Fix recent compiler warnings.
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2017 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "psympriv.h"
57 #include <sys/stat.h>
58 #include "completer.h"
59 #include "vec.h"
60 #include "c-lang.h"
61 #include "go-lang.h"
62 #include "valprint.h"
63 #include "gdbcore.h" /* for gnutarget */
64 #include "gdb/gdb-index.h"
65 #include <ctype.h>
66 #include "gdb_bfd.h"
67 #include "f-lang.h"
68 #include "source.h"
69 #include "filestuff.h"
70 #include "build-id.h"
71 #include "namespace.h"
72 #include "common/gdb_unlinker.h"
73
74 #include <fcntl.h>
75 #include <sys/types.h>
76 #include <algorithm>
77
78 typedef struct symbol *symbolp;
79 DEF_VEC_P (symbolp);
80
81 /* When == 1, print basic high level tracing messages.
82 When > 1, be more verbose.
83 This is in contrast to the low level DIE reading of dwarf_die_debug. */
84 static unsigned int dwarf_read_debug = 0;
85
86 /* When non-zero, dump DIEs after they are read in. */
87 static unsigned int dwarf_die_debug = 0;
88
89 /* When non-zero, dump line number entries as they are read in. */
90 static unsigned int dwarf_line_debug = 0;
91
92 /* When non-zero, cross-check physname against demangler. */
93 static int check_physname = 0;
94
95 /* When non-zero, do not reject deprecated .gdb_index sections. */
96 static int use_deprecated_index_sections = 0;
97
98 static const struct objfile_data *dwarf2_objfile_data_key;
99
100 /* The "aclass" indices for various kinds of computed DWARF symbols. */
101
102 static int dwarf2_locexpr_index;
103 static int dwarf2_loclist_index;
104 static int dwarf2_locexpr_block_index;
105 static int dwarf2_loclist_block_index;
106
107 /* A descriptor for dwarf sections.
108
109 S.ASECTION, SIZE are typically initialized when the objfile is first
110 scanned. BUFFER, READIN are filled in later when the section is read.
111 If the section contained compressed data then SIZE is updated to record
112 the uncompressed size of the section.
113
114 DWP file format V2 introduces a wrinkle that is easiest to handle by
115 creating the concept of virtual sections contained within a real section.
116 In DWP V2 the sections of the input DWO files are concatenated together
117 into one section, but section offsets are kept relative to the original
118 input section.
119 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
120 the real section this "virtual" section is contained in, and BUFFER,SIZE
121 describe the virtual section. */
122
123 struct dwarf2_section_info
124 {
125 union
126 {
127 /* If this is a real section, the bfd section. */
128 asection *section;
129 /* If this is a virtual section, pointer to the containing ("real")
130 section. */
131 struct dwarf2_section_info *containing_section;
132 } s;
133 /* Pointer to section data, only valid if readin. */
134 const gdb_byte *buffer;
135 /* The size of the section, real or virtual. */
136 bfd_size_type size;
137 /* If this is a virtual section, the offset in the real section.
138 Only valid if is_virtual. */
139 bfd_size_type virtual_offset;
140 /* True if we have tried to read this section. */
141 char readin;
142 /* True if this is a virtual section, False otherwise.
143 This specifies which of s.section and s.containing_section to use. */
144 char is_virtual;
145 };
146
147 typedef struct dwarf2_section_info dwarf2_section_info_def;
148 DEF_VEC_O (dwarf2_section_info_def);
149
150 /* All offsets in the index are of this type. It must be
151 architecture-independent. */
152 typedef uint32_t offset_type;
153
154 DEF_VEC_I (offset_type);
155
156 /* Ensure only legit values are used. */
157 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
158 do { \
159 gdb_assert ((unsigned int) (value) <= 1); \
160 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
161 } while (0)
162
163 /* Ensure only legit values are used. */
164 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
165 do { \
166 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
167 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
168 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
169 } while (0)
170
171 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
172 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
173 do { \
174 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
175 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
176 } while (0)
177
178 /* A description of the mapped index. The file format is described in
179 a comment by the code that writes the index. */
180 struct mapped_index
181 {
182 /* Index data format version. */
183 int version;
184
185 /* The total length of the buffer. */
186 off_t total_size;
187
188 /* A pointer to the address table data. */
189 const gdb_byte *address_table;
190
191 /* Size of the address table data in bytes. */
192 offset_type address_table_size;
193
194 /* The symbol table, implemented as a hash table. */
195 const offset_type *symbol_table;
196
197 /* Size in slots, each slot is 2 offset_types. */
198 offset_type symbol_table_slots;
199
200 /* A pointer to the constant pool. */
201 const char *constant_pool;
202 };
203
204 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
205 DEF_VEC_P (dwarf2_per_cu_ptr);
206
207 struct tu_stats
208 {
209 int nr_uniq_abbrev_tables;
210 int nr_symtabs;
211 int nr_symtab_sharers;
212 int nr_stmt_less_type_units;
213 int nr_all_type_units_reallocs;
214 };
215
216 /* Collection of data recorded per objfile.
217 This hangs off of dwarf2_objfile_data_key. */
218
219 struct dwarf2_per_objfile
220 {
221 struct dwarf2_section_info info;
222 struct dwarf2_section_info abbrev;
223 struct dwarf2_section_info line;
224 struct dwarf2_section_info loc;
225 struct dwarf2_section_info loclists;
226 struct dwarf2_section_info macinfo;
227 struct dwarf2_section_info macro;
228 struct dwarf2_section_info str;
229 struct dwarf2_section_info line_str;
230 struct dwarf2_section_info ranges;
231 struct dwarf2_section_info rnglists;
232 struct dwarf2_section_info addr;
233 struct dwarf2_section_info frame;
234 struct dwarf2_section_info eh_frame;
235 struct dwarf2_section_info gdb_index;
236
237 VEC (dwarf2_section_info_def) *types;
238
239 /* Back link. */
240 struct objfile *objfile;
241
242 /* Table of all the compilation units. This is used to locate
243 the target compilation unit of a particular reference. */
244 struct dwarf2_per_cu_data **all_comp_units;
245
246 /* The number of compilation units in ALL_COMP_UNITS. */
247 int n_comp_units;
248
249 /* The number of .debug_types-related CUs. */
250 int n_type_units;
251
252 /* The number of elements allocated in all_type_units.
253 If there are skeleton-less TUs, we add them to all_type_units lazily. */
254 int n_allocated_type_units;
255
256 /* The .debug_types-related CUs (TUs).
257 This is stored in malloc space because we may realloc it. */
258 struct signatured_type **all_type_units;
259
260 /* Table of struct type_unit_group objects.
261 The hash key is the DW_AT_stmt_list value. */
262 htab_t type_unit_groups;
263
264 /* A table mapping .debug_types signatures to its signatured_type entry.
265 This is NULL if the .debug_types section hasn't been read in yet. */
266 htab_t signatured_types;
267
268 /* Type unit statistics, to see how well the scaling improvements
269 are doing. */
270 struct tu_stats tu_stats;
271
272 /* A chain of compilation units that are currently read in, so that
273 they can be freed later. */
274 struct dwarf2_per_cu_data *read_in_chain;
275
276 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
277 This is NULL if the table hasn't been allocated yet. */
278 htab_t dwo_files;
279
280 /* Non-zero if we've check for whether there is a DWP file. */
281 int dwp_checked;
282
283 /* The DWP file if there is one, or NULL. */
284 struct dwp_file *dwp_file;
285
286 /* The shared '.dwz' file, if one exists. This is used when the
287 original data was compressed using 'dwz -m'. */
288 struct dwz_file *dwz_file;
289
290 /* A flag indicating wether this objfile has a section loaded at a
291 VMA of 0. */
292 int has_section_at_zero;
293
294 /* True if we are using the mapped index,
295 or we are faking it for OBJF_READNOW's sake. */
296 unsigned char using_index;
297
298 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
299 struct mapped_index *index_table;
300
301 /* When using index_table, this keeps track of all quick_file_names entries.
302 TUs typically share line table entries with a CU, so we maintain a
303 separate table of all line table entries to support the sharing.
304 Note that while there can be way more TUs than CUs, we've already
305 sorted all the TUs into "type unit groups", grouped by their
306 DW_AT_stmt_list value. Therefore the only sharing done here is with a
307 CU and its associated TU group if there is one. */
308 htab_t quick_file_names_table;
309
310 /* Set during partial symbol reading, to prevent queueing of full
311 symbols. */
312 int reading_partial_symbols;
313
314 /* Table mapping type DIEs to their struct type *.
315 This is NULL if not allocated yet.
316 The mapping is done via (CU/TU + DIE offset) -> type. */
317 htab_t die_type_hash;
318
319 /* The CUs we recently read. */
320 VEC (dwarf2_per_cu_ptr) *just_read_cus;
321
322 /* Table containing line_header indexed by offset and offset_in_dwz. */
323 htab_t line_header_hash;
324 };
325
326 static struct dwarf2_per_objfile *dwarf2_per_objfile;
327
328 /* Default names of the debugging sections. */
329
330 /* Note that if the debugging section has been compressed, it might
331 have a name like .zdebug_info. */
332
333 static const struct dwarf2_debug_sections dwarf2_elf_names =
334 {
335 { ".debug_info", ".zdebug_info" },
336 { ".debug_abbrev", ".zdebug_abbrev" },
337 { ".debug_line", ".zdebug_line" },
338 { ".debug_loc", ".zdebug_loc" },
339 { ".debug_loclists", ".zdebug_loclists" },
340 { ".debug_macinfo", ".zdebug_macinfo" },
341 { ".debug_macro", ".zdebug_macro" },
342 { ".debug_str", ".zdebug_str" },
343 { ".debug_line_str", ".zdebug_line_str" },
344 { ".debug_ranges", ".zdebug_ranges" },
345 { ".debug_rnglists", ".zdebug_rnglists" },
346 { ".debug_types", ".zdebug_types" },
347 { ".debug_addr", ".zdebug_addr" },
348 { ".debug_frame", ".zdebug_frame" },
349 { ".eh_frame", NULL },
350 { ".gdb_index", ".zgdb_index" },
351 23
352 };
353
354 /* List of DWO/DWP sections. */
355
356 static const struct dwop_section_names
357 {
358 struct dwarf2_section_names abbrev_dwo;
359 struct dwarf2_section_names info_dwo;
360 struct dwarf2_section_names line_dwo;
361 struct dwarf2_section_names loc_dwo;
362 struct dwarf2_section_names loclists_dwo;
363 struct dwarf2_section_names macinfo_dwo;
364 struct dwarf2_section_names macro_dwo;
365 struct dwarf2_section_names str_dwo;
366 struct dwarf2_section_names str_offsets_dwo;
367 struct dwarf2_section_names types_dwo;
368 struct dwarf2_section_names cu_index;
369 struct dwarf2_section_names tu_index;
370 }
371 dwop_section_names =
372 {
373 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
374 { ".debug_info.dwo", ".zdebug_info.dwo" },
375 { ".debug_line.dwo", ".zdebug_line.dwo" },
376 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
377 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
378 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
379 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
380 { ".debug_str.dwo", ".zdebug_str.dwo" },
381 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
382 { ".debug_types.dwo", ".zdebug_types.dwo" },
383 { ".debug_cu_index", ".zdebug_cu_index" },
384 { ".debug_tu_index", ".zdebug_tu_index" },
385 };
386
387 /* local data types */
388
389 /* The data in a compilation unit header, after target2host
390 translation, looks like this. */
391 struct comp_unit_head
392 {
393 unsigned int length;
394 short version;
395 unsigned char addr_size;
396 unsigned char signed_addr_p;
397 sect_offset abbrev_offset;
398
399 /* Size of file offsets; either 4 or 8. */
400 unsigned int offset_size;
401
402 /* Size of the length field; either 4 or 12. */
403 unsigned int initial_length_size;
404
405 enum dwarf_unit_type unit_type;
406
407 /* Offset to the first byte of this compilation unit header in the
408 .debug_info section, for resolving relative reference dies. */
409 sect_offset offset;
410
411 /* Offset to first die in this cu from the start of the cu.
412 This will be the first byte following the compilation unit header. */
413 cu_offset first_die_offset;
414
415 /* 64-bit signature of this type unit - it is valid only for
416 UNIT_TYPE DW_UT_type. */
417 ULONGEST signature;
418
419 /* For types, offset in the type's DIE of the type defined by this TU. */
420 cu_offset type_offset_in_tu;
421 };
422
423 /* Type used for delaying computation of method physnames.
424 See comments for compute_delayed_physnames. */
425 struct delayed_method_info
426 {
427 /* The type to which the method is attached, i.e., its parent class. */
428 struct type *type;
429
430 /* The index of the method in the type's function fieldlists. */
431 int fnfield_index;
432
433 /* The index of the method in the fieldlist. */
434 int index;
435
436 /* The name of the DIE. */
437 const char *name;
438
439 /* The DIE associated with this method. */
440 struct die_info *die;
441 };
442
443 typedef struct delayed_method_info delayed_method_info;
444 DEF_VEC_O (delayed_method_info);
445
446 /* Internal state when decoding a particular compilation unit. */
447 struct dwarf2_cu
448 {
449 /* The objfile containing this compilation unit. */
450 struct objfile *objfile;
451
452 /* The header of the compilation unit. */
453 struct comp_unit_head header;
454
455 /* Base address of this compilation unit. */
456 CORE_ADDR base_address;
457
458 /* Non-zero if base_address has been set. */
459 int base_known;
460
461 /* The language we are debugging. */
462 enum language language;
463 const struct language_defn *language_defn;
464
465 const char *producer;
466
467 /* The generic symbol table building routines have separate lists for
468 file scope symbols and all all other scopes (local scopes). So
469 we need to select the right one to pass to add_symbol_to_list().
470 We do it by keeping a pointer to the correct list in list_in_scope.
471
472 FIXME: The original dwarf code just treated the file scope as the
473 first local scope, and all other local scopes as nested local
474 scopes, and worked fine. Check to see if we really need to
475 distinguish these in buildsym.c. */
476 struct pending **list_in_scope;
477
478 /* The abbrev table for this CU.
479 Normally this points to the abbrev table in the objfile.
480 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
481 struct abbrev_table *abbrev_table;
482
483 /* Hash table holding all the loaded partial DIEs
484 with partial_die->offset.SECT_OFF as hash. */
485 htab_t partial_dies;
486
487 /* Storage for things with the same lifetime as this read-in compilation
488 unit, including partial DIEs. */
489 struct obstack comp_unit_obstack;
490
491 /* When multiple dwarf2_cu structures are living in memory, this field
492 chains them all together, so that they can be released efficiently.
493 We will probably also want a generation counter so that most-recently-used
494 compilation units are cached... */
495 struct dwarf2_per_cu_data *read_in_chain;
496
497 /* Backlink to our per_cu entry. */
498 struct dwarf2_per_cu_data *per_cu;
499
500 /* How many compilation units ago was this CU last referenced? */
501 int last_used;
502
503 /* A hash table of DIE cu_offset for following references with
504 die_info->offset.sect_off as hash. */
505 htab_t die_hash;
506
507 /* Full DIEs if read in. */
508 struct die_info *dies;
509
510 /* A set of pointers to dwarf2_per_cu_data objects for compilation
511 units referenced by this one. Only set during full symbol processing;
512 partial symbol tables do not have dependencies. */
513 htab_t dependencies;
514
515 /* Header data from the line table, during full symbol processing. */
516 struct line_header *line_header;
517
518 /* A list of methods which need to have physnames computed
519 after all type information has been read. */
520 VEC (delayed_method_info) *method_list;
521
522 /* To be copied to symtab->call_site_htab. */
523 htab_t call_site_htab;
524
525 /* Non-NULL if this CU came from a DWO file.
526 There is an invariant here that is important to remember:
527 Except for attributes copied from the top level DIE in the "main"
528 (or "stub") file in preparation for reading the DWO file
529 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
530 Either there isn't a DWO file (in which case this is NULL and the point
531 is moot), or there is and either we're not going to read it (in which
532 case this is NULL) or there is and we are reading it (in which case this
533 is non-NULL). */
534 struct dwo_unit *dwo_unit;
535
536 /* The DW_AT_addr_base attribute if present, zero otherwise
537 (zero is a valid value though).
538 Note this value comes from the Fission stub CU/TU's DIE. */
539 ULONGEST addr_base;
540
541 /* The DW_AT_ranges_base attribute if present, zero otherwise
542 (zero is a valid value though).
543 Note this value comes from the Fission stub CU/TU's DIE.
544 Also note that the value is zero in the non-DWO case so this value can
545 be used without needing to know whether DWO files are in use or not.
546 N.B. This does not apply to DW_AT_ranges appearing in
547 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
548 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
549 DW_AT_ranges_base *would* have to be applied, and we'd have to care
550 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
551 ULONGEST ranges_base;
552
553 /* Mark used when releasing cached dies. */
554 unsigned int mark : 1;
555
556 /* This CU references .debug_loc. See the symtab->locations_valid field.
557 This test is imperfect as there may exist optimized debug code not using
558 any location list and still facing inlining issues if handled as
559 unoptimized code. For a future better test see GCC PR other/32998. */
560 unsigned int has_loclist : 1;
561
562 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
563 if all the producer_is_* fields are valid. This information is cached
564 because profiling CU expansion showed excessive time spent in
565 producer_is_gxx_lt_4_6. */
566 unsigned int checked_producer : 1;
567 unsigned int producer_is_gxx_lt_4_6 : 1;
568 unsigned int producer_is_gcc_lt_4_3 : 1;
569 unsigned int producer_is_icc : 1;
570
571 /* When set, the file that we're processing is known to have
572 debugging info for C++ namespaces. GCC 3.3.x did not produce
573 this information, but later versions do. */
574
575 unsigned int processing_has_namespace_info : 1;
576 };
577
578 /* Persistent data held for a compilation unit, even when not
579 processing it. We put a pointer to this structure in the
580 read_symtab_private field of the psymtab. */
581
582 struct dwarf2_per_cu_data
583 {
584 /* The start offset and length of this compilation unit.
585 NOTE: Unlike comp_unit_head.length, this length includes
586 initial_length_size.
587 If the DIE refers to a DWO file, this is always of the original die,
588 not the DWO file. */
589 sect_offset offset;
590 unsigned int length;
591
592 /* DWARF standard version this data has been read from (such as 4 or 5). */
593 short dwarf_version;
594
595 /* Flag indicating this compilation unit will be read in before
596 any of the current compilation units are processed. */
597 unsigned int queued : 1;
598
599 /* This flag will be set when reading partial DIEs if we need to load
600 absolutely all DIEs for this compilation unit, instead of just the ones
601 we think are interesting. It gets set if we look for a DIE in the
602 hash table and don't find it. */
603 unsigned int load_all_dies : 1;
604
605 /* Non-zero if this CU is from .debug_types.
606 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
607 this is non-zero. */
608 unsigned int is_debug_types : 1;
609
610 /* Non-zero if this CU is from the .dwz file. */
611 unsigned int is_dwz : 1;
612
613 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
614 This flag is only valid if is_debug_types is true.
615 We can't read a CU directly from a DWO file: There are required
616 attributes in the stub. */
617 unsigned int reading_dwo_directly : 1;
618
619 /* Non-zero if the TU has been read.
620 This is used to assist the "Stay in DWO Optimization" for Fission:
621 When reading a DWO, it's faster to read TUs from the DWO instead of
622 fetching them from random other DWOs (due to comdat folding).
623 If the TU has already been read, the optimization is unnecessary
624 (and unwise - we don't want to change where gdb thinks the TU lives
625 "midflight").
626 This flag is only valid if is_debug_types is true. */
627 unsigned int tu_read : 1;
628
629 /* The section this CU/TU lives in.
630 If the DIE refers to a DWO file, this is always the original die,
631 not the DWO file. */
632 struct dwarf2_section_info *section;
633
634 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
635 of the CU cache it gets reset to NULL again. This is left as NULL for
636 dummy CUs (a CU header, but nothing else). */
637 struct dwarf2_cu *cu;
638
639 /* The corresponding objfile.
640 Normally we can get the objfile from dwarf2_per_objfile.
641 However we can enter this file with just a "per_cu" handle. */
642 struct objfile *objfile;
643
644 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
645 is active. Otherwise, the 'psymtab' field is active. */
646 union
647 {
648 /* The partial symbol table associated with this compilation unit,
649 or NULL for unread partial units. */
650 struct partial_symtab *psymtab;
651
652 /* Data needed by the "quick" functions. */
653 struct dwarf2_per_cu_quick_data *quick;
654 } v;
655
656 /* The CUs we import using DW_TAG_imported_unit. This is filled in
657 while reading psymtabs, used to compute the psymtab dependencies,
658 and then cleared. Then it is filled in again while reading full
659 symbols, and only deleted when the objfile is destroyed.
660
661 This is also used to work around a difference between the way gold
662 generates .gdb_index version <=7 and the way gdb does. Arguably this
663 is a gold bug. For symbols coming from TUs, gold records in the index
664 the CU that includes the TU instead of the TU itself. This breaks
665 dw2_lookup_symbol: It assumes that if the index says symbol X lives
666 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
667 will find X. Alas TUs live in their own symtab, so after expanding CU Y
668 we need to look in TU Z to find X. Fortunately, this is akin to
669 DW_TAG_imported_unit, so we just use the same mechanism: For
670 .gdb_index version <=7 this also records the TUs that the CU referred
671 to. Concurrently with this change gdb was modified to emit version 8
672 indices so we only pay a price for gold generated indices.
673 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
674 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
675 };
676
677 /* Entry in the signatured_types hash table. */
678
679 struct signatured_type
680 {
681 /* The "per_cu" object of this type.
682 This struct is used iff per_cu.is_debug_types.
683 N.B.: This is the first member so that it's easy to convert pointers
684 between them. */
685 struct dwarf2_per_cu_data per_cu;
686
687 /* The type's signature. */
688 ULONGEST signature;
689
690 /* Offset in the TU of the type's DIE, as read from the TU header.
691 If this TU is a DWO stub and the definition lives in a DWO file
692 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
693 cu_offset type_offset_in_tu;
694
695 /* Offset in the section of the type's DIE.
696 If the definition lives in a DWO file, this is the offset in the
697 .debug_types.dwo section.
698 The value is zero until the actual value is known.
699 Zero is otherwise not a valid section offset. */
700 sect_offset type_offset_in_section;
701
702 /* Type units are grouped by their DW_AT_stmt_list entry so that they
703 can share them. This points to the containing symtab. */
704 struct type_unit_group *type_unit_group;
705
706 /* The type.
707 The first time we encounter this type we fully read it in and install it
708 in the symbol tables. Subsequent times we only need the type. */
709 struct type *type;
710
711 /* Containing DWO unit.
712 This field is valid iff per_cu.reading_dwo_directly. */
713 struct dwo_unit *dwo_unit;
714 };
715
716 typedef struct signatured_type *sig_type_ptr;
717 DEF_VEC_P (sig_type_ptr);
718
719 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
720 This includes type_unit_group and quick_file_names. */
721
722 struct stmt_list_hash
723 {
724 /* The DWO unit this table is from or NULL if there is none. */
725 struct dwo_unit *dwo_unit;
726
727 /* Offset in .debug_line or .debug_line.dwo. */
728 sect_offset line_offset;
729 };
730
731 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
732 an object of this type. */
733
734 struct type_unit_group
735 {
736 /* dwarf2read.c's main "handle" on a TU symtab.
737 To simplify things we create an artificial CU that "includes" all the
738 type units using this stmt_list so that the rest of the code still has
739 a "per_cu" handle on the symtab.
740 This PER_CU is recognized by having no section. */
741 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
742 struct dwarf2_per_cu_data per_cu;
743
744 /* The TUs that share this DW_AT_stmt_list entry.
745 This is added to while parsing type units to build partial symtabs,
746 and is deleted afterwards and not used again. */
747 VEC (sig_type_ptr) *tus;
748
749 /* The compunit symtab.
750 Type units in a group needn't all be defined in the same source file,
751 so we create an essentially anonymous symtab as the compunit symtab. */
752 struct compunit_symtab *compunit_symtab;
753
754 /* The data used to construct the hash key. */
755 struct stmt_list_hash hash;
756
757 /* The number of symtabs from the line header.
758 The value here must match line_header.num_file_names. */
759 unsigned int num_symtabs;
760
761 /* The symbol tables for this TU (obtained from the files listed in
762 DW_AT_stmt_list).
763 WARNING: The order of entries here must match the order of entries
764 in the line header. After the first TU using this type_unit_group, the
765 line header for the subsequent TUs is recreated from this. This is done
766 because we need to use the same symtabs for each TU using the same
767 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
768 there's no guarantee the line header doesn't have duplicate entries. */
769 struct symtab **symtabs;
770 };
771
772 /* These sections are what may appear in a (real or virtual) DWO file. */
773
774 struct dwo_sections
775 {
776 struct dwarf2_section_info abbrev;
777 struct dwarf2_section_info line;
778 struct dwarf2_section_info loc;
779 struct dwarf2_section_info loclists;
780 struct dwarf2_section_info macinfo;
781 struct dwarf2_section_info macro;
782 struct dwarf2_section_info str;
783 struct dwarf2_section_info str_offsets;
784 /* In the case of a virtual DWO file, these two are unused. */
785 struct dwarf2_section_info info;
786 VEC (dwarf2_section_info_def) *types;
787 };
788
789 /* CUs/TUs in DWP/DWO files. */
790
791 struct dwo_unit
792 {
793 /* Backlink to the containing struct dwo_file. */
794 struct dwo_file *dwo_file;
795
796 /* The "id" that distinguishes this CU/TU.
797 .debug_info calls this "dwo_id", .debug_types calls this "signature".
798 Since signatures came first, we stick with it for consistency. */
799 ULONGEST signature;
800
801 /* The section this CU/TU lives in, in the DWO file. */
802 struct dwarf2_section_info *section;
803
804 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
805 sect_offset offset;
806 unsigned int length;
807
808 /* For types, offset in the type's DIE of the type defined by this TU. */
809 cu_offset type_offset_in_tu;
810 };
811
812 /* include/dwarf2.h defines the DWP section codes.
813 It defines a max value but it doesn't define a min value, which we
814 use for error checking, so provide one. */
815
816 enum dwp_v2_section_ids
817 {
818 DW_SECT_MIN = 1
819 };
820
821 /* Data for one DWO file.
822
823 This includes virtual DWO files (a virtual DWO file is a DWO file as it
824 appears in a DWP file). DWP files don't really have DWO files per se -
825 comdat folding of types "loses" the DWO file they came from, and from
826 a high level view DWP files appear to contain a mass of random types.
827 However, to maintain consistency with the non-DWP case we pretend DWP
828 files contain virtual DWO files, and we assign each TU with one virtual
829 DWO file (generally based on the line and abbrev section offsets -
830 a heuristic that seems to work in practice). */
831
832 struct dwo_file
833 {
834 /* The DW_AT_GNU_dwo_name attribute.
835 For virtual DWO files the name is constructed from the section offsets
836 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
837 from related CU+TUs. */
838 const char *dwo_name;
839
840 /* The DW_AT_comp_dir attribute. */
841 const char *comp_dir;
842
843 /* The bfd, when the file is open. Otherwise this is NULL.
844 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
845 bfd *dbfd;
846
847 /* The sections that make up this DWO file.
848 Remember that for virtual DWO files in DWP V2, these are virtual
849 sections (for lack of a better name). */
850 struct dwo_sections sections;
851
852 /* The CU in the file.
853 We only support one because having more than one requires hacking the
854 dwo_name of each to match, which is highly unlikely to happen.
855 Doing this means all TUs can share comp_dir: We also assume that
856 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
857 struct dwo_unit *cu;
858
859 /* Table of TUs in the file.
860 Each element is a struct dwo_unit. */
861 htab_t tus;
862 };
863
864 /* These sections are what may appear in a DWP file. */
865
866 struct dwp_sections
867 {
868 /* These are used by both DWP version 1 and 2. */
869 struct dwarf2_section_info str;
870 struct dwarf2_section_info cu_index;
871 struct dwarf2_section_info tu_index;
872
873 /* These are only used by DWP version 2 files.
874 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
875 sections are referenced by section number, and are not recorded here.
876 In DWP version 2 there is at most one copy of all these sections, each
877 section being (effectively) comprised of the concatenation of all of the
878 individual sections that exist in the version 1 format.
879 To keep the code simple we treat each of these concatenated pieces as a
880 section itself (a virtual section?). */
881 struct dwarf2_section_info abbrev;
882 struct dwarf2_section_info info;
883 struct dwarf2_section_info line;
884 struct dwarf2_section_info loc;
885 struct dwarf2_section_info macinfo;
886 struct dwarf2_section_info macro;
887 struct dwarf2_section_info str_offsets;
888 struct dwarf2_section_info types;
889 };
890
891 /* These sections are what may appear in a virtual DWO file in DWP version 1.
892 A virtual DWO file is a DWO file as it appears in a DWP file. */
893
894 struct virtual_v1_dwo_sections
895 {
896 struct dwarf2_section_info abbrev;
897 struct dwarf2_section_info line;
898 struct dwarf2_section_info loc;
899 struct dwarf2_section_info macinfo;
900 struct dwarf2_section_info macro;
901 struct dwarf2_section_info str_offsets;
902 /* Each DWP hash table entry records one CU or one TU.
903 That is recorded here, and copied to dwo_unit.section. */
904 struct dwarf2_section_info info_or_types;
905 };
906
907 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
908 In version 2, the sections of the DWO files are concatenated together
909 and stored in one section of that name. Thus each ELF section contains
910 several "virtual" sections. */
911
912 struct virtual_v2_dwo_sections
913 {
914 bfd_size_type abbrev_offset;
915 bfd_size_type abbrev_size;
916
917 bfd_size_type line_offset;
918 bfd_size_type line_size;
919
920 bfd_size_type loc_offset;
921 bfd_size_type loc_size;
922
923 bfd_size_type macinfo_offset;
924 bfd_size_type macinfo_size;
925
926 bfd_size_type macro_offset;
927 bfd_size_type macro_size;
928
929 bfd_size_type str_offsets_offset;
930 bfd_size_type str_offsets_size;
931
932 /* Each DWP hash table entry records one CU or one TU.
933 That is recorded here, and copied to dwo_unit.section. */
934 bfd_size_type info_or_types_offset;
935 bfd_size_type info_or_types_size;
936 };
937
938 /* Contents of DWP hash tables. */
939
940 struct dwp_hash_table
941 {
942 uint32_t version, nr_columns;
943 uint32_t nr_units, nr_slots;
944 const gdb_byte *hash_table, *unit_table;
945 union
946 {
947 struct
948 {
949 const gdb_byte *indices;
950 } v1;
951 struct
952 {
953 /* This is indexed by column number and gives the id of the section
954 in that column. */
955 #define MAX_NR_V2_DWO_SECTIONS \
956 (1 /* .debug_info or .debug_types */ \
957 + 1 /* .debug_abbrev */ \
958 + 1 /* .debug_line */ \
959 + 1 /* .debug_loc */ \
960 + 1 /* .debug_str_offsets */ \
961 + 1 /* .debug_macro or .debug_macinfo */)
962 int section_ids[MAX_NR_V2_DWO_SECTIONS];
963 const gdb_byte *offsets;
964 const gdb_byte *sizes;
965 } v2;
966 } section_pool;
967 };
968
969 /* Data for one DWP file. */
970
971 struct dwp_file
972 {
973 /* Name of the file. */
974 const char *name;
975
976 /* File format version. */
977 int version;
978
979 /* The bfd. */
980 bfd *dbfd;
981
982 /* Section info for this file. */
983 struct dwp_sections sections;
984
985 /* Table of CUs in the file. */
986 const struct dwp_hash_table *cus;
987
988 /* Table of TUs in the file. */
989 const struct dwp_hash_table *tus;
990
991 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
992 htab_t loaded_cus;
993 htab_t loaded_tus;
994
995 /* Table to map ELF section numbers to their sections.
996 This is only needed for the DWP V1 file format. */
997 unsigned int num_sections;
998 asection **elf_sections;
999 };
1000
1001 /* This represents a '.dwz' file. */
1002
1003 struct dwz_file
1004 {
1005 /* A dwz file can only contain a few sections. */
1006 struct dwarf2_section_info abbrev;
1007 struct dwarf2_section_info info;
1008 struct dwarf2_section_info str;
1009 struct dwarf2_section_info line;
1010 struct dwarf2_section_info macro;
1011 struct dwarf2_section_info gdb_index;
1012
1013 /* The dwz's BFD. */
1014 bfd *dwz_bfd;
1015 };
1016
1017 /* Struct used to pass misc. parameters to read_die_and_children, et
1018 al. which are used for both .debug_info and .debug_types dies.
1019 All parameters here are unchanging for the life of the call. This
1020 struct exists to abstract away the constant parameters of die reading. */
1021
1022 struct die_reader_specs
1023 {
1024 /* The bfd of die_section. */
1025 bfd* abfd;
1026
1027 /* The CU of the DIE we are parsing. */
1028 struct dwarf2_cu *cu;
1029
1030 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1031 struct dwo_file *dwo_file;
1032
1033 /* The section the die comes from.
1034 This is either .debug_info or .debug_types, or the .dwo variants. */
1035 struct dwarf2_section_info *die_section;
1036
1037 /* die_section->buffer. */
1038 const gdb_byte *buffer;
1039
1040 /* The end of the buffer. */
1041 const gdb_byte *buffer_end;
1042
1043 /* The value of the DW_AT_comp_dir attribute. */
1044 const char *comp_dir;
1045 };
1046
1047 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1048 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1049 const gdb_byte *info_ptr,
1050 struct die_info *comp_unit_die,
1051 int has_children,
1052 void *data);
1053
1054 struct file_entry
1055 {
1056 const char *name;
1057 unsigned int dir_index;
1058 unsigned int mod_time;
1059 unsigned int length;
1060 /* Non-zero if referenced by the Line Number Program. */
1061 int included_p;
1062 /* The associated symbol table, if any. */
1063 struct symtab *symtab;
1064 };
1065
1066 /* The line number information for a compilation unit (found in the
1067 .debug_line section) begins with a "statement program header",
1068 which contains the following information. */
1069 struct line_header
1070 {
1071 /* Offset of line number information in .debug_line section. */
1072 sect_offset offset;
1073
1074 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1075 unsigned offset_in_dwz : 1;
1076
1077 unsigned int total_length;
1078 unsigned short version;
1079 unsigned int header_length;
1080 unsigned char minimum_instruction_length;
1081 unsigned char maximum_ops_per_instruction;
1082 unsigned char default_is_stmt;
1083 int line_base;
1084 unsigned char line_range;
1085 unsigned char opcode_base;
1086
1087 /* standard_opcode_lengths[i] is the number of operands for the
1088 standard opcode whose value is i. This means that
1089 standard_opcode_lengths[0] is unused, and the last meaningful
1090 element is standard_opcode_lengths[opcode_base - 1]. */
1091 unsigned char *standard_opcode_lengths;
1092
1093 /* The include_directories table. NOTE! These strings are not
1094 allocated with xmalloc; instead, they are pointers into
1095 debug_line_buffer. If you try to free them, `free' will get
1096 indigestion. */
1097 unsigned int num_include_dirs, include_dirs_size;
1098 const char **include_dirs;
1099
1100 /* The file_names table. NOTE! These strings are not allocated
1101 with xmalloc; instead, they are pointers into debug_line_buffer.
1102 Don't try to free them directly. */
1103 unsigned int num_file_names, file_names_size;
1104 struct file_entry *file_names;
1105
1106 /* The start and end of the statement program following this
1107 header. These point into dwarf2_per_objfile->line_buffer. */
1108 const gdb_byte *statement_program_start, *statement_program_end;
1109 };
1110
1111 /* When we construct a partial symbol table entry we only
1112 need this much information. */
1113 struct partial_die_info
1114 {
1115 /* Offset of this DIE. */
1116 sect_offset offset;
1117
1118 /* DWARF-2 tag for this DIE. */
1119 ENUM_BITFIELD(dwarf_tag) tag : 16;
1120
1121 /* Assorted flags describing the data found in this DIE. */
1122 unsigned int has_children : 1;
1123 unsigned int is_external : 1;
1124 unsigned int is_declaration : 1;
1125 unsigned int has_type : 1;
1126 unsigned int has_specification : 1;
1127 unsigned int has_pc_info : 1;
1128 unsigned int may_be_inlined : 1;
1129
1130 /* This DIE has been marked DW_AT_main_subprogram. */
1131 unsigned int main_subprogram : 1;
1132
1133 /* Flag set if the SCOPE field of this structure has been
1134 computed. */
1135 unsigned int scope_set : 1;
1136
1137 /* Flag set if the DIE has a byte_size attribute. */
1138 unsigned int has_byte_size : 1;
1139
1140 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1141 unsigned int has_const_value : 1;
1142
1143 /* Flag set if any of the DIE's children are template arguments. */
1144 unsigned int has_template_arguments : 1;
1145
1146 /* Flag set if fixup_partial_die has been called on this die. */
1147 unsigned int fixup_called : 1;
1148
1149 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1150 unsigned int is_dwz : 1;
1151
1152 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1153 unsigned int spec_is_dwz : 1;
1154
1155 /* The name of this DIE. Normally the value of DW_AT_name, but
1156 sometimes a default name for unnamed DIEs. */
1157 const char *name;
1158
1159 /* The linkage name, if present. */
1160 const char *linkage_name;
1161
1162 /* The scope to prepend to our children. This is generally
1163 allocated on the comp_unit_obstack, so will disappear
1164 when this compilation unit leaves the cache. */
1165 const char *scope;
1166
1167 /* Some data associated with the partial DIE. The tag determines
1168 which field is live. */
1169 union
1170 {
1171 /* The location description associated with this DIE, if any. */
1172 struct dwarf_block *locdesc;
1173 /* The offset of an import, for DW_TAG_imported_unit. */
1174 sect_offset offset;
1175 } d;
1176
1177 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1178 CORE_ADDR lowpc;
1179 CORE_ADDR highpc;
1180
1181 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1182 DW_AT_sibling, if any. */
1183 /* NOTE: This member isn't strictly necessary, read_partial_die could
1184 return DW_AT_sibling values to its caller load_partial_dies. */
1185 const gdb_byte *sibling;
1186
1187 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1188 DW_AT_specification (or DW_AT_abstract_origin or
1189 DW_AT_extension). */
1190 sect_offset spec_offset;
1191
1192 /* Pointers to this DIE's parent, first child, and next sibling,
1193 if any. */
1194 struct partial_die_info *die_parent, *die_child, *die_sibling;
1195 };
1196
1197 /* This data structure holds the information of an abbrev. */
1198 struct abbrev_info
1199 {
1200 unsigned int number; /* number identifying abbrev */
1201 enum dwarf_tag tag; /* dwarf tag */
1202 unsigned short has_children; /* boolean */
1203 unsigned short num_attrs; /* number of attributes */
1204 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1205 struct abbrev_info *next; /* next in chain */
1206 };
1207
1208 struct attr_abbrev
1209 {
1210 ENUM_BITFIELD(dwarf_attribute) name : 16;
1211 ENUM_BITFIELD(dwarf_form) form : 16;
1212
1213 /* It is valid only if FORM is DW_FORM_implicit_const. */
1214 LONGEST implicit_const;
1215 };
1216
1217 /* Size of abbrev_table.abbrev_hash_table. */
1218 #define ABBREV_HASH_SIZE 121
1219
1220 /* Top level data structure to contain an abbreviation table. */
1221
1222 struct abbrev_table
1223 {
1224 /* Where the abbrev table came from.
1225 This is used as a sanity check when the table is used. */
1226 sect_offset offset;
1227
1228 /* Storage for the abbrev table. */
1229 struct obstack abbrev_obstack;
1230
1231 /* Hash table of abbrevs.
1232 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1233 It could be statically allocated, but the previous code didn't so we
1234 don't either. */
1235 struct abbrev_info **abbrevs;
1236 };
1237
1238 /* Attributes have a name and a value. */
1239 struct attribute
1240 {
1241 ENUM_BITFIELD(dwarf_attribute) name : 16;
1242 ENUM_BITFIELD(dwarf_form) form : 15;
1243
1244 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1245 field should be in u.str (existing only for DW_STRING) but it is kept
1246 here for better struct attribute alignment. */
1247 unsigned int string_is_canonical : 1;
1248
1249 union
1250 {
1251 const char *str;
1252 struct dwarf_block *blk;
1253 ULONGEST unsnd;
1254 LONGEST snd;
1255 CORE_ADDR addr;
1256 ULONGEST signature;
1257 }
1258 u;
1259 };
1260
1261 /* This data structure holds a complete die structure. */
1262 struct die_info
1263 {
1264 /* DWARF-2 tag for this DIE. */
1265 ENUM_BITFIELD(dwarf_tag) tag : 16;
1266
1267 /* Number of attributes */
1268 unsigned char num_attrs;
1269
1270 /* True if we're presently building the full type name for the
1271 type derived from this DIE. */
1272 unsigned char building_fullname : 1;
1273
1274 /* True if this die is in process. PR 16581. */
1275 unsigned char in_process : 1;
1276
1277 /* Abbrev number */
1278 unsigned int abbrev;
1279
1280 /* Offset in .debug_info or .debug_types section. */
1281 sect_offset offset;
1282
1283 /* The dies in a compilation unit form an n-ary tree. PARENT
1284 points to this die's parent; CHILD points to the first child of
1285 this node; and all the children of a given node are chained
1286 together via their SIBLING fields. */
1287 struct die_info *child; /* Its first child, if any. */
1288 struct die_info *sibling; /* Its next sibling, if any. */
1289 struct die_info *parent; /* Its parent, if any. */
1290
1291 /* An array of attributes, with NUM_ATTRS elements. There may be
1292 zero, but it's not common and zero-sized arrays are not
1293 sufficiently portable C. */
1294 struct attribute attrs[1];
1295 };
1296
1297 /* Get at parts of an attribute structure. */
1298
1299 #define DW_STRING(attr) ((attr)->u.str)
1300 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1301 #define DW_UNSND(attr) ((attr)->u.unsnd)
1302 #define DW_BLOCK(attr) ((attr)->u.blk)
1303 #define DW_SND(attr) ((attr)->u.snd)
1304 #define DW_ADDR(attr) ((attr)->u.addr)
1305 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1306
1307 /* Blocks are a bunch of untyped bytes. */
1308 struct dwarf_block
1309 {
1310 size_t size;
1311
1312 /* Valid only if SIZE is not zero. */
1313 const gdb_byte *data;
1314 };
1315
1316 #ifndef ATTR_ALLOC_CHUNK
1317 #define ATTR_ALLOC_CHUNK 4
1318 #endif
1319
1320 /* Allocate fields for structs, unions and enums in this size. */
1321 #ifndef DW_FIELD_ALLOC_CHUNK
1322 #define DW_FIELD_ALLOC_CHUNK 4
1323 #endif
1324
1325 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1326 but this would require a corresponding change in unpack_field_as_long
1327 and friends. */
1328 static int bits_per_byte = 8;
1329
1330 struct nextfield
1331 {
1332 struct nextfield *next;
1333 int accessibility;
1334 int virtuality;
1335 struct field field;
1336 };
1337
1338 struct nextfnfield
1339 {
1340 struct nextfnfield *next;
1341 struct fn_field fnfield;
1342 };
1343
1344 struct fnfieldlist
1345 {
1346 const char *name;
1347 int length;
1348 struct nextfnfield *head;
1349 };
1350
1351 struct typedef_field_list
1352 {
1353 struct typedef_field field;
1354 struct typedef_field_list *next;
1355 };
1356
1357 /* The routines that read and process dies for a C struct or C++ class
1358 pass lists of data member fields and lists of member function fields
1359 in an instance of a field_info structure, as defined below. */
1360 struct field_info
1361 {
1362 /* List of data member and baseclasses fields. */
1363 struct nextfield *fields, *baseclasses;
1364
1365 /* Number of fields (including baseclasses). */
1366 int nfields;
1367
1368 /* Number of baseclasses. */
1369 int nbaseclasses;
1370
1371 /* Set if the accesibility of one of the fields is not public. */
1372 int non_public_fields;
1373
1374 /* Member function fields array, entries are allocated in the order they
1375 are encountered in the object file. */
1376 struct nextfnfield *fnfields;
1377
1378 /* Member function fieldlist array, contains name of possibly overloaded
1379 member function, number of overloaded member functions and a pointer
1380 to the head of the member function field chain. */
1381 struct fnfieldlist *fnfieldlists;
1382
1383 /* Number of entries in the fnfieldlists array. */
1384 int nfnfields;
1385
1386 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1387 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1388 struct typedef_field_list *typedef_field_list;
1389 unsigned typedef_field_list_count;
1390 };
1391
1392 /* One item on the queue of compilation units to read in full symbols
1393 for. */
1394 struct dwarf2_queue_item
1395 {
1396 struct dwarf2_per_cu_data *per_cu;
1397 enum language pretend_language;
1398 struct dwarf2_queue_item *next;
1399 };
1400
1401 /* The current queue. */
1402 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1403
1404 /* Loaded secondary compilation units are kept in memory until they
1405 have not been referenced for the processing of this many
1406 compilation units. Set this to zero to disable caching. Cache
1407 sizes of up to at least twenty will improve startup time for
1408 typical inter-CU-reference binaries, at an obvious memory cost. */
1409 static int dwarf_max_cache_age = 5;
1410 static void
1411 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1412 struct cmd_list_element *c, const char *value)
1413 {
1414 fprintf_filtered (file, _("The upper bound on the age of cached "
1415 "DWARF compilation units is %s.\n"),
1416 value);
1417 }
1418 \f
1419 /* local function prototypes */
1420
1421 static const char *get_section_name (const struct dwarf2_section_info *);
1422
1423 static const char *get_section_file_name (const struct dwarf2_section_info *);
1424
1425 static void dwarf2_locate_sections (bfd *, asection *, void *);
1426
1427 static void dwarf2_find_base_address (struct die_info *die,
1428 struct dwarf2_cu *cu);
1429
1430 static struct partial_symtab *create_partial_symtab
1431 (struct dwarf2_per_cu_data *per_cu, const char *name);
1432
1433 static void dwarf2_build_psymtabs_hard (struct objfile *);
1434
1435 static void scan_partial_symbols (struct partial_die_info *,
1436 CORE_ADDR *, CORE_ADDR *,
1437 int, struct dwarf2_cu *);
1438
1439 static void add_partial_symbol (struct partial_die_info *,
1440 struct dwarf2_cu *);
1441
1442 static void add_partial_namespace (struct partial_die_info *pdi,
1443 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1444 int set_addrmap, struct dwarf2_cu *cu);
1445
1446 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1447 CORE_ADDR *highpc, int set_addrmap,
1448 struct dwarf2_cu *cu);
1449
1450 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1451 struct dwarf2_cu *cu);
1452
1453 static void add_partial_subprogram (struct partial_die_info *pdi,
1454 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1455 int need_pc, struct dwarf2_cu *cu);
1456
1457 static void dwarf2_read_symtab (struct partial_symtab *,
1458 struct objfile *);
1459
1460 static void psymtab_to_symtab_1 (struct partial_symtab *);
1461
1462 static struct abbrev_info *abbrev_table_lookup_abbrev
1463 (const struct abbrev_table *, unsigned int);
1464
1465 static struct abbrev_table *abbrev_table_read_table
1466 (struct dwarf2_section_info *, sect_offset);
1467
1468 static void abbrev_table_free (struct abbrev_table *);
1469
1470 static void abbrev_table_free_cleanup (void *);
1471
1472 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1473 struct dwarf2_section_info *);
1474
1475 static void dwarf2_free_abbrev_table (void *);
1476
1477 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1478
1479 static struct partial_die_info *load_partial_dies
1480 (const struct die_reader_specs *, const gdb_byte *, int);
1481
1482 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1483 struct partial_die_info *,
1484 struct abbrev_info *,
1485 unsigned int,
1486 const gdb_byte *);
1487
1488 static struct partial_die_info *find_partial_die (sect_offset, int,
1489 struct dwarf2_cu *);
1490
1491 static void fixup_partial_die (struct partial_die_info *,
1492 struct dwarf2_cu *);
1493
1494 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1495 struct attribute *, struct attr_abbrev *,
1496 const gdb_byte *);
1497
1498 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1499
1500 static int read_1_signed_byte (bfd *, const gdb_byte *);
1501
1502 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1503
1504 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1505
1506 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1507
1508 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1509 unsigned int *);
1510
1511 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1512
1513 static LONGEST read_checked_initial_length_and_offset
1514 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1515 unsigned int *, unsigned int *);
1516
1517 static LONGEST read_offset (bfd *, const gdb_byte *,
1518 const struct comp_unit_head *,
1519 unsigned int *);
1520
1521 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1522
1523 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1524 sect_offset);
1525
1526 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1527
1528 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1529
1530 static const char *read_indirect_string (bfd *, const gdb_byte *,
1531 const struct comp_unit_head *,
1532 unsigned int *);
1533
1534 static const char *read_indirect_line_string (bfd *, const gdb_byte *,
1535 const struct comp_unit_head *,
1536 unsigned int *);
1537
1538 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1539
1540 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1541
1542 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1543 const gdb_byte *,
1544 unsigned int *);
1545
1546 static const char *read_str_index (const struct die_reader_specs *reader,
1547 ULONGEST str_index);
1548
1549 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1550
1551 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1552 struct dwarf2_cu *);
1553
1554 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1555 unsigned int);
1556
1557 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1558 struct dwarf2_cu *cu);
1559
1560 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1561 struct dwarf2_cu *cu);
1562
1563 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1564
1565 static struct die_info *die_specification (struct die_info *die,
1566 struct dwarf2_cu **);
1567
1568 static void free_line_header (struct line_header *lh);
1569
1570 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1571 struct dwarf2_cu *cu);
1572
1573 static void dwarf_decode_lines (struct line_header *, const char *,
1574 struct dwarf2_cu *, struct partial_symtab *,
1575 CORE_ADDR, int decode_mapping);
1576
1577 static void dwarf2_start_subfile (const char *, const char *);
1578
1579 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1580 const char *, const char *,
1581 CORE_ADDR);
1582
1583 static struct symbol *new_symbol (struct die_info *, struct type *,
1584 struct dwarf2_cu *);
1585
1586 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1587 struct dwarf2_cu *, struct symbol *);
1588
1589 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1590 struct dwarf2_cu *);
1591
1592 static void dwarf2_const_value_attr (const struct attribute *attr,
1593 struct type *type,
1594 const char *name,
1595 struct obstack *obstack,
1596 struct dwarf2_cu *cu, LONGEST *value,
1597 const gdb_byte **bytes,
1598 struct dwarf2_locexpr_baton **baton);
1599
1600 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1601
1602 static int need_gnat_info (struct dwarf2_cu *);
1603
1604 static struct type *die_descriptive_type (struct die_info *,
1605 struct dwarf2_cu *);
1606
1607 static void set_descriptive_type (struct type *, struct die_info *,
1608 struct dwarf2_cu *);
1609
1610 static struct type *die_containing_type (struct die_info *,
1611 struct dwarf2_cu *);
1612
1613 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1614 struct dwarf2_cu *);
1615
1616 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1617
1618 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1619
1620 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1621
1622 static char *typename_concat (struct obstack *obs, const char *prefix,
1623 const char *suffix, int physname,
1624 struct dwarf2_cu *cu);
1625
1626 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1627
1628 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1629
1630 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1631
1632 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1633
1634 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1635
1636 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1637 struct dwarf2_cu *, struct partial_symtab *);
1638
1639 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1640 values. Keep the items ordered with increasing constraints compliance. */
1641 enum pc_bounds_kind
1642 {
1643 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1644 PC_BOUNDS_NOT_PRESENT,
1645
1646 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1647 were present but they do not form a valid range of PC addresses. */
1648 PC_BOUNDS_INVALID,
1649
1650 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1651 PC_BOUNDS_RANGES,
1652
1653 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1654 PC_BOUNDS_HIGH_LOW,
1655 };
1656
1657 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1658 CORE_ADDR *, CORE_ADDR *,
1659 struct dwarf2_cu *,
1660 struct partial_symtab *);
1661
1662 static void get_scope_pc_bounds (struct die_info *,
1663 CORE_ADDR *, CORE_ADDR *,
1664 struct dwarf2_cu *);
1665
1666 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1667 CORE_ADDR, struct dwarf2_cu *);
1668
1669 static void dwarf2_add_field (struct field_info *, struct die_info *,
1670 struct dwarf2_cu *);
1671
1672 static void dwarf2_attach_fields_to_type (struct field_info *,
1673 struct type *, struct dwarf2_cu *);
1674
1675 static void dwarf2_add_member_fn (struct field_info *,
1676 struct die_info *, struct type *,
1677 struct dwarf2_cu *);
1678
1679 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1680 struct type *,
1681 struct dwarf2_cu *);
1682
1683 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1684
1685 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1686
1687 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1688
1689 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1690
1691 static struct using_direct **using_directives (enum language);
1692
1693 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1694
1695 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1696
1697 static struct type *read_module_type (struct die_info *die,
1698 struct dwarf2_cu *cu);
1699
1700 static const char *namespace_name (struct die_info *die,
1701 int *is_anonymous, struct dwarf2_cu *);
1702
1703 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1704
1705 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1706
1707 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1708 struct dwarf2_cu *);
1709
1710 static struct die_info *read_die_and_siblings_1
1711 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1712 struct die_info *);
1713
1714 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1715 const gdb_byte *info_ptr,
1716 const gdb_byte **new_info_ptr,
1717 struct die_info *parent);
1718
1719 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1720 struct die_info **, const gdb_byte *,
1721 int *, int);
1722
1723 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1724 struct die_info **, const gdb_byte *,
1725 int *);
1726
1727 static void process_die (struct die_info *, struct dwarf2_cu *);
1728
1729 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1730 struct obstack *);
1731
1732 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1733
1734 static const char *dwarf2_full_name (const char *name,
1735 struct die_info *die,
1736 struct dwarf2_cu *cu);
1737
1738 static const char *dwarf2_physname (const char *name, struct die_info *die,
1739 struct dwarf2_cu *cu);
1740
1741 static struct die_info *dwarf2_extension (struct die_info *die,
1742 struct dwarf2_cu **);
1743
1744 static const char *dwarf_tag_name (unsigned int);
1745
1746 static const char *dwarf_attr_name (unsigned int);
1747
1748 static const char *dwarf_form_name (unsigned int);
1749
1750 static char *dwarf_bool_name (unsigned int);
1751
1752 static const char *dwarf_type_encoding_name (unsigned int);
1753
1754 static struct die_info *sibling_die (struct die_info *);
1755
1756 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1757
1758 static void dump_die_for_error (struct die_info *);
1759
1760 static void dump_die_1 (struct ui_file *, int level, int max_level,
1761 struct die_info *);
1762
1763 /*static*/ void dump_die (struct die_info *, int max_level);
1764
1765 static void store_in_ref_table (struct die_info *,
1766 struct dwarf2_cu *);
1767
1768 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1769
1770 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1771
1772 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1773 const struct attribute *,
1774 struct dwarf2_cu **);
1775
1776 static struct die_info *follow_die_ref (struct die_info *,
1777 const struct attribute *,
1778 struct dwarf2_cu **);
1779
1780 static struct die_info *follow_die_sig (struct die_info *,
1781 const struct attribute *,
1782 struct dwarf2_cu **);
1783
1784 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1785 struct dwarf2_cu *);
1786
1787 static struct type *get_DW_AT_signature_type (struct die_info *,
1788 const struct attribute *,
1789 struct dwarf2_cu *);
1790
1791 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1792
1793 static void read_signatured_type (struct signatured_type *);
1794
1795 static int attr_to_dynamic_prop (const struct attribute *attr,
1796 struct die_info *die, struct dwarf2_cu *cu,
1797 struct dynamic_prop *prop);
1798
1799 /* memory allocation interface */
1800
1801 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1802
1803 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1804
1805 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1806
1807 static int attr_form_is_block (const struct attribute *);
1808
1809 static int attr_form_is_section_offset (const struct attribute *);
1810
1811 static int attr_form_is_constant (const struct attribute *);
1812
1813 static int attr_form_is_ref (const struct attribute *);
1814
1815 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1816 struct dwarf2_loclist_baton *baton,
1817 const struct attribute *attr);
1818
1819 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1820 struct symbol *sym,
1821 struct dwarf2_cu *cu,
1822 int is_block);
1823
1824 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1825 const gdb_byte *info_ptr,
1826 struct abbrev_info *abbrev);
1827
1828 static void free_stack_comp_unit (void *);
1829
1830 static hashval_t partial_die_hash (const void *item);
1831
1832 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1833
1834 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1835 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1836
1837 static void init_one_comp_unit (struct dwarf2_cu *cu,
1838 struct dwarf2_per_cu_data *per_cu);
1839
1840 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1841 struct die_info *comp_unit_die,
1842 enum language pretend_language);
1843
1844 static void free_heap_comp_unit (void *);
1845
1846 static void free_cached_comp_units (void *);
1847
1848 static void age_cached_comp_units (void);
1849
1850 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1851
1852 static struct type *set_die_type (struct die_info *, struct type *,
1853 struct dwarf2_cu *);
1854
1855 static void create_all_comp_units (struct objfile *);
1856
1857 static int create_all_type_units (struct objfile *);
1858
1859 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1860 enum language);
1861
1862 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1863 enum language);
1864
1865 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1866 enum language);
1867
1868 static void dwarf2_add_dependence (struct dwarf2_cu *,
1869 struct dwarf2_per_cu_data *);
1870
1871 static void dwarf2_mark (struct dwarf2_cu *);
1872
1873 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1874
1875 static struct type *get_die_type_at_offset (sect_offset,
1876 struct dwarf2_per_cu_data *);
1877
1878 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1879
1880 static void dwarf2_release_queue (void *dummy);
1881
1882 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1883 enum language pretend_language);
1884
1885 static void process_queue (void);
1886
1887 static void find_file_and_directory (struct die_info *die,
1888 struct dwarf2_cu *cu,
1889 const char **name, const char **comp_dir);
1890
1891 static char *file_full_name (int file, struct line_header *lh,
1892 const char *comp_dir);
1893
1894 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1895 enum class rcuh_kind { COMPILE, TYPE };
1896
1897 static const gdb_byte *read_and_check_comp_unit_head
1898 (struct comp_unit_head *header,
1899 struct dwarf2_section_info *section,
1900 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1901 rcuh_kind section_kind);
1902
1903 static void init_cutu_and_read_dies
1904 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1905 int use_existing_cu, int keep,
1906 die_reader_func_ftype *die_reader_func, void *data);
1907
1908 static void init_cutu_and_read_dies_simple
1909 (struct dwarf2_per_cu_data *this_cu,
1910 die_reader_func_ftype *die_reader_func, void *data);
1911
1912 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1913
1914 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1915
1916 static struct dwo_unit *lookup_dwo_unit_in_dwp
1917 (struct dwp_file *dwp_file, const char *comp_dir,
1918 ULONGEST signature, int is_debug_types);
1919
1920 static struct dwp_file *get_dwp_file (void);
1921
1922 static struct dwo_unit *lookup_dwo_comp_unit
1923 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1924
1925 static struct dwo_unit *lookup_dwo_type_unit
1926 (struct signatured_type *, const char *, const char *);
1927
1928 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1929
1930 static void free_dwo_file_cleanup (void *);
1931
1932 static void process_cu_includes (void);
1933
1934 static void check_producer (struct dwarf2_cu *cu);
1935
1936 static void free_line_header_voidp (void *arg);
1937 \f
1938 /* Various complaints about symbol reading that don't abort the process. */
1939
1940 static void
1941 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1942 {
1943 complaint (&symfile_complaints,
1944 _("statement list doesn't fit in .debug_line section"));
1945 }
1946
1947 static void
1948 dwarf2_debug_line_missing_file_complaint (void)
1949 {
1950 complaint (&symfile_complaints,
1951 _(".debug_line section has line data without a file"));
1952 }
1953
1954 static void
1955 dwarf2_debug_line_missing_end_sequence_complaint (void)
1956 {
1957 complaint (&symfile_complaints,
1958 _(".debug_line section has line "
1959 "program sequence without an end"));
1960 }
1961
1962 static void
1963 dwarf2_complex_location_expr_complaint (void)
1964 {
1965 complaint (&symfile_complaints, _("location expression too complex"));
1966 }
1967
1968 static void
1969 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1970 int arg3)
1971 {
1972 complaint (&symfile_complaints,
1973 _("const value length mismatch for '%s', got %d, expected %d"),
1974 arg1, arg2, arg3);
1975 }
1976
1977 static void
1978 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1979 {
1980 complaint (&symfile_complaints,
1981 _("debug info runs off end of %s section"
1982 " [in module %s]"),
1983 get_section_name (section),
1984 get_section_file_name (section));
1985 }
1986
1987 static void
1988 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1989 {
1990 complaint (&symfile_complaints,
1991 _("macro debug info contains a "
1992 "malformed macro definition:\n`%s'"),
1993 arg1);
1994 }
1995
1996 static void
1997 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1998 {
1999 complaint (&symfile_complaints,
2000 _("invalid attribute class or form for '%s' in '%s'"),
2001 arg1, arg2);
2002 }
2003
2004 /* Hash function for line_header_hash. */
2005
2006 static hashval_t
2007 line_header_hash (const struct line_header *ofs)
2008 {
2009 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
2010 }
2011
2012 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2013
2014 static hashval_t
2015 line_header_hash_voidp (const void *item)
2016 {
2017 const struct line_header *ofs = (const struct line_header *) item;
2018
2019 return line_header_hash (ofs);
2020 }
2021
2022 /* Equality function for line_header_hash. */
2023
2024 static int
2025 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2026 {
2027 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2028 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2029
2030 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
2031 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2032 }
2033
2034 \f
2035 #if WORDS_BIGENDIAN
2036
2037 /* Convert VALUE between big- and little-endian. */
2038 static offset_type
2039 byte_swap (offset_type value)
2040 {
2041 offset_type result;
2042
2043 result = (value & 0xff) << 24;
2044 result |= (value & 0xff00) << 8;
2045 result |= (value & 0xff0000) >> 8;
2046 result |= (value & 0xff000000) >> 24;
2047 return result;
2048 }
2049
2050 #define MAYBE_SWAP(V) byte_swap (V)
2051
2052 #else
2053 #define MAYBE_SWAP(V) (V)
2054 #endif /* WORDS_BIGENDIAN */
2055
2056 /* Read the given attribute value as an address, taking the attribute's
2057 form into account. */
2058
2059 static CORE_ADDR
2060 attr_value_as_address (struct attribute *attr)
2061 {
2062 CORE_ADDR addr;
2063
2064 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2065 {
2066 /* Aside from a few clearly defined exceptions, attributes that
2067 contain an address must always be in DW_FORM_addr form.
2068 Unfortunately, some compilers happen to be violating this
2069 requirement by encoding addresses using other forms, such
2070 as DW_FORM_data4 for example. For those broken compilers,
2071 we try to do our best, without any guarantee of success,
2072 to interpret the address correctly. It would also be nice
2073 to generate a complaint, but that would require us to maintain
2074 a list of legitimate cases where a non-address form is allowed,
2075 as well as update callers to pass in at least the CU's DWARF
2076 version. This is more overhead than what we're willing to
2077 expand for a pretty rare case. */
2078 addr = DW_UNSND (attr);
2079 }
2080 else
2081 addr = DW_ADDR (attr);
2082
2083 return addr;
2084 }
2085
2086 /* The suffix for an index file. */
2087 #define INDEX_SUFFIX ".gdb-index"
2088
2089 /* Try to locate the sections we need for DWARF 2 debugging
2090 information and return true if we have enough to do something.
2091 NAMES points to the dwarf2 section names, or is NULL if the standard
2092 ELF names are used. */
2093
2094 int
2095 dwarf2_has_info (struct objfile *objfile,
2096 const struct dwarf2_debug_sections *names)
2097 {
2098 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2099 objfile_data (objfile, dwarf2_objfile_data_key));
2100 if (!dwarf2_per_objfile)
2101 {
2102 /* Initialize per-objfile state. */
2103 struct dwarf2_per_objfile *data
2104 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
2105
2106 memset (data, 0, sizeof (*data));
2107 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2108 dwarf2_per_objfile = data;
2109
2110 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2111 (void *) names);
2112 dwarf2_per_objfile->objfile = objfile;
2113 }
2114 return (!dwarf2_per_objfile->info.is_virtual
2115 && dwarf2_per_objfile->info.s.section != NULL
2116 && !dwarf2_per_objfile->abbrev.is_virtual
2117 && dwarf2_per_objfile->abbrev.s.section != NULL);
2118 }
2119
2120 /* Return the containing section of virtual section SECTION. */
2121
2122 static struct dwarf2_section_info *
2123 get_containing_section (const struct dwarf2_section_info *section)
2124 {
2125 gdb_assert (section->is_virtual);
2126 return section->s.containing_section;
2127 }
2128
2129 /* Return the bfd owner of SECTION. */
2130
2131 static struct bfd *
2132 get_section_bfd_owner (const struct dwarf2_section_info *section)
2133 {
2134 if (section->is_virtual)
2135 {
2136 section = get_containing_section (section);
2137 gdb_assert (!section->is_virtual);
2138 }
2139 return section->s.section->owner;
2140 }
2141
2142 /* Return the bfd section of SECTION.
2143 Returns NULL if the section is not present. */
2144
2145 static asection *
2146 get_section_bfd_section (const struct dwarf2_section_info *section)
2147 {
2148 if (section->is_virtual)
2149 {
2150 section = get_containing_section (section);
2151 gdb_assert (!section->is_virtual);
2152 }
2153 return section->s.section;
2154 }
2155
2156 /* Return the name of SECTION. */
2157
2158 static const char *
2159 get_section_name (const struct dwarf2_section_info *section)
2160 {
2161 asection *sectp = get_section_bfd_section (section);
2162
2163 gdb_assert (sectp != NULL);
2164 return bfd_section_name (get_section_bfd_owner (section), sectp);
2165 }
2166
2167 /* Return the name of the file SECTION is in. */
2168
2169 static const char *
2170 get_section_file_name (const struct dwarf2_section_info *section)
2171 {
2172 bfd *abfd = get_section_bfd_owner (section);
2173
2174 return bfd_get_filename (abfd);
2175 }
2176
2177 /* Return the id of SECTION.
2178 Returns 0 if SECTION doesn't exist. */
2179
2180 static int
2181 get_section_id (const struct dwarf2_section_info *section)
2182 {
2183 asection *sectp = get_section_bfd_section (section);
2184
2185 if (sectp == NULL)
2186 return 0;
2187 return sectp->id;
2188 }
2189
2190 /* Return the flags of SECTION.
2191 SECTION (or containing section if this is a virtual section) must exist. */
2192
2193 static int
2194 get_section_flags (const struct dwarf2_section_info *section)
2195 {
2196 asection *sectp = get_section_bfd_section (section);
2197
2198 gdb_assert (sectp != NULL);
2199 return bfd_get_section_flags (sectp->owner, sectp);
2200 }
2201
2202 /* When loading sections, we look either for uncompressed section or for
2203 compressed section names. */
2204
2205 static int
2206 section_is_p (const char *section_name,
2207 const struct dwarf2_section_names *names)
2208 {
2209 if (names->normal != NULL
2210 && strcmp (section_name, names->normal) == 0)
2211 return 1;
2212 if (names->compressed != NULL
2213 && strcmp (section_name, names->compressed) == 0)
2214 return 1;
2215 return 0;
2216 }
2217
2218 /* This function is mapped across the sections and remembers the
2219 offset and size of each of the debugging sections we are interested
2220 in. */
2221
2222 static void
2223 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2224 {
2225 const struct dwarf2_debug_sections *names;
2226 flagword aflag = bfd_get_section_flags (abfd, sectp);
2227
2228 if (vnames == NULL)
2229 names = &dwarf2_elf_names;
2230 else
2231 names = (const struct dwarf2_debug_sections *) vnames;
2232
2233 if ((aflag & SEC_HAS_CONTENTS) == 0)
2234 {
2235 }
2236 else if (section_is_p (sectp->name, &names->info))
2237 {
2238 dwarf2_per_objfile->info.s.section = sectp;
2239 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2240 }
2241 else if (section_is_p (sectp->name, &names->abbrev))
2242 {
2243 dwarf2_per_objfile->abbrev.s.section = sectp;
2244 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2245 }
2246 else if (section_is_p (sectp->name, &names->line))
2247 {
2248 dwarf2_per_objfile->line.s.section = sectp;
2249 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2250 }
2251 else if (section_is_p (sectp->name, &names->loc))
2252 {
2253 dwarf2_per_objfile->loc.s.section = sectp;
2254 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2255 }
2256 else if (section_is_p (sectp->name, &names->loclists))
2257 {
2258 dwarf2_per_objfile->loclists.s.section = sectp;
2259 dwarf2_per_objfile->loclists.size = bfd_get_section_size (sectp);
2260 }
2261 else if (section_is_p (sectp->name, &names->macinfo))
2262 {
2263 dwarf2_per_objfile->macinfo.s.section = sectp;
2264 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2265 }
2266 else if (section_is_p (sectp->name, &names->macro))
2267 {
2268 dwarf2_per_objfile->macro.s.section = sectp;
2269 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2270 }
2271 else if (section_is_p (sectp->name, &names->str))
2272 {
2273 dwarf2_per_objfile->str.s.section = sectp;
2274 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2275 }
2276 else if (section_is_p (sectp->name, &names->line_str))
2277 {
2278 dwarf2_per_objfile->line_str.s.section = sectp;
2279 dwarf2_per_objfile->line_str.size = bfd_get_section_size (sectp);
2280 }
2281 else if (section_is_p (sectp->name, &names->addr))
2282 {
2283 dwarf2_per_objfile->addr.s.section = sectp;
2284 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2285 }
2286 else if (section_is_p (sectp->name, &names->frame))
2287 {
2288 dwarf2_per_objfile->frame.s.section = sectp;
2289 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2290 }
2291 else if (section_is_p (sectp->name, &names->eh_frame))
2292 {
2293 dwarf2_per_objfile->eh_frame.s.section = sectp;
2294 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2295 }
2296 else if (section_is_p (sectp->name, &names->ranges))
2297 {
2298 dwarf2_per_objfile->ranges.s.section = sectp;
2299 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2300 }
2301 else if (section_is_p (sectp->name, &names->rnglists))
2302 {
2303 dwarf2_per_objfile->rnglists.s.section = sectp;
2304 dwarf2_per_objfile->rnglists.size = bfd_get_section_size (sectp);
2305 }
2306 else if (section_is_p (sectp->name, &names->types))
2307 {
2308 struct dwarf2_section_info type_section;
2309
2310 memset (&type_section, 0, sizeof (type_section));
2311 type_section.s.section = sectp;
2312 type_section.size = bfd_get_section_size (sectp);
2313
2314 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2315 &type_section);
2316 }
2317 else if (section_is_p (sectp->name, &names->gdb_index))
2318 {
2319 dwarf2_per_objfile->gdb_index.s.section = sectp;
2320 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2321 }
2322
2323 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2324 && bfd_section_vma (abfd, sectp) == 0)
2325 dwarf2_per_objfile->has_section_at_zero = 1;
2326 }
2327
2328 /* A helper function that decides whether a section is empty,
2329 or not present. */
2330
2331 static int
2332 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2333 {
2334 if (section->is_virtual)
2335 return section->size == 0;
2336 return section->s.section == NULL || section->size == 0;
2337 }
2338
2339 /* Read the contents of the section INFO.
2340 OBJFILE is the main object file, but not necessarily the file where
2341 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2342 of the DWO file.
2343 If the section is compressed, uncompress it before returning. */
2344
2345 static void
2346 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2347 {
2348 asection *sectp;
2349 bfd *abfd;
2350 gdb_byte *buf, *retbuf;
2351
2352 if (info->readin)
2353 return;
2354 info->buffer = NULL;
2355 info->readin = 1;
2356
2357 if (dwarf2_section_empty_p (info))
2358 return;
2359
2360 sectp = get_section_bfd_section (info);
2361
2362 /* If this is a virtual section we need to read in the real one first. */
2363 if (info->is_virtual)
2364 {
2365 struct dwarf2_section_info *containing_section =
2366 get_containing_section (info);
2367
2368 gdb_assert (sectp != NULL);
2369 if ((sectp->flags & SEC_RELOC) != 0)
2370 {
2371 error (_("Dwarf Error: DWP format V2 with relocations is not"
2372 " supported in section %s [in module %s]"),
2373 get_section_name (info), get_section_file_name (info));
2374 }
2375 dwarf2_read_section (objfile, containing_section);
2376 /* Other code should have already caught virtual sections that don't
2377 fit. */
2378 gdb_assert (info->virtual_offset + info->size
2379 <= containing_section->size);
2380 /* If the real section is empty or there was a problem reading the
2381 section we shouldn't get here. */
2382 gdb_assert (containing_section->buffer != NULL);
2383 info->buffer = containing_section->buffer + info->virtual_offset;
2384 return;
2385 }
2386
2387 /* If the section has relocations, we must read it ourselves.
2388 Otherwise we attach it to the BFD. */
2389 if ((sectp->flags & SEC_RELOC) == 0)
2390 {
2391 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2392 return;
2393 }
2394
2395 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2396 info->buffer = buf;
2397
2398 /* When debugging .o files, we may need to apply relocations; see
2399 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2400 We never compress sections in .o files, so we only need to
2401 try this when the section is not compressed. */
2402 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2403 if (retbuf != NULL)
2404 {
2405 info->buffer = retbuf;
2406 return;
2407 }
2408
2409 abfd = get_section_bfd_owner (info);
2410 gdb_assert (abfd != NULL);
2411
2412 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2413 || bfd_bread (buf, info->size, abfd) != info->size)
2414 {
2415 error (_("Dwarf Error: Can't read DWARF data"
2416 " in section %s [in module %s]"),
2417 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2418 }
2419 }
2420
2421 /* A helper function that returns the size of a section in a safe way.
2422 If you are positive that the section has been read before using the
2423 size, then it is safe to refer to the dwarf2_section_info object's
2424 "size" field directly. In other cases, you must call this
2425 function, because for compressed sections the size field is not set
2426 correctly until the section has been read. */
2427
2428 static bfd_size_type
2429 dwarf2_section_size (struct objfile *objfile,
2430 struct dwarf2_section_info *info)
2431 {
2432 if (!info->readin)
2433 dwarf2_read_section (objfile, info);
2434 return info->size;
2435 }
2436
2437 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2438 SECTION_NAME. */
2439
2440 void
2441 dwarf2_get_section_info (struct objfile *objfile,
2442 enum dwarf2_section_enum sect,
2443 asection **sectp, const gdb_byte **bufp,
2444 bfd_size_type *sizep)
2445 {
2446 struct dwarf2_per_objfile *data
2447 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2448 dwarf2_objfile_data_key);
2449 struct dwarf2_section_info *info;
2450
2451 /* We may see an objfile without any DWARF, in which case we just
2452 return nothing. */
2453 if (data == NULL)
2454 {
2455 *sectp = NULL;
2456 *bufp = NULL;
2457 *sizep = 0;
2458 return;
2459 }
2460 switch (sect)
2461 {
2462 case DWARF2_DEBUG_FRAME:
2463 info = &data->frame;
2464 break;
2465 case DWARF2_EH_FRAME:
2466 info = &data->eh_frame;
2467 break;
2468 default:
2469 gdb_assert_not_reached ("unexpected section");
2470 }
2471
2472 dwarf2_read_section (objfile, info);
2473
2474 *sectp = get_section_bfd_section (info);
2475 *bufp = info->buffer;
2476 *sizep = info->size;
2477 }
2478
2479 /* A helper function to find the sections for a .dwz file. */
2480
2481 static void
2482 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2483 {
2484 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2485
2486 /* Note that we only support the standard ELF names, because .dwz
2487 is ELF-only (at the time of writing). */
2488 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2489 {
2490 dwz_file->abbrev.s.section = sectp;
2491 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2492 }
2493 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2494 {
2495 dwz_file->info.s.section = sectp;
2496 dwz_file->info.size = bfd_get_section_size (sectp);
2497 }
2498 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2499 {
2500 dwz_file->str.s.section = sectp;
2501 dwz_file->str.size = bfd_get_section_size (sectp);
2502 }
2503 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2504 {
2505 dwz_file->line.s.section = sectp;
2506 dwz_file->line.size = bfd_get_section_size (sectp);
2507 }
2508 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2509 {
2510 dwz_file->macro.s.section = sectp;
2511 dwz_file->macro.size = bfd_get_section_size (sectp);
2512 }
2513 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2514 {
2515 dwz_file->gdb_index.s.section = sectp;
2516 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2517 }
2518 }
2519
2520 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2521 there is no .gnu_debugaltlink section in the file. Error if there
2522 is such a section but the file cannot be found. */
2523
2524 static struct dwz_file *
2525 dwarf2_get_dwz_file (void)
2526 {
2527 char *data;
2528 struct cleanup *cleanup;
2529 const char *filename;
2530 struct dwz_file *result;
2531 bfd_size_type buildid_len_arg;
2532 size_t buildid_len;
2533 bfd_byte *buildid;
2534
2535 if (dwarf2_per_objfile->dwz_file != NULL)
2536 return dwarf2_per_objfile->dwz_file;
2537
2538 bfd_set_error (bfd_error_no_error);
2539 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2540 &buildid_len_arg, &buildid);
2541 if (data == NULL)
2542 {
2543 if (bfd_get_error () == bfd_error_no_error)
2544 return NULL;
2545 error (_("could not read '.gnu_debugaltlink' section: %s"),
2546 bfd_errmsg (bfd_get_error ()));
2547 }
2548 cleanup = make_cleanup (xfree, data);
2549 make_cleanup (xfree, buildid);
2550
2551 buildid_len = (size_t) buildid_len_arg;
2552
2553 filename = (const char *) data;
2554 if (!IS_ABSOLUTE_PATH (filename))
2555 {
2556 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2557 char *rel;
2558
2559 make_cleanup (xfree, abs);
2560 abs = ldirname (abs);
2561 make_cleanup (xfree, abs);
2562
2563 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2564 make_cleanup (xfree, rel);
2565 filename = rel;
2566 }
2567
2568 /* First try the file name given in the section. If that doesn't
2569 work, try to use the build-id instead. */
2570 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2571 if (dwz_bfd != NULL)
2572 {
2573 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2574 dwz_bfd.release ();
2575 }
2576
2577 if (dwz_bfd == NULL)
2578 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2579
2580 if (dwz_bfd == NULL)
2581 error (_("could not find '.gnu_debugaltlink' file for %s"),
2582 objfile_name (dwarf2_per_objfile->objfile));
2583
2584 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2585 struct dwz_file);
2586 result->dwz_bfd = dwz_bfd.release ();
2587
2588 bfd_map_over_sections (result->dwz_bfd, locate_dwz_sections, result);
2589
2590 do_cleanups (cleanup);
2591
2592 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, result->dwz_bfd);
2593 dwarf2_per_objfile->dwz_file = result;
2594 return result;
2595 }
2596 \f
2597 /* DWARF quick_symbols_functions support. */
2598
2599 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2600 unique line tables, so we maintain a separate table of all .debug_line
2601 derived entries to support the sharing.
2602 All the quick functions need is the list of file names. We discard the
2603 line_header when we're done and don't need to record it here. */
2604 struct quick_file_names
2605 {
2606 /* The data used to construct the hash key. */
2607 struct stmt_list_hash hash;
2608
2609 /* The number of entries in file_names, real_names. */
2610 unsigned int num_file_names;
2611
2612 /* The file names from the line table, after being run through
2613 file_full_name. */
2614 const char **file_names;
2615
2616 /* The file names from the line table after being run through
2617 gdb_realpath. These are computed lazily. */
2618 const char **real_names;
2619 };
2620
2621 /* When using the index (and thus not using psymtabs), each CU has an
2622 object of this type. This is used to hold information needed by
2623 the various "quick" methods. */
2624 struct dwarf2_per_cu_quick_data
2625 {
2626 /* The file table. This can be NULL if there was no file table
2627 or it's currently not read in.
2628 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2629 struct quick_file_names *file_names;
2630
2631 /* The corresponding symbol table. This is NULL if symbols for this
2632 CU have not yet been read. */
2633 struct compunit_symtab *compunit_symtab;
2634
2635 /* A temporary mark bit used when iterating over all CUs in
2636 expand_symtabs_matching. */
2637 unsigned int mark : 1;
2638
2639 /* True if we've tried to read the file table and found there isn't one.
2640 There will be no point in trying to read it again next time. */
2641 unsigned int no_file_data : 1;
2642 };
2643
2644 /* Utility hash function for a stmt_list_hash. */
2645
2646 static hashval_t
2647 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2648 {
2649 hashval_t v = 0;
2650
2651 if (stmt_list_hash->dwo_unit != NULL)
2652 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2653 v += stmt_list_hash->line_offset.sect_off;
2654 return v;
2655 }
2656
2657 /* Utility equality function for a stmt_list_hash. */
2658
2659 static int
2660 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2661 const struct stmt_list_hash *rhs)
2662 {
2663 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2664 return 0;
2665 if (lhs->dwo_unit != NULL
2666 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2667 return 0;
2668
2669 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2670 }
2671
2672 /* Hash function for a quick_file_names. */
2673
2674 static hashval_t
2675 hash_file_name_entry (const void *e)
2676 {
2677 const struct quick_file_names *file_data
2678 = (const struct quick_file_names *) e;
2679
2680 return hash_stmt_list_entry (&file_data->hash);
2681 }
2682
2683 /* Equality function for a quick_file_names. */
2684
2685 static int
2686 eq_file_name_entry (const void *a, const void *b)
2687 {
2688 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2689 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2690
2691 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2692 }
2693
2694 /* Delete function for a quick_file_names. */
2695
2696 static void
2697 delete_file_name_entry (void *e)
2698 {
2699 struct quick_file_names *file_data = (struct quick_file_names *) e;
2700 int i;
2701
2702 for (i = 0; i < file_data->num_file_names; ++i)
2703 {
2704 xfree ((void*) file_data->file_names[i]);
2705 if (file_data->real_names)
2706 xfree ((void*) file_data->real_names[i]);
2707 }
2708
2709 /* The space for the struct itself lives on objfile_obstack,
2710 so we don't free it here. */
2711 }
2712
2713 /* Create a quick_file_names hash table. */
2714
2715 static htab_t
2716 create_quick_file_names_table (unsigned int nr_initial_entries)
2717 {
2718 return htab_create_alloc (nr_initial_entries,
2719 hash_file_name_entry, eq_file_name_entry,
2720 delete_file_name_entry, xcalloc, xfree);
2721 }
2722
2723 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2724 have to be created afterwards. You should call age_cached_comp_units after
2725 processing PER_CU->CU. dw2_setup must have been already called. */
2726
2727 static void
2728 load_cu (struct dwarf2_per_cu_data *per_cu)
2729 {
2730 if (per_cu->is_debug_types)
2731 load_full_type_unit (per_cu);
2732 else
2733 load_full_comp_unit (per_cu, language_minimal);
2734
2735 if (per_cu->cu == NULL)
2736 return; /* Dummy CU. */
2737
2738 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2739 }
2740
2741 /* Read in the symbols for PER_CU. */
2742
2743 static void
2744 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2745 {
2746 struct cleanup *back_to;
2747
2748 /* Skip type_unit_groups, reading the type units they contain
2749 is handled elsewhere. */
2750 if (IS_TYPE_UNIT_GROUP (per_cu))
2751 return;
2752
2753 back_to = make_cleanup (dwarf2_release_queue, NULL);
2754
2755 if (dwarf2_per_objfile->using_index
2756 ? per_cu->v.quick->compunit_symtab == NULL
2757 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2758 {
2759 queue_comp_unit (per_cu, language_minimal);
2760 load_cu (per_cu);
2761
2762 /* If we just loaded a CU from a DWO, and we're working with an index
2763 that may badly handle TUs, load all the TUs in that DWO as well.
2764 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2765 if (!per_cu->is_debug_types
2766 && per_cu->cu != NULL
2767 && per_cu->cu->dwo_unit != NULL
2768 && dwarf2_per_objfile->index_table != NULL
2769 && dwarf2_per_objfile->index_table->version <= 7
2770 /* DWP files aren't supported yet. */
2771 && get_dwp_file () == NULL)
2772 queue_and_load_all_dwo_tus (per_cu);
2773 }
2774
2775 process_queue ();
2776
2777 /* Age the cache, releasing compilation units that have not
2778 been used recently. */
2779 age_cached_comp_units ();
2780
2781 do_cleanups (back_to);
2782 }
2783
2784 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2785 the objfile from which this CU came. Returns the resulting symbol
2786 table. */
2787
2788 static struct compunit_symtab *
2789 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2790 {
2791 gdb_assert (dwarf2_per_objfile->using_index);
2792 if (!per_cu->v.quick->compunit_symtab)
2793 {
2794 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2795 increment_reading_symtab ();
2796 dw2_do_instantiate_symtab (per_cu);
2797 process_cu_includes ();
2798 do_cleanups (back_to);
2799 }
2800
2801 return per_cu->v.quick->compunit_symtab;
2802 }
2803
2804 /* Return the CU/TU given its index.
2805
2806 This is intended for loops like:
2807
2808 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2809 + dwarf2_per_objfile->n_type_units); ++i)
2810 {
2811 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2812
2813 ...;
2814 }
2815 */
2816
2817 static struct dwarf2_per_cu_data *
2818 dw2_get_cutu (int index)
2819 {
2820 if (index >= dwarf2_per_objfile->n_comp_units)
2821 {
2822 index -= dwarf2_per_objfile->n_comp_units;
2823 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2824 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2825 }
2826
2827 return dwarf2_per_objfile->all_comp_units[index];
2828 }
2829
2830 /* Return the CU given its index.
2831 This differs from dw2_get_cutu in that it's for when you know INDEX
2832 refers to a CU. */
2833
2834 static struct dwarf2_per_cu_data *
2835 dw2_get_cu (int index)
2836 {
2837 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2838
2839 return dwarf2_per_objfile->all_comp_units[index];
2840 }
2841
2842 /* A helper for create_cus_from_index that handles a given list of
2843 CUs. */
2844
2845 static void
2846 create_cus_from_index_list (struct objfile *objfile,
2847 const gdb_byte *cu_list, offset_type n_elements,
2848 struct dwarf2_section_info *section,
2849 int is_dwz,
2850 int base_offset)
2851 {
2852 offset_type i;
2853
2854 for (i = 0; i < n_elements; i += 2)
2855 {
2856 struct dwarf2_per_cu_data *the_cu;
2857 ULONGEST offset, length;
2858
2859 gdb_static_assert (sizeof (ULONGEST) >= 8);
2860 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2861 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2862 cu_list += 2 * 8;
2863
2864 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2865 struct dwarf2_per_cu_data);
2866 the_cu->offset.sect_off = offset;
2867 the_cu->length = length;
2868 the_cu->objfile = objfile;
2869 the_cu->section = section;
2870 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2871 struct dwarf2_per_cu_quick_data);
2872 the_cu->is_dwz = is_dwz;
2873 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2874 }
2875 }
2876
2877 /* Read the CU list from the mapped index, and use it to create all
2878 the CU objects for this objfile. */
2879
2880 static void
2881 create_cus_from_index (struct objfile *objfile,
2882 const gdb_byte *cu_list, offset_type cu_list_elements,
2883 const gdb_byte *dwz_list, offset_type dwz_elements)
2884 {
2885 struct dwz_file *dwz;
2886
2887 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2888 dwarf2_per_objfile->all_comp_units =
2889 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
2890 dwarf2_per_objfile->n_comp_units);
2891
2892 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2893 &dwarf2_per_objfile->info, 0, 0);
2894
2895 if (dwz_elements == 0)
2896 return;
2897
2898 dwz = dwarf2_get_dwz_file ();
2899 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2900 cu_list_elements / 2);
2901 }
2902
2903 /* Create the signatured type hash table from the index. */
2904
2905 static void
2906 create_signatured_type_table_from_index (struct objfile *objfile,
2907 struct dwarf2_section_info *section,
2908 const gdb_byte *bytes,
2909 offset_type elements)
2910 {
2911 offset_type i;
2912 htab_t sig_types_hash;
2913
2914 dwarf2_per_objfile->n_type_units
2915 = dwarf2_per_objfile->n_allocated_type_units
2916 = elements / 3;
2917 dwarf2_per_objfile->all_type_units =
2918 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
2919
2920 sig_types_hash = allocate_signatured_type_table (objfile);
2921
2922 for (i = 0; i < elements; i += 3)
2923 {
2924 struct signatured_type *sig_type;
2925 ULONGEST offset, type_offset_in_tu, signature;
2926 void **slot;
2927
2928 gdb_static_assert (sizeof (ULONGEST) >= 8);
2929 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2930 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2931 BFD_ENDIAN_LITTLE);
2932 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2933 bytes += 3 * 8;
2934
2935 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2936 struct signatured_type);
2937 sig_type->signature = signature;
2938 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2939 sig_type->per_cu.is_debug_types = 1;
2940 sig_type->per_cu.section = section;
2941 sig_type->per_cu.offset.sect_off = offset;
2942 sig_type->per_cu.objfile = objfile;
2943 sig_type->per_cu.v.quick
2944 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2945 struct dwarf2_per_cu_quick_data);
2946
2947 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2948 *slot = sig_type;
2949
2950 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2951 }
2952
2953 dwarf2_per_objfile->signatured_types = sig_types_hash;
2954 }
2955
2956 /* Read the address map data from the mapped index, and use it to
2957 populate the objfile's psymtabs_addrmap. */
2958
2959 static void
2960 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2961 {
2962 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2963 const gdb_byte *iter, *end;
2964 struct obstack temp_obstack;
2965 struct addrmap *mutable_map;
2966 struct cleanup *cleanup;
2967 CORE_ADDR baseaddr;
2968
2969 obstack_init (&temp_obstack);
2970 cleanup = make_cleanup_obstack_free (&temp_obstack);
2971 mutable_map = addrmap_create_mutable (&temp_obstack);
2972
2973 iter = index->address_table;
2974 end = iter + index->address_table_size;
2975
2976 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2977
2978 while (iter < end)
2979 {
2980 ULONGEST hi, lo, cu_index;
2981 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2982 iter += 8;
2983 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2984 iter += 8;
2985 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2986 iter += 4;
2987
2988 if (lo > hi)
2989 {
2990 complaint (&symfile_complaints,
2991 _(".gdb_index address table has invalid range (%s - %s)"),
2992 hex_string (lo), hex_string (hi));
2993 continue;
2994 }
2995
2996 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2997 {
2998 complaint (&symfile_complaints,
2999 _(".gdb_index address table has invalid CU number %u"),
3000 (unsigned) cu_index);
3001 continue;
3002 }
3003
3004 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3005 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3006 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
3007 }
3008
3009 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3010 &objfile->objfile_obstack);
3011 do_cleanups (cleanup);
3012 }
3013
3014 /* The hash function for strings in the mapped index. This is the same as
3015 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
3016 implementation. This is necessary because the hash function is tied to the
3017 format of the mapped index file. The hash values do not have to match with
3018 SYMBOL_HASH_NEXT.
3019
3020 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
3021
3022 static hashval_t
3023 mapped_index_string_hash (int index_version, const void *p)
3024 {
3025 const unsigned char *str = (const unsigned char *) p;
3026 hashval_t r = 0;
3027 unsigned char c;
3028
3029 while ((c = *str++) != 0)
3030 {
3031 if (index_version >= 5)
3032 c = tolower (c);
3033 r = r * 67 + c - 113;
3034 }
3035
3036 return r;
3037 }
3038
3039 /* Find a slot in the mapped index INDEX for the object named NAME.
3040 If NAME is found, set *VEC_OUT to point to the CU vector in the
3041 constant pool and return 1. If NAME cannot be found, return 0. */
3042
3043 static int
3044 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3045 offset_type **vec_out)
3046 {
3047 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
3048 offset_type hash;
3049 offset_type slot, step;
3050 int (*cmp) (const char *, const char *);
3051
3052 if (current_language->la_language == language_cplus
3053 || current_language->la_language == language_fortran
3054 || current_language->la_language == language_d)
3055 {
3056 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3057 not contain any. */
3058
3059 if (strchr (name, '(') != NULL)
3060 {
3061 char *without_params = cp_remove_params (name);
3062
3063 if (without_params != NULL)
3064 {
3065 make_cleanup (xfree, without_params);
3066 name = without_params;
3067 }
3068 }
3069 }
3070
3071 /* Index version 4 did not support case insensitive searches. But the
3072 indices for case insensitive languages are built in lowercase, therefore
3073 simulate our NAME being searched is also lowercased. */
3074 hash = mapped_index_string_hash ((index->version == 4
3075 && case_sensitivity == case_sensitive_off
3076 ? 5 : index->version),
3077 name);
3078
3079 slot = hash & (index->symbol_table_slots - 1);
3080 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
3081 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3082
3083 for (;;)
3084 {
3085 /* Convert a slot number to an offset into the table. */
3086 offset_type i = 2 * slot;
3087 const char *str;
3088 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
3089 {
3090 do_cleanups (back_to);
3091 return 0;
3092 }
3093
3094 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3095 if (!cmp (name, str))
3096 {
3097 *vec_out = (offset_type *) (index->constant_pool
3098 + MAYBE_SWAP (index->symbol_table[i + 1]));
3099 do_cleanups (back_to);
3100 return 1;
3101 }
3102
3103 slot = (slot + step) & (index->symbol_table_slots - 1);
3104 }
3105 }
3106
3107 /* A helper function that reads the .gdb_index from SECTION and fills
3108 in MAP. FILENAME is the name of the file containing the section;
3109 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3110 ok to use deprecated sections.
3111
3112 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3113 out parameters that are filled in with information about the CU and
3114 TU lists in the section.
3115
3116 Returns 1 if all went well, 0 otherwise. */
3117
3118 static int
3119 read_index_from_section (struct objfile *objfile,
3120 const char *filename,
3121 int deprecated_ok,
3122 struct dwarf2_section_info *section,
3123 struct mapped_index *map,
3124 const gdb_byte **cu_list,
3125 offset_type *cu_list_elements,
3126 const gdb_byte **types_list,
3127 offset_type *types_list_elements)
3128 {
3129 const gdb_byte *addr;
3130 offset_type version;
3131 offset_type *metadata;
3132 int i;
3133
3134 if (dwarf2_section_empty_p (section))
3135 return 0;
3136
3137 /* Older elfutils strip versions could keep the section in the main
3138 executable while splitting it for the separate debug info file. */
3139 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3140 return 0;
3141
3142 dwarf2_read_section (objfile, section);
3143
3144 addr = section->buffer;
3145 /* Version check. */
3146 version = MAYBE_SWAP (*(offset_type *) addr);
3147 /* Versions earlier than 3 emitted every copy of a psymbol. This
3148 causes the index to behave very poorly for certain requests. Version 3
3149 contained incomplete addrmap. So, it seems better to just ignore such
3150 indices. */
3151 if (version < 4)
3152 {
3153 static int warning_printed = 0;
3154 if (!warning_printed)
3155 {
3156 warning (_("Skipping obsolete .gdb_index section in %s."),
3157 filename);
3158 warning_printed = 1;
3159 }
3160 return 0;
3161 }
3162 /* Index version 4 uses a different hash function than index version
3163 5 and later.
3164
3165 Versions earlier than 6 did not emit psymbols for inlined
3166 functions. Using these files will cause GDB not to be able to
3167 set breakpoints on inlined functions by name, so we ignore these
3168 indices unless the user has done
3169 "set use-deprecated-index-sections on". */
3170 if (version < 6 && !deprecated_ok)
3171 {
3172 static int warning_printed = 0;
3173 if (!warning_printed)
3174 {
3175 warning (_("\
3176 Skipping deprecated .gdb_index section in %s.\n\
3177 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3178 to use the section anyway."),
3179 filename);
3180 warning_printed = 1;
3181 }
3182 return 0;
3183 }
3184 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3185 of the TU (for symbols coming from TUs),
3186 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3187 Plus gold-generated indices can have duplicate entries for global symbols,
3188 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3189 These are just performance bugs, and we can't distinguish gdb-generated
3190 indices from gold-generated ones, so issue no warning here. */
3191
3192 /* Indexes with higher version than the one supported by GDB may be no
3193 longer backward compatible. */
3194 if (version > 8)
3195 return 0;
3196
3197 map->version = version;
3198 map->total_size = section->size;
3199
3200 metadata = (offset_type *) (addr + sizeof (offset_type));
3201
3202 i = 0;
3203 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3204 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3205 / 8);
3206 ++i;
3207
3208 *types_list = addr + MAYBE_SWAP (metadata[i]);
3209 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3210 - MAYBE_SWAP (metadata[i]))
3211 / 8);
3212 ++i;
3213
3214 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3215 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3216 - MAYBE_SWAP (metadata[i]));
3217 ++i;
3218
3219 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3220 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3221 - MAYBE_SWAP (metadata[i]))
3222 / (2 * sizeof (offset_type)));
3223 ++i;
3224
3225 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3226
3227 return 1;
3228 }
3229
3230
3231 /* Read the index file. If everything went ok, initialize the "quick"
3232 elements of all the CUs and return 1. Otherwise, return 0. */
3233
3234 static int
3235 dwarf2_read_index (struct objfile *objfile)
3236 {
3237 struct mapped_index local_map, *map;
3238 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3239 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3240 struct dwz_file *dwz;
3241
3242 if (!read_index_from_section (objfile, objfile_name (objfile),
3243 use_deprecated_index_sections,
3244 &dwarf2_per_objfile->gdb_index, &local_map,
3245 &cu_list, &cu_list_elements,
3246 &types_list, &types_list_elements))
3247 return 0;
3248
3249 /* Don't use the index if it's empty. */
3250 if (local_map.symbol_table_slots == 0)
3251 return 0;
3252
3253 /* If there is a .dwz file, read it so we can get its CU list as
3254 well. */
3255 dwz = dwarf2_get_dwz_file ();
3256 if (dwz != NULL)
3257 {
3258 struct mapped_index dwz_map;
3259 const gdb_byte *dwz_types_ignore;
3260 offset_type dwz_types_elements_ignore;
3261
3262 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3263 1,
3264 &dwz->gdb_index, &dwz_map,
3265 &dwz_list, &dwz_list_elements,
3266 &dwz_types_ignore,
3267 &dwz_types_elements_ignore))
3268 {
3269 warning (_("could not read '.gdb_index' section from %s; skipping"),
3270 bfd_get_filename (dwz->dwz_bfd));
3271 return 0;
3272 }
3273 }
3274
3275 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3276 dwz_list_elements);
3277
3278 if (types_list_elements)
3279 {
3280 struct dwarf2_section_info *section;
3281
3282 /* We can only handle a single .debug_types when we have an
3283 index. */
3284 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3285 return 0;
3286
3287 section = VEC_index (dwarf2_section_info_def,
3288 dwarf2_per_objfile->types, 0);
3289
3290 create_signatured_type_table_from_index (objfile, section, types_list,
3291 types_list_elements);
3292 }
3293
3294 create_addrmap_from_index (objfile, &local_map);
3295
3296 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
3297 *map = local_map;
3298
3299 dwarf2_per_objfile->index_table = map;
3300 dwarf2_per_objfile->using_index = 1;
3301 dwarf2_per_objfile->quick_file_names_table =
3302 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3303
3304 return 1;
3305 }
3306
3307 /* A helper for the "quick" functions which sets the global
3308 dwarf2_per_objfile according to OBJFILE. */
3309
3310 static void
3311 dw2_setup (struct objfile *objfile)
3312 {
3313 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3314 objfile_data (objfile, dwarf2_objfile_data_key));
3315 gdb_assert (dwarf2_per_objfile);
3316 }
3317
3318 /* die_reader_func for dw2_get_file_names. */
3319
3320 static void
3321 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3322 const gdb_byte *info_ptr,
3323 struct die_info *comp_unit_die,
3324 int has_children,
3325 void *data)
3326 {
3327 struct dwarf2_cu *cu = reader->cu;
3328 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3329 struct objfile *objfile = dwarf2_per_objfile->objfile;
3330 struct dwarf2_per_cu_data *lh_cu;
3331 struct line_header *lh;
3332 struct attribute *attr;
3333 int i;
3334 const char *name, *comp_dir;
3335 void **slot;
3336 struct quick_file_names *qfn;
3337 unsigned int line_offset;
3338
3339 gdb_assert (! this_cu->is_debug_types);
3340
3341 /* Our callers never want to match partial units -- instead they
3342 will match the enclosing full CU. */
3343 if (comp_unit_die->tag == DW_TAG_partial_unit)
3344 {
3345 this_cu->v.quick->no_file_data = 1;
3346 return;
3347 }
3348
3349 lh_cu = this_cu;
3350 lh = NULL;
3351 slot = NULL;
3352 line_offset = 0;
3353
3354 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3355 if (attr)
3356 {
3357 struct quick_file_names find_entry;
3358
3359 line_offset = DW_UNSND (attr);
3360
3361 /* We may have already read in this line header (TU line header sharing).
3362 If we have we're done. */
3363 find_entry.hash.dwo_unit = cu->dwo_unit;
3364 find_entry.hash.line_offset.sect_off = line_offset;
3365 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3366 &find_entry, INSERT);
3367 if (*slot != NULL)
3368 {
3369 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3370 return;
3371 }
3372
3373 lh = dwarf_decode_line_header (line_offset, cu);
3374 }
3375 if (lh == NULL)
3376 {
3377 lh_cu->v.quick->no_file_data = 1;
3378 return;
3379 }
3380
3381 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3382 qfn->hash.dwo_unit = cu->dwo_unit;
3383 qfn->hash.line_offset.sect_off = line_offset;
3384 gdb_assert (slot != NULL);
3385 *slot = qfn;
3386
3387 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3388
3389 qfn->num_file_names = lh->num_file_names;
3390 qfn->file_names =
3391 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->num_file_names);
3392 for (i = 0; i < lh->num_file_names; ++i)
3393 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3394 qfn->real_names = NULL;
3395
3396 free_line_header (lh);
3397
3398 lh_cu->v.quick->file_names = qfn;
3399 }
3400
3401 /* A helper for the "quick" functions which attempts to read the line
3402 table for THIS_CU. */
3403
3404 static struct quick_file_names *
3405 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3406 {
3407 /* This should never be called for TUs. */
3408 gdb_assert (! this_cu->is_debug_types);
3409 /* Nor type unit groups. */
3410 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3411
3412 if (this_cu->v.quick->file_names != NULL)
3413 return this_cu->v.quick->file_names;
3414 /* If we know there is no line data, no point in looking again. */
3415 if (this_cu->v.quick->no_file_data)
3416 return NULL;
3417
3418 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3419
3420 if (this_cu->v.quick->no_file_data)
3421 return NULL;
3422 return this_cu->v.quick->file_names;
3423 }
3424
3425 /* A helper for the "quick" functions which computes and caches the
3426 real path for a given file name from the line table. */
3427
3428 static const char *
3429 dw2_get_real_path (struct objfile *objfile,
3430 struct quick_file_names *qfn, int index)
3431 {
3432 if (qfn->real_names == NULL)
3433 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3434 qfn->num_file_names, const char *);
3435
3436 if (qfn->real_names[index] == NULL)
3437 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3438
3439 return qfn->real_names[index];
3440 }
3441
3442 static struct symtab *
3443 dw2_find_last_source_symtab (struct objfile *objfile)
3444 {
3445 struct compunit_symtab *cust;
3446 int index;
3447
3448 dw2_setup (objfile);
3449 index = dwarf2_per_objfile->n_comp_units - 1;
3450 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3451 if (cust == NULL)
3452 return NULL;
3453 return compunit_primary_filetab (cust);
3454 }
3455
3456 /* Traversal function for dw2_forget_cached_source_info. */
3457
3458 static int
3459 dw2_free_cached_file_names (void **slot, void *info)
3460 {
3461 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3462
3463 if (file_data->real_names)
3464 {
3465 int i;
3466
3467 for (i = 0; i < file_data->num_file_names; ++i)
3468 {
3469 xfree ((void*) file_data->real_names[i]);
3470 file_data->real_names[i] = NULL;
3471 }
3472 }
3473
3474 return 1;
3475 }
3476
3477 static void
3478 dw2_forget_cached_source_info (struct objfile *objfile)
3479 {
3480 dw2_setup (objfile);
3481
3482 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3483 dw2_free_cached_file_names, NULL);
3484 }
3485
3486 /* Helper function for dw2_map_symtabs_matching_filename that expands
3487 the symtabs and calls the iterator. */
3488
3489 static int
3490 dw2_map_expand_apply (struct objfile *objfile,
3491 struct dwarf2_per_cu_data *per_cu,
3492 const char *name, const char *real_path,
3493 int (*callback) (struct symtab *, void *),
3494 void *data)
3495 {
3496 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3497
3498 /* Don't visit already-expanded CUs. */
3499 if (per_cu->v.quick->compunit_symtab)
3500 return 0;
3501
3502 /* This may expand more than one symtab, and we want to iterate over
3503 all of them. */
3504 dw2_instantiate_symtab (per_cu);
3505
3506 return iterate_over_some_symtabs (name, real_path, callback, data,
3507 objfile->compunit_symtabs, last_made);
3508 }
3509
3510 /* Implementation of the map_symtabs_matching_filename method. */
3511
3512 static int
3513 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3514 const char *real_path,
3515 int (*callback) (struct symtab *, void *),
3516 void *data)
3517 {
3518 int i;
3519 const char *name_basename = lbasename (name);
3520
3521 dw2_setup (objfile);
3522
3523 /* The rule is CUs specify all the files, including those used by
3524 any TU, so there's no need to scan TUs here. */
3525
3526 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3527 {
3528 int j;
3529 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3530 struct quick_file_names *file_data;
3531
3532 /* We only need to look at symtabs not already expanded. */
3533 if (per_cu->v.quick->compunit_symtab)
3534 continue;
3535
3536 file_data = dw2_get_file_names (per_cu);
3537 if (file_data == NULL)
3538 continue;
3539
3540 for (j = 0; j < file_data->num_file_names; ++j)
3541 {
3542 const char *this_name = file_data->file_names[j];
3543 const char *this_real_name;
3544
3545 if (compare_filenames_for_search (this_name, name))
3546 {
3547 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3548 callback, data))
3549 return 1;
3550 continue;
3551 }
3552
3553 /* Before we invoke realpath, which can get expensive when many
3554 files are involved, do a quick comparison of the basenames. */
3555 if (! basenames_may_differ
3556 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3557 continue;
3558
3559 this_real_name = dw2_get_real_path (objfile, file_data, j);
3560 if (compare_filenames_for_search (this_real_name, name))
3561 {
3562 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3563 callback, data))
3564 return 1;
3565 continue;
3566 }
3567
3568 if (real_path != NULL)
3569 {
3570 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3571 gdb_assert (IS_ABSOLUTE_PATH (name));
3572 if (this_real_name != NULL
3573 && FILENAME_CMP (real_path, this_real_name) == 0)
3574 {
3575 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3576 callback, data))
3577 return 1;
3578 continue;
3579 }
3580 }
3581 }
3582 }
3583
3584 return 0;
3585 }
3586
3587 /* Struct used to manage iterating over all CUs looking for a symbol. */
3588
3589 struct dw2_symtab_iterator
3590 {
3591 /* The internalized form of .gdb_index. */
3592 struct mapped_index *index;
3593 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3594 int want_specific_block;
3595 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3596 Unused if !WANT_SPECIFIC_BLOCK. */
3597 int block_index;
3598 /* The kind of symbol we're looking for. */
3599 domain_enum domain;
3600 /* The list of CUs from the index entry of the symbol,
3601 or NULL if not found. */
3602 offset_type *vec;
3603 /* The next element in VEC to look at. */
3604 int next;
3605 /* The number of elements in VEC, or zero if there is no match. */
3606 int length;
3607 /* Have we seen a global version of the symbol?
3608 If so we can ignore all further global instances.
3609 This is to work around gold/15646, inefficient gold-generated
3610 indices. */
3611 int global_seen;
3612 };
3613
3614 /* Initialize the index symtab iterator ITER.
3615 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3616 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3617
3618 static void
3619 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3620 struct mapped_index *index,
3621 int want_specific_block,
3622 int block_index,
3623 domain_enum domain,
3624 const char *name)
3625 {
3626 iter->index = index;
3627 iter->want_specific_block = want_specific_block;
3628 iter->block_index = block_index;
3629 iter->domain = domain;
3630 iter->next = 0;
3631 iter->global_seen = 0;
3632
3633 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3634 iter->length = MAYBE_SWAP (*iter->vec);
3635 else
3636 {
3637 iter->vec = NULL;
3638 iter->length = 0;
3639 }
3640 }
3641
3642 /* Return the next matching CU or NULL if there are no more. */
3643
3644 static struct dwarf2_per_cu_data *
3645 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3646 {
3647 for ( ; iter->next < iter->length; ++iter->next)
3648 {
3649 offset_type cu_index_and_attrs =
3650 MAYBE_SWAP (iter->vec[iter->next + 1]);
3651 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3652 struct dwarf2_per_cu_data *per_cu;
3653 int want_static = iter->block_index != GLOBAL_BLOCK;
3654 /* This value is only valid for index versions >= 7. */
3655 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3656 gdb_index_symbol_kind symbol_kind =
3657 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3658 /* Only check the symbol attributes if they're present.
3659 Indices prior to version 7 don't record them,
3660 and indices >= 7 may elide them for certain symbols
3661 (gold does this). */
3662 int attrs_valid =
3663 (iter->index->version >= 7
3664 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3665
3666 /* Don't crash on bad data. */
3667 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3668 + dwarf2_per_objfile->n_type_units))
3669 {
3670 complaint (&symfile_complaints,
3671 _(".gdb_index entry has bad CU index"
3672 " [in module %s]"),
3673 objfile_name (dwarf2_per_objfile->objfile));
3674 continue;
3675 }
3676
3677 per_cu = dw2_get_cutu (cu_index);
3678
3679 /* Skip if already read in. */
3680 if (per_cu->v.quick->compunit_symtab)
3681 continue;
3682
3683 /* Check static vs global. */
3684 if (attrs_valid)
3685 {
3686 if (iter->want_specific_block
3687 && want_static != is_static)
3688 continue;
3689 /* Work around gold/15646. */
3690 if (!is_static && iter->global_seen)
3691 continue;
3692 if (!is_static)
3693 iter->global_seen = 1;
3694 }
3695
3696 /* Only check the symbol's kind if it has one. */
3697 if (attrs_valid)
3698 {
3699 switch (iter->domain)
3700 {
3701 case VAR_DOMAIN:
3702 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3703 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3704 /* Some types are also in VAR_DOMAIN. */
3705 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3706 continue;
3707 break;
3708 case STRUCT_DOMAIN:
3709 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3710 continue;
3711 break;
3712 case LABEL_DOMAIN:
3713 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3714 continue;
3715 break;
3716 default:
3717 break;
3718 }
3719 }
3720
3721 ++iter->next;
3722 return per_cu;
3723 }
3724
3725 return NULL;
3726 }
3727
3728 static struct compunit_symtab *
3729 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3730 const char *name, domain_enum domain)
3731 {
3732 struct compunit_symtab *stab_best = NULL;
3733 struct mapped_index *index;
3734
3735 dw2_setup (objfile);
3736
3737 index = dwarf2_per_objfile->index_table;
3738
3739 /* index is NULL if OBJF_READNOW. */
3740 if (index)
3741 {
3742 struct dw2_symtab_iterator iter;
3743 struct dwarf2_per_cu_data *per_cu;
3744
3745 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3746
3747 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3748 {
3749 struct symbol *sym, *with_opaque = NULL;
3750 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3751 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3752 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3753
3754 sym = block_find_symbol (block, name, domain,
3755 block_find_non_opaque_type_preferred,
3756 &with_opaque);
3757
3758 /* Some caution must be observed with overloaded functions
3759 and methods, since the index will not contain any overload
3760 information (but NAME might contain it). */
3761
3762 if (sym != NULL
3763 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3764 return stab;
3765 if (with_opaque != NULL
3766 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
3767 stab_best = stab;
3768
3769 /* Keep looking through other CUs. */
3770 }
3771 }
3772
3773 return stab_best;
3774 }
3775
3776 static void
3777 dw2_print_stats (struct objfile *objfile)
3778 {
3779 int i, total, count;
3780
3781 dw2_setup (objfile);
3782 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3783 count = 0;
3784 for (i = 0; i < total; ++i)
3785 {
3786 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3787
3788 if (!per_cu->v.quick->compunit_symtab)
3789 ++count;
3790 }
3791 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3792 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3793 }
3794
3795 /* This dumps minimal information about the index.
3796 It is called via "mt print objfiles".
3797 One use is to verify .gdb_index has been loaded by the
3798 gdb.dwarf2/gdb-index.exp testcase. */
3799
3800 static void
3801 dw2_dump (struct objfile *objfile)
3802 {
3803 dw2_setup (objfile);
3804 gdb_assert (dwarf2_per_objfile->using_index);
3805 printf_filtered (".gdb_index:");
3806 if (dwarf2_per_objfile->index_table != NULL)
3807 {
3808 printf_filtered (" version %d\n",
3809 dwarf2_per_objfile->index_table->version);
3810 }
3811 else
3812 printf_filtered (" faked for \"readnow\"\n");
3813 printf_filtered ("\n");
3814 }
3815
3816 static void
3817 dw2_relocate (struct objfile *objfile,
3818 const struct section_offsets *new_offsets,
3819 const struct section_offsets *delta)
3820 {
3821 /* There's nothing to relocate here. */
3822 }
3823
3824 static void
3825 dw2_expand_symtabs_for_function (struct objfile *objfile,
3826 const char *func_name)
3827 {
3828 struct mapped_index *index;
3829
3830 dw2_setup (objfile);
3831
3832 index = dwarf2_per_objfile->index_table;
3833
3834 /* index is NULL if OBJF_READNOW. */
3835 if (index)
3836 {
3837 struct dw2_symtab_iterator iter;
3838 struct dwarf2_per_cu_data *per_cu;
3839
3840 /* Note: It doesn't matter what we pass for block_index here. */
3841 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3842 func_name);
3843
3844 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3845 dw2_instantiate_symtab (per_cu);
3846 }
3847 }
3848
3849 static void
3850 dw2_expand_all_symtabs (struct objfile *objfile)
3851 {
3852 int i;
3853
3854 dw2_setup (objfile);
3855
3856 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3857 + dwarf2_per_objfile->n_type_units); ++i)
3858 {
3859 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3860
3861 dw2_instantiate_symtab (per_cu);
3862 }
3863 }
3864
3865 static void
3866 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3867 const char *fullname)
3868 {
3869 int i;
3870
3871 dw2_setup (objfile);
3872
3873 /* We don't need to consider type units here.
3874 This is only called for examining code, e.g. expand_line_sal.
3875 There can be an order of magnitude (or more) more type units
3876 than comp units, and we avoid them if we can. */
3877
3878 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3879 {
3880 int j;
3881 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3882 struct quick_file_names *file_data;
3883
3884 /* We only need to look at symtabs not already expanded. */
3885 if (per_cu->v.quick->compunit_symtab)
3886 continue;
3887
3888 file_data = dw2_get_file_names (per_cu);
3889 if (file_data == NULL)
3890 continue;
3891
3892 for (j = 0; j < file_data->num_file_names; ++j)
3893 {
3894 const char *this_fullname = file_data->file_names[j];
3895
3896 if (filename_cmp (this_fullname, fullname) == 0)
3897 {
3898 dw2_instantiate_symtab (per_cu);
3899 break;
3900 }
3901 }
3902 }
3903 }
3904
3905 static void
3906 dw2_map_matching_symbols (struct objfile *objfile,
3907 const char * name, domain_enum domain,
3908 int global,
3909 int (*callback) (struct block *,
3910 struct symbol *, void *),
3911 void *data, symbol_compare_ftype *match,
3912 symbol_compare_ftype *ordered_compare)
3913 {
3914 /* Currently unimplemented; used for Ada. The function can be called if the
3915 current language is Ada for a non-Ada objfile using GNU index. As Ada
3916 does not look for non-Ada symbols this function should just return. */
3917 }
3918
3919 static void
3920 dw2_expand_symtabs_matching
3921 (struct objfile *objfile,
3922 expand_symtabs_file_matcher_ftype *file_matcher,
3923 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3924 expand_symtabs_exp_notify_ftype *expansion_notify,
3925 enum search_domain kind,
3926 void *data)
3927 {
3928 int i;
3929 offset_type iter;
3930 struct mapped_index *index;
3931
3932 dw2_setup (objfile);
3933
3934 /* index_table is NULL if OBJF_READNOW. */
3935 if (!dwarf2_per_objfile->index_table)
3936 return;
3937 index = dwarf2_per_objfile->index_table;
3938
3939 if (file_matcher != NULL)
3940 {
3941 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
3942 htab_eq_pointer,
3943 NULL, xcalloc, xfree));
3944 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
3945 htab_eq_pointer,
3946 NULL, xcalloc, xfree));
3947
3948 /* The rule is CUs specify all the files, including those used by
3949 any TU, so there's no need to scan TUs here. */
3950
3951 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3952 {
3953 int j;
3954 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3955 struct quick_file_names *file_data;
3956 void **slot;
3957
3958 QUIT;
3959
3960 per_cu->v.quick->mark = 0;
3961
3962 /* We only need to look at symtabs not already expanded. */
3963 if (per_cu->v.quick->compunit_symtab)
3964 continue;
3965
3966 file_data = dw2_get_file_names (per_cu);
3967 if (file_data == NULL)
3968 continue;
3969
3970 if (htab_find (visited_not_found.get (), file_data) != NULL)
3971 continue;
3972 else if (htab_find (visited_found.get (), file_data) != NULL)
3973 {
3974 per_cu->v.quick->mark = 1;
3975 continue;
3976 }
3977
3978 for (j = 0; j < file_data->num_file_names; ++j)
3979 {
3980 const char *this_real_name;
3981
3982 if (file_matcher (file_data->file_names[j], data, 0))
3983 {
3984 per_cu->v.quick->mark = 1;
3985 break;
3986 }
3987
3988 /* Before we invoke realpath, which can get expensive when many
3989 files are involved, do a quick comparison of the basenames. */
3990 if (!basenames_may_differ
3991 && !file_matcher (lbasename (file_data->file_names[j]),
3992 data, 1))
3993 continue;
3994
3995 this_real_name = dw2_get_real_path (objfile, file_data, j);
3996 if (file_matcher (this_real_name, data, 0))
3997 {
3998 per_cu->v.quick->mark = 1;
3999 break;
4000 }
4001 }
4002
4003 slot = htab_find_slot (per_cu->v.quick->mark
4004 ? visited_found.get ()
4005 : visited_not_found.get (),
4006 file_data, INSERT);
4007 *slot = file_data;
4008 }
4009 }
4010
4011 for (iter = 0; iter < index->symbol_table_slots; ++iter)
4012 {
4013 offset_type idx = 2 * iter;
4014 const char *name;
4015 offset_type *vec, vec_len, vec_idx;
4016 int global_seen = 0;
4017
4018 QUIT;
4019
4020 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
4021 continue;
4022
4023 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
4024
4025 if (! (*symbol_matcher) (name, data))
4026 continue;
4027
4028 /* The name was matched, now expand corresponding CUs that were
4029 marked. */
4030 vec = (offset_type *) (index->constant_pool
4031 + MAYBE_SWAP (index->symbol_table[idx + 1]));
4032 vec_len = MAYBE_SWAP (vec[0]);
4033 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4034 {
4035 struct dwarf2_per_cu_data *per_cu;
4036 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
4037 /* This value is only valid for index versions >= 7. */
4038 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4039 gdb_index_symbol_kind symbol_kind =
4040 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4041 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4042 /* Only check the symbol attributes if they're present.
4043 Indices prior to version 7 don't record them,
4044 and indices >= 7 may elide them for certain symbols
4045 (gold does this). */
4046 int attrs_valid =
4047 (index->version >= 7
4048 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4049
4050 /* Work around gold/15646. */
4051 if (attrs_valid)
4052 {
4053 if (!is_static && global_seen)
4054 continue;
4055 if (!is_static)
4056 global_seen = 1;
4057 }
4058
4059 /* Only check the symbol's kind if it has one. */
4060 if (attrs_valid)
4061 {
4062 switch (kind)
4063 {
4064 case VARIABLES_DOMAIN:
4065 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4066 continue;
4067 break;
4068 case FUNCTIONS_DOMAIN:
4069 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4070 continue;
4071 break;
4072 case TYPES_DOMAIN:
4073 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4074 continue;
4075 break;
4076 default:
4077 break;
4078 }
4079 }
4080
4081 /* Don't crash on bad data. */
4082 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4083 + dwarf2_per_objfile->n_type_units))
4084 {
4085 complaint (&symfile_complaints,
4086 _(".gdb_index entry has bad CU index"
4087 " [in module %s]"), objfile_name (objfile));
4088 continue;
4089 }
4090
4091 per_cu = dw2_get_cutu (cu_index);
4092 if (file_matcher == NULL || per_cu->v.quick->mark)
4093 {
4094 int symtab_was_null =
4095 (per_cu->v.quick->compunit_symtab == NULL);
4096
4097 dw2_instantiate_symtab (per_cu);
4098
4099 if (expansion_notify != NULL
4100 && symtab_was_null
4101 && per_cu->v.quick->compunit_symtab != NULL)
4102 {
4103 expansion_notify (per_cu->v.quick->compunit_symtab,
4104 data);
4105 }
4106 }
4107 }
4108 }
4109 }
4110
4111 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4112 symtab. */
4113
4114 static struct compunit_symtab *
4115 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4116 CORE_ADDR pc)
4117 {
4118 int i;
4119
4120 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4121 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4122 return cust;
4123
4124 if (cust->includes == NULL)
4125 return NULL;
4126
4127 for (i = 0; cust->includes[i]; ++i)
4128 {
4129 struct compunit_symtab *s = cust->includes[i];
4130
4131 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4132 if (s != NULL)
4133 return s;
4134 }
4135
4136 return NULL;
4137 }
4138
4139 static struct compunit_symtab *
4140 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4141 struct bound_minimal_symbol msymbol,
4142 CORE_ADDR pc,
4143 struct obj_section *section,
4144 int warn_if_readin)
4145 {
4146 struct dwarf2_per_cu_data *data;
4147 struct compunit_symtab *result;
4148
4149 dw2_setup (objfile);
4150
4151 if (!objfile->psymtabs_addrmap)
4152 return NULL;
4153
4154 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
4155 pc);
4156 if (!data)
4157 return NULL;
4158
4159 if (warn_if_readin && data->v.quick->compunit_symtab)
4160 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4161 paddress (get_objfile_arch (objfile), pc));
4162
4163 result
4164 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4165 pc);
4166 gdb_assert (result != NULL);
4167 return result;
4168 }
4169
4170 static void
4171 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4172 void *data, int need_fullname)
4173 {
4174 int i;
4175 htab_up visited (htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4176 NULL, xcalloc, xfree));
4177
4178 dw2_setup (objfile);
4179
4180 /* The rule is CUs specify all the files, including those used by
4181 any TU, so there's no need to scan TUs here.
4182 We can ignore file names coming from already-expanded CUs. */
4183
4184 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4185 {
4186 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4187
4188 if (per_cu->v.quick->compunit_symtab)
4189 {
4190 void **slot = htab_find_slot (visited.get (),
4191 per_cu->v.quick->file_names,
4192 INSERT);
4193
4194 *slot = per_cu->v.quick->file_names;
4195 }
4196 }
4197
4198 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4199 {
4200 int j;
4201 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4202 struct quick_file_names *file_data;
4203 void **slot;
4204
4205 /* We only need to look at symtabs not already expanded. */
4206 if (per_cu->v.quick->compunit_symtab)
4207 continue;
4208
4209 file_data = dw2_get_file_names (per_cu);
4210 if (file_data == NULL)
4211 continue;
4212
4213 slot = htab_find_slot (visited.get (), file_data, INSERT);
4214 if (*slot)
4215 {
4216 /* Already visited. */
4217 continue;
4218 }
4219 *slot = file_data;
4220
4221 for (j = 0; j < file_data->num_file_names; ++j)
4222 {
4223 const char *this_real_name;
4224
4225 if (need_fullname)
4226 this_real_name = dw2_get_real_path (objfile, file_data, j);
4227 else
4228 this_real_name = NULL;
4229 (*fun) (file_data->file_names[j], this_real_name, data);
4230 }
4231 }
4232 }
4233
4234 static int
4235 dw2_has_symbols (struct objfile *objfile)
4236 {
4237 return 1;
4238 }
4239
4240 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4241 {
4242 dw2_has_symbols,
4243 dw2_find_last_source_symtab,
4244 dw2_forget_cached_source_info,
4245 dw2_map_symtabs_matching_filename,
4246 dw2_lookup_symbol,
4247 dw2_print_stats,
4248 dw2_dump,
4249 dw2_relocate,
4250 dw2_expand_symtabs_for_function,
4251 dw2_expand_all_symtabs,
4252 dw2_expand_symtabs_with_fullname,
4253 dw2_map_matching_symbols,
4254 dw2_expand_symtabs_matching,
4255 dw2_find_pc_sect_compunit_symtab,
4256 dw2_map_symbol_filenames
4257 };
4258
4259 /* Initialize for reading DWARF for this objfile. Return 0 if this
4260 file will use psymtabs, or 1 if using the GNU index. */
4261
4262 int
4263 dwarf2_initialize_objfile (struct objfile *objfile)
4264 {
4265 /* If we're about to read full symbols, don't bother with the
4266 indices. In this case we also don't care if some other debug
4267 format is making psymtabs, because they are all about to be
4268 expanded anyway. */
4269 if ((objfile->flags & OBJF_READNOW))
4270 {
4271 int i;
4272
4273 dwarf2_per_objfile->using_index = 1;
4274 create_all_comp_units (objfile);
4275 create_all_type_units (objfile);
4276 dwarf2_per_objfile->quick_file_names_table =
4277 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4278
4279 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4280 + dwarf2_per_objfile->n_type_units); ++i)
4281 {
4282 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4283
4284 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4285 struct dwarf2_per_cu_quick_data);
4286 }
4287
4288 /* Return 1 so that gdb sees the "quick" functions. However,
4289 these functions will be no-ops because we will have expanded
4290 all symtabs. */
4291 return 1;
4292 }
4293
4294 if (dwarf2_read_index (objfile))
4295 return 1;
4296
4297 return 0;
4298 }
4299
4300 \f
4301
4302 /* Build a partial symbol table. */
4303
4304 void
4305 dwarf2_build_psymtabs (struct objfile *objfile)
4306 {
4307
4308 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4309 {
4310 init_psymbol_list (objfile, 1024);
4311 }
4312
4313 TRY
4314 {
4315 /* This isn't really ideal: all the data we allocate on the
4316 objfile's obstack is still uselessly kept around. However,
4317 freeing it seems unsafe. */
4318 psymtab_discarder psymtabs (objfile);
4319 dwarf2_build_psymtabs_hard (objfile);
4320 psymtabs.keep ();
4321 }
4322 CATCH (except, RETURN_MASK_ERROR)
4323 {
4324 exception_print (gdb_stderr, except);
4325 }
4326 END_CATCH
4327 }
4328
4329 /* Return the total length of the CU described by HEADER. */
4330
4331 static unsigned int
4332 get_cu_length (const struct comp_unit_head *header)
4333 {
4334 return header->initial_length_size + header->length;
4335 }
4336
4337 /* Return TRUE if OFFSET is within CU_HEADER. */
4338
4339 static inline int
4340 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4341 {
4342 sect_offset bottom = { cu_header->offset.sect_off };
4343 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4344
4345 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4346 }
4347
4348 /* Find the base address of the compilation unit for range lists and
4349 location lists. It will normally be specified by DW_AT_low_pc.
4350 In DWARF-3 draft 4, the base address could be overridden by
4351 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4352 compilation units with discontinuous ranges. */
4353
4354 static void
4355 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4356 {
4357 struct attribute *attr;
4358
4359 cu->base_known = 0;
4360 cu->base_address = 0;
4361
4362 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4363 if (attr)
4364 {
4365 cu->base_address = attr_value_as_address (attr);
4366 cu->base_known = 1;
4367 }
4368 else
4369 {
4370 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4371 if (attr)
4372 {
4373 cu->base_address = attr_value_as_address (attr);
4374 cu->base_known = 1;
4375 }
4376 }
4377 }
4378
4379 /* Read in the comp unit header information from the debug_info at info_ptr.
4380 Use rcuh_kind::COMPILE as the default type if not known by the caller.
4381 NOTE: This leaves members offset, first_die_offset to be filled in
4382 by the caller. */
4383
4384 static const gdb_byte *
4385 read_comp_unit_head (struct comp_unit_head *cu_header,
4386 const gdb_byte *info_ptr,
4387 struct dwarf2_section_info *section,
4388 rcuh_kind section_kind)
4389 {
4390 int signed_addr;
4391 unsigned int bytes_read;
4392 const char *filename = get_section_file_name (section);
4393 bfd *abfd = get_section_bfd_owner (section);
4394
4395 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4396 cu_header->initial_length_size = bytes_read;
4397 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4398 info_ptr += bytes_read;
4399 cu_header->version = read_2_bytes (abfd, info_ptr);
4400 info_ptr += 2;
4401 if (cu_header->version < 5)
4402 switch (section_kind)
4403 {
4404 case rcuh_kind::COMPILE:
4405 cu_header->unit_type = DW_UT_compile;
4406 break;
4407 case rcuh_kind::TYPE:
4408 cu_header->unit_type = DW_UT_type;
4409 break;
4410 default:
4411 internal_error (__FILE__, __LINE__,
4412 _("read_comp_unit_head: invalid section_kind"));
4413 }
4414 else
4415 {
4416 cu_header->unit_type = static_cast<enum dwarf_unit_type>
4417 (read_1_byte (abfd, info_ptr));
4418 info_ptr += 1;
4419 switch (cu_header->unit_type)
4420 {
4421 case DW_UT_compile:
4422 if (section_kind != rcuh_kind::COMPILE)
4423 error (_("Dwarf Error: wrong unit_type in compilation unit header "
4424 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
4425 filename);
4426 break;
4427 case DW_UT_type:
4428 section_kind = rcuh_kind::TYPE;
4429 break;
4430 default:
4431 error (_("Dwarf Error: wrong unit_type in compilation unit header "
4432 "(is %d, should be %d or %d) [in module %s]"),
4433 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
4434 }
4435
4436 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4437 info_ptr += 1;
4438 }
4439 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4440 &bytes_read);
4441 info_ptr += bytes_read;
4442 if (cu_header->version < 5)
4443 {
4444 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4445 info_ptr += 1;
4446 }
4447 signed_addr = bfd_get_sign_extend_vma (abfd);
4448 if (signed_addr < 0)
4449 internal_error (__FILE__, __LINE__,
4450 _("read_comp_unit_head: dwarf from non elf file"));
4451 cu_header->signed_addr_p = signed_addr;
4452
4453 if (section_kind == rcuh_kind::TYPE)
4454 {
4455 LONGEST type_offset;
4456
4457 cu_header->signature = read_8_bytes (abfd, info_ptr);
4458 info_ptr += 8;
4459
4460 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
4461 info_ptr += bytes_read;
4462 cu_header->type_offset_in_tu.cu_off = type_offset;
4463 if (cu_header->type_offset_in_tu.cu_off != type_offset)
4464 error (_("Dwarf Error: Too big type_offset in compilation unit "
4465 "header (is %s) [in module %s]"), plongest (type_offset),
4466 filename);
4467 }
4468
4469 return info_ptr;
4470 }
4471
4472 /* Helper function that returns the proper abbrev section for
4473 THIS_CU. */
4474
4475 static struct dwarf2_section_info *
4476 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4477 {
4478 struct dwarf2_section_info *abbrev;
4479
4480 if (this_cu->is_dwz)
4481 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4482 else
4483 abbrev = &dwarf2_per_objfile->abbrev;
4484
4485 return abbrev;
4486 }
4487
4488 /* Subroutine of read_and_check_comp_unit_head and
4489 read_and_check_type_unit_head to simplify them.
4490 Perform various error checking on the header. */
4491
4492 static void
4493 error_check_comp_unit_head (struct comp_unit_head *header,
4494 struct dwarf2_section_info *section,
4495 struct dwarf2_section_info *abbrev_section)
4496 {
4497 const char *filename = get_section_file_name (section);
4498
4499 if (header->version < 2 || header->version > 5)
4500 error (_("Dwarf Error: wrong version in compilation unit header "
4501 "(is %d, should be 2, 3, 4 or 5) [in module %s]"), header->version,
4502 filename);
4503
4504 if (header->abbrev_offset.sect_off
4505 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4506 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4507 "(offset 0x%lx + 6) [in module %s]"),
4508 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4509 filename);
4510
4511 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4512 avoid potential 32-bit overflow. */
4513 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4514 > section->size)
4515 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4516 "(offset 0x%lx + 0) [in module %s]"),
4517 (long) header->length, (long) header->offset.sect_off,
4518 filename);
4519 }
4520
4521 /* Read in a CU/TU header and perform some basic error checking.
4522 The contents of the header are stored in HEADER.
4523 The result is a pointer to the start of the first DIE. */
4524
4525 static const gdb_byte *
4526 read_and_check_comp_unit_head (struct comp_unit_head *header,
4527 struct dwarf2_section_info *section,
4528 struct dwarf2_section_info *abbrev_section,
4529 const gdb_byte *info_ptr,
4530 rcuh_kind section_kind)
4531 {
4532 const gdb_byte *beg_of_comp_unit = info_ptr;
4533 bfd *abfd = get_section_bfd_owner (section);
4534
4535 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4536
4537 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
4538
4539 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4540
4541 error_check_comp_unit_head (header, section, abbrev_section);
4542
4543 return info_ptr;
4544 }
4545
4546 /* Fetch the abbreviation table offset from a comp or type unit header. */
4547
4548 static sect_offset
4549 read_abbrev_offset (struct dwarf2_section_info *section,
4550 sect_offset offset)
4551 {
4552 bfd *abfd = get_section_bfd_owner (section);
4553 const gdb_byte *info_ptr;
4554 unsigned int initial_length_size, offset_size;
4555 sect_offset abbrev_offset;
4556 uint16_t version;
4557
4558 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4559 info_ptr = section->buffer + offset.sect_off;
4560 read_initial_length (abfd, info_ptr, &initial_length_size);
4561 offset_size = initial_length_size == 4 ? 4 : 8;
4562 info_ptr += initial_length_size;
4563
4564 version = read_2_bytes (abfd, info_ptr);
4565 info_ptr += 2;
4566 if (version >= 5)
4567 {
4568 /* Skip unit type and address size. */
4569 info_ptr += 2;
4570 }
4571
4572 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4573 return abbrev_offset;
4574 }
4575
4576 /* Allocate a new partial symtab for file named NAME and mark this new
4577 partial symtab as being an include of PST. */
4578
4579 static void
4580 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4581 struct objfile *objfile)
4582 {
4583 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4584
4585 if (!IS_ABSOLUTE_PATH (subpst->filename))
4586 {
4587 /* It shares objfile->objfile_obstack. */
4588 subpst->dirname = pst->dirname;
4589 }
4590
4591 subpst->textlow = 0;
4592 subpst->texthigh = 0;
4593
4594 subpst->dependencies
4595 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
4596 subpst->dependencies[0] = pst;
4597 subpst->number_of_dependencies = 1;
4598
4599 subpst->globals_offset = 0;
4600 subpst->n_global_syms = 0;
4601 subpst->statics_offset = 0;
4602 subpst->n_static_syms = 0;
4603 subpst->compunit_symtab = NULL;
4604 subpst->read_symtab = pst->read_symtab;
4605 subpst->readin = 0;
4606
4607 /* No private part is necessary for include psymtabs. This property
4608 can be used to differentiate between such include psymtabs and
4609 the regular ones. */
4610 subpst->read_symtab_private = NULL;
4611 }
4612
4613 /* Read the Line Number Program data and extract the list of files
4614 included by the source file represented by PST. Build an include
4615 partial symtab for each of these included files. */
4616
4617 static void
4618 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4619 struct die_info *die,
4620 struct partial_symtab *pst)
4621 {
4622 struct line_header *lh = NULL;
4623 struct attribute *attr;
4624
4625 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4626 if (attr)
4627 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4628 if (lh == NULL)
4629 return; /* No linetable, so no includes. */
4630
4631 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4632 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
4633
4634 free_line_header (lh);
4635 }
4636
4637 static hashval_t
4638 hash_signatured_type (const void *item)
4639 {
4640 const struct signatured_type *sig_type
4641 = (const struct signatured_type *) item;
4642
4643 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4644 return sig_type->signature;
4645 }
4646
4647 static int
4648 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4649 {
4650 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
4651 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
4652
4653 return lhs->signature == rhs->signature;
4654 }
4655
4656 /* Allocate a hash table for signatured types. */
4657
4658 static htab_t
4659 allocate_signatured_type_table (struct objfile *objfile)
4660 {
4661 return htab_create_alloc_ex (41,
4662 hash_signatured_type,
4663 eq_signatured_type,
4664 NULL,
4665 &objfile->objfile_obstack,
4666 hashtab_obstack_allocate,
4667 dummy_obstack_deallocate);
4668 }
4669
4670 /* A helper function to add a signatured type CU to a table. */
4671
4672 static int
4673 add_signatured_type_cu_to_table (void **slot, void *datum)
4674 {
4675 struct signatured_type *sigt = (struct signatured_type *) *slot;
4676 struct signatured_type ***datap = (struct signatured_type ***) datum;
4677
4678 **datap = sigt;
4679 ++*datap;
4680
4681 return 1;
4682 }
4683
4684 /* A helper for create_debug_types_hash_table. Read types from SECTION
4685 and fill them into TYPES_HTAB. It will process only type units,
4686 therefore DW_UT_type. */
4687
4688 static void
4689 create_debug_type_hash_table (struct dwo_file *dwo_file,
4690 dwarf2_section_info *section, htab_t &types_htab,
4691 rcuh_kind section_kind)
4692 {
4693 struct objfile *objfile = dwarf2_per_objfile->objfile;
4694 struct dwarf2_section_info *abbrev_section;
4695 bfd *abfd;
4696 const gdb_byte *info_ptr, *end_ptr;
4697
4698 abbrev_section = (dwo_file != NULL
4699 ? &dwo_file->sections.abbrev
4700 : &dwarf2_per_objfile->abbrev);
4701
4702 if (dwarf_read_debug)
4703 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
4704 get_section_name (section),
4705 get_section_file_name (abbrev_section));
4706
4707 dwarf2_read_section (objfile, section);
4708 info_ptr = section->buffer;
4709
4710 if (info_ptr == NULL)
4711 return;
4712
4713 /* We can't set abfd until now because the section may be empty or
4714 not present, in which case the bfd is unknown. */
4715 abfd = get_section_bfd_owner (section);
4716
4717 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4718 because we don't need to read any dies: the signature is in the
4719 header. */
4720
4721 end_ptr = info_ptr + section->size;
4722 while (info_ptr < end_ptr)
4723 {
4724 sect_offset offset;
4725 struct signatured_type *sig_type;
4726 struct dwo_unit *dwo_tu;
4727 void **slot;
4728 const gdb_byte *ptr = info_ptr;
4729 struct comp_unit_head header;
4730 unsigned int length;
4731
4732 offset.sect_off = ptr - section->buffer;
4733
4734 /* We need to read the type's signature in order to build the hash
4735 table, but we don't need anything else just yet. */
4736
4737 ptr = read_and_check_comp_unit_head (&header, section,
4738 abbrev_section, ptr, section_kind);
4739
4740 length = get_cu_length (&header);
4741
4742 /* Skip dummy type units. */
4743 if (ptr >= info_ptr + length
4744 || peek_abbrev_code (abfd, ptr) == 0
4745 || header.unit_type != DW_UT_type)
4746 {
4747 info_ptr += length;
4748 continue;
4749 }
4750
4751 if (types_htab == NULL)
4752 {
4753 if (dwo_file)
4754 types_htab = allocate_dwo_unit_table (objfile);
4755 else
4756 types_htab = allocate_signatured_type_table (objfile);
4757 }
4758
4759 if (dwo_file)
4760 {
4761 sig_type = NULL;
4762 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4763 struct dwo_unit);
4764 dwo_tu->dwo_file = dwo_file;
4765 dwo_tu->signature = header.signature;
4766 dwo_tu->type_offset_in_tu = header.type_offset_in_tu;
4767 dwo_tu->section = section;
4768 dwo_tu->offset = offset;
4769 dwo_tu->length = length;
4770 }
4771 else
4772 {
4773 /* N.B.: type_offset is not usable if this type uses a DWO file.
4774 The real type_offset is in the DWO file. */
4775 dwo_tu = NULL;
4776 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4777 struct signatured_type);
4778 sig_type->signature = header.signature;
4779 sig_type->type_offset_in_tu = header.type_offset_in_tu;
4780 sig_type->per_cu.objfile = objfile;
4781 sig_type->per_cu.is_debug_types = 1;
4782 sig_type->per_cu.section = section;
4783 sig_type->per_cu.offset = offset;
4784 sig_type->per_cu.length = length;
4785 }
4786
4787 slot = htab_find_slot (types_htab,
4788 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4789 INSERT);
4790 gdb_assert (slot != NULL);
4791 if (*slot != NULL)
4792 {
4793 sect_offset dup_offset;
4794
4795 if (dwo_file)
4796 {
4797 const struct dwo_unit *dup_tu
4798 = (const struct dwo_unit *) *slot;
4799
4800 dup_offset = dup_tu->offset;
4801 }
4802 else
4803 {
4804 const struct signatured_type *dup_tu
4805 = (const struct signatured_type *) *slot;
4806
4807 dup_offset = dup_tu->per_cu.offset;
4808 }
4809
4810 complaint (&symfile_complaints,
4811 _("debug type entry at offset 0x%x is duplicate to"
4812 " the entry at offset 0x%x, signature %s"),
4813 offset.sect_off, dup_offset.sect_off,
4814 hex_string (header.signature));
4815 }
4816 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4817
4818 if (dwarf_read_debug > 1)
4819 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4820 offset.sect_off,
4821 hex_string (header.signature));
4822
4823 info_ptr += length;
4824 }
4825 }
4826
4827 /* Create the hash table of all entries in the .debug_types
4828 (or .debug_types.dwo) section(s).
4829 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4830 otherwise it is NULL.
4831
4832 The result is a pointer to the hash table or NULL if there are no types.
4833
4834 Note: This function processes DWO files only, not DWP files. */
4835
4836 static void
4837 create_debug_types_hash_table (struct dwo_file *dwo_file,
4838 VEC (dwarf2_section_info_def) *types,
4839 htab_t &types_htab)
4840 {
4841 int ix;
4842 struct dwarf2_section_info *section;
4843
4844 if (VEC_empty (dwarf2_section_info_def, types))
4845 return;
4846
4847 for (ix = 0;
4848 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4849 ++ix)
4850 create_debug_type_hash_table (dwo_file, section, types_htab,
4851 rcuh_kind::TYPE);
4852 }
4853
4854 /* Create the hash table of all entries in the .debug_types section,
4855 and initialize all_type_units.
4856 The result is zero if there is an error (e.g. missing .debug_types section),
4857 otherwise non-zero. */
4858
4859 static int
4860 create_all_type_units (struct objfile *objfile)
4861 {
4862 htab_t types_htab = NULL;
4863 struct signatured_type **iter;
4864
4865 create_debug_type_hash_table (NULL, &dwarf2_per_objfile->info, types_htab,
4866 rcuh_kind::COMPILE);
4867 create_debug_types_hash_table (NULL, dwarf2_per_objfile->types, types_htab);
4868 if (types_htab == NULL)
4869 {
4870 dwarf2_per_objfile->signatured_types = NULL;
4871 return 0;
4872 }
4873
4874 dwarf2_per_objfile->signatured_types = types_htab;
4875
4876 dwarf2_per_objfile->n_type_units
4877 = dwarf2_per_objfile->n_allocated_type_units
4878 = htab_elements (types_htab);
4879 dwarf2_per_objfile->all_type_units =
4880 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
4881 iter = &dwarf2_per_objfile->all_type_units[0];
4882 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4883 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4884 == dwarf2_per_objfile->n_type_units);
4885
4886 return 1;
4887 }
4888
4889 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4890 If SLOT is non-NULL, it is the entry to use in the hash table.
4891 Otherwise we find one. */
4892
4893 static struct signatured_type *
4894 add_type_unit (ULONGEST sig, void **slot)
4895 {
4896 struct objfile *objfile = dwarf2_per_objfile->objfile;
4897 int n_type_units = dwarf2_per_objfile->n_type_units;
4898 struct signatured_type *sig_type;
4899
4900 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4901 ++n_type_units;
4902 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4903 {
4904 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4905 dwarf2_per_objfile->n_allocated_type_units = 1;
4906 dwarf2_per_objfile->n_allocated_type_units *= 2;
4907 dwarf2_per_objfile->all_type_units
4908 = XRESIZEVEC (struct signatured_type *,
4909 dwarf2_per_objfile->all_type_units,
4910 dwarf2_per_objfile->n_allocated_type_units);
4911 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4912 }
4913 dwarf2_per_objfile->n_type_units = n_type_units;
4914
4915 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4916 struct signatured_type);
4917 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4918 sig_type->signature = sig;
4919 sig_type->per_cu.is_debug_types = 1;
4920 if (dwarf2_per_objfile->using_index)
4921 {
4922 sig_type->per_cu.v.quick =
4923 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4924 struct dwarf2_per_cu_quick_data);
4925 }
4926
4927 if (slot == NULL)
4928 {
4929 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4930 sig_type, INSERT);
4931 }
4932 gdb_assert (*slot == NULL);
4933 *slot = sig_type;
4934 /* The rest of sig_type must be filled in by the caller. */
4935 return sig_type;
4936 }
4937
4938 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4939 Fill in SIG_ENTRY with DWO_ENTRY. */
4940
4941 static void
4942 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4943 struct signatured_type *sig_entry,
4944 struct dwo_unit *dwo_entry)
4945 {
4946 /* Make sure we're not clobbering something we don't expect to. */
4947 gdb_assert (! sig_entry->per_cu.queued);
4948 gdb_assert (sig_entry->per_cu.cu == NULL);
4949 if (dwarf2_per_objfile->using_index)
4950 {
4951 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4952 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
4953 }
4954 else
4955 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4956 gdb_assert (sig_entry->signature == dwo_entry->signature);
4957 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4958 gdb_assert (sig_entry->type_unit_group == NULL);
4959 gdb_assert (sig_entry->dwo_unit == NULL);
4960
4961 sig_entry->per_cu.section = dwo_entry->section;
4962 sig_entry->per_cu.offset = dwo_entry->offset;
4963 sig_entry->per_cu.length = dwo_entry->length;
4964 sig_entry->per_cu.reading_dwo_directly = 1;
4965 sig_entry->per_cu.objfile = objfile;
4966 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4967 sig_entry->dwo_unit = dwo_entry;
4968 }
4969
4970 /* Subroutine of lookup_signatured_type.
4971 If we haven't read the TU yet, create the signatured_type data structure
4972 for a TU to be read in directly from a DWO file, bypassing the stub.
4973 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4974 using .gdb_index, then when reading a CU we want to stay in the DWO file
4975 containing that CU. Otherwise we could end up reading several other DWO
4976 files (due to comdat folding) to process the transitive closure of all the
4977 mentioned TUs, and that can be slow. The current DWO file will have every
4978 type signature that it needs.
4979 We only do this for .gdb_index because in the psymtab case we already have
4980 to read all the DWOs to build the type unit groups. */
4981
4982 static struct signatured_type *
4983 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4984 {
4985 struct objfile *objfile = dwarf2_per_objfile->objfile;
4986 struct dwo_file *dwo_file;
4987 struct dwo_unit find_dwo_entry, *dwo_entry;
4988 struct signatured_type find_sig_entry, *sig_entry;
4989 void **slot;
4990
4991 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4992
4993 /* If TU skeletons have been removed then we may not have read in any
4994 TUs yet. */
4995 if (dwarf2_per_objfile->signatured_types == NULL)
4996 {
4997 dwarf2_per_objfile->signatured_types
4998 = allocate_signatured_type_table (objfile);
4999 }
5000
5001 /* We only ever need to read in one copy of a signatured type.
5002 Use the global signatured_types array to do our own comdat-folding
5003 of types. If this is the first time we're reading this TU, and
5004 the TU has an entry in .gdb_index, replace the recorded data from
5005 .gdb_index with this TU. */
5006
5007 find_sig_entry.signature = sig;
5008 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5009 &find_sig_entry, INSERT);
5010 sig_entry = (struct signatured_type *) *slot;
5011
5012 /* We can get here with the TU already read, *or* in the process of being
5013 read. Don't reassign the global entry to point to this DWO if that's
5014 the case. Also note that if the TU is already being read, it may not
5015 have come from a DWO, the program may be a mix of Fission-compiled
5016 code and non-Fission-compiled code. */
5017
5018 /* Have we already tried to read this TU?
5019 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5020 needn't exist in the global table yet). */
5021 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
5022 return sig_entry;
5023
5024 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
5025 dwo_unit of the TU itself. */
5026 dwo_file = cu->dwo_unit->dwo_file;
5027
5028 /* Ok, this is the first time we're reading this TU. */
5029 if (dwo_file->tus == NULL)
5030 return NULL;
5031 find_dwo_entry.signature = sig;
5032 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
5033 if (dwo_entry == NULL)
5034 return NULL;
5035
5036 /* If the global table doesn't have an entry for this TU, add one. */
5037 if (sig_entry == NULL)
5038 sig_entry = add_type_unit (sig, slot);
5039
5040 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5041 sig_entry->per_cu.tu_read = 1;
5042 return sig_entry;
5043 }
5044
5045 /* Subroutine of lookup_signatured_type.
5046 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
5047 then try the DWP file. If the TU stub (skeleton) has been removed then
5048 it won't be in .gdb_index. */
5049
5050 static struct signatured_type *
5051 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5052 {
5053 struct objfile *objfile = dwarf2_per_objfile->objfile;
5054 struct dwp_file *dwp_file = get_dwp_file ();
5055 struct dwo_unit *dwo_entry;
5056 struct signatured_type find_sig_entry, *sig_entry;
5057 void **slot;
5058
5059 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
5060 gdb_assert (dwp_file != NULL);
5061
5062 /* If TU skeletons have been removed then we may not have read in any
5063 TUs yet. */
5064 if (dwarf2_per_objfile->signatured_types == NULL)
5065 {
5066 dwarf2_per_objfile->signatured_types
5067 = allocate_signatured_type_table (objfile);
5068 }
5069
5070 find_sig_entry.signature = sig;
5071 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5072 &find_sig_entry, INSERT);
5073 sig_entry = (struct signatured_type *) *slot;
5074
5075 /* Have we already tried to read this TU?
5076 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5077 needn't exist in the global table yet). */
5078 if (sig_entry != NULL)
5079 return sig_entry;
5080
5081 if (dwp_file->tus == NULL)
5082 return NULL;
5083 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
5084 sig, 1 /* is_debug_types */);
5085 if (dwo_entry == NULL)
5086 return NULL;
5087
5088 sig_entry = add_type_unit (sig, slot);
5089 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5090
5091 return sig_entry;
5092 }
5093
5094 /* Lookup a signature based type for DW_FORM_ref_sig8.
5095 Returns NULL if signature SIG is not present in the table.
5096 It is up to the caller to complain about this. */
5097
5098 static struct signatured_type *
5099 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5100 {
5101 if (cu->dwo_unit
5102 && dwarf2_per_objfile->using_index)
5103 {
5104 /* We're in a DWO/DWP file, and we're using .gdb_index.
5105 These cases require special processing. */
5106 if (get_dwp_file () == NULL)
5107 return lookup_dwo_signatured_type (cu, sig);
5108 else
5109 return lookup_dwp_signatured_type (cu, sig);
5110 }
5111 else
5112 {
5113 struct signatured_type find_entry, *entry;
5114
5115 if (dwarf2_per_objfile->signatured_types == NULL)
5116 return NULL;
5117 find_entry.signature = sig;
5118 entry = ((struct signatured_type *)
5119 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
5120 return entry;
5121 }
5122 }
5123 \f
5124 /* Low level DIE reading support. */
5125
5126 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5127
5128 static void
5129 init_cu_die_reader (struct die_reader_specs *reader,
5130 struct dwarf2_cu *cu,
5131 struct dwarf2_section_info *section,
5132 struct dwo_file *dwo_file)
5133 {
5134 gdb_assert (section->readin && section->buffer != NULL);
5135 reader->abfd = get_section_bfd_owner (section);
5136 reader->cu = cu;
5137 reader->dwo_file = dwo_file;
5138 reader->die_section = section;
5139 reader->buffer = section->buffer;
5140 reader->buffer_end = section->buffer + section->size;
5141 reader->comp_dir = NULL;
5142 }
5143
5144 /* Subroutine of init_cutu_and_read_dies to simplify it.
5145 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5146 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5147 already.
5148
5149 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5150 from it to the DIE in the DWO. If NULL we are skipping the stub.
5151 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5152 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
5153 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5154 STUB_COMP_DIR may be non-NULL.
5155 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5156 are filled in with the info of the DIE from the DWO file.
5157 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5158 provided an abbrev table to use.
5159 The result is non-zero if a valid (non-dummy) DIE was found. */
5160
5161 static int
5162 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5163 struct dwo_unit *dwo_unit,
5164 int abbrev_table_provided,
5165 struct die_info *stub_comp_unit_die,
5166 const char *stub_comp_dir,
5167 struct die_reader_specs *result_reader,
5168 const gdb_byte **result_info_ptr,
5169 struct die_info **result_comp_unit_die,
5170 int *result_has_children)
5171 {
5172 struct objfile *objfile = dwarf2_per_objfile->objfile;
5173 struct dwarf2_cu *cu = this_cu->cu;
5174 struct dwarf2_section_info *section;
5175 bfd *abfd;
5176 const gdb_byte *begin_info_ptr, *info_ptr;
5177 ULONGEST signature; /* Or dwo_id. */
5178 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5179 int i,num_extra_attrs;
5180 struct dwarf2_section_info *dwo_abbrev_section;
5181 struct attribute *attr;
5182 struct die_info *comp_unit_die;
5183
5184 /* At most one of these may be provided. */
5185 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5186
5187 /* These attributes aren't processed until later:
5188 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5189 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5190 referenced later. However, these attributes are found in the stub
5191 which we won't have later. In order to not impose this complication
5192 on the rest of the code, we read them here and copy them to the
5193 DWO CU/TU die. */
5194
5195 stmt_list = NULL;
5196 low_pc = NULL;
5197 high_pc = NULL;
5198 ranges = NULL;
5199 comp_dir = NULL;
5200
5201 if (stub_comp_unit_die != NULL)
5202 {
5203 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5204 DWO file. */
5205 if (! this_cu->is_debug_types)
5206 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5207 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5208 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5209 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5210 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5211
5212 /* There should be a DW_AT_addr_base attribute here (if needed).
5213 We need the value before we can process DW_FORM_GNU_addr_index. */
5214 cu->addr_base = 0;
5215 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5216 if (attr)
5217 cu->addr_base = DW_UNSND (attr);
5218
5219 /* There should be a DW_AT_ranges_base attribute here (if needed).
5220 We need the value before we can process DW_AT_ranges. */
5221 cu->ranges_base = 0;
5222 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5223 if (attr)
5224 cu->ranges_base = DW_UNSND (attr);
5225 }
5226 else if (stub_comp_dir != NULL)
5227 {
5228 /* Reconstruct the comp_dir attribute to simplify the code below. */
5229 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
5230 comp_dir->name = DW_AT_comp_dir;
5231 comp_dir->form = DW_FORM_string;
5232 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5233 DW_STRING (comp_dir) = stub_comp_dir;
5234 }
5235
5236 /* Set up for reading the DWO CU/TU. */
5237 cu->dwo_unit = dwo_unit;
5238 section = dwo_unit->section;
5239 dwarf2_read_section (objfile, section);
5240 abfd = get_section_bfd_owner (section);
5241 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5242 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5243 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5244
5245 if (this_cu->is_debug_types)
5246 {
5247 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5248
5249 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5250 dwo_abbrev_section,
5251 info_ptr, rcuh_kind::TYPE);
5252 /* This is not an assert because it can be caused by bad debug info. */
5253 if (sig_type->signature != cu->header.signature)
5254 {
5255 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5256 " TU at offset 0x%x [in module %s]"),
5257 hex_string (sig_type->signature),
5258 hex_string (cu->header.signature),
5259 dwo_unit->offset.sect_off,
5260 bfd_get_filename (abfd));
5261 }
5262 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5263 /* For DWOs coming from DWP files, we don't know the CU length
5264 nor the type's offset in the TU until now. */
5265 dwo_unit->length = get_cu_length (&cu->header);
5266 dwo_unit->type_offset_in_tu = cu->header.type_offset_in_tu;
5267
5268 /* Establish the type offset that can be used to lookup the type.
5269 For DWO files, we don't know it until now. */
5270 sig_type->type_offset_in_section.sect_off =
5271 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5272 }
5273 else
5274 {
5275 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5276 dwo_abbrev_section,
5277 info_ptr, rcuh_kind::COMPILE);
5278 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5279 /* For DWOs coming from DWP files, we don't know the CU length
5280 until now. */
5281 dwo_unit->length = get_cu_length (&cu->header);
5282 }
5283
5284 /* Replace the CU's original abbrev table with the DWO's.
5285 Reminder: We can't read the abbrev table until we've read the header. */
5286 if (abbrev_table_provided)
5287 {
5288 /* Don't free the provided abbrev table, the caller of
5289 init_cutu_and_read_dies owns it. */
5290 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5291 /* Ensure the DWO abbrev table gets freed. */
5292 make_cleanup (dwarf2_free_abbrev_table, cu);
5293 }
5294 else
5295 {
5296 dwarf2_free_abbrev_table (cu);
5297 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5298 /* Leave any existing abbrev table cleanup as is. */
5299 }
5300
5301 /* Read in the die, but leave space to copy over the attributes
5302 from the stub. This has the benefit of simplifying the rest of
5303 the code - all the work to maintain the illusion of a single
5304 DW_TAG_{compile,type}_unit DIE is done here. */
5305 num_extra_attrs = ((stmt_list != NULL)
5306 + (low_pc != NULL)
5307 + (high_pc != NULL)
5308 + (ranges != NULL)
5309 + (comp_dir != NULL));
5310 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5311 result_has_children, num_extra_attrs);
5312
5313 /* Copy over the attributes from the stub to the DIE we just read in. */
5314 comp_unit_die = *result_comp_unit_die;
5315 i = comp_unit_die->num_attrs;
5316 if (stmt_list != NULL)
5317 comp_unit_die->attrs[i++] = *stmt_list;
5318 if (low_pc != NULL)
5319 comp_unit_die->attrs[i++] = *low_pc;
5320 if (high_pc != NULL)
5321 comp_unit_die->attrs[i++] = *high_pc;
5322 if (ranges != NULL)
5323 comp_unit_die->attrs[i++] = *ranges;
5324 if (comp_dir != NULL)
5325 comp_unit_die->attrs[i++] = *comp_dir;
5326 comp_unit_die->num_attrs += num_extra_attrs;
5327
5328 if (dwarf_die_debug)
5329 {
5330 fprintf_unfiltered (gdb_stdlog,
5331 "Read die from %s@0x%x of %s:\n",
5332 get_section_name (section),
5333 (unsigned) (begin_info_ptr - section->buffer),
5334 bfd_get_filename (abfd));
5335 dump_die (comp_unit_die, dwarf_die_debug);
5336 }
5337
5338 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5339 TUs by skipping the stub and going directly to the entry in the DWO file.
5340 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5341 to get it via circuitous means. Blech. */
5342 if (comp_dir != NULL)
5343 result_reader->comp_dir = DW_STRING (comp_dir);
5344
5345 /* Skip dummy compilation units. */
5346 if (info_ptr >= begin_info_ptr + dwo_unit->length
5347 || peek_abbrev_code (abfd, info_ptr) == 0)
5348 return 0;
5349
5350 *result_info_ptr = info_ptr;
5351 return 1;
5352 }
5353
5354 /* Subroutine of init_cutu_and_read_dies to simplify it.
5355 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5356 Returns NULL if the specified DWO unit cannot be found. */
5357
5358 static struct dwo_unit *
5359 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5360 struct die_info *comp_unit_die)
5361 {
5362 struct dwarf2_cu *cu = this_cu->cu;
5363 struct attribute *attr;
5364 ULONGEST signature;
5365 struct dwo_unit *dwo_unit;
5366 const char *comp_dir, *dwo_name;
5367
5368 gdb_assert (cu != NULL);
5369
5370 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5371 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5372 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5373
5374 if (this_cu->is_debug_types)
5375 {
5376 struct signatured_type *sig_type;
5377
5378 /* Since this_cu is the first member of struct signatured_type,
5379 we can go from a pointer to one to a pointer to the other. */
5380 sig_type = (struct signatured_type *) this_cu;
5381 signature = sig_type->signature;
5382 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5383 }
5384 else
5385 {
5386 struct attribute *attr;
5387
5388 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5389 if (! attr)
5390 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5391 " [in module %s]"),
5392 dwo_name, objfile_name (this_cu->objfile));
5393 signature = DW_UNSND (attr);
5394 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5395 signature);
5396 }
5397
5398 return dwo_unit;
5399 }
5400
5401 /* Subroutine of init_cutu_and_read_dies to simplify it.
5402 See it for a description of the parameters.
5403 Read a TU directly from a DWO file, bypassing the stub.
5404
5405 Note: This function could be a little bit simpler if we shared cleanups
5406 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5407 to do, so we keep this function self-contained. Or we could move this
5408 into our caller, but it's complex enough already. */
5409
5410 static void
5411 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5412 int use_existing_cu, int keep,
5413 die_reader_func_ftype *die_reader_func,
5414 void *data)
5415 {
5416 struct dwarf2_cu *cu;
5417 struct signatured_type *sig_type;
5418 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5419 struct die_reader_specs reader;
5420 const gdb_byte *info_ptr;
5421 struct die_info *comp_unit_die;
5422 int has_children;
5423
5424 /* Verify we can do the following downcast, and that we have the
5425 data we need. */
5426 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5427 sig_type = (struct signatured_type *) this_cu;
5428 gdb_assert (sig_type->dwo_unit != NULL);
5429
5430 cleanups = make_cleanup (null_cleanup, NULL);
5431
5432 if (use_existing_cu && this_cu->cu != NULL)
5433 {
5434 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5435 cu = this_cu->cu;
5436 /* There's no need to do the rereading_dwo_cu handling that
5437 init_cutu_and_read_dies does since we don't read the stub. */
5438 }
5439 else
5440 {
5441 /* If !use_existing_cu, this_cu->cu must be NULL. */
5442 gdb_assert (this_cu->cu == NULL);
5443 cu = XNEW (struct dwarf2_cu);
5444 init_one_comp_unit (cu, this_cu);
5445 /* If an error occurs while loading, release our storage. */
5446 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5447 }
5448
5449 /* A future optimization, if needed, would be to use an existing
5450 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5451 could share abbrev tables. */
5452
5453 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5454 0 /* abbrev_table_provided */,
5455 NULL /* stub_comp_unit_die */,
5456 sig_type->dwo_unit->dwo_file->comp_dir,
5457 &reader, &info_ptr,
5458 &comp_unit_die, &has_children) == 0)
5459 {
5460 /* Dummy die. */
5461 do_cleanups (cleanups);
5462 return;
5463 }
5464
5465 /* All the "real" work is done here. */
5466 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5467
5468 /* This duplicates the code in init_cutu_and_read_dies,
5469 but the alternative is making the latter more complex.
5470 This function is only for the special case of using DWO files directly:
5471 no point in overly complicating the general case just to handle this. */
5472 if (free_cu_cleanup != NULL)
5473 {
5474 if (keep)
5475 {
5476 /* We've successfully allocated this compilation unit. Let our
5477 caller clean it up when finished with it. */
5478 discard_cleanups (free_cu_cleanup);
5479
5480 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5481 So we have to manually free the abbrev table. */
5482 dwarf2_free_abbrev_table (cu);
5483
5484 /* Link this CU into read_in_chain. */
5485 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5486 dwarf2_per_objfile->read_in_chain = this_cu;
5487 }
5488 else
5489 do_cleanups (free_cu_cleanup);
5490 }
5491
5492 do_cleanups (cleanups);
5493 }
5494
5495 /* Initialize a CU (or TU) and read its DIEs.
5496 If the CU defers to a DWO file, read the DWO file as well.
5497
5498 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5499 Otherwise the table specified in the comp unit header is read in and used.
5500 This is an optimization for when we already have the abbrev table.
5501
5502 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5503 Otherwise, a new CU is allocated with xmalloc.
5504
5505 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5506 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5507
5508 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5509 linker) then DIE_READER_FUNC will not get called. */
5510
5511 static void
5512 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5513 struct abbrev_table *abbrev_table,
5514 int use_existing_cu, int keep,
5515 die_reader_func_ftype *die_reader_func,
5516 void *data)
5517 {
5518 struct objfile *objfile = dwarf2_per_objfile->objfile;
5519 struct dwarf2_section_info *section = this_cu->section;
5520 bfd *abfd = get_section_bfd_owner (section);
5521 struct dwarf2_cu *cu;
5522 const gdb_byte *begin_info_ptr, *info_ptr;
5523 struct die_reader_specs reader;
5524 struct die_info *comp_unit_die;
5525 int has_children;
5526 struct attribute *attr;
5527 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5528 struct signatured_type *sig_type = NULL;
5529 struct dwarf2_section_info *abbrev_section;
5530 /* Non-zero if CU currently points to a DWO file and we need to
5531 reread it. When this happens we need to reread the skeleton die
5532 before we can reread the DWO file (this only applies to CUs, not TUs). */
5533 int rereading_dwo_cu = 0;
5534
5535 if (dwarf_die_debug)
5536 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5537 this_cu->is_debug_types ? "type" : "comp",
5538 this_cu->offset.sect_off);
5539
5540 if (use_existing_cu)
5541 gdb_assert (keep);
5542
5543 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5544 file (instead of going through the stub), short-circuit all of this. */
5545 if (this_cu->reading_dwo_directly)
5546 {
5547 /* Narrow down the scope of possibilities to have to understand. */
5548 gdb_assert (this_cu->is_debug_types);
5549 gdb_assert (abbrev_table == NULL);
5550 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5551 die_reader_func, data);
5552 return;
5553 }
5554
5555 cleanups = make_cleanup (null_cleanup, NULL);
5556
5557 /* This is cheap if the section is already read in. */
5558 dwarf2_read_section (objfile, section);
5559
5560 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5561
5562 abbrev_section = get_abbrev_section_for_cu (this_cu);
5563
5564 if (use_existing_cu && this_cu->cu != NULL)
5565 {
5566 cu = this_cu->cu;
5567 /* If this CU is from a DWO file we need to start over, we need to
5568 refetch the attributes from the skeleton CU.
5569 This could be optimized by retrieving those attributes from when we
5570 were here the first time: the previous comp_unit_die was stored in
5571 comp_unit_obstack. But there's no data yet that we need this
5572 optimization. */
5573 if (cu->dwo_unit != NULL)
5574 rereading_dwo_cu = 1;
5575 }
5576 else
5577 {
5578 /* If !use_existing_cu, this_cu->cu must be NULL. */
5579 gdb_assert (this_cu->cu == NULL);
5580 cu = XNEW (struct dwarf2_cu);
5581 init_one_comp_unit (cu, this_cu);
5582 /* If an error occurs while loading, release our storage. */
5583 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5584 }
5585
5586 /* Get the header. */
5587 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5588 {
5589 /* We already have the header, there's no need to read it in again. */
5590 info_ptr += cu->header.first_die_offset.cu_off;
5591 }
5592 else
5593 {
5594 if (this_cu->is_debug_types)
5595 {
5596 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5597 abbrev_section, info_ptr,
5598 rcuh_kind::TYPE);
5599
5600 /* Since per_cu is the first member of struct signatured_type,
5601 we can go from a pointer to one to a pointer to the other. */
5602 sig_type = (struct signatured_type *) this_cu;
5603 gdb_assert (sig_type->signature == cu->header.signature);
5604 gdb_assert (sig_type->type_offset_in_tu.cu_off
5605 == cu->header.type_offset_in_tu.cu_off);
5606 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5607
5608 /* LENGTH has not been set yet for type units if we're
5609 using .gdb_index. */
5610 this_cu->length = get_cu_length (&cu->header);
5611
5612 /* Establish the type offset that can be used to lookup the type. */
5613 sig_type->type_offset_in_section.sect_off =
5614 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5615
5616 this_cu->dwarf_version = cu->header.version;
5617 }
5618 else
5619 {
5620 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5621 abbrev_section,
5622 info_ptr,
5623 rcuh_kind::COMPILE);
5624
5625 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5626 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5627 this_cu->dwarf_version = cu->header.version;
5628 }
5629 }
5630
5631 /* Skip dummy compilation units. */
5632 if (info_ptr >= begin_info_ptr + this_cu->length
5633 || peek_abbrev_code (abfd, info_ptr) == 0)
5634 {
5635 do_cleanups (cleanups);
5636 return;
5637 }
5638
5639 /* If we don't have them yet, read the abbrevs for this compilation unit.
5640 And if we need to read them now, make sure they're freed when we're
5641 done. Note that it's important that if the CU had an abbrev table
5642 on entry we don't free it when we're done: Somewhere up the call stack
5643 it may be in use. */
5644 if (abbrev_table != NULL)
5645 {
5646 gdb_assert (cu->abbrev_table == NULL);
5647 gdb_assert (cu->header.abbrev_offset.sect_off
5648 == abbrev_table->offset.sect_off);
5649 cu->abbrev_table = abbrev_table;
5650 }
5651 else if (cu->abbrev_table == NULL)
5652 {
5653 dwarf2_read_abbrevs (cu, abbrev_section);
5654 make_cleanup (dwarf2_free_abbrev_table, cu);
5655 }
5656 else if (rereading_dwo_cu)
5657 {
5658 dwarf2_free_abbrev_table (cu);
5659 dwarf2_read_abbrevs (cu, abbrev_section);
5660 }
5661
5662 /* Read the top level CU/TU die. */
5663 init_cu_die_reader (&reader, cu, section, NULL);
5664 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5665
5666 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5667 from the DWO file.
5668 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5669 DWO CU, that this test will fail (the attribute will not be present). */
5670 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5671 if (attr)
5672 {
5673 struct dwo_unit *dwo_unit;
5674 struct die_info *dwo_comp_unit_die;
5675
5676 if (has_children)
5677 {
5678 complaint (&symfile_complaints,
5679 _("compilation unit with DW_AT_GNU_dwo_name"
5680 " has children (offset 0x%x) [in module %s]"),
5681 this_cu->offset.sect_off, bfd_get_filename (abfd));
5682 }
5683 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5684 if (dwo_unit != NULL)
5685 {
5686 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5687 abbrev_table != NULL,
5688 comp_unit_die, NULL,
5689 &reader, &info_ptr,
5690 &dwo_comp_unit_die, &has_children) == 0)
5691 {
5692 /* Dummy die. */
5693 do_cleanups (cleanups);
5694 return;
5695 }
5696 comp_unit_die = dwo_comp_unit_die;
5697 }
5698 else
5699 {
5700 /* Yikes, we couldn't find the rest of the DIE, we only have
5701 the stub. A complaint has already been logged. There's
5702 not much more we can do except pass on the stub DIE to
5703 die_reader_func. We don't want to throw an error on bad
5704 debug info. */
5705 }
5706 }
5707
5708 /* All of the above is setup for this call. Yikes. */
5709 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5710
5711 /* Done, clean up. */
5712 if (free_cu_cleanup != NULL)
5713 {
5714 if (keep)
5715 {
5716 /* We've successfully allocated this compilation unit. Let our
5717 caller clean it up when finished with it. */
5718 discard_cleanups (free_cu_cleanup);
5719
5720 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5721 So we have to manually free the abbrev table. */
5722 dwarf2_free_abbrev_table (cu);
5723
5724 /* Link this CU into read_in_chain. */
5725 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5726 dwarf2_per_objfile->read_in_chain = this_cu;
5727 }
5728 else
5729 do_cleanups (free_cu_cleanup);
5730 }
5731
5732 do_cleanups (cleanups);
5733 }
5734
5735 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5736 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5737 to have already done the lookup to find the DWO file).
5738
5739 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5740 THIS_CU->is_debug_types, but nothing else.
5741
5742 We fill in THIS_CU->length.
5743
5744 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5745 linker) then DIE_READER_FUNC will not get called.
5746
5747 THIS_CU->cu is always freed when done.
5748 This is done in order to not leave THIS_CU->cu in a state where we have
5749 to care whether it refers to the "main" CU or the DWO CU. */
5750
5751 static void
5752 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5753 struct dwo_file *dwo_file,
5754 die_reader_func_ftype *die_reader_func,
5755 void *data)
5756 {
5757 struct objfile *objfile = dwarf2_per_objfile->objfile;
5758 struct dwarf2_section_info *section = this_cu->section;
5759 bfd *abfd = get_section_bfd_owner (section);
5760 struct dwarf2_section_info *abbrev_section;
5761 struct dwarf2_cu cu;
5762 const gdb_byte *begin_info_ptr, *info_ptr;
5763 struct die_reader_specs reader;
5764 struct cleanup *cleanups;
5765 struct die_info *comp_unit_die;
5766 int has_children;
5767
5768 if (dwarf_die_debug)
5769 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5770 this_cu->is_debug_types ? "type" : "comp",
5771 this_cu->offset.sect_off);
5772
5773 gdb_assert (this_cu->cu == NULL);
5774
5775 abbrev_section = (dwo_file != NULL
5776 ? &dwo_file->sections.abbrev
5777 : get_abbrev_section_for_cu (this_cu));
5778
5779 /* This is cheap if the section is already read in. */
5780 dwarf2_read_section (objfile, section);
5781
5782 init_one_comp_unit (&cu, this_cu);
5783
5784 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5785
5786 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5787 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5788 abbrev_section, info_ptr,
5789 (this_cu->is_debug_types
5790 ? rcuh_kind::TYPE
5791 : rcuh_kind::COMPILE));
5792
5793 this_cu->length = get_cu_length (&cu.header);
5794
5795 /* Skip dummy compilation units. */
5796 if (info_ptr >= begin_info_ptr + this_cu->length
5797 || peek_abbrev_code (abfd, info_ptr) == 0)
5798 {
5799 do_cleanups (cleanups);
5800 return;
5801 }
5802
5803 dwarf2_read_abbrevs (&cu, abbrev_section);
5804 make_cleanup (dwarf2_free_abbrev_table, &cu);
5805
5806 init_cu_die_reader (&reader, &cu, section, dwo_file);
5807 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5808
5809 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5810
5811 do_cleanups (cleanups);
5812 }
5813
5814 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5815 does not lookup the specified DWO file.
5816 This cannot be used to read DWO files.
5817
5818 THIS_CU->cu is always freed when done.
5819 This is done in order to not leave THIS_CU->cu in a state where we have
5820 to care whether it refers to the "main" CU or the DWO CU.
5821 We can revisit this if the data shows there's a performance issue. */
5822
5823 static void
5824 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5825 die_reader_func_ftype *die_reader_func,
5826 void *data)
5827 {
5828 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5829 }
5830 \f
5831 /* Type Unit Groups.
5832
5833 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5834 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5835 so that all types coming from the same compilation (.o file) are grouped
5836 together. A future step could be to put the types in the same symtab as
5837 the CU the types ultimately came from. */
5838
5839 static hashval_t
5840 hash_type_unit_group (const void *item)
5841 {
5842 const struct type_unit_group *tu_group
5843 = (const struct type_unit_group *) item;
5844
5845 return hash_stmt_list_entry (&tu_group->hash);
5846 }
5847
5848 static int
5849 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5850 {
5851 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
5852 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
5853
5854 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5855 }
5856
5857 /* Allocate a hash table for type unit groups. */
5858
5859 static htab_t
5860 allocate_type_unit_groups_table (void)
5861 {
5862 return htab_create_alloc_ex (3,
5863 hash_type_unit_group,
5864 eq_type_unit_group,
5865 NULL,
5866 &dwarf2_per_objfile->objfile->objfile_obstack,
5867 hashtab_obstack_allocate,
5868 dummy_obstack_deallocate);
5869 }
5870
5871 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5872 partial symtabs. We combine several TUs per psymtab to not let the size
5873 of any one psymtab grow too big. */
5874 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5875 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5876
5877 /* Helper routine for get_type_unit_group.
5878 Create the type_unit_group object used to hold one or more TUs. */
5879
5880 static struct type_unit_group *
5881 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5882 {
5883 struct objfile *objfile = dwarf2_per_objfile->objfile;
5884 struct dwarf2_per_cu_data *per_cu;
5885 struct type_unit_group *tu_group;
5886
5887 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5888 struct type_unit_group);
5889 per_cu = &tu_group->per_cu;
5890 per_cu->objfile = objfile;
5891
5892 if (dwarf2_per_objfile->using_index)
5893 {
5894 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5895 struct dwarf2_per_cu_quick_data);
5896 }
5897 else
5898 {
5899 unsigned int line_offset = line_offset_struct.sect_off;
5900 struct partial_symtab *pst;
5901 char *name;
5902
5903 /* Give the symtab a useful name for debug purposes. */
5904 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5905 name = xstrprintf ("<type_units_%d>",
5906 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5907 else
5908 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5909
5910 pst = create_partial_symtab (per_cu, name);
5911 pst->anonymous = 1;
5912
5913 xfree (name);
5914 }
5915
5916 tu_group->hash.dwo_unit = cu->dwo_unit;
5917 tu_group->hash.line_offset = line_offset_struct;
5918
5919 return tu_group;
5920 }
5921
5922 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5923 STMT_LIST is a DW_AT_stmt_list attribute. */
5924
5925 static struct type_unit_group *
5926 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5927 {
5928 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5929 struct type_unit_group *tu_group;
5930 void **slot;
5931 unsigned int line_offset;
5932 struct type_unit_group type_unit_group_for_lookup;
5933
5934 if (dwarf2_per_objfile->type_unit_groups == NULL)
5935 {
5936 dwarf2_per_objfile->type_unit_groups =
5937 allocate_type_unit_groups_table ();
5938 }
5939
5940 /* Do we need to create a new group, or can we use an existing one? */
5941
5942 if (stmt_list)
5943 {
5944 line_offset = DW_UNSND (stmt_list);
5945 ++tu_stats->nr_symtab_sharers;
5946 }
5947 else
5948 {
5949 /* Ugh, no stmt_list. Rare, but we have to handle it.
5950 We can do various things here like create one group per TU or
5951 spread them over multiple groups to split up the expansion work.
5952 To avoid worst case scenarios (too many groups or too large groups)
5953 we, umm, group them in bunches. */
5954 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5955 | (tu_stats->nr_stmt_less_type_units
5956 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5957 ++tu_stats->nr_stmt_less_type_units;
5958 }
5959
5960 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5961 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5962 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5963 &type_unit_group_for_lookup, INSERT);
5964 if (*slot != NULL)
5965 {
5966 tu_group = (struct type_unit_group *) *slot;
5967 gdb_assert (tu_group != NULL);
5968 }
5969 else
5970 {
5971 sect_offset line_offset_struct;
5972
5973 line_offset_struct.sect_off = line_offset;
5974 tu_group = create_type_unit_group (cu, line_offset_struct);
5975 *slot = tu_group;
5976 ++tu_stats->nr_symtabs;
5977 }
5978
5979 return tu_group;
5980 }
5981 \f
5982 /* Partial symbol tables. */
5983
5984 /* Create a psymtab named NAME and assign it to PER_CU.
5985
5986 The caller must fill in the following details:
5987 dirname, textlow, texthigh. */
5988
5989 static struct partial_symtab *
5990 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5991 {
5992 struct objfile *objfile = per_cu->objfile;
5993 struct partial_symtab *pst;
5994
5995 pst = start_psymtab_common (objfile, name, 0,
5996 objfile->global_psymbols.next,
5997 objfile->static_psymbols.next);
5998
5999 pst->psymtabs_addrmap_supported = 1;
6000
6001 /* This is the glue that links PST into GDB's symbol API. */
6002 pst->read_symtab_private = per_cu;
6003 pst->read_symtab = dwarf2_read_symtab;
6004 per_cu->v.psymtab = pst;
6005
6006 return pst;
6007 }
6008
6009 /* The DATA object passed to process_psymtab_comp_unit_reader has this
6010 type. */
6011
6012 struct process_psymtab_comp_unit_data
6013 {
6014 /* True if we are reading a DW_TAG_partial_unit. */
6015
6016 int want_partial_unit;
6017
6018 /* The "pretend" language that is used if the CU doesn't declare a
6019 language. */
6020
6021 enum language pretend_language;
6022 };
6023
6024 /* die_reader_func for process_psymtab_comp_unit. */
6025
6026 static void
6027 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
6028 const gdb_byte *info_ptr,
6029 struct die_info *comp_unit_die,
6030 int has_children,
6031 void *data)
6032 {
6033 struct dwarf2_cu *cu = reader->cu;
6034 struct objfile *objfile = cu->objfile;
6035 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6036 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6037 CORE_ADDR baseaddr;
6038 CORE_ADDR best_lowpc = 0, best_highpc = 0;
6039 struct partial_symtab *pst;
6040 enum pc_bounds_kind cu_bounds_kind;
6041 const char *filename;
6042 struct process_psymtab_comp_unit_data *info
6043 = (struct process_psymtab_comp_unit_data *) data;
6044
6045 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
6046 return;
6047
6048 gdb_assert (! per_cu->is_debug_types);
6049
6050 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
6051
6052 cu->list_in_scope = &file_symbols;
6053
6054 /* Allocate a new partial symbol table structure. */
6055 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
6056 if (filename == NULL)
6057 filename = "";
6058
6059 pst = create_partial_symtab (per_cu, filename);
6060
6061 /* This must be done before calling dwarf2_build_include_psymtabs. */
6062 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
6063
6064 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6065
6066 dwarf2_find_base_address (comp_unit_die, cu);
6067
6068 /* Possibly set the default values of LOWPC and HIGHPC from
6069 `DW_AT_ranges'. */
6070 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
6071 &best_highpc, cu, pst);
6072 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
6073 /* Store the contiguous range if it is not empty; it can be empty for
6074 CUs with no code. */
6075 addrmap_set_empty (objfile->psymtabs_addrmap,
6076 gdbarch_adjust_dwarf2_addr (gdbarch,
6077 best_lowpc + baseaddr),
6078 gdbarch_adjust_dwarf2_addr (gdbarch,
6079 best_highpc + baseaddr) - 1,
6080 pst);
6081
6082 /* Check if comp unit has_children.
6083 If so, read the rest of the partial symbols from this comp unit.
6084 If not, there's no more debug_info for this comp unit. */
6085 if (has_children)
6086 {
6087 struct partial_die_info *first_die;
6088 CORE_ADDR lowpc, highpc;
6089
6090 lowpc = ((CORE_ADDR) -1);
6091 highpc = ((CORE_ADDR) 0);
6092
6093 first_die = load_partial_dies (reader, info_ptr, 1);
6094
6095 scan_partial_symbols (first_die, &lowpc, &highpc,
6096 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
6097
6098 /* If we didn't find a lowpc, set it to highpc to avoid
6099 complaints from `maint check'. */
6100 if (lowpc == ((CORE_ADDR) -1))
6101 lowpc = highpc;
6102
6103 /* If the compilation unit didn't have an explicit address range,
6104 then use the information extracted from its child dies. */
6105 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
6106 {
6107 best_lowpc = lowpc;
6108 best_highpc = highpc;
6109 }
6110 }
6111 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6112 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
6113
6114 end_psymtab_common (objfile, pst);
6115
6116 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6117 {
6118 int i;
6119 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6120 struct dwarf2_per_cu_data *iter;
6121
6122 /* Fill in 'dependencies' here; we fill in 'users' in a
6123 post-pass. */
6124 pst->number_of_dependencies = len;
6125 pst->dependencies =
6126 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6127 for (i = 0;
6128 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6129 i, iter);
6130 ++i)
6131 pst->dependencies[i] = iter->v.psymtab;
6132
6133 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6134 }
6135
6136 /* Get the list of files included in the current compilation unit,
6137 and build a psymtab for each of them. */
6138 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6139
6140 if (dwarf_read_debug)
6141 {
6142 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6143
6144 fprintf_unfiltered (gdb_stdlog,
6145 "Psymtab for %s unit @0x%x: %s - %s"
6146 ", %d global, %d static syms\n",
6147 per_cu->is_debug_types ? "type" : "comp",
6148 per_cu->offset.sect_off,
6149 paddress (gdbarch, pst->textlow),
6150 paddress (gdbarch, pst->texthigh),
6151 pst->n_global_syms, pst->n_static_syms);
6152 }
6153 }
6154
6155 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6156 Process compilation unit THIS_CU for a psymtab. */
6157
6158 static void
6159 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6160 int want_partial_unit,
6161 enum language pretend_language)
6162 {
6163 struct process_psymtab_comp_unit_data info;
6164
6165 /* If this compilation unit was already read in, free the
6166 cached copy in order to read it in again. This is
6167 necessary because we skipped some symbols when we first
6168 read in the compilation unit (see load_partial_dies).
6169 This problem could be avoided, but the benefit is unclear. */
6170 if (this_cu->cu != NULL)
6171 free_one_cached_comp_unit (this_cu);
6172
6173 gdb_assert (! this_cu->is_debug_types);
6174 info.want_partial_unit = want_partial_unit;
6175 info.pretend_language = pretend_language;
6176 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6177 process_psymtab_comp_unit_reader,
6178 &info);
6179
6180 /* Age out any secondary CUs. */
6181 age_cached_comp_units ();
6182 }
6183
6184 /* Reader function for build_type_psymtabs. */
6185
6186 static void
6187 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6188 const gdb_byte *info_ptr,
6189 struct die_info *type_unit_die,
6190 int has_children,
6191 void *data)
6192 {
6193 struct objfile *objfile = dwarf2_per_objfile->objfile;
6194 struct dwarf2_cu *cu = reader->cu;
6195 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6196 struct signatured_type *sig_type;
6197 struct type_unit_group *tu_group;
6198 struct attribute *attr;
6199 struct partial_die_info *first_die;
6200 CORE_ADDR lowpc, highpc;
6201 struct partial_symtab *pst;
6202
6203 gdb_assert (data == NULL);
6204 gdb_assert (per_cu->is_debug_types);
6205 sig_type = (struct signatured_type *) per_cu;
6206
6207 if (! has_children)
6208 return;
6209
6210 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6211 tu_group = get_type_unit_group (cu, attr);
6212
6213 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6214
6215 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6216 cu->list_in_scope = &file_symbols;
6217 pst = create_partial_symtab (per_cu, "");
6218 pst->anonymous = 1;
6219
6220 first_die = load_partial_dies (reader, info_ptr, 1);
6221
6222 lowpc = (CORE_ADDR) -1;
6223 highpc = (CORE_ADDR) 0;
6224 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6225
6226 end_psymtab_common (objfile, pst);
6227 }
6228
6229 /* Struct used to sort TUs by their abbreviation table offset. */
6230
6231 struct tu_abbrev_offset
6232 {
6233 struct signatured_type *sig_type;
6234 sect_offset abbrev_offset;
6235 };
6236
6237 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6238
6239 static int
6240 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6241 {
6242 const struct tu_abbrev_offset * const *a
6243 = (const struct tu_abbrev_offset * const*) ap;
6244 const struct tu_abbrev_offset * const *b
6245 = (const struct tu_abbrev_offset * const*) bp;
6246 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6247 unsigned int boff = (*b)->abbrev_offset.sect_off;
6248
6249 return (aoff > boff) - (aoff < boff);
6250 }
6251
6252 /* Efficiently read all the type units.
6253 This does the bulk of the work for build_type_psymtabs.
6254
6255 The efficiency is because we sort TUs by the abbrev table they use and
6256 only read each abbrev table once. In one program there are 200K TUs
6257 sharing 8K abbrev tables.
6258
6259 The main purpose of this function is to support building the
6260 dwarf2_per_objfile->type_unit_groups table.
6261 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6262 can collapse the search space by grouping them by stmt_list.
6263 The savings can be significant, in the same program from above the 200K TUs
6264 share 8K stmt_list tables.
6265
6266 FUNC is expected to call get_type_unit_group, which will create the
6267 struct type_unit_group if necessary and add it to
6268 dwarf2_per_objfile->type_unit_groups. */
6269
6270 static void
6271 build_type_psymtabs_1 (void)
6272 {
6273 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6274 struct cleanup *cleanups;
6275 struct abbrev_table *abbrev_table;
6276 sect_offset abbrev_offset;
6277 struct tu_abbrev_offset *sorted_by_abbrev;
6278 int i;
6279
6280 /* It's up to the caller to not call us multiple times. */
6281 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6282
6283 if (dwarf2_per_objfile->n_type_units == 0)
6284 return;
6285
6286 /* TUs typically share abbrev tables, and there can be way more TUs than
6287 abbrev tables. Sort by abbrev table to reduce the number of times we
6288 read each abbrev table in.
6289 Alternatives are to punt or to maintain a cache of abbrev tables.
6290 This is simpler and efficient enough for now.
6291
6292 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6293 symtab to use). Typically TUs with the same abbrev offset have the same
6294 stmt_list value too so in practice this should work well.
6295
6296 The basic algorithm here is:
6297
6298 sort TUs by abbrev table
6299 for each TU with same abbrev table:
6300 read abbrev table if first user
6301 read TU top level DIE
6302 [IWBN if DWO skeletons had DW_AT_stmt_list]
6303 call FUNC */
6304
6305 if (dwarf_read_debug)
6306 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6307
6308 /* Sort in a separate table to maintain the order of all_type_units
6309 for .gdb_index: TU indices directly index all_type_units. */
6310 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6311 dwarf2_per_objfile->n_type_units);
6312 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6313 {
6314 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6315
6316 sorted_by_abbrev[i].sig_type = sig_type;
6317 sorted_by_abbrev[i].abbrev_offset =
6318 read_abbrev_offset (sig_type->per_cu.section,
6319 sig_type->per_cu.offset);
6320 }
6321 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6322 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6323 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6324
6325 abbrev_offset.sect_off = ~(unsigned) 0;
6326 abbrev_table = NULL;
6327 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6328
6329 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6330 {
6331 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6332
6333 /* Switch to the next abbrev table if necessary. */
6334 if (abbrev_table == NULL
6335 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6336 {
6337 if (abbrev_table != NULL)
6338 {
6339 abbrev_table_free (abbrev_table);
6340 /* Reset to NULL in case abbrev_table_read_table throws
6341 an error: abbrev_table_free_cleanup will get called. */
6342 abbrev_table = NULL;
6343 }
6344 abbrev_offset = tu->abbrev_offset;
6345 abbrev_table =
6346 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6347 abbrev_offset);
6348 ++tu_stats->nr_uniq_abbrev_tables;
6349 }
6350
6351 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6352 build_type_psymtabs_reader, NULL);
6353 }
6354
6355 do_cleanups (cleanups);
6356 }
6357
6358 /* Print collected type unit statistics. */
6359
6360 static void
6361 print_tu_stats (void)
6362 {
6363 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6364
6365 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6366 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6367 dwarf2_per_objfile->n_type_units);
6368 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6369 tu_stats->nr_uniq_abbrev_tables);
6370 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6371 tu_stats->nr_symtabs);
6372 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6373 tu_stats->nr_symtab_sharers);
6374 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6375 tu_stats->nr_stmt_less_type_units);
6376 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6377 tu_stats->nr_all_type_units_reallocs);
6378 }
6379
6380 /* Traversal function for build_type_psymtabs. */
6381
6382 static int
6383 build_type_psymtab_dependencies (void **slot, void *info)
6384 {
6385 struct objfile *objfile = dwarf2_per_objfile->objfile;
6386 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6387 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6388 struct partial_symtab *pst = per_cu->v.psymtab;
6389 int len = VEC_length (sig_type_ptr, tu_group->tus);
6390 struct signatured_type *iter;
6391 int i;
6392
6393 gdb_assert (len > 0);
6394 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6395
6396 pst->number_of_dependencies = len;
6397 pst->dependencies =
6398 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6399 for (i = 0;
6400 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6401 ++i)
6402 {
6403 gdb_assert (iter->per_cu.is_debug_types);
6404 pst->dependencies[i] = iter->per_cu.v.psymtab;
6405 iter->type_unit_group = tu_group;
6406 }
6407
6408 VEC_free (sig_type_ptr, tu_group->tus);
6409
6410 return 1;
6411 }
6412
6413 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6414 Build partial symbol tables for the .debug_types comp-units. */
6415
6416 static void
6417 build_type_psymtabs (struct objfile *objfile)
6418 {
6419 if (! create_all_type_units (objfile))
6420 return;
6421
6422 build_type_psymtabs_1 ();
6423 }
6424
6425 /* Traversal function for process_skeletonless_type_unit.
6426 Read a TU in a DWO file and build partial symbols for it. */
6427
6428 static int
6429 process_skeletonless_type_unit (void **slot, void *info)
6430 {
6431 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6432 struct objfile *objfile = (struct objfile *) info;
6433 struct signatured_type find_entry, *entry;
6434
6435 /* If this TU doesn't exist in the global table, add it and read it in. */
6436
6437 if (dwarf2_per_objfile->signatured_types == NULL)
6438 {
6439 dwarf2_per_objfile->signatured_types
6440 = allocate_signatured_type_table (objfile);
6441 }
6442
6443 find_entry.signature = dwo_unit->signature;
6444 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6445 INSERT);
6446 /* If we've already seen this type there's nothing to do. What's happening
6447 is we're doing our own version of comdat-folding here. */
6448 if (*slot != NULL)
6449 return 1;
6450
6451 /* This does the job that create_all_type_units would have done for
6452 this TU. */
6453 entry = add_type_unit (dwo_unit->signature, slot);
6454 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6455 *slot = entry;
6456
6457 /* This does the job that build_type_psymtabs_1 would have done. */
6458 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6459 build_type_psymtabs_reader, NULL);
6460
6461 return 1;
6462 }
6463
6464 /* Traversal function for process_skeletonless_type_units. */
6465
6466 static int
6467 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6468 {
6469 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6470
6471 if (dwo_file->tus != NULL)
6472 {
6473 htab_traverse_noresize (dwo_file->tus,
6474 process_skeletonless_type_unit, info);
6475 }
6476
6477 return 1;
6478 }
6479
6480 /* Scan all TUs of DWO files, verifying we've processed them.
6481 This is needed in case a TU was emitted without its skeleton.
6482 Note: This can't be done until we know what all the DWO files are. */
6483
6484 static void
6485 process_skeletonless_type_units (struct objfile *objfile)
6486 {
6487 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6488 if (get_dwp_file () == NULL
6489 && dwarf2_per_objfile->dwo_files != NULL)
6490 {
6491 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6492 process_dwo_file_for_skeletonless_type_units,
6493 objfile);
6494 }
6495 }
6496
6497 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6498
6499 static void
6500 psymtabs_addrmap_cleanup (void *o)
6501 {
6502 struct objfile *objfile = (struct objfile *) o;
6503
6504 objfile->psymtabs_addrmap = NULL;
6505 }
6506
6507 /* Compute the 'user' field for each psymtab in OBJFILE. */
6508
6509 static void
6510 set_partial_user (struct objfile *objfile)
6511 {
6512 int i;
6513
6514 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6515 {
6516 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6517 struct partial_symtab *pst = per_cu->v.psymtab;
6518 int j;
6519
6520 if (pst == NULL)
6521 continue;
6522
6523 for (j = 0; j < pst->number_of_dependencies; ++j)
6524 {
6525 /* Set the 'user' field only if it is not already set. */
6526 if (pst->dependencies[j]->user == NULL)
6527 pst->dependencies[j]->user = pst;
6528 }
6529 }
6530 }
6531
6532 /* Build the partial symbol table by doing a quick pass through the
6533 .debug_info and .debug_abbrev sections. */
6534
6535 static void
6536 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6537 {
6538 struct cleanup *back_to, *addrmap_cleanup;
6539 struct obstack temp_obstack;
6540 int i;
6541
6542 if (dwarf_read_debug)
6543 {
6544 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6545 objfile_name (objfile));
6546 }
6547
6548 dwarf2_per_objfile->reading_partial_symbols = 1;
6549
6550 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6551
6552 /* Any cached compilation units will be linked by the per-objfile
6553 read_in_chain. Make sure to free them when we're done. */
6554 back_to = make_cleanup (free_cached_comp_units, NULL);
6555
6556 build_type_psymtabs (objfile);
6557
6558 create_all_comp_units (objfile);
6559
6560 /* Create a temporary address map on a temporary obstack. We later
6561 copy this to the final obstack. */
6562 obstack_init (&temp_obstack);
6563 make_cleanup_obstack_free (&temp_obstack);
6564 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6565 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6566
6567 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6568 {
6569 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6570
6571 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6572 }
6573
6574 /* This has to wait until we read the CUs, we need the list of DWOs. */
6575 process_skeletonless_type_units (objfile);
6576
6577 /* Now that all TUs have been processed we can fill in the dependencies. */
6578 if (dwarf2_per_objfile->type_unit_groups != NULL)
6579 {
6580 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6581 build_type_psymtab_dependencies, NULL);
6582 }
6583
6584 if (dwarf_read_debug)
6585 print_tu_stats ();
6586
6587 set_partial_user (objfile);
6588
6589 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6590 &objfile->objfile_obstack);
6591 discard_cleanups (addrmap_cleanup);
6592
6593 do_cleanups (back_to);
6594
6595 if (dwarf_read_debug)
6596 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6597 objfile_name (objfile));
6598 }
6599
6600 /* die_reader_func for load_partial_comp_unit. */
6601
6602 static void
6603 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6604 const gdb_byte *info_ptr,
6605 struct die_info *comp_unit_die,
6606 int has_children,
6607 void *data)
6608 {
6609 struct dwarf2_cu *cu = reader->cu;
6610
6611 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6612
6613 /* Check if comp unit has_children.
6614 If so, read the rest of the partial symbols from this comp unit.
6615 If not, there's no more debug_info for this comp unit. */
6616 if (has_children)
6617 load_partial_dies (reader, info_ptr, 0);
6618 }
6619
6620 /* Load the partial DIEs for a secondary CU into memory.
6621 This is also used when rereading a primary CU with load_all_dies. */
6622
6623 static void
6624 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6625 {
6626 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6627 load_partial_comp_unit_reader, NULL);
6628 }
6629
6630 static void
6631 read_comp_units_from_section (struct objfile *objfile,
6632 struct dwarf2_section_info *section,
6633 unsigned int is_dwz,
6634 int *n_allocated,
6635 int *n_comp_units,
6636 struct dwarf2_per_cu_data ***all_comp_units)
6637 {
6638 const gdb_byte *info_ptr;
6639 bfd *abfd = get_section_bfd_owner (section);
6640
6641 if (dwarf_read_debug)
6642 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6643 get_section_name (section),
6644 get_section_file_name (section));
6645
6646 dwarf2_read_section (objfile, section);
6647
6648 info_ptr = section->buffer;
6649
6650 while (info_ptr < section->buffer + section->size)
6651 {
6652 unsigned int length, initial_length_size;
6653 struct dwarf2_per_cu_data *this_cu;
6654 sect_offset offset;
6655
6656 offset.sect_off = info_ptr - section->buffer;
6657
6658 /* Read just enough information to find out where the next
6659 compilation unit is. */
6660 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6661
6662 /* Save the compilation unit for later lookup. */
6663 this_cu = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_cu_data);
6664 memset (this_cu, 0, sizeof (*this_cu));
6665 this_cu->offset = offset;
6666 this_cu->length = length + initial_length_size;
6667 this_cu->is_dwz = is_dwz;
6668 this_cu->objfile = objfile;
6669 this_cu->section = section;
6670
6671 if (*n_comp_units == *n_allocated)
6672 {
6673 *n_allocated *= 2;
6674 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
6675 *all_comp_units, *n_allocated);
6676 }
6677 (*all_comp_units)[*n_comp_units] = this_cu;
6678 ++*n_comp_units;
6679
6680 info_ptr = info_ptr + this_cu->length;
6681 }
6682 }
6683
6684 /* Create a list of all compilation units in OBJFILE.
6685 This is only done for -readnow and building partial symtabs. */
6686
6687 static void
6688 create_all_comp_units (struct objfile *objfile)
6689 {
6690 int n_allocated;
6691 int n_comp_units;
6692 struct dwarf2_per_cu_data **all_comp_units;
6693 struct dwz_file *dwz;
6694
6695 n_comp_units = 0;
6696 n_allocated = 10;
6697 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
6698
6699 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6700 &n_allocated, &n_comp_units, &all_comp_units);
6701
6702 dwz = dwarf2_get_dwz_file ();
6703 if (dwz != NULL)
6704 read_comp_units_from_section (objfile, &dwz->info, 1,
6705 &n_allocated, &n_comp_units,
6706 &all_comp_units);
6707
6708 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6709 struct dwarf2_per_cu_data *,
6710 n_comp_units);
6711 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6712 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6713 xfree (all_comp_units);
6714 dwarf2_per_objfile->n_comp_units = n_comp_units;
6715 }
6716
6717 /* Process all loaded DIEs for compilation unit CU, starting at
6718 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6719 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6720 DW_AT_ranges). See the comments of add_partial_subprogram on how
6721 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6722
6723 static void
6724 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6725 CORE_ADDR *highpc, int set_addrmap,
6726 struct dwarf2_cu *cu)
6727 {
6728 struct partial_die_info *pdi;
6729
6730 /* Now, march along the PDI's, descending into ones which have
6731 interesting children but skipping the children of the other ones,
6732 until we reach the end of the compilation unit. */
6733
6734 pdi = first_die;
6735
6736 while (pdi != NULL)
6737 {
6738 fixup_partial_die (pdi, cu);
6739
6740 /* Anonymous namespaces or modules have no name but have interesting
6741 children, so we need to look at them. Ditto for anonymous
6742 enums. */
6743
6744 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6745 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6746 || pdi->tag == DW_TAG_imported_unit)
6747 {
6748 switch (pdi->tag)
6749 {
6750 case DW_TAG_subprogram:
6751 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6752 break;
6753 case DW_TAG_constant:
6754 case DW_TAG_variable:
6755 case DW_TAG_typedef:
6756 case DW_TAG_union_type:
6757 if (!pdi->is_declaration)
6758 {
6759 add_partial_symbol (pdi, cu);
6760 }
6761 break;
6762 case DW_TAG_class_type:
6763 case DW_TAG_interface_type:
6764 case DW_TAG_structure_type:
6765 if (!pdi->is_declaration)
6766 {
6767 add_partial_symbol (pdi, cu);
6768 }
6769 if (cu->language == language_rust && pdi->has_children)
6770 scan_partial_symbols (pdi->die_child, lowpc, highpc,
6771 set_addrmap, cu);
6772 break;
6773 case DW_TAG_enumeration_type:
6774 if (!pdi->is_declaration)
6775 add_partial_enumeration (pdi, cu);
6776 break;
6777 case DW_TAG_base_type:
6778 case DW_TAG_subrange_type:
6779 /* File scope base type definitions are added to the partial
6780 symbol table. */
6781 add_partial_symbol (pdi, cu);
6782 break;
6783 case DW_TAG_namespace:
6784 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6785 break;
6786 case DW_TAG_module:
6787 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6788 break;
6789 case DW_TAG_imported_unit:
6790 {
6791 struct dwarf2_per_cu_data *per_cu;
6792
6793 /* For now we don't handle imported units in type units. */
6794 if (cu->per_cu->is_debug_types)
6795 {
6796 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6797 " supported in type units [in module %s]"),
6798 objfile_name (cu->objfile));
6799 }
6800
6801 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6802 pdi->is_dwz,
6803 cu->objfile);
6804
6805 /* Go read the partial unit, if needed. */
6806 if (per_cu->v.psymtab == NULL)
6807 process_psymtab_comp_unit (per_cu, 1, cu->language);
6808
6809 VEC_safe_push (dwarf2_per_cu_ptr,
6810 cu->per_cu->imported_symtabs, per_cu);
6811 }
6812 break;
6813 case DW_TAG_imported_declaration:
6814 add_partial_symbol (pdi, cu);
6815 break;
6816 default:
6817 break;
6818 }
6819 }
6820
6821 /* If the die has a sibling, skip to the sibling. */
6822
6823 pdi = pdi->die_sibling;
6824 }
6825 }
6826
6827 /* Functions used to compute the fully scoped name of a partial DIE.
6828
6829 Normally, this is simple. For C++, the parent DIE's fully scoped
6830 name is concatenated with "::" and the partial DIE's name.
6831 Enumerators are an exception; they use the scope of their parent
6832 enumeration type, i.e. the name of the enumeration type is not
6833 prepended to the enumerator.
6834
6835 There are two complexities. One is DW_AT_specification; in this
6836 case "parent" means the parent of the target of the specification,
6837 instead of the direct parent of the DIE. The other is compilers
6838 which do not emit DW_TAG_namespace; in this case we try to guess
6839 the fully qualified name of structure types from their members'
6840 linkage names. This must be done using the DIE's children rather
6841 than the children of any DW_AT_specification target. We only need
6842 to do this for structures at the top level, i.e. if the target of
6843 any DW_AT_specification (if any; otherwise the DIE itself) does not
6844 have a parent. */
6845
6846 /* Compute the scope prefix associated with PDI's parent, in
6847 compilation unit CU. The result will be allocated on CU's
6848 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6849 field. NULL is returned if no prefix is necessary. */
6850 static const char *
6851 partial_die_parent_scope (struct partial_die_info *pdi,
6852 struct dwarf2_cu *cu)
6853 {
6854 const char *grandparent_scope;
6855 struct partial_die_info *parent, *real_pdi;
6856
6857 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6858 then this means the parent of the specification DIE. */
6859
6860 real_pdi = pdi;
6861 while (real_pdi->has_specification)
6862 real_pdi = find_partial_die (real_pdi->spec_offset,
6863 real_pdi->spec_is_dwz, cu);
6864
6865 parent = real_pdi->die_parent;
6866 if (parent == NULL)
6867 return NULL;
6868
6869 if (parent->scope_set)
6870 return parent->scope;
6871
6872 fixup_partial_die (parent, cu);
6873
6874 grandparent_scope = partial_die_parent_scope (parent, cu);
6875
6876 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6877 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6878 Work around this problem here. */
6879 if (cu->language == language_cplus
6880 && parent->tag == DW_TAG_namespace
6881 && strcmp (parent->name, "::") == 0
6882 && grandparent_scope == NULL)
6883 {
6884 parent->scope = NULL;
6885 parent->scope_set = 1;
6886 return NULL;
6887 }
6888
6889 if (pdi->tag == DW_TAG_enumerator)
6890 /* Enumerators should not get the name of the enumeration as a prefix. */
6891 parent->scope = grandparent_scope;
6892 else if (parent->tag == DW_TAG_namespace
6893 || parent->tag == DW_TAG_module
6894 || parent->tag == DW_TAG_structure_type
6895 || parent->tag == DW_TAG_class_type
6896 || parent->tag == DW_TAG_interface_type
6897 || parent->tag == DW_TAG_union_type
6898 || parent->tag == DW_TAG_enumeration_type)
6899 {
6900 if (grandparent_scope == NULL)
6901 parent->scope = parent->name;
6902 else
6903 parent->scope = typename_concat (&cu->comp_unit_obstack,
6904 grandparent_scope,
6905 parent->name, 0, cu);
6906 }
6907 else
6908 {
6909 /* FIXME drow/2004-04-01: What should we be doing with
6910 function-local names? For partial symbols, we should probably be
6911 ignoring them. */
6912 complaint (&symfile_complaints,
6913 _("unhandled containing DIE tag %d for DIE at %d"),
6914 parent->tag, pdi->offset.sect_off);
6915 parent->scope = grandparent_scope;
6916 }
6917
6918 parent->scope_set = 1;
6919 return parent->scope;
6920 }
6921
6922 /* Return the fully scoped name associated with PDI, from compilation unit
6923 CU. The result will be allocated with malloc. */
6924
6925 static char *
6926 partial_die_full_name (struct partial_die_info *pdi,
6927 struct dwarf2_cu *cu)
6928 {
6929 const char *parent_scope;
6930
6931 /* If this is a template instantiation, we can not work out the
6932 template arguments from partial DIEs. So, unfortunately, we have
6933 to go through the full DIEs. At least any work we do building
6934 types here will be reused if full symbols are loaded later. */
6935 if (pdi->has_template_arguments)
6936 {
6937 fixup_partial_die (pdi, cu);
6938
6939 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6940 {
6941 struct die_info *die;
6942 struct attribute attr;
6943 struct dwarf2_cu *ref_cu = cu;
6944
6945 /* DW_FORM_ref_addr is using section offset. */
6946 attr.name = (enum dwarf_attribute) 0;
6947 attr.form = DW_FORM_ref_addr;
6948 attr.u.unsnd = pdi->offset.sect_off;
6949 die = follow_die_ref (NULL, &attr, &ref_cu);
6950
6951 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6952 }
6953 }
6954
6955 parent_scope = partial_die_parent_scope (pdi, cu);
6956 if (parent_scope == NULL)
6957 return NULL;
6958 else
6959 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6960 }
6961
6962 static void
6963 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6964 {
6965 struct objfile *objfile = cu->objfile;
6966 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6967 CORE_ADDR addr = 0;
6968 const char *actual_name = NULL;
6969 CORE_ADDR baseaddr;
6970 char *built_actual_name;
6971
6972 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6973
6974 built_actual_name = partial_die_full_name (pdi, cu);
6975 if (built_actual_name != NULL)
6976 actual_name = built_actual_name;
6977
6978 if (actual_name == NULL)
6979 actual_name = pdi->name;
6980
6981 switch (pdi->tag)
6982 {
6983 case DW_TAG_subprogram:
6984 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
6985 if (pdi->is_external || cu->language == language_ada)
6986 {
6987 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6988 of the global scope. But in Ada, we want to be able to access
6989 nested procedures globally. So all Ada subprograms are stored
6990 in the global scope. */
6991 add_psymbol_to_list (actual_name, strlen (actual_name),
6992 built_actual_name != NULL,
6993 VAR_DOMAIN, LOC_BLOCK,
6994 &objfile->global_psymbols,
6995 addr, cu->language, objfile);
6996 }
6997 else
6998 {
6999 add_psymbol_to_list (actual_name, strlen (actual_name),
7000 built_actual_name != NULL,
7001 VAR_DOMAIN, LOC_BLOCK,
7002 &objfile->static_psymbols,
7003 addr, cu->language, objfile);
7004 }
7005
7006 if (pdi->main_subprogram && actual_name != NULL)
7007 set_objfile_main_name (objfile, actual_name, cu->language);
7008 break;
7009 case DW_TAG_constant:
7010 {
7011 struct psymbol_allocation_list *list;
7012
7013 if (pdi->is_external)
7014 list = &objfile->global_psymbols;
7015 else
7016 list = &objfile->static_psymbols;
7017 add_psymbol_to_list (actual_name, strlen (actual_name),
7018 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
7019 list, 0, cu->language, objfile);
7020 }
7021 break;
7022 case DW_TAG_variable:
7023 if (pdi->d.locdesc)
7024 addr = decode_locdesc (pdi->d.locdesc, cu);
7025
7026 if (pdi->d.locdesc
7027 && addr == 0
7028 && !dwarf2_per_objfile->has_section_at_zero)
7029 {
7030 /* A global or static variable may also have been stripped
7031 out by the linker if unused, in which case its address
7032 will be nullified; do not add such variables into partial
7033 symbol table then. */
7034 }
7035 else if (pdi->is_external)
7036 {
7037 /* Global Variable.
7038 Don't enter into the minimal symbol tables as there is
7039 a minimal symbol table entry from the ELF symbols already.
7040 Enter into partial symbol table if it has a location
7041 descriptor or a type.
7042 If the location descriptor is missing, new_symbol will create
7043 a LOC_UNRESOLVED symbol, the address of the variable will then
7044 be determined from the minimal symbol table whenever the variable
7045 is referenced.
7046 The address for the partial symbol table entry is not
7047 used by GDB, but it comes in handy for debugging partial symbol
7048 table building. */
7049
7050 if (pdi->d.locdesc || pdi->has_type)
7051 add_psymbol_to_list (actual_name, strlen (actual_name),
7052 built_actual_name != NULL,
7053 VAR_DOMAIN, LOC_STATIC,
7054 &objfile->global_psymbols,
7055 addr + baseaddr,
7056 cu->language, objfile);
7057 }
7058 else
7059 {
7060 int has_loc = pdi->d.locdesc != NULL;
7061
7062 /* Static Variable. Skip symbols whose value we cannot know (those
7063 without location descriptors or constant values). */
7064 if (!has_loc && !pdi->has_const_value)
7065 {
7066 xfree (built_actual_name);
7067 return;
7068 }
7069
7070 add_psymbol_to_list (actual_name, strlen (actual_name),
7071 built_actual_name != NULL,
7072 VAR_DOMAIN, LOC_STATIC,
7073 &objfile->static_psymbols,
7074 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
7075 cu->language, objfile);
7076 }
7077 break;
7078 case DW_TAG_typedef:
7079 case DW_TAG_base_type:
7080 case DW_TAG_subrange_type:
7081 add_psymbol_to_list (actual_name, strlen (actual_name),
7082 built_actual_name != NULL,
7083 VAR_DOMAIN, LOC_TYPEDEF,
7084 &objfile->static_psymbols,
7085 0, cu->language, objfile);
7086 break;
7087 case DW_TAG_imported_declaration:
7088 case DW_TAG_namespace:
7089 add_psymbol_to_list (actual_name, strlen (actual_name),
7090 built_actual_name != NULL,
7091 VAR_DOMAIN, LOC_TYPEDEF,
7092 &objfile->global_psymbols,
7093 0, cu->language, objfile);
7094 break;
7095 case DW_TAG_module:
7096 add_psymbol_to_list (actual_name, strlen (actual_name),
7097 built_actual_name != NULL,
7098 MODULE_DOMAIN, LOC_TYPEDEF,
7099 &objfile->global_psymbols,
7100 0, cu->language, objfile);
7101 break;
7102 case DW_TAG_class_type:
7103 case DW_TAG_interface_type:
7104 case DW_TAG_structure_type:
7105 case DW_TAG_union_type:
7106 case DW_TAG_enumeration_type:
7107 /* Skip external references. The DWARF standard says in the section
7108 about "Structure, Union, and Class Type Entries": "An incomplete
7109 structure, union or class type is represented by a structure,
7110 union or class entry that does not have a byte size attribute
7111 and that has a DW_AT_declaration attribute." */
7112 if (!pdi->has_byte_size && pdi->is_declaration)
7113 {
7114 xfree (built_actual_name);
7115 return;
7116 }
7117
7118 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7119 static vs. global. */
7120 add_psymbol_to_list (actual_name, strlen (actual_name),
7121 built_actual_name != NULL,
7122 STRUCT_DOMAIN, LOC_TYPEDEF,
7123 cu->language == language_cplus
7124 ? &objfile->global_psymbols
7125 : &objfile->static_psymbols,
7126 0, cu->language, objfile);
7127
7128 break;
7129 case DW_TAG_enumerator:
7130 add_psymbol_to_list (actual_name, strlen (actual_name),
7131 built_actual_name != NULL,
7132 VAR_DOMAIN, LOC_CONST,
7133 cu->language == language_cplus
7134 ? &objfile->global_psymbols
7135 : &objfile->static_psymbols,
7136 0, cu->language, objfile);
7137 break;
7138 default:
7139 break;
7140 }
7141
7142 xfree (built_actual_name);
7143 }
7144
7145 /* Read a partial die corresponding to a namespace; also, add a symbol
7146 corresponding to that namespace to the symbol table. NAMESPACE is
7147 the name of the enclosing namespace. */
7148
7149 static void
7150 add_partial_namespace (struct partial_die_info *pdi,
7151 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7152 int set_addrmap, struct dwarf2_cu *cu)
7153 {
7154 /* Add a symbol for the namespace. */
7155
7156 add_partial_symbol (pdi, cu);
7157
7158 /* Now scan partial symbols in that namespace. */
7159
7160 if (pdi->has_children)
7161 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7162 }
7163
7164 /* Read a partial die corresponding to a Fortran module. */
7165
7166 static void
7167 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7168 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7169 {
7170 /* Add a symbol for the namespace. */
7171
7172 add_partial_symbol (pdi, cu);
7173
7174 /* Now scan partial symbols in that module. */
7175
7176 if (pdi->has_children)
7177 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7178 }
7179
7180 /* Read a partial die corresponding to a subprogram and create a partial
7181 symbol for that subprogram. When the CU language allows it, this
7182 routine also defines a partial symbol for each nested subprogram
7183 that this subprogram contains. If SET_ADDRMAP is true, record the
7184 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7185 and highest PC values found in PDI.
7186
7187 PDI may also be a lexical block, in which case we simply search
7188 recursively for subprograms defined inside that lexical block.
7189 Again, this is only performed when the CU language allows this
7190 type of definitions. */
7191
7192 static void
7193 add_partial_subprogram (struct partial_die_info *pdi,
7194 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7195 int set_addrmap, struct dwarf2_cu *cu)
7196 {
7197 if (pdi->tag == DW_TAG_subprogram)
7198 {
7199 if (pdi->has_pc_info)
7200 {
7201 if (pdi->lowpc < *lowpc)
7202 *lowpc = pdi->lowpc;
7203 if (pdi->highpc > *highpc)
7204 *highpc = pdi->highpc;
7205 if (set_addrmap)
7206 {
7207 struct objfile *objfile = cu->objfile;
7208 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7209 CORE_ADDR baseaddr;
7210 CORE_ADDR highpc;
7211 CORE_ADDR lowpc;
7212
7213 baseaddr = ANOFFSET (objfile->section_offsets,
7214 SECT_OFF_TEXT (objfile));
7215 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7216 pdi->lowpc + baseaddr);
7217 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7218 pdi->highpc + baseaddr);
7219 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7220 cu->per_cu->v.psymtab);
7221 }
7222 }
7223
7224 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7225 {
7226 if (!pdi->is_declaration)
7227 /* Ignore subprogram DIEs that do not have a name, they are
7228 illegal. Do not emit a complaint at this point, we will
7229 do so when we convert this psymtab into a symtab. */
7230 if (pdi->name)
7231 add_partial_symbol (pdi, cu);
7232 }
7233 }
7234
7235 if (! pdi->has_children)
7236 return;
7237
7238 if (cu->language == language_ada)
7239 {
7240 pdi = pdi->die_child;
7241 while (pdi != NULL)
7242 {
7243 fixup_partial_die (pdi, cu);
7244 if (pdi->tag == DW_TAG_subprogram
7245 || pdi->tag == DW_TAG_lexical_block)
7246 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7247 pdi = pdi->die_sibling;
7248 }
7249 }
7250 }
7251
7252 /* Read a partial die corresponding to an enumeration type. */
7253
7254 static void
7255 add_partial_enumeration (struct partial_die_info *enum_pdi,
7256 struct dwarf2_cu *cu)
7257 {
7258 struct partial_die_info *pdi;
7259
7260 if (enum_pdi->name != NULL)
7261 add_partial_symbol (enum_pdi, cu);
7262
7263 pdi = enum_pdi->die_child;
7264 while (pdi)
7265 {
7266 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7267 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7268 else
7269 add_partial_symbol (pdi, cu);
7270 pdi = pdi->die_sibling;
7271 }
7272 }
7273
7274 /* Return the initial uleb128 in the die at INFO_PTR. */
7275
7276 static unsigned int
7277 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7278 {
7279 unsigned int bytes_read;
7280
7281 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7282 }
7283
7284 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7285 Return the corresponding abbrev, or NULL if the number is zero (indicating
7286 an empty DIE). In either case *BYTES_READ will be set to the length of
7287 the initial number. */
7288
7289 static struct abbrev_info *
7290 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7291 struct dwarf2_cu *cu)
7292 {
7293 bfd *abfd = cu->objfile->obfd;
7294 unsigned int abbrev_number;
7295 struct abbrev_info *abbrev;
7296
7297 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7298
7299 if (abbrev_number == 0)
7300 return NULL;
7301
7302 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7303 if (!abbrev)
7304 {
7305 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7306 " at offset 0x%x [in module %s]"),
7307 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7308 cu->header.offset.sect_off, bfd_get_filename (abfd));
7309 }
7310
7311 return abbrev;
7312 }
7313
7314 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7315 Returns a pointer to the end of a series of DIEs, terminated by an empty
7316 DIE. Any children of the skipped DIEs will also be skipped. */
7317
7318 static const gdb_byte *
7319 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7320 {
7321 struct dwarf2_cu *cu = reader->cu;
7322 struct abbrev_info *abbrev;
7323 unsigned int bytes_read;
7324
7325 while (1)
7326 {
7327 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7328 if (abbrev == NULL)
7329 return info_ptr + bytes_read;
7330 else
7331 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7332 }
7333 }
7334
7335 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7336 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7337 abbrev corresponding to that skipped uleb128 should be passed in
7338 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7339 children. */
7340
7341 static const gdb_byte *
7342 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7343 struct abbrev_info *abbrev)
7344 {
7345 unsigned int bytes_read;
7346 struct attribute attr;
7347 bfd *abfd = reader->abfd;
7348 struct dwarf2_cu *cu = reader->cu;
7349 const gdb_byte *buffer = reader->buffer;
7350 const gdb_byte *buffer_end = reader->buffer_end;
7351 unsigned int form, i;
7352
7353 for (i = 0; i < abbrev->num_attrs; i++)
7354 {
7355 /* The only abbrev we care about is DW_AT_sibling. */
7356 if (abbrev->attrs[i].name == DW_AT_sibling)
7357 {
7358 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7359 if (attr.form == DW_FORM_ref_addr)
7360 complaint (&symfile_complaints,
7361 _("ignoring absolute DW_AT_sibling"));
7362 else
7363 {
7364 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7365 const gdb_byte *sibling_ptr = buffer + off;
7366
7367 if (sibling_ptr < info_ptr)
7368 complaint (&symfile_complaints,
7369 _("DW_AT_sibling points backwards"));
7370 else if (sibling_ptr > reader->buffer_end)
7371 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7372 else
7373 return sibling_ptr;
7374 }
7375 }
7376
7377 /* If it isn't DW_AT_sibling, skip this attribute. */
7378 form = abbrev->attrs[i].form;
7379 skip_attribute:
7380 switch (form)
7381 {
7382 case DW_FORM_ref_addr:
7383 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7384 and later it is offset sized. */
7385 if (cu->header.version == 2)
7386 info_ptr += cu->header.addr_size;
7387 else
7388 info_ptr += cu->header.offset_size;
7389 break;
7390 case DW_FORM_GNU_ref_alt:
7391 info_ptr += cu->header.offset_size;
7392 break;
7393 case DW_FORM_addr:
7394 info_ptr += cu->header.addr_size;
7395 break;
7396 case DW_FORM_data1:
7397 case DW_FORM_ref1:
7398 case DW_FORM_flag:
7399 info_ptr += 1;
7400 break;
7401 case DW_FORM_flag_present:
7402 case DW_FORM_implicit_const:
7403 break;
7404 case DW_FORM_data2:
7405 case DW_FORM_ref2:
7406 info_ptr += 2;
7407 break;
7408 case DW_FORM_data4:
7409 case DW_FORM_ref4:
7410 info_ptr += 4;
7411 break;
7412 case DW_FORM_data8:
7413 case DW_FORM_ref8:
7414 case DW_FORM_ref_sig8:
7415 info_ptr += 8;
7416 break;
7417 case DW_FORM_data16:
7418 info_ptr += 16;
7419 break;
7420 case DW_FORM_string:
7421 read_direct_string (abfd, info_ptr, &bytes_read);
7422 info_ptr += bytes_read;
7423 break;
7424 case DW_FORM_sec_offset:
7425 case DW_FORM_strp:
7426 case DW_FORM_GNU_strp_alt:
7427 info_ptr += cu->header.offset_size;
7428 break;
7429 case DW_FORM_exprloc:
7430 case DW_FORM_block:
7431 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7432 info_ptr += bytes_read;
7433 break;
7434 case DW_FORM_block1:
7435 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7436 break;
7437 case DW_FORM_block2:
7438 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7439 break;
7440 case DW_FORM_block4:
7441 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7442 break;
7443 case DW_FORM_sdata:
7444 case DW_FORM_udata:
7445 case DW_FORM_ref_udata:
7446 case DW_FORM_GNU_addr_index:
7447 case DW_FORM_GNU_str_index:
7448 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7449 break;
7450 case DW_FORM_indirect:
7451 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7452 info_ptr += bytes_read;
7453 /* We need to continue parsing from here, so just go back to
7454 the top. */
7455 goto skip_attribute;
7456
7457 default:
7458 error (_("Dwarf Error: Cannot handle %s "
7459 "in DWARF reader [in module %s]"),
7460 dwarf_form_name (form),
7461 bfd_get_filename (abfd));
7462 }
7463 }
7464
7465 if (abbrev->has_children)
7466 return skip_children (reader, info_ptr);
7467 else
7468 return info_ptr;
7469 }
7470
7471 /* Locate ORIG_PDI's sibling.
7472 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7473
7474 static const gdb_byte *
7475 locate_pdi_sibling (const struct die_reader_specs *reader,
7476 struct partial_die_info *orig_pdi,
7477 const gdb_byte *info_ptr)
7478 {
7479 /* Do we know the sibling already? */
7480
7481 if (orig_pdi->sibling)
7482 return orig_pdi->sibling;
7483
7484 /* Are there any children to deal with? */
7485
7486 if (!orig_pdi->has_children)
7487 return info_ptr;
7488
7489 /* Skip the children the long way. */
7490
7491 return skip_children (reader, info_ptr);
7492 }
7493
7494 /* Expand this partial symbol table into a full symbol table. SELF is
7495 not NULL. */
7496
7497 static void
7498 dwarf2_read_symtab (struct partial_symtab *self,
7499 struct objfile *objfile)
7500 {
7501 if (self->readin)
7502 {
7503 warning (_("bug: psymtab for %s is already read in."),
7504 self->filename);
7505 }
7506 else
7507 {
7508 if (info_verbose)
7509 {
7510 printf_filtered (_("Reading in symbols for %s..."),
7511 self->filename);
7512 gdb_flush (gdb_stdout);
7513 }
7514
7515 /* Restore our global data. */
7516 dwarf2_per_objfile
7517 = (struct dwarf2_per_objfile *) objfile_data (objfile,
7518 dwarf2_objfile_data_key);
7519
7520 /* If this psymtab is constructed from a debug-only objfile, the
7521 has_section_at_zero flag will not necessarily be correct. We
7522 can get the correct value for this flag by looking at the data
7523 associated with the (presumably stripped) associated objfile. */
7524 if (objfile->separate_debug_objfile_backlink)
7525 {
7526 struct dwarf2_per_objfile *dpo_backlink
7527 = ((struct dwarf2_per_objfile *)
7528 objfile_data (objfile->separate_debug_objfile_backlink,
7529 dwarf2_objfile_data_key));
7530
7531 dwarf2_per_objfile->has_section_at_zero
7532 = dpo_backlink->has_section_at_zero;
7533 }
7534
7535 dwarf2_per_objfile->reading_partial_symbols = 0;
7536
7537 psymtab_to_symtab_1 (self);
7538
7539 /* Finish up the debug error message. */
7540 if (info_verbose)
7541 printf_filtered (_("done.\n"));
7542 }
7543
7544 process_cu_includes ();
7545 }
7546 \f
7547 /* Reading in full CUs. */
7548
7549 /* Add PER_CU to the queue. */
7550
7551 static void
7552 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7553 enum language pretend_language)
7554 {
7555 struct dwarf2_queue_item *item;
7556
7557 per_cu->queued = 1;
7558 item = XNEW (struct dwarf2_queue_item);
7559 item->per_cu = per_cu;
7560 item->pretend_language = pretend_language;
7561 item->next = NULL;
7562
7563 if (dwarf2_queue == NULL)
7564 dwarf2_queue = item;
7565 else
7566 dwarf2_queue_tail->next = item;
7567
7568 dwarf2_queue_tail = item;
7569 }
7570
7571 /* If PER_CU is not yet queued, add it to the queue.
7572 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7573 dependency.
7574 The result is non-zero if PER_CU was queued, otherwise the result is zero
7575 meaning either PER_CU is already queued or it is already loaded.
7576
7577 N.B. There is an invariant here that if a CU is queued then it is loaded.
7578 The caller is required to load PER_CU if we return non-zero. */
7579
7580 static int
7581 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7582 struct dwarf2_per_cu_data *per_cu,
7583 enum language pretend_language)
7584 {
7585 /* We may arrive here during partial symbol reading, if we need full
7586 DIEs to process an unusual case (e.g. template arguments). Do
7587 not queue PER_CU, just tell our caller to load its DIEs. */
7588 if (dwarf2_per_objfile->reading_partial_symbols)
7589 {
7590 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7591 return 1;
7592 return 0;
7593 }
7594
7595 /* Mark the dependence relation so that we don't flush PER_CU
7596 too early. */
7597 if (dependent_cu != NULL)
7598 dwarf2_add_dependence (dependent_cu, per_cu);
7599
7600 /* If it's already on the queue, we have nothing to do. */
7601 if (per_cu->queued)
7602 return 0;
7603
7604 /* If the compilation unit is already loaded, just mark it as
7605 used. */
7606 if (per_cu->cu != NULL)
7607 {
7608 per_cu->cu->last_used = 0;
7609 return 0;
7610 }
7611
7612 /* Add it to the queue. */
7613 queue_comp_unit (per_cu, pretend_language);
7614
7615 return 1;
7616 }
7617
7618 /* Process the queue. */
7619
7620 static void
7621 process_queue (void)
7622 {
7623 struct dwarf2_queue_item *item, *next_item;
7624
7625 if (dwarf_read_debug)
7626 {
7627 fprintf_unfiltered (gdb_stdlog,
7628 "Expanding one or more symtabs of objfile %s ...\n",
7629 objfile_name (dwarf2_per_objfile->objfile));
7630 }
7631
7632 /* The queue starts out with one item, but following a DIE reference
7633 may load a new CU, adding it to the end of the queue. */
7634 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7635 {
7636 if ((dwarf2_per_objfile->using_index
7637 ? !item->per_cu->v.quick->compunit_symtab
7638 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7639 /* Skip dummy CUs. */
7640 && item->per_cu->cu != NULL)
7641 {
7642 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7643 unsigned int debug_print_threshold;
7644 char buf[100];
7645
7646 if (per_cu->is_debug_types)
7647 {
7648 struct signatured_type *sig_type =
7649 (struct signatured_type *) per_cu;
7650
7651 sprintf (buf, "TU %s at offset 0x%x",
7652 hex_string (sig_type->signature),
7653 per_cu->offset.sect_off);
7654 /* There can be 100s of TUs.
7655 Only print them in verbose mode. */
7656 debug_print_threshold = 2;
7657 }
7658 else
7659 {
7660 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7661 debug_print_threshold = 1;
7662 }
7663
7664 if (dwarf_read_debug >= debug_print_threshold)
7665 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7666
7667 if (per_cu->is_debug_types)
7668 process_full_type_unit (per_cu, item->pretend_language);
7669 else
7670 process_full_comp_unit (per_cu, item->pretend_language);
7671
7672 if (dwarf_read_debug >= debug_print_threshold)
7673 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7674 }
7675
7676 item->per_cu->queued = 0;
7677 next_item = item->next;
7678 xfree (item);
7679 }
7680
7681 dwarf2_queue_tail = NULL;
7682
7683 if (dwarf_read_debug)
7684 {
7685 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7686 objfile_name (dwarf2_per_objfile->objfile));
7687 }
7688 }
7689
7690 /* Free all allocated queue entries. This function only releases anything if
7691 an error was thrown; if the queue was processed then it would have been
7692 freed as we went along. */
7693
7694 static void
7695 dwarf2_release_queue (void *dummy)
7696 {
7697 struct dwarf2_queue_item *item, *last;
7698
7699 item = dwarf2_queue;
7700 while (item)
7701 {
7702 /* Anything still marked queued is likely to be in an
7703 inconsistent state, so discard it. */
7704 if (item->per_cu->queued)
7705 {
7706 if (item->per_cu->cu != NULL)
7707 free_one_cached_comp_unit (item->per_cu);
7708 item->per_cu->queued = 0;
7709 }
7710
7711 last = item;
7712 item = item->next;
7713 xfree (last);
7714 }
7715
7716 dwarf2_queue = dwarf2_queue_tail = NULL;
7717 }
7718
7719 /* Read in full symbols for PST, and anything it depends on. */
7720
7721 static void
7722 psymtab_to_symtab_1 (struct partial_symtab *pst)
7723 {
7724 struct dwarf2_per_cu_data *per_cu;
7725 int i;
7726
7727 if (pst->readin)
7728 return;
7729
7730 for (i = 0; i < pst->number_of_dependencies; i++)
7731 if (!pst->dependencies[i]->readin
7732 && pst->dependencies[i]->user == NULL)
7733 {
7734 /* Inform about additional files that need to be read in. */
7735 if (info_verbose)
7736 {
7737 /* FIXME: i18n: Need to make this a single string. */
7738 fputs_filtered (" ", gdb_stdout);
7739 wrap_here ("");
7740 fputs_filtered ("and ", gdb_stdout);
7741 wrap_here ("");
7742 printf_filtered ("%s...", pst->dependencies[i]->filename);
7743 wrap_here (""); /* Flush output. */
7744 gdb_flush (gdb_stdout);
7745 }
7746 psymtab_to_symtab_1 (pst->dependencies[i]);
7747 }
7748
7749 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
7750
7751 if (per_cu == NULL)
7752 {
7753 /* It's an include file, no symbols to read for it.
7754 Everything is in the parent symtab. */
7755 pst->readin = 1;
7756 return;
7757 }
7758
7759 dw2_do_instantiate_symtab (per_cu);
7760 }
7761
7762 /* Trivial hash function for die_info: the hash value of a DIE
7763 is its offset in .debug_info for this objfile. */
7764
7765 static hashval_t
7766 die_hash (const void *item)
7767 {
7768 const struct die_info *die = (const struct die_info *) item;
7769
7770 return die->offset.sect_off;
7771 }
7772
7773 /* Trivial comparison function for die_info structures: two DIEs
7774 are equal if they have the same offset. */
7775
7776 static int
7777 die_eq (const void *item_lhs, const void *item_rhs)
7778 {
7779 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
7780 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
7781
7782 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7783 }
7784
7785 /* die_reader_func for load_full_comp_unit.
7786 This is identical to read_signatured_type_reader,
7787 but is kept separate for now. */
7788
7789 static void
7790 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7791 const gdb_byte *info_ptr,
7792 struct die_info *comp_unit_die,
7793 int has_children,
7794 void *data)
7795 {
7796 struct dwarf2_cu *cu = reader->cu;
7797 enum language *language_ptr = (enum language *) data;
7798
7799 gdb_assert (cu->die_hash == NULL);
7800 cu->die_hash =
7801 htab_create_alloc_ex (cu->header.length / 12,
7802 die_hash,
7803 die_eq,
7804 NULL,
7805 &cu->comp_unit_obstack,
7806 hashtab_obstack_allocate,
7807 dummy_obstack_deallocate);
7808
7809 if (has_children)
7810 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7811 &info_ptr, comp_unit_die);
7812 cu->dies = comp_unit_die;
7813 /* comp_unit_die is not stored in die_hash, no need. */
7814
7815 /* We try not to read any attributes in this function, because not
7816 all CUs needed for references have been loaded yet, and symbol
7817 table processing isn't initialized. But we have to set the CU language,
7818 or we won't be able to build types correctly.
7819 Similarly, if we do not read the producer, we can not apply
7820 producer-specific interpretation. */
7821 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7822 }
7823
7824 /* Load the DIEs associated with PER_CU into memory. */
7825
7826 static void
7827 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7828 enum language pretend_language)
7829 {
7830 gdb_assert (! this_cu->is_debug_types);
7831
7832 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7833 load_full_comp_unit_reader, &pretend_language);
7834 }
7835
7836 /* Add a DIE to the delayed physname list. */
7837
7838 static void
7839 add_to_method_list (struct type *type, int fnfield_index, int index,
7840 const char *name, struct die_info *die,
7841 struct dwarf2_cu *cu)
7842 {
7843 struct delayed_method_info mi;
7844 mi.type = type;
7845 mi.fnfield_index = fnfield_index;
7846 mi.index = index;
7847 mi.name = name;
7848 mi.die = die;
7849 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7850 }
7851
7852 /* A cleanup for freeing the delayed method list. */
7853
7854 static void
7855 free_delayed_list (void *ptr)
7856 {
7857 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7858 if (cu->method_list != NULL)
7859 {
7860 VEC_free (delayed_method_info, cu->method_list);
7861 cu->method_list = NULL;
7862 }
7863 }
7864
7865 /* Compute the physnames of any methods on the CU's method list.
7866
7867 The computation of method physnames is delayed in order to avoid the
7868 (bad) condition that one of the method's formal parameters is of an as yet
7869 incomplete type. */
7870
7871 static void
7872 compute_delayed_physnames (struct dwarf2_cu *cu)
7873 {
7874 int i;
7875 struct delayed_method_info *mi;
7876 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7877 {
7878 const char *physname;
7879 struct fn_fieldlist *fn_flp
7880 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7881 physname = dwarf2_physname (mi->name, mi->die, cu);
7882 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7883 = physname ? physname : "";
7884 }
7885 }
7886
7887 /* Go objects should be embedded in a DW_TAG_module DIE,
7888 and it's not clear if/how imported objects will appear.
7889 To keep Go support simple until that's worked out,
7890 go back through what we've read and create something usable.
7891 We could do this while processing each DIE, and feels kinda cleaner,
7892 but that way is more invasive.
7893 This is to, for example, allow the user to type "p var" or "b main"
7894 without having to specify the package name, and allow lookups
7895 of module.object to work in contexts that use the expression
7896 parser. */
7897
7898 static void
7899 fixup_go_packaging (struct dwarf2_cu *cu)
7900 {
7901 char *package_name = NULL;
7902 struct pending *list;
7903 int i;
7904
7905 for (list = global_symbols; list != NULL; list = list->next)
7906 {
7907 for (i = 0; i < list->nsyms; ++i)
7908 {
7909 struct symbol *sym = list->symbol[i];
7910
7911 if (SYMBOL_LANGUAGE (sym) == language_go
7912 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7913 {
7914 char *this_package_name = go_symbol_package_name (sym);
7915
7916 if (this_package_name == NULL)
7917 continue;
7918 if (package_name == NULL)
7919 package_name = this_package_name;
7920 else
7921 {
7922 if (strcmp (package_name, this_package_name) != 0)
7923 complaint (&symfile_complaints,
7924 _("Symtab %s has objects from two different Go packages: %s and %s"),
7925 (symbol_symtab (sym) != NULL
7926 ? symtab_to_filename_for_display
7927 (symbol_symtab (sym))
7928 : objfile_name (cu->objfile)),
7929 this_package_name, package_name);
7930 xfree (this_package_name);
7931 }
7932 }
7933 }
7934 }
7935
7936 if (package_name != NULL)
7937 {
7938 struct objfile *objfile = cu->objfile;
7939 const char *saved_package_name
7940 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
7941 package_name,
7942 strlen (package_name));
7943 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
7944 saved_package_name);
7945 struct symbol *sym;
7946
7947 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7948
7949 sym = allocate_symbol (objfile);
7950 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7951 SYMBOL_SET_NAMES (sym, saved_package_name,
7952 strlen (saved_package_name), 0, objfile);
7953 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7954 e.g., "main" finds the "main" module and not C's main(). */
7955 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7956 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7957 SYMBOL_TYPE (sym) = type;
7958
7959 add_symbol_to_list (sym, &global_symbols);
7960
7961 xfree (package_name);
7962 }
7963 }
7964
7965 /* Return the symtab for PER_CU. This works properly regardless of
7966 whether we're using the index or psymtabs. */
7967
7968 static struct compunit_symtab *
7969 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
7970 {
7971 return (dwarf2_per_objfile->using_index
7972 ? per_cu->v.quick->compunit_symtab
7973 : per_cu->v.psymtab->compunit_symtab);
7974 }
7975
7976 /* A helper function for computing the list of all symbol tables
7977 included by PER_CU. */
7978
7979 static void
7980 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
7981 htab_t all_children, htab_t all_type_symtabs,
7982 struct dwarf2_per_cu_data *per_cu,
7983 struct compunit_symtab *immediate_parent)
7984 {
7985 void **slot;
7986 int ix;
7987 struct compunit_symtab *cust;
7988 struct dwarf2_per_cu_data *iter;
7989
7990 slot = htab_find_slot (all_children, per_cu, INSERT);
7991 if (*slot != NULL)
7992 {
7993 /* This inclusion and its children have been processed. */
7994 return;
7995 }
7996
7997 *slot = per_cu;
7998 /* Only add a CU if it has a symbol table. */
7999 cust = get_compunit_symtab (per_cu);
8000 if (cust != NULL)
8001 {
8002 /* If this is a type unit only add its symbol table if we haven't
8003 seen it yet (type unit per_cu's can share symtabs). */
8004 if (per_cu->is_debug_types)
8005 {
8006 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
8007 if (*slot == NULL)
8008 {
8009 *slot = cust;
8010 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8011 if (cust->user == NULL)
8012 cust->user = immediate_parent;
8013 }
8014 }
8015 else
8016 {
8017 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8018 if (cust->user == NULL)
8019 cust->user = immediate_parent;
8020 }
8021 }
8022
8023 for (ix = 0;
8024 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
8025 ++ix)
8026 {
8027 recursively_compute_inclusions (result, all_children,
8028 all_type_symtabs, iter, cust);
8029 }
8030 }
8031
8032 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
8033 PER_CU. */
8034
8035 static void
8036 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
8037 {
8038 gdb_assert (! per_cu->is_debug_types);
8039
8040 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
8041 {
8042 int ix, len;
8043 struct dwarf2_per_cu_data *per_cu_iter;
8044 struct compunit_symtab *compunit_symtab_iter;
8045 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
8046 htab_t all_children, all_type_symtabs;
8047 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
8048
8049 /* If we don't have a symtab, we can just skip this case. */
8050 if (cust == NULL)
8051 return;
8052
8053 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8054 NULL, xcalloc, xfree);
8055 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8056 NULL, xcalloc, xfree);
8057
8058 for (ix = 0;
8059 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
8060 ix, per_cu_iter);
8061 ++ix)
8062 {
8063 recursively_compute_inclusions (&result_symtabs, all_children,
8064 all_type_symtabs, per_cu_iter,
8065 cust);
8066 }
8067
8068 /* Now we have a transitive closure of all the included symtabs. */
8069 len = VEC_length (compunit_symtab_ptr, result_symtabs);
8070 cust->includes
8071 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
8072 struct compunit_symtab *, len + 1);
8073 for (ix = 0;
8074 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
8075 compunit_symtab_iter);
8076 ++ix)
8077 cust->includes[ix] = compunit_symtab_iter;
8078 cust->includes[len] = NULL;
8079
8080 VEC_free (compunit_symtab_ptr, result_symtabs);
8081 htab_delete (all_children);
8082 htab_delete (all_type_symtabs);
8083 }
8084 }
8085
8086 /* Compute the 'includes' field for the symtabs of all the CUs we just
8087 read. */
8088
8089 static void
8090 process_cu_includes (void)
8091 {
8092 int ix;
8093 struct dwarf2_per_cu_data *iter;
8094
8095 for (ix = 0;
8096 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8097 ix, iter);
8098 ++ix)
8099 {
8100 if (! iter->is_debug_types)
8101 compute_compunit_symtab_includes (iter);
8102 }
8103
8104 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8105 }
8106
8107 /* Generate full symbol information for PER_CU, whose DIEs have
8108 already been loaded into memory. */
8109
8110 static void
8111 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8112 enum language pretend_language)
8113 {
8114 struct dwarf2_cu *cu = per_cu->cu;
8115 struct objfile *objfile = per_cu->objfile;
8116 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8117 CORE_ADDR lowpc, highpc;
8118 struct compunit_symtab *cust;
8119 struct cleanup *back_to, *delayed_list_cleanup;
8120 CORE_ADDR baseaddr;
8121 struct block *static_block;
8122 CORE_ADDR addr;
8123
8124 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8125
8126 buildsym_init ();
8127 back_to = make_cleanup (really_free_pendings, NULL);
8128 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8129
8130 cu->list_in_scope = &file_symbols;
8131
8132 cu->language = pretend_language;
8133 cu->language_defn = language_def (cu->language);
8134
8135 /* Do line number decoding in read_file_scope () */
8136 process_die (cu->dies, cu);
8137
8138 /* For now fudge the Go package. */
8139 if (cu->language == language_go)
8140 fixup_go_packaging (cu);
8141
8142 /* Now that we have processed all the DIEs in the CU, all the types
8143 should be complete, and it should now be safe to compute all of the
8144 physnames. */
8145 compute_delayed_physnames (cu);
8146 do_cleanups (delayed_list_cleanup);
8147
8148 /* Some compilers don't define a DW_AT_high_pc attribute for the
8149 compilation unit. If the DW_AT_high_pc is missing, synthesize
8150 it, by scanning the DIE's below the compilation unit. */
8151 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
8152
8153 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8154 static_block = end_symtab_get_static_block (addr, 0, 1);
8155
8156 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8157 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8158 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8159 addrmap to help ensure it has an accurate map of pc values belonging to
8160 this comp unit. */
8161 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8162
8163 cust = end_symtab_from_static_block (static_block,
8164 SECT_OFF_TEXT (objfile), 0);
8165
8166 if (cust != NULL)
8167 {
8168 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
8169
8170 /* Set symtab language to language from DW_AT_language. If the
8171 compilation is from a C file generated by language preprocessors, do
8172 not set the language if it was already deduced by start_subfile. */
8173 if (!(cu->language == language_c
8174 && COMPUNIT_FILETABS (cust)->language != language_unknown))
8175 COMPUNIT_FILETABS (cust)->language = cu->language;
8176
8177 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8178 produce DW_AT_location with location lists but it can be possibly
8179 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8180 there were bugs in prologue debug info, fixed later in GCC-4.5
8181 by "unwind info for epilogues" patch (which is not directly related).
8182
8183 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8184 needed, it would be wrong due to missing DW_AT_producer there.
8185
8186 Still one can confuse GDB by using non-standard GCC compilation
8187 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8188 */
8189 if (cu->has_loclist && gcc_4_minor >= 5)
8190 cust->locations_valid = 1;
8191
8192 if (gcc_4_minor >= 5)
8193 cust->epilogue_unwind_valid = 1;
8194
8195 cust->call_site_htab = cu->call_site_htab;
8196 }
8197
8198 if (dwarf2_per_objfile->using_index)
8199 per_cu->v.quick->compunit_symtab = cust;
8200 else
8201 {
8202 struct partial_symtab *pst = per_cu->v.psymtab;
8203 pst->compunit_symtab = cust;
8204 pst->readin = 1;
8205 }
8206
8207 /* Push it for inclusion processing later. */
8208 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8209
8210 do_cleanups (back_to);
8211 }
8212
8213 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8214 already been loaded into memory. */
8215
8216 static void
8217 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8218 enum language pretend_language)
8219 {
8220 struct dwarf2_cu *cu = per_cu->cu;
8221 struct objfile *objfile = per_cu->objfile;
8222 struct compunit_symtab *cust;
8223 struct cleanup *back_to, *delayed_list_cleanup;
8224 struct signatured_type *sig_type;
8225
8226 gdb_assert (per_cu->is_debug_types);
8227 sig_type = (struct signatured_type *) per_cu;
8228
8229 buildsym_init ();
8230 back_to = make_cleanup (really_free_pendings, NULL);
8231 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8232
8233 cu->list_in_scope = &file_symbols;
8234
8235 cu->language = pretend_language;
8236 cu->language_defn = language_def (cu->language);
8237
8238 /* The symbol tables are set up in read_type_unit_scope. */
8239 process_die (cu->dies, cu);
8240
8241 /* For now fudge the Go package. */
8242 if (cu->language == language_go)
8243 fixup_go_packaging (cu);
8244
8245 /* Now that we have processed all the DIEs in the CU, all the types
8246 should be complete, and it should now be safe to compute all of the
8247 physnames. */
8248 compute_delayed_physnames (cu);
8249 do_cleanups (delayed_list_cleanup);
8250
8251 /* TUs share symbol tables.
8252 If this is the first TU to use this symtab, complete the construction
8253 of it with end_expandable_symtab. Otherwise, complete the addition of
8254 this TU's symbols to the existing symtab. */
8255 if (sig_type->type_unit_group->compunit_symtab == NULL)
8256 {
8257 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8258 sig_type->type_unit_group->compunit_symtab = cust;
8259
8260 if (cust != NULL)
8261 {
8262 /* Set symtab language to language from DW_AT_language. If the
8263 compilation is from a C file generated by language preprocessors,
8264 do not set the language if it was already deduced by
8265 start_subfile. */
8266 if (!(cu->language == language_c
8267 && COMPUNIT_FILETABS (cust)->language != language_c))
8268 COMPUNIT_FILETABS (cust)->language = cu->language;
8269 }
8270 }
8271 else
8272 {
8273 augment_type_symtab ();
8274 cust = sig_type->type_unit_group->compunit_symtab;
8275 }
8276
8277 if (dwarf2_per_objfile->using_index)
8278 per_cu->v.quick->compunit_symtab = cust;
8279 else
8280 {
8281 struct partial_symtab *pst = per_cu->v.psymtab;
8282 pst->compunit_symtab = cust;
8283 pst->readin = 1;
8284 }
8285
8286 do_cleanups (back_to);
8287 }
8288
8289 /* Process an imported unit DIE. */
8290
8291 static void
8292 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8293 {
8294 struct attribute *attr;
8295
8296 /* For now we don't handle imported units in type units. */
8297 if (cu->per_cu->is_debug_types)
8298 {
8299 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8300 " supported in type units [in module %s]"),
8301 objfile_name (cu->objfile));
8302 }
8303
8304 attr = dwarf2_attr (die, DW_AT_import, cu);
8305 if (attr != NULL)
8306 {
8307 struct dwarf2_per_cu_data *per_cu;
8308 sect_offset offset;
8309 int is_dwz;
8310
8311 offset = dwarf2_get_ref_die_offset (attr);
8312 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8313 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8314
8315 /* If necessary, add it to the queue and load its DIEs. */
8316 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8317 load_full_comp_unit (per_cu, cu->language);
8318
8319 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8320 per_cu);
8321 }
8322 }
8323
8324 /* Reset the in_process bit of a die. */
8325
8326 static void
8327 reset_die_in_process (void *arg)
8328 {
8329 struct die_info *die = (struct die_info *) arg;
8330
8331 die->in_process = 0;
8332 }
8333
8334 /* Process a die and its children. */
8335
8336 static void
8337 process_die (struct die_info *die, struct dwarf2_cu *cu)
8338 {
8339 struct cleanup *in_process;
8340
8341 /* We should only be processing those not already in process. */
8342 gdb_assert (!die->in_process);
8343
8344 die->in_process = 1;
8345 in_process = make_cleanup (reset_die_in_process,die);
8346
8347 switch (die->tag)
8348 {
8349 case DW_TAG_padding:
8350 break;
8351 case DW_TAG_compile_unit:
8352 case DW_TAG_partial_unit:
8353 read_file_scope (die, cu);
8354 break;
8355 case DW_TAG_type_unit:
8356 read_type_unit_scope (die, cu);
8357 break;
8358 case DW_TAG_subprogram:
8359 case DW_TAG_inlined_subroutine:
8360 read_func_scope (die, cu);
8361 break;
8362 case DW_TAG_lexical_block:
8363 case DW_TAG_try_block:
8364 case DW_TAG_catch_block:
8365 read_lexical_block_scope (die, cu);
8366 break;
8367 case DW_TAG_call_site:
8368 case DW_TAG_GNU_call_site:
8369 read_call_site_scope (die, cu);
8370 break;
8371 case DW_TAG_class_type:
8372 case DW_TAG_interface_type:
8373 case DW_TAG_structure_type:
8374 case DW_TAG_union_type:
8375 process_structure_scope (die, cu);
8376 break;
8377 case DW_TAG_enumeration_type:
8378 process_enumeration_scope (die, cu);
8379 break;
8380
8381 /* These dies have a type, but processing them does not create
8382 a symbol or recurse to process the children. Therefore we can
8383 read them on-demand through read_type_die. */
8384 case DW_TAG_subroutine_type:
8385 case DW_TAG_set_type:
8386 case DW_TAG_array_type:
8387 case DW_TAG_pointer_type:
8388 case DW_TAG_ptr_to_member_type:
8389 case DW_TAG_reference_type:
8390 case DW_TAG_string_type:
8391 break;
8392
8393 case DW_TAG_base_type:
8394 case DW_TAG_subrange_type:
8395 case DW_TAG_typedef:
8396 /* Add a typedef symbol for the type definition, if it has a
8397 DW_AT_name. */
8398 new_symbol (die, read_type_die (die, cu), cu);
8399 break;
8400 case DW_TAG_common_block:
8401 read_common_block (die, cu);
8402 break;
8403 case DW_TAG_common_inclusion:
8404 break;
8405 case DW_TAG_namespace:
8406 cu->processing_has_namespace_info = 1;
8407 read_namespace (die, cu);
8408 break;
8409 case DW_TAG_module:
8410 cu->processing_has_namespace_info = 1;
8411 read_module (die, cu);
8412 break;
8413 case DW_TAG_imported_declaration:
8414 cu->processing_has_namespace_info = 1;
8415 if (read_namespace_alias (die, cu))
8416 break;
8417 /* The declaration is not a global namespace alias: fall through. */
8418 case DW_TAG_imported_module:
8419 cu->processing_has_namespace_info = 1;
8420 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8421 || cu->language != language_fortran))
8422 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8423 dwarf_tag_name (die->tag));
8424 read_import_statement (die, cu);
8425 break;
8426
8427 case DW_TAG_imported_unit:
8428 process_imported_unit_die (die, cu);
8429 break;
8430
8431 default:
8432 new_symbol (die, NULL, cu);
8433 break;
8434 }
8435
8436 do_cleanups (in_process);
8437 }
8438 \f
8439 /* DWARF name computation. */
8440
8441 /* A helper function for dwarf2_compute_name which determines whether DIE
8442 needs to have the name of the scope prepended to the name listed in the
8443 die. */
8444
8445 static int
8446 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8447 {
8448 struct attribute *attr;
8449
8450 switch (die->tag)
8451 {
8452 case DW_TAG_namespace:
8453 case DW_TAG_typedef:
8454 case DW_TAG_class_type:
8455 case DW_TAG_interface_type:
8456 case DW_TAG_structure_type:
8457 case DW_TAG_union_type:
8458 case DW_TAG_enumeration_type:
8459 case DW_TAG_enumerator:
8460 case DW_TAG_subprogram:
8461 case DW_TAG_inlined_subroutine:
8462 case DW_TAG_member:
8463 case DW_TAG_imported_declaration:
8464 return 1;
8465
8466 case DW_TAG_variable:
8467 case DW_TAG_constant:
8468 /* We only need to prefix "globally" visible variables. These include
8469 any variable marked with DW_AT_external or any variable that
8470 lives in a namespace. [Variables in anonymous namespaces
8471 require prefixing, but they are not DW_AT_external.] */
8472
8473 if (dwarf2_attr (die, DW_AT_specification, cu))
8474 {
8475 struct dwarf2_cu *spec_cu = cu;
8476
8477 return die_needs_namespace (die_specification (die, &spec_cu),
8478 spec_cu);
8479 }
8480
8481 attr = dwarf2_attr (die, DW_AT_external, cu);
8482 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8483 && die->parent->tag != DW_TAG_module)
8484 return 0;
8485 /* A variable in a lexical block of some kind does not need a
8486 namespace, even though in C++ such variables may be external
8487 and have a mangled name. */
8488 if (die->parent->tag == DW_TAG_lexical_block
8489 || die->parent->tag == DW_TAG_try_block
8490 || die->parent->tag == DW_TAG_catch_block
8491 || die->parent->tag == DW_TAG_subprogram)
8492 return 0;
8493 return 1;
8494
8495 default:
8496 return 0;
8497 }
8498 }
8499
8500 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8501 compute the physname for the object, which include a method's:
8502 - formal parameters (C++),
8503 - receiver type (Go),
8504
8505 The term "physname" is a bit confusing.
8506 For C++, for example, it is the demangled name.
8507 For Go, for example, it's the mangled name.
8508
8509 For Ada, return the DIE's linkage name rather than the fully qualified
8510 name. PHYSNAME is ignored..
8511
8512 The result is allocated on the objfile_obstack and canonicalized. */
8513
8514 static const char *
8515 dwarf2_compute_name (const char *name,
8516 struct die_info *die, struct dwarf2_cu *cu,
8517 int physname)
8518 {
8519 struct objfile *objfile = cu->objfile;
8520
8521 if (name == NULL)
8522 name = dwarf2_name (die, cu);
8523
8524 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8525 but otherwise compute it by typename_concat inside GDB.
8526 FIXME: Actually this is not really true, or at least not always true.
8527 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8528 Fortran names because there is no mangling standard. So new_symbol_full
8529 will set the demangled name to the result of dwarf2_full_name, and it is
8530 the demangled name that GDB uses if it exists. */
8531 if (cu->language == language_ada
8532 || (cu->language == language_fortran && physname))
8533 {
8534 /* For Ada unit, we prefer the linkage name over the name, as
8535 the former contains the exported name, which the user expects
8536 to be able to reference. Ideally, we want the user to be able
8537 to reference this entity using either natural or linkage name,
8538 but we haven't started looking at this enhancement yet. */
8539 const char *linkage_name;
8540
8541 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8542 if (linkage_name == NULL)
8543 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8544 if (linkage_name != NULL)
8545 return linkage_name;
8546 }
8547
8548 /* These are the only languages we know how to qualify names in. */
8549 if (name != NULL
8550 && (cu->language == language_cplus
8551 || cu->language == language_fortran || cu->language == language_d
8552 || cu->language == language_rust))
8553 {
8554 if (die_needs_namespace (die, cu))
8555 {
8556 long length;
8557 const char *prefix;
8558 const char *canonical_name = NULL;
8559
8560 string_file buf;
8561
8562 prefix = determine_prefix (die, cu);
8563 if (*prefix != '\0')
8564 {
8565 char *prefixed_name = typename_concat (NULL, prefix, name,
8566 physname, cu);
8567
8568 buf.puts (prefixed_name);
8569 xfree (prefixed_name);
8570 }
8571 else
8572 buf.puts (name);
8573
8574 /* Template parameters may be specified in the DIE's DW_AT_name, or
8575 as children with DW_TAG_template_type_param or
8576 DW_TAG_value_type_param. If the latter, add them to the name
8577 here. If the name already has template parameters, then
8578 skip this step; some versions of GCC emit both, and
8579 it is more efficient to use the pre-computed name.
8580
8581 Something to keep in mind about this process: it is very
8582 unlikely, or in some cases downright impossible, to produce
8583 something that will match the mangled name of a function.
8584 If the definition of the function has the same debug info,
8585 we should be able to match up with it anyway. But fallbacks
8586 using the minimal symbol, for instance to find a method
8587 implemented in a stripped copy of libstdc++, will not work.
8588 If we do not have debug info for the definition, we will have to
8589 match them up some other way.
8590
8591 When we do name matching there is a related problem with function
8592 templates; two instantiated function templates are allowed to
8593 differ only by their return types, which we do not add here. */
8594
8595 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8596 {
8597 struct attribute *attr;
8598 struct die_info *child;
8599 int first = 1;
8600
8601 die->building_fullname = 1;
8602
8603 for (child = die->child; child != NULL; child = child->sibling)
8604 {
8605 struct type *type;
8606 LONGEST value;
8607 const gdb_byte *bytes;
8608 struct dwarf2_locexpr_baton *baton;
8609 struct value *v;
8610
8611 if (child->tag != DW_TAG_template_type_param
8612 && child->tag != DW_TAG_template_value_param)
8613 continue;
8614
8615 if (first)
8616 {
8617 buf.puts ("<");
8618 first = 0;
8619 }
8620 else
8621 buf.puts (", ");
8622
8623 attr = dwarf2_attr (child, DW_AT_type, cu);
8624 if (attr == NULL)
8625 {
8626 complaint (&symfile_complaints,
8627 _("template parameter missing DW_AT_type"));
8628 buf.puts ("UNKNOWN_TYPE");
8629 continue;
8630 }
8631 type = die_type (child, cu);
8632
8633 if (child->tag == DW_TAG_template_type_param)
8634 {
8635 c_print_type (type, "", &buf, -1, 0, &type_print_raw_options);
8636 continue;
8637 }
8638
8639 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8640 if (attr == NULL)
8641 {
8642 complaint (&symfile_complaints,
8643 _("template parameter missing "
8644 "DW_AT_const_value"));
8645 buf.puts ("UNKNOWN_VALUE");
8646 continue;
8647 }
8648
8649 dwarf2_const_value_attr (attr, type, name,
8650 &cu->comp_unit_obstack, cu,
8651 &value, &bytes, &baton);
8652
8653 if (TYPE_NOSIGN (type))
8654 /* GDB prints characters as NUMBER 'CHAR'. If that's
8655 changed, this can use value_print instead. */
8656 c_printchar (value, type, &buf);
8657 else
8658 {
8659 struct value_print_options opts;
8660
8661 if (baton != NULL)
8662 v = dwarf2_evaluate_loc_desc (type, NULL,
8663 baton->data,
8664 baton->size,
8665 baton->per_cu);
8666 else if (bytes != NULL)
8667 {
8668 v = allocate_value (type);
8669 memcpy (value_contents_writeable (v), bytes,
8670 TYPE_LENGTH (type));
8671 }
8672 else
8673 v = value_from_longest (type, value);
8674
8675 /* Specify decimal so that we do not depend on
8676 the radix. */
8677 get_formatted_print_options (&opts, 'd');
8678 opts.raw = 1;
8679 value_print (v, &buf, &opts);
8680 release_value (v);
8681 value_free (v);
8682 }
8683 }
8684
8685 die->building_fullname = 0;
8686
8687 if (!first)
8688 {
8689 /* Close the argument list, with a space if necessary
8690 (nested templates). */
8691 if (!buf.empty () && buf.string ().back () == '>')
8692 buf.puts (" >");
8693 else
8694 buf.puts (">");
8695 }
8696 }
8697
8698 /* For C++ methods, append formal parameter type
8699 information, if PHYSNAME. */
8700
8701 if (physname && die->tag == DW_TAG_subprogram
8702 && cu->language == language_cplus)
8703 {
8704 struct type *type = read_type_die (die, cu);
8705
8706 c_type_print_args (type, &buf, 1, cu->language,
8707 &type_print_raw_options);
8708
8709 if (cu->language == language_cplus)
8710 {
8711 /* Assume that an artificial first parameter is
8712 "this", but do not crash if it is not. RealView
8713 marks unnamed (and thus unused) parameters as
8714 artificial; there is no way to differentiate
8715 the two cases. */
8716 if (TYPE_NFIELDS (type) > 0
8717 && TYPE_FIELD_ARTIFICIAL (type, 0)
8718 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8719 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8720 0))))
8721 buf.puts (" const");
8722 }
8723 }
8724
8725 const std::string &intermediate_name = buf.string ();
8726
8727 if (cu->language == language_cplus)
8728 canonical_name
8729 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
8730 &objfile->per_bfd->storage_obstack);
8731
8732 /* If we only computed INTERMEDIATE_NAME, or if
8733 INTERMEDIATE_NAME is already canonical, then we need to
8734 copy it to the appropriate obstack. */
8735 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
8736 name = ((const char *)
8737 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8738 intermediate_name.c_str (),
8739 intermediate_name.length ()));
8740 else
8741 name = canonical_name;
8742 }
8743 }
8744
8745 return name;
8746 }
8747
8748 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8749 If scope qualifiers are appropriate they will be added. The result
8750 will be allocated on the storage_obstack, or NULL if the DIE does
8751 not have a name. NAME may either be from a previous call to
8752 dwarf2_name or NULL.
8753
8754 The output string will be canonicalized (if C++). */
8755
8756 static const char *
8757 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8758 {
8759 return dwarf2_compute_name (name, die, cu, 0);
8760 }
8761
8762 /* Construct a physname for the given DIE in CU. NAME may either be
8763 from a previous call to dwarf2_name or NULL. The result will be
8764 allocated on the objfile_objstack or NULL if the DIE does not have a
8765 name.
8766
8767 The output string will be canonicalized (if C++). */
8768
8769 static const char *
8770 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8771 {
8772 struct objfile *objfile = cu->objfile;
8773 const char *retval, *mangled = NULL, *canon = NULL;
8774 struct cleanup *back_to;
8775 int need_copy = 1;
8776
8777 /* In this case dwarf2_compute_name is just a shortcut not building anything
8778 on its own. */
8779 if (!die_needs_namespace (die, cu))
8780 return dwarf2_compute_name (name, die, cu, 1);
8781
8782 back_to = make_cleanup (null_cleanup, NULL);
8783
8784 mangled = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8785 if (mangled == NULL)
8786 mangled = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8787
8788 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
8789 See https://github.com/rust-lang/rust/issues/32925. */
8790 if (cu->language == language_rust && mangled != NULL
8791 && strchr (mangled, '{') != NULL)
8792 mangled = NULL;
8793
8794 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8795 has computed. */
8796 if (mangled != NULL)
8797 {
8798 char *demangled;
8799
8800 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8801 type. It is easier for GDB users to search for such functions as
8802 `name(params)' than `long name(params)'. In such case the minimal
8803 symbol names do not match the full symbol names but for template
8804 functions there is never a need to look up their definition from their
8805 declaration so the only disadvantage remains the minimal symbol
8806 variant `long name(params)' does not have the proper inferior type.
8807 */
8808
8809 if (cu->language == language_go)
8810 {
8811 /* This is a lie, but we already lie to the caller new_symbol_full.
8812 new_symbol_full assumes we return the mangled name.
8813 This just undoes that lie until things are cleaned up. */
8814 demangled = NULL;
8815 }
8816 else
8817 {
8818 demangled = gdb_demangle (mangled,
8819 (DMGL_PARAMS | DMGL_ANSI | DMGL_RET_DROP));
8820 }
8821 if (demangled)
8822 {
8823 make_cleanup (xfree, demangled);
8824 canon = demangled;
8825 }
8826 else
8827 {
8828 canon = mangled;
8829 need_copy = 0;
8830 }
8831 }
8832
8833 if (canon == NULL || check_physname)
8834 {
8835 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8836
8837 if (canon != NULL && strcmp (physname, canon) != 0)
8838 {
8839 /* It may not mean a bug in GDB. The compiler could also
8840 compute DW_AT_linkage_name incorrectly. But in such case
8841 GDB would need to be bug-to-bug compatible. */
8842
8843 complaint (&symfile_complaints,
8844 _("Computed physname <%s> does not match demangled <%s> "
8845 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8846 physname, canon, mangled, die->offset.sect_off,
8847 objfile_name (objfile));
8848
8849 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8850 is available here - over computed PHYSNAME. It is safer
8851 against both buggy GDB and buggy compilers. */
8852
8853 retval = canon;
8854 }
8855 else
8856 {
8857 retval = physname;
8858 need_copy = 0;
8859 }
8860 }
8861 else
8862 retval = canon;
8863
8864 if (need_copy)
8865 retval = ((const char *)
8866 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8867 retval, strlen (retval)));
8868
8869 do_cleanups (back_to);
8870 return retval;
8871 }
8872
8873 /* Inspect DIE in CU for a namespace alias. If one exists, record
8874 a new symbol for it.
8875
8876 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8877
8878 static int
8879 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8880 {
8881 struct attribute *attr;
8882
8883 /* If the die does not have a name, this is not a namespace
8884 alias. */
8885 attr = dwarf2_attr (die, DW_AT_name, cu);
8886 if (attr != NULL)
8887 {
8888 int num;
8889 struct die_info *d = die;
8890 struct dwarf2_cu *imported_cu = cu;
8891
8892 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8893 keep inspecting DIEs until we hit the underlying import. */
8894 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8895 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8896 {
8897 attr = dwarf2_attr (d, DW_AT_import, cu);
8898 if (attr == NULL)
8899 break;
8900
8901 d = follow_die_ref (d, attr, &imported_cu);
8902 if (d->tag != DW_TAG_imported_declaration)
8903 break;
8904 }
8905
8906 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8907 {
8908 complaint (&symfile_complaints,
8909 _("DIE at 0x%x has too many recursively imported "
8910 "declarations"), d->offset.sect_off);
8911 return 0;
8912 }
8913
8914 if (attr != NULL)
8915 {
8916 struct type *type;
8917 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8918
8919 type = get_die_type_at_offset (offset, cu->per_cu);
8920 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8921 {
8922 /* This declaration is a global namespace alias. Add
8923 a symbol for it whose type is the aliased namespace. */
8924 new_symbol (die, type, cu);
8925 return 1;
8926 }
8927 }
8928 }
8929
8930 return 0;
8931 }
8932
8933 /* Return the using directives repository (global or local?) to use in the
8934 current context for LANGUAGE.
8935
8936 For Ada, imported declarations can materialize renamings, which *may* be
8937 global. However it is impossible (for now?) in DWARF to distinguish
8938 "external" imported declarations and "static" ones. As all imported
8939 declarations seem to be static in all other languages, make them all CU-wide
8940 global only in Ada. */
8941
8942 static struct using_direct **
8943 using_directives (enum language language)
8944 {
8945 if (language == language_ada && context_stack_depth == 0)
8946 return &global_using_directives;
8947 else
8948 return &local_using_directives;
8949 }
8950
8951 /* Read the import statement specified by the given die and record it. */
8952
8953 static void
8954 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8955 {
8956 struct objfile *objfile = cu->objfile;
8957 struct attribute *import_attr;
8958 struct die_info *imported_die, *child_die;
8959 struct dwarf2_cu *imported_cu;
8960 const char *imported_name;
8961 const char *imported_name_prefix;
8962 const char *canonical_name;
8963 const char *import_alias;
8964 const char *imported_declaration = NULL;
8965 const char *import_prefix;
8966 VEC (const_char_ptr) *excludes = NULL;
8967 struct cleanup *cleanups;
8968
8969 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8970 if (import_attr == NULL)
8971 {
8972 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8973 dwarf_tag_name (die->tag));
8974 return;
8975 }
8976
8977 imported_cu = cu;
8978 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8979 imported_name = dwarf2_name (imported_die, imported_cu);
8980 if (imported_name == NULL)
8981 {
8982 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8983
8984 The import in the following code:
8985 namespace A
8986 {
8987 typedef int B;
8988 }
8989
8990 int main ()
8991 {
8992 using A::B;
8993 B b;
8994 return b;
8995 }
8996
8997 ...
8998 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8999 <52> DW_AT_decl_file : 1
9000 <53> DW_AT_decl_line : 6
9001 <54> DW_AT_import : <0x75>
9002 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
9003 <59> DW_AT_name : B
9004 <5b> DW_AT_decl_file : 1
9005 <5c> DW_AT_decl_line : 2
9006 <5d> DW_AT_type : <0x6e>
9007 ...
9008 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
9009 <76> DW_AT_byte_size : 4
9010 <77> DW_AT_encoding : 5 (signed)
9011
9012 imports the wrong die ( 0x75 instead of 0x58 ).
9013 This case will be ignored until the gcc bug is fixed. */
9014 return;
9015 }
9016
9017 /* Figure out the local name after import. */
9018 import_alias = dwarf2_name (die, cu);
9019
9020 /* Figure out where the statement is being imported to. */
9021 import_prefix = determine_prefix (die, cu);
9022
9023 /* Figure out what the scope of the imported die is and prepend it
9024 to the name of the imported die. */
9025 imported_name_prefix = determine_prefix (imported_die, imported_cu);
9026
9027 if (imported_die->tag != DW_TAG_namespace
9028 && imported_die->tag != DW_TAG_module)
9029 {
9030 imported_declaration = imported_name;
9031 canonical_name = imported_name_prefix;
9032 }
9033 else if (strlen (imported_name_prefix) > 0)
9034 canonical_name = obconcat (&objfile->objfile_obstack,
9035 imported_name_prefix,
9036 (cu->language == language_d ? "." : "::"),
9037 imported_name, (char *) NULL);
9038 else
9039 canonical_name = imported_name;
9040
9041 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
9042
9043 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
9044 for (child_die = die->child; child_die && child_die->tag;
9045 child_die = sibling_die (child_die))
9046 {
9047 /* DWARF-4: A Fortran use statement with a “rename list” may be
9048 represented by an imported module entry with an import attribute
9049 referring to the module and owned entries corresponding to those
9050 entities that are renamed as part of being imported. */
9051
9052 if (child_die->tag != DW_TAG_imported_declaration)
9053 {
9054 complaint (&symfile_complaints,
9055 _("child DW_TAG_imported_declaration expected "
9056 "- DIE at 0x%x [in module %s]"),
9057 child_die->offset.sect_off, objfile_name (objfile));
9058 continue;
9059 }
9060
9061 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
9062 if (import_attr == NULL)
9063 {
9064 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9065 dwarf_tag_name (child_die->tag));
9066 continue;
9067 }
9068
9069 imported_cu = cu;
9070 imported_die = follow_die_ref_or_sig (child_die, import_attr,
9071 &imported_cu);
9072 imported_name = dwarf2_name (imported_die, imported_cu);
9073 if (imported_name == NULL)
9074 {
9075 complaint (&symfile_complaints,
9076 _("child DW_TAG_imported_declaration has unknown "
9077 "imported name - DIE at 0x%x [in module %s]"),
9078 child_die->offset.sect_off, objfile_name (objfile));
9079 continue;
9080 }
9081
9082 VEC_safe_push (const_char_ptr, excludes, imported_name);
9083
9084 process_die (child_die, cu);
9085 }
9086
9087 add_using_directive (using_directives (cu->language),
9088 import_prefix,
9089 canonical_name,
9090 import_alias,
9091 imported_declaration,
9092 excludes,
9093 0,
9094 &objfile->objfile_obstack);
9095
9096 do_cleanups (cleanups);
9097 }
9098
9099 /* Cleanup function for handle_DW_AT_stmt_list. */
9100
9101 static void
9102 free_cu_line_header (void *arg)
9103 {
9104 struct dwarf2_cu *cu = (struct dwarf2_cu *) arg;
9105
9106 free_line_header (cu->line_header);
9107 cu->line_header = NULL;
9108 }
9109
9110 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9111 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9112 this, it was first present in GCC release 4.3.0. */
9113
9114 static int
9115 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9116 {
9117 if (!cu->checked_producer)
9118 check_producer (cu);
9119
9120 return cu->producer_is_gcc_lt_4_3;
9121 }
9122
9123 static void
9124 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
9125 const char **name, const char **comp_dir)
9126 {
9127 /* Find the filename. Do not use dwarf2_name here, since the filename
9128 is not a source language identifier. */
9129 *name = dwarf2_string_attr (die, DW_AT_name, cu);
9130 *comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9131
9132 if (*comp_dir == NULL
9133 && producer_is_gcc_lt_4_3 (cu) && *name != NULL
9134 && IS_ABSOLUTE_PATH (*name))
9135 {
9136 char *d = ldirname (*name);
9137
9138 *comp_dir = d;
9139 if (d != NULL)
9140 make_cleanup (xfree, d);
9141 }
9142 if (*comp_dir != NULL)
9143 {
9144 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9145 directory, get rid of it. */
9146 const char *cp = strchr (*comp_dir, ':');
9147
9148 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9149 *comp_dir = cp + 1;
9150 }
9151
9152 if (*name == NULL)
9153 *name = "<unknown>";
9154 }
9155
9156 /* Handle DW_AT_stmt_list for a compilation unit.
9157 DIE is the DW_TAG_compile_unit die for CU.
9158 COMP_DIR is the compilation directory. LOWPC is passed to
9159 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
9160
9161 static void
9162 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
9163 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
9164 {
9165 struct objfile *objfile = dwarf2_per_objfile->objfile;
9166 struct attribute *attr;
9167 unsigned int line_offset;
9168 struct line_header line_header_local;
9169 hashval_t line_header_local_hash;
9170 unsigned u;
9171 void **slot;
9172 int decode_mapping;
9173
9174 gdb_assert (! cu->per_cu->is_debug_types);
9175
9176 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9177 if (attr == NULL)
9178 return;
9179
9180 line_offset = DW_UNSND (attr);
9181
9182 /* The line header hash table is only created if needed (it exists to
9183 prevent redundant reading of the line table for partial_units).
9184 If we're given a partial_unit, we'll need it. If we're given a
9185 compile_unit, then use the line header hash table if it's already
9186 created, but don't create one just yet. */
9187
9188 if (dwarf2_per_objfile->line_header_hash == NULL
9189 && die->tag == DW_TAG_partial_unit)
9190 {
9191 dwarf2_per_objfile->line_header_hash
9192 = htab_create_alloc_ex (127, line_header_hash_voidp,
9193 line_header_eq_voidp,
9194 free_line_header_voidp,
9195 &objfile->objfile_obstack,
9196 hashtab_obstack_allocate,
9197 dummy_obstack_deallocate);
9198 }
9199
9200 line_header_local.offset.sect_off = line_offset;
9201 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9202 line_header_local_hash = line_header_hash (&line_header_local);
9203 if (dwarf2_per_objfile->line_header_hash != NULL)
9204 {
9205 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9206 &line_header_local,
9207 line_header_local_hash, NO_INSERT);
9208
9209 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9210 is not present in *SLOT (since if there is something in *SLOT then
9211 it will be for a partial_unit). */
9212 if (die->tag == DW_TAG_partial_unit && slot != NULL)
9213 {
9214 gdb_assert (*slot != NULL);
9215 cu->line_header = (struct line_header *) *slot;
9216 return;
9217 }
9218 }
9219
9220 /* dwarf_decode_line_header does not yet provide sufficient information.
9221 We always have to call also dwarf_decode_lines for it. */
9222 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9223 if (cu->line_header == NULL)
9224 return;
9225
9226 if (dwarf2_per_objfile->line_header_hash == NULL)
9227 slot = NULL;
9228 else
9229 {
9230 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9231 &line_header_local,
9232 line_header_local_hash, INSERT);
9233 gdb_assert (slot != NULL);
9234 }
9235 if (slot != NULL && *slot == NULL)
9236 {
9237 /* This newly decoded line number information unit will be owned
9238 by line_header_hash hash table. */
9239 *slot = cu->line_header;
9240 }
9241 else
9242 {
9243 /* We cannot free any current entry in (*slot) as that struct line_header
9244 may be already used by multiple CUs. Create only temporary decoded
9245 line_header for this CU - it may happen at most once for each line
9246 number information unit. And if we're not using line_header_hash
9247 then this is what we want as well. */
9248 gdb_assert (die->tag != DW_TAG_partial_unit);
9249 make_cleanup (free_cu_line_header, cu);
9250 }
9251 decode_mapping = (die->tag != DW_TAG_partial_unit);
9252 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9253 decode_mapping);
9254 }
9255
9256 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9257
9258 static void
9259 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9260 {
9261 struct objfile *objfile = dwarf2_per_objfile->objfile;
9262 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9263 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9264 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9265 CORE_ADDR highpc = ((CORE_ADDR) 0);
9266 struct attribute *attr;
9267 const char *name = NULL;
9268 const char *comp_dir = NULL;
9269 struct die_info *child_die;
9270 CORE_ADDR baseaddr;
9271
9272 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9273
9274 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9275
9276 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9277 from finish_block. */
9278 if (lowpc == ((CORE_ADDR) -1))
9279 lowpc = highpc;
9280 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
9281
9282 find_file_and_directory (die, cu, &name, &comp_dir);
9283
9284 prepare_one_comp_unit (cu, die, cu->language);
9285
9286 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9287 standardised yet. As a workaround for the language detection we fall
9288 back to the DW_AT_producer string. */
9289 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9290 cu->language = language_opencl;
9291
9292 /* Similar hack for Go. */
9293 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9294 set_cu_language (DW_LANG_Go, cu);
9295
9296 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
9297
9298 /* Decode line number information if present. We do this before
9299 processing child DIEs, so that the line header table is available
9300 for DW_AT_decl_file. */
9301 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
9302
9303 /* Process all dies in compilation unit. */
9304 if (die->child != NULL)
9305 {
9306 child_die = die->child;
9307 while (child_die && child_die->tag)
9308 {
9309 process_die (child_die, cu);
9310 child_die = sibling_die (child_die);
9311 }
9312 }
9313
9314 /* Decode macro information, if present. Dwarf 2 macro information
9315 refers to information in the line number info statement program
9316 header, so we can only read it if we've read the header
9317 successfully. */
9318 attr = dwarf2_attr (die, DW_AT_macros, cu);
9319 if (attr == NULL)
9320 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9321 if (attr && cu->line_header)
9322 {
9323 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9324 complaint (&symfile_complaints,
9325 _("CU refers to both DW_AT_macros and DW_AT_macro_info"));
9326
9327 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9328 }
9329 else
9330 {
9331 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9332 if (attr && cu->line_header)
9333 {
9334 unsigned int macro_offset = DW_UNSND (attr);
9335
9336 dwarf_decode_macros (cu, macro_offset, 0);
9337 }
9338 }
9339
9340 do_cleanups (back_to);
9341 }
9342
9343 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9344 Create the set of symtabs used by this TU, or if this TU is sharing
9345 symtabs with another TU and the symtabs have already been created
9346 then restore those symtabs in the line header.
9347 We don't need the pc/line-number mapping for type units. */
9348
9349 static void
9350 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9351 {
9352 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9353 struct type_unit_group *tu_group;
9354 int first_time;
9355 struct line_header *lh;
9356 struct attribute *attr;
9357 unsigned int i, line_offset;
9358 struct signatured_type *sig_type;
9359
9360 gdb_assert (per_cu->is_debug_types);
9361 sig_type = (struct signatured_type *) per_cu;
9362
9363 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9364
9365 /* If we're using .gdb_index (includes -readnow) then
9366 per_cu->type_unit_group may not have been set up yet. */
9367 if (sig_type->type_unit_group == NULL)
9368 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9369 tu_group = sig_type->type_unit_group;
9370
9371 /* If we've already processed this stmt_list there's no real need to
9372 do it again, we could fake it and just recreate the part we need
9373 (file name,index -> symtab mapping). If data shows this optimization
9374 is useful we can do it then. */
9375 first_time = tu_group->compunit_symtab == NULL;
9376
9377 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9378 debug info. */
9379 lh = NULL;
9380 if (attr != NULL)
9381 {
9382 line_offset = DW_UNSND (attr);
9383 lh = dwarf_decode_line_header (line_offset, cu);
9384 }
9385 if (lh == NULL)
9386 {
9387 if (first_time)
9388 dwarf2_start_symtab (cu, "", NULL, 0);
9389 else
9390 {
9391 gdb_assert (tu_group->symtabs == NULL);
9392 restart_symtab (tu_group->compunit_symtab, "", 0);
9393 }
9394 return;
9395 }
9396
9397 cu->line_header = lh;
9398 make_cleanup (free_cu_line_header, cu);
9399
9400 if (first_time)
9401 {
9402 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9403
9404 /* Note: We don't assign tu_group->compunit_symtab yet because we're
9405 still initializing it, and our caller (a few levels up)
9406 process_full_type_unit still needs to know if this is the first
9407 time. */
9408
9409 tu_group->num_symtabs = lh->num_file_names;
9410 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9411
9412 for (i = 0; i < lh->num_file_names; ++i)
9413 {
9414 const char *dir = NULL;
9415 struct file_entry *fe = &lh->file_names[i];
9416
9417 if (fe->dir_index && lh->include_dirs != NULL)
9418 dir = lh->include_dirs[fe->dir_index - 1];
9419 dwarf2_start_subfile (fe->name, dir);
9420
9421 if (current_subfile->symtab == NULL)
9422 {
9423 /* NOTE: start_subfile will recognize when it's been passed
9424 a file it has already seen. So we can't assume there's a
9425 simple mapping from lh->file_names to subfiles, plus
9426 lh->file_names may contain dups. */
9427 current_subfile->symtab
9428 = allocate_symtab (cust, current_subfile->name);
9429 }
9430
9431 fe->symtab = current_subfile->symtab;
9432 tu_group->symtabs[i] = fe->symtab;
9433 }
9434 }
9435 else
9436 {
9437 restart_symtab (tu_group->compunit_symtab, "", 0);
9438
9439 for (i = 0; i < lh->num_file_names; ++i)
9440 {
9441 struct file_entry *fe = &lh->file_names[i];
9442
9443 fe->symtab = tu_group->symtabs[i];
9444 }
9445 }
9446
9447 /* The main symtab is allocated last. Type units don't have DW_AT_name
9448 so they don't have a "real" (so to speak) symtab anyway.
9449 There is later code that will assign the main symtab to all symbols
9450 that don't have one. We need to handle the case of a symbol with a
9451 missing symtab (DW_AT_decl_file) anyway. */
9452 }
9453
9454 /* Process DW_TAG_type_unit.
9455 For TUs we want to skip the first top level sibling if it's not the
9456 actual type being defined by this TU. In this case the first top
9457 level sibling is there to provide context only. */
9458
9459 static void
9460 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9461 {
9462 struct die_info *child_die;
9463
9464 prepare_one_comp_unit (cu, die, language_minimal);
9465
9466 /* Initialize (or reinitialize) the machinery for building symtabs.
9467 We do this before processing child DIEs, so that the line header table
9468 is available for DW_AT_decl_file. */
9469 setup_type_unit_groups (die, cu);
9470
9471 if (die->child != NULL)
9472 {
9473 child_die = die->child;
9474 while (child_die && child_die->tag)
9475 {
9476 process_die (child_die, cu);
9477 child_die = sibling_die (child_die);
9478 }
9479 }
9480 }
9481 \f
9482 /* DWO/DWP files.
9483
9484 http://gcc.gnu.org/wiki/DebugFission
9485 http://gcc.gnu.org/wiki/DebugFissionDWP
9486
9487 To simplify handling of both DWO files ("object" files with the DWARF info)
9488 and DWP files (a file with the DWOs packaged up into one file), we treat
9489 DWP files as having a collection of virtual DWO files. */
9490
9491 static hashval_t
9492 hash_dwo_file (const void *item)
9493 {
9494 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
9495 hashval_t hash;
9496
9497 hash = htab_hash_string (dwo_file->dwo_name);
9498 if (dwo_file->comp_dir != NULL)
9499 hash += htab_hash_string (dwo_file->comp_dir);
9500 return hash;
9501 }
9502
9503 static int
9504 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9505 {
9506 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
9507 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
9508
9509 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9510 return 0;
9511 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9512 return lhs->comp_dir == rhs->comp_dir;
9513 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9514 }
9515
9516 /* Allocate a hash table for DWO files. */
9517
9518 static htab_t
9519 allocate_dwo_file_hash_table (void)
9520 {
9521 struct objfile *objfile = dwarf2_per_objfile->objfile;
9522
9523 return htab_create_alloc_ex (41,
9524 hash_dwo_file,
9525 eq_dwo_file,
9526 NULL,
9527 &objfile->objfile_obstack,
9528 hashtab_obstack_allocate,
9529 dummy_obstack_deallocate);
9530 }
9531
9532 /* Lookup DWO file DWO_NAME. */
9533
9534 static void **
9535 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9536 {
9537 struct dwo_file find_entry;
9538 void **slot;
9539
9540 if (dwarf2_per_objfile->dwo_files == NULL)
9541 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9542
9543 memset (&find_entry, 0, sizeof (find_entry));
9544 find_entry.dwo_name = dwo_name;
9545 find_entry.comp_dir = comp_dir;
9546 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9547
9548 return slot;
9549 }
9550
9551 static hashval_t
9552 hash_dwo_unit (const void *item)
9553 {
9554 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
9555
9556 /* This drops the top 32 bits of the id, but is ok for a hash. */
9557 return dwo_unit->signature;
9558 }
9559
9560 static int
9561 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9562 {
9563 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
9564 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
9565
9566 /* The signature is assumed to be unique within the DWO file.
9567 So while object file CU dwo_id's always have the value zero,
9568 that's OK, assuming each object file DWO file has only one CU,
9569 and that's the rule for now. */
9570 return lhs->signature == rhs->signature;
9571 }
9572
9573 /* Allocate a hash table for DWO CUs,TUs.
9574 There is one of these tables for each of CUs,TUs for each DWO file. */
9575
9576 static htab_t
9577 allocate_dwo_unit_table (struct objfile *objfile)
9578 {
9579 /* Start out with a pretty small number.
9580 Generally DWO files contain only one CU and maybe some TUs. */
9581 return htab_create_alloc_ex (3,
9582 hash_dwo_unit,
9583 eq_dwo_unit,
9584 NULL,
9585 &objfile->objfile_obstack,
9586 hashtab_obstack_allocate,
9587 dummy_obstack_deallocate);
9588 }
9589
9590 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9591
9592 struct create_dwo_cu_data
9593 {
9594 struct dwo_file *dwo_file;
9595 struct dwo_unit dwo_unit;
9596 };
9597
9598 /* die_reader_func for create_dwo_cu. */
9599
9600 static void
9601 create_dwo_cu_reader (const struct die_reader_specs *reader,
9602 const gdb_byte *info_ptr,
9603 struct die_info *comp_unit_die,
9604 int has_children,
9605 void *datap)
9606 {
9607 struct dwarf2_cu *cu = reader->cu;
9608 sect_offset offset = cu->per_cu->offset;
9609 struct dwarf2_section_info *section = cu->per_cu->section;
9610 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
9611 struct dwo_file *dwo_file = data->dwo_file;
9612 struct dwo_unit *dwo_unit = &data->dwo_unit;
9613 struct attribute *attr;
9614
9615 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9616 if (attr == NULL)
9617 {
9618 complaint (&symfile_complaints,
9619 _("Dwarf Error: debug entry at offset 0x%x is missing"
9620 " its dwo_id [in module %s]"),
9621 offset.sect_off, dwo_file->dwo_name);
9622 return;
9623 }
9624
9625 dwo_unit->dwo_file = dwo_file;
9626 dwo_unit->signature = DW_UNSND (attr);
9627 dwo_unit->section = section;
9628 dwo_unit->offset = offset;
9629 dwo_unit->length = cu->per_cu->length;
9630
9631 if (dwarf_read_debug)
9632 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9633 offset.sect_off, hex_string (dwo_unit->signature));
9634 }
9635
9636 /* Create the dwo_unit for the lone CU in DWO_FILE.
9637 Note: This function processes DWO files only, not DWP files. */
9638
9639 static struct dwo_unit *
9640 create_dwo_cu (struct dwo_file *dwo_file)
9641 {
9642 struct objfile *objfile = dwarf2_per_objfile->objfile;
9643 struct dwarf2_section_info *section = &dwo_file->sections.info;
9644 const gdb_byte *info_ptr, *end_ptr;
9645 struct create_dwo_cu_data create_dwo_cu_data;
9646 struct dwo_unit *dwo_unit;
9647
9648 dwarf2_read_section (objfile, section);
9649 info_ptr = section->buffer;
9650
9651 if (info_ptr == NULL)
9652 return NULL;
9653
9654 if (dwarf_read_debug)
9655 {
9656 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9657 get_section_name (section),
9658 get_section_file_name (section));
9659 }
9660
9661 create_dwo_cu_data.dwo_file = dwo_file;
9662 dwo_unit = NULL;
9663
9664 end_ptr = info_ptr + section->size;
9665 while (info_ptr < end_ptr)
9666 {
9667 struct dwarf2_per_cu_data per_cu;
9668
9669 memset (&create_dwo_cu_data.dwo_unit, 0,
9670 sizeof (create_dwo_cu_data.dwo_unit));
9671 memset (&per_cu, 0, sizeof (per_cu));
9672 per_cu.objfile = objfile;
9673 per_cu.is_debug_types = 0;
9674 per_cu.offset.sect_off = info_ptr - section->buffer;
9675 per_cu.section = section;
9676
9677 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9678 create_dwo_cu_reader,
9679 &create_dwo_cu_data);
9680
9681 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9682 {
9683 /* If we've already found one, complain. We only support one
9684 because having more than one requires hacking the dwo_name of
9685 each to match, which is highly unlikely to happen. */
9686 if (dwo_unit != NULL)
9687 {
9688 complaint (&symfile_complaints,
9689 _("Multiple CUs in DWO file %s [in module %s]"),
9690 dwo_file->dwo_name, objfile_name (objfile));
9691 break;
9692 }
9693
9694 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9695 *dwo_unit = create_dwo_cu_data.dwo_unit;
9696 }
9697
9698 info_ptr += per_cu.length;
9699 }
9700
9701 return dwo_unit;
9702 }
9703
9704 /* DWP file .debug_{cu,tu}_index section format:
9705 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9706
9707 DWP Version 1:
9708
9709 Both index sections have the same format, and serve to map a 64-bit
9710 signature to a set of section numbers. Each section begins with a header,
9711 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9712 indexes, and a pool of 32-bit section numbers. The index sections will be
9713 aligned at 8-byte boundaries in the file.
9714
9715 The index section header consists of:
9716
9717 V, 32 bit version number
9718 -, 32 bits unused
9719 N, 32 bit number of compilation units or type units in the index
9720 M, 32 bit number of slots in the hash table
9721
9722 Numbers are recorded using the byte order of the application binary.
9723
9724 The hash table begins at offset 16 in the section, and consists of an array
9725 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9726 order of the application binary). Unused slots in the hash table are 0.
9727 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9728
9729 The parallel table begins immediately after the hash table
9730 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9731 array of 32-bit indexes (using the byte order of the application binary),
9732 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9733 table contains a 32-bit index into the pool of section numbers. For unused
9734 hash table slots, the corresponding entry in the parallel table will be 0.
9735
9736 The pool of section numbers begins immediately following the hash table
9737 (at offset 16 + 12 * M from the beginning of the section). The pool of
9738 section numbers consists of an array of 32-bit words (using the byte order
9739 of the application binary). Each item in the array is indexed starting
9740 from 0. The hash table entry provides the index of the first section
9741 number in the set. Additional section numbers in the set follow, and the
9742 set is terminated by a 0 entry (section number 0 is not used in ELF).
9743
9744 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9745 section must be the first entry in the set, and the .debug_abbrev.dwo must
9746 be the second entry. Other members of the set may follow in any order.
9747
9748 ---
9749
9750 DWP Version 2:
9751
9752 DWP Version 2 combines all the .debug_info, etc. sections into one,
9753 and the entries in the index tables are now offsets into these sections.
9754 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9755 section.
9756
9757 Index Section Contents:
9758 Header
9759 Hash Table of Signatures dwp_hash_table.hash_table
9760 Parallel Table of Indices dwp_hash_table.unit_table
9761 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9762 Table of Section Sizes dwp_hash_table.v2.sizes
9763
9764 The index section header consists of:
9765
9766 V, 32 bit version number
9767 L, 32 bit number of columns in the table of section offsets
9768 N, 32 bit number of compilation units or type units in the index
9769 M, 32 bit number of slots in the hash table
9770
9771 Numbers are recorded using the byte order of the application binary.
9772
9773 The hash table has the same format as version 1.
9774 The parallel table of indices has the same format as version 1,
9775 except that the entries are origin-1 indices into the table of sections
9776 offsets and the table of section sizes.
9777
9778 The table of offsets begins immediately following the parallel table
9779 (at offset 16 + 12 * M from the beginning of the section). The table is
9780 a two-dimensional array of 32-bit words (using the byte order of the
9781 application binary), with L columns and N+1 rows, in row-major order.
9782 Each row in the array is indexed starting from 0. The first row provides
9783 a key to the remaining rows: each column in this row provides an identifier
9784 for a debug section, and the offsets in the same column of subsequent rows
9785 refer to that section. The section identifiers are:
9786
9787 DW_SECT_INFO 1 .debug_info.dwo
9788 DW_SECT_TYPES 2 .debug_types.dwo
9789 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9790 DW_SECT_LINE 4 .debug_line.dwo
9791 DW_SECT_LOC 5 .debug_loc.dwo
9792 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9793 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9794 DW_SECT_MACRO 8 .debug_macro.dwo
9795
9796 The offsets provided by the CU and TU index sections are the base offsets
9797 for the contributions made by each CU or TU to the corresponding section
9798 in the package file. Each CU and TU header contains an abbrev_offset
9799 field, used to find the abbreviations table for that CU or TU within the
9800 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9801 be interpreted as relative to the base offset given in the index section.
9802 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9803 should be interpreted as relative to the base offset for .debug_line.dwo,
9804 and offsets into other debug sections obtained from DWARF attributes should
9805 also be interpreted as relative to the corresponding base offset.
9806
9807 The table of sizes begins immediately following the table of offsets.
9808 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9809 with L columns and N rows, in row-major order. Each row in the array is
9810 indexed starting from 1 (row 0 is shared by the two tables).
9811
9812 ---
9813
9814 Hash table lookup is handled the same in version 1 and 2:
9815
9816 We assume that N and M will not exceed 2^32 - 1.
9817 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9818
9819 Given a 64-bit compilation unit signature or a type signature S, an entry
9820 in the hash table is located as follows:
9821
9822 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9823 the low-order k bits all set to 1.
9824
9825 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9826
9827 3) If the hash table entry at index H matches the signature, use that
9828 entry. If the hash table entry at index H is unused (all zeroes),
9829 terminate the search: the signature is not present in the table.
9830
9831 4) Let H = (H + H') modulo M. Repeat at Step 3.
9832
9833 Because M > N and H' and M are relatively prime, the search is guaranteed
9834 to stop at an unused slot or find the match. */
9835
9836 /* Create a hash table to map DWO IDs to their CU/TU entry in
9837 .debug_{info,types}.dwo in DWP_FILE.
9838 Returns NULL if there isn't one.
9839 Note: This function processes DWP files only, not DWO files. */
9840
9841 static struct dwp_hash_table *
9842 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9843 {
9844 struct objfile *objfile = dwarf2_per_objfile->objfile;
9845 bfd *dbfd = dwp_file->dbfd;
9846 const gdb_byte *index_ptr, *index_end;
9847 struct dwarf2_section_info *index;
9848 uint32_t version, nr_columns, nr_units, nr_slots;
9849 struct dwp_hash_table *htab;
9850
9851 if (is_debug_types)
9852 index = &dwp_file->sections.tu_index;
9853 else
9854 index = &dwp_file->sections.cu_index;
9855
9856 if (dwarf2_section_empty_p (index))
9857 return NULL;
9858 dwarf2_read_section (objfile, index);
9859
9860 index_ptr = index->buffer;
9861 index_end = index_ptr + index->size;
9862
9863 version = read_4_bytes (dbfd, index_ptr);
9864 index_ptr += 4;
9865 if (version == 2)
9866 nr_columns = read_4_bytes (dbfd, index_ptr);
9867 else
9868 nr_columns = 0;
9869 index_ptr += 4;
9870 nr_units = read_4_bytes (dbfd, index_ptr);
9871 index_ptr += 4;
9872 nr_slots = read_4_bytes (dbfd, index_ptr);
9873 index_ptr += 4;
9874
9875 if (version != 1 && version != 2)
9876 {
9877 error (_("Dwarf Error: unsupported DWP file version (%s)"
9878 " [in module %s]"),
9879 pulongest (version), dwp_file->name);
9880 }
9881 if (nr_slots != (nr_slots & -nr_slots))
9882 {
9883 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9884 " is not power of 2 [in module %s]"),
9885 pulongest (nr_slots), dwp_file->name);
9886 }
9887
9888 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9889 htab->version = version;
9890 htab->nr_columns = nr_columns;
9891 htab->nr_units = nr_units;
9892 htab->nr_slots = nr_slots;
9893 htab->hash_table = index_ptr;
9894 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9895
9896 /* Exit early if the table is empty. */
9897 if (nr_slots == 0 || nr_units == 0
9898 || (version == 2 && nr_columns == 0))
9899 {
9900 /* All must be zero. */
9901 if (nr_slots != 0 || nr_units != 0
9902 || (version == 2 && nr_columns != 0))
9903 {
9904 complaint (&symfile_complaints,
9905 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9906 " all zero [in modules %s]"),
9907 dwp_file->name);
9908 }
9909 return htab;
9910 }
9911
9912 if (version == 1)
9913 {
9914 htab->section_pool.v1.indices =
9915 htab->unit_table + sizeof (uint32_t) * nr_slots;
9916 /* It's harder to decide whether the section is too small in v1.
9917 V1 is deprecated anyway so we punt. */
9918 }
9919 else
9920 {
9921 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9922 int *ids = htab->section_pool.v2.section_ids;
9923 /* Reverse map for error checking. */
9924 int ids_seen[DW_SECT_MAX + 1];
9925 int i;
9926
9927 if (nr_columns < 2)
9928 {
9929 error (_("Dwarf Error: bad DWP hash table, too few columns"
9930 " in section table [in module %s]"),
9931 dwp_file->name);
9932 }
9933 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9934 {
9935 error (_("Dwarf Error: bad DWP hash table, too many columns"
9936 " in section table [in module %s]"),
9937 dwp_file->name);
9938 }
9939 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9940 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9941 for (i = 0; i < nr_columns; ++i)
9942 {
9943 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9944
9945 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9946 {
9947 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9948 " in section table [in module %s]"),
9949 id, dwp_file->name);
9950 }
9951 if (ids_seen[id] != -1)
9952 {
9953 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9954 " id %d in section table [in module %s]"),
9955 id, dwp_file->name);
9956 }
9957 ids_seen[id] = i;
9958 ids[i] = id;
9959 }
9960 /* Must have exactly one info or types section. */
9961 if (((ids_seen[DW_SECT_INFO] != -1)
9962 + (ids_seen[DW_SECT_TYPES] != -1))
9963 != 1)
9964 {
9965 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9966 " DWO info/types section [in module %s]"),
9967 dwp_file->name);
9968 }
9969 /* Must have an abbrev section. */
9970 if (ids_seen[DW_SECT_ABBREV] == -1)
9971 {
9972 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9973 " section [in module %s]"),
9974 dwp_file->name);
9975 }
9976 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9977 htab->section_pool.v2.sizes =
9978 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9979 * nr_units * nr_columns);
9980 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9981 * nr_units * nr_columns))
9982 > index_end)
9983 {
9984 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9985 " [in module %s]"),
9986 dwp_file->name);
9987 }
9988 }
9989
9990 return htab;
9991 }
9992
9993 /* Update SECTIONS with the data from SECTP.
9994
9995 This function is like the other "locate" section routines that are
9996 passed to bfd_map_over_sections, but in this context the sections to
9997 read comes from the DWP V1 hash table, not the full ELF section table.
9998
9999 The result is non-zero for success, or zero if an error was found. */
10000
10001 static int
10002 locate_v1_virtual_dwo_sections (asection *sectp,
10003 struct virtual_v1_dwo_sections *sections)
10004 {
10005 const struct dwop_section_names *names = &dwop_section_names;
10006
10007 if (section_is_p (sectp->name, &names->abbrev_dwo))
10008 {
10009 /* There can be only one. */
10010 if (sections->abbrev.s.section != NULL)
10011 return 0;
10012 sections->abbrev.s.section = sectp;
10013 sections->abbrev.size = bfd_get_section_size (sectp);
10014 }
10015 else if (section_is_p (sectp->name, &names->info_dwo)
10016 || section_is_p (sectp->name, &names->types_dwo))
10017 {
10018 /* There can be only one. */
10019 if (sections->info_or_types.s.section != NULL)
10020 return 0;
10021 sections->info_or_types.s.section = sectp;
10022 sections->info_or_types.size = bfd_get_section_size (sectp);
10023 }
10024 else if (section_is_p (sectp->name, &names->line_dwo))
10025 {
10026 /* There can be only one. */
10027 if (sections->line.s.section != NULL)
10028 return 0;
10029 sections->line.s.section = sectp;
10030 sections->line.size = bfd_get_section_size (sectp);
10031 }
10032 else if (section_is_p (sectp->name, &names->loc_dwo))
10033 {
10034 /* There can be only one. */
10035 if (sections->loc.s.section != NULL)
10036 return 0;
10037 sections->loc.s.section = sectp;
10038 sections->loc.size = bfd_get_section_size (sectp);
10039 }
10040 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10041 {
10042 /* There can be only one. */
10043 if (sections->macinfo.s.section != NULL)
10044 return 0;
10045 sections->macinfo.s.section = sectp;
10046 sections->macinfo.size = bfd_get_section_size (sectp);
10047 }
10048 else if (section_is_p (sectp->name, &names->macro_dwo))
10049 {
10050 /* There can be only one. */
10051 if (sections->macro.s.section != NULL)
10052 return 0;
10053 sections->macro.s.section = sectp;
10054 sections->macro.size = bfd_get_section_size (sectp);
10055 }
10056 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10057 {
10058 /* There can be only one. */
10059 if (sections->str_offsets.s.section != NULL)
10060 return 0;
10061 sections->str_offsets.s.section = sectp;
10062 sections->str_offsets.size = bfd_get_section_size (sectp);
10063 }
10064 else
10065 {
10066 /* No other kind of section is valid. */
10067 return 0;
10068 }
10069
10070 return 1;
10071 }
10072
10073 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10074 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10075 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10076 This is for DWP version 1 files. */
10077
10078 static struct dwo_unit *
10079 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10080 uint32_t unit_index,
10081 const char *comp_dir,
10082 ULONGEST signature, int is_debug_types)
10083 {
10084 struct objfile *objfile = dwarf2_per_objfile->objfile;
10085 const struct dwp_hash_table *dwp_htab =
10086 is_debug_types ? dwp_file->tus : dwp_file->cus;
10087 bfd *dbfd = dwp_file->dbfd;
10088 const char *kind = is_debug_types ? "TU" : "CU";
10089 struct dwo_file *dwo_file;
10090 struct dwo_unit *dwo_unit;
10091 struct virtual_v1_dwo_sections sections;
10092 void **dwo_file_slot;
10093 char *virtual_dwo_name;
10094 struct cleanup *cleanups;
10095 int i;
10096
10097 gdb_assert (dwp_file->version == 1);
10098
10099 if (dwarf_read_debug)
10100 {
10101 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
10102 kind,
10103 pulongest (unit_index), hex_string (signature),
10104 dwp_file->name);
10105 }
10106
10107 /* Fetch the sections of this DWO unit.
10108 Put a limit on the number of sections we look for so that bad data
10109 doesn't cause us to loop forever. */
10110
10111 #define MAX_NR_V1_DWO_SECTIONS \
10112 (1 /* .debug_info or .debug_types */ \
10113 + 1 /* .debug_abbrev */ \
10114 + 1 /* .debug_line */ \
10115 + 1 /* .debug_loc */ \
10116 + 1 /* .debug_str_offsets */ \
10117 + 1 /* .debug_macro or .debug_macinfo */ \
10118 + 1 /* trailing zero */)
10119
10120 memset (&sections, 0, sizeof (sections));
10121 cleanups = make_cleanup (null_cleanup, 0);
10122
10123 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
10124 {
10125 asection *sectp;
10126 uint32_t section_nr =
10127 read_4_bytes (dbfd,
10128 dwp_htab->section_pool.v1.indices
10129 + (unit_index + i) * sizeof (uint32_t));
10130
10131 if (section_nr == 0)
10132 break;
10133 if (section_nr >= dwp_file->num_sections)
10134 {
10135 error (_("Dwarf Error: bad DWP hash table, section number too large"
10136 " [in module %s]"),
10137 dwp_file->name);
10138 }
10139
10140 sectp = dwp_file->elf_sections[section_nr];
10141 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
10142 {
10143 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10144 " [in module %s]"),
10145 dwp_file->name);
10146 }
10147 }
10148
10149 if (i < 2
10150 || dwarf2_section_empty_p (&sections.info_or_types)
10151 || dwarf2_section_empty_p (&sections.abbrev))
10152 {
10153 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10154 " [in module %s]"),
10155 dwp_file->name);
10156 }
10157 if (i == MAX_NR_V1_DWO_SECTIONS)
10158 {
10159 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10160 " [in module %s]"),
10161 dwp_file->name);
10162 }
10163
10164 /* It's easier for the rest of the code if we fake a struct dwo_file and
10165 have dwo_unit "live" in that. At least for now.
10166
10167 The DWP file can be made up of a random collection of CUs and TUs.
10168 However, for each CU + set of TUs that came from the same original DWO
10169 file, we can combine them back into a virtual DWO file to save space
10170 (fewer struct dwo_file objects to allocate). Remember that for really
10171 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10172
10173 virtual_dwo_name =
10174 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
10175 get_section_id (&sections.abbrev),
10176 get_section_id (&sections.line),
10177 get_section_id (&sections.loc),
10178 get_section_id (&sections.str_offsets));
10179 make_cleanup (xfree, virtual_dwo_name);
10180 /* Can we use an existing virtual DWO file? */
10181 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10182 /* Create one if necessary. */
10183 if (*dwo_file_slot == NULL)
10184 {
10185 if (dwarf_read_debug)
10186 {
10187 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10188 virtual_dwo_name);
10189 }
10190 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10191 dwo_file->dwo_name
10192 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10193 virtual_dwo_name,
10194 strlen (virtual_dwo_name));
10195 dwo_file->comp_dir = comp_dir;
10196 dwo_file->sections.abbrev = sections.abbrev;
10197 dwo_file->sections.line = sections.line;
10198 dwo_file->sections.loc = sections.loc;
10199 dwo_file->sections.macinfo = sections.macinfo;
10200 dwo_file->sections.macro = sections.macro;
10201 dwo_file->sections.str_offsets = sections.str_offsets;
10202 /* The "str" section is global to the entire DWP file. */
10203 dwo_file->sections.str = dwp_file->sections.str;
10204 /* The info or types section is assigned below to dwo_unit,
10205 there's no need to record it in dwo_file.
10206 Also, we can't simply record type sections in dwo_file because
10207 we record a pointer into the vector in dwo_unit. As we collect more
10208 types we'll grow the vector and eventually have to reallocate space
10209 for it, invalidating all copies of pointers into the previous
10210 contents. */
10211 *dwo_file_slot = dwo_file;
10212 }
10213 else
10214 {
10215 if (dwarf_read_debug)
10216 {
10217 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10218 virtual_dwo_name);
10219 }
10220 dwo_file = (struct dwo_file *) *dwo_file_slot;
10221 }
10222 do_cleanups (cleanups);
10223
10224 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10225 dwo_unit->dwo_file = dwo_file;
10226 dwo_unit->signature = signature;
10227 dwo_unit->section =
10228 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10229 *dwo_unit->section = sections.info_or_types;
10230 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10231
10232 return dwo_unit;
10233 }
10234
10235 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10236 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10237 piece within that section used by a TU/CU, return a virtual section
10238 of just that piece. */
10239
10240 static struct dwarf2_section_info
10241 create_dwp_v2_section (struct dwarf2_section_info *section,
10242 bfd_size_type offset, bfd_size_type size)
10243 {
10244 struct dwarf2_section_info result;
10245 asection *sectp;
10246
10247 gdb_assert (section != NULL);
10248 gdb_assert (!section->is_virtual);
10249
10250 memset (&result, 0, sizeof (result));
10251 result.s.containing_section = section;
10252 result.is_virtual = 1;
10253
10254 if (size == 0)
10255 return result;
10256
10257 sectp = get_section_bfd_section (section);
10258
10259 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10260 bounds of the real section. This is a pretty-rare event, so just
10261 flag an error (easier) instead of a warning and trying to cope. */
10262 if (sectp == NULL
10263 || offset + size > bfd_get_section_size (sectp))
10264 {
10265 bfd *abfd = sectp->owner;
10266
10267 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10268 " in section %s [in module %s]"),
10269 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10270 objfile_name (dwarf2_per_objfile->objfile));
10271 }
10272
10273 result.virtual_offset = offset;
10274 result.size = size;
10275 return result;
10276 }
10277
10278 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10279 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10280 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10281 This is for DWP version 2 files. */
10282
10283 static struct dwo_unit *
10284 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10285 uint32_t unit_index,
10286 const char *comp_dir,
10287 ULONGEST signature, int is_debug_types)
10288 {
10289 struct objfile *objfile = dwarf2_per_objfile->objfile;
10290 const struct dwp_hash_table *dwp_htab =
10291 is_debug_types ? dwp_file->tus : dwp_file->cus;
10292 bfd *dbfd = dwp_file->dbfd;
10293 const char *kind = is_debug_types ? "TU" : "CU";
10294 struct dwo_file *dwo_file;
10295 struct dwo_unit *dwo_unit;
10296 struct virtual_v2_dwo_sections sections;
10297 void **dwo_file_slot;
10298 char *virtual_dwo_name;
10299 struct cleanup *cleanups;
10300 int i;
10301
10302 gdb_assert (dwp_file->version == 2);
10303
10304 if (dwarf_read_debug)
10305 {
10306 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10307 kind,
10308 pulongest (unit_index), hex_string (signature),
10309 dwp_file->name);
10310 }
10311
10312 /* Fetch the section offsets of this DWO unit. */
10313
10314 memset (&sections, 0, sizeof (sections));
10315 cleanups = make_cleanup (null_cleanup, 0);
10316
10317 for (i = 0; i < dwp_htab->nr_columns; ++i)
10318 {
10319 uint32_t offset = read_4_bytes (dbfd,
10320 dwp_htab->section_pool.v2.offsets
10321 + (((unit_index - 1) * dwp_htab->nr_columns
10322 + i)
10323 * sizeof (uint32_t)));
10324 uint32_t size = read_4_bytes (dbfd,
10325 dwp_htab->section_pool.v2.sizes
10326 + (((unit_index - 1) * dwp_htab->nr_columns
10327 + i)
10328 * sizeof (uint32_t)));
10329
10330 switch (dwp_htab->section_pool.v2.section_ids[i])
10331 {
10332 case DW_SECT_INFO:
10333 case DW_SECT_TYPES:
10334 sections.info_or_types_offset = offset;
10335 sections.info_or_types_size = size;
10336 break;
10337 case DW_SECT_ABBREV:
10338 sections.abbrev_offset = offset;
10339 sections.abbrev_size = size;
10340 break;
10341 case DW_SECT_LINE:
10342 sections.line_offset = offset;
10343 sections.line_size = size;
10344 break;
10345 case DW_SECT_LOC:
10346 sections.loc_offset = offset;
10347 sections.loc_size = size;
10348 break;
10349 case DW_SECT_STR_OFFSETS:
10350 sections.str_offsets_offset = offset;
10351 sections.str_offsets_size = size;
10352 break;
10353 case DW_SECT_MACINFO:
10354 sections.macinfo_offset = offset;
10355 sections.macinfo_size = size;
10356 break;
10357 case DW_SECT_MACRO:
10358 sections.macro_offset = offset;
10359 sections.macro_size = size;
10360 break;
10361 }
10362 }
10363
10364 /* It's easier for the rest of the code if we fake a struct dwo_file and
10365 have dwo_unit "live" in that. At least for now.
10366
10367 The DWP file can be made up of a random collection of CUs and TUs.
10368 However, for each CU + set of TUs that came from the same original DWO
10369 file, we can combine them back into a virtual DWO file to save space
10370 (fewer struct dwo_file objects to allocate). Remember that for really
10371 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10372
10373 virtual_dwo_name =
10374 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10375 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10376 (long) (sections.line_size ? sections.line_offset : 0),
10377 (long) (sections.loc_size ? sections.loc_offset : 0),
10378 (long) (sections.str_offsets_size
10379 ? sections.str_offsets_offset : 0));
10380 make_cleanup (xfree, virtual_dwo_name);
10381 /* Can we use an existing virtual DWO file? */
10382 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10383 /* Create one if necessary. */
10384 if (*dwo_file_slot == NULL)
10385 {
10386 if (dwarf_read_debug)
10387 {
10388 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10389 virtual_dwo_name);
10390 }
10391 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10392 dwo_file->dwo_name
10393 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10394 virtual_dwo_name,
10395 strlen (virtual_dwo_name));
10396 dwo_file->comp_dir = comp_dir;
10397 dwo_file->sections.abbrev =
10398 create_dwp_v2_section (&dwp_file->sections.abbrev,
10399 sections.abbrev_offset, sections.abbrev_size);
10400 dwo_file->sections.line =
10401 create_dwp_v2_section (&dwp_file->sections.line,
10402 sections.line_offset, sections.line_size);
10403 dwo_file->sections.loc =
10404 create_dwp_v2_section (&dwp_file->sections.loc,
10405 sections.loc_offset, sections.loc_size);
10406 dwo_file->sections.macinfo =
10407 create_dwp_v2_section (&dwp_file->sections.macinfo,
10408 sections.macinfo_offset, sections.macinfo_size);
10409 dwo_file->sections.macro =
10410 create_dwp_v2_section (&dwp_file->sections.macro,
10411 sections.macro_offset, sections.macro_size);
10412 dwo_file->sections.str_offsets =
10413 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10414 sections.str_offsets_offset,
10415 sections.str_offsets_size);
10416 /* The "str" section is global to the entire DWP file. */
10417 dwo_file->sections.str = dwp_file->sections.str;
10418 /* The info or types section is assigned below to dwo_unit,
10419 there's no need to record it in dwo_file.
10420 Also, we can't simply record type sections in dwo_file because
10421 we record a pointer into the vector in dwo_unit. As we collect more
10422 types we'll grow the vector and eventually have to reallocate space
10423 for it, invalidating all copies of pointers into the previous
10424 contents. */
10425 *dwo_file_slot = dwo_file;
10426 }
10427 else
10428 {
10429 if (dwarf_read_debug)
10430 {
10431 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10432 virtual_dwo_name);
10433 }
10434 dwo_file = (struct dwo_file *) *dwo_file_slot;
10435 }
10436 do_cleanups (cleanups);
10437
10438 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10439 dwo_unit->dwo_file = dwo_file;
10440 dwo_unit->signature = signature;
10441 dwo_unit->section =
10442 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10443 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10444 ? &dwp_file->sections.types
10445 : &dwp_file->sections.info,
10446 sections.info_or_types_offset,
10447 sections.info_or_types_size);
10448 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10449
10450 return dwo_unit;
10451 }
10452
10453 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10454 Returns NULL if the signature isn't found. */
10455
10456 static struct dwo_unit *
10457 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10458 ULONGEST signature, int is_debug_types)
10459 {
10460 const struct dwp_hash_table *dwp_htab =
10461 is_debug_types ? dwp_file->tus : dwp_file->cus;
10462 bfd *dbfd = dwp_file->dbfd;
10463 uint32_t mask = dwp_htab->nr_slots - 1;
10464 uint32_t hash = signature & mask;
10465 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10466 unsigned int i;
10467 void **slot;
10468 struct dwo_unit find_dwo_cu;
10469
10470 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10471 find_dwo_cu.signature = signature;
10472 slot = htab_find_slot (is_debug_types
10473 ? dwp_file->loaded_tus
10474 : dwp_file->loaded_cus,
10475 &find_dwo_cu, INSERT);
10476
10477 if (*slot != NULL)
10478 return (struct dwo_unit *) *slot;
10479
10480 /* Use a for loop so that we don't loop forever on bad debug info. */
10481 for (i = 0; i < dwp_htab->nr_slots; ++i)
10482 {
10483 ULONGEST signature_in_table;
10484
10485 signature_in_table =
10486 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10487 if (signature_in_table == signature)
10488 {
10489 uint32_t unit_index =
10490 read_4_bytes (dbfd,
10491 dwp_htab->unit_table + hash * sizeof (uint32_t));
10492
10493 if (dwp_file->version == 1)
10494 {
10495 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10496 comp_dir, signature,
10497 is_debug_types);
10498 }
10499 else
10500 {
10501 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10502 comp_dir, signature,
10503 is_debug_types);
10504 }
10505 return (struct dwo_unit *) *slot;
10506 }
10507 if (signature_in_table == 0)
10508 return NULL;
10509 hash = (hash + hash2) & mask;
10510 }
10511
10512 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10513 " [in module %s]"),
10514 dwp_file->name);
10515 }
10516
10517 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10518 Open the file specified by FILE_NAME and hand it off to BFD for
10519 preliminary analysis. Return a newly initialized bfd *, which
10520 includes a canonicalized copy of FILE_NAME.
10521 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10522 SEARCH_CWD is true if the current directory is to be searched.
10523 It will be searched before debug-file-directory.
10524 If successful, the file is added to the bfd include table of the
10525 objfile's bfd (see gdb_bfd_record_inclusion).
10526 If unable to find/open the file, return NULL.
10527 NOTE: This function is derived from symfile_bfd_open. */
10528
10529 static gdb_bfd_ref_ptr
10530 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10531 {
10532 int desc, flags;
10533 char *absolute_name;
10534 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10535 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10536 to debug_file_directory. */
10537 char *search_path;
10538 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10539
10540 if (search_cwd)
10541 {
10542 if (*debug_file_directory != '\0')
10543 search_path = concat (".", dirname_separator_string,
10544 debug_file_directory, (char *) NULL);
10545 else
10546 search_path = xstrdup (".");
10547 }
10548 else
10549 search_path = xstrdup (debug_file_directory);
10550
10551 flags = OPF_RETURN_REALPATH;
10552 if (is_dwp)
10553 flags |= OPF_SEARCH_IN_PATH;
10554 desc = openp (search_path, flags, file_name,
10555 O_RDONLY | O_BINARY, &absolute_name);
10556 xfree (search_path);
10557 if (desc < 0)
10558 return NULL;
10559
10560 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name, gnutarget, desc));
10561 xfree (absolute_name);
10562 if (sym_bfd == NULL)
10563 return NULL;
10564 bfd_set_cacheable (sym_bfd.get (), 1);
10565
10566 if (!bfd_check_format (sym_bfd.get (), bfd_object))
10567 return NULL;
10568
10569 /* Success. Record the bfd as having been included by the objfile's bfd.
10570 This is important because things like demangled_names_hash lives in the
10571 objfile's per_bfd space and may have references to things like symbol
10572 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10573 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
10574
10575 return sym_bfd;
10576 }
10577
10578 /* Try to open DWO file FILE_NAME.
10579 COMP_DIR is the DW_AT_comp_dir attribute.
10580 The result is the bfd handle of the file.
10581 If there is a problem finding or opening the file, return NULL.
10582 Upon success, the canonicalized path of the file is stored in the bfd,
10583 same as symfile_bfd_open. */
10584
10585 static gdb_bfd_ref_ptr
10586 open_dwo_file (const char *file_name, const char *comp_dir)
10587 {
10588 if (IS_ABSOLUTE_PATH (file_name))
10589 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10590
10591 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10592
10593 if (comp_dir != NULL)
10594 {
10595 char *path_to_try = concat (comp_dir, SLASH_STRING,
10596 file_name, (char *) NULL);
10597
10598 /* NOTE: If comp_dir is a relative path, this will also try the
10599 search path, which seems useful. */
10600 gdb_bfd_ref_ptr abfd (try_open_dwop_file (path_to_try, 0 /*is_dwp*/,
10601 1 /*search_cwd*/));
10602 xfree (path_to_try);
10603 if (abfd != NULL)
10604 return abfd;
10605 }
10606
10607 /* That didn't work, try debug-file-directory, which, despite its name,
10608 is a list of paths. */
10609
10610 if (*debug_file_directory == '\0')
10611 return NULL;
10612
10613 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10614 }
10615
10616 /* This function is mapped across the sections and remembers the offset and
10617 size of each of the DWO debugging sections we are interested in. */
10618
10619 static void
10620 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10621 {
10622 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
10623 const struct dwop_section_names *names = &dwop_section_names;
10624
10625 if (section_is_p (sectp->name, &names->abbrev_dwo))
10626 {
10627 dwo_sections->abbrev.s.section = sectp;
10628 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10629 }
10630 else if (section_is_p (sectp->name, &names->info_dwo))
10631 {
10632 dwo_sections->info.s.section = sectp;
10633 dwo_sections->info.size = bfd_get_section_size (sectp);
10634 }
10635 else if (section_is_p (sectp->name, &names->line_dwo))
10636 {
10637 dwo_sections->line.s.section = sectp;
10638 dwo_sections->line.size = bfd_get_section_size (sectp);
10639 }
10640 else if (section_is_p (sectp->name, &names->loc_dwo))
10641 {
10642 dwo_sections->loc.s.section = sectp;
10643 dwo_sections->loc.size = bfd_get_section_size (sectp);
10644 }
10645 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10646 {
10647 dwo_sections->macinfo.s.section = sectp;
10648 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10649 }
10650 else if (section_is_p (sectp->name, &names->macro_dwo))
10651 {
10652 dwo_sections->macro.s.section = sectp;
10653 dwo_sections->macro.size = bfd_get_section_size (sectp);
10654 }
10655 else if (section_is_p (sectp->name, &names->str_dwo))
10656 {
10657 dwo_sections->str.s.section = sectp;
10658 dwo_sections->str.size = bfd_get_section_size (sectp);
10659 }
10660 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10661 {
10662 dwo_sections->str_offsets.s.section = sectp;
10663 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10664 }
10665 else if (section_is_p (sectp->name, &names->types_dwo))
10666 {
10667 struct dwarf2_section_info type_section;
10668
10669 memset (&type_section, 0, sizeof (type_section));
10670 type_section.s.section = sectp;
10671 type_section.size = bfd_get_section_size (sectp);
10672 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10673 &type_section);
10674 }
10675 }
10676
10677 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10678 by PER_CU. This is for the non-DWP case.
10679 The result is NULL if DWO_NAME can't be found. */
10680
10681 static struct dwo_file *
10682 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10683 const char *dwo_name, const char *comp_dir)
10684 {
10685 struct objfile *objfile = dwarf2_per_objfile->objfile;
10686 struct dwo_file *dwo_file;
10687 struct cleanup *cleanups;
10688
10689 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwo_name, comp_dir));
10690 if (dbfd == NULL)
10691 {
10692 if (dwarf_read_debug)
10693 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10694 return NULL;
10695 }
10696 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10697 dwo_file->dwo_name = dwo_name;
10698 dwo_file->comp_dir = comp_dir;
10699 dwo_file->dbfd = dbfd.release ();
10700
10701 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10702
10703 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
10704 &dwo_file->sections);
10705
10706 dwo_file->cu = create_dwo_cu (dwo_file);
10707
10708 create_debug_types_hash_table (dwo_file, dwo_file->sections.types,
10709 dwo_file->tus);
10710
10711 discard_cleanups (cleanups);
10712
10713 if (dwarf_read_debug)
10714 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10715
10716 return dwo_file;
10717 }
10718
10719 /* This function is mapped across the sections and remembers the offset and
10720 size of each of the DWP debugging sections common to version 1 and 2 that
10721 we are interested in. */
10722
10723 static void
10724 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10725 void *dwp_file_ptr)
10726 {
10727 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10728 const struct dwop_section_names *names = &dwop_section_names;
10729 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10730
10731 /* Record the ELF section number for later lookup: this is what the
10732 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10733 gdb_assert (elf_section_nr < dwp_file->num_sections);
10734 dwp_file->elf_sections[elf_section_nr] = sectp;
10735
10736 /* Look for specific sections that we need. */
10737 if (section_is_p (sectp->name, &names->str_dwo))
10738 {
10739 dwp_file->sections.str.s.section = sectp;
10740 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10741 }
10742 else if (section_is_p (sectp->name, &names->cu_index))
10743 {
10744 dwp_file->sections.cu_index.s.section = sectp;
10745 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10746 }
10747 else if (section_is_p (sectp->name, &names->tu_index))
10748 {
10749 dwp_file->sections.tu_index.s.section = sectp;
10750 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10751 }
10752 }
10753
10754 /* This function is mapped across the sections and remembers the offset and
10755 size of each of the DWP version 2 debugging sections that we are interested
10756 in. This is split into a separate function because we don't know if we
10757 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10758
10759 static void
10760 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10761 {
10762 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10763 const struct dwop_section_names *names = &dwop_section_names;
10764 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10765
10766 /* Record the ELF section number for later lookup: this is what the
10767 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10768 gdb_assert (elf_section_nr < dwp_file->num_sections);
10769 dwp_file->elf_sections[elf_section_nr] = sectp;
10770
10771 /* Look for specific sections that we need. */
10772 if (section_is_p (sectp->name, &names->abbrev_dwo))
10773 {
10774 dwp_file->sections.abbrev.s.section = sectp;
10775 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10776 }
10777 else if (section_is_p (sectp->name, &names->info_dwo))
10778 {
10779 dwp_file->sections.info.s.section = sectp;
10780 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10781 }
10782 else if (section_is_p (sectp->name, &names->line_dwo))
10783 {
10784 dwp_file->sections.line.s.section = sectp;
10785 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10786 }
10787 else if (section_is_p (sectp->name, &names->loc_dwo))
10788 {
10789 dwp_file->sections.loc.s.section = sectp;
10790 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10791 }
10792 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10793 {
10794 dwp_file->sections.macinfo.s.section = sectp;
10795 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10796 }
10797 else if (section_is_p (sectp->name, &names->macro_dwo))
10798 {
10799 dwp_file->sections.macro.s.section = sectp;
10800 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10801 }
10802 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10803 {
10804 dwp_file->sections.str_offsets.s.section = sectp;
10805 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10806 }
10807 else if (section_is_p (sectp->name, &names->types_dwo))
10808 {
10809 dwp_file->sections.types.s.section = sectp;
10810 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10811 }
10812 }
10813
10814 /* Hash function for dwp_file loaded CUs/TUs. */
10815
10816 static hashval_t
10817 hash_dwp_loaded_cutus (const void *item)
10818 {
10819 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
10820
10821 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10822 return dwo_unit->signature;
10823 }
10824
10825 /* Equality function for dwp_file loaded CUs/TUs. */
10826
10827 static int
10828 eq_dwp_loaded_cutus (const void *a, const void *b)
10829 {
10830 const struct dwo_unit *dua = (const struct dwo_unit *) a;
10831 const struct dwo_unit *dub = (const struct dwo_unit *) b;
10832
10833 return dua->signature == dub->signature;
10834 }
10835
10836 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10837
10838 static htab_t
10839 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10840 {
10841 return htab_create_alloc_ex (3,
10842 hash_dwp_loaded_cutus,
10843 eq_dwp_loaded_cutus,
10844 NULL,
10845 &objfile->objfile_obstack,
10846 hashtab_obstack_allocate,
10847 dummy_obstack_deallocate);
10848 }
10849
10850 /* Try to open DWP file FILE_NAME.
10851 The result is the bfd handle of the file.
10852 If there is a problem finding or opening the file, return NULL.
10853 Upon success, the canonicalized path of the file is stored in the bfd,
10854 same as symfile_bfd_open. */
10855
10856 static gdb_bfd_ref_ptr
10857 open_dwp_file (const char *file_name)
10858 {
10859 gdb_bfd_ref_ptr abfd (try_open_dwop_file (file_name, 1 /*is_dwp*/,
10860 1 /*search_cwd*/));
10861 if (abfd != NULL)
10862 return abfd;
10863
10864 /* Work around upstream bug 15652.
10865 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10866 [Whether that's a "bug" is debatable, but it is getting in our way.]
10867 We have no real idea where the dwp file is, because gdb's realpath-ing
10868 of the executable's path may have discarded the needed info.
10869 [IWBN if the dwp file name was recorded in the executable, akin to
10870 .gnu_debuglink, but that doesn't exist yet.]
10871 Strip the directory from FILE_NAME and search again. */
10872 if (*debug_file_directory != '\0')
10873 {
10874 /* Don't implicitly search the current directory here.
10875 If the user wants to search "." to handle this case,
10876 it must be added to debug-file-directory. */
10877 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10878 0 /*search_cwd*/);
10879 }
10880
10881 return NULL;
10882 }
10883
10884 /* Initialize the use of the DWP file for the current objfile.
10885 By convention the name of the DWP file is ${objfile}.dwp.
10886 The result is NULL if it can't be found. */
10887
10888 static struct dwp_file *
10889 open_and_init_dwp_file (void)
10890 {
10891 struct objfile *objfile = dwarf2_per_objfile->objfile;
10892 struct dwp_file *dwp_file;
10893 char *dwp_name;
10894 struct cleanup *cleanups = make_cleanup (null_cleanup, 0);
10895
10896 /* Try to find first .dwp for the binary file before any symbolic links
10897 resolving. */
10898
10899 /* If the objfile is a debug file, find the name of the real binary
10900 file and get the name of dwp file from there. */
10901 if (objfile->separate_debug_objfile_backlink != NULL)
10902 {
10903 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
10904 const char *backlink_basename = lbasename (backlink->original_name);
10905 char *debug_dirname = ldirname (objfile->original_name);
10906
10907 make_cleanup (xfree, debug_dirname);
10908 dwp_name = xstrprintf ("%s%s%s.dwp", debug_dirname,
10909 SLASH_STRING, backlink_basename);
10910 }
10911 else
10912 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10913 make_cleanup (xfree, dwp_name);
10914
10915 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwp_name));
10916 if (dbfd == NULL
10917 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10918 {
10919 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10920 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10921 make_cleanup (xfree, dwp_name);
10922 dbfd = open_dwp_file (dwp_name);
10923 }
10924
10925 if (dbfd == NULL)
10926 {
10927 if (dwarf_read_debug)
10928 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10929 do_cleanups (cleanups);
10930 return NULL;
10931 }
10932 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10933 dwp_file->name = bfd_get_filename (dbfd.get ());
10934 dwp_file->dbfd = dbfd.release ();
10935 do_cleanups (cleanups);
10936
10937 /* +1: section 0 is unused */
10938 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
10939 dwp_file->elf_sections =
10940 OBSTACK_CALLOC (&objfile->objfile_obstack,
10941 dwp_file->num_sections, asection *);
10942
10943 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_common_dwp_sections,
10944 dwp_file);
10945
10946 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10947
10948 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10949
10950 /* The DWP file version is stored in the hash table. Oh well. */
10951 if (dwp_file->cus->version != dwp_file->tus->version)
10952 {
10953 /* Technically speaking, we should try to limp along, but this is
10954 pretty bizarre. We use pulongest here because that's the established
10955 portability solution (e.g, we cannot use %u for uint32_t). */
10956 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10957 " TU version %s [in DWP file %s]"),
10958 pulongest (dwp_file->cus->version),
10959 pulongest (dwp_file->tus->version), dwp_name);
10960 }
10961 dwp_file->version = dwp_file->cus->version;
10962
10963 if (dwp_file->version == 2)
10964 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_v2_dwp_sections,
10965 dwp_file);
10966
10967 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10968 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10969
10970 if (dwarf_read_debug)
10971 {
10972 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10973 fprintf_unfiltered (gdb_stdlog,
10974 " %s CUs, %s TUs\n",
10975 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10976 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10977 }
10978
10979 return dwp_file;
10980 }
10981
10982 /* Wrapper around open_and_init_dwp_file, only open it once. */
10983
10984 static struct dwp_file *
10985 get_dwp_file (void)
10986 {
10987 if (! dwarf2_per_objfile->dwp_checked)
10988 {
10989 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10990 dwarf2_per_objfile->dwp_checked = 1;
10991 }
10992 return dwarf2_per_objfile->dwp_file;
10993 }
10994
10995 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10996 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10997 or in the DWP file for the objfile, referenced by THIS_UNIT.
10998 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10999 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
11000
11001 This is called, for example, when wanting to read a variable with a
11002 complex location. Therefore we don't want to do file i/o for every call.
11003 Therefore we don't want to look for a DWO file on every call.
11004 Therefore we first see if we've already seen SIGNATURE in a DWP file,
11005 then we check if we've already seen DWO_NAME, and only THEN do we check
11006 for a DWO file.
11007
11008 The result is a pointer to the dwo_unit object or NULL if we didn't find it
11009 (dwo_id mismatch or couldn't find the DWO/DWP file). */
11010
11011 static struct dwo_unit *
11012 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
11013 const char *dwo_name, const char *comp_dir,
11014 ULONGEST signature, int is_debug_types)
11015 {
11016 struct objfile *objfile = dwarf2_per_objfile->objfile;
11017 const char *kind = is_debug_types ? "TU" : "CU";
11018 void **dwo_file_slot;
11019 struct dwo_file *dwo_file;
11020 struct dwp_file *dwp_file;
11021
11022 /* First see if there's a DWP file.
11023 If we have a DWP file but didn't find the DWO inside it, don't
11024 look for the original DWO file. It makes gdb behave differently
11025 depending on whether one is debugging in the build tree. */
11026
11027 dwp_file = get_dwp_file ();
11028 if (dwp_file != NULL)
11029 {
11030 const struct dwp_hash_table *dwp_htab =
11031 is_debug_types ? dwp_file->tus : dwp_file->cus;
11032
11033 if (dwp_htab != NULL)
11034 {
11035 struct dwo_unit *dwo_cutu =
11036 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
11037 signature, is_debug_types);
11038
11039 if (dwo_cutu != NULL)
11040 {
11041 if (dwarf_read_debug)
11042 {
11043 fprintf_unfiltered (gdb_stdlog,
11044 "Virtual DWO %s %s found: @%s\n",
11045 kind, hex_string (signature),
11046 host_address_to_string (dwo_cutu));
11047 }
11048 return dwo_cutu;
11049 }
11050 }
11051 }
11052 else
11053 {
11054 /* No DWP file, look for the DWO file. */
11055
11056 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
11057 if (*dwo_file_slot == NULL)
11058 {
11059 /* Read in the file and build a table of the CUs/TUs it contains. */
11060 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
11061 }
11062 /* NOTE: This will be NULL if unable to open the file. */
11063 dwo_file = (struct dwo_file *) *dwo_file_slot;
11064
11065 if (dwo_file != NULL)
11066 {
11067 struct dwo_unit *dwo_cutu = NULL;
11068
11069 if (is_debug_types && dwo_file->tus)
11070 {
11071 struct dwo_unit find_dwo_cutu;
11072
11073 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11074 find_dwo_cutu.signature = signature;
11075 dwo_cutu
11076 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
11077 }
11078 else if (!is_debug_types && dwo_file->cu)
11079 {
11080 if (signature == dwo_file->cu->signature)
11081 dwo_cutu = dwo_file->cu;
11082 }
11083
11084 if (dwo_cutu != NULL)
11085 {
11086 if (dwarf_read_debug)
11087 {
11088 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11089 kind, dwo_name, hex_string (signature),
11090 host_address_to_string (dwo_cutu));
11091 }
11092 return dwo_cutu;
11093 }
11094 }
11095 }
11096
11097 /* We didn't find it. This could mean a dwo_id mismatch, or
11098 someone deleted the DWO/DWP file, or the search path isn't set up
11099 correctly to find the file. */
11100
11101 if (dwarf_read_debug)
11102 {
11103 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11104 kind, dwo_name, hex_string (signature));
11105 }
11106
11107 /* This is a warning and not a complaint because it can be caused by
11108 pilot error (e.g., user accidentally deleting the DWO). */
11109 {
11110 /* Print the name of the DWP file if we looked there, helps the user
11111 better diagnose the problem. */
11112 char *dwp_text = NULL;
11113 struct cleanup *cleanups;
11114
11115 if (dwp_file != NULL)
11116 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11117 cleanups = make_cleanup (xfree, dwp_text);
11118
11119 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11120 " [in module %s]"),
11121 kind, dwo_name, hex_string (signature),
11122 dwp_text != NULL ? dwp_text : "",
11123 this_unit->is_debug_types ? "TU" : "CU",
11124 this_unit->offset.sect_off, objfile_name (objfile));
11125
11126 do_cleanups (cleanups);
11127 }
11128 return NULL;
11129 }
11130
11131 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11132 See lookup_dwo_cutu_unit for details. */
11133
11134 static struct dwo_unit *
11135 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11136 const char *dwo_name, const char *comp_dir,
11137 ULONGEST signature)
11138 {
11139 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11140 }
11141
11142 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11143 See lookup_dwo_cutu_unit for details. */
11144
11145 static struct dwo_unit *
11146 lookup_dwo_type_unit (struct signatured_type *this_tu,
11147 const char *dwo_name, const char *comp_dir)
11148 {
11149 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11150 }
11151
11152 /* Traversal function for queue_and_load_all_dwo_tus. */
11153
11154 static int
11155 queue_and_load_dwo_tu (void **slot, void *info)
11156 {
11157 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11158 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11159 ULONGEST signature = dwo_unit->signature;
11160 struct signatured_type *sig_type =
11161 lookup_dwo_signatured_type (per_cu->cu, signature);
11162
11163 if (sig_type != NULL)
11164 {
11165 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11166
11167 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11168 a real dependency of PER_CU on SIG_TYPE. That is detected later
11169 while processing PER_CU. */
11170 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11171 load_full_type_unit (sig_cu);
11172 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11173 }
11174
11175 return 1;
11176 }
11177
11178 /* Queue all TUs contained in the DWO of PER_CU to be read in.
11179 The DWO may have the only definition of the type, though it may not be
11180 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11181 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11182
11183 static void
11184 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11185 {
11186 struct dwo_unit *dwo_unit;
11187 struct dwo_file *dwo_file;
11188
11189 gdb_assert (!per_cu->is_debug_types);
11190 gdb_assert (get_dwp_file () == NULL);
11191 gdb_assert (per_cu->cu != NULL);
11192
11193 dwo_unit = per_cu->cu->dwo_unit;
11194 gdb_assert (dwo_unit != NULL);
11195
11196 dwo_file = dwo_unit->dwo_file;
11197 if (dwo_file->tus != NULL)
11198 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11199 }
11200
11201 /* Free all resources associated with DWO_FILE.
11202 Close the DWO file and munmap the sections.
11203 All memory should be on the objfile obstack. */
11204
11205 static void
11206 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
11207 {
11208
11209 /* Note: dbfd is NULL for virtual DWO files. */
11210 gdb_bfd_unref (dwo_file->dbfd);
11211
11212 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11213 }
11214
11215 /* Wrapper for free_dwo_file for use in cleanups. */
11216
11217 static void
11218 free_dwo_file_cleanup (void *arg)
11219 {
11220 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11221 struct objfile *objfile = dwarf2_per_objfile->objfile;
11222
11223 free_dwo_file (dwo_file, objfile);
11224 }
11225
11226 /* Traversal function for free_dwo_files. */
11227
11228 static int
11229 free_dwo_file_from_slot (void **slot, void *info)
11230 {
11231 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11232 struct objfile *objfile = (struct objfile *) info;
11233
11234 free_dwo_file (dwo_file, objfile);
11235
11236 return 1;
11237 }
11238
11239 /* Free all resources associated with DWO_FILES. */
11240
11241 static void
11242 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11243 {
11244 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
11245 }
11246 \f
11247 /* Read in various DIEs. */
11248
11249 /* qsort helper for inherit_abstract_dies. */
11250
11251 static int
11252 unsigned_int_compar (const void *ap, const void *bp)
11253 {
11254 unsigned int a = *(unsigned int *) ap;
11255 unsigned int b = *(unsigned int *) bp;
11256
11257 return (a > b) - (b > a);
11258 }
11259
11260 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11261 Inherit only the children of the DW_AT_abstract_origin DIE not being
11262 already referenced by DW_AT_abstract_origin from the children of the
11263 current DIE. */
11264
11265 static void
11266 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11267 {
11268 struct die_info *child_die;
11269 unsigned die_children_count;
11270 /* CU offsets which were referenced by children of the current DIE. */
11271 sect_offset *offsets;
11272 sect_offset *offsets_end, *offsetp;
11273 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11274 struct die_info *origin_die;
11275 /* Iterator of the ORIGIN_DIE children. */
11276 struct die_info *origin_child_die;
11277 struct cleanup *cleanups;
11278 struct attribute *attr;
11279 struct dwarf2_cu *origin_cu;
11280 struct pending **origin_previous_list_in_scope;
11281
11282 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11283 if (!attr)
11284 return;
11285
11286 /* Note that following die references may follow to a die in a
11287 different cu. */
11288
11289 origin_cu = cu;
11290 origin_die = follow_die_ref (die, attr, &origin_cu);
11291
11292 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11293 symbols in. */
11294 origin_previous_list_in_scope = origin_cu->list_in_scope;
11295 origin_cu->list_in_scope = cu->list_in_scope;
11296
11297 if (die->tag != origin_die->tag
11298 && !(die->tag == DW_TAG_inlined_subroutine
11299 && origin_die->tag == DW_TAG_subprogram))
11300 complaint (&symfile_complaints,
11301 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11302 die->offset.sect_off, origin_die->offset.sect_off);
11303
11304 child_die = die->child;
11305 die_children_count = 0;
11306 while (child_die && child_die->tag)
11307 {
11308 child_die = sibling_die (child_die);
11309 die_children_count++;
11310 }
11311 offsets = XNEWVEC (sect_offset, die_children_count);
11312 cleanups = make_cleanup (xfree, offsets);
11313
11314 offsets_end = offsets;
11315 for (child_die = die->child;
11316 child_die && child_die->tag;
11317 child_die = sibling_die (child_die))
11318 {
11319 struct die_info *child_origin_die;
11320 struct dwarf2_cu *child_origin_cu;
11321
11322 /* We are trying to process concrete instance entries:
11323 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11324 it's not relevant to our analysis here. i.e. detecting DIEs that are
11325 present in the abstract instance but not referenced in the concrete
11326 one. */
11327 if (child_die->tag == DW_TAG_call_site
11328 || child_die->tag == DW_TAG_GNU_call_site)
11329 continue;
11330
11331 /* For each CHILD_DIE, find the corresponding child of
11332 ORIGIN_DIE. If there is more than one layer of
11333 DW_AT_abstract_origin, follow them all; there shouldn't be,
11334 but GCC versions at least through 4.4 generate this (GCC PR
11335 40573). */
11336 child_origin_die = child_die;
11337 child_origin_cu = cu;
11338 while (1)
11339 {
11340 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11341 child_origin_cu);
11342 if (attr == NULL)
11343 break;
11344 child_origin_die = follow_die_ref (child_origin_die, attr,
11345 &child_origin_cu);
11346 }
11347
11348 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11349 counterpart may exist. */
11350 if (child_origin_die != child_die)
11351 {
11352 if (child_die->tag != child_origin_die->tag
11353 && !(child_die->tag == DW_TAG_inlined_subroutine
11354 && child_origin_die->tag == DW_TAG_subprogram))
11355 complaint (&symfile_complaints,
11356 _("Child DIE 0x%x and its abstract origin 0x%x have "
11357 "different tags"), child_die->offset.sect_off,
11358 child_origin_die->offset.sect_off);
11359 if (child_origin_die->parent != origin_die)
11360 complaint (&symfile_complaints,
11361 _("Child DIE 0x%x and its abstract origin 0x%x have "
11362 "different parents"), child_die->offset.sect_off,
11363 child_origin_die->offset.sect_off);
11364 else
11365 *offsets_end++ = child_origin_die->offset;
11366 }
11367 }
11368 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11369 unsigned_int_compar);
11370 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11371 if (offsetp[-1].sect_off == offsetp->sect_off)
11372 complaint (&symfile_complaints,
11373 _("Multiple children of DIE 0x%x refer "
11374 "to DIE 0x%x as their abstract origin"),
11375 die->offset.sect_off, offsetp->sect_off);
11376
11377 offsetp = offsets;
11378 origin_child_die = origin_die->child;
11379 while (origin_child_die && origin_child_die->tag)
11380 {
11381 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11382 while (offsetp < offsets_end
11383 && offsetp->sect_off < origin_child_die->offset.sect_off)
11384 offsetp++;
11385 if (offsetp >= offsets_end
11386 || offsetp->sect_off > origin_child_die->offset.sect_off)
11387 {
11388 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11389 Check whether we're already processing ORIGIN_CHILD_DIE.
11390 This can happen with mutually referenced abstract_origins.
11391 PR 16581. */
11392 if (!origin_child_die->in_process)
11393 process_die (origin_child_die, origin_cu);
11394 }
11395 origin_child_die = sibling_die (origin_child_die);
11396 }
11397 origin_cu->list_in_scope = origin_previous_list_in_scope;
11398
11399 do_cleanups (cleanups);
11400 }
11401
11402 static void
11403 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11404 {
11405 struct objfile *objfile = cu->objfile;
11406 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11407 struct context_stack *newobj;
11408 CORE_ADDR lowpc;
11409 CORE_ADDR highpc;
11410 struct die_info *child_die;
11411 struct attribute *attr, *call_line, *call_file;
11412 const char *name;
11413 CORE_ADDR baseaddr;
11414 struct block *block;
11415 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11416 VEC (symbolp) *template_args = NULL;
11417 struct template_symbol *templ_func = NULL;
11418
11419 if (inlined_func)
11420 {
11421 /* If we do not have call site information, we can't show the
11422 caller of this inlined function. That's too confusing, so
11423 only use the scope for local variables. */
11424 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11425 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11426 if (call_line == NULL || call_file == NULL)
11427 {
11428 read_lexical_block_scope (die, cu);
11429 return;
11430 }
11431 }
11432
11433 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11434
11435 name = dwarf2_name (die, cu);
11436
11437 /* Ignore functions with missing or empty names. These are actually
11438 illegal according to the DWARF standard. */
11439 if (name == NULL)
11440 {
11441 complaint (&symfile_complaints,
11442 _("missing name for subprogram DIE at %d"),
11443 die->offset.sect_off);
11444 return;
11445 }
11446
11447 /* Ignore functions with missing or invalid low and high pc attributes. */
11448 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
11449 <= PC_BOUNDS_INVALID)
11450 {
11451 attr = dwarf2_attr (die, DW_AT_external, cu);
11452 if (!attr || !DW_UNSND (attr))
11453 complaint (&symfile_complaints,
11454 _("cannot get low and high bounds "
11455 "for subprogram DIE at %d"),
11456 die->offset.sect_off);
11457 return;
11458 }
11459
11460 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11461 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11462
11463 /* If we have any template arguments, then we must allocate a
11464 different sort of symbol. */
11465 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11466 {
11467 if (child_die->tag == DW_TAG_template_type_param
11468 || child_die->tag == DW_TAG_template_value_param)
11469 {
11470 templ_func = allocate_template_symbol (objfile);
11471 templ_func->base.is_cplus_template_function = 1;
11472 break;
11473 }
11474 }
11475
11476 newobj = push_context (0, lowpc);
11477 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
11478 (struct symbol *) templ_func);
11479
11480 /* If there is a location expression for DW_AT_frame_base, record
11481 it. */
11482 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11483 if (attr)
11484 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
11485
11486 /* If there is a location for the static link, record it. */
11487 newobj->static_link = NULL;
11488 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11489 if (attr)
11490 {
11491 newobj->static_link
11492 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
11493 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11494 }
11495
11496 cu->list_in_scope = &local_symbols;
11497
11498 if (die->child != NULL)
11499 {
11500 child_die = die->child;
11501 while (child_die && child_die->tag)
11502 {
11503 if (child_die->tag == DW_TAG_template_type_param
11504 || child_die->tag == DW_TAG_template_value_param)
11505 {
11506 struct symbol *arg = new_symbol (child_die, NULL, cu);
11507
11508 if (arg != NULL)
11509 VEC_safe_push (symbolp, template_args, arg);
11510 }
11511 else
11512 process_die (child_die, cu);
11513 child_die = sibling_die (child_die);
11514 }
11515 }
11516
11517 inherit_abstract_dies (die, cu);
11518
11519 /* If we have a DW_AT_specification, we might need to import using
11520 directives from the context of the specification DIE. See the
11521 comment in determine_prefix. */
11522 if (cu->language == language_cplus
11523 && dwarf2_attr (die, DW_AT_specification, cu))
11524 {
11525 struct dwarf2_cu *spec_cu = cu;
11526 struct die_info *spec_die = die_specification (die, &spec_cu);
11527
11528 while (spec_die)
11529 {
11530 child_die = spec_die->child;
11531 while (child_die && child_die->tag)
11532 {
11533 if (child_die->tag == DW_TAG_imported_module)
11534 process_die (child_die, spec_cu);
11535 child_die = sibling_die (child_die);
11536 }
11537
11538 /* In some cases, GCC generates specification DIEs that
11539 themselves contain DW_AT_specification attributes. */
11540 spec_die = die_specification (spec_die, &spec_cu);
11541 }
11542 }
11543
11544 newobj = pop_context ();
11545 /* Make a block for the local symbols within. */
11546 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
11547 newobj->static_link, lowpc, highpc);
11548
11549 /* For C++, set the block's scope. */
11550 if ((cu->language == language_cplus
11551 || cu->language == language_fortran
11552 || cu->language == language_d
11553 || cu->language == language_rust)
11554 && cu->processing_has_namespace_info)
11555 block_set_scope (block, determine_prefix (die, cu),
11556 &objfile->objfile_obstack);
11557
11558 /* If we have address ranges, record them. */
11559 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11560
11561 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
11562
11563 /* Attach template arguments to function. */
11564 if (! VEC_empty (symbolp, template_args))
11565 {
11566 gdb_assert (templ_func != NULL);
11567
11568 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11569 templ_func->template_arguments
11570 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11571 templ_func->n_template_arguments);
11572 memcpy (templ_func->template_arguments,
11573 VEC_address (symbolp, template_args),
11574 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11575 VEC_free (symbolp, template_args);
11576 }
11577
11578 /* In C++, we can have functions nested inside functions (e.g., when
11579 a function declares a class that has methods). This means that
11580 when we finish processing a function scope, we may need to go
11581 back to building a containing block's symbol lists. */
11582 local_symbols = newobj->locals;
11583 local_using_directives = newobj->local_using_directives;
11584
11585 /* If we've finished processing a top-level function, subsequent
11586 symbols go in the file symbol list. */
11587 if (outermost_context_p ())
11588 cu->list_in_scope = &file_symbols;
11589 }
11590
11591 /* Process all the DIES contained within a lexical block scope. Start
11592 a new scope, process the dies, and then close the scope. */
11593
11594 static void
11595 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11596 {
11597 struct objfile *objfile = cu->objfile;
11598 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11599 struct context_stack *newobj;
11600 CORE_ADDR lowpc, highpc;
11601 struct die_info *child_die;
11602 CORE_ADDR baseaddr;
11603
11604 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11605
11606 /* Ignore blocks with missing or invalid low and high pc attributes. */
11607 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11608 as multiple lexical blocks? Handling children in a sane way would
11609 be nasty. Might be easier to properly extend generic blocks to
11610 describe ranges. */
11611 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11612 {
11613 case PC_BOUNDS_NOT_PRESENT:
11614 /* DW_TAG_lexical_block has no attributes, process its children as if
11615 there was no wrapping by that DW_TAG_lexical_block.
11616 GCC does no longer produces such DWARF since GCC r224161. */
11617 for (child_die = die->child;
11618 child_die != NULL && child_die->tag;
11619 child_die = sibling_die (child_die))
11620 process_die (child_die, cu);
11621 return;
11622 case PC_BOUNDS_INVALID:
11623 return;
11624 }
11625 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11626 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11627
11628 push_context (0, lowpc);
11629 if (die->child != NULL)
11630 {
11631 child_die = die->child;
11632 while (child_die && child_die->tag)
11633 {
11634 process_die (child_die, cu);
11635 child_die = sibling_die (child_die);
11636 }
11637 }
11638 inherit_abstract_dies (die, cu);
11639 newobj = pop_context ();
11640
11641 if (local_symbols != NULL || local_using_directives != NULL)
11642 {
11643 struct block *block
11644 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
11645 newobj->start_addr, highpc);
11646
11647 /* Note that recording ranges after traversing children, as we
11648 do here, means that recording a parent's ranges entails
11649 walking across all its children's ranges as they appear in
11650 the address map, which is quadratic behavior.
11651
11652 It would be nicer to record the parent's ranges before
11653 traversing its children, simply overriding whatever you find
11654 there. But since we don't even decide whether to create a
11655 block until after we've traversed its children, that's hard
11656 to do. */
11657 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11658 }
11659 local_symbols = newobj->locals;
11660 local_using_directives = newobj->local_using_directives;
11661 }
11662
11663 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
11664
11665 static void
11666 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11667 {
11668 struct objfile *objfile = cu->objfile;
11669 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11670 CORE_ADDR pc, baseaddr;
11671 struct attribute *attr;
11672 struct call_site *call_site, call_site_local;
11673 void **slot;
11674 int nparams;
11675 struct die_info *child_die;
11676
11677 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11678
11679 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
11680 if (attr == NULL)
11681 {
11682 /* This was a pre-DWARF-5 GNU extension alias
11683 for DW_AT_call_return_pc. */
11684 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11685 }
11686 if (!attr)
11687 {
11688 complaint (&symfile_complaints,
11689 _("missing DW_AT_call_return_pc for DW_TAG_call_site "
11690 "DIE 0x%x [in module %s]"),
11691 die->offset.sect_off, objfile_name (objfile));
11692 return;
11693 }
11694 pc = attr_value_as_address (attr) + baseaddr;
11695 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
11696
11697 if (cu->call_site_htab == NULL)
11698 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11699 NULL, &objfile->objfile_obstack,
11700 hashtab_obstack_allocate, NULL);
11701 call_site_local.pc = pc;
11702 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11703 if (*slot != NULL)
11704 {
11705 complaint (&symfile_complaints,
11706 _("Duplicate PC %s for DW_TAG_call_site "
11707 "DIE 0x%x [in module %s]"),
11708 paddress (gdbarch, pc), die->offset.sect_off,
11709 objfile_name (objfile));
11710 return;
11711 }
11712
11713 /* Count parameters at the caller. */
11714
11715 nparams = 0;
11716 for (child_die = die->child; child_die && child_die->tag;
11717 child_die = sibling_die (child_die))
11718 {
11719 if (child_die->tag != DW_TAG_call_site_parameter
11720 && child_die->tag != DW_TAG_GNU_call_site_parameter)
11721 {
11722 complaint (&symfile_complaints,
11723 _("Tag %d is not DW_TAG_call_site_parameter in "
11724 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
11725 child_die->tag, child_die->offset.sect_off,
11726 objfile_name (objfile));
11727 continue;
11728 }
11729
11730 nparams++;
11731 }
11732
11733 call_site
11734 = ((struct call_site *)
11735 obstack_alloc (&objfile->objfile_obstack,
11736 sizeof (*call_site)
11737 + (sizeof (*call_site->parameter) * (nparams - 1))));
11738 *slot = call_site;
11739 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11740 call_site->pc = pc;
11741
11742 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
11743 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11744 {
11745 struct die_info *func_die;
11746
11747 /* Skip also over DW_TAG_inlined_subroutine. */
11748 for (func_die = die->parent;
11749 func_die && func_die->tag != DW_TAG_subprogram
11750 && func_die->tag != DW_TAG_subroutine_type;
11751 func_die = func_die->parent);
11752
11753 /* DW_AT_call_all_calls is a superset
11754 of DW_AT_call_all_tail_calls. */
11755 if (func_die
11756 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
11757 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11758 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
11759 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11760 {
11761 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11762 not complete. But keep CALL_SITE for look ups via call_site_htab,
11763 both the initial caller containing the real return address PC and
11764 the final callee containing the current PC of a chain of tail
11765 calls do not need to have the tail call list complete. But any
11766 function candidate for a virtual tail call frame searched via
11767 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11768 determined unambiguously. */
11769 }
11770 else
11771 {
11772 struct type *func_type = NULL;
11773
11774 if (func_die)
11775 func_type = get_die_type (func_die, cu);
11776 if (func_type != NULL)
11777 {
11778 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11779
11780 /* Enlist this call site to the function. */
11781 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11782 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11783 }
11784 else
11785 complaint (&symfile_complaints,
11786 _("Cannot find function owning DW_TAG_call_site "
11787 "DIE 0x%x [in module %s]"),
11788 die->offset.sect_off, objfile_name (objfile));
11789 }
11790 }
11791
11792 attr = dwarf2_attr (die, DW_AT_call_target, cu);
11793 if (attr == NULL)
11794 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11795 if (attr == NULL)
11796 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
11797 if (attr == NULL)
11798 {
11799 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
11800 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11801 }
11802 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11803 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11804 /* Keep NULL DWARF_BLOCK. */;
11805 else if (attr_form_is_block (attr))
11806 {
11807 struct dwarf2_locexpr_baton *dlbaton;
11808
11809 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
11810 dlbaton->data = DW_BLOCK (attr)->data;
11811 dlbaton->size = DW_BLOCK (attr)->size;
11812 dlbaton->per_cu = cu->per_cu;
11813
11814 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11815 }
11816 else if (attr_form_is_ref (attr))
11817 {
11818 struct dwarf2_cu *target_cu = cu;
11819 struct die_info *target_die;
11820
11821 target_die = follow_die_ref (die, attr, &target_cu);
11822 gdb_assert (target_cu->objfile == objfile);
11823 if (die_is_declaration (target_die, target_cu))
11824 {
11825 const char *target_physname;
11826
11827 /* Prefer the mangled name; otherwise compute the demangled one. */
11828 target_physname = dwarf2_string_attr (target_die,
11829 DW_AT_linkage_name,
11830 target_cu);
11831 if (target_physname == NULL)
11832 target_physname = dwarf2_string_attr (target_die,
11833 DW_AT_MIPS_linkage_name,
11834 target_cu);
11835 if (target_physname == NULL)
11836 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11837 if (target_physname == NULL)
11838 complaint (&symfile_complaints,
11839 _("DW_AT_call_target target DIE has invalid "
11840 "physname, for referencing DIE 0x%x [in module %s]"),
11841 die->offset.sect_off, objfile_name (objfile));
11842 else
11843 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11844 }
11845 else
11846 {
11847 CORE_ADDR lowpc;
11848
11849 /* DW_AT_entry_pc should be preferred. */
11850 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
11851 <= PC_BOUNDS_INVALID)
11852 complaint (&symfile_complaints,
11853 _("DW_AT_call_target target DIE has invalid "
11854 "low pc, for referencing DIE 0x%x [in module %s]"),
11855 die->offset.sect_off, objfile_name (objfile));
11856 else
11857 {
11858 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11859 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11860 }
11861 }
11862 }
11863 else
11864 complaint (&symfile_complaints,
11865 _("DW_TAG_call_site DW_AT_call_target is neither "
11866 "block nor reference, for DIE 0x%x [in module %s]"),
11867 die->offset.sect_off, objfile_name (objfile));
11868
11869 call_site->per_cu = cu->per_cu;
11870
11871 for (child_die = die->child;
11872 child_die && child_die->tag;
11873 child_die = sibling_die (child_die))
11874 {
11875 struct call_site_parameter *parameter;
11876 struct attribute *loc, *origin;
11877
11878 if (child_die->tag != DW_TAG_call_site_parameter
11879 && child_die->tag != DW_TAG_GNU_call_site_parameter)
11880 {
11881 /* Already printed the complaint above. */
11882 continue;
11883 }
11884
11885 gdb_assert (call_site->parameter_count < nparams);
11886 parameter = &call_site->parameter[call_site->parameter_count];
11887
11888 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11889 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11890 register is contained in DW_AT_call_value. */
11891
11892 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11893 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
11894 if (origin == NULL)
11895 {
11896 /* This was a pre-DWARF-5 GNU extension alias
11897 for DW_AT_call_parameter. */
11898 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11899 }
11900 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11901 {
11902 sect_offset offset;
11903
11904 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11905 offset = dwarf2_get_ref_die_offset (origin);
11906 if (!offset_in_cu_p (&cu->header, offset))
11907 {
11908 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11909 binding can be done only inside one CU. Such referenced DIE
11910 therefore cannot be even moved to DW_TAG_partial_unit. */
11911 complaint (&symfile_complaints,
11912 _("DW_AT_call_parameter offset is not in CU for "
11913 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
11914 child_die->offset.sect_off, objfile_name (objfile));
11915 continue;
11916 }
11917 parameter->u.param_offset.cu_off = (offset.sect_off
11918 - cu->header.offset.sect_off);
11919 }
11920 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11921 {
11922 complaint (&symfile_complaints,
11923 _("No DW_FORM_block* DW_AT_location for "
11924 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
11925 child_die->offset.sect_off, objfile_name (objfile));
11926 continue;
11927 }
11928 else
11929 {
11930 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11931 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11932 if (parameter->u.dwarf_reg != -1)
11933 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11934 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11935 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11936 &parameter->u.fb_offset))
11937 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11938 else
11939 {
11940 complaint (&symfile_complaints,
11941 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11942 "for DW_FORM_block* DW_AT_location is supported for "
11943 "DW_TAG_call_site child DIE 0x%x "
11944 "[in module %s]"),
11945 child_die->offset.sect_off, objfile_name (objfile));
11946 continue;
11947 }
11948 }
11949
11950 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
11951 if (attr == NULL)
11952 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11953 if (!attr_form_is_block (attr))
11954 {
11955 complaint (&symfile_complaints,
11956 _("No DW_FORM_block* DW_AT_call_value for "
11957 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
11958 child_die->offset.sect_off, objfile_name (objfile));
11959 continue;
11960 }
11961 parameter->value = DW_BLOCK (attr)->data;
11962 parameter->value_size = DW_BLOCK (attr)->size;
11963
11964 /* Parameters are not pre-cleared by memset above. */
11965 parameter->data_value = NULL;
11966 parameter->data_value_size = 0;
11967 call_site->parameter_count++;
11968
11969 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
11970 if (attr == NULL)
11971 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11972 if (attr)
11973 {
11974 if (!attr_form_is_block (attr))
11975 complaint (&symfile_complaints,
11976 _("No DW_FORM_block* DW_AT_call_data_value for "
11977 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
11978 child_die->offset.sect_off, objfile_name (objfile));
11979 else
11980 {
11981 parameter->data_value = DW_BLOCK (attr)->data;
11982 parameter->data_value_size = DW_BLOCK (attr)->size;
11983 }
11984 }
11985 }
11986 }
11987
11988 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
11989 reading .debug_rnglists.
11990 Callback's type should be:
11991 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
11992 Return true if the attributes are present and valid, otherwise,
11993 return false. */
11994
11995 template <typename Callback>
11996 static bool
11997 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
11998 Callback &&callback)
11999 {
12000 struct objfile *objfile = cu->objfile;
12001 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12002 struct comp_unit_head *cu_header = &cu->header;
12003 bfd *obfd = objfile->obfd;
12004 unsigned int addr_size = cu_header->addr_size;
12005 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12006 /* Base address selection entry. */
12007 CORE_ADDR base;
12008 int found_base;
12009 unsigned int dummy;
12010 const gdb_byte *buffer;
12011 CORE_ADDR low = 0;
12012 CORE_ADDR high = 0;
12013 CORE_ADDR baseaddr;
12014 bool overflow = false;
12015
12016 found_base = cu->base_known;
12017 base = cu->base_address;
12018
12019 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
12020 if (offset >= dwarf2_per_objfile->rnglists.size)
12021 {
12022 complaint (&symfile_complaints,
12023 _("Offset %d out of bounds for DW_AT_ranges attribute"),
12024 offset);
12025 return false;
12026 }
12027 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
12028
12029 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12030
12031 while (1)
12032 {
12033 /* Initialize it due to a false compiler warning. */
12034 CORE_ADDR range_beginning = 0, range_end = 0;
12035 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
12036 + dwarf2_per_objfile->rnglists.size);
12037 unsigned int bytes_read;
12038
12039 if (buffer == buf_end)
12040 {
12041 overflow = true;
12042 break;
12043 }
12044 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
12045 switch (rlet)
12046 {
12047 case DW_RLE_end_of_list:
12048 break;
12049 case DW_RLE_base_address:
12050 if (buffer + cu->header.addr_size > buf_end)
12051 {
12052 overflow = true;
12053 break;
12054 }
12055 base = read_address (obfd, buffer, cu, &bytes_read);
12056 found_base = 1;
12057 buffer += bytes_read;
12058 break;
12059 case DW_RLE_start_length:
12060 if (buffer + cu->header.addr_size > buf_end)
12061 {
12062 overflow = true;
12063 break;
12064 }
12065 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12066 buffer += bytes_read;
12067 range_end = (range_beginning
12068 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
12069 buffer += bytes_read;
12070 if (buffer > buf_end)
12071 {
12072 overflow = true;
12073 break;
12074 }
12075 break;
12076 case DW_RLE_offset_pair:
12077 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12078 buffer += bytes_read;
12079 if (buffer > buf_end)
12080 {
12081 overflow = true;
12082 break;
12083 }
12084 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12085 buffer += bytes_read;
12086 if (buffer > buf_end)
12087 {
12088 overflow = true;
12089 break;
12090 }
12091 break;
12092 case DW_RLE_start_end:
12093 if (buffer + 2 * cu->header.addr_size > buf_end)
12094 {
12095 overflow = true;
12096 break;
12097 }
12098 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12099 buffer += bytes_read;
12100 range_end = read_address (obfd, buffer, cu, &bytes_read);
12101 buffer += bytes_read;
12102 break;
12103 default:
12104 complaint (&symfile_complaints,
12105 _("Invalid .debug_rnglists data (no base address)"));
12106 return false;
12107 }
12108 if (rlet == DW_RLE_end_of_list || overflow)
12109 break;
12110 if (rlet == DW_RLE_base_address)
12111 continue;
12112
12113 if (!found_base)
12114 {
12115 /* We have no valid base address for the ranges
12116 data. */
12117 complaint (&symfile_complaints,
12118 _("Invalid .debug_rnglists data (no base address)"));
12119 return false;
12120 }
12121
12122 if (range_beginning > range_end)
12123 {
12124 /* Inverted range entries are invalid. */
12125 complaint (&symfile_complaints,
12126 _("Invalid .debug_rnglists data (inverted range)"));
12127 return false;
12128 }
12129
12130 /* Empty range entries have no effect. */
12131 if (range_beginning == range_end)
12132 continue;
12133
12134 range_beginning += base;
12135 range_end += base;
12136
12137 /* A not-uncommon case of bad debug info.
12138 Don't pollute the addrmap with bad data. */
12139 if (range_beginning + baseaddr == 0
12140 && !dwarf2_per_objfile->has_section_at_zero)
12141 {
12142 complaint (&symfile_complaints,
12143 _(".debug_rnglists entry has start address of zero"
12144 " [in module %s]"), objfile_name (objfile));
12145 continue;
12146 }
12147
12148 callback (range_beginning, range_end);
12149 }
12150
12151 if (overflow)
12152 {
12153 complaint (&symfile_complaints,
12154 _("Offset %d is not terminated "
12155 "for DW_AT_ranges attribute"),
12156 offset);
12157 return false;
12158 }
12159
12160 return true;
12161 }
12162
12163 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
12164 Callback's type should be:
12165 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
12166 Return 1 if the attributes are present and valid, otherwise, return 0. */
12167
12168 template <typename Callback>
12169 static int
12170 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
12171 Callback &&callback)
12172 {
12173 struct objfile *objfile = cu->objfile;
12174 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12175 struct comp_unit_head *cu_header = &cu->header;
12176 bfd *obfd = objfile->obfd;
12177 unsigned int addr_size = cu_header->addr_size;
12178 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12179 /* Base address selection entry. */
12180 CORE_ADDR base;
12181 int found_base;
12182 unsigned int dummy;
12183 const gdb_byte *buffer;
12184 CORE_ADDR baseaddr;
12185
12186 if (cu_header->version >= 5)
12187 return dwarf2_rnglists_process (offset, cu, callback);
12188
12189 found_base = cu->base_known;
12190 base = cu->base_address;
12191
12192 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12193 if (offset >= dwarf2_per_objfile->ranges.size)
12194 {
12195 complaint (&symfile_complaints,
12196 _("Offset %d out of bounds for DW_AT_ranges attribute"),
12197 offset);
12198 return 0;
12199 }
12200 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12201
12202 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12203
12204 while (1)
12205 {
12206 CORE_ADDR range_beginning, range_end;
12207
12208 range_beginning = read_address (obfd, buffer, cu, &dummy);
12209 buffer += addr_size;
12210 range_end = read_address (obfd, buffer, cu, &dummy);
12211 buffer += addr_size;
12212 offset += 2 * addr_size;
12213
12214 /* An end of list marker is a pair of zero addresses. */
12215 if (range_beginning == 0 && range_end == 0)
12216 /* Found the end of list entry. */
12217 break;
12218
12219 /* Each base address selection entry is a pair of 2 values.
12220 The first is the largest possible address, the second is
12221 the base address. Check for a base address here. */
12222 if ((range_beginning & mask) == mask)
12223 {
12224 /* If we found the largest possible address, then we already
12225 have the base address in range_end. */
12226 base = range_end;
12227 found_base = 1;
12228 continue;
12229 }
12230
12231 if (!found_base)
12232 {
12233 /* We have no valid base address for the ranges
12234 data. */
12235 complaint (&symfile_complaints,
12236 _("Invalid .debug_ranges data (no base address)"));
12237 return 0;
12238 }
12239
12240 if (range_beginning > range_end)
12241 {
12242 /* Inverted range entries are invalid. */
12243 complaint (&symfile_complaints,
12244 _("Invalid .debug_ranges data (inverted range)"));
12245 return 0;
12246 }
12247
12248 /* Empty range entries have no effect. */
12249 if (range_beginning == range_end)
12250 continue;
12251
12252 range_beginning += base;
12253 range_end += base;
12254
12255 /* A not-uncommon case of bad debug info.
12256 Don't pollute the addrmap with bad data. */
12257 if (range_beginning + baseaddr == 0
12258 && !dwarf2_per_objfile->has_section_at_zero)
12259 {
12260 complaint (&symfile_complaints,
12261 _(".debug_ranges entry has start address of zero"
12262 " [in module %s]"), objfile_name (objfile));
12263 continue;
12264 }
12265
12266 callback (range_beginning, range_end);
12267 }
12268
12269 return 1;
12270 }
12271
12272 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
12273 Return 1 if the attributes are present and valid, otherwise, return 0.
12274 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
12275
12276 static int
12277 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
12278 CORE_ADDR *high_return, struct dwarf2_cu *cu,
12279 struct partial_symtab *ranges_pst)
12280 {
12281 struct objfile *objfile = cu->objfile;
12282 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12283 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
12284 SECT_OFF_TEXT (objfile));
12285 int low_set = 0;
12286 CORE_ADDR low = 0;
12287 CORE_ADDR high = 0;
12288 int retval;
12289
12290 retval = dwarf2_ranges_process (offset, cu,
12291 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
12292 {
12293 if (ranges_pst != NULL)
12294 {
12295 CORE_ADDR lowpc;
12296 CORE_ADDR highpc;
12297
12298 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12299 range_beginning + baseaddr);
12300 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12301 range_end + baseaddr);
12302 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
12303 ranges_pst);
12304 }
12305
12306 /* FIXME: This is recording everything as a low-high
12307 segment of consecutive addresses. We should have a
12308 data structure for discontiguous block ranges
12309 instead. */
12310 if (! low_set)
12311 {
12312 low = range_beginning;
12313 high = range_end;
12314 low_set = 1;
12315 }
12316 else
12317 {
12318 if (range_beginning < low)
12319 low = range_beginning;
12320 if (range_end > high)
12321 high = range_end;
12322 }
12323 });
12324 if (!retval)
12325 return 0;
12326
12327 if (! low_set)
12328 /* If the first entry is an end-of-list marker, the range
12329 describes an empty scope, i.e. no instructions. */
12330 return 0;
12331
12332 if (low_return)
12333 *low_return = low;
12334 if (high_return)
12335 *high_return = high;
12336 return 1;
12337 }
12338
12339 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
12340 definition for the return value. *LOWPC and *HIGHPC are set iff
12341 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
12342
12343 static enum pc_bounds_kind
12344 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
12345 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12346 struct partial_symtab *pst)
12347 {
12348 struct attribute *attr;
12349 struct attribute *attr_high;
12350 CORE_ADDR low = 0;
12351 CORE_ADDR high = 0;
12352 enum pc_bounds_kind ret;
12353
12354 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12355 if (attr_high)
12356 {
12357 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12358 if (attr)
12359 {
12360 low = attr_value_as_address (attr);
12361 high = attr_value_as_address (attr_high);
12362 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12363 high += low;
12364 }
12365 else
12366 /* Found high w/o low attribute. */
12367 return PC_BOUNDS_INVALID;
12368
12369 /* Found consecutive range of addresses. */
12370 ret = PC_BOUNDS_HIGH_LOW;
12371 }
12372 else
12373 {
12374 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12375 if (attr != NULL)
12376 {
12377 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12378 We take advantage of the fact that DW_AT_ranges does not appear
12379 in DW_TAG_compile_unit of DWO files. */
12380 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12381 unsigned int ranges_offset = (DW_UNSND (attr)
12382 + (need_ranges_base
12383 ? cu->ranges_base
12384 : 0));
12385
12386 /* Value of the DW_AT_ranges attribute is the offset in the
12387 .debug_ranges section. */
12388 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
12389 return PC_BOUNDS_INVALID;
12390 /* Found discontinuous range of addresses. */
12391 ret = PC_BOUNDS_RANGES;
12392 }
12393 else
12394 return PC_BOUNDS_NOT_PRESENT;
12395 }
12396
12397 /* read_partial_die has also the strict LOW < HIGH requirement. */
12398 if (high <= low)
12399 return PC_BOUNDS_INVALID;
12400
12401 /* When using the GNU linker, .gnu.linkonce. sections are used to
12402 eliminate duplicate copies of functions and vtables and such.
12403 The linker will arbitrarily choose one and discard the others.
12404 The AT_*_pc values for such functions refer to local labels in
12405 these sections. If the section from that file was discarded, the
12406 labels are not in the output, so the relocs get a value of 0.
12407 If this is a discarded function, mark the pc bounds as invalid,
12408 so that GDB will ignore it. */
12409 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
12410 return PC_BOUNDS_INVALID;
12411
12412 *lowpc = low;
12413 if (highpc)
12414 *highpc = high;
12415 return ret;
12416 }
12417
12418 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
12419 its low and high PC addresses. Do nothing if these addresses could not
12420 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12421 and HIGHPC to the high address if greater than HIGHPC. */
12422
12423 static void
12424 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12425 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12426 struct dwarf2_cu *cu)
12427 {
12428 CORE_ADDR low, high;
12429 struct die_info *child = die->child;
12430
12431 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
12432 {
12433 *lowpc = std::min (*lowpc, low);
12434 *highpc = std::max (*highpc, high);
12435 }
12436
12437 /* If the language does not allow nested subprograms (either inside
12438 subprograms or lexical blocks), we're done. */
12439 if (cu->language != language_ada)
12440 return;
12441
12442 /* Check all the children of the given DIE. If it contains nested
12443 subprograms, then check their pc bounds. Likewise, we need to
12444 check lexical blocks as well, as they may also contain subprogram
12445 definitions. */
12446 while (child && child->tag)
12447 {
12448 if (child->tag == DW_TAG_subprogram
12449 || child->tag == DW_TAG_lexical_block)
12450 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12451 child = sibling_die (child);
12452 }
12453 }
12454
12455 /* Get the low and high pc's represented by the scope DIE, and store
12456 them in *LOWPC and *HIGHPC. If the correct values can't be
12457 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12458
12459 static void
12460 get_scope_pc_bounds (struct die_info *die,
12461 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12462 struct dwarf2_cu *cu)
12463 {
12464 CORE_ADDR best_low = (CORE_ADDR) -1;
12465 CORE_ADDR best_high = (CORE_ADDR) 0;
12466 CORE_ADDR current_low, current_high;
12467
12468 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
12469 >= PC_BOUNDS_RANGES)
12470 {
12471 best_low = current_low;
12472 best_high = current_high;
12473 }
12474 else
12475 {
12476 struct die_info *child = die->child;
12477
12478 while (child && child->tag)
12479 {
12480 switch (child->tag) {
12481 case DW_TAG_subprogram:
12482 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
12483 break;
12484 case DW_TAG_namespace:
12485 case DW_TAG_module:
12486 /* FIXME: carlton/2004-01-16: Should we do this for
12487 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12488 that current GCC's always emit the DIEs corresponding
12489 to definitions of methods of classes as children of a
12490 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12491 the DIEs giving the declarations, which could be
12492 anywhere). But I don't see any reason why the
12493 standards says that they have to be there. */
12494 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12495
12496 if (current_low != ((CORE_ADDR) -1))
12497 {
12498 best_low = std::min (best_low, current_low);
12499 best_high = std::max (best_high, current_high);
12500 }
12501 break;
12502 default:
12503 /* Ignore. */
12504 break;
12505 }
12506
12507 child = sibling_die (child);
12508 }
12509 }
12510
12511 *lowpc = best_low;
12512 *highpc = best_high;
12513 }
12514
12515 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
12516 in DIE. */
12517
12518 static void
12519 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12520 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12521 {
12522 struct objfile *objfile = cu->objfile;
12523 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12524 struct attribute *attr;
12525 struct attribute *attr_high;
12526
12527 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12528 if (attr_high)
12529 {
12530 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12531 if (attr)
12532 {
12533 CORE_ADDR low = attr_value_as_address (attr);
12534 CORE_ADDR high = attr_value_as_address (attr_high);
12535
12536 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12537 high += low;
12538
12539 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12540 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12541 record_block_range (block, low, high - 1);
12542 }
12543 }
12544
12545 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12546 if (attr)
12547 {
12548 bfd *obfd = objfile->obfd;
12549 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12550 We take advantage of the fact that DW_AT_ranges does not appear
12551 in DW_TAG_compile_unit of DWO files. */
12552 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12553
12554 /* The value of the DW_AT_ranges attribute is the offset of the
12555 address range list in the .debug_ranges section. */
12556 unsigned long offset = (DW_UNSND (attr)
12557 + (need_ranges_base ? cu->ranges_base : 0));
12558 const gdb_byte *buffer;
12559
12560 /* For some target architectures, but not others, the
12561 read_address function sign-extends the addresses it returns.
12562 To recognize base address selection entries, we need a
12563 mask. */
12564 unsigned int addr_size = cu->header.addr_size;
12565 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12566
12567 /* The base address, to which the next pair is relative. Note
12568 that this 'base' is a DWARF concept: most entries in a range
12569 list are relative, to reduce the number of relocs against the
12570 debugging information. This is separate from this function's
12571 'baseaddr' argument, which GDB uses to relocate debugging
12572 information from a shared library based on the address at
12573 which the library was loaded. */
12574 CORE_ADDR base = cu->base_address;
12575 int base_known = cu->base_known;
12576
12577 dwarf2_ranges_process (offset, cu,
12578 [&] (CORE_ADDR start, CORE_ADDR end)
12579 {
12580 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12581 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12582 record_block_range (block, start, end - 1);
12583 });
12584 }
12585 }
12586
12587 /* Check whether the producer field indicates either of GCC < 4.6, or the
12588 Intel C/C++ compiler, and cache the result in CU. */
12589
12590 static void
12591 check_producer (struct dwarf2_cu *cu)
12592 {
12593 int major, minor;
12594
12595 if (cu->producer == NULL)
12596 {
12597 /* For unknown compilers expect their behavior is DWARF version
12598 compliant.
12599
12600 GCC started to support .debug_types sections by -gdwarf-4 since
12601 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12602 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12603 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12604 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12605 }
12606 else if (producer_is_gcc (cu->producer, &major, &minor))
12607 {
12608 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12609 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12610 }
12611 else if (startswith (cu->producer, "Intel(R) C"))
12612 cu->producer_is_icc = 1;
12613 else
12614 {
12615 /* For other non-GCC compilers, expect their behavior is DWARF version
12616 compliant. */
12617 }
12618
12619 cu->checked_producer = 1;
12620 }
12621
12622 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12623 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12624 during 4.6.0 experimental. */
12625
12626 static int
12627 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12628 {
12629 if (!cu->checked_producer)
12630 check_producer (cu);
12631
12632 return cu->producer_is_gxx_lt_4_6;
12633 }
12634
12635 /* Return the default accessibility type if it is not overriden by
12636 DW_AT_accessibility. */
12637
12638 static enum dwarf_access_attribute
12639 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12640 {
12641 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12642 {
12643 /* The default DWARF 2 accessibility for members is public, the default
12644 accessibility for inheritance is private. */
12645
12646 if (die->tag != DW_TAG_inheritance)
12647 return DW_ACCESS_public;
12648 else
12649 return DW_ACCESS_private;
12650 }
12651 else
12652 {
12653 /* DWARF 3+ defines the default accessibility a different way. The same
12654 rules apply now for DW_TAG_inheritance as for the members and it only
12655 depends on the container kind. */
12656
12657 if (die->parent->tag == DW_TAG_class_type)
12658 return DW_ACCESS_private;
12659 else
12660 return DW_ACCESS_public;
12661 }
12662 }
12663
12664 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12665 offset. If the attribute was not found return 0, otherwise return
12666 1. If it was found but could not properly be handled, set *OFFSET
12667 to 0. */
12668
12669 static int
12670 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12671 LONGEST *offset)
12672 {
12673 struct attribute *attr;
12674
12675 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12676 if (attr != NULL)
12677 {
12678 *offset = 0;
12679
12680 /* Note that we do not check for a section offset first here.
12681 This is because DW_AT_data_member_location is new in DWARF 4,
12682 so if we see it, we can assume that a constant form is really
12683 a constant and not a section offset. */
12684 if (attr_form_is_constant (attr))
12685 *offset = dwarf2_get_attr_constant_value (attr, 0);
12686 else if (attr_form_is_section_offset (attr))
12687 dwarf2_complex_location_expr_complaint ();
12688 else if (attr_form_is_block (attr))
12689 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12690 else
12691 dwarf2_complex_location_expr_complaint ();
12692
12693 return 1;
12694 }
12695
12696 return 0;
12697 }
12698
12699 /* Add an aggregate field to the field list. */
12700
12701 static void
12702 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12703 struct dwarf2_cu *cu)
12704 {
12705 struct objfile *objfile = cu->objfile;
12706 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12707 struct nextfield *new_field;
12708 struct attribute *attr;
12709 struct field *fp;
12710 const char *fieldname = "";
12711
12712 /* Allocate a new field list entry and link it in. */
12713 new_field = XNEW (struct nextfield);
12714 make_cleanup (xfree, new_field);
12715 memset (new_field, 0, sizeof (struct nextfield));
12716
12717 if (die->tag == DW_TAG_inheritance)
12718 {
12719 new_field->next = fip->baseclasses;
12720 fip->baseclasses = new_field;
12721 }
12722 else
12723 {
12724 new_field->next = fip->fields;
12725 fip->fields = new_field;
12726 }
12727 fip->nfields++;
12728
12729 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12730 if (attr)
12731 new_field->accessibility = DW_UNSND (attr);
12732 else
12733 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12734 if (new_field->accessibility != DW_ACCESS_public)
12735 fip->non_public_fields = 1;
12736
12737 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12738 if (attr)
12739 new_field->virtuality = DW_UNSND (attr);
12740 else
12741 new_field->virtuality = DW_VIRTUALITY_none;
12742
12743 fp = &new_field->field;
12744
12745 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12746 {
12747 LONGEST offset;
12748
12749 /* Data member other than a C++ static data member. */
12750
12751 /* Get type of field. */
12752 fp->type = die_type (die, cu);
12753
12754 SET_FIELD_BITPOS (*fp, 0);
12755
12756 /* Get bit size of field (zero if none). */
12757 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12758 if (attr)
12759 {
12760 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12761 }
12762 else
12763 {
12764 FIELD_BITSIZE (*fp) = 0;
12765 }
12766
12767 /* Get bit offset of field. */
12768 if (handle_data_member_location (die, cu, &offset))
12769 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12770 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12771 if (attr)
12772 {
12773 if (gdbarch_bits_big_endian (gdbarch))
12774 {
12775 /* For big endian bits, the DW_AT_bit_offset gives the
12776 additional bit offset from the MSB of the containing
12777 anonymous object to the MSB of the field. We don't
12778 have to do anything special since we don't need to
12779 know the size of the anonymous object. */
12780 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12781 }
12782 else
12783 {
12784 /* For little endian bits, compute the bit offset to the
12785 MSB of the anonymous object, subtract off the number of
12786 bits from the MSB of the field to the MSB of the
12787 object, and then subtract off the number of bits of
12788 the field itself. The result is the bit offset of
12789 the LSB of the field. */
12790 int anonymous_size;
12791 int bit_offset = DW_UNSND (attr);
12792
12793 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12794 if (attr)
12795 {
12796 /* The size of the anonymous object containing
12797 the bit field is explicit, so use the
12798 indicated size (in bytes). */
12799 anonymous_size = DW_UNSND (attr);
12800 }
12801 else
12802 {
12803 /* The size of the anonymous object containing
12804 the bit field must be inferred from the type
12805 attribute of the data member containing the
12806 bit field. */
12807 anonymous_size = TYPE_LENGTH (fp->type);
12808 }
12809 SET_FIELD_BITPOS (*fp,
12810 (FIELD_BITPOS (*fp)
12811 + anonymous_size * bits_per_byte
12812 - bit_offset - FIELD_BITSIZE (*fp)));
12813 }
12814 }
12815 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
12816 if (attr != NULL)
12817 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
12818 + dwarf2_get_attr_constant_value (attr, 0)));
12819
12820 /* Get name of field. */
12821 fieldname = dwarf2_name (die, cu);
12822 if (fieldname == NULL)
12823 fieldname = "";
12824
12825 /* The name is already allocated along with this objfile, so we don't
12826 need to duplicate it for the type. */
12827 fp->name = fieldname;
12828
12829 /* Change accessibility for artificial fields (e.g. virtual table
12830 pointer or virtual base class pointer) to private. */
12831 if (dwarf2_attr (die, DW_AT_artificial, cu))
12832 {
12833 FIELD_ARTIFICIAL (*fp) = 1;
12834 new_field->accessibility = DW_ACCESS_private;
12835 fip->non_public_fields = 1;
12836 }
12837 }
12838 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12839 {
12840 /* C++ static member. */
12841
12842 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12843 is a declaration, but all versions of G++ as of this writing
12844 (so through at least 3.2.1) incorrectly generate
12845 DW_TAG_variable tags. */
12846
12847 const char *physname;
12848
12849 /* Get name of field. */
12850 fieldname = dwarf2_name (die, cu);
12851 if (fieldname == NULL)
12852 return;
12853
12854 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12855 if (attr
12856 /* Only create a symbol if this is an external value.
12857 new_symbol checks this and puts the value in the global symbol
12858 table, which we want. If it is not external, new_symbol
12859 will try to put the value in cu->list_in_scope which is wrong. */
12860 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12861 {
12862 /* A static const member, not much different than an enum as far as
12863 we're concerned, except that we can support more types. */
12864 new_symbol (die, NULL, cu);
12865 }
12866
12867 /* Get physical name. */
12868 physname = dwarf2_physname (fieldname, die, cu);
12869
12870 /* The name is already allocated along with this objfile, so we don't
12871 need to duplicate it for the type. */
12872 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12873 FIELD_TYPE (*fp) = die_type (die, cu);
12874 FIELD_NAME (*fp) = fieldname;
12875 }
12876 else if (die->tag == DW_TAG_inheritance)
12877 {
12878 LONGEST offset;
12879
12880 /* C++ base class field. */
12881 if (handle_data_member_location (die, cu, &offset))
12882 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12883 FIELD_BITSIZE (*fp) = 0;
12884 FIELD_TYPE (*fp) = die_type (die, cu);
12885 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12886 fip->nbaseclasses++;
12887 }
12888 }
12889
12890 /* Add a typedef defined in the scope of the FIP's class. */
12891
12892 static void
12893 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12894 struct dwarf2_cu *cu)
12895 {
12896 struct typedef_field_list *new_field;
12897 struct typedef_field *fp;
12898
12899 /* Allocate a new field list entry and link it in. */
12900 new_field = XCNEW (struct typedef_field_list);
12901 make_cleanup (xfree, new_field);
12902
12903 gdb_assert (die->tag == DW_TAG_typedef);
12904
12905 fp = &new_field->field;
12906
12907 /* Get name of field. */
12908 fp->name = dwarf2_name (die, cu);
12909 if (fp->name == NULL)
12910 return;
12911
12912 fp->type = read_type_die (die, cu);
12913
12914 new_field->next = fip->typedef_field_list;
12915 fip->typedef_field_list = new_field;
12916 fip->typedef_field_list_count++;
12917 }
12918
12919 /* Create the vector of fields, and attach it to the type. */
12920
12921 static void
12922 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12923 struct dwarf2_cu *cu)
12924 {
12925 int nfields = fip->nfields;
12926
12927 /* Record the field count, allocate space for the array of fields,
12928 and create blank accessibility bitfields if necessary. */
12929 TYPE_NFIELDS (type) = nfields;
12930 TYPE_FIELDS (type) = (struct field *)
12931 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12932 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12933
12934 if (fip->non_public_fields && cu->language != language_ada)
12935 {
12936 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12937
12938 TYPE_FIELD_PRIVATE_BITS (type) =
12939 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12940 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12941
12942 TYPE_FIELD_PROTECTED_BITS (type) =
12943 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12944 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12945
12946 TYPE_FIELD_IGNORE_BITS (type) =
12947 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12948 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12949 }
12950
12951 /* If the type has baseclasses, allocate and clear a bit vector for
12952 TYPE_FIELD_VIRTUAL_BITS. */
12953 if (fip->nbaseclasses && cu->language != language_ada)
12954 {
12955 int num_bytes = B_BYTES (fip->nbaseclasses);
12956 unsigned char *pointer;
12957
12958 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12959 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
12960 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12961 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12962 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12963 }
12964
12965 /* Copy the saved-up fields into the field vector. Start from the head of
12966 the list, adding to the tail of the field array, so that they end up in
12967 the same order in the array in which they were added to the list. */
12968 while (nfields-- > 0)
12969 {
12970 struct nextfield *fieldp;
12971
12972 if (fip->fields)
12973 {
12974 fieldp = fip->fields;
12975 fip->fields = fieldp->next;
12976 }
12977 else
12978 {
12979 fieldp = fip->baseclasses;
12980 fip->baseclasses = fieldp->next;
12981 }
12982
12983 TYPE_FIELD (type, nfields) = fieldp->field;
12984 switch (fieldp->accessibility)
12985 {
12986 case DW_ACCESS_private:
12987 if (cu->language != language_ada)
12988 SET_TYPE_FIELD_PRIVATE (type, nfields);
12989 break;
12990
12991 case DW_ACCESS_protected:
12992 if (cu->language != language_ada)
12993 SET_TYPE_FIELD_PROTECTED (type, nfields);
12994 break;
12995
12996 case DW_ACCESS_public:
12997 break;
12998
12999 default:
13000 /* Unknown accessibility. Complain and treat it as public. */
13001 {
13002 complaint (&symfile_complaints, _("unsupported accessibility %d"),
13003 fieldp->accessibility);
13004 }
13005 break;
13006 }
13007 if (nfields < fip->nbaseclasses)
13008 {
13009 switch (fieldp->virtuality)
13010 {
13011 case DW_VIRTUALITY_virtual:
13012 case DW_VIRTUALITY_pure_virtual:
13013 if (cu->language == language_ada)
13014 error (_("unexpected virtuality in component of Ada type"));
13015 SET_TYPE_FIELD_VIRTUAL (type, nfields);
13016 break;
13017 }
13018 }
13019 }
13020 }
13021
13022 /* Return true if this member function is a constructor, false
13023 otherwise. */
13024
13025 static int
13026 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
13027 {
13028 const char *fieldname;
13029 const char *type_name;
13030 int len;
13031
13032 if (die->parent == NULL)
13033 return 0;
13034
13035 if (die->parent->tag != DW_TAG_structure_type
13036 && die->parent->tag != DW_TAG_union_type
13037 && die->parent->tag != DW_TAG_class_type)
13038 return 0;
13039
13040 fieldname = dwarf2_name (die, cu);
13041 type_name = dwarf2_name (die->parent, cu);
13042 if (fieldname == NULL || type_name == NULL)
13043 return 0;
13044
13045 len = strlen (fieldname);
13046 return (strncmp (fieldname, type_name, len) == 0
13047 && (type_name[len] == '\0' || type_name[len] == '<'));
13048 }
13049
13050 /* Add a member function to the proper fieldlist. */
13051
13052 static void
13053 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
13054 struct type *type, struct dwarf2_cu *cu)
13055 {
13056 struct objfile *objfile = cu->objfile;
13057 struct attribute *attr;
13058 struct fnfieldlist *flp;
13059 int i;
13060 struct fn_field *fnp;
13061 const char *fieldname;
13062 struct nextfnfield *new_fnfield;
13063 struct type *this_type;
13064 enum dwarf_access_attribute accessibility;
13065
13066 if (cu->language == language_ada)
13067 error (_("unexpected member function in Ada type"));
13068
13069 /* Get name of member function. */
13070 fieldname = dwarf2_name (die, cu);
13071 if (fieldname == NULL)
13072 return;
13073
13074 /* Look up member function name in fieldlist. */
13075 for (i = 0; i < fip->nfnfields; i++)
13076 {
13077 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
13078 break;
13079 }
13080
13081 /* Create new list element if necessary. */
13082 if (i < fip->nfnfields)
13083 flp = &fip->fnfieldlists[i];
13084 else
13085 {
13086 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
13087 {
13088 fip->fnfieldlists = (struct fnfieldlist *)
13089 xrealloc (fip->fnfieldlists,
13090 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
13091 * sizeof (struct fnfieldlist));
13092 if (fip->nfnfields == 0)
13093 make_cleanup (free_current_contents, &fip->fnfieldlists);
13094 }
13095 flp = &fip->fnfieldlists[fip->nfnfields];
13096 flp->name = fieldname;
13097 flp->length = 0;
13098 flp->head = NULL;
13099 i = fip->nfnfields++;
13100 }
13101
13102 /* Create a new member function field and chain it to the field list
13103 entry. */
13104 new_fnfield = XNEW (struct nextfnfield);
13105 make_cleanup (xfree, new_fnfield);
13106 memset (new_fnfield, 0, sizeof (struct nextfnfield));
13107 new_fnfield->next = flp->head;
13108 flp->head = new_fnfield;
13109 flp->length++;
13110
13111 /* Fill in the member function field info. */
13112 fnp = &new_fnfield->fnfield;
13113
13114 /* Delay processing of the physname until later. */
13115 if (cu->language == language_cplus)
13116 {
13117 add_to_method_list (type, i, flp->length - 1, fieldname,
13118 die, cu);
13119 }
13120 else
13121 {
13122 const char *physname = dwarf2_physname (fieldname, die, cu);
13123 fnp->physname = physname ? physname : "";
13124 }
13125
13126 fnp->type = alloc_type (objfile);
13127 this_type = read_type_die (die, cu);
13128 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
13129 {
13130 int nparams = TYPE_NFIELDS (this_type);
13131
13132 /* TYPE is the domain of this method, and THIS_TYPE is the type
13133 of the method itself (TYPE_CODE_METHOD). */
13134 smash_to_method_type (fnp->type, type,
13135 TYPE_TARGET_TYPE (this_type),
13136 TYPE_FIELDS (this_type),
13137 TYPE_NFIELDS (this_type),
13138 TYPE_VARARGS (this_type));
13139
13140 /* Handle static member functions.
13141 Dwarf2 has no clean way to discern C++ static and non-static
13142 member functions. G++ helps GDB by marking the first
13143 parameter for non-static member functions (which is the this
13144 pointer) as artificial. We obtain this information from
13145 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
13146 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
13147 fnp->voffset = VOFFSET_STATIC;
13148 }
13149 else
13150 complaint (&symfile_complaints, _("member function type missing for '%s'"),
13151 dwarf2_full_name (fieldname, die, cu));
13152
13153 /* Get fcontext from DW_AT_containing_type if present. */
13154 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13155 fnp->fcontext = die_containing_type (die, cu);
13156
13157 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
13158 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
13159
13160 /* Get accessibility. */
13161 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
13162 if (attr)
13163 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
13164 else
13165 accessibility = dwarf2_default_access_attribute (die, cu);
13166 switch (accessibility)
13167 {
13168 case DW_ACCESS_private:
13169 fnp->is_private = 1;
13170 break;
13171 case DW_ACCESS_protected:
13172 fnp->is_protected = 1;
13173 break;
13174 }
13175
13176 /* Check for artificial methods. */
13177 attr = dwarf2_attr (die, DW_AT_artificial, cu);
13178 if (attr && DW_UNSND (attr) != 0)
13179 fnp->is_artificial = 1;
13180
13181 fnp->is_constructor = dwarf2_is_constructor (die, cu);
13182
13183 /* Get index in virtual function table if it is a virtual member
13184 function. For older versions of GCC, this is an offset in the
13185 appropriate virtual table, as specified by DW_AT_containing_type.
13186 For everyone else, it is an expression to be evaluated relative
13187 to the object address. */
13188
13189 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
13190 if (attr)
13191 {
13192 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
13193 {
13194 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
13195 {
13196 /* Old-style GCC. */
13197 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
13198 }
13199 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
13200 || (DW_BLOCK (attr)->size > 1
13201 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
13202 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
13203 {
13204 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
13205 if ((fnp->voffset % cu->header.addr_size) != 0)
13206 dwarf2_complex_location_expr_complaint ();
13207 else
13208 fnp->voffset /= cu->header.addr_size;
13209 fnp->voffset += 2;
13210 }
13211 else
13212 dwarf2_complex_location_expr_complaint ();
13213
13214 if (!fnp->fcontext)
13215 {
13216 /* If there is no `this' field and no DW_AT_containing_type,
13217 we cannot actually find a base class context for the
13218 vtable! */
13219 if (TYPE_NFIELDS (this_type) == 0
13220 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
13221 {
13222 complaint (&symfile_complaints,
13223 _("cannot determine context for virtual member "
13224 "function \"%s\" (offset %d)"),
13225 fieldname, die->offset.sect_off);
13226 }
13227 else
13228 {
13229 fnp->fcontext
13230 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
13231 }
13232 }
13233 }
13234 else if (attr_form_is_section_offset (attr))
13235 {
13236 dwarf2_complex_location_expr_complaint ();
13237 }
13238 else
13239 {
13240 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
13241 fieldname);
13242 }
13243 }
13244 else
13245 {
13246 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13247 if (attr && DW_UNSND (attr))
13248 {
13249 /* GCC does this, as of 2008-08-25; PR debug/37237. */
13250 complaint (&symfile_complaints,
13251 _("Member function \"%s\" (offset %d) is virtual "
13252 "but the vtable offset is not specified"),
13253 fieldname, die->offset.sect_off);
13254 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13255 TYPE_CPLUS_DYNAMIC (type) = 1;
13256 }
13257 }
13258 }
13259
13260 /* Create the vector of member function fields, and attach it to the type. */
13261
13262 static void
13263 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
13264 struct dwarf2_cu *cu)
13265 {
13266 struct fnfieldlist *flp;
13267 int i;
13268
13269 if (cu->language == language_ada)
13270 error (_("unexpected member functions in Ada type"));
13271
13272 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13273 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13274 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13275
13276 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13277 {
13278 struct nextfnfield *nfp = flp->head;
13279 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13280 int k;
13281
13282 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13283 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13284 fn_flp->fn_fields = (struct fn_field *)
13285 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13286 for (k = flp->length; (k--, nfp); nfp = nfp->next)
13287 fn_flp->fn_fields[k] = nfp->fnfield;
13288 }
13289
13290 TYPE_NFN_FIELDS (type) = fip->nfnfields;
13291 }
13292
13293 /* Returns non-zero if NAME is the name of a vtable member in CU's
13294 language, zero otherwise. */
13295 static int
13296 is_vtable_name (const char *name, struct dwarf2_cu *cu)
13297 {
13298 static const char vptr[] = "_vptr";
13299 static const char vtable[] = "vtable";
13300
13301 /* Look for the C++ form of the vtable. */
13302 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
13303 return 1;
13304
13305 return 0;
13306 }
13307
13308 /* GCC outputs unnamed structures that are really pointers to member
13309 functions, with the ABI-specified layout. If TYPE describes
13310 such a structure, smash it into a member function type.
13311
13312 GCC shouldn't do this; it should just output pointer to member DIEs.
13313 This is GCC PR debug/28767. */
13314
13315 static void
13316 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
13317 {
13318 struct type *pfn_type, *self_type, *new_type;
13319
13320 /* Check for a structure with no name and two children. */
13321 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13322 return;
13323
13324 /* Check for __pfn and __delta members. */
13325 if (TYPE_FIELD_NAME (type, 0) == NULL
13326 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13327 || TYPE_FIELD_NAME (type, 1) == NULL
13328 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13329 return;
13330
13331 /* Find the type of the method. */
13332 pfn_type = TYPE_FIELD_TYPE (type, 0);
13333 if (pfn_type == NULL
13334 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13335 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
13336 return;
13337
13338 /* Look for the "this" argument. */
13339 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13340 if (TYPE_NFIELDS (pfn_type) == 0
13341 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
13342 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
13343 return;
13344
13345 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
13346 new_type = alloc_type (objfile);
13347 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
13348 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13349 TYPE_VARARGS (pfn_type));
13350 smash_to_methodptr_type (type, new_type);
13351 }
13352
13353 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13354 (icc). */
13355
13356 static int
13357 producer_is_icc (struct dwarf2_cu *cu)
13358 {
13359 if (!cu->checked_producer)
13360 check_producer (cu);
13361
13362 return cu->producer_is_icc;
13363 }
13364
13365 /* Called when we find the DIE that starts a structure or union scope
13366 (definition) to create a type for the structure or union. Fill in
13367 the type's name and general properties; the members will not be
13368 processed until process_structure_scope. A symbol table entry for
13369 the type will also not be done until process_structure_scope (assuming
13370 the type has a name).
13371
13372 NOTE: we need to call these functions regardless of whether or not the
13373 DIE has a DW_AT_name attribute, since it might be an anonymous
13374 structure or union. This gets the type entered into our set of
13375 user defined types. */
13376
13377 static struct type *
13378 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
13379 {
13380 struct objfile *objfile = cu->objfile;
13381 struct type *type;
13382 struct attribute *attr;
13383 const char *name;
13384
13385 /* If the definition of this type lives in .debug_types, read that type.
13386 Don't follow DW_AT_specification though, that will take us back up
13387 the chain and we want to go down. */
13388 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13389 if (attr)
13390 {
13391 type = get_DW_AT_signature_type (die, attr, cu);
13392
13393 /* The type's CU may not be the same as CU.
13394 Ensure TYPE is recorded with CU in die_type_hash. */
13395 return set_die_type (die, type, cu);
13396 }
13397
13398 type = alloc_type (objfile);
13399 INIT_CPLUS_SPECIFIC (type);
13400
13401 name = dwarf2_name (die, cu);
13402 if (name != NULL)
13403 {
13404 if (cu->language == language_cplus
13405 || cu->language == language_d
13406 || cu->language == language_rust)
13407 {
13408 const char *full_name = dwarf2_full_name (name, die, cu);
13409
13410 /* dwarf2_full_name might have already finished building the DIE's
13411 type. If so, there is no need to continue. */
13412 if (get_die_type (die, cu) != NULL)
13413 return get_die_type (die, cu);
13414
13415 TYPE_TAG_NAME (type) = full_name;
13416 if (die->tag == DW_TAG_structure_type
13417 || die->tag == DW_TAG_class_type)
13418 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13419 }
13420 else
13421 {
13422 /* The name is already allocated along with this objfile, so
13423 we don't need to duplicate it for the type. */
13424 TYPE_TAG_NAME (type) = name;
13425 if (die->tag == DW_TAG_class_type)
13426 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13427 }
13428 }
13429
13430 if (die->tag == DW_TAG_structure_type)
13431 {
13432 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13433 }
13434 else if (die->tag == DW_TAG_union_type)
13435 {
13436 TYPE_CODE (type) = TYPE_CODE_UNION;
13437 }
13438 else
13439 {
13440 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13441 }
13442
13443 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13444 TYPE_DECLARED_CLASS (type) = 1;
13445
13446 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13447 if (attr)
13448 {
13449 if (attr_form_is_constant (attr))
13450 TYPE_LENGTH (type) = DW_UNSND (attr);
13451 else
13452 {
13453 /* For the moment, dynamic type sizes are not supported
13454 by GDB's struct type. The actual size is determined
13455 on-demand when resolving the type of a given object,
13456 so set the type's length to zero for now. Otherwise,
13457 we record an expression as the length, and that expression
13458 could lead to a very large value, which could eventually
13459 lead to us trying to allocate that much memory when creating
13460 a value of that type. */
13461 TYPE_LENGTH (type) = 0;
13462 }
13463 }
13464 else
13465 {
13466 TYPE_LENGTH (type) = 0;
13467 }
13468
13469 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
13470 {
13471 /* ICC does not output the required DW_AT_declaration
13472 on incomplete types, but gives them a size of zero. */
13473 TYPE_STUB (type) = 1;
13474 }
13475 else
13476 TYPE_STUB_SUPPORTED (type) = 1;
13477
13478 if (die_is_declaration (die, cu))
13479 TYPE_STUB (type) = 1;
13480 else if (attr == NULL && die->child == NULL
13481 && producer_is_realview (cu->producer))
13482 /* RealView does not output the required DW_AT_declaration
13483 on incomplete types. */
13484 TYPE_STUB (type) = 1;
13485
13486 /* We need to add the type field to the die immediately so we don't
13487 infinitely recurse when dealing with pointers to the structure
13488 type within the structure itself. */
13489 set_die_type (die, type, cu);
13490
13491 /* set_die_type should be already done. */
13492 set_descriptive_type (type, die, cu);
13493
13494 return type;
13495 }
13496
13497 /* Finish creating a structure or union type, including filling in
13498 its members and creating a symbol for it. */
13499
13500 static void
13501 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13502 {
13503 struct objfile *objfile = cu->objfile;
13504 struct die_info *child_die;
13505 struct type *type;
13506
13507 type = get_die_type (die, cu);
13508 if (type == NULL)
13509 type = read_structure_type (die, cu);
13510
13511 if (die->child != NULL && ! die_is_declaration (die, cu))
13512 {
13513 struct field_info fi;
13514 VEC (symbolp) *template_args = NULL;
13515 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13516
13517 memset (&fi, 0, sizeof (struct field_info));
13518
13519 child_die = die->child;
13520
13521 while (child_die && child_die->tag)
13522 {
13523 if (child_die->tag == DW_TAG_member
13524 || child_die->tag == DW_TAG_variable)
13525 {
13526 /* NOTE: carlton/2002-11-05: A C++ static data member
13527 should be a DW_TAG_member that is a declaration, but
13528 all versions of G++ as of this writing (so through at
13529 least 3.2.1) incorrectly generate DW_TAG_variable
13530 tags for them instead. */
13531 dwarf2_add_field (&fi, child_die, cu);
13532 }
13533 else if (child_die->tag == DW_TAG_subprogram)
13534 {
13535 /* Rust doesn't have member functions in the C++ sense.
13536 However, it does emit ordinary functions as children
13537 of a struct DIE. */
13538 if (cu->language == language_rust)
13539 read_func_scope (child_die, cu);
13540 else
13541 {
13542 /* C++ member function. */
13543 dwarf2_add_member_fn (&fi, child_die, type, cu);
13544 }
13545 }
13546 else if (child_die->tag == DW_TAG_inheritance)
13547 {
13548 /* C++ base class field. */
13549 dwarf2_add_field (&fi, child_die, cu);
13550 }
13551 else if (child_die->tag == DW_TAG_typedef)
13552 dwarf2_add_typedef (&fi, child_die, cu);
13553 else if (child_die->tag == DW_TAG_template_type_param
13554 || child_die->tag == DW_TAG_template_value_param)
13555 {
13556 struct symbol *arg = new_symbol (child_die, NULL, cu);
13557
13558 if (arg != NULL)
13559 VEC_safe_push (symbolp, template_args, arg);
13560 }
13561
13562 child_die = sibling_die (child_die);
13563 }
13564
13565 /* Attach template arguments to type. */
13566 if (! VEC_empty (symbolp, template_args))
13567 {
13568 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13569 TYPE_N_TEMPLATE_ARGUMENTS (type)
13570 = VEC_length (symbolp, template_args);
13571 TYPE_TEMPLATE_ARGUMENTS (type)
13572 = XOBNEWVEC (&objfile->objfile_obstack,
13573 struct symbol *,
13574 TYPE_N_TEMPLATE_ARGUMENTS (type));
13575 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13576 VEC_address (symbolp, template_args),
13577 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13578 * sizeof (struct symbol *)));
13579 VEC_free (symbolp, template_args);
13580 }
13581
13582 /* Attach fields and member functions to the type. */
13583 if (fi.nfields)
13584 dwarf2_attach_fields_to_type (&fi, type, cu);
13585 if (fi.nfnfields)
13586 {
13587 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13588
13589 /* Get the type which refers to the base class (possibly this
13590 class itself) which contains the vtable pointer for the current
13591 class from the DW_AT_containing_type attribute. This use of
13592 DW_AT_containing_type is a GNU extension. */
13593
13594 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13595 {
13596 struct type *t = die_containing_type (die, cu);
13597
13598 set_type_vptr_basetype (type, t);
13599 if (type == t)
13600 {
13601 int i;
13602
13603 /* Our own class provides vtbl ptr. */
13604 for (i = TYPE_NFIELDS (t) - 1;
13605 i >= TYPE_N_BASECLASSES (t);
13606 --i)
13607 {
13608 const char *fieldname = TYPE_FIELD_NAME (t, i);
13609
13610 if (is_vtable_name (fieldname, cu))
13611 {
13612 set_type_vptr_fieldno (type, i);
13613 break;
13614 }
13615 }
13616
13617 /* Complain if virtual function table field not found. */
13618 if (i < TYPE_N_BASECLASSES (t))
13619 complaint (&symfile_complaints,
13620 _("virtual function table pointer "
13621 "not found when defining class '%s'"),
13622 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13623 "");
13624 }
13625 else
13626 {
13627 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
13628 }
13629 }
13630 else if (cu->producer
13631 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
13632 {
13633 /* The IBM XLC compiler does not provide direct indication
13634 of the containing type, but the vtable pointer is
13635 always named __vfp. */
13636
13637 int i;
13638
13639 for (i = TYPE_NFIELDS (type) - 1;
13640 i >= TYPE_N_BASECLASSES (type);
13641 --i)
13642 {
13643 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13644 {
13645 set_type_vptr_fieldno (type, i);
13646 set_type_vptr_basetype (type, type);
13647 break;
13648 }
13649 }
13650 }
13651 }
13652
13653 /* Copy fi.typedef_field_list linked list elements content into the
13654 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13655 if (fi.typedef_field_list)
13656 {
13657 int i = fi.typedef_field_list_count;
13658
13659 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13660 TYPE_TYPEDEF_FIELD_ARRAY (type)
13661 = ((struct typedef_field *)
13662 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
13663 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13664
13665 /* Reverse the list order to keep the debug info elements order. */
13666 while (--i >= 0)
13667 {
13668 struct typedef_field *dest, *src;
13669
13670 dest = &TYPE_TYPEDEF_FIELD (type, i);
13671 src = &fi.typedef_field_list->field;
13672 fi.typedef_field_list = fi.typedef_field_list->next;
13673 *dest = *src;
13674 }
13675 }
13676
13677 do_cleanups (back_to);
13678 }
13679
13680 quirk_gcc_member_function_pointer (type, objfile);
13681
13682 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13683 snapshots) has been known to create a die giving a declaration
13684 for a class that has, as a child, a die giving a definition for a
13685 nested class. So we have to process our children even if the
13686 current die is a declaration. Normally, of course, a declaration
13687 won't have any children at all. */
13688
13689 child_die = die->child;
13690
13691 while (child_die != NULL && child_die->tag)
13692 {
13693 if (child_die->tag == DW_TAG_member
13694 || child_die->tag == DW_TAG_variable
13695 || child_die->tag == DW_TAG_inheritance
13696 || child_die->tag == DW_TAG_template_value_param
13697 || child_die->tag == DW_TAG_template_type_param)
13698 {
13699 /* Do nothing. */
13700 }
13701 else
13702 process_die (child_die, cu);
13703
13704 child_die = sibling_die (child_die);
13705 }
13706
13707 /* Do not consider external references. According to the DWARF standard,
13708 these DIEs are identified by the fact that they have no byte_size
13709 attribute, and a declaration attribute. */
13710 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13711 || !die_is_declaration (die, cu))
13712 new_symbol (die, type, cu);
13713 }
13714
13715 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13716 update TYPE using some information only available in DIE's children. */
13717
13718 static void
13719 update_enumeration_type_from_children (struct die_info *die,
13720 struct type *type,
13721 struct dwarf2_cu *cu)
13722 {
13723 struct obstack obstack;
13724 struct die_info *child_die;
13725 int unsigned_enum = 1;
13726 int flag_enum = 1;
13727 ULONGEST mask = 0;
13728 struct cleanup *old_chain;
13729
13730 obstack_init (&obstack);
13731 old_chain = make_cleanup_obstack_free (&obstack);
13732
13733 for (child_die = die->child;
13734 child_die != NULL && child_die->tag;
13735 child_die = sibling_die (child_die))
13736 {
13737 struct attribute *attr;
13738 LONGEST value;
13739 const gdb_byte *bytes;
13740 struct dwarf2_locexpr_baton *baton;
13741 const char *name;
13742
13743 if (child_die->tag != DW_TAG_enumerator)
13744 continue;
13745
13746 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13747 if (attr == NULL)
13748 continue;
13749
13750 name = dwarf2_name (child_die, cu);
13751 if (name == NULL)
13752 name = "<anonymous enumerator>";
13753
13754 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13755 &value, &bytes, &baton);
13756 if (value < 0)
13757 {
13758 unsigned_enum = 0;
13759 flag_enum = 0;
13760 }
13761 else if ((mask & value) != 0)
13762 flag_enum = 0;
13763 else
13764 mask |= value;
13765
13766 /* If we already know that the enum type is neither unsigned, nor
13767 a flag type, no need to look at the rest of the enumerates. */
13768 if (!unsigned_enum && !flag_enum)
13769 break;
13770 }
13771
13772 if (unsigned_enum)
13773 TYPE_UNSIGNED (type) = 1;
13774 if (flag_enum)
13775 TYPE_FLAG_ENUM (type) = 1;
13776
13777 do_cleanups (old_chain);
13778 }
13779
13780 /* Given a DW_AT_enumeration_type die, set its type. We do not
13781 complete the type's fields yet, or create any symbols. */
13782
13783 static struct type *
13784 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13785 {
13786 struct objfile *objfile = cu->objfile;
13787 struct type *type;
13788 struct attribute *attr;
13789 const char *name;
13790
13791 /* If the definition of this type lives in .debug_types, read that type.
13792 Don't follow DW_AT_specification though, that will take us back up
13793 the chain and we want to go down. */
13794 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13795 if (attr)
13796 {
13797 type = get_DW_AT_signature_type (die, attr, cu);
13798
13799 /* The type's CU may not be the same as CU.
13800 Ensure TYPE is recorded with CU in die_type_hash. */
13801 return set_die_type (die, type, cu);
13802 }
13803
13804 type = alloc_type (objfile);
13805
13806 TYPE_CODE (type) = TYPE_CODE_ENUM;
13807 name = dwarf2_full_name (NULL, die, cu);
13808 if (name != NULL)
13809 TYPE_TAG_NAME (type) = name;
13810
13811 attr = dwarf2_attr (die, DW_AT_type, cu);
13812 if (attr != NULL)
13813 {
13814 struct type *underlying_type = die_type (die, cu);
13815
13816 TYPE_TARGET_TYPE (type) = underlying_type;
13817 }
13818
13819 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13820 if (attr)
13821 {
13822 TYPE_LENGTH (type) = DW_UNSND (attr);
13823 }
13824 else
13825 {
13826 TYPE_LENGTH (type) = 0;
13827 }
13828
13829 /* The enumeration DIE can be incomplete. In Ada, any type can be
13830 declared as private in the package spec, and then defined only
13831 inside the package body. Such types are known as Taft Amendment
13832 Types. When another package uses such a type, an incomplete DIE
13833 may be generated by the compiler. */
13834 if (die_is_declaration (die, cu))
13835 TYPE_STUB (type) = 1;
13836
13837 /* Finish the creation of this type by using the enum's children.
13838 We must call this even when the underlying type has been provided
13839 so that we can determine if we're looking at a "flag" enum. */
13840 update_enumeration_type_from_children (die, type, cu);
13841
13842 /* If this type has an underlying type that is not a stub, then we
13843 may use its attributes. We always use the "unsigned" attribute
13844 in this situation, because ordinarily we guess whether the type
13845 is unsigned -- but the guess can be wrong and the underlying type
13846 can tell us the reality. However, we defer to a local size
13847 attribute if one exists, because this lets the compiler override
13848 the underlying type if needed. */
13849 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13850 {
13851 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13852 if (TYPE_LENGTH (type) == 0)
13853 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13854 }
13855
13856 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13857
13858 return set_die_type (die, type, cu);
13859 }
13860
13861 /* Given a pointer to a die which begins an enumeration, process all
13862 the dies that define the members of the enumeration, and create the
13863 symbol for the enumeration type.
13864
13865 NOTE: We reverse the order of the element list. */
13866
13867 static void
13868 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13869 {
13870 struct type *this_type;
13871
13872 this_type = get_die_type (die, cu);
13873 if (this_type == NULL)
13874 this_type = read_enumeration_type (die, cu);
13875
13876 if (die->child != NULL)
13877 {
13878 struct die_info *child_die;
13879 struct symbol *sym;
13880 struct field *fields = NULL;
13881 int num_fields = 0;
13882 const char *name;
13883
13884 child_die = die->child;
13885 while (child_die && child_die->tag)
13886 {
13887 if (child_die->tag != DW_TAG_enumerator)
13888 {
13889 process_die (child_die, cu);
13890 }
13891 else
13892 {
13893 name = dwarf2_name (child_die, cu);
13894 if (name)
13895 {
13896 sym = new_symbol (child_die, this_type, cu);
13897
13898 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13899 {
13900 fields = (struct field *)
13901 xrealloc (fields,
13902 (num_fields + DW_FIELD_ALLOC_CHUNK)
13903 * sizeof (struct field));
13904 }
13905
13906 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13907 FIELD_TYPE (fields[num_fields]) = NULL;
13908 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13909 FIELD_BITSIZE (fields[num_fields]) = 0;
13910
13911 num_fields++;
13912 }
13913 }
13914
13915 child_die = sibling_die (child_die);
13916 }
13917
13918 if (num_fields)
13919 {
13920 TYPE_NFIELDS (this_type) = num_fields;
13921 TYPE_FIELDS (this_type) = (struct field *)
13922 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13923 memcpy (TYPE_FIELDS (this_type), fields,
13924 sizeof (struct field) * num_fields);
13925 xfree (fields);
13926 }
13927 }
13928
13929 /* If we are reading an enum from a .debug_types unit, and the enum
13930 is a declaration, and the enum is not the signatured type in the
13931 unit, then we do not want to add a symbol for it. Adding a
13932 symbol would in some cases obscure the true definition of the
13933 enum, giving users an incomplete type when the definition is
13934 actually available. Note that we do not want to do this for all
13935 enums which are just declarations, because C++0x allows forward
13936 enum declarations. */
13937 if (cu->per_cu->is_debug_types
13938 && die_is_declaration (die, cu))
13939 {
13940 struct signatured_type *sig_type;
13941
13942 sig_type = (struct signatured_type *) cu->per_cu;
13943 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13944 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13945 return;
13946 }
13947
13948 new_symbol (die, this_type, cu);
13949 }
13950
13951 /* Extract all information from a DW_TAG_array_type DIE and put it in
13952 the DIE's type field. For now, this only handles one dimensional
13953 arrays. */
13954
13955 static struct type *
13956 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13957 {
13958 struct objfile *objfile = cu->objfile;
13959 struct die_info *child_die;
13960 struct type *type;
13961 struct type *element_type, *range_type, *index_type;
13962 struct type **range_types = NULL;
13963 struct attribute *attr;
13964 int ndim = 0;
13965 struct cleanup *back_to;
13966 const char *name;
13967 unsigned int bit_stride = 0;
13968
13969 element_type = die_type (die, cu);
13970
13971 /* The die_type call above may have already set the type for this DIE. */
13972 type = get_die_type (die, cu);
13973 if (type)
13974 return type;
13975
13976 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13977 if (attr != NULL)
13978 bit_stride = DW_UNSND (attr) * 8;
13979
13980 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13981 if (attr != NULL)
13982 bit_stride = DW_UNSND (attr);
13983
13984 /* Irix 6.2 native cc creates array types without children for
13985 arrays with unspecified length. */
13986 if (die->child == NULL)
13987 {
13988 index_type = objfile_type (objfile)->builtin_int;
13989 range_type = create_static_range_type (NULL, index_type, 0, -1);
13990 type = create_array_type_with_stride (NULL, element_type, range_type,
13991 bit_stride);
13992 return set_die_type (die, type, cu);
13993 }
13994
13995 back_to = make_cleanup (null_cleanup, NULL);
13996 child_die = die->child;
13997 while (child_die && child_die->tag)
13998 {
13999 if (child_die->tag == DW_TAG_subrange_type)
14000 {
14001 struct type *child_type = read_type_die (child_die, cu);
14002
14003 if (child_type != NULL)
14004 {
14005 /* The range type was succesfully read. Save it for the
14006 array type creation. */
14007 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
14008 {
14009 range_types = (struct type **)
14010 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
14011 * sizeof (struct type *));
14012 if (ndim == 0)
14013 make_cleanup (free_current_contents, &range_types);
14014 }
14015 range_types[ndim++] = child_type;
14016 }
14017 }
14018 child_die = sibling_die (child_die);
14019 }
14020
14021 /* Dwarf2 dimensions are output from left to right, create the
14022 necessary array types in backwards order. */
14023
14024 type = element_type;
14025
14026 if (read_array_order (die, cu) == DW_ORD_col_major)
14027 {
14028 int i = 0;
14029
14030 while (i < ndim)
14031 type = create_array_type_with_stride (NULL, type, range_types[i++],
14032 bit_stride);
14033 }
14034 else
14035 {
14036 while (ndim-- > 0)
14037 type = create_array_type_with_stride (NULL, type, range_types[ndim],
14038 bit_stride);
14039 }
14040
14041 /* Understand Dwarf2 support for vector types (like they occur on
14042 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
14043 array type. This is not part of the Dwarf2/3 standard yet, but a
14044 custom vendor extension. The main difference between a regular
14045 array and the vector variant is that vectors are passed by value
14046 to functions. */
14047 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
14048 if (attr)
14049 make_vector_type (type);
14050
14051 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
14052 implementation may choose to implement triple vectors using this
14053 attribute. */
14054 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14055 if (attr)
14056 {
14057 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
14058 TYPE_LENGTH (type) = DW_UNSND (attr);
14059 else
14060 complaint (&symfile_complaints,
14061 _("DW_AT_byte_size for array type smaller "
14062 "than the total size of elements"));
14063 }
14064
14065 name = dwarf2_name (die, cu);
14066 if (name)
14067 TYPE_NAME (type) = name;
14068
14069 /* Install the type in the die. */
14070 set_die_type (die, type, cu);
14071
14072 /* set_die_type should be already done. */
14073 set_descriptive_type (type, die, cu);
14074
14075 do_cleanups (back_to);
14076
14077 return type;
14078 }
14079
14080 static enum dwarf_array_dim_ordering
14081 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
14082 {
14083 struct attribute *attr;
14084
14085 attr = dwarf2_attr (die, DW_AT_ordering, cu);
14086
14087 if (attr)
14088 return (enum dwarf_array_dim_ordering) DW_SND (attr);
14089
14090 /* GNU F77 is a special case, as at 08/2004 array type info is the
14091 opposite order to the dwarf2 specification, but data is still
14092 laid out as per normal fortran.
14093
14094 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
14095 version checking. */
14096
14097 if (cu->language == language_fortran
14098 && cu->producer && strstr (cu->producer, "GNU F77"))
14099 {
14100 return DW_ORD_row_major;
14101 }
14102
14103 switch (cu->language_defn->la_array_ordering)
14104 {
14105 case array_column_major:
14106 return DW_ORD_col_major;
14107 case array_row_major:
14108 default:
14109 return DW_ORD_row_major;
14110 };
14111 }
14112
14113 /* Extract all information from a DW_TAG_set_type DIE and put it in
14114 the DIE's type field. */
14115
14116 static struct type *
14117 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
14118 {
14119 struct type *domain_type, *set_type;
14120 struct attribute *attr;
14121
14122 domain_type = die_type (die, cu);
14123
14124 /* The die_type call above may have already set the type for this DIE. */
14125 set_type = get_die_type (die, cu);
14126 if (set_type)
14127 return set_type;
14128
14129 set_type = create_set_type (NULL, domain_type);
14130
14131 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14132 if (attr)
14133 TYPE_LENGTH (set_type) = DW_UNSND (attr);
14134
14135 return set_die_type (die, set_type, cu);
14136 }
14137
14138 /* A helper for read_common_block that creates a locexpr baton.
14139 SYM is the symbol which we are marking as computed.
14140 COMMON_DIE is the DIE for the common block.
14141 COMMON_LOC is the location expression attribute for the common
14142 block itself.
14143 MEMBER_LOC is the location expression attribute for the particular
14144 member of the common block that we are processing.
14145 CU is the CU from which the above come. */
14146
14147 static void
14148 mark_common_block_symbol_computed (struct symbol *sym,
14149 struct die_info *common_die,
14150 struct attribute *common_loc,
14151 struct attribute *member_loc,
14152 struct dwarf2_cu *cu)
14153 {
14154 struct objfile *objfile = dwarf2_per_objfile->objfile;
14155 struct dwarf2_locexpr_baton *baton;
14156 gdb_byte *ptr;
14157 unsigned int cu_off;
14158 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
14159 LONGEST offset = 0;
14160
14161 gdb_assert (common_loc && member_loc);
14162 gdb_assert (attr_form_is_block (common_loc));
14163 gdb_assert (attr_form_is_block (member_loc)
14164 || attr_form_is_constant (member_loc));
14165
14166 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14167 baton->per_cu = cu->per_cu;
14168 gdb_assert (baton->per_cu);
14169
14170 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
14171
14172 if (attr_form_is_constant (member_loc))
14173 {
14174 offset = dwarf2_get_attr_constant_value (member_loc, 0);
14175 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
14176 }
14177 else
14178 baton->size += DW_BLOCK (member_loc)->size;
14179
14180 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
14181 baton->data = ptr;
14182
14183 *ptr++ = DW_OP_call4;
14184 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
14185 store_unsigned_integer (ptr, 4, byte_order, cu_off);
14186 ptr += 4;
14187
14188 if (attr_form_is_constant (member_loc))
14189 {
14190 *ptr++ = DW_OP_addr;
14191 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
14192 ptr += cu->header.addr_size;
14193 }
14194 else
14195 {
14196 /* We have to copy the data here, because DW_OP_call4 will only
14197 use a DW_AT_location attribute. */
14198 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
14199 ptr += DW_BLOCK (member_loc)->size;
14200 }
14201
14202 *ptr++ = DW_OP_plus;
14203 gdb_assert (ptr - baton->data == baton->size);
14204
14205 SYMBOL_LOCATION_BATON (sym) = baton;
14206 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
14207 }
14208
14209 /* Create appropriate locally-scoped variables for all the
14210 DW_TAG_common_block entries. Also create a struct common_block
14211 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
14212 is used to sepate the common blocks name namespace from regular
14213 variable names. */
14214
14215 static void
14216 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
14217 {
14218 struct attribute *attr;
14219
14220 attr = dwarf2_attr (die, DW_AT_location, cu);
14221 if (attr)
14222 {
14223 /* Support the .debug_loc offsets. */
14224 if (attr_form_is_block (attr))
14225 {
14226 /* Ok. */
14227 }
14228 else if (attr_form_is_section_offset (attr))
14229 {
14230 dwarf2_complex_location_expr_complaint ();
14231 attr = NULL;
14232 }
14233 else
14234 {
14235 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14236 "common block member");
14237 attr = NULL;
14238 }
14239 }
14240
14241 if (die->child != NULL)
14242 {
14243 struct objfile *objfile = cu->objfile;
14244 struct die_info *child_die;
14245 size_t n_entries = 0, size;
14246 struct common_block *common_block;
14247 struct symbol *sym;
14248
14249 for (child_die = die->child;
14250 child_die && child_die->tag;
14251 child_die = sibling_die (child_die))
14252 ++n_entries;
14253
14254 size = (sizeof (struct common_block)
14255 + (n_entries - 1) * sizeof (struct symbol *));
14256 common_block
14257 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
14258 size);
14259 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
14260 common_block->n_entries = 0;
14261
14262 for (child_die = die->child;
14263 child_die && child_die->tag;
14264 child_die = sibling_die (child_die))
14265 {
14266 /* Create the symbol in the DW_TAG_common_block block in the current
14267 symbol scope. */
14268 sym = new_symbol (child_die, NULL, cu);
14269 if (sym != NULL)
14270 {
14271 struct attribute *member_loc;
14272
14273 common_block->contents[common_block->n_entries++] = sym;
14274
14275 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14276 cu);
14277 if (member_loc)
14278 {
14279 /* GDB has handled this for a long time, but it is
14280 not specified by DWARF. It seems to have been
14281 emitted by gfortran at least as recently as:
14282 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14283 complaint (&symfile_complaints,
14284 _("Variable in common block has "
14285 "DW_AT_data_member_location "
14286 "- DIE at 0x%x [in module %s]"),
14287 child_die->offset.sect_off,
14288 objfile_name (cu->objfile));
14289
14290 if (attr_form_is_section_offset (member_loc))
14291 dwarf2_complex_location_expr_complaint ();
14292 else if (attr_form_is_constant (member_loc)
14293 || attr_form_is_block (member_loc))
14294 {
14295 if (attr)
14296 mark_common_block_symbol_computed (sym, die, attr,
14297 member_loc, cu);
14298 }
14299 else
14300 dwarf2_complex_location_expr_complaint ();
14301 }
14302 }
14303 }
14304
14305 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14306 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
14307 }
14308 }
14309
14310 /* Create a type for a C++ namespace. */
14311
14312 static struct type *
14313 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
14314 {
14315 struct objfile *objfile = cu->objfile;
14316 const char *previous_prefix, *name;
14317 int is_anonymous;
14318 struct type *type;
14319
14320 /* For extensions, reuse the type of the original namespace. */
14321 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14322 {
14323 struct die_info *ext_die;
14324 struct dwarf2_cu *ext_cu = cu;
14325
14326 ext_die = dwarf2_extension (die, &ext_cu);
14327 type = read_type_die (ext_die, ext_cu);
14328
14329 /* EXT_CU may not be the same as CU.
14330 Ensure TYPE is recorded with CU in die_type_hash. */
14331 return set_die_type (die, type, cu);
14332 }
14333
14334 name = namespace_name (die, &is_anonymous, cu);
14335
14336 /* Now build the name of the current namespace. */
14337
14338 previous_prefix = determine_prefix (die, cu);
14339 if (previous_prefix[0] != '\0')
14340 name = typename_concat (&objfile->objfile_obstack,
14341 previous_prefix, name, 0, cu);
14342
14343 /* Create the type. */
14344 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
14345 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14346
14347 return set_die_type (die, type, cu);
14348 }
14349
14350 /* Read a namespace scope. */
14351
14352 static void
14353 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14354 {
14355 struct objfile *objfile = cu->objfile;
14356 int is_anonymous;
14357
14358 /* Add a symbol associated to this if we haven't seen the namespace
14359 before. Also, add a using directive if it's an anonymous
14360 namespace. */
14361
14362 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
14363 {
14364 struct type *type;
14365
14366 type = read_type_die (die, cu);
14367 new_symbol (die, type, cu);
14368
14369 namespace_name (die, &is_anonymous, cu);
14370 if (is_anonymous)
14371 {
14372 const char *previous_prefix = determine_prefix (die, cu);
14373
14374 add_using_directive (using_directives (cu->language),
14375 previous_prefix, TYPE_NAME (type), NULL,
14376 NULL, NULL, 0, &objfile->objfile_obstack);
14377 }
14378 }
14379
14380 if (die->child != NULL)
14381 {
14382 struct die_info *child_die = die->child;
14383
14384 while (child_die && child_die->tag)
14385 {
14386 process_die (child_die, cu);
14387 child_die = sibling_die (child_die);
14388 }
14389 }
14390 }
14391
14392 /* Read a Fortran module as type. This DIE can be only a declaration used for
14393 imported module. Still we need that type as local Fortran "use ... only"
14394 declaration imports depend on the created type in determine_prefix. */
14395
14396 static struct type *
14397 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14398 {
14399 struct objfile *objfile = cu->objfile;
14400 const char *module_name;
14401 struct type *type;
14402
14403 module_name = dwarf2_name (die, cu);
14404 if (!module_name)
14405 complaint (&symfile_complaints,
14406 _("DW_TAG_module has no name, offset 0x%x"),
14407 die->offset.sect_off);
14408 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
14409
14410 /* determine_prefix uses TYPE_TAG_NAME. */
14411 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14412
14413 return set_die_type (die, type, cu);
14414 }
14415
14416 /* Read a Fortran module. */
14417
14418 static void
14419 read_module (struct die_info *die, struct dwarf2_cu *cu)
14420 {
14421 struct die_info *child_die = die->child;
14422 struct type *type;
14423
14424 type = read_type_die (die, cu);
14425 new_symbol (die, type, cu);
14426
14427 while (child_die && child_die->tag)
14428 {
14429 process_die (child_die, cu);
14430 child_die = sibling_die (child_die);
14431 }
14432 }
14433
14434 /* Return the name of the namespace represented by DIE. Set
14435 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14436 namespace. */
14437
14438 static const char *
14439 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
14440 {
14441 struct die_info *current_die;
14442 const char *name = NULL;
14443
14444 /* Loop through the extensions until we find a name. */
14445
14446 for (current_die = die;
14447 current_die != NULL;
14448 current_die = dwarf2_extension (die, &cu))
14449 {
14450 /* We don't use dwarf2_name here so that we can detect the absence
14451 of a name -> anonymous namespace. */
14452 name = dwarf2_string_attr (die, DW_AT_name, cu);
14453
14454 if (name != NULL)
14455 break;
14456 }
14457
14458 /* Is it an anonymous namespace? */
14459
14460 *is_anonymous = (name == NULL);
14461 if (*is_anonymous)
14462 name = CP_ANONYMOUS_NAMESPACE_STR;
14463
14464 return name;
14465 }
14466
14467 /* Extract all information from a DW_TAG_pointer_type DIE and add to
14468 the user defined type vector. */
14469
14470 static struct type *
14471 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
14472 {
14473 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
14474 struct comp_unit_head *cu_header = &cu->header;
14475 struct type *type;
14476 struct attribute *attr_byte_size;
14477 struct attribute *attr_address_class;
14478 int byte_size, addr_class;
14479 struct type *target_type;
14480
14481 target_type = die_type (die, cu);
14482
14483 /* The die_type call above may have already set the type for this DIE. */
14484 type = get_die_type (die, cu);
14485 if (type)
14486 return type;
14487
14488 type = lookup_pointer_type (target_type);
14489
14490 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14491 if (attr_byte_size)
14492 byte_size = DW_UNSND (attr_byte_size);
14493 else
14494 byte_size = cu_header->addr_size;
14495
14496 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14497 if (attr_address_class)
14498 addr_class = DW_UNSND (attr_address_class);
14499 else
14500 addr_class = DW_ADDR_none;
14501
14502 /* If the pointer size or address class is different than the
14503 default, create a type variant marked as such and set the
14504 length accordingly. */
14505 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14506 {
14507 if (gdbarch_address_class_type_flags_p (gdbarch))
14508 {
14509 int type_flags;
14510
14511 type_flags = gdbarch_address_class_type_flags
14512 (gdbarch, byte_size, addr_class);
14513 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14514 == 0);
14515 type = make_type_with_address_space (type, type_flags);
14516 }
14517 else if (TYPE_LENGTH (type) != byte_size)
14518 {
14519 complaint (&symfile_complaints,
14520 _("invalid pointer size %d"), byte_size);
14521 }
14522 else
14523 {
14524 /* Should we also complain about unhandled address classes? */
14525 }
14526 }
14527
14528 TYPE_LENGTH (type) = byte_size;
14529 return set_die_type (die, type, cu);
14530 }
14531
14532 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14533 the user defined type vector. */
14534
14535 static struct type *
14536 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14537 {
14538 struct type *type;
14539 struct type *to_type;
14540 struct type *domain;
14541
14542 to_type = die_type (die, cu);
14543 domain = die_containing_type (die, cu);
14544
14545 /* The calls above may have already set the type for this DIE. */
14546 type = get_die_type (die, cu);
14547 if (type)
14548 return type;
14549
14550 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14551 type = lookup_methodptr_type (to_type);
14552 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14553 {
14554 struct type *new_type = alloc_type (cu->objfile);
14555
14556 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14557 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14558 TYPE_VARARGS (to_type));
14559 type = lookup_methodptr_type (new_type);
14560 }
14561 else
14562 type = lookup_memberptr_type (to_type, domain);
14563
14564 return set_die_type (die, type, cu);
14565 }
14566
14567 /* Extract all information from a DW_TAG_reference_type DIE and add to
14568 the user defined type vector. */
14569
14570 static struct type *
14571 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
14572 {
14573 struct comp_unit_head *cu_header = &cu->header;
14574 struct type *type, *target_type;
14575 struct attribute *attr;
14576
14577 target_type = die_type (die, cu);
14578
14579 /* The die_type call above may have already set the type for this DIE. */
14580 type = get_die_type (die, cu);
14581 if (type)
14582 return type;
14583
14584 type = lookup_reference_type (target_type);
14585 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14586 if (attr)
14587 {
14588 TYPE_LENGTH (type) = DW_UNSND (attr);
14589 }
14590 else
14591 {
14592 TYPE_LENGTH (type) = cu_header->addr_size;
14593 }
14594 return set_die_type (die, type, cu);
14595 }
14596
14597 /* Add the given cv-qualifiers to the element type of the array. GCC
14598 outputs DWARF type qualifiers that apply to an array, not the
14599 element type. But GDB relies on the array element type to carry
14600 the cv-qualifiers. This mimics section 6.7.3 of the C99
14601 specification. */
14602
14603 static struct type *
14604 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14605 struct type *base_type, int cnst, int voltl)
14606 {
14607 struct type *el_type, *inner_array;
14608
14609 base_type = copy_type (base_type);
14610 inner_array = base_type;
14611
14612 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14613 {
14614 TYPE_TARGET_TYPE (inner_array) =
14615 copy_type (TYPE_TARGET_TYPE (inner_array));
14616 inner_array = TYPE_TARGET_TYPE (inner_array);
14617 }
14618
14619 el_type = TYPE_TARGET_TYPE (inner_array);
14620 cnst |= TYPE_CONST (el_type);
14621 voltl |= TYPE_VOLATILE (el_type);
14622 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14623
14624 return set_die_type (die, base_type, cu);
14625 }
14626
14627 static struct type *
14628 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14629 {
14630 struct type *base_type, *cv_type;
14631
14632 base_type = die_type (die, cu);
14633
14634 /* The die_type call above may have already set the type for this DIE. */
14635 cv_type = get_die_type (die, cu);
14636 if (cv_type)
14637 return cv_type;
14638
14639 /* In case the const qualifier is applied to an array type, the element type
14640 is so qualified, not the array type (section 6.7.3 of C99). */
14641 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14642 return add_array_cv_type (die, cu, base_type, 1, 0);
14643
14644 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14645 return set_die_type (die, cv_type, cu);
14646 }
14647
14648 static struct type *
14649 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14650 {
14651 struct type *base_type, *cv_type;
14652
14653 base_type = die_type (die, cu);
14654
14655 /* The die_type call above may have already set the type for this DIE. */
14656 cv_type = get_die_type (die, cu);
14657 if (cv_type)
14658 return cv_type;
14659
14660 /* In case the volatile qualifier is applied to an array type, the
14661 element type is so qualified, not the array type (section 6.7.3
14662 of C99). */
14663 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14664 return add_array_cv_type (die, cu, base_type, 0, 1);
14665
14666 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14667 return set_die_type (die, cv_type, cu);
14668 }
14669
14670 /* Handle DW_TAG_restrict_type. */
14671
14672 static struct type *
14673 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14674 {
14675 struct type *base_type, *cv_type;
14676
14677 base_type = die_type (die, cu);
14678
14679 /* The die_type call above may have already set the type for this DIE. */
14680 cv_type = get_die_type (die, cu);
14681 if (cv_type)
14682 return cv_type;
14683
14684 cv_type = make_restrict_type (base_type);
14685 return set_die_type (die, cv_type, cu);
14686 }
14687
14688 /* Handle DW_TAG_atomic_type. */
14689
14690 static struct type *
14691 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14692 {
14693 struct type *base_type, *cv_type;
14694
14695 base_type = die_type (die, cu);
14696
14697 /* The die_type call above may have already set the type for this DIE. */
14698 cv_type = get_die_type (die, cu);
14699 if (cv_type)
14700 return cv_type;
14701
14702 cv_type = make_atomic_type (base_type);
14703 return set_die_type (die, cv_type, cu);
14704 }
14705
14706 /* Extract all information from a DW_TAG_string_type DIE and add to
14707 the user defined type vector. It isn't really a user defined type,
14708 but it behaves like one, with other DIE's using an AT_user_def_type
14709 attribute to reference it. */
14710
14711 static struct type *
14712 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14713 {
14714 struct objfile *objfile = cu->objfile;
14715 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14716 struct type *type, *range_type, *index_type, *char_type;
14717 struct attribute *attr;
14718 unsigned int length;
14719
14720 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14721 if (attr)
14722 {
14723 length = DW_UNSND (attr);
14724 }
14725 else
14726 {
14727 /* Check for the DW_AT_byte_size attribute. */
14728 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14729 if (attr)
14730 {
14731 length = DW_UNSND (attr);
14732 }
14733 else
14734 {
14735 length = 1;
14736 }
14737 }
14738
14739 index_type = objfile_type (objfile)->builtin_int;
14740 range_type = create_static_range_type (NULL, index_type, 1, length);
14741 char_type = language_string_char_type (cu->language_defn, gdbarch);
14742 type = create_string_type (NULL, char_type, range_type);
14743
14744 return set_die_type (die, type, cu);
14745 }
14746
14747 /* Assuming that DIE corresponds to a function, returns nonzero
14748 if the function is prototyped. */
14749
14750 static int
14751 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14752 {
14753 struct attribute *attr;
14754
14755 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14756 if (attr && (DW_UNSND (attr) != 0))
14757 return 1;
14758
14759 /* The DWARF standard implies that the DW_AT_prototyped attribute
14760 is only meaninful for C, but the concept also extends to other
14761 languages that allow unprototyped functions (Eg: Objective C).
14762 For all other languages, assume that functions are always
14763 prototyped. */
14764 if (cu->language != language_c
14765 && cu->language != language_objc
14766 && cu->language != language_opencl)
14767 return 1;
14768
14769 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14770 prototyped and unprototyped functions; default to prototyped,
14771 since that is more common in modern code (and RealView warns
14772 about unprototyped functions). */
14773 if (producer_is_realview (cu->producer))
14774 return 1;
14775
14776 return 0;
14777 }
14778
14779 /* Handle DIES due to C code like:
14780
14781 struct foo
14782 {
14783 int (*funcp)(int a, long l);
14784 int b;
14785 };
14786
14787 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14788
14789 static struct type *
14790 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14791 {
14792 struct objfile *objfile = cu->objfile;
14793 struct type *type; /* Type that this function returns. */
14794 struct type *ftype; /* Function that returns above type. */
14795 struct attribute *attr;
14796
14797 type = die_type (die, cu);
14798
14799 /* The die_type call above may have already set the type for this DIE. */
14800 ftype = get_die_type (die, cu);
14801 if (ftype)
14802 return ftype;
14803
14804 ftype = lookup_function_type (type);
14805
14806 if (prototyped_function_p (die, cu))
14807 TYPE_PROTOTYPED (ftype) = 1;
14808
14809 /* Store the calling convention in the type if it's available in
14810 the subroutine die. Otherwise set the calling convention to
14811 the default value DW_CC_normal. */
14812 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14813 if (attr)
14814 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14815 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14816 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14817 else
14818 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14819
14820 /* Record whether the function returns normally to its caller or not
14821 if the DWARF producer set that information. */
14822 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14823 if (attr && (DW_UNSND (attr) != 0))
14824 TYPE_NO_RETURN (ftype) = 1;
14825
14826 /* We need to add the subroutine type to the die immediately so
14827 we don't infinitely recurse when dealing with parameters
14828 declared as the same subroutine type. */
14829 set_die_type (die, ftype, cu);
14830
14831 if (die->child != NULL)
14832 {
14833 struct type *void_type = objfile_type (objfile)->builtin_void;
14834 struct die_info *child_die;
14835 int nparams, iparams;
14836
14837 /* Count the number of parameters.
14838 FIXME: GDB currently ignores vararg functions, but knows about
14839 vararg member functions. */
14840 nparams = 0;
14841 child_die = die->child;
14842 while (child_die && child_die->tag)
14843 {
14844 if (child_die->tag == DW_TAG_formal_parameter)
14845 nparams++;
14846 else if (child_die->tag == DW_TAG_unspecified_parameters)
14847 TYPE_VARARGS (ftype) = 1;
14848 child_die = sibling_die (child_die);
14849 }
14850
14851 /* Allocate storage for parameters and fill them in. */
14852 TYPE_NFIELDS (ftype) = nparams;
14853 TYPE_FIELDS (ftype) = (struct field *)
14854 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14855
14856 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14857 even if we error out during the parameters reading below. */
14858 for (iparams = 0; iparams < nparams; iparams++)
14859 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14860
14861 iparams = 0;
14862 child_die = die->child;
14863 while (child_die && child_die->tag)
14864 {
14865 if (child_die->tag == DW_TAG_formal_parameter)
14866 {
14867 struct type *arg_type;
14868
14869 /* DWARF version 2 has no clean way to discern C++
14870 static and non-static member functions. G++ helps
14871 GDB by marking the first parameter for non-static
14872 member functions (which is the this pointer) as
14873 artificial. We pass this information to
14874 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14875
14876 DWARF version 3 added DW_AT_object_pointer, which GCC
14877 4.5 does not yet generate. */
14878 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14879 if (attr)
14880 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14881 else
14882 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14883 arg_type = die_type (child_die, cu);
14884
14885 /* RealView does not mark THIS as const, which the testsuite
14886 expects. GCC marks THIS as const in method definitions,
14887 but not in the class specifications (GCC PR 43053). */
14888 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14889 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14890 {
14891 int is_this = 0;
14892 struct dwarf2_cu *arg_cu = cu;
14893 const char *name = dwarf2_name (child_die, cu);
14894
14895 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14896 if (attr)
14897 {
14898 /* If the compiler emits this, use it. */
14899 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14900 is_this = 1;
14901 }
14902 else if (name && strcmp (name, "this") == 0)
14903 /* Function definitions will have the argument names. */
14904 is_this = 1;
14905 else if (name == NULL && iparams == 0)
14906 /* Declarations may not have the names, so like
14907 elsewhere in GDB, assume an artificial first
14908 argument is "this". */
14909 is_this = 1;
14910
14911 if (is_this)
14912 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14913 arg_type, 0);
14914 }
14915
14916 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14917 iparams++;
14918 }
14919 child_die = sibling_die (child_die);
14920 }
14921 }
14922
14923 return ftype;
14924 }
14925
14926 static struct type *
14927 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14928 {
14929 struct objfile *objfile = cu->objfile;
14930 const char *name = NULL;
14931 struct type *this_type, *target_type;
14932
14933 name = dwarf2_full_name (NULL, die, cu);
14934 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
14935 TYPE_TARGET_STUB (this_type) = 1;
14936 set_die_type (die, this_type, cu);
14937 target_type = die_type (die, cu);
14938 if (target_type != this_type)
14939 TYPE_TARGET_TYPE (this_type) = target_type;
14940 else
14941 {
14942 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14943 spec and cause infinite loops in GDB. */
14944 complaint (&symfile_complaints,
14945 _("Self-referential DW_TAG_typedef "
14946 "- DIE at 0x%x [in module %s]"),
14947 die->offset.sect_off, objfile_name (objfile));
14948 TYPE_TARGET_TYPE (this_type) = NULL;
14949 }
14950 return this_type;
14951 }
14952
14953 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
14954 (which may be different from NAME) to the architecture back-end to allow
14955 it to guess the correct format if necessary. */
14956
14957 static struct type *
14958 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
14959 const char *name_hint)
14960 {
14961 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14962 const struct floatformat **format;
14963 struct type *type;
14964
14965 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
14966 if (format)
14967 type = init_float_type (objfile, bits, name, format);
14968 else
14969 type = init_type (objfile, TYPE_CODE_ERROR, bits / TARGET_CHAR_BIT, name);
14970
14971 return type;
14972 }
14973
14974 /* Find a representation of a given base type and install
14975 it in the TYPE field of the die. */
14976
14977 static struct type *
14978 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14979 {
14980 struct objfile *objfile = cu->objfile;
14981 struct type *type;
14982 struct attribute *attr;
14983 int encoding = 0, bits = 0;
14984 const char *name;
14985
14986 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14987 if (attr)
14988 {
14989 encoding = DW_UNSND (attr);
14990 }
14991 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14992 if (attr)
14993 {
14994 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
14995 }
14996 name = dwarf2_name (die, cu);
14997 if (!name)
14998 {
14999 complaint (&symfile_complaints,
15000 _("DW_AT_name missing from DW_TAG_base_type"));
15001 }
15002
15003 switch (encoding)
15004 {
15005 case DW_ATE_address:
15006 /* Turn DW_ATE_address into a void * pointer. */
15007 type = init_type (objfile, TYPE_CODE_VOID, 1, NULL);
15008 type = init_pointer_type (objfile, bits, name, type);
15009 break;
15010 case DW_ATE_boolean:
15011 type = init_boolean_type (objfile, bits, 1, name);
15012 break;
15013 case DW_ATE_complex_float:
15014 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
15015 type = init_complex_type (objfile, name, type);
15016 break;
15017 case DW_ATE_decimal_float:
15018 type = init_decfloat_type (objfile, bits, name);
15019 break;
15020 case DW_ATE_float:
15021 type = dwarf2_init_float_type (objfile, bits, name, name);
15022 break;
15023 case DW_ATE_signed:
15024 type = init_integer_type (objfile, bits, 0, name);
15025 break;
15026 case DW_ATE_unsigned:
15027 if (cu->language == language_fortran
15028 && name
15029 && startswith (name, "character("))
15030 type = init_character_type (objfile, bits, 1, name);
15031 else
15032 type = init_integer_type (objfile, bits, 1, name);
15033 break;
15034 case DW_ATE_signed_char:
15035 if (cu->language == language_ada || cu->language == language_m2
15036 || cu->language == language_pascal
15037 || cu->language == language_fortran)
15038 type = init_character_type (objfile, bits, 0, name);
15039 else
15040 type = init_integer_type (objfile, bits, 0, name);
15041 break;
15042 case DW_ATE_unsigned_char:
15043 if (cu->language == language_ada || cu->language == language_m2
15044 || cu->language == language_pascal
15045 || cu->language == language_fortran
15046 || cu->language == language_rust)
15047 type = init_character_type (objfile, bits, 1, name);
15048 else
15049 type = init_integer_type (objfile, bits, 1, name);
15050 break;
15051 case DW_ATE_UTF:
15052 /* We just treat this as an integer and then recognize the
15053 type by name elsewhere. */
15054 type = init_integer_type (objfile, bits, 0, name);
15055 break;
15056
15057 default:
15058 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
15059 dwarf_type_encoding_name (encoding));
15060 type = init_type (objfile, TYPE_CODE_ERROR,
15061 bits / TARGET_CHAR_BIT, name);
15062 break;
15063 }
15064
15065 if (name && strcmp (name, "char") == 0)
15066 TYPE_NOSIGN (type) = 1;
15067
15068 return set_die_type (die, type, cu);
15069 }
15070
15071 /* Parse dwarf attribute if it's a block, reference or constant and put the
15072 resulting value of the attribute into struct bound_prop.
15073 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
15074
15075 static int
15076 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
15077 struct dwarf2_cu *cu, struct dynamic_prop *prop)
15078 {
15079 struct dwarf2_property_baton *baton;
15080 struct obstack *obstack = &cu->objfile->objfile_obstack;
15081
15082 if (attr == NULL || prop == NULL)
15083 return 0;
15084
15085 if (attr_form_is_block (attr))
15086 {
15087 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15088 baton->referenced_type = NULL;
15089 baton->locexpr.per_cu = cu->per_cu;
15090 baton->locexpr.size = DW_BLOCK (attr)->size;
15091 baton->locexpr.data = DW_BLOCK (attr)->data;
15092 prop->data.baton = baton;
15093 prop->kind = PROP_LOCEXPR;
15094 gdb_assert (prop->data.baton != NULL);
15095 }
15096 else if (attr_form_is_ref (attr))
15097 {
15098 struct dwarf2_cu *target_cu = cu;
15099 struct die_info *target_die;
15100 struct attribute *target_attr;
15101
15102 target_die = follow_die_ref (die, attr, &target_cu);
15103 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
15104 if (target_attr == NULL)
15105 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
15106 target_cu);
15107 if (target_attr == NULL)
15108 return 0;
15109
15110 switch (target_attr->name)
15111 {
15112 case DW_AT_location:
15113 if (attr_form_is_section_offset (target_attr))
15114 {
15115 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15116 baton->referenced_type = die_type (target_die, target_cu);
15117 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
15118 prop->data.baton = baton;
15119 prop->kind = PROP_LOCLIST;
15120 gdb_assert (prop->data.baton != NULL);
15121 }
15122 else if (attr_form_is_block (target_attr))
15123 {
15124 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15125 baton->referenced_type = die_type (target_die, target_cu);
15126 baton->locexpr.per_cu = cu->per_cu;
15127 baton->locexpr.size = DW_BLOCK (target_attr)->size;
15128 baton->locexpr.data = DW_BLOCK (target_attr)->data;
15129 prop->data.baton = baton;
15130 prop->kind = PROP_LOCEXPR;
15131 gdb_assert (prop->data.baton != NULL);
15132 }
15133 else
15134 {
15135 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15136 "dynamic property");
15137 return 0;
15138 }
15139 break;
15140 case DW_AT_data_member_location:
15141 {
15142 LONGEST offset;
15143
15144 if (!handle_data_member_location (target_die, target_cu,
15145 &offset))
15146 return 0;
15147
15148 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15149 baton->referenced_type = read_type_die (target_die->parent,
15150 target_cu);
15151 baton->offset_info.offset = offset;
15152 baton->offset_info.type = die_type (target_die, target_cu);
15153 prop->data.baton = baton;
15154 prop->kind = PROP_ADDR_OFFSET;
15155 break;
15156 }
15157 }
15158 }
15159 else if (attr_form_is_constant (attr))
15160 {
15161 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
15162 prop->kind = PROP_CONST;
15163 }
15164 else
15165 {
15166 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
15167 dwarf2_name (die, cu));
15168 return 0;
15169 }
15170
15171 return 1;
15172 }
15173
15174 /* Read the given DW_AT_subrange DIE. */
15175
15176 static struct type *
15177 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
15178 {
15179 struct type *base_type, *orig_base_type;
15180 struct type *range_type;
15181 struct attribute *attr;
15182 struct dynamic_prop low, high;
15183 int low_default_is_valid;
15184 int high_bound_is_count = 0;
15185 const char *name;
15186 LONGEST negative_mask;
15187
15188 orig_base_type = die_type (die, cu);
15189 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
15190 whereas the real type might be. So, we use ORIG_BASE_TYPE when
15191 creating the range type, but we use the result of check_typedef
15192 when examining properties of the type. */
15193 base_type = check_typedef (orig_base_type);
15194
15195 /* The die_type call above may have already set the type for this DIE. */
15196 range_type = get_die_type (die, cu);
15197 if (range_type)
15198 return range_type;
15199
15200 low.kind = PROP_CONST;
15201 high.kind = PROP_CONST;
15202 high.data.const_val = 0;
15203
15204 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
15205 omitting DW_AT_lower_bound. */
15206 switch (cu->language)
15207 {
15208 case language_c:
15209 case language_cplus:
15210 low.data.const_val = 0;
15211 low_default_is_valid = 1;
15212 break;
15213 case language_fortran:
15214 low.data.const_val = 1;
15215 low_default_is_valid = 1;
15216 break;
15217 case language_d:
15218 case language_objc:
15219 case language_rust:
15220 low.data.const_val = 0;
15221 low_default_is_valid = (cu->header.version >= 4);
15222 break;
15223 case language_ada:
15224 case language_m2:
15225 case language_pascal:
15226 low.data.const_val = 1;
15227 low_default_is_valid = (cu->header.version >= 4);
15228 break;
15229 default:
15230 low.data.const_val = 0;
15231 low_default_is_valid = 0;
15232 break;
15233 }
15234
15235 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
15236 if (attr)
15237 attr_to_dynamic_prop (attr, die, cu, &low);
15238 else if (!low_default_is_valid)
15239 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
15240 "- DIE at 0x%x [in module %s]"),
15241 die->offset.sect_off, objfile_name (cu->objfile));
15242
15243 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
15244 if (!attr_to_dynamic_prop (attr, die, cu, &high))
15245 {
15246 attr = dwarf2_attr (die, DW_AT_count, cu);
15247 if (attr_to_dynamic_prop (attr, die, cu, &high))
15248 {
15249 /* If bounds are constant do the final calculation here. */
15250 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
15251 high.data.const_val = low.data.const_val + high.data.const_val - 1;
15252 else
15253 high_bound_is_count = 1;
15254 }
15255 }
15256
15257 /* Dwarf-2 specifications explicitly allows to create subrange types
15258 without specifying a base type.
15259 In that case, the base type must be set to the type of
15260 the lower bound, upper bound or count, in that order, if any of these
15261 three attributes references an object that has a type.
15262 If no base type is found, the Dwarf-2 specifications say that
15263 a signed integer type of size equal to the size of an address should
15264 be used.
15265 For the following C code: `extern char gdb_int [];'
15266 GCC produces an empty range DIE.
15267 FIXME: muller/2010-05-28: Possible references to object for low bound,
15268 high bound or count are not yet handled by this code. */
15269 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15270 {
15271 struct objfile *objfile = cu->objfile;
15272 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15273 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15274 struct type *int_type = objfile_type (objfile)->builtin_int;
15275
15276 /* Test "int", "long int", and "long long int" objfile types,
15277 and select the first one having a size above or equal to the
15278 architecture address size. */
15279 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15280 base_type = int_type;
15281 else
15282 {
15283 int_type = objfile_type (objfile)->builtin_long;
15284 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15285 base_type = int_type;
15286 else
15287 {
15288 int_type = objfile_type (objfile)->builtin_long_long;
15289 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15290 base_type = int_type;
15291 }
15292 }
15293 }
15294
15295 /* Normally, the DWARF producers are expected to use a signed
15296 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15297 But this is unfortunately not always the case, as witnessed
15298 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15299 is used instead. To work around that ambiguity, we treat
15300 the bounds as signed, and thus sign-extend their values, when
15301 the base type is signed. */
15302 negative_mask =
15303 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
15304 if (low.kind == PROP_CONST
15305 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15306 low.data.const_val |= negative_mask;
15307 if (high.kind == PROP_CONST
15308 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15309 high.data.const_val |= negative_mask;
15310
15311 range_type = create_range_type (NULL, orig_base_type, &low, &high);
15312
15313 if (high_bound_is_count)
15314 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15315
15316 /* Ada expects an empty array on no boundary attributes. */
15317 if (attr == NULL && cu->language != language_ada)
15318 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
15319
15320 name = dwarf2_name (die, cu);
15321 if (name)
15322 TYPE_NAME (range_type) = name;
15323
15324 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15325 if (attr)
15326 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15327
15328 set_die_type (die, range_type, cu);
15329
15330 /* set_die_type should be already done. */
15331 set_descriptive_type (range_type, die, cu);
15332
15333 return range_type;
15334 }
15335
15336 static struct type *
15337 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15338 {
15339 struct type *type;
15340
15341 /* For now, we only support the C meaning of an unspecified type: void. */
15342
15343 type = init_type (cu->objfile, TYPE_CODE_VOID, 0, NULL);
15344 TYPE_NAME (type) = dwarf2_name (die, cu);
15345
15346 return set_die_type (die, type, cu);
15347 }
15348
15349 /* Read a single die and all its descendents. Set the die's sibling
15350 field to NULL; set other fields in the die correctly, and set all
15351 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15352 location of the info_ptr after reading all of those dies. PARENT
15353 is the parent of the die in question. */
15354
15355 static struct die_info *
15356 read_die_and_children (const struct die_reader_specs *reader,
15357 const gdb_byte *info_ptr,
15358 const gdb_byte **new_info_ptr,
15359 struct die_info *parent)
15360 {
15361 struct die_info *die;
15362 const gdb_byte *cur_ptr;
15363 int has_children;
15364
15365 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
15366 if (die == NULL)
15367 {
15368 *new_info_ptr = cur_ptr;
15369 return NULL;
15370 }
15371 store_in_ref_table (die, reader->cu);
15372
15373 if (has_children)
15374 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
15375 else
15376 {
15377 die->child = NULL;
15378 *new_info_ptr = cur_ptr;
15379 }
15380
15381 die->sibling = NULL;
15382 die->parent = parent;
15383 return die;
15384 }
15385
15386 /* Read a die, all of its descendents, and all of its siblings; set
15387 all of the fields of all of the dies correctly. Arguments are as
15388 in read_die_and_children. */
15389
15390 static struct die_info *
15391 read_die_and_siblings_1 (const struct die_reader_specs *reader,
15392 const gdb_byte *info_ptr,
15393 const gdb_byte **new_info_ptr,
15394 struct die_info *parent)
15395 {
15396 struct die_info *first_die, *last_sibling;
15397 const gdb_byte *cur_ptr;
15398
15399 cur_ptr = info_ptr;
15400 first_die = last_sibling = NULL;
15401
15402 while (1)
15403 {
15404 struct die_info *die
15405 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
15406
15407 if (die == NULL)
15408 {
15409 *new_info_ptr = cur_ptr;
15410 return first_die;
15411 }
15412
15413 if (!first_die)
15414 first_die = die;
15415 else
15416 last_sibling->sibling = die;
15417
15418 last_sibling = die;
15419 }
15420 }
15421
15422 /* Read a die, all of its descendents, and all of its siblings; set
15423 all of the fields of all of the dies correctly. Arguments are as
15424 in read_die_and_children.
15425 This the main entry point for reading a DIE and all its children. */
15426
15427 static struct die_info *
15428 read_die_and_siblings (const struct die_reader_specs *reader,
15429 const gdb_byte *info_ptr,
15430 const gdb_byte **new_info_ptr,
15431 struct die_info *parent)
15432 {
15433 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15434 new_info_ptr, parent);
15435
15436 if (dwarf_die_debug)
15437 {
15438 fprintf_unfiltered (gdb_stdlog,
15439 "Read die from %s@0x%x of %s:\n",
15440 get_section_name (reader->die_section),
15441 (unsigned) (info_ptr - reader->die_section->buffer),
15442 bfd_get_filename (reader->abfd));
15443 dump_die (die, dwarf_die_debug);
15444 }
15445
15446 return die;
15447 }
15448
15449 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15450 attributes.
15451 The caller is responsible for filling in the extra attributes
15452 and updating (*DIEP)->num_attrs.
15453 Set DIEP to point to a newly allocated die with its information,
15454 except for its child, sibling, and parent fields.
15455 Set HAS_CHILDREN to tell whether the die has children or not. */
15456
15457 static const gdb_byte *
15458 read_full_die_1 (const struct die_reader_specs *reader,
15459 struct die_info **diep, const gdb_byte *info_ptr,
15460 int *has_children, int num_extra_attrs)
15461 {
15462 unsigned int abbrev_number, bytes_read, i;
15463 sect_offset offset;
15464 struct abbrev_info *abbrev;
15465 struct die_info *die;
15466 struct dwarf2_cu *cu = reader->cu;
15467 bfd *abfd = reader->abfd;
15468
15469 offset.sect_off = info_ptr - reader->buffer;
15470 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15471 info_ptr += bytes_read;
15472 if (!abbrev_number)
15473 {
15474 *diep = NULL;
15475 *has_children = 0;
15476 return info_ptr;
15477 }
15478
15479 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
15480 if (!abbrev)
15481 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15482 abbrev_number,
15483 bfd_get_filename (abfd));
15484
15485 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
15486 die->offset = offset;
15487 die->tag = abbrev->tag;
15488 die->abbrev = abbrev_number;
15489
15490 /* Make the result usable.
15491 The caller needs to update num_attrs after adding the extra
15492 attributes. */
15493 die->num_attrs = abbrev->num_attrs;
15494
15495 for (i = 0; i < abbrev->num_attrs; ++i)
15496 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15497 info_ptr);
15498
15499 *diep = die;
15500 *has_children = abbrev->has_children;
15501 return info_ptr;
15502 }
15503
15504 /* Read a die and all its attributes.
15505 Set DIEP to point to a newly allocated die with its information,
15506 except for its child, sibling, and parent fields.
15507 Set HAS_CHILDREN to tell whether the die has children or not. */
15508
15509 static const gdb_byte *
15510 read_full_die (const struct die_reader_specs *reader,
15511 struct die_info **diep, const gdb_byte *info_ptr,
15512 int *has_children)
15513 {
15514 const gdb_byte *result;
15515
15516 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15517
15518 if (dwarf_die_debug)
15519 {
15520 fprintf_unfiltered (gdb_stdlog,
15521 "Read die from %s@0x%x of %s:\n",
15522 get_section_name (reader->die_section),
15523 (unsigned) (info_ptr - reader->die_section->buffer),
15524 bfd_get_filename (reader->abfd));
15525 dump_die (*diep, dwarf_die_debug);
15526 }
15527
15528 return result;
15529 }
15530 \f
15531 /* Abbreviation tables.
15532
15533 In DWARF version 2, the description of the debugging information is
15534 stored in a separate .debug_abbrev section. Before we read any
15535 dies from a section we read in all abbreviations and install them
15536 in a hash table. */
15537
15538 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15539
15540 static struct abbrev_info *
15541 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15542 {
15543 struct abbrev_info *abbrev;
15544
15545 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
15546 memset (abbrev, 0, sizeof (struct abbrev_info));
15547
15548 return abbrev;
15549 }
15550
15551 /* Add an abbreviation to the table. */
15552
15553 static void
15554 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15555 unsigned int abbrev_number,
15556 struct abbrev_info *abbrev)
15557 {
15558 unsigned int hash_number;
15559
15560 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15561 abbrev->next = abbrev_table->abbrevs[hash_number];
15562 abbrev_table->abbrevs[hash_number] = abbrev;
15563 }
15564
15565 /* Look up an abbrev in the table.
15566 Returns NULL if the abbrev is not found. */
15567
15568 static struct abbrev_info *
15569 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15570 unsigned int abbrev_number)
15571 {
15572 unsigned int hash_number;
15573 struct abbrev_info *abbrev;
15574
15575 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15576 abbrev = abbrev_table->abbrevs[hash_number];
15577
15578 while (abbrev)
15579 {
15580 if (abbrev->number == abbrev_number)
15581 return abbrev;
15582 abbrev = abbrev->next;
15583 }
15584 return NULL;
15585 }
15586
15587 /* Read in an abbrev table. */
15588
15589 static struct abbrev_table *
15590 abbrev_table_read_table (struct dwarf2_section_info *section,
15591 sect_offset offset)
15592 {
15593 struct objfile *objfile = dwarf2_per_objfile->objfile;
15594 bfd *abfd = get_section_bfd_owner (section);
15595 struct abbrev_table *abbrev_table;
15596 const gdb_byte *abbrev_ptr;
15597 struct abbrev_info *cur_abbrev;
15598 unsigned int abbrev_number, bytes_read, abbrev_name;
15599 unsigned int abbrev_form;
15600 struct attr_abbrev *cur_attrs;
15601 unsigned int allocated_attrs;
15602
15603 abbrev_table = XNEW (struct abbrev_table);
15604 abbrev_table->offset = offset;
15605 obstack_init (&abbrev_table->abbrev_obstack);
15606 abbrev_table->abbrevs =
15607 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15608 ABBREV_HASH_SIZE);
15609 memset (abbrev_table->abbrevs, 0,
15610 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15611
15612 dwarf2_read_section (objfile, section);
15613 abbrev_ptr = section->buffer + offset.sect_off;
15614 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15615 abbrev_ptr += bytes_read;
15616
15617 allocated_attrs = ATTR_ALLOC_CHUNK;
15618 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
15619
15620 /* Loop until we reach an abbrev number of 0. */
15621 while (abbrev_number)
15622 {
15623 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15624
15625 /* read in abbrev header */
15626 cur_abbrev->number = abbrev_number;
15627 cur_abbrev->tag
15628 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15629 abbrev_ptr += bytes_read;
15630 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15631 abbrev_ptr += 1;
15632
15633 /* now read in declarations */
15634 for (;;)
15635 {
15636 LONGEST implicit_const;
15637
15638 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15639 abbrev_ptr += bytes_read;
15640 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15641 abbrev_ptr += bytes_read;
15642 if (abbrev_form == DW_FORM_implicit_const)
15643 {
15644 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
15645 &bytes_read);
15646 abbrev_ptr += bytes_read;
15647 }
15648 else
15649 {
15650 /* Initialize it due to a false compiler warning. */
15651 implicit_const = -1;
15652 }
15653
15654 if (abbrev_name == 0)
15655 break;
15656
15657 if (cur_abbrev->num_attrs == allocated_attrs)
15658 {
15659 allocated_attrs += ATTR_ALLOC_CHUNK;
15660 cur_attrs
15661 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
15662 }
15663
15664 cur_attrs[cur_abbrev->num_attrs].name
15665 = (enum dwarf_attribute) abbrev_name;
15666 cur_attrs[cur_abbrev->num_attrs].form
15667 = (enum dwarf_form) abbrev_form;
15668 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
15669 ++cur_abbrev->num_attrs;
15670 }
15671
15672 cur_abbrev->attrs =
15673 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15674 cur_abbrev->num_attrs);
15675 memcpy (cur_abbrev->attrs, cur_attrs,
15676 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15677
15678 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15679
15680 /* Get next abbreviation.
15681 Under Irix6 the abbreviations for a compilation unit are not
15682 always properly terminated with an abbrev number of 0.
15683 Exit loop if we encounter an abbreviation which we have
15684 already read (which means we are about to read the abbreviations
15685 for the next compile unit) or if the end of the abbreviation
15686 table is reached. */
15687 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15688 break;
15689 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15690 abbrev_ptr += bytes_read;
15691 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15692 break;
15693 }
15694
15695 xfree (cur_attrs);
15696 return abbrev_table;
15697 }
15698
15699 /* Free the resources held by ABBREV_TABLE. */
15700
15701 static void
15702 abbrev_table_free (struct abbrev_table *abbrev_table)
15703 {
15704 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15705 xfree (abbrev_table);
15706 }
15707
15708 /* Same as abbrev_table_free but as a cleanup.
15709 We pass in a pointer to the pointer to the table so that we can
15710 set the pointer to NULL when we're done. It also simplifies
15711 build_type_psymtabs_1. */
15712
15713 static void
15714 abbrev_table_free_cleanup (void *table_ptr)
15715 {
15716 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
15717
15718 if (*abbrev_table_ptr != NULL)
15719 abbrev_table_free (*abbrev_table_ptr);
15720 *abbrev_table_ptr = NULL;
15721 }
15722
15723 /* Read the abbrev table for CU from ABBREV_SECTION. */
15724
15725 static void
15726 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15727 struct dwarf2_section_info *abbrev_section)
15728 {
15729 cu->abbrev_table =
15730 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15731 }
15732
15733 /* Release the memory used by the abbrev table for a compilation unit. */
15734
15735 static void
15736 dwarf2_free_abbrev_table (void *ptr_to_cu)
15737 {
15738 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
15739
15740 if (cu->abbrev_table != NULL)
15741 abbrev_table_free (cu->abbrev_table);
15742 /* Set this to NULL so that we SEGV if we try to read it later,
15743 and also because free_comp_unit verifies this is NULL. */
15744 cu->abbrev_table = NULL;
15745 }
15746 \f
15747 /* Returns nonzero if TAG represents a type that we might generate a partial
15748 symbol for. */
15749
15750 static int
15751 is_type_tag_for_partial (int tag)
15752 {
15753 switch (tag)
15754 {
15755 #if 0
15756 /* Some types that would be reasonable to generate partial symbols for,
15757 that we don't at present. */
15758 case DW_TAG_array_type:
15759 case DW_TAG_file_type:
15760 case DW_TAG_ptr_to_member_type:
15761 case DW_TAG_set_type:
15762 case DW_TAG_string_type:
15763 case DW_TAG_subroutine_type:
15764 #endif
15765 case DW_TAG_base_type:
15766 case DW_TAG_class_type:
15767 case DW_TAG_interface_type:
15768 case DW_TAG_enumeration_type:
15769 case DW_TAG_structure_type:
15770 case DW_TAG_subrange_type:
15771 case DW_TAG_typedef:
15772 case DW_TAG_union_type:
15773 return 1;
15774 default:
15775 return 0;
15776 }
15777 }
15778
15779 /* Load all DIEs that are interesting for partial symbols into memory. */
15780
15781 static struct partial_die_info *
15782 load_partial_dies (const struct die_reader_specs *reader,
15783 const gdb_byte *info_ptr, int building_psymtab)
15784 {
15785 struct dwarf2_cu *cu = reader->cu;
15786 struct objfile *objfile = cu->objfile;
15787 struct partial_die_info *part_die;
15788 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15789 struct abbrev_info *abbrev;
15790 unsigned int bytes_read;
15791 unsigned int load_all = 0;
15792 int nesting_level = 1;
15793
15794 parent_die = NULL;
15795 last_die = NULL;
15796
15797 gdb_assert (cu->per_cu != NULL);
15798 if (cu->per_cu->load_all_dies)
15799 load_all = 1;
15800
15801 cu->partial_dies
15802 = htab_create_alloc_ex (cu->header.length / 12,
15803 partial_die_hash,
15804 partial_die_eq,
15805 NULL,
15806 &cu->comp_unit_obstack,
15807 hashtab_obstack_allocate,
15808 dummy_obstack_deallocate);
15809
15810 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
15811
15812 while (1)
15813 {
15814 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15815
15816 /* A NULL abbrev means the end of a series of children. */
15817 if (abbrev == NULL)
15818 {
15819 if (--nesting_level == 0)
15820 {
15821 /* PART_DIE was probably the last thing allocated on the
15822 comp_unit_obstack, so we could call obstack_free
15823 here. We don't do that because the waste is small,
15824 and will be cleaned up when we're done with this
15825 compilation unit. This way, we're also more robust
15826 against other users of the comp_unit_obstack. */
15827 return first_die;
15828 }
15829 info_ptr += bytes_read;
15830 last_die = parent_die;
15831 parent_die = parent_die->die_parent;
15832 continue;
15833 }
15834
15835 /* Check for template arguments. We never save these; if
15836 they're seen, we just mark the parent, and go on our way. */
15837 if (parent_die != NULL
15838 && cu->language == language_cplus
15839 && (abbrev->tag == DW_TAG_template_type_param
15840 || abbrev->tag == DW_TAG_template_value_param))
15841 {
15842 parent_die->has_template_arguments = 1;
15843
15844 if (!load_all)
15845 {
15846 /* We don't need a partial DIE for the template argument. */
15847 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15848 continue;
15849 }
15850 }
15851
15852 /* We only recurse into c++ subprograms looking for template arguments.
15853 Skip their other children. */
15854 if (!load_all
15855 && cu->language == language_cplus
15856 && parent_die != NULL
15857 && parent_die->tag == DW_TAG_subprogram)
15858 {
15859 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15860 continue;
15861 }
15862
15863 /* Check whether this DIE is interesting enough to save. Normally
15864 we would not be interested in members here, but there may be
15865 later variables referencing them via DW_AT_specification (for
15866 static members). */
15867 if (!load_all
15868 && !is_type_tag_for_partial (abbrev->tag)
15869 && abbrev->tag != DW_TAG_constant
15870 && abbrev->tag != DW_TAG_enumerator
15871 && abbrev->tag != DW_TAG_subprogram
15872 && abbrev->tag != DW_TAG_lexical_block
15873 && abbrev->tag != DW_TAG_variable
15874 && abbrev->tag != DW_TAG_namespace
15875 && abbrev->tag != DW_TAG_module
15876 && abbrev->tag != DW_TAG_member
15877 && abbrev->tag != DW_TAG_imported_unit
15878 && abbrev->tag != DW_TAG_imported_declaration)
15879 {
15880 /* Otherwise we skip to the next sibling, if any. */
15881 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15882 continue;
15883 }
15884
15885 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15886 info_ptr);
15887
15888 /* This two-pass algorithm for processing partial symbols has a
15889 high cost in cache pressure. Thus, handle some simple cases
15890 here which cover the majority of C partial symbols. DIEs
15891 which neither have specification tags in them, nor could have
15892 specification tags elsewhere pointing at them, can simply be
15893 processed and discarded.
15894
15895 This segment is also optional; scan_partial_symbols and
15896 add_partial_symbol will handle these DIEs if we chain
15897 them in normally. When compilers which do not emit large
15898 quantities of duplicate debug information are more common,
15899 this code can probably be removed. */
15900
15901 /* Any complete simple types at the top level (pretty much all
15902 of them, for a language without namespaces), can be processed
15903 directly. */
15904 if (parent_die == NULL
15905 && part_die->has_specification == 0
15906 && part_die->is_declaration == 0
15907 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15908 || part_die->tag == DW_TAG_base_type
15909 || part_die->tag == DW_TAG_subrange_type))
15910 {
15911 if (building_psymtab && part_die->name != NULL)
15912 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15913 VAR_DOMAIN, LOC_TYPEDEF,
15914 &objfile->static_psymbols,
15915 0, cu->language, objfile);
15916 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15917 continue;
15918 }
15919
15920 /* The exception for DW_TAG_typedef with has_children above is
15921 a workaround of GCC PR debug/47510. In the case of this complaint
15922 type_name_no_tag_or_error will error on such types later.
15923
15924 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15925 it could not find the child DIEs referenced later, this is checked
15926 above. In correct DWARF DW_TAG_typedef should have no children. */
15927
15928 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15929 complaint (&symfile_complaints,
15930 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15931 "- DIE at 0x%x [in module %s]"),
15932 part_die->offset.sect_off, objfile_name (objfile));
15933
15934 /* If we're at the second level, and we're an enumerator, and
15935 our parent has no specification (meaning possibly lives in a
15936 namespace elsewhere), then we can add the partial symbol now
15937 instead of queueing it. */
15938 if (part_die->tag == DW_TAG_enumerator
15939 && parent_die != NULL
15940 && parent_die->die_parent == NULL
15941 && parent_die->tag == DW_TAG_enumeration_type
15942 && parent_die->has_specification == 0)
15943 {
15944 if (part_die->name == NULL)
15945 complaint (&symfile_complaints,
15946 _("malformed enumerator DIE ignored"));
15947 else if (building_psymtab)
15948 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15949 VAR_DOMAIN, LOC_CONST,
15950 cu->language == language_cplus
15951 ? &objfile->global_psymbols
15952 : &objfile->static_psymbols,
15953 0, cu->language, objfile);
15954
15955 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15956 continue;
15957 }
15958
15959 /* We'll save this DIE so link it in. */
15960 part_die->die_parent = parent_die;
15961 part_die->die_sibling = NULL;
15962 part_die->die_child = NULL;
15963
15964 if (last_die && last_die == parent_die)
15965 last_die->die_child = part_die;
15966 else if (last_die)
15967 last_die->die_sibling = part_die;
15968
15969 last_die = part_die;
15970
15971 if (first_die == NULL)
15972 first_die = part_die;
15973
15974 /* Maybe add the DIE to the hash table. Not all DIEs that we
15975 find interesting need to be in the hash table, because we
15976 also have the parent/sibling/child chains; only those that we
15977 might refer to by offset later during partial symbol reading.
15978
15979 For now this means things that might have be the target of a
15980 DW_AT_specification, DW_AT_abstract_origin, or
15981 DW_AT_extension. DW_AT_extension will refer only to
15982 namespaces; DW_AT_abstract_origin refers to functions (and
15983 many things under the function DIE, but we do not recurse
15984 into function DIEs during partial symbol reading) and
15985 possibly variables as well; DW_AT_specification refers to
15986 declarations. Declarations ought to have the DW_AT_declaration
15987 flag. It happens that GCC forgets to put it in sometimes, but
15988 only for functions, not for types.
15989
15990 Adding more things than necessary to the hash table is harmless
15991 except for the performance cost. Adding too few will result in
15992 wasted time in find_partial_die, when we reread the compilation
15993 unit with load_all_dies set. */
15994
15995 if (load_all
15996 || abbrev->tag == DW_TAG_constant
15997 || abbrev->tag == DW_TAG_subprogram
15998 || abbrev->tag == DW_TAG_variable
15999 || abbrev->tag == DW_TAG_namespace
16000 || part_die->is_declaration)
16001 {
16002 void **slot;
16003
16004 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
16005 part_die->offset.sect_off, INSERT);
16006 *slot = part_die;
16007 }
16008
16009 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
16010
16011 /* For some DIEs we want to follow their children (if any). For C
16012 we have no reason to follow the children of structures; for other
16013 languages we have to, so that we can get at method physnames
16014 to infer fully qualified class names, for DW_AT_specification,
16015 and for C++ template arguments. For C++, we also look one level
16016 inside functions to find template arguments (if the name of the
16017 function does not already contain the template arguments).
16018
16019 For Ada, we need to scan the children of subprograms and lexical
16020 blocks as well because Ada allows the definition of nested
16021 entities that could be interesting for the debugger, such as
16022 nested subprograms for instance. */
16023 if (last_die->has_children
16024 && (load_all
16025 || last_die->tag == DW_TAG_namespace
16026 || last_die->tag == DW_TAG_module
16027 || last_die->tag == DW_TAG_enumeration_type
16028 || (cu->language == language_cplus
16029 && last_die->tag == DW_TAG_subprogram
16030 && (last_die->name == NULL
16031 || strchr (last_die->name, '<') == NULL))
16032 || (cu->language != language_c
16033 && (last_die->tag == DW_TAG_class_type
16034 || last_die->tag == DW_TAG_interface_type
16035 || last_die->tag == DW_TAG_structure_type
16036 || last_die->tag == DW_TAG_union_type))
16037 || (cu->language == language_ada
16038 && (last_die->tag == DW_TAG_subprogram
16039 || last_die->tag == DW_TAG_lexical_block))))
16040 {
16041 nesting_level++;
16042 parent_die = last_die;
16043 continue;
16044 }
16045
16046 /* Otherwise we skip to the next sibling, if any. */
16047 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
16048
16049 /* Back to the top, do it again. */
16050 }
16051 }
16052
16053 /* Read a minimal amount of information into the minimal die structure. */
16054
16055 static const gdb_byte *
16056 read_partial_die (const struct die_reader_specs *reader,
16057 struct partial_die_info *part_die,
16058 struct abbrev_info *abbrev, unsigned int abbrev_len,
16059 const gdb_byte *info_ptr)
16060 {
16061 struct dwarf2_cu *cu = reader->cu;
16062 struct objfile *objfile = cu->objfile;
16063 const gdb_byte *buffer = reader->buffer;
16064 unsigned int i;
16065 struct attribute attr;
16066 int has_low_pc_attr = 0;
16067 int has_high_pc_attr = 0;
16068 int high_pc_relative = 0;
16069
16070 memset (part_die, 0, sizeof (struct partial_die_info));
16071
16072 part_die->offset.sect_off = info_ptr - buffer;
16073
16074 info_ptr += abbrev_len;
16075
16076 if (abbrev == NULL)
16077 return info_ptr;
16078
16079 part_die->tag = abbrev->tag;
16080 part_die->has_children = abbrev->has_children;
16081
16082 for (i = 0; i < abbrev->num_attrs; ++i)
16083 {
16084 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
16085
16086 /* Store the data if it is of an attribute we want to keep in a
16087 partial symbol table. */
16088 switch (attr.name)
16089 {
16090 case DW_AT_name:
16091 switch (part_die->tag)
16092 {
16093 case DW_TAG_compile_unit:
16094 case DW_TAG_partial_unit:
16095 case DW_TAG_type_unit:
16096 /* Compilation units have a DW_AT_name that is a filename, not
16097 a source language identifier. */
16098 case DW_TAG_enumeration_type:
16099 case DW_TAG_enumerator:
16100 /* These tags always have simple identifiers already; no need
16101 to canonicalize them. */
16102 part_die->name = DW_STRING (&attr);
16103 break;
16104 default:
16105 part_die->name
16106 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
16107 &objfile->per_bfd->storage_obstack);
16108 break;
16109 }
16110 break;
16111 case DW_AT_linkage_name:
16112 case DW_AT_MIPS_linkage_name:
16113 /* Note that both forms of linkage name might appear. We
16114 assume they will be the same, and we only store the last
16115 one we see. */
16116 if (cu->language == language_ada)
16117 part_die->name = DW_STRING (&attr);
16118 part_die->linkage_name = DW_STRING (&attr);
16119 break;
16120 case DW_AT_low_pc:
16121 has_low_pc_attr = 1;
16122 part_die->lowpc = attr_value_as_address (&attr);
16123 break;
16124 case DW_AT_high_pc:
16125 has_high_pc_attr = 1;
16126 part_die->highpc = attr_value_as_address (&attr);
16127 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
16128 high_pc_relative = 1;
16129 break;
16130 case DW_AT_location:
16131 /* Support the .debug_loc offsets. */
16132 if (attr_form_is_block (&attr))
16133 {
16134 part_die->d.locdesc = DW_BLOCK (&attr);
16135 }
16136 else if (attr_form_is_section_offset (&attr))
16137 {
16138 dwarf2_complex_location_expr_complaint ();
16139 }
16140 else
16141 {
16142 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16143 "partial symbol information");
16144 }
16145 break;
16146 case DW_AT_external:
16147 part_die->is_external = DW_UNSND (&attr);
16148 break;
16149 case DW_AT_declaration:
16150 part_die->is_declaration = DW_UNSND (&attr);
16151 break;
16152 case DW_AT_type:
16153 part_die->has_type = 1;
16154 break;
16155 case DW_AT_abstract_origin:
16156 case DW_AT_specification:
16157 case DW_AT_extension:
16158 part_die->has_specification = 1;
16159 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
16160 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16161 || cu->per_cu->is_dwz);
16162 break;
16163 case DW_AT_sibling:
16164 /* Ignore absolute siblings, they might point outside of
16165 the current compile unit. */
16166 if (attr.form == DW_FORM_ref_addr)
16167 complaint (&symfile_complaints,
16168 _("ignoring absolute DW_AT_sibling"));
16169 else
16170 {
16171 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
16172 const gdb_byte *sibling_ptr = buffer + off;
16173
16174 if (sibling_ptr < info_ptr)
16175 complaint (&symfile_complaints,
16176 _("DW_AT_sibling points backwards"));
16177 else if (sibling_ptr > reader->buffer_end)
16178 dwarf2_section_buffer_overflow_complaint (reader->die_section);
16179 else
16180 part_die->sibling = sibling_ptr;
16181 }
16182 break;
16183 case DW_AT_byte_size:
16184 part_die->has_byte_size = 1;
16185 break;
16186 case DW_AT_const_value:
16187 part_die->has_const_value = 1;
16188 break;
16189 case DW_AT_calling_convention:
16190 /* DWARF doesn't provide a way to identify a program's source-level
16191 entry point. DW_AT_calling_convention attributes are only meant
16192 to describe functions' calling conventions.
16193
16194 However, because it's a necessary piece of information in
16195 Fortran, and before DWARF 4 DW_CC_program was the only
16196 piece of debugging information whose definition refers to
16197 a 'main program' at all, several compilers marked Fortran
16198 main programs with DW_CC_program --- even when those
16199 functions use the standard calling conventions.
16200
16201 Although DWARF now specifies a way to provide this
16202 information, we support this practice for backward
16203 compatibility. */
16204 if (DW_UNSND (&attr) == DW_CC_program
16205 && cu->language == language_fortran)
16206 part_die->main_subprogram = 1;
16207 break;
16208 case DW_AT_inline:
16209 if (DW_UNSND (&attr) == DW_INL_inlined
16210 || DW_UNSND (&attr) == DW_INL_declared_inlined)
16211 part_die->may_be_inlined = 1;
16212 break;
16213
16214 case DW_AT_import:
16215 if (part_die->tag == DW_TAG_imported_unit)
16216 {
16217 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
16218 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16219 || cu->per_cu->is_dwz);
16220 }
16221 break;
16222
16223 case DW_AT_main_subprogram:
16224 part_die->main_subprogram = DW_UNSND (&attr);
16225 break;
16226
16227 default:
16228 break;
16229 }
16230 }
16231
16232 if (high_pc_relative)
16233 part_die->highpc += part_die->lowpc;
16234
16235 if (has_low_pc_attr && has_high_pc_attr)
16236 {
16237 /* When using the GNU linker, .gnu.linkonce. sections are used to
16238 eliminate duplicate copies of functions and vtables and such.
16239 The linker will arbitrarily choose one and discard the others.
16240 The AT_*_pc values for such functions refer to local labels in
16241 these sections. If the section from that file was discarded, the
16242 labels are not in the output, so the relocs get a value of 0.
16243 If this is a discarded function, mark the pc bounds as invalid,
16244 so that GDB will ignore it. */
16245 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
16246 {
16247 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16248
16249 complaint (&symfile_complaints,
16250 _("DW_AT_low_pc %s is zero "
16251 "for DIE at 0x%x [in module %s]"),
16252 paddress (gdbarch, part_die->lowpc),
16253 part_die->offset.sect_off, objfile_name (objfile));
16254 }
16255 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
16256 else if (part_die->lowpc >= part_die->highpc)
16257 {
16258 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16259
16260 complaint (&symfile_complaints,
16261 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
16262 "for DIE at 0x%x [in module %s]"),
16263 paddress (gdbarch, part_die->lowpc),
16264 paddress (gdbarch, part_die->highpc),
16265 part_die->offset.sect_off, objfile_name (objfile));
16266 }
16267 else
16268 part_die->has_pc_info = 1;
16269 }
16270
16271 return info_ptr;
16272 }
16273
16274 /* Find a cached partial DIE at OFFSET in CU. */
16275
16276 static struct partial_die_info *
16277 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
16278 {
16279 struct partial_die_info *lookup_die = NULL;
16280 struct partial_die_info part_die;
16281
16282 part_die.offset = offset;
16283 lookup_die = ((struct partial_die_info *)
16284 htab_find_with_hash (cu->partial_dies, &part_die,
16285 offset.sect_off));
16286
16287 return lookup_die;
16288 }
16289
16290 /* Find a partial DIE at OFFSET, which may or may not be in CU,
16291 except in the case of .debug_types DIEs which do not reference
16292 outside their CU (they do however referencing other types via
16293 DW_FORM_ref_sig8). */
16294
16295 static struct partial_die_info *
16296 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
16297 {
16298 struct objfile *objfile = cu->objfile;
16299 struct dwarf2_per_cu_data *per_cu = NULL;
16300 struct partial_die_info *pd = NULL;
16301
16302 if (offset_in_dwz == cu->per_cu->is_dwz
16303 && offset_in_cu_p (&cu->header, offset))
16304 {
16305 pd = find_partial_die_in_comp_unit (offset, cu);
16306 if (pd != NULL)
16307 return pd;
16308 /* We missed recording what we needed.
16309 Load all dies and try again. */
16310 per_cu = cu->per_cu;
16311 }
16312 else
16313 {
16314 /* TUs don't reference other CUs/TUs (except via type signatures). */
16315 if (cu->per_cu->is_debug_types)
16316 {
16317 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
16318 " external reference to offset 0x%lx [in module %s].\n"),
16319 (long) cu->header.offset.sect_off, (long) offset.sect_off,
16320 bfd_get_filename (objfile->obfd));
16321 }
16322 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
16323 objfile);
16324
16325 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16326 load_partial_comp_unit (per_cu);
16327
16328 per_cu->cu->last_used = 0;
16329 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16330 }
16331
16332 /* If we didn't find it, and not all dies have been loaded,
16333 load them all and try again. */
16334
16335 if (pd == NULL && per_cu->load_all_dies == 0)
16336 {
16337 per_cu->load_all_dies = 1;
16338
16339 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16340 THIS_CU->cu may already be in use. So we can't just free it and
16341 replace its DIEs with the ones we read in. Instead, we leave those
16342 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16343 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16344 set. */
16345 load_partial_comp_unit (per_cu);
16346
16347 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16348 }
16349
16350 if (pd == NULL)
16351 internal_error (__FILE__, __LINE__,
16352 _("could not find partial DIE 0x%x "
16353 "in cache [from module %s]\n"),
16354 offset.sect_off, bfd_get_filename (objfile->obfd));
16355 return pd;
16356 }
16357
16358 /* See if we can figure out if the class lives in a namespace. We do
16359 this by looking for a member function; its demangled name will
16360 contain namespace info, if there is any. */
16361
16362 static void
16363 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16364 struct dwarf2_cu *cu)
16365 {
16366 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16367 what template types look like, because the demangler
16368 frequently doesn't give the same name as the debug info. We
16369 could fix this by only using the demangled name to get the
16370 prefix (but see comment in read_structure_type). */
16371
16372 struct partial_die_info *real_pdi;
16373 struct partial_die_info *child_pdi;
16374
16375 /* If this DIE (this DIE's specification, if any) has a parent, then
16376 we should not do this. We'll prepend the parent's fully qualified
16377 name when we create the partial symbol. */
16378
16379 real_pdi = struct_pdi;
16380 while (real_pdi->has_specification)
16381 real_pdi = find_partial_die (real_pdi->spec_offset,
16382 real_pdi->spec_is_dwz, cu);
16383
16384 if (real_pdi->die_parent != NULL)
16385 return;
16386
16387 for (child_pdi = struct_pdi->die_child;
16388 child_pdi != NULL;
16389 child_pdi = child_pdi->die_sibling)
16390 {
16391 if (child_pdi->tag == DW_TAG_subprogram
16392 && child_pdi->linkage_name != NULL)
16393 {
16394 char *actual_class_name
16395 = language_class_name_from_physname (cu->language_defn,
16396 child_pdi->linkage_name);
16397 if (actual_class_name != NULL)
16398 {
16399 struct_pdi->name
16400 = ((const char *)
16401 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16402 actual_class_name,
16403 strlen (actual_class_name)));
16404 xfree (actual_class_name);
16405 }
16406 break;
16407 }
16408 }
16409 }
16410
16411 /* Adjust PART_DIE before generating a symbol for it. This function
16412 may set the is_external flag or change the DIE's name. */
16413
16414 static void
16415 fixup_partial_die (struct partial_die_info *part_die,
16416 struct dwarf2_cu *cu)
16417 {
16418 /* Once we've fixed up a die, there's no point in doing so again.
16419 This also avoids a memory leak if we were to call
16420 guess_partial_die_structure_name multiple times. */
16421 if (part_die->fixup_called)
16422 return;
16423
16424 /* If we found a reference attribute and the DIE has no name, try
16425 to find a name in the referred to DIE. */
16426
16427 if (part_die->name == NULL && part_die->has_specification)
16428 {
16429 struct partial_die_info *spec_die;
16430
16431 spec_die = find_partial_die (part_die->spec_offset,
16432 part_die->spec_is_dwz, cu);
16433
16434 fixup_partial_die (spec_die, cu);
16435
16436 if (spec_die->name)
16437 {
16438 part_die->name = spec_die->name;
16439
16440 /* Copy DW_AT_external attribute if it is set. */
16441 if (spec_die->is_external)
16442 part_die->is_external = spec_die->is_external;
16443 }
16444 }
16445
16446 /* Set default names for some unnamed DIEs. */
16447
16448 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
16449 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
16450
16451 /* If there is no parent die to provide a namespace, and there are
16452 children, see if we can determine the namespace from their linkage
16453 name. */
16454 if (cu->language == language_cplus
16455 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16456 && part_die->die_parent == NULL
16457 && part_die->has_children
16458 && (part_die->tag == DW_TAG_class_type
16459 || part_die->tag == DW_TAG_structure_type
16460 || part_die->tag == DW_TAG_union_type))
16461 guess_partial_die_structure_name (part_die, cu);
16462
16463 /* GCC might emit a nameless struct or union that has a linkage
16464 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16465 if (part_die->name == NULL
16466 && (part_die->tag == DW_TAG_class_type
16467 || part_die->tag == DW_TAG_interface_type
16468 || part_die->tag == DW_TAG_structure_type
16469 || part_die->tag == DW_TAG_union_type)
16470 && part_die->linkage_name != NULL)
16471 {
16472 char *demangled;
16473
16474 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
16475 if (demangled)
16476 {
16477 const char *base;
16478
16479 /* Strip any leading namespaces/classes, keep only the base name.
16480 DW_AT_name for named DIEs does not contain the prefixes. */
16481 base = strrchr (demangled, ':');
16482 if (base && base > demangled && base[-1] == ':')
16483 base++;
16484 else
16485 base = demangled;
16486
16487 part_die->name
16488 = ((const char *)
16489 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16490 base, strlen (base)));
16491 xfree (demangled);
16492 }
16493 }
16494
16495 part_die->fixup_called = 1;
16496 }
16497
16498 /* Read an attribute value described by an attribute form. */
16499
16500 static const gdb_byte *
16501 read_attribute_value (const struct die_reader_specs *reader,
16502 struct attribute *attr, unsigned form,
16503 LONGEST implicit_const, const gdb_byte *info_ptr)
16504 {
16505 struct dwarf2_cu *cu = reader->cu;
16506 struct objfile *objfile = cu->objfile;
16507 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16508 bfd *abfd = reader->abfd;
16509 struct comp_unit_head *cu_header = &cu->header;
16510 unsigned int bytes_read;
16511 struct dwarf_block *blk;
16512
16513 attr->form = (enum dwarf_form) form;
16514 switch (form)
16515 {
16516 case DW_FORM_ref_addr:
16517 if (cu->header.version == 2)
16518 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16519 else
16520 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16521 &cu->header, &bytes_read);
16522 info_ptr += bytes_read;
16523 break;
16524 case DW_FORM_GNU_ref_alt:
16525 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16526 info_ptr += bytes_read;
16527 break;
16528 case DW_FORM_addr:
16529 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16530 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
16531 info_ptr += bytes_read;
16532 break;
16533 case DW_FORM_block2:
16534 blk = dwarf_alloc_block (cu);
16535 blk->size = read_2_bytes (abfd, info_ptr);
16536 info_ptr += 2;
16537 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16538 info_ptr += blk->size;
16539 DW_BLOCK (attr) = blk;
16540 break;
16541 case DW_FORM_block4:
16542 blk = dwarf_alloc_block (cu);
16543 blk->size = read_4_bytes (abfd, info_ptr);
16544 info_ptr += 4;
16545 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16546 info_ptr += blk->size;
16547 DW_BLOCK (attr) = blk;
16548 break;
16549 case DW_FORM_data2:
16550 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16551 info_ptr += 2;
16552 break;
16553 case DW_FORM_data4:
16554 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16555 info_ptr += 4;
16556 break;
16557 case DW_FORM_data8:
16558 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16559 info_ptr += 8;
16560 break;
16561 case DW_FORM_data16:
16562 blk = dwarf_alloc_block (cu);
16563 blk->size = 16;
16564 blk->data = read_n_bytes (abfd, info_ptr, 16);
16565 info_ptr += 16;
16566 DW_BLOCK (attr) = blk;
16567 break;
16568 case DW_FORM_sec_offset:
16569 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16570 info_ptr += bytes_read;
16571 break;
16572 case DW_FORM_string:
16573 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
16574 DW_STRING_IS_CANONICAL (attr) = 0;
16575 info_ptr += bytes_read;
16576 break;
16577 case DW_FORM_strp:
16578 if (!cu->per_cu->is_dwz)
16579 {
16580 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16581 &bytes_read);
16582 DW_STRING_IS_CANONICAL (attr) = 0;
16583 info_ptr += bytes_read;
16584 break;
16585 }
16586 /* FALLTHROUGH */
16587 case DW_FORM_line_strp:
16588 if (!cu->per_cu->is_dwz)
16589 {
16590 DW_STRING (attr) = read_indirect_line_string (abfd, info_ptr,
16591 cu_header, &bytes_read);
16592 DW_STRING_IS_CANONICAL (attr) = 0;
16593 info_ptr += bytes_read;
16594 break;
16595 }
16596 /* FALLTHROUGH */
16597 case DW_FORM_GNU_strp_alt:
16598 {
16599 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16600 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16601 &bytes_read);
16602
16603 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16604 DW_STRING_IS_CANONICAL (attr) = 0;
16605 info_ptr += bytes_read;
16606 }
16607 break;
16608 case DW_FORM_exprloc:
16609 case DW_FORM_block:
16610 blk = dwarf_alloc_block (cu);
16611 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16612 info_ptr += bytes_read;
16613 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16614 info_ptr += blk->size;
16615 DW_BLOCK (attr) = blk;
16616 break;
16617 case DW_FORM_block1:
16618 blk = dwarf_alloc_block (cu);
16619 blk->size = read_1_byte (abfd, info_ptr);
16620 info_ptr += 1;
16621 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16622 info_ptr += blk->size;
16623 DW_BLOCK (attr) = blk;
16624 break;
16625 case DW_FORM_data1:
16626 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16627 info_ptr += 1;
16628 break;
16629 case DW_FORM_flag:
16630 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16631 info_ptr += 1;
16632 break;
16633 case DW_FORM_flag_present:
16634 DW_UNSND (attr) = 1;
16635 break;
16636 case DW_FORM_sdata:
16637 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16638 info_ptr += bytes_read;
16639 break;
16640 case DW_FORM_udata:
16641 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16642 info_ptr += bytes_read;
16643 break;
16644 case DW_FORM_ref1:
16645 DW_UNSND (attr) = (cu->header.offset.sect_off
16646 + read_1_byte (abfd, info_ptr));
16647 info_ptr += 1;
16648 break;
16649 case DW_FORM_ref2:
16650 DW_UNSND (attr) = (cu->header.offset.sect_off
16651 + read_2_bytes (abfd, info_ptr));
16652 info_ptr += 2;
16653 break;
16654 case DW_FORM_ref4:
16655 DW_UNSND (attr) = (cu->header.offset.sect_off
16656 + read_4_bytes (abfd, info_ptr));
16657 info_ptr += 4;
16658 break;
16659 case DW_FORM_ref8:
16660 DW_UNSND (attr) = (cu->header.offset.sect_off
16661 + read_8_bytes (abfd, info_ptr));
16662 info_ptr += 8;
16663 break;
16664 case DW_FORM_ref_sig8:
16665 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16666 info_ptr += 8;
16667 break;
16668 case DW_FORM_ref_udata:
16669 DW_UNSND (attr) = (cu->header.offset.sect_off
16670 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16671 info_ptr += bytes_read;
16672 break;
16673 case DW_FORM_indirect:
16674 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16675 info_ptr += bytes_read;
16676 if (form == DW_FORM_implicit_const)
16677 {
16678 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16679 info_ptr += bytes_read;
16680 }
16681 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
16682 info_ptr);
16683 break;
16684 case DW_FORM_implicit_const:
16685 DW_SND (attr) = implicit_const;
16686 break;
16687 case DW_FORM_GNU_addr_index:
16688 if (reader->dwo_file == NULL)
16689 {
16690 /* For now flag a hard error.
16691 Later we can turn this into a complaint. */
16692 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16693 dwarf_form_name (form),
16694 bfd_get_filename (abfd));
16695 }
16696 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16697 info_ptr += bytes_read;
16698 break;
16699 case DW_FORM_GNU_str_index:
16700 if (reader->dwo_file == NULL)
16701 {
16702 /* For now flag a hard error.
16703 Later we can turn this into a complaint if warranted. */
16704 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16705 dwarf_form_name (form),
16706 bfd_get_filename (abfd));
16707 }
16708 {
16709 ULONGEST str_index =
16710 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16711
16712 DW_STRING (attr) = read_str_index (reader, str_index);
16713 DW_STRING_IS_CANONICAL (attr) = 0;
16714 info_ptr += bytes_read;
16715 }
16716 break;
16717 default:
16718 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16719 dwarf_form_name (form),
16720 bfd_get_filename (abfd));
16721 }
16722
16723 /* Super hack. */
16724 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16725 attr->form = DW_FORM_GNU_ref_alt;
16726
16727 /* We have seen instances where the compiler tried to emit a byte
16728 size attribute of -1 which ended up being encoded as an unsigned
16729 0xffffffff. Although 0xffffffff is technically a valid size value,
16730 an object of this size seems pretty unlikely so we can relatively
16731 safely treat these cases as if the size attribute was invalid and
16732 treat them as zero by default. */
16733 if (attr->name == DW_AT_byte_size
16734 && form == DW_FORM_data4
16735 && DW_UNSND (attr) >= 0xffffffff)
16736 {
16737 complaint
16738 (&symfile_complaints,
16739 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16740 hex_string (DW_UNSND (attr)));
16741 DW_UNSND (attr) = 0;
16742 }
16743
16744 return info_ptr;
16745 }
16746
16747 /* Read an attribute described by an abbreviated attribute. */
16748
16749 static const gdb_byte *
16750 read_attribute (const struct die_reader_specs *reader,
16751 struct attribute *attr, struct attr_abbrev *abbrev,
16752 const gdb_byte *info_ptr)
16753 {
16754 attr->name = abbrev->name;
16755 return read_attribute_value (reader, attr, abbrev->form,
16756 abbrev->implicit_const, info_ptr);
16757 }
16758
16759 /* Read dwarf information from a buffer. */
16760
16761 static unsigned int
16762 read_1_byte (bfd *abfd, const gdb_byte *buf)
16763 {
16764 return bfd_get_8 (abfd, buf);
16765 }
16766
16767 static int
16768 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16769 {
16770 return bfd_get_signed_8 (abfd, buf);
16771 }
16772
16773 static unsigned int
16774 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16775 {
16776 return bfd_get_16 (abfd, buf);
16777 }
16778
16779 static int
16780 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16781 {
16782 return bfd_get_signed_16 (abfd, buf);
16783 }
16784
16785 static unsigned int
16786 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16787 {
16788 return bfd_get_32 (abfd, buf);
16789 }
16790
16791 static int
16792 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16793 {
16794 return bfd_get_signed_32 (abfd, buf);
16795 }
16796
16797 static ULONGEST
16798 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16799 {
16800 return bfd_get_64 (abfd, buf);
16801 }
16802
16803 static CORE_ADDR
16804 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16805 unsigned int *bytes_read)
16806 {
16807 struct comp_unit_head *cu_header = &cu->header;
16808 CORE_ADDR retval = 0;
16809
16810 if (cu_header->signed_addr_p)
16811 {
16812 switch (cu_header->addr_size)
16813 {
16814 case 2:
16815 retval = bfd_get_signed_16 (abfd, buf);
16816 break;
16817 case 4:
16818 retval = bfd_get_signed_32 (abfd, buf);
16819 break;
16820 case 8:
16821 retval = bfd_get_signed_64 (abfd, buf);
16822 break;
16823 default:
16824 internal_error (__FILE__, __LINE__,
16825 _("read_address: bad switch, signed [in module %s]"),
16826 bfd_get_filename (abfd));
16827 }
16828 }
16829 else
16830 {
16831 switch (cu_header->addr_size)
16832 {
16833 case 2:
16834 retval = bfd_get_16 (abfd, buf);
16835 break;
16836 case 4:
16837 retval = bfd_get_32 (abfd, buf);
16838 break;
16839 case 8:
16840 retval = bfd_get_64 (abfd, buf);
16841 break;
16842 default:
16843 internal_error (__FILE__, __LINE__,
16844 _("read_address: bad switch, "
16845 "unsigned [in module %s]"),
16846 bfd_get_filename (abfd));
16847 }
16848 }
16849
16850 *bytes_read = cu_header->addr_size;
16851 return retval;
16852 }
16853
16854 /* Read the initial length from a section. The (draft) DWARF 3
16855 specification allows the initial length to take up either 4 bytes
16856 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16857 bytes describe the length and all offsets will be 8 bytes in length
16858 instead of 4.
16859
16860 An older, non-standard 64-bit format is also handled by this
16861 function. The older format in question stores the initial length
16862 as an 8-byte quantity without an escape value. Lengths greater
16863 than 2^32 aren't very common which means that the initial 4 bytes
16864 is almost always zero. Since a length value of zero doesn't make
16865 sense for the 32-bit format, this initial zero can be considered to
16866 be an escape value which indicates the presence of the older 64-bit
16867 format. As written, the code can't detect (old format) lengths
16868 greater than 4GB. If it becomes necessary to handle lengths
16869 somewhat larger than 4GB, we could allow other small values (such
16870 as the non-sensical values of 1, 2, and 3) to also be used as
16871 escape values indicating the presence of the old format.
16872
16873 The value returned via bytes_read should be used to increment the
16874 relevant pointer after calling read_initial_length().
16875
16876 [ Note: read_initial_length() and read_offset() are based on the
16877 document entitled "DWARF Debugging Information Format", revision
16878 3, draft 8, dated November 19, 2001. This document was obtained
16879 from:
16880
16881 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16882
16883 This document is only a draft and is subject to change. (So beware.)
16884
16885 Details regarding the older, non-standard 64-bit format were
16886 determined empirically by examining 64-bit ELF files produced by
16887 the SGI toolchain on an IRIX 6.5 machine.
16888
16889 - Kevin, July 16, 2002
16890 ] */
16891
16892 static LONGEST
16893 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16894 {
16895 LONGEST length = bfd_get_32 (abfd, buf);
16896
16897 if (length == 0xffffffff)
16898 {
16899 length = bfd_get_64 (abfd, buf + 4);
16900 *bytes_read = 12;
16901 }
16902 else if (length == 0)
16903 {
16904 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16905 length = bfd_get_64 (abfd, buf);
16906 *bytes_read = 8;
16907 }
16908 else
16909 {
16910 *bytes_read = 4;
16911 }
16912
16913 return length;
16914 }
16915
16916 /* Cover function for read_initial_length.
16917 Returns the length of the object at BUF, and stores the size of the
16918 initial length in *BYTES_READ and stores the size that offsets will be in
16919 *OFFSET_SIZE.
16920 If the initial length size is not equivalent to that specified in
16921 CU_HEADER then issue a complaint.
16922 This is useful when reading non-comp-unit headers. */
16923
16924 static LONGEST
16925 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16926 const struct comp_unit_head *cu_header,
16927 unsigned int *bytes_read,
16928 unsigned int *offset_size)
16929 {
16930 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16931
16932 gdb_assert (cu_header->initial_length_size == 4
16933 || cu_header->initial_length_size == 8
16934 || cu_header->initial_length_size == 12);
16935
16936 if (cu_header->initial_length_size != *bytes_read)
16937 complaint (&symfile_complaints,
16938 _("intermixed 32-bit and 64-bit DWARF sections"));
16939
16940 *offset_size = (*bytes_read == 4) ? 4 : 8;
16941 return length;
16942 }
16943
16944 /* Read an offset from the data stream. The size of the offset is
16945 given by cu_header->offset_size. */
16946
16947 static LONGEST
16948 read_offset (bfd *abfd, const gdb_byte *buf,
16949 const struct comp_unit_head *cu_header,
16950 unsigned int *bytes_read)
16951 {
16952 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16953
16954 *bytes_read = cu_header->offset_size;
16955 return offset;
16956 }
16957
16958 /* Read an offset from the data stream. */
16959
16960 static LONGEST
16961 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16962 {
16963 LONGEST retval = 0;
16964
16965 switch (offset_size)
16966 {
16967 case 4:
16968 retval = bfd_get_32 (abfd, buf);
16969 break;
16970 case 8:
16971 retval = bfd_get_64 (abfd, buf);
16972 break;
16973 default:
16974 internal_error (__FILE__, __LINE__,
16975 _("read_offset_1: bad switch [in module %s]"),
16976 bfd_get_filename (abfd));
16977 }
16978
16979 return retval;
16980 }
16981
16982 static const gdb_byte *
16983 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16984 {
16985 /* If the size of a host char is 8 bits, we can return a pointer
16986 to the buffer, otherwise we have to copy the data to a buffer
16987 allocated on the temporary obstack. */
16988 gdb_assert (HOST_CHAR_BIT == 8);
16989 return buf;
16990 }
16991
16992 static const char *
16993 read_direct_string (bfd *abfd, const gdb_byte *buf,
16994 unsigned int *bytes_read_ptr)
16995 {
16996 /* If the size of a host char is 8 bits, we can return a pointer
16997 to the string, otherwise we have to copy the string to a buffer
16998 allocated on the temporary obstack. */
16999 gdb_assert (HOST_CHAR_BIT == 8);
17000 if (*buf == '\0')
17001 {
17002 *bytes_read_ptr = 1;
17003 return NULL;
17004 }
17005 *bytes_read_ptr = strlen ((const char *) buf) + 1;
17006 return (const char *) buf;
17007 }
17008
17009 /* Return pointer to string at section SECT offset STR_OFFSET with error
17010 reporting strings FORM_NAME and SECT_NAME. */
17011
17012 static const char *
17013 read_indirect_string_at_offset_from (bfd *abfd, LONGEST str_offset,
17014 struct dwarf2_section_info *sect,
17015 const char *form_name,
17016 const char *sect_name)
17017 {
17018 dwarf2_read_section (dwarf2_per_objfile->objfile, sect);
17019 if (sect->buffer == NULL)
17020 error (_("%s used without %s section [in module %s]"),
17021 form_name, sect_name, bfd_get_filename (abfd));
17022 if (str_offset >= sect->size)
17023 error (_("%s pointing outside of %s section [in module %s]"),
17024 form_name, sect_name, bfd_get_filename (abfd));
17025 gdb_assert (HOST_CHAR_BIT == 8);
17026 if (sect->buffer[str_offset] == '\0')
17027 return NULL;
17028 return (const char *) (sect->buffer + str_offset);
17029 }
17030
17031 /* Return pointer to string at .debug_str offset STR_OFFSET. */
17032
17033 static const char *
17034 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
17035 {
17036 return read_indirect_string_at_offset_from (abfd, str_offset,
17037 &dwarf2_per_objfile->str,
17038 "DW_FORM_strp", ".debug_str");
17039 }
17040
17041 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
17042
17043 static const char *
17044 read_indirect_line_string_at_offset (bfd *abfd, LONGEST str_offset)
17045 {
17046 return read_indirect_string_at_offset_from (abfd, str_offset,
17047 &dwarf2_per_objfile->line_str,
17048 "DW_FORM_line_strp",
17049 ".debug_line_str");
17050 }
17051
17052 /* Read a string at offset STR_OFFSET in the .debug_str section from
17053 the .dwz file DWZ. Throw an error if the offset is too large. If
17054 the string consists of a single NUL byte, return NULL; otherwise
17055 return a pointer to the string. */
17056
17057 static const char *
17058 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
17059 {
17060 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
17061
17062 if (dwz->str.buffer == NULL)
17063 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
17064 "section [in module %s]"),
17065 bfd_get_filename (dwz->dwz_bfd));
17066 if (str_offset >= dwz->str.size)
17067 error (_("DW_FORM_GNU_strp_alt pointing outside of "
17068 ".debug_str section [in module %s]"),
17069 bfd_get_filename (dwz->dwz_bfd));
17070 gdb_assert (HOST_CHAR_BIT == 8);
17071 if (dwz->str.buffer[str_offset] == '\0')
17072 return NULL;
17073 return (const char *) (dwz->str.buffer + str_offset);
17074 }
17075
17076 /* Return pointer to string at .debug_str offset as read from BUF.
17077 BUF is assumed to be in a compilation unit described by CU_HEADER.
17078 Return *BYTES_READ_PTR count of bytes read from BUF. */
17079
17080 static const char *
17081 read_indirect_string (bfd *abfd, const gdb_byte *buf,
17082 const struct comp_unit_head *cu_header,
17083 unsigned int *bytes_read_ptr)
17084 {
17085 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17086
17087 return read_indirect_string_at_offset (abfd, str_offset);
17088 }
17089
17090 /* Return pointer to string at .debug_line_str offset as read from BUF.
17091 BUF is assumed to be in a compilation unit described by CU_HEADER.
17092 Return *BYTES_READ_PTR count of bytes read from BUF. */
17093
17094 static const char *
17095 read_indirect_line_string (bfd *abfd, const gdb_byte *buf,
17096 const struct comp_unit_head *cu_header,
17097 unsigned int *bytes_read_ptr)
17098 {
17099 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17100
17101 return read_indirect_line_string_at_offset (abfd, str_offset);
17102 }
17103
17104 ULONGEST
17105 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
17106 unsigned int *bytes_read_ptr)
17107 {
17108 ULONGEST result;
17109 unsigned int num_read;
17110 int shift;
17111 unsigned char byte;
17112
17113 result = 0;
17114 shift = 0;
17115 num_read = 0;
17116 while (1)
17117 {
17118 byte = bfd_get_8 (abfd, buf);
17119 buf++;
17120 num_read++;
17121 result |= ((ULONGEST) (byte & 127) << shift);
17122 if ((byte & 128) == 0)
17123 {
17124 break;
17125 }
17126 shift += 7;
17127 }
17128 *bytes_read_ptr = num_read;
17129 return result;
17130 }
17131
17132 static LONGEST
17133 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
17134 unsigned int *bytes_read_ptr)
17135 {
17136 LONGEST result;
17137 int shift, num_read;
17138 unsigned char byte;
17139
17140 result = 0;
17141 shift = 0;
17142 num_read = 0;
17143 while (1)
17144 {
17145 byte = bfd_get_8 (abfd, buf);
17146 buf++;
17147 num_read++;
17148 result |= ((LONGEST) (byte & 127) << shift);
17149 shift += 7;
17150 if ((byte & 128) == 0)
17151 {
17152 break;
17153 }
17154 }
17155 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
17156 result |= -(((LONGEST) 1) << shift);
17157 *bytes_read_ptr = num_read;
17158 return result;
17159 }
17160
17161 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
17162 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
17163 ADDR_SIZE is the size of addresses from the CU header. */
17164
17165 static CORE_ADDR
17166 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
17167 {
17168 struct objfile *objfile = dwarf2_per_objfile->objfile;
17169 bfd *abfd = objfile->obfd;
17170 const gdb_byte *info_ptr;
17171
17172 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
17173 if (dwarf2_per_objfile->addr.buffer == NULL)
17174 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
17175 objfile_name (objfile));
17176 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
17177 error (_("DW_FORM_addr_index pointing outside of "
17178 ".debug_addr section [in module %s]"),
17179 objfile_name (objfile));
17180 info_ptr = (dwarf2_per_objfile->addr.buffer
17181 + addr_base + addr_index * addr_size);
17182 if (addr_size == 4)
17183 return bfd_get_32 (abfd, info_ptr);
17184 else
17185 return bfd_get_64 (abfd, info_ptr);
17186 }
17187
17188 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
17189
17190 static CORE_ADDR
17191 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
17192 {
17193 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
17194 }
17195
17196 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
17197
17198 static CORE_ADDR
17199 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
17200 unsigned int *bytes_read)
17201 {
17202 bfd *abfd = cu->objfile->obfd;
17203 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
17204
17205 return read_addr_index (cu, addr_index);
17206 }
17207
17208 /* Data structure to pass results from dwarf2_read_addr_index_reader
17209 back to dwarf2_read_addr_index. */
17210
17211 struct dwarf2_read_addr_index_data
17212 {
17213 ULONGEST addr_base;
17214 int addr_size;
17215 };
17216
17217 /* die_reader_func for dwarf2_read_addr_index. */
17218
17219 static void
17220 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
17221 const gdb_byte *info_ptr,
17222 struct die_info *comp_unit_die,
17223 int has_children,
17224 void *data)
17225 {
17226 struct dwarf2_cu *cu = reader->cu;
17227 struct dwarf2_read_addr_index_data *aidata =
17228 (struct dwarf2_read_addr_index_data *) data;
17229
17230 aidata->addr_base = cu->addr_base;
17231 aidata->addr_size = cu->header.addr_size;
17232 }
17233
17234 /* Given an index in .debug_addr, fetch the value.
17235 NOTE: This can be called during dwarf expression evaluation,
17236 long after the debug information has been read, and thus per_cu->cu
17237 may no longer exist. */
17238
17239 CORE_ADDR
17240 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
17241 unsigned int addr_index)
17242 {
17243 struct objfile *objfile = per_cu->objfile;
17244 struct dwarf2_cu *cu = per_cu->cu;
17245 ULONGEST addr_base;
17246 int addr_size;
17247
17248 /* This is intended to be called from outside this file. */
17249 dw2_setup (objfile);
17250
17251 /* We need addr_base and addr_size.
17252 If we don't have PER_CU->cu, we have to get it.
17253 Nasty, but the alternative is storing the needed info in PER_CU,
17254 which at this point doesn't seem justified: it's not clear how frequently
17255 it would get used and it would increase the size of every PER_CU.
17256 Entry points like dwarf2_per_cu_addr_size do a similar thing
17257 so we're not in uncharted territory here.
17258 Alas we need to be a bit more complicated as addr_base is contained
17259 in the DIE.
17260
17261 We don't need to read the entire CU(/TU).
17262 We just need the header and top level die.
17263
17264 IWBN to use the aging mechanism to let us lazily later discard the CU.
17265 For now we skip this optimization. */
17266
17267 if (cu != NULL)
17268 {
17269 addr_base = cu->addr_base;
17270 addr_size = cu->header.addr_size;
17271 }
17272 else
17273 {
17274 struct dwarf2_read_addr_index_data aidata;
17275
17276 /* Note: We can't use init_cutu_and_read_dies_simple here,
17277 we need addr_base. */
17278 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
17279 dwarf2_read_addr_index_reader, &aidata);
17280 addr_base = aidata.addr_base;
17281 addr_size = aidata.addr_size;
17282 }
17283
17284 return read_addr_index_1 (addr_index, addr_base, addr_size);
17285 }
17286
17287 /* Given a DW_FORM_GNU_str_index, fetch the string.
17288 This is only used by the Fission support. */
17289
17290 static const char *
17291 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
17292 {
17293 struct objfile *objfile = dwarf2_per_objfile->objfile;
17294 const char *objf_name = objfile_name (objfile);
17295 bfd *abfd = objfile->obfd;
17296 struct dwarf2_cu *cu = reader->cu;
17297 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
17298 struct dwarf2_section_info *str_offsets_section =
17299 &reader->dwo_file->sections.str_offsets;
17300 const gdb_byte *info_ptr;
17301 ULONGEST str_offset;
17302 static const char form_name[] = "DW_FORM_GNU_str_index";
17303
17304 dwarf2_read_section (objfile, str_section);
17305 dwarf2_read_section (objfile, str_offsets_section);
17306 if (str_section->buffer == NULL)
17307 error (_("%s used without .debug_str.dwo section"
17308 " in CU at offset 0x%lx [in module %s]"),
17309 form_name, (long) cu->header.offset.sect_off, objf_name);
17310 if (str_offsets_section->buffer == NULL)
17311 error (_("%s used without .debug_str_offsets.dwo section"
17312 " in CU at offset 0x%lx [in module %s]"),
17313 form_name, (long) cu->header.offset.sect_off, objf_name);
17314 if (str_index * cu->header.offset_size >= str_offsets_section->size)
17315 error (_("%s pointing outside of .debug_str_offsets.dwo"
17316 " section in CU at offset 0x%lx [in module %s]"),
17317 form_name, (long) cu->header.offset.sect_off, objf_name);
17318 info_ptr = (str_offsets_section->buffer
17319 + str_index * cu->header.offset_size);
17320 if (cu->header.offset_size == 4)
17321 str_offset = bfd_get_32 (abfd, info_ptr);
17322 else
17323 str_offset = bfd_get_64 (abfd, info_ptr);
17324 if (str_offset >= str_section->size)
17325 error (_("Offset from %s pointing outside of"
17326 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
17327 form_name, (long) cu->header.offset.sect_off, objf_name);
17328 return (const char *) (str_section->buffer + str_offset);
17329 }
17330
17331 /* Return the length of an LEB128 number in BUF. */
17332
17333 static int
17334 leb128_size (const gdb_byte *buf)
17335 {
17336 const gdb_byte *begin = buf;
17337 gdb_byte byte;
17338
17339 while (1)
17340 {
17341 byte = *buf++;
17342 if ((byte & 128) == 0)
17343 return buf - begin;
17344 }
17345 }
17346
17347 static void
17348 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
17349 {
17350 switch (lang)
17351 {
17352 case DW_LANG_C89:
17353 case DW_LANG_C99:
17354 case DW_LANG_C11:
17355 case DW_LANG_C:
17356 case DW_LANG_UPC:
17357 cu->language = language_c;
17358 break;
17359 case DW_LANG_Java:
17360 case DW_LANG_C_plus_plus:
17361 case DW_LANG_C_plus_plus_11:
17362 case DW_LANG_C_plus_plus_14:
17363 cu->language = language_cplus;
17364 break;
17365 case DW_LANG_D:
17366 cu->language = language_d;
17367 break;
17368 case DW_LANG_Fortran77:
17369 case DW_LANG_Fortran90:
17370 case DW_LANG_Fortran95:
17371 case DW_LANG_Fortran03:
17372 case DW_LANG_Fortran08:
17373 cu->language = language_fortran;
17374 break;
17375 case DW_LANG_Go:
17376 cu->language = language_go;
17377 break;
17378 case DW_LANG_Mips_Assembler:
17379 cu->language = language_asm;
17380 break;
17381 case DW_LANG_Ada83:
17382 case DW_LANG_Ada95:
17383 cu->language = language_ada;
17384 break;
17385 case DW_LANG_Modula2:
17386 cu->language = language_m2;
17387 break;
17388 case DW_LANG_Pascal83:
17389 cu->language = language_pascal;
17390 break;
17391 case DW_LANG_ObjC:
17392 cu->language = language_objc;
17393 break;
17394 case DW_LANG_Rust:
17395 case DW_LANG_Rust_old:
17396 cu->language = language_rust;
17397 break;
17398 case DW_LANG_Cobol74:
17399 case DW_LANG_Cobol85:
17400 default:
17401 cu->language = language_minimal;
17402 break;
17403 }
17404 cu->language_defn = language_def (cu->language);
17405 }
17406
17407 /* Return the named attribute or NULL if not there. */
17408
17409 static struct attribute *
17410 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17411 {
17412 for (;;)
17413 {
17414 unsigned int i;
17415 struct attribute *spec = NULL;
17416
17417 for (i = 0; i < die->num_attrs; ++i)
17418 {
17419 if (die->attrs[i].name == name)
17420 return &die->attrs[i];
17421 if (die->attrs[i].name == DW_AT_specification
17422 || die->attrs[i].name == DW_AT_abstract_origin)
17423 spec = &die->attrs[i];
17424 }
17425
17426 if (!spec)
17427 break;
17428
17429 die = follow_die_ref (die, spec, &cu);
17430 }
17431
17432 return NULL;
17433 }
17434
17435 /* Return the named attribute or NULL if not there,
17436 but do not follow DW_AT_specification, etc.
17437 This is for use in contexts where we're reading .debug_types dies.
17438 Following DW_AT_specification, DW_AT_abstract_origin will take us
17439 back up the chain, and we want to go down. */
17440
17441 static struct attribute *
17442 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
17443 {
17444 unsigned int i;
17445
17446 for (i = 0; i < die->num_attrs; ++i)
17447 if (die->attrs[i].name == name)
17448 return &die->attrs[i];
17449
17450 return NULL;
17451 }
17452
17453 /* Return the string associated with a string-typed attribute, or NULL if it
17454 is either not found or is of an incorrect type. */
17455
17456 static const char *
17457 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17458 {
17459 struct attribute *attr;
17460 const char *str = NULL;
17461
17462 attr = dwarf2_attr (die, name, cu);
17463
17464 if (attr != NULL)
17465 {
17466 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
17467 || attr->form == DW_FORM_string || attr->form == DW_FORM_GNU_strp_alt)
17468 str = DW_STRING (attr);
17469 else
17470 complaint (&symfile_complaints,
17471 _("string type expected for attribute %s for "
17472 "DIE at 0x%x in module %s"),
17473 dwarf_attr_name (name), die->offset.sect_off,
17474 objfile_name (cu->objfile));
17475 }
17476
17477 return str;
17478 }
17479
17480 /* Return non-zero iff the attribute NAME is defined for the given DIE,
17481 and holds a non-zero value. This function should only be used for
17482 DW_FORM_flag or DW_FORM_flag_present attributes. */
17483
17484 static int
17485 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17486 {
17487 struct attribute *attr = dwarf2_attr (die, name, cu);
17488
17489 return (attr && DW_UNSND (attr));
17490 }
17491
17492 static int
17493 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
17494 {
17495 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17496 which value is non-zero. However, we have to be careful with
17497 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17498 (via dwarf2_flag_true_p) follows this attribute. So we may
17499 end up accidently finding a declaration attribute that belongs
17500 to a different DIE referenced by the specification attribute,
17501 even though the given DIE does not have a declaration attribute. */
17502 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17503 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
17504 }
17505
17506 /* Return the die giving the specification for DIE, if there is
17507 one. *SPEC_CU is the CU containing DIE on input, and the CU
17508 containing the return value on output. If there is no
17509 specification, but there is an abstract origin, that is
17510 returned. */
17511
17512 static struct die_info *
17513 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
17514 {
17515 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17516 *spec_cu);
17517
17518 if (spec_attr == NULL)
17519 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17520
17521 if (spec_attr == NULL)
17522 return NULL;
17523 else
17524 return follow_die_ref (die, spec_attr, spec_cu);
17525 }
17526
17527 /* Free the line_header structure *LH, and any arrays and strings it
17528 refers to.
17529 NOTE: This is also used as a "cleanup" function. */
17530
17531 static void
17532 free_line_header (struct line_header *lh)
17533 {
17534 if (lh->standard_opcode_lengths)
17535 xfree (lh->standard_opcode_lengths);
17536
17537 /* Remember that all the lh->file_names[i].name pointers are
17538 pointers into debug_line_buffer, and don't need to be freed. */
17539 if (lh->file_names)
17540 xfree (lh->file_names);
17541
17542 /* Similarly for the include directory names. */
17543 if (lh->include_dirs)
17544 xfree (lh->include_dirs);
17545
17546 xfree (lh);
17547 }
17548
17549 /* Stub for free_line_header to match void * callback types. */
17550
17551 static void
17552 free_line_header_voidp (void *arg)
17553 {
17554 struct line_header *lh = (struct line_header *) arg;
17555
17556 free_line_header (lh);
17557 }
17558
17559 /* Add an entry to LH's include directory table. */
17560
17561 static void
17562 add_include_dir (struct line_header *lh, const char *include_dir)
17563 {
17564 if (dwarf_line_debug >= 2)
17565 fprintf_unfiltered (gdb_stdlog, "Adding dir %u: %s\n",
17566 lh->num_include_dirs + 1, include_dir);
17567
17568 /* Grow the array if necessary. */
17569 if (lh->include_dirs_size == 0)
17570 {
17571 lh->include_dirs_size = 1; /* for testing */
17572 lh->include_dirs = XNEWVEC (const char *, lh->include_dirs_size);
17573 }
17574 else if (lh->num_include_dirs >= lh->include_dirs_size)
17575 {
17576 lh->include_dirs_size *= 2;
17577 lh->include_dirs = XRESIZEVEC (const char *, lh->include_dirs,
17578 lh->include_dirs_size);
17579 }
17580
17581 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17582 }
17583
17584 /* Add an entry to LH's file name table. */
17585
17586 static void
17587 add_file_name (struct line_header *lh,
17588 const char *name,
17589 unsigned int dir_index,
17590 unsigned int mod_time,
17591 unsigned int length)
17592 {
17593 struct file_entry *fe;
17594
17595 if (dwarf_line_debug >= 2)
17596 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17597 lh->num_file_names + 1, name);
17598
17599 /* Grow the array if necessary. */
17600 if (lh->file_names_size == 0)
17601 {
17602 lh->file_names_size = 1; /* for testing */
17603 lh->file_names = XNEWVEC (struct file_entry, lh->file_names_size);
17604 }
17605 else if (lh->num_file_names >= lh->file_names_size)
17606 {
17607 lh->file_names_size *= 2;
17608 lh->file_names
17609 = XRESIZEVEC (struct file_entry, lh->file_names, lh->file_names_size);
17610 }
17611
17612 fe = &lh->file_names[lh->num_file_names++];
17613 fe->name = name;
17614 fe->dir_index = dir_index;
17615 fe->mod_time = mod_time;
17616 fe->length = length;
17617 fe->included_p = 0;
17618 fe->symtab = NULL;
17619 }
17620
17621 /* A convenience function to find the proper .debug_line section for a CU. */
17622
17623 static struct dwarf2_section_info *
17624 get_debug_line_section (struct dwarf2_cu *cu)
17625 {
17626 struct dwarf2_section_info *section;
17627
17628 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17629 DWO file. */
17630 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17631 section = &cu->dwo_unit->dwo_file->sections.line;
17632 else if (cu->per_cu->is_dwz)
17633 {
17634 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17635
17636 section = &dwz->line;
17637 }
17638 else
17639 section = &dwarf2_per_objfile->line;
17640
17641 return section;
17642 }
17643
17644 /* Forwarding function for read_formatted_entries. */
17645
17646 static void
17647 add_include_dir_stub (struct line_header *lh, const char *name,
17648 unsigned int dir_index, unsigned int mod_time,
17649 unsigned int length)
17650 {
17651 add_include_dir (lh, name);
17652 }
17653
17654 /* Read directory or file name entry format, starting with byte of
17655 format count entries, ULEB128 pairs of entry formats, ULEB128 of
17656 entries count and the entries themselves in the described entry
17657 format. */
17658
17659 static void
17660 read_formatted_entries (bfd *abfd, const gdb_byte **bufp,
17661 struct line_header *lh,
17662 const struct comp_unit_head *cu_header,
17663 void (*callback) (struct line_header *lh,
17664 const char *name,
17665 unsigned int dir_index,
17666 unsigned int mod_time,
17667 unsigned int length))
17668 {
17669 gdb_byte format_count, formati;
17670 ULONGEST data_count, datai;
17671 const gdb_byte *buf = *bufp;
17672 const gdb_byte *format_header_data;
17673 int i;
17674 unsigned int bytes_read;
17675
17676 format_count = read_1_byte (abfd, buf);
17677 buf += 1;
17678 format_header_data = buf;
17679 for (formati = 0; formati < format_count; formati++)
17680 {
17681 read_unsigned_leb128 (abfd, buf, &bytes_read);
17682 buf += bytes_read;
17683 read_unsigned_leb128 (abfd, buf, &bytes_read);
17684 buf += bytes_read;
17685 }
17686
17687 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
17688 buf += bytes_read;
17689 for (datai = 0; datai < data_count; datai++)
17690 {
17691 const gdb_byte *format = format_header_data;
17692 struct file_entry fe;
17693
17694 memset (&fe, 0, sizeof (fe));
17695
17696 for (formati = 0; formati < format_count; formati++)
17697 {
17698 ULONGEST content_type, form;
17699 const char *string_trash;
17700 const char **stringp = &string_trash;
17701 unsigned int uint_trash, *uintp = &uint_trash;
17702
17703 content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
17704 format += bytes_read;
17705 switch (content_type)
17706 {
17707 case DW_LNCT_path:
17708 stringp = &fe.name;
17709 break;
17710 case DW_LNCT_directory_index:
17711 uintp = &fe.dir_index;
17712 break;
17713 case DW_LNCT_timestamp:
17714 uintp = &fe.mod_time;
17715 break;
17716 case DW_LNCT_size:
17717 uintp = &fe.length;
17718 break;
17719 case DW_LNCT_MD5:
17720 break;
17721 default:
17722 complaint (&symfile_complaints,
17723 _("Unknown format content type %s"),
17724 pulongest (content_type));
17725 }
17726
17727 form = read_unsigned_leb128 (abfd, format, &bytes_read);
17728 format += bytes_read;
17729 switch (form)
17730 {
17731 case DW_FORM_string:
17732 *stringp = read_direct_string (abfd, buf, &bytes_read);
17733 buf += bytes_read;
17734 break;
17735
17736 case DW_FORM_line_strp:
17737 *stringp = read_indirect_line_string (abfd, buf, cu_header, &bytes_read);
17738 buf += bytes_read;
17739 break;
17740
17741 case DW_FORM_data1:
17742 *uintp = read_1_byte (abfd, buf);
17743 buf += 1;
17744 break;
17745
17746 case DW_FORM_data2:
17747 *uintp = read_2_bytes (abfd, buf);
17748 buf += 2;
17749 break;
17750
17751 case DW_FORM_data4:
17752 *uintp = read_4_bytes (abfd, buf);
17753 buf += 4;
17754 break;
17755
17756 case DW_FORM_data8:
17757 *uintp = read_8_bytes (abfd, buf);
17758 buf += 8;
17759 break;
17760
17761 case DW_FORM_udata:
17762 *uintp = read_unsigned_leb128 (abfd, buf, &bytes_read);
17763 buf += bytes_read;
17764 break;
17765
17766 case DW_FORM_block:
17767 /* It is valid only for DW_LNCT_timestamp which is ignored by
17768 current GDB. */
17769 break;
17770 }
17771 }
17772
17773 callback (lh, fe.name, fe.dir_index, fe.mod_time, fe.length);
17774 }
17775
17776 *bufp = buf;
17777 }
17778
17779 /* Read the statement program header starting at OFFSET in
17780 .debug_line, or .debug_line.dwo. Return a pointer
17781 to a struct line_header, allocated using xmalloc.
17782 Returns NULL if there is a problem reading the header, e.g., if it
17783 has a version we don't understand.
17784
17785 NOTE: the strings in the include directory and file name tables of
17786 the returned object point into the dwarf line section buffer,
17787 and must not be freed. */
17788
17789 static struct line_header *
17790 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
17791 {
17792 struct cleanup *back_to;
17793 struct line_header *lh;
17794 const gdb_byte *line_ptr;
17795 unsigned int bytes_read, offset_size;
17796 int i;
17797 const char *cur_dir, *cur_file;
17798 struct dwarf2_section_info *section;
17799 bfd *abfd;
17800
17801 section = get_debug_line_section (cu);
17802 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17803 if (section->buffer == NULL)
17804 {
17805 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17806 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17807 else
17808 complaint (&symfile_complaints, _("missing .debug_line section"));
17809 return 0;
17810 }
17811
17812 /* We can't do this until we know the section is non-empty.
17813 Only then do we know we have such a section. */
17814 abfd = get_section_bfd_owner (section);
17815
17816 /* Make sure that at least there's room for the total_length field.
17817 That could be 12 bytes long, but we're just going to fudge that. */
17818 if (offset + 4 >= section->size)
17819 {
17820 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17821 return 0;
17822 }
17823
17824 lh = XNEW (struct line_header);
17825 memset (lh, 0, sizeof (*lh));
17826 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17827 (void *) lh);
17828
17829 lh->offset.sect_off = offset;
17830 lh->offset_in_dwz = cu->per_cu->is_dwz;
17831
17832 line_ptr = section->buffer + offset;
17833
17834 /* Read in the header. */
17835 lh->total_length =
17836 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17837 &bytes_read, &offset_size);
17838 line_ptr += bytes_read;
17839 if (line_ptr + lh->total_length > (section->buffer + section->size))
17840 {
17841 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17842 do_cleanups (back_to);
17843 return 0;
17844 }
17845 lh->statement_program_end = line_ptr + lh->total_length;
17846 lh->version = read_2_bytes (abfd, line_ptr);
17847 line_ptr += 2;
17848 if (lh->version > 5)
17849 {
17850 /* This is a version we don't understand. The format could have
17851 changed in ways we don't handle properly so just punt. */
17852 complaint (&symfile_complaints,
17853 _("unsupported version in .debug_line section"));
17854 return NULL;
17855 }
17856 if (lh->version >= 5)
17857 {
17858 gdb_byte segment_selector_size;
17859
17860 /* Skip address size. */
17861 read_1_byte (abfd, line_ptr);
17862 line_ptr += 1;
17863
17864 segment_selector_size = read_1_byte (abfd, line_ptr);
17865 line_ptr += 1;
17866 if (segment_selector_size != 0)
17867 {
17868 complaint (&symfile_complaints,
17869 _("unsupported segment selector size %u "
17870 "in .debug_line section"),
17871 segment_selector_size);
17872 return NULL;
17873 }
17874 }
17875 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17876 line_ptr += offset_size;
17877 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17878 line_ptr += 1;
17879 if (lh->version >= 4)
17880 {
17881 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17882 line_ptr += 1;
17883 }
17884 else
17885 lh->maximum_ops_per_instruction = 1;
17886
17887 if (lh->maximum_ops_per_instruction == 0)
17888 {
17889 lh->maximum_ops_per_instruction = 1;
17890 complaint (&symfile_complaints,
17891 _("invalid maximum_ops_per_instruction "
17892 "in `.debug_line' section"));
17893 }
17894
17895 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17896 line_ptr += 1;
17897 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17898 line_ptr += 1;
17899 lh->line_range = read_1_byte (abfd, line_ptr);
17900 line_ptr += 1;
17901 lh->opcode_base = read_1_byte (abfd, line_ptr);
17902 line_ptr += 1;
17903 lh->standard_opcode_lengths = XNEWVEC (unsigned char, lh->opcode_base);
17904
17905 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17906 for (i = 1; i < lh->opcode_base; ++i)
17907 {
17908 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17909 line_ptr += 1;
17910 }
17911
17912 if (lh->version >= 5)
17913 {
17914 /* Read directory table. */
17915 read_formatted_entries (abfd, &line_ptr, lh, &cu->header,
17916 add_include_dir_stub);
17917
17918 /* Read file name table. */
17919 read_formatted_entries (abfd, &line_ptr, lh, &cu->header, add_file_name);
17920 }
17921 else
17922 {
17923 /* Read directory table. */
17924 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17925 {
17926 line_ptr += bytes_read;
17927 add_include_dir (lh, cur_dir);
17928 }
17929 line_ptr += bytes_read;
17930
17931 /* Read file name table. */
17932 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17933 {
17934 unsigned int dir_index, mod_time, length;
17935
17936 line_ptr += bytes_read;
17937 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17938 line_ptr += bytes_read;
17939 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17940 line_ptr += bytes_read;
17941 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17942 line_ptr += bytes_read;
17943
17944 add_file_name (lh, cur_file, dir_index, mod_time, length);
17945 }
17946 line_ptr += bytes_read;
17947 }
17948 lh->statement_program_start = line_ptr;
17949
17950 if (line_ptr > (section->buffer + section->size))
17951 complaint (&symfile_complaints,
17952 _("line number info header doesn't "
17953 "fit in `.debug_line' section"));
17954
17955 discard_cleanups (back_to);
17956 return lh;
17957 }
17958
17959 /* Subroutine of dwarf_decode_lines to simplify it.
17960 Return the file name of the psymtab for included file FILE_INDEX
17961 in line header LH of PST.
17962 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17963 If space for the result is malloc'd, it will be freed by a cleanup.
17964 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17965
17966 The function creates dangling cleanup registration. */
17967
17968 static const char *
17969 psymtab_include_file_name (const struct line_header *lh, int file_index,
17970 const struct partial_symtab *pst,
17971 const char *comp_dir)
17972 {
17973 const struct file_entry fe = lh->file_names [file_index];
17974 const char *include_name = fe.name;
17975 const char *include_name_to_compare = include_name;
17976 const char *dir_name = NULL;
17977 const char *pst_filename;
17978 char *copied_name = NULL;
17979 int file_is_pst;
17980
17981 if (fe.dir_index && lh->include_dirs != NULL)
17982 dir_name = lh->include_dirs[fe.dir_index - 1];
17983
17984 if (!IS_ABSOLUTE_PATH (include_name)
17985 && (dir_name != NULL || comp_dir != NULL))
17986 {
17987 /* Avoid creating a duplicate psymtab for PST.
17988 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17989 Before we do the comparison, however, we need to account
17990 for DIR_NAME and COMP_DIR.
17991 First prepend dir_name (if non-NULL). If we still don't
17992 have an absolute path prepend comp_dir (if non-NULL).
17993 However, the directory we record in the include-file's
17994 psymtab does not contain COMP_DIR (to match the
17995 corresponding symtab(s)).
17996
17997 Example:
17998
17999 bash$ cd /tmp
18000 bash$ gcc -g ./hello.c
18001 include_name = "hello.c"
18002 dir_name = "."
18003 DW_AT_comp_dir = comp_dir = "/tmp"
18004 DW_AT_name = "./hello.c"
18005
18006 */
18007
18008 if (dir_name != NULL)
18009 {
18010 char *tem = concat (dir_name, SLASH_STRING,
18011 include_name, (char *)NULL);
18012
18013 make_cleanup (xfree, tem);
18014 include_name = tem;
18015 include_name_to_compare = include_name;
18016 }
18017 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
18018 {
18019 char *tem = concat (comp_dir, SLASH_STRING,
18020 include_name, (char *)NULL);
18021
18022 make_cleanup (xfree, tem);
18023 include_name_to_compare = tem;
18024 }
18025 }
18026
18027 pst_filename = pst->filename;
18028 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
18029 {
18030 copied_name = concat (pst->dirname, SLASH_STRING,
18031 pst_filename, (char *)NULL);
18032 pst_filename = copied_name;
18033 }
18034
18035 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
18036
18037 if (copied_name != NULL)
18038 xfree (copied_name);
18039
18040 if (file_is_pst)
18041 return NULL;
18042 return include_name;
18043 }
18044
18045 /* State machine to track the state of the line number program. */
18046
18047 typedef struct
18048 {
18049 /* These are part of the standard DWARF line number state machine. */
18050
18051 unsigned char op_index;
18052 unsigned int file;
18053 unsigned int line;
18054 CORE_ADDR address;
18055 int is_stmt;
18056 unsigned int discriminator;
18057
18058 /* Additional bits of state we need to track. */
18059
18060 /* The last file that we called dwarf2_start_subfile for.
18061 This is only used for TLLs. */
18062 unsigned int last_file;
18063 /* The last file a line number was recorded for. */
18064 struct subfile *last_subfile;
18065
18066 /* The function to call to record a line. */
18067 record_line_ftype *record_line;
18068
18069 /* The last line number that was recorded, used to coalesce
18070 consecutive entries for the same line. This can happen, for
18071 example, when discriminators are present. PR 17276. */
18072 unsigned int last_line;
18073 int line_has_non_zero_discriminator;
18074 } lnp_state_machine;
18075
18076 /* There's a lot of static state to pass to dwarf_record_line.
18077 This keeps it all together. */
18078
18079 typedef struct
18080 {
18081 /* The gdbarch. */
18082 struct gdbarch *gdbarch;
18083
18084 /* The line number header. */
18085 struct line_header *line_header;
18086
18087 /* Non-zero if we're recording lines.
18088 Otherwise we're building partial symtabs and are just interested in
18089 finding include files mentioned by the line number program. */
18090 int record_lines_p;
18091 } lnp_reader_state;
18092
18093 /* Ignore this record_line request. */
18094
18095 static void
18096 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
18097 {
18098 return;
18099 }
18100
18101 /* Return non-zero if we should add LINE to the line number table.
18102 LINE is the line to add, LAST_LINE is the last line that was added,
18103 LAST_SUBFILE is the subfile for LAST_LINE.
18104 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
18105 had a non-zero discriminator.
18106
18107 We have to be careful in the presence of discriminators.
18108 E.g., for this line:
18109
18110 for (i = 0; i < 100000; i++);
18111
18112 clang can emit four line number entries for that one line,
18113 each with a different discriminator.
18114 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
18115
18116 However, we want gdb to coalesce all four entries into one.
18117 Otherwise the user could stepi into the middle of the line and
18118 gdb would get confused about whether the pc really was in the
18119 middle of the line.
18120
18121 Things are further complicated by the fact that two consecutive
18122 line number entries for the same line is a heuristic used by gcc
18123 to denote the end of the prologue. So we can't just discard duplicate
18124 entries, we have to be selective about it. The heuristic we use is
18125 that we only collapse consecutive entries for the same line if at least
18126 one of those entries has a non-zero discriminator. PR 17276.
18127
18128 Note: Addresses in the line number state machine can never go backwards
18129 within one sequence, thus this coalescing is ok. */
18130
18131 static int
18132 dwarf_record_line_p (unsigned int line, unsigned int last_line,
18133 int line_has_non_zero_discriminator,
18134 struct subfile *last_subfile)
18135 {
18136 if (current_subfile != last_subfile)
18137 return 1;
18138 if (line != last_line)
18139 return 1;
18140 /* Same line for the same file that we've seen already.
18141 As a last check, for pr 17276, only record the line if the line
18142 has never had a non-zero discriminator. */
18143 if (!line_has_non_zero_discriminator)
18144 return 1;
18145 return 0;
18146 }
18147
18148 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
18149 in the line table of subfile SUBFILE. */
18150
18151 static void
18152 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
18153 unsigned int line, CORE_ADDR address,
18154 record_line_ftype p_record_line)
18155 {
18156 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
18157
18158 if (dwarf_line_debug)
18159 {
18160 fprintf_unfiltered (gdb_stdlog,
18161 "Recording line %u, file %s, address %s\n",
18162 line, lbasename (subfile->name),
18163 paddress (gdbarch, address));
18164 }
18165
18166 (*p_record_line) (subfile, line, addr);
18167 }
18168
18169 /* Subroutine of dwarf_decode_lines_1 to simplify it.
18170 Mark the end of a set of line number records.
18171 The arguments are the same as for dwarf_record_line_1.
18172 If SUBFILE is NULL the request is ignored. */
18173
18174 static void
18175 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
18176 CORE_ADDR address, record_line_ftype p_record_line)
18177 {
18178 if (subfile == NULL)
18179 return;
18180
18181 if (dwarf_line_debug)
18182 {
18183 fprintf_unfiltered (gdb_stdlog,
18184 "Finishing current line, file %s, address %s\n",
18185 lbasename (subfile->name),
18186 paddress (gdbarch, address));
18187 }
18188
18189 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
18190 }
18191
18192 /* Record the line in STATE.
18193 END_SEQUENCE is non-zero if we're processing the end of a sequence. */
18194
18195 static void
18196 dwarf_record_line (lnp_reader_state *reader, lnp_state_machine *state,
18197 int end_sequence)
18198 {
18199 const struct line_header *lh = reader->line_header;
18200 unsigned int file, line, discriminator;
18201 int is_stmt;
18202
18203 file = state->file;
18204 line = state->line;
18205 is_stmt = state->is_stmt;
18206 discriminator = state->discriminator;
18207
18208 if (dwarf_line_debug)
18209 {
18210 fprintf_unfiltered (gdb_stdlog,
18211 "Processing actual line %u: file %u,"
18212 " address %s, is_stmt %u, discrim %u\n",
18213 line, file,
18214 paddress (reader->gdbarch, state->address),
18215 is_stmt, discriminator);
18216 }
18217
18218 if (file == 0 || file - 1 >= lh->num_file_names)
18219 dwarf2_debug_line_missing_file_complaint ();
18220 /* For now we ignore lines not starting on an instruction boundary.
18221 But not when processing end_sequence for compatibility with the
18222 previous version of the code. */
18223 else if (state->op_index == 0 || end_sequence)
18224 {
18225 lh->file_names[file - 1].included_p = 1;
18226 if (reader->record_lines_p && is_stmt)
18227 {
18228 if (state->last_subfile != current_subfile || end_sequence)
18229 {
18230 dwarf_finish_line (reader->gdbarch, state->last_subfile,
18231 state->address, state->record_line);
18232 }
18233
18234 if (!end_sequence)
18235 {
18236 if (dwarf_record_line_p (line, state->last_line,
18237 state->line_has_non_zero_discriminator,
18238 state->last_subfile))
18239 {
18240 dwarf_record_line_1 (reader->gdbarch, current_subfile,
18241 line, state->address,
18242 state->record_line);
18243 }
18244 state->last_subfile = current_subfile;
18245 state->last_line = line;
18246 }
18247 }
18248 }
18249 }
18250
18251 /* Initialize STATE for the start of a line number program. */
18252
18253 static void
18254 init_lnp_state_machine (lnp_state_machine *state,
18255 const lnp_reader_state *reader)
18256 {
18257 memset (state, 0, sizeof (*state));
18258
18259 /* Just starting, there is no "last file". */
18260 state->last_file = 0;
18261 state->last_subfile = NULL;
18262
18263 state->record_line = record_line;
18264
18265 state->last_line = 0;
18266 state->line_has_non_zero_discriminator = 0;
18267
18268 /* Initialize these according to the DWARF spec. */
18269 state->op_index = 0;
18270 state->file = 1;
18271 state->line = 1;
18272 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
18273 was a line entry for it so that the backend has a chance to adjust it
18274 and also record it in case it needs it. This is currently used by MIPS
18275 code, cf. `mips_adjust_dwarf2_line'. */
18276 state->address = gdbarch_adjust_dwarf2_line (reader->gdbarch, 0, 0);
18277 state->is_stmt = reader->line_header->default_is_stmt;
18278 state->discriminator = 0;
18279 }
18280
18281 /* Check address and if invalid nop-out the rest of the lines in this
18282 sequence. */
18283
18284 static void
18285 check_line_address (struct dwarf2_cu *cu, lnp_state_machine *state,
18286 const gdb_byte *line_ptr,
18287 CORE_ADDR lowpc, CORE_ADDR address)
18288 {
18289 /* If address < lowpc then it's not a usable value, it's outside the
18290 pc range of the CU. However, we restrict the test to only address
18291 values of zero to preserve GDB's previous behaviour which is to
18292 handle the specific case of a function being GC'd by the linker. */
18293
18294 if (address == 0 && address < lowpc)
18295 {
18296 /* This line table is for a function which has been
18297 GCd by the linker. Ignore it. PR gdb/12528 */
18298
18299 struct objfile *objfile = cu->objfile;
18300 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
18301
18302 complaint (&symfile_complaints,
18303 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
18304 line_offset, objfile_name (objfile));
18305 state->record_line = noop_record_line;
18306 /* Note: sm.record_line is left as noop_record_line
18307 until we see DW_LNE_end_sequence. */
18308 }
18309 }
18310
18311 /* Subroutine of dwarf_decode_lines to simplify it.
18312 Process the line number information in LH.
18313 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
18314 program in order to set included_p for every referenced header. */
18315
18316 static void
18317 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
18318 const int decode_for_pst_p, CORE_ADDR lowpc)
18319 {
18320 const gdb_byte *line_ptr, *extended_end;
18321 const gdb_byte *line_end;
18322 unsigned int bytes_read, extended_len;
18323 unsigned char op_code, extended_op;
18324 CORE_ADDR baseaddr;
18325 struct objfile *objfile = cu->objfile;
18326 bfd *abfd = objfile->obfd;
18327 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18328 /* Non-zero if we're recording line info (as opposed to building partial
18329 symtabs). */
18330 int record_lines_p = !decode_for_pst_p;
18331 /* A collection of things we need to pass to dwarf_record_line. */
18332 lnp_reader_state reader_state;
18333
18334 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18335
18336 line_ptr = lh->statement_program_start;
18337 line_end = lh->statement_program_end;
18338
18339 reader_state.gdbarch = gdbarch;
18340 reader_state.line_header = lh;
18341 reader_state.record_lines_p = record_lines_p;
18342
18343 /* Read the statement sequences until there's nothing left. */
18344 while (line_ptr < line_end)
18345 {
18346 /* The DWARF line number program state machine. */
18347 lnp_state_machine state_machine;
18348 int end_sequence = 0;
18349
18350 /* Reset the state machine at the start of each sequence. */
18351 init_lnp_state_machine (&state_machine, &reader_state);
18352
18353 if (record_lines_p && lh->num_file_names >= state_machine.file)
18354 {
18355 /* Start a subfile for the current file of the state machine. */
18356 /* lh->include_dirs and lh->file_names are 0-based, but the
18357 directory and file name numbers in the statement program
18358 are 1-based. */
18359 struct file_entry *fe = &lh->file_names[state_machine.file - 1];
18360 const char *dir = NULL;
18361
18362 if (fe->dir_index && lh->include_dirs != NULL)
18363 dir = lh->include_dirs[fe->dir_index - 1];
18364
18365 dwarf2_start_subfile (fe->name, dir);
18366 }
18367
18368 /* Decode the table. */
18369 while (line_ptr < line_end && !end_sequence)
18370 {
18371 op_code = read_1_byte (abfd, line_ptr);
18372 line_ptr += 1;
18373
18374 if (op_code >= lh->opcode_base)
18375 {
18376 /* Special opcode. */
18377 unsigned char adj_opcode;
18378 CORE_ADDR addr_adj;
18379 int line_delta;
18380
18381 adj_opcode = op_code - lh->opcode_base;
18382 addr_adj = (((state_machine.op_index
18383 + (adj_opcode / lh->line_range))
18384 / lh->maximum_ops_per_instruction)
18385 * lh->minimum_instruction_length);
18386 state_machine.address
18387 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18388 state_machine.op_index = ((state_machine.op_index
18389 + (adj_opcode / lh->line_range))
18390 % lh->maximum_ops_per_instruction);
18391 line_delta = lh->line_base + (adj_opcode % lh->line_range);
18392 state_machine.line += line_delta;
18393 if (line_delta != 0)
18394 state_machine.line_has_non_zero_discriminator
18395 = state_machine.discriminator != 0;
18396
18397 dwarf_record_line (&reader_state, &state_machine, 0);
18398 state_machine.discriminator = 0;
18399 }
18400 else switch (op_code)
18401 {
18402 case DW_LNS_extended_op:
18403 extended_len = read_unsigned_leb128 (abfd, line_ptr,
18404 &bytes_read);
18405 line_ptr += bytes_read;
18406 extended_end = line_ptr + extended_len;
18407 extended_op = read_1_byte (abfd, line_ptr);
18408 line_ptr += 1;
18409 switch (extended_op)
18410 {
18411 case DW_LNE_end_sequence:
18412 state_machine.record_line = record_line;
18413 end_sequence = 1;
18414 break;
18415 case DW_LNE_set_address:
18416 {
18417 CORE_ADDR address
18418 = read_address (abfd, line_ptr, cu, &bytes_read);
18419
18420 line_ptr += bytes_read;
18421 check_line_address (cu, &state_machine, line_ptr,
18422 lowpc, address);
18423 state_machine.op_index = 0;
18424 address += baseaddr;
18425 state_machine.address
18426 = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
18427 }
18428 break;
18429 case DW_LNE_define_file:
18430 {
18431 const char *cur_file;
18432 unsigned int dir_index, mod_time, length;
18433
18434 cur_file = read_direct_string (abfd, line_ptr,
18435 &bytes_read);
18436 line_ptr += bytes_read;
18437 dir_index =
18438 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18439 line_ptr += bytes_read;
18440 mod_time =
18441 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18442 line_ptr += bytes_read;
18443 length =
18444 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18445 line_ptr += bytes_read;
18446 add_file_name (lh, cur_file, dir_index, mod_time, length);
18447 }
18448 break;
18449 case DW_LNE_set_discriminator:
18450 /* The discriminator is not interesting to the debugger;
18451 just ignore it. We still need to check its value though:
18452 if there are consecutive entries for the same
18453 (non-prologue) line we want to coalesce them.
18454 PR 17276. */
18455 state_machine.discriminator
18456 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18457 state_machine.line_has_non_zero_discriminator
18458 |= state_machine.discriminator != 0;
18459 line_ptr += bytes_read;
18460 break;
18461 default:
18462 complaint (&symfile_complaints,
18463 _("mangled .debug_line section"));
18464 return;
18465 }
18466 /* Make sure that we parsed the extended op correctly. If e.g.
18467 we expected a different address size than the producer used,
18468 we may have read the wrong number of bytes. */
18469 if (line_ptr != extended_end)
18470 {
18471 complaint (&symfile_complaints,
18472 _("mangled .debug_line section"));
18473 return;
18474 }
18475 break;
18476 case DW_LNS_copy:
18477 dwarf_record_line (&reader_state, &state_machine, 0);
18478 state_machine.discriminator = 0;
18479 break;
18480 case DW_LNS_advance_pc:
18481 {
18482 CORE_ADDR adjust
18483 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18484 CORE_ADDR addr_adj;
18485
18486 addr_adj = (((state_machine.op_index + adjust)
18487 / lh->maximum_ops_per_instruction)
18488 * lh->minimum_instruction_length);
18489 state_machine.address
18490 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18491 state_machine.op_index = ((state_machine.op_index + adjust)
18492 % lh->maximum_ops_per_instruction);
18493 line_ptr += bytes_read;
18494 }
18495 break;
18496 case DW_LNS_advance_line:
18497 {
18498 int line_delta
18499 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
18500
18501 state_machine.line += line_delta;
18502 if (line_delta != 0)
18503 state_machine.line_has_non_zero_discriminator
18504 = state_machine.discriminator != 0;
18505 line_ptr += bytes_read;
18506 }
18507 break;
18508 case DW_LNS_set_file:
18509 {
18510 /* The arrays lh->include_dirs and lh->file_names are
18511 0-based, but the directory and file name numbers in
18512 the statement program are 1-based. */
18513 struct file_entry *fe;
18514 const char *dir = NULL;
18515
18516 state_machine.file = read_unsigned_leb128 (abfd, line_ptr,
18517 &bytes_read);
18518 line_ptr += bytes_read;
18519 if (state_machine.file == 0
18520 || state_machine.file - 1 >= lh->num_file_names)
18521 dwarf2_debug_line_missing_file_complaint ();
18522 else
18523 {
18524 fe = &lh->file_names[state_machine.file - 1];
18525 if (fe->dir_index && lh->include_dirs != NULL)
18526 dir = lh->include_dirs[fe->dir_index - 1];
18527 if (record_lines_p)
18528 {
18529 state_machine.last_subfile = current_subfile;
18530 state_machine.line_has_non_zero_discriminator
18531 = state_machine.discriminator != 0;
18532 dwarf2_start_subfile (fe->name, dir);
18533 }
18534 }
18535 }
18536 break;
18537 case DW_LNS_set_column:
18538 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18539 line_ptr += bytes_read;
18540 break;
18541 case DW_LNS_negate_stmt:
18542 state_machine.is_stmt = (!state_machine.is_stmt);
18543 break;
18544 case DW_LNS_set_basic_block:
18545 break;
18546 /* Add to the address register of the state machine the
18547 address increment value corresponding to special opcode
18548 255. I.e., this value is scaled by the minimum
18549 instruction length since special opcode 255 would have
18550 scaled the increment. */
18551 case DW_LNS_const_add_pc:
18552 {
18553 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
18554 CORE_ADDR addr_adj;
18555
18556 addr_adj = (((state_machine.op_index + adjust)
18557 / lh->maximum_ops_per_instruction)
18558 * lh->minimum_instruction_length);
18559 state_machine.address
18560 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18561 state_machine.op_index = ((state_machine.op_index + adjust)
18562 % lh->maximum_ops_per_instruction);
18563 }
18564 break;
18565 case DW_LNS_fixed_advance_pc:
18566 {
18567 CORE_ADDR addr_adj;
18568
18569 addr_adj = read_2_bytes (abfd, line_ptr);
18570 state_machine.address
18571 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18572 state_machine.op_index = 0;
18573 line_ptr += 2;
18574 }
18575 break;
18576 default:
18577 {
18578 /* Unknown standard opcode, ignore it. */
18579 int i;
18580
18581 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
18582 {
18583 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18584 line_ptr += bytes_read;
18585 }
18586 }
18587 }
18588 }
18589
18590 if (!end_sequence)
18591 dwarf2_debug_line_missing_end_sequence_complaint ();
18592
18593 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18594 in which case we still finish recording the last line). */
18595 dwarf_record_line (&reader_state, &state_machine, 1);
18596 }
18597 }
18598
18599 /* Decode the Line Number Program (LNP) for the given line_header
18600 structure and CU. The actual information extracted and the type
18601 of structures created from the LNP depends on the value of PST.
18602
18603 1. If PST is NULL, then this procedure uses the data from the program
18604 to create all necessary symbol tables, and their linetables.
18605
18606 2. If PST is not NULL, this procedure reads the program to determine
18607 the list of files included by the unit represented by PST, and
18608 builds all the associated partial symbol tables.
18609
18610 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18611 It is used for relative paths in the line table.
18612 NOTE: When processing partial symtabs (pst != NULL),
18613 comp_dir == pst->dirname.
18614
18615 NOTE: It is important that psymtabs have the same file name (via strcmp)
18616 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18617 symtab we don't use it in the name of the psymtabs we create.
18618 E.g. expand_line_sal requires this when finding psymtabs to expand.
18619 A good testcase for this is mb-inline.exp.
18620
18621 LOWPC is the lowest address in CU (or 0 if not known).
18622
18623 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18624 for its PC<->lines mapping information. Otherwise only the filename
18625 table is read in. */
18626
18627 static void
18628 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
18629 struct dwarf2_cu *cu, struct partial_symtab *pst,
18630 CORE_ADDR lowpc, int decode_mapping)
18631 {
18632 struct objfile *objfile = cu->objfile;
18633 const int decode_for_pst_p = (pst != NULL);
18634
18635 if (decode_mapping)
18636 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
18637
18638 if (decode_for_pst_p)
18639 {
18640 int file_index;
18641
18642 /* Now that we're done scanning the Line Header Program, we can
18643 create the psymtab of each included file. */
18644 for (file_index = 0; file_index < lh->num_file_names; file_index++)
18645 if (lh->file_names[file_index].included_p == 1)
18646 {
18647 const char *include_name =
18648 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18649 if (include_name != NULL)
18650 dwarf2_create_include_psymtab (include_name, pst, objfile);
18651 }
18652 }
18653 else
18654 {
18655 /* Make sure a symtab is created for every file, even files
18656 which contain only variables (i.e. no code with associated
18657 line numbers). */
18658 struct compunit_symtab *cust = buildsym_compunit_symtab ();
18659 int i;
18660
18661 for (i = 0; i < lh->num_file_names; i++)
18662 {
18663 const char *dir = NULL;
18664 struct file_entry *fe;
18665
18666 fe = &lh->file_names[i];
18667 if (fe->dir_index && lh->include_dirs != NULL)
18668 dir = lh->include_dirs[fe->dir_index - 1];
18669 dwarf2_start_subfile (fe->name, dir);
18670
18671 if (current_subfile->symtab == NULL)
18672 {
18673 current_subfile->symtab
18674 = allocate_symtab (cust, current_subfile->name);
18675 }
18676 fe->symtab = current_subfile->symtab;
18677 }
18678 }
18679 }
18680
18681 /* Start a subfile for DWARF. FILENAME is the name of the file and
18682 DIRNAME the name of the source directory which contains FILENAME
18683 or NULL if not known.
18684 This routine tries to keep line numbers from identical absolute and
18685 relative file names in a common subfile.
18686
18687 Using the `list' example from the GDB testsuite, which resides in
18688 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18689 of /srcdir/list0.c yields the following debugging information for list0.c:
18690
18691 DW_AT_name: /srcdir/list0.c
18692 DW_AT_comp_dir: /compdir
18693 files.files[0].name: list0.h
18694 files.files[0].dir: /srcdir
18695 files.files[1].name: list0.c
18696 files.files[1].dir: /srcdir
18697
18698 The line number information for list0.c has to end up in a single
18699 subfile, so that `break /srcdir/list0.c:1' works as expected.
18700 start_subfile will ensure that this happens provided that we pass the
18701 concatenation of files.files[1].dir and files.files[1].name as the
18702 subfile's name. */
18703
18704 static void
18705 dwarf2_start_subfile (const char *filename, const char *dirname)
18706 {
18707 char *copy = NULL;
18708
18709 /* In order not to lose the line information directory,
18710 we concatenate it to the filename when it makes sense.
18711 Note that the Dwarf3 standard says (speaking of filenames in line
18712 information): ``The directory index is ignored for file names
18713 that represent full path names''. Thus ignoring dirname in the
18714 `else' branch below isn't an issue. */
18715
18716 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
18717 {
18718 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18719 filename = copy;
18720 }
18721
18722 start_subfile (filename);
18723
18724 if (copy != NULL)
18725 xfree (copy);
18726 }
18727
18728 /* Start a symtab for DWARF.
18729 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18730
18731 static struct compunit_symtab *
18732 dwarf2_start_symtab (struct dwarf2_cu *cu,
18733 const char *name, const char *comp_dir, CORE_ADDR low_pc)
18734 {
18735 struct compunit_symtab *cust
18736 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18737
18738 record_debugformat ("DWARF 2");
18739 record_producer (cu->producer);
18740
18741 /* We assume that we're processing GCC output. */
18742 processing_gcc_compilation = 2;
18743
18744 cu->processing_has_namespace_info = 0;
18745
18746 return cust;
18747 }
18748
18749 static void
18750 var_decode_location (struct attribute *attr, struct symbol *sym,
18751 struct dwarf2_cu *cu)
18752 {
18753 struct objfile *objfile = cu->objfile;
18754 struct comp_unit_head *cu_header = &cu->header;
18755
18756 /* NOTE drow/2003-01-30: There used to be a comment and some special
18757 code here to turn a symbol with DW_AT_external and a
18758 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18759 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18760 with some versions of binutils) where shared libraries could have
18761 relocations against symbols in their debug information - the
18762 minimal symbol would have the right address, but the debug info
18763 would not. It's no longer necessary, because we will explicitly
18764 apply relocations when we read in the debug information now. */
18765
18766 /* A DW_AT_location attribute with no contents indicates that a
18767 variable has been optimized away. */
18768 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18769 {
18770 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18771 return;
18772 }
18773
18774 /* Handle one degenerate form of location expression specially, to
18775 preserve GDB's previous behavior when section offsets are
18776 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18777 then mark this symbol as LOC_STATIC. */
18778
18779 if (attr_form_is_block (attr)
18780 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18781 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18782 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18783 && (DW_BLOCK (attr)->size
18784 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
18785 {
18786 unsigned int dummy;
18787
18788 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18789 SYMBOL_VALUE_ADDRESS (sym) =
18790 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18791 else
18792 SYMBOL_VALUE_ADDRESS (sym) =
18793 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
18794 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
18795 fixup_symbol_section (sym, objfile);
18796 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18797 SYMBOL_SECTION (sym));
18798 return;
18799 }
18800
18801 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18802 expression evaluator, and use LOC_COMPUTED only when necessary
18803 (i.e. when the value of a register or memory location is
18804 referenced, or a thread-local block, etc.). Then again, it might
18805 not be worthwhile. I'm assuming that it isn't unless performance
18806 or memory numbers show me otherwise. */
18807
18808 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
18809
18810 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
18811 cu->has_loclist = 1;
18812 }
18813
18814 /* Given a pointer to a DWARF information entry, figure out if we need
18815 to make a symbol table entry for it, and if so, create a new entry
18816 and return a pointer to it.
18817 If TYPE is NULL, determine symbol type from the die, otherwise
18818 used the passed type.
18819 If SPACE is not NULL, use it to hold the new symbol. If it is
18820 NULL, allocate a new symbol on the objfile's obstack. */
18821
18822 static struct symbol *
18823 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18824 struct symbol *space)
18825 {
18826 struct objfile *objfile = cu->objfile;
18827 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18828 struct symbol *sym = NULL;
18829 const char *name;
18830 struct attribute *attr = NULL;
18831 struct attribute *attr2 = NULL;
18832 CORE_ADDR baseaddr;
18833 struct pending **list_to_add = NULL;
18834
18835 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
18836
18837 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18838
18839 name = dwarf2_name (die, cu);
18840 if (name)
18841 {
18842 const char *linkagename;
18843 int suppress_add = 0;
18844
18845 if (space)
18846 sym = space;
18847 else
18848 sym = allocate_symbol (objfile);
18849 OBJSTAT (objfile, n_syms++);
18850
18851 /* Cache this symbol's name and the name's demangled form (if any). */
18852 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
18853 linkagename = dwarf2_physname (name, die, cu);
18854 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
18855
18856 /* Fortran does not have mangling standard and the mangling does differ
18857 between gfortran, iFort etc. */
18858 if (cu->language == language_fortran
18859 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
18860 symbol_set_demangled_name (&(sym->ginfo),
18861 dwarf2_full_name (name, die, cu),
18862 NULL);
18863
18864 /* Default assumptions.
18865 Use the passed type or decode it from the die. */
18866 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18867 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18868 if (type != NULL)
18869 SYMBOL_TYPE (sym) = type;
18870 else
18871 SYMBOL_TYPE (sym) = die_type (die, cu);
18872 attr = dwarf2_attr (die,
18873 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18874 cu);
18875 if (attr)
18876 {
18877 SYMBOL_LINE (sym) = DW_UNSND (attr);
18878 }
18879
18880 attr = dwarf2_attr (die,
18881 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18882 cu);
18883 if (attr)
18884 {
18885 int file_index = DW_UNSND (attr);
18886
18887 if (cu->line_header == NULL
18888 || file_index > cu->line_header->num_file_names)
18889 complaint (&symfile_complaints,
18890 _("file index out of range"));
18891 else if (file_index > 0)
18892 {
18893 struct file_entry *fe;
18894
18895 fe = &cu->line_header->file_names[file_index - 1];
18896 symbol_set_symtab (sym, fe->symtab);
18897 }
18898 }
18899
18900 switch (die->tag)
18901 {
18902 case DW_TAG_label:
18903 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
18904 if (attr)
18905 {
18906 CORE_ADDR addr;
18907
18908 addr = attr_value_as_address (attr);
18909 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18910 SYMBOL_VALUE_ADDRESS (sym) = addr;
18911 }
18912 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18913 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
18914 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
18915 add_symbol_to_list (sym, cu->list_in_scope);
18916 break;
18917 case DW_TAG_subprogram:
18918 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18919 finish_block. */
18920 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18921 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18922 if ((attr2 && (DW_UNSND (attr2) != 0))
18923 || cu->language == language_ada)
18924 {
18925 /* Subprograms marked external are stored as a global symbol.
18926 Ada subprograms, whether marked external or not, are always
18927 stored as a global symbol, because we want to be able to
18928 access them globally. For instance, we want to be able
18929 to break on a nested subprogram without having to
18930 specify the context. */
18931 list_to_add = &global_symbols;
18932 }
18933 else
18934 {
18935 list_to_add = cu->list_in_scope;
18936 }
18937 break;
18938 case DW_TAG_inlined_subroutine:
18939 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18940 finish_block. */
18941 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18942 SYMBOL_INLINED (sym) = 1;
18943 list_to_add = cu->list_in_scope;
18944 break;
18945 case DW_TAG_template_value_param:
18946 suppress_add = 1;
18947 /* Fall through. */
18948 case DW_TAG_constant:
18949 case DW_TAG_variable:
18950 case DW_TAG_member:
18951 /* Compilation with minimal debug info may result in
18952 variables with missing type entries. Change the
18953 misleading `void' type to something sensible. */
18954 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
18955 SYMBOL_TYPE (sym)
18956 = objfile_type (objfile)->nodebug_data_symbol;
18957
18958 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18959 /* In the case of DW_TAG_member, we should only be called for
18960 static const members. */
18961 if (die->tag == DW_TAG_member)
18962 {
18963 /* dwarf2_add_field uses die_is_declaration,
18964 so we do the same. */
18965 gdb_assert (die_is_declaration (die, cu));
18966 gdb_assert (attr);
18967 }
18968 if (attr)
18969 {
18970 dwarf2_const_value (attr, sym, cu);
18971 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18972 if (!suppress_add)
18973 {
18974 if (attr2 && (DW_UNSND (attr2) != 0))
18975 list_to_add = &global_symbols;
18976 else
18977 list_to_add = cu->list_in_scope;
18978 }
18979 break;
18980 }
18981 attr = dwarf2_attr (die, DW_AT_location, cu);
18982 if (attr)
18983 {
18984 var_decode_location (attr, sym, cu);
18985 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18986
18987 /* Fortran explicitly imports any global symbols to the local
18988 scope by DW_TAG_common_block. */
18989 if (cu->language == language_fortran && die->parent
18990 && die->parent->tag == DW_TAG_common_block)
18991 attr2 = NULL;
18992
18993 if (SYMBOL_CLASS (sym) == LOC_STATIC
18994 && SYMBOL_VALUE_ADDRESS (sym) == 0
18995 && !dwarf2_per_objfile->has_section_at_zero)
18996 {
18997 /* When a static variable is eliminated by the linker,
18998 the corresponding debug information is not stripped
18999 out, but the variable address is set to null;
19000 do not add such variables into symbol table. */
19001 }
19002 else if (attr2 && (DW_UNSND (attr2) != 0))
19003 {
19004 /* Workaround gfortran PR debug/40040 - it uses
19005 DW_AT_location for variables in -fPIC libraries which may
19006 get overriden by other libraries/executable and get
19007 a different address. Resolve it by the minimal symbol
19008 which may come from inferior's executable using copy
19009 relocation. Make this workaround only for gfortran as for
19010 other compilers GDB cannot guess the minimal symbol
19011 Fortran mangling kind. */
19012 if (cu->language == language_fortran && die->parent
19013 && die->parent->tag == DW_TAG_module
19014 && cu->producer
19015 && startswith (cu->producer, "GNU Fortran"))
19016 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
19017
19018 /* A variable with DW_AT_external is never static,
19019 but it may be block-scoped. */
19020 list_to_add = (cu->list_in_scope == &file_symbols
19021 ? &global_symbols : cu->list_in_scope);
19022 }
19023 else
19024 list_to_add = cu->list_in_scope;
19025 }
19026 else
19027 {
19028 /* We do not know the address of this symbol.
19029 If it is an external symbol and we have type information
19030 for it, enter the symbol as a LOC_UNRESOLVED symbol.
19031 The address of the variable will then be determined from
19032 the minimal symbol table whenever the variable is
19033 referenced. */
19034 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19035
19036 /* Fortran explicitly imports any global symbols to the local
19037 scope by DW_TAG_common_block. */
19038 if (cu->language == language_fortran && die->parent
19039 && die->parent->tag == DW_TAG_common_block)
19040 {
19041 /* SYMBOL_CLASS doesn't matter here because
19042 read_common_block is going to reset it. */
19043 if (!suppress_add)
19044 list_to_add = cu->list_in_scope;
19045 }
19046 else if (attr2 && (DW_UNSND (attr2) != 0)
19047 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
19048 {
19049 /* A variable with DW_AT_external is never static, but it
19050 may be block-scoped. */
19051 list_to_add = (cu->list_in_scope == &file_symbols
19052 ? &global_symbols : cu->list_in_scope);
19053
19054 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
19055 }
19056 else if (!die_is_declaration (die, cu))
19057 {
19058 /* Use the default LOC_OPTIMIZED_OUT class. */
19059 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
19060 if (!suppress_add)
19061 list_to_add = cu->list_in_scope;
19062 }
19063 }
19064 break;
19065 case DW_TAG_formal_parameter:
19066 /* If we are inside a function, mark this as an argument. If
19067 not, we might be looking at an argument to an inlined function
19068 when we do not have enough information to show inlined frames;
19069 pretend it's a local variable in that case so that the user can
19070 still see it. */
19071 if (context_stack_depth > 0
19072 && context_stack[context_stack_depth - 1].name != NULL)
19073 SYMBOL_IS_ARGUMENT (sym) = 1;
19074 attr = dwarf2_attr (die, DW_AT_location, cu);
19075 if (attr)
19076 {
19077 var_decode_location (attr, sym, cu);
19078 }
19079 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19080 if (attr)
19081 {
19082 dwarf2_const_value (attr, sym, cu);
19083 }
19084
19085 list_to_add = cu->list_in_scope;
19086 break;
19087 case DW_TAG_unspecified_parameters:
19088 /* From varargs functions; gdb doesn't seem to have any
19089 interest in this information, so just ignore it for now.
19090 (FIXME?) */
19091 break;
19092 case DW_TAG_template_type_param:
19093 suppress_add = 1;
19094 /* Fall through. */
19095 case DW_TAG_class_type:
19096 case DW_TAG_interface_type:
19097 case DW_TAG_structure_type:
19098 case DW_TAG_union_type:
19099 case DW_TAG_set_type:
19100 case DW_TAG_enumeration_type:
19101 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19102 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
19103
19104 {
19105 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
19106 really ever be static objects: otherwise, if you try
19107 to, say, break of a class's method and you're in a file
19108 which doesn't mention that class, it won't work unless
19109 the check for all static symbols in lookup_symbol_aux
19110 saves you. See the OtherFileClass tests in
19111 gdb.c++/namespace.exp. */
19112
19113 if (!suppress_add)
19114 {
19115 list_to_add = (cu->list_in_scope == &file_symbols
19116 && cu->language == language_cplus
19117 ? &global_symbols : cu->list_in_scope);
19118
19119 /* The semantics of C++ state that "struct foo {
19120 ... }" also defines a typedef for "foo". */
19121 if (cu->language == language_cplus
19122 || cu->language == language_ada
19123 || cu->language == language_d
19124 || cu->language == language_rust)
19125 {
19126 /* The symbol's name is already allocated along
19127 with this objfile, so we don't need to
19128 duplicate it for the type. */
19129 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
19130 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
19131 }
19132 }
19133 }
19134 break;
19135 case DW_TAG_typedef:
19136 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19137 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
19138 list_to_add = cu->list_in_scope;
19139 break;
19140 case DW_TAG_base_type:
19141 case DW_TAG_subrange_type:
19142 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19143 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
19144 list_to_add = cu->list_in_scope;
19145 break;
19146 case DW_TAG_enumerator:
19147 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19148 if (attr)
19149 {
19150 dwarf2_const_value (attr, sym, cu);
19151 }
19152 {
19153 /* NOTE: carlton/2003-11-10: See comment above in the
19154 DW_TAG_class_type, etc. block. */
19155
19156 list_to_add = (cu->list_in_scope == &file_symbols
19157 && cu->language == language_cplus
19158 ? &global_symbols : cu->list_in_scope);
19159 }
19160 break;
19161 case DW_TAG_imported_declaration:
19162 case DW_TAG_namespace:
19163 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19164 list_to_add = &global_symbols;
19165 break;
19166 case DW_TAG_module:
19167 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19168 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
19169 list_to_add = &global_symbols;
19170 break;
19171 case DW_TAG_common_block:
19172 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
19173 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
19174 add_symbol_to_list (sym, cu->list_in_scope);
19175 break;
19176 default:
19177 /* Not a tag we recognize. Hopefully we aren't processing
19178 trash data, but since we must specifically ignore things
19179 we don't recognize, there is nothing else we should do at
19180 this point. */
19181 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
19182 dwarf_tag_name (die->tag));
19183 break;
19184 }
19185
19186 if (suppress_add)
19187 {
19188 sym->hash_next = objfile->template_symbols;
19189 objfile->template_symbols = sym;
19190 list_to_add = NULL;
19191 }
19192
19193 if (list_to_add != NULL)
19194 add_symbol_to_list (sym, list_to_add);
19195
19196 /* For the benefit of old versions of GCC, check for anonymous
19197 namespaces based on the demangled name. */
19198 if (!cu->processing_has_namespace_info
19199 && cu->language == language_cplus)
19200 cp_scan_for_anonymous_namespaces (sym, objfile);
19201 }
19202 return (sym);
19203 }
19204
19205 /* A wrapper for new_symbol_full that always allocates a new symbol. */
19206
19207 static struct symbol *
19208 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
19209 {
19210 return new_symbol_full (die, type, cu, NULL);
19211 }
19212
19213 /* Given an attr with a DW_FORM_dataN value in host byte order,
19214 zero-extend it as appropriate for the symbol's type. The DWARF
19215 standard (v4) is not entirely clear about the meaning of using
19216 DW_FORM_dataN for a constant with a signed type, where the type is
19217 wider than the data. The conclusion of a discussion on the DWARF
19218 list was that this is unspecified. We choose to always zero-extend
19219 because that is the interpretation long in use by GCC. */
19220
19221 static gdb_byte *
19222 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
19223 struct dwarf2_cu *cu, LONGEST *value, int bits)
19224 {
19225 struct objfile *objfile = cu->objfile;
19226 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
19227 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
19228 LONGEST l = DW_UNSND (attr);
19229
19230 if (bits < sizeof (*value) * 8)
19231 {
19232 l &= ((LONGEST) 1 << bits) - 1;
19233 *value = l;
19234 }
19235 else if (bits == sizeof (*value) * 8)
19236 *value = l;
19237 else
19238 {
19239 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
19240 store_unsigned_integer (bytes, bits / 8, byte_order, l);
19241 return bytes;
19242 }
19243
19244 return NULL;
19245 }
19246
19247 /* Read a constant value from an attribute. Either set *VALUE, or if
19248 the value does not fit in *VALUE, set *BYTES - either already
19249 allocated on the objfile obstack, or newly allocated on OBSTACK,
19250 or, set *BATON, if we translated the constant to a location
19251 expression. */
19252
19253 static void
19254 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
19255 const char *name, struct obstack *obstack,
19256 struct dwarf2_cu *cu,
19257 LONGEST *value, const gdb_byte **bytes,
19258 struct dwarf2_locexpr_baton **baton)
19259 {
19260 struct objfile *objfile = cu->objfile;
19261 struct comp_unit_head *cu_header = &cu->header;
19262 struct dwarf_block *blk;
19263 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
19264 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19265
19266 *value = 0;
19267 *bytes = NULL;
19268 *baton = NULL;
19269
19270 switch (attr->form)
19271 {
19272 case DW_FORM_addr:
19273 case DW_FORM_GNU_addr_index:
19274 {
19275 gdb_byte *data;
19276
19277 if (TYPE_LENGTH (type) != cu_header->addr_size)
19278 dwarf2_const_value_length_mismatch_complaint (name,
19279 cu_header->addr_size,
19280 TYPE_LENGTH (type));
19281 /* Symbols of this form are reasonably rare, so we just
19282 piggyback on the existing location code rather than writing
19283 a new implementation of symbol_computed_ops. */
19284 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
19285 (*baton)->per_cu = cu->per_cu;
19286 gdb_assert ((*baton)->per_cu);
19287
19288 (*baton)->size = 2 + cu_header->addr_size;
19289 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
19290 (*baton)->data = data;
19291
19292 data[0] = DW_OP_addr;
19293 store_unsigned_integer (&data[1], cu_header->addr_size,
19294 byte_order, DW_ADDR (attr));
19295 data[cu_header->addr_size + 1] = DW_OP_stack_value;
19296 }
19297 break;
19298 case DW_FORM_string:
19299 case DW_FORM_strp:
19300 case DW_FORM_GNU_str_index:
19301 case DW_FORM_GNU_strp_alt:
19302 /* DW_STRING is already allocated on the objfile obstack, point
19303 directly to it. */
19304 *bytes = (const gdb_byte *) DW_STRING (attr);
19305 break;
19306 case DW_FORM_block1:
19307 case DW_FORM_block2:
19308 case DW_FORM_block4:
19309 case DW_FORM_block:
19310 case DW_FORM_exprloc:
19311 case DW_FORM_data16:
19312 blk = DW_BLOCK (attr);
19313 if (TYPE_LENGTH (type) != blk->size)
19314 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
19315 TYPE_LENGTH (type));
19316 *bytes = blk->data;
19317 break;
19318
19319 /* The DW_AT_const_value attributes are supposed to carry the
19320 symbol's value "represented as it would be on the target
19321 architecture." By the time we get here, it's already been
19322 converted to host endianness, so we just need to sign- or
19323 zero-extend it as appropriate. */
19324 case DW_FORM_data1:
19325 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
19326 break;
19327 case DW_FORM_data2:
19328 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
19329 break;
19330 case DW_FORM_data4:
19331 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
19332 break;
19333 case DW_FORM_data8:
19334 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
19335 break;
19336
19337 case DW_FORM_sdata:
19338 *value = DW_SND (attr);
19339 break;
19340
19341 case DW_FORM_udata:
19342 *value = DW_UNSND (attr);
19343 break;
19344
19345 default:
19346 complaint (&symfile_complaints,
19347 _("unsupported const value attribute form: '%s'"),
19348 dwarf_form_name (attr->form));
19349 *value = 0;
19350 break;
19351 }
19352 }
19353
19354
19355 /* Copy constant value from an attribute to a symbol. */
19356
19357 static void
19358 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
19359 struct dwarf2_cu *cu)
19360 {
19361 struct objfile *objfile = cu->objfile;
19362 LONGEST value;
19363 const gdb_byte *bytes;
19364 struct dwarf2_locexpr_baton *baton;
19365
19366 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
19367 SYMBOL_PRINT_NAME (sym),
19368 &objfile->objfile_obstack, cu,
19369 &value, &bytes, &baton);
19370
19371 if (baton != NULL)
19372 {
19373 SYMBOL_LOCATION_BATON (sym) = baton;
19374 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
19375 }
19376 else if (bytes != NULL)
19377 {
19378 SYMBOL_VALUE_BYTES (sym) = bytes;
19379 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
19380 }
19381 else
19382 {
19383 SYMBOL_VALUE (sym) = value;
19384 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
19385 }
19386 }
19387
19388 /* Return the type of the die in question using its DW_AT_type attribute. */
19389
19390 static struct type *
19391 die_type (struct die_info *die, struct dwarf2_cu *cu)
19392 {
19393 struct attribute *type_attr;
19394
19395 type_attr = dwarf2_attr (die, DW_AT_type, cu);
19396 if (!type_attr)
19397 {
19398 /* A missing DW_AT_type represents a void type. */
19399 return objfile_type (cu->objfile)->builtin_void;
19400 }
19401
19402 return lookup_die_type (die, type_attr, cu);
19403 }
19404
19405 /* True iff CU's producer generates GNAT Ada auxiliary information
19406 that allows to find parallel types through that information instead
19407 of having to do expensive parallel lookups by type name. */
19408
19409 static int
19410 need_gnat_info (struct dwarf2_cu *cu)
19411 {
19412 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
19413 of GNAT produces this auxiliary information, without any indication
19414 that it is produced. Part of enhancing the FSF version of GNAT
19415 to produce that information will be to put in place an indicator
19416 that we can use in order to determine whether the descriptive type
19417 info is available or not. One suggestion that has been made is
19418 to use a new attribute, attached to the CU die. For now, assume
19419 that the descriptive type info is not available. */
19420 return 0;
19421 }
19422
19423 /* Return the auxiliary type of the die in question using its
19424 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
19425 attribute is not present. */
19426
19427 static struct type *
19428 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
19429 {
19430 struct attribute *type_attr;
19431
19432 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
19433 if (!type_attr)
19434 return NULL;
19435
19436 return lookup_die_type (die, type_attr, cu);
19437 }
19438
19439 /* If DIE has a descriptive_type attribute, then set the TYPE's
19440 descriptive type accordingly. */
19441
19442 static void
19443 set_descriptive_type (struct type *type, struct die_info *die,
19444 struct dwarf2_cu *cu)
19445 {
19446 struct type *descriptive_type = die_descriptive_type (die, cu);
19447
19448 if (descriptive_type)
19449 {
19450 ALLOCATE_GNAT_AUX_TYPE (type);
19451 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
19452 }
19453 }
19454
19455 /* Return the containing type of the die in question using its
19456 DW_AT_containing_type attribute. */
19457
19458 static struct type *
19459 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
19460 {
19461 struct attribute *type_attr;
19462
19463 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
19464 if (!type_attr)
19465 error (_("Dwarf Error: Problem turning containing type into gdb type "
19466 "[in module %s]"), objfile_name (cu->objfile));
19467
19468 return lookup_die_type (die, type_attr, cu);
19469 }
19470
19471 /* Return an error marker type to use for the ill formed type in DIE/CU. */
19472
19473 static struct type *
19474 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
19475 {
19476 struct objfile *objfile = dwarf2_per_objfile->objfile;
19477 char *message, *saved;
19478
19479 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
19480 objfile_name (objfile),
19481 cu->header.offset.sect_off,
19482 die->offset.sect_off);
19483 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
19484 message, strlen (message));
19485 xfree (message);
19486
19487 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
19488 }
19489
19490 /* Look up the type of DIE in CU using its type attribute ATTR.
19491 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
19492 DW_AT_containing_type.
19493 If there is no type substitute an error marker. */
19494
19495 static struct type *
19496 lookup_die_type (struct die_info *die, const struct attribute *attr,
19497 struct dwarf2_cu *cu)
19498 {
19499 struct objfile *objfile = cu->objfile;
19500 struct type *this_type;
19501
19502 gdb_assert (attr->name == DW_AT_type
19503 || attr->name == DW_AT_GNAT_descriptive_type
19504 || attr->name == DW_AT_containing_type);
19505
19506 /* First see if we have it cached. */
19507
19508 if (attr->form == DW_FORM_GNU_ref_alt)
19509 {
19510 struct dwarf2_per_cu_data *per_cu;
19511 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19512
19513 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
19514 this_type = get_die_type_at_offset (offset, per_cu);
19515 }
19516 else if (attr_form_is_ref (attr))
19517 {
19518 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19519
19520 this_type = get_die_type_at_offset (offset, cu->per_cu);
19521 }
19522 else if (attr->form == DW_FORM_ref_sig8)
19523 {
19524 ULONGEST signature = DW_SIGNATURE (attr);
19525
19526 return get_signatured_type (die, signature, cu);
19527 }
19528 else
19529 {
19530 complaint (&symfile_complaints,
19531 _("Dwarf Error: Bad type attribute %s in DIE"
19532 " at 0x%x [in module %s]"),
19533 dwarf_attr_name (attr->name), die->offset.sect_off,
19534 objfile_name (objfile));
19535 return build_error_marker_type (cu, die);
19536 }
19537
19538 /* If not cached we need to read it in. */
19539
19540 if (this_type == NULL)
19541 {
19542 struct die_info *type_die = NULL;
19543 struct dwarf2_cu *type_cu = cu;
19544
19545 if (attr_form_is_ref (attr))
19546 type_die = follow_die_ref (die, attr, &type_cu);
19547 if (type_die == NULL)
19548 return build_error_marker_type (cu, die);
19549 /* If we find the type now, it's probably because the type came
19550 from an inter-CU reference and the type's CU got expanded before
19551 ours. */
19552 this_type = read_type_die (type_die, type_cu);
19553 }
19554
19555 /* If we still don't have a type use an error marker. */
19556
19557 if (this_type == NULL)
19558 return build_error_marker_type (cu, die);
19559
19560 return this_type;
19561 }
19562
19563 /* Return the type in DIE, CU.
19564 Returns NULL for invalid types.
19565
19566 This first does a lookup in die_type_hash,
19567 and only reads the die in if necessary.
19568
19569 NOTE: This can be called when reading in partial or full symbols. */
19570
19571 static struct type *
19572 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
19573 {
19574 struct type *this_type;
19575
19576 this_type = get_die_type (die, cu);
19577 if (this_type)
19578 return this_type;
19579
19580 return read_type_die_1 (die, cu);
19581 }
19582
19583 /* Read the type in DIE, CU.
19584 Returns NULL for invalid types. */
19585
19586 static struct type *
19587 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19588 {
19589 struct type *this_type = NULL;
19590
19591 switch (die->tag)
19592 {
19593 case DW_TAG_class_type:
19594 case DW_TAG_interface_type:
19595 case DW_TAG_structure_type:
19596 case DW_TAG_union_type:
19597 this_type = read_structure_type (die, cu);
19598 break;
19599 case DW_TAG_enumeration_type:
19600 this_type = read_enumeration_type (die, cu);
19601 break;
19602 case DW_TAG_subprogram:
19603 case DW_TAG_subroutine_type:
19604 case DW_TAG_inlined_subroutine:
19605 this_type = read_subroutine_type (die, cu);
19606 break;
19607 case DW_TAG_array_type:
19608 this_type = read_array_type (die, cu);
19609 break;
19610 case DW_TAG_set_type:
19611 this_type = read_set_type (die, cu);
19612 break;
19613 case DW_TAG_pointer_type:
19614 this_type = read_tag_pointer_type (die, cu);
19615 break;
19616 case DW_TAG_ptr_to_member_type:
19617 this_type = read_tag_ptr_to_member_type (die, cu);
19618 break;
19619 case DW_TAG_reference_type:
19620 this_type = read_tag_reference_type (die, cu);
19621 break;
19622 case DW_TAG_const_type:
19623 this_type = read_tag_const_type (die, cu);
19624 break;
19625 case DW_TAG_volatile_type:
19626 this_type = read_tag_volatile_type (die, cu);
19627 break;
19628 case DW_TAG_restrict_type:
19629 this_type = read_tag_restrict_type (die, cu);
19630 break;
19631 case DW_TAG_string_type:
19632 this_type = read_tag_string_type (die, cu);
19633 break;
19634 case DW_TAG_typedef:
19635 this_type = read_typedef (die, cu);
19636 break;
19637 case DW_TAG_subrange_type:
19638 this_type = read_subrange_type (die, cu);
19639 break;
19640 case DW_TAG_base_type:
19641 this_type = read_base_type (die, cu);
19642 break;
19643 case DW_TAG_unspecified_type:
19644 this_type = read_unspecified_type (die, cu);
19645 break;
19646 case DW_TAG_namespace:
19647 this_type = read_namespace_type (die, cu);
19648 break;
19649 case DW_TAG_module:
19650 this_type = read_module_type (die, cu);
19651 break;
19652 case DW_TAG_atomic_type:
19653 this_type = read_tag_atomic_type (die, cu);
19654 break;
19655 default:
19656 complaint (&symfile_complaints,
19657 _("unexpected tag in read_type_die: '%s'"),
19658 dwarf_tag_name (die->tag));
19659 break;
19660 }
19661
19662 return this_type;
19663 }
19664
19665 /* See if we can figure out if the class lives in a namespace. We do
19666 this by looking for a member function; its demangled name will
19667 contain namespace info, if there is any.
19668 Return the computed name or NULL.
19669 Space for the result is allocated on the objfile's obstack.
19670 This is the full-die version of guess_partial_die_structure_name.
19671 In this case we know DIE has no useful parent. */
19672
19673 static char *
19674 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19675 {
19676 struct die_info *spec_die;
19677 struct dwarf2_cu *spec_cu;
19678 struct die_info *child;
19679
19680 spec_cu = cu;
19681 spec_die = die_specification (die, &spec_cu);
19682 if (spec_die != NULL)
19683 {
19684 die = spec_die;
19685 cu = spec_cu;
19686 }
19687
19688 for (child = die->child;
19689 child != NULL;
19690 child = child->sibling)
19691 {
19692 if (child->tag == DW_TAG_subprogram)
19693 {
19694 const char *linkage_name;
19695
19696 linkage_name = dwarf2_string_attr (child, DW_AT_linkage_name, cu);
19697 if (linkage_name == NULL)
19698 linkage_name = dwarf2_string_attr (child, DW_AT_MIPS_linkage_name,
19699 cu);
19700 if (linkage_name != NULL)
19701 {
19702 char *actual_name
19703 = language_class_name_from_physname (cu->language_defn,
19704 linkage_name);
19705 char *name = NULL;
19706
19707 if (actual_name != NULL)
19708 {
19709 const char *die_name = dwarf2_name (die, cu);
19710
19711 if (die_name != NULL
19712 && strcmp (die_name, actual_name) != 0)
19713 {
19714 /* Strip off the class name from the full name.
19715 We want the prefix. */
19716 int die_name_len = strlen (die_name);
19717 int actual_name_len = strlen (actual_name);
19718
19719 /* Test for '::' as a sanity check. */
19720 if (actual_name_len > die_name_len + 2
19721 && actual_name[actual_name_len
19722 - die_name_len - 1] == ':')
19723 name = (char *) obstack_copy0 (
19724 &cu->objfile->per_bfd->storage_obstack,
19725 actual_name, actual_name_len - die_name_len - 2);
19726 }
19727 }
19728 xfree (actual_name);
19729 return name;
19730 }
19731 }
19732 }
19733
19734 return NULL;
19735 }
19736
19737 /* GCC might emit a nameless typedef that has a linkage name. Determine the
19738 prefix part in such case. See
19739 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19740
19741 static char *
19742 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19743 {
19744 struct attribute *attr;
19745 const char *base;
19746
19747 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19748 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19749 return NULL;
19750
19751 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
19752 return NULL;
19753
19754 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19755 if (attr == NULL)
19756 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19757 if (attr == NULL || DW_STRING (attr) == NULL)
19758 return NULL;
19759
19760 /* dwarf2_name had to be already called. */
19761 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19762
19763 /* Strip the base name, keep any leading namespaces/classes. */
19764 base = strrchr (DW_STRING (attr), ':');
19765 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19766 return "";
19767
19768 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19769 DW_STRING (attr),
19770 &base[-1] - DW_STRING (attr));
19771 }
19772
19773 /* Return the name of the namespace/class that DIE is defined within,
19774 or "" if we can't tell. The caller should not xfree the result.
19775
19776 For example, if we're within the method foo() in the following
19777 code:
19778
19779 namespace N {
19780 class C {
19781 void foo () {
19782 }
19783 };
19784 }
19785
19786 then determine_prefix on foo's die will return "N::C". */
19787
19788 static const char *
19789 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
19790 {
19791 struct die_info *parent, *spec_die;
19792 struct dwarf2_cu *spec_cu;
19793 struct type *parent_type;
19794 char *retval;
19795
19796 if (cu->language != language_cplus
19797 && cu->language != language_fortran && cu->language != language_d
19798 && cu->language != language_rust)
19799 return "";
19800
19801 retval = anonymous_struct_prefix (die, cu);
19802 if (retval)
19803 return retval;
19804
19805 /* We have to be careful in the presence of DW_AT_specification.
19806 For example, with GCC 3.4, given the code
19807
19808 namespace N {
19809 void foo() {
19810 // Definition of N::foo.
19811 }
19812 }
19813
19814 then we'll have a tree of DIEs like this:
19815
19816 1: DW_TAG_compile_unit
19817 2: DW_TAG_namespace // N
19818 3: DW_TAG_subprogram // declaration of N::foo
19819 4: DW_TAG_subprogram // definition of N::foo
19820 DW_AT_specification // refers to die #3
19821
19822 Thus, when processing die #4, we have to pretend that we're in
19823 the context of its DW_AT_specification, namely the contex of die
19824 #3. */
19825 spec_cu = cu;
19826 spec_die = die_specification (die, &spec_cu);
19827 if (spec_die == NULL)
19828 parent = die->parent;
19829 else
19830 {
19831 parent = spec_die->parent;
19832 cu = spec_cu;
19833 }
19834
19835 if (parent == NULL)
19836 return "";
19837 else if (parent->building_fullname)
19838 {
19839 const char *name;
19840 const char *parent_name;
19841
19842 /* It has been seen on RealView 2.2 built binaries,
19843 DW_TAG_template_type_param types actually _defined_ as
19844 children of the parent class:
19845
19846 enum E {};
19847 template class <class Enum> Class{};
19848 Class<enum E> class_e;
19849
19850 1: DW_TAG_class_type (Class)
19851 2: DW_TAG_enumeration_type (E)
19852 3: DW_TAG_enumerator (enum1:0)
19853 3: DW_TAG_enumerator (enum2:1)
19854 ...
19855 2: DW_TAG_template_type_param
19856 DW_AT_type DW_FORM_ref_udata (E)
19857
19858 Besides being broken debug info, it can put GDB into an
19859 infinite loop. Consider:
19860
19861 When we're building the full name for Class<E>, we'll start
19862 at Class, and go look over its template type parameters,
19863 finding E. We'll then try to build the full name of E, and
19864 reach here. We're now trying to build the full name of E,
19865 and look over the parent DIE for containing scope. In the
19866 broken case, if we followed the parent DIE of E, we'd again
19867 find Class, and once again go look at its template type
19868 arguments, etc., etc. Simply don't consider such parent die
19869 as source-level parent of this die (it can't be, the language
19870 doesn't allow it), and break the loop here. */
19871 name = dwarf2_name (die, cu);
19872 parent_name = dwarf2_name (parent, cu);
19873 complaint (&symfile_complaints,
19874 _("template param type '%s' defined within parent '%s'"),
19875 name ? name : "<unknown>",
19876 parent_name ? parent_name : "<unknown>");
19877 return "";
19878 }
19879 else
19880 switch (parent->tag)
19881 {
19882 case DW_TAG_namespace:
19883 parent_type = read_type_die (parent, cu);
19884 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19885 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19886 Work around this problem here. */
19887 if (cu->language == language_cplus
19888 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19889 return "";
19890 /* We give a name to even anonymous namespaces. */
19891 return TYPE_TAG_NAME (parent_type);
19892 case DW_TAG_class_type:
19893 case DW_TAG_interface_type:
19894 case DW_TAG_structure_type:
19895 case DW_TAG_union_type:
19896 case DW_TAG_module:
19897 parent_type = read_type_die (parent, cu);
19898 if (TYPE_TAG_NAME (parent_type) != NULL)
19899 return TYPE_TAG_NAME (parent_type);
19900 else
19901 /* An anonymous structure is only allowed non-static data
19902 members; no typedefs, no member functions, et cetera.
19903 So it does not need a prefix. */
19904 return "";
19905 case DW_TAG_compile_unit:
19906 case DW_TAG_partial_unit:
19907 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19908 if (cu->language == language_cplus
19909 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
19910 && die->child != NULL
19911 && (die->tag == DW_TAG_class_type
19912 || die->tag == DW_TAG_structure_type
19913 || die->tag == DW_TAG_union_type))
19914 {
19915 char *name = guess_full_die_structure_name (die, cu);
19916 if (name != NULL)
19917 return name;
19918 }
19919 return "";
19920 case DW_TAG_enumeration_type:
19921 parent_type = read_type_die (parent, cu);
19922 if (TYPE_DECLARED_CLASS (parent_type))
19923 {
19924 if (TYPE_TAG_NAME (parent_type) != NULL)
19925 return TYPE_TAG_NAME (parent_type);
19926 return "";
19927 }
19928 /* Fall through. */
19929 default:
19930 return determine_prefix (parent, cu);
19931 }
19932 }
19933
19934 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19935 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19936 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19937 an obconcat, otherwise allocate storage for the result. The CU argument is
19938 used to determine the language and hence, the appropriate separator. */
19939
19940 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
19941
19942 static char *
19943 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19944 int physname, struct dwarf2_cu *cu)
19945 {
19946 const char *lead = "";
19947 const char *sep;
19948
19949 if (suffix == NULL || suffix[0] == '\0'
19950 || prefix == NULL || prefix[0] == '\0')
19951 sep = "";
19952 else if (cu->language == language_d)
19953 {
19954 /* For D, the 'main' function could be defined in any module, but it
19955 should never be prefixed. */
19956 if (strcmp (suffix, "D main") == 0)
19957 {
19958 prefix = "";
19959 sep = "";
19960 }
19961 else
19962 sep = ".";
19963 }
19964 else if (cu->language == language_fortran && physname)
19965 {
19966 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19967 DW_AT_MIPS_linkage_name is preferred and used instead. */
19968
19969 lead = "__";
19970 sep = "_MOD_";
19971 }
19972 else
19973 sep = "::";
19974
19975 if (prefix == NULL)
19976 prefix = "";
19977 if (suffix == NULL)
19978 suffix = "";
19979
19980 if (obs == NULL)
19981 {
19982 char *retval
19983 = ((char *)
19984 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
19985
19986 strcpy (retval, lead);
19987 strcat (retval, prefix);
19988 strcat (retval, sep);
19989 strcat (retval, suffix);
19990 return retval;
19991 }
19992 else
19993 {
19994 /* We have an obstack. */
19995 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
19996 }
19997 }
19998
19999 /* Return sibling of die, NULL if no sibling. */
20000
20001 static struct die_info *
20002 sibling_die (struct die_info *die)
20003 {
20004 return die->sibling;
20005 }
20006
20007 /* Get name of a die, return NULL if not found. */
20008
20009 static const char *
20010 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
20011 struct obstack *obstack)
20012 {
20013 if (name && cu->language == language_cplus)
20014 {
20015 std::string canon_name = cp_canonicalize_string (name);
20016
20017 if (!canon_name.empty ())
20018 {
20019 if (canon_name != name)
20020 name = (const char *) obstack_copy0 (obstack,
20021 canon_name.c_str (),
20022 canon_name.length ());
20023 }
20024 }
20025
20026 return name;
20027 }
20028
20029 /* Get name of a die, return NULL if not found.
20030 Anonymous namespaces are converted to their magic string. */
20031
20032 static const char *
20033 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
20034 {
20035 struct attribute *attr;
20036
20037 attr = dwarf2_attr (die, DW_AT_name, cu);
20038 if ((!attr || !DW_STRING (attr))
20039 && die->tag != DW_TAG_namespace
20040 && die->tag != DW_TAG_class_type
20041 && die->tag != DW_TAG_interface_type
20042 && die->tag != DW_TAG_structure_type
20043 && die->tag != DW_TAG_union_type)
20044 return NULL;
20045
20046 switch (die->tag)
20047 {
20048 case DW_TAG_compile_unit:
20049 case DW_TAG_partial_unit:
20050 /* Compilation units have a DW_AT_name that is a filename, not
20051 a source language identifier. */
20052 case DW_TAG_enumeration_type:
20053 case DW_TAG_enumerator:
20054 /* These tags always have simple identifiers already; no need
20055 to canonicalize them. */
20056 return DW_STRING (attr);
20057
20058 case DW_TAG_namespace:
20059 if (attr != NULL && DW_STRING (attr) != NULL)
20060 return DW_STRING (attr);
20061 return CP_ANONYMOUS_NAMESPACE_STR;
20062
20063 case DW_TAG_class_type:
20064 case DW_TAG_interface_type:
20065 case DW_TAG_structure_type:
20066 case DW_TAG_union_type:
20067 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
20068 structures or unions. These were of the form "._%d" in GCC 4.1,
20069 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
20070 and GCC 4.4. We work around this problem by ignoring these. */
20071 if (attr && DW_STRING (attr)
20072 && (startswith (DW_STRING (attr), "._")
20073 || startswith (DW_STRING (attr), "<anonymous")))
20074 return NULL;
20075
20076 /* GCC might emit a nameless typedef that has a linkage name. See
20077 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
20078 if (!attr || DW_STRING (attr) == NULL)
20079 {
20080 char *demangled = NULL;
20081
20082 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
20083 if (attr == NULL)
20084 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
20085
20086 if (attr == NULL || DW_STRING (attr) == NULL)
20087 return NULL;
20088
20089 /* Avoid demangling DW_STRING (attr) the second time on a second
20090 call for the same DIE. */
20091 if (!DW_STRING_IS_CANONICAL (attr))
20092 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
20093
20094 if (demangled)
20095 {
20096 const char *base;
20097
20098 /* FIXME: we already did this for the partial symbol... */
20099 DW_STRING (attr)
20100 = ((const char *)
20101 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
20102 demangled, strlen (demangled)));
20103 DW_STRING_IS_CANONICAL (attr) = 1;
20104 xfree (demangled);
20105
20106 /* Strip any leading namespaces/classes, keep only the base name.
20107 DW_AT_name for named DIEs does not contain the prefixes. */
20108 base = strrchr (DW_STRING (attr), ':');
20109 if (base && base > DW_STRING (attr) && base[-1] == ':')
20110 return &base[1];
20111 else
20112 return DW_STRING (attr);
20113 }
20114 }
20115 break;
20116
20117 default:
20118 break;
20119 }
20120
20121 if (!DW_STRING_IS_CANONICAL (attr))
20122 {
20123 DW_STRING (attr)
20124 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
20125 &cu->objfile->per_bfd->storage_obstack);
20126 DW_STRING_IS_CANONICAL (attr) = 1;
20127 }
20128 return DW_STRING (attr);
20129 }
20130
20131 /* Return the die that this die in an extension of, or NULL if there
20132 is none. *EXT_CU is the CU containing DIE on input, and the CU
20133 containing the return value on output. */
20134
20135 static struct die_info *
20136 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
20137 {
20138 struct attribute *attr;
20139
20140 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
20141 if (attr == NULL)
20142 return NULL;
20143
20144 return follow_die_ref (die, attr, ext_cu);
20145 }
20146
20147 /* Convert a DIE tag into its string name. */
20148
20149 static const char *
20150 dwarf_tag_name (unsigned tag)
20151 {
20152 const char *name = get_DW_TAG_name (tag);
20153
20154 if (name == NULL)
20155 return "DW_TAG_<unknown>";
20156
20157 return name;
20158 }
20159
20160 /* Convert a DWARF attribute code into its string name. */
20161
20162 static const char *
20163 dwarf_attr_name (unsigned attr)
20164 {
20165 const char *name;
20166
20167 #ifdef MIPS /* collides with DW_AT_HP_block_index */
20168 if (attr == DW_AT_MIPS_fde)
20169 return "DW_AT_MIPS_fde";
20170 #else
20171 if (attr == DW_AT_HP_block_index)
20172 return "DW_AT_HP_block_index";
20173 #endif
20174
20175 name = get_DW_AT_name (attr);
20176
20177 if (name == NULL)
20178 return "DW_AT_<unknown>";
20179
20180 return name;
20181 }
20182
20183 /* Convert a DWARF value form code into its string name. */
20184
20185 static const char *
20186 dwarf_form_name (unsigned form)
20187 {
20188 const char *name = get_DW_FORM_name (form);
20189
20190 if (name == NULL)
20191 return "DW_FORM_<unknown>";
20192
20193 return name;
20194 }
20195
20196 static char *
20197 dwarf_bool_name (unsigned mybool)
20198 {
20199 if (mybool)
20200 return "TRUE";
20201 else
20202 return "FALSE";
20203 }
20204
20205 /* Convert a DWARF type code into its string name. */
20206
20207 static const char *
20208 dwarf_type_encoding_name (unsigned enc)
20209 {
20210 const char *name = get_DW_ATE_name (enc);
20211
20212 if (name == NULL)
20213 return "DW_ATE_<unknown>";
20214
20215 return name;
20216 }
20217
20218 static void
20219 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
20220 {
20221 unsigned int i;
20222
20223 print_spaces (indent, f);
20224 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
20225 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
20226
20227 if (die->parent != NULL)
20228 {
20229 print_spaces (indent, f);
20230 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
20231 die->parent->offset.sect_off);
20232 }
20233
20234 print_spaces (indent, f);
20235 fprintf_unfiltered (f, " has children: %s\n",
20236 dwarf_bool_name (die->child != NULL));
20237
20238 print_spaces (indent, f);
20239 fprintf_unfiltered (f, " attributes:\n");
20240
20241 for (i = 0; i < die->num_attrs; ++i)
20242 {
20243 print_spaces (indent, f);
20244 fprintf_unfiltered (f, " %s (%s) ",
20245 dwarf_attr_name (die->attrs[i].name),
20246 dwarf_form_name (die->attrs[i].form));
20247
20248 switch (die->attrs[i].form)
20249 {
20250 case DW_FORM_addr:
20251 case DW_FORM_GNU_addr_index:
20252 fprintf_unfiltered (f, "address: ");
20253 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
20254 break;
20255 case DW_FORM_block2:
20256 case DW_FORM_block4:
20257 case DW_FORM_block:
20258 case DW_FORM_block1:
20259 fprintf_unfiltered (f, "block: size %s",
20260 pulongest (DW_BLOCK (&die->attrs[i])->size));
20261 break;
20262 case DW_FORM_exprloc:
20263 fprintf_unfiltered (f, "expression: size %s",
20264 pulongest (DW_BLOCK (&die->attrs[i])->size));
20265 break;
20266 case DW_FORM_data16:
20267 fprintf_unfiltered (f, "constant of 16 bytes");
20268 break;
20269 case DW_FORM_ref_addr:
20270 fprintf_unfiltered (f, "ref address: ");
20271 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
20272 break;
20273 case DW_FORM_GNU_ref_alt:
20274 fprintf_unfiltered (f, "alt ref address: ");
20275 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
20276 break;
20277 case DW_FORM_ref1:
20278 case DW_FORM_ref2:
20279 case DW_FORM_ref4:
20280 case DW_FORM_ref8:
20281 case DW_FORM_ref_udata:
20282 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
20283 (long) (DW_UNSND (&die->attrs[i])));
20284 break;
20285 case DW_FORM_data1:
20286 case DW_FORM_data2:
20287 case DW_FORM_data4:
20288 case DW_FORM_data8:
20289 case DW_FORM_udata:
20290 case DW_FORM_sdata:
20291 fprintf_unfiltered (f, "constant: %s",
20292 pulongest (DW_UNSND (&die->attrs[i])));
20293 break;
20294 case DW_FORM_sec_offset:
20295 fprintf_unfiltered (f, "section offset: %s",
20296 pulongest (DW_UNSND (&die->attrs[i])));
20297 break;
20298 case DW_FORM_ref_sig8:
20299 fprintf_unfiltered (f, "signature: %s",
20300 hex_string (DW_SIGNATURE (&die->attrs[i])));
20301 break;
20302 case DW_FORM_string:
20303 case DW_FORM_strp:
20304 case DW_FORM_line_strp:
20305 case DW_FORM_GNU_str_index:
20306 case DW_FORM_GNU_strp_alt:
20307 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
20308 DW_STRING (&die->attrs[i])
20309 ? DW_STRING (&die->attrs[i]) : "",
20310 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
20311 break;
20312 case DW_FORM_flag:
20313 if (DW_UNSND (&die->attrs[i]))
20314 fprintf_unfiltered (f, "flag: TRUE");
20315 else
20316 fprintf_unfiltered (f, "flag: FALSE");
20317 break;
20318 case DW_FORM_flag_present:
20319 fprintf_unfiltered (f, "flag: TRUE");
20320 break;
20321 case DW_FORM_indirect:
20322 /* The reader will have reduced the indirect form to
20323 the "base form" so this form should not occur. */
20324 fprintf_unfiltered (f,
20325 "unexpected attribute form: DW_FORM_indirect");
20326 break;
20327 default:
20328 fprintf_unfiltered (f, "unsupported attribute form: %d.",
20329 die->attrs[i].form);
20330 break;
20331 }
20332 fprintf_unfiltered (f, "\n");
20333 }
20334 }
20335
20336 static void
20337 dump_die_for_error (struct die_info *die)
20338 {
20339 dump_die_shallow (gdb_stderr, 0, die);
20340 }
20341
20342 static void
20343 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
20344 {
20345 int indent = level * 4;
20346
20347 gdb_assert (die != NULL);
20348
20349 if (level >= max_level)
20350 return;
20351
20352 dump_die_shallow (f, indent, die);
20353
20354 if (die->child != NULL)
20355 {
20356 print_spaces (indent, f);
20357 fprintf_unfiltered (f, " Children:");
20358 if (level + 1 < max_level)
20359 {
20360 fprintf_unfiltered (f, "\n");
20361 dump_die_1 (f, level + 1, max_level, die->child);
20362 }
20363 else
20364 {
20365 fprintf_unfiltered (f,
20366 " [not printed, max nesting level reached]\n");
20367 }
20368 }
20369
20370 if (die->sibling != NULL && level > 0)
20371 {
20372 dump_die_1 (f, level, max_level, die->sibling);
20373 }
20374 }
20375
20376 /* This is called from the pdie macro in gdbinit.in.
20377 It's not static so gcc will keep a copy callable from gdb. */
20378
20379 void
20380 dump_die (struct die_info *die, int max_level)
20381 {
20382 dump_die_1 (gdb_stdlog, 0, max_level, die);
20383 }
20384
20385 static void
20386 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
20387 {
20388 void **slot;
20389
20390 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
20391 INSERT);
20392
20393 *slot = die;
20394 }
20395
20396 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
20397 required kind. */
20398
20399 static sect_offset
20400 dwarf2_get_ref_die_offset (const struct attribute *attr)
20401 {
20402 sect_offset retval = { DW_UNSND (attr) };
20403
20404 if (attr_form_is_ref (attr))
20405 return retval;
20406
20407 retval.sect_off = 0;
20408 complaint (&symfile_complaints,
20409 _("unsupported die ref attribute form: '%s'"),
20410 dwarf_form_name (attr->form));
20411 return retval;
20412 }
20413
20414 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
20415 * the value held by the attribute is not constant. */
20416
20417 static LONGEST
20418 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
20419 {
20420 if (attr->form == DW_FORM_sdata)
20421 return DW_SND (attr);
20422 else if (attr->form == DW_FORM_udata
20423 || attr->form == DW_FORM_data1
20424 || attr->form == DW_FORM_data2
20425 || attr->form == DW_FORM_data4
20426 || attr->form == DW_FORM_data8)
20427 return DW_UNSND (attr);
20428 else
20429 {
20430 /* For DW_FORM_data16 see attr_form_is_constant. */
20431 complaint (&symfile_complaints,
20432 _("Attribute value is not a constant (%s)"),
20433 dwarf_form_name (attr->form));
20434 return default_value;
20435 }
20436 }
20437
20438 /* Follow reference or signature attribute ATTR of SRC_DIE.
20439 On entry *REF_CU is the CU of SRC_DIE.
20440 On exit *REF_CU is the CU of the result. */
20441
20442 static struct die_info *
20443 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
20444 struct dwarf2_cu **ref_cu)
20445 {
20446 struct die_info *die;
20447
20448 if (attr_form_is_ref (attr))
20449 die = follow_die_ref (src_die, attr, ref_cu);
20450 else if (attr->form == DW_FORM_ref_sig8)
20451 die = follow_die_sig (src_die, attr, ref_cu);
20452 else
20453 {
20454 dump_die_for_error (src_die);
20455 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
20456 objfile_name ((*ref_cu)->objfile));
20457 }
20458
20459 return die;
20460 }
20461
20462 /* Follow reference OFFSET.
20463 On entry *REF_CU is the CU of the source die referencing OFFSET.
20464 On exit *REF_CU is the CU of the result.
20465 Returns NULL if OFFSET is invalid. */
20466
20467 static struct die_info *
20468 follow_die_offset (sect_offset offset, int offset_in_dwz,
20469 struct dwarf2_cu **ref_cu)
20470 {
20471 struct die_info temp_die;
20472 struct dwarf2_cu *target_cu, *cu = *ref_cu;
20473
20474 gdb_assert (cu->per_cu != NULL);
20475
20476 target_cu = cu;
20477
20478 if (cu->per_cu->is_debug_types)
20479 {
20480 /* .debug_types CUs cannot reference anything outside their CU.
20481 If they need to, they have to reference a signatured type via
20482 DW_FORM_ref_sig8. */
20483 if (! offset_in_cu_p (&cu->header, offset))
20484 return NULL;
20485 }
20486 else if (offset_in_dwz != cu->per_cu->is_dwz
20487 || ! offset_in_cu_p (&cu->header, offset))
20488 {
20489 struct dwarf2_per_cu_data *per_cu;
20490
20491 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
20492 cu->objfile);
20493
20494 /* If necessary, add it to the queue and load its DIEs. */
20495 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
20496 load_full_comp_unit (per_cu, cu->language);
20497
20498 target_cu = per_cu->cu;
20499 }
20500 else if (cu->dies == NULL)
20501 {
20502 /* We're loading full DIEs during partial symbol reading. */
20503 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
20504 load_full_comp_unit (cu->per_cu, language_minimal);
20505 }
20506
20507 *ref_cu = target_cu;
20508 temp_die.offset = offset;
20509 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
20510 &temp_die, offset.sect_off);
20511 }
20512
20513 /* Follow reference attribute ATTR of SRC_DIE.
20514 On entry *REF_CU is the CU of SRC_DIE.
20515 On exit *REF_CU is the CU of the result. */
20516
20517 static struct die_info *
20518 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
20519 struct dwarf2_cu **ref_cu)
20520 {
20521 sect_offset offset = dwarf2_get_ref_die_offset (attr);
20522 struct dwarf2_cu *cu = *ref_cu;
20523 struct die_info *die;
20524
20525 die = follow_die_offset (offset,
20526 (attr->form == DW_FORM_GNU_ref_alt
20527 || cu->per_cu->is_dwz),
20528 ref_cu);
20529 if (!die)
20530 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20531 "at 0x%x [in module %s]"),
20532 offset.sect_off, src_die->offset.sect_off,
20533 objfile_name (cu->objfile));
20534
20535 return die;
20536 }
20537
20538 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
20539 Returned value is intended for DW_OP_call*. Returned
20540 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
20541
20542 struct dwarf2_locexpr_baton
20543 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
20544 struct dwarf2_per_cu_data *per_cu,
20545 CORE_ADDR (*get_frame_pc) (void *baton),
20546 void *baton)
20547 {
20548 struct dwarf2_cu *cu;
20549 struct die_info *die;
20550 struct attribute *attr;
20551 struct dwarf2_locexpr_baton retval;
20552
20553 dw2_setup (per_cu->objfile);
20554
20555 if (per_cu->cu == NULL)
20556 load_cu (per_cu);
20557 cu = per_cu->cu;
20558 if (cu == NULL)
20559 {
20560 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20561 Instead just throw an error, not much else we can do. */
20562 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20563 offset.sect_off, objfile_name (per_cu->objfile));
20564 }
20565
20566 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20567 if (!die)
20568 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20569 offset.sect_off, objfile_name (per_cu->objfile));
20570
20571 attr = dwarf2_attr (die, DW_AT_location, cu);
20572 if (!attr)
20573 {
20574 /* DWARF: "If there is no such attribute, then there is no effect.".
20575 DATA is ignored if SIZE is 0. */
20576
20577 retval.data = NULL;
20578 retval.size = 0;
20579 }
20580 else if (attr_form_is_section_offset (attr))
20581 {
20582 struct dwarf2_loclist_baton loclist_baton;
20583 CORE_ADDR pc = (*get_frame_pc) (baton);
20584 size_t size;
20585
20586 fill_in_loclist_baton (cu, &loclist_baton, attr);
20587
20588 retval.data = dwarf2_find_location_expression (&loclist_baton,
20589 &size, pc);
20590 retval.size = size;
20591 }
20592 else
20593 {
20594 if (!attr_form_is_block (attr))
20595 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20596 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
20597 offset.sect_off, objfile_name (per_cu->objfile));
20598
20599 retval.data = DW_BLOCK (attr)->data;
20600 retval.size = DW_BLOCK (attr)->size;
20601 }
20602 retval.per_cu = cu->per_cu;
20603
20604 age_cached_comp_units ();
20605
20606 return retval;
20607 }
20608
20609 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20610 offset. */
20611
20612 struct dwarf2_locexpr_baton
20613 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20614 struct dwarf2_per_cu_data *per_cu,
20615 CORE_ADDR (*get_frame_pc) (void *baton),
20616 void *baton)
20617 {
20618 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
20619
20620 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
20621 }
20622
20623 /* Write a constant of a given type as target-ordered bytes into
20624 OBSTACK. */
20625
20626 static const gdb_byte *
20627 write_constant_as_bytes (struct obstack *obstack,
20628 enum bfd_endian byte_order,
20629 struct type *type,
20630 ULONGEST value,
20631 LONGEST *len)
20632 {
20633 gdb_byte *result;
20634
20635 *len = TYPE_LENGTH (type);
20636 result = (gdb_byte *) obstack_alloc (obstack, *len);
20637 store_unsigned_integer (result, *len, byte_order, value);
20638
20639 return result;
20640 }
20641
20642 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20643 pointer to the constant bytes and set LEN to the length of the
20644 data. If memory is needed, allocate it on OBSTACK. If the DIE
20645 does not have a DW_AT_const_value, return NULL. */
20646
20647 const gdb_byte *
20648 dwarf2_fetch_constant_bytes (sect_offset offset,
20649 struct dwarf2_per_cu_data *per_cu,
20650 struct obstack *obstack,
20651 LONGEST *len)
20652 {
20653 struct dwarf2_cu *cu;
20654 struct die_info *die;
20655 struct attribute *attr;
20656 const gdb_byte *result = NULL;
20657 struct type *type;
20658 LONGEST value;
20659 enum bfd_endian byte_order;
20660
20661 dw2_setup (per_cu->objfile);
20662
20663 if (per_cu->cu == NULL)
20664 load_cu (per_cu);
20665 cu = per_cu->cu;
20666 if (cu == NULL)
20667 {
20668 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20669 Instead just throw an error, not much else we can do. */
20670 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20671 offset.sect_off, objfile_name (per_cu->objfile));
20672 }
20673
20674 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20675 if (!die)
20676 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20677 offset.sect_off, objfile_name (per_cu->objfile));
20678
20679
20680 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20681 if (attr == NULL)
20682 return NULL;
20683
20684 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20685 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20686
20687 switch (attr->form)
20688 {
20689 case DW_FORM_addr:
20690 case DW_FORM_GNU_addr_index:
20691 {
20692 gdb_byte *tem;
20693
20694 *len = cu->header.addr_size;
20695 tem = (gdb_byte *) obstack_alloc (obstack, *len);
20696 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20697 result = tem;
20698 }
20699 break;
20700 case DW_FORM_string:
20701 case DW_FORM_strp:
20702 case DW_FORM_GNU_str_index:
20703 case DW_FORM_GNU_strp_alt:
20704 /* DW_STRING is already allocated on the objfile obstack, point
20705 directly to it. */
20706 result = (const gdb_byte *) DW_STRING (attr);
20707 *len = strlen (DW_STRING (attr));
20708 break;
20709 case DW_FORM_block1:
20710 case DW_FORM_block2:
20711 case DW_FORM_block4:
20712 case DW_FORM_block:
20713 case DW_FORM_exprloc:
20714 case DW_FORM_data16:
20715 result = DW_BLOCK (attr)->data;
20716 *len = DW_BLOCK (attr)->size;
20717 break;
20718
20719 /* The DW_AT_const_value attributes are supposed to carry the
20720 symbol's value "represented as it would be on the target
20721 architecture." By the time we get here, it's already been
20722 converted to host endianness, so we just need to sign- or
20723 zero-extend it as appropriate. */
20724 case DW_FORM_data1:
20725 type = die_type (die, cu);
20726 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20727 if (result == NULL)
20728 result = write_constant_as_bytes (obstack, byte_order,
20729 type, value, len);
20730 break;
20731 case DW_FORM_data2:
20732 type = die_type (die, cu);
20733 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20734 if (result == NULL)
20735 result = write_constant_as_bytes (obstack, byte_order,
20736 type, value, len);
20737 break;
20738 case DW_FORM_data4:
20739 type = die_type (die, cu);
20740 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20741 if (result == NULL)
20742 result = write_constant_as_bytes (obstack, byte_order,
20743 type, value, len);
20744 break;
20745 case DW_FORM_data8:
20746 type = die_type (die, cu);
20747 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20748 if (result == NULL)
20749 result = write_constant_as_bytes (obstack, byte_order,
20750 type, value, len);
20751 break;
20752
20753 case DW_FORM_sdata:
20754 type = die_type (die, cu);
20755 result = write_constant_as_bytes (obstack, byte_order,
20756 type, DW_SND (attr), len);
20757 break;
20758
20759 case DW_FORM_udata:
20760 type = die_type (die, cu);
20761 result = write_constant_as_bytes (obstack, byte_order,
20762 type, DW_UNSND (attr), len);
20763 break;
20764
20765 default:
20766 complaint (&symfile_complaints,
20767 _("unsupported const value attribute form: '%s'"),
20768 dwarf_form_name (attr->form));
20769 break;
20770 }
20771
20772 return result;
20773 }
20774
20775 /* Return the type of the DIE at DIE_OFFSET in the CU named by
20776 PER_CU. */
20777
20778 struct type *
20779 dwarf2_get_die_type (cu_offset die_offset,
20780 struct dwarf2_per_cu_data *per_cu)
20781 {
20782 sect_offset die_offset_sect;
20783
20784 dw2_setup (per_cu->objfile);
20785
20786 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
20787 return get_die_type_at_offset (die_offset_sect, per_cu);
20788 }
20789
20790 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
20791 On entry *REF_CU is the CU of SRC_DIE.
20792 On exit *REF_CU is the CU of the result.
20793 Returns NULL if the referenced DIE isn't found. */
20794
20795 static struct die_info *
20796 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20797 struct dwarf2_cu **ref_cu)
20798 {
20799 struct die_info temp_die;
20800 struct dwarf2_cu *sig_cu;
20801 struct die_info *die;
20802
20803 /* While it might be nice to assert sig_type->type == NULL here,
20804 we can get here for DW_AT_imported_declaration where we need
20805 the DIE not the type. */
20806
20807 /* If necessary, add it to the queue and load its DIEs. */
20808
20809 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
20810 read_signatured_type (sig_type);
20811
20812 sig_cu = sig_type->per_cu.cu;
20813 gdb_assert (sig_cu != NULL);
20814 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20815 temp_die.offset = sig_type->type_offset_in_section;
20816 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
20817 temp_die.offset.sect_off);
20818 if (die)
20819 {
20820 /* For .gdb_index version 7 keep track of included TUs.
20821 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20822 if (dwarf2_per_objfile->index_table != NULL
20823 && dwarf2_per_objfile->index_table->version <= 7)
20824 {
20825 VEC_safe_push (dwarf2_per_cu_ptr,
20826 (*ref_cu)->per_cu->imported_symtabs,
20827 sig_cu->per_cu);
20828 }
20829
20830 *ref_cu = sig_cu;
20831 return die;
20832 }
20833
20834 return NULL;
20835 }
20836
20837 /* Follow signatured type referenced by ATTR in SRC_DIE.
20838 On entry *REF_CU is the CU of SRC_DIE.
20839 On exit *REF_CU is the CU of the result.
20840 The result is the DIE of the type.
20841 If the referenced type cannot be found an error is thrown. */
20842
20843 static struct die_info *
20844 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
20845 struct dwarf2_cu **ref_cu)
20846 {
20847 ULONGEST signature = DW_SIGNATURE (attr);
20848 struct signatured_type *sig_type;
20849 struct die_info *die;
20850
20851 gdb_assert (attr->form == DW_FORM_ref_sig8);
20852
20853 sig_type = lookup_signatured_type (*ref_cu, signature);
20854 /* sig_type will be NULL if the signatured type is missing from
20855 the debug info. */
20856 if (sig_type == NULL)
20857 {
20858 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20859 " from DIE at 0x%x [in module %s]"),
20860 hex_string (signature), src_die->offset.sect_off,
20861 objfile_name ((*ref_cu)->objfile));
20862 }
20863
20864 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20865 if (die == NULL)
20866 {
20867 dump_die_for_error (src_die);
20868 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20869 " from DIE at 0x%x [in module %s]"),
20870 hex_string (signature), src_die->offset.sect_off,
20871 objfile_name ((*ref_cu)->objfile));
20872 }
20873
20874 return die;
20875 }
20876
20877 /* Get the type specified by SIGNATURE referenced in DIE/CU,
20878 reading in and processing the type unit if necessary. */
20879
20880 static struct type *
20881 get_signatured_type (struct die_info *die, ULONGEST signature,
20882 struct dwarf2_cu *cu)
20883 {
20884 struct signatured_type *sig_type;
20885 struct dwarf2_cu *type_cu;
20886 struct die_info *type_die;
20887 struct type *type;
20888
20889 sig_type = lookup_signatured_type (cu, signature);
20890 /* sig_type will be NULL if the signatured type is missing from
20891 the debug info. */
20892 if (sig_type == NULL)
20893 {
20894 complaint (&symfile_complaints,
20895 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20896 " from DIE at 0x%x [in module %s]"),
20897 hex_string (signature), die->offset.sect_off,
20898 objfile_name (dwarf2_per_objfile->objfile));
20899 return build_error_marker_type (cu, die);
20900 }
20901
20902 /* If we already know the type we're done. */
20903 if (sig_type->type != NULL)
20904 return sig_type->type;
20905
20906 type_cu = cu;
20907 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20908 if (type_die != NULL)
20909 {
20910 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20911 is created. This is important, for example, because for c++ classes
20912 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20913 type = read_type_die (type_die, type_cu);
20914 if (type == NULL)
20915 {
20916 complaint (&symfile_complaints,
20917 _("Dwarf Error: Cannot build signatured type %s"
20918 " referenced from DIE at 0x%x [in module %s]"),
20919 hex_string (signature), die->offset.sect_off,
20920 objfile_name (dwarf2_per_objfile->objfile));
20921 type = build_error_marker_type (cu, die);
20922 }
20923 }
20924 else
20925 {
20926 complaint (&symfile_complaints,
20927 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20928 " from DIE at 0x%x [in module %s]"),
20929 hex_string (signature), die->offset.sect_off,
20930 objfile_name (dwarf2_per_objfile->objfile));
20931 type = build_error_marker_type (cu, die);
20932 }
20933 sig_type->type = type;
20934
20935 return type;
20936 }
20937
20938 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20939 reading in and processing the type unit if necessary. */
20940
20941 static struct type *
20942 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
20943 struct dwarf2_cu *cu) /* ARI: editCase function */
20944 {
20945 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
20946 if (attr_form_is_ref (attr))
20947 {
20948 struct dwarf2_cu *type_cu = cu;
20949 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20950
20951 return read_type_die (type_die, type_cu);
20952 }
20953 else if (attr->form == DW_FORM_ref_sig8)
20954 {
20955 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20956 }
20957 else
20958 {
20959 complaint (&symfile_complaints,
20960 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20961 " at 0x%x [in module %s]"),
20962 dwarf_form_name (attr->form), die->offset.sect_off,
20963 objfile_name (dwarf2_per_objfile->objfile));
20964 return build_error_marker_type (cu, die);
20965 }
20966 }
20967
20968 /* Load the DIEs associated with type unit PER_CU into memory. */
20969
20970 static void
20971 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
20972 {
20973 struct signatured_type *sig_type;
20974
20975 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20976 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20977
20978 /* We have the per_cu, but we need the signatured_type.
20979 Fortunately this is an easy translation. */
20980 gdb_assert (per_cu->is_debug_types);
20981 sig_type = (struct signatured_type *) per_cu;
20982
20983 gdb_assert (per_cu->cu == NULL);
20984
20985 read_signatured_type (sig_type);
20986
20987 gdb_assert (per_cu->cu != NULL);
20988 }
20989
20990 /* die_reader_func for read_signatured_type.
20991 This is identical to load_full_comp_unit_reader,
20992 but is kept separate for now. */
20993
20994 static void
20995 read_signatured_type_reader (const struct die_reader_specs *reader,
20996 const gdb_byte *info_ptr,
20997 struct die_info *comp_unit_die,
20998 int has_children,
20999 void *data)
21000 {
21001 struct dwarf2_cu *cu = reader->cu;
21002
21003 gdb_assert (cu->die_hash == NULL);
21004 cu->die_hash =
21005 htab_create_alloc_ex (cu->header.length / 12,
21006 die_hash,
21007 die_eq,
21008 NULL,
21009 &cu->comp_unit_obstack,
21010 hashtab_obstack_allocate,
21011 dummy_obstack_deallocate);
21012
21013 if (has_children)
21014 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
21015 &info_ptr, comp_unit_die);
21016 cu->dies = comp_unit_die;
21017 /* comp_unit_die is not stored in die_hash, no need. */
21018
21019 /* We try not to read any attributes in this function, because not
21020 all CUs needed for references have been loaded yet, and symbol
21021 table processing isn't initialized. But we have to set the CU language,
21022 or we won't be able to build types correctly.
21023 Similarly, if we do not read the producer, we can not apply
21024 producer-specific interpretation. */
21025 prepare_one_comp_unit (cu, cu->dies, language_minimal);
21026 }
21027
21028 /* Read in a signatured type and build its CU and DIEs.
21029 If the type is a stub for the real type in a DWO file,
21030 read in the real type from the DWO file as well. */
21031
21032 static void
21033 read_signatured_type (struct signatured_type *sig_type)
21034 {
21035 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
21036
21037 gdb_assert (per_cu->is_debug_types);
21038 gdb_assert (per_cu->cu == NULL);
21039
21040 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
21041 read_signatured_type_reader, NULL);
21042 sig_type->per_cu.tu_read = 1;
21043 }
21044
21045 /* Decode simple location descriptions.
21046 Given a pointer to a dwarf block that defines a location, compute
21047 the location and return the value.
21048
21049 NOTE drow/2003-11-18: This function is called in two situations
21050 now: for the address of static or global variables (partial symbols
21051 only) and for offsets into structures which are expected to be
21052 (more or less) constant. The partial symbol case should go away,
21053 and only the constant case should remain. That will let this
21054 function complain more accurately. A few special modes are allowed
21055 without complaint for global variables (for instance, global
21056 register values and thread-local values).
21057
21058 A location description containing no operations indicates that the
21059 object is optimized out. The return value is 0 for that case.
21060 FIXME drow/2003-11-16: No callers check for this case any more; soon all
21061 callers will only want a very basic result and this can become a
21062 complaint.
21063
21064 Note that stack[0] is unused except as a default error return. */
21065
21066 static CORE_ADDR
21067 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
21068 {
21069 struct objfile *objfile = cu->objfile;
21070 size_t i;
21071 size_t size = blk->size;
21072 const gdb_byte *data = blk->data;
21073 CORE_ADDR stack[64];
21074 int stacki;
21075 unsigned int bytes_read, unsnd;
21076 gdb_byte op;
21077
21078 i = 0;
21079 stacki = 0;
21080 stack[stacki] = 0;
21081 stack[++stacki] = 0;
21082
21083 while (i < size)
21084 {
21085 op = data[i++];
21086 switch (op)
21087 {
21088 case DW_OP_lit0:
21089 case DW_OP_lit1:
21090 case DW_OP_lit2:
21091 case DW_OP_lit3:
21092 case DW_OP_lit4:
21093 case DW_OP_lit5:
21094 case DW_OP_lit6:
21095 case DW_OP_lit7:
21096 case DW_OP_lit8:
21097 case DW_OP_lit9:
21098 case DW_OP_lit10:
21099 case DW_OP_lit11:
21100 case DW_OP_lit12:
21101 case DW_OP_lit13:
21102 case DW_OP_lit14:
21103 case DW_OP_lit15:
21104 case DW_OP_lit16:
21105 case DW_OP_lit17:
21106 case DW_OP_lit18:
21107 case DW_OP_lit19:
21108 case DW_OP_lit20:
21109 case DW_OP_lit21:
21110 case DW_OP_lit22:
21111 case DW_OP_lit23:
21112 case DW_OP_lit24:
21113 case DW_OP_lit25:
21114 case DW_OP_lit26:
21115 case DW_OP_lit27:
21116 case DW_OP_lit28:
21117 case DW_OP_lit29:
21118 case DW_OP_lit30:
21119 case DW_OP_lit31:
21120 stack[++stacki] = op - DW_OP_lit0;
21121 break;
21122
21123 case DW_OP_reg0:
21124 case DW_OP_reg1:
21125 case DW_OP_reg2:
21126 case DW_OP_reg3:
21127 case DW_OP_reg4:
21128 case DW_OP_reg5:
21129 case DW_OP_reg6:
21130 case DW_OP_reg7:
21131 case DW_OP_reg8:
21132 case DW_OP_reg9:
21133 case DW_OP_reg10:
21134 case DW_OP_reg11:
21135 case DW_OP_reg12:
21136 case DW_OP_reg13:
21137 case DW_OP_reg14:
21138 case DW_OP_reg15:
21139 case DW_OP_reg16:
21140 case DW_OP_reg17:
21141 case DW_OP_reg18:
21142 case DW_OP_reg19:
21143 case DW_OP_reg20:
21144 case DW_OP_reg21:
21145 case DW_OP_reg22:
21146 case DW_OP_reg23:
21147 case DW_OP_reg24:
21148 case DW_OP_reg25:
21149 case DW_OP_reg26:
21150 case DW_OP_reg27:
21151 case DW_OP_reg28:
21152 case DW_OP_reg29:
21153 case DW_OP_reg30:
21154 case DW_OP_reg31:
21155 stack[++stacki] = op - DW_OP_reg0;
21156 if (i < size)
21157 dwarf2_complex_location_expr_complaint ();
21158 break;
21159
21160 case DW_OP_regx:
21161 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
21162 i += bytes_read;
21163 stack[++stacki] = unsnd;
21164 if (i < size)
21165 dwarf2_complex_location_expr_complaint ();
21166 break;
21167
21168 case DW_OP_addr:
21169 stack[++stacki] = read_address (objfile->obfd, &data[i],
21170 cu, &bytes_read);
21171 i += bytes_read;
21172 break;
21173
21174 case DW_OP_const1u:
21175 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
21176 i += 1;
21177 break;
21178
21179 case DW_OP_const1s:
21180 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
21181 i += 1;
21182 break;
21183
21184 case DW_OP_const2u:
21185 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
21186 i += 2;
21187 break;
21188
21189 case DW_OP_const2s:
21190 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
21191 i += 2;
21192 break;
21193
21194 case DW_OP_const4u:
21195 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
21196 i += 4;
21197 break;
21198
21199 case DW_OP_const4s:
21200 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
21201 i += 4;
21202 break;
21203
21204 case DW_OP_const8u:
21205 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
21206 i += 8;
21207 break;
21208
21209 case DW_OP_constu:
21210 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
21211 &bytes_read);
21212 i += bytes_read;
21213 break;
21214
21215 case DW_OP_consts:
21216 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
21217 i += bytes_read;
21218 break;
21219
21220 case DW_OP_dup:
21221 stack[stacki + 1] = stack[stacki];
21222 stacki++;
21223 break;
21224
21225 case DW_OP_plus:
21226 stack[stacki - 1] += stack[stacki];
21227 stacki--;
21228 break;
21229
21230 case DW_OP_plus_uconst:
21231 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
21232 &bytes_read);
21233 i += bytes_read;
21234 break;
21235
21236 case DW_OP_minus:
21237 stack[stacki - 1] -= stack[stacki];
21238 stacki--;
21239 break;
21240
21241 case DW_OP_deref:
21242 /* If we're not the last op, then we definitely can't encode
21243 this using GDB's address_class enum. This is valid for partial
21244 global symbols, although the variable's address will be bogus
21245 in the psymtab. */
21246 if (i < size)
21247 dwarf2_complex_location_expr_complaint ();
21248 break;
21249
21250 case DW_OP_GNU_push_tls_address:
21251 case DW_OP_form_tls_address:
21252 /* The top of the stack has the offset from the beginning
21253 of the thread control block at which the variable is located. */
21254 /* Nothing should follow this operator, so the top of stack would
21255 be returned. */
21256 /* This is valid for partial global symbols, but the variable's
21257 address will be bogus in the psymtab. Make it always at least
21258 non-zero to not look as a variable garbage collected by linker
21259 which have DW_OP_addr 0. */
21260 if (i < size)
21261 dwarf2_complex_location_expr_complaint ();
21262 stack[stacki]++;
21263 break;
21264
21265 case DW_OP_GNU_uninit:
21266 break;
21267
21268 case DW_OP_GNU_addr_index:
21269 case DW_OP_GNU_const_index:
21270 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
21271 &bytes_read);
21272 i += bytes_read;
21273 break;
21274
21275 default:
21276 {
21277 const char *name = get_DW_OP_name (op);
21278
21279 if (name)
21280 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
21281 name);
21282 else
21283 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
21284 op);
21285 }
21286
21287 return (stack[stacki]);
21288 }
21289
21290 /* Enforce maximum stack depth of SIZE-1 to avoid writing
21291 outside of the allocated space. Also enforce minimum>0. */
21292 if (stacki >= ARRAY_SIZE (stack) - 1)
21293 {
21294 complaint (&symfile_complaints,
21295 _("location description stack overflow"));
21296 return 0;
21297 }
21298
21299 if (stacki <= 0)
21300 {
21301 complaint (&symfile_complaints,
21302 _("location description stack underflow"));
21303 return 0;
21304 }
21305 }
21306 return (stack[stacki]);
21307 }
21308
21309 /* memory allocation interface */
21310
21311 static struct dwarf_block *
21312 dwarf_alloc_block (struct dwarf2_cu *cu)
21313 {
21314 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
21315 }
21316
21317 static struct die_info *
21318 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
21319 {
21320 struct die_info *die;
21321 size_t size = sizeof (struct die_info);
21322
21323 if (num_attrs > 1)
21324 size += (num_attrs - 1) * sizeof (struct attribute);
21325
21326 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
21327 memset (die, 0, sizeof (struct die_info));
21328 return (die);
21329 }
21330
21331 \f
21332 /* Macro support. */
21333
21334 /* Return file name relative to the compilation directory of file number I in
21335 *LH's file name table. The result is allocated using xmalloc; the caller is
21336 responsible for freeing it. */
21337
21338 static char *
21339 file_file_name (int file, struct line_header *lh)
21340 {
21341 /* Is the file number a valid index into the line header's file name
21342 table? Remember that file numbers start with one, not zero. */
21343 if (1 <= file && file <= lh->num_file_names)
21344 {
21345 struct file_entry *fe = &lh->file_names[file - 1];
21346
21347 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0
21348 || lh->include_dirs == NULL)
21349 return xstrdup (fe->name);
21350 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
21351 fe->name, (char *) NULL);
21352 }
21353 else
21354 {
21355 /* The compiler produced a bogus file number. We can at least
21356 record the macro definitions made in the file, even if we
21357 won't be able to find the file by name. */
21358 char fake_name[80];
21359
21360 xsnprintf (fake_name, sizeof (fake_name),
21361 "<bad macro file number %d>", file);
21362
21363 complaint (&symfile_complaints,
21364 _("bad file number in macro information (%d)"),
21365 file);
21366
21367 return xstrdup (fake_name);
21368 }
21369 }
21370
21371 /* Return the full name of file number I in *LH's file name table.
21372 Use COMP_DIR as the name of the current directory of the
21373 compilation. The result is allocated using xmalloc; the caller is
21374 responsible for freeing it. */
21375 static char *
21376 file_full_name (int file, struct line_header *lh, const char *comp_dir)
21377 {
21378 /* Is the file number a valid index into the line header's file name
21379 table? Remember that file numbers start with one, not zero. */
21380 if (1 <= file && file <= lh->num_file_names)
21381 {
21382 char *relative = file_file_name (file, lh);
21383
21384 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
21385 return relative;
21386 return reconcat (relative, comp_dir, SLASH_STRING,
21387 relative, (char *) NULL);
21388 }
21389 else
21390 return file_file_name (file, lh);
21391 }
21392
21393
21394 static struct macro_source_file *
21395 macro_start_file (int file, int line,
21396 struct macro_source_file *current_file,
21397 struct line_header *lh)
21398 {
21399 /* File name relative to the compilation directory of this source file. */
21400 char *file_name = file_file_name (file, lh);
21401
21402 if (! current_file)
21403 {
21404 /* Note: We don't create a macro table for this compilation unit
21405 at all until we actually get a filename. */
21406 struct macro_table *macro_table = get_macro_table ();
21407
21408 /* If we have no current file, then this must be the start_file
21409 directive for the compilation unit's main source file. */
21410 current_file = macro_set_main (macro_table, file_name);
21411 macro_define_special (macro_table);
21412 }
21413 else
21414 current_file = macro_include (current_file, line, file_name);
21415
21416 xfree (file_name);
21417
21418 return current_file;
21419 }
21420
21421
21422 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
21423 followed by a null byte. */
21424 static char *
21425 copy_string (const char *buf, int len)
21426 {
21427 char *s = (char *) xmalloc (len + 1);
21428
21429 memcpy (s, buf, len);
21430 s[len] = '\0';
21431 return s;
21432 }
21433
21434
21435 static const char *
21436 consume_improper_spaces (const char *p, const char *body)
21437 {
21438 if (*p == ' ')
21439 {
21440 complaint (&symfile_complaints,
21441 _("macro definition contains spaces "
21442 "in formal argument list:\n`%s'"),
21443 body);
21444
21445 while (*p == ' ')
21446 p++;
21447 }
21448
21449 return p;
21450 }
21451
21452
21453 static void
21454 parse_macro_definition (struct macro_source_file *file, int line,
21455 const char *body)
21456 {
21457 const char *p;
21458
21459 /* The body string takes one of two forms. For object-like macro
21460 definitions, it should be:
21461
21462 <macro name> " " <definition>
21463
21464 For function-like macro definitions, it should be:
21465
21466 <macro name> "() " <definition>
21467 or
21468 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
21469
21470 Spaces may appear only where explicitly indicated, and in the
21471 <definition>.
21472
21473 The Dwarf 2 spec says that an object-like macro's name is always
21474 followed by a space, but versions of GCC around March 2002 omit
21475 the space when the macro's definition is the empty string.
21476
21477 The Dwarf 2 spec says that there should be no spaces between the
21478 formal arguments in a function-like macro's formal argument list,
21479 but versions of GCC around March 2002 include spaces after the
21480 commas. */
21481
21482
21483 /* Find the extent of the macro name. The macro name is terminated
21484 by either a space or null character (for an object-like macro) or
21485 an opening paren (for a function-like macro). */
21486 for (p = body; *p; p++)
21487 if (*p == ' ' || *p == '(')
21488 break;
21489
21490 if (*p == ' ' || *p == '\0')
21491 {
21492 /* It's an object-like macro. */
21493 int name_len = p - body;
21494 char *name = copy_string (body, name_len);
21495 const char *replacement;
21496
21497 if (*p == ' ')
21498 replacement = body + name_len + 1;
21499 else
21500 {
21501 dwarf2_macro_malformed_definition_complaint (body);
21502 replacement = body + name_len;
21503 }
21504
21505 macro_define_object (file, line, name, replacement);
21506
21507 xfree (name);
21508 }
21509 else if (*p == '(')
21510 {
21511 /* It's a function-like macro. */
21512 char *name = copy_string (body, p - body);
21513 int argc = 0;
21514 int argv_size = 1;
21515 char **argv = XNEWVEC (char *, argv_size);
21516
21517 p++;
21518
21519 p = consume_improper_spaces (p, body);
21520
21521 /* Parse the formal argument list. */
21522 while (*p && *p != ')')
21523 {
21524 /* Find the extent of the current argument name. */
21525 const char *arg_start = p;
21526
21527 while (*p && *p != ',' && *p != ')' && *p != ' ')
21528 p++;
21529
21530 if (! *p || p == arg_start)
21531 dwarf2_macro_malformed_definition_complaint (body);
21532 else
21533 {
21534 /* Make sure argv has room for the new argument. */
21535 if (argc >= argv_size)
21536 {
21537 argv_size *= 2;
21538 argv = XRESIZEVEC (char *, argv, argv_size);
21539 }
21540
21541 argv[argc++] = copy_string (arg_start, p - arg_start);
21542 }
21543
21544 p = consume_improper_spaces (p, body);
21545
21546 /* Consume the comma, if present. */
21547 if (*p == ',')
21548 {
21549 p++;
21550
21551 p = consume_improper_spaces (p, body);
21552 }
21553 }
21554
21555 if (*p == ')')
21556 {
21557 p++;
21558
21559 if (*p == ' ')
21560 /* Perfectly formed definition, no complaints. */
21561 macro_define_function (file, line, name,
21562 argc, (const char **) argv,
21563 p + 1);
21564 else if (*p == '\0')
21565 {
21566 /* Complain, but do define it. */
21567 dwarf2_macro_malformed_definition_complaint (body);
21568 macro_define_function (file, line, name,
21569 argc, (const char **) argv,
21570 p);
21571 }
21572 else
21573 /* Just complain. */
21574 dwarf2_macro_malformed_definition_complaint (body);
21575 }
21576 else
21577 /* Just complain. */
21578 dwarf2_macro_malformed_definition_complaint (body);
21579
21580 xfree (name);
21581 {
21582 int i;
21583
21584 for (i = 0; i < argc; i++)
21585 xfree (argv[i]);
21586 }
21587 xfree (argv);
21588 }
21589 else
21590 dwarf2_macro_malformed_definition_complaint (body);
21591 }
21592
21593 /* Skip some bytes from BYTES according to the form given in FORM.
21594 Returns the new pointer. */
21595
21596 static const gdb_byte *
21597 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
21598 enum dwarf_form form,
21599 unsigned int offset_size,
21600 struct dwarf2_section_info *section)
21601 {
21602 unsigned int bytes_read;
21603
21604 switch (form)
21605 {
21606 case DW_FORM_data1:
21607 case DW_FORM_flag:
21608 ++bytes;
21609 break;
21610
21611 case DW_FORM_data2:
21612 bytes += 2;
21613 break;
21614
21615 case DW_FORM_data4:
21616 bytes += 4;
21617 break;
21618
21619 case DW_FORM_data8:
21620 bytes += 8;
21621 break;
21622
21623 case DW_FORM_data16:
21624 bytes += 16;
21625 break;
21626
21627 case DW_FORM_string:
21628 read_direct_string (abfd, bytes, &bytes_read);
21629 bytes += bytes_read;
21630 break;
21631
21632 case DW_FORM_sec_offset:
21633 case DW_FORM_strp:
21634 case DW_FORM_GNU_strp_alt:
21635 bytes += offset_size;
21636 break;
21637
21638 case DW_FORM_block:
21639 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21640 bytes += bytes_read;
21641 break;
21642
21643 case DW_FORM_block1:
21644 bytes += 1 + read_1_byte (abfd, bytes);
21645 break;
21646 case DW_FORM_block2:
21647 bytes += 2 + read_2_bytes (abfd, bytes);
21648 break;
21649 case DW_FORM_block4:
21650 bytes += 4 + read_4_bytes (abfd, bytes);
21651 break;
21652
21653 case DW_FORM_sdata:
21654 case DW_FORM_udata:
21655 case DW_FORM_GNU_addr_index:
21656 case DW_FORM_GNU_str_index:
21657 bytes = gdb_skip_leb128 (bytes, buffer_end);
21658 if (bytes == NULL)
21659 {
21660 dwarf2_section_buffer_overflow_complaint (section);
21661 return NULL;
21662 }
21663 break;
21664
21665 default:
21666 {
21667 complain:
21668 complaint (&symfile_complaints,
21669 _("invalid form 0x%x in `%s'"),
21670 form, get_section_name (section));
21671 return NULL;
21672 }
21673 }
21674
21675 return bytes;
21676 }
21677
21678 /* A helper for dwarf_decode_macros that handles skipping an unknown
21679 opcode. Returns an updated pointer to the macro data buffer; or,
21680 on error, issues a complaint and returns NULL. */
21681
21682 static const gdb_byte *
21683 skip_unknown_opcode (unsigned int opcode,
21684 const gdb_byte **opcode_definitions,
21685 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21686 bfd *abfd,
21687 unsigned int offset_size,
21688 struct dwarf2_section_info *section)
21689 {
21690 unsigned int bytes_read, i;
21691 unsigned long arg;
21692 const gdb_byte *defn;
21693
21694 if (opcode_definitions[opcode] == NULL)
21695 {
21696 complaint (&symfile_complaints,
21697 _("unrecognized DW_MACFINO opcode 0x%x"),
21698 opcode);
21699 return NULL;
21700 }
21701
21702 defn = opcode_definitions[opcode];
21703 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21704 defn += bytes_read;
21705
21706 for (i = 0; i < arg; ++i)
21707 {
21708 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21709 (enum dwarf_form) defn[i], offset_size,
21710 section);
21711 if (mac_ptr == NULL)
21712 {
21713 /* skip_form_bytes already issued the complaint. */
21714 return NULL;
21715 }
21716 }
21717
21718 return mac_ptr;
21719 }
21720
21721 /* A helper function which parses the header of a macro section.
21722 If the macro section is the extended (for now called "GNU") type,
21723 then this updates *OFFSET_SIZE. Returns a pointer to just after
21724 the header, or issues a complaint and returns NULL on error. */
21725
21726 static const gdb_byte *
21727 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
21728 bfd *abfd,
21729 const gdb_byte *mac_ptr,
21730 unsigned int *offset_size,
21731 int section_is_gnu)
21732 {
21733 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
21734
21735 if (section_is_gnu)
21736 {
21737 unsigned int version, flags;
21738
21739 version = read_2_bytes (abfd, mac_ptr);
21740 if (version != 4 && version != 5)
21741 {
21742 complaint (&symfile_complaints,
21743 _("unrecognized version `%d' in .debug_macro section"),
21744 version);
21745 return NULL;
21746 }
21747 mac_ptr += 2;
21748
21749 flags = read_1_byte (abfd, mac_ptr);
21750 ++mac_ptr;
21751 *offset_size = (flags & 1) ? 8 : 4;
21752
21753 if ((flags & 2) != 0)
21754 /* We don't need the line table offset. */
21755 mac_ptr += *offset_size;
21756
21757 /* Vendor opcode descriptions. */
21758 if ((flags & 4) != 0)
21759 {
21760 unsigned int i, count;
21761
21762 count = read_1_byte (abfd, mac_ptr);
21763 ++mac_ptr;
21764 for (i = 0; i < count; ++i)
21765 {
21766 unsigned int opcode, bytes_read;
21767 unsigned long arg;
21768
21769 opcode = read_1_byte (abfd, mac_ptr);
21770 ++mac_ptr;
21771 opcode_definitions[opcode] = mac_ptr;
21772 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21773 mac_ptr += bytes_read;
21774 mac_ptr += arg;
21775 }
21776 }
21777 }
21778
21779 return mac_ptr;
21780 }
21781
21782 /* A helper for dwarf_decode_macros that handles the GNU extensions,
21783 including DW_MACRO_import. */
21784
21785 static void
21786 dwarf_decode_macro_bytes (bfd *abfd,
21787 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21788 struct macro_source_file *current_file,
21789 struct line_header *lh,
21790 struct dwarf2_section_info *section,
21791 int section_is_gnu, int section_is_dwz,
21792 unsigned int offset_size,
21793 htab_t include_hash)
21794 {
21795 struct objfile *objfile = dwarf2_per_objfile->objfile;
21796 enum dwarf_macro_record_type macinfo_type;
21797 int at_commandline;
21798 const gdb_byte *opcode_definitions[256];
21799
21800 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21801 &offset_size, section_is_gnu);
21802 if (mac_ptr == NULL)
21803 {
21804 /* We already issued a complaint. */
21805 return;
21806 }
21807
21808 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21809 GDB is still reading the definitions from command line. First
21810 DW_MACINFO_start_file will need to be ignored as it was already executed
21811 to create CURRENT_FILE for the main source holding also the command line
21812 definitions. On first met DW_MACINFO_start_file this flag is reset to
21813 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21814
21815 at_commandline = 1;
21816
21817 do
21818 {
21819 /* Do we at least have room for a macinfo type byte? */
21820 if (mac_ptr >= mac_end)
21821 {
21822 dwarf2_section_buffer_overflow_complaint (section);
21823 break;
21824 }
21825
21826 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
21827 mac_ptr++;
21828
21829 /* Note that we rely on the fact that the corresponding GNU and
21830 DWARF constants are the same. */
21831 switch (macinfo_type)
21832 {
21833 /* A zero macinfo type indicates the end of the macro
21834 information. */
21835 case 0:
21836 break;
21837
21838 case DW_MACRO_define:
21839 case DW_MACRO_undef:
21840 case DW_MACRO_define_strp:
21841 case DW_MACRO_undef_strp:
21842 case DW_MACRO_define_sup:
21843 case DW_MACRO_undef_sup:
21844 {
21845 unsigned int bytes_read;
21846 int line;
21847 const char *body;
21848 int is_define;
21849
21850 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21851 mac_ptr += bytes_read;
21852
21853 if (macinfo_type == DW_MACRO_define
21854 || macinfo_type == DW_MACRO_undef)
21855 {
21856 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21857 mac_ptr += bytes_read;
21858 }
21859 else
21860 {
21861 LONGEST str_offset;
21862
21863 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21864 mac_ptr += offset_size;
21865
21866 if (macinfo_type == DW_MACRO_define_sup
21867 || macinfo_type == DW_MACRO_undef_sup
21868 || section_is_dwz)
21869 {
21870 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21871
21872 body = read_indirect_string_from_dwz (dwz, str_offset);
21873 }
21874 else
21875 body = read_indirect_string_at_offset (abfd, str_offset);
21876 }
21877
21878 is_define = (macinfo_type == DW_MACRO_define
21879 || macinfo_type == DW_MACRO_define_strp
21880 || macinfo_type == DW_MACRO_define_sup);
21881 if (! current_file)
21882 {
21883 /* DWARF violation as no main source is present. */
21884 complaint (&symfile_complaints,
21885 _("debug info with no main source gives macro %s "
21886 "on line %d: %s"),
21887 is_define ? _("definition") : _("undefinition"),
21888 line, body);
21889 break;
21890 }
21891 if ((line == 0 && !at_commandline)
21892 || (line != 0 && at_commandline))
21893 complaint (&symfile_complaints,
21894 _("debug info gives %s macro %s with %s line %d: %s"),
21895 at_commandline ? _("command-line") : _("in-file"),
21896 is_define ? _("definition") : _("undefinition"),
21897 line == 0 ? _("zero") : _("non-zero"), line, body);
21898
21899 if (is_define)
21900 parse_macro_definition (current_file, line, body);
21901 else
21902 {
21903 gdb_assert (macinfo_type == DW_MACRO_undef
21904 || macinfo_type == DW_MACRO_undef_strp
21905 || macinfo_type == DW_MACRO_undef_sup);
21906 macro_undef (current_file, line, body);
21907 }
21908 }
21909 break;
21910
21911 case DW_MACRO_start_file:
21912 {
21913 unsigned int bytes_read;
21914 int line, file;
21915
21916 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21917 mac_ptr += bytes_read;
21918 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21919 mac_ptr += bytes_read;
21920
21921 if ((line == 0 && !at_commandline)
21922 || (line != 0 && at_commandline))
21923 complaint (&symfile_complaints,
21924 _("debug info gives source %d included "
21925 "from %s at %s line %d"),
21926 file, at_commandline ? _("command-line") : _("file"),
21927 line == 0 ? _("zero") : _("non-zero"), line);
21928
21929 if (at_commandline)
21930 {
21931 /* This DW_MACRO_start_file was executed in the
21932 pass one. */
21933 at_commandline = 0;
21934 }
21935 else
21936 current_file = macro_start_file (file, line, current_file, lh);
21937 }
21938 break;
21939
21940 case DW_MACRO_end_file:
21941 if (! current_file)
21942 complaint (&symfile_complaints,
21943 _("macro debug info has an unmatched "
21944 "`close_file' directive"));
21945 else
21946 {
21947 current_file = current_file->included_by;
21948 if (! current_file)
21949 {
21950 enum dwarf_macro_record_type next_type;
21951
21952 /* GCC circa March 2002 doesn't produce the zero
21953 type byte marking the end of the compilation
21954 unit. Complain if it's not there, but exit no
21955 matter what. */
21956
21957 /* Do we at least have room for a macinfo type byte? */
21958 if (mac_ptr >= mac_end)
21959 {
21960 dwarf2_section_buffer_overflow_complaint (section);
21961 return;
21962 }
21963
21964 /* We don't increment mac_ptr here, so this is just
21965 a look-ahead. */
21966 next_type
21967 = (enum dwarf_macro_record_type) read_1_byte (abfd,
21968 mac_ptr);
21969 if (next_type != 0)
21970 complaint (&symfile_complaints,
21971 _("no terminating 0-type entry for "
21972 "macros in `.debug_macinfo' section"));
21973
21974 return;
21975 }
21976 }
21977 break;
21978
21979 case DW_MACRO_import:
21980 case DW_MACRO_import_sup:
21981 {
21982 LONGEST offset;
21983 void **slot;
21984 bfd *include_bfd = abfd;
21985 struct dwarf2_section_info *include_section = section;
21986 const gdb_byte *include_mac_end = mac_end;
21987 int is_dwz = section_is_dwz;
21988 const gdb_byte *new_mac_ptr;
21989
21990 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21991 mac_ptr += offset_size;
21992
21993 if (macinfo_type == DW_MACRO_import_sup)
21994 {
21995 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21996
21997 dwarf2_read_section (objfile, &dwz->macro);
21998
21999 include_section = &dwz->macro;
22000 include_bfd = get_section_bfd_owner (include_section);
22001 include_mac_end = dwz->macro.buffer + dwz->macro.size;
22002 is_dwz = 1;
22003 }
22004
22005 new_mac_ptr = include_section->buffer + offset;
22006 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
22007
22008 if (*slot != NULL)
22009 {
22010 /* This has actually happened; see
22011 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
22012 complaint (&symfile_complaints,
22013 _("recursive DW_MACRO_import in "
22014 ".debug_macro section"));
22015 }
22016 else
22017 {
22018 *slot = (void *) new_mac_ptr;
22019
22020 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
22021 include_mac_end, current_file, lh,
22022 section, section_is_gnu, is_dwz,
22023 offset_size, include_hash);
22024
22025 htab_remove_elt (include_hash, (void *) new_mac_ptr);
22026 }
22027 }
22028 break;
22029
22030 case DW_MACINFO_vendor_ext:
22031 if (!section_is_gnu)
22032 {
22033 unsigned int bytes_read;
22034
22035 /* This reads the constant, but since we don't recognize
22036 any vendor extensions, we ignore it. */
22037 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22038 mac_ptr += bytes_read;
22039 read_direct_string (abfd, mac_ptr, &bytes_read);
22040 mac_ptr += bytes_read;
22041
22042 /* We don't recognize any vendor extensions. */
22043 break;
22044 }
22045 /* FALLTHROUGH */
22046
22047 default:
22048 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
22049 mac_ptr, mac_end, abfd, offset_size,
22050 section);
22051 if (mac_ptr == NULL)
22052 return;
22053 break;
22054 }
22055 } while (macinfo_type != 0);
22056 }
22057
22058 static void
22059 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
22060 int section_is_gnu)
22061 {
22062 struct objfile *objfile = dwarf2_per_objfile->objfile;
22063 struct line_header *lh = cu->line_header;
22064 bfd *abfd;
22065 const gdb_byte *mac_ptr, *mac_end;
22066 struct macro_source_file *current_file = 0;
22067 enum dwarf_macro_record_type macinfo_type;
22068 unsigned int offset_size = cu->header.offset_size;
22069 const gdb_byte *opcode_definitions[256];
22070 struct cleanup *cleanup;
22071 void **slot;
22072 struct dwarf2_section_info *section;
22073 const char *section_name;
22074
22075 if (cu->dwo_unit != NULL)
22076 {
22077 if (section_is_gnu)
22078 {
22079 section = &cu->dwo_unit->dwo_file->sections.macro;
22080 section_name = ".debug_macro.dwo";
22081 }
22082 else
22083 {
22084 section = &cu->dwo_unit->dwo_file->sections.macinfo;
22085 section_name = ".debug_macinfo.dwo";
22086 }
22087 }
22088 else
22089 {
22090 if (section_is_gnu)
22091 {
22092 section = &dwarf2_per_objfile->macro;
22093 section_name = ".debug_macro";
22094 }
22095 else
22096 {
22097 section = &dwarf2_per_objfile->macinfo;
22098 section_name = ".debug_macinfo";
22099 }
22100 }
22101
22102 dwarf2_read_section (objfile, section);
22103 if (section->buffer == NULL)
22104 {
22105 complaint (&symfile_complaints, _("missing %s section"), section_name);
22106 return;
22107 }
22108 abfd = get_section_bfd_owner (section);
22109
22110 /* First pass: Find the name of the base filename.
22111 This filename is needed in order to process all macros whose definition
22112 (or undefinition) comes from the command line. These macros are defined
22113 before the first DW_MACINFO_start_file entry, and yet still need to be
22114 associated to the base file.
22115
22116 To determine the base file name, we scan the macro definitions until we
22117 reach the first DW_MACINFO_start_file entry. We then initialize
22118 CURRENT_FILE accordingly so that any macro definition found before the
22119 first DW_MACINFO_start_file can still be associated to the base file. */
22120
22121 mac_ptr = section->buffer + offset;
22122 mac_end = section->buffer + section->size;
22123
22124 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
22125 &offset_size, section_is_gnu);
22126 if (mac_ptr == NULL)
22127 {
22128 /* We already issued a complaint. */
22129 return;
22130 }
22131
22132 do
22133 {
22134 /* Do we at least have room for a macinfo type byte? */
22135 if (mac_ptr >= mac_end)
22136 {
22137 /* Complaint is printed during the second pass as GDB will probably
22138 stop the first pass earlier upon finding
22139 DW_MACINFO_start_file. */
22140 break;
22141 }
22142
22143 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
22144 mac_ptr++;
22145
22146 /* Note that we rely on the fact that the corresponding GNU and
22147 DWARF constants are the same. */
22148 switch (macinfo_type)
22149 {
22150 /* A zero macinfo type indicates the end of the macro
22151 information. */
22152 case 0:
22153 break;
22154
22155 case DW_MACRO_define:
22156 case DW_MACRO_undef:
22157 /* Only skip the data by MAC_PTR. */
22158 {
22159 unsigned int bytes_read;
22160
22161 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22162 mac_ptr += bytes_read;
22163 read_direct_string (abfd, mac_ptr, &bytes_read);
22164 mac_ptr += bytes_read;
22165 }
22166 break;
22167
22168 case DW_MACRO_start_file:
22169 {
22170 unsigned int bytes_read;
22171 int line, file;
22172
22173 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22174 mac_ptr += bytes_read;
22175 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22176 mac_ptr += bytes_read;
22177
22178 current_file = macro_start_file (file, line, current_file, lh);
22179 }
22180 break;
22181
22182 case DW_MACRO_end_file:
22183 /* No data to skip by MAC_PTR. */
22184 break;
22185
22186 case DW_MACRO_define_strp:
22187 case DW_MACRO_undef_strp:
22188 case DW_MACRO_define_sup:
22189 case DW_MACRO_undef_sup:
22190 {
22191 unsigned int bytes_read;
22192
22193 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22194 mac_ptr += bytes_read;
22195 mac_ptr += offset_size;
22196 }
22197 break;
22198
22199 case DW_MACRO_import:
22200 case DW_MACRO_import_sup:
22201 /* Note that, according to the spec, a transparent include
22202 chain cannot call DW_MACRO_start_file. So, we can just
22203 skip this opcode. */
22204 mac_ptr += offset_size;
22205 break;
22206
22207 case DW_MACINFO_vendor_ext:
22208 /* Only skip the data by MAC_PTR. */
22209 if (!section_is_gnu)
22210 {
22211 unsigned int bytes_read;
22212
22213 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22214 mac_ptr += bytes_read;
22215 read_direct_string (abfd, mac_ptr, &bytes_read);
22216 mac_ptr += bytes_read;
22217 }
22218 /* FALLTHROUGH */
22219
22220 default:
22221 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
22222 mac_ptr, mac_end, abfd, offset_size,
22223 section);
22224 if (mac_ptr == NULL)
22225 return;
22226 break;
22227 }
22228 } while (macinfo_type != 0 && current_file == NULL);
22229
22230 /* Second pass: Process all entries.
22231
22232 Use the AT_COMMAND_LINE flag to determine whether we are still processing
22233 command-line macro definitions/undefinitions. This flag is unset when we
22234 reach the first DW_MACINFO_start_file entry. */
22235
22236 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
22237 htab_eq_pointer,
22238 NULL, xcalloc, xfree));
22239 mac_ptr = section->buffer + offset;
22240 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
22241 *slot = (void *) mac_ptr;
22242 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
22243 current_file, lh, section,
22244 section_is_gnu, 0, offset_size,
22245 include_hash.get ());
22246 }
22247
22248 /* Check if the attribute's form is a DW_FORM_block*
22249 if so return true else false. */
22250
22251 static int
22252 attr_form_is_block (const struct attribute *attr)
22253 {
22254 return (attr == NULL ? 0 :
22255 attr->form == DW_FORM_block1
22256 || attr->form == DW_FORM_block2
22257 || attr->form == DW_FORM_block4
22258 || attr->form == DW_FORM_block
22259 || attr->form == DW_FORM_exprloc);
22260 }
22261
22262 /* Return non-zero if ATTR's value is a section offset --- classes
22263 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
22264 You may use DW_UNSND (attr) to retrieve such offsets.
22265
22266 Section 7.5.4, "Attribute Encodings", explains that no attribute
22267 may have a value that belongs to more than one of these classes; it
22268 would be ambiguous if we did, because we use the same forms for all
22269 of them. */
22270
22271 static int
22272 attr_form_is_section_offset (const struct attribute *attr)
22273 {
22274 return (attr->form == DW_FORM_data4
22275 || attr->form == DW_FORM_data8
22276 || attr->form == DW_FORM_sec_offset);
22277 }
22278
22279 /* Return non-zero if ATTR's value falls in the 'constant' class, or
22280 zero otherwise. When this function returns true, you can apply
22281 dwarf2_get_attr_constant_value to it.
22282
22283 However, note that for some attributes you must check
22284 attr_form_is_section_offset before using this test. DW_FORM_data4
22285 and DW_FORM_data8 are members of both the constant class, and of
22286 the classes that contain offsets into other debug sections
22287 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
22288 that, if an attribute's can be either a constant or one of the
22289 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
22290 taken as section offsets, not constants.
22291
22292 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
22293 cannot handle that. */
22294
22295 static int
22296 attr_form_is_constant (const struct attribute *attr)
22297 {
22298 switch (attr->form)
22299 {
22300 case DW_FORM_sdata:
22301 case DW_FORM_udata:
22302 case DW_FORM_data1:
22303 case DW_FORM_data2:
22304 case DW_FORM_data4:
22305 case DW_FORM_data8:
22306 return 1;
22307 default:
22308 return 0;
22309 }
22310 }
22311
22312
22313 /* DW_ADDR is always stored already as sect_offset; despite for the forms
22314 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
22315
22316 static int
22317 attr_form_is_ref (const struct attribute *attr)
22318 {
22319 switch (attr->form)
22320 {
22321 case DW_FORM_ref_addr:
22322 case DW_FORM_ref1:
22323 case DW_FORM_ref2:
22324 case DW_FORM_ref4:
22325 case DW_FORM_ref8:
22326 case DW_FORM_ref_udata:
22327 case DW_FORM_GNU_ref_alt:
22328 return 1;
22329 default:
22330 return 0;
22331 }
22332 }
22333
22334 /* Return the .debug_loc section to use for CU.
22335 For DWO files use .debug_loc.dwo. */
22336
22337 static struct dwarf2_section_info *
22338 cu_debug_loc_section (struct dwarf2_cu *cu)
22339 {
22340 if (cu->dwo_unit)
22341 {
22342 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
22343
22344 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
22345 }
22346 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
22347 : &dwarf2_per_objfile->loc);
22348 }
22349
22350 /* A helper function that fills in a dwarf2_loclist_baton. */
22351
22352 static void
22353 fill_in_loclist_baton (struct dwarf2_cu *cu,
22354 struct dwarf2_loclist_baton *baton,
22355 const struct attribute *attr)
22356 {
22357 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
22358
22359 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
22360
22361 baton->per_cu = cu->per_cu;
22362 gdb_assert (baton->per_cu);
22363 /* We don't know how long the location list is, but make sure we
22364 don't run off the edge of the section. */
22365 baton->size = section->size - DW_UNSND (attr);
22366 baton->data = section->buffer + DW_UNSND (attr);
22367 baton->base_address = cu->base_address;
22368 baton->from_dwo = cu->dwo_unit != NULL;
22369 }
22370
22371 static void
22372 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
22373 struct dwarf2_cu *cu, int is_block)
22374 {
22375 struct objfile *objfile = dwarf2_per_objfile->objfile;
22376 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
22377
22378 if (attr_form_is_section_offset (attr)
22379 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
22380 the section. If so, fall through to the complaint in the
22381 other branch. */
22382 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
22383 {
22384 struct dwarf2_loclist_baton *baton;
22385
22386 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
22387
22388 fill_in_loclist_baton (cu, baton, attr);
22389
22390 if (cu->base_known == 0)
22391 complaint (&symfile_complaints,
22392 _("Location list used without "
22393 "specifying the CU base address."));
22394
22395 SYMBOL_ACLASS_INDEX (sym) = (is_block
22396 ? dwarf2_loclist_block_index
22397 : dwarf2_loclist_index);
22398 SYMBOL_LOCATION_BATON (sym) = baton;
22399 }
22400 else
22401 {
22402 struct dwarf2_locexpr_baton *baton;
22403
22404 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
22405 baton->per_cu = cu->per_cu;
22406 gdb_assert (baton->per_cu);
22407
22408 if (attr_form_is_block (attr))
22409 {
22410 /* Note that we're just copying the block's data pointer
22411 here, not the actual data. We're still pointing into the
22412 info_buffer for SYM's objfile; right now we never release
22413 that buffer, but when we do clean up properly this may
22414 need to change. */
22415 baton->size = DW_BLOCK (attr)->size;
22416 baton->data = DW_BLOCK (attr)->data;
22417 }
22418 else
22419 {
22420 dwarf2_invalid_attrib_class_complaint ("location description",
22421 SYMBOL_NATURAL_NAME (sym));
22422 baton->size = 0;
22423 }
22424
22425 SYMBOL_ACLASS_INDEX (sym) = (is_block
22426 ? dwarf2_locexpr_block_index
22427 : dwarf2_locexpr_index);
22428 SYMBOL_LOCATION_BATON (sym) = baton;
22429 }
22430 }
22431
22432 /* Return the OBJFILE associated with the compilation unit CU. If CU
22433 came from a separate debuginfo file, then the master objfile is
22434 returned. */
22435
22436 struct objfile *
22437 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
22438 {
22439 struct objfile *objfile = per_cu->objfile;
22440
22441 /* Return the master objfile, so that we can report and look up the
22442 correct file containing this variable. */
22443 if (objfile->separate_debug_objfile_backlink)
22444 objfile = objfile->separate_debug_objfile_backlink;
22445
22446 return objfile;
22447 }
22448
22449 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
22450 (CU_HEADERP is unused in such case) or prepare a temporary copy at
22451 CU_HEADERP first. */
22452
22453 static const struct comp_unit_head *
22454 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
22455 struct dwarf2_per_cu_data *per_cu)
22456 {
22457 const gdb_byte *info_ptr;
22458
22459 if (per_cu->cu)
22460 return &per_cu->cu->header;
22461
22462 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
22463
22464 memset (cu_headerp, 0, sizeof (*cu_headerp));
22465 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
22466 rcuh_kind::COMPILE);
22467
22468 return cu_headerp;
22469 }
22470
22471 /* Return the address size given in the compilation unit header for CU. */
22472
22473 int
22474 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
22475 {
22476 struct comp_unit_head cu_header_local;
22477 const struct comp_unit_head *cu_headerp;
22478
22479 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22480
22481 return cu_headerp->addr_size;
22482 }
22483
22484 /* Return the offset size given in the compilation unit header for CU. */
22485
22486 int
22487 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
22488 {
22489 struct comp_unit_head cu_header_local;
22490 const struct comp_unit_head *cu_headerp;
22491
22492 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22493
22494 return cu_headerp->offset_size;
22495 }
22496
22497 /* See its dwarf2loc.h declaration. */
22498
22499 int
22500 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
22501 {
22502 struct comp_unit_head cu_header_local;
22503 const struct comp_unit_head *cu_headerp;
22504
22505 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22506
22507 if (cu_headerp->version == 2)
22508 return cu_headerp->addr_size;
22509 else
22510 return cu_headerp->offset_size;
22511 }
22512
22513 /* Return the text offset of the CU. The returned offset comes from
22514 this CU's objfile. If this objfile came from a separate debuginfo
22515 file, then the offset may be different from the corresponding
22516 offset in the parent objfile. */
22517
22518 CORE_ADDR
22519 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
22520 {
22521 struct objfile *objfile = per_cu->objfile;
22522
22523 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22524 }
22525
22526 /* Return DWARF version number of PER_CU. */
22527
22528 short
22529 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
22530 {
22531 return per_cu->dwarf_version;
22532 }
22533
22534 /* Locate the .debug_info compilation unit from CU's objfile which contains
22535 the DIE at OFFSET. Raises an error on failure. */
22536
22537 static struct dwarf2_per_cu_data *
22538 dwarf2_find_containing_comp_unit (sect_offset offset,
22539 unsigned int offset_in_dwz,
22540 struct objfile *objfile)
22541 {
22542 struct dwarf2_per_cu_data *this_cu;
22543 int low, high;
22544 const sect_offset *cu_off;
22545
22546 low = 0;
22547 high = dwarf2_per_objfile->n_comp_units - 1;
22548 while (high > low)
22549 {
22550 struct dwarf2_per_cu_data *mid_cu;
22551 int mid = low + (high - low) / 2;
22552
22553 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
22554 cu_off = &mid_cu->offset;
22555 if (mid_cu->is_dwz > offset_in_dwz
22556 || (mid_cu->is_dwz == offset_in_dwz
22557 && cu_off->sect_off >= offset.sect_off))
22558 high = mid;
22559 else
22560 low = mid + 1;
22561 }
22562 gdb_assert (low == high);
22563 this_cu = dwarf2_per_objfile->all_comp_units[low];
22564 cu_off = &this_cu->offset;
22565 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
22566 {
22567 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
22568 error (_("Dwarf Error: could not find partial DIE containing "
22569 "offset 0x%lx [in module %s]"),
22570 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
22571
22572 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
22573 <= offset.sect_off);
22574 return dwarf2_per_objfile->all_comp_units[low-1];
22575 }
22576 else
22577 {
22578 this_cu = dwarf2_per_objfile->all_comp_units[low];
22579 if (low == dwarf2_per_objfile->n_comp_units - 1
22580 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
22581 error (_("invalid dwarf2 offset %u"), offset.sect_off);
22582 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
22583 return this_cu;
22584 }
22585 }
22586
22587 /* Initialize dwarf2_cu CU, owned by PER_CU. */
22588
22589 static void
22590 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
22591 {
22592 memset (cu, 0, sizeof (*cu));
22593 per_cu->cu = cu;
22594 cu->per_cu = per_cu;
22595 cu->objfile = per_cu->objfile;
22596 obstack_init (&cu->comp_unit_obstack);
22597 }
22598
22599 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22600
22601 static void
22602 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22603 enum language pretend_language)
22604 {
22605 struct attribute *attr;
22606
22607 /* Set the language we're debugging. */
22608 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22609 if (attr)
22610 set_cu_language (DW_UNSND (attr), cu);
22611 else
22612 {
22613 cu->language = pretend_language;
22614 cu->language_defn = language_def (cu->language);
22615 }
22616
22617 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
22618 }
22619
22620 /* Release one cached compilation unit, CU. We unlink it from the tree
22621 of compilation units, but we don't remove it from the read_in_chain;
22622 the caller is responsible for that.
22623 NOTE: DATA is a void * because this function is also used as a
22624 cleanup routine. */
22625
22626 static void
22627 free_heap_comp_unit (void *data)
22628 {
22629 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22630
22631 gdb_assert (cu->per_cu != NULL);
22632 cu->per_cu->cu = NULL;
22633 cu->per_cu = NULL;
22634
22635 obstack_free (&cu->comp_unit_obstack, NULL);
22636
22637 xfree (cu);
22638 }
22639
22640 /* This cleanup function is passed the address of a dwarf2_cu on the stack
22641 when we're finished with it. We can't free the pointer itself, but be
22642 sure to unlink it from the cache. Also release any associated storage. */
22643
22644 static void
22645 free_stack_comp_unit (void *data)
22646 {
22647 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22648
22649 gdb_assert (cu->per_cu != NULL);
22650 cu->per_cu->cu = NULL;
22651 cu->per_cu = NULL;
22652
22653 obstack_free (&cu->comp_unit_obstack, NULL);
22654 cu->partial_dies = NULL;
22655 }
22656
22657 /* Free all cached compilation units. */
22658
22659 static void
22660 free_cached_comp_units (void *data)
22661 {
22662 struct dwarf2_per_cu_data *per_cu, **last_chain;
22663
22664 per_cu = dwarf2_per_objfile->read_in_chain;
22665 last_chain = &dwarf2_per_objfile->read_in_chain;
22666 while (per_cu != NULL)
22667 {
22668 struct dwarf2_per_cu_data *next_cu;
22669
22670 next_cu = per_cu->cu->read_in_chain;
22671
22672 free_heap_comp_unit (per_cu->cu);
22673 *last_chain = next_cu;
22674
22675 per_cu = next_cu;
22676 }
22677 }
22678
22679 /* Increase the age counter on each cached compilation unit, and free
22680 any that are too old. */
22681
22682 static void
22683 age_cached_comp_units (void)
22684 {
22685 struct dwarf2_per_cu_data *per_cu, **last_chain;
22686
22687 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22688 per_cu = dwarf2_per_objfile->read_in_chain;
22689 while (per_cu != NULL)
22690 {
22691 per_cu->cu->last_used ++;
22692 if (per_cu->cu->last_used <= dwarf_max_cache_age)
22693 dwarf2_mark (per_cu->cu);
22694 per_cu = per_cu->cu->read_in_chain;
22695 }
22696
22697 per_cu = dwarf2_per_objfile->read_in_chain;
22698 last_chain = &dwarf2_per_objfile->read_in_chain;
22699 while (per_cu != NULL)
22700 {
22701 struct dwarf2_per_cu_data *next_cu;
22702
22703 next_cu = per_cu->cu->read_in_chain;
22704
22705 if (!per_cu->cu->mark)
22706 {
22707 free_heap_comp_unit (per_cu->cu);
22708 *last_chain = next_cu;
22709 }
22710 else
22711 last_chain = &per_cu->cu->read_in_chain;
22712
22713 per_cu = next_cu;
22714 }
22715 }
22716
22717 /* Remove a single compilation unit from the cache. */
22718
22719 static void
22720 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
22721 {
22722 struct dwarf2_per_cu_data *per_cu, **last_chain;
22723
22724 per_cu = dwarf2_per_objfile->read_in_chain;
22725 last_chain = &dwarf2_per_objfile->read_in_chain;
22726 while (per_cu != NULL)
22727 {
22728 struct dwarf2_per_cu_data *next_cu;
22729
22730 next_cu = per_cu->cu->read_in_chain;
22731
22732 if (per_cu == target_per_cu)
22733 {
22734 free_heap_comp_unit (per_cu->cu);
22735 per_cu->cu = NULL;
22736 *last_chain = next_cu;
22737 break;
22738 }
22739 else
22740 last_chain = &per_cu->cu->read_in_chain;
22741
22742 per_cu = next_cu;
22743 }
22744 }
22745
22746 /* Release all extra memory associated with OBJFILE. */
22747
22748 void
22749 dwarf2_free_objfile (struct objfile *objfile)
22750 {
22751 dwarf2_per_objfile
22752 = (struct dwarf2_per_objfile *) objfile_data (objfile,
22753 dwarf2_objfile_data_key);
22754
22755 if (dwarf2_per_objfile == NULL)
22756 return;
22757
22758 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
22759 free_cached_comp_units (NULL);
22760
22761 if (dwarf2_per_objfile->quick_file_names_table)
22762 htab_delete (dwarf2_per_objfile->quick_file_names_table);
22763
22764 if (dwarf2_per_objfile->line_header_hash)
22765 htab_delete (dwarf2_per_objfile->line_header_hash);
22766
22767 /* Everything else should be on the objfile obstack. */
22768 }
22769
22770 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22771 We store these in a hash table separate from the DIEs, and preserve them
22772 when the DIEs are flushed out of cache.
22773
22774 The CU "per_cu" pointer is needed because offset alone is not enough to
22775 uniquely identify the type. A file may have multiple .debug_types sections,
22776 or the type may come from a DWO file. Furthermore, while it's more logical
22777 to use per_cu->section+offset, with Fission the section with the data is in
22778 the DWO file but we don't know that section at the point we need it.
22779 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22780 because we can enter the lookup routine, get_die_type_at_offset, from
22781 outside this file, and thus won't necessarily have PER_CU->cu.
22782 Fortunately, PER_CU is stable for the life of the objfile. */
22783
22784 struct dwarf2_per_cu_offset_and_type
22785 {
22786 const struct dwarf2_per_cu_data *per_cu;
22787 sect_offset offset;
22788 struct type *type;
22789 };
22790
22791 /* Hash function for a dwarf2_per_cu_offset_and_type. */
22792
22793 static hashval_t
22794 per_cu_offset_and_type_hash (const void *item)
22795 {
22796 const struct dwarf2_per_cu_offset_and_type *ofs
22797 = (const struct dwarf2_per_cu_offset_and_type *) item;
22798
22799 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
22800 }
22801
22802 /* Equality function for a dwarf2_per_cu_offset_and_type. */
22803
22804 static int
22805 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
22806 {
22807 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
22808 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
22809 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
22810 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
22811
22812 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22813 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
22814 }
22815
22816 /* Set the type associated with DIE to TYPE. Save it in CU's hash
22817 table if necessary. For convenience, return TYPE.
22818
22819 The DIEs reading must have careful ordering to:
22820 * Not cause infite loops trying to read in DIEs as a prerequisite for
22821 reading current DIE.
22822 * Not trying to dereference contents of still incompletely read in types
22823 while reading in other DIEs.
22824 * Enable referencing still incompletely read in types just by a pointer to
22825 the type without accessing its fields.
22826
22827 Therefore caller should follow these rules:
22828 * Try to fetch any prerequisite types we may need to build this DIE type
22829 before building the type and calling set_die_type.
22830 * After building type call set_die_type for current DIE as soon as
22831 possible before fetching more types to complete the current type.
22832 * Make the type as complete as possible before fetching more types. */
22833
22834 static struct type *
22835 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22836 {
22837 struct dwarf2_per_cu_offset_and_type **slot, ofs;
22838 struct objfile *objfile = cu->objfile;
22839 struct attribute *attr;
22840 struct dynamic_prop prop;
22841
22842 /* For Ada types, make sure that the gnat-specific data is always
22843 initialized (if not already set). There are a few types where
22844 we should not be doing so, because the type-specific area is
22845 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22846 where the type-specific area is used to store the floatformat).
22847 But this is not a problem, because the gnat-specific information
22848 is actually not needed for these types. */
22849 if (need_gnat_info (cu)
22850 && TYPE_CODE (type) != TYPE_CODE_FUNC
22851 && TYPE_CODE (type) != TYPE_CODE_FLT
22852 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22853 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22854 && TYPE_CODE (type) != TYPE_CODE_METHOD
22855 && !HAVE_GNAT_AUX_INFO (type))
22856 INIT_GNAT_SPECIFIC (type);
22857
22858 /* Read DW_AT_allocated and set in type. */
22859 attr = dwarf2_attr (die, DW_AT_allocated, cu);
22860 if (attr_form_is_block (attr))
22861 {
22862 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22863 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
22864 }
22865 else if (attr != NULL)
22866 {
22867 complaint (&symfile_complaints,
22868 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
22869 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22870 die->offset.sect_off);
22871 }
22872
22873 /* Read DW_AT_associated and set in type. */
22874 attr = dwarf2_attr (die, DW_AT_associated, cu);
22875 if (attr_form_is_block (attr))
22876 {
22877 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22878 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
22879 }
22880 else if (attr != NULL)
22881 {
22882 complaint (&symfile_complaints,
22883 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
22884 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22885 die->offset.sect_off);
22886 }
22887
22888 /* Read DW_AT_data_location and set in type. */
22889 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22890 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22891 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
22892
22893 if (dwarf2_per_objfile->die_type_hash == NULL)
22894 {
22895 dwarf2_per_objfile->die_type_hash =
22896 htab_create_alloc_ex (127,
22897 per_cu_offset_and_type_hash,
22898 per_cu_offset_and_type_eq,
22899 NULL,
22900 &objfile->objfile_obstack,
22901 hashtab_obstack_allocate,
22902 dummy_obstack_deallocate);
22903 }
22904
22905 ofs.per_cu = cu->per_cu;
22906 ofs.offset = die->offset;
22907 ofs.type = type;
22908 slot = (struct dwarf2_per_cu_offset_and_type **)
22909 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
22910 if (*slot)
22911 complaint (&symfile_complaints,
22912 _("A problem internal to GDB: DIE 0x%x has type already set"),
22913 die->offset.sect_off);
22914 *slot = XOBNEW (&objfile->objfile_obstack,
22915 struct dwarf2_per_cu_offset_and_type);
22916 **slot = ofs;
22917 return type;
22918 }
22919
22920 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22921 or return NULL if the die does not have a saved type. */
22922
22923 static struct type *
22924 get_die_type_at_offset (sect_offset offset,
22925 struct dwarf2_per_cu_data *per_cu)
22926 {
22927 struct dwarf2_per_cu_offset_and_type *slot, ofs;
22928
22929 if (dwarf2_per_objfile->die_type_hash == NULL)
22930 return NULL;
22931
22932 ofs.per_cu = per_cu;
22933 ofs.offset = offset;
22934 slot = ((struct dwarf2_per_cu_offset_and_type *)
22935 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
22936 if (slot)
22937 return slot->type;
22938 else
22939 return NULL;
22940 }
22941
22942 /* Look up the type for DIE in CU in die_type_hash,
22943 or return NULL if DIE does not have a saved type. */
22944
22945 static struct type *
22946 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22947 {
22948 return get_die_type_at_offset (die->offset, cu->per_cu);
22949 }
22950
22951 /* Add a dependence relationship from CU to REF_PER_CU. */
22952
22953 static void
22954 dwarf2_add_dependence (struct dwarf2_cu *cu,
22955 struct dwarf2_per_cu_data *ref_per_cu)
22956 {
22957 void **slot;
22958
22959 if (cu->dependencies == NULL)
22960 cu->dependencies
22961 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22962 NULL, &cu->comp_unit_obstack,
22963 hashtab_obstack_allocate,
22964 dummy_obstack_deallocate);
22965
22966 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22967 if (*slot == NULL)
22968 *slot = ref_per_cu;
22969 }
22970
22971 /* Subroutine of dwarf2_mark to pass to htab_traverse.
22972 Set the mark field in every compilation unit in the
22973 cache that we must keep because we are keeping CU. */
22974
22975 static int
22976 dwarf2_mark_helper (void **slot, void *data)
22977 {
22978 struct dwarf2_per_cu_data *per_cu;
22979
22980 per_cu = (struct dwarf2_per_cu_data *) *slot;
22981
22982 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22983 reading of the chain. As such dependencies remain valid it is not much
22984 useful to track and undo them during QUIT cleanups. */
22985 if (per_cu->cu == NULL)
22986 return 1;
22987
22988 if (per_cu->cu->mark)
22989 return 1;
22990 per_cu->cu->mark = 1;
22991
22992 if (per_cu->cu->dependencies != NULL)
22993 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22994
22995 return 1;
22996 }
22997
22998 /* Set the mark field in CU and in every other compilation unit in the
22999 cache that we must keep because we are keeping CU. */
23000
23001 static void
23002 dwarf2_mark (struct dwarf2_cu *cu)
23003 {
23004 if (cu->mark)
23005 return;
23006 cu->mark = 1;
23007 if (cu->dependencies != NULL)
23008 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
23009 }
23010
23011 static void
23012 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
23013 {
23014 while (per_cu)
23015 {
23016 per_cu->cu->mark = 0;
23017 per_cu = per_cu->cu->read_in_chain;
23018 }
23019 }
23020
23021 /* Trivial hash function for partial_die_info: the hash value of a DIE
23022 is its offset in .debug_info for this objfile. */
23023
23024 static hashval_t
23025 partial_die_hash (const void *item)
23026 {
23027 const struct partial_die_info *part_die
23028 = (const struct partial_die_info *) item;
23029
23030 return part_die->offset.sect_off;
23031 }
23032
23033 /* Trivial comparison function for partial_die_info structures: two DIEs
23034 are equal if they have the same offset. */
23035
23036 static int
23037 partial_die_eq (const void *item_lhs, const void *item_rhs)
23038 {
23039 const struct partial_die_info *part_die_lhs
23040 = (const struct partial_die_info *) item_lhs;
23041 const struct partial_die_info *part_die_rhs
23042 = (const struct partial_die_info *) item_rhs;
23043
23044 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
23045 }
23046
23047 static struct cmd_list_element *set_dwarf_cmdlist;
23048 static struct cmd_list_element *show_dwarf_cmdlist;
23049
23050 static void
23051 set_dwarf_cmd (char *args, int from_tty)
23052 {
23053 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
23054 gdb_stdout);
23055 }
23056
23057 static void
23058 show_dwarf_cmd (char *args, int from_tty)
23059 {
23060 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
23061 }
23062
23063 /* Free data associated with OBJFILE, if necessary. */
23064
23065 static void
23066 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
23067 {
23068 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
23069 int ix;
23070
23071 /* Make sure we don't accidentally use dwarf2_per_objfile while
23072 cleaning up. */
23073 dwarf2_per_objfile = NULL;
23074
23075 for (ix = 0; ix < data->n_comp_units; ++ix)
23076 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
23077
23078 for (ix = 0; ix < data->n_type_units; ++ix)
23079 VEC_free (dwarf2_per_cu_ptr,
23080 data->all_type_units[ix]->per_cu.imported_symtabs);
23081 xfree (data->all_type_units);
23082
23083 VEC_free (dwarf2_section_info_def, data->types);
23084
23085 if (data->dwo_files)
23086 free_dwo_files (data->dwo_files, objfile);
23087 if (data->dwp_file)
23088 gdb_bfd_unref (data->dwp_file->dbfd);
23089
23090 if (data->dwz_file && data->dwz_file->dwz_bfd)
23091 gdb_bfd_unref (data->dwz_file->dwz_bfd);
23092 }
23093
23094 \f
23095 /* The "save gdb-index" command. */
23096
23097 /* The contents of the hash table we create when building the string
23098 table. */
23099 struct strtab_entry
23100 {
23101 offset_type offset;
23102 const char *str;
23103 };
23104
23105 /* Hash function for a strtab_entry.
23106
23107 Function is used only during write_hash_table so no index format backward
23108 compatibility is needed. */
23109
23110 static hashval_t
23111 hash_strtab_entry (const void *e)
23112 {
23113 const struct strtab_entry *entry = (const struct strtab_entry *) e;
23114 return mapped_index_string_hash (INT_MAX, entry->str);
23115 }
23116
23117 /* Equality function for a strtab_entry. */
23118
23119 static int
23120 eq_strtab_entry (const void *a, const void *b)
23121 {
23122 const struct strtab_entry *ea = (const struct strtab_entry *) a;
23123 const struct strtab_entry *eb = (const struct strtab_entry *) b;
23124 return !strcmp (ea->str, eb->str);
23125 }
23126
23127 /* Create a strtab_entry hash table. */
23128
23129 static htab_t
23130 create_strtab (void)
23131 {
23132 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
23133 xfree, xcalloc, xfree);
23134 }
23135
23136 /* Add a string to the constant pool. Return the string's offset in
23137 host order. */
23138
23139 static offset_type
23140 add_string (htab_t table, struct obstack *cpool, const char *str)
23141 {
23142 void **slot;
23143 struct strtab_entry entry;
23144 struct strtab_entry *result;
23145
23146 entry.str = str;
23147 slot = htab_find_slot (table, &entry, INSERT);
23148 if (*slot)
23149 result = (struct strtab_entry *) *slot;
23150 else
23151 {
23152 result = XNEW (struct strtab_entry);
23153 result->offset = obstack_object_size (cpool);
23154 result->str = str;
23155 obstack_grow_str0 (cpool, str);
23156 *slot = result;
23157 }
23158 return result->offset;
23159 }
23160
23161 /* An entry in the symbol table. */
23162 struct symtab_index_entry
23163 {
23164 /* The name of the symbol. */
23165 const char *name;
23166 /* The offset of the name in the constant pool. */
23167 offset_type index_offset;
23168 /* A sorted vector of the indices of all the CUs that hold an object
23169 of this name. */
23170 VEC (offset_type) *cu_indices;
23171 };
23172
23173 /* The symbol table. This is a power-of-2-sized hash table. */
23174 struct mapped_symtab
23175 {
23176 offset_type n_elements;
23177 offset_type size;
23178 struct symtab_index_entry **data;
23179 };
23180
23181 /* Hash function for a symtab_index_entry. */
23182
23183 static hashval_t
23184 hash_symtab_entry (const void *e)
23185 {
23186 const struct symtab_index_entry *entry
23187 = (const struct symtab_index_entry *) e;
23188 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
23189 sizeof (offset_type) * VEC_length (offset_type,
23190 entry->cu_indices),
23191 0);
23192 }
23193
23194 /* Equality function for a symtab_index_entry. */
23195
23196 static int
23197 eq_symtab_entry (const void *a, const void *b)
23198 {
23199 const struct symtab_index_entry *ea = (const struct symtab_index_entry *) a;
23200 const struct symtab_index_entry *eb = (const struct symtab_index_entry *) b;
23201 int len = VEC_length (offset_type, ea->cu_indices);
23202 if (len != VEC_length (offset_type, eb->cu_indices))
23203 return 0;
23204 return !memcmp (VEC_address (offset_type, ea->cu_indices),
23205 VEC_address (offset_type, eb->cu_indices),
23206 sizeof (offset_type) * len);
23207 }
23208
23209 /* Destroy a symtab_index_entry. */
23210
23211 static void
23212 delete_symtab_entry (void *p)
23213 {
23214 struct symtab_index_entry *entry = (struct symtab_index_entry *) p;
23215 VEC_free (offset_type, entry->cu_indices);
23216 xfree (entry);
23217 }
23218
23219 /* Create a hash table holding symtab_index_entry objects. */
23220
23221 static htab_t
23222 create_symbol_hash_table (void)
23223 {
23224 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
23225 delete_symtab_entry, xcalloc, xfree);
23226 }
23227
23228 /* Create a new mapped symtab object. */
23229
23230 static struct mapped_symtab *
23231 create_mapped_symtab (void)
23232 {
23233 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
23234 symtab->n_elements = 0;
23235 symtab->size = 1024;
23236 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
23237 return symtab;
23238 }
23239
23240 /* Destroy a mapped_symtab. */
23241
23242 static void
23243 cleanup_mapped_symtab (void *p)
23244 {
23245 struct mapped_symtab *symtab = (struct mapped_symtab *) p;
23246 /* The contents of the array are freed when the other hash table is
23247 destroyed. */
23248 xfree (symtab->data);
23249 xfree (symtab);
23250 }
23251
23252 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
23253 the slot.
23254
23255 Function is used only during write_hash_table so no index format backward
23256 compatibility is needed. */
23257
23258 static struct symtab_index_entry **
23259 find_slot (struct mapped_symtab *symtab, const char *name)
23260 {
23261 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
23262
23263 index = hash & (symtab->size - 1);
23264 step = ((hash * 17) & (symtab->size - 1)) | 1;
23265
23266 for (;;)
23267 {
23268 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
23269 return &symtab->data[index];
23270 index = (index + step) & (symtab->size - 1);
23271 }
23272 }
23273
23274 /* Expand SYMTAB's hash table. */
23275
23276 static void
23277 hash_expand (struct mapped_symtab *symtab)
23278 {
23279 offset_type old_size = symtab->size;
23280 offset_type i;
23281 struct symtab_index_entry **old_entries = symtab->data;
23282
23283 symtab->size *= 2;
23284 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
23285
23286 for (i = 0; i < old_size; ++i)
23287 {
23288 if (old_entries[i])
23289 {
23290 struct symtab_index_entry **slot = find_slot (symtab,
23291 old_entries[i]->name);
23292 *slot = old_entries[i];
23293 }
23294 }
23295
23296 xfree (old_entries);
23297 }
23298
23299 /* Add an entry to SYMTAB. NAME is the name of the symbol.
23300 CU_INDEX is the index of the CU in which the symbol appears.
23301 IS_STATIC is one if the symbol is static, otherwise zero (global). */
23302
23303 static void
23304 add_index_entry (struct mapped_symtab *symtab, const char *name,
23305 int is_static, gdb_index_symbol_kind kind,
23306 offset_type cu_index)
23307 {
23308 struct symtab_index_entry **slot;
23309 offset_type cu_index_and_attrs;
23310
23311 ++symtab->n_elements;
23312 if (4 * symtab->n_elements / 3 >= symtab->size)
23313 hash_expand (symtab);
23314
23315 slot = find_slot (symtab, name);
23316 if (!*slot)
23317 {
23318 *slot = XNEW (struct symtab_index_entry);
23319 (*slot)->name = name;
23320 /* index_offset is set later. */
23321 (*slot)->cu_indices = NULL;
23322 }
23323
23324 cu_index_and_attrs = 0;
23325 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
23326 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
23327 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
23328
23329 /* We don't want to record an index value twice as we want to avoid the
23330 duplication.
23331 We process all global symbols and then all static symbols
23332 (which would allow us to avoid the duplication by only having to check
23333 the last entry pushed), but a symbol could have multiple kinds in one CU.
23334 To keep things simple we don't worry about the duplication here and
23335 sort and uniqufy the list after we've processed all symbols. */
23336 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
23337 }
23338
23339 /* qsort helper routine for uniquify_cu_indices. */
23340
23341 static int
23342 offset_type_compare (const void *ap, const void *bp)
23343 {
23344 offset_type a = *(offset_type *) ap;
23345 offset_type b = *(offset_type *) bp;
23346
23347 return (a > b) - (b > a);
23348 }
23349
23350 /* Sort and remove duplicates of all symbols' cu_indices lists. */
23351
23352 static void
23353 uniquify_cu_indices (struct mapped_symtab *symtab)
23354 {
23355 int i;
23356
23357 for (i = 0; i < symtab->size; ++i)
23358 {
23359 struct symtab_index_entry *entry = symtab->data[i];
23360
23361 if (entry
23362 && entry->cu_indices != NULL)
23363 {
23364 unsigned int next_to_insert, next_to_check;
23365 offset_type last_value;
23366
23367 qsort (VEC_address (offset_type, entry->cu_indices),
23368 VEC_length (offset_type, entry->cu_indices),
23369 sizeof (offset_type), offset_type_compare);
23370
23371 last_value = VEC_index (offset_type, entry->cu_indices, 0);
23372 next_to_insert = 1;
23373 for (next_to_check = 1;
23374 next_to_check < VEC_length (offset_type, entry->cu_indices);
23375 ++next_to_check)
23376 {
23377 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
23378 != last_value)
23379 {
23380 last_value = VEC_index (offset_type, entry->cu_indices,
23381 next_to_check);
23382 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
23383 last_value);
23384 ++next_to_insert;
23385 }
23386 }
23387 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
23388 }
23389 }
23390 }
23391
23392 /* Add a vector of indices to the constant pool. */
23393
23394 static offset_type
23395 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
23396 struct symtab_index_entry *entry)
23397 {
23398 void **slot;
23399
23400 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
23401 if (!*slot)
23402 {
23403 offset_type len = VEC_length (offset_type, entry->cu_indices);
23404 offset_type val = MAYBE_SWAP (len);
23405 offset_type iter;
23406 int i;
23407
23408 *slot = entry;
23409 entry->index_offset = obstack_object_size (cpool);
23410
23411 obstack_grow (cpool, &val, sizeof (val));
23412 for (i = 0;
23413 VEC_iterate (offset_type, entry->cu_indices, i, iter);
23414 ++i)
23415 {
23416 val = MAYBE_SWAP (iter);
23417 obstack_grow (cpool, &val, sizeof (val));
23418 }
23419 }
23420 else
23421 {
23422 struct symtab_index_entry *old_entry
23423 = (struct symtab_index_entry *) *slot;
23424 entry->index_offset = old_entry->index_offset;
23425 entry = old_entry;
23426 }
23427 return entry->index_offset;
23428 }
23429
23430 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
23431 constant pool entries going into the obstack CPOOL. */
23432
23433 static void
23434 write_hash_table (struct mapped_symtab *symtab,
23435 struct obstack *output, struct obstack *cpool)
23436 {
23437 offset_type i;
23438 htab_t symbol_hash_table;
23439 htab_t str_table;
23440
23441 symbol_hash_table = create_symbol_hash_table ();
23442 str_table = create_strtab ();
23443
23444 /* We add all the index vectors to the constant pool first, to
23445 ensure alignment is ok. */
23446 for (i = 0; i < symtab->size; ++i)
23447 {
23448 if (symtab->data[i])
23449 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
23450 }
23451
23452 /* Now write out the hash table. */
23453 for (i = 0; i < symtab->size; ++i)
23454 {
23455 offset_type str_off, vec_off;
23456
23457 if (symtab->data[i])
23458 {
23459 str_off = add_string (str_table, cpool, symtab->data[i]->name);
23460 vec_off = symtab->data[i]->index_offset;
23461 }
23462 else
23463 {
23464 /* While 0 is a valid constant pool index, it is not valid
23465 to have 0 for both offsets. */
23466 str_off = 0;
23467 vec_off = 0;
23468 }
23469
23470 str_off = MAYBE_SWAP (str_off);
23471 vec_off = MAYBE_SWAP (vec_off);
23472
23473 obstack_grow (output, &str_off, sizeof (str_off));
23474 obstack_grow (output, &vec_off, sizeof (vec_off));
23475 }
23476
23477 htab_delete (str_table);
23478 htab_delete (symbol_hash_table);
23479 }
23480
23481 /* Struct to map psymtab to CU index in the index file. */
23482 struct psymtab_cu_index_map
23483 {
23484 struct partial_symtab *psymtab;
23485 unsigned int cu_index;
23486 };
23487
23488 static hashval_t
23489 hash_psymtab_cu_index (const void *item)
23490 {
23491 const struct psymtab_cu_index_map *map
23492 = (const struct psymtab_cu_index_map *) item;
23493
23494 return htab_hash_pointer (map->psymtab);
23495 }
23496
23497 static int
23498 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
23499 {
23500 const struct psymtab_cu_index_map *lhs
23501 = (const struct psymtab_cu_index_map *) item_lhs;
23502 const struct psymtab_cu_index_map *rhs
23503 = (const struct psymtab_cu_index_map *) item_rhs;
23504
23505 return lhs->psymtab == rhs->psymtab;
23506 }
23507
23508 /* Helper struct for building the address table. */
23509 struct addrmap_index_data
23510 {
23511 struct objfile *objfile;
23512 struct obstack *addr_obstack;
23513 htab_t cu_index_htab;
23514
23515 /* Non-zero if the previous_* fields are valid.
23516 We can't write an entry until we see the next entry (since it is only then
23517 that we know the end of the entry). */
23518 int previous_valid;
23519 /* Index of the CU in the table of all CUs in the index file. */
23520 unsigned int previous_cu_index;
23521 /* Start address of the CU. */
23522 CORE_ADDR previous_cu_start;
23523 };
23524
23525 /* Write an address entry to OBSTACK. */
23526
23527 static void
23528 add_address_entry (struct objfile *objfile, struct obstack *obstack,
23529 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
23530 {
23531 offset_type cu_index_to_write;
23532 gdb_byte addr[8];
23533 CORE_ADDR baseaddr;
23534
23535 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23536
23537 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
23538 obstack_grow (obstack, addr, 8);
23539 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
23540 obstack_grow (obstack, addr, 8);
23541 cu_index_to_write = MAYBE_SWAP (cu_index);
23542 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
23543 }
23544
23545 /* Worker function for traversing an addrmap to build the address table. */
23546
23547 static int
23548 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
23549 {
23550 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
23551 struct partial_symtab *pst = (struct partial_symtab *) obj;
23552
23553 if (data->previous_valid)
23554 add_address_entry (data->objfile, data->addr_obstack,
23555 data->previous_cu_start, start_addr,
23556 data->previous_cu_index);
23557
23558 data->previous_cu_start = start_addr;
23559 if (pst != NULL)
23560 {
23561 struct psymtab_cu_index_map find_map, *map;
23562 find_map.psymtab = pst;
23563 map = ((struct psymtab_cu_index_map *)
23564 htab_find (data->cu_index_htab, &find_map));
23565 gdb_assert (map != NULL);
23566 data->previous_cu_index = map->cu_index;
23567 data->previous_valid = 1;
23568 }
23569 else
23570 data->previous_valid = 0;
23571
23572 return 0;
23573 }
23574
23575 /* Write OBJFILE's address map to OBSTACK.
23576 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23577 in the index file. */
23578
23579 static void
23580 write_address_map (struct objfile *objfile, struct obstack *obstack,
23581 htab_t cu_index_htab)
23582 {
23583 struct addrmap_index_data addrmap_index_data;
23584
23585 /* When writing the address table, we have to cope with the fact that
23586 the addrmap iterator only provides the start of a region; we have to
23587 wait until the next invocation to get the start of the next region. */
23588
23589 addrmap_index_data.objfile = objfile;
23590 addrmap_index_data.addr_obstack = obstack;
23591 addrmap_index_data.cu_index_htab = cu_index_htab;
23592 addrmap_index_data.previous_valid = 0;
23593
23594 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23595 &addrmap_index_data);
23596
23597 /* It's highly unlikely the last entry (end address = 0xff...ff)
23598 is valid, but we should still handle it.
23599 The end address is recorded as the start of the next region, but that
23600 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23601 anyway. */
23602 if (addrmap_index_data.previous_valid)
23603 add_address_entry (objfile, obstack,
23604 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23605 addrmap_index_data.previous_cu_index);
23606 }
23607
23608 /* Return the symbol kind of PSYM. */
23609
23610 static gdb_index_symbol_kind
23611 symbol_kind (struct partial_symbol *psym)
23612 {
23613 domain_enum domain = PSYMBOL_DOMAIN (psym);
23614 enum address_class aclass = PSYMBOL_CLASS (psym);
23615
23616 switch (domain)
23617 {
23618 case VAR_DOMAIN:
23619 switch (aclass)
23620 {
23621 case LOC_BLOCK:
23622 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23623 case LOC_TYPEDEF:
23624 return GDB_INDEX_SYMBOL_KIND_TYPE;
23625 case LOC_COMPUTED:
23626 case LOC_CONST_BYTES:
23627 case LOC_OPTIMIZED_OUT:
23628 case LOC_STATIC:
23629 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23630 case LOC_CONST:
23631 /* Note: It's currently impossible to recognize psyms as enum values
23632 short of reading the type info. For now punt. */
23633 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23634 default:
23635 /* There are other LOC_FOO values that one might want to classify
23636 as variables, but dwarf2read.c doesn't currently use them. */
23637 return GDB_INDEX_SYMBOL_KIND_OTHER;
23638 }
23639 case STRUCT_DOMAIN:
23640 return GDB_INDEX_SYMBOL_KIND_TYPE;
23641 default:
23642 return GDB_INDEX_SYMBOL_KIND_OTHER;
23643 }
23644 }
23645
23646 /* Add a list of partial symbols to SYMTAB. */
23647
23648 static void
23649 write_psymbols (struct mapped_symtab *symtab,
23650 htab_t psyms_seen,
23651 struct partial_symbol **psymp,
23652 int count,
23653 offset_type cu_index,
23654 int is_static)
23655 {
23656 for (; count-- > 0; ++psymp)
23657 {
23658 struct partial_symbol *psym = *psymp;
23659 void **slot;
23660
23661 if (SYMBOL_LANGUAGE (psym) == language_ada)
23662 error (_("Ada is not currently supported by the index"));
23663
23664 /* Only add a given psymbol once. */
23665 slot = htab_find_slot (psyms_seen, psym, INSERT);
23666 if (!*slot)
23667 {
23668 gdb_index_symbol_kind kind = symbol_kind (psym);
23669
23670 *slot = psym;
23671 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23672 is_static, kind, cu_index);
23673 }
23674 }
23675 }
23676
23677 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
23678 exception if there is an error. */
23679
23680 static void
23681 write_obstack (FILE *file, struct obstack *obstack)
23682 {
23683 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
23684 file)
23685 != obstack_object_size (obstack))
23686 error (_("couldn't data write to file"));
23687 }
23688
23689 /* A helper struct used when iterating over debug_types. */
23690 struct signatured_type_index_data
23691 {
23692 struct objfile *objfile;
23693 struct mapped_symtab *symtab;
23694 struct obstack *types_list;
23695 htab_t psyms_seen;
23696 int cu_index;
23697 };
23698
23699 /* A helper function that writes a single signatured_type to an
23700 obstack. */
23701
23702 static int
23703 write_one_signatured_type (void **slot, void *d)
23704 {
23705 struct signatured_type_index_data *info
23706 = (struct signatured_type_index_data *) d;
23707 struct signatured_type *entry = (struct signatured_type *) *slot;
23708 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
23709 gdb_byte val[8];
23710
23711 write_psymbols (info->symtab,
23712 info->psyms_seen,
23713 info->objfile->global_psymbols.list
23714 + psymtab->globals_offset,
23715 psymtab->n_global_syms, info->cu_index,
23716 0);
23717 write_psymbols (info->symtab,
23718 info->psyms_seen,
23719 info->objfile->static_psymbols.list
23720 + psymtab->statics_offset,
23721 psymtab->n_static_syms, info->cu_index,
23722 1);
23723
23724 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23725 entry->per_cu.offset.sect_off);
23726 obstack_grow (info->types_list, val, 8);
23727 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23728 entry->type_offset_in_tu.cu_off);
23729 obstack_grow (info->types_list, val, 8);
23730 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
23731 obstack_grow (info->types_list, val, 8);
23732
23733 ++info->cu_index;
23734
23735 return 1;
23736 }
23737
23738 /* Recurse into all "included" dependencies and write their symbols as
23739 if they appeared in this psymtab. */
23740
23741 static void
23742 recursively_write_psymbols (struct objfile *objfile,
23743 struct partial_symtab *psymtab,
23744 struct mapped_symtab *symtab,
23745 htab_t psyms_seen,
23746 offset_type cu_index)
23747 {
23748 int i;
23749
23750 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23751 if (psymtab->dependencies[i]->user != NULL)
23752 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23753 symtab, psyms_seen, cu_index);
23754
23755 write_psymbols (symtab,
23756 psyms_seen,
23757 objfile->global_psymbols.list + psymtab->globals_offset,
23758 psymtab->n_global_syms, cu_index,
23759 0);
23760 write_psymbols (symtab,
23761 psyms_seen,
23762 objfile->static_psymbols.list + psymtab->statics_offset,
23763 psymtab->n_static_syms, cu_index,
23764 1);
23765 }
23766
23767 /* Create an index file for OBJFILE in the directory DIR. */
23768
23769 static void
23770 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23771 {
23772 struct cleanup *cleanup;
23773 char *filename;
23774 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
23775 struct obstack cu_list, types_cu_list;
23776 int i;
23777 FILE *out_file;
23778 struct mapped_symtab *symtab;
23779 offset_type val, size_of_contents, total_len;
23780 struct stat st;
23781 struct psymtab_cu_index_map *psymtab_cu_index_map;
23782
23783 if (dwarf2_per_objfile->using_index)
23784 error (_("Cannot use an index to create the index"));
23785
23786 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23787 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23788
23789 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23790 return;
23791
23792 if (stat (objfile_name (objfile), &st) < 0)
23793 perror_with_name (objfile_name (objfile));
23794
23795 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
23796 INDEX_SUFFIX, (char *) NULL);
23797 cleanup = make_cleanup (xfree, filename);
23798
23799 out_file = gdb_fopen_cloexec (filename, "wb");
23800 if (!out_file)
23801 error (_("Can't open `%s' for writing"), filename);
23802
23803 gdb::unlinker unlink_file (filename);
23804
23805 symtab = create_mapped_symtab ();
23806 make_cleanup (cleanup_mapped_symtab, symtab);
23807
23808 obstack_init (&addr_obstack);
23809 make_cleanup_obstack_free (&addr_obstack);
23810
23811 obstack_init (&cu_list);
23812 make_cleanup_obstack_free (&cu_list);
23813
23814 obstack_init (&types_cu_list);
23815 make_cleanup_obstack_free (&types_cu_list);
23816
23817 htab_up psyms_seen (htab_create_alloc (100, htab_hash_pointer,
23818 htab_eq_pointer,
23819 NULL, xcalloc, xfree));
23820
23821 /* While we're scanning CU's create a table that maps a psymtab pointer
23822 (which is what addrmap records) to its index (which is what is recorded
23823 in the index file). This will later be needed to write the address
23824 table. */
23825 htab_up cu_index_htab (htab_create_alloc (100,
23826 hash_psymtab_cu_index,
23827 eq_psymtab_cu_index,
23828 NULL, xcalloc, xfree));
23829 psymtab_cu_index_map = XNEWVEC (struct psymtab_cu_index_map,
23830 dwarf2_per_objfile->n_comp_units);
23831 make_cleanup (xfree, psymtab_cu_index_map);
23832
23833 /* The CU list is already sorted, so we don't need to do additional
23834 work here. Also, the debug_types entries do not appear in
23835 all_comp_units, but only in their own hash table. */
23836 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23837 {
23838 struct dwarf2_per_cu_data *per_cu
23839 = dwarf2_per_objfile->all_comp_units[i];
23840 struct partial_symtab *psymtab = per_cu->v.psymtab;
23841 gdb_byte val[8];
23842 struct psymtab_cu_index_map *map;
23843 void **slot;
23844
23845 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23846 It may be referenced from a local scope but in such case it does not
23847 need to be present in .gdb_index. */
23848 if (psymtab == NULL)
23849 continue;
23850
23851 if (psymtab->user == NULL)
23852 recursively_write_psymbols (objfile, psymtab, symtab,
23853 psyms_seen.get (), i);
23854
23855 map = &psymtab_cu_index_map[i];
23856 map->psymtab = psymtab;
23857 map->cu_index = i;
23858 slot = htab_find_slot (cu_index_htab.get (), map, INSERT);
23859 gdb_assert (slot != NULL);
23860 gdb_assert (*slot == NULL);
23861 *slot = map;
23862
23863 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23864 per_cu->offset.sect_off);
23865 obstack_grow (&cu_list, val, 8);
23866 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
23867 obstack_grow (&cu_list, val, 8);
23868 }
23869
23870 /* Dump the address map. */
23871 write_address_map (objfile, &addr_obstack, cu_index_htab.get ());
23872
23873 /* Write out the .debug_type entries, if any. */
23874 if (dwarf2_per_objfile->signatured_types)
23875 {
23876 struct signatured_type_index_data sig_data;
23877
23878 sig_data.objfile = objfile;
23879 sig_data.symtab = symtab;
23880 sig_data.types_list = &types_cu_list;
23881 sig_data.psyms_seen = psyms_seen.get ();
23882 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23883 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23884 write_one_signatured_type, &sig_data);
23885 }
23886
23887 /* Now that we've processed all symbols we can shrink their cu_indices
23888 lists. */
23889 uniquify_cu_indices (symtab);
23890
23891 obstack_init (&constant_pool);
23892 make_cleanup_obstack_free (&constant_pool);
23893 obstack_init (&symtab_obstack);
23894 make_cleanup_obstack_free (&symtab_obstack);
23895 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23896
23897 obstack_init (&contents);
23898 make_cleanup_obstack_free (&contents);
23899 size_of_contents = 6 * sizeof (offset_type);
23900 total_len = size_of_contents;
23901
23902 /* The version number. */
23903 val = MAYBE_SWAP (8);
23904 obstack_grow (&contents, &val, sizeof (val));
23905
23906 /* The offset of the CU list from the start of the file. */
23907 val = MAYBE_SWAP (total_len);
23908 obstack_grow (&contents, &val, sizeof (val));
23909 total_len += obstack_object_size (&cu_list);
23910
23911 /* The offset of the types CU list from the start of the file. */
23912 val = MAYBE_SWAP (total_len);
23913 obstack_grow (&contents, &val, sizeof (val));
23914 total_len += obstack_object_size (&types_cu_list);
23915
23916 /* The offset of the address table from the start of the file. */
23917 val = MAYBE_SWAP (total_len);
23918 obstack_grow (&contents, &val, sizeof (val));
23919 total_len += obstack_object_size (&addr_obstack);
23920
23921 /* The offset of the symbol table from the start of the file. */
23922 val = MAYBE_SWAP (total_len);
23923 obstack_grow (&contents, &val, sizeof (val));
23924 total_len += obstack_object_size (&symtab_obstack);
23925
23926 /* The offset of the constant pool from the start of the file. */
23927 val = MAYBE_SWAP (total_len);
23928 obstack_grow (&contents, &val, sizeof (val));
23929 total_len += obstack_object_size (&constant_pool);
23930
23931 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23932
23933 write_obstack (out_file, &contents);
23934 write_obstack (out_file, &cu_list);
23935 write_obstack (out_file, &types_cu_list);
23936 write_obstack (out_file, &addr_obstack);
23937 write_obstack (out_file, &symtab_obstack);
23938 write_obstack (out_file, &constant_pool);
23939
23940 fclose (out_file);
23941
23942 /* We want to keep the file. */
23943 unlink_file.keep ();
23944
23945 do_cleanups (cleanup);
23946 }
23947
23948 /* Implementation of the `save gdb-index' command.
23949
23950 Note that the file format used by this command is documented in the
23951 GDB manual. Any changes here must be documented there. */
23952
23953 static void
23954 save_gdb_index_command (char *arg, int from_tty)
23955 {
23956 struct objfile *objfile;
23957
23958 if (!arg || !*arg)
23959 error (_("usage: save gdb-index DIRECTORY"));
23960
23961 ALL_OBJFILES (objfile)
23962 {
23963 struct stat st;
23964
23965 /* If the objfile does not correspond to an actual file, skip it. */
23966 if (stat (objfile_name (objfile), &st) < 0)
23967 continue;
23968
23969 dwarf2_per_objfile
23970 = (struct dwarf2_per_objfile *) objfile_data (objfile,
23971 dwarf2_objfile_data_key);
23972 if (dwarf2_per_objfile)
23973 {
23974
23975 TRY
23976 {
23977 write_psymtabs_to_index (objfile, arg);
23978 }
23979 CATCH (except, RETURN_MASK_ERROR)
23980 {
23981 exception_fprintf (gdb_stderr, except,
23982 _("Error while writing index for `%s': "),
23983 objfile_name (objfile));
23984 }
23985 END_CATCH
23986 }
23987 }
23988 }
23989
23990 \f
23991
23992 int dwarf_always_disassemble;
23993
23994 static void
23995 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
23996 struct cmd_list_element *c, const char *value)
23997 {
23998 fprintf_filtered (file,
23999 _("Whether to always disassemble "
24000 "DWARF expressions is %s.\n"),
24001 value);
24002 }
24003
24004 static void
24005 show_check_physname (struct ui_file *file, int from_tty,
24006 struct cmd_list_element *c, const char *value)
24007 {
24008 fprintf_filtered (file,
24009 _("Whether to check \"physname\" is %s.\n"),
24010 value);
24011 }
24012
24013 void _initialize_dwarf2_read (void);
24014
24015 void
24016 _initialize_dwarf2_read (void)
24017 {
24018 struct cmd_list_element *c;
24019
24020 dwarf2_objfile_data_key
24021 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
24022
24023 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
24024 Set DWARF specific variables.\n\
24025 Configure DWARF variables such as the cache size"),
24026 &set_dwarf_cmdlist, "maintenance set dwarf ",
24027 0/*allow-unknown*/, &maintenance_set_cmdlist);
24028
24029 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
24030 Show DWARF specific variables\n\
24031 Show DWARF variables such as the cache size"),
24032 &show_dwarf_cmdlist, "maintenance show dwarf ",
24033 0/*allow-unknown*/, &maintenance_show_cmdlist);
24034
24035 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
24036 &dwarf_max_cache_age, _("\
24037 Set the upper bound on the age of cached DWARF compilation units."), _("\
24038 Show the upper bound on the age of cached DWARF compilation units."), _("\
24039 A higher limit means that cached compilation units will be stored\n\
24040 in memory longer, and more total memory will be used. Zero disables\n\
24041 caching, which can slow down startup."),
24042 NULL,
24043 show_dwarf_max_cache_age,
24044 &set_dwarf_cmdlist,
24045 &show_dwarf_cmdlist);
24046
24047 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
24048 &dwarf_always_disassemble, _("\
24049 Set whether `info address' always disassembles DWARF expressions."), _("\
24050 Show whether `info address' always disassembles DWARF expressions."), _("\
24051 When enabled, DWARF expressions are always printed in an assembly-like\n\
24052 syntax. When disabled, expressions will be printed in a more\n\
24053 conversational style, when possible."),
24054 NULL,
24055 show_dwarf_always_disassemble,
24056 &set_dwarf_cmdlist,
24057 &show_dwarf_cmdlist);
24058
24059 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
24060 Set debugging of the DWARF reader."), _("\
24061 Show debugging of the DWARF reader."), _("\
24062 When enabled (non-zero), debugging messages are printed during DWARF\n\
24063 reading and symtab expansion. A value of 1 (one) provides basic\n\
24064 information. A value greater than 1 provides more verbose information."),
24065 NULL,
24066 NULL,
24067 &setdebuglist, &showdebuglist);
24068
24069 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
24070 Set debugging of the DWARF DIE reader."), _("\
24071 Show debugging of the DWARF DIE reader."), _("\
24072 When enabled (non-zero), DIEs are dumped after they are read in.\n\
24073 The value is the maximum depth to print."),
24074 NULL,
24075 NULL,
24076 &setdebuglist, &showdebuglist);
24077
24078 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
24079 Set debugging of the dwarf line reader."), _("\
24080 Show debugging of the dwarf line reader."), _("\
24081 When enabled (non-zero), line number entries are dumped as they are read in.\n\
24082 A value of 1 (one) provides basic information.\n\
24083 A value greater than 1 provides more verbose information."),
24084 NULL,
24085 NULL,
24086 &setdebuglist, &showdebuglist);
24087
24088 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
24089 Set cross-checking of \"physname\" code against demangler."), _("\
24090 Show cross-checking of \"physname\" code against demangler."), _("\
24091 When enabled, GDB's internal \"physname\" code is checked against\n\
24092 the demangler."),
24093 NULL, show_check_physname,
24094 &setdebuglist, &showdebuglist);
24095
24096 add_setshow_boolean_cmd ("use-deprecated-index-sections",
24097 no_class, &use_deprecated_index_sections, _("\
24098 Set whether to use deprecated gdb_index sections."), _("\
24099 Show whether to use deprecated gdb_index sections."), _("\
24100 When enabled, deprecated .gdb_index sections are used anyway.\n\
24101 Normally they are ignored either because of a missing feature or\n\
24102 performance issue.\n\
24103 Warning: This option must be enabled before gdb reads the file."),
24104 NULL,
24105 NULL,
24106 &setlist, &showlist);
24107
24108 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
24109 _("\
24110 Save a gdb-index file.\n\
24111 Usage: save gdb-index DIRECTORY"),
24112 &save_cmdlist);
24113 set_cmd_completer (c, filename_completer);
24114
24115 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
24116 &dwarf2_locexpr_funcs);
24117 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
24118 &dwarf2_loclist_funcs);
24119
24120 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
24121 &dwarf2_block_frame_base_locexpr_funcs);
24122 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
24123 &dwarf2_block_frame_base_loclist_funcs);
24124 }
This page took 0.590617 seconds and 5 git commands to generate.