2012-03-01 Pedro Alves <palves@redhat.com>
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2012 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "symtab.h"
34 #include "gdbtypes.h"
35 #include "objfiles.h"
36 #include "dwarf2.h"
37 #include "buildsym.h"
38 #include "demangle.h"
39 #include "gdb-demangle.h"
40 #include "expression.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "macrotab.h"
43 #include "language.h"
44 #include "complaints.h"
45 #include "bcache.h"
46 #include "dwarf2expr.h"
47 #include "dwarf2loc.h"
48 #include "cp-support.h"
49 #include "hashtab.h"
50 #include "command.h"
51 #include "gdbcmd.h"
52 #include "block.h"
53 #include "addrmap.h"
54 #include "typeprint.h"
55 #include "jv-lang.h"
56 #include "psympriv.h"
57 #include "exceptions.h"
58 #include "gdb_stat.h"
59 #include "completer.h"
60 #include "vec.h"
61 #include "c-lang.h"
62 #include "valprint.h"
63 #include <ctype.h>
64
65 #include <fcntl.h>
66 #include "gdb_string.h"
67 #include "gdb_assert.h"
68 #include <sys/types.h>
69 #ifdef HAVE_ZLIB_H
70 #include <zlib.h>
71 #endif
72 #ifdef HAVE_MMAP
73 #include <sys/mman.h>
74 #ifndef MAP_FAILED
75 #define MAP_FAILED ((void *) -1)
76 #endif
77 #endif
78
79 typedef struct symbol *symbolp;
80 DEF_VEC_P (symbolp);
81
82 /* When non-zero, dump DIEs after they are read in. */
83 static int dwarf2_die_debug = 0;
84
85 /* When non-zero, cross-check physname against demangler. */
86 static int check_physname = 0;
87
88 static int pagesize;
89
90 /* When set, the file that we're processing is known to have debugging
91 info for C++ namespaces. GCC 3.3.x did not produce this information,
92 but later versions do. */
93
94 static int processing_has_namespace_info;
95
96 static const struct objfile_data *dwarf2_objfile_data_key;
97
98 struct dwarf2_section_info
99 {
100 asection *asection;
101 gdb_byte *buffer;
102 bfd_size_type size;
103 /* Not NULL if the section was actually mmapped. */
104 void *map_addr;
105 /* Page aligned size of mmapped area. */
106 bfd_size_type map_len;
107 /* True if we have tried to read this section. */
108 int readin;
109 };
110
111 typedef struct dwarf2_section_info dwarf2_section_info_def;
112 DEF_VEC_O (dwarf2_section_info_def);
113
114 /* All offsets in the index are of this type. It must be
115 architecture-independent. */
116 typedef uint32_t offset_type;
117
118 DEF_VEC_I (offset_type);
119
120 /* A description of the mapped index. The file format is described in
121 a comment by the code that writes the index. */
122 struct mapped_index
123 {
124 /* Index data format version. */
125 int version;
126
127 /* The total length of the buffer. */
128 off_t total_size;
129
130 /* A pointer to the address table data. */
131 const gdb_byte *address_table;
132
133 /* Size of the address table data in bytes. */
134 offset_type address_table_size;
135
136 /* The symbol table, implemented as a hash table. */
137 const offset_type *symbol_table;
138
139 /* Size in slots, each slot is 2 offset_types. */
140 offset_type symbol_table_slots;
141
142 /* A pointer to the constant pool. */
143 const char *constant_pool;
144 };
145
146 /* Collection of data recorded per objfile.
147 This hangs off of dwarf2_objfile_data_key. */
148
149 struct dwarf2_per_objfile
150 {
151 struct dwarf2_section_info info;
152 struct dwarf2_section_info abbrev;
153 struct dwarf2_section_info line;
154 struct dwarf2_section_info loc;
155 struct dwarf2_section_info macinfo;
156 struct dwarf2_section_info macro;
157 struct dwarf2_section_info str;
158 struct dwarf2_section_info ranges;
159 struct dwarf2_section_info frame;
160 struct dwarf2_section_info eh_frame;
161 struct dwarf2_section_info gdb_index;
162
163 VEC (dwarf2_section_info_def) *types;
164
165 /* Back link. */
166 struct objfile *objfile;
167
168 /* Table of all the compilation units. This is used to locate
169 the target compilation unit of a particular reference. */
170 struct dwarf2_per_cu_data **all_comp_units;
171
172 /* The number of compilation units in ALL_COMP_UNITS. */
173 int n_comp_units;
174
175 /* The number of .debug_types-related CUs. */
176 int n_type_units;
177
178 /* The .debug_types-related CUs (TUs). */
179 struct dwarf2_per_cu_data **all_type_units;
180
181 /* A chain of compilation units that are currently read in, so that
182 they can be freed later. */
183 struct dwarf2_per_cu_data *read_in_chain;
184
185 /* A table mapping .debug_types signatures to its signatured_type entry.
186 This is NULL if the .debug_types section hasn't been read in yet. */
187 htab_t signatured_types;
188
189 /* A flag indicating wether this objfile has a section loaded at a
190 VMA of 0. */
191 int has_section_at_zero;
192
193 /* True if we are using the mapped index,
194 or we are faking it for OBJF_READNOW's sake. */
195 unsigned char using_index;
196
197 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
198 struct mapped_index *index_table;
199
200 /* When using index_table, this keeps track of all quick_file_names entries.
201 TUs can share line table entries with CUs or other TUs, and there can be
202 a lot more TUs than unique line tables, so we maintain a separate table
203 of all line table entries to support the sharing. */
204 htab_t quick_file_names_table;
205
206 /* Set during partial symbol reading, to prevent queueing of full
207 symbols. */
208 int reading_partial_symbols;
209
210 /* Table mapping type .debug_info DIE offsets to types.
211 This is NULL if not allocated yet.
212 It (currently) makes sense to allocate debug_types_type_hash lazily.
213 To keep things simple we allocate both lazily. */
214 htab_t debug_info_type_hash;
215
216 /* Table mapping type .debug_types DIE offsets to types.
217 This is NULL if not allocated yet. */
218 htab_t debug_types_type_hash;
219 };
220
221 static struct dwarf2_per_objfile *dwarf2_per_objfile;
222
223 /* Default names of the debugging sections. */
224
225 /* Note that if the debugging section has been compressed, it might
226 have a name like .zdebug_info. */
227
228 static const struct dwarf2_debug_sections dwarf2_elf_names =
229 {
230 { ".debug_info", ".zdebug_info" },
231 { ".debug_abbrev", ".zdebug_abbrev" },
232 { ".debug_line", ".zdebug_line" },
233 { ".debug_loc", ".zdebug_loc" },
234 { ".debug_macinfo", ".zdebug_macinfo" },
235 { ".debug_macro", ".zdebug_macro" },
236 { ".debug_str", ".zdebug_str" },
237 { ".debug_ranges", ".zdebug_ranges" },
238 { ".debug_types", ".zdebug_types" },
239 { ".debug_frame", ".zdebug_frame" },
240 { ".eh_frame", NULL },
241 { ".gdb_index", ".zgdb_index" },
242 23
243 };
244
245 /* local data types */
246
247 /* We hold several abbreviation tables in memory at the same time. */
248 #ifndef ABBREV_HASH_SIZE
249 #define ABBREV_HASH_SIZE 121
250 #endif
251
252 /* The data in a compilation unit header, after target2host
253 translation, looks like this. */
254 struct comp_unit_head
255 {
256 unsigned int length;
257 short version;
258 unsigned char addr_size;
259 unsigned char signed_addr_p;
260 unsigned int abbrev_offset;
261
262 /* Size of file offsets; either 4 or 8. */
263 unsigned int offset_size;
264
265 /* Size of the length field; either 4 or 12. */
266 unsigned int initial_length_size;
267
268 /* Offset to the first byte of this compilation unit header in the
269 .debug_info section, for resolving relative reference dies. */
270 unsigned int offset;
271
272 /* Offset to first die in this cu from the start of the cu.
273 This will be the first byte following the compilation unit header. */
274 unsigned int first_die_offset;
275 };
276
277 /* Type used for delaying computation of method physnames.
278 See comments for compute_delayed_physnames. */
279 struct delayed_method_info
280 {
281 /* The type to which the method is attached, i.e., its parent class. */
282 struct type *type;
283
284 /* The index of the method in the type's function fieldlists. */
285 int fnfield_index;
286
287 /* The index of the method in the fieldlist. */
288 int index;
289
290 /* The name of the DIE. */
291 const char *name;
292
293 /* The DIE associated with this method. */
294 struct die_info *die;
295 };
296
297 typedef struct delayed_method_info delayed_method_info;
298 DEF_VEC_O (delayed_method_info);
299
300 /* Internal state when decoding a particular compilation unit. */
301 struct dwarf2_cu
302 {
303 /* The objfile containing this compilation unit. */
304 struct objfile *objfile;
305
306 /* The header of the compilation unit. */
307 struct comp_unit_head header;
308
309 /* Base address of this compilation unit. */
310 CORE_ADDR base_address;
311
312 /* Non-zero if base_address has been set. */
313 int base_known;
314
315 /* The language we are debugging. */
316 enum language language;
317 const struct language_defn *language_defn;
318
319 const char *producer;
320
321 /* The generic symbol table building routines have separate lists for
322 file scope symbols and all all other scopes (local scopes). So
323 we need to select the right one to pass to add_symbol_to_list().
324 We do it by keeping a pointer to the correct list in list_in_scope.
325
326 FIXME: The original dwarf code just treated the file scope as the
327 first local scope, and all other local scopes as nested local
328 scopes, and worked fine. Check to see if we really need to
329 distinguish these in buildsym.c. */
330 struct pending **list_in_scope;
331
332 /* DWARF abbreviation table associated with this compilation unit. */
333 struct abbrev_info **dwarf2_abbrevs;
334
335 /* Storage for the abbrev table. */
336 struct obstack abbrev_obstack;
337
338 /* Hash table holding all the loaded partial DIEs. */
339 htab_t partial_dies;
340
341 /* Storage for things with the same lifetime as this read-in compilation
342 unit, including partial DIEs. */
343 struct obstack comp_unit_obstack;
344
345 /* When multiple dwarf2_cu structures are living in memory, this field
346 chains them all together, so that they can be released efficiently.
347 We will probably also want a generation counter so that most-recently-used
348 compilation units are cached... */
349 struct dwarf2_per_cu_data *read_in_chain;
350
351 /* Backchain to our per_cu entry if the tree has been built. */
352 struct dwarf2_per_cu_data *per_cu;
353
354 /* How many compilation units ago was this CU last referenced? */
355 int last_used;
356
357 /* A hash table of die offsets for following references. */
358 htab_t die_hash;
359
360 /* Full DIEs if read in. */
361 struct die_info *dies;
362
363 /* A set of pointers to dwarf2_per_cu_data objects for compilation
364 units referenced by this one. Only set during full symbol processing;
365 partial symbol tables do not have dependencies. */
366 htab_t dependencies;
367
368 /* Header data from the line table, during full symbol processing. */
369 struct line_header *line_header;
370
371 /* A list of methods which need to have physnames computed
372 after all type information has been read. */
373 VEC (delayed_method_info) *method_list;
374
375 /* To be copied to symtab->call_site_htab. */
376 htab_t call_site_htab;
377
378 /* Mark used when releasing cached dies. */
379 unsigned int mark : 1;
380
381 /* This CU references .debug_loc. See the symtab->locations_valid field.
382 This test is imperfect as there may exist optimized debug code not using
383 any location list and still facing inlining issues if handled as
384 unoptimized code. For a future better test see GCC PR other/32998. */
385 unsigned int has_loclist : 1;
386 };
387
388 /* Persistent data held for a compilation unit, even when not
389 processing it. We put a pointer to this structure in the
390 read_symtab_private field of the psymtab. */
391
392 struct dwarf2_per_cu_data
393 {
394 /* The start offset and length of this compilation unit. 2**29-1
395 bytes should suffice to store the length of any compilation unit
396 - if it doesn't, GDB will fall over anyway.
397 NOTE: Unlike comp_unit_head.length, this length includes
398 initial_length_size. */
399 unsigned int offset;
400 unsigned int length : 29;
401
402 /* Flag indicating this compilation unit will be read in before
403 any of the current compilation units are processed. */
404 unsigned int queued : 1;
405
406 /* This flag will be set if we need to load absolutely all DIEs
407 for this compilation unit, instead of just the ones we think
408 are interesting. It gets set if we look for a DIE in the
409 hash table and don't find it. */
410 unsigned int load_all_dies : 1;
411
412 /* Non-null if this CU is from .debug_types; in which case it points
413 to the section. Otherwise it's from .debug_info. */
414 struct dwarf2_section_info *debug_types_section;
415
416 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
417 of the CU cache it gets reset to NULL again. */
418 struct dwarf2_cu *cu;
419
420 /* The corresponding objfile.
421 Normally we can get the objfile from dwarf2_per_objfile.
422 However we can enter this file with just a "per_cu" handle. */
423 struct objfile *objfile;
424
425 /* When using partial symbol tables, the 'psymtab' field is active.
426 Otherwise the 'quick' field is active. */
427 union
428 {
429 /* The partial symbol table associated with this compilation unit,
430 or NULL for partial units (which do not have an associated
431 symtab). */
432 struct partial_symtab *psymtab;
433
434 /* Data needed by the "quick" functions. */
435 struct dwarf2_per_cu_quick_data *quick;
436 } v;
437 };
438
439 /* Entry in the signatured_types hash table. */
440
441 struct signatured_type
442 {
443 ULONGEST signature;
444
445 /* Offset in .debug_types of the type defined by this TU. */
446 unsigned int type_offset;
447
448 /* The CU(/TU) of this type. */
449 struct dwarf2_per_cu_data per_cu;
450 };
451
452 /* Struct used to pass misc. parameters to read_die_and_children, et
453 al. which are used for both .debug_info and .debug_types dies.
454 All parameters here are unchanging for the life of the call. This
455 struct exists to abstract away the constant parameters of die
456 reading. */
457
458 struct die_reader_specs
459 {
460 /* The bfd of this objfile. */
461 bfd* abfd;
462
463 /* The CU of the DIE we are parsing. */
464 struct dwarf2_cu *cu;
465
466 /* Pointer to start of section buffer.
467 This is either the start of .debug_info or .debug_types. */
468 const gdb_byte *buffer;
469 };
470
471 /* The line number information for a compilation unit (found in the
472 .debug_line section) begins with a "statement program header",
473 which contains the following information. */
474 struct line_header
475 {
476 unsigned int total_length;
477 unsigned short version;
478 unsigned int header_length;
479 unsigned char minimum_instruction_length;
480 unsigned char maximum_ops_per_instruction;
481 unsigned char default_is_stmt;
482 int line_base;
483 unsigned char line_range;
484 unsigned char opcode_base;
485
486 /* standard_opcode_lengths[i] is the number of operands for the
487 standard opcode whose value is i. This means that
488 standard_opcode_lengths[0] is unused, and the last meaningful
489 element is standard_opcode_lengths[opcode_base - 1]. */
490 unsigned char *standard_opcode_lengths;
491
492 /* The include_directories table. NOTE! These strings are not
493 allocated with xmalloc; instead, they are pointers into
494 debug_line_buffer. If you try to free them, `free' will get
495 indigestion. */
496 unsigned int num_include_dirs, include_dirs_size;
497 char **include_dirs;
498
499 /* The file_names table. NOTE! These strings are not allocated
500 with xmalloc; instead, they are pointers into debug_line_buffer.
501 Don't try to free them directly. */
502 unsigned int num_file_names, file_names_size;
503 struct file_entry
504 {
505 char *name;
506 unsigned int dir_index;
507 unsigned int mod_time;
508 unsigned int length;
509 int included_p; /* Non-zero if referenced by the Line Number Program. */
510 struct symtab *symtab; /* The associated symbol table, if any. */
511 } *file_names;
512
513 /* The start and end of the statement program following this
514 header. These point into dwarf2_per_objfile->line_buffer. */
515 gdb_byte *statement_program_start, *statement_program_end;
516 };
517
518 /* When we construct a partial symbol table entry we only
519 need this much information. */
520 struct partial_die_info
521 {
522 /* Offset of this DIE. */
523 unsigned int offset;
524
525 /* DWARF-2 tag for this DIE. */
526 ENUM_BITFIELD(dwarf_tag) tag : 16;
527
528 /* Assorted flags describing the data found in this DIE. */
529 unsigned int has_children : 1;
530 unsigned int is_external : 1;
531 unsigned int is_declaration : 1;
532 unsigned int has_type : 1;
533 unsigned int has_specification : 1;
534 unsigned int has_pc_info : 1;
535
536 /* Flag set if the SCOPE field of this structure has been
537 computed. */
538 unsigned int scope_set : 1;
539
540 /* Flag set if the DIE has a byte_size attribute. */
541 unsigned int has_byte_size : 1;
542
543 /* Flag set if any of the DIE's children are template arguments. */
544 unsigned int has_template_arguments : 1;
545
546 /* Flag set if fixup_partial_die has been called on this die. */
547 unsigned int fixup_called : 1;
548
549 /* The name of this DIE. Normally the value of DW_AT_name, but
550 sometimes a default name for unnamed DIEs. */
551 char *name;
552
553 /* The linkage name, if present. */
554 const char *linkage_name;
555
556 /* The scope to prepend to our children. This is generally
557 allocated on the comp_unit_obstack, so will disappear
558 when this compilation unit leaves the cache. */
559 char *scope;
560
561 /* The location description associated with this DIE, if any. */
562 struct dwarf_block *locdesc;
563
564 /* If HAS_PC_INFO, the PC range associated with this DIE. */
565 CORE_ADDR lowpc;
566 CORE_ADDR highpc;
567
568 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
569 DW_AT_sibling, if any. */
570 /* NOTE: This member isn't strictly necessary, read_partial_die could
571 return DW_AT_sibling values to its caller load_partial_dies. */
572 gdb_byte *sibling;
573
574 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
575 DW_AT_specification (or DW_AT_abstract_origin or
576 DW_AT_extension). */
577 unsigned int spec_offset;
578
579 /* Pointers to this DIE's parent, first child, and next sibling,
580 if any. */
581 struct partial_die_info *die_parent, *die_child, *die_sibling;
582 };
583
584 /* This data structure holds the information of an abbrev. */
585 struct abbrev_info
586 {
587 unsigned int number; /* number identifying abbrev */
588 enum dwarf_tag tag; /* dwarf tag */
589 unsigned short has_children; /* boolean */
590 unsigned short num_attrs; /* number of attributes */
591 struct attr_abbrev *attrs; /* an array of attribute descriptions */
592 struct abbrev_info *next; /* next in chain */
593 };
594
595 struct attr_abbrev
596 {
597 ENUM_BITFIELD(dwarf_attribute) name : 16;
598 ENUM_BITFIELD(dwarf_form) form : 16;
599 };
600
601 /* Attributes have a name and a value. */
602 struct attribute
603 {
604 ENUM_BITFIELD(dwarf_attribute) name : 16;
605 ENUM_BITFIELD(dwarf_form) form : 15;
606
607 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
608 field should be in u.str (existing only for DW_STRING) but it is kept
609 here for better struct attribute alignment. */
610 unsigned int string_is_canonical : 1;
611
612 union
613 {
614 char *str;
615 struct dwarf_block *blk;
616 ULONGEST unsnd;
617 LONGEST snd;
618 CORE_ADDR addr;
619 struct signatured_type *signatured_type;
620 }
621 u;
622 };
623
624 /* This data structure holds a complete die structure. */
625 struct die_info
626 {
627 /* DWARF-2 tag for this DIE. */
628 ENUM_BITFIELD(dwarf_tag) tag : 16;
629
630 /* Number of attributes */
631 unsigned char num_attrs;
632
633 /* True if we're presently building the full type name for the
634 type derived from this DIE. */
635 unsigned char building_fullname : 1;
636
637 /* Abbrev number */
638 unsigned int abbrev;
639
640 /* Offset in .debug_info or .debug_types section. */
641 unsigned int offset;
642
643 /* The dies in a compilation unit form an n-ary tree. PARENT
644 points to this die's parent; CHILD points to the first child of
645 this node; and all the children of a given node are chained
646 together via their SIBLING fields. */
647 struct die_info *child; /* Its first child, if any. */
648 struct die_info *sibling; /* Its next sibling, if any. */
649 struct die_info *parent; /* Its parent, if any. */
650
651 /* An array of attributes, with NUM_ATTRS elements. There may be
652 zero, but it's not common and zero-sized arrays are not
653 sufficiently portable C. */
654 struct attribute attrs[1];
655 };
656
657 /* Get at parts of an attribute structure. */
658
659 #define DW_STRING(attr) ((attr)->u.str)
660 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
661 #define DW_UNSND(attr) ((attr)->u.unsnd)
662 #define DW_BLOCK(attr) ((attr)->u.blk)
663 #define DW_SND(attr) ((attr)->u.snd)
664 #define DW_ADDR(attr) ((attr)->u.addr)
665 #define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
666
667 /* Blocks are a bunch of untyped bytes. */
668 struct dwarf_block
669 {
670 unsigned int size;
671
672 /* Valid only if SIZE is not zero. */
673 gdb_byte *data;
674 };
675
676 #ifndef ATTR_ALLOC_CHUNK
677 #define ATTR_ALLOC_CHUNK 4
678 #endif
679
680 /* Allocate fields for structs, unions and enums in this size. */
681 #ifndef DW_FIELD_ALLOC_CHUNK
682 #define DW_FIELD_ALLOC_CHUNK 4
683 #endif
684
685 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
686 but this would require a corresponding change in unpack_field_as_long
687 and friends. */
688 static int bits_per_byte = 8;
689
690 /* The routines that read and process dies for a C struct or C++ class
691 pass lists of data member fields and lists of member function fields
692 in an instance of a field_info structure, as defined below. */
693 struct field_info
694 {
695 /* List of data member and baseclasses fields. */
696 struct nextfield
697 {
698 struct nextfield *next;
699 int accessibility;
700 int virtuality;
701 struct field field;
702 }
703 *fields, *baseclasses;
704
705 /* Number of fields (including baseclasses). */
706 int nfields;
707
708 /* Number of baseclasses. */
709 int nbaseclasses;
710
711 /* Set if the accesibility of one of the fields is not public. */
712 int non_public_fields;
713
714 /* Member function fields array, entries are allocated in the order they
715 are encountered in the object file. */
716 struct nextfnfield
717 {
718 struct nextfnfield *next;
719 struct fn_field fnfield;
720 }
721 *fnfields;
722
723 /* Member function fieldlist array, contains name of possibly overloaded
724 member function, number of overloaded member functions and a pointer
725 to the head of the member function field chain. */
726 struct fnfieldlist
727 {
728 char *name;
729 int length;
730 struct nextfnfield *head;
731 }
732 *fnfieldlists;
733
734 /* Number of entries in the fnfieldlists array. */
735 int nfnfields;
736
737 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
738 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
739 struct typedef_field_list
740 {
741 struct typedef_field field;
742 struct typedef_field_list *next;
743 }
744 *typedef_field_list;
745 unsigned typedef_field_list_count;
746 };
747
748 /* One item on the queue of compilation units to read in full symbols
749 for. */
750 struct dwarf2_queue_item
751 {
752 struct dwarf2_per_cu_data *per_cu;
753 struct dwarf2_queue_item *next;
754 };
755
756 /* The current queue. */
757 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
758
759 /* Loaded secondary compilation units are kept in memory until they
760 have not been referenced for the processing of this many
761 compilation units. Set this to zero to disable caching. Cache
762 sizes of up to at least twenty will improve startup time for
763 typical inter-CU-reference binaries, at an obvious memory cost. */
764 static int dwarf2_max_cache_age = 5;
765 static void
766 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
767 struct cmd_list_element *c, const char *value)
768 {
769 fprintf_filtered (file, _("The upper bound on the age of cached "
770 "dwarf2 compilation units is %s.\n"),
771 value);
772 }
773
774
775 /* Various complaints about symbol reading that don't abort the process. */
776
777 static void
778 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
779 {
780 complaint (&symfile_complaints,
781 _("statement list doesn't fit in .debug_line section"));
782 }
783
784 static void
785 dwarf2_debug_line_missing_file_complaint (void)
786 {
787 complaint (&symfile_complaints,
788 _(".debug_line section has line data without a file"));
789 }
790
791 static void
792 dwarf2_debug_line_missing_end_sequence_complaint (void)
793 {
794 complaint (&symfile_complaints,
795 _(".debug_line section has line "
796 "program sequence without an end"));
797 }
798
799 static void
800 dwarf2_complex_location_expr_complaint (void)
801 {
802 complaint (&symfile_complaints, _("location expression too complex"));
803 }
804
805 static void
806 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
807 int arg3)
808 {
809 complaint (&symfile_complaints,
810 _("const value length mismatch for '%s', got %d, expected %d"),
811 arg1, arg2, arg3);
812 }
813
814 static void
815 dwarf2_macros_too_long_complaint (struct dwarf2_section_info *section)
816 {
817 complaint (&symfile_complaints,
818 _("macro info runs off end of `%s' section"),
819 section->asection->name);
820 }
821
822 static void
823 dwarf2_macro_malformed_definition_complaint (const char *arg1)
824 {
825 complaint (&symfile_complaints,
826 _("macro debug info contains a "
827 "malformed macro definition:\n`%s'"),
828 arg1);
829 }
830
831 static void
832 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
833 {
834 complaint (&symfile_complaints,
835 _("invalid attribute class or form for '%s' in '%s'"),
836 arg1, arg2);
837 }
838
839 /* local function prototypes */
840
841 static void dwarf2_locate_sections (bfd *, asection *, void *);
842
843 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
844 struct objfile *);
845
846 static void dwarf2_find_base_address (struct die_info *die,
847 struct dwarf2_cu *cu);
848
849 static void dwarf2_build_psymtabs_hard (struct objfile *);
850
851 static void scan_partial_symbols (struct partial_die_info *,
852 CORE_ADDR *, CORE_ADDR *,
853 int, struct dwarf2_cu *);
854
855 static void add_partial_symbol (struct partial_die_info *,
856 struct dwarf2_cu *);
857
858 static void add_partial_namespace (struct partial_die_info *pdi,
859 CORE_ADDR *lowpc, CORE_ADDR *highpc,
860 int need_pc, struct dwarf2_cu *cu);
861
862 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
863 CORE_ADDR *highpc, int need_pc,
864 struct dwarf2_cu *cu);
865
866 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
867 struct dwarf2_cu *cu);
868
869 static void add_partial_subprogram (struct partial_die_info *pdi,
870 CORE_ADDR *lowpc, CORE_ADDR *highpc,
871 int need_pc, struct dwarf2_cu *cu);
872
873 static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
874 gdb_byte *buffer, gdb_byte *info_ptr,
875 bfd *abfd, struct dwarf2_cu *cu);
876
877 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
878
879 static void psymtab_to_symtab_1 (struct partial_symtab *);
880
881 static void dwarf2_read_abbrevs (struct dwarf2_cu *cu);
882
883 static void dwarf2_free_abbrev_table (void *);
884
885 static unsigned int peek_abbrev_code (bfd *, gdb_byte *);
886
887 static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
888 struct dwarf2_cu *);
889
890 static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
891 struct dwarf2_cu *);
892
893 static struct partial_die_info *load_partial_dies (bfd *,
894 gdb_byte *, gdb_byte *,
895 int, struct dwarf2_cu *);
896
897 static gdb_byte *read_partial_die (struct partial_die_info *,
898 struct abbrev_info *abbrev,
899 unsigned int, bfd *,
900 gdb_byte *, gdb_byte *,
901 struct dwarf2_cu *);
902
903 static struct partial_die_info *find_partial_die (unsigned int,
904 struct dwarf2_cu *);
905
906 static void fixup_partial_die (struct partial_die_info *,
907 struct dwarf2_cu *);
908
909 static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
910 bfd *, gdb_byte *, struct dwarf2_cu *);
911
912 static gdb_byte *read_attribute_value (struct attribute *, unsigned,
913 bfd *, gdb_byte *, struct dwarf2_cu *);
914
915 static unsigned int read_1_byte (bfd *, gdb_byte *);
916
917 static int read_1_signed_byte (bfd *, gdb_byte *);
918
919 static unsigned int read_2_bytes (bfd *, gdb_byte *);
920
921 static unsigned int read_4_bytes (bfd *, gdb_byte *);
922
923 static ULONGEST read_8_bytes (bfd *, gdb_byte *);
924
925 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
926 unsigned int *);
927
928 static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
929
930 static LONGEST read_checked_initial_length_and_offset
931 (bfd *, gdb_byte *, const struct comp_unit_head *,
932 unsigned int *, unsigned int *);
933
934 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
935 unsigned int *);
936
937 static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
938
939 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
940
941 static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
942
943 static char *read_indirect_string (bfd *, gdb_byte *,
944 const struct comp_unit_head *,
945 unsigned int *);
946
947 static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
948
949 static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
950
951 static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
952
953 static void set_cu_language (unsigned int, struct dwarf2_cu *);
954
955 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
956 struct dwarf2_cu *);
957
958 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
959 unsigned int,
960 struct dwarf2_cu *);
961
962 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
963 struct dwarf2_cu *cu);
964
965 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
966
967 static struct die_info *die_specification (struct die_info *die,
968 struct dwarf2_cu **);
969
970 static void free_line_header (struct line_header *lh);
971
972 static void add_file_name (struct line_header *, char *, unsigned int,
973 unsigned int, unsigned int);
974
975 static struct line_header *(dwarf_decode_line_header
976 (unsigned int offset,
977 bfd *abfd, struct dwarf2_cu *cu));
978
979 static void dwarf_decode_lines (struct line_header *, const char *,
980 struct dwarf2_cu *, struct partial_symtab *,
981 int);
982
983 static void dwarf2_start_subfile (char *, const char *, const char *);
984
985 static struct symbol *new_symbol (struct die_info *, struct type *,
986 struct dwarf2_cu *);
987
988 static struct symbol *new_symbol_full (struct die_info *, struct type *,
989 struct dwarf2_cu *, struct symbol *);
990
991 static void dwarf2_const_value (struct attribute *, struct symbol *,
992 struct dwarf2_cu *);
993
994 static void dwarf2_const_value_attr (struct attribute *attr,
995 struct type *type,
996 const char *name,
997 struct obstack *obstack,
998 struct dwarf2_cu *cu, long *value,
999 gdb_byte **bytes,
1000 struct dwarf2_locexpr_baton **baton);
1001
1002 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1003
1004 static int need_gnat_info (struct dwarf2_cu *);
1005
1006 static struct type *die_descriptive_type (struct die_info *,
1007 struct dwarf2_cu *);
1008
1009 static void set_descriptive_type (struct type *, struct die_info *,
1010 struct dwarf2_cu *);
1011
1012 static struct type *die_containing_type (struct die_info *,
1013 struct dwarf2_cu *);
1014
1015 static struct type *lookup_die_type (struct die_info *, struct attribute *,
1016 struct dwarf2_cu *);
1017
1018 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1019
1020 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1021
1022 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1023
1024 static char *typename_concat (struct obstack *obs, const char *prefix,
1025 const char *suffix, int physname,
1026 struct dwarf2_cu *cu);
1027
1028 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1029
1030 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1031
1032 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1033
1034 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1035
1036 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1037
1038 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1039 struct dwarf2_cu *, struct partial_symtab *);
1040
1041 static int dwarf2_get_pc_bounds (struct die_info *,
1042 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1043 struct partial_symtab *);
1044
1045 static void get_scope_pc_bounds (struct die_info *,
1046 CORE_ADDR *, CORE_ADDR *,
1047 struct dwarf2_cu *);
1048
1049 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1050 CORE_ADDR, struct dwarf2_cu *);
1051
1052 static void dwarf2_add_field (struct field_info *, struct die_info *,
1053 struct dwarf2_cu *);
1054
1055 static void dwarf2_attach_fields_to_type (struct field_info *,
1056 struct type *, struct dwarf2_cu *);
1057
1058 static void dwarf2_add_member_fn (struct field_info *,
1059 struct die_info *, struct type *,
1060 struct dwarf2_cu *);
1061
1062 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1063 struct type *,
1064 struct dwarf2_cu *);
1065
1066 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1067
1068 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1069
1070 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1071
1072 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1073
1074 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1075
1076 static struct type *read_module_type (struct die_info *die,
1077 struct dwarf2_cu *cu);
1078
1079 static const char *namespace_name (struct die_info *die,
1080 int *is_anonymous, struct dwarf2_cu *);
1081
1082 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1083
1084 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1085
1086 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1087 struct dwarf2_cu *);
1088
1089 static struct die_info *read_comp_unit (gdb_byte *, struct dwarf2_cu *);
1090
1091 static struct die_info *read_die_and_children_1 (const struct die_reader_specs *reader,
1092 gdb_byte *info_ptr,
1093 gdb_byte **new_info_ptr,
1094 struct die_info *parent);
1095
1096 static struct die_info *read_die_and_children (const struct die_reader_specs *reader,
1097 gdb_byte *info_ptr,
1098 gdb_byte **new_info_ptr,
1099 struct die_info *parent);
1100
1101 static struct die_info *read_die_and_siblings (const struct die_reader_specs *reader,
1102 gdb_byte *info_ptr,
1103 gdb_byte **new_info_ptr,
1104 struct die_info *parent);
1105
1106 static gdb_byte *read_full_die (const struct die_reader_specs *reader,
1107 struct die_info **, gdb_byte *,
1108 int *);
1109
1110 static void process_die (struct die_info *, struct dwarf2_cu *);
1111
1112 static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
1113 struct obstack *);
1114
1115 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1116
1117 static const char *dwarf2_full_name (char *name,
1118 struct die_info *die,
1119 struct dwarf2_cu *cu);
1120
1121 static struct die_info *dwarf2_extension (struct die_info *die,
1122 struct dwarf2_cu **);
1123
1124 static char *dwarf_tag_name (unsigned int);
1125
1126 static char *dwarf_attr_name (unsigned int);
1127
1128 static char *dwarf_form_name (unsigned int);
1129
1130 static char *dwarf_bool_name (unsigned int);
1131
1132 static char *dwarf_type_encoding_name (unsigned int);
1133
1134 #if 0
1135 static char *dwarf_cfi_name (unsigned int);
1136 #endif
1137
1138 static struct die_info *sibling_die (struct die_info *);
1139
1140 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1141
1142 static void dump_die_for_error (struct die_info *);
1143
1144 static void dump_die_1 (struct ui_file *, int level, int max_level,
1145 struct die_info *);
1146
1147 /*static*/ void dump_die (struct die_info *, int max_level);
1148
1149 static void store_in_ref_table (struct die_info *,
1150 struct dwarf2_cu *);
1151
1152 static int is_ref_attr (struct attribute *);
1153
1154 static unsigned int dwarf2_get_ref_die_offset (struct attribute *);
1155
1156 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1157
1158 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1159 struct attribute *,
1160 struct dwarf2_cu **);
1161
1162 static struct die_info *follow_die_ref (struct die_info *,
1163 struct attribute *,
1164 struct dwarf2_cu **);
1165
1166 static struct die_info *follow_die_sig (struct die_info *,
1167 struct attribute *,
1168 struct dwarf2_cu **);
1169
1170 static struct signatured_type *lookup_signatured_type_at_offset
1171 (struct objfile *objfile,
1172 struct dwarf2_section_info *section,
1173 unsigned int offset);
1174
1175 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1176
1177 static void read_signatured_type (struct signatured_type *type_sig);
1178
1179 /* memory allocation interface */
1180
1181 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1182
1183 static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
1184
1185 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1186
1187 static void dwarf_decode_macros (struct line_header *, unsigned int,
1188 char *, bfd *, struct dwarf2_cu *,
1189 struct dwarf2_section_info *,
1190 int);
1191
1192 static int attr_form_is_block (struct attribute *);
1193
1194 static int attr_form_is_section_offset (struct attribute *);
1195
1196 static int attr_form_is_constant (struct attribute *);
1197
1198 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1199 struct dwarf2_loclist_baton *baton,
1200 struct attribute *attr);
1201
1202 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1203 struct symbol *sym,
1204 struct dwarf2_cu *cu);
1205
1206 static gdb_byte *skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
1207 struct abbrev_info *abbrev,
1208 struct dwarf2_cu *cu);
1209
1210 static void free_stack_comp_unit (void *);
1211
1212 static hashval_t partial_die_hash (const void *item);
1213
1214 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1215
1216 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1217 (unsigned int offset, struct objfile *objfile);
1218
1219 static void init_one_comp_unit (struct dwarf2_cu *cu,
1220 struct dwarf2_per_cu_data *per_cu);
1221
1222 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1223 struct die_info *comp_unit_die);
1224
1225 static void free_heap_comp_unit (void *);
1226
1227 static void free_cached_comp_units (void *);
1228
1229 static void age_cached_comp_units (void);
1230
1231 static void free_one_cached_comp_unit (void *);
1232
1233 static struct type *set_die_type (struct die_info *, struct type *,
1234 struct dwarf2_cu *);
1235
1236 static void create_all_comp_units (struct objfile *);
1237
1238 static int create_debug_types_hash_table (struct objfile *objfile);
1239
1240 static void load_full_comp_unit (struct dwarf2_per_cu_data *);
1241
1242 static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1243
1244 static void dwarf2_add_dependence (struct dwarf2_cu *,
1245 struct dwarf2_per_cu_data *);
1246
1247 static void dwarf2_mark (struct dwarf2_cu *);
1248
1249 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1250
1251 static struct type *get_die_type_at_offset (unsigned int,
1252 struct dwarf2_per_cu_data *per_cu);
1253
1254 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1255
1256 static void dwarf2_release_queue (void *dummy);
1257
1258 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu);
1259
1260 static void process_queue (void);
1261
1262 static void find_file_and_directory (struct die_info *die,
1263 struct dwarf2_cu *cu,
1264 char **name, char **comp_dir);
1265
1266 static char *file_full_name (int file, struct line_header *lh,
1267 const char *comp_dir);
1268
1269 static gdb_byte *read_and_check_comp_unit_head
1270 (struct comp_unit_head *header,
1271 struct dwarf2_section_info *section, gdb_byte *info_ptr,
1272 int is_debug_types_section);
1273
1274 static void init_cu_die_reader (struct die_reader_specs *reader,
1275 struct dwarf2_cu *cu);
1276
1277 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1278
1279 #if WORDS_BIGENDIAN
1280
1281 /* Convert VALUE between big- and little-endian. */
1282 static offset_type
1283 byte_swap (offset_type value)
1284 {
1285 offset_type result;
1286
1287 result = (value & 0xff) << 24;
1288 result |= (value & 0xff00) << 8;
1289 result |= (value & 0xff0000) >> 8;
1290 result |= (value & 0xff000000) >> 24;
1291 return result;
1292 }
1293
1294 #define MAYBE_SWAP(V) byte_swap (V)
1295
1296 #else
1297 #define MAYBE_SWAP(V) (V)
1298 #endif /* WORDS_BIGENDIAN */
1299
1300 /* The suffix for an index file. */
1301 #define INDEX_SUFFIX ".gdb-index"
1302
1303 static const char *dwarf2_physname (char *name, struct die_info *die,
1304 struct dwarf2_cu *cu);
1305
1306 /* Try to locate the sections we need for DWARF 2 debugging
1307 information and return true if we have enough to do something.
1308 NAMES points to the dwarf2 section names, or is NULL if the standard
1309 ELF names are used. */
1310
1311 int
1312 dwarf2_has_info (struct objfile *objfile,
1313 const struct dwarf2_debug_sections *names)
1314 {
1315 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1316 if (!dwarf2_per_objfile)
1317 {
1318 /* Initialize per-objfile state. */
1319 struct dwarf2_per_objfile *data
1320 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1321
1322 memset (data, 0, sizeof (*data));
1323 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1324 dwarf2_per_objfile = data;
1325
1326 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1327 (void *) names);
1328 dwarf2_per_objfile->objfile = objfile;
1329 }
1330 return (dwarf2_per_objfile->info.asection != NULL
1331 && dwarf2_per_objfile->abbrev.asection != NULL);
1332 }
1333
1334 /* When loading sections, we look either for uncompressed section or for
1335 compressed section names. */
1336
1337 static int
1338 section_is_p (const char *section_name,
1339 const struct dwarf2_section_names *names)
1340 {
1341 if (names->normal != NULL
1342 && strcmp (section_name, names->normal) == 0)
1343 return 1;
1344 if (names->compressed != NULL
1345 && strcmp (section_name, names->compressed) == 0)
1346 return 1;
1347 return 0;
1348 }
1349
1350 /* This function is mapped across the sections and remembers the
1351 offset and size of each of the debugging sections we are interested
1352 in. */
1353
1354 static void
1355 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
1356 {
1357 const struct dwarf2_debug_sections *names;
1358
1359 if (vnames == NULL)
1360 names = &dwarf2_elf_names;
1361 else
1362 names = (const struct dwarf2_debug_sections *) vnames;
1363
1364 if (section_is_p (sectp->name, &names->info))
1365 {
1366 dwarf2_per_objfile->info.asection = sectp;
1367 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1368 }
1369 else if (section_is_p (sectp->name, &names->abbrev))
1370 {
1371 dwarf2_per_objfile->abbrev.asection = sectp;
1372 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1373 }
1374 else if (section_is_p (sectp->name, &names->line))
1375 {
1376 dwarf2_per_objfile->line.asection = sectp;
1377 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1378 }
1379 else if (section_is_p (sectp->name, &names->loc))
1380 {
1381 dwarf2_per_objfile->loc.asection = sectp;
1382 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1383 }
1384 else if (section_is_p (sectp->name, &names->macinfo))
1385 {
1386 dwarf2_per_objfile->macinfo.asection = sectp;
1387 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1388 }
1389 else if (section_is_p (sectp->name, &names->macro))
1390 {
1391 dwarf2_per_objfile->macro.asection = sectp;
1392 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1393 }
1394 else if (section_is_p (sectp->name, &names->str))
1395 {
1396 dwarf2_per_objfile->str.asection = sectp;
1397 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1398 }
1399 else if (section_is_p (sectp->name, &names->frame))
1400 {
1401 dwarf2_per_objfile->frame.asection = sectp;
1402 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1403 }
1404 else if (section_is_p (sectp->name, &names->eh_frame))
1405 {
1406 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1407
1408 if (aflag & SEC_HAS_CONTENTS)
1409 {
1410 dwarf2_per_objfile->eh_frame.asection = sectp;
1411 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1412 }
1413 }
1414 else if (section_is_p (sectp->name, &names->ranges))
1415 {
1416 dwarf2_per_objfile->ranges.asection = sectp;
1417 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1418 }
1419 else if (section_is_p (sectp->name, &names->types))
1420 {
1421 struct dwarf2_section_info type_section;
1422
1423 memset (&type_section, 0, sizeof (type_section));
1424 type_section.asection = sectp;
1425 type_section.size = bfd_get_section_size (sectp);
1426
1427 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1428 &type_section);
1429 }
1430 else if (section_is_p (sectp->name, &names->gdb_index))
1431 {
1432 dwarf2_per_objfile->gdb_index.asection = sectp;
1433 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1434 }
1435
1436 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1437 && bfd_section_vma (abfd, sectp) == 0)
1438 dwarf2_per_objfile->has_section_at_zero = 1;
1439 }
1440
1441 /* Decompress a section that was compressed using zlib. Store the
1442 decompressed buffer, and its size, in OUTBUF and OUTSIZE. */
1443
1444 static void
1445 zlib_decompress_section (struct objfile *objfile, asection *sectp,
1446 gdb_byte **outbuf, bfd_size_type *outsize)
1447 {
1448 bfd *abfd = objfile->obfd;
1449 #ifndef HAVE_ZLIB_H
1450 error (_("Support for zlib-compressed DWARF data (from '%s') "
1451 "is disabled in this copy of GDB"),
1452 bfd_get_filename (abfd));
1453 #else
1454 bfd_size_type compressed_size = bfd_get_section_size (sectp);
1455 gdb_byte *compressed_buffer = xmalloc (compressed_size);
1456 struct cleanup *cleanup = make_cleanup (xfree, compressed_buffer);
1457 bfd_size_type uncompressed_size;
1458 gdb_byte *uncompressed_buffer;
1459 z_stream strm;
1460 int rc;
1461 int header_size = 12;
1462
1463 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1464 || bfd_bread (compressed_buffer,
1465 compressed_size, abfd) != compressed_size)
1466 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1467 bfd_get_filename (abfd));
1468
1469 /* Read the zlib header. In this case, it should be "ZLIB" followed
1470 by the uncompressed section size, 8 bytes in big-endian order. */
1471 if (compressed_size < header_size
1472 || strncmp (compressed_buffer, "ZLIB", 4) != 0)
1473 error (_("Dwarf Error: Corrupt DWARF ZLIB header from '%s'"),
1474 bfd_get_filename (abfd));
1475 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
1476 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
1477 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
1478 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
1479 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
1480 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
1481 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
1482 uncompressed_size += compressed_buffer[11];
1483
1484 /* It is possible the section consists of several compressed
1485 buffers concatenated together, so we uncompress in a loop. */
1486 strm.zalloc = NULL;
1487 strm.zfree = NULL;
1488 strm.opaque = NULL;
1489 strm.avail_in = compressed_size - header_size;
1490 strm.next_in = (Bytef*) compressed_buffer + header_size;
1491 strm.avail_out = uncompressed_size;
1492 uncompressed_buffer = obstack_alloc (&objfile->objfile_obstack,
1493 uncompressed_size);
1494 rc = inflateInit (&strm);
1495 while (strm.avail_in > 0)
1496 {
1497 if (rc != Z_OK)
1498 error (_("Dwarf Error: setting up DWARF uncompression in '%s': %d"),
1499 bfd_get_filename (abfd), rc);
1500 strm.next_out = ((Bytef*) uncompressed_buffer
1501 + (uncompressed_size - strm.avail_out));
1502 rc = inflate (&strm, Z_FINISH);
1503 if (rc != Z_STREAM_END)
1504 error (_("Dwarf Error: zlib error uncompressing from '%s': %d"),
1505 bfd_get_filename (abfd), rc);
1506 rc = inflateReset (&strm);
1507 }
1508 rc = inflateEnd (&strm);
1509 if (rc != Z_OK
1510 || strm.avail_out != 0)
1511 error (_("Dwarf Error: concluding DWARF uncompression in '%s': %d"),
1512 bfd_get_filename (abfd), rc);
1513
1514 do_cleanups (cleanup);
1515 *outbuf = uncompressed_buffer;
1516 *outsize = uncompressed_size;
1517 #endif
1518 }
1519
1520 /* A helper function that decides whether a section is empty. */
1521
1522 static int
1523 dwarf2_section_empty_p (struct dwarf2_section_info *info)
1524 {
1525 return info->asection == NULL || info->size == 0;
1526 }
1527
1528 /* Read the contents of the section INFO from object file specified by
1529 OBJFILE, store info about the section into INFO.
1530 If the section is compressed, uncompress it before returning. */
1531
1532 static void
1533 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1534 {
1535 bfd *abfd = objfile->obfd;
1536 asection *sectp = info->asection;
1537 gdb_byte *buf, *retbuf;
1538 unsigned char header[4];
1539
1540 if (info->readin)
1541 return;
1542 info->buffer = NULL;
1543 info->map_addr = NULL;
1544 info->readin = 1;
1545
1546 if (dwarf2_section_empty_p (info))
1547 return;
1548
1549 /* Check if the file has a 4-byte header indicating compression. */
1550 if (info->size > sizeof (header)
1551 && bfd_seek (abfd, sectp->filepos, SEEK_SET) == 0
1552 && bfd_bread (header, sizeof (header), abfd) == sizeof (header))
1553 {
1554 /* Upon decompression, update the buffer and its size. */
1555 if (strncmp (header, "ZLIB", sizeof (header)) == 0)
1556 {
1557 zlib_decompress_section (objfile, sectp, &info->buffer,
1558 &info->size);
1559 return;
1560 }
1561 }
1562
1563 #ifdef HAVE_MMAP
1564 if (pagesize == 0)
1565 pagesize = getpagesize ();
1566
1567 /* Only try to mmap sections which are large enough: we don't want to
1568 waste space due to fragmentation. Also, only try mmap for sections
1569 without relocations. */
1570
1571 if (info->size > 4 * pagesize && (sectp->flags & SEC_RELOC) == 0)
1572 {
1573 info->buffer = bfd_mmap (abfd, 0, info->size, PROT_READ,
1574 MAP_PRIVATE, sectp->filepos,
1575 &info->map_addr, &info->map_len);
1576
1577 if ((caddr_t)info->buffer != MAP_FAILED)
1578 {
1579 #if HAVE_POSIX_MADVISE
1580 posix_madvise (info->map_addr, info->map_len, POSIX_MADV_WILLNEED);
1581 #endif
1582 return;
1583 }
1584 }
1585 #endif
1586
1587 /* If we get here, we are a normal, not-compressed section. */
1588 info->buffer = buf
1589 = obstack_alloc (&objfile->objfile_obstack, info->size);
1590
1591 /* When debugging .o files, we may need to apply relocations; see
1592 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1593 We never compress sections in .o files, so we only need to
1594 try this when the section is not compressed. */
1595 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1596 if (retbuf != NULL)
1597 {
1598 info->buffer = retbuf;
1599 return;
1600 }
1601
1602 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1603 || bfd_bread (buf, info->size, abfd) != info->size)
1604 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1605 bfd_get_filename (abfd));
1606 }
1607
1608 /* A helper function that returns the size of a section in a safe way.
1609 If you are positive that the section has been read before using the
1610 size, then it is safe to refer to the dwarf2_section_info object's
1611 "size" field directly. In other cases, you must call this
1612 function, because for compressed sections the size field is not set
1613 correctly until the section has been read. */
1614
1615 static bfd_size_type
1616 dwarf2_section_size (struct objfile *objfile,
1617 struct dwarf2_section_info *info)
1618 {
1619 if (!info->readin)
1620 dwarf2_read_section (objfile, info);
1621 return info->size;
1622 }
1623
1624 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1625 SECTION_NAME. */
1626
1627 void
1628 dwarf2_get_section_info (struct objfile *objfile,
1629 enum dwarf2_section_enum sect,
1630 asection **sectp, gdb_byte **bufp,
1631 bfd_size_type *sizep)
1632 {
1633 struct dwarf2_per_objfile *data
1634 = objfile_data (objfile, dwarf2_objfile_data_key);
1635 struct dwarf2_section_info *info;
1636
1637 /* We may see an objfile without any DWARF, in which case we just
1638 return nothing. */
1639 if (data == NULL)
1640 {
1641 *sectp = NULL;
1642 *bufp = NULL;
1643 *sizep = 0;
1644 return;
1645 }
1646 switch (sect)
1647 {
1648 case DWARF2_DEBUG_FRAME:
1649 info = &data->frame;
1650 break;
1651 case DWARF2_EH_FRAME:
1652 info = &data->eh_frame;
1653 break;
1654 default:
1655 gdb_assert_not_reached ("unexpected section");
1656 }
1657
1658 dwarf2_read_section (objfile, info);
1659
1660 *sectp = info->asection;
1661 *bufp = info->buffer;
1662 *sizep = info->size;
1663 }
1664
1665 \f
1666 /* DWARF quick_symbols_functions support. */
1667
1668 /* TUs can share .debug_line entries, and there can be a lot more TUs than
1669 unique line tables, so we maintain a separate table of all .debug_line
1670 derived entries to support the sharing.
1671 All the quick functions need is the list of file names. We discard the
1672 line_header when we're done and don't need to record it here. */
1673 struct quick_file_names
1674 {
1675 /* The offset in .debug_line of the line table. We hash on this. */
1676 unsigned int offset;
1677
1678 /* The number of entries in file_names, real_names. */
1679 unsigned int num_file_names;
1680
1681 /* The file names from the line table, after being run through
1682 file_full_name. */
1683 const char **file_names;
1684
1685 /* The file names from the line table after being run through
1686 gdb_realpath. These are computed lazily. */
1687 const char **real_names;
1688 };
1689
1690 /* When using the index (and thus not using psymtabs), each CU has an
1691 object of this type. This is used to hold information needed by
1692 the various "quick" methods. */
1693 struct dwarf2_per_cu_quick_data
1694 {
1695 /* The file table. This can be NULL if there was no file table
1696 or it's currently not read in.
1697 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
1698 struct quick_file_names *file_names;
1699
1700 /* The corresponding symbol table. This is NULL if symbols for this
1701 CU have not yet been read. */
1702 struct symtab *symtab;
1703
1704 /* A temporary mark bit used when iterating over all CUs in
1705 expand_symtabs_matching. */
1706 unsigned int mark : 1;
1707
1708 /* True if we've tried to read the file table and found there isn't one.
1709 There will be no point in trying to read it again next time. */
1710 unsigned int no_file_data : 1;
1711 };
1712
1713 /* Hash function for a quick_file_names. */
1714
1715 static hashval_t
1716 hash_file_name_entry (const void *e)
1717 {
1718 const struct quick_file_names *file_data = e;
1719
1720 return file_data->offset;
1721 }
1722
1723 /* Equality function for a quick_file_names. */
1724
1725 static int
1726 eq_file_name_entry (const void *a, const void *b)
1727 {
1728 const struct quick_file_names *ea = a;
1729 const struct quick_file_names *eb = b;
1730
1731 return ea->offset == eb->offset;
1732 }
1733
1734 /* Delete function for a quick_file_names. */
1735
1736 static void
1737 delete_file_name_entry (void *e)
1738 {
1739 struct quick_file_names *file_data = e;
1740 int i;
1741
1742 for (i = 0; i < file_data->num_file_names; ++i)
1743 {
1744 xfree ((void*) file_data->file_names[i]);
1745 if (file_data->real_names)
1746 xfree ((void*) file_data->real_names[i]);
1747 }
1748
1749 /* The space for the struct itself lives on objfile_obstack,
1750 so we don't free it here. */
1751 }
1752
1753 /* Create a quick_file_names hash table. */
1754
1755 static htab_t
1756 create_quick_file_names_table (unsigned int nr_initial_entries)
1757 {
1758 return htab_create_alloc (nr_initial_entries,
1759 hash_file_name_entry, eq_file_name_entry,
1760 delete_file_name_entry, xcalloc, xfree);
1761 }
1762
1763 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
1764 have to be created afterwards. You should call age_cached_comp_units after
1765 processing PER_CU->CU. dw2_setup must have been already called. */
1766
1767 static void
1768 load_cu (struct dwarf2_per_cu_data *per_cu)
1769 {
1770 if (per_cu->debug_types_section)
1771 load_full_type_unit (per_cu);
1772 else
1773 load_full_comp_unit (per_cu);
1774
1775 gdb_assert (per_cu->cu != NULL);
1776
1777 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
1778 }
1779
1780 /* Read in the symbols for PER_CU. */
1781
1782 static void
1783 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
1784 {
1785 struct cleanup *back_to;
1786
1787 back_to = make_cleanup (dwarf2_release_queue, NULL);
1788
1789 queue_comp_unit (per_cu);
1790
1791 load_cu (per_cu);
1792
1793 process_queue ();
1794
1795 /* Age the cache, releasing compilation units that have not
1796 been used recently. */
1797 age_cached_comp_units ();
1798
1799 do_cleanups (back_to);
1800 }
1801
1802 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
1803 the objfile from which this CU came. Returns the resulting symbol
1804 table. */
1805
1806 static struct symtab *
1807 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
1808 {
1809 if (!per_cu->v.quick->symtab)
1810 {
1811 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
1812 increment_reading_symtab ();
1813 dw2_do_instantiate_symtab (per_cu);
1814 do_cleanups (back_to);
1815 }
1816 return per_cu->v.quick->symtab;
1817 }
1818
1819 /* Return the CU given its index. */
1820
1821 static struct dwarf2_per_cu_data *
1822 dw2_get_cu (int index)
1823 {
1824 if (index >= dwarf2_per_objfile->n_comp_units)
1825 {
1826 index -= dwarf2_per_objfile->n_comp_units;
1827 return dwarf2_per_objfile->all_type_units[index];
1828 }
1829 return dwarf2_per_objfile->all_comp_units[index];
1830 }
1831
1832 /* A helper function that knows how to read a 64-bit value in a way
1833 that doesn't make gdb die. Returns 1 if the conversion went ok, 0
1834 otherwise. */
1835
1836 static int
1837 extract_cu_value (const char *bytes, ULONGEST *result)
1838 {
1839 if (sizeof (ULONGEST) < 8)
1840 {
1841 int i;
1842
1843 /* Ignore the upper 4 bytes if they are all zero. */
1844 for (i = 0; i < 4; ++i)
1845 if (bytes[i + 4] != 0)
1846 return 0;
1847
1848 *result = extract_unsigned_integer (bytes, 4, BFD_ENDIAN_LITTLE);
1849 }
1850 else
1851 *result = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
1852 return 1;
1853 }
1854
1855 /* Read the CU list from the mapped index, and use it to create all
1856 the CU objects for this objfile. Return 0 if something went wrong,
1857 1 if everything went ok. */
1858
1859 static int
1860 create_cus_from_index (struct objfile *objfile, const gdb_byte *cu_list,
1861 offset_type cu_list_elements)
1862 {
1863 offset_type i;
1864
1865 dwarf2_per_objfile->n_comp_units = cu_list_elements / 2;
1866 dwarf2_per_objfile->all_comp_units
1867 = obstack_alloc (&objfile->objfile_obstack,
1868 dwarf2_per_objfile->n_comp_units
1869 * sizeof (struct dwarf2_per_cu_data *));
1870
1871 for (i = 0; i < cu_list_elements; i += 2)
1872 {
1873 struct dwarf2_per_cu_data *the_cu;
1874 ULONGEST offset, length;
1875
1876 if (!extract_cu_value (cu_list, &offset)
1877 || !extract_cu_value (cu_list + 8, &length))
1878 return 0;
1879 cu_list += 2 * 8;
1880
1881 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1882 struct dwarf2_per_cu_data);
1883 the_cu->offset = offset;
1884 the_cu->length = length;
1885 the_cu->objfile = objfile;
1886 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1887 struct dwarf2_per_cu_quick_data);
1888 dwarf2_per_objfile->all_comp_units[i / 2] = the_cu;
1889 }
1890
1891 return 1;
1892 }
1893
1894 /* Create the signatured type hash table from the index. */
1895
1896 static int
1897 create_signatured_type_table_from_index (struct objfile *objfile,
1898 struct dwarf2_section_info *section,
1899 const gdb_byte *bytes,
1900 offset_type elements)
1901 {
1902 offset_type i;
1903 htab_t sig_types_hash;
1904
1905 dwarf2_per_objfile->n_type_units = elements / 3;
1906 dwarf2_per_objfile->all_type_units
1907 = obstack_alloc (&objfile->objfile_obstack,
1908 dwarf2_per_objfile->n_type_units
1909 * sizeof (struct dwarf2_per_cu_data *));
1910
1911 sig_types_hash = allocate_signatured_type_table (objfile);
1912
1913 for (i = 0; i < elements; i += 3)
1914 {
1915 struct signatured_type *type_sig;
1916 ULONGEST offset, type_offset, signature;
1917 void **slot;
1918
1919 if (!extract_cu_value (bytes, &offset)
1920 || !extract_cu_value (bytes + 8, &type_offset))
1921 return 0;
1922 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
1923 bytes += 3 * 8;
1924
1925 type_sig = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1926 struct signatured_type);
1927 type_sig->signature = signature;
1928 type_sig->type_offset = type_offset;
1929 type_sig->per_cu.debug_types_section = section;
1930 type_sig->per_cu.offset = offset;
1931 type_sig->per_cu.objfile = objfile;
1932 type_sig->per_cu.v.quick
1933 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1934 struct dwarf2_per_cu_quick_data);
1935
1936 slot = htab_find_slot (sig_types_hash, type_sig, INSERT);
1937 *slot = type_sig;
1938
1939 dwarf2_per_objfile->all_type_units[i / 3] = &type_sig->per_cu;
1940 }
1941
1942 dwarf2_per_objfile->signatured_types = sig_types_hash;
1943
1944 return 1;
1945 }
1946
1947 /* Read the address map data from the mapped index, and use it to
1948 populate the objfile's psymtabs_addrmap. */
1949
1950 static void
1951 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
1952 {
1953 const gdb_byte *iter, *end;
1954 struct obstack temp_obstack;
1955 struct addrmap *mutable_map;
1956 struct cleanup *cleanup;
1957 CORE_ADDR baseaddr;
1958
1959 obstack_init (&temp_obstack);
1960 cleanup = make_cleanup_obstack_free (&temp_obstack);
1961 mutable_map = addrmap_create_mutable (&temp_obstack);
1962
1963 iter = index->address_table;
1964 end = iter + index->address_table_size;
1965
1966 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1967
1968 while (iter < end)
1969 {
1970 ULONGEST hi, lo, cu_index;
1971 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1972 iter += 8;
1973 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1974 iter += 8;
1975 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
1976 iter += 4;
1977
1978 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
1979 dw2_get_cu (cu_index));
1980 }
1981
1982 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
1983 &objfile->objfile_obstack);
1984 do_cleanups (cleanup);
1985 }
1986
1987 /* The hash function for strings in the mapped index. This is the same as
1988 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
1989 implementation. This is necessary because the hash function is tied to the
1990 format of the mapped index file. The hash values do not have to match with
1991 SYMBOL_HASH_NEXT.
1992
1993 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
1994
1995 static hashval_t
1996 mapped_index_string_hash (int index_version, const void *p)
1997 {
1998 const unsigned char *str = (const unsigned char *) p;
1999 hashval_t r = 0;
2000 unsigned char c;
2001
2002 while ((c = *str++) != 0)
2003 {
2004 if (index_version >= 5)
2005 c = tolower (c);
2006 r = r * 67 + c - 113;
2007 }
2008
2009 return r;
2010 }
2011
2012 /* Find a slot in the mapped index INDEX for the object named NAME.
2013 If NAME is found, set *VEC_OUT to point to the CU vector in the
2014 constant pool and return 1. If NAME cannot be found, return 0. */
2015
2016 static int
2017 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2018 offset_type **vec_out)
2019 {
2020 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2021 offset_type hash;
2022 offset_type slot, step;
2023 int (*cmp) (const char *, const char *);
2024
2025 if (current_language->la_language == language_cplus
2026 || current_language->la_language == language_java
2027 || current_language->la_language == language_fortran)
2028 {
2029 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2030 not contain any. */
2031 const char *paren = strchr (name, '(');
2032
2033 if (paren)
2034 {
2035 char *dup;
2036
2037 dup = xmalloc (paren - name + 1);
2038 memcpy (dup, name, paren - name);
2039 dup[paren - name] = 0;
2040
2041 make_cleanup (xfree, dup);
2042 name = dup;
2043 }
2044 }
2045
2046 /* Index version 4 did not support case insensitive searches. But the
2047 indices for case insensitive languages are built in lowercase, therefore
2048 simulate our NAME being searched is also lowercased. */
2049 hash = mapped_index_string_hash ((index->version == 4
2050 && case_sensitivity == case_sensitive_off
2051 ? 5 : index->version),
2052 name);
2053
2054 slot = hash & (index->symbol_table_slots - 1);
2055 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2056 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2057
2058 for (;;)
2059 {
2060 /* Convert a slot number to an offset into the table. */
2061 offset_type i = 2 * slot;
2062 const char *str;
2063 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2064 {
2065 do_cleanups (back_to);
2066 return 0;
2067 }
2068
2069 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2070 if (!cmp (name, str))
2071 {
2072 *vec_out = (offset_type *) (index->constant_pool
2073 + MAYBE_SWAP (index->symbol_table[i + 1]));
2074 do_cleanups (back_to);
2075 return 1;
2076 }
2077
2078 slot = (slot + step) & (index->symbol_table_slots - 1);
2079 }
2080 }
2081
2082 /* Read the index file. If everything went ok, initialize the "quick"
2083 elements of all the CUs and return 1. Otherwise, return 0. */
2084
2085 static int
2086 dwarf2_read_index (struct objfile *objfile)
2087 {
2088 char *addr;
2089 struct mapped_index *map;
2090 offset_type *metadata;
2091 const gdb_byte *cu_list;
2092 const gdb_byte *types_list = NULL;
2093 offset_type version, cu_list_elements;
2094 offset_type types_list_elements = 0;
2095 int i;
2096
2097 if (dwarf2_section_empty_p (&dwarf2_per_objfile->gdb_index))
2098 return 0;
2099
2100 /* Older elfutils strip versions could keep the section in the main
2101 executable while splitting it for the separate debug info file. */
2102 if ((bfd_get_file_flags (dwarf2_per_objfile->gdb_index.asection)
2103 & SEC_HAS_CONTENTS) == 0)
2104 return 0;
2105
2106 dwarf2_read_section (objfile, &dwarf2_per_objfile->gdb_index);
2107
2108 addr = dwarf2_per_objfile->gdb_index.buffer;
2109 /* Version check. */
2110 version = MAYBE_SWAP (*(offset_type *) addr);
2111 /* Versions earlier than 3 emitted every copy of a psymbol. This
2112 causes the index to behave very poorly for certain requests. Version 3
2113 contained incomplete addrmap. So, it seems better to just ignore such
2114 indices. Index version 4 uses a different hash function than index
2115 version 5 and later. */
2116 if (version < 4)
2117 return 0;
2118 /* Indices with higher version than the one supported by GDB may be no
2119 longer backward compatible. */
2120 if (version > 5)
2121 return 0;
2122
2123 map = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct mapped_index);
2124 map->version = version;
2125 map->total_size = dwarf2_per_objfile->gdb_index.size;
2126
2127 metadata = (offset_type *) (addr + sizeof (offset_type));
2128
2129 i = 0;
2130 cu_list = addr + MAYBE_SWAP (metadata[i]);
2131 cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2132 / 8);
2133 ++i;
2134
2135 types_list = addr + MAYBE_SWAP (metadata[i]);
2136 types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2137 - MAYBE_SWAP (metadata[i]))
2138 / 8);
2139 ++i;
2140
2141 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2142 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2143 - MAYBE_SWAP (metadata[i]));
2144 ++i;
2145
2146 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2147 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2148 - MAYBE_SWAP (metadata[i]))
2149 / (2 * sizeof (offset_type)));
2150 ++i;
2151
2152 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
2153
2154 if (!create_cus_from_index (objfile, cu_list, cu_list_elements))
2155 return 0;
2156
2157 if (types_list_elements)
2158 {
2159 struct dwarf2_section_info *section;
2160
2161 /* We can only handle a single .debug_types when we have an
2162 index. */
2163 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2164 return 0;
2165
2166 section = VEC_index (dwarf2_section_info_def,
2167 dwarf2_per_objfile->types, 0);
2168
2169 if (!create_signatured_type_table_from_index (objfile, section,
2170 types_list,
2171 types_list_elements))
2172 return 0;
2173 }
2174
2175 create_addrmap_from_index (objfile, map);
2176
2177 dwarf2_per_objfile->index_table = map;
2178 dwarf2_per_objfile->using_index = 1;
2179 dwarf2_per_objfile->quick_file_names_table =
2180 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2181
2182 return 1;
2183 }
2184
2185 /* A helper for the "quick" functions which sets the global
2186 dwarf2_per_objfile according to OBJFILE. */
2187
2188 static void
2189 dw2_setup (struct objfile *objfile)
2190 {
2191 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2192 gdb_assert (dwarf2_per_objfile);
2193 }
2194
2195 /* A helper for the "quick" functions which attempts to read the line
2196 table for THIS_CU. */
2197
2198 static struct quick_file_names *
2199 dw2_get_file_names (struct objfile *objfile,
2200 struct dwarf2_per_cu_data *this_cu)
2201 {
2202 bfd *abfd = objfile->obfd;
2203 struct line_header *lh;
2204 struct attribute *attr;
2205 struct cleanup *cleanups;
2206 struct die_info *comp_unit_die;
2207 struct dwarf2_section_info* sec;
2208 gdb_byte *info_ptr;
2209 int has_children, i;
2210 struct dwarf2_cu cu;
2211 unsigned int bytes_read;
2212 struct die_reader_specs reader_specs;
2213 char *name, *comp_dir;
2214 void **slot;
2215 struct quick_file_names *qfn;
2216 unsigned int line_offset;
2217
2218 if (this_cu->v.quick->file_names != NULL)
2219 return this_cu->v.quick->file_names;
2220 /* If we know there is no line data, no point in looking again. */
2221 if (this_cu->v.quick->no_file_data)
2222 return NULL;
2223
2224 init_one_comp_unit (&cu, this_cu);
2225 cleanups = make_cleanup (free_stack_comp_unit, &cu);
2226
2227 if (this_cu->debug_types_section)
2228 sec = this_cu->debug_types_section;
2229 else
2230 sec = &dwarf2_per_objfile->info;
2231 dwarf2_read_section (objfile, sec);
2232 info_ptr = sec->buffer + this_cu->offset;
2233
2234 info_ptr = read_and_check_comp_unit_head (&cu.header, sec, info_ptr,
2235 this_cu->debug_types_section != NULL);
2236
2237 /* Skip dummy compilation units. */
2238 if (info_ptr >= (sec->buffer + sec->size)
2239 || peek_abbrev_code (abfd, info_ptr) == 0)
2240 {
2241 do_cleanups (cleanups);
2242 return NULL;
2243 }
2244
2245 dwarf2_read_abbrevs (&cu);
2246 make_cleanup (dwarf2_free_abbrev_table, &cu);
2247
2248 init_cu_die_reader (&reader_specs, &cu);
2249 read_full_die (&reader_specs, &comp_unit_die, info_ptr,
2250 &has_children);
2251
2252 lh = NULL;
2253 slot = NULL;
2254 line_offset = 0;
2255 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, &cu);
2256 if (attr)
2257 {
2258 struct quick_file_names find_entry;
2259
2260 line_offset = DW_UNSND (attr);
2261
2262 /* We may have already read in this line header (TU line header sharing).
2263 If we have we're done. */
2264 find_entry.offset = line_offset;
2265 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2266 &find_entry, INSERT);
2267 if (*slot != NULL)
2268 {
2269 do_cleanups (cleanups);
2270 this_cu->v.quick->file_names = *slot;
2271 return *slot;
2272 }
2273
2274 lh = dwarf_decode_line_header (line_offset, abfd, &cu);
2275 }
2276 if (lh == NULL)
2277 {
2278 do_cleanups (cleanups);
2279 this_cu->v.quick->no_file_data = 1;
2280 return NULL;
2281 }
2282
2283 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2284 qfn->offset = line_offset;
2285 gdb_assert (slot != NULL);
2286 *slot = qfn;
2287
2288 find_file_and_directory (comp_unit_die, &cu, &name, &comp_dir);
2289
2290 qfn->num_file_names = lh->num_file_names;
2291 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2292 lh->num_file_names * sizeof (char *));
2293 for (i = 0; i < lh->num_file_names; ++i)
2294 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2295 qfn->real_names = NULL;
2296
2297 free_line_header (lh);
2298 do_cleanups (cleanups);
2299
2300 this_cu->v.quick->file_names = qfn;
2301 return qfn;
2302 }
2303
2304 /* A helper for the "quick" functions which computes and caches the
2305 real path for a given file name from the line table. */
2306
2307 static const char *
2308 dw2_get_real_path (struct objfile *objfile,
2309 struct quick_file_names *qfn, int index)
2310 {
2311 if (qfn->real_names == NULL)
2312 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2313 qfn->num_file_names, sizeof (char *));
2314
2315 if (qfn->real_names[index] == NULL)
2316 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
2317
2318 return qfn->real_names[index];
2319 }
2320
2321 static struct symtab *
2322 dw2_find_last_source_symtab (struct objfile *objfile)
2323 {
2324 int index;
2325
2326 dw2_setup (objfile);
2327 index = dwarf2_per_objfile->n_comp_units - 1;
2328 return dw2_instantiate_symtab (dw2_get_cu (index));
2329 }
2330
2331 /* Traversal function for dw2_forget_cached_source_info. */
2332
2333 static int
2334 dw2_free_cached_file_names (void **slot, void *info)
2335 {
2336 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
2337
2338 if (file_data->real_names)
2339 {
2340 int i;
2341
2342 for (i = 0; i < file_data->num_file_names; ++i)
2343 {
2344 xfree ((void*) file_data->real_names[i]);
2345 file_data->real_names[i] = NULL;
2346 }
2347 }
2348
2349 return 1;
2350 }
2351
2352 static void
2353 dw2_forget_cached_source_info (struct objfile *objfile)
2354 {
2355 dw2_setup (objfile);
2356
2357 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
2358 dw2_free_cached_file_names, NULL);
2359 }
2360
2361 /* Helper function for dw2_map_symtabs_matching_filename that expands
2362 the symtabs and calls the iterator. */
2363
2364 static int
2365 dw2_map_expand_apply (struct objfile *objfile,
2366 struct dwarf2_per_cu_data *per_cu,
2367 const char *name,
2368 const char *full_path, const char *real_path,
2369 int (*callback) (struct symtab *, void *),
2370 void *data)
2371 {
2372 struct symtab *last_made = objfile->symtabs;
2373
2374 /* Don't visit already-expanded CUs. */
2375 if (per_cu->v.quick->symtab)
2376 return 0;
2377
2378 /* This may expand more than one symtab, and we want to iterate over
2379 all of them. */
2380 dw2_instantiate_symtab (per_cu);
2381
2382 return iterate_over_some_symtabs (name, full_path, real_path, callback, data,
2383 objfile->symtabs, last_made);
2384 }
2385
2386 /* Implementation of the map_symtabs_matching_filename method. */
2387
2388 static int
2389 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
2390 const char *full_path, const char *real_path,
2391 int (*callback) (struct symtab *, void *),
2392 void *data)
2393 {
2394 int i;
2395 const char *name_basename = lbasename (name);
2396 int name_len = strlen (name);
2397 int is_abs = IS_ABSOLUTE_PATH (name);
2398
2399 dw2_setup (objfile);
2400
2401 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2402 + dwarf2_per_objfile->n_type_units); ++i)
2403 {
2404 int j;
2405 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2406 struct quick_file_names *file_data;
2407
2408 /* We only need to look at symtabs not already expanded. */
2409 if (per_cu->v.quick->symtab)
2410 continue;
2411
2412 file_data = dw2_get_file_names (objfile, per_cu);
2413 if (file_data == NULL)
2414 continue;
2415
2416 for (j = 0; j < file_data->num_file_names; ++j)
2417 {
2418 const char *this_name = file_data->file_names[j];
2419
2420 if (FILENAME_CMP (name, this_name) == 0
2421 || (!is_abs && compare_filenames_for_search (this_name,
2422 name, name_len)))
2423 {
2424 if (dw2_map_expand_apply (objfile, per_cu,
2425 name, full_path, real_path,
2426 callback, data))
2427 return 1;
2428 }
2429
2430 /* Before we invoke realpath, which can get expensive when many
2431 files are involved, do a quick comparison of the basenames. */
2432 if (! basenames_may_differ
2433 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
2434 continue;
2435
2436 if (full_path != NULL)
2437 {
2438 const char *this_real_name = dw2_get_real_path (objfile,
2439 file_data, j);
2440
2441 if (this_real_name != NULL
2442 && (FILENAME_CMP (full_path, this_real_name) == 0
2443 || (!is_abs
2444 && compare_filenames_for_search (this_real_name,
2445 name, name_len))))
2446 {
2447 if (dw2_map_expand_apply (objfile, per_cu,
2448 name, full_path, real_path,
2449 callback, data))
2450 return 1;
2451 }
2452 }
2453
2454 if (real_path != NULL)
2455 {
2456 const char *this_real_name = dw2_get_real_path (objfile,
2457 file_data, j);
2458
2459 if (this_real_name != NULL
2460 && (FILENAME_CMP (real_path, this_real_name) == 0
2461 || (!is_abs
2462 && compare_filenames_for_search (this_real_name,
2463 name, name_len))))
2464 {
2465 if (dw2_map_expand_apply (objfile, per_cu,
2466 name, full_path, real_path,
2467 callback, data))
2468 return 1;
2469 }
2470 }
2471 }
2472 }
2473
2474 return 0;
2475 }
2476
2477 static struct symtab *
2478 dw2_lookup_symbol (struct objfile *objfile, int block_index,
2479 const char *name, domain_enum domain)
2480 {
2481 /* We do all the work in the pre_expand_symtabs_matching hook
2482 instead. */
2483 return NULL;
2484 }
2485
2486 /* A helper function that expands all symtabs that hold an object
2487 named NAME. */
2488
2489 static void
2490 dw2_do_expand_symtabs_matching (struct objfile *objfile, const char *name)
2491 {
2492 dw2_setup (objfile);
2493
2494 /* index_table is NULL if OBJF_READNOW. */
2495 if (dwarf2_per_objfile->index_table)
2496 {
2497 offset_type *vec;
2498
2499 if (find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2500 name, &vec))
2501 {
2502 offset_type i, len = MAYBE_SWAP (*vec);
2503 for (i = 0; i < len; ++i)
2504 {
2505 offset_type cu_index = MAYBE_SWAP (vec[i + 1]);
2506 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
2507
2508 dw2_instantiate_symtab (per_cu);
2509 }
2510 }
2511 }
2512 }
2513
2514 static void
2515 dw2_pre_expand_symtabs_matching (struct objfile *objfile,
2516 enum block_enum block_kind, const char *name,
2517 domain_enum domain)
2518 {
2519 dw2_do_expand_symtabs_matching (objfile, name);
2520 }
2521
2522 static void
2523 dw2_print_stats (struct objfile *objfile)
2524 {
2525 int i, count;
2526
2527 dw2_setup (objfile);
2528 count = 0;
2529 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2530 + dwarf2_per_objfile->n_type_units); ++i)
2531 {
2532 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2533
2534 if (!per_cu->v.quick->symtab)
2535 ++count;
2536 }
2537 printf_filtered (_(" Number of unread CUs: %d\n"), count);
2538 }
2539
2540 static void
2541 dw2_dump (struct objfile *objfile)
2542 {
2543 /* Nothing worth printing. */
2544 }
2545
2546 static void
2547 dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
2548 struct section_offsets *delta)
2549 {
2550 /* There's nothing to relocate here. */
2551 }
2552
2553 static void
2554 dw2_expand_symtabs_for_function (struct objfile *objfile,
2555 const char *func_name)
2556 {
2557 dw2_do_expand_symtabs_matching (objfile, func_name);
2558 }
2559
2560 static void
2561 dw2_expand_all_symtabs (struct objfile *objfile)
2562 {
2563 int i;
2564
2565 dw2_setup (objfile);
2566
2567 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2568 + dwarf2_per_objfile->n_type_units); ++i)
2569 {
2570 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2571
2572 dw2_instantiate_symtab (per_cu);
2573 }
2574 }
2575
2576 static void
2577 dw2_expand_symtabs_with_filename (struct objfile *objfile,
2578 const char *filename)
2579 {
2580 int i;
2581
2582 dw2_setup (objfile);
2583
2584 /* We don't need to consider type units here.
2585 This is only called for examining code, e.g. expand_line_sal.
2586 There can be an order of magnitude (or more) more type units
2587 than comp units, and we avoid them if we can. */
2588
2589 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
2590 {
2591 int j;
2592 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2593 struct quick_file_names *file_data;
2594
2595 /* We only need to look at symtabs not already expanded. */
2596 if (per_cu->v.quick->symtab)
2597 continue;
2598
2599 file_data = dw2_get_file_names (objfile, per_cu);
2600 if (file_data == NULL)
2601 continue;
2602
2603 for (j = 0; j < file_data->num_file_names; ++j)
2604 {
2605 const char *this_name = file_data->file_names[j];
2606 if (FILENAME_CMP (this_name, filename) == 0)
2607 {
2608 dw2_instantiate_symtab (per_cu);
2609 break;
2610 }
2611 }
2612 }
2613 }
2614
2615 static const char *
2616 dw2_find_symbol_file (struct objfile *objfile, const char *name)
2617 {
2618 struct dwarf2_per_cu_data *per_cu;
2619 offset_type *vec;
2620 struct quick_file_names *file_data;
2621
2622 dw2_setup (objfile);
2623
2624 /* index_table is NULL if OBJF_READNOW. */
2625 if (!dwarf2_per_objfile->index_table)
2626 {
2627 struct symtab *s;
2628
2629 ALL_OBJFILE_SYMTABS (objfile, s)
2630 if (s->primary)
2631 {
2632 struct blockvector *bv = BLOCKVECTOR (s);
2633 const struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2634 struct symbol *sym = lookup_block_symbol (block, name, VAR_DOMAIN);
2635
2636 if (sym)
2637 return sym->symtab->filename;
2638 }
2639 return NULL;
2640 }
2641
2642 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2643 name, &vec))
2644 return NULL;
2645
2646 /* Note that this just looks at the very first one named NAME -- but
2647 actually we are looking for a function. find_main_filename
2648 should be rewritten so that it doesn't require a custom hook. It
2649 could just use the ordinary symbol tables. */
2650 /* vec[0] is the length, which must always be >0. */
2651 per_cu = dw2_get_cu (MAYBE_SWAP (vec[1]));
2652
2653 file_data = dw2_get_file_names (objfile, per_cu);
2654 if (file_data == NULL)
2655 return NULL;
2656
2657 return file_data->file_names[file_data->num_file_names - 1];
2658 }
2659
2660 static void
2661 dw2_map_matching_symbols (const char * name, domain_enum namespace,
2662 struct objfile *objfile, int global,
2663 int (*callback) (struct block *,
2664 struct symbol *, void *),
2665 void *data, symbol_compare_ftype *match,
2666 symbol_compare_ftype *ordered_compare)
2667 {
2668 /* Currently unimplemented; used for Ada. The function can be called if the
2669 current language is Ada for a non-Ada objfile using GNU index. As Ada
2670 does not look for non-Ada symbols this function should just return. */
2671 }
2672
2673 static void
2674 dw2_expand_symtabs_matching
2675 (struct objfile *objfile,
2676 int (*file_matcher) (const char *, void *),
2677 int (*name_matcher) (const char *, void *),
2678 enum search_domain kind,
2679 void *data)
2680 {
2681 int i;
2682 offset_type iter;
2683 struct mapped_index *index;
2684
2685 dw2_setup (objfile);
2686
2687 /* index_table is NULL if OBJF_READNOW. */
2688 if (!dwarf2_per_objfile->index_table)
2689 return;
2690 index = dwarf2_per_objfile->index_table;
2691
2692 if (file_matcher != NULL)
2693 {
2694 struct cleanup *cleanup;
2695 htab_t visited_found, visited_not_found;
2696
2697 visited_found = htab_create_alloc (10,
2698 htab_hash_pointer, htab_eq_pointer,
2699 NULL, xcalloc, xfree);
2700 cleanup = make_cleanup_htab_delete (visited_found);
2701 visited_not_found = htab_create_alloc (10,
2702 htab_hash_pointer, htab_eq_pointer,
2703 NULL, xcalloc, xfree);
2704 make_cleanup_htab_delete (visited_not_found);
2705
2706 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2707 + dwarf2_per_objfile->n_type_units); ++i)
2708 {
2709 int j;
2710 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2711 struct quick_file_names *file_data;
2712 void **slot;
2713
2714 per_cu->v.quick->mark = 0;
2715
2716 /* We only need to look at symtabs not already expanded. */
2717 if (per_cu->v.quick->symtab)
2718 continue;
2719
2720 file_data = dw2_get_file_names (objfile, per_cu);
2721 if (file_data == NULL)
2722 continue;
2723
2724 if (htab_find (visited_not_found, file_data) != NULL)
2725 continue;
2726 else if (htab_find (visited_found, file_data) != NULL)
2727 {
2728 per_cu->v.quick->mark = 1;
2729 continue;
2730 }
2731
2732 for (j = 0; j < file_data->num_file_names; ++j)
2733 {
2734 if (file_matcher (file_data->file_names[j], data))
2735 {
2736 per_cu->v.quick->mark = 1;
2737 break;
2738 }
2739 }
2740
2741 slot = htab_find_slot (per_cu->v.quick->mark
2742 ? visited_found
2743 : visited_not_found,
2744 file_data, INSERT);
2745 *slot = file_data;
2746 }
2747
2748 do_cleanups (cleanup);
2749 }
2750
2751 for (iter = 0; iter < index->symbol_table_slots; ++iter)
2752 {
2753 offset_type idx = 2 * iter;
2754 const char *name;
2755 offset_type *vec, vec_len, vec_idx;
2756
2757 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
2758 continue;
2759
2760 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
2761
2762 if (! (*name_matcher) (name, data))
2763 continue;
2764
2765 /* The name was matched, now expand corresponding CUs that were
2766 marked. */
2767 vec = (offset_type *) (index->constant_pool
2768 + MAYBE_SWAP (index->symbol_table[idx + 1]));
2769 vec_len = MAYBE_SWAP (vec[0]);
2770 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
2771 {
2772 struct dwarf2_per_cu_data *per_cu;
2773
2774 per_cu = dw2_get_cu (MAYBE_SWAP (vec[vec_idx + 1]));
2775 if (file_matcher == NULL || per_cu->v.quick->mark)
2776 dw2_instantiate_symtab (per_cu);
2777 }
2778 }
2779 }
2780
2781 static struct symtab *
2782 dw2_find_pc_sect_symtab (struct objfile *objfile,
2783 struct minimal_symbol *msymbol,
2784 CORE_ADDR pc,
2785 struct obj_section *section,
2786 int warn_if_readin)
2787 {
2788 struct dwarf2_per_cu_data *data;
2789
2790 dw2_setup (objfile);
2791
2792 if (!objfile->psymtabs_addrmap)
2793 return NULL;
2794
2795 data = addrmap_find (objfile->psymtabs_addrmap, pc);
2796 if (!data)
2797 return NULL;
2798
2799 if (warn_if_readin && data->v.quick->symtab)
2800 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
2801 paddress (get_objfile_arch (objfile), pc));
2802
2803 return dw2_instantiate_symtab (data);
2804 }
2805
2806 static void
2807 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
2808 void *data, int need_fullname)
2809 {
2810 int i;
2811 struct cleanup *cleanup;
2812 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
2813 NULL, xcalloc, xfree);
2814
2815 cleanup = make_cleanup_htab_delete (visited);
2816 dw2_setup (objfile);
2817
2818 /* We can ignore file names coming from already-expanded CUs. */
2819 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2820 + dwarf2_per_objfile->n_type_units); ++i)
2821 {
2822 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2823
2824 if (per_cu->v.quick->symtab)
2825 {
2826 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
2827 INSERT);
2828
2829 *slot = per_cu->v.quick->file_names;
2830 }
2831 }
2832
2833 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2834 + dwarf2_per_objfile->n_type_units); ++i)
2835 {
2836 int j;
2837 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2838 struct quick_file_names *file_data;
2839 void **slot;
2840
2841 /* We only need to look at symtabs not already expanded. */
2842 if (per_cu->v.quick->symtab)
2843 continue;
2844
2845 file_data = dw2_get_file_names (objfile, per_cu);
2846 if (file_data == NULL)
2847 continue;
2848
2849 slot = htab_find_slot (visited, file_data, INSERT);
2850 if (*slot)
2851 {
2852 /* Already visited. */
2853 continue;
2854 }
2855 *slot = file_data;
2856
2857 for (j = 0; j < file_data->num_file_names; ++j)
2858 {
2859 const char *this_real_name;
2860
2861 if (need_fullname)
2862 this_real_name = dw2_get_real_path (objfile, file_data, j);
2863 else
2864 this_real_name = NULL;
2865 (*fun) (file_data->file_names[j], this_real_name, data);
2866 }
2867 }
2868
2869 do_cleanups (cleanup);
2870 }
2871
2872 static int
2873 dw2_has_symbols (struct objfile *objfile)
2874 {
2875 return 1;
2876 }
2877
2878 const struct quick_symbol_functions dwarf2_gdb_index_functions =
2879 {
2880 dw2_has_symbols,
2881 dw2_find_last_source_symtab,
2882 dw2_forget_cached_source_info,
2883 dw2_map_symtabs_matching_filename,
2884 dw2_lookup_symbol,
2885 dw2_pre_expand_symtabs_matching,
2886 dw2_print_stats,
2887 dw2_dump,
2888 dw2_relocate,
2889 dw2_expand_symtabs_for_function,
2890 dw2_expand_all_symtabs,
2891 dw2_expand_symtabs_with_filename,
2892 dw2_find_symbol_file,
2893 dw2_map_matching_symbols,
2894 dw2_expand_symtabs_matching,
2895 dw2_find_pc_sect_symtab,
2896 dw2_map_symbol_filenames
2897 };
2898
2899 /* Initialize for reading DWARF for this objfile. Return 0 if this
2900 file will use psymtabs, or 1 if using the GNU index. */
2901
2902 int
2903 dwarf2_initialize_objfile (struct objfile *objfile)
2904 {
2905 /* If we're about to read full symbols, don't bother with the
2906 indices. In this case we also don't care if some other debug
2907 format is making psymtabs, because they are all about to be
2908 expanded anyway. */
2909 if ((objfile->flags & OBJF_READNOW))
2910 {
2911 int i;
2912
2913 dwarf2_per_objfile->using_index = 1;
2914 create_all_comp_units (objfile);
2915 create_debug_types_hash_table (objfile);
2916 dwarf2_per_objfile->quick_file_names_table =
2917 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2918
2919 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2920 + dwarf2_per_objfile->n_type_units); ++i)
2921 {
2922 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2923
2924 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2925 struct dwarf2_per_cu_quick_data);
2926 }
2927
2928 /* Return 1 so that gdb sees the "quick" functions. However,
2929 these functions will be no-ops because we will have expanded
2930 all symtabs. */
2931 return 1;
2932 }
2933
2934 if (dwarf2_read_index (objfile))
2935 return 1;
2936
2937 return 0;
2938 }
2939
2940 \f
2941
2942 /* Build a partial symbol table. */
2943
2944 void
2945 dwarf2_build_psymtabs (struct objfile *objfile)
2946 {
2947 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
2948 {
2949 init_psymbol_list (objfile, 1024);
2950 }
2951
2952 dwarf2_build_psymtabs_hard (objfile);
2953 }
2954
2955 /* Return TRUE if OFFSET is within CU_HEADER. */
2956
2957 static inline int
2958 offset_in_cu_p (const struct comp_unit_head *cu_header, unsigned int offset)
2959 {
2960 unsigned int bottom = cu_header->offset;
2961 unsigned int top = (cu_header->offset
2962 + cu_header->length
2963 + cu_header->initial_length_size);
2964
2965 return (offset >= bottom && offset < top);
2966 }
2967
2968 /* Read in the comp unit header information from the debug_info at info_ptr.
2969 NOTE: This leaves members offset, first_die_offset to be filled in
2970 by the caller. */
2971
2972 static gdb_byte *
2973 read_comp_unit_head (struct comp_unit_head *cu_header,
2974 gdb_byte *info_ptr, bfd *abfd)
2975 {
2976 int signed_addr;
2977 unsigned int bytes_read;
2978
2979 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
2980 cu_header->initial_length_size = bytes_read;
2981 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
2982 info_ptr += bytes_read;
2983 cu_header->version = read_2_bytes (abfd, info_ptr);
2984 info_ptr += 2;
2985 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
2986 &bytes_read);
2987 info_ptr += bytes_read;
2988 cu_header->addr_size = read_1_byte (abfd, info_ptr);
2989 info_ptr += 1;
2990 signed_addr = bfd_get_sign_extend_vma (abfd);
2991 if (signed_addr < 0)
2992 internal_error (__FILE__, __LINE__,
2993 _("read_comp_unit_head: dwarf from non elf file"));
2994 cu_header->signed_addr_p = signed_addr;
2995
2996 return info_ptr;
2997 }
2998
2999 /* Subroutine of read_and_check_comp_unit_head and
3000 read_and_check_type_unit_head to simplify them.
3001 Perform various error checking on the header. */
3002
3003 static void
3004 error_check_comp_unit_head (struct comp_unit_head *header,
3005 struct dwarf2_section_info *section)
3006 {
3007 bfd *abfd = section->asection->owner;
3008 const char *filename = bfd_get_filename (abfd);
3009
3010 if (header->version != 2 && header->version != 3 && header->version != 4)
3011 error (_("Dwarf Error: wrong version in compilation unit header "
3012 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
3013 filename);
3014
3015 if (header->abbrev_offset
3016 >= dwarf2_section_size (dwarf2_per_objfile->objfile,
3017 &dwarf2_per_objfile->abbrev))
3018 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
3019 "(offset 0x%lx + 6) [in module %s]"),
3020 (long) header->abbrev_offset, (long) header->offset,
3021 filename);
3022
3023 /* Cast to unsigned long to use 64-bit arithmetic when possible to
3024 avoid potential 32-bit overflow. */
3025 if (((unsigned long) header->offset
3026 + header->length + header->initial_length_size)
3027 > section->size)
3028 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
3029 "(offset 0x%lx + 0) [in module %s]"),
3030 (long) header->length, (long) header->offset,
3031 filename);
3032 }
3033
3034 /* Read in a CU/TU header and perform some basic error checking.
3035 The contents of the header are stored in HEADER.
3036 The result is a pointer to the start of the first DIE. */
3037
3038 static gdb_byte *
3039 read_and_check_comp_unit_head (struct comp_unit_head *header,
3040 struct dwarf2_section_info *section,
3041 gdb_byte *info_ptr,
3042 int is_debug_types_section)
3043 {
3044 gdb_byte *beg_of_comp_unit = info_ptr;
3045 bfd *abfd = section->asection->owner;
3046
3047 header->offset = beg_of_comp_unit - section->buffer;
3048
3049 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
3050
3051 /* If we're reading a type unit, skip over the signature and
3052 type_offset fields. */
3053 if (is_debug_types_section)
3054 info_ptr += 8 /*signature*/ + header->offset_size;
3055
3056 header->first_die_offset = info_ptr - beg_of_comp_unit;
3057
3058 error_check_comp_unit_head (header, section);
3059
3060 return info_ptr;
3061 }
3062
3063 /* Read in the types comp unit header information from .debug_types entry at
3064 types_ptr. The result is a pointer to one past the end of the header. */
3065
3066 static gdb_byte *
3067 read_and_check_type_unit_head (struct comp_unit_head *header,
3068 struct dwarf2_section_info *section,
3069 gdb_byte *info_ptr,
3070 ULONGEST *signature, unsigned int *type_offset)
3071 {
3072 gdb_byte *beg_of_comp_unit = info_ptr;
3073 bfd *abfd = section->asection->owner;
3074
3075 header->offset = beg_of_comp_unit - section->buffer;
3076
3077 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
3078
3079 /* If we're reading a type unit, skip over the signature and
3080 type_offset fields. */
3081 if (signature != NULL)
3082 *signature = read_8_bytes (abfd, info_ptr);
3083 info_ptr += 8;
3084 if (type_offset != NULL)
3085 *type_offset = read_offset_1 (abfd, info_ptr, header->offset_size);
3086 info_ptr += header->offset_size;
3087
3088 header->first_die_offset = info_ptr - beg_of_comp_unit;
3089
3090 error_check_comp_unit_head (header, section);
3091
3092 return info_ptr;
3093 }
3094
3095 /* Allocate a new partial symtab for file named NAME and mark this new
3096 partial symtab as being an include of PST. */
3097
3098 static void
3099 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
3100 struct objfile *objfile)
3101 {
3102 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
3103
3104 subpst->section_offsets = pst->section_offsets;
3105 subpst->textlow = 0;
3106 subpst->texthigh = 0;
3107
3108 subpst->dependencies = (struct partial_symtab **)
3109 obstack_alloc (&objfile->objfile_obstack,
3110 sizeof (struct partial_symtab *));
3111 subpst->dependencies[0] = pst;
3112 subpst->number_of_dependencies = 1;
3113
3114 subpst->globals_offset = 0;
3115 subpst->n_global_syms = 0;
3116 subpst->statics_offset = 0;
3117 subpst->n_static_syms = 0;
3118 subpst->symtab = NULL;
3119 subpst->read_symtab = pst->read_symtab;
3120 subpst->readin = 0;
3121
3122 /* No private part is necessary for include psymtabs. This property
3123 can be used to differentiate between such include psymtabs and
3124 the regular ones. */
3125 subpst->read_symtab_private = NULL;
3126 }
3127
3128 /* Read the Line Number Program data and extract the list of files
3129 included by the source file represented by PST. Build an include
3130 partial symtab for each of these included files. */
3131
3132 static void
3133 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
3134 struct die_info *die,
3135 struct partial_symtab *pst)
3136 {
3137 struct objfile *objfile = cu->objfile;
3138 bfd *abfd = objfile->obfd;
3139 struct line_header *lh = NULL;
3140 struct attribute *attr;
3141
3142 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3143 if (attr)
3144 {
3145 unsigned int line_offset = DW_UNSND (attr);
3146
3147 lh = dwarf_decode_line_header (line_offset, abfd, cu);
3148 }
3149 if (lh == NULL)
3150 return; /* No linetable, so no includes. */
3151
3152 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
3153 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
3154
3155 free_line_header (lh);
3156 }
3157
3158 static hashval_t
3159 hash_type_signature (const void *item)
3160 {
3161 const struct signatured_type *type_sig = item;
3162
3163 /* This drops the top 32 bits of the signature, but is ok for a hash. */
3164 return type_sig->signature;
3165 }
3166
3167 static int
3168 eq_type_signature (const void *item_lhs, const void *item_rhs)
3169 {
3170 const struct signatured_type *lhs = item_lhs;
3171 const struct signatured_type *rhs = item_rhs;
3172
3173 return lhs->signature == rhs->signature;
3174 }
3175
3176 /* Allocate a hash table for signatured types. */
3177
3178 static htab_t
3179 allocate_signatured_type_table (struct objfile *objfile)
3180 {
3181 return htab_create_alloc_ex (41,
3182 hash_type_signature,
3183 eq_type_signature,
3184 NULL,
3185 &objfile->objfile_obstack,
3186 hashtab_obstack_allocate,
3187 dummy_obstack_deallocate);
3188 }
3189
3190 /* A helper function to add a signatured type CU to a table. */
3191
3192 static int
3193 add_signatured_type_cu_to_table (void **slot, void *datum)
3194 {
3195 struct signatured_type *sigt = *slot;
3196 struct dwarf2_per_cu_data ***datap = datum;
3197
3198 **datap = &sigt->per_cu;
3199 ++*datap;
3200
3201 return 1;
3202 }
3203
3204 /* Create the hash table of all entries in the .debug_types section(s).
3205 The result is zero if there is an error (e.g. missing .debug_types section),
3206 otherwise non-zero. */
3207
3208 static int
3209 create_debug_types_hash_table (struct objfile *objfile)
3210 {
3211 htab_t types_htab = NULL;
3212 struct dwarf2_per_cu_data **iter;
3213 int ix;
3214 struct dwarf2_section_info *section;
3215
3216 if (VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types))
3217 {
3218 dwarf2_per_objfile->signatured_types = NULL;
3219 return 0;
3220 }
3221
3222 for (ix = 0;
3223 VEC_iterate (dwarf2_section_info_def, dwarf2_per_objfile->types,
3224 ix, section);
3225 ++ix)
3226 {
3227 gdb_byte *info_ptr, *end_ptr;
3228
3229 dwarf2_read_section (objfile, section);
3230 info_ptr = section->buffer;
3231
3232 if (info_ptr == NULL)
3233 continue;
3234
3235 if (types_htab == NULL)
3236 types_htab = allocate_signatured_type_table (objfile);
3237
3238 if (dwarf2_die_debug)
3239 fprintf_unfiltered (gdb_stdlog, "Signatured types:\n");
3240
3241 end_ptr = info_ptr + section->size;
3242 while (info_ptr < end_ptr)
3243 {
3244 unsigned int offset;
3245 unsigned int type_offset;
3246 ULONGEST signature;
3247 struct signatured_type *type_sig;
3248 void **slot;
3249 gdb_byte *ptr = info_ptr;
3250 struct comp_unit_head header;
3251
3252 offset = ptr - section->buffer;
3253
3254 /* We need to read the type's signature in order to build the hash
3255 table, but we don't need anything else just yet. */
3256
3257 ptr = read_and_check_type_unit_head (&header, section, ptr,
3258 &signature, &type_offset);
3259
3260 /* Skip dummy type units. */
3261 if (ptr >= end_ptr || peek_abbrev_code (objfile->obfd, ptr) == 0)
3262 {
3263 info_ptr = info_ptr + header.initial_length_size + header.length;
3264 continue;
3265 }
3266
3267 type_sig = obstack_alloc (&objfile->objfile_obstack, sizeof (*type_sig));
3268 memset (type_sig, 0, sizeof (*type_sig));
3269 type_sig->signature = signature;
3270 type_sig->type_offset = type_offset;
3271 type_sig->per_cu.objfile = objfile;
3272 type_sig->per_cu.debug_types_section = section;
3273 type_sig->per_cu.offset = offset;
3274
3275 slot = htab_find_slot (types_htab, type_sig, INSERT);
3276 gdb_assert (slot != NULL);
3277 if (*slot != NULL)
3278 {
3279 const struct signatured_type *dup_sig = *slot;
3280
3281 complaint (&symfile_complaints,
3282 _("debug type entry at offset 0x%x is duplicate to the "
3283 "entry at offset 0x%x, signature 0x%s"),
3284 offset, dup_sig->per_cu.offset,
3285 phex (signature, sizeof (signature)));
3286 gdb_assert (signature == dup_sig->signature);
3287 }
3288 *slot = type_sig;
3289
3290 if (dwarf2_die_debug)
3291 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
3292 offset, phex (signature, sizeof (signature)));
3293
3294 info_ptr = info_ptr + header.initial_length_size + header.length;
3295 }
3296 }
3297
3298 dwarf2_per_objfile->signatured_types = types_htab;
3299
3300 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
3301 dwarf2_per_objfile->all_type_units
3302 = obstack_alloc (&objfile->objfile_obstack,
3303 dwarf2_per_objfile->n_type_units
3304 * sizeof (struct dwarf2_per_cu_data *));
3305 iter = &dwarf2_per_objfile->all_type_units[0];
3306 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
3307 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
3308 == dwarf2_per_objfile->n_type_units);
3309
3310 return 1;
3311 }
3312
3313 /* Lookup a signature based type.
3314 Returns NULL if SIG is not present in the table. */
3315
3316 static struct signatured_type *
3317 lookup_signatured_type (struct objfile *objfile, ULONGEST sig)
3318 {
3319 struct signatured_type find_entry, *entry;
3320
3321 if (dwarf2_per_objfile->signatured_types == NULL)
3322 {
3323 complaint (&symfile_complaints,
3324 _("missing `.debug_types' section for DW_FORM_ref_sig8 die"));
3325 return 0;
3326 }
3327
3328 find_entry.signature = sig;
3329 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
3330 return entry;
3331 }
3332
3333 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
3334
3335 static void
3336 init_cu_die_reader (struct die_reader_specs *reader,
3337 struct dwarf2_cu *cu)
3338 {
3339 reader->abfd = cu->objfile->obfd;
3340 reader->cu = cu;
3341 if (cu->per_cu->debug_types_section)
3342 {
3343 gdb_assert (cu->per_cu->debug_types_section->readin);
3344 reader->buffer = cu->per_cu->debug_types_section->buffer;
3345 }
3346 else
3347 {
3348 gdb_assert (dwarf2_per_objfile->info.readin);
3349 reader->buffer = dwarf2_per_objfile->info.buffer;
3350 }
3351 }
3352
3353 /* Find the base address of the compilation unit for range lists and
3354 location lists. It will normally be specified by DW_AT_low_pc.
3355 In DWARF-3 draft 4, the base address could be overridden by
3356 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3357 compilation units with discontinuous ranges. */
3358
3359 static void
3360 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3361 {
3362 struct attribute *attr;
3363
3364 cu->base_known = 0;
3365 cu->base_address = 0;
3366
3367 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3368 if (attr)
3369 {
3370 cu->base_address = DW_ADDR (attr);
3371 cu->base_known = 1;
3372 }
3373 else
3374 {
3375 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3376 if (attr)
3377 {
3378 cu->base_address = DW_ADDR (attr);
3379 cu->base_known = 1;
3380 }
3381 }
3382 }
3383
3384 /* Subroutine of process_type_comp_unit and dwarf2_build_psymtabs_hard
3385 to combine the common parts.
3386 Process compilation unit THIS_CU for a psymtab.
3387 SECTION is the section the CU/TU comes from,
3388 either .debug_info or .debug_types. */
3389
3390 static void
3391 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
3392 struct dwarf2_section_info *section,
3393 int is_debug_types_section)
3394 {
3395 struct objfile *objfile = this_cu->objfile;
3396 bfd *abfd = objfile->obfd;
3397 gdb_byte *buffer = section->buffer;
3398 gdb_byte *info_ptr = buffer + this_cu->offset;
3399 unsigned int buffer_size = section->size;
3400 gdb_byte *beg_of_comp_unit = info_ptr;
3401 struct die_info *comp_unit_die;
3402 struct partial_symtab *pst;
3403 CORE_ADDR baseaddr;
3404 struct cleanup *back_to_inner;
3405 struct dwarf2_cu cu;
3406 int has_children, has_pc_info;
3407 struct attribute *attr;
3408 CORE_ADDR best_lowpc = 0, best_highpc = 0;
3409 struct die_reader_specs reader_specs;
3410 const char *filename;
3411
3412 /* If this compilation unit was already read in, free the
3413 cached copy in order to read it in again. This is
3414 necessary because we skipped some symbols when we first
3415 read in the compilation unit (see load_partial_dies).
3416 This problem could be avoided, but the benefit is
3417 unclear. */
3418 if (this_cu->cu != NULL)
3419 free_one_cached_comp_unit (this_cu->cu);
3420
3421 /* Note that this is a pointer to our stack frame, being
3422 added to a global data structure. It will be cleaned up
3423 in free_stack_comp_unit when we finish with this
3424 compilation unit. */
3425 init_one_comp_unit (&cu, this_cu);
3426 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
3427
3428 info_ptr = read_and_check_comp_unit_head (&cu.header, section, info_ptr,
3429 is_debug_types_section);
3430
3431 /* Skip dummy compilation units. */
3432 if (info_ptr >= buffer + buffer_size
3433 || peek_abbrev_code (abfd, info_ptr) == 0)
3434 {
3435 do_cleanups (back_to_inner);
3436 return;
3437 }
3438
3439 cu.list_in_scope = &file_symbols;
3440
3441 /* Read the abbrevs for this compilation unit into a table. */
3442 dwarf2_read_abbrevs (&cu);
3443 make_cleanup (dwarf2_free_abbrev_table, &cu);
3444
3445 /* Read the compilation unit die. */
3446 init_cu_die_reader (&reader_specs, &cu);
3447 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3448 &has_children);
3449
3450 if (is_debug_types_section)
3451 {
3452 /* LENGTH has not been set yet for type units. */
3453 gdb_assert (this_cu->offset == cu.header.offset);
3454 this_cu->length = cu.header.length + cu.header.initial_length_size;
3455 }
3456 else if (comp_unit_die->tag == DW_TAG_partial_unit)
3457 {
3458 do_cleanups (back_to_inner);
3459 return;
3460 }
3461
3462 prepare_one_comp_unit (&cu, comp_unit_die);
3463
3464 /* Allocate a new partial symbol table structure. */
3465 attr = dwarf2_attr (comp_unit_die, DW_AT_name, &cu);
3466 if (attr == NULL || !DW_STRING (attr))
3467 filename = "";
3468 else
3469 filename = DW_STRING (attr);
3470 pst = start_psymtab_common (objfile, objfile->section_offsets,
3471 filename,
3472 /* TEXTLOW and TEXTHIGH are set below. */
3473 0,
3474 objfile->global_psymbols.next,
3475 objfile->static_psymbols.next);
3476 pst->psymtabs_addrmap_supported = 1;
3477
3478 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, &cu);
3479 if (attr != NULL)
3480 pst->dirname = DW_STRING (attr);
3481
3482 pst->read_symtab_private = this_cu;
3483
3484 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3485
3486 /* Store the function that reads in the rest of the symbol table. */
3487 pst->read_symtab = dwarf2_psymtab_to_symtab;
3488
3489 this_cu->v.psymtab = pst;
3490
3491 dwarf2_find_base_address (comp_unit_die, &cu);
3492
3493 /* Possibly set the default values of LOWPC and HIGHPC from
3494 `DW_AT_ranges'. */
3495 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
3496 &best_highpc, &cu, pst);
3497 if (has_pc_info == 1 && best_lowpc < best_highpc)
3498 /* Store the contiguous range if it is not empty; it can be empty for
3499 CUs with no code. */
3500 addrmap_set_empty (objfile->psymtabs_addrmap,
3501 best_lowpc + baseaddr,
3502 best_highpc + baseaddr - 1, pst);
3503
3504 /* Check if comp unit has_children.
3505 If so, read the rest of the partial symbols from this comp unit.
3506 If not, there's no more debug_info for this comp unit. */
3507 if (has_children)
3508 {
3509 struct partial_die_info *first_die;
3510 CORE_ADDR lowpc, highpc;
3511
3512 lowpc = ((CORE_ADDR) -1);
3513 highpc = ((CORE_ADDR) 0);
3514
3515 first_die = load_partial_dies (abfd, buffer, info_ptr, 1, &cu);
3516
3517 scan_partial_symbols (first_die, &lowpc, &highpc,
3518 ! has_pc_info, &cu);
3519
3520 /* If we didn't find a lowpc, set it to highpc to avoid
3521 complaints from `maint check'. */
3522 if (lowpc == ((CORE_ADDR) -1))
3523 lowpc = highpc;
3524
3525 /* If the compilation unit didn't have an explicit address range,
3526 then use the information extracted from its child dies. */
3527 if (! has_pc_info)
3528 {
3529 best_lowpc = lowpc;
3530 best_highpc = highpc;
3531 }
3532 }
3533 pst->textlow = best_lowpc + baseaddr;
3534 pst->texthigh = best_highpc + baseaddr;
3535
3536 pst->n_global_syms = objfile->global_psymbols.next -
3537 (objfile->global_psymbols.list + pst->globals_offset);
3538 pst->n_static_syms = objfile->static_psymbols.next -
3539 (objfile->static_psymbols.list + pst->statics_offset);
3540 sort_pst_symbols (pst);
3541
3542 if (is_debug_types_section)
3543 {
3544 /* It's not clear we want to do anything with stmt lists here.
3545 Waiting to see what gcc ultimately does. */
3546 }
3547 else
3548 {
3549 /* Get the list of files included in the current compilation unit,
3550 and build a psymtab for each of them. */
3551 dwarf2_build_include_psymtabs (&cu, comp_unit_die, pst);
3552 }
3553
3554 do_cleanups (back_to_inner);
3555 }
3556
3557 /* Traversal function for htab_traverse_noresize.
3558 Process one .debug_types comp-unit. */
3559
3560 static int
3561 process_type_comp_unit (void **slot, void *info)
3562 {
3563 struct signatured_type *entry = (struct signatured_type *) *slot;
3564 struct dwarf2_per_cu_data *this_cu;
3565
3566 gdb_assert (info == NULL);
3567 this_cu = &entry->per_cu;
3568
3569 gdb_assert (this_cu->debug_types_section->readin);
3570 process_psymtab_comp_unit (this_cu, this_cu->debug_types_section, 1);
3571
3572 return 1;
3573 }
3574
3575 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
3576 Build partial symbol tables for the .debug_types comp-units. */
3577
3578 static void
3579 build_type_psymtabs (struct objfile *objfile)
3580 {
3581 if (! create_debug_types_hash_table (objfile))
3582 return;
3583
3584 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
3585 process_type_comp_unit, NULL);
3586 }
3587
3588 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
3589
3590 static void
3591 psymtabs_addrmap_cleanup (void *o)
3592 {
3593 struct objfile *objfile = o;
3594
3595 objfile->psymtabs_addrmap = NULL;
3596 }
3597
3598 /* Build the partial symbol table by doing a quick pass through the
3599 .debug_info and .debug_abbrev sections. */
3600
3601 static void
3602 dwarf2_build_psymtabs_hard (struct objfile *objfile)
3603 {
3604 struct cleanup *back_to, *addrmap_cleanup;
3605 struct obstack temp_obstack;
3606 int i;
3607
3608 dwarf2_per_objfile->reading_partial_symbols = 1;
3609
3610 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3611
3612 /* Any cached compilation units will be linked by the per-objfile
3613 read_in_chain. Make sure to free them when we're done. */
3614 back_to = make_cleanup (free_cached_comp_units, NULL);
3615
3616 build_type_psymtabs (objfile);
3617
3618 create_all_comp_units (objfile);
3619
3620 /* Create a temporary address map on a temporary obstack. We later
3621 copy this to the final obstack. */
3622 obstack_init (&temp_obstack);
3623 make_cleanup_obstack_free (&temp_obstack);
3624 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
3625 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
3626
3627 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3628 {
3629 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3630
3631 process_psymtab_comp_unit (per_cu, &dwarf2_per_objfile->info, 0);
3632 }
3633
3634 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
3635 &objfile->objfile_obstack);
3636 discard_cleanups (addrmap_cleanup);
3637
3638 do_cleanups (back_to);
3639 }
3640
3641 /* Load the partial DIEs for a secondary CU into memory. */
3642
3643 static void
3644 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
3645 {
3646 struct objfile *objfile = this_cu->objfile;
3647 bfd *abfd = objfile->obfd;
3648 gdb_byte *info_ptr;
3649 struct die_info *comp_unit_die;
3650 struct dwarf2_cu *cu;
3651 struct cleanup *free_abbrevs_cleanup, *free_cu_cleanup = NULL;
3652 int has_children;
3653 struct die_reader_specs reader_specs;
3654 int read_cu = 0;
3655 struct dwarf2_section_info *section = &dwarf2_per_objfile->info;
3656
3657 gdb_assert (! this_cu->debug_types_section);
3658
3659 gdb_assert (section->readin);
3660 info_ptr = section->buffer + this_cu->offset;
3661
3662 if (this_cu->cu == NULL)
3663 {
3664 cu = xmalloc (sizeof (*cu));
3665 init_one_comp_unit (cu, this_cu);
3666
3667 read_cu = 1;
3668
3669 /* If an error occurs while loading, release our storage. */
3670 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
3671
3672 info_ptr = read_and_check_comp_unit_head (&cu->header, section, info_ptr,
3673 0);
3674
3675 /* Skip dummy compilation units. */
3676 if (info_ptr >= (section->buffer + section->size)
3677 || peek_abbrev_code (abfd, info_ptr) == 0)
3678 {
3679 do_cleanups (free_cu_cleanup);
3680 return;
3681 }
3682
3683 /* Link this CU into read_in_chain. */
3684 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
3685 dwarf2_per_objfile->read_in_chain = this_cu;
3686 }
3687 else
3688 {
3689 cu = this_cu->cu;
3690 info_ptr += cu->header.first_die_offset;
3691 }
3692
3693 /* Read the abbrevs for this compilation unit into a table. */
3694 gdb_assert (cu->dwarf2_abbrevs == NULL);
3695 dwarf2_read_abbrevs (cu);
3696 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
3697
3698 /* Read the compilation unit die. */
3699 init_cu_die_reader (&reader_specs, cu);
3700 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3701 &has_children);
3702
3703 prepare_one_comp_unit (cu, comp_unit_die);
3704
3705 /* Check if comp unit has_children.
3706 If so, read the rest of the partial symbols from this comp unit.
3707 If not, there's no more debug_info for this comp unit. */
3708 if (has_children)
3709 load_partial_dies (abfd, section->buffer, info_ptr, 0, cu);
3710
3711 do_cleanups (free_abbrevs_cleanup);
3712
3713 if (read_cu)
3714 {
3715 /* We've successfully allocated this compilation unit. Let our
3716 caller clean it up when finished with it. */
3717 discard_cleanups (free_cu_cleanup);
3718 }
3719 }
3720
3721 /* Create a list of all compilation units in OBJFILE.
3722 This is only done for -readnow and building partial symtabs. */
3723
3724 static void
3725 create_all_comp_units (struct objfile *objfile)
3726 {
3727 int n_allocated;
3728 int n_comp_units;
3729 struct dwarf2_per_cu_data **all_comp_units;
3730 gdb_byte *info_ptr;
3731
3732 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3733 info_ptr = dwarf2_per_objfile->info.buffer;
3734
3735 n_comp_units = 0;
3736 n_allocated = 10;
3737 all_comp_units = xmalloc (n_allocated
3738 * sizeof (struct dwarf2_per_cu_data *));
3739
3740 while (info_ptr < dwarf2_per_objfile->info.buffer
3741 + dwarf2_per_objfile->info.size)
3742 {
3743 unsigned int length, initial_length_size;
3744 struct dwarf2_per_cu_data *this_cu;
3745 unsigned int offset;
3746
3747 offset = info_ptr - dwarf2_per_objfile->info.buffer;
3748
3749 /* Read just enough information to find out where the next
3750 compilation unit is. */
3751 length = read_initial_length (objfile->obfd, info_ptr,
3752 &initial_length_size);
3753
3754 /* Save the compilation unit for later lookup. */
3755 this_cu = obstack_alloc (&objfile->objfile_obstack,
3756 sizeof (struct dwarf2_per_cu_data));
3757 memset (this_cu, 0, sizeof (*this_cu));
3758 this_cu->offset = offset;
3759 this_cu->length = length + initial_length_size;
3760 this_cu->objfile = objfile;
3761
3762 if (n_comp_units == n_allocated)
3763 {
3764 n_allocated *= 2;
3765 all_comp_units = xrealloc (all_comp_units,
3766 n_allocated
3767 * sizeof (struct dwarf2_per_cu_data *));
3768 }
3769 all_comp_units[n_comp_units++] = this_cu;
3770
3771 info_ptr = info_ptr + this_cu->length;
3772 }
3773
3774 dwarf2_per_objfile->all_comp_units
3775 = obstack_alloc (&objfile->objfile_obstack,
3776 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3777 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
3778 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3779 xfree (all_comp_units);
3780 dwarf2_per_objfile->n_comp_units = n_comp_units;
3781 }
3782
3783 /* Process all loaded DIEs for compilation unit CU, starting at
3784 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
3785 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
3786 DW_AT_ranges). If NEED_PC is set, then this function will set
3787 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
3788 and record the covered ranges in the addrmap. */
3789
3790 static void
3791 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
3792 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
3793 {
3794 struct partial_die_info *pdi;
3795
3796 /* Now, march along the PDI's, descending into ones which have
3797 interesting children but skipping the children of the other ones,
3798 until we reach the end of the compilation unit. */
3799
3800 pdi = first_die;
3801
3802 while (pdi != NULL)
3803 {
3804 fixup_partial_die (pdi, cu);
3805
3806 /* Anonymous namespaces or modules have no name but have interesting
3807 children, so we need to look at them. Ditto for anonymous
3808 enums. */
3809
3810 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
3811 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type)
3812 {
3813 switch (pdi->tag)
3814 {
3815 case DW_TAG_subprogram:
3816 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
3817 break;
3818 case DW_TAG_constant:
3819 case DW_TAG_variable:
3820 case DW_TAG_typedef:
3821 case DW_TAG_union_type:
3822 if (!pdi->is_declaration)
3823 {
3824 add_partial_symbol (pdi, cu);
3825 }
3826 break;
3827 case DW_TAG_class_type:
3828 case DW_TAG_interface_type:
3829 case DW_TAG_structure_type:
3830 if (!pdi->is_declaration)
3831 {
3832 add_partial_symbol (pdi, cu);
3833 }
3834 break;
3835 case DW_TAG_enumeration_type:
3836 if (!pdi->is_declaration)
3837 add_partial_enumeration (pdi, cu);
3838 break;
3839 case DW_TAG_base_type:
3840 case DW_TAG_subrange_type:
3841 /* File scope base type definitions are added to the partial
3842 symbol table. */
3843 add_partial_symbol (pdi, cu);
3844 break;
3845 case DW_TAG_namespace:
3846 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
3847 break;
3848 case DW_TAG_module:
3849 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
3850 break;
3851 default:
3852 break;
3853 }
3854 }
3855
3856 /* If the die has a sibling, skip to the sibling. */
3857
3858 pdi = pdi->die_sibling;
3859 }
3860 }
3861
3862 /* Functions used to compute the fully scoped name of a partial DIE.
3863
3864 Normally, this is simple. For C++, the parent DIE's fully scoped
3865 name is concatenated with "::" and the partial DIE's name. For
3866 Java, the same thing occurs except that "." is used instead of "::".
3867 Enumerators are an exception; they use the scope of their parent
3868 enumeration type, i.e. the name of the enumeration type is not
3869 prepended to the enumerator.
3870
3871 There are two complexities. One is DW_AT_specification; in this
3872 case "parent" means the parent of the target of the specification,
3873 instead of the direct parent of the DIE. The other is compilers
3874 which do not emit DW_TAG_namespace; in this case we try to guess
3875 the fully qualified name of structure types from their members'
3876 linkage names. This must be done using the DIE's children rather
3877 than the children of any DW_AT_specification target. We only need
3878 to do this for structures at the top level, i.e. if the target of
3879 any DW_AT_specification (if any; otherwise the DIE itself) does not
3880 have a parent. */
3881
3882 /* Compute the scope prefix associated with PDI's parent, in
3883 compilation unit CU. The result will be allocated on CU's
3884 comp_unit_obstack, or a copy of the already allocated PDI->NAME
3885 field. NULL is returned if no prefix is necessary. */
3886 static char *
3887 partial_die_parent_scope (struct partial_die_info *pdi,
3888 struct dwarf2_cu *cu)
3889 {
3890 char *grandparent_scope;
3891 struct partial_die_info *parent, *real_pdi;
3892
3893 /* We need to look at our parent DIE; if we have a DW_AT_specification,
3894 then this means the parent of the specification DIE. */
3895
3896 real_pdi = pdi;
3897 while (real_pdi->has_specification)
3898 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
3899
3900 parent = real_pdi->die_parent;
3901 if (parent == NULL)
3902 return NULL;
3903
3904 if (parent->scope_set)
3905 return parent->scope;
3906
3907 fixup_partial_die (parent, cu);
3908
3909 grandparent_scope = partial_die_parent_scope (parent, cu);
3910
3911 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
3912 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
3913 Work around this problem here. */
3914 if (cu->language == language_cplus
3915 && parent->tag == DW_TAG_namespace
3916 && strcmp (parent->name, "::") == 0
3917 && grandparent_scope == NULL)
3918 {
3919 parent->scope = NULL;
3920 parent->scope_set = 1;
3921 return NULL;
3922 }
3923
3924 if (pdi->tag == DW_TAG_enumerator)
3925 /* Enumerators should not get the name of the enumeration as a prefix. */
3926 parent->scope = grandparent_scope;
3927 else if (parent->tag == DW_TAG_namespace
3928 || parent->tag == DW_TAG_module
3929 || parent->tag == DW_TAG_structure_type
3930 || parent->tag == DW_TAG_class_type
3931 || parent->tag == DW_TAG_interface_type
3932 || parent->tag == DW_TAG_union_type
3933 || parent->tag == DW_TAG_enumeration_type)
3934 {
3935 if (grandparent_scope == NULL)
3936 parent->scope = parent->name;
3937 else
3938 parent->scope = typename_concat (&cu->comp_unit_obstack,
3939 grandparent_scope,
3940 parent->name, 0, cu);
3941 }
3942 else
3943 {
3944 /* FIXME drow/2004-04-01: What should we be doing with
3945 function-local names? For partial symbols, we should probably be
3946 ignoring them. */
3947 complaint (&symfile_complaints,
3948 _("unhandled containing DIE tag %d for DIE at %d"),
3949 parent->tag, pdi->offset);
3950 parent->scope = grandparent_scope;
3951 }
3952
3953 parent->scope_set = 1;
3954 return parent->scope;
3955 }
3956
3957 /* Return the fully scoped name associated with PDI, from compilation unit
3958 CU. The result will be allocated with malloc. */
3959 static char *
3960 partial_die_full_name (struct partial_die_info *pdi,
3961 struct dwarf2_cu *cu)
3962 {
3963 char *parent_scope;
3964
3965 /* If this is a template instantiation, we can not work out the
3966 template arguments from partial DIEs. So, unfortunately, we have
3967 to go through the full DIEs. At least any work we do building
3968 types here will be reused if full symbols are loaded later. */
3969 if (pdi->has_template_arguments)
3970 {
3971 fixup_partial_die (pdi, cu);
3972
3973 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
3974 {
3975 struct die_info *die;
3976 struct attribute attr;
3977 struct dwarf2_cu *ref_cu = cu;
3978
3979 attr.name = 0;
3980 attr.form = DW_FORM_ref_addr;
3981 attr.u.addr = pdi->offset;
3982 die = follow_die_ref (NULL, &attr, &ref_cu);
3983
3984 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
3985 }
3986 }
3987
3988 parent_scope = partial_die_parent_scope (pdi, cu);
3989 if (parent_scope == NULL)
3990 return NULL;
3991 else
3992 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
3993 }
3994
3995 static void
3996 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
3997 {
3998 struct objfile *objfile = cu->objfile;
3999 CORE_ADDR addr = 0;
4000 char *actual_name = NULL;
4001 CORE_ADDR baseaddr;
4002 int built_actual_name = 0;
4003
4004 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4005
4006 actual_name = partial_die_full_name (pdi, cu);
4007 if (actual_name)
4008 built_actual_name = 1;
4009
4010 if (actual_name == NULL)
4011 actual_name = pdi->name;
4012
4013 switch (pdi->tag)
4014 {
4015 case DW_TAG_subprogram:
4016 if (pdi->is_external || cu->language == language_ada)
4017 {
4018 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
4019 of the global scope. But in Ada, we want to be able to access
4020 nested procedures globally. So all Ada subprograms are stored
4021 in the global scope. */
4022 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
4023 mst_text, objfile); */
4024 add_psymbol_to_list (actual_name, strlen (actual_name),
4025 built_actual_name,
4026 VAR_DOMAIN, LOC_BLOCK,
4027 &objfile->global_psymbols,
4028 0, pdi->lowpc + baseaddr,
4029 cu->language, objfile);
4030 }
4031 else
4032 {
4033 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
4034 mst_file_text, objfile); */
4035 add_psymbol_to_list (actual_name, strlen (actual_name),
4036 built_actual_name,
4037 VAR_DOMAIN, LOC_BLOCK,
4038 &objfile->static_psymbols,
4039 0, pdi->lowpc + baseaddr,
4040 cu->language, objfile);
4041 }
4042 break;
4043 case DW_TAG_constant:
4044 {
4045 struct psymbol_allocation_list *list;
4046
4047 if (pdi->is_external)
4048 list = &objfile->global_psymbols;
4049 else
4050 list = &objfile->static_psymbols;
4051 add_psymbol_to_list (actual_name, strlen (actual_name),
4052 built_actual_name, VAR_DOMAIN, LOC_STATIC,
4053 list, 0, 0, cu->language, objfile);
4054 }
4055 break;
4056 case DW_TAG_variable:
4057 if (pdi->locdesc)
4058 addr = decode_locdesc (pdi->locdesc, cu);
4059
4060 if (pdi->locdesc
4061 && addr == 0
4062 && !dwarf2_per_objfile->has_section_at_zero)
4063 {
4064 /* A global or static variable may also have been stripped
4065 out by the linker if unused, in which case its address
4066 will be nullified; do not add such variables into partial
4067 symbol table then. */
4068 }
4069 else if (pdi->is_external)
4070 {
4071 /* Global Variable.
4072 Don't enter into the minimal symbol tables as there is
4073 a minimal symbol table entry from the ELF symbols already.
4074 Enter into partial symbol table if it has a location
4075 descriptor or a type.
4076 If the location descriptor is missing, new_symbol will create
4077 a LOC_UNRESOLVED symbol, the address of the variable will then
4078 be determined from the minimal symbol table whenever the variable
4079 is referenced.
4080 The address for the partial symbol table entry is not
4081 used by GDB, but it comes in handy for debugging partial symbol
4082 table building. */
4083
4084 if (pdi->locdesc || pdi->has_type)
4085 add_psymbol_to_list (actual_name, strlen (actual_name),
4086 built_actual_name,
4087 VAR_DOMAIN, LOC_STATIC,
4088 &objfile->global_psymbols,
4089 0, addr + baseaddr,
4090 cu->language, objfile);
4091 }
4092 else
4093 {
4094 /* Static Variable. Skip symbols without location descriptors. */
4095 if (pdi->locdesc == NULL)
4096 {
4097 if (built_actual_name)
4098 xfree (actual_name);
4099 return;
4100 }
4101 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
4102 mst_file_data, objfile); */
4103 add_psymbol_to_list (actual_name, strlen (actual_name),
4104 built_actual_name,
4105 VAR_DOMAIN, LOC_STATIC,
4106 &objfile->static_psymbols,
4107 0, addr + baseaddr,
4108 cu->language, objfile);
4109 }
4110 break;
4111 case DW_TAG_typedef:
4112 case DW_TAG_base_type:
4113 case DW_TAG_subrange_type:
4114 add_psymbol_to_list (actual_name, strlen (actual_name),
4115 built_actual_name,
4116 VAR_DOMAIN, LOC_TYPEDEF,
4117 &objfile->static_psymbols,
4118 0, (CORE_ADDR) 0, cu->language, objfile);
4119 break;
4120 case DW_TAG_namespace:
4121 add_psymbol_to_list (actual_name, strlen (actual_name),
4122 built_actual_name,
4123 VAR_DOMAIN, LOC_TYPEDEF,
4124 &objfile->global_psymbols,
4125 0, (CORE_ADDR) 0, cu->language, objfile);
4126 break;
4127 case DW_TAG_class_type:
4128 case DW_TAG_interface_type:
4129 case DW_TAG_structure_type:
4130 case DW_TAG_union_type:
4131 case DW_TAG_enumeration_type:
4132 /* Skip external references. The DWARF standard says in the section
4133 about "Structure, Union, and Class Type Entries": "An incomplete
4134 structure, union or class type is represented by a structure,
4135 union or class entry that does not have a byte size attribute
4136 and that has a DW_AT_declaration attribute." */
4137 if (!pdi->has_byte_size && pdi->is_declaration)
4138 {
4139 if (built_actual_name)
4140 xfree (actual_name);
4141 return;
4142 }
4143
4144 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
4145 static vs. global. */
4146 add_psymbol_to_list (actual_name, strlen (actual_name),
4147 built_actual_name,
4148 STRUCT_DOMAIN, LOC_TYPEDEF,
4149 (cu->language == language_cplus
4150 || cu->language == language_java)
4151 ? &objfile->global_psymbols
4152 : &objfile->static_psymbols,
4153 0, (CORE_ADDR) 0, cu->language, objfile);
4154
4155 break;
4156 case DW_TAG_enumerator:
4157 add_psymbol_to_list (actual_name, strlen (actual_name),
4158 built_actual_name,
4159 VAR_DOMAIN, LOC_CONST,
4160 (cu->language == language_cplus
4161 || cu->language == language_java)
4162 ? &objfile->global_psymbols
4163 : &objfile->static_psymbols,
4164 0, (CORE_ADDR) 0, cu->language, objfile);
4165 break;
4166 default:
4167 break;
4168 }
4169
4170 if (built_actual_name)
4171 xfree (actual_name);
4172 }
4173
4174 /* Read a partial die corresponding to a namespace; also, add a symbol
4175 corresponding to that namespace to the symbol table. NAMESPACE is
4176 the name of the enclosing namespace. */
4177
4178 static void
4179 add_partial_namespace (struct partial_die_info *pdi,
4180 CORE_ADDR *lowpc, CORE_ADDR *highpc,
4181 int need_pc, struct dwarf2_cu *cu)
4182 {
4183 /* Add a symbol for the namespace. */
4184
4185 add_partial_symbol (pdi, cu);
4186
4187 /* Now scan partial symbols in that namespace. */
4188
4189 if (pdi->has_children)
4190 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
4191 }
4192
4193 /* Read a partial die corresponding to a Fortran module. */
4194
4195 static void
4196 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
4197 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
4198 {
4199 /* Now scan partial symbols in that module. */
4200
4201 if (pdi->has_children)
4202 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
4203 }
4204
4205 /* Read a partial die corresponding to a subprogram and create a partial
4206 symbol for that subprogram. When the CU language allows it, this
4207 routine also defines a partial symbol for each nested subprogram
4208 that this subprogram contains.
4209
4210 DIE my also be a lexical block, in which case we simply search
4211 recursively for suprograms defined inside that lexical block.
4212 Again, this is only performed when the CU language allows this
4213 type of definitions. */
4214
4215 static void
4216 add_partial_subprogram (struct partial_die_info *pdi,
4217 CORE_ADDR *lowpc, CORE_ADDR *highpc,
4218 int need_pc, struct dwarf2_cu *cu)
4219 {
4220 if (pdi->tag == DW_TAG_subprogram)
4221 {
4222 if (pdi->has_pc_info)
4223 {
4224 if (pdi->lowpc < *lowpc)
4225 *lowpc = pdi->lowpc;
4226 if (pdi->highpc > *highpc)
4227 *highpc = pdi->highpc;
4228 if (need_pc)
4229 {
4230 CORE_ADDR baseaddr;
4231 struct objfile *objfile = cu->objfile;
4232
4233 baseaddr = ANOFFSET (objfile->section_offsets,
4234 SECT_OFF_TEXT (objfile));
4235 addrmap_set_empty (objfile->psymtabs_addrmap,
4236 pdi->lowpc + baseaddr,
4237 pdi->highpc - 1 + baseaddr,
4238 cu->per_cu->v.psymtab);
4239 }
4240 if (!pdi->is_declaration)
4241 /* Ignore subprogram DIEs that do not have a name, they are
4242 illegal. Do not emit a complaint at this point, we will
4243 do so when we convert this psymtab into a symtab. */
4244 if (pdi->name)
4245 add_partial_symbol (pdi, cu);
4246 }
4247 }
4248
4249 if (! pdi->has_children)
4250 return;
4251
4252 if (cu->language == language_ada)
4253 {
4254 pdi = pdi->die_child;
4255 while (pdi != NULL)
4256 {
4257 fixup_partial_die (pdi, cu);
4258 if (pdi->tag == DW_TAG_subprogram
4259 || pdi->tag == DW_TAG_lexical_block)
4260 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
4261 pdi = pdi->die_sibling;
4262 }
4263 }
4264 }
4265
4266 /* Read a partial die corresponding to an enumeration type. */
4267
4268 static void
4269 add_partial_enumeration (struct partial_die_info *enum_pdi,
4270 struct dwarf2_cu *cu)
4271 {
4272 struct partial_die_info *pdi;
4273
4274 if (enum_pdi->name != NULL)
4275 add_partial_symbol (enum_pdi, cu);
4276
4277 pdi = enum_pdi->die_child;
4278 while (pdi)
4279 {
4280 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
4281 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
4282 else
4283 add_partial_symbol (pdi, cu);
4284 pdi = pdi->die_sibling;
4285 }
4286 }
4287
4288 /* Return the initial uleb128 in the die at INFO_PTR. */
4289
4290 static unsigned int
4291 peek_abbrev_code (bfd *abfd, gdb_byte *info_ptr)
4292 {
4293 unsigned int bytes_read;
4294
4295 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4296 }
4297
4298 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
4299 Return the corresponding abbrev, or NULL if the number is zero (indicating
4300 an empty DIE). In either case *BYTES_READ will be set to the length of
4301 the initial number. */
4302
4303 static struct abbrev_info *
4304 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
4305 struct dwarf2_cu *cu)
4306 {
4307 bfd *abfd = cu->objfile->obfd;
4308 unsigned int abbrev_number;
4309 struct abbrev_info *abbrev;
4310
4311 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
4312
4313 if (abbrev_number == 0)
4314 return NULL;
4315
4316 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
4317 if (!abbrev)
4318 {
4319 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
4320 abbrev_number, bfd_get_filename (abfd));
4321 }
4322
4323 return abbrev;
4324 }
4325
4326 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
4327 Returns a pointer to the end of a series of DIEs, terminated by an empty
4328 DIE. Any children of the skipped DIEs will also be skipped. */
4329
4330 static gdb_byte *
4331 skip_children (gdb_byte *buffer, gdb_byte *info_ptr, struct dwarf2_cu *cu)
4332 {
4333 struct abbrev_info *abbrev;
4334 unsigned int bytes_read;
4335
4336 while (1)
4337 {
4338 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
4339 if (abbrev == NULL)
4340 return info_ptr + bytes_read;
4341 else
4342 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
4343 }
4344 }
4345
4346 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
4347 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4348 abbrev corresponding to that skipped uleb128 should be passed in
4349 ABBREV. Returns a pointer to this DIE's sibling, skipping any
4350 children. */
4351
4352 static gdb_byte *
4353 skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
4354 struct abbrev_info *abbrev, struct dwarf2_cu *cu)
4355 {
4356 unsigned int bytes_read;
4357 struct attribute attr;
4358 bfd *abfd = cu->objfile->obfd;
4359 unsigned int form, i;
4360
4361 for (i = 0; i < abbrev->num_attrs; i++)
4362 {
4363 /* The only abbrev we care about is DW_AT_sibling. */
4364 if (abbrev->attrs[i].name == DW_AT_sibling)
4365 {
4366 read_attribute (&attr, &abbrev->attrs[i],
4367 abfd, info_ptr, cu);
4368 if (attr.form == DW_FORM_ref_addr)
4369 complaint (&symfile_complaints,
4370 _("ignoring absolute DW_AT_sibling"));
4371 else
4372 return buffer + dwarf2_get_ref_die_offset (&attr);
4373 }
4374
4375 /* If it isn't DW_AT_sibling, skip this attribute. */
4376 form = abbrev->attrs[i].form;
4377 skip_attribute:
4378 switch (form)
4379 {
4380 case DW_FORM_ref_addr:
4381 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
4382 and later it is offset sized. */
4383 if (cu->header.version == 2)
4384 info_ptr += cu->header.addr_size;
4385 else
4386 info_ptr += cu->header.offset_size;
4387 break;
4388 case DW_FORM_addr:
4389 info_ptr += cu->header.addr_size;
4390 break;
4391 case DW_FORM_data1:
4392 case DW_FORM_ref1:
4393 case DW_FORM_flag:
4394 info_ptr += 1;
4395 break;
4396 case DW_FORM_flag_present:
4397 break;
4398 case DW_FORM_data2:
4399 case DW_FORM_ref2:
4400 info_ptr += 2;
4401 break;
4402 case DW_FORM_data4:
4403 case DW_FORM_ref4:
4404 info_ptr += 4;
4405 break;
4406 case DW_FORM_data8:
4407 case DW_FORM_ref8:
4408 case DW_FORM_ref_sig8:
4409 info_ptr += 8;
4410 break;
4411 case DW_FORM_string:
4412 read_direct_string (abfd, info_ptr, &bytes_read);
4413 info_ptr += bytes_read;
4414 break;
4415 case DW_FORM_sec_offset:
4416 case DW_FORM_strp:
4417 info_ptr += cu->header.offset_size;
4418 break;
4419 case DW_FORM_exprloc:
4420 case DW_FORM_block:
4421 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4422 info_ptr += bytes_read;
4423 break;
4424 case DW_FORM_block1:
4425 info_ptr += 1 + read_1_byte (abfd, info_ptr);
4426 break;
4427 case DW_FORM_block2:
4428 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
4429 break;
4430 case DW_FORM_block4:
4431 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
4432 break;
4433 case DW_FORM_sdata:
4434 case DW_FORM_udata:
4435 case DW_FORM_ref_udata:
4436 info_ptr = skip_leb128 (abfd, info_ptr);
4437 break;
4438 case DW_FORM_indirect:
4439 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4440 info_ptr += bytes_read;
4441 /* We need to continue parsing from here, so just go back to
4442 the top. */
4443 goto skip_attribute;
4444
4445 default:
4446 error (_("Dwarf Error: Cannot handle %s "
4447 "in DWARF reader [in module %s]"),
4448 dwarf_form_name (form),
4449 bfd_get_filename (abfd));
4450 }
4451 }
4452
4453 if (abbrev->has_children)
4454 return skip_children (buffer, info_ptr, cu);
4455 else
4456 return info_ptr;
4457 }
4458
4459 /* Locate ORIG_PDI's sibling.
4460 INFO_PTR should point to the start of the next DIE after ORIG_PDI
4461 in BUFFER. */
4462
4463 static gdb_byte *
4464 locate_pdi_sibling (struct partial_die_info *orig_pdi,
4465 gdb_byte *buffer, gdb_byte *info_ptr,
4466 bfd *abfd, struct dwarf2_cu *cu)
4467 {
4468 /* Do we know the sibling already? */
4469
4470 if (orig_pdi->sibling)
4471 return orig_pdi->sibling;
4472
4473 /* Are there any children to deal with? */
4474
4475 if (!orig_pdi->has_children)
4476 return info_ptr;
4477
4478 /* Skip the children the long way. */
4479
4480 return skip_children (buffer, info_ptr, cu);
4481 }
4482
4483 /* Expand this partial symbol table into a full symbol table. */
4484
4485 static void
4486 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
4487 {
4488 if (pst != NULL)
4489 {
4490 if (pst->readin)
4491 {
4492 warning (_("bug: psymtab for %s is already read in."),
4493 pst->filename);
4494 }
4495 else
4496 {
4497 if (info_verbose)
4498 {
4499 printf_filtered (_("Reading in symbols for %s..."),
4500 pst->filename);
4501 gdb_flush (gdb_stdout);
4502 }
4503
4504 /* Restore our global data. */
4505 dwarf2_per_objfile = objfile_data (pst->objfile,
4506 dwarf2_objfile_data_key);
4507
4508 /* If this psymtab is constructed from a debug-only objfile, the
4509 has_section_at_zero flag will not necessarily be correct. We
4510 can get the correct value for this flag by looking at the data
4511 associated with the (presumably stripped) associated objfile. */
4512 if (pst->objfile->separate_debug_objfile_backlink)
4513 {
4514 struct dwarf2_per_objfile *dpo_backlink
4515 = objfile_data (pst->objfile->separate_debug_objfile_backlink,
4516 dwarf2_objfile_data_key);
4517
4518 dwarf2_per_objfile->has_section_at_zero
4519 = dpo_backlink->has_section_at_zero;
4520 }
4521
4522 dwarf2_per_objfile->reading_partial_symbols = 0;
4523
4524 psymtab_to_symtab_1 (pst);
4525
4526 /* Finish up the debug error message. */
4527 if (info_verbose)
4528 printf_filtered (_("done.\n"));
4529 }
4530 }
4531 }
4532 \f
4533 /* Reading in full CUs. */
4534
4535 /* Add PER_CU to the queue. */
4536
4537 static void
4538 queue_comp_unit (struct dwarf2_per_cu_data *per_cu)
4539 {
4540 struct dwarf2_queue_item *item;
4541
4542 per_cu->queued = 1;
4543 item = xmalloc (sizeof (*item));
4544 item->per_cu = per_cu;
4545 item->next = NULL;
4546
4547 if (dwarf2_queue == NULL)
4548 dwarf2_queue = item;
4549 else
4550 dwarf2_queue_tail->next = item;
4551
4552 dwarf2_queue_tail = item;
4553 }
4554
4555 /* Process the queue. */
4556
4557 static void
4558 process_queue (void)
4559 {
4560 struct dwarf2_queue_item *item, *next_item;
4561
4562 /* The queue starts out with one item, but following a DIE reference
4563 may load a new CU, adding it to the end of the queue. */
4564 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
4565 {
4566 if (dwarf2_per_objfile->using_index
4567 ? !item->per_cu->v.quick->symtab
4568 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
4569 process_full_comp_unit (item->per_cu);
4570
4571 item->per_cu->queued = 0;
4572 next_item = item->next;
4573 xfree (item);
4574 }
4575
4576 dwarf2_queue_tail = NULL;
4577 }
4578
4579 /* Free all allocated queue entries. This function only releases anything if
4580 an error was thrown; if the queue was processed then it would have been
4581 freed as we went along. */
4582
4583 static void
4584 dwarf2_release_queue (void *dummy)
4585 {
4586 struct dwarf2_queue_item *item, *last;
4587
4588 item = dwarf2_queue;
4589 while (item)
4590 {
4591 /* Anything still marked queued is likely to be in an
4592 inconsistent state, so discard it. */
4593 if (item->per_cu->queued)
4594 {
4595 if (item->per_cu->cu != NULL)
4596 free_one_cached_comp_unit (item->per_cu->cu);
4597 item->per_cu->queued = 0;
4598 }
4599
4600 last = item;
4601 item = item->next;
4602 xfree (last);
4603 }
4604
4605 dwarf2_queue = dwarf2_queue_tail = NULL;
4606 }
4607
4608 /* Read in full symbols for PST, and anything it depends on. */
4609
4610 static void
4611 psymtab_to_symtab_1 (struct partial_symtab *pst)
4612 {
4613 struct dwarf2_per_cu_data *per_cu;
4614 struct cleanup *back_to;
4615 int i;
4616
4617 for (i = 0; i < pst->number_of_dependencies; i++)
4618 if (!pst->dependencies[i]->readin)
4619 {
4620 /* Inform about additional files that need to be read in. */
4621 if (info_verbose)
4622 {
4623 /* FIXME: i18n: Need to make this a single string. */
4624 fputs_filtered (" ", gdb_stdout);
4625 wrap_here ("");
4626 fputs_filtered ("and ", gdb_stdout);
4627 wrap_here ("");
4628 printf_filtered ("%s...", pst->dependencies[i]->filename);
4629 wrap_here (""); /* Flush output. */
4630 gdb_flush (gdb_stdout);
4631 }
4632 psymtab_to_symtab_1 (pst->dependencies[i]);
4633 }
4634
4635 per_cu = pst->read_symtab_private;
4636
4637 if (per_cu == NULL)
4638 {
4639 /* It's an include file, no symbols to read for it.
4640 Everything is in the parent symtab. */
4641 pst->readin = 1;
4642 return;
4643 }
4644
4645 dw2_do_instantiate_symtab (per_cu);
4646 }
4647
4648 /* Load the DIEs associated with PER_CU into memory. */
4649
4650 static void
4651 load_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
4652 {
4653 struct objfile *objfile = per_cu->objfile;
4654 bfd *abfd = objfile->obfd;
4655 struct dwarf2_cu *cu;
4656 unsigned int offset;
4657 gdb_byte *info_ptr, *beg_of_comp_unit;
4658 struct cleanup *free_abbrevs_cleanup = NULL, *free_cu_cleanup = NULL;
4659 struct attribute *attr;
4660 int read_cu = 0;
4661
4662 gdb_assert (! per_cu->debug_types_section);
4663
4664 /* Set local variables from the partial symbol table info. */
4665 offset = per_cu->offset;
4666
4667 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
4668 info_ptr = dwarf2_per_objfile->info.buffer + offset;
4669 beg_of_comp_unit = info_ptr;
4670
4671 if (per_cu->cu == NULL)
4672 {
4673 cu = xmalloc (sizeof (*cu));
4674 init_one_comp_unit (cu, per_cu);
4675
4676 read_cu = 1;
4677
4678 /* If an error occurs while loading, release our storage. */
4679 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
4680
4681 /* Read in the comp_unit header. */
4682 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
4683
4684 /* Skip dummy compilation units. */
4685 if (info_ptr >= (dwarf2_per_objfile->info.buffer
4686 + dwarf2_per_objfile->info.size)
4687 || peek_abbrev_code (abfd, info_ptr) == 0)
4688 {
4689 do_cleanups (free_cu_cleanup);
4690 return;
4691 }
4692
4693 /* Complete the cu_header. */
4694 cu->header.offset = offset;
4695 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
4696
4697 /* Read the abbrevs for this compilation unit. */
4698 dwarf2_read_abbrevs (cu);
4699 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
4700
4701 /* Link this CU into read_in_chain. */
4702 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4703 dwarf2_per_objfile->read_in_chain = per_cu;
4704 }
4705 else
4706 {
4707 cu = per_cu->cu;
4708 info_ptr += cu->header.first_die_offset;
4709 }
4710
4711 cu->dies = read_comp_unit (info_ptr, cu);
4712
4713 /* We try not to read any attributes in this function, because not
4714 all CUs needed for references have been loaded yet, and symbol
4715 table processing isn't initialized. But we have to set the CU language,
4716 or we won't be able to build types correctly. */
4717 prepare_one_comp_unit (cu, cu->dies);
4718
4719 /* Similarly, if we do not read the producer, we can not apply
4720 producer-specific interpretation. */
4721 attr = dwarf2_attr (cu->dies, DW_AT_producer, cu);
4722 if (attr)
4723 cu->producer = DW_STRING (attr);
4724
4725 if (read_cu)
4726 {
4727 do_cleanups (free_abbrevs_cleanup);
4728
4729 /* We've successfully allocated this compilation unit. Let our
4730 caller clean it up when finished with it. */
4731 discard_cleanups (free_cu_cleanup);
4732 }
4733 }
4734
4735 /* Add a DIE to the delayed physname list. */
4736
4737 static void
4738 add_to_method_list (struct type *type, int fnfield_index, int index,
4739 const char *name, struct die_info *die,
4740 struct dwarf2_cu *cu)
4741 {
4742 struct delayed_method_info mi;
4743 mi.type = type;
4744 mi.fnfield_index = fnfield_index;
4745 mi.index = index;
4746 mi.name = name;
4747 mi.die = die;
4748 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
4749 }
4750
4751 /* A cleanup for freeing the delayed method list. */
4752
4753 static void
4754 free_delayed_list (void *ptr)
4755 {
4756 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
4757 if (cu->method_list != NULL)
4758 {
4759 VEC_free (delayed_method_info, cu->method_list);
4760 cu->method_list = NULL;
4761 }
4762 }
4763
4764 /* Compute the physnames of any methods on the CU's method list.
4765
4766 The computation of method physnames is delayed in order to avoid the
4767 (bad) condition that one of the method's formal parameters is of an as yet
4768 incomplete type. */
4769
4770 static void
4771 compute_delayed_physnames (struct dwarf2_cu *cu)
4772 {
4773 int i;
4774 struct delayed_method_info *mi;
4775 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
4776 {
4777 const char *physname;
4778 struct fn_fieldlist *fn_flp
4779 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
4780 physname = dwarf2_physname ((char *) mi->name, mi->die, cu);
4781 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
4782 }
4783 }
4784
4785 /* Generate full symbol information for PER_CU, whose DIEs have
4786 already been loaded into memory. */
4787
4788 static void
4789 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
4790 {
4791 struct dwarf2_cu *cu = per_cu->cu;
4792 struct objfile *objfile = per_cu->objfile;
4793 CORE_ADDR lowpc, highpc;
4794 struct symtab *symtab;
4795 struct cleanup *back_to, *delayed_list_cleanup;
4796 CORE_ADDR baseaddr;
4797
4798 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4799
4800 buildsym_init ();
4801 back_to = make_cleanup (really_free_pendings, NULL);
4802 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
4803
4804 cu->list_in_scope = &file_symbols;
4805
4806 /* Do line number decoding in read_file_scope () */
4807 process_die (cu->dies, cu);
4808
4809 /* Now that we have processed all the DIEs in the CU, all the types
4810 should be complete, and it should now be safe to compute all of the
4811 physnames. */
4812 compute_delayed_physnames (cu);
4813 do_cleanups (delayed_list_cleanup);
4814
4815 /* Some compilers don't define a DW_AT_high_pc attribute for the
4816 compilation unit. If the DW_AT_high_pc is missing, synthesize
4817 it, by scanning the DIE's below the compilation unit. */
4818 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
4819
4820 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
4821
4822 if (symtab != NULL)
4823 {
4824 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4825
4826 /* Set symtab language to language from DW_AT_language. If the
4827 compilation is from a C file generated by language preprocessors, do
4828 not set the language if it was already deduced by start_subfile. */
4829 if (!(cu->language == language_c && symtab->language != language_c))
4830 symtab->language = cu->language;
4831
4832 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
4833 produce DW_AT_location with location lists but it can be possibly
4834 invalid without -fvar-tracking.
4835
4836 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
4837 needed, it would be wrong due to missing DW_AT_producer there.
4838
4839 Still one can confuse GDB by using non-standard GCC compilation
4840 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
4841 */
4842 if (cu->has_loclist && gcc_4_minor >= 0)
4843 symtab->locations_valid = 1;
4844
4845 if (gcc_4_minor >= 5)
4846 symtab->epilogue_unwind_valid = 1;
4847
4848 symtab->call_site_htab = cu->call_site_htab;
4849 }
4850
4851 if (dwarf2_per_objfile->using_index)
4852 per_cu->v.quick->symtab = symtab;
4853 else
4854 {
4855 struct partial_symtab *pst = per_cu->v.psymtab;
4856 pst->symtab = symtab;
4857 pst->readin = 1;
4858 }
4859
4860 do_cleanups (back_to);
4861 }
4862
4863 /* Process a die and its children. */
4864
4865 static void
4866 process_die (struct die_info *die, struct dwarf2_cu *cu)
4867 {
4868 switch (die->tag)
4869 {
4870 case DW_TAG_padding:
4871 break;
4872 case DW_TAG_compile_unit:
4873 read_file_scope (die, cu);
4874 break;
4875 case DW_TAG_type_unit:
4876 read_type_unit_scope (die, cu);
4877 break;
4878 case DW_TAG_subprogram:
4879 case DW_TAG_inlined_subroutine:
4880 read_func_scope (die, cu);
4881 break;
4882 case DW_TAG_lexical_block:
4883 case DW_TAG_try_block:
4884 case DW_TAG_catch_block:
4885 read_lexical_block_scope (die, cu);
4886 break;
4887 case DW_TAG_GNU_call_site:
4888 read_call_site_scope (die, cu);
4889 break;
4890 case DW_TAG_class_type:
4891 case DW_TAG_interface_type:
4892 case DW_TAG_structure_type:
4893 case DW_TAG_union_type:
4894 process_structure_scope (die, cu);
4895 break;
4896 case DW_TAG_enumeration_type:
4897 process_enumeration_scope (die, cu);
4898 break;
4899
4900 /* These dies have a type, but processing them does not create
4901 a symbol or recurse to process the children. Therefore we can
4902 read them on-demand through read_type_die. */
4903 case DW_TAG_subroutine_type:
4904 case DW_TAG_set_type:
4905 case DW_TAG_array_type:
4906 case DW_TAG_pointer_type:
4907 case DW_TAG_ptr_to_member_type:
4908 case DW_TAG_reference_type:
4909 case DW_TAG_string_type:
4910 break;
4911
4912 case DW_TAG_base_type:
4913 case DW_TAG_subrange_type:
4914 case DW_TAG_typedef:
4915 /* Add a typedef symbol for the type definition, if it has a
4916 DW_AT_name. */
4917 new_symbol (die, read_type_die (die, cu), cu);
4918 break;
4919 case DW_TAG_common_block:
4920 read_common_block (die, cu);
4921 break;
4922 case DW_TAG_common_inclusion:
4923 break;
4924 case DW_TAG_namespace:
4925 processing_has_namespace_info = 1;
4926 read_namespace (die, cu);
4927 break;
4928 case DW_TAG_module:
4929 processing_has_namespace_info = 1;
4930 read_module (die, cu);
4931 break;
4932 case DW_TAG_imported_declaration:
4933 case DW_TAG_imported_module:
4934 processing_has_namespace_info = 1;
4935 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
4936 || cu->language != language_fortran))
4937 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
4938 dwarf_tag_name (die->tag));
4939 read_import_statement (die, cu);
4940 break;
4941 default:
4942 new_symbol (die, NULL, cu);
4943 break;
4944 }
4945 }
4946
4947 /* A helper function for dwarf2_compute_name which determines whether DIE
4948 needs to have the name of the scope prepended to the name listed in the
4949 die. */
4950
4951 static int
4952 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
4953 {
4954 struct attribute *attr;
4955
4956 switch (die->tag)
4957 {
4958 case DW_TAG_namespace:
4959 case DW_TAG_typedef:
4960 case DW_TAG_class_type:
4961 case DW_TAG_interface_type:
4962 case DW_TAG_structure_type:
4963 case DW_TAG_union_type:
4964 case DW_TAG_enumeration_type:
4965 case DW_TAG_enumerator:
4966 case DW_TAG_subprogram:
4967 case DW_TAG_member:
4968 return 1;
4969
4970 case DW_TAG_variable:
4971 case DW_TAG_constant:
4972 /* We only need to prefix "globally" visible variables. These include
4973 any variable marked with DW_AT_external or any variable that
4974 lives in a namespace. [Variables in anonymous namespaces
4975 require prefixing, but they are not DW_AT_external.] */
4976
4977 if (dwarf2_attr (die, DW_AT_specification, cu))
4978 {
4979 struct dwarf2_cu *spec_cu = cu;
4980
4981 return die_needs_namespace (die_specification (die, &spec_cu),
4982 spec_cu);
4983 }
4984
4985 attr = dwarf2_attr (die, DW_AT_external, cu);
4986 if (attr == NULL && die->parent->tag != DW_TAG_namespace
4987 && die->parent->tag != DW_TAG_module)
4988 return 0;
4989 /* A variable in a lexical block of some kind does not need a
4990 namespace, even though in C++ such variables may be external
4991 and have a mangled name. */
4992 if (die->parent->tag == DW_TAG_lexical_block
4993 || die->parent->tag == DW_TAG_try_block
4994 || die->parent->tag == DW_TAG_catch_block
4995 || die->parent->tag == DW_TAG_subprogram)
4996 return 0;
4997 return 1;
4998
4999 default:
5000 return 0;
5001 }
5002 }
5003
5004 /* Retrieve the last character from a mem_file. */
5005
5006 static void
5007 do_ui_file_peek_last (void *object, const char *buffer, long length)
5008 {
5009 char *last_char_p = (char *) object;
5010
5011 if (length > 0)
5012 *last_char_p = buffer[length - 1];
5013 }
5014
5015 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
5016 compute the physname for the object, which include a method's
5017 formal parameters (C++/Java) and return type (Java).
5018
5019 For Ada, return the DIE's linkage name rather than the fully qualified
5020 name. PHYSNAME is ignored..
5021
5022 The result is allocated on the objfile_obstack and canonicalized. */
5023
5024 static const char *
5025 dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu,
5026 int physname)
5027 {
5028 struct objfile *objfile = cu->objfile;
5029
5030 if (name == NULL)
5031 name = dwarf2_name (die, cu);
5032
5033 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
5034 compute it by typename_concat inside GDB. */
5035 if (cu->language == language_ada
5036 || (cu->language == language_fortran && physname))
5037 {
5038 /* For Ada unit, we prefer the linkage name over the name, as
5039 the former contains the exported name, which the user expects
5040 to be able to reference. Ideally, we want the user to be able
5041 to reference this entity using either natural or linkage name,
5042 but we haven't started looking at this enhancement yet. */
5043 struct attribute *attr;
5044
5045 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
5046 if (attr == NULL)
5047 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
5048 if (attr && DW_STRING (attr))
5049 return DW_STRING (attr);
5050 }
5051
5052 /* These are the only languages we know how to qualify names in. */
5053 if (name != NULL
5054 && (cu->language == language_cplus || cu->language == language_java
5055 || cu->language == language_fortran))
5056 {
5057 if (die_needs_namespace (die, cu))
5058 {
5059 long length;
5060 const char *prefix;
5061 struct ui_file *buf;
5062
5063 prefix = determine_prefix (die, cu);
5064 buf = mem_fileopen ();
5065 if (*prefix != '\0')
5066 {
5067 char *prefixed_name = typename_concat (NULL, prefix, name,
5068 physname, cu);
5069
5070 fputs_unfiltered (prefixed_name, buf);
5071 xfree (prefixed_name);
5072 }
5073 else
5074 fputs_unfiltered (name, buf);
5075
5076 /* Template parameters may be specified in the DIE's DW_AT_name, or
5077 as children with DW_TAG_template_type_param or
5078 DW_TAG_value_type_param. If the latter, add them to the name
5079 here. If the name already has template parameters, then
5080 skip this step; some versions of GCC emit both, and
5081 it is more efficient to use the pre-computed name.
5082
5083 Something to keep in mind about this process: it is very
5084 unlikely, or in some cases downright impossible, to produce
5085 something that will match the mangled name of a function.
5086 If the definition of the function has the same debug info,
5087 we should be able to match up with it anyway. But fallbacks
5088 using the minimal symbol, for instance to find a method
5089 implemented in a stripped copy of libstdc++, will not work.
5090 If we do not have debug info for the definition, we will have to
5091 match them up some other way.
5092
5093 When we do name matching there is a related problem with function
5094 templates; two instantiated function templates are allowed to
5095 differ only by their return types, which we do not add here. */
5096
5097 if (cu->language == language_cplus && strchr (name, '<') == NULL)
5098 {
5099 struct attribute *attr;
5100 struct die_info *child;
5101 int first = 1;
5102
5103 die->building_fullname = 1;
5104
5105 for (child = die->child; child != NULL; child = child->sibling)
5106 {
5107 struct type *type;
5108 long value;
5109 gdb_byte *bytes;
5110 struct dwarf2_locexpr_baton *baton;
5111 struct value *v;
5112
5113 if (child->tag != DW_TAG_template_type_param
5114 && child->tag != DW_TAG_template_value_param)
5115 continue;
5116
5117 if (first)
5118 {
5119 fputs_unfiltered ("<", buf);
5120 first = 0;
5121 }
5122 else
5123 fputs_unfiltered (", ", buf);
5124
5125 attr = dwarf2_attr (child, DW_AT_type, cu);
5126 if (attr == NULL)
5127 {
5128 complaint (&symfile_complaints,
5129 _("template parameter missing DW_AT_type"));
5130 fputs_unfiltered ("UNKNOWN_TYPE", buf);
5131 continue;
5132 }
5133 type = die_type (child, cu);
5134
5135 if (child->tag == DW_TAG_template_type_param)
5136 {
5137 c_print_type (type, "", buf, -1, 0);
5138 continue;
5139 }
5140
5141 attr = dwarf2_attr (child, DW_AT_const_value, cu);
5142 if (attr == NULL)
5143 {
5144 complaint (&symfile_complaints,
5145 _("template parameter missing "
5146 "DW_AT_const_value"));
5147 fputs_unfiltered ("UNKNOWN_VALUE", buf);
5148 continue;
5149 }
5150
5151 dwarf2_const_value_attr (attr, type, name,
5152 &cu->comp_unit_obstack, cu,
5153 &value, &bytes, &baton);
5154
5155 if (TYPE_NOSIGN (type))
5156 /* GDB prints characters as NUMBER 'CHAR'. If that's
5157 changed, this can use value_print instead. */
5158 c_printchar (value, type, buf);
5159 else
5160 {
5161 struct value_print_options opts;
5162
5163 if (baton != NULL)
5164 v = dwarf2_evaluate_loc_desc (type, NULL,
5165 baton->data,
5166 baton->size,
5167 baton->per_cu);
5168 else if (bytes != NULL)
5169 {
5170 v = allocate_value (type);
5171 memcpy (value_contents_writeable (v), bytes,
5172 TYPE_LENGTH (type));
5173 }
5174 else
5175 v = value_from_longest (type, value);
5176
5177 /* Specify decimal so that we do not depend on
5178 the radix. */
5179 get_formatted_print_options (&opts, 'd');
5180 opts.raw = 1;
5181 value_print (v, buf, &opts);
5182 release_value (v);
5183 value_free (v);
5184 }
5185 }
5186
5187 die->building_fullname = 0;
5188
5189 if (!first)
5190 {
5191 /* Close the argument list, with a space if necessary
5192 (nested templates). */
5193 char last_char = '\0';
5194 ui_file_put (buf, do_ui_file_peek_last, &last_char);
5195 if (last_char == '>')
5196 fputs_unfiltered (" >", buf);
5197 else
5198 fputs_unfiltered (">", buf);
5199 }
5200 }
5201
5202 /* For Java and C++ methods, append formal parameter type
5203 information, if PHYSNAME. */
5204
5205 if (physname && die->tag == DW_TAG_subprogram
5206 && (cu->language == language_cplus
5207 || cu->language == language_java))
5208 {
5209 struct type *type = read_type_die (die, cu);
5210
5211 c_type_print_args (type, buf, 1, cu->language);
5212
5213 if (cu->language == language_java)
5214 {
5215 /* For java, we must append the return type to method
5216 names. */
5217 if (die->tag == DW_TAG_subprogram)
5218 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
5219 0, 0);
5220 }
5221 else if (cu->language == language_cplus)
5222 {
5223 /* Assume that an artificial first parameter is
5224 "this", but do not crash if it is not. RealView
5225 marks unnamed (and thus unused) parameters as
5226 artificial; there is no way to differentiate
5227 the two cases. */
5228 if (TYPE_NFIELDS (type) > 0
5229 && TYPE_FIELD_ARTIFICIAL (type, 0)
5230 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
5231 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
5232 0))))
5233 fputs_unfiltered (" const", buf);
5234 }
5235 }
5236
5237 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
5238 &length);
5239 ui_file_delete (buf);
5240
5241 if (cu->language == language_cplus)
5242 {
5243 char *cname
5244 = dwarf2_canonicalize_name (name, cu,
5245 &objfile->objfile_obstack);
5246
5247 if (cname != NULL)
5248 name = cname;
5249 }
5250 }
5251 }
5252
5253 return name;
5254 }
5255
5256 /* Return the fully qualified name of DIE, based on its DW_AT_name.
5257 If scope qualifiers are appropriate they will be added. The result
5258 will be allocated on the objfile_obstack, or NULL if the DIE does
5259 not have a name. NAME may either be from a previous call to
5260 dwarf2_name or NULL.
5261
5262 The output string will be canonicalized (if C++/Java). */
5263
5264 static const char *
5265 dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu)
5266 {
5267 return dwarf2_compute_name (name, die, cu, 0);
5268 }
5269
5270 /* Construct a physname for the given DIE in CU. NAME may either be
5271 from a previous call to dwarf2_name or NULL. The result will be
5272 allocated on the objfile_objstack or NULL if the DIE does not have a
5273 name.
5274
5275 The output string will be canonicalized (if C++/Java). */
5276
5277 static const char *
5278 dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu)
5279 {
5280 struct objfile *objfile = cu->objfile;
5281 struct attribute *attr;
5282 const char *retval, *mangled = NULL, *canon = NULL;
5283 struct cleanup *back_to;
5284 int need_copy = 1;
5285
5286 /* In this case dwarf2_compute_name is just a shortcut not building anything
5287 on its own. */
5288 if (!die_needs_namespace (die, cu))
5289 return dwarf2_compute_name (name, die, cu, 1);
5290
5291 back_to = make_cleanup (null_cleanup, NULL);
5292
5293 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
5294 if (!attr)
5295 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
5296
5297 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
5298 has computed. */
5299 if (attr && DW_STRING (attr))
5300 {
5301 char *demangled;
5302
5303 mangled = DW_STRING (attr);
5304
5305 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
5306 type. It is easier for GDB users to search for such functions as
5307 `name(params)' than `long name(params)'. In such case the minimal
5308 symbol names do not match the full symbol names but for template
5309 functions there is never a need to look up their definition from their
5310 declaration so the only disadvantage remains the minimal symbol
5311 variant `long name(params)' does not have the proper inferior type.
5312 */
5313
5314 demangled = cplus_demangle (mangled, (DMGL_PARAMS | DMGL_ANSI
5315 | (cu->language == language_java
5316 ? DMGL_JAVA | DMGL_RET_POSTFIX
5317 : DMGL_RET_DROP)));
5318 if (demangled)
5319 {
5320 make_cleanup (xfree, demangled);
5321 canon = demangled;
5322 }
5323 else
5324 {
5325 canon = mangled;
5326 need_copy = 0;
5327 }
5328 }
5329
5330 if (canon == NULL || check_physname)
5331 {
5332 const char *physname = dwarf2_compute_name (name, die, cu, 1);
5333
5334 if (canon != NULL && strcmp (physname, canon) != 0)
5335 {
5336 /* It may not mean a bug in GDB. The compiler could also
5337 compute DW_AT_linkage_name incorrectly. But in such case
5338 GDB would need to be bug-to-bug compatible. */
5339
5340 complaint (&symfile_complaints,
5341 _("Computed physname <%s> does not match demangled <%s> "
5342 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
5343 physname, canon, mangled, die->offset, objfile->name);
5344
5345 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
5346 is available here - over computed PHYSNAME. It is safer
5347 against both buggy GDB and buggy compilers. */
5348
5349 retval = canon;
5350 }
5351 else
5352 {
5353 retval = physname;
5354 need_copy = 0;
5355 }
5356 }
5357 else
5358 retval = canon;
5359
5360 if (need_copy)
5361 retval = obsavestring (retval, strlen (retval),
5362 &objfile->objfile_obstack);
5363
5364 do_cleanups (back_to);
5365 return retval;
5366 }
5367
5368 /* Read the import statement specified by the given die and record it. */
5369
5370 static void
5371 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
5372 {
5373 struct objfile *objfile = cu->objfile;
5374 struct attribute *import_attr;
5375 struct die_info *imported_die, *child_die;
5376 struct dwarf2_cu *imported_cu;
5377 const char *imported_name;
5378 const char *imported_name_prefix;
5379 const char *canonical_name;
5380 const char *import_alias;
5381 const char *imported_declaration = NULL;
5382 const char *import_prefix;
5383 VEC (const_char_ptr) *excludes = NULL;
5384 struct cleanup *cleanups;
5385
5386 char *temp;
5387
5388 import_attr = dwarf2_attr (die, DW_AT_import, cu);
5389 if (import_attr == NULL)
5390 {
5391 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
5392 dwarf_tag_name (die->tag));
5393 return;
5394 }
5395
5396 imported_cu = cu;
5397 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
5398 imported_name = dwarf2_name (imported_die, imported_cu);
5399 if (imported_name == NULL)
5400 {
5401 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
5402
5403 The import in the following code:
5404 namespace A
5405 {
5406 typedef int B;
5407 }
5408
5409 int main ()
5410 {
5411 using A::B;
5412 B b;
5413 return b;
5414 }
5415
5416 ...
5417 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
5418 <52> DW_AT_decl_file : 1
5419 <53> DW_AT_decl_line : 6
5420 <54> DW_AT_import : <0x75>
5421 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
5422 <59> DW_AT_name : B
5423 <5b> DW_AT_decl_file : 1
5424 <5c> DW_AT_decl_line : 2
5425 <5d> DW_AT_type : <0x6e>
5426 ...
5427 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
5428 <76> DW_AT_byte_size : 4
5429 <77> DW_AT_encoding : 5 (signed)
5430
5431 imports the wrong die ( 0x75 instead of 0x58 ).
5432 This case will be ignored until the gcc bug is fixed. */
5433 return;
5434 }
5435
5436 /* Figure out the local name after import. */
5437 import_alias = dwarf2_name (die, cu);
5438
5439 /* Figure out where the statement is being imported to. */
5440 import_prefix = determine_prefix (die, cu);
5441
5442 /* Figure out what the scope of the imported die is and prepend it
5443 to the name of the imported die. */
5444 imported_name_prefix = determine_prefix (imported_die, imported_cu);
5445
5446 if (imported_die->tag != DW_TAG_namespace
5447 && imported_die->tag != DW_TAG_module)
5448 {
5449 imported_declaration = imported_name;
5450 canonical_name = imported_name_prefix;
5451 }
5452 else if (strlen (imported_name_prefix) > 0)
5453 {
5454 temp = alloca (strlen (imported_name_prefix)
5455 + 2 + strlen (imported_name) + 1);
5456 strcpy (temp, imported_name_prefix);
5457 strcat (temp, "::");
5458 strcat (temp, imported_name);
5459 canonical_name = temp;
5460 }
5461 else
5462 canonical_name = imported_name;
5463
5464 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
5465
5466 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
5467 for (child_die = die->child; child_die && child_die->tag;
5468 child_die = sibling_die (child_die))
5469 {
5470 /* DWARF-4: A Fortran use statement with a “rename list” may be
5471 represented by an imported module entry with an import attribute
5472 referring to the module and owned entries corresponding to those
5473 entities that are renamed as part of being imported. */
5474
5475 if (child_die->tag != DW_TAG_imported_declaration)
5476 {
5477 complaint (&symfile_complaints,
5478 _("child DW_TAG_imported_declaration expected "
5479 "- DIE at 0x%x [in module %s]"),
5480 child_die->offset, objfile->name);
5481 continue;
5482 }
5483
5484 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
5485 if (import_attr == NULL)
5486 {
5487 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
5488 dwarf_tag_name (child_die->tag));
5489 continue;
5490 }
5491
5492 imported_cu = cu;
5493 imported_die = follow_die_ref_or_sig (child_die, import_attr,
5494 &imported_cu);
5495 imported_name = dwarf2_name (imported_die, imported_cu);
5496 if (imported_name == NULL)
5497 {
5498 complaint (&symfile_complaints,
5499 _("child DW_TAG_imported_declaration has unknown "
5500 "imported name - DIE at 0x%x [in module %s]"),
5501 child_die->offset, objfile->name);
5502 continue;
5503 }
5504
5505 VEC_safe_push (const_char_ptr, excludes, imported_name);
5506
5507 process_die (child_die, cu);
5508 }
5509
5510 cp_add_using_directive (import_prefix,
5511 canonical_name,
5512 import_alias,
5513 imported_declaration,
5514 excludes,
5515 &objfile->objfile_obstack);
5516
5517 do_cleanups (cleanups);
5518 }
5519
5520 /* Cleanup function for read_file_scope. */
5521
5522 static void
5523 free_cu_line_header (void *arg)
5524 {
5525 struct dwarf2_cu *cu = arg;
5526
5527 free_line_header (cu->line_header);
5528 cu->line_header = NULL;
5529 }
5530
5531 static void
5532 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
5533 char **name, char **comp_dir)
5534 {
5535 struct attribute *attr;
5536
5537 *name = NULL;
5538 *comp_dir = NULL;
5539
5540 /* Find the filename. Do not use dwarf2_name here, since the filename
5541 is not a source language identifier. */
5542 attr = dwarf2_attr (die, DW_AT_name, cu);
5543 if (attr)
5544 {
5545 *name = DW_STRING (attr);
5546 }
5547
5548 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5549 if (attr)
5550 *comp_dir = DW_STRING (attr);
5551 else if (*name != NULL && IS_ABSOLUTE_PATH (*name))
5552 {
5553 *comp_dir = ldirname (*name);
5554 if (*comp_dir != NULL)
5555 make_cleanup (xfree, *comp_dir);
5556 }
5557 if (*comp_dir != NULL)
5558 {
5559 /* Irix 6.2 native cc prepends <machine>.: to the compilation
5560 directory, get rid of it. */
5561 char *cp = strchr (*comp_dir, ':');
5562
5563 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
5564 *comp_dir = cp + 1;
5565 }
5566
5567 if (*name == NULL)
5568 *name = "<unknown>";
5569 }
5570
5571 /* Handle DW_AT_stmt_list for a compilation unit or type unit.
5572 DIE is the DW_TAG_compile_unit or DW_TAG_type_unit die for CU.
5573 COMP_DIR is the compilation directory.
5574 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
5575
5576 static void
5577 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
5578 const char *comp_dir, int want_line_info)
5579 {
5580 struct attribute *attr;
5581 struct objfile *objfile = cu->objfile;
5582 bfd *abfd = objfile->obfd;
5583
5584 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5585 if (attr)
5586 {
5587 unsigned int line_offset = DW_UNSND (attr);
5588 struct line_header *line_header
5589 = dwarf_decode_line_header (line_offset, abfd, cu);
5590
5591 if (line_header)
5592 {
5593 cu->line_header = line_header;
5594 make_cleanup (free_cu_line_header, cu);
5595 dwarf_decode_lines (line_header, comp_dir, cu, NULL, want_line_info);
5596 }
5597 }
5598 }
5599
5600 /* Process DW_TAG_compile_unit. */
5601
5602 static void
5603 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
5604 {
5605 struct objfile *objfile = cu->objfile;
5606 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5607 CORE_ADDR lowpc = ((CORE_ADDR) -1);
5608 CORE_ADDR highpc = ((CORE_ADDR) 0);
5609 struct attribute *attr;
5610 char *name = NULL;
5611 char *comp_dir = NULL;
5612 struct die_info *child_die;
5613 bfd *abfd = objfile->obfd;
5614 CORE_ADDR baseaddr;
5615
5616 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5617
5618 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
5619
5620 /* If we didn't find a lowpc, set it to highpc to avoid complaints
5621 from finish_block. */
5622 if (lowpc == ((CORE_ADDR) -1))
5623 lowpc = highpc;
5624 lowpc += baseaddr;
5625 highpc += baseaddr;
5626
5627 find_file_and_directory (die, cu, &name, &comp_dir);
5628
5629 attr = dwarf2_attr (die, DW_AT_language, cu);
5630 if (attr)
5631 {
5632 set_cu_language (DW_UNSND (attr), cu);
5633 }
5634
5635 attr = dwarf2_attr (die, DW_AT_producer, cu);
5636 if (attr)
5637 cu->producer = DW_STRING (attr);
5638
5639 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
5640 standardised yet. As a workaround for the language detection we fall
5641 back to the DW_AT_producer string. */
5642 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
5643 cu->language = language_opencl;
5644
5645 /* We assume that we're processing GCC output. */
5646 processing_gcc_compilation = 2;
5647
5648 processing_has_namespace_info = 0;
5649
5650 start_symtab (name, comp_dir, lowpc);
5651 record_debugformat ("DWARF 2");
5652 record_producer (cu->producer);
5653
5654 /* Decode line number information if present. We do this before
5655 processing child DIEs, so that the line header table is available
5656 for DW_AT_decl_file. */
5657 handle_DW_AT_stmt_list (die, cu, comp_dir, 1);
5658
5659 /* Process all dies in compilation unit. */
5660 if (die->child != NULL)
5661 {
5662 child_die = die->child;
5663 while (child_die && child_die->tag)
5664 {
5665 process_die (child_die, cu);
5666 child_die = sibling_die (child_die);
5667 }
5668 }
5669
5670 /* Decode macro information, if present. Dwarf 2 macro information
5671 refers to information in the line number info statement program
5672 header, so we can only read it if we've read the header
5673 successfully. */
5674 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
5675 if (attr && cu->line_header)
5676 {
5677 if (dwarf2_attr (die, DW_AT_macro_info, cu))
5678 complaint (&symfile_complaints,
5679 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
5680
5681 dwarf_decode_macros (cu->line_header, DW_UNSND (attr),
5682 comp_dir, abfd, cu,
5683 &dwarf2_per_objfile->macro, 1);
5684 }
5685 else
5686 {
5687 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
5688 if (attr && cu->line_header)
5689 {
5690 unsigned int macro_offset = DW_UNSND (attr);
5691
5692 dwarf_decode_macros (cu->line_header, macro_offset,
5693 comp_dir, abfd, cu,
5694 &dwarf2_per_objfile->macinfo, 0);
5695 }
5696 }
5697
5698 do_cleanups (back_to);
5699 }
5700
5701 /* Process DW_TAG_type_unit.
5702 For TUs we want to skip the first top level sibling if it's not the
5703 actual type being defined by this TU. In this case the first top
5704 level sibling is there to provide context only. */
5705
5706 static void
5707 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
5708 {
5709 struct objfile *objfile = cu->objfile;
5710 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5711 CORE_ADDR lowpc;
5712 struct attribute *attr;
5713 char *name = NULL;
5714 char *comp_dir = NULL;
5715 struct die_info *child_die;
5716 bfd *abfd = objfile->obfd;
5717
5718 /* start_symtab needs a low pc, but we don't really have one.
5719 Do what read_file_scope would do in the absence of such info. */
5720 lowpc = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5721
5722 /* Find the filename. Do not use dwarf2_name here, since the filename
5723 is not a source language identifier. */
5724 attr = dwarf2_attr (die, DW_AT_name, cu);
5725 if (attr)
5726 name = DW_STRING (attr);
5727
5728 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5729 if (attr)
5730 comp_dir = DW_STRING (attr);
5731 else if (name != NULL && IS_ABSOLUTE_PATH (name))
5732 {
5733 comp_dir = ldirname (name);
5734 if (comp_dir != NULL)
5735 make_cleanup (xfree, comp_dir);
5736 }
5737
5738 if (name == NULL)
5739 name = "<unknown>";
5740
5741 attr = dwarf2_attr (die, DW_AT_language, cu);
5742 if (attr)
5743 set_cu_language (DW_UNSND (attr), cu);
5744
5745 /* This isn't technically needed today. It is done for symmetry
5746 with read_file_scope. */
5747 attr = dwarf2_attr (die, DW_AT_producer, cu);
5748 if (attr)
5749 cu->producer = DW_STRING (attr);
5750
5751 /* We assume that we're processing GCC output. */
5752 processing_gcc_compilation = 2;
5753
5754 processing_has_namespace_info = 0;
5755
5756 start_symtab (name, comp_dir, lowpc);
5757 record_debugformat ("DWARF 2");
5758 record_producer (cu->producer);
5759
5760 /* Decode line number information if present. We do this before
5761 processing child DIEs, so that the line header table is available
5762 for DW_AT_decl_file.
5763 We don't need the pc/line-number mapping for type units. */
5764 handle_DW_AT_stmt_list (die, cu, comp_dir, 0);
5765
5766 /* Process the dies in the type unit. */
5767 if (die->child == NULL)
5768 {
5769 dump_die_for_error (die);
5770 error (_("Dwarf Error: Missing children for type unit [in module %s]"),
5771 bfd_get_filename (abfd));
5772 }
5773
5774 child_die = die->child;
5775
5776 while (child_die && child_die->tag)
5777 {
5778 process_die (child_die, cu);
5779
5780 child_die = sibling_die (child_die);
5781 }
5782
5783 do_cleanups (back_to);
5784 }
5785
5786 /* qsort helper for inherit_abstract_dies. */
5787
5788 static int
5789 unsigned_int_compar (const void *ap, const void *bp)
5790 {
5791 unsigned int a = *(unsigned int *) ap;
5792 unsigned int b = *(unsigned int *) bp;
5793
5794 return (a > b) - (b > a);
5795 }
5796
5797 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
5798 Inherit only the children of the DW_AT_abstract_origin DIE not being
5799 already referenced by DW_AT_abstract_origin from the children of the
5800 current DIE. */
5801
5802 static void
5803 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
5804 {
5805 struct die_info *child_die;
5806 unsigned die_children_count;
5807 /* CU offsets which were referenced by children of the current DIE. */
5808 unsigned *offsets;
5809 unsigned *offsets_end, *offsetp;
5810 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
5811 struct die_info *origin_die;
5812 /* Iterator of the ORIGIN_DIE children. */
5813 struct die_info *origin_child_die;
5814 struct cleanup *cleanups;
5815 struct attribute *attr;
5816 struct dwarf2_cu *origin_cu;
5817 struct pending **origin_previous_list_in_scope;
5818
5819 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
5820 if (!attr)
5821 return;
5822
5823 /* Note that following die references may follow to a die in a
5824 different cu. */
5825
5826 origin_cu = cu;
5827 origin_die = follow_die_ref (die, attr, &origin_cu);
5828
5829 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
5830 symbols in. */
5831 origin_previous_list_in_scope = origin_cu->list_in_scope;
5832 origin_cu->list_in_scope = cu->list_in_scope;
5833
5834 if (die->tag != origin_die->tag
5835 && !(die->tag == DW_TAG_inlined_subroutine
5836 && origin_die->tag == DW_TAG_subprogram))
5837 complaint (&symfile_complaints,
5838 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
5839 die->offset, origin_die->offset);
5840
5841 child_die = die->child;
5842 die_children_count = 0;
5843 while (child_die && child_die->tag)
5844 {
5845 child_die = sibling_die (child_die);
5846 die_children_count++;
5847 }
5848 offsets = xmalloc (sizeof (*offsets) * die_children_count);
5849 cleanups = make_cleanup (xfree, offsets);
5850
5851 offsets_end = offsets;
5852 child_die = die->child;
5853 while (child_die && child_die->tag)
5854 {
5855 /* For each CHILD_DIE, find the corresponding child of
5856 ORIGIN_DIE. If there is more than one layer of
5857 DW_AT_abstract_origin, follow them all; there shouldn't be,
5858 but GCC versions at least through 4.4 generate this (GCC PR
5859 40573). */
5860 struct die_info *child_origin_die = child_die;
5861 struct dwarf2_cu *child_origin_cu = cu;
5862
5863 while (1)
5864 {
5865 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
5866 child_origin_cu);
5867 if (attr == NULL)
5868 break;
5869 child_origin_die = follow_die_ref (child_origin_die, attr,
5870 &child_origin_cu);
5871 }
5872
5873 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
5874 counterpart may exist. */
5875 if (child_origin_die != child_die)
5876 {
5877 if (child_die->tag != child_origin_die->tag
5878 && !(child_die->tag == DW_TAG_inlined_subroutine
5879 && child_origin_die->tag == DW_TAG_subprogram))
5880 complaint (&symfile_complaints,
5881 _("Child DIE 0x%x and its abstract origin 0x%x have "
5882 "different tags"), child_die->offset,
5883 child_origin_die->offset);
5884 if (child_origin_die->parent != origin_die)
5885 complaint (&symfile_complaints,
5886 _("Child DIE 0x%x and its abstract origin 0x%x have "
5887 "different parents"), child_die->offset,
5888 child_origin_die->offset);
5889 else
5890 *offsets_end++ = child_origin_die->offset;
5891 }
5892 child_die = sibling_die (child_die);
5893 }
5894 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
5895 unsigned_int_compar);
5896 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
5897 if (offsetp[-1] == *offsetp)
5898 complaint (&symfile_complaints,
5899 _("Multiple children of DIE 0x%x refer "
5900 "to DIE 0x%x as their abstract origin"),
5901 die->offset, *offsetp);
5902
5903 offsetp = offsets;
5904 origin_child_die = origin_die->child;
5905 while (origin_child_die && origin_child_die->tag)
5906 {
5907 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
5908 while (offsetp < offsets_end && *offsetp < origin_child_die->offset)
5909 offsetp++;
5910 if (offsetp >= offsets_end || *offsetp > origin_child_die->offset)
5911 {
5912 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
5913 process_die (origin_child_die, origin_cu);
5914 }
5915 origin_child_die = sibling_die (origin_child_die);
5916 }
5917 origin_cu->list_in_scope = origin_previous_list_in_scope;
5918
5919 do_cleanups (cleanups);
5920 }
5921
5922 static void
5923 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
5924 {
5925 struct objfile *objfile = cu->objfile;
5926 struct context_stack *new;
5927 CORE_ADDR lowpc;
5928 CORE_ADDR highpc;
5929 struct die_info *child_die;
5930 struct attribute *attr, *call_line, *call_file;
5931 char *name;
5932 CORE_ADDR baseaddr;
5933 struct block *block;
5934 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
5935 VEC (symbolp) *template_args = NULL;
5936 struct template_symbol *templ_func = NULL;
5937
5938 if (inlined_func)
5939 {
5940 /* If we do not have call site information, we can't show the
5941 caller of this inlined function. That's too confusing, so
5942 only use the scope for local variables. */
5943 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
5944 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
5945 if (call_line == NULL || call_file == NULL)
5946 {
5947 read_lexical_block_scope (die, cu);
5948 return;
5949 }
5950 }
5951
5952 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5953
5954 name = dwarf2_name (die, cu);
5955
5956 /* Ignore functions with missing or empty names. These are actually
5957 illegal according to the DWARF standard. */
5958 if (name == NULL)
5959 {
5960 complaint (&symfile_complaints,
5961 _("missing name for subprogram DIE at %d"), die->offset);
5962 return;
5963 }
5964
5965 /* Ignore functions with missing or invalid low and high pc attributes. */
5966 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
5967 {
5968 attr = dwarf2_attr (die, DW_AT_external, cu);
5969 if (!attr || !DW_UNSND (attr))
5970 complaint (&symfile_complaints,
5971 _("cannot get low and high bounds "
5972 "for subprogram DIE at %d"),
5973 die->offset);
5974 return;
5975 }
5976
5977 lowpc += baseaddr;
5978 highpc += baseaddr;
5979
5980 /* If we have any template arguments, then we must allocate a
5981 different sort of symbol. */
5982 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
5983 {
5984 if (child_die->tag == DW_TAG_template_type_param
5985 || child_die->tag == DW_TAG_template_value_param)
5986 {
5987 templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5988 struct template_symbol);
5989 templ_func->base.is_cplus_template_function = 1;
5990 break;
5991 }
5992 }
5993
5994 new = push_context (0, lowpc);
5995 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
5996 (struct symbol *) templ_func);
5997
5998 /* If there is a location expression for DW_AT_frame_base, record
5999 it. */
6000 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
6001 if (attr)
6002 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
6003 expression is being recorded directly in the function's symbol
6004 and not in a separate frame-base object. I guess this hack is
6005 to avoid adding some sort of frame-base adjunct/annex to the
6006 function's symbol :-(. The problem with doing this is that it
6007 results in a function symbol with a location expression that
6008 has nothing to do with the location of the function, ouch! The
6009 relationship should be: a function's symbol has-a frame base; a
6010 frame-base has-a location expression. */
6011 dwarf2_symbol_mark_computed (attr, new->name, cu);
6012
6013 cu->list_in_scope = &local_symbols;
6014
6015 if (die->child != NULL)
6016 {
6017 child_die = die->child;
6018 while (child_die && child_die->tag)
6019 {
6020 if (child_die->tag == DW_TAG_template_type_param
6021 || child_die->tag == DW_TAG_template_value_param)
6022 {
6023 struct symbol *arg = new_symbol (child_die, NULL, cu);
6024
6025 if (arg != NULL)
6026 VEC_safe_push (symbolp, template_args, arg);
6027 }
6028 else
6029 process_die (child_die, cu);
6030 child_die = sibling_die (child_die);
6031 }
6032 }
6033
6034 inherit_abstract_dies (die, cu);
6035
6036 /* If we have a DW_AT_specification, we might need to import using
6037 directives from the context of the specification DIE. See the
6038 comment in determine_prefix. */
6039 if (cu->language == language_cplus
6040 && dwarf2_attr (die, DW_AT_specification, cu))
6041 {
6042 struct dwarf2_cu *spec_cu = cu;
6043 struct die_info *spec_die = die_specification (die, &spec_cu);
6044
6045 while (spec_die)
6046 {
6047 child_die = spec_die->child;
6048 while (child_die && child_die->tag)
6049 {
6050 if (child_die->tag == DW_TAG_imported_module)
6051 process_die (child_die, spec_cu);
6052 child_die = sibling_die (child_die);
6053 }
6054
6055 /* In some cases, GCC generates specification DIEs that
6056 themselves contain DW_AT_specification attributes. */
6057 spec_die = die_specification (spec_die, &spec_cu);
6058 }
6059 }
6060
6061 new = pop_context ();
6062 /* Make a block for the local symbols within. */
6063 block = finish_block (new->name, &local_symbols, new->old_blocks,
6064 lowpc, highpc, objfile);
6065
6066 /* For C++, set the block's scope. */
6067 if (cu->language == language_cplus || cu->language == language_fortran)
6068 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
6069 determine_prefix (die, cu),
6070 processing_has_namespace_info);
6071
6072 /* If we have address ranges, record them. */
6073 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6074
6075 /* Attach template arguments to function. */
6076 if (! VEC_empty (symbolp, template_args))
6077 {
6078 gdb_assert (templ_func != NULL);
6079
6080 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
6081 templ_func->template_arguments
6082 = obstack_alloc (&objfile->objfile_obstack,
6083 (templ_func->n_template_arguments
6084 * sizeof (struct symbol *)));
6085 memcpy (templ_func->template_arguments,
6086 VEC_address (symbolp, template_args),
6087 (templ_func->n_template_arguments * sizeof (struct symbol *)));
6088 VEC_free (symbolp, template_args);
6089 }
6090
6091 /* In C++, we can have functions nested inside functions (e.g., when
6092 a function declares a class that has methods). This means that
6093 when we finish processing a function scope, we may need to go
6094 back to building a containing block's symbol lists. */
6095 local_symbols = new->locals;
6096 param_symbols = new->params;
6097 using_directives = new->using_directives;
6098
6099 /* If we've finished processing a top-level function, subsequent
6100 symbols go in the file symbol list. */
6101 if (outermost_context_p ())
6102 cu->list_in_scope = &file_symbols;
6103 }
6104
6105 /* Process all the DIES contained within a lexical block scope. Start
6106 a new scope, process the dies, and then close the scope. */
6107
6108 static void
6109 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
6110 {
6111 struct objfile *objfile = cu->objfile;
6112 struct context_stack *new;
6113 CORE_ADDR lowpc, highpc;
6114 struct die_info *child_die;
6115 CORE_ADDR baseaddr;
6116
6117 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6118
6119 /* Ignore blocks with missing or invalid low and high pc attributes. */
6120 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
6121 as multiple lexical blocks? Handling children in a sane way would
6122 be nasty. Might be easier to properly extend generic blocks to
6123 describe ranges. */
6124 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
6125 return;
6126 lowpc += baseaddr;
6127 highpc += baseaddr;
6128
6129 push_context (0, lowpc);
6130 if (die->child != NULL)
6131 {
6132 child_die = die->child;
6133 while (child_die && child_die->tag)
6134 {
6135 process_die (child_die, cu);
6136 child_die = sibling_die (child_die);
6137 }
6138 }
6139 new = pop_context ();
6140
6141 if (local_symbols != NULL || using_directives != NULL)
6142 {
6143 struct block *block
6144 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
6145 highpc, objfile);
6146
6147 /* Note that recording ranges after traversing children, as we
6148 do here, means that recording a parent's ranges entails
6149 walking across all its children's ranges as they appear in
6150 the address map, which is quadratic behavior.
6151
6152 It would be nicer to record the parent's ranges before
6153 traversing its children, simply overriding whatever you find
6154 there. But since we don't even decide whether to create a
6155 block until after we've traversed its children, that's hard
6156 to do. */
6157 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6158 }
6159 local_symbols = new->locals;
6160 using_directives = new->using_directives;
6161 }
6162
6163 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
6164
6165 static void
6166 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
6167 {
6168 struct objfile *objfile = cu->objfile;
6169 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6170 CORE_ADDR pc, baseaddr;
6171 struct attribute *attr;
6172 struct call_site *call_site, call_site_local;
6173 void **slot;
6174 int nparams;
6175 struct die_info *child_die;
6176
6177 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6178
6179 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6180 if (!attr)
6181 {
6182 complaint (&symfile_complaints,
6183 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
6184 "DIE 0x%x [in module %s]"),
6185 die->offset, objfile->name);
6186 return;
6187 }
6188 pc = DW_ADDR (attr) + baseaddr;
6189
6190 if (cu->call_site_htab == NULL)
6191 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
6192 NULL, &objfile->objfile_obstack,
6193 hashtab_obstack_allocate, NULL);
6194 call_site_local.pc = pc;
6195 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
6196 if (*slot != NULL)
6197 {
6198 complaint (&symfile_complaints,
6199 _("Duplicate PC %s for DW_TAG_GNU_call_site "
6200 "DIE 0x%x [in module %s]"),
6201 paddress (gdbarch, pc), die->offset, objfile->name);
6202 return;
6203 }
6204
6205 /* Count parameters at the caller. */
6206
6207 nparams = 0;
6208 for (child_die = die->child; child_die && child_die->tag;
6209 child_die = sibling_die (child_die))
6210 {
6211 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
6212 {
6213 complaint (&symfile_complaints,
6214 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
6215 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
6216 child_die->tag, child_die->offset, objfile->name);
6217 continue;
6218 }
6219
6220 nparams++;
6221 }
6222
6223 call_site = obstack_alloc (&objfile->objfile_obstack,
6224 (sizeof (*call_site)
6225 + (sizeof (*call_site->parameter)
6226 * (nparams - 1))));
6227 *slot = call_site;
6228 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
6229 call_site->pc = pc;
6230
6231 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
6232 {
6233 struct die_info *func_die;
6234
6235 /* Skip also over DW_TAG_inlined_subroutine. */
6236 for (func_die = die->parent;
6237 func_die && func_die->tag != DW_TAG_subprogram
6238 && func_die->tag != DW_TAG_subroutine_type;
6239 func_die = func_die->parent);
6240
6241 /* DW_AT_GNU_all_call_sites is a superset
6242 of DW_AT_GNU_all_tail_call_sites. */
6243 if (func_die
6244 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
6245 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
6246 {
6247 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
6248 not complete. But keep CALL_SITE for look ups via call_site_htab,
6249 both the initial caller containing the real return address PC and
6250 the final callee containing the current PC of a chain of tail
6251 calls do not need to have the tail call list complete. But any
6252 function candidate for a virtual tail call frame searched via
6253 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
6254 determined unambiguously. */
6255 }
6256 else
6257 {
6258 struct type *func_type = NULL;
6259
6260 if (func_die)
6261 func_type = get_die_type (func_die, cu);
6262 if (func_type != NULL)
6263 {
6264 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
6265
6266 /* Enlist this call site to the function. */
6267 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
6268 TYPE_TAIL_CALL_LIST (func_type) = call_site;
6269 }
6270 else
6271 complaint (&symfile_complaints,
6272 _("Cannot find function owning DW_TAG_GNU_call_site "
6273 "DIE 0x%x [in module %s]"),
6274 die->offset, objfile->name);
6275 }
6276 }
6277
6278 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
6279 if (attr == NULL)
6280 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
6281 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
6282 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
6283 /* Keep NULL DWARF_BLOCK. */;
6284 else if (attr_form_is_block (attr))
6285 {
6286 struct dwarf2_locexpr_baton *dlbaton;
6287
6288 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
6289 dlbaton->data = DW_BLOCK (attr)->data;
6290 dlbaton->size = DW_BLOCK (attr)->size;
6291 dlbaton->per_cu = cu->per_cu;
6292
6293 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
6294 }
6295 else if (is_ref_attr (attr))
6296 {
6297 struct dwarf2_cu *target_cu = cu;
6298 struct die_info *target_die;
6299
6300 target_die = follow_die_ref_or_sig (die, attr, &target_cu);
6301 gdb_assert (target_cu->objfile == objfile);
6302 if (die_is_declaration (target_die, target_cu))
6303 {
6304 const char *target_physname;
6305
6306 target_physname = dwarf2_physname (NULL, target_die, target_cu);
6307 if (target_physname == NULL)
6308 complaint (&symfile_complaints,
6309 _("DW_AT_GNU_call_site_target target DIE has invalid "
6310 "physname, for referencing DIE 0x%x [in module %s]"),
6311 die->offset, objfile->name);
6312 else
6313 SET_FIELD_PHYSNAME (call_site->target, (char *) target_physname);
6314 }
6315 else
6316 {
6317 CORE_ADDR lowpc;
6318
6319 /* DW_AT_entry_pc should be preferred. */
6320 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
6321 complaint (&symfile_complaints,
6322 _("DW_AT_GNU_call_site_target target DIE has invalid "
6323 "low pc, for referencing DIE 0x%x [in module %s]"),
6324 die->offset, objfile->name);
6325 else
6326 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
6327 }
6328 }
6329 else
6330 complaint (&symfile_complaints,
6331 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
6332 "block nor reference, for DIE 0x%x [in module %s]"),
6333 die->offset, objfile->name);
6334
6335 call_site->per_cu = cu->per_cu;
6336
6337 for (child_die = die->child;
6338 child_die && child_die->tag;
6339 child_die = sibling_die (child_die))
6340 {
6341 struct dwarf2_locexpr_baton *dlbaton;
6342 struct call_site_parameter *parameter;
6343
6344 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
6345 {
6346 /* Already printed the complaint above. */
6347 continue;
6348 }
6349
6350 gdb_assert (call_site->parameter_count < nparams);
6351 parameter = &call_site->parameter[call_site->parameter_count];
6352
6353 /* DW_AT_location specifies the register number. Value of the data
6354 assumed for the register is contained in DW_AT_GNU_call_site_value. */
6355
6356 attr = dwarf2_attr (child_die, DW_AT_location, cu);
6357 if (!attr || !attr_form_is_block (attr))
6358 {
6359 complaint (&symfile_complaints,
6360 _("No DW_FORM_block* DW_AT_location for "
6361 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
6362 child_die->offset, objfile->name);
6363 continue;
6364 }
6365 parameter->dwarf_reg = dwarf_block_to_dwarf_reg (DW_BLOCK (attr)->data,
6366 &DW_BLOCK (attr)->data[DW_BLOCK (attr)->size]);
6367 if (parameter->dwarf_reg == -1
6368 && !dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (attr)->data,
6369 &DW_BLOCK (attr)->data[DW_BLOCK (attr)->size],
6370 &parameter->fb_offset))
6371 {
6372 complaint (&symfile_complaints,
6373 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
6374 "for DW_FORM_block* DW_AT_location for "
6375 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
6376 child_die->offset, objfile->name);
6377 continue;
6378 }
6379
6380 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
6381 if (!attr_form_is_block (attr))
6382 {
6383 complaint (&symfile_complaints,
6384 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
6385 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
6386 child_die->offset, objfile->name);
6387 continue;
6388 }
6389 parameter->value = DW_BLOCK (attr)->data;
6390 parameter->value_size = DW_BLOCK (attr)->size;
6391
6392 /* Parameters are not pre-cleared by memset above. */
6393 parameter->data_value = NULL;
6394 parameter->data_value_size = 0;
6395 call_site->parameter_count++;
6396
6397 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
6398 if (attr)
6399 {
6400 if (!attr_form_is_block (attr))
6401 complaint (&symfile_complaints,
6402 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
6403 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
6404 child_die->offset, objfile->name);
6405 else
6406 {
6407 parameter->data_value = DW_BLOCK (attr)->data;
6408 parameter->data_value_size = DW_BLOCK (attr)->size;
6409 }
6410 }
6411 }
6412 }
6413
6414 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
6415 Return 1 if the attributes are present and valid, otherwise, return 0.
6416 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
6417
6418 static int
6419 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
6420 CORE_ADDR *high_return, struct dwarf2_cu *cu,
6421 struct partial_symtab *ranges_pst)
6422 {
6423 struct objfile *objfile = cu->objfile;
6424 struct comp_unit_head *cu_header = &cu->header;
6425 bfd *obfd = objfile->obfd;
6426 unsigned int addr_size = cu_header->addr_size;
6427 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
6428 /* Base address selection entry. */
6429 CORE_ADDR base;
6430 int found_base;
6431 unsigned int dummy;
6432 gdb_byte *buffer;
6433 CORE_ADDR marker;
6434 int low_set;
6435 CORE_ADDR low = 0;
6436 CORE_ADDR high = 0;
6437 CORE_ADDR baseaddr;
6438
6439 found_base = cu->base_known;
6440 base = cu->base_address;
6441
6442 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
6443 if (offset >= dwarf2_per_objfile->ranges.size)
6444 {
6445 complaint (&symfile_complaints,
6446 _("Offset %d out of bounds for DW_AT_ranges attribute"),
6447 offset);
6448 return 0;
6449 }
6450 buffer = dwarf2_per_objfile->ranges.buffer + offset;
6451
6452 /* Read in the largest possible address. */
6453 marker = read_address (obfd, buffer, cu, &dummy);
6454 if ((marker & mask) == mask)
6455 {
6456 /* If we found the largest possible address, then
6457 read the base address. */
6458 base = read_address (obfd, buffer + addr_size, cu, &dummy);
6459 buffer += 2 * addr_size;
6460 offset += 2 * addr_size;
6461 found_base = 1;
6462 }
6463
6464 low_set = 0;
6465
6466 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6467
6468 while (1)
6469 {
6470 CORE_ADDR range_beginning, range_end;
6471
6472 range_beginning = read_address (obfd, buffer, cu, &dummy);
6473 buffer += addr_size;
6474 range_end = read_address (obfd, buffer, cu, &dummy);
6475 buffer += addr_size;
6476 offset += 2 * addr_size;
6477
6478 /* An end of list marker is a pair of zero addresses. */
6479 if (range_beginning == 0 && range_end == 0)
6480 /* Found the end of list entry. */
6481 break;
6482
6483 /* Each base address selection entry is a pair of 2 values.
6484 The first is the largest possible address, the second is
6485 the base address. Check for a base address here. */
6486 if ((range_beginning & mask) == mask)
6487 {
6488 /* If we found the largest possible address, then
6489 read the base address. */
6490 base = read_address (obfd, buffer + addr_size, cu, &dummy);
6491 found_base = 1;
6492 continue;
6493 }
6494
6495 if (!found_base)
6496 {
6497 /* We have no valid base address for the ranges
6498 data. */
6499 complaint (&symfile_complaints,
6500 _("Invalid .debug_ranges data (no base address)"));
6501 return 0;
6502 }
6503
6504 if (range_beginning > range_end)
6505 {
6506 /* Inverted range entries are invalid. */
6507 complaint (&symfile_complaints,
6508 _("Invalid .debug_ranges data (inverted range)"));
6509 return 0;
6510 }
6511
6512 /* Empty range entries have no effect. */
6513 if (range_beginning == range_end)
6514 continue;
6515
6516 range_beginning += base;
6517 range_end += base;
6518
6519 if (ranges_pst != NULL)
6520 addrmap_set_empty (objfile->psymtabs_addrmap,
6521 range_beginning + baseaddr,
6522 range_end - 1 + baseaddr,
6523 ranges_pst);
6524
6525 /* FIXME: This is recording everything as a low-high
6526 segment of consecutive addresses. We should have a
6527 data structure for discontiguous block ranges
6528 instead. */
6529 if (! low_set)
6530 {
6531 low = range_beginning;
6532 high = range_end;
6533 low_set = 1;
6534 }
6535 else
6536 {
6537 if (range_beginning < low)
6538 low = range_beginning;
6539 if (range_end > high)
6540 high = range_end;
6541 }
6542 }
6543
6544 if (! low_set)
6545 /* If the first entry is an end-of-list marker, the range
6546 describes an empty scope, i.e. no instructions. */
6547 return 0;
6548
6549 if (low_return)
6550 *low_return = low;
6551 if (high_return)
6552 *high_return = high;
6553 return 1;
6554 }
6555
6556 /* Get low and high pc attributes from a die. Return 1 if the attributes
6557 are present and valid, otherwise, return 0. Return -1 if the range is
6558 discontinuous, i.e. derived from DW_AT_ranges information. */
6559 static int
6560 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
6561 CORE_ADDR *highpc, struct dwarf2_cu *cu,
6562 struct partial_symtab *pst)
6563 {
6564 struct attribute *attr;
6565 CORE_ADDR low = 0;
6566 CORE_ADDR high = 0;
6567 int ret = 0;
6568
6569 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
6570 if (attr)
6571 {
6572 high = DW_ADDR (attr);
6573 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6574 if (attr)
6575 low = DW_ADDR (attr);
6576 else
6577 /* Found high w/o low attribute. */
6578 return 0;
6579
6580 /* Found consecutive range of addresses. */
6581 ret = 1;
6582 }
6583 else
6584 {
6585 attr = dwarf2_attr (die, DW_AT_ranges, cu);
6586 if (attr != NULL)
6587 {
6588 /* Value of the DW_AT_ranges attribute is the offset in the
6589 .debug_ranges section. */
6590 if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu, pst))
6591 return 0;
6592 /* Found discontinuous range of addresses. */
6593 ret = -1;
6594 }
6595 }
6596
6597 /* read_partial_die has also the strict LOW < HIGH requirement. */
6598 if (high <= low)
6599 return 0;
6600
6601 /* When using the GNU linker, .gnu.linkonce. sections are used to
6602 eliminate duplicate copies of functions and vtables and such.
6603 The linker will arbitrarily choose one and discard the others.
6604 The AT_*_pc values for such functions refer to local labels in
6605 these sections. If the section from that file was discarded, the
6606 labels are not in the output, so the relocs get a value of 0.
6607 If this is a discarded function, mark the pc bounds as invalid,
6608 so that GDB will ignore it. */
6609 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
6610 return 0;
6611
6612 *lowpc = low;
6613 if (highpc)
6614 *highpc = high;
6615 return ret;
6616 }
6617
6618 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
6619 its low and high PC addresses. Do nothing if these addresses could not
6620 be determined. Otherwise, set LOWPC to the low address if it is smaller,
6621 and HIGHPC to the high address if greater than HIGHPC. */
6622
6623 static void
6624 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
6625 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6626 struct dwarf2_cu *cu)
6627 {
6628 CORE_ADDR low, high;
6629 struct die_info *child = die->child;
6630
6631 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
6632 {
6633 *lowpc = min (*lowpc, low);
6634 *highpc = max (*highpc, high);
6635 }
6636
6637 /* If the language does not allow nested subprograms (either inside
6638 subprograms or lexical blocks), we're done. */
6639 if (cu->language != language_ada)
6640 return;
6641
6642 /* Check all the children of the given DIE. If it contains nested
6643 subprograms, then check their pc bounds. Likewise, we need to
6644 check lexical blocks as well, as they may also contain subprogram
6645 definitions. */
6646 while (child && child->tag)
6647 {
6648 if (child->tag == DW_TAG_subprogram
6649 || child->tag == DW_TAG_lexical_block)
6650 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
6651 child = sibling_die (child);
6652 }
6653 }
6654
6655 /* Get the low and high pc's represented by the scope DIE, and store
6656 them in *LOWPC and *HIGHPC. If the correct values can't be
6657 determined, set *LOWPC to -1 and *HIGHPC to 0. */
6658
6659 static void
6660 get_scope_pc_bounds (struct die_info *die,
6661 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6662 struct dwarf2_cu *cu)
6663 {
6664 CORE_ADDR best_low = (CORE_ADDR) -1;
6665 CORE_ADDR best_high = (CORE_ADDR) 0;
6666 CORE_ADDR current_low, current_high;
6667
6668 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
6669 {
6670 best_low = current_low;
6671 best_high = current_high;
6672 }
6673 else
6674 {
6675 struct die_info *child = die->child;
6676
6677 while (child && child->tag)
6678 {
6679 switch (child->tag) {
6680 case DW_TAG_subprogram:
6681 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
6682 break;
6683 case DW_TAG_namespace:
6684 case DW_TAG_module:
6685 /* FIXME: carlton/2004-01-16: Should we do this for
6686 DW_TAG_class_type/DW_TAG_structure_type, too? I think
6687 that current GCC's always emit the DIEs corresponding
6688 to definitions of methods of classes as children of a
6689 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
6690 the DIEs giving the declarations, which could be
6691 anywhere). But I don't see any reason why the
6692 standards says that they have to be there. */
6693 get_scope_pc_bounds (child, &current_low, &current_high, cu);
6694
6695 if (current_low != ((CORE_ADDR) -1))
6696 {
6697 best_low = min (best_low, current_low);
6698 best_high = max (best_high, current_high);
6699 }
6700 break;
6701 default:
6702 /* Ignore. */
6703 break;
6704 }
6705
6706 child = sibling_die (child);
6707 }
6708 }
6709
6710 *lowpc = best_low;
6711 *highpc = best_high;
6712 }
6713
6714 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
6715 in DIE. */
6716 static void
6717 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
6718 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
6719 {
6720 struct objfile *objfile = cu->objfile;
6721 struct attribute *attr;
6722
6723 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
6724 if (attr)
6725 {
6726 CORE_ADDR high = DW_ADDR (attr);
6727
6728 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6729 if (attr)
6730 {
6731 CORE_ADDR low = DW_ADDR (attr);
6732
6733 record_block_range (block, baseaddr + low, baseaddr + high - 1);
6734 }
6735 }
6736
6737 attr = dwarf2_attr (die, DW_AT_ranges, cu);
6738 if (attr)
6739 {
6740 bfd *obfd = objfile->obfd;
6741
6742 /* The value of the DW_AT_ranges attribute is the offset of the
6743 address range list in the .debug_ranges section. */
6744 unsigned long offset = DW_UNSND (attr);
6745 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
6746
6747 /* For some target architectures, but not others, the
6748 read_address function sign-extends the addresses it returns.
6749 To recognize base address selection entries, we need a
6750 mask. */
6751 unsigned int addr_size = cu->header.addr_size;
6752 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
6753
6754 /* The base address, to which the next pair is relative. Note
6755 that this 'base' is a DWARF concept: most entries in a range
6756 list are relative, to reduce the number of relocs against the
6757 debugging information. This is separate from this function's
6758 'baseaddr' argument, which GDB uses to relocate debugging
6759 information from a shared library based on the address at
6760 which the library was loaded. */
6761 CORE_ADDR base = cu->base_address;
6762 int base_known = cu->base_known;
6763
6764 gdb_assert (dwarf2_per_objfile->ranges.readin);
6765 if (offset >= dwarf2_per_objfile->ranges.size)
6766 {
6767 complaint (&symfile_complaints,
6768 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
6769 offset);
6770 return;
6771 }
6772
6773 for (;;)
6774 {
6775 unsigned int bytes_read;
6776 CORE_ADDR start, end;
6777
6778 start = read_address (obfd, buffer, cu, &bytes_read);
6779 buffer += bytes_read;
6780 end = read_address (obfd, buffer, cu, &bytes_read);
6781 buffer += bytes_read;
6782
6783 /* Did we find the end of the range list? */
6784 if (start == 0 && end == 0)
6785 break;
6786
6787 /* Did we find a base address selection entry? */
6788 else if ((start & base_select_mask) == base_select_mask)
6789 {
6790 base = end;
6791 base_known = 1;
6792 }
6793
6794 /* We found an ordinary address range. */
6795 else
6796 {
6797 if (!base_known)
6798 {
6799 complaint (&symfile_complaints,
6800 _("Invalid .debug_ranges data "
6801 "(no base address)"));
6802 return;
6803 }
6804
6805 if (start > end)
6806 {
6807 /* Inverted range entries are invalid. */
6808 complaint (&symfile_complaints,
6809 _("Invalid .debug_ranges data "
6810 "(inverted range)"));
6811 return;
6812 }
6813
6814 /* Empty range entries have no effect. */
6815 if (start == end)
6816 continue;
6817
6818 record_block_range (block,
6819 baseaddr + base + start,
6820 baseaddr + base + end - 1);
6821 }
6822 }
6823 }
6824 }
6825
6826 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
6827 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
6828 during 4.6.0 experimental. */
6829
6830 static int
6831 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
6832 {
6833 const char *cs;
6834 int major, minor, release;
6835
6836 if (cu->producer == NULL)
6837 {
6838 /* For unknown compilers expect their behavior is DWARF version
6839 compliant.
6840
6841 GCC started to support .debug_types sections by -gdwarf-4 since
6842 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
6843 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
6844 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
6845 interpreted incorrectly by GDB now - GCC PR debug/48229. */
6846
6847 return 0;
6848 }
6849
6850 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
6851
6852 if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) != 0)
6853 {
6854 /* For non-GCC compilers expect their behavior is DWARF version
6855 compliant. */
6856
6857 return 0;
6858 }
6859 cs = &cu->producer[strlen ("GNU ")];
6860 while (*cs && !isdigit (*cs))
6861 cs++;
6862 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
6863 {
6864 /* Not recognized as GCC. */
6865
6866 return 0;
6867 }
6868
6869 return major < 4 || (major == 4 && minor < 6);
6870 }
6871
6872 /* Return the default accessibility type if it is not overriden by
6873 DW_AT_accessibility. */
6874
6875 static enum dwarf_access_attribute
6876 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
6877 {
6878 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
6879 {
6880 /* The default DWARF 2 accessibility for members is public, the default
6881 accessibility for inheritance is private. */
6882
6883 if (die->tag != DW_TAG_inheritance)
6884 return DW_ACCESS_public;
6885 else
6886 return DW_ACCESS_private;
6887 }
6888 else
6889 {
6890 /* DWARF 3+ defines the default accessibility a different way. The same
6891 rules apply now for DW_TAG_inheritance as for the members and it only
6892 depends on the container kind. */
6893
6894 if (die->parent->tag == DW_TAG_class_type)
6895 return DW_ACCESS_private;
6896 else
6897 return DW_ACCESS_public;
6898 }
6899 }
6900
6901 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
6902 offset. If the attribute was not found return 0, otherwise return
6903 1. If it was found but could not properly be handled, set *OFFSET
6904 to 0. */
6905
6906 static int
6907 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
6908 LONGEST *offset)
6909 {
6910 struct attribute *attr;
6911
6912 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
6913 if (attr != NULL)
6914 {
6915 *offset = 0;
6916
6917 /* Note that we do not check for a section offset first here.
6918 This is because DW_AT_data_member_location is new in DWARF 4,
6919 so if we see it, we can assume that a constant form is really
6920 a constant and not a section offset. */
6921 if (attr_form_is_constant (attr))
6922 *offset = dwarf2_get_attr_constant_value (attr, 0);
6923 else if (attr_form_is_section_offset (attr))
6924 dwarf2_complex_location_expr_complaint ();
6925 else if (attr_form_is_block (attr))
6926 *offset = decode_locdesc (DW_BLOCK (attr), cu);
6927 else
6928 dwarf2_complex_location_expr_complaint ();
6929
6930 return 1;
6931 }
6932
6933 return 0;
6934 }
6935
6936 /* Add an aggregate field to the field list. */
6937
6938 static void
6939 dwarf2_add_field (struct field_info *fip, struct die_info *die,
6940 struct dwarf2_cu *cu)
6941 {
6942 struct objfile *objfile = cu->objfile;
6943 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6944 struct nextfield *new_field;
6945 struct attribute *attr;
6946 struct field *fp;
6947 char *fieldname = "";
6948
6949 /* Allocate a new field list entry and link it in. */
6950 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
6951 make_cleanup (xfree, new_field);
6952 memset (new_field, 0, sizeof (struct nextfield));
6953
6954 if (die->tag == DW_TAG_inheritance)
6955 {
6956 new_field->next = fip->baseclasses;
6957 fip->baseclasses = new_field;
6958 }
6959 else
6960 {
6961 new_field->next = fip->fields;
6962 fip->fields = new_field;
6963 }
6964 fip->nfields++;
6965
6966 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
6967 if (attr)
6968 new_field->accessibility = DW_UNSND (attr);
6969 else
6970 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
6971 if (new_field->accessibility != DW_ACCESS_public)
6972 fip->non_public_fields = 1;
6973
6974 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
6975 if (attr)
6976 new_field->virtuality = DW_UNSND (attr);
6977 else
6978 new_field->virtuality = DW_VIRTUALITY_none;
6979
6980 fp = &new_field->field;
6981
6982 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
6983 {
6984 LONGEST offset;
6985
6986 /* Data member other than a C++ static data member. */
6987
6988 /* Get type of field. */
6989 fp->type = die_type (die, cu);
6990
6991 SET_FIELD_BITPOS (*fp, 0);
6992
6993 /* Get bit size of field (zero if none). */
6994 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
6995 if (attr)
6996 {
6997 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
6998 }
6999 else
7000 {
7001 FIELD_BITSIZE (*fp) = 0;
7002 }
7003
7004 /* Get bit offset of field. */
7005 if (handle_data_member_location (die, cu, &offset))
7006 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
7007 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
7008 if (attr)
7009 {
7010 if (gdbarch_bits_big_endian (gdbarch))
7011 {
7012 /* For big endian bits, the DW_AT_bit_offset gives the
7013 additional bit offset from the MSB of the containing
7014 anonymous object to the MSB of the field. We don't
7015 have to do anything special since we don't need to
7016 know the size of the anonymous object. */
7017 FIELD_BITPOS (*fp) += DW_UNSND (attr);
7018 }
7019 else
7020 {
7021 /* For little endian bits, compute the bit offset to the
7022 MSB of the anonymous object, subtract off the number of
7023 bits from the MSB of the field to the MSB of the
7024 object, and then subtract off the number of bits of
7025 the field itself. The result is the bit offset of
7026 the LSB of the field. */
7027 int anonymous_size;
7028 int bit_offset = DW_UNSND (attr);
7029
7030 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7031 if (attr)
7032 {
7033 /* The size of the anonymous object containing
7034 the bit field is explicit, so use the
7035 indicated size (in bytes). */
7036 anonymous_size = DW_UNSND (attr);
7037 }
7038 else
7039 {
7040 /* The size of the anonymous object containing
7041 the bit field must be inferred from the type
7042 attribute of the data member containing the
7043 bit field. */
7044 anonymous_size = TYPE_LENGTH (fp->type);
7045 }
7046 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
7047 - bit_offset - FIELD_BITSIZE (*fp);
7048 }
7049 }
7050
7051 /* Get name of field. */
7052 fieldname = dwarf2_name (die, cu);
7053 if (fieldname == NULL)
7054 fieldname = "";
7055
7056 /* The name is already allocated along with this objfile, so we don't
7057 need to duplicate it for the type. */
7058 fp->name = fieldname;
7059
7060 /* Change accessibility for artificial fields (e.g. virtual table
7061 pointer or virtual base class pointer) to private. */
7062 if (dwarf2_attr (die, DW_AT_artificial, cu))
7063 {
7064 FIELD_ARTIFICIAL (*fp) = 1;
7065 new_field->accessibility = DW_ACCESS_private;
7066 fip->non_public_fields = 1;
7067 }
7068 }
7069 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
7070 {
7071 /* C++ static member. */
7072
7073 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
7074 is a declaration, but all versions of G++ as of this writing
7075 (so through at least 3.2.1) incorrectly generate
7076 DW_TAG_variable tags. */
7077
7078 const char *physname;
7079
7080 /* Get name of field. */
7081 fieldname = dwarf2_name (die, cu);
7082 if (fieldname == NULL)
7083 return;
7084
7085 attr = dwarf2_attr (die, DW_AT_const_value, cu);
7086 if (attr
7087 /* Only create a symbol if this is an external value.
7088 new_symbol checks this and puts the value in the global symbol
7089 table, which we want. If it is not external, new_symbol
7090 will try to put the value in cu->list_in_scope which is wrong. */
7091 && dwarf2_flag_true_p (die, DW_AT_external, cu))
7092 {
7093 /* A static const member, not much different than an enum as far as
7094 we're concerned, except that we can support more types. */
7095 new_symbol (die, NULL, cu);
7096 }
7097
7098 /* Get physical name. */
7099 physname = dwarf2_physname (fieldname, die, cu);
7100
7101 /* The name is already allocated along with this objfile, so we don't
7102 need to duplicate it for the type. */
7103 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
7104 FIELD_TYPE (*fp) = die_type (die, cu);
7105 FIELD_NAME (*fp) = fieldname;
7106 }
7107 else if (die->tag == DW_TAG_inheritance)
7108 {
7109 LONGEST offset;
7110
7111 /* C++ base class field. */
7112 if (handle_data_member_location (die, cu, &offset))
7113 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
7114 FIELD_BITSIZE (*fp) = 0;
7115 FIELD_TYPE (*fp) = die_type (die, cu);
7116 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
7117 fip->nbaseclasses++;
7118 }
7119 }
7120
7121 /* Add a typedef defined in the scope of the FIP's class. */
7122
7123 static void
7124 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
7125 struct dwarf2_cu *cu)
7126 {
7127 struct objfile *objfile = cu->objfile;
7128 struct typedef_field_list *new_field;
7129 struct attribute *attr;
7130 struct typedef_field *fp;
7131 char *fieldname = "";
7132
7133 /* Allocate a new field list entry and link it in. */
7134 new_field = xzalloc (sizeof (*new_field));
7135 make_cleanup (xfree, new_field);
7136
7137 gdb_assert (die->tag == DW_TAG_typedef);
7138
7139 fp = &new_field->field;
7140
7141 /* Get name of field. */
7142 fp->name = dwarf2_name (die, cu);
7143 if (fp->name == NULL)
7144 return;
7145
7146 fp->type = read_type_die (die, cu);
7147
7148 new_field->next = fip->typedef_field_list;
7149 fip->typedef_field_list = new_field;
7150 fip->typedef_field_list_count++;
7151 }
7152
7153 /* Create the vector of fields, and attach it to the type. */
7154
7155 static void
7156 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
7157 struct dwarf2_cu *cu)
7158 {
7159 int nfields = fip->nfields;
7160
7161 /* Record the field count, allocate space for the array of fields,
7162 and create blank accessibility bitfields if necessary. */
7163 TYPE_NFIELDS (type) = nfields;
7164 TYPE_FIELDS (type) = (struct field *)
7165 TYPE_ALLOC (type, sizeof (struct field) * nfields);
7166 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
7167
7168 if (fip->non_public_fields && cu->language != language_ada)
7169 {
7170 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7171
7172 TYPE_FIELD_PRIVATE_BITS (type) =
7173 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
7174 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
7175
7176 TYPE_FIELD_PROTECTED_BITS (type) =
7177 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
7178 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
7179
7180 TYPE_FIELD_IGNORE_BITS (type) =
7181 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
7182 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
7183 }
7184
7185 /* If the type has baseclasses, allocate and clear a bit vector for
7186 TYPE_FIELD_VIRTUAL_BITS. */
7187 if (fip->nbaseclasses && cu->language != language_ada)
7188 {
7189 int num_bytes = B_BYTES (fip->nbaseclasses);
7190 unsigned char *pointer;
7191
7192 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7193 pointer = TYPE_ALLOC (type, num_bytes);
7194 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
7195 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
7196 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
7197 }
7198
7199 /* Copy the saved-up fields into the field vector. Start from the head of
7200 the list, adding to the tail of the field array, so that they end up in
7201 the same order in the array in which they were added to the list. */
7202 while (nfields-- > 0)
7203 {
7204 struct nextfield *fieldp;
7205
7206 if (fip->fields)
7207 {
7208 fieldp = fip->fields;
7209 fip->fields = fieldp->next;
7210 }
7211 else
7212 {
7213 fieldp = fip->baseclasses;
7214 fip->baseclasses = fieldp->next;
7215 }
7216
7217 TYPE_FIELD (type, nfields) = fieldp->field;
7218 switch (fieldp->accessibility)
7219 {
7220 case DW_ACCESS_private:
7221 if (cu->language != language_ada)
7222 SET_TYPE_FIELD_PRIVATE (type, nfields);
7223 break;
7224
7225 case DW_ACCESS_protected:
7226 if (cu->language != language_ada)
7227 SET_TYPE_FIELD_PROTECTED (type, nfields);
7228 break;
7229
7230 case DW_ACCESS_public:
7231 break;
7232
7233 default:
7234 /* Unknown accessibility. Complain and treat it as public. */
7235 {
7236 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7237 fieldp->accessibility);
7238 }
7239 break;
7240 }
7241 if (nfields < fip->nbaseclasses)
7242 {
7243 switch (fieldp->virtuality)
7244 {
7245 case DW_VIRTUALITY_virtual:
7246 case DW_VIRTUALITY_pure_virtual:
7247 if (cu->language == language_ada)
7248 error (_("unexpected virtuality in component of Ada type"));
7249 SET_TYPE_FIELD_VIRTUAL (type, nfields);
7250 break;
7251 }
7252 }
7253 }
7254 }
7255
7256 /* Add a member function to the proper fieldlist. */
7257
7258 static void
7259 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
7260 struct type *type, struct dwarf2_cu *cu)
7261 {
7262 struct objfile *objfile = cu->objfile;
7263 struct attribute *attr;
7264 struct fnfieldlist *flp;
7265 int i;
7266 struct fn_field *fnp;
7267 char *fieldname;
7268 struct nextfnfield *new_fnfield;
7269 struct type *this_type;
7270 enum dwarf_access_attribute accessibility;
7271
7272 if (cu->language == language_ada)
7273 error (_("unexpected member function in Ada type"));
7274
7275 /* Get name of member function. */
7276 fieldname = dwarf2_name (die, cu);
7277 if (fieldname == NULL)
7278 return;
7279
7280 /* Look up member function name in fieldlist. */
7281 for (i = 0; i < fip->nfnfields; i++)
7282 {
7283 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
7284 break;
7285 }
7286
7287 /* Create new list element if necessary. */
7288 if (i < fip->nfnfields)
7289 flp = &fip->fnfieldlists[i];
7290 else
7291 {
7292 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
7293 {
7294 fip->fnfieldlists = (struct fnfieldlist *)
7295 xrealloc (fip->fnfieldlists,
7296 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
7297 * sizeof (struct fnfieldlist));
7298 if (fip->nfnfields == 0)
7299 make_cleanup (free_current_contents, &fip->fnfieldlists);
7300 }
7301 flp = &fip->fnfieldlists[fip->nfnfields];
7302 flp->name = fieldname;
7303 flp->length = 0;
7304 flp->head = NULL;
7305 i = fip->nfnfields++;
7306 }
7307
7308 /* Create a new member function field and chain it to the field list
7309 entry. */
7310 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
7311 make_cleanup (xfree, new_fnfield);
7312 memset (new_fnfield, 0, sizeof (struct nextfnfield));
7313 new_fnfield->next = flp->head;
7314 flp->head = new_fnfield;
7315 flp->length++;
7316
7317 /* Fill in the member function field info. */
7318 fnp = &new_fnfield->fnfield;
7319
7320 /* Delay processing of the physname until later. */
7321 if (cu->language == language_cplus || cu->language == language_java)
7322 {
7323 add_to_method_list (type, i, flp->length - 1, fieldname,
7324 die, cu);
7325 }
7326 else
7327 {
7328 const char *physname = dwarf2_physname (fieldname, die, cu);
7329 fnp->physname = physname ? physname : "";
7330 }
7331
7332 fnp->type = alloc_type (objfile);
7333 this_type = read_type_die (die, cu);
7334 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
7335 {
7336 int nparams = TYPE_NFIELDS (this_type);
7337
7338 /* TYPE is the domain of this method, and THIS_TYPE is the type
7339 of the method itself (TYPE_CODE_METHOD). */
7340 smash_to_method_type (fnp->type, type,
7341 TYPE_TARGET_TYPE (this_type),
7342 TYPE_FIELDS (this_type),
7343 TYPE_NFIELDS (this_type),
7344 TYPE_VARARGS (this_type));
7345
7346 /* Handle static member functions.
7347 Dwarf2 has no clean way to discern C++ static and non-static
7348 member functions. G++ helps GDB by marking the first
7349 parameter for non-static member functions (which is the this
7350 pointer) as artificial. We obtain this information from
7351 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
7352 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
7353 fnp->voffset = VOFFSET_STATIC;
7354 }
7355 else
7356 complaint (&symfile_complaints, _("member function type missing for '%s'"),
7357 dwarf2_full_name (fieldname, die, cu));
7358
7359 /* Get fcontext from DW_AT_containing_type if present. */
7360 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
7361 fnp->fcontext = die_containing_type (die, cu);
7362
7363 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
7364 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
7365
7366 /* Get accessibility. */
7367 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
7368 if (attr)
7369 accessibility = DW_UNSND (attr);
7370 else
7371 accessibility = dwarf2_default_access_attribute (die, cu);
7372 switch (accessibility)
7373 {
7374 case DW_ACCESS_private:
7375 fnp->is_private = 1;
7376 break;
7377 case DW_ACCESS_protected:
7378 fnp->is_protected = 1;
7379 break;
7380 }
7381
7382 /* Check for artificial methods. */
7383 attr = dwarf2_attr (die, DW_AT_artificial, cu);
7384 if (attr && DW_UNSND (attr) != 0)
7385 fnp->is_artificial = 1;
7386
7387 /* Get index in virtual function table if it is a virtual member
7388 function. For older versions of GCC, this is an offset in the
7389 appropriate virtual table, as specified by DW_AT_containing_type.
7390 For everyone else, it is an expression to be evaluated relative
7391 to the object address. */
7392
7393 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
7394 if (attr)
7395 {
7396 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
7397 {
7398 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
7399 {
7400 /* Old-style GCC. */
7401 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
7402 }
7403 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
7404 || (DW_BLOCK (attr)->size > 1
7405 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
7406 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
7407 {
7408 struct dwarf_block blk;
7409 int offset;
7410
7411 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
7412 ? 1 : 2);
7413 blk.size = DW_BLOCK (attr)->size - offset;
7414 blk.data = DW_BLOCK (attr)->data + offset;
7415 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
7416 if ((fnp->voffset % cu->header.addr_size) != 0)
7417 dwarf2_complex_location_expr_complaint ();
7418 else
7419 fnp->voffset /= cu->header.addr_size;
7420 fnp->voffset += 2;
7421 }
7422 else
7423 dwarf2_complex_location_expr_complaint ();
7424
7425 if (!fnp->fcontext)
7426 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
7427 }
7428 else if (attr_form_is_section_offset (attr))
7429 {
7430 dwarf2_complex_location_expr_complaint ();
7431 }
7432 else
7433 {
7434 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
7435 fieldname);
7436 }
7437 }
7438 else
7439 {
7440 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
7441 if (attr && DW_UNSND (attr))
7442 {
7443 /* GCC does this, as of 2008-08-25; PR debug/37237. */
7444 complaint (&symfile_complaints,
7445 _("Member function \"%s\" (offset %d) is virtual "
7446 "but the vtable offset is not specified"),
7447 fieldname, die->offset);
7448 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7449 TYPE_CPLUS_DYNAMIC (type) = 1;
7450 }
7451 }
7452 }
7453
7454 /* Create the vector of member function fields, and attach it to the type. */
7455
7456 static void
7457 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
7458 struct dwarf2_cu *cu)
7459 {
7460 struct fnfieldlist *flp;
7461 int i;
7462
7463 if (cu->language == language_ada)
7464 error (_("unexpected member functions in Ada type"));
7465
7466 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7467 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
7468 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
7469
7470 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
7471 {
7472 struct nextfnfield *nfp = flp->head;
7473 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
7474 int k;
7475
7476 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
7477 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
7478 fn_flp->fn_fields = (struct fn_field *)
7479 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
7480 for (k = flp->length; (k--, nfp); nfp = nfp->next)
7481 fn_flp->fn_fields[k] = nfp->fnfield;
7482 }
7483
7484 TYPE_NFN_FIELDS (type) = fip->nfnfields;
7485 }
7486
7487 /* Returns non-zero if NAME is the name of a vtable member in CU's
7488 language, zero otherwise. */
7489 static int
7490 is_vtable_name (const char *name, struct dwarf2_cu *cu)
7491 {
7492 static const char vptr[] = "_vptr";
7493 static const char vtable[] = "vtable";
7494
7495 /* Look for the C++ and Java forms of the vtable. */
7496 if ((cu->language == language_java
7497 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
7498 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
7499 && is_cplus_marker (name[sizeof (vptr) - 1])))
7500 return 1;
7501
7502 return 0;
7503 }
7504
7505 /* GCC outputs unnamed structures that are really pointers to member
7506 functions, with the ABI-specified layout. If TYPE describes
7507 such a structure, smash it into a member function type.
7508
7509 GCC shouldn't do this; it should just output pointer to member DIEs.
7510 This is GCC PR debug/28767. */
7511
7512 static void
7513 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
7514 {
7515 struct type *pfn_type, *domain_type, *new_type;
7516
7517 /* Check for a structure with no name and two children. */
7518 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
7519 return;
7520
7521 /* Check for __pfn and __delta members. */
7522 if (TYPE_FIELD_NAME (type, 0) == NULL
7523 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
7524 || TYPE_FIELD_NAME (type, 1) == NULL
7525 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
7526 return;
7527
7528 /* Find the type of the method. */
7529 pfn_type = TYPE_FIELD_TYPE (type, 0);
7530 if (pfn_type == NULL
7531 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
7532 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
7533 return;
7534
7535 /* Look for the "this" argument. */
7536 pfn_type = TYPE_TARGET_TYPE (pfn_type);
7537 if (TYPE_NFIELDS (pfn_type) == 0
7538 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
7539 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
7540 return;
7541
7542 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
7543 new_type = alloc_type (objfile);
7544 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
7545 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
7546 TYPE_VARARGS (pfn_type));
7547 smash_to_methodptr_type (type, new_type);
7548 }
7549
7550 /* Called when we find the DIE that starts a structure or union scope
7551 (definition) to create a type for the structure or union. Fill in
7552 the type's name and general properties; the members will not be
7553 processed until process_structure_type.
7554
7555 NOTE: we need to call these functions regardless of whether or not the
7556 DIE has a DW_AT_name attribute, since it might be an anonymous
7557 structure or union. This gets the type entered into our set of
7558 user defined types.
7559
7560 However, if the structure is incomplete (an opaque struct/union)
7561 then suppress creating a symbol table entry for it since gdb only
7562 wants to find the one with the complete definition. Note that if
7563 it is complete, we just call new_symbol, which does it's own
7564 checking about whether the struct/union is anonymous or not (and
7565 suppresses creating a symbol table entry itself). */
7566
7567 static struct type *
7568 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
7569 {
7570 struct objfile *objfile = cu->objfile;
7571 struct type *type;
7572 struct attribute *attr;
7573 char *name;
7574
7575 /* If the definition of this type lives in .debug_types, read that type.
7576 Don't follow DW_AT_specification though, that will take us back up
7577 the chain and we want to go down. */
7578 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
7579 if (attr)
7580 {
7581 struct dwarf2_cu *type_cu = cu;
7582 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
7583
7584 /* We could just recurse on read_structure_type, but we need to call
7585 get_die_type to ensure only one type for this DIE is created.
7586 This is important, for example, because for c++ classes we need
7587 TYPE_NAME set which is only done by new_symbol. Blech. */
7588 type = read_type_die (type_die, type_cu);
7589
7590 /* TYPE_CU may not be the same as CU.
7591 Ensure TYPE is recorded in CU's type_hash table. */
7592 return set_die_type (die, type, cu);
7593 }
7594
7595 type = alloc_type (objfile);
7596 INIT_CPLUS_SPECIFIC (type);
7597
7598 name = dwarf2_name (die, cu);
7599 if (name != NULL)
7600 {
7601 if (cu->language == language_cplus
7602 || cu->language == language_java)
7603 {
7604 char *full_name = (char *) dwarf2_full_name (name, die, cu);
7605
7606 /* dwarf2_full_name might have already finished building the DIE's
7607 type. If so, there is no need to continue. */
7608 if (get_die_type (die, cu) != NULL)
7609 return get_die_type (die, cu);
7610
7611 TYPE_TAG_NAME (type) = full_name;
7612 if (die->tag == DW_TAG_structure_type
7613 || die->tag == DW_TAG_class_type)
7614 TYPE_NAME (type) = TYPE_TAG_NAME (type);
7615 }
7616 else
7617 {
7618 /* The name is already allocated along with this objfile, so
7619 we don't need to duplicate it for the type. */
7620 TYPE_TAG_NAME (type) = (char *) name;
7621 if (die->tag == DW_TAG_class_type)
7622 TYPE_NAME (type) = TYPE_TAG_NAME (type);
7623 }
7624 }
7625
7626 if (die->tag == DW_TAG_structure_type)
7627 {
7628 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7629 }
7630 else if (die->tag == DW_TAG_union_type)
7631 {
7632 TYPE_CODE (type) = TYPE_CODE_UNION;
7633 }
7634 else
7635 {
7636 TYPE_CODE (type) = TYPE_CODE_CLASS;
7637 }
7638
7639 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
7640 TYPE_DECLARED_CLASS (type) = 1;
7641
7642 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7643 if (attr)
7644 {
7645 TYPE_LENGTH (type) = DW_UNSND (attr);
7646 }
7647 else
7648 {
7649 TYPE_LENGTH (type) = 0;
7650 }
7651
7652 TYPE_STUB_SUPPORTED (type) = 1;
7653 if (die_is_declaration (die, cu))
7654 TYPE_STUB (type) = 1;
7655 else if (attr == NULL && die->child == NULL
7656 && producer_is_realview (cu->producer))
7657 /* RealView does not output the required DW_AT_declaration
7658 on incomplete types. */
7659 TYPE_STUB (type) = 1;
7660
7661 /* We need to add the type field to the die immediately so we don't
7662 infinitely recurse when dealing with pointers to the structure
7663 type within the structure itself. */
7664 set_die_type (die, type, cu);
7665
7666 /* set_die_type should be already done. */
7667 set_descriptive_type (type, die, cu);
7668
7669 return type;
7670 }
7671
7672 /* Finish creating a structure or union type, including filling in
7673 its members and creating a symbol for it. */
7674
7675 static void
7676 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
7677 {
7678 struct objfile *objfile = cu->objfile;
7679 struct die_info *child_die = die->child;
7680 struct type *type;
7681
7682 type = get_die_type (die, cu);
7683 if (type == NULL)
7684 type = read_structure_type (die, cu);
7685
7686 if (die->child != NULL && ! die_is_declaration (die, cu))
7687 {
7688 struct field_info fi;
7689 struct die_info *child_die;
7690 VEC (symbolp) *template_args = NULL;
7691 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
7692
7693 memset (&fi, 0, sizeof (struct field_info));
7694
7695 child_die = die->child;
7696
7697 while (child_die && child_die->tag)
7698 {
7699 if (child_die->tag == DW_TAG_member
7700 || child_die->tag == DW_TAG_variable)
7701 {
7702 /* NOTE: carlton/2002-11-05: A C++ static data member
7703 should be a DW_TAG_member that is a declaration, but
7704 all versions of G++ as of this writing (so through at
7705 least 3.2.1) incorrectly generate DW_TAG_variable
7706 tags for them instead. */
7707 dwarf2_add_field (&fi, child_die, cu);
7708 }
7709 else if (child_die->tag == DW_TAG_subprogram)
7710 {
7711 /* C++ member function. */
7712 dwarf2_add_member_fn (&fi, child_die, type, cu);
7713 }
7714 else if (child_die->tag == DW_TAG_inheritance)
7715 {
7716 /* C++ base class field. */
7717 dwarf2_add_field (&fi, child_die, cu);
7718 }
7719 else if (child_die->tag == DW_TAG_typedef)
7720 dwarf2_add_typedef (&fi, child_die, cu);
7721 else if (child_die->tag == DW_TAG_template_type_param
7722 || child_die->tag == DW_TAG_template_value_param)
7723 {
7724 struct symbol *arg = new_symbol (child_die, NULL, cu);
7725
7726 if (arg != NULL)
7727 VEC_safe_push (symbolp, template_args, arg);
7728 }
7729
7730 child_die = sibling_die (child_die);
7731 }
7732
7733 /* Attach template arguments to type. */
7734 if (! VEC_empty (symbolp, template_args))
7735 {
7736 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7737 TYPE_N_TEMPLATE_ARGUMENTS (type)
7738 = VEC_length (symbolp, template_args);
7739 TYPE_TEMPLATE_ARGUMENTS (type)
7740 = obstack_alloc (&objfile->objfile_obstack,
7741 (TYPE_N_TEMPLATE_ARGUMENTS (type)
7742 * sizeof (struct symbol *)));
7743 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
7744 VEC_address (symbolp, template_args),
7745 (TYPE_N_TEMPLATE_ARGUMENTS (type)
7746 * sizeof (struct symbol *)));
7747 VEC_free (symbolp, template_args);
7748 }
7749
7750 /* Attach fields and member functions to the type. */
7751 if (fi.nfields)
7752 dwarf2_attach_fields_to_type (&fi, type, cu);
7753 if (fi.nfnfields)
7754 {
7755 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
7756
7757 /* Get the type which refers to the base class (possibly this
7758 class itself) which contains the vtable pointer for the current
7759 class from the DW_AT_containing_type attribute. This use of
7760 DW_AT_containing_type is a GNU extension. */
7761
7762 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
7763 {
7764 struct type *t = die_containing_type (die, cu);
7765
7766 TYPE_VPTR_BASETYPE (type) = t;
7767 if (type == t)
7768 {
7769 int i;
7770
7771 /* Our own class provides vtbl ptr. */
7772 for (i = TYPE_NFIELDS (t) - 1;
7773 i >= TYPE_N_BASECLASSES (t);
7774 --i)
7775 {
7776 const char *fieldname = TYPE_FIELD_NAME (t, i);
7777
7778 if (is_vtable_name (fieldname, cu))
7779 {
7780 TYPE_VPTR_FIELDNO (type) = i;
7781 break;
7782 }
7783 }
7784
7785 /* Complain if virtual function table field not found. */
7786 if (i < TYPE_N_BASECLASSES (t))
7787 complaint (&symfile_complaints,
7788 _("virtual function table pointer "
7789 "not found when defining class '%s'"),
7790 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
7791 "");
7792 }
7793 else
7794 {
7795 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
7796 }
7797 }
7798 else if (cu->producer
7799 && strncmp (cu->producer,
7800 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
7801 {
7802 /* The IBM XLC compiler does not provide direct indication
7803 of the containing type, but the vtable pointer is
7804 always named __vfp. */
7805
7806 int i;
7807
7808 for (i = TYPE_NFIELDS (type) - 1;
7809 i >= TYPE_N_BASECLASSES (type);
7810 --i)
7811 {
7812 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
7813 {
7814 TYPE_VPTR_FIELDNO (type) = i;
7815 TYPE_VPTR_BASETYPE (type) = type;
7816 break;
7817 }
7818 }
7819 }
7820 }
7821
7822 /* Copy fi.typedef_field_list linked list elements content into the
7823 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
7824 if (fi.typedef_field_list)
7825 {
7826 int i = fi.typedef_field_list_count;
7827
7828 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7829 TYPE_TYPEDEF_FIELD_ARRAY (type)
7830 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
7831 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
7832
7833 /* Reverse the list order to keep the debug info elements order. */
7834 while (--i >= 0)
7835 {
7836 struct typedef_field *dest, *src;
7837
7838 dest = &TYPE_TYPEDEF_FIELD (type, i);
7839 src = &fi.typedef_field_list->field;
7840 fi.typedef_field_list = fi.typedef_field_list->next;
7841 *dest = *src;
7842 }
7843 }
7844
7845 do_cleanups (back_to);
7846
7847 if (HAVE_CPLUS_STRUCT (type))
7848 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
7849 }
7850
7851 quirk_gcc_member_function_pointer (type, objfile);
7852
7853 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
7854 snapshots) has been known to create a die giving a declaration
7855 for a class that has, as a child, a die giving a definition for a
7856 nested class. So we have to process our children even if the
7857 current die is a declaration. Normally, of course, a declaration
7858 won't have any children at all. */
7859
7860 while (child_die != NULL && child_die->tag)
7861 {
7862 if (child_die->tag == DW_TAG_member
7863 || child_die->tag == DW_TAG_variable
7864 || child_die->tag == DW_TAG_inheritance
7865 || child_die->tag == DW_TAG_template_value_param
7866 || child_die->tag == DW_TAG_template_type_param)
7867 {
7868 /* Do nothing. */
7869 }
7870 else
7871 process_die (child_die, cu);
7872
7873 child_die = sibling_die (child_die);
7874 }
7875
7876 /* Do not consider external references. According to the DWARF standard,
7877 these DIEs are identified by the fact that they have no byte_size
7878 attribute, and a declaration attribute. */
7879 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
7880 || !die_is_declaration (die, cu))
7881 new_symbol (die, type, cu);
7882 }
7883
7884 /* Given a DW_AT_enumeration_type die, set its type. We do not
7885 complete the type's fields yet, or create any symbols. */
7886
7887 static struct type *
7888 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
7889 {
7890 struct objfile *objfile = cu->objfile;
7891 struct type *type;
7892 struct attribute *attr;
7893 const char *name;
7894
7895 /* If the definition of this type lives in .debug_types, read that type.
7896 Don't follow DW_AT_specification though, that will take us back up
7897 the chain and we want to go down. */
7898 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
7899 if (attr)
7900 {
7901 struct dwarf2_cu *type_cu = cu;
7902 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
7903
7904 type = read_type_die (type_die, type_cu);
7905
7906 /* TYPE_CU may not be the same as CU.
7907 Ensure TYPE is recorded in CU's type_hash table. */
7908 return set_die_type (die, type, cu);
7909 }
7910
7911 type = alloc_type (objfile);
7912
7913 TYPE_CODE (type) = TYPE_CODE_ENUM;
7914 name = dwarf2_full_name (NULL, die, cu);
7915 if (name != NULL)
7916 TYPE_TAG_NAME (type) = (char *) name;
7917
7918 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7919 if (attr)
7920 {
7921 TYPE_LENGTH (type) = DW_UNSND (attr);
7922 }
7923 else
7924 {
7925 TYPE_LENGTH (type) = 0;
7926 }
7927
7928 /* The enumeration DIE can be incomplete. In Ada, any type can be
7929 declared as private in the package spec, and then defined only
7930 inside the package body. Such types are known as Taft Amendment
7931 Types. When another package uses such a type, an incomplete DIE
7932 may be generated by the compiler. */
7933 if (die_is_declaration (die, cu))
7934 TYPE_STUB (type) = 1;
7935
7936 return set_die_type (die, type, cu);
7937 }
7938
7939 /* Given a pointer to a die which begins an enumeration, process all
7940 the dies that define the members of the enumeration, and create the
7941 symbol for the enumeration type.
7942
7943 NOTE: We reverse the order of the element list. */
7944
7945 static void
7946 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
7947 {
7948 struct type *this_type;
7949
7950 this_type = get_die_type (die, cu);
7951 if (this_type == NULL)
7952 this_type = read_enumeration_type (die, cu);
7953
7954 if (die->child != NULL)
7955 {
7956 struct die_info *child_die;
7957 struct symbol *sym;
7958 struct field *fields = NULL;
7959 int num_fields = 0;
7960 int unsigned_enum = 1;
7961 char *name;
7962 int flag_enum = 1;
7963 ULONGEST mask = 0;
7964
7965 child_die = die->child;
7966 while (child_die && child_die->tag)
7967 {
7968 if (child_die->tag != DW_TAG_enumerator)
7969 {
7970 process_die (child_die, cu);
7971 }
7972 else
7973 {
7974 name = dwarf2_name (child_die, cu);
7975 if (name)
7976 {
7977 sym = new_symbol (child_die, this_type, cu);
7978 if (SYMBOL_VALUE (sym) < 0)
7979 {
7980 unsigned_enum = 0;
7981 flag_enum = 0;
7982 }
7983 else if ((mask & SYMBOL_VALUE (sym)) != 0)
7984 flag_enum = 0;
7985 else
7986 mask |= SYMBOL_VALUE (sym);
7987
7988 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
7989 {
7990 fields = (struct field *)
7991 xrealloc (fields,
7992 (num_fields + DW_FIELD_ALLOC_CHUNK)
7993 * sizeof (struct field));
7994 }
7995
7996 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
7997 FIELD_TYPE (fields[num_fields]) = NULL;
7998 SET_FIELD_BITPOS (fields[num_fields], SYMBOL_VALUE (sym));
7999 FIELD_BITSIZE (fields[num_fields]) = 0;
8000
8001 num_fields++;
8002 }
8003 }
8004
8005 child_die = sibling_die (child_die);
8006 }
8007
8008 if (num_fields)
8009 {
8010 TYPE_NFIELDS (this_type) = num_fields;
8011 TYPE_FIELDS (this_type) = (struct field *)
8012 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
8013 memcpy (TYPE_FIELDS (this_type), fields,
8014 sizeof (struct field) * num_fields);
8015 xfree (fields);
8016 }
8017 if (unsigned_enum)
8018 TYPE_UNSIGNED (this_type) = 1;
8019 if (flag_enum)
8020 TYPE_FLAG_ENUM (this_type) = 1;
8021 }
8022
8023 /* If we are reading an enum from a .debug_types unit, and the enum
8024 is a declaration, and the enum is not the signatured type in the
8025 unit, then we do not want to add a symbol for it. Adding a
8026 symbol would in some cases obscure the true definition of the
8027 enum, giving users an incomplete type when the definition is
8028 actually available. Note that we do not want to do this for all
8029 enums which are just declarations, because C++0x allows forward
8030 enum declarations. */
8031 if (cu->per_cu->debug_types_section
8032 && die_is_declaration (die, cu))
8033 {
8034 struct signatured_type *type_sig;
8035
8036 type_sig
8037 = lookup_signatured_type_at_offset (dwarf2_per_objfile->objfile,
8038 cu->per_cu->debug_types_section,
8039 cu->per_cu->offset);
8040 if (type_sig->type_offset != die->offset)
8041 return;
8042 }
8043
8044 new_symbol (die, this_type, cu);
8045 }
8046
8047 /* Extract all information from a DW_TAG_array_type DIE and put it in
8048 the DIE's type field. For now, this only handles one dimensional
8049 arrays. */
8050
8051 static struct type *
8052 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
8053 {
8054 struct objfile *objfile = cu->objfile;
8055 struct die_info *child_die;
8056 struct type *type;
8057 struct type *element_type, *range_type, *index_type;
8058 struct type **range_types = NULL;
8059 struct attribute *attr;
8060 int ndim = 0;
8061 struct cleanup *back_to;
8062 char *name;
8063
8064 element_type = die_type (die, cu);
8065
8066 /* The die_type call above may have already set the type for this DIE. */
8067 type = get_die_type (die, cu);
8068 if (type)
8069 return type;
8070
8071 /* Irix 6.2 native cc creates array types without children for
8072 arrays with unspecified length. */
8073 if (die->child == NULL)
8074 {
8075 index_type = objfile_type (objfile)->builtin_int;
8076 range_type = create_range_type (NULL, index_type, 0, -1);
8077 type = create_array_type (NULL, element_type, range_type);
8078 return set_die_type (die, type, cu);
8079 }
8080
8081 back_to = make_cleanup (null_cleanup, NULL);
8082 child_die = die->child;
8083 while (child_die && child_die->tag)
8084 {
8085 if (child_die->tag == DW_TAG_subrange_type)
8086 {
8087 struct type *child_type = read_type_die (child_die, cu);
8088
8089 if (child_type != NULL)
8090 {
8091 /* The range type was succesfully read. Save it for the
8092 array type creation. */
8093 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
8094 {
8095 range_types = (struct type **)
8096 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
8097 * sizeof (struct type *));
8098 if (ndim == 0)
8099 make_cleanup (free_current_contents, &range_types);
8100 }
8101 range_types[ndim++] = child_type;
8102 }
8103 }
8104 child_die = sibling_die (child_die);
8105 }
8106
8107 /* Dwarf2 dimensions are output from left to right, create the
8108 necessary array types in backwards order. */
8109
8110 type = element_type;
8111
8112 if (read_array_order (die, cu) == DW_ORD_col_major)
8113 {
8114 int i = 0;
8115
8116 while (i < ndim)
8117 type = create_array_type (NULL, type, range_types[i++]);
8118 }
8119 else
8120 {
8121 while (ndim-- > 0)
8122 type = create_array_type (NULL, type, range_types[ndim]);
8123 }
8124
8125 /* Understand Dwarf2 support for vector types (like they occur on
8126 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
8127 array type. This is not part of the Dwarf2/3 standard yet, but a
8128 custom vendor extension. The main difference between a regular
8129 array and the vector variant is that vectors are passed by value
8130 to functions. */
8131 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
8132 if (attr)
8133 make_vector_type (type);
8134
8135 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
8136 implementation may choose to implement triple vectors using this
8137 attribute. */
8138 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8139 if (attr)
8140 {
8141 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
8142 TYPE_LENGTH (type) = DW_UNSND (attr);
8143 else
8144 complaint (&symfile_complaints,
8145 _("DW_AT_byte_size for array type smaller "
8146 "than the total size of elements"));
8147 }
8148
8149 name = dwarf2_name (die, cu);
8150 if (name)
8151 TYPE_NAME (type) = name;
8152
8153 /* Install the type in the die. */
8154 set_die_type (die, type, cu);
8155
8156 /* set_die_type should be already done. */
8157 set_descriptive_type (type, die, cu);
8158
8159 do_cleanups (back_to);
8160
8161 return type;
8162 }
8163
8164 static enum dwarf_array_dim_ordering
8165 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
8166 {
8167 struct attribute *attr;
8168
8169 attr = dwarf2_attr (die, DW_AT_ordering, cu);
8170
8171 if (attr) return DW_SND (attr);
8172
8173 /* GNU F77 is a special case, as at 08/2004 array type info is the
8174 opposite order to the dwarf2 specification, but data is still
8175 laid out as per normal fortran.
8176
8177 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
8178 version checking. */
8179
8180 if (cu->language == language_fortran
8181 && cu->producer && strstr (cu->producer, "GNU F77"))
8182 {
8183 return DW_ORD_row_major;
8184 }
8185
8186 switch (cu->language_defn->la_array_ordering)
8187 {
8188 case array_column_major:
8189 return DW_ORD_col_major;
8190 case array_row_major:
8191 default:
8192 return DW_ORD_row_major;
8193 };
8194 }
8195
8196 /* Extract all information from a DW_TAG_set_type DIE and put it in
8197 the DIE's type field. */
8198
8199 static struct type *
8200 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
8201 {
8202 struct type *domain_type, *set_type;
8203 struct attribute *attr;
8204
8205 domain_type = die_type (die, cu);
8206
8207 /* The die_type call above may have already set the type for this DIE. */
8208 set_type = get_die_type (die, cu);
8209 if (set_type)
8210 return set_type;
8211
8212 set_type = create_set_type (NULL, domain_type);
8213
8214 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8215 if (attr)
8216 TYPE_LENGTH (set_type) = DW_UNSND (attr);
8217
8218 return set_die_type (die, set_type, cu);
8219 }
8220
8221 /* First cut: install each common block member as a global variable. */
8222
8223 static void
8224 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
8225 {
8226 struct die_info *child_die;
8227 struct attribute *attr;
8228 struct symbol *sym;
8229 CORE_ADDR base = (CORE_ADDR) 0;
8230
8231 attr = dwarf2_attr (die, DW_AT_location, cu);
8232 if (attr)
8233 {
8234 /* Support the .debug_loc offsets. */
8235 if (attr_form_is_block (attr))
8236 {
8237 base = decode_locdesc (DW_BLOCK (attr), cu);
8238 }
8239 else if (attr_form_is_section_offset (attr))
8240 {
8241 dwarf2_complex_location_expr_complaint ();
8242 }
8243 else
8244 {
8245 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
8246 "common block member");
8247 }
8248 }
8249 if (die->child != NULL)
8250 {
8251 child_die = die->child;
8252 while (child_die && child_die->tag)
8253 {
8254 LONGEST offset;
8255
8256 sym = new_symbol (child_die, NULL, cu);
8257 if (sym != NULL
8258 && handle_data_member_location (child_die, cu, &offset))
8259 {
8260 SYMBOL_VALUE_ADDRESS (sym) = base + offset;
8261 add_symbol_to_list (sym, &global_symbols);
8262 }
8263 child_die = sibling_die (child_die);
8264 }
8265 }
8266 }
8267
8268 /* Create a type for a C++ namespace. */
8269
8270 static struct type *
8271 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
8272 {
8273 struct objfile *objfile = cu->objfile;
8274 const char *previous_prefix, *name;
8275 int is_anonymous;
8276 struct type *type;
8277
8278 /* For extensions, reuse the type of the original namespace. */
8279 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
8280 {
8281 struct die_info *ext_die;
8282 struct dwarf2_cu *ext_cu = cu;
8283
8284 ext_die = dwarf2_extension (die, &ext_cu);
8285 type = read_type_die (ext_die, ext_cu);
8286
8287 /* EXT_CU may not be the same as CU.
8288 Ensure TYPE is recorded in CU's type_hash table. */
8289 return set_die_type (die, type, cu);
8290 }
8291
8292 name = namespace_name (die, &is_anonymous, cu);
8293
8294 /* Now build the name of the current namespace. */
8295
8296 previous_prefix = determine_prefix (die, cu);
8297 if (previous_prefix[0] != '\0')
8298 name = typename_concat (&objfile->objfile_obstack,
8299 previous_prefix, name, 0, cu);
8300
8301 /* Create the type. */
8302 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
8303 objfile);
8304 TYPE_NAME (type) = (char *) name;
8305 TYPE_TAG_NAME (type) = TYPE_NAME (type);
8306
8307 return set_die_type (die, type, cu);
8308 }
8309
8310 /* Read a C++ namespace. */
8311
8312 static void
8313 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
8314 {
8315 struct objfile *objfile = cu->objfile;
8316 int is_anonymous;
8317
8318 /* Add a symbol associated to this if we haven't seen the namespace
8319 before. Also, add a using directive if it's an anonymous
8320 namespace. */
8321
8322 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
8323 {
8324 struct type *type;
8325
8326 type = read_type_die (die, cu);
8327 new_symbol (die, type, cu);
8328
8329 namespace_name (die, &is_anonymous, cu);
8330 if (is_anonymous)
8331 {
8332 const char *previous_prefix = determine_prefix (die, cu);
8333
8334 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
8335 NULL, NULL, &objfile->objfile_obstack);
8336 }
8337 }
8338
8339 if (die->child != NULL)
8340 {
8341 struct die_info *child_die = die->child;
8342
8343 while (child_die && child_die->tag)
8344 {
8345 process_die (child_die, cu);
8346 child_die = sibling_die (child_die);
8347 }
8348 }
8349 }
8350
8351 /* Read a Fortran module as type. This DIE can be only a declaration used for
8352 imported module. Still we need that type as local Fortran "use ... only"
8353 declaration imports depend on the created type in determine_prefix. */
8354
8355 static struct type *
8356 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
8357 {
8358 struct objfile *objfile = cu->objfile;
8359 char *module_name;
8360 struct type *type;
8361
8362 module_name = dwarf2_name (die, cu);
8363 if (!module_name)
8364 complaint (&symfile_complaints,
8365 _("DW_TAG_module has no name, offset 0x%x"),
8366 die->offset);
8367 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
8368
8369 /* determine_prefix uses TYPE_TAG_NAME. */
8370 TYPE_TAG_NAME (type) = TYPE_NAME (type);
8371
8372 return set_die_type (die, type, cu);
8373 }
8374
8375 /* Read a Fortran module. */
8376
8377 static void
8378 read_module (struct die_info *die, struct dwarf2_cu *cu)
8379 {
8380 struct die_info *child_die = die->child;
8381
8382 while (child_die && child_die->tag)
8383 {
8384 process_die (child_die, cu);
8385 child_die = sibling_die (child_die);
8386 }
8387 }
8388
8389 /* Return the name of the namespace represented by DIE. Set
8390 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
8391 namespace. */
8392
8393 static const char *
8394 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
8395 {
8396 struct die_info *current_die;
8397 const char *name = NULL;
8398
8399 /* Loop through the extensions until we find a name. */
8400
8401 for (current_die = die;
8402 current_die != NULL;
8403 current_die = dwarf2_extension (die, &cu))
8404 {
8405 name = dwarf2_name (current_die, cu);
8406 if (name != NULL)
8407 break;
8408 }
8409
8410 /* Is it an anonymous namespace? */
8411
8412 *is_anonymous = (name == NULL);
8413 if (*is_anonymous)
8414 name = CP_ANONYMOUS_NAMESPACE_STR;
8415
8416 return name;
8417 }
8418
8419 /* Extract all information from a DW_TAG_pointer_type DIE and add to
8420 the user defined type vector. */
8421
8422 static struct type *
8423 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
8424 {
8425 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
8426 struct comp_unit_head *cu_header = &cu->header;
8427 struct type *type;
8428 struct attribute *attr_byte_size;
8429 struct attribute *attr_address_class;
8430 int byte_size, addr_class;
8431 struct type *target_type;
8432
8433 target_type = die_type (die, cu);
8434
8435 /* The die_type call above may have already set the type for this DIE. */
8436 type = get_die_type (die, cu);
8437 if (type)
8438 return type;
8439
8440 type = lookup_pointer_type (target_type);
8441
8442 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8443 if (attr_byte_size)
8444 byte_size = DW_UNSND (attr_byte_size);
8445 else
8446 byte_size = cu_header->addr_size;
8447
8448 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8449 if (attr_address_class)
8450 addr_class = DW_UNSND (attr_address_class);
8451 else
8452 addr_class = DW_ADDR_none;
8453
8454 /* If the pointer size or address class is different than the
8455 default, create a type variant marked as such and set the
8456 length accordingly. */
8457 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
8458 {
8459 if (gdbarch_address_class_type_flags_p (gdbarch))
8460 {
8461 int type_flags;
8462
8463 type_flags = gdbarch_address_class_type_flags
8464 (gdbarch, byte_size, addr_class);
8465 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
8466 == 0);
8467 type = make_type_with_address_space (type, type_flags);
8468 }
8469 else if (TYPE_LENGTH (type) != byte_size)
8470 {
8471 complaint (&symfile_complaints,
8472 _("invalid pointer size %d"), byte_size);
8473 }
8474 else
8475 {
8476 /* Should we also complain about unhandled address classes? */
8477 }
8478 }
8479
8480 TYPE_LENGTH (type) = byte_size;
8481 return set_die_type (die, type, cu);
8482 }
8483
8484 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
8485 the user defined type vector. */
8486
8487 static struct type *
8488 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
8489 {
8490 struct type *type;
8491 struct type *to_type;
8492 struct type *domain;
8493
8494 to_type = die_type (die, cu);
8495 domain = die_containing_type (die, cu);
8496
8497 /* The calls above may have already set the type for this DIE. */
8498 type = get_die_type (die, cu);
8499 if (type)
8500 return type;
8501
8502 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
8503 type = lookup_methodptr_type (to_type);
8504 else
8505 type = lookup_memberptr_type (to_type, domain);
8506
8507 return set_die_type (die, type, cu);
8508 }
8509
8510 /* Extract all information from a DW_TAG_reference_type DIE and add to
8511 the user defined type vector. */
8512
8513 static struct type *
8514 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
8515 {
8516 struct comp_unit_head *cu_header = &cu->header;
8517 struct type *type, *target_type;
8518 struct attribute *attr;
8519
8520 target_type = die_type (die, cu);
8521
8522 /* The die_type call above may have already set the type for this DIE. */
8523 type = get_die_type (die, cu);
8524 if (type)
8525 return type;
8526
8527 type = lookup_reference_type (target_type);
8528 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8529 if (attr)
8530 {
8531 TYPE_LENGTH (type) = DW_UNSND (attr);
8532 }
8533 else
8534 {
8535 TYPE_LENGTH (type) = cu_header->addr_size;
8536 }
8537 return set_die_type (die, type, cu);
8538 }
8539
8540 static struct type *
8541 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
8542 {
8543 struct type *base_type, *cv_type;
8544
8545 base_type = die_type (die, cu);
8546
8547 /* The die_type call above may have already set the type for this DIE. */
8548 cv_type = get_die_type (die, cu);
8549 if (cv_type)
8550 return cv_type;
8551
8552 /* In case the const qualifier is applied to an array type, the element type
8553 is so qualified, not the array type (section 6.7.3 of C99). */
8554 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
8555 {
8556 struct type *el_type, *inner_array;
8557
8558 base_type = copy_type (base_type);
8559 inner_array = base_type;
8560
8561 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
8562 {
8563 TYPE_TARGET_TYPE (inner_array) =
8564 copy_type (TYPE_TARGET_TYPE (inner_array));
8565 inner_array = TYPE_TARGET_TYPE (inner_array);
8566 }
8567
8568 el_type = TYPE_TARGET_TYPE (inner_array);
8569 TYPE_TARGET_TYPE (inner_array) =
8570 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
8571
8572 return set_die_type (die, base_type, cu);
8573 }
8574
8575 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
8576 return set_die_type (die, cv_type, cu);
8577 }
8578
8579 static struct type *
8580 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
8581 {
8582 struct type *base_type, *cv_type;
8583
8584 base_type = die_type (die, cu);
8585
8586 /* The die_type call above may have already set the type for this DIE. */
8587 cv_type = get_die_type (die, cu);
8588 if (cv_type)
8589 return cv_type;
8590
8591 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
8592 return set_die_type (die, cv_type, cu);
8593 }
8594
8595 /* Extract all information from a DW_TAG_string_type DIE and add to
8596 the user defined type vector. It isn't really a user defined type,
8597 but it behaves like one, with other DIE's using an AT_user_def_type
8598 attribute to reference it. */
8599
8600 static struct type *
8601 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
8602 {
8603 struct objfile *objfile = cu->objfile;
8604 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8605 struct type *type, *range_type, *index_type, *char_type;
8606 struct attribute *attr;
8607 unsigned int length;
8608
8609 attr = dwarf2_attr (die, DW_AT_string_length, cu);
8610 if (attr)
8611 {
8612 length = DW_UNSND (attr);
8613 }
8614 else
8615 {
8616 /* Check for the DW_AT_byte_size attribute. */
8617 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8618 if (attr)
8619 {
8620 length = DW_UNSND (attr);
8621 }
8622 else
8623 {
8624 length = 1;
8625 }
8626 }
8627
8628 index_type = objfile_type (objfile)->builtin_int;
8629 range_type = create_range_type (NULL, index_type, 1, length);
8630 char_type = language_string_char_type (cu->language_defn, gdbarch);
8631 type = create_string_type (NULL, char_type, range_type);
8632
8633 return set_die_type (die, type, cu);
8634 }
8635
8636 /* Handle DIES due to C code like:
8637
8638 struct foo
8639 {
8640 int (*funcp)(int a, long l);
8641 int b;
8642 };
8643
8644 ('funcp' generates a DW_TAG_subroutine_type DIE). */
8645
8646 static struct type *
8647 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
8648 {
8649 struct objfile *objfile = cu->objfile;
8650 struct type *type; /* Type that this function returns. */
8651 struct type *ftype; /* Function that returns above type. */
8652 struct attribute *attr;
8653
8654 type = die_type (die, cu);
8655
8656 /* The die_type call above may have already set the type for this DIE. */
8657 ftype = get_die_type (die, cu);
8658 if (ftype)
8659 return ftype;
8660
8661 ftype = lookup_function_type (type);
8662
8663 /* All functions in C++, Pascal and Java have prototypes. */
8664 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
8665 if ((attr && (DW_UNSND (attr) != 0))
8666 || cu->language == language_cplus
8667 || cu->language == language_java
8668 || cu->language == language_pascal)
8669 TYPE_PROTOTYPED (ftype) = 1;
8670 else if (producer_is_realview (cu->producer))
8671 /* RealView does not emit DW_AT_prototyped. We can not
8672 distinguish prototyped and unprototyped functions; default to
8673 prototyped, since that is more common in modern code (and
8674 RealView warns about unprototyped functions). */
8675 TYPE_PROTOTYPED (ftype) = 1;
8676
8677 /* Store the calling convention in the type if it's available in
8678 the subroutine die. Otherwise set the calling convention to
8679 the default value DW_CC_normal. */
8680 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
8681 if (attr)
8682 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
8683 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
8684 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
8685 else
8686 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
8687
8688 /* We need to add the subroutine type to the die immediately so
8689 we don't infinitely recurse when dealing with parameters
8690 declared as the same subroutine type. */
8691 set_die_type (die, ftype, cu);
8692
8693 if (die->child != NULL)
8694 {
8695 struct type *void_type = objfile_type (objfile)->builtin_void;
8696 struct die_info *child_die;
8697 int nparams, iparams;
8698
8699 /* Count the number of parameters.
8700 FIXME: GDB currently ignores vararg functions, but knows about
8701 vararg member functions. */
8702 nparams = 0;
8703 child_die = die->child;
8704 while (child_die && child_die->tag)
8705 {
8706 if (child_die->tag == DW_TAG_formal_parameter)
8707 nparams++;
8708 else if (child_die->tag == DW_TAG_unspecified_parameters)
8709 TYPE_VARARGS (ftype) = 1;
8710 child_die = sibling_die (child_die);
8711 }
8712
8713 /* Allocate storage for parameters and fill them in. */
8714 TYPE_NFIELDS (ftype) = nparams;
8715 TYPE_FIELDS (ftype) = (struct field *)
8716 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
8717
8718 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
8719 even if we error out during the parameters reading below. */
8720 for (iparams = 0; iparams < nparams; iparams++)
8721 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
8722
8723 iparams = 0;
8724 child_die = die->child;
8725 while (child_die && child_die->tag)
8726 {
8727 if (child_die->tag == DW_TAG_formal_parameter)
8728 {
8729 struct type *arg_type;
8730
8731 /* DWARF version 2 has no clean way to discern C++
8732 static and non-static member functions. G++ helps
8733 GDB by marking the first parameter for non-static
8734 member functions (which is the this pointer) as
8735 artificial. We pass this information to
8736 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
8737
8738 DWARF version 3 added DW_AT_object_pointer, which GCC
8739 4.5 does not yet generate. */
8740 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
8741 if (attr)
8742 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
8743 else
8744 {
8745 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
8746
8747 /* GCC/43521: In java, the formal parameter
8748 "this" is sometimes not marked with DW_AT_artificial. */
8749 if (cu->language == language_java)
8750 {
8751 const char *name = dwarf2_name (child_die, cu);
8752
8753 if (name && !strcmp (name, "this"))
8754 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
8755 }
8756 }
8757 arg_type = die_type (child_die, cu);
8758
8759 /* RealView does not mark THIS as const, which the testsuite
8760 expects. GCC marks THIS as const in method definitions,
8761 but not in the class specifications (GCC PR 43053). */
8762 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
8763 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
8764 {
8765 int is_this = 0;
8766 struct dwarf2_cu *arg_cu = cu;
8767 const char *name = dwarf2_name (child_die, cu);
8768
8769 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
8770 if (attr)
8771 {
8772 /* If the compiler emits this, use it. */
8773 if (follow_die_ref (die, attr, &arg_cu) == child_die)
8774 is_this = 1;
8775 }
8776 else if (name && strcmp (name, "this") == 0)
8777 /* Function definitions will have the argument names. */
8778 is_this = 1;
8779 else if (name == NULL && iparams == 0)
8780 /* Declarations may not have the names, so like
8781 elsewhere in GDB, assume an artificial first
8782 argument is "this". */
8783 is_this = 1;
8784
8785 if (is_this)
8786 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
8787 arg_type, 0);
8788 }
8789
8790 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
8791 iparams++;
8792 }
8793 child_die = sibling_die (child_die);
8794 }
8795 }
8796
8797 return ftype;
8798 }
8799
8800 static struct type *
8801 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
8802 {
8803 struct objfile *objfile = cu->objfile;
8804 const char *name = NULL;
8805 struct type *this_type, *target_type;
8806
8807 name = dwarf2_full_name (NULL, die, cu);
8808 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
8809 TYPE_FLAG_TARGET_STUB, NULL, objfile);
8810 TYPE_NAME (this_type) = (char *) name;
8811 set_die_type (die, this_type, cu);
8812 target_type = die_type (die, cu);
8813 if (target_type != this_type)
8814 TYPE_TARGET_TYPE (this_type) = target_type;
8815 else
8816 {
8817 /* Self-referential typedefs are, it seems, not allowed by the DWARF
8818 spec and cause infinite loops in GDB. */
8819 complaint (&symfile_complaints,
8820 _("Self-referential DW_TAG_typedef "
8821 "- DIE at 0x%x [in module %s]"),
8822 die->offset, objfile->name);
8823 TYPE_TARGET_TYPE (this_type) = NULL;
8824 }
8825 return this_type;
8826 }
8827
8828 /* Find a representation of a given base type and install
8829 it in the TYPE field of the die. */
8830
8831 static struct type *
8832 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
8833 {
8834 struct objfile *objfile = cu->objfile;
8835 struct type *type;
8836 struct attribute *attr;
8837 int encoding = 0, size = 0;
8838 char *name;
8839 enum type_code code = TYPE_CODE_INT;
8840 int type_flags = 0;
8841 struct type *target_type = NULL;
8842
8843 attr = dwarf2_attr (die, DW_AT_encoding, cu);
8844 if (attr)
8845 {
8846 encoding = DW_UNSND (attr);
8847 }
8848 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8849 if (attr)
8850 {
8851 size = DW_UNSND (attr);
8852 }
8853 name = dwarf2_name (die, cu);
8854 if (!name)
8855 {
8856 complaint (&symfile_complaints,
8857 _("DW_AT_name missing from DW_TAG_base_type"));
8858 }
8859
8860 switch (encoding)
8861 {
8862 case DW_ATE_address:
8863 /* Turn DW_ATE_address into a void * pointer. */
8864 code = TYPE_CODE_PTR;
8865 type_flags |= TYPE_FLAG_UNSIGNED;
8866 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
8867 break;
8868 case DW_ATE_boolean:
8869 code = TYPE_CODE_BOOL;
8870 type_flags |= TYPE_FLAG_UNSIGNED;
8871 break;
8872 case DW_ATE_complex_float:
8873 code = TYPE_CODE_COMPLEX;
8874 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
8875 break;
8876 case DW_ATE_decimal_float:
8877 code = TYPE_CODE_DECFLOAT;
8878 break;
8879 case DW_ATE_float:
8880 code = TYPE_CODE_FLT;
8881 break;
8882 case DW_ATE_signed:
8883 break;
8884 case DW_ATE_unsigned:
8885 type_flags |= TYPE_FLAG_UNSIGNED;
8886 if (cu->language == language_fortran
8887 && name
8888 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
8889 code = TYPE_CODE_CHAR;
8890 break;
8891 case DW_ATE_signed_char:
8892 if (cu->language == language_ada || cu->language == language_m2
8893 || cu->language == language_pascal
8894 || cu->language == language_fortran)
8895 code = TYPE_CODE_CHAR;
8896 break;
8897 case DW_ATE_unsigned_char:
8898 if (cu->language == language_ada || cu->language == language_m2
8899 || cu->language == language_pascal
8900 || cu->language == language_fortran)
8901 code = TYPE_CODE_CHAR;
8902 type_flags |= TYPE_FLAG_UNSIGNED;
8903 break;
8904 case DW_ATE_UTF:
8905 /* We just treat this as an integer and then recognize the
8906 type by name elsewhere. */
8907 break;
8908
8909 default:
8910 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
8911 dwarf_type_encoding_name (encoding));
8912 break;
8913 }
8914
8915 type = init_type (code, size, type_flags, NULL, objfile);
8916 TYPE_NAME (type) = name;
8917 TYPE_TARGET_TYPE (type) = target_type;
8918
8919 if (name && strcmp (name, "char") == 0)
8920 TYPE_NOSIGN (type) = 1;
8921
8922 return set_die_type (die, type, cu);
8923 }
8924
8925 /* Read the given DW_AT_subrange DIE. */
8926
8927 static struct type *
8928 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
8929 {
8930 struct type *base_type;
8931 struct type *range_type;
8932 struct attribute *attr;
8933 LONGEST low = 0;
8934 LONGEST high = -1;
8935 char *name;
8936 LONGEST negative_mask;
8937
8938 base_type = die_type (die, cu);
8939 /* Preserve BASE_TYPE's original type, just set its LENGTH. */
8940 check_typedef (base_type);
8941
8942 /* The die_type call above may have already set the type for this DIE. */
8943 range_type = get_die_type (die, cu);
8944 if (range_type)
8945 return range_type;
8946
8947 if (cu->language == language_fortran)
8948 {
8949 /* FORTRAN implies a lower bound of 1, if not given. */
8950 low = 1;
8951 }
8952
8953 /* FIXME: For variable sized arrays either of these could be
8954 a variable rather than a constant value. We'll allow it,
8955 but we don't know how to handle it. */
8956 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
8957 if (attr)
8958 low = dwarf2_get_attr_constant_value (attr, 0);
8959
8960 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
8961 if (attr)
8962 {
8963 if (attr_form_is_block (attr) || is_ref_attr (attr))
8964 {
8965 /* GCC encodes arrays with unspecified or dynamic length
8966 with a DW_FORM_block1 attribute or a reference attribute.
8967 FIXME: GDB does not yet know how to handle dynamic
8968 arrays properly, treat them as arrays with unspecified
8969 length for now.
8970
8971 FIXME: jimb/2003-09-22: GDB does not really know
8972 how to handle arrays of unspecified length
8973 either; we just represent them as zero-length
8974 arrays. Choose an appropriate upper bound given
8975 the lower bound we've computed above. */
8976 high = low - 1;
8977 }
8978 else
8979 high = dwarf2_get_attr_constant_value (attr, 1);
8980 }
8981 else
8982 {
8983 attr = dwarf2_attr (die, DW_AT_count, cu);
8984 if (attr)
8985 {
8986 int count = dwarf2_get_attr_constant_value (attr, 1);
8987 high = low + count - 1;
8988 }
8989 else
8990 {
8991 /* Unspecified array length. */
8992 high = low - 1;
8993 }
8994 }
8995
8996 /* Dwarf-2 specifications explicitly allows to create subrange types
8997 without specifying a base type.
8998 In that case, the base type must be set to the type of
8999 the lower bound, upper bound or count, in that order, if any of these
9000 three attributes references an object that has a type.
9001 If no base type is found, the Dwarf-2 specifications say that
9002 a signed integer type of size equal to the size of an address should
9003 be used.
9004 For the following C code: `extern char gdb_int [];'
9005 GCC produces an empty range DIE.
9006 FIXME: muller/2010-05-28: Possible references to object for low bound,
9007 high bound or count are not yet handled by this code. */
9008 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
9009 {
9010 struct objfile *objfile = cu->objfile;
9011 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9012 int addr_size = gdbarch_addr_bit (gdbarch) /8;
9013 struct type *int_type = objfile_type (objfile)->builtin_int;
9014
9015 /* Test "int", "long int", and "long long int" objfile types,
9016 and select the first one having a size above or equal to the
9017 architecture address size. */
9018 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
9019 base_type = int_type;
9020 else
9021 {
9022 int_type = objfile_type (objfile)->builtin_long;
9023 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
9024 base_type = int_type;
9025 else
9026 {
9027 int_type = objfile_type (objfile)->builtin_long_long;
9028 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
9029 base_type = int_type;
9030 }
9031 }
9032 }
9033
9034 negative_mask =
9035 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
9036 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
9037 low |= negative_mask;
9038 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
9039 high |= negative_mask;
9040
9041 range_type = create_range_type (NULL, base_type, low, high);
9042
9043 /* Mark arrays with dynamic length at least as an array of unspecified
9044 length. GDB could check the boundary but before it gets implemented at
9045 least allow accessing the array elements. */
9046 if (attr && attr_form_is_block (attr))
9047 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
9048
9049 /* Ada expects an empty array on no boundary attributes. */
9050 if (attr == NULL && cu->language != language_ada)
9051 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
9052
9053 name = dwarf2_name (die, cu);
9054 if (name)
9055 TYPE_NAME (range_type) = name;
9056
9057 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
9058 if (attr)
9059 TYPE_LENGTH (range_type) = DW_UNSND (attr);
9060
9061 set_die_type (die, range_type, cu);
9062
9063 /* set_die_type should be already done. */
9064 set_descriptive_type (range_type, die, cu);
9065
9066 return range_type;
9067 }
9068
9069 static struct type *
9070 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
9071 {
9072 struct type *type;
9073
9074 /* For now, we only support the C meaning of an unspecified type: void. */
9075
9076 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
9077 TYPE_NAME (type) = dwarf2_name (die, cu);
9078
9079 return set_die_type (die, type, cu);
9080 }
9081
9082 /* Trivial hash function for die_info: the hash value of a DIE
9083 is its offset in .debug_info for this objfile. */
9084
9085 static hashval_t
9086 die_hash (const void *item)
9087 {
9088 const struct die_info *die = item;
9089
9090 return die->offset;
9091 }
9092
9093 /* Trivial comparison function for die_info structures: two DIEs
9094 are equal if they have the same offset. */
9095
9096 static int
9097 die_eq (const void *item_lhs, const void *item_rhs)
9098 {
9099 const struct die_info *die_lhs = item_lhs;
9100 const struct die_info *die_rhs = item_rhs;
9101
9102 return die_lhs->offset == die_rhs->offset;
9103 }
9104
9105 /* Read a whole compilation unit into a linked list of dies. */
9106
9107 static struct die_info *
9108 read_comp_unit (gdb_byte *info_ptr, struct dwarf2_cu *cu)
9109 {
9110 struct die_reader_specs reader_specs;
9111 int read_abbrevs = 0;
9112 struct cleanup *back_to = NULL;
9113 struct die_info *die;
9114
9115 if (cu->dwarf2_abbrevs == NULL)
9116 {
9117 dwarf2_read_abbrevs (cu);
9118 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
9119 read_abbrevs = 1;
9120 }
9121
9122 gdb_assert (cu->die_hash == NULL);
9123 cu->die_hash
9124 = htab_create_alloc_ex (cu->header.length / 12,
9125 die_hash,
9126 die_eq,
9127 NULL,
9128 &cu->comp_unit_obstack,
9129 hashtab_obstack_allocate,
9130 dummy_obstack_deallocate);
9131
9132 init_cu_die_reader (&reader_specs, cu);
9133
9134 die = read_die_and_children (&reader_specs, info_ptr, &info_ptr, NULL);
9135
9136 if (read_abbrevs)
9137 do_cleanups (back_to);
9138
9139 return die;
9140 }
9141
9142 /* Main entry point for reading a DIE and all children.
9143 Read the DIE and dump it if requested. */
9144
9145 static struct die_info *
9146 read_die_and_children (const struct die_reader_specs *reader,
9147 gdb_byte *info_ptr,
9148 gdb_byte **new_info_ptr,
9149 struct die_info *parent)
9150 {
9151 struct die_info *result = read_die_and_children_1 (reader, info_ptr,
9152 new_info_ptr, parent);
9153
9154 if (dwarf2_die_debug)
9155 {
9156 fprintf_unfiltered (gdb_stdlog,
9157 "\nRead die from %s of %s:\n",
9158 (reader->cu->per_cu->debug_types_section
9159 ? ".debug_types"
9160 : ".debug_info"),
9161 reader->abfd->filename);
9162 dump_die (result, dwarf2_die_debug);
9163 }
9164
9165 return result;
9166 }
9167
9168 /* Read a single die and all its descendents. Set the die's sibling
9169 field to NULL; set other fields in the die correctly, and set all
9170 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
9171 location of the info_ptr after reading all of those dies. PARENT
9172 is the parent of the die in question. */
9173
9174 static struct die_info *
9175 read_die_and_children_1 (const struct die_reader_specs *reader,
9176 gdb_byte *info_ptr,
9177 gdb_byte **new_info_ptr,
9178 struct die_info *parent)
9179 {
9180 struct die_info *die;
9181 gdb_byte *cur_ptr;
9182 int has_children;
9183
9184 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
9185 if (die == NULL)
9186 {
9187 *new_info_ptr = cur_ptr;
9188 return NULL;
9189 }
9190 store_in_ref_table (die, reader->cu);
9191
9192 if (has_children)
9193 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
9194 else
9195 {
9196 die->child = NULL;
9197 *new_info_ptr = cur_ptr;
9198 }
9199
9200 die->sibling = NULL;
9201 die->parent = parent;
9202 return die;
9203 }
9204
9205 /* Read a die, all of its descendents, and all of its siblings; set
9206 all of the fields of all of the dies correctly. Arguments are as
9207 in read_die_and_children. */
9208
9209 static struct die_info *
9210 read_die_and_siblings (const struct die_reader_specs *reader,
9211 gdb_byte *info_ptr,
9212 gdb_byte **new_info_ptr,
9213 struct die_info *parent)
9214 {
9215 struct die_info *first_die, *last_sibling;
9216 gdb_byte *cur_ptr;
9217
9218 cur_ptr = info_ptr;
9219 first_die = last_sibling = NULL;
9220
9221 while (1)
9222 {
9223 struct die_info *die
9224 = read_die_and_children_1 (reader, cur_ptr, &cur_ptr, parent);
9225
9226 if (die == NULL)
9227 {
9228 *new_info_ptr = cur_ptr;
9229 return first_die;
9230 }
9231
9232 if (!first_die)
9233 first_die = die;
9234 else
9235 last_sibling->sibling = die;
9236
9237 last_sibling = die;
9238 }
9239 }
9240
9241 /* Read the die from the .debug_info section buffer. Set DIEP to
9242 point to a newly allocated die with its information, except for its
9243 child, sibling, and parent fields. Set HAS_CHILDREN to tell
9244 whether the die has children or not. */
9245
9246 static gdb_byte *
9247 read_full_die (const struct die_reader_specs *reader,
9248 struct die_info **diep, gdb_byte *info_ptr,
9249 int *has_children)
9250 {
9251 unsigned int abbrev_number, bytes_read, i, offset;
9252 struct abbrev_info *abbrev;
9253 struct die_info *die;
9254 struct dwarf2_cu *cu = reader->cu;
9255 bfd *abfd = reader->abfd;
9256
9257 offset = info_ptr - reader->buffer;
9258 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9259 info_ptr += bytes_read;
9260 if (!abbrev_number)
9261 {
9262 *diep = NULL;
9263 *has_children = 0;
9264 return info_ptr;
9265 }
9266
9267 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
9268 if (!abbrev)
9269 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
9270 abbrev_number,
9271 bfd_get_filename (abfd));
9272
9273 die = dwarf_alloc_die (cu, abbrev->num_attrs);
9274 die->offset = offset;
9275 die->tag = abbrev->tag;
9276 die->abbrev = abbrev_number;
9277
9278 die->num_attrs = abbrev->num_attrs;
9279
9280 for (i = 0; i < abbrev->num_attrs; ++i)
9281 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
9282 abfd, info_ptr, cu);
9283
9284 *diep = die;
9285 *has_children = abbrev->has_children;
9286 return info_ptr;
9287 }
9288
9289 /* In DWARF version 2, the description of the debugging information is
9290 stored in a separate .debug_abbrev section. Before we read any
9291 dies from a section we read in all abbreviations and install them
9292 in a hash table. This function also sets flags in CU describing
9293 the data found in the abbrev table. */
9294
9295 static void
9296 dwarf2_read_abbrevs (struct dwarf2_cu *cu)
9297 {
9298 bfd *abfd = cu->objfile->obfd;
9299 struct comp_unit_head *cu_header = &cu->header;
9300 gdb_byte *abbrev_ptr;
9301 struct abbrev_info *cur_abbrev;
9302 unsigned int abbrev_number, bytes_read, abbrev_name;
9303 unsigned int abbrev_form, hash_number;
9304 struct attr_abbrev *cur_attrs;
9305 unsigned int allocated_attrs;
9306
9307 /* Initialize dwarf2 abbrevs. */
9308 obstack_init (&cu->abbrev_obstack);
9309 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
9310 (ABBREV_HASH_SIZE
9311 * sizeof (struct abbrev_info *)));
9312 memset (cu->dwarf2_abbrevs, 0,
9313 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
9314
9315 dwarf2_read_section (dwarf2_per_objfile->objfile,
9316 &dwarf2_per_objfile->abbrev);
9317 abbrev_ptr = dwarf2_per_objfile->abbrev.buffer + cu_header->abbrev_offset;
9318 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9319 abbrev_ptr += bytes_read;
9320
9321 allocated_attrs = ATTR_ALLOC_CHUNK;
9322 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
9323
9324 /* Loop until we reach an abbrev number of 0. */
9325 while (abbrev_number)
9326 {
9327 cur_abbrev = dwarf_alloc_abbrev (cu);
9328
9329 /* read in abbrev header */
9330 cur_abbrev->number = abbrev_number;
9331 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9332 abbrev_ptr += bytes_read;
9333 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
9334 abbrev_ptr += 1;
9335
9336 /* now read in declarations */
9337 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9338 abbrev_ptr += bytes_read;
9339 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9340 abbrev_ptr += bytes_read;
9341 while (abbrev_name)
9342 {
9343 if (cur_abbrev->num_attrs == allocated_attrs)
9344 {
9345 allocated_attrs += ATTR_ALLOC_CHUNK;
9346 cur_attrs
9347 = xrealloc (cur_attrs, (allocated_attrs
9348 * sizeof (struct attr_abbrev)));
9349 }
9350
9351 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
9352 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
9353 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9354 abbrev_ptr += bytes_read;
9355 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9356 abbrev_ptr += bytes_read;
9357 }
9358
9359 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
9360 (cur_abbrev->num_attrs
9361 * sizeof (struct attr_abbrev)));
9362 memcpy (cur_abbrev->attrs, cur_attrs,
9363 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
9364
9365 hash_number = abbrev_number % ABBREV_HASH_SIZE;
9366 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
9367 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
9368
9369 /* Get next abbreviation.
9370 Under Irix6 the abbreviations for a compilation unit are not
9371 always properly terminated with an abbrev number of 0.
9372 Exit loop if we encounter an abbreviation which we have
9373 already read (which means we are about to read the abbreviations
9374 for the next compile unit) or if the end of the abbreviation
9375 table is reached. */
9376 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev.buffer)
9377 >= dwarf2_per_objfile->abbrev.size)
9378 break;
9379 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9380 abbrev_ptr += bytes_read;
9381 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
9382 break;
9383 }
9384
9385 xfree (cur_attrs);
9386 }
9387
9388 /* Release the memory used by the abbrev table for a compilation unit. */
9389
9390 static void
9391 dwarf2_free_abbrev_table (void *ptr_to_cu)
9392 {
9393 struct dwarf2_cu *cu = ptr_to_cu;
9394
9395 obstack_free (&cu->abbrev_obstack, NULL);
9396 cu->dwarf2_abbrevs = NULL;
9397 }
9398
9399 /* Lookup an abbrev_info structure in the abbrev hash table. */
9400
9401 static struct abbrev_info *
9402 dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
9403 {
9404 unsigned int hash_number;
9405 struct abbrev_info *abbrev;
9406
9407 hash_number = number % ABBREV_HASH_SIZE;
9408 abbrev = cu->dwarf2_abbrevs[hash_number];
9409
9410 while (abbrev)
9411 {
9412 if (abbrev->number == number)
9413 return abbrev;
9414 else
9415 abbrev = abbrev->next;
9416 }
9417 return NULL;
9418 }
9419
9420 /* Returns nonzero if TAG represents a type that we might generate a partial
9421 symbol for. */
9422
9423 static int
9424 is_type_tag_for_partial (int tag)
9425 {
9426 switch (tag)
9427 {
9428 #if 0
9429 /* Some types that would be reasonable to generate partial symbols for,
9430 that we don't at present. */
9431 case DW_TAG_array_type:
9432 case DW_TAG_file_type:
9433 case DW_TAG_ptr_to_member_type:
9434 case DW_TAG_set_type:
9435 case DW_TAG_string_type:
9436 case DW_TAG_subroutine_type:
9437 #endif
9438 case DW_TAG_base_type:
9439 case DW_TAG_class_type:
9440 case DW_TAG_interface_type:
9441 case DW_TAG_enumeration_type:
9442 case DW_TAG_structure_type:
9443 case DW_TAG_subrange_type:
9444 case DW_TAG_typedef:
9445 case DW_TAG_union_type:
9446 return 1;
9447 default:
9448 return 0;
9449 }
9450 }
9451
9452 /* Load all DIEs that are interesting for partial symbols into memory. */
9453
9454 static struct partial_die_info *
9455 load_partial_dies (bfd *abfd, gdb_byte *buffer, gdb_byte *info_ptr,
9456 int building_psymtab, struct dwarf2_cu *cu)
9457 {
9458 struct objfile *objfile = cu->objfile;
9459 struct partial_die_info *part_die;
9460 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
9461 struct abbrev_info *abbrev;
9462 unsigned int bytes_read;
9463 unsigned int load_all = 0;
9464
9465 int nesting_level = 1;
9466
9467 parent_die = NULL;
9468 last_die = NULL;
9469
9470 if (cu->per_cu && cu->per_cu->load_all_dies)
9471 load_all = 1;
9472
9473 cu->partial_dies
9474 = htab_create_alloc_ex (cu->header.length / 12,
9475 partial_die_hash,
9476 partial_die_eq,
9477 NULL,
9478 &cu->comp_unit_obstack,
9479 hashtab_obstack_allocate,
9480 dummy_obstack_deallocate);
9481
9482 part_die = obstack_alloc (&cu->comp_unit_obstack,
9483 sizeof (struct partial_die_info));
9484
9485 while (1)
9486 {
9487 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
9488
9489 /* A NULL abbrev means the end of a series of children. */
9490 if (abbrev == NULL)
9491 {
9492 if (--nesting_level == 0)
9493 {
9494 /* PART_DIE was probably the last thing allocated on the
9495 comp_unit_obstack, so we could call obstack_free
9496 here. We don't do that because the waste is small,
9497 and will be cleaned up when we're done with this
9498 compilation unit. This way, we're also more robust
9499 against other users of the comp_unit_obstack. */
9500 return first_die;
9501 }
9502 info_ptr += bytes_read;
9503 last_die = parent_die;
9504 parent_die = parent_die->die_parent;
9505 continue;
9506 }
9507
9508 /* Check for template arguments. We never save these; if
9509 they're seen, we just mark the parent, and go on our way. */
9510 if (parent_die != NULL
9511 && cu->language == language_cplus
9512 && (abbrev->tag == DW_TAG_template_type_param
9513 || abbrev->tag == DW_TAG_template_value_param))
9514 {
9515 parent_die->has_template_arguments = 1;
9516
9517 if (!load_all)
9518 {
9519 /* We don't need a partial DIE for the template argument. */
9520 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev,
9521 cu);
9522 continue;
9523 }
9524 }
9525
9526 /* We only recurse into subprograms looking for template arguments.
9527 Skip their other children. */
9528 if (!load_all
9529 && cu->language == language_cplus
9530 && parent_die != NULL
9531 && parent_die->tag == DW_TAG_subprogram)
9532 {
9533 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
9534 continue;
9535 }
9536
9537 /* Check whether this DIE is interesting enough to save. Normally
9538 we would not be interested in members here, but there may be
9539 later variables referencing them via DW_AT_specification (for
9540 static members). */
9541 if (!load_all
9542 && !is_type_tag_for_partial (abbrev->tag)
9543 && abbrev->tag != DW_TAG_constant
9544 && abbrev->tag != DW_TAG_enumerator
9545 && abbrev->tag != DW_TAG_subprogram
9546 && abbrev->tag != DW_TAG_lexical_block
9547 && abbrev->tag != DW_TAG_variable
9548 && abbrev->tag != DW_TAG_namespace
9549 && abbrev->tag != DW_TAG_module
9550 && abbrev->tag != DW_TAG_member)
9551 {
9552 /* Otherwise we skip to the next sibling, if any. */
9553 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
9554 continue;
9555 }
9556
9557 info_ptr = read_partial_die (part_die, abbrev, bytes_read, abfd,
9558 buffer, info_ptr, cu);
9559
9560 /* This two-pass algorithm for processing partial symbols has a
9561 high cost in cache pressure. Thus, handle some simple cases
9562 here which cover the majority of C partial symbols. DIEs
9563 which neither have specification tags in them, nor could have
9564 specification tags elsewhere pointing at them, can simply be
9565 processed and discarded.
9566
9567 This segment is also optional; scan_partial_symbols and
9568 add_partial_symbol will handle these DIEs if we chain
9569 them in normally. When compilers which do not emit large
9570 quantities of duplicate debug information are more common,
9571 this code can probably be removed. */
9572
9573 /* Any complete simple types at the top level (pretty much all
9574 of them, for a language without namespaces), can be processed
9575 directly. */
9576 if (parent_die == NULL
9577 && part_die->has_specification == 0
9578 && part_die->is_declaration == 0
9579 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
9580 || part_die->tag == DW_TAG_base_type
9581 || part_die->tag == DW_TAG_subrange_type))
9582 {
9583 if (building_psymtab && part_die->name != NULL)
9584 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
9585 VAR_DOMAIN, LOC_TYPEDEF,
9586 &objfile->static_psymbols,
9587 0, (CORE_ADDR) 0, cu->language, objfile);
9588 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
9589 continue;
9590 }
9591
9592 /* The exception for DW_TAG_typedef with has_children above is
9593 a workaround of GCC PR debug/47510. In the case of this complaint
9594 type_name_no_tag_or_error will error on such types later.
9595
9596 GDB skipped children of DW_TAG_typedef by the shortcut above and then
9597 it could not find the child DIEs referenced later, this is checked
9598 above. In correct DWARF DW_TAG_typedef should have no children. */
9599
9600 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
9601 complaint (&symfile_complaints,
9602 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
9603 "- DIE at 0x%x [in module %s]"),
9604 part_die->offset, objfile->name);
9605
9606 /* If we're at the second level, and we're an enumerator, and
9607 our parent has no specification (meaning possibly lives in a
9608 namespace elsewhere), then we can add the partial symbol now
9609 instead of queueing it. */
9610 if (part_die->tag == DW_TAG_enumerator
9611 && parent_die != NULL
9612 && parent_die->die_parent == NULL
9613 && parent_die->tag == DW_TAG_enumeration_type
9614 && parent_die->has_specification == 0)
9615 {
9616 if (part_die->name == NULL)
9617 complaint (&symfile_complaints,
9618 _("malformed enumerator DIE ignored"));
9619 else if (building_psymtab)
9620 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
9621 VAR_DOMAIN, LOC_CONST,
9622 (cu->language == language_cplus
9623 || cu->language == language_java)
9624 ? &objfile->global_psymbols
9625 : &objfile->static_psymbols,
9626 0, (CORE_ADDR) 0, cu->language, objfile);
9627
9628 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
9629 continue;
9630 }
9631
9632 /* We'll save this DIE so link it in. */
9633 part_die->die_parent = parent_die;
9634 part_die->die_sibling = NULL;
9635 part_die->die_child = NULL;
9636
9637 if (last_die && last_die == parent_die)
9638 last_die->die_child = part_die;
9639 else if (last_die)
9640 last_die->die_sibling = part_die;
9641
9642 last_die = part_die;
9643
9644 if (first_die == NULL)
9645 first_die = part_die;
9646
9647 /* Maybe add the DIE to the hash table. Not all DIEs that we
9648 find interesting need to be in the hash table, because we
9649 also have the parent/sibling/child chains; only those that we
9650 might refer to by offset later during partial symbol reading.
9651
9652 For now this means things that might have be the target of a
9653 DW_AT_specification, DW_AT_abstract_origin, or
9654 DW_AT_extension. DW_AT_extension will refer only to
9655 namespaces; DW_AT_abstract_origin refers to functions (and
9656 many things under the function DIE, but we do not recurse
9657 into function DIEs during partial symbol reading) and
9658 possibly variables as well; DW_AT_specification refers to
9659 declarations. Declarations ought to have the DW_AT_declaration
9660 flag. It happens that GCC forgets to put it in sometimes, but
9661 only for functions, not for types.
9662
9663 Adding more things than necessary to the hash table is harmless
9664 except for the performance cost. Adding too few will result in
9665 wasted time in find_partial_die, when we reread the compilation
9666 unit with load_all_dies set. */
9667
9668 if (load_all
9669 || abbrev->tag == DW_TAG_constant
9670 || abbrev->tag == DW_TAG_subprogram
9671 || abbrev->tag == DW_TAG_variable
9672 || abbrev->tag == DW_TAG_namespace
9673 || part_die->is_declaration)
9674 {
9675 void **slot;
9676
9677 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
9678 part_die->offset, INSERT);
9679 *slot = part_die;
9680 }
9681
9682 part_die = obstack_alloc (&cu->comp_unit_obstack,
9683 sizeof (struct partial_die_info));
9684
9685 /* For some DIEs we want to follow their children (if any). For C
9686 we have no reason to follow the children of structures; for other
9687 languages we have to, so that we can get at method physnames
9688 to infer fully qualified class names, for DW_AT_specification,
9689 and for C++ template arguments. For C++, we also look one level
9690 inside functions to find template arguments (if the name of the
9691 function does not already contain the template arguments).
9692
9693 For Ada, we need to scan the children of subprograms and lexical
9694 blocks as well because Ada allows the definition of nested
9695 entities that could be interesting for the debugger, such as
9696 nested subprograms for instance. */
9697 if (last_die->has_children
9698 && (load_all
9699 || last_die->tag == DW_TAG_namespace
9700 || last_die->tag == DW_TAG_module
9701 || last_die->tag == DW_TAG_enumeration_type
9702 || (cu->language == language_cplus
9703 && last_die->tag == DW_TAG_subprogram
9704 && (last_die->name == NULL
9705 || strchr (last_die->name, '<') == NULL))
9706 || (cu->language != language_c
9707 && (last_die->tag == DW_TAG_class_type
9708 || last_die->tag == DW_TAG_interface_type
9709 || last_die->tag == DW_TAG_structure_type
9710 || last_die->tag == DW_TAG_union_type))
9711 || (cu->language == language_ada
9712 && (last_die->tag == DW_TAG_subprogram
9713 || last_die->tag == DW_TAG_lexical_block))))
9714 {
9715 nesting_level++;
9716 parent_die = last_die;
9717 continue;
9718 }
9719
9720 /* Otherwise we skip to the next sibling, if any. */
9721 info_ptr = locate_pdi_sibling (last_die, buffer, info_ptr, abfd, cu);
9722
9723 /* Back to the top, do it again. */
9724 }
9725 }
9726
9727 /* Read a minimal amount of information into the minimal die structure. */
9728
9729 static gdb_byte *
9730 read_partial_die (struct partial_die_info *part_die,
9731 struct abbrev_info *abbrev,
9732 unsigned int abbrev_len, bfd *abfd,
9733 gdb_byte *buffer, gdb_byte *info_ptr,
9734 struct dwarf2_cu *cu)
9735 {
9736 struct objfile *objfile = cu->objfile;
9737 unsigned int i;
9738 struct attribute attr;
9739 int has_low_pc_attr = 0;
9740 int has_high_pc_attr = 0;
9741
9742 memset (part_die, 0, sizeof (struct partial_die_info));
9743
9744 part_die->offset = info_ptr - buffer;
9745
9746 info_ptr += abbrev_len;
9747
9748 if (abbrev == NULL)
9749 return info_ptr;
9750
9751 part_die->tag = abbrev->tag;
9752 part_die->has_children = abbrev->has_children;
9753
9754 for (i = 0; i < abbrev->num_attrs; ++i)
9755 {
9756 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
9757
9758 /* Store the data if it is of an attribute we want to keep in a
9759 partial symbol table. */
9760 switch (attr.name)
9761 {
9762 case DW_AT_name:
9763 switch (part_die->tag)
9764 {
9765 case DW_TAG_compile_unit:
9766 case DW_TAG_type_unit:
9767 /* Compilation units have a DW_AT_name that is a filename, not
9768 a source language identifier. */
9769 case DW_TAG_enumeration_type:
9770 case DW_TAG_enumerator:
9771 /* These tags always have simple identifiers already; no need
9772 to canonicalize them. */
9773 part_die->name = DW_STRING (&attr);
9774 break;
9775 default:
9776 part_die->name
9777 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
9778 &objfile->objfile_obstack);
9779 break;
9780 }
9781 break;
9782 case DW_AT_linkage_name:
9783 case DW_AT_MIPS_linkage_name:
9784 /* Note that both forms of linkage name might appear. We
9785 assume they will be the same, and we only store the last
9786 one we see. */
9787 if (cu->language == language_ada)
9788 part_die->name = DW_STRING (&attr);
9789 part_die->linkage_name = DW_STRING (&attr);
9790 break;
9791 case DW_AT_low_pc:
9792 has_low_pc_attr = 1;
9793 part_die->lowpc = DW_ADDR (&attr);
9794 break;
9795 case DW_AT_high_pc:
9796 has_high_pc_attr = 1;
9797 part_die->highpc = DW_ADDR (&attr);
9798 break;
9799 case DW_AT_location:
9800 /* Support the .debug_loc offsets. */
9801 if (attr_form_is_block (&attr))
9802 {
9803 part_die->locdesc = DW_BLOCK (&attr);
9804 }
9805 else if (attr_form_is_section_offset (&attr))
9806 {
9807 dwarf2_complex_location_expr_complaint ();
9808 }
9809 else
9810 {
9811 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
9812 "partial symbol information");
9813 }
9814 break;
9815 case DW_AT_external:
9816 part_die->is_external = DW_UNSND (&attr);
9817 break;
9818 case DW_AT_declaration:
9819 part_die->is_declaration = DW_UNSND (&attr);
9820 break;
9821 case DW_AT_type:
9822 part_die->has_type = 1;
9823 break;
9824 case DW_AT_abstract_origin:
9825 case DW_AT_specification:
9826 case DW_AT_extension:
9827 part_die->has_specification = 1;
9828 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
9829 break;
9830 case DW_AT_sibling:
9831 /* Ignore absolute siblings, they might point outside of
9832 the current compile unit. */
9833 if (attr.form == DW_FORM_ref_addr)
9834 complaint (&symfile_complaints,
9835 _("ignoring absolute DW_AT_sibling"));
9836 else
9837 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr);
9838 break;
9839 case DW_AT_byte_size:
9840 part_die->has_byte_size = 1;
9841 break;
9842 case DW_AT_calling_convention:
9843 /* DWARF doesn't provide a way to identify a program's source-level
9844 entry point. DW_AT_calling_convention attributes are only meant
9845 to describe functions' calling conventions.
9846
9847 However, because it's a necessary piece of information in
9848 Fortran, and because DW_CC_program is the only piece of debugging
9849 information whose definition refers to a 'main program' at all,
9850 several compilers have begun marking Fortran main programs with
9851 DW_CC_program --- even when those functions use the standard
9852 calling conventions.
9853
9854 So until DWARF specifies a way to provide this information and
9855 compilers pick up the new representation, we'll support this
9856 practice. */
9857 if (DW_UNSND (&attr) == DW_CC_program
9858 && cu->language == language_fortran)
9859 {
9860 set_main_name (part_die->name);
9861
9862 /* As this DIE has a static linkage the name would be difficult
9863 to look up later. */
9864 language_of_main = language_fortran;
9865 }
9866 break;
9867 default:
9868 break;
9869 }
9870 }
9871
9872 if (has_low_pc_attr && has_high_pc_attr)
9873 {
9874 /* When using the GNU linker, .gnu.linkonce. sections are used to
9875 eliminate duplicate copies of functions and vtables and such.
9876 The linker will arbitrarily choose one and discard the others.
9877 The AT_*_pc values for such functions refer to local labels in
9878 these sections. If the section from that file was discarded, the
9879 labels are not in the output, so the relocs get a value of 0.
9880 If this is a discarded function, mark the pc bounds as invalid,
9881 so that GDB will ignore it. */
9882 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
9883 {
9884 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9885
9886 complaint (&symfile_complaints,
9887 _("DW_AT_low_pc %s is zero "
9888 "for DIE at 0x%x [in module %s]"),
9889 paddress (gdbarch, part_die->lowpc),
9890 part_die->offset, objfile->name);
9891 }
9892 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
9893 else if (part_die->lowpc >= part_die->highpc)
9894 {
9895 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9896
9897 complaint (&symfile_complaints,
9898 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
9899 "for DIE at 0x%x [in module %s]"),
9900 paddress (gdbarch, part_die->lowpc),
9901 paddress (gdbarch, part_die->highpc),
9902 part_die->offset, objfile->name);
9903 }
9904 else
9905 part_die->has_pc_info = 1;
9906 }
9907
9908 return info_ptr;
9909 }
9910
9911 /* Find a cached partial DIE at OFFSET in CU. */
9912
9913 static struct partial_die_info *
9914 find_partial_die_in_comp_unit (unsigned int offset, struct dwarf2_cu *cu)
9915 {
9916 struct partial_die_info *lookup_die = NULL;
9917 struct partial_die_info part_die;
9918
9919 part_die.offset = offset;
9920 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
9921
9922 return lookup_die;
9923 }
9924
9925 /* Find a partial DIE at OFFSET, which may or may not be in CU,
9926 except in the case of .debug_types DIEs which do not reference
9927 outside their CU (they do however referencing other types via
9928 DW_FORM_ref_sig8). */
9929
9930 static struct partial_die_info *
9931 find_partial_die (unsigned int offset, struct dwarf2_cu *cu)
9932 {
9933 struct objfile *objfile = cu->objfile;
9934 struct dwarf2_per_cu_data *per_cu = NULL;
9935 struct partial_die_info *pd = NULL;
9936
9937 if (cu->per_cu->debug_types_section)
9938 {
9939 pd = find_partial_die_in_comp_unit (offset, cu);
9940 if (pd != NULL)
9941 return pd;
9942 goto not_found;
9943 }
9944
9945 if (offset_in_cu_p (&cu->header, offset))
9946 {
9947 pd = find_partial_die_in_comp_unit (offset, cu);
9948 if (pd != NULL)
9949 return pd;
9950 }
9951
9952 per_cu = dwarf2_find_containing_comp_unit (offset, objfile);
9953
9954 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
9955 load_partial_comp_unit (per_cu);
9956
9957 per_cu->cu->last_used = 0;
9958 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
9959
9960 if (pd == NULL && per_cu->load_all_dies == 0)
9961 {
9962 struct cleanup *back_to;
9963 struct partial_die_info comp_unit_die;
9964 struct abbrev_info *abbrev;
9965 unsigned int bytes_read;
9966 char *info_ptr;
9967
9968 per_cu->load_all_dies = 1;
9969
9970 /* Re-read the DIEs. */
9971 back_to = make_cleanup (null_cleanup, 0);
9972 if (per_cu->cu->dwarf2_abbrevs == NULL)
9973 {
9974 dwarf2_read_abbrevs (per_cu->cu);
9975 make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
9976 }
9977 info_ptr = (dwarf2_per_objfile->info.buffer
9978 + per_cu->cu->header.offset
9979 + per_cu->cu->header.first_die_offset);
9980 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
9981 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
9982 objfile->obfd,
9983 dwarf2_per_objfile->info.buffer, info_ptr,
9984 per_cu->cu);
9985 if (comp_unit_die.has_children)
9986 load_partial_dies (objfile->obfd,
9987 dwarf2_per_objfile->info.buffer, info_ptr,
9988 0, per_cu->cu);
9989 do_cleanups (back_to);
9990
9991 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
9992 }
9993
9994 not_found:
9995
9996 if (pd == NULL)
9997 internal_error (__FILE__, __LINE__,
9998 _("could not find partial DIE 0x%x "
9999 "in cache [from module %s]\n"),
10000 offset, bfd_get_filename (objfile->obfd));
10001 return pd;
10002 }
10003
10004 /* See if we can figure out if the class lives in a namespace. We do
10005 this by looking for a member function; its demangled name will
10006 contain namespace info, if there is any. */
10007
10008 static void
10009 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
10010 struct dwarf2_cu *cu)
10011 {
10012 /* NOTE: carlton/2003-10-07: Getting the info this way changes
10013 what template types look like, because the demangler
10014 frequently doesn't give the same name as the debug info. We
10015 could fix this by only using the demangled name to get the
10016 prefix (but see comment in read_structure_type). */
10017
10018 struct partial_die_info *real_pdi;
10019 struct partial_die_info *child_pdi;
10020
10021 /* If this DIE (this DIE's specification, if any) has a parent, then
10022 we should not do this. We'll prepend the parent's fully qualified
10023 name when we create the partial symbol. */
10024
10025 real_pdi = struct_pdi;
10026 while (real_pdi->has_specification)
10027 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
10028
10029 if (real_pdi->die_parent != NULL)
10030 return;
10031
10032 for (child_pdi = struct_pdi->die_child;
10033 child_pdi != NULL;
10034 child_pdi = child_pdi->die_sibling)
10035 {
10036 if (child_pdi->tag == DW_TAG_subprogram
10037 && child_pdi->linkage_name != NULL)
10038 {
10039 char *actual_class_name
10040 = language_class_name_from_physname (cu->language_defn,
10041 child_pdi->linkage_name);
10042 if (actual_class_name != NULL)
10043 {
10044 struct_pdi->name
10045 = obsavestring (actual_class_name,
10046 strlen (actual_class_name),
10047 &cu->objfile->objfile_obstack);
10048 xfree (actual_class_name);
10049 }
10050 break;
10051 }
10052 }
10053 }
10054
10055 /* Adjust PART_DIE before generating a symbol for it. This function
10056 may set the is_external flag or change the DIE's name. */
10057
10058 static void
10059 fixup_partial_die (struct partial_die_info *part_die,
10060 struct dwarf2_cu *cu)
10061 {
10062 /* Once we've fixed up a die, there's no point in doing so again.
10063 This also avoids a memory leak if we were to call
10064 guess_partial_die_structure_name multiple times. */
10065 if (part_die->fixup_called)
10066 return;
10067
10068 /* If we found a reference attribute and the DIE has no name, try
10069 to find a name in the referred to DIE. */
10070
10071 if (part_die->name == NULL && part_die->has_specification)
10072 {
10073 struct partial_die_info *spec_die;
10074
10075 spec_die = find_partial_die (part_die->spec_offset, cu);
10076
10077 fixup_partial_die (spec_die, cu);
10078
10079 if (spec_die->name)
10080 {
10081 part_die->name = spec_die->name;
10082
10083 /* Copy DW_AT_external attribute if it is set. */
10084 if (spec_die->is_external)
10085 part_die->is_external = spec_die->is_external;
10086 }
10087 }
10088
10089 /* Set default names for some unnamed DIEs. */
10090
10091 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
10092 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
10093
10094 /* If there is no parent die to provide a namespace, and there are
10095 children, see if we can determine the namespace from their linkage
10096 name. */
10097 if (cu->language == language_cplus
10098 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
10099 && part_die->die_parent == NULL
10100 && part_die->has_children
10101 && (part_die->tag == DW_TAG_class_type
10102 || part_die->tag == DW_TAG_structure_type
10103 || part_die->tag == DW_TAG_union_type))
10104 guess_partial_die_structure_name (part_die, cu);
10105
10106 /* GCC might emit a nameless struct or union that has a linkage
10107 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
10108 if (part_die->name == NULL
10109 && (part_die->tag == DW_TAG_class_type
10110 || part_die->tag == DW_TAG_interface_type
10111 || part_die->tag == DW_TAG_structure_type
10112 || part_die->tag == DW_TAG_union_type)
10113 && part_die->linkage_name != NULL)
10114 {
10115 char *demangled;
10116
10117 demangled = cplus_demangle (part_die->linkage_name, DMGL_TYPES);
10118 if (demangled)
10119 {
10120 const char *base;
10121
10122 /* Strip any leading namespaces/classes, keep only the base name.
10123 DW_AT_name for named DIEs does not contain the prefixes. */
10124 base = strrchr (demangled, ':');
10125 if (base && base > demangled && base[-1] == ':')
10126 base++;
10127 else
10128 base = demangled;
10129
10130 part_die->name = obsavestring (base, strlen (base),
10131 &cu->objfile->objfile_obstack);
10132 xfree (demangled);
10133 }
10134 }
10135
10136 part_die->fixup_called = 1;
10137 }
10138
10139 /* Read an attribute value described by an attribute form. */
10140
10141 static gdb_byte *
10142 read_attribute_value (struct attribute *attr, unsigned form,
10143 bfd *abfd, gdb_byte *info_ptr,
10144 struct dwarf2_cu *cu)
10145 {
10146 struct comp_unit_head *cu_header = &cu->header;
10147 unsigned int bytes_read;
10148 struct dwarf_block *blk;
10149
10150 attr->form = form;
10151 switch (form)
10152 {
10153 case DW_FORM_ref_addr:
10154 if (cu->header.version == 2)
10155 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
10156 else
10157 DW_ADDR (attr) = read_offset (abfd, info_ptr,
10158 &cu->header, &bytes_read);
10159 info_ptr += bytes_read;
10160 break;
10161 case DW_FORM_addr:
10162 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
10163 info_ptr += bytes_read;
10164 break;
10165 case DW_FORM_block2:
10166 blk = dwarf_alloc_block (cu);
10167 blk->size = read_2_bytes (abfd, info_ptr);
10168 info_ptr += 2;
10169 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
10170 info_ptr += blk->size;
10171 DW_BLOCK (attr) = blk;
10172 break;
10173 case DW_FORM_block4:
10174 blk = dwarf_alloc_block (cu);
10175 blk->size = read_4_bytes (abfd, info_ptr);
10176 info_ptr += 4;
10177 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
10178 info_ptr += blk->size;
10179 DW_BLOCK (attr) = blk;
10180 break;
10181 case DW_FORM_data2:
10182 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
10183 info_ptr += 2;
10184 break;
10185 case DW_FORM_data4:
10186 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
10187 info_ptr += 4;
10188 break;
10189 case DW_FORM_data8:
10190 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
10191 info_ptr += 8;
10192 break;
10193 case DW_FORM_sec_offset:
10194 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
10195 info_ptr += bytes_read;
10196 break;
10197 case DW_FORM_string:
10198 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
10199 DW_STRING_IS_CANONICAL (attr) = 0;
10200 info_ptr += bytes_read;
10201 break;
10202 case DW_FORM_strp:
10203 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
10204 &bytes_read);
10205 DW_STRING_IS_CANONICAL (attr) = 0;
10206 info_ptr += bytes_read;
10207 break;
10208 case DW_FORM_exprloc:
10209 case DW_FORM_block:
10210 blk = dwarf_alloc_block (cu);
10211 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
10212 info_ptr += bytes_read;
10213 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
10214 info_ptr += blk->size;
10215 DW_BLOCK (attr) = blk;
10216 break;
10217 case DW_FORM_block1:
10218 blk = dwarf_alloc_block (cu);
10219 blk->size = read_1_byte (abfd, info_ptr);
10220 info_ptr += 1;
10221 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
10222 info_ptr += blk->size;
10223 DW_BLOCK (attr) = blk;
10224 break;
10225 case DW_FORM_data1:
10226 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
10227 info_ptr += 1;
10228 break;
10229 case DW_FORM_flag:
10230 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
10231 info_ptr += 1;
10232 break;
10233 case DW_FORM_flag_present:
10234 DW_UNSND (attr) = 1;
10235 break;
10236 case DW_FORM_sdata:
10237 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
10238 info_ptr += bytes_read;
10239 break;
10240 case DW_FORM_udata:
10241 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
10242 info_ptr += bytes_read;
10243 break;
10244 case DW_FORM_ref1:
10245 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
10246 info_ptr += 1;
10247 break;
10248 case DW_FORM_ref2:
10249 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
10250 info_ptr += 2;
10251 break;
10252 case DW_FORM_ref4:
10253 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
10254 info_ptr += 4;
10255 break;
10256 case DW_FORM_ref8:
10257 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
10258 info_ptr += 8;
10259 break;
10260 case DW_FORM_ref_sig8:
10261 /* Convert the signature to something we can record in DW_UNSND
10262 for later lookup.
10263 NOTE: This is NULL if the type wasn't found. */
10264 DW_SIGNATURED_TYPE (attr) =
10265 lookup_signatured_type (cu->objfile, read_8_bytes (abfd, info_ptr));
10266 info_ptr += 8;
10267 break;
10268 case DW_FORM_ref_udata:
10269 DW_ADDR (attr) = (cu->header.offset
10270 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
10271 info_ptr += bytes_read;
10272 break;
10273 case DW_FORM_indirect:
10274 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
10275 info_ptr += bytes_read;
10276 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
10277 break;
10278 default:
10279 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
10280 dwarf_form_name (form),
10281 bfd_get_filename (abfd));
10282 }
10283
10284 /* We have seen instances where the compiler tried to emit a byte
10285 size attribute of -1 which ended up being encoded as an unsigned
10286 0xffffffff. Although 0xffffffff is technically a valid size value,
10287 an object of this size seems pretty unlikely so we can relatively
10288 safely treat these cases as if the size attribute was invalid and
10289 treat them as zero by default. */
10290 if (attr->name == DW_AT_byte_size
10291 && form == DW_FORM_data4
10292 && DW_UNSND (attr) >= 0xffffffff)
10293 {
10294 complaint
10295 (&symfile_complaints,
10296 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
10297 hex_string (DW_UNSND (attr)));
10298 DW_UNSND (attr) = 0;
10299 }
10300
10301 return info_ptr;
10302 }
10303
10304 /* Read an attribute described by an abbreviated attribute. */
10305
10306 static gdb_byte *
10307 read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
10308 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
10309 {
10310 attr->name = abbrev->name;
10311 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
10312 }
10313
10314 /* Read dwarf information from a buffer. */
10315
10316 static unsigned int
10317 read_1_byte (bfd *abfd, gdb_byte *buf)
10318 {
10319 return bfd_get_8 (abfd, buf);
10320 }
10321
10322 static int
10323 read_1_signed_byte (bfd *abfd, gdb_byte *buf)
10324 {
10325 return bfd_get_signed_8 (abfd, buf);
10326 }
10327
10328 static unsigned int
10329 read_2_bytes (bfd *abfd, gdb_byte *buf)
10330 {
10331 return bfd_get_16 (abfd, buf);
10332 }
10333
10334 static int
10335 read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
10336 {
10337 return bfd_get_signed_16 (abfd, buf);
10338 }
10339
10340 static unsigned int
10341 read_4_bytes (bfd *abfd, gdb_byte *buf)
10342 {
10343 return bfd_get_32 (abfd, buf);
10344 }
10345
10346 static int
10347 read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
10348 {
10349 return bfd_get_signed_32 (abfd, buf);
10350 }
10351
10352 static ULONGEST
10353 read_8_bytes (bfd *abfd, gdb_byte *buf)
10354 {
10355 return bfd_get_64 (abfd, buf);
10356 }
10357
10358 static CORE_ADDR
10359 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
10360 unsigned int *bytes_read)
10361 {
10362 struct comp_unit_head *cu_header = &cu->header;
10363 CORE_ADDR retval = 0;
10364
10365 if (cu_header->signed_addr_p)
10366 {
10367 switch (cu_header->addr_size)
10368 {
10369 case 2:
10370 retval = bfd_get_signed_16 (abfd, buf);
10371 break;
10372 case 4:
10373 retval = bfd_get_signed_32 (abfd, buf);
10374 break;
10375 case 8:
10376 retval = bfd_get_signed_64 (abfd, buf);
10377 break;
10378 default:
10379 internal_error (__FILE__, __LINE__,
10380 _("read_address: bad switch, signed [in module %s]"),
10381 bfd_get_filename (abfd));
10382 }
10383 }
10384 else
10385 {
10386 switch (cu_header->addr_size)
10387 {
10388 case 2:
10389 retval = bfd_get_16 (abfd, buf);
10390 break;
10391 case 4:
10392 retval = bfd_get_32 (abfd, buf);
10393 break;
10394 case 8:
10395 retval = bfd_get_64 (abfd, buf);
10396 break;
10397 default:
10398 internal_error (__FILE__, __LINE__,
10399 _("read_address: bad switch, "
10400 "unsigned [in module %s]"),
10401 bfd_get_filename (abfd));
10402 }
10403 }
10404
10405 *bytes_read = cu_header->addr_size;
10406 return retval;
10407 }
10408
10409 /* Read the initial length from a section. The (draft) DWARF 3
10410 specification allows the initial length to take up either 4 bytes
10411 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
10412 bytes describe the length and all offsets will be 8 bytes in length
10413 instead of 4.
10414
10415 An older, non-standard 64-bit format is also handled by this
10416 function. The older format in question stores the initial length
10417 as an 8-byte quantity without an escape value. Lengths greater
10418 than 2^32 aren't very common which means that the initial 4 bytes
10419 is almost always zero. Since a length value of zero doesn't make
10420 sense for the 32-bit format, this initial zero can be considered to
10421 be an escape value which indicates the presence of the older 64-bit
10422 format. As written, the code can't detect (old format) lengths
10423 greater than 4GB. If it becomes necessary to handle lengths
10424 somewhat larger than 4GB, we could allow other small values (such
10425 as the non-sensical values of 1, 2, and 3) to also be used as
10426 escape values indicating the presence of the old format.
10427
10428 The value returned via bytes_read should be used to increment the
10429 relevant pointer after calling read_initial_length().
10430
10431 [ Note: read_initial_length() and read_offset() are based on the
10432 document entitled "DWARF Debugging Information Format", revision
10433 3, draft 8, dated November 19, 2001. This document was obtained
10434 from:
10435
10436 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
10437
10438 This document is only a draft and is subject to change. (So beware.)
10439
10440 Details regarding the older, non-standard 64-bit format were
10441 determined empirically by examining 64-bit ELF files produced by
10442 the SGI toolchain on an IRIX 6.5 machine.
10443
10444 - Kevin, July 16, 2002
10445 ] */
10446
10447 static LONGEST
10448 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
10449 {
10450 LONGEST length = bfd_get_32 (abfd, buf);
10451
10452 if (length == 0xffffffff)
10453 {
10454 length = bfd_get_64 (abfd, buf + 4);
10455 *bytes_read = 12;
10456 }
10457 else if (length == 0)
10458 {
10459 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
10460 length = bfd_get_64 (abfd, buf);
10461 *bytes_read = 8;
10462 }
10463 else
10464 {
10465 *bytes_read = 4;
10466 }
10467
10468 return length;
10469 }
10470
10471 /* Cover function for read_initial_length.
10472 Returns the length of the object at BUF, and stores the size of the
10473 initial length in *BYTES_READ and stores the size that offsets will be in
10474 *OFFSET_SIZE.
10475 If the initial length size is not equivalent to that specified in
10476 CU_HEADER then issue a complaint.
10477 This is useful when reading non-comp-unit headers. */
10478
10479 static LONGEST
10480 read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
10481 const struct comp_unit_head *cu_header,
10482 unsigned int *bytes_read,
10483 unsigned int *offset_size)
10484 {
10485 LONGEST length = read_initial_length (abfd, buf, bytes_read);
10486
10487 gdb_assert (cu_header->initial_length_size == 4
10488 || cu_header->initial_length_size == 8
10489 || cu_header->initial_length_size == 12);
10490
10491 if (cu_header->initial_length_size != *bytes_read)
10492 complaint (&symfile_complaints,
10493 _("intermixed 32-bit and 64-bit DWARF sections"));
10494
10495 *offset_size = (*bytes_read == 4) ? 4 : 8;
10496 return length;
10497 }
10498
10499 /* Read an offset from the data stream. The size of the offset is
10500 given by cu_header->offset_size. */
10501
10502 static LONGEST
10503 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
10504 unsigned int *bytes_read)
10505 {
10506 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
10507
10508 *bytes_read = cu_header->offset_size;
10509 return offset;
10510 }
10511
10512 /* Read an offset from the data stream. */
10513
10514 static LONGEST
10515 read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
10516 {
10517 LONGEST retval = 0;
10518
10519 switch (offset_size)
10520 {
10521 case 4:
10522 retval = bfd_get_32 (abfd, buf);
10523 break;
10524 case 8:
10525 retval = bfd_get_64 (abfd, buf);
10526 break;
10527 default:
10528 internal_error (__FILE__, __LINE__,
10529 _("read_offset_1: bad switch [in module %s]"),
10530 bfd_get_filename (abfd));
10531 }
10532
10533 return retval;
10534 }
10535
10536 static gdb_byte *
10537 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
10538 {
10539 /* If the size of a host char is 8 bits, we can return a pointer
10540 to the buffer, otherwise we have to copy the data to a buffer
10541 allocated on the temporary obstack. */
10542 gdb_assert (HOST_CHAR_BIT == 8);
10543 return buf;
10544 }
10545
10546 static char *
10547 read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
10548 {
10549 /* If the size of a host char is 8 bits, we can return a pointer
10550 to the string, otherwise we have to copy the string to a buffer
10551 allocated on the temporary obstack. */
10552 gdb_assert (HOST_CHAR_BIT == 8);
10553 if (*buf == '\0')
10554 {
10555 *bytes_read_ptr = 1;
10556 return NULL;
10557 }
10558 *bytes_read_ptr = strlen ((char *) buf) + 1;
10559 return (char *) buf;
10560 }
10561
10562 static char *
10563 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
10564 {
10565 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
10566 if (dwarf2_per_objfile->str.buffer == NULL)
10567 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
10568 bfd_get_filename (abfd));
10569 if (str_offset >= dwarf2_per_objfile->str.size)
10570 error (_("DW_FORM_strp pointing outside of "
10571 ".debug_str section [in module %s]"),
10572 bfd_get_filename (abfd));
10573 gdb_assert (HOST_CHAR_BIT == 8);
10574 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
10575 return NULL;
10576 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
10577 }
10578
10579 static char *
10580 read_indirect_string (bfd *abfd, gdb_byte *buf,
10581 const struct comp_unit_head *cu_header,
10582 unsigned int *bytes_read_ptr)
10583 {
10584 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
10585
10586 return read_indirect_string_at_offset (abfd, str_offset);
10587 }
10588
10589 static unsigned long
10590 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
10591 {
10592 unsigned long result;
10593 unsigned int num_read;
10594 int i, shift;
10595 unsigned char byte;
10596
10597 result = 0;
10598 shift = 0;
10599 num_read = 0;
10600 i = 0;
10601 while (1)
10602 {
10603 byte = bfd_get_8 (abfd, buf);
10604 buf++;
10605 num_read++;
10606 result |= ((unsigned long)(byte & 127) << shift);
10607 if ((byte & 128) == 0)
10608 {
10609 break;
10610 }
10611 shift += 7;
10612 }
10613 *bytes_read_ptr = num_read;
10614 return result;
10615 }
10616
10617 static long
10618 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
10619 {
10620 long result;
10621 int i, shift, num_read;
10622 unsigned char byte;
10623
10624 result = 0;
10625 shift = 0;
10626 num_read = 0;
10627 i = 0;
10628 while (1)
10629 {
10630 byte = bfd_get_8 (abfd, buf);
10631 buf++;
10632 num_read++;
10633 result |= ((long)(byte & 127) << shift);
10634 shift += 7;
10635 if ((byte & 128) == 0)
10636 {
10637 break;
10638 }
10639 }
10640 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
10641 result |= -(((long)1) << shift);
10642 *bytes_read_ptr = num_read;
10643 return result;
10644 }
10645
10646 /* Return a pointer to just past the end of an LEB128 number in BUF. */
10647
10648 static gdb_byte *
10649 skip_leb128 (bfd *abfd, gdb_byte *buf)
10650 {
10651 int byte;
10652
10653 while (1)
10654 {
10655 byte = bfd_get_8 (abfd, buf);
10656 buf++;
10657 if ((byte & 128) == 0)
10658 return buf;
10659 }
10660 }
10661
10662 static void
10663 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
10664 {
10665 switch (lang)
10666 {
10667 case DW_LANG_C89:
10668 case DW_LANG_C99:
10669 case DW_LANG_C:
10670 cu->language = language_c;
10671 break;
10672 case DW_LANG_C_plus_plus:
10673 cu->language = language_cplus;
10674 break;
10675 case DW_LANG_D:
10676 cu->language = language_d;
10677 break;
10678 case DW_LANG_Fortran77:
10679 case DW_LANG_Fortran90:
10680 case DW_LANG_Fortran95:
10681 cu->language = language_fortran;
10682 break;
10683 case DW_LANG_Mips_Assembler:
10684 cu->language = language_asm;
10685 break;
10686 case DW_LANG_Java:
10687 cu->language = language_java;
10688 break;
10689 case DW_LANG_Ada83:
10690 case DW_LANG_Ada95:
10691 cu->language = language_ada;
10692 break;
10693 case DW_LANG_Modula2:
10694 cu->language = language_m2;
10695 break;
10696 case DW_LANG_Pascal83:
10697 cu->language = language_pascal;
10698 break;
10699 case DW_LANG_ObjC:
10700 cu->language = language_objc;
10701 break;
10702 case DW_LANG_Cobol74:
10703 case DW_LANG_Cobol85:
10704 default:
10705 cu->language = language_minimal;
10706 break;
10707 }
10708 cu->language_defn = language_def (cu->language);
10709 }
10710
10711 /* Return the named attribute or NULL if not there. */
10712
10713 static struct attribute *
10714 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
10715 {
10716 unsigned int i;
10717 struct attribute *spec = NULL;
10718
10719 for (i = 0; i < die->num_attrs; ++i)
10720 {
10721 if (die->attrs[i].name == name)
10722 return &die->attrs[i];
10723 if (die->attrs[i].name == DW_AT_specification
10724 || die->attrs[i].name == DW_AT_abstract_origin)
10725 spec = &die->attrs[i];
10726 }
10727
10728 if (spec)
10729 {
10730 die = follow_die_ref (die, spec, &cu);
10731 return dwarf2_attr (die, name, cu);
10732 }
10733
10734 return NULL;
10735 }
10736
10737 /* Return the named attribute or NULL if not there,
10738 but do not follow DW_AT_specification, etc.
10739 This is for use in contexts where we're reading .debug_types dies.
10740 Following DW_AT_specification, DW_AT_abstract_origin will take us
10741 back up the chain, and we want to go down. */
10742
10743 static struct attribute *
10744 dwarf2_attr_no_follow (struct die_info *die, unsigned int name,
10745 struct dwarf2_cu *cu)
10746 {
10747 unsigned int i;
10748
10749 for (i = 0; i < die->num_attrs; ++i)
10750 if (die->attrs[i].name == name)
10751 return &die->attrs[i];
10752
10753 return NULL;
10754 }
10755
10756 /* Return non-zero iff the attribute NAME is defined for the given DIE,
10757 and holds a non-zero value. This function should only be used for
10758 DW_FORM_flag or DW_FORM_flag_present attributes. */
10759
10760 static int
10761 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
10762 {
10763 struct attribute *attr = dwarf2_attr (die, name, cu);
10764
10765 return (attr && DW_UNSND (attr));
10766 }
10767
10768 static int
10769 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
10770 {
10771 /* A DIE is a declaration if it has a DW_AT_declaration attribute
10772 which value is non-zero. However, we have to be careful with
10773 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
10774 (via dwarf2_flag_true_p) follows this attribute. So we may
10775 end up accidently finding a declaration attribute that belongs
10776 to a different DIE referenced by the specification attribute,
10777 even though the given DIE does not have a declaration attribute. */
10778 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
10779 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
10780 }
10781
10782 /* Return the die giving the specification for DIE, if there is
10783 one. *SPEC_CU is the CU containing DIE on input, and the CU
10784 containing the return value on output. If there is no
10785 specification, but there is an abstract origin, that is
10786 returned. */
10787
10788 static struct die_info *
10789 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
10790 {
10791 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
10792 *spec_cu);
10793
10794 if (spec_attr == NULL)
10795 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
10796
10797 if (spec_attr == NULL)
10798 return NULL;
10799 else
10800 return follow_die_ref (die, spec_attr, spec_cu);
10801 }
10802
10803 /* Free the line_header structure *LH, and any arrays and strings it
10804 refers to.
10805 NOTE: This is also used as a "cleanup" function. */
10806
10807 static void
10808 free_line_header (struct line_header *lh)
10809 {
10810 if (lh->standard_opcode_lengths)
10811 xfree (lh->standard_opcode_lengths);
10812
10813 /* Remember that all the lh->file_names[i].name pointers are
10814 pointers into debug_line_buffer, and don't need to be freed. */
10815 if (lh->file_names)
10816 xfree (lh->file_names);
10817
10818 /* Similarly for the include directory names. */
10819 if (lh->include_dirs)
10820 xfree (lh->include_dirs);
10821
10822 xfree (lh);
10823 }
10824
10825 /* Add an entry to LH's include directory table. */
10826
10827 static void
10828 add_include_dir (struct line_header *lh, char *include_dir)
10829 {
10830 /* Grow the array if necessary. */
10831 if (lh->include_dirs_size == 0)
10832 {
10833 lh->include_dirs_size = 1; /* for testing */
10834 lh->include_dirs = xmalloc (lh->include_dirs_size
10835 * sizeof (*lh->include_dirs));
10836 }
10837 else if (lh->num_include_dirs >= lh->include_dirs_size)
10838 {
10839 lh->include_dirs_size *= 2;
10840 lh->include_dirs = xrealloc (lh->include_dirs,
10841 (lh->include_dirs_size
10842 * sizeof (*lh->include_dirs)));
10843 }
10844
10845 lh->include_dirs[lh->num_include_dirs++] = include_dir;
10846 }
10847
10848 /* Add an entry to LH's file name table. */
10849
10850 static void
10851 add_file_name (struct line_header *lh,
10852 char *name,
10853 unsigned int dir_index,
10854 unsigned int mod_time,
10855 unsigned int length)
10856 {
10857 struct file_entry *fe;
10858
10859 /* Grow the array if necessary. */
10860 if (lh->file_names_size == 0)
10861 {
10862 lh->file_names_size = 1; /* for testing */
10863 lh->file_names = xmalloc (lh->file_names_size
10864 * sizeof (*lh->file_names));
10865 }
10866 else if (lh->num_file_names >= lh->file_names_size)
10867 {
10868 lh->file_names_size *= 2;
10869 lh->file_names = xrealloc (lh->file_names,
10870 (lh->file_names_size
10871 * sizeof (*lh->file_names)));
10872 }
10873
10874 fe = &lh->file_names[lh->num_file_names++];
10875 fe->name = name;
10876 fe->dir_index = dir_index;
10877 fe->mod_time = mod_time;
10878 fe->length = length;
10879 fe->included_p = 0;
10880 fe->symtab = NULL;
10881 }
10882
10883 /* Read the statement program header starting at OFFSET in
10884 .debug_line, according to the endianness of ABFD. Return a pointer
10885 to a struct line_header, allocated using xmalloc.
10886
10887 NOTE: the strings in the include directory and file name tables of
10888 the returned object point into debug_line_buffer, and must not be
10889 freed. */
10890
10891 static struct line_header *
10892 dwarf_decode_line_header (unsigned int offset, bfd *abfd,
10893 struct dwarf2_cu *cu)
10894 {
10895 struct cleanup *back_to;
10896 struct line_header *lh;
10897 gdb_byte *line_ptr;
10898 unsigned int bytes_read, offset_size;
10899 int i;
10900 char *cur_dir, *cur_file;
10901
10902 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->line);
10903 if (dwarf2_per_objfile->line.buffer == NULL)
10904 {
10905 complaint (&symfile_complaints, _("missing .debug_line section"));
10906 return 0;
10907 }
10908
10909 /* Make sure that at least there's room for the total_length field.
10910 That could be 12 bytes long, but we're just going to fudge that. */
10911 if (offset + 4 >= dwarf2_per_objfile->line.size)
10912 {
10913 dwarf2_statement_list_fits_in_line_number_section_complaint ();
10914 return 0;
10915 }
10916
10917 lh = xmalloc (sizeof (*lh));
10918 memset (lh, 0, sizeof (*lh));
10919 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
10920 (void *) lh);
10921
10922 line_ptr = dwarf2_per_objfile->line.buffer + offset;
10923
10924 /* Read in the header. */
10925 lh->total_length =
10926 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
10927 &bytes_read, &offset_size);
10928 line_ptr += bytes_read;
10929 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line.buffer
10930 + dwarf2_per_objfile->line.size))
10931 {
10932 dwarf2_statement_list_fits_in_line_number_section_complaint ();
10933 return 0;
10934 }
10935 lh->statement_program_end = line_ptr + lh->total_length;
10936 lh->version = read_2_bytes (abfd, line_ptr);
10937 line_ptr += 2;
10938 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
10939 line_ptr += offset_size;
10940 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
10941 line_ptr += 1;
10942 if (lh->version >= 4)
10943 {
10944 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
10945 line_ptr += 1;
10946 }
10947 else
10948 lh->maximum_ops_per_instruction = 1;
10949
10950 if (lh->maximum_ops_per_instruction == 0)
10951 {
10952 lh->maximum_ops_per_instruction = 1;
10953 complaint (&symfile_complaints,
10954 _("invalid maximum_ops_per_instruction "
10955 "in `.debug_line' section"));
10956 }
10957
10958 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
10959 line_ptr += 1;
10960 lh->line_base = read_1_signed_byte (abfd, line_ptr);
10961 line_ptr += 1;
10962 lh->line_range = read_1_byte (abfd, line_ptr);
10963 line_ptr += 1;
10964 lh->opcode_base = read_1_byte (abfd, line_ptr);
10965 line_ptr += 1;
10966 lh->standard_opcode_lengths
10967 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
10968
10969 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
10970 for (i = 1; i < lh->opcode_base; ++i)
10971 {
10972 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
10973 line_ptr += 1;
10974 }
10975
10976 /* Read directory table. */
10977 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
10978 {
10979 line_ptr += bytes_read;
10980 add_include_dir (lh, cur_dir);
10981 }
10982 line_ptr += bytes_read;
10983
10984 /* Read file name table. */
10985 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
10986 {
10987 unsigned int dir_index, mod_time, length;
10988
10989 line_ptr += bytes_read;
10990 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10991 line_ptr += bytes_read;
10992 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10993 line_ptr += bytes_read;
10994 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10995 line_ptr += bytes_read;
10996
10997 add_file_name (lh, cur_file, dir_index, mod_time, length);
10998 }
10999 line_ptr += bytes_read;
11000 lh->statement_program_start = line_ptr;
11001
11002 if (line_ptr > (dwarf2_per_objfile->line.buffer
11003 + dwarf2_per_objfile->line.size))
11004 complaint (&symfile_complaints,
11005 _("line number info header doesn't "
11006 "fit in `.debug_line' section"));
11007
11008 discard_cleanups (back_to);
11009 return lh;
11010 }
11011
11012 /* Subroutine of dwarf_decode_lines to simplify it.
11013 Return the file name of the psymtab for included file FILE_INDEX
11014 in line header LH of PST.
11015 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
11016 If space for the result is malloc'd, it will be freed by a cleanup.
11017 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
11018
11019 static char *
11020 psymtab_include_file_name (const struct line_header *lh, int file_index,
11021 const struct partial_symtab *pst,
11022 const char *comp_dir)
11023 {
11024 const struct file_entry fe = lh->file_names [file_index];
11025 char *include_name = fe.name;
11026 char *include_name_to_compare = include_name;
11027 char *dir_name = NULL;
11028 const char *pst_filename;
11029 char *copied_name = NULL;
11030 int file_is_pst;
11031
11032 if (fe.dir_index)
11033 dir_name = lh->include_dirs[fe.dir_index - 1];
11034
11035 if (!IS_ABSOLUTE_PATH (include_name)
11036 && (dir_name != NULL || comp_dir != NULL))
11037 {
11038 /* Avoid creating a duplicate psymtab for PST.
11039 We do this by comparing INCLUDE_NAME and PST_FILENAME.
11040 Before we do the comparison, however, we need to account
11041 for DIR_NAME and COMP_DIR.
11042 First prepend dir_name (if non-NULL). If we still don't
11043 have an absolute path prepend comp_dir (if non-NULL).
11044 However, the directory we record in the include-file's
11045 psymtab does not contain COMP_DIR (to match the
11046 corresponding symtab(s)).
11047
11048 Example:
11049
11050 bash$ cd /tmp
11051 bash$ gcc -g ./hello.c
11052 include_name = "hello.c"
11053 dir_name = "."
11054 DW_AT_comp_dir = comp_dir = "/tmp"
11055 DW_AT_name = "./hello.c" */
11056
11057 if (dir_name != NULL)
11058 {
11059 include_name = concat (dir_name, SLASH_STRING,
11060 include_name, (char *)NULL);
11061 include_name_to_compare = include_name;
11062 make_cleanup (xfree, include_name);
11063 }
11064 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
11065 {
11066 include_name_to_compare = concat (comp_dir, SLASH_STRING,
11067 include_name, (char *)NULL);
11068 }
11069 }
11070
11071 pst_filename = pst->filename;
11072 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
11073 {
11074 copied_name = concat (pst->dirname, SLASH_STRING,
11075 pst_filename, (char *)NULL);
11076 pst_filename = copied_name;
11077 }
11078
11079 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
11080
11081 if (include_name_to_compare != include_name)
11082 xfree (include_name_to_compare);
11083 if (copied_name != NULL)
11084 xfree (copied_name);
11085
11086 if (file_is_pst)
11087 return NULL;
11088 return include_name;
11089 }
11090
11091 /* Ignore this record_line request. */
11092
11093 static void
11094 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
11095 {
11096 return;
11097 }
11098
11099 /* Subroutine of dwarf_decode_lines to simplify it.
11100 Process the line number information in LH. */
11101
11102 static void
11103 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
11104 struct dwarf2_cu *cu, struct partial_symtab *pst)
11105 {
11106 gdb_byte *line_ptr, *extended_end;
11107 gdb_byte *line_end;
11108 unsigned int bytes_read, extended_len;
11109 unsigned char op_code, extended_op, adj_opcode;
11110 CORE_ADDR baseaddr;
11111 struct objfile *objfile = cu->objfile;
11112 bfd *abfd = objfile->obfd;
11113 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11114 const int decode_for_pst_p = (pst != NULL);
11115 struct subfile *last_subfile = NULL;
11116 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
11117 = record_line;
11118
11119 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11120
11121 line_ptr = lh->statement_program_start;
11122 line_end = lh->statement_program_end;
11123
11124 /* Read the statement sequences until there's nothing left. */
11125 while (line_ptr < line_end)
11126 {
11127 /* state machine registers */
11128 CORE_ADDR address = 0;
11129 unsigned int file = 1;
11130 unsigned int line = 1;
11131 unsigned int column = 0;
11132 int is_stmt = lh->default_is_stmt;
11133 int basic_block = 0;
11134 int end_sequence = 0;
11135 CORE_ADDR addr;
11136 unsigned char op_index = 0;
11137
11138 if (!decode_for_pst_p && lh->num_file_names >= file)
11139 {
11140 /* Start a subfile for the current file of the state machine. */
11141 /* lh->include_dirs and lh->file_names are 0-based, but the
11142 directory and file name numbers in the statement program
11143 are 1-based. */
11144 struct file_entry *fe = &lh->file_names[file - 1];
11145 char *dir = NULL;
11146
11147 if (fe->dir_index)
11148 dir = lh->include_dirs[fe->dir_index - 1];
11149
11150 dwarf2_start_subfile (fe->name, dir, comp_dir);
11151 }
11152
11153 /* Decode the table. */
11154 while (!end_sequence)
11155 {
11156 op_code = read_1_byte (abfd, line_ptr);
11157 line_ptr += 1;
11158 if (line_ptr > line_end)
11159 {
11160 dwarf2_debug_line_missing_end_sequence_complaint ();
11161 break;
11162 }
11163
11164 if (op_code >= lh->opcode_base)
11165 {
11166 /* Special operand. */
11167 adj_opcode = op_code - lh->opcode_base;
11168 address += (((op_index + (adj_opcode / lh->line_range))
11169 / lh->maximum_ops_per_instruction)
11170 * lh->minimum_instruction_length);
11171 op_index = ((op_index + (adj_opcode / lh->line_range))
11172 % lh->maximum_ops_per_instruction);
11173 line += lh->line_base + (adj_opcode % lh->line_range);
11174 if (lh->num_file_names < file || file == 0)
11175 dwarf2_debug_line_missing_file_complaint ();
11176 /* For now we ignore lines not starting on an
11177 instruction boundary. */
11178 else if (op_index == 0)
11179 {
11180 lh->file_names[file - 1].included_p = 1;
11181 if (!decode_for_pst_p && is_stmt)
11182 {
11183 if (last_subfile != current_subfile)
11184 {
11185 addr = gdbarch_addr_bits_remove (gdbarch, address);
11186 if (last_subfile)
11187 (*p_record_line) (last_subfile, 0, addr);
11188 last_subfile = current_subfile;
11189 }
11190 /* Append row to matrix using current values. */
11191 addr = gdbarch_addr_bits_remove (gdbarch, address);
11192 (*p_record_line) (current_subfile, line, addr);
11193 }
11194 }
11195 basic_block = 0;
11196 }
11197 else switch (op_code)
11198 {
11199 case DW_LNS_extended_op:
11200 extended_len = read_unsigned_leb128 (abfd, line_ptr,
11201 &bytes_read);
11202 line_ptr += bytes_read;
11203 extended_end = line_ptr + extended_len;
11204 extended_op = read_1_byte (abfd, line_ptr);
11205 line_ptr += 1;
11206 switch (extended_op)
11207 {
11208 case DW_LNE_end_sequence:
11209 p_record_line = record_line;
11210 end_sequence = 1;
11211 break;
11212 case DW_LNE_set_address:
11213 address = read_address (abfd, line_ptr, cu, &bytes_read);
11214
11215 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
11216 {
11217 /* This line table is for a function which has been
11218 GCd by the linker. Ignore it. PR gdb/12528 */
11219
11220 long line_offset
11221 = line_ptr - dwarf2_per_objfile->line.buffer;
11222
11223 complaint (&symfile_complaints,
11224 _(".debug_line address at offset 0x%lx is 0 "
11225 "[in module %s]"),
11226 line_offset, objfile->name);
11227 p_record_line = noop_record_line;
11228 }
11229
11230 op_index = 0;
11231 line_ptr += bytes_read;
11232 address += baseaddr;
11233 break;
11234 case DW_LNE_define_file:
11235 {
11236 char *cur_file;
11237 unsigned int dir_index, mod_time, length;
11238
11239 cur_file = read_direct_string (abfd, line_ptr,
11240 &bytes_read);
11241 line_ptr += bytes_read;
11242 dir_index =
11243 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11244 line_ptr += bytes_read;
11245 mod_time =
11246 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11247 line_ptr += bytes_read;
11248 length =
11249 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11250 line_ptr += bytes_read;
11251 add_file_name (lh, cur_file, dir_index, mod_time, length);
11252 }
11253 break;
11254 case DW_LNE_set_discriminator:
11255 /* The discriminator is not interesting to the debugger;
11256 just ignore it. */
11257 line_ptr = extended_end;
11258 break;
11259 default:
11260 complaint (&symfile_complaints,
11261 _("mangled .debug_line section"));
11262 return;
11263 }
11264 /* Make sure that we parsed the extended op correctly. If e.g.
11265 we expected a different address size than the producer used,
11266 we may have read the wrong number of bytes. */
11267 if (line_ptr != extended_end)
11268 {
11269 complaint (&symfile_complaints,
11270 _("mangled .debug_line section"));
11271 return;
11272 }
11273 break;
11274 case DW_LNS_copy:
11275 if (lh->num_file_names < file || file == 0)
11276 dwarf2_debug_line_missing_file_complaint ();
11277 else
11278 {
11279 lh->file_names[file - 1].included_p = 1;
11280 if (!decode_for_pst_p && is_stmt)
11281 {
11282 if (last_subfile != current_subfile)
11283 {
11284 addr = gdbarch_addr_bits_remove (gdbarch, address);
11285 if (last_subfile)
11286 (*p_record_line) (last_subfile, 0, addr);
11287 last_subfile = current_subfile;
11288 }
11289 addr = gdbarch_addr_bits_remove (gdbarch, address);
11290 (*p_record_line) (current_subfile, line, addr);
11291 }
11292 }
11293 basic_block = 0;
11294 break;
11295 case DW_LNS_advance_pc:
11296 {
11297 CORE_ADDR adjust
11298 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11299
11300 address += (((op_index + adjust)
11301 / lh->maximum_ops_per_instruction)
11302 * lh->minimum_instruction_length);
11303 op_index = ((op_index + adjust)
11304 % lh->maximum_ops_per_instruction);
11305 line_ptr += bytes_read;
11306 }
11307 break;
11308 case DW_LNS_advance_line:
11309 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
11310 line_ptr += bytes_read;
11311 break;
11312 case DW_LNS_set_file:
11313 {
11314 /* The arrays lh->include_dirs and lh->file_names are
11315 0-based, but the directory and file name numbers in
11316 the statement program are 1-based. */
11317 struct file_entry *fe;
11318 char *dir = NULL;
11319
11320 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11321 line_ptr += bytes_read;
11322 if (lh->num_file_names < file || file == 0)
11323 dwarf2_debug_line_missing_file_complaint ();
11324 else
11325 {
11326 fe = &lh->file_names[file - 1];
11327 if (fe->dir_index)
11328 dir = lh->include_dirs[fe->dir_index - 1];
11329 if (!decode_for_pst_p)
11330 {
11331 last_subfile = current_subfile;
11332 dwarf2_start_subfile (fe->name, dir, comp_dir);
11333 }
11334 }
11335 }
11336 break;
11337 case DW_LNS_set_column:
11338 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11339 line_ptr += bytes_read;
11340 break;
11341 case DW_LNS_negate_stmt:
11342 is_stmt = (!is_stmt);
11343 break;
11344 case DW_LNS_set_basic_block:
11345 basic_block = 1;
11346 break;
11347 /* Add to the address register of the state machine the
11348 address increment value corresponding to special opcode
11349 255. I.e., this value is scaled by the minimum
11350 instruction length since special opcode 255 would have
11351 scaled the increment. */
11352 case DW_LNS_const_add_pc:
11353 {
11354 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
11355
11356 address += (((op_index + adjust)
11357 / lh->maximum_ops_per_instruction)
11358 * lh->minimum_instruction_length);
11359 op_index = ((op_index + adjust)
11360 % lh->maximum_ops_per_instruction);
11361 }
11362 break;
11363 case DW_LNS_fixed_advance_pc:
11364 address += read_2_bytes (abfd, line_ptr);
11365 op_index = 0;
11366 line_ptr += 2;
11367 break;
11368 default:
11369 {
11370 /* Unknown standard opcode, ignore it. */
11371 int i;
11372
11373 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
11374 {
11375 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11376 line_ptr += bytes_read;
11377 }
11378 }
11379 }
11380 }
11381 if (lh->num_file_names < file || file == 0)
11382 dwarf2_debug_line_missing_file_complaint ();
11383 else
11384 {
11385 lh->file_names[file - 1].included_p = 1;
11386 if (!decode_for_pst_p)
11387 {
11388 addr = gdbarch_addr_bits_remove (gdbarch, address);
11389 (*p_record_line) (current_subfile, 0, addr);
11390 }
11391 }
11392 }
11393 }
11394
11395 /* Decode the Line Number Program (LNP) for the given line_header
11396 structure and CU. The actual information extracted and the type
11397 of structures created from the LNP depends on the value of PST.
11398
11399 1. If PST is NULL, then this procedure uses the data from the program
11400 to create all necessary symbol tables, and their linetables.
11401
11402 2. If PST is not NULL, this procedure reads the program to determine
11403 the list of files included by the unit represented by PST, and
11404 builds all the associated partial symbol tables.
11405
11406 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
11407 It is used for relative paths in the line table.
11408 NOTE: When processing partial symtabs (pst != NULL),
11409 comp_dir == pst->dirname.
11410
11411 NOTE: It is important that psymtabs have the same file name (via strcmp)
11412 as the corresponding symtab. Since COMP_DIR is not used in the name of the
11413 symtab we don't use it in the name of the psymtabs we create.
11414 E.g. expand_line_sal requires this when finding psymtabs to expand.
11415 A good testcase for this is mb-inline.exp. */
11416
11417 static void
11418 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
11419 struct dwarf2_cu *cu, struct partial_symtab *pst,
11420 int want_line_info)
11421 {
11422 struct objfile *objfile = cu->objfile;
11423 const int decode_for_pst_p = (pst != NULL);
11424 struct subfile *first_subfile = current_subfile;
11425
11426 if (want_line_info)
11427 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
11428
11429 if (decode_for_pst_p)
11430 {
11431 int file_index;
11432
11433 /* Now that we're done scanning the Line Header Program, we can
11434 create the psymtab of each included file. */
11435 for (file_index = 0; file_index < lh->num_file_names; file_index++)
11436 if (lh->file_names[file_index].included_p == 1)
11437 {
11438 char *include_name =
11439 psymtab_include_file_name (lh, file_index, pst, comp_dir);
11440 if (include_name != NULL)
11441 dwarf2_create_include_psymtab (include_name, pst, objfile);
11442 }
11443 }
11444 else
11445 {
11446 /* Make sure a symtab is created for every file, even files
11447 which contain only variables (i.e. no code with associated
11448 line numbers). */
11449 int i;
11450
11451 for (i = 0; i < lh->num_file_names; i++)
11452 {
11453 char *dir = NULL;
11454 struct file_entry *fe;
11455
11456 fe = &lh->file_names[i];
11457 if (fe->dir_index)
11458 dir = lh->include_dirs[fe->dir_index - 1];
11459 dwarf2_start_subfile (fe->name, dir, comp_dir);
11460
11461 /* Skip the main file; we don't need it, and it must be
11462 allocated last, so that it will show up before the
11463 non-primary symtabs in the objfile's symtab list. */
11464 if (current_subfile == first_subfile)
11465 continue;
11466
11467 if (current_subfile->symtab == NULL)
11468 current_subfile->symtab = allocate_symtab (current_subfile->name,
11469 objfile);
11470 fe->symtab = current_subfile->symtab;
11471 }
11472 }
11473 }
11474
11475 /* Start a subfile for DWARF. FILENAME is the name of the file and
11476 DIRNAME the name of the source directory which contains FILENAME
11477 or NULL if not known. COMP_DIR is the compilation directory for the
11478 linetable's compilation unit or NULL if not known.
11479 This routine tries to keep line numbers from identical absolute and
11480 relative file names in a common subfile.
11481
11482 Using the `list' example from the GDB testsuite, which resides in
11483 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
11484 of /srcdir/list0.c yields the following debugging information for list0.c:
11485
11486 DW_AT_name: /srcdir/list0.c
11487 DW_AT_comp_dir: /compdir
11488 files.files[0].name: list0.h
11489 files.files[0].dir: /srcdir
11490 files.files[1].name: list0.c
11491 files.files[1].dir: /srcdir
11492
11493 The line number information for list0.c has to end up in a single
11494 subfile, so that `break /srcdir/list0.c:1' works as expected.
11495 start_subfile will ensure that this happens provided that we pass the
11496 concatenation of files.files[1].dir and files.files[1].name as the
11497 subfile's name. */
11498
11499 static void
11500 dwarf2_start_subfile (char *filename, const char *dirname,
11501 const char *comp_dir)
11502 {
11503 char *fullname;
11504
11505 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
11506 `start_symtab' will always pass the contents of DW_AT_comp_dir as
11507 second argument to start_subfile. To be consistent, we do the
11508 same here. In order not to lose the line information directory,
11509 we concatenate it to the filename when it makes sense.
11510 Note that the Dwarf3 standard says (speaking of filenames in line
11511 information): ``The directory index is ignored for file names
11512 that represent full path names''. Thus ignoring dirname in the
11513 `else' branch below isn't an issue. */
11514
11515 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
11516 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
11517 else
11518 fullname = filename;
11519
11520 start_subfile (fullname, comp_dir);
11521
11522 if (fullname != filename)
11523 xfree (fullname);
11524 }
11525
11526 static void
11527 var_decode_location (struct attribute *attr, struct symbol *sym,
11528 struct dwarf2_cu *cu)
11529 {
11530 struct objfile *objfile = cu->objfile;
11531 struct comp_unit_head *cu_header = &cu->header;
11532
11533 /* NOTE drow/2003-01-30: There used to be a comment and some special
11534 code here to turn a symbol with DW_AT_external and a
11535 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
11536 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
11537 with some versions of binutils) where shared libraries could have
11538 relocations against symbols in their debug information - the
11539 minimal symbol would have the right address, but the debug info
11540 would not. It's no longer necessary, because we will explicitly
11541 apply relocations when we read in the debug information now. */
11542
11543 /* A DW_AT_location attribute with no contents indicates that a
11544 variable has been optimized away. */
11545 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
11546 {
11547 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
11548 return;
11549 }
11550
11551 /* Handle one degenerate form of location expression specially, to
11552 preserve GDB's previous behavior when section offsets are
11553 specified. If this is just a DW_OP_addr then mark this symbol
11554 as LOC_STATIC. */
11555
11556 if (attr_form_is_block (attr)
11557 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
11558 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
11559 {
11560 unsigned int dummy;
11561
11562 SYMBOL_VALUE_ADDRESS (sym) =
11563 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
11564 SYMBOL_CLASS (sym) = LOC_STATIC;
11565 fixup_symbol_section (sym, objfile);
11566 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
11567 SYMBOL_SECTION (sym));
11568 return;
11569 }
11570
11571 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
11572 expression evaluator, and use LOC_COMPUTED only when necessary
11573 (i.e. when the value of a register or memory location is
11574 referenced, or a thread-local block, etc.). Then again, it might
11575 not be worthwhile. I'm assuming that it isn't unless performance
11576 or memory numbers show me otherwise. */
11577
11578 dwarf2_symbol_mark_computed (attr, sym, cu);
11579 SYMBOL_CLASS (sym) = LOC_COMPUTED;
11580
11581 if (SYMBOL_COMPUTED_OPS (sym) == &dwarf2_loclist_funcs)
11582 cu->has_loclist = 1;
11583 }
11584
11585 /* Given a pointer to a DWARF information entry, figure out if we need
11586 to make a symbol table entry for it, and if so, create a new entry
11587 and return a pointer to it.
11588 If TYPE is NULL, determine symbol type from the die, otherwise
11589 used the passed type.
11590 If SPACE is not NULL, use it to hold the new symbol. If it is
11591 NULL, allocate a new symbol on the objfile's obstack. */
11592
11593 static struct symbol *
11594 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
11595 struct symbol *space)
11596 {
11597 struct objfile *objfile = cu->objfile;
11598 struct symbol *sym = NULL;
11599 char *name;
11600 struct attribute *attr = NULL;
11601 struct attribute *attr2 = NULL;
11602 CORE_ADDR baseaddr;
11603 struct pending **list_to_add = NULL;
11604
11605 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11606
11607 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11608
11609 name = dwarf2_name (die, cu);
11610 if (name)
11611 {
11612 const char *linkagename;
11613 int suppress_add = 0;
11614
11615 if (space)
11616 sym = space;
11617 else
11618 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
11619 OBJSTAT (objfile, n_syms++);
11620
11621 /* Cache this symbol's name and the name's demangled form (if any). */
11622 SYMBOL_SET_LANGUAGE (sym, cu->language);
11623 linkagename = dwarf2_physname (name, die, cu);
11624 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
11625
11626 /* Fortran does not have mangling standard and the mangling does differ
11627 between gfortran, iFort etc. */
11628 if (cu->language == language_fortran
11629 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
11630 symbol_set_demangled_name (&(sym->ginfo),
11631 (char *) dwarf2_full_name (name, die, cu),
11632 NULL);
11633
11634 /* Default assumptions.
11635 Use the passed type or decode it from the die. */
11636 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
11637 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
11638 if (type != NULL)
11639 SYMBOL_TYPE (sym) = type;
11640 else
11641 SYMBOL_TYPE (sym) = die_type (die, cu);
11642 attr = dwarf2_attr (die,
11643 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
11644 cu);
11645 if (attr)
11646 {
11647 SYMBOL_LINE (sym) = DW_UNSND (attr);
11648 }
11649
11650 attr = dwarf2_attr (die,
11651 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
11652 cu);
11653 if (attr)
11654 {
11655 int file_index = DW_UNSND (attr);
11656
11657 if (cu->line_header == NULL
11658 || file_index > cu->line_header->num_file_names)
11659 complaint (&symfile_complaints,
11660 _("file index out of range"));
11661 else if (file_index > 0)
11662 {
11663 struct file_entry *fe;
11664
11665 fe = &cu->line_header->file_names[file_index - 1];
11666 SYMBOL_SYMTAB (sym) = fe->symtab;
11667 }
11668 }
11669
11670 switch (die->tag)
11671 {
11672 case DW_TAG_label:
11673 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11674 if (attr)
11675 {
11676 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
11677 }
11678 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
11679 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
11680 SYMBOL_CLASS (sym) = LOC_LABEL;
11681 add_symbol_to_list (sym, cu->list_in_scope);
11682 break;
11683 case DW_TAG_subprogram:
11684 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
11685 finish_block. */
11686 SYMBOL_CLASS (sym) = LOC_BLOCK;
11687 attr2 = dwarf2_attr (die, DW_AT_external, cu);
11688 if ((attr2 && (DW_UNSND (attr2) != 0))
11689 || cu->language == language_ada)
11690 {
11691 /* Subprograms marked external are stored as a global symbol.
11692 Ada subprograms, whether marked external or not, are always
11693 stored as a global symbol, because we want to be able to
11694 access them globally. For instance, we want to be able
11695 to break on a nested subprogram without having to
11696 specify the context. */
11697 list_to_add = &global_symbols;
11698 }
11699 else
11700 {
11701 list_to_add = cu->list_in_scope;
11702 }
11703 break;
11704 case DW_TAG_inlined_subroutine:
11705 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
11706 finish_block. */
11707 SYMBOL_CLASS (sym) = LOC_BLOCK;
11708 SYMBOL_INLINED (sym) = 1;
11709 /* Do not add the symbol to any lists. It will be found via
11710 BLOCK_FUNCTION from the blockvector. */
11711 break;
11712 case DW_TAG_template_value_param:
11713 suppress_add = 1;
11714 /* Fall through. */
11715 case DW_TAG_constant:
11716 case DW_TAG_variable:
11717 case DW_TAG_member:
11718 /* Compilation with minimal debug info may result in
11719 variables with missing type entries. Change the
11720 misleading `void' type to something sensible. */
11721 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
11722 SYMBOL_TYPE (sym)
11723 = objfile_type (objfile)->nodebug_data_symbol;
11724
11725 attr = dwarf2_attr (die, DW_AT_const_value, cu);
11726 /* In the case of DW_TAG_member, we should only be called for
11727 static const members. */
11728 if (die->tag == DW_TAG_member)
11729 {
11730 /* dwarf2_add_field uses die_is_declaration,
11731 so we do the same. */
11732 gdb_assert (die_is_declaration (die, cu));
11733 gdb_assert (attr);
11734 }
11735 if (attr)
11736 {
11737 dwarf2_const_value (attr, sym, cu);
11738 attr2 = dwarf2_attr (die, DW_AT_external, cu);
11739 if (!suppress_add)
11740 {
11741 if (attr2 && (DW_UNSND (attr2) != 0))
11742 list_to_add = &global_symbols;
11743 else
11744 list_to_add = cu->list_in_scope;
11745 }
11746 break;
11747 }
11748 attr = dwarf2_attr (die, DW_AT_location, cu);
11749 if (attr)
11750 {
11751 var_decode_location (attr, sym, cu);
11752 attr2 = dwarf2_attr (die, DW_AT_external, cu);
11753 if (SYMBOL_CLASS (sym) == LOC_STATIC
11754 && SYMBOL_VALUE_ADDRESS (sym) == 0
11755 && !dwarf2_per_objfile->has_section_at_zero)
11756 {
11757 /* When a static variable is eliminated by the linker,
11758 the corresponding debug information is not stripped
11759 out, but the variable address is set to null;
11760 do not add such variables into symbol table. */
11761 }
11762 else if (attr2 && (DW_UNSND (attr2) != 0))
11763 {
11764 /* Workaround gfortran PR debug/40040 - it uses
11765 DW_AT_location for variables in -fPIC libraries which may
11766 get overriden by other libraries/executable and get
11767 a different address. Resolve it by the minimal symbol
11768 which may come from inferior's executable using copy
11769 relocation. Make this workaround only for gfortran as for
11770 other compilers GDB cannot guess the minimal symbol
11771 Fortran mangling kind. */
11772 if (cu->language == language_fortran && die->parent
11773 && die->parent->tag == DW_TAG_module
11774 && cu->producer
11775 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
11776 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
11777
11778 /* A variable with DW_AT_external is never static,
11779 but it may be block-scoped. */
11780 list_to_add = (cu->list_in_scope == &file_symbols
11781 ? &global_symbols : cu->list_in_scope);
11782 }
11783 else
11784 list_to_add = cu->list_in_scope;
11785 }
11786 else
11787 {
11788 /* We do not know the address of this symbol.
11789 If it is an external symbol and we have type information
11790 for it, enter the symbol as a LOC_UNRESOLVED symbol.
11791 The address of the variable will then be determined from
11792 the minimal symbol table whenever the variable is
11793 referenced. */
11794 attr2 = dwarf2_attr (die, DW_AT_external, cu);
11795 if (attr2 && (DW_UNSND (attr2) != 0)
11796 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
11797 {
11798 /* A variable with DW_AT_external is never static, but it
11799 may be block-scoped. */
11800 list_to_add = (cu->list_in_scope == &file_symbols
11801 ? &global_symbols : cu->list_in_scope);
11802
11803 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
11804 }
11805 else if (!die_is_declaration (die, cu))
11806 {
11807 /* Use the default LOC_OPTIMIZED_OUT class. */
11808 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
11809 if (!suppress_add)
11810 list_to_add = cu->list_in_scope;
11811 }
11812 }
11813 break;
11814 case DW_TAG_formal_parameter:
11815 /* If we are inside a function, mark this as an argument. If
11816 not, we might be looking at an argument to an inlined function
11817 when we do not have enough information to show inlined frames;
11818 pretend it's a local variable in that case so that the user can
11819 still see it. */
11820 if (context_stack_depth > 0
11821 && context_stack[context_stack_depth - 1].name != NULL)
11822 SYMBOL_IS_ARGUMENT (sym) = 1;
11823 attr = dwarf2_attr (die, DW_AT_location, cu);
11824 if (attr)
11825 {
11826 var_decode_location (attr, sym, cu);
11827 }
11828 attr = dwarf2_attr (die, DW_AT_const_value, cu);
11829 if (attr)
11830 {
11831 dwarf2_const_value (attr, sym, cu);
11832 }
11833
11834 list_to_add = cu->list_in_scope;
11835 break;
11836 case DW_TAG_unspecified_parameters:
11837 /* From varargs functions; gdb doesn't seem to have any
11838 interest in this information, so just ignore it for now.
11839 (FIXME?) */
11840 break;
11841 case DW_TAG_template_type_param:
11842 suppress_add = 1;
11843 /* Fall through. */
11844 case DW_TAG_class_type:
11845 case DW_TAG_interface_type:
11846 case DW_TAG_structure_type:
11847 case DW_TAG_union_type:
11848 case DW_TAG_set_type:
11849 case DW_TAG_enumeration_type:
11850 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11851 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
11852
11853 {
11854 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
11855 really ever be static objects: otherwise, if you try
11856 to, say, break of a class's method and you're in a file
11857 which doesn't mention that class, it won't work unless
11858 the check for all static symbols in lookup_symbol_aux
11859 saves you. See the OtherFileClass tests in
11860 gdb.c++/namespace.exp. */
11861
11862 if (!suppress_add)
11863 {
11864 list_to_add = (cu->list_in_scope == &file_symbols
11865 && (cu->language == language_cplus
11866 || cu->language == language_java)
11867 ? &global_symbols : cu->list_in_scope);
11868
11869 /* The semantics of C++ state that "struct foo {
11870 ... }" also defines a typedef for "foo". A Java
11871 class declaration also defines a typedef for the
11872 class. */
11873 if (cu->language == language_cplus
11874 || cu->language == language_java
11875 || cu->language == language_ada)
11876 {
11877 /* The symbol's name is already allocated along
11878 with this objfile, so we don't need to
11879 duplicate it for the type. */
11880 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
11881 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
11882 }
11883 }
11884 }
11885 break;
11886 case DW_TAG_typedef:
11887 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11888 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
11889 list_to_add = cu->list_in_scope;
11890 break;
11891 case DW_TAG_base_type:
11892 case DW_TAG_subrange_type:
11893 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11894 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
11895 list_to_add = cu->list_in_scope;
11896 break;
11897 case DW_TAG_enumerator:
11898 attr = dwarf2_attr (die, DW_AT_const_value, cu);
11899 if (attr)
11900 {
11901 dwarf2_const_value (attr, sym, cu);
11902 }
11903 {
11904 /* NOTE: carlton/2003-11-10: See comment above in the
11905 DW_TAG_class_type, etc. block. */
11906
11907 list_to_add = (cu->list_in_scope == &file_symbols
11908 && (cu->language == language_cplus
11909 || cu->language == language_java)
11910 ? &global_symbols : cu->list_in_scope);
11911 }
11912 break;
11913 case DW_TAG_namespace:
11914 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11915 list_to_add = &global_symbols;
11916 break;
11917 default:
11918 /* Not a tag we recognize. Hopefully we aren't processing
11919 trash data, but since we must specifically ignore things
11920 we don't recognize, there is nothing else we should do at
11921 this point. */
11922 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
11923 dwarf_tag_name (die->tag));
11924 break;
11925 }
11926
11927 if (suppress_add)
11928 {
11929 sym->hash_next = objfile->template_symbols;
11930 objfile->template_symbols = sym;
11931 list_to_add = NULL;
11932 }
11933
11934 if (list_to_add != NULL)
11935 add_symbol_to_list (sym, list_to_add);
11936
11937 /* For the benefit of old versions of GCC, check for anonymous
11938 namespaces based on the demangled name. */
11939 if (!processing_has_namespace_info
11940 && cu->language == language_cplus)
11941 cp_scan_for_anonymous_namespaces (sym, objfile);
11942 }
11943 return (sym);
11944 }
11945
11946 /* A wrapper for new_symbol_full that always allocates a new symbol. */
11947
11948 static struct symbol *
11949 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
11950 {
11951 return new_symbol_full (die, type, cu, NULL);
11952 }
11953
11954 /* Given an attr with a DW_FORM_dataN value in host byte order,
11955 zero-extend it as appropriate for the symbol's type. The DWARF
11956 standard (v4) is not entirely clear about the meaning of using
11957 DW_FORM_dataN for a constant with a signed type, where the type is
11958 wider than the data. The conclusion of a discussion on the DWARF
11959 list was that this is unspecified. We choose to always zero-extend
11960 because that is the interpretation long in use by GCC. */
11961
11962 static gdb_byte *
11963 dwarf2_const_value_data (struct attribute *attr, struct type *type,
11964 const char *name, struct obstack *obstack,
11965 struct dwarf2_cu *cu, long *value, int bits)
11966 {
11967 struct objfile *objfile = cu->objfile;
11968 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
11969 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
11970 LONGEST l = DW_UNSND (attr);
11971
11972 if (bits < sizeof (*value) * 8)
11973 {
11974 l &= ((LONGEST) 1 << bits) - 1;
11975 *value = l;
11976 }
11977 else if (bits == sizeof (*value) * 8)
11978 *value = l;
11979 else
11980 {
11981 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
11982 store_unsigned_integer (bytes, bits / 8, byte_order, l);
11983 return bytes;
11984 }
11985
11986 return NULL;
11987 }
11988
11989 /* Read a constant value from an attribute. Either set *VALUE, or if
11990 the value does not fit in *VALUE, set *BYTES - either already
11991 allocated on the objfile obstack, or newly allocated on OBSTACK,
11992 or, set *BATON, if we translated the constant to a location
11993 expression. */
11994
11995 static void
11996 dwarf2_const_value_attr (struct attribute *attr, struct type *type,
11997 const char *name, struct obstack *obstack,
11998 struct dwarf2_cu *cu,
11999 long *value, gdb_byte **bytes,
12000 struct dwarf2_locexpr_baton **baton)
12001 {
12002 struct objfile *objfile = cu->objfile;
12003 struct comp_unit_head *cu_header = &cu->header;
12004 struct dwarf_block *blk;
12005 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
12006 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
12007
12008 *value = 0;
12009 *bytes = NULL;
12010 *baton = NULL;
12011
12012 switch (attr->form)
12013 {
12014 case DW_FORM_addr:
12015 {
12016 gdb_byte *data;
12017
12018 if (TYPE_LENGTH (type) != cu_header->addr_size)
12019 dwarf2_const_value_length_mismatch_complaint (name,
12020 cu_header->addr_size,
12021 TYPE_LENGTH (type));
12022 /* Symbols of this form are reasonably rare, so we just
12023 piggyback on the existing location code rather than writing
12024 a new implementation of symbol_computed_ops. */
12025 *baton = obstack_alloc (&objfile->objfile_obstack,
12026 sizeof (struct dwarf2_locexpr_baton));
12027 (*baton)->per_cu = cu->per_cu;
12028 gdb_assert ((*baton)->per_cu);
12029
12030 (*baton)->size = 2 + cu_header->addr_size;
12031 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
12032 (*baton)->data = data;
12033
12034 data[0] = DW_OP_addr;
12035 store_unsigned_integer (&data[1], cu_header->addr_size,
12036 byte_order, DW_ADDR (attr));
12037 data[cu_header->addr_size + 1] = DW_OP_stack_value;
12038 }
12039 break;
12040 case DW_FORM_string:
12041 case DW_FORM_strp:
12042 /* DW_STRING is already allocated on the objfile obstack, point
12043 directly to it. */
12044 *bytes = (gdb_byte *) DW_STRING (attr);
12045 break;
12046 case DW_FORM_block1:
12047 case DW_FORM_block2:
12048 case DW_FORM_block4:
12049 case DW_FORM_block:
12050 case DW_FORM_exprloc:
12051 blk = DW_BLOCK (attr);
12052 if (TYPE_LENGTH (type) != blk->size)
12053 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
12054 TYPE_LENGTH (type));
12055 *bytes = blk->data;
12056 break;
12057
12058 /* The DW_AT_const_value attributes are supposed to carry the
12059 symbol's value "represented as it would be on the target
12060 architecture." By the time we get here, it's already been
12061 converted to host endianness, so we just need to sign- or
12062 zero-extend it as appropriate. */
12063 case DW_FORM_data1:
12064 *bytes = dwarf2_const_value_data (attr, type, name,
12065 obstack, cu, value, 8);
12066 break;
12067 case DW_FORM_data2:
12068 *bytes = dwarf2_const_value_data (attr, type, name,
12069 obstack, cu, value, 16);
12070 break;
12071 case DW_FORM_data4:
12072 *bytes = dwarf2_const_value_data (attr, type, name,
12073 obstack, cu, value, 32);
12074 break;
12075 case DW_FORM_data8:
12076 *bytes = dwarf2_const_value_data (attr, type, name,
12077 obstack, cu, value, 64);
12078 break;
12079
12080 case DW_FORM_sdata:
12081 *value = DW_SND (attr);
12082 break;
12083
12084 case DW_FORM_udata:
12085 *value = DW_UNSND (attr);
12086 break;
12087
12088 default:
12089 complaint (&symfile_complaints,
12090 _("unsupported const value attribute form: '%s'"),
12091 dwarf_form_name (attr->form));
12092 *value = 0;
12093 break;
12094 }
12095 }
12096
12097
12098 /* Copy constant value from an attribute to a symbol. */
12099
12100 static void
12101 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
12102 struct dwarf2_cu *cu)
12103 {
12104 struct objfile *objfile = cu->objfile;
12105 struct comp_unit_head *cu_header = &cu->header;
12106 long value;
12107 gdb_byte *bytes;
12108 struct dwarf2_locexpr_baton *baton;
12109
12110 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
12111 SYMBOL_PRINT_NAME (sym),
12112 &objfile->objfile_obstack, cu,
12113 &value, &bytes, &baton);
12114
12115 if (baton != NULL)
12116 {
12117 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
12118 SYMBOL_LOCATION_BATON (sym) = baton;
12119 SYMBOL_CLASS (sym) = LOC_COMPUTED;
12120 }
12121 else if (bytes != NULL)
12122 {
12123 SYMBOL_VALUE_BYTES (sym) = bytes;
12124 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
12125 }
12126 else
12127 {
12128 SYMBOL_VALUE (sym) = value;
12129 SYMBOL_CLASS (sym) = LOC_CONST;
12130 }
12131 }
12132
12133 /* Return the type of the die in question using its DW_AT_type attribute. */
12134
12135 static struct type *
12136 die_type (struct die_info *die, struct dwarf2_cu *cu)
12137 {
12138 struct attribute *type_attr;
12139
12140 type_attr = dwarf2_attr (die, DW_AT_type, cu);
12141 if (!type_attr)
12142 {
12143 /* A missing DW_AT_type represents a void type. */
12144 return objfile_type (cu->objfile)->builtin_void;
12145 }
12146
12147 return lookup_die_type (die, type_attr, cu);
12148 }
12149
12150 /* True iff CU's producer generates GNAT Ada auxiliary information
12151 that allows to find parallel types through that information instead
12152 of having to do expensive parallel lookups by type name. */
12153
12154 static int
12155 need_gnat_info (struct dwarf2_cu *cu)
12156 {
12157 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
12158 of GNAT produces this auxiliary information, without any indication
12159 that it is produced. Part of enhancing the FSF version of GNAT
12160 to produce that information will be to put in place an indicator
12161 that we can use in order to determine whether the descriptive type
12162 info is available or not. One suggestion that has been made is
12163 to use a new attribute, attached to the CU die. For now, assume
12164 that the descriptive type info is not available. */
12165 return 0;
12166 }
12167
12168 /* Return the auxiliary type of the die in question using its
12169 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
12170 attribute is not present. */
12171
12172 static struct type *
12173 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
12174 {
12175 struct attribute *type_attr;
12176
12177 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
12178 if (!type_attr)
12179 return NULL;
12180
12181 return lookup_die_type (die, type_attr, cu);
12182 }
12183
12184 /* If DIE has a descriptive_type attribute, then set the TYPE's
12185 descriptive type accordingly. */
12186
12187 static void
12188 set_descriptive_type (struct type *type, struct die_info *die,
12189 struct dwarf2_cu *cu)
12190 {
12191 struct type *descriptive_type = die_descriptive_type (die, cu);
12192
12193 if (descriptive_type)
12194 {
12195 ALLOCATE_GNAT_AUX_TYPE (type);
12196 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
12197 }
12198 }
12199
12200 /* Return the containing type of the die in question using its
12201 DW_AT_containing_type attribute. */
12202
12203 static struct type *
12204 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
12205 {
12206 struct attribute *type_attr;
12207
12208 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
12209 if (!type_attr)
12210 error (_("Dwarf Error: Problem turning containing type into gdb type "
12211 "[in module %s]"), cu->objfile->name);
12212
12213 return lookup_die_type (die, type_attr, cu);
12214 }
12215
12216 /* Look up the type of DIE in CU using its type attribute ATTR.
12217 If there is no type substitute an error marker. */
12218
12219 static struct type *
12220 lookup_die_type (struct die_info *die, struct attribute *attr,
12221 struct dwarf2_cu *cu)
12222 {
12223 struct objfile *objfile = cu->objfile;
12224 struct type *this_type;
12225
12226 /* First see if we have it cached. */
12227
12228 if (is_ref_attr (attr))
12229 {
12230 unsigned int offset = dwarf2_get_ref_die_offset (attr);
12231
12232 this_type = get_die_type_at_offset (offset, cu->per_cu);
12233 }
12234 else if (attr->form == DW_FORM_ref_sig8)
12235 {
12236 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
12237 struct dwarf2_cu *sig_cu;
12238 unsigned int offset;
12239
12240 /* sig_type will be NULL if the signatured type is missing from
12241 the debug info. */
12242 if (sig_type == NULL)
12243 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
12244 "at 0x%x [in module %s]"),
12245 die->offset, objfile->name);
12246
12247 gdb_assert (sig_type->per_cu.debug_types_section);
12248 offset = sig_type->per_cu.offset + sig_type->type_offset;
12249 this_type = get_die_type_at_offset (offset, &sig_type->per_cu);
12250 }
12251 else
12252 {
12253 dump_die_for_error (die);
12254 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
12255 dwarf_attr_name (attr->name), objfile->name);
12256 }
12257
12258 /* If not cached we need to read it in. */
12259
12260 if (this_type == NULL)
12261 {
12262 struct die_info *type_die;
12263 struct dwarf2_cu *type_cu = cu;
12264
12265 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
12266 /* If the type is cached, we should have found it above. */
12267 gdb_assert (get_die_type (type_die, type_cu) == NULL);
12268 this_type = read_type_die_1 (type_die, type_cu);
12269 }
12270
12271 /* If we still don't have a type use an error marker. */
12272
12273 if (this_type == NULL)
12274 {
12275 char *message, *saved;
12276
12277 /* read_type_die already issued a complaint. */
12278 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
12279 objfile->name,
12280 cu->header.offset,
12281 die->offset);
12282 saved = obstack_copy0 (&objfile->objfile_obstack,
12283 message, strlen (message));
12284 xfree (message);
12285
12286 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
12287 }
12288
12289 return this_type;
12290 }
12291
12292 /* Return the type in DIE, CU.
12293 Returns NULL for invalid types.
12294
12295 This first does a lookup in the appropriate type_hash table,
12296 and only reads the die in if necessary.
12297
12298 NOTE: This can be called when reading in partial or full symbols. */
12299
12300 static struct type *
12301 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
12302 {
12303 struct type *this_type;
12304
12305 this_type = get_die_type (die, cu);
12306 if (this_type)
12307 return this_type;
12308
12309 return read_type_die_1 (die, cu);
12310 }
12311
12312 /* Read the type in DIE, CU.
12313 Returns NULL for invalid types. */
12314
12315 static struct type *
12316 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
12317 {
12318 struct type *this_type = NULL;
12319
12320 switch (die->tag)
12321 {
12322 case DW_TAG_class_type:
12323 case DW_TAG_interface_type:
12324 case DW_TAG_structure_type:
12325 case DW_TAG_union_type:
12326 this_type = read_structure_type (die, cu);
12327 break;
12328 case DW_TAG_enumeration_type:
12329 this_type = read_enumeration_type (die, cu);
12330 break;
12331 case DW_TAG_subprogram:
12332 case DW_TAG_subroutine_type:
12333 case DW_TAG_inlined_subroutine:
12334 this_type = read_subroutine_type (die, cu);
12335 break;
12336 case DW_TAG_array_type:
12337 this_type = read_array_type (die, cu);
12338 break;
12339 case DW_TAG_set_type:
12340 this_type = read_set_type (die, cu);
12341 break;
12342 case DW_TAG_pointer_type:
12343 this_type = read_tag_pointer_type (die, cu);
12344 break;
12345 case DW_TAG_ptr_to_member_type:
12346 this_type = read_tag_ptr_to_member_type (die, cu);
12347 break;
12348 case DW_TAG_reference_type:
12349 this_type = read_tag_reference_type (die, cu);
12350 break;
12351 case DW_TAG_const_type:
12352 this_type = read_tag_const_type (die, cu);
12353 break;
12354 case DW_TAG_volatile_type:
12355 this_type = read_tag_volatile_type (die, cu);
12356 break;
12357 case DW_TAG_string_type:
12358 this_type = read_tag_string_type (die, cu);
12359 break;
12360 case DW_TAG_typedef:
12361 this_type = read_typedef (die, cu);
12362 break;
12363 case DW_TAG_subrange_type:
12364 this_type = read_subrange_type (die, cu);
12365 break;
12366 case DW_TAG_base_type:
12367 this_type = read_base_type (die, cu);
12368 break;
12369 case DW_TAG_unspecified_type:
12370 this_type = read_unspecified_type (die, cu);
12371 break;
12372 case DW_TAG_namespace:
12373 this_type = read_namespace_type (die, cu);
12374 break;
12375 case DW_TAG_module:
12376 this_type = read_module_type (die, cu);
12377 break;
12378 default:
12379 complaint (&symfile_complaints,
12380 _("unexpected tag in read_type_die: '%s'"),
12381 dwarf_tag_name (die->tag));
12382 break;
12383 }
12384
12385 return this_type;
12386 }
12387
12388 /* See if we can figure out if the class lives in a namespace. We do
12389 this by looking for a member function; its demangled name will
12390 contain namespace info, if there is any.
12391 Return the computed name or NULL.
12392 Space for the result is allocated on the objfile's obstack.
12393 This is the full-die version of guess_partial_die_structure_name.
12394 In this case we know DIE has no useful parent. */
12395
12396 static char *
12397 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
12398 {
12399 struct die_info *spec_die;
12400 struct dwarf2_cu *spec_cu;
12401 struct die_info *child;
12402
12403 spec_cu = cu;
12404 spec_die = die_specification (die, &spec_cu);
12405 if (spec_die != NULL)
12406 {
12407 die = spec_die;
12408 cu = spec_cu;
12409 }
12410
12411 for (child = die->child;
12412 child != NULL;
12413 child = child->sibling)
12414 {
12415 if (child->tag == DW_TAG_subprogram)
12416 {
12417 struct attribute *attr;
12418
12419 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
12420 if (attr == NULL)
12421 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
12422 if (attr != NULL)
12423 {
12424 char *actual_name
12425 = language_class_name_from_physname (cu->language_defn,
12426 DW_STRING (attr));
12427 char *name = NULL;
12428
12429 if (actual_name != NULL)
12430 {
12431 char *die_name = dwarf2_name (die, cu);
12432
12433 if (die_name != NULL
12434 && strcmp (die_name, actual_name) != 0)
12435 {
12436 /* Strip off the class name from the full name.
12437 We want the prefix. */
12438 int die_name_len = strlen (die_name);
12439 int actual_name_len = strlen (actual_name);
12440
12441 /* Test for '::' as a sanity check. */
12442 if (actual_name_len > die_name_len + 2
12443 && actual_name[actual_name_len
12444 - die_name_len - 1] == ':')
12445 name =
12446 obsavestring (actual_name,
12447 actual_name_len - die_name_len - 2,
12448 &cu->objfile->objfile_obstack);
12449 }
12450 }
12451 xfree (actual_name);
12452 return name;
12453 }
12454 }
12455 }
12456
12457 return NULL;
12458 }
12459
12460 /* GCC might emit a nameless typedef that has a linkage name. Determine the
12461 prefix part in such case. See
12462 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
12463
12464 static char *
12465 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
12466 {
12467 struct attribute *attr;
12468 char *base;
12469
12470 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
12471 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
12472 return NULL;
12473
12474 attr = dwarf2_attr (die, DW_AT_name, cu);
12475 if (attr != NULL && DW_STRING (attr) != NULL)
12476 return NULL;
12477
12478 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
12479 if (attr == NULL)
12480 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
12481 if (attr == NULL || DW_STRING (attr) == NULL)
12482 return NULL;
12483
12484 /* dwarf2_name had to be already called. */
12485 gdb_assert (DW_STRING_IS_CANONICAL (attr));
12486
12487 /* Strip the base name, keep any leading namespaces/classes. */
12488 base = strrchr (DW_STRING (attr), ':');
12489 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
12490 return "";
12491
12492 return obsavestring (DW_STRING (attr), &base[-1] - DW_STRING (attr),
12493 &cu->objfile->objfile_obstack);
12494 }
12495
12496 /* Return the name of the namespace/class that DIE is defined within,
12497 or "" if we can't tell. The caller should not xfree the result.
12498
12499 For example, if we're within the method foo() in the following
12500 code:
12501
12502 namespace N {
12503 class C {
12504 void foo () {
12505 }
12506 };
12507 }
12508
12509 then determine_prefix on foo's die will return "N::C". */
12510
12511 static const char *
12512 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
12513 {
12514 struct die_info *parent, *spec_die;
12515 struct dwarf2_cu *spec_cu;
12516 struct type *parent_type;
12517 char *retval;
12518
12519 if (cu->language != language_cplus && cu->language != language_java
12520 && cu->language != language_fortran)
12521 return "";
12522
12523 retval = anonymous_struct_prefix (die, cu);
12524 if (retval)
12525 return retval;
12526
12527 /* We have to be careful in the presence of DW_AT_specification.
12528 For example, with GCC 3.4, given the code
12529
12530 namespace N {
12531 void foo() {
12532 // Definition of N::foo.
12533 }
12534 }
12535
12536 then we'll have a tree of DIEs like this:
12537
12538 1: DW_TAG_compile_unit
12539 2: DW_TAG_namespace // N
12540 3: DW_TAG_subprogram // declaration of N::foo
12541 4: DW_TAG_subprogram // definition of N::foo
12542 DW_AT_specification // refers to die #3
12543
12544 Thus, when processing die #4, we have to pretend that we're in
12545 the context of its DW_AT_specification, namely the contex of die
12546 #3. */
12547 spec_cu = cu;
12548 spec_die = die_specification (die, &spec_cu);
12549 if (spec_die == NULL)
12550 parent = die->parent;
12551 else
12552 {
12553 parent = spec_die->parent;
12554 cu = spec_cu;
12555 }
12556
12557 if (parent == NULL)
12558 return "";
12559 else if (parent->building_fullname)
12560 {
12561 const char *name;
12562 const char *parent_name;
12563
12564 /* It has been seen on RealView 2.2 built binaries,
12565 DW_TAG_template_type_param types actually _defined_ as
12566 children of the parent class:
12567
12568 enum E {};
12569 template class <class Enum> Class{};
12570 Class<enum E> class_e;
12571
12572 1: DW_TAG_class_type (Class)
12573 2: DW_TAG_enumeration_type (E)
12574 3: DW_TAG_enumerator (enum1:0)
12575 3: DW_TAG_enumerator (enum2:1)
12576 ...
12577 2: DW_TAG_template_type_param
12578 DW_AT_type DW_FORM_ref_udata (E)
12579
12580 Besides being broken debug info, it can put GDB into an
12581 infinite loop. Consider:
12582
12583 When we're building the full name for Class<E>, we'll start
12584 at Class, and go look over its template type parameters,
12585 finding E. We'll then try to build the full name of E, and
12586 reach here. We're now trying to build the full name of E,
12587 and look over the parent DIE for containing scope. In the
12588 broken case, if we followed the parent DIE of E, we'd again
12589 find Class, and once again go look at its template type
12590 arguments, etc., etc. Simply don't consider such parent die
12591 as source-level parent of this die (it can't be, the language
12592 doesn't allow it), and break the loop here. */
12593 name = dwarf2_name (die, cu);
12594 parent_name = dwarf2_name (parent, cu);
12595 complaint (&symfile_complaints,
12596 _("template param type '%s' defined within parent '%s'"),
12597 name ? name : "<unknown>",
12598 parent_name ? parent_name : "<unknown>");
12599 return "";
12600 }
12601 else
12602 switch (parent->tag)
12603 {
12604 case DW_TAG_namespace:
12605 parent_type = read_type_die (parent, cu);
12606 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
12607 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
12608 Work around this problem here. */
12609 if (cu->language == language_cplus
12610 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
12611 return "";
12612 /* We give a name to even anonymous namespaces. */
12613 return TYPE_TAG_NAME (parent_type);
12614 case DW_TAG_class_type:
12615 case DW_TAG_interface_type:
12616 case DW_TAG_structure_type:
12617 case DW_TAG_union_type:
12618 case DW_TAG_module:
12619 parent_type = read_type_die (parent, cu);
12620 if (TYPE_TAG_NAME (parent_type) != NULL)
12621 return TYPE_TAG_NAME (parent_type);
12622 else
12623 /* An anonymous structure is only allowed non-static data
12624 members; no typedefs, no member functions, et cetera.
12625 So it does not need a prefix. */
12626 return "";
12627 case DW_TAG_compile_unit:
12628 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
12629 if (cu->language == language_cplus
12630 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
12631 && die->child != NULL
12632 && (die->tag == DW_TAG_class_type
12633 || die->tag == DW_TAG_structure_type
12634 || die->tag == DW_TAG_union_type))
12635 {
12636 char *name = guess_full_die_structure_name (die, cu);
12637 if (name != NULL)
12638 return name;
12639 }
12640 return "";
12641 default:
12642 return determine_prefix (parent, cu);
12643 }
12644 }
12645
12646 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
12647 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
12648 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
12649 an obconcat, otherwise allocate storage for the result. The CU argument is
12650 used to determine the language and hence, the appropriate separator. */
12651
12652 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
12653
12654 static char *
12655 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
12656 int physname, struct dwarf2_cu *cu)
12657 {
12658 const char *lead = "";
12659 const char *sep;
12660
12661 if (suffix == NULL || suffix[0] == '\0'
12662 || prefix == NULL || prefix[0] == '\0')
12663 sep = "";
12664 else if (cu->language == language_java)
12665 sep = ".";
12666 else if (cu->language == language_fortran && physname)
12667 {
12668 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
12669 DW_AT_MIPS_linkage_name is preferred and used instead. */
12670
12671 lead = "__";
12672 sep = "_MOD_";
12673 }
12674 else
12675 sep = "::";
12676
12677 if (prefix == NULL)
12678 prefix = "";
12679 if (suffix == NULL)
12680 suffix = "";
12681
12682 if (obs == NULL)
12683 {
12684 char *retval
12685 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
12686
12687 strcpy (retval, lead);
12688 strcat (retval, prefix);
12689 strcat (retval, sep);
12690 strcat (retval, suffix);
12691 return retval;
12692 }
12693 else
12694 {
12695 /* We have an obstack. */
12696 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
12697 }
12698 }
12699
12700 /* Return sibling of die, NULL if no sibling. */
12701
12702 static struct die_info *
12703 sibling_die (struct die_info *die)
12704 {
12705 return die->sibling;
12706 }
12707
12708 /* Get name of a die, return NULL if not found. */
12709
12710 static char *
12711 dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
12712 struct obstack *obstack)
12713 {
12714 if (name && cu->language == language_cplus)
12715 {
12716 char *canon_name = cp_canonicalize_string (name);
12717
12718 if (canon_name != NULL)
12719 {
12720 if (strcmp (canon_name, name) != 0)
12721 name = obsavestring (canon_name, strlen (canon_name),
12722 obstack);
12723 xfree (canon_name);
12724 }
12725 }
12726
12727 return name;
12728 }
12729
12730 /* Get name of a die, return NULL if not found. */
12731
12732 static char *
12733 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
12734 {
12735 struct attribute *attr;
12736
12737 attr = dwarf2_attr (die, DW_AT_name, cu);
12738 if ((!attr || !DW_STRING (attr))
12739 && die->tag != DW_TAG_class_type
12740 && die->tag != DW_TAG_interface_type
12741 && die->tag != DW_TAG_structure_type
12742 && die->tag != DW_TAG_union_type)
12743 return NULL;
12744
12745 switch (die->tag)
12746 {
12747 case DW_TAG_compile_unit:
12748 /* Compilation units have a DW_AT_name that is a filename, not
12749 a source language identifier. */
12750 case DW_TAG_enumeration_type:
12751 case DW_TAG_enumerator:
12752 /* These tags always have simple identifiers already; no need
12753 to canonicalize them. */
12754 return DW_STRING (attr);
12755
12756 case DW_TAG_subprogram:
12757 /* Java constructors will all be named "<init>", so return
12758 the class name when we see this special case. */
12759 if (cu->language == language_java
12760 && DW_STRING (attr) != NULL
12761 && strcmp (DW_STRING (attr), "<init>") == 0)
12762 {
12763 struct dwarf2_cu *spec_cu = cu;
12764 struct die_info *spec_die;
12765
12766 /* GCJ will output '<init>' for Java constructor names.
12767 For this special case, return the name of the parent class. */
12768
12769 /* GCJ may output suprogram DIEs with AT_specification set.
12770 If so, use the name of the specified DIE. */
12771 spec_die = die_specification (die, &spec_cu);
12772 if (spec_die != NULL)
12773 return dwarf2_name (spec_die, spec_cu);
12774
12775 do
12776 {
12777 die = die->parent;
12778 if (die->tag == DW_TAG_class_type)
12779 return dwarf2_name (die, cu);
12780 }
12781 while (die->tag != DW_TAG_compile_unit);
12782 }
12783 break;
12784
12785 case DW_TAG_class_type:
12786 case DW_TAG_interface_type:
12787 case DW_TAG_structure_type:
12788 case DW_TAG_union_type:
12789 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
12790 structures or unions. These were of the form "._%d" in GCC 4.1,
12791 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
12792 and GCC 4.4. We work around this problem by ignoring these. */
12793 if (attr && DW_STRING (attr)
12794 && (strncmp (DW_STRING (attr), "._", 2) == 0
12795 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
12796 return NULL;
12797
12798 /* GCC might emit a nameless typedef that has a linkage name. See
12799 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
12800 if (!attr || DW_STRING (attr) == NULL)
12801 {
12802 char *demangled = NULL;
12803
12804 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
12805 if (attr == NULL)
12806 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
12807
12808 if (attr == NULL || DW_STRING (attr) == NULL)
12809 return NULL;
12810
12811 /* Avoid demangling DW_STRING (attr) the second time on a second
12812 call for the same DIE. */
12813 if (!DW_STRING_IS_CANONICAL (attr))
12814 demangled = cplus_demangle (DW_STRING (attr), DMGL_TYPES);
12815
12816 if (demangled)
12817 {
12818 char *base;
12819
12820 /* FIXME: we already did this for the partial symbol... */
12821 DW_STRING (attr) = obsavestring (demangled, strlen (demangled),
12822 &cu->objfile->objfile_obstack);
12823 DW_STRING_IS_CANONICAL (attr) = 1;
12824 xfree (demangled);
12825
12826 /* Strip any leading namespaces/classes, keep only the base name.
12827 DW_AT_name for named DIEs does not contain the prefixes. */
12828 base = strrchr (DW_STRING (attr), ':');
12829 if (base && base > DW_STRING (attr) && base[-1] == ':')
12830 return &base[1];
12831 else
12832 return DW_STRING (attr);
12833 }
12834 }
12835 break;
12836
12837 default:
12838 break;
12839 }
12840
12841 if (!DW_STRING_IS_CANONICAL (attr))
12842 {
12843 DW_STRING (attr)
12844 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
12845 &cu->objfile->objfile_obstack);
12846 DW_STRING_IS_CANONICAL (attr) = 1;
12847 }
12848 return DW_STRING (attr);
12849 }
12850
12851 /* Return the die that this die in an extension of, or NULL if there
12852 is none. *EXT_CU is the CU containing DIE on input, and the CU
12853 containing the return value on output. */
12854
12855 static struct die_info *
12856 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
12857 {
12858 struct attribute *attr;
12859
12860 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
12861 if (attr == NULL)
12862 return NULL;
12863
12864 return follow_die_ref (die, attr, ext_cu);
12865 }
12866
12867 /* Convert a DIE tag into its string name. */
12868
12869 static char *
12870 dwarf_tag_name (unsigned tag)
12871 {
12872 switch (tag)
12873 {
12874 case DW_TAG_padding:
12875 return "DW_TAG_padding";
12876 case DW_TAG_array_type:
12877 return "DW_TAG_array_type";
12878 case DW_TAG_class_type:
12879 return "DW_TAG_class_type";
12880 case DW_TAG_entry_point:
12881 return "DW_TAG_entry_point";
12882 case DW_TAG_enumeration_type:
12883 return "DW_TAG_enumeration_type";
12884 case DW_TAG_formal_parameter:
12885 return "DW_TAG_formal_parameter";
12886 case DW_TAG_imported_declaration:
12887 return "DW_TAG_imported_declaration";
12888 case DW_TAG_label:
12889 return "DW_TAG_label";
12890 case DW_TAG_lexical_block:
12891 return "DW_TAG_lexical_block";
12892 case DW_TAG_member:
12893 return "DW_TAG_member";
12894 case DW_TAG_pointer_type:
12895 return "DW_TAG_pointer_type";
12896 case DW_TAG_reference_type:
12897 return "DW_TAG_reference_type";
12898 case DW_TAG_compile_unit:
12899 return "DW_TAG_compile_unit";
12900 case DW_TAG_string_type:
12901 return "DW_TAG_string_type";
12902 case DW_TAG_structure_type:
12903 return "DW_TAG_structure_type";
12904 case DW_TAG_subroutine_type:
12905 return "DW_TAG_subroutine_type";
12906 case DW_TAG_typedef:
12907 return "DW_TAG_typedef";
12908 case DW_TAG_union_type:
12909 return "DW_TAG_union_type";
12910 case DW_TAG_unspecified_parameters:
12911 return "DW_TAG_unspecified_parameters";
12912 case DW_TAG_variant:
12913 return "DW_TAG_variant";
12914 case DW_TAG_common_block:
12915 return "DW_TAG_common_block";
12916 case DW_TAG_common_inclusion:
12917 return "DW_TAG_common_inclusion";
12918 case DW_TAG_inheritance:
12919 return "DW_TAG_inheritance";
12920 case DW_TAG_inlined_subroutine:
12921 return "DW_TAG_inlined_subroutine";
12922 case DW_TAG_module:
12923 return "DW_TAG_module";
12924 case DW_TAG_ptr_to_member_type:
12925 return "DW_TAG_ptr_to_member_type";
12926 case DW_TAG_set_type:
12927 return "DW_TAG_set_type";
12928 case DW_TAG_subrange_type:
12929 return "DW_TAG_subrange_type";
12930 case DW_TAG_with_stmt:
12931 return "DW_TAG_with_stmt";
12932 case DW_TAG_access_declaration:
12933 return "DW_TAG_access_declaration";
12934 case DW_TAG_base_type:
12935 return "DW_TAG_base_type";
12936 case DW_TAG_catch_block:
12937 return "DW_TAG_catch_block";
12938 case DW_TAG_const_type:
12939 return "DW_TAG_const_type";
12940 case DW_TAG_constant:
12941 return "DW_TAG_constant";
12942 case DW_TAG_enumerator:
12943 return "DW_TAG_enumerator";
12944 case DW_TAG_file_type:
12945 return "DW_TAG_file_type";
12946 case DW_TAG_friend:
12947 return "DW_TAG_friend";
12948 case DW_TAG_namelist:
12949 return "DW_TAG_namelist";
12950 case DW_TAG_namelist_item:
12951 return "DW_TAG_namelist_item";
12952 case DW_TAG_packed_type:
12953 return "DW_TAG_packed_type";
12954 case DW_TAG_subprogram:
12955 return "DW_TAG_subprogram";
12956 case DW_TAG_template_type_param:
12957 return "DW_TAG_template_type_param";
12958 case DW_TAG_template_value_param:
12959 return "DW_TAG_template_value_param";
12960 case DW_TAG_thrown_type:
12961 return "DW_TAG_thrown_type";
12962 case DW_TAG_try_block:
12963 return "DW_TAG_try_block";
12964 case DW_TAG_variant_part:
12965 return "DW_TAG_variant_part";
12966 case DW_TAG_variable:
12967 return "DW_TAG_variable";
12968 case DW_TAG_volatile_type:
12969 return "DW_TAG_volatile_type";
12970 case DW_TAG_dwarf_procedure:
12971 return "DW_TAG_dwarf_procedure";
12972 case DW_TAG_restrict_type:
12973 return "DW_TAG_restrict_type";
12974 case DW_TAG_interface_type:
12975 return "DW_TAG_interface_type";
12976 case DW_TAG_namespace:
12977 return "DW_TAG_namespace";
12978 case DW_TAG_imported_module:
12979 return "DW_TAG_imported_module";
12980 case DW_TAG_unspecified_type:
12981 return "DW_TAG_unspecified_type";
12982 case DW_TAG_partial_unit:
12983 return "DW_TAG_partial_unit";
12984 case DW_TAG_imported_unit:
12985 return "DW_TAG_imported_unit";
12986 case DW_TAG_condition:
12987 return "DW_TAG_condition";
12988 case DW_TAG_shared_type:
12989 return "DW_TAG_shared_type";
12990 case DW_TAG_type_unit:
12991 return "DW_TAG_type_unit";
12992 case DW_TAG_MIPS_loop:
12993 return "DW_TAG_MIPS_loop";
12994 case DW_TAG_HP_array_descriptor:
12995 return "DW_TAG_HP_array_descriptor";
12996 case DW_TAG_format_label:
12997 return "DW_TAG_format_label";
12998 case DW_TAG_function_template:
12999 return "DW_TAG_function_template";
13000 case DW_TAG_class_template:
13001 return "DW_TAG_class_template";
13002 case DW_TAG_GNU_BINCL:
13003 return "DW_TAG_GNU_BINCL";
13004 case DW_TAG_GNU_EINCL:
13005 return "DW_TAG_GNU_EINCL";
13006 case DW_TAG_upc_shared_type:
13007 return "DW_TAG_upc_shared_type";
13008 case DW_TAG_upc_strict_type:
13009 return "DW_TAG_upc_strict_type";
13010 case DW_TAG_upc_relaxed_type:
13011 return "DW_TAG_upc_relaxed_type";
13012 case DW_TAG_PGI_kanji_type:
13013 return "DW_TAG_PGI_kanji_type";
13014 case DW_TAG_PGI_interface_block:
13015 return "DW_TAG_PGI_interface_block";
13016 case DW_TAG_GNU_call_site:
13017 return "DW_TAG_GNU_call_site";
13018 default:
13019 return "DW_TAG_<unknown>";
13020 }
13021 }
13022
13023 /* Convert a DWARF attribute code into its string name. */
13024
13025 static char *
13026 dwarf_attr_name (unsigned attr)
13027 {
13028 switch (attr)
13029 {
13030 case DW_AT_sibling:
13031 return "DW_AT_sibling";
13032 case DW_AT_location:
13033 return "DW_AT_location";
13034 case DW_AT_name:
13035 return "DW_AT_name";
13036 case DW_AT_ordering:
13037 return "DW_AT_ordering";
13038 case DW_AT_subscr_data:
13039 return "DW_AT_subscr_data";
13040 case DW_AT_byte_size:
13041 return "DW_AT_byte_size";
13042 case DW_AT_bit_offset:
13043 return "DW_AT_bit_offset";
13044 case DW_AT_bit_size:
13045 return "DW_AT_bit_size";
13046 case DW_AT_element_list:
13047 return "DW_AT_element_list";
13048 case DW_AT_stmt_list:
13049 return "DW_AT_stmt_list";
13050 case DW_AT_low_pc:
13051 return "DW_AT_low_pc";
13052 case DW_AT_high_pc:
13053 return "DW_AT_high_pc";
13054 case DW_AT_language:
13055 return "DW_AT_language";
13056 case DW_AT_member:
13057 return "DW_AT_member";
13058 case DW_AT_discr:
13059 return "DW_AT_discr";
13060 case DW_AT_discr_value:
13061 return "DW_AT_discr_value";
13062 case DW_AT_visibility:
13063 return "DW_AT_visibility";
13064 case DW_AT_import:
13065 return "DW_AT_import";
13066 case DW_AT_string_length:
13067 return "DW_AT_string_length";
13068 case DW_AT_common_reference:
13069 return "DW_AT_common_reference";
13070 case DW_AT_comp_dir:
13071 return "DW_AT_comp_dir";
13072 case DW_AT_const_value:
13073 return "DW_AT_const_value";
13074 case DW_AT_containing_type:
13075 return "DW_AT_containing_type";
13076 case DW_AT_default_value:
13077 return "DW_AT_default_value";
13078 case DW_AT_inline:
13079 return "DW_AT_inline";
13080 case DW_AT_is_optional:
13081 return "DW_AT_is_optional";
13082 case DW_AT_lower_bound:
13083 return "DW_AT_lower_bound";
13084 case DW_AT_producer:
13085 return "DW_AT_producer";
13086 case DW_AT_prototyped:
13087 return "DW_AT_prototyped";
13088 case DW_AT_return_addr:
13089 return "DW_AT_return_addr";
13090 case DW_AT_start_scope:
13091 return "DW_AT_start_scope";
13092 case DW_AT_bit_stride:
13093 return "DW_AT_bit_stride";
13094 case DW_AT_upper_bound:
13095 return "DW_AT_upper_bound";
13096 case DW_AT_abstract_origin:
13097 return "DW_AT_abstract_origin";
13098 case DW_AT_accessibility:
13099 return "DW_AT_accessibility";
13100 case DW_AT_address_class:
13101 return "DW_AT_address_class";
13102 case DW_AT_artificial:
13103 return "DW_AT_artificial";
13104 case DW_AT_base_types:
13105 return "DW_AT_base_types";
13106 case DW_AT_calling_convention:
13107 return "DW_AT_calling_convention";
13108 case DW_AT_count:
13109 return "DW_AT_count";
13110 case DW_AT_data_member_location:
13111 return "DW_AT_data_member_location";
13112 case DW_AT_decl_column:
13113 return "DW_AT_decl_column";
13114 case DW_AT_decl_file:
13115 return "DW_AT_decl_file";
13116 case DW_AT_decl_line:
13117 return "DW_AT_decl_line";
13118 case DW_AT_declaration:
13119 return "DW_AT_declaration";
13120 case DW_AT_discr_list:
13121 return "DW_AT_discr_list";
13122 case DW_AT_encoding:
13123 return "DW_AT_encoding";
13124 case DW_AT_external:
13125 return "DW_AT_external";
13126 case DW_AT_frame_base:
13127 return "DW_AT_frame_base";
13128 case DW_AT_friend:
13129 return "DW_AT_friend";
13130 case DW_AT_identifier_case:
13131 return "DW_AT_identifier_case";
13132 case DW_AT_macro_info:
13133 return "DW_AT_macro_info";
13134 case DW_AT_namelist_items:
13135 return "DW_AT_namelist_items";
13136 case DW_AT_priority:
13137 return "DW_AT_priority";
13138 case DW_AT_segment:
13139 return "DW_AT_segment";
13140 case DW_AT_specification:
13141 return "DW_AT_specification";
13142 case DW_AT_static_link:
13143 return "DW_AT_static_link";
13144 case DW_AT_type:
13145 return "DW_AT_type";
13146 case DW_AT_use_location:
13147 return "DW_AT_use_location";
13148 case DW_AT_variable_parameter:
13149 return "DW_AT_variable_parameter";
13150 case DW_AT_virtuality:
13151 return "DW_AT_virtuality";
13152 case DW_AT_vtable_elem_location:
13153 return "DW_AT_vtable_elem_location";
13154 /* DWARF 3 values. */
13155 case DW_AT_allocated:
13156 return "DW_AT_allocated";
13157 case DW_AT_associated:
13158 return "DW_AT_associated";
13159 case DW_AT_data_location:
13160 return "DW_AT_data_location";
13161 case DW_AT_byte_stride:
13162 return "DW_AT_byte_stride";
13163 case DW_AT_entry_pc:
13164 return "DW_AT_entry_pc";
13165 case DW_AT_use_UTF8:
13166 return "DW_AT_use_UTF8";
13167 case DW_AT_extension:
13168 return "DW_AT_extension";
13169 case DW_AT_ranges:
13170 return "DW_AT_ranges";
13171 case DW_AT_trampoline:
13172 return "DW_AT_trampoline";
13173 case DW_AT_call_column:
13174 return "DW_AT_call_column";
13175 case DW_AT_call_file:
13176 return "DW_AT_call_file";
13177 case DW_AT_call_line:
13178 return "DW_AT_call_line";
13179 case DW_AT_description:
13180 return "DW_AT_description";
13181 case DW_AT_binary_scale:
13182 return "DW_AT_binary_scale";
13183 case DW_AT_decimal_scale:
13184 return "DW_AT_decimal_scale";
13185 case DW_AT_small:
13186 return "DW_AT_small";
13187 case DW_AT_decimal_sign:
13188 return "DW_AT_decimal_sign";
13189 case DW_AT_digit_count:
13190 return "DW_AT_digit_count";
13191 case DW_AT_picture_string:
13192 return "DW_AT_picture_string";
13193 case DW_AT_mutable:
13194 return "DW_AT_mutable";
13195 case DW_AT_threads_scaled:
13196 return "DW_AT_threads_scaled";
13197 case DW_AT_explicit:
13198 return "DW_AT_explicit";
13199 case DW_AT_object_pointer:
13200 return "DW_AT_object_pointer";
13201 case DW_AT_endianity:
13202 return "DW_AT_endianity";
13203 case DW_AT_elemental:
13204 return "DW_AT_elemental";
13205 case DW_AT_pure:
13206 return "DW_AT_pure";
13207 case DW_AT_recursive:
13208 return "DW_AT_recursive";
13209 /* DWARF 4 values. */
13210 case DW_AT_signature:
13211 return "DW_AT_signature";
13212 case DW_AT_linkage_name:
13213 return "DW_AT_linkage_name";
13214 /* SGI/MIPS extensions. */
13215 #ifdef MIPS /* collides with DW_AT_HP_block_index */
13216 case DW_AT_MIPS_fde:
13217 return "DW_AT_MIPS_fde";
13218 #endif
13219 case DW_AT_MIPS_loop_begin:
13220 return "DW_AT_MIPS_loop_begin";
13221 case DW_AT_MIPS_tail_loop_begin:
13222 return "DW_AT_MIPS_tail_loop_begin";
13223 case DW_AT_MIPS_epilog_begin:
13224 return "DW_AT_MIPS_epilog_begin";
13225 case DW_AT_MIPS_loop_unroll_factor:
13226 return "DW_AT_MIPS_loop_unroll_factor";
13227 case DW_AT_MIPS_software_pipeline_depth:
13228 return "DW_AT_MIPS_software_pipeline_depth";
13229 case DW_AT_MIPS_linkage_name:
13230 return "DW_AT_MIPS_linkage_name";
13231 case DW_AT_MIPS_stride:
13232 return "DW_AT_MIPS_stride";
13233 case DW_AT_MIPS_abstract_name:
13234 return "DW_AT_MIPS_abstract_name";
13235 case DW_AT_MIPS_clone_origin:
13236 return "DW_AT_MIPS_clone_origin";
13237 case DW_AT_MIPS_has_inlines:
13238 return "DW_AT_MIPS_has_inlines";
13239 /* HP extensions. */
13240 #ifndef MIPS /* collides with DW_AT_MIPS_fde */
13241 case DW_AT_HP_block_index:
13242 return "DW_AT_HP_block_index";
13243 #endif
13244 case DW_AT_HP_unmodifiable:
13245 return "DW_AT_HP_unmodifiable";
13246 case DW_AT_HP_actuals_stmt_list:
13247 return "DW_AT_HP_actuals_stmt_list";
13248 case DW_AT_HP_proc_per_section:
13249 return "DW_AT_HP_proc_per_section";
13250 case DW_AT_HP_raw_data_ptr:
13251 return "DW_AT_HP_raw_data_ptr";
13252 case DW_AT_HP_pass_by_reference:
13253 return "DW_AT_HP_pass_by_reference";
13254 case DW_AT_HP_opt_level:
13255 return "DW_AT_HP_opt_level";
13256 case DW_AT_HP_prof_version_id:
13257 return "DW_AT_HP_prof_version_id";
13258 case DW_AT_HP_opt_flags:
13259 return "DW_AT_HP_opt_flags";
13260 case DW_AT_HP_cold_region_low_pc:
13261 return "DW_AT_HP_cold_region_low_pc";
13262 case DW_AT_HP_cold_region_high_pc:
13263 return "DW_AT_HP_cold_region_high_pc";
13264 case DW_AT_HP_all_variables_modifiable:
13265 return "DW_AT_HP_all_variables_modifiable";
13266 case DW_AT_HP_linkage_name:
13267 return "DW_AT_HP_linkage_name";
13268 case DW_AT_HP_prof_flags:
13269 return "DW_AT_HP_prof_flags";
13270 /* GNU extensions. */
13271 case DW_AT_sf_names:
13272 return "DW_AT_sf_names";
13273 case DW_AT_src_info:
13274 return "DW_AT_src_info";
13275 case DW_AT_mac_info:
13276 return "DW_AT_mac_info";
13277 case DW_AT_src_coords:
13278 return "DW_AT_src_coords";
13279 case DW_AT_body_begin:
13280 return "DW_AT_body_begin";
13281 case DW_AT_body_end:
13282 return "DW_AT_body_end";
13283 case DW_AT_GNU_vector:
13284 return "DW_AT_GNU_vector";
13285 case DW_AT_GNU_odr_signature:
13286 return "DW_AT_GNU_odr_signature";
13287 /* VMS extensions. */
13288 case DW_AT_VMS_rtnbeg_pd_address:
13289 return "DW_AT_VMS_rtnbeg_pd_address";
13290 /* UPC extension. */
13291 case DW_AT_upc_threads_scaled:
13292 return "DW_AT_upc_threads_scaled";
13293 /* PGI (STMicroelectronics) extensions. */
13294 case DW_AT_PGI_lbase:
13295 return "DW_AT_PGI_lbase";
13296 case DW_AT_PGI_soffset:
13297 return "DW_AT_PGI_soffset";
13298 case DW_AT_PGI_lstride:
13299 return "DW_AT_PGI_lstride";
13300 default:
13301 return "DW_AT_<unknown>";
13302 }
13303 }
13304
13305 /* Convert a DWARF value form code into its string name. */
13306
13307 static char *
13308 dwarf_form_name (unsigned form)
13309 {
13310 switch (form)
13311 {
13312 case DW_FORM_addr:
13313 return "DW_FORM_addr";
13314 case DW_FORM_block2:
13315 return "DW_FORM_block2";
13316 case DW_FORM_block4:
13317 return "DW_FORM_block4";
13318 case DW_FORM_data2:
13319 return "DW_FORM_data2";
13320 case DW_FORM_data4:
13321 return "DW_FORM_data4";
13322 case DW_FORM_data8:
13323 return "DW_FORM_data8";
13324 case DW_FORM_string:
13325 return "DW_FORM_string";
13326 case DW_FORM_block:
13327 return "DW_FORM_block";
13328 case DW_FORM_block1:
13329 return "DW_FORM_block1";
13330 case DW_FORM_data1:
13331 return "DW_FORM_data1";
13332 case DW_FORM_flag:
13333 return "DW_FORM_flag";
13334 case DW_FORM_sdata:
13335 return "DW_FORM_sdata";
13336 case DW_FORM_strp:
13337 return "DW_FORM_strp";
13338 case DW_FORM_udata:
13339 return "DW_FORM_udata";
13340 case DW_FORM_ref_addr:
13341 return "DW_FORM_ref_addr";
13342 case DW_FORM_ref1:
13343 return "DW_FORM_ref1";
13344 case DW_FORM_ref2:
13345 return "DW_FORM_ref2";
13346 case DW_FORM_ref4:
13347 return "DW_FORM_ref4";
13348 case DW_FORM_ref8:
13349 return "DW_FORM_ref8";
13350 case DW_FORM_ref_udata:
13351 return "DW_FORM_ref_udata";
13352 case DW_FORM_indirect:
13353 return "DW_FORM_indirect";
13354 case DW_FORM_sec_offset:
13355 return "DW_FORM_sec_offset";
13356 case DW_FORM_exprloc:
13357 return "DW_FORM_exprloc";
13358 case DW_FORM_flag_present:
13359 return "DW_FORM_flag_present";
13360 case DW_FORM_ref_sig8:
13361 return "DW_FORM_ref_sig8";
13362 default:
13363 return "DW_FORM_<unknown>";
13364 }
13365 }
13366
13367 /* Convert a DWARF stack opcode into its string name. */
13368
13369 const char *
13370 dwarf_stack_op_name (unsigned op)
13371 {
13372 switch (op)
13373 {
13374 case DW_OP_addr:
13375 return "DW_OP_addr";
13376 case DW_OP_deref:
13377 return "DW_OP_deref";
13378 case DW_OP_const1u:
13379 return "DW_OP_const1u";
13380 case DW_OP_const1s:
13381 return "DW_OP_const1s";
13382 case DW_OP_const2u:
13383 return "DW_OP_const2u";
13384 case DW_OP_const2s:
13385 return "DW_OP_const2s";
13386 case DW_OP_const4u:
13387 return "DW_OP_const4u";
13388 case DW_OP_const4s:
13389 return "DW_OP_const4s";
13390 case DW_OP_const8u:
13391 return "DW_OP_const8u";
13392 case DW_OP_const8s:
13393 return "DW_OP_const8s";
13394 case DW_OP_constu:
13395 return "DW_OP_constu";
13396 case DW_OP_consts:
13397 return "DW_OP_consts";
13398 case DW_OP_dup:
13399 return "DW_OP_dup";
13400 case DW_OP_drop:
13401 return "DW_OP_drop";
13402 case DW_OP_over:
13403 return "DW_OP_over";
13404 case DW_OP_pick:
13405 return "DW_OP_pick";
13406 case DW_OP_swap:
13407 return "DW_OP_swap";
13408 case DW_OP_rot:
13409 return "DW_OP_rot";
13410 case DW_OP_xderef:
13411 return "DW_OP_xderef";
13412 case DW_OP_abs:
13413 return "DW_OP_abs";
13414 case DW_OP_and:
13415 return "DW_OP_and";
13416 case DW_OP_div:
13417 return "DW_OP_div";
13418 case DW_OP_minus:
13419 return "DW_OP_minus";
13420 case DW_OP_mod:
13421 return "DW_OP_mod";
13422 case DW_OP_mul:
13423 return "DW_OP_mul";
13424 case DW_OP_neg:
13425 return "DW_OP_neg";
13426 case DW_OP_not:
13427 return "DW_OP_not";
13428 case DW_OP_or:
13429 return "DW_OP_or";
13430 case DW_OP_plus:
13431 return "DW_OP_plus";
13432 case DW_OP_plus_uconst:
13433 return "DW_OP_plus_uconst";
13434 case DW_OP_shl:
13435 return "DW_OP_shl";
13436 case DW_OP_shr:
13437 return "DW_OP_shr";
13438 case DW_OP_shra:
13439 return "DW_OP_shra";
13440 case DW_OP_xor:
13441 return "DW_OP_xor";
13442 case DW_OP_bra:
13443 return "DW_OP_bra";
13444 case DW_OP_eq:
13445 return "DW_OP_eq";
13446 case DW_OP_ge:
13447 return "DW_OP_ge";
13448 case DW_OP_gt:
13449 return "DW_OP_gt";
13450 case DW_OP_le:
13451 return "DW_OP_le";
13452 case DW_OP_lt:
13453 return "DW_OP_lt";
13454 case DW_OP_ne:
13455 return "DW_OP_ne";
13456 case DW_OP_skip:
13457 return "DW_OP_skip";
13458 case DW_OP_lit0:
13459 return "DW_OP_lit0";
13460 case DW_OP_lit1:
13461 return "DW_OP_lit1";
13462 case DW_OP_lit2:
13463 return "DW_OP_lit2";
13464 case DW_OP_lit3:
13465 return "DW_OP_lit3";
13466 case DW_OP_lit4:
13467 return "DW_OP_lit4";
13468 case DW_OP_lit5:
13469 return "DW_OP_lit5";
13470 case DW_OP_lit6:
13471 return "DW_OP_lit6";
13472 case DW_OP_lit7:
13473 return "DW_OP_lit7";
13474 case DW_OP_lit8:
13475 return "DW_OP_lit8";
13476 case DW_OP_lit9:
13477 return "DW_OP_lit9";
13478 case DW_OP_lit10:
13479 return "DW_OP_lit10";
13480 case DW_OP_lit11:
13481 return "DW_OP_lit11";
13482 case DW_OP_lit12:
13483 return "DW_OP_lit12";
13484 case DW_OP_lit13:
13485 return "DW_OP_lit13";
13486 case DW_OP_lit14:
13487 return "DW_OP_lit14";
13488 case DW_OP_lit15:
13489 return "DW_OP_lit15";
13490 case DW_OP_lit16:
13491 return "DW_OP_lit16";
13492 case DW_OP_lit17:
13493 return "DW_OP_lit17";
13494 case DW_OP_lit18:
13495 return "DW_OP_lit18";
13496 case DW_OP_lit19:
13497 return "DW_OP_lit19";
13498 case DW_OP_lit20:
13499 return "DW_OP_lit20";
13500 case DW_OP_lit21:
13501 return "DW_OP_lit21";
13502 case DW_OP_lit22:
13503 return "DW_OP_lit22";
13504 case DW_OP_lit23:
13505 return "DW_OP_lit23";
13506 case DW_OP_lit24:
13507 return "DW_OP_lit24";
13508 case DW_OP_lit25:
13509 return "DW_OP_lit25";
13510 case DW_OP_lit26:
13511 return "DW_OP_lit26";
13512 case DW_OP_lit27:
13513 return "DW_OP_lit27";
13514 case DW_OP_lit28:
13515 return "DW_OP_lit28";
13516 case DW_OP_lit29:
13517 return "DW_OP_lit29";
13518 case DW_OP_lit30:
13519 return "DW_OP_lit30";
13520 case DW_OP_lit31:
13521 return "DW_OP_lit31";
13522 case DW_OP_reg0:
13523 return "DW_OP_reg0";
13524 case DW_OP_reg1:
13525 return "DW_OP_reg1";
13526 case DW_OP_reg2:
13527 return "DW_OP_reg2";
13528 case DW_OP_reg3:
13529 return "DW_OP_reg3";
13530 case DW_OP_reg4:
13531 return "DW_OP_reg4";
13532 case DW_OP_reg5:
13533 return "DW_OP_reg5";
13534 case DW_OP_reg6:
13535 return "DW_OP_reg6";
13536 case DW_OP_reg7:
13537 return "DW_OP_reg7";
13538 case DW_OP_reg8:
13539 return "DW_OP_reg8";
13540 case DW_OP_reg9:
13541 return "DW_OP_reg9";
13542 case DW_OP_reg10:
13543 return "DW_OP_reg10";
13544 case DW_OP_reg11:
13545 return "DW_OP_reg11";
13546 case DW_OP_reg12:
13547 return "DW_OP_reg12";
13548 case DW_OP_reg13:
13549 return "DW_OP_reg13";
13550 case DW_OP_reg14:
13551 return "DW_OP_reg14";
13552 case DW_OP_reg15:
13553 return "DW_OP_reg15";
13554 case DW_OP_reg16:
13555 return "DW_OP_reg16";
13556 case DW_OP_reg17:
13557 return "DW_OP_reg17";
13558 case DW_OP_reg18:
13559 return "DW_OP_reg18";
13560 case DW_OP_reg19:
13561 return "DW_OP_reg19";
13562 case DW_OP_reg20:
13563 return "DW_OP_reg20";
13564 case DW_OP_reg21:
13565 return "DW_OP_reg21";
13566 case DW_OP_reg22:
13567 return "DW_OP_reg22";
13568 case DW_OP_reg23:
13569 return "DW_OP_reg23";
13570 case DW_OP_reg24:
13571 return "DW_OP_reg24";
13572 case DW_OP_reg25:
13573 return "DW_OP_reg25";
13574 case DW_OP_reg26:
13575 return "DW_OP_reg26";
13576 case DW_OP_reg27:
13577 return "DW_OP_reg27";
13578 case DW_OP_reg28:
13579 return "DW_OP_reg28";
13580 case DW_OP_reg29:
13581 return "DW_OP_reg29";
13582 case DW_OP_reg30:
13583 return "DW_OP_reg30";
13584 case DW_OP_reg31:
13585 return "DW_OP_reg31";
13586 case DW_OP_breg0:
13587 return "DW_OP_breg0";
13588 case DW_OP_breg1:
13589 return "DW_OP_breg1";
13590 case DW_OP_breg2:
13591 return "DW_OP_breg2";
13592 case DW_OP_breg3:
13593 return "DW_OP_breg3";
13594 case DW_OP_breg4:
13595 return "DW_OP_breg4";
13596 case DW_OP_breg5:
13597 return "DW_OP_breg5";
13598 case DW_OP_breg6:
13599 return "DW_OP_breg6";
13600 case DW_OP_breg7:
13601 return "DW_OP_breg7";
13602 case DW_OP_breg8:
13603 return "DW_OP_breg8";
13604 case DW_OP_breg9:
13605 return "DW_OP_breg9";
13606 case DW_OP_breg10:
13607 return "DW_OP_breg10";
13608 case DW_OP_breg11:
13609 return "DW_OP_breg11";
13610 case DW_OP_breg12:
13611 return "DW_OP_breg12";
13612 case DW_OP_breg13:
13613 return "DW_OP_breg13";
13614 case DW_OP_breg14:
13615 return "DW_OP_breg14";
13616 case DW_OP_breg15:
13617 return "DW_OP_breg15";
13618 case DW_OP_breg16:
13619 return "DW_OP_breg16";
13620 case DW_OP_breg17:
13621 return "DW_OP_breg17";
13622 case DW_OP_breg18:
13623 return "DW_OP_breg18";
13624 case DW_OP_breg19:
13625 return "DW_OP_breg19";
13626 case DW_OP_breg20:
13627 return "DW_OP_breg20";
13628 case DW_OP_breg21:
13629 return "DW_OP_breg21";
13630 case DW_OP_breg22:
13631 return "DW_OP_breg22";
13632 case DW_OP_breg23:
13633 return "DW_OP_breg23";
13634 case DW_OP_breg24:
13635 return "DW_OP_breg24";
13636 case DW_OP_breg25:
13637 return "DW_OP_breg25";
13638 case DW_OP_breg26:
13639 return "DW_OP_breg26";
13640 case DW_OP_breg27:
13641 return "DW_OP_breg27";
13642 case DW_OP_breg28:
13643 return "DW_OP_breg28";
13644 case DW_OP_breg29:
13645 return "DW_OP_breg29";
13646 case DW_OP_breg30:
13647 return "DW_OP_breg30";
13648 case DW_OP_breg31:
13649 return "DW_OP_breg31";
13650 case DW_OP_regx:
13651 return "DW_OP_regx";
13652 case DW_OP_fbreg:
13653 return "DW_OP_fbreg";
13654 case DW_OP_bregx:
13655 return "DW_OP_bregx";
13656 case DW_OP_piece:
13657 return "DW_OP_piece";
13658 case DW_OP_deref_size:
13659 return "DW_OP_deref_size";
13660 case DW_OP_xderef_size:
13661 return "DW_OP_xderef_size";
13662 case DW_OP_nop:
13663 return "DW_OP_nop";
13664 /* DWARF 3 extensions. */
13665 case DW_OP_push_object_address:
13666 return "DW_OP_push_object_address";
13667 case DW_OP_call2:
13668 return "DW_OP_call2";
13669 case DW_OP_call4:
13670 return "DW_OP_call4";
13671 case DW_OP_call_ref:
13672 return "DW_OP_call_ref";
13673 case DW_OP_form_tls_address:
13674 return "DW_OP_form_tls_address";
13675 case DW_OP_call_frame_cfa:
13676 return "DW_OP_call_frame_cfa";
13677 case DW_OP_bit_piece:
13678 return "DW_OP_bit_piece";
13679 /* DWARF 4 extensions. */
13680 case DW_OP_implicit_value:
13681 return "DW_OP_implicit_value";
13682 case DW_OP_stack_value:
13683 return "DW_OP_stack_value";
13684 /* GNU extensions. */
13685 case DW_OP_GNU_push_tls_address:
13686 return "DW_OP_GNU_push_tls_address";
13687 case DW_OP_GNU_uninit:
13688 return "DW_OP_GNU_uninit";
13689 case DW_OP_GNU_implicit_pointer:
13690 return "DW_OP_GNU_implicit_pointer";
13691 case DW_OP_GNU_entry_value:
13692 return "DW_OP_GNU_entry_value";
13693 case DW_OP_GNU_const_type:
13694 return "DW_OP_GNU_const_type";
13695 case DW_OP_GNU_regval_type:
13696 return "DW_OP_GNU_regval_type";
13697 case DW_OP_GNU_deref_type:
13698 return "DW_OP_GNU_deref_type";
13699 case DW_OP_GNU_convert:
13700 return "DW_OP_GNU_convert";
13701 case DW_OP_GNU_reinterpret:
13702 return "DW_OP_GNU_reinterpret";
13703 default:
13704 return NULL;
13705 }
13706 }
13707
13708 static char *
13709 dwarf_bool_name (unsigned mybool)
13710 {
13711 if (mybool)
13712 return "TRUE";
13713 else
13714 return "FALSE";
13715 }
13716
13717 /* Convert a DWARF type code into its string name. */
13718
13719 static char *
13720 dwarf_type_encoding_name (unsigned enc)
13721 {
13722 switch (enc)
13723 {
13724 case DW_ATE_void:
13725 return "DW_ATE_void";
13726 case DW_ATE_address:
13727 return "DW_ATE_address";
13728 case DW_ATE_boolean:
13729 return "DW_ATE_boolean";
13730 case DW_ATE_complex_float:
13731 return "DW_ATE_complex_float";
13732 case DW_ATE_float:
13733 return "DW_ATE_float";
13734 case DW_ATE_signed:
13735 return "DW_ATE_signed";
13736 case DW_ATE_signed_char:
13737 return "DW_ATE_signed_char";
13738 case DW_ATE_unsigned:
13739 return "DW_ATE_unsigned";
13740 case DW_ATE_unsigned_char:
13741 return "DW_ATE_unsigned_char";
13742 /* DWARF 3. */
13743 case DW_ATE_imaginary_float:
13744 return "DW_ATE_imaginary_float";
13745 case DW_ATE_packed_decimal:
13746 return "DW_ATE_packed_decimal";
13747 case DW_ATE_numeric_string:
13748 return "DW_ATE_numeric_string";
13749 case DW_ATE_edited:
13750 return "DW_ATE_edited";
13751 case DW_ATE_signed_fixed:
13752 return "DW_ATE_signed_fixed";
13753 case DW_ATE_unsigned_fixed:
13754 return "DW_ATE_unsigned_fixed";
13755 case DW_ATE_decimal_float:
13756 return "DW_ATE_decimal_float";
13757 /* DWARF 4. */
13758 case DW_ATE_UTF:
13759 return "DW_ATE_UTF";
13760 /* HP extensions. */
13761 case DW_ATE_HP_float80:
13762 return "DW_ATE_HP_float80";
13763 case DW_ATE_HP_complex_float80:
13764 return "DW_ATE_HP_complex_float80";
13765 case DW_ATE_HP_float128:
13766 return "DW_ATE_HP_float128";
13767 case DW_ATE_HP_complex_float128:
13768 return "DW_ATE_HP_complex_float128";
13769 case DW_ATE_HP_floathpintel:
13770 return "DW_ATE_HP_floathpintel";
13771 case DW_ATE_HP_imaginary_float80:
13772 return "DW_ATE_HP_imaginary_float80";
13773 case DW_ATE_HP_imaginary_float128:
13774 return "DW_ATE_HP_imaginary_float128";
13775 default:
13776 return "DW_ATE_<unknown>";
13777 }
13778 }
13779
13780 /* Convert a DWARF call frame info operation to its string name. */
13781
13782 #if 0
13783 static char *
13784 dwarf_cfi_name (unsigned cfi_opc)
13785 {
13786 switch (cfi_opc)
13787 {
13788 case DW_CFA_advance_loc:
13789 return "DW_CFA_advance_loc";
13790 case DW_CFA_offset:
13791 return "DW_CFA_offset";
13792 case DW_CFA_restore:
13793 return "DW_CFA_restore";
13794 case DW_CFA_nop:
13795 return "DW_CFA_nop";
13796 case DW_CFA_set_loc:
13797 return "DW_CFA_set_loc";
13798 case DW_CFA_advance_loc1:
13799 return "DW_CFA_advance_loc1";
13800 case DW_CFA_advance_loc2:
13801 return "DW_CFA_advance_loc2";
13802 case DW_CFA_advance_loc4:
13803 return "DW_CFA_advance_loc4";
13804 case DW_CFA_offset_extended:
13805 return "DW_CFA_offset_extended";
13806 case DW_CFA_restore_extended:
13807 return "DW_CFA_restore_extended";
13808 case DW_CFA_undefined:
13809 return "DW_CFA_undefined";
13810 case DW_CFA_same_value:
13811 return "DW_CFA_same_value";
13812 case DW_CFA_register:
13813 return "DW_CFA_register";
13814 case DW_CFA_remember_state:
13815 return "DW_CFA_remember_state";
13816 case DW_CFA_restore_state:
13817 return "DW_CFA_restore_state";
13818 case DW_CFA_def_cfa:
13819 return "DW_CFA_def_cfa";
13820 case DW_CFA_def_cfa_register:
13821 return "DW_CFA_def_cfa_register";
13822 case DW_CFA_def_cfa_offset:
13823 return "DW_CFA_def_cfa_offset";
13824 /* DWARF 3. */
13825 case DW_CFA_def_cfa_expression:
13826 return "DW_CFA_def_cfa_expression";
13827 case DW_CFA_expression:
13828 return "DW_CFA_expression";
13829 case DW_CFA_offset_extended_sf:
13830 return "DW_CFA_offset_extended_sf";
13831 case DW_CFA_def_cfa_sf:
13832 return "DW_CFA_def_cfa_sf";
13833 case DW_CFA_def_cfa_offset_sf:
13834 return "DW_CFA_def_cfa_offset_sf";
13835 case DW_CFA_val_offset:
13836 return "DW_CFA_val_offset";
13837 case DW_CFA_val_offset_sf:
13838 return "DW_CFA_val_offset_sf";
13839 case DW_CFA_val_expression:
13840 return "DW_CFA_val_expression";
13841 /* SGI/MIPS specific. */
13842 case DW_CFA_MIPS_advance_loc8:
13843 return "DW_CFA_MIPS_advance_loc8";
13844 /* GNU extensions. */
13845 case DW_CFA_GNU_window_save:
13846 return "DW_CFA_GNU_window_save";
13847 case DW_CFA_GNU_args_size:
13848 return "DW_CFA_GNU_args_size";
13849 case DW_CFA_GNU_negative_offset_extended:
13850 return "DW_CFA_GNU_negative_offset_extended";
13851 default:
13852 return "DW_CFA_<unknown>";
13853 }
13854 }
13855 #endif
13856
13857 static void
13858 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
13859 {
13860 unsigned int i;
13861
13862 print_spaces (indent, f);
13863 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
13864 dwarf_tag_name (die->tag), die->abbrev, die->offset);
13865
13866 if (die->parent != NULL)
13867 {
13868 print_spaces (indent, f);
13869 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
13870 die->parent->offset);
13871 }
13872
13873 print_spaces (indent, f);
13874 fprintf_unfiltered (f, " has children: %s\n",
13875 dwarf_bool_name (die->child != NULL));
13876
13877 print_spaces (indent, f);
13878 fprintf_unfiltered (f, " attributes:\n");
13879
13880 for (i = 0; i < die->num_attrs; ++i)
13881 {
13882 print_spaces (indent, f);
13883 fprintf_unfiltered (f, " %s (%s) ",
13884 dwarf_attr_name (die->attrs[i].name),
13885 dwarf_form_name (die->attrs[i].form));
13886
13887 switch (die->attrs[i].form)
13888 {
13889 case DW_FORM_ref_addr:
13890 case DW_FORM_addr:
13891 fprintf_unfiltered (f, "address: ");
13892 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
13893 break;
13894 case DW_FORM_block2:
13895 case DW_FORM_block4:
13896 case DW_FORM_block:
13897 case DW_FORM_block1:
13898 fprintf_unfiltered (f, "block: size %d",
13899 DW_BLOCK (&die->attrs[i])->size);
13900 break;
13901 case DW_FORM_exprloc:
13902 fprintf_unfiltered (f, "expression: size %u",
13903 DW_BLOCK (&die->attrs[i])->size);
13904 break;
13905 case DW_FORM_ref1:
13906 case DW_FORM_ref2:
13907 case DW_FORM_ref4:
13908 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
13909 (long) (DW_ADDR (&die->attrs[i])));
13910 break;
13911 case DW_FORM_data1:
13912 case DW_FORM_data2:
13913 case DW_FORM_data4:
13914 case DW_FORM_data8:
13915 case DW_FORM_udata:
13916 case DW_FORM_sdata:
13917 fprintf_unfiltered (f, "constant: %s",
13918 pulongest (DW_UNSND (&die->attrs[i])));
13919 break;
13920 case DW_FORM_sec_offset:
13921 fprintf_unfiltered (f, "section offset: %s",
13922 pulongest (DW_UNSND (&die->attrs[i])));
13923 break;
13924 case DW_FORM_ref_sig8:
13925 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
13926 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
13927 DW_SIGNATURED_TYPE (&die->attrs[i])->per_cu.offset);
13928 else
13929 fprintf_unfiltered (f, "signatured type, offset: unknown");
13930 break;
13931 case DW_FORM_string:
13932 case DW_FORM_strp:
13933 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
13934 DW_STRING (&die->attrs[i])
13935 ? DW_STRING (&die->attrs[i]) : "",
13936 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
13937 break;
13938 case DW_FORM_flag:
13939 if (DW_UNSND (&die->attrs[i]))
13940 fprintf_unfiltered (f, "flag: TRUE");
13941 else
13942 fprintf_unfiltered (f, "flag: FALSE");
13943 break;
13944 case DW_FORM_flag_present:
13945 fprintf_unfiltered (f, "flag: TRUE");
13946 break;
13947 case DW_FORM_indirect:
13948 /* The reader will have reduced the indirect form to
13949 the "base form" so this form should not occur. */
13950 fprintf_unfiltered (f,
13951 "unexpected attribute form: DW_FORM_indirect");
13952 break;
13953 default:
13954 fprintf_unfiltered (f, "unsupported attribute form: %d.",
13955 die->attrs[i].form);
13956 break;
13957 }
13958 fprintf_unfiltered (f, "\n");
13959 }
13960 }
13961
13962 static void
13963 dump_die_for_error (struct die_info *die)
13964 {
13965 dump_die_shallow (gdb_stderr, 0, die);
13966 }
13967
13968 static void
13969 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
13970 {
13971 int indent = level * 4;
13972
13973 gdb_assert (die != NULL);
13974
13975 if (level >= max_level)
13976 return;
13977
13978 dump_die_shallow (f, indent, die);
13979
13980 if (die->child != NULL)
13981 {
13982 print_spaces (indent, f);
13983 fprintf_unfiltered (f, " Children:");
13984 if (level + 1 < max_level)
13985 {
13986 fprintf_unfiltered (f, "\n");
13987 dump_die_1 (f, level + 1, max_level, die->child);
13988 }
13989 else
13990 {
13991 fprintf_unfiltered (f,
13992 " [not printed, max nesting level reached]\n");
13993 }
13994 }
13995
13996 if (die->sibling != NULL && level > 0)
13997 {
13998 dump_die_1 (f, level, max_level, die->sibling);
13999 }
14000 }
14001
14002 /* This is called from the pdie macro in gdbinit.in.
14003 It's not static so gcc will keep a copy callable from gdb. */
14004
14005 void
14006 dump_die (struct die_info *die, int max_level)
14007 {
14008 dump_die_1 (gdb_stdlog, 0, max_level, die);
14009 }
14010
14011 static void
14012 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
14013 {
14014 void **slot;
14015
14016 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset, INSERT);
14017
14018 *slot = die;
14019 }
14020
14021 static int
14022 is_ref_attr (struct attribute *attr)
14023 {
14024 switch (attr->form)
14025 {
14026 case DW_FORM_ref_addr:
14027 case DW_FORM_ref1:
14028 case DW_FORM_ref2:
14029 case DW_FORM_ref4:
14030 case DW_FORM_ref8:
14031 case DW_FORM_ref_udata:
14032 return 1;
14033 default:
14034 return 0;
14035 }
14036 }
14037
14038 static unsigned int
14039 dwarf2_get_ref_die_offset (struct attribute *attr)
14040 {
14041 if (is_ref_attr (attr))
14042 return DW_ADDR (attr);
14043
14044 complaint (&symfile_complaints,
14045 _("unsupported die ref attribute form: '%s'"),
14046 dwarf_form_name (attr->form));
14047 return 0;
14048 }
14049
14050 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
14051 * the value held by the attribute is not constant. */
14052
14053 static LONGEST
14054 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
14055 {
14056 if (attr->form == DW_FORM_sdata)
14057 return DW_SND (attr);
14058 else if (attr->form == DW_FORM_udata
14059 || attr->form == DW_FORM_data1
14060 || attr->form == DW_FORM_data2
14061 || attr->form == DW_FORM_data4
14062 || attr->form == DW_FORM_data8)
14063 return DW_UNSND (attr);
14064 else
14065 {
14066 complaint (&symfile_complaints,
14067 _("Attribute value is not a constant (%s)"),
14068 dwarf_form_name (attr->form));
14069 return default_value;
14070 }
14071 }
14072
14073 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
14074 unit and add it to our queue.
14075 The result is non-zero if PER_CU was queued, otherwise the result is zero
14076 meaning either PER_CU is already queued or it is already loaded. */
14077
14078 static int
14079 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
14080 struct dwarf2_per_cu_data *per_cu)
14081 {
14082 /* We may arrive here during partial symbol reading, if we need full
14083 DIEs to process an unusual case (e.g. template arguments). Do
14084 not queue PER_CU, just tell our caller to load its DIEs. */
14085 if (dwarf2_per_objfile->reading_partial_symbols)
14086 {
14087 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
14088 return 1;
14089 return 0;
14090 }
14091
14092 /* Mark the dependence relation so that we don't flush PER_CU
14093 too early. */
14094 dwarf2_add_dependence (this_cu, per_cu);
14095
14096 /* If it's already on the queue, we have nothing to do. */
14097 if (per_cu->queued)
14098 return 0;
14099
14100 /* If the compilation unit is already loaded, just mark it as
14101 used. */
14102 if (per_cu->cu != NULL)
14103 {
14104 per_cu->cu->last_used = 0;
14105 return 0;
14106 }
14107
14108 /* Add it to the queue. */
14109 queue_comp_unit (per_cu);
14110
14111 return 1;
14112 }
14113
14114 /* Follow reference or signature attribute ATTR of SRC_DIE.
14115 On entry *REF_CU is the CU of SRC_DIE.
14116 On exit *REF_CU is the CU of the result. */
14117
14118 static struct die_info *
14119 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
14120 struct dwarf2_cu **ref_cu)
14121 {
14122 struct die_info *die;
14123
14124 if (is_ref_attr (attr))
14125 die = follow_die_ref (src_die, attr, ref_cu);
14126 else if (attr->form == DW_FORM_ref_sig8)
14127 die = follow_die_sig (src_die, attr, ref_cu);
14128 else
14129 {
14130 dump_die_for_error (src_die);
14131 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
14132 (*ref_cu)->objfile->name);
14133 }
14134
14135 return die;
14136 }
14137
14138 /* Follow reference OFFSET.
14139 On entry *REF_CU is the CU of the source die referencing OFFSET.
14140 On exit *REF_CU is the CU of the result.
14141 Returns NULL if OFFSET is invalid. */
14142
14143 static struct die_info *
14144 follow_die_offset (unsigned int offset, struct dwarf2_cu **ref_cu)
14145 {
14146 struct die_info temp_die;
14147 struct dwarf2_cu *target_cu, *cu = *ref_cu;
14148
14149 gdb_assert (cu->per_cu != NULL);
14150
14151 target_cu = cu;
14152
14153 if (cu->per_cu->debug_types_section)
14154 {
14155 /* .debug_types CUs cannot reference anything outside their CU.
14156 If they need to, they have to reference a signatured type via
14157 DW_FORM_ref_sig8. */
14158 if (! offset_in_cu_p (&cu->header, offset))
14159 return NULL;
14160 }
14161 else if (! offset_in_cu_p (&cu->header, offset))
14162 {
14163 struct dwarf2_per_cu_data *per_cu;
14164
14165 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
14166
14167 /* If necessary, add it to the queue and load its DIEs. */
14168 if (maybe_queue_comp_unit (cu, per_cu))
14169 load_full_comp_unit (per_cu);
14170
14171 target_cu = per_cu->cu;
14172 }
14173 else if (cu->dies == NULL)
14174 {
14175 /* We're loading full DIEs during partial symbol reading. */
14176 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
14177 load_full_comp_unit (cu->per_cu);
14178 }
14179
14180 *ref_cu = target_cu;
14181 temp_die.offset = offset;
14182 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset);
14183 }
14184
14185 /* Follow reference attribute ATTR of SRC_DIE.
14186 On entry *REF_CU is the CU of SRC_DIE.
14187 On exit *REF_CU is the CU of the result. */
14188
14189 static struct die_info *
14190 follow_die_ref (struct die_info *src_die, struct attribute *attr,
14191 struct dwarf2_cu **ref_cu)
14192 {
14193 unsigned int offset = dwarf2_get_ref_die_offset (attr);
14194 struct dwarf2_cu *cu = *ref_cu;
14195 struct die_info *die;
14196
14197 die = follow_die_offset (offset, ref_cu);
14198 if (!die)
14199 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
14200 "at 0x%x [in module %s]"),
14201 offset, src_die->offset, cu->objfile->name);
14202
14203 return die;
14204 }
14205
14206 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
14207 Returned value is intended for DW_OP_call*. Returned
14208 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
14209
14210 struct dwarf2_locexpr_baton
14211 dwarf2_fetch_die_location_block (unsigned int offset,
14212 struct dwarf2_per_cu_data *per_cu,
14213 CORE_ADDR (*get_frame_pc) (void *baton),
14214 void *baton)
14215 {
14216 struct dwarf2_cu *cu;
14217 struct die_info *die;
14218 struct attribute *attr;
14219 struct dwarf2_locexpr_baton retval;
14220
14221 dw2_setup (per_cu->objfile);
14222
14223 if (per_cu->cu == NULL)
14224 load_cu (per_cu);
14225 cu = per_cu->cu;
14226
14227 die = follow_die_offset (offset, &cu);
14228 if (!die)
14229 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
14230 offset, per_cu->objfile->name);
14231
14232 attr = dwarf2_attr (die, DW_AT_location, cu);
14233 if (!attr)
14234 {
14235 /* DWARF: "If there is no such attribute, then there is no effect.".
14236 DATA is ignored if SIZE is 0. */
14237
14238 retval.data = NULL;
14239 retval.size = 0;
14240 }
14241 else if (attr_form_is_section_offset (attr))
14242 {
14243 struct dwarf2_loclist_baton loclist_baton;
14244 CORE_ADDR pc = (*get_frame_pc) (baton);
14245 size_t size;
14246
14247 fill_in_loclist_baton (cu, &loclist_baton, attr);
14248
14249 retval.data = dwarf2_find_location_expression (&loclist_baton,
14250 &size, pc);
14251 retval.size = size;
14252 }
14253 else
14254 {
14255 if (!attr_form_is_block (attr))
14256 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
14257 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
14258 offset, per_cu->objfile->name);
14259
14260 retval.data = DW_BLOCK (attr)->data;
14261 retval.size = DW_BLOCK (attr)->size;
14262 }
14263 retval.per_cu = cu->per_cu;
14264
14265 age_cached_comp_units ();
14266
14267 return retval;
14268 }
14269
14270 /* Return the type of the DIE at DIE_OFFSET in the CU named by
14271 PER_CU. */
14272
14273 struct type *
14274 dwarf2_get_die_type (unsigned int die_offset,
14275 struct dwarf2_per_cu_data *per_cu)
14276 {
14277 dw2_setup (per_cu->objfile);
14278 return get_die_type_at_offset (die_offset, per_cu);
14279 }
14280
14281 /* Follow the signature attribute ATTR in SRC_DIE.
14282 On entry *REF_CU is the CU of SRC_DIE.
14283 On exit *REF_CU is the CU of the result. */
14284
14285 static struct die_info *
14286 follow_die_sig (struct die_info *src_die, struct attribute *attr,
14287 struct dwarf2_cu **ref_cu)
14288 {
14289 struct objfile *objfile = (*ref_cu)->objfile;
14290 struct die_info temp_die;
14291 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
14292 struct dwarf2_cu *sig_cu;
14293 struct die_info *die;
14294
14295 /* sig_type will be NULL if the signatured type is missing from
14296 the debug info. */
14297 if (sig_type == NULL)
14298 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
14299 "at 0x%x [in module %s]"),
14300 src_die->offset, objfile->name);
14301
14302 /* If necessary, add it to the queue and load its DIEs. */
14303
14304 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu))
14305 read_signatured_type (sig_type);
14306
14307 gdb_assert (sig_type->per_cu.cu != NULL);
14308
14309 sig_cu = sig_type->per_cu.cu;
14310 temp_die.offset = sig_cu->header.offset + sig_type->type_offset;
14311 die = htab_find_with_hash (sig_cu->die_hash, &temp_die, temp_die.offset);
14312 if (die)
14313 {
14314 *ref_cu = sig_cu;
14315 return die;
14316 }
14317
14318 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced "
14319 "from DIE at 0x%x [in module %s]"),
14320 sig_type->type_offset, src_die->offset, objfile->name);
14321 }
14322
14323 /* Given an offset of a signatured type, return its signatured_type. */
14324
14325 static struct signatured_type *
14326 lookup_signatured_type_at_offset (struct objfile *objfile,
14327 struct dwarf2_section_info *section,
14328 unsigned int offset)
14329 {
14330 gdb_byte *info_ptr = section->buffer + offset;
14331 unsigned int length, initial_length_size;
14332 unsigned int sig_offset;
14333 struct signatured_type find_entry, *type_sig;
14334
14335 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
14336 sig_offset = (initial_length_size
14337 + 2 /*version*/
14338 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
14339 + 1 /*address_size*/);
14340 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
14341 type_sig = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
14342
14343 /* This is only used to lookup previously recorded types.
14344 If we didn't find it, it's our bug. */
14345 gdb_assert (type_sig != NULL);
14346 gdb_assert (offset == type_sig->per_cu.offset);
14347
14348 return type_sig;
14349 }
14350
14351 /* Load the DIEs associated with type unit PER_CU into memory. */
14352
14353 static void
14354 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
14355 {
14356 struct objfile *objfile = per_cu->objfile;
14357 struct dwarf2_section_info *sect = per_cu->debug_types_section;
14358 unsigned int offset = per_cu->offset;
14359 struct signatured_type *type_sig;
14360
14361 dwarf2_read_section (objfile, sect);
14362
14363 /* We have the section offset, but we need the signature to do the
14364 hash table lookup. */
14365 /* FIXME: This is sorta unnecessary, read_signatured_type only uses
14366 the signature to assert we found the right one.
14367 Ok, but it's a lot of work. We should simplify things so any needed
14368 assert doesn't require all this clumsiness. */
14369 type_sig = lookup_signatured_type_at_offset (objfile, sect, offset);
14370
14371 gdb_assert (type_sig->per_cu.cu == NULL);
14372
14373 read_signatured_type (type_sig);
14374
14375 gdb_assert (type_sig->per_cu.cu != NULL);
14376 }
14377
14378 /* Read in a signatured type and build its CU and DIEs. */
14379
14380 static void
14381 read_signatured_type (struct signatured_type *type_sig)
14382 {
14383 struct objfile *objfile = type_sig->per_cu.objfile;
14384 gdb_byte *types_ptr;
14385 struct die_reader_specs reader_specs;
14386 struct dwarf2_cu *cu;
14387 ULONGEST signature;
14388 struct cleanup *back_to, *free_cu_cleanup;
14389 struct dwarf2_section_info *section = type_sig->per_cu.debug_types_section;
14390
14391 dwarf2_read_section (objfile, section);
14392 types_ptr = section->buffer + type_sig->per_cu.offset;
14393
14394 gdb_assert (type_sig->per_cu.cu == NULL);
14395
14396 cu = xmalloc (sizeof (*cu));
14397 init_one_comp_unit (cu, &type_sig->per_cu);
14398
14399 /* If an error occurs while loading, release our storage. */
14400 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
14401
14402 types_ptr = read_and_check_type_unit_head (&cu->header, section, types_ptr,
14403 &signature, NULL);
14404 gdb_assert (signature == type_sig->signature);
14405
14406 cu->die_hash
14407 = htab_create_alloc_ex (cu->header.length / 12,
14408 die_hash,
14409 die_eq,
14410 NULL,
14411 &cu->comp_unit_obstack,
14412 hashtab_obstack_allocate,
14413 dummy_obstack_deallocate);
14414
14415 dwarf2_read_abbrevs (cu);
14416 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
14417
14418 init_cu_die_reader (&reader_specs, cu);
14419
14420 cu->dies = read_die_and_children (&reader_specs, types_ptr, &types_ptr,
14421 NULL /*parent*/);
14422
14423 /* We try not to read any attributes in this function, because not
14424 all CUs needed for references have been loaded yet, and symbol
14425 table processing isn't initialized. But we have to set the CU language,
14426 or we won't be able to build types correctly. */
14427 prepare_one_comp_unit (cu, cu->dies);
14428
14429 do_cleanups (back_to);
14430
14431 /* We've successfully allocated this compilation unit. Let our caller
14432 clean it up when finished with it. */
14433 discard_cleanups (free_cu_cleanup);
14434
14435 type_sig->per_cu.cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
14436 dwarf2_per_objfile->read_in_chain = &type_sig->per_cu;
14437 }
14438
14439 /* Decode simple location descriptions.
14440 Given a pointer to a dwarf block that defines a location, compute
14441 the location and return the value.
14442
14443 NOTE drow/2003-11-18: This function is called in two situations
14444 now: for the address of static or global variables (partial symbols
14445 only) and for offsets into structures which are expected to be
14446 (more or less) constant. The partial symbol case should go away,
14447 and only the constant case should remain. That will let this
14448 function complain more accurately. A few special modes are allowed
14449 without complaint for global variables (for instance, global
14450 register values and thread-local values).
14451
14452 A location description containing no operations indicates that the
14453 object is optimized out. The return value is 0 for that case.
14454 FIXME drow/2003-11-16: No callers check for this case any more; soon all
14455 callers will only want a very basic result and this can become a
14456 complaint.
14457
14458 Note that stack[0] is unused except as a default error return. */
14459
14460 static CORE_ADDR
14461 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
14462 {
14463 struct objfile *objfile = cu->objfile;
14464 int i;
14465 int size = blk->size;
14466 gdb_byte *data = blk->data;
14467 CORE_ADDR stack[64];
14468 int stacki;
14469 unsigned int bytes_read, unsnd;
14470 gdb_byte op;
14471
14472 i = 0;
14473 stacki = 0;
14474 stack[stacki] = 0;
14475 stack[++stacki] = 0;
14476
14477 while (i < size)
14478 {
14479 op = data[i++];
14480 switch (op)
14481 {
14482 case DW_OP_lit0:
14483 case DW_OP_lit1:
14484 case DW_OP_lit2:
14485 case DW_OP_lit3:
14486 case DW_OP_lit4:
14487 case DW_OP_lit5:
14488 case DW_OP_lit6:
14489 case DW_OP_lit7:
14490 case DW_OP_lit8:
14491 case DW_OP_lit9:
14492 case DW_OP_lit10:
14493 case DW_OP_lit11:
14494 case DW_OP_lit12:
14495 case DW_OP_lit13:
14496 case DW_OP_lit14:
14497 case DW_OP_lit15:
14498 case DW_OP_lit16:
14499 case DW_OP_lit17:
14500 case DW_OP_lit18:
14501 case DW_OP_lit19:
14502 case DW_OP_lit20:
14503 case DW_OP_lit21:
14504 case DW_OP_lit22:
14505 case DW_OP_lit23:
14506 case DW_OP_lit24:
14507 case DW_OP_lit25:
14508 case DW_OP_lit26:
14509 case DW_OP_lit27:
14510 case DW_OP_lit28:
14511 case DW_OP_lit29:
14512 case DW_OP_lit30:
14513 case DW_OP_lit31:
14514 stack[++stacki] = op - DW_OP_lit0;
14515 break;
14516
14517 case DW_OP_reg0:
14518 case DW_OP_reg1:
14519 case DW_OP_reg2:
14520 case DW_OP_reg3:
14521 case DW_OP_reg4:
14522 case DW_OP_reg5:
14523 case DW_OP_reg6:
14524 case DW_OP_reg7:
14525 case DW_OP_reg8:
14526 case DW_OP_reg9:
14527 case DW_OP_reg10:
14528 case DW_OP_reg11:
14529 case DW_OP_reg12:
14530 case DW_OP_reg13:
14531 case DW_OP_reg14:
14532 case DW_OP_reg15:
14533 case DW_OP_reg16:
14534 case DW_OP_reg17:
14535 case DW_OP_reg18:
14536 case DW_OP_reg19:
14537 case DW_OP_reg20:
14538 case DW_OP_reg21:
14539 case DW_OP_reg22:
14540 case DW_OP_reg23:
14541 case DW_OP_reg24:
14542 case DW_OP_reg25:
14543 case DW_OP_reg26:
14544 case DW_OP_reg27:
14545 case DW_OP_reg28:
14546 case DW_OP_reg29:
14547 case DW_OP_reg30:
14548 case DW_OP_reg31:
14549 stack[++stacki] = op - DW_OP_reg0;
14550 if (i < size)
14551 dwarf2_complex_location_expr_complaint ();
14552 break;
14553
14554 case DW_OP_regx:
14555 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
14556 i += bytes_read;
14557 stack[++stacki] = unsnd;
14558 if (i < size)
14559 dwarf2_complex_location_expr_complaint ();
14560 break;
14561
14562 case DW_OP_addr:
14563 stack[++stacki] = read_address (objfile->obfd, &data[i],
14564 cu, &bytes_read);
14565 i += bytes_read;
14566 break;
14567
14568 case DW_OP_const1u:
14569 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
14570 i += 1;
14571 break;
14572
14573 case DW_OP_const1s:
14574 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
14575 i += 1;
14576 break;
14577
14578 case DW_OP_const2u:
14579 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
14580 i += 2;
14581 break;
14582
14583 case DW_OP_const2s:
14584 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
14585 i += 2;
14586 break;
14587
14588 case DW_OP_const4u:
14589 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
14590 i += 4;
14591 break;
14592
14593 case DW_OP_const4s:
14594 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
14595 i += 4;
14596 break;
14597
14598 case DW_OP_const8u:
14599 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
14600 i += 8;
14601 break;
14602
14603 case DW_OP_constu:
14604 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
14605 &bytes_read);
14606 i += bytes_read;
14607 break;
14608
14609 case DW_OP_consts:
14610 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
14611 i += bytes_read;
14612 break;
14613
14614 case DW_OP_dup:
14615 stack[stacki + 1] = stack[stacki];
14616 stacki++;
14617 break;
14618
14619 case DW_OP_plus:
14620 stack[stacki - 1] += stack[stacki];
14621 stacki--;
14622 break;
14623
14624 case DW_OP_plus_uconst:
14625 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
14626 &bytes_read);
14627 i += bytes_read;
14628 break;
14629
14630 case DW_OP_minus:
14631 stack[stacki - 1] -= stack[stacki];
14632 stacki--;
14633 break;
14634
14635 case DW_OP_deref:
14636 /* If we're not the last op, then we definitely can't encode
14637 this using GDB's address_class enum. This is valid for partial
14638 global symbols, although the variable's address will be bogus
14639 in the psymtab. */
14640 if (i < size)
14641 dwarf2_complex_location_expr_complaint ();
14642 break;
14643
14644 case DW_OP_GNU_push_tls_address:
14645 /* The top of the stack has the offset from the beginning
14646 of the thread control block at which the variable is located. */
14647 /* Nothing should follow this operator, so the top of stack would
14648 be returned. */
14649 /* This is valid for partial global symbols, but the variable's
14650 address will be bogus in the psymtab. Make it always at least
14651 non-zero to not look as a variable garbage collected by linker
14652 which have DW_OP_addr 0. */
14653 if (i < size)
14654 dwarf2_complex_location_expr_complaint ();
14655 stack[stacki]++;
14656 break;
14657
14658 case DW_OP_GNU_uninit:
14659 break;
14660
14661 default:
14662 {
14663 const char *name = dwarf_stack_op_name (op);
14664
14665 if (name)
14666 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
14667 name);
14668 else
14669 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
14670 op);
14671 }
14672
14673 return (stack[stacki]);
14674 }
14675
14676 /* Enforce maximum stack depth of SIZE-1 to avoid writing
14677 outside of the allocated space. Also enforce minimum>0. */
14678 if (stacki >= ARRAY_SIZE (stack) - 1)
14679 {
14680 complaint (&symfile_complaints,
14681 _("location description stack overflow"));
14682 return 0;
14683 }
14684
14685 if (stacki <= 0)
14686 {
14687 complaint (&symfile_complaints,
14688 _("location description stack underflow"));
14689 return 0;
14690 }
14691 }
14692 return (stack[stacki]);
14693 }
14694
14695 /* memory allocation interface */
14696
14697 static struct dwarf_block *
14698 dwarf_alloc_block (struct dwarf2_cu *cu)
14699 {
14700 struct dwarf_block *blk;
14701
14702 blk = (struct dwarf_block *)
14703 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
14704 return (blk);
14705 }
14706
14707 static struct abbrev_info *
14708 dwarf_alloc_abbrev (struct dwarf2_cu *cu)
14709 {
14710 struct abbrev_info *abbrev;
14711
14712 abbrev = (struct abbrev_info *)
14713 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
14714 memset (abbrev, 0, sizeof (struct abbrev_info));
14715 return (abbrev);
14716 }
14717
14718 static struct die_info *
14719 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
14720 {
14721 struct die_info *die;
14722 size_t size = sizeof (struct die_info);
14723
14724 if (num_attrs > 1)
14725 size += (num_attrs - 1) * sizeof (struct attribute);
14726
14727 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
14728 memset (die, 0, sizeof (struct die_info));
14729 return (die);
14730 }
14731
14732 \f
14733 /* Macro support. */
14734
14735 /* Return the full name of file number I in *LH's file name table.
14736 Use COMP_DIR as the name of the current directory of the
14737 compilation. The result is allocated using xmalloc; the caller is
14738 responsible for freeing it. */
14739 static char *
14740 file_full_name (int file, struct line_header *lh, const char *comp_dir)
14741 {
14742 /* Is the file number a valid index into the line header's file name
14743 table? Remember that file numbers start with one, not zero. */
14744 if (1 <= file && file <= lh->num_file_names)
14745 {
14746 struct file_entry *fe = &lh->file_names[file - 1];
14747
14748 if (IS_ABSOLUTE_PATH (fe->name))
14749 return xstrdup (fe->name);
14750 else
14751 {
14752 const char *dir;
14753 int dir_len;
14754 char *full_name;
14755
14756 if (fe->dir_index)
14757 dir = lh->include_dirs[fe->dir_index - 1];
14758 else
14759 dir = comp_dir;
14760
14761 if (dir)
14762 {
14763 dir_len = strlen (dir);
14764 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
14765 strcpy (full_name, dir);
14766 full_name[dir_len] = '/';
14767 strcpy (full_name + dir_len + 1, fe->name);
14768 return full_name;
14769 }
14770 else
14771 return xstrdup (fe->name);
14772 }
14773 }
14774 else
14775 {
14776 /* The compiler produced a bogus file number. We can at least
14777 record the macro definitions made in the file, even if we
14778 won't be able to find the file by name. */
14779 char fake_name[80];
14780
14781 sprintf (fake_name, "<bad macro file number %d>", file);
14782
14783 complaint (&symfile_complaints,
14784 _("bad file number in macro information (%d)"),
14785 file);
14786
14787 return xstrdup (fake_name);
14788 }
14789 }
14790
14791
14792 static struct macro_source_file *
14793 macro_start_file (int file, int line,
14794 struct macro_source_file *current_file,
14795 const char *comp_dir,
14796 struct line_header *lh, struct objfile *objfile)
14797 {
14798 /* The full name of this source file. */
14799 char *full_name = file_full_name (file, lh, comp_dir);
14800
14801 /* We don't create a macro table for this compilation unit
14802 at all until we actually get a filename. */
14803 if (! pending_macros)
14804 pending_macros = new_macro_table (&objfile->objfile_obstack,
14805 objfile->macro_cache);
14806
14807 if (! current_file)
14808 /* If we have no current file, then this must be the start_file
14809 directive for the compilation unit's main source file. */
14810 current_file = macro_set_main (pending_macros, full_name);
14811 else
14812 current_file = macro_include (current_file, line, full_name);
14813
14814 xfree (full_name);
14815
14816 return current_file;
14817 }
14818
14819
14820 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
14821 followed by a null byte. */
14822 static char *
14823 copy_string (const char *buf, int len)
14824 {
14825 char *s = xmalloc (len + 1);
14826
14827 memcpy (s, buf, len);
14828 s[len] = '\0';
14829 return s;
14830 }
14831
14832
14833 static const char *
14834 consume_improper_spaces (const char *p, const char *body)
14835 {
14836 if (*p == ' ')
14837 {
14838 complaint (&symfile_complaints,
14839 _("macro definition contains spaces "
14840 "in formal argument list:\n`%s'"),
14841 body);
14842
14843 while (*p == ' ')
14844 p++;
14845 }
14846
14847 return p;
14848 }
14849
14850
14851 static void
14852 parse_macro_definition (struct macro_source_file *file, int line,
14853 const char *body)
14854 {
14855 const char *p;
14856
14857 /* The body string takes one of two forms. For object-like macro
14858 definitions, it should be:
14859
14860 <macro name> " " <definition>
14861
14862 For function-like macro definitions, it should be:
14863
14864 <macro name> "() " <definition>
14865 or
14866 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
14867
14868 Spaces may appear only where explicitly indicated, and in the
14869 <definition>.
14870
14871 The Dwarf 2 spec says that an object-like macro's name is always
14872 followed by a space, but versions of GCC around March 2002 omit
14873 the space when the macro's definition is the empty string.
14874
14875 The Dwarf 2 spec says that there should be no spaces between the
14876 formal arguments in a function-like macro's formal argument list,
14877 but versions of GCC around March 2002 include spaces after the
14878 commas. */
14879
14880
14881 /* Find the extent of the macro name. The macro name is terminated
14882 by either a space or null character (for an object-like macro) or
14883 an opening paren (for a function-like macro). */
14884 for (p = body; *p; p++)
14885 if (*p == ' ' || *p == '(')
14886 break;
14887
14888 if (*p == ' ' || *p == '\0')
14889 {
14890 /* It's an object-like macro. */
14891 int name_len = p - body;
14892 char *name = copy_string (body, name_len);
14893 const char *replacement;
14894
14895 if (*p == ' ')
14896 replacement = body + name_len + 1;
14897 else
14898 {
14899 dwarf2_macro_malformed_definition_complaint (body);
14900 replacement = body + name_len;
14901 }
14902
14903 macro_define_object (file, line, name, replacement);
14904
14905 xfree (name);
14906 }
14907 else if (*p == '(')
14908 {
14909 /* It's a function-like macro. */
14910 char *name = copy_string (body, p - body);
14911 int argc = 0;
14912 int argv_size = 1;
14913 char **argv = xmalloc (argv_size * sizeof (*argv));
14914
14915 p++;
14916
14917 p = consume_improper_spaces (p, body);
14918
14919 /* Parse the formal argument list. */
14920 while (*p && *p != ')')
14921 {
14922 /* Find the extent of the current argument name. */
14923 const char *arg_start = p;
14924
14925 while (*p && *p != ',' && *p != ')' && *p != ' ')
14926 p++;
14927
14928 if (! *p || p == arg_start)
14929 dwarf2_macro_malformed_definition_complaint (body);
14930 else
14931 {
14932 /* Make sure argv has room for the new argument. */
14933 if (argc >= argv_size)
14934 {
14935 argv_size *= 2;
14936 argv = xrealloc (argv, argv_size * sizeof (*argv));
14937 }
14938
14939 argv[argc++] = copy_string (arg_start, p - arg_start);
14940 }
14941
14942 p = consume_improper_spaces (p, body);
14943
14944 /* Consume the comma, if present. */
14945 if (*p == ',')
14946 {
14947 p++;
14948
14949 p = consume_improper_spaces (p, body);
14950 }
14951 }
14952
14953 if (*p == ')')
14954 {
14955 p++;
14956
14957 if (*p == ' ')
14958 /* Perfectly formed definition, no complaints. */
14959 macro_define_function (file, line, name,
14960 argc, (const char **) argv,
14961 p + 1);
14962 else if (*p == '\0')
14963 {
14964 /* Complain, but do define it. */
14965 dwarf2_macro_malformed_definition_complaint (body);
14966 macro_define_function (file, line, name,
14967 argc, (const char **) argv,
14968 p);
14969 }
14970 else
14971 /* Just complain. */
14972 dwarf2_macro_malformed_definition_complaint (body);
14973 }
14974 else
14975 /* Just complain. */
14976 dwarf2_macro_malformed_definition_complaint (body);
14977
14978 xfree (name);
14979 {
14980 int i;
14981
14982 for (i = 0; i < argc; i++)
14983 xfree (argv[i]);
14984 }
14985 xfree (argv);
14986 }
14987 else
14988 dwarf2_macro_malformed_definition_complaint (body);
14989 }
14990
14991 /* Skip some bytes from BYTES according to the form given in FORM.
14992 Returns the new pointer. */
14993
14994 static gdb_byte *
14995 skip_form_bytes (bfd *abfd, gdb_byte *bytes,
14996 enum dwarf_form form,
14997 unsigned int offset_size,
14998 struct dwarf2_section_info *section)
14999 {
15000 unsigned int bytes_read;
15001
15002 switch (form)
15003 {
15004 case DW_FORM_data1:
15005 case DW_FORM_flag:
15006 ++bytes;
15007 break;
15008
15009 case DW_FORM_data2:
15010 bytes += 2;
15011 break;
15012
15013 case DW_FORM_data4:
15014 bytes += 4;
15015 break;
15016
15017 case DW_FORM_data8:
15018 bytes += 8;
15019 break;
15020
15021 case DW_FORM_string:
15022 read_direct_string (abfd, bytes, &bytes_read);
15023 bytes += bytes_read;
15024 break;
15025
15026 case DW_FORM_sec_offset:
15027 case DW_FORM_strp:
15028 bytes += offset_size;
15029 break;
15030
15031 case DW_FORM_block:
15032 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
15033 bytes += bytes_read;
15034 break;
15035
15036 case DW_FORM_block1:
15037 bytes += 1 + read_1_byte (abfd, bytes);
15038 break;
15039 case DW_FORM_block2:
15040 bytes += 2 + read_2_bytes (abfd, bytes);
15041 break;
15042 case DW_FORM_block4:
15043 bytes += 4 + read_4_bytes (abfd, bytes);
15044 break;
15045
15046 case DW_FORM_sdata:
15047 case DW_FORM_udata:
15048 bytes = skip_leb128 (abfd, bytes);
15049 break;
15050
15051 default:
15052 {
15053 complain:
15054 complaint (&symfile_complaints,
15055 _("invalid form 0x%x in `%s'"),
15056 form,
15057 section->asection->name);
15058 return NULL;
15059 }
15060 }
15061
15062 return bytes;
15063 }
15064
15065 /* A helper for dwarf_decode_macros that handles skipping an unknown
15066 opcode. Returns an updated pointer to the macro data buffer; or,
15067 on error, issues a complaint and returns NULL. */
15068
15069 static gdb_byte *
15070 skip_unknown_opcode (unsigned int opcode,
15071 gdb_byte **opcode_definitions,
15072 gdb_byte *mac_ptr,
15073 bfd *abfd,
15074 unsigned int offset_size,
15075 struct dwarf2_section_info *section)
15076 {
15077 unsigned int bytes_read, i;
15078 unsigned long arg;
15079 gdb_byte *defn;
15080
15081 if (opcode_definitions[opcode] == NULL)
15082 {
15083 complaint (&symfile_complaints,
15084 _("unrecognized DW_MACFINO opcode 0x%x"),
15085 opcode);
15086 return NULL;
15087 }
15088
15089 defn = opcode_definitions[opcode];
15090 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
15091 defn += bytes_read;
15092
15093 for (i = 0; i < arg; ++i)
15094 {
15095 mac_ptr = skip_form_bytes (abfd, mac_ptr, defn[i], offset_size, section);
15096 if (mac_ptr == NULL)
15097 {
15098 /* skip_form_bytes already issued the complaint. */
15099 return NULL;
15100 }
15101 }
15102
15103 return mac_ptr;
15104 }
15105
15106 /* A helper function which parses the header of a macro section.
15107 If the macro section is the extended (for now called "GNU") type,
15108 then this updates *OFFSET_SIZE. Returns a pointer to just after
15109 the header, or issues a complaint and returns NULL on error. */
15110
15111 static gdb_byte *
15112 dwarf_parse_macro_header (gdb_byte **opcode_definitions,
15113 bfd *abfd,
15114 gdb_byte *mac_ptr,
15115 unsigned int *offset_size,
15116 int section_is_gnu)
15117 {
15118 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
15119
15120 if (section_is_gnu)
15121 {
15122 unsigned int version, flags;
15123
15124 version = read_2_bytes (abfd, mac_ptr);
15125 if (version != 4)
15126 {
15127 complaint (&symfile_complaints,
15128 _("unrecognized version `%d' in .debug_macro section"),
15129 version);
15130 return NULL;
15131 }
15132 mac_ptr += 2;
15133
15134 flags = read_1_byte (abfd, mac_ptr);
15135 ++mac_ptr;
15136 *offset_size = (flags & 1) ? 8 : 4;
15137
15138 if ((flags & 2) != 0)
15139 /* We don't need the line table offset. */
15140 mac_ptr += *offset_size;
15141
15142 /* Vendor opcode descriptions. */
15143 if ((flags & 4) != 0)
15144 {
15145 unsigned int i, count;
15146
15147 count = read_1_byte (abfd, mac_ptr);
15148 ++mac_ptr;
15149 for (i = 0; i < count; ++i)
15150 {
15151 unsigned int opcode, bytes_read;
15152 unsigned long arg;
15153
15154 opcode = read_1_byte (abfd, mac_ptr);
15155 ++mac_ptr;
15156 opcode_definitions[opcode] = mac_ptr;
15157 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15158 mac_ptr += bytes_read;
15159 mac_ptr += arg;
15160 }
15161 }
15162 }
15163
15164 return mac_ptr;
15165 }
15166
15167 /* A helper for dwarf_decode_macros that handles the GNU extensions,
15168 including DW_MACRO_GNU_transparent_include. */
15169
15170 static void
15171 dwarf_decode_macro_bytes (bfd *abfd, gdb_byte *mac_ptr, gdb_byte *mac_end,
15172 struct macro_source_file *current_file,
15173 struct line_header *lh, char *comp_dir,
15174 struct dwarf2_section_info *section,
15175 int section_is_gnu,
15176 unsigned int offset_size,
15177 struct objfile *objfile,
15178 htab_t include_hash)
15179 {
15180 enum dwarf_macro_record_type macinfo_type;
15181 int at_commandline;
15182 gdb_byte *opcode_definitions[256];
15183
15184 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
15185 &offset_size, section_is_gnu);
15186 if (mac_ptr == NULL)
15187 {
15188 /* We already issued a complaint. */
15189 return;
15190 }
15191
15192 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
15193 GDB is still reading the definitions from command line. First
15194 DW_MACINFO_start_file will need to be ignored as it was already executed
15195 to create CURRENT_FILE for the main source holding also the command line
15196 definitions. On first met DW_MACINFO_start_file this flag is reset to
15197 normally execute all the remaining DW_MACINFO_start_file macinfos. */
15198
15199 at_commandline = 1;
15200
15201 do
15202 {
15203 /* Do we at least have room for a macinfo type byte? */
15204 if (mac_ptr >= mac_end)
15205 {
15206 dwarf2_macros_too_long_complaint (section);
15207 break;
15208 }
15209
15210 macinfo_type = read_1_byte (abfd, mac_ptr);
15211 mac_ptr++;
15212
15213 /* Note that we rely on the fact that the corresponding GNU and
15214 DWARF constants are the same. */
15215 switch (macinfo_type)
15216 {
15217 /* A zero macinfo type indicates the end of the macro
15218 information. */
15219 case 0:
15220 break;
15221
15222 case DW_MACRO_GNU_define:
15223 case DW_MACRO_GNU_undef:
15224 case DW_MACRO_GNU_define_indirect:
15225 case DW_MACRO_GNU_undef_indirect:
15226 {
15227 unsigned int bytes_read;
15228 int line;
15229 char *body;
15230 int is_define;
15231
15232 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15233 mac_ptr += bytes_read;
15234
15235 if (macinfo_type == DW_MACRO_GNU_define
15236 || macinfo_type == DW_MACRO_GNU_undef)
15237 {
15238 body = read_direct_string (abfd, mac_ptr, &bytes_read);
15239 mac_ptr += bytes_read;
15240 }
15241 else
15242 {
15243 LONGEST str_offset;
15244
15245 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
15246 mac_ptr += offset_size;
15247
15248 body = read_indirect_string_at_offset (abfd, str_offset);
15249 }
15250
15251 is_define = (macinfo_type == DW_MACRO_GNU_define
15252 || macinfo_type == DW_MACRO_GNU_define_indirect);
15253 if (! current_file)
15254 {
15255 /* DWARF violation as no main source is present. */
15256 complaint (&symfile_complaints,
15257 _("debug info with no main source gives macro %s "
15258 "on line %d: %s"),
15259 is_define ? _("definition") : _("undefinition"),
15260 line, body);
15261 break;
15262 }
15263 if ((line == 0 && !at_commandline)
15264 || (line != 0 && at_commandline))
15265 complaint (&symfile_complaints,
15266 _("debug info gives %s macro %s with %s line %d: %s"),
15267 at_commandline ? _("command-line") : _("in-file"),
15268 is_define ? _("definition") : _("undefinition"),
15269 line == 0 ? _("zero") : _("non-zero"), line, body);
15270
15271 if (is_define)
15272 parse_macro_definition (current_file, line, body);
15273 else
15274 {
15275 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
15276 || macinfo_type == DW_MACRO_GNU_undef_indirect);
15277 macro_undef (current_file, line, body);
15278 }
15279 }
15280 break;
15281
15282 case DW_MACRO_GNU_start_file:
15283 {
15284 unsigned int bytes_read;
15285 int line, file;
15286
15287 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15288 mac_ptr += bytes_read;
15289 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15290 mac_ptr += bytes_read;
15291
15292 if ((line == 0 && !at_commandline)
15293 || (line != 0 && at_commandline))
15294 complaint (&symfile_complaints,
15295 _("debug info gives source %d included "
15296 "from %s at %s line %d"),
15297 file, at_commandline ? _("command-line") : _("file"),
15298 line == 0 ? _("zero") : _("non-zero"), line);
15299
15300 if (at_commandline)
15301 {
15302 /* This DW_MACRO_GNU_start_file was executed in the
15303 pass one. */
15304 at_commandline = 0;
15305 }
15306 else
15307 current_file = macro_start_file (file, line,
15308 current_file, comp_dir,
15309 lh, objfile);
15310 }
15311 break;
15312
15313 case DW_MACRO_GNU_end_file:
15314 if (! current_file)
15315 complaint (&symfile_complaints,
15316 _("macro debug info has an unmatched "
15317 "`close_file' directive"));
15318 else
15319 {
15320 current_file = current_file->included_by;
15321 if (! current_file)
15322 {
15323 enum dwarf_macro_record_type next_type;
15324
15325 /* GCC circa March 2002 doesn't produce the zero
15326 type byte marking the end of the compilation
15327 unit. Complain if it's not there, but exit no
15328 matter what. */
15329
15330 /* Do we at least have room for a macinfo type byte? */
15331 if (mac_ptr >= mac_end)
15332 {
15333 dwarf2_macros_too_long_complaint (section);
15334 return;
15335 }
15336
15337 /* We don't increment mac_ptr here, so this is just
15338 a look-ahead. */
15339 next_type = read_1_byte (abfd, mac_ptr);
15340 if (next_type != 0)
15341 complaint (&symfile_complaints,
15342 _("no terminating 0-type entry for "
15343 "macros in `.debug_macinfo' section"));
15344
15345 return;
15346 }
15347 }
15348 break;
15349
15350 case DW_MACRO_GNU_transparent_include:
15351 {
15352 LONGEST offset;
15353 void **slot;
15354
15355 offset = read_offset_1 (abfd, mac_ptr, offset_size);
15356 mac_ptr += offset_size;
15357
15358 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
15359 if (*slot != NULL)
15360 {
15361 /* This has actually happened; see
15362 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
15363 complaint (&symfile_complaints,
15364 _("recursive DW_MACRO_GNU_transparent_include in "
15365 ".debug_macro section"));
15366 }
15367 else
15368 {
15369 *slot = mac_ptr;
15370
15371 dwarf_decode_macro_bytes (abfd,
15372 section->buffer + offset,
15373 mac_end, current_file,
15374 lh, comp_dir,
15375 section, section_is_gnu,
15376 offset_size, objfile, include_hash);
15377
15378 htab_remove_elt (include_hash, mac_ptr);
15379 }
15380 }
15381 break;
15382
15383 case DW_MACINFO_vendor_ext:
15384 if (!section_is_gnu)
15385 {
15386 unsigned int bytes_read;
15387 int constant;
15388
15389 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15390 mac_ptr += bytes_read;
15391 read_direct_string (abfd, mac_ptr, &bytes_read);
15392 mac_ptr += bytes_read;
15393
15394 /* We don't recognize any vendor extensions. */
15395 break;
15396 }
15397 /* FALLTHROUGH */
15398
15399 default:
15400 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
15401 mac_ptr, abfd, offset_size,
15402 section);
15403 if (mac_ptr == NULL)
15404 return;
15405 break;
15406 }
15407 } while (macinfo_type != 0);
15408 }
15409
15410 static void
15411 dwarf_decode_macros (struct line_header *lh, unsigned int offset,
15412 char *comp_dir, bfd *abfd,
15413 struct dwarf2_cu *cu,
15414 struct dwarf2_section_info *section,
15415 int section_is_gnu)
15416 {
15417 struct objfile *objfile = dwarf2_per_objfile->objfile;
15418 gdb_byte *mac_ptr, *mac_end;
15419 struct macro_source_file *current_file = 0;
15420 enum dwarf_macro_record_type macinfo_type;
15421 unsigned int offset_size = cu->header.offset_size;
15422 gdb_byte *opcode_definitions[256];
15423 struct cleanup *cleanup;
15424 htab_t include_hash;
15425 void **slot;
15426
15427 dwarf2_read_section (objfile, section);
15428 if (section->buffer == NULL)
15429 {
15430 complaint (&symfile_complaints, _("missing %s section"),
15431 section->asection->name);
15432 return;
15433 }
15434
15435 /* First pass: Find the name of the base filename.
15436 This filename is needed in order to process all macros whose definition
15437 (or undefinition) comes from the command line. These macros are defined
15438 before the first DW_MACINFO_start_file entry, and yet still need to be
15439 associated to the base file.
15440
15441 To determine the base file name, we scan the macro definitions until we
15442 reach the first DW_MACINFO_start_file entry. We then initialize
15443 CURRENT_FILE accordingly so that any macro definition found before the
15444 first DW_MACINFO_start_file can still be associated to the base file. */
15445
15446 mac_ptr = section->buffer + offset;
15447 mac_end = section->buffer + section->size;
15448
15449 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
15450 &offset_size, section_is_gnu);
15451 if (mac_ptr == NULL)
15452 {
15453 /* We already issued a complaint. */
15454 return;
15455 }
15456
15457 do
15458 {
15459 /* Do we at least have room for a macinfo type byte? */
15460 if (mac_ptr >= mac_end)
15461 {
15462 /* Complaint is printed during the second pass as GDB will probably
15463 stop the first pass earlier upon finding
15464 DW_MACINFO_start_file. */
15465 break;
15466 }
15467
15468 macinfo_type = read_1_byte (abfd, mac_ptr);
15469 mac_ptr++;
15470
15471 /* Note that we rely on the fact that the corresponding GNU and
15472 DWARF constants are the same. */
15473 switch (macinfo_type)
15474 {
15475 /* A zero macinfo type indicates the end of the macro
15476 information. */
15477 case 0:
15478 break;
15479
15480 case DW_MACRO_GNU_define:
15481 case DW_MACRO_GNU_undef:
15482 /* Only skip the data by MAC_PTR. */
15483 {
15484 unsigned int bytes_read;
15485
15486 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15487 mac_ptr += bytes_read;
15488 read_direct_string (abfd, mac_ptr, &bytes_read);
15489 mac_ptr += bytes_read;
15490 }
15491 break;
15492
15493 case DW_MACRO_GNU_start_file:
15494 {
15495 unsigned int bytes_read;
15496 int line, file;
15497
15498 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15499 mac_ptr += bytes_read;
15500 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15501 mac_ptr += bytes_read;
15502
15503 current_file = macro_start_file (file, line, current_file,
15504 comp_dir, lh, objfile);
15505 }
15506 break;
15507
15508 case DW_MACRO_GNU_end_file:
15509 /* No data to skip by MAC_PTR. */
15510 break;
15511
15512 case DW_MACRO_GNU_define_indirect:
15513 case DW_MACRO_GNU_undef_indirect:
15514 {
15515 unsigned int bytes_read;
15516
15517 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15518 mac_ptr += bytes_read;
15519 mac_ptr += offset_size;
15520 }
15521 break;
15522
15523 case DW_MACRO_GNU_transparent_include:
15524 /* Note that, according to the spec, a transparent include
15525 chain cannot call DW_MACRO_GNU_start_file. So, we can just
15526 skip this opcode. */
15527 mac_ptr += offset_size;
15528 break;
15529
15530 case DW_MACINFO_vendor_ext:
15531 /* Only skip the data by MAC_PTR. */
15532 if (!section_is_gnu)
15533 {
15534 unsigned int bytes_read;
15535
15536 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15537 mac_ptr += bytes_read;
15538 read_direct_string (abfd, mac_ptr, &bytes_read);
15539 mac_ptr += bytes_read;
15540 }
15541 /* FALLTHROUGH */
15542
15543 default:
15544 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
15545 mac_ptr, abfd, offset_size,
15546 section);
15547 if (mac_ptr == NULL)
15548 return;
15549 break;
15550 }
15551 } while (macinfo_type != 0 && current_file == NULL);
15552
15553 /* Second pass: Process all entries.
15554
15555 Use the AT_COMMAND_LINE flag to determine whether we are still processing
15556 command-line macro definitions/undefinitions. This flag is unset when we
15557 reach the first DW_MACINFO_start_file entry. */
15558
15559 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
15560 NULL, xcalloc, xfree);
15561 cleanup = make_cleanup_htab_delete (include_hash);
15562 mac_ptr = section->buffer + offset;
15563 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
15564 *slot = mac_ptr;
15565 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
15566 current_file, lh, comp_dir, section, section_is_gnu,
15567 offset_size, objfile, include_hash);
15568 do_cleanups (cleanup);
15569 }
15570
15571 /* Check if the attribute's form is a DW_FORM_block*
15572 if so return true else false. */
15573 static int
15574 attr_form_is_block (struct attribute *attr)
15575 {
15576 return (attr == NULL ? 0 :
15577 attr->form == DW_FORM_block1
15578 || attr->form == DW_FORM_block2
15579 || attr->form == DW_FORM_block4
15580 || attr->form == DW_FORM_block
15581 || attr->form == DW_FORM_exprloc);
15582 }
15583
15584 /* Return non-zero if ATTR's value is a section offset --- classes
15585 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
15586 You may use DW_UNSND (attr) to retrieve such offsets.
15587
15588 Section 7.5.4, "Attribute Encodings", explains that no attribute
15589 may have a value that belongs to more than one of these classes; it
15590 would be ambiguous if we did, because we use the same forms for all
15591 of them. */
15592 static int
15593 attr_form_is_section_offset (struct attribute *attr)
15594 {
15595 return (attr->form == DW_FORM_data4
15596 || attr->form == DW_FORM_data8
15597 || attr->form == DW_FORM_sec_offset);
15598 }
15599
15600
15601 /* Return non-zero if ATTR's value falls in the 'constant' class, or
15602 zero otherwise. When this function returns true, you can apply
15603 dwarf2_get_attr_constant_value to it.
15604
15605 However, note that for some attributes you must check
15606 attr_form_is_section_offset before using this test. DW_FORM_data4
15607 and DW_FORM_data8 are members of both the constant class, and of
15608 the classes that contain offsets into other debug sections
15609 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
15610 that, if an attribute's can be either a constant or one of the
15611 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
15612 taken as section offsets, not constants. */
15613 static int
15614 attr_form_is_constant (struct attribute *attr)
15615 {
15616 switch (attr->form)
15617 {
15618 case DW_FORM_sdata:
15619 case DW_FORM_udata:
15620 case DW_FORM_data1:
15621 case DW_FORM_data2:
15622 case DW_FORM_data4:
15623 case DW_FORM_data8:
15624 return 1;
15625 default:
15626 return 0;
15627 }
15628 }
15629
15630 /* A helper function that fills in a dwarf2_loclist_baton. */
15631
15632 static void
15633 fill_in_loclist_baton (struct dwarf2_cu *cu,
15634 struct dwarf2_loclist_baton *baton,
15635 struct attribute *attr)
15636 {
15637 dwarf2_read_section (dwarf2_per_objfile->objfile,
15638 &dwarf2_per_objfile->loc);
15639
15640 baton->per_cu = cu->per_cu;
15641 gdb_assert (baton->per_cu);
15642 /* We don't know how long the location list is, but make sure we
15643 don't run off the edge of the section. */
15644 baton->size = dwarf2_per_objfile->loc.size - DW_UNSND (attr);
15645 baton->data = dwarf2_per_objfile->loc.buffer + DW_UNSND (attr);
15646 baton->base_address = cu->base_address;
15647 }
15648
15649 static void
15650 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
15651 struct dwarf2_cu *cu)
15652 {
15653 struct objfile *objfile = dwarf2_per_objfile->objfile;
15654
15655 if (attr_form_is_section_offset (attr)
15656 /* ".debug_loc" may not exist at all, or the offset may be outside
15657 the section. If so, fall through to the complaint in the
15658 other branch. */
15659 && DW_UNSND (attr) < dwarf2_section_size (objfile,
15660 &dwarf2_per_objfile->loc))
15661 {
15662 struct dwarf2_loclist_baton *baton;
15663
15664 baton = obstack_alloc (&objfile->objfile_obstack,
15665 sizeof (struct dwarf2_loclist_baton));
15666
15667 fill_in_loclist_baton (cu, baton, attr);
15668
15669 if (cu->base_known == 0)
15670 complaint (&symfile_complaints,
15671 _("Location list used without "
15672 "specifying the CU base address."));
15673
15674 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
15675 SYMBOL_LOCATION_BATON (sym) = baton;
15676 }
15677 else
15678 {
15679 struct dwarf2_locexpr_baton *baton;
15680
15681 baton = obstack_alloc (&objfile->objfile_obstack,
15682 sizeof (struct dwarf2_locexpr_baton));
15683 baton->per_cu = cu->per_cu;
15684 gdb_assert (baton->per_cu);
15685
15686 if (attr_form_is_block (attr))
15687 {
15688 /* Note that we're just copying the block's data pointer
15689 here, not the actual data. We're still pointing into the
15690 info_buffer for SYM's objfile; right now we never release
15691 that buffer, but when we do clean up properly this may
15692 need to change. */
15693 baton->size = DW_BLOCK (attr)->size;
15694 baton->data = DW_BLOCK (attr)->data;
15695 }
15696 else
15697 {
15698 dwarf2_invalid_attrib_class_complaint ("location description",
15699 SYMBOL_NATURAL_NAME (sym));
15700 baton->size = 0;
15701 }
15702
15703 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
15704 SYMBOL_LOCATION_BATON (sym) = baton;
15705 }
15706 }
15707
15708 /* Return the OBJFILE associated with the compilation unit CU. If CU
15709 came from a separate debuginfo file, then the master objfile is
15710 returned. */
15711
15712 struct objfile *
15713 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
15714 {
15715 struct objfile *objfile = per_cu->objfile;
15716
15717 /* Return the master objfile, so that we can report and look up the
15718 correct file containing this variable. */
15719 if (objfile->separate_debug_objfile_backlink)
15720 objfile = objfile->separate_debug_objfile_backlink;
15721
15722 return objfile;
15723 }
15724
15725 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
15726 (CU_HEADERP is unused in such case) or prepare a temporary copy at
15727 CU_HEADERP first. */
15728
15729 static const struct comp_unit_head *
15730 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
15731 struct dwarf2_per_cu_data *per_cu)
15732 {
15733 struct objfile *objfile;
15734 struct dwarf2_per_objfile *per_objfile;
15735 gdb_byte *info_ptr;
15736
15737 if (per_cu->cu)
15738 return &per_cu->cu->header;
15739
15740 objfile = per_cu->objfile;
15741 per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
15742 info_ptr = per_objfile->info.buffer + per_cu->offset;
15743
15744 memset (cu_headerp, 0, sizeof (*cu_headerp));
15745 read_comp_unit_head (cu_headerp, info_ptr, objfile->obfd);
15746
15747 return cu_headerp;
15748 }
15749
15750 /* Return the address size given in the compilation unit header for CU. */
15751
15752 int
15753 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
15754 {
15755 struct comp_unit_head cu_header_local;
15756 const struct comp_unit_head *cu_headerp;
15757
15758 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
15759
15760 return cu_headerp->addr_size;
15761 }
15762
15763 /* Return the offset size given in the compilation unit header for CU. */
15764
15765 int
15766 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
15767 {
15768 struct comp_unit_head cu_header_local;
15769 const struct comp_unit_head *cu_headerp;
15770
15771 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
15772
15773 return cu_headerp->offset_size;
15774 }
15775
15776 /* See its dwarf2loc.h declaration. */
15777
15778 int
15779 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
15780 {
15781 struct comp_unit_head cu_header_local;
15782 const struct comp_unit_head *cu_headerp;
15783
15784 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
15785
15786 if (cu_headerp->version == 2)
15787 return cu_headerp->addr_size;
15788 else
15789 return cu_headerp->offset_size;
15790 }
15791
15792 /* Return the text offset of the CU. The returned offset comes from
15793 this CU's objfile. If this objfile came from a separate debuginfo
15794 file, then the offset may be different from the corresponding
15795 offset in the parent objfile. */
15796
15797 CORE_ADDR
15798 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
15799 {
15800 struct objfile *objfile = per_cu->objfile;
15801
15802 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15803 }
15804
15805 /* Locate the .debug_info compilation unit from CU's objfile which contains
15806 the DIE at OFFSET. Raises an error on failure. */
15807
15808 static struct dwarf2_per_cu_data *
15809 dwarf2_find_containing_comp_unit (unsigned int offset,
15810 struct objfile *objfile)
15811 {
15812 struct dwarf2_per_cu_data *this_cu;
15813 int low, high;
15814
15815 low = 0;
15816 high = dwarf2_per_objfile->n_comp_units - 1;
15817 while (high > low)
15818 {
15819 int mid = low + (high - low) / 2;
15820
15821 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
15822 high = mid;
15823 else
15824 low = mid + 1;
15825 }
15826 gdb_assert (low == high);
15827 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
15828 {
15829 if (low == 0)
15830 error (_("Dwarf Error: could not find partial DIE containing "
15831 "offset 0x%lx [in module %s]"),
15832 (long) offset, bfd_get_filename (objfile->obfd));
15833
15834 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
15835 return dwarf2_per_objfile->all_comp_units[low-1];
15836 }
15837 else
15838 {
15839 this_cu = dwarf2_per_objfile->all_comp_units[low];
15840 if (low == dwarf2_per_objfile->n_comp_units - 1
15841 && offset >= this_cu->offset + this_cu->length)
15842 error (_("invalid dwarf2 offset %u"), offset);
15843 gdb_assert (offset < this_cu->offset + this_cu->length);
15844 return this_cu;
15845 }
15846 }
15847
15848 /* Initialize dwarf2_cu CU, owned by PER_CU. */
15849
15850 static void
15851 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
15852 {
15853 memset (cu, 0, sizeof (*cu));
15854 per_cu->cu = cu;
15855 cu->per_cu = per_cu;
15856 cu->objfile = per_cu->objfile;
15857 obstack_init (&cu->comp_unit_obstack);
15858 }
15859
15860 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
15861
15862 static void
15863 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die)
15864 {
15865 struct attribute *attr;
15866
15867 /* Set the language we're debugging. */
15868 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
15869 if (attr)
15870 set_cu_language (DW_UNSND (attr), cu);
15871 else
15872 {
15873 cu->language = language_minimal;
15874 cu->language_defn = language_def (cu->language);
15875 }
15876 }
15877
15878 /* Release one cached compilation unit, CU. We unlink it from the tree
15879 of compilation units, but we don't remove it from the read_in_chain;
15880 the caller is responsible for that.
15881 NOTE: DATA is a void * because this function is also used as a
15882 cleanup routine. */
15883
15884 static void
15885 free_heap_comp_unit (void *data)
15886 {
15887 struct dwarf2_cu *cu = data;
15888
15889 gdb_assert (cu->per_cu != NULL);
15890 cu->per_cu->cu = NULL;
15891 cu->per_cu = NULL;
15892
15893 obstack_free (&cu->comp_unit_obstack, NULL);
15894
15895 xfree (cu);
15896 }
15897
15898 /* This cleanup function is passed the address of a dwarf2_cu on the stack
15899 when we're finished with it. We can't free the pointer itself, but be
15900 sure to unlink it from the cache. Also release any associated storage
15901 and perform cache maintenance.
15902
15903 Only used during partial symbol parsing. */
15904
15905 static void
15906 free_stack_comp_unit (void *data)
15907 {
15908 struct dwarf2_cu *cu = data;
15909
15910 gdb_assert (cu->per_cu != NULL);
15911 cu->per_cu->cu = NULL;
15912 cu->per_cu = NULL;
15913
15914 obstack_free (&cu->comp_unit_obstack, NULL);
15915 cu->partial_dies = NULL;
15916
15917 /* The previous code only did this if per_cu != NULL.
15918 But that would always succeed, so now we just unconditionally do
15919 the aging. This seems like the wrong place to do such aging,
15920 but cleaning that up is left for later. */
15921 age_cached_comp_units ();
15922 }
15923
15924 /* Free all cached compilation units. */
15925
15926 static void
15927 free_cached_comp_units (void *data)
15928 {
15929 struct dwarf2_per_cu_data *per_cu, **last_chain;
15930
15931 per_cu = dwarf2_per_objfile->read_in_chain;
15932 last_chain = &dwarf2_per_objfile->read_in_chain;
15933 while (per_cu != NULL)
15934 {
15935 struct dwarf2_per_cu_data *next_cu;
15936
15937 next_cu = per_cu->cu->read_in_chain;
15938
15939 free_heap_comp_unit (per_cu->cu);
15940 *last_chain = next_cu;
15941
15942 per_cu = next_cu;
15943 }
15944 }
15945
15946 /* Increase the age counter on each cached compilation unit, and free
15947 any that are too old. */
15948
15949 static void
15950 age_cached_comp_units (void)
15951 {
15952 struct dwarf2_per_cu_data *per_cu, **last_chain;
15953
15954 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
15955 per_cu = dwarf2_per_objfile->read_in_chain;
15956 while (per_cu != NULL)
15957 {
15958 per_cu->cu->last_used ++;
15959 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
15960 dwarf2_mark (per_cu->cu);
15961 per_cu = per_cu->cu->read_in_chain;
15962 }
15963
15964 per_cu = dwarf2_per_objfile->read_in_chain;
15965 last_chain = &dwarf2_per_objfile->read_in_chain;
15966 while (per_cu != NULL)
15967 {
15968 struct dwarf2_per_cu_data *next_cu;
15969
15970 next_cu = per_cu->cu->read_in_chain;
15971
15972 if (!per_cu->cu->mark)
15973 {
15974 free_heap_comp_unit (per_cu->cu);
15975 *last_chain = next_cu;
15976 }
15977 else
15978 last_chain = &per_cu->cu->read_in_chain;
15979
15980 per_cu = next_cu;
15981 }
15982 }
15983
15984 /* Remove a single compilation unit from the cache. */
15985
15986 static void
15987 free_one_cached_comp_unit (void *target_cu)
15988 {
15989 struct dwarf2_per_cu_data *per_cu, **last_chain;
15990
15991 per_cu = dwarf2_per_objfile->read_in_chain;
15992 last_chain = &dwarf2_per_objfile->read_in_chain;
15993 while (per_cu != NULL)
15994 {
15995 struct dwarf2_per_cu_data *next_cu;
15996
15997 next_cu = per_cu->cu->read_in_chain;
15998
15999 if (per_cu->cu == target_cu)
16000 {
16001 free_heap_comp_unit (per_cu->cu);
16002 *last_chain = next_cu;
16003 break;
16004 }
16005 else
16006 last_chain = &per_cu->cu->read_in_chain;
16007
16008 per_cu = next_cu;
16009 }
16010 }
16011
16012 /* Release all extra memory associated with OBJFILE. */
16013
16014 void
16015 dwarf2_free_objfile (struct objfile *objfile)
16016 {
16017 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
16018
16019 if (dwarf2_per_objfile == NULL)
16020 return;
16021
16022 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
16023 free_cached_comp_units (NULL);
16024
16025 if (dwarf2_per_objfile->quick_file_names_table)
16026 htab_delete (dwarf2_per_objfile->quick_file_names_table);
16027
16028 /* Everything else should be on the objfile obstack. */
16029 }
16030
16031 /* A pair of DIE offset and GDB type pointer. We store these
16032 in a hash table separate from the DIEs, and preserve them
16033 when the DIEs are flushed out of cache. */
16034
16035 struct dwarf2_offset_and_type
16036 {
16037 unsigned int offset;
16038 struct type *type;
16039 };
16040
16041 /* Hash function for a dwarf2_offset_and_type. */
16042
16043 static hashval_t
16044 offset_and_type_hash (const void *item)
16045 {
16046 const struct dwarf2_offset_and_type *ofs = item;
16047
16048 return ofs->offset;
16049 }
16050
16051 /* Equality function for a dwarf2_offset_and_type. */
16052
16053 static int
16054 offset_and_type_eq (const void *item_lhs, const void *item_rhs)
16055 {
16056 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
16057 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
16058
16059 return ofs_lhs->offset == ofs_rhs->offset;
16060 }
16061
16062 /* Set the type associated with DIE to TYPE. Save it in CU's hash
16063 table if necessary. For convenience, return TYPE.
16064
16065 The DIEs reading must have careful ordering to:
16066 * Not cause infite loops trying to read in DIEs as a prerequisite for
16067 reading current DIE.
16068 * Not trying to dereference contents of still incompletely read in types
16069 while reading in other DIEs.
16070 * Enable referencing still incompletely read in types just by a pointer to
16071 the type without accessing its fields.
16072
16073 Therefore caller should follow these rules:
16074 * Try to fetch any prerequisite types we may need to build this DIE type
16075 before building the type and calling set_die_type.
16076 * After building type call set_die_type for current DIE as soon as
16077 possible before fetching more types to complete the current type.
16078 * Make the type as complete as possible before fetching more types. */
16079
16080 static struct type *
16081 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
16082 {
16083 struct dwarf2_offset_and_type **slot, ofs;
16084 struct objfile *objfile = cu->objfile;
16085 htab_t *type_hash_ptr;
16086
16087 /* For Ada types, make sure that the gnat-specific data is always
16088 initialized (if not already set). There are a few types where
16089 we should not be doing so, because the type-specific area is
16090 already used to hold some other piece of info (eg: TYPE_CODE_FLT
16091 where the type-specific area is used to store the floatformat).
16092 But this is not a problem, because the gnat-specific information
16093 is actually not needed for these types. */
16094 if (need_gnat_info (cu)
16095 && TYPE_CODE (type) != TYPE_CODE_FUNC
16096 && TYPE_CODE (type) != TYPE_CODE_FLT
16097 && !HAVE_GNAT_AUX_INFO (type))
16098 INIT_GNAT_SPECIFIC (type);
16099
16100 if (cu->per_cu->debug_types_section)
16101 type_hash_ptr = &dwarf2_per_objfile->debug_types_type_hash;
16102 else
16103 type_hash_ptr = &dwarf2_per_objfile->debug_info_type_hash;
16104
16105 if (*type_hash_ptr == NULL)
16106 {
16107 *type_hash_ptr
16108 = htab_create_alloc_ex (127,
16109 offset_and_type_hash,
16110 offset_and_type_eq,
16111 NULL,
16112 &objfile->objfile_obstack,
16113 hashtab_obstack_allocate,
16114 dummy_obstack_deallocate);
16115 }
16116
16117 ofs.offset = die->offset;
16118 ofs.type = type;
16119 slot = (struct dwarf2_offset_and_type **)
16120 htab_find_slot_with_hash (*type_hash_ptr, &ofs, ofs.offset, INSERT);
16121 if (*slot)
16122 complaint (&symfile_complaints,
16123 _("A problem internal to GDB: DIE 0x%x has type already set"),
16124 die->offset);
16125 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
16126 **slot = ofs;
16127 return type;
16128 }
16129
16130 /* Look up the type for the die at DIE_OFFSET in the appropriate type_hash
16131 table, or return NULL if the die does not have a saved type. */
16132
16133 static struct type *
16134 get_die_type_at_offset (unsigned int offset,
16135 struct dwarf2_per_cu_data *per_cu)
16136 {
16137 struct dwarf2_offset_and_type *slot, ofs;
16138 htab_t type_hash;
16139
16140 if (per_cu->debug_types_section)
16141 type_hash = dwarf2_per_objfile->debug_types_type_hash;
16142 else
16143 type_hash = dwarf2_per_objfile->debug_info_type_hash;
16144 if (type_hash == NULL)
16145 return NULL;
16146
16147 ofs.offset = offset;
16148 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
16149 if (slot)
16150 return slot->type;
16151 else
16152 return NULL;
16153 }
16154
16155 /* Look up the type for DIE in the appropriate type_hash table,
16156 or return NULL if DIE does not have a saved type. */
16157
16158 static struct type *
16159 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
16160 {
16161 return get_die_type_at_offset (die->offset, cu->per_cu);
16162 }
16163
16164 /* Add a dependence relationship from CU to REF_PER_CU. */
16165
16166 static void
16167 dwarf2_add_dependence (struct dwarf2_cu *cu,
16168 struct dwarf2_per_cu_data *ref_per_cu)
16169 {
16170 void **slot;
16171
16172 if (cu->dependencies == NULL)
16173 cu->dependencies
16174 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
16175 NULL, &cu->comp_unit_obstack,
16176 hashtab_obstack_allocate,
16177 dummy_obstack_deallocate);
16178
16179 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
16180 if (*slot == NULL)
16181 *slot = ref_per_cu;
16182 }
16183
16184 /* Subroutine of dwarf2_mark to pass to htab_traverse.
16185 Set the mark field in every compilation unit in the
16186 cache that we must keep because we are keeping CU. */
16187
16188 static int
16189 dwarf2_mark_helper (void **slot, void *data)
16190 {
16191 struct dwarf2_per_cu_data *per_cu;
16192
16193 per_cu = (struct dwarf2_per_cu_data *) *slot;
16194
16195 /* cu->dependencies references may not yet have been ever read if QUIT aborts
16196 reading of the chain. As such dependencies remain valid it is not much
16197 useful to track and undo them during QUIT cleanups. */
16198 if (per_cu->cu == NULL)
16199 return 1;
16200
16201 if (per_cu->cu->mark)
16202 return 1;
16203 per_cu->cu->mark = 1;
16204
16205 if (per_cu->cu->dependencies != NULL)
16206 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
16207
16208 return 1;
16209 }
16210
16211 /* Set the mark field in CU and in every other compilation unit in the
16212 cache that we must keep because we are keeping CU. */
16213
16214 static void
16215 dwarf2_mark (struct dwarf2_cu *cu)
16216 {
16217 if (cu->mark)
16218 return;
16219 cu->mark = 1;
16220 if (cu->dependencies != NULL)
16221 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
16222 }
16223
16224 static void
16225 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
16226 {
16227 while (per_cu)
16228 {
16229 per_cu->cu->mark = 0;
16230 per_cu = per_cu->cu->read_in_chain;
16231 }
16232 }
16233
16234 /* Trivial hash function for partial_die_info: the hash value of a DIE
16235 is its offset in .debug_info for this objfile. */
16236
16237 static hashval_t
16238 partial_die_hash (const void *item)
16239 {
16240 const struct partial_die_info *part_die = item;
16241
16242 return part_die->offset;
16243 }
16244
16245 /* Trivial comparison function for partial_die_info structures: two DIEs
16246 are equal if they have the same offset. */
16247
16248 static int
16249 partial_die_eq (const void *item_lhs, const void *item_rhs)
16250 {
16251 const struct partial_die_info *part_die_lhs = item_lhs;
16252 const struct partial_die_info *part_die_rhs = item_rhs;
16253
16254 return part_die_lhs->offset == part_die_rhs->offset;
16255 }
16256
16257 static struct cmd_list_element *set_dwarf2_cmdlist;
16258 static struct cmd_list_element *show_dwarf2_cmdlist;
16259
16260 static void
16261 set_dwarf2_cmd (char *args, int from_tty)
16262 {
16263 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
16264 }
16265
16266 static void
16267 show_dwarf2_cmd (char *args, int from_tty)
16268 {
16269 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
16270 }
16271
16272 /* If section described by INFO was mmapped, munmap it now. */
16273
16274 static void
16275 munmap_section_buffer (struct dwarf2_section_info *info)
16276 {
16277 if (info->map_addr != NULL)
16278 {
16279 #ifdef HAVE_MMAP
16280 int res;
16281
16282 res = munmap (info->map_addr, info->map_len);
16283 gdb_assert (res == 0);
16284 #else
16285 /* Without HAVE_MMAP, we should never be here to begin with. */
16286 gdb_assert_not_reached ("no mmap support");
16287 #endif
16288 }
16289 }
16290
16291 /* munmap debug sections for OBJFILE, if necessary. */
16292
16293 static void
16294 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
16295 {
16296 struct dwarf2_per_objfile *data = d;
16297 int ix;
16298 struct dwarf2_section_info *section;
16299
16300 /* This is sorted according to the order they're defined in to make it easier
16301 to keep in sync. */
16302 munmap_section_buffer (&data->info);
16303 munmap_section_buffer (&data->abbrev);
16304 munmap_section_buffer (&data->line);
16305 munmap_section_buffer (&data->loc);
16306 munmap_section_buffer (&data->macinfo);
16307 munmap_section_buffer (&data->macro);
16308 munmap_section_buffer (&data->str);
16309 munmap_section_buffer (&data->ranges);
16310 munmap_section_buffer (&data->frame);
16311 munmap_section_buffer (&data->eh_frame);
16312 munmap_section_buffer (&data->gdb_index);
16313
16314 for (ix = 0;
16315 VEC_iterate (dwarf2_section_info_def, data->types, ix, section);
16316 ++ix)
16317 munmap_section_buffer (section);
16318
16319 VEC_free (dwarf2_section_info_def, data->types);
16320 }
16321
16322 \f
16323 /* The "save gdb-index" command. */
16324
16325 /* The contents of the hash table we create when building the string
16326 table. */
16327 struct strtab_entry
16328 {
16329 offset_type offset;
16330 const char *str;
16331 };
16332
16333 /* Hash function for a strtab_entry.
16334
16335 Function is used only during write_hash_table so no index format backward
16336 compatibility is needed. */
16337
16338 static hashval_t
16339 hash_strtab_entry (const void *e)
16340 {
16341 const struct strtab_entry *entry = e;
16342 return mapped_index_string_hash (INT_MAX, entry->str);
16343 }
16344
16345 /* Equality function for a strtab_entry. */
16346
16347 static int
16348 eq_strtab_entry (const void *a, const void *b)
16349 {
16350 const struct strtab_entry *ea = a;
16351 const struct strtab_entry *eb = b;
16352 return !strcmp (ea->str, eb->str);
16353 }
16354
16355 /* Create a strtab_entry hash table. */
16356
16357 static htab_t
16358 create_strtab (void)
16359 {
16360 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
16361 xfree, xcalloc, xfree);
16362 }
16363
16364 /* Add a string to the constant pool. Return the string's offset in
16365 host order. */
16366
16367 static offset_type
16368 add_string (htab_t table, struct obstack *cpool, const char *str)
16369 {
16370 void **slot;
16371 struct strtab_entry entry;
16372 struct strtab_entry *result;
16373
16374 entry.str = str;
16375 slot = htab_find_slot (table, &entry, INSERT);
16376 if (*slot)
16377 result = *slot;
16378 else
16379 {
16380 result = XNEW (struct strtab_entry);
16381 result->offset = obstack_object_size (cpool);
16382 result->str = str;
16383 obstack_grow_str0 (cpool, str);
16384 *slot = result;
16385 }
16386 return result->offset;
16387 }
16388
16389 /* An entry in the symbol table. */
16390 struct symtab_index_entry
16391 {
16392 /* The name of the symbol. */
16393 const char *name;
16394 /* The offset of the name in the constant pool. */
16395 offset_type index_offset;
16396 /* A sorted vector of the indices of all the CUs that hold an object
16397 of this name. */
16398 VEC (offset_type) *cu_indices;
16399 };
16400
16401 /* The symbol table. This is a power-of-2-sized hash table. */
16402 struct mapped_symtab
16403 {
16404 offset_type n_elements;
16405 offset_type size;
16406 struct symtab_index_entry **data;
16407 };
16408
16409 /* Hash function for a symtab_index_entry. */
16410
16411 static hashval_t
16412 hash_symtab_entry (const void *e)
16413 {
16414 const struct symtab_index_entry *entry = e;
16415 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
16416 sizeof (offset_type) * VEC_length (offset_type,
16417 entry->cu_indices),
16418 0);
16419 }
16420
16421 /* Equality function for a symtab_index_entry. */
16422
16423 static int
16424 eq_symtab_entry (const void *a, const void *b)
16425 {
16426 const struct symtab_index_entry *ea = a;
16427 const struct symtab_index_entry *eb = b;
16428 int len = VEC_length (offset_type, ea->cu_indices);
16429 if (len != VEC_length (offset_type, eb->cu_indices))
16430 return 0;
16431 return !memcmp (VEC_address (offset_type, ea->cu_indices),
16432 VEC_address (offset_type, eb->cu_indices),
16433 sizeof (offset_type) * len);
16434 }
16435
16436 /* Destroy a symtab_index_entry. */
16437
16438 static void
16439 delete_symtab_entry (void *p)
16440 {
16441 struct symtab_index_entry *entry = p;
16442 VEC_free (offset_type, entry->cu_indices);
16443 xfree (entry);
16444 }
16445
16446 /* Create a hash table holding symtab_index_entry objects. */
16447
16448 static htab_t
16449 create_symbol_hash_table (void)
16450 {
16451 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
16452 delete_symtab_entry, xcalloc, xfree);
16453 }
16454
16455 /* Create a new mapped symtab object. */
16456
16457 static struct mapped_symtab *
16458 create_mapped_symtab (void)
16459 {
16460 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
16461 symtab->n_elements = 0;
16462 symtab->size = 1024;
16463 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
16464 return symtab;
16465 }
16466
16467 /* Destroy a mapped_symtab. */
16468
16469 static void
16470 cleanup_mapped_symtab (void *p)
16471 {
16472 struct mapped_symtab *symtab = p;
16473 /* The contents of the array are freed when the other hash table is
16474 destroyed. */
16475 xfree (symtab->data);
16476 xfree (symtab);
16477 }
16478
16479 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
16480 the slot.
16481
16482 Function is used only during write_hash_table so no index format backward
16483 compatibility is needed. */
16484
16485 static struct symtab_index_entry **
16486 find_slot (struct mapped_symtab *symtab, const char *name)
16487 {
16488 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
16489
16490 index = hash & (symtab->size - 1);
16491 step = ((hash * 17) & (symtab->size - 1)) | 1;
16492
16493 for (;;)
16494 {
16495 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
16496 return &symtab->data[index];
16497 index = (index + step) & (symtab->size - 1);
16498 }
16499 }
16500
16501 /* Expand SYMTAB's hash table. */
16502
16503 static void
16504 hash_expand (struct mapped_symtab *symtab)
16505 {
16506 offset_type old_size = symtab->size;
16507 offset_type i;
16508 struct symtab_index_entry **old_entries = symtab->data;
16509
16510 symtab->size *= 2;
16511 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
16512
16513 for (i = 0; i < old_size; ++i)
16514 {
16515 if (old_entries[i])
16516 {
16517 struct symtab_index_entry **slot = find_slot (symtab,
16518 old_entries[i]->name);
16519 *slot = old_entries[i];
16520 }
16521 }
16522
16523 xfree (old_entries);
16524 }
16525
16526 /* Add an entry to SYMTAB. NAME is the name of the symbol. CU_INDEX
16527 is the index of the CU in which the symbol appears. */
16528
16529 static void
16530 add_index_entry (struct mapped_symtab *symtab, const char *name,
16531 offset_type cu_index)
16532 {
16533 struct symtab_index_entry **slot;
16534
16535 ++symtab->n_elements;
16536 if (4 * symtab->n_elements / 3 >= symtab->size)
16537 hash_expand (symtab);
16538
16539 slot = find_slot (symtab, name);
16540 if (!*slot)
16541 {
16542 *slot = XNEW (struct symtab_index_entry);
16543 (*slot)->name = name;
16544 (*slot)->cu_indices = NULL;
16545 }
16546 /* Don't push an index twice. Due to how we add entries we only
16547 have to check the last one. */
16548 if (VEC_empty (offset_type, (*slot)->cu_indices)
16549 || VEC_last (offset_type, (*slot)->cu_indices) != cu_index)
16550 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index);
16551 }
16552
16553 /* Add a vector of indices to the constant pool. */
16554
16555 static offset_type
16556 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
16557 struct symtab_index_entry *entry)
16558 {
16559 void **slot;
16560
16561 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
16562 if (!*slot)
16563 {
16564 offset_type len = VEC_length (offset_type, entry->cu_indices);
16565 offset_type val = MAYBE_SWAP (len);
16566 offset_type iter;
16567 int i;
16568
16569 *slot = entry;
16570 entry->index_offset = obstack_object_size (cpool);
16571
16572 obstack_grow (cpool, &val, sizeof (val));
16573 for (i = 0;
16574 VEC_iterate (offset_type, entry->cu_indices, i, iter);
16575 ++i)
16576 {
16577 val = MAYBE_SWAP (iter);
16578 obstack_grow (cpool, &val, sizeof (val));
16579 }
16580 }
16581 else
16582 {
16583 struct symtab_index_entry *old_entry = *slot;
16584 entry->index_offset = old_entry->index_offset;
16585 entry = old_entry;
16586 }
16587 return entry->index_offset;
16588 }
16589
16590 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
16591 constant pool entries going into the obstack CPOOL. */
16592
16593 static void
16594 write_hash_table (struct mapped_symtab *symtab,
16595 struct obstack *output, struct obstack *cpool)
16596 {
16597 offset_type i;
16598 htab_t symbol_hash_table;
16599 htab_t str_table;
16600
16601 symbol_hash_table = create_symbol_hash_table ();
16602 str_table = create_strtab ();
16603
16604 /* We add all the index vectors to the constant pool first, to
16605 ensure alignment is ok. */
16606 for (i = 0; i < symtab->size; ++i)
16607 {
16608 if (symtab->data[i])
16609 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
16610 }
16611
16612 /* Now write out the hash table. */
16613 for (i = 0; i < symtab->size; ++i)
16614 {
16615 offset_type str_off, vec_off;
16616
16617 if (symtab->data[i])
16618 {
16619 str_off = add_string (str_table, cpool, symtab->data[i]->name);
16620 vec_off = symtab->data[i]->index_offset;
16621 }
16622 else
16623 {
16624 /* While 0 is a valid constant pool index, it is not valid
16625 to have 0 for both offsets. */
16626 str_off = 0;
16627 vec_off = 0;
16628 }
16629
16630 str_off = MAYBE_SWAP (str_off);
16631 vec_off = MAYBE_SWAP (vec_off);
16632
16633 obstack_grow (output, &str_off, sizeof (str_off));
16634 obstack_grow (output, &vec_off, sizeof (vec_off));
16635 }
16636
16637 htab_delete (str_table);
16638 htab_delete (symbol_hash_table);
16639 }
16640
16641 /* Struct to map psymtab to CU index in the index file. */
16642 struct psymtab_cu_index_map
16643 {
16644 struct partial_symtab *psymtab;
16645 unsigned int cu_index;
16646 };
16647
16648 static hashval_t
16649 hash_psymtab_cu_index (const void *item)
16650 {
16651 const struct psymtab_cu_index_map *map = item;
16652
16653 return htab_hash_pointer (map->psymtab);
16654 }
16655
16656 static int
16657 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
16658 {
16659 const struct psymtab_cu_index_map *lhs = item_lhs;
16660 const struct psymtab_cu_index_map *rhs = item_rhs;
16661
16662 return lhs->psymtab == rhs->psymtab;
16663 }
16664
16665 /* Helper struct for building the address table. */
16666 struct addrmap_index_data
16667 {
16668 struct objfile *objfile;
16669 struct obstack *addr_obstack;
16670 htab_t cu_index_htab;
16671
16672 /* Non-zero if the previous_* fields are valid.
16673 We can't write an entry until we see the next entry (since it is only then
16674 that we know the end of the entry). */
16675 int previous_valid;
16676 /* Index of the CU in the table of all CUs in the index file. */
16677 unsigned int previous_cu_index;
16678 /* Start address of the CU. */
16679 CORE_ADDR previous_cu_start;
16680 };
16681
16682 /* Write an address entry to OBSTACK. */
16683
16684 static void
16685 add_address_entry (struct objfile *objfile, struct obstack *obstack,
16686 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
16687 {
16688 offset_type cu_index_to_write;
16689 char addr[8];
16690 CORE_ADDR baseaddr;
16691
16692 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
16693
16694 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
16695 obstack_grow (obstack, addr, 8);
16696 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
16697 obstack_grow (obstack, addr, 8);
16698 cu_index_to_write = MAYBE_SWAP (cu_index);
16699 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
16700 }
16701
16702 /* Worker function for traversing an addrmap to build the address table. */
16703
16704 static int
16705 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
16706 {
16707 struct addrmap_index_data *data = datap;
16708 struct partial_symtab *pst = obj;
16709 offset_type cu_index;
16710 void **slot;
16711
16712 if (data->previous_valid)
16713 add_address_entry (data->objfile, data->addr_obstack,
16714 data->previous_cu_start, start_addr,
16715 data->previous_cu_index);
16716
16717 data->previous_cu_start = start_addr;
16718 if (pst != NULL)
16719 {
16720 struct psymtab_cu_index_map find_map, *map;
16721 find_map.psymtab = pst;
16722 map = htab_find (data->cu_index_htab, &find_map);
16723 gdb_assert (map != NULL);
16724 data->previous_cu_index = map->cu_index;
16725 data->previous_valid = 1;
16726 }
16727 else
16728 data->previous_valid = 0;
16729
16730 return 0;
16731 }
16732
16733 /* Write OBJFILE's address map to OBSTACK.
16734 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
16735 in the index file. */
16736
16737 static void
16738 write_address_map (struct objfile *objfile, struct obstack *obstack,
16739 htab_t cu_index_htab)
16740 {
16741 struct addrmap_index_data addrmap_index_data;
16742
16743 /* When writing the address table, we have to cope with the fact that
16744 the addrmap iterator only provides the start of a region; we have to
16745 wait until the next invocation to get the start of the next region. */
16746
16747 addrmap_index_data.objfile = objfile;
16748 addrmap_index_data.addr_obstack = obstack;
16749 addrmap_index_data.cu_index_htab = cu_index_htab;
16750 addrmap_index_data.previous_valid = 0;
16751
16752 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
16753 &addrmap_index_data);
16754
16755 /* It's highly unlikely the last entry (end address = 0xff...ff)
16756 is valid, but we should still handle it.
16757 The end address is recorded as the start of the next region, but that
16758 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
16759 anyway. */
16760 if (addrmap_index_data.previous_valid)
16761 add_address_entry (objfile, obstack,
16762 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
16763 addrmap_index_data.previous_cu_index);
16764 }
16765
16766 /* Add a list of partial symbols to SYMTAB. */
16767
16768 static void
16769 write_psymbols (struct mapped_symtab *symtab,
16770 htab_t psyms_seen,
16771 struct partial_symbol **psymp,
16772 int count,
16773 offset_type cu_index,
16774 int is_static)
16775 {
16776 for (; count-- > 0; ++psymp)
16777 {
16778 void **slot, *lookup;
16779
16780 if (SYMBOL_LANGUAGE (*psymp) == language_ada)
16781 error (_("Ada is not currently supported by the index"));
16782
16783 /* We only want to add a given psymbol once. However, we also
16784 want to account for whether it is global or static. So, we
16785 may add it twice, using slightly different values. */
16786 if (is_static)
16787 {
16788 uintptr_t val = 1 | (uintptr_t) *psymp;
16789
16790 lookup = (void *) val;
16791 }
16792 else
16793 lookup = *psymp;
16794
16795 /* Only add a given psymbol once. */
16796 slot = htab_find_slot (psyms_seen, lookup, INSERT);
16797 if (!*slot)
16798 {
16799 *slot = lookup;
16800 add_index_entry (symtab, SYMBOL_SEARCH_NAME (*psymp), cu_index);
16801 }
16802 }
16803 }
16804
16805 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
16806 exception if there is an error. */
16807
16808 static void
16809 write_obstack (FILE *file, struct obstack *obstack)
16810 {
16811 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
16812 file)
16813 != obstack_object_size (obstack))
16814 error (_("couldn't data write to file"));
16815 }
16816
16817 /* Unlink a file if the argument is not NULL. */
16818
16819 static void
16820 unlink_if_set (void *p)
16821 {
16822 char **filename = p;
16823 if (*filename)
16824 unlink (*filename);
16825 }
16826
16827 /* A helper struct used when iterating over debug_types. */
16828 struct signatured_type_index_data
16829 {
16830 struct objfile *objfile;
16831 struct mapped_symtab *symtab;
16832 struct obstack *types_list;
16833 htab_t psyms_seen;
16834 int cu_index;
16835 };
16836
16837 /* A helper function that writes a single signatured_type to an
16838 obstack. */
16839
16840 static int
16841 write_one_signatured_type (void **slot, void *d)
16842 {
16843 struct signatured_type_index_data *info = d;
16844 struct signatured_type *entry = (struct signatured_type *) *slot;
16845 struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
16846 struct partial_symtab *psymtab = per_cu->v.psymtab;
16847 gdb_byte val[8];
16848
16849 write_psymbols (info->symtab,
16850 info->psyms_seen,
16851 info->objfile->global_psymbols.list
16852 + psymtab->globals_offset,
16853 psymtab->n_global_syms, info->cu_index,
16854 0);
16855 write_psymbols (info->symtab,
16856 info->psyms_seen,
16857 info->objfile->static_psymbols.list
16858 + psymtab->statics_offset,
16859 psymtab->n_static_syms, info->cu_index,
16860 1);
16861
16862 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->per_cu.offset);
16863 obstack_grow (info->types_list, val, 8);
16864 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->type_offset);
16865 obstack_grow (info->types_list, val, 8);
16866 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
16867 obstack_grow (info->types_list, val, 8);
16868
16869 ++info->cu_index;
16870
16871 return 1;
16872 }
16873
16874 /* Create an index file for OBJFILE in the directory DIR. */
16875
16876 static void
16877 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
16878 {
16879 struct cleanup *cleanup;
16880 char *filename, *cleanup_filename;
16881 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
16882 struct obstack cu_list, types_cu_list;
16883 int i;
16884 FILE *out_file;
16885 struct mapped_symtab *symtab;
16886 offset_type val, size_of_contents, total_len;
16887 struct stat st;
16888 char buf[8];
16889 htab_t psyms_seen;
16890 htab_t cu_index_htab;
16891 struct psymtab_cu_index_map *psymtab_cu_index_map;
16892
16893 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
16894 return;
16895
16896 if (dwarf2_per_objfile->using_index)
16897 error (_("Cannot use an index to create the index"));
16898
16899 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
16900 error (_("Cannot make an index when the file has multiple .debug_types sections"));
16901
16902 if (stat (objfile->name, &st) < 0)
16903 perror_with_name (objfile->name);
16904
16905 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
16906 INDEX_SUFFIX, (char *) NULL);
16907 cleanup = make_cleanup (xfree, filename);
16908
16909 out_file = fopen (filename, "wb");
16910 if (!out_file)
16911 error (_("Can't open `%s' for writing"), filename);
16912
16913 cleanup_filename = filename;
16914 make_cleanup (unlink_if_set, &cleanup_filename);
16915
16916 symtab = create_mapped_symtab ();
16917 make_cleanup (cleanup_mapped_symtab, symtab);
16918
16919 obstack_init (&addr_obstack);
16920 make_cleanup_obstack_free (&addr_obstack);
16921
16922 obstack_init (&cu_list);
16923 make_cleanup_obstack_free (&cu_list);
16924
16925 obstack_init (&types_cu_list);
16926 make_cleanup_obstack_free (&types_cu_list);
16927
16928 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
16929 NULL, xcalloc, xfree);
16930 make_cleanup_htab_delete (psyms_seen);
16931
16932 /* While we're scanning CU's create a table that maps a psymtab pointer
16933 (which is what addrmap records) to its index (which is what is recorded
16934 in the index file). This will later be needed to write the address
16935 table. */
16936 cu_index_htab = htab_create_alloc (100,
16937 hash_psymtab_cu_index,
16938 eq_psymtab_cu_index,
16939 NULL, xcalloc, xfree);
16940 make_cleanup_htab_delete (cu_index_htab);
16941 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
16942 xmalloc (sizeof (struct psymtab_cu_index_map)
16943 * dwarf2_per_objfile->n_comp_units);
16944 make_cleanup (xfree, psymtab_cu_index_map);
16945
16946 /* The CU list is already sorted, so we don't need to do additional
16947 work here. Also, the debug_types entries do not appear in
16948 all_comp_units, but only in their own hash table. */
16949 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
16950 {
16951 struct dwarf2_per_cu_data *per_cu
16952 = dwarf2_per_objfile->all_comp_units[i];
16953 struct partial_symtab *psymtab = per_cu->v.psymtab;
16954 gdb_byte val[8];
16955 struct psymtab_cu_index_map *map;
16956 void **slot;
16957
16958 write_psymbols (symtab,
16959 psyms_seen,
16960 objfile->global_psymbols.list + psymtab->globals_offset,
16961 psymtab->n_global_syms, i,
16962 0);
16963 write_psymbols (symtab,
16964 psyms_seen,
16965 objfile->static_psymbols.list + psymtab->statics_offset,
16966 psymtab->n_static_syms, i,
16967 1);
16968
16969 map = &psymtab_cu_index_map[i];
16970 map->psymtab = psymtab;
16971 map->cu_index = i;
16972 slot = htab_find_slot (cu_index_htab, map, INSERT);
16973 gdb_assert (slot != NULL);
16974 gdb_assert (*slot == NULL);
16975 *slot = map;
16976
16977 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->offset);
16978 obstack_grow (&cu_list, val, 8);
16979 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
16980 obstack_grow (&cu_list, val, 8);
16981 }
16982
16983 /* Dump the address map. */
16984 write_address_map (objfile, &addr_obstack, cu_index_htab);
16985
16986 /* Write out the .debug_type entries, if any. */
16987 if (dwarf2_per_objfile->signatured_types)
16988 {
16989 struct signatured_type_index_data sig_data;
16990
16991 sig_data.objfile = objfile;
16992 sig_data.symtab = symtab;
16993 sig_data.types_list = &types_cu_list;
16994 sig_data.psyms_seen = psyms_seen;
16995 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
16996 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
16997 write_one_signatured_type, &sig_data);
16998 }
16999
17000 obstack_init (&constant_pool);
17001 make_cleanup_obstack_free (&constant_pool);
17002 obstack_init (&symtab_obstack);
17003 make_cleanup_obstack_free (&symtab_obstack);
17004 write_hash_table (symtab, &symtab_obstack, &constant_pool);
17005
17006 obstack_init (&contents);
17007 make_cleanup_obstack_free (&contents);
17008 size_of_contents = 6 * sizeof (offset_type);
17009 total_len = size_of_contents;
17010
17011 /* The version number. */
17012 val = MAYBE_SWAP (5);
17013 obstack_grow (&contents, &val, sizeof (val));
17014
17015 /* The offset of the CU list from the start of the file. */
17016 val = MAYBE_SWAP (total_len);
17017 obstack_grow (&contents, &val, sizeof (val));
17018 total_len += obstack_object_size (&cu_list);
17019
17020 /* The offset of the types CU list from the start of the file. */
17021 val = MAYBE_SWAP (total_len);
17022 obstack_grow (&contents, &val, sizeof (val));
17023 total_len += obstack_object_size (&types_cu_list);
17024
17025 /* The offset of the address table from the start of the file. */
17026 val = MAYBE_SWAP (total_len);
17027 obstack_grow (&contents, &val, sizeof (val));
17028 total_len += obstack_object_size (&addr_obstack);
17029
17030 /* The offset of the symbol table from the start of the file. */
17031 val = MAYBE_SWAP (total_len);
17032 obstack_grow (&contents, &val, sizeof (val));
17033 total_len += obstack_object_size (&symtab_obstack);
17034
17035 /* The offset of the constant pool from the start of the file. */
17036 val = MAYBE_SWAP (total_len);
17037 obstack_grow (&contents, &val, sizeof (val));
17038 total_len += obstack_object_size (&constant_pool);
17039
17040 gdb_assert (obstack_object_size (&contents) == size_of_contents);
17041
17042 write_obstack (out_file, &contents);
17043 write_obstack (out_file, &cu_list);
17044 write_obstack (out_file, &types_cu_list);
17045 write_obstack (out_file, &addr_obstack);
17046 write_obstack (out_file, &symtab_obstack);
17047 write_obstack (out_file, &constant_pool);
17048
17049 fclose (out_file);
17050
17051 /* We want to keep the file, so we set cleanup_filename to NULL
17052 here. See unlink_if_set. */
17053 cleanup_filename = NULL;
17054
17055 do_cleanups (cleanup);
17056 }
17057
17058 /* Implementation of the `save gdb-index' command.
17059
17060 Note that the file format used by this command is documented in the
17061 GDB manual. Any changes here must be documented there. */
17062
17063 static void
17064 save_gdb_index_command (char *arg, int from_tty)
17065 {
17066 struct objfile *objfile;
17067
17068 if (!arg || !*arg)
17069 error (_("usage: save gdb-index DIRECTORY"));
17070
17071 ALL_OBJFILES (objfile)
17072 {
17073 struct stat st;
17074
17075 /* If the objfile does not correspond to an actual file, skip it. */
17076 if (stat (objfile->name, &st) < 0)
17077 continue;
17078
17079 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
17080 if (dwarf2_per_objfile)
17081 {
17082 volatile struct gdb_exception except;
17083
17084 TRY_CATCH (except, RETURN_MASK_ERROR)
17085 {
17086 write_psymtabs_to_index (objfile, arg);
17087 }
17088 if (except.reason < 0)
17089 exception_fprintf (gdb_stderr, except,
17090 _("Error while writing index for `%s': "),
17091 objfile->name);
17092 }
17093 }
17094 }
17095
17096 \f
17097
17098 int dwarf2_always_disassemble;
17099
17100 static void
17101 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
17102 struct cmd_list_element *c, const char *value)
17103 {
17104 fprintf_filtered (file,
17105 _("Whether to always disassemble "
17106 "DWARF expressions is %s.\n"),
17107 value);
17108 }
17109
17110 static void
17111 show_check_physname (struct ui_file *file, int from_tty,
17112 struct cmd_list_element *c, const char *value)
17113 {
17114 fprintf_filtered (file,
17115 _("Whether to check \"physname\" is %s.\n"),
17116 value);
17117 }
17118
17119 void _initialize_dwarf2_read (void);
17120
17121 void
17122 _initialize_dwarf2_read (void)
17123 {
17124 struct cmd_list_element *c;
17125
17126 dwarf2_objfile_data_key
17127 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
17128
17129 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
17130 Set DWARF 2 specific variables.\n\
17131 Configure DWARF 2 variables such as the cache size"),
17132 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
17133 0/*allow-unknown*/, &maintenance_set_cmdlist);
17134
17135 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
17136 Show DWARF 2 specific variables\n\
17137 Show DWARF 2 variables such as the cache size"),
17138 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
17139 0/*allow-unknown*/, &maintenance_show_cmdlist);
17140
17141 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
17142 &dwarf2_max_cache_age, _("\
17143 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
17144 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
17145 A higher limit means that cached compilation units will be stored\n\
17146 in memory longer, and more total memory will be used. Zero disables\n\
17147 caching, which can slow down startup."),
17148 NULL,
17149 show_dwarf2_max_cache_age,
17150 &set_dwarf2_cmdlist,
17151 &show_dwarf2_cmdlist);
17152
17153 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
17154 &dwarf2_always_disassemble, _("\
17155 Set whether `info address' always disassembles DWARF expressions."), _("\
17156 Show whether `info address' always disassembles DWARF expressions."), _("\
17157 When enabled, DWARF expressions are always printed in an assembly-like\n\
17158 syntax. When disabled, expressions will be printed in a more\n\
17159 conversational style, when possible."),
17160 NULL,
17161 show_dwarf2_always_disassemble,
17162 &set_dwarf2_cmdlist,
17163 &show_dwarf2_cmdlist);
17164
17165 add_setshow_zinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
17166 Set debugging of the dwarf2 DIE reader."), _("\
17167 Show debugging of the dwarf2 DIE reader."), _("\
17168 When enabled (non-zero), DIEs are dumped after they are read in.\n\
17169 The value is the maximum depth to print."),
17170 NULL,
17171 NULL,
17172 &setdebuglist, &showdebuglist);
17173
17174 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
17175 Set cross-checking of \"physname\" code against demangler."), _("\
17176 Show cross-checking of \"physname\" code against demangler."), _("\
17177 When enabled, GDB's internal \"physname\" code is checked against\n\
17178 the demangler."),
17179 NULL, show_check_physname,
17180 &setdebuglist, &showdebuglist);
17181
17182 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
17183 _("\
17184 Save a gdb-index file.\n\
17185 Usage: save gdb-index DIRECTORY"),
17186 &save_cmdlist);
17187 set_cmd_completer (c, filename_completer);
17188 }
This page took 0.363201 seconds and 5 git commands to generate.