
1824 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1825 struct dwarf2_cu *cu);
1826
1827 static void add_partial_subprogram (struct partial_die_info *pdi,
1828 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1829 int need_pc, struct dwarf2_cu *cu);
1830
1831 static void dwarf2_read_symtab (struct partial_symtab *,
1832 struct objfile *);
1833
1834 static void psymtab_to_symtab_1 (struct partial_symtab *);
1835
1836 static abbrev_table_up abbrev_table_read_table
1837 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1838 sect_offset);
1839
1840 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1841
1842 static struct partial_die_info *load_partial_dies
1843 (const struct die_reader_specs *, const gdb_byte *, int);
1844
1845 static struct partial_die_info *find_partial_die (sect_offset, int,
1846 struct dwarf2_cu *);
1847
1848 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1849 struct attribute *, struct attr_abbrev *,
1850 const gdb_byte *);
1851
1852 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1853
1854 static int read_1_signed_byte (bfd *, const gdb_byte *);
1855
1856 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1857
1858 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1859
1860 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1861
1862 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1863 unsigned int *);
1864
1865 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1866
1867 static LONGEST read_checked_initial_length_and_offset
1868 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1869 unsigned int *, unsigned int *);
1870
1871 static LONGEST read_offset (bfd *, const gdb_byte *,
1872 const struct comp_unit_head *,
1873 unsigned int *);
1874
1875 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1876
1877 static sect_offset read_abbrev_offset
1878 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1879 struct dwarf2_section_info *, sect_offset);
1880
1881 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1882
1883 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1884
1885 static const char *read_indirect_string
1886 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1887 const struct comp_unit_head *, unsigned int *);
1888
1889 static const char *read_indirect_line_string
1890 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1891 const struct comp_unit_head *, unsigned int *);
1892
1893 static const char *read_indirect_string_at_offset
1894 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1895 LONGEST str_offset);
1896
1897 static const char *read_indirect_string_from_dwz
1898 (struct objfile *objfile, struct dwz_file *, LONGEST);
1899
1900 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1901
1902 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1903 const gdb_byte *,
1904 unsigned int *);
1905
1906 static const char *read_str_index (const struct die_reader_specs *reader,
1907 ULONGEST str_index);
1908
1909 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1910
1911 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1912 struct dwarf2_cu *);
1913
1914 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1915 unsigned int);
1916
1917 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1918 struct dwarf2_cu *cu);
1919
1920 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1921 struct dwarf2_cu *cu);
1922
1923 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1924
1925 static struct die_info *die_specification (struct die_info *die,
1926 struct dwarf2_cu **);
1927
1928 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1929 struct dwarf2_cu *cu);
1930
1931 static void dwarf_decode_lines (struct line_header *, const char *,
1932 struct dwarf2_cu *, struct partial_symtab *,
1933 CORE_ADDR, int decode_mapping);
1934
1935 static void dwarf2_start_subfile (const char *, const char *);
1936
1937 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1938 const char *, const char *,
1939 CORE_ADDR);
1940
1941 static struct symbol *new_symbol (struct die_info *, struct type *,
1942 struct dwarf2_cu *, struct symbol * = NULL);
1943
1944 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1945 struct dwarf2_cu *);
1946
1947 static void dwarf2_const_value_attr (const struct attribute *attr,
1948 struct type *type,
1949 const char *name,
1950 struct obstack *obstack,
1951 struct dwarf2_cu *cu, LONGEST *value,
1952 const gdb_byte **bytes,
1953 struct dwarf2_locexpr_baton **baton);
1954
1955 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1956
1957 static int need_gnat_info (struct dwarf2_cu *);
1958
1959 static struct type *die_descriptive_type (struct die_info *,
1960 struct dwarf2_cu *);
1961
1962 static void set_descriptive_type (struct type *, struct die_info *,
1963 struct dwarf2_cu *);
1964
1965 static struct type *die_containing_type (struct die_info *,
1966 struct dwarf2_cu *);
1967
1968 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1969 struct dwarf2_cu *);
1970
1971 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1972
1973 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1974
1975 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1976
1977 static char *typename_concat (struct obstack *obs, const char *prefix,
1978 const char *suffix, int physname,
1979 struct dwarf2_cu *cu);
1980
1981 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1982
1983 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1984
1985 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1986
1987 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1988
1989 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1990
1991 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1992
1993 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1994 struct dwarf2_cu *, struct partial_symtab *);
1995
1996 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1997 values. Keep the items ordered with increasing constraints compliance. */
1998 enum pc_bounds_kind
1999 {
2000 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
2001 PC_BOUNDS_NOT_PRESENT,
2002
2003 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
2004 were present but they do not form a valid range of PC addresses. */
2005 PC_BOUNDS_INVALID,
2006
2007 /* Discontiguous range was found - that is DW_AT_ranges was found. */
2008 PC_BOUNDS_RANGES,
2009
2010 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
2011 PC_BOUNDS_HIGH_LOW,
2012 };
2013
2014 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
2015 CORE_ADDR *, CORE_ADDR *,
2016 struct dwarf2_cu *,
2017 struct partial_symtab *);
2018
2019 static void get_scope_pc_bounds (struct die_info *,
2020 CORE_ADDR *, CORE_ADDR *,
2021 struct dwarf2_cu *);
2022
2023 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
2024 CORE_ADDR, struct dwarf2_cu *);
2025
2026 static void dwarf2_add_field (struct field_info *, struct die_info *,
2027 struct dwarf2_cu *);
2028
2029 static void dwarf2_attach_fields_to_type (struct field_info *,
2030 struct type *, struct dwarf2_cu *);
2031
2032 static void dwarf2_add_member_fn (struct field_info *,
2033 struct die_info *, struct type *,
2034 struct dwarf2_cu *);
2035
2036 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
2037 struct type *,
2038 struct dwarf2_cu *);
2039
2040 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
2041
2042 static void read_common_block (struct die_info *, struct dwarf2_cu *);
2043
2044 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
2045
2046 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
2047
2048 static struct using_direct **using_directives (enum language);
2049
2050 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
2051
2052 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
2053
2054 static struct type *read_module_type (struct die_info *die,
2055 struct dwarf2_cu *cu);
2056
2057 static const char *namespace_name (struct die_info *die,
2058 int *is_anonymous, struct dwarf2_cu *);
2059
2060 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
2061
2062 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
2063
2064 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
2065 struct dwarf2_cu *);
2066
2067 static struct die_info *read_die_and_siblings_1
2068 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
2069 struct die_info *);
2070
2071 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
2072 const gdb_byte *info_ptr,
2073 const gdb_byte **new_info_ptr,
2074 struct die_info *parent);
2075
2076 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
2077 struct die_info **, const gdb_byte *,
2078 int *, int);
2079
2080 static const gdb_byte *read_full_die (const struct die_reader_specs *,
2081 struct die_info **, const gdb_byte *,
2082 int *);
2083
2084 static void process_die (struct die_info *, struct dwarf2_cu *);
2085
2086 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
2087 struct obstack *);
2088
2089 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
2090
2091 static const char *dwarf2_full_name (const char *name,
2092 struct die_info *die,
2093 struct dwarf2_cu *cu);
2094
2095 static const char *dwarf2_physname (const char *name, struct die_info *die,
2096 struct dwarf2_cu *cu);
2097
2098 static struct die_info *dwarf2_extension (struct die_info *die,
2099 struct dwarf2_cu **);
2100
2101 static const char *dwarf_tag_name (unsigned int);
2102
2103 static const char *dwarf_attr_name (unsigned int);
2104
2105 static const char *dwarf_form_name (unsigned int);
2106
2107 static const char *dwarf_bool_name (unsigned int);
2108
2109 static const char *dwarf_type_encoding_name (unsigned int);
2110
2111 static struct die_info *sibling_die (struct die_info *);
2112
2113 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
2114
2115 static void dump_die_for_error (struct die_info *);
2116
2117 static void dump_die_1 (struct ui_file *, int level, int max_level,
2118 struct die_info *);
2119
2120 /*static*/ void dump_die (struct die_info *, int max_level);
2121
2122 static void store_in_ref_table (struct die_info *,
2123 struct dwarf2_cu *);
2124
2125 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
2126
2127 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
2128
2129 static struct die_info *follow_die_ref_or_sig (struct die_info *,
2130 const struct attribute *,
2131 struct dwarf2_cu **);
2132
2133 static struct die_info *follow_die_ref (struct die_info *,
2134 const struct attribute *,
2135 struct dwarf2_cu **);
2136
2137 static struct die_info *follow_die_sig (struct die_info *,
2138 const struct attribute *,
2139 struct dwarf2_cu **);
2140
2141 static struct type *get_signatured_type (struct die_info *, ULONGEST,
2142 struct dwarf2_cu *);
2143
2144 static struct type *get_DW_AT_signature_type (struct die_info *,
2145 const struct attribute *,
2146 struct dwarf2_cu *);
2147
2148 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
2149
2150 static void read_signatured_type (struct signatured_type *);
2151
2152 static int attr_to_dynamic_prop (const struct attribute *attr,
2153 struct die_info *die, struct dwarf2_cu *cu,
2154 struct dynamic_prop *prop);
2155
2156 /* memory allocation interface */
2157
2158 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
2159
2160 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
2161
2162 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
2163
2164 static int attr_form_is_block (const struct attribute *);
2165
2166 static int attr_form_is_section_offset (const struct attribute *);
2167
2168 static int attr_form_is_constant (const struct attribute *);
2169
2170 static int attr_form_is_ref (const struct attribute *);
2171
2172 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
2173 struct dwarf2_loclist_baton *baton,
2174 const struct attribute *attr);
2175
2176 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
2177 struct symbol *sym,
2178 struct dwarf2_cu *cu,
2179 int is_block);
2180
2181 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
2182 const gdb_byte *info_ptr,
2183 struct abbrev_info *abbrev);
2184
2185 static hashval_t partial_die_hash (const void *item);
2186
2187 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
2188
2189 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
2190 (sect_offset sect_off, unsigned int offset_in_dwz,
2191 struct dwarf2_per_objfile *dwarf2_per_objfile);
2192
2193 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
2194 struct die_info *comp_unit_die,
2195 enum language pretend_language);
2196
2197 static void free_cached_comp_units (void *);
2198
2199 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
2200
2201 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
2202
2203 static struct type *set_die_type (struct die_info *, struct type *,
2204 struct dwarf2_cu *);
2205
2206 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
2207
2208 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
2209
2210 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
2211 enum language);
2212
2213 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
2214 enum language);
2215
2216 static void process_full_type_unit (struct dwarf2_per_cu_data *,
2217 enum language);
2218
2219 static void dwarf2_add_dependence (struct dwarf2_cu *,
2220 struct dwarf2_per_cu_data *);
2221
2222 static void dwarf2_mark (struct dwarf2_cu *);
2223
2224 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
2225
2226 static struct type *get_die_type_at_offset (sect_offset,
2227 struct dwarf2_per_cu_data *);
2228
2229 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
2230
2231 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
2232 enum language pretend_language);
2233
2234 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
2235
2236 /* Class, the destructor of which frees all allocated queue entries. This
2237 will only have work to do if an error was thrown while processing the
2238 dwarf. If no error was thrown then the queue entries should have all
2239 been processed, and freed, as we went along. */
2240
2241 class dwarf2_queue_guard
2242 {
2243 public:
2244 dwarf2_queue_guard () = default;
2245
2246 /* Free any entries remaining on the queue. There should only be
2247 entries left if we hit an error while processing the dwarf. */
2248 ~dwarf2_queue_guard ()
2249 {
2250 struct dwarf2_queue_item *item, *last;
2251
2252 item = dwarf2_queue;
2253 while (item)
2254 {
2255 /* Anything still marked queued is likely to be in an
2256 inconsistent state, so discard it. */
2257 if (item->per_cu->queued)
2258 {
2259 if (item->per_cu->cu != NULL)
2260 free_one_cached_comp_unit (item->per_cu);
2261 item->per_cu->queued = 0;
2262 }
2263
2264 last = item;
2265 item = item->next;
2266 xfree (last);
2267 }
2268
2269 dwarf2_queue = dwarf2_queue_tail = NULL;
2270 }
2271 };
2272
2273 /* The return type of find_file_and_directory. Note, the enclosed
2274 string pointers are only valid while this object is valid. */
2275
2276 struct file_and_directory
2277 {
2278 /* The filename. This is never NULL. */
2279 const char *name;
2280
2281 /* The compilation directory. NULL if not known. If we needed to
2282 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
2283 points directly to the DW_AT_comp_dir string attribute owned by
2284 the obstack that owns the DIE. */
2285 const char *comp_dir;
2286
2287 /* If we needed to build a new string for comp_dir, this is what
2288 owns the storage. */
2289 std::string comp_dir_storage;
2290 };
2291
2292 static file_and_directory find_file_and_directory (struct die_info *die,
2293 struct dwarf2_cu *cu);
2294
2295 static char *file_full_name (int file, struct line_header *lh,
2296 const char *comp_dir);
2297
2298 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
2299 enum class rcuh_kind { COMPILE, TYPE };
2300
2301 static const gdb_byte *read_and_check_comp_unit_head
2302 (struct dwarf2_per_objfile* dwarf2_per_objfile,
2303 struct comp_unit_head *header,
2304 struct dwarf2_section_info *section,
2305 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
2306 rcuh_kind section_kind);
2307
2308 static void init_cutu_and_read_dies
2309 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
2310 int use_existing_cu, int keep,
2311 die_reader_func_ftype *die_reader_func, void *data);
2312
2313 static void init_cutu_and_read_dies_simple
2314 (struct dwarf2_per_cu_data *this_cu,
2315 die_reader_func_ftype *die_reader_func, void *data);
2316
2317 static htab_t allocate_signatured_type_table (struct objfile *objfile);
2318
2319 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
2320
2321 static struct dwo_unit *lookup_dwo_unit_in_dwp
2322 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2323 struct dwp_file *dwp_file, const char *comp_dir,
2324 ULONGEST signature, int is_debug_types);
2325
2326 static struct dwp_file *get_dwp_file
2327 (struct dwarf2_per_objfile *dwarf2_per_objfile);
2328
2329 static struct dwo_unit *lookup_dwo_comp_unit
2330 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
2331
2332 static struct dwo_unit *lookup_dwo_type_unit
2333 (struct signatured_type *, const char *, const char *);
2334
2335 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2336
2337 static void free_dwo_file_cleanup (void *);
2338
2339 struct free_dwo_file_cleanup_data
2340 {
2341 struct dwo_file *dwo_file;
2342 struct dwarf2_per_objfile *dwarf2_per_objfile;
2343 };
2344
2345 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
2346
2347 static void check_producer (struct dwarf2_cu *cu);
2348
2349 static void free_line_header_voidp (void *arg);
2350 \f
2351 /* Various complaints about symbol reading that don't abort the process. */
2352
2353 static void
2354 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2355 {
2356 complaint (&symfile_complaints,
2357 _("statement list doesn't fit in .debug_line section"));
2358 }
2359
2360 static void
2361 dwarf2_debug_line_missing_file_complaint (void)
2362 {
2363 complaint (&symfile_complaints,
2364 _(".debug_line section has line data without a file"));
2365 }
2366
2367 static void
2368 dwarf2_debug_line_missing_end_sequence_complaint (void)
2369 {
2370 complaint (&symfile_complaints,
2371 _(".debug_line section has line "
2372 "program sequence without an end"));
2373 }
2374
2375 static void
2376 dwarf2_complex_location_expr_complaint (void)
2377 {
2378 complaint (&symfile_complaints, _("location expression too complex"));
2379 }
2380
2381 static void
2382 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2383 int arg3)
2384 {
2385 complaint (&symfile_complaints,
2386 _("const value length mismatch for '%s', got %d, expected %d"),
2387 arg1, arg2, arg3);
2388 }
2389
2390 static void
2391 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2392 {
2393 complaint (&symfile_complaints,
2394 _("debug info runs off end of %s section"
2395 " [in module %s]"),
2396 get_section_name (section),
2397 get_section_file_name (section));
2398 }
2399
2400 static void
2401 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2402 {
2403 complaint (&symfile_complaints,
2404 _("macro debug info contains a "
2405 "malformed macro definition:\n`%s'"),
2406 arg1);
2407 }
2408
2409 static void
2410 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2411 {
2412 complaint (&symfile_complaints,
2413 _("invalid attribute class or form for '%s' in '%s'"),
2414 arg1, arg2);
2415 }
2416
2417 /* Hash function for line_header_hash. */
2418
2419 static hashval_t
2420 line_header_hash (const struct line_header *ofs)
2421 {
2422 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2423 }
2424
2425 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2426
2427 static hashval_t
2428 line_header_hash_voidp (const void *item)
2429 {
2430 const struct line_header *ofs = (const struct line_header *) item;
2431
2432 return line_header_hash (ofs);
2433 }
2434
2435 /* Equality function for line_header_hash. */
2436
2437 static int
2438 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2439 {
2440 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2441 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2442
2443 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2444 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2445 }
2446
2447 \f
2448
2449 /* Read the given attribute value as an address, taking the attribute's
2450 form into account. */
2451
2452 static CORE_ADDR
2453 attr_value_as_address (struct attribute *attr)
2454 {
2455 CORE_ADDR addr;
2456
2457 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2458 {
2459 /* Aside from a few clearly defined exceptions, attributes that
2460 contain an address must always be in DW_FORM_addr form.
2461 Unfortunately, some compilers happen to be violating this
2462 requirement by encoding addresses using other forms, such
2463 as DW_FORM_data4 for example. For those broken compilers,
2464 we try to do our best, without any guarantee of success,
2465 to interpret the address correctly. It would also be nice
2466 to generate a complaint, but that would require us to maintain
2467 a list of legitimate cases where a non-address form is allowed,
2468 as well as update callers to pass in at least the CU's DWARF
2469 version. This is more overhead than what we're willing to
2470 expand for a pretty rare case. */
2471 addr = DW_UNSND (attr);
2472 }
2473 else
2474 addr = DW_ADDR (attr);
2475
2476 return addr;
2477 }
2478
2479 /* The suffix for an index file. */
2480 #define INDEX4_SUFFIX ".gdb-index"
2481 #define INDEX5_SUFFIX ".debug_names"
2482 #define DEBUG_STR_SUFFIX ".debug_str"
2483
2484 /* See declaration. */
2485
2486 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2487 const dwarf2_debug_sections *names)
2488 : objfile (objfile_)
2489 {
2490 if (names == NULL)
2491 names = &dwarf2_elf_names;
2492
2493 bfd *obfd = objfile->obfd;
2494
2495 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2496 locate_sections (obfd, sec, *names);
2497 }
2498
2499 static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2500
2501 dwarf2_per_objfile::~dwarf2_per_objfile ()
2502 {
2503 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2504 free_cached_comp_units ();
2505
2506 if (quick_file_names_table)
2507 htab_delete (quick_file_names_table);
2508
2509 if (line_header_hash)
2510 htab_delete (line_header_hash);
2511
2512 for (int ix = 0; ix < n_comp_units; ++ix)
2513 VEC_free (dwarf2_per_cu_ptr, all_comp_units[ix]->imported_symtabs);
2514
2515 for (int ix = 0; ix < n_type_units; ++ix)
2516 VEC_free (dwarf2_per_cu_ptr,
2517 all_type_units[ix]->per_cu.imported_symtabs);
2518 xfree (all_type_units);
2519
2520 VEC_free (dwarf2_section_info_def, types);
2521
2522 if (dwo_files != NULL)
2523 free_dwo_files (dwo_files, objfile);
2524 if (dwp_file != NULL)
2525 gdb_bfd_unref (dwp_file->dbfd);
2526
2527 if (dwz_file != NULL && dwz_file->dwz_bfd)
2528 gdb_bfd_unref (dwz_file->dwz_bfd);
2529
2530 if (index_table != NULL)
2531 index_table->~mapped_index ();
2532
2533 /* Everything else should be on the objfile obstack. */
2534 }
2535
2536 /* See declaration. */
2537
2538 void
2539 dwarf2_per_objfile::free_cached_comp_units ()
2540 {
2541 dwarf2_per_cu_data *per_cu = read_in_chain;
2542 dwarf2_per_cu_data **last_chain = &read_in_chain;
2543 while (per_cu != NULL)
2544 {
2545 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2546
2547 delete per_cu->cu;
2548 *last_chain = next_cu;
2549 per_cu = next_cu;
2550 }
2551 }
2552
2553 /* Try to locate the sections we need for DWARF 2 debugging
2554 information and return true if we have enough to do something.
2555 NAMES points to the dwarf2 section names, or is NULL if the standard
2556 ELF names are used. */
2557
2558 int
2559 dwarf2_has_info (struct objfile *objfile,
2560 const struct dwarf2_debug_sections *names)
2561 {
2562 if (objfile->flags & OBJF_READNEVER)
2563 return 0;
2564
2565 struct dwarf2_per_objfile *dwarf2_per_objfile
2566 = get_dwarf2_per_objfile (objfile);
2567
2568 if (dwarf2_per_objfile == NULL)
2569 {
2570 /* Initialize per-objfile state. */
2571 dwarf2_per_objfile
2572 = new (&objfile->objfile_obstack) struct dwarf2_per_objfile (objfile,
2573 names);
2574 set_dwarf2_per_objfile (objfile, dwarf2_per_objfile);
2575 }
2576 return (!dwarf2_per_objfile->info.is_virtual
2577 && dwarf2_per_objfile->info.s.section != NULL
2578 && !dwarf2_per_objfile->abbrev.is_virtual
2579 && dwarf2_per_objfile->abbrev.s.section != NULL);
2580 }
2581
2582 /* Return the containing section of virtual section SECTION. */
2583
2584 static struct dwarf2_section_info *
2585 get_containing_section (const struct dwarf2_section_info *section)
2586 {
2587 gdb_assert (section->is_virtual);
2588 return section->s.containing_section;
2589 }
2590
2591 /* Return the bfd owner of SECTION. */
2592
2593 static struct bfd *
2594 get_section_bfd_owner (const struct dwarf2_section_info *section)
2595 {
2596 if (section->is_virtual)
2597 {
2598 section = get_containing_section (section);
2599 gdb_assert (!section->is_virtual);
2600 }
2601 return section->s.section->owner;
2602 }
2603
2604 /* Return the bfd section of SECTION.
2605 Returns NULL if the section is not present. */
2606
2607 static asection *
2608 get_section_bfd_section (const struct dwarf2_section_info *section)
2609 {
2610 if (section->is_virtual)
2611 {
2612 section = get_containing_section (section);
2613 gdb_assert (!section->is_virtual);
2614 }
2615 return section->s.section;
2616 }
2617
2618 /* Return the name of SECTION. */
2619
2620 static const char *
2621 get_section_name (const struct dwarf2_section_info *section)
2622 {
2623 asection *sectp = get_section_bfd_section (section);
2624
2625 gdb_assert (sectp != NULL);
2626 return bfd_section_name (get_section_bfd_owner (section), sectp);
2627 }
2628
2629 /* Return the name of the file SECTION is in. */
2630
2631 static const char *
2632 get_section_file_name (const struct dwarf2_section_info *section)
2633 {
2634 bfd *abfd = get_section_bfd_owner (section);
2635
2636 return bfd_get_filename (abfd);
2637 }
2638
2639 /* Return the id of SECTION.
2640 Returns 0 if SECTION doesn't exist. */
2641
2642 static int
2643 get_section_id (const struct dwarf2_section_info *section)
2644 {
2645 asection *sectp = get_section_bfd_section (section);
2646
2647 if (sectp == NULL)
2648 return 0;
2649 return sectp->id;
2650 }
2651
2652 /* Return the flags of SECTION.
2653 SECTION (or containing section if this is a virtual section) must exist. */
2654
2655 static int
2656 get_section_flags (const struct dwarf2_section_info *section)
2657 {
2658 asection *sectp = get_section_bfd_section (section);
2659
2660 gdb_assert (sectp != NULL);
2661 return bfd_get_section_flags (sectp->owner, sectp);
2662 }
2663
2664 /* When loading sections, we look either for uncompressed section or for
2665 compressed section names. */
2666
2667 static int
2668 section_is_p (const char *section_name,
2669 const struct dwarf2_section_names *names)
2670 {
2671 if (names->normal != NULL
2672 && strcmp (section_name, names->normal) == 0)
2673 return 1;
2674 if (names->compressed != NULL
2675 && strcmp (section_name, names->compressed) == 0)
2676 return 1;
2677 return 0;
2678 }
2679
2680 /* See declaration. */
2681
2682 void
2683 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2684 const dwarf2_debug_sections &names)
2685 {
2686 flagword aflag = bfd_get_section_flags (abfd, sectp);
2687
2688 if ((aflag & SEC_HAS_CONTENTS) == 0)
2689 {
2690 }
2691 else if (section_is_p (sectp->name, &names.info))
2692 {
2693 this->info.s.section = sectp;
2694 this->info.size = bfd_get_section_size (sectp);
2695 }
2696 else if (section_is_p (sectp->name, &names.abbrev))
2697 {
2698 this->abbrev.s.section = sectp;
2699 this->abbrev.size = bfd_get_section_size (sectp);
2700 }
2701 else if (section_is_p (sectp->name, &names.line))
2702 {
2703 this->line.s.section = sectp;
2704 this->line.size = bfd_get_section_size (sectp);
2705 }
2706 else if (section_is_p (sectp->name, &names.loc))
2707 {
2708 this->loc.s.section = sectp;
2709 this->loc.size = bfd_get_section_size (sectp);
2710 }
2711 else if (section_is_p (sectp->name, &names.loclists))
2712 {
2713 this->loclists.s.section = sectp;
2714 this->loclists.size = bfd_get_section_size (sectp);
2715 }
2716 else if (section_is_p (sectp->name, &names.macinfo))
2717 {
2718 this->macinfo.s.section = sectp;
2719 this->macinfo.size = bfd_get_section_size (sectp);
2720 }
2721 else if (section_is_p (sectp->name, &names.macro))
2722 {
2723 this->macro.s.section = sectp;
2724 this->macro.size = bfd_get_section_size (sectp);
2725 }
2726 else if (section_is_p (sectp->name, &names.str))
2727 {
2728 this->str.s.section = sectp;
2729 this->str.size = bfd_get_section_size (sectp);
2730 }
2731 else if (section_is_p (sectp->name, &names.line_str))
2732 {
2733 this->line_str.s.section = sectp;
2734 this->line_str.size = bfd_get_section_size (sectp);
2735 }
2736 else if (section_is_p (sectp->name, &names.addr))
2737 {
2738 this->addr.s.section = sectp;
2739 this->addr.size = bfd_get_section_size (sectp);
2740 }
2741 else if (section_is_p (sectp->name, &names.frame))
2742 {
2743 this->frame.s.section = sectp;
2744 this->frame.size = bfd_get_section_size (sectp);
2745 }
2746 else if (section_is_p (sectp->name, &names.eh_frame))
2747 {
2748 this->eh_frame.s.section = sectp;
2749 this->eh_frame.size = bfd_get_section_size (sectp);
2750 }
2751 else if (section_is_p (sectp->name, &names.ranges))
2752 {
2753 this->ranges.s.section = sectp;
2754 this->ranges.size = bfd_get_section_size (sectp);
2755 }
2756 else if (section_is_p (sectp->name, &names.rnglists))
2757 {
2758 this->rnglists.s.section = sectp;
2759 this->rnglists.size = bfd_get_section_size (sectp);
2760 }
2761 else if (section_is_p (sectp->name, &names.types))
2762 {
2763 struct dwarf2_section_info type_section;
2764
2765 memset (&type_section, 0, sizeof (type_section));
2766 type_section.s.section = sectp;
2767 type_section.size = bfd_get_section_size (sectp);
2768
2769 VEC_safe_push (dwarf2_section_info_def, this->types,
2770 &type_section);
2771 }
2772 else if (section_is_p (sectp->name, &names.gdb_index))
2773 {
2774 this->gdb_index.s.section = sectp;
2775 this->gdb_index.size = bfd_get_section_size (sectp);
2776 }
2777 else if (section_is_p (sectp->name, &names.debug_names))
2778 {
2779 this->debug_names.s.section = sectp;
2780 this->debug_names.size = bfd_get_section_size (sectp);
2781 }
2782 else if (section_is_p (sectp->name, &names.debug_aranges))
2783 {
2784 this->debug_aranges.s.section = sectp;
2785 this->debug_aranges.size = bfd_get_section_size (sectp);
2786 }
2787
2788 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2789 && bfd_section_vma (abfd, sectp) == 0)
2790 this->has_section_at_zero = true;
2791 }
2792
2793 /* A helper function that decides whether a section is empty,
2794 or not present. */
2795
2796 static int
2797 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2798 {
2799 if (section->is_virtual)
2800 return section->size == 0;
2801 return section->s.section == NULL || section->size == 0;
2802 }
2803
2804 /* Read the contents of the section INFO.
2805 OBJFILE is the main object file, but not necessarily the file where
2806 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2807 of the DWO file.
2808 If the section is compressed, uncompress it before returning. */
2809
2810 static void
2811 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2812 {
2813 asection *sectp;
2814 bfd *abfd;
2815 gdb_byte *buf, *retbuf;
2816
2817 if (info->readin)
2818 return;
2819 info->buffer = NULL;
2820 info->readin = 1;
2821
2822 if (dwarf2_section_empty_p (info))
2823 return;
2824
2825 sectp = get_section_bfd_section (info);
2826
2827 /* If this is a virtual section we need to read in the real one first. */
2828 if (info->is_virtual)
2829 {
2830 struct dwarf2_section_info *containing_section =
2831 get_containing_section (info);
2832
2833 gdb_assert (sectp != NULL);
2834 if ((sectp->flags & SEC_RELOC) != 0)
2835 {
2836 error (_("Dwarf Error: DWP format V2 with relocations is not"
2837 " supported in section %s [in module %s]"),
2838 get_section_name (info), get_section_file_name (info));
2839 }
2840 dwarf2_read_section (objfile, containing_section);
2841 /* Other code should have already caught virtual sections that don't
2842 fit. */
2843 gdb_assert (info->virtual_offset + info->size
2844 <= containing_section->size);
2845 /* If the real section is empty or there was a problem reading the
2846 section we shouldn't get here. */
2847 gdb_assert (containing_section->buffer != NULL);
2848 info->buffer = containing_section->buffer + info->virtual_offset;
2849 return;
2850 }
2851
2852 /* If the section has relocations, we must read it ourselves.
2853 Otherwise we attach it to the BFD. */
2854 if ((sectp->flags & SEC_RELOC) == 0)
2855 {
2856 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2857 return;
2858 }
2859
2860 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2861 info->buffer = buf;
2862
2863 /* When debugging .o files, we may need to apply relocations; see
2864 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2865 We never compress sections in .o files, so we only need to
2866 try this when the section is not compressed. */
2867 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2868 if (retbuf != NULL)
2869 {
2870 info->buffer = retbuf;
2871 return;
2872 }
2873
2874 abfd = get_section_bfd_owner (info);
2875 gdb_assert (abfd != NULL);
2876
2877 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2878 || bfd_bread (buf, info->size, abfd) != info->size)
2879 {
2880 error (_("Dwarf Error: Can't read DWARF data"
2881 " in section %s [in module %s]"),
2882 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2883 }
2884 }
2885
2886 /* A helper function that returns the size of a section in a safe way.
2887 If you are positive that the section has been read before using the
2888 size, then it is safe to refer to the dwarf2_section_info object's
2889 "size" field directly. In other cases, you must call this
2890 function, because for compressed sections the size field is not set
2891 correctly until the section has been read. */
2892
2893 static bfd_size_type
2894 dwarf2_section_size (struct objfile *objfile,
2895 struct dwarf2_section_info *info)
2896 {
2897 if (!info->readin)
2898 dwarf2_read_section (objfile, info);
2899 return info->size;
2900 }
2901
2902 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2903 SECTION_NAME. */
2904
2905 void
2906 dwarf2_get_section_info (struct objfile *objfile,
2907 enum dwarf2_section_enum sect,
2908 asection **sectp, const gdb_byte **bufp,
2909 bfd_size_type *sizep)
2910 {
2911 struct dwarf2_per_objfile *data
2912 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2913 dwarf2_objfile_data_key);
2914 struct dwarf2_section_info *info;
2915
2916 /* We may see an objfile without any DWARF, in which case we just
2917 return nothing. */
2918 if (data == NULL)
2919 {
2920 *sectp = NULL;
2921 *bufp = NULL;
2922 *sizep = 0;
2923 return;
2924 }
2925 switch (sect)
2926 {
2927 case DWARF2_DEBUG_FRAME:
2928 info = &data->frame;
2929 break;
2930 case DWARF2_EH_FRAME:
2931 info = &data->eh_frame;
2932 break;
2933 default:
2934 gdb_assert_not_reached ("unexpected section");
2935 }
2936
2937 dwarf2_read_section (objfile, info);
2938
2939 *sectp = get_section_bfd_section (info);
2940 *bufp = info->buffer;
2941 *sizep = info->size;
2942 }
2943
2944 /* A helper function to find the sections for a .dwz file. */
2945
2946 static void
2947 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2948 {
2949 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2950
2951 /* Note that we only support the standard ELF names, because .dwz
2952 is ELF-only (at the time of writing). */
2953 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2954 {
2955 dwz_file->abbrev.s.section = sectp;
2956 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2957 }
2958 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2959 {
2960 dwz_file->info.s.section = sectp;
2961 dwz_file->info.size = bfd_get_section_size (sectp);
2962 }
2963 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2964 {
2965 dwz_file->str.s.section = sectp;
2966 dwz_file->str.size = bfd_get_section_size (sectp);
2967 }
2968 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2969 {
2970 dwz_file->line.s.section = sectp;
2971 dwz_file->line.size = bfd_get_section_size (sectp);
2972 }
2973 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2974 {
2975 dwz_file->macro.s.section = sectp;
2976 dwz_file->macro.size = bfd_get_section_size (sectp);
2977 }
2978 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2979 {
2980 dwz_file->gdb_index.s.section = sectp;
2981 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2982 }
2983 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2984 {
2985 dwz_file->debug_names.s.section = sectp;
2986 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2987 }
2988 }
2989
2990 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2991 there is no .gnu_debugaltlink section in the file. Error if there
2992 is such a section but the file cannot be found. */
2993
2994 static struct dwz_file *
2995 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2996 {
2997 const char *filename;
2998 struct dwz_file *result;
2999 bfd_size_type buildid_len_arg;
3000 size_t buildid_len;
3001 bfd_byte *buildid;
3002
3003 if (dwarf2_per_objfile->dwz_file != NULL)
3004 return dwarf2_per_objfile->dwz_file;
3005
3006 bfd_set_error (bfd_error_no_error);
3007 gdb::unique_xmalloc_ptr<char> data
3008 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
3009 &buildid_len_arg, &buildid));
3010 if (data == NULL)
3011 {
3012 if (bfd_get_error () == bfd_error_no_error)
3013 return NULL;
3014 error (_("could not read '.gnu_debugaltlink' section: %s"),
3015 bfd_errmsg (bfd_get_error ()));
3016 }
3017
3018 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
3019
3020 buildid_len = (size_t) buildid_len_arg;
3021
3022 filename = data.get ();
3023
3024 std::string abs_storage;
3025 if (!IS_ABSOLUTE_PATH (filename))
3026 {
3027 gdb::unique_xmalloc_ptr<char> abs
3028 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
3029
3030 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
3031 filename = abs_storage.c_str ();
3032 }
3033
3034 /* First try the file name given in the section. If that doesn't
3035 work, try to use the build-id instead. */
3036 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
3037 if (dwz_bfd != NULL)
3038 {
3039 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
3040 dwz_bfd.release ();
3041 }
3042
3043 if (dwz_bfd == NULL)
3044 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
3045
3046 if (dwz_bfd == NULL)
3047 error (_("could not find '.gnu_debugaltlink' file for %s"),
3048 objfile_name (dwarf2_per_objfile->objfile));
3049
3050 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
3051 struct dwz_file);
3052 result->dwz_bfd = dwz_bfd.release ();
3053
3054 bfd_map_over_sections (result->dwz_bfd, locate_dwz_sections, result);
3055
3056 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, result->dwz_bfd);
3057 dwarf2_per_objfile->dwz_file = result;
3058 return result;
3059 }
3060 \f
3061 /* DWARF quick_symbols_functions support. */
3062
3063 /* TUs can share .debug_line entries, and there can be a lot more TUs than
3064 unique line tables, so we maintain a separate table of all .debug_line
3065 derived entries to support the sharing.
3066 All the quick functions need is the list of file names. We discard the
3067 line_header when we're done and don't need to record it here. */
3068 struct quick_file_names
3069 {
3070 /* The data used to construct the hash key. */
3071 struct stmt_list_hash hash;
3072
3073 /* The number of entries in file_names, real_names. */
3074 unsigned int num_file_names;
3075
3076 /* The file names from the line table, after being run through
3077 file_full_name. */
3078 const char **file_names;
3079
3080 /* The file names from the line table after being run through
3081 gdb_realpath. These are computed lazily. */
3082 const char **real_names;
3083 };
3084
3085 /* When using the index (and thus not using psymtabs), each CU has an
3086 object of this type. This is used to hold information needed by
3087 the various "quick" methods. */
3088 struct dwarf2_per_cu_quick_data
3089 {
3090 /* The file table. This can be NULL if there was no file table
3091 or it's currently not read in.
3092 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
3093 struct quick_file_names *file_names;
3094
3095 /* The corresponding symbol table. This is NULL if symbols for this
3096 CU have not yet been read. */
3097 struct compunit_symtab *compunit_symtab;
3098
3099 /* A temporary mark bit used when iterating over all CUs in
3100 expand_symtabs_matching. */
3101 unsigned int mark : 1;
3102
3103 /* True if we've tried to read the file table and found there isn't one.
3104 There will be no point in trying to read it again next time. */
3105 unsigned int no_file_data : 1;
3106 };
3107
3108 /* Utility hash function for a stmt_list_hash. */
3109
3110 static hashval_t
3111 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
3112 {
3113 hashval_t v = 0;
3114
3115 if (stmt_list_hash->dwo_unit != NULL)
3116 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
3117 v += to_underlying (stmt_list_hash->line_sect_off);
3118 return v;
3119 }
3120
3121 /* Utility equality function for a stmt_list_hash. */
3122
3123 static int
3124 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
3125 const struct stmt_list_hash *rhs)
3126 {
3127 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
3128 return 0;
3129 if (lhs->dwo_unit != NULL
3130 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
3131 return 0;
3132
3133 return lhs->line_sect_off == rhs->line_sect_off;
3134 }
3135
3136 /* Hash function for a quick_file_names. */
3137
3138 static hashval_t
3139 hash_file_name_entry (const void *e)
3140 {
3141 const struct quick_file_names *file_data
3142 = (const struct quick_file_names *) e;
3143
3144 return hash_stmt_list_entry (&file_data->hash);
3145 }
3146
3147 /* Equality function for a quick_file_names. */
3148
3149 static int
3150 eq_file_name_entry (const void *a, const void *b)
3151 {
3152 const struct quick_file_names *ea = (const struct quick_file_names *) a;
3153 const struct quick_file_names *eb = (const struct quick_file_names *) b;
3154
3155 return eq_stmt_list_entry (&ea->hash, &eb->hash);
3156 }
3157
3158 /* Delete function for a quick_file_names. */
3159
3160 static void
3161 delete_file_name_entry (void *e)
3162 {
3163 struct quick_file_names *file_data = (struct quick_file_names *) e;
3164 int i;
3165
3166 for (i = 0; i < file_data->num_file_names; ++i)
3167 {
3168 xfree ((void*) file_data->file_names[i]);
3169 if (file_data->real_names)
3170 xfree ((void*) file_data->real_names[i]);
3171 }
3172
3173 /* The space for the struct itself lives on objfile_obstack,
3174 so we don't free it here. */
3175 }
3176
3177 /* Create a quick_file_names hash table. */
3178
3179 static htab_t
3180 create_quick_file_names_table (unsigned int nr_initial_entries)
3181 {
3182 return htab_create_alloc (nr_initial_entries,
3183 hash_file_name_entry, eq_file_name_entry,
3184 delete_file_name_entry, xcalloc, xfree);
3185 }
3186
3187 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
3188 have to be created afterwards. You should call age_cached_comp_units after
3189 processing PER_CU->CU. dw2_setup must have been already called. */
3190
3191 static void
3192 load_cu (struct dwarf2_per_cu_data *per_cu)
3193 {
3194 if (per_cu->is_debug_types)
3195 load_full_type_unit (per_cu);
3196 else
3197 load_full_comp_unit (per_cu, language_minimal);
3198
3199 if (per_cu->cu == NULL)
3200 return; /* Dummy CU. */
3201
3202 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
3203 }
3204
3205 /* Read in the symbols for PER_CU. */
3206
3207 static void
3208 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
3209 {
3210 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
3211
3212 /* Skip type_unit_groups, reading the type units they contain
3213 is handled elsewhere. */
3214 if (IS_TYPE_UNIT_GROUP (per_cu))
3215 return;
3216
3217 /* The destructor of dwarf2_queue_guard frees any entries left on
3218 the queue. After this point we're guaranteed to leave this function
3219 with the dwarf queue empty. */
3220 dwarf2_queue_guard q_guard;
3221
3222 if (dwarf2_per_objfile->using_index
3223 ? per_cu->v.quick->compunit_symtab == NULL
3224 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
3225 {
3226 queue_comp_unit (per_cu, language_minimal);
3227 load_cu (per_cu);
3228
3229 /* If we just loaded a CU from a DWO, and we're working with an index
3230 that may badly handle TUs, load all the TUs in that DWO as well.
3231 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
3232 if (!per_cu->is_debug_types
3233 && per_cu->cu != NULL
3234 && per_cu->cu->dwo_unit != NULL
3235 && dwarf2_per_objfile->index_table != NULL
3236 && dwarf2_per_objfile->index_table->version <= 7
3237 /* DWP files aren't supported yet. */
3238 && get_dwp_file (dwarf2_per_objfile) == NULL)
3239 queue_and_load_all_dwo_tus (per_cu);
3240 }
3241
3242 process_queue (dwarf2_per_objfile);
3243
3244 /* Age the cache, releasing compilation units that have not
3245 been used recently. */
3246 age_cached_comp_units (dwarf2_per_objfile);
3247 }
3248
3249 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
3250 the objfile from which this CU came. Returns the resulting symbol
3251 table. */
3252
3253 static struct compunit_symtab *
3254 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
3255 {
3256 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
3257
3258 gdb_assert (dwarf2_per_objfile->using_index);
3259 if (!per_cu->v.quick->compunit_symtab)
3260 {
3261 struct cleanup *back_to = make_cleanup (free_cached_comp_units,
3262 dwarf2_per_objfile);
3263 scoped_restore decrementer = increment_reading_symtab ();
3264 dw2_do_instantiate_symtab (per_cu);
3265 process_cu_includes (dwarf2_per_objfile);
3266 do_cleanups (back_to);
3267 }
3268
3269 return per_cu->v.quick->compunit_symtab;
3270 }
3271
3272 /* Return the CU/TU given its index.
3273
3274 This is intended for loops like:
3275
3276 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3277 + dwarf2_per_objfile->n_type_units); ++i)
3278 {
3279 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3280
3281 ...;
3282 }
3283 */
3284
3285 static struct dwarf2_per_cu_data *
3286 dw2_get_cutu (struct dwarf2_per_objfile *dwarf2_per_objfile,
3287 int index)
3288 {
3289 if (index >= dwarf2_per_objfile->n_comp_units)
3290 {
3291 index -= dwarf2_per_objfile->n_comp_units;
3292 gdb_assert (index < dwarf2_per_objfile->n_type_units);
3293 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
3294 }
3295
3296 return dwarf2_per_objfile->all_comp_units[index];
3297 }
3298
3299 /* Return the CU given its index.
3300 This differs from dw2_get_cutu in that it's for when you know INDEX
3301 refers to a CU. */
3302
3303 static struct dwarf2_per_cu_data *
3304 dw2_get_cu (struct dwarf2_per_objfile *dwarf2_per_objfile, int index)
3305 {
3306 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
3307
3308 return dwarf2_per_objfile->all_comp_units[index];
3309 }
3310
3311 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
3312 objfile_obstack, and constructed with the specified field
3313 values. */
3314
3315 static dwarf2_per_cu_data *
3316 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
3317 struct dwarf2_section_info *section,
3318 int is_dwz,
3319 sect_offset sect_off, ULONGEST length)
3320 {
3321 struct objfile *objfile = dwarf2_per_objfile->objfile;
3322 dwarf2_per_cu_data *the_cu
3323 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3324 struct dwarf2_per_cu_data);
3325 the_cu->sect_off = sect_off;
3326 the_cu->length = length;
3327 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
3328 the_cu->section = section;
3329 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3330 struct dwarf2_per_cu_quick_data);
3331 the_cu->is_dwz = is_dwz;
3332 return the_cu;
3333 }
3334
3335 /* A helper for create_cus_from_index that handles a given list of
3336 CUs. */
3337
3338 static void
3339 create_cus_from_index_list (struct objfile *objfile,
3340 const gdb_byte *cu_list, offset_type n_elements,
3341 struct dwarf2_section_info *section,
3342 int is_dwz,
3343 int base_offset)
3344 {
3345 offset_type i;
3346 struct dwarf2_per_objfile *dwarf2_per_objfile
3347 = get_dwarf2_per_objfile (objfile);
3348
3349 for (i = 0; i < n_elements; i += 2)
3350 {
3351 gdb_static_assert (sizeof (ULONGEST) >= 8);
3352
3353 sect_offset sect_off
3354 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
3355 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
3356 cu_list += 2 * 8;
3357
3358 dwarf2_per_objfile->all_comp_units[base_offset + i / 2]
3359 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
3360 sect_off, length);
3361 }
3362 }
3363
3364 /* Read the CU list from the mapped index, and use it to create all
3365 the CU objects for this objfile. */
3366
3367 static void
3368 create_cus_from_index (struct objfile *objfile,
3369 const gdb_byte *cu_list, offset_type cu_list_elements,
3370 const gdb_byte *dwz_list, offset_type dwz_elements)
3371 {
3372 struct dwz_file *dwz;
3373 struct dwarf2_per_objfile *dwarf2_per_objfile
3374 = get_dwarf2_per_objfile (objfile);
3375
3376 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
3377 dwarf2_per_objfile->all_comp_units =
3378 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
3379 dwarf2_per_objfile->n_comp_units);
3380
3381 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
3382 &dwarf2_per_objfile->info, 0, 0);
3383
3384 if (dwz_elements == 0)
3385 return;
3386
3387 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3388 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
3389 cu_list_elements / 2);
3390 }
3391
3392 /* Create the signatured type hash table from the index. */
3393
3394 static void
3395 create_signatured_type_table_from_index (struct objfile *objfile,
3396 struct dwarf2_section_info *section,
3397 const gdb_byte *bytes,
3398 offset_type elements)
3399 {
3400 offset_type i;
3401 htab_t sig_types_hash;
3402 struct dwarf2_per_objfile *dwarf2_per_objfile
3403 = get_dwarf2_per_objfile (objfile);
3404
3405 dwarf2_per_objfile->n_type_units
3406 = dwarf2_per_objfile->n_allocated_type_units
3407 = elements / 3;
3408 dwarf2_per_objfile->all_type_units =
3409 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
3410
3411 sig_types_hash = allocate_signatured_type_table (objfile);
3412
3413 for (i = 0; i < elements; i += 3)
3414 {
3415 struct signatured_type *sig_type;
3416 ULONGEST signature;
3417 void **slot;
3418 cu_offset type_offset_in_tu;
3419
3420 gdb_static_assert (sizeof (ULONGEST) >= 8);
3421 sect_offset sect_off
3422 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3423 type_offset_in_tu
3424 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3425 BFD_ENDIAN_LITTLE);
3426 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3427 bytes += 3 * 8;
3428
3429 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3430 struct signatured_type);
3431 sig_type->signature = signature;
3432 sig_type->type_offset_in_tu = type_offset_in_tu;
3433 sig_type->per_cu.is_debug_types = 1;
3434 sig_type->per_cu.section = section;
3435 sig_type->per_cu.sect_off = sect_off;
3436 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3437 sig_type->per_cu.v.quick
3438 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3439 struct dwarf2_per_cu_quick_data);
3440
3441 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3442 *slot = sig_type;
3443
3444 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
3445 }
3446
3447 dwarf2_per_objfile->signatured_types = sig_types_hash;
3448 }
3449
3450 /* Create the signatured type hash table from .debug_names. */
3451
3452 static void
3453 create_signatured_type_table_from_debug_names
3454 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3455 const mapped_debug_names &map,
3456 struct dwarf2_section_info *section,
3457 struct dwarf2_section_info *abbrev_section)
3458 {
3459 struct objfile *objfile = dwarf2_per_objfile->objfile;
3460
3461 dwarf2_read_section (objfile, section);
3462 dwarf2_read_section (objfile, abbrev_section);
3463
3464 dwarf2_per_objfile->n_type_units
3465 = dwarf2_per_objfile->n_allocated_type_units
3466 = map.tu_count;
3467 dwarf2_per_objfile->all_type_units
3468 = XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
3469
3470 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3471
3472 for (uint32_t i = 0; i < map.tu_count; ++i)
3473 {
3474 struct signatured_type *sig_type;
3475 ULONGEST signature;
3476 void **slot;
3477 cu_offset type_offset_in_tu;
3478
3479 sect_offset sect_off
3480 = (sect_offset) (extract_unsigned_integer
3481 (map.tu_table_reordered + i * map.offset_size,
3482 map.offset_size,
3483 map.dwarf5_byte_order));
3484
3485 comp_unit_head cu_header;
3486 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3487 abbrev_section,
3488 section->buffer + to_underlying (sect_off),
3489 rcuh_kind::TYPE);
3490
3491 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3492 struct signatured_type);
3493 sig_type->signature = cu_header.signature;
3494 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3495 sig_type->per_cu.is_debug_types = 1;
3496 sig_type->per_cu.section = section;
3497 sig_type->per_cu.sect_off = sect_off;
3498 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3499 sig_type->per_cu.v.quick
3500 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3501 struct dwarf2_per_cu_quick_data);
3502
3503 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3504 *slot = sig_type;
3505
3506 dwarf2_per_objfile->all_type_units[i] = sig_type;
3507 }
3508
3509 dwarf2_per_objfile->signatured_types = sig_types_hash;
3510 }
3511
3512 /* Read the address map data from the mapped index, and use it to
3513 populate the objfile's psymtabs_addrmap. */
3514
3515 static void
3516 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3517 struct mapped_index *index)
3518 {
3519 struct objfile *objfile = dwarf2_per_objfile->objfile;
3520 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3521 const gdb_byte *iter, *end;
3522 struct addrmap *mutable_map;
3523 CORE_ADDR baseaddr;
3524
3525 auto_obstack temp_obstack;
3526
3527 mutable_map = addrmap_create_mutable (&temp_obstack);
3528
3529 iter = index->address_table.data ();
3530 end = iter + index->address_table.size ();
3531
3532 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3533
3534 while (iter < end)
3535 {
3536 ULONGEST hi, lo, cu_index;
3537 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3538 iter += 8;
3539 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3540 iter += 8;
3541 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3542 iter += 4;
3543
3544 if (lo > hi)
3545 {
3546 complaint (&symfile_complaints,
3547 _(".gdb_index address table has invalid range (%s - %s)"),
3548 hex_string (lo), hex_string (hi));
3549 continue;
3550 }
3551
3552 if (cu_index >= dwarf2_per_objfile->n_comp_units)
3553 {
3554 complaint (&symfile_complaints,
3555 _(".gdb_index address table has invalid CU number %u"),
3556 (unsigned) cu_index);
3557 continue;
3558 }
3559
3560 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3561 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3562 addrmap_set_empty (mutable_map, lo, hi - 1,
3563 dw2_get_cutu (dwarf2_per_objfile, cu_index));
3564 }
3565
3566 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3567 &objfile->objfile_obstack);
3568 }
3569
3570 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3571 populate the objfile's psymtabs_addrmap. */
3572
3573 static void
3574 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3575 struct dwarf2_section_info *section)
3576 {
3577 struct objfile *objfile = dwarf2_per_objfile->objfile;
3578 bfd *abfd = objfile->obfd;
3579 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3580 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3581 SECT_OFF_TEXT (objfile));
3582
3583 auto_obstack temp_obstack;
3584 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3585
3586 std::unordered_map<sect_offset,
3587 dwarf2_per_cu_data *,
3588 gdb::hash_enum<sect_offset>>
3589 debug_info_offset_to_per_cu;
3590 for (int cui = 0; cui < dwarf2_per_objfile->n_comp_units; ++cui)
3591 {
3592 dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, cui);
3593 const auto insertpair
3594 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3595 if (!insertpair.second)
3596 {
3597 warning (_("Section .debug_aranges in %s has duplicate "
3598 "debug_info_offset %s, ignoring .debug_aranges."),
3599 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3600 return;
3601 }
3602 }
3603
3604 dwarf2_read_section (objfile, section);
3605
3606 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3607
3608 const gdb_byte *addr = section->buffer;
3609
3610 while (addr < section->buffer + section->size)
3611 {
3612 const gdb_byte *const entry_addr = addr;
3613 unsigned int bytes_read;
3614
3615 const LONGEST entry_length = read_initial_length (abfd, addr,
3616 &bytes_read);
3617 addr += bytes_read;
3618
3619 const gdb_byte *const entry_end = addr + entry_length;
3620 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3621 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3622 if (addr + entry_length > section->buffer + section->size)
3623 {
3624 warning (_("Section .debug_aranges in %s entry at offset %zu "
3625 "length %s exceeds section length %s, "
3626 "ignoring .debug_aranges."),
3627 objfile_name (objfile), entry_addr - section->buffer,
3628 plongest (bytes_read + entry_length),
3629 pulongest (section->size));
3630 return;
3631 }
3632
3633 /* The version number. */
3634 const uint16_t version = read_2_bytes (abfd, addr);
3635 addr += 2;
3636 if (version != 2)
3637 {
3638 warning (_("Section .debug_aranges in %s entry at offset %zu "
3639 "has unsupported version %d, ignoring .debug_aranges."),
3640 objfile_name (objfile), entry_addr - section->buffer,
3641 version);
3642 return;
3643 }
3644
3645 const uint64_t debug_info_offset
3646 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3647 addr += offset_size;
3648 const auto per_cu_it
3649 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3650 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3651 {
3652 warning (_("Section .debug_aranges in %s entry at offset %zu "
3653 "debug_info_offset %s does not exists, "
3654 "ignoring .debug_aranges."),
3655 objfile_name (objfile), entry_addr - section->buffer,
3656 pulongest (debug_info_offset));
3657 return;
3658 }
3659 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3660
3661 const uint8_t address_size = *addr++;
3662 if (address_size < 1 || address_size > 8)
3663 {
3664 warning (_("Section .debug_aranges in %s entry at offset %zu "
3665 "address_size %u is invalid, ignoring .debug_aranges."),
3666 objfile_name (objfile), entry_addr - section->buffer,
3667 address_size);
3668 return;
3669 }
3670
3671 const uint8_t segment_selector_size = *addr++;
3672 if (segment_selector_size != 0)
3673 {
3674 warning (_("Section .debug_aranges in %s entry at offset %zu "
3675 "segment_selector_size %u is not supported, "
3676 "ignoring .debug_aranges."),
3677 objfile_name (objfile), entry_addr - section->buffer,
3678 segment_selector_size);
3679 return;
3680 }
3681
3682 /* Must pad to an alignment boundary that is twice the address
3683 size. It is undocumented by the DWARF standard but GCC does
3684 use it. */
3685 for (size_t padding = ((-(addr - section->buffer))
3686 & (2 * address_size - 1));
3687 padding > 0; padding--)
3688 if (*addr++ != 0)
3689 {
3690 warning (_("Section .debug_aranges in %s entry at offset %zu "
3691 "padding is not zero, ignoring .debug_aranges."),
3692 objfile_name (objfile), entry_addr - section->buffer);
3693 return;
3694 }
3695
3696 for (;;)
3697 {
3698 if (addr + 2 * address_size > entry_end)
3699 {
3700 warning (_("Section .debug_aranges in %s entry at offset %zu "
3701 "address list is not properly terminated, "
3702 "ignoring .debug_aranges."),
3703 objfile_name (objfile), entry_addr - section->buffer);
3704 return;
3705 }
3706 ULONGEST start = extract_unsigned_integer (addr, address_size,
3707 dwarf5_byte_order);
3708 addr += address_size;
3709 ULONGEST length = extract_unsigned_integer (addr, address_size,
3710 dwarf5_byte_order);
3711 addr += address_size;
3712 if (start == 0 && length == 0)
3713 break;
3714 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3715 {
3716 /* Symbol was eliminated due to a COMDAT group. */
3717 continue;
3718 }
3719 ULONGEST end = start + length;
3720 start = gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr);
3721 end = gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr);
3722 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3723 }
3724 }
3725
3726 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3727 &objfile->objfile_obstack);
3728 }
3729
3730 /* The hash function for strings in the mapped index. This is the same as
3731 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
3732 implementation. This is necessary because the hash function is tied to the
3733 format of the mapped index file. The hash values do not have to match with
3734 SYMBOL_HASH_NEXT.
3735
3736 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
3737
3738 static hashval_t
3739 mapped_index_string_hash (int index_version, const void *p)
3740 {
3741 const unsigned char *str = (const unsigned char *) p;
3742 hashval_t r = 0;
3743 unsigned char c;
3744
3745 while ((c = *str++) != 0)
3746 {
3747 if (index_version >= 5)
3748 c = tolower (c);
3749 r = r * 67 + c - 113;
3750 }
3751
3752 return r;
3753 }
3754
3755 /* Find a slot in the mapped index INDEX for the object named NAME.
3756 If NAME is found, set *VEC_OUT to point to the CU vector in the
3757 constant pool and return true. If NAME cannot be found, return
3758 false. */
3759
3760 static bool
3761 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3762 offset_type **vec_out)
3763 {
3764 offset_type hash;
3765 offset_type slot, step;
3766 int (*cmp) (const char *, const char *);
3767
3768 gdb::unique_xmalloc_ptr<char> without_params;
3769 if (current_language->la_language == language_cplus
3770 || current_language->la_language == language_fortran
3771 || current_language->la_language == language_d)
3772 {
3773 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3774 not contain any. */
3775
3776 if (strchr (name, '(') != NULL)
3777 {
3778 without_params = cp_remove_params (name);
3779
3780 if (without_params != NULL)
3781 name = without_params.get ();
3782 }
3783 }
3784
3785 /* Index version 4 did not support case insensitive searches. But the
3786 indices for case insensitive languages are built in lowercase, therefore
3787 simulate our NAME being searched is also lowercased. */
3788 hash = mapped_index_string_hash ((index->version == 4
3789 && case_sensitivity == case_sensitive_off
3790 ? 5 : index->version),
3791 name);
3792
3793 slot = hash & (index->symbol_table.size () - 1);
3794 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3795 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3796
3797 for (;;)
3798 {
3799 const char *str;
3800
3801 const auto &bucket = index->symbol_table[slot];
3802 if (bucket.name == 0 && bucket.vec == 0)
3803 return false;
3804
3805 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3806 if (!cmp (name, str))
3807 {
3808 *vec_out = (offset_type *) (index->constant_pool
3809 + MAYBE_SWAP (bucket.vec));
3810 return true;
3811 }
3812
3813 slot = (slot + step) & (index->symbol_table.size () - 1);
3814 }
3815 }
3816
3817 /* A helper function that reads the .gdb_index from SECTION and fills
3818 in MAP. FILENAME is the name of the file containing the section;
3819 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3820 ok to use deprecated sections.
3821
3822 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3823 out parameters that are filled in with information about the CU and
3824 TU lists in the section.
3825
3826 Returns 1 if all went well, 0 otherwise. */
3827
3828 static int
3829 read_index_from_section (struct objfile *objfile,
3830 const char *filename,
3831 int deprecated_ok,
3832 struct dwarf2_section_info *section,
3833 struct mapped_index *map,
3834 const gdb_byte **cu_list,
3835 offset_type *cu_list_elements,
3836 const gdb_byte **types_list,
3837 offset_type *types_list_elements)
3838 {
3839 const gdb_byte *addr;
3840 offset_type version;
3841 offset_type *metadata;
3842 int i;
3843
3844 if (dwarf2_section_empty_p (section))
3845 return 0;
3846
3847 /* Older elfutils strip versions could keep the section in the main
3848 executable while splitting it for the separate debug info file. */
3849 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3850 return 0;
3851
3852 dwarf2_read_section (objfile, section);
3853
3854 addr = section->buffer;
3855 /* Version check. */
3856 version = MAYBE_SWAP (*(offset_type *) addr);
3857 /* Versions earlier than 3 emitted every copy of a psymbol. This
3858 causes the index to behave very poorly for certain requests. Version 3
3859 contained incomplete addrmap. So, it seems better to just ignore such
3860 indices. */
3861 if (version < 4)
3862 {
3863 static int warning_printed = 0;
3864 if (!warning_printed)
3865 {
3866 warning (_("Skipping obsolete .gdb_index section in %s."),
3867 filename);
3868 warning_printed = 1;
3869 }
3870 return 0;
3871 }
3872 /* Index version 4 uses a different hash function than index version
3873 5 and later.
3874
3875 Versions earlier than 6 did not emit psymbols for inlined
3876 functions. Using these files will cause GDB not to be able to
3877 set breakpoints on inlined functions by name, so we ignore these
3878 indices unless the user has done
3879 "set use-deprecated-index-sections on". */
3880 if (version < 6 && !deprecated_ok)
3881 {
3882 static int warning_printed = 0;
3883 if (!warning_printed)
3884 {
3885 warning (_("\
3886 Skipping deprecated .gdb_index section in %s.\n\
3887 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3888 to use the section anyway."),
3889 filename);
3890 warning_printed = 1;
3891 }
3892 return 0;
3893 }
3894 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3895 of the TU (for symbols coming from TUs),
3896 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3897 Plus gold-generated indices can have duplicate entries for global symbols,
3898 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3899 These are just performance bugs, and we can't distinguish gdb-generated
3900 indices from gold-generated ones, so issue no warning here. */
3901
3902 /* Indexes with higher version than the one supported by GDB may be no
3903 longer backward compatible. */
3904 if (version > 8)
3905 return 0;
3906
3907 map->version = version;
3908 map->total_size = section->size;
3909
3910 metadata = (offset_type *) (addr + sizeof (offset_type));
3911
3912 i = 0;
3913 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3914 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3915 / 8);
3916 ++i;
3917
3918 *types_list = addr + MAYBE_SWAP (metadata[i]);
3919 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3920 - MAYBE_SWAP (metadata[i]))
3921 / 8);
3922 ++i;
3923
3924 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3925 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3926 map->address_table
3927 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3928 ++i;
3929
3930 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3931 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3932 map->symbol_table
3933 = gdb::array_view<mapped_index::symbol_table_slot>
3934 ((mapped_index::symbol_table_slot *) symbol_table,
3935 (mapped_index::symbol_table_slot *) symbol_table_end);
3936
3937 ++i;
3938 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3939
3940 return 1;
3941 }
3942
3943 /* Read .gdb_index. If everything went ok, initialize the "quick"
3944 elements of all the CUs and return 1. Otherwise, return 0. */
3945
3946 static int
3947 dwarf2_read_index (struct objfile *objfile)
3948 {
3949 struct mapped_index local_map, *map;
3950 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3951 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3952 struct dwz_file *dwz;
3953 struct dwarf2_per_objfile *dwarf2_per_objfile
3954 = get_dwarf2_per_objfile (objfile);
3955
3956 if (!read_index_from_section (objfile, objfile_name (objfile),
3957 use_deprecated_index_sections,
3958 &dwarf2_per_objfile->gdb_index, &local_map,
3959 &cu_list, &cu_list_elements,
3960 &types_list, &types_list_elements))
3961 return 0;
3962
3963 /* Don't use the index if it's empty. */
3964 if (local_map.symbol_table.empty ())
3965 return 0;
3966
3967 /* If there is a .dwz file, read it so we can get its CU list as
3968 well. */
3969 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3970 if (dwz != NULL)
3971 {
3972 struct mapped_index dwz_map;
3973 const gdb_byte *dwz_types_ignore;
3974 offset_type dwz_types_elements_ignore;
3975
3976 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3977 1,
3978 &dwz->gdb_index, &dwz_map,
3979 &dwz_list, &dwz_list_elements,
3980 &dwz_types_ignore,
3981 &dwz_types_elements_ignore))
3982 {
3983 warning (_("could not read '.gdb_index' section from %s; skipping"),
3984 bfd_get_filename (dwz->dwz_bfd));
3985 return 0;
3986 }
3987 }
3988
3989 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3990 dwz_list_elements);
3991
3992 if (types_list_elements)
3993 {
3994 struct dwarf2_section_info *section;
3995
3996 /* We can only handle a single .debug_types when we have an
3997 index. */
3998 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3999 return 0;
4000
4001 section = VEC_index (dwarf2_section_info_def,
4002 dwarf2_per_objfile->types, 0);
4003
4004 create_signatured_type_table_from_index (objfile, section, types_list,
4005 types_list_elements);
4006 }
4007
4008 create_addrmap_from_index (dwarf2_per_objfile, &local_map);
4009
4010 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
4011 map = new (map) mapped_index ();
4012 *map = local_map;
4013
4014 dwarf2_per_objfile->index_table = map;
4015 dwarf2_per_objfile->using_index = 1;
4016 dwarf2_per_objfile->quick_file_names_table =
4017 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4018
4019 return 1;
4020 }
4021
4022 /* die_reader_func for dw2_get_file_names. */
4023
4024 static void
4025 dw2_get_file_names_reader (const struct die_reader_specs *reader,
4026 const gdb_byte *info_ptr,
4027 struct die_info *comp_unit_die,
4028 int has_children,
4029 void *data)
4030 {
4031 struct dwarf2_cu *cu = reader->cu;
4032 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
4033 struct dwarf2_per_objfile *dwarf2_per_objfile
4034 = cu->per_cu->dwarf2_per_objfile;
4035 struct objfile *objfile = dwarf2_per_objfile->objfile;
4036 struct dwarf2_per_cu_data *lh_cu;
4037 struct attribute *attr;
4038 int i;
4039 void **slot;
4040 struct quick_file_names *qfn;
4041
4042 gdb_assert (! this_cu->is_debug_types);
4043
4044 /* Our callers never want to match partial units -- instead they
4045 will match the enclosing full CU. */
4046 if (comp_unit_die->tag == DW_TAG_partial_unit)
4047 {
4048 this_cu->v.quick->no_file_data = 1;
4049 return;
4050 }
4051
4052 lh_cu = this_cu;
4053 slot = NULL;
4054
4055 line_header_up lh;
4056 sect_offset line_offset {};
4057
4058 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
4059 if (attr)
4060 {
4061 struct quick_file_names find_entry;
4062
4063 line_offset = (sect_offset) DW_UNSND (attr);
4064
4065 /* We may have already read in this line header (TU line header sharing).
4066 If we have we're done. */
4067 find_entry.hash.dwo_unit = cu->dwo_unit;
4068 find_entry.hash.line_sect_off = line_offset;
4069 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
4070 &find_entry, INSERT);
4071 if (*slot != NULL)
4072 {
4073 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
4074 return;
4075 }
4076
4077 lh = dwarf_decode_line_header (line_offset, cu);
4078 }
4079 if (lh == NULL)
4080 {
4081 lh_cu->v.quick->no_file_data = 1;
4082 return;
4083 }
4084
4085 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
4086 qfn->hash.dwo_unit = cu->dwo_unit;
4087 qfn->hash.line_sect_off = line_offset;
4088 gdb_assert (slot != NULL);
4089 *slot = qfn;
4090
4091 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
4092
4093 qfn->num_file_names = lh->file_names.size ();
4094 qfn->file_names =
4095 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
4096 for (i = 0; i < lh->file_names.size (); ++i)
4097 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
4098 qfn->real_names = NULL;
4099
4100 lh_cu->v.quick->file_names = qfn;
4101 }
4102
4103 /* A helper for the "quick" functions which attempts to read the line
4104 table for THIS_CU. */
4105
4106 static struct quick_file_names *
4107 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
4108 {
4109 /* This should never be called for TUs. */
4110 gdb_assert (! this_cu->is_debug_types);
4111 /* Nor type unit groups. */
4112 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
4113
4114 if (this_cu->v.quick->file_names != NULL)
4115 return this_cu->v.quick->file_names;
4116 /* If we know there is no line data, no point in looking again. */
4117 if (this_cu->v.quick->no_file_data)
4118 return NULL;
4119
4120 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
4121
4122 if (this_cu->v.quick->no_file_data)
4123 return NULL;
4124 return this_cu->v.quick->file_names;
4125 }
4126
4127 /* A helper for the "quick" functions which computes and caches the
4128 real path for a given file name from the line table. */
4129
4130 static const char *
4131 dw2_get_real_path (struct objfile *objfile,
4132 struct quick_file_names *qfn, int index)
4133 {
4134 if (qfn->real_names == NULL)
4135 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
4136 qfn->num_file_names, const char *);
4137
4138 if (qfn->real_names[index] == NULL)
4139 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
4140
4141 return qfn->real_names[index];
4142 }
4143
4144 static struct symtab *
4145 dw2_find_last_source_symtab (struct objfile *objfile)
4146 {
4147 struct dwarf2_per_objfile *dwarf2_per_objfile
4148 = get_dwarf2_per_objfile (objfile);
4149 int index = dwarf2_per_objfile->n_comp_units - 1;
4150 dwarf2_per_cu_data *dwarf_cu = dw2_get_cutu (dwarf2_per_objfile, index);
4151 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu);
4152
4153 if (cust == NULL)
4154 return NULL;
4155
4156 return compunit_primary_filetab (cust);
4157 }
4158
4159 /* Traversal function for dw2_forget_cached_source_info. */
4160
4161 static int
4162 dw2_free_cached_file_names (void **slot, void *info)
4163 {
4164 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
4165
4166 if (file_data->real_names)
4167 {
4168 int i;
4169
4170 for (i = 0; i < file_data->num_file_names; ++i)
4171 {
4172 xfree ((void*) file_data->real_names[i]);
4173 file_data->real_names[i] = NULL;
4174 }
4175 }
4176
4177 return 1;
4178 }
4179
4180 static void
4181 dw2_forget_cached_source_info (struct objfile *objfile)
4182 {
4183 struct dwarf2_per_objfile *dwarf2_per_objfile
4184 = get_dwarf2_per_objfile (objfile);
4185
4186 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
4187 dw2_free_cached_file_names, NULL);
4188 }
4189
4190 /* Helper function for dw2_map_symtabs_matching_filename that expands
4191 the symtabs and calls the iterator. */
4192
4193 static int
4194 dw2_map_expand_apply (struct objfile *objfile,
4195 struct dwarf2_per_cu_data *per_cu,
4196 const char *name, const char *real_path,
4197 gdb::function_view<bool (symtab *)> callback)
4198 {
4199 struct compunit_symtab *last_made = objfile->compunit_symtabs;
4200
4201 /* Don't visit already-expanded CUs. */
4202 if (per_cu->v.quick->compunit_symtab)
4203 return 0;
4204
4205 /* This may expand more than one symtab, and we want to iterate over
4206 all of them. */
4207 dw2_instantiate_symtab (per_cu);
4208
4209 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
4210 last_made, callback);
4211 }
4212
4213 /* Implementation of the map_symtabs_matching_filename method. */
4214
4215 static bool
4216 dw2_map_symtabs_matching_filename
4217 (struct objfile *objfile, const char *name, const char *real_path,
4218 gdb::function_view<bool (symtab *)> callback)
4219 {
4220 int i;
4221 const char *name_basename = lbasename (name);
4222 struct dwarf2_per_objfile *dwarf2_per_objfile
4223 = get_dwarf2_per_objfile (objfile);
4224
4225 /* The rule is CUs specify all the files, including those used by
4226 any TU, so there's no need to scan TUs here. */
4227
4228 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4229 {
4230 int j;
4231 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (dwarf2_per_objfile, i);
4232 struct quick_file_names *file_data;
4233
4234 /* We only need to look at symtabs not already expanded. */
4235 if (per_cu->v.quick->compunit_symtab)
4236 continue;
4237
4238 file_data = dw2_get_file_names (per_cu);
4239 if (file_data == NULL)
4240 continue;
4241
4242 for (j = 0; j < file_data->num_file_names; ++j)
4243 {
4244 const char *this_name = file_data->file_names[j];
4245 const char *this_real_name;
4246
4247 if (compare_filenames_for_search (this_name, name))
4248 {
4249 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
4250 callback))
4251 return true;
4252 continue;
4253 }
4254
4255 /* Before we invoke realpath, which can get expensive when many
4256 files are involved, do a quick comparison of the basenames. */
4257 if (! basenames_may_differ
4258 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
4259 continue;
4260
4261 this_real_name = dw2_get_real_path (objfile, file_data, j);
4262 if (compare_filenames_for_search (this_real_name, name))
4263 {
4264 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
4265 callback))
4266 return true;
4267 continue;
4268 }
4269
4270 if (real_path != NULL)
4271 {
4272 gdb_assert (IS_ABSOLUTE_PATH (real_path));
4273 gdb_assert (IS_ABSOLUTE_PATH (name));
4274 if (this_real_name != NULL
4275 && FILENAME_CMP (real_path, this_real_name) == 0)
4276 {
4277 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
4278 callback))
4279 return true;
4280 continue;
4281 }
4282 }
4283 }
4284 }
4285
4286 return false;
4287 }
4288
4289 /* Struct used to manage iterating over all CUs looking for a symbol. */
4290
4291 struct dw2_symtab_iterator
4292 {
4293 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
4294 struct dwarf2_per_objfile *dwarf2_per_objfile;
4295 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
4296 int want_specific_block;
4297 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
4298 Unused if !WANT_SPECIFIC_BLOCK. */
4299 int block_index;
4300 /* The kind of symbol we're looking for. */
4301 domain_enum domain;
4302 /* The list of CUs from the index entry of the symbol,
4303 or NULL if not found. */
4304 offset_type *vec;
4305 /* The next element in VEC to look at. */
4306 int next;
4307 /* The number of elements in VEC, or zero if there is no match. */
4308 int length;
4309 /* Have we seen a global version of the symbol?
4310 If so we can ignore all further global instances.
4311 This is to work around gold/15646, inefficient gold-generated
4312 indices. */
4313 int global_seen;
4314 };
4315
4316 /* Initialize the index symtab iterator ITER.
4317 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
4318 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
4319
4320 static void
4321 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
4322 struct dwarf2_per_objfile *dwarf2_per_objfile,
4323 int want_specific_block,
4324 int block_index,
4325 domain_enum domain,
4326 const char *name)
4327 {
4328 iter->dwarf2_per_objfile = dwarf2_per_objfile;
4329 iter->want_specific_block = want_specific_block;
4330 iter->block_index = block_index;
4331 iter->domain = domain;
4332 iter->next = 0;
4333 iter->global_seen = 0;
4334
4335 mapped_index *index = dwarf2_per_objfile->index_table;
4336
4337 /* index is NULL if OBJF_READNOW. */
4338 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
4339 iter->length = MAYBE_SWAP (*iter->vec);
4340 else
4341 {
4342 iter->vec = NULL;
4343 iter->length = 0;
4344 }
4345 }
4346
4347 /* Return the next matching CU or NULL if there are no more. */
4348
4349 static struct dwarf2_per_cu_data *
4350 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
4351 {
4352 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
4353
4354 for ( ; iter->next < iter->length; ++iter->next)
4355 {
4356 offset_type cu_index_and_attrs =
4357 MAYBE_SWAP (iter->vec[iter->next + 1]);
4358 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4359 struct dwarf2_per_cu_data *per_cu;
4360 int want_static = iter->block_index != GLOBAL_BLOCK;
4361 /* This value is only valid for index versions >= 7. */
4362 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4363 gdb_index_symbol_kind symbol_kind =
4364 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4365 /* Only check the symbol attributes if they're present.
4366 Indices prior to version 7 don't record them,
4367 and indices >= 7 may elide them for certain symbols
4368 (gold does this). */
4369 int attrs_valid =
4370 (dwarf2_per_objfile->index_table->version >= 7
4371 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4372
4373 /* Don't crash on bad data. */
4374 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4375 + dwarf2_per_objfile->n_type_units))
4376 {
4377 complaint (&symfile_complaints,
4378 _(".gdb_index entry has bad CU index"
4379 " [in module %s]"),
4380 objfile_name (dwarf2_per_objfile->objfile));
4381 continue;
4382 }
4383
4384 per_cu = dw2_get_cutu (dwarf2_per_objfile, cu_index);
4385
4386 /* Skip if already read in. */
4387 if (per_cu->v.quick->compunit_symtab)
4388 continue;
4389
4390 /* Check static vs global. */
4391 if (attrs_valid)
4392 {
4393 if (iter->want_specific_block
4394 && want_static != is_static)
4395 continue;
4396 /* Work around gold/15646. */
4397 if (!is_static && iter->global_seen)
4398 continue;
4399 if (!is_static)
4400 iter->global_seen = 1;
4401 }
4402
4403 /* Only check the symbol's kind if it has one. */
4404 if (attrs_valid)
4405 {
4406 switch (iter->domain)
4407 {
4408 case VAR_DOMAIN:
4409 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
4410 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
4411 /* Some types are also in VAR_DOMAIN. */
4412 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4413 continue;
4414 break;
4415 case STRUCT_DOMAIN:
4416 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4417 continue;
4418 break;
4419 case LABEL_DOMAIN:
4420 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4421 continue;
4422 break;
4423 default:
4424 break;
4425 }
4426 }
4427
4428 ++iter->next;
4429 return per_cu;
4430 }
4431
4432 return NULL;
4433 }
4434
4435 static struct compunit_symtab *
4436 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4437 const char *name, domain_enum domain)
4438 {
4439 struct compunit_symtab *stab_best = NULL;
4440 struct dwarf2_per_objfile *dwarf2_per_objfile
4441 = get_dwarf2_per_objfile (objfile);
4442
4443 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4444
4445 struct dw2_symtab_iterator iter;
4446 struct dwarf2_per_cu_data *per_cu;
4447
4448 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4449
4450 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4451 {
4452 struct symbol *sym, *with_opaque = NULL;
4453 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
4454 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4455 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4456
4457 sym = block_find_symbol (block, name, domain,
4458 block_find_non_opaque_type_preferred,
4459 &with_opaque);
4460
4461 /* Some caution must be observed with overloaded functions
4462 and methods, since the index will not contain any overload
4463 information (but NAME might contain it). */
4464
4465 if (sym != NULL
4466 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4467 return stab;
4468 if (with_opaque != NULL
4469 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4470 stab_best = stab;
4471
4472 /* Keep looking through other CUs. */
4473 }
4474
4475 return stab_best;
4476 }
4477
4478 static void
4479 dw2_print_stats (struct objfile *objfile)
4480 {
4481 struct dwarf2_per_objfile *dwarf2_per_objfile
4482 = get_dwarf2_per_objfile (objfile);
4483 int total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
4484 int count = 0;
4485
4486 for (int i = 0; i < total; ++i)
4487 {
4488 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
4489
4490 if (!per_cu->v.quick->compunit_symtab)
4491 ++count;
4492 }
4493 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4494 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4495 }
4496
4497 /* This dumps minimal information about the index.
4498 It is called via "mt print objfiles".
4499 One use is to verify .gdb_index has been loaded by the
4500 gdb.dwarf2/gdb-index.exp testcase. */
4501
4502 static void
4503 dw2_dump (struct objfile *objfile)
4504 {
4505 struct dwarf2_per_objfile *dwarf2_per_objfile
4506 = get_dwarf2_per_objfile (objfile);
4507
4508 gdb_assert (dwarf2_per_objfile->using_index);
4509 printf_filtered (".gdb_index:");
4510 if (dwarf2_per_objfile->index_table != NULL)
4511 {
4512 printf_filtered (" version %d\n",
4513 dwarf2_per_objfile->index_table->version);
4514 }
4515 else
4516 printf_filtered (" faked for \"readnow\"\n");
4517 printf_filtered ("\n");
4518 }
4519
4520 static void
4521 dw2_relocate (struct objfile *objfile,
4522 const struct section_offsets *new_offsets,
4523 const struct section_offsets *delta)
4524 {
4525 /* There's nothing to relocate here. */
4526 }
4527
4528 static void
4529 dw2_expand_symtabs_for_function (struct objfile *objfile,
4530 const char *func_name)
4531 {
4532 struct dwarf2_per_objfile *dwarf2_per_objfile
4533 = get_dwarf2_per_objfile (objfile);
4534
4535 struct dw2_symtab_iterator iter;
4536 struct dwarf2_per_cu_data *per_cu;
4537
4538 /* Note: It doesn't matter what we pass for block_index here. */
4539 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4540 func_name);
4541
4542 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4543 dw2_instantiate_symtab (per_cu);
4544
4545 }
4546
4547 static void
4548 dw2_expand_all_symtabs (struct objfile *objfile)
4549 {
4550 struct dwarf2_per_objfile *dwarf2_per_objfile
4551 = get_dwarf2_per_objfile (objfile);
4552 int total_units = (dwarf2_per_objfile->n_comp_units
4553 + dwarf2_per_objfile->n_type_units);
4554
4555 for (int i = 0; i < total_units; ++i)
4556 {
4557 struct dwarf2_per_cu_data *per_cu
4558 = dw2_get_cutu (dwarf2_per_objfile, i);
4559
4560 dw2_instantiate_symtab (per_cu);
4561 }
4562 }
4563
4564 static void
4565 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4566 const char *fullname)
4567 {
4568 struct dwarf2_per_objfile *dwarf2_per_objfile
4569 = get_dwarf2_per_objfile (objfile);
4570
4571 /* We don't need to consider type units here.
4572 This is only called for examining code, e.g. expand_line_sal.
4573 There can be an order of magnitude (or more) more type units
4574 than comp units, and we avoid them if we can. */
4575
4576 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4577 {
4578 int j;
4579 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
4580 struct quick_file_names *file_data;
4581
4582 /* We only need to look at symtabs not already expanded. */
4583 if (per_cu->v.quick->compunit_symtab)
4584 continue;
4585
4586 file_data = dw2_get_file_names (per_cu);
4587 if (file_data == NULL)
4588 continue;
4589
4590 for (j = 0; j < file_data->num_file_names; ++j)
4591 {
4592 const char *this_fullname = file_data->file_names[j];
4593
4594 if (filename_cmp (this_fullname, fullname) == 0)
4595 {
4596 dw2_instantiate_symtab (per_cu);
4597 break;
4598 }
4599 }
4600 }
4601 }
4602
4603 static void
4604 dw2_map_matching_symbols (struct objfile *objfile,
4605 const char * name, domain_enum domain,
4606 int global,
4607 int (*callback) (struct block *,
4608 struct symbol *, void *),
4609 void *data, symbol_name_match_type match,
4610 symbol_compare_ftype *ordered_compare)
4611 {
4612 /* Currently unimplemented; used for Ada. The function can be called if the
4613 current language is Ada for a non-Ada objfile using GNU index. As Ada
4614 does not look for non-Ada symbols this function should just return. */
4615 }
4616
4617 /* Symbol name matcher for .gdb_index names.
4618
4619 Symbol names in .gdb_index have a few particularities:
4620
4621 - There's no indication of which is the language of each symbol.
4622
4623 Since each language has its own symbol name matching algorithm,
4624 and we don't know which language is the right one, we must match
4625 each symbol against all languages. This would be a potential
4626 performance problem if it were not mitigated by the
4627 mapped_index::name_components lookup table, which significantly
4628 reduces the number of times we need to call into this matcher,
4629 making it a non-issue.
4630
4631 - Symbol names in the index have no overload (parameter)
4632 information. I.e., in C++, "foo(int)" and "foo(long)" both
4633 appear as "foo" in the index, for example.
4634
4635 This means that the lookup names passed to the symbol name
4636 matcher functions must have no parameter information either
4637 because (e.g.) symbol search name "foo" does not match
4638 lookup-name "foo(int)" [while swapping search name for lookup
4639 name would match].
4640 */
4641 class gdb_index_symbol_name_matcher
4642 {
4643 public:
4644 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4645 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4646
4647 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4648 Returns true if any matcher matches. */
4649 bool matches (const char *symbol_name);
4650
4651 private:
4652 /* A reference to the lookup name we're matching against. */
4653 const lookup_name_info &m_lookup_name;
4654
4655 /* A vector holding all the different symbol name matchers, for all
4656 languages. */
4657 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4658 };
4659
4660 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4661 (const lookup_name_info &lookup_name)
4662 : m_lookup_name (lookup_name)
4663 {
4664 /* Prepare the vector of comparison functions upfront, to avoid
4665 doing the same work for each symbol. Care is taken to avoid
4666 matching with the same matcher more than once if/when multiple
4667 languages use the same matcher function. */
4668 auto &matchers = m_symbol_name_matcher_funcs;
4669 matchers.reserve (nr_languages);
4670
4671 matchers.push_back (default_symbol_name_matcher);
4672
4673 for (int i = 0; i < nr_languages; i++)
4674 {
4675 const language_defn *lang = language_def ((enum language) i);
4676 symbol_name_matcher_ftype *name_matcher
4677 = get_symbol_name_matcher (lang, m_lookup_name);
4678
4679 /* Don't insert the same comparison routine more than once.
4680 Note that we do this linear walk instead of a seemingly
4681 cheaper sorted insert, or use a std::set or something like
4682 that, because relative order of function addresses is not
4683 stable. This is not a problem in practice because the number
4684 of supported languages is low, and the cost here is tiny
4685 compared to the number of searches we'll do afterwards using
4686 this object. */
4687 if (name_matcher != default_symbol_name_matcher
4688 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4689 == matchers.end ()))
4690 matchers.push_back (name_matcher);
4691 }
4692 }
4693
4694 bool
4695 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4696 {
4697 for (auto matches_name : m_symbol_name_matcher_funcs)
4698 if (matches_name (symbol_name, m_lookup_name, NULL))
4699 return true;
4700
4701 return false;
4702 }
4703
4704 /* Starting from a search name, return the string that finds the upper
4705 bound of all strings that start with SEARCH_NAME in a sorted name
4706 list. Returns the empty string to indicate that the upper bound is
4707 the end of the list. */
4708
4709 static std::string
4710 make_sort_after_prefix_name (const char *search_name)
4711 {
4712 /* When looking to complete "func", we find the upper bound of all
4713 symbols that start with "func" by looking for where we'd insert
4714 the closest string that would follow "func" in lexicographical
4715 order. Usually, that's "func"-with-last-character-incremented,
4716 i.e. "fund". Mind non-ASCII characters, though. Usually those
4717 will be UTF-8 multi-byte sequences, but we can't be certain.
4718 Especially mind the 0xff character, which is a valid character in
4719 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4720 rule out compilers allowing it in identifiers. Note that
4721 conveniently, strcmp/strcasecmp are specified to compare
4722 characters interpreted as unsigned char. So what we do is treat
4723 the whole string as a base 256 number composed of a sequence of
4724 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4725 to 0, and carries 1 to the following more-significant position.
4726 If the very first character in SEARCH_NAME ends up incremented
4727 and carries/overflows, then the upper bound is the end of the
4728 list. The string after the empty string is also the empty
4729 string.
4730
4731 Some examples of this operation:
4732
4733 SEARCH_NAME => "+1" RESULT
4734
4735 "abc" => "abd"
4736 "ab\xff" => "ac"
4737 "\xff" "a" "\xff" => "\xff" "b"
4738 "\xff" => ""
4739 "\xff\xff" => ""
4740 "" => ""
4741
4742 Then, with these symbols for example:
4743
4744 func
4745 func1
4746 fund
4747
4748 completing "func" looks for symbols between "func" and
4749 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4750 which finds "func" and "func1", but not "fund".
4751
4752 And with:
4753
4754 funcÿ (Latin1 'ÿ' [0xff])
4755 funcÿ1
4756 fund
4757
4758 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4759 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4760
4761 And with:
4762
4763 ÿÿ (Latin1 'ÿ' [0xff])
4764 ÿÿ1
4765
4766 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4767 the end of the list.
4768 */
4769 std::string after = search_name;
4770 while (!after.empty () && (unsigned char) after.back () == 0xff)
4771 after.pop_back ();
4772 if (!after.empty ())
4773 after.back () = (unsigned char) after.back () + 1;
4774 return after;
4775 }
4776
4777 /* See declaration. */
4778
4779 std::pair<std::vector<name_component>::const_iterator,
4780 std::vector<name_component>::const_iterator>
4781 mapped_index_base::find_name_components_bounds
4782 (const lookup_name_info &lookup_name_without_params) const
4783 {
4784 auto *name_cmp
4785 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4786
4787 const char *cplus
4788 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4789
4790 /* Comparison function object for lower_bound that matches against a
4791 given symbol name. */
4792 auto lookup_compare_lower = [&] (const name_component &elem,
4793 const char *name)
4794 {
4795 const char *elem_qualified = this->symbol_name_at (elem.idx);
4796 const char *elem_name = elem_qualified + elem.name_offset;
4797 return name_cmp (elem_name, name) < 0;
4798 };
4799
4800 /* Comparison function object for upper_bound that matches against a
4801 given symbol name. */
4802 auto lookup_compare_upper = [&] (const char *name,
4803 const name_component &elem)
4804 {
4805 const char *elem_qualified = this->symbol_name_at (elem.idx);
4806 const char *elem_name = elem_qualified + elem.name_offset;
4807 return name_cmp (name, elem_name) < 0;
4808 };
4809
4810 auto begin = this->name_components.begin ();
4811 auto end = this->name_components.end ();
4812
4813 /* Find the lower bound. */
4814 auto lower = [&] ()
4815 {
4816 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4817 return begin;
4818 else
4819 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4820 } ();
4821
4822 /* Find the upper bound. */
4823 auto upper = [&] ()
4824 {
4825 if (lookup_name_without_params.completion_mode ())
4826 {
4827 /* In completion mode, we want UPPER to point past all
4828 symbols names that have the same prefix. I.e., with
4829 these symbols, and completing "func":
4830
4831 function << lower bound
4832 function1
4833 other_function << upper bound
4834
4835 We find the upper bound by looking for the insertion
4836 point of "func"-with-last-character-incremented,
4837 i.e. "fund". */
4838 std::string after = make_sort_after_prefix_name (cplus);
4839 if (after.empty ())
4840 return end;
4841 return std::lower_bound (lower, end, after.c_str (),
4842 lookup_compare_lower);
4843 }
4844 else
4845 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4846 } ();
4847
4848 return {lower, upper};
4849 }
4850
4851 /* See declaration. */
4852
4853 void
4854 mapped_index_base::build_name_components ()
4855 {
4856 if (!this->name_components.empty ())
4857 return;
4858
4859 this->name_components_casing = case_sensitivity;
4860 auto *name_cmp
4861 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4862
4863 /* The code below only knows how to break apart components of C++
4864 symbol names (and other languages that use '::' as
4865 namespace/module separator). If we add support for wild matching
4866 to some language that uses some other operator (E.g., Ada, Go and
4867 D use '.'), then we'll need to try splitting the symbol name
4868 according to that language too. Note that Ada does support wild
4869 matching, but doesn't currently support .gdb_index. */
4870 auto count = this->symbol_name_count ();
4871 for (offset_type idx = 0; idx < count; idx++)
4872 {
4873 if (this->symbol_name_slot_invalid (idx))
4874 continue;
4875
4876 const char *name = this->symbol_name_at (idx);
4877
4878 /* Add each name component to the name component table. */
4879 unsigned int previous_len = 0;
4880 for (unsigned int current_len = cp_find_first_component (name);
4881 name[current_len] != '\0';
4882 current_len += cp_find_first_component (name + current_len))
4883 {
4884 gdb_assert (name[current_len] == ':');
4885 this->name_components.push_back ({previous_len, idx});
4886 /* Skip the '::'. */
4887 current_len += 2;
4888 previous_len = current_len;
4889 }
4890 this->name_components.push_back ({previous_len, idx});
4891 }
4892
4893 /* Sort name_components elements by name. */
4894 auto name_comp_compare = [&] (const name_component &left,
4895 const name_component &right)
4896 {
4897 const char *left_qualified = this->symbol_name_at (left.idx);
4898 const char *right_qualified = this->symbol_name_at (right.idx);
4899
4900 const char *left_name = left_qualified + left.name_offset;
4901 const char *right_name = right_qualified + right.name_offset;
4902
4903 return name_cmp (left_name, right_name) < 0;
4904 };
4905
4906 std::sort (this->name_components.begin (),
4907 this->name_components.end (),
4908 name_comp_compare);
4909 }
4910
4911 /* Helper for dw2_expand_symtabs_matching that works with a
4912 mapped_index_base instead of the containing objfile. This is split
4913 to a separate function in order to be able to unit test the
4914 name_components matching using a mock mapped_index_base. For each
4915 symbol name that matches, calls MATCH_CALLBACK, passing it the
4916 symbol's index in the mapped_index_base symbol table. */
4917
4918 static void
4919 dw2_expand_symtabs_matching_symbol
4920 (mapped_index_base &index,
4921 const lookup_name_info &lookup_name_in,
4922 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4923 enum search_domain kind,
4924 gdb::function_view<void (offset_type)> match_callback)
4925 {
4926 lookup_name_info lookup_name_without_params
4927 = lookup_name_in.make_ignore_params ();
4928 gdb_index_symbol_name_matcher lookup_name_matcher
4929 (lookup_name_without_params);
4930
4931 /* Build the symbol name component sorted vector, if we haven't
4932 yet. */
4933 index.build_name_components ();
4934
4935 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4936
4937 /* Now for each symbol name in range, check to see if we have a name
4938 match, and if so, call the MATCH_CALLBACK callback. */
4939
4940 /* The same symbol may appear more than once in the range though.
4941 E.g., if we're looking for symbols that complete "w", and we have
4942 a symbol named "w1::w2", we'll find the two name components for
4943 that same symbol in the range. To be sure we only call the
4944 callback once per symbol, we first collect the symbol name
4945 indexes that matched in a temporary vector and ignore
4946 duplicates. */
4947 std::vector<offset_type> matches;
4948 matches.reserve (std::distance (bounds.first, bounds.second));
4949
4950 for (; bounds.first != bounds.second; ++bounds.first)
4951 {
4952 const char *qualified = index.symbol_name_at (bounds.first->idx);
4953
4954 if (!lookup_name_matcher.matches (qualified)
4955 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4956 continue;
4957
4958 matches.push_back (bounds.first->idx);
4959 }
4960
4961 std::sort (matches.begin (), matches.end ());
4962
4963 /* Finally call the callback, once per match. */
4964 ULONGEST prev = -1;
4965 for (offset_type idx : matches)
4966 {
4967 if (prev != idx)
4968 {
4969 match_callback (idx);
4970 prev = idx;
4971 }
4972 }
4973
4974 /* Above we use a type wider than idx's for 'prev', since 0 and
4975 (offset_type)-1 are both possible values. */
4976 static_assert (sizeof (prev) > sizeof (offset_type), "");
4977 }
4978
4979 #if GDB_SELF_TEST
4980
4981 namespace selftests { namespace dw2_expand_symtabs_matching {
4982
4983 /* A mock .gdb_index/.debug_names-like name index table, enough to
4984 exercise dw2_expand_symtabs_matching_symbol, which works with the
4985 mapped_index_base interface. Builds an index from the symbol list
4986 passed as parameter to the constructor. */
4987 class mock_mapped_index : public mapped_index_base
4988 {
4989 public:
4990 mock_mapped_index (gdb::array_view<const char *> symbols)
4991 : m_symbol_table (symbols)
4992 {}
4993
4994 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4995
4996 /* Return the number of names in the symbol table. */
4997 virtual size_t symbol_name_count () const
4998 {
4999 return m_symbol_table.size ();
5000 }
5001
5002 /* Get the name of the symbol at IDX in the symbol table. */
5003 virtual const char *symbol_name_at (offset_type idx) const
5004 {
5005 return m_symbol_table[idx];
5006 }
5007
5008 private:
5009 gdb::array_view<const char *> m_symbol_table;
5010 };
5011
5012 /* Convenience function that converts a NULL pointer to a "<null>"
5013 string, to pass to print routines. */
5014
5015 static const char *
5016 string_or_null (const char *str)
5017 {
5018 return str != NULL ? str : "<null>";
5019 }
5020
5021 /* Check if a lookup_name_info built from
5022 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
5023 index. EXPECTED_LIST is the list of expected matches, in expected
5024 matching order. If no match expected, then an empty list is
5025 specified. Returns true on success. On failure prints a warning
5026 indicating the file:line that failed, and returns false. */
5027
5028 static bool
5029 check_match (const char *file, int line,
5030 mock_mapped_index &mock_index,
5031 const char *name, symbol_name_match_type match_type,
5032 bool completion_mode,
5033 std::initializer_list<const char *> expected_list)
5034 {
5035 lookup_name_info lookup_name (name, match_type, completion_mode);
5036
5037 bool matched = true;
5038
5039 auto mismatch = [&] (const char *expected_str,
5040 const char *got)
5041 {
5042 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
5043 "expected=\"%s\", got=\"%s\"\n"),
5044 file, line,
5045 (match_type == symbol_name_match_type::FULL
5046 ? "FULL" : "WILD"),
5047 name, string_or_null (expected_str), string_or_null (got));
5048 matched = false;
5049 };
5050
5051 auto expected_it = expected_list.begin ();
5052 auto expected_end = expected_list.end ();
5053
5054 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
5055 NULL, ALL_DOMAIN,
5056 [&] (offset_type idx)
5057 {
5058 const char *matched_name = mock_index.symbol_name_at (idx);
5059 const char *expected_str
5060 = expected_it == expected_end ? NULL : *expected_it++;
5061
5062 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
5063 mismatch (expected_str, matched_name);
5064 });
5065
5066 const char *expected_str
5067 = expected_it == expected_end ? NULL : *expected_it++;
5068 if (expected_str != NULL)
5069 mismatch (expected_str, NULL);
5070
5071 return matched;
5072 }
5073
5074 /* The symbols added to the mock mapped_index for testing (in
5075 canonical form). */
5076 static const char *test_symbols[] = {
5077 "function",
5078 "std::bar",
5079 "std::zfunction",
5080 "std::zfunction2",
5081 "w1::w2",
5082 "ns::foo<char*>",
5083 "ns::foo<int>",
5084 "ns::foo<long>",
5085 "ns2::tmpl<int>::foo2",
5086 "(anonymous namespace)::A::B::C",
5087
5088 /* These are used to check that the increment-last-char in the
5089 matching algorithm for completion doesn't match "t1_fund" when
5090 completing "t1_func". */
5091 "t1_func",
5092 "t1_func1",
5093 "t1_fund",
5094 "t1_fund1",
5095
5096 /* A UTF-8 name with multi-byte sequences to make sure that
5097 cp-name-parser understands this as a single identifier ("função"
5098 is "function" in PT). */
5099 u8"u8função",
5100
5101 /* \377 (0xff) is Latin1 'ÿ'. */
5102 "yfunc\377",
5103
5104 /* \377 (0xff) is Latin1 'ÿ'. */
5105 "\377",
5106 "\377\377123",
5107
5108 /* A name with all sorts of complications. Starts with "z" to make
5109 it easier for the completion tests below. */
5110 #define Z_SYM_NAME \
5111 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
5112 "::tuple<(anonymous namespace)::ui*, " \
5113 "std::default_delete<(anonymous namespace)::ui>, void>"
5114
5115 Z_SYM_NAME
5116 };
5117
5118 /* Returns true if the mapped_index_base::find_name_component_bounds
5119 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
5120 in completion mode. */
5121
5122 static bool
5123 check_find_bounds_finds (mapped_index_base &index,
5124 const char *search_name,
5125 gdb::array_view<const char *> expected_syms)
5126 {
5127 lookup_name_info lookup_name (search_name,
5128 symbol_name_match_type::FULL, true);
5129
5130 auto bounds = index.find_name_components_bounds (lookup_name);
5131
5132 size_t distance = std::distance (bounds.first, bounds.second);
5133 if (distance != expected_syms.size ())
5134 return false;
5135
5136 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
5137 {
5138 auto nc_elem = bounds.first + exp_elem;
5139 const char *qualified = index.symbol_name_at (nc_elem->idx);
5140 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
5141 return false;
5142 }
5143
5144 return true;
5145 }
5146
5147 /* Test the lower-level mapped_index::find_name_component_bounds
5148 method. */
5149
5150 static void
5151 test_mapped_index_find_name_component_bounds ()
5152 {
5153 mock_mapped_index mock_index (test_symbols);
5154
5155 mock_index.build_name_components ();
5156
5157 /* Test the lower-level mapped_index::find_name_component_bounds
5158 method in completion mode. */
5159 {
5160 static const char *expected_syms[] = {
5161 "t1_func",
5162 "t1_func1",
5163 };
5164
5165 SELF_CHECK (check_find_bounds_finds (mock_index,
5166 "t1_func", expected_syms));
5167 }
5168
5169 /* Check that the increment-last-char in the name matching algorithm
5170 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
5171 {
5172 static const char *expected_syms1[] = {
5173 "\377",
5174 "\377\377123",
5175 };
5176 SELF_CHECK (check_find_bounds_finds (mock_index,
5177 "\377", expected_syms1));
5178
5179 static const char *expected_syms2[] = {
5180 "\377\377123",
5181 };
5182 SELF_CHECK (check_find_bounds_finds (mock_index,
5183 "\377\377", expected_syms2));
5184 }
5185 }
5186
5187 /* Test dw2_expand_symtabs_matching_symbol. */
5188
5189 static void
5190 test_dw2_expand_symtabs_matching_symbol ()
5191 {
5192 mock_mapped_index mock_index (test_symbols);
5193
5194 /* We let all tests run until the end even if some fails, for debug
5195 convenience. */
5196 bool any_mismatch = false;
5197
5198 /* Create the expected symbols list (an initializer_list). Needed
5199 because lists have commas, and we need to pass them to CHECK,
5200 which is a macro. */
5201 #define EXPECT(...) { __VA_ARGS__ }
5202
5203 /* Wrapper for check_match that passes down the current
5204 __FILE__/__LINE__. */
5205 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
5206 any_mismatch |= !check_match (__FILE__, __LINE__, \
5207 mock_index, \
5208 NAME, MATCH_TYPE, COMPLETION_MODE, \
5209 EXPECTED_LIST)
5210
5211 /* Identity checks. */
5212 for (const char *sym : test_symbols)
5213 {
5214 /* Should be able to match all existing symbols. */
5215 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
5216 EXPECT (sym));
5217
5218 /* Should be able to match all existing symbols with
5219 parameters. */
5220 std::string with_params = std::string (sym) + "(int)";
5221 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
5222 EXPECT (sym));
5223
5224 /* Should be able to match all existing symbols with
5225 parameters and qualifiers. */
5226 with_params = std::string (sym) + " ( int ) const";
5227 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
5228 EXPECT (sym));
5229
5230 /* This should really find sym, but cp-name-parser.y doesn't
5231 know about lvalue/rvalue qualifiers yet. */
5232 with_params = std::string (sym) + " ( int ) &&";
5233 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
5234 {});
5235 }
5236
5237 /* Check that the name matching algorithm for completion doesn't get
5238 confused with Latin1 'ÿ' / 0xff. */
5239 {
5240 static const char str[] = "\377";
5241 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
5242 EXPECT ("\377", "\377\377123"));
5243 }
5244
5245 /* Check that the increment-last-char in the matching algorithm for
5246 completion doesn't match "t1_fund" when completing "t1_func". */
5247 {
5248 static const char str[] = "t1_func";
5249 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
5250 EXPECT ("t1_func", "t1_func1"));
5251 }
5252
5253 /* Check that completion mode works at each prefix of the expected
5254 symbol name. */
5255 {
5256 static const char str[] = "function(int)";
5257 size_t len = strlen (str);
5258 std::string lookup;
5259
5260 for (size_t i = 1; i < len; i++)
5261 {
5262 lookup.assign (str, i);
5263 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
5264 EXPECT ("function"));
5265 }
5266 }
5267
5268 /* While "w" is a prefix of both components, the match function
5269 should still only be called once. */
5270 {
5271 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
5272 EXPECT ("w1::w2"));
5273 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
5274 EXPECT ("w1::w2"));
5275 }
5276
5277 /* Same, with a "complicated" symbol. */
5278 {
5279 static const char str[] = Z_SYM_NAME;
5280 size_t len = strlen (str);
5281 std::string lookup;
5282
5283 for (size_t i = 1; i < len; i++)
5284 {
5285 lookup.assign (str, i);
5286 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
5287 EXPECT (Z_SYM_NAME));
5288 }
5289 }
5290
5291 /* In FULL mode, an incomplete symbol doesn't match. */
5292 {
5293 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
5294 {});
5295 }
5296
5297 /* A complete symbol with parameters matches any overload, since the
5298 index has no overload info. */
5299 {
5300 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
5301 EXPECT ("std::zfunction", "std::zfunction2"));
5302 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
5303 EXPECT ("std::zfunction", "std::zfunction2"));
5304 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
5305 EXPECT ("std::zfunction", "std::zfunction2"));
5306 }
5307
5308 /* Check that whitespace is ignored appropriately. A symbol with a
5309 template argument list. */
5310 {
5311 static const char expected[] = "ns::foo<int>";
5312 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
5313 EXPECT (expected));
5314 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
5315 EXPECT (expected));
5316 }
5317
5318 /* Check that whitespace is ignored appropriately. A symbol with a
5319 template argument list that includes a pointer. */
5320 {
5321 static const char expected[] = "ns::foo<char*>";
5322 /* Try both completion and non-completion modes. */
5323 static const bool completion_mode[2] = {false, true};
5324 for (size_t i = 0; i < 2; i++)
5325 {
5326 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
5327 completion_mode[i], EXPECT (expected));
5328 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
5329 completion_mode[i], EXPECT (expected));
5330
5331 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
5332 completion_mode[i], EXPECT (expected));
5333 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
5334 completion_mode[i], EXPECT (expected));
5335 }
5336 }
5337
5338 {
5339 /* Check method qualifiers are ignored. */
5340 static const char expected[] = "ns::foo<char*>";
5341 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
5342 symbol_name_match_type::FULL, true, EXPECT (expected));
5343 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
5344 symbol_name_match_type::FULL, true, EXPECT (expected));
5345 CHECK_MATCH ("foo < char * > ( int ) const",
5346 symbol_name_match_type::WILD, true, EXPECT (expected));
5347 CHECK_MATCH ("foo < char * > ( int ) &&",
5348 symbol_name_match_type::WILD, true, EXPECT (expected));
5349 }
5350
5351 /* Test lookup names that don't match anything. */
5352 {
5353 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
5354 {});
5355
5356 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
5357 {});
5358 }
5359
5360 /* Some wild matching tests, exercising "(anonymous namespace)",
5361 which should not be confused with a parameter list. */
5362 {
5363 static const char *syms[] = {
5364 "A::B::C",
5365 "B::C",
5366 "C",
5367 "A :: B :: C ( int )",
5368 "B :: C ( int )",
5369 "C ( int )",
5370 };
5371
5372 for (const char *s : syms)
5373 {
5374 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
5375 EXPECT ("(anonymous namespace)::A::B::C"));
5376 }
5377 }
5378
5379 {
5380 static const char expected[] = "ns2::tmpl<int>::foo2";
5381 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
5382 EXPECT (expected));
5383 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
5384 EXPECT (expected));
5385 }
5386
5387 SELF_CHECK (!any_mismatch);
5388
5389 #undef EXPECT
5390 #undef CHECK_MATCH
5391 }
5392
5393 static void
5394 run_test ()
5395 {
5396 test_mapped_index_find_name_component_bounds ();
5397 test_dw2_expand_symtabs_matching_symbol ();
5398 }
5399
5400 }} // namespace selftests::dw2_expand_symtabs_matching
5401
5402 #endif /* GDB_SELF_TEST */
5403
5404 /* If FILE_MATCHER is NULL or if PER_CU has
5405 dwarf2_per_cu_quick_data::MARK set (see
5406 dw_expand_symtabs_matching_file_matcher), expand the CU and call
5407 EXPANSION_NOTIFY on it. */
5408
5409 static void
5410 dw2_expand_symtabs_matching_one
5411 (struct dwarf2_per_cu_data *per_cu,
5412 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5413 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
5414 {
5415 if (file_matcher == NULL || per_cu->v.quick->mark)
5416 {
5417 bool symtab_was_null
5418 = (per_cu->v.quick->compunit_symtab == NULL);
5419
5420 dw2_instantiate_symtab (per_cu);
5421
5422 if (expansion_notify != NULL
5423 && symtab_was_null
5424 && per_cu->v.quick->compunit_symtab != NULL)
5425 expansion_notify (per_cu->v.quick->compunit_symtab);
5426 }
5427 }
5428
5429 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5430 matched, to expand corresponding CUs that were marked. IDX is the
5431 index of the symbol name that matched. */
5432
5433 static void
5434 dw2_expand_marked_cus
5435 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5436 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5437 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5438 search_domain kind)
5439 {
5440 offset_type *vec, vec_len, vec_idx;
5441 bool global_seen = false;
5442 mapped_index &index = *dwarf2_per_objfile->index_table;
5443
5444 vec = (offset_type *) (index.constant_pool
5445 + MAYBE_SWAP (index.symbol_table[idx].vec));
5446 vec_len = MAYBE_SWAP (vec[0]);
5447 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5448 {
5449 struct dwarf2_per_cu_data *per_cu;
5450 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5451 /* This value is only valid for index versions >= 7. */
5452 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5453 gdb_index_symbol_kind symbol_kind =
5454 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5455 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5456 /* Only check the symbol attributes if they're present.
5457 Indices prior to version 7 don't record them,
5458 and indices >= 7 may elide them for certain symbols
5459 (gold does this). */
5460 int attrs_valid =
5461 (index.version >= 7
5462 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5463
5464 /* Work around gold/15646. */
5465 if (attrs_valid)
5466 {
5467 if (!is_static && global_seen)
5468 continue;
5469 if (!is_static)
5470 global_seen = true;
5471 }
5472
5473 /* Only check the symbol's kind if it has one. */
5474 if (attrs_valid)
5475 {
5476 switch (kind)
5477 {
5478 case VARIABLES_DOMAIN:
5479 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5480 continue;
5481 break;
5482 case FUNCTIONS_DOMAIN:
5483 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5484 continue;
5485 break;
5486 case TYPES_DOMAIN:
5487 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5488 continue;
5489 break;
5490 default:
5491 break;
5492 }
5493 }
5494
5495 /* Don't crash on bad data. */
5496 if (cu_index >= (dwarf2_per_objfile->n_comp_units
5497 + dwarf2_per_objfile->n_type_units))
5498 {
5499 complaint (&symfile_complaints,
5500 _(".gdb_index entry has bad CU index"
5501 " [in module %s]"),
5502 objfile_name (dwarf2_per_objfile->objfile));
5503 continue;
5504 }
5505
5506 per_cu = dw2_get_cutu (dwarf2_per_objfile, cu_index);
5507 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5508 expansion_notify);
5509 }
5510 }
5511
5512 /* If FILE_MATCHER is non-NULL, set all the
5513 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5514 that match FILE_MATCHER. */
5515
5516 static void
5517 dw_expand_symtabs_matching_file_matcher
5518 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5519 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5520 {
5521 if (file_matcher == NULL)
5522 return;
5523
5524 objfile *const objfile = dwarf2_per_objfile->objfile;
5525
5526 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5527 htab_eq_pointer,
5528 NULL, xcalloc, xfree));
5529 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5530 htab_eq_pointer,
5531 NULL, xcalloc, xfree));
5532
5533 /* The rule is CUs specify all the files, including those used by
5534 any TU, so there's no need to scan TUs here. */
5535
5536 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5537 {
5538 int j;
5539 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (dwarf2_per_objfile, i);
5540 struct quick_file_names *file_data;
5541 void **slot;
5542
5543 QUIT;
5544
5545 per_cu->v.quick->mark = 0;
5546
5547 /* We only need to look at symtabs not already expanded. */
5548 if (per_cu->v.quick->compunit_symtab)
5549 continue;
5550
5551 file_data = dw2_get_file_names (per_cu);
5552 if (file_data == NULL)
5553 continue;
5554
5555 if (htab_find (visited_not_found.get (), file_data) != NULL)
5556 continue;
5557 else if (htab_find (visited_found.get (), file_data) != NULL)
5558 {
5559 per_cu->v.quick->mark = 1;
5560 continue;
5561 }
5562
5563 for (j = 0; j < file_data->num_file_names; ++j)
5564 {
5565 const char *this_real_name;
5566
5567 if (file_matcher (file_data->file_names[j], false))
5568 {
5569 per_cu->v.quick->mark = 1;
5570 break;
5571 }
5572
5573 /* Before we invoke realpath, which can get expensive when many
5574 files are involved, do a quick comparison of the basenames. */
5575 if (!basenames_may_differ
5576 && !file_matcher (lbasename (file_data->file_names[j]),
5577 true))
5578 continue;
5579
5580 this_real_name = dw2_get_real_path (objfile, file_data, j);
5581 if (file_matcher (this_real_name, false))
5582 {
5583 per_cu->v.quick->mark = 1;
5584 break;
5585 }
5586 }
5587
5588 slot = htab_find_slot (per_cu->v.quick->mark
5589 ? visited_found.get ()
5590 : visited_not_found.get (),
5591 file_data, INSERT);
5592 *slot = file_data;
5593 }
5594 }
5595
5596 static void
5597 dw2_expand_symtabs_matching
5598 (struct objfile *objfile,
5599 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5600 const lookup_name_info &lookup_name,
5601 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5602 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5603 enum search_domain kind)
5604 {
5605 struct dwarf2_per_objfile *dwarf2_per_objfile
5606 = get_dwarf2_per_objfile (objfile);
5607
5608 /* index_table is NULL if OBJF_READNOW. */
5609 if (!dwarf2_per_objfile->index_table)
5610 return;
5611
5612 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5613
5614 mapped_index &index = *dwarf2_per_objfile->index_table;
5615
5616 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5617 symbol_matcher,
5618 kind, [&] (offset_type idx)
5619 {
5620 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5621 expansion_notify, kind);
5622 });
5623 }
5624
5625 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5626 symtab. */
5627
5628 static struct compunit_symtab *
5629 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5630 CORE_ADDR pc)
5631 {
5632 int i;
5633
5634 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5635 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5636 return cust;
5637
5638 if (cust->includes == NULL)
5639 return NULL;
5640
5641 for (i = 0; cust->includes[i]; ++i)
5642 {
5643 struct compunit_symtab *s = cust->includes[i];
5644
5645 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5646 if (s != NULL)
5647 return s;
5648 }
5649
5650 return NULL;
5651 }
5652
5653 static struct compunit_symtab *
5654 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5655 struct bound_minimal_symbol msymbol,
5656 CORE_ADDR pc,
5657 struct obj_section *section,
5658 int warn_if_readin)
5659 {
5660 struct dwarf2_per_cu_data *data;
5661 struct compunit_symtab *result;
5662
5663 if (!objfile->psymtabs_addrmap)
5664 return NULL;
5665
5666 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
5667 pc);
5668 if (!data)
5669 return NULL;
5670
5671 if (warn_if_readin && data->v.quick->compunit_symtab)
5672 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5673 paddress (get_objfile_arch (objfile), pc));
5674
5675 result
5676 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
5677 pc);
5678 gdb_assert (result != NULL);
5679 return result;
5680 }
5681
5682 static void
5683 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5684 void *data, int need_fullname)
5685 {
5686 struct dwarf2_per_objfile *dwarf2_per_objfile
5687 = get_dwarf2_per_objfile (objfile);
5688
5689 if (!dwarf2_per_objfile->filenames_cache)
5690 {
5691 dwarf2_per_objfile->filenames_cache.emplace ();
5692
5693 htab_up visited (htab_create_alloc (10,
5694 htab_hash_pointer, htab_eq_pointer,
5695 NULL, xcalloc, xfree));
5696
5697 /* The rule is CUs specify all the files, including those used
5698 by any TU, so there's no need to scan TUs here. We can
5699 ignore file names coming from already-expanded CUs. */
5700
5701 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5702 {
5703 dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
5704
5705 if (per_cu->v.quick->compunit_symtab)
5706 {
5707 void **slot = htab_find_slot (visited.get (),
5708 per_cu->v.quick->file_names,
5709 INSERT);
5710
5711 *slot = per_cu->v.quick->file_names;
5712 }
5713 }
5714
5715 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5716 {
5717 dwarf2_per_cu_data *per_cu = dw2_get_cu (dwarf2_per_objfile, i);
5718 struct quick_file_names *file_data;
5719 void **slot;
5720
5721 /* We only need to look at symtabs not already expanded. */
5722 if (per_cu->v.quick->compunit_symtab)
5723 continue;
5724
5725 file_data = dw2_get_file_names (per_cu);
5726 if (file_data == NULL)
5727 continue;
5728
5729 slot = htab_find_slot (visited.get (), file_data, INSERT);
5730 if (*slot)
5731 {
5732 /* Already visited. */
5733 continue;
5734 }
5735 *slot = file_data;
5736
5737 for (int j = 0; j < file_data->num_file_names; ++j)
5738 {
5739 const char *filename = file_data->file_names[j];
5740 dwarf2_per_objfile->filenames_cache->seen (filename);
5741 }
5742 }
5743 }
5744
5745 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5746 {
5747 gdb::unique_xmalloc_ptr<char> this_real_name;
5748
5749 if (need_fullname)
5750 this_real_name = gdb_realpath (filename);
5751 (*fun) (filename, this_real_name.get (), data);
5752 });
5753 }
5754
5755 static int
5756 dw2_has_symbols (struct objfile *objfile)
5757 {
5758 return 1;
5759 }
5760
5761 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5762 {
5763 dw2_has_symbols,
5764 dw2_find_last_source_symtab,
5765 dw2_forget_cached_source_info,
5766 dw2_map_symtabs_matching_filename,
5767 dw2_lookup_symbol,
5768 dw2_print_stats,
5769 dw2_dump,
5770 dw2_relocate,
5771 dw2_expand_symtabs_for_function,
5772 dw2_expand_all_symtabs,
5773 dw2_expand_symtabs_with_fullname,
5774 dw2_map_matching_symbols,
5775 dw2_expand_symtabs_matching,
5776 dw2_find_pc_sect_compunit_symtab,
5777 NULL,
5778 dw2_map_symbol_filenames
5779 };
5780
5781 /* DWARF-5 debug_names reader. */
5782
5783 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5784 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5785
5786 /* A helper function that reads the .debug_names section in SECTION
5787 and fills in MAP. FILENAME is the name of the file containing the
5788 section; it is used for error reporting.
5789
5790 Returns true if all went well, false otherwise. */
5791
5792 static bool
5793 read_debug_names_from_section (struct objfile *objfile,
5794 const char *filename,
5795 struct dwarf2_section_info *section,
5796 mapped_debug_names &map)
5797 {
5798 if (dwarf2_section_empty_p (section))
5799 return false;
5800
5801 /* Older elfutils strip versions could keep the section in the main
5802 executable while splitting it for the separate debug info file. */
5803 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5804 return false;
5805
5806 dwarf2_read_section (objfile, section);
5807
5808 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5809
5810 const gdb_byte *addr = section->buffer;
5811
5812 bfd *const abfd = get_section_bfd_owner (section);
5813
5814 unsigned int bytes_read;
5815 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5816 addr += bytes_read;
5817
5818 map.dwarf5_is_dwarf64 = bytes_read != 4;
5819 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5820 if (bytes_read + length != section->size)
5821 {
5822 /* There may be multiple per-CU indices. */
5823 warning (_("Section .debug_names in %s length %s does not match "
5824 "section length %s, ignoring .debug_names."),
5825 filename, plongest (bytes_read + length),
5826 pulongest (section->size));
5827 return false;
5828 }
5829
5830 /* The version number. */
5831 uint16_t version = read_2_bytes (abfd, addr);
5832 addr += 2;
5833 if (version != 5)
5834 {
5835 warning (_("Section .debug_names in %s has unsupported version %d, "
5836 "ignoring .debug_names."),
5837 filename, version);
5838 return false;
5839 }
5840
5841 /* Padding. */
5842 uint16_t padding = read_2_bytes (abfd, addr);
5843 addr += 2;
5844 if (padding != 0)
5845 {
5846 warning (_("Section .debug_names in %s has unsupported padding %d, "
5847 "ignoring .debug_names."),
5848 filename, padding);
5849 return false;
5850 }
5851
5852 /* comp_unit_count - The number of CUs in the CU list. */
5853 map.cu_count = read_4_bytes (abfd, addr);
5854 addr += 4;
5855
5856 /* local_type_unit_count - The number of TUs in the local TU
5857 list. */
5858 map.tu_count = read_4_bytes (abfd, addr);
5859 addr += 4;
5860
5861 /* foreign_type_unit_count - The number of TUs in the foreign TU
5862 list. */
5863 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5864 addr += 4;
5865 if (foreign_tu_count != 0)
5866 {
5867 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5868 "ignoring .debug_names."),
5869 filename, static_cast<unsigned long> (foreign_tu_count));
5870 return false;
5871 }
5872
5873 /* bucket_count - The number of hash buckets in the hash lookup
5874 table. */
5875 map.bucket_count = read_4_bytes (abfd, addr);
5876 addr += 4;
5877
5878 /* name_count - The number of unique names in the index. */
5879 map.name_count = read_4_bytes (abfd, addr);
5880 addr += 4;
5881
5882 /* abbrev_table_size - The size in bytes of the abbreviations
5883 table. */
5884 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5885 addr += 4;
5886
5887 /* augmentation_string_size - The size in bytes of the augmentation
5888 string. This value is rounded up to a multiple of 4. */
5889 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5890 addr += 4;
5891 map.augmentation_is_gdb = ((augmentation_string_size
5892 == sizeof (dwarf5_augmentation))
5893 && memcmp (addr, dwarf5_augmentation,
5894 sizeof (dwarf5_augmentation)) == 0);
5895 augmentation_string_size += (-augmentation_string_size) & 3;
5896 addr += augmentation_string_size;
5897
5898 /* List of CUs */
5899 map.cu_table_reordered = addr;
5900 addr += map.cu_count * map.offset_size;
5901
5902 /* List of Local TUs */
5903 map.tu_table_reordered = addr;
5904 addr += map.tu_count * map.offset_size;
5905
5906 /* Hash Lookup Table */
5907 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5908 addr += map.bucket_count * 4;
5909 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5910 addr += map.name_count * 4;
5911
5912 /* Name Table */
5913 map.name_table_string_offs_reordered = addr;
5914 addr += map.name_count * map.offset_size;
5915 map.name_table_entry_offs_reordered = addr;
5916 addr += map.name_count * map.offset_size;
5917
5918 const gdb_byte *abbrev_table_start = addr;
5919 for (;;)
5920 {
5921 unsigned int bytes_read;
5922 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5923 addr += bytes_read;
5924 if (index_num == 0)
5925 break;
5926
5927 const auto insertpair
5928 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5929 if (!insertpair.second)
5930 {
5931 warning (_("Section .debug_names in %s has duplicate index %s, "
5932 "ignoring .debug_names."),
5933 filename, pulongest (index_num));
5934 return false;
5935 }
5936 mapped_debug_names::index_val &indexval = insertpair.first->second;
5937 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5938 addr += bytes_read;
5939
5940 for (;;)
5941 {
5942 mapped_debug_names::index_val::attr attr;
5943 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5944 addr += bytes_read;
5945 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5946 addr += bytes_read;
5947 if (attr.form == DW_FORM_implicit_const)
5948 {
5949 attr.implicit_const = read_signed_leb128 (abfd, addr,
5950 &bytes_read);
5951 addr += bytes_read;
5952 }
5953 if (attr.dw_idx == 0 && attr.form == 0)
5954 break;
5955 indexval.attr_vec.push_back (std::move (attr));
5956 }
5957 }
5958 if (addr != abbrev_table_start + abbrev_table_size)
5959 {
5960 warning (_("Section .debug_names in %s has abbreviation_table "
5961 "of size %zu vs. written as %u, ignoring .debug_names."),
5962 filename, addr - abbrev_table_start, abbrev_table_size);
5963 return false;
5964 }
5965 map.entry_pool = addr;
5966
5967 return true;
5968 }
5969
5970 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5971 list. */
5972
5973 static void
5974 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5975 const mapped_debug_names &map,
5976 dwarf2_section_info &section,
5977 bool is_dwz, int base_offset)
5978 {
5979 sect_offset sect_off_prev;
5980 for (uint32_t i = 0; i <= map.cu_count; ++i)
5981 {
5982 sect_offset sect_off_next;
5983 if (i < map.cu_count)
5984 {
5985 sect_off_next
5986 = (sect_offset) (extract_unsigned_integer
5987 (map.cu_table_reordered + i * map.offset_size,
5988 map.offset_size,
5989 map.dwarf5_byte_order));
5990 }
5991 else
5992 sect_off_next = (sect_offset) section.size;
5993 if (i >= 1)
5994 {
5995 const ULONGEST length = sect_off_next - sect_off_prev;
5996 dwarf2_per_objfile->all_comp_units[base_offset + (i - 1)]
5997 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5998 sect_off_prev, length);
5999 }
6000 sect_off_prev = sect_off_next;
6001 }
6002 }
6003
6004 /* Read the CU list from the mapped index, and use it to create all
6005 the CU objects for this dwarf2_per_objfile. */
6006
6007 static void
6008 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
6009 const mapped_debug_names &map,
6010 const mapped_debug_names &dwz_map)
6011 {
6012 struct objfile *objfile = dwarf2_per_objfile->objfile;
6013
6014 dwarf2_per_objfile->n_comp_units = map.cu_count + dwz_map.cu_count;
6015 dwarf2_per_objfile->all_comp_units
6016 = XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
6017 dwarf2_per_objfile->n_comp_units);
6018
6019 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
6020 dwarf2_per_objfile->info,
6021 false /* is_dwz */,
6022 0 /* base_offset */);
6023
6024 if (dwz_map.cu_count == 0)
6025 return;
6026
6027 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
6028 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
6029 true /* is_dwz */,
6030 map.cu_count /* base_offset */);
6031 }
6032
6033 /* Read .debug_names. If everything went ok, initialize the "quick"
6034 elements of all the CUs and return true. Otherwise, return false. */
6035
6036 static bool
6037 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
6038 {
6039 mapped_debug_names local_map (dwarf2_per_objfile);
6040 mapped_debug_names dwz_map (dwarf2_per_objfile);
6041 struct objfile *objfile = dwarf2_per_objfile->objfile;
6042
6043 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
6044 &dwarf2_per_objfile->debug_names,
6045 local_map))
6046 return false;
6047
6048 /* Don't use the index if it's empty. */
6049 if (local_map.name_count == 0)
6050 return false;
6051
6052 /* If there is a .dwz file, read it so we can get its CU list as
6053 well. */
6054 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
6055 if (dwz != NULL)
6056 {
6057 if (!read_debug_names_from_section (objfile,
6058 bfd_get_filename (dwz->dwz_bfd),
6059 &dwz->debug_names, dwz_map))
6060 {
6061 warning (_("could not read '.debug_names' section from %s; skipping"),
6062 bfd_get_filename (dwz->dwz_bfd));
6063 return false;
6064 }
6065 }
6066
6067 create_cus_from_debug_names (dwarf2_per_objfile, local_map, dwz_map);
6068
6069 if (local_map.tu_count != 0)
6070 {
6071 /* We can only handle a single .debug_types when we have an
6072 index. */
6073 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
6074 return false;
6075
6076 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
6077 dwarf2_per_objfile->types, 0);
6078
6079 create_signatured_type_table_from_debug_names
6080 (dwarf2_per_objfile, local_map, section, &dwarf2_per_objfile->abbrev);
6081 }
6082
6083 create_addrmap_from_aranges (dwarf2_per_objfile,
6084 &dwarf2_per_objfile->debug_aranges);
6085
6086 dwarf2_per_objfile->debug_names_table.reset
6087 (new mapped_debug_names (dwarf2_per_objfile));
6088 *dwarf2_per_objfile->debug_names_table = std::move (local_map);
6089 dwarf2_per_objfile->using_index = 1;
6090 dwarf2_per_objfile->quick_file_names_table =
6091 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
6092
6093 return true;
6094 }
6095
6096 /* Symbol name hashing function as specified by DWARF-5. */
6097
6098 static uint32_t
6099 dwarf5_djb_hash (const char *str_)
6100 {
6101 const unsigned char *str = (const unsigned char *) str_;
6102
6103 /* Note: tolower here ignores UTF-8, which isn't fully compliant.
6104 See http://dwarfstd.org/ShowIssue.php?issue=161027.1. */
6105
6106 uint32_t hash = 5381;
6107 while (int c = *str++)
6108 hash = hash * 33 + tolower (c);
6109 return hash;
6110 }
6111
6112 /* Type used to manage iterating over all CUs looking for a symbol for
6113 .debug_names. */
6114
6115 class dw2_debug_names_iterator
6116 {
6117 public:
6118 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
6119 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
6120 dw2_debug_names_iterator (const mapped_debug_names &map,
6121 bool want_specific_block,
6122 block_enum block_index, domain_enum domain,
6123 const char *name)
6124 : m_map (map), m_want_specific_block (want_specific_block),
6125 m_block_index (block_index), m_domain (domain),
6126 m_addr (find_vec_in_debug_names (map, name))
6127 {}
6128
6129 dw2_debug_names_iterator (const mapped_debug_names &map,
6130 search_domain search, uint32_t namei)
6131 : m_map (map),
6132 m_search (search),
6133 m_addr (find_vec_in_debug_names (map, namei))
6134 {}
6135
6136 /* Return the next matching CU or NULL if there are no more. */
6137 dwarf2_per_cu_data *next ();
6138
6139 private:
6140 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
6141 const char *name);
6142 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
6143 uint32_t namei);
6144
6145 /* The internalized form of .debug_names. */
6146 const mapped_debug_names &m_map;
6147
6148 /* If true, only look for symbols that match BLOCK_INDEX. */
6149 const bool m_want_specific_block = false;
6150
6151 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
6152 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
6153 value. */
6154 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
6155
6156 /* The kind of symbol we're looking for. */
6157 const domain_enum m_domain = UNDEF_DOMAIN;
6158 const search_domain m_search = ALL_DOMAIN;
6159
6160 /* The list of CUs from the index entry of the symbol, or NULL if
6161 not found. */
6162 const gdb_byte *m_addr;
6163 };
6164
6165 const char *
6166 mapped_debug_names::namei_to_name (uint32_t namei) const
6167 {
6168 const ULONGEST namei_string_offs
6169 = extract_unsigned_integer ((name_table_string_offs_reordered
6170 + namei * offset_size),
6171 offset_size,
6172 dwarf5_byte_order);
6173 return read_indirect_string_at_offset
6174 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
6175 }
6176
6177 /* Find a slot in .debug_names for the object named NAME. If NAME is
6178 found, return pointer to its pool data. If NAME cannot be found,
6179 return NULL. */
6180
6181 const gdb_byte *
6182 dw2_debug_names_iterator::find_vec_in_debug_names
6183 (const mapped_debug_names &map, const char *name)
6184 {
6185 int (*cmp) (const char *, const char *);
6186
6187 if (current_language->la_language == language_cplus
6188 || current_language->la_language == language_fortran
6189 || current_language->la_language == language_d)
6190 {
6191 /* NAME is already canonical. Drop any qualifiers as
6192 .debug_names does not contain any. */
6193
6194 if (strchr (name, '(') != NULL)
6195 {
6196 gdb::unique_xmalloc_ptr<char> without_params
6197 = cp_remove_params (name);
6198
6199 if (without_params != NULL)
6200 {
6201 name = without_params.get();
6202 }
6203 }
6204 }
6205
6206 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
6207
6208 const uint32_t full_hash = dwarf5_djb_hash (name);
6209 uint32_t namei
6210 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
6211 (map.bucket_table_reordered
6212 + (full_hash % map.bucket_count)), 4,
6213 map.dwarf5_byte_order);
6214 if (namei == 0)
6215 return NULL;
6216 --namei;
6217 if (namei >= map.name_count)
6218 {
6219 complaint (&symfile_complaints,
6220 _("Wrong .debug_names with name index %u but name_count=%u "
6221 "[in module %s]"),
6222 namei, map.name_count,
6223 objfile_name (map.dwarf2_per_objfile->objfile));
6224 return NULL;
6225 }
6226
6227 for (;;)
6228 {
6229 const uint32_t namei_full_hash
6230 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
6231 (map.hash_table_reordered + namei), 4,
6232 map.dwarf5_byte_order);
6233 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
6234 return NULL;
6235
6236 if (full_hash == namei_full_hash)
6237 {
6238 const char *const namei_string = map.namei_to_name (namei);
6239
6240 #if 0 /* An expensive sanity check. */
6241 if (namei_full_hash != dwarf5_djb_hash (namei_string))
6242 {
6243 complaint (&symfile_complaints,
6244 _("Wrong .debug_names hash for string at index %u "
6245 "[in module %s]"),
6246 namei, objfile_name (dwarf2_per_objfile->objfile));
6247 return NULL;
6248 }
6249 #endif
6250
6251 if (cmp (namei_string, name) == 0)
6252 {
6253 const ULONGEST namei_entry_offs
6254 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
6255 + namei * map.offset_size),
6256 map.offset_size, map.dwarf5_byte_order);
6257 return map.entry_pool + namei_entry_offs;
6258 }
6259 }
6260
6261 ++namei;
6262 if (namei >= map.name_count)
6263 return NULL;
6264 }
6265 }
6266
6267 const gdb_byte *
6268 dw2_debug_names_iterator::find_vec_in_debug_names
6269 (const mapped_debug_names &map, uint32_t namei)
6270 {
6271 if (namei >= map.name_count)
6272 {
6273 complaint (&symfile_complaints,
6274 _("Wrong .debug_names with name index %u but name_count=%u "
6275 "[in module %s]"),
6276 namei, map.name_count,
6277 objfile_name (map.dwarf2_per_objfile->objfile));
6278 return NULL;
6279 }
6280
6281 const ULONGEST namei_entry_offs
6282 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
6283 + namei * map.offset_size),
6284 map.offset_size, map.dwarf5_byte_order);
6285 return map.entry_pool + namei_entry_offs;
6286 }
6287
6288 /* See dw2_debug_names_iterator. */
6289
6290 dwarf2_per_cu_data *
6291 dw2_debug_names_iterator::next ()
6292 {
6293 if (m_addr == NULL)
6294 return NULL;
6295
6296 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
6297 struct objfile *objfile = dwarf2_per_objfile->objfile;
6298 bfd *const abfd = objfile->obfd;
6299
6300 again:
6301
6302 unsigned int bytes_read;
6303 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
6304 m_addr += bytes_read;
6305 if (abbrev == 0)
6306 return NULL;
6307
6308 const auto indexval_it = m_map.abbrev_map.find (abbrev);
6309 if (indexval_it == m_map.abbrev_map.cend ())
6310 {
6311 complaint (&symfile_complaints,
6312 _("Wrong .debug_names undefined abbrev code %s "
6313 "[in module %s]"),
6314 pulongest (abbrev), objfile_name (objfile));
6315 return NULL;
6316 }
6317 const mapped_debug_names::index_val &indexval = indexval_it->second;
6318 bool have_is_static = false;
6319 bool is_static;
6320 dwarf2_per_cu_data *per_cu = NULL;
6321 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
6322 {
6323 ULONGEST ull;
6324 switch (attr.form)
6325 {
6326 case DW_FORM_implicit_const:
6327 ull = attr.implicit_const;
6328 break;
6329 case DW_FORM_flag_present:
6330 ull = 1;
6331 break;
6332 case DW_FORM_udata:
6333 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
6334 m_addr += bytes_read;
6335 break;
6336 default:
6337 complaint (&symfile_complaints,
6338 _("Unsupported .debug_names form %s [in module %s]"),
6339 dwarf_form_name (attr.form),
6340 objfile_name (objfile));
6341 return NULL;
6342 }
6343 switch (attr.dw_idx)
6344 {
6345 case DW_IDX_compile_unit:
6346 /* Don't crash on bad data. */
6347 if (ull >= dwarf2_per_objfile->n_comp_units)
6348 {
6349 complaint (&symfile_complaints,
6350 _(".debug_names entry has bad CU index %s"
6351 " [in module %s]"),
6352 pulongest (ull),
6353 objfile_name (dwarf2_per_objfile->objfile));
6354 continue;
6355 }
6356 per_cu = dw2_get_cutu (dwarf2_per_objfile, ull);
6357 break;
6358 case DW_IDX_type_unit:
6359 /* Don't crash on bad data. */
6360 if (ull >= dwarf2_per_objfile->n_type_units)
6361 {
6362 complaint (&symfile_complaints,
6363 _(".debug_names entry has bad TU index %s"
6364 " [in module %s]"),
6365 pulongest (ull),
6366 objfile_name (dwarf2_per_objfile->objfile));
6367 continue;
6368 }
6369 per_cu = dw2_get_cutu (dwarf2_per_objfile,
6370 dwarf2_per_objfile->n_comp_units + ull);
6371 break;
6372 case DW_IDX_GNU_internal:
6373 if (!m_map.augmentation_is_gdb)
6374 break;
6375 have_is_static = true;
6376 is_static = true;
6377 break;
6378 case DW_IDX_GNU_external:
6379 if (!m_map.augmentation_is_gdb)
6380 break;
6381 have_is_static = true;
6382 is_static = false;
6383 break;
6384 }
6385 }
6386
6387 /* Skip if already read in. */
6388 if (per_cu->v.quick->compunit_symtab)
6389 goto again;
6390
6391 /* Check static vs global. */
6392 if (have_is_static)
6393 {
6394 const bool want_static = m_block_index != GLOBAL_BLOCK;
6395 if (m_want_specific_block && want_static != is_static)
6396 goto again;
6397 }
6398
6399 /* Match dw2_symtab_iter_next, symbol_kind
6400 and debug_names::psymbol_tag. */
6401 switch (m_domain)
6402 {
6403 case VAR_DOMAIN:
6404 switch (indexval.dwarf_tag)
6405 {
6406 case DW_TAG_variable:
6407 case DW_TAG_subprogram:
6408 /* Some types are also in VAR_DOMAIN. */
6409 case DW_TAG_typedef:
6410 case DW_TAG_structure_type:
6411 break;
6412 default:
6413 goto again;
6414 }
6415 break;
6416 case STRUCT_DOMAIN:
6417 switch (indexval.dwarf_tag)
6418 {
6419 case DW_TAG_typedef:
6420 case DW_TAG_structure_type:
6421 break;
6422 default:
6423 goto again;
6424 }
6425 break;
6426 case LABEL_DOMAIN:
6427 switch (indexval.dwarf_tag)
6428 {
6429 case 0:
6430 case DW_TAG_variable:
6431 break;
6432 default:
6433 goto again;
6434 }
6435 break;
6436 default:
6437 break;
6438 }
6439
6440 /* Match dw2_expand_symtabs_matching, symbol_kind and
6441 debug_names::psymbol_tag. */
6442 switch (m_search)
6443 {
6444 case VARIABLES_DOMAIN:
6445 switch (indexval.dwarf_tag)
6446 {
6447 case DW_TAG_variable:
6448 break;
6449 default:
6450 goto again;
6451 }
6452 break;
6453 case FUNCTIONS_DOMAIN:
6454 switch (indexval.dwarf_tag)
6455 {
6456 case DW_TAG_subprogram:
6457 break;
6458 default:
6459 goto again;
6460 }
6461 break;
6462 case TYPES_DOMAIN:
6463 switch (indexval.dwarf_tag)
6464 {
6465 case DW_TAG_typedef:
6466 case DW_TAG_structure_type:
6467 break;
6468 default:
6469 goto again;
6470 }
6471 break;
6472 default:
6473 break;
6474 }
6475
6476 return per_cu;
6477 }
6478
6479 static struct compunit_symtab *
6480 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6481 const char *name, domain_enum domain)
6482 {
6483 const block_enum block_index = static_cast<block_enum> (block_index_int);
6484 struct dwarf2_per_objfile *dwarf2_per_objfile
6485 = get_dwarf2_per_objfile (objfile);
6486
6487 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6488 if (!mapp)
6489 {
6490 /* index is NULL if OBJF_READNOW. */
6491 return NULL;
6492 }
6493 const auto &map = *mapp;
6494
6495 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6496 block_index, domain, name);
6497
6498 struct compunit_symtab *stab_best = NULL;
6499 struct dwarf2_per_cu_data *per_cu;
6500 while ((per_cu = iter.next ()) != NULL)
6501 {
6502 struct symbol *sym, *with_opaque = NULL;
6503 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
6504 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6505 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6506
6507 sym = block_find_symbol (block, name, domain,
6508 block_find_non_opaque_type_preferred,
6509 &with_opaque);
6510
6511 /* Some caution must be observed with overloaded functions and
6512 methods, since the index will not contain any overload
6513 information (but NAME might contain it). */
6514
6515 if (sym != NULL
6516 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6517 return stab;
6518 if (with_opaque != NULL
6519 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6520 stab_best = stab;
6521
6522 /* Keep looking through other CUs. */
6523 }
6524
6525 return stab_best;
6526 }
6527
6528 /* This dumps minimal information about .debug_names. It is called
6529 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6530 uses this to verify that .debug_names has been loaded. */
6531
6532 static void
6533 dw2_debug_names_dump (struct objfile *objfile)
6534 {
6535 struct dwarf2_per_objfile *dwarf2_per_objfile
6536 = get_dwarf2_per_objfile (objfile);
6537
6538 gdb_assert (dwarf2_per_objfile->using_index);
6539 printf_filtered (".debug_names:");
6540 if (dwarf2_per_objfile->debug_names_table)
6541 printf_filtered (" exists\n");
6542 else
6543 printf_filtered (" faked for \"readnow\"\n");
6544 printf_filtered ("\n");
6545 }
6546
6547 static void
6548 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6549 const char *func_name)
6550 {
6551 struct dwarf2_per_objfile *dwarf2_per_objfile
6552 = get_dwarf2_per_objfile (objfile);
6553
6554 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6555 if (dwarf2_per_objfile->debug_names_table)
6556 {
6557 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6558
6559 /* Note: It doesn't matter what we pass for block_index here. */
6560 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6561 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6562
6563 struct dwarf2_per_cu_data *per_cu;
6564 while ((per_cu = iter.next ()) != NULL)
6565 dw2_instantiate_symtab (per_cu);
6566 }
6567 }
6568
6569 static void
6570 dw2_debug_names_expand_symtabs_matching
6571 (struct objfile *objfile,
6572 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6573 const lookup_name_info &lookup_name,
6574 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6575 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6576 enum search_domain kind)
6577 {
6578 struct dwarf2_per_objfile *dwarf2_per_objfile
6579 = get_dwarf2_per_objfile (objfile);
6580
6581 /* debug_names_table is NULL if OBJF_READNOW. */
6582 if (!dwarf2_per_objfile->debug_names_table)
6583 return;
6584
6585 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6586
6587 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6588
6589 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6590 symbol_matcher,
6591 kind, [&] (offset_type namei)
6592 {
6593 /* The name was matched, now expand corresponding CUs that were
6594 marked. */
6595 dw2_debug_names_iterator iter (map, kind, namei);
6596
6597 struct dwarf2_per_cu_data *per_cu;
6598 while ((per_cu = iter.next ()) != NULL)
6599 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6600 expansion_notify);
6601 });
6602 }
6603
6604 const struct quick_symbol_functions dwarf2_debug_names_functions =
6605 {
6606 dw2_has_symbols,
6607 dw2_find_last_source_symtab,
6608 dw2_forget_cached_source_info,
6609 dw2_map_symtabs_matching_filename,
6610 dw2_debug_names_lookup_symbol,
6611 dw2_print_stats,
6612 dw2_debug_names_dump,
6613 dw2_relocate,
6614 dw2_debug_names_expand_symtabs_for_function,
6615 dw2_expand_all_symtabs,
6616 dw2_expand_symtabs_with_fullname,
6617 dw2_map_matching_symbols,
6618 dw2_debug_names_expand_symtabs_matching,
6619 dw2_find_pc_sect_compunit_symtab,
6620 NULL,
6621 dw2_map_symbol_filenames
6622 };
6623
6624 /* See symfile.h. */
6625
6626 bool
6627 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6628 {
6629 struct dwarf2_per_objfile *dwarf2_per_objfile
6630 = get_dwarf2_per_objfile (objfile);
6631
6632 /* If we're about to read full symbols, don't bother with the
6633 indices. In this case we also don't care if some other debug
6634 format is making psymtabs, because they are all about to be
6635 expanded anyway. */
6636 if ((objfile->flags & OBJF_READNOW))
6637 {
6638 int i;
6639
6640 dwarf2_per_objfile->using_index = 1;
6641 create_all_comp_units (dwarf2_per_objfile);
6642 create_all_type_units (dwarf2_per_objfile);
6643 dwarf2_per_objfile->quick_file_names_table =
6644 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
6645
6646 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
6647 + dwarf2_per_objfile->n_type_units); ++i)
6648 {
6649 dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
6650
6651 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6652 struct dwarf2_per_cu_quick_data);
6653 }
6654
6655 /* Return 1 so that gdb sees the "quick" functions. However,
6656 these functions will be no-ops because we will have expanded
6657 all symtabs. */
6658 *index_kind = dw_index_kind::GDB_INDEX;
6659 return true;
6660 }
6661
6662 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6663 {
6664 *index_kind = dw_index_kind::DEBUG_NAMES;
6665 return true;
6666 }
6667
6668 if (dwarf2_read_index (objfile))
6669 {
6670 *index_kind = dw_index_kind::GDB_INDEX;
6671 return true;
6672 }
6673
6674 return false;
6675 }
6676
6677 \f
6678
6679 /* Build a partial symbol table. */
6680
6681 void
6682 dwarf2_build_psymtabs (struct objfile *objfile)
6683 {
6684 struct dwarf2_per_objfile *dwarf2_per_objfile
6685 = get_dwarf2_per_objfile (objfile);
6686
6687 if (objfile->global_psymbols.capacity () == 0
6688 && objfile->static_psymbols.capacity () == 0)
6689 init_psymbol_list (objfile, 1024);
6690
6691 TRY
6692 {
6693 /* This isn't really ideal: all the data we allocate on the
6694 objfile's obstack is still uselessly kept around. However,
6695 freeing it seems unsafe. */
6696 psymtab_discarder psymtabs (objfile);
6697 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6698 psymtabs.keep ();
6699 }
6700 CATCH (except, RETURN_MASK_ERROR)
6701 {
6702 exception_print (gdb_stderr, except);
6703 }
6704 END_CATCH
6705 }
6706
6707 /* Return the total length of the CU described by HEADER. */
6708
6709 static unsigned int
6710 get_cu_length (const struct comp_unit_head *header)
6711 {
6712 return header->initial_length_size + header->length;
6713 }
6714
6715 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6716
6717 static inline bool
6718 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6719 {
6720 sect_offset bottom = cu_header->sect_off;
6721 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6722
6723 return sect_off >= bottom && sect_off < top;
6724 }
6725
6726 /* Find the base address of the compilation unit for range lists and
6727 location lists. It will normally be specified by DW_AT_low_pc.
6728 In DWARF-3 draft 4, the base address could be overridden by
6729 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6730 compilation units with discontinuous ranges. */
6731
6732 static void
6733 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6734 {
6735 struct attribute *attr;
6736
6737 cu->base_known = 0;
6738 cu->base_address = 0;
6739
6740 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6741 if (attr)
6742 {
6743 cu->base_address = attr_value_as_address (attr);
6744 cu->base_known = 1;
6745 }
6746 else
6747 {
6748 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6749 if (attr)
6750 {
6751 cu->base_address = attr_value_as_address (attr);
6752 cu->base_known = 1;
6753 }
6754 }
6755 }
6756
6757 /* Read in the comp unit header information from the debug_info at info_ptr.
6758 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6759 NOTE: This leaves members offset, first_die_offset to be filled in
6760 by the caller. */
6761
6762 static const gdb_byte *
6763 read_comp_unit_head (struct comp_unit_head *cu_header,
6764 const gdb_byte *info_ptr,
6765 struct dwarf2_section_info *section,
6766 rcuh_kind section_kind)
6767 {
6768 int signed_addr;
6769 unsigned int bytes_read;
6770 const char *filename = get_section_file_name (section);
6771 bfd *abfd = get_section_bfd_owner (section);
6772
6773 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6774 cu_header->initial_length_size = bytes_read;
6775 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6776 info_ptr += bytes_read;
6777 cu_header->version = read_2_bytes (abfd, info_ptr);
6778 info_ptr += 2;
6779 if (cu_header->version < 5)
6780 switch (section_kind)
6781 {
6782 case rcuh_kind::COMPILE:
6783 cu_header->unit_type = DW_UT_compile;
6784 break;
6785 case rcuh_kind::TYPE:
6786 cu_header->unit_type = DW_UT_type;
6787 break;
6788 default:
6789 internal_error (__FILE__, __LINE__,
6790 _("read_comp_unit_head: invalid section_kind"));
6791 }
6792 else
6793 {
6794 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6795 (read_1_byte (abfd, info_ptr));
6796 info_ptr += 1;
6797 switch (cu_header->unit_type)
6798 {
6799 case DW_UT_compile:
6800 if (section_kind != rcuh_kind::COMPILE)
6801 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6802 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6803 filename);
6804 break;
6805 case DW_UT_type:
6806 section_kind = rcuh_kind::TYPE;
6807 break;
6808 default:
6809 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6810 "(is %d, should be %d or %d) [in module %s]"),
6811 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6812 }
6813
6814 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6815 info_ptr += 1;
6816 }
6817 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6818 cu_header,
6819 &bytes_read);
6820 info_ptr += bytes_read;
6821 if (cu_header->version < 5)
6822 {
6823 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6824 info_ptr += 1;
6825 }
6826 signed_addr = bfd_get_sign_extend_vma (abfd);
6827 if (signed_addr < 0)
6828 internal_error (__FILE__, __LINE__,
6829 _("read_comp_unit_head: dwarf from non elf file"));
6830 cu_header->signed_addr_p = signed_addr;
6831
6832 if (section_kind == rcuh_kind::TYPE)
6833 {
6834 LONGEST type_offset;
6835
6836 cu_header->signature = read_8_bytes (abfd, info_ptr);
6837 info_ptr += 8;
6838
6839 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6840 info_ptr += bytes_read;
6841 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6842 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6843 error (_("Dwarf Error: Too big type_offset in compilation unit "
6844 "header (is %s) [in module %s]"), plongest (type_offset),
6845 filename);
6846 }
6847
6848 return info_ptr;
6849 }
6850
6851 /* Helper function that returns the proper abbrev section for
6852 THIS_CU. */
6853
6854 static struct dwarf2_section_info *
6855 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6856 {
6857 struct dwarf2_section_info *abbrev;
6858 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6859
6860 if (this_cu->is_dwz)
6861 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6862 else
6863 abbrev = &dwarf2_per_objfile->abbrev;
6864
6865 return abbrev;
6866 }
6867
6868 /* Subroutine of read_and_check_comp_unit_head and
6869 read_and_check_type_unit_head to simplify them.
6870 Perform various error checking on the header. */
6871
6872 static void
6873 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6874 struct comp_unit_head *header,
6875 struct dwarf2_section_info *section,
6876 struct dwarf2_section_info *abbrev_section)
6877 {
6878 const char *filename = get_section_file_name (section);
6879
6880 if (header->version < 2 || header->version > 5)
6881 error (_("Dwarf Error: wrong version in compilation unit header "
6882 "(is %d, should be 2, 3, 4 or 5) [in module %s]"), header->version,
6883 filename);
6884
6885 if (to_underlying (header->abbrev_sect_off)
6886 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6887 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6888 "(offset %s + 6) [in module %s]"),
6889 sect_offset_str (header->abbrev_sect_off),
6890 sect_offset_str (header->sect_off),
6891 filename);
6892
6893 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6894 avoid potential 32-bit overflow. */
6895 if (((ULONGEST) header->sect_off + get_cu_length (header))
6896 > section->size)
6897 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6898 "(offset %s + 0) [in module %s]"),
6899 header->length, sect_offset_str (header->sect_off),
6900 filename);
6901 }
6902
6903 /* Read in a CU/TU header and perform some basic error checking.
6904 The contents of the header are stored in HEADER.
6905 The result is a pointer to the start of the first DIE. */
6906
6907 static const gdb_byte *
6908 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6909 struct comp_unit_head *header,
6910 struct dwarf2_section_info *section,
6911 struct dwarf2_section_info *abbrev_section,
6912 const gdb_byte *info_ptr,
6913 rcuh_kind section_kind)
6914 {
6915 const gdb_byte *beg_of_comp_unit = info_ptr;
6916
6917 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6918
6919 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6920
6921 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6922
6923 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6924 abbrev_section);
6925
6926 return info_ptr;
6927 }
6928
6929 /* Fetch the abbreviation table offset from a comp or type unit header. */
6930
6931 static sect_offset
6932 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6933 struct dwarf2_section_info *section,
6934 sect_offset sect_off)
6935 {
6936 bfd *abfd = get_section_bfd_owner (section);
6937 const gdb_byte *info_ptr;
6938 unsigned int initial_length_size, offset_size;
6939 uint16_t version;
6940
6941 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6942 info_ptr = section->buffer + to_underlying (sect_off);
6943 read_initial_length (abfd, info_ptr, &initial_length_size);
6944 offset_size = initial_length_size == 4 ? 4 : 8;
6945 info_ptr += initial_length_size;
6946
6947 version = read_2_bytes (abfd, info_ptr);
6948 info_ptr += 2;
6949 if (version >= 5)
6950 {
6951 /* Skip unit type and address size. */
6952 info_ptr += 2;
6953 }
6954
6955 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6956 }
6957
6958 /* Allocate a new partial symtab for file named NAME and mark this new
6959 partial symtab as being an include of PST. */
6960
6961 static void
6962 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6963 struct objfile *objfile)
6964 {
6965 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6966
6967 if (!IS_ABSOLUTE_PATH (subpst->filename))
6968 {
6969 /* It shares objfile->objfile_obstack. */
6970 subpst->dirname = pst->dirname;
6971 }
6972
6973 subpst->textlow = 0;
6974 subpst->texthigh = 0;
6975
6976 subpst->dependencies
6977 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
6978 subpst->dependencies[0] = pst;
6979 subpst->number_of_dependencies = 1;
6980
6981 subpst->globals_offset = 0;
6982 subpst->n_global_syms = 0;
6983 subpst->statics_offset = 0;
6984 subpst->n_static_syms = 0;
6985 subpst->compunit_symtab = NULL;
6986 subpst->read_symtab = pst->read_symtab;
6987 subpst->readin = 0;
6988
6989 /* No private part is necessary for include psymtabs. This property
6990 can be used to differentiate between such include psymtabs and
6991 the regular ones. */
6992 subpst->read_symtab_private = NULL;
6993 }
6994
6995 /* Read the Line Number Program data and extract the list of files
6996 included by the source file represented by PST. Build an include
6997 partial symtab for each of these included files. */
6998
6999 static void
7000 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
7001 struct die_info *die,
7002 struct partial_symtab *pst)
7003 {
7004 line_header_up lh;
7005 struct attribute *attr;
7006
7007 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
7008 if (attr)
7009 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
7010 if (lh == NULL)
7011 return; /* No linetable, so no includes. */
7012
7013 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
7014 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst, pst->textlow, 1);
7015 }
7016
7017 static hashval_t
7018 hash_signatured_type (const void *item)
7019 {
7020 const struct signatured_type *sig_type
7021 = (const struct signatured_type *) item;
7022
7023 /* This drops the top 32 bits of the signature, but is ok for a hash. */
7024 return sig_type->signature;
7025 }
7026
7027 static int
7028 eq_signatured_type (const void *item_lhs, const void *item_rhs)
7029 {
7030 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
7031 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
7032
7033 return lhs->signature == rhs->signature;
7034 }
7035
7036 /* Allocate a hash table for signatured types. */
7037
7038 static htab_t
7039 allocate_signatured_type_table (struct objfile *objfile)
7040 {
7041 return htab_create_alloc_ex (41,
7042 hash_signatured_type,
7043 eq_signatured_type,
7044 NULL,
7045 &objfile->objfile_obstack,
7046 hashtab_obstack_allocate,
7047 dummy_obstack_deallocate);
7048 }
7049
7050 /* A helper function to add a signatured type CU to a table. */
7051
7052 static int
7053 add_signatured_type_cu_to_table (void **slot, void *datum)
7054 {
7055 struct signatured_type *sigt = (struct signatured_type *) *slot;
7056 struct signatured_type ***datap = (struct signatured_type ***) datum;
7057
7058 **datap = sigt;
7059 ++*datap;
7060
7061 return 1;
7062 }
7063
7064 /* A helper for create_debug_types_hash_table. Read types from SECTION
7065 and fill them into TYPES_HTAB. It will process only type units,
7066 therefore DW_UT_type. */
7067
7068 static void
7069 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
7070 struct dwo_file *dwo_file,
7071 dwarf2_section_info *section, htab_t &types_htab,
7072 rcuh_kind section_kind)
7073 {
7074 struct objfile *objfile = dwarf2_per_objfile->objfile;
7075 struct dwarf2_section_info *abbrev_section;
7076 bfd *abfd;
7077 const gdb_byte *info_ptr, *end_ptr;
7078
7079 abbrev_section = (dwo_file != NULL
7080 ? &dwo_file->sections.abbrev
7081 : &dwarf2_per_objfile->abbrev);
7082
7083 if (dwarf_read_debug)
7084 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
7085 get_section_name (section),
7086 get_section_file_name (abbrev_section));
7087
7088 dwarf2_read_section (objfile, section);
7089 info_ptr = section->buffer;
7090
7091 if (info_ptr == NULL)
7092 return;
7093
7094 /* We can't set abfd until now because the section may be empty or
7095 not present, in which case the bfd is unknown. */
7096 abfd = get_section_bfd_owner (section);
7097
7098 /* We don't use init_cutu_and_read_dies_simple, or some such, here
7099 because we don't need to read any dies: the signature is in the
7100 header. */
7101
7102 end_ptr = info_ptr + section->size;
7103 while (info_ptr < end_ptr)
7104 {
7105 struct signatured_type *sig_type;
7106 struct dwo_unit *dwo_tu;
7107 void **slot;
7108 const gdb_byte *ptr = info_ptr;
7109 struct comp_unit_head header;
7110 unsigned int length;
7111
7112 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
7113
7114 /* Initialize it due to a false compiler warning. */
7115 header.signature = -1;
7116 header.type_cu_offset_in_tu = (cu_offset) -1;
7117
7118 /* We need to read the type's signature in order to build the hash
7119 table, but we don't need anything else just yet. */
7120
7121 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
7122 abbrev_section, ptr, section_kind);
7123
7124 length = get_cu_length (&header);
7125
7126 /* Skip dummy type units. */
7127 if (ptr >= info_ptr + length
7128 || peek_abbrev_code (abfd, ptr) == 0
7129 || header.unit_type != DW_UT_type)
7130 {
7131 info_ptr += length;
7132 continue;
7133 }
7134
7135 if (types_htab == NULL)
7136 {
7137 if (dwo_file)
7138 types_htab = allocate_dwo_unit_table (objfile);
7139 else
7140 types_htab = allocate_signatured_type_table (objfile);
7141 }
7142
7143 if (dwo_file)
7144 {
7145 sig_type = NULL;
7146 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7147 struct dwo_unit);
7148 dwo_tu->dwo_file = dwo_file;
7149 dwo_tu->signature = header.signature;
7150 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
7151 dwo_tu->section = section;
7152 dwo_tu->sect_off = sect_off;
7153 dwo_tu->length = length;
7154 }
7155 else
7156 {
7157 /* N.B.: type_offset is not usable if this type uses a DWO file.
7158 The real type_offset is in the DWO file. */
7159 dwo_tu = NULL;
7160 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7161 struct signatured_type);
7162 sig_type->signature = header.signature;
7163 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
7164 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
7165 sig_type->per_cu.is_debug_types = 1;
7166 sig_type->per_cu.section = section;
7167 sig_type->per_cu.sect_off = sect_off;
7168 sig_type->per_cu.length = length;
7169 }
7170
7171 slot = htab_find_slot (types_htab,
7172 dwo_file ? (void*) dwo_tu : (void *) sig_type,
7173 INSERT);
7174 gdb_assert (slot != NULL);
7175 if (*slot != NULL)
7176 {
7177 sect_offset dup_sect_off;
7178
7179 if (dwo_file)
7180 {
7181 const struct dwo_unit *dup_tu
7182 = (const struct dwo_unit *) *slot;
7183
7184 dup_sect_off = dup_tu->sect_off;
7185 }
7186 else
7187 {
7188 const struct signatured_type *dup_tu
7189 = (const struct signatured_type *) *slot;
7190
7191 dup_sect_off = dup_tu->per_cu.sect_off;
7192 }
7193
7194 complaint (&symfile_complaints,
7195 _("debug type entry at offset %s is duplicate to"
7196 " the entry at offset %s, signature %s"),
7197 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
7198 hex_string (header.signature));
7199 }
7200 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
7201
7202 if (dwarf_read_debug > 1)
7203 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
7204 sect_offset_str (sect_off),
7205 hex_string (header.signature));
7206
7207 info_ptr += length;
7208 }
7209 }
7210
7211 /* Create the hash table of all entries in the .debug_types
7212 (or .debug_types.dwo) section(s).
7213 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
7214 otherwise it is NULL.
7215
7216 The result is a pointer to the hash table or NULL if there are no types.
7217
7218 Note: This function processes DWO files only, not DWP files. */
7219
7220 static void
7221 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
7222 struct dwo_file *dwo_file,
7223 VEC (dwarf2_section_info_def) *types,
7224 htab_t &types_htab)
7225 {
7226 int ix;
7227 struct dwarf2_section_info *section;
7228
7229 if (VEC_empty (dwarf2_section_info_def, types))
7230 return;
7231
7232 for (ix = 0;
7233 VEC_iterate (dwarf2_section_info_def, types, ix, section);
7234 ++ix)
7235 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
7236 types_htab, rcuh_kind::TYPE);
7237 }
7238
7239 /* Create the hash table of all entries in the .debug_types section,
7240 and initialize all_type_units.
7241 The result is zero if there is an error (e.g. missing .debug_types section),
7242 otherwise non-zero. */
7243
7244 static int
7245 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
7246 {
7247 htab_t types_htab = NULL;
7248 struct signatured_type **iter;
7249
7250 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
7251 &dwarf2_per_objfile->info, types_htab,
7252 rcuh_kind::COMPILE);
7253 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
7254 dwarf2_per_objfile->types, types_htab);
7255 if (types_htab == NULL)
7256 {
7257 dwarf2_per_objfile->signatured_types = NULL;
7258 return 0;
7259 }
7260
7261 dwarf2_per_objfile->signatured_types = types_htab;
7262
7263 dwarf2_per_objfile->n_type_units
7264 = dwarf2_per_objfile->n_allocated_type_units
7265 = htab_elements (types_htab);
7266 dwarf2_per_objfile->all_type_units =
7267 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
7268 iter = &dwarf2_per_objfile->all_type_units[0];
7269 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
7270 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
7271 == dwarf2_per_objfile->n_type_units);
7272
7273 return 1;
7274 }
7275
7276 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
7277 If SLOT is non-NULL, it is the entry to use in the hash table.
7278 Otherwise we find one. */
7279
7280 static struct signatured_type *
7281 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
7282 void **slot)
7283 {
7284 struct objfile *objfile = dwarf2_per_objfile->objfile;
7285 int n_type_units = dwarf2_per_objfile->n_type_units;
7286 struct signatured_type *sig_type;
7287
7288 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
7289 ++n_type_units;
7290 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
7291 {
7292 if (dwarf2_per_objfile->n_allocated_type_units == 0)
7293 dwarf2_per_objfile->n_allocated_type_units = 1;
7294 dwarf2_per_objfile->n_allocated_type_units *= 2;
7295 dwarf2_per_objfile->all_type_units
7296 = XRESIZEVEC (struct signatured_type *,
7297 dwarf2_per_objfile->all_type_units,
7298 dwarf2_per_objfile->n_allocated_type_units);
7299 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
7300 }
7301 dwarf2_per_objfile->n_type_units = n_type_units;
7302
7303 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7304 struct signatured_type);
7305 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
7306 sig_type->signature = sig;
7307 sig_type->per_cu.is_debug_types = 1;
7308 if (dwarf2_per_objfile->using_index)
7309 {
7310 sig_type->per_cu.v.quick =
7311 OBSTACK_ZALLOC (&objfile->objfile_obstack,
7312 struct dwarf2_per_cu_quick_data);
7313 }
7314
7315 if (slot == NULL)
7316 {
7317 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7318 sig_type, INSERT);
7319 }
7320 gdb_assert (*slot == NULL);
7321 *slot = sig_type;
7322 /* The rest of sig_type must be filled in by the caller. */
7323 return sig_type;
7324 }
7325
7326 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
7327 Fill in SIG_ENTRY with DWO_ENTRY. */
7328
7329 static void
7330 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
7331 struct signatured_type *sig_entry,
7332 struct dwo_unit *dwo_entry)
7333 {
7334 /* Make sure we're not clobbering something we don't expect to. */
7335 gdb_assert (! sig_entry->per_cu.queued);
7336 gdb_assert (sig_entry->per_cu.cu == NULL);
7337 if (dwarf2_per_objfile->using_index)
7338 {
7339 gdb_assert (sig_entry->per_cu.v.quick != NULL);
7340 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
7341 }
7342 else
7343 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
7344 gdb_assert (sig_entry->signature == dwo_entry->signature);
7345 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
7346 gdb_assert (sig_entry->type_unit_group == NULL);
7347 gdb_assert (sig_entry->dwo_unit == NULL);
7348
7349 sig_entry->per_cu.section = dwo_entry->section;
7350 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
7351 sig_entry->per_cu.length = dwo_entry->length;
7352 sig_entry->per_cu.reading_dwo_directly = 1;
7353 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
7354 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
7355 sig_entry->dwo_unit = dwo_entry;
7356 }
7357
7358 /* Subroutine of lookup_signatured_type.
7359 If we haven't read the TU yet, create the signatured_type data structure
7360 for a TU to be read in directly from a DWO file, bypassing the stub.
7361 This is the "Stay in DWO Optimization": When there is no DWP file and we're
7362 using .gdb_index, then when reading a CU we want to stay in the DWO file
7363 containing that CU. Otherwise we could end up reading several other DWO
7364 files (due to comdat folding) to process the transitive closure of all the
7365 mentioned TUs, and that can be slow. The current DWO file will have every
7366 type signature that it needs.
7367 We only do this for .gdb_index because in the psymtab case we already have
7368 to read all the DWOs to build the type unit groups. */
7369
7370 static struct signatured_type *
7371 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7372 {
7373 struct dwarf2_per_objfile *dwarf2_per_objfile
7374 = cu->per_cu->dwarf2_per_objfile;
7375 struct objfile *objfile = dwarf2_per_objfile->objfile;
7376 struct dwo_file *dwo_file;
7377 struct dwo_unit find_dwo_entry, *dwo_entry;
7378 struct signatured_type find_sig_entry, *sig_entry;
7379 void **slot;
7380
7381 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7382
7383 /* If TU skeletons have been removed then we may not have read in any
7384 TUs yet. */
7385 if (dwarf2_per_objfile->signatured_types == NULL)
7386 {
7387 dwarf2_per_objfile->signatured_types
7388 = allocate_signatured_type_table (objfile);
7389 }
7390
7391 /* We only ever need to read in one copy of a signatured type.
7392 Use the global signatured_types array to do our own comdat-folding
7393 of types. If this is the first time we're reading this TU, and
7394 the TU has an entry in .gdb_index, replace the recorded data from
7395 .gdb_index with this TU. */
7396
7397 find_sig_entry.signature = sig;
7398 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7399 &find_sig_entry, INSERT);
7400 sig_entry = (struct signatured_type *) *slot;
7401
7402 /* We can get here with the TU already read, *or* in the process of being
7403 read. Don't reassign the global entry to point to this DWO if that's
7404 the case. Also note that if the TU is already being read, it may not
7405 have come from a DWO, the program may be a mix of Fission-compiled
7406 code and non-Fission-compiled code. */
7407
7408 /* Have we already tried to read this TU?
7409 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7410 needn't exist in the global table yet). */
7411 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
7412 return sig_entry;
7413
7414 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
7415 dwo_unit of the TU itself. */
7416 dwo_file = cu->dwo_unit->dwo_file;
7417
7418 /* Ok, this is the first time we're reading this TU. */
7419 if (dwo_file->tus == NULL)
7420 return NULL;
7421 find_dwo_entry.signature = sig;
7422 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
7423 if (dwo_entry == NULL)
7424 return NULL;
7425
7426 /* If the global table doesn't have an entry for this TU, add one. */
7427 if (sig_entry == NULL)
7428 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7429
7430 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7431 sig_entry->per_cu.tu_read = 1;
7432 return sig_entry;
7433 }
7434
7435 /* Subroutine of lookup_signatured_type.
7436 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
7437 then try the DWP file. If the TU stub (skeleton) has been removed then
7438 it won't be in .gdb_index. */
7439
7440 static struct signatured_type *
7441 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7442 {
7443 struct dwarf2_per_objfile *dwarf2_per_objfile
7444 = cu->per_cu->dwarf2_per_objfile;
7445 struct objfile *objfile = dwarf2_per_objfile->objfile;
7446 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
7447 struct dwo_unit *dwo_entry;
7448 struct signatured_type find_sig_entry, *sig_entry;
7449 void **slot;
7450
7451 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7452 gdb_assert (dwp_file != NULL);
7453
7454 /* If TU skeletons have been removed then we may not have read in any
7455 TUs yet. */
7456 if (dwarf2_per_objfile->signatured_types == NULL)
7457 {
7458 dwarf2_per_objfile->signatured_types
7459 = allocate_signatured_type_table (objfile);
7460 }
7461
7462 find_sig_entry.signature = sig;
7463 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7464 &find_sig_entry, INSERT);
7465 sig_entry = (struct signatured_type *) *slot;
7466
7467 /* Have we already tried to read this TU?
7468 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7469 needn't exist in the global table yet). */
7470 if (sig_entry != NULL)
7471 return sig_entry;
7472
7473 if (dwp_file->tus == NULL)
7474 return NULL;
7475 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7476 sig, 1 /* is_debug_types */);
7477 if (dwo_entry == NULL)
7478 return NULL;
7479
7480 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7481 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7482
7483 return sig_entry;
7484 }
7485
7486 /* Lookup a signature based type for DW_FORM_ref_sig8.
7487 Returns NULL if signature SIG is not present in the table.
7488 It is up to the caller to complain about this. */
7489
7490 static struct signatured_type *
7491 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7492 {
7493 struct dwarf2_per_objfile *dwarf2_per_objfile
7494 = cu->per_cu->dwarf2_per_objfile;
7495
7496 if (cu->dwo_unit
7497 && dwarf2_per_objfile->using_index)
7498 {
7499 /* We're in a DWO/DWP file, and we're using .gdb_index.
7500 These cases require special processing. */
7501 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7502 return lookup_dwo_signatured_type (cu, sig);
7503 else
7504 return lookup_dwp_signatured_type (cu, sig);
7505 }
7506 else
7507 {
7508 struct signatured_type find_entry, *entry;
7509
7510 if (dwarf2_per_objfile->signatured_types == NULL)
7511 return NULL;
7512 find_entry.signature = sig;
7513 entry = ((struct signatured_type *)
7514 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7515 return entry;
7516 }
7517 }
7518 \f
7519 /* Low level DIE reading support. */
7520
7521 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7522
7523 static void
7524 init_cu_die_reader (struct die_reader_specs *reader,
7525 struct dwarf2_cu *cu,
7526 struct dwarf2_section_info *section,
7527 struct dwo_file *dwo_file,
7528 struct abbrev_table *abbrev_table)
7529 {
7530 gdb_assert (section->readin && section->buffer != NULL);
7531 reader->abfd = get_section_bfd_owner (section);
7532 reader->cu = cu;
7533 reader->dwo_file = dwo_file;
7534 reader->die_section = section;
7535 reader->buffer = section->buffer;
7536 reader->buffer_end = section->buffer + section->size;
7537 reader->comp_dir = NULL;
7538 reader->abbrev_table = abbrev_table;
7539 }
7540
7541 /* Subroutine of init_cutu_and_read_dies to simplify it.
7542 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7543 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7544 already.
7545
7546 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7547 from it to the DIE in the DWO. If NULL we are skipping the stub.
7548 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7549 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7550 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7551 STUB_COMP_DIR may be non-NULL.
7552 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7553 are filled in with the info of the DIE from the DWO file.
7554 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7555 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7556 kept around for at least as long as *RESULT_READER.
7557
7558 The result is non-zero if a valid (non-dummy) DIE was found. */
7559
7560 static int
7561 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7562 struct dwo_unit *dwo_unit,
7563 struct die_info *stub_comp_unit_die,
7564 const char *stub_comp_dir,
7565 struct die_reader_specs *result_reader,
7566 const gdb_byte **result_info_ptr,
7567 struct die_info **result_comp_unit_die,
7568 int *result_has_children,
7569 abbrev_table_up *result_dwo_abbrev_table)
7570 {
7571 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7572 struct objfile *objfile = dwarf2_per_objfile->objfile;
7573 struct dwarf2_cu *cu = this_cu->cu;
7574 bfd *abfd;
7575 const gdb_byte *begin_info_ptr, *info_ptr;
7576 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7577 int i,num_extra_attrs;
7578 struct dwarf2_section_info *dwo_abbrev_section;
7579 struct attribute *attr;
7580 struct die_info *comp_unit_die;
7581
7582 /* At most one of these may be provided. */
7583 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7584
7585 /* These attributes aren't processed until later:
7586 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7587 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7588 referenced later. However, these attributes are found in the stub
7589 which we won't have later. In order to not impose this complication
7590 on the rest of the code, we read them here and copy them to the
7591 DWO CU/TU die. */
7592
7593 stmt_list = NULL;
7594 low_pc = NULL;
7595 high_pc = NULL;
7596 ranges = NULL;
7597 comp_dir = NULL;
7598
7599 if (stub_comp_unit_die != NULL)
7600 {
7601 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7602 DWO file. */
7603 if (! this_cu->is_debug_types)
7604 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7605 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7606 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7607 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7608 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7609
7610 /* There should be a DW_AT_addr_base attribute here (if needed).
7611 We need the value before we can process DW_FORM_GNU_addr_index. */
7612 cu->addr_base = 0;
7613 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7614 if (attr)
7615 cu->addr_base = DW_UNSND (attr);
7616
7617 /* There should be a DW_AT_ranges_base attribute here (if needed).
7618 We need the value before we can process DW_AT_ranges. */
7619 cu->ranges_base = 0;
7620 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7621 if (attr)
7622 cu->ranges_base = DW_UNSND (attr);
7623 }
7624 else if (stub_comp_dir != NULL)
7625 {
7626 /* Reconstruct the comp_dir attribute to simplify the code below. */
7627 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7628 comp_dir->name = DW_AT_comp_dir;
7629 comp_dir->form = DW_FORM_string;
7630 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7631 DW_STRING (comp_dir) = stub_comp_dir;
7632 }
7633
7634 /* Set up for reading the DWO CU/TU. */
7635 cu->dwo_unit = dwo_unit;
7636 dwarf2_section_info *section = dwo_unit->section;
7637 dwarf2_read_section (objfile, section);
7638 abfd = get_section_bfd_owner (section);
7639 begin_info_ptr = info_ptr = (section->buffer
7640 + to_underlying (dwo_unit->sect_off));
7641 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7642
7643 if (this_cu->is_debug_types)
7644 {
7645 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7646
7647 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7648 &cu->header, section,
7649 dwo_abbrev_section,
7650 info_ptr, rcuh_kind::TYPE);
7651 /* This is not an assert because it can be caused by bad debug info. */
7652 if (sig_type->signature != cu->header.signature)
7653 {
7654 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7655 " TU at offset %s [in module %s]"),
7656 hex_string (sig_type->signature),
7657 hex_string (cu->header.signature),
7658 sect_offset_str (dwo_unit->sect_off),
7659 bfd_get_filename (abfd));
7660 }
7661 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7662 /* For DWOs coming from DWP files, we don't know the CU length
7663 nor the type's offset in the TU until now. */
7664 dwo_unit->length = get_cu_length (&cu->header);
7665 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7666
7667 /* Establish the type offset that can be used to lookup the type.
7668 For DWO files, we don't know it until now. */
7669 sig_type->type_offset_in_section
7670 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7671 }
7672 else
7673 {
7674 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7675 &cu->header, section,
7676 dwo_abbrev_section,
7677 info_ptr, rcuh_kind::COMPILE);
7678 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7679 /* For DWOs coming from DWP files, we don't know the CU length
7680 until now. */
7681 dwo_unit->length = get_cu_length (&cu->header);
7682 }
7683
7684 *result_dwo_abbrev_table
7685 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7686 cu->header.abbrev_sect_off);
7687 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7688 result_dwo_abbrev_table->get ());
7689
7690 /* Read in the die, but leave space to copy over the attributes
7691 from the stub. This has the benefit of simplifying the rest of
7692 the code - all the work to maintain the illusion of a single
7693 DW_TAG_{compile,type}_unit DIE is done here. */
7694 num_extra_attrs = ((stmt_list != NULL)
7695 + (low_pc != NULL)
7696 + (high_pc != NULL)
7697 + (ranges != NULL)
7698 + (comp_dir != NULL));
7699 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7700 result_has_children, num_extra_attrs);
7701
7702 /* Copy over the attributes from the stub to the DIE we just read in. */
7703 comp_unit_die = *result_comp_unit_die;
7704 i = comp_unit_die->num_attrs;
7705 if (stmt_list != NULL)
7706 comp_unit_die->attrs[i++] = *stmt_list;
7707 if (low_pc != NULL)
7708 comp_unit_die->attrs[i++] = *low_pc;
7709 if (high_pc != NULL)
7710 comp_unit_die->attrs[i++] = *high_pc;
7711 if (ranges != NULL)
7712 comp_unit_die->attrs[i++] = *ranges;
7713 if (comp_dir != NULL)
7714 comp_unit_die->attrs[i++] = *comp_dir;
7715 comp_unit_die->num_attrs += num_extra_attrs;
7716
7717 if (dwarf_die_debug)
7718 {
7719 fprintf_unfiltered (gdb_stdlog,
7720 "Read die from %s@0x%x of %s:\n",
7721 get_section_name (section),
7722 (unsigned) (begin_info_ptr - section->buffer),
7723 bfd_get_filename (abfd));
7724 dump_die (comp_unit_die, dwarf_die_debug);
7725 }
7726
7727 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7728 TUs by skipping the stub and going directly to the entry in the DWO file.
7729 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7730 to get it via circuitous means. Blech. */
7731 if (comp_dir != NULL)
7732 result_reader->comp_dir = DW_STRING (comp_dir);
7733
7734 /* Skip dummy compilation units. */
7735 if (info_ptr >= begin_info_ptr + dwo_unit->length
7736 || peek_abbrev_code (abfd, info_ptr) == 0)
7737 return 0;
7738
7739 *result_info_ptr = info_ptr;
7740 return 1;
7741 }
7742
7743 /* Subroutine of init_cutu_and_read_dies to simplify it.
7744 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7745 Returns NULL if the specified DWO unit cannot be found. */
7746
7747 static struct dwo_unit *
7748 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7749 struct die_info *comp_unit_die)
7750 {
7751 struct dwarf2_cu *cu = this_cu->cu;
7752 ULONGEST signature;
7753 struct dwo_unit *dwo_unit;
7754 const char *comp_dir, *dwo_name;
7755
7756 gdb_assert (cu != NULL);
7757
7758 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7759 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7760 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7761
7762 if (this_cu->is_debug_types)
7763 {
7764 struct signatured_type *sig_type;
7765
7766 /* Since this_cu is the first member of struct signatured_type,
7767 we can go from a pointer to one to a pointer to the other. */
7768 sig_type = (struct signatured_type *) this_cu;
7769 signature = sig_type->signature;
7770 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7771 }
7772 else
7773 {
7774 struct attribute *attr;
7775
7776 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7777 if (! attr)
7778 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7779 " [in module %s]"),
7780 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7781 signature = DW_UNSND (attr);
7782 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7783 signature);
7784 }
7785
7786 return dwo_unit;
7787 }
7788
7789 /* Subroutine of init_cutu_and_read_dies to simplify it.
7790 See it for a description of the parameters.
7791 Read a TU directly from a DWO file, bypassing the stub. */
7792
7793 static void
7794 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7795 int use_existing_cu, int keep,
7796 die_reader_func_ftype *die_reader_func,
7797 void *data)
7798 {
7799 std::unique_ptr<dwarf2_cu> new_cu;
7800 struct signatured_type *sig_type;
7801 struct die_reader_specs reader;
7802 const gdb_byte *info_ptr;
7803 struct die_info *comp_unit_die;
7804 int has_children;
7805 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7806
7807 /* Verify we can do the following downcast, and that we have the
7808 data we need. */
7809 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7810 sig_type = (struct signatured_type *) this_cu;
7811 gdb_assert (sig_type->dwo_unit != NULL);
7812
7813 if (use_existing_cu && this_cu->cu != NULL)
7814 {
7815 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7816 /* There's no need to do the rereading_dwo_cu handling that
7817 init_cutu_and_read_dies does since we don't read the stub. */
7818 }
7819 else
7820 {
7821 /* If !use_existing_cu, this_cu->cu must be NULL. */
7822 gdb_assert (this_cu->cu == NULL);
7823 new_cu.reset (new dwarf2_cu (this_cu));
7824 }
7825
7826 /* A future optimization, if needed, would be to use an existing
7827 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7828 could share abbrev tables. */
7829
7830 /* The abbreviation table used by READER, this must live at least as long as
7831 READER. */
7832 abbrev_table_up dwo_abbrev_table;
7833
7834 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7835 NULL /* stub_comp_unit_die */,
7836 sig_type->dwo_unit->dwo_file->comp_dir,
7837 &reader, &info_ptr,
7838 &comp_unit_die, &has_children,
7839 &dwo_abbrev_table) == 0)
7840 {
7841 /* Dummy die. */
7842 return;
7843 }
7844
7845 /* All the "real" work is done here. */
7846 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7847
7848 /* This duplicates the code in init_cutu_and_read_dies,
7849 but the alternative is making the latter more complex.
7850 This function is only for the special case of using DWO files directly:
7851 no point in overly complicating the general case just to handle this. */
7852 if (new_cu != NULL && keep)
7853 {
7854 /* Link this CU into read_in_chain. */
7855 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7856 dwarf2_per_objfile->read_in_chain = this_cu;
7857 /* The chain owns it now. */
7858 new_cu.release ();
7859 }
7860 }
7861
7862 /* Initialize a CU (or TU) and read its DIEs.
7863 If the CU defers to a DWO file, read the DWO file as well.
7864
7865 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7866 Otherwise the table specified in the comp unit header is read in and used.
7867 This is an optimization for when we already have the abbrev table.
7868
7869 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7870 Otherwise, a new CU is allocated with xmalloc.
7871
7872 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7873 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7874
7875 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7876 linker) then DIE_READER_FUNC will not get called. */
7877
7878 static void
7879 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7880 struct abbrev_table *abbrev_table,
7881 int use_existing_cu, int keep,
7882 die_reader_func_ftype *die_reader_func,
7883 void *data)
7884 {
7885 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7886 struct objfile *objfile = dwarf2_per_objfile->objfile;
7887 struct dwarf2_section_info *section = this_cu->section;
7888 bfd *abfd = get_section_bfd_owner (section);
7889 struct dwarf2_cu *cu;
7890 const gdb_byte *begin_info_ptr, *info_ptr;
7891 struct die_reader_specs reader;
7892 struct die_info *comp_unit_die;
7893 int has_children;
7894 struct attribute *attr;
7895 struct signatured_type *sig_type = NULL;
7896 struct dwarf2_section_info *abbrev_section;
7897 /* Non-zero if CU currently points to a DWO file and we need to
7898 reread it. When this happens we need to reread the skeleton die
7899 before we can reread the DWO file (this only applies to CUs, not TUs). */
7900 int rereading_dwo_cu = 0;
7901
7902 if (dwarf_die_debug)
7903 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7904 this_cu->is_debug_types ? "type" : "comp",
7905 sect_offset_str (this_cu->sect_off));
7906
7907 if (use_existing_cu)
7908 gdb_assert (keep);
7909
7910 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7911 file (instead of going through the stub), short-circuit all of this. */
7912 if (this_cu->reading_dwo_directly)
7913 {
7914 /* Narrow down the scope of possibilities to have to understand. */
7915 gdb_assert (this_cu->is_debug_types);
7916 gdb_assert (abbrev_table == NULL);
7917 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7918 die_reader_func, data);
7919 return;
7920 }
7921
7922 /* This is cheap if the section is already read in. */
7923 dwarf2_read_section (objfile, section);
7924
7925 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7926
7927 abbrev_section = get_abbrev_section_for_cu (this_cu);
7928
7929 std::unique_ptr<dwarf2_cu> new_cu;
7930 if (use_existing_cu && this_cu->cu != NULL)
7931 {
7932 cu = this_cu->cu;
7933 /* If this CU is from a DWO file we need to start over, we need to
7934 refetch the attributes from the skeleton CU.
7935 This could be optimized by retrieving those attributes from when we
7936 were here the first time: the previous comp_unit_die was stored in
7937 comp_unit_obstack. But there's no data yet that we need this
7938 optimization. */
7939 if (cu->dwo_unit != NULL)
7940 rereading_dwo_cu = 1;
7941 }
7942 else
7943 {
7944 /* If !use_existing_cu, this_cu->cu must be NULL. */
7945 gdb_assert (this_cu->cu == NULL);
7946 new_cu.reset (new dwarf2_cu (this_cu));
7947 cu = new_cu.get ();
7948 }
7949
7950 /* Get the header. */
7951 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7952 {
7953 /* We already have the header, there's no need to read it in again. */
7954 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7955 }
7956 else
7957 {
7958 if (this_cu->is_debug_types)
7959 {
7960 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7961 &cu->header, section,
7962 abbrev_section, info_ptr,
7963 rcuh_kind::TYPE);
7964
7965 /* Since per_cu is the first member of struct signatured_type,
7966 we can go from a pointer to one to a pointer to the other. */
7967 sig_type = (struct signatured_type *) this_cu;
7968 gdb_assert (sig_type->signature == cu->header.signature);
7969 gdb_assert (sig_type->type_offset_in_tu
7970 == cu->header.type_cu_offset_in_tu);
7971 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7972
7973 /* LENGTH has not been set yet for type units if we're
7974 using .gdb_index. */
7975 this_cu->length = get_cu_length (&cu->header);
7976
7977 /* Establish the type offset that can be used to lookup the type. */
7978 sig_type->type_offset_in_section =
7979 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7980
7981 this_cu->dwarf_version = cu->header.version;
7982 }
7983 else
7984 {
7985 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7986 &cu->header, section,
7987 abbrev_section,
7988 info_ptr,
7989 rcuh_kind::COMPILE);
7990
7991 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7992 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7993 this_cu->dwarf_version = cu->header.version;
7994 }
7995 }
7996
7997 /* Skip dummy compilation units. */
7998 if (info_ptr >= begin_info_ptr + this_cu->length
7999 || peek_abbrev_code (abfd, info_ptr) == 0)
8000 return;
8001
8002 /* If we don't have them yet, read the abbrevs for this compilation unit.
8003 And if we need to read them now, make sure they're freed when we're
8004 done (own the table through ABBREV_TABLE_HOLDER). */
8005 abbrev_table_up abbrev_table_holder;
8006 if (abbrev_table != NULL)
8007 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
8008 else
8009 {
8010 abbrev_table_holder
8011 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
8012 cu->header.abbrev_sect_off);
8013 abbrev_table = abbrev_table_holder.get ();
8014 }
8015
8016 /* Read the top level CU/TU die. */
8017 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
8018 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
8019
8020 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
8021 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
8022 table from the DWO file and pass the ownership over to us. It will be
8023 referenced from READER, so we must make sure to free it after we're done
8024 with READER.
8025
8026 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
8027 DWO CU, that this test will fail (the attribute will not be present). */
8028 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
8029 abbrev_table_up dwo_abbrev_table;
8030 if (attr)
8031 {
8032 struct dwo_unit *dwo_unit;
8033 struct die_info *dwo_comp_unit_die;
8034
8035 if (has_children)
8036 {
8037 complaint (&symfile_complaints,
8038 _("compilation unit with DW_AT_GNU_dwo_name"
8039 " has children (offset %s) [in module %s]"),
8040 sect_offset_str (this_cu->sect_off),
8041 bfd_get_filename (abfd));
8042 }
8043 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
8044 if (dwo_unit != NULL)
8045 {
8046 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
8047 comp_unit_die, NULL,
8048 &reader, &info_ptr,
8049 &dwo_comp_unit_die, &has_children,
8050 &dwo_abbrev_table) == 0)
8051 {
8052 /* Dummy die. */
8053 return;
8054 }
8055 comp_unit_die = dwo_comp_unit_die;
8056 }
8057 else
8058 {
8059 /* Yikes, we couldn't find the rest of the DIE, we only have
8060 the stub. A complaint has already been logged. There's
8061 not much more we can do except pass on the stub DIE to
8062 die_reader_func. We don't want to throw an error on bad
8063 debug info. */
8064 }
8065 }
8066
8067 /* All of the above is setup for this call. Yikes. */
8068 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
8069
8070 /* Done, clean up. */
8071 if (new_cu != NULL && keep)
8072 {
8073 /* Link this CU into read_in_chain. */
8074 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
8075 dwarf2_per_objfile->read_in_chain = this_cu;
8076 /* The chain owns it now. */
8077 new_cu.release ();
8078 }
8079 }
8080
8081 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
8082 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
8083 to have already done the lookup to find the DWO file).
8084
8085 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
8086 THIS_CU->is_debug_types, but nothing else.
8087
8088 We fill in THIS_CU->length.
8089
8090 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
8091 linker) then DIE_READER_FUNC will not get called.
8092
8093 THIS_CU->cu is always freed when done.
8094 This is done in order to not leave THIS_CU->cu in a state where we have
8095 to care whether it refers to the "main" CU or the DWO CU. */
8096
8097 static void
8098 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
8099 struct dwo_file *dwo_file,
8100 die_reader_func_ftype *die_reader_func,
8101 void *data)
8102 {
8103 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
8104 struct objfile *objfile = dwarf2_per_objfile->objfile;
8105 struct dwarf2_section_info *section = this_cu->section;
8106 bfd *abfd = get_section_bfd_owner (section);
8107 struct dwarf2_section_info *abbrev_section;
8108 const gdb_byte *begin_info_ptr, *info_ptr;
8109 struct die_reader_specs reader;
8110 struct die_info *comp_unit_die;
8111 int has_children;
8112
8113 if (dwarf_die_debug)
8114 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
8115 this_cu->is_debug_types ? "type" : "comp",
8116 sect_offset_str (this_cu->sect_off));
8117
8118 gdb_assert (this_cu->cu == NULL);
8119
8120 abbrev_section = (dwo_file != NULL
8121 ? &dwo_file->sections.abbrev
8122 : get_abbrev_section_for_cu (this_cu));
8123
8124 /* This is cheap if the section is already read in. */
8125 dwarf2_read_section (objfile, section);
8126
8127 struct dwarf2_cu cu (this_cu);
8128
8129 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
8130 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
8131 &cu.header, section,
8132 abbrev_section, info_ptr,
8133 (this_cu->is_debug_types
8134 ? rcuh_kind::TYPE
8135 : rcuh_kind::COMPILE));
8136
8137 this_cu->length = get_cu_length (&cu.header);
8138
8139 /* Skip dummy compilation units. */
8140 if (info_ptr >= begin_info_ptr + this_cu->length
8141 || peek_abbrev_code (abfd, info_ptr) == 0)
8142 return;
8143
8144 abbrev_table_up abbrev_table
8145 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
8146 cu.header.abbrev_sect_off);
8147
8148 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
8149 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
8150
8151 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
8152 }
8153
8154 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
8155 does not lookup the specified DWO file.
8156 This cannot be used to read DWO files.
8157
8158 THIS_CU->cu is always freed when done.
8159 This is done in order to not leave THIS_CU->cu in a state where we have
8160 to care whether it refers to the "main" CU or the DWO CU.
8161 We can revisit this if the data shows there's a performance issue. */
8162
8163 static void
8164 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
8165 die_reader_func_ftype *die_reader_func,
8166 void *data)
8167 {
8168 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
8169 }
8170 \f
8171 /* Type Unit Groups.
8172
8173 Type Unit Groups are a way to collapse the set of all TUs (type units) into
8174 a more manageable set. The grouping is done by DW_AT_stmt_list entry
8175 so that all types coming from the same compilation (.o file) are grouped
8176 together. A future step could be to put the types in the same symtab as
8177 the CU the types ultimately came from. */
8178
8179 static hashval_t
8180 hash_type_unit_group (const void *item)
8181 {
8182 const struct type_unit_group *tu_group
8183 = (const struct type_unit_group *) item;
8184
8185 return hash_stmt_list_entry (&tu_group->hash);
8186 }
8187
8188 static int
8189 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
8190 {
8191 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
8192 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
8193
8194 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
8195 }
8196
8197 /* Allocate a hash table for type unit groups. */
8198
8199 static htab_t
8200 allocate_type_unit_groups_table (struct objfile *objfile)
8201 {
8202 return htab_create_alloc_ex (3,
8203 hash_type_unit_group,
8204 eq_type_unit_group,
8205 NULL,
8206 &objfile->objfile_obstack,
8207 hashtab_obstack_allocate,
8208 dummy_obstack_deallocate);
8209 }
8210
8211 /* Type units that don't have DW_AT_stmt_list are grouped into their own
8212 partial symtabs. We combine several TUs per psymtab to not let the size
8213 of any one psymtab grow too big. */
8214 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
8215 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
8216
8217 /* Helper routine for get_type_unit_group.
8218 Create the type_unit_group object used to hold one or more TUs. */
8219
8220 static struct type_unit_group *
8221 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
8222 {
8223 struct dwarf2_per_objfile *dwarf2_per_objfile
8224 = cu->per_cu->dwarf2_per_objfile;
8225 struct objfile *objfile = dwarf2_per_objfile->objfile;
8226 struct dwarf2_per_cu_data *per_cu;
8227 struct type_unit_group *tu_group;
8228
8229 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
8230 struct type_unit_group);
8231 per_cu = &tu_group->per_cu;
8232 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8233
8234 if (dwarf2_per_objfile->using_index)
8235 {
8236 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
8237 struct dwarf2_per_cu_quick_data);
8238 }
8239 else
8240 {
8241 unsigned int line_offset = to_underlying (line_offset_struct);
8242 struct partial_symtab *pst;
8243 char *name;
8244
8245 /* Give the symtab a useful name for debug purposes. */
8246 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
8247 name = xstrprintf ("<type_units_%d>",
8248 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
8249 else
8250 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
8251
8252 pst = create_partial_symtab (per_cu, name);
8253 pst->anonymous = 1;
8254
8255 xfree (name);
8256 }
8257
8258 tu_group->hash.dwo_unit = cu->dwo_unit;
8259 tu_group->hash.line_sect_off = line_offset_struct;
8260
8261 return tu_group;
8262 }
8263
8264 /* Look up the type_unit_group for type unit CU, and create it if necessary.
8265 STMT_LIST is a DW_AT_stmt_list attribute. */
8266
8267 static struct type_unit_group *
8268 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
8269 {
8270 struct dwarf2_per_objfile *dwarf2_per_objfile
8271 = cu->per_cu->dwarf2_per_objfile;
8272 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8273 struct type_unit_group *tu_group;
8274 void **slot;
8275 unsigned int line_offset;
8276 struct type_unit_group type_unit_group_for_lookup;
8277
8278 if (dwarf2_per_objfile->type_unit_groups == NULL)
8279 {
8280 dwarf2_per_objfile->type_unit_groups =
8281 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
8282 }
8283
8284 /* Do we need to create a new group, or can we use an existing one? */
8285
8286 if (stmt_list)
8287 {
8288 line_offset = DW_UNSND (stmt_list);
8289 ++tu_stats->nr_symtab_sharers;
8290 }
8291 else
8292 {
8293 /* Ugh, no stmt_list. Rare, but we have to handle it.
8294 We can do various things here like create one group per TU or
8295 spread them over multiple groups to split up the expansion work.
8296 To avoid worst case scenarios (too many groups or too large groups)
8297 we, umm, group them in bunches. */
8298 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
8299 | (tu_stats->nr_stmt_less_type_units
8300 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
8301 ++tu_stats->nr_stmt_less_type_units;
8302 }
8303
8304 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
8305 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
8306 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
8307 &type_unit_group_for_lookup, INSERT);
8308 if (*slot != NULL)
8309 {
8310 tu_group = (struct type_unit_group *) *slot;
8311 gdb_assert (tu_group != NULL);
8312 }
8313 else
8314 {
8315 sect_offset line_offset_struct = (sect_offset) line_offset;
8316 tu_group = create_type_unit_group (cu, line_offset_struct);
8317 *slot = tu_group;
8318 ++tu_stats->nr_symtabs;
8319 }
8320
8321 return tu_group;
8322 }
8323 \f
8324 /* Partial symbol tables. */
8325
8326 /* Create a psymtab named NAME and assign it to PER_CU.
8327
8328 The caller must fill in the following details:
8329 dirname, textlow, texthigh. */
8330
8331 static struct partial_symtab *
8332 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
8333 {
8334 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
8335 struct partial_symtab *pst;
8336
8337 pst = start_psymtab_common (objfile, name, 0,
8338 objfile->global_psymbols,
8339 objfile->static_psymbols);
8340
8341 pst->psymtabs_addrmap_supported = 1;
8342
8343 /* This is the glue that links PST into GDB's symbol API. */
8344 pst->read_symtab_private = per_cu;
8345 pst->read_symtab = dwarf2_read_symtab;
8346 per_cu->v.psymtab = pst;
8347
8348 return pst;
8349 }
8350
8351 /* The DATA object passed to process_psymtab_comp_unit_reader has this
8352 type. */
8353
8354 struct process_psymtab_comp_unit_data
8355 {
8356 /* True if we are reading a DW_TAG_partial_unit. */
8357
8358 int want_partial_unit;
8359
8360 /* The "pretend" language that is used if the CU doesn't declare a
8361 language. */
8362
8363 enum language pretend_language;
8364 };
8365
8366 /* die_reader_func for process_psymtab_comp_unit. */
8367
8368 static void
8369 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
8370 const gdb_byte *info_ptr,
8371 struct die_info *comp_unit_die,
8372 int has_children,
8373 void *data)
8374 {
8375 struct dwarf2_cu *cu = reader->cu;
8376 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
8377 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8378 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8379 CORE_ADDR baseaddr;
8380 CORE_ADDR best_lowpc = 0, best_highpc = 0;
8381 struct partial_symtab *pst;
8382 enum pc_bounds_kind cu_bounds_kind;
8383 const char *filename;
8384 struct process_psymtab_comp_unit_data *info
8385 = (struct process_psymtab_comp_unit_data *) data;
8386
8387 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
8388 return;
8389
8390 gdb_assert (! per_cu->is_debug_types);
8391
8392 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
8393
8394 cu->list_in_scope = &file_symbols;
8395
8396 /* Allocate a new partial symbol table structure. */
8397 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
8398 if (filename == NULL)
8399 filename = "";
8400
8401 pst = create_partial_symtab (per_cu, filename);
8402
8403 /* This must be done before calling dwarf2_build_include_psymtabs. */
8404 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
8405
8406 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8407
8408 dwarf2_find_base_address (comp_unit_die, cu);
8409
8410 /* Possibly set the default values of LOWPC and HIGHPC from
8411 `DW_AT_ranges'. */
8412 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
8413 &best_highpc, cu, pst);
8414 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
8415 /* Store the contiguous range if it is not empty; it can be empty for
8416 CUs with no code. */
8417 addrmap_set_empty (objfile->psymtabs_addrmap,
8418 gdbarch_adjust_dwarf2_addr (gdbarch,
8419 best_lowpc + baseaddr),
8420 gdbarch_adjust_dwarf2_addr (gdbarch,
8421 best_highpc + baseaddr) - 1,
8422 pst);
8423
8424 /* Check if comp unit has_children.
8425 If so, read the rest of the partial symbols from this comp unit.
8426 If not, there's no more debug_info for this comp unit. */
8427 if (has_children)
8428 {
8429 struct partial_die_info *first_die;
8430 CORE_ADDR lowpc, highpc;
8431
8432 lowpc = ((CORE_ADDR) -1);
8433 highpc = ((CORE_ADDR) 0);
8434
8435 first_die = load_partial_dies (reader, info_ptr, 1);
8436
8437 scan_partial_symbols (first_die, &lowpc, &highpc,
8438 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
8439
8440 /* If we didn't find a lowpc, set it to highpc to avoid
8441 complaints from `maint check'. */
8442 if (lowpc == ((CORE_ADDR) -1))
8443 lowpc = highpc;
8444
8445 /* If the compilation unit didn't have an explicit address range,
8446 then use the information extracted from its child dies. */
8447 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8448 {
8449 best_lowpc = lowpc;
8450 best_highpc = highpc;
8451 }
8452 }
8453 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
8454 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
8455
8456 end_psymtab_common (objfile, pst);
8457
8458 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8459 {
8460 int i;
8461 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8462 struct dwarf2_per_cu_data *iter;
8463
8464 /* Fill in 'dependencies' here; we fill in 'users' in a
8465 post-pass. */
8466 pst->number_of_dependencies = len;
8467 pst->dependencies =
8468 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8469 for (i = 0;
8470 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8471 i, iter);
8472 ++i)
8473 pst->dependencies[i] = iter->v.psymtab;
8474
8475 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8476 }
8477
8478 /* Get the list of files included in the current compilation unit,
8479 and build a psymtab for each of them. */
8480 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8481
8482 if (dwarf_read_debug)
8483 {
8484 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8485
8486 fprintf_unfiltered (gdb_stdlog,
8487 "Psymtab for %s unit @%s: %s - %s"
8488 ", %d global, %d static syms\n",
8489 per_cu->is_debug_types ? "type" : "comp",
8490 sect_offset_str (per_cu->sect_off),
8491 paddress (gdbarch, pst->textlow),
8492 paddress (gdbarch, pst->texthigh),
8493 pst->n_global_syms, pst->n_static_syms);
8494 }
8495 }
8496
8497 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8498 Process compilation unit THIS_CU for a psymtab. */
8499
8500 static void
8501 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8502 int want_partial_unit,
8503 enum language pretend_language)
8504 {
8505 /* If this compilation unit was already read in, free the
8506 cached copy in order to read it in again. This is
8507 necessary because we skipped some symbols when we first
8508 read in the compilation unit (see load_partial_dies).
8509 This problem could be avoided, but the benefit is unclear. */
8510 if (this_cu->cu != NULL)
8511 free_one_cached_comp_unit (this_cu);
8512
8513 if (this_cu->is_debug_types)
8514 init_cutu_and_read_dies (this_cu, NULL, 0, 0, build_type_psymtabs_reader,
8515 NULL);
8516 else
8517 {
8518 process_psymtab_comp_unit_data info;
8519 info.want_partial_unit = want_partial_unit;
8520 info.pretend_language = pretend_language;
8521 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
8522 process_psymtab_comp_unit_reader, &info);
8523 }
8524
8525 /* Age out any secondary CUs. */
8526 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8527 }
8528
8529 /* Reader function for build_type_psymtabs. */
8530
8531 static void
8532 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8533 const gdb_byte *info_ptr,
8534 struct die_info *type_unit_die,
8535 int has_children,
8536 void *data)
8537 {
8538 struct dwarf2_per_objfile *dwarf2_per_objfile
8539 = reader->cu->per_cu->dwarf2_per_objfile;
8540 struct objfile *objfile = dwarf2_per_objfile->objfile;
8541 struct dwarf2_cu *cu = reader->cu;
8542 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8543 struct signatured_type *sig_type;
8544 struct type_unit_group *tu_group;
8545 struct attribute *attr;
8546 struct partial_die_info *first_die;
8547 CORE_ADDR lowpc, highpc;
8548 struct partial_symtab *pst;
8549
8550 gdb_assert (data == NULL);
8551 gdb_assert (per_cu->is_debug_types);
8552 sig_type = (struct signatured_type *) per_cu;
8553
8554 if (! has_children)
8555 return;
8556
8557 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8558 tu_group = get_type_unit_group (cu, attr);
8559
8560 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8561
8562 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8563 cu->list_in_scope = &file_symbols;
8564 pst = create_partial_symtab (per_cu, "");
8565 pst->anonymous = 1;
8566
8567 first_die = load_partial_dies (reader, info_ptr, 1);
8568
8569 lowpc = (CORE_ADDR) -1;
8570 highpc = (CORE_ADDR) 0;
8571 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8572
8573 end_psymtab_common (objfile, pst);
8574 }
8575
8576 /* Struct used to sort TUs by their abbreviation table offset. */
8577
8578 struct tu_abbrev_offset
8579 {
8580 struct signatured_type *sig_type;
8581 sect_offset abbrev_offset;
8582 };
8583
8584 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
8585
8586 static int
8587 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
8588 {
8589 const struct tu_abbrev_offset * const *a
8590 = (const struct tu_abbrev_offset * const*) ap;
8591 const struct tu_abbrev_offset * const *b
8592 = (const struct tu_abbrev_offset * const*) bp;
8593 sect_offset aoff = (*a)->abbrev_offset;
8594 sect_offset boff = (*b)->abbrev_offset;
8595
8596 return (aoff > boff) - (aoff < boff);
8597 }
8598
8599 /* Efficiently read all the type units.
8600 This does the bulk of the work for build_type_psymtabs.
8601
8602 The efficiency is because we sort TUs by the abbrev table they use and
8603 only read each abbrev table once. In one program there are 200K TUs
8604 sharing 8K abbrev tables.
8605
8606 The main purpose of this function is to support building the
8607 dwarf2_per_objfile->type_unit_groups table.
8608 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8609 can collapse the search space by grouping them by stmt_list.
8610 The savings can be significant, in the same program from above the 200K TUs
8611 share 8K stmt_list tables.
8612
8613 FUNC is expected to call get_type_unit_group, which will create the
8614 struct type_unit_group if necessary and add it to
8615 dwarf2_per_objfile->type_unit_groups. */
8616
8617 static void
8618 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8619 {
8620 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8621 struct cleanup *cleanups;
8622 abbrev_table_up abbrev_table;
8623 sect_offset abbrev_offset;
8624 struct tu_abbrev_offset *sorted_by_abbrev;
8625 int i;
8626
8627 /* It's up to the caller to not call us multiple times. */
8628 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8629
8630 if (dwarf2_per_objfile->n_type_units == 0)
8631 return;
8632
8633 /* TUs typically share abbrev tables, and there can be way more TUs than
8634 abbrev tables. Sort by abbrev table to reduce the number of times we
8635 read each abbrev table in.
8636 Alternatives are to punt or to maintain a cache of abbrev tables.
8637 This is simpler and efficient enough for now.
8638
8639 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8640 symtab to use). Typically TUs with the same abbrev offset have the same
8641 stmt_list value too so in practice this should work well.
8642
8643 The basic algorithm here is:
8644
8645 sort TUs by abbrev table
8646 for each TU with same abbrev table:
8647 read abbrev table if first user
8648 read TU top level DIE
8649 [IWBN if DWO skeletons had DW_AT_stmt_list]
8650 call FUNC */
8651
8652 if (dwarf_read_debug)
8653 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8654
8655 /* Sort in a separate table to maintain the order of all_type_units
8656 for .gdb_index: TU indices directly index all_type_units. */
8657 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
8658 dwarf2_per_objfile->n_type_units);
8659 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
8660 {
8661 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
8662
8663 sorted_by_abbrev[i].sig_type = sig_type;
8664 sorted_by_abbrev[i].abbrev_offset =
8665 read_abbrev_offset (dwarf2_per_objfile,
8666 sig_type->per_cu.section,
8667 sig_type->per_cu.sect_off);
8668 }
8669 cleanups = make_cleanup (xfree, sorted_by_abbrev);
8670 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
8671 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
8672
8673 abbrev_offset = (sect_offset) ~(unsigned) 0;
8674
8675 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
8676 {
8677 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
8678
8679 /* Switch to the next abbrev table if necessary. */
8680 if (abbrev_table == NULL
8681 || tu->abbrev_offset != abbrev_offset)
8682 {
8683 abbrev_offset = tu->abbrev_offset;
8684 abbrev_table =
8685 abbrev_table_read_table (dwarf2_per_objfile,
8686 &dwarf2_per_objfile->abbrev,
8687 abbrev_offset);
8688 ++tu_stats->nr_uniq_abbrev_tables;
8689 }
8690
8691 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table.get (),
8692 0, 0, build_type_psymtabs_reader, NULL);
8693 }
8694
8695 do_cleanups (cleanups);
8696 }
8697
8698 /* Print collected type unit statistics. */
8699
8700 static void
8701 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8702 {
8703 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8704
8705 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8706 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
8707 dwarf2_per_objfile->n_type_units);
8708 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8709 tu_stats->nr_uniq_abbrev_tables);
8710 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8711 tu_stats->nr_symtabs);
8712 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8713 tu_stats->nr_symtab_sharers);
8714 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8715 tu_stats->nr_stmt_less_type_units);
8716 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8717 tu_stats->nr_all_type_units_reallocs);
8718 }
8719
8720 /* Traversal function for build_type_psymtabs. */
8721
8722 static int
8723 build_type_psymtab_dependencies (void **slot, void *info)
8724 {
8725 struct dwarf2_per_objfile *dwarf2_per_objfile
8726 = (struct dwarf2_per_objfile *) info;
8727 struct objfile *objfile = dwarf2_per_objfile->objfile;
8728 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8729 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8730 struct partial_symtab *pst = per_cu->v.psymtab;
8731 int len = VEC_length (sig_type_ptr, tu_group->tus);
8732 struct signatured_type *iter;
8733 int i;
8734
8735 gdb_assert (len > 0);
8736 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8737
8738 pst->number_of_dependencies = len;
8739 pst->dependencies =
8740 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8741 for (i = 0;
8742 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8743 ++i)
8744 {
8745 gdb_assert (iter->per_cu.is_debug_types);
8746 pst->dependencies[i] = iter->per_cu.v.psymtab;
8747 iter->type_unit_group = tu_group;
8748 }
8749
8750 VEC_free (sig_type_ptr, tu_group->tus);
8751
8752 return 1;
8753 }
8754
8755 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8756 Build partial symbol tables for the .debug_types comp-units. */
8757
8758 static void
8759 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8760 {
8761 if (! create_all_type_units (dwarf2_per_objfile))
8762 return;
8763
8764 build_type_psymtabs_1 (dwarf2_per_objfile);
8765 }
8766
8767 /* Traversal function for process_skeletonless_type_unit.
8768 Read a TU in a DWO file and build partial symbols for it. */
8769
8770 static int
8771 process_skeletonless_type_unit (void **slot, void *info)
8772 {
8773 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8774 struct dwarf2_per_objfile *dwarf2_per_objfile
8775 = (struct dwarf2_per_objfile *) info;
8776 struct signatured_type find_entry, *entry;
8777
8778 /* If this TU doesn't exist in the global table, add it and read it in. */
8779
8780 if (dwarf2_per_objfile->signatured_types == NULL)
8781 {
8782 dwarf2_per_objfile->signatured_types
8783 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8784 }
8785
8786 find_entry.signature = dwo_unit->signature;
8787 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8788 INSERT);
8789 /* If we've already seen this type there's nothing to do. What's happening
8790 is we're doing our own version of comdat-folding here. */
8791 if (*slot != NULL)
8792 return 1;
8793
8794 /* This does the job that create_all_type_units would have done for
8795 this TU. */
8796 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8797 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8798 *slot = entry;
8799
8800 /* This does the job that build_type_psymtabs_1 would have done. */
8801 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
8802 build_type_psymtabs_reader, NULL);
8803
8804 return 1;
8805 }
8806
8807 /* Traversal function for process_skeletonless_type_units. */
8808
8809 static int
8810 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8811 {
8812 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8813
8814 if (dwo_file->tus != NULL)
8815 {
8816 htab_traverse_noresize (dwo_file->tus,
8817 process_skeletonless_type_unit, info);
8818 }
8819
8820 return 1;
8821 }
8822
8823 /* Scan all TUs of DWO files, verifying we've processed them.
8824 This is needed in case a TU was emitted without its skeleton.
8825 Note: This can't be done until we know what all the DWO files are. */
8826
8827 static void
8828 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8829 {
8830 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8831 if (get_dwp_file (dwarf2_per_objfile) == NULL
8832 && dwarf2_per_objfile->dwo_files != NULL)
8833 {
8834 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8835 process_dwo_file_for_skeletonless_type_units,
8836 dwarf2_per_objfile);
8837 }
8838 }
8839
8840 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8841
8842 static void
8843 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8844 {
8845 int i;
8846
8847 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
8848 {
8849 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
8850 struct partial_symtab *pst = per_cu->v.psymtab;
8851 int j;
8852
8853 if (pst == NULL)
8854 continue;
8855
8856 for (j = 0; j < pst->number_of_dependencies; ++j)
8857 {
8858 /* Set the 'user' field only if it is not already set. */
8859 if (pst->dependencies[j]->user == NULL)
8860 pst->dependencies[j]->user = pst;
8861 }
8862 }
8863 }
8864
8865 /* Build the partial symbol table by doing a quick pass through the
8866 .debug_info and .debug_abbrev sections. */
8867
8868 static void
8869 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8870 {
8871 struct cleanup *back_to;
8872 int i;
8873 struct objfile *objfile = dwarf2_per_objfile->objfile;
8874
8875 if (dwarf_read_debug)
8876 {
8877 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8878 objfile_name (objfile));
8879 }
8880
8881 dwarf2_per_objfile->reading_partial_symbols = 1;
8882
8883 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8884
8885 /* Any cached compilation units will be linked by the per-objfile
8886 read_in_chain. Make sure to free them when we're done. */
8887 back_to = make_cleanup (free_cached_comp_units, dwarf2_per_objfile);
8888
8889 build_type_psymtabs (dwarf2_per_objfile);
8890
8891 create_all_comp_units (dwarf2_per_objfile);
8892
8893 /* Create a temporary address map on a temporary obstack. We later
8894 copy this to the final obstack. */
8895 auto_obstack temp_obstack;
8896
8897 scoped_restore save_psymtabs_addrmap
8898 = make_scoped_restore (&objfile->psymtabs_addrmap,
8899 addrmap_create_mutable (&temp_obstack));
8900
8901 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
8902 {
8903 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
8904
8905 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8906 }
8907
8908 /* This has to wait until we read the CUs, we need the list of DWOs. */
8909 process_skeletonless_type_units (dwarf2_per_objfile);
8910
8911 /* Now that all TUs have been processed we can fill in the dependencies. */
8912 if (dwarf2_per_objfile->type_unit_groups != NULL)
8913 {
8914 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8915 build_type_psymtab_dependencies, dwarf2_per_objfile);
8916 }
8917
8918 if (dwarf_read_debug)
8919 print_tu_stats (dwarf2_per_objfile);
8920
8921 set_partial_user (dwarf2_per_objfile);
8922
8923 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
8924 &objfile->objfile_obstack);
8925 /* At this point we want to keep the address map. */
8926 save_psymtabs_addrmap.release ();
8927
8928 do_cleanups (back_to);
8929
8930 if (dwarf_read_debug)
8931 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8932 objfile_name (objfile));
8933 }
8934
8935 /* die_reader_func for load_partial_comp_unit. */
8936
8937 static void
8938 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8939 const gdb_byte *info_ptr,
8940 struct die_info *comp_unit_die,
8941 int has_children,
8942 void *data)
8943 {
8944 struct dwarf2_cu *cu = reader->cu;
8945
8946 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8947
8948 /* Check if comp unit has_children.
8949 If so, read the rest of the partial symbols from this comp unit.
8950 If not, there's no more debug_info for this comp unit. */
8951 if (has_children)
8952 load_partial_dies (reader, info_ptr, 0);
8953 }
8954
8955 /* Load the partial DIEs for a secondary CU into memory.
8956 This is also used when rereading a primary CU with load_all_dies. */
8957
8958 static void
8959 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8960 {
8961 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
8962 load_partial_comp_unit_reader, NULL);
8963 }
8964
8965 static void
8966 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8967 struct dwarf2_section_info *section,
8968 struct dwarf2_section_info *abbrev_section,
8969 unsigned int is_dwz,
8970 int *n_allocated,
8971 int *n_comp_units,
8972 struct dwarf2_per_cu_data ***all_comp_units)
8973 {
8974 const gdb_byte *info_ptr;
8975 struct objfile *objfile = dwarf2_per_objfile->objfile;
8976
8977 if (dwarf_read_debug)
8978 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8979 get_section_name (section),
8980 get_section_file_name (section));
8981
8982 dwarf2_read_section (objfile, section);
8983
8984 info_ptr = section->buffer;
8985
8986 while (info_ptr < section->buffer + section->size)
8987 {
8988 struct dwarf2_per_cu_data *this_cu;
8989
8990 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8991
8992 comp_unit_head cu_header;
8993 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8994 abbrev_section, info_ptr,
8995 rcuh_kind::COMPILE);
8996
8997 /* Save the compilation unit for later lookup. */
8998 if (cu_header.unit_type != DW_UT_type)
8999 {
9000 this_cu = XOBNEW (&objfile->objfile_obstack,
9001 struct dwarf2_per_cu_data);
9002 memset (this_cu, 0, sizeof (*this_cu));
9003 }
9004 else
9005 {
9006 auto sig_type = XOBNEW (&objfile->objfile_obstack,
9007 struct signatured_type);
9008 memset (sig_type, 0, sizeof (*sig_type));
9009 sig_type->signature = cu_header.signature;
9010 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
9011 this_cu = &sig_type->per_cu;
9012 }
9013 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
9014 this_cu->sect_off = sect_off;
9015 this_cu->length = cu_header.length + cu_header.initial_length_size;
9016 this_cu->is_dwz = is_dwz;
9017 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
9018 this_cu->section = section;
9019
9020 if (*n_comp_units == *n_allocated)
9021 {
9022 *n_allocated *= 2;
9023 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
9024 *all_comp_units, *n_allocated);
9025 }
9026 (*all_comp_units)[*n_comp_units] = this_cu;
9027 ++*n_comp_units;
9028
9029 info_ptr = info_ptr + this_cu->length;
9030 }
9031 }
9032
9033 /* Create a list of all compilation units in OBJFILE.
9034 This is only done for -readnow and building partial symtabs. */
9035
9036 static void
9037 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
9038 {
9039 int n_allocated;
9040 int n_comp_units;
9041 struct dwarf2_per_cu_data **all_comp_units;
9042 struct dwz_file *dwz;
9043 struct objfile *objfile = dwarf2_per_objfile->objfile;
9044
9045 n_comp_units = 0;
9046 n_allocated = 10;
9047 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
9048
9049 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
9050 &dwarf2_per_objfile->abbrev, 0,
9051 &n_allocated, &n_comp_units, &all_comp_units);
9052
9053 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
9054 if (dwz != NULL)
9055 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
9056 1, &n_allocated, &n_comp_units,
9057 &all_comp_units);
9058
9059 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
9060 struct dwarf2_per_cu_data *,
9061 n_comp_units);
9062 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
9063 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
9064 xfree (all_comp_units);
9065 dwarf2_per_objfile->n_comp_units = n_comp_units;
9066 }
9067
9068 /* Process all loaded DIEs for compilation unit CU, starting at
9069 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
9070 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
9071 DW_AT_ranges). See the comments of add_partial_subprogram on how
9072 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
9073
9074 static void
9075 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
9076 CORE_ADDR *highpc, int set_addrmap,
9077 struct dwarf2_cu *cu)
9078 {
9079 struct partial_die_info *pdi;
9080
9081 /* Now, march along the PDI's, descending into ones which have
9082 interesting children but skipping the children of the other ones,
9083 until we reach the end of the compilation unit. */
9084
9085 pdi = first_die;
9086
9087 while (pdi != NULL)
9088 {
9089 pdi->fixup (cu);
9090
9091 /* Anonymous namespaces or modules have no name but have interesting
9092 children, so we need to look at them. Ditto for anonymous
9093 enums. */
9094
9095 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
9096 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
9097 || pdi->tag == DW_TAG_imported_unit
9098 || pdi->tag == DW_TAG_inlined_subroutine)
9099 {
9100 switch (pdi->tag)
9101 {
9102 case DW_TAG_subprogram:
9103 case DW_TAG_inlined_subroutine:
9104 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9105 break;
9106 case DW_TAG_constant:
9107 case DW_TAG_variable:
9108 case DW_TAG_typedef:
9109 case DW_TAG_union_type:
9110 if (!pdi->is_declaration)
9111 {
9112 add_partial_symbol (pdi, cu);
9113 }
9114 break;
9115 case DW_TAG_class_type:
9116 case DW_TAG_interface_type:
9117 case DW_TAG_structure_type:
9118 if (!pdi->is_declaration)
9119 {
9120 add_partial_symbol (pdi, cu);
9121 }
9122 if (cu->language == language_rust && pdi->has_children)
9123 scan_partial_symbols (pdi->die_child, lowpc, highpc,
9124 set_addrmap, cu);
9125 break;
9126 case DW_TAG_enumeration_type:
9127 if (!pdi->is_declaration)
9128 add_partial_enumeration (pdi, cu);
9129 break;
9130 case DW_TAG_base_type:
9131 case DW_TAG_subrange_type:
9132 /* File scope base type definitions are added to the partial
9133 symbol table. */
9134 add_partial_symbol (pdi, cu);
9135 break;
9136 case DW_TAG_namespace:
9137 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
9138 break;
9139 case DW_TAG_module:
9140 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
9141 break;
9142 case DW_TAG_imported_unit:
9143 {
9144 struct dwarf2_per_cu_data *per_cu;
9145
9146 /* For now we don't handle imported units in type units. */
9147 if (cu->per_cu->is_debug_types)
9148 {
9149 error (_("Dwarf Error: DW_TAG_imported_unit is not"
9150 " supported in type units [in module %s]"),
9151 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
9152 }
9153
9154 per_cu = dwarf2_find_containing_comp_unit
9155 (pdi->d.sect_off, pdi->is_dwz,
9156 cu->per_cu->dwarf2_per_objfile);
9157
9158 /* Go read the partial unit, if needed. */
9159 if (per_cu->v.psymtab == NULL)
9160 process_psymtab_comp_unit (per_cu, 1, cu->language);
9161
9162 VEC_safe_push (dwarf2_per_cu_ptr,
9163 cu->per_cu->imported_symtabs, per_cu);
9164 }
9165 break;
9166 case DW_TAG_imported_declaration:
9167 add_partial_symbol (pdi, cu);
9168 break;
9169 default:
9170 break;
9171 }
9172 }
9173
9174 /* If the die has a sibling, skip to the sibling. */
9175
9176 pdi = pdi->die_sibling;
9177 }
9178 }
9179
9180 /* Functions used to compute the fully scoped name of a partial DIE.
9181
9182 Normally, this is simple. For C++, the parent DIE's fully scoped
9183 name is concatenated with "::" and the partial DIE's name.
9184 Enumerators are an exception; they use the scope of their parent
9185 enumeration type, i.e. the name of the enumeration type is not
9186 prepended to the enumerator.
9187
9188 There are two complexities. One is DW_AT_specification; in this
9189 case "parent" means the parent of the target of the specification,
9190 instead of the direct parent of the DIE. The other is compilers
9191 which do not emit DW_TAG_namespace; in this case we try to guess
9192 the fully qualified name of structure types from their members'
9193 linkage names. This must be done using the DIE's children rather
9194 than the children of any DW_AT_specification target. We only need
9195 to do this for structures at the top level, i.e. if the target of
9196 any DW_AT_specification (if any; otherwise the DIE itself) does not
9197 have a parent. */
9198
9199 /* Compute the scope prefix associated with PDI's parent, in
9200 compilation unit CU. The result will be allocated on CU's
9201 comp_unit_obstack, or a copy of the already allocated PDI->NAME
9202 field. NULL is returned if no prefix is necessary. */
9203 static const char *
9204 partial_die_parent_scope (struct partial_die_info *pdi,
9205 struct dwarf2_cu *cu)
9206 {
9207 const char *grandparent_scope;
9208 struct partial_die_info *parent, *real_pdi;
9209
9210 /* We need to look at our parent DIE; if we have a DW_AT_specification,
9211 then this means the parent of the specification DIE. */
9212
9213 real_pdi = pdi;
9214 while (real_pdi->has_specification)
9215 real_pdi = find_partial_die (real_pdi->spec_offset,
9216 real_pdi->spec_is_dwz, cu);
9217
9218 parent = real_pdi->die_parent;
9219 if (parent == NULL)
9220 return NULL;
9221
9222 if (parent->scope_set)
9223 return parent->scope;
9224
9225 parent->fixup (cu);
9226
9227 grandparent_scope = partial_die_parent_scope (parent, cu);
9228
9229 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
9230 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
9231 Work around this problem here. */
9232 if (cu->language == language_cplus
9233 && parent->tag == DW_TAG_namespace
9234 && strcmp (parent->name, "::") == 0
9235 && grandparent_scope == NULL)
9236 {
9237 parent->scope = NULL;
9238 parent->scope_set = 1;
9239 return NULL;
9240 }
9241
9242 if (pdi->tag == DW_TAG_enumerator)
9243 /* Enumerators should not get the name of the enumeration as a prefix. */
9244 parent->scope = grandparent_scope;
9245 else if (parent->tag == DW_TAG_namespace
9246 || parent->tag == DW_TAG_module
9247 || parent->tag == DW_TAG_structure_type
9248 || parent->tag == DW_TAG_class_type
9249 || parent->tag == DW_TAG_interface_type
9250 || parent->tag == DW_TAG_union_type
9251 || parent->tag == DW_TAG_enumeration_type)
9252 {
9253 if (grandparent_scope == NULL)
9254 parent->scope = parent->name;
9255 else
9256 parent->scope = typename_concat (&cu->comp_unit_obstack,
9257 grandparent_scope,
9258 parent->name, 0, cu);
9259 }
9260 else
9261 {
9262 /* FIXME drow/2004-04-01: What should we be doing with
9263 function-local names? For partial symbols, we should probably be
9264 ignoring them. */
9265 complaint (&symfile_complaints,
9266 _("unhandled containing DIE tag %d for DIE at %s"),
9267 parent->tag, sect_offset_str (pdi->sect_off));
9268 parent->scope = grandparent_scope;
9269 }
9270
9271 parent->scope_set = 1;
9272 return parent->scope;
9273 }
9274
9275 /* Return the fully scoped name associated with PDI, from compilation unit
9276 CU. The result will be allocated with malloc. */
9277
9278 static char *
9279 partial_die_full_name (struct partial_die_info *pdi,
9280 struct dwarf2_cu *cu)
9281 {
9282 const char *parent_scope;
9283
9284 /* If this is a template instantiation, we can not work out the
9285 template arguments from partial DIEs. So, unfortunately, we have
9286 to go through the full DIEs. At least any work we do building
9287 types here will be reused if full symbols are loaded later. */
9288 if (pdi->has_template_arguments)
9289 {
9290 pdi->fixup (cu);
9291
9292 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
9293 {
9294 struct die_info *die;
9295 struct attribute attr;
9296 struct dwarf2_cu *ref_cu = cu;
9297
9298 /* DW_FORM_ref_addr is using section offset. */
9299 attr.name = (enum dwarf_attribute) 0;
9300 attr.form = DW_FORM_ref_addr;
9301 attr.u.unsnd = to_underlying (pdi->sect_off);
9302 die = follow_die_ref (NULL, &attr, &ref_cu);
9303
9304 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
9305 }
9306 }
9307
9308 parent_scope = partial_die_parent_scope (pdi, cu);
9309 if (parent_scope == NULL)
9310 return NULL;
9311 else
9312 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
9313 }
9314
9315 static void
9316 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
9317 {
9318 struct dwarf2_per_objfile *dwarf2_per_objfile
9319 = cu->per_cu->dwarf2_per_objfile;
9320 struct objfile *objfile = dwarf2_per_objfile->objfile;
9321 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9322 CORE_ADDR addr = 0;
9323 const char *actual_name = NULL;
9324 CORE_ADDR baseaddr;
9325 char *built_actual_name;
9326
9327 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9328
9329 built_actual_name = partial_die_full_name (pdi, cu);
9330 if (built_actual_name != NULL)
9331 actual_name = built_actual_name;
9332
9333 if (actual_name == NULL)
9334 actual_name = pdi->name;
9335
9336 switch (pdi->tag)
9337 {
9338 case DW_TAG_inlined_subroutine:
9339 case DW_TAG_subprogram:
9340 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
9341 if (pdi->is_external || cu->language == language_ada)
9342 {
9343 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
9344 of the global scope. But in Ada, we want to be able to access
9345 nested procedures globally. So all Ada subprograms are stored
9346 in the global scope. */
9347 add_psymbol_to_list (actual_name, strlen (actual_name),
9348 built_actual_name != NULL,
9349 VAR_DOMAIN, LOC_BLOCK,
9350 &objfile->global_psymbols,
9351 addr, cu->language, objfile);
9352 }
9353 else
9354 {
9355 add_psymbol_to_list (actual_name, strlen (actual_name),
9356 built_actual_name != NULL,
9357 VAR_DOMAIN, LOC_BLOCK,
9358 &objfile->static_psymbols,
9359 addr, cu->language, objfile);
9360 }
9361
9362 if (pdi->main_subprogram && actual_name != NULL)
9363 set_objfile_main_name (objfile, actual_name, cu->language);
9364 break;
9365 case DW_TAG_constant:
9366 {
9367 std::vector<partial_symbol *> *list;
9368
9369 if (pdi->is_external)
9370 list = &objfile->global_psymbols;
9371 else
9372 list = &objfile->static_psymbols;
9373 add_psymbol_to_list (actual_name, strlen (actual_name),
9374 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
9375 list, 0, cu->language, objfile);
9376 }
9377 break;
9378 case DW_TAG_variable:
9379 if (pdi->d.locdesc)
9380 addr = decode_locdesc (pdi->d.locdesc, cu);
9381
9382 if (pdi->d.locdesc
9383 && addr == 0
9384 && !dwarf2_per_objfile->has_section_at_zero)
9385 {
9386 /* A global or static variable may also have been stripped
9387 out by the linker if unused, in which case its address
9388 will be nullified; do not add such variables into partial
9389 symbol table then. */
9390 }
9391 else if (pdi->is_external)
9392 {
9393 /* Global Variable.
9394 Don't enter into the minimal symbol tables as there is
9395 a minimal symbol table entry from the ELF symbols already.
9396 Enter into partial symbol table if it has a location
9397 descriptor or a type.
9398 If the location descriptor is missing, new_symbol will create
9399 a LOC_UNRESOLVED symbol, the address of the variable will then
9400 be determined from the minimal symbol table whenever the variable
9401 is referenced.
9402 The address for the partial symbol table entry is not
9403 used by GDB, but it comes in handy for debugging partial symbol
9404 table building. */
9405
9406 if (pdi->d.locdesc || pdi->has_type)
9407 add_psymbol_to_list (actual_name, strlen (actual_name),
9408 built_actual_name != NULL,
9409 VAR_DOMAIN, LOC_STATIC,
9410 &objfile->global_psymbols,
9411 addr + baseaddr,
9412 cu->language, objfile);
9413 }
9414 else
9415 {
9416 int has_loc = pdi->d.locdesc != NULL;
9417
9418 /* Static Variable. Skip symbols whose value we cannot know (those
9419 without location descriptors or constant values). */
9420 if (!has_loc && !pdi->has_const_value)
9421 {
9422 xfree (built_actual_name);
9423 return;
9424 }
9425
9426 add_psymbol_to_list (actual_name, strlen (actual_name),
9427 built_actual_name != NULL,
9428 VAR_DOMAIN, LOC_STATIC,
9429 &objfile->static_psymbols,
9430 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
9431 cu->language, objfile);
9432 }
9433 break;
9434 case DW_TAG_typedef:
9435 case DW_TAG_base_type:
9436 case DW_TAG_subrange_type:
9437 add_psymbol_to_list (actual_name, strlen (actual_name),
9438 built_actual_name != NULL,
9439 VAR_DOMAIN, LOC_TYPEDEF,
9440 &objfile->static_psymbols,
9441 0, cu->language, objfile);
9442 break;
9443 case DW_TAG_imported_declaration:
9444 case DW_TAG_namespace:
9445 add_psymbol_to_list (actual_name, strlen (actual_name),
9446 built_actual_name != NULL,
9447 VAR_DOMAIN, LOC_TYPEDEF,
9448 &objfile->global_psymbols,
9449 0, cu->language, objfile);
9450 break;
9451 case DW_TAG_module:
9452 add_psymbol_to_list (actual_name, strlen (actual_name),
9453 built_actual_name != NULL,
9454 MODULE_DOMAIN, LOC_TYPEDEF,
9455 &objfile->global_psymbols,
9456 0, cu->language, objfile);
9457 break;
9458 case DW_TAG_class_type:
9459 case DW_TAG_interface_type:
9460 case DW_TAG_structure_type:
9461 case DW_TAG_union_type:
9462 case DW_TAG_enumeration_type:
9463 /* Skip external references. The DWARF standard says in the section
9464 about "Structure, Union, and Class Type Entries": "An incomplete
9465 structure, union or class type is represented by a structure,
9466 union or class entry that does not have a byte size attribute
9467 and that has a DW_AT_declaration attribute." */
9468 if (!pdi->has_byte_size && pdi->is_declaration)
9469 {
9470 xfree (built_actual_name);
9471 return;
9472 }
9473
9474 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
9475 static vs. global. */
9476 add_psymbol_to_list (actual_name, strlen (actual_name),
9477 built_actual_name != NULL,
9478 STRUCT_DOMAIN, LOC_TYPEDEF,
9479 cu->language == language_cplus
9480 ? &objfile->global_psymbols
9481 : &objfile->static_psymbols,
9482 0, cu->language, objfile);
9483
9484 break;
9485 case DW_TAG_enumerator:
9486 add_psymbol_to_list (actual_name, strlen (actual_name),
9487 built_actual_name != NULL,
9488 VAR_DOMAIN, LOC_CONST,
9489 cu->language == language_cplus
9490 ? &objfile->global_psymbols
9491 : &objfile->static_psymbols,
9492 0, cu->language, objfile);
9493 break;
9494 default:
9495 break;
9496 }
9497
9498 xfree (built_actual_name);
9499 }
9500
9501 /* Read a partial die corresponding to a namespace; also, add a symbol
9502 corresponding to that namespace to the symbol table. NAMESPACE is
9503 the name of the enclosing namespace. */
9504
9505 static void
9506 add_partial_namespace (struct partial_die_info *pdi,
9507 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9508 int set_addrmap, struct dwarf2_cu *cu)
9509 {
9510 /* Add a symbol for the namespace. */
9511
9512 add_partial_symbol (pdi, cu);
9513
9514 /* Now scan partial symbols in that namespace. */
9515
9516 if (pdi->has_children)
9517 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9518 }
9519
9520 /* Read a partial die corresponding to a Fortran module. */
9521
9522 static void
9523 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9524 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9525 {
9526 /* Add a symbol for the namespace. */
9527
9528 add_partial_symbol (pdi, cu);
9529
9530 /* Now scan partial symbols in that module. */
9531
9532 if (pdi->has_children)
9533 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9534 }
9535
9536 /* Read a partial die corresponding to a subprogram or an inlined
9537 subprogram and create a partial symbol for that subprogram.
9538 When the CU language allows it, this routine also defines a partial
9539 symbol for each nested subprogram that this subprogram contains.
9540 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9541 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9542
9543 PDI may also be a lexical block, in which case we simply search
9544 recursively for subprograms defined inside that lexical block.
9545 Again, this is only performed when the CU language allows this
9546 type of definitions. */
9547
9548 static void
9549 add_partial_subprogram (struct partial_die_info *pdi,
9550 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9551 int set_addrmap, struct dwarf2_cu *cu)
9552 {
9553 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9554 {
9555 if (pdi->has_pc_info)
9556 {
9557 if (pdi->lowpc < *lowpc)
9558 *lowpc = pdi->lowpc;
9559 if (pdi->highpc > *highpc)
9560 *highpc = pdi->highpc;
9561 if (set_addrmap)
9562 {
9563 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9564 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9565 CORE_ADDR baseaddr;
9566 CORE_ADDR highpc;
9567 CORE_ADDR lowpc;
9568
9569 baseaddr = ANOFFSET (objfile->section_offsets,
9570 SECT_OFF_TEXT (objfile));
9571 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9572 pdi->lowpc + baseaddr);
9573 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9574 pdi->highpc + baseaddr);
9575 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9576 cu->per_cu->v.psymtab);
9577 }
9578 }
9579
9580 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9581 {
9582 if (!pdi->is_declaration)
9583 /* Ignore subprogram DIEs that do not have a name, they are
9584 illegal. Do not emit a complaint at this point, we will
9585 do so when we convert this psymtab into a symtab. */
9586 if (pdi->name)
9587 add_partial_symbol (pdi, cu);
9588 }
9589 }
9590
9591 if (! pdi->has_children)
9592 return;
9593
9594 if (cu->language == language_ada)
9595 {
9596 pdi = pdi->die_child;
9597 while (pdi != NULL)
9598 {
9599 pdi->fixup (cu);
9600 if (pdi->tag == DW_TAG_subprogram
9601 || pdi->tag == DW_TAG_inlined_subroutine
9602 || pdi->tag == DW_TAG_lexical_block)
9603 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9604 pdi = pdi->die_sibling;
9605 }
9606 }
9607 }
9608
9609 /* Read a partial die corresponding to an enumeration type. */
9610
9611 static void
9612 add_partial_enumeration (struct partial_die_info *enum_pdi,
9613 struct dwarf2_cu *cu)
9614 {
9615 struct partial_die_info *pdi;
9616
9617 if (enum_pdi->name != NULL)
9618 add_partial_symbol (enum_pdi, cu);
9619
9620 pdi = enum_pdi->die_child;
9621 while (pdi)
9622 {
9623 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9624 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
9625 else
9626 add_partial_symbol (pdi, cu);
9627 pdi = pdi->die_sibling;
9628 }
9629 }
9630
9631 /* Return the initial uleb128 in the die at INFO_PTR. */
9632
9633 static unsigned int
9634 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9635 {
9636 unsigned int bytes_read;
9637
9638 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9639 }
9640
9641 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9642 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9643
9644 Return the corresponding abbrev, or NULL if the number is zero (indicating
9645 an empty DIE). In either case *BYTES_READ will be set to the length of
9646 the initial number. */
9647
9648 static struct abbrev_info *
9649 peek_die_abbrev (const die_reader_specs &reader,
9650 const gdb_byte *info_ptr, unsigned int *bytes_read)
9651 {
9652 dwarf2_cu *cu = reader.cu;
9653 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9654 unsigned int abbrev_number
9655 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9656
9657 if (abbrev_number == 0)
9658 return NULL;
9659
9660 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9661 if (!abbrev)
9662 {
9663 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9664 " at offset %s [in module %s]"),
9665 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9666 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9667 }
9668
9669 return abbrev;
9670 }
9671
9672 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9673 Returns a pointer to the end of a series of DIEs, terminated by an empty
9674 DIE. Any children of the skipped DIEs will also be skipped. */
9675
9676 static const gdb_byte *
9677 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9678 {
9679 while (1)
9680 {
9681 unsigned int bytes_read;
9682 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9683
9684 if (abbrev == NULL)
9685 return info_ptr + bytes_read;
9686 else
9687 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9688 }
9689 }
9690
9691 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9692 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9693 abbrev corresponding to that skipped uleb128 should be passed in
9694 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9695 children. */
9696
9697 static const gdb_byte *
9698 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9699 struct abbrev_info *abbrev)
9700 {
9701 unsigned int bytes_read;
9702 struct attribute attr;
9703 bfd *abfd = reader->abfd;
9704 struct dwarf2_cu *cu = reader->cu;
9705 const gdb_byte *buffer = reader->buffer;
9706 const gdb_byte *buffer_end = reader->buffer_end;
9707 unsigned int form, i;
9708
9709 for (i = 0; i < abbrev->num_attrs; i++)
9710 {
9711 /* The only abbrev we care about is DW_AT_sibling. */
9712 if (abbrev->attrs[i].name == DW_AT_sibling)
9713 {
9714 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9715 if (attr.form == DW_FORM_ref_addr)
9716 complaint (&symfile_complaints,
9717 _("ignoring absolute DW_AT_sibling"));
9718 else
9719 {
9720 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9721 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9722
9723 if (sibling_ptr < info_ptr)
9724 complaint (&symfile_complaints,
9725 _("DW_AT_sibling points backwards"));
9726 else if (sibling_ptr > reader->buffer_end)
9727 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9728 else
9729 return sibling_ptr;
9730 }
9731 }
9732
9733 /* If it isn't DW_AT_sibling, skip this attribute. */
9734 form = abbrev->attrs[i].form;
9735 skip_attribute:
9736 switch (form)
9737 {
9738 case DW_FORM_ref_addr:
9739 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9740 and later it is offset sized. */
9741 if (cu->header.version == 2)
9742 info_ptr += cu->header.addr_size;
9743 else
9744 info_ptr += cu->header.offset_size;
9745 break;
9746 case DW_FORM_GNU_ref_alt:
9747 info_ptr += cu->header.offset_size;
9748 break;
9749 case DW_FORM_addr:
9750 info_ptr += cu->header.addr_size;
9751 break;
9752 case DW_FORM_data1:
9753 case DW_FORM_ref1:
9754 case DW_FORM_flag:
9755 info_ptr += 1;
9756 break;
9757 case DW_FORM_flag_present:
9758 case DW_FORM_implicit_const:
9759 break;
9760 case DW_FORM_data2:
9761 case DW_FORM_ref2:
9762 info_ptr += 2;
9763 break;
9764 case DW_FORM_data4:
9765 case DW_FORM_ref4:
9766 info_ptr += 4;
9767 break;
9768 case DW_FORM_data8:
9769 case DW_FORM_ref8:
9770 case DW_FORM_ref_sig8:
9771 info_ptr += 8;
9772 break;
9773 case DW_FORM_data16:
9774 info_ptr += 16;
9775 break;
9776 case DW_FORM_string:
9777 read_direct_string (abfd, info_ptr, &bytes_read);
9778 info_ptr += bytes_read;
9779 break;
9780 case DW_FORM_sec_offset:
9781 case DW_FORM_strp:
9782 case DW_FORM_GNU_strp_alt:
9783 info_ptr += cu->header.offset_size;
9784 break;
9785 case DW_FORM_exprloc:
9786 case DW_FORM_block:
9787 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9788 info_ptr += bytes_read;
9789 break;
9790 case DW_FORM_block1:
9791 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9792 break;
9793 case DW_FORM_block2:
9794 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9795 break;
9796 case DW_FORM_block4:
9797 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9798 break;
9799 case DW_FORM_sdata:
9800 case DW_FORM_udata:
9801 case DW_FORM_ref_udata:
9802 case DW_FORM_GNU_addr_index:
9803 case DW_FORM_GNU_str_index:
9804 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9805 break;
9806 case DW_FORM_indirect:
9807 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9808 info_ptr += bytes_read;
9809 /* We need to continue parsing from here, so just go back to
9810 the top. */
9811 goto skip_attribute;
9812
9813 default:
9814 error (_("Dwarf Error: Cannot handle %s "
9815 "in DWARF reader [in module %s]"),
9816 dwarf_form_name (form),
9817 bfd_get_filename (abfd));
9818 }
9819 }
9820
9821 if (abbrev->has_children)
9822 return skip_children (reader, info_ptr);
9823 else
9824 return info_ptr;
9825 }
9826
9827 /* Locate ORIG_PDI's sibling.
9828 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9829
9830 static const gdb_byte *
9831 locate_pdi_sibling (const struct die_reader_specs *reader,
9832 struct partial_die_info *orig_pdi,
9833 const gdb_byte *info_ptr)
9834 {
9835 /* Do we know the sibling already? */
9836
9837 if (orig_pdi->sibling)
9838 return orig_pdi->sibling;
9839
9840 /* Are there any children to deal with? */
9841
9842 if (!orig_pdi->has_children)
9843 return info_ptr;
9844
9845 /* Skip the children the long way. */
9846
9847 return skip_children (reader, info_ptr);
9848 }
9849
9850 /* Expand this partial symbol table into a full symbol table. SELF is
9851 not NULL. */
9852
9853 static void
9854 dwarf2_read_symtab (struct partial_symtab *self,
9855 struct objfile *objfile)
9856 {
9857 struct dwarf2_per_objfile *dwarf2_per_objfile
9858 = get_dwarf2_per_objfile (objfile);
9859
9860 if (self->readin)
9861 {
9862 warning (_("bug: psymtab for %s is already read in."),
9863 self->filename);
9864 }
9865 else
9866 {
9867 if (info_verbose)
9868 {
9869 printf_filtered (_("Reading in symbols for %s..."),
9870 self->filename);
9871 gdb_flush (gdb_stdout);
9872 }
9873
9874 /* If this psymtab is constructed from a debug-only objfile, the
9875 has_section_at_zero flag will not necessarily be correct. We
9876 can get the correct value for this flag by looking at the data
9877 associated with the (presumably stripped) associated objfile. */
9878 if (objfile->separate_debug_objfile_backlink)
9879 {
9880 struct dwarf2_per_objfile *dpo_backlink
9881 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9882
9883 dwarf2_per_objfile->has_section_at_zero
9884 = dpo_backlink->has_section_at_zero;
9885 }
9886
9887 dwarf2_per_objfile->reading_partial_symbols = 0;
9888
9889 psymtab_to_symtab_1 (self);
9890
9891 /* Finish up the debug error message. */
9892 if (info_verbose)
9893 printf_filtered (_("done.\n"));
9894 }
9895
9896 process_cu_includes (dwarf2_per_objfile);
9897 }
9898 \f
9899 /* Reading in full CUs. */
9900
9901 /* Add PER_CU to the queue. */
9902
9903 static void
9904 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9905 enum language pretend_language)
9906 {
9907 struct dwarf2_queue_item *item;
9908
9909 per_cu->queued = 1;
9910 item = XNEW (struct dwarf2_queue_item);
9911 item->per_cu = per_cu;
9912 item->pretend_language = pretend_language;
9913 item->next = NULL;
9914
9915 if (dwarf2_queue == NULL)
9916 dwarf2_queue = item;
9917 else
9918 dwarf2_queue_tail->next = item;
9919
9920 dwarf2_queue_tail = item;
9921 }
9922
9923 /* If PER_CU is not yet queued, add it to the queue.
9924 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9925 dependency.
9926 The result is non-zero if PER_CU was queued, otherwise the result is zero
9927 meaning either PER_CU is already queued or it is already loaded.
9928
9929 N.B. There is an invariant here that if a CU is queued then it is loaded.
9930 The caller is required to load PER_CU if we return non-zero. */
9931
9932 static int
9933 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9934 struct dwarf2_per_cu_data *per_cu,
9935 enum language pretend_language)
9936 {
9937 /* We may arrive here during partial symbol reading, if we need full
9938 DIEs to process an unusual case (e.g. template arguments). Do
9939 not queue PER_CU, just tell our caller to load its DIEs. */
9940 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9941 {
9942 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9943 return 1;
9944 return 0;
9945 }
9946
9947 /* Mark the dependence relation so that we don't flush PER_CU
9948 too early. */
9949 if (dependent_cu != NULL)
9950 dwarf2_add_dependence (dependent_cu, per_cu);
9951
9952 /* If it's already on the queue, we have nothing to do. */
9953 if (per_cu->queued)
9954 return 0;
9955
9956 /* If the compilation unit is already loaded, just mark it as
9957 used. */
9958 if (per_cu->cu != NULL)
9959 {
9960 per_cu->cu->last_used = 0;
9961 return 0;
9962 }
9963
9964 /* Add it to the queue. */
9965 queue_comp_unit (per_cu, pretend_language);
9966
9967 return 1;
9968 }
9969
9970 /* Process the queue. */
9971
9972 static void
9973 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9974 {
9975 struct dwarf2_queue_item *item, *next_item;
9976
9977 if (dwarf_read_debug)
9978 {
9979 fprintf_unfiltered (gdb_stdlog,
9980 "Expanding one or more symtabs of objfile %s ...\n",
9981 objfile_name (dwarf2_per_objfile->objfile));
9982 }
9983
9984 /* The queue starts out with one item, but following a DIE reference
9985 may load a new CU, adding it to the end of the queue. */
9986 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9987 {
9988 if ((dwarf2_per_objfile->using_index
9989 ? !item->per_cu->v.quick->compunit_symtab
9990 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9991 /* Skip dummy CUs. */
9992 && item->per_cu->cu != NULL)
9993 {
9994 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9995 unsigned int debug_print_threshold;
9996 char buf[100];
9997
9998 if (per_cu->is_debug_types)
9999 {
10000 struct signatured_type *sig_type =
10001 (struct signatured_type *) per_cu;
10002
10003 sprintf (buf, "TU %s at offset %s",
10004 hex_string (sig_type->signature),
10005 sect_offset_str (per_cu->sect_off));
10006 /* There can be 100s of TUs.
10007 Only print them in verbose mode. */
10008 debug_print_threshold = 2;
10009 }
10010 else
10011 {
10012 sprintf (buf, "CU at offset %s",
10013 sect_offset_str (per_cu->sect_off));
10014 debug_print_threshold = 1;
10015 }
10016
10017 if (dwarf_read_debug >= debug_print_threshold)
10018 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
10019
10020 if (per_cu->is_debug_types)
10021 process_full_type_unit (per_cu, item->pretend_language);
10022 else
10023 process_full_comp_unit (per_cu, item->pretend_language);
10024
10025 if (dwarf_read_debug >= debug_print_threshold)
10026 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
10027 }
10028
10029 item->per_cu->queued = 0;
10030 next_item = item->next;
10031 xfree (item);
10032 }
10033
10034 dwarf2_queue_tail = NULL;
10035
10036 if (dwarf_read_debug)
10037 {
10038 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
10039 objfile_name (dwarf2_per_objfile->objfile));
10040 }
10041 }
10042
10043 /* Read in full symbols for PST, and anything it depends on. */
10044
10045 static void
10046 psymtab_to_symtab_1 (struct partial_symtab *pst)
10047 {
10048 struct dwarf2_per_cu_data *per_cu;
10049 int i;
10050
10051 if (pst->readin)
10052 return;
10053
10054 for (i = 0; i < pst->number_of_dependencies; i++)
10055 if (!pst->dependencies[i]->readin
10056 && pst->dependencies[i]->user == NULL)
10057 {
10058 /* Inform about additional files that need to be read in. */
10059 if (info_verbose)
10060 {
10061 /* FIXME: i18n: Need to make this a single string. */
10062 fputs_filtered (" ", gdb_stdout);
10063 wrap_here ("");
10064 fputs_filtered ("and ", gdb_stdout);
10065 wrap_here ("");
10066 printf_filtered ("%s...", pst->dependencies[i]->filename);
10067 wrap_here (""); /* Flush output. */
10068 gdb_flush (gdb_stdout);
10069 }
10070 psymtab_to_symtab_1 (pst->dependencies[i]);
10071 }
10072
10073 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
10074
10075 if (per_cu == NULL)
10076 {
10077 /* It's an include file, no symbols to read for it.
10078 Everything is in the parent symtab. */
10079 pst->readin = 1;
10080 return;
10081 }
10082
10083 dw2_do_instantiate_symtab (per_cu);
10084 }
10085
10086 /* Trivial hash function for die_info: the hash value of a DIE
10087 is its offset in .debug_info for this objfile. */
10088
10089 static hashval_t
10090 die_hash (const void *item)
10091 {
10092 const struct die_info *die = (const struct die_info *) item;
10093
10094 return to_underlying (die->sect_off);
10095 }
10096
10097 /* Trivial comparison function for die_info structures: two DIEs
10098 are equal if they have the same offset. */
10099
10100 static int
10101 die_eq (const void *item_lhs, const void *item_rhs)
10102 {
10103 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
10104 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
10105
10106 return die_lhs->sect_off == die_rhs->sect_off;
10107 }
10108
10109 /* die_reader_func for load_full_comp_unit.
10110 This is identical to read_signatured_type_reader,
10111 but is kept separate for now. */
10112
10113 static void
10114 load_full_comp_unit_reader (const struct die_reader_specs *reader,
10115 const gdb_byte *info_ptr,
10116 struct die_info *comp_unit_die,
10117 int has_children,
10118 void *data)
10119 {
10120 struct dwarf2_cu *cu = reader->cu;
10121 enum language *language_ptr = (enum language *) data;
10122
10123 gdb_assert (cu->die_hash == NULL);
10124 cu->die_hash =
10125 htab_create_alloc_ex (cu->header.length / 12,
10126 die_hash,
10127 die_eq,
10128 NULL,
10129 &cu->comp_unit_obstack,
10130 hashtab_obstack_allocate,
10131 dummy_obstack_deallocate);
10132
10133 if (has_children)
10134 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
10135 &info_ptr, comp_unit_die);
10136 cu->dies = comp_unit_die;
10137 /* comp_unit_die is not stored in die_hash, no need. */
10138
10139 /* We try not to read any attributes in this function, because not
10140 all CUs needed for references have been loaded yet, and symbol
10141 table processing isn't initialized. But we have to set the CU language,
10142 or we won't be able to build types correctly.
10143 Similarly, if we do not read the producer, we can not apply
10144 producer-specific interpretation. */
10145 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
10146 }
10147
10148 /* Load the DIEs associated with PER_CU into memory. */
10149
10150 static void
10151 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
10152 enum language pretend_language)
10153 {
10154 gdb_assert (! this_cu->is_debug_types);
10155
10156 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
10157 load_full_comp_unit_reader, &pretend_language);
10158 }
10159
10160 /* Add a DIE to the delayed physname list. */
10161
10162 static void
10163 add_to_method_list (struct type *type, int fnfield_index, int index,
10164 const char *name, struct die_info *die,
10165 struct dwarf2_cu *cu)
10166 {
10167 struct delayed_method_info mi;
10168 mi.type = type;
10169 mi.fnfield_index = fnfield_index;
10170 mi.index = index;
10171 mi.name = name;
10172 mi.die = die;
10173 cu->method_list.push_back (mi);
10174 }
10175
10176 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
10177 "const" / "volatile". If so, decrements LEN by the length of the
10178 modifier and return true. Otherwise return false. */
10179
10180 template<size_t N>
10181 static bool
10182 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
10183 {
10184 size_t mod_len = sizeof (mod) - 1;
10185 if (len > mod_len && startswith (physname + (len - mod_len), mod))
10186 {
10187 len -= mod_len;
10188 return true;
10189 }
10190 return false;
10191 }
10192
10193 /* Compute the physnames of any methods on the CU's method list.
10194
10195 The computation of method physnames is delayed in order to avoid the
10196 (bad) condition that one of the method's formal parameters is of an as yet
10197 incomplete type. */
10198
10199 static void
10200 compute_delayed_physnames (struct dwarf2_cu *cu)
10201 {
10202 /* Only C++ delays computing physnames. */
10203 if (cu->method_list.empty ())
10204 return;
10205 gdb_assert (cu->language == language_cplus);
10206
10207 for (struct delayed_method_info &mi : cu->method_list)
10208 {
10209 const char *physname;
10210 struct fn_fieldlist *fn_flp
10211 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
10212 physname = dwarf2_physname (mi.name, mi.die, cu);
10213 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
10214 = physname ? physname : "";
10215
10216 /* Since there's no tag to indicate whether a method is a
10217 const/volatile overload, extract that information out of the
10218 demangled name. */
10219 if (physname != NULL)
10220 {
10221 size_t len = strlen (physname);
10222
10223 while (1)
10224 {
10225 if (physname[len] == ')') /* shortcut */
10226 break;
10227 else if (check_modifier (physname, len, " const"))
10228 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
10229 else if (check_modifier (physname, len, " volatile"))
10230 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
10231 else
10232 break;
10233 }
10234 }
10235 }
10236
10237 /* The list is no longer needed. */
10238 cu->method_list.clear ();
10239 }
10240
10241 /* Go objects should be embedded in a DW_TAG_module DIE,
10242 and it's not clear if/how imported objects will appear.
10243 To keep Go support simple until that's worked out,
10244 go back through what we've read and create something usable.
10245 We could do this while processing each DIE, and feels kinda cleaner,
10246 but that way is more invasive.
10247 This is to, for example, allow the user to type "p var" or "b main"
10248 without having to specify the package name, and allow lookups
10249 of module.object to work in contexts that use the expression
10250 parser. */
10251
10252 static void
10253 fixup_go_packaging (struct dwarf2_cu *cu)
10254 {
10255 char *package_name = NULL;
10256 struct pending *list;
10257 int i;
10258
10259 for (list = global_symbols; list != NULL; list = list->next)
10260 {
10261 for (i = 0; i < list->nsyms; ++i)
10262 {
10263 struct symbol *sym = list->symbol[i];
10264
10265 if (SYMBOL_LANGUAGE (sym) == language_go
10266 && SYMBOL_CLASS (sym) == LOC_BLOCK)
10267 {
10268 char *this_package_name = go_symbol_package_name (sym);
10269
10270 if (this_package_name == NULL)
10271 continue;
10272 if (package_name == NULL)
10273 package_name = this_package_name;
10274 else
10275 {
10276 struct objfile *objfile
10277 = cu->per_cu->dwarf2_per_objfile->objfile;
10278 if (strcmp (package_name, this_package_name) != 0)
10279 complaint (&symfile_complaints,
10280 _("Symtab %s has objects from two different Go packages: %s and %s"),
10281 (symbol_symtab (sym) != NULL
10282 ? symtab_to_filename_for_display
10283 (symbol_symtab (sym))
10284 : objfile_name (objfile)),
10285 this_package_name, package_name);
10286 xfree (this_package_name);
10287 }
10288 }
10289 }
10290 }
10291
10292 if (package_name != NULL)
10293 {
10294 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10295 const char *saved_package_name
10296 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
10297 package_name,
10298 strlen (package_name));
10299 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
10300 saved_package_name);
10301 struct symbol *sym;
10302
10303 TYPE_TAG_NAME (type) = TYPE_NAME (type);
10304
10305 sym = allocate_symbol (objfile);
10306 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
10307 SYMBOL_SET_NAMES (sym, saved_package_name,
10308 strlen (saved_package_name), 0, objfile);
10309 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
10310 e.g., "main" finds the "main" module and not C's main(). */
10311 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
10312 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
10313 SYMBOL_TYPE (sym) = type;
10314
10315 add_symbol_to_list (sym, &global_symbols);
10316
10317 xfree (package_name);
10318 }
10319 }
10320
10321 /* Return the symtab for PER_CU. This works properly regardless of
10322 whether we're using the index or psymtabs. */
10323
10324 static struct compunit_symtab *
10325 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10326 {
10327 return (per_cu->dwarf2_per_objfile->using_index
10328 ? per_cu->v.quick->compunit_symtab
10329 : per_cu->v.psymtab->compunit_symtab);
10330 }
10331
10332 /* A helper function for computing the list of all symbol tables
10333 included by PER_CU. */
10334
10335 static void
10336 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
10337 htab_t all_children, htab_t all_type_symtabs,
10338 struct dwarf2_per_cu_data *per_cu,
10339 struct compunit_symtab *immediate_parent)
10340 {
10341 void **slot;
10342 int ix;
10343 struct compunit_symtab *cust;
10344 struct dwarf2_per_cu_data *iter;
10345
10346 slot = htab_find_slot (all_children, per_cu, INSERT);
10347 if (*slot != NULL)
10348 {
10349 /* This inclusion and its children have been processed. */
10350 return;
10351 }
10352
10353 *slot = per_cu;
10354 /* Only add a CU if it has a symbol table. */
10355 cust = get_compunit_symtab (per_cu);
10356 if (cust != NULL)
10357 {
10358 /* If this is a type unit only add its symbol table if we haven't
10359 seen it yet (type unit per_cu's can share symtabs). */
10360 if (per_cu->is_debug_types)
10361 {
10362 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10363 if (*slot == NULL)
10364 {
10365 *slot = cust;
10366 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10367 if (cust->user == NULL)
10368 cust->user = immediate_parent;
10369 }
10370 }
10371 else
10372 {
10373 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10374 if (cust->user == NULL)
10375 cust->user = immediate_parent;
10376 }
10377 }
10378
10379 for (ix = 0;
10380 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10381 ++ix)
10382 {
10383 recursively_compute_inclusions (result, all_children,
10384 all_type_symtabs, iter, cust);
10385 }
10386 }
10387
10388 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10389 PER_CU. */
10390
10391 static void
10392 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10393 {
10394 gdb_assert (! per_cu->is_debug_types);
10395
10396 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10397 {
10398 int ix, len;
10399 struct dwarf2_per_cu_data *per_cu_iter;
10400 struct compunit_symtab *compunit_symtab_iter;
10401 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
10402 htab_t all_children, all_type_symtabs;
10403 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10404
10405 /* If we don't have a symtab, we can just skip this case. */
10406 if (cust == NULL)
10407 return;
10408
10409 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10410 NULL, xcalloc, xfree);
10411 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10412 NULL, xcalloc, xfree);
10413
10414 for (ix = 0;
10415 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10416 ix, per_cu_iter);
10417 ++ix)
10418 {
10419 recursively_compute_inclusions (&result_symtabs, all_children,
10420 all_type_symtabs, per_cu_iter,
10421 cust);
10422 }
10423
10424 /* Now we have a transitive closure of all the included symtabs. */
10425 len = VEC_length (compunit_symtab_ptr, result_symtabs);
10426 cust->includes
10427 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10428 struct compunit_symtab *, len + 1);
10429 for (ix = 0;
10430 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
10431 compunit_symtab_iter);
10432 ++ix)
10433 cust->includes[ix] = compunit_symtab_iter;
10434 cust->includes[len] = NULL;
10435
10436 VEC_free (compunit_symtab_ptr, result_symtabs);
10437 htab_delete (all_children);
10438 htab_delete (all_type_symtabs);
10439 }
10440 }
10441
10442 /* Compute the 'includes' field for the symtabs of all the CUs we just
10443 read. */
10444
10445 static void
10446 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10447 {
10448 int ix;
10449 struct dwarf2_per_cu_data *iter;
10450
10451 for (ix = 0;
10452 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
10453 ix, iter);
10454 ++ix)
10455 {
10456 if (! iter->is_debug_types)
10457 compute_compunit_symtab_includes (iter);
10458 }
10459
10460 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
10461 }
10462
10463 /* Generate full symbol information for PER_CU, whose DIEs have
10464 already been loaded into memory. */
10465
10466 static void
10467 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10468 enum language pretend_language)
10469 {
10470 struct dwarf2_cu *cu = per_cu->cu;
10471 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10472 struct objfile *objfile = dwarf2_per_objfile->objfile;
10473 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10474 CORE_ADDR lowpc, highpc;
10475 struct compunit_symtab *cust;
10476 CORE_ADDR baseaddr;
10477 struct block *static_block;
10478 CORE_ADDR addr;
10479
10480 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10481
10482 buildsym_init ();
10483 scoped_free_pendings free_pending;
10484
10485 /* Clear the list here in case something was left over. */
10486 cu->method_list.clear ();
10487
10488 cu->list_in_scope = &file_symbols;
10489
10490 cu->language = pretend_language;
10491 cu->language_defn = language_def (cu->language);
10492
10493 /* Do line number decoding in read_file_scope () */
10494 process_die (cu->dies, cu);
10495
10496 /* For now fudge the Go package. */
10497 if (cu->language == language_go)
10498 fixup_go_packaging (cu);
10499
10500 /* Now that we have processed all the DIEs in the CU, all the types
10501 should be complete, and it should now be safe to compute all of the
10502 physnames. */
10503 compute_delayed_physnames (cu);
10504
10505 /* Some compilers don't define a DW_AT_high_pc attribute for the
10506 compilation unit. If the DW_AT_high_pc is missing, synthesize
10507 it, by scanning the DIE's below the compilation unit. */
10508 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10509
10510 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10511 static_block = end_symtab_get_static_block (addr, 0, 1);
10512
10513 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10514 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10515 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10516 addrmap to help ensure it has an accurate map of pc values belonging to
10517 this comp unit. */
10518 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10519
10520 cust = end_symtab_from_static_block (static_block,
10521 SECT_OFF_TEXT (objfile), 0);
10522
10523 if (cust != NULL)
10524 {
10525 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10526
10527 /* Set symtab language to language from DW_AT_language. If the
10528 compilation is from a C file generated by language preprocessors, do
10529 not set the language if it was already deduced by start_subfile. */
10530 if (!(cu->language == language_c
10531 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10532 COMPUNIT_FILETABS (cust)->language = cu->language;
10533
10534 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10535 produce DW_AT_location with location lists but it can be possibly
10536 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10537 there were bugs in prologue debug info, fixed later in GCC-4.5
10538 by "unwind info for epilogues" patch (which is not directly related).
10539
10540 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10541 needed, it would be wrong due to missing DW_AT_producer there.
10542
10543 Still one can confuse GDB by using non-standard GCC compilation
10544 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10545 */
10546 if (cu->has_loclist && gcc_4_minor >= 5)
10547 cust->locations_valid = 1;
10548
10549 if (gcc_4_minor >= 5)
10550 cust->epilogue_unwind_valid = 1;
10551
10552 cust->call_site_htab = cu->call_site_htab;
10553 }
10554
10555 if (dwarf2_per_objfile->using_index)
10556 per_cu->v.quick->compunit_symtab = cust;
10557 else
10558 {
10559 struct partial_symtab *pst = per_cu->v.psymtab;
10560 pst->compunit_symtab = cust;
10561 pst->readin = 1;
10562 }
10563
10564 /* Push it for inclusion processing later. */
10565 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
10566 }
10567
10568 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10569 already been loaded into memory. */
10570
10571 static void
10572 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10573 enum language pretend_language)
10574 {
10575 struct dwarf2_cu *cu = per_cu->cu;
10576 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10577 struct objfile *objfile = dwarf2_per_objfile->objfile;
10578 struct compunit_symtab *cust;
10579 struct signatured_type *sig_type;
10580
10581 gdb_assert (per_cu->is_debug_types);
10582 sig_type = (struct signatured_type *) per_cu;
10583
10584 buildsym_init ();
10585 scoped_free_pendings free_pending;
10586
10587 /* Clear the list here in case something was left over. */
10588 cu->method_list.clear ();
10589
10590 cu->list_in_scope = &file_symbols;
10591
10592 cu->language = pretend_language;
10593 cu->language_defn = language_def (cu->language);
10594
10595 /* The symbol tables are set up in read_type_unit_scope. */
10596 process_die (cu->dies, cu);
10597
10598 /* For now fudge the Go package. */
10599 if (cu->language == language_go)
10600 fixup_go_packaging (cu);
10601
10602 /* Now that we have processed all the DIEs in the CU, all the types
10603 should be complete, and it should now be safe to compute all of the
10604 physnames. */
10605 compute_delayed_physnames (cu);
10606
10607 /* TUs share symbol tables.
10608 If this is the first TU to use this symtab, complete the construction
10609 of it with end_expandable_symtab. Otherwise, complete the addition of
10610 this TU's symbols to the existing symtab. */
10611 if (sig_type->type_unit_group->compunit_symtab == NULL)
10612 {
10613 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10614 sig_type->type_unit_group->compunit_symtab = cust;
10615
10616 if (cust != NULL)
10617 {
10618 /* Set symtab language to language from DW_AT_language. If the
10619 compilation is from a C file generated by language preprocessors,
10620 do not set the language if it was already deduced by
10621 start_subfile. */
10622 if (!(cu->language == language_c
10623 && COMPUNIT_FILETABS (cust)->language != language_c))
10624 COMPUNIT_FILETABS (cust)->language = cu->language;
10625 }
10626 }
10627 else
10628 {
10629 augment_type_symtab ();
10630 cust = sig_type->type_unit_group->compunit_symtab;
10631 }
10632
10633 if (dwarf2_per_objfile->using_index)
10634 per_cu->v.quick->compunit_symtab = cust;
10635 else
10636 {
10637 struct partial_symtab *pst = per_cu->v.psymtab;
10638 pst->compunit_symtab = cust;
10639 pst->readin = 1;
10640 }
10641 }
10642
10643 /* Process an imported unit DIE. */
10644
10645 static void
10646 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10647 {
10648 struct attribute *attr;
10649
10650 /* For now we don't handle imported units in type units. */
10651 if (cu->per_cu->is_debug_types)
10652 {
10653 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10654 " supported in type units [in module %s]"),
10655 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10656 }
10657
10658 attr = dwarf2_attr (die, DW_AT_import, cu);
10659 if (attr != NULL)
10660 {
10661 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10662 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10663 dwarf2_per_cu_data *per_cu
10664 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10665 cu->per_cu->dwarf2_per_objfile);
10666
10667 /* If necessary, add it to the queue and load its DIEs. */
10668 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10669 load_full_comp_unit (per_cu, cu->language);
10670
10671 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10672 per_cu);
10673 }
10674 }
10675
10676 /* RAII object that represents a process_die scope: i.e.,
10677 starts/finishes processing a DIE. */
10678 class process_die_scope
10679 {
10680 public:
10681 process_die_scope (die_info *die, dwarf2_cu *cu)
10682 : m_die (die), m_cu (cu)
10683 {
10684 /* We should only be processing DIEs not already in process. */
10685 gdb_assert (!m_die->in_process);
10686 m_die->in_process = true;
10687 }
10688
10689 ~process_die_scope ()
10690 {
10691 m_die->in_process = false;
10692
10693 /* If we're done processing the DIE for the CU that owns the line
10694 header, we don't need the line header anymore. */
10695 if (m_cu->line_header_die_owner == m_die)
10696 {
10697 delete m_cu->line_header;
10698 m_cu->line_header = NULL;
10699 m_cu->line_header_die_owner = NULL;
10700 }
10701 }
10702
10703 private:
10704 die_info *m_die;
10705 dwarf2_cu *m_cu;
10706 };
10707
10708 /* Process a die and its children. */
10709
10710 static void
10711 process_die (struct die_info *die, struct dwarf2_cu *cu)
10712 {
10713 process_die_scope scope (die, cu);
10714
10715 switch (die->tag)
10716 {
10717 case DW_TAG_padding:
10718 break;
10719 case DW_TAG_compile_unit:
10720 case DW_TAG_partial_unit:
10721 read_file_scope (die, cu);
10722 break;
10723 case DW_TAG_type_unit:
10724 read_type_unit_scope (die, cu);
10725 break;
10726 case DW_TAG_subprogram:
10727 case DW_TAG_inlined_subroutine:
10728 read_func_scope (die, cu);
10729 break;
10730 case DW_TAG_lexical_block:
10731 case DW_TAG_try_block:
10732 case DW_TAG_catch_block:
10733 read_lexical_block_scope (die, cu);
10734 break;
10735 case DW_TAG_call_site:
10736 case DW_TAG_GNU_call_site:
10737 read_call_site_scope (die, cu);
10738 break;
10739 case DW_TAG_class_type:
10740 case DW_TAG_interface_type:
10741 case DW_TAG_structure_type:
10742 case DW_TAG_union_type:
10743 process_structure_scope (die, cu);
10744 break;
10745 case DW_TAG_enumeration_type:
10746 process_enumeration_scope (die, cu);
10747 break;
10748
10749 /* These dies have a type, but processing them does not create
10750 a symbol or recurse to process the children. Therefore we can
10751 read them on-demand through read_type_die. */
10752 case DW_TAG_subroutine_type:
10753 case DW_TAG_set_type:
10754 case DW_TAG_array_type:
10755 case DW_TAG_pointer_type:
10756 case DW_TAG_ptr_to_member_type:
10757 case DW_TAG_reference_type:
10758 case DW_TAG_rvalue_reference_type:
10759 case DW_TAG_string_type:
10760 break;
10761
10762 case DW_TAG_base_type:
10763 case DW_TAG_subrange_type:
10764 case DW_TAG_typedef:
10765 /* Add a typedef symbol for the type definition, if it has a
10766 DW_AT_name. */
10767 new_symbol (die, read_type_die (die, cu), cu);
10768 break;
10769 case DW_TAG_common_block:
10770 read_common_block (die, cu);
10771 break;
10772 case DW_TAG_common_inclusion:
10773 break;
10774 case DW_TAG_namespace:
10775 cu->processing_has_namespace_info = 1;
10776 read_namespace (die, cu);
10777 break;
10778 case DW_TAG_module:
10779 cu->processing_has_namespace_info = 1;
10780 read_module (die, cu);
10781 break;
10782 case DW_TAG_imported_declaration:
10783 cu->processing_has_namespace_info = 1;
10784 if (read_namespace_alias (die, cu))
10785 break;
10786 /* The declaration is not a global namespace alias: fall through. */
10787 case DW_TAG_imported_module:
10788 cu->processing_has_namespace_info = 1;
10789 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10790 || cu->language != language_fortran))
10791 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
10792 dwarf_tag_name (die->tag));
10793 read_import_statement (die, cu);
10794 break;
10795
10796 case DW_TAG_imported_unit:
10797 process_imported_unit_die (die, cu);
10798 break;
10799
10800 case DW_TAG_variable:
10801 read_variable (die, cu);
10802 break;
10803
10804 default:
10805 new_symbol (die, NULL, cu);
10806 break;
10807 }
10808 }
10809 \f
10810 /* DWARF name computation. */
10811
10812 /* A helper function for dwarf2_compute_name which determines whether DIE
10813 needs to have the name of the scope prepended to the name listed in the
10814 die. */
10815
10816 static int
10817 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10818 {
10819 struct attribute *attr;
10820
10821 switch (die->tag)
10822 {
10823 case DW_TAG_namespace:
10824 case DW_TAG_typedef:
10825 case DW_TAG_class_type:
10826 case DW_TAG_interface_type:
10827 case DW_TAG_structure_type:
10828 case DW_TAG_union_type:
10829 case DW_TAG_enumeration_type:
10830 case DW_TAG_enumerator:
10831 case DW_TAG_subprogram:
10832 case DW_TAG_inlined_subroutine:
10833 case DW_TAG_member:
10834 case DW_TAG_imported_declaration:
10835 return 1;
10836
10837 case DW_TAG_variable:
10838 case DW_TAG_constant:
10839 /* We only need to prefix "globally" visible variables. These include
10840 any variable marked with DW_AT_external or any variable that
10841 lives in a namespace. [Variables in anonymous namespaces
10842 require prefixing, but they are not DW_AT_external.] */
10843
10844 if (dwarf2_attr (die, DW_AT_specification, cu))
10845 {
10846 struct dwarf2_cu *spec_cu = cu;
10847
10848 return die_needs_namespace (die_specification (die, &spec_cu),
10849 spec_cu);
10850 }
10851
10852 attr = dwarf2_attr (die, DW_AT_external, cu);
10853 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10854 && die->parent->tag != DW_TAG_module)
10855 return 0;
10856 /* A variable in a lexical block of some kind does not need a
10857 namespace, even though in C++ such variables may be external
10858 and have a mangled name. */
10859 if (die->parent->tag == DW_TAG_lexical_block
10860 || die->parent->tag == DW_TAG_try_block
10861 || die->parent->tag == DW_TAG_catch_block
10862 || die->parent->tag == DW_TAG_subprogram)
10863 return 0;
10864 return 1;
10865
10866 default:
10867 return 0;
10868 }
10869 }
10870
10871 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10872 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10873 defined for the given DIE. */
10874
10875 static struct attribute *
10876 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10877 {
10878 struct attribute *attr;
10879
10880 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10881 if (attr == NULL)
10882 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10883
10884 return attr;
10885 }
10886
10887 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10888 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10889 defined for the given DIE. */
10890
10891 static const char *
10892 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10893 {
10894 const char *linkage_name;
10895
10896 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10897 if (linkage_name == NULL)
10898 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10899
10900 return linkage_name;
10901 }
10902
10903 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10904 compute the physname for the object, which include a method's:
10905 - formal parameters (C++),
10906 - receiver type (Go),
10907
10908 The term "physname" is a bit confusing.
10909 For C++, for example, it is the demangled name.
10910 For Go, for example, it's the mangled name.
10911
10912 For Ada, return the DIE's linkage name rather than the fully qualified
10913 name. PHYSNAME is ignored..
10914
10915 The result is allocated on the objfile_obstack and canonicalized. */
10916
10917 static const char *
10918 dwarf2_compute_name (const char *name,
10919 struct die_info *die, struct dwarf2_cu *cu,
10920 int physname)
10921 {
10922 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10923
10924 if (name == NULL)
10925 name = dwarf2_name (die, cu);
10926
10927 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10928 but otherwise compute it by typename_concat inside GDB.
10929 FIXME: Actually this is not really true, or at least not always true.
10930 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10931 Fortran names because there is no mangling standard. So new_symbol
10932 will set the demangled name to the result of dwarf2_full_name, and it is
10933 the demangled name that GDB uses if it exists. */
10934 if (cu->language == language_ada
10935 || (cu->language == language_fortran && physname))
10936 {
10937 /* For Ada unit, we prefer the linkage name over the name, as
10938 the former contains the exported name, which the user expects
10939 to be able to reference. Ideally, we want the user to be able
10940 to reference this entity using either natural or linkage name,
10941 but we haven't started looking at this enhancement yet. */
10942 const char *linkage_name = dw2_linkage_name (die, cu);
10943
10944 if (linkage_name != NULL)
10945 return linkage_name;
10946 }
10947
10948 /* These are the only languages we know how to qualify names in. */
10949 if (name != NULL
10950 && (cu->language == language_cplus
10951 || cu->language == language_fortran || cu->language == language_d
10952 || cu->language == language_rust))
10953 {
10954 if (die_needs_namespace (die, cu))
10955 {
10956 const char *prefix;
10957 const char *canonical_name = NULL;
10958
10959 string_file buf;
10960
10961 prefix = determine_prefix (die, cu);
10962 if (*prefix != '\0')
10963 {
10964 char *prefixed_name = typename_concat (NULL, prefix, name,
10965 physname, cu);
10966
10967 buf.puts (prefixed_name);
10968 xfree (prefixed_name);
10969 }
10970 else
10971 buf.puts (name);
10972
10973 /* Template parameters may be specified in the DIE's DW_AT_name, or
10974 as children with DW_TAG_template_type_param or
10975 DW_TAG_value_type_param. If the latter, add them to the name
10976 here. If the name already has template parameters, then
10977 skip this step; some versions of GCC emit both, and
10978 it is more efficient to use the pre-computed name.
10979
10980 Something to keep in mind about this process: it is very
10981 unlikely, or in some cases downright impossible, to produce
10982 something that will match the mangled name of a function.
10983 If the definition of the function has the same debug info,
10984 we should be able to match up with it anyway. But fallbacks
10985 using the minimal symbol, for instance to find a method
10986 implemented in a stripped copy of libstdc++, will not work.
10987 If we do not have debug info for the definition, we will have to
10988 match them up some other way.
10989
10990 When we do name matching there is a related problem with function
10991 templates; two instantiated function templates are allowed to
10992 differ only by their return types, which we do not add here. */
10993
10994 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10995 {
10996 struct attribute *attr;
10997 struct die_info *child;
10998 int first = 1;
10999
11000 die->building_fullname = 1;
11001
11002 for (child = die->child; child != NULL; child = child->sibling)
11003 {
11004 struct type *type;
11005 LONGEST value;
11006 const gdb_byte *bytes;
11007 struct dwarf2_locexpr_baton *baton;
11008 struct value *v;
11009
11010 if (child->tag != DW_TAG_template_type_param
11011 && child->tag != DW_TAG_template_value_param)
11012 continue;
11013
11014 if (first)
11015 {
11016 buf.puts ("<");
11017 first = 0;
11018 }
11019 else
11020 buf.puts (", ");
11021
11022 attr = dwarf2_attr (child, DW_AT_type, cu);
11023 if (attr == NULL)
11024 {
11025 complaint (&symfile_complaints,
11026 _("template parameter missing DW_AT_type"));
11027 buf.puts ("UNKNOWN_TYPE");
11028 continue;
11029 }
11030 type = die_type (child, cu);
11031
11032 if (child->tag == DW_TAG_template_type_param)
11033 {
11034 c_print_type (type, "", &buf, -1, 0, &type_print_raw_options);
11035 continue;
11036 }
11037
11038 attr = dwarf2_attr (child, DW_AT_const_value, cu);
11039 if (attr == NULL)
11040 {
11041 complaint (&symfile_complaints,
11042 _("template parameter missing "
11043 "DW_AT_const_value"));
11044 buf.puts ("UNKNOWN_VALUE");
11045 continue;
11046 }
11047
11048 dwarf2_const_value_attr (attr, type, name,
11049 &cu->comp_unit_obstack, cu,
11050 &value, &bytes, &baton);
11051
11052 if (TYPE_NOSIGN (type))
11053 /* GDB prints characters as NUMBER 'CHAR'. If that's
11054 changed, this can use value_print instead. */
11055 c_printchar (value, type, &buf);
11056 else
11057 {
11058 struct value_print_options opts;
11059
11060 if (baton != NULL)
11061 v = dwarf2_evaluate_loc_desc (type, NULL,
11062 baton->data,
11063 baton->size,
11064 baton->per_cu);
11065 else if (bytes != NULL)
11066 {
11067 v = allocate_value (type);
11068 memcpy (value_contents_writeable (v), bytes,
11069 TYPE_LENGTH (type));
11070 }
11071 else
11072 v = value_from_longest (type, value);
11073
11074 /* Specify decimal so that we do not depend on
11075 the radix. */
11076 get_formatted_print_options (&opts, 'd');
11077 opts.raw = 1;
11078 value_print (v, &buf, &opts);
11079 release_value (v);
11080 value_free (v);
11081 }
11082 }
11083
11084 die->building_fullname = 0;
11085
11086 if (!first)
11087 {
11088 /* Close the argument list, with a space if necessary
11089 (nested templates). */
11090 if (!buf.empty () && buf.string ().back () == '>')
11091 buf.puts (" >");
11092 else
11093 buf.puts (">");
11094 }
11095 }
11096
11097 /* For C++ methods, append formal parameter type
11098 information, if PHYSNAME. */
11099
11100 if (physname && die->tag == DW_TAG_subprogram
11101 && cu->language == language_cplus)
11102 {
11103 struct type *type = read_type_die (die, cu);
11104
11105 c_type_print_args (type, &buf, 1, cu->language,
11106 &type_print_raw_options);
11107
11108 if (cu->language == language_cplus)
11109 {
11110 /* Assume that an artificial first parameter is
11111 "this", but do not crash if it is not. RealView
11112 marks unnamed (and thus unused) parameters as
11113 artificial; there is no way to differentiate
11114 the two cases. */
11115 if (TYPE_NFIELDS (type) > 0
11116 && TYPE_FIELD_ARTIFICIAL (type, 0)
11117 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
11118 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
11119 0))))
11120 buf.puts (" const");
11121 }
11122 }
11123
11124 const std::string &intermediate_name = buf.string ();
11125
11126 if (cu->language == language_cplus)
11127 canonical_name
11128 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
11129 &objfile->per_bfd->storage_obstack);
11130
11131 /* If we only computed INTERMEDIATE_NAME, or if
11132 INTERMEDIATE_NAME is already canonical, then we need to
11133 copy it to the appropriate obstack. */
11134 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
11135 name = ((const char *)
11136 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11137 intermediate_name.c_str (),
11138 intermediate_name.length ()));
11139 else
11140 name = canonical_name;
11141 }
11142 }
11143
11144 return name;
11145 }
11146
11147 /* Return the fully qualified name of DIE, based on its DW_AT_name.
11148 If scope qualifiers are appropriate they will be added. The result
11149 will be allocated on the storage_obstack, or NULL if the DIE does
11150 not have a name. NAME may either be from a previous call to
11151 dwarf2_name or NULL.
11152
11153 The output string will be canonicalized (if C++). */
11154
11155 static const char *
11156 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11157 {
11158 return dwarf2_compute_name (name, die, cu, 0);
11159 }
11160
11161 /* Construct a physname for the given DIE in CU. NAME may either be
11162 from a previous call to dwarf2_name or NULL. The result will be
11163 allocated on the objfile_objstack or NULL if the DIE does not have a
11164 name.
11165
11166 The output string will be canonicalized (if C++). */
11167
11168 static const char *
11169 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11170 {
11171 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11172 const char *retval, *mangled = NULL, *canon = NULL;
11173 int need_copy = 1;
11174
11175 /* In this case dwarf2_compute_name is just a shortcut not building anything
11176 on its own. */
11177 if (!die_needs_namespace (die, cu))
11178 return dwarf2_compute_name (name, die, cu, 1);
11179
11180 mangled = dw2_linkage_name (die, cu);
11181
11182 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11183 See https://github.com/rust-lang/rust/issues/32925. */
11184 if (cu->language == language_rust && mangled != NULL
11185 && strchr (mangled, '{') != NULL)
11186 mangled = NULL;
11187
11188 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11189 has computed. */
11190 gdb::unique_xmalloc_ptr<char> demangled;
11191 if (mangled != NULL)
11192 {
11193
11194 if (cu->language == language_go)
11195 {
11196 /* This is a lie, but we already lie to the caller new_symbol.
11197 new_symbol assumes we return the mangled name.
11198 This just undoes that lie until things are cleaned up. */
11199 }
11200 else
11201 {
11202 /* Use DMGL_RET_DROP for C++ template functions to suppress
11203 their return type. It is easier for GDB users to search
11204 for such functions as `name(params)' than `long name(params)'.
11205 In such case the minimal symbol names do not match the full
11206 symbol names but for template functions there is never a need
11207 to look up their definition from their declaration so
11208 the only disadvantage remains the minimal symbol variant
11209 `long name(params)' does not have the proper inferior type. */
11210 demangled.reset (gdb_demangle (mangled,
11211 (DMGL_PARAMS | DMGL_ANSI
11212 | DMGL_RET_DROP)));
11213 }
11214 if (demangled)
11215 canon = demangled.get ();
11216 else
11217 {
11218 canon = mangled;
11219 need_copy = 0;
11220 }
11221 }
11222
11223 if (canon == NULL || check_physname)
11224 {
11225 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11226
11227 if (canon != NULL && strcmp (physname, canon) != 0)
11228 {
11229 /* It may not mean a bug in GDB. The compiler could also
11230 compute DW_AT_linkage_name incorrectly. But in such case
11231 GDB would need to be bug-to-bug compatible. */
11232
11233 complaint (&symfile_complaints,
11234 _("Computed physname <%s> does not match demangled <%s> "
11235 "(from linkage <%s>) - DIE at %s [in module %s]"),
11236 physname, canon, mangled, sect_offset_str (die->sect_off),
11237 objfile_name (objfile));
11238
11239 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11240 is available here - over computed PHYSNAME. It is safer
11241 against both buggy GDB and buggy compilers. */
11242
11243 retval = canon;
11244 }
11245 else
11246 {
11247 retval = physname;
11248 need_copy = 0;
11249 }
11250 }
11251 else
11252 retval = canon;
11253
11254 if (need_copy)
11255 retval = ((const char *)
11256 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11257 retval, strlen (retval)));
11258
11259 return retval;
11260 }
11261
11262 /* Inspect DIE in CU for a namespace alias. If one exists, record
11263 a new symbol for it.
11264
11265 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11266
11267 static int
11268 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11269 {
11270 struct attribute *attr;
11271
11272 /* If the die does not have a name, this is not a namespace
11273 alias. */
11274 attr = dwarf2_attr (die, DW_AT_name, cu);
11275 if (attr != NULL)
11276 {
11277 int num;
11278 struct die_info *d = die;
11279 struct dwarf2_cu *imported_cu = cu;
11280
11281 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11282 keep inspecting DIEs until we hit the underlying import. */
11283 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11284 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11285 {
11286 attr = dwarf2_attr (d, DW_AT_import, cu);
11287 if (attr == NULL)
11288 break;
11289
11290 d = follow_die_ref (d, attr, &imported_cu);
11291 if (d->tag != DW_TAG_imported_declaration)
11292 break;
11293 }
11294
11295 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11296 {
11297 complaint (&symfile_complaints,
11298 _("DIE at %s has too many recursively imported "
11299 "declarations"), sect_offset_str (d->sect_off));
11300 return 0;
11301 }
11302
11303 if (attr != NULL)
11304 {
11305 struct type *type;
11306 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11307
11308 type = get_die_type_at_offset (sect_off, cu->per_cu);
11309 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11310 {
11311 /* This declaration is a global namespace alias. Add
11312 a symbol for it whose type is the aliased namespace. */
11313 new_symbol (die, type, cu);
11314 return 1;
11315 }
11316 }
11317 }
11318
11319 return 0;
11320 }
11321
11322 /* Return the using directives repository (global or local?) to use in the
11323 current context for LANGUAGE.
11324
11325 For Ada, imported declarations can materialize renamings, which *may* be
11326 global. However it is impossible (for now?) in DWARF to distinguish
11327 "external" imported declarations and "static" ones. As all imported
11328 declarations seem to be static in all other languages, make them all CU-wide
11329 global only in Ada. */
11330
11331 static struct using_direct **
11332 using_directives (enum language language)
11333 {
11334 if (language == language_ada && context_stack_depth == 0)
11335 return &global_using_directives;
11336 else
11337 return &local_using_directives;
11338 }
11339
11340 /* Read the import statement specified by the given die and record it. */
11341
11342 static void
11343 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11344 {
11345 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11346 struct attribute *import_attr;
11347 struct die_info *imported_die, *child_die;
11348 struct dwarf2_cu *imported_cu;
11349 const char *imported_name;
11350 const char *imported_name_prefix;
11351 const char *canonical_name;
11352 const char *import_alias;
11353 const char *imported_declaration = NULL;
11354 const char *import_prefix;
11355 std::vector<const char *> excludes;
11356
11357 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11358 if (import_attr == NULL)
11359 {
11360 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
11361 dwarf_tag_name (die->tag));
11362 return;
11363 }
11364
11365 imported_cu = cu;
11366 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11367 imported_name = dwarf2_name (imported_die, imported_cu);
11368 if (imported_name == NULL)
11369 {
11370 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11371
11372 The import in the following code:
11373 namespace A
11374 {
11375 typedef int B;
11376 }
11377
11378 int main ()
11379 {
11380 using A::B;
11381 B b;
11382 return b;
11383 }
11384
11385 ...
11386 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11387 <52> DW_AT_decl_file : 1
11388 <53> DW_AT_decl_line : 6
11389 <54> DW_AT_import : <0x75>
11390 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11391 <59> DW_AT_name : B
11392 <5b> DW_AT_decl_file : 1
11393 <5c> DW_AT_decl_line : 2
11394 <5d> DW_AT_type : <0x6e>
11395 ...
11396 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11397 <76> DW_AT_byte_size : 4
11398 <77> DW_AT_encoding : 5 (signed)
11399
11400 imports the wrong die ( 0x75 instead of 0x58 ).
11401 This case will be ignored until the gcc bug is fixed. */
11402 return;
11403 }
11404
11405 /* Figure out the local name after import. */
11406 import_alias = dwarf2_name (die, cu);
11407
11408 /* Figure out where the statement is being imported to. */
11409 import_prefix = determine_prefix (die, cu);
11410
11411 /* Figure out what the scope of the imported die is and prepend it
11412 to the name of the imported die. */
11413 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11414
11415 if (imported_die->tag != DW_TAG_namespace
11416 && imported_die->tag != DW_TAG_module)
11417 {
11418 imported_declaration = imported_name;
11419 canonical_name = imported_name_prefix;
11420 }
11421 else if (strlen (imported_name_prefix) > 0)
11422 canonical_name = obconcat (&objfile->objfile_obstack,
11423 imported_name_prefix,
11424 (cu->language == language_d ? "." : "::"),
11425 imported_name, (char *) NULL);
11426 else
11427 canonical_name = imported_name;
11428
11429 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11430 for (child_die = die->child; child_die && child_die->tag;
11431 child_die = sibling_die (child_die))
11432 {
11433 /* DWARF-4: A Fortran use statement with a “rename list” may be
11434 represented by an imported module entry with an import attribute
11435 referring to the module and owned entries corresponding to those
11436 entities that are renamed as part of being imported. */
11437
11438 if (child_die->tag != DW_TAG_imported_declaration)
11439 {
11440 complaint (&symfile_complaints,
11441 _("child DW_TAG_imported_declaration expected "
11442 "- DIE at %s [in module %s]"),
11443 sect_offset_str (child_die->sect_off),
11444 objfile_name (objfile));
11445 continue;
11446 }
11447
11448 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11449 if (import_attr == NULL)
11450 {
11451 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
11452 dwarf_tag_name (child_die->tag));
11453 continue;
11454 }
11455
11456 imported_cu = cu;
11457 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11458 &imported_cu);
11459 imported_name = dwarf2_name (imported_die, imported_cu);
11460 if (imported_name == NULL)
11461 {
11462 complaint (&symfile_complaints,
11463 _("child DW_TAG_imported_declaration has unknown "
11464 "imported name - DIE at %s [in module %s]"),
11465 sect_offset_str (child_die->sect_off),
11466 objfile_name (objfile));
11467 continue;
11468 }
11469
11470 excludes.push_back (imported_name);
11471
11472 process_die (child_die, cu);
11473 }
11474
11475 add_using_directive (using_directives (cu->language),
11476 import_prefix,
11477 canonical_name,
11478 import_alias,
11479 imported_declaration,
11480 excludes,
11481 0,
11482 &objfile->objfile_obstack);
11483 }
11484
11485 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11486 types, but gives them a size of zero. Starting with version 14,
11487 ICC is compatible with GCC. */
11488
11489 static int
11490 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11491 {
11492 if (!cu->checked_producer)
11493 check_producer (cu);
11494
11495 return cu->producer_is_icc_lt_14;
11496 }
11497
11498 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11499 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11500 this, it was first present in GCC release 4.3.0. */
11501
11502 static int
11503 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11504 {
11505 if (!cu->checked_producer)
11506 check_producer (cu);
11507
11508 return cu->producer_is_gcc_lt_4_3;
11509 }
11510
11511 static file_and_directory
11512 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11513 {
11514 file_and_directory res;
11515
11516 /* Find the filename. Do not use dwarf2_name here, since the filename
11517 is not a source language identifier. */
11518 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11519 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11520
11521 if (res.comp_dir == NULL
11522 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11523 && IS_ABSOLUTE_PATH (res.name))
11524 {
11525 res.comp_dir_storage = ldirname (res.name);
11526 if (!res.comp_dir_storage.empty ())
11527 res.comp_dir = res.comp_dir_storage.c_str ();
11528 }
11529 if (res.comp_dir != NULL)
11530 {
11531 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11532 directory, get rid of it. */
11533 const char *cp = strchr (res.comp_dir, ':');
11534
11535 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11536 res.comp_dir = cp + 1;
11537 }
11538
11539 if (res.name == NULL)
11540 res.name = "<unknown>";
11541
11542 return res;
11543 }
11544
11545 /* Handle DW_AT_stmt_list for a compilation unit.
11546 DIE is the DW_TAG_compile_unit die for CU.
11547 COMP_DIR is the compilation directory. LOWPC is passed to
11548 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11549
11550 static void
11551 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11552 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11553 {
11554 struct dwarf2_per_objfile *dwarf2_per_objfile
11555 = cu->per_cu->dwarf2_per_objfile;
11556 struct objfile *objfile = dwarf2_per_objfile->objfile;
11557 struct attribute *attr;
11558 struct line_header line_header_local;
11559 hashval_t line_header_local_hash;
11560 void **slot;
11561 int decode_mapping;
11562
11563 gdb_assert (! cu->per_cu->is_debug_types);
11564
11565 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11566 if (attr == NULL)
11567 return;
11568
11569 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11570
11571 /* The line header hash table is only created if needed (it exists to
11572 prevent redundant reading of the line table for partial_units).
11573 If we're given a partial_unit, we'll need it. If we're given a
11574 compile_unit, then use the line header hash table if it's already
11575 created, but don't create one just yet. */
11576
11577 if (dwarf2_per_objfile->line_header_hash == NULL
11578 && die->tag == DW_TAG_partial_unit)
11579 {
11580 dwarf2_per_objfile->line_header_hash
11581 = htab_create_alloc_ex (127, line_header_hash_voidp,
11582 line_header_eq_voidp,
11583 free_line_header_voidp,
11584 &objfile->objfile_obstack,
11585 hashtab_obstack_allocate,
11586 dummy_obstack_deallocate);
11587 }
11588
11589 line_header_local.sect_off = line_offset;
11590 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11591 line_header_local_hash = line_header_hash (&line_header_local);
11592 if (dwarf2_per_objfile->line_header_hash != NULL)
11593 {
11594 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11595 &line_header_local,
11596 line_header_local_hash, NO_INSERT);
11597
11598 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11599 is not present in *SLOT (since if there is something in *SLOT then
11600 it will be for a partial_unit). */
11601 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11602 {
11603 gdb_assert (*slot != NULL);
11604 cu->line_header = (struct line_header *) *slot;
11605 return;
11606 }
11607 }
11608
11609 /* dwarf_decode_line_header does not yet provide sufficient information.
11610 We always have to call also dwarf_decode_lines for it. */
11611 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11612 if (lh == NULL)
11613 return;
11614
11615 cu->line_header = lh.release ();
11616 cu->line_header_die_owner = die;
11617
11618 if (dwarf2_per_objfile->line_header_hash == NULL)
11619 slot = NULL;
11620 else
11621 {
11622 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11623 &line_header_local,
11624 line_header_local_hash, INSERT);
11625 gdb_assert (slot != NULL);
11626 }
11627 if (slot != NULL && *slot == NULL)
11628 {
11629 /* This newly decoded line number information unit will be owned
11630 by line_header_hash hash table. */
11631 *slot = cu->line_header;
11632 cu->line_header_die_owner = NULL;
11633 }
11634 else
11635 {
11636 /* We cannot free any current entry in (*slot) as that struct line_header
11637 may be already used by multiple CUs. Create only temporary decoded
11638 line_header for this CU - it may happen at most once for each line
11639 number information unit. And if we're not using line_header_hash
11640 then this is what we want as well. */
11641 gdb_assert (die->tag != DW_TAG_partial_unit);
11642 }
11643 decode_mapping = (die->tag != DW_TAG_partial_unit);
11644 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11645 decode_mapping);
11646
11647 }
11648
11649 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11650
11651 static void
11652 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11653 {
11654 struct dwarf2_per_objfile *dwarf2_per_objfile
11655 = cu->per_cu->dwarf2_per_objfile;
11656 struct objfile *objfile = dwarf2_per_objfile->objfile;
11657 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11658 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11659 CORE_ADDR highpc = ((CORE_ADDR) 0);
11660 struct attribute *attr;
11661 struct die_info *child_die;
11662 CORE_ADDR baseaddr;
11663
11664 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11665
11666 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11667
11668 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11669 from finish_block. */
11670 if (lowpc == ((CORE_ADDR) -1))
11671 lowpc = highpc;
11672 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11673
11674 file_and_directory fnd = find_file_and_directory (die, cu);
11675
11676 prepare_one_comp_unit (cu, die, cu->language);
11677
11678 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11679 standardised yet. As a workaround for the language detection we fall
11680 back to the DW_AT_producer string. */
11681 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11682 cu->language = language_opencl;
11683
11684 /* Similar hack for Go. */
11685 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11686 set_cu_language (DW_LANG_Go, cu);
11687
11688 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
11689
11690 /* Decode line number information if present. We do this before
11691 processing child DIEs, so that the line header table is available
11692 for DW_AT_decl_file. */
11693 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11694
11695 /* Process all dies in compilation unit. */
11696 if (die->child != NULL)
11697 {
11698 child_die = die->child;
11699 while (child_die && child_die->tag)
11700 {
11701 process_die (child_die, cu);
11702 child_die = sibling_die (child_die);
11703 }
11704 }
11705
11706 /* Decode macro information, if present. Dwarf 2 macro information
11707 refers to information in the line number info statement program
11708 header, so we can only read it if we've read the header
11709 successfully. */
11710 attr = dwarf2_attr (die, DW_AT_macros, cu);
11711 if (attr == NULL)
11712 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11713 if (attr && cu->line_header)
11714 {
11715 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11716 complaint (&symfile_complaints,
11717 _("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11718
11719 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11720 }
11721 else
11722 {
11723 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11724 if (attr && cu->line_header)
11725 {
11726 unsigned int macro_offset = DW_UNSND (attr);
11727
11728 dwarf_decode_macros (cu, macro_offset, 0);
11729 }
11730 }
11731 }
11732
11733 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
11734 Create the set of symtabs used by this TU, or if this TU is sharing
11735 symtabs with another TU and the symtabs have already been created
11736 then restore those symtabs in the line header.
11737 We don't need the pc/line-number mapping for type units. */
11738
11739 static void
11740 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
11741 {
11742 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
11743 struct type_unit_group *tu_group;
11744 int first_time;
11745 struct attribute *attr;
11746 unsigned int i;
11747 struct signatured_type *sig_type;
11748
11749 gdb_assert (per_cu->is_debug_types);
11750 sig_type = (struct signatured_type *) per_cu;
11751
11752 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11753
11754 /* If we're using .gdb_index (includes -readnow) then
11755 per_cu->type_unit_group may not have been set up yet. */
11756 if (sig_type->type_unit_group == NULL)
11757 sig_type->type_unit_group = get_type_unit_group (cu, attr);
11758 tu_group = sig_type->type_unit_group;
11759
11760 /* If we've already processed this stmt_list there's no real need to
11761 do it again, we could fake it and just recreate the part we need
11762 (file name,index -> symtab mapping). If data shows this optimization
11763 is useful we can do it then. */
11764 first_time = tu_group->compunit_symtab == NULL;
11765
11766 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11767 debug info. */
11768 line_header_up lh;
11769 if (attr != NULL)
11770 {
11771 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11772 lh = dwarf_decode_line_header (line_offset, cu);
11773 }
11774 if (lh == NULL)
11775 {
11776 if (first_time)
11777 dwarf2_start_symtab (cu, "", NULL, 0);
11778 else
11779 {
11780 gdb_assert (tu_group->symtabs == NULL);
11781 restart_symtab (tu_group->compunit_symtab, "", 0);
11782 }
11783 return;
11784 }
11785
11786 cu->line_header = lh.release ();
11787 cu->line_header_die_owner = die;
11788
11789 if (first_time)
11790 {
11791 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
11792
11793 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11794 still initializing it, and our caller (a few levels up)
11795 process_full_type_unit still needs to know if this is the first
11796 time. */
11797
11798 tu_group->num_symtabs = cu->line_header->file_names.size ();
11799 tu_group->symtabs = XNEWVEC (struct symtab *,
11800 cu->line_header->file_names.size ());
11801
11802 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11803 {
11804 file_entry &fe = cu->line_header->file_names[i];
11805
11806 dwarf2_start_subfile (fe.name, fe.include_dir (cu->line_header));
11807
11808 if (current_subfile->symtab == NULL)
11809 {
11810 /* NOTE: start_subfile will recognize when it's been
11811 passed a file it has already seen. So we can't
11812 assume there's a simple mapping from
11813 cu->line_header->file_names to subfiles, plus
11814 cu->line_header->file_names may contain dups. */
11815 current_subfile->symtab
11816 = allocate_symtab (cust, current_subfile->name);
11817 }
11818
11819 fe.symtab = current_subfile->symtab;
11820 tu_group->symtabs[i] = fe.symtab;
11821 }
11822 }
11823 else
11824 {
11825 restart_symtab (tu_group->compunit_symtab, "", 0);
11826
11827 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11828 {
11829 file_entry &fe = cu->line_header->file_names[i];
11830
11831 fe.symtab = tu_group->symtabs[i];
11832 }
11833 }
11834
11835 /* The main symtab is allocated last. Type units don't have DW_AT_name
11836 so they don't have a "real" (so to speak) symtab anyway.
11837 There is later code that will assign the main symtab to all symbols
11838 that don't have one. We need to handle the case of a symbol with a
11839 missing symtab (DW_AT_decl_file) anyway. */
11840 }
11841
11842 /* Process DW_TAG_type_unit.
11843 For TUs we want to skip the first top level sibling if it's not the
11844 actual type being defined by this TU. In this case the first top
11845 level sibling is there to provide context only. */
11846
11847 static void
11848 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11849 {
11850 struct die_info *child_die;
11851
11852 prepare_one_comp_unit (cu, die, language_minimal);
11853
11854 /* Initialize (or reinitialize) the machinery for building symtabs.
11855 We do this before processing child DIEs, so that the line header table
11856 is available for DW_AT_decl_file. */
11857 setup_type_unit_groups (die, cu);
11858
11859 if (die->child != NULL)
11860 {
11861 child_die = die->child;
11862 while (child_die && child_die->tag)
11863 {
11864 process_die (child_die, cu);
11865 child_die = sibling_die (child_die);
11866 }
11867 }
11868 }
11869 \f
11870 /* DWO/DWP files.
11871
11872 http://gcc.gnu.org/wiki/DebugFission
11873 http://gcc.gnu.org/wiki/DebugFissionDWP
11874
11875 To simplify handling of both DWO files ("object" files with the DWARF info)
11876 and DWP files (a file with the DWOs packaged up into one file), we treat
11877 DWP files as having a collection of virtual DWO files. */
11878
11879 static hashval_t
11880 hash_dwo_file (const void *item)
11881 {
11882 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11883 hashval_t hash;
11884
11885 hash = htab_hash_string (dwo_file->dwo_name);
11886 if (dwo_file->comp_dir != NULL)
11887 hash += htab_hash_string (dwo_file->comp_dir);
11888 return hash;
11889 }
11890
11891 static int
11892 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11893 {
11894 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11895 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11896
11897 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11898 return 0;
11899 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11900 return lhs->comp_dir == rhs->comp_dir;
11901 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11902 }
11903
11904 /* Allocate a hash table for DWO files. */
11905
11906 static htab_t
11907 allocate_dwo_file_hash_table (struct objfile *objfile)
11908 {
11909 return htab_create_alloc_ex (41,
11910 hash_dwo_file,
11911 eq_dwo_file,
11912 NULL,
11913 &objfile->objfile_obstack,
11914 hashtab_obstack_allocate,
11915 dummy_obstack_deallocate);
11916 }
11917
11918 /* Lookup DWO file DWO_NAME. */
11919
11920 static void **
11921 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11922 const char *dwo_name,
11923 const char *comp_dir)
11924 {
11925 struct dwo_file find_entry;
11926 void **slot;
11927
11928 if (dwarf2_per_objfile->dwo_files == NULL)
11929 dwarf2_per_objfile->dwo_files
11930 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11931
11932 memset (&find_entry, 0, sizeof (find_entry));
11933 find_entry.dwo_name = dwo_name;
11934 find_entry.comp_dir = comp_dir;
11935 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11936
11937 return slot;
11938 }
11939
11940 static hashval_t
11941 hash_dwo_unit (const void *item)
11942 {
11943 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11944
11945 /* This drops the top 32 bits of the id, but is ok for a hash. */
11946 return dwo_unit->signature;
11947 }
11948
11949 static int
11950 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11951 {
11952 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11953 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11954
11955 /* The signature is assumed to be unique within the DWO file.
11956 So while object file CU dwo_id's always have the value zero,
11957 that's OK, assuming each object file DWO file has only one CU,
11958 and that's the rule for now. */
11959 return lhs->signature == rhs->signature;
11960 }
11961
11962 /* Allocate a hash table for DWO CUs,TUs.
11963 There is one of these tables for each of CUs,TUs for each DWO file. */
11964
11965 static htab_t
11966 allocate_dwo_unit_table (struct objfile *objfile)
11967 {
11968 /* Start out with a pretty small number.
11969 Generally DWO files contain only one CU and maybe some TUs. */
11970 return htab_create_alloc_ex (3,
11971 hash_dwo_unit,
11972 eq_dwo_unit,
11973 NULL,
11974 &objfile->objfile_obstack,
11975 hashtab_obstack_allocate,
11976 dummy_obstack_deallocate);
11977 }
11978
11979 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11980
11981 struct create_dwo_cu_data
11982 {
11983 struct dwo_file *dwo_file;
11984 struct dwo_unit dwo_unit;
11985 };
11986
11987 /* die_reader_func for create_dwo_cu. */
11988
11989 static void
11990 create_dwo_cu_reader (const struct die_reader_specs *reader,
11991 const gdb_byte *info_ptr,
11992 struct die_info *comp_unit_die,
11993 int has_children,
11994 void *datap)
11995 {
11996 struct dwarf2_cu *cu = reader->cu;
11997 sect_offset sect_off = cu->per_cu->sect_off;
11998 struct dwarf2_section_info *section = cu->per_cu->section;
11999 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
12000 struct dwo_file *dwo_file = data->dwo_file;
12001 struct dwo_unit *dwo_unit = &data->dwo_unit;
12002 struct attribute *attr;
12003
12004 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
12005 if (attr == NULL)
12006 {
12007 complaint (&symfile_complaints,
12008 _("Dwarf Error: debug entry at offset %s is missing"
12009 " its dwo_id [in module %s]"),
12010 sect_offset_str (sect_off), dwo_file->dwo_name);
12011 return;
12012 }
12013
12014 dwo_unit->dwo_file = dwo_file;
12015 dwo_unit->signature = DW_UNSND (attr);
12016 dwo_unit->section = section;
12017 dwo_unit->sect_off = sect_off;
12018 dwo_unit->length = cu->per_cu->length;
12019
12020 if (dwarf_read_debug)
12021 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
12022 sect_offset_str (sect_off),
12023 hex_string (dwo_unit->signature));
12024 }
12025
12026 /* Create the dwo_units for the CUs in a DWO_FILE.
12027 Note: This function processes DWO files only, not DWP files. */
12028
12029 static void
12030 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12031 struct dwo_file &dwo_file, dwarf2_section_info &section,
12032 htab_t &cus_htab)
12033 {
12034 struct objfile *objfile = dwarf2_per_objfile->objfile;
12035 const gdb_byte *info_ptr, *end_ptr;
12036
12037 dwarf2_read_section (objfile, &section);
12038 info_ptr = section.buffer;
12039
12040 if (info_ptr == NULL)
12041 return;
12042
12043 if (dwarf_read_debug)
12044 {
12045 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
12046 get_section_name (&section),
12047 get_section_file_name (&section));
12048 }
12049
12050 end_ptr = info_ptr + section.size;
12051 while (info_ptr < end_ptr)
12052 {
12053 struct dwarf2_per_cu_data per_cu;
12054 struct create_dwo_cu_data create_dwo_cu_data;
12055 struct dwo_unit *dwo_unit;
12056 void **slot;
12057 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
12058
12059 memset (&create_dwo_cu_data.dwo_unit, 0,
12060 sizeof (create_dwo_cu_data.dwo_unit));
12061 memset (&per_cu, 0, sizeof (per_cu));
12062 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
12063 per_cu.is_debug_types = 0;
12064 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
12065 per_cu.section = &section;
12066 create_dwo_cu_data.dwo_file = &dwo_file;
12067
12068 init_cutu_and_read_dies_no_follow (
12069 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
12070 info_ptr += per_cu.length;
12071
12072 // If the unit could not be parsed, skip it.
12073 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
12074 continue;
12075
12076 if (cus_htab == NULL)
12077 cus_htab = allocate_dwo_unit_table (objfile);
12078
12079 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12080 *dwo_unit = create_dwo_cu_data.dwo_unit;
12081 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
12082 gdb_assert (slot != NULL);
12083 if (*slot != NULL)
12084 {
12085 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
12086 sect_offset dup_sect_off = dup_cu->sect_off;
12087
12088 complaint (&symfile_complaints,
12089 _("debug cu entry at offset %s is duplicate to"
12090 " the entry at offset %s, signature %s"),
12091 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
12092 hex_string (dwo_unit->signature));
12093 }
12094 *slot = (void *)dwo_unit;
12095 }
12096 }
12097
12098 /* DWP file .debug_{cu,tu}_index section format:
12099 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
12100
12101 DWP Version 1:
12102
12103 Both index sections have the same format, and serve to map a 64-bit
12104 signature to a set of section numbers. Each section begins with a header,
12105 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
12106 indexes, and a pool of 32-bit section numbers. The index sections will be
12107 aligned at 8-byte boundaries in the file.
12108
12109 The index section header consists of:
12110
12111 V, 32 bit version number
12112 -, 32 bits unused
12113 N, 32 bit number of compilation units or type units in the index
12114 M, 32 bit number of slots in the hash table
12115
12116 Numbers are recorded using the byte order of the application binary.
12117
12118 The hash table begins at offset 16 in the section, and consists of an array
12119 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
12120 order of the application binary). Unused slots in the hash table are 0.
12121 (We rely on the extreme unlikeliness of a signature being exactly 0.)
12122
12123 The parallel table begins immediately after the hash table
12124 (at offset 16 + 8 * M from the beginning of the section), and consists of an
12125 array of 32-bit indexes (using the byte order of the application binary),
12126 corresponding 1-1 with slots in the hash table. Each entry in the parallel
12127 table contains a 32-bit index into the pool of section numbers. For unused
12128 hash table slots, the corresponding entry in the parallel table will be 0.
12129
12130 The pool of section numbers begins immediately following the hash table
12131 (at offset 16 + 12 * M from the beginning of the section). The pool of
12132 section numbers consists of an array of 32-bit words (using the byte order
12133 of the application binary). Each item in the array is indexed starting
12134 from 0. The hash table entry provides the index of the first section
12135 number in the set. Additional section numbers in the set follow, and the
12136 set is terminated by a 0 entry (section number 0 is not used in ELF).
12137
12138 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
12139 section must be the first entry in the set, and the .debug_abbrev.dwo must
12140 be the second entry. Other members of the set may follow in any order.
12141
12142 ---
12143
12144 DWP Version 2:
12145
12146 DWP Version 2 combines all the .debug_info, etc. sections into one,
12147 and the entries in the index tables are now offsets into these sections.
12148 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12149 section.
12150
12151 Index Section Contents:
12152 Header
12153 Hash Table of Signatures dwp_hash_table.hash_table
12154 Parallel Table of Indices dwp_hash_table.unit_table
12155 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12156 Table of Section Sizes dwp_hash_table.v2.sizes
12157
12158 The index section header consists of:
12159
12160 V, 32 bit version number
12161 L, 32 bit number of columns in the table of section offsets
12162 N, 32 bit number of compilation units or type units in the index
12163 M, 32 bit number of slots in the hash table
12164
12165 Numbers are recorded using the byte order of the application binary.
12166
12167 The hash table has the same format as version 1.
12168 The parallel table of indices has the same format as version 1,
12169 except that the entries are origin-1 indices into the table of sections
12170 offsets and the table of section sizes.
12171
12172 The table of offsets begins immediately following the parallel table
12173 (at offset 16 + 12 * M from the beginning of the section). The table is
12174 a two-dimensional array of 32-bit words (using the byte order of the
12175 application binary), with L columns and N+1 rows, in row-major order.
12176 Each row in the array is indexed starting from 0. The first row provides
12177 a key to the remaining rows: each column in this row provides an identifier
12178 for a debug section, and the offsets in the same column of subsequent rows
12179 refer to that section. The section identifiers are:
12180
12181 DW_SECT_INFO 1 .debug_info.dwo
12182 DW_SECT_TYPES 2 .debug_types.dwo
12183 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12184 DW_SECT_LINE 4 .debug_line.dwo
12185 DW_SECT_LOC 5 .debug_loc.dwo
12186 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12187 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12188 DW_SECT_MACRO 8 .debug_macro.dwo
12189
12190 The offsets provided by the CU and TU index sections are the base offsets
12191 for the contributions made by each CU or TU to the corresponding section
12192 in the package file. Each CU and TU header contains an abbrev_offset
12193 field, used to find the abbreviations table for that CU or TU within the
12194 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12195 be interpreted as relative to the base offset given in the index section.
12196 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12197 should be interpreted as relative to the base offset for .debug_line.dwo,
12198 and offsets into other debug sections obtained from DWARF attributes should
12199 also be interpreted as relative to the corresponding base offset.
12200
12201 The table of sizes begins immediately following the table of offsets.
12202 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12203 with L columns and N rows, in row-major order. Each row in the array is
12204 indexed starting from 1 (row 0 is shared by the two tables).
12205
12206 ---
12207
12208 Hash table lookup is handled the same in version 1 and 2:
12209
12210 We assume that N and M will not exceed 2^32 - 1.
12211 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12212
12213 Given a 64-bit compilation unit signature or a type signature S, an entry
12214 in the hash table is located as follows:
12215
12216 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12217 the low-order k bits all set to 1.
12218
12219 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12220
12221 3) If the hash table entry at index H matches the signature, use that
12222 entry. If the hash table entry at index H is unused (all zeroes),
12223 terminate the search: the signature is not present in the table.
12224
12225 4) Let H = (H + H') modulo M. Repeat at Step 3.
12226
12227 Because M > N and H' and M are relatively prime, the search is guaranteed
12228 to stop at an unused slot or find the match. */
12229
12230 /* Create a hash table to map DWO IDs to their CU/TU entry in
12231 .debug_{info,types}.dwo in DWP_FILE.
12232 Returns NULL if there isn't one.
12233 Note: This function processes DWP files only, not DWO files. */
12234
12235 static struct dwp_hash_table *
12236 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12237 struct dwp_file *dwp_file, int is_debug_types)
12238 {
12239 struct objfile *objfile = dwarf2_per_objfile->objfile;
12240 bfd *dbfd = dwp_file->dbfd;
12241 const gdb_byte *index_ptr, *index_end;
12242 struct dwarf2_section_info *index;
12243 uint32_t version, nr_columns, nr_units, nr_slots;
12244 struct dwp_hash_table *htab;
12245
12246 if (is_debug_types)
12247 index = &dwp_file->sections.tu_index;
12248 else
12249 index = &dwp_file->sections.cu_index;
12250
12251 if (dwarf2_section_empty_p (index))
12252 return NULL;
12253 dwarf2_read_section (objfile, index);
12254
12255 index_ptr = index->buffer;
12256 index_end = index_ptr + index->size;
12257
12258 version = read_4_bytes (dbfd, index_ptr);
12259 index_ptr += 4;
12260 if (version == 2)
12261 nr_columns = read_4_bytes (dbfd, index_ptr);
12262 else
12263 nr_columns = 0;
12264 index_ptr += 4;
12265 nr_units = read_4_bytes (dbfd, index_ptr);
12266 index_ptr += 4;
12267 nr_slots = read_4_bytes (dbfd, index_ptr);
12268 index_ptr += 4;
12269
12270 if (version != 1 && version != 2)
12271 {
12272 error (_("Dwarf Error: unsupported DWP file version (%s)"
12273 " [in module %s]"),
12274 pulongest (version), dwp_file->name);
12275 }
12276 if (nr_slots != (nr_slots & -nr_slots))
12277 {
12278 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12279 " is not power of 2 [in module %s]"),
12280 pulongest (nr_slots), dwp_file->name);
12281 }
12282
12283 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12284 htab->version = version;
12285 htab->nr_columns = nr_columns;
12286 htab->nr_units = nr_units;
12287 htab->nr_slots = nr_slots;
12288 htab->hash_table = index_ptr;
12289 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12290
12291 /* Exit early if the table is empty. */
12292 if (nr_slots == 0 || nr_units == 0
12293 || (version == 2 && nr_columns == 0))
12294 {
12295 /* All must be zero. */
12296 if (nr_slots != 0 || nr_units != 0
12297 || (version == 2 && nr_columns != 0))
12298 {
12299 complaint (&symfile_complaints,
12300 _("Empty DWP but nr_slots,nr_units,nr_columns not"
12301 " all zero [in modules %s]"),
12302 dwp_file->name);
12303 }
12304 return htab;
12305 }
12306
12307 if (version == 1)
12308 {
12309 htab->section_pool.v1.indices =
12310 htab->unit_table + sizeof (uint32_t) * nr_slots;
12311 /* It's harder to decide whether the section is too small in v1.
12312 V1 is deprecated anyway so we punt. */
12313 }
12314 else
12315 {
12316 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12317 int *ids = htab->section_pool.v2.section_ids;
12318 /* Reverse map for error checking. */
12319 int ids_seen[DW_SECT_MAX + 1];
12320 int i;
12321
12322 if (nr_columns < 2)
12323 {
12324 error (_("Dwarf Error: bad DWP hash table, too few columns"
12325 " in section table [in module %s]"),
12326 dwp_file->name);
12327 }
12328 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12329 {
12330 error (_("Dwarf Error: bad DWP hash table, too many columns"
12331 " in section table [in module %s]"),
12332 dwp_file->name);
12333 }
12334 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12335 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12336 for (i = 0; i < nr_columns; ++i)
12337 {
12338 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12339
12340 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12341 {
12342 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12343 " in section table [in module %s]"),
12344 id, dwp_file->name);
12345 }
12346 if (ids_seen[id] != -1)
12347 {
12348 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12349 " id %d in section table [in module %s]"),
12350 id, dwp_file->name);
12351 }
12352 ids_seen[id] = i;
12353 ids[i] = id;
12354 }
12355 /* Must have exactly one info or types section. */
12356 if (((ids_seen[DW_SECT_INFO] != -1)
12357 + (ids_seen[DW_SECT_TYPES] != -1))
12358 != 1)
12359 {
12360 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12361 " DWO info/types section [in module %s]"),
12362 dwp_file->name);
12363 }
12364 /* Must have an abbrev section. */
12365 if (ids_seen[DW_SECT_ABBREV] == -1)
12366 {
12367 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12368 " section [in module %s]"),
12369 dwp_file->name);
12370 }
12371 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12372 htab->section_pool.v2.sizes =
12373 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12374 * nr_units * nr_columns);
12375 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12376 * nr_units * nr_columns))
12377 > index_end)
12378 {
12379 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12380 " [in module %s]"),
12381 dwp_file->name);
12382 }
12383 }
12384
12385 return htab;
12386 }
12387
12388 /* Update SECTIONS with the data from SECTP.
12389
12390 This function is like the other "locate" section routines that are
12391 passed to bfd_map_over_sections, but in this context the sections to
12392 read comes from the DWP V1 hash table, not the full ELF section table.
12393
12394 The result is non-zero for success, or zero if an error was found. */
12395
12396 static int
12397 locate_v1_virtual_dwo_sections (asection *sectp,
12398 struct virtual_v1_dwo_sections *sections)
12399 {
12400 const struct dwop_section_names *names = &dwop_section_names;
12401
12402 if (section_is_p (sectp->name, &names->abbrev_dwo))
12403 {
12404 /* There can be only one. */
12405 if (sections->abbrev.s.section != NULL)
12406 return 0;
12407 sections->abbrev.s.section = sectp;
12408 sections->abbrev.size = bfd_get_section_size (sectp);
12409 }
12410 else if (section_is_p (sectp->name, &names->info_dwo)
12411 || section_is_p (sectp->name, &names->types_dwo))
12412 {
12413 /* There can be only one. */
12414 if (sections->info_or_types.s.section != NULL)
12415 return 0;
12416 sections->info_or_types.s.section = sectp;
12417 sections->info_or_types.size = bfd_get_section_size (sectp);
12418 }
12419 else if (section_is_p (sectp->name, &names->line_dwo))
12420 {
12421 /* There can be only one. */
12422 if (sections->line.s.section != NULL)
12423 return 0;
12424 sections->line.s.section = sectp;
12425 sections->line.size = bfd_get_section_size (sectp);
12426 }
12427 else if (section_is_p (sectp->name, &names->loc_dwo))
12428 {
12429 /* There can be only one. */
12430 if (sections->loc.s.section != NULL)
12431 return 0;
12432 sections->loc.s.section = sectp;
12433 sections->loc.size = bfd_get_section_size (sectp);
12434 }
12435 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12436 {
12437 /* There can be only one. */
12438 if (sections->macinfo.s.section != NULL)
12439 return 0;
12440 sections->macinfo.s.section = sectp;
12441 sections->macinfo.size = bfd_get_section_size (sectp);
12442 }
12443 else if (section_is_p (sectp->name, &names->macro_dwo))
12444 {
12445 /* There can be only one. */
12446 if (sections->macro.s.section != NULL)
12447 return 0;
12448 sections->macro.s.section = sectp;
12449 sections->macro.size = bfd_get_section_size (sectp);
12450 }
12451 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12452 {
12453 /* There can be only one. */
12454 if (sections->str_offsets.s.section != NULL)
12455 return 0;
12456 sections->str_offsets.s.section = sectp;
12457 sections->str_offsets.size = bfd_get_section_size (sectp);
12458 }
12459 else
12460 {
12461 /* No other kind of section is valid. */
12462 return 0;
12463 }
12464
12465 return 1;
12466 }
12467
12468 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12469 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12470 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12471 This is for DWP version 1 files. */
12472
12473 static struct dwo_unit *
12474 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12475 struct dwp_file *dwp_file,
12476 uint32_t unit_index,
12477 const char *comp_dir,
12478 ULONGEST signature, int is_debug_types)
12479 {
12480 struct objfile *objfile = dwarf2_per_objfile->objfile;
12481 const struct dwp_hash_table *dwp_htab =
12482 is_debug_types ? dwp_file->tus : dwp_file->cus;
12483 bfd *dbfd = dwp_file->dbfd;
12484 const char *kind = is_debug_types ? "TU" : "CU";
12485 struct dwo_file *dwo_file;
12486 struct dwo_unit *dwo_unit;
12487 struct virtual_v1_dwo_sections sections;
12488 void **dwo_file_slot;
12489 int i;
12490
12491 gdb_assert (dwp_file->version == 1);
12492
12493 if (dwarf_read_debug)
12494 {
12495 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12496 kind,
12497 pulongest (unit_index), hex_string (signature),
12498 dwp_file->name);
12499 }
12500
12501 /* Fetch the sections of this DWO unit.
12502 Put a limit on the number of sections we look for so that bad data
12503 doesn't cause us to loop forever. */
12504
12505 #define MAX_NR_V1_DWO_SECTIONS \
12506 (1 /* .debug_info or .debug_types */ \
12507 + 1 /* .debug_abbrev */ \
12508 + 1 /* .debug_line */ \
12509 + 1 /* .debug_loc */ \
12510 + 1 /* .debug_str_offsets */ \
12511 + 1 /* .debug_macro or .debug_macinfo */ \
12512 + 1 /* trailing zero */)
12513
12514 memset (&sections, 0, sizeof (sections));
12515
12516 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12517 {
12518 asection *sectp;
12519 uint32_t section_nr =
12520 read_4_bytes (dbfd,
12521 dwp_htab->section_pool.v1.indices
12522 + (unit_index + i) * sizeof (uint32_t));
12523
12524 if (section_nr == 0)
12525 break;
12526 if (section_nr >= dwp_file->num_sections)
12527 {
12528 error (_("Dwarf Error: bad DWP hash table, section number too large"
12529 " [in module %s]"),
12530 dwp_file->name);
12531 }
12532
12533 sectp = dwp_file->elf_sections[section_nr];
12534 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12535 {
12536 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12537 " [in module %s]"),
12538 dwp_file->name);
12539 }
12540 }
12541
12542 if (i < 2
12543 || dwarf2_section_empty_p (&sections.info_or_types)
12544 || dwarf2_section_empty_p (&sections.abbrev))
12545 {
12546 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12547 " [in module %s]"),
12548 dwp_file->name);
12549 }
12550 if (i == MAX_NR_V1_DWO_SECTIONS)
12551 {
12552 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12553 " [in module %s]"),
12554 dwp_file->name);
12555 }
12556
12557 /* It's easier for the rest of the code if we fake a struct dwo_file and
12558 have dwo_unit "live" in that. At least for now.
12559
12560 The DWP file can be made up of a random collection of CUs and TUs.
12561 However, for each CU + set of TUs that came from the same original DWO
12562 file, we can combine them back into a virtual DWO file to save space
12563 (fewer struct dwo_file objects to allocate). Remember that for really
12564 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12565
12566 std::string virtual_dwo_name =
12567 string_printf ("virtual-dwo/%d-%d-%d-%d",
12568 get_section_id (&sections.abbrev),
12569 get_section_id (&sections.line),
12570 get_section_id (&sections.loc),
12571 get_section_id (&sections.str_offsets));
12572 /* Can we use an existing virtual DWO file? */
12573 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12574 virtual_dwo_name.c_str (),
12575 comp_dir);
12576 /* Create one if necessary. */
12577 if (*dwo_file_slot == NULL)
12578 {
12579 if (dwarf_read_debug)
12580 {
12581 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12582 virtual_dwo_name.c_str ());
12583 }
12584 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12585 dwo_file->dwo_name
12586 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12587 virtual_dwo_name.c_str (),
12588 virtual_dwo_name.size ());
12589 dwo_file->comp_dir = comp_dir;
12590 dwo_file->sections.abbrev = sections.abbrev;
12591 dwo_file->sections.line = sections.line;
12592 dwo_file->sections.loc = sections.loc;
12593 dwo_file->sections.macinfo = sections.macinfo;
12594 dwo_file->sections.macro = sections.macro;
12595 dwo_file->sections.str_offsets = sections.str_offsets;
12596 /* The "str" section is global to the entire DWP file. */
12597 dwo_file->sections.str = dwp_file->sections.str;
12598 /* The info or types section is assigned below to dwo_unit,
12599 there's no need to record it in dwo_file.
12600 Also, we can't simply record type sections in dwo_file because
12601 we record a pointer into the vector in dwo_unit. As we collect more
12602 types we'll grow the vector and eventually have to reallocate space
12603 for it, invalidating all copies of pointers into the previous
12604 contents. */
12605 *dwo_file_slot = dwo_file;
12606 }
12607 else
12608 {
12609 if (dwarf_read_debug)
12610 {
12611 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12612 virtual_dwo_name.c_str ());
12613 }
12614 dwo_file = (struct dwo_file *) *dwo_file_slot;
12615 }
12616
12617 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12618 dwo_unit->dwo_file = dwo_file;
12619 dwo_unit->signature = signature;
12620 dwo_unit->section =
12621 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12622 *dwo_unit->section = sections.info_or_types;
12623 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12624
12625 return dwo_unit;
12626 }
12627
12628 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12629 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12630 piece within that section used by a TU/CU, return a virtual section
12631 of just that piece. */
12632
12633 static struct dwarf2_section_info
12634 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12635 struct dwarf2_section_info *section,
12636 bfd_size_type offset, bfd_size_type size)
12637 {
12638 struct dwarf2_section_info result;
12639 asection *sectp;
12640
12641 gdb_assert (section != NULL);
12642 gdb_assert (!section->is_virtual);
12643
12644 memset (&result, 0, sizeof (result));
12645 result.s.containing_section = section;
12646 result.is_virtual = 1;
12647
12648 if (size == 0)
12649 return result;
12650
12651 sectp = get_section_bfd_section (section);
12652
12653 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12654 bounds of the real section. This is a pretty-rare event, so just
12655 flag an error (easier) instead of a warning and trying to cope. */
12656 if (sectp == NULL
12657 || offset + size > bfd_get_section_size (sectp))
12658 {
12659 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12660 " in section %s [in module %s]"),
12661 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12662 objfile_name (dwarf2_per_objfile->objfile));
12663 }
12664
12665 result.virtual_offset = offset;
12666 result.size = size;
12667 return result;
12668 }
12669
12670 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12671 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12672 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12673 This is for DWP version 2 files. */
12674
12675 static struct dwo_unit *
12676 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12677 struct dwp_file *dwp_file,
12678 uint32_t unit_index,
12679 const char *comp_dir,
12680 ULONGEST signature, int is_debug_types)
12681 {
12682 struct objfile *objfile = dwarf2_per_objfile->objfile;
12683 const struct dwp_hash_table *dwp_htab =
12684 is_debug_types ? dwp_file->tus : dwp_file->cus;
12685 bfd *dbfd = dwp_file->dbfd;
12686 const char *kind = is_debug_types ? "TU" : "CU";
12687 struct dwo_file *dwo_file;
12688 struct dwo_unit *dwo_unit;
12689 struct virtual_v2_dwo_sections sections;
12690 void **dwo_file_slot;
12691 int i;
12692
12693 gdb_assert (dwp_file->version == 2);
12694
12695 if (dwarf_read_debug)
12696 {
12697 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12698 kind,
12699 pulongest (unit_index), hex_string (signature),
12700 dwp_file->name);
12701 }
12702
12703 /* Fetch the section offsets of this DWO unit. */
12704
12705 memset (&sections, 0, sizeof (sections));
12706
12707 for (i = 0; i < dwp_htab->nr_columns; ++i)
12708 {
12709 uint32_t offset = read_4_bytes (dbfd,
12710 dwp_htab->section_pool.v2.offsets
12711 + (((unit_index - 1) * dwp_htab->nr_columns
12712 + i)
12713 * sizeof (uint32_t)));
12714 uint32_t size = read_4_bytes (dbfd,
12715 dwp_htab->section_pool.v2.sizes
12716 + (((unit_index - 1) * dwp_htab->nr_columns
12717 + i)
12718 * sizeof (uint32_t)));
12719
12720 switch (dwp_htab->section_pool.v2.section_ids[i])
12721 {
12722 case DW_SECT_INFO:
12723 case DW_SECT_TYPES:
12724 sections.info_or_types_offset = offset;
12725 sections.info_or_types_size = size;
12726 break;
12727 case DW_SECT_ABBREV:
12728 sections.abbrev_offset = offset;
12729 sections.abbrev_size = size;
12730 break;
12731 case DW_SECT_LINE:
12732 sections.line_offset = offset;
12733 sections.line_size = size;
12734 break;
12735 case DW_SECT_LOC:
12736 sections.loc_offset = offset;
12737 sections.loc_size = size;
12738 break;
12739 case DW_SECT_STR_OFFSETS:
12740 sections.str_offsets_offset = offset;
12741 sections.str_offsets_size = size;
12742 break;
12743 case DW_SECT_MACINFO:
12744 sections.macinfo_offset = offset;
12745 sections.macinfo_size = size;
12746 break;
12747 case DW_SECT_MACRO:
12748 sections.macro_offset = offset;
12749 sections.macro_size = size;
12750 break;
12751 }
12752 }
12753
12754 /* It's easier for the rest of the code if we fake a struct dwo_file and
12755 have dwo_unit "live" in that. At least for now.
12756
12757 The DWP file can be made up of a random collection of CUs and TUs.
12758 However, for each CU + set of TUs that came from the same original DWO
12759 file, we can combine them back into a virtual DWO file to save space
12760 (fewer struct dwo_file objects to allocate). Remember that for really
12761 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12762
12763 std::string virtual_dwo_name =
12764 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12765 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12766 (long) (sections.line_size ? sections.line_offset : 0),
12767 (long) (sections.loc_size ? sections.loc_offset : 0),
12768 (long) (sections.str_offsets_size
12769 ? sections.str_offsets_offset : 0));
12770 /* Can we use an existing virtual DWO file? */
12771 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12772 virtual_dwo_name.c_str (),
12773 comp_dir);
12774 /* Create one if necessary. */
12775 if (*dwo_file_slot == NULL)
12776 {
12777 if (dwarf_read_debug)
12778 {
12779 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12780 virtual_dwo_name.c_str ());
12781 }
12782 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12783 dwo_file->dwo_name
12784 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12785 virtual_dwo_name.c_str (),
12786 virtual_dwo_name.size ());
12787 dwo_file->comp_dir = comp_dir;
12788 dwo_file->sections.abbrev =
12789 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12790 sections.abbrev_offset, sections.abbrev_size);
12791 dwo_file->sections.line =
12792 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12793 sections.line_offset, sections.line_size);
12794 dwo_file->sections.loc =
12795 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12796 sections.loc_offset, sections.loc_size);
12797 dwo_file->sections.macinfo =
12798 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12799 sections.macinfo_offset, sections.macinfo_size);
12800 dwo_file->sections.macro =
12801 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12802 sections.macro_offset, sections.macro_size);
12803 dwo_file->sections.str_offsets =
12804 create_dwp_v2_section (dwarf2_per_objfile,
12805 &dwp_file->sections.str_offsets,
12806 sections.str_offsets_offset,
12807 sections.str_offsets_size);
12808 /* The "str" section is global to the entire DWP file. */
12809 dwo_file->sections.str = dwp_file->sections.str;
12810 /* The info or types section is assigned below to dwo_unit,
12811 there's no need to record it in dwo_file.
12812 Also, we can't simply record type sections in dwo_file because
12813 we record a pointer into the vector in dwo_unit. As we collect more
12814 types we'll grow the vector and eventually have to reallocate space
12815 for it, invalidating all copies of pointers into the previous
12816 contents. */
12817 *dwo_file_slot = dwo_file;
12818 }
12819 else
12820 {
12821 if (dwarf_read_debug)
12822 {
12823 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12824 virtual_dwo_name.c_str ());
12825 }
12826 dwo_file = (struct dwo_file *) *dwo_file_slot;
12827 }
12828
12829 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12830 dwo_unit->dwo_file = dwo_file;
12831 dwo_unit->signature = signature;
12832 dwo_unit->section =
12833 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12834 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12835 is_debug_types
12836 ? &dwp_file->sections.types
12837 : &dwp_file->sections.info,
12838 sections.info_or_types_offset,
12839 sections.info_or_types_size);
12840 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12841
12842 return dwo_unit;
12843 }
12844
12845 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12846 Returns NULL if the signature isn't found. */
12847
12848 static struct dwo_unit *
12849 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12850 struct dwp_file *dwp_file, const char *comp_dir,
12851 ULONGEST signature, int is_debug_types)
12852 {
12853 const struct dwp_hash_table *dwp_htab =
12854 is_debug_types ? dwp_file->tus : dwp_file->cus;
12855 bfd *dbfd = dwp_file->dbfd;
12856 uint32_t mask = dwp_htab->nr_slots - 1;
12857 uint32_t hash = signature & mask;
12858 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12859 unsigned int i;
12860 void **slot;
12861 struct dwo_unit find_dwo_cu;
12862
12863 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12864 find_dwo_cu.signature = signature;
12865 slot = htab_find_slot (is_debug_types
12866 ? dwp_file->loaded_tus
12867 : dwp_file->loaded_cus,
12868 &find_dwo_cu, INSERT);
12869
12870 if (*slot != NULL)
12871 return (struct dwo_unit *) *slot;
12872
12873 /* Use a for loop so that we don't loop forever on bad debug info. */
12874 for (i = 0; i < dwp_htab->nr_slots; ++i)
12875 {
12876 ULONGEST signature_in_table;
12877
12878 signature_in_table =
12879 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12880 if (signature_in_table == signature)
12881 {
12882 uint32_t unit_index =
12883 read_4_bytes (dbfd,
12884 dwp_htab->unit_table + hash * sizeof (uint32_t));
12885
12886 if (dwp_file->version == 1)
12887 {
12888 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12889 dwp_file, unit_index,
12890 comp_dir, signature,
12891 is_debug_types);
12892 }
12893 else
12894 {
12895 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12896 dwp_file, unit_index,
12897 comp_dir, signature,
12898 is_debug_types);
12899 }
12900 return (struct dwo_unit *) *slot;
12901 }
12902 if (signature_in_table == 0)
12903 return NULL;
12904 hash = (hash + hash2) & mask;
12905 }
12906
12907 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12908 " [in module %s]"),
12909 dwp_file->name);
12910 }
12911
12912 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12913 Open the file specified by FILE_NAME and hand it off to BFD for
12914 preliminary analysis. Return a newly initialized bfd *, which
12915 includes a canonicalized copy of FILE_NAME.
12916 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12917 SEARCH_CWD is true if the current directory is to be searched.
12918 It will be searched before debug-file-directory.
12919 If successful, the file is added to the bfd include table of the
12920 objfile's bfd (see gdb_bfd_record_inclusion).
12921 If unable to find/open the file, return NULL.
12922 NOTE: This function is derived from symfile_bfd_open. */
12923
12924 static gdb_bfd_ref_ptr
12925 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12926 const char *file_name, int is_dwp, int search_cwd)
12927 {
12928 int desc;
12929 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12930 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12931 to debug_file_directory. */
12932 const char *search_path;
12933 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12934
12935 gdb::unique_xmalloc_ptr<char> search_path_holder;
12936 if (search_cwd)
12937 {
12938 if (*debug_file_directory != '\0')
12939 {
12940 search_path_holder.reset (concat (".", dirname_separator_string,
12941 debug_file_directory,
12942 (char *) NULL));
12943 search_path = search_path_holder.get ();
12944 }
12945 else
12946 search_path = ".";
12947 }
12948 else
12949 search_path = debug_file_directory;
12950
12951 openp_flags flags = OPF_RETURN_REALPATH;
12952 if (is_dwp)
12953 flags |= OPF_SEARCH_IN_PATH;
12954
12955 gdb::unique_xmalloc_ptr<char> absolute_name;
12956 desc = openp (search_path, flags, file_name,
12957 O_RDONLY | O_BINARY, &absolute_name);
12958 if (desc < 0)
12959 return NULL;
12960
12961 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12962 gnutarget, desc));
12963 if (sym_bfd == NULL)
12964 return NULL;
12965 bfd_set_cacheable (sym_bfd.get (), 1);
12966
12967 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12968 return NULL;
12969
12970 /* Success. Record the bfd as having been included by the objfile's bfd.
12971 This is important because things like demangled_names_hash lives in the
12972 objfile's per_bfd space and may have references to things like symbol
12973 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12974 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12975
12976 return sym_bfd;
12977 }
12978
12979 /* Try to open DWO file FILE_NAME.
12980 COMP_DIR is the DW_AT_comp_dir attribute.
12981 The result is the bfd handle of the file.
12982 If there is a problem finding or opening the file, return NULL.
12983 Upon success, the canonicalized path of the file is stored in the bfd,
12984 same as symfile_bfd_open. */
12985
12986 static gdb_bfd_ref_ptr
12987 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12988 const char *file_name, const char *comp_dir)
12989 {
12990 if (IS_ABSOLUTE_PATH (file_name))
12991 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12992 0 /*is_dwp*/, 0 /*search_cwd*/);
12993
12994 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12995
12996 if (comp_dir != NULL)
12997 {
12998 char *path_to_try = concat (comp_dir, SLASH_STRING,
12999 file_name, (char *) NULL);
13000
13001 /* NOTE: If comp_dir is a relative path, this will also try the
13002 search path, which seems useful. */
13003 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
13004 path_to_try,
13005 0 /*is_dwp*/,
13006 1 /*search_cwd*/));
13007 xfree (path_to_try);
13008 if (abfd != NULL)
13009 return abfd;
13010 }
13011
13012 /* That didn't work, try debug-file-directory, which, despite its name,
13013 is a list of paths. */
13014
13015 if (*debug_file_directory == '\0')
13016 return NULL;
13017
13018 return try_open_dwop_file (dwarf2_per_objfile, file_name,
13019 0 /*is_dwp*/, 1 /*search_cwd*/);
13020 }
13021
13022 /* This function is mapped across the sections and remembers the offset and
13023 size of each of the DWO debugging sections we are interested in. */
13024
13025 static void
13026 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
13027 {
13028 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
13029 const struct dwop_section_names *names = &dwop_section_names;
13030
13031 if (section_is_p (sectp->name, &names->abbrev_dwo))
13032 {
13033 dwo_sections->abbrev.s.section = sectp;
13034 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
13035 }
13036 else if (section_is_p (sectp->name, &names->info_dwo))
13037 {
13038 dwo_sections->info.s.section = sectp;
13039 dwo_sections->info.size = bfd_get_section_size (sectp);
13040 }
13041 else if (section_is_p (sectp->name, &names->line_dwo))
13042 {
13043 dwo_sections->line.s.section = sectp;
13044 dwo_sections->line.size = bfd_get_section_size (sectp);
13045 }
13046 else if (section_is_p (sectp->name, &names->loc_dwo))
13047 {
13048 dwo_sections->loc.s.section = sectp;
13049 dwo_sections->loc.size = bfd_get_section_size (sectp);
13050 }
13051 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13052 {
13053 dwo_sections->macinfo.s.section = sectp;
13054 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
13055 }
13056 else if (section_is_p (sectp->name, &names->macro_dwo))
13057 {
13058 dwo_sections->macro.s.section = sectp;
13059 dwo_sections->macro.size = bfd_get_section_size (sectp);
13060 }
13061 else if (section_is_p (sectp->name, &names->str_dwo))
13062 {
13063 dwo_sections->str.s.section = sectp;
13064 dwo_sections->str.size = bfd_get_section_size (sectp);
13065 }
13066 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13067 {
13068 dwo_sections->str_offsets.s.section = sectp;
13069 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
13070 }
13071 else if (section_is_p (sectp->name, &names->types_dwo))
13072 {
13073 struct dwarf2_section_info type_section;
13074
13075 memset (&type_section, 0, sizeof (type_section));
13076 type_section.s.section = sectp;
13077 type_section.size = bfd_get_section_size (sectp);
13078 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
13079 &type_section);
13080 }
13081 }
13082
13083 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
13084 by PER_CU. This is for the non-DWP case.
13085 The result is NULL if DWO_NAME can't be found. */
13086
13087 static struct dwo_file *
13088 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
13089 const char *dwo_name, const char *comp_dir)
13090 {
13091 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
13092 struct objfile *objfile = dwarf2_per_objfile->objfile;
13093 struct dwo_file *dwo_file;
13094 struct cleanup *cleanups;
13095
13096 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
13097 if (dbfd == NULL)
13098 {
13099 if (dwarf_read_debug)
13100 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
13101 return NULL;
13102 }
13103 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
13104 dwo_file->dwo_name = dwo_name;
13105 dwo_file->comp_dir = comp_dir;
13106 dwo_file->dbfd = dbfd.release ();
13107
13108 free_dwo_file_cleanup_data *cleanup_data = XNEW (free_dwo_file_cleanup_data);
13109 cleanup_data->dwo_file = dwo_file;
13110 cleanup_data->dwarf2_per_objfile = dwarf2_per_objfile;
13111
13112 cleanups = make_cleanup (free_dwo_file_cleanup, cleanup_data);
13113
13114 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
13115 &dwo_file->sections);
13116
13117 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
13118 dwo_file->cus);
13119
13120 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file,
13121 dwo_file->sections.types, dwo_file->tus);
13122
13123 discard_cleanups (cleanups);
13124
13125 if (dwarf_read_debug)
13126 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
13127
13128 return dwo_file;
13129 }
13130
13131 /* This function is mapped across the sections and remembers the offset and
13132 size of each of the DWP debugging sections common to version 1 and 2 that
13133 we are interested in. */
13134
13135 static void
13136 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
13137 void *dwp_file_ptr)
13138 {
13139 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13140 const struct dwop_section_names *names = &dwop_section_names;
13141 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13142
13143 /* Record the ELF section number for later lookup: this is what the
13144 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13145 gdb_assert (elf_section_nr < dwp_file->num_sections);
13146 dwp_file->elf_sections[elf_section_nr] = sectp;
13147
13148 /* Look for specific sections that we need. */
13149 if (section_is_p (sectp->name, &names->str_dwo))
13150 {
13151 dwp_file->sections.str.s.section = sectp;
13152 dwp_file->sections.str.size = bfd_get_section_size (sectp);
13153 }
13154 else if (section_is_p (sectp->name, &names->cu_index))
13155 {
13156 dwp_file->sections.cu_index.s.section = sectp;
13157 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
13158 }
13159 else if (section_is_p (sectp->name, &names->tu_index))
13160 {
13161 dwp_file->sections.tu_index.s.section = sectp;
13162 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
13163 }
13164 }
13165
13166 /* This function is mapped across the sections and remembers the offset and
13167 size of each of the DWP version 2 debugging sections that we are interested
13168 in. This is split into a separate function because we don't know if we
13169 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13170
13171 static void
13172 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13173 {
13174 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13175 const struct dwop_section_names *names = &dwop_section_names;
13176 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13177
13178 /* Record the ELF section number for later lookup: this is what the
13179 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13180 gdb_assert (elf_section_nr < dwp_file->num_sections);
13181 dwp_file->elf_sections[elf_section_nr] = sectp;
13182
13183 /* Look for specific sections that we need. */
13184 if (section_is_p (sectp->name, &names->abbrev_dwo))
13185 {
13186 dwp_file->sections.abbrev.s.section = sectp;
13187 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
13188 }
13189 else if (section_is_p (sectp->name, &names->info_dwo))
13190 {
13191 dwp_file->sections.info.s.section = sectp;
13192 dwp_file->sections.info.size = bfd_get_section_size (sectp);
13193 }
13194 else if (section_is_p (sectp->name, &names->line_dwo))
13195 {
13196 dwp_file->sections.line.s.section = sectp;
13197 dwp_file->sections.line.size = bfd_get_section_size (sectp);
13198 }
13199 else if (section_is_p (sectp->name, &names->loc_dwo))
13200 {
13201 dwp_file->sections.loc.s.section = sectp;
13202 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
13203 }
13204 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13205 {
13206 dwp_file->sections.macinfo.s.section = sectp;
13207 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13208 }
13209 else if (section_is_p (sectp->name, &names->macro_dwo))
13210 {
13211 dwp_file->sections.macro.s.section = sectp;
13212 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13213 }
13214 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13215 {
13216 dwp_file->sections.str_offsets.s.section = sectp;
13217 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13218 }
13219 else if (section_is_p (sectp->name, &names->types_dwo))
13220 {
13221 dwp_file->sections.types.s.section = sectp;
13222 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13223 }
13224 }
13225
13226 /* Hash function for dwp_file loaded CUs/TUs. */
13227
13228 static hashval_t
13229 hash_dwp_loaded_cutus (const void *item)
13230 {
13231 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13232
13233 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13234 return dwo_unit->signature;
13235 }
13236
13237 /* Equality function for dwp_file loaded CUs/TUs. */
13238
13239 static int
13240 eq_dwp_loaded_cutus (const void *a, const void *b)
13241 {
13242 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13243 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13244
13245 return dua->signature == dub->signature;
13246 }
13247
13248 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13249
13250 static htab_t
13251 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13252 {
13253 return htab_create_alloc_ex (3,
13254 hash_dwp_loaded_cutus,
13255 eq_dwp_loaded_cutus,
13256 NULL,
13257 &objfile->objfile_obstack,
13258 hashtab_obstack_allocate,
13259 dummy_obstack_deallocate);
13260 }
13261
13262 /* Try to open DWP file FILE_NAME.
13263 The result is the bfd handle of the file.
13264 If there is a problem finding or opening the file, return NULL.
13265 Upon success, the canonicalized path of the file is stored in the bfd,
13266 same as symfile_bfd_open. */
13267
13268 static gdb_bfd_ref_ptr
13269 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13270 const char *file_name)
13271 {
13272 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13273 1 /*is_dwp*/,
13274 1 /*search_cwd*/));
13275 if (abfd != NULL)
13276 return abfd;
13277
13278 /* Work around upstream bug 15652.
13279 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13280 [Whether that's a "bug" is debatable, but it is getting in our way.]
13281 We have no real idea where the dwp file is, because gdb's realpath-ing
13282 of the executable's path may have discarded the needed info.
13283 [IWBN if the dwp file name was recorded in the executable, akin to
13284 .gnu_debuglink, but that doesn't exist yet.]
13285 Strip the directory from FILE_NAME and search again. */
13286 if (*debug_file_directory != '\0')
13287 {
13288 /* Don't implicitly search the current directory here.
13289 If the user wants to search "." to handle this case,
13290 it must be added to debug-file-directory. */
13291 return try_open_dwop_file (dwarf2_per_objfile,
13292 lbasename (file_name), 1 /*is_dwp*/,
13293 0 /*search_cwd*/);
13294 }
13295
13296 return NULL;
13297 }
13298
13299 /* Initialize the use of the DWP file for the current objfile.
13300 By convention the name of the DWP file is ${objfile}.dwp.
13301 The result is NULL if it can't be found. */
13302
13303 static struct dwp_file *
13304 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13305 {
13306 struct objfile *objfile = dwarf2_per_objfile->objfile;
13307 struct dwp_file *dwp_file;
13308
13309 /* Try to find first .dwp for the binary file before any symbolic links
13310 resolving. */
13311
13312 /* If the objfile is a debug file, find the name of the real binary
13313 file and get the name of dwp file from there. */
13314 std::string dwp_name;
13315 if (objfile->separate_debug_objfile_backlink != NULL)
13316 {
13317 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13318 const char *backlink_basename = lbasename (backlink->original_name);
13319
13320 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13321 }
13322 else
13323 dwp_name = objfile->original_name;
13324
13325 dwp_name += ".dwp";
13326
13327 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13328 if (dbfd == NULL
13329 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13330 {
13331 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13332 dwp_name = objfile_name (objfile);
13333 dwp_name += ".dwp";
13334 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13335 }
13336
13337 if (dbfd == NULL)
13338 {
13339 if (dwarf_read_debug)
13340 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13341 return NULL;
13342 }
13343 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
13344 dwp_file->name = bfd_get_filename (dbfd.get ());
13345 dwp_file->dbfd = dbfd.release ();
13346
13347 /* +1: section 0 is unused */
13348 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
13349 dwp_file->elf_sections =
13350 OBSTACK_CALLOC (&objfile->objfile_obstack,
13351 dwp_file->num_sections, asection *);
13352
13353 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_common_dwp_sections,
13354 dwp_file);
13355
13356 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file, 0);
13357
13358 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file, 1);
13359
13360 /* The DWP file version is stored in the hash table. Oh well. */
13361 if (dwp_file->cus && dwp_file->tus
13362 && dwp_file->cus->version != dwp_file->tus->version)
13363 {
13364 /* Technically speaking, we should try to limp along, but this is
13365 pretty bizarre. We use pulongest here because that's the established
13366 portability solution (e.g, we cannot use %u for uint32_t). */
13367 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13368 " TU version %s [in DWP file %s]"),
13369 pulongest (dwp_file->cus->version),
13370 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13371 }
13372
13373 if (dwp_file->cus)
13374 dwp_file->version = dwp_file->cus->version;
13375 else if (dwp_file->tus)
13376 dwp_file->version = dwp_file->tus->version;
13377 else
13378 dwp_file->version = 2;
13379
13380 if (dwp_file->version == 2)
13381 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_v2_dwp_sections,
13382 dwp_file);
13383
13384 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13385 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13386
13387 if (dwarf_read_debug)
13388 {
13389 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13390 fprintf_unfiltered (gdb_stdlog,
13391 " %s CUs, %s TUs\n",
13392 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13393 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13394 }
13395
13396 return dwp_file;
13397 }
13398
13399 /* Wrapper around open_and_init_dwp_file, only open it once. */
13400
13401 static struct dwp_file *
13402 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13403 {
13404 if (! dwarf2_per_objfile->dwp_checked)
13405 {
13406 dwarf2_per_objfile->dwp_file
13407 = open_and_init_dwp_file (dwarf2_per_objfile);
13408 dwarf2_per_objfile->dwp_checked = 1;
13409 }
13410 return dwarf2_per_objfile->dwp_file;
13411 }
13412
13413 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13414 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13415 or in the DWP file for the objfile, referenced by THIS_UNIT.
13416 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13417 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13418
13419 This is called, for example, when wanting to read a variable with a
13420 complex location. Therefore we don't want to do file i/o for every call.
13421 Therefore we don't want to look for a DWO file on every call.
13422 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13423 then we check if we've already seen DWO_NAME, and only THEN do we check
13424 for a DWO file.
13425
13426 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13427 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13428
13429 static struct dwo_unit *
13430 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13431 const char *dwo_name, const char *comp_dir,
13432 ULONGEST signature, int is_debug_types)
13433 {
13434 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13435 struct objfile *objfile = dwarf2_per_objfile->objfile;
13436 const char *kind = is_debug_types ? "TU" : "CU";
13437 void **dwo_file_slot;
13438 struct dwo_file *dwo_file;
13439 struct dwp_file *dwp_file;
13440
13441 /* First see if there's a DWP file.
13442 If we have a DWP file but didn't find the DWO inside it, don't
13443 look for the original DWO file. It makes gdb behave differently
13444 depending on whether one is debugging in the build tree. */
13445
13446 dwp_file = get_dwp_file (dwarf2_per_objfile);
13447 if (dwp_file != NULL)
13448 {
13449 const struct dwp_hash_table *dwp_htab =
13450 is_debug_types ? dwp_file->tus : dwp_file->cus;
13451
13452 if (dwp_htab != NULL)
13453 {
13454 struct dwo_unit *dwo_cutu =
13455 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13456 signature, is_debug_types);
13457
13458 if (dwo_cutu != NULL)
13459 {
13460 if (dwarf_read_debug)
13461 {
13462 fprintf_unfiltered (gdb_stdlog,
13463 "Virtual DWO %s %s found: @%s\n",
13464 kind, hex_string (signature),
13465 host_address_to_string (dwo_cutu));
13466 }
13467 return dwo_cutu;
13468 }
13469 }
13470 }
13471 else
13472 {
13473 /* No DWP file, look for the DWO file. */
13474
13475 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13476 dwo_name, comp_dir);
13477 if (*dwo_file_slot == NULL)
13478 {
13479 /* Read in the file and build a table of the CUs/TUs it contains. */
13480 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13481 }
13482 /* NOTE: This will be NULL if unable to open the file. */
13483 dwo_file = (struct dwo_file *) *dwo_file_slot;
13484
13485 if (dwo_file != NULL)
13486 {
13487 struct dwo_unit *dwo_cutu = NULL;
13488
13489 if (is_debug_types && dwo_file->tus)
13490 {
13491 struct dwo_unit find_dwo_cutu;
13492
13493 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13494 find_dwo_cutu.signature = signature;
13495 dwo_cutu
13496 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13497 }
13498 else if (!is_debug_types && dwo_file->cus)
13499 {
13500 struct dwo_unit find_dwo_cutu;
13501
13502 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13503 find_dwo_cutu.signature = signature;
13504 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13505 &find_dwo_cutu);
13506 }
13507
13508 if (dwo_cutu != NULL)
13509 {
13510 if (dwarf_read_debug)
13511 {
13512 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13513 kind, dwo_name, hex_string (signature),
13514 host_address_to_string (dwo_cutu));
13515 }
13516 return dwo_cutu;
13517 }
13518 }
13519 }
13520
13521 /* We didn't find it. This could mean a dwo_id mismatch, or
13522 someone deleted the DWO/DWP file, or the search path isn't set up
13523 correctly to find the file. */
13524
13525 if (dwarf_read_debug)
13526 {
13527 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13528 kind, dwo_name, hex_string (signature));
13529 }
13530
13531 /* This is a warning and not a complaint because it can be caused by
13532 pilot error (e.g., user accidentally deleting the DWO). */
13533 {
13534 /* Print the name of the DWP file if we looked there, helps the user
13535 better diagnose the problem. */
13536 std::string dwp_text;
13537
13538 if (dwp_file != NULL)
13539 dwp_text = string_printf (" [in DWP file %s]",
13540 lbasename (dwp_file->name));
13541
13542 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13543 " [in module %s]"),
13544 kind, dwo_name, hex_string (signature),
13545 dwp_text.c_str (),
13546 this_unit->is_debug_types ? "TU" : "CU",
13547 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13548 }
13549 return NULL;
13550 }
13551
13552 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13553 See lookup_dwo_cutu_unit for details. */
13554
13555 static struct dwo_unit *
13556 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13557 const char *dwo_name, const char *comp_dir,
13558 ULONGEST signature)
13559 {
13560 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13561 }
13562
13563 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13564 See lookup_dwo_cutu_unit for details. */
13565
13566 static struct dwo_unit *
13567 lookup_dwo_type_unit (struct signatured_type *this_tu,
13568 const char *dwo_name, const char *comp_dir)
13569 {
13570 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13571 }
13572
13573 /* Traversal function for queue_and_load_all_dwo_tus. */
13574
13575 static int
13576 queue_and_load_dwo_tu (void **slot, void *info)
13577 {
13578 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13579 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13580 ULONGEST signature = dwo_unit->signature;
13581 struct signatured_type *sig_type =
13582 lookup_dwo_signatured_type (per_cu->cu, signature);
13583
13584 if (sig_type != NULL)
13585 {
13586 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13587
13588 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13589 a real dependency of PER_CU on SIG_TYPE. That is detected later
13590 while processing PER_CU. */
13591 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13592 load_full_type_unit (sig_cu);
13593 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13594 }
13595
13596 return 1;
13597 }
13598
13599 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13600 The DWO may have the only definition of the type, though it may not be
13601 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13602 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13603
13604 static void
13605 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13606 {
13607 struct dwo_unit *dwo_unit;
13608 struct dwo_file *dwo_file;
13609
13610 gdb_assert (!per_cu->is_debug_types);
13611 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13612 gdb_assert (per_cu->cu != NULL);
13613
13614 dwo_unit = per_cu->cu->dwo_unit;
13615 gdb_assert (dwo_unit != NULL);
13616
13617 dwo_file = dwo_unit->dwo_file;
13618 if (dwo_file->tus != NULL)
13619 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13620 }
13621
13622 /* Free all resources associated with DWO_FILE.
13623 Close the DWO file and munmap the sections.
13624 All memory should be on the objfile obstack. */
13625
13626 static void
13627 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
13628 {
13629
13630 /* Note: dbfd is NULL for virtual DWO files. */
13631 gdb_bfd_unref (dwo_file->dbfd);
13632
13633 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13634 }
13635
13636 /* Wrapper for free_dwo_file for use in cleanups. */
13637
13638 static void
13639 free_dwo_file_cleanup (void *arg)
13640 {
13641 struct free_dwo_file_cleanup_data *data
13642 = (struct free_dwo_file_cleanup_data *) arg;
13643 struct objfile *objfile = data->dwarf2_per_objfile->objfile;
13644
13645 free_dwo_file (data->dwo_file, objfile);
13646
13647 xfree (data);
13648 }
13649
13650 /* Traversal function for free_dwo_files. */
13651
13652 static int
13653 free_dwo_file_from_slot (void **slot, void *info)
13654 {
13655 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13656 struct objfile *objfile = (struct objfile *) info;
13657
13658 free_dwo_file (dwo_file, objfile);
13659
13660 return 1;
13661 }
13662
13663 /* Free all resources associated with DWO_FILES. */
13664
13665 static void
13666 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13667 {
13668 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
13669 }
13670 \f
13671 /* Read in various DIEs. */
13672
13673 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13674 Inherit only the children of the DW_AT_abstract_origin DIE not being
13675 already referenced by DW_AT_abstract_origin from the children of the
13676 current DIE. */
13677
13678 static void
13679 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13680 {
13681 struct die_info *child_die;
13682 sect_offset *offsetp;
13683 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13684 struct die_info *origin_die;
13685 /* Iterator of the ORIGIN_DIE children. */
13686 struct die_info *origin_child_die;
13687 struct attribute *attr;
13688 struct dwarf2_cu *origin_cu;
13689 struct pending **origin_previous_list_in_scope;
13690
13691 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13692 if (!attr)
13693 return;
13694
13695 /* Note that following die references may follow to a die in a
13696 different cu. */
13697
13698 origin_cu = cu;
13699 origin_die = follow_die_ref (die, attr, &origin_cu);
13700
13701 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13702 symbols in. */
13703 origin_previous_list_in_scope = origin_cu->list_in_scope;
13704 origin_cu->list_in_scope = cu->list_in_scope;
13705
13706 if (die->tag != origin_die->tag
13707 && !(die->tag == DW_TAG_inlined_subroutine
13708 && origin_die->tag == DW_TAG_subprogram))
13709 complaint (&symfile_complaints,
13710 _("DIE %s and its abstract origin %s have different tags"),
13711 sect_offset_str (die->sect_off),
13712 sect_offset_str (origin_die->sect_off));
13713
13714 std::vector<sect_offset> offsets;
13715
13716 for (child_die = die->child;
13717 child_die && child_die->tag;
13718 child_die = sibling_die (child_die))
13719 {
13720 struct die_info *child_origin_die;
13721 struct dwarf2_cu *child_origin_cu;
13722
13723 /* We are trying to process concrete instance entries:
13724 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13725 it's not relevant to our analysis here. i.e. detecting DIEs that are
13726 present in the abstract instance but not referenced in the concrete
13727 one. */
13728 if (child_die->tag == DW_TAG_call_site
13729 || child_die->tag == DW_TAG_GNU_call_site)
13730 continue;
13731
13732 /* For each CHILD_DIE, find the corresponding child of
13733 ORIGIN_DIE. If there is more than one layer of
13734 DW_AT_abstract_origin, follow them all; there shouldn't be,
13735 but GCC versions at least through 4.4 generate this (GCC PR
13736 40573). */
13737 child_origin_die = child_die;
13738 child_origin_cu = cu;
13739 while (1)
13740 {
13741 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13742 child_origin_cu);
13743 if (attr == NULL)
13744 break;
13745 child_origin_die = follow_die_ref (child_origin_die, attr,
13746 &child_origin_cu);
13747 }
13748
13749 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13750 counterpart may exist. */
13751 if (child_origin_die != child_die)
13752 {
13753 if (child_die->tag != child_origin_die->tag
13754 && !(child_die->tag == DW_TAG_inlined_subroutine
13755 && child_origin_die->tag == DW_TAG_subprogram))
13756 complaint (&symfile_complaints,
13757 _("Child DIE %s and its abstract origin %s have "
13758 "different tags"),
13759 sect_offset_str (child_die->sect_off),
13760 sect_offset_str (child_origin_die->sect_off));
13761 if (child_origin_die->parent != origin_die)
13762 complaint (&symfile_complaints,
13763 _("Child DIE %s and its abstract origin %s have "
13764 "different parents"),
13765 sect_offset_str (child_die->sect_off),
13766 sect_offset_str (child_origin_die->sect_off));
13767 else
13768 offsets.push_back (child_origin_die->sect_off);
13769 }
13770 }
13771 std::sort (offsets.begin (), offsets.end ());
13772 sect_offset *offsets_end = offsets.data () + offsets.size ();
13773 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13774 if (offsetp[-1] == *offsetp)
13775 complaint (&symfile_complaints,
13776 _("Multiple children of DIE %s refer "
13777 "to DIE %s as their abstract origin"),
13778 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13779
13780 offsetp = offsets.data ();
13781 origin_child_die = origin_die->child;
13782 while (origin_child_die && origin_child_die->tag)
13783 {
13784 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13785 while (offsetp < offsets_end
13786 && *offsetp < origin_child_die->sect_off)
13787 offsetp++;
13788 if (offsetp >= offsets_end
13789 || *offsetp > origin_child_die->sect_off)
13790 {
13791 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13792 Check whether we're already processing ORIGIN_CHILD_DIE.
13793 This can happen with mutually referenced abstract_origins.
13794 PR 16581. */
13795 if (!origin_child_die->in_process)
13796 process_die (origin_child_die, origin_cu);
13797 }
13798 origin_child_die = sibling_die (origin_child_die);
13799 }
13800 origin_cu->list_in_scope = origin_previous_list_in_scope;
13801 }
13802
13803 static void
13804 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13805 {
13806 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13807 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13808 struct context_stack *newobj;
13809 CORE_ADDR lowpc;
13810 CORE_ADDR highpc;
13811 struct die_info *child_die;
13812 struct attribute *attr, *call_line, *call_file;
13813 const char *name;
13814 CORE_ADDR baseaddr;
13815 struct block *block;
13816 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13817 std::vector<struct symbol *> template_args;
13818 struct template_symbol *templ_func = NULL;
13819
13820 if (inlined_func)
13821 {
13822 /* If we do not have call site information, we can't show the
13823 caller of this inlined function. That's too confusing, so
13824 only use the scope for local variables. */
13825 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13826 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13827 if (call_line == NULL || call_file == NULL)
13828 {
13829 read_lexical_block_scope (die, cu);
13830 return;
13831 }
13832 }
13833
13834 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13835
13836 name = dwarf2_name (die, cu);
13837
13838 /* Ignore functions with missing or empty names. These are actually
13839 illegal according to the DWARF standard. */
13840 if (name == NULL)
13841 {
13842 complaint (&symfile_complaints,
13843 _("missing name for subprogram DIE at %s"),
13844 sect_offset_str (die->sect_off));
13845 return;
13846 }
13847
13848 /* Ignore functions with missing or invalid low and high pc attributes. */
13849 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13850 <= PC_BOUNDS_INVALID)
13851 {
13852 attr = dwarf2_attr (die, DW_AT_external, cu);
13853 if (!attr || !DW_UNSND (attr))
13854 complaint (&symfile_complaints,
13855 _("cannot get low and high bounds "
13856 "for subprogram DIE at %s"),
13857 sect_offset_str (die->sect_off));
13858 return;
13859 }
13860
13861 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13862 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13863
13864 /* If we have any template arguments, then we must allocate a
13865 different sort of symbol. */
13866 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13867 {
13868 if (child_die->tag == DW_TAG_template_type_param
13869 || child_die->tag == DW_TAG_template_value_param)
13870 {
13871 templ_func = allocate_template_symbol (objfile);
13872 templ_func->subclass = SYMBOL_TEMPLATE;
13873 break;
13874 }
13875 }
13876
13877 newobj = push_context (0, lowpc);
13878 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13879 (struct symbol *) templ_func);
13880
13881 /* If there is a location expression for DW_AT_frame_base, record
13882 it. */
13883 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13884 if (attr)
13885 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13886
13887 /* If there is a location for the static link, record it. */
13888 newobj->static_link = NULL;
13889 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13890 if (attr)
13891 {
13892 newobj->static_link
13893 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13894 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13895 }
13896
13897 cu->list_in_scope = &local_symbols;
13898
13899 if (die->child != NULL)
13900 {
13901 child_die = die->child;
13902 while (child_die && child_die->tag)
13903 {
13904 if (child_die->tag == DW_TAG_template_type_param
13905 || child_die->tag == DW_TAG_template_value_param)
13906 {
13907 struct symbol *arg = new_symbol (child_die, NULL, cu);
13908
13909 if (arg != NULL)
13910 template_args.push_back (arg);
13911 }
13912 else
13913 process_die (child_die, cu);
13914 child_die = sibling_die (child_die);
13915 }
13916 }
13917
13918 inherit_abstract_dies (die, cu);
13919
13920 /* If we have a DW_AT_specification, we might need to import using
13921 directives from the context of the specification DIE. See the
13922 comment in determine_prefix. */
13923 if (cu->language == language_cplus
13924 && dwarf2_attr (die, DW_AT_specification, cu))
13925 {
13926 struct dwarf2_cu *spec_cu = cu;
13927 struct die_info *spec_die = die_specification (die, &spec_cu);
13928
13929 while (spec_die)
13930 {
13931 child_die = spec_die->child;
13932 while (child_die && child_die->tag)
13933 {
13934 if (child_die->tag == DW_TAG_imported_module)
13935 process_die (child_die, spec_cu);
13936 child_die = sibling_die (child_die);
13937 }
13938
13939 /* In some cases, GCC generates specification DIEs that
13940 themselves contain DW_AT_specification attributes. */
13941 spec_die = die_specification (spec_die, &spec_cu);
13942 }
13943 }
13944
13945 newobj = pop_context ();
13946 /* Make a block for the local symbols within. */
13947 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
13948 newobj->static_link, lowpc, highpc);
13949
13950 /* For C++, set the block's scope. */
13951 if ((cu->language == language_cplus
13952 || cu->language == language_fortran
13953 || cu->language == language_d
13954 || cu->language == language_rust)
13955 && cu->processing_has_namespace_info)
13956 block_set_scope (block, determine_prefix (die, cu),
13957 &objfile->objfile_obstack);
13958
13959 /* If we have address ranges, record them. */
13960 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13961
13962 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
13963
13964 /* Attach template arguments to function. */
13965 if (!template_args.empty ())
13966 {
13967 gdb_assert (templ_func != NULL);
13968
13969 templ_func->n_template_arguments = template_args.size ();
13970 templ_func->template_arguments
13971 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13972 templ_func->n_template_arguments);
13973 memcpy (templ_func->template_arguments,
13974 template_args.data (),
13975 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13976 }
13977
13978 /* In C++, we can have functions nested inside functions (e.g., when
13979 a function declares a class that has methods). This means that
13980 when we finish processing a function scope, we may need to go
13981 back to building a containing block's symbol lists. */
13982 local_symbols = newobj->locals;
13983 local_using_directives = newobj->local_using_directives;
13984
13985 /* If we've finished processing a top-level function, subsequent
13986 symbols go in the file symbol list. */
13987 if (outermost_context_p ())
13988 cu->list_in_scope = &file_symbols;
13989 }
13990
13991 /* Process all the DIES contained within a lexical block scope. Start
13992 a new scope, process the dies, and then close the scope. */
13993
13994 static void
13995 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13996 {
13997 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13998 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13999 struct context_stack *newobj;
14000 CORE_ADDR lowpc, highpc;
14001 struct die_info *child_die;
14002 CORE_ADDR baseaddr;
14003
14004 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14005
14006 /* Ignore blocks with missing or invalid low and high pc attributes. */
14007 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
14008 as multiple lexical blocks? Handling children in a sane way would
14009 be nasty. Might be easier to properly extend generic blocks to
14010 describe ranges. */
14011 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
14012 {
14013 case PC_BOUNDS_NOT_PRESENT:
14014 /* DW_TAG_lexical_block has no attributes, process its children as if
14015 there was no wrapping by that DW_TAG_lexical_block.
14016 GCC does no longer produces such DWARF since GCC r224161. */
14017 for (child_die = die->child;
14018 child_die != NULL && child_die->tag;
14019 child_die = sibling_die (child_die))
14020 process_die (child_die, cu);
14021 return;
14022 case PC_BOUNDS_INVALID:
14023 return;
14024 }
14025 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14026 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
14027
14028 push_context (0, lowpc);
14029 if (die->child != NULL)
14030 {
14031 child_die = die->child;
14032 while (child_die && child_die->tag)
14033 {
14034 process_die (child_die, cu);
14035 child_die = sibling_die (child_die);
14036 }
14037 }
14038 inherit_abstract_dies (die, cu);
14039 newobj = pop_context ();
14040
14041 if (local_symbols != NULL || local_using_directives != NULL)
14042 {
14043 struct block *block
14044 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
14045 newobj->start_addr, highpc);
14046
14047 /* Note that recording ranges after traversing children, as we
14048 do here, means that recording a parent's ranges entails
14049 walking across all its children's ranges as they appear in
14050 the address map, which is quadratic behavior.
14051
14052 It would be nicer to record the parent's ranges before
14053 traversing its children, simply overriding whatever you find
14054 there. But since we don't even decide whether to create a
14055 block until after we've traversed its children, that's hard
14056 to do. */
14057 dwarf2_record_block_ranges (die, block, baseaddr, cu);
14058 }
14059 local_symbols = newobj->locals;
14060 local_using_directives = newobj->local_using_directives;
14061 }
14062
14063 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
14064
14065 static void
14066 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
14067 {
14068 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14069 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14070 CORE_ADDR pc, baseaddr;
14071 struct attribute *attr;
14072 struct call_site *call_site, call_site_local;
14073 void **slot;
14074 int nparams;
14075 struct die_info *child_die;
14076
14077 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14078
14079 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
14080 if (attr == NULL)
14081 {
14082 /* This was a pre-DWARF-5 GNU extension alias
14083 for DW_AT_call_return_pc. */
14084 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14085 }
14086 if (!attr)
14087 {
14088 complaint (&symfile_complaints,
14089 _("missing DW_AT_call_return_pc for DW_TAG_call_site "
14090 "DIE %s [in module %s]"),
14091 sect_offset_str (die->sect_off), objfile_name (objfile));
14092 return;
14093 }
14094 pc = attr_value_as_address (attr) + baseaddr;
14095 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
14096
14097 if (cu->call_site_htab == NULL)
14098 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
14099 NULL, &objfile->objfile_obstack,
14100 hashtab_obstack_allocate, NULL);
14101 call_site_local.pc = pc;
14102 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
14103 if (*slot != NULL)
14104 {
14105 complaint (&symfile_complaints,
14106 _("Duplicate PC %s for DW_TAG_call_site "
14107 "DIE %s [in module %s]"),
14108 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
14109 objfile_name (objfile));
14110 return;
14111 }
14112
14113 /* Count parameters at the caller. */
14114
14115 nparams = 0;
14116 for (child_die = die->child; child_die && child_die->tag;
14117 child_die = sibling_die (child_die))
14118 {
14119 if (child_die->tag != DW_TAG_call_site_parameter
14120 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14121 {
14122 complaint (&symfile_complaints,
14123 _("Tag %d is not DW_TAG_call_site_parameter in "
14124 "DW_TAG_call_site child DIE %s [in module %s]"),
14125 child_die->tag, sect_offset_str (child_die->sect_off),
14126 objfile_name (objfile));
14127 continue;
14128 }
14129
14130 nparams++;
14131 }
14132
14133 call_site
14134 = ((struct call_site *)
14135 obstack_alloc (&objfile->objfile_obstack,
14136 sizeof (*call_site)
14137 + (sizeof (*call_site->parameter) * (nparams - 1))));
14138 *slot = call_site;
14139 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
14140 call_site->pc = pc;
14141
14142 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
14143 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
14144 {
14145 struct die_info *func_die;
14146
14147 /* Skip also over DW_TAG_inlined_subroutine. */
14148 for (func_die = die->parent;
14149 func_die && func_die->tag != DW_TAG_subprogram
14150 && func_die->tag != DW_TAG_subroutine_type;
14151 func_die = func_die->parent);
14152
14153 /* DW_AT_call_all_calls is a superset
14154 of DW_AT_call_all_tail_calls. */
14155 if (func_die
14156 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
14157 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
14158 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
14159 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
14160 {
14161 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
14162 not complete. But keep CALL_SITE for look ups via call_site_htab,
14163 both the initial caller containing the real return address PC and
14164 the final callee containing the current PC of a chain of tail
14165 calls do not need to have the tail call list complete. But any
14166 function candidate for a virtual tail call frame searched via
14167 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
14168 determined unambiguously. */
14169 }
14170 else
14171 {
14172 struct type *func_type = NULL;
14173
14174 if (func_die)
14175 func_type = get_die_type (func_die, cu);
14176 if (func_type != NULL)
14177 {
14178 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
14179
14180 /* Enlist this call site to the function. */
14181 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
14182 TYPE_TAIL_CALL_LIST (func_type) = call_site;
14183 }
14184 else
14185 complaint (&symfile_complaints,
14186 _("Cannot find function owning DW_TAG_call_site "
14187 "DIE %s [in module %s]"),
14188 sect_offset_str (die->sect_off), objfile_name (objfile));
14189 }
14190 }
14191
14192 attr = dwarf2_attr (die, DW_AT_call_target, cu);
14193 if (attr == NULL)
14194 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
14195 if (attr == NULL)
14196 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
14197 if (attr == NULL)
14198 {
14199 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
14200 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14201 }
14202 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
14203 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
14204 /* Keep NULL DWARF_BLOCK. */;
14205 else if (attr_form_is_block (attr))
14206 {
14207 struct dwarf2_locexpr_baton *dlbaton;
14208
14209 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14210 dlbaton->data = DW_BLOCK (attr)->data;
14211 dlbaton->size = DW_BLOCK (attr)->size;
14212 dlbaton->per_cu = cu->per_cu;
14213
14214 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14215 }
14216 else if (attr_form_is_ref (attr))
14217 {
14218 struct dwarf2_cu *target_cu = cu;
14219 struct die_info *target_die;
14220
14221 target_die = follow_die_ref (die, attr, &target_cu);
14222 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14223 if (die_is_declaration (target_die, target_cu))
14224 {
14225 const char *target_physname;
14226
14227 /* Prefer the mangled name; otherwise compute the demangled one. */
14228 target_physname = dw2_linkage_name (target_die, target_cu);
14229 if (target_physname == NULL)
14230 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14231 if (target_physname == NULL)
14232 complaint (&symfile_complaints,
14233 _("DW_AT_call_target target DIE has invalid "
14234 "physname, for referencing DIE %s [in module %s]"),
14235 sect_offset_str (die->sect_off), objfile_name (objfile));
14236 else
14237 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14238 }
14239 else
14240 {
14241 CORE_ADDR lowpc;
14242
14243 /* DW_AT_entry_pc should be preferred. */
14244 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14245 <= PC_BOUNDS_INVALID)
14246 complaint (&symfile_complaints,
14247 _("DW_AT_call_target target DIE has invalid "
14248 "low pc, for referencing DIE %s [in module %s]"),
14249 sect_offset_str (die->sect_off), objfile_name (objfile));
14250 else
14251 {
14252 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14253 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14254 }
14255 }
14256 }
14257 else
14258 complaint (&symfile_complaints,
14259 _("DW_TAG_call_site DW_AT_call_target is neither "
14260 "block nor reference, for DIE %s [in module %s]"),
14261 sect_offset_str (die->sect_off), objfile_name (objfile));
14262
14263 call_site->per_cu = cu->per_cu;
14264
14265 for (child_die = die->child;
14266 child_die && child_die->tag;
14267 child_die = sibling_die (child_die))
14268 {
14269 struct call_site_parameter *parameter;
14270 struct attribute *loc, *origin;
14271
14272 if (child_die->tag != DW_TAG_call_site_parameter
14273 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14274 {
14275 /* Already printed the complaint above. */
14276 continue;
14277 }
14278
14279 gdb_assert (call_site->parameter_count < nparams);
14280 parameter = &call_site->parameter[call_site->parameter_count];
14281
14282 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14283 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14284 register is contained in DW_AT_call_value. */
14285
14286 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14287 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14288 if (origin == NULL)
14289 {
14290 /* This was a pre-DWARF-5 GNU extension alias
14291 for DW_AT_call_parameter. */
14292 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14293 }
14294 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14295 {
14296 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14297
14298 sect_offset sect_off
14299 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14300 if (!offset_in_cu_p (&cu->header, sect_off))
14301 {
14302 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14303 binding can be done only inside one CU. Such referenced DIE
14304 therefore cannot be even moved to DW_TAG_partial_unit. */
14305 complaint (&symfile_complaints,
14306 _("DW_AT_call_parameter offset is not in CU for "
14307 "DW_TAG_call_site child DIE %s [in module %s]"),
14308 sect_offset_str (child_die->sect_off),
14309 objfile_name (objfile));
14310 continue;
14311 }
14312 parameter->u.param_cu_off
14313 = (cu_offset) (sect_off - cu->header.sect_off);
14314 }
14315 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14316 {
14317 complaint (&symfile_complaints,
14318 _("No DW_FORM_block* DW_AT_location for "
14319 "DW_TAG_call_site child DIE %s [in module %s]"),
14320 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14321 continue;
14322 }
14323 else
14324 {
14325 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14326 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14327 if (parameter->u.dwarf_reg != -1)
14328 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14329 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14330 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14331 &parameter->u.fb_offset))
14332 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14333 else
14334 {
14335 complaint (&symfile_complaints,
14336 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
14337 "for DW_FORM_block* DW_AT_location is supported for "
14338 "DW_TAG_call_site child DIE %s "
14339 "[in module %s]"),
14340 sect_offset_str (child_die->sect_off),
14341 objfile_name (objfile));
14342 continue;
14343 }
14344 }
14345
14346 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14347 if (attr == NULL)
14348 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14349 if (!attr_form_is_block (attr))
14350 {
14351 complaint (&symfile_complaints,
14352 _("No DW_FORM_block* DW_AT_call_value for "
14353 "DW_TAG_call_site child DIE %s [in module %s]"),
14354 sect_offset_str (child_die->sect_off),
14355 objfile_name (objfile));
14356 continue;
14357 }
14358 parameter->value = DW_BLOCK (attr)->data;
14359 parameter->value_size = DW_BLOCK (attr)->size;
14360
14361 /* Parameters are not pre-cleared by memset above. */
14362 parameter->data_value = NULL;
14363 parameter->data_value_size = 0;
14364 call_site->parameter_count++;
14365
14366 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14367 if (attr == NULL)
14368 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14369 if (attr)
14370 {
14371 if (!attr_form_is_block (attr))
14372 complaint (&symfile_complaints,
14373 _("No DW_FORM_block* DW_AT_call_data_value for "
14374 "DW_TAG_call_site child DIE %s [in module %s]"),
14375 sect_offset_str (child_die->sect_off),
14376 objfile_name (objfile));
14377 else
14378 {
14379 parameter->data_value = DW_BLOCK (attr)->data;
14380 parameter->data_value_size = DW_BLOCK (attr)->size;
14381 }
14382 }
14383 }
14384 }
14385
14386 /* Helper function for read_variable. If DIE represents a virtual
14387 table, then return the type of the concrete object that is
14388 associated with the virtual table. Otherwise, return NULL. */
14389
14390 static struct type *
14391 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14392 {
14393 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14394 if (attr == NULL)
14395 return NULL;
14396
14397 /* Find the type DIE. */
14398 struct die_info *type_die = NULL;
14399 struct dwarf2_cu *type_cu = cu;
14400
14401 if (attr_form_is_ref (attr))
14402 type_die = follow_die_ref (die, attr, &type_cu);
14403 if (type_die == NULL)
14404 return NULL;
14405
14406 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14407 return NULL;
14408 return die_containing_type (type_die, type_cu);
14409 }
14410
14411 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14412
14413 static void
14414 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14415 {
14416 struct rust_vtable_symbol *storage = NULL;
14417
14418 if (cu->language == language_rust)
14419 {
14420 struct type *containing_type = rust_containing_type (die, cu);
14421
14422 if (containing_type != NULL)
14423 {
14424 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14425
14426 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14427 struct rust_vtable_symbol);
14428 initialize_objfile_symbol (storage);
14429 storage->concrete_type = containing_type;
14430 storage->subclass = SYMBOL_RUST_VTABLE;
14431 }
14432 }
14433
14434 new_symbol (die, NULL, cu, storage);
14435 }
14436
14437 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14438 reading .debug_rnglists.
14439 Callback's type should be:
14440 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14441 Return true if the attributes are present and valid, otherwise,
14442 return false. */
14443
14444 template <typename Callback>
14445 static bool
14446 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14447 Callback &&callback)
14448 {
14449 struct dwarf2_per_objfile *dwarf2_per_objfile
14450 = cu->per_cu->dwarf2_per_objfile;
14451 struct objfile *objfile = dwarf2_per_objfile->objfile;
14452 bfd *obfd = objfile->obfd;
14453 /* Base address selection entry. */
14454 CORE_ADDR base;
14455 int found_base;
14456 const gdb_byte *buffer;
14457 CORE_ADDR baseaddr;
14458 bool overflow = false;
14459
14460 found_base = cu->base_known;
14461 base = cu->base_address;
14462
14463 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14464 if (offset >= dwarf2_per_objfile->rnglists.size)
14465 {
14466 complaint (&symfile_complaints,
14467 _("Offset %d out of bounds for DW_AT_ranges attribute"),
14468 offset);
14469 return false;
14470 }
14471 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14472
14473 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14474
14475 while (1)
14476 {
14477 /* Initialize it due to a false compiler warning. */
14478 CORE_ADDR range_beginning = 0, range_end = 0;
14479 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14480 + dwarf2_per_objfile->rnglists.size);
14481 unsigned int bytes_read;
14482
14483 if (buffer == buf_end)
14484 {
14485 overflow = true;
14486 break;
14487 }
14488 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14489 switch (rlet)
14490 {
14491 case DW_RLE_end_of_list:
14492 break;
14493 case DW_RLE_base_address:
14494 if (buffer + cu->header.addr_size > buf_end)
14495 {
14496 overflow = true;
14497 break;
14498 }
14499 base = read_address (obfd, buffer, cu, &bytes_read);
14500 found_base = 1;
14501 buffer += bytes_read;
14502 break;
14503 case DW_RLE_start_length:
14504 if (buffer + cu->header.addr_size > buf_end)
14505 {
14506 overflow = true;
14507 break;
14508 }
14509 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14510 buffer += bytes_read;
14511 range_end = (range_beginning
14512 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14513 buffer += bytes_read;
14514 if (buffer > buf_end)
14515 {
14516 overflow = true;
14517 break;
14518 }
14519 break;
14520 case DW_RLE_offset_pair:
14521 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14522 buffer += bytes_read;
14523 if (buffer > buf_end)
14524 {
14525 overflow = true;
14526 break;
14527 }
14528 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14529 buffer += bytes_read;
14530 if (buffer > buf_end)
14531 {
14532 overflow = true;
14533 break;
14534 }
14535 break;
14536 case DW_RLE_start_end:
14537 if (buffer + 2 * cu->header.addr_size > buf_end)
14538 {
14539 overflow = true;
14540 break;
14541 }
14542 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14543 buffer += bytes_read;
14544 range_end = read_address (obfd, buffer, cu, &bytes_read);
14545 buffer += bytes_read;
14546 break;
14547 default:
14548 complaint (&symfile_complaints,
14549 _("Invalid .debug_rnglists data (no base address)"));
14550 return false;
14551 }
14552 if (rlet == DW_RLE_end_of_list || overflow)
14553 break;
14554 if (rlet == DW_RLE_base_address)
14555 continue;
14556
14557 if (!found_base)
14558 {
14559 /* We have no valid base address for the ranges
14560 data. */
14561 complaint (&symfile_complaints,
14562 _("Invalid .debug_rnglists data (no base address)"));
14563 return false;
14564 }
14565
14566 if (range_beginning > range_end)
14567 {
14568 /* Inverted range entries are invalid. */
14569 complaint (&symfile_complaints,
14570 _("Invalid .debug_rnglists data (inverted range)"));
14571 return false;
14572 }
14573
14574 /* Empty range entries have no effect. */
14575 if (range_beginning == range_end)
14576 continue;
14577
14578 range_beginning += base;
14579 range_end += base;
14580
14581 /* A not-uncommon case of bad debug info.
14582 Don't pollute the addrmap with bad data. */
14583 if (range_beginning + baseaddr == 0
14584 && !dwarf2_per_objfile->has_section_at_zero)
14585 {
14586 complaint (&symfile_complaints,
14587 _(".debug_rnglists entry has start address of zero"
14588 " [in module %s]"), objfile_name (objfile));
14589 continue;
14590 }
14591
14592 callback (range_beginning, range_end);
14593 }
14594
14595 if (overflow)
14596 {
14597 complaint (&symfile_complaints,
14598 _("Offset %d is not terminated "
14599 "for DW_AT_ranges attribute"),
14600 offset);
14601 return false;
14602 }
14603
14604 return true;
14605 }
14606
14607 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14608 Callback's type should be:
14609 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14610 Return 1 if the attributes are present and valid, otherwise, return 0. */
14611
14612 template <typename Callback>
14613 static int
14614 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14615 Callback &&callback)
14616 {
14617 struct dwarf2_per_objfile *dwarf2_per_objfile
14618 = cu->per_cu->dwarf2_per_objfile;
14619 struct objfile *objfile = dwarf2_per_objfile->objfile;
14620 struct comp_unit_head *cu_header = &cu->header;
14621 bfd *obfd = objfile->obfd;
14622 unsigned int addr_size = cu_header->addr_size;
14623 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14624 /* Base address selection entry. */
14625 CORE_ADDR base;
14626 int found_base;
14627 unsigned int dummy;
14628 const gdb_byte *buffer;
14629 CORE_ADDR baseaddr;
14630
14631 if (cu_header->version >= 5)
14632 return dwarf2_rnglists_process (offset, cu, callback);
14633
14634 found_base = cu->base_known;
14635 base = cu->base_address;
14636
14637 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14638 if (offset >= dwarf2_per_objfile->ranges.size)
14639 {
14640 complaint (&symfile_complaints,
14641 _("Offset %d out of bounds for DW_AT_ranges attribute"),
14642 offset);
14643 return 0;
14644 }
14645 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14646
14647 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14648
14649 while (1)
14650 {
14651 CORE_ADDR range_beginning, range_end;
14652
14653 range_beginning = read_address (obfd, buffer, cu, &dummy);
14654 buffer += addr_size;
14655 range_end = read_address (obfd, buffer, cu, &dummy);
14656 buffer += addr_size;
14657 offset += 2 * addr_size;
14658
14659 /* An end of list marker is a pair of zero addresses. */
14660 if (range_beginning == 0 && range_end == 0)
14661 /* Found the end of list entry. */
14662 break;
14663
14664 /* Each base address selection entry is a pair of 2 values.
14665 The first is the largest possible address, the second is
14666 the base address. Check for a base address here. */
14667 if ((range_beginning & mask) == mask)
14668 {
14669 /* If we found the largest possible address, then we already
14670 have the base address in range_end. */
14671 base = range_end;
14672 found_base = 1;
14673 continue;
14674 }
14675
14676 if (!found_base)
14677 {
14678 /* We have no valid base address for the ranges
14679 data. */
14680 complaint (&symfile_complaints,
14681 _("Invalid .debug_ranges data (no base address)"));
14682 return 0;
14683 }
14684
14685 if (range_beginning > range_end)
14686 {
14687 /* Inverted range entries are invalid. */
14688 complaint (&symfile_complaints,
14689 _("Invalid .debug_ranges data (inverted range)"));
14690 return 0;
14691 }
14692
14693 /* Empty range entries have no effect. */
14694 if (range_beginning == range_end)
14695 continue;
14696
14697 range_beginning += base;
14698 range_end += base;
14699
14700 /* A not-uncommon case of bad debug info.
14701 Don't pollute the addrmap with bad data. */
14702 if (range_beginning + baseaddr == 0
14703 && !dwarf2_per_objfile->has_section_at_zero)
14704 {
14705 complaint (&symfile_complaints,
14706 _(".debug_ranges entry has start address of zero"
14707 " [in module %s]"), objfile_name (objfile));
14708 continue;
14709 }
14710
14711 callback (range_beginning, range_end);
14712 }
14713
14714 return 1;
14715 }
14716
14717 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14718 Return 1 if the attributes are present and valid, otherwise, return 0.
14719 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14720
14721 static int
14722 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14723 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14724 struct partial_symtab *ranges_pst)
14725 {
14726 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14727 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14728 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14729 SECT_OFF_TEXT (objfile));
14730 int low_set = 0;
14731 CORE_ADDR low = 0;
14732 CORE_ADDR high = 0;
14733 int retval;
14734
14735 retval = dwarf2_ranges_process (offset, cu,
14736 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14737 {
14738 if (ranges_pst != NULL)
14739 {
14740 CORE_ADDR lowpc;
14741 CORE_ADDR highpc;
14742
14743 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
14744 range_beginning + baseaddr);
14745 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
14746 range_end + baseaddr);
14747 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
14748 ranges_pst);
14749 }
14750
14751 /* FIXME: This is recording everything as a low-high
14752 segment of consecutive addresses. We should have a
14753 data structure for discontiguous block ranges
14754 instead. */
14755 if (! low_set)
14756 {
14757 low = range_beginning;
14758 high = range_end;
14759 low_set = 1;
14760 }
14761 else
14762 {
14763 if (range_beginning < low)
14764 low = range_beginning;
14765 if (range_end > high)
14766 high = range_end;
14767 }
14768 });
14769 if (!retval)
14770 return 0;
14771
14772 if (! low_set)
14773 /* If the first entry is an end-of-list marker, the range
14774 describes an empty scope, i.e. no instructions. */
14775 return 0;
14776
14777 if (low_return)
14778 *low_return = low;
14779 if (high_return)
14780 *high_return = high;
14781 return 1;
14782 }
14783
14784 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14785 definition for the return value. *LOWPC and *HIGHPC are set iff
14786 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14787
14788 static enum pc_bounds_kind
14789 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14790 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14791 struct partial_symtab *pst)
14792 {
14793 struct dwarf2_per_objfile *dwarf2_per_objfile
14794 = cu->per_cu->dwarf2_per_objfile;
14795 struct attribute *attr;
14796 struct attribute *attr_high;
14797 CORE_ADDR low = 0;
14798 CORE_ADDR high = 0;
14799 enum pc_bounds_kind ret;
14800
14801 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14802 if (attr_high)
14803 {
14804 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14805 if (attr)
14806 {
14807 low = attr_value_as_address (attr);
14808 high = attr_value_as_address (attr_high);
14809 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14810 high += low;
14811 }
14812 else
14813 /* Found high w/o low attribute. */
14814 return PC_BOUNDS_INVALID;
14815
14816 /* Found consecutive range of addresses. */
14817 ret = PC_BOUNDS_HIGH_LOW;
14818 }
14819 else
14820 {
14821 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14822 if (attr != NULL)
14823 {
14824 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14825 We take advantage of the fact that DW_AT_ranges does not appear
14826 in DW_TAG_compile_unit of DWO files. */
14827 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14828 unsigned int ranges_offset = (DW_UNSND (attr)
14829 + (need_ranges_base
14830 ? cu->ranges_base
14831 : 0));
14832
14833 /* Value of the DW_AT_ranges attribute is the offset in the
14834 .debug_ranges section. */
14835 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14836 return PC_BOUNDS_INVALID;
14837 /* Found discontinuous range of addresses. */
14838 ret = PC_BOUNDS_RANGES;
14839 }
14840 else
14841 return PC_BOUNDS_NOT_PRESENT;
14842 }
14843
14844 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14845 if (high <= low)
14846 return PC_BOUNDS_INVALID;
14847
14848 /* When using the GNU linker, .gnu.linkonce. sections are used to
14849 eliminate duplicate copies of functions and vtables and such.
14850 The linker will arbitrarily choose one and discard the others.
14851 The AT_*_pc values for such functions refer to local labels in
14852 these sections. If the section from that file was discarded, the
14853 labels are not in the output, so the relocs get a value of 0.
14854 If this is a discarded function, mark the pc bounds as invalid,
14855 so that GDB will ignore it. */
14856 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14857 return PC_BOUNDS_INVALID;
14858
14859 *lowpc = low;
14860 if (highpc)
14861 *highpc = high;
14862 return ret;
14863 }
14864
14865 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14866 its low and high PC addresses. Do nothing if these addresses could not
14867 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14868 and HIGHPC to the high address if greater than HIGHPC. */
14869
14870 static void
14871 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14872 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14873 struct dwarf2_cu *cu)
14874 {
14875 CORE_ADDR low, high;
14876 struct die_info *child = die->child;
14877
14878 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14879 {
14880 *lowpc = std::min (*lowpc, low);
14881 *highpc = std::max (*highpc, high);
14882 }
14883
14884 /* If the language does not allow nested subprograms (either inside
14885 subprograms or lexical blocks), we're done. */
14886 if (cu->language != language_ada)
14887 return;
14888
14889 /* Check all the children of the given DIE. If it contains nested
14890 subprograms, then check their pc bounds. Likewise, we need to
14891 check lexical blocks as well, as they may also contain subprogram
14892 definitions. */
14893 while (child && child->tag)
14894 {
14895 if (child->tag == DW_TAG_subprogram
14896 || child->tag == DW_TAG_lexical_block)
14897 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14898 child = sibling_die (child);
14899 }
14900 }
14901
14902 /* Get the low and high pc's represented by the scope DIE, and store
14903 them in *LOWPC and *HIGHPC. If the correct values can't be
14904 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14905
14906 static void
14907 get_scope_pc_bounds (struct die_info *die,
14908 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14909 struct dwarf2_cu *cu)
14910 {
14911 CORE_ADDR best_low = (CORE_ADDR) -1;
14912 CORE_ADDR best_high = (CORE_ADDR) 0;
14913 CORE_ADDR current_low, current_high;
14914
14915 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14916 >= PC_BOUNDS_RANGES)
14917 {
14918 best_low = current_low;
14919 best_high = current_high;
14920 }
14921 else
14922 {
14923 struct die_info *child = die->child;
14924
14925 while (child && child->tag)
14926 {
14927 switch (child->tag) {
14928 case DW_TAG_subprogram:
14929 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14930 break;
14931 case DW_TAG_namespace:
14932 case DW_TAG_module:
14933 /* FIXME: carlton/2004-01-16: Should we do this for
14934 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14935 that current GCC's always emit the DIEs corresponding
14936 to definitions of methods of classes as children of a
14937 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14938 the DIEs giving the declarations, which could be
14939 anywhere). But I don't see any reason why the
14940 standards says that they have to be there. */
14941 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14942
14943 if (current_low != ((CORE_ADDR) -1))
14944 {
14945 best_low = std::min (best_low, current_low);
14946 best_high = std::max (best_high, current_high);
14947 }
14948 break;
14949 default:
14950 /* Ignore. */
14951 break;
14952 }
14953
14954 child = sibling_die (child);
14955 }
14956 }
14957
14958 *lowpc = best_low;
14959 *highpc = best_high;
14960 }
14961
14962 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14963 in DIE. */
14964
14965 static void
14966 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14967 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14968 {
14969 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14970 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14971 struct attribute *attr;
14972 struct attribute *attr_high;
14973
14974 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14975 if (attr_high)
14976 {
14977 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14978 if (attr)
14979 {
14980 CORE_ADDR low = attr_value_as_address (attr);
14981 CORE_ADDR high = attr_value_as_address (attr_high);
14982
14983 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14984 high += low;
14985
14986 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14987 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14988 record_block_range (block, low, high - 1);
14989 }
14990 }
14991
14992 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14993 if (attr)
14994 {
14995 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14996 We take advantage of the fact that DW_AT_ranges does not appear
14997 in DW_TAG_compile_unit of DWO files. */
14998 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14999
15000 /* The value of the DW_AT_ranges attribute is the offset of the
15001 address range list in the .debug_ranges section. */
15002 unsigned long offset = (DW_UNSND (attr)
15003 + (need_ranges_base ? cu->ranges_base : 0));
15004 const gdb_byte *buffer;
15005
15006 /* For some target architectures, but not others, the
15007 read_address function sign-extends the addresses it returns.
15008 To recognize base address selection entries, we need a
15009 mask. */
15010 unsigned int addr_size = cu->header.addr_size;
15011 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
15012
15013 /* The base address, to which the next pair is relative. Note
15014 that this 'base' is a DWARF concept: most entries in a range
15015 list are relative, to reduce the number of relocs against the
15016 debugging information. This is separate from this function's
15017 'baseaddr' argument, which GDB uses to relocate debugging
15018 information from a shared library based on the address at
15019 which the library was loaded. */
15020 CORE_ADDR base = cu->base_address;
15021 int base_known = cu->base_known;
15022
15023 dwarf2_ranges_process (offset, cu,
15024 [&] (CORE_ADDR start, CORE_ADDR end)
15025 {
15026 start += baseaddr;
15027 end += baseaddr;
15028 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
15029 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
15030 record_block_range (block, start, end - 1);
15031 });
15032 }
15033 }
15034
15035 /* Check whether the producer field indicates either of GCC < 4.6, or the
15036 Intel C/C++ compiler, and cache the result in CU. */
15037
15038 static void
15039 check_producer (struct dwarf2_cu *cu)
15040 {
15041 int major, minor;
15042
15043 if (cu->producer == NULL)
15044 {
15045 /* For unknown compilers expect their behavior is DWARF version
15046 compliant.
15047
15048 GCC started to support .debug_types sections by -gdwarf-4 since
15049 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
15050 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
15051 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
15052 interpreted incorrectly by GDB now - GCC PR debug/48229. */
15053 }
15054 else if (producer_is_gcc (cu->producer, &major, &minor))
15055 {
15056 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
15057 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
15058 }
15059 else if (producer_is_icc (cu->producer, &major, &minor))
15060 cu->producer_is_icc_lt_14 = major < 14;
15061 else
15062 {
15063 /* For other non-GCC compilers, expect their behavior is DWARF version
15064 compliant. */
15065 }
15066
15067 cu->checked_producer = 1;
15068 }
15069
15070 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
15071 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
15072 during 4.6.0 experimental. */
15073
15074 static int
15075 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
15076 {
15077 if (!cu->checked_producer)
15078 check_producer (cu);
15079
15080 return cu->producer_is_gxx_lt_4_6;
15081 }
15082
15083 /* Return the default accessibility type if it is not overriden by
15084 DW_AT_accessibility. */
15085
15086 static enum dwarf_access_attribute
15087 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
15088 {
15089 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
15090 {
15091 /* The default DWARF 2 accessibility for members is public, the default
15092 accessibility for inheritance is private. */
15093
15094 if (die->tag != DW_TAG_inheritance)
15095 return DW_ACCESS_public;
15096 else
15097 return DW_ACCESS_private;
15098 }
15099 else
15100 {
15101 /* DWARF 3+ defines the default accessibility a different way. The same
15102 rules apply now for DW_TAG_inheritance as for the members and it only
15103 depends on the container kind. */
15104
15105 if (die->parent->tag == DW_TAG_class_type)
15106 return DW_ACCESS_private;
15107 else
15108 return DW_ACCESS_public;
15109 }
15110 }
15111
15112 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
15113 offset. If the attribute was not found return 0, otherwise return
15114 1. If it was found but could not properly be handled, set *OFFSET
15115 to 0. */
15116
15117 static int
15118 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
15119 LONGEST *offset)
15120 {
15121 struct attribute *attr;
15122
15123 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
15124 if (attr != NULL)
15125 {
15126 *offset = 0;
15127
15128 /* Note that we do not check for a section offset first here.
15129 This is because DW_AT_data_member_location is new in DWARF 4,
15130 so if we see it, we can assume that a constant form is really
15131 a constant and not a section offset. */
15132 if (attr_form_is_constant (attr))
15133 *offset = dwarf2_get_attr_constant_value (attr, 0);
15134 else if (attr_form_is_section_offset (attr))
15135 dwarf2_complex_location_expr_complaint ();
15136 else if (attr_form_is_block (attr))
15137 *offset = decode_locdesc (DW_BLOCK (attr), cu);
15138 else
15139 dwarf2_complex_location_expr_complaint ();
15140
15141 return 1;
15142 }
15143
15144 return 0;
15145 }
15146
15147 /* Add an aggregate field to the field list. */
15148
15149 static void
15150 dwarf2_add_field (struct field_info *fip, struct die_info *die,
15151 struct dwarf2_cu *cu)
15152 {
15153 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15154 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15155 struct nextfield *new_field;
15156 struct attribute *attr;
15157 struct field *fp;
15158 const char *fieldname = "";
15159
15160 /* Allocate a new field list entry and link it in. */
15161 new_field = XNEW (struct nextfield);
15162 make_cleanup (xfree, new_field);
15163 memset (new_field, 0, sizeof (struct nextfield));
15164
15165 if (die->tag == DW_TAG_inheritance)
15166 {
15167 new_field->next = fip->baseclasses;
15168 fip->baseclasses = new_field;
15169 }
15170 else
15171 {
15172 new_field->next = fip->fields;
15173 fip->fields = new_field;
15174 }
15175 fip->nfields++;
15176
15177 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15178 if (attr)
15179 new_field->accessibility = DW_UNSND (attr);
15180 else
15181 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
15182 if (new_field->accessibility != DW_ACCESS_public)
15183 fip->non_public_fields = 1;
15184
15185 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15186 if (attr)
15187 new_field->virtuality = DW_UNSND (attr);
15188 else
15189 new_field->virtuality = DW_VIRTUALITY_none;
15190
15191 fp = &new_field->field;
15192
15193 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
15194 {
15195 LONGEST offset;
15196
15197 /* Data member other than a C++ static data member. */
15198
15199 /* Get type of field. */
15200 fp->type = die_type (die, cu);
15201
15202 SET_FIELD_BITPOS (*fp, 0);
15203
15204 /* Get bit size of field (zero if none). */
15205 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
15206 if (attr)
15207 {
15208 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15209 }
15210 else
15211 {
15212 FIELD_BITSIZE (*fp) = 0;
15213 }
15214
15215 /* Get bit offset of field. */
15216 if (handle_data_member_location (die, cu, &offset))
15217 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15218 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15219 if (attr)
15220 {
15221 if (gdbarch_bits_big_endian (gdbarch))
15222 {
15223 /* For big endian bits, the DW_AT_bit_offset gives the
15224 additional bit offset from the MSB of the containing
15225 anonymous object to the MSB of the field. We don't
15226 have to do anything special since we don't need to
15227 know the size of the anonymous object. */
15228 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15229 }
15230 else
15231 {
15232 /* For little endian bits, compute the bit offset to the
15233 MSB of the anonymous object, subtract off the number of
15234 bits from the MSB of the field to the MSB of the
15235 object, and then subtract off the number of bits of
15236 the field itself. The result is the bit offset of
15237 the LSB of the field. */
15238 int anonymous_size;
15239 int bit_offset = DW_UNSND (attr);
15240
15241 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15242 if (attr)
15243 {
15244 /* The size of the anonymous object containing
15245 the bit field is explicit, so use the
15246 indicated size (in bytes). */
15247 anonymous_size = DW_UNSND (attr);
15248 }
15249 else
15250 {
15251 /* The size of the anonymous object containing
15252 the bit field must be inferred from the type
15253 attribute of the data member containing the
15254 bit field. */
15255 anonymous_size = TYPE_LENGTH (fp->type);
15256 }
15257 SET_FIELD_BITPOS (*fp,
15258 (FIELD_BITPOS (*fp)
15259 + anonymous_size * bits_per_byte
15260 - bit_offset - FIELD_BITSIZE (*fp)));
15261 }
15262 }
15263 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15264 if (attr != NULL)
15265 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15266 + dwarf2_get_attr_constant_value (attr, 0)));
15267
15268 /* Get name of field. */
15269 fieldname = dwarf2_name (die, cu);
15270 if (fieldname == NULL)
15271 fieldname = "";
15272
15273 /* The name is already allocated along with this objfile, so we don't
15274 need to duplicate it for the type. */
15275 fp->name = fieldname;
15276
15277 /* Change accessibility for artificial fields (e.g. virtual table
15278 pointer or virtual base class pointer) to private. */
15279 if (dwarf2_attr (die, DW_AT_artificial, cu))
15280 {
15281 FIELD_ARTIFICIAL (*fp) = 1;
15282 new_field->accessibility = DW_ACCESS_private;
15283 fip->non_public_fields = 1;
15284 }
15285 }
15286 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15287 {
15288 /* C++ static member. */
15289
15290 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15291 is a declaration, but all versions of G++ as of this writing
15292 (so through at least 3.2.1) incorrectly generate
15293 DW_TAG_variable tags. */
15294
15295 const char *physname;
15296
15297 /* Get name of field. */
15298 fieldname = dwarf2_name (die, cu);
15299 if (fieldname == NULL)
15300 return;
15301
15302 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15303 if (attr
15304 /* Only create a symbol if this is an external value.
15305 new_symbol checks this and puts the value in the global symbol
15306 table, which we want. If it is not external, new_symbol
15307 will try to put the value in cu->list_in_scope which is wrong. */
15308 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15309 {
15310 /* A static const member, not much different than an enum as far as
15311 we're concerned, except that we can support more types. */
15312 new_symbol (die, NULL, cu);
15313 }
15314
15315 /* Get physical name. */
15316 physname = dwarf2_physname (fieldname, die, cu);
15317
15318 /* The name is already allocated along with this objfile, so we don't
15319 need to duplicate it for the type. */
15320 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15321 FIELD_TYPE (*fp) = die_type (die, cu);
15322 FIELD_NAME (*fp) = fieldname;
15323 }
15324 else if (die->tag == DW_TAG_inheritance)
15325 {
15326 LONGEST offset;
15327
15328 /* C++ base class field. */
15329 if (handle_data_member_location (die, cu, &offset))
15330 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15331 FIELD_BITSIZE (*fp) = 0;
15332 FIELD_TYPE (*fp) = die_type (die, cu);
15333 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
15334 fip->nbaseclasses++;
15335 }
15336 }
15337
15338 /* Can the type given by DIE define another type? */
15339
15340 static bool
15341 type_can_define_types (const struct die_info *die)
15342 {
15343 switch (die->tag)
15344 {
15345 case DW_TAG_typedef:
15346 case DW_TAG_class_type:
15347 case DW_TAG_structure_type:
15348 case DW_TAG_union_type:
15349 case DW_TAG_enumeration_type:
15350 return true;
15351
15352 default:
15353 return false;
15354 }
15355 }
15356
15357 /* Add a type definition defined in the scope of the FIP's class. */
15358
15359 static void
15360 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15361 struct dwarf2_cu *cu)
15362 {
15363 struct decl_field_list *new_field;
15364 struct decl_field *fp;
15365
15366 /* Allocate a new field list entry and link it in. */
15367 new_field = XCNEW (struct decl_field_list);
15368 make_cleanup (xfree, new_field);
15369
15370 gdb_assert (type_can_define_types (die));
15371
15372 fp = &new_field->field;
15373
15374 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15375 fp->name = dwarf2_name (die, cu);
15376 fp->type = read_type_die (die, cu);
15377
15378 /* Save accessibility. */
15379 enum dwarf_access_attribute accessibility;
15380 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15381 if (attr != NULL)
15382 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15383 else
15384 accessibility = dwarf2_default_access_attribute (die, cu);
15385 switch (accessibility)
15386 {
15387 case DW_ACCESS_public:
15388 /* The assumed value if neither private nor protected. */
15389 break;
15390 case DW_ACCESS_private:
15391 fp->is_private = 1;
15392 break;
15393 case DW_ACCESS_protected:
15394 fp->is_protected = 1;
15395 break;
15396 default:
15397 complaint (&symfile_complaints,
15398 _("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15399 }
15400
15401 if (die->tag == DW_TAG_typedef)
15402 {
15403 new_field->next = fip->typedef_field_list;
15404 fip->typedef_field_list = new_field;
15405 fip->typedef_field_list_count++;
15406 }
15407 else
15408 {
15409 new_field->next = fip->nested_types_list;
15410 fip->nested_types_list = new_field;
15411 fip->nested_types_list_count++;
15412 }
15413 }
15414
15415 /* Create the vector of fields, and attach it to the type. */
15416
15417 static void
15418 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15419 struct dwarf2_cu *cu)
15420 {
15421 int nfields = fip->nfields;
15422
15423 /* Record the field count, allocate space for the array of fields,
15424 and create blank accessibility bitfields if necessary. */
15425 TYPE_NFIELDS (type) = nfields;
15426 TYPE_FIELDS (type) = (struct field *)
15427 TYPE_ALLOC (type, sizeof (struct field) * nfields);
15428 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
15429
15430 if (fip->non_public_fields && cu->language != language_ada)
15431 {
15432 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15433
15434 TYPE_FIELD_PRIVATE_BITS (type) =
15435 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15436 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15437
15438 TYPE_FIELD_PROTECTED_BITS (type) =
15439 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15440 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15441
15442 TYPE_FIELD_IGNORE_BITS (type) =
15443 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15444 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15445 }
15446
15447 /* If the type has baseclasses, allocate and clear a bit vector for
15448 TYPE_FIELD_VIRTUAL_BITS. */
15449 if (fip->nbaseclasses && cu->language != language_ada)
15450 {
15451 int num_bytes = B_BYTES (fip->nbaseclasses);
15452 unsigned char *pointer;
15453
15454 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15455 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15456 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15457 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
15458 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
15459 }
15460
15461 /* Copy the saved-up fields into the field vector. Start from the head of
15462 the list, adding to the tail of the field array, so that they end up in
15463 the same order in the array in which they were added to the list. */
15464 while (nfields-- > 0)
15465 {
15466 struct nextfield *fieldp;
15467
15468 if (fip->fields)
15469 {
15470 fieldp = fip->fields;
15471 fip->fields = fieldp->next;
15472 }
15473 else
15474 {
15475 fieldp = fip->baseclasses;
15476 fip->baseclasses = fieldp->next;
15477 }
15478
15479 TYPE_FIELD (type, nfields) = fieldp->field;
15480 switch (fieldp->accessibility)
15481 {
15482 case DW_ACCESS_private:
15483 if (cu->language != language_ada)
15484 SET_TYPE_FIELD_PRIVATE (type, nfields);
15485 break;
15486
15487 case DW_ACCESS_protected:
15488 if (cu->language != language_ada)
15489 SET_TYPE_FIELD_PROTECTED (type, nfields);
15490 break;
15491
15492 case DW_ACCESS_public:
15493 break;
15494
15495 default:
15496 /* Unknown accessibility. Complain and treat it as public. */
15497 {
15498 complaint (&symfile_complaints, _("unsupported accessibility %d"),
15499 fieldp->accessibility);
15500 }
15501 break;
15502 }
15503 if (nfields < fip->nbaseclasses)
15504 {
15505 switch (fieldp->virtuality)
15506 {
15507 case DW_VIRTUALITY_virtual:
15508 case DW_VIRTUALITY_pure_virtual:
15509 if (cu->language == language_ada)
15510 error (_("unexpected virtuality in component of Ada type"));
15511 SET_TYPE_FIELD_VIRTUAL (type, nfields);
15512 break;
15513 }
15514 }
15515 }
15516 }
15517
15518 /* Return true if this member function is a constructor, false
15519 otherwise. */
15520
15521 static int
15522 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15523 {
15524 const char *fieldname;
15525 const char *type_name;
15526 int len;
15527
15528 if (die->parent == NULL)
15529 return 0;
15530
15531 if (die->parent->tag != DW_TAG_structure_type
15532 && die->parent->tag != DW_TAG_union_type
15533 && die->parent->tag != DW_TAG_class_type)
15534 return 0;
15535
15536 fieldname = dwarf2_name (die, cu);
15537 type_name = dwarf2_name (die->parent, cu);
15538 if (fieldname == NULL || type_name == NULL)
15539 return 0;
15540
15541 len = strlen (fieldname);
15542 return (strncmp (fieldname, type_name, len) == 0
15543 && (type_name[len] == '\0' || type_name[len] == '<'));
15544 }
15545
15546 /* Add a member function to the proper fieldlist. */
15547
15548 static void
15549 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15550 struct type *type, struct dwarf2_cu *cu)
15551 {
15552 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15553 struct attribute *attr;
15554 struct fnfieldlist *flp;
15555 int i;
15556 struct fn_field *fnp;
15557 const char *fieldname;
15558 struct nextfnfield *new_fnfield;
15559 struct type *this_type;
15560 enum dwarf_access_attribute accessibility;
15561
15562 if (cu->language == language_ada)
15563 error (_("unexpected member function in Ada type"));
15564
15565 /* Get name of member function. */
15566 fieldname = dwarf2_name (die, cu);
15567 if (fieldname == NULL)
15568 return;
15569
15570 /* Look up member function name in fieldlist. */
15571 for (i = 0; i < fip->nfnfields; i++)
15572 {
15573 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15574 break;
15575 }
15576
15577 /* Create new list element if necessary. */
15578 if (i < fip->nfnfields)
15579 flp = &fip->fnfieldlists[i];
15580 else
15581 {
15582 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
15583 {
15584 fip->fnfieldlists = (struct fnfieldlist *)
15585 xrealloc (fip->fnfieldlists,
15586 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
15587 * sizeof (struct fnfieldlist));
15588 if (fip->nfnfields == 0)
15589 make_cleanup (free_current_contents, &fip->fnfieldlists);
15590 }
15591 flp = &fip->fnfieldlists[fip->nfnfields];
15592 flp->name = fieldname;
15593 flp->length = 0;
15594 flp->head = NULL;
15595 i = fip->nfnfields++;
15596 }
15597
15598 /* Create a new member function field and chain it to the field list
15599 entry. */
15600 new_fnfield = XNEW (struct nextfnfield);
15601 make_cleanup (xfree, new_fnfield);
15602 memset (new_fnfield, 0, sizeof (struct nextfnfield));
15603 new_fnfield->next = flp->head;
15604 flp->head = new_fnfield;
15605 flp->length++;
15606
15607 /* Fill in the member function field info. */
15608 fnp = &new_fnfield->fnfield;
15609
15610 /* Delay processing of the physname until later. */
15611 if (cu->language == language_cplus)
15612 {
15613 add_to_method_list (type, i, flp->length - 1, fieldname,
15614 die, cu);
15615 }
15616 else
15617 {
15618 const char *physname = dwarf2_physname (fieldname, die, cu);
15619 fnp->physname = physname ? physname : "";
15620 }
15621
15622 fnp->type = alloc_type (objfile);
15623 this_type = read_type_die (die, cu);
15624 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15625 {
15626 int nparams = TYPE_NFIELDS (this_type);
15627
15628 /* TYPE is the domain of this method, and THIS_TYPE is the type
15629 of the method itself (TYPE_CODE_METHOD). */
15630 smash_to_method_type (fnp->type, type,
15631 TYPE_TARGET_TYPE (this_type),
15632 TYPE_FIELDS (this_type),
15633 TYPE_NFIELDS (this_type),
15634 TYPE_VARARGS (this_type));
15635
15636 /* Handle static member functions.
15637 Dwarf2 has no clean way to discern C++ static and non-static
15638 member functions. G++ helps GDB by marking the first
15639 parameter for non-static member functions (which is the this
15640 pointer) as artificial. We obtain this information from
15641 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15642 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15643 fnp->voffset = VOFFSET_STATIC;
15644 }
15645 else
15646 complaint (&symfile_complaints, _("member function type missing for '%s'"),
15647 dwarf2_full_name (fieldname, die, cu));
15648
15649 /* Get fcontext from DW_AT_containing_type if present. */
15650 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15651 fnp->fcontext = die_containing_type (die, cu);
15652
15653 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15654 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15655
15656 /* Get accessibility. */
15657 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15658 if (attr)
15659 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15660 else
15661 accessibility = dwarf2_default_access_attribute (die, cu);
15662 switch (accessibility)
15663 {
15664 case DW_ACCESS_private:
15665 fnp->is_private = 1;
15666 break;
15667 case DW_ACCESS_protected:
15668 fnp->is_protected = 1;
15669 break;
15670 }
15671
15672 /* Check for artificial methods. */
15673 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15674 if (attr && DW_UNSND (attr) != 0)
15675 fnp->is_artificial = 1;
15676
15677 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15678
15679 /* Get index in virtual function table if it is a virtual member
15680 function. For older versions of GCC, this is an offset in the
15681 appropriate virtual table, as specified by DW_AT_containing_type.
15682 For everyone else, it is an expression to be evaluated relative
15683 to the object address. */
15684
15685 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15686 if (attr)
15687 {
15688 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15689 {
15690 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15691 {
15692 /* Old-style GCC. */
15693 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15694 }
15695 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15696 || (DW_BLOCK (attr)->size > 1
15697 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15698 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15699 {
15700 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15701 if ((fnp->voffset % cu->header.addr_size) != 0)
15702 dwarf2_complex_location_expr_complaint ();
15703 else
15704 fnp->voffset /= cu->header.addr_size;
15705 fnp->voffset += 2;
15706 }
15707 else
15708 dwarf2_complex_location_expr_complaint ();
15709
15710 if (!fnp->fcontext)
15711 {
15712 /* If there is no `this' field and no DW_AT_containing_type,
15713 we cannot actually find a base class context for the
15714 vtable! */
15715 if (TYPE_NFIELDS (this_type) == 0
15716 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15717 {
15718 complaint (&symfile_complaints,
15719 _("cannot determine context for virtual member "
15720 "function \"%s\" (offset %s)"),
15721 fieldname, sect_offset_str (die->sect_off));
15722 }
15723 else
15724 {
15725 fnp->fcontext
15726 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15727 }
15728 }
15729 }
15730 else if (attr_form_is_section_offset (attr))
15731 {
15732 dwarf2_complex_location_expr_complaint ();
15733 }
15734 else
15735 {
15736 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15737 fieldname);
15738 }
15739 }
15740 else
15741 {
15742 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15743 if (attr && DW_UNSND (attr))
15744 {
15745 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15746 complaint (&symfile_complaints,
15747 _("Member function \"%s\" (offset %s) is virtual "
15748 "but the vtable offset is not specified"),
15749 fieldname, sect_offset_str (die->sect_off));
15750 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15751 TYPE_CPLUS_DYNAMIC (type) = 1;
15752 }
15753 }
15754 }
15755
15756 /* Create the vector of member function fields, and attach it to the type. */
15757
15758 static void
15759 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15760 struct dwarf2_cu *cu)
15761 {
15762 struct fnfieldlist *flp;
15763 int i;
15764
15765 if (cu->language == language_ada)
15766 error (_("unexpected member functions in Ada type"));
15767
15768 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15769 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15770 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
15771
15772 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
15773 {
15774 struct nextfnfield *nfp = flp->head;
15775 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15776 int k;
15777
15778 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
15779 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
15780 fn_flp->fn_fields = (struct fn_field *)
15781 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
15782 for (k = flp->length; (k--, nfp); nfp = nfp->next)
15783 fn_flp->fn_fields[k] = nfp->fnfield;
15784 }
15785
15786 TYPE_NFN_FIELDS (type) = fip->nfnfields;
15787 }
15788
15789 /* Returns non-zero if NAME is the name of a vtable member in CU's
15790 language, zero otherwise. */
15791 static int
15792 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15793 {
15794 static const char vptr[] = "_vptr";
15795
15796 /* Look for the C++ form of the vtable. */
15797 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15798 return 1;
15799
15800 return 0;
15801 }
15802
15803 /* GCC outputs unnamed structures that are really pointers to member
15804 functions, with the ABI-specified layout. If TYPE describes
15805 such a structure, smash it into a member function type.
15806
15807 GCC shouldn't do this; it should just output pointer to member DIEs.
15808 This is GCC PR debug/28767. */
15809
15810 static void
15811 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15812 {
15813 struct type *pfn_type, *self_type, *new_type;
15814
15815 /* Check for a structure with no name and two children. */
15816 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15817 return;
15818
15819 /* Check for __pfn and __delta members. */
15820 if (TYPE_FIELD_NAME (type, 0) == NULL
15821 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15822 || TYPE_FIELD_NAME (type, 1) == NULL
15823 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15824 return;
15825
15826 /* Find the type of the method. */
15827 pfn_type = TYPE_FIELD_TYPE (type, 0);
15828 if (pfn_type == NULL
15829 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15830 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15831 return;
15832
15833 /* Look for the "this" argument. */
15834 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15835 if (TYPE_NFIELDS (pfn_type) == 0
15836 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15837 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15838 return;
15839
15840 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15841 new_type = alloc_type (objfile);
15842 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15843 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15844 TYPE_VARARGS (pfn_type));
15845 smash_to_methodptr_type (type, new_type);
15846 }
15847
15848
15849 /* Called when we find the DIE that starts a structure or union scope
15850 (definition) to create a type for the structure or union. Fill in
15851 the type's name and general properties; the members will not be
15852 processed until process_structure_scope. A symbol table entry for
15853 the type will also not be done until process_structure_scope (assuming
15854 the type has a name).
15855
15856 NOTE: we need to call these functions regardless of whether or not the
15857 DIE has a DW_AT_name attribute, since it might be an anonymous
15858 structure or union. This gets the type entered into our set of
15859 user defined types. */
15860
15861 static struct type *
15862 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15863 {
15864 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15865 struct type *type;
15866 struct attribute *attr;
15867 const char *name;
15868
15869 /* If the definition of this type lives in .debug_types, read that type.
15870 Don't follow DW_AT_specification though, that will take us back up
15871 the chain and we want to go down. */
15872 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15873 if (attr)
15874 {
15875 type = get_DW_AT_signature_type (die, attr, cu);
15876
15877 /* The type's CU may not be the same as CU.
15878 Ensure TYPE is recorded with CU in die_type_hash. */
15879 return set_die_type (die, type, cu);
15880 }
15881
15882 type = alloc_type (objfile);
15883 INIT_CPLUS_SPECIFIC (type);
15884
15885 name = dwarf2_name (die, cu);
15886 if (name != NULL)
15887 {
15888 if (cu->language == language_cplus
15889 || cu->language == language_d
15890 || cu->language == language_rust)
15891 {
15892 const char *full_name = dwarf2_full_name (name, die, cu);
15893
15894 /* dwarf2_full_name might have already finished building the DIE's
15895 type. If so, there is no need to continue. */
15896 if (get_die_type (die, cu) != NULL)
15897 return get_die_type (die, cu);
15898
15899 TYPE_TAG_NAME (type) = full_name;
15900 if (die->tag == DW_TAG_structure_type
15901 || die->tag == DW_TAG_class_type)
15902 TYPE_NAME (type) = TYPE_TAG_NAME (type);
15903 }
15904 else
15905 {
15906 /* The name is already allocated along with this objfile, so
15907 we don't need to duplicate it for the type. */
15908 TYPE_TAG_NAME (type) = name;
15909 if (die->tag == DW_TAG_class_type)
15910 TYPE_NAME (type) = TYPE_TAG_NAME (type);
15911 }
15912 }
15913
15914 if (die->tag == DW_TAG_structure_type)
15915 {
15916 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15917 }
15918 else if (die->tag == DW_TAG_union_type)
15919 {
15920 TYPE_CODE (type) = TYPE_CODE_UNION;
15921 }
15922 else
15923 {
15924 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15925 }
15926
15927 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15928 TYPE_DECLARED_CLASS (type) = 1;
15929
15930 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15931 if (attr)
15932 {
15933 if (attr_form_is_constant (attr))
15934 TYPE_LENGTH (type) = DW_UNSND (attr);
15935 else
15936 {
15937 /* For the moment, dynamic type sizes are not supported
15938 by GDB's struct type. The actual size is determined
15939 on-demand when resolving the type of a given object,
15940 so set the type's length to zero for now. Otherwise,
15941 we record an expression as the length, and that expression
15942 could lead to a very large value, which could eventually
15943 lead to us trying to allocate that much memory when creating
15944 a value of that type. */
15945 TYPE_LENGTH (type) = 0;
15946 }
15947 }
15948 else
15949 {
15950 TYPE_LENGTH (type) = 0;
15951 }
15952
15953 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15954 {
15955 /* ICC<14 does not output the required DW_AT_declaration on
15956 incomplete types, but gives them a size of zero. */
15957 TYPE_STUB (type) = 1;
15958 }
15959 else
15960 TYPE_STUB_SUPPORTED (type) = 1;
15961
15962 if (die_is_declaration (die, cu))
15963 TYPE_STUB (type) = 1;
15964 else if (attr == NULL && die->child == NULL
15965 && producer_is_realview (cu->producer))
15966 /* RealView does not output the required DW_AT_declaration
15967 on incomplete types. */
15968 TYPE_STUB (type) = 1;
15969
15970 /* We need to add the type field to the die immediately so we don't
15971 infinitely recurse when dealing with pointers to the structure
15972 type within the structure itself. */
15973 set_die_type (die, type, cu);
15974
15975 /* set_die_type should be already done. */
15976 set_descriptive_type (type, die, cu);
15977
15978 return type;
15979 }
15980
15981 /* Finish creating a structure or union type, including filling in
15982 its members and creating a symbol for it. */
15983
15984 static void
15985 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15986 {
15987 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15988 struct die_info *child_die;
15989 struct type *type;
15990
15991 type = get_die_type (die, cu);
15992 if (type == NULL)
15993 type = read_structure_type (die, cu);
15994
15995 if (die->child != NULL && ! die_is_declaration (die, cu))
15996 {
15997 struct field_info fi;
15998 std::vector<struct symbol *> template_args;
15999 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
16000
16001 memset (&fi, 0, sizeof (struct field_info));
16002
16003 child_die = die->child;
16004
16005 while (child_die && child_die->tag)
16006 {
16007 if (child_die->tag == DW_TAG_member
16008 || child_die->tag == DW_TAG_variable)
16009 {
16010 /* NOTE: carlton/2002-11-05: A C++ static data member
16011 should be a DW_TAG_member that is a declaration, but
16012 all versions of G++ as of this writing (so through at
16013 least 3.2.1) incorrectly generate DW_TAG_variable
16014 tags for them instead. */
16015 dwarf2_add_field (&fi, child_die, cu);
16016 }
16017 else if (child_die->tag == DW_TAG_subprogram)
16018 {
16019 /* Rust doesn't have member functions in the C++ sense.
16020 However, it does emit ordinary functions as children
16021 of a struct DIE. */
16022 if (cu->language == language_rust)
16023 read_func_scope (child_die, cu);
16024 else
16025 {
16026 /* C++ member function. */
16027 dwarf2_add_member_fn (&fi, child_die, type, cu);
16028 }
16029 }
16030 else if (child_die->tag == DW_TAG_inheritance)
16031 {
16032 /* C++ base class field. */
16033 dwarf2_add_field (&fi, child_die, cu);
16034 }
16035 else if (type_can_define_types (child_die))
16036 dwarf2_add_type_defn (&fi, child_die, cu);
16037 else if (child_die->tag == DW_TAG_template_type_param
16038 || child_die->tag == DW_TAG_template_value_param)
16039 {
16040 struct symbol *arg = new_symbol (child_die, NULL, cu);
16041
16042 if (arg != NULL)
16043 template_args.push_back (arg);
16044 }
16045
16046 child_die = sibling_die (child_die);
16047 }
16048
16049 /* Attach template arguments to type. */
16050 if (!template_args.empty ())
16051 {
16052 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16053 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
16054 TYPE_TEMPLATE_ARGUMENTS (type)
16055 = XOBNEWVEC (&objfile->objfile_obstack,
16056 struct symbol *,
16057 TYPE_N_TEMPLATE_ARGUMENTS (type));
16058 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
16059 template_args.data (),
16060 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16061 * sizeof (struct symbol *)));
16062 }
16063
16064 /* Attach fields and member functions to the type. */
16065 if (fi.nfields)
16066 dwarf2_attach_fields_to_type (&fi, type, cu);
16067 if (fi.nfnfields)
16068 {
16069 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
16070
16071 /* Get the type which refers to the base class (possibly this
16072 class itself) which contains the vtable pointer for the current
16073 class from the DW_AT_containing_type attribute. This use of
16074 DW_AT_containing_type is a GNU extension. */
16075
16076 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16077 {
16078 struct type *t = die_containing_type (die, cu);
16079
16080 set_type_vptr_basetype (type, t);
16081 if (type == t)
16082 {
16083 int i;
16084
16085 /* Our own class provides vtbl ptr. */
16086 for (i = TYPE_NFIELDS (t) - 1;
16087 i >= TYPE_N_BASECLASSES (t);
16088 --i)
16089 {
16090 const char *fieldname = TYPE_FIELD_NAME (t, i);
16091
16092 if (is_vtable_name (fieldname, cu))
16093 {
16094 set_type_vptr_fieldno (type, i);
16095 break;
16096 }
16097 }
16098
16099 /* Complain if virtual function table field not found. */
16100 if (i < TYPE_N_BASECLASSES (t))
16101 complaint (&symfile_complaints,
16102 _("virtual function table pointer "
16103 "not found when defining class '%s'"),
16104 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
16105 "");
16106 }
16107 else
16108 {
16109 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16110 }
16111 }
16112 else if (cu->producer
16113 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16114 {
16115 /* The IBM XLC compiler does not provide direct indication
16116 of the containing type, but the vtable pointer is
16117 always named __vfp. */
16118
16119 int i;
16120
16121 for (i = TYPE_NFIELDS (type) - 1;
16122 i >= TYPE_N_BASECLASSES (type);
16123 --i)
16124 {
16125 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16126 {
16127 set_type_vptr_fieldno (type, i);
16128 set_type_vptr_basetype (type, type);
16129 break;
16130 }
16131 }
16132 }
16133 }
16134
16135 /* Copy fi.typedef_field_list linked list elements content into the
16136 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16137 if (fi.typedef_field_list)
16138 {
16139 int i = fi.typedef_field_list_count;
16140
16141 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16142 TYPE_TYPEDEF_FIELD_ARRAY (type)
16143 = ((struct decl_field *)
16144 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
16145 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
16146
16147 /* Reverse the list order to keep the debug info elements order. */
16148 while (--i >= 0)
16149 {
16150 struct decl_field *dest, *src;
16151
16152 dest = &TYPE_TYPEDEF_FIELD (type, i);
16153 src = &fi.typedef_field_list->field;
16154 fi.typedef_field_list = fi.typedef_field_list->next;
16155 *dest = *src;
16156 }
16157 }
16158
16159 /* Copy fi.nested_types_list linked list elements content into the
16160 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16161 if (fi.nested_types_list != NULL && cu->language != language_ada)
16162 {
16163 int i = fi.nested_types_list_count;
16164
16165 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16166 TYPE_NESTED_TYPES_ARRAY (type)
16167 = ((struct decl_field *)
16168 TYPE_ALLOC (type, sizeof (struct decl_field) * i));
16169 TYPE_NESTED_TYPES_COUNT (type) = i;
16170
16171 /* Reverse the list order to keep the debug info elements order. */
16172 while (--i >= 0)
16173 {
16174 struct decl_field *dest, *src;
16175
16176 dest = &TYPE_NESTED_TYPES_FIELD (type, i);
16177 src = &fi.nested_types_list->field;
16178 fi.nested_types_list = fi.nested_types_list->next;
16179 *dest = *src;
16180 }
16181 }
16182
16183 do_cleanups (back_to);
16184 }
16185
16186 quirk_gcc_member_function_pointer (type, objfile);
16187
16188 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16189 snapshots) has been known to create a die giving a declaration
16190 for a class that has, as a child, a die giving a definition for a
16191 nested class. So we have to process our children even if the
16192 current die is a declaration. Normally, of course, a declaration
16193 won't have any children at all. */
16194
16195 child_die = die->child;
16196
16197 while (child_die != NULL && child_die->tag)
16198 {
16199 if (child_die->tag == DW_TAG_member
16200 || child_die->tag == DW_TAG_variable
16201 || child_die->tag == DW_TAG_inheritance
16202 || child_die->tag == DW_TAG_template_value_param
16203 || child_die->tag == DW_TAG_template_type_param)
16204 {
16205 /* Do nothing. */
16206 }
16207 else
16208 process_die (child_die, cu);
16209
16210 child_die = sibling_die (child_die);
16211 }
16212
16213 /* Do not consider external references. According to the DWARF standard,
16214 these DIEs are identified by the fact that they have no byte_size
16215 attribute, and a declaration attribute. */
16216 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16217 || !die_is_declaration (die, cu))
16218 new_symbol (die, type, cu);
16219 }
16220
16221 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16222 update TYPE using some information only available in DIE's children. */
16223
16224 static void
16225 update_enumeration_type_from_children (struct die_info *die,
16226 struct type *type,
16227 struct dwarf2_cu *cu)
16228 {
16229 struct die_info *child_die;
16230 int unsigned_enum = 1;
16231 int flag_enum = 1;
16232 ULONGEST mask = 0;
16233
16234 auto_obstack obstack;
16235
16236 for (child_die = die->child;
16237 child_die != NULL && child_die->tag;
16238 child_die = sibling_die (child_die))
16239 {
16240 struct attribute *attr;
16241 LONGEST value;
16242 const gdb_byte *bytes;
16243 struct dwarf2_locexpr_baton *baton;
16244 const char *name;
16245
16246 if (child_die->tag != DW_TAG_enumerator)
16247 continue;
16248
16249 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16250 if (attr == NULL)
16251 continue;
16252
16253 name = dwarf2_name (child_die, cu);
16254 if (name == NULL)
16255 name = "<anonymous enumerator>";
16256
16257 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16258 &value, &bytes, &baton);
16259 if (value < 0)
16260 {
16261 unsigned_enum = 0;
16262 flag_enum = 0;
16263 }
16264 else if ((mask & value) != 0)
16265 flag_enum = 0;
16266 else
16267 mask |= value;
16268
16269 /* If we already know that the enum type is neither unsigned, nor
16270 a flag type, no need to look at the rest of the enumerates. */
16271 if (!unsigned_enum && !flag_enum)
16272 break;
16273 }
16274
16275 if (unsigned_enum)
16276 TYPE_UNSIGNED (type) = 1;
16277 if (flag_enum)
16278 TYPE_FLAG_ENUM (type) = 1;
16279 }
16280
16281 /* Given a DW_AT_enumeration_type die, set its type. We do not
16282 complete the type's fields yet, or create any symbols. */
16283
16284 static struct type *
16285 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16286 {
16287 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16288 struct type *type;
16289 struct attribute *attr;
16290 const char *name;
16291
16292 /* If the definition of this type lives in .debug_types, read that type.
16293 Don't follow DW_AT_specification though, that will take us back up
16294 the chain and we want to go down. */
16295 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16296 if (attr)
16297 {
16298 type = get_DW_AT_signature_type (die, attr, cu);
16299
16300 /* The type's CU may not be the same as CU.
16301 Ensure TYPE is recorded with CU in die_type_hash. */
16302 return set_die_type (die, type, cu);
16303 }
16304
16305 type = alloc_type (objfile);
16306
16307 TYPE_CODE (type) = TYPE_CODE_ENUM;
16308 name = dwarf2_full_name (NULL, die, cu);
16309 if (name != NULL)
16310 TYPE_TAG_NAME (type) = name;
16311
16312 attr = dwarf2_attr (die, DW_AT_type, cu);
16313 if (attr != NULL)
16314 {
16315 struct type *underlying_type = die_type (die, cu);
16316
16317 TYPE_TARGET_TYPE (type) = underlying_type;
16318 }
16319
16320 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16321 if (attr)
16322 {
16323 TYPE_LENGTH (type) = DW_UNSND (attr);
16324 }
16325 else
16326 {
16327 TYPE_LENGTH (type) = 0;
16328 }
16329
16330 /* The enumeration DIE can be incomplete. In Ada, any type can be
16331 declared as private in the package spec, and then defined only
16332 inside the package body. Such types are known as Taft Amendment
16333 Types. When another package uses such a type, an incomplete DIE
16334 may be generated by the compiler. */
16335 if (die_is_declaration (die, cu))
16336 TYPE_STUB (type) = 1;
16337
16338 /* Finish the creation of this type by using the enum's children.
16339 We must call this even when the underlying type has been provided
16340 so that we can determine if we're looking at a "flag" enum. */
16341 update_enumeration_type_from_children (die, type, cu);
16342
16343 /* If this type has an underlying type that is not a stub, then we
16344 may use its attributes. We always use the "unsigned" attribute
16345 in this situation, because ordinarily we guess whether the type
16346 is unsigned -- but the guess can be wrong and the underlying type
16347 can tell us the reality. However, we defer to a local size
16348 attribute if one exists, because this lets the compiler override
16349 the underlying type if needed. */
16350 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16351 {
16352 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16353 if (TYPE_LENGTH (type) == 0)
16354 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16355 }
16356
16357 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16358
16359 return set_die_type (die, type, cu);
16360 }
16361
16362 /* Given a pointer to a die which begins an enumeration, process all
16363 the dies that define the members of the enumeration, and create the
16364 symbol for the enumeration type.
16365
16366 NOTE: We reverse the order of the element list. */
16367
16368 static void
16369 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16370 {
16371 struct type *this_type;
16372
16373 this_type = get_die_type (die, cu);
16374 if (this_type == NULL)
16375 this_type = read_enumeration_type (die, cu);
16376
16377 if (die->child != NULL)
16378 {
16379 struct die_info *child_die;
16380 struct symbol *sym;
16381 struct field *fields = NULL;
16382 int num_fields = 0;
16383 const char *name;
16384
16385 child_die = die->child;
16386 while (child_die && child_die->tag)
16387 {
16388 if (child_die->tag != DW_TAG_enumerator)
16389 {
16390 process_die (child_die, cu);
16391 }
16392 else
16393 {
16394 name = dwarf2_name (child_die, cu);
16395 if (name)
16396 {
16397 sym = new_symbol (child_die, this_type, cu);
16398
16399 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16400 {
16401 fields = (struct field *)
16402 xrealloc (fields,
16403 (num_fields + DW_FIELD_ALLOC_CHUNK)
16404 * sizeof (struct field));
16405 }
16406
16407 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16408 FIELD_TYPE (fields[num_fields]) = NULL;
16409 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16410 FIELD_BITSIZE (fields[num_fields]) = 0;
16411
16412 num_fields++;
16413 }
16414 }
16415
16416 child_die = sibling_die (child_die);
16417 }
16418
16419 if (num_fields)
16420 {
16421 TYPE_NFIELDS (this_type) = num_fields;
16422 TYPE_FIELDS (this_type) = (struct field *)
16423 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16424 memcpy (TYPE_FIELDS (this_type), fields,
16425 sizeof (struct field) * num_fields);
16426 xfree (fields);
16427 }
16428 }
16429
16430 /* If we are reading an enum from a .debug_types unit, and the enum
16431 is a declaration, and the enum is not the signatured type in the
16432 unit, then we do not want to add a symbol for it. Adding a
16433 symbol would in some cases obscure the true definition of the
16434 enum, giving users an incomplete type when the definition is
16435 actually available. Note that we do not want to do this for all
16436 enums which are just declarations, because C++0x allows forward
16437 enum declarations. */
16438 if (cu->per_cu->is_debug_types
16439 && die_is_declaration (die, cu))
16440 {
16441 struct signatured_type *sig_type;
16442
16443 sig_type = (struct signatured_type *) cu->per_cu;
16444 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16445 if (sig_type->type_offset_in_section != die->sect_off)
16446 return;
16447 }
16448
16449 new_symbol (die, this_type, cu);
16450 }
16451
16452 /* Extract all information from a DW_TAG_array_type DIE and put it in
16453 the DIE's type field. For now, this only handles one dimensional
16454 arrays. */
16455
16456 static struct type *
16457 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16458 {
16459 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16460 struct die_info *child_die;
16461 struct type *type;
16462 struct type *element_type, *range_type, *index_type;
16463 struct attribute *attr;
16464 const char *name;
16465 struct dynamic_prop *byte_stride_prop = NULL;
16466 unsigned int bit_stride = 0;
16467
16468 element_type = die_type (die, cu);
16469
16470 /* The die_type call above may have already set the type for this DIE. */
16471 type = get_die_type (die, cu);
16472 if (type)
16473 return type;
16474
16475 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16476 if (attr != NULL)
16477 {
16478 int stride_ok;
16479
16480 byte_stride_prop
16481 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16482 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16483 if (!stride_ok)
16484 {
16485 complaint (&symfile_complaints,
16486 _("unable to read array DW_AT_byte_stride "
16487 " - DIE at %s [in module %s]"),
16488 sect_offset_str (die->sect_off),
16489 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16490 /* Ignore this attribute. We will likely not be able to print
16491 arrays of this type correctly, but there is little we can do
16492 to help if we cannot read the attribute's value. */
16493 byte_stride_prop = NULL;
16494 }
16495 }
16496
16497 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16498 if (attr != NULL)
16499 bit_stride = DW_UNSND (attr);
16500
16501 /* Irix 6.2 native cc creates array types without children for
16502 arrays with unspecified length. */
16503 if (die->child == NULL)
16504 {
16505 index_type = objfile_type (objfile)->builtin_int;
16506 range_type = create_static_range_type (NULL, index_type, 0, -1);
16507 type = create_array_type_with_stride (NULL, element_type, range_type,
16508 byte_stride_prop, bit_stride);
16509 return set_die_type (die, type, cu);
16510 }
16511
16512 std::vector<struct type *> range_types;
16513 child_die = die->child;
16514 while (child_die && child_die->tag)
16515 {
16516 if (child_die->tag == DW_TAG_subrange_type)
16517 {
16518 struct type *child_type = read_type_die (child_die, cu);
16519
16520 if (child_type != NULL)
16521 {
16522 /* The range type was succesfully read. Save it for the
16523 array type creation. */
16524 range_types.push_back (child_type);
16525 }
16526 }
16527 child_die = sibling_die (child_die);
16528 }
16529
16530 /* Dwarf2 dimensions are output from left to right, create the
16531 necessary array types in backwards order. */
16532
16533 type = element_type;
16534
16535 if (read_array_order (die, cu) == DW_ORD_col_major)
16536 {
16537 int i = 0;
16538
16539 while (i < range_types.size ())
16540 type = create_array_type_with_stride (NULL, type, range_types[i++],
16541 byte_stride_prop, bit_stride);
16542 }
16543 else
16544 {
16545 size_t ndim = range_types.size ();
16546 while (ndim-- > 0)
16547 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16548 byte_stride_prop, bit_stride);
16549 }
16550
16551 /* Understand Dwarf2 support for vector types (like they occur on
16552 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16553 array type. This is not part of the Dwarf2/3 standard yet, but a
16554 custom vendor extension. The main difference between a regular
16555 array and the vector variant is that vectors are passed by value
16556 to functions. */
16557 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16558 if (attr)
16559 make_vector_type (type);
16560
16561 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16562 implementation may choose to implement triple vectors using this
16563 attribute. */
16564 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16565 if (attr)
16566 {
16567 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16568 TYPE_LENGTH (type) = DW_UNSND (attr);
16569 else
16570 complaint (&symfile_complaints,
16571 _("DW_AT_byte_size for array type smaller "
16572 "than the total size of elements"));
16573 }
16574
16575 name = dwarf2_name (die, cu);
16576 if (name)
16577 TYPE_NAME (type) = name;
16578
16579 /* Install the type in the die. */
16580 set_die_type (die, type, cu);
16581
16582 /* set_die_type should be already done. */
16583 set_descriptive_type (type, die, cu);
16584
16585 return type;
16586 }
16587
16588 static enum dwarf_array_dim_ordering
16589 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16590 {
16591 struct attribute *attr;
16592
16593 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16594
16595 if (attr)
16596 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16597
16598 /* GNU F77 is a special case, as at 08/2004 array type info is the
16599 opposite order to the dwarf2 specification, but data is still
16600 laid out as per normal fortran.
16601
16602 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16603 version checking. */
16604
16605 if (cu->language == language_fortran
16606 && cu->producer && strstr (cu->producer, "GNU F77"))
16607 {
16608 return DW_ORD_row_major;
16609 }
16610
16611 switch (cu->language_defn->la_array_ordering)
16612 {
16613 case array_column_major:
16614 return DW_ORD_col_major;
16615 case array_row_major:
16616 default:
16617 return DW_ORD_row_major;
16618 };
16619 }
16620
16621 /* Extract all information from a DW_TAG_set_type DIE and put it in
16622 the DIE's type field. */
16623
16624 static struct type *
16625 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16626 {
16627 struct type *domain_type, *set_type;
16628 struct attribute *attr;
16629
16630 domain_type = die_type (die, cu);
16631
16632 /* The die_type call above may have already set the type for this DIE. */
16633 set_type = get_die_type (die, cu);
16634 if (set_type)
16635 return set_type;
16636
16637 set_type = create_set_type (NULL, domain_type);
16638
16639 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16640 if (attr)
16641 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16642
16643 return set_die_type (die, set_type, cu);
16644 }
16645
16646 /* A helper for read_common_block that creates a locexpr baton.
16647 SYM is the symbol which we are marking as computed.
16648 COMMON_DIE is the DIE for the common block.
16649 COMMON_LOC is the location expression attribute for the common
16650 block itself.
16651 MEMBER_LOC is the location expression attribute for the particular
16652 member of the common block that we are processing.
16653 CU is the CU from which the above come. */
16654
16655 static void
16656 mark_common_block_symbol_computed (struct symbol *sym,
16657 struct die_info *common_die,
16658 struct attribute *common_loc,
16659 struct attribute *member_loc,
16660 struct dwarf2_cu *cu)
16661 {
16662 struct dwarf2_per_objfile *dwarf2_per_objfile
16663 = cu->per_cu->dwarf2_per_objfile;
16664 struct objfile *objfile = dwarf2_per_objfile->objfile;
16665 struct dwarf2_locexpr_baton *baton;
16666 gdb_byte *ptr;
16667 unsigned int cu_off;
16668 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16669 LONGEST offset = 0;
16670
16671 gdb_assert (common_loc && member_loc);
16672 gdb_assert (attr_form_is_block (common_loc));
16673 gdb_assert (attr_form_is_block (member_loc)
16674 || attr_form_is_constant (member_loc));
16675
16676 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16677 baton->per_cu = cu->per_cu;
16678 gdb_assert (baton->per_cu);
16679
16680 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16681
16682 if (attr_form_is_constant (member_loc))
16683 {
16684 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16685 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16686 }
16687 else
16688 baton->size += DW_BLOCK (member_loc)->size;
16689
16690 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16691 baton->data = ptr;
16692
16693 *ptr++ = DW_OP_call4;
16694 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16695 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16696 ptr += 4;
16697
16698 if (attr_form_is_constant (member_loc))
16699 {
16700 *ptr++ = DW_OP_addr;
16701 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16702 ptr += cu->header.addr_size;
16703 }
16704 else
16705 {
16706 /* We have to copy the data here, because DW_OP_call4 will only
16707 use a DW_AT_location attribute. */
16708 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16709 ptr += DW_BLOCK (member_loc)->size;
16710 }
16711
16712 *ptr++ = DW_OP_plus;
16713 gdb_assert (ptr - baton->data == baton->size);
16714
16715 SYMBOL_LOCATION_BATON (sym) = baton;
16716 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16717 }
16718
16719 /* Create appropriate locally-scoped variables for all the
16720 DW_TAG_common_block entries. Also create a struct common_block
16721 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16722 is used to sepate the common blocks name namespace from regular
16723 variable names. */
16724
16725 static void
16726 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16727 {
16728 struct attribute *attr;
16729
16730 attr = dwarf2_attr (die, DW_AT_location, cu);
16731 if (attr)
16732 {
16733 /* Support the .debug_loc offsets. */
16734 if (attr_form_is_block (attr))
16735 {
16736 /* Ok. */
16737 }
16738 else if (attr_form_is_section_offset (attr))
16739 {
16740 dwarf2_complex_location_expr_complaint ();
16741 attr = NULL;
16742 }
16743 else
16744 {
16745 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16746 "common block member");
16747 attr = NULL;
16748 }
16749 }
16750
16751 if (die->child != NULL)
16752 {
16753 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16754 struct die_info *child_die;
16755 size_t n_entries = 0, size;
16756 struct common_block *common_block;
16757 struct symbol *sym;
16758
16759 for (child_die = die->child;
16760 child_die && child_die->tag;
16761 child_die = sibling_die (child_die))
16762 ++n_entries;
16763
16764 size = (sizeof (struct common_block)
16765 + (n_entries - 1) * sizeof (struct symbol *));
16766 common_block
16767 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16768 size);
16769 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16770 common_block->n_entries = 0;
16771
16772 for (child_die = die->child;
16773 child_die && child_die->tag;
16774 child_die = sibling_die (child_die))
16775 {
16776 /* Create the symbol in the DW_TAG_common_block block in the current
16777 symbol scope. */
16778 sym = new_symbol (child_die, NULL, cu);
16779 if (sym != NULL)
16780 {
16781 struct attribute *member_loc;
16782
16783 common_block->contents[common_block->n_entries++] = sym;
16784
16785 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16786 cu);
16787 if (member_loc)
16788 {
16789 /* GDB has handled this for a long time, but it is
16790 not specified by DWARF. It seems to have been
16791 emitted by gfortran at least as recently as:
16792 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16793 complaint (&symfile_complaints,
16794 _("Variable in common block has "
16795 "DW_AT_data_member_location "
16796 "- DIE at %s [in module %s]"),
16797 sect_offset_str (child_die->sect_off),
16798 objfile_name (objfile));
16799
16800 if (attr_form_is_section_offset (member_loc))
16801 dwarf2_complex_location_expr_complaint ();
16802 else if (attr_form_is_constant (member_loc)
16803 || attr_form_is_block (member_loc))
16804 {
16805 if (attr)
16806 mark_common_block_symbol_computed (sym, die, attr,
16807 member_loc, cu);
16808 }
16809 else
16810 dwarf2_complex_location_expr_complaint ();
16811 }
16812 }
16813 }
16814
16815 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16816 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16817 }
16818 }
16819
16820 /* Create a type for a C++ namespace. */
16821
16822 static struct type *
16823 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16824 {
16825 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16826 const char *previous_prefix, *name;
16827 int is_anonymous;
16828 struct type *type;
16829
16830 /* For extensions, reuse the type of the original namespace. */
16831 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16832 {
16833 struct die_info *ext_die;
16834 struct dwarf2_cu *ext_cu = cu;
16835
16836 ext_die = dwarf2_extension (die, &ext_cu);
16837 type = read_type_die (ext_die, ext_cu);
16838
16839 /* EXT_CU may not be the same as CU.
16840 Ensure TYPE is recorded with CU in die_type_hash. */
16841 return set_die_type (die, type, cu);
16842 }
16843
16844 name = namespace_name (die, &is_anonymous, cu);
16845
16846 /* Now build the name of the current namespace. */
16847
16848 previous_prefix = determine_prefix (die, cu);
16849 if (previous_prefix[0] != '\0')
16850 name = typename_concat (&objfile->objfile_obstack,
16851 previous_prefix, name, 0, cu);
16852
16853 /* Create the type. */
16854 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16855 TYPE_TAG_NAME (type) = TYPE_NAME (type);
16856
16857 return set_die_type (die, type, cu);
16858 }
16859
16860 /* Read a namespace scope. */
16861
16862 static void
16863 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16864 {
16865 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16866 int is_anonymous;
16867
16868 /* Add a symbol associated to this if we haven't seen the namespace
16869 before. Also, add a using directive if it's an anonymous
16870 namespace. */
16871
16872 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16873 {
16874 struct type *type;
16875
16876 type = read_type_die (die, cu);
16877 new_symbol (die, type, cu);
16878
16879 namespace_name (die, &is_anonymous, cu);
16880 if (is_anonymous)
16881 {
16882 const char *previous_prefix = determine_prefix (die, cu);
16883
16884 std::vector<const char *> excludes;
16885 add_using_directive (using_directives (cu->language),
16886 previous_prefix, TYPE_NAME (type), NULL,
16887 NULL, excludes, 0, &objfile->objfile_obstack);
16888 }
16889 }
16890
16891 if (die->child != NULL)
16892 {
16893 struct die_info *child_die = die->child;
16894
16895 while (child_die && child_die->tag)
16896 {
16897 process_die (child_die, cu);
16898 child_die = sibling_die (child_die);
16899 }
16900 }
16901 }
16902
16903 /* Read a Fortran module as type. This DIE can be only a declaration used for
16904 imported module. Still we need that type as local Fortran "use ... only"
16905 declaration imports depend on the created type in determine_prefix. */
16906
16907 static struct type *
16908 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16909 {
16910 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16911 const char *module_name;
16912 struct type *type;
16913
16914 module_name = dwarf2_name (die, cu);
16915 if (!module_name)
16916 complaint (&symfile_complaints,
16917 _("DW_TAG_module has no name, offset %s"),
16918 sect_offset_str (die->sect_off));
16919 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16920
16921 /* determine_prefix uses TYPE_TAG_NAME. */
16922 TYPE_TAG_NAME (type) = TYPE_NAME (type);
16923
16924 return set_die_type (die, type, cu);
16925 }
16926
16927 /* Read a Fortran module. */
16928
16929 static void
16930 read_module (struct die_info *die, struct dwarf2_cu *cu)
16931 {
16932 struct die_info *child_die = die->child;
16933 struct type *type;
16934
16935 type = read_type_die (die, cu);
16936 new_symbol (die, type, cu);
16937
16938 while (child_die && child_die->tag)
16939 {
16940 process_die (child_die, cu);
16941 child_die = sibling_die (child_die);
16942 }
16943 }
16944
16945 /* Return the name of the namespace represented by DIE. Set
16946 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16947 namespace. */
16948
16949 static const char *
16950 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16951 {
16952 struct die_info *current_die;
16953 const char *name = NULL;
16954
16955 /* Loop through the extensions until we find a name. */
16956
16957 for (current_die = die;
16958 current_die != NULL;
16959 current_die = dwarf2_extension (die, &cu))
16960 {
16961 /* We don't use dwarf2_name here so that we can detect the absence
16962 of a name -> anonymous namespace. */
16963 name = dwarf2_string_attr (die, DW_AT_name, cu);
16964
16965 if (name != NULL)
16966 break;
16967 }
16968
16969 /* Is it an anonymous namespace? */
16970
16971 *is_anonymous = (name == NULL);
16972 if (*is_anonymous)
16973 name = CP_ANONYMOUS_NAMESPACE_STR;
16974
16975 return name;
16976 }
16977
16978 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16979 the user defined type vector. */
16980
16981 static struct type *
16982 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16983 {
16984 struct gdbarch *gdbarch
16985 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16986 struct comp_unit_head *cu_header = &cu->header;
16987 struct type *type;
16988 struct attribute *attr_byte_size;
16989 struct attribute *attr_address_class;
16990 int byte_size, addr_class;
16991 struct type *target_type;
16992
16993 target_type = die_type (die, cu);
16994
16995 /* The die_type call above may have already set the type for this DIE. */
16996 type = get_die_type (die, cu);
16997 if (type)
16998 return type;
16999
17000 type = lookup_pointer_type (target_type);
17001
17002 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
17003 if (attr_byte_size)
17004 byte_size = DW_UNSND (attr_byte_size);
17005 else
17006 byte_size = cu_header->addr_size;
17007
17008 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
17009 if (attr_address_class)
17010 addr_class = DW_UNSND (attr_address_class);
17011 else
17012 addr_class = DW_ADDR_none;
17013
17014 /* If the pointer size or address class is different than the
17015 default, create a type variant marked as such and set the
17016 length accordingly. */
17017 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
17018 {
17019 if (gdbarch_address_class_type_flags_p (gdbarch))
17020 {
17021 int type_flags;
17022
17023 type_flags = gdbarch_address_class_type_flags
17024 (gdbarch, byte_size, addr_class);
17025 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
17026 == 0);
17027 type = make_type_with_address_space (type, type_flags);
17028 }
17029 else if (TYPE_LENGTH (type) != byte_size)
17030 {
17031 complaint (&symfile_complaints,
17032 _("invalid pointer size %d"), byte_size);
17033 }
17034 else
17035 {
17036 /* Should we also complain about unhandled address classes? */
17037 }
17038 }
17039
17040 TYPE_LENGTH (type) = byte_size;
17041 return set_die_type (die, type, cu);
17042 }
17043
17044 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17045 the user defined type vector. */
17046
17047 static struct type *
17048 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17049 {
17050 struct type *type;
17051 struct type *to_type;
17052 struct type *domain;
17053
17054 to_type = die_type (die, cu);
17055 domain = die_containing_type (die, cu);
17056
17057 /* The calls above may have already set the type for this DIE. */
17058 type = get_die_type (die, cu);
17059 if (type)
17060 return type;
17061
17062 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17063 type = lookup_methodptr_type (to_type);
17064 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17065 {
17066 struct type *new_type
17067 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
17068
17069 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17070 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17071 TYPE_VARARGS (to_type));
17072 type = lookup_methodptr_type (new_type);
17073 }
17074 else
17075 type = lookup_memberptr_type (to_type, domain);
17076
17077 return set_die_type (die, type, cu);
17078 }
17079
17080 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17081 the user defined type vector. */
17082
17083 static struct type *
17084 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17085 enum type_code refcode)
17086 {
17087 struct comp_unit_head *cu_header = &cu->header;
17088 struct type *type, *target_type;
17089 struct attribute *attr;
17090
17091 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17092
17093 target_type = die_type (die, cu);
17094
17095 /* The die_type call above may have already set the type for this DIE. */
17096 type = get_die_type (die, cu);
17097 if (type)
17098 return type;
17099
17100 type = lookup_reference_type (target_type, refcode);
17101 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17102 if (attr)
17103 {
17104 TYPE_LENGTH (type) = DW_UNSND (attr);
17105 }
17106 else
17107 {
17108 TYPE_LENGTH (type) = cu_header->addr_size;
17109 }
17110 return set_die_type (die, type, cu);
17111 }
17112
17113 /* Add the given cv-qualifiers to the element type of the array. GCC
17114 outputs DWARF type qualifiers that apply to an array, not the
17115 element type. But GDB relies on the array element type to carry
17116 the cv-qualifiers. This mimics section 6.7.3 of the C99
17117 specification. */
17118
17119 static struct type *
17120 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17121 struct type *base_type, int cnst, int voltl)
17122 {
17123 struct type *el_type, *inner_array;
17124
17125 base_type = copy_type (base_type);
17126 inner_array = base_type;
17127
17128 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17129 {
17130 TYPE_TARGET_TYPE (inner_array) =
17131 copy_type (TYPE_TARGET_TYPE (inner_array));
17132 inner_array = TYPE_TARGET_TYPE (inner_array);
17133 }
17134
17135 el_type = TYPE_TARGET_TYPE (inner_array);
17136 cnst |= TYPE_CONST (el_type);
17137 voltl |= TYPE_VOLATILE (el_type);
17138 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17139
17140 return set_die_type (die, base_type, cu);
17141 }
17142
17143 static struct type *
17144 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17145 {
17146 struct type *base_type, *cv_type;
17147
17148 base_type = die_type (die, cu);
17149
17150 /* The die_type call above may have already set the type for this DIE. */
17151 cv_type = get_die_type (die, cu);
17152 if (cv_type)
17153 return cv_type;
17154
17155 /* In case the const qualifier is applied to an array type, the element type
17156 is so qualified, not the array type (section 6.7.3 of C99). */
17157 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17158 return add_array_cv_type (die, cu, base_type, 1, 0);
17159
17160 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17161 return set_die_type (die, cv_type, cu);
17162 }
17163
17164 static struct type *
17165 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17166 {
17167 struct type *base_type, *cv_type;
17168
17169 base_type = die_type (die, cu);
17170
17171 /* The die_type call above may have already set the type for this DIE. */
17172 cv_type = get_die_type (die, cu);
17173 if (cv_type)
17174 return cv_type;
17175
17176 /* In case the volatile qualifier is applied to an array type, the
17177 element type is so qualified, not the array type (section 6.7.3
17178 of C99). */
17179 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17180 return add_array_cv_type (die, cu, base_type, 0, 1);
17181
17182 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17183 return set_die_type (die, cv_type, cu);
17184 }
17185
17186 /* Handle DW_TAG_restrict_type. */
17187
17188 static struct type *
17189 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17190 {
17191 struct type *base_type, *cv_type;
17192
17193 base_type = die_type (die, cu);
17194
17195 /* The die_type call above may have already set the type for this DIE. */
17196 cv_type = get_die_type (die, cu);
17197 if (cv_type)
17198 return cv_type;
17199
17200 cv_type = make_restrict_type (base_type);
17201 return set_die_type (die, cv_type, cu);
17202 }
17203
17204 /* Handle DW_TAG_atomic_type. */
17205
17206 static struct type *
17207 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17208 {
17209 struct type *base_type, *cv_type;
17210
17211 base_type = die_type (die, cu);
17212
17213 /* The die_type call above may have already set the type for this DIE. */
17214 cv_type = get_die_type (die, cu);
17215 if (cv_type)
17216 return cv_type;
17217
17218 cv_type = make_atomic_type (base_type);
17219 return set_die_type (die, cv_type, cu);
17220 }
17221
17222 /* Extract all information from a DW_TAG_string_type DIE and add to
17223 the user defined type vector. It isn't really a user defined type,
17224 but it behaves like one, with other DIE's using an AT_user_def_type
17225 attribute to reference it. */
17226
17227 static struct type *
17228 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17229 {
17230 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17231 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17232 struct type *type, *range_type, *index_type, *char_type;
17233 struct attribute *attr;
17234 unsigned int length;
17235
17236 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17237 if (attr)
17238 {
17239 length = DW_UNSND (attr);
17240 }
17241 else
17242 {
17243 /* Check for the DW_AT_byte_size attribute. */
17244 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17245 if (attr)
17246 {
17247 length = DW_UNSND (attr);
17248 }
17249 else
17250 {
17251 length = 1;
17252 }
17253 }
17254
17255 index_type = objfile_type (objfile)->builtin_int;
17256 range_type = create_static_range_type (NULL, index_type, 1, length);
17257 char_type = language_string_char_type (cu->language_defn, gdbarch);
17258 type = create_string_type (NULL, char_type, range_type);
17259
17260 return set_die_type (die, type, cu);
17261 }
17262
17263 /* Assuming that DIE corresponds to a function, returns nonzero
17264 if the function is prototyped. */
17265
17266 static int
17267 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17268 {
17269 struct attribute *attr;
17270
17271 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17272 if (attr && (DW_UNSND (attr) != 0))
17273 return 1;
17274
17275 /* The DWARF standard implies that the DW_AT_prototyped attribute
17276 is only meaninful for C, but the concept also extends to other
17277 languages that allow unprototyped functions (Eg: Objective C).
17278 For all other languages, assume that functions are always
17279 prototyped. */
17280 if (cu->language != language_c
17281 && cu->language != language_objc
17282 && cu->language != language_opencl)
17283 return 1;
17284
17285 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17286 prototyped and unprototyped functions; default to prototyped,
17287 since that is more common in modern code (and RealView warns
17288 about unprototyped functions). */
17289 if (producer_is_realview (cu->producer))
17290 return 1;
17291
17292 return 0;
17293 }
17294
17295 /* Handle DIES due to C code like:
17296
17297 struct foo
17298 {
17299 int (*funcp)(int a, long l);
17300 int b;
17301 };
17302
17303 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17304
17305 static struct type *
17306 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17307 {
17308 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17309 struct type *type; /* Type that this function returns. */
17310 struct type *ftype; /* Function that returns above type. */
17311 struct attribute *attr;
17312
17313 type = die_type (die, cu);
17314
17315 /* The die_type call above may have already set the type for this DIE. */
17316 ftype = get_die_type (die, cu);
17317 if (ftype)
17318 return ftype;
17319
17320 ftype = lookup_function_type (type);
17321
17322 if (prototyped_function_p (die, cu))
17323 TYPE_PROTOTYPED (ftype) = 1;
17324
17325 /* Store the calling convention in the type if it's available in
17326 the subroutine die. Otherwise set the calling convention to
17327 the default value DW_CC_normal. */
17328 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17329 if (attr)
17330 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17331 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17332 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17333 else
17334 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17335
17336 /* Record whether the function returns normally to its caller or not
17337 if the DWARF producer set that information. */
17338 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17339 if (attr && (DW_UNSND (attr) != 0))
17340 TYPE_NO_RETURN (ftype) = 1;
17341
17342 /* We need to add the subroutine type to the die immediately so
17343 we don't infinitely recurse when dealing with parameters
17344 declared as the same subroutine type. */
17345 set_die_type (die, ftype, cu);
17346
17347 if (die->child != NULL)
17348 {
17349 struct type *void_type = objfile_type (objfile)->builtin_void;
17350 struct die_info *child_die;
17351 int nparams, iparams;
17352
17353 /* Count the number of parameters.
17354 FIXME: GDB currently ignores vararg functions, but knows about
17355 vararg member functions. */
17356 nparams = 0;
17357 child_die = die->child;
17358 while (child_die && child_die->tag)
17359 {
17360 if (child_die->tag == DW_TAG_formal_parameter)
17361 nparams++;
17362 else if (child_die->tag == DW_TAG_unspecified_parameters)
17363 TYPE_VARARGS (ftype) = 1;
17364 child_die = sibling_die (child_die);
17365 }
17366
17367 /* Allocate storage for parameters and fill them in. */
17368 TYPE_NFIELDS (ftype) = nparams;
17369 TYPE_FIELDS (ftype) = (struct field *)
17370 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17371
17372 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17373 even if we error out during the parameters reading below. */
17374 for (iparams = 0; iparams < nparams; iparams++)
17375 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17376
17377 iparams = 0;
17378 child_die = die->child;
17379 while (child_die && child_die->tag)
17380 {
17381 if (child_die->tag == DW_TAG_formal_parameter)
17382 {
17383 struct type *arg_type;
17384
17385 /* DWARF version 2 has no clean way to discern C++
17386 static and non-static member functions. G++ helps
17387 GDB by marking the first parameter for non-static
17388 member functions (which is the this pointer) as
17389 artificial. We pass this information to
17390 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17391
17392 DWARF version 3 added DW_AT_object_pointer, which GCC
17393 4.5 does not yet generate. */
17394 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17395 if (attr)
17396 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17397 else
17398 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17399 arg_type = die_type (child_die, cu);
17400
17401 /* RealView does not mark THIS as const, which the testsuite
17402 expects. GCC marks THIS as const in method definitions,
17403 but not in the class specifications (GCC PR 43053). */
17404 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17405 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17406 {
17407 int is_this = 0;
17408 struct dwarf2_cu *arg_cu = cu;
17409 const char *name = dwarf2_name (child_die, cu);
17410
17411 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17412 if (attr)
17413 {
17414 /* If the compiler emits this, use it. */
17415 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17416 is_this = 1;
17417 }
17418 else if (name && strcmp (name, "this") == 0)
17419 /* Function definitions will have the argument names. */
17420 is_this = 1;
17421 else if (name == NULL && iparams == 0)
17422 /* Declarations may not have the names, so like
17423 elsewhere in GDB, assume an artificial first
17424 argument is "this". */
17425 is_this = 1;
17426
17427 if (is_this)
17428 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17429 arg_type, 0);
17430 }
17431
17432 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17433 iparams++;
17434 }
17435 child_die = sibling_die (child_die);
17436 }
17437 }
17438
17439 return ftype;
17440 }
17441
17442 static struct type *
17443 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17444 {
17445 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17446 const char *name = NULL;
17447 struct type *this_type, *target_type;
17448
17449 name = dwarf2_full_name (NULL, die, cu);
17450 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17451 TYPE_TARGET_STUB (this_type) = 1;
17452 set_die_type (die, this_type, cu);
17453 target_type = die_type (die, cu);
17454 if (target_type != this_type)
17455 TYPE_TARGET_TYPE (this_type) = target_type;
17456 else
17457 {
17458 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17459 spec and cause infinite loops in GDB. */
17460 complaint (&symfile_complaints,
17461 _("Self-referential DW_TAG_typedef "
17462 "- DIE at %s [in module %s]"),
17463 sect_offset_str (die->sect_off), objfile_name (objfile));
17464 TYPE_TARGET_TYPE (this_type) = NULL;
17465 }
17466 return this_type;
17467 }
17468
17469 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17470 (which may be different from NAME) to the architecture back-end to allow
17471 it to guess the correct format if necessary. */
17472
17473 static struct type *
17474 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17475 const char *name_hint)
17476 {
17477 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17478 const struct floatformat **format;
17479 struct type *type;
17480
17481 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17482 if (format)
17483 type = init_float_type (objfile, bits, name, format);
17484 else
17485 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17486
17487 return type;
17488 }
17489
17490 /* Find a representation of a given base type and install
17491 it in the TYPE field of the die. */
17492
17493 static struct type *
17494 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17495 {
17496 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17497 struct type *type;
17498 struct attribute *attr;
17499 int encoding = 0, bits = 0;
17500 const char *name;
17501
17502 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17503 if (attr)
17504 {
17505 encoding = DW_UNSND (attr);
17506 }
17507 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17508 if (attr)
17509 {
17510 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17511 }
17512 name = dwarf2_name (die, cu);
17513 if (!name)
17514 {
17515 complaint (&symfile_complaints,
17516 _("DW_AT_name missing from DW_TAG_base_type"));
17517 }
17518
17519 switch (encoding)
17520 {
17521 case DW_ATE_address:
17522 /* Turn DW_ATE_address into a void * pointer. */
17523 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17524 type = init_pointer_type (objfile, bits, name, type);
17525 break;
17526 case DW_ATE_boolean:
17527 type = init_boolean_type (objfile, bits, 1, name);
17528 break;
17529 case DW_ATE_complex_float:
17530 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
17531 type = init_complex_type (objfile, name, type);
17532 break;
17533 case DW_ATE_decimal_float:
17534 type = init_decfloat_type (objfile, bits, name);
17535 break;
17536 case DW_ATE_float:
17537 type = dwarf2_init_float_type (objfile, bits, name, name);
17538 break;
17539 case DW_ATE_signed:
17540 type = init_integer_type (objfile, bits, 0, name);
17541 break;
17542 case DW_ATE_unsigned:
17543 if (cu->language == language_fortran
17544 && name
17545 && startswith (name, "character("))
17546 type = init_character_type (objfile, bits, 1, name);
17547 else
17548 type = init_integer_type (objfile, bits, 1, name);
17549 break;
17550 case DW_ATE_signed_char:
17551 if (cu->language == language_ada || cu->language == language_m2
17552 || cu->language == language_pascal
17553 || cu->language == language_fortran)
17554 type = init_character_type (objfile, bits, 0, name);
17555 else
17556 type = init_integer_type (objfile, bits, 0, name);
17557 break;
17558 case DW_ATE_unsigned_char:
17559 if (cu->language == language_ada || cu->language == language_m2
17560 || cu->language == language_pascal
17561 || cu->language == language_fortran
17562 || cu->language == language_rust)
17563 type = init_character_type (objfile, bits, 1, name);
17564 else
17565 type = init_integer_type (objfile, bits, 1, name);
17566 break;
17567 case DW_ATE_UTF:
17568 {
17569 gdbarch *arch = get_objfile_arch (objfile);
17570
17571 if (bits == 16)
17572 type = builtin_type (arch)->builtin_char16;
17573 else if (bits == 32)
17574 type = builtin_type (arch)->builtin_char32;
17575 else
17576 {
17577 complaint (&symfile_complaints,
17578 _("unsupported DW_ATE_UTF bit size: '%d'"),
17579 bits);
17580 type = init_integer_type (objfile, bits, 1, name);
17581 }
17582 return set_die_type (die, type, cu);
17583 }
17584 break;
17585
17586 default:
17587 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
17588 dwarf_type_encoding_name (encoding));
17589 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17590 break;
17591 }
17592
17593 if (name && strcmp (name, "char") == 0)
17594 TYPE_NOSIGN (type) = 1;
17595
17596 return set_die_type (die, type, cu);
17597 }
17598
17599 /* Parse dwarf attribute if it's a block, reference or constant and put the
17600 resulting value of the attribute into struct bound_prop.
17601 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17602
17603 static int
17604 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17605 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17606 {
17607 struct dwarf2_property_baton *baton;
17608 struct obstack *obstack
17609 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17610
17611 if (attr == NULL || prop == NULL)
17612 return 0;
17613
17614 if (attr_form_is_block (attr))
17615 {
17616 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17617 baton->referenced_type = NULL;
17618 baton->locexpr.per_cu = cu->per_cu;
17619 baton->locexpr.size = DW_BLOCK (attr)->size;
17620 baton->locexpr.data = DW_BLOCK (attr)->data;
17621 prop->data.baton = baton;
17622 prop->kind = PROP_LOCEXPR;
17623 gdb_assert (prop->data.baton != NULL);
17624 }
17625 else if (attr_form_is_ref (attr))
17626 {
17627 struct dwarf2_cu *target_cu = cu;
17628 struct die_info *target_die;
17629 struct attribute *target_attr;
17630
17631 target_die = follow_die_ref (die, attr, &target_cu);
17632 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17633 if (target_attr == NULL)
17634 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17635 target_cu);
17636 if (target_attr == NULL)
17637 return 0;
17638
17639 switch (target_attr->name)
17640 {
17641 case DW_AT_location:
17642 if (attr_form_is_section_offset (target_attr))
17643 {
17644 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17645 baton->referenced_type = die_type (target_die, target_cu);
17646 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17647 prop->data.baton = baton;
17648 prop->kind = PROP_LOCLIST;
17649 gdb_assert (prop->data.baton != NULL);
17650 }
17651 else if (attr_form_is_block (target_attr))
17652 {
17653 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17654 baton->referenced_type = die_type (target_die, target_cu);
17655 baton->locexpr.per_cu = cu->per_cu;
17656 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17657 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17658 prop->data.baton = baton;
17659 prop->kind = PROP_LOCEXPR;
17660 gdb_assert (prop->data.baton != NULL);
17661 }
17662 else
17663 {
17664 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17665 "dynamic property");
17666 return 0;
17667 }
17668 break;
17669 case DW_AT_data_member_location:
17670 {
17671 LONGEST offset;
17672
17673 if (!handle_data_member_location (target_die, target_cu,
17674 &offset))
17675 return 0;
17676
17677 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17678 baton->referenced_type = read_type_die (target_die->parent,
17679 target_cu);
17680 baton->offset_info.offset = offset;
17681 baton->offset_info.type = die_type (target_die, target_cu);
17682 prop->data.baton = baton;
17683 prop->kind = PROP_ADDR_OFFSET;
17684 break;
17685 }
17686 }
17687 }
17688 else if (attr_form_is_constant (attr))
17689 {
17690 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17691 prop->kind = PROP_CONST;
17692 }
17693 else
17694 {
17695 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17696 dwarf2_name (die, cu));
17697 return 0;
17698 }
17699
17700 return 1;
17701 }
17702
17703 /* Read the given DW_AT_subrange DIE. */
17704
17705 static struct type *
17706 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17707 {
17708 struct type *base_type, *orig_base_type;
17709 struct type *range_type;
17710 struct attribute *attr;
17711 struct dynamic_prop low, high;
17712 int low_default_is_valid;
17713 int high_bound_is_count = 0;
17714 const char *name;
17715 LONGEST negative_mask;
17716
17717 orig_base_type = die_type (die, cu);
17718 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17719 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17720 creating the range type, but we use the result of check_typedef
17721 when examining properties of the type. */
17722 base_type = check_typedef (orig_base_type);
17723
17724 /* The die_type call above may have already set the type for this DIE. */
17725 range_type = get_die_type (die, cu);
17726 if (range_type)
17727 return range_type;
17728
17729 low.kind = PROP_CONST;
17730 high.kind = PROP_CONST;
17731 high.data.const_val = 0;
17732
17733 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17734 omitting DW_AT_lower_bound. */
17735 switch (cu->language)
17736 {
17737 case language_c:
17738 case language_cplus:
17739 low.data.const_val = 0;
17740 low_default_is_valid = 1;
17741 break;
17742 case language_fortran:
17743 low.data.const_val = 1;
17744 low_default_is_valid = 1;
17745 break;
17746 case language_d:
17747 case language_objc:
17748 case language_rust:
17749 low.data.const_val = 0;
17750 low_default_is_valid = (cu->header.version >= 4);
17751 break;
17752 case language_ada:
17753 case language_m2:
17754 case language_pascal:
17755 low.data.const_val = 1;
17756 low_default_is_valid = (cu->header.version >= 4);
17757 break;
17758 default:
17759 low.data.const_val = 0;
17760 low_default_is_valid = 0;
17761 break;
17762 }
17763
17764 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17765 if (attr)
17766 attr_to_dynamic_prop (attr, die, cu, &low);
17767 else if (!low_default_is_valid)
17768 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
17769 "- DIE at %s [in module %s]"),
17770 sect_offset_str (die->sect_off),
17771 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17772
17773 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
17774 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17775 {
17776 attr = dwarf2_attr (die, DW_AT_count, cu);
17777 if (attr_to_dynamic_prop (attr, die, cu, &high))
17778 {
17779 /* If bounds are constant do the final calculation here. */
17780 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17781 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17782 else
17783 high_bound_is_count = 1;
17784 }
17785 }
17786
17787 /* Dwarf-2 specifications explicitly allows to create subrange types
17788 without specifying a base type.
17789 In that case, the base type must be set to the type of
17790 the lower bound, upper bound or count, in that order, if any of these
17791 three attributes references an object that has a type.
17792 If no base type is found, the Dwarf-2 specifications say that
17793 a signed integer type of size equal to the size of an address should
17794 be used.
17795 For the following C code: `extern char gdb_int [];'
17796 GCC produces an empty range DIE.
17797 FIXME: muller/2010-05-28: Possible references to object for low bound,
17798 high bound or count are not yet handled by this code. */
17799 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17800 {
17801 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17802 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17803 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17804 struct type *int_type = objfile_type (objfile)->builtin_int;
17805
17806 /* Test "int", "long int", and "long long int" objfile types,
17807 and select the first one having a size above or equal to the
17808 architecture address size. */
17809 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17810 base_type = int_type;
17811 else
17812 {
17813 int_type = objfile_type (objfile)->builtin_long;
17814 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17815 base_type = int_type;
17816 else
17817 {
17818 int_type = objfile_type (objfile)->builtin_long_long;
17819 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17820 base_type = int_type;
17821 }
17822 }
17823 }
17824
17825 /* Normally, the DWARF producers are expected to use a signed
17826 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17827 But this is unfortunately not always the case, as witnessed
17828 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17829 is used instead. To work around that ambiguity, we treat
17830 the bounds as signed, and thus sign-extend their values, when
17831 the base type is signed. */
17832 negative_mask =
17833 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17834 if (low.kind == PROP_CONST
17835 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17836 low.data.const_val |= negative_mask;
17837 if (high.kind == PROP_CONST
17838 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17839 high.data.const_val |= negative_mask;
17840
17841 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17842
17843 if (high_bound_is_count)
17844 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17845
17846 /* Ada expects an empty array on no boundary attributes. */
17847 if (attr == NULL && cu->language != language_ada)
17848 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17849
17850 name = dwarf2_name (die, cu);
17851 if (name)
17852 TYPE_NAME (range_type) = name;
17853
17854 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17855 if (attr)
17856 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17857
17858 set_die_type (die, range_type, cu);
17859
17860 /* set_die_type should be already done. */
17861 set_descriptive_type (range_type, die, cu);
17862
17863 return range_type;
17864 }
17865
17866 static struct type *
17867 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17868 {
17869 struct type *type;
17870
17871 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17872 NULL);
17873 TYPE_NAME (type) = dwarf2_name (die, cu);
17874
17875 /* In Ada, an unspecified type is typically used when the description
17876 of the type is defered to a different unit. When encountering
17877 such a type, we treat it as a stub, and try to resolve it later on,
17878 when needed. */
17879 if (cu->language == language_ada)
17880 TYPE_STUB (type) = 1;
17881
17882 return set_die_type (die, type, cu);
17883 }
17884
17885 /* Read a single die and all its descendents. Set the die's sibling
17886 field to NULL; set other fields in the die correctly, and set all
17887 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17888 location of the info_ptr after reading all of those dies. PARENT
17889 is the parent of the die in question. */
17890
17891 static struct die_info *
17892 read_die_and_children (const struct die_reader_specs *reader,
17893 const gdb_byte *info_ptr,
17894 const gdb_byte **new_info_ptr,
17895 struct die_info *parent)
17896 {
17897 struct die_info *die;
17898 const gdb_byte *cur_ptr;
17899 int has_children;
17900
17901 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
17902 if (die == NULL)
17903 {
17904 *new_info_ptr = cur_ptr;
17905 return NULL;
17906 }
17907 store_in_ref_table (die, reader->cu);
17908
17909 if (has_children)
17910 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17911 else
17912 {
17913 die->child = NULL;
17914 *new_info_ptr = cur_ptr;
17915 }
17916
17917 die->sibling = NULL;
17918 die->parent = parent;
17919 return die;
17920 }
17921
17922 /* Read a die, all of its descendents, and all of its siblings; set
17923 all of the fields of all of the dies correctly. Arguments are as
17924 in read_die_and_children. */
17925
17926 static struct die_info *
17927 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17928 const gdb_byte *info_ptr,
17929 const gdb_byte **new_info_ptr,
17930 struct die_info *parent)
17931 {
17932 struct die_info *first_die, *last_sibling;
17933 const gdb_byte *cur_ptr;
17934
17935 cur_ptr = info_ptr;
17936 first_die = last_sibling = NULL;
17937
17938 while (1)
17939 {
17940 struct die_info *die
17941 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
17942
17943 if (die == NULL)
17944 {
17945 *new_info_ptr = cur_ptr;
17946 return first_die;
17947 }
17948
17949 if (!first_die)
17950 first_die = die;
17951 else
17952 last_sibling->sibling = die;
17953
17954 last_sibling = die;
17955 }
17956 }
17957
17958 /* Read a die, all of its descendents, and all of its siblings; set
17959 all of the fields of all of the dies correctly. Arguments are as
17960 in read_die_and_children.
17961 This the main entry point for reading a DIE and all its children. */
17962
17963 static struct die_info *
17964 read_die_and_siblings (const struct die_reader_specs *reader,
17965 const gdb_byte *info_ptr,
17966 const gdb_byte **new_info_ptr,
17967 struct die_info *parent)
17968 {
17969 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
17970 new_info_ptr, parent);
17971
17972 if (dwarf_die_debug)
17973 {
17974 fprintf_unfiltered (gdb_stdlog,
17975 "Read die from %s@0x%x of %s:\n",
17976 get_section_name (reader->die_section),
17977 (unsigned) (info_ptr - reader->die_section->buffer),
17978 bfd_get_filename (reader->abfd));
17979 dump_die (die, dwarf_die_debug);
17980 }
17981
17982 return die;
17983 }
17984
17985 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
17986 attributes.
17987 The caller is responsible for filling in the extra attributes
17988 and updating (*DIEP)->num_attrs.
17989 Set DIEP to point to a newly allocated die with its information,
17990 except for its child, sibling, and parent fields.
17991 Set HAS_CHILDREN to tell whether the die has children or not. */
17992
17993 static const gdb_byte *
17994 read_full_die_1 (const struct die_reader_specs *reader,
17995 struct die_info **diep, const gdb_byte *info_ptr,
17996 int *has_children, int num_extra_attrs)
17997 {
17998 unsigned int abbrev_number, bytes_read, i;
17999 struct abbrev_info *abbrev;
18000 struct die_info *die;
18001 struct dwarf2_cu *cu = reader->cu;
18002 bfd *abfd = reader->abfd;
18003
18004 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18005 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18006 info_ptr += bytes_read;
18007 if (!abbrev_number)
18008 {
18009 *diep = NULL;
18010 *has_children = 0;
18011 return info_ptr;
18012 }
18013
18014 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18015 if (!abbrev)
18016 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18017 abbrev_number,
18018 bfd_get_filename (abfd));
18019
18020 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18021 die->sect_off = sect_off;
18022 die->tag = abbrev->tag;
18023 die->abbrev = abbrev_number;
18024
18025 /* Make the result usable.
18026 The caller needs to update num_attrs after adding the extra
18027 attributes. */
18028 die->num_attrs = abbrev->num_attrs;
18029
18030 for (i = 0; i < abbrev->num_attrs; ++i)
18031 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18032 info_ptr);
18033
18034 *diep = die;
18035 *has_children = abbrev->has_children;
18036 return info_ptr;
18037 }
18038
18039 /* Read a die and all its attributes.
18040 Set DIEP to point to a newly allocated die with its information,
18041 except for its child, sibling, and parent fields.
18042 Set HAS_CHILDREN to tell whether the die has children or not. */
18043
18044 static const gdb_byte *
18045 read_full_die (const struct die_reader_specs *reader,
18046 struct die_info **diep, const gdb_byte *info_ptr,
18047 int *has_children)
18048 {
18049 const gdb_byte *result;
18050
18051 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18052
18053 if (dwarf_die_debug)
18054 {
18055 fprintf_unfiltered (gdb_stdlog,
18056 "Read die from %s@0x%x of %s:\n",
18057 get_section_name (reader->die_section),
18058 (unsigned) (info_ptr - reader->die_section->buffer),
18059 bfd_get_filename (reader->abfd));
18060 dump_die (*diep, dwarf_die_debug);
18061 }
18062
18063 return result;
18064 }
18065 \f
18066 /* Abbreviation tables.
18067
18068 In DWARF version 2, the description of the debugging information is
18069 stored in a separate .debug_abbrev section. Before we read any
18070 dies from a section we read in all abbreviations and install them
18071 in a hash table. */
18072
18073 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18074
18075 struct abbrev_info *
18076 abbrev_table::alloc_abbrev ()
18077 {
18078 struct abbrev_info *abbrev;
18079
18080 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18081 memset (abbrev, 0, sizeof (struct abbrev_info));
18082
18083 return abbrev;
18084 }
18085
18086 /* Add an abbreviation to the table. */
18087
18088 void
18089 abbrev_table::add_abbrev (unsigned int abbrev_number,
18090 struct abbrev_info *abbrev)
18091 {
18092 unsigned int hash_number;
18093
18094 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18095 abbrev->next = m_abbrevs[hash_number];
18096 m_abbrevs[hash_number] = abbrev;
18097 }
18098
18099 /* Look up an abbrev in the table.
18100 Returns NULL if the abbrev is not found. */
18101
18102 struct abbrev_info *
18103 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18104 {
18105 unsigned int hash_number;
18106 struct abbrev_info *abbrev;
18107
18108 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18109 abbrev = m_abbrevs[hash_number];
18110
18111 while (abbrev)
18112 {
18113 if (abbrev->number == abbrev_number)
18114 return abbrev;
18115 abbrev = abbrev->next;
18116 }
18117 return NULL;
18118 }
18119
18120 /* Read in an abbrev table. */
18121
18122 static abbrev_table_up
18123 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18124 struct dwarf2_section_info *section,
18125 sect_offset sect_off)
18126 {
18127 struct objfile *objfile = dwarf2_per_objfile->objfile;
18128 bfd *abfd = get_section_bfd_owner (section);
18129 const gdb_byte *abbrev_ptr;
18130 struct abbrev_info *cur_abbrev;
18131 unsigned int abbrev_number, bytes_read, abbrev_name;
18132 unsigned int abbrev_form;
18133 struct attr_abbrev *cur_attrs;
18134 unsigned int allocated_attrs;
18135
18136 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18137
18138 dwarf2_read_section (objfile, section);
18139 abbrev_ptr = section->buffer + to_underlying (sect_off);
18140 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18141 abbrev_ptr += bytes_read;
18142
18143 allocated_attrs = ATTR_ALLOC_CHUNK;
18144 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18145
18146 /* Loop until we reach an abbrev number of 0. */
18147 while (abbrev_number)
18148 {
18149 cur_abbrev = abbrev_table->alloc_abbrev ();
18150
18151 /* read in abbrev header */
18152 cur_abbrev->number = abbrev_number;
18153 cur_abbrev->tag
18154 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18155 abbrev_ptr += bytes_read;
18156 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18157 abbrev_ptr += 1;
18158
18159 /* now read in declarations */
18160 for (;;)
18161 {
18162 LONGEST implicit_const;
18163
18164 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18165 abbrev_ptr += bytes_read;
18166 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18167 abbrev_ptr += bytes_read;
18168 if (abbrev_form == DW_FORM_implicit_const)
18169 {
18170 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18171 &bytes_read);
18172 abbrev_ptr += bytes_read;
18173 }
18174 else
18175 {
18176 /* Initialize it due to a false compiler warning. */
18177 implicit_const = -1;
18178 }
18179
18180 if (abbrev_name == 0)
18181 break;
18182
18183 if (cur_abbrev->num_attrs == allocated_attrs)
18184 {
18185 allocated_attrs += ATTR_ALLOC_CHUNK;
18186 cur_attrs
18187 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18188 }
18189
18190 cur_attrs[cur_abbrev->num_attrs].name
18191 = (enum dwarf_attribute) abbrev_name;
18192 cur_attrs[cur_abbrev->num_attrs].form
18193 = (enum dwarf_form) abbrev_form;
18194 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18195 ++cur_abbrev->num_attrs;
18196 }
18197
18198 cur_abbrev->attrs =
18199 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18200 cur_abbrev->num_attrs);
18201 memcpy (cur_abbrev->attrs, cur_attrs,
18202 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18203
18204 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18205
18206 /* Get next abbreviation.
18207 Under Irix6 the abbreviations for a compilation unit are not
18208 always properly terminated with an abbrev number of 0.
18209 Exit loop if we encounter an abbreviation which we have
18210 already read (which means we are about to read the abbreviations
18211 for the next compile unit) or if the end of the abbreviation
18212 table is reached. */
18213 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18214 break;
18215 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18216 abbrev_ptr += bytes_read;
18217 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18218 break;
18219 }
18220
18221 xfree (cur_attrs);
18222 return abbrev_table;
18223 }
18224
18225 /* Returns nonzero if TAG represents a type that we might generate a partial
18226 symbol for. */
18227
18228 static int
18229 is_type_tag_for_partial (int tag)
18230 {
18231 switch (tag)
18232 {
18233 #if 0
18234 /* Some types that would be reasonable to generate partial symbols for,
18235 that we don't at present. */
18236 case DW_TAG_array_type:
18237 case DW_TAG_file_type:
18238 case DW_TAG_ptr_to_member_type:
18239 case DW_TAG_set_type:
18240 case DW_TAG_string_type:
18241 case DW_TAG_subroutine_type:
18242 #endif
18243 case DW_TAG_base_type:
18244 case DW_TAG_class_type:
18245 case DW_TAG_interface_type:
18246 case DW_TAG_enumeration_type:
18247 case DW_TAG_structure_type:
18248 case DW_TAG_subrange_type:
18249 case DW_TAG_typedef:
18250 case DW_TAG_union_type:
18251 return 1;
18252 default:
18253 return 0;
18254 }
18255 }
18256
18257 /* Load all DIEs that are interesting for partial symbols into memory. */
18258
18259 static struct partial_die_info *
18260 load_partial_dies (const struct die_reader_specs *reader,
18261 const gdb_byte *info_ptr, int building_psymtab)
18262 {
18263 struct dwarf2_cu *cu = reader->cu;
18264 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18265 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18266 unsigned int bytes_read;
18267 unsigned int load_all = 0;
18268 int nesting_level = 1;
18269
18270 parent_die = NULL;
18271 last_die = NULL;
18272
18273 gdb_assert (cu->per_cu != NULL);
18274 if (cu->per_cu->load_all_dies)
18275 load_all = 1;
18276
18277 cu->partial_dies
18278 = htab_create_alloc_ex (cu->header.length / 12,
18279 partial_die_hash,
18280 partial_die_eq,
18281 NULL,
18282 &cu->comp_unit_obstack,
18283 hashtab_obstack_allocate,
18284 dummy_obstack_deallocate);
18285
18286 while (1)
18287 {
18288 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18289
18290 /* A NULL abbrev means the end of a series of children. */
18291 if (abbrev == NULL)
18292 {
18293 if (--nesting_level == 0)
18294 return first_die;
18295
18296 info_ptr += bytes_read;
18297 last_die = parent_die;
18298 parent_die = parent_die->die_parent;
18299 continue;
18300 }
18301
18302 /* Check for template arguments. We never save these; if
18303 they're seen, we just mark the parent, and go on our way. */
18304 if (parent_die != NULL
18305 && cu->language == language_cplus
18306 && (abbrev->tag == DW_TAG_template_type_param
18307 || abbrev->tag == DW_TAG_template_value_param))
18308 {
18309 parent_die->has_template_arguments = 1;
18310
18311 if (!load_all)
18312 {
18313 /* We don't need a partial DIE for the template argument. */
18314 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18315 continue;
18316 }
18317 }
18318
18319 /* We only recurse into c++ subprograms looking for template arguments.
18320 Skip their other children. */
18321 if (!load_all
18322 && cu->language == language_cplus
18323 && parent_die != NULL
18324 && parent_die->tag == DW_TAG_subprogram)
18325 {
18326 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18327 continue;
18328 }
18329
18330 /* Check whether this DIE is interesting enough to save. Normally
18331 we would not be interested in members here, but there may be
18332 later variables referencing them via DW_AT_specification (for
18333 static members). */
18334 if (!load_all
18335 && !is_type_tag_for_partial (abbrev->tag)
18336 && abbrev->tag != DW_TAG_constant
18337 && abbrev->tag != DW_TAG_enumerator
18338 && abbrev->tag != DW_TAG_subprogram
18339 && abbrev->tag != DW_TAG_inlined_subroutine
18340 && abbrev->tag != DW_TAG_lexical_block
18341 && abbrev->tag != DW_TAG_variable
18342 && abbrev->tag != DW_TAG_namespace
18343 && abbrev->tag != DW_TAG_module
18344 && abbrev->tag != DW_TAG_member
18345 && abbrev->tag != DW_TAG_imported_unit
18346 && abbrev->tag != DW_TAG_imported_declaration)
18347 {
18348 /* Otherwise we skip to the next sibling, if any. */
18349 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18350 continue;
18351 }
18352
18353 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18354 abbrev);
18355
18356 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18357
18358 /* This two-pass algorithm for processing partial symbols has a
18359 high cost in cache pressure. Thus, handle some simple cases
18360 here which cover the majority of C partial symbols. DIEs
18361 which neither have specification tags in them, nor could have
18362 specification tags elsewhere pointing at them, can simply be
18363 processed and discarded.
18364
18365 This segment is also optional; scan_partial_symbols and
18366 add_partial_symbol will handle these DIEs if we chain
18367 them in normally. When compilers which do not emit large
18368 quantities of duplicate debug information are more common,
18369 this code can probably be removed. */
18370
18371 /* Any complete simple types at the top level (pretty much all
18372 of them, for a language without namespaces), can be processed
18373 directly. */
18374 if (parent_die == NULL
18375 && pdi.has_specification == 0
18376 && pdi.is_declaration == 0
18377 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18378 || pdi.tag == DW_TAG_base_type
18379 || pdi.tag == DW_TAG_subrange_type))
18380 {
18381 if (building_psymtab && pdi.name != NULL)
18382 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18383 VAR_DOMAIN, LOC_TYPEDEF,
18384 &objfile->static_psymbols,
18385 0, cu->language, objfile);
18386 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18387 continue;
18388 }
18389
18390 /* The exception for DW_TAG_typedef with has_children above is
18391 a workaround of GCC PR debug/47510. In the case of this complaint
18392 type_name_no_tag_or_error will error on such types later.
18393
18394 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18395 it could not find the child DIEs referenced later, this is checked
18396 above. In correct DWARF DW_TAG_typedef should have no children. */
18397
18398 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18399 complaint (&symfile_complaints,
18400 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18401 "- DIE at %s [in module %s]"),
18402 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18403
18404 /* If we're at the second level, and we're an enumerator, and
18405 our parent has no specification (meaning possibly lives in a
18406 namespace elsewhere), then we can add the partial symbol now
18407 instead of queueing it. */
18408 if (pdi.tag == DW_TAG_enumerator
18409 && parent_die != NULL
18410 && parent_die->die_parent == NULL
18411 && parent_die->tag == DW_TAG_enumeration_type
18412 && parent_die->has_specification == 0)
18413 {
18414 if (pdi.name == NULL)
18415 complaint (&symfile_complaints,
18416 _("malformed enumerator DIE ignored"));
18417 else if (building_psymtab)
18418 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18419 VAR_DOMAIN, LOC_CONST,
18420 cu->language == language_cplus
18421 ? &objfile->global_psymbols
18422 : &objfile->static_psymbols,
18423 0, cu->language, objfile);
18424
18425 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18426 continue;
18427 }
18428
18429 struct partial_die_info *part_die
18430 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18431
18432 /* We'll save this DIE so link it in. */
18433 part_die->die_parent = parent_die;
18434 part_die->die_sibling = NULL;
18435 part_die->die_child = NULL;
18436
18437 if (last_die && last_die == parent_die)
18438 last_die->die_child = part_die;
18439 else if (last_die)
18440 last_die->die_sibling = part_die;
18441
18442 last_die = part_die;
18443
18444 if (first_die == NULL)
18445 first_die = part_die;
18446
18447 /* Maybe add the DIE to the hash table. Not all DIEs that we
18448 find interesting need to be in the hash table, because we
18449 also have the parent/sibling/child chains; only those that we
18450 might refer to by offset later during partial symbol reading.
18451
18452 For now this means things that might have be the target of a
18453 DW_AT_specification, DW_AT_abstract_origin, or
18454 DW_AT_extension. DW_AT_extension will refer only to
18455 namespaces; DW_AT_abstract_origin refers to functions (and
18456 many things under the function DIE, but we do not recurse
18457 into function DIEs during partial symbol reading) and
18458 possibly variables as well; DW_AT_specification refers to
18459 declarations. Declarations ought to have the DW_AT_declaration
18460 flag. It happens that GCC forgets to put it in sometimes, but
18461 only for functions, not for types.
18462
18463 Adding more things than necessary to the hash table is harmless
18464 except for the performance cost. Adding too few will result in
18465 wasted time in find_partial_die, when we reread the compilation
18466 unit with load_all_dies set. */
18467
18468 if (load_all
18469 || abbrev->tag == DW_TAG_constant
18470 || abbrev->tag == DW_TAG_subprogram
18471 || abbrev->tag == DW_TAG_variable
18472 || abbrev->tag == DW_TAG_namespace
18473 || part_die->is_declaration)
18474 {
18475 void **slot;
18476
18477 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18478 to_underlying (part_die->sect_off),
18479 INSERT);
18480 *slot = part_die;
18481 }
18482
18483 /* For some DIEs we want to follow their children (if any). For C
18484 we have no reason to follow the children of structures; for other
18485 languages we have to, so that we can get at method physnames
18486 to infer fully qualified class names, for DW_AT_specification,
18487 and for C++ template arguments. For C++, we also look one level
18488 inside functions to find template arguments (if the name of the
18489 function does not already contain the template arguments).
18490
18491 For Ada, we need to scan the children of subprograms and lexical
18492 blocks as well because Ada allows the definition of nested
18493 entities that could be interesting for the debugger, such as
18494 nested subprograms for instance. */
18495 if (last_die->has_children
18496 && (load_all
18497 || last_die->tag == DW_TAG_namespace
18498 || last_die->tag == DW_TAG_module
18499 || last_die->tag == DW_TAG_enumeration_type
18500 || (cu->language == language_cplus
18501 && last_die->tag == DW_TAG_subprogram
18502 && (last_die->name == NULL
18503 || strchr (last_die->name, '<') == NULL))
18504 || (cu->language != language_c
18505 && (last_die->tag == DW_TAG_class_type
18506 || last_die->tag == DW_TAG_interface_type
18507 || last_die->tag == DW_TAG_structure_type
18508 || last_die->tag == DW_TAG_union_type))
18509 || (cu->language == language_ada
18510 && (last_die->tag == DW_TAG_subprogram
18511 || last_die->tag == DW_TAG_lexical_block))))
18512 {
18513 nesting_level++;
18514 parent_die = last_die;
18515 continue;
18516 }
18517
18518 /* Otherwise we skip to the next sibling, if any. */
18519 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18520
18521 /* Back to the top, do it again. */
18522 }
18523 }
18524
18525 partial_die_info::partial_die_info (sect_offset sect_off_,
18526 struct abbrev_info *abbrev)
18527 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18528 {
18529 }
18530
18531 /* Read a minimal amount of information into the minimal die structure.
18532 INFO_PTR should point just after the initial uleb128 of a DIE. */
18533
18534 const gdb_byte *
18535 partial_die_info::read (const struct die_reader_specs *reader,
18536 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18537 {
18538 struct dwarf2_cu *cu = reader->cu;
18539 struct dwarf2_per_objfile *dwarf2_per_objfile
18540 = cu->per_cu->dwarf2_per_objfile;
18541 unsigned int i;
18542 int has_low_pc_attr = 0;
18543 int has_high_pc_attr = 0;
18544 int high_pc_relative = 0;
18545
18546 for (i = 0; i < abbrev.num_attrs; ++i)
18547 {
18548 struct attribute attr;
18549
18550 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18551
18552 /* Store the data if it is of an attribute we want to keep in a
18553 partial symbol table. */
18554 switch (attr.name)
18555 {
18556 case DW_AT_name:
18557 switch (tag)
18558 {
18559 case DW_TAG_compile_unit:
18560 case DW_TAG_partial_unit:
18561 case DW_TAG_type_unit:
18562 /* Compilation units have a DW_AT_name that is a filename, not
18563 a source language identifier. */
18564 case DW_TAG_enumeration_type:
18565 case DW_TAG_enumerator:
18566 /* These tags always have simple identifiers already; no need
18567 to canonicalize them. */
18568 name = DW_STRING (&attr);
18569 break;
18570 default:
18571 {
18572 struct objfile *objfile = dwarf2_per_objfile->objfile;
18573
18574 name
18575 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18576 &objfile->per_bfd->storage_obstack);
18577 }
18578 break;
18579 }
18580 break;
18581 case DW_AT_linkage_name:
18582 case DW_AT_MIPS_linkage_name:
18583 /* Note that both forms of linkage name might appear. We
18584 assume they will be the same, and we only store the last
18585 one we see. */
18586 if (cu->language == language_ada)
18587 name = DW_STRING (&attr);
18588 linkage_name = DW_STRING (&attr);
18589 break;
18590 case DW_AT_low_pc:
18591 has_low_pc_attr = 1;
18592 lowpc = attr_value_as_address (&attr);
18593 break;
18594 case DW_AT_high_pc:
18595 has_high_pc_attr = 1;
18596 highpc = attr_value_as_address (&attr);
18597 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18598 high_pc_relative = 1;
18599 break;
18600 case DW_AT_location:
18601 /* Support the .debug_loc offsets. */
18602 if (attr_form_is_block (&attr))
18603 {
18604 d.locdesc = DW_BLOCK (&attr);
18605 }
18606 else if (attr_form_is_section_offset (&attr))
18607 {
18608 dwarf2_complex_location_expr_complaint ();
18609 }
18610 else
18611 {
18612 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18613 "partial symbol information");
18614 }
18615 break;
18616 case DW_AT_external:
18617 is_external = DW_UNSND (&attr);
18618 break;
18619 case DW_AT_declaration:
18620 is_declaration = DW_UNSND (&attr);
18621 break;
18622 case DW_AT_type:
18623 has_type = 1;
18624 break;
18625 case DW_AT_abstract_origin:
18626 case DW_AT_specification:
18627 case DW_AT_extension:
18628 has_specification = 1;
18629 spec_offset = dwarf2_get_ref_die_offset (&attr);
18630 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18631 || cu->per_cu->is_dwz);
18632 break;
18633 case DW_AT_sibling:
18634 /* Ignore absolute siblings, they might point outside of
18635 the current compile unit. */
18636 if (attr.form == DW_FORM_ref_addr)
18637 complaint (&symfile_complaints,
18638 _("ignoring absolute DW_AT_sibling"));
18639 else
18640 {
18641 const gdb_byte *buffer = reader->buffer;
18642 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18643 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18644
18645 if (sibling_ptr < info_ptr)
18646 complaint (&symfile_complaints,
18647 _("DW_AT_sibling points backwards"));
18648 else if (sibling_ptr > reader->buffer_end)
18649 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18650 else
18651 sibling = sibling_ptr;
18652 }
18653 break;
18654 case DW_AT_byte_size:
18655 has_byte_size = 1;
18656 break;
18657 case DW_AT_const_value:
18658 has_const_value = 1;
18659 break;
18660 case DW_AT_calling_convention:
18661 /* DWARF doesn't provide a way to identify a program's source-level
18662 entry point. DW_AT_calling_convention attributes are only meant
18663 to describe functions' calling conventions.
18664
18665 However, because it's a necessary piece of information in
18666 Fortran, and before DWARF 4 DW_CC_program was the only
18667 piece of debugging information whose definition refers to
18668 a 'main program' at all, several compilers marked Fortran
18669 main programs with DW_CC_program --- even when those
18670 functions use the standard calling conventions.
18671
18672 Although DWARF now specifies a way to provide this
18673 information, we support this practice for backward
18674 compatibility. */
18675 if (DW_UNSND (&attr) == DW_CC_program
18676 && cu->language == language_fortran)
18677 main_subprogram = 1;
18678 break;
18679 case DW_AT_inline:
18680 if (DW_UNSND (&attr) == DW_INL_inlined
18681 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18682 may_be_inlined = 1;
18683 break;
18684
18685 case DW_AT_import:
18686 if (tag == DW_TAG_imported_unit)
18687 {
18688 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18689 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18690 || cu->per_cu->is_dwz);
18691 }
18692 break;
18693
18694 case DW_AT_main_subprogram:
18695 main_subprogram = DW_UNSND (&attr);
18696 break;
18697
18698 default:
18699 break;
18700 }
18701 }
18702
18703 if (high_pc_relative)
18704 highpc += lowpc;
18705
18706 if (has_low_pc_attr && has_high_pc_attr)
18707 {
18708 /* When using the GNU linker, .gnu.linkonce. sections are used to
18709 eliminate duplicate copies of functions and vtables and such.
18710 The linker will arbitrarily choose one and discard the others.
18711 The AT_*_pc values for such functions refer to local labels in
18712 these sections. If the section from that file was discarded, the
18713 labels are not in the output, so the relocs get a value of 0.
18714 If this is a discarded function, mark the pc bounds as invalid,
18715 so that GDB will ignore it. */
18716 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18717 {
18718 struct objfile *objfile = dwarf2_per_objfile->objfile;
18719 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18720
18721 complaint (&symfile_complaints,
18722 _("DW_AT_low_pc %s is zero "
18723 "for DIE at %s [in module %s]"),
18724 paddress (gdbarch, lowpc),
18725 sect_offset_str (sect_off),
18726 objfile_name (objfile));
18727 }
18728 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18729 else if (lowpc >= highpc)
18730 {
18731 struct objfile *objfile = dwarf2_per_objfile->objfile;
18732 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18733
18734 complaint (&symfile_complaints,
18735 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18736 "for DIE at %s [in module %s]"),
18737 paddress (gdbarch, lowpc),
18738 paddress (gdbarch, highpc),
18739 sect_offset_str (sect_off),
18740 objfile_name (objfile));
18741 }
18742 else
18743 has_pc_info = 1;
18744 }
18745
18746 return info_ptr;
18747 }
18748
18749 /* Find a cached partial DIE at OFFSET in CU. */
18750
18751 struct partial_die_info *
18752 dwarf2_cu::find_partial_die (sect_offset sect_off)
18753 {
18754 struct partial_die_info *lookup_die = NULL;
18755 struct partial_die_info part_die (sect_off);
18756
18757 lookup_die = ((struct partial_die_info *)
18758 htab_find_with_hash (partial_dies, &part_die,
18759 to_underlying (sect_off)));
18760
18761 return lookup_die;
18762 }
18763
18764 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18765 except in the case of .debug_types DIEs which do not reference
18766 outside their CU (they do however referencing other types via
18767 DW_FORM_ref_sig8). */
18768
18769 static struct partial_die_info *
18770 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18771 {
18772 struct dwarf2_per_objfile *dwarf2_per_objfile
18773 = cu->per_cu->dwarf2_per_objfile;
18774 struct objfile *objfile = dwarf2_per_objfile->objfile;
18775 struct dwarf2_per_cu_data *per_cu = NULL;
18776 struct partial_die_info *pd = NULL;
18777
18778 if (offset_in_dwz == cu->per_cu->is_dwz
18779 && offset_in_cu_p (&cu->header, sect_off))
18780 {
18781 pd = cu->find_partial_die (sect_off);
18782 if (pd != NULL)
18783 return pd;
18784 /* We missed recording what we needed.
18785 Load all dies and try again. */
18786 per_cu = cu->per_cu;
18787 }
18788 else
18789 {
18790 /* TUs don't reference other CUs/TUs (except via type signatures). */
18791 if (cu->per_cu->is_debug_types)
18792 {
18793 error (_("Dwarf Error: Type Unit at offset %s contains"
18794 " external reference to offset %s [in module %s].\n"),
18795 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18796 bfd_get_filename (objfile->obfd));
18797 }
18798 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18799 dwarf2_per_objfile);
18800
18801 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18802 load_partial_comp_unit (per_cu);
18803
18804 per_cu->cu->last_used = 0;
18805 pd = per_cu->cu->find_partial_die (sect_off);
18806 }
18807
18808 /* If we didn't find it, and not all dies have been loaded,
18809 load them all and try again. */
18810
18811 if (pd == NULL && per_cu->load_all_dies == 0)
18812 {
18813 per_cu->load_all_dies = 1;
18814
18815 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18816 THIS_CU->cu may already be in use. So we can't just free it and
18817 replace its DIEs with the ones we read in. Instead, we leave those
18818 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18819 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18820 set. */
18821 load_partial_comp_unit (per_cu);
18822
18823 pd = per_cu->cu->find_partial_die (sect_off);
18824 }
18825
18826 if (pd == NULL)
18827 internal_error (__FILE__, __LINE__,
18828 _("could not find partial DIE %s "
18829 "in cache [from module %s]\n"),
18830 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18831 return pd;
18832 }
18833
18834 /* See if we can figure out if the class lives in a namespace. We do
18835 this by looking for a member function; its demangled name will
18836 contain namespace info, if there is any. */
18837
18838 static void
18839 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18840 struct dwarf2_cu *cu)
18841 {
18842 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18843 what template types look like, because the demangler
18844 frequently doesn't give the same name as the debug info. We
18845 could fix this by only using the demangled name to get the
18846 prefix (but see comment in read_structure_type). */
18847
18848 struct partial_die_info *real_pdi;
18849 struct partial_die_info *child_pdi;
18850
18851 /* If this DIE (this DIE's specification, if any) has a parent, then
18852 we should not do this. We'll prepend the parent's fully qualified
18853 name when we create the partial symbol. */
18854
18855 real_pdi = struct_pdi;
18856 while (real_pdi->has_specification)
18857 real_pdi = find_partial_die (real_pdi->spec_offset,
18858 real_pdi->spec_is_dwz, cu);
18859
18860 if (real_pdi->die_parent != NULL)
18861 return;
18862
18863 for (child_pdi = struct_pdi->die_child;
18864 child_pdi != NULL;
18865 child_pdi = child_pdi->die_sibling)
18866 {
18867 if (child_pdi->tag == DW_TAG_subprogram
18868 && child_pdi->linkage_name != NULL)
18869 {
18870 char *actual_class_name
18871 = language_class_name_from_physname (cu->language_defn,
18872 child_pdi->linkage_name);
18873 if (actual_class_name != NULL)
18874 {
18875 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18876 struct_pdi->name
18877 = ((const char *)
18878 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18879 actual_class_name,
18880 strlen (actual_class_name)));
18881 xfree (actual_class_name);
18882 }
18883 break;
18884 }
18885 }
18886 }
18887
18888 void
18889 partial_die_info::fixup (struct dwarf2_cu *cu)
18890 {
18891 /* Once we've fixed up a die, there's no point in doing so again.
18892 This also avoids a memory leak if we were to call
18893 guess_partial_die_structure_name multiple times. */
18894 if (fixup_called)
18895 return;
18896
18897 /* If we found a reference attribute and the DIE has no name, try
18898 to find a name in the referred to DIE. */
18899
18900 if (name == NULL && has_specification)
18901 {
18902 struct partial_die_info *spec_die;
18903
18904 spec_die = find_partial_die (spec_offset, spec_is_dwz, cu);
18905
18906 spec_die->fixup (cu);
18907
18908 if (spec_die->name)
18909 {
18910 name = spec_die->name;
18911
18912 /* Copy DW_AT_external attribute if it is set. */
18913 if (spec_die->is_external)
18914 is_external = spec_die->is_external;
18915 }
18916 }
18917
18918 /* Set default names for some unnamed DIEs. */
18919
18920 if (name == NULL && tag == DW_TAG_namespace)
18921 name = CP_ANONYMOUS_NAMESPACE_STR;
18922
18923 /* If there is no parent die to provide a namespace, and there are
18924 children, see if we can determine the namespace from their linkage
18925 name. */
18926 if (cu->language == language_cplus
18927 && !VEC_empty (dwarf2_section_info_def,
18928 cu->per_cu->dwarf2_per_objfile->types)
18929 && die_parent == NULL
18930 && has_children
18931 && (tag == DW_TAG_class_type
18932 || tag == DW_TAG_structure_type
18933 || tag == DW_TAG_union_type))
18934 guess_partial_die_structure_name (this, cu);
18935
18936 /* GCC might emit a nameless struct or union that has a linkage
18937 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18938 if (name == NULL
18939 && (tag == DW_TAG_class_type
18940 || tag == DW_TAG_interface_type
18941 || tag == DW_TAG_structure_type
18942 || tag == DW_TAG_union_type)
18943 && linkage_name != NULL)
18944 {
18945 char *demangled;
18946
18947 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
18948 if (demangled)
18949 {
18950 const char *base;
18951
18952 /* Strip any leading namespaces/classes, keep only the base name.
18953 DW_AT_name for named DIEs does not contain the prefixes. */
18954 base = strrchr (demangled, ':');
18955 if (base && base > demangled && base[-1] == ':')
18956 base++;
18957 else
18958 base = demangled;
18959
18960 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18961 name
18962 = ((const char *)
18963 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18964 base, strlen (base)));
18965 xfree (demangled);
18966 }
18967 }
18968
18969 fixup_called = 1;
18970 }
18971
18972 /* Read an attribute value described by an attribute form. */
18973
18974 static const gdb_byte *
18975 read_attribute_value (const struct die_reader_specs *reader,
18976 struct attribute *attr, unsigned form,
18977 LONGEST implicit_const, const gdb_byte *info_ptr)
18978 {
18979 struct dwarf2_cu *cu = reader->cu;
18980 struct dwarf2_per_objfile *dwarf2_per_objfile
18981 = cu->per_cu->dwarf2_per_objfile;
18982 struct objfile *objfile = dwarf2_per_objfile->objfile;
18983 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18984 bfd *abfd = reader->abfd;
18985 struct comp_unit_head *cu_header = &cu->header;
18986 unsigned int bytes_read;
18987 struct dwarf_block *blk;
18988
18989 attr->form = (enum dwarf_form) form;
18990 switch (form)
18991 {
18992 case DW_FORM_ref_addr:
18993 if (cu->header.version == 2)
18994 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18995 else
18996 DW_UNSND (attr) = read_offset (abfd, info_ptr,
18997 &cu->header, &bytes_read);
18998 info_ptr += bytes_read;
18999 break;
19000 case DW_FORM_GNU_ref_alt:
19001 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19002 info_ptr += bytes_read;
19003 break;
19004 case DW_FORM_addr:
19005 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19006 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
19007 info_ptr += bytes_read;
19008 break;
19009 case DW_FORM_block2:
19010 blk = dwarf_alloc_block (cu);
19011 blk->size = read_2_bytes (abfd, info_ptr);
19012 info_ptr += 2;
19013 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19014 info_ptr += blk->size;
19015 DW_BLOCK (attr) = blk;
19016 break;
19017 case DW_FORM_block4:
19018 blk = dwarf_alloc_block (cu);
19019 blk->size = read_4_bytes (abfd, info_ptr);
19020 info_ptr += 4;
19021 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19022 info_ptr += blk->size;
19023 DW_BLOCK (attr) = blk;
19024 break;
19025 case DW_FORM_data2:
19026 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19027 info_ptr += 2;
19028 break;
19029 case DW_FORM_data4:
19030 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19031 info_ptr += 4;
19032 break;
19033 case DW_FORM_data8:
19034 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19035 info_ptr += 8;
19036 break;
19037 case DW_FORM_data16:
19038 blk = dwarf_alloc_block (cu);
19039 blk->size = 16;
19040 blk->data = read_n_bytes (abfd, info_ptr, 16);
19041 info_ptr += 16;
19042 DW_BLOCK (attr) = blk;
19043 break;
19044 case DW_FORM_sec_offset:
19045 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19046 info_ptr += bytes_read;
19047 break;
19048 case DW_FORM_string:
19049 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19050 DW_STRING_IS_CANONICAL (attr) = 0;
19051 info_ptr += bytes_read;
19052 break;
19053 case DW_FORM_strp:
19054 if (!cu->per_cu->is_dwz)
19055 {
19056 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19057 abfd, info_ptr, cu_header,
19058 &bytes_read);
19059 DW_STRING_IS_CANONICAL (attr) = 0;
19060 info_ptr += bytes_read;
19061 break;
19062 }
19063 /* FALLTHROUGH */
19064 case DW_FORM_line_strp:
19065 if (!cu->per_cu->is_dwz)
19066 {
19067 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19068 abfd, info_ptr,
19069 cu_header, &bytes_read);
19070 DW_STRING_IS_CANONICAL (attr) = 0;
19071 info_ptr += bytes_read;
19072 break;
19073 }
19074 /* FALLTHROUGH */
19075 case DW_FORM_GNU_strp_alt:
19076 {
19077 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19078 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19079 &bytes_read);
19080
19081 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19082 dwz, str_offset);
19083 DW_STRING_IS_CANONICAL (attr) = 0;
19084 info_ptr += bytes_read;
19085 }
19086 break;
19087 case DW_FORM_exprloc:
19088 case DW_FORM_block:
19089 blk = dwarf_alloc_block (cu);
19090 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19091 info_ptr += bytes_read;
19092 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19093 info_ptr += blk->size;
19094 DW_BLOCK (attr) = blk;
19095 break;
19096 case DW_FORM_block1:
19097 blk = dwarf_alloc_block (cu);
19098 blk->size = read_1_byte (abfd, info_ptr);
19099 info_ptr += 1;
19100 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19101 info_ptr += blk->size;
19102 DW_BLOCK (attr) = blk;
19103 break;
19104 case DW_FORM_data1:
19105 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19106 info_ptr += 1;
19107 break;
19108 case DW_FORM_flag:
19109 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19110 info_ptr += 1;
19111 break;
19112 case DW_FORM_flag_present:
19113 DW_UNSND (attr) = 1;
19114 break;
19115 case DW_FORM_sdata:
19116 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19117 info_ptr += bytes_read;
19118 break;
19119 case DW_FORM_udata:
19120 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19121 info_ptr += bytes_read;
19122 break;
19123 case DW_FORM_ref1:
19124 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19125 + read_1_byte (abfd, info_ptr));
19126 info_ptr += 1;
19127 break;
19128 case DW_FORM_ref2:
19129 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19130 + read_2_bytes (abfd, info_ptr));
19131 info_ptr += 2;
19132 break;
19133 case DW_FORM_ref4:
19134 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19135 + read_4_bytes (abfd, info_ptr));
19136 info_ptr += 4;
19137 break;
19138 case DW_FORM_ref8:
19139 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19140 + read_8_bytes (abfd, info_ptr));
19141 info_ptr += 8;
19142 break;
19143 case DW_FORM_ref_sig8:
19144 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19145 info_ptr += 8;
19146 break;
19147 case DW_FORM_ref_udata:
19148 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19149 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19150 info_ptr += bytes_read;
19151 break;
19152 case DW_FORM_indirect:
19153 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19154 info_ptr += bytes_read;
19155 if (form == DW_FORM_implicit_const)
19156 {
19157 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19158 info_ptr += bytes_read;
19159 }
19160 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19161 info_ptr);
19162 break;
19163 case DW_FORM_implicit_const:
19164 DW_SND (attr) = implicit_const;
19165 break;
19166 case DW_FORM_GNU_addr_index:
19167 if (reader->dwo_file == NULL)
19168 {
19169 /* For now flag a hard error.
19170 Later we can turn this into a complaint. */
19171 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19172 dwarf_form_name (form),
19173 bfd_get_filename (abfd));
19174 }
19175 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19176 info_ptr += bytes_read;
19177 break;
19178 case DW_FORM_GNU_str_index:
19179 if (reader->dwo_file == NULL)
19180 {
19181 /* For now flag a hard error.
19182 Later we can turn this into a complaint if warranted. */
19183 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19184 dwarf_form_name (form),
19185 bfd_get_filename (abfd));
19186 }
19187 {
19188 ULONGEST str_index =
19189 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19190
19191 DW_STRING (attr) = read_str_index (reader, str_index);
19192 DW_STRING_IS_CANONICAL (attr) = 0;
19193 info_ptr += bytes_read;
19194 }
19195 break;
19196 default:
19197 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19198 dwarf_form_name (form),
19199 bfd_get_filename (abfd));
19200 }
19201
19202 /* Super hack. */
19203 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19204 attr->form = DW_FORM_GNU_ref_alt;
19205
19206 /* We have seen instances where the compiler tried to emit a byte
19207 size attribute of -1 which ended up being encoded as an unsigned
19208 0xffffffff. Although 0xffffffff is technically a valid size value,
19209 an object of this size seems pretty unlikely so we can relatively
19210 safely treat these cases as if the size attribute was invalid and
19211 treat them as zero by default. */
19212 if (attr->name == DW_AT_byte_size
19213 && form == DW_FORM_data4
19214 && DW_UNSND (attr) >= 0xffffffff)
19215 {
19216 complaint
19217 (&symfile_complaints,
19218 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19219 hex_string (DW_UNSND (attr)));
19220 DW_UNSND (attr) = 0;
19221 }
19222
19223 return info_ptr;
19224 }
19225
19226 /* Read an attribute described by an abbreviated attribute. */
19227
19228 static const gdb_byte *
19229 read_attribute (const struct die_reader_specs *reader,
19230 struct attribute *attr, struct attr_abbrev *abbrev,
19231 const gdb_byte *info_ptr)
19232 {
19233 attr->name = abbrev->name;
19234 return read_attribute_value (reader, attr, abbrev->form,
19235 abbrev->implicit_const, info_ptr);
19236 }
19237
19238 /* Read dwarf information from a buffer. */
19239
19240 static unsigned int
19241 read_1_byte (bfd *abfd, const gdb_byte *buf)
19242 {
19243 return bfd_get_8 (abfd, buf);
19244 }
19245
19246 static int
19247 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19248 {
19249 return bfd_get_signed_8 (abfd, buf);
19250 }
19251
19252 static unsigned int
19253 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19254 {
19255 return bfd_get_16 (abfd, buf);
19256 }
19257
19258 static int
19259 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19260 {
19261 return bfd_get_signed_16 (abfd, buf);
19262 }
19263
19264 static unsigned int
19265 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19266 {
19267 return bfd_get_32 (abfd, buf);
19268 }
19269
19270 static int
19271 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19272 {
19273 return bfd_get_signed_32 (abfd, buf);
19274 }
19275
19276 static ULONGEST
19277 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19278 {
19279 return bfd_get_64 (abfd, buf);
19280 }
19281
19282 static CORE_ADDR
19283 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19284 unsigned int *bytes_read)
19285 {
19286 struct comp_unit_head *cu_header = &cu->header;
19287 CORE_ADDR retval = 0;
19288
19289 if (cu_header->signed_addr_p)
19290 {
19291 switch (cu_header->addr_size)
19292 {
19293 case 2:
19294 retval = bfd_get_signed_16 (abfd, buf);
19295 break;
19296 case 4:
19297 retval = bfd_get_signed_32 (abfd, buf);
19298 break;
19299 case 8:
19300 retval = bfd_get_signed_64 (abfd, buf);
19301 break;
19302 default:
19303 internal_error (__FILE__, __LINE__,
19304 _("read_address: bad switch, signed [in module %s]"),
19305 bfd_get_filename (abfd));
19306 }
19307 }
19308 else
19309 {
19310 switch (cu_header->addr_size)
19311 {
19312 case 2:
19313 retval = bfd_get_16 (abfd, buf);
19314 break;
19315 case 4:
19316 retval = bfd_get_32 (abfd, buf);
19317 break;
19318 case 8:
19319 retval = bfd_get_64 (abfd, buf);
19320 break;
19321 default:
19322 internal_error (__FILE__, __LINE__,
19323 _("read_address: bad switch, "
19324 "unsigned [in module %s]"),
19325 bfd_get_filename (abfd));
19326 }
19327 }
19328
19329 *bytes_read = cu_header->addr_size;
19330 return retval;
19331 }
19332
19333 /* Read the initial length from a section. The (draft) DWARF 3
19334 specification allows the initial length to take up either 4 bytes
19335 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19336 bytes describe the length and all offsets will be 8 bytes in length
19337 instead of 4.
19338
19339 An older, non-standard 64-bit format is also handled by this
19340 function. The older format in question stores the initial length
19341 as an 8-byte quantity without an escape value. Lengths greater
19342 than 2^32 aren't very common which means that the initial 4 bytes
19343 is almost always zero. Since a length value of zero doesn't make
19344 sense for the 32-bit format, this initial zero can be considered to
19345 be an escape value which indicates the presence of the older 64-bit
19346 format. As written, the code can't detect (old format) lengths
19347 greater than 4GB. If it becomes necessary to handle lengths
19348 somewhat larger than 4GB, we could allow other small values (such
19349 as the non-sensical values of 1, 2, and 3) to also be used as
19350 escape values indicating the presence of the old format.
19351
19352 The value returned via bytes_read should be used to increment the
19353 relevant pointer after calling read_initial_length().
19354
19355 [ Note: read_initial_length() and read_offset() are based on the
19356 document entitled "DWARF Debugging Information Format", revision
19357 3, draft 8, dated November 19, 2001. This document was obtained
19358 from:
19359
19360 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19361
19362 This document is only a draft and is subject to change. (So beware.)
19363
19364 Details regarding the older, non-standard 64-bit format were
19365 determined empirically by examining 64-bit ELF files produced by
19366 the SGI toolchain on an IRIX 6.5 machine.
19367
19368 - Kevin, July 16, 2002
19369 ] */
19370
19371 static LONGEST
19372 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19373 {
19374 LONGEST length = bfd_get_32 (abfd, buf);
19375
19376 if (length == 0xffffffff)
19377 {
19378 length = bfd_get_64 (abfd, buf + 4);
19379 *bytes_read = 12;
19380 }
19381 else if (length == 0)
19382 {
19383 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19384 length = bfd_get_64 (abfd, buf);
19385 *bytes_read = 8;
19386 }
19387 else
19388 {
19389 *bytes_read = 4;
19390 }
19391
19392 return length;
19393 }
19394
19395 /* Cover function for read_initial_length.
19396 Returns the length of the object at BUF, and stores the size of the
19397 initial length in *BYTES_READ and stores the size that offsets will be in
19398 *OFFSET_SIZE.
19399 If the initial length size is not equivalent to that specified in
19400 CU_HEADER then issue a complaint.
19401 This is useful when reading non-comp-unit headers. */
19402
19403 static LONGEST
19404 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19405 const struct comp_unit_head *cu_header,
19406 unsigned int *bytes_read,
19407 unsigned int *offset_size)
19408 {
19409 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19410
19411 gdb_assert (cu_header->initial_length_size == 4
19412 || cu_header->initial_length_size == 8
19413 || cu_header->initial_length_size == 12);
19414
19415 if (cu_header->initial_length_size != *bytes_read)
19416 complaint (&symfile_complaints,
19417 _("intermixed 32-bit and 64-bit DWARF sections"));
19418
19419 *offset_size = (*bytes_read == 4) ? 4 : 8;
19420 return length;
19421 }
19422
19423 /* Read an offset from the data stream. The size of the offset is
19424 given by cu_header->offset_size. */
19425
19426 static LONGEST
19427 read_offset (bfd *abfd, const gdb_byte *buf,
19428 const struct comp_unit_head *cu_header,
19429 unsigned int *bytes_read)
19430 {
19431 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19432
19433 *bytes_read = cu_header->offset_size;
19434 return offset;
19435 }
19436
19437 /* Read an offset from the data stream. */
19438
19439 static LONGEST
19440 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19441 {
19442 LONGEST retval = 0;
19443
19444 switch (offset_size)
19445 {
19446 case 4:
19447 retval = bfd_get_32 (abfd, buf);
19448 break;
19449 case 8:
19450 retval = bfd_get_64 (abfd, buf);
19451 break;
19452 default:
19453 internal_error (__FILE__, __LINE__,
19454 _("read_offset_1: bad switch [in module %s]"),
19455 bfd_get_filename (abfd));
19456 }
19457
19458 return retval;
19459 }
19460
19461 static const gdb_byte *
19462 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19463 {
19464 /* If the size of a host char is 8 bits, we can return a pointer
19465 to the buffer, otherwise we have to copy the data to a buffer
19466 allocated on the temporary obstack. */
19467 gdb_assert (HOST_CHAR_BIT == 8);
19468 return buf;
19469 }
19470
19471 static const char *
19472 read_direct_string (bfd *abfd, const gdb_byte *buf,
19473 unsigned int *bytes_read_ptr)
19474 {
19475 /* If the size of a host char is 8 bits, we can return a pointer
19476 to the string, otherwise we have to copy the string to a buffer
19477 allocated on the temporary obstack. */
19478 gdb_assert (HOST_CHAR_BIT == 8);
19479 if (*buf == '\0')
19480 {
19481 *bytes_read_ptr = 1;
19482 return NULL;
19483 }
19484 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19485 return (const char *) buf;
19486 }
19487
19488 /* Return pointer to string at section SECT offset STR_OFFSET with error
19489 reporting strings FORM_NAME and SECT_NAME. */
19490
19491 static const char *
19492 read_indirect_string_at_offset_from (struct objfile *objfile,
19493 bfd *abfd, LONGEST str_offset,
19494 struct dwarf2_section_info *sect,
19495 const char *form_name,
19496 const char *sect_name)
19497 {
19498 dwarf2_read_section (objfile, sect);
19499 if (sect->buffer == NULL)
19500 error (_("%s used without %s section [in module %s]"),
19501 form_name, sect_name, bfd_get_filename (abfd));
19502 if (str_offset >= sect->size)
19503 error (_("%s pointing outside of %s section [in module %s]"),
19504 form_name, sect_name, bfd_get_filename (abfd));
19505 gdb_assert (HOST_CHAR_BIT == 8);
19506 if (sect->buffer[str_offset] == '\0')
19507 return NULL;
19508 return (const char *) (sect->buffer + str_offset);
19509 }
19510
19511 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19512
19513 static const char *
19514 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19515 bfd *abfd, LONGEST str_offset)
19516 {
19517 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19518 abfd, str_offset,
19519 &dwarf2_per_objfile->str,
19520 "DW_FORM_strp", ".debug_str");
19521 }
19522
19523 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19524
19525 static const char *
19526 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19527 bfd *abfd, LONGEST str_offset)
19528 {
19529 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19530 abfd, str_offset,
19531 &dwarf2_per_objfile->line_str,
19532 "DW_FORM_line_strp",
19533 ".debug_line_str");
19534 }
19535
19536 /* Read a string at offset STR_OFFSET in the .debug_str section from
19537 the .dwz file DWZ. Throw an error if the offset is too large. If
19538 the string consists of a single NUL byte, return NULL; otherwise
19539 return a pointer to the string. */
19540
19541 static const char *
19542 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19543 LONGEST str_offset)
19544 {
19545 dwarf2_read_section (objfile, &dwz->str);
19546
19547 if (dwz->str.buffer == NULL)
19548 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19549 "section [in module %s]"),
19550 bfd_get_filename (dwz->dwz_bfd));
19551 if (str_offset >= dwz->str.size)
19552 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19553 ".debug_str section [in module %s]"),
19554 bfd_get_filename (dwz->dwz_bfd));
19555 gdb_assert (HOST_CHAR_BIT == 8);
19556 if (dwz->str.buffer[str_offset] == '\0')
19557 return NULL;
19558 return (const char *) (dwz->str.buffer + str_offset);
19559 }
19560
19561 /* Return pointer to string at .debug_str offset as read from BUF.
19562 BUF is assumed to be in a compilation unit described by CU_HEADER.
19563 Return *BYTES_READ_PTR count of bytes read from BUF. */
19564
19565 static const char *
19566 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19567 const gdb_byte *buf,
19568 const struct comp_unit_head *cu_header,
19569 unsigned int *bytes_read_ptr)
19570 {
19571 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19572
19573 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19574 }
19575
19576 /* Return pointer to string at .debug_line_str offset as read from BUF.
19577 BUF is assumed to be in a compilation unit described by CU_HEADER.
19578 Return *BYTES_READ_PTR count of bytes read from BUF. */
19579
19580 static const char *
19581 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19582 bfd *abfd, const gdb_byte *buf,
19583 const struct comp_unit_head *cu_header,
19584 unsigned int *bytes_read_ptr)
19585 {
19586 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19587
19588 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19589 str_offset);
19590 }
19591
19592 ULONGEST
19593 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19594 unsigned int *bytes_read_ptr)
19595 {
19596 ULONGEST result;
19597 unsigned int num_read;
19598 int shift;
19599 unsigned char byte;
19600
19601 result = 0;
19602 shift = 0;
19603 num_read = 0;
19604 while (1)
19605 {
19606 byte = bfd_get_8 (abfd, buf);
19607 buf++;
19608 num_read++;
19609 result |= ((ULONGEST) (byte & 127) << shift);
19610 if ((byte & 128) == 0)
19611 {
19612 break;
19613 }
19614 shift += 7;
19615 }
19616 *bytes_read_ptr = num_read;
19617 return result;
19618 }
19619
19620 static LONGEST
19621 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19622 unsigned int *bytes_read_ptr)
19623 {
19624 LONGEST result;
19625 int shift, num_read;
19626 unsigned char byte;
19627
19628 result = 0;
19629 shift = 0;
19630 num_read = 0;
19631 while (1)
19632 {
19633 byte = bfd_get_8 (abfd, buf);
19634 buf++;
19635 num_read++;
19636 result |= ((LONGEST) (byte & 127) << shift);
19637 shift += 7;
19638 if ((byte & 128) == 0)
19639 {
19640 break;
19641 }
19642 }
19643 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19644 result |= -(((LONGEST) 1) << shift);
19645 *bytes_read_ptr = num_read;
19646 return result;
19647 }
19648
19649 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19650 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19651 ADDR_SIZE is the size of addresses from the CU header. */
19652
19653 static CORE_ADDR
19654 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19655 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19656 {
19657 struct objfile *objfile = dwarf2_per_objfile->objfile;
19658 bfd *abfd = objfile->obfd;
19659 const gdb_byte *info_ptr;
19660
19661 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19662 if (dwarf2_per_objfile->addr.buffer == NULL)
19663 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19664 objfile_name (objfile));
19665 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19666 error (_("DW_FORM_addr_index pointing outside of "
19667 ".debug_addr section [in module %s]"),
19668 objfile_name (objfile));
19669 info_ptr = (dwarf2_per_objfile->addr.buffer
19670 + addr_base + addr_index * addr_size);
19671 if (addr_size == 4)
19672 return bfd_get_32 (abfd, info_ptr);
19673 else
19674 return bfd_get_64 (abfd, info_ptr);
19675 }
19676
19677 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19678
19679 static CORE_ADDR
19680 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19681 {
19682 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19683 cu->addr_base, cu->header.addr_size);
19684 }
19685
19686 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19687
19688 static CORE_ADDR
19689 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19690 unsigned int *bytes_read)
19691 {
19692 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19693 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19694
19695 return read_addr_index (cu, addr_index);
19696 }
19697
19698 /* Data structure to pass results from dwarf2_read_addr_index_reader
19699 back to dwarf2_read_addr_index. */
19700
19701 struct dwarf2_read_addr_index_data
19702 {
19703 ULONGEST addr_base;
19704 int addr_size;
19705 };
19706
19707 /* die_reader_func for dwarf2_read_addr_index. */
19708
19709 static void
19710 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19711 const gdb_byte *info_ptr,
19712 struct die_info *comp_unit_die,
19713 int has_children,
19714 void *data)
19715 {
19716 struct dwarf2_cu *cu = reader->cu;
19717 struct dwarf2_read_addr_index_data *aidata =
19718 (struct dwarf2_read_addr_index_data *) data;
19719
19720 aidata->addr_base = cu->addr_base;
19721 aidata->addr_size = cu->header.addr_size;
19722 }
19723
19724 /* Given an index in .debug_addr, fetch the value.
19725 NOTE: This can be called during dwarf expression evaluation,
19726 long after the debug information has been read, and thus per_cu->cu
19727 may no longer exist. */
19728
19729 CORE_ADDR
19730 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19731 unsigned int addr_index)
19732 {
19733 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19734 struct objfile *objfile = dwarf2_per_objfile->objfile;
19735 struct dwarf2_cu *cu = per_cu->cu;
19736 ULONGEST addr_base;
19737 int addr_size;
19738
19739 /* We need addr_base and addr_size.
19740 If we don't have PER_CU->cu, we have to get it.
19741 Nasty, but the alternative is storing the needed info in PER_CU,
19742 which at this point doesn't seem justified: it's not clear how frequently
19743 it would get used and it would increase the size of every PER_CU.
19744 Entry points like dwarf2_per_cu_addr_size do a similar thing
19745 so we're not in uncharted territory here.
19746 Alas we need to be a bit more complicated as addr_base is contained
19747 in the DIE.
19748
19749 We don't need to read the entire CU(/TU).
19750 We just need the header and top level die.
19751
19752 IWBN to use the aging mechanism to let us lazily later discard the CU.
19753 For now we skip this optimization. */
19754
19755 if (cu != NULL)
19756 {
19757 addr_base = cu->addr_base;
19758 addr_size = cu->header.addr_size;
19759 }
19760 else
19761 {
19762 struct dwarf2_read_addr_index_data aidata;
19763
19764 /* Note: We can't use init_cutu_and_read_dies_simple here,
19765 we need addr_base. */
19766 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
19767 dwarf2_read_addr_index_reader, &aidata);
19768 addr_base = aidata.addr_base;
19769 addr_size = aidata.addr_size;
19770 }
19771
19772 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19773 addr_size);
19774 }
19775
19776 /* Given a DW_FORM_GNU_str_index, fetch the string.
19777 This is only used by the Fission support. */
19778
19779 static const char *
19780 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19781 {
19782 struct dwarf2_cu *cu = reader->cu;
19783 struct dwarf2_per_objfile *dwarf2_per_objfile
19784 = cu->per_cu->dwarf2_per_objfile;
19785 struct objfile *objfile = dwarf2_per_objfile->objfile;
19786 const char *objf_name = objfile_name (objfile);
19787 bfd *abfd = objfile->obfd;
19788 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19789 struct dwarf2_section_info *str_offsets_section =
19790 &reader->dwo_file->sections.str_offsets;
19791 const gdb_byte *info_ptr;
19792 ULONGEST str_offset;
19793 static const char form_name[] = "DW_FORM_GNU_str_index";
19794
19795 dwarf2_read_section (objfile, str_section);
19796 dwarf2_read_section (objfile, str_offsets_section);
19797 if (str_section->buffer == NULL)
19798 error (_("%s used without .debug_str.dwo section"
19799 " in CU at offset %s [in module %s]"),
19800 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19801 if (str_offsets_section->buffer == NULL)
19802 error (_("%s used without .debug_str_offsets.dwo section"
19803 " in CU at offset %s [in module %s]"),
19804 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19805 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19806 error (_("%s pointing outside of .debug_str_offsets.dwo"
19807 " section in CU at offset %s [in module %s]"),
19808 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19809 info_ptr = (str_offsets_section->buffer
19810 + str_index * cu->header.offset_size);
19811 if (cu->header.offset_size == 4)
19812 str_offset = bfd_get_32 (abfd, info_ptr);
19813 else
19814 str_offset = bfd_get_64 (abfd, info_ptr);
19815 if (str_offset >= str_section->size)
19816 error (_("Offset from %s pointing outside of"
19817 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19818 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19819 return (const char *) (str_section->buffer + str_offset);
19820 }
19821
19822 /* Return the length of an LEB128 number in BUF. */
19823
19824 static int
19825 leb128_size (const gdb_byte *buf)
19826 {
19827 const gdb_byte *begin = buf;
19828 gdb_byte byte;
19829
19830 while (1)
19831 {
19832 byte = *buf++;
19833 if ((byte & 128) == 0)
19834 return buf - begin;
19835 }
19836 }
19837
19838 static void
19839 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19840 {
19841 switch (lang)
19842 {
19843 case DW_LANG_C89:
19844 case DW_LANG_C99:
19845 case DW_LANG_C11:
19846 case DW_LANG_C:
19847 case DW_LANG_UPC:
19848 cu->language = language_c;
19849 break;
19850 case DW_LANG_Java:
19851 case DW_LANG_C_plus_plus:
19852 case DW_LANG_C_plus_plus_11:
19853 case DW_LANG_C_plus_plus_14:
19854 cu->language = language_cplus;
19855 break;
19856 case DW_LANG_D:
19857 cu->language = language_d;
19858 break;
19859 case DW_LANG_Fortran77:
19860 case DW_LANG_Fortran90:
19861 case DW_LANG_Fortran95:
19862 case DW_LANG_Fortran03:
19863 case DW_LANG_Fortran08:
19864 cu->language = language_fortran;
19865 break;
19866 case DW_LANG_Go:
19867 cu->language = language_go;
19868 break;
19869 case DW_LANG_Mips_Assembler:
19870 cu->language = language_asm;
19871 break;
19872 case DW_LANG_Ada83:
19873 case DW_LANG_Ada95:
19874 cu->language = language_ada;
19875 break;
19876 case DW_LANG_Modula2:
19877 cu->language = language_m2;
19878 break;
19879 case DW_LANG_Pascal83:
19880 cu->language = language_pascal;
19881 break;
19882 case DW_LANG_ObjC:
19883 cu->language = language_objc;
19884 break;
19885 case DW_LANG_Rust:
19886 case DW_LANG_Rust_old:
19887 cu->language = language_rust;
19888 break;
19889 case DW_LANG_Cobol74:
19890 case DW_LANG_Cobol85:
19891 default:
19892 cu->language = language_minimal;
19893 break;
19894 }
19895 cu->language_defn = language_def (cu->language);
19896 }
19897
19898 /* Return the named attribute or NULL if not there. */
19899
19900 static struct attribute *
19901 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19902 {
19903 for (;;)
19904 {
19905 unsigned int i;
19906 struct attribute *spec = NULL;
19907
19908 for (i = 0; i < die->num_attrs; ++i)
19909 {
19910 if (die->attrs[i].name == name)
19911 return &die->attrs[i];
19912 if (die->attrs[i].name == DW_AT_specification
19913 || die->attrs[i].name == DW_AT_abstract_origin)
19914 spec = &die->attrs[i];
19915 }
19916
19917 if (!spec)
19918 break;
19919
19920 die = follow_die_ref (die, spec, &cu);
19921 }
19922
19923 return NULL;
19924 }
19925
19926 /* Return the named attribute or NULL if not there,
19927 but do not follow DW_AT_specification, etc.
19928 This is for use in contexts where we're reading .debug_types dies.
19929 Following DW_AT_specification, DW_AT_abstract_origin will take us
19930 back up the chain, and we want to go down. */
19931
19932 static struct attribute *
19933 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
19934 {
19935 unsigned int i;
19936
19937 for (i = 0; i < die->num_attrs; ++i)
19938 if (die->attrs[i].name == name)
19939 return &die->attrs[i];
19940
19941 return NULL;
19942 }
19943
19944 /* Return the string associated with a string-typed attribute, or NULL if it
19945 is either not found or is of an incorrect type. */
19946
19947 static const char *
19948 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19949 {
19950 struct attribute *attr;
19951 const char *str = NULL;
19952
19953 attr = dwarf2_attr (die, name, cu);
19954
19955 if (attr != NULL)
19956 {
19957 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
19958 || attr->form == DW_FORM_string
19959 || attr->form == DW_FORM_GNU_str_index
19960 || attr->form == DW_FORM_GNU_strp_alt)
19961 str = DW_STRING (attr);
19962 else
19963 complaint (&symfile_complaints,
19964 _("string type expected for attribute %s for "
19965 "DIE at %s in module %s"),
19966 dwarf_attr_name (name), sect_offset_str (die->sect_off),
19967 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
19968 }
19969
19970 return str;
19971 }
19972
19973 /* Return non-zero iff the attribute NAME is defined for the given DIE,
19974 and holds a non-zero value. This function should only be used for
19975 DW_FORM_flag or DW_FORM_flag_present attributes. */
19976
19977 static int
19978 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
19979 {
19980 struct attribute *attr = dwarf2_attr (die, name, cu);
19981
19982 return (attr && DW_UNSND (attr));
19983 }
19984
19985 static int
19986 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
19987 {
19988 /* A DIE is a declaration if it has a DW_AT_declaration attribute
19989 which value is non-zero. However, we have to be careful with
19990 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
19991 (via dwarf2_flag_true_p) follows this attribute. So we may
19992 end up accidently finding a declaration attribute that belongs
19993 to a different DIE referenced by the specification attribute,
19994 even though the given DIE does not have a declaration attribute. */
19995 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
19996 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
19997 }
19998
19999 /* Return the die giving the specification for DIE, if there is
20000 one. *SPEC_CU is the CU containing DIE on input, and the CU
20001 containing the return value on output. If there is no
20002 specification, but there is an abstract origin, that is
20003 returned. */
20004
20005 static struct die_info *
20006 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20007 {
20008 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20009 *spec_cu);
20010
20011 if (spec_attr == NULL)
20012 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20013
20014 if (spec_attr == NULL)
20015 return NULL;
20016 else
20017 return follow_die_ref (die, spec_attr, spec_cu);
20018 }
20019
20020 /* Stub for free_line_header to match void * callback types. */
20021
20022 static void
20023 free_line_header_voidp (void *arg)
20024 {
20025 struct line_header *lh = (struct line_header *) arg;
20026
20027 delete lh;
20028 }
20029
20030 void
20031 line_header::add_include_dir (const char *include_dir)
20032 {
20033 if (dwarf_line_debug >= 2)
20034 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20035 include_dirs.size () + 1, include_dir);
20036
20037 include_dirs.push_back (include_dir);
20038 }
20039
20040 void
20041 line_header::add_file_name (const char *name,
20042 dir_index d_index,
20043 unsigned int mod_time,
20044 unsigned int length)
20045 {
20046 if (dwarf_line_debug >= 2)
20047 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
20048 (unsigned) file_names.size () + 1, name);
20049
20050 file_names.emplace_back (name, d_index, mod_time, length);
20051 }
20052
20053 /* A convenience function to find the proper .debug_line section for a CU. */
20054
20055 static struct dwarf2_section_info *
20056 get_debug_line_section (struct dwarf2_cu *cu)
20057 {
20058 struct dwarf2_section_info *section;
20059 struct dwarf2_per_objfile *dwarf2_per_objfile
20060 = cu->per_cu->dwarf2_per_objfile;
20061
20062 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20063 DWO file. */
20064 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20065 section = &cu->dwo_unit->dwo_file->sections.line;
20066 else if (cu->per_cu->is_dwz)
20067 {
20068 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
20069
20070 section = &dwz->line;
20071 }
20072 else
20073 section = &dwarf2_per_objfile->line;
20074
20075 return section;
20076 }
20077
20078 /* Read directory or file name entry format, starting with byte of
20079 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20080 entries count and the entries themselves in the described entry
20081 format. */
20082
20083 static void
20084 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20085 bfd *abfd, const gdb_byte **bufp,
20086 struct line_header *lh,
20087 const struct comp_unit_head *cu_header,
20088 void (*callback) (struct line_header *lh,
20089 const char *name,
20090 dir_index d_index,
20091 unsigned int mod_time,
20092 unsigned int length))
20093 {
20094 gdb_byte format_count, formati;
20095 ULONGEST data_count, datai;
20096 const gdb_byte *buf = *bufp;
20097 const gdb_byte *format_header_data;
20098 unsigned int bytes_read;
20099
20100 format_count = read_1_byte (abfd, buf);
20101 buf += 1;
20102 format_header_data = buf;
20103 for (formati = 0; formati < format_count; formati++)
20104 {
20105 read_unsigned_leb128 (abfd, buf, &bytes_read);
20106 buf += bytes_read;
20107 read_unsigned_leb128 (abfd, buf, &bytes_read);
20108 buf += bytes_read;
20109 }
20110
20111 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20112 buf += bytes_read;
20113 for (datai = 0; datai < data_count; datai++)
20114 {
20115 const gdb_byte *format = format_header_data;
20116 struct file_entry fe;
20117
20118 for (formati = 0; formati < format_count; formati++)
20119 {
20120 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20121 format += bytes_read;
20122
20123 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20124 format += bytes_read;
20125
20126 gdb::optional<const char *> string;
20127 gdb::optional<unsigned int> uint;
20128
20129 switch (form)
20130 {
20131 case DW_FORM_string:
20132 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20133 buf += bytes_read;
20134 break;
20135
20136 case DW_FORM_line_strp:
20137 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20138 abfd, buf,
20139 cu_header,
20140 &bytes_read));
20141 buf += bytes_read;
20142 break;
20143
20144 case DW_FORM_data1:
20145 uint.emplace (read_1_byte (abfd, buf));
20146 buf += 1;
20147 break;
20148
20149 case DW_FORM_data2:
20150 uint.emplace (read_2_bytes (abfd, buf));
20151 buf += 2;
20152 break;
20153
20154 case DW_FORM_data4:
20155 uint.emplace (read_4_bytes (abfd, buf));
20156 buf += 4;
20157 break;
20158
20159 case DW_FORM_data8:
20160 uint.emplace (read_8_bytes (abfd, buf));
20161 buf += 8;
20162 break;
20163
20164 case DW_FORM_udata:
20165 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20166 buf += bytes_read;
20167 break;
20168
20169 case DW_FORM_block:
20170 /* It is valid only for DW_LNCT_timestamp which is ignored by
20171 current GDB. */
20172 break;
20173 }
20174
20175 switch (content_type)
20176 {
20177 case DW_LNCT_path:
20178 if (string.has_value ())
20179 fe.name = *string;
20180 break;
20181 case DW_LNCT_directory_index:
20182 if (uint.has_value ())
20183 fe.d_index = (dir_index) *uint;
20184 break;
20185 case DW_LNCT_timestamp:
20186 if (uint.has_value ())
20187 fe.mod_time = *uint;
20188 break;
20189 case DW_LNCT_size:
20190 if (uint.has_value ())
20191 fe.length = *uint;
20192 break;
20193 case DW_LNCT_MD5:
20194 break;
20195 default:
20196 complaint (&symfile_complaints,
20197 _("Unknown format content type %s"),
20198 pulongest (content_type));
20199 }
20200 }
20201
20202 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20203 }
20204
20205 *bufp = buf;
20206 }
20207
20208 /* Read the statement program header starting at OFFSET in
20209 .debug_line, or .debug_line.dwo. Return a pointer
20210 to a struct line_header, allocated using xmalloc.
20211 Returns NULL if there is a problem reading the header, e.g., if it
20212 has a version we don't understand.
20213
20214 NOTE: the strings in the include directory and file name tables of
20215 the returned object point into the dwarf line section buffer,
20216 and must not be freed. */
20217
20218 static line_header_up
20219 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20220 {
20221 const gdb_byte *line_ptr;
20222 unsigned int bytes_read, offset_size;
20223 int i;
20224 const char *cur_dir, *cur_file;
20225 struct dwarf2_section_info *section;
20226 bfd *abfd;
20227 struct dwarf2_per_objfile *dwarf2_per_objfile
20228 = cu->per_cu->dwarf2_per_objfile;
20229
20230 section = get_debug_line_section (cu);
20231 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20232 if (section->buffer == NULL)
20233 {
20234 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20235 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
20236 else
20237 complaint (&symfile_complaints, _("missing .debug_line section"));
20238 return 0;
20239 }
20240
20241 /* We can't do this until we know the section is non-empty.
20242 Only then do we know we have such a section. */
20243 abfd = get_section_bfd_owner (section);
20244
20245 /* Make sure that at least there's room for the total_length field.
20246 That could be 12 bytes long, but we're just going to fudge that. */
20247 if (to_underlying (sect_off) + 4 >= section->size)
20248 {
20249 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20250 return 0;
20251 }
20252
20253 line_header_up lh (new line_header ());
20254
20255 lh->sect_off = sect_off;
20256 lh->offset_in_dwz = cu->per_cu->is_dwz;
20257
20258 line_ptr = section->buffer + to_underlying (sect_off);
20259
20260 /* Read in the header. */
20261 lh->total_length =
20262 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20263 &bytes_read, &offset_size);
20264 line_ptr += bytes_read;
20265 if (line_ptr + lh->total_length > (section->buffer + section->size))
20266 {
20267 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20268 return 0;
20269 }
20270 lh->statement_program_end = line_ptr + lh->total_length;
20271 lh->version = read_2_bytes (abfd, line_ptr);
20272 line_ptr += 2;
20273 if (lh->version > 5)
20274 {
20275 /* This is a version we don't understand. The format could have
20276 changed in ways we don't handle properly so just punt. */
20277 complaint (&symfile_complaints,
20278 _("unsupported version in .debug_line section"));
20279 return NULL;
20280 }
20281 if (lh->version >= 5)
20282 {
20283 gdb_byte segment_selector_size;
20284
20285 /* Skip address size. */
20286 read_1_byte (abfd, line_ptr);
20287 line_ptr += 1;
20288
20289 segment_selector_size = read_1_byte (abfd, line_ptr);
20290 line_ptr += 1;
20291 if (segment_selector_size != 0)
20292 {
20293 complaint (&symfile_complaints,
20294 _("unsupported segment selector size %u "
20295 "in .debug_line section"),
20296 segment_selector_size);
20297 return NULL;
20298 }
20299 }
20300 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20301 line_ptr += offset_size;
20302 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20303 line_ptr += 1;
20304 if (lh->version >= 4)
20305 {
20306 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20307 line_ptr += 1;
20308 }
20309 else
20310 lh->maximum_ops_per_instruction = 1;
20311
20312 if (lh->maximum_ops_per_instruction == 0)
20313 {
20314 lh->maximum_ops_per_instruction = 1;
20315 complaint (&symfile_complaints,
20316 _("invalid maximum_ops_per_instruction "
20317 "in `.debug_line' section"));
20318 }
20319
20320 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20321 line_ptr += 1;
20322 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20323 line_ptr += 1;
20324 lh->line_range = read_1_byte (abfd, line_ptr);
20325 line_ptr += 1;
20326 lh->opcode_base = read_1_byte (abfd, line_ptr);
20327 line_ptr += 1;
20328 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20329
20330 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20331 for (i = 1; i < lh->opcode_base; ++i)
20332 {
20333 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20334 line_ptr += 1;
20335 }
20336
20337 if (lh->version >= 5)
20338 {
20339 /* Read directory table. */
20340 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20341 &cu->header,
20342 [] (struct line_header *lh, const char *name,
20343 dir_index d_index, unsigned int mod_time,
20344 unsigned int length)
20345 {
20346 lh->add_include_dir (name);
20347 });
20348
20349 /* Read file name table. */
20350 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20351 &cu->header,
20352 [] (struct line_header *lh, const char *name,
20353 dir_index d_index, unsigned int mod_time,
20354 unsigned int length)
20355 {
20356 lh->add_file_name (name, d_index, mod_time, length);
20357 });
20358 }
20359 else
20360 {
20361 /* Read directory table. */
20362 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20363 {
20364 line_ptr += bytes_read;
20365 lh->add_include_dir (cur_dir);
20366 }
20367 line_ptr += bytes_read;
20368
20369 /* Read file name table. */
20370 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20371 {
20372 unsigned int mod_time, length;
20373 dir_index d_index;
20374
20375 line_ptr += bytes_read;
20376 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20377 line_ptr += bytes_read;
20378 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20379 line_ptr += bytes_read;
20380 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20381 line_ptr += bytes_read;
20382
20383 lh->add_file_name (cur_file, d_index, mod_time, length);
20384 }
20385 line_ptr += bytes_read;
20386 }
20387 lh->statement_program_start = line_ptr;
20388
20389 if (line_ptr > (section->buffer + section->size))
20390 complaint (&symfile_complaints,
20391 _("line number info header doesn't "
20392 "fit in `.debug_line' section"));
20393
20394 return lh;
20395 }
20396
20397 /* Subroutine of dwarf_decode_lines to simplify it.
20398 Return the file name of the psymtab for included file FILE_INDEX
20399 in line header LH of PST.
20400 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20401 If space for the result is malloc'd, *NAME_HOLDER will be set.
20402 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20403
20404 static const char *
20405 psymtab_include_file_name (const struct line_header *lh, int file_index,
20406 const struct partial_symtab *pst,
20407 const char *comp_dir,
20408 gdb::unique_xmalloc_ptr<char> *name_holder)
20409 {
20410 const file_entry &fe = lh->file_names[file_index];
20411 const char *include_name = fe.name;
20412 const char *include_name_to_compare = include_name;
20413 const char *pst_filename;
20414 int file_is_pst;
20415
20416 const char *dir_name = fe.include_dir (lh);
20417
20418 gdb::unique_xmalloc_ptr<char> hold_compare;
20419 if (!IS_ABSOLUTE_PATH (include_name)
20420 && (dir_name != NULL || comp_dir != NULL))
20421 {
20422 /* Avoid creating a duplicate psymtab for PST.
20423 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20424 Before we do the comparison, however, we need to account
20425 for DIR_NAME and COMP_DIR.
20426 First prepend dir_name (if non-NULL). If we still don't
20427 have an absolute path prepend comp_dir (if non-NULL).
20428 However, the directory we record in the include-file's
20429 psymtab does not contain COMP_DIR (to match the
20430 corresponding symtab(s)).
20431
20432 Example:
20433
20434 bash$ cd /tmp
20435 bash$ gcc -g ./hello.c
20436 include_name = "hello.c"
20437 dir_name = "."
20438 DW_AT_comp_dir = comp_dir = "/tmp"
20439 DW_AT_name = "./hello.c"
20440
20441 */
20442
20443 if (dir_name != NULL)
20444 {
20445 name_holder->reset (concat (dir_name, SLASH_STRING,
20446 include_name, (char *) NULL));
20447 include_name = name_holder->get ();
20448 include_name_to_compare = include_name;
20449 }
20450 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20451 {
20452 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20453 include_name, (char *) NULL));
20454 include_name_to_compare = hold_compare.get ();
20455 }
20456 }
20457
20458 pst_filename = pst->filename;
20459 gdb::unique_xmalloc_ptr<char> copied_name;
20460 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20461 {
20462 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20463 pst_filename, (char *) NULL));
20464 pst_filename = copied_name.get ();
20465 }
20466
20467 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20468
20469 if (file_is_pst)
20470 return NULL;
20471 return include_name;
20472 }
20473
20474 /* State machine to track the state of the line number program. */
20475
20476 class lnp_state_machine
20477 {
20478 public:
20479 /* Initialize a machine state for the start of a line number
20480 program. */
20481 lnp_state_machine (gdbarch *arch, line_header *lh, bool record_lines_p);
20482
20483 file_entry *current_file ()
20484 {
20485 /* lh->file_names is 0-based, but the file name numbers in the
20486 statement program are 1-based. */
20487 return m_line_header->file_name_at (m_file);
20488 }
20489
20490 /* Record the line in the state machine. END_SEQUENCE is true if
20491 we're processing the end of a sequence. */
20492 void record_line (bool end_sequence);
20493
20494 /* Check address and if invalid nop-out the rest of the lines in this
20495 sequence. */
20496 void check_line_address (struct dwarf2_cu *cu,
20497 const gdb_byte *line_ptr,
20498 CORE_ADDR lowpc, CORE_ADDR address);
20499
20500 void handle_set_discriminator (unsigned int discriminator)
20501 {
20502 m_discriminator = discriminator;
20503 m_line_has_non_zero_discriminator |= discriminator != 0;
20504 }
20505
20506 /* Handle DW_LNE_set_address. */
20507 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20508 {
20509 m_op_index = 0;
20510 address += baseaddr;
20511 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20512 }
20513
20514 /* Handle DW_LNS_advance_pc. */
20515 void handle_advance_pc (CORE_ADDR adjust);
20516
20517 /* Handle a special opcode. */
20518 void handle_special_opcode (unsigned char op_code);
20519
20520 /* Handle DW_LNS_advance_line. */
20521 void handle_advance_line (int line_delta)
20522 {
20523 advance_line (line_delta);
20524 }
20525
20526 /* Handle DW_LNS_set_file. */
20527 void handle_set_file (file_name_index file);
20528
20529 /* Handle DW_LNS_negate_stmt. */
20530 void handle_negate_stmt ()
20531 {
20532 m_is_stmt = !m_is_stmt;
20533 }
20534
20535 /* Handle DW_LNS_const_add_pc. */
20536 void handle_const_add_pc ();
20537
20538 /* Handle DW_LNS_fixed_advance_pc. */
20539 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20540 {
20541 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20542 m_op_index = 0;
20543 }
20544
20545 /* Handle DW_LNS_copy. */
20546 void handle_copy ()
20547 {
20548 record_line (false);
20549 m_discriminator = 0;
20550 }
20551
20552 /* Handle DW_LNE_end_sequence. */
20553 void handle_end_sequence ()
20554 {
20555 m_record_line_callback = ::record_line;
20556 }
20557
20558 private:
20559 /* Advance the line by LINE_DELTA. */
20560 void advance_line (int line_delta)
20561 {
20562 m_line += line_delta;
20563
20564 if (line_delta != 0)
20565 m_line_has_non_zero_discriminator = m_discriminator != 0;
20566 }
20567
20568 gdbarch *m_gdbarch;
20569
20570 /* True if we're recording lines.
20571 Otherwise we're building partial symtabs and are just interested in
20572 finding include files mentioned by the line number program. */
20573 bool m_record_lines_p;
20574
20575 /* The line number header. */
20576 line_header *m_line_header;
20577
20578 /* These are part of the standard DWARF line number state machine,
20579 and initialized according to the DWARF spec. */
20580
20581 unsigned char m_op_index = 0;
20582 /* The line table index (1-based) of the current file. */
20583 file_name_index m_file = (file_name_index) 1;
20584 unsigned int m_line = 1;
20585
20586 /* These are initialized in the constructor. */
20587
20588 CORE_ADDR m_address;
20589 bool m_is_stmt;
20590 unsigned int m_discriminator;
20591
20592 /* Additional bits of state we need to track. */
20593
20594 /* The last file that we called dwarf2_start_subfile for.
20595 This is only used for TLLs. */
20596 unsigned int m_last_file = 0;
20597 /* The last file a line number was recorded for. */
20598 struct subfile *m_last_subfile = NULL;
20599
20600 /* The function to call to record a line. */
20601 record_line_ftype *m_record_line_callback = NULL;
20602
20603 /* The last line number that was recorded, used to coalesce
20604 consecutive entries for the same line. This can happen, for
20605 example, when discriminators are present. PR 17276. */
20606 unsigned int m_last_line = 0;
20607 bool m_line_has_non_zero_discriminator = false;
20608 };
20609
20610 void
20611 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20612 {
20613 CORE_ADDR addr_adj = (((m_op_index + adjust)
20614 / m_line_header->maximum_ops_per_instruction)
20615 * m_line_header->minimum_instruction_length);
20616 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20617 m_op_index = ((m_op_index + adjust)
20618 % m_line_header->maximum_ops_per_instruction);
20619 }
20620
20621 void
20622 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20623 {
20624 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20625 CORE_ADDR addr_adj = (((m_op_index
20626 + (adj_opcode / m_line_header->line_range))
20627 / m_line_header->maximum_ops_per_instruction)
20628 * m_line_header->minimum_instruction_length);
20629 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20630 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20631 % m_line_header->maximum_ops_per_instruction);
20632
20633 int line_delta = (m_line_header->line_base
20634 + (adj_opcode % m_line_header->line_range));
20635 advance_line (line_delta);
20636 record_line (false);
20637 m_discriminator = 0;
20638 }
20639
20640 void
20641 lnp_state_machine::handle_set_file (file_name_index file)
20642 {
20643 m_file = file;
20644
20645 const file_entry *fe = current_file ();
20646 if (fe == NULL)
20647 dwarf2_debug_line_missing_file_complaint ();
20648 else if (m_record_lines_p)
20649 {
20650 const char *dir = fe->include_dir (m_line_header);
20651
20652 m_last_subfile = current_subfile;
20653 m_line_has_non_zero_discriminator = m_discriminator != 0;
20654 dwarf2_start_subfile (fe->name, dir);
20655 }
20656 }
20657
20658 void
20659 lnp_state_machine::handle_const_add_pc ()
20660 {
20661 CORE_ADDR adjust
20662 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20663
20664 CORE_ADDR addr_adj
20665 = (((m_op_index + adjust)
20666 / m_line_header->maximum_ops_per_instruction)
20667 * m_line_header->minimum_instruction_length);
20668
20669 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20670 m_op_index = ((m_op_index + adjust)
20671 % m_line_header->maximum_ops_per_instruction);
20672 }
20673
20674 /* Ignore this record_line request. */
20675
20676 static void
20677 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
20678 {
20679 return;
20680 }
20681
20682 /* Return non-zero if we should add LINE to the line number table.
20683 LINE is the line to add, LAST_LINE is the last line that was added,
20684 LAST_SUBFILE is the subfile for LAST_LINE.
20685 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20686 had a non-zero discriminator.
20687
20688 We have to be careful in the presence of discriminators.
20689 E.g., for this line:
20690
20691 for (i = 0; i < 100000; i++);
20692
20693 clang can emit four line number entries for that one line,
20694 each with a different discriminator.
20695 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20696
20697 However, we want gdb to coalesce all four entries into one.
20698 Otherwise the user could stepi into the middle of the line and
20699 gdb would get confused about whether the pc really was in the
20700 middle of the line.
20701
20702 Things are further complicated by the fact that two consecutive
20703 line number entries for the same line is a heuristic used by gcc
20704 to denote the end of the prologue. So we can't just discard duplicate
20705 entries, we have to be selective about it. The heuristic we use is
20706 that we only collapse consecutive entries for the same line if at least
20707 one of those entries has a non-zero discriminator. PR 17276.
20708
20709 Note: Addresses in the line number state machine can never go backwards
20710 within one sequence, thus this coalescing is ok. */
20711
20712 static int
20713 dwarf_record_line_p (unsigned int line, unsigned int last_line,
20714 int line_has_non_zero_discriminator,
20715 struct subfile *last_subfile)
20716 {
20717 if (current_subfile != last_subfile)
20718 return 1;
20719 if (line != last_line)
20720 return 1;
20721 /* Same line for the same file that we've seen already.
20722 As a last check, for pr 17276, only record the line if the line
20723 has never had a non-zero discriminator. */
20724 if (!line_has_non_zero_discriminator)
20725 return 1;
20726 return 0;
20727 }
20728
20729 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
20730 in the line table of subfile SUBFILE. */
20731
20732 static void
20733 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20734 unsigned int line, CORE_ADDR address,
20735 record_line_ftype p_record_line)
20736 {
20737 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20738
20739 if (dwarf_line_debug)
20740 {
20741 fprintf_unfiltered (gdb_stdlog,
20742 "Recording line %u, file %s, address %s\n",
20743 line, lbasename (subfile->name),
20744 paddress (gdbarch, address));
20745 }
20746
20747 (*p_record_line) (subfile, line, addr);
20748 }
20749
20750 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20751 Mark the end of a set of line number records.
20752 The arguments are the same as for dwarf_record_line_1.
20753 If SUBFILE is NULL the request is ignored. */
20754
20755 static void
20756 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20757 CORE_ADDR address, record_line_ftype p_record_line)
20758 {
20759 if (subfile == NULL)
20760 return;
20761
20762 if (dwarf_line_debug)
20763 {
20764 fprintf_unfiltered (gdb_stdlog,
20765 "Finishing current line, file %s, address %s\n",
20766 lbasename (subfile->name),
20767 paddress (gdbarch, address));
20768 }
20769
20770 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
20771 }
20772
20773 void
20774 lnp_state_machine::record_line (bool end_sequence)
20775 {
20776 if (dwarf_line_debug)
20777 {
20778 fprintf_unfiltered (gdb_stdlog,
20779 "Processing actual line %u: file %u,"
20780 " address %s, is_stmt %u, discrim %u\n",
20781 m_line, to_underlying (m_file),
20782 paddress (m_gdbarch, m_address),
20783 m_is_stmt, m_discriminator);
20784 }
20785
20786 file_entry *fe = current_file ();
20787
20788 if (fe == NULL)
20789 dwarf2_debug_line_missing_file_complaint ();
20790 /* For now we ignore lines not starting on an instruction boundary.
20791 But not when processing end_sequence for compatibility with the
20792 previous version of the code. */
20793 else if (m_op_index == 0 || end_sequence)
20794 {
20795 fe->included_p = 1;
20796 if (m_record_lines_p && m_is_stmt)
20797 {
20798 if (m_last_subfile != current_subfile || end_sequence)
20799 {
20800 dwarf_finish_line (m_gdbarch, m_last_subfile,
20801 m_address, m_record_line_callback);
20802 }
20803
20804 if (!end_sequence)
20805 {
20806 if (dwarf_record_line_p (m_line, m_last_line,
20807 m_line_has_non_zero_discriminator,
20808 m_last_subfile))
20809 {
20810 dwarf_record_line_1 (m_gdbarch, current_subfile,
20811 m_line, m_address,
20812 m_record_line_callback);
20813 }
20814 m_last_subfile = current_subfile;
20815 m_last_line = m_line;
20816 }
20817 }
20818 }
20819 }
20820
20821 lnp_state_machine::lnp_state_machine (gdbarch *arch, line_header *lh,
20822 bool record_lines_p)
20823 {
20824 m_gdbarch = arch;
20825 m_record_lines_p = record_lines_p;
20826 m_line_header = lh;
20827
20828 m_record_line_callback = ::record_line;
20829
20830 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20831 was a line entry for it so that the backend has a chance to adjust it
20832 and also record it in case it needs it. This is currently used by MIPS
20833 code, cf. `mips_adjust_dwarf2_line'. */
20834 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20835 m_is_stmt = lh->default_is_stmt;
20836 m_discriminator = 0;
20837 }
20838
20839 void
20840 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20841 const gdb_byte *line_ptr,
20842 CORE_ADDR lowpc, CORE_ADDR address)
20843 {
20844 /* If address < lowpc then it's not a usable value, it's outside the
20845 pc range of the CU. However, we restrict the test to only address
20846 values of zero to preserve GDB's previous behaviour which is to
20847 handle the specific case of a function being GC'd by the linker. */
20848
20849 if (address == 0 && address < lowpc)
20850 {
20851 /* This line table is for a function which has been
20852 GCd by the linker. Ignore it. PR gdb/12528 */
20853
20854 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20855 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20856
20857 complaint (&symfile_complaints,
20858 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20859 line_offset, objfile_name (objfile));
20860 m_record_line_callback = noop_record_line;
20861 /* Note: record_line_callback is left as noop_record_line until
20862 we see DW_LNE_end_sequence. */
20863 }
20864 }
20865
20866 /* Subroutine of dwarf_decode_lines to simplify it.
20867 Process the line number information in LH.
20868 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20869 program in order to set included_p for every referenced header. */
20870
20871 static void
20872 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20873 const int decode_for_pst_p, CORE_ADDR lowpc)
20874 {
20875 const gdb_byte *line_ptr, *extended_end;
20876 const gdb_byte *line_end;
20877 unsigned int bytes_read, extended_len;
20878 unsigned char op_code, extended_op;
20879 CORE_ADDR baseaddr;
20880 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20881 bfd *abfd = objfile->obfd;
20882 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20883 /* True if we're recording line info (as opposed to building partial
20884 symtabs and just interested in finding include files mentioned by
20885 the line number program). */
20886 bool record_lines_p = !decode_for_pst_p;
20887
20888 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20889
20890 line_ptr = lh->statement_program_start;
20891 line_end = lh->statement_program_end;
20892
20893 /* Read the statement sequences until there's nothing left. */
20894 while (line_ptr < line_end)
20895 {
20896 /* The DWARF line number program state machine. Reset the state
20897 machine at the start of each sequence. */
20898 lnp_state_machine state_machine (gdbarch, lh, record_lines_p);
20899 bool end_sequence = false;
20900
20901 if (record_lines_p)
20902 {
20903 /* Start a subfile for the current file of the state
20904 machine. */
20905 const file_entry *fe = state_machine.current_file ();
20906
20907 if (fe != NULL)
20908 dwarf2_start_subfile (fe->name, fe->include_dir (lh));
20909 }
20910
20911 /* Decode the table. */
20912 while (line_ptr < line_end && !end_sequence)
20913 {
20914 op_code = read_1_byte (abfd, line_ptr);
20915 line_ptr += 1;
20916
20917 if (op_code >= lh->opcode_base)
20918 {
20919 /* Special opcode. */
20920 state_machine.handle_special_opcode (op_code);
20921 }
20922 else switch (op_code)
20923 {
20924 case DW_LNS_extended_op:
20925 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20926 &bytes_read);
20927 line_ptr += bytes_read;
20928 extended_end = line_ptr + extended_len;
20929 extended_op = read_1_byte (abfd, line_ptr);
20930 line_ptr += 1;
20931 switch (extended_op)
20932 {
20933 case DW_LNE_end_sequence:
20934 state_machine.handle_end_sequence ();
20935 end_sequence = true;
20936 break;
20937 case DW_LNE_set_address:
20938 {
20939 CORE_ADDR address
20940 = read_address (abfd, line_ptr, cu, &bytes_read);
20941 line_ptr += bytes_read;
20942
20943 state_machine.check_line_address (cu, line_ptr,
20944 lowpc, address);
20945 state_machine.handle_set_address (baseaddr, address);
20946 }
20947 break;
20948 case DW_LNE_define_file:
20949 {
20950 const char *cur_file;
20951 unsigned int mod_time, length;
20952 dir_index dindex;
20953
20954 cur_file = read_direct_string (abfd, line_ptr,
20955 &bytes_read);
20956 line_ptr += bytes_read;
20957 dindex = (dir_index)
20958 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20959 line_ptr += bytes_read;
20960 mod_time =
20961 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20962 line_ptr += bytes_read;
20963 length =
20964 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20965 line_ptr += bytes_read;
20966 lh->add_file_name (cur_file, dindex, mod_time, length);
20967 }
20968 break;
20969 case DW_LNE_set_discriminator:
20970 {
20971 /* The discriminator is not interesting to the
20972 debugger; just ignore it. We still need to
20973 check its value though:
20974 if there are consecutive entries for the same
20975 (non-prologue) line we want to coalesce them.
20976 PR 17276. */
20977 unsigned int discr
20978 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20979 line_ptr += bytes_read;
20980
20981 state_machine.handle_set_discriminator (discr);
20982 }
20983 break;
20984 default:
20985 complaint (&symfile_complaints,
20986 _("mangled .debug_line section"));
20987 return;
20988 }
20989 /* Make sure that we parsed the extended op correctly. If e.g.
20990 we expected a different address size than the producer used,
20991 we may have read the wrong number of bytes. */
20992 if (line_ptr != extended_end)
20993 {
20994 complaint (&symfile_complaints,
20995 _("mangled .debug_line section"));
20996 return;
20997 }
20998 break;
20999 case DW_LNS_copy:
21000 state_machine.handle_copy ();
21001 break;
21002 case DW_LNS_advance_pc:
21003 {
21004 CORE_ADDR adjust
21005 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21006 line_ptr += bytes_read;
21007
21008 state_machine.handle_advance_pc (adjust);
21009 }
21010 break;
21011 case DW_LNS_advance_line:
21012 {
21013 int line_delta
21014 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21015 line_ptr += bytes_read;
21016
21017 state_machine.handle_advance_line (line_delta);
21018 }
21019 break;
21020 case DW_LNS_set_file:
21021 {
21022 file_name_index file
21023 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21024 &bytes_read);
21025 line_ptr += bytes_read;
21026
21027 state_machine.handle_set_file (file);
21028 }
21029 break;
21030 case DW_LNS_set_column:
21031 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21032 line_ptr += bytes_read;
21033 break;
21034 case DW_LNS_negate_stmt:
21035 state_machine.handle_negate_stmt ();
21036 break;
21037 case DW_LNS_set_basic_block:
21038 break;
21039 /* Add to the address register of the state machine the
21040 address increment value corresponding to special opcode
21041 255. I.e., this value is scaled by the minimum
21042 instruction length since special opcode 255 would have
21043 scaled the increment. */
21044 case DW_LNS_const_add_pc:
21045 state_machine.handle_const_add_pc ();
21046 break;
21047 case DW_LNS_fixed_advance_pc:
21048 {
21049 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21050 line_ptr += 2;
21051
21052 state_machine.handle_fixed_advance_pc (addr_adj);
21053 }
21054 break;
21055 default:
21056 {
21057 /* Unknown standard opcode, ignore it. */
21058 int i;
21059
21060 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21061 {
21062 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21063 line_ptr += bytes_read;
21064 }
21065 }
21066 }
21067 }
21068
21069 if (!end_sequence)
21070 dwarf2_debug_line_missing_end_sequence_complaint ();
21071
21072 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21073 in which case we still finish recording the last line). */
21074 state_machine.record_line (true);
21075 }
21076 }
21077
21078 /* Decode the Line Number Program (LNP) for the given line_header
21079 structure and CU. The actual information extracted and the type
21080 of structures created from the LNP depends on the value of PST.
21081
21082 1. If PST is NULL, then this procedure uses the data from the program
21083 to create all necessary symbol tables, and their linetables.
21084
21085 2. If PST is not NULL, this procedure reads the program to determine
21086 the list of files included by the unit represented by PST, and
21087 builds all the associated partial symbol tables.
21088
21089 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21090 It is used for relative paths in the line table.
21091 NOTE: When processing partial symtabs (pst != NULL),
21092 comp_dir == pst->dirname.
21093
21094 NOTE: It is important that psymtabs have the same file name (via strcmp)
21095 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21096 symtab we don't use it in the name of the psymtabs we create.
21097 E.g. expand_line_sal requires this when finding psymtabs to expand.
21098 A good testcase for this is mb-inline.exp.
21099
21100 LOWPC is the lowest address in CU (or 0 if not known).
21101
21102 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21103 for its PC<->lines mapping information. Otherwise only the filename
21104 table is read in. */
21105
21106 static void
21107 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21108 struct dwarf2_cu *cu, struct partial_symtab *pst,
21109 CORE_ADDR lowpc, int decode_mapping)
21110 {
21111 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21112 const int decode_for_pst_p = (pst != NULL);
21113
21114 if (decode_mapping)
21115 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21116
21117 if (decode_for_pst_p)
21118 {
21119 int file_index;
21120
21121 /* Now that we're done scanning the Line Header Program, we can
21122 create the psymtab of each included file. */
21123 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21124 if (lh->file_names[file_index].included_p == 1)
21125 {
21126 gdb::unique_xmalloc_ptr<char> name_holder;
21127 const char *include_name =
21128 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21129 &name_holder);
21130 if (include_name != NULL)
21131 dwarf2_create_include_psymtab (include_name, pst, objfile);
21132 }
21133 }
21134 else
21135 {
21136 /* Make sure a symtab is created for every file, even files
21137 which contain only variables (i.e. no code with associated
21138 line numbers). */
21139 struct compunit_symtab *cust = buildsym_compunit_symtab ();
21140 int i;
21141
21142 for (i = 0; i < lh->file_names.size (); i++)
21143 {
21144 file_entry &fe = lh->file_names[i];
21145
21146 dwarf2_start_subfile (fe.name, fe.include_dir (lh));
21147
21148 if (current_subfile->symtab == NULL)
21149 {
21150 current_subfile->symtab
21151 = allocate_symtab (cust, current_subfile->name);
21152 }
21153 fe.symtab = current_subfile->symtab;
21154 }
21155 }
21156 }
21157
21158 /* Start a subfile for DWARF. FILENAME is the name of the file and
21159 DIRNAME the name of the source directory which contains FILENAME
21160 or NULL if not known.
21161 This routine tries to keep line numbers from identical absolute and
21162 relative file names in a common subfile.
21163
21164 Using the `list' example from the GDB testsuite, which resides in
21165 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21166 of /srcdir/list0.c yields the following debugging information for list0.c:
21167
21168 DW_AT_name: /srcdir/list0.c
21169 DW_AT_comp_dir: /compdir
21170 files.files[0].name: list0.h
21171 files.files[0].dir: /srcdir
21172 files.files[1].name: list0.c
21173 files.files[1].dir: /srcdir
21174
21175 The line number information for list0.c has to end up in a single
21176 subfile, so that `break /srcdir/list0.c:1' works as expected.
21177 start_subfile will ensure that this happens provided that we pass the
21178 concatenation of files.files[1].dir and files.files[1].name as the
21179 subfile's name. */
21180
21181 static void
21182 dwarf2_start_subfile (const char *filename, const char *dirname)
21183 {
21184 char *copy = NULL;
21185
21186 /* In order not to lose the line information directory,
21187 we concatenate it to the filename when it makes sense.
21188 Note that the Dwarf3 standard says (speaking of filenames in line
21189 information): ``The directory index is ignored for file names
21190 that represent full path names''. Thus ignoring dirname in the
21191 `else' branch below isn't an issue. */
21192
21193 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21194 {
21195 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21196 filename = copy;
21197 }
21198
21199 start_subfile (filename);
21200
21201 if (copy != NULL)
21202 xfree (copy);
21203 }
21204
21205 /* Start a symtab for DWARF.
21206 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
21207
21208 static struct compunit_symtab *
21209 dwarf2_start_symtab (struct dwarf2_cu *cu,
21210 const char *name, const char *comp_dir, CORE_ADDR low_pc)
21211 {
21212 struct compunit_symtab *cust
21213 = start_symtab (cu->per_cu->dwarf2_per_objfile->objfile, name, comp_dir,
21214 low_pc, cu->language);
21215
21216 record_debugformat ("DWARF 2");
21217 record_producer (cu->producer);
21218
21219 /* We assume that we're processing GCC output. */
21220 processing_gcc_compilation = 2;
21221
21222 cu->processing_has_namespace_info = 0;
21223
21224 return cust;
21225 }
21226
21227 static void
21228 var_decode_location (struct attribute *attr, struct symbol *sym,
21229 struct dwarf2_cu *cu)
21230 {
21231 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21232 struct comp_unit_head *cu_header = &cu->header;
21233
21234 /* NOTE drow/2003-01-30: There used to be a comment and some special
21235 code here to turn a symbol with DW_AT_external and a
21236 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21237 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21238 with some versions of binutils) where shared libraries could have
21239 relocations against symbols in their debug information - the
21240 minimal symbol would have the right address, but the debug info
21241 would not. It's no longer necessary, because we will explicitly
21242 apply relocations when we read in the debug information now. */
21243
21244 /* A DW_AT_location attribute with no contents indicates that a
21245 variable has been optimized away. */
21246 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21247 {
21248 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21249 return;
21250 }
21251
21252 /* Handle one degenerate form of location expression specially, to
21253 preserve GDB's previous behavior when section offsets are
21254 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
21255 then mark this symbol as LOC_STATIC. */
21256
21257 if (attr_form_is_block (attr)
21258 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21259 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21260 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21261 && (DW_BLOCK (attr)->size
21262 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21263 {
21264 unsigned int dummy;
21265
21266 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21267 SYMBOL_VALUE_ADDRESS (sym) =
21268 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21269 else
21270 SYMBOL_VALUE_ADDRESS (sym) =
21271 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21272 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21273 fixup_symbol_section (sym, objfile);
21274 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21275 SYMBOL_SECTION (sym));
21276 return;
21277 }
21278
21279 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21280 expression evaluator, and use LOC_COMPUTED only when necessary
21281 (i.e. when the value of a register or memory location is
21282 referenced, or a thread-local block, etc.). Then again, it might
21283 not be worthwhile. I'm assuming that it isn't unless performance
21284 or memory numbers show me otherwise. */
21285
21286 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21287
21288 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21289 cu->has_loclist = 1;
21290 }
21291
21292 /* Given a pointer to a DWARF information entry, figure out if we need
21293 to make a symbol table entry for it, and if so, create a new entry
21294 and return a pointer to it.
21295 If TYPE is NULL, determine symbol type from the die, otherwise
21296 used the passed type.
21297 If SPACE is not NULL, use it to hold the new symbol. If it is
21298 NULL, allocate a new symbol on the objfile's obstack. */
21299
21300 static struct symbol *
21301 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21302 struct symbol *space)
21303 {
21304 struct dwarf2_per_objfile *dwarf2_per_objfile
21305 = cu->per_cu->dwarf2_per_objfile;
21306 struct objfile *objfile = dwarf2_per_objfile->objfile;
21307 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21308 struct symbol *sym = NULL;
21309 const char *name;
21310 struct attribute *attr = NULL;
21311 struct attribute *attr2 = NULL;
21312 CORE_ADDR baseaddr;
21313 struct pending **list_to_add = NULL;
21314
21315 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21316
21317 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21318
21319 name = dwarf2_name (die, cu);
21320 if (name)
21321 {
21322 const char *linkagename;
21323 int suppress_add = 0;
21324
21325 if (space)
21326 sym = space;
21327 else
21328 sym = allocate_symbol (objfile);
21329 OBJSTAT (objfile, n_syms++);
21330
21331 /* Cache this symbol's name and the name's demangled form (if any). */
21332 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21333 linkagename = dwarf2_physname (name, die, cu);
21334 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21335
21336 /* Fortran does not have mangling standard and the mangling does differ
21337 between gfortran, iFort etc. */
21338 if (cu->language == language_fortran
21339 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21340 symbol_set_demangled_name (&(sym->ginfo),
21341 dwarf2_full_name (name, die, cu),
21342 NULL);
21343
21344 /* Default assumptions.
21345 Use the passed type or decode it from the die. */
21346 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21347 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21348 if (type != NULL)
21349 SYMBOL_TYPE (sym) = type;
21350 else
21351 SYMBOL_TYPE (sym) = die_type (die, cu);
21352 attr = dwarf2_attr (die,
21353 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21354 cu);
21355 if (attr)
21356 {
21357 SYMBOL_LINE (sym) = DW_UNSND (attr);
21358 }
21359
21360 attr = dwarf2_attr (die,
21361 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21362 cu);
21363 if (attr)
21364 {
21365 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21366 struct file_entry *fe;
21367
21368 if (cu->line_header != NULL)
21369 fe = cu->line_header->file_name_at (file_index);
21370 else
21371 fe = NULL;
21372
21373 if (fe == NULL)
21374 complaint (&symfile_complaints,
21375 _("file index out of range"));
21376 else
21377 symbol_set_symtab (sym, fe->symtab);
21378 }
21379
21380 switch (die->tag)
21381 {
21382 case DW_TAG_label:
21383 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21384 if (attr)
21385 {
21386 CORE_ADDR addr;
21387
21388 addr = attr_value_as_address (attr);
21389 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21390 SYMBOL_VALUE_ADDRESS (sym) = addr;
21391 }
21392 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21393 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21394 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21395 add_symbol_to_list (sym, cu->list_in_scope);
21396 break;
21397 case DW_TAG_subprogram:
21398 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21399 finish_block. */
21400 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21401 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21402 if ((attr2 && (DW_UNSND (attr2) != 0))
21403 || cu->language == language_ada)
21404 {
21405 /* Subprograms marked external are stored as a global symbol.
21406 Ada subprograms, whether marked external or not, are always
21407 stored as a global symbol, because we want to be able to
21408 access them globally. For instance, we want to be able
21409 to break on a nested subprogram without having to
21410 specify the context. */
21411 list_to_add = &global_symbols;
21412 }
21413 else
21414 {
21415 list_to_add = cu->list_in_scope;
21416 }
21417 break;
21418 case DW_TAG_inlined_subroutine:
21419 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21420 finish_block. */
21421 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21422 SYMBOL_INLINED (sym) = 1;
21423 list_to_add = cu->list_in_scope;
21424 break;
21425 case DW_TAG_template_value_param:
21426 suppress_add = 1;
21427 /* Fall through. */
21428 case DW_TAG_constant:
21429 case DW_TAG_variable:
21430 case DW_TAG_member:
21431 /* Compilation with minimal debug info may result in
21432 variables with missing type entries. Change the
21433 misleading `void' type to something sensible. */
21434 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21435 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21436
21437 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21438 /* In the case of DW_TAG_member, we should only be called for
21439 static const members. */
21440 if (die->tag == DW_TAG_member)
21441 {
21442 /* dwarf2_add_field uses die_is_declaration,
21443 so we do the same. */
21444 gdb_assert (die_is_declaration (die, cu));
21445 gdb_assert (attr);
21446 }
21447 if (attr)
21448 {
21449 dwarf2_const_value (attr, sym, cu);
21450 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21451 if (!suppress_add)
21452 {
21453 if (attr2 && (DW_UNSND (attr2) != 0))
21454 list_to_add = &global_symbols;
21455 else
21456 list_to_add = cu->list_in_scope;
21457 }
21458 break;
21459 }
21460 attr = dwarf2_attr (die, DW_AT_location, cu);
21461 if (attr)
21462 {
21463 var_decode_location (attr, sym, cu);
21464 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21465
21466 /* Fortran explicitly imports any global symbols to the local
21467 scope by DW_TAG_common_block. */
21468 if (cu->language == language_fortran && die->parent
21469 && die->parent->tag == DW_TAG_common_block)
21470 attr2 = NULL;
21471
21472 if (SYMBOL_CLASS (sym) == LOC_STATIC
21473 && SYMBOL_VALUE_ADDRESS (sym) == 0
21474 && !dwarf2_per_objfile->has_section_at_zero)
21475 {
21476 /* When a static variable is eliminated by the linker,
21477 the corresponding debug information is not stripped
21478 out, but the variable address is set to null;
21479 do not add such variables into symbol table. */
21480 }
21481 else if (attr2 && (DW_UNSND (attr2) != 0))
21482 {
21483 /* Workaround gfortran PR debug/40040 - it uses
21484 DW_AT_location for variables in -fPIC libraries which may
21485 get overriden by other libraries/executable and get
21486 a different address. Resolve it by the minimal symbol
21487 which may come from inferior's executable using copy
21488 relocation. Make this workaround only for gfortran as for
21489 other compilers GDB cannot guess the minimal symbol
21490 Fortran mangling kind. */
21491 if (cu->language == language_fortran && die->parent
21492 && die->parent->tag == DW_TAG_module
21493 && cu->producer
21494 && startswith (cu->producer, "GNU Fortran"))
21495 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21496
21497 /* A variable with DW_AT_external is never static,
21498 but it may be block-scoped. */
21499 list_to_add = (cu->list_in_scope == &file_symbols
21500 ? &global_symbols : cu->list_in_scope);
21501 }
21502 else
21503 list_to_add = cu->list_in_scope;
21504 }
21505 else
21506 {
21507 /* We do not know the address of this symbol.
21508 If it is an external symbol and we have type information
21509 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21510 The address of the variable will then be determined from
21511 the minimal symbol table whenever the variable is
21512 referenced. */
21513 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21514
21515 /* Fortran explicitly imports any global symbols to the local
21516 scope by DW_TAG_common_block. */
21517 if (cu->language == language_fortran && die->parent
21518 && die->parent->tag == DW_TAG_common_block)
21519 {
21520 /* SYMBOL_CLASS doesn't matter here because
21521 read_common_block is going to reset it. */
21522 if (!suppress_add)
21523 list_to_add = cu->list_in_scope;
21524 }
21525 else if (attr2 && (DW_UNSND (attr2) != 0)
21526 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21527 {
21528 /* A variable with DW_AT_external is never static, but it
21529 may be block-scoped. */
21530 list_to_add = (cu->list_in_scope == &file_symbols
21531 ? &global_symbols : cu->list_in_scope);
21532
21533 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21534 }
21535 else if (!die_is_declaration (die, cu))
21536 {
21537 /* Use the default LOC_OPTIMIZED_OUT class. */
21538 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21539 if (!suppress_add)
21540 list_to_add = cu->list_in_scope;
21541 }
21542 }
21543 break;
21544 case DW_TAG_formal_parameter:
21545 /* If we are inside a function, mark this as an argument. If
21546 not, we might be looking at an argument to an inlined function
21547 when we do not have enough information to show inlined frames;
21548 pretend it's a local variable in that case so that the user can
21549 still see it. */
21550 if (context_stack_depth > 0
21551 && context_stack[context_stack_depth - 1].name != NULL)
21552 SYMBOL_IS_ARGUMENT (sym) = 1;
21553 attr = dwarf2_attr (die, DW_AT_location, cu);
21554 if (attr)
21555 {
21556 var_decode_location (attr, sym, cu);
21557 }
21558 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21559 if (attr)
21560 {
21561 dwarf2_const_value (attr, sym, cu);
21562 }
21563
21564 list_to_add = cu->list_in_scope;
21565 break;
21566 case DW_TAG_unspecified_parameters:
21567 /* From varargs functions; gdb doesn't seem to have any
21568 interest in this information, so just ignore it for now.
21569 (FIXME?) */
21570 break;
21571 case DW_TAG_template_type_param:
21572 suppress_add = 1;
21573 /* Fall through. */
21574 case DW_TAG_class_type:
21575 case DW_TAG_interface_type:
21576 case DW_TAG_structure_type:
21577 case DW_TAG_union_type:
21578 case DW_TAG_set_type:
21579 case DW_TAG_enumeration_type:
21580 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21581 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21582
21583 {
21584 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21585 really ever be static objects: otherwise, if you try
21586 to, say, break of a class's method and you're in a file
21587 which doesn't mention that class, it won't work unless
21588 the check for all static symbols in lookup_symbol_aux
21589 saves you. See the OtherFileClass tests in
21590 gdb.c++/namespace.exp. */
21591
21592 if (!suppress_add)
21593 {
21594 list_to_add = (cu->list_in_scope == &file_symbols
21595 && cu->language == language_cplus
21596 ? &global_symbols : cu->list_in_scope);
21597
21598 /* The semantics of C++ state that "struct foo {
21599 ... }" also defines a typedef for "foo". */
21600 if (cu->language == language_cplus
21601 || cu->language == language_ada
21602 || cu->language == language_d
21603 || cu->language == language_rust)
21604 {
21605 /* The symbol's name is already allocated along
21606 with this objfile, so we don't need to
21607 duplicate it for the type. */
21608 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21609 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21610 }
21611 }
21612 }
21613 break;
21614 case DW_TAG_typedef:
21615 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21616 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21617 list_to_add = cu->list_in_scope;
21618 break;
21619 case DW_TAG_base_type:
21620 case DW_TAG_subrange_type:
21621 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21622 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21623 list_to_add = cu->list_in_scope;
21624 break;
21625 case DW_TAG_enumerator:
21626 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21627 if (attr)
21628 {
21629 dwarf2_const_value (attr, sym, cu);
21630 }
21631 {
21632 /* NOTE: carlton/2003-11-10: See comment above in the
21633 DW_TAG_class_type, etc. block. */
21634
21635 list_to_add = (cu->list_in_scope == &file_symbols
21636 && cu->language == language_cplus
21637 ? &global_symbols : cu->list_in_scope);
21638 }
21639 break;
21640 case DW_TAG_imported_declaration:
21641 case DW_TAG_namespace:
21642 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21643 list_to_add = &global_symbols;
21644 break;
21645 case DW_TAG_module:
21646 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21647 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21648 list_to_add = &global_symbols;
21649 break;
21650 case DW_TAG_common_block:
21651 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21652 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21653 add_symbol_to_list (sym, cu->list_in_scope);
21654 break;
21655 default:
21656 /* Not a tag we recognize. Hopefully we aren't processing
21657 trash data, but since we must specifically ignore things
21658 we don't recognize, there is nothing else we should do at
21659 this point. */
21660 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
21661 dwarf_tag_name (die->tag));
21662 break;
21663 }
21664
21665 if (suppress_add)
21666 {
21667 sym->hash_next = objfile->template_symbols;
21668 objfile->template_symbols = sym;
21669 list_to_add = NULL;
21670 }
21671
21672 if (list_to_add != NULL)
21673 add_symbol_to_list (sym, list_to_add);
21674
21675 /* For the benefit of old versions of GCC, check for anonymous
21676 namespaces based on the demangled name. */
21677 if (!cu->processing_has_namespace_info
21678 && cu->language == language_cplus)
21679 cp_scan_for_anonymous_namespaces (sym, objfile);
21680 }
21681 return (sym);
21682 }
21683
21684 /* Given an attr with a DW_FORM_dataN value in host byte order,
21685 zero-extend it as appropriate for the symbol's type. The DWARF
21686 standard (v4) is not entirely clear about the meaning of using
21687 DW_FORM_dataN for a constant with a signed type, where the type is
21688 wider than the data. The conclusion of a discussion on the DWARF
21689 list was that this is unspecified. We choose to always zero-extend
21690 because that is the interpretation long in use by GCC. */
21691
21692 static gdb_byte *
21693 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21694 struct dwarf2_cu *cu, LONGEST *value, int bits)
21695 {
21696 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21697 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21698 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21699 LONGEST l = DW_UNSND (attr);
21700
21701 if (bits < sizeof (*value) * 8)
21702 {
21703 l &= ((LONGEST) 1 << bits) - 1;
21704 *value = l;
21705 }
21706 else if (bits == sizeof (*value) * 8)
21707 *value = l;
21708 else
21709 {
21710 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21711 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21712 return bytes;
21713 }
21714
21715 return NULL;
21716 }
21717
21718 /* Read a constant value from an attribute. Either set *VALUE, or if
21719 the value does not fit in *VALUE, set *BYTES - either already
21720 allocated on the objfile obstack, or newly allocated on OBSTACK,
21721 or, set *BATON, if we translated the constant to a location
21722 expression. */
21723
21724 static void
21725 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21726 const char *name, struct obstack *obstack,
21727 struct dwarf2_cu *cu,
21728 LONGEST *value, const gdb_byte **bytes,
21729 struct dwarf2_locexpr_baton **baton)
21730 {
21731 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21732 struct comp_unit_head *cu_header = &cu->header;
21733 struct dwarf_block *blk;
21734 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21735 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21736
21737 *value = 0;
21738 *bytes = NULL;
21739 *baton = NULL;
21740
21741 switch (attr->form)
21742 {
21743 case DW_FORM_addr:
21744 case DW_FORM_GNU_addr_index:
21745 {
21746 gdb_byte *data;
21747
21748 if (TYPE_LENGTH (type) != cu_header->addr_size)
21749 dwarf2_const_value_length_mismatch_complaint (name,
21750 cu_header->addr_size,
21751 TYPE_LENGTH (type));
21752 /* Symbols of this form are reasonably rare, so we just
21753 piggyback on the existing location code rather than writing
21754 a new implementation of symbol_computed_ops. */
21755 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21756 (*baton)->per_cu = cu->per_cu;
21757 gdb_assert ((*baton)->per_cu);
21758
21759 (*baton)->size = 2 + cu_header->addr_size;
21760 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21761 (*baton)->data = data;
21762
21763 data[0] = DW_OP_addr;
21764 store_unsigned_integer (&data[1], cu_header->addr_size,
21765 byte_order, DW_ADDR (attr));
21766 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21767 }
21768 break;
21769 case DW_FORM_string:
21770 case DW_FORM_strp:
21771 case DW_FORM_GNU_str_index:
21772 case DW_FORM_GNU_strp_alt:
21773 /* DW_STRING is already allocated on the objfile obstack, point
21774 directly to it. */
21775 *bytes = (const gdb_byte *) DW_STRING (attr);
21776 break;
21777 case DW_FORM_block1:
21778 case DW_FORM_block2:
21779 case DW_FORM_block4:
21780 case DW_FORM_block:
21781 case DW_FORM_exprloc:
21782 case DW_FORM_data16:
21783 blk = DW_BLOCK (attr);
21784 if (TYPE_LENGTH (type) != blk->size)
21785 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21786 TYPE_LENGTH (type));
21787 *bytes = blk->data;
21788 break;
21789
21790 /* The DW_AT_const_value attributes are supposed to carry the
21791 symbol's value "represented as it would be on the target
21792 architecture." By the time we get here, it's already been
21793 converted to host endianness, so we just need to sign- or
21794 zero-extend it as appropriate. */
21795 case DW_FORM_data1:
21796 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21797 break;
21798 case DW_FORM_data2:
21799 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21800 break;
21801 case DW_FORM_data4:
21802 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21803 break;
21804 case DW_FORM_data8:
21805 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21806 break;
21807
21808 case DW_FORM_sdata:
21809 case DW_FORM_implicit_const:
21810 *value = DW_SND (attr);
21811 break;
21812
21813 case DW_FORM_udata:
21814 *value = DW_UNSND (attr);
21815 break;
21816
21817 default:
21818 complaint (&symfile_complaints,
21819 _("unsupported const value attribute form: '%s'"),
21820 dwarf_form_name (attr->form));
21821 *value = 0;
21822 break;
21823 }
21824 }
21825
21826
21827 /* Copy constant value from an attribute to a symbol. */
21828
21829 static void
21830 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21831 struct dwarf2_cu *cu)
21832 {
21833 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21834 LONGEST value;
21835 const gdb_byte *bytes;
21836 struct dwarf2_locexpr_baton *baton;
21837
21838 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21839 SYMBOL_PRINT_NAME (sym),
21840 &objfile->objfile_obstack, cu,
21841 &value, &bytes, &baton);
21842
21843 if (baton != NULL)
21844 {
21845 SYMBOL_LOCATION_BATON (sym) = baton;
21846 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21847 }
21848 else if (bytes != NULL)
21849 {
21850 SYMBOL_VALUE_BYTES (sym) = bytes;
21851 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21852 }
21853 else
21854 {
21855 SYMBOL_VALUE (sym) = value;
21856 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21857 }
21858 }
21859
21860 /* Return the type of the die in question using its DW_AT_type attribute. */
21861
21862 static struct type *
21863 die_type (struct die_info *die, struct dwarf2_cu *cu)
21864 {
21865 struct attribute *type_attr;
21866
21867 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21868 if (!type_attr)
21869 {
21870 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21871 /* A missing DW_AT_type represents a void type. */
21872 return objfile_type (objfile)->builtin_void;
21873 }
21874
21875 return lookup_die_type (die, type_attr, cu);
21876 }
21877
21878 /* True iff CU's producer generates GNAT Ada auxiliary information
21879 that allows to find parallel types through that information instead
21880 of having to do expensive parallel lookups by type name. */
21881
21882 static int
21883 need_gnat_info (struct dwarf2_cu *cu)
21884 {
21885 /* Assume that the Ada compiler was GNAT, which always produces
21886 the auxiliary information. */
21887 return (cu->language == language_ada);
21888 }
21889
21890 /* Return the auxiliary type of the die in question using its
21891 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21892 attribute is not present. */
21893
21894 static struct type *
21895 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21896 {
21897 struct attribute *type_attr;
21898
21899 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21900 if (!type_attr)
21901 return NULL;
21902
21903 return lookup_die_type (die, type_attr, cu);
21904 }
21905
21906 /* If DIE has a descriptive_type attribute, then set the TYPE's
21907 descriptive type accordingly. */
21908
21909 static void
21910 set_descriptive_type (struct type *type, struct die_info *die,
21911 struct dwarf2_cu *cu)
21912 {
21913 struct type *descriptive_type = die_descriptive_type (die, cu);
21914
21915 if (descriptive_type)
21916 {
21917 ALLOCATE_GNAT_AUX_TYPE (type);
21918 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21919 }
21920 }
21921
21922 /* Return the containing type of the die in question using its
21923 DW_AT_containing_type attribute. */
21924
21925 static struct type *
21926 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21927 {
21928 struct attribute *type_attr;
21929 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21930
21931 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21932 if (!type_attr)
21933 error (_("Dwarf Error: Problem turning containing type into gdb type "
21934 "[in module %s]"), objfile_name (objfile));
21935
21936 return lookup_die_type (die, type_attr, cu);
21937 }
21938
21939 /* Return an error marker type to use for the ill formed type in DIE/CU. */
21940
21941 static struct type *
21942 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21943 {
21944 struct dwarf2_per_objfile *dwarf2_per_objfile
21945 = cu->per_cu->dwarf2_per_objfile;
21946 struct objfile *objfile = dwarf2_per_objfile->objfile;
21947 char *message, *saved;
21948
21949 message = xstrprintf (_("<unknown type in %s, CU %s, DIE %s>"),
21950 objfile_name (objfile),
21951 sect_offset_str (cu->header.sect_off),
21952 sect_offset_str (die->sect_off));
21953 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
21954 message, strlen (message));
21955 xfree (message);
21956
21957 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
21958 }
21959
21960 /* Look up the type of DIE in CU using its type attribute ATTR.
21961 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
21962 DW_AT_containing_type.
21963 If there is no type substitute an error marker. */
21964
21965 static struct type *
21966 lookup_die_type (struct die_info *die, const struct attribute *attr,
21967 struct dwarf2_cu *cu)
21968 {
21969 struct dwarf2_per_objfile *dwarf2_per_objfile
21970 = cu->per_cu->dwarf2_per_objfile;
21971 struct objfile *objfile = dwarf2_per_objfile->objfile;
21972 struct type *this_type;
21973
21974 gdb_assert (attr->name == DW_AT_type
21975 || attr->name == DW_AT_GNAT_descriptive_type
21976 || attr->name == DW_AT_containing_type);
21977
21978 /* First see if we have it cached. */
21979
21980 if (attr->form == DW_FORM_GNU_ref_alt)
21981 {
21982 struct dwarf2_per_cu_data *per_cu;
21983 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21984
21985 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
21986 dwarf2_per_objfile);
21987 this_type = get_die_type_at_offset (sect_off, per_cu);
21988 }
21989 else if (attr_form_is_ref (attr))
21990 {
21991 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21992
21993 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
21994 }
21995 else if (attr->form == DW_FORM_ref_sig8)
21996 {
21997 ULONGEST signature = DW_SIGNATURE (attr);
21998
21999 return get_signatured_type (die, signature, cu);
22000 }
22001 else
22002 {
22003 complaint (&symfile_complaints,
22004 _("Dwarf Error: Bad type attribute %s in DIE"
22005 " at %s [in module %s]"),
22006 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22007 objfile_name (objfile));
22008 return build_error_marker_type (cu, die);
22009 }
22010
22011 /* If not cached we need to read it in. */
22012
22013 if (this_type == NULL)
22014 {
22015 struct die_info *type_die = NULL;
22016 struct dwarf2_cu *type_cu = cu;
22017
22018 if (attr_form_is_ref (attr))
22019 type_die = follow_die_ref (die, attr, &type_cu);
22020 if (type_die == NULL)
22021 return build_error_marker_type (cu, die);
22022 /* If we find the type now, it's probably because the type came
22023 from an inter-CU reference and the type's CU got expanded before
22024 ours. */
22025 this_type = read_type_die (type_die, type_cu);
22026 }
22027
22028 /* If we still don't have a type use an error marker. */
22029
22030 if (this_type == NULL)
22031 return build_error_marker_type (cu, die);
22032
22033 return this_type;
22034 }
22035
22036 /* Return the type in DIE, CU.
22037 Returns NULL for invalid types.
22038
22039 This first does a lookup in die_type_hash,
22040 and only reads the die in if necessary.
22041
22042 NOTE: This can be called when reading in partial or full symbols. */
22043
22044 static struct type *
22045 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22046 {
22047 struct type *this_type;
22048
22049 this_type = get_die_type (die, cu);
22050 if (this_type)
22051 return this_type;
22052
22053 return read_type_die_1 (die, cu);
22054 }
22055
22056 /* Read the type in DIE, CU.
22057 Returns NULL for invalid types. */
22058
22059 static struct type *
22060 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22061 {
22062 struct type *this_type = NULL;
22063
22064 switch (die->tag)
22065 {
22066 case DW_TAG_class_type:
22067 case DW_TAG_interface_type:
22068 case DW_TAG_structure_type:
22069 case DW_TAG_union_type:
22070 this_type = read_structure_type (die, cu);
22071 break;
22072 case DW_TAG_enumeration_type:
22073 this_type = read_enumeration_type (die, cu);
22074 break;
22075 case DW_TAG_subprogram:
22076 case DW_TAG_subroutine_type:
22077 case DW_TAG_inlined_subroutine:
22078 this_type = read_subroutine_type (die, cu);
22079 break;
22080 case DW_TAG_array_type:
22081 this_type = read_array_type (die, cu);
22082 break;
22083 case DW_TAG_set_type:
22084 this_type = read_set_type (die, cu);
22085 break;
22086 case DW_TAG_pointer_type:
22087 this_type = read_tag_pointer_type (die, cu);
22088 break;
22089 case DW_TAG_ptr_to_member_type:
22090 this_type = read_tag_ptr_to_member_type (die, cu);
22091 break;
22092 case DW_TAG_reference_type:
22093 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22094 break;
22095 case DW_TAG_rvalue_reference_type:
22096 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22097 break;
22098 case DW_TAG_const_type:
22099 this_type = read_tag_const_type (die, cu);
22100 break;
22101 case DW_TAG_volatile_type:
22102 this_type = read_tag_volatile_type (die, cu);
22103 break;
22104 case DW_TAG_restrict_type:
22105 this_type = read_tag_restrict_type (die, cu);
22106 break;
22107 case DW_TAG_string_type:
22108 this_type = read_tag_string_type (die, cu);
22109 break;
22110 case DW_TAG_typedef:
22111 this_type = read_typedef (die, cu);
22112 break;
22113 case DW_TAG_subrange_type:
22114 this_type = read_subrange_type (die, cu);
22115 break;
22116 case DW_TAG_base_type:
22117 this_type = read_base_type (die, cu);
22118 break;
22119 case DW_TAG_unspecified_type:
22120 this_type = read_unspecified_type (die, cu);
22121 break;
22122 case DW_TAG_namespace:
22123 this_type = read_namespace_type (die, cu);
22124 break;
22125 case DW_TAG_module:
22126 this_type = read_module_type (die, cu);
22127 break;
22128 case DW_TAG_atomic_type:
22129 this_type = read_tag_atomic_type (die, cu);
22130 break;
22131 default:
22132 complaint (&symfile_complaints,
22133 _("unexpected tag in read_type_die: '%s'"),
22134 dwarf_tag_name (die->tag));
22135 break;
22136 }
22137
22138 return this_type;
22139 }
22140
22141 /* See if we can figure out if the class lives in a namespace. We do
22142 this by looking for a member function; its demangled name will
22143 contain namespace info, if there is any.
22144 Return the computed name or NULL.
22145 Space for the result is allocated on the objfile's obstack.
22146 This is the full-die version of guess_partial_die_structure_name.
22147 In this case we know DIE has no useful parent. */
22148
22149 static char *
22150 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22151 {
22152 struct die_info *spec_die;
22153 struct dwarf2_cu *spec_cu;
22154 struct die_info *child;
22155 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22156
22157 spec_cu = cu;
22158 spec_die = die_specification (die, &spec_cu);
22159 if (spec_die != NULL)
22160 {
22161 die = spec_die;
22162 cu = spec_cu;
22163 }
22164
22165 for (child = die->child;
22166 child != NULL;
22167 child = child->sibling)
22168 {
22169 if (child->tag == DW_TAG_subprogram)
22170 {
22171 const char *linkage_name = dw2_linkage_name (child, cu);
22172
22173 if (linkage_name != NULL)
22174 {
22175 char *actual_name
22176 = language_class_name_from_physname (cu->language_defn,
22177 linkage_name);
22178 char *name = NULL;
22179
22180 if (actual_name != NULL)
22181 {
22182 const char *die_name = dwarf2_name (die, cu);
22183
22184 if (die_name != NULL
22185 && strcmp (die_name, actual_name) != 0)
22186 {
22187 /* Strip off the class name from the full name.
22188 We want the prefix. */
22189 int die_name_len = strlen (die_name);
22190 int actual_name_len = strlen (actual_name);
22191
22192 /* Test for '::' as a sanity check. */
22193 if (actual_name_len > die_name_len + 2
22194 && actual_name[actual_name_len
22195 - die_name_len - 1] == ':')
22196 name = (char *) obstack_copy0 (
22197 &objfile->per_bfd->storage_obstack,
22198 actual_name, actual_name_len - die_name_len - 2);
22199 }
22200 }
22201 xfree (actual_name);
22202 return name;
22203 }
22204 }
22205 }
22206
22207 return NULL;
22208 }
22209
22210 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22211 prefix part in such case. See
22212 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22213
22214 static const char *
22215 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22216 {
22217 struct attribute *attr;
22218 const char *base;
22219
22220 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22221 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22222 return NULL;
22223
22224 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22225 return NULL;
22226
22227 attr = dw2_linkage_name_attr (die, cu);
22228 if (attr == NULL || DW_STRING (attr) == NULL)
22229 return NULL;
22230
22231 /* dwarf2_name had to be already called. */
22232 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22233
22234 /* Strip the base name, keep any leading namespaces/classes. */
22235 base = strrchr (DW_STRING (attr), ':');
22236 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22237 return "";
22238
22239 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22240 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22241 DW_STRING (attr),
22242 &base[-1] - DW_STRING (attr));
22243 }
22244
22245 /* Return the name of the namespace/class that DIE is defined within,
22246 or "" if we can't tell. The caller should not xfree the result.
22247
22248 For example, if we're within the method foo() in the following
22249 code:
22250
22251 namespace N {
22252 class C {
22253 void foo () {
22254 }
22255 };
22256 }
22257
22258 then determine_prefix on foo's die will return "N::C". */
22259
22260 static const char *
22261 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22262 {
22263 struct dwarf2_per_objfile *dwarf2_per_objfile
22264 = cu->per_cu->dwarf2_per_objfile;
22265 struct die_info *parent, *spec_die;
22266 struct dwarf2_cu *spec_cu;
22267 struct type *parent_type;
22268 const char *retval;
22269
22270 if (cu->language != language_cplus
22271 && cu->language != language_fortran && cu->language != language_d
22272 && cu->language != language_rust)
22273 return "";
22274
22275 retval = anonymous_struct_prefix (die, cu);
22276 if (retval)
22277 return retval;
22278
22279 /* We have to be careful in the presence of DW_AT_specification.
22280 For example, with GCC 3.4, given the code
22281
22282 namespace N {
22283 void foo() {
22284 // Definition of N::foo.
22285 }
22286 }
22287
22288 then we'll have a tree of DIEs like this:
22289
22290 1: DW_TAG_compile_unit
22291 2: DW_TAG_namespace // N
22292 3: DW_TAG_subprogram // declaration of N::foo
22293 4: DW_TAG_subprogram // definition of N::foo
22294 DW_AT_specification // refers to die #3
22295
22296 Thus, when processing die #4, we have to pretend that we're in
22297 the context of its DW_AT_specification, namely the contex of die
22298 #3. */
22299 spec_cu = cu;
22300 spec_die = die_specification (die, &spec_cu);
22301 if (spec_die == NULL)
22302 parent = die->parent;
22303 else
22304 {
22305 parent = spec_die->parent;
22306 cu = spec_cu;
22307 }
22308
22309 if (parent == NULL)
22310 return "";
22311 else if (parent->building_fullname)
22312 {
22313 const char *name;
22314 const char *parent_name;
22315
22316 /* It has been seen on RealView 2.2 built binaries,
22317 DW_TAG_template_type_param types actually _defined_ as
22318 children of the parent class:
22319
22320 enum E {};
22321 template class <class Enum> Class{};
22322 Class<enum E> class_e;
22323
22324 1: DW_TAG_class_type (Class)
22325 2: DW_TAG_enumeration_type (E)
22326 3: DW_TAG_enumerator (enum1:0)
22327 3: DW_TAG_enumerator (enum2:1)
22328 ...
22329 2: DW_TAG_template_type_param
22330 DW_AT_type DW_FORM_ref_udata (E)
22331
22332 Besides being broken debug info, it can put GDB into an
22333 infinite loop. Consider:
22334
22335 When we're building the full name for Class<E>, we'll start
22336 at Class, and go look over its template type parameters,
22337 finding E. We'll then try to build the full name of E, and
22338 reach here. We're now trying to build the full name of E,
22339 and look over the parent DIE for containing scope. In the
22340 broken case, if we followed the parent DIE of E, we'd again
22341 find Class, and once again go look at its template type
22342 arguments, etc., etc. Simply don't consider such parent die
22343 as source-level parent of this die (it can't be, the language
22344 doesn't allow it), and break the loop here. */
22345 name = dwarf2_name (die, cu);
22346 parent_name = dwarf2_name (parent, cu);
22347 complaint (&symfile_complaints,
22348 _("template param type '%s' defined within parent '%s'"),
22349 name ? name : "<unknown>",
22350 parent_name ? parent_name : "<unknown>");
22351 return "";
22352 }
22353 else
22354 switch (parent->tag)
22355 {
22356 case DW_TAG_namespace:
22357 parent_type = read_type_die (parent, cu);
22358 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22359 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22360 Work around this problem here. */
22361 if (cu->language == language_cplus
22362 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
22363 return "";
22364 /* We give a name to even anonymous namespaces. */
22365 return TYPE_TAG_NAME (parent_type);
22366 case DW_TAG_class_type:
22367 case DW_TAG_interface_type:
22368 case DW_TAG_structure_type:
22369 case DW_TAG_union_type:
22370 case DW_TAG_module:
22371 parent_type = read_type_die (parent, cu);
22372 if (TYPE_TAG_NAME (parent_type) != NULL)
22373 return TYPE_TAG_NAME (parent_type);
22374 else
22375 /* An anonymous structure is only allowed non-static data
22376 members; no typedefs, no member functions, et cetera.
22377 So it does not need a prefix. */
22378 return "";
22379 case DW_TAG_compile_unit:
22380 case DW_TAG_partial_unit:
22381 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22382 if (cu->language == language_cplus
22383 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22384 && die->child != NULL
22385 && (die->tag == DW_TAG_class_type
22386 || die->tag == DW_TAG_structure_type
22387 || die->tag == DW_TAG_union_type))
22388 {
22389 char *name = guess_full_die_structure_name (die, cu);
22390 if (name != NULL)
22391 return name;
22392 }
22393 return "";
22394 case DW_TAG_enumeration_type:
22395 parent_type = read_type_die (parent, cu);
22396 if (TYPE_DECLARED_CLASS (parent_type))
22397 {
22398 if (TYPE_TAG_NAME (parent_type) != NULL)
22399 return TYPE_TAG_NAME (parent_type);
22400 return "";
22401 }
22402 /* Fall through. */
22403 default:
22404 return determine_prefix (parent, cu);
22405 }
22406 }
22407
22408 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22409 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22410 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22411 an obconcat, otherwise allocate storage for the result. The CU argument is
22412 used to determine the language and hence, the appropriate separator. */
22413
22414 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22415
22416 static char *
22417 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22418 int physname, struct dwarf2_cu *cu)
22419 {
22420 const char *lead = "";
22421 const char *sep;
22422
22423 if (suffix == NULL || suffix[0] == '\0'
22424 || prefix == NULL || prefix[0] == '\0')
22425 sep = "";
22426 else if (cu->language == language_d)
22427 {
22428 /* For D, the 'main' function could be defined in any module, but it
22429 should never be prefixed. */
22430 if (strcmp (suffix, "D main") == 0)
22431 {
22432 prefix = "";
22433 sep = "";
22434 }
22435 else
22436 sep = ".";
22437 }
22438 else if (cu->language == language_fortran && physname)
22439 {
22440 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22441 DW_AT_MIPS_linkage_name is preferred and used instead. */
22442
22443 lead = "__";
22444 sep = "_MOD_";
22445 }
22446 else
22447 sep = "::";
22448
22449 if (prefix == NULL)
22450 prefix = "";
22451 if (suffix == NULL)
22452 suffix = "";
22453
22454 if (obs == NULL)
22455 {
22456 char *retval
22457 = ((char *)
22458 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22459
22460 strcpy (retval, lead);
22461 strcat (retval, prefix);
22462 strcat (retval, sep);
22463 strcat (retval, suffix);
22464 return retval;
22465 }
22466 else
22467 {
22468 /* We have an obstack. */
22469 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22470 }
22471 }
22472
22473 /* Return sibling of die, NULL if no sibling. */
22474
22475 static struct die_info *
22476 sibling_die (struct die_info *die)
22477 {
22478 return die->sibling;
22479 }
22480
22481 /* Get name of a die, return NULL if not found. */
22482
22483 static const char *
22484 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22485 struct obstack *obstack)
22486 {
22487 if (name && cu->language == language_cplus)
22488 {
22489 std::string canon_name = cp_canonicalize_string (name);
22490
22491 if (!canon_name.empty ())
22492 {
22493 if (canon_name != name)
22494 name = (const char *) obstack_copy0 (obstack,
22495 canon_name.c_str (),
22496 canon_name.length ());
22497 }
22498 }
22499
22500 return name;
22501 }
22502
22503 /* Get name of a die, return NULL if not found.
22504 Anonymous namespaces are converted to their magic string. */
22505
22506 static const char *
22507 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22508 {
22509 struct attribute *attr;
22510 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22511
22512 attr = dwarf2_attr (die, DW_AT_name, cu);
22513 if ((!attr || !DW_STRING (attr))
22514 && die->tag != DW_TAG_namespace
22515 && die->tag != DW_TAG_class_type
22516 && die->tag != DW_TAG_interface_type
22517 && die->tag != DW_TAG_structure_type
22518 && die->tag != DW_TAG_union_type)
22519 return NULL;
22520
22521 switch (die->tag)
22522 {
22523 case DW_TAG_compile_unit:
22524 case DW_TAG_partial_unit:
22525 /* Compilation units have a DW_AT_name that is a filename, not
22526 a source language identifier. */
22527 case DW_TAG_enumeration_type:
22528 case DW_TAG_enumerator:
22529 /* These tags always have simple identifiers already; no need
22530 to canonicalize them. */
22531 return DW_STRING (attr);
22532
22533 case DW_TAG_namespace:
22534 if (attr != NULL && DW_STRING (attr) != NULL)
22535 return DW_STRING (attr);
22536 return CP_ANONYMOUS_NAMESPACE_STR;
22537
22538 case DW_TAG_class_type:
22539 case DW_TAG_interface_type:
22540 case DW_TAG_structure_type:
22541 case DW_TAG_union_type:
22542 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22543 structures or unions. These were of the form "._%d" in GCC 4.1,
22544 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22545 and GCC 4.4. We work around this problem by ignoring these. */
22546 if (attr && DW_STRING (attr)
22547 && (startswith (DW_STRING (attr), "._")
22548 || startswith (DW_STRING (attr), "<anonymous")))
22549 return NULL;
22550
22551 /* GCC might emit a nameless typedef that has a linkage name. See
22552 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22553 if (!attr || DW_STRING (attr) == NULL)
22554 {
22555 char *demangled = NULL;
22556
22557 attr = dw2_linkage_name_attr (die, cu);
22558 if (attr == NULL || DW_STRING (attr) == NULL)
22559 return NULL;
22560
22561 /* Avoid demangling DW_STRING (attr) the second time on a second
22562 call for the same DIE. */
22563 if (!DW_STRING_IS_CANONICAL (attr))
22564 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22565
22566 if (demangled)
22567 {
22568 const char *base;
22569
22570 /* FIXME: we already did this for the partial symbol... */
22571 DW_STRING (attr)
22572 = ((const char *)
22573 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22574 demangled, strlen (demangled)));
22575 DW_STRING_IS_CANONICAL (attr) = 1;
22576 xfree (demangled);
22577
22578 /* Strip any leading namespaces/classes, keep only the base name.
22579 DW_AT_name for named DIEs does not contain the prefixes. */
22580 base = strrchr (DW_STRING (attr), ':');
22581 if (base && base > DW_STRING (attr) && base[-1] == ':')
22582 return &base[1];
22583 else
22584 return DW_STRING (attr);
22585 }
22586 }
22587 break;
22588
22589 default:
22590 break;
22591 }
22592
22593 if (!DW_STRING_IS_CANONICAL (attr))
22594 {
22595 DW_STRING (attr)
22596 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22597 &objfile->per_bfd->storage_obstack);
22598 DW_STRING_IS_CANONICAL (attr) = 1;
22599 }
22600 return DW_STRING (attr);
22601 }
22602
22603 /* Return the die that this die in an extension of, or NULL if there
22604 is none. *EXT_CU is the CU containing DIE on input, and the CU
22605 containing the return value on output. */
22606
22607 static struct die_info *
22608 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22609 {
22610 struct attribute *attr;
22611
22612 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22613 if (attr == NULL)
22614 return NULL;
22615
22616 return follow_die_ref (die, attr, ext_cu);
22617 }
22618
22619 /* Convert a DIE tag into its string name. */
22620
22621 static const char *
22622 dwarf_tag_name (unsigned tag)
22623 {
22624 const char *name = get_DW_TAG_name (tag);
22625
22626 if (name == NULL)
22627 return "DW_TAG_<unknown>";
22628
22629 return name;
22630 }
22631
22632 /* Convert a DWARF attribute code into its string name. */
22633
22634 static const char *
22635 dwarf_attr_name (unsigned attr)
22636 {
22637 const char *name;
22638
22639 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22640 if (attr == DW_AT_MIPS_fde)
22641 return "DW_AT_MIPS_fde";
22642 #else
22643 if (attr == DW_AT_HP_block_index)
22644 return "DW_AT_HP_block_index";
22645 #endif
22646
22647 name = get_DW_AT_name (attr);
22648
22649 if (name == NULL)
22650 return "DW_AT_<unknown>";
22651
22652 return name;
22653 }
22654
22655 /* Convert a DWARF value form code into its string name. */
22656
22657 static const char *
22658 dwarf_form_name (unsigned form)
22659 {
22660 const char *name = get_DW_FORM_name (form);
22661
22662 if (name == NULL)
22663 return "DW_FORM_<unknown>";
22664
22665 return name;
22666 }
22667
22668 static const char *
22669 dwarf_bool_name (unsigned mybool)
22670 {
22671 if (mybool)
22672 return "TRUE";
22673 else
22674 return "FALSE";
22675 }
22676
22677 /* Convert a DWARF type code into its string name. */
22678
22679 static const char *
22680 dwarf_type_encoding_name (unsigned enc)
22681 {
22682 const char *name = get_DW_ATE_name (enc);
22683
22684 if (name == NULL)
22685 return "DW_ATE_<unknown>";
22686
22687 return name;
22688 }
22689
22690 static void
22691 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22692 {
22693 unsigned int i;
22694
22695 print_spaces (indent, f);
22696 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22697 dwarf_tag_name (die->tag), die->abbrev,
22698 sect_offset_str (die->sect_off));
22699
22700 if (die->parent != NULL)
22701 {
22702 print_spaces (indent, f);
22703 fprintf_unfiltered (f, " parent at offset: %s\n",
22704 sect_offset_str (die->parent->sect_off));
22705 }
22706
22707 print_spaces (indent, f);
22708 fprintf_unfiltered (f, " has children: %s\n",
22709 dwarf_bool_name (die->child != NULL));
22710
22711 print_spaces (indent, f);
22712 fprintf_unfiltered (f, " attributes:\n");
22713
22714 for (i = 0; i < die->num_attrs; ++i)
22715 {
22716 print_spaces (indent, f);
22717 fprintf_unfiltered (f, " %s (%s) ",
22718 dwarf_attr_name (die->attrs[i].name),
22719 dwarf_form_name (die->attrs[i].form));
22720
22721 switch (die->attrs[i].form)
22722 {
22723 case DW_FORM_addr:
22724 case DW_FORM_GNU_addr_index:
22725 fprintf_unfiltered (f, "address: ");
22726 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22727 break;
22728 case DW_FORM_block2:
22729 case DW_FORM_block4:
22730 case DW_FORM_block:
22731 case DW_FORM_block1:
22732 fprintf_unfiltered (f, "block: size %s",
22733 pulongest (DW_BLOCK (&die->attrs[i])->size));
22734 break;
22735 case DW_FORM_exprloc:
22736 fprintf_unfiltered (f, "expression: size %s",
22737 pulongest (DW_BLOCK (&die->attrs[i])->size));
22738 break;
22739 case DW_FORM_data16:
22740 fprintf_unfiltered (f, "constant of 16 bytes");
22741 break;
22742 case DW_FORM_ref_addr:
22743 fprintf_unfiltered (f, "ref address: ");
22744 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22745 break;
22746 case DW_FORM_GNU_ref_alt:
22747 fprintf_unfiltered (f, "alt ref address: ");
22748 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22749 break;
22750 case DW_FORM_ref1:
22751 case DW_FORM_ref2:
22752 case DW_FORM_ref4:
22753 case DW_FORM_ref8:
22754 case DW_FORM_ref_udata:
22755 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22756 (long) (DW_UNSND (&die->attrs[i])));
22757 break;
22758 case DW_FORM_data1:
22759 case DW_FORM_data2:
22760 case DW_FORM_data4:
22761 case DW_FORM_data8:
22762 case DW_FORM_udata:
22763 case DW_FORM_sdata:
22764 fprintf_unfiltered (f, "constant: %s",
22765 pulongest (DW_UNSND (&die->attrs[i])));
22766 break;
22767 case DW_FORM_sec_offset:
22768 fprintf_unfiltered (f, "section offset: %s",
22769 pulongest (DW_UNSND (&die->attrs[i])));
22770 break;
22771 case DW_FORM_ref_sig8:
22772 fprintf_unfiltered (f, "signature: %s",
22773 hex_string (DW_SIGNATURE (&die->attrs[i])));
22774 break;
22775 case DW_FORM_string:
22776 case DW_FORM_strp:
22777 case DW_FORM_line_strp:
22778 case DW_FORM_GNU_str_index:
22779 case DW_FORM_GNU_strp_alt:
22780 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22781 DW_STRING (&die->attrs[i])
22782 ? DW_STRING (&die->attrs[i]) : "",
22783 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22784 break;
22785 case DW_FORM_flag:
22786 if (DW_UNSND (&die->attrs[i]))
22787 fprintf_unfiltered (f, "flag: TRUE");
22788 else
22789 fprintf_unfiltered (f, "flag: FALSE");
22790 break;
22791 case DW_FORM_flag_present:
22792 fprintf_unfiltered (f, "flag: TRUE");
22793 break;
22794 case DW_FORM_indirect:
22795 /* The reader will have reduced the indirect form to
22796 the "base form" so this form should not occur. */
22797 fprintf_unfiltered (f,
22798 "unexpected attribute form: DW_FORM_indirect");
22799 break;
22800 case DW_FORM_implicit_const:
22801 fprintf_unfiltered (f, "constant: %s",
22802 plongest (DW_SND (&die->attrs[i])));
22803 break;
22804 default:
22805 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22806 die->attrs[i].form);
22807 break;
22808 }
22809 fprintf_unfiltered (f, "\n");
22810 }
22811 }
22812
22813 static void
22814 dump_die_for_error (struct die_info *die)
22815 {
22816 dump_die_shallow (gdb_stderr, 0, die);
22817 }
22818
22819 static void
22820 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22821 {
22822 int indent = level * 4;
22823
22824 gdb_assert (die != NULL);
22825
22826 if (level >= max_level)
22827 return;
22828
22829 dump_die_shallow (f, indent, die);
22830
22831 if (die->child != NULL)
22832 {
22833 print_spaces (indent, f);
22834 fprintf_unfiltered (f, " Children:");
22835 if (level + 1 < max_level)
22836 {
22837 fprintf_unfiltered (f, "\n");
22838 dump_die_1 (f, level + 1, max_level, die->child);
22839 }
22840 else
22841 {
22842 fprintf_unfiltered (f,
22843 " [not printed, max nesting level reached]\n");
22844 }
22845 }
22846
22847 if (die->sibling != NULL && level > 0)
22848 {
22849 dump_die_1 (f, level, max_level, die->sibling);
22850 }
22851 }
22852
22853 /* This is called from the pdie macro in gdbinit.in.
22854 It's not static so gcc will keep a copy callable from gdb. */
22855
22856 void
22857 dump_die (struct die_info *die, int max_level)
22858 {
22859 dump_die_1 (gdb_stdlog, 0, max_level, die);
22860 }
22861
22862 static void
22863 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22864 {
22865 void **slot;
22866
22867 slot = htab_find_slot_with_hash (cu->die_hash, die,
22868 to_underlying (die->sect_off),
22869 INSERT);
22870
22871 *slot = die;
22872 }
22873
22874 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22875 required kind. */
22876
22877 static sect_offset
22878 dwarf2_get_ref_die_offset (const struct attribute *attr)
22879 {
22880 if (attr_form_is_ref (attr))
22881 return (sect_offset) DW_UNSND (attr);
22882
22883 complaint (&symfile_complaints,
22884 _("unsupported die ref attribute form: '%s'"),
22885 dwarf_form_name (attr->form));
22886 return {};
22887 }
22888
22889 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22890 * the value held by the attribute is not constant. */
22891
22892 static LONGEST
22893 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
22894 {
22895 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
22896 return DW_SND (attr);
22897 else if (attr->form == DW_FORM_udata
22898 || attr->form == DW_FORM_data1
22899 || attr->form == DW_FORM_data2
22900 || attr->form == DW_FORM_data4
22901 || attr->form == DW_FORM_data8)
22902 return DW_UNSND (attr);
22903 else
22904 {
22905 /* For DW_FORM_data16 see attr_form_is_constant. */
22906 complaint (&symfile_complaints,
22907 _("Attribute value is not a constant (%s)"),
22908 dwarf_form_name (attr->form));
22909 return default_value;
22910 }
22911 }
22912
22913 /* Follow reference or signature attribute ATTR of SRC_DIE.
22914 On entry *REF_CU is the CU of SRC_DIE.
22915 On exit *REF_CU is the CU of the result. */
22916
22917 static struct die_info *
22918 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22919 struct dwarf2_cu **ref_cu)
22920 {
22921 struct die_info *die;
22922
22923 if (attr_form_is_ref (attr))
22924 die = follow_die_ref (src_die, attr, ref_cu);
22925 else if (attr->form == DW_FORM_ref_sig8)
22926 die = follow_die_sig (src_die, attr, ref_cu);
22927 else
22928 {
22929 dump_die_for_error (src_die);
22930 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22931 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22932 }
22933
22934 return die;
22935 }
22936
22937 /* Follow reference OFFSET.
22938 On entry *REF_CU is the CU of the source die referencing OFFSET.
22939 On exit *REF_CU is the CU of the result.
22940 Returns NULL if OFFSET is invalid. */
22941
22942 static struct die_info *
22943 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22944 struct dwarf2_cu **ref_cu)
22945 {
22946 struct die_info temp_die;
22947 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22948 struct dwarf2_per_objfile *dwarf2_per_objfile
22949 = cu->per_cu->dwarf2_per_objfile;
22950 struct objfile *objfile = dwarf2_per_objfile->objfile;
22951
22952 gdb_assert (cu->per_cu != NULL);
22953
22954 target_cu = cu;
22955
22956 if (cu->per_cu->is_debug_types)
22957 {
22958 /* .debug_types CUs cannot reference anything outside their CU.
22959 If they need to, they have to reference a signatured type via
22960 DW_FORM_ref_sig8. */
22961 if (!offset_in_cu_p (&cu->header, sect_off))
22962 return NULL;
22963 }
22964 else if (offset_in_dwz != cu->per_cu->is_dwz
22965 || !offset_in_cu_p (&cu->header, sect_off))
22966 {
22967 struct dwarf2_per_cu_data *per_cu;
22968
22969 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
22970 dwarf2_per_objfile);
22971
22972 /* If necessary, add it to the queue and load its DIEs. */
22973 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
22974 load_full_comp_unit (per_cu, cu->language);
22975
22976 target_cu = per_cu->cu;
22977 }
22978 else if (cu->dies == NULL)
22979 {
22980 /* We're loading full DIEs during partial symbol reading. */
22981 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
22982 load_full_comp_unit (cu->per_cu, language_minimal);
22983 }
22984
22985 *ref_cu = target_cu;
22986 temp_die.sect_off = sect_off;
22987 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
22988 &temp_die,
22989 to_underlying (sect_off));
22990 }
22991
22992 /* Follow reference attribute ATTR of SRC_DIE.
22993 On entry *REF_CU is the CU of SRC_DIE.
22994 On exit *REF_CU is the CU of the result. */
22995
22996 static struct die_info *
22997 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
22998 struct dwarf2_cu **ref_cu)
22999 {
23000 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
23001 struct dwarf2_cu *cu = *ref_cu;
23002 struct die_info *die;
23003
23004 die = follow_die_offset (sect_off,
23005 (attr->form == DW_FORM_GNU_ref_alt
23006 || cu->per_cu->is_dwz),
23007 ref_cu);
23008 if (!die)
23009 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23010 "at %s [in module %s]"),
23011 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
23012 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
23013
23014 return die;
23015 }
23016
23017 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
23018 Returned value is intended for DW_OP_call*. Returned
23019 dwarf2_locexpr_baton->data has lifetime of
23020 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
23021
23022 struct dwarf2_locexpr_baton
23023 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
23024 struct dwarf2_per_cu_data *per_cu,
23025 CORE_ADDR (*get_frame_pc) (void *baton),
23026 void *baton)
23027 {
23028 struct dwarf2_cu *cu;
23029 struct die_info *die;
23030 struct attribute *attr;
23031 struct dwarf2_locexpr_baton retval;
23032 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23033 struct dwarf2_per_objfile *dwarf2_per_objfile
23034 = get_dwarf2_per_objfile (objfile);
23035
23036 if (per_cu->cu == NULL)
23037 load_cu (per_cu);
23038 cu = per_cu->cu;
23039 if (cu == NULL)
23040 {
23041 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23042 Instead just throw an error, not much else we can do. */
23043 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23044 sect_offset_str (sect_off), objfile_name (objfile));
23045 }
23046
23047 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23048 if (!die)
23049 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23050 sect_offset_str (sect_off), objfile_name (objfile));
23051
23052 attr = dwarf2_attr (die, DW_AT_location, cu);
23053 if (!attr)
23054 {
23055 /* DWARF: "If there is no such attribute, then there is no effect.".
23056 DATA is ignored if SIZE is 0. */
23057
23058 retval.data = NULL;
23059 retval.size = 0;
23060 }
23061 else if (attr_form_is_section_offset (attr))
23062 {
23063 struct dwarf2_loclist_baton loclist_baton;
23064 CORE_ADDR pc = (*get_frame_pc) (baton);
23065 size_t size;
23066
23067 fill_in_loclist_baton (cu, &loclist_baton, attr);
23068
23069 retval.data = dwarf2_find_location_expression (&loclist_baton,
23070 &size, pc);
23071 retval.size = size;
23072 }
23073 else
23074 {
23075 if (!attr_form_is_block (attr))
23076 error (_("Dwarf Error: DIE at %s referenced in module %s "
23077 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23078 sect_offset_str (sect_off), objfile_name (objfile));
23079
23080 retval.data = DW_BLOCK (attr)->data;
23081 retval.size = DW_BLOCK (attr)->size;
23082 }
23083 retval.per_cu = cu->per_cu;
23084
23085 age_cached_comp_units (dwarf2_per_objfile);
23086
23087 return retval;
23088 }
23089
23090 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23091 offset. */
23092
23093 struct dwarf2_locexpr_baton
23094 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23095 struct dwarf2_per_cu_data *per_cu,
23096 CORE_ADDR (*get_frame_pc) (void *baton),
23097 void *baton)
23098 {
23099 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23100
23101 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23102 }
23103
23104 /* Write a constant of a given type as target-ordered bytes into
23105 OBSTACK. */
23106
23107 static const gdb_byte *
23108 write_constant_as_bytes (struct obstack *obstack,
23109 enum bfd_endian byte_order,
23110 struct type *type,
23111 ULONGEST value,
23112 LONGEST *len)
23113 {
23114 gdb_byte *result;
23115
23116 *len = TYPE_LENGTH (type);
23117 result = (gdb_byte *) obstack_alloc (obstack, *len);
23118 store_unsigned_integer (result, *len, byte_order, value);
23119
23120 return result;
23121 }
23122
23123 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23124 pointer to the constant bytes and set LEN to the length of the
23125 data. If memory is needed, allocate it on OBSTACK. If the DIE
23126 does not have a DW_AT_const_value, return NULL. */
23127
23128 const gdb_byte *
23129 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23130 struct dwarf2_per_cu_data *per_cu,
23131 struct obstack *obstack,
23132 LONGEST *len)
23133 {
23134 struct dwarf2_cu *cu;
23135 struct die_info *die;
23136 struct attribute *attr;
23137 const gdb_byte *result = NULL;
23138 struct type *type;
23139 LONGEST value;
23140 enum bfd_endian byte_order;
23141 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23142
23143 if (per_cu->cu == NULL)
23144 load_cu (per_cu);
23145 cu = per_cu->cu;
23146 if (cu == NULL)
23147 {
23148 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23149 Instead just throw an error, not much else we can do. */
23150 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23151 sect_offset_str (sect_off), objfile_name (objfile));
23152 }
23153
23154 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23155 if (!die)
23156 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23157 sect_offset_str (sect_off), objfile_name (objfile));
23158
23159 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23160 if (attr == NULL)
23161 return NULL;
23162
23163 byte_order = (bfd_big_endian (objfile->obfd)
23164 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23165
23166 switch (attr->form)
23167 {
23168 case DW_FORM_addr:
23169 case DW_FORM_GNU_addr_index:
23170 {
23171 gdb_byte *tem;
23172
23173 *len = cu->header.addr_size;
23174 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23175 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23176 result = tem;
23177 }
23178 break;
23179 case DW_FORM_string:
23180 case DW_FORM_strp:
23181 case DW_FORM_GNU_str_index:
23182 case DW_FORM_GNU_strp_alt:
23183 /* DW_STRING is already allocated on the objfile obstack, point
23184 directly to it. */
23185 result = (const gdb_byte *) DW_STRING (attr);
23186 *len = strlen (DW_STRING (attr));
23187 break;
23188 case DW_FORM_block1:
23189 case DW_FORM_block2:
23190 case DW_FORM_block4:
23191 case DW_FORM_block:
23192 case DW_FORM_exprloc:
23193 case DW_FORM_data16:
23194 result = DW_BLOCK (attr)->data;
23195 *len = DW_BLOCK (attr)->size;
23196 break;
23197
23198 /* The DW_AT_const_value attributes are supposed to carry the
23199 symbol's value "represented as it would be on the target
23200 architecture." By the time we get here, it's already been
23201 converted to host endianness, so we just need to sign- or
23202 zero-extend it as appropriate. */
23203 case DW_FORM_data1:
23204 type = die_type (die, cu);
23205 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23206 if (result == NULL)
23207 result = write_constant_as_bytes (obstack, byte_order,
23208 type, value, len);
23209 break;
23210 case DW_FORM_data2:
23211 type = die_type (die, cu);
23212 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23213 if (result == NULL)
23214 result = write_constant_as_bytes (obstack, byte_order,
23215 type, value, len);
23216 break;
23217 case DW_FORM_data4:
23218 type = die_type (die, cu);
23219 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23220 if (result == NULL)
23221 result = write_constant_as_bytes (obstack, byte_order,
23222 type, value, len);
23223 break;
23224 case DW_FORM_data8:
23225 type = die_type (die, cu);
23226 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23227 if (result == NULL)
23228 result = write_constant_as_bytes (obstack, byte_order,
23229 type, value, len);
23230 break;
23231
23232 case DW_FORM_sdata:
23233 case DW_FORM_implicit_const:
23234 type = die_type (die, cu);
23235 result = write_constant_as_bytes (obstack, byte_order,
23236 type, DW_SND (attr), len);
23237 break;
23238
23239 case DW_FORM_udata:
23240 type = die_type (die, cu);
23241 result = write_constant_as_bytes (obstack, byte_order,
23242 type, DW_UNSND (attr), len);
23243 break;
23244
23245 default:
23246 complaint (&symfile_complaints,
23247 _("unsupported const value attribute form: '%s'"),
23248 dwarf_form_name (attr->form));
23249 break;
23250 }
23251
23252 return result;
23253 }
23254
23255 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23256 valid type for this die is found. */
23257
23258 struct type *
23259 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23260 struct dwarf2_per_cu_data *per_cu)
23261 {
23262 struct dwarf2_cu *cu;
23263 struct die_info *die;
23264
23265 if (per_cu->cu == NULL)
23266 load_cu (per_cu);
23267 cu = per_cu->cu;
23268 if (!cu)
23269 return NULL;
23270
23271 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23272 if (!die)
23273 return NULL;
23274
23275 return die_type (die, cu);
23276 }
23277
23278 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23279 PER_CU. */
23280
23281 struct type *
23282 dwarf2_get_die_type (cu_offset die_offset,
23283 struct dwarf2_per_cu_data *per_cu)
23284 {
23285 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23286 return get_die_type_at_offset (die_offset_sect, per_cu);
23287 }
23288
23289 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23290 On entry *REF_CU is the CU of SRC_DIE.
23291 On exit *REF_CU is the CU of the result.
23292 Returns NULL if the referenced DIE isn't found. */
23293
23294 static struct die_info *
23295 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23296 struct dwarf2_cu **ref_cu)
23297 {
23298 struct die_info temp_die;
23299 struct dwarf2_cu *sig_cu;
23300 struct die_info *die;
23301
23302 /* While it might be nice to assert sig_type->type == NULL here,
23303 we can get here for DW_AT_imported_declaration where we need
23304 the DIE not the type. */
23305
23306 /* If necessary, add it to the queue and load its DIEs. */
23307
23308 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23309 read_signatured_type (sig_type);
23310
23311 sig_cu = sig_type->per_cu.cu;
23312 gdb_assert (sig_cu != NULL);
23313 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23314 temp_die.sect_off = sig_type->type_offset_in_section;
23315 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23316 to_underlying (temp_die.sect_off));
23317 if (die)
23318 {
23319 struct dwarf2_per_objfile *dwarf2_per_objfile
23320 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23321
23322 /* For .gdb_index version 7 keep track of included TUs.
23323 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23324 if (dwarf2_per_objfile->index_table != NULL
23325 && dwarf2_per_objfile->index_table->version <= 7)
23326 {
23327 VEC_safe_push (dwarf2_per_cu_ptr,
23328 (*ref_cu)->per_cu->imported_symtabs,
23329 sig_cu->per_cu);
23330 }
23331
23332 *ref_cu = sig_cu;
23333 return die;
23334 }
23335
23336 return NULL;
23337 }
23338
23339 /* Follow signatured type referenced by ATTR in SRC_DIE.
23340 On entry *REF_CU is the CU of SRC_DIE.
23341 On exit *REF_CU is the CU of the result.
23342 The result is the DIE of the type.
23343 If the referenced type cannot be found an error is thrown. */
23344
23345 static struct die_info *
23346 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23347 struct dwarf2_cu **ref_cu)
23348 {
23349 ULONGEST signature = DW_SIGNATURE (attr);
23350 struct signatured_type *sig_type;
23351 struct die_info *die;
23352
23353 gdb_assert (attr->form == DW_FORM_ref_sig8);
23354
23355 sig_type = lookup_signatured_type (*ref_cu, signature);
23356 /* sig_type will be NULL if the signatured type is missing from
23357 the debug info. */
23358 if (sig_type == NULL)
23359 {
23360 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23361 " from DIE at %s [in module %s]"),
23362 hex_string (signature), sect_offset_str (src_die->sect_off),
23363 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23364 }
23365
23366 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23367 if (die == NULL)
23368 {
23369 dump_die_for_error (src_die);
23370 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23371 " from DIE at %s [in module %s]"),
23372 hex_string (signature), sect_offset_str (src_die->sect_off),
23373 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23374 }
23375
23376 return die;
23377 }
23378
23379 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23380 reading in and processing the type unit if necessary. */
23381
23382 static struct type *
23383 get_signatured_type (struct die_info *die, ULONGEST signature,
23384 struct dwarf2_cu *cu)
23385 {
23386 struct dwarf2_per_objfile *dwarf2_per_objfile
23387 = cu->per_cu->dwarf2_per_objfile;
23388 struct signatured_type *sig_type;
23389 struct dwarf2_cu *type_cu;
23390 struct die_info *type_die;
23391 struct type *type;
23392
23393 sig_type = lookup_signatured_type (cu, signature);
23394 /* sig_type will be NULL if the signatured type is missing from
23395 the debug info. */
23396 if (sig_type == NULL)
23397 {
23398 complaint (&symfile_complaints,
23399 _("Dwarf Error: Cannot find signatured DIE %s referenced"
23400 " from DIE at %s [in module %s]"),
23401 hex_string (signature), sect_offset_str (die->sect_off),
23402 objfile_name (dwarf2_per_objfile->objfile));
23403 return build_error_marker_type (cu, die);
23404 }
23405
23406 /* If we already know the type we're done. */
23407 if (sig_type->type != NULL)
23408 return sig_type->type;
23409
23410 type_cu = cu;
23411 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23412 if (type_die != NULL)
23413 {
23414 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23415 is created. This is important, for example, because for c++ classes
23416 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23417 type = read_type_die (type_die, type_cu);
23418 if (type == NULL)
23419 {
23420 complaint (&symfile_complaints,
23421 _("Dwarf Error: Cannot build signatured type %s"
23422 " referenced from DIE at %s [in module %s]"),
23423 hex_string (signature), sect_offset_str (die->sect_off),
23424 objfile_name (dwarf2_per_objfile->objfile));
23425 type = build_error_marker_type (cu, die);
23426 }
23427 }
23428 else
23429 {
23430 complaint (&symfile_complaints,
23431 _("Dwarf Error: Problem reading signatured DIE %s referenced"
23432 " from DIE at %s [in module %s]"),
23433 hex_string (signature), sect_offset_str (die->sect_off),
23434 objfile_name (dwarf2_per_objfile->objfile));
23435 type = build_error_marker_type (cu, die);
23436 }
23437 sig_type->type = type;
23438
23439 return type;
23440 }
23441
23442 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23443 reading in and processing the type unit if necessary. */
23444
23445 static struct type *
23446 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23447 struct dwarf2_cu *cu) /* ARI: editCase function */
23448 {
23449 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23450 if (attr_form_is_ref (attr))
23451 {
23452 struct dwarf2_cu *type_cu = cu;
23453 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23454
23455 return read_type_die (type_die, type_cu);
23456 }
23457 else if (attr->form == DW_FORM_ref_sig8)
23458 {
23459 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23460 }
23461 else
23462 {
23463 struct dwarf2_per_objfile *dwarf2_per_objfile
23464 = cu->per_cu->dwarf2_per_objfile;
23465
23466 complaint (&symfile_complaints,
23467 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23468 " at %s [in module %s]"),
23469 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23470 objfile_name (dwarf2_per_objfile->objfile));
23471 return build_error_marker_type (cu, die);
23472 }
23473 }
23474
23475 /* Load the DIEs associated with type unit PER_CU into memory. */
23476
23477 static void
23478 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23479 {
23480 struct signatured_type *sig_type;
23481
23482 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23483 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23484
23485 /* We have the per_cu, but we need the signatured_type.
23486 Fortunately this is an easy translation. */
23487 gdb_assert (per_cu->is_debug_types);
23488 sig_type = (struct signatured_type *) per_cu;
23489
23490 gdb_assert (per_cu->cu == NULL);
23491
23492 read_signatured_type (sig_type);
23493
23494 gdb_assert (per_cu->cu != NULL);
23495 }
23496
23497 /* die_reader_func for read_signatured_type.
23498 This is identical to load_full_comp_unit_reader,
23499 but is kept separate for now. */
23500
23501 static void
23502 read_signatured_type_reader (const struct die_reader_specs *reader,
23503 const gdb_byte *info_ptr,
23504 struct die_info *comp_unit_die,
23505 int has_children,
23506 void *data)
23507 {
23508 struct dwarf2_cu *cu = reader->cu;
23509
23510 gdb_assert (cu->die_hash == NULL);
23511 cu->die_hash =
23512 htab_create_alloc_ex (cu->header.length / 12,
23513 die_hash,
23514 die_eq,
23515 NULL,
23516 &cu->comp_unit_obstack,
23517 hashtab_obstack_allocate,
23518 dummy_obstack_deallocate);
23519
23520 if (has_children)
23521 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23522 &info_ptr, comp_unit_die);
23523 cu->dies = comp_unit_die;
23524 /* comp_unit_die is not stored in die_hash, no need. */
23525
23526 /* We try not to read any attributes in this function, because not
23527 all CUs needed for references have been loaded yet, and symbol
23528 table processing isn't initialized. But we have to set the CU language,
23529 or we won't be able to build types correctly.
23530 Similarly, if we do not read the producer, we can not apply
23531 producer-specific interpretation. */
23532 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23533 }
23534
23535 /* Read in a signatured type and build its CU and DIEs.
23536 If the type is a stub for the real type in a DWO file,
23537 read in the real type from the DWO file as well. */
23538
23539 static void
23540 read_signatured_type (struct signatured_type *sig_type)
23541 {
23542 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23543
23544 gdb_assert (per_cu->is_debug_types);
23545 gdb_assert (per_cu->cu == NULL);
23546
23547 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
23548 read_signatured_type_reader, NULL);
23549 sig_type->per_cu.tu_read = 1;
23550 }
23551
23552 /* Decode simple location descriptions.
23553 Given a pointer to a dwarf block that defines a location, compute
23554 the location and return the value.
23555
23556 NOTE drow/2003-11-18: This function is called in two situations
23557 now: for the address of static or global variables (partial symbols
23558 only) and for offsets into structures which are expected to be
23559 (more or less) constant. The partial symbol case should go away,
23560 and only the constant case should remain. That will let this
23561 function complain more accurately. A few special modes are allowed
23562 without complaint for global variables (for instance, global
23563 register values and thread-local values).
23564
23565 A location description containing no operations indicates that the
23566 object is optimized out. The return value is 0 for that case.
23567 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23568 callers will only want a very basic result and this can become a
23569 complaint.
23570
23571 Note that stack[0] is unused except as a default error return. */
23572
23573 static CORE_ADDR
23574 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23575 {
23576 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23577 size_t i;
23578 size_t size = blk->size;
23579 const gdb_byte *data = blk->data;
23580 CORE_ADDR stack[64];
23581 int stacki;
23582 unsigned int bytes_read, unsnd;
23583 gdb_byte op;
23584
23585 i = 0;
23586 stacki = 0;
23587 stack[stacki] = 0;
23588 stack[++stacki] = 0;
23589
23590 while (i < size)
23591 {
23592 op = data[i++];
23593 switch (op)
23594 {
23595 case DW_OP_lit0:
23596 case DW_OP_lit1:
23597 case DW_OP_lit2:
23598 case DW_OP_lit3:
23599 case DW_OP_lit4:
23600 case DW_OP_lit5:
23601 case DW_OP_lit6:
23602 case DW_OP_lit7:
23603 case DW_OP_lit8:
23604 case DW_OP_lit9:
23605 case DW_OP_lit10:
23606 case DW_OP_lit11:
23607 case DW_OP_lit12:
23608 case DW_OP_lit13:
23609 case DW_OP_lit14:
23610 case DW_OP_lit15:
23611 case DW_OP_lit16:
23612 case DW_OP_lit17:
23613 case DW_OP_lit18:
23614 case DW_OP_lit19:
23615 case DW_OP_lit20:
23616 case DW_OP_lit21:
23617 case DW_OP_lit22:
23618 case DW_OP_lit23:
23619 case DW_OP_lit24:
23620 case DW_OP_lit25:
23621 case DW_OP_lit26:
23622 case DW_OP_lit27:
23623 case DW_OP_lit28:
23624 case DW_OP_lit29:
23625 case DW_OP_lit30:
23626 case DW_OP_lit31:
23627 stack[++stacki] = op - DW_OP_lit0;
23628 break;
23629
23630 case DW_OP_reg0:
23631 case DW_OP_reg1:
23632 case DW_OP_reg2:
23633 case DW_OP_reg3:
23634 case DW_OP_reg4:
23635 case DW_OP_reg5:
23636 case DW_OP_reg6:
23637 case DW_OP_reg7:
23638 case DW_OP_reg8:
23639 case DW_OP_reg9:
23640 case DW_OP_reg10:
23641 case DW_OP_reg11:
23642 case DW_OP_reg12:
23643 case DW_OP_reg13:
23644 case DW_OP_reg14:
23645 case DW_OP_reg15:
23646 case DW_OP_reg16:
23647 case DW_OP_reg17:
23648 case DW_OP_reg18:
23649 case DW_OP_reg19:
23650 case DW_OP_reg20:
23651 case DW_OP_reg21:
23652 case DW_OP_reg22:
23653 case DW_OP_reg23:
23654 case DW_OP_reg24:
23655 case DW_OP_reg25:
23656 case DW_OP_reg26:
23657 case DW_OP_reg27:
23658 case DW_OP_reg28:
23659 case DW_OP_reg29:
23660 case DW_OP_reg30:
23661 case DW_OP_reg31:
23662 stack[++stacki] = op - DW_OP_reg0;
23663 if (i < size)
23664 dwarf2_complex_location_expr_complaint ();
23665 break;
23666
23667 case DW_OP_regx:
23668 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23669 i += bytes_read;
23670 stack[++stacki] = unsnd;
23671 if (i < size)
23672 dwarf2_complex_location_expr_complaint ();
23673 break;
23674
23675 case DW_OP_addr:
23676 stack[++stacki] = read_address (objfile->obfd, &data[i],
23677 cu, &bytes_read);
23678 i += bytes_read;
23679 break;
23680
23681 case DW_OP_const1u:
23682 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23683 i += 1;
23684 break;
23685
23686 case DW_OP_const1s:
23687 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23688 i += 1;
23689 break;
23690
23691 case DW_OP_const2u:
23692 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23693 i += 2;
23694 break;
23695
23696 case DW_OP_const2s:
23697 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23698 i += 2;
23699 break;
23700
23701 case DW_OP_const4u:
23702 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23703 i += 4;
23704 break;
23705
23706 case DW_OP_const4s:
23707 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23708 i += 4;
23709 break;
23710
23711 case DW_OP_const8u:
23712 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23713 i += 8;
23714 break;
23715
23716 case DW_OP_constu:
23717 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23718 &bytes_read);
23719 i += bytes_read;
23720 break;
23721
23722 case DW_OP_consts:
23723 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23724 i += bytes_read;
23725 break;
23726
23727 case DW_OP_dup:
23728 stack[stacki + 1] = stack[stacki];
23729 stacki++;
23730 break;
23731
23732 case DW_OP_plus:
23733 stack[stacki - 1] += stack[stacki];
23734 stacki--;
23735 break;
23736
23737 case DW_OP_plus_uconst:
23738 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23739 &bytes_read);
23740 i += bytes_read;
23741 break;
23742
23743 case DW_OP_minus:
23744 stack[stacki - 1] -= stack[stacki];
23745 stacki--;
23746 break;
23747
23748 case DW_OP_deref:
23749 /* If we're not the last op, then we definitely can't encode
23750 this using GDB's address_class enum. This is valid for partial
23751 global symbols, although the variable's address will be bogus
23752 in the psymtab. */
23753 if (i < size)
23754 dwarf2_complex_location_expr_complaint ();
23755 break;
23756
23757 case DW_OP_GNU_push_tls_address:
23758 case DW_OP_form_tls_address:
23759 /* The top of the stack has the offset from the beginning
23760 of the thread control block at which the variable is located. */
23761 /* Nothing should follow this operator, so the top of stack would
23762 be returned. */
23763 /* This is valid for partial global symbols, but the variable's
23764 address will be bogus in the psymtab. Make it always at least
23765 non-zero to not look as a variable garbage collected by linker
23766 which have DW_OP_addr 0. */
23767 if (i < size)
23768 dwarf2_complex_location_expr_complaint ();
23769 stack[stacki]++;
23770 break;
23771
23772 case DW_OP_GNU_uninit:
23773 break;
23774
23775 case DW_OP_GNU_addr_index:
23776 case DW_OP_GNU_const_index:
23777 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23778 &bytes_read);
23779 i += bytes_read;
23780 break;
23781
23782 default:
23783 {
23784 const char *name = get_DW_OP_name (op);
23785
23786 if (name)
23787 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
23788 name);
23789 else
23790 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
23791 op);
23792 }
23793
23794 return (stack[stacki]);
23795 }
23796
23797 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23798 outside of the allocated space. Also enforce minimum>0. */
23799 if (stacki >= ARRAY_SIZE (stack) - 1)
23800 {
23801 complaint (&symfile_complaints,
23802 _("location description stack overflow"));
23803 return 0;
23804 }
23805
23806 if (stacki <= 0)
23807 {
23808 complaint (&symfile_complaints,
23809 _("location description stack underflow"));
23810 return 0;
23811 }
23812 }
23813 return (stack[stacki]);
23814 }
23815
23816 /* memory allocation interface */
23817
23818 static struct dwarf_block *
23819 dwarf_alloc_block (struct dwarf2_cu *cu)
23820 {
23821 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23822 }
23823
23824 static struct die_info *
23825 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23826 {
23827 struct die_info *die;
23828 size_t size = sizeof (struct die_info);
23829
23830 if (num_attrs > 1)
23831 size += (num_attrs - 1) * sizeof (struct attribute);
23832
23833 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23834 memset (die, 0, sizeof (struct die_info));
23835 return (die);
23836 }
23837
23838 \f
23839 /* Macro support. */
23840
23841 /* Return file name relative to the compilation directory of file number I in
23842 *LH's file name table. The result is allocated using xmalloc; the caller is
23843 responsible for freeing it. */
23844
23845 static char *
23846 file_file_name (int file, struct line_header *lh)
23847 {
23848 /* Is the file number a valid index into the line header's file name
23849 table? Remember that file numbers start with one, not zero. */
23850 if (1 <= file && file <= lh->file_names.size ())
23851 {
23852 const file_entry &fe = lh->file_names[file - 1];
23853
23854 if (!IS_ABSOLUTE_PATH (fe.name))
23855 {
23856 const char *dir = fe.include_dir (lh);
23857 if (dir != NULL)
23858 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
23859 }
23860 return xstrdup (fe.name);
23861 }
23862 else
23863 {
23864 /* The compiler produced a bogus file number. We can at least
23865 record the macro definitions made in the file, even if we
23866 won't be able to find the file by name. */
23867 char fake_name[80];
23868
23869 xsnprintf (fake_name, sizeof (fake_name),
23870 "<bad macro file number %d>", file);
23871
23872 complaint (&symfile_complaints,
23873 _("bad file number in macro information (%d)"),
23874 file);
23875
23876 return xstrdup (fake_name);
23877 }
23878 }
23879
23880 /* Return the full name of file number I in *LH's file name table.
23881 Use COMP_DIR as the name of the current directory of the
23882 compilation. The result is allocated using xmalloc; the caller is
23883 responsible for freeing it. */
23884 static char *
23885 file_full_name (int file, struct line_header *lh, const char *comp_dir)
23886 {
23887 /* Is the file number a valid index into the line header's file name
23888 table? Remember that file numbers start with one, not zero. */
23889 if (1 <= file && file <= lh->file_names.size ())
23890 {
23891 char *relative = file_file_name (file, lh);
23892
23893 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
23894 return relative;
23895 return reconcat (relative, comp_dir, SLASH_STRING,
23896 relative, (char *) NULL);
23897 }
23898 else
23899 return file_file_name (file, lh);
23900 }
23901
23902
23903 static struct macro_source_file *
23904 macro_start_file (int file, int line,
23905 struct macro_source_file *current_file,
23906 struct line_header *lh)
23907 {
23908 /* File name relative to the compilation directory of this source file. */
23909 char *file_name = file_file_name (file, lh);
23910
23911 if (! current_file)
23912 {
23913 /* Note: We don't create a macro table for this compilation unit
23914 at all until we actually get a filename. */
23915 struct macro_table *macro_table = get_macro_table ();
23916
23917 /* If we have no current file, then this must be the start_file
23918 directive for the compilation unit's main source file. */
23919 current_file = macro_set_main (macro_table, file_name);
23920 macro_define_special (macro_table);
23921 }
23922 else
23923 current_file = macro_include (current_file, line, file_name);
23924
23925 xfree (file_name);
23926
23927 return current_file;
23928 }
23929
23930 static const char *
23931 consume_improper_spaces (const char *p, const char *body)
23932 {
23933 if (*p == ' ')
23934 {
23935 complaint (&symfile_complaints,
23936 _("macro definition contains spaces "
23937 "in formal argument list:\n`%s'"),
23938 body);
23939
23940 while (*p == ' ')
23941 p++;
23942 }
23943
23944 return p;
23945 }
23946
23947
23948 static void
23949 parse_macro_definition (struct macro_source_file *file, int line,
23950 const char *body)
23951 {
23952 const char *p;
23953
23954 /* The body string takes one of two forms. For object-like macro
23955 definitions, it should be:
23956
23957 <macro name> " " <definition>
23958
23959 For function-like macro definitions, it should be:
23960
23961 <macro name> "() " <definition>
23962 or
23963 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
23964
23965 Spaces may appear only where explicitly indicated, and in the
23966 <definition>.
23967
23968 The Dwarf 2 spec says that an object-like macro's name is always
23969 followed by a space, but versions of GCC around March 2002 omit
23970 the space when the macro's definition is the empty string.
23971
23972 The Dwarf 2 spec says that there should be no spaces between the
23973 formal arguments in a function-like macro's formal argument list,
23974 but versions of GCC around March 2002 include spaces after the
23975 commas. */
23976
23977
23978 /* Find the extent of the macro name. The macro name is terminated
23979 by either a space or null character (for an object-like macro) or
23980 an opening paren (for a function-like macro). */
23981 for (p = body; *p; p++)
23982 if (*p == ' ' || *p == '(')
23983 break;
23984
23985 if (*p == ' ' || *p == '\0')
23986 {
23987 /* It's an object-like macro. */
23988 int name_len = p - body;
23989 char *name = savestring (body, name_len);
23990 const char *replacement;
23991
23992 if (*p == ' ')
23993 replacement = body + name_len + 1;
23994 else
23995 {
23996 dwarf2_macro_malformed_definition_complaint (body);
23997 replacement = body + name_len;
23998 }
23999
24000 macro_define_object (file, line, name, replacement);
24001
24002 xfree (name);
24003 }
24004 else if (*p == '(')
24005 {
24006 /* It's a function-like macro. */
24007 char *name = savestring (body, p - body);
24008 int argc = 0;
24009 int argv_size = 1;
24010 char **argv = XNEWVEC (char *, argv_size);
24011
24012 p++;
24013
24014 p = consume_improper_spaces (p, body);
24015
24016 /* Parse the formal argument list. */
24017 while (*p && *p != ')')
24018 {
24019 /* Find the extent of the current argument name. */
24020 const char *arg_start = p;
24021
24022 while (*p && *p != ',' && *p != ')' && *p != ' ')
24023 p++;
24024
24025 if (! *p || p == arg_start)
24026 dwarf2_macro_malformed_definition_complaint (body);
24027 else
24028 {
24029 /* Make sure argv has room for the new argument. */
24030 if (argc >= argv_size)
24031 {
24032 argv_size *= 2;
24033 argv = XRESIZEVEC (char *, argv, argv_size);
24034 }
24035
24036 argv[argc++] = savestring (arg_start, p - arg_start);
24037 }
24038
24039 p = consume_improper_spaces (p, body);
24040
24041 /* Consume the comma, if present. */
24042 if (*p == ',')
24043 {
24044 p++;
24045
24046 p = consume_improper_spaces (p, body);
24047 }
24048 }
24049
24050 if (*p == ')')
24051 {
24052 p++;
24053
24054 if (*p == ' ')
24055 /* Perfectly formed definition, no complaints. */
24056 macro_define_function (file, line, name,
24057 argc, (const char **) argv,
24058 p + 1);
24059 else if (*p == '\0')
24060 {
24061 /* Complain, but do define it. */
24062 dwarf2_macro_malformed_definition_complaint (body);
24063 macro_define_function (file, line, name,
24064 argc, (const char **) argv,
24065 p);
24066 }
24067 else
24068 /* Just complain. */
24069 dwarf2_macro_malformed_definition_complaint (body);
24070 }
24071 else
24072 /* Just complain. */
24073 dwarf2_macro_malformed_definition_complaint (body);
24074
24075 xfree (name);
24076 {
24077 int i;
24078
24079 for (i = 0; i < argc; i++)
24080 xfree (argv[i]);
24081 }
24082 xfree (argv);
24083 }
24084 else
24085 dwarf2_macro_malformed_definition_complaint (body);
24086 }
24087
24088 /* Skip some bytes from BYTES according to the form given in FORM.
24089 Returns the new pointer. */
24090
24091 static const gdb_byte *
24092 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24093 enum dwarf_form form,
24094 unsigned int offset_size,
24095 struct dwarf2_section_info *section)
24096 {
24097 unsigned int bytes_read;
24098
24099 switch (form)
24100 {
24101 case DW_FORM_data1:
24102 case DW_FORM_flag:
24103 ++bytes;
24104 break;
24105
24106 case DW_FORM_data2:
24107 bytes += 2;
24108 break;
24109
24110 case DW_FORM_data4:
24111 bytes += 4;
24112 break;
24113
24114 case DW_FORM_data8:
24115 bytes += 8;
24116 break;
24117
24118 case DW_FORM_data16:
24119 bytes += 16;
24120 break;
24121
24122 case DW_FORM_string:
24123 read_direct_string (abfd, bytes, &bytes_read);
24124 bytes += bytes_read;
24125 break;
24126
24127 case DW_FORM_sec_offset:
24128 case DW_FORM_strp:
24129 case DW_FORM_GNU_strp_alt:
24130 bytes += offset_size;
24131 break;
24132
24133 case DW_FORM_block:
24134 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24135 bytes += bytes_read;
24136 break;
24137
24138 case DW_FORM_block1:
24139 bytes += 1 + read_1_byte (abfd, bytes);
24140 break;
24141 case DW_FORM_block2:
24142 bytes += 2 + read_2_bytes (abfd, bytes);
24143 break;
24144 case DW_FORM_block4:
24145 bytes += 4 + read_4_bytes (abfd, bytes);
24146 break;
24147
24148 case DW_FORM_sdata:
24149 case DW_FORM_udata:
24150 case DW_FORM_GNU_addr_index:
24151 case DW_FORM_GNU_str_index:
24152 bytes = gdb_skip_leb128 (bytes, buffer_end);
24153 if (bytes == NULL)
24154 {
24155 dwarf2_section_buffer_overflow_complaint (section);
24156 return NULL;
24157 }
24158 break;
24159
24160 case DW_FORM_implicit_const:
24161 break;
24162
24163 default:
24164 {
24165 complaint (&symfile_complaints,
24166 _("invalid form 0x%x in `%s'"),
24167 form, get_section_name (section));
24168 return NULL;
24169 }
24170 }
24171
24172 return bytes;
24173 }
24174
24175 /* A helper for dwarf_decode_macros that handles skipping an unknown
24176 opcode. Returns an updated pointer to the macro data buffer; or,
24177 on error, issues a complaint and returns NULL. */
24178
24179 static const gdb_byte *
24180 skip_unknown_opcode (unsigned int opcode,
24181 const gdb_byte **opcode_definitions,
24182 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24183 bfd *abfd,
24184 unsigned int offset_size,
24185 struct dwarf2_section_info *section)
24186 {
24187 unsigned int bytes_read, i;
24188 unsigned long arg;
24189 const gdb_byte *defn;
24190
24191 if (opcode_definitions[opcode] == NULL)
24192 {
24193 complaint (&symfile_complaints,
24194 _("unrecognized DW_MACFINO opcode 0x%x"),
24195 opcode);
24196 return NULL;
24197 }
24198
24199 defn = opcode_definitions[opcode];
24200 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24201 defn += bytes_read;
24202
24203 for (i = 0; i < arg; ++i)
24204 {
24205 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24206 (enum dwarf_form) defn[i], offset_size,
24207 section);
24208 if (mac_ptr == NULL)
24209 {
24210 /* skip_form_bytes already issued the complaint. */
24211 return NULL;
24212 }
24213 }
24214
24215 return mac_ptr;
24216 }
24217
24218 /* A helper function which parses the header of a macro section.
24219 If the macro section is the extended (for now called "GNU") type,
24220 then this updates *OFFSET_SIZE. Returns a pointer to just after
24221 the header, or issues a complaint and returns NULL on error. */
24222
24223 static const gdb_byte *
24224 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24225 bfd *abfd,
24226 const gdb_byte *mac_ptr,
24227 unsigned int *offset_size,
24228 int section_is_gnu)
24229 {
24230 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24231
24232 if (section_is_gnu)
24233 {
24234 unsigned int version, flags;
24235
24236 version = read_2_bytes (abfd, mac_ptr);
24237 if (version != 4 && version != 5)
24238 {
24239 complaint (&symfile_complaints,
24240 _("unrecognized version `%d' in .debug_macro section"),
24241 version);
24242 return NULL;
24243 }
24244 mac_ptr += 2;
24245
24246 flags = read_1_byte (abfd, mac_ptr);
24247 ++mac_ptr;
24248 *offset_size = (flags & 1) ? 8 : 4;
24249
24250 if ((flags & 2) != 0)
24251 /* We don't need the line table offset. */
24252 mac_ptr += *offset_size;
24253
24254 /* Vendor opcode descriptions. */
24255 if ((flags & 4) != 0)
24256 {
24257 unsigned int i, count;
24258
24259 count = read_1_byte (abfd, mac_ptr);
24260 ++mac_ptr;
24261 for (i = 0; i < count; ++i)
24262 {
24263 unsigned int opcode, bytes_read;
24264 unsigned long arg;
24265
24266 opcode = read_1_byte (abfd, mac_ptr);
24267 ++mac_ptr;
24268 opcode_definitions[opcode] = mac_ptr;
24269 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24270 mac_ptr += bytes_read;
24271 mac_ptr += arg;
24272 }
24273 }
24274 }
24275
24276 return mac_ptr;
24277 }
24278
24279 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24280 including DW_MACRO_import. */
24281
24282 static void
24283 dwarf_decode_macro_bytes (struct dwarf2_per_objfile *dwarf2_per_objfile,
24284 bfd *abfd,
24285 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24286 struct macro_source_file *current_file,
24287 struct line_header *lh,
24288 struct dwarf2_section_info *section,
24289 int section_is_gnu, int section_is_dwz,
24290 unsigned int offset_size,
24291 htab_t include_hash)
24292 {
24293 struct objfile *objfile = dwarf2_per_objfile->objfile;
24294 enum dwarf_macro_record_type macinfo_type;
24295 int at_commandline;
24296 const gdb_byte *opcode_definitions[256];
24297
24298 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24299 &offset_size, section_is_gnu);
24300 if (mac_ptr == NULL)
24301 {
24302 /* We already issued a complaint. */
24303 return;
24304 }
24305
24306 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24307 GDB is still reading the definitions from command line. First
24308 DW_MACINFO_start_file will need to be ignored as it was already executed
24309 to create CURRENT_FILE for the main source holding also the command line
24310 definitions. On first met DW_MACINFO_start_file this flag is reset to
24311 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24312
24313 at_commandline = 1;
24314
24315 do
24316 {
24317 /* Do we at least have room for a macinfo type byte? */
24318 if (mac_ptr >= mac_end)
24319 {
24320 dwarf2_section_buffer_overflow_complaint (section);
24321 break;
24322 }
24323
24324 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24325 mac_ptr++;
24326
24327 /* Note that we rely on the fact that the corresponding GNU and
24328 DWARF constants are the same. */
24329 DIAGNOSTIC_PUSH
24330 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24331 switch (macinfo_type)
24332 {
24333 /* A zero macinfo type indicates the end of the macro
24334 information. */
24335 case 0:
24336 break;
24337
24338 case DW_MACRO_define:
24339 case DW_MACRO_undef:
24340 case DW_MACRO_define_strp:
24341 case DW_MACRO_undef_strp:
24342 case DW_MACRO_define_sup:
24343 case DW_MACRO_undef_sup:
24344 {
24345 unsigned int bytes_read;
24346 int line;
24347 const char *body;
24348 int is_define;
24349
24350 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24351 mac_ptr += bytes_read;
24352
24353 if (macinfo_type == DW_MACRO_define
24354 || macinfo_type == DW_MACRO_undef)
24355 {
24356 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24357 mac_ptr += bytes_read;
24358 }
24359 else
24360 {
24361 LONGEST str_offset;
24362
24363 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24364 mac_ptr += offset_size;
24365
24366 if (macinfo_type == DW_MACRO_define_sup
24367 || macinfo_type == DW_MACRO_undef_sup
24368 || section_is_dwz)
24369 {
24370 struct dwz_file *dwz
24371 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24372
24373 body = read_indirect_string_from_dwz (objfile,
24374 dwz, str_offset);
24375 }
24376 else
24377 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24378 abfd, str_offset);
24379 }
24380
24381 is_define = (macinfo_type == DW_MACRO_define
24382 || macinfo_type == DW_MACRO_define_strp
24383 || macinfo_type == DW_MACRO_define_sup);
24384 if (! current_file)
24385 {
24386 /* DWARF violation as no main source is present. */
24387 complaint (&symfile_complaints,
24388 _("debug info with no main source gives macro %s "
24389 "on line %d: %s"),
24390 is_define ? _("definition") : _("undefinition"),
24391 line, body);
24392 break;
24393 }
24394 if ((line == 0 && !at_commandline)
24395 || (line != 0 && at_commandline))
24396 complaint (&symfile_complaints,
24397 _("debug info gives %s macro %s with %s line %d: %s"),
24398 at_commandline ? _("command-line") : _("in-file"),
24399 is_define ? _("definition") : _("undefinition"),
24400 line == 0 ? _("zero") : _("non-zero"), line, body);
24401
24402 if (is_define)
24403 parse_macro_definition (current_file, line, body);
24404 else
24405 {
24406 gdb_assert (macinfo_type == DW_MACRO_undef
24407 || macinfo_type == DW_MACRO_undef_strp
24408 || macinfo_type == DW_MACRO_undef_sup);
24409 macro_undef (current_file, line, body);
24410 }
24411 }
24412 break;
24413
24414 case DW_MACRO_start_file:
24415 {
24416 unsigned int bytes_read;
24417 int line, file;
24418
24419 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24420 mac_ptr += bytes_read;
24421 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24422 mac_ptr += bytes_read;
24423
24424 if ((line == 0 && !at_commandline)
24425 || (line != 0 && at_commandline))
24426 complaint (&symfile_complaints,
24427 _("debug info gives source %d included "
24428 "from %s at %s line %d"),
24429 file, at_commandline ? _("command-line") : _("file"),
24430 line == 0 ? _("zero") : _("non-zero"), line);
24431
24432 if (at_commandline)
24433 {
24434 /* This DW_MACRO_start_file was executed in the
24435 pass one. */
24436 at_commandline = 0;
24437 }
24438 else
24439 current_file = macro_start_file (file, line, current_file, lh);
24440 }
24441 break;
24442
24443 case DW_MACRO_end_file:
24444 if (! current_file)
24445 complaint (&symfile_complaints,
24446 _("macro debug info has an unmatched "
24447 "`close_file' directive"));
24448 else
24449 {
24450 current_file = current_file->included_by;
24451 if (! current_file)
24452 {
24453 enum dwarf_macro_record_type next_type;
24454
24455 /* GCC circa March 2002 doesn't produce the zero
24456 type byte marking the end of the compilation
24457 unit. Complain if it's not there, but exit no
24458 matter what. */
24459
24460 /* Do we at least have room for a macinfo type byte? */
24461 if (mac_ptr >= mac_end)
24462 {
24463 dwarf2_section_buffer_overflow_complaint (section);
24464 return;
24465 }
24466
24467 /* We don't increment mac_ptr here, so this is just
24468 a look-ahead. */
24469 next_type
24470 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24471 mac_ptr);
24472 if (next_type != 0)
24473 complaint (&symfile_complaints,
24474 _("no terminating 0-type entry for "
24475 "macros in `.debug_macinfo' section"));
24476
24477 return;
24478 }
24479 }
24480 break;
24481
24482 case DW_MACRO_import:
24483 case DW_MACRO_import_sup:
24484 {
24485 LONGEST offset;
24486 void **slot;
24487 bfd *include_bfd = abfd;
24488 struct dwarf2_section_info *include_section = section;
24489 const gdb_byte *include_mac_end = mac_end;
24490 int is_dwz = section_is_dwz;
24491 const gdb_byte *new_mac_ptr;
24492
24493 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24494 mac_ptr += offset_size;
24495
24496 if (macinfo_type == DW_MACRO_import_sup)
24497 {
24498 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24499
24500 dwarf2_read_section (objfile, &dwz->macro);
24501
24502 include_section = &dwz->macro;
24503 include_bfd = get_section_bfd_owner (include_section);
24504 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24505 is_dwz = 1;
24506 }
24507
24508 new_mac_ptr = include_section->buffer + offset;
24509 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24510
24511 if (*slot != NULL)
24512 {
24513 /* This has actually happened; see
24514 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24515 complaint (&symfile_complaints,
24516 _("recursive DW_MACRO_import in "
24517 ".debug_macro section"));
24518 }
24519 else
24520 {
24521 *slot = (void *) new_mac_ptr;
24522
24523 dwarf_decode_macro_bytes (dwarf2_per_objfile,
24524 include_bfd, new_mac_ptr,
24525 include_mac_end, current_file, lh,
24526 section, section_is_gnu, is_dwz,
24527 offset_size, include_hash);
24528
24529 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24530 }
24531 }
24532 break;
24533
24534 case DW_MACINFO_vendor_ext:
24535 if (!section_is_gnu)
24536 {
24537 unsigned int bytes_read;
24538
24539 /* This reads the constant, but since we don't recognize
24540 any vendor extensions, we ignore it. */
24541 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24542 mac_ptr += bytes_read;
24543 read_direct_string (abfd, mac_ptr, &bytes_read);
24544 mac_ptr += bytes_read;
24545
24546 /* We don't recognize any vendor extensions. */
24547 break;
24548 }
24549 /* FALLTHROUGH */
24550
24551 default:
24552 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24553 mac_ptr, mac_end, abfd, offset_size,
24554 section);
24555 if (mac_ptr == NULL)
24556 return;
24557 break;
24558 }
24559 DIAGNOSTIC_POP
24560 } while (macinfo_type != 0);
24561 }
24562
24563 static void
24564 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24565 int section_is_gnu)
24566 {
24567 struct dwarf2_per_objfile *dwarf2_per_objfile
24568 = cu->per_cu->dwarf2_per_objfile;
24569 struct objfile *objfile = dwarf2_per_objfile->objfile;
24570 struct line_header *lh = cu->line_header;
24571 bfd *abfd;
24572 const gdb_byte *mac_ptr, *mac_end;
24573 struct macro_source_file *current_file = 0;
24574 enum dwarf_macro_record_type macinfo_type;
24575 unsigned int offset_size = cu->header.offset_size;
24576 const gdb_byte *opcode_definitions[256];
24577 void **slot;
24578 struct dwarf2_section_info *section;
24579 const char *section_name;
24580
24581 if (cu->dwo_unit != NULL)
24582 {
24583 if (section_is_gnu)
24584 {
24585 section = &cu->dwo_unit->dwo_file->sections.macro;
24586 section_name = ".debug_macro.dwo";
24587 }
24588 else
24589 {
24590 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24591 section_name = ".debug_macinfo.dwo";
24592 }
24593 }
24594 else
24595 {
24596 if (section_is_gnu)
24597 {
24598 section = &dwarf2_per_objfile->macro;
24599 section_name = ".debug_macro";
24600 }
24601 else
24602 {
24603 section = &dwarf2_per_objfile->macinfo;
24604 section_name = ".debug_macinfo";
24605 }
24606 }
24607
24608 dwarf2_read_section (objfile, section);
24609 if (section->buffer == NULL)
24610 {
24611 complaint (&symfile_complaints, _("missing %s section"), section_name);
24612 return;
24613 }
24614 abfd = get_section_bfd_owner (section);
24615
24616 /* First pass: Find the name of the base filename.
24617 This filename is needed in order to process all macros whose definition
24618 (or undefinition) comes from the command line. These macros are defined
24619 before the first DW_MACINFO_start_file entry, and yet still need to be
24620 associated to the base file.
24621
24622 To determine the base file name, we scan the macro definitions until we
24623 reach the first DW_MACINFO_start_file entry. We then initialize
24624 CURRENT_FILE accordingly so that any macro definition found before the
24625 first DW_MACINFO_start_file can still be associated to the base file. */
24626
24627 mac_ptr = section->buffer + offset;
24628 mac_end = section->buffer + section->size;
24629
24630 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24631 &offset_size, section_is_gnu);
24632 if (mac_ptr == NULL)
24633 {
24634 /* We already issued a complaint. */
24635 return;
24636 }
24637
24638 do
24639 {
24640 /* Do we at least have room for a macinfo type byte? */
24641 if (mac_ptr >= mac_end)
24642 {
24643 /* Complaint is printed during the second pass as GDB will probably
24644 stop the first pass earlier upon finding
24645 DW_MACINFO_start_file. */
24646 break;
24647 }
24648
24649 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24650 mac_ptr++;
24651
24652 /* Note that we rely on the fact that the corresponding GNU and
24653 DWARF constants are the same. */
24654 DIAGNOSTIC_PUSH
24655 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24656 switch (macinfo_type)
24657 {
24658 /* A zero macinfo type indicates the end of the macro
24659 information. */
24660 case 0:
24661 break;
24662
24663 case DW_MACRO_define:
24664 case DW_MACRO_undef:
24665 /* Only skip the data by MAC_PTR. */
24666 {
24667 unsigned int bytes_read;
24668
24669 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24670 mac_ptr += bytes_read;
24671 read_direct_string (abfd, mac_ptr, &bytes_read);
24672 mac_ptr += bytes_read;
24673 }
24674 break;
24675
24676 case DW_MACRO_start_file:
24677 {
24678 unsigned int bytes_read;
24679 int line, file;
24680
24681 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24682 mac_ptr += bytes_read;
24683 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24684 mac_ptr += bytes_read;
24685
24686 current_file = macro_start_file (file, line, current_file, lh);
24687 }
24688 break;
24689
24690 case DW_MACRO_end_file:
24691 /* No data to skip by MAC_PTR. */
24692 break;
24693
24694 case DW_MACRO_define_strp:
24695 case DW_MACRO_undef_strp:
24696 case DW_MACRO_define_sup:
24697 case DW_MACRO_undef_sup:
24698 {
24699 unsigned int bytes_read;
24700
24701 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24702 mac_ptr += bytes_read;
24703 mac_ptr += offset_size;
24704 }
24705 break;
24706
24707 case DW_MACRO_import:
24708 case DW_MACRO_import_sup:
24709 /* Note that, according to the spec, a transparent include
24710 chain cannot call DW_MACRO_start_file. So, we can just
24711 skip this opcode. */
24712 mac_ptr += offset_size;
24713 break;
24714
24715 case DW_MACINFO_vendor_ext:
24716 /* Only skip the data by MAC_PTR. */
24717 if (!section_is_gnu)
24718 {
24719 unsigned int bytes_read;
24720
24721 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24722 mac_ptr += bytes_read;
24723 read_direct_string (abfd, mac_ptr, &bytes_read);
24724 mac_ptr += bytes_read;
24725 }
24726 /* FALLTHROUGH */
24727
24728 default:
24729 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24730 mac_ptr, mac_end, abfd, offset_size,
24731 section);
24732 if (mac_ptr == NULL)
24733 return;
24734 break;
24735 }
24736 DIAGNOSTIC_POP
24737 } while (macinfo_type != 0 && current_file == NULL);
24738
24739 /* Second pass: Process all entries.
24740
24741 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24742 command-line macro definitions/undefinitions. This flag is unset when we
24743 reach the first DW_MACINFO_start_file entry. */
24744
24745 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24746 htab_eq_pointer,
24747 NULL, xcalloc, xfree));
24748 mac_ptr = section->buffer + offset;
24749 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24750 *slot = (void *) mac_ptr;
24751 dwarf_decode_macro_bytes (dwarf2_per_objfile,
24752 abfd, mac_ptr, mac_end,
24753 current_file, lh, section,
24754 section_is_gnu, 0, offset_size,
24755 include_hash.get ());
24756 }
24757
24758 /* Check if the attribute's form is a DW_FORM_block*
24759 if so return true else false. */
24760
24761 static int
24762 attr_form_is_block (const struct attribute *attr)
24763 {
24764 return (attr == NULL ? 0 :
24765 attr->form == DW_FORM_block1
24766 || attr->form == DW_FORM_block2
24767 || attr->form == DW_FORM_block4
24768 || attr->form == DW_FORM_block
24769 || attr->form == DW_FORM_exprloc);
24770 }
24771
24772 /* Return non-zero if ATTR's value is a section offset --- classes
24773 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24774 You may use DW_UNSND (attr) to retrieve such offsets.
24775
24776 Section 7.5.4, "Attribute Encodings", explains that no attribute
24777 may have a value that belongs to more than one of these classes; it
24778 would be ambiguous if we did, because we use the same forms for all
24779 of them. */
24780
24781 static int
24782 attr_form_is_section_offset (const struct attribute *attr)
24783 {
24784 return (attr->form == DW_FORM_data4
24785 || attr->form == DW_FORM_data8
24786 || attr->form == DW_FORM_sec_offset);
24787 }
24788
24789 /* Return non-zero if ATTR's value falls in the 'constant' class, or
24790 zero otherwise. When this function returns true, you can apply
24791 dwarf2_get_attr_constant_value to it.
24792
24793 However, note that for some attributes you must check
24794 attr_form_is_section_offset before using this test. DW_FORM_data4
24795 and DW_FORM_data8 are members of both the constant class, and of
24796 the classes that contain offsets into other debug sections
24797 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24798 that, if an attribute's can be either a constant or one of the
24799 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
24800 taken as section offsets, not constants.
24801
24802 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
24803 cannot handle that. */
24804
24805 static int
24806 attr_form_is_constant (const struct attribute *attr)
24807 {
24808 switch (attr->form)
24809 {
24810 case DW_FORM_sdata:
24811 case DW_FORM_udata:
24812 case DW_FORM_data1:
24813 case DW_FORM_data2:
24814 case DW_FORM_data4:
24815 case DW_FORM_data8:
24816 case DW_FORM_implicit_const:
24817 return 1;
24818 default:
24819 return 0;
24820 }
24821 }
24822
24823
24824 /* DW_ADDR is always stored already as sect_offset; despite for the forms
24825 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
24826
24827 static int
24828 attr_form_is_ref (const struct attribute *attr)
24829 {
24830 switch (attr->form)
24831 {
24832 case DW_FORM_ref_addr:
24833 case DW_FORM_ref1:
24834 case DW_FORM_ref2:
24835 case DW_FORM_ref4:
24836 case DW_FORM_ref8:
24837 case DW_FORM_ref_udata:
24838 case DW_FORM_GNU_ref_alt:
24839 return 1;
24840 default:
24841 return 0;
24842 }
24843 }
24844
24845 /* Return the .debug_loc section to use for CU.
24846 For DWO files use .debug_loc.dwo. */
24847
24848 static struct dwarf2_section_info *
24849 cu_debug_loc_section (struct dwarf2_cu *cu)
24850 {
24851 struct dwarf2_per_objfile *dwarf2_per_objfile
24852 = cu->per_cu->dwarf2_per_objfile;
24853
24854 if (cu->dwo_unit)
24855 {
24856 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24857
24858 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
24859 }
24860 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
24861 : &dwarf2_per_objfile->loc);
24862 }
24863
24864 /* A helper function that fills in a dwarf2_loclist_baton. */
24865
24866 static void
24867 fill_in_loclist_baton (struct dwarf2_cu *cu,
24868 struct dwarf2_loclist_baton *baton,
24869 const struct attribute *attr)
24870 {
24871 struct dwarf2_per_objfile *dwarf2_per_objfile
24872 = cu->per_cu->dwarf2_per_objfile;
24873 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24874
24875 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
24876
24877 baton->per_cu = cu->per_cu;
24878 gdb_assert (baton->per_cu);
24879 /* We don't know how long the location list is, but make sure we
24880 don't run off the edge of the section. */
24881 baton->size = section->size - DW_UNSND (attr);
24882 baton->data = section->buffer + DW_UNSND (attr);
24883 baton->base_address = cu->base_address;
24884 baton->from_dwo = cu->dwo_unit != NULL;
24885 }
24886
24887 static void
24888 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
24889 struct dwarf2_cu *cu, int is_block)
24890 {
24891 struct dwarf2_per_objfile *dwarf2_per_objfile
24892 = cu->per_cu->dwarf2_per_objfile;
24893 struct objfile *objfile = dwarf2_per_objfile->objfile;
24894 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24895
24896 if (attr_form_is_section_offset (attr)
24897 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
24898 the section. If so, fall through to the complaint in the
24899 other branch. */
24900 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
24901 {
24902 struct dwarf2_loclist_baton *baton;
24903
24904 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
24905
24906 fill_in_loclist_baton (cu, baton, attr);
24907
24908 if (cu->base_known == 0)
24909 complaint (&symfile_complaints,
24910 _("Location list used without "
24911 "specifying the CU base address."));
24912
24913 SYMBOL_ACLASS_INDEX (sym) = (is_block
24914 ? dwarf2_loclist_block_index
24915 : dwarf2_loclist_index);
24916 SYMBOL_LOCATION_BATON (sym) = baton;
24917 }
24918 else
24919 {
24920 struct dwarf2_locexpr_baton *baton;
24921
24922 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
24923 baton->per_cu = cu->per_cu;
24924 gdb_assert (baton->per_cu);
24925
24926 if (attr_form_is_block (attr))
24927 {
24928 /* Note that we're just copying the block's data pointer
24929 here, not the actual data. We're still pointing into the
24930 info_buffer for SYM's objfile; right now we never release
24931 that buffer, but when we do clean up properly this may
24932 need to change. */
24933 baton->size = DW_BLOCK (attr)->size;
24934 baton->data = DW_BLOCK (attr)->data;
24935 }
24936 else
24937 {
24938 dwarf2_invalid_attrib_class_complaint ("location description",
24939 SYMBOL_NATURAL_NAME (sym));
24940 baton->size = 0;
24941 }
24942
24943 SYMBOL_ACLASS_INDEX (sym) = (is_block
24944 ? dwarf2_locexpr_block_index
24945 : dwarf2_locexpr_index);
24946 SYMBOL_LOCATION_BATON (sym) = baton;
24947 }
24948 }
24949
24950 /* Return the OBJFILE associated with the compilation unit CU. If CU
24951 came from a separate debuginfo file, then the master objfile is
24952 returned. */
24953
24954 struct objfile *
24955 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
24956 {
24957 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24958
24959 /* Return the master objfile, so that we can report and look up the
24960 correct file containing this variable. */
24961 if (objfile->separate_debug_objfile_backlink)
24962 objfile = objfile->separate_debug_objfile_backlink;
24963
24964 return objfile;
24965 }
24966
24967 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
24968 (CU_HEADERP is unused in such case) or prepare a temporary copy at
24969 CU_HEADERP first. */
24970
24971 static const struct comp_unit_head *
24972 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
24973 struct dwarf2_per_cu_data *per_cu)
24974 {
24975 const gdb_byte *info_ptr;
24976
24977 if (per_cu->cu)
24978 return &per_cu->cu->header;
24979
24980 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
24981
24982 memset (cu_headerp, 0, sizeof (*cu_headerp));
24983 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
24984 rcuh_kind::COMPILE);
24985
24986 return cu_headerp;
24987 }
24988
24989 /* Return the address size given in the compilation unit header for CU. */
24990
24991 int
24992 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
24993 {
24994 struct comp_unit_head cu_header_local;
24995 const struct comp_unit_head *cu_headerp;
24996
24997 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24998
24999 return cu_headerp->addr_size;
25000 }
25001
25002 /* Return the offset size given in the compilation unit header for CU. */
25003
25004 int
25005 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
25006 {
25007 struct comp_unit_head cu_header_local;
25008 const struct comp_unit_head *cu_headerp;
25009
25010 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25011
25012 return cu_headerp->offset_size;
25013 }
25014
25015 /* See its dwarf2loc.h declaration. */
25016
25017 int
25018 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
25019 {
25020 struct comp_unit_head cu_header_local;
25021 const struct comp_unit_head *cu_headerp;
25022
25023 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25024
25025 if (cu_headerp->version == 2)
25026 return cu_headerp->addr_size;
25027 else
25028 return cu_headerp->offset_size;
25029 }
25030
25031 /* Return the text offset of the CU. The returned offset comes from
25032 this CU's objfile. If this objfile came from a separate debuginfo
25033 file, then the offset may be different from the corresponding
25034 offset in the parent objfile. */
25035
25036 CORE_ADDR
25037 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25038 {
25039 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25040
25041 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25042 }
25043
25044 /* Return DWARF version number of PER_CU. */
25045
25046 short
25047 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25048 {
25049 return per_cu->dwarf_version;
25050 }
25051
25052 /* Locate the .debug_info compilation unit from CU's objfile which contains
25053 the DIE at OFFSET. Raises an error on failure. */
25054
25055 static struct dwarf2_per_cu_data *
25056 dwarf2_find_containing_comp_unit (sect_offset sect_off,
25057 unsigned int offset_in_dwz,
25058 struct dwarf2_per_objfile *dwarf2_per_objfile)
25059 {
25060 struct dwarf2_per_cu_data *this_cu;
25061 int low, high;
25062 const sect_offset *cu_off;
25063
25064 low = 0;
25065 high = dwarf2_per_objfile->n_comp_units - 1;
25066 while (high > low)
25067 {
25068 struct dwarf2_per_cu_data *mid_cu;
25069 int mid = low + (high - low) / 2;
25070
25071 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25072 cu_off = &mid_cu->sect_off;
25073 if (mid_cu->is_dwz > offset_in_dwz
25074 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
25075 high = mid;
25076 else
25077 low = mid + 1;
25078 }
25079 gdb_assert (low == high);
25080 this_cu = dwarf2_per_objfile->all_comp_units[low];
25081 cu_off = &this_cu->sect_off;
25082 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
25083 {
25084 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25085 error (_("Dwarf Error: could not find partial DIE containing "
25086 "offset %s [in module %s]"),
25087 sect_offset_str (sect_off),
25088 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25089
25090 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25091 <= sect_off);
25092 return dwarf2_per_objfile->all_comp_units[low-1];
25093 }
25094 else
25095 {
25096 this_cu = dwarf2_per_objfile->all_comp_units[low];
25097 if (low == dwarf2_per_objfile->n_comp_units - 1
25098 && sect_off >= this_cu->sect_off + this_cu->length)
25099 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25100 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25101 return this_cu;
25102 }
25103 }
25104
25105 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25106
25107 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25108 : per_cu (per_cu_),
25109 mark (0),
25110 has_loclist (0),
25111 checked_producer (0),
25112 producer_is_gxx_lt_4_6 (0),
25113 producer_is_gcc_lt_4_3 (0),
25114 producer_is_icc_lt_14 (0),
25115 processing_has_namespace_info (0)
25116 {
25117 per_cu->cu = this;
25118 }
25119
25120 /* Destroy a dwarf2_cu. */
25121
25122 dwarf2_cu::~dwarf2_cu ()
25123 {
25124 per_cu->cu = NULL;
25125 }
25126
25127 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25128
25129 static void
25130 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25131 enum language pretend_language)
25132 {
25133 struct attribute *attr;
25134
25135 /* Set the language we're debugging. */
25136 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25137 if (attr)
25138 set_cu_language (DW_UNSND (attr), cu);
25139 else
25140 {
25141 cu->language = pretend_language;
25142 cu->language_defn = language_def (cu->language);
25143 }
25144
25145 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25146 }
25147
25148 /* Free all cached compilation units. */
25149
25150 static void
25151 free_cached_comp_units (void *data)
25152 {
25153 struct dwarf2_per_objfile *dwarf2_per_objfile
25154 = (struct dwarf2_per_objfile *) data;
25155
25156 dwarf2_per_objfile->free_cached_comp_units ();
25157 }
25158
25159 /* Increase the age counter on each cached compilation unit, and free
25160 any that are too old. */
25161
25162 static void
25163 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25164 {
25165 struct dwarf2_per_cu_data *per_cu, **last_chain;
25166
25167 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25168 per_cu = dwarf2_per_objfile->read_in_chain;
25169 while (per_cu != NULL)
25170 {
25171 per_cu->cu->last_used ++;
25172 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25173 dwarf2_mark (per_cu->cu);
25174 per_cu = per_cu->cu->read_in_chain;
25175 }
25176
25177 per_cu = dwarf2_per_objfile->read_in_chain;
25178 last_chain = &dwarf2_per_objfile->read_in_chain;
25179 while (per_cu != NULL)
25180 {
25181 struct dwarf2_per_cu_data *next_cu;
25182
25183 next_cu = per_cu->cu->read_in_chain;
25184
25185 if (!per_cu->cu->mark)
25186 {
25187 delete per_cu->cu;
25188 *last_chain = next_cu;
25189 }
25190 else
25191 last_chain = &per_cu->cu->read_in_chain;
25192
25193 per_cu = next_cu;
25194 }
25195 }
25196
25197 /* Remove a single compilation unit from the cache. */
25198
25199 static void
25200 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25201 {
25202 struct dwarf2_per_cu_data *per_cu, **last_chain;
25203 struct dwarf2_per_objfile *dwarf2_per_objfile
25204 = target_per_cu->dwarf2_per_objfile;
25205
25206 per_cu = dwarf2_per_objfile->read_in_chain;
25207 last_chain = &dwarf2_per_objfile->read_in_chain;
25208 while (per_cu != NULL)
25209 {
25210 struct dwarf2_per_cu_data *next_cu;
25211
25212 next_cu = per_cu->cu->read_in_chain;
25213
25214 if (per_cu == target_per_cu)
25215 {
25216 delete per_cu->cu;
25217 per_cu->cu = NULL;
25218 *last_chain = next_cu;
25219 break;
25220 }
25221 else
25222 last_chain = &per_cu->cu->read_in_chain;
25223
25224 per_cu = next_cu;
25225 }
25226 }
25227
25228 /* Release all extra memory associated with OBJFILE. */
25229
25230 void
25231 dwarf2_free_objfile (struct objfile *objfile)
25232 {
25233 struct dwarf2_per_objfile *dwarf2_per_objfile
25234 = get_dwarf2_per_objfile (objfile);
25235
25236 delete dwarf2_per_objfile;
25237 }
25238
25239 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25240 We store these in a hash table separate from the DIEs, and preserve them
25241 when the DIEs are flushed out of cache.
25242
25243 The CU "per_cu" pointer is needed because offset alone is not enough to
25244 uniquely identify the type. A file may have multiple .debug_types sections,
25245 or the type may come from a DWO file. Furthermore, while it's more logical
25246 to use per_cu->section+offset, with Fission the section with the data is in
25247 the DWO file but we don't know that section at the point we need it.
25248 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25249 because we can enter the lookup routine, get_die_type_at_offset, from
25250 outside this file, and thus won't necessarily have PER_CU->cu.
25251 Fortunately, PER_CU is stable for the life of the objfile. */
25252
25253 struct dwarf2_per_cu_offset_and_type
25254 {
25255 const struct dwarf2_per_cu_data *per_cu;
25256 sect_offset sect_off;
25257 struct type *type;
25258 };
25259
25260 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25261
25262 static hashval_t
25263 per_cu_offset_and_type_hash (const void *item)
25264 {
25265 const struct dwarf2_per_cu_offset_and_type *ofs
25266 = (const struct dwarf2_per_cu_offset_and_type *) item;
25267
25268 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25269 }
25270
25271 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25272
25273 static int
25274 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25275 {
25276 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25277 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25278 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25279 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25280
25281 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25282 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25283 }
25284
25285 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25286 table if necessary. For convenience, return TYPE.
25287
25288 The DIEs reading must have careful ordering to:
25289 * Not cause infite loops trying to read in DIEs as a prerequisite for
25290 reading current DIE.
25291 * Not trying to dereference contents of still incompletely read in types
25292 while reading in other DIEs.
25293 * Enable referencing still incompletely read in types just by a pointer to
25294 the type without accessing its fields.
25295
25296 Therefore caller should follow these rules:
25297 * Try to fetch any prerequisite types we may need to build this DIE type
25298 before building the type and calling set_die_type.
25299 * After building type call set_die_type for current DIE as soon as
25300 possible before fetching more types to complete the current type.
25301 * Make the type as complete as possible before fetching more types. */
25302
25303 static struct type *
25304 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25305 {
25306 struct dwarf2_per_objfile *dwarf2_per_objfile
25307 = cu->per_cu->dwarf2_per_objfile;
25308 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25309 struct objfile *objfile = dwarf2_per_objfile->objfile;
25310 struct attribute *attr;
25311 struct dynamic_prop prop;
25312
25313 /* For Ada types, make sure that the gnat-specific data is always
25314 initialized (if not already set). There are a few types where
25315 we should not be doing so, because the type-specific area is
25316 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25317 where the type-specific area is used to store the floatformat).
25318 But this is not a problem, because the gnat-specific information
25319 is actually not needed for these types. */
25320 if (need_gnat_info (cu)
25321 && TYPE_CODE (type) != TYPE_CODE_FUNC
25322 && TYPE_CODE (type) != TYPE_CODE_FLT
25323 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25324 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25325 && TYPE_CODE (type) != TYPE_CODE_METHOD
25326 && !HAVE_GNAT_AUX_INFO (type))
25327 INIT_GNAT_SPECIFIC (type);
25328
25329 /* Read DW_AT_allocated and set in type. */
25330 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25331 if (attr_form_is_block (attr))
25332 {
25333 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25334 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25335 }
25336 else if (attr != NULL)
25337 {
25338 complaint (&symfile_complaints,
25339 _("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25340 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25341 sect_offset_str (die->sect_off));
25342 }
25343
25344 /* Read DW_AT_associated and set in type. */
25345 attr = dwarf2_attr (die, DW_AT_associated, cu);
25346 if (attr_form_is_block (attr))
25347 {
25348 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25349 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25350 }
25351 else if (attr != NULL)
25352 {
25353 complaint (&symfile_complaints,
25354 _("DW_AT_associated has the wrong form (%s) at DIE %s"),
25355 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25356 sect_offset_str (die->sect_off));
25357 }
25358
25359 /* Read DW_AT_data_location and set in type. */
25360 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25361 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25362 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25363
25364 if (dwarf2_per_objfile->die_type_hash == NULL)
25365 {
25366 dwarf2_per_objfile->die_type_hash =
25367 htab_create_alloc_ex (127,
25368 per_cu_offset_and_type_hash,
25369 per_cu_offset_and_type_eq,
25370 NULL,
25371 &objfile->objfile_obstack,
25372 hashtab_obstack_allocate,
25373 dummy_obstack_deallocate);
25374 }
25375
25376 ofs.per_cu = cu->per_cu;
25377 ofs.sect_off = die->sect_off;
25378 ofs.type = type;
25379 slot = (struct dwarf2_per_cu_offset_and_type **)
25380 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25381 if (*slot)
25382 complaint (&symfile_complaints,
25383 _("A problem internal to GDB: DIE %s has type already set"),
25384 sect_offset_str (die->sect_off));
25385 *slot = XOBNEW (&objfile->objfile_obstack,
25386 struct dwarf2_per_cu_offset_and_type);
25387 **slot = ofs;
25388 return type;
25389 }
25390
25391 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25392 or return NULL if the die does not have a saved type. */
25393
25394 static struct type *
25395 get_die_type_at_offset (sect_offset sect_off,
25396 struct dwarf2_per_cu_data *per_cu)
25397 {
25398 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25399 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25400
25401 if (dwarf2_per_objfile->die_type_hash == NULL)
25402 return NULL;
25403
25404 ofs.per_cu = per_cu;
25405 ofs.sect_off = sect_off;
25406 slot = ((struct dwarf2_per_cu_offset_and_type *)
25407 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25408 if (slot)
25409 return slot->type;
25410 else
25411 return NULL;
25412 }
25413
25414 /* Look up the type for DIE in CU in die_type_hash,
25415 or return NULL if DIE does not have a saved type. */
25416
25417 static struct type *
25418 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25419 {
25420 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25421 }
25422
25423 /* Add a dependence relationship from CU to REF_PER_CU. */
25424
25425 static void
25426 dwarf2_add_dependence (struct dwarf2_cu *cu,
25427 struct dwarf2_per_cu_data *ref_per_cu)
25428 {
25429 void **slot;
25430
25431 if (cu->dependencies == NULL)
25432 cu->dependencies
25433 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25434 NULL, &cu->comp_unit_obstack,
25435 hashtab_obstack_allocate,
25436 dummy_obstack_deallocate);
25437
25438 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25439 if (*slot == NULL)
25440 *slot = ref_per_cu;
25441 }
25442
25443 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25444 Set the mark field in every compilation unit in the
25445 cache that we must keep because we are keeping CU. */
25446
25447 static int
25448 dwarf2_mark_helper (void **slot, void *data)
25449 {
25450 struct dwarf2_per_cu_data *per_cu;
25451
25452 per_cu = (struct dwarf2_per_cu_data *) *slot;
25453
25454 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25455 reading of the chain. As such dependencies remain valid it is not much
25456 useful to track and undo them during QUIT cleanups. */
25457 if (per_cu->cu == NULL)
25458 return 1;
25459
25460 if (per_cu->cu->mark)
25461 return 1;
25462 per_cu->cu->mark = 1;
25463
25464 if (per_cu->cu->dependencies != NULL)
25465 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25466
25467 return 1;
25468 }
25469
25470 /* Set the mark field in CU and in every other compilation unit in the
25471 cache that we must keep because we are keeping CU. */
25472
25473 static void
25474 dwarf2_mark (struct dwarf2_cu *cu)
25475 {
25476 if (cu->mark)
25477 return;
25478 cu->mark = 1;
25479 if (cu->dependencies != NULL)
25480 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25481 }
25482
25483 static void
25484 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25485 {
25486 while (per_cu)
25487 {
25488 per_cu->cu->mark = 0;
25489 per_cu = per_cu->cu->read_in_chain;
25490 }
25491 }
25492
25493 /* Trivial hash function for partial_die_info: the hash value of a DIE
25494 is its offset in .debug_info for this objfile. */
25495
25496 static hashval_t
25497 partial_die_hash (const void *item)
25498 {
25499 const struct partial_die_info *part_die
25500 = (const struct partial_die_info *) item;
25501
25502 return to_underlying (part_die->sect_off);
25503 }
25504
25505 /* Trivial comparison function for partial_die_info structures: two DIEs
25506 are equal if they have the same offset. */
25507
25508 static int
25509 partial_die_eq (const void *item_lhs, const void *item_rhs)
25510 {
25511 const struct partial_die_info *part_die_lhs
25512 = (const struct partial_die_info *) item_lhs;
25513 const struct partial_die_info *part_die_rhs
25514 = (const struct partial_die_info *) item_rhs;
25515
25516 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25517 }
25518
25519 static struct cmd_list_element *set_dwarf_cmdlist;
25520 static struct cmd_list_element *show_dwarf_cmdlist;
25521
25522 static void
25523 set_dwarf_cmd (const char *args, int from_tty)
25524 {
25525 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25526 gdb_stdout);
25527 }
25528
25529 static void
25530 show_dwarf_cmd (const char *args, int from_tty)
25531 {
25532 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25533 }
25534
25535 /* The "save gdb-index" command. */
25536
25537 /* Write SIZE bytes from the buffer pointed to by DATA to FILE, with
25538 error checking. */
25539
25540 static void
25541 file_write (FILE *file, const void *data, size_t size)
25542 {
25543 if (fwrite (data, 1, size, file) != size)
25544 error (_("couldn't data write to file"));
25545 }
25546
25547 /* Write the contents of VEC to FILE, with error checking. */
25548
25549 template<typename Elem, typename Alloc>
25550 static void
25551 file_write (FILE *file, const std::vector<Elem, Alloc> &vec)
25552 {
25553 file_write (file, vec.data (), vec.size () * sizeof (vec[0]));
25554 }
25555
25556 /* In-memory buffer to prepare data to be written later to a file. */
25557 class data_buf
25558 {
25559 public:
25560 /* Copy DATA to the end of the buffer. */
25561 template<typename T>
25562 void append_data (const T &data)
25563 {
25564 std::copy (reinterpret_cast<const gdb_byte *> (&data),
25565 reinterpret_cast<const gdb_byte *> (&data + 1),
25566 grow (sizeof (data)));
25567 }
25568
25569 /* Copy CSTR (a zero-terminated string) to the end of buffer. The
25570 terminating zero is appended too. */
25571 void append_cstr0 (const char *cstr)
25572 {
25573 const size_t size = strlen (cstr) + 1;
25574 std::copy (cstr, cstr + size, grow (size));
25575 }
25576
25577 /* Store INPUT as ULEB128 to the end of buffer. */
25578 void append_unsigned_leb128 (ULONGEST input)
25579 {
25580 for (;;)
25581 {
25582 gdb_byte output = input & 0x7f;
25583 input >>= 7;
25584 if (input)
25585 output |= 0x80;
25586 append_data (output);
25587 if (input == 0)
25588 break;
25589 }
25590 }
25591
25592 /* Accept a host-format integer in VAL and append it to the buffer
25593 as a target-format integer which is LEN bytes long. */
25594 void append_uint (size_t len, bfd_endian byte_order, ULONGEST val)
25595 {
25596 ::store_unsigned_integer (grow (len), len, byte_order, val);
25597 }
25598
25599 /* Return the size of the buffer. */
25600 size_t size () const
25601 {
25602 return m_vec.size ();
25603 }
25604
25605 /* Return true iff the buffer is empty. */
25606 bool empty () const
25607 {
25608 return m_vec.empty ();
25609 }
25610
25611 /* Write the buffer to FILE. */
25612 void file_write (FILE *file) const
25613 {
25614 ::file_write (file, m_vec);
25615 }
25616
25617 private:
25618 /* Grow SIZE bytes at the end of the buffer. Returns a pointer to
25619 the start of the new block. */
25620 gdb_byte *grow (size_t size)
25621 {
25622 m_vec.resize (m_vec.size () + size);
25623 return &*m_vec.end () - size;
25624 }
25625
25626 gdb::byte_vector m_vec;
25627 };
25628
25629 /* An entry in the symbol table. */
25630 struct symtab_index_entry
25631 {
25632 /* The name of the symbol. */
25633 const char *name;
25634 /* The offset of the name in the constant pool. */
25635 offset_type index_offset;
25636 /* A sorted vector of the indices of all the CUs that hold an object
25637 of this name. */
25638 std::vector<offset_type> cu_indices;
25639 };
25640
25641 /* The symbol table. This is a power-of-2-sized hash table. */
25642 struct mapped_symtab
25643 {
25644 mapped_symtab ()
25645 {
25646 data.resize (1024);
25647 }
25648
25649 offset_type n_elements = 0;
25650 std::vector<symtab_index_entry> data;
25651 };
25652
25653 /* Find a slot in SYMTAB for the symbol NAME. Returns a reference to
25654 the slot.
25655
25656 Function is used only during write_hash_table so no index format backward
25657 compatibility is needed. */
25658
25659 static symtab_index_entry &
25660 find_slot (struct mapped_symtab *symtab, const char *name)
25661 {
25662 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
25663
25664 index = hash & (symtab->data.size () - 1);
25665 step = ((hash * 17) & (symtab->data.size () - 1)) | 1;
25666
25667 for (;;)
25668 {
25669 if (symtab->data[index].name == NULL
25670 || strcmp (name, symtab->data[index].name) == 0)
25671 return symtab->data[index];
25672 index = (index + step) & (symtab->data.size () - 1);
25673 }
25674 }
25675
25676 /* Expand SYMTAB's hash table. */
25677
25678 static void
25679 hash_expand (struct mapped_symtab *symtab)
25680 {
25681 auto old_entries = std::move (symtab->data);
25682
25683 symtab->data.clear ();
25684 symtab->data.resize (old_entries.size () * 2);
25685
25686 for (auto &it : old_entries)
25687 if (it.name != NULL)
25688 {
25689 auto &ref = find_slot (symtab, it.name);
25690 ref = std::move (it);
25691 }
25692 }
25693
25694 /* Add an entry to SYMTAB. NAME is the name of the symbol.
25695 CU_INDEX is the index of the CU in which the symbol appears.
25696 IS_STATIC is one if the symbol is static, otherwise zero (global). */
25697
25698 static void
25699 add_index_entry (struct mapped_symtab *symtab, const char *name,
25700 int is_static, gdb_index_symbol_kind kind,
25701 offset_type cu_index)
25702 {
25703 offset_type cu_index_and_attrs;
25704
25705 ++symtab->n_elements;
25706 if (4 * symtab->n_elements / 3 >= symtab->data.size ())
25707 hash_expand (symtab);
25708
25709 symtab_index_entry &slot = find_slot (symtab, name);
25710 if (slot.name == NULL)
25711 {
25712 slot.name = name;
25713 /* index_offset is set later. */
25714 }
25715
25716 cu_index_and_attrs = 0;
25717 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
25718 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
25719 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
25720
25721 /* We don't want to record an index value twice as we want to avoid the
25722 duplication.
25723 We process all global symbols and then all static symbols
25724 (which would allow us to avoid the duplication by only having to check
25725 the last entry pushed), but a symbol could have multiple kinds in one CU.
25726 To keep things simple we don't worry about the duplication here and
25727 sort and uniqufy the list after we've processed all symbols. */
25728 slot.cu_indices.push_back (cu_index_and_attrs);
25729 }
25730
25731 /* Sort and remove duplicates of all symbols' cu_indices lists. */
25732
25733 static void
25734 uniquify_cu_indices (struct mapped_symtab *symtab)
25735 {
25736 for (auto &entry : symtab->data)
25737 {
25738 if (entry.name != NULL && !entry.cu_indices.empty ())
25739 {
25740 auto &cu_indices = entry.cu_indices;
25741 std::sort (cu_indices.begin (), cu_indices.end ());
25742 auto from = std::unique (cu_indices.begin (), cu_indices.end ());
25743 cu_indices.erase (from, cu_indices.end ());
25744 }
25745 }
25746 }
25747
25748 /* A form of 'const char *' suitable for container keys. Only the
25749 pointer is stored. The strings themselves are compared, not the
25750 pointers. */
25751 class c_str_view
25752 {
25753 public:
25754 c_str_view (const char *cstr)
25755 : m_cstr (cstr)
25756 {}
25757
25758 bool operator== (const c_str_view &other) const
25759 {
25760 return strcmp (m_cstr, other.m_cstr) == 0;
25761 }
25762
25763 /* Return the underlying C string. Note, the returned string is
25764 only a reference with lifetime of this object. */
25765 const char *c_str () const
25766 {
25767 return m_cstr;
25768 }
25769
25770 private:
25771 friend class c_str_view_hasher;
25772 const char *const m_cstr;
25773 };
25774
25775 /* A std::unordered_map::hasher for c_str_view that uses the right
25776 hash function for strings in a mapped index. */
25777 class c_str_view_hasher
25778 {
25779 public:
25780 size_t operator () (const c_str_view &x) const
25781 {
25782 return mapped_index_string_hash (INT_MAX, x.m_cstr);
25783 }
25784 };
25785
25786 /* A std::unordered_map::hasher for std::vector<>. */
25787 template<typename T>
25788 class vector_hasher
25789 {
25790 public:
25791 size_t operator () (const std::vector<T> &key) const
25792 {
25793 return iterative_hash (key.data (),
25794 sizeof (key.front ()) * key.size (), 0);
25795 }
25796 };
25797
25798 /* Write the mapped hash table SYMTAB to the data buffer OUTPUT, with
25799 constant pool entries going into the data buffer CPOOL. */
25800
25801 static void
25802 write_hash_table (mapped_symtab *symtab, data_buf &output, data_buf &cpool)
25803 {
25804 {
25805 /* Elements are sorted vectors of the indices of all the CUs that
25806 hold an object of this name. */
25807 std::unordered_map<std::vector<offset_type>, offset_type,
25808 vector_hasher<offset_type>>
25809 symbol_hash_table;
25810
25811 /* We add all the index vectors to the constant pool first, to
25812 ensure alignment is ok. */
25813 for (symtab_index_entry &entry : symtab->data)
25814 {
25815 if (entry.name == NULL)
25816 continue;
25817 gdb_assert (entry.index_offset == 0);
25818
25819 /* Finding before inserting is faster than always trying to
25820 insert, because inserting always allocates a node, does the
25821 lookup, and then destroys the new node if another node
25822 already had the same key. C++17 try_emplace will avoid
25823 this. */
25824 const auto found
25825 = symbol_hash_table.find (entry.cu_indices);
25826 if (found != symbol_hash_table.end ())
25827 {
25828 entry.index_offset = found->second;
25829 continue;
25830 }
25831
25832 symbol_hash_table.emplace (entry.cu_indices, cpool.size ());
25833 entry.index_offset = cpool.size ();
25834 cpool.append_data (MAYBE_SWAP (entry.cu_indices.size ()));
25835 for (const auto index : entry.cu_indices)
25836 cpool.append_data (MAYBE_SWAP (index));
25837 }
25838 }
25839
25840 /* Now write out the hash table. */
25841 std::unordered_map<c_str_view, offset_type, c_str_view_hasher> str_table;
25842 for (const auto &entry : symtab->data)
25843 {
25844 offset_type str_off, vec_off;
25845
25846 if (entry.name != NULL)
25847 {
25848 const auto insertpair = str_table.emplace (entry.name, cpool.size ());
25849 if (insertpair.second)
25850 cpool.append_cstr0 (entry.name);
25851 str_off = insertpair.first->second;
25852 vec_off = entry.index_offset;
25853 }
25854 else
25855 {
25856 /* While 0 is a valid constant pool index, it is not valid
25857 to have 0 for both offsets. */
25858 str_off = 0;
25859 vec_off = 0;
25860 }
25861
25862 output.append_data (MAYBE_SWAP (str_off));
25863 output.append_data (MAYBE_SWAP (vec_off));
25864 }
25865 }
25866
25867 typedef std::unordered_map<partial_symtab *, unsigned int> psym_index_map;
25868
25869 /* Helper struct for building the address table. */
25870 struct addrmap_index_data
25871 {
25872 addrmap_index_data (data_buf &addr_vec_, psym_index_map &cu_index_htab_)
25873 : addr_vec (addr_vec_), cu_index_htab (cu_index_htab_)
25874 {}
25875
25876 struct objfile *objfile;
25877 data_buf &addr_vec;
25878 psym_index_map &cu_index_htab;
25879
25880 /* Non-zero if the previous_* fields are valid.
25881 We can't write an entry until we see the next entry (since it is only then
25882 that we know the end of the entry). */
25883 int previous_valid;
25884 /* Index of the CU in the table of all CUs in the index file. */
25885 unsigned int previous_cu_index;
25886 /* Start address of the CU. */
25887 CORE_ADDR previous_cu_start;
25888 };
25889
25890 /* Write an address entry to ADDR_VEC. */
25891
25892 static void
25893 add_address_entry (struct objfile *objfile, data_buf &addr_vec,
25894 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
25895 {
25896 CORE_ADDR baseaddr;
25897
25898 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25899
25900 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, start - baseaddr);
25901 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, end - baseaddr);
25902 addr_vec.append_data (MAYBE_SWAP (cu_index));
25903 }
25904
25905 /* Worker function for traversing an addrmap to build the address table. */
25906
25907 static int
25908 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
25909 {
25910 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
25911 struct partial_symtab *pst = (struct partial_symtab *) obj;
25912
25913 if (data->previous_valid)
25914 add_address_entry (data->objfile, data->addr_vec,
25915 data->previous_cu_start, start_addr,
25916 data->previous_cu_index);
25917
25918 data->previous_cu_start = start_addr;
25919 if (pst != NULL)
25920 {
25921 const auto it = data->cu_index_htab.find (pst);
25922 gdb_assert (it != data->cu_index_htab.cend ());
25923 data->previous_cu_index = it->second;
25924 data->previous_valid = 1;
25925 }
25926 else
25927 data->previous_valid = 0;
25928
25929 return 0;
25930 }
25931
25932 /* Write OBJFILE's address map to ADDR_VEC.
25933 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
25934 in the index file. */
25935
25936 static void
25937 write_address_map (struct objfile *objfile, data_buf &addr_vec,
25938 psym_index_map &cu_index_htab)
25939 {
25940 struct addrmap_index_data addrmap_index_data (addr_vec, cu_index_htab);
25941
25942 /* When writing the address table, we have to cope with the fact that
25943 the addrmap iterator only provides the start of a region; we have to
25944 wait until the next invocation to get the start of the next region. */
25945
25946 addrmap_index_data.objfile = objfile;
25947 addrmap_index_data.previous_valid = 0;
25948
25949 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
25950 &addrmap_index_data);
25951
25952 /* It's highly unlikely the last entry (end address = 0xff...ff)
25953 is valid, but we should still handle it.
25954 The end address is recorded as the start of the next region, but that
25955 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
25956 anyway. */
25957 if (addrmap_index_data.previous_valid)
25958 add_address_entry (objfile, addr_vec,
25959 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
25960 addrmap_index_data.previous_cu_index);
25961 }
25962
25963 /* Return the symbol kind of PSYM. */
25964
25965 static gdb_index_symbol_kind
25966 symbol_kind (struct partial_symbol *psym)
25967 {
25968 domain_enum domain = PSYMBOL_DOMAIN (psym);
25969 enum address_class aclass = PSYMBOL_CLASS (psym);
25970
25971 switch (domain)
25972 {
25973 case VAR_DOMAIN:
25974 switch (aclass)
25975 {
25976 case LOC_BLOCK:
25977 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
25978 case LOC_TYPEDEF:
25979 return GDB_INDEX_SYMBOL_KIND_TYPE;
25980 case LOC_COMPUTED:
25981 case LOC_CONST_BYTES:
25982 case LOC_OPTIMIZED_OUT:
25983 case LOC_STATIC:
25984 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
25985 case LOC_CONST:
25986 /* Note: It's currently impossible to recognize psyms as enum values
25987 short of reading the type info. For now punt. */
25988 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
25989 default:
25990 /* There are other LOC_FOO values that one might want to classify
25991 as variables, but dwarf2read.c doesn't currently use them. */
25992 return GDB_INDEX_SYMBOL_KIND_OTHER;
25993 }
25994 case STRUCT_DOMAIN:
25995 return GDB_INDEX_SYMBOL_KIND_TYPE;
25996 default:
25997 return GDB_INDEX_SYMBOL_KIND_OTHER;
25998 }
25999 }
26000
26001 /* Add a list of partial symbols to SYMTAB. */
26002
26003 static void
26004 write_psymbols (struct mapped_symtab *symtab,
26005 std::unordered_set<partial_symbol *> &psyms_seen,
26006 struct partial_symbol **psymp,
26007 int count,
26008 offset_type cu_index,
26009 int is_static)
26010 {
26011 for (; count-- > 0; ++psymp)
26012 {
26013 struct partial_symbol *psym = *psymp;
26014
26015 if (SYMBOL_LANGUAGE (psym) == language_ada)
26016 error (_("Ada is not currently supported by the index"));
26017
26018 /* Only add a given psymbol once. */
26019 if (psyms_seen.insert (psym).second)
26020 {
26021 gdb_index_symbol_kind kind = symbol_kind (psym);
26022
26023 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
26024 is_static, kind, cu_index);
26025 }
26026 }
26027 }
26028
26029 /* A helper struct used when iterating over debug_types. */
26030 struct signatured_type_index_data
26031 {
26032 signatured_type_index_data (data_buf &types_list_,
26033 std::unordered_set<partial_symbol *> &psyms_seen_)
26034 : types_list (types_list_), psyms_seen (psyms_seen_)
26035 {}
26036
26037 struct objfile *objfile;
26038 struct mapped_symtab *symtab;
26039 data_buf &types_list;
26040 std::unordered_set<partial_symbol *> &psyms_seen;
26041 int cu_index;
26042 };
26043
26044 /* A helper function that writes a single signatured_type to an
26045 obstack. */
26046
26047 static int
26048 write_one_signatured_type (void **slot, void *d)
26049 {
26050 struct signatured_type_index_data *info
26051 = (struct signatured_type_index_data *) d;
26052 struct signatured_type *entry = (struct signatured_type *) *slot;
26053 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
26054
26055 write_psymbols (info->symtab,
26056 info->psyms_seen,
26057 &info->objfile->global_psymbols[psymtab->globals_offset],
26058 psymtab->n_global_syms, info->cu_index,
26059 0);
26060 write_psymbols (info->symtab,
26061 info->psyms_seen,
26062 &info->objfile->static_psymbols[psymtab->statics_offset],
26063 psymtab->n_static_syms, info->cu_index,
26064 1);
26065
26066 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
26067 to_underlying (entry->per_cu.sect_off));
26068 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
26069 to_underlying (entry->type_offset_in_tu));
26070 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE, entry->signature);
26071
26072 ++info->cu_index;
26073
26074 return 1;
26075 }
26076
26077 /* Recurse into all "included" dependencies and count their symbols as
26078 if they appeared in this psymtab. */
26079
26080 static void
26081 recursively_count_psymbols (struct partial_symtab *psymtab,
26082 size_t &psyms_seen)
26083 {
26084 for (int i = 0; i < psymtab->number_of_dependencies; ++i)
26085 if (psymtab->dependencies[i]->user != NULL)
26086 recursively_count_psymbols (psymtab->dependencies[i],
26087 psyms_seen);
26088
26089 psyms_seen += psymtab->n_global_syms;
26090 psyms_seen += psymtab->n_static_syms;
26091 }
26092
26093 /* Recurse into all "included" dependencies and write their symbols as
26094 if they appeared in this psymtab. */
26095
26096 static void
26097 recursively_write_psymbols (struct objfile *objfile,
26098 struct partial_symtab *psymtab,
26099 struct mapped_symtab *symtab,
26100 std::unordered_set<partial_symbol *> &psyms_seen,
26101 offset_type cu_index)
26102 {
26103 int i;
26104
26105 for (i = 0; i < psymtab->number_of_dependencies; ++i)
26106 if (psymtab->dependencies[i]->user != NULL)
26107 recursively_write_psymbols (objfile, psymtab->dependencies[i],
26108 symtab, psyms_seen, cu_index);
26109
26110 write_psymbols (symtab,
26111 psyms_seen,
26112 &objfile->global_psymbols[psymtab->globals_offset],
26113 psymtab->n_global_syms, cu_index,
26114 0);
26115 write_psymbols (symtab,
26116 psyms_seen,
26117 &objfile->static_psymbols[psymtab->statics_offset],
26118 psymtab->n_static_syms, cu_index,
26119 1);
26120 }
26121
26122 /* DWARF-5 .debug_names builder. */
26123 class debug_names
26124 {
26125 public:
26126 debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile, bool is_dwarf64,
26127 bfd_endian dwarf5_byte_order)
26128 : m_dwarf5_byte_order (dwarf5_byte_order),
26129 m_dwarf32 (dwarf5_byte_order),
26130 m_dwarf64 (dwarf5_byte_order),
26131 m_dwarf (is_dwarf64
26132 ? static_cast<dwarf &> (m_dwarf64)
26133 : static_cast<dwarf &> (m_dwarf32)),
26134 m_name_table_string_offs (m_dwarf.name_table_string_offs),
26135 m_name_table_entry_offs (m_dwarf.name_table_entry_offs),
26136 m_debugstrlookup (dwarf2_per_objfile)
26137 {}
26138
26139 int dwarf5_offset_size () const
26140 {
26141 const bool dwarf5_is_dwarf64 = &m_dwarf == &m_dwarf64;
26142 return dwarf5_is_dwarf64 ? 8 : 4;
26143 }
26144
26145 /* Is this symbol from DW_TAG_compile_unit or DW_TAG_type_unit? */
26146 enum class unit_kind { cu, tu };
26147
26148 /* Insert one symbol. */
26149 void insert (const partial_symbol *psym, int cu_index, bool is_static,
26150 unit_kind kind)
26151 {
26152 const int dwarf_tag = psymbol_tag (psym);
26153 if (dwarf_tag == 0)
26154 return;
26155 const char *const name = SYMBOL_SEARCH_NAME (psym);
26156 const auto insertpair
26157 = m_name_to_value_set.emplace (c_str_view (name),
26158 std::set<symbol_value> ());
26159 std::set<symbol_value> &value_set = insertpair.first->second;
26160 value_set.emplace (symbol_value (dwarf_tag, cu_index, is_static, kind));
26161 }
26162
26163 /* Build all the tables. All symbols must be already inserted.
26164 This function does not call file_write, caller has to do it
26165 afterwards. */
26166 void build ()
26167 {
26168 /* Verify the build method has not be called twice. */
26169 gdb_assert (m_abbrev_table.empty ());
26170 const size_t name_count = m_name_to_value_set.size ();
26171 m_bucket_table.resize
26172 (std::pow (2, std::ceil (std::log2 (name_count * 4 / 3))));
26173 m_hash_table.reserve (name_count);
26174 m_name_table_string_offs.reserve (name_count);
26175 m_name_table_entry_offs.reserve (name_count);
26176
26177 /* Map each hash of symbol to its name and value. */
26178 struct hash_it_pair
26179 {
26180 uint32_t hash;
26181 decltype (m_name_to_value_set)::const_iterator it;
26182 };
26183 std::vector<std::forward_list<hash_it_pair>> bucket_hash;
26184 bucket_hash.resize (m_bucket_table.size ());
26185 for (decltype (m_name_to_value_set)::const_iterator it
26186 = m_name_to_value_set.cbegin ();
26187 it != m_name_to_value_set.cend ();
26188 ++it)
26189 {
26190 const char *const name = it->first.c_str ();
26191 const uint32_t hash = dwarf5_djb_hash (name);
26192 hash_it_pair hashitpair;
26193 hashitpair.hash = hash;
26194 hashitpair.it = it;
26195 auto &slot = bucket_hash[hash % bucket_hash.size()];
26196 slot.push_front (std::move (hashitpair));
26197 }
26198 for (size_t bucket_ix = 0; bucket_ix < bucket_hash.size (); ++bucket_ix)
26199 {
26200 const std::forward_list<hash_it_pair> &hashitlist
26201 = bucket_hash[bucket_ix];
26202 if (hashitlist.empty ())
26203 continue;
26204 uint32_t &bucket_slot = m_bucket_table[bucket_ix];
26205 /* The hashes array is indexed starting at 1. */
26206 store_unsigned_integer (reinterpret_cast<gdb_byte *> (&bucket_slot),
26207 sizeof (bucket_slot), m_dwarf5_byte_order,
26208 m_hash_table.size () + 1);
26209 for (const hash_it_pair &hashitpair : hashitlist)
26210 {
26211 m_hash_table.push_back (0);
26212 store_unsigned_integer (reinterpret_cast<gdb_byte *>
26213 (&m_hash_table.back ()),
26214 sizeof (m_hash_table.back ()),
26215 m_dwarf5_byte_order, hashitpair.hash);
26216 const c_str_view &name = hashitpair.it->first;
26217 const std::set<symbol_value> &value_set = hashitpair.it->second;
26218 m_name_table_string_offs.push_back_reorder
26219 (m_debugstrlookup.lookup (name.c_str ()));
26220 m_name_table_entry_offs.push_back_reorder (m_entry_pool.size ());
26221 gdb_assert (!value_set.empty ());
26222 for (const symbol_value &value : value_set)
26223 {
26224 int &idx = m_indexkey_to_idx[index_key (value.dwarf_tag,
26225 value.is_static,
26226 value.kind)];
26227 if (idx == 0)
26228 {
26229 idx = m_idx_next++;
26230 m_abbrev_table.append_unsigned_leb128 (idx);
26231 m_abbrev_table.append_unsigned_leb128 (value.dwarf_tag);
26232 m_abbrev_table.append_unsigned_leb128
26233 (value.kind == unit_kind::cu ? DW_IDX_compile_unit
26234 : DW_IDX_type_unit);
26235 m_abbrev_table.append_unsigned_leb128 (DW_FORM_udata);
26236 m_abbrev_table.append_unsigned_leb128 (value.is_static
26237 ? DW_IDX_GNU_internal
26238 : DW_IDX_GNU_external);
26239 m_abbrev_table.append_unsigned_leb128 (DW_FORM_flag_present);
26240
26241 /* Terminate attributes list. */
26242 m_abbrev_table.append_unsigned_leb128 (0);
26243 m_abbrev_table.append_unsigned_leb128 (0);
26244 }
26245
26246 m_entry_pool.append_unsigned_leb128 (idx);
26247 m_entry_pool.append_unsigned_leb128 (value.cu_index);
26248 }
26249
26250 /* Terminate the list of CUs. */
26251 m_entry_pool.append_unsigned_leb128 (0);
26252 }
26253 }
26254 gdb_assert (m_hash_table.size () == name_count);
26255
26256 /* Terminate tags list. */
26257 m_abbrev_table.append_unsigned_leb128 (0);
26258 }
26259
26260 /* Return .debug_names bucket count. This must be called only after
26261 calling the build method. */
26262 uint32_t bucket_count () const
26263 {
26264 /* Verify the build method has been already called. */
26265 gdb_assert (!m_abbrev_table.empty ());
26266 const uint32_t retval = m_bucket_table.size ();
26267
26268 /* Check for overflow. */
26269 gdb_assert (retval == m_bucket_table.size ());
26270 return retval;
26271 }
26272
26273 /* Return .debug_names names count. This must be called only after
26274 calling the build method. */
26275 uint32_t name_count () const
26276 {
26277 /* Verify the build method has been already called. */
26278 gdb_assert (!m_abbrev_table.empty ());
26279 const uint32_t retval = m_hash_table.size ();
26280
26281 /* Check for overflow. */
26282 gdb_assert (retval == m_hash_table.size ());
26283 return retval;
26284 }
26285
26286 /* Return number of bytes of .debug_names abbreviation table. This
26287 must be called only after calling the build method. */
26288 uint32_t abbrev_table_bytes () const
26289 {
26290 gdb_assert (!m_abbrev_table.empty ());
26291 return m_abbrev_table.size ();
26292 }
26293
26294 /* Recurse into all "included" dependencies and store their symbols
26295 as if they appeared in this psymtab. */
26296 void recursively_write_psymbols
26297 (struct objfile *objfile,
26298 struct partial_symtab *psymtab,
26299 std::unordered_set<partial_symbol *> &psyms_seen,
26300 int cu_index)
26301 {
26302 for (int i = 0; i < psymtab->number_of_dependencies; ++i)
26303 if (psymtab->dependencies[i]->user != NULL)
26304 recursively_write_psymbols (objfile, psymtab->dependencies[i],
26305 psyms_seen, cu_index);
26306
26307 write_psymbols (psyms_seen,
26308 &objfile->global_psymbols[psymtab->globals_offset],
26309 psymtab->n_global_syms, cu_index, false, unit_kind::cu);
26310 write_psymbols (psyms_seen,
26311 &objfile->static_psymbols[psymtab->statics_offset],
26312 psymtab->n_static_syms, cu_index, true, unit_kind::cu);
26313 }
26314
26315 /* Return number of bytes the .debug_names section will have. This
26316 must be called only after calling the build method. */
26317 size_t bytes () const
26318 {
26319 /* Verify the build method has been already called. */
26320 gdb_assert (!m_abbrev_table.empty ());
26321 size_t expected_bytes = 0;
26322 expected_bytes += m_bucket_table.size () * sizeof (m_bucket_table[0]);
26323 expected_bytes += m_hash_table.size () * sizeof (m_hash_table[0]);
26324 expected_bytes += m_name_table_string_offs.bytes ();
26325 expected_bytes += m_name_table_entry_offs.bytes ();
26326 expected_bytes += m_abbrev_table.size ();
26327 expected_bytes += m_entry_pool.size ();
26328 return expected_bytes;
26329 }
26330
26331 /* Write .debug_names to FILE_NAMES and .debug_str addition to
26332 FILE_STR. This must be called only after calling the build
26333 method. */
26334 void file_write (FILE *file_names, FILE *file_str) const
26335 {
26336 /* Verify the build method has been already called. */
26337 gdb_assert (!m_abbrev_table.empty ());
26338 ::file_write (file_names, m_bucket_table);
26339 ::file_write (file_names, m_hash_table);
26340 m_name_table_string_offs.file_write (file_names);
26341 m_name_table_entry_offs.file_write (file_names);
26342 m_abbrev_table.file_write (file_names);
26343 m_entry_pool.file_write (file_names);
26344 m_debugstrlookup.file_write (file_str);
26345 }
26346
26347 /* A helper user data for write_one_signatured_type. */
26348 class write_one_signatured_type_data
26349 {
26350 public:
26351 write_one_signatured_type_data (debug_names &nametable_,
26352 signatured_type_index_data &&info_)
26353 : nametable (nametable_), info (std::move (info_))
26354 {}
26355 debug_names &nametable;
26356 struct signatured_type_index_data info;
26357 };
26358
26359 /* A helper function to pass write_one_signatured_type to
26360 htab_traverse_noresize. */
26361 static int
26362 write_one_signatured_type (void **slot, void *d)
26363 {
26364 write_one_signatured_type_data *data = (write_one_signatured_type_data *) d;
26365 struct signatured_type_index_data *info = &data->info;
26366 struct signatured_type *entry = (struct signatured_type *) *slot;
26367
26368 data->nametable.write_one_signatured_type (entry, info);
26369
26370 return 1;
26371 }
26372
26373 private:
26374
26375 /* Storage for symbol names mapping them to their .debug_str section
26376 offsets. */
26377 class debug_str_lookup
26378 {
26379 public:
26380
26381 /* Object costructor to be called for current DWARF2_PER_OBJFILE.
26382 All .debug_str section strings are automatically stored. */
26383 debug_str_lookup (struct dwarf2_per_objfile *dwarf2_per_objfile)
26384 : m_abfd (dwarf2_per_objfile->objfile->obfd),
26385 m_dwarf2_per_objfile (dwarf2_per_objfile)
26386 {
26387 dwarf2_read_section (dwarf2_per_objfile->objfile,
26388 &dwarf2_per_objfile->str);
26389 if (dwarf2_per_objfile->str.buffer == NULL)
26390 return;
26391 for (const gdb_byte *data = dwarf2_per_objfile->str.buffer;
26392 data < (dwarf2_per_objfile->str.buffer
26393 + dwarf2_per_objfile->str.size);)
26394 {
26395 const char *const s = reinterpret_cast<const char *> (data);
26396 const auto insertpair
26397 = m_str_table.emplace (c_str_view (s),
26398 data - dwarf2_per_objfile->str.buffer);
26399 if (!insertpair.second)
26400 complaint (&symfile_complaints,
26401 _("Duplicate string \"%s\" in "
26402 ".debug_str section [in module %s]"),
26403 s, bfd_get_filename (m_abfd));
26404 data += strlen (s) + 1;
26405 }
26406 }
26407
26408 /* Return offset of symbol name S in the .debug_str section. Add
26409 such symbol to the section's end if it does not exist there
26410 yet. */
26411 size_t lookup (const char *s)
26412 {
26413 const auto it = m_str_table.find (c_str_view (s));
26414 if (it != m_str_table.end ())
26415 return it->second;
26416 const size_t offset = (m_dwarf2_per_objfile->str.size
26417 + m_str_add_buf.size ());
26418 m_str_table.emplace (c_str_view (s), offset);
26419 m_str_add_buf.append_cstr0 (s);
26420 return offset;
26421 }
26422
26423 /* Append the end of the .debug_str section to FILE. */
26424 void file_write (FILE *file) const
26425 {
26426 m_str_add_buf.file_write (file);
26427 }
26428
26429 private:
26430 std::unordered_map<c_str_view, size_t, c_str_view_hasher> m_str_table;
26431 bfd *const m_abfd;
26432 struct dwarf2_per_objfile *m_dwarf2_per_objfile;
26433
26434 /* Data to add at the end of .debug_str for new needed symbol names. */
26435 data_buf m_str_add_buf;
26436 };
26437
26438 /* Container to map used DWARF tags to their .debug_names abbreviation
26439 tags. */
26440 class index_key
26441 {
26442 public:
26443 index_key (int dwarf_tag_, bool is_static_, unit_kind kind_)
26444 : dwarf_tag (dwarf_tag_), is_static (is_static_), kind (kind_)
26445 {
26446 }
26447
26448 bool
26449 operator== (const index_key &other) const
26450 {
26451 return (dwarf_tag == other.dwarf_tag && is_static == other.is_static
26452 && kind == other.kind);
26453 }
26454
26455 const int dwarf_tag;
26456 const bool is_static;
26457 const unit_kind kind;
26458 };
26459
26460 /* Provide std::unordered_map::hasher for index_key. */
26461 class index_key_hasher
26462 {
26463 public:
26464 size_t
26465 operator () (const index_key &key) const
26466 {
26467 return (std::hash<int>() (key.dwarf_tag) << 1) | key.is_static;
26468 }
26469 };
26470
26471 /* Parameters of one symbol entry. */
26472 class symbol_value
26473 {
26474 public:
26475 const int dwarf_tag, cu_index;
26476 const bool is_static;
26477 const unit_kind kind;
26478
26479 symbol_value (int dwarf_tag_, int cu_index_, bool is_static_,
26480 unit_kind kind_)
26481 : dwarf_tag (dwarf_tag_), cu_index (cu_index_), is_static (is_static_),
26482 kind (kind_)
26483 {}
26484
26485 bool
26486 operator< (const symbol_value &other) const
26487 {
26488 #define X(n) \
26489 do \
26490 { \
26491 if (n < other.n) \
26492 return true; \
26493 if (n > other.n) \
26494 return false; \
26495 } \
26496 while (0)
26497 X (dwarf_tag);
26498 X (is_static);
26499 X (kind);
26500 X (cu_index);
26501 #undef X
26502 return false;
26503 }
26504 };
26505
26506 /* Abstract base class to unify DWARF-32 and DWARF-64 name table
26507 output. */
26508 class offset_vec
26509 {
26510 protected:
26511 const bfd_endian dwarf5_byte_order;
26512 public:
26513 explicit offset_vec (bfd_endian dwarf5_byte_order_)
26514 : dwarf5_byte_order (dwarf5_byte_order_)
26515 {}
26516
26517 /* Call std::vector::reserve for NELEM elements. */
26518 virtual void reserve (size_t nelem) = 0;
26519
26520 /* Call std::vector::push_back with store_unsigned_integer byte
26521 reordering for ELEM. */
26522 virtual void push_back_reorder (size_t elem) = 0;
26523
26524 /* Return expected output size in bytes. */
26525 virtual size_t bytes () const = 0;
26526
26527 /* Write name table to FILE. */
26528 virtual void file_write (FILE *file) const = 0;
26529 };
26530
26531 /* Template to unify DWARF-32 and DWARF-64 output. */
26532 template<typename OffsetSize>
26533 class offset_vec_tmpl : public offset_vec
26534 {
26535 public:
26536 explicit offset_vec_tmpl (bfd_endian dwarf5_byte_order_)
26537 : offset_vec (dwarf5_byte_order_)
26538 {}
26539
26540 /* Implement offset_vec::reserve. */
26541 void reserve (size_t nelem) override
26542 {
26543 m_vec.reserve (nelem);
26544 }
26545
26546 /* Implement offset_vec::push_back_reorder. */
26547 void push_back_reorder (size_t elem) override
26548 {
26549 m_vec.push_back (elem);
26550 /* Check for overflow. */
26551 gdb_assert (m_vec.back () == elem);
26552 store_unsigned_integer (reinterpret_cast<gdb_byte *> (&m_vec.back ()),
26553 sizeof (m_vec.back ()), dwarf5_byte_order, elem);
26554 }
26555
26556 /* Implement offset_vec::bytes. */
26557 size_t bytes () const override
26558 {
26559 return m_vec.size () * sizeof (m_vec[0]);
26560 }
26561
26562 /* Implement offset_vec::file_write. */
26563 void file_write (FILE *file) const override
26564 {
26565 ::file_write (file, m_vec);
26566 }
26567
26568 private:
26569 std::vector<OffsetSize> m_vec;
26570 };
26571
26572 /* Base class to unify DWARF-32 and DWARF-64 .debug_names output
26573 respecting name table width. */
26574 class dwarf
26575 {
26576 public:
26577 offset_vec &name_table_string_offs, &name_table_entry_offs;
26578
26579 dwarf (offset_vec &name_table_string_offs_,
26580 offset_vec &name_table_entry_offs_)
26581 : name_table_string_offs (name_table_string_offs_),
26582 name_table_entry_offs (name_table_entry_offs_)
26583 {
26584 }
26585 };
26586
26587 /* Template to unify DWARF-32 and DWARF-64 .debug_names output
26588 respecting name table width. */
26589 template<typename OffsetSize>
26590 class dwarf_tmpl : public dwarf
26591 {
26592 public:
26593 explicit dwarf_tmpl (bfd_endian dwarf5_byte_order_)
26594 : dwarf (m_name_table_string_offs, m_name_table_entry_offs),
26595 m_name_table_string_offs (dwarf5_byte_order_),
26596 m_name_table_entry_offs (dwarf5_byte_order_)
26597 {}
26598
26599 private:
26600 offset_vec_tmpl<OffsetSize> m_name_table_string_offs;
26601 offset_vec_tmpl<OffsetSize> m_name_table_entry_offs;
26602 };
26603
26604 /* Try to reconstruct original DWARF tag for given partial_symbol.
26605 This function is not DWARF-5 compliant but it is sufficient for
26606 GDB as a DWARF-5 index consumer. */
26607 static int psymbol_tag (const struct partial_symbol *psym)
26608 {
26609 domain_enum domain = PSYMBOL_DOMAIN (psym);
26610 enum address_class aclass = PSYMBOL_CLASS (psym);
26611
26612 switch (domain)
26613 {
26614 case VAR_DOMAIN:
26615 switch (aclass)
26616 {
26617 case LOC_BLOCK:
26618 return DW_TAG_subprogram;
26619 case LOC_TYPEDEF:
26620 return DW_TAG_typedef;
26621 case LOC_COMPUTED:
26622 case LOC_CONST_BYTES:
26623 case LOC_OPTIMIZED_OUT:
26624 case LOC_STATIC:
26625 return DW_TAG_variable;
26626 case LOC_CONST:
26627 /* Note: It's currently impossible to recognize psyms as enum values
26628 short of reading the type info. For now punt. */
26629 return DW_TAG_variable;
26630 default:
26631 /* There are other LOC_FOO values that one might want to classify
26632 as variables, but dwarf2read.c doesn't currently use them. */
26633 return DW_TAG_variable;
26634 }
26635 case STRUCT_DOMAIN:
26636 return DW_TAG_structure_type;
26637 default:
26638 return 0;
26639 }
26640 }
26641
26642 /* Call insert for all partial symbols and mark them in PSYMS_SEEN. */
26643 void write_psymbols (std::unordered_set<partial_symbol *> &psyms_seen,
26644 struct partial_symbol **psymp, int count, int cu_index,
26645 bool is_static, unit_kind kind)
26646 {
26647 for (; count-- > 0; ++psymp)
26648 {
26649 struct partial_symbol *psym = *psymp;
26650
26651 if (SYMBOL_LANGUAGE (psym) == language_ada)
26652 error (_("Ada is not currently supported by the index"));
26653
26654 /* Only add a given psymbol once. */
26655 if (psyms_seen.insert (psym).second)
26656 insert (psym, cu_index, is_static, kind);
26657 }
26658 }
26659
26660 /* A helper function that writes a single signatured_type
26661 to a debug_names. */
26662 void
26663 write_one_signatured_type (struct signatured_type *entry,
26664 struct signatured_type_index_data *info)
26665 {
26666 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
26667
26668 write_psymbols (info->psyms_seen,
26669 &info->objfile->global_psymbols[psymtab->globals_offset],
26670 psymtab->n_global_syms, info->cu_index, false,
26671 unit_kind::tu);
26672 write_psymbols (info->psyms_seen,
26673 &info->objfile->static_psymbols[psymtab->statics_offset],
26674 psymtab->n_static_syms, info->cu_index, true,
26675 unit_kind::tu);
26676
26677 info->types_list.append_uint (dwarf5_offset_size (), m_dwarf5_byte_order,
26678 to_underlying (entry->per_cu.sect_off));
26679
26680 ++info->cu_index;
26681 }
26682
26683 /* Store value of each symbol. */
26684 std::unordered_map<c_str_view, std::set<symbol_value>, c_str_view_hasher>
26685 m_name_to_value_set;
26686
26687 /* Tables of DWARF-5 .debug_names. They are in object file byte
26688 order. */
26689 std::vector<uint32_t> m_bucket_table;
26690 std::vector<uint32_t> m_hash_table;
26691
26692 const bfd_endian m_dwarf5_byte_order;
26693 dwarf_tmpl<uint32_t> m_dwarf32;
26694 dwarf_tmpl<uint64_t> m_dwarf64;
26695 dwarf &m_dwarf;
26696 offset_vec &m_name_table_string_offs, &m_name_table_entry_offs;
26697 debug_str_lookup m_debugstrlookup;
26698
26699 /* Map each used .debug_names abbreviation tag parameter to its
26700 index value. */
26701 std::unordered_map<index_key, int, index_key_hasher> m_indexkey_to_idx;
26702
26703 /* Next unused .debug_names abbreviation tag for
26704 m_indexkey_to_idx. */
26705 int m_idx_next = 1;
26706
26707 /* .debug_names abbreviation table. */
26708 data_buf m_abbrev_table;
26709
26710 /* .debug_names entry pool. */
26711 data_buf m_entry_pool;
26712 };
26713
26714 /* Return iff any of the needed offsets does not fit into 32-bit
26715 .debug_names section. */
26716
26717 static bool
26718 check_dwarf64_offsets (struct dwarf2_per_objfile *dwarf2_per_objfile)
26719 {
26720 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
26721 {
26722 const dwarf2_per_cu_data &per_cu = *dwarf2_per_objfile->all_comp_units[i];
26723
26724 if (to_underlying (per_cu.sect_off) >= (static_cast<uint64_t> (1) << 32))
26725 return true;
26726 }
26727 for (int i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
26728 {
26729 const signatured_type &sigtype = *dwarf2_per_objfile->all_type_units[i];
26730 const dwarf2_per_cu_data &per_cu = sigtype.per_cu;
26731
26732 if (to_underlying (per_cu.sect_off) >= (static_cast<uint64_t> (1) << 32))
26733 return true;
26734 }
26735 return false;
26736 }
26737
26738 /* The psyms_seen set is potentially going to be largish (~40k
26739 elements when indexing a -g3 build of GDB itself). Estimate the
26740 number of elements in order to avoid too many rehashes, which
26741 require rebuilding buckets and thus many trips to
26742 malloc/free. */
26743
26744 static size_t
26745 psyms_seen_size (struct dwarf2_per_objfile *dwarf2_per_objfile)
26746 {
26747 size_t psyms_count = 0;
26748 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
26749 {
26750 struct dwarf2_per_cu_data *per_cu
26751 = dwarf2_per_objfile->all_comp_units[i];
26752 struct partial_symtab *psymtab = per_cu->v.psymtab;
26753
26754 if (psymtab != NULL && psymtab->user == NULL)
26755 recursively_count_psymbols (psymtab, psyms_count);
26756 }
26757 /* Generating an index for gdb itself shows a ratio of
26758 TOTAL_SEEN_SYMS/UNIQUE_SYMS or ~5. 4 seems like a good bet. */
26759 return psyms_count / 4;
26760 }
26761
26762 /* Write new .gdb_index section for OBJFILE into OUT_FILE.
26763 Return how many bytes were expected to be written into OUT_FILE. */
26764
26765 static size_t
26766 write_gdbindex (struct dwarf2_per_objfile *dwarf2_per_objfile, FILE *out_file)
26767 {
26768 struct objfile *objfile = dwarf2_per_objfile->objfile;
26769 mapped_symtab symtab;
26770 data_buf cu_list;
26771
26772 /* While we're scanning CU's create a table that maps a psymtab pointer
26773 (which is what addrmap records) to its index (which is what is recorded
26774 in the index file). This will later be needed to write the address
26775 table. */
26776 psym_index_map cu_index_htab;
26777 cu_index_htab.reserve (dwarf2_per_objfile->n_comp_units);
26778
26779 /* The CU list is already sorted, so we don't need to do additional
26780 work here. Also, the debug_types entries do not appear in
26781 all_comp_units, but only in their own hash table. */
26782
26783 std::unordered_set<partial_symbol *> psyms_seen
26784 (psyms_seen_size (dwarf2_per_objfile));
26785 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
26786 {
26787 struct dwarf2_per_cu_data *per_cu
26788 = dwarf2_per_objfile->all_comp_units[i];
26789 struct partial_symtab *psymtab = per_cu->v.psymtab;
26790
26791 /* CU of a shared file from 'dwz -m' may be unused by this main file.
26792 It may be referenced from a local scope but in such case it does not
26793 need to be present in .gdb_index. */
26794 if (psymtab == NULL)
26795 continue;
26796
26797 if (psymtab->user == NULL)
26798 recursively_write_psymbols (objfile, psymtab, &symtab,
26799 psyms_seen, i);
26800
26801 const auto insertpair = cu_index_htab.emplace (psymtab, i);
26802 gdb_assert (insertpair.second);
26803
26804 cu_list.append_uint (8, BFD_ENDIAN_LITTLE,
26805 to_underlying (per_cu->sect_off));
26806 cu_list.append_uint (8, BFD_ENDIAN_LITTLE, per_cu->length);
26807 }
26808
26809 /* Dump the address map. */
26810 data_buf addr_vec;
26811 write_address_map (objfile, addr_vec, cu_index_htab);
26812
26813 /* Write out the .debug_type entries, if any. */
26814 data_buf types_cu_list;
26815 if (dwarf2_per_objfile->signatured_types)
26816 {
26817 signatured_type_index_data sig_data (types_cu_list,
26818 psyms_seen);
26819
26820 sig_data.objfile = objfile;
26821 sig_data.symtab = &symtab;
26822 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
26823 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
26824 write_one_signatured_type, &sig_data);
26825 }
26826
26827 /* Now that we've processed all symbols we can shrink their cu_indices
26828 lists. */
26829 uniquify_cu_indices (&symtab);
26830
26831 data_buf symtab_vec, constant_pool;
26832 write_hash_table (&symtab, symtab_vec, constant_pool);
26833
26834 data_buf contents;
26835 const offset_type size_of_contents = 6 * sizeof (offset_type);
26836 offset_type total_len = size_of_contents;
26837
26838 /* The version number. */
26839 contents.append_data (MAYBE_SWAP (8));
26840
26841 /* The offset of the CU list from the start of the file. */
26842 contents.append_data (MAYBE_SWAP (total_len));
26843 total_len += cu_list.size ();
26844
26845 /* The offset of the types CU list from the start of the file. */
26846 contents.append_data (MAYBE_SWAP (total_len));
26847 total_len += types_cu_list.size ();
26848
26849 /* The offset of the address table from the start of the file. */
26850 contents.append_data (MAYBE_SWAP (total_len));
26851 total_len += addr_vec.size ();
26852
26853 /* The offset of the symbol table from the start of the file. */
26854 contents.append_data (MAYBE_SWAP (total_len));
26855 total_len += symtab_vec.size ();
26856
26857 /* The offset of the constant pool from the start of the file. */
26858 contents.append_data (MAYBE_SWAP (total_len));
26859 total_len += constant_pool.size ();
26860
26861 gdb_assert (contents.size () == size_of_contents);
26862
26863 contents.file_write (out_file);
26864 cu_list.file_write (out_file);
26865 types_cu_list.file_write (out_file);
26866 addr_vec.file_write (out_file);
26867 symtab_vec.file_write (out_file);
26868 constant_pool.file_write (out_file);
26869
26870 return total_len;
26871 }
26872
26873 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
26874 static const gdb_byte dwarf5_gdb_augmentation[] = { 'G', 'D', 'B', 0 };
26875
26876 /* Write a new .debug_names section for OBJFILE into OUT_FILE, write
26877 needed addition to .debug_str section to OUT_FILE_STR. Return how
26878 many bytes were expected to be written into OUT_FILE. */
26879
26880 static size_t
26881 write_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
26882 FILE *out_file, FILE *out_file_str)
26883 {
26884 const bool dwarf5_is_dwarf64 = check_dwarf64_offsets (dwarf2_per_objfile);
26885 struct objfile *objfile = dwarf2_per_objfile->objfile;
26886 const enum bfd_endian dwarf5_byte_order
26887 = gdbarch_byte_order (get_objfile_arch (objfile));
26888
26889 /* The CU list is already sorted, so we don't need to do additional
26890 work here. Also, the debug_types entries do not appear in
26891 all_comp_units, but only in their own hash table. */
26892 data_buf cu_list;
26893 debug_names nametable (dwarf2_per_objfile, dwarf5_is_dwarf64,
26894 dwarf5_byte_order);
26895 std::unordered_set<partial_symbol *>
26896 psyms_seen (psyms_seen_size (dwarf2_per_objfile));
26897 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
26898 {
26899 const dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->all_comp_units[i];
26900 partial_symtab *psymtab = per_cu->v.psymtab;
26901
26902 /* CU of a shared file from 'dwz -m' may be unused by this main
26903 file. It may be referenced from a local scope but in such
26904 case it does not need to be present in .debug_names. */
26905 if (psymtab == NULL)
26906 continue;
26907
26908 if (psymtab->user == NULL)
26909 nametable.recursively_write_psymbols (objfile, psymtab, psyms_seen, i);
26910
26911 cu_list.append_uint (nametable.dwarf5_offset_size (), dwarf5_byte_order,
26912 to_underlying (per_cu->sect_off));
26913 }
26914
26915 /* Write out the .debug_type entries, if any. */
26916 data_buf types_cu_list;
26917 if (dwarf2_per_objfile->signatured_types)
26918 {
26919 debug_names::write_one_signatured_type_data sig_data (nametable,
26920 signatured_type_index_data (types_cu_list, psyms_seen));
26921
26922 sig_data.info.objfile = objfile;
26923 /* It is used only for gdb_index. */
26924 sig_data.info.symtab = nullptr;
26925 sig_data.info.cu_index = 0;
26926 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
26927 debug_names::write_one_signatured_type,
26928 &sig_data);
26929 }
26930
26931 nametable.build ();
26932
26933 /* No addr_vec - DWARF-5 uses .debug_aranges generated by GCC. */
26934
26935 const offset_type bytes_of_header
26936 = ((dwarf5_is_dwarf64 ? 12 : 4)
26937 + 2 + 2 + 7 * 4
26938 + sizeof (dwarf5_gdb_augmentation));
26939 size_t expected_bytes = 0;
26940 expected_bytes += bytes_of_header;
26941 expected_bytes += cu_list.size ();
26942 expected_bytes += types_cu_list.size ();
26943 expected_bytes += nametable.bytes ();
26944 data_buf header;
26945
26946 if (!dwarf5_is_dwarf64)
26947 {
26948 const uint64_t size64 = expected_bytes - 4;
26949 gdb_assert (size64 < 0xfffffff0);
26950 header.append_uint (4, dwarf5_byte_order, size64);
26951 }
26952 else
26953 {
26954 header.append_uint (4, dwarf5_byte_order, 0xffffffff);
26955 header.append_uint (8, dwarf5_byte_order, expected_bytes - 12);
26956 }
26957
26958 /* The version number. */
26959 header.append_uint (2, dwarf5_byte_order, 5);
26960
26961 /* Padding. */
26962 header.append_uint (2, dwarf5_byte_order, 0);
26963
26964 /* comp_unit_count - The number of CUs in the CU list. */
26965 header.append_uint (4, dwarf5_byte_order, dwarf2_per_objfile->n_comp_units);
26966
26967 /* local_type_unit_count - The number of TUs in the local TU
26968 list. */
26969 header.append_uint (4, dwarf5_byte_order, dwarf2_per_objfile->n_type_units);
26970
26971 /* foreign_type_unit_count - The number of TUs in the foreign TU
26972 list. */
26973 header.append_uint (4, dwarf5_byte_order, 0);
26974
26975 /* bucket_count - The number of hash buckets in the hash lookup
26976 table. */
26977 header.append_uint (4, dwarf5_byte_order, nametable.bucket_count ());
26978
26979 /* name_count - The number of unique names in the index. */
26980 header.append_uint (4, dwarf5_byte_order, nametable.name_count ());
26981
26982 /* abbrev_table_size - The size in bytes of the abbreviations
26983 table. */
26984 header.append_uint (4, dwarf5_byte_order, nametable.abbrev_table_bytes ());
26985
26986 /* augmentation_string_size - The size in bytes of the augmentation
26987 string. This value is rounded up to a multiple of 4. */
26988 static_assert (sizeof (dwarf5_gdb_augmentation) % 4 == 0, "");
26989 header.append_uint (4, dwarf5_byte_order, sizeof (dwarf5_gdb_augmentation));
26990 header.append_data (dwarf5_gdb_augmentation);
26991
26992 gdb_assert (header.size () == bytes_of_header);
26993
26994 header.file_write (out_file);
26995 cu_list.file_write (out_file);
26996 types_cu_list.file_write (out_file);
26997 nametable.file_write (out_file, out_file_str);
26998
26999 return expected_bytes;
27000 }
27001
27002 /* Assert that FILE's size is EXPECTED_SIZE. Assumes file's seek
27003 position is at the end of the file. */
27004
27005 static void
27006 assert_file_size (FILE *file, const char *filename, size_t expected_size)
27007 {
27008 const auto file_size = ftell (file);
27009 if (file_size == -1)
27010 error (_("Can't get `%s' size"), filename);
27011 gdb_assert (file_size == expected_size);
27012 }
27013
27014 /* Create an index file for OBJFILE in the directory DIR. */
27015
27016 static void
27017 write_psymtabs_to_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
27018 const char *dir,
27019 dw_index_kind index_kind)
27020 {
27021 struct objfile *objfile = dwarf2_per_objfile->objfile;
27022
27023 if (dwarf2_per_objfile->using_index)
27024 error (_("Cannot use an index to create the index"));
27025
27026 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
27027 error (_("Cannot make an index when the file has multiple .debug_types sections"));
27028
27029 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
27030 return;
27031
27032 struct stat st;
27033 if (stat (objfile_name (objfile), &st) < 0)
27034 perror_with_name (objfile_name (objfile));
27035
27036 std::string filename (std::string (dir) + SLASH_STRING
27037 + lbasename (objfile_name (objfile))
27038 + (index_kind == dw_index_kind::DEBUG_NAMES
27039 ? INDEX5_SUFFIX : INDEX4_SUFFIX));
27040
27041 FILE *out_file = gdb_fopen_cloexec (filename.c_str (), "wb").release ();
27042 if (!out_file)
27043 error (_("Can't open `%s' for writing"), filename.c_str ());
27044
27045 /* Order matters here; we want FILE to be closed before FILENAME is
27046 unlinked, because on MS-Windows one cannot delete a file that is
27047 still open. (Don't call anything here that might throw until
27048 file_closer is created.) */
27049 gdb::unlinker unlink_file (filename.c_str ());
27050 gdb_file_up close_out_file (out_file);
27051
27052 if (index_kind == dw_index_kind::DEBUG_NAMES)
27053 {
27054 std::string filename_str (std::string (dir) + SLASH_STRING
27055 + lbasename (objfile_name (objfile))
27056 + DEBUG_STR_SUFFIX);
27057 FILE *out_file_str
27058 = gdb_fopen_cloexec (filename_str.c_str (), "wb").release ();
27059 if (!out_file_str)
27060 error (_("Can't open `%s' for writing"), filename_str.c_str ());
27061 gdb::unlinker unlink_file_str (filename_str.c_str ());
27062 gdb_file_up close_out_file_str (out_file_str);
27063
27064 const size_t total_len
27065 = write_debug_names (dwarf2_per_objfile, out_file, out_file_str);
27066 assert_file_size (out_file, filename.c_str (), total_len);
27067
27068 /* We want to keep the file .debug_str file too. */
27069 unlink_file_str.keep ();
27070 }
27071 else
27072 {
27073 const size_t total_len
27074 = write_gdbindex (dwarf2_per_objfile, out_file);
27075 assert_file_size (out_file, filename.c_str (), total_len);
27076 }
27077
27078 /* We want to keep the file. */
27079 unlink_file.keep ();
27080 }
27081
27082 /* Implementation of the `save gdb-index' command.
27083
27084 Note that the .gdb_index file format used by this command is
27085 documented in the GDB manual. Any changes here must be documented
27086 there. */
27087
27088 static void
27089 save_gdb_index_command (const char *arg, int from_tty)
27090 {
27091 struct objfile *objfile;
27092 const char dwarf5space[] = "-dwarf-5 ";
27093 dw_index_kind index_kind = dw_index_kind::GDB_INDEX;
27094
27095 if (!arg)
27096 arg = "";
27097
27098 arg = skip_spaces (arg);
27099 if (strncmp (arg, dwarf5space, strlen (dwarf5space)) == 0)
27100 {
27101 index_kind = dw_index_kind::DEBUG_NAMES;
27102 arg += strlen (dwarf5space);
27103 arg = skip_spaces (arg);
27104 }
27105
27106 if (!*arg)
27107 error (_("usage: save gdb-index [-dwarf-5] DIRECTORY"));
27108
27109 ALL_OBJFILES (objfile)
27110 {
27111 struct stat st;
27112
27113 /* If the objfile does not correspond to an actual file, skip it. */
27114 if (stat (objfile_name (objfile), &st) < 0)
27115 continue;
27116
27117 struct dwarf2_per_objfile *dwarf2_per_objfile
27118 = get_dwarf2_per_objfile (objfile);
27119
27120 if (dwarf2_per_objfile != NULL)
27121 {
27122 TRY
27123 {
27124 write_psymtabs_to_index (dwarf2_per_objfile, arg, index_kind);
27125 }
27126 CATCH (except, RETURN_MASK_ERROR)
27127 {
27128 exception_fprintf (gdb_stderr, except,
27129 _("Error while writing index for `%s': "),
27130 objfile_name (objfile));
27131 }
27132 END_CATCH
27133 }
27134
27135 }
27136 }
27137
27138 \f
27139
27140 int dwarf_always_disassemble;
27141
27142 static void
27143 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
27144 struct cmd_list_element *c, const char *value)
27145 {
27146 fprintf_filtered (file,
27147 _("Whether to always disassemble "
27148 "DWARF expressions is %s.\n"),
27149 value);
27150 }
27151
27152 static void
27153 show_check_physname (struct ui_file *file, int from_tty,
27154 struct cmd_list_element *c, const char *value)
27155 {
27156 fprintf_filtered (file,
27157 _("Whether to check \"physname\" is %s.\n"),
27158 value);
27159 }
27160
27161 void
27162 _initialize_dwarf2_read (void)
27163 {
27164 struct cmd_list_element *c;
27165
27166 dwarf2_objfile_data_key = register_objfile_data ();
27167
27168 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
27169 Set DWARF specific variables.\n\
27170 Configure DWARF variables such as the cache size"),
27171 &set_dwarf_cmdlist, "maintenance set dwarf ",
27172 0/*allow-unknown*/, &maintenance_set_cmdlist);
27173
27174 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
27175 Show DWARF specific variables\n\
27176 Show DWARF variables such as the cache size"),
27177 &show_dwarf_cmdlist, "maintenance show dwarf ",
27178 0/*allow-unknown*/, &maintenance_show_cmdlist);
27179
27180 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
27181 &dwarf_max_cache_age, _("\
27182 Set the upper bound on the age of cached DWARF compilation units."), _("\
27183 Show the upper bound on the age of cached DWARF compilation units."), _("\
27184 A higher limit means that cached compilation units will be stored\n\
27185 in memory longer, and more total memory will be used. Zero disables\n\
27186 caching, which can slow down startup."),
27187 NULL,
27188 show_dwarf_max_cache_age,
27189 &set_dwarf_cmdlist,
27190 &show_dwarf_cmdlist);
27191
27192 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
27193 &dwarf_always_disassemble, _("\
27194 Set whether `info address' always disassembles DWARF expressions."), _("\
27195 Show whether `info address' always disassembles DWARF expressions."), _("\
27196 When enabled, DWARF expressions are always printed in an assembly-like\n\
27197 syntax. When disabled, expressions will be printed in a more\n\
27198 conversational style, when possible."),
27199 NULL,
27200 show_dwarf_always_disassemble,
27201 &set_dwarf_cmdlist,
27202 &show_dwarf_cmdlist);
27203
27204 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
27205 Set debugging of the DWARF reader."), _("\
27206 Show debugging of the DWARF reader."), _("\
27207 When enabled (non-zero), debugging messages are printed during DWARF\n\
27208 reading and symtab expansion. A value of 1 (one) provides basic\n\
27209 information. A value greater than 1 provides more verbose information."),
27210 NULL,
27211 NULL,
27212 &setdebuglist, &showdebuglist);
27213
27214 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
27215 Set debugging of the DWARF DIE reader."), _("\
27216 Show debugging of the DWARF DIE reader."), _("\
27217 When enabled (non-zero), DIEs are dumped after they are read in.\n\
27218 The value is the maximum depth to print."),
27219 NULL,
27220 NULL,
27221 &setdebuglist, &showdebuglist);
27222
27223 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
27224 Set debugging of the dwarf line reader."), _("\
27225 Show debugging of the dwarf line reader."), _("\
27226 When enabled (non-zero), line number entries are dumped as they are read in.\n\
27227 A value of 1 (one) provides basic information.\n\
27228 A value greater than 1 provides more verbose information."),
27229 NULL,
27230 NULL,
27231 &setdebuglist, &showdebuglist);
27232
27233 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
27234 Set cross-checking of \"physname\" code against demangler."), _("\
27235 Show cross-checking of \"physname\" code against demangler."), _("\
27236 When enabled, GDB's internal \"physname\" code is checked against\n\
27237 the demangler."),
27238 NULL, show_check_physname,
27239 &setdebuglist, &showdebuglist);
27240
27241 add_setshow_boolean_cmd ("use-deprecated-index-sections",
27242 no_class, &use_deprecated_index_sections, _("\
27243 Set whether to use deprecated gdb_index sections."), _("\
27244 Show whether to use deprecated gdb_index sections."), _("\
27245 When enabled, deprecated .gdb_index sections are used anyway.\n\
27246 Normally they are ignored either because of a missing feature or\n\
27247 performance issue.\n\
27248 Warning: This option must be enabled before gdb reads the file."),
27249 NULL,
27250 NULL,
27251 &setlist, &showlist);
27252
27253 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
27254 _("\
27255 Save a gdb-index file.\n\
27256 Usage: save gdb-index [-dwarf-5] DIRECTORY\n\
27257 \n\
27258 No options create one file with .gdb-index extension for pre-DWARF-5\n\
27259 compatible .gdb_index section. With -dwarf-5 creates two files with\n\
27260 extension .debug_names and .debug_str for DWARF-5 .debug_names section."),
27261 &save_cmdlist);
27262 set_cmd_completer (c, filename_completer);
27263
27264 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
27265 &dwarf2_locexpr_funcs);
27266 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
27267 &dwarf2_loclist_funcs);
27268
27269 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
27270 &dwarf2_block_frame_base_locexpr_funcs);
27271 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
27272 &dwarf2_block_frame_base_loclist_funcs);
27273
27274 #if GDB_SELF_TEST
27275 selftests::register_test ("dw2_expand_symtabs_matching",
27276 selftests::dw2_expand_symtabs_matching::run_test);
27277 #endif
27278 }
This page took 0.579147 seconds and 5 git commands to generate.