Don't crash is dwarf_decode_macro_bytes's 'body' is NULL, even when '!is_define'
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2019 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2read.h"
33 #include "dwarf-index-cache.h"
34 #include "dwarf-index-common.h"
35 #include "bfd.h"
36 #include "elf-bfd.h"
37 #include "symtab.h"
38 #include "gdbtypes.h"
39 #include "objfiles.h"
40 #include "dwarf2.h"
41 #include "buildsym.h"
42 #include "demangle.h"
43 #include "gdb-demangle.h"
44 #include "expression.h"
45 #include "filenames.h" /* for DOSish file names */
46 #include "macrotab.h"
47 #include "language.h"
48 #include "complaints.h"
49 #include "dwarf2expr.h"
50 #include "dwarf2loc.h"
51 #include "cp-support.h"
52 #include "hashtab.h"
53 #include "command.h"
54 #include "gdbcmd.h"
55 #include "block.h"
56 #include "addrmap.h"
57 #include "typeprint.h"
58 #include "psympriv.h"
59 #include <sys/stat.h>
60 #include "completer.h"
61 #include "common/vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "common/filestuff.h"
72 #include "build-id.h"
73 #include "namespace.h"
74 #include "common/gdb_unlinker.h"
75 #include "common/function-view.h"
76 #include "common/gdb_optional.h"
77 #include "common/underlying.h"
78 #include "common/byte-vector.h"
79 #include "common/hash_enum.h"
80 #include "filename-seen-cache.h"
81 #include "producer.h"
82 #include <fcntl.h>
83 #include <sys/types.h>
84 #include <algorithm>
85 #include <unordered_set>
86 #include <unordered_map>
87 #include "common/selftest.h"
88 #include <cmath>
89 #include <set>
90 #include <forward_list>
91 #include "rust-lang.h"
92 #include "common/pathstuff.h"
93
94 /* When == 1, print basic high level tracing messages.
95 When > 1, be more verbose.
96 This is in contrast to the low level DIE reading of dwarf_die_debug. */
97 static unsigned int dwarf_read_debug = 0;
98
99 /* When non-zero, dump DIEs after they are read in. */
100 static unsigned int dwarf_die_debug = 0;
101
102 /* When non-zero, dump line number entries as they are read in. */
103 static unsigned int dwarf_line_debug = 0;
104
105 /* When non-zero, cross-check physname against demangler. */
106 static int check_physname = 0;
107
108 /* When non-zero, do not reject deprecated .gdb_index sections. */
109 static int use_deprecated_index_sections = 0;
110
111 static const struct objfile_key<dwarf2_per_objfile> dwarf2_objfile_data_key;
112
113 /* The "aclass" indices for various kinds of computed DWARF symbols. */
114
115 static int dwarf2_locexpr_index;
116 static int dwarf2_loclist_index;
117 static int dwarf2_locexpr_block_index;
118 static int dwarf2_loclist_block_index;
119
120 /* An index into a (C++) symbol name component in a symbol name as
121 recorded in the mapped_index's symbol table. For each C++ symbol
122 in the symbol table, we record one entry for the start of each
123 component in the symbol in a table of name components, and then
124 sort the table, in order to be able to binary search symbol names,
125 ignoring leading namespaces, both completion and regular look up.
126 For example, for symbol "A::B::C", we'll have an entry that points
127 to "A::B::C", another that points to "B::C", and another for "C".
128 Note that function symbols in GDB index have no parameter
129 information, just the function/method names. You can convert a
130 name_component to a "const char *" using the
131 'mapped_index::symbol_name_at(offset_type)' method. */
132
133 struct name_component
134 {
135 /* Offset in the symbol name where the component starts. Stored as
136 a (32-bit) offset instead of a pointer to save memory and improve
137 locality on 64-bit architectures. */
138 offset_type name_offset;
139
140 /* The symbol's index in the symbol and constant pool tables of a
141 mapped_index. */
142 offset_type idx;
143 };
144
145 /* Base class containing bits shared by both .gdb_index and
146 .debug_name indexes. */
147
148 struct mapped_index_base
149 {
150 mapped_index_base () = default;
151 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
152
153 /* The name_component table (a sorted vector). See name_component's
154 description above. */
155 std::vector<name_component> name_components;
156
157 /* How NAME_COMPONENTS is sorted. */
158 enum case_sensitivity name_components_casing;
159
160 /* Return the number of names in the symbol table. */
161 virtual size_t symbol_name_count () const = 0;
162
163 /* Get the name of the symbol at IDX in the symbol table. */
164 virtual const char *symbol_name_at (offset_type idx) const = 0;
165
166 /* Return whether the name at IDX in the symbol table should be
167 ignored. */
168 virtual bool symbol_name_slot_invalid (offset_type idx) const
169 {
170 return false;
171 }
172
173 /* Build the symbol name component sorted vector, if we haven't
174 yet. */
175 void build_name_components ();
176
177 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
178 possible matches for LN_NO_PARAMS in the name component
179 vector. */
180 std::pair<std::vector<name_component>::const_iterator,
181 std::vector<name_component>::const_iterator>
182 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
183
184 /* Prevent deleting/destroying via a base class pointer. */
185 protected:
186 ~mapped_index_base() = default;
187 };
188
189 /* A description of the mapped index. The file format is described in
190 a comment by the code that writes the index. */
191 struct mapped_index final : public mapped_index_base
192 {
193 /* A slot/bucket in the symbol table hash. */
194 struct symbol_table_slot
195 {
196 const offset_type name;
197 const offset_type vec;
198 };
199
200 /* Index data format version. */
201 int version = 0;
202
203 /* The address table data. */
204 gdb::array_view<const gdb_byte> address_table;
205
206 /* The symbol table, implemented as a hash table. */
207 gdb::array_view<symbol_table_slot> symbol_table;
208
209 /* A pointer to the constant pool. */
210 const char *constant_pool = nullptr;
211
212 bool symbol_name_slot_invalid (offset_type idx) const override
213 {
214 const auto &bucket = this->symbol_table[idx];
215 return bucket.name == 0 && bucket.vec;
216 }
217
218 /* Convenience method to get at the name of the symbol at IDX in the
219 symbol table. */
220 const char *symbol_name_at (offset_type idx) const override
221 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
222
223 size_t symbol_name_count () const override
224 { return this->symbol_table.size (); }
225 };
226
227 /* A description of the mapped .debug_names.
228 Uninitialized map has CU_COUNT 0. */
229 struct mapped_debug_names final : public mapped_index_base
230 {
231 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
232 : dwarf2_per_objfile (dwarf2_per_objfile_)
233 {}
234
235 struct dwarf2_per_objfile *dwarf2_per_objfile;
236 bfd_endian dwarf5_byte_order;
237 bool dwarf5_is_dwarf64;
238 bool augmentation_is_gdb;
239 uint8_t offset_size;
240 uint32_t cu_count = 0;
241 uint32_t tu_count, bucket_count, name_count;
242 const gdb_byte *cu_table_reordered, *tu_table_reordered;
243 const uint32_t *bucket_table_reordered, *hash_table_reordered;
244 const gdb_byte *name_table_string_offs_reordered;
245 const gdb_byte *name_table_entry_offs_reordered;
246 const gdb_byte *entry_pool;
247
248 struct index_val
249 {
250 ULONGEST dwarf_tag;
251 struct attr
252 {
253 /* Attribute name DW_IDX_*. */
254 ULONGEST dw_idx;
255
256 /* Attribute form DW_FORM_*. */
257 ULONGEST form;
258
259 /* Value if FORM is DW_FORM_implicit_const. */
260 LONGEST implicit_const;
261 };
262 std::vector<attr> attr_vec;
263 };
264
265 std::unordered_map<ULONGEST, index_val> abbrev_map;
266
267 const char *namei_to_name (uint32_t namei) const;
268
269 /* Implementation of the mapped_index_base virtual interface, for
270 the name_components cache. */
271
272 const char *symbol_name_at (offset_type idx) const override
273 { return namei_to_name (idx); }
274
275 size_t symbol_name_count () const override
276 { return this->name_count; }
277 };
278
279 /* See dwarf2read.h. */
280
281 dwarf2_per_objfile *
282 get_dwarf2_per_objfile (struct objfile *objfile)
283 {
284 return dwarf2_objfile_data_key.get (objfile);
285 }
286
287 /* Default names of the debugging sections. */
288
289 /* Note that if the debugging section has been compressed, it might
290 have a name like .zdebug_info. */
291
292 static const struct dwarf2_debug_sections dwarf2_elf_names =
293 {
294 { ".debug_info", ".zdebug_info" },
295 { ".debug_abbrev", ".zdebug_abbrev" },
296 { ".debug_line", ".zdebug_line" },
297 { ".debug_loc", ".zdebug_loc" },
298 { ".debug_loclists", ".zdebug_loclists" },
299 { ".debug_macinfo", ".zdebug_macinfo" },
300 { ".debug_macro", ".zdebug_macro" },
301 { ".debug_str", ".zdebug_str" },
302 { ".debug_line_str", ".zdebug_line_str" },
303 { ".debug_ranges", ".zdebug_ranges" },
304 { ".debug_rnglists", ".zdebug_rnglists" },
305 { ".debug_types", ".zdebug_types" },
306 { ".debug_addr", ".zdebug_addr" },
307 { ".debug_frame", ".zdebug_frame" },
308 { ".eh_frame", NULL },
309 { ".gdb_index", ".zgdb_index" },
310 { ".debug_names", ".zdebug_names" },
311 { ".debug_aranges", ".zdebug_aranges" },
312 23
313 };
314
315 /* List of DWO/DWP sections. */
316
317 static const struct dwop_section_names
318 {
319 struct dwarf2_section_names abbrev_dwo;
320 struct dwarf2_section_names info_dwo;
321 struct dwarf2_section_names line_dwo;
322 struct dwarf2_section_names loc_dwo;
323 struct dwarf2_section_names loclists_dwo;
324 struct dwarf2_section_names macinfo_dwo;
325 struct dwarf2_section_names macro_dwo;
326 struct dwarf2_section_names str_dwo;
327 struct dwarf2_section_names str_offsets_dwo;
328 struct dwarf2_section_names types_dwo;
329 struct dwarf2_section_names cu_index;
330 struct dwarf2_section_names tu_index;
331 }
332 dwop_section_names =
333 {
334 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
335 { ".debug_info.dwo", ".zdebug_info.dwo" },
336 { ".debug_line.dwo", ".zdebug_line.dwo" },
337 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
338 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
339 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
340 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
341 { ".debug_str.dwo", ".zdebug_str.dwo" },
342 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
343 { ".debug_types.dwo", ".zdebug_types.dwo" },
344 { ".debug_cu_index", ".zdebug_cu_index" },
345 { ".debug_tu_index", ".zdebug_tu_index" },
346 };
347
348 /* local data types */
349
350 /* The data in a compilation unit header, after target2host
351 translation, looks like this. */
352 struct comp_unit_head
353 {
354 unsigned int length;
355 short version;
356 unsigned char addr_size;
357 unsigned char signed_addr_p;
358 sect_offset abbrev_sect_off;
359
360 /* Size of file offsets; either 4 or 8. */
361 unsigned int offset_size;
362
363 /* Size of the length field; either 4 or 12. */
364 unsigned int initial_length_size;
365
366 enum dwarf_unit_type unit_type;
367
368 /* Offset to the first byte of this compilation unit header in the
369 .debug_info section, for resolving relative reference dies. */
370 sect_offset sect_off;
371
372 /* Offset to first die in this cu from the start of the cu.
373 This will be the first byte following the compilation unit header. */
374 cu_offset first_die_cu_offset;
375
376 /* 64-bit signature of this type unit - it is valid only for
377 UNIT_TYPE DW_UT_type. */
378 ULONGEST signature;
379
380 /* For types, offset in the type's DIE of the type defined by this TU. */
381 cu_offset type_cu_offset_in_tu;
382 };
383
384 /* Type used for delaying computation of method physnames.
385 See comments for compute_delayed_physnames. */
386 struct delayed_method_info
387 {
388 /* The type to which the method is attached, i.e., its parent class. */
389 struct type *type;
390
391 /* The index of the method in the type's function fieldlists. */
392 int fnfield_index;
393
394 /* The index of the method in the fieldlist. */
395 int index;
396
397 /* The name of the DIE. */
398 const char *name;
399
400 /* The DIE associated with this method. */
401 struct die_info *die;
402 };
403
404 /* Internal state when decoding a particular compilation unit. */
405 struct dwarf2_cu
406 {
407 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
408 ~dwarf2_cu ();
409
410 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
411
412 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
413 Create the set of symtabs used by this TU, or if this TU is sharing
414 symtabs with another TU and the symtabs have already been created
415 then restore those symtabs in the line header.
416 We don't need the pc/line-number mapping for type units. */
417 void setup_type_unit_groups (struct die_info *die);
418
419 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
420 buildsym_compunit constructor. */
421 struct compunit_symtab *start_symtab (const char *name,
422 const char *comp_dir,
423 CORE_ADDR low_pc);
424
425 /* Reset the builder. */
426 void reset_builder () { m_builder.reset (); }
427
428 /* The header of the compilation unit. */
429 struct comp_unit_head header {};
430
431 /* Base address of this compilation unit. */
432 CORE_ADDR base_address = 0;
433
434 /* Non-zero if base_address has been set. */
435 int base_known = 0;
436
437 /* The language we are debugging. */
438 enum language language = language_unknown;
439 const struct language_defn *language_defn = nullptr;
440
441 const char *producer = nullptr;
442
443 private:
444 /* The symtab builder for this CU. This is only non-NULL when full
445 symbols are being read. */
446 std::unique_ptr<buildsym_compunit> m_builder;
447
448 public:
449 /* The generic symbol table building routines have separate lists for
450 file scope symbols and all all other scopes (local scopes). So
451 we need to select the right one to pass to add_symbol_to_list().
452 We do it by keeping a pointer to the correct list in list_in_scope.
453
454 FIXME: The original dwarf code just treated the file scope as the
455 first local scope, and all other local scopes as nested local
456 scopes, and worked fine. Check to see if we really need to
457 distinguish these in buildsym.c. */
458 struct pending **list_in_scope = nullptr;
459
460 /* Hash table holding all the loaded partial DIEs
461 with partial_die->offset.SECT_OFF as hash. */
462 htab_t partial_dies = nullptr;
463
464 /* Storage for things with the same lifetime as this read-in compilation
465 unit, including partial DIEs. */
466 auto_obstack comp_unit_obstack;
467
468 /* When multiple dwarf2_cu structures are living in memory, this field
469 chains them all together, so that they can be released efficiently.
470 We will probably also want a generation counter so that most-recently-used
471 compilation units are cached... */
472 struct dwarf2_per_cu_data *read_in_chain = nullptr;
473
474 /* Backlink to our per_cu entry. */
475 struct dwarf2_per_cu_data *per_cu;
476
477 /* How many compilation units ago was this CU last referenced? */
478 int last_used = 0;
479
480 /* A hash table of DIE cu_offset for following references with
481 die_info->offset.sect_off as hash. */
482 htab_t die_hash = nullptr;
483
484 /* Full DIEs if read in. */
485 struct die_info *dies = nullptr;
486
487 /* A set of pointers to dwarf2_per_cu_data objects for compilation
488 units referenced by this one. Only set during full symbol processing;
489 partial symbol tables do not have dependencies. */
490 htab_t dependencies = nullptr;
491
492 /* Header data from the line table, during full symbol processing. */
493 struct line_header *line_header = nullptr;
494 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
495 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
496 this is the DW_TAG_compile_unit die for this CU. We'll hold on
497 to the line header as long as this DIE is being processed. See
498 process_die_scope. */
499 die_info *line_header_die_owner = nullptr;
500
501 /* A list of methods which need to have physnames computed
502 after all type information has been read. */
503 std::vector<delayed_method_info> method_list;
504
505 /* To be copied to symtab->call_site_htab. */
506 htab_t call_site_htab = nullptr;
507
508 /* Non-NULL if this CU came from a DWO file.
509 There is an invariant here that is important to remember:
510 Except for attributes copied from the top level DIE in the "main"
511 (or "stub") file in preparation for reading the DWO file
512 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
513 Either there isn't a DWO file (in which case this is NULL and the point
514 is moot), or there is and either we're not going to read it (in which
515 case this is NULL) or there is and we are reading it (in which case this
516 is non-NULL). */
517 struct dwo_unit *dwo_unit = nullptr;
518
519 /* The DW_AT_addr_base attribute if present, zero otherwise
520 (zero is a valid value though).
521 Note this value comes from the Fission stub CU/TU's DIE. */
522 ULONGEST addr_base = 0;
523
524 /* The DW_AT_ranges_base attribute if present, zero otherwise
525 (zero is a valid value though).
526 Note this value comes from the Fission stub CU/TU's DIE.
527 Also note that the value is zero in the non-DWO case so this value can
528 be used without needing to know whether DWO files are in use or not.
529 N.B. This does not apply to DW_AT_ranges appearing in
530 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
531 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
532 DW_AT_ranges_base *would* have to be applied, and we'd have to care
533 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
534 ULONGEST ranges_base = 0;
535
536 /* When reading debug info generated by older versions of rustc, we
537 have to rewrite some union types to be struct types with a
538 variant part. This rewriting must be done after the CU is fully
539 read in, because otherwise at the point of rewriting some struct
540 type might not have been fully processed. So, we keep a list of
541 all such types here and process them after expansion. */
542 std::vector<struct type *> rust_unions;
543
544 /* Mark used when releasing cached dies. */
545 bool mark : 1;
546
547 /* This CU references .debug_loc. See the symtab->locations_valid field.
548 This test is imperfect as there may exist optimized debug code not using
549 any location list and still facing inlining issues if handled as
550 unoptimized code. For a future better test see GCC PR other/32998. */
551 bool has_loclist : 1;
552
553 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
554 if all the producer_is_* fields are valid. This information is cached
555 because profiling CU expansion showed excessive time spent in
556 producer_is_gxx_lt_4_6. */
557 bool checked_producer : 1;
558 bool producer_is_gxx_lt_4_6 : 1;
559 bool producer_is_gcc_lt_4_3 : 1;
560 bool producer_is_icc : 1;
561 bool producer_is_icc_lt_14 : 1;
562 bool producer_is_codewarrior : 1;
563
564 /* When true, the file that we're processing is known to have
565 debugging info for C++ namespaces. GCC 3.3.x did not produce
566 this information, but later versions do. */
567
568 bool processing_has_namespace_info : 1;
569
570 struct partial_die_info *find_partial_die (sect_offset sect_off);
571
572 /* If this CU was inherited by another CU (via specification,
573 abstract_origin, etc), this is the ancestor CU. */
574 dwarf2_cu *ancestor;
575
576 /* Get the buildsym_compunit for this CU. */
577 buildsym_compunit *get_builder ()
578 {
579 /* If this CU has a builder associated with it, use that. */
580 if (m_builder != nullptr)
581 return m_builder.get ();
582
583 /* Otherwise, search ancestors for a valid builder. */
584 if (ancestor != nullptr)
585 return ancestor->get_builder ();
586
587 return nullptr;
588 }
589 };
590
591 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
592 This includes type_unit_group and quick_file_names. */
593
594 struct stmt_list_hash
595 {
596 /* The DWO unit this table is from or NULL if there is none. */
597 struct dwo_unit *dwo_unit;
598
599 /* Offset in .debug_line or .debug_line.dwo. */
600 sect_offset line_sect_off;
601 };
602
603 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
604 an object of this type. */
605
606 struct type_unit_group
607 {
608 /* dwarf2read.c's main "handle" on a TU symtab.
609 To simplify things we create an artificial CU that "includes" all the
610 type units using this stmt_list so that the rest of the code still has
611 a "per_cu" handle on the symtab.
612 This PER_CU is recognized by having no section. */
613 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
614 struct dwarf2_per_cu_data per_cu;
615
616 /* The TUs that share this DW_AT_stmt_list entry.
617 This is added to while parsing type units to build partial symtabs,
618 and is deleted afterwards and not used again. */
619 VEC (sig_type_ptr) *tus;
620
621 /* The compunit symtab.
622 Type units in a group needn't all be defined in the same source file,
623 so we create an essentially anonymous symtab as the compunit symtab. */
624 struct compunit_symtab *compunit_symtab;
625
626 /* The data used to construct the hash key. */
627 struct stmt_list_hash hash;
628
629 /* The number of symtabs from the line header.
630 The value here must match line_header.num_file_names. */
631 unsigned int num_symtabs;
632
633 /* The symbol tables for this TU (obtained from the files listed in
634 DW_AT_stmt_list).
635 WARNING: The order of entries here must match the order of entries
636 in the line header. After the first TU using this type_unit_group, the
637 line header for the subsequent TUs is recreated from this. This is done
638 because we need to use the same symtabs for each TU using the same
639 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
640 there's no guarantee the line header doesn't have duplicate entries. */
641 struct symtab **symtabs;
642 };
643
644 /* These sections are what may appear in a (real or virtual) DWO file. */
645
646 struct dwo_sections
647 {
648 struct dwarf2_section_info abbrev;
649 struct dwarf2_section_info line;
650 struct dwarf2_section_info loc;
651 struct dwarf2_section_info loclists;
652 struct dwarf2_section_info macinfo;
653 struct dwarf2_section_info macro;
654 struct dwarf2_section_info str;
655 struct dwarf2_section_info str_offsets;
656 /* In the case of a virtual DWO file, these two are unused. */
657 struct dwarf2_section_info info;
658 VEC (dwarf2_section_info_def) *types;
659 };
660
661 /* CUs/TUs in DWP/DWO files. */
662
663 struct dwo_unit
664 {
665 /* Backlink to the containing struct dwo_file. */
666 struct dwo_file *dwo_file;
667
668 /* The "id" that distinguishes this CU/TU.
669 .debug_info calls this "dwo_id", .debug_types calls this "signature".
670 Since signatures came first, we stick with it for consistency. */
671 ULONGEST signature;
672
673 /* The section this CU/TU lives in, in the DWO file. */
674 struct dwarf2_section_info *section;
675
676 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
677 sect_offset sect_off;
678 unsigned int length;
679
680 /* For types, offset in the type's DIE of the type defined by this TU. */
681 cu_offset type_offset_in_tu;
682 };
683
684 /* include/dwarf2.h defines the DWP section codes.
685 It defines a max value but it doesn't define a min value, which we
686 use for error checking, so provide one. */
687
688 enum dwp_v2_section_ids
689 {
690 DW_SECT_MIN = 1
691 };
692
693 /* Data for one DWO file.
694
695 This includes virtual DWO files (a virtual DWO file is a DWO file as it
696 appears in a DWP file). DWP files don't really have DWO files per se -
697 comdat folding of types "loses" the DWO file they came from, and from
698 a high level view DWP files appear to contain a mass of random types.
699 However, to maintain consistency with the non-DWP case we pretend DWP
700 files contain virtual DWO files, and we assign each TU with one virtual
701 DWO file (generally based on the line and abbrev section offsets -
702 a heuristic that seems to work in practice). */
703
704 struct dwo_file
705 {
706 /* The DW_AT_GNU_dwo_name attribute.
707 For virtual DWO files the name is constructed from the section offsets
708 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
709 from related CU+TUs. */
710 const char *dwo_name;
711
712 /* The DW_AT_comp_dir attribute. */
713 const char *comp_dir;
714
715 /* The bfd, when the file is open. Otherwise this is NULL.
716 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
717 bfd *dbfd;
718
719 /* The sections that make up this DWO file.
720 Remember that for virtual DWO files in DWP V2, these are virtual
721 sections (for lack of a better name). */
722 struct dwo_sections sections;
723
724 /* The CUs in the file.
725 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
726 an extension to handle LLVM's Link Time Optimization output (where
727 multiple source files may be compiled into a single object/dwo pair). */
728 htab_t cus;
729
730 /* Table of TUs in the file.
731 Each element is a struct dwo_unit. */
732 htab_t tus;
733 };
734
735 /* These sections are what may appear in a DWP file. */
736
737 struct dwp_sections
738 {
739 /* These are used by both DWP version 1 and 2. */
740 struct dwarf2_section_info str;
741 struct dwarf2_section_info cu_index;
742 struct dwarf2_section_info tu_index;
743
744 /* These are only used by DWP version 2 files.
745 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
746 sections are referenced by section number, and are not recorded here.
747 In DWP version 2 there is at most one copy of all these sections, each
748 section being (effectively) comprised of the concatenation of all of the
749 individual sections that exist in the version 1 format.
750 To keep the code simple we treat each of these concatenated pieces as a
751 section itself (a virtual section?). */
752 struct dwarf2_section_info abbrev;
753 struct dwarf2_section_info info;
754 struct dwarf2_section_info line;
755 struct dwarf2_section_info loc;
756 struct dwarf2_section_info macinfo;
757 struct dwarf2_section_info macro;
758 struct dwarf2_section_info str_offsets;
759 struct dwarf2_section_info types;
760 };
761
762 /* These sections are what may appear in a virtual DWO file in DWP version 1.
763 A virtual DWO file is a DWO file as it appears in a DWP file. */
764
765 struct virtual_v1_dwo_sections
766 {
767 struct dwarf2_section_info abbrev;
768 struct dwarf2_section_info line;
769 struct dwarf2_section_info loc;
770 struct dwarf2_section_info macinfo;
771 struct dwarf2_section_info macro;
772 struct dwarf2_section_info str_offsets;
773 /* Each DWP hash table entry records one CU or one TU.
774 That is recorded here, and copied to dwo_unit.section. */
775 struct dwarf2_section_info info_or_types;
776 };
777
778 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
779 In version 2, the sections of the DWO files are concatenated together
780 and stored in one section of that name. Thus each ELF section contains
781 several "virtual" sections. */
782
783 struct virtual_v2_dwo_sections
784 {
785 bfd_size_type abbrev_offset;
786 bfd_size_type abbrev_size;
787
788 bfd_size_type line_offset;
789 bfd_size_type line_size;
790
791 bfd_size_type loc_offset;
792 bfd_size_type loc_size;
793
794 bfd_size_type macinfo_offset;
795 bfd_size_type macinfo_size;
796
797 bfd_size_type macro_offset;
798 bfd_size_type macro_size;
799
800 bfd_size_type str_offsets_offset;
801 bfd_size_type str_offsets_size;
802
803 /* Each DWP hash table entry records one CU or one TU.
804 That is recorded here, and copied to dwo_unit.section. */
805 bfd_size_type info_or_types_offset;
806 bfd_size_type info_or_types_size;
807 };
808
809 /* Contents of DWP hash tables. */
810
811 struct dwp_hash_table
812 {
813 uint32_t version, nr_columns;
814 uint32_t nr_units, nr_slots;
815 const gdb_byte *hash_table, *unit_table;
816 union
817 {
818 struct
819 {
820 const gdb_byte *indices;
821 } v1;
822 struct
823 {
824 /* This is indexed by column number and gives the id of the section
825 in that column. */
826 #define MAX_NR_V2_DWO_SECTIONS \
827 (1 /* .debug_info or .debug_types */ \
828 + 1 /* .debug_abbrev */ \
829 + 1 /* .debug_line */ \
830 + 1 /* .debug_loc */ \
831 + 1 /* .debug_str_offsets */ \
832 + 1 /* .debug_macro or .debug_macinfo */)
833 int section_ids[MAX_NR_V2_DWO_SECTIONS];
834 const gdb_byte *offsets;
835 const gdb_byte *sizes;
836 } v2;
837 } section_pool;
838 };
839
840 /* Data for one DWP file. */
841
842 struct dwp_file
843 {
844 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
845 : name (name_),
846 dbfd (std::move (abfd))
847 {
848 }
849
850 /* Name of the file. */
851 const char *name;
852
853 /* File format version. */
854 int version = 0;
855
856 /* The bfd. */
857 gdb_bfd_ref_ptr dbfd;
858
859 /* Section info for this file. */
860 struct dwp_sections sections {};
861
862 /* Table of CUs in the file. */
863 const struct dwp_hash_table *cus = nullptr;
864
865 /* Table of TUs in the file. */
866 const struct dwp_hash_table *tus = nullptr;
867
868 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
869 htab_t loaded_cus {};
870 htab_t loaded_tus {};
871
872 /* Table to map ELF section numbers to their sections.
873 This is only needed for the DWP V1 file format. */
874 unsigned int num_sections = 0;
875 asection **elf_sections = nullptr;
876 };
877
878 /* This represents a '.dwz' file. */
879
880 struct dwz_file
881 {
882 dwz_file (gdb_bfd_ref_ptr &&bfd)
883 : dwz_bfd (std::move (bfd))
884 {
885 }
886
887 /* A dwz file can only contain a few sections. */
888 struct dwarf2_section_info abbrev {};
889 struct dwarf2_section_info info {};
890 struct dwarf2_section_info str {};
891 struct dwarf2_section_info line {};
892 struct dwarf2_section_info macro {};
893 struct dwarf2_section_info gdb_index {};
894 struct dwarf2_section_info debug_names {};
895
896 /* The dwz's BFD. */
897 gdb_bfd_ref_ptr dwz_bfd;
898
899 /* If we loaded the index from an external file, this contains the
900 resources associated to the open file, memory mapping, etc. */
901 std::unique_ptr<index_cache_resource> index_cache_res;
902 };
903
904 /* Struct used to pass misc. parameters to read_die_and_children, et
905 al. which are used for both .debug_info and .debug_types dies.
906 All parameters here are unchanging for the life of the call. This
907 struct exists to abstract away the constant parameters of die reading. */
908
909 struct die_reader_specs
910 {
911 /* The bfd of die_section. */
912 bfd* abfd;
913
914 /* The CU of the DIE we are parsing. */
915 struct dwarf2_cu *cu;
916
917 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
918 struct dwo_file *dwo_file;
919
920 /* The section the die comes from.
921 This is either .debug_info or .debug_types, or the .dwo variants. */
922 struct dwarf2_section_info *die_section;
923
924 /* die_section->buffer. */
925 const gdb_byte *buffer;
926
927 /* The end of the buffer. */
928 const gdb_byte *buffer_end;
929
930 /* The value of the DW_AT_comp_dir attribute. */
931 const char *comp_dir;
932
933 /* The abbreviation table to use when reading the DIEs. */
934 struct abbrev_table *abbrev_table;
935 };
936
937 /* Type of function passed to init_cutu_and_read_dies, et.al. */
938 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
939 const gdb_byte *info_ptr,
940 struct die_info *comp_unit_die,
941 int has_children,
942 void *data);
943
944 /* A 1-based directory index. This is a strong typedef to prevent
945 accidentally using a directory index as a 0-based index into an
946 array/vector. */
947 enum class dir_index : unsigned int {};
948
949 /* Likewise, a 1-based file name index. */
950 enum class file_name_index : unsigned int {};
951
952 struct file_entry
953 {
954 file_entry () = default;
955
956 file_entry (const char *name_, dir_index d_index_,
957 unsigned int mod_time_, unsigned int length_)
958 : name (name_),
959 d_index (d_index_),
960 mod_time (mod_time_),
961 length (length_)
962 {}
963
964 /* Return the include directory at D_INDEX stored in LH. Returns
965 NULL if D_INDEX is out of bounds. */
966 const char *include_dir (const line_header *lh) const;
967
968 /* The file name. Note this is an observing pointer. The memory is
969 owned by debug_line_buffer. */
970 const char *name {};
971
972 /* The directory index (1-based). */
973 dir_index d_index {};
974
975 unsigned int mod_time {};
976
977 unsigned int length {};
978
979 /* True if referenced by the Line Number Program. */
980 bool included_p {};
981
982 /* The associated symbol table, if any. */
983 struct symtab *symtab {};
984 };
985
986 /* The line number information for a compilation unit (found in the
987 .debug_line section) begins with a "statement program header",
988 which contains the following information. */
989 struct line_header
990 {
991 line_header ()
992 : offset_in_dwz {}
993 {}
994
995 /* Add an entry to the include directory table. */
996 void add_include_dir (const char *include_dir);
997
998 /* Add an entry to the file name table. */
999 void add_file_name (const char *name, dir_index d_index,
1000 unsigned int mod_time, unsigned int length);
1001
1002 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
1003 is out of bounds. */
1004 const char *include_dir_at (dir_index index) const
1005 {
1006 /* Convert directory index number (1-based) to vector index
1007 (0-based). */
1008 size_t vec_index = to_underlying (index) - 1;
1009
1010 if (vec_index >= include_dirs.size ())
1011 return NULL;
1012 return include_dirs[vec_index];
1013 }
1014
1015 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
1016 is out of bounds. */
1017 file_entry *file_name_at (file_name_index index)
1018 {
1019 /* Convert file name index number (1-based) to vector index
1020 (0-based). */
1021 size_t vec_index = to_underlying (index) - 1;
1022
1023 if (vec_index >= file_names.size ())
1024 return NULL;
1025 return &file_names[vec_index];
1026 }
1027
1028 /* Offset of line number information in .debug_line section. */
1029 sect_offset sect_off {};
1030
1031 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1032 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1033
1034 unsigned int total_length {};
1035 unsigned short version {};
1036 unsigned int header_length {};
1037 unsigned char minimum_instruction_length {};
1038 unsigned char maximum_ops_per_instruction {};
1039 unsigned char default_is_stmt {};
1040 int line_base {};
1041 unsigned char line_range {};
1042 unsigned char opcode_base {};
1043
1044 /* standard_opcode_lengths[i] is the number of operands for the
1045 standard opcode whose value is i. This means that
1046 standard_opcode_lengths[0] is unused, and the last meaningful
1047 element is standard_opcode_lengths[opcode_base - 1]. */
1048 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1049
1050 /* The include_directories table. Note these are observing
1051 pointers. The memory is owned by debug_line_buffer. */
1052 std::vector<const char *> include_dirs;
1053
1054 /* The file_names table. */
1055 std::vector<file_entry> file_names;
1056
1057 /* The start and end of the statement program following this
1058 header. These point into dwarf2_per_objfile->line_buffer. */
1059 const gdb_byte *statement_program_start {}, *statement_program_end {};
1060 };
1061
1062 typedef std::unique_ptr<line_header> line_header_up;
1063
1064 const char *
1065 file_entry::include_dir (const line_header *lh) const
1066 {
1067 return lh->include_dir_at (d_index);
1068 }
1069
1070 /* When we construct a partial symbol table entry we only
1071 need this much information. */
1072 struct partial_die_info : public allocate_on_obstack
1073 {
1074 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1075
1076 /* Disable assign but still keep copy ctor, which is needed
1077 load_partial_dies. */
1078 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1079
1080 /* Adjust the partial die before generating a symbol for it. This
1081 function may set the is_external flag or change the DIE's
1082 name. */
1083 void fixup (struct dwarf2_cu *cu);
1084
1085 /* Read a minimal amount of information into the minimal die
1086 structure. */
1087 const gdb_byte *read (const struct die_reader_specs *reader,
1088 const struct abbrev_info &abbrev,
1089 const gdb_byte *info_ptr);
1090
1091 /* Offset of this DIE. */
1092 const sect_offset sect_off;
1093
1094 /* DWARF-2 tag for this DIE. */
1095 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1096
1097 /* Assorted flags describing the data found in this DIE. */
1098 const unsigned int has_children : 1;
1099
1100 unsigned int is_external : 1;
1101 unsigned int is_declaration : 1;
1102 unsigned int has_type : 1;
1103 unsigned int has_specification : 1;
1104 unsigned int has_pc_info : 1;
1105 unsigned int may_be_inlined : 1;
1106
1107 /* This DIE has been marked DW_AT_main_subprogram. */
1108 unsigned int main_subprogram : 1;
1109
1110 /* Flag set if the SCOPE field of this structure has been
1111 computed. */
1112 unsigned int scope_set : 1;
1113
1114 /* Flag set if the DIE has a byte_size attribute. */
1115 unsigned int has_byte_size : 1;
1116
1117 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1118 unsigned int has_const_value : 1;
1119
1120 /* Flag set if any of the DIE's children are template arguments. */
1121 unsigned int has_template_arguments : 1;
1122
1123 /* Flag set if fixup has been called on this die. */
1124 unsigned int fixup_called : 1;
1125
1126 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1127 unsigned int is_dwz : 1;
1128
1129 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1130 unsigned int spec_is_dwz : 1;
1131
1132 /* The name of this DIE. Normally the value of DW_AT_name, but
1133 sometimes a default name for unnamed DIEs. */
1134 const char *name = nullptr;
1135
1136 /* The linkage name, if present. */
1137 const char *linkage_name = nullptr;
1138
1139 /* The scope to prepend to our children. This is generally
1140 allocated on the comp_unit_obstack, so will disappear
1141 when this compilation unit leaves the cache. */
1142 const char *scope = nullptr;
1143
1144 /* Some data associated with the partial DIE. The tag determines
1145 which field is live. */
1146 union
1147 {
1148 /* The location description associated with this DIE, if any. */
1149 struct dwarf_block *locdesc;
1150 /* The offset of an import, for DW_TAG_imported_unit. */
1151 sect_offset sect_off;
1152 } d {};
1153
1154 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1155 CORE_ADDR lowpc = 0;
1156 CORE_ADDR highpc = 0;
1157
1158 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1159 DW_AT_sibling, if any. */
1160 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1161 could return DW_AT_sibling values to its caller load_partial_dies. */
1162 const gdb_byte *sibling = nullptr;
1163
1164 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1165 DW_AT_specification (or DW_AT_abstract_origin or
1166 DW_AT_extension). */
1167 sect_offset spec_offset {};
1168
1169 /* Pointers to this DIE's parent, first child, and next sibling,
1170 if any. */
1171 struct partial_die_info *die_parent = nullptr;
1172 struct partial_die_info *die_child = nullptr;
1173 struct partial_die_info *die_sibling = nullptr;
1174
1175 friend struct partial_die_info *
1176 dwarf2_cu::find_partial_die (sect_offset sect_off);
1177
1178 private:
1179 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1180 partial_die_info (sect_offset sect_off)
1181 : partial_die_info (sect_off, DW_TAG_padding, 0)
1182 {
1183 }
1184
1185 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1186 int has_children_)
1187 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1188 {
1189 is_external = 0;
1190 is_declaration = 0;
1191 has_type = 0;
1192 has_specification = 0;
1193 has_pc_info = 0;
1194 may_be_inlined = 0;
1195 main_subprogram = 0;
1196 scope_set = 0;
1197 has_byte_size = 0;
1198 has_const_value = 0;
1199 has_template_arguments = 0;
1200 fixup_called = 0;
1201 is_dwz = 0;
1202 spec_is_dwz = 0;
1203 }
1204 };
1205
1206 /* This data structure holds the information of an abbrev. */
1207 struct abbrev_info
1208 {
1209 unsigned int number; /* number identifying abbrev */
1210 enum dwarf_tag tag; /* dwarf tag */
1211 unsigned short has_children; /* boolean */
1212 unsigned short num_attrs; /* number of attributes */
1213 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1214 struct abbrev_info *next; /* next in chain */
1215 };
1216
1217 struct attr_abbrev
1218 {
1219 ENUM_BITFIELD(dwarf_attribute) name : 16;
1220 ENUM_BITFIELD(dwarf_form) form : 16;
1221
1222 /* It is valid only if FORM is DW_FORM_implicit_const. */
1223 LONGEST implicit_const;
1224 };
1225
1226 /* Size of abbrev_table.abbrev_hash_table. */
1227 #define ABBREV_HASH_SIZE 121
1228
1229 /* Top level data structure to contain an abbreviation table. */
1230
1231 struct abbrev_table
1232 {
1233 explicit abbrev_table (sect_offset off)
1234 : sect_off (off)
1235 {
1236 m_abbrevs =
1237 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1238 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1239 }
1240
1241 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1242
1243 /* Allocate space for a struct abbrev_info object in
1244 ABBREV_TABLE. */
1245 struct abbrev_info *alloc_abbrev ();
1246
1247 /* Add an abbreviation to the table. */
1248 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1249
1250 /* Look up an abbrev in the table.
1251 Returns NULL if the abbrev is not found. */
1252
1253 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1254
1255
1256 /* Where the abbrev table came from.
1257 This is used as a sanity check when the table is used. */
1258 const sect_offset sect_off;
1259
1260 /* Storage for the abbrev table. */
1261 auto_obstack abbrev_obstack;
1262
1263 private:
1264
1265 /* Hash table of abbrevs.
1266 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1267 It could be statically allocated, but the previous code didn't so we
1268 don't either. */
1269 struct abbrev_info **m_abbrevs;
1270 };
1271
1272 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1273
1274 /* Attributes have a name and a value. */
1275 struct attribute
1276 {
1277 ENUM_BITFIELD(dwarf_attribute) name : 16;
1278 ENUM_BITFIELD(dwarf_form) form : 15;
1279
1280 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1281 field should be in u.str (existing only for DW_STRING) but it is kept
1282 here for better struct attribute alignment. */
1283 unsigned int string_is_canonical : 1;
1284
1285 union
1286 {
1287 const char *str;
1288 struct dwarf_block *blk;
1289 ULONGEST unsnd;
1290 LONGEST snd;
1291 CORE_ADDR addr;
1292 ULONGEST signature;
1293 }
1294 u;
1295 };
1296
1297 /* This data structure holds a complete die structure. */
1298 struct die_info
1299 {
1300 /* DWARF-2 tag for this DIE. */
1301 ENUM_BITFIELD(dwarf_tag) tag : 16;
1302
1303 /* Number of attributes */
1304 unsigned char num_attrs;
1305
1306 /* True if we're presently building the full type name for the
1307 type derived from this DIE. */
1308 unsigned char building_fullname : 1;
1309
1310 /* True if this die is in process. PR 16581. */
1311 unsigned char in_process : 1;
1312
1313 /* Abbrev number */
1314 unsigned int abbrev;
1315
1316 /* Offset in .debug_info or .debug_types section. */
1317 sect_offset sect_off;
1318
1319 /* The dies in a compilation unit form an n-ary tree. PARENT
1320 points to this die's parent; CHILD points to the first child of
1321 this node; and all the children of a given node are chained
1322 together via their SIBLING fields. */
1323 struct die_info *child; /* Its first child, if any. */
1324 struct die_info *sibling; /* Its next sibling, if any. */
1325 struct die_info *parent; /* Its parent, if any. */
1326
1327 /* An array of attributes, with NUM_ATTRS elements. There may be
1328 zero, but it's not common and zero-sized arrays are not
1329 sufficiently portable C. */
1330 struct attribute attrs[1];
1331 };
1332
1333 /* Get at parts of an attribute structure. */
1334
1335 #define DW_STRING(attr) ((attr)->u.str)
1336 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1337 #define DW_UNSND(attr) ((attr)->u.unsnd)
1338 #define DW_BLOCK(attr) ((attr)->u.blk)
1339 #define DW_SND(attr) ((attr)->u.snd)
1340 #define DW_ADDR(attr) ((attr)->u.addr)
1341 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1342
1343 /* Blocks are a bunch of untyped bytes. */
1344 struct dwarf_block
1345 {
1346 size_t size;
1347
1348 /* Valid only if SIZE is not zero. */
1349 const gdb_byte *data;
1350 };
1351
1352 #ifndef ATTR_ALLOC_CHUNK
1353 #define ATTR_ALLOC_CHUNK 4
1354 #endif
1355
1356 /* Allocate fields for structs, unions and enums in this size. */
1357 #ifndef DW_FIELD_ALLOC_CHUNK
1358 #define DW_FIELD_ALLOC_CHUNK 4
1359 #endif
1360
1361 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1362 but this would require a corresponding change in unpack_field_as_long
1363 and friends. */
1364 static int bits_per_byte = 8;
1365
1366 /* When reading a variant or variant part, we track a bit more
1367 information about the field, and store it in an object of this
1368 type. */
1369
1370 struct variant_field
1371 {
1372 /* If we see a DW_TAG_variant, then this will be the discriminant
1373 value. */
1374 ULONGEST discriminant_value;
1375 /* If we see a DW_TAG_variant, then this will be set if this is the
1376 default branch. */
1377 bool default_branch;
1378 /* While reading a DW_TAG_variant_part, this will be set if this
1379 field is the discriminant. */
1380 bool is_discriminant;
1381 };
1382
1383 struct nextfield
1384 {
1385 int accessibility = 0;
1386 int virtuality = 0;
1387 /* Extra information to describe a variant or variant part. */
1388 struct variant_field variant {};
1389 struct field field {};
1390 };
1391
1392 struct fnfieldlist
1393 {
1394 const char *name = nullptr;
1395 std::vector<struct fn_field> fnfields;
1396 };
1397
1398 /* The routines that read and process dies for a C struct or C++ class
1399 pass lists of data member fields and lists of member function fields
1400 in an instance of a field_info structure, as defined below. */
1401 struct field_info
1402 {
1403 /* List of data member and baseclasses fields. */
1404 std::vector<struct nextfield> fields;
1405 std::vector<struct nextfield> baseclasses;
1406
1407 /* Number of fields (including baseclasses). */
1408 int nfields = 0;
1409
1410 /* Set if the accesibility of one of the fields is not public. */
1411 int non_public_fields = 0;
1412
1413 /* Member function fieldlist array, contains name of possibly overloaded
1414 member function, number of overloaded member functions and a pointer
1415 to the head of the member function field chain. */
1416 std::vector<struct fnfieldlist> fnfieldlists;
1417
1418 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1419 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1420 std::vector<struct decl_field> typedef_field_list;
1421
1422 /* Nested types defined by this class and the number of elements in this
1423 list. */
1424 std::vector<struct decl_field> nested_types_list;
1425 };
1426
1427 /* One item on the queue of compilation units to read in full symbols
1428 for. */
1429 struct dwarf2_queue_item
1430 {
1431 struct dwarf2_per_cu_data *per_cu;
1432 enum language pretend_language;
1433 struct dwarf2_queue_item *next;
1434 };
1435
1436 /* The current queue. */
1437 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1438
1439 /* Loaded secondary compilation units are kept in memory until they
1440 have not been referenced for the processing of this many
1441 compilation units. Set this to zero to disable caching. Cache
1442 sizes of up to at least twenty will improve startup time for
1443 typical inter-CU-reference binaries, at an obvious memory cost. */
1444 static int dwarf_max_cache_age = 5;
1445 static void
1446 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1447 struct cmd_list_element *c, const char *value)
1448 {
1449 fprintf_filtered (file, _("The upper bound on the age of cached "
1450 "DWARF compilation units is %s.\n"),
1451 value);
1452 }
1453 \f
1454 /* local function prototypes */
1455
1456 static const char *get_section_name (const struct dwarf2_section_info *);
1457
1458 static const char *get_section_file_name (const struct dwarf2_section_info *);
1459
1460 static void dwarf2_find_base_address (struct die_info *die,
1461 struct dwarf2_cu *cu);
1462
1463 static struct partial_symtab *create_partial_symtab
1464 (struct dwarf2_per_cu_data *per_cu, const char *name);
1465
1466 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1467 const gdb_byte *info_ptr,
1468 struct die_info *type_unit_die,
1469 int has_children, void *data);
1470
1471 static void dwarf2_build_psymtabs_hard
1472 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1473
1474 static void scan_partial_symbols (struct partial_die_info *,
1475 CORE_ADDR *, CORE_ADDR *,
1476 int, struct dwarf2_cu *);
1477
1478 static void add_partial_symbol (struct partial_die_info *,
1479 struct dwarf2_cu *);
1480
1481 static void add_partial_namespace (struct partial_die_info *pdi,
1482 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1483 int set_addrmap, struct dwarf2_cu *cu);
1484
1485 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1486 CORE_ADDR *highpc, int set_addrmap,
1487 struct dwarf2_cu *cu);
1488
1489 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1490 struct dwarf2_cu *cu);
1491
1492 static void add_partial_subprogram (struct partial_die_info *pdi,
1493 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1494 int need_pc, struct dwarf2_cu *cu);
1495
1496 static void dwarf2_read_symtab (struct partial_symtab *,
1497 struct objfile *);
1498
1499 static void psymtab_to_symtab_1 (struct partial_symtab *);
1500
1501 static abbrev_table_up abbrev_table_read_table
1502 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1503 sect_offset);
1504
1505 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1506
1507 static struct partial_die_info *load_partial_dies
1508 (const struct die_reader_specs *, const gdb_byte *, int);
1509
1510 /* A pair of partial_die_info and compilation unit. */
1511 struct cu_partial_die_info
1512 {
1513 /* The compilation unit of the partial_die_info. */
1514 struct dwarf2_cu *cu;
1515 /* A partial_die_info. */
1516 struct partial_die_info *pdi;
1517
1518 cu_partial_die_info (struct dwarf2_cu *cu, struct partial_die_info *pdi)
1519 : cu (cu),
1520 pdi (pdi)
1521 { /* Nothhing. */ }
1522
1523 private:
1524 cu_partial_die_info () = delete;
1525 };
1526
1527 static const struct cu_partial_die_info find_partial_die (sect_offset, int,
1528 struct dwarf2_cu *);
1529
1530 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1531 struct attribute *, struct attr_abbrev *,
1532 const gdb_byte *);
1533
1534 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1535
1536 static int read_1_signed_byte (bfd *, const gdb_byte *);
1537
1538 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1539
1540 /* Read the next three bytes (little-endian order) as an unsigned integer. */
1541 static unsigned int read_3_bytes (bfd *, const gdb_byte *);
1542
1543 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1544
1545 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1546
1547 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1548 unsigned int *);
1549
1550 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1551
1552 static LONGEST read_checked_initial_length_and_offset
1553 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1554 unsigned int *, unsigned int *);
1555
1556 static LONGEST read_offset (bfd *, const gdb_byte *,
1557 const struct comp_unit_head *,
1558 unsigned int *);
1559
1560 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1561
1562 static sect_offset read_abbrev_offset
1563 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1564 struct dwarf2_section_info *, sect_offset);
1565
1566 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1567
1568 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1569
1570 static const char *read_indirect_string
1571 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1572 const struct comp_unit_head *, unsigned int *);
1573
1574 static const char *read_indirect_line_string
1575 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1576 const struct comp_unit_head *, unsigned int *);
1577
1578 static const char *read_indirect_string_at_offset
1579 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1580 LONGEST str_offset);
1581
1582 static const char *read_indirect_string_from_dwz
1583 (struct objfile *objfile, struct dwz_file *, LONGEST);
1584
1585 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1586
1587 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1588 const gdb_byte *,
1589 unsigned int *);
1590
1591 static const char *read_str_index (const struct die_reader_specs *reader,
1592 ULONGEST str_index);
1593
1594 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1595
1596 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1597 struct dwarf2_cu *);
1598
1599 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1600 unsigned int);
1601
1602 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1603 struct dwarf2_cu *cu);
1604
1605 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1606 struct dwarf2_cu *cu);
1607
1608 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1609
1610 static struct die_info *die_specification (struct die_info *die,
1611 struct dwarf2_cu **);
1612
1613 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1614 struct dwarf2_cu *cu);
1615
1616 static void dwarf_decode_lines (struct line_header *, const char *,
1617 struct dwarf2_cu *, struct partial_symtab *,
1618 CORE_ADDR, int decode_mapping);
1619
1620 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1621 const char *);
1622
1623 static struct symbol *new_symbol (struct die_info *, struct type *,
1624 struct dwarf2_cu *, struct symbol * = NULL);
1625
1626 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1627 struct dwarf2_cu *);
1628
1629 static void dwarf2_const_value_attr (const struct attribute *attr,
1630 struct type *type,
1631 const char *name,
1632 struct obstack *obstack,
1633 struct dwarf2_cu *cu, LONGEST *value,
1634 const gdb_byte **bytes,
1635 struct dwarf2_locexpr_baton **baton);
1636
1637 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1638
1639 static int need_gnat_info (struct dwarf2_cu *);
1640
1641 static struct type *die_descriptive_type (struct die_info *,
1642 struct dwarf2_cu *);
1643
1644 static void set_descriptive_type (struct type *, struct die_info *,
1645 struct dwarf2_cu *);
1646
1647 static struct type *die_containing_type (struct die_info *,
1648 struct dwarf2_cu *);
1649
1650 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1651 struct dwarf2_cu *);
1652
1653 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1654
1655 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1656
1657 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1658
1659 static char *typename_concat (struct obstack *obs, const char *prefix,
1660 const char *suffix, int physname,
1661 struct dwarf2_cu *cu);
1662
1663 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1664
1665 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1666
1667 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1668
1669 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1670
1671 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1672
1673 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1674
1675 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1676 struct dwarf2_cu *, struct partial_symtab *);
1677
1678 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1679 values. Keep the items ordered with increasing constraints compliance. */
1680 enum pc_bounds_kind
1681 {
1682 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1683 PC_BOUNDS_NOT_PRESENT,
1684
1685 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1686 were present but they do not form a valid range of PC addresses. */
1687 PC_BOUNDS_INVALID,
1688
1689 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1690 PC_BOUNDS_RANGES,
1691
1692 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1693 PC_BOUNDS_HIGH_LOW,
1694 };
1695
1696 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1697 CORE_ADDR *, CORE_ADDR *,
1698 struct dwarf2_cu *,
1699 struct partial_symtab *);
1700
1701 static void get_scope_pc_bounds (struct die_info *,
1702 CORE_ADDR *, CORE_ADDR *,
1703 struct dwarf2_cu *);
1704
1705 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1706 CORE_ADDR, struct dwarf2_cu *);
1707
1708 static void dwarf2_add_field (struct field_info *, struct die_info *,
1709 struct dwarf2_cu *);
1710
1711 static void dwarf2_attach_fields_to_type (struct field_info *,
1712 struct type *, struct dwarf2_cu *);
1713
1714 static void dwarf2_add_member_fn (struct field_info *,
1715 struct die_info *, struct type *,
1716 struct dwarf2_cu *);
1717
1718 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1719 struct type *,
1720 struct dwarf2_cu *);
1721
1722 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1723
1724 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1725
1726 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1727
1728 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1729
1730 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1731
1732 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1733
1734 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1735
1736 static struct type *read_module_type (struct die_info *die,
1737 struct dwarf2_cu *cu);
1738
1739 static const char *namespace_name (struct die_info *die,
1740 int *is_anonymous, struct dwarf2_cu *);
1741
1742 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1743
1744 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1745
1746 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1747 struct dwarf2_cu *);
1748
1749 static struct die_info *read_die_and_siblings_1
1750 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1751 struct die_info *);
1752
1753 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1754 const gdb_byte *info_ptr,
1755 const gdb_byte **new_info_ptr,
1756 struct die_info *parent);
1757
1758 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1759 struct die_info **, const gdb_byte *,
1760 int *, int);
1761
1762 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1763 struct die_info **, const gdb_byte *,
1764 int *);
1765
1766 static void process_die (struct die_info *, struct dwarf2_cu *);
1767
1768 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1769 struct obstack *);
1770
1771 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1772
1773 static const char *dwarf2_full_name (const char *name,
1774 struct die_info *die,
1775 struct dwarf2_cu *cu);
1776
1777 static const char *dwarf2_physname (const char *name, struct die_info *die,
1778 struct dwarf2_cu *cu);
1779
1780 static struct die_info *dwarf2_extension (struct die_info *die,
1781 struct dwarf2_cu **);
1782
1783 static const char *dwarf_tag_name (unsigned int);
1784
1785 static const char *dwarf_attr_name (unsigned int);
1786
1787 static const char *dwarf_form_name (unsigned int);
1788
1789 static const char *dwarf_bool_name (unsigned int);
1790
1791 static const char *dwarf_type_encoding_name (unsigned int);
1792
1793 static struct die_info *sibling_die (struct die_info *);
1794
1795 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1796
1797 static void dump_die_for_error (struct die_info *);
1798
1799 static void dump_die_1 (struct ui_file *, int level, int max_level,
1800 struct die_info *);
1801
1802 /*static*/ void dump_die (struct die_info *, int max_level);
1803
1804 static void store_in_ref_table (struct die_info *,
1805 struct dwarf2_cu *);
1806
1807 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1808
1809 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1810
1811 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1812 const struct attribute *,
1813 struct dwarf2_cu **);
1814
1815 static struct die_info *follow_die_ref (struct die_info *,
1816 const struct attribute *,
1817 struct dwarf2_cu **);
1818
1819 static struct die_info *follow_die_sig (struct die_info *,
1820 const struct attribute *,
1821 struct dwarf2_cu **);
1822
1823 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1824 struct dwarf2_cu *);
1825
1826 static struct type *get_DW_AT_signature_type (struct die_info *,
1827 const struct attribute *,
1828 struct dwarf2_cu *);
1829
1830 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1831
1832 static void read_signatured_type (struct signatured_type *);
1833
1834 static int attr_to_dynamic_prop (const struct attribute *attr,
1835 struct die_info *die, struct dwarf2_cu *cu,
1836 struct dynamic_prop *prop);
1837
1838 /* memory allocation interface */
1839
1840 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1841
1842 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1843
1844 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1845
1846 static int attr_form_is_block (const struct attribute *);
1847
1848 static int attr_form_is_section_offset (const struct attribute *);
1849
1850 static int attr_form_is_constant (const struct attribute *);
1851
1852 static int attr_form_is_ref (const struct attribute *);
1853
1854 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1855 struct dwarf2_loclist_baton *baton,
1856 const struct attribute *attr);
1857
1858 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1859 struct symbol *sym,
1860 struct dwarf2_cu *cu,
1861 int is_block);
1862
1863 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1864 const gdb_byte *info_ptr,
1865 struct abbrev_info *abbrev);
1866
1867 static hashval_t partial_die_hash (const void *item);
1868
1869 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1870
1871 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1872 (sect_offset sect_off, unsigned int offset_in_dwz,
1873 struct dwarf2_per_objfile *dwarf2_per_objfile);
1874
1875 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1876 struct die_info *comp_unit_die,
1877 enum language pretend_language);
1878
1879 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1880
1881 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1882
1883 static struct type *set_die_type (struct die_info *, struct type *,
1884 struct dwarf2_cu *);
1885
1886 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1887
1888 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1889
1890 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1891 enum language);
1892
1893 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1894 enum language);
1895
1896 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1897 enum language);
1898
1899 static void dwarf2_add_dependence (struct dwarf2_cu *,
1900 struct dwarf2_per_cu_data *);
1901
1902 static void dwarf2_mark (struct dwarf2_cu *);
1903
1904 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1905
1906 static struct type *get_die_type_at_offset (sect_offset,
1907 struct dwarf2_per_cu_data *);
1908
1909 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1910
1911 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1912 enum language pretend_language);
1913
1914 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1915
1916 /* Class, the destructor of which frees all allocated queue entries. This
1917 will only have work to do if an error was thrown while processing the
1918 dwarf. If no error was thrown then the queue entries should have all
1919 been processed, and freed, as we went along. */
1920
1921 class dwarf2_queue_guard
1922 {
1923 public:
1924 dwarf2_queue_guard () = default;
1925
1926 /* Free any entries remaining on the queue. There should only be
1927 entries left if we hit an error while processing the dwarf. */
1928 ~dwarf2_queue_guard ()
1929 {
1930 struct dwarf2_queue_item *item, *last;
1931
1932 item = dwarf2_queue;
1933 while (item)
1934 {
1935 /* Anything still marked queued is likely to be in an
1936 inconsistent state, so discard it. */
1937 if (item->per_cu->queued)
1938 {
1939 if (item->per_cu->cu != NULL)
1940 free_one_cached_comp_unit (item->per_cu);
1941 item->per_cu->queued = 0;
1942 }
1943
1944 last = item;
1945 item = item->next;
1946 xfree (last);
1947 }
1948
1949 dwarf2_queue = dwarf2_queue_tail = NULL;
1950 }
1951 };
1952
1953 /* The return type of find_file_and_directory. Note, the enclosed
1954 string pointers are only valid while this object is valid. */
1955
1956 struct file_and_directory
1957 {
1958 /* The filename. This is never NULL. */
1959 const char *name;
1960
1961 /* The compilation directory. NULL if not known. If we needed to
1962 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1963 points directly to the DW_AT_comp_dir string attribute owned by
1964 the obstack that owns the DIE. */
1965 const char *comp_dir;
1966
1967 /* If we needed to build a new string for comp_dir, this is what
1968 owns the storage. */
1969 std::string comp_dir_storage;
1970 };
1971
1972 static file_and_directory find_file_and_directory (struct die_info *die,
1973 struct dwarf2_cu *cu);
1974
1975 static char *file_full_name (int file, struct line_header *lh,
1976 const char *comp_dir);
1977
1978 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1979 enum class rcuh_kind { COMPILE, TYPE };
1980
1981 static const gdb_byte *read_and_check_comp_unit_head
1982 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1983 struct comp_unit_head *header,
1984 struct dwarf2_section_info *section,
1985 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1986 rcuh_kind section_kind);
1987
1988 static void init_cutu_and_read_dies
1989 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1990 int use_existing_cu, int keep, bool skip_partial,
1991 die_reader_func_ftype *die_reader_func, void *data);
1992
1993 static void init_cutu_and_read_dies_simple
1994 (struct dwarf2_per_cu_data *this_cu,
1995 die_reader_func_ftype *die_reader_func, void *data);
1996
1997 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1998
1999 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
2000
2001 static struct dwo_unit *lookup_dwo_unit_in_dwp
2002 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2003 struct dwp_file *dwp_file, const char *comp_dir,
2004 ULONGEST signature, int is_debug_types);
2005
2006 static struct dwp_file *get_dwp_file
2007 (struct dwarf2_per_objfile *dwarf2_per_objfile);
2008
2009 static struct dwo_unit *lookup_dwo_comp_unit
2010 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
2011
2012 static struct dwo_unit *lookup_dwo_type_unit
2013 (struct signatured_type *, const char *, const char *);
2014
2015 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2016
2017 static void free_dwo_file (struct dwo_file *);
2018
2019 /* A unique_ptr helper to free a dwo_file. */
2020
2021 struct dwo_file_deleter
2022 {
2023 void operator() (struct dwo_file *df) const
2024 {
2025 free_dwo_file (df);
2026 }
2027 };
2028
2029 /* A unique pointer to a dwo_file. */
2030
2031 typedef std::unique_ptr<struct dwo_file, dwo_file_deleter> dwo_file_up;
2032
2033 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
2034
2035 static void check_producer (struct dwarf2_cu *cu);
2036
2037 static void free_line_header_voidp (void *arg);
2038 \f
2039 /* Various complaints about symbol reading that don't abort the process. */
2040
2041 static void
2042 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2043 {
2044 complaint (_("statement list doesn't fit in .debug_line section"));
2045 }
2046
2047 static void
2048 dwarf2_debug_line_missing_file_complaint (void)
2049 {
2050 complaint (_(".debug_line section has line data without a file"));
2051 }
2052
2053 static void
2054 dwarf2_debug_line_missing_end_sequence_complaint (void)
2055 {
2056 complaint (_(".debug_line section has line "
2057 "program sequence without an end"));
2058 }
2059
2060 static void
2061 dwarf2_complex_location_expr_complaint (void)
2062 {
2063 complaint (_("location expression too complex"));
2064 }
2065
2066 static void
2067 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2068 int arg3)
2069 {
2070 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2071 arg1, arg2, arg3);
2072 }
2073
2074 static void
2075 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2076 {
2077 complaint (_("debug info runs off end of %s section"
2078 " [in module %s]"),
2079 get_section_name (section),
2080 get_section_file_name (section));
2081 }
2082
2083 static void
2084 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2085 {
2086 complaint (_("macro debug info contains a "
2087 "malformed macro definition:\n`%s'"),
2088 arg1);
2089 }
2090
2091 static void
2092 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2093 {
2094 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2095 arg1, arg2);
2096 }
2097
2098 /* Hash function for line_header_hash. */
2099
2100 static hashval_t
2101 line_header_hash (const struct line_header *ofs)
2102 {
2103 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2104 }
2105
2106 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2107
2108 static hashval_t
2109 line_header_hash_voidp (const void *item)
2110 {
2111 const struct line_header *ofs = (const struct line_header *) item;
2112
2113 return line_header_hash (ofs);
2114 }
2115
2116 /* Equality function for line_header_hash. */
2117
2118 static int
2119 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2120 {
2121 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2122 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2123
2124 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2125 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2126 }
2127
2128 \f
2129
2130 /* Read the given attribute value as an address, taking the attribute's
2131 form into account. */
2132
2133 static CORE_ADDR
2134 attr_value_as_address (struct attribute *attr)
2135 {
2136 CORE_ADDR addr;
2137
2138 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_addrx
2139 && attr->form != DW_FORM_GNU_addr_index)
2140 {
2141 /* Aside from a few clearly defined exceptions, attributes that
2142 contain an address must always be in DW_FORM_addr form.
2143 Unfortunately, some compilers happen to be violating this
2144 requirement by encoding addresses using other forms, such
2145 as DW_FORM_data4 for example. For those broken compilers,
2146 we try to do our best, without any guarantee of success,
2147 to interpret the address correctly. It would also be nice
2148 to generate a complaint, but that would require us to maintain
2149 a list of legitimate cases where a non-address form is allowed,
2150 as well as update callers to pass in at least the CU's DWARF
2151 version. This is more overhead than what we're willing to
2152 expand for a pretty rare case. */
2153 addr = DW_UNSND (attr);
2154 }
2155 else
2156 addr = DW_ADDR (attr);
2157
2158 return addr;
2159 }
2160
2161 /* See declaration. */
2162
2163 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2164 const dwarf2_debug_sections *names)
2165 : objfile (objfile_)
2166 {
2167 if (names == NULL)
2168 names = &dwarf2_elf_names;
2169
2170 bfd *obfd = objfile->obfd;
2171
2172 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2173 locate_sections (obfd, sec, *names);
2174 }
2175
2176 static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2177
2178 dwarf2_per_objfile::~dwarf2_per_objfile ()
2179 {
2180 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2181 free_cached_comp_units ();
2182
2183 if (quick_file_names_table)
2184 htab_delete (quick_file_names_table);
2185
2186 if (line_header_hash)
2187 htab_delete (line_header_hash);
2188
2189 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2190 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2191
2192 for (signatured_type *sig_type : all_type_units)
2193 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2194
2195 VEC_free (dwarf2_section_info_def, types);
2196
2197 if (dwo_files != NULL)
2198 free_dwo_files (dwo_files, objfile);
2199
2200 /* Everything else should be on the objfile obstack. */
2201 }
2202
2203 /* See declaration. */
2204
2205 void
2206 dwarf2_per_objfile::free_cached_comp_units ()
2207 {
2208 dwarf2_per_cu_data *per_cu = read_in_chain;
2209 dwarf2_per_cu_data **last_chain = &read_in_chain;
2210 while (per_cu != NULL)
2211 {
2212 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2213
2214 delete per_cu->cu;
2215 *last_chain = next_cu;
2216 per_cu = next_cu;
2217 }
2218 }
2219
2220 /* A helper class that calls free_cached_comp_units on
2221 destruction. */
2222
2223 class free_cached_comp_units
2224 {
2225 public:
2226
2227 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2228 : m_per_objfile (per_objfile)
2229 {
2230 }
2231
2232 ~free_cached_comp_units ()
2233 {
2234 m_per_objfile->free_cached_comp_units ();
2235 }
2236
2237 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2238
2239 private:
2240
2241 dwarf2_per_objfile *m_per_objfile;
2242 };
2243
2244 /* Try to locate the sections we need for DWARF 2 debugging
2245 information and return true if we have enough to do something.
2246 NAMES points to the dwarf2 section names, or is NULL if the standard
2247 ELF names are used. */
2248
2249 int
2250 dwarf2_has_info (struct objfile *objfile,
2251 const struct dwarf2_debug_sections *names)
2252 {
2253 if (objfile->flags & OBJF_READNEVER)
2254 return 0;
2255
2256 struct dwarf2_per_objfile *dwarf2_per_objfile
2257 = get_dwarf2_per_objfile (objfile);
2258
2259 if (dwarf2_per_objfile == NULL)
2260 dwarf2_per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile,
2261 names);
2262
2263 return (!dwarf2_per_objfile->info.is_virtual
2264 && dwarf2_per_objfile->info.s.section != NULL
2265 && !dwarf2_per_objfile->abbrev.is_virtual
2266 && dwarf2_per_objfile->abbrev.s.section != NULL);
2267 }
2268
2269 /* Return the containing section of virtual section SECTION. */
2270
2271 static struct dwarf2_section_info *
2272 get_containing_section (const struct dwarf2_section_info *section)
2273 {
2274 gdb_assert (section->is_virtual);
2275 return section->s.containing_section;
2276 }
2277
2278 /* Return the bfd owner of SECTION. */
2279
2280 static struct bfd *
2281 get_section_bfd_owner (const struct dwarf2_section_info *section)
2282 {
2283 if (section->is_virtual)
2284 {
2285 section = get_containing_section (section);
2286 gdb_assert (!section->is_virtual);
2287 }
2288 return section->s.section->owner;
2289 }
2290
2291 /* Return the bfd section of SECTION.
2292 Returns NULL if the section is not present. */
2293
2294 static asection *
2295 get_section_bfd_section (const struct dwarf2_section_info *section)
2296 {
2297 if (section->is_virtual)
2298 {
2299 section = get_containing_section (section);
2300 gdb_assert (!section->is_virtual);
2301 }
2302 return section->s.section;
2303 }
2304
2305 /* Return the name of SECTION. */
2306
2307 static const char *
2308 get_section_name (const struct dwarf2_section_info *section)
2309 {
2310 asection *sectp = get_section_bfd_section (section);
2311
2312 gdb_assert (sectp != NULL);
2313 return bfd_section_name (get_section_bfd_owner (section), sectp);
2314 }
2315
2316 /* Return the name of the file SECTION is in. */
2317
2318 static const char *
2319 get_section_file_name (const struct dwarf2_section_info *section)
2320 {
2321 bfd *abfd = get_section_bfd_owner (section);
2322
2323 return bfd_get_filename (abfd);
2324 }
2325
2326 /* Return the id of SECTION.
2327 Returns 0 if SECTION doesn't exist. */
2328
2329 static int
2330 get_section_id (const struct dwarf2_section_info *section)
2331 {
2332 asection *sectp = get_section_bfd_section (section);
2333
2334 if (sectp == NULL)
2335 return 0;
2336 return sectp->id;
2337 }
2338
2339 /* Return the flags of SECTION.
2340 SECTION (or containing section if this is a virtual section) must exist. */
2341
2342 static int
2343 get_section_flags (const struct dwarf2_section_info *section)
2344 {
2345 asection *sectp = get_section_bfd_section (section);
2346
2347 gdb_assert (sectp != NULL);
2348 return bfd_get_section_flags (sectp->owner, sectp);
2349 }
2350
2351 /* When loading sections, we look either for uncompressed section or for
2352 compressed section names. */
2353
2354 static int
2355 section_is_p (const char *section_name,
2356 const struct dwarf2_section_names *names)
2357 {
2358 if (names->normal != NULL
2359 && strcmp (section_name, names->normal) == 0)
2360 return 1;
2361 if (names->compressed != NULL
2362 && strcmp (section_name, names->compressed) == 0)
2363 return 1;
2364 return 0;
2365 }
2366
2367 /* See declaration. */
2368
2369 void
2370 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2371 const dwarf2_debug_sections &names)
2372 {
2373 flagword aflag = bfd_get_section_flags (abfd, sectp);
2374
2375 if ((aflag & SEC_HAS_CONTENTS) == 0)
2376 {
2377 }
2378 else if (section_is_p (sectp->name, &names.info))
2379 {
2380 this->info.s.section = sectp;
2381 this->info.size = bfd_get_section_size (sectp);
2382 }
2383 else if (section_is_p (sectp->name, &names.abbrev))
2384 {
2385 this->abbrev.s.section = sectp;
2386 this->abbrev.size = bfd_get_section_size (sectp);
2387 }
2388 else if (section_is_p (sectp->name, &names.line))
2389 {
2390 this->line.s.section = sectp;
2391 this->line.size = bfd_get_section_size (sectp);
2392 }
2393 else if (section_is_p (sectp->name, &names.loc))
2394 {
2395 this->loc.s.section = sectp;
2396 this->loc.size = bfd_get_section_size (sectp);
2397 }
2398 else if (section_is_p (sectp->name, &names.loclists))
2399 {
2400 this->loclists.s.section = sectp;
2401 this->loclists.size = bfd_get_section_size (sectp);
2402 }
2403 else if (section_is_p (sectp->name, &names.macinfo))
2404 {
2405 this->macinfo.s.section = sectp;
2406 this->macinfo.size = bfd_get_section_size (sectp);
2407 }
2408 else if (section_is_p (sectp->name, &names.macro))
2409 {
2410 this->macro.s.section = sectp;
2411 this->macro.size = bfd_get_section_size (sectp);
2412 }
2413 else if (section_is_p (sectp->name, &names.str))
2414 {
2415 this->str.s.section = sectp;
2416 this->str.size = bfd_get_section_size (sectp);
2417 }
2418 else if (section_is_p (sectp->name, &names.line_str))
2419 {
2420 this->line_str.s.section = sectp;
2421 this->line_str.size = bfd_get_section_size (sectp);
2422 }
2423 else if (section_is_p (sectp->name, &names.addr))
2424 {
2425 this->addr.s.section = sectp;
2426 this->addr.size = bfd_get_section_size (sectp);
2427 }
2428 else if (section_is_p (sectp->name, &names.frame))
2429 {
2430 this->frame.s.section = sectp;
2431 this->frame.size = bfd_get_section_size (sectp);
2432 }
2433 else if (section_is_p (sectp->name, &names.eh_frame))
2434 {
2435 this->eh_frame.s.section = sectp;
2436 this->eh_frame.size = bfd_get_section_size (sectp);
2437 }
2438 else if (section_is_p (sectp->name, &names.ranges))
2439 {
2440 this->ranges.s.section = sectp;
2441 this->ranges.size = bfd_get_section_size (sectp);
2442 }
2443 else if (section_is_p (sectp->name, &names.rnglists))
2444 {
2445 this->rnglists.s.section = sectp;
2446 this->rnglists.size = bfd_get_section_size (sectp);
2447 }
2448 else if (section_is_p (sectp->name, &names.types))
2449 {
2450 struct dwarf2_section_info type_section;
2451
2452 memset (&type_section, 0, sizeof (type_section));
2453 type_section.s.section = sectp;
2454 type_section.size = bfd_get_section_size (sectp);
2455
2456 VEC_safe_push (dwarf2_section_info_def, this->types,
2457 &type_section);
2458 }
2459 else if (section_is_p (sectp->name, &names.gdb_index))
2460 {
2461 this->gdb_index.s.section = sectp;
2462 this->gdb_index.size = bfd_get_section_size (sectp);
2463 }
2464 else if (section_is_p (sectp->name, &names.debug_names))
2465 {
2466 this->debug_names.s.section = sectp;
2467 this->debug_names.size = bfd_get_section_size (sectp);
2468 }
2469 else if (section_is_p (sectp->name, &names.debug_aranges))
2470 {
2471 this->debug_aranges.s.section = sectp;
2472 this->debug_aranges.size = bfd_get_section_size (sectp);
2473 }
2474
2475 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2476 && bfd_section_vma (abfd, sectp) == 0)
2477 this->has_section_at_zero = true;
2478 }
2479
2480 /* A helper function that decides whether a section is empty,
2481 or not present. */
2482
2483 static int
2484 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2485 {
2486 if (section->is_virtual)
2487 return section->size == 0;
2488 return section->s.section == NULL || section->size == 0;
2489 }
2490
2491 /* See dwarf2read.h. */
2492
2493 void
2494 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2495 {
2496 asection *sectp;
2497 bfd *abfd;
2498 gdb_byte *buf, *retbuf;
2499
2500 if (info->readin)
2501 return;
2502 info->buffer = NULL;
2503 info->readin = 1;
2504
2505 if (dwarf2_section_empty_p (info))
2506 return;
2507
2508 sectp = get_section_bfd_section (info);
2509
2510 /* If this is a virtual section we need to read in the real one first. */
2511 if (info->is_virtual)
2512 {
2513 struct dwarf2_section_info *containing_section =
2514 get_containing_section (info);
2515
2516 gdb_assert (sectp != NULL);
2517 if ((sectp->flags & SEC_RELOC) != 0)
2518 {
2519 error (_("Dwarf Error: DWP format V2 with relocations is not"
2520 " supported in section %s [in module %s]"),
2521 get_section_name (info), get_section_file_name (info));
2522 }
2523 dwarf2_read_section (objfile, containing_section);
2524 /* Other code should have already caught virtual sections that don't
2525 fit. */
2526 gdb_assert (info->virtual_offset + info->size
2527 <= containing_section->size);
2528 /* If the real section is empty or there was a problem reading the
2529 section we shouldn't get here. */
2530 gdb_assert (containing_section->buffer != NULL);
2531 info->buffer = containing_section->buffer + info->virtual_offset;
2532 return;
2533 }
2534
2535 /* If the section has relocations, we must read it ourselves.
2536 Otherwise we attach it to the BFD. */
2537 if ((sectp->flags & SEC_RELOC) == 0)
2538 {
2539 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2540 return;
2541 }
2542
2543 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2544 info->buffer = buf;
2545
2546 /* When debugging .o files, we may need to apply relocations; see
2547 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2548 We never compress sections in .o files, so we only need to
2549 try this when the section is not compressed. */
2550 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2551 if (retbuf != NULL)
2552 {
2553 info->buffer = retbuf;
2554 return;
2555 }
2556
2557 abfd = get_section_bfd_owner (info);
2558 gdb_assert (abfd != NULL);
2559
2560 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2561 || bfd_bread (buf, info->size, abfd) != info->size)
2562 {
2563 error (_("Dwarf Error: Can't read DWARF data"
2564 " in section %s [in module %s]"),
2565 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2566 }
2567 }
2568
2569 /* A helper function that returns the size of a section in a safe way.
2570 If you are positive that the section has been read before using the
2571 size, then it is safe to refer to the dwarf2_section_info object's
2572 "size" field directly. In other cases, you must call this
2573 function, because for compressed sections the size field is not set
2574 correctly until the section has been read. */
2575
2576 static bfd_size_type
2577 dwarf2_section_size (struct objfile *objfile,
2578 struct dwarf2_section_info *info)
2579 {
2580 if (!info->readin)
2581 dwarf2_read_section (objfile, info);
2582 return info->size;
2583 }
2584
2585 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2586 SECTION_NAME. */
2587
2588 void
2589 dwarf2_get_section_info (struct objfile *objfile,
2590 enum dwarf2_section_enum sect,
2591 asection **sectp, const gdb_byte **bufp,
2592 bfd_size_type *sizep)
2593 {
2594 struct dwarf2_per_objfile *data = dwarf2_objfile_data_key.get (objfile);
2595 struct dwarf2_section_info *info;
2596
2597 /* We may see an objfile without any DWARF, in which case we just
2598 return nothing. */
2599 if (data == NULL)
2600 {
2601 *sectp = NULL;
2602 *bufp = NULL;
2603 *sizep = 0;
2604 return;
2605 }
2606 switch (sect)
2607 {
2608 case DWARF2_DEBUG_FRAME:
2609 info = &data->frame;
2610 break;
2611 case DWARF2_EH_FRAME:
2612 info = &data->eh_frame;
2613 break;
2614 default:
2615 gdb_assert_not_reached ("unexpected section");
2616 }
2617
2618 dwarf2_read_section (objfile, info);
2619
2620 *sectp = get_section_bfd_section (info);
2621 *bufp = info->buffer;
2622 *sizep = info->size;
2623 }
2624
2625 /* A helper function to find the sections for a .dwz file. */
2626
2627 static void
2628 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2629 {
2630 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2631
2632 /* Note that we only support the standard ELF names, because .dwz
2633 is ELF-only (at the time of writing). */
2634 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2635 {
2636 dwz_file->abbrev.s.section = sectp;
2637 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2638 }
2639 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2640 {
2641 dwz_file->info.s.section = sectp;
2642 dwz_file->info.size = bfd_get_section_size (sectp);
2643 }
2644 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2645 {
2646 dwz_file->str.s.section = sectp;
2647 dwz_file->str.size = bfd_get_section_size (sectp);
2648 }
2649 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2650 {
2651 dwz_file->line.s.section = sectp;
2652 dwz_file->line.size = bfd_get_section_size (sectp);
2653 }
2654 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2655 {
2656 dwz_file->macro.s.section = sectp;
2657 dwz_file->macro.size = bfd_get_section_size (sectp);
2658 }
2659 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2660 {
2661 dwz_file->gdb_index.s.section = sectp;
2662 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2663 }
2664 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2665 {
2666 dwz_file->debug_names.s.section = sectp;
2667 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2668 }
2669 }
2670
2671 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2672 there is no .gnu_debugaltlink section in the file. Error if there
2673 is such a section but the file cannot be found. */
2674
2675 static struct dwz_file *
2676 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2677 {
2678 const char *filename;
2679 bfd_size_type buildid_len_arg;
2680 size_t buildid_len;
2681 bfd_byte *buildid;
2682
2683 if (dwarf2_per_objfile->dwz_file != NULL)
2684 return dwarf2_per_objfile->dwz_file.get ();
2685
2686 bfd_set_error (bfd_error_no_error);
2687 gdb::unique_xmalloc_ptr<char> data
2688 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2689 &buildid_len_arg, &buildid));
2690 if (data == NULL)
2691 {
2692 if (bfd_get_error () == bfd_error_no_error)
2693 return NULL;
2694 error (_("could not read '.gnu_debugaltlink' section: %s"),
2695 bfd_errmsg (bfd_get_error ()));
2696 }
2697
2698 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2699
2700 buildid_len = (size_t) buildid_len_arg;
2701
2702 filename = data.get ();
2703
2704 std::string abs_storage;
2705 if (!IS_ABSOLUTE_PATH (filename))
2706 {
2707 gdb::unique_xmalloc_ptr<char> abs
2708 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2709
2710 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2711 filename = abs_storage.c_str ();
2712 }
2713
2714 /* First try the file name given in the section. If that doesn't
2715 work, try to use the build-id instead. */
2716 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2717 if (dwz_bfd != NULL)
2718 {
2719 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2720 dwz_bfd.reset (nullptr);
2721 }
2722
2723 if (dwz_bfd == NULL)
2724 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2725
2726 if (dwz_bfd == NULL)
2727 error (_("could not find '.gnu_debugaltlink' file for %s"),
2728 objfile_name (dwarf2_per_objfile->objfile));
2729
2730 std::unique_ptr<struct dwz_file> result
2731 (new struct dwz_file (std::move (dwz_bfd)));
2732
2733 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2734 result.get ());
2735
2736 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2737 result->dwz_bfd.get ());
2738 dwarf2_per_objfile->dwz_file = std::move (result);
2739 return dwarf2_per_objfile->dwz_file.get ();
2740 }
2741 \f
2742 /* DWARF quick_symbols_functions support. */
2743
2744 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2745 unique line tables, so we maintain a separate table of all .debug_line
2746 derived entries to support the sharing.
2747 All the quick functions need is the list of file names. We discard the
2748 line_header when we're done and don't need to record it here. */
2749 struct quick_file_names
2750 {
2751 /* The data used to construct the hash key. */
2752 struct stmt_list_hash hash;
2753
2754 /* The number of entries in file_names, real_names. */
2755 unsigned int num_file_names;
2756
2757 /* The file names from the line table, after being run through
2758 file_full_name. */
2759 const char **file_names;
2760
2761 /* The file names from the line table after being run through
2762 gdb_realpath. These are computed lazily. */
2763 const char **real_names;
2764 };
2765
2766 /* When using the index (and thus not using psymtabs), each CU has an
2767 object of this type. This is used to hold information needed by
2768 the various "quick" methods. */
2769 struct dwarf2_per_cu_quick_data
2770 {
2771 /* The file table. This can be NULL if there was no file table
2772 or it's currently not read in.
2773 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2774 struct quick_file_names *file_names;
2775
2776 /* The corresponding symbol table. This is NULL if symbols for this
2777 CU have not yet been read. */
2778 struct compunit_symtab *compunit_symtab;
2779
2780 /* A temporary mark bit used when iterating over all CUs in
2781 expand_symtabs_matching. */
2782 unsigned int mark : 1;
2783
2784 /* True if we've tried to read the file table and found there isn't one.
2785 There will be no point in trying to read it again next time. */
2786 unsigned int no_file_data : 1;
2787 };
2788
2789 /* Utility hash function for a stmt_list_hash. */
2790
2791 static hashval_t
2792 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2793 {
2794 hashval_t v = 0;
2795
2796 if (stmt_list_hash->dwo_unit != NULL)
2797 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2798 v += to_underlying (stmt_list_hash->line_sect_off);
2799 return v;
2800 }
2801
2802 /* Utility equality function for a stmt_list_hash. */
2803
2804 static int
2805 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2806 const struct stmt_list_hash *rhs)
2807 {
2808 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2809 return 0;
2810 if (lhs->dwo_unit != NULL
2811 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2812 return 0;
2813
2814 return lhs->line_sect_off == rhs->line_sect_off;
2815 }
2816
2817 /* Hash function for a quick_file_names. */
2818
2819 static hashval_t
2820 hash_file_name_entry (const void *e)
2821 {
2822 const struct quick_file_names *file_data
2823 = (const struct quick_file_names *) e;
2824
2825 return hash_stmt_list_entry (&file_data->hash);
2826 }
2827
2828 /* Equality function for a quick_file_names. */
2829
2830 static int
2831 eq_file_name_entry (const void *a, const void *b)
2832 {
2833 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2834 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2835
2836 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2837 }
2838
2839 /* Delete function for a quick_file_names. */
2840
2841 static void
2842 delete_file_name_entry (void *e)
2843 {
2844 struct quick_file_names *file_data = (struct quick_file_names *) e;
2845 int i;
2846
2847 for (i = 0; i < file_data->num_file_names; ++i)
2848 {
2849 xfree ((void*) file_data->file_names[i]);
2850 if (file_data->real_names)
2851 xfree ((void*) file_data->real_names[i]);
2852 }
2853
2854 /* The space for the struct itself lives on objfile_obstack,
2855 so we don't free it here. */
2856 }
2857
2858 /* Create a quick_file_names hash table. */
2859
2860 static htab_t
2861 create_quick_file_names_table (unsigned int nr_initial_entries)
2862 {
2863 return htab_create_alloc (nr_initial_entries,
2864 hash_file_name_entry, eq_file_name_entry,
2865 delete_file_name_entry, xcalloc, xfree);
2866 }
2867
2868 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2869 have to be created afterwards. You should call age_cached_comp_units after
2870 processing PER_CU->CU. dw2_setup must have been already called. */
2871
2872 static void
2873 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2874 {
2875 if (per_cu->is_debug_types)
2876 load_full_type_unit (per_cu);
2877 else
2878 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2879
2880 if (per_cu->cu == NULL)
2881 return; /* Dummy CU. */
2882
2883 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2884 }
2885
2886 /* Read in the symbols for PER_CU. */
2887
2888 static void
2889 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2890 {
2891 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2892
2893 /* Skip type_unit_groups, reading the type units they contain
2894 is handled elsewhere. */
2895 if (IS_TYPE_UNIT_GROUP (per_cu))
2896 return;
2897
2898 /* The destructor of dwarf2_queue_guard frees any entries left on
2899 the queue. After this point we're guaranteed to leave this function
2900 with the dwarf queue empty. */
2901 dwarf2_queue_guard q_guard;
2902
2903 if (dwarf2_per_objfile->using_index
2904 ? per_cu->v.quick->compunit_symtab == NULL
2905 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2906 {
2907 queue_comp_unit (per_cu, language_minimal);
2908 load_cu (per_cu, skip_partial);
2909
2910 /* If we just loaded a CU from a DWO, and we're working with an index
2911 that may badly handle TUs, load all the TUs in that DWO as well.
2912 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2913 if (!per_cu->is_debug_types
2914 && per_cu->cu != NULL
2915 && per_cu->cu->dwo_unit != NULL
2916 && dwarf2_per_objfile->index_table != NULL
2917 && dwarf2_per_objfile->index_table->version <= 7
2918 /* DWP files aren't supported yet. */
2919 && get_dwp_file (dwarf2_per_objfile) == NULL)
2920 queue_and_load_all_dwo_tus (per_cu);
2921 }
2922
2923 process_queue (dwarf2_per_objfile);
2924
2925 /* Age the cache, releasing compilation units that have not
2926 been used recently. */
2927 age_cached_comp_units (dwarf2_per_objfile);
2928 }
2929
2930 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2931 the objfile from which this CU came. Returns the resulting symbol
2932 table. */
2933
2934 static struct compunit_symtab *
2935 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2936 {
2937 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2938
2939 gdb_assert (dwarf2_per_objfile->using_index);
2940 if (!per_cu->v.quick->compunit_symtab)
2941 {
2942 free_cached_comp_units freer (dwarf2_per_objfile);
2943 scoped_restore decrementer = increment_reading_symtab ();
2944 dw2_do_instantiate_symtab (per_cu, skip_partial);
2945 process_cu_includes (dwarf2_per_objfile);
2946 }
2947
2948 return per_cu->v.quick->compunit_symtab;
2949 }
2950
2951 /* See declaration. */
2952
2953 dwarf2_per_cu_data *
2954 dwarf2_per_objfile::get_cutu (int index)
2955 {
2956 if (index >= this->all_comp_units.size ())
2957 {
2958 index -= this->all_comp_units.size ();
2959 gdb_assert (index < this->all_type_units.size ());
2960 return &this->all_type_units[index]->per_cu;
2961 }
2962
2963 return this->all_comp_units[index];
2964 }
2965
2966 /* See declaration. */
2967
2968 dwarf2_per_cu_data *
2969 dwarf2_per_objfile::get_cu (int index)
2970 {
2971 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2972
2973 return this->all_comp_units[index];
2974 }
2975
2976 /* See declaration. */
2977
2978 signatured_type *
2979 dwarf2_per_objfile::get_tu (int index)
2980 {
2981 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2982
2983 return this->all_type_units[index];
2984 }
2985
2986 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2987 objfile_obstack, and constructed with the specified field
2988 values. */
2989
2990 static dwarf2_per_cu_data *
2991 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2992 struct dwarf2_section_info *section,
2993 int is_dwz,
2994 sect_offset sect_off, ULONGEST length)
2995 {
2996 struct objfile *objfile = dwarf2_per_objfile->objfile;
2997 dwarf2_per_cu_data *the_cu
2998 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2999 struct dwarf2_per_cu_data);
3000 the_cu->sect_off = sect_off;
3001 the_cu->length = length;
3002 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
3003 the_cu->section = section;
3004 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3005 struct dwarf2_per_cu_quick_data);
3006 the_cu->is_dwz = is_dwz;
3007 return the_cu;
3008 }
3009
3010 /* A helper for create_cus_from_index that handles a given list of
3011 CUs. */
3012
3013 static void
3014 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
3015 const gdb_byte *cu_list, offset_type n_elements,
3016 struct dwarf2_section_info *section,
3017 int is_dwz)
3018 {
3019 for (offset_type i = 0; i < n_elements; i += 2)
3020 {
3021 gdb_static_assert (sizeof (ULONGEST) >= 8);
3022
3023 sect_offset sect_off
3024 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
3025 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
3026 cu_list += 2 * 8;
3027
3028 dwarf2_per_cu_data *per_cu
3029 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
3030 sect_off, length);
3031 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
3032 }
3033 }
3034
3035 /* Read the CU list from the mapped index, and use it to create all
3036 the CU objects for this objfile. */
3037
3038 static void
3039 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3040 const gdb_byte *cu_list, offset_type cu_list_elements,
3041 const gdb_byte *dwz_list, offset_type dwz_elements)
3042 {
3043 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3044 dwarf2_per_objfile->all_comp_units.reserve
3045 ((cu_list_elements + dwz_elements) / 2);
3046
3047 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3048 &dwarf2_per_objfile->info, 0);
3049
3050 if (dwz_elements == 0)
3051 return;
3052
3053 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3054 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3055 &dwz->info, 1);
3056 }
3057
3058 /* Create the signatured type hash table from the index. */
3059
3060 static void
3061 create_signatured_type_table_from_index
3062 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3063 struct dwarf2_section_info *section,
3064 const gdb_byte *bytes,
3065 offset_type elements)
3066 {
3067 struct objfile *objfile = dwarf2_per_objfile->objfile;
3068
3069 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3070 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3071
3072 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3073
3074 for (offset_type i = 0; i < elements; i += 3)
3075 {
3076 struct signatured_type *sig_type;
3077 ULONGEST signature;
3078 void **slot;
3079 cu_offset type_offset_in_tu;
3080
3081 gdb_static_assert (sizeof (ULONGEST) >= 8);
3082 sect_offset sect_off
3083 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3084 type_offset_in_tu
3085 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3086 BFD_ENDIAN_LITTLE);
3087 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3088 bytes += 3 * 8;
3089
3090 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3091 struct signatured_type);
3092 sig_type->signature = signature;
3093 sig_type->type_offset_in_tu = type_offset_in_tu;
3094 sig_type->per_cu.is_debug_types = 1;
3095 sig_type->per_cu.section = section;
3096 sig_type->per_cu.sect_off = sect_off;
3097 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3098 sig_type->per_cu.v.quick
3099 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3100 struct dwarf2_per_cu_quick_data);
3101
3102 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3103 *slot = sig_type;
3104
3105 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3106 }
3107
3108 dwarf2_per_objfile->signatured_types = sig_types_hash;
3109 }
3110
3111 /* Create the signatured type hash table from .debug_names. */
3112
3113 static void
3114 create_signatured_type_table_from_debug_names
3115 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3116 const mapped_debug_names &map,
3117 struct dwarf2_section_info *section,
3118 struct dwarf2_section_info *abbrev_section)
3119 {
3120 struct objfile *objfile = dwarf2_per_objfile->objfile;
3121
3122 dwarf2_read_section (objfile, section);
3123 dwarf2_read_section (objfile, abbrev_section);
3124
3125 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3126 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3127
3128 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3129
3130 for (uint32_t i = 0; i < map.tu_count; ++i)
3131 {
3132 struct signatured_type *sig_type;
3133 void **slot;
3134
3135 sect_offset sect_off
3136 = (sect_offset) (extract_unsigned_integer
3137 (map.tu_table_reordered + i * map.offset_size,
3138 map.offset_size,
3139 map.dwarf5_byte_order));
3140
3141 comp_unit_head cu_header;
3142 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3143 abbrev_section,
3144 section->buffer + to_underlying (sect_off),
3145 rcuh_kind::TYPE);
3146
3147 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3148 struct signatured_type);
3149 sig_type->signature = cu_header.signature;
3150 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3151 sig_type->per_cu.is_debug_types = 1;
3152 sig_type->per_cu.section = section;
3153 sig_type->per_cu.sect_off = sect_off;
3154 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3155 sig_type->per_cu.v.quick
3156 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3157 struct dwarf2_per_cu_quick_data);
3158
3159 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3160 *slot = sig_type;
3161
3162 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3163 }
3164
3165 dwarf2_per_objfile->signatured_types = sig_types_hash;
3166 }
3167
3168 /* Read the address map data from the mapped index, and use it to
3169 populate the objfile's psymtabs_addrmap. */
3170
3171 static void
3172 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3173 struct mapped_index *index)
3174 {
3175 struct objfile *objfile = dwarf2_per_objfile->objfile;
3176 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3177 const gdb_byte *iter, *end;
3178 struct addrmap *mutable_map;
3179 CORE_ADDR baseaddr;
3180
3181 auto_obstack temp_obstack;
3182
3183 mutable_map = addrmap_create_mutable (&temp_obstack);
3184
3185 iter = index->address_table.data ();
3186 end = iter + index->address_table.size ();
3187
3188 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3189
3190 while (iter < end)
3191 {
3192 ULONGEST hi, lo, cu_index;
3193 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3194 iter += 8;
3195 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3196 iter += 8;
3197 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3198 iter += 4;
3199
3200 if (lo > hi)
3201 {
3202 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3203 hex_string (lo), hex_string (hi));
3204 continue;
3205 }
3206
3207 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3208 {
3209 complaint (_(".gdb_index address table has invalid CU number %u"),
3210 (unsigned) cu_index);
3211 continue;
3212 }
3213
3214 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
3215 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
3216 addrmap_set_empty (mutable_map, lo, hi - 1,
3217 dwarf2_per_objfile->get_cu (cu_index));
3218 }
3219
3220 objfile->partial_symtabs->psymtabs_addrmap
3221 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3222 }
3223
3224 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3225 populate the objfile's psymtabs_addrmap. */
3226
3227 static void
3228 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3229 struct dwarf2_section_info *section)
3230 {
3231 struct objfile *objfile = dwarf2_per_objfile->objfile;
3232 bfd *abfd = objfile->obfd;
3233 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3234 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3235 SECT_OFF_TEXT (objfile));
3236
3237 auto_obstack temp_obstack;
3238 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3239
3240 std::unordered_map<sect_offset,
3241 dwarf2_per_cu_data *,
3242 gdb::hash_enum<sect_offset>>
3243 debug_info_offset_to_per_cu;
3244 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3245 {
3246 const auto insertpair
3247 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3248 if (!insertpair.second)
3249 {
3250 warning (_("Section .debug_aranges in %s has duplicate "
3251 "debug_info_offset %s, ignoring .debug_aranges."),
3252 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3253 return;
3254 }
3255 }
3256
3257 dwarf2_read_section (objfile, section);
3258
3259 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3260
3261 const gdb_byte *addr = section->buffer;
3262
3263 while (addr < section->buffer + section->size)
3264 {
3265 const gdb_byte *const entry_addr = addr;
3266 unsigned int bytes_read;
3267
3268 const LONGEST entry_length = read_initial_length (abfd, addr,
3269 &bytes_read);
3270 addr += bytes_read;
3271
3272 const gdb_byte *const entry_end = addr + entry_length;
3273 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3274 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3275 if (addr + entry_length > section->buffer + section->size)
3276 {
3277 warning (_("Section .debug_aranges in %s entry at offset %zu "
3278 "length %s exceeds section length %s, "
3279 "ignoring .debug_aranges."),
3280 objfile_name (objfile), entry_addr - section->buffer,
3281 plongest (bytes_read + entry_length),
3282 pulongest (section->size));
3283 return;
3284 }
3285
3286 /* The version number. */
3287 const uint16_t version = read_2_bytes (abfd, addr);
3288 addr += 2;
3289 if (version != 2)
3290 {
3291 warning (_("Section .debug_aranges in %s entry at offset %zu "
3292 "has unsupported version %d, ignoring .debug_aranges."),
3293 objfile_name (objfile), entry_addr - section->buffer,
3294 version);
3295 return;
3296 }
3297
3298 const uint64_t debug_info_offset
3299 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3300 addr += offset_size;
3301 const auto per_cu_it
3302 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3303 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3304 {
3305 warning (_("Section .debug_aranges in %s entry at offset %zu "
3306 "debug_info_offset %s does not exists, "
3307 "ignoring .debug_aranges."),
3308 objfile_name (objfile), entry_addr - section->buffer,
3309 pulongest (debug_info_offset));
3310 return;
3311 }
3312 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3313
3314 const uint8_t address_size = *addr++;
3315 if (address_size < 1 || address_size > 8)
3316 {
3317 warning (_("Section .debug_aranges in %s entry at offset %zu "
3318 "address_size %u is invalid, ignoring .debug_aranges."),
3319 objfile_name (objfile), entry_addr - section->buffer,
3320 address_size);
3321 return;
3322 }
3323
3324 const uint8_t segment_selector_size = *addr++;
3325 if (segment_selector_size != 0)
3326 {
3327 warning (_("Section .debug_aranges in %s entry at offset %zu "
3328 "segment_selector_size %u is not supported, "
3329 "ignoring .debug_aranges."),
3330 objfile_name (objfile), entry_addr - section->buffer,
3331 segment_selector_size);
3332 return;
3333 }
3334
3335 /* Must pad to an alignment boundary that is twice the address
3336 size. It is undocumented by the DWARF standard but GCC does
3337 use it. */
3338 for (size_t padding = ((-(addr - section->buffer))
3339 & (2 * address_size - 1));
3340 padding > 0; padding--)
3341 if (*addr++ != 0)
3342 {
3343 warning (_("Section .debug_aranges in %s entry at offset %zu "
3344 "padding is not zero, ignoring .debug_aranges."),
3345 objfile_name (objfile), entry_addr - section->buffer);
3346 return;
3347 }
3348
3349 for (;;)
3350 {
3351 if (addr + 2 * address_size > entry_end)
3352 {
3353 warning (_("Section .debug_aranges in %s entry at offset %zu "
3354 "address list is not properly terminated, "
3355 "ignoring .debug_aranges."),
3356 objfile_name (objfile), entry_addr - section->buffer);
3357 return;
3358 }
3359 ULONGEST start = extract_unsigned_integer (addr, address_size,
3360 dwarf5_byte_order);
3361 addr += address_size;
3362 ULONGEST length = extract_unsigned_integer (addr, address_size,
3363 dwarf5_byte_order);
3364 addr += address_size;
3365 if (start == 0 && length == 0)
3366 break;
3367 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3368 {
3369 /* Symbol was eliminated due to a COMDAT group. */
3370 continue;
3371 }
3372 ULONGEST end = start + length;
3373 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3374 - baseaddr);
3375 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3376 - baseaddr);
3377 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3378 }
3379 }
3380
3381 objfile->partial_symtabs->psymtabs_addrmap
3382 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3383 }
3384
3385 /* Find a slot in the mapped index INDEX for the object named NAME.
3386 If NAME is found, set *VEC_OUT to point to the CU vector in the
3387 constant pool and return true. If NAME cannot be found, return
3388 false. */
3389
3390 static bool
3391 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3392 offset_type **vec_out)
3393 {
3394 offset_type hash;
3395 offset_type slot, step;
3396 int (*cmp) (const char *, const char *);
3397
3398 gdb::unique_xmalloc_ptr<char> without_params;
3399 if (current_language->la_language == language_cplus
3400 || current_language->la_language == language_fortran
3401 || current_language->la_language == language_d)
3402 {
3403 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3404 not contain any. */
3405
3406 if (strchr (name, '(') != NULL)
3407 {
3408 without_params = cp_remove_params (name);
3409
3410 if (without_params != NULL)
3411 name = without_params.get ();
3412 }
3413 }
3414
3415 /* Index version 4 did not support case insensitive searches. But the
3416 indices for case insensitive languages are built in lowercase, therefore
3417 simulate our NAME being searched is also lowercased. */
3418 hash = mapped_index_string_hash ((index->version == 4
3419 && case_sensitivity == case_sensitive_off
3420 ? 5 : index->version),
3421 name);
3422
3423 slot = hash & (index->symbol_table.size () - 1);
3424 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3425 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3426
3427 for (;;)
3428 {
3429 const char *str;
3430
3431 const auto &bucket = index->symbol_table[slot];
3432 if (bucket.name == 0 && bucket.vec == 0)
3433 return false;
3434
3435 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3436 if (!cmp (name, str))
3437 {
3438 *vec_out = (offset_type *) (index->constant_pool
3439 + MAYBE_SWAP (bucket.vec));
3440 return true;
3441 }
3442
3443 slot = (slot + step) & (index->symbol_table.size () - 1);
3444 }
3445 }
3446
3447 /* A helper function that reads the .gdb_index from BUFFER and fills
3448 in MAP. FILENAME is the name of the file containing the data;
3449 it is used for error reporting. DEPRECATED_OK is true if it is
3450 ok to use deprecated sections.
3451
3452 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3453 out parameters that are filled in with information about the CU and
3454 TU lists in the section.
3455
3456 Returns true if all went well, false otherwise. */
3457
3458 static bool
3459 read_gdb_index_from_buffer (struct objfile *objfile,
3460 const char *filename,
3461 bool deprecated_ok,
3462 gdb::array_view<const gdb_byte> buffer,
3463 struct mapped_index *map,
3464 const gdb_byte **cu_list,
3465 offset_type *cu_list_elements,
3466 const gdb_byte **types_list,
3467 offset_type *types_list_elements)
3468 {
3469 const gdb_byte *addr = &buffer[0];
3470
3471 /* Version check. */
3472 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
3473 /* Versions earlier than 3 emitted every copy of a psymbol. This
3474 causes the index to behave very poorly for certain requests. Version 3
3475 contained incomplete addrmap. So, it seems better to just ignore such
3476 indices. */
3477 if (version < 4)
3478 {
3479 static int warning_printed = 0;
3480 if (!warning_printed)
3481 {
3482 warning (_("Skipping obsolete .gdb_index section in %s."),
3483 filename);
3484 warning_printed = 1;
3485 }
3486 return 0;
3487 }
3488 /* Index version 4 uses a different hash function than index version
3489 5 and later.
3490
3491 Versions earlier than 6 did not emit psymbols for inlined
3492 functions. Using these files will cause GDB not to be able to
3493 set breakpoints on inlined functions by name, so we ignore these
3494 indices unless the user has done
3495 "set use-deprecated-index-sections on". */
3496 if (version < 6 && !deprecated_ok)
3497 {
3498 static int warning_printed = 0;
3499 if (!warning_printed)
3500 {
3501 warning (_("\
3502 Skipping deprecated .gdb_index section in %s.\n\
3503 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3504 to use the section anyway."),
3505 filename);
3506 warning_printed = 1;
3507 }
3508 return 0;
3509 }
3510 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3511 of the TU (for symbols coming from TUs),
3512 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3513 Plus gold-generated indices can have duplicate entries for global symbols,
3514 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3515 These are just performance bugs, and we can't distinguish gdb-generated
3516 indices from gold-generated ones, so issue no warning here. */
3517
3518 /* Indexes with higher version than the one supported by GDB may be no
3519 longer backward compatible. */
3520 if (version > 8)
3521 return 0;
3522
3523 map->version = version;
3524
3525 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3526
3527 int i = 0;
3528 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3529 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3530 / 8);
3531 ++i;
3532
3533 *types_list = addr + MAYBE_SWAP (metadata[i]);
3534 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3535 - MAYBE_SWAP (metadata[i]))
3536 / 8);
3537 ++i;
3538
3539 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3540 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3541 map->address_table
3542 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3543 ++i;
3544
3545 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3546 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3547 map->symbol_table
3548 = gdb::array_view<mapped_index::symbol_table_slot>
3549 ((mapped_index::symbol_table_slot *) symbol_table,
3550 (mapped_index::symbol_table_slot *) symbol_table_end);
3551
3552 ++i;
3553 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3554
3555 return 1;
3556 }
3557
3558 /* Callback types for dwarf2_read_gdb_index. */
3559
3560 typedef gdb::function_view
3561 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3562 get_gdb_index_contents_ftype;
3563 typedef gdb::function_view
3564 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3565 get_gdb_index_contents_dwz_ftype;
3566
3567 /* Read .gdb_index. If everything went ok, initialize the "quick"
3568 elements of all the CUs and return 1. Otherwise, return 0. */
3569
3570 static int
3571 dwarf2_read_gdb_index
3572 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3573 get_gdb_index_contents_ftype get_gdb_index_contents,
3574 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3575 {
3576 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3577 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3578 struct dwz_file *dwz;
3579 struct objfile *objfile = dwarf2_per_objfile->objfile;
3580
3581 gdb::array_view<const gdb_byte> main_index_contents
3582 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3583
3584 if (main_index_contents.empty ())
3585 return 0;
3586
3587 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3588 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3589 use_deprecated_index_sections,
3590 main_index_contents, map.get (), &cu_list,
3591 &cu_list_elements, &types_list,
3592 &types_list_elements))
3593 return 0;
3594
3595 /* Don't use the index if it's empty. */
3596 if (map->symbol_table.empty ())
3597 return 0;
3598
3599 /* If there is a .dwz file, read it so we can get its CU list as
3600 well. */
3601 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3602 if (dwz != NULL)
3603 {
3604 struct mapped_index dwz_map;
3605 const gdb_byte *dwz_types_ignore;
3606 offset_type dwz_types_elements_ignore;
3607
3608 gdb::array_view<const gdb_byte> dwz_index_content
3609 = get_gdb_index_contents_dwz (objfile, dwz);
3610
3611 if (dwz_index_content.empty ())
3612 return 0;
3613
3614 if (!read_gdb_index_from_buffer (objfile,
3615 bfd_get_filename (dwz->dwz_bfd), 1,
3616 dwz_index_content, &dwz_map,
3617 &dwz_list, &dwz_list_elements,
3618 &dwz_types_ignore,
3619 &dwz_types_elements_ignore))
3620 {
3621 warning (_("could not read '.gdb_index' section from %s; skipping"),
3622 bfd_get_filename (dwz->dwz_bfd));
3623 return 0;
3624 }
3625 }
3626
3627 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3628 dwz_list, dwz_list_elements);
3629
3630 if (types_list_elements)
3631 {
3632 struct dwarf2_section_info *section;
3633
3634 /* We can only handle a single .debug_types when we have an
3635 index. */
3636 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3637 return 0;
3638
3639 section = VEC_index (dwarf2_section_info_def,
3640 dwarf2_per_objfile->types, 0);
3641
3642 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3643 types_list, types_list_elements);
3644 }
3645
3646 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3647
3648 dwarf2_per_objfile->index_table = std::move (map);
3649 dwarf2_per_objfile->using_index = 1;
3650 dwarf2_per_objfile->quick_file_names_table =
3651 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3652
3653 return 1;
3654 }
3655
3656 /* die_reader_func for dw2_get_file_names. */
3657
3658 static void
3659 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3660 const gdb_byte *info_ptr,
3661 struct die_info *comp_unit_die,
3662 int has_children,
3663 void *data)
3664 {
3665 struct dwarf2_cu *cu = reader->cu;
3666 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3667 struct dwarf2_per_objfile *dwarf2_per_objfile
3668 = cu->per_cu->dwarf2_per_objfile;
3669 struct objfile *objfile = dwarf2_per_objfile->objfile;
3670 struct dwarf2_per_cu_data *lh_cu;
3671 struct attribute *attr;
3672 int i;
3673 void **slot;
3674 struct quick_file_names *qfn;
3675
3676 gdb_assert (! this_cu->is_debug_types);
3677
3678 /* Our callers never want to match partial units -- instead they
3679 will match the enclosing full CU. */
3680 if (comp_unit_die->tag == DW_TAG_partial_unit)
3681 {
3682 this_cu->v.quick->no_file_data = 1;
3683 return;
3684 }
3685
3686 lh_cu = this_cu;
3687 slot = NULL;
3688
3689 line_header_up lh;
3690 sect_offset line_offset {};
3691
3692 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3693 if (attr)
3694 {
3695 struct quick_file_names find_entry;
3696
3697 line_offset = (sect_offset) DW_UNSND (attr);
3698
3699 /* We may have already read in this line header (TU line header sharing).
3700 If we have we're done. */
3701 find_entry.hash.dwo_unit = cu->dwo_unit;
3702 find_entry.hash.line_sect_off = line_offset;
3703 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3704 &find_entry, INSERT);
3705 if (*slot != NULL)
3706 {
3707 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3708 return;
3709 }
3710
3711 lh = dwarf_decode_line_header (line_offset, cu);
3712 }
3713 if (lh == NULL)
3714 {
3715 lh_cu->v.quick->no_file_data = 1;
3716 return;
3717 }
3718
3719 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3720 qfn->hash.dwo_unit = cu->dwo_unit;
3721 qfn->hash.line_sect_off = line_offset;
3722 gdb_assert (slot != NULL);
3723 *slot = qfn;
3724
3725 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3726
3727 qfn->num_file_names = lh->file_names.size ();
3728 qfn->file_names =
3729 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3730 for (i = 0; i < lh->file_names.size (); ++i)
3731 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3732 qfn->real_names = NULL;
3733
3734 lh_cu->v.quick->file_names = qfn;
3735 }
3736
3737 /* A helper for the "quick" functions which attempts to read the line
3738 table for THIS_CU. */
3739
3740 static struct quick_file_names *
3741 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3742 {
3743 /* This should never be called for TUs. */
3744 gdb_assert (! this_cu->is_debug_types);
3745 /* Nor type unit groups. */
3746 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3747
3748 if (this_cu->v.quick->file_names != NULL)
3749 return this_cu->v.quick->file_names;
3750 /* If we know there is no line data, no point in looking again. */
3751 if (this_cu->v.quick->no_file_data)
3752 return NULL;
3753
3754 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3755
3756 if (this_cu->v.quick->no_file_data)
3757 return NULL;
3758 return this_cu->v.quick->file_names;
3759 }
3760
3761 /* A helper for the "quick" functions which computes and caches the
3762 real path for a given file name from the line table. */
3763
3764 static const char *
3765 dw2_get_real_path (struct objfile *objfile,
3766 struct quick_file_names *qfn, int index)
3767 {
3768 if (qfn->real_names == NULL)
3769 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3770 qfn->num_file_names, const char *);
3771
3772 if (qfn->real_names[index] == NULL)
3773 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3774
3775 return qfn->real_names[index];
3776 }
3777
3778 static struct symtab *
3779 dw2_find_last_source_symtab (struct objfile *objfile)
3780 {
3781 struct dwarf2_per_objfile *dwarf2_per_objfile
3782 = get_dwarf2_per_objfile (objfile);
3783 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3784 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3785
3786 if (cust == NULL)
3787 return NULL;
3788
3789 return compunit_primary_filetab (cust);
3790 }
3791
3792 /* Traversal function for dw2_forget_cached_source_info. */
3793
3794 static int
3795 dw2_free_cached_file_names (void **slot, void *info)
3796 {
3797 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3798
3799 if (file_data->real_names)
3800 {
3801 int i;
3802
3803 for (i = 0; i < file_data->num_file_names; ++i)
3804 {
3805 xfree ((void*) file_data->real_names[i]);
3806 file_data->real_names[i] = NULL;
3807 }
3808 }
3809
3810 return 1;
3811 }
3812
3813 static void
3814 dw2_forget_cached_source_info (struct objfile *objfile)
3815 {
3816 struct dwarf2_per_objfile *dwarf2_per_objfile
3817 = get_dwarf2_per_objfile (objfile);
3818
3819 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3820 dw2_free_cached_file_names, NULL);
3821 }
3822
3823 /* Helper function for dw2_map_symtabs_matching_filename that expands
3824 the symtabs and calls the iterator. */
3825
3826 static int
3827 dw2_map_expand_apply (struct objfile *objfile,
3828 struct dwarf2_per_cu_data *per_cu,
3829 const char *name, const char *real_path,
3830 gdb::function_view<bool (symtab *)> callback)
3831 {
3832 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3833
3834 /* Don't visit already-expanded CUs. */
3835 if (per_cu->v.quick->compunit_symtab)
3836 return 0;
3837
3838 /* This may expand more than one symtab, and we want to iterate over
3839 all of them. */
3840 dw2_instantiate_symtab (per_cu, false);
3841
3842 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3843 last_made, callback);
3844 }
3845
3846 /* Implementation of the map_symtabs_matching_filename method. */
3847
3848 static bool
3849 dw2_map_symtabs_matching_filename
3850 (struct objfile *objfile, const char *name, const char *real_path,
3851 gdb::function_view<bool (symtab *)> callback)
3852 {
3853 const char *name_basename = lbasename (name);
3854 struct dwarf2_per_objfile *dwarf2_per_objfile
3855 = get_dwarf2_per_objfile (objfile);
3856
3857 /* The rule is CUs specify all the files, including those used by
3858 any TU, so there's no need to scan TUs here. */
3859
3860 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3861 {
3862 /* We only need to look at symtabs not already expanded. */
3863 if (per_cu->v.quick->compunit_symtab)
3864 continue;
3865
3866 quick_file_names *file_data = dw2_get_file_names (per_cu);
3867 if (file_data == NULL)
3868 continue;
3869
3870 for (int j = 0; j < file_data->num_file_names; ++j)
3871 {
3872 const char *this_name = file_data->file_names[j];
3873 const char *this_real_name;
3874
3875 if (compare_filenames_for_search (this_name, name))
3876 {
3877 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3878 callback))
3879 return true;
3880 continue;
3881 }
3882
3883 /* Before we invoke realpath, which can get expensive when many
3884 files are involved, do a quick comparison of the basenames. */
3885 if (! basenames_may_differ
3886 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3887 continue;
3888
3889 this_real_name = dw2_get_real_path (objfile, file_data, j);
3890 if (compare_filenames_for_search (this_real_name, name))
3891 {
3892 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3893 callback))
3894 return true;
3895 continue;
3896 }
3897
3898 if (real_path != NULL)
3899 {
3900 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3901 gdb_assert (IS_ABSOLUTE_PATH (name));
3902 if (this_real_name != NULL
3903 && FILENAME_CMP (real_path, this_real_name) == 0)
3904 {
3905 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3906 callback))
3907 return true;
3908 continue;
3909 }
3910 }
3911 }
3912 }
3913
3914 return false;
3915 }
3916
3917 /* Struct used to manage iterating over all CUs looking for a symbol. */
3918
3919 struct dw2_symtab_iterator
3920 {
3921 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3922 struct dwarf2_per_objfile *dwarf2_per_objfile;
3923 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3924 int want_specific_block;
3925 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3926 Unused if !WANT_SPECIFIC_BLOCK. */
3927 int block_index;
3928 /* The kind of symbol we're looking for. */
3929 domain_enum domain;
3930 /* The list of CUs from the index entry of the symbol,
3931 or NULL if not found. */
3932 offset_type *vec;
3933 /* The next element in VEC to look at. */
3934 int next;
3935 /* The number of elements in VEC, or zero if there is no match. */
3936 int length;
3937 /* Have we seen a global version of the symbol?
3938 If so we can ignore all further global instances.
3939 This is to work around gold/15646, inefficient gold-generated
3940 indices. */
3941 int global_seen;
3942 };
3943
3944 /* Initialize the index symtab iterator ITER.
3945 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3946 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3947
3948 static void
3949 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3950 struct dwarf2_per_objfile *dwarf2_per_objfile,
3951 int want_specific_block,
3952 int block_index,
3953 domain_enum domain,
3954 const char *name)
3955 {
3956 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3957 iter->want_specific_block = want_specific_block;
3958 iter->block_index = block_index;
3959 iter->domain = domain;
3960 iter->next = 0;
3961 iter->global_seen = 0;
3962
3963 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3964
3965 /* index is NULL if OBJF_READNOW. */
3966 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3967 iter->length = MAYBE_SWAP (*iter->vec);
3968 else
3969 {
3970 iter->vec = NULL;
3971 iter->length = 0;
3972 }
3973 }
3974
3975 /* Return the next matching CU or NULL if there are no more. */
3976
3977 static struct dwarf2_per_cu_data *
3978 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3979 {
3980 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3981
3982 for ( ; iter->next < iter->length; ++iter->next)
3983 {
3984 offset_type cu_index_and_attrs =
3985 MAYBE_SWAP (iter->vec[iter->next + 1]);
3986 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3987 int want_static = iter->block_index != GLOBAL_BLOCK;
3988 /* This value is only valid for index versions >= 7. */
3989 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3990 gdb_index_symbol_kind symbol_kind =
3991 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3992 /* Only check the symbol attributes if they're present.
3993 Indices prior to version 7 don't record them,
3994 and indices >= 7 may elide them for certain symbols
3995 (gold does this). */
3996 int attrs_valid =
3997 (dwarf2_per_objfile->index_table->version >= 7
3998 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3999
4000 /* Don't crash on bad data. */
4001 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
4002 + dwarf2_per_objfile->all_type_units.size ()))
4003 {
4004 complaint (_(".gdb_index entry has bad CU index"
4005 " [in module %s]"),
4006 objfile_name (dwarf2_per_objfile->objfile));
4007 continue;
4008 }
4009
4010 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
4011
4012 /* Skip if already read in. */
4013 if (per_cu->v.quick->compunit_symtab)
4014 continue;
4015
4016 /* Check static vs global. */
4017 if (attrs_valid)
4018 {
4019 if (iter->want_specific_block
4020 && want_static != is_static)
4021 continue;
4022 /* Work around gold/15646. */
4023 if (!is_static && iter->global_seen)
4024 continue;
4025 if (!is_static)
4026 iter->global_seen = 1;
4027 }
4028
4029 /* Only check the symbol's kind if it has one. */
4030 if (attrs_valid)
4031 {
4032 switch (iter->domain)
4033 {
4034 case VAR_DOMAIN:
4035 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
4036 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
4037 /* Some types are also in VAR_DOMAIN. */
4038 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4039 continue;
4040 break;
4041 case STRUCT_DOMAIN:
4042 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4043 continue;
4044 break;
4045 case LABEL_DOMAIN:
4046 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4047 continue;
4048 break;
4049 default:
4050 break;
4051 }
4052 }
4053
4054 ++iter->next;
4055 return per_cu;
4056 }
4057
4058 return NULL;
4059 }
4060
4061 static struct compunit_symtab *
4062 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4063 const char *name, domain_enum domain)
4064 {
4065 struct compunit_symtab *stab_best = NULL;
4066 struct dwarf2_per_objfile *dwarf2_per_objfile
4067 = get_dwarf2_per_objfile (objfile);
4068
4069 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4070
4071 struct dw2_symtab_iterator iter;
4072 struct dwarf2_per_cu_data *per_cu;
4073
4074 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4075
4076 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4077 {
4078 struct symbol *sym, *with_opaque = NULL;
4079 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4080 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4081 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4082
4083 sym = block_find_symbol (block, name, domain,
4084 block_find_non_opaque_type_preferred,
4085 &with_opaque);
4086
4087 /* Some caution must be observed with overloaded functions
4088 and methods, since the index will not contain any overload
4089 information (but NAME might contain it). */
4090
4091 if (sym != NULL
4092 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4093 return stab;
4094 if (with_opaque != NULL
4095 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4096 stab_best = stab;
4097
4098 /* Keep looking through other CUs. */
4099 }
4100
4101 return stab_best;
4102 }
4103
4104 static void
4105 dw2_print_stats (struct objfile *objfile)
4106 {
4107 struct dwarf2_per_objfile *dwarf2_per_objfile
4108 = get_dwarf2_per_objfile (objfile);
4109 int total = (dwarf2_per_objfile->all_comp_units.size ()
4110 + dwarf2_per_objfile->all_type_units.size ());
4111 int count = 0;
4112
4113 for (int i = 0; i < total; ++i)
4114 {
4115 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4116
4117 if (!per_cu->v.quick->compunit_symtab)
4118 ++count;
4119 }
4120 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4121 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4122 }
4123
4124 /* This dumps minimal information about the index.
4125 It is called via "mt print objfiles".
4126 One use is to verify .gdb_index has been loaded by the
4127 gdb.dwarf2/gdb-index.exp testcase. */
4128
4129 static void
4130 dw2_dump (struct objfile *objfile)
4131 {
4132 struct dwarf2_per_objfile *dwarf2_per_objfile
4133 = get_dwarf2_per_objfile (objfile);
4134
4135 gdb_assert (dwarf2_per_objfile->using_index);
4136 printf_filtered (".gdb_index:");
4137 if (dwarf2_per_objfile->index_table != NULL)
4138 {
4139 printf_filtered (" version %d\n",
4140 dwarf2_per_objfile->index_table->version);
4141 }
4142 else
4143 printf_filtered (" faked for \"readnow\"\n");
4144 printf_filtered ("\n");
4145 }
4146
4147 static void
4148 dw2_expand_symtabs_for_function (struct objfile *objfile,
4149 const char *func_name)
4150 {
4151 struct dwarf2_per_objfile *dwarf2_per_objfile
4152 = get_dwarf2_per_objfile (objfile);
4153
4154 struct dw2_symtab_iterator iter;
4155 struct dwarf2_per_cu_data *per_cu;
4156
4157 /* Note: It doesn't matter what we pass for block_index here. */
4158 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4159 func_name);
4160
4161 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4162 dw2_instantiate_symtab (per_cu, false);
4163
4164 }
4165
4166 static void
4167 dw2_expand_all_symtabs (struct objfile *objfile)
4168 {
4169 struct dwarf2_per_objfile *dwarf2_per_objfile
4170 = get_dwarf2_per_objfile (objfile);
4171 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4172 + dwarf2_per_objfile->all_type_units.size ());
4173
4174 for (int i = 0; i < total_units; ++i)
4175 {
4176 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4177
4178 /* We don't want to directly expand a partial CU, because if we
4179 read it with the wrong language, then assertion failures can
4180 be triggered later on. See PR symtab/23010. So, tell
4181 dw2_instantiate_symtab to skip partial CUs -- any important
4182 partial CU will be read via DW_TAG_imported_unit anyway. */
4183 dw2_instantiate_symtab (per_cu, true);
4184 }
4185 }
4186
4187 static void
4188 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4189 const char *fullname)
4190 {
4191 struct dwarf2_per_objfile *dwarf2_per_objfile
4192 = get_dwarf2_per_objfile (objfile);
4193
4194 /* We don't need to consider type units here.
4195 This is only called for examining code, e.g. expand_line_sal.
4196 There can be an order of magnitude (or more) more type units
4197 than comp units, and we avoid them if we can. */
4198
4199 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4200 {
4201 /* We only need to look at symtabs not already expanded. */
4202 if (per_cu->v.quick->compunit_symtab)
4203 continue;
4204
4205 quick_file_names *file_data = dw2_get_file_names (per_cu);
4206 if (file_data == NULL)
4207 continue;
4208
4209 for (int j = 0; j < file_data->num_file_names; ++j)
4210 {
4211 const char *this_fullname = file_data->file_names[j];
4212
4213 if (filename_cmp (this_fullname, fullname) == 0)
4214 {
4215 dw2_instantiate_symtab (per_cu, false);
4216 break;
4217 }
4218 }
4219 }
4220 }
4221
4222 static void
4223 dw2_map_matching_symbols (struct objfile *objfile,
4224 const char * name, domain_enum domain,
4225 int global,
4226 int (*callback) (const struct block *,
4227 struct symbol *, void *),
4228 void *data, symbol_name_match_type match,
4229 symbol_compare_ftype *ordered_compare)
4230 {
4231 /* Currently unimplemented; used for Ada. The function can be called if the
4232 current language is Ada for a non-Ada objfile using GNU index. As Ada
4233 does not look for non-Ada symbols this function should just return. */
4234 }
4235
4236 /* Symbol name matcher for .gdb_index names.
4237
4238 Symbol names in .gdb_index have a few particularities:
4239
4240 - There's no indication of which is the language of each symbol.
4241
4242 Since each language has its own symbol name matching algorithm,
4243 and we don't know which language is the right one, we must match
4244 each symbol against all languages. This would be a potential
4245 performance problem if it were not mitigated by the
4246 mapped_index::name_components lookup table, which significantly
4247 reduces the number of times we need to call into this matcher,
4248 making it a non-issue.
4249
4250 - Symbol names in the index have no overload (parameter)
4251 information. I.e., in C++, "foo(int)" and "foo(long)" both
4252 appear as "foo" in the index, for example.
4253
4254 This means that the lookup names passed to the symbol name
4255 matcher functions must have no parameter information either
4256 because (e.g.) symbol search name "foo" does not match
4257 lookup-name "foo(int)" [while swapping search name for lookup
4258 name would match].
4259 */
4260 class gdb_index_symbol_name_matcher
4261 {
4262 public:
4263 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4264 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4265
4266 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4267 Returns true if any matcher matches. */
4268 bool matches (const char *symbol_name);
4269
4270 private:
4271 /* A reference to the lookup name we're matching against. */
4272 const lookup_name_info &m_lookup_name;
4273
4274 /* A vector holding all the different symbol name matchers, for all
4275 languages. */
4276 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4277 };
4278
4279 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4280 (const lookup_name_info &lookup_name)
4281 : m_lookup_name (lookup_name)
4282 {
4283 /* Prepare the vector of comparison functions upfront, to avoid
4284 doing the same work for each symbol. Care is taken to avoid
4285 matching with the same matcher more than once if/when multiple
4286 languages use the same matcher function. */
4287 auto &matchers = m_symbol_name_matcher_funcs;
4288 matchers.reserve (nr_languages);
4289
4290 matchers.push_back (default_symbol_name_matcher);
4291
4292 for (int i = 0; i < nr_languages; i++)
4293 {
4294 const language_defn *lang = language_def ((enum language) i);
4295 symbol_name_matcher_ftype *name_matcher
4296 = get_symbol_name_matcher (lang, m_lookup_name);
4297
4298 /* Don't insert the same comparison routine more than once.
4299 Note that we do this linear walk instead of a seemingly
4300 cheaper sorted insert, or use a std::set or something like
4301 that, because relative order of function addresses is not
4302 stable. This is not a problem in practice because the number
4303 of supported languages is low, and the cost here is tiny
4304 compared to the number of searches we'll do afterwards using
4305 this object. */
4306 if (name_matcher != default_symbol_name_matcher
4307 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4308 == matchers.end ()))
4309 matchers.push_back (name_matcher);
4310 }
4311 }
4312
4313 bool
4314 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4315 {
4316 for (auto matches_name : m_symbol_name_matcher_funcs)
4317 if (matches_name (symbol_name, m_lookup_name, NULL))
4318 return true;
4319
4320 return false;
4321 }
4322
4323 /* Starting from a search name, return the string that finds the upper
4324 bound of all strings that start with SEARCH_NAME in a sorted name
4325 list. Returns the empty string to indicate that the upper bound is
4326 the end of the list. */
4327
4328 static std::string
4329 make_sort_after_prefix_name (const char *search_name)
4330 {
4331 /* When looking to complete "func", we find the upper bound of all
4332 symbols that start with "func" by looking for where we'd insert
4333 the closest string that would follow "func" in lexicographical
4334 order. Usually, that's "func"-with-last-character-incremented,
4335 i.e. "fund". Mind non-ASCII characters, though. Usually those
4336 will be UTF-8 multi-byte sequences, but we can't be certain.
4337 Especially mind the 0xff character, which is a valid character in
4338 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4339 rule out compilers allowing it in identifiers. Note that
4340 conveniently, strcmp/strcasecmp are specified to compare
4341 characters interpreted as unsigned char. So what we do is treat
4342 the whole string as a base 256 number composed of a sequence of
4343 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4344 to 0, and carries 1 to the following more-significant position.
4345 If the very first character in SEARCH_NAME ends up incremented
4346 and carries/overflows, then the upper bound is the end of the
4347 list. The string after the empty string is also the empty
4348 string.
4349
4350 Some examples of this operation:
4351
4352 SEARCH_NAME => "+1" RESULT
4353
4354 "abc" => "abd"
4355 "ab\xff" => "ac"
4356 "\xff" "a" "\xff" => "\xff" "b"
4357 "\xff" => ""
4358 "\xff\xff" => ""
4359 "" => ""
4360
4361 Then, with these symbols for example:
4362
4363 func
4364 func1
4365 fund
4366
4367 completing "func" looks for symbols between "func" and
4368 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4369 which finds "func" and "func1", but not "fund".
4370
4371 And with:
4372
4373 funcÿ (Latin1 'ÿ' [0xff])
4374 funcÿ1
4375 fund
4376
4377 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4378 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4379
4380 And with:
4381
4382 ÿÿ (Latin1 'ÿ' [0xff])
4383 ÿÿ1
4384
4385 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4386 the end of the list.
4387 */
4388 std::string after = search_name;
4389 while (!after.empty () && (unsigned char) after.back () == 0xff)
4390 after.pop_back ();
4391 if (!after.empty ())
4392 after.back () = (unsigned char) after.back () + 1;
4393 return after;
4394 }
4395
4396 /* See declaration. */
4397
4398 std::pair<std::vector<name_component>::const_iterator,
4399 std::vector<name_component>::const_iterator>
4400 mapped_index_base::find_name_components_bounds
4401 (const lookup_name_info &lookup_name_without_params) const
4402 {
4403 auto *name_cmp
4404 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4405
4406 const char *cplus
4407 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4408
4409 /* Comparison function object for lower_bound that matches against a
4410 given symbol name. */
4411 auto lookup_compare_lower = [&] (const name_component &elem,
4412 const char *name)
4413 {
4414 const char *elem_qualified = this->symbol_name_at (elem.idx);
4415 const char *elem_name = elem_qualified + elem.name_offset;
4416 return name_cmp (elem_name, name) < 0;
4417 };
4418
4419 /* Comparison function object for upper_bound that matches against a
4420 given symbol name. */
4421 auto lookup_compare_upper = [&] (const char *name,
4422 const name_component &elem)
4423 {
4424 const char *elem_qualified = this->symbol_name_at (elem.idx);
4425 const char *elem_name = elem_qualified + elem.name_offset;
4426 return name_cmp (name, elem_name) < 0;
4427 };
4428
4429 auto begin = this->name_components.begin ();
4430 auto end = this->name_components.end ();
4431
4432 /* Find the lower bound. */
4433 auto lower = [&] ()
4434 {
4435 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4436 return begin;
4437 else
4438 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4439 } ();
4440
4441 /* Find the upper bound. */
4442 auto upper = [&] ()
4443 {
4444 if (lookup_name_without_params.completion_mode ())
4445 {
4446 /* In completion mode, we want UPPER to point past all
4447 symbols names that have the same prefix. I.e., with
4448 these symbols, and completing "func":
4449
4450 function << lower bound
4451 function1
4452 other_function << upper bound
4453
4454 We find the upper bound by looking for the insertion
4455 point of "func"-with-last-character-incremented,
4456 i.e. "fund". */
4457 std::string after = make_sort_after_prefix_name (cplus);
4458 if (after.empty ())
4459 return end;
4460 return std::lower_bound (lower, end, after.c_str (),
4461 lookup_compare_lower);
4462 }
4463 else
4464 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4465 } ();
4466
4467 return {lower, upper};
4468 }
4469
4470 /* See declaration. */
4471
4472 void
4473 mapped_index_base::build_name_components ()
4474 {
4475 if (!this->name_components.empty ())
4476 return;
4477
4478 this->name_components_casing = case_sensitivity;
4479 auto *name_cmp
4480 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4481
4482 /* The code below only knows how to break apart components of C++
4483 symbol names (and other languages that use '::' as
4484 namespace/module separator). If we add support for wild matching
4485 to some language that uses some other operator (E.g., Ada, Go and
4486 D use '.'), then we'll need to try splitting the symbol name
4487 according to that language too. Note that Ada does support wild
4488 matching, but doesn't currently support .gdb_index. */
4489 auto count = this->symbol_name_count ();
4490 for (offset_type idx = 0; idx < count; idx++)
4491 {
4492 if (this->symbol_name_slot_invalid (idx))
4493 continue;
4494
4495 const char *name = this->symbol_name_at (idx);
4496
4497 /* Add each name component to the name component table. */
4498 unsigned int previous_len = 0;
4499 for (unsigned int current_len = cp_find_first_component (name);
4500 name[current_len] != '\0';
4501 current_len += cp_find_first_component (name + current_len))
4502 {
4503 gdb_assert (name[current_len] == ':');
4504 this->name_components.push_back ({previous_len, idx});
4505 /* Skip the '::'. */
4506 current_len += 2;
4507 previous_len = current_len;
4508 }
4509 this->name_components.push_back ({previous_len, idx});
4510 }
4511
4512 /* Sort name_components elements by name. */
4513 auto name_comp_compare = [&] (const name_component &left,
4514 const name_component &right)
4515 {
4516 const char *left_qualified = this->symbol_name_at (left.idx);
4517 const char *right_qualified = this->symbol_name_at (right.idx);
4518
4519 const char *left_name = left_qualified + left.name_offset;
4520 const char *right_name = right_qualified + right.name_offset;
4521
4522 return name_cmp (left_name, right_name) < 0;
4523 };
4524
4525 std::sort (this->name_components.begin (),
4526 this->name_components.end (),
4527 name_comp_compare);
4528 }
4529
4530 /* Helper for dw2_expand_symtabs_matching that works with a
4531 mapped_index_base instead of the containing objfile. This is split
4532 to a separate function in order to be able to unit test the
4533 name_components matching using a mock mapped_index_base. For each
4534 symbol name that matches, calls MATCH_CALLBACK, passing it the
4535 symbol's index in the mapped_index_base symbol table. */
4536
4537 static void
4538 dw2_expand_symtabs_matching_symbol
4539 (mapped_index_base &index,
4540 const lookup_name_info &lookup_name_in,
4541 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4542 enum search_domain kind,
4543 gdb::function_view<void (offset_type)> match_callback)
4544 {
4545 lookup_name_info lookup_name_without_params
4546 = lookup_name_in.make_ignore_params ();
4547 gdb_index_symbol_name_matcher lookup_name_matcher
4548 (lookup_name_without_params);
4549
4550 /* Build the symbol name component sorted vector, if we haven't
4551 yet. */
4552 index.build_name_components ();
4553
4554 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4555
4556 /* Now for each symbol name in range, check to see if we have a name
4557 match, and if so, call the MATCH_CALLBACK callback. */
4558
4559 /* The same symbol may appear more than once in the range though.
4560 E.g., if we're looking for symbols that complete "w", and we have
4561 a symbol named "w1::w2", we'll find the two name components for
4562 that same symbol in the range. To be sure we only call the
4563 callback once per symbol, we first collect the symbol name
4564 indexes that matched in a temporary vector and ignore
4565 duplicates. */
4566 std::vector<offset_type> matches;
4567 matches.reserve (std::distance (bounds.first, bounds.second));
4568
4569 for (; bounds.first != bounds.second; ++bounds.first)
4570 {
4571 const char *qualified = index.symbol_name_at (bounds.first->idx);
4572
4573 if (!lookup_name_matcher.matches (qualified)
4574 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4575 continue;
4576
4577 matches.push_back (bounds.first->idx);
4578 }
4579
4580 std::sort (matches.begin (), matches.end ());
4581
4582 /* Finally call the callback, once per match. */
4583 ULONGEST prev = -1;
4584 for (offset_type idx : matches)
4585 {
4586 if (prev != idx)
4587 {
4588 match_callback (idx);
4589 prev = idx;
4590 }
4591 }
4592
4593 /* Above we use a type wider than idx's for 'prev', since 0 and
4594 (offset_type)-1 are both possible values. */
4595 static_assert (sizeof (prev) > sizeof (offset_type), "");
4596 }
4597
4598 #if GDB_SELF_TEST
4599
4600 namespace selftests { namespace dw2_expand_symtabs_matching {
4601
4602 /* A mock .gdb_index/.debug_names-like name index table, enough to
4603 exercise dw2_expand_symtabs_matching_symbol, which works with the
4604 mapped_index_base interface. Builds an index from the symbol list
4605 passed as parameter to the constructor. */
4606 class mock_mapped_index : public mapped_index_base
4607 {
4608 public:
4609 mock_mapped_index (gdb::array_view<const char *> symbols)
4610 : m_symbol_table (symbols)
4611 {}
4612
4613 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4614
4615 /* Return the number of names in the symbol table. */
4616 size_t symbol_name_count () const override
4617 {
4618 return m_symbol_table.size ();
4619 }
4620
4621 /* Get the name of the symbol at IDX in the symbol table. */
4622 const char *symbol_name_at (offset_type idx) const override
4623 {
4624 return m_symbol_table[idx];
4625 }
4626
4627 private:
4628 gdb::array_view<const char *> m_symbol_table;
4629 };
4630
4631 /* Convenience function that converts a NULL pointer to a "<null>"
4632 string, to pass to print routines. */
4633
4634 static const char *
4635 string_or_null (const char *str)
4636 {
4637 return str != NULL ? str : "<null>";
4638 }
4639
4640 /* Check if a lookup_name_info built from
4641 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4642 index. EXPECTED_LIST is the list of expected matches, in expected
4643 matching order. If no match expected, then an empty list is
4644 specified. Returns true on success. On failure prints a warning
4645 indicating the file:line that failed, and returns false. */
4646
4647 static bool
4648 check_match (const char *file, int line,
4649 mock_mapped_index &mock_index,
4650 const char *name, symbol_name_match_type match_type,
4651 bool completion_mode,
4652 std::initializer_list<const char *> expected_list)
4653 {
4654 lookup_name_info lookup_name (name, match_type, completion_mode);
4655
4656 bool matched = true;
4657
4658 auto mismatch = [&] (const char *expected_str,
4659 const char *got)
4660 {
4661 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4662 "expected=\"%s\", got=\"%s\"\n"),
4663 file, line,
4664 (match_type == symbol_name_match_type::FULL
4665 ? "FULL" : "WILD"),
4666 name, string_or_null (expected_str), string_or_null (got));
4667 matched = false;
4668 };
4669
4670 auto expected_it = expected_list.begin ();
4671 auto expected_end = expected_list.end ();
4672
4673 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4674 NULL, ALL_DOMAIN,
4675 [&] (offset_type idx)
4676 {
4677 const char *matched_name = mock_index.symbol_name_at (idx);
4678 const char *expected_str
4679 = expected_it == expected_end ? NULL : *expected_it++;
4680
4681 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4682 mismatch (expected_str, matched_name);
4683 });
4684
4685 const char *expected_str
4686 = expected_it == expected_end ? NULL : *expected_it++;
4687 if (expected_str != NULL)
4688 mismatch (expected_str, NULL);
4689
4690 return matched;
4691 }
4692
4693 /* The symbols added to the mock mapped_index for testing (in
4694 canonical form). */
4695 static const char *test_symbols[] = {
4696 "function",
4697 "std::bar",
4698 "std::zfunction",
4699 "std::zfunction2",
4700 "w1::w2",
4701 "ns::foo<char*>",
4702 "ns::foo<int>",
4703 "ns::foo<long>",
4704 "ns2::tmpl<int>::foo2",
4705 "(anonymous namespace)::A::B::C",
4706
4707 /* These are used to check that the increment-last-char in the
4708 matching algorithm for completion doesn't match "t1_fund" when
4709 completing "t1_func". */
4710 "t1_func",
4711 "t1_func1",
4712 "t1_fund",
4713 "t1_fund1",
4714
4715 /* A UTF-8 name with multi-byte sequences to make sure that
4716 cp-name-parser understands this as a single identifier ("função"
4717 is "function" in PT). */
4718 u8"u8função",
4719
4720 /* \377 (0xff) is Latin1 'ÿ'. */
4721 "yfunc\377",
4722
4723 /* \377 (0xff) is Latin1 'ÿ'. */
4724 "\377",
4725 "\377\377123",
4726
4727 /* A name with all sorts of complications. Starts with "z" to make
4728 it easier for the completion tests below. */
4729 #define Z_SYM_NAME \
4730 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4731 "::tuple<(anonymous namespace)::ui*, " \
4732 "std::default_delete<(anonymous namespace)::ui>, void>"
4733
4734 Z_SYM_NAME
4735 };
4736
4737 /* Returns true if the mapped_index_base::find_name_component_bounds
4738 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4739 in completion mode. */
4740
4741 static bool
4742 check_find_bounds_finds (mapped_index_base &index,
4743 const char *search_name,
4744 gdb::array_view<const char *> expected_syms)
4745 {
4746 lookup_name_info lookup_name (search_name,
4747 symbol_name_match_type::FULL, true);
4748
4749 auto bounds = index.find_name_components_bounds (lookup_name);
4750
4751 size_t distance = std::distance (bounds.first, bounds.second);
4752 if (distance != expected_syms.size ())
4753 return false;
4754
4755 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4756 {
4757 auto nc_elem = bounds.first + exp_elem;
4758 const char *qualified = index.symbol_name_at (nc_elem->idx);
4759 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4760 return false;
4761 }
4762
4763 return true;
4764 }
4765
4766 /* Test the lower-level mapped_index::find_name_component_bounds
4767 method. */
4768
4769 static void
4770 test_mapped_index_find_name_component_bounds ()
4771 {
4772 mock_mapped_index mock_index (test_symbols);
4773
4774 mock_index.build_name_components ();
4775
4776 /* Test the lower-level mapped_index::find_name_component_bounds
4777 method in completion mode. */
4778 {
4779 static const char *expected_syms[] = {
4780 "t1_func",
4781 "t1_func1",
4782 };
4783
4784 SELF_CHECK (check_find_bounds_finds (mock_index,
4785 "t1_func", expected_syms));
4786 }
4787
4788 /* Check that the increment-last-char in the name matching algorithm
4789 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4790 {
4791 static const char *expected_syms1[] = {
4792 "\377",
4793 "\377\377123",
4794 };
4795 SELF_CHECK (check_find_bounds_finds (mock_index,
4796 "\377", expected_syms1));
4797
4798 static const char *expected_syms2[] = {
4799 "\377\377123",
4800 };
4801 SELF_CHECK (check_find_bounds_finds (mock_index,
4802 "\377\377", expected_syms2));
4803 }
4804 }
4805
4806 /* Test dw2_expand_symtabs_matching_symbol. */
4807
4808 static void
4809 test_dw2_expand_symtabs_matching_symbol ()
4810 {
4811 mock_mapped_index mock_index (test_symbols);
4812
4813 /* We let all tests run until the end even if some fails, for debug
4814 convenience. */
4815 bool any_mismatch = false;
4816
4817 /* Create the expected symbols list (an initializer_list). Needed
4818 because lists have commas, and we need to pass them to CHECK,
4819 which is a macro. */
4820 #define EXPECT(...) { __VA_ARGS__ }
4821
4822 /* Wrapper for check_match that passes down the current
4823 __FILE__/__LINE__. */
4824 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4825 any_mismatch |= !check_match (__FILE__, __LINE__, \
4826 mock_index, \
4827 NAME, MATCH_TYPE, COMPLETION_MODE, \
4828 EXPECTED_LIST)
4829
4830 /* Identity checks. */
4831 for (const char *sym : test_symbols)
4832 {
4833 /* Should be able to match all existing symbols. */
4834 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4835 EXPECT (sym));
4836
4837 /* Should be able to match all existing symbols with
4838 parameters. */
4839 std::string with_params = std::string (sym) + "(int)";
4840 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4841 EXPECT (sym));
4842
4843 /* Should be able to match all existing symbols with
4844 parameters and qualifiers. */
4845 with_params = std::string (sym) + " ( int ) const";
4846 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4847 EXPECT (sym));
4848
4849 /* This should really find sym, but cp-name-parser.y doesn't
4850 know about lvalue/rvalue qualifiers yet. */
4851 with_params = std::string (sym) + " ( int ) &&";
4852 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4853 {});
4854 }
4855
4856 /* Check that the name matching algorithm for completion doesn't get
4857 confused with Latin1 'ÿ' / 0xff. */
4858 {
4859 static const char str[] = "\377";
4860 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4861 EXPECT ("\377", "\377\377123"));
4862 }
4863
4864 /* Check that the increment-last-char in the matching algorithm for
4865 completion doesn't match "t1_fund" when completing "t1_func". */
4866 {
4867 static const char str[] = "t1_func";
4868 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4869 EXPECT ("t1_func", "t1_func1"));
4870 }
4871
4872 /* Check that completion mode works at each prefix of the expected
4873 symbol name. */
4874 {
4875 static const char str[] = "function(int)";
4876 size_t len = strlen (str);
4877 std::string lookup;
4878
4879 for (size_t i = 1; i < len; i++)
4880 {
4881 lookup.assign (str, i);
4882 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4883 EXPECT ("function"));
4884 }
4885 }
4886
4887 /* While "w" is a prefix of both components, the match function
4888 should still only be called once. */
4889 {
4890 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4891 EXPECT ("w1::w2"));
4892 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4893 EXPECT ("w1::w2"));
4894 }
4895
4896 /* Same, with a "complicated" symbol. */
4897 {
4898 static const char str[] = Z_SYM_NAME;
4899 size_t len = strlen (str);
4900 std::string lookup;
4901
4902 for (size_t i = 1; i < len; i++)
4903 {
4904 lookup.assign (str, i);
4905 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4906 EXPECT (Z_SYM_NAME));
4907 }
4908 }
4909
4910 /* In FULL mode, an incomplete symbol doesn't match. */
4911 {
4912 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4913 {});
4914 }
4915
4916 /* A complete symbol with parameters matches any overload, since the
4917 index has no overload info. */
4918 {
4919 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4920 EXPECT ("std::zfunction", "std::zfunction2"));
4921 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4922 EXPECT ("std::zfunction", "std::zfunction2"));
4923 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4924 EXPECT ("std::zfunction", "std::zfunction2"));
4925 }
4926
4927 /* Check that whitespace is ignored appropriately. A symbol with a
4928 template argument list. */
4929 {
4930 static const char expected[] = "ns::foo<int>";
4931 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4932 EXPECT (expected));
4933 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4934 EXPECT (expected));
4935 }
4936
4937 /* Check that whitespace is ignored appropriately. A symbol with a
4938 template argument list that includes a pointer. */
4939 {
4940 static const char expected[] = "ns::foo<char*>";
4941 /* Try both completion and non-completion modes. */
4942 static const bool completion_mode[2] = {false, true};
4943 for (size_t i = 0; i < 2; i++)
4944 {
4945 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4946 completion_mode[i], EXPECT (expected));
4947 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4948 completion_mode[i], EXPECT (expected));
4949
4950 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4951 completion_mode[i], EXPECT (expected));
4952 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4953 completion_mode[i], EXPECT (expected));
4954 }
4955 }
4956
4957 {
4958 /* Check method qualifiers are ignored. */
4959 static const char expected[] = "ns::foo<char*>";
4960 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4961 symbol_name_match_type::FULL, true, EXPECT (expected));
4962 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4963 symbol_name_match_type::FULL, true, EXPECT (expected));
4964 CHECK_MATCH ("foo < char * > ( int ) const",
4965 symbol_name_match_type::WILD, true, EXPECT (expected));
4966 CHECK_MATCH ("foo < char * > ( int ) &&",
4967 symbol_name_match_type::WILD, true, EXPECT (expected));
4968 }
4969
4970 /* Test lookup names that don't match anything. */
4971 {
4972 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4973 {});
4974
4975 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4976 {});
4977 }
4978
4979 /* Some wild matching tests, exercising "(anonymous namespace)",
4980 which should not be confused with a parameter list. */
4981 {
4982 static const char *syms[] = {
4983 "A::B::C",
4984 "B::C",
4985 "C",
4986 "A :: B :: C ( int )",
4987 "B :: C ( int )",
4988 "C ( int )",
4989 };
4990
4991 for (const char *s : syms)
4992 {
4993 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4994 EXPECT ("(anonymous namespace)::A::B::C"));
4995 }
4996 }
4997
4998 {
4999 static const char expected[] = "ns2::tmpl<int>::foo2";
5000 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
5001 EXPECT (expected));
5002 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
5003 EXPECT (expected));
5004 }
5005
5006 SELF_CHECK (!any_mismatch);
5007
5008 #undef EXPECT
5009 #undef CHECK_MATCH
5010 }
5011
5012 static void
5013 run_test ()
5014 {
5015 test_mapped_index_find_name_component_bounds ();
5016 test_dw2_expand_symtabs_matching_symbol ();
5017 }
5018
5019 }} // namespace selftests::dw2_expand_symtabs_matching
5020
5021 #endif /* GDB_SELF_TEST */
5022
5023 /* If FILE_MATCHER is NULL or if PER_CU has
5024 dwarf2_per_cu_quick_data::MARK set (see
5025 dw_expand_symtabs_matching_file_matcher), expand the CU and call
5026 EXPANSION_NOTIFY on it. */
5027
5028 static void
5029 dw2_expand_symtabs_matching_one
5030 (struct dwarf2_per_cu_data *per_cu,
5031 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5032 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
5033 {
5034 if (file_matcher == NULL || per_cu->v.quick->mark)
5035 {
5036 bool symtab_was_null
5037 = (per_cu->v.quick->compunit_symtab == NULL);
5038
5039 dw2_instantiate_symtab (per_cu, false);
5040
5041 if (expansion_notify != NULL
5042 && symtab_was_null
5043 && per_cu->v.quick->compunit_symtab != NULL)
5044 expansion_notify (per_cu->v.quick->compunit_symtab);
5045 }
5046 }
5047
5048 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5049 matched, to expand corresponding CUs that were marked. IDX is the
5050 index of the symbol name that matched. */
5051
5052 static void
5053 dw2_expand_marked_cus
5054 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5055 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5056 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5057 search_domain kind)
5058 {
5059 offset_type *vec, vec_len, vec_idx;
5060 bool global_seen = false;
5061 mapped_index &index = *dwarf2_per_objfile->index_table;
5062
5063 vec = (offset_type *) (index.constant_pool
5064 + MAYBE_SWAP (index.symbol_table[idx].vec));
5065 vec_len = MAYBE_SWAP (vec[0]);
5066 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5067 {
5068 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5069 /* This value is only valid for index versions >= 7. */
5070 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5071 gdb_index_symbol_kind symbol_kind =
5072 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5073 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5074 /* Only check the symbol attributes if they're present.
5075 Indices prior to version 7 don't record them,
5076 and indices >= 7 may elide them for certain symbols
5077 (gold does this). */
5078 int attrs_valid =
5079 (index.version >= 7
5080 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5081
5082 /* Work around gold/15646. */
5083 if (attrs_valid)
5084 {
5085 if (!is_static && global_seen)
5086 continue;
5087 if (!is_static)
5088 global_seen = true;
5089 }
5090
5091 /* Only check the symbol's kind if it has one. */
5092 if (attrs_valid)
5093 {
5094 switch (kind)
5095 {
5096 case VARIABLES_DOMAIN:
5097 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5098 continue;
5099 break;
5100 case FUNCTIONS_DOMAIN:
5101 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5102 continue;
5103 break;
5104 case TYPES_DOMAIN:
5105 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5106 continue;
5107 break;
5108 default:
5109 break;
5110 }
5111 }
5112
5113 /* Don't crash on bad data. */
5114 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5115 + dwarf2_per_objfile->all_type_units.size ()))
5116 {
5117 complaint (_(".gdb_index entry has bad CU index"
5118 " [in module %s]"),
5119 objfile_name (dwarf2_per_objfile->objfile));
5120 continue;
5121 }
5122
5123 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5124 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5125 expansion_notify);
5126 }
5127 }
5128
5129 /* If FILE_MATCHER is non-NULL, set all the
5130 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5131 that match FILE_MATCHER. */
5132
5133 static void
5134 dw_expand_symtabs_matching_file_matcher
5135 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5136 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5137 {
5138 if (file_matcher == NULL)
5139 return;
5140
5141 objfile *const objfile = dwarf2_per_objfile->objfile;
5142
5143 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5144 htab_eq_pointer,
5145 NULL, xcalloc, xfree));
5146 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5147 htab_eq_pointer,
5148 NULL, xcalloc, xfree));
5149
5150 /* The rule is CUs specify all the files, including those used by
5151 any TU, so there's no need to scan TUs here. */
5152
5153 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5154 {
5155 QUIT;
5156
5157 per_cu->v.quick->mark = 0;
5158
5159 /* We only need to look at symtabs not already expanded. */
5160 if (per_cu->v.quick->compunit_symtab)
5161 continue;
5162
5163 quick_file_names *file_data = dw2_get_file_names (per_cu);
5164 if (file_data == NULL)
5165 continue;
5166
5167 if (htab_find (visited_not_found.get (), file_data) != NULL)
5168 continue;
5169 else if (htab_find (visited_found.get (), file_data) != NULL)
5170 {
5171 per_cu->v.quick->mark = 1;
5172 continue;
5173 }
5174
5175 for (int j = 0; j < file_data->num_file_names; ++j)
5176 {
5177 const char *this_real_name;
5178
5179 if (file_matcher (file_data->file_names[j], false))
5180 {
5181 per_cu->v.quick->mark = 1;
5182 break;
5183 }
5184
5185 /* Before we invoke realpath, which can get expensive when many
5186 files are involved, do a quick comparison of the basenames. */
5187 if (!basenames_may_differ
5188 && !file_matcher (lbasename (file_data->file_names[j]),
5189 true))
5190 continue;
5191
5192 this_real_name = dw2_get_real_path (objfile, file_data, j);
5193 if (file_matcher (this_real_name, false))
5194 {
5195 per_cu->v.quick->mark = 1;
5196 break;
5197 }
5198 }
5199
5200 void **slot = htab_find_slot (per_cu->v.quick->mark
5201 ? visited_found.get ()
5202 : visited_not_found.get (),
5203 file_data, INSERT);
5204 *slot = file_data;
5205 }
5206 }
5207
5208 static void
5209 dw2_expand_symtabs_matching
5210 (struct objfile *objfile,
5211 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5212 const lookup_name_info &lookup_name,
5213 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5214 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5215 enum search_domain kind)
5216 {
5217 struct dwarf2_per_objfile *dwarf2_per_objfile
5218 = get_dwarf2_per_objfile (objfile);
5219
5220 /* index_table is NULL if OBJF_READNOW. */
5221 if (!dwarf2_per_objfile->index_table)
5222 return;
5223
5224 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5225
5226 mapped_index &index = *dwarf2_per_objfile->index_table;
5227
5228 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5229 symbol_matcher,
5230 kind, [&] (offset_type idx)
5231 {
5232 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5233 expansion_notify, kind);
5234 });
5235 }
5236
5237 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5238 symtab. */
5239
5240 static struct compunit_symtab *
5241 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5242 CORE_ADDR pc)
5243 {
5244 int i;
5245
5246 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5247 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5248 return cust;
5249
5250 if (cust->includes == NULL)
5251 return NULL;
5252
5253 for (i = 0; cust->includes[i]; ++i)
5254 {
5255 struct compunit_symtab *s = cust->includes[i];
5256
5257 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5258 if (s != NULL)
5259 return s;
5260 }
5261
5262 return NULL;
5263 }
5264
5265 static struct compunit_symtab *
5266 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5267 struct bound_minimal_symbol msymbol,
5268 CORE_ADDR pc,
5269 struct obj_section *section,
5270 int warn_if_readin)
5271 {
5272 struct dwarf2_per_cu_data *data;
5273 struct compunit_symtab *result;
5274
5275 if (!objfile->partial_symtabs->psymtabs_addrmap)
5276 return NULL;
5277
5278 CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
5279 SECT_OFF_TEXT (objfile));
5280 data = (struct dwarf2_per_cu_data *) addrmap_find
5281 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
5282 if (!data)
5283 return NULL;
5284
5285 if (warn_if_readin && data->v.quick->compunit_symtab)
5286 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5287 paddress (get_objfile_arch (objfile), pc));
5288
5289 result
5290 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5291 false),
5292 pc);
5293 gdb_assert (result != NULL);
5294 return result;
5295 }
5296
5297 static void
5298 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5299 void *data, int need_fullname)
5300 {
5301 struct dwarf2_per_objfile *dwarf2_per_objfile
5302 = get_dwarf2_per_objfile (objfile);
5303
5304 if (!dwarf2_per_objfile->filenames_cache)
5305 {
5306 dwarf2_per_objfile->filenames_cache.emplace ();
5307
5308 htab_up visited (htab_create_alloc (10,
5309 htab_hash_pointer, htab_eq_pointer,
5310 NULL, xcalloc, xfree));
5311
5312 /* The rule is CUs specify all the files, including those used
5313 by any TU, so there's no need to scan TUs here. We can
5314 ignore file names coming from already-expanded CUs. */
5315
5316 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5317 {
5318 if (per_cu->v.quick->compunit_symtab)
5319 {
5320 void **slot = htab_find_slot (visited.get (),
5321 per_cu->v.quick->file_names,
5322 INSERT);
5323
5324 *slot = per_cu->v.quick->file_names;
5325 }
5326 }
5327
5328 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5329 {
5330 /* We only need to look at symtabs not already expanded. */
5331 if (per_cu->v.quick->compunit_symtab)
5332 continue;
5333
5334 quick_file_names *file_data = dw2_get_file_names (per_cu);
5335 if (file_data == NULL)
5336 continue;
5337
5338 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5339 if (*slot)
5340 {
5341 /* Already visited. */
5342 continue;
5343 }
5344 *slot = file_data;
5345
5346 for (int j = 0; j < file_data->num_file_names; ++j)
5347 {
5348 const char *filename = file_data->file_names[j];
5349 dwarf2_per_objfile->filenames_cache->seen (filename);
5350 }
5351 }
5352 }
5353
5354 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5355 {
5356 gdb::unique_xmalloc_ptr<char> this_real_name;
5357
5358 if (need_fullname)
5359 this_real_name = gdb_realpath (filename);
5360 (*fun) (filename, this_real_name.get (), data);
5361 });
5362 }
5363
5364 static int
5365 dw2_has_symbols (struct objfile *objfile)
5366 {
5367 return 1;
5368 }
5369
5370 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5371 {
5372 dw2_has_symbols,
5373 dw2_find_last_source_symtab,
5374 dw2_forget_cached_source_info,
5375 dw2_map_symtabs_matching_filename,
5376 dw2_lookup_symbol,
5377 dw2_print_stats,
5378 dw2_dump,
5379 dw2_expand_symtabs_for_function,
5380 dw2_expand_all_symtabs,
5381 dw2_expand_symtabs_with_fullname,
5382 dw2_map_matching_symbols,
5383 dw2_expand_symtabs_matching,
5384 dw2_find_pc_sect_compunit_symtab,
5385 NULL,
5386 dw2_map_symbol_filenames
5387 };
5388
5389 /* DWARF-5 debug_names reader. */
5390
5391 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5392 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5393
5394 /* A helper function that reads the .debug_names section in SECTION
5395 and fills in MAP. FILENAME is the name of the file containing the
5396 section; it is used for error reporting.
5397
5398 Returns true if all went well, false otherwise. */
5399
5400 static bool
5401 read_debug_names_from_section (struct objfile *objfile,
5402 const char *filename,
5403 struct dwarf2_section_info *section,
5404 mapped_debug_names &map)
5405 {
5406 if (dwarf2_section_empty_p (section))
5407 return false;
5408
5409 /* Older elfutils strip versions could keep the section in the main
5410 executable while splitting it for the separate debug info file. */
5411 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5412 return false;
5413
5414 dwarf2_read_section (objfile, section);
5415
5416 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5417
5418 const gdb_byte *addr = section->buffer;
5419
5420 bfd *const abfd = get_section_bfd_owner (section);
5421
5422 unsigned int bytes_read;
5423 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5424 addr += bytes_read;
5425
5426 map.dwarf5_is_dwarf64 = bytes_read != 4;
5427 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5428 if (bytes_read + length != section->size)
5429 {
5430 /* There may be multiple per-CU indices. */
5431 warning (_("Section .debug_names in %s length %s does not match "
5432 "section length %s, ignoring .debug_names."),
5433 filename, plongest (bytes_read + length),
5434 pulongest (section->size));
5435 return false;
5436 }
5437
5438 /* The version number. */
5439 uint16_t version = read_2_bytes (abfd, addr);
5440 addr += 2;
5441 if (version != 5)
5442 {
5443 warning (_("Section .debug_names in %s has unsupported version %d, "
5444 "ignoring .debug_names."),
5445 filename, version);
5446 return false;
5447 }
5448
5449 /* Padding. */
5450 uint16_t padding = read_2_bytes (abfd, addr);
5451 addr += 2;
5452 if (padding != 0)
5453 {
5454 warning (_("Section .debug_names in %s has unsupported padding %d, "
5455 "ignoring .debug_names."),
5456 filename, padding);
5457 return false;
5458 }
5459
5460 /* comp_unit_count - The number of CUs in the CU list. */
5461 map.cu_count = read_4_bytes (abfd, addr);
5462 addr += 4;
5463
5464 /* local_type_unit_count - The number of TUs in the local TU
5465 list. */
5466 map.tu_count = read_4_bytes (abfd, addr);
5467 addr += 4;
5468
5469 /* foreign_type_unit_count - The number of TUs in the foreign TU
5470 list. */
5471 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5472 addr += 4;
5473 if (foreign_tu_count != 0)
5474 {
5475 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5476 "ignoring .debug_names."),
5477 filename, static_cast<unsigned long> (foreign_tu_count));
5478 return false;
5479 }
5480
5481 /* bucket_count - The number of hash buckets in the hash lookup
5482 table. */
5483 map.bucket_count = read_4_bytes (abfd, addr);
5484 addr += 4;
5485
5486 /* name_count - The number of unique names in the index. */
5487 map.name_count = read_4_bytes (abfd, addr);
5488 addr += 4;
5489
5490 /* abbrev_table_size - The size in bytes of the abbreviations
5491 table. */
5492 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5493 addr += 4;
5494
5495 /* augmentation_string_size - The size in bytes of the augmentation
5496 string. This value is rounded up to a multiple of 4. */
5497 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5498 addr += 4;
5499 map.augmentation_is_gdb = ((augmentation_string_size
5500 == sizeof (dwarf5_augmentation))
5501 && memcmp (addr, dwarf5_augmentation,
5502 sizeof (dwarf5_augmentation)) == 0);
5503 augmentation_string_size += (-augmentation_string_size) & 3;
5504 addr += augmentation_string_size;
5505
5506 /* List of CUs */
5507 map.cu_table_reordered = addr;
5508 addr += map.cu_count * map.offset_size;
5509
5510 /* List of Local TUs */
5511 map.tu_table_reordered = addr;
5512 addr += map.tu_count * map.offset_size;
5513
5514 /* Hash Lookup Table */
5515 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5516 addr += map.bucket_count * 4;
5517 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5518 addr += map.name_count * 4;
5519
5520 /* Name Table */
5521 map.name_table_string_offs_reordered = addr;
5522 addr += map.name_count * map.offset_size;
5523 map.name_table_entry_offs_reordered = addr;
5524 addr += map.name_count * map.offset_size;
5525
5526 const gdb_byte *abbrev_table_start = addr;
5527 for (;;)
5528 {
5529 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5530 addr += bytes_read;
5531 if (index_num == 0)
5532 break;
5533
5534 const auto insertpair
5535 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5536 if (!insertpair.second)
5537 {
5538 warning (_("Section .debug_names in %s has duplicate index %s, "
5539 "ignoring .debug_names."),
5540 filename, pulongest (index_num));
5541 return false;
5542 }
5543 mapped_debug_names::index_val &indexval = insertpair.first->second;
5544 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5545 addr += bytes_read;
5546
5547 for (;;)
5548 {
5549 mapped_debug_names::index_val::attr attr;
5550 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5551 addr += bytes_read;
5552 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5553 addr += bytes_read;
5554 if (attr.form == DW_FORM_implicit_const)
5555 {
5556 attr.implicit_const = read_signed_leb128 (abfd, addr,
5557 &bytes_read);
5558 addr += bytes_read;
5559 }
5560 if (attr.dw_idx == 0 && attr.form == 0)
5561 break;
5562 indexval.attr_vec.push_back (std::move (attr));
5563 }
5564 }
5565 if (addr != abbrev_table_start + abbrev_table_size)
5566 {
5567 warning (_("Section .debug_names in %s has abbreviation_table "
5568 "of size %zu vs. written as %u, ignoring .debug_names."),
5569 filename, addr - abbrev_table_start, abbrev_table_size);
5570 return false;
5571 }
5572 map.entry_pool = addr;
5573
5574 return true;
5575 }
5576
5577 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5578 list. */
5579
5580 static void
5581 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5582 const mapped_debug_names &map,
5583 dwarf2_section_info &section,
5584 bool is_dwz)
5585 {
5586 sect_offset sect_off_prev;
5587 for (uint32_t i = 0; i <= map.cu_count; ++i)
5588 {
5589 sect_offset sect_off_next;
5590 if (i < map.cu_count)
5591 {
5592 sect_off_next
5593 = (sect_offset) (extract_unsigned_integer
5594 (map.cu_table_reordered + i * map.offset_size,
5595 map.offset_size,
5596 map.dwarf5_byte_order));
5597 }
5598 else
5599 sect_off_next = (sect_offset) section.size;
5600 if (i >= 1)
5601 {
5602 const ULONGEST length = sect_off_next - sect_off_prev;
5603 dwarf2_per_cu_data *per_cu
5604 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5605 sect_off_prev, length);
5606 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5607 }
5608 sect_off_prev = sect_off_next;
5609 }
5610 }
5611
5612 /* Read the CU list from the mapped index, and use it to create all
5613 the CU objects for this dwarf2_per_objfile. */
5614
5615 static void
5616 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5617 const mapped_debug_names &map,
5618 const mapped_debug_names &dwz_map)
5619 {
5620 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5621 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5622
5623 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5624 dwarf2_per_objfile->info,
5625 false /* is_dwz */);
5626
5627 if (dwz_map.cu_count == 0)
5628 return;
5629
5630 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5631 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5632 true /* is_dwz */);
5633 }
5634
5635 /* Read .debug_names. If everything went ok, initialize the "quick"
5636 elements of all the CUs and return true. Otherwise, return false. */
5637
5638 static bool
5639 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5640 {
5641 std::unique_ptr<mapped_debug_names> map
5642 (new mapped_debug_names (dwarf2_per_objfile));
5643 mapped_debug_names dwz_map (dwarf2_per_objfile);
5644 struct objfile *objfile = dwarf2_per_objfile->objfile;
5645
5646 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5647 &dwarf2_per_objfile->debug_names,
5648 *map))
5649 return false;
5650
5651 /* Don't use the index if it's empty. */
5652 if (map->name_count == 0)
5653 return false;
5654
5655 /* If there is a .dwz file, read it so we can get its CU list as
5656 well. */
5657 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5658 if (dwz != NULL)
5659 {
5660 if (!read_debug_names_from_section (objfile,
5661 bfd_get_filename (dwz->dwz_bfd),
5662 &dwz->debug_names, dwz_map))
5663 {
5664 warning (_("could not read '.debug_names' section from %s; skipping"),
5665 bfd_get_filename (dwz->dwz_bfd));
5666 return false;
5667 }
5668 }
5669
5670 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5671
5672 if (map->tu_count != 0)
5673 {
5674 /* We can only handle a single .debug_types when we have an
5675 index. */
5676 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
5677 return false;
5678
5679 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
5680 dwarf2_per_objfile->types, 0);
5681
5682 create_signatured_type_table_from_debug_names
5683 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5684 }
5685
5686 create_addrmap_from_aranges (dwarf2_per_objfile,
5687 &dwarf2_per_objfile->debug_aranges);
5688
5689 dwarf2_per_objfile->debug_names_table = std::move (map);
5690 dwarf2_per_objfile->using_index = 1;
5691 dwarf2_per_objfile->quick_file_names_table =
5692 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5693
5694 return true;
5695 }
5696
5697 /* Type used to manage iterating over all CUs looking for a symbol for
5698 .debug_names. */
5699
5700 class dw2_debug_names_iterator
5701 {
5702 public:
5703 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5704 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5705 dw2_debug_names_iterator (const mapped_debug_names &map,
5706 bool want_specific_block,
5707 block_enum block_index, domain_enum domain,
5708 const char *name)
5709 : m_map (map), m_want_specific_block (want_specific_block),
5710 m_block_index (block_index), m_domain (domain),
5711 m_addr (find_vec_in_debug_names (map, name))
5712 {}
5713
5714 dw2_debug_names_iterator (const mapped_debug_names &map,
5715 search_domain search, uint32_t namei)
5716 : m_map (map),
5717 m_search (search),
5718 m_addr (find_vec_in_debug_names (map, namei))
5719 {}
5720
5721 /* Return the next matching CU or NULL if there are no more. */
5722 dwarf2_per_cu_data *next ();
5723
5724 private:
5725 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5726 const char *name);
5727 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5728 uint32_t namei);
5729
5730 /* The internalized form of .debug_names. */
5731 const mapped_debug_names &m_map;
5732
5733 /* If true, only look for symbols that match BLOCK_INDEX. */
5734 const bool m_want_specific_block = false;
5735
5736 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5737 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5738 value. */
5739 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5740
5741 /* The kind of symbol we're looking for. */
5742 const domain_enum m_domain = UNDEF_DOMAIN;
5743 const search_domain m_search = ALL_DOMAIN;
5744
5745 /* The list of CUs from the index entry of the symbol, or NULL if
5746 not found. */
5747 const gdb_byte *m_addr;
5748 };
5749
5750 const char *
5751 mapped_debug_names::namei_to_name (uint32_t namei) const
5752 {
5753 const ULONGEST namei_string_offs
5754 = extract_unsigned_integer ((name_table_string_offs_reordered
5755 + namei * offset_size),
5756 offset_size,
5757 dwarf5_byte_order);
5758 return read_indirect_string_at_offset
5759 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5760 }
5761
5762 /* Find a slot in .debug_names for the object named NAME. If NAME is
5763 found, return pointer to its pool data. If NAME cannot be found,
5764 return NULL. */
5765
5766 const gdb_byte *
5767 dw2_debug_names_iterator::find_vec_in_debug_names
5768 (const mapped_debug_names &map, const char *name)
5769 {
5770 int (*cmp) (const char *, const char *);
5771
5772 if (current_language->la_language == language_cplus
5773 || current_language->la_language == language_fortran
5774 || current_language->la_language == language_d)
5775 {
5776 /* NAME is already canonical. Drop any qualifiers as
5777 .debug_names does not contain any. */
5778
5779 if (strchr (name, '(') != NULL)
5780 {
5781 gdb::unique_xmalloc_ptr<char> without_params
5782 = cp_remove_params (name);
5783
5784 if (without_params != NULL)
5785 {
5786 name = without_params.get();
5787 }
5788 }
5789 }
5790
5791 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5792
5793 const uint32_t full_hash = dwarf5_djb_hash (name);
5794 uint32_t namei
5795 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5796 (map.bucket_table_reordered
5797 + (full_hash % map.bucket_count)), 4,
5798 map.dwarf5_byte_order);
5799 if (namei == 0)
5800 return NULL;
5801 --namei;
5802 if (namei >= map.name_count)
5803 {
5804 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5805 "[in module %s]"),
5806 namei, map.name_count,
5807 objfile_name (map.dwarf2_per_objfile->objfile));
5808 return NULL;
5809 }
5810
5811 for (;;)
5812 {
5813 const uint32_t namei_full_hash
5814 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5815 (map.hash_table_reordered + namei), 4,
5816 map.dwarf5_byte_order);
5817 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5818 return NULL;
5819
5820 if (full_hash == namei_full_hash)
5821 {
5822 const char *const namei_string = map.namei_to_name (namei);
5823
5824 #if 0 /* An expensive sanity check. */
5825 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5826 {
5827 complaint (_("Wrong .debug_names hash for string at index %u "
5828 "[in module %s]"),
5829 namei, objfile_name (dwarf2_per_objfile->objfile));
5830 return NULL;
5831 }
5832 #endif
5833
5834 if (cmp (namei_string, name) == 0)
5835 {
5836 const ULONGEST namei_entry_offs
5837 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5838 + namei * map.offset_size),
5839 map.offset_size, map.dwarf5_byte_order);
5840 return map.entry_pool + namei_entry_offs;
5841 }
5842 }
5843
5844 ++namei;
5845 if (namei >= map.name_count)
5846 return NULL;
5847 }
5848 }
5849
5850 const gdb_byte *
5851 dw2_debug_names_iterator::find_vec_in_debug_names
5852 (const mapped_debug_names &map, uint32_t namei)
5853 {
5854 if (namei >= map.name_count)
5855 {
5856 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5857 "[in module %s]"),
5858 namei, map.name_count,
5859 objfile_name (map.dwarf2_per_objfile->objfile));
5860 return NULL;
5861 }
5862
5863 const ULONGEST namei_entry_offs
5864 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5865 + namei * map.offset_size),
5866 map.offset_size, map.dwarf5_byte_order);
5867 return map.entry_pool + namei_entry_offs;
5868 }
5869
5870 /* See dw2_debug_names_iterator. */
5871
5872 dwarf2_per_cu_data *
5873 dw2_debug_names_iterator::next ()
5874 {
5875 if (m_addr == NULL)
5876 return NULL;
5877
5878 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5879 struct objfile *objfile = dwarf2_per_objfile->objfile;
5880 bfd *const abfd = objfile->obfd;
5881
5882 again:
5883
5884 unsigned int bytes_read;
5885 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5886 m_addr += bytes_read;
5887 if (abbrev == 0)
5888 return NULL;
5889
5890 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5891 if (indexval_it == m_map.abbrev_map.cend ())
5892 {
5893 complaint (_("Wrong .debug_names undefined abbrev code %s "
5894 "[in module %s]"),
5895 pulongest (abbrev), objfile_name (objfile));
5896 return NULL;
5897 }
5898 const mapped_debug_names::index_val &indexval = indexval_it->second;
5899 bool have_is_static = false;
5900 bool is_static;
5901 dwarf2_per_cu_data *per_cu = NULL;
5902 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5903 {
5904 ULONGEST ull;
5905 switch (attr.form)
5906 {
5907 case DW_FORM_implicit_const:
5908 ull = attr.implicit_const;
5909 break;
5910 case DW_FORM_flag_present:
5911 ull = 1;
5912 break;
5913 case DW_FORM_udata:
5914 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5915 m_addr += bytes_read;
5916 break;
5917 default:
5918 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5919 dwarf_form_name (attr.form),
5920 objfile_name (objfile));
5921 return NULL;
5922 }
5923 switch (attr.dw_idx)
5924 {
5925 case DW_IDX_compile_unit:
5926 /* Don't crash on bad data. */
5927 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5928 {
5929 complaint (_(".debug_names entry has bad CU index %s"
5930 " [in module %s]"),
5931 pulongest (ull),
5932 objfile_name (dwarf2_per_objfile->objfile));
5933 continue;
5934 }
5935 per_cu = dwarf2_per_objfile->get_cutu (ull);
5936 break;
5937 case DW_IDX_type_unit:
5938 /* Don't crash on bad data. */
5939 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5940 {
5941 complaint (_(".debug_names entry has bad TU index %s"
5942 " [in module %s]"),
5943 pulongest (ull),
5944 objfile_name (dwarf2_per_objfile->objfile));
5945 continue;
5946 }
5947 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5948 break;
5949 case DW_IDX_GNU_internal:
5950 if (!m_map.augmentation_is_gdb)
5951 break;
5952 have_is_static = true;
5953 is_static = true;
5954 break;
5955 case DW_IDX_GNU_external:
5956 if (!m_map.augmentation_is_gdb)
5957 break;
5958 have_is_static = true;
5959 is_static = false;
5960 break;
5961 }
5962 }
5963
5964 /* Skip if already read in. */
5965 if (per_cu->v.quick->compunit_symtab)
5966 goto again;
5967
5968 /* Check static vs global. */
5969 if (have_is_static)
5970 {
5971 const bool want_static = m_block_index != GLOBAL_BLOCK;
5972 if (m_want_specific_block && want_static != is_static)
5973 goto again;
5974 }
5975
5976 /* Match dw2_symtab_iter_next, symbol_kind
5977 and debug_names::psymbol_tag. */
5978 switch (m_domain)
5979 {
5980 case VAR_DOMAIN:
5981 switch (indexval.dwarf_tag)
5982 {
5983 case DW_TAG_variable:
5984 case DW_TAG_subprogram:
5985 /* Some types are also in VAR_DOMAIN. */
5986 case DW_TAG_typedef:
5987 case DW_TAG_structure_type:
5988 break;
5989 default:
5990 goto again;
5991 }
5992 break;
5993 case STRUCT_DOMAIN:
5994 switch (indexval.dwarf_tag)
5995 {
5996 case DW_TAG_typedef:
5997 case DW_TAG_structure_type:
5998 break;
5999 default:
6000 goto again;
6001 }
6002 break;
6003 case LABEL_DOMAIN:
6004 switch (indexval.dwarf_tag)
6005 {
6006 case 0:
6007 case DW_TAG_variable:
6008 break;
6009 default:
6010 goto again;
6011 }
6012 break;
6013 default:
6014 break;
6015 }
6016
6017 /* Match dw2_expand_symtabs_matching, symbol_kind and
6018 debug_names::psymbol_tag. */
6019 switch (m_search)
6020 {
6021 case VARIABLES_DOMAIN:
6022 switch (indexval.dwarf_tag)
6023 {
6024 case DW_TAG_variable:
6025 break;
6026 default:
6027 goto again;
6028 }
6029 break;
6030 case FUNCTIONS_DOMAIN:
6031 switch (indexval.dwarf_tag)
6032 {
6033 case DW_TAG_subprogram:
6034 break;
6035 default:
6036 goto again;
6037 }
6038 break;
6039 case TYPES_DOMAIN:
6040 switch (indexval.dwarf_tag)
6041 {
6042 case DW_TAG_typedef:
6043 case DW_TAG_structure_type:
6044 break;
6045 default:
6046 goto again;
6047 }
6048 break;
6049 default:
6050 break;
6051 }
6052
6053 return per_cu;
6054 }
6055
6056 static struct compunit_symtab *
6057 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6058 const char *name, domain_enum domain)
6059 {
6060 const block_enum block_index = static_cast<block_enum> (block_index_int);
6061 struct dwarf2_per_objfile *dwarf2_per_objfile
6062 = get_dwarf2_per_objfile (objfile);
6063
6064 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6065 if (!mapp)
6066 {
6067 /* index is NULL if OBJF_READNOW. */
6068 return NULL;
6069 }
6070 const auto &map = *mapp;
6071
6072 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6073 block_index, domain, name);
6074
6075 struct compunit_symtab *stab_best = NULL;
6076 struct dwarf2_per_cu_data *per_cu;
6077 while ((per_cu = iter.next ()) != NULL)
6078 {
6079 struct symbol *sym, *with_opaque = NULL;
6080 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6081 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6082 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6083
6084 sym = block_find_symbol (block, name, domain,
6085 block_find_non_opaque_type_preferred,
6086 &with_opaque);
6087
6088 /* Some caution must be observed with overloaded functions and
6089 methods, since the index will not contain any overload
6090 information (but NAME might contain it). */
6091
6092 if (sym != NULL
6093 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6094 return stab;
6095 if (with_opaque != NULL
6096 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6097 stab_best = stab;
6098
6099 /* Keep looking through other CUs. */
6100 }
6101
6102 return stab_best;
6103 }
6104
6105 /* This dumps minimal information about .debug_names. It is called
6106 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6107 uses this to verify that .debug_names has been loaded. */
6108
6109 static void
6110 dw2_debug_names_dump (struct objfile *objfile)
6111 {
6112 struct dwarf2_per_objfile *dwarf2_per_objfile
6113 = get_dwarf2_per_objfile (objfile);
6114
6115 gdb_assert (dwarf2_per_objfile->using_index);
6116 printf_filtered (".debug_names:");
6117 if (dwarf2_per_objfile->debug_names_table)
6118 printf_filtered (" exists\n");
6119 else
6120 printf_filtered (" faked for \"readnow\"\n");
6121 printf_filtered ("\n");
6122 }
6123
6124 static void
6125 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6126 const char *func_name)
6127 {
6128 struct dwarf2_per_objfile *dwarf2_per_objfile
6129 = get_dwarf2_per_objfile (objfile);
6130
6131 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6132 if (dwarf2_per_objfile->debug_names_table)
6133 {
6134 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6135
6136 /* Note: It doesn't matter what we pass for block_index here. */
6137 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6138 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6139
6140 struct dwarf2_per_cu_data *per_cu;
6141 while ((per_cu = iter.next ()) != NULL)
6142 dw2_instantiate_symtab (per_cu, false);
6143 }
6144 }
6145
6146 static void
6147 dw2_debug_names_expand_symtabs_matching
6148 (struct objfile *objfile,
6149 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6150 const lookup_name_info &lookup_name,
6151 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6152 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6153 enum search_domain kind)
6154 {
6155 struct dwarf2_per_objfile *dwarf2_per_objfile
6156 = get_dwarf2_per_objfile (objfile);
6157
6158 /* debug_names_table is NULL if OBJF_READNOW. */
6159 if (!dwarf2_per_objfile->debug_names_table)
6160 return;
6161
6162 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6163
6164 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6165
6166 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6167 symbol_matcher,
6168 kind, [&] (offset_type namei)
6169 {
6170 /* The name was matched, now expand corresponding CUs that were
6171 marked. */
6172 dw2_debug_names_iterator iter (map, kind, namei);
6173
6174 struct dwarf2_per_cu_data *per_cu;
6175 while ((per_cu = iter.next ()) != NULL)
6176 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6177 expansion_notify);
6178 });
6179 }
6180
6181 const struct quick_symbol_functions dwarf2_debug_names_functions =
6182 {
6183 dw2_has_symbols,
6184 dw2_find_last_source_symtab,
6185 dw2_forget_cached_source_info,
6186 dw2_map_symtabs_matching_filename,
6187 dw2_debug_names_lookup_symbol,
6188 dw2_print_stats,
6189 dw2_debug_names_dump,
6190 dw2_debug_names_expand_symtabs_for_function,
6191 dw2_expand_all_symtabs,
6192 dw2_expand_symtabs_with_fullname,
6193 dw2_map_matching_symbols,
6194 dw2_debug_names_expand_symtabs_matching,
6195 dw2_find_pc_sect_compunit_symtab,
6196 NULL,
6197 dw2_map_symbol_filenames
6198 };
6199
6200 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
6201 to either a dwarf2_per_objfile or dwz_file object. */
6202
6203 template <typename T>
6204 static gdb::array_view<const gdb_byte>
6205 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
6206 {
6207 dwarf2_section_info *section = &section_owner->gdb_index;
6208
6209 if (dwarf2_section_empty_p (section))
6210 return {};
6211
6212 /* Older elfutils strip versions could keep the section in the main
6213 executable while splitting it for the separate debug info file. */
6214 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
6215 return {};
6216
6217 dwarf2_read_section (obj, section);
6218
6219 /* dwarf2_section_info::size is a bfd_size_type, while
6220 gdb::array_view works with size_t. On 32-bit hosts, with
6221 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
6222 is 32-bit. So we need an explicit narrowing conversion here.
6223 This is fine, because it's impossible to allocate or mmap an
6224 array/buffer larger than what size_t can represent. */
6225 return gdb::make_array_view (section->buffer, section->size);
6226 }
6227
6228 /* Lookup the index cache for the contents of the index associated to
6229 DWARF2_OBJ. */
6230
6231 static gdb::array_view<const gdb_byte>
6232 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
6233 {
6234 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
6235 if (build_id == nullptr)
6236 return {};
6237
6238 return global_index_cache.lookup_gdb_index (build_id,
6239 &dwarf2_obj->index_cache_res);
6240 }
6241
6242 /* Same as the above, but for DWZ. */
6243
6244 static gdb::array_view<const gdb_byte>
6245 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
6246 {
6247 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
6248 if (build_id == nullptr)
6249 return {};
6250
6251 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
6252 }
6253
6254 /* See symfile.h. */
6255
6256 bool
6257 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6258 {
6259 struct dwarf2_per_objfile *dwarf2_per_objfile
6260 = get_dwarf2_per_objfile (objfile);
6261
6262 /* If we're about to read full symbols, don't bother with the
6263 indices. In this case we also don't care if some other debug
6264 format is making psymtabs, because they are all about to be
6265 expanded anyway. */
6266 if ((objfile->flags & OBJF_READNOW))
6267 {
6268 dwarf2_per_objfile->using_index = 1;
6269 create_all_comp_units (dwarf2_per_objfile);
6270 create_all_type_units (dwarf2_per_objfile);
6271 dwarf2_per_objfile->quick_file_names_table
6272 = create_quick_file_names_table
6273 (dwarf2_per_objfile->all_comp_units.size ());
6274
6275 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6276 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6277 {
6278 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6279
6280 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6281 struct dwarf2_per_cu_quick_data);
6282 }
6283
6284 /* Return 1 so that gdb sees the "quick" functions. However,
6285 these functions will be no-ops because we will have expanded
6286 all symtabs. */
6287 *index_kind = dw_index_kind::GDB_INDEX;
6288 return true;
6289 }
6290
6291 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6292 {
6293 *index_kind = dw_index_kind::DEBUG_NAMES;
6294 return true;
6295 }
6296
6297 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6298 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6299 get_gdb_index_contents_from_section<dwz_file>))
6300 {
6301 *index_kind = dw_index_kind::GDB_INDEX;
6302 return true;
6303 }
6304
6305 /* ... otherwise, try to find the index in the index cache. */
6306 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6307 get_gdb_index_contents_from_cache,
6308 get_gdb_index_contents_from_cache_dwz))
6309 {
6310 global_index_cache.hit ();
6311 *index_kind = dw_index_kind::GDB_INDEX;
6312 return true;
6313 }
6314
6315 global_index_cache.miss ();
6316 return false;
6317 }
6318
6319 \f
6320
6321 /* Build a partial symbol table. */
6322
6323 void
6324 dwarf2_build_psymtabs (struct objfile *objfile)
6325 {
6326 struct dwarf2_per_objfile *dwarf2_per_objfile
6327 = get_dwarf2_per_objfile (objfile);
6328
6329 init_psymbol_list (objfile, 1024);
6330
6331 try
6332 {
6333 /* This isn't really ideal: all the data we allocate on the
6334 objfile's obstack is still uselessly kept around. However,
6335 freeing it seems unsafe. */
6336 psymtab_discarder psymtabs (objfile);
6337 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6338 psymtabs.keep ();
6339
6340 /* (maybe) store an index in the cache. */
6341 global_index_cache.store (dwarf2_per_objfile);
6342 }
6343 catch (const gdb_exception_error &except)
6344 {
6345 exception_print (gdb_stderr, except);
6346 }
6347 }
6348
6349 /* Return the total length of the CU described by HEADER. */
6350
6351 static unsigned int
6352 get_cu_length (const struct comp_unit_head *header)
6353 {
6354 return header->initial_length_size + header->length;
6355 }
6356
6357 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6358
6359 static inline bool
6360 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6361 {
6362 sect_offset bottom = cu_header->sect_off;
6363 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6364
6365 return sect_off >= bottom && sect_off < top;
6366 }
6367
6368 /* Find the base address of the compilation unit for range lists and
6369 location lists. It will normally be specified by DW_AT_low_pc.
6370 In DWARF-3 draft 4, the base address could be overridden by
6371 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6372 compilation units with discontinuous ranges. */
6373
6374 static void
6375 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6376 {
6377 struct attribute *attr;
6378
6379 cu->base_known = 0;
6380 cu->base_address = 0;
6381
6382 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6383 if (attr)
6384 {
6385 cu->base_address = attr_value_as_address (attr);
6386 cu->base_known = 1;
6387 }
6388 else
6389 {
6390 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6391 if (attr)
6392 {
6393 cu->base_address = attr_value_as_address (attr);
6394 cu->base_known = 1;
6395 }
6396 }
6397 }
6398
6399 /* Read in the comp unit header information from the debug_info at info_ptr.
6400 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6401 NOTE: This leaves members offset, first_die_offset to be filled in
6402 by the caller. */
6403
6404 static const gdb_byte *
6405 read_comp_unit_head (struct comp_unit_head *cu_header,
6406 const gdb_byte *info_ptr,
6407 struct dwarf2_section_info *section,
6408 rcuh_kind section_kind)
6409 {
6410 int signed_addr;
6411 unsigned int bytes_read;
6412 const char *filename = get_section_file_name (section);
6413 bfd *abfd = get_section_bfd_owner (section);
6414
6415 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6416 cu_header->initial_length_size = bytes_read;
6417 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6418 info_ptr += bytes_read;
6419 cu_header->version = read_2_bytes (abfd, info_ptr);
6420 if (cu_header->version < 2 || cu_header->version > 5)
6421 error (_("Dwarf Error: wrong version in compilation unit header "
6422 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6423 cu_header->version, filename);
6424 info_ptr += 2;
6425 if (cu_header->version < 5)
6426 switch (section_kind)
6427 {
6428 case rcuh_kind::COMPILE:
6429 cu_header->unit_type = DW_UT_compile;
6430 break;
6431 case rcuh_kind::TYPE:
6432 cu_header->unit_type = DW_UT_type;
6433 break;
6434 default:
6435 internal_error (__FILE__, __LINE__,
6436 _("read_comp_unit_head: invalid section_kind"));
6437 }
6438 else
6439 {
6440 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6441 (read_1_byte (abfd, info_ptr));
6442 info_ptr += 1;
6443 switch (cu_header->unit_type)
6444 {
6445 case DW_UT_compile:
6446 if (section_kind != rcuh_kind::COMPILE)
6447 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6448 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6449 filename);
6450 break;
6451 case DW_UT_type:
6452 section_kind = rcuh_kind::TYPE;
6453 break;
6454 default:
6455 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6456 "(is %d, should be %d or %d) [in module %s]"),
6457 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6458 }
6459
6460 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6461 info_ptr += 1;
6462 }
6463 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6464 cu_header,
6465 &bytes_read);
6466 info_ptr += bytes_read;
6467 if (cu_header->version < 5)
6468 {
6469 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6470 info_ptr += 1;
6471 }
6472 signed_addr = bfd_get_sign_extend_vma (abfd);
6473 if (signed_addr < 0)
6474 internal_error (__FILE__, __LINE__,
6475 _("read_comp_unit_head: dwarf from non elf file"));
6476 cu_header->signed_addr_p = signed_addr;
6477
6478 if (section_kind == rcuh_kind::TYPE)
6479 {
6480 LONGEST type_offset;
6481
6482 cu_header->signature = read_8_bytes (abfd, info_ptr);
6483 info_ptr += 8;
6484
6485 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6486 info_ptr += bytes_read;
6487 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6488 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6489 error (_("Dwarf Error: Too big type_offset in compilation unit "
6490 "header (is %s) [in module %s]"), plongest (type_offset),
6491 filename);
6492 }
6493
6494 return info_ptr;
6495 }
6496
6497 /* Helper function that returns the proper abbrev section for
6498 THIS_CU. */
6499
6500 static struct dwarf2_section_info *
6501 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6502 {
6503 struct dwarf2_section_info *abbrev;
6504 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6505
6506 if (this_cu->is_dwz)
6507 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6508 else
6509 abbrev = &dwarf2_per_objfile->abbrev;
6510
6511 return abbrev;
6512 }
6513
6514 /* Subroutine of read_and_check_comp_unit_head and
6515 read_and_check_type_unit_head to simplify them.
6516 Perform various error checking on the header. */
6517
6518 static void
6519 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6520 struct comp_unit_head *header,
6521 struct dwarf2_section_info *section,
6522 struct dwarf2_section_info *abbrev_section)
6523 {
6524 const char *filename = get_section_file_name (section);
6525
6526 if (to_underlying (header->abbrev_sect_off)
6527 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6528 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6529 "(offset %s + 6) [in module %s]"),
6530 sect_offset_str (header->abbrev_sect_off),
6531 sect_offset_str (header->sect_off),
6532 filename);
6533
6534 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6535 avoid potential 32-bit overflow. */
6536 if (((ULONGEST) header->sect_off + get_cu_length (header))
6537 > section->size)
6538 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6539 "(offset %s + 0) [in module %s]"),
6540 header->length, sect_offset_str (header->sect_off),
6541 filename);
6542 }
6543
6544 /* Read in a CU/TU header and perform some basic error checking.
6545 The contents of the header are stored in HEADER.
6546 The result is a pointer to the start of the first DIE. */
6547
6548 static const gdb_byte *
6549 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6550 struct comp_unit_head *header,
6551 struct dwarf2_section_info *section,
6552 struct dwarf2_section_info *abbrev_section,
6553 const gdb_byte *info_ptr,
6554 rcuh_kind section_kind)
6555 {
6556 const gdb_byte *beg_of_comp_unit = info_ptr;
6557
6558 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6559
6560 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6561
6562 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6563
6564 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6565 abbrev_section);
6566
6567 return info_ptr;
6568 }
6569
6570 /* Fetch the abbreviation table offset from a comp or type unit header. */
6571
6572 static sect_offset
6573 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6574 struct dwarf2_section_info *section,
6575 sect_offset sect_off)
6576 {
6577 bfd *abfd = get_section_bfd_owner (section);
6578 const gdb_byte *info_ptr;
6579 unsigned int initial_length_size, offset_size;
6580 uint16_t version;
6581
6582 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6583 info_ptr = section->buffer + to_underlying (sect_off);
6584 read_initial_length (abfd, info_ptr, &initial_length_size);
6585 offset_size = initial_length_size == 4 ? 4 : 8;
6586 info_ptr += initial_length_size;
6587
6588 version = read_2_bytes (abfd, info_ptr);
6589 info_ptr += 2;
6590 if (version >= 5)
6591 {
6592 /* Skip unit type and address size. */
6593 info_ptr += 2;
6594 }
6595
6596 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6597 }
6598
6599 /* Allocate a new partial symtab for file named NAME and mark this new
6600 partial symtab as being an include of PST. */
6601
6602 static void
6603 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6604 struct objfile *objfile)
6605 {
6606 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6607
6608 if (!IS_ABSOLUTE_PATH (subpst->filename))
6609 {
6610 /* It shares objfile->objfile_obstack. */
6611 subpst->dirname = pst->dirname;
6612 }
6613
6614 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
6615 subpst->dependencies[0] = pst;
6616 subpst->number_of_dependencies = 1;
6617
6618 subpst->read_symtab = pst->read_symtab;
6619
6620 /* No private part is necessary for include psymtabs. This property
6621 can be used to differentiate between such include psymtabs and
6622 the regular ones. */
6623 subpst->read_symtab_private = NULL;
6624 }
6625
6626 /* Read the Line Number Program data and extract the list of files
6627 included by the source file represented by PST. Build an include
6628 partial symtab for each of these included files. */
6629
6630 static void
6631 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6632 struct die_info *die,
6633 struct partial_symtab *pst)
6634 {
6635 line_header_up lh;
6636 struct attribute *attr;
6637
6638 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6639 if (attr)
6640 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6641 if (lh == NULL)
6642 return; /* No linetable, so no includes. */
6643
6644 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6645 that we pass in the raw text_low here; that is ok because we're
6646 only decoding the line table to make include partial symtabs, and
6647 so the addresses aren't really used. */
6648 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6649 pst->raw_text_low (), 1);
6650 }
6651
6652 static hashval_t
6653 hash_signatured_type (const void *item)
6654 {
6655 const struct signatured_type *sig_type
6656 = (const struct signatured_type *) item;
6657
6658 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6659 return sig_type->signature;
6660 }
6661
6662 static int
6663 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6664 {
6665 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6666 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6667
6668 return lhs->signature == rhs->signature;
6669 }
6670
6671 /* Allocate a hash table for signatured types. */
6672
6673 static htab_t
6674 allocate_signatured_type_table (struct objfile *objfile)
6675 {
6676 return htab_create_alloc_ex (41,
6677 hash_signatured_type,
6678 eq_signatured_type,
6679 NULL,
6680 &objfile->objfile_obstack,
6681 hashtab_obstack_allocate,
6682 dummy_obstack_deallocate);
6683 }
6684
6685 /* A helper function to add a signatured type CU to a table. */
6686
6687 static int
6688 add_signatured_type_cu_to_table (void **slot, void *datum)
6689 {
6690 struct signatured_type *sigt = (struct signatured_type *) *slot;
6691 std::vector<signatured_type *> *all_type_units
6692 = (std::vector<signatured_type *> *) datum;
6693
6694 all_type_units->push_back (sigt);
6695
6696 return 1;
6697 }
6698
6699 /* A helper for create_debug_types_hash_table. Read types from SECTION
6700 and fill them into TYPES_HTAB. It will process only type units,
6701 therefore DW_UT_type. */
6702
6703 static void
6704 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6705 struct dwo_file *dwo_file,
6706 dwarf2_section_info *section, htab_t &types_htab,
6707 rcuh_kind section_kind)
6708 {
6709 struct objfile *objfile = dwarf2_per_objfile->objfile;
6710 struct dwarf2_section_info *abbrev_section;
6711 bfd *abfd;
6712 const gdb_byte *info_ptr, *end_ptr;
6713
6714 abbrev_section = (dwo_file != NULL
6715 ? &dwo_file->sections.abbrev
6716 : &dwarf2_per_objfile->abbrev);
6717
6718 if (dwarf_read_debug)
6719 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6720 get_section_name (section),
6721 get_section_file_name (abbrev_section));
6722
6723 dwarf2_read_section (objfile, section);
6724 info_ptr = section->buffer;
6725
6726 if (info_ptr == NULL)
6727 return;
6728
6729 /* We can't set abfd until now because the section may be empty or
6730 not present, in which case the bfd is unknown. */
6731 abfd = get_section_bfd_owner (section);
6732
6733 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6734 because we don't need to read any dies: the signature is in the
6735 header. */
6736
6737 end_ptr = info_ptr + section->size;
6738 while (info_ptr < end_ptr)
6739 {
6740 struct signatured_type *sig_type;
6741 struct dwo_unit *dwo_tu;
6742 void **slot;
6743 const gdb_byte *ptr = info_ptr;
6744 struct comp_unit_head header;
6745 unsigned int length;
6746
6747 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6748
6749 /* Initialize it due to a false compiler warning. */
6750 header.signature = -1;
6751 header.type_cu_offset_in_tu = (cu_offset) -1;
6752
6753 /* We need to read the type's signature in order to build the hash
6754 table, but we don't need anything else just yet. */
6755
6756 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6757 abbrev_section, ptr, section_kind);
6758
6759 length = get_cu_length (&header);
6760
6761 /* Skip dummy type units. */
6762 if (ptr >= info_ptr + length
6763 || peek_abbrev_code (abfd, ptr) == 0
6764 || header.unit_type != DW_UT_type)
6765 {
6766 info_ptr += length;
6767 continue;
6768 }
6769
6770 if (types_htab == NULL)
6771 {
6772 if (dwo_file)
6773 types_htab = allocate_dwo_unit_table (objfile);
6774 else
6775 types_htab = allocate_signatured_type_table (objfile);
6776 }
6777
6778 if (dwo_file)
6779 {
6780 sig_type = NULL;
6781 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6782 struct dwo_unit);
6783 dwo_tu->dwo_file = dwo_file;
6784 dwo_tu->signature = header.signature;
6785 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6786 dwo_tu->section = section;
6787 dwo_tu->sect_off = sect_off;
6788 dwo_tu->length = length;
6789 }
6790 else
6791 {
6792 /* N.B.: type_offset is not usable if this type uses a DWO file.
6793 The real type_offset is in the DWO file. */
6794 dwo_tu = NULL;
6795 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6796 struct signatured_type);
6797 sig_type->signature = header.signature;
6798 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6799 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6800 sig_type->per_cu.is_debug_types = 1;
6801 sig_type->per_cu.section = section;
6802 sig_type->per_cu.sect_off = sect_off;
6803 sig_type->per_cu.length = length;
6804 }
6805
6806 slot = htab_find_slot (types_htab,
6807 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6808 INSERT);
6809 gdb_assert (slot != NULL);
6810 if (*slot != NULL)
6811 {
6812 sect_offset dup_sect_off;
6813
6814 if (dwo_file)
6815 {
6816 const struct dwo_unit *dup_tu
6817 = (const struct dwo_unit *) *slot;
6818
6819 dup_sect_off = dup_tu->sect_off;
6820 }
6821 else
6822 {
6823 const struct signatured_type *dup_tu
6824 = (const struct signatured_type *) *slot;
6825
6826 dup_sect_off = dup_tu->per_cu.sect_off;
6827 }
6828
6829 complaint (_("debug type entry at offset %s is duplicate to"
6830 " the entry at offset %s, signature %s"),
6831 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6832 hex_string (header.signature));
6833 }
6834 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6835
6836 if (dwarf_read_debug > 1)
6837 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6838 sect_offset_str (sect_off),
6839 hex_string (header.signature));
6840
6841 info_ptr += length;
6842 }
6843 }
6844
6845 /* Create the hash table of all entries in the .debug_types
6846 (or .debug_types.dwo) section(s).
6847 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6848 otherwise it is NULL.
6849
6850 The result is a pointer to the hash table or NULL if there are no types.
6851
6852 Note: This function processes DWO files only, not DWP files. */
6853
6854 static void
6855 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6856 struct dwo_file *dwo_file,
6857 VEC (dwarf2_section_info_def) *types,
6858 htab_t &types_htab)
6859 {
6860 int ix;
6861 struct dwarf2_section_info *section;
6862
6863 if (VEC_empty (dwarf2_section_info_def, types))
6864 return;
6865
6866 for (ix = 0;
6867 VEC_iterate (dwarf2_section_info_def, types, ix, section);
6868 ++ix)
6869 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
6870 types_htab, rcuh_kind::TYPE);
6871 }
6872
6873 /* Create the hash table of all entries in the .debug_types section,
6874 and initialize all_type_units.
6875 The result is zero if there is an error (e.g. missing .debug_types section),
6876 otherwise non-zero. */
6877
6878 static int
6879 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6880 {
6881 htab_t types_htab = NULL;
6882
6883 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6884 &dwarf2_per_objfile->info, types_htab,
6885 rcuh_kind::COMPILE);
6886 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6887 dwarf2_per_objfile->types, types_htab);
6888 if (types_htab == NULL)
6889 {
6890 dwarf2_per_objfile->signatured_types = NULL;
6891 return 0;
6892 }
6893
6894 dwarf2_per_objfile->signatured_types = types_htab;
6895
6896 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6897 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6898
6899 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6900 &dwarf2_per_objfile->all_type_units);
6901
6902 return 1;
6903 }
6904
6905 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6906 If SLOT is non-NULL, it is the entry to use in the hash table.
6907 Otherwise we find one. */
6908
6909 static struct signatured_type *
6910 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6911 void **slot)
6912 {
6913 struct objfile *objfile = dwarf2_per_objfile->objfile;
6914
6915 if (dwarf2_per_objfile->all_type_units.size ()
6916 == dwarf2_per_objfile->all_type_units.capacity ())
6917 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6918
6919 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6920 struct signatured_type);
6921
6922 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6923 sig_type->signature = sig;
6924 sig_type->per_cu.is_debug_types = 1;
6925 if (dwarf2_per_objfile->using_index)
6926 {
6927 sig_type->per_cu.v.quick =
6928 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6929 struct dwarf2_per_cu_quick_data);
6930 }
6931
6932 if (slot == NULL)
6933 {
6934 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6935 sig_type, INSERT);
6936 }
6937 gdb_assert (*slot == NULL);
6938 *slot = sig_type;
6939 /* The rest of sig_type must be filled in by the caller. */
6940 return sig_type;
6941 }
6942
6943 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6944 Fill in SIG_ENTRY with DWO_ENTRY. */
6945
6946 static void
6947 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6948 struct signatured_type *sig_entry,
6949 struct dwo_unit *dwo_entry)
6950 {
6951 /* Make sure we're not clobbering something we don't expect to. */
6952 gdb_assert (! sig_entry->per_cu.queued);
6953 gdb_assert (sig_entry->per_cu.cu == NULL);
6954 if (dwarf2_per_objfile->using_index)
6955 {
6956 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6957 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6958 }
6959 else
6960 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6961 gdb_assert (sig_entry->signature == dwo_entry->signature);
6962 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6963 gdb_assert (sig_entry->type_unit_group == NULL);
6964 gdb_assert (sig_entry->dwo_unit == NULL);
6965
6966 sig_entry->per_cu.section = dwo_entry->section;
6967 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6968 sig_entry->per_cu.length = dwo_entry->length;
6969 sig_entry->per_cu.reading_dwo_directly = 1;
6970 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6971 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6972 sig_entry->dwo_unit = dwo_entry;
6973 }
6974
6975 /* Subroutine of lookup_signatured_type.
6976 If we haven't read the TU yet, create the signatured_type data structure
6977 for a TU to be read in directly from a DWO file, bypassing the stub.
6978 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6979 using .gdb_index, then when reading a CU we want to stay in the DWO file
6980 containing that CU. Otherwise we could end up reading several other DWO
6981 files (due to comdat folding) to process the transitive closure of all the
6982 mentioned TUs, and that can be slow. The current DWO file will have every
6983 type signature that it needs.
6984 We only do this for .gdb_index because in the psymtab case we already have
6985 to read all the DWOs to build the type unit groups. */
6986
6987 static struct signatured_type *
6988 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6989 {
6990 struct dwarf2_per_objfile *dwarf2_per_objfile
6991 = cu->per_cu->dwarf2_per_objfile;
6992 struct objfile *objfile = dwarf2_per_objfile->objfile;
6993 struct dwo_file *dwo_file;
6994 struct dwo_unit find_dwo_entry, *dwo_entry;
6995 struct signatured_type find_sig_entry, *sig_entry;
6996 void **slot;
6997
6998 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6999
7000 /* If TU skeletons have been removed then we may not have read in any
7001 TUs yet. */
7002 if (dwarf2_per_objfile->signatured_types == NULL)
7003 {
7004 dwarf2_per_objfile->signatured_types
7005 = allocate_signatured_type_table (objfile);
7006 }
7007
7008 /* We only ever need to read in one copy of a signatured type.
7009 Use the global signatured_types array to do our own comdat-folding
7010 of types. If this is the first time we're reading this TU, and
7011 the TU has an entry in .gdb_index, replace the recorded data from
7012 .gdb_index with this TU. */
7013
7014 find_sig_entry.signature = sig;
7015 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7016 &find_sig_entry, INSERT);
7017 sig_entry = (struct signatured_type *) *slot;
7018
7019 /* We can get here with the TU already read, *or* in the process of being
7020 read. Don't reassign the global entry to point to this DWO if that's
7021 the case. Also note that if the TU is already being read, it may not
7022 have come from a DWO, the program may be a mix of Fission-compiled
7023 code and non-Fission-compiled code. */
7024
7025 /* Have we already tried to read this TU?
7026 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7027 needn't exist in the global table yet). */
7028 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
7029 return sig_entry;
7030
7031 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
7032 dwo_unit of the TU itself. */
7033 dwo_file = cu->dwo_unit->dwo_file;
7034
7035 /* Ok, this is the first time we're reading this TU. */
7036 if (dwo_file->tus == NULL)
7037 return NULL;
7038 find_dwo_entry.signature = sig;
7039 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
7040 if (dwo_entry == NULL)
7041 return NULL;
7042
7043 /* If the global table doesn't have an entry for this TU, add one. */
7044 if (sig_entry == NULL)
7045 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7046
7047 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7048 sig_entry->per_cu.tu_read = 1;
7049 return sig_entry;
7050 }
7051
7052 /* Subroutine of lookup_signatured_type.
7053 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
7054 then try the DWP file. If the TU stub (skeleton) has been removed then
7055 it won't be in .gdb_index. */
7056
7057 static struct signatured_type *
7058 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7059 {
7060 struct dwarf2_per_objfile *dwarf2_per_objfile
7061 = cu->per_cu->dwarf2_per_objfile;
7062 struct objfile *objfile = dwarf2_per_objfile->objfile;
7063 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
7064 struct dwo_unit *dwo_entry;
7065 struct signatured_type find_sig_entry, *sig_entry;
7066 void **slot;
7067
7068 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7069 gdb_assert (dwp_file != NULL);
7070
7071 /* If TU skeletons have been removed then we may not have read in any
7072 TUs yet. */
7073 if (dwarf2_per_objfile->signatured_types == NULL)
7074 {
7075 dwarf2_per_objfile->signatured_types
7076 = allocate_signatured_type_table (objfile);
7077 }
7078
7079 find_sig_entry.signature = sig;
7080 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7081 &find_sig_entry, INSERT);
7082 sig_entry = (struct signatured_type *) *slot;
7083
7084 /* Have we already tried to read this TU?
7085 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7086 needn't exist in the global table yet). */
7087 if (sig_entry != NULL)
7088 return sig_entry;
7089
7090 if (dwp_file->tus == NULL)
7091 return NULL;
7092 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7093 sig, 1 /* is_debug_types */);
7094 if (dwo_entry == NULL)
7095 return NULL;
7096
7097 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7098 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7099
7100 return sig_entry;
7101 }
7102
7103 /* Lookup a signature based type for DW_FORM_ref_sig8.
7104 Returns NULL if signature SIG is not present in the table.
7105 It is up to the caller to complain about this. */
7106
7107 static struct signatured_type *
7108 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7109 {
7110 struct dwarf2_per_objfile *dwarf2_per_objfile
7111 = cu->per_cu->dwarf2_per_objfile;
7112
7113 if (cu->dwo_unit
7114 && dwarf2_per_objfile->using_index)
7115 {
7116 /* We're in a DWO/DWP file, and we're using .gdb_index.
7117 These cases require special processing. */
7118 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7119 return lookup_dwo_signatured_type (cu, sig);
7120 else
7121 return lookup_dwp_signatured_type (cu, sig);
7122 }
7123 else
7124 {
7125 struct signatured_type find_entry, *entry;
7126
7127 if (dwarf2_per_objfile->signatured_types == NULL)
7128 return NULL;
7129 find_entry.signature = sig;
7130 entry = ((struct signatured_type *)
7131 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7132 return entry;
7133 }
7134 }
7135 \f
7136 /* Low level DIE reading support. */
7137
7138 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7139
7140 static void
7141 init_cu_die_reader (struct die_reader_specs *reader,
7142 struct dwarf2_cu *cu,
7143 struct dwarf2_section_info *section,
7144 struct dwo_file *dwo_file,
7145 struct abbrev_table *abbrev_table)
7146 {
7147 gdb_assert (section->readin && section->buffer != NULL);
7148 reader->abfd = get_section_bfd_owner (section);
7149 reader->cu = cu;
7150 reader->dwo_file = dwo_file;
7151 reader->die_section = section;
7152 reader->buffer = section->buffer;
7153 reader->buffer_end = section->buffer + section->size;
7154 reader->comp_dir = NULL;
7155 reader->abbrev_table = abbrev_table;
7156 }
7157
7158 /* Subroutine of init_cutu_and_read_dies to simplify it.
7159 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7160 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7161 already.
7162
7163 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7164 from it to the DIE in the DWO. If NULL we are skipping the stub.
7165 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7166 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7167 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7168 STUB_COMP_DIR may be non-NULL.
7169 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7170 are filled in with the info of the DIE from the DWO file.
7171 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7172 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7173 kept around for at least as long as *RESULT_READER.
7174
7175 The result is non-zero if a valid (non-dummy) DIE was found. */
7176
7177 static int
7178 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7179 struct dwo_unit *dwo_unit,
7180 struct die_info *stub_comp_unit_die,
7181 const char *stub_comp_dir,
7182 struct die_reader_specs *result_reader,
7183 const gdb_byte **result_info_ptr,
7184 struct die_info **result_comp_unit_die,
7185 int *result_has_children,
7186 abbrev_table_up *result_dwo_abbrev_table)
7187 {
7188 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7189 struct objfile *objfile = dwarf2_per_objfile->objfile;
7190 struct dwarf2_cu *cu = this_cu->cu;
7191 bfd *abfd;
7192 const gdb_byte *begin_info_ptr, *info_ptr;
7193 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7194 int i,num_extra_attrs;
7195 struct dwarf2_section_info *dwo_abbrev_section;
7196 struct attribute *attr;
7197 struct die_info *comp_unit_die;
7198
7199 /* At most one of these may be provided. */
7200 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7201
7202 /* These attributes aren't processed until later:
7203 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7204 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7205 referenced later. However, these attributes are found in the stub
7206 which we won't have later. In order to not impose this complication
7207 on the rest of the code, we read them here and copy them to the
7208 DWO CU/TU die. */
7209
7210 stmt_list = NULL;
7211 low_pc = NULL;
7212 high_pc = NULL;
7213 ranges = NULL;
7214 comp_dir = NULL;
7215
7216 if (stub_comp_unit_die != NULL)
7217 {
7218 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7219 DWO file. */
7220 if (! this_cu->is_debug_types)
7221 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7222 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7223 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7224 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7225 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7226
7227 /* There should be a DW_AT_addr_base attribute here (if needed).
7228 We need the value before we can process DW_FORM_GNU_addr_index
7229 or DW_FORM_addrx. */
7230 cu->addr_base = 0;
7231 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7232 if (attr)
7233 cu->addr_base = DW_UNSND (attr);
7234
7235 /* There should be a DW_AT_ranges_base attribute here (if needed).
7236 We need the value before we can process DW_AT_ranges. */
7237 cu->ranges_base = 0;
7238 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7239 if (attr)
7240 cu->ranges_base = DW_UNSND (attr);
7241 }
7242 else if (stub_comp_dir != NULL)
7243 {
7244 /* Reconstruct the comp_dir attribute to simplify the code below. */
7245 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7246 comp_dir->name = DW_AT_comp_dir;
7247 comp_dir->form = DW_FORM_string;
7248 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7249 DW_STRING (comp_dir) = stub_comp_dir;
7250 }
7251
7252 /* Set up for reading the DWO CU/TU. */
7253 cu->dwo_unit = dwo_unit;
7254 dwarf2_section_info *section = dwo_unit->section;
7255 dwarf2_read_section (objfile, section);
7256 abfd = get_section_bfd_owner (section);
7257 begin_info_ptr = info_ptr = (section->buffer
7258 + to_underlying (dwo_unit->sect_off));
7259 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7260
7261 if (this_cu->is_debug_types)
7262 {
7263 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7264
7265 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7266 &cu->header, section,
7267 dwo_abbrev_section,
7268 info_ptr, rcuh_kind::TYPE);
7269 /* This is not an assert because it can be caused by bad debug info. */
7270 if (sig_type->signature != cu->header.signature)
7271 {
7272 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7273 " TU at offset %s [in module %s]"),
7274 hex_string (sig_type->signature),
7275 hex_string (cu->header.signature),
7276 sect_offset_str (dwo_unit->sect_off),
7277 bfd_get_filename (abfd));
7278 }
7279 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7280 /* For DWOs coming from DWP files, we don't know the CU length
7281 nor the type's offset in the TU until now. */
7282 dwo_unit->length = get_cu_length (&cu->header);
7283 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7284
7285 /* Establish the type offset that can be used to lookup the type.
7286 For DWO files, we don't know it until now. */
7287 sig_type->type_offset_in_section
7288 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7289 }
7290 else
7291 {
7292 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7293 &cu->header, section,
7294 dwo_abbrev_section,
7295 info_ptr, rcuh_kind::COMPILE);
7296 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7297 /* For DWOs coming from DWP files, we don't know the CU length
7298 until now. */
7299 dwo_unit->length = get_cu_length (&cu->header);
7300 }
7301
7302 *result_dwo_abbrev_table
7303 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7304 cu->header.abbrev_sect_off);
7305 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7306 result_dwo_abbrev_table->get ());
7307
7308 /* Read in the die, but leave space to copy over the attributes
7309 from the stub. This has the benefit of simplifying the rest of
7310 the code - all the work to maintain the illusion of a single
7311 DW_TAG_{compile,type}_unit DIE is done here. */
7312 num_extra_attrs = ((stmt_list != NULL)
7313 + (low_pc != NULL)
7314 + (high_pc != NULL)
7315 + (ranges != NULL)
7316 + (comp_dir != NULL));
7317 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7318 result_has_children, num_extra_attrs);
7319
7320 /* Copy over the attributes from the stub to the DIE we just read in. */
7321 comp_unit_die = *result_comp_unit_die;
7322 i = comp_unit_die->num_attrs;
7323 if (stmt_list != NULL)
7324 comp_unit_die->attrs[i++] = *stmt_list;
7325 if (low_pc != NULL)
7326 comp_unit_die->attrs[i++] = *low_pc;
7327 if (high_pc != NULL)
7328 comp_unit_die->attrs[i++] = *high_pc;
7329 if (ranges != NULL)
7330 comp_unit_die->attrs[i++] = *ranges;
7331 if (comp_dir != NULL)
7332 comp_unit_die->attrs[i++] = *comp_dir;
7333 comp_unit_die->num_attrs += num_extra_attrs;
7334
7335 if (dwarf_die_debug)
7336 {
7337 fprintf_unfiltered (gdb_stdlog,
7338 "Read die from %s@0x%x of %s:\n",
7339 get_section_name (section),
7340 (unsigned) (begin_info_ptr - section->buffer),
7341 bfd_get_filename (abfd));
7342 dump_die (comp_unit_die, dwarf_die_debug);
7343 }
7344
7345 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7346 TUs by skipping the stub and going directly to the entry in the DWO file.
7347 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7348 to get it via circuitous means. Blech. */
7349 if (comp_dir != NULL)
7350 result_reader->comp_dir = DW_STRING (comp_dir);
7351
7352 /* Skip dummy compilation units. */
7353 if (info_ptr >= begin_info_ptr + dwo_unit->length
7354 || peek_abbrev_code (abfd, info_ptr) == 0)
7355 return 0;
7356
7357 *result_info_ptr = info_ptr;
7358 return 1;
7359 }
7360
7361 /* Subroutine of init_cutu_and_read_dies to simplify it.
7362 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7363 Returns NULL if the specified DWO unit cannot be found. */
7364
7365 static struct dwo_unit *
7366 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7367 struct die_info *comp_unit_die)
7368 {
7369 struct dwarf2_cu *cu = this_cu->cu;
7370 ULONGEST signature;
7371 struct dwo_unit *dwo_unit;
7372 const char *comp_dir, *dwo_name;
7373
7374 gdb_assert (cu != NULL);
7375
7376 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7377 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7378 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7379
7380 if (this_cu->is_debug_types)
7381 {
7382 struct signatured_type *sig_type;
7383
7384 /* Since this_cu is the first member of struct signatured_type,
7385 we can go from a pointer to one to a pointer to the other. */
7386 sig_type = (struct signatured_type *) this_cu;
7387 signature = sig_type->signature;
7388 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7389 }
7390 else
7391 {
7392 struct attribute *attr;
7393
7394 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7395 if (! attr)
7396 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7397 " [in module %s]"),
7398 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7399 signature = DW_UNSND (attr);
7400 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7401 signature);
7402 }
7403
7404 return dwo_unit;
7405 }
7406
7407 /* Subroutine of init_cutu_and_read_dies to simplify it.
7408 See it for a description of the parameters.
7409 Read a TU directly from a DWO file, bypassing the stub. */
7410
7411 static void
7412 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7413 int use_existing_cu, int keep,
7414 die_reader_func_ftype *die_reader_func,
7415 void *data)
7416 {
7417 std::unique_ptr<dwarf2_cu> new_cu;
7418 struct signatured_type *sig_type;
7419 struct die_reader_specs reader;
7420 const gdb_byte *info_ptr;
7421 struct die_info *comp_unit_die;
7422 int has_children;
7423 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7424
7425 /* Verify we can do the following downcast, and that we have the
7426 data we need. */
7427 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7428 sig_type = (struct signatured_type *) this_cu;
7429 gdb_assert (sig_type->dwo_unit != NULL);
7430
7431 if (use_existing_cu && this_cu->cu != NULL)
7432 {
7433 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7434 /* There's no need to do the rereading_dwo_cu handling that
7435 init_cutu_and_read_dies does since we don't read the stub. */
7436 }
7437 else
7438 {
7439 /* If !use_existing_cu, this_cu->cu must be NULL. */
7440 gdb_assert (this_cu->cu == NULL);
7441 new_cu.reset (new dwarf2_cu (this_cu));
7442 }
7443
7444 /* A future optimization, if needed, would be to use an existing
7445 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7446 could share abbrev tables. */
7447
7448 /* The abbreviation table used by READER, this must live at least as long as
7449 READER. */
7450 abbrev_table_up dwo_abbrev_table;
7451
7452 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7453 NULL /* stub_comp_unit_die */,
7454 sig_type->dwo_unit->dwo_file->comp_dir,
7455 &reader, &info_ptr,
7456 &comp_unit_die, &has_children,
7457 &dwo_abbrev_table) == 0)
7458 {
7459 /* Dummy die. */
7460 return;
7461 }
7462
7463 /* All the "real" work is done here. */
7464 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7465
7466 /* This duplicates the code in init_cutu_and_read_dies,
7467 but the alternative is making the latter more complex.
7468 This function is only for the special case of using DWO files directly:
7469 no point in overly complicating the general case just to handle this. */
7470 if (new_cu != NULL && keep)
7471 {
7472 /* Link this CU into read_in_chain. */
7473 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7474 dwarf2_per_objfile->read_in_chain = this_cu;
7475 /* The chain owns it now. */
7476 new_cu.release ();
7477 }
7478 }
7479
7480 /* Initialize a CU (or TU) and read its DIEs.
7481 If the CU defers to a DWO file, read the DWO file as well.
7482
7483 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7484 Otherwise the table specified in the comp unit header is read in and used.
7485 This is an optimization for when we already have the abbrev table.
7486
7487 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7488 Otherwise, a new CU is allocated with xmalloc.
7489
7490 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7491 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7492
7493 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7494 linker) then DIE_READER_FUNC will not get called. */
7495
7496 static void
7497 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7498 struct abbrev_table *abbrev_table,
7499 int use_existing_cu, int keep,
7500 bool skip_partial,
7501 die_reader_func_ftype *die_reader_func,
7502 void *data)
7503 {
7504 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7505 struct objfile *objfile = dwarf2_per_objfile->objfile;
7506 struct dwarf2_section_info *section = this_cu->section;
7507 bfd *abfd = get_section_bfd_owner (section);
7508 struct dwarf2_cu *cu;
7509 const gdb_byte *begin_info_ptr, *info_ptr;
7510 struct die_reader_specs reader;
7511 struct die_info *comp_unit_die;
7512 int has_children;
7513 struct attribute *attr;
7514 struct signatured_type *sig_type = NULL;
7515 struct dwarf2_section_info *abbrev_section;
7516 /* Non-zero if CU currently points to a DWO file and we need to
7517 reread it. When this happens we need to reread the skeleton die
7518 before we can reread the DWO file (this only applies to CUs, not TUs). */
7519 int rereading_dwo_cu = 0;
7520
7521 if (dwarf_die_debug)
7522 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7523 this_cu->is_debug_types ? "type" : "comp",
7524 sect_offset_str (this_cu->sect_off));
7525
7526 if (use_existing_cu)
7527 gdb_assert (keep);
7528
7529 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7530 file (instead of going through the stub), short-circuit all of this. */
7531 if (this_cu->reading_dwo_directly)
7532 {
7533 /* Narrow down the scope of possibilities to have to understand. */
7534 gdb_assert (this_cu->is_debug_types);
7535 gdb_assert (abbrev_table == NULL);
7536 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7537 die_reader_func, data);
7538 return;
7539 }
7540
7541 /* This is cheap if the section is already read in. */
7542 dwarf2_read_section (objfile, section);
7543
7544 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7545
7546 abbrev_section = get_abbrev_section_for_cu (this_cu);
7547
7548 std::unique_ptr<dwarf2_cu> new_cu;
7549 if (use_existing_cu && this_cu->cu != NULL)
7550 {
7551 cu = this_cu->cu;
7552 /* If this CU is from a DWO file we need to start over, we need to
7553 refetch the attributes from the skeleton CU.
7554 This could be optimized by retrieving those attributes from when we
7555 were here the first time: the previous comp_unit_die was stored in
7556 comp_unit_obstack. But there's no data yet that we need this
7557 optimization. */
7558 if (cu->dwo_unit != NULL)
7559 rereading_dwo_cu = 1;
7560 }
7561 else
7562 {
7563 /* If !use_existing_cu, this_cu->cu must be NULL. */
7564 gdb_assert (this_cu->cu == NULL);
7565 new_cu.reset (new dwarf2_cu (this_cu));
7566 cu = new_cu.get ();
7567 }
7568
7569 /* Get the header. */
7570 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7571 {
7572 /* We already have the header, there's no need to read it in again. */
7573 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7574 }
7575 else
7576 {
7577 if (this_cu->is_debug_types)
7578 {
7579 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7580 &cu->header, section,
7581 abbrev_section, info_ptr,
7582 rcuh_kind::TYPE);
7583
7584 /* Since per_cu is the first member of struct signatured_type,
7585 we can go from a pointer to one to a pointer to the other. */
7586 sig_type = (struct signatured_type *) this_cu;
7587 gdb_assert (sig_type->signature == cu->header.signature);
7588 gdb_assert (sig_type->type_offset_in_tu
7589 == cu->header.type_cu_offset_in_tu);
7590 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7591
7592 /* LENGTH has not been set yet for type units if we're
7593 using .gdb_index. */
7594 this_cu->length = get_cu_length (&cu->header);
7595
7596 /* Establish the type offset that can be used to lookup the type. */
7597 sig_type->type_offset_in_section =
7598 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7599
7600 this_cu->dwarf_version = cu->header.version;
7601 }
7602 else
7603 {
7604 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7605 &cu->header, section,
7606 abbrev_section,
7607 info_ptr,
7608 rcuh_kind::COMPILE);
7609
7610 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7611 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7612 this_cu->dwarf_version = cu->header.version;
7613 }
7614 }
7615
7616 /* Skip dummy compilation units. */
7617 if (info_ptr >= begin_info_ptr + this_cu->length
7618 || peek_abbrev_code (abfd, info_ptr) == 0)
7619 return;
7620
7621 /* If we don't have them yet, read the abbrevs for this compilation unit.
7622 And if we need to read them now, make sure they're freed when we're
7623 done (own the table through ABBREV_TABLE_HOLDER). */
7624 abbrev_table_up abbrev_table_holder;
7625 if (abbrev_table != NULL)
7626 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7627 else
7628 {
7629 abbrev_table_holder
7630 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7631 cu->header.abbrev_sect_off);
7632 abbrev_table = abbrev_table_holder.get ();
7633 }
7634
7635 /* Read the top level CU/TU die. */
7636 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7637 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7638
7639 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7640 return;
7641
7642 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7643 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7644 table from the DWO file and pass the ownership over to us. It will be
7645 referenced from READER, so we must make sure to free it after we're done
7646 with READER.
7647
7648 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7649 DWO CU, that this test will fail (the attribute will not be present). */
7650 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7651 abbrev_table_up dwo_abbrev_table;
7652 if (attr)
7653 {
7654 struct dwo_unit *dwo_unit;
7655 struct die_info *dwo_comp_unit_die;
7656
7657 if (has_children)
7658 {
7659 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7660 " has children (offset %s) [in module %s]"),
7661 sect_offset_str (this_cu->sect_off),
7662 bfd_get_filename (abfd));
7663 }
7664 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7665 if (dwo_unit != NULL)
7666 {
7667 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7668 comp_unit_die, NULL,
7669 &reader, &info_ptr,
7670 &dwo_comp_unit_die, &has_children,
7671 &dwo_abbrev_table) == 0)
7672 {
7673 /* Dummy die. */
7674 return;
7675 }
7676 comp_unit_die = dwo_comp_unit_die;
7677 }
7678 else
7679 {
7680 /* Yikes, we couldn't find the rest of the DIE, we only have
7681 the stub. A complaint has already been logged. There's
7682 not much more we can do except pass on the stub DIE to
7683 die_reader_func. We don't want to throw an error on bad
7684 debug info. */
7685 }
7686 }
7687
7688 /* All of the above is setup for this call. Yikes. */
7689 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7690
7691 /* Done, clean up. */
7692 if (new_cu != NULL && keep)
7693 {
7694 /* Link this CU into read_in_chain. */
7695 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7696 dwarf2_per_objfile->read_in_chain = this_cu;
7697 /* The chain owns it now. */
7698 new_cu.release ();
7699 }
7700 }
7701
7702 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7703 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7704 to have already done the lookup to find the DWO file).
7705
7706 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7707 THIS_CU->is_debug_types, but nothing else.
7708
7709 We fill in THIS_CU->length.
7710
7711 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7712 linker) then DIE_READER_FUNC will not get called.
7713
7714 THIS_CU->cu is always freed when done.
7715 This is done in order to not leave THIS_CU->cu in a state where we have
7716 to care whether it refers to the "main" CU or the DWO CU. */
7717
7718 static void
7719 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7720 struct dwo_file *dwo_file,
7721 die_reader_func_ftype *die_reader_func,
7722 void *data)
7723 {
7724 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7725 struct objfile *objfile = dwarf2_per_objfile->objfile;
7726 struct dwarf2_section_info *section = this_cu->section;
7727 bfd *abfd = get_section_bfd_owner (section);
7728 struct dwarf2_section_info *abbrev_section;
7729 const gdb_byte *begin_info_ptr, *info_ptr;
7730 struct die_reader_specs reader;
7731 struct die_info *comp_unit_die;
7732 int has_children;
7733
7734 if (dwarf_die_debug)
7735 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7736 this_cu->is_debug_types ? "type" : "comp",
7737 sect_offset_str (this_cu->sect_off));
7738
7739 gdb_assert (this_cu->cu == NULL);
7740
7741 abbrev_section = (dwo_file != NULL
7742 ? &dwo_file->sections.abbrev
7743 : get_abbrev_section_for_cu (this_cu));
7744
7745 /* This is cheap if the section is already read in. */
7746 dwarf2_read_section (objfile, section);
7747
7748 struct dwarf2_cu cu (this_cu);
7749
7750 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7751 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7752 &cu.header, section,
7753 abbrev_section, info_ptr,
7754 (this_cu->is_debug_types
7755 ? rcuh_kind::TYPE
7756 : rcuh_kind::COMPILE));
7757
7758 this_cu->length = get_cu_length (&cu.header);
7759
7760 /* Skip dummy compilation units. */
7761 if (info_ptr >= begin_info_ptr + this_cu->length
7762 || peek_abbrev_code (abfd, info_ptr) == 0)
7763 return;
7764
7765 abbrev_table_up abbrev_table
7766 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7767 cu.header.abbrev_sect_off);
7768
7769 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7770 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7771
7772 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7773 }
7774
7775 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7776 does not lookup the specified DWO file.
7777 This cannot be used to read DWO files.
7778
7779 THIS_CU->cu is always freed when done.
7780 This is done in order to not leave THIS_CU->cu in a state where we have
7781 to care whether it refers to the "main" CU or the DWO CU.
7782 We can revisit this if the data shows there's a performance issue. */
7783
7784 static void
7785 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7786 die_reader_func_ftype *die_reader_func,
7787 void *data)
7788 {
7789 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7790 }
7791 \f
7792 /* Type Unit Groups.
7793
7794 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7795 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7796 so that all types coming from the same compilation (.o file) are grouped
7797 together. A future step could be to put the types in the same symtab as
7798 the CU the types ultimately came from. */
7799
7800 static hashval_t
7801 hash_type_unit_group (const void *item)
7802 {
7803 const struct type_unit_group *tu_group
7804 = (const struct type_unit_group *) item;
7805
7806 return hash_stmt_list_entry (&tu_group->hash);
7807 }
7808
7809 static int
7810 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7811 {
7812 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7813 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7814
7815 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7816 }
7817
7818 /* Allocate a hash table for type unit groups. */
7819
7820 static htab_t
7821 allocate_type_unit_groups_table (struct objfile *objfile)
7822 {
7823 return htab_create_alloc_ex (3,
7824 hash_type_unit_group,
7825 eq_type_unit_group,
7826 NULL,
7827 &objfile->objfile_obstack,
7828 hashtab_obstack_allocate,
7829 dummy_obstack_deallocate);
7830 }
7831
7832 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7833 partial symtabs. We combine several TUs per psymtab to not let the size
7834 of any one psymtab grow too big. */
7835 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7836 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7837
7838 /* Helper routine for get_type_unit_group.
7839 Create the type_unit_group object used to hold one or more TUs. */
7840
7841 static struct type_unit_group *
7842 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7843 {
7844 struct dwarf2_per_objfile *dwarf2_per_objfile
7845 = cu->per_cu->dwarf2_per_objfile;
7846 struct objfile *objfile = dwarf2_per_objfile->objfile;
7847 struct dwarf2_per_cu_data *per_cu;
7848 struct type_unit_group *tu_group;
7849
7850 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7851 struct type_unit_group);
7852 per_cu = &tu_group->per_cu;
7853 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7854
7855 if (dwarf2_per_objfile->using_index)
7856 {
7857 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7858 struct dwarf2_per_cu_quick_data);
7859 }
7860 else
7861 {
7862 unsigned int line_offset = to_underlying (line_offset_struct);
7863 struct partial_symtab *pst;
7864 std::string name;
7865
7866 /* Give the symtab a useful name for debug purposes. */
7867 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7868 name = string_printf ("<type_units_%d>",
7869 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7870 else
7871 name = string_printf ("<type_units_at_0x%x>", line_offset);
7872
7873 pst = create_partial_symtab (per_cu, name.c_str ());
7874 pst->anonymous = 1;
7875 }
7876
7877 tu_group->hash.dwo_unit = cu->dwo_unit;
7878 tu_group->hash.line_sect_off = line_offset_struct;
7879
7880 return tu_group;
7881 }
7882
7883 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7884 STMT_LIST is a DW_AT_stmt_list attribute. */
7885
7886 static struct type_unit_group *
7887 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7888 {
7889 struct dwarf2_per_objfile *dwarf2_per_objfile
7890 = cu->per_cu->dwarf2_per_objfile;
7891 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7892 struct type_unit_group *tu_group;
7893 void **slot;
7894 unsigned int line_offset;
7895 struct type_unit_group type_unit_group_for_lookup;
7896
7897 if (dwarf2_per_objfile->type_unit_groups == NULL)
7898 {
7899 dwarf2_per_objfile->type_unit_groups =
7900 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7901 }
7902
7903 /* Do we need to create a new group, or can we use an existing one? */
7904
7905 if (stmt_list)
7906 {
7907 line_offset = DW_UNSND (stmt_list);
7908 ++tu_stats->nr_symtab_sharers;
7909 }
7910 else
7911 {
7912 /* Ugh, no stmt_list. Rare, but we have to handle it.
7913 We can do various things here like create one group per TU or
7914 spread them over multiple groups to split up the expansion work.
7915 To avoid worst case scenarios (too many groups or too large groups)
7916 we, umm, group them in bunches. */
7917 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7918 | (tu_stats->nr_stmt_less_type_units
7919 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7920 ++tu_stats->nr_stmt_less_type_units;
7921 }
7922
7923 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7924 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7925 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7926 &type_unit_group_for_lookup, INSERT);
7927 if (*slot != NULL)
7928 {
7929 tu_group = (struct type_unit_group *) *slot;
7930 gdb_assert (tu_group != NULL);
7931 }
7932 else
7933 {
7934 sect_offset line_offset_struct = (sect_offset) line_offset;
7935 tu_group = create_type_unit_group (cu, line_offset_struct);
7936 *slot = tu_group;
7937 ++tu_stats->nr_symtabs;
7938 }
7939
7940 return tu_group;
7941 }
7942 \f
7943 /* Partial symbol tables. */
7944
7945 /* Create a psymtab named NAME and assign it to PER_CU.
7946
7947 The caller must fill in the following details:
7948 dirname, textlow, texthigh. */
7949
7950 static struct partial_symtab *
7951 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7952 {
7953 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7954 struct partial_symtab *pst;
7955
7956 pst = start_psymtab_common (objfile, name, 0);
7957
7958 pst->psymtabs_addrmap_supported = 1;
7959
7960 /* This is the glue that links PST into GDB's symbol API. */
7961 pst->read_symtab_private = per_cu;
7962 pst->read_symtab = dwarf2_read_symtab;
7963 per_cu->v.psymtab = pst;
7964
7965 return pst;
7966 }
7967
7968 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7969 type. */
7970
7971 struct process_psymtab_comp_unit_data
7972 {
7973 /* True if we are reading a DW_TAG_partial_unit. */
7974
7975 int want_partial_unit;
7976
7977 /* The "pretend" language that is used if the CU doesn't declare a
7978 language. */
7979
7980 enum language pretend_language;
7981 };
7982
7983 /* die_reader_func for process_psymtab_comp_unit. */
7984
7985 static void
7986 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7987 const gdb_byte *info_ptr,
7988 struct die_info *comp_unit_die,
7989 int has_children,
7990 void *data)
7991 {
7992 struct dwarf2_cu *cu = reader->cu;
7993 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7994 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7995 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7996 CORE_ADDR baseaddr;
7997 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7998 struct partial_symtab *pst;
7999 enum pc_bounds_kind cu_bounds_kind;
8000 const char *filename;
8001 struct process_psymtab_comp_unit_data *info
8002 = (struct process_psymtab_comp_unit_data *) data;
8003
8004 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
8005 return;
8006
8007 gdb_assert (! per_cu->is_debug_types);
8008
8009 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
8010
8011 /* Allocate a new partial symbol table structure. */
8012 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
8013 if (filename == NULL)
8014 filename = "";
8015
8016 pst = create_partial_symtab (per_cu, filename);
8017
8018 /* This must be done before calling dwarf2_build_include_psymtabs. */
8019 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
8020
8021 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8022
8023 dwarf2_find_base_address (comp_unit_die, cu);
8024
8025 /* Possibly set the default values of LOWPC and HIGHPC from
8026 `DW_AT_ranges'. */
8027 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
8028 &best_highpc, cu, pst);
8029 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
8030 {
8031 CORE_ADDR low
8032 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
8033 - baseaddr);
8034 CORE_ADDR high
8035 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
8036 - baseaddr - 1);
8037 /* Store the contiguous range if it is not empty; it can be
8038 empty for CUs with no code. */
8039 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
8040 low, high, pst);
8041 }
8042
8043 /* Check if comp unit has_children.
8044 If so, read the rest of the partial symbols from this comp unit.
8045 If not, there's no more debug_info for this comp unit. */
8046 if (has_children)
8047 {
8048 struct partial_die_info *first_die;
8049 CORE_ADDR lowpc, highpc;
8050
8051 lowpc = ((CORE_ADDR) -1);
8052 highpc = ((CORE_ADDR) 0);
8053
8054 first_die = load_partial_dies (reader, info_ptr, 1);
8055
8056 scan_partial_symbols (first_die, &lowpc, &highpc,
8057 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
8058
8059 /* If we didn't find a lowpc, set it to highpc to avoid
8060 complaints from `maint check'. */
8061 if (lowpc == ((CORE_ADDR) -1))
8062 lowpc = highpc;
8063
8064 /* If the compilation unit didn't have an explicit address range,
8065 then use the information extracted from its child dies. */
8066 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8067 {
8068 best_lowpc = lowpc;
8069 best_highpc = highpc;
8070 }
8071 }
8072 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
8073 best_lowpc + baseaddr)
8074 - baseaddr);
8075 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
8076 best_highpc + baseaddr)
8077 - baseaddr);
8078
8079 end_psymtab_common (objfile, pst);
8080
8081 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8082 {
8083 int i;
8084 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8085 struct dwarf2_per_cu_data *iter;
8086
8087 /* Fill in 'dependencies' here; we fill in 'users' in a
8088 post-pass. */
8089 pst->number_of_dependencies = len;
8090 pst->dependencies
8091 = objfile->partial_symtabs->allocate_dependencies (len);
8092 for (i = 0;
8093 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8094 i, iter);
8095 ++i)
8096 pst->dependencies[i] = iter->v.psymtab;
8097
8098 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8099 }
8100
8101 /* Get the list of files included in the current compilation unit,
8102 and build a psymtab for each of them. */
8103 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8104
8105 if (dwarf_read_debug)
8106 fprintf_unfiltered (gdb_stdlog,
8107 "Psymtab for %s unit @%s: %s - %s"
8108 ", %d global, %d static syms\n",
8109 per_cu->is_debug_types ? "type" : "comp",
8110 sect_offset_str (per_cu->sect_off),
8111 paddress (gdbarch, pst->text_low (objfile)),
8112 paddress (gdbarch, pst->text_high (objfile)),
8113 pst->n_global_syms, pst->n_static_syms);
8114 }
8115
8116 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8117 Process compilation unit THIS_CU for a psymtab. */
8118
8119 static void
8120 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8121 int want_partial_unit,
8122 enum language pretend_language)
8123 {
8124 /* If this compilation unit was already read in, free the
8125 cached copy in order to read it in again. This is
8126 necessary because we skipped some symbols when we first
8127 read in the compilation unit (see load_partial_dies).
8128 This problem could be avoided, but the benefit is unclear. */
8129 if (this_cu->cu != NULL)
8130 free_one_cached_comp_unit (this_cu);
8131
8132 if (this_cu->is_debug_types)
8133 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8134 build_type_psymtabs_reader, NULL);
8135 else
8136 {
8137 process_psymtab_comp_unit_data info;
8138 info.want_partial_unit = want_partial_unit;
8139 info.pretend_language = pretend_language;
8140 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8141 process_psymtab_comp_unit_reader, &info);
8142 }
8143
8144 /* Age out any secondary CUs. */
8145 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8146 }
8147
8148 /* Reader function for build_type_psymtabs. */
8149
8150 static void
8151 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8152 const gdb_byte *info_ptr,
8153 struct die_info *type_unit_die,
8154 int has_children,
8155 void *data)
8156 {
8157 struct dwarf2_per_objfile *dwarf2_per_objfile
8158 = reader->cu->per_cu->dwarf2_per_objfile;
8159 struct objfile *objfile = dwarf2_per_objfile->objfile;
8160 struct dwarf2_cu *cu = reader->cu;
8161 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8162 struct signatured_type *sig_type;
8163 struct type_unit_group *tu_group;
8164 struct attribute *attr;
8165 struct partial_die_info *first_die;
8166 CORE_ADDR lowpc, highpc;
8167 struct partial_symtab *pst;
8168
8169 gdb_assert (data == NULL);
8170 gdb_assert (per_cu->is_debug_types);
8171 sig_type = (struct signatured_type *) per_cu;
8172
8173 if (! has_children)
8174 return;
8175
8176 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8177 tu_group = get_type_unit_group (cu, attr);
8178
8179 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8180
8181 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8182 pst = create_partial_symtab (per_cu, "");
8183 pst->anonymous = 1;
8184
8185 first_die = load_partial_dies (reader, info_ptr, 1);
8186
8187 lowpc = (CORE_ADDR) -1;
8188 highpc = (CORE_ADDR) 0;
8189 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8190
8191 end_psymtab_common (objfile, pst);
8192 }
8193
8194 /* Struct used to sort TUs by their abbreviation table offset. */
8195
8196 struct tu_abbrev_offset
8197 {
8198 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8199 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8200 {}
8201
8202 signatured_type *sig_type;
8203 sect_offset abbrev_offset;
8204 };
8205
8206 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8207
8208 static bool
8209 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8210 const struct tu_abbrev_offset &b)
8211 {
8212 return a.abbrev_offset < b.abbrev_offset;
8213 }
8214
8215 /* Efficiently read all the type units.
8216 This does the bulk of the work for build_type_psymtabs.
8217
8218 The efficiency is because we sort TUs by the abbrev table they use and
8219 only read each abbrev table once. In one program there are 200K TUs
8220 sharing 8K abbrev tables.
8221
8222 The main purpose of this function is to support building the
8223 dwarf2_per_objfile->type_unit_groups table.
8224 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8225 can collapse the search space by grouping them by stmt_list.
8226 The savings can be significant, in the same program from above the 200K TUs
8227 share 8K stmt_list tables.
8228
8229 FUNC is expected to call get_type_unit_group, which will create the
8230 struct type_unit_group if necessary and add it to
8231 dwarf2_per_objfile->type_unit_groups. */
8232
8233 static void
8234 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8235 {
8236 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8237 abbrev_table_up abbrev_table;
8238 sect_offset abbrev_offset;
8239
8240 /* It's up to the caller to not call us multiple times. */
8241 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8242
8243 if (dwarf2_per_objfile->all_type_units.empty ())
8244 return;
8245
8246 /* TUs typically share abbrev tables, and there can be way more TUs than
8247 abbrev tables. Sort by abbrev table to reduce the number of times we
8248 read each abbrev table in.
8249 Alternatives are to punt or to maintain a cache of abbrev tables.
8250 This is simpler and efficient enough for now.
8251
8252 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8253 symtab to use). Typically TUs with the same abbrev offset have the same
8254 stmt_list value too so in practice this should work well.
8255
8256 The basic algorithm here is:
8257
8258 sort TUs by abbrev table
8259 for each TU with same abbrev table:
8260 read abbrev table if first user
8261 read TU top level DIE
8262 [IWBN if DWO skeletons had DW_AT_stmt_list]
8263 call FUNC */
8264
8265 if (dwarf_read_debug)
8266 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8267
8268 /* Sort in a separate table to maintain the order of all_type_units
8269 for .gdb_index: TU indices directly index all_type_units. */
8270 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8271 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8272
8273 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8274 sorted_by_abbrev.emplace_back
8275 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8276 sig_type->per_cu.section,
8277 sig_type->per_cu.sect_off));
8278
8279 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8280 sort_tu_by_abbrev_offset);
8281
8282 abbrev_offset = (sect_offset) ~(unsigned) 0;
8283
8284 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8285 {
8286 /* Switch to the next abbrev table if necessary. */
8287 if (abbrev_table == NULL
8288 || tu.abbrev_offset != abbrev_offset)
8289 {
8290 abbrev_offset = tu.abbrev_offset;
8291 abbrev_table =
8292 abbrev_table_read_table (dwarf2_per_objfile,
8293 &dwarf2_per_objfile->abbrev,
8294 abbrev_offset);
8295 ++tu_stats->nr_uniq_abbrev_tables;
8296 }
8297
8298 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8299 0, 0, false, build_type_psymtabs_reader, NULL);
8300 }
8301 }
8302
8303 /* Print collected type unit statistics. */
8304
8305 static void
8306 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8307 {
8308 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8309
8310 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8311 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8312 dwarf2_per_objfile->all_type_units.size ());
8313 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8314 tu_stats->nr_uniq_abbrev_tables);
8315 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8316 tu_stats->nr_symtabs);
8317 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8318 tu_stats->nr_symtab_sharers);
8319 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8320 tu_stats->nr_stmt_less_type_units);
8321 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8322 tu_stats->nr_all_type_units_reallocs);
8323 }
8324
8325 /* Traversal function for build_type_psymtabs. */
8326
8327 static int
8328 build_type_psymtab_dependencies (void **slot, void *info)
8329 {
8330 struct dwarf2_per_objfile *dwarf2_per_objfile
8331 = (struct dwarf2_per_objfile *) info;
8332 struct objfile *objfile = dwarf2_per_objfile->objfile;
8333 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8334 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8335 struct partial_symtab *pst = per_cu->v.psymtab;
8336 int len = VEC_length (sig_type_ptr, tu_group->tus);
8337 struct signatured_type *iter;
8338 int i;
8339
8340 gdb_assert (len > 0);
8341 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8342
8343 pst->number_of_dependencies = len;
8344 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
8345 for (i = 0;
8346 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8347 ++i)
8348 {
8349 gdb_assert (iter->per_cu.is_debug_types);
8350 pst->dependencies[i] = iter->per_cu.v.psymtab;
8351 iter->type_unit_group = tu_group;
8352 }
8353
8354 VEC_free (sig_type_ptr, tu_group->tus);
8355
8356 return 1;
8357 }
8358
8359 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8360 Build partial symbol tables for the .debug_types comp-units. */
8361
8362 static void
8363 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8364 {
8365 if (! create_all_type_units (dwarf2_per_objfile))
8366 return;
8367
8368 build_type_psymtabs_1 (dwarf2_per_objfile);
8369 }
8370
8371 /* Traversal function for process_skeletonless_type_unit.
8372 Read a TU in a DWO file and build partial symbols for it. */
8373
8374 static int
8375 process_skeletonless_type_unit (void **slot, void *info)
8376 {
8377 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8378 struct dwarf2_per_objfile *dwarf2_per_objfile
8379 = (struct dwarf2_per_objfile *) info;
8380 struct signatured_type find_entry, *entry;
8381
8382 /* If this TU doesn't exist in the global table, add it and read it in. */
8383
8384 if (dwarf2_per_objfile->signatured_types == NULL)
8385 {
8386 dwarf2_per_objfile->signatured_types
8387 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8388 }
8389
8390 find_entry.signature = dwo_unit->signature;
8391 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8392 INSERT);
8393 /* If we've already seen this type there's nothing to do. What's happening
8394 is we're doing our own version of comdat-folding here. */
8395 if (*slot != NULL)
8396 return 1;
8397
8398 /* This does the job that create_all_type_units would have done for
8399 this TU. */
8400 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8401 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8402 *slot = entry;
8403
8404 /* This does the job that build_type_psymtabs_1 would have done. */
8405 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8406 build_type_psymtabs_reader, NULL);
8407
8408 return 1;
8409 }
8410
8411 /* Traversal function for process_skeletonless_type_units. */
8412
8413 static int
8414 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8415 {
8416 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8417
8418 if (dwo_file->tus != NULL)
8419 {
8420 htab_traverse_noresize (dwo_file->tus,
8421 process_skeletonless_type_unit, info);
8422 }
8423
8424 return 1;
8425 }
8426
8427 /* Scan all TUs of DWO files, verifying we've processed them.
8428 This is needed in case a TU was emitted without its skeleton.
8429 Note: This can't be done until we know what all the DWO files are. */
8430
8431 static void
8432 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8433 {
8434 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8435 if (get_dwp_file (dwarf2_per_objfile) == NULL
8436 && dwarf2_per_objfile->dwo_files != NULL)
8437 {
8438 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8439 process_dwo_file_for_skeletonless_type_units,
8440 dwarf2_per_objfile);
8441 }
8442 }
8443
8444 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8445
8446 static void
8447 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8448 {
8449 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8450 {
8451 struct partial_symtab *pst = per_cu->v.psymtab;
8452
8453 if (pst == NULL)
8454 continue;
8455
8456 for (int j = 0; j < pst->number_of_dependencies; ++j)
8457 {
8458 /* Set the 'user' field only if it is not already set. */
8459 if (pst->dependencies[j]->user == NULL)
8460 pst->dependencies[j]->user = pst;
8461 }
8462 }
8463 }
8464
8465 /* Build the partial symbol table by doing a quick pass through the
8466 .debug_info and .debug_abbrev sections. */
8467
8468 static void
8469 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8470 {
8471 struct objfile *objfile = dwarf2_per_objfile->objfile;
8472
8473 if (dwarf_read_debug)
8474 {
8475 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8476 objfile_name (objfile));
8477 }
8478
8479 dwarf2_per_objfile->reading_partial_symbols = 1;
8480
8481 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8482
8483 /* Any cached compilation units will be linked by the per-objfile
8484 read_in_chain. Make sure to free them when we're done. */
8485 free_cached_comp_units freer (dwarf2_per_objfile);
8486
8487 build_type_psymtabs (dwarf2_per_objfile);
8488
8489 create_all_comp_units (dwarf2_per_objfile);
8490
8491 /* Create a temporary address map on a temporary obstack. We later
8492 copy this to the final obstack. */
8493 auto_obstack temp_obstack;
8494
8495 scoped_restore save_psymtabs_addrmap
8496 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
8497 addrmap_create_mutable (&temp_obstack));
8498
8499 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8500 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8501
8502 /* This has to wait until we read the CUs, we need the list of DWOs. */
8503 process_skeletonless_type_units (dwarf2_per_objfile);
8504
8505 /* Now that all TUs have been processed we can fill in the dependencies. */
8506 if (dwarf2_per_objfile->type_unit_groups != NULL)
8507 {
8508 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8509 build_type_psymtab_dependencies, dwarf2_per_objfile);
8510 }
8511
8512 if (dwarf_read_debug)
8513 print_tu_stats (dwarf2_per_objfile);
8514
8515 set_partial_user (dwarf2_per_objfile);
8516
8517 objfile->partial_symtabs->psymtabs_addrmap
8518 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
8519 objfile->partial_symtabs->obstack ());
8520 /* At this point we want to keep the address map. */
8521 save_psymtabs_addrmap.release ();
8522
8523 if (dwarf_read_debug)
8524 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8525 objfile_name (objfile));
8526 }
8527
8528 /* die_reader_func for load_partial_comp_unit. */
8529
8530 static void
8531 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8532 const gdb_byte *info_ptr,
8533 struct die_info *comp_unit_die,
8534 int has_children,
8535 void *data)
8536 {
8537 struct dwarf2_cu *cu = reader->cu;
8538
8539 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8540
8541 /* Check if comp unit has_children.
8542 If so, read the rest of the partial symbols from this comp unit.
8543 If not, there's no more debug_info for this comp unit. */
8544 if (has_children)
8545 load_partial_dies (reader, info_ptr, 0);
8546 }
8547
8548 /* Load the partial DIEs for a secondary CU into memory.
8549 This is also used when rereading a primary CU with load_all_dies. */
8550
8551 static void
8552 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8553 {
8554 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8555 load_partial_comp_unit_reader, NULL);
8556 }
8557
8558 static void
8559 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8560 struct dwarf2_section_info *section,
8561 struct dwarf2_section_info *abbrev_section,
8562 unsigned int is_dwz)
8563 {
8564 const gdb_byte *info_ptr;
8565 struct objfile *objfile = dwarf2_per_objfile->objfile;
8566
8567 if (dwarf_read_debug)
8568 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8569 get_section_name (section),
8570 get_section_file_name (section));
8571
8572 dwarf2_read_section (objfile, section);
8573
8574 info_ptr = section->buffer;
8575
8576 while (info_ptr < section->buffer + section->size)
8577 {
8578 struct dwarf2_per_cu_data *this_cu;
8579
8580 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8581
8582 comp_unit_head cu_header;
8583 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8584 abbrev_section, info_ptr,
8585 rcuh_kind::COMPILE);
8586
8587 /* Save the compilation unit for later lookup. */
8588 if (cu_header.unit_type != DW_UT_type)
8589 {
8590 this_cu = XOBNEW (&objfile->objfile_obstack,
8591 struct dwarf2_per_cu_data);
8592 memset (this_cu, 0, sizeof (*this_cu));
8593 }
8594 else
8595 {
8596 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8597 struct signatured_type);
8598 memset (sig_type, 0, sizeof (*sig_type));
8599 sig_type->signature = cu_header.signature;
8600 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8601 this_cu = &sig_type->per_cu;
8602 }
8603 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8604 this_cu->sect_off = sect_off;
8605 this_cu->length = cu_header.length + cu_header.initial_length_size;
8606 this_cu->is_dwz = is_dwz;
8607 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8608 this_cu->section = section;
8609
8610 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8611
8612 info_ptr = info_ptr + this_cu->length;
8613 }
8614 }
8615
8616 /* Create a list of all compilation units in OBJFILE.
8617 This is only done for -readnow and building partial symtabs. */
8618
8619 static void
8620 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8621 {
8622 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8623 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8624 &dwarf2_per_objfile->abbrev, 0);
8625
8626 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8627 if (dwz != NULL)
8628 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8629 1);
8630 }
8631
8632 /* Process all loaded DIEs for compilation unit CU, starting at
8633 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8634 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8635 DW_AT_ranges). See the comments of add_partial_subprogram on how
8636 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8637
8638 static void
8639 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8640 CORE_ADDR *highpc, int set_addrmap,
8641 struct dwarf2_cu *cu)
8642 {
8643 struct partial_die_info *pdi;
8644
8645 /* Now, march along the PDI's, descending into ones which have
8646 interesting children but skipping the children of the other ones,
8647 until we reach the end of the compilation unit. */
8648
8649 pdi = first_die;
8650
8651 while (pdi != NULL)
8652 {
8653 pdi->fixup (cu);
8654
8655 /* Anonymous namespaces or modules have no name but have interesting
8656 children, so we need to look at them. Ditto for anonymous
8657 enums. */
8658
8659 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8660 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8661 || pdi->tag == DW_TAG_imported_unit
8662 || pdi->tag == DW_TAG_inlined_subroutine)
8663 {
8664 switch (pdi->tag)
8665 {
8666 case DW_TAG_subprogram:
8667 case DW_TAG_inlined_subroutine:
8668 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8669 break;
8670 case DW_TAG_constant:
8671 case DW_TAG_variable:
8672 case DW_TAG_typedef:
8673 case DW_TAG_union_type:
8674 if (!pdi->is_declaration)
8675 {
8676 add_partial_symbol (pdi, cu);
8677 }
8678 break;
8679 case DW_TAG_class_type:
8680 case DW_TAG_interface_type:
8681 case DW_TAG_structure_type:
8682 if (!pdi->is_declaration)
8683 {
8684 add_partial_symbol (pdi, cu);
8685 }
8686 if ((cu->language == language_rust
8687 || cu->language == language_cplus) && pdi->has_children)
8688 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8689 set_addrmap, cu);
8690 break;
8691 case DW_TAG_enumeration_type:
8692 if (!pdi->is_declaration)
8693 add_partial_enumeration (pdi, cu);
8694 break;
8695 case DW_TAG_base_type:
8696 case DW_TAG_subrange_type:
8697 /* File scope base type definitions are added to the partial
8698 symbol table. */
8699 add_partial_symbol (pdi, cu);
8700 break;
8701 case DW_TAG_namespace:
8702 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8703 break;
8704 case DW_TAG_module:
8705 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8706 break;
8707 case DW_TAG_imported_unit:
8708 {
8709 struct dwarf2_per_cu_data *per_cu;
8710
8711 /* For now we don't handle imported units in type units. */
8712 if (cu->per_cu->is_debug_types)
8713 {
8714 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8715 " supported in type units [in module %s]"),
8716 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8717 }
8718
8719 per_cu = dwarf2_find_containing_comp_unit
8720 (pdi->d.sect_off, pdi->is_dwz,
8721 cu->per_cu->dwarf2_per_objfile);
8722
8723 /* Go read the partial unit, if needed. */
8724 if (per_cu->v.psymtab == NULL)
8725 process_psymtab_comp_unit (per_cu, 1, cu->language);
8726
8727 VEC_safe_push (dwarf2_per_cu_ptr,
8728 cu->per_cu->imported_symtabs, per_cu);
8729 }
8730 break;
8731 case DW_TAG_imported_declaration:
8732 add_partial_symbol (pdi, cu);
8733 break;
8734 default:
8735 break;
8736 }
8737 }
8738
8739 /* If the die has a sibling, skip to the sibling. */
8740
8741 pdi = pdi->die_sibling;
8742 }
8743 }
8744
8745 /* Functions used to compute the fully scoped name of a partial DIE.
8746
8747 Normally, this is simple. For C++, the parent DIE's fully scoped
8748 name is concatenated with "::" and the partial DIE's name.
8749 Enumerators are an exception; they use the scope of their parent
8750 enumeration type, i.e. the name of the enumeration type is not
8751 prepended to the enumerator.
8752
8753 There are two complexities. One is DW_AT_specification; in this
8754 case "parent" means the parent of the target of the specification,
8755 instead of the direct parent of the DIE. The other is compilers
8756 which do not emit DW_TAG_namespace; in this case we try to guess
8757 the fully qualified name of structure types from their members'
8758 linkage names. This must be done using the DIE's children rather
8759 than the children of any DW_AT_specification target. We only need
8760 to do this for structures at the top level, i.e. if the target of
8761 any DW_AT_specification (if any; otherwise the DIE itself) does not
8762 have a parent. */
8763
8764 /* Compute the scope prefix associated with PDI's parent, in
8765 compilation unit CU. The result will be allocated on CU's
8766 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8767 field. NULL is returned if no prefix is necessary. */
8768 static const char *
8769 partial_die_parent_scope (struct partial_die_info *pdi,
8770 struct dwarf2_cu *cu)
8771 {
8772 const char *grandparent_scope;
8773 struct partial_die_info *parent, *real_pdi;
8774
8775 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8776 then this means the parent of the specification DIE. */
8777
8778 real_pdi = pdi;
8779 while (real_pdi->has_specification)
8780 {
8781 auto res = find_partial_die (real_pdi->spec_offset,
8782 real_pdi->spec_is_dwz, cu);
8783 real_pdi = res.pdi;
8784 cu = res.cu;
8785 }
8786
8787 parent = real_pdi->die_parent;
8788 if (parent == NULL)
8789 return NULL;
8790
8791 if (parent->scope_set)
8792 return parent->scope;
8793
8794 parent->fixup (cu);
8795
8796 grandparent_scope = partial_die_parent_scope (parent, cu);
8797
8798 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8799 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8800 Work around this problem here. */
8801 if (cu->language == language_cplus
8802 && parent->tag == DW_TAG_namespace
8803 && strcmp (parent->name, "::") == 0
8804 && grandparent_scope == NULL)
8805 {
8806 parent->scope = NULL;
8807 parent->scope_set = 1;
8808 return NULL;
8809 }
8810
8811 if (pdi->tag == DW_TAG_enumerator)
8812 /* Enumerators should not get the name of the enumeration as a prefix. */
8813 parent->scope = grandparent_scope;
8814 else if (parent->tag == DW_TAG_namespace
8815 || parent->tag == DW_TAG_module
8816 || parent->tag == DW_TAG_structure_type
8817 || parent->tag == DW_TAG_class_type
8818 || parent->tag == DW_TAG_interface_type
8819 || parent->tag == DW_TAG_union_type
8820 || parent->tag == DW_TAG_enumeration_type)
8821 {
8822 if (grandparent_scope == NULL)
8823 parent->scope = parent->name;
8824 else
8825 parent->scope = typename_concat (&cu->comp_unit_obstack,
8826 grandparent_scope,
8827 parent->name, 0, cu);
8828 }
8829 else
8830 {
8831 /* FIXME drow/2004-04-01: What should we be doing with
8832 function-local names? For partial symbols, we should probably be
8833 ignoring them. */
8834 complaint (_("unhandled containing DIE tag %s for DIE at %s"),
8835 dwarf_tag_name (parent->tag),
8836 sect_offset_str (pdi->sect_off));
8837 parent->scope = grandparent_scope;
8838 }
8839
8840 parent->scope_set = 1;
8841 return parent->scope;
8842 }
8843
8844 /* Return the fully scoped name associated with PDI, from compilation unit
8845 CU. The result will be allocated with malloc. */
8846
8847 static char *
8848 partial_die_full_name (struct partial_die_info *pdi,
8849 struct dwarf2_cu *cu)
8850 {
8851 const char *parent_scope;
8852
8853 /* If this is a template instantiation, we can not work out the
8854 template arguments from partial DIEs. So, unfortunately, we have
8855 to go through the full DIEs. At least any work we do building
8856 types here will be reused if full symbols are loaded later. */
8857 if (pdi->has_template_arguments)
8858 {
8859 pdi->fixup (cu);
8860
8861 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8862 {
8863 struct die_info *die;
8864 struct attribute attr;
8865 struct dwarf2_cu *ref_cu = cu;
8866
8867 /* DW_FORM_ref_addr is using section offset. */
8868 attr.name = (enum dwarf_attribute) 0;
8869 attr.form = DW_FORM_ref_addr;
8870 attr.u.unsnd = to_underlying (pdi->sect_off);
8871 die = follow_die_ref (NULL, &attr, &ref_cu);
8872
8873 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8874 }
8875 }
8876
8877 parent_scope = partial_die_parent_scope (pdi, cu);
8878 if (parent_scope == NULL)
8879 return NULL;
8880 else
8881 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8882 }
8883
8884 static void
8885 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8886 {
8887 struct dwarf2_per_objfile *dwarf2_per_objfile
8888 = cu->per_cu->dwarf2_per_objfile;
8889 struct objfile *objfile = dwarf2_per_objfile->objfile;
8890 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8891 CORE_ADDR addr = 0;
8892 const char *actual_name = NULL;
8893 CORE_ADDR baseaddr;
8894 char *built_actual_name;
8895
8896 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8897
8898 built_actual_name = partial_die_full_name (pdi, cu);
8899 if (built_actual_name != NULL)
8900 actual_name = built_actual_name;
8901
8902 if (actual_name == NULL)
8903 actual_name = pdi->name;
8904
8905 switch (pdi->tag)
8906 {
8907 case DW_TAG_inlined_subroutine:
8908 case DW_TAG_subprogram:
8909 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8910 - baseaddr);
8911 if (pdi->is_external || cu->language == language_ada)
8912 {
8913 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8914 of the global scope. But in Ada, we want to be able to access
8915 nested procedures globally. So all Ada subprograms are stored
8916 in the global scope. */
8917 add_psymbol_to_list (actual_name, strlen (actual_name),
8918 built_actual_name != NULL,
8919 VAR_DOMAIN, LOC_BLOCK,
8920 SECT_OFF_TEXT (objfile),
8921 psymbol_placement::GLOBAL,
8922 addr,
8923 cu->language, objfile);
8924 }
8925 else
8926 {
8927 add_psymbol_to_list (actual_name, strlen (actual_name),
8928 built_actual_name != NULL,
8929 VAR_DOMAIN, LOC_BLOCK,
8930 SECT_OFF_TEXT (objfile),
8931 psymbol_placement::STATIC,
8932 addr, cu->language, objfile);
8933 }
8934
8935 if (pdi->main_subprogram && actual_name != NULL)
8936 set_objfile_main_name (objfile, actual_name, cu->language);
8937 break;
8938 case DW_TAG_constant:
8939 add_psymbol_to_list (actual_name, strlen (actual_name),
8940 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8941 -1, (pdi->is_external
8942 ? psymbol_placement::GLOBAL
8943 : psymbol_placement::STATIC),
8944 0, cu->language, objfile);
8945 break;
8946 case DW_TAG_variable:
8947 if (pdi->d.locdesc)
8948 addr = decode_locdesc (pdi->d.locdesc, cu);
8949
8950 if (pdi->d.locdesc
8951 && addr == 0
8952 && !dwarf2_per_objfile->has_section_at_zero)
8953 {
8954 /* A global or static variable may also have been stripped
8955 out by the linker if unused, in which case its address
8956 will be nullified; do not add such variables into partial
8957 symbol table then. */
8958 }
8959 else if (pdi->is_external)
8960 {
8961 /* Global Variable.
8962 Don't enter into the minimal symbol tables as there is
8963 a minimal symbol table entry from the ELF symbols already.
8964 Enter into partial symbol table if it has a location
8965 descriptor or a type.
8966 If the location descriptor is missing, new_symbol will create
8967 a LOC_UNRESOLVED symbol, the address of the variable will then
8968 be determined from the minimal symbol table whenever the variable
8969 is referenced.
8970 The address for the partial symbol table entry is not
8971 used by GDB, but it comes in handy for debugging partial symbol
8972 table building. */
8973
8974 if (pdi->d.locdesc || pdi->has_type)
8975 add_psymbol_to_list (actual_name, strlen (actual_name),
8976 built_actual_name != NULL,
8977 VAR_DOMAIN, LOC_STATIC,
8978 SECT_OFF_TEXT (objfile),
8979 psymbol_placement::GLOBAL,
8980 addr, cu->language, objfile);
8981 }
8982 else
8983 {
8984 int has_loc = pdi->d.locdesc != NULL;
8985
8986 /* Static Variable. Skip symbols whose value we cannot know (those
8987 without location descriptors or constant values). */
8988 if (!has_loc && !pdi->has_const_value)
8989 {
8990 xfree (built_actual_name);
8991 return;
8992 }
8993
8994 add_psymbol_to_list (actual_name, strlen (actual_name),
8995 built_actual_name != NULL,
8996 VAR_DOMAIN, LOC_STATIC,
8997 SECT_OFF_TEXT (objfile),
8998 psymbol_placement::STATIC,
8999 has_loc ? addr : 0,
9000 cu->language, objfile);
9001 }
9002 break;
9003 case DW_TAG_typedef:
9004 case DW_TAG_base_type:
9005 case DW_TAG_subrange_type:
9006 add_psymbol_to_list (actual_name, strlen (actual_name),
9007 built_actual_name != NULL,
9008 VAR_DOMAIN, LOC_TYPEDEF, -1,
9009 psymbol_placement::STATIC,
9010 0, cu->language, objfile);
9011 break;
9012 case DW_TAG_imported_declaration:
9013 case DW_TAG_namespace:
9014 add_psymbol_to_list (actual_name, strlen (actual_name),
9015 built_actual_name != NULL,
9016 VAR_DOMAIN, LOC_TYPEDEF, -1,
9017 psymbol_placement::GLOBAL,
9018 0, cu->language, objfile);
9019 break;
9020 case DW_TAG_module:
9021 add_psymbol_to_list (actual_name, strlen (actual_name),
9022 built_actual_name != NULL,
9023 MODULE_DOMAIN, LOC_TYPEDEF, -1,
9024 psymbol_placement::GLOBAL,
9025 0, cu->language, objfile);
9026 break;
9027 case DW_TAG_class_type:
9028 case DW_TAG_interface_type:
9029 case DW_TAG_structure_type:
9030 case DW_TAG_union_type:
9031 case DW_TAG_enumeration_type:
9032 /* Skip external references. The DWARF standard says in the section
9033 about "Structure, Union, and Class Type Entries": "An incomplete
9034 structure, union or class type is represented by a structure,
9035 union or class entry that does not have a byte size attribute
9036 and that has a DW_AT_declaration attribute." */
9037 if (!pdi->has_byte_size && pdi->is_declaration)
9038 {
9039 xfree (built_actual_name);
9040 return;
9041 }
9042
9043 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
9044 static vs. global. */
9045 add_psymbol_to_list (actual_name, strlen (actual_name),
9046 built_actual_name != NULL,
9047 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
9048 cu->language == language_cplus
9049 ? psymbol_placement::GLOBAL
9050 : psymbol_placement::STATIC,
9051 0, cu->language, objfile);
9052
9053 break;
9054 case DW_TAG_enumerator:
9055 add_psymbol_to_list (actual_name, strlen (actual_name),
9056 built_actual_name != NULL,
9057 VAR_DOMAIN, LOC_CONST, -1,
9058 cu->language == language_cplus
9059 ? psymbol_placement::GLOBAL
9060 : psymbol_placement::STATIC,
9061 0, cu->language, objfile);
9062 break;
9063 default:
9064 break;
9065 }
9066
9067 xfree (built_actual_name);
9068 }
9069
9070 /* Read a partial die corresponding to a namespace; also, add a symbol
9071 corresponding to that namespace to the symbol table. NAMESPACE is
9072 the name of the enclosing namespace. */
9073
9074 static void
9075 add_partial_namespace (struct partial_die_info *pdi,
9076 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9077 int set_addrmap, struct dwarf2_cu *cu)
9078 {
9079 /* Add a symbol for the namespace. */
9080
9081 add_partial_symbol (pdi, cu);
9082
9083 /* Now scan partial symbols in that namespace. */
9084
9085 if (pdi->has_children)
9086 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9087 }
9088
9089 /* Read a partial die corresponding to a Fortran module. */
9090
9091 static void
9092 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9093 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9094 {
9095 /* Add a symbol for the namespace. */
9096
9097 add_partial_symbol (pdi, cu);
9098
9099 /* Now scan partial symbols in that module. */
9100
9101 if (pdi->has_children)
9102 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9103 }
9104
9105 /* Read a partial die corresponding to a subprogram or an inlined
9106 subprogram and create a partial symbol for that subprogram.
9107 When the CU language allows it, this routine also defines a partial
9108 symbol for each nested subprogram that this subprogram contains.
9109 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9110 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9111
9112 PDI may also be a lexical block, in which case we simply search
9113 recursively for subprograms defined inside that lexical block.
9114 Again, this is only performed when the CU language allows this
9115 type of definitions. */
9116
9117 static void
9118 add_partial_subprogram (struct partial_die_info *pdi,
9119 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9120 int set_addrmap, struct dwarf2_cu *cu)
9121 {
9122 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9123 {
9124 if (pdi->has_pc_info)
9125 {
9126 if (pdi->lowpc < *lowpc)
9127 *lowpc = pdi->lowpc;
9128 if (pdi->highpc > *highpc)
9129 *highpc = pdi->highpc;
9130 if (set_addrmap)
9131 {
9132 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9133 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9134 CORE_ADDR baseaddr;
9135 CORE_ADDR this_highpc;
9136 CORE_ADDR this_lowpc;
9137
9138 baseaddr = ANOFFSET (objfile->section_offsets,
9139 SECT_OFF_TEXT (objfile));
9140 this_lowpc
9141 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9142 pdi->lowpc + baseaddr)
9143 - baseaddr);
9144 this_highpc
9145 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9146 pdi->highpc + baseaddr)
9147 - baseaddr);
9148 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
9149 this_lowpc, this_highpc - 1,
9150 cu->per_cu->v.psymtab);
9151 }
9152 }
9153
9154 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9155 {
9156 if (!pdi->is_declaration)
9157 /* Ignore subprogram DIEs that do not have a name, they are
9158 illegal. Do not emit a complaint at this point, we will
9159 do so when we convert this psymtab into a symtab. */
9160 if (pdi->name)
9161 add_partial_symbol (pdi, cu);
9162 }
9163 }
9164
9165 if (! pdi->has_children)
9166 return;
9167
9168 if (cu->language == language_ada)
9169 {
9170 pdi = pdi->die_child;
9171 while (pdi != NULL)
9172 {
9173 pdi->fixup (cu);
9174 if (pdi->tag == DW_TAG_subprogram
9175 || pdi->tag == DW_TAG_inlined_subroutine
9176 || pdi->tag == DW_TAG_lexical_block)
9177 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9178 pdi = pdi->die_sibling;
9179 }
9180 }
9181 }
9182
9183 /* Read a partial die corresponding to an enumeration type. */
9184
9185 static void
9186 add_partial_enumeration (struct partial_die_info *enum_pdi,
9187 struct dwarf2_cu *cu)
9188 {
9189 struct partial_die_info *pdi;
9190
9191 if (enum_pdi->name != NULL)
9192 add_partial_symbol (enum_pdi, cu);
9193
9194 pdi = enum_pdi->die_child;
9195 while (pdi)
9196 {
9197 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9198 complaint (_("malformed enumerator DIE ignored"));
9199 else
9200 add_partial_symbol (pdi, cu);
9201 pdi = pdi->die_sibling;
9202 }
9203 }
9204
9205 /* Return the initial uleb128 in the die at INFO_PTR. */
9206
9207 static unsigned int
9208 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9209 {
9210 unsigned int bytes_read;
9211
9212 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9213 }
9214
9215 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9216 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9217
9218 Return the corresponding abbrev, or NULL if the number is zero (indicating
9219 an empty DIE). In either case *BYTES_READ will be set to the length of
9220 the initial number. */
9221
9222 static struct abbrev_info *
9223 peek_die_abbrev (const die_reader_specs &reader,
9224 const gdb_byte *info_ptr, unsigned int *bytes_read)
9225 {
9226 dwarf2_cu *cu = reader.cu;
9227 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9228 unsigned int abbrev_number
9229 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9230
9231 if (abbrev_number == 0)
9232 return NULL;
9233
9234 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9235 if (!abbrev)
9236 {
9237 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9238 " at offset %s [in module %s]"),
9239 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9240 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9241 }
9242
9243 return abbrev;
9244 }
9245
9246 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9247 Returns a pointer to the end of a series of DIEs, terminated by an empty
9248 DIE. Any children of the skipped DIEs will also be skipped. */
9249
9250 static const gdb_byte *
9251 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9252 {
9253 while (1)
9254 {
9255 unsigned int bytes_read;
9256 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9257
9258 if (abbrev == NULL)
9259 return info_ptr + bytes_read;
9260 else
9261 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9262 }
9263 }
9264
9265 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9266 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9267 abbrev corresponding to that skipped uleb128 should be passed in
9268 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9269 children. */
9270
9271 static const gdb_byte *
9272 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9273 struct abbrev_info *abbrev)
9274 {
9275 unsigned int bytes_read;
9276 struct attribute attr;
9277 bfd *abfd = reader->abfd;
9278 struct dwarf2_cu *cu = reader->cu;
9279 const gdb_byte *buffer = reader->buffer;
9280 const gdb_byte *buffer_end = reader->buffer_end;
9281 unsigned int form, i;
9282
9283 for (i = 0; i < abbrev->num_attrs; i++)
9284 {
9285 /* The only abbrev we care about is DW_AT_sibling. */
9286 if (abbrev->attrs[i].name == DW_AT_sibling)
9287 {
9288 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9289 if (attr.form == DW_FORM_ref_addr)
9290 complaint (_("ignoring absolute DW_AT_sibling"));
9291 else
9292 {
9293 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9294 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9295
9296 if (sibling_ptr < info_ptr)
9297 complaint (_("DW_AT_sibling points backwards"));
9298 else if (sibling_ptr > reader->buffer_end)
9299 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9300 else
9301 return sibling_ptr;
9302 }
9303 }
9304
9305 /* If it isn't DW_AT_sibling, skip this attribute. */
9306 form = abbrev->attrs[i].form;
9307 skip_attribute:
9308 switch (form)
9309 {
9310 case DW_FORM_ref_addr:
9311 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9312 and later it is offset sized. */
9313 if (cu->header.version == 2)
9314 info_ptr += cu->header.addr_size;
9315 else
9316 info_ptr += cu->header.offset_size;
9317 break;
9318 case DW_FORM_GNU_ref_alt:
9319 info_ptr += cu->header.offset_size;
9320 break;
9321 case DW_FORM_addr:
9322 info_ptr += cu->header.addr_size;
9323 break;
9324 case DW_FORM_data1:
9325 case DW_FORM_ref1:
9326 case DW_FORM_flag:
9327 info_ptr += 1;
9328 break;
9329 case DW_FORM_flag_present:
9330 case DW_FORM_implicit_const:
9331 break;
9332 case DW_FORM_data2:
9333 case DW_FORM_ref2:
9334 info_ptr += 2;
9335 break;
9336 case DW_FORM_data4:
9337 case DW_FORM_ref4:
9338 info_ptr += 4;
9339 break;
9340 case DW_FORM_data8:
9341 case DW_FORM_ref8:
9342 case DW_FORM_ref_sig8:
9343 info_ptr += 8;
9344 break;
9345 case DW_FORM_data16:
9346 info_ptr += 16;
9347 break;
9348 case DW_FORM_string:
9349 read_direct_string (abfd, info_ptr, &bytes_read);
9350 info_ptr += bytes_read;
9351 break;
9352 case DW_FORM_sec_offset:
9353 case DW_FORM_strp:
9354 case DW_FORM_GNU_strp_alt:
9355 info_ptr += cu->header.offset_size;
9356 break;
9357 case DW_FORM_exprloc:
9358 case DW_FORM_block:
9359 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9360 info_ptr += bytes_read;
9361 break;
9362 case DW_FORM_block1:
9363 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9364 break;
9365 case DW_FORM_block2:
9366 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9367 break;
9368 case DW_FORM_block4:
9369 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9370 break;
9371 case DW_FORM_addrx:
9372 case DW_FORM_strx:
9373 case DW_FORM_sdata:
9374 case DW_FORM_udata:
9375 case DW_FORM_ref_udata:
9376 case DW_FORM_GNU_addr_index:
9377 case DW_FORM_GNU_str_index:
9378 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9379 break;
9380 case DW_FORM_indirect:
9381 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9382 info_ptr += bytes_read;
9383 /* We need to continue parsing from here, so just go back to
9384 the top. */
9385 goto skip_attribute;
9386
9387 default:
9388 error (_("Dwarf Error: Cannot handle %s "
9389 "in DWARF reader [in module %s]"),
9390 dwarf_form_name (form),
9391 bfd_get_filename (abfd));
9392 }
9393 }
9394
9395 if (abbrev->has_children)
9396 return skip_children (reader, info_ptr);
9397 else
9398 return info_ptr;
9399 }
9400
9401 /* Locate ORIG_PDI's sibling.
9402 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9403
9404 static const gdb_byte *
9405 locate_pdi_sibling (const struct die_reader_specs *reader,
9406 struct partial_die_info *orig_pdi,
9407 const gdb_byte *info_ptr)
9408 {
9409 /* Do we know the sibling already? */
9410
9411 if (orig_pdi->sibling)
9412 return orig_pdi->sibling;
9413
9414 /* Are there any children to deal with? */
9415
9416 if (!orig_pdi->has_children)
9417 return info_ptr;
9418
9419 /* Skip the children the long way. */
9420
9421 return skip_children (reader, info_ptr);
9422 }
9423
9424 /* Expand this partial symbol table into a full symbol table. SELF is
9425 not NULL. */
9426
9427 static void
9428 dwarf2_read_symtab (struct partial_symtab *self,
9429 struct objfile *objfile)
9430 {
9431 struct dwarf2_per_objfile *dwarf2_per_objfile
9432 = get_dwarf2_per_objfile (objfile);
9433
9434 if (self->readin)
9435 {
9436 warning (_("bug: psymtab for %s is already read in."),
9437 self->filename);
9438 }
9439 else
9440 {
9441 if (info_verbose)
9442 {
9443 printf_filtered (_("Reading in symbols for %s..."),
9444 self->filename);
9445 gdb_flush (gdb_stdout);
9446 }
9447
9448 /* If this psymtab is constructed from a debug-only objfile, the
9449 has_section_at_zero flag will not necessarily be correct. We
9450 can get the correct value for this flag by looking at the data
9451 associated with the (presumably stripped) associated objfile. */
9452 if (objfile->separate_debug_objfile_backlink)
9453 {
9454 struct dwarf2_per_objfile *dpo_backlink
9455 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9456
9457 dwarf2_per_objfile->has_section_at_zero
9458 = dpo_backlink->has_section_at_zero;
9459 }
9460
9461 dwarf2_per_objfile->reading_partial_symbols = 0;
9462
9463 psymtab_to_symtab_1 (self);
9464
9465 /* Finish up the debug error message. */
9466 if (info_verbose)
9467 printf_filtered (_("done.\n"));
9468 }
9469
9470 process_cu_includes (dwarf2_per_objfile);
9471 }
9472 \f
9473 /* Reading in full CUs. */
9474
9475 /* Add PER_CU to the queue. */
9476
9477 static void
9478 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9479 enum language pretend_language)
9480 {
9481 struct dwarf2_queue_item *item;
9482
9483 per_cu->queued = 1;
9484 item = XNEW (struct dwarf2_queue_item);
9485 item->per_cu = per_cu;
9486 item->pretend_language = pretend_language;
9487 item->next = NULL;
9488
9489 if (dwarf2_queue == NULL)
9490 dwarf2_queue = item;
9491 else
9492 dwarf2_queue_tail->next = item;
9493
9494 dwarf2_queue_tail = item;
9495 }
9496
9497 /* If PER_CU is not yet queued, add it to the queue.
9498 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9499 dependency.
9500 The result is non-zero if PER_CU was queued, otherwise the result is zero
9501 meaning either PER_CU is already queued or it is already loaded.
9502
9503 N.B. There is an invariant here that if a CU is queued then it is loaded.
9504 The caller is required to load PER_CU if we return non-zero. */
9505
9506 static int
9507 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9508 struct dwarf2_per_cu_data *per_cu,
9509 enum language pretend_language)
9510 {
9511 /* We may arrive here during partial symbol reading, if we need full
9512 DIEs to process an unusual case (e.g. template arguments). Do
9513 not queue PER_CU, just tell our caller to load its DIEs. */
9514 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9515 {
9516 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9517 return 1;
9518 return 0;
9519 }
9520
9521 /* Mark the dependence relation so that we don't flush PER_CU
9522 too early. */
9523 if (dependent_cu != NULL)
9524 dwarf2_add_dependence (dependent_cu, per_cu);
9525
9526 /* If it's already on the queue, we have nothing to do. */
9527 if (per_cu->queued)
9528 return 0;
9529
9530 /* If the compilation unit is already loaded, just mark it as
9531 used. */
9532 if (per_cu->cu != NULL)
9533 {
9534 per_cu->cu->last_used = 0;
9535 return 0;
9536 }
9537
9538 /* Add it to the queue. */
9539 queue_comp_unit (per_cu, pretend_language);
9540
9541 return 1;
9542 }
9543
9544 /* Process the queue. */
9545
9546 static void
9547 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9548 {
9549 struct dwarf2_queue_item *item, *next_item;
9550
9551 if (dwarf_read_debug)
9552 {
9553 fprintf_unfiltered (gdb_stdlog,
9554 "Expanding one or more symtabs of objfile %s ...\n",
9555 objfile_name (dwarf2_per_objfile->objfile));
9556 }
9557
9558 /* The queue starts out with one item, but following a DIE reference
9559 may load a new CU, adding it to the end of the queue. */
9560 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9561 {
9562 if ((dwarf2_per_objfile->using_index
9563 ? !item->per_cu->v.quick->compunit_symtab
9564 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9565 /* Skip dummy CUs. */
9566 && item->per_cu->cu != NULL)
9567 {
9568 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9569 unsigned int debug_print_threshold;
9570 char buf[100];
9571
9572 if (per_cu->is_debug_types)
9573 {
9574 struct signatured_type *sig_type =
9575 (struct signatured_type *) per_cu;
9576
9577 sprintf (buf, "TU %s at offset %s",
9578 hex_string (sig_type->signature),
9579 sect_offset_str (per_cu->sect_off));
9580 /* There can be 100s of TUs.
9581 Only print them in verbose mode. */
9582 debug_print_threshold = 2;
9583 }
9584 else
9585 {
9586 sprintf (buf, "CU at offset %s",
9587 sect_offset_str (per_cu->sect_off));
9588 debug_print_threshold = 1;
9589 }
9590
9591 if (dwarf_read_debug >= debug_print_threshold)
9592 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9593
9594 if (per_cu->is_debug_types)
9595 process_full_type_unit (per_cu, item->pretend_language);
9596 else
9597 process_full_comp_unit (per_cu, item->pretend_language);
9598
9599 if (dwarf_read_debug >= debug_print_threshold)
9600 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9601 }
9602
9603 item->per_cu->queued = 0;
9604 next_item = item->next;
9605 xfree (item);
9606 }
9607
9608 dwarf2_queue_tail = NULL;
9609
9610 if (dwarf_read_debug)
9611 {
9612 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9613 objfile_name (dwarf2_per_objfile->objfile));
9614 }
9615 }
9616
9617 /* Read in full symbols for PST, and anything it depends on. */
9618
9619 static void
9620 psymtab_to_symtab_1 (struct partial_symtab *pst)
9621 {
9622 struct dwarf2_per_cu_data *per_cu;
9623 int i;
9624
9625 if (pst->readin)
9626 return;
9627
9628 for (i = 0; i < pst->number_of_dependencies; i++)
9629 if (!pst->dependencies[i]->readin
9630 && pst->dependencies[i]->user == NULL)
9631 {
9632 /* Inform about additional files that need to be read in. */
9633 if (info_verbose)
9634 {
9635 /* FIXME: i18n: Need to make this a single string. */
9636 fputs_filtered (" ", gdb_stdout);
9637 wrap_here ("");
9638 fputs_filtered ("and ", gdb_stdout);
9639 wrap_here ("");
9640 printf_filtered ("%s...", pst->dependencies[i]->filename);
9641 wrap_here (""); /* Flush output. */
9642 gdb_flush (gdb_stdout);
9643 }
9644 psymtab_to_symtab_1 (pst->dependencies[i]);
9645 }
9646
9647 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9648
9649 if (per_cu == NULL)
9650 {
9651 /* It's an include file, no symbols to read for it.
9652 Everything is in the parent symtab. */
9653 pst->readin = 1;
9654 return;
9655 }
9656
9657 dw2_do_instantiate_symtab (per_cu, false);
9658 }
9659
9660 /* Trivial hash function for die_info: the hash value of a DIE
9661 is its offset in .debug_info for this objfile. */
9662
9663 static hashval_t
9664 die_hash (const void *item)
9665 {
9666 const struct die_info *die = (const struct die_info *) item;
9667
9668 return to_underlying (die->sect_off);
9669 }
9670
9671 /* Trivial comparison function for die_info structures: two DIEs
9672 are equal if they have the same offset. */
9673
9674 static int
9675 die_eq (const void *item_lhs, const void *item_rhs)
9676 {
9677 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9678 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9679
9680 return die_lhs->sect_off == die_rhs->sect_off;
9681 }
9682
9683 /* die_reader_func for load_full_comp_unit.
9684 This is identical to read_signatured_type_reader,
9685 but is kept separate for now. */
9686
9687 static void
9688 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9689 const gdb_byte *info_ptr,
9690 struct die_info *comp_unit_die,
9691 int has_children,
9692 void *data)
9693 {
9694 struct dwarf2_cu *cu = reader->cu;
9695 enum language *language_ptr = (enum language *) data;
9696
9697 gdb_assert (cu->die_hash == NULL);
9698 cu->die_hash =
9699 htab_create_alloc_ex (cu->header.length / 12,
9700 die_hash,
9701 die_eq,
9702 NULL,
9703 &cu->comp_unit_obstack,
9704 hashtab_obstack_allocate,
9705 dummy_obstack_deallocate);
9706
9707 if (has_children)
9708 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9709 &info_ptr, comp_unit_die);
9710 cu->dies = comp_unit_die;
9711 /* comp_unit_die is not stored in die_hash, no need. */
9712
9713 /* We try not to read any attributes in this function, because not
9714 all CUs needed for references have been loaded yet, and symbol
9715 table processing isn't initialized. But we have to set the CU language,
9716 or we won't be able to build types correctly.
9717 Similarly, if we do not read the producer, we can not apply
9718 producer-specific interpretation. */
9719 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9720 }
9721
9722 /* Load the DIEs associated with PER_CU into memory. */
9723
9724 static void
9725 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9726 bool skip_partial,
9727 enum language pretend_language)
9728 {
9729 gdb_assert (! this_cu->is_debug_types);
9730
9731 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9732 load_full_comp_unit_reader, &pretend_language);
9733 }
9734
9735 /* Add a DIE to the delayed physname list. */
9736
9737 static void
9738 add_to_method_list (struct type *type, int fnfield_index, int index,
9739 const char *name, struct die_info *die,
9740 struct dwarf2_cu *cu)
9741 {
9742 struct delayed_method_info mi;
9743 mi.type = type;
9744 mi.fnfield_index = fnfield_index;
9745 mi.index = index;
9746 mi.name = name;
9747 mi.die = die;
9748 cu->method_list.push_back (mi);
9749 }
9750
9751 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9752 "const" / "volatile". If so, decrements LEN by the length of the
9753 modifier and return true. Otherwise return false. */
9754
9755 template<size_t N>
9756 static bool
9757 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9758 {
9759 size_t mod_len = sizeof (mod) - 1;
9760 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9761 {
9762 len -= mod_len;
9763 return true;
9764 }
9765 return false;
9766 }
9767
9768 /* Compute the physnames of any methods on the CU's method list.
9769
9770 The computation of method physnames is delayed in order to avoid the
9771 (bad) condition that one of the method's formal parameters is of an as yet
9772 incomplete type. */
9773
9774 static void
9775 compute_delayed_physnames (struct dwarf2_cu *cu)
9776 {
9777 /* Only C++ delays computing physnames. */
9778 if (cu->method_list.empty ())
9779 return;
9780 gdb_assert (cu->language == language_cplus);
9781
9782 for (const delayed_method_info &mi : cu->method_list)
9783 {
9784 const char *physname;
9785 struct fn_fieldlist *fn_flp
9786 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9787 physname = dwarf2_physname (mi.name, mi.die, cu);
9788 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9789 = physname ? physname : "";
9790
9791 /* Since there's no tag to indicate whether a method is a
9792 const/volatile overload, extract that information out of the
9793 demangled name. */
9794 if (physname != NULL)
9795 {
9796 size_t len = strlen (physname);
9797
9798 while (1)
9799 {
9800 if (physname[len] == ')') /* shortcut */
9801 break;
9802 else if (check_modifier (physname, len, " const"))
9803 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9804 else if (check_modifier (physname, len, " volatile"))
9805 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9806 else
9807 break;
9808 }
9809 }
9810 }
9811
9812 /* The list is no longer needed. */
9813 cu->method_list.clear ();
9814 }
9815
9816 /* Go objects should be embedded in a DW_TAG_module DIE,
9817 and it's not clear if/how imported objects will appear.
9818 To keep Go support simple until that's worked out,
9819 go back through what we've read and create something usable.
9820 We could do this while processing each DIE, and feels kinda cleaner,
9821 but that way is more invasive.
9822 This is to, for example, allow the user to type "p var" or "b main"
9823 without having to specify the package name, and allow lookups
9824 of module.object to work in contexts that use the expression
9825 parser. */
9826
9827 static void
9828 fixup_go_packaging (struct dwarf2_cu *cu)
9829 {
9830 char *package_name = NULL;
9831 struct pending *list;
9832 int i;
9833
9834 for (list = *cu->get_builder ()->get_global_symbols ();
9835 list != NULL;
9836 list = list->next)
9837 {
9838 for (i = 0; i < list->nsyms; ++i)
9839 {
9840 struct symbol *sym = list->symbol[i];
9841
9842 if (SYMBOL_LANGUAGE (sym) == language_go
9843 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9844 {
9845 char *this_package_name = go_symbol_package_name (sym);
9846
9847 if (this_package_name == NULL)
9848 continue;
9849 if (package_name == NULL)
9850 package_name = this_package_name;
9851 else
9852 {
9853 struct objfile *objfile
9854 = cu->per_cu->dwarf2_per_objfile->objfile;
9855 if (strcmp (package_name, this_package_name) != 0)
9856 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9857 (symbol_symtab (sym) != NULL
9858 ? symtab_to_filename_for_display
9859 (symbol_symtab (sym))
9860 : objfile_name (objfile)),
9861 this_package_name, package_name);
9862 xfree (this_package_name);
9863 }
9864 }
9865 }
9866 }
9867
9868 if (package_name != NULL)
9869 {
9870 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9871 const char *saved_package_name
9872 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9873 package_name,
9874 strlen (package_name));
9875 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9876 saved_package_name);
9877 struct symbol *sym;
9878
9879 sym = allocate_symbol (objfile);
9880 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9881 SYMBOL_SET_NAMES (sym, saved_package_name,
9882 strlen (saved_package_name), 0, objfile);
9883 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9884 e.g., "main" finds the "main" module and not C's main(). */
9885 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9886 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9887 SYMBOL_TYPE (sym) = type;
9888
9889 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9890
9891 xfree (package_name);
9892 }
9893 }
9894
9895 /* Allocate a fully-qualified name consisting of the two parts on the
9896 obstack. */
9897
9898 static const char *
9899 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9900 {
9901 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9902 }
9903
9904 /* A helper that allocates a struct discriminant_info to attach to a
9905 union type. */
9906
9907 static struct discriminant_info *
9908 alloc_discriminant_info (struct type *type, int discriminant_index,
9909 int default_index)
9910 {
9911 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9912 gdb_assert (discriminant_index == -1
9913 || (discriminant_index >= 0
9914 && discriminant_index < TYPE_NFIELDS (type)));
9915 gdb_assert (default_index == -1
9916 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9917
9918 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9919
9920 struct discriminant_info *disc
9921 = ((struct discriminant_info *)
9922 TYPE_ZALLOC (type,
9923 offsetof (struct discriminant_info, discriminants)
9924 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9925 disc->default_index = default_index;
9926 disc->discriminant_index = discriminant_index;
9927
9928 struct dynamic_prop prop;
9929 prop.kind = PROP_UNDEFINED;
9930 prop.data.baton = disc;
9931
9932 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9933
9934 return disc;
9935 }
9936
9937 /* Some versions of rustc emitted enums in an unusual way.
9938
9939 Ordinary enums were emitted as unions. The first element of each
9940 structure in the union was named "RUST$ENUM$DISR". This element
9941 held the discriminant.
9942
9943 These versions of Rust also implemented the "non-zero"
9944 optimization. When the enum had two values, and one is empty and
9945 the other holds a pointer that cannot be zero, the pointer is used
9946 as the discriminant, with a zero value meaning the empty variant.
9947 Here, the union's first member is of the form
9948 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9949 where the fieldnos are the indices of the fields that should be
9950 traversed in order to find the field (which may be several fields deep)
9951 and the variantname is the name of the variant of the case when the
9952 field is zero.
9953
9954 This function recognizes whether TYPE is of one of these forms,
9955 and, if so, smashes it to be a variant type. */
9956
9957 static void
9958 quirk_rust_enum (struct type *type, struct objfile *objfile)
9959 {
9960 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9961
9962 /* We don't need to deal with empty enums. */
9963 if (TYPE_NFIELDS (type) == 0)
9964 return;
9965
9966 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9967 if (TYPE_NFIELDS (type) == 1
9968 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9969 {
9970 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9971
9972 /* Decode the field name to find the offset of the
9973 discriminant. */
9974 ULONGEST bit_offset = 0;
9975 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9976 while (name[0] >= '0' && name[0] <= '9')
9977 {
9978 char *tail;
9979 unsigned long index = strtoul (name, &tail, 10);
9980 name = tail;
9981 if (*name != '$'
9982 || index >= TYPE_NFIELDS (field_type)
9983 || (TYPE_FIELD_LOC_KIND (field_type, index)
9984 != FIELD_LOC_KIND_BITPOS))
9985 {
9986 complaint (_("Could not parse Rust enum encoding string \"%s\""
9987 "[in module %s]"),
9988 TYPE_FIELD_NAME (type, 0),
9989 objfile_name (objfile));
9990 return;
9991 }
9992 ++name;
9993
9994 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9995 field_type = TYPE_FIELD_TYPE (field_type, index);
9996 }
9997
9998 /* Make a union to hold the variants. */
9999 struct type *union_type = alloc_type (objfile);
10000 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10001 TYPE_NFIELDS (union_type) = 3;
10002 TYPE_FIELDS (union_type)
10003 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
10004 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10005 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10006
10007 /* Put the discriminant must at index 0. */
10008 TYPE_FIELD_TYPE (union_type, 0) = field_type;
10009 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10010 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10011 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
10012
10013 /* The order of fields doesn't really matter, so put the real
10014 field at index 1 and the data-less field at index 2. */
10015 struct discriminant_info *disc
10016 = alloc_discriminant_info (union_type, 0, 1);
10017 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
10018 TYPE_FIELD_NAME (union_type, 1)
10019 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
10020 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
10021 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10022 TYPE_FIELD_NAME (union_type, 1));
10023
10024 const char *dataless_name
10025 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10026 name);
10027 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
10028 dataless_name);
10029 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
10030 /* NAME points into the original discriminant name, which
10031 already has the correct lifetime. */
10032 TYPE_FIELD_NAME (union_type, 2) = name;
10033 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
10034 disc->discriminants[2] = 0;
10035
10036 /* Smash this type to be a structure type. We have to do this
10037 because the type has already been recorded. */
10038 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10039 TYPE_NFIELDS (type) = 1;
10040 TYPE_FIELDS (type)
10041 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
10042
10043 /* Install the variant part. */
10044 TYPE_FIELD_TYPE (type, 0) = union_type;
10045 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10046 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10047 }
10048 else if (TYPE_NFIELDS (type) == 1)
10049 {
10050 /* We assume that a union with a single field is a univariant
10051 enum. */
10052 /* Smash this type to be a structure type. We have to do this
10053 because the type has already been recorded. */
10054 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10055
10056 /* Make a union to hold the variants. */
10057 struct type *union_type = alloc_type (objfile);
10058 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10059 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
10060 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10061 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10062 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10063
10064 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10065 const char *variant_name
10066 = rust_last_path_segment (TYPE_NAME (field_type));
10067 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10068 TYPE_NAME (field_type)
10069 = rust_fully_qualify (&objfile->objfile_obstack,
10070 TYPE_NAME (type), variant_name);
10071
10072 /* Install the union in the outer struct type. */
10073 TYPE_NFIELDS (type) = 1;
10074 TYPE_FIELDS (type)
10075 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10076 TYPE_FIELD_TYPE (type, 0) = union_type;
10077 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10078 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10079
10080 alloc_discriminant_info (union_type, -1, 0);
10081 }
10082 else
10083 {
10084 struct type *disr_type = nullptr;
10085 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10086 {
10087 disr_type = TYPE_FIELD_TYPE (type, i);
10088
10089 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
10090 {
10091 /* All fields of a true enum will be structs. */
10092 return;
10093 }
10094 else if (TYPE_NFIELDS (disr_type) == 0)
10095 {
10096 /* Could be data-less variant, so keep going. */
10097 disr_type = nullptr;
10098 }
10099 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10100 "RUST$ENUM$DISR") != 0)
10101 {
10102 /* Not a Rust enum. */
10103 return;
10104 }
10105 else
10106 {
10107 /* Found one. */
10108 break;
10109 }
10110 }
10111
10112 /* If we got here without a discriminant, then it's probably
10113 just a union. */
10114 if (disr_type == nullptr)
10115 return;
10116
10117 /* Smash this type to be a structure type. We have to do this
10118 because the type has already been recorded. */
10119 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10120
10121 /* Make a union to hold the variants. */
10122 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10123 struct type *union_type = alloc_type (objfile);
10124 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10125 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10126 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10127 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10128 TYPE_FIELDS (union_type)
10129 = (struct field *) TYPE_ZALLOC (union_type,
10130 (TYPE_NFIELDS (union_type)
10131 * sizeof (struct field)));
10132
10133 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10134 TYPE_NFIELDS (type) * sizeof (struct field));
10135
10136 /* Install the discriminant at index 0 in the union. */
10137 TYPE_FIELD (union_type, 0) = *disr_field;
10138 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10139 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10140
10141 /* Install the union in the outer struct type. */
10142 TYPE_FIELD_TYPE (type, 0) = union_type;
10143 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10144 TYPE_NFIELDS (type) = 1;
10145
10146 /* Set the size and offset of the union type. */
10147 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10148
10149 /* We need a way to find the correct discriminant given a
10150 variant name. For convenience we build a map here. */
10151 struct type *enum_type = FIELD_TYPE (*disr_field);
10152 std::unordered_map<std::string, ULONGEST> discriminant_map;
10153 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10154 {
10155 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10156 {
10157 const char *name
10158 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10159 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10160 }
10161 }
10162
10163 int n_fields = TYPE_NFIELDS (union_type);
10164 struct discriminant_info *disc
10165 = alloc_discriminant_info (union_type, 0, -1);
10166 /* Skip the discriminant here. */
10167 for (int i = 1; i < n_fields; ++i)
10168 {
10169 /* Find the final word in the name of this variant's type.
10170 That name can be used to look up the correct
10171 discriminant. */
10172 const char *variant_name
10173 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10174 i)));
10175
10176 auto iter = discriminant_map.find (variant_name);
10177 if (iter != discriminant_map.end ())
10178 disc->discriminants[i] = iter->second;
10179
10180 /* Remove the discriminant field, if it exists. */
10181 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10182 if (TYPE_NFIELDS (sub_type) > 0)
10183 {
10184 --TYPE_NFIELDS (sub_type);
10185 ++TYPE_FIELDS (sub_type);
10186 }
10187 TYPE_FIELD_NAME (union_type, i) = variant_name;
10188 TYPE_NAME (sub_type)
10189 = rust_fully_qualify (&objfile->objfile_obstack,
10190 TYPE_NAME (type), variant_name);
10191 }
10192 }
10193 }
10194
10195 /* Rewrite some Rust unions to be structures with variants parts. */
10196
10197 static void
10198 rust_union_quirks (struct dwarf2_cu *cu)
10199 {
10200 gdb_assert (cu->language == language_rust);
10201 for (type *type_ : cu->rust_unions)
10202 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10203 /* We don't need this any more. */
10204 cu->rust_unions.clear ();
10205 }
10206
10207 /* Return the symtab for PER_CU. This works properly regardless of
10208 whether we're using the index or psymtabs. */
10209
10210 static struct compunit_symtab *
10211 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10212 {
10213 return (per_cu->dwarf2_per_objfile->using_index
10214 ? per_cu->v.quick->compunit_symtab
10215 : per_cu->v.psymtab->compunit_symtab);
10216 }
10217
10218 /* A helper function for computing the list of all symbol tables
10219 included by PER_CU. */
10220
10221 static void
10222 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
10223 htab_t all_children, htab_t all_type_symtabs,
10224 struct dwarf2_per_cu_data *per_cu,
10225 struct compunit_symtab *immediate_parent)
10226 {
10227 void **slot;
10228 int ix;
10229 struct compunit_symtab *cust;
10230 struct dwarf2_per_cu_data *iter;
10231
10232 slot = htab_find_slot (all_children, per_cu, INSERT);
10233 if (*slot != NULL)
10234 {
10235 /* This inclusion and its children have been processed. */
10236 return;
10237 }
10238
10239 *slot = per_cu;
10240 /* Only add a CU if it has a symbol table. */
10241 cust = get_compunit_symtab (per_cu);
10242 if (cust != NULL)
10243 {
10244 /* If this is a type unit only add its symbol table if we haven't
10245 seen it yet (type unit per_cu's can share symtabs). */
10246 if (per_cu->is_debug_types)
10247 {
10248 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10249 if (*slot == NULL)
10250 {
10251 *slot = cust;
10252 result->push_back (cust);
10253 if (cust->user == NULL)
10254 cust->user = immediate_parent;
10255 }
10256 }
10257 else
10258 {
10259 result->push_back (cust);
10260 if (cust->user == NULL)
10261 cust->user = immediate_parent;
10262 }
10263 }
10264
10265 for (ix = 0;
10266 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10267 ++ix)
10268 {
10269 recursively_compute_inclusions (result, all_children,
10270 all_type_symtabs, iter, cust);
10271 }
10272 }
10273
10274 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10275 PER_CU. */
10276
10277 static void
10278 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10279 {
10280 gdb_assert (! per_cu->is_debug_types);
10281
10282 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10283 {
10284 int ix, len;
10285 struct dwarf2_per_cu_data *per_cu_iter;
10286 std::vector<compunit_symtab *> result_symtabs;
10287 htab_t all_children, all_type_symtabs;
10288 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10289
10290 /* If we don't have a symtab, we can just skip this case. */
10291 if (cust == NULL)
10292 return;
10293
10294 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10295 NULL, xcalloc, xfree);
10296 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10297 NULL, xcalloc, xfree);
10298
10299 for (ix = 0;
10300 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10301 ix, per_cu_iter);
10302 ++ix)
10303 {
10304 recursively_compute_inclusions (&result_symtabs, all_children,
10305 all_type_symtabs, per_cu_iter,
10306 cust);
10307 }
10308
10309 /* Now we have a transitive closure of all the included symtabs. */
10310 len = result_symtabs.size ();
10311 cust->includes
10312 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10313 struct compunit_symtab *, len + 1);
10314 memcpy (cust->includes, result_symtabs.data (),
10315 len * sizeof (compunit_symtab *));
10316 cust->includes[len] = NULL;
10317
10318 htab_delete (all_children);
10319 htab_delete (all_type_symtabs);
10320 }
10321 }
10322
10323 /* Compute the 'includes' field for the symtabs of all the CUs we just
10324 read. */
10325
10326 static void
10327 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10328 {
10329 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
10330 {
10331 if (! iter->is_debug_types)
10332 compute_compunit_symtab_includes (iter);
10333 }
10334
10335 dwarf2_per_objfile->just_read_cus.clear ();
10336 }
10337
10338 /* Generate full symbol information for PER_CU, whose DIEs have
10339 already been loaded into memory. */
10340
10341 static void
10342 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10343 enum language pretend_language)
10344 {
10345 struct dwarf2_cu *cu = per_cu->cu;
10346 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10347 struct objfile *objfile = dwarf2_per_objfile->objfile;
10348 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10349 CORE_ADDR lowpc, highpc;
10350 struct compunit_symtab *cust;
10351 CORE_ADDR baseaddr;
10352 struct block *static_block;
10353 CORE_ADDR addr;
10354
10355 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10356
10357 /* Clear the list here in case something was left over. */
10358 cu->method_list.clear ();
10359
10360 cu->language = pretend_language;
10361 cu->language_defn = language_def (cu->language);
10362
10363 /* Do line number decoding in read_file_scope () */
10364 process_die (cu->dies, cu);
10365
10366 /* For now fudge the Go package. */
10367 if (cu->language == language_go)
10368 fixup_go_packaging (cu);
10369
10370 /* Now that we have processed all the DIEs in the CU, all the types
10371 should be complete, and it should now be safe to compute all of the
10372 physnames. */
10373 compute_delayed_physnames (cu);
10374
10375 if (cu->language == language_rust)
10376 rust_union_quirks (cu);
10377
10378 /* Some compilers don't define a DW_AT_high_pc attribute for the
10379 compilation unit. If the DW_AT_high_pc is missing, synthesize
10380 it, by scanning the DIE's below the compilation unit. */
10381 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10382
10383 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10384 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
10385
10386 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10387 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10388 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10389 addrmap to help ensure it has an accurate map of pc values belonging to
10390 this comp unit. */
10391 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10392
10393 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
10394 SECT_OFF_TEXT (objfile),
10395 0);
10396
10397 if (cust != NULL)
10398 {
10399 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10400
10401 /* Set symtab language to language from DW_AT_language. If the
10402 compilation is from a C file generated by language preprocessors, do
10403 not set the language if it was already deduced by start_subfile. */
10404 if (!(cu->language == language_c
10405 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10406 COMPUNIT_FILETABS (cust)->language = cu->language;
10407
10408 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10409 produce DW_AT_location with location lists but it can be possibly
10410 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10411 there were bugs in prologue debug info, fixed later in GCC-4.5
10412 by "unwind info for epilogues" patch (which is not directly related).
10413
10414 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10415 needed, it would be wrong due to missing DW_AT_producer there.
10416
10417 Still one can confuse GDB by using non-standard GCC compilation
10418 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10419 */
10420 if (cu->has_loclist && gcc_4_minor >= 5)
10421 cust->locations_valid = 1;
10422
10423 if (gcc_4_minor >= 5)
10424 cust->epilogue_unwind_valid = 1;
10425
10426 cust->call_site_htab = cu->call_site_htab;
10427 }
10428
10429 if (dwarf2_per_objfile->using_index)
10430 per_cu->v.quick->compunit_symtab = cust;
10431 else
10432 {
10433 struct partial_symtab *pst = per_cu->v.psymtab;
10434 pst->compunit_symtab = cust;
10435 pst->readin = 1;
10436 }
10437
10438 /* Push it for inclusion processing later. */
10439 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10440
10441 /* Not needed any more. */
10442 cu->reset_builder ();
10443 }
10444
10445 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10446 already been loaded into memory. */
10447
10448 static void
10449 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10450 enum language pretend_language)
10451 {
10452 struct dwarf2_cu *cu = per_cu->cu;
10453 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10454 struct objfile *objfile = dwarf2_per_objfile->objfile;
10455 struct compunit_symtab *cust;
10456 struct signatured_type *sig_type;
10457
10458 gdb_assert (per_cu->is_debug_types);
10459 sig_type = (struct signatured_type *) per_cu;
10460
10461 /* Clear the list here in case something was left over. */
10462 cu->method_list.clear ();
10463
10464 cu->language = pretend_language;
10465 cu->language_defn = language_def (cu->language);
10466
10467 /* The symbol tables are set up in read_type_unit_scope. */
10468 process_die (cu->dies, cu);
10469
10470 /* For now fudge the Go package. */
10471 if (cu->language == language_go)
10472 fixup_go_packaging (cu);
10473
10474 /* Now that we have processed all the DIEs in the CU, all the types
10475 should be complete, and it should now be safe to compute all of the
10476 physnames. */
10477 compute_delayed_physnames (cu);
10478
10479 if (cu->language == language_rust)
10480 rust_union_quirks (cu);
10481
10482 /* TUs share symbol tables.
10483 If this is the first TU to use this symtab, complete the construction
10484 of it with end_expandable_symtab. Otherwise, complete the addition of
10485 this TU's symbols to the existing symtab. */
10486 if (sig_type->type_unit_group->compunit_symtab == NULL)
10487 {
10488 buildsym_compunit *builder = cu->get_builder ();
10489 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10490 sig_type->type_unit_group->compunit_symtab = cust;
10491
10492 if (cust != NULL)
10493 {
10494 /* Set symtab language to language from DW_AT_language. If the
10495 compilation is from a C file generated by language preprocessors,
10496 do not set the language if it was already deduced by
10497 start_subfile. */
10498 if (!(cu->language == language_c
10499 && COMPUNIT_FILETABS (cust)->language != language_c))
10500 COMPUNIT_FILETABS (cust)->language = cu->language;
10501 }
10502 }
10503 else
10504 {
10505 cu->get_builder ()->augment_type_symtab ();
10506 cust = sig_type->type_unit_group->compunit_symtab;
10507 }
10508
10509 if (dwarf2_per_objfile->using_index)
10510 per_cu->v.quick->compunit_symtab = cust;
10511 else
10512 {
10513 struct partial_symtab *pst = per_cu->v.psymtab;
10514 pst->compunit_symtab = cust;
10515 pst->readin = 1;
10516 }
10517
10518 /* Not needed any more. */
10519 cu->reset_builder ();
10520 }
10521
10522 /* Process an imported unit DIE. */
10523
10524 static void
10525 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10526 {
10527 struct attribute *attr;
10528
10529 /* For now we don't handle imported units in type units. */
10530 if (cu->per_cu->is_debug_types)
10531 {
10532 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10533 " supported in type units [in module %s]"),
10534 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10535 }
10536
10537 attr = dwarf2_attr (die, DW_AT_import, cu);
10538 if (attr != NULL)
10539 {
10540 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10541 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10542 dwarf2_per_cu_data *per_cu
10543 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10544 cu->per_cu->dwarf2_per_objfile);
10545
10546 /* If necessary, add it to the queue and load its DIEs. */
10547 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10548 load_full_comp_unit (per_cu, false, cu->language);
10549
10550 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10551 per_cu);
10552 }
10553 }
10554
10555 /* RAII object that represents a process_die scope: i.e.,
10556 starts/finishes processing a DIE. */
10557 class process_die_scope
10558 {
10559 public:
10560 process_die_scope (die_info *die, dwarf2_cu *cu)
10561 : m_die (die), m_cu (cu)
10562 {
10563 /* We should only be processing DIEs not already in process. */
10564 gdb_assert (!m_die->in_process);
10565 m_die->in_process = true;
10566 }
10567
10568 ~process_die_scope ()
10569 {
10570 m_die->in_process = false;
10571
10572 /* If we're done processing the DIE for the CU that owns the line
10573 header, we don't need the line header anymore. */
10574 if (m_cu->line_header_die_owner == m_die)
10575 {
10576 delete m_cu->line_header;
10577 m_cu->line_header = NULL;
10578 m_cu->line_header_die_owner = NULL;
10579 }
10580 }
10581
10582 private:
10583 die_info *m_die;
10584 dwarf2_cu *m_cu;
10585 };
10586
10587 /* Process a die and its children. */
10588
10589 static void
10590 process_die (struct die_info *die, struct dwarf2_cu *cu)
10591 {
10592 process_die_scope scope (die, cu);
10593
10594 switch (die->tag)
10595 {
10596 case DW_TAG_padding:
10597 break;
10598 case DW_TAG_compile_unit:
10599 case DW_TAG_partial_unit:
10600 read_file_scope (die, cu);
10601 break;
10602 case DW_TAG_type_unit:
10603 read_type_unit_scope (die, cu);
10604 break;
10605 case DW_TAG_subprogram:
10606 case DW_TAG_inlined_subroutine:
10607 read_func_scope (die, cu);
10608 break;
10609 case DW_TAG_lexical_block:
10610 case DW_TAG_try_block:
10611 case DW_TAG_catch_block:
10612 read_lexical_block_scope (die, cu);
10613 break;
10614 case DW_TAG_call_site:
10615 case DW_TAG_GNU_call_site:
10616 read_call_site_scope (die, cu);
10617 break;
10618 case DW_TAG_class_type:
10619 case DW_TAG_interface_type:
10620 case DW_TAG_structure_type:
10621 case DW_TAG_union_type:
10622 process_structure_scope (die, cu);
10623 break;
10624 case DW_TAG_enumeration_type:
10625 process_enumeration_scope (die, cu);
10626 break;
10627
10628 /* These dies have a type, but processing them does not create
10629 a symbol or recurse to process the children. Therefore we can
10630 read them on-demand through read_type_die. */
10631 case DW_TAG_subroutine_type:
10632 case DW_TAG_set_type:
10633 case DW_TAG_array_type:
10634 case DW_TAG_pointer_type:
10635 case DW_TAG_ptr_to_member_type:
10636 case DW_TAG_reference_type:
10637 case DW_TAG_rvalue_reference_type:
10638 case DW_TAG_string_type:
10639 break;
10640
10641 case DW_TAG_base_type:
10642 case DW_TAG_subrange_type:
10643 case DW_TAG_typedef:
10644 /* Add a typedef symbol for the type definition, if it has a
10645 DW_AT_name. */
10646 new_symbol (die, read_type_die (die, cu), cu);
10647 break;
10648 case DW_TAG_common_block:
10649 read_common_block (die, cu);
10650 break;
10651 case DW_TAG_common_inclusion:
10652 break;
10653 case DW_TAG_namespace:
10654 cu->processing_has_namespace_info = true;
10655 read_namespace (die, cu);
10656 break;
10657 case DW_TAG_module:
10658 cu->processing_has_namespace_info = true;
10659 read_module (die, cu);
10660 break;
10661 case DW_TAG_imported_declaration:
10662 cu->processing_has_namespace_info = true;
10663 if (read_namespace_alias (die, cu))
10664 break;
10665 /* The declaration is not a global namespace alias. */
10666 /* Fall through. */
10667 case DW_TAG_imported_module:
10668 cu->processing_has_namespace_info = true;
10669 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10670 || cu->language != language_fortran))
10671 complaint (_("Tag '%s' has unexpected children"),
10672 dwarf_tag_name (die->tag));
10673 read_import_statement (die, cu);
10674 break;
10675
10676 case DW_TAG_imported_unit:
10677 process_imported_unit_die (die, cu);
10678 break;
10679
10680 case DW_TAG_variable:
10681 read_variable (die, cu);
10682 break;
10683
10684 default:
10685 new_symbol (die, NULL, cu);
10686 break;
10687 }
10688 }
10689 \f
10690 /* DWARF name computation. */
10691
10692 /* A helper function for dwarf2_compute_name which determines whether DIE
10693 needs to have the name of the scope prepended to the name listed in the
10694 die. */
10695
10696 static int
10697 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10698 {
10699 struct attribute *attr;
10700
10701 switch (die->tag)
10702 {
10703 case DW_TAG_namespace:
10704 case DW_TAG_typedef:
10705 case DW_TAG_class_type:
10706 case DW_TAG_interface_type:
10707 case DW_TAG_structure_type:
10708 case DW_TAG_union_type:
10709 case DW_TAG_enumeration_type:
10710 case DW_TAG_enumerator:
10711 case DW_TAG_subprogram:
10712 case DW_TAG_inlined_subroutine:
10713 case DW_TAG_member:
10714 case DW_TAG_imported_declaration:
10715 return 1;
10716
10717 case DW_TAG_variable:
10718 case DW_TAG_constant:
10719 /* We only need to prefix "globally" visible variables. These include
10720 any variable marked with DW_AT_external or any variable that
10721 lives in a namespace. [Variables in anonymous namespaces
10722 require prefixing, but they are not DW_AT_external.] */
10723
10724 if (dwarf2_attr (die, DW_AT_specification, cu))
10725 {
10726 struct dwarf2_cu *spec_cu = cu;
10727
10728 return die_needs_namespace (die_specification (die, &spec_cu),
10729 spec_cu);
10730 }
10731
10732 attr = dwarf2_attr (die, DW_AT_external, cu);
10733 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10734 && die->parent->tag != DW_TAG_module)
10735 return 0;
10736 /* A variable in a lexical block of some kind does not need a
10737 namespace, even though in C++ such variables may be external
10738 and have a mangled name. */
10739 if (die->parent->tag == DW_TAG_lexical_block
10740 || die->parent->tag == DW_TAG_try_block
10741 || die->parent->tag == DW_TAG_catch_block
10742 || die->parent->tag == DW_TAG_subprogram)
10743 return 0;
10744 return 1;
10745
10746 default:
10747 return 0;
10748 }
10749 }
10750
10751 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10752 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10753 defined for the given DIE. */
10754
10755 static struct attribute *
10756 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10757 {
10758 struct attribute *attr;
10759
10760 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10761 if (attr == NULL)
10762 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10763
10764 return attr;
10765 }
10766
10767 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10768 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10769 defined for the given DIE. */
10770
10771 static const char *
10772 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10773 {
10774 const char *linkage_name;
10775
10776 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10777 if (linkage_name == NULL)
10778 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10779
10780 return linkage_name;
10781 }
10782
10783 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10784 compute the physname for the object, which include a method's:
10785 - formal parameters (C++),
10786 - receiver type (Go),
10787
10788 The term "physname" is a bit confusing.
10789 For C++, for example, it is the demangled name.
10790 For Go, for example, it's the mangled name.
10791
10792 For Ada, return the DIE's linkage name rather than the fully qualified
10793 name. PHYSNAME is ignored..
10794
10795 The result is allocated on the objfile_obstack and canonicalized. */
10796
10797 static const char *
10798 dwarf2_compute_name (const char *name,
10799 struct die_info *die, struct dwarf2_cu *cu,
10800 int physname)
10801 {
10802 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10803
10804 if (name == NULL)
10805 name = dwarf2_name (die, cu);
10806
10807 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10808 but otherwise compute it by typename_concat inside GDB.
10809 FIXME: Actually this is not really true, or at least not always true.
10810 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10811 Fortran names because there is no mangling standard. So new_symbol
10812 will set the demangled name to the result of dwarf2_full_name, and it is
10813 the demangled name that GDB uses if it exists. */
10814 if (cu->language == language_ada
10815 || (cu->language == language_fortran && physname))
10816 {
10817 /* For Ada unit, we prefer the linkage name over the name, as
10818 the former contains the exported name, which the user expects
10819 to be able to reference. Ideally, we want the user to be able
10820 to reference this entity using either natural or linkage name,
10821 but we haven't started looking at this enhancement yet. */
10822 const char *linkage_name = dw2_linkage_name (die, cu);
10823
10824 if (linkage_name != NULL)
10825 return linkage_name;
10826 }
10827
10828 /* These are the only languages we know how to qualify names in. */
10829 if (name != NULL
10830 && (cu->language == language_cplus
10831 || cu->language == language_fortran || cu->language == language_d
10832 || cu->language == language_rust))
10833 {
10834 if (die_needs_namespace (die, cu))
10835 {
10836 const char *prefix;
10837 const char *canonical_name = NULL;
10838
10839 string_file buf;
10840
10841 prefix = determine_prefix (die, cu);
10842 if (*prefix != '\0')
10843 {
10844 char *prefixed_name = typename_concat (NULL, prefix, name,
10845 physname, cu);
10846
10847 buf.puts (prefixed_name);
10848 xfree (prefixed_name);
10849 }
10850 else
10851 buf.puts (name);
10852
10853 /* Template parameters may be specified in the DIE's DW_AT_name, or
10854 as children with DW_TAG_template_type_param or
10855 DW_TAG_value_type_param. If the latter, add them to the name
10856 here. If the name already has template parameters, then
10857 skip this step; some versions of GCC emit both, and
10858 it is more efficient to use the pre-computed name.
10859
10860 Something to keep in mind about this process: it is very
10861 unlikely, or in some cases downright impossible, to produce
10862 something that will match the mangled name of a function.
10863 If the definition of the function has the same debug info,
10864 we should be able to match up with it anyway. But fallbacks
10865 using the minimal symbol, for instance to find a method
10866 implemented in a stripped copy of libstdc++, will not work.
10867 If we do not have debug info for the definition, we will have to
10868 match them up some other way.
10869
10870 When we do name matching there is a related problem with function
10871 templates; two instantiated function templates are allowed to
10872 differ only by their return types, which we do not add here. */
10873
10874 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10875 {
10876 struct attribute *attr;
10877 struct die_info *child;
10878 int first = 1;
10879
10880 die->building_fullname = 1;
10881
10882 for (child = die->child; child != NULL; child = child->sibling)
10883 {
10884 struct type *type;
10885 LONGEST value;
10886 const gdb_byte *bytes;
10887 struct dwarf2_locexpr_baton *baton;
10888 struct value *v;
10889
10890 if (child->tag != DW_TAG_template_type_param
10891 && child->tag != DW_TAG_template_value_param)
10892 continue;
10893
10894 if (first)
10895 {
10896 buf.puts ("<");
10897 first = 0;
10898 }
10899 else
10900 buf.puts (", ");
10901
10902 attr = dwarf2_attr (child, DW_AT_type, cu);
10903 if (attr == NULL)
10904 {
10905 complaint (_("template parameter missing DW_AT_type"));
10906 buf.puts ("UNKNOWN_TYPE");
10907 continue;
10908 }
10909 type = die_type (child, cu);
10910
10911 if (child->tag == DW_TAG_template_type_param)
10912 {
10913 c_print_type (type, "", &buf, -1, 0, cu->language,
10914 &type_print_raw_options);
10915 continue;
10916 }
10917
10918 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10919 if (attr == NULL)
10920 {
10921 complaint (_("template parameter missing "
10922 "DW_AT_const_value"));
10923 buf.puts ("UNKNOWN_VALUE");
10924 continue;
10925 }
10926
10927 dwarf2_const_value_attr (attr, type, name,
10928 &cu->comp_unit_obstack, cu,
10929 &value, &bytes, &baton);
10930
10931 if (TYPE_NOSIGN (type))
10932 /* GDB prints characters as NUMBER 'CHAR'. If that's
10933 changed, this can use value_print instead. */
10934 c_printchar (value, type, &buf);
10935 else
10936 {
10937 struct value_print_options opts;
10938
10939 if (baton != NULL)
10940 v = dwarf2_evaluate_loc_desc (type, NULL,
10941 baton->data,
10942 baton->size,
10943 baton->per_cu);
10944 else if (bytes != NULL)
10945 {
10946 v = allocate_value (type);
10947 memcpy (value_contents_writeable (v), bytes,
10948 TYPE_LENGTH (type));
10949 }
10950 else
10951 v = value_from_longest (type, value);
10952
10953 /* Specify decimal so that we do not depend on
10954 the radix. */
10955 get_formatted_print_options (&opts, 'd');
10956 opts.raw = 1;
10957 value_print (v, &buf, &opts);
10958 release_value (v);
10959 }
10960 }
10961
10962 die->building_fullname = 0;
10963
10964 if (!first)
10965 {
10966 /* Close the argument list, with a space if necessary
10967 (nested templates). */
10968 if (!buf.empty () && buf.string ().back () == '>')
10969 buf.puts (" >");
10970 else
10971 buf.puts (">");
10972 }
10973 }
10974
10975 /* For C++ methods, append formal parameter type
10976 information, if PHYSNAME. */
10977
10978 if (physname && die->tag == DW_TAG_subprogram
10979 && cu->language == language_cplus)
10980 {
10981 struct type *type = read_type_die (die, cu);
10982
10983 c_type_print_args (type, &buf, 1, cu->language,
10984 &type_print_raw_options);
10985
10986 if (cu->language == language_cplus)
10987 {
10988 /* Assume that an artificial first parameter is
10989 "this", but do not crash if it is not. RealView
10990 marks unnamed (and thus unused) parameters as
10991 artificial; there is no way to differentiate
10992 the two cases. */
10993 if (TYPE_NFIELDS (type) > 0
10994 && TYPE_FIELD_ARTIFICIAL (type, 0)
10995 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10996 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10997 0))))
10998 buf.puts (" const");
10999 }
11000 }
11001
11002 const std::string &intermediate_name = buf.string ();
11003
11004 if (cu->language == language_cplus)
11005 canonical_name
11006 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
11007 &objfile->per_bfd->storage_obstack);
11008
11009 /* If we only computed INTERMEDIATE_NAME, or if
11010 INTERMEDIATE_NAME is already canonical, then we need to
11011 copy it to the appropriate obstack. */
11012 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
11013 name = ((const char *)
11014 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11015 intermediate_name.c_str (),
11016 intermediate_name.length ()));
11017 else
11018 name = canonical_name;
11019 }
11020 }
11021
11022 return name;
11023 }
11024
11025 /* Return the fully qualified name of DIE, based on its DW_AT_name.
11026 If scope qualifiers are appropriate they will be added. The result
11027 will be allocated on the storage_obstack, or NULL if the DIE does
11028 not have a name. NAME may either be from a previous call to
11029 dwarf2_name or NULL.
11030
11031 The output string will be canonicalized (if C++). */
11032
11033 static const char *
11034 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11035 {
11036 return dwarf2_compute_name (name, die, cu, 0);
11037 }
11038
11039 /* Construct a physname for the given DIE in CU. NAME may either be
11040 from a previous call to dwarf2_name or NULL. The result will be
11041 allocated on the objfile_objstack or NULL if the DIE does not have a
11042 name.
11043
11044 The output string will be canonicalized (if C++). */
11045
11046 static const char *
11047 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11048 {
11049 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11050 const char *retval, *mangled = NULL, *canon = NULL;
11051 int need_copy = 1;
11052
11053 /* In this case dwarf2_compute_name is just a shortcut not building anything
11054 on its own. */
11055 if (!die_needs_namespace (die, cu))
11056 return dwarf2_compute_name (name, die, cu, 1);
11057
11058 mangled = dw2_linkage_name (die, cu);
11059
11060 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11061 See https://github.com/rust-lang/rust/issues/32925. */
11062 if (cu->language == language_rust && mangled != NULL
11063 && strchr (mangled, '{') != NULL)
11064 mangled = NULL;
11065
11066 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11067 has computed. */
11068 gdb::unique_xmalloc_ptr<char> demangled;
11069 if (mangled != NULL)
11070 {
11071
11072 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11073 {
11074 /* Do nothing (do not demangle the symbol name). */
11075 }
11076 else if (cu->language == language_go)
11077 {
11078 /* This is a lie, but we already lie to the caller new_symbol.
11079 new_symbol assumes we return the mangled name.
11080 This just undoes that lie until things are cleaned up. */
11081 }
11082 else
11083 {
11084 /* Use DMGL_RET_DROP for C++ template functions to suppress
11085 their return type. It is easier for GDB users to search
11086 for such functions as `name(params)' than `long name(params)'.
11087 In such case the minimal symbol names do not match the full
11088 symbol names but for template functions there is never a need
11089 to look up their definition from their declaration so
11090 the only disadvantage remains the minimal symbol variant
11091 `long name(params)' does not have the proper inferior type. */
11092 demangled.reset (gdb_demangle (mangled,
11093 (DMGL_PARAMS | DMGL_ANSI
11094 | DMGL_RET_DROP)));
11095 }
11096 if (demangled)
11097 canon = demangled.get ();
11098 else
11099 {
11100 canon = mangled;
11101 need_copy = 0;
11102 }
11103 }
11104
11105 if (canon == NULL || check_physname)
11106 {
11107 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11108
11109 if (canon != NULL && strcmp (physname, canon) != 0)
11110 {
11111 /* It may not mean a bug in GDB. The compiler could also
11112 compute DW_AT_linkage_name incorrectly. But in such case
11113 GDB would need to be bug-to-bug compatible. */
11114
11115 complaint (_("Computed physname <%s> does not match demangled <%s> "
11116 "(from linkage <%s>) - DIE at %s [in module %s]"),
11117 physname, canon, mangled, sect_offset_str (die->sect_off),
11118 objfile_name (objfile));
11119
11120 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11121 is available here - over computed PHYSNAME. It is safer
11122 against both buggy GDB and buggy compilers. */
11123
11124 retval = canon;
11125 }
11126 else
11127 {
11128 retval = physname;
11129 need_copy = 0;
11130 }
11131 }
11132 else
11133 retval = canon;
11134
11135 if (need_copy)
11136 retval = ((const char *)
11137 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11138 retval, strlen (retval)));
11139
11140 return retval;
11141 }
11142
11143 /* Inspect DIE in CU for a namespace alias. If one exists, record
11144 a new symbol for it.
11145
11146 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11147
11148 static int
11149 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11150 {
11151 struct attribute *attr;
11152
11153 /* If the die does not have a name, this is not a namespace
11154 alias. */
11155 attr = dwarf2_attr (die, DW_AT_name, cu);
11156 if (attr != NULL)
11157 {
11158 int num;
11159 struct die_info *d = die;
11160 struct dwarf2_cu *imported_cu = cu;
11161
11162 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11163 keep inspecting DIEs until we hit the underlying import. */
11164 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11165 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11166 {
11167 attr = dwarf2_attr (d, DW_AT_import, cu);
11168 if (attr == NULL)
11169 break;
11170
11171 d = follow_die_ref (d, attr, &imported_cu);
11172 if (d->tag != DW_TAG_imported_declaration)
11173 break;
11174 }
11175
11176 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11177 {
11178 complaint (_("DIE at %s has too many recursively imported "
11179 "declarations"), sect_offset_str (d->sect_off));
11180 return 0;
11181 }
11182
11183 if (attr != NULL)
11184 {
11185 struct type *type;
11186 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11187
11188 type = get_die_type_at_offset (sect_off, cu->per_cu);
11189 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11190 {
11191 /* This declaration is a global namespace alias. Add
11192 a symbol for it whose type is the aliased namespace. */
11193 new_symbol (die, type, cu);
11194 return 1;
11195 }
11196 }
11197 }
11198
11199 return 0;
11200 }
11201
11202 /* Return the using directives repository (global or local?) to use in the
11203 current context for CU.
11204
11205 For Ada, imported declarations can materialize renamings, which *may* be
11206 global. However it is impossible (for now?) in DWARF to distinguish
11207 "external" imported declarations and "static" ones. As all imported
11208 declarations seem to be static in all other languages, make them all CU-wide
11209 global only in Ada. */
11210
11211 static struct using_direct **
11212 using_directives (struct dwarf2_cu *cu)
11213 {
11214 if (cu->language == language_ada
11215 && cu->get_builder ()->outermost_context_p ())
11216 return cu->get_builder ()->get_global_using_directives ();
11217 else
11218 return cu->get_builder ()->get_local_using_directives ();
11219 }
11220
11221 /* Read the import statement specified by the given die and record it. */
11222
11223 static void
11224 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11225 {
11226 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11227 struct attribute *import_attr;
11228 struct die_info *imported_die, *child_die;
11229 struct dwarf2_cu *imported_cu;
11230 const char *imported_name;
11231 const char *imported_name_prefix;
11232 const char *canonical_name;
11233 const char *import_alias;
11234 const char *imported_declaration = NULL;
11235 const char *import_prefix;
11236 std::vector<const char *> excludes;
11237
11238 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11239 if (import_attr == NULL)
11240 {
11241 complaint (_("Tag '%s' has no DW_AT_import"),
11242 dwarf_tag_name (die->tag));
11243 return;
11244 }
11245
11246 imported_cu = cu;
11247 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11248 imported_name = dwarf2_name (imported_die, imported_cu);
11249 if (imported_name == NULL)
11250 {
11251 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11252
11253 The import in the following code:
11254 namespace A
11255 {
11256 typedef int B;
11257 }
11258
11259 int main ()
11260 {
11261 using A::B;
11262 B b;
11263 return b;
11264 }
11265
11266 ...
11267 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11268 <52> DW_AT_decl_file : 1
11269 <53> DW_AT_decl_line : 6
11270 <54> DW_AT_import : <0x75>
11271 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11272 <59> DW_AT_name : B
11273 <5b> DW_AT_decl_file : 1
11274 <5c> DW_AT_decl_line : 2
11275 <5d> DW_AT_type : <0x6e>
11276 ...
11277 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11278 <76> DW_AT_byte_size : 4
11279 <77> DW_AT_encoding : 5 (signed)
11280
11281 imports the wrong die ( 0x75 instead of 0x58 ).
11282 This case will be ignored until the gcc bug is fixed. */
11283 return;
11284 }
11285
11286 /* Figure out the local name after import. */
11287 import_alias = dwarf2_name (die, cu);
11288
11289 /* Figure out where the statement is being imported to. */
11290 import_prefix = determine_prefix (die, cu);
11291
11292 /* Figure out what the scope of the imported die is and prepend it
11293 to the name of the imported die. */
11294 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11295
11296 if (imported_die->tag != DW_TAG_namespace
11297 && imported_die->tag != DW_TAG_module)
11298 {
11299 imported_declaration = imported_name;
11300 canonical_name = imported_name_prefix;
11301 }
11302 else if (strlen (imported_name_prefix) > 0)
11303 canonical_name = obconcat (&objfile->objfile_obstack,
11304 imported_name_prefix,
11305 (cu->language == language_d ? "." : "::"),
11306 imported_name, (char *) NULL);
11307 else
11308 canonical_name = imported_name;
11309
11310 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11311 for (child_die = die->child; child_die && child_die->tag;
11312 child_die = sibling_die (child_die))
11313 {
11314 /* DWARF-4: A Fortran use statement with a “rename list” may be
11315 represented by an imported module entry with an import attribute
11316 referring to the module and owned entries corresponding to those
11317 entities that are renamed as part of being imported. */
11318
11319 if (child_die->tag != DW_TAG_imported_declaration)
11320 {
11321 complaint (_("child DW_TAG_imported_declaration expected "
11322 "- DIE at %s [in module %s]"),
11323 sect_offset_str (child_die->sect_off),
11324 objfile_name (objfile));
11325 continue;
11326 }
11327
11328 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11329 if (import_attr == NULL)
11330 {
11331 complaint (_("Tag '%s' has no DW_AT_import"),
11332 dwarf_tag_name (child_die->tag));
11333 continue;
11334 }
11335
11336 imported_cu = cu;
11337 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11338 &imported_cu);
11339 imported_name = dwarf2_name (imported_die, imported_cu);
11340 if (imported_name == NULL)
11341 {
11342 complaint (_("child DW_TAG_imported_declaration has unknown "
11343 "imported name - DIE at %s [in module %s]"),
11344 sect_offset_str (child_die->sect_off),
11345 objfile_name (objfile));
11346 continue;
11347 }
11348
11349 excludes.push_back (imported_name);
11350
11351 process_die (child_die, cu);
11352 }
11353
11354 add_using_directive (using_directives (cu),
11355 import_prefix,
11356 canonical_name,
11357 import_alias,
11358 imported_declaration,
11359 excludes,
11360 0,
11361 &objfile->objfile_obstack);
11362 }
11363
11364 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11365 types, but gives them a size of zero. Starting with version 14,
11366 ICC is compatible with GCC. */
11367
11368 static bool
11369 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11370 {
11371 if (!cu->checked_producer)
11372 check_producer (cu);
11373
11374 return cu->producer_is_icc_lt_14;
11375 }
11376
11377 /* ICC generates a DW_AT_type for C void functions. This was observed on
11378 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
11379 which says that void functions should not have a DW_AT_type. */
11380
11381 static bool
11382 producer_is_icc (struct dwarf2_cu *cu)
11383 {
11384 if (!cu->checked_producer)
11385 check_producer (cu);
11386
11387 return cu->producer_is_icc;
11388 }
11389
11390 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11391 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11392 this, it was first present in GCC release 4.3.0. */
11393
11394 static bool
11395 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11396 {
11397 if (!cu->checked_producer)
11398 check_producer (cu);
11399
11400 return cu->producer_is_gcc_lt_4_3;
11401 }
11402
11403 static file_and_directory
11404 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11405 {
11406 file_and_directory res;
11407
11408 /* Find the filename. Do not use dwarf2_name here, since the filename
11409 is not a source language identifier. */
11410 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11411 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11412
11413 if (res.comp_dir == NULL
11414 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11415 && IS_ABSOLUTE_PATH (res.name))
11416 {
11417 res.comp_dir_storage = ldirname (res.name);
11418 if (!res.comp_dir_storage.empty ())
11419 res.comp_dir = res.comp_dir_storage.c_str ();
11420 }
11421 if (res.comp_dir != NULL)
11422 {
11423 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11424 directory, get rid of it. */
11425 const char *cp = strchr (res.comp_dir, ':');
11426
11427 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11428 res.comp_dir = cp + 1;
11429 }
11430
11431 if (res.name == NULL)
11432 res.name = "<unknown>";
11433
11434 return res;
11435 }
11436
11437 /* Handle DW_AT_stmt_list for a compilation unit.
11438 DIE is the DW_TAG_compile_unit die for CU.
11439 COMP_DIR is the compilation directory. LOWPC is passed to
11440 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11441
11442 static void
11443 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11444 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11445 {
11446 struct dwarf2_per_objfile *dwarf2_per_objfile
11447 = cu->per_cu->dwarf2_per_objfile;
11448 struct objfile *objfile = dwarf2_per_objfile->objfile;
11449 struct attribute *attr;
11450 struct line_header line_header_local;
11451 hashval_t line_header_local_hash;
11452 void **slot;
11453 int decode_mapping;
11454
11455 gdb_assert (! cu->per_cu->is_debug_types);
11456
11457 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11458 if (attr == NULL)
11459 return;
11460
11461 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11462
11463 /* The line header hash table is only created if needed (it exists to
11464 prevent redundant reading of the line table for partial_units).
11465 If we're given a partial_unit, we'll need it. If we're given a
11466 compile_unit, then use the line header hash table if it's already
11467 created, but don't create one just yet. */
11468
11469 if (dwarf2_per_objfile->line_header_hash == NULL
11470 && die->tag == DW_TAG_partial_unit)
11471 {
11472 dwarf2_per_objfile->line_header_hash
11473 = htab_create_alloc_ex (127, line_header_hash_voidp,
11474 line_header_eq_voidp,
11475 free_line_header_voidp,
11476 &objfile->objfile_obstack,
11477 hashtab_obstack_allocate,
11478 dummy_obstack_deallocate);
11479 }
11480
11481 line_header_local.sect_off = line_offset;
11482 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11483 line_header_local_hash = line_header_hash (&line_header_local);
11484 if (dwarf2_per_objfile->line_header_hash != NULL)
11485 {
11486 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11487 &line_header_local,
11488 line_header_local_hash, NO_INSERT);
11489
11490 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11491 is not present in *SLOT (since if there is something in *SLOT then
11492 it will be for a partial_unit). */
11493 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11494 {
11495 gdb_assert (*slot != NULL);
11496 cu->line_header = (struct line_header *) *slot;
11497 return;
11498 }
11499 }
11500
11501 /* dwarf_decode_line_header does not yet provide sufficient information.
11502 We always have to call also dwarf_decode_lines for it. */
11503 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11504 if (lh == NULL)
11505 return;
11506
11507 cu->line_header = lh.release ();
11508 cu->line_header_die_owner = die;
11509
11510 if (dwarf2_per_objfile->line_header_hash == NULL)
11511 slot = NULL;
11512 else
11513 {
11514 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11515 &line_header_local,
11516 line_header_local_hash, INSERT);
11517 gdb_assert (slot != NULL);
11518 }
11519 if (slot != NULL && *slot == NULL)
11520 {
11521 /* This newly decoded line number information unit will be owned
11522 by line_header_hash hash table. */
11523 *slot = cu->line_header;
11524 cu->line_header_die_owner = NULL;
11525 }
11526 else
11527 {
11528 /* We cannot free any current entry in (*slot) as that struct line_header
11529 may be already used by multiple CUs. Create only temporary decoded
11530 line_header for this CU - it may happen at most once for each line
11531 number information unit. And if we're not using line_header_hash
11532 then this is what we want as well. */
11533 gdb_assert (die->tag != DW_TAG_partial_unit);
11534 }
11535 decode_mapping = (die->tag != DW_TAG_partial_unit);
11536 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11537 decode_mapping);
11538
11539 }
11540
11541 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11542
11543 static void
11544 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11545 {
11546 struct dwarf2_per_objfile *dwarf2_per_objfile
11547 = cu->per_cu->dwarf2_per_objfile;
11548 struct objfile *objfile = dwarf2_per_objfile->objfile;
11549 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11550 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11551 CORE_ADDR highpc = ((CORE_ADDR) 0);
11552 struct attribute *attr;
11553 struct die_info *child_die;
11554 CORE_ADDR baseaddr;
11555
11556 prepare_one_comp_unit (cu, die, cu->language);
11557 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11558
11559 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11560
11561 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11562 from finish_block. */
11563 if (lowpc == ((CORE_ADDR) -1))
11564 lowpc = highpc;
11565 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11566
11567 file_and_directory fnd = find_file_and_directory (die, cu);
11568
11569 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11570 standardised yet. As a workaround for the language detection we fall
11571 back to the DW_AT_producer string. */
11572 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11573 cu->language = language_opencl;
11574
11575 /* Similar hack for Go. */
11576 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11577 set_cu_language (DW_LANG_Go, cu);
11578
11579 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
11580
11581 /* Decode line number information if present. We do this before
11582 processing child DIEs, so that the line header table is available
11583 for DW_AT_decl_file. */
11584 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11585
11586 /* Process all dies in compilation unit. */
11587 if (die->child != NULL)
11588 {
11589 child_die = die->child;
11590 while (child_die && child_die->tag)
11591 {
11592 process_die (child_die, cu);
11593 child_die = sibling_die (child_die);
11594 }
11595 }
11596
11597 /* Decode macro information, if present. Dwarf 2 macro information
11598 refers to information in the line number info statement program
11599 header, so we can only read it if we've read the header
11600 successfully. */
11601 attr = dwarf2_attr (die, DW_AT_macros, cu);
11602 if (attr == NULL)
11603 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11604 if (attr && cu->line_header)
11605 {
11606 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11607 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11608
11609 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11610 }
11611 else
11612 {
11613 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11614 if (attr && cu->line_header)
11615 {
11616 unsigned int macro_offset = DW_UNSND (attr);
11617
11618 dwarf_decode_macros (cu, macro_offset, 0);
11619 }
11620 }
11621 }
11622
11623 void
11624 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
11625 {
11626 struct type_unit_group *tu_group;
11627 int first_time;
11628 struct attribute *attr;
11629 unsigned int i;
11630 struct signatured_type *sig_type;
11631
11632 gdb_assert (per_cu->is_debug_types);
11633 sig_type = (struct signatured_type *) per_cu;
11634
11635 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
11636
11637 /* If we're using .gdb_index (includes -readnow) then
11638 per_cu->type_unit_group may not have been set up yet. */
11639 if (sig_type->type_unit_group == NULL)
11640 sig_type->type_unit_group = get_type_unit_group (this, attr);
11641 tu_group = sig_type->type_unit_group;
11642
11643 /* If we've already processed this stmt_list there's no real need to
11644 do it again, we could fake it and just recreate the part we need
11645 (file name,index -> symtab mapping). If data shows this optimization
11646 is useful we can do it then. */
11647 first_time = tu_group->compunit_symtab == NULL;
11648
11649 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11650 debug info. */
11651 line_header_up lh;
11652 if (attr != NULL)
11653 {
11654 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11655 lh = dwarf_decode_line_header (line_offset, this);
11656 }
11657 if (lh == NULL)
11658 {
11659 if (first_time)
11660 start_symtab ("", NULL, 0);
11661 else
11662 {
11663 gdb_assert (tu_group->symtabs == NULL);
11664 gdb_assert (m_builder == nullptr);
11665 struct compunit_symtab *cust = tu_group->compunit_symtab;
11666 m_builder.reset (new struct buildsym_compunit
11667 (COMPUNIT_OBJFILE (cust), "",
11668 COMPUNIT_DIRNAME (cust),
11669 compunit_language (cust),
11670 0, cust));
11671 }
11672 return;
11673 }
11674
11675 line_header = lh.release ();
11676 line_header_die_owner = die;
11677
11678 if (first_time)
11679 {
11680 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
11681
11682 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11683 still initializing it, and our caller (a few levels up)
11684 process_full_type_unit still needs to know if this is the first
11685 time. */
11686
11687 tu_group->num_symtabs = line_header->file_names.size ();
11688 tu_group->symtabs = XNEWVEC (struct symtab *,
11689 line_header->file_names.size ());
11690
11691 for (i = 0; i < line_header->file_names.size (); ++i)
11692 {
11693 file_entry &fe = line_header->file_names[i];
11694
11695 dwarf2_start_subfile (this, fe.name,
11696 fe.include_dir (line_header));
11697 buildsym_compunit *b = get_builder ();
11698 if (b->get_current_subfile ()->symtab == NULL)
11699 {
11700 /* NOTE: start_subfile will recognize when it's been
11701 passed a file it has already seen. So we can't
11702 assume there's a simple mapping from
11703 cu->line_header->file_names to subfiles, plus
11704 cu->line_header->file_names may contain dups. */
11705 b->get_current_subfile ()->symtab
11706 = allocate_symtab (cust, b->get_current_subfile ()->name);
11707 }
11708
11709 fe.symtab = b->get_current_subfile ()->symtab;
11710 tu_group->symtabs[i] = fe.symtab;
11711 }
11712 }
11713 else
11714 {
11715 gdb_assert (m_builder == nullptr);
11716 struct compunit_symtab *cust = tu_group->compunit_symtab;
11717 m_builder.reset (new struct buildsym_compunit
11718 (COMPUNIT_OBJFILE (cust), "",
11719 COMPUNIT_DIRNAME (cust),
11720 compunit_language (cust),
11721 0, cust));
11722
11723 for (i = 0; i < line_header->file_names.size (); ++i)
11724 {
11725 file_entry &fe = line_header->file_names[i];
11726
11727 fe.symtab = tu_group->symtabs[i];
11728 }
11729 }
11730
11731 /* The main symtab is allocated last. Type units don't have DW_AT_name
11732 so they don't have a "real" (so to speak) symtab anyway.
11733 There is later code that will assign the main symtab to all symbols
11734 that don't have one. We need to handle the case of a symbol with a
11735 missing symtab (DW_AT_decl_file) anyway. */
11736 }
11737
11738 /* Process DW_TAG_type_unit.
11739 For TUs we want to skip the first top level sibling if it's not the
11740 actual type being defined by this TU. In this case the first top
11741 level sibling is there to provide context only. */
11742
11743 static void
11744 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11745 {
11746 struct die_info *child_die;
11747
11748 prepare_one_comp_unit (cu, die, language_minimal);
11749
11750 /* Initialize (or reinitialize) the machinery for building symtabs.
11751 We do this before processing child DIEs, so that the line header table
11752 is available for DW_AT_decl_file. */
11753 cu->setup_type_unit_groups (die);
11754
11755 if (die->child != NULL)
11756 {
11757 child_die = die->child;
11758 while (child_die && child_die->tag)
11759 {
11760 process_die (child_die, cu);
11761 child_die = sibling_die (child_die);
11762 }
11763 }
11764 }
11765 \f
11766 /* DWO/DWP files.
11767
11768 http://gcc.gnu.org/wiki/DebugFission
11769 http://gcc.gnu.org/wiki/DebugFissionDWP
11770
11771 To simplify handling of both DWO files ("object" files with the DWARF info)
11772 and DWP files (a file with the DWOs packaged up into one file), we treat
11773 DWP files as having a collection of virtual DWO files. */
11774
11775 static hashval_t
11776 hash_dwo_file (const void *item)
11777 {
11778 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11779 hashval_t hash;
11780
11781 hash = htab_hash_string (dwo_file->dwo_name);
11782 if (dwo_file->comp_dir != NULL)
11783 hash += htab_hash_string (dwo_file->comp_dir);
11784 return hash;
11785 }
11786
11787 static int
11788 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11789 {
11790 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11791 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11792
11793 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11794 return 0;
11795 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11796 return lhs->comp_dir == rhs->comp_dir;
11797 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11798 }
11799
11800 /* Allocate a hash table for DWO files. */
11801
11802 static htab_t
11803 allocate_dwo_file_hash_table (struct objfile *objfile)
11804 {
11805 return htab_create_alloc_ex (41,
11806 hash_dwo_file,
11807 eq_dwo_file,
11808 NULL,
11809 &objfile->objfile_obstack,
11810 hashtab_obstack_allocate,
11811 dummy_obstack_deallocate);
11812 }
11813
11814 /* Lookup DWO file DWO_NAME. */
11815
11816 static void **
11817 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11818 const char *dwo_name,
11819 const char *comp_dir)
11820 {
11821 struct dwo_file find_entry;
11822 void **slot;
11823
11824 if (dwarf2_per_objfile->dwo_files == NULL)
11825 dwarf2_per_objfile->dwo_files
11826 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11827
11828 memset (&find_entry, 0, sizeof (find_entry));
11829 find_entry.dwo_name = dwo_name;
11830 find_entry.comp_dir = comp_dir;
11831 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11832
11833 return slot;
11834 }
11835
11836 static hashval_t
11837 hash_dwo_unit (const void *item)
11838 {
11839 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11840
11841 /* This drops the top 32 bits of the id, but is ok for a hash. */
11842 return dwo_unit->signature;
11843 }
11844
11845 static int
11846 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11847 {
11848 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11849 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11850
11851 /* The signature is assumed to be unique within the DWO file.
11852 So while object file CU dwo_id's always have the value zero,
11853 that's OK, assuming each object file DWO file has only one CU,
11854 and that's the rule for now. */
11855 return lhs->signature == rhs->signature;
11856 }
11857
11858 /* Allocate a hash table for DWO CUs,TUs.
11859 There is one of these tables for each of CUs,TUs for each DWO file. */
11860
11861 static htab_t
11862 allocate_dwo_unit_table (struct objfile *objfile)
11863 {
11864 /* Start out with a pretty small number.
11865 Generally DWO files contain only one CU and maybe some TUs. */
11866 return htab_create_alloc_ex (3,
11867 hash_dwo_unit,
11868 eq_dwo_unit,
11869 NULL,
11870 &objfile->objfile_obstack,
11871 hashtab_obstack_allocate,
11872 dummy_obstack_deallocate);
11873 }
11874
11875 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11876
11877 struct create_dwo_cu_data
11878 {
11879 struct dwo_file *dwo_file;
11880 struct dwo_unit dwo_unit;
11881 };
11882
11883 /* die_reader_func for create_dwo_cu. */
11884
11885 static void
11886 create_dwo_cu_reader (const struct die_reader_specs *reader,
11887 const gdb_byte *info_ptr,
11888 struct die_info *comp_unit_die,
11889 int has_children,
11890 void *datap)
11891 {
11892 struct dwarf2_cu *cu = reader->cu;
11893 sect_offset sect_off = cu->per_cu->sect_off;
11894 struct dwarf2_section_info *section = cu->per_cu->section;
11895 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11896 struct dwo_file *dwo_file = data->dwo_file;
11897 struct dwo_unit *dwo_unit = &data->dwo_unit;
11898 struct attribute *attr;
11899
11900 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11901 if (attr == NULL)
11902 {
11903 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11904 " its dwo_id [in module %s]"),
11905 sect_offset_str (sect_off), dwo_file->dwo_name);
11906 return;
11907 }
11908
11909 dwo_unit->dwo_file = dwo_file;
11910 dwo_unit->signature = DW_UNSND (attr);
11911 dwo_unit->section = section;
11912 dwo_unit->sect_off = sect_off;
11913 dwo_unit->length = cu->per_cu->length;
11914
11915 if (dwarf_read_debug)
11916 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11917 sect_offset_str (sect_off),
11918 hex_string (dwo_unit->signature));
11919 }
11920
11921 /* Create the dwo_units for the CUs in a DWO_FILE.
11922 Note: This function processes DWO files only, not DWP files. */
11923
11924 static void
11925 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11926 struct dwo_file &dwo_file, dwarf2_section_info &section,
11927 htab_t &cus_htab)
11928 {
11929 struct objfile *objfile = dwarf2_per_objfile->objfile;
11930 const gdb_byte *info_ptr, *end_ptr;
11931
11932 dwarf2_read_section (objfile, &section);
11933 info_ptr = section.buffer;
11934
11935 if (info_ptr == NULL)
11936 return;
11937
11938 if (dwarf_read_debug)
11939 {
11940 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11941 get_section_name (&section),
11942 get_section_file_name (&section));
11943 }
11944
11945 end_ptr = info_ptr + section.size;
11946 while (info_ptr < end_ptr)
11947 {
11948 struct dwarf2_per_cu_data per_cu;
11949 struct create_dwo_cu_data create_dwo_cu_data;
11950 struct dwo_unit *dwo_unit;
11951 void **slot;
11952 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11953
11954 memset (&create_dwo_cu_data.dwo_unit, 0,
11955 sizeof (create_dwo_cu_data.dwo_unit));
11956 memset (&per_cu, 0, sizeof (per_cu));
11957 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11958 per_cu.is_debug_types = 0;
11959 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11960 per_cu.section = &section;
11961 create_dwo_cu_data.dwo_file = &dwo_file;
11962
11963 init_cutu_and_read_dies_no_follow (
11964 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11965 info_ptr += per_cu.length;
11966
11967 // If the unit could not be parsed, skip it.
11968 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11969 continue;
11970
11971 if (cus_htab == NULL)
11972 cus_htab = allocate_dwo_unit_table (objfile);
11973
11974 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11975 *dwo_unit = create_dwo_cu_data.dwo_unit;
11976 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11977 gdb_assert (slot != NULL);
11978 if (*slot != NULL)
11979 {
11980 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11981 sect_offset dup_sect_off = dup_cu->sect_off;
11982
11983 complaint (_("debug cu entry at offset %s is duplicate to"
11984 " the entry at offset %s, signature %s"),
11985 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11986 hex_string (dwo_unit->signature));
11987 }
11988 *slot = (void *)dwo_unit;
11989 }
11990 }
11991
11992 /* DWP file .debug_{cu,tu}_index section format:
11993 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11994
11995 DWP Version 1:
11996
11997 Both index sections have the same format, and serve to map a 64-bit
11998 signature to a set of section numbers. Each section begins with a header,
11999 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
12000 indexes, and a pool of 32-bit section numbers. The index sections will be
12001 aligned at 8-byte boundaries in the file.
12002
12003 The index section header consists of:
12004
12005 V, 32 bit version number
12006 -, 32 bits unused
12007 N, 32 bit number of compilation units or type units in the index
12008 M, 32 bit number of slots in the hash table
12009
12010 Numbers are recorded using the byte order of the application binary.
12011
12012 The hash table begins at offset 16 in the section, and consists of an array
12013 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
12014 order of the application binary). Unused slots in the hash table are 0.
12015 (We rely on the extreme unlikeliness of a signature being exactly 0.)
12016
12017 The parallel table begins immediately after the hash table
12018 (at offset 16 + 8 * M from the beginning of the section), and consists of an
12019 array of 32-bit indexes (using the byte order of the application binary),
12020 corresponding 1-1 with slots in the hash table. Each entry in the parallel
12021 table contains a 32-bit index into the pool of section numbers. For unused
12022 hash table slots, the corresponding entry in the parallel table will be 0.
12023
12024 The pool of section numbers begins immediately following the hash table
12025 (at offset 16 + 12 * M from the beginning of the section). The pool of
12026 section numbers consists of an array of 32-bit words (using the byte order
12027 of the application binary). Each item in the array is indexed starting
12028 from 0. The hash table entry provides the index of the first section
12029 number in the set. Additional section numbers in the set follow, and the
12030 set is terminated by a 0 entry (section number 0 is not used in ELF).
12031
12032 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
12033 section must be the first entry in the set, and the .debug_abbrev.dwo must
12034 be the second entry. Other members of the set may follow in any order.
12035
12036 ---
12037
12038 DWP Version 2:
12039
12040 DWP Version 2 combines all the .debug_info, etc. sections into one,
12041 and the entries in the index tables are now offsets into these sections.
12042 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12043 section.
12044
12045 Index Section Contents:
12046 Header
12047 Hash Table of Signatures dwp_hash_table.hash_table
12048 Parallel Table of Indices dwp_hash_table.unit_table
12049 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12050 Table of Section Sizes dwp_hash_table.v2.sizes
12051
12052 The index section header consists of:
12053
12054 V, 32 bit version number
12055 L, 32 bit number of columns in the table of section offsets
12056 N, 32 bit number of compilation units or type units in the index
12057 M, 32 bit number of slots in the hash table
12058
12059 Numbers are recorded using the byte order of the application binary.
12060
12061 The hash table has the same format as version 1.
12062 The parallel table of indices has the same format as version 1,
12063 except that the entries are origin-1 indices into the table of sections
12064 offsets and the table of section sizes.
12065
12066 The table of offsets begins immediately following the parallel table
12067 (at offset 16 + 12 * M from the beginning of the section). The table is
12068 a two-dimensional array of 32-bit words (using the byte order of the
12069 application binary), with L columns and N+1 rows, in row-major order.
12070 Each row in the array is indexed starting from 0. The first row provides
12071 a key to the remaining rows: each column in this row provides an identifier
12072 for a debug section, and the offsets in the same column of subsequent rows
12073 refer to that section. The section identifiers are:
12074
12075 DW_SECT_INFO 1 .debug_info.dwo
12076 DW_SECT_TYPES 2 .debug_types.dwo
12077 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12078 DW_SECT_LINE 4 .debug_line.dwo
12079 DW_SECT_LOC 5 .debug_loc.dwo
12080 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12081 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12082 DW_SECT_MACRO 8 .debug_macro.dwo
12083
12084 The offsets provided by the CU and TU index sections are the base offsets
12085 for the contributions made by each CU or TU to the corresponding section
12086 in the package file. Each CU and TU header contains an abbrev_offset
12087 field, used to find the abbreviations table for that CU or TU within the
12088 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12089 be interpreted as relative to the base offset given in the index section.
12090 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12091 should be interpreted as relative to the base offset for .debug_line.dwo,
12092 and offsets into other debug sections obtained from DWARF attributes should
12093 also be interpreted as relative to the corresponding base offset.
12094
12095 The table of sizes begins immediately following the table of offsets.
12096 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12097 with L columns and N rows, in row-major order. Each row in the array is
12098 indexed starting from 1 (row 0 is shared by the two tables).
12099
12100 ---
12101
12102 Hash table lookup is handled the same in version 1 and 2:
12103
12104 We assume that N and M will not exceed 2^32 - 1.
12105 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12106
12107 Given a 64-bit compilation unit signature or a type signature S, an entry
12108 in the hash table is located as follows:
12109
12110 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12111 the low-order k bits all set to 1.
12112
12113 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12114
12115 3) If the hash table entry at index H matches the signature, use that
12116 entry. If the hash table entry at index H is unused (all zeroes),
12117 terminate the search: the signature is not present in the table.
12118
12119 4) Let H = (H + H') modulo M. Repeat at Step 3.
12120
12121 Because M > N and H' and M are relatively prime, the search is guaranteed
12122 to stop at an unused slot or find the match. */
12123
12124 /* Create a hash table to map DWO IDs to their CU/TU entry in
12125 .debug_{info,types}.dwo in DWP_FILE.
12126 Returns NULL if there isn't one.
12127 Note: This function processes DWP files only, not DWO files. */
12128
12129 static struct dwp_hash_table *
12130 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12131 struct dwp_file *dwp_file, int is_debug_types)
12132 {
12133 struct objfile *objfile = dwarf2_per_objfile->objfile;
12134 bfd *dbfd = dwp_file->dbfd.get ();
12135 const gdb_byte *index_ptr, *index_end;
12136 struct dwarf2_section_info *index;
12137 uint32_t version, nr_columns, nr_units, nr_slots;
12138 struct dwp_hash_table *htab;
12139
12140 if (is_debug_types)
12141 index = &dwp_file->sections.tu_index;
12142 else
12143 index = &dwp_file->sections.cu_index;
12144
12145 if (dwarf2_section_empty_p (index))
12146 return NULL;
12147 dwarf2_read_section (objfile, index);
12148
12149 index_ptr = index->buffer;
12150 index_end = index_ptr + index->size;
12151
12152 version = read_4_bytes (dbfd, index_ptr);
12153 index_ptr += 4;
12154 if (version == 2)
12155 nr_columns = read_4_bytes (dbfd, index_ptr);
12156 else
12157 nr_columns = 0;
12158 index_ptr += 4;
12159 nr_units = read_4_bytes (dbfd, index_ptr);
12160 index_ptr += 4;
12161 nr_slots = read_4_bytes (dbfd, index_ptr);
12162 index_ptr += 4;
12163
12164 if (version != 1 && version != 2)
12165 {
12166 error (_("Dwarf Error: unsupported DWP file version (%s)"
12167 " [in module %s]"),
12168 pulongest (version), dwp_file->name);
12169 }
12170 if (nr_slots != (nr_slots & -nr_slots))
12171 {
12172 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12173 " is not power of 2 [in module %s]"),
12174 pulongest (nr_slots), dwp_file->name);
12175 }
12176
12177 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12178 htab->version = version;
12179 htab->nr_columns = nr_columns;
12180 htab->nr_units = nr_units;
12181 htab->nr_slots = nr_slots;
12182 htab->hash_table = index_ptr;
12183 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12184
12185 /* Exit early if the table is empty. */
12186 if (nr_slots == 0 || nr_units == 0
12187 || (version == 2 && nr_columns == 0))
12188 {
12189 /* All must be zero. */
12190 if (nr_slots != 0 || nr_units != 0
12191 || (version == 2 && nr_columns != 0))
12192 {
12193 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12194 " all zero [in modules %s]"),
12195 dwp_file->name);
12196 }
12197 return htab;
12198 }
12199
12200 if (version == 1)
12201 {
12202 htab->section_pool.v1.indices =
12203 htab->unit_table + sizeof (uint32_t) * nr_slots;
12204 /* It's harder to decide whether the section is too small in v1.
12205 V1 is deprecated anyway so we punt. */
12206 }
12207 else
12208 {
12209 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12210 int *ids = htab->section_pool.v2.section_ids;
12211 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
12212 /* Reverse map for error checking. */
12213 int ids_seen[DW_SECT_MAX + 1];
12214 int i;
12215
12216 if (nr_columns < 2)
12217 {
12218 error (_("Dwarf Error: bad DWP hash table, too few columns"
12219 " in section table [in module %s]"),
12220 dwp_file->name);
12221 }
12222 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12223 {
12224 error (_("Dwarf Error: bad DWP hash table, too many columns"
12225 " in section table [in module %s]"),
12226 dwp_file->name);
12227 }
12228 memset (ids, 255, sizeof_ids);
12229 memset (ids_seen, 255, sizeof (ids_seen));
12230 for (i = 0; i < nr_columns; ++i)
12231 {
12232 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12233
12234 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12235 {
12236 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12237 " in section table [in module %s]"),
12238 id, dwp_file->name);
12239 }
12240 if (ids_seen[id] != -1)
12241 {
12242 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12243 " id %d in section table [in module %s]"),
12244 id, dwp_file->name);
12245 }
12246 ids_seen[id] = i;
12247 ids[i] = id;
12248 }
12249 /* Must have exactly one info or types section. */
12250 if (((ids_seen[DW_SECT_INFO] != -1)
12251 + (ids_seen[DW_SECT_TYPES] != -1))
12252 != 1)
12253 {
12254 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12255 " DWO info/types section [in module %s]"),
12256 dwp_file->name);
12257 }
12258 /* Must have an abbrev section. */
12259 if (ids_seen[DW_SECT_ABBREV] == -1)
12260 {
12261 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12262 " section [in module %s]"),
12263 dwp_file->name);
12264 }
12265 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12266 htab->section_pool.v2.sizes =
12267 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12268 * nr_units * nr_columns);
12269 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12270 * nr_units * nr_columns))
12271 > index_end)
12272 {
12273 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12274 " [in module %s]"),
12275 dwp_file->name);
12276 }
12277 }
12278
12279 return htab;
12280 }
12281
12282 /* Update SECTIONS with the data from SECTP.
12283
12284 This function is like the other "locate" section routines that are
12285 passed to bfd_map_over_sections, but in this context the sections to
12286 read comes from the DWP V1 hash table, not the full ELF section table.
12287
12288 The result is non-zero for success, or zero if an error was found. */
12289
12290 static int
12291 locate_v1_virtual_dwo_sections (asection *sectp,
12292 struct virtual_v1_dwo_sections *sections)
12293 {
12294 const struct dwop_section_names *names = &dwop_section_names;
12295
12296 if (section_is_p (sectp->name, &names->abbrev_dwo))
12297 {
12298 /* There can be only one. */
12299 if (sections->abbrev.s.section != NULL)
12300 return 0;
12301 sections->abbrev.s.section = sectp;
12302 sections->abbrev.size = bfd_get_section_size (sectp);
12303 }
12304 else if (section_is_p (sectp->name, &names->info_dwo)
12305 || section_is_p (sectp->name, &names->types_dwo))
12306 {
12307 /* There can be only one. */
12308 if (sections->info_or_types.s.section != NULL)
12309 return 0;
12310 sections->info_or_types.s.section = sectp;
12311 sections->info_or_types.size = bfd_get_section_size (sectp);
12312 }
12313 else if (section_is_p (sectp->name, &names->line_dwo))
12314 {
12315 /* There can be only one. */
12316 if (sections->line.s.section != NULL)
12317 return 0;
12318 sections->line.s.section = sectp;
12319 sections->line.size = bfd_get_section_size (sectp);
12320 }
12321 else if (section_is_p (sectp->name, &names->loc_dwo))
12322 {
12323 /* There can be only one. */
12324 if (sections->loc.s.section != NULL)
12325 return 0;
12326 sections->loc.s.section = sectp;
12327 sections->loc.size = bfd_get_section_size (sectp);
12328 }
12329 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12330 {
12331 /* There can be only one. */
12332 if (sections->macinfo.s.section != NULL)
12333 return 0;
12334 sections->macinfo.s.section = sectp;
12335 sections->macinfo.size = bfd_get_section_size (sectp);
12336 }
12337 else if (section_is_p (sectp->name, &names->macro_dwo))
12338 {
12339 /* There can be only one. */
12340 if (sections->macro.s.section != NULL)
12341 return 0;
12342 sections->macro.s.section = sectp;
12343 sections->macro.size = bfd_get_section_size (sectp);
12344 }
12345 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12346 {
12347 /* There can be only one. */
12348 if (sections->str_offsets.s.section != NULL)
12349 return 0;
12350 sections->str_offsets.s.section = sectp;
12351 sections->str_offsets.size = bfd_get_section_size (sectp);
12352 }
12353 else
12354 {
12355 /* No other kind of section is valid. */
12356 return 0;
12357 }
12358
12359 return 1;
12360 }
12361
12362 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12363 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12364 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12365 This is for DWP version 1 files. */
12366
12367 static struct dwo_unit *
12368 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12369 struct dwp_file *dwp_file,
12370 uint32_t unit_index,
12371 const char *comp_dir,
12372 ULONGEST signature, int is_debug_types)
12373 {
12374 struct objfile *objfile = dwarf2_per_objfile->objfile;
12375 const struct dwp_hash_table *dwp_htab =
12376 is_debug_types ? dwp_file->tus : dwp_file->cus;
12377 bfd *dbfd = dwp_file->dbfd.get ();
12378 const char *kind = is_debug_types ? "TU" : "CU";
12379 struct dwo_file *dwo_file;
12380 struct dwo_unit *dwo_unit;
12381 struct virtual_v1_dwo_sections sections;
12382 void **dwo_file_slot;
12383 int i;
12384
12385 gdb_assert (dwp_file->version == 1);
12386
12387 if (dwarf_read_debug)
12388 {
12389 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12390 kind,
12391 pulongest (unit_index), hex_string (signature),
12392 dwp_file->name);
12393 }
12394
12395 /* Fetch the sections of this DWO unit.
12396 Put a limit on the number of sections we look for so that bad data
12397 doesn't cause us to loop forever. */
12398
12399 #define MAX_NR_V1_DWO_SECTIONS \
12400 (1 /* .debug_info or .debug_types */ \
12401 + 1 /* .debug_abbrev */ \
12402 + 1 /* .debug_line */ \
12403 + 1 /* .debug_loc */ \
12404 + 1 /* .debug_str_offsets */ \
12405 + 1 /* .debug_macro or .debug_macinfo */ \
12406 + 1 /* trailing zero */)
12407
12408 memset (&sections, 0, sizeof (sections));
12409
12410 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12411 {
12412 asection *sectp;
12413 uint32_t section_nr =
12414 read_4_bytes (dbfd,
12415 dwp_htab->section_pool.v1.indices
12416 + (unit_index + i) * sizeof (uint32_t));
12417
12418 if (section_nr == 0)
12419 break;
12420 if (section_nr >= dwp_file->num_sections)
12421 {
12422 error (_("Dwarf Error: bad DWP hash table, section number too large"
12423 " [in module %s]"),
12424 dwp_file->name);
12425 }
12426
12427 sectp = dwp_file->elf_sections[section_nr];
12428 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12429 {
12430 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12431 " [in module %s]"),
12432 dwp_file->name);
12433 }
12434 }
12435
12436 if (i < 2
12437 || dwarf2_section_empty_p (&sections.info_or_types)
12438 || dwarf2_section_empty_p (&sections.abbrev))
12439 {
12440 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12441 " [in module %s]"),
12442 dwp_file->name);
12443 }
12444 if (i == MAX_NR_V1_DWO_SECTIONS)
12445 {
12446 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12447 " [in module %s]"),
12448 dwp_file->name);
12449 }
12450
12451 /* It's easier for the rest of the code if we fake a struct dwo_file and
12452 have dwo_unit "live" in that. At least for now.
12453
12454 The DWP file can be made up of a random collection of CUs and TUs.
12455 However, for each CU + set of TUs that came from the same original DWO
12456 file, we can combine them back into a virtual DWO file to save space
12457 (fewer struct dwo_file objects to allocate). Remember that for really
12458 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12459
12460 std::string virtual_dwo_name =
12461 string_printf ("virtual-dwo/%d-%d-%d-%d",
12462 get_section_id (&sections.abbrev),
12463 get_section_id (&sections.line),
12464 get_section_id (&sections.loc),
12465 get_section_id (&sections.str_offsets));
12466 /* Can we use an existing virtual DWO file? */
12467 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12468 virtual_dwo_name.c_str (),
12469 comp_dir);
12470 /* Create one if necessary. */
12471 if (*dwo_file_slot == NULL)
12472 {
12473 if (dwarf_read_debug)
12474 {
12475 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12476 virtual_dwo_name.c_str ());
12477 }
12478 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12479 dwo_file->dwo_name
12480 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12481 virtual_dwo_name.c_str (),
12482 virtual_dwo_name.size ());
12483 dwo_file->comp_dir = comp_dir;
12484 dwo_file->sections.abbrev = sections.abbrev;
12485 dwo_file->sections.line = sections.line;
12486 dwo_file->sections.loc = sections.loc;
12487 dwo_file->sections.macinfo = sections.macinfo;
12488 dwo_file->sections.macro = sections.macro;
12489 dwo_file->sections.str_offsets = sections.str_offsets;
12490 /* The "str" section is global to the entire DWP file. */
12491 dwo_file->sections.str = dwp_file->sections.str;
12492 /* The info or types section is assigned below to dwo_unit,
12493 there's no need to record it in dwo_file.
12494 Also, we can't simply record type sections in dwo_file because
12495 we record a pointer into the vector in dwo_unit. As we collect more
12496 types we'll grow the vector and eventually have to reallocate space
12497 for it, invalidating all copies of pointers into the previous
12498 contents. */
12499 *dwo_file_slot = dwo_file;
12500 }
12501 else
12502 {
12503 if (dwarf_read_debug)
12504 {
12505 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12506 virtual_dwo_name.c_str ());
12507 }
12508 dwo_file = (struct dwo_file *) *dwo_file_slot;
12509 }
12510
12511 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12512 dwo_unit->dwo_file = dwo_file;
12513 dwo_unit->signature = signature;
12514 dwo_unit->section =
12515 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12516 *dwo_unit->section = sections.info_or_types;
12517 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12518
12519 return dwo_unit;
12520 }
12521
12522 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12523 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12524 piece within that section used by a TU/CU, return a virtual section
12525 of just that piece. */
12526
12527 static struct dwarf2_section_info
12528 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12529 struct dwarf2_section_info *section,
12530 bfd_size_type offset, bfd_size_type size)
12531 {
12532 struct dwarf2_section_info result;
12533 asection *sectp;
12534
12535 gdb_assert (section != NULL);
12536 gdb_assert (!section->is_virtual);
12537
12538 memset (&result, 0, sizeof (result));
12539 result.s.containing_section = section;
12540 result.is_virtual = 1;
12541
12542 if (size == 0)
12543 return result;
12544
12545 sectp = get_section_bfd_section (section);
12546
12547 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12548 bounds of the real section. This is a pretty-rare event, so just
12549 flag an error (easier) instead of a warning and trying to cope. */
12550 if (sectp == NULL
12551 || offset + size > bfd_get_section_size (sectp))
12552 {
12553 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12554 " in section %s [in module %s]"),
12555 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12556 objfile_name (dwarf2_per_objfile->objfile));
12557 }
12558
12559 result.virtual_offset = offset;
12560 result.size = size;
12561 return result;
12562 }
12563
12564 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12565 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12566 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12567 This is for DWP version 2 files. */
12568
12569 static struct dwo_unit *
12570 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12571 struct dwp_file *dwp_file,
12572 uint32_t unit_index,
12573 const char *comp_dir,
12574 ULONGEST signature, int is_debug_types)
12575 {
12576 struct objfile *objfile = dwarf2_per_objfile->objfile;
12577 const struct dwp_hash_table *dwp_htab =
12578 is_debug_types ? dwp_file->tus : dwp_file->cus;
12579 bfd *dbfd = dwp_file->dbfd.get ();
12580 const char *kind = is_debug_types ? "TU" : "CU";
12581 struct dwo_file *dwo_file;
12582 struct dwo_unit *dwo_unit;
12583 struct virtual_v2_dwo_sections sections;
12584 void **dwo_file_slot;
12585 int i;
12586
12587 gdb_assert (dwp_file->version == 2);
12588
12589 if (dwarf_read_debug)
12590 {
12591 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12592 kind,
12593 pulongest (unit_index), hex_string (signature),
12594 dwp_file->name);
12595 }
12596
12597 /* Fetch the section offsets of this DWO unit. */
12598
12599 memset (&sections, 0, sizeof (sections));
12600
12601 for (i = 0; i < dwp_htab->nr_columns; ++i)
12602 {
12603 uint32_t offset = read_4_bytes (dbfd,
12604 dwp_htab->section_pool.v2.offsets
12605 + (((unit_index - 1) * dwp_htab->nr_columns
12606 + i)
12607 * sizeof (uint32_t)));
12608 uint32_t size = read_4_bytes (dbfd,
12609 dwp_htab->section_pool.v2.sizes
12610 + (((unit_index - 1) * dwp_htab->nr_columns
12611 + i)
12612 * sizeof (uint32_t)));
12613
12614 switch (dwp_htab->section_pool.v2.section_ids[i])
12615 {
12616 case DW_SECT_INFO:
12617 case DW_SECT_TYPES:
12618 sections.info_or_types_offset = offset;
12619 sections.info_or_types_size = size;
12620 break;
12621 case DW_SECT_ABBREV:
12622 sections.abbrev_offset = offset;
12623 sections.abbrev_size = size;
12624 break;
12625 case DW_SECT_LINE:
12626 sections.line_offset = offset;
12627 sections.line_size = size;
12628 break;
12629 case DW_SECT_LOC:
12630 sections.loc_offset = offset;
12631 sections.loc_size = size;
12632 break;
12633 case DW_SECT_STR_OFFSETS:
12634 sections.str_offsets_offset = offset;
12635 sections.str_offsets_size = size;
12636 break;
12637 case DW_SECT_MACINFO:
12638 sections.macinfo_offset = offset;
12639 sections.macinfo_size = size;
12640 break;
12641 case DW_SECT_MACRO:
12642 sections.macro_offset = offset;
12643 sections.macro_size = size;
12644 break;
12645 }
12646 }
12647
12648 /* It's easier for the rest of the code if we fake a struct dwo_file and
12649 have dwo_unit "live" in that. At least for now.
12650
12651 The DWP file can be made up of a random collection of CUs and TUs.
12652 However, for each CU + set of TUs that came from the same original DWO
12653 file, we can combine them back into a virtual DWO file to save space
12654 (fewer struct dwo_file objects to allocate). Remember that for really
12655 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12656
12657 std::string virtual_dwo_name =
12658 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12659 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12660 (long) (sections.line_size ? sections.line_offset : 0),
12661 (long) (sections.loc_size ? sections.loc_offset : 0),
12662 (long) (sections.str_offsets_size
12663 ? sections.str_offsets_offset : 0));
12664 /* Can we use an existing virtual DWO file? */
12665 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12666 virtual_dwo_name.c_str (),
12667 comp_dir);
12668 /* Create one if necessary. */
12669 if (*dwo_file_slot == NULL)
12670 {
12671 if (dwarf_read_debug)
12672 {
12673 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12674 virtual_dwo_name.c_str ());
12675 }
12676 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12677 dwo_file->dwo_name
12678 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12679 virtual_dwo_name.c_str (),
12680 virtual_dwo_name.size ());
12681 dwo_file->comp_dir = comp_dir;
12682 dwo_file->sections.abbrev =
12683 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12684 sections.abbrev_offset, sections.abbrev_size);
12685 dwo_file->sections.line =
12686 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12687 sections.line_offset, sections.line_size);
12688 dwo_file->sections.loc =
12689 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12690 sections.loc_offset, sections.loc_size);
12691 dwo_file->sections.macinfo =
12692 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12693 sections.macinfo_offset, sections.macinfo_size);
12694 dwo_file->sections.macro =
12695 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12696 sections.macro_offset, sections.macro_size);
12697 dwo_file->sections.str_offsets =
12698 create_dwp_v2_section (dwarf2_per_objfile,
12699 &dwp_file->sections.str_offsets,
12700 sections.str_offsets_offset,
12701 sections.str_offsets_size);
12702 /* The "str" section is global to the entire DWP file. */
12703 dwo_file->sections.str = dwp_file->sections.str;
12704 /* The info or types section is assigned below to dwo_unit,
12705 there's no need to record it in dwo_file.
12706 Also, we can't simply record type sections in dwo_file because
12707 we record a pointer into the vector in dwo_unit. As we collect more
12708 types we'll grow the vector and eventually have to reallocate space
12709 for it, invalidating all copies of pointers into the previous
12710 contents. */
12711 *dwo_file_slot = dwo_file;
12712 }
12713 else
12714 {
12715 if (dwarf_read_debug)
12716 {
12717 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12718 virtual_dwo_name.c_str ());
12719 }
12720 dwo_file = (struct dwo_file *) *dwo_file_slot;
12721 }
12722
12723 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12724 dwo_unit->dwo_file = dwo_file;
12725 dwo_unit->signature = signature;
12726 dwo_unit->section =
12727 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12728 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12729 is_debug_types
12730 ? &dwp_file->sections.types
12731 : &dwp_file->sections.info,
12732 sections.info_or_types_offset,
12733 sections.info_or_types_size);
12734 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12735
12736 return dwo_unit;
12737 }
12738
12739 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12740 Returns NULL if the signature isn't found. */
12741
12742 static struct dwo_unit *
12743 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12744 struct dwp_file *dwp_file, const char *comp_dir,
12745 ULONGEST signature, int is_debug_types)
12746 {
12747 const struct dwp_hash_table *dwp_htab =
12748 is_debug_types ? dwp_file->tus : dwp_file->cus;
12749 bfd *dbfd = dwp_file->dbfd.get ();
12750 uint32_t mask = dwp_htab->nr_slots - 1;
12751 uint32_t hash = signature & mask;
12752 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12753 unsigned int i;
12754 void **slot;
12755 struct dwo_unit find_dwo_cu;
12756
12757 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12758 find_dwo_cu.signature = signature;
12759 slot = htab_find_slot (is_debug_types
12760 ? dwp_file->loaded_tus
12761 : dwp_file->loaded_cus,
12762 &find_dwo_cu, INSERT);
12763
12764 if (*slot != NULL)
12765 return (struct dwo_unit *) *slot;
12766
12767 /* Use a for loop so that we don't loop forever on bad debug info. */
12768 for (i = 0; i < dwp_htab->nr_slots; ++i)
12769 {
12770 ULONGEST signature_in_table;
12771
12772 signature_in_table =
12773 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12774 if (signature_in_table == signature)
12775 {
12776 uint32_t unit_index =
12777 read_4_bytes (dbfd,
12778 dwp_htab->unit_table + hash * sizeof (uint32_t));
12779
12780 if (dwp_file->version == 1)
12781 {
12782 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12783 dwp_file, unit_index,
12784 comp_dir, signature,
12785 is_debug_types);
12786 }
12787 else
12788 {
12789 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12790 dwp_file, unit_index,
12791 comp_dir, signature,
12792 is_debug_types);
12793 }
12794 return (struct dwo_unit *) *slot;
12795 }
12796 if (signature_in_table == 0)
12797 return NULL;
12798 hash = (hash + hash2) & mask;
12799 }
12800
12801 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12802 " [in module %s]"),
12803 dwp_file->name);
12804 }
12805
12806 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12807 Open the file specified by FILE_NAME and hand it off to BFD for
12808 preliminary analysis. Return a newly initialized bfd *, which
12809 includes a canonicalized copy of FILE_NAME.
12810 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12811 SEARCH_CWD is true if the current directory is to be searched.
12812 It will be searched before debug-file-directory.
12813 If successful, the file is added to the bfd include table of the
12814 objfile's bfd (see gdb_bfd_record_inclusion).
12815 If unable to find/open the file, return NULL.
12816 NOTE: This function is derived from symfile_bfd_open. */
12817
12818 static gdb_bfd_ref_ptr
12819 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12820 const char *file_name, int is_dwp, int search_cwd)
12821 {
12822 int desc;
12823 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12824 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12825 to debug_file_directory. */
12826 const char *search_path;
12827 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12828
12829 gdb::unique_xmalloc_ptr<char> search_path_holder;
12830 if (search_cwd)
12831 {
12832 if (*debug_file_directory != '\0')
12833 {
12834 search_path_holder.reset (concat (".", dirname_separator_string,
12835 debug_file_directory,
12836 (char *) NULL));
12837 search_path = search_path_holder.get ();
12838 }
12839 else
12840 search_path = ".";
12841 }
12842 else
12843 search_path = debug_file_directory;
12844
12845 openp_flags flags = OPF_RETURN_REALPATH;
12846 if (is_dwp)
12847 flags |= OPF_SEARCH_IN_PATH;
12848
12849 gdb::unique_xmalloc_ptr<char> absolute_name;
12850 desc = openp (search_path, flags, file_name,
12851 O_RDONLY | O_BINARY, &absolute_name);
12852 if (desc < 0)
12853 return NULL;
12854
12855 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12856 gnutarget, desc));
12857 if (sym_bfd == NULL)
12858 return NULL;
12859 bfd_set_cacheable (sym_bfd.get (), 1);
12860
12861 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12862 return NULL;
12863
12864 /* Success. Record the bfd as having been included by the objfile's bfd.
12865 This is important because things like demangled_names_hash lives in the
12866 objfile's per_bfd space and may have references to things like symbol
12867 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12868 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12869
12870 return sym_bfd;
12871 }
12872
12873 /* Try to open DWO file FILE_NAME.
12874 COMP_DIR is the DW_AT_comp_dir attribute.
12875 The result is the bfd handle of the file.
12876 If there is a problem finding or opening the file, return NULL.
12877 Upon success, the canonicalized path of the file is stored in the bfd,
12878 same as symfile_bfd_open. */
12879
12880 static gdb_bfd_ref_ptr
12881 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12882 const char *file_name, const char *comp_dir)
12883 {
12884 if (IS_ABSOLUTE_PATH (file_name))
12885 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12886 0 /*is_dwp*/, 0 /*search_cwd*/);
12887
12888 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12889
12890 if (comp_dir != NULL)
12891 {
12892 char *path_to_try = concat (comp_dir, SLASH_STRING,
12893 file_name, (char *) NULL);
12894
12895 /* NOTE: If comp_dir is a relative path, this will also try the
12896 search path, which seems useful. */
12897 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12898 path_to_try,
12899 0 /*is_dwp*/,
12900 1 /*search_cwd*/));
12901 xfree (path_to_try);
12902 if (abfd != NULL)
12903 return abfd;
12904 }
12905
12906 /* That didn't work, try debug-file-directory, which, despite its name,
12907 is a list of paths. */
12908
12909 if (*debug_file_directory == '\0')
12910 return NULL;
12911
12912 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12913 0 /*is_dwp*/, 1 /*search_cwd*/);
12914 }
12915
12916 /* This function is mapped across the sections and remembers the offset and
12917 size of each of the DWO debugging sections we are interested in. */
12918
12919 static void
12920 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12921 {
12922 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12923 const struct dwop_section_names *names = &dwop_section_names;
12924
12925 if (section_is_p (sectp->name, &names->abbrev_dwo))
12926 {
12927 dwo_sections->abbrev.s.section = sectp;
12928 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12929 }
12930 else if (section_is_p (sectp->name, &names->info_dwo))
12931 {
12932 dwo_sections->info.s.section = sectp;
12933 dwo_sections->info.size = bfd_get_section_size (sectp);
12934 }
12935 else if (section_is_p (sectp->name, &names->line_dwo))
12936 {
12937 dwo_sections->line.s.section = sectp;
12938 dwo_sections->line.size = bfd_get_section_size (sectp);
12939 }
12940 else if (section_is_p (sectp->name, &names->loc_dwo))
12941 {
12942 dwo_sections->loc.s.section = sectp;
12943 dwo_sections->loc.size = bfd_get_section_size (sectp);
12944 }
12945 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12946 {
12947 dwo_sections->macinfo.s.section = sectp;
12948 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12949 }
12950 else if (section_is_p (sectp->name, &names->macro_dwo))
12951 {
12952 dwo_sections->macro.s.section = sectp;
12953 dwo_sections->macro.size = bfd_get_section_size (sectp);
12954 }
12955 else if (section_is_p (sectp->name, &names->str_dwo))
12956 {
12957 dwo_sections->str.s.section = sectp;
12958 dwo_sections->str.size = bfd_get_section_size (sectp);
12959 }
12960 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12961 {
12962 dwo_sections->str_offsets.s.section = sectp;
12963 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12964 }
12965 else if (section_is_p (sectp->name, &names->types_dwo))
12966 {
12967 struct dwarf2_section_info type_section;
12968
12969 memset (&type_section, 0, sizeof (type_section));
12970 type_section.s.section = sectp;
12971 type_section.size = bfd_get_section_size (sectp);
12972 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
12973 &type_section);
12974 }
12975 }
12976
12977 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12978 by PER_CU. This is for the non-DWP case.
12979 The result is NULL if DWO_NAME can't be found. */
12980
12981 static struct dwo_file *
12982 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12983 const char *dwo_name, const char *comp_dir)
12984 {
12985 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12986 struct objfile *objfile = dwarf2_per_objfile->objfile;
12987
12988 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
12989 if (dbfd == NULL)
12990 {
12991 if (dwarf_read_debug)
12992 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12993 return NULL;
12994 }
12995
12996 /* We use a unique pointer here, despite the obstack allocation,
12997 because a dwo_file needs some cleanup if it is abandoned. */
12998 dwo_file_up dwo_file (OBSTACK_ZALLOC (&objfile->objfile_obstack,
12999 struct dwo_file));
13000 dwo_file->dwo_name = dwo_name;
13001 dwo_file->comp_dir = comp_dir;
13002 dwo_file->dbfd = dbfd.release ();
13003
13004 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
13005 &dwo_file->sections);
13006
13007 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
13008 dwo_file->cus);
13009
13010 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
13011 dwo_file->sections.types, dwo_file->tus);
13012
13013 if (dwarf_read_debug)
13014 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
13015
13016 return dwo_file.release ();
13017 }
13018
13019 /* This function is mapped across the sections and remembers the offset and
13020 size of each of the DWP debugging sections common to version 1 and 2 that
13021 we are interested in. */
13022
13023 static void
13024 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
13025 void *dwp_file_ptr)
13026 {
13027 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13028 const struct dwop_section_names *names = &dwop_section_names;
13029 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13030
13031 /* Record the ELF section number for later lookup: this is what the
13032 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13033 gdb_assert (elf_section_nr < dwp_file->num_sections);
13034 dwp_file->elf_sections[elf_section_nr] = sectp;
13035
13036 /* Look for specific sections that we need. */
13037 if (section_is_p (sectp->name, &names->str_dwo))
13038 {
13039 dwp_file->sections.str.s.section = sectp;
13040 dwp_file->sections.str.size = bfd_get_section_size (sectp);
13041 }
13042 else if (section_is_p (sectp->name, &names->cu_index))
13043 {
13044 dwp_file->sections.cu_index.s.section = sectp;
13045 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
13046 }
13047 else if (section_is_p (sectp->name, &names->tu_index))
13048 {
13049 dwp_file->sections.tu_index.s.section = sectp;
13050 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
13051 }
13052 }
13053
13054 /* This function is mapped across the sections and remembers the offset and
13055 size of each of the DWP version 2 debugging sections that we are interested
13056 in. This is split into a separate function because we don't know if we
13057 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13058
13059 static void
13060 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13061 {
13062 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13063 const struct dwop_section_names *names = &dwop_section_names;
13064 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13065
13066 /* Record the ELF section number for later lookup: this is what the
13067 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13068 gdb_assert (elf_section_nr < dwp_file->num_sections);
13069 dwp_file->elf_sections[elf_section_nr] = sectp;
13070
13071 /* Look for specific sections that we need. */
13072 if (section_is_p (sectp->name, &names->abbrev_dwo))
13073 {
13074 dwp_file->sections.abbrev.s.section = sectp;
13075 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
13076 }
13077 else if (section_is_p (sectp->name, &names->info_dwo))
13078 {
13079 dwp_file->sections.info.s.section = sectp;
13080 dwp_file->sections.info.size = bfd_get_section_size (sectp);
13081 }
13082 else if (section_is_p (sectp->name, &names->line_dwo))
13083 {
13084 dwp_file->sections.line.s.section = sectp;
13085 dwp_file->sections.line.size = bfd_get_section_size (sectp);
13086 }
13087 else if (section_is_p (sectp->name, &names->loc_dwo))
13088 {
13089 dwp_file->sections.loc.s.section = sectp;
13090 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
13091 }
13092 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13093 {
13094 dwp_file->sections.macinfo.s.section = sectp;
13095 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13096 }
13097 else if (section_is_p (sectp->name, &names->macro_dwo))
13098 {
13099 dwp_file->sections.macro.s.section = sectp;
13100 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13101 }
13102 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13103 {
13104 dwp_file->sections.str_offsets.s.section = sectp;
13105 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13106 }
13107 else if (section_is_p (sectp->name, &names->types_dwo))
13108 {
13109 dwp_file->sections.types.s.section = sectp;
13110 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13111 }
13112 }
13113
13114 /* Hash function for dwp_file loaded CUs/TUs. */
13115
13116 static hashval_t
13117 hash_dwp_loaded_cutus (const void *item)
13118 {
13119 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13120
13121 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13122 return dwo_unit->signature;
13123 }
13124
13125 /* Equality function for dwp_file loaded CUs/TUs. */
13126
13127 static int
13128 eq_dwp_loaded_cutus (const void *a, const void *b)
13129 {
13130 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13131 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13132
13133 return dua->signature == dub->signature;
13134 }
13135
13136 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13137
13138 static htab_t
13139 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13140 {
13141 return htab_create_alloc_ex (3,
13142 hash_dwp_loaded_cutus,
13143 eq_dwp_loaded_cutus,
13144 NULL,
13145 &objfile->objfile_obstack,
13146 hashtab_obstack_allocate,
13147 dummy_obstack_deallocate);
13148 }
13149
13150 /* Try to open DWP file FILE_NAME.
13151 The result is the bfd handle of the file.
13152 If there is a problem finding or opening the file, return NULL.
13153 Upon success, the canonicalized path of the file is stored in the bfd,
13154 same as symfile_bfd_open. */
13155
13156 static gdb_bfd_ref_ptr
13157 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13158 const char *file_name)
13159 {
13160 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13161 1 /*is_dwp*/,
13162 1 /*search_cwd*/));
13163 if (abfd != NULL)
13164 return abfd;
13165
13166 /* Work around upstream bug 15652.
13167 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13168 [Whether that's a "bug" is debatable, but it is getting in our way.]
13169 We have no real idea where the dwp file is, because gdb's realpath-ing
13170 of the executable's path may have discarded the needed info.
13171 [IWBN if the dwp file name was recorded in the executable, akin to
13172 .gnu_debuglink, but that doesn't exist yet.]
13173 Strip the directory from FILE_NAME and search again. */
13174 if (*debug_file_directory != '\0')
13175 {
13176 /* Don't implicitly search the current directory here.
13177 If the user wants to search "." to handle this case,
13178 it must be added to debug-file-directory. */
13179 return try_open_dwop_file (dwarf2_per_objfile,
13180 lbasename (file_name), 1 /*is_dwp*/,
13181 0 /*search_cwd*/);
13182 }
13183
13184 return NULL;
13185 }
13186
13187 /* Initialize the use of the DWP file for the current objfile.
13188 By convention the name of the DWP file is ${objfile}.dwp.
13189 The result is NULL if it can't be found. */
13190
13191 static std::unique_ptr<struct dwp_file>
13192 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13193 {
13194 struct objfile *objfile = dwarf2_per_objfile->objfile;
13195
13196 /* Try to find first .dwp for the binary file before any symbolic links
13197 resolving. */
13198
13199 /* If the objfile is a debug file, find the name of the real binary
13200 file and get the name of dwp file from there. */
13201 std::string dwp_name;
13202 if (objfile->separate_debug_objfile_backlink != NULL)
13203 {
13204 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13205 const char *backlink_basename = lbasename (backlink->original_name);
13206
13207 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13208 }
13209 else
13210 dwp_name = objfile->original_name;
13211
13212 dwp_name += ".dwp";
13213
13214 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13215 if (dbfd == NULL
13216 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13217 {
13218 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13219 dwp_name = objfile_name (objfile);
13220 dwp_name += ".dwp";
13221 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13222 }
13223
13224 if (dbfd == NULL)
13225 {
13226 if (dwarf_read_debug)
13227 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13228 return std::unique_ptr<dwp_file> ();
13229 }
13230
13231 const char *name = bfd_get_filename (dbfd.get ());
13232 std::unique_ptr<struct dwp_file> dwp_file
13233 (new struct dwp_file (name, std::move (dbfd)));
13234
13235 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
13236 dwp_file->elf_sections =
13237 OBSTACK_CALLOC (&objfile->objfile_obstack,
13238 dwp_file->num_sections, asection *);
13239
13240 bfd_map_over_sections (dwp_file->dbfd.get (),
13241 dwarf2_locate_common_dwp_sections,
13242 dwp_file.get ());
13243
13244 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13245 0);
13246
13247 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13248 1);
13249
13250 /* The DWP file version is stored in the hash table. Oh well. */
13251 if (dwp_file->cus && dwp_file->tus
13252 && dwp_file->cus->version != dwp_file->tus->version)
13253 {
13254 /* Technically speaking, we should try to limp along, but this is
13255 pretty bizarre. We use pulongest here because that's the established
13256 portability solution (e.g, we cannot use %u for uint32_t). */
13257 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13258 " TU version %s [in DWP file %s]"),
13259 pulongest (dwp_file->cus->version),
13260 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13261 }
13262
13263 if (dwp_file->cus)
13264 dwp_file->version = dwp_file->cus->version;
13265 else if (dwp_file->tus)
13266 dwp_file->version = dwp_file->tus->version;
13267 else
13268 dwp_file->version = 2;
13269
13270 if (dwp_file->version == 2)
13271 bfd_map_over_sections (dwp_file->dbfd.get (),
13272 dwarf2_locate_v2_dwp_sections,
13273 dwp_file.get ());
13274
13275 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13276 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13277
13278 if (dwarf_read_debug)
13279 {
13280 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13281 fprintf_unfiltered (gdb_stdlog,
13282 " %s CUs, %s TUs\n",
13283 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13284 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13285 }
13286
13287 return dwp_file;
13288 }
13289
13290 /* Wrapper around open_and_init_dwp_file, only open it once. */
13291
13292 static struct dwp_file *
13293 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13294 {
13295 if (! dwarf2_per_objfile->dwp_checked)
13296 {
13297 dwarf2_per_objfile->dwp_file
13298 = open_and_init_dwp_file (dwarf2_per_objfile);
13299 dwarf2_per_objfile->dwp_checked = 1;
13300 }
13301 return dwarf2_per_objfile->dwp_file.get ();
13302 }
13303
13304 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13305 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13306 or in the DWP file for the objfile, referenced by THIS_UNIT.
13307 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13308 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13309
13310 This is called, for example, when wanting to read a variable with a
13311 complex location. Therefore we don't want to do file i/o for every call.
13312 Therefore we don't want to look for a DWO file on every call.
13313 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13314 then we check if we've already seen DWO_NAME, and only THEN do we check
13315 for a DWO file.
13316
13317 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13318 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13319
13320 static struct dwo_unit *
13321 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13322 const char *dwo_name, const char *comp_dir,
13323 ULONGEST signature, int is_debug_types)
13324 {
13325 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13326 struct objfile *objfile = dwarf2_per_objfile->objfile;
13327 const char *kind = is_debug_types ? "TU" : "CU";
13328 void **dwo_file_slot;
13329 struct dwo_file *dwo_file;
13330 struct dwp_file *dwp_file;
13331
13332 /* First see if there's a DWP file.
13333 If we have a DWP file but didn't find the DWO inside it, don't
13334 look for the original DWO file. It makes gdb behave differently
13335 depending on whether one is debugging in the build tree. */
13336
13337 dwp_file = get_dwp_file (dwarf2_per_objfile);
13338 if (dwp_file != NULL)
13339 {
13340 const struct dwp_hash_table *dwp_htab =
13341 is_debug_types ? dwp_file->tus : dwp_file->cus;
13342
13343 if (dwp_htab != NULL)
13344 {
13345 struct dwo_unit *dwo_cutu =
13346 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13347 signature, is_debug_types);
13348
13349 if (dwo_cutu != NULL)
13350 {
13351 if (dwarf_read_debug)
13352 {
13353 fprintf_unfiltered (gdb_stdlog,
13354 "Virtual DWO %s %s found: @%s\n",
13355 kind, hex_string (signature),
13356 host_address_to_string (dwo_cutu));
13357 }
13358 return dwo_cutu;
13359 }
13360 }
13361 }
13362 else
13363 {
13364 /* No DWP file, look for the DWO file. */
13365
13366 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13367 dwo_name, comp_dir);
13368 if (*dwo_file_slot == NULL)
13369 {
13370 /* Read in the file and build a table of the CUs/TUs it contains. */
13371 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13372 }
13373 /* NOTE: This will be NULL if unable to open the file. */
13374 dwo_file = (struct dwo_file *) *dwo_file_slot;
13375
13376 if (dwo_file != NULL)
13377 {
13378 struct dwo_unit *dwo_cutu = NULL;
13379
13380 if (is_debug_types && dwo_file->tus)
13381 {
13382 struct dwo_unit find_dwo_cutu;
13383
13384 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13385 find_dwo_cutu.signature = signature;
13386 dwo_cutu
13387 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13388 }
13389 else if (!is_debug_types && dwo_file->cus)
13390 {
13391 struct dwo_unit find_dwo_cutu;
13392
13393 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13394 find_dwo_cutu.signature = signature;
13395 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13396 &find_dwo_cutu);
13397 }
13398
13399 if (dwo_cutu != NULL)
13400 {
13401 if (dwarf_read_debug)
13402 {
13403 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13404 kind, dwo_name, hex_string (signature),
13405 host_address_to_string (dwo_cutu));
13406 }
13407 return dwo_cutu;
13408 }
13409 }
13410 }
13411
13412 /* We didn't find it. This could mean a dwo_id mismatch, or
13413 someone deleted the DWO/DWP file, or the search path isn't set up
13414 correctly to find the file. */
13415
13416 if (dwarf_read_debug)
13417 {
13418 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13419 kind, dwo_name, hex_string (signature));
13420 }
13421
13422 /* This is a warning and not a complaint because it can be caused by
13423 pilot error (e.g., user accidentally deleting the DWO). */
13424 {
13425 /* Print the name of the DWP file if we looked there, helps the user
13426 better diagnose the problem. */
13427 std::string dwp_text;
13428
13429 if (dwp_file != NULL)
13430 dwp_text = string_printf (" [in DWP file %s]",
13431 lbasename (dwp_file->name));
13432
13433 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13434 " [in module %s]"),
13435 kind, dwo_name, hex_string (signature),
13436 dwp_text.c_str (),
13437 this_unit->is_debug_types ? "TU" : "CU",
13438 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13439 }
13440 return NULL;
13441 }
13442
13443 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13444 See lookup_dwo_cutu_unit for details. */
13445
13446 static struct dwo_unit *
13447 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13448 const char *dwo_name, const char *comp_dir,
13449 ULONGEST signature)
13450 {
13451 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13452 }
13453
13454 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13455 See lookup_dwo_cutu_unit for details. */
13456
13457 static struct dwo_unit *
13458 lookup_dwo_type_unit (struct signatured_type *this_tu,
13459 const char *dwo_name, const char *comp_dir)
13460 {
13461 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13462 }
13463
13464 /* Traversal function for queue_and_load_all_dwo_tus. */
13465
13466 static int
13467 queue_and_load_dwo_tu (void **slot, void *info)
13468 {
13469 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13470 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13471 ULONGEST signature = dwo_unit->signature;
13472 struct signatured_type *sig_type =
13473 lookup_dwo_signatured_type (per_cu->cu, signature);
13474
13475 if (sig_type != NULL)
13476 {
13477 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13478
13479 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13480 a real dependency of PER_CU on SIG_TYPE. That is detected later
13481 while processing PER_CU. */
13482 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13483 load_full_type_unit (sig_cu);
13484 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13485 }
13486
13487 return 1;
13488 }
13489
13490 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13491 The DWO may have the only definition of the type, though it may not be
13492 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13493 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13494
13495 static void
13496 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13497 {
13498 struct dwo_unit *dwo_unit;
13499 struct dwo_file *dwo_file;
13500
13501 gdb_assert (!per_cu->is_debug_types);
13502 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13503 gdb_assert (per_cu->cu != NULL);
13504
13505 dwo_unit = per_cu->cu->dwo_unit;
13506 gdb_assert (dwo_unit != NULL);
13507
13508 dwo_file = dwo_unit->dwo_file;
13509 if (dwo_file->tus != NULL)
13510 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13511 }
13512
13513 /* Free all resources associated with DWO_FILE.
13514 Close the DWO file and munmap the sections. */
13515
13516 static void
13517 free_dwo_file (struct dwo_file *dwo_file)
13518 {
13519 /* Note: dbfd is NULL for virtual DWO files. */
13520 gdb_bfd_unref (dwo_file->dbfd);
13521
13522 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13523 }
13524
13525 /* Traversal function for free_dwo_files. */
13526
13527 static int
13528 free_dwo_file_from_slot (void **slot, void *info)
13529 {
13530 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13531
13532 free_dwo_file (dwo_file);
13533
13534 return 1;
13535 }
13536
13537 /* Free all resources associated with DWO_FILES. */
13538
13539 static void
13540 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13541 {
13542 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
13543 }
13544 \f
13545 /* Read in various DIEs. */
13546
13547 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13548 Inherit only the children of the DW_AT_abstract_origin DIE not being
13549 already referenced by DW_AT_abstract_origin from the children of the
13550 current DIE. */
13551
13552 static void
13553 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13554 {
13555 struct die_info *child_die;
13556 sect_offset *offsetp;
13557 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13558 struct die_info *origin_die;
13559 /* Iterator of the ORIGIN_DIE children. */
13560 struct die_info *origin_child_die;
13561 struct attribute *attr;
13562 struct dwarf2_cu *origin_cu;
13563 struct pending **origin_previous_list_in_scope;
13564
13565 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13566 if (!attr)
13567 return;
13568
13569 /* Note that following die references may follow to a die in a
13570 different cu. */
13571
13572 origin_cu = cu;
13573 origin_die = follow_die_ref (die, attr, &origin_cu);
13574
13575 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13576 symbols in. */
13577 origin_previous_list_in_scope = origin_cu->list_in_scope;
13578 origin_cu->list_in_scope = cu->list_in_scope;
13579
13580 if (die->tag != origin_die->tag
13581 && !(die->tag == DW_TAG_inlined_subroutine
13582 && origin_die->tag == DW_TAG_subprogram))
13583 complaint (_("DIE %s and its abstract origin %s have different tags"),
13584 sect_offset_str (die->sect_off),
13585 sect_offset_str (origin_die->sect_off));
13586
13587 std::vector<sect_offset> offsets;
13588
13589 for (child_die = die->child;
13590 child_die && child_die->tag;
13591 child_die = sibling_die (child_die))
13592 {
13593 struct die_info *child_origin_die;
13594 struct dwarf2_cu *child_origin_cu;
13595
13596 /* We are trying to process concrete instance entries:
13597 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13598 it's not relevant to our analysis here. i.e. detecting DIEs that are
13599 present in the abstract instance but not referenced in the concrete
13600 one. */
13601 if (child_die->tag == DW_TAG_call_site
13602 || child_die->tag == DW_TAG_GNU_call_site)
13603 continue;
13604
13605 /* For each CHILD_DIE, find the corresponding child of
13606 ORIGIN_DIE. If there is more than one layer of
13607 DW_AT_abstract_origin, follow them all; there shouldn't be,
13608 but GCC versions at least through 4.4 generate this (GCC PR
13609 40573). */
13610 child_origin_die = child_die;
13611 child_origin_cu = cu;
13612 while (1)
13613 {
13614 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13615 child_origin_cu);
13616 if (attr == NULL)
13617 break;
13618 child_origin_die = follow_die_ref (child_origin_die, attr,
13619 &child_origin_cu);
13620 }
13621
13622 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13623 counterpart may exist. */
13624 if (child_origin_die != child_die)
13625 {
13626 if (child_die->tag != child_origin_die->tag
13627 && !(child_die->tag == DW_TAG_inlined_subroutine
13628 && child_origin_die->tag == DW_TAG_subprogram))
13629 complaint (_("Child DIE %s and its abstract origin %s have "
13630 "different tags"),
13631 sect_offset_str (child_die->sect_off),
13632 sect_offset_str (child_origin_die->sect_off));
13633 if (child_origin_die->parent != origin_die)
13634 complaint (_("Child DIE %s and its abstract origin %s have "
13635 "different parents"),
13636 sect_offset_str (child_die->sect_off),
13637 sect_offset_str (child_origin_die->sect_off));
13638 else
13639 offsets.push_back (child_origin_die->sect_off);
13640 }
13641 }
13642 std::sort (offsets.begin (), offsets.end ());
13643 sect_offset *offsets_end = offsets.data () + offsets.size ();
13644 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13645 if (offsetp[-1] == *offsetp)
13646 complaint (_("Multiple children of DIE %s refer "
13647 "to DIE %s as their abstract origin"),
13648 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13649
13650 offsetp = offsets.data ();
13651 origin_child_die = origin_die->child;
13652 while (origin_child_die && origin_child_die->tag)
13653 {
13654 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13655 while (offsetp < offsets_end
13656 && *offsetp < origin_child_die->sect_off)
13657 offsetp++;
13658 if (offsetp >= offsets_end
13659 || *offsetp > origin_child_die->sect_off)
13660 {
13661 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13662 Check whether we're already processing ORIGIN_CHILD_DIE.
13663 This can happen with mutually referenced abstract_origins.
13664 PR 16581. */
13665 if (!origin_child_die->in_process)
13666 process_die (origin_child_die, origin_cu);
13667 }
13668 origin_child_die = sibling_die (origin_child_die);
13669 }
13670 origin_cu->list_in_scope = origin_previous_list_in_scope;
13671 }
13672
13673 static void
13674 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13675 {
13676 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13677 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13678 struct context_stack *newobj;
13679 CORE_ADDR lowpc;
13680 CORE_ADDR highpc;
13681 struct die_info *child_die;
13682 struct attribute *attr, *call_line, *call_file;
13683 const char *name;
13684 CORE_ADDR baseaddr;
13685 struct block *block;
13686 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13687 std::vector<struct symbol *> template_args;
13688 struct template_symbol *templ_func = NULL;
13689
13690 if (inlined_func)
13691 {
13692 /* If we do not have call site information, we can't show the
13693 caller of this inlined function. That's too confusing, so
13694 only use the scope for local variables. */
13695 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13696 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13697 if (call_line == NULL || call_file == NULL)
13698 {
13699 read_lexical_block_scope (die, cu);
13700 return;
13701 }
13702 }
13703
13704 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13705
13706 name = dwarf2_name (die, cu);
13707
13708 /* Ignore functions with missing or empty names. These are actually
13709 illegal according to the DWARF standard. */
13710 if (name == NULL)
13711 {
13712 complaint (_("missing name for subprogram DIE at %s"),
13713 sect_offset_str (die->sect_off));
13714 return;
13715 }
13716
13717 /* Ignore functions with missing or invalid low and high pc attributes. */
13718 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13719 <= PC_BOUNDS_INVALID)
13720 {
13721 attr = dwarf2_attr (die, DW_AT_external, cu);
13722 if (!attr || !DW_UNSND (attr))
13723 complaint (_("cannot get low and high bounds "
13724 "for subprogram DIE at %s"),
13725 sect_offset_str (die->sect_off));
13726 return;
13727 }
13728
13729 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13730 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13731
13732 /* If we have any template arguments, then we must allocate a
13733 different sort of symbol. */
13734 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13735 {
13736 if (child_die->tag == DW_TAG_template_type_param
13737 || child_die->tag == DW_TAG_template_value_param)
13738 {
13739 templ_func = allocate_template_symbol (objfile);
13740 templ_func->subclass = SYMBOL_TEMPLATE;
13741 break;
13742 }
13743 }
13744
13745 newobj = cu->get_builder ()->push_context (0, lowpc);
13746 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13747 (struct symbol *) templ_func);
13748
13749 /* If there is a location expression for DW_AT_frame_base, record
13750 it. */
13751 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13752 if (attr)
13753 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13754
13755 /* If there is a location for the static link, record it. */
13756 newobj->static_link = NULL;
13757 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13758 if (attr)
13759 {
13760 newobj->static_link
13761 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13762 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13763 }
13764
13765 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
13766
13767 if (die->child != NULL)
13768 {
13769 child_die = die->child;
13770 while (child_die && child_die->tag)
13771 {
13772 if (child_die->tag == DW_TAG_template_type_param
13773 || child_die->tag == DW_TAG_template_value_param)
13774 {
13775 struct symbol *arg = new_symbol (child_die, NULL, cu);
13776
13777 if (arg != NULL)
13778 template_args.push_back (arg);
13779 }
13780 else
13781 process_die (child_die, cu);
13782 child_die = sibling_die (child_die);
13783 }
13784 }
13785
13786 inherit_abstract_dies (die, cu);
13787
13788 /* If we have a DW_AT_specification, we might need to import using
13789 directives from the context of the specification DIE. See the
13790 comment in determine_prefix. */
13791 if (cu->language == language_cplus
13792 && dwarf2_attr (die, DW_AT_specification, cu))
13793 {
13794 struct dwarf2_cu *spec_cu = cu;
13795 struct die_info *spec_die = die_specification (die, &spec_cu);
13796
13797 while (spec_die)
13798 {
13799 child_die = spec_die->child;
13800 while (child_die && child_die->tag)
13801 {
13802 if (child_die->tag == DW_TAG_imported_module)
13803 process_die (child_die, spec_cu);
13804 child_die = sibling_die (child_die);
13805 }
13806
13807 /* In some cases, GCC generates specification DIEs that
13808 themselves contain DW_AT_specification attributes. */
13809 spec_die = die_specification (spec_die, &spec_cu);
13810 }
13811 }
13812
13813 struct context_stack cstk = cu->get_builder ()->pop_context ();
13814 /* Make a block for the local symbols within. */
13815 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
13816 cstk.static_link, lowpc, highpc);
13817
13818 /* For C++, set the block's scope. */
13819 if ((cu->language == language_cplus
13820 || cu->language == language_fortran
13821 || cu->language == language_d
13822 || cu->language == language_rust)
13823 && cu->processing_has_namespace_info)
13824 block_set_scope (block, determine_prefix (die, cu),
13825 &objfile->objfile_obstack);
13826
13827 /* If we have address ranges, record them. */
13828 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13829
13830 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13831
13832 /* Attach template arguments to function. */
13833 if (!template_args.empty ())
13834 {
13835 gdb_assert (templ_func != NULL);
13836
13837 templ_func->n_template_arguments = template_args.size ();
13838 templ_func->template_arguments
13839 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13840 templ_func->n_template_arguments);
13841 memcpy (templ_func->template_arguments,
13842 template_args.data (),
13843 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13844
13845 /* Make sure that the symtab is set on the new symbols. Even
13846 though they don't appear in this symtab directly, other parts
13847 of gdb assume that symbols do, and this is reasonably
13848 true. */
13849 for (symbol *sym : template_args)
13850 symbol_set_symtab (sym, symbol_symtab (templ_func));
13851 }
13852
13853 /* In C++, we can have functions nested inside functions (e.g., when
13854 a function declares a class that has methods). This means that
13855 when we finish processing a function scope, we may need to go
13856 back to building a containing block's symbol lists. */
13857 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13858 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13859
13860 /* If we've finished processing a top-level function, subsequent
13861 symbols go in the file symbol list. */
13862 if (cu->get_builder ()->outermost_context_p ())
13863 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13864 }
13865
13866 /* Process all the DIES contained within a lexical block scope. Start
13867 a new scope, process the dies, and then close the scope. */
13868
13869 static void
13870 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13871 {
13872 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13873 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13874 CORE_ADDR lowpc, highpc;
13875 struct die_info *child_die;
13876 CORE_ADDR baseaddr;
13877
13878 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13879
13880 /* Ignore blocks with missing or invalid low and high pc attributes. */
13881 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13882 as multiple lexical blocks? Handling children in a sane way would
13883 be nasty. Might be easier to properly extend generic blocks to
13884 describe ranges. */
13885 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13886 {
13887 case PC_BOUNDS_NOT_PRESENT:
13888 /* DW_TAG_lexical_block has no attributes, process its children as if
13889 there was no wrapping by that DW_TAG_lexical_block.
13890 GCC does no longer produces such DWARF since GCC r224161. */
13891 for (child_die = die->child;
13892 child_die != NULL && child_die->tag;
13893 child_die = sibling_die (child_die))
13894 process_die (child_die, cu);
13895 return;
13896 case PC_BOUNDS_INVALID:
13897 return;
13898 }
13899 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13900 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13901
13902 cu->get_builder ()->push_context (0, lowpc);
13903 if (die->child != NULL)
13904 {
13905 child_die = die->child;
13906 while (child_die && child_die->tag)
13907 {
13908 process_die (child_die, cu);
13909 child_die = sibling_die (child_die);
13910 }
13911 }
13912 inherit_abstract_dies (die, cu);
13913 struct context_stack cstk = cu->get_builder ()->pop_context ();
13914
13915 if (*cu->get_builder ()->get_local_symbols () != NULL
13916 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13917 {
13918 struct block *block
13919 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13920 cstk.start_addr, highpc);
13921
13922 /* Note that recording ranges after traversing children, as we
13923 do here, means that recording a parent's ranges entails
13924 walking across all its children's ranges as they appear in
13925 the address map, which is quadratic behavior.
13926
13927 It would be nicer to record the parent's ranges before
13928 traversing its children, simply overriding whatever you find
13929 there. But since we don't even decide whether to create a
13930 block until after we've traversed its children, that's hard
13931 to do. */
13932 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13933 }
13934 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13935 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13936 }
13937
13938 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13939
13940 static void
13941 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13942 {
13943 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13944 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13945 CORE_ADDR pc, baseaddr;
13946 struct attribute *attr;
13947 struct call_site *call_site, call_site_local;
13948 void **slot;
13949 int nparams;
13950 struct die_info *child_die;
13951
13952 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13953
13954 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13955 if (attr == NULL)
13956 {
13957 /* This was a pre-DWARF-5 GNU extension alias
13958 for DW_AT_call_return_pc. */
13959 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13960 }
13961 if (!attr)
13962 {
13963 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13964 "DIE %s [in module %s]"),
13965 sect_offset_str (die->sect_off), objfile_name (objfile));
13966 return;
13967 }
13968 pc = attr_value_as_address (attr) + baseaddr;
13969 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13970
13971 if (cu->call_site_htab == NULL)
13972 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13973 NULL, &objfile->objfile_obstack,
13974 hashtab_obstack_allocate, NULL);
13975 call_site_local.pc = pc;
13976 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13977 if (*slot != NULL)
13978 {
13979 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13980 "DIE %s [in module %s]"),
13981 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13982 objfile_name (objfile));
13983 return;
13984 }
13985
13986 /* Count parameters at the caller. */
13987
13988 nparams = 0;
13989 for (child_die = die->child; child_die && child_die->tag;
13990 child_die = sibling_die (child_die))
13991 {
13992 if (child_die->tag != DW_TAG_call_site_parameter
13993 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13994 {
13995 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13996 "DW_TAG_call_site child DIE %s [in module %s]"),
13997 child_die->tag, sect_offset_str (child_die->sect_off),
13998 objfile_name (objfile));
13999 continue;
14000 }
14001
14002 nparams++;
14003 }
14004
14005 call_site
14006 = ((struct call_site *)
14007 obstack_alloc (&objfile->objfile_obstack,
14008 sizeof (*call_site)
14009 + (sizeof (*call_site->parameter) * (nparams - 1))));
14010 *slot = call_site;
14011 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
14012 call_site->pc = pc;
14013
14014 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
14015 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
14016 {
14017 struct die_info *func_die;
14018
14019 /* Skip also over DW_TAG_inlined_subroutine. */
14020 for (func_die = die->parent;
14021 func_die && func_die->tag != DW_TAG_subprogram
14022 && func_die->tag != DW_TAG_subroutine_type;
14023 func_die = func_die->parent);
14024
14025 /* DW_AT_call_all_calls is a superset
14026 of DW_AT_call_all_tail_calls. */
14027 if (func_die
14028 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
14029 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
14030 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
14031 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
14032 {
14033 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
14034 not complete. But keep CALL_SITE for look ups via call_site_htab,
14035 both the initial caller containing the real return address PC and
14036 the final callee containing the current PC of a chain of tail
14037 calls do not need to have the tail call list complete. But any
14038 function candidate for a virtual tail call frame searched via
14039 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
14040 determined unambiguously. */
14041 }
14042 else
14043 {
14044 struct type *func_type = NULL;
14045
14046 if (func_die)
14047 func_type = get_die_type (func_die, cu);
14048 if (func_type != NULL)
14049 {
14050 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
14051
14052 /* Enlist this call site to the function. */
14053 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
14054 TYPE_TAIL_CALL_LIST (func_type) = call_site;
14055 }
14056 else
14057 complaint (_("Cannot find function owning DW_TAG_call_site "
14058 "DIE %s [in module %s]"),
14059 sect_offset_str (die->sect_off), objfile_name (objfile));
14060 }
14061 }
14062
14063 attr = dwarf2_attr (die, DW_AT_call_target, cu);
14064 if (attr == NULL)
14065 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
14066 if (attr == NULL)
14067 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
14068 if (attr == NULL)
14069 {
14070 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
14071 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14072 }
14073 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
14074 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
14075 /* Keep NULL DWARF_BLOCK. */;
14076 else if (attr_form_is_block (attr))
14077 {
14078 struct dwarf2_locexpr_baton *dlbaton;
14079
14080 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14081 dlbaton->data = DW_BLOCK (attr)->data;
14082 dlbaton->size = DW_BLOCK (attr)->size;
14083 dlbaton->per_cu = cu->per_cu;
14084
14085 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14086 }
14087 else if (attr_form_is_ref (attr))
14088 {
14089 struct dwarf2_cu *target_cu = cu;
14090 struct die_info *target_die;
14091
14092 target_die = follow_die_ref (die, attr, &target_cu);
14093 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14094 if (die_is_declaration (target_die, target_cu))
14095 {
14096 const char *target_physname;
14097
14098 /* Prefer the mangled name; otherwise compute the demangled one. */
14099 target_physname = dw2_linkage_name (target_die, target_cu);
14100 if (target_physname == NULL)
14101 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14102 if (target_physname == NULL)
14103 complaint (_("DW_AT_call_target target DIE has invalid "
14104 "physname, for referencing DIE %s [in module %s]"),
14105 sect_offset_str (die->sect_off), objfile_name (objfile));
14106 else
14107 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14108 }
14109 else
14110 {
14111 CORE_ADDR lowpc;
14112
14113 /* DW_AT_entry_pc should be preferred. */
14114 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14115 <= PC_BOUNDS_INVALID)
14116 complaint (_("DW_AT_call_target target DIE has invalid "
14117 "low pc, for referencing DIE %s [in module %s]"),
14118 sect_offset_str (die->sect_off), objfile_name (objfile));
14119 else
14120 {
14121 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14122 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14123 }
14124 }
14125 }
14126 else
14127 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
14128 "block nor reference, for DIE %s [in module %s]"),
14129 sect_offset_str (die->sect_off), objfile_name (objfile));
14130
14131 call_site->per_cu = cu->per_cu;
14132
14133 for (child_die = die->child;
14134 child_die && child_die->tag;
14135 child_die = sibling_die (child_die))
14136 {
14137 struct call_site_parameter *parameter;
14138 struct attribute *loc, *origin;
14139
14140 if (child_die->tag != DW_TAG_call_site_parameter
14141 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14142 {
14143 /* Already printed the complaint above. */
14144 continue;
14145 }
14146
14147 gdb_assert (call_site->parameter_count < nparams);
14148 parameter = &call_site->parameter[call_site->parameter_count];
14149
14150 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14151 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14152 register is contained in DW_AT_call_value. */
14153
14154 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14155 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14156 if (origin == NULL)
14157 {
14158 /* This was a pre-DWARF-5 GNU extension alias
14159 for DW_AT_call_parameter. */
14160 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14161 }
14162 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14163 {
14164 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14165
14166 sect_offset sect_off
14167 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14168 if (!offset_in_cu_p (&cu->header, sect_off))
14169 {
14170 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14171 binding can be done only inside one CU. Such referenced DIE
14172 therefore cannot be even moved to DW_TAG_partial_unit. */
14173 complaint (_("DW_AT_call_parameter offset is not in CU for "
14174 "DW_TAG_call_site child DIE %s [in module %s]"),
14175 sect_offset_str (child_die->sect_off),
14176 objfile_name (objfile));
14177 continue;
14178 }
14179 parameter->u.param_cu_off
14180 = (cu_offset) (sect_off - cu->header.sect_off);
14181 }
14182 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14183 {
14184 complaint (_("No DW_FORM_block* DW_AT_location for "
14185 "DW_TAG_call_site child DIE %s [in module %s]"),
14186 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14187 continue;
14188 }
14189 else
14190 {
14191 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14192 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14193 if (parameter->u.dwarf_reg != -1)
14194 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14195 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14196 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14197 &parameter->u.fb_offset))
14198 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14199 else
14200 {
14201 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14202 "for DW_FORM_block* DW_AT_location is supported for "
14203 "DW_TAG_call_site child DIE %s "
14204 "[in module %s]"),
14205 sect_offset_str (child_die->sect_off),
14206 objfile_name (objfile));
14207 continue;
14208 }
14209 }
14210
14211 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14212 if (attr == NULL)
14213 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14214 if (!attr_form_is_block (attr))
14215 {
14216 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14217 "DW_TAG_call_site child DIE %s [in module %s]"),
14218 sect_offset_str (child_die->sect_off),
14219 objfile_name (objfile));
14220 continue;
14221 }
14222 parameter->value = DW_BLOCK (attr)->data;
14223 parameter->value_size = DW_BLOCK (attr)->size;
14224
14225 /* Parameters are not pre-cleared by memset above. */
14226 parameter->data_value = NULL;
14227 parameter->data_value_size = 0;
14228 call_site->parameter_count++;
14229
14230 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14231 if (attr == NULL)
14232 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14233 if (attr)
14234 {
14235 if (!attr_form_is_block (attr))
14236 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14237 "DW_TAG_call_site child DIE %s [in module %s]"),
14238 sect_offset_str (child_die->sect_off),
14239 objfile_name (objfile));
14240 else
14241 {
14242 parameter->data_value = DW_BLOCK (attr)->data;
14243 parameter->data_value_size = DW_BLOCK (attr)->size;
14244 }
14245 }
14246 }
14247 }
14248
14249 /* Helper function for read_variable. If DIE represents a virtual
14250 table, then return the type of the concrete object that is
14251 associated with the virtual table. Otherwise, return NULL. */
14252
14253 static struct type *
14254 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14255 {
14256 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14257 if (attr == NULL)
14258 return NULL;
14259
14260 /* Find the type DIE. */
14261 struct die_info *type_die = NULL;
14262 struct dwarf2_cu *type_cu = cu;
14263
14264 if (attr_form_is_ref (attr))
14265 type_die = follow_die_ref (die, attr, &type_cu);
14266 if (type_die == NULL)
14267 return NULL;
14268
14269 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14270 return NULL;
14271 return die_containing_type (type_die, type_cu);
14272 }
14273
14274 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14275
14276 static void
14277 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14278 {
14279 struct rust_vtable_symbol *storage = NULL;
14280
14281 if (cu->language == language_rust)
14282 {
14283 struct type *containing_type = rust_containing_type (die, cu);
14284
14285 if (containing_type != NULL)
14286 {
14287 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14288
14289 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14290 struct rust_vtable_symbol);
14291 initialize_objfile_symbol (storage);
14292 storage->concrete_type = containing_type;
14293 storage->subclass = SYMBOL_RUST_VTABLE;
14294 }
14295 }
14296
14297 struct symbol *res = new_symbol (die, NULL, cu, storage);
14298 struct attribute *abstract_origin
14299 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14300 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
14301 if (res == NULL && loc && abstract_origin)
14302 {
14303 /* We have a variable without a name, but with a location and an abstract
14304 origin. This may be a concrete instance of an abstract variable
14305 referenced from an DW_OP_GNU_variable_value, so save it to find it back
14306 later. */
14307 struct dwarf2_cu *origin_cu = cu;
14308 struct die_info *origin_die
14309 = follow_die_ref (die, abstract_origin, &origin_cu);
14310 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
14311 dpo->abstract_to_concrete[origin_die].push_back (die);
14312 }
14313 }
14314
14315 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14316 reading .debug_rnglists.
14317 Callback's type should be:
14318 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14319 Return true if the attributes are present and valid, otherwise,
14320 return false. */
14321
14322 template <typename Callback>
14323 static bool
14324 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14325 Callback &&callback)
14326 {
14327 struct dwarf2_per_objfile *dwarf2_per_objfile
14328 = cu->per_cu->dwarf2_per_objfile;
14329 struct objfile *objfile = dwarf2_per_objfile->objfile;
14330 bfd *obfd = objfile->obfd;
14331 /* Base address selection entry. */
14332 CORE_ADDR base;
14333 int found_base;
14334 const gdb_byte *buffer;
14335 CORE_ADDR baseaddr;
14336 bool overflow = false;
14337
14338 found_base = cu->base_known;
14339 base = cu->base_address;
14340
14341 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14342 if (offset >= dwarf2_per_objfile->rnglists.size)
14343 {
14344 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14345 offset);
14346 return false;
14347 }
14348 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14349
14350 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14351
14352 while (1)
14353 {
14354 /* Initialize it due to a false compiler warning. */
14355 CORE_ADDR range_beginning = 0, range_end = 0;
14356 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14357 + dwarf2_per_objfile->rnglists.size);
14358 unsigned int bytes_read;
14359
14360 if (buffer == buf_end)
14361 {
14362 overflow = true;
14363 break;
14364 }
14365 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14366 switch (rlet)
14367 {
14368 case DW_RLE_end_of_list:
14369 break;
14370 case DW_RLE_base_address:
14371 if (buffer + cu->header.addr_size > buf_end)
14372 {
14373 overflow = true;
14374 break;
14375 }
14376 base = read_address (obfd, buffer, cu, &bytes_read);
14377 found_base = 1;
14378 buffer += bytes_read;
14379 break;
14380 case DW_RLE_start_length:
14381 if (buffer + cu->header.addr_size > buf_end)
14382 {
14383 overflow = true;
14384 break;
14385 }
14386 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14387 buffer += bytes_read;
14388 range_end = (range_beginning
14389 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14390 buffer += bytes_read;
14391 if (buffer > buf_end)
14392 {
14393 overflow = true;
14394 break;
14395 }
14396 break;
14397 case DW_RLE_offset_pair:
14398 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14399 buffer += bytes_read;
14400 if (buffer > buf_end)
14401 {
14402 overflow = true;
14403 break;
14404 }
14405 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14406 buffer += bytes_read;
14407 if (buffer > buf_end)
14408 {
14409 overflow = true;
14410 break;
14411 }
14412 break;
14413 case DW_RLE_start_end:
14414 if (buffer + 2 * cu->header.addr_size > buf_end)
14415 {
14416 overflow = true;
14417 break;
14418 }
14419 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14420 buffer += bytes_read;
14421 range_end = read_address (obfd, buffer, cu, &bytes_read);
14422 buffer += bytes_read;
14423 break;
14424 default:
14425 complaint (_("Invalid .debug_rnglists data (no base address)"));
14426 return false;
14427 }
14428 if (rlet == DW_RLE_end_of_list || overflow)
14429 break;
14430 if (rlet == DW_RLE_base_address)
14431 continue;
14432
14433 if (!found_base)
14434 {
14435 /* We have no valid base address for the ranges
14436 data. */
14437 complaint (_("Invalid .debug_rnglists data (no base address)"));
14438 return false;
14439 }
14440
14441 if (range_beginning > range_end)
14442 {
14443 /* Inverted range entries are invalid. */
14444 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14445 return false;
14446 }
14447
14448 /* Empty range entries have no effect. */
14449 if (range_beginning == range_end)
14450 continue;
14451
14452 range_beginning += base;
14453 range_end += base;
14454
14455 /* A not-uncommon case of bad debug info.
14456 Don't pollute the addrmap with bad data. */
14457 if (range_beginning + baseaddr == 0
14458 && !dwarf2_per_objfile->has_section_at_zero)
14459 {
14460 complaint (_(".debug_rnglists entry has start address of zero"
14461 " [in module %s]"), objfile_name (objfile));
14462 continue;
14463 }
14464
14465 callback (range_beginning, range_end);
14466 }
14467
14468 if (overflow)
14469 {
14470 complaint (_("Offset %d is not terminated "
14471 "for DW_AT_ranges attribute"),
14472 offset);
14473 return false;
14474 }
14475
14476 return true;
14477 }
14478
14479 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14480 Callback's type should be:
14481 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14482 Return 1 if the attributes are present and valid, otherwise, return 0. */
14483
14484 template <typename Callback>
14485 static int
14486 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14487 Callback &&callback)
14488 {
14489 struct dwarf2_per_objfile *dwarf2_per_objfile
14490 = cu->per_cu->dwarf2_per_objfile;
14491 struct objfile *objfile = dwarf2_per_objfile->objfile;
14492 struct comp_unit_head *cu_header = &cu->header;
14493 bfd *obfd = objfile->obfd;
14494 unsigned int addr_size = cu_header->addr_size;
14495 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14496 /* Base address selection entry. */
14497 CORE_ADDR base;
14498 int found_base;
14499 unsigned int dummy;
14500 const gdb_byte *buffer;
14501 CORE_ADDR baseaddr;
14502
14503 if (cu_header->version >= 5)
14504 return dwarf2_rnglists_process (offset, cu, callback);
14505
14506 found_base = cu->base_known;
14507 base = cu->base_address;
14508
14509 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14510 if (offset >= dwarf2_per_objfile->ranges.size)
14511 {
14512 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14513 offset);
14514 return 0;
14515 }
14516 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14517
14518 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14519
14520 while (1)
14521 {
14522 CORE_ADDR range_beginning, range_end;
14523
14524 range_beginning = read_address (obfd, buffer, cu, &dummy);
14525 buffer += addr_size;
14526 range_end = read_address (obfd, buffer, cu, &dummy);
14527 buffer += addr_size;
14528 offset += 2 * addr_size;
14529
14530 /* An end of list marker is a pair of zero addresses. */
14531 if (range_beginning == 0 && range_end == 0)
14532 /* Found the end of list entry. */
14533 break;
14534
14535 /* Each base address selection entry is a pair of 2 values.
14536 The first is the largest possible address, the second is
14537 the base address. Check for a base address here. */
14538 if ((range_beginning & mask) == mask)
14539 {
14540 /* If we found the largest possible address, then we already
14541 have the base address in range_end. */
14542 base = range_end;
14543 found_base = 1;
14544 continue;
14545 }
14546
14547 if (!found_base)
14548 {
14549 /* We have no valid base address for the ranges
14550 data. */
14551 complaint (_("Invalid .debug_ranges data (no base address)"));
14552 return 0;
14553 }
14554
14555 if (range_beginning > range_end)
14556 {
14557 /* Inverted range entries are invalid. */
14558 complaint (_("Invalid .debug_ranges data (inverted range)"));
14559 return 0;
14560 }
14561
14562 /* Empty range entries have no effect. */
14563 if (range_beginning == range_end)
14564 continue;
14565
14566 range_beginning += base;
14567 range_end += base;
14568
14569 /* A not-uncommon case of bad debug info.
14570 Don't pollute the addrmap with bad data. */
14571 if (range_beginning + baseaddr == 0
14572 && !dwarf2_per_objfile->has_section_at_zero)
14573 {
14574 complaint (_(".debug_ranges entry has start address of zero"
14575 " [in module %s]"), objfile_name (objfile));
14576 continue;
14577 }
14578
14579 callback (range_beginning, range_end);
14580 }
14581
14582 return 1;
14583 }
14584
14585 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14586 Return 1 if the attributes are present and valid, otherwise, return 0.
14587 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14588
14589 static int
14590 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14591 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14592 struct partial_symtab *ranges_pst)
14593 {
14594 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14595 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14596 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14597 SECT_OFF_TEXT (objfile));
14598 int low_set = 0;
14599 CORE_ADDR low = 0;
14600 CORE_ADDR high = 0;
14601 int retval;
14602
14603 retval = dwarf2_ranges_process (offset, cu,
14604 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14605 {
14606 if (ranges_pst != NULL)
14607 {
14608 CORE_ADDR lowpc;
14609 CORE_ADDR highpc;
14610
14611 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14612 range_beginning + baseaddr)
14613 - baseaddr);
14614 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14615 range_end + baseaddr)
14616 - baseaddr);
14617 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
14618 lowpc, highpc - 1, ranges_pst);
14619 }
14620
14621 /* FIXME: This is recording everything as a low-high
14622 segment of consecutive addresses. We should have a
14623 data structure for discontiguous block ranges
14624 instead. */
14625 if (! low_set)
14626 {
14627 low = range_beginning;
14628 high = range_end;
14629 low_set = 1;
14630 }
14631 else
14632 {
14633 if (range_beginning < low)
14634 low = range_beginning;
14635 if (range_end > high)
14636 high = range_end;
14637 }
14638 });
14639 if (!retval)
14640 return 0;
14641
14642 if (! low_set)
14643 /* If the first entry is an end-of-list marker, the range
14644 describes an empty scope, i.e. no instructions. */
14645 return 0;
14646
14647 if (low_return)
14648 *low_return = low;
14649 if (high_return)
14650 *high_return = high;
14651 return 1;
14652 }
14653
14654 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14655 definition for the return value. *LOWPC and *HIGHPC are set iff
14656 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14657
14658 static enum pc_bounds_kind
14659 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14660 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14661 struct partial_symtab *pst)
14662 {
14663 struct dwarf2_per_objfile *dwarf2_per_objfile
14664 = cu->per_cu->dwarf2_per_objfile;
14665 struct attribute *attr;
14666 struct attribute *attr_high;
14667 CORE_ADDR low = 0;
14668 CORE_ADDR high = 0;
14669 enum pc_bounds_kind ret;
14670
14671 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14672 if (attr_high)
14673 {
14674 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14675 if (attr)
14676 {
14677 low = attr_value_as_address (attr);
14678 high = attr_value_as_address (attr_high);
14679 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14680 high += low;
14681 }
14682 else
14683 /* Found high w/o low attribute. */
14684 return PC_BOUNDS_INVALID;
14685
14686 /* Found consecutive range of addresses. */
14687 ret = PC_BOUNDS_HIGH_LOW;
14688 }
14689 else
14690 {
14691 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14692 if (attr != NULL)
14693 {
14694 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14695 We take advantage of the fact that DW_AT_ranges does not appear
14696 in DW_TAG_compile_unit of DWO files. */
14697 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14698 unsigned int ranges_offset = (DW_UNSND (attr)
14699 + (need_ranges_base
14700 ? cu->ranges_base
14701 : 0));
14702
14703 /* Value of the DW_AT_ranges attribute is the offset in the
14704 .debug_ranges section. */
14705 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14706 return PC_BOUNDS_INVALID;
14707 /* Found discontinuous range of addresses. */
14708 ret = PC_BOUNDS_RANGES;
14709 }
14710 else
14711 return PC_BOUNDS_NOT_PRESENT;
14712 }
14713
14714 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14715 if (high <= low)
14716 return PC_BOUNDS_INVALID;
14717
14718 /* When using the GNU linker, .gnu.linkonce. sections are used to
14719 eliminate duplicate copies of functions and vtables and such.
14720 The linker will arbitrarily choose one and discard the others.
14721 The AT_*_pc values for such functions refer to local labels in
14722 these sections. If the section from that file was discarded, the
14723 labels are not in the output, so the relocs get a value of 0.
14724 If this is a discarded function, mark the pc bounds as invalid,
14725 so that GDB will ignore it. */
14726 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14727 return PC_BOUNDS_INVALID;
14728
14729 *lowpc = low;
14730 if (highpc)
14731 *highpc = high;
14732 return ret;
14733 }
14734
14735 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14736 its low and high PC addresses. Do nothing if these addresses could not
14737 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14738 and HIGHPC to the high address if greater than HIGHPC. */
14739
14740 static void
14741 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14742 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14743 struct dwarf2_cu *cu)
14744 {
14745 CORE_ADDR low, high;
14746 struct die_info *child = die->child;
14747
14748 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14749 {
14750 *lowpc = std::min (*lowpc, low);
14751 *highpc = std::max (*highpc, high);
14752 }
14753
14754 /* If the language does not allow nested subprograms (either inside
14755 subprograms or lexical blocks), we're done. */
14756 if (cu->language != language_ada)
14757 return;
14758
14759 /* Check all the children of the given DIE. If it contains nested
14760 subprograms, then check their pc bounds. Likewise, we need to
14761 check lexical blocks as well, as they may also contain subprogram
14762 definitions. */
14763 while (child && child->tag)
14764 {
14765 if (child->tag == DW_TAG_subprogram
14766 || child->tag == DW_TAG_lexical_block)
14767 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14768 child = sibling_die (child);
14769 }
14770 }
14771
14772 /* Get the low and high pc's represented by the scope DIE, and store
14773 them in *LOWPC and *HIGHPC. If the correct values can't be
14774 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14775
14776 static void
14777 get_scope_pc_bounds (struct die_info *die,
14778 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14779 struct dwarf2_cu *cu)
14780 {
14781 CORE_ADDR best_low = (CORE_ADDR) -1;
14782 CORE_ADDR best_high = (CORE_ADDR) 0;
14783 CORE_ADDR current_low, current_high;
14784
14785 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14786 >= PC_BOUNDS_RANGES)
14787 {
14788 best_low = current_low;
14789 best_high = current_high;
14790 }
14791 else
14792 {
14793 struct die_info *child = die->child;
14794
14795 while (child && child->tag)
14796 {
14797 switch (child->tag) {
14798 case DW_TAG_subprogram:
14799 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14800 break;
14801 case DW_TAG_namespace:
14802 case DW_TAG_module:
14803 /* FIXME: carlton/2004-01-16: Should we do this for
14804 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14805 that current GCC's always emit the DIEs corresponding
14806 to definitions of methods of classes as children of a
14807 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14808 the DIEs giving the declarations, which could be
14809 anywhere). But I don't see any reason why the
14810 standards says that they have to be there. */
14811 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14812
14813 if (current_low != ((CORE_ADDR) -1))
14814 {
14815 best_low = std::min (best_low, current_low);
14816 best_high = std::max (best_high, current_high);
14817 }
14818 break;
14819 default:
14820 /* Ignore. */
14821 break;
14822 }
14823
14824 child = sibling_die (child);
14825 }
14826 }
14827
14828 *lowpc = best_low;
14829 *highpc = best_high;
14830 }
14831
14832 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14833 in DIE. */
14834
14835 static void
14836 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14837 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14838 {
14839 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14840 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14841 struct attribute *attr;
14842 struct attribute *attr_high;
14843
14844 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14845 if (attr_high)
14846 {
14847 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14848 if (attr)
14849 {
14850 CORE_ADDR low = attr_value_as_address (attr);
14851 CORE_ADDR high = attr_value_as_address (attr_high);
14852
14853 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14854 high += low;
14855
14856 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14857 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14858 cu->get_builder ()->record_block_range (block, low, high - 1);
14859 }
14860 }
14861
14862 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14863 if (attr)
14864 {
14865 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14866 We take advantage of the fact that DW_AT_ranges does not appear
14867 in DW_TAG_compile_unit of DWO files. */
14868 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14869
14870 /* The value of the DW_AT_ranges attribute is the offset of the
14871 address range list in the .debug_ranges section. */
14872 unsigned long offset = (DW_UNSND (attr)
14873 + (need_ranges_base ? cu->ranges_base : 0));
14874
14875 std::vector<blockrange> blockvec;
14876 dwarf2_ranges_process (offset, cu,
14877 [&] (CORE_ADDR start, CORE_ADDR end)
14878 {
14879 start += baseaddr;
14880 end += baseaddr;
14881 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14882 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14883 cu->get_builder ()->record_block_range (block, start, end - 1);
14884 blockvec.emplace_back (start, end);
14885 });
14886
14887 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14888 }
14889 }
14890
14891 /* Check whether the producer field indicates either of GCC < 4.6, or the
14892 Intel C/C++ compiler, and cache the result in CU. */
14893
14894 static void
14895 check_producer (struct dwarf2_cu *cu)
14896 {
14897 int major, minor;
14898
14899 if (cu->producer == NULL)
14900 {
14901 /* For unknown compilers expect their behavior is DWARF version
14902 compliant.
14903
14904 GCC started to support .debug_types sections by -gdwarf-4 since
14905 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14906 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14907 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14908 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14909 }
14910 else if (producer_is_gcc (cu->producer, &major, &minor))
14911 {
14912 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14913 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14914 }
14915 else if (producer_is_icc (cu->producer, &major, &minor))
14916 {
14917 cu->producer_is_icc = true;
14918 cu->producer_is_icc_lt_14 = major < 14;
14919 }
14920 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14921 cu->producer_is_codewarrior = true;
14922 else
14923 {
14924 /* For other non-GCC compilers, expect their behavior is DWARF version
14925 compliant. */
14926 }
14927
14928 cu->checked_producer = true;
14929 }
14930
14931 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14932 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14933 during 4.6.0 experimental. */
14934
14935 static bool
14936 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14937 {
14938 if (!cu->checked_producer)
14939 check_producer (cu);
14940
14941 return cu->producer_is_gxx_lt_4_6;
14942 }
14943
14944
14945 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14946 with incorrect is_stmt attributes. */
14947
14948 static bool
14949 producer_is_codewarrior (struct dwarf2_cu *cu)
14950 {
14951 if (!cu->checked_producer)
14952 check_producer (cu);
14953
14954 return cu->producer_is_codewarrior;
14955 }
14956
14957 /* Return the default accessibility type if it is not overriden by
14958 DW_AT_accessibility. */
14959
14960 static enum dwarf_access_attribute
14961 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14962 {
14963 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14964 {
14965 /* The default DWARF 2 accessibility for members is public, the default
14966 accessibility for inheritance is private. */
14967
14968 if (die->tag != DW_TAG_inheritance)
14969 return DW_ACCESS_public;
14970 else
14971 return DW_ACCESS_private;
14972 }
14973 else
14974 {
14975 /* DWARF 3+ defines the default accessibility a different way. The same
14976 rules apply now for DW_TAG_inheritance as for the members and it only
14977 depends on the container kind. */
14978
14979 if (die->parent->tag == DW_TAG_class_type)
14980 return DW_ACCESS_private;
14981 else
14982 return DW_ACCESS_public;
14983 }
14984 }
14985
14986 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14987 offset. If the attribute was not found return 0, otherwise return
14988 1. If it was found but could not properly be handled, set *OFFSET
14989 to 0. */
14990
14991 static int
14992 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14993 LONGEST *offset)
14994 {
14995 struct attribute *attr;
14996
14997 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14998 if (attr != NULL)
14999 {
15000 *offset = 0;
15001
15002 /* Note that we do not check for a section offset first here.
15003 This is because DW_AT_data_member_location is new in DWARF 4,
15004 so if we see it, we can assume that a constant form is really
15005 a constant and not a section offset. */
15006 if (attr_form_is_constant (attr))
15007 *offset = dwarf2_get_attr_constant_value (attr, 0);
15008 else if (attr_form_is_section_offset (attr))
15009 dwarf2_complex_location_expr_complaint ();
15010 else if (attr_form_is_block (attr))
15011 *offset = decode_locdesc (DW_BLOCK (attr), cu);
15012 else
15013 dwarf2_complex_location_expr_complaint ();
15014
15015 return 1;
15016 }
15017
15018 return 0;
15019 }
15020
15021 /* Add an aggregate field to the field list. */
15022
15023 static void
15024 dwarf2_add_field (struct field_info *fip, struct die_info *die,
15025 struct dwarf2_cu *cu)
15026 {
15027 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15028 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15029 struct nextfield *new_field;
15030 struct attribute *attr;
15031 struct field *fp;
15032 const char *fieldname = "";
15033
15034 if (die->tag == DW_TAG_inheritance)
15035 {
15036 fip->baseclasses.emplace_back ();
15037 new_field = &fip->baseclasses.back ();
15038 }
15039 else
15040 {
15041 fip->fields.emplace_back ();
15042 new_field = &fip->fields.back ();
15043 }
15044
15045 fip->nfields++;
15046
15047 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15048 if (attr)
15049 new_field->accessibility = DW_UNSND (attr);
15050 else
15051 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
15052 if (new_field->accessibility != DW_ACCESS_public)
15053 fip->non_public_fields = 1;
15054
15055 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15056 if (attr)
15057 new_field->virtuality = DW_UNSND (attr);
15058 else
15059 new_field->virtuality = DW_VIRTUALITY_none;
15060
15061 fp = &new_field->field;
15062
15063 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
15064 {
15065 LONGEST offset;
15066
15067 /* Data member other than a C++ static data member. */
15068
15069 /* Get type of field. */
15070 fp->type = die_type (die, cu);
15071
15072 SET_FIELD_BITPOS (*fp, 0);
15073
15074 /* Get bit size of field (zero if none). */
15075 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
15076 if (attr)
15077 {
15078 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15079 }
15080 else
15081 {
15082 FIELD_BITSIZE (*fp) = 0;
15083 }
15084
15085 /* Get bit offset of field. */
15086 if (handle_data_member_location (die, cu, &offset))
15087 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15088 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15089 if (attr)
15090 {
15091 if (gdbarch_bits_big_endian (gdbarch))
15092 {
15093 /* For big endian bits, the DW_AT_bit_offset gives the
15094 additional bit offset from the MSB of the containing
15095 anonymous object to the MSB of the field. We don't
15096 have to do anything special since we don't need to
15097 know the size of the anonymous object. */
15098 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15099 }
15100 else
15101 {
15102 /* For little endian bits, compute the bit offset to the
15103 MSB of the anonymous object, subtract off the number of
15104 bits from the MSB of the field to the MSB of the
15105 object, and then subtract off the number of bits of
15106 the field itself. The result is the bit offset of
15107 the LSB of the field. */
15108 int anonymous_size;
15109 int bit_offset = DW_UNSND (attr);
15110
15111 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15112 if (attr)
15113 {
15114 /* The size of the anonymous object containing
15115 the bit field is explicit, so use the
15116 indicated size (in bytes). */
15117 anonymous_size = DW_UNSND (attr);
15118 }
15119 else
15120 {
15121 /* The size of the anonymous object containing
15122 the bit field must be inferred from the type
15123 attribute of the data member containing the
15124 bit field. */
15125 anonymous_size = TYPE_LENGTH (fp->type);
15126 }
15127 SET_FIELD_BITPOS (*fp,
15128 (FIELD_BITPOS (*fp)
15129 + anonymous_size * bits_per_byte
15130 - bit_offset - FIELD_BITSIZE (*fp)));
15131 }
15132 }
15133 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15134 if (attr != NULL)
15135 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15136 + dwarf2_get_attr_constant_value (attr, 0)));
15137
15138 /* Get name of field. */
15139 fieldname = dwarf2_name (die, cu);
15140 if (fieldname == NULL)
15141 fieldname = "";
15142
15143 /* The name is already allocated along with this objfile, so we don't
15144 need to duplicate it for the type. */
15145 fp->name = fieldname;
15146
15147 /* Change accessibility for artificial fields (e.g. virtual table
15148 pointer or virtual base class pointer) to private. */
15149 if (dwarf2_attr (die, DW_AT_artificial, cu))
15150 {
15151 FIELD_ARTIFICIAL (*fp) = 1;
15152 new_field->accessibility = DW_ACCESS_private;
15153 fip->non_public_fields = 1;
15154 }
15155 }
15156 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15157 {
15158 /* C++ static member. */
15159
15160 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15161 is a declaration, but all versions of G++ as of this writing
15162 (so through at least 3.2.1) incorrectly generate
15163 DW_TAG_variable tags. */
15164
15165 const char *physname;
15166
15167 /* Get name of field. */
15168 fieldname = dwarf2_name (die, cu);
15169 if (fieldname == NULL)
15170 return;
15171
15172 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15173 if (attr
15174 /* Only create a symbol if this is an external value.
15175 new_symbol checks this and puts the value in the global symbol
15176 table, which we want. If it is not external, new_symbol
15177 will try to put the value in cu->list_in_scope which is wrong. */
15178 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15179 {
15180 /* A static const member, not much different than an enum as far as
15181 we're concerned, except that we can support more types. */
15182 new_symbol (die, NULL, cu);
15183 }
15184
15185 /* Get physical name. */
15186 physname = dwarf2_physname (fieldname, die, cu);
15187
15188 /* The name is already allocated along with this objfile, so we don't
15189 need to duplicate it for the type. */
15190 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15191 FIELD_TYPE (*fp) = die_type (die, cu);
15192 FIELD_NAME (*fp) = fieldname;
15193 }
15194 else if (die->tag == DW_TAG_inheritance)
15195 {
15196 LONGEST offset;
15197
15198 /* C++ base class field. */
15199 if (handle_data_member_location (die, cu, &offset))
15200 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15201 FIELD_BITSIZE (*fp) = 0;
15202 FIELD_TYPE (*fp) = die_type (die, cu);
15203 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
15204 }
15205 else if (die->tag == DW_TAG_variant_part)
15206 {
15207 /* process_structure_scope will treat this DIE as a union. */
15208 process_structure_scope (die, cu);
15209
15210 /* The variant part is relative to the start of the enclosing
15211 structure. */
15212 SET_FIELD_BITPOS (*fp, 0);
15213 fp->type = get_die_type (die, cu);
15214 fp->artificial = 1;
15215 fp->name = "<<variant>>";
15216
15217 /* Normally a DW_TAG_variant_part won't have a size, but our
15218 representation requires one, so set it to the maximum of the
15219 child sizes. */
15220 if (TYPE_LENGTH (fp->type) == 0)
15221 {
15222 unsigned max = 0;
15223 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
15224 if (TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)) > max)
15225 max = TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i));
15226 TYPE_LENGTH (fp->type) = max;
15227 }
15228 }
15229 else
15230 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15231 }
15232
15233 /* Can the type given by DIE define another type? */
15234
15235 static bool
15236 type_can_define_types (const struct die_info *die)
15237 {
15238 switch (die->tag)
15239 {
15240 case DW_TAG_typedef:
15241 case DW_TAG_class_type:
15242 case DW_TAG_structure_type:
15243 case DW_TAG_union_type:
15244 case DW_TAG_enumeration_type:
15245 return true;
15246
15247 default:
15248 return false;
15249 }
15250 }
15251
15252 /* Add a type definition defined in the scope of the FIP's class. */
15253
15254 static void
15255 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15256 struct dwarf2_cu *cu)
15257 {
15258 struct decl_field fp;
15259 memset (&fp, 0, sizeof (fp));
15260
15261 gdb_assert (type_can_define_types (die));
15262
15263 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15264 fp.name = dwarf2_name (die, cu);
15265 fp.type = read_type_die (die, cu);
15266
15267 /* Save accessibility. */
15268 enum dwarf_access_attribute accessibility;
15269 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15270 if (attr != NULL)
15271 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15272 else
15273 accessibility = dwarf2_default_access_attribute (die, cu);
15274 switch (accessibility)
15275 {
15276 case DW_ACCESS_public:
15277 /* The assumed value if neither private nor protected. */
15278 break;
15279 case DW_ACCESS_private:
15280 fp.is_private = 1;
15281 break;
15282 case DW_ACCESS_protected:
15283 fp.is_protected = 1;
15284 break;
15285 default:
15286 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15287 }
15288
15289 if (die->tag == DW_TAG_typedef)
15290 fip->typedef_field_list.push_back (fp);
15291 else
15292 fip->nested_types_list.push_back (fp);
15293 }
15294
15295 /* Create the vector of fields, and attach it to the type. */
15296
15297 static void
15298 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15299 struct dwarf2_cu *cu)
15300 {
15301 int nfields = fip->nfields;
15302
15303 /* Record the field count, allocate space for the array of fields,
15304 and create blank accessibility bitfields if necessary. */
15305 TYPE_NFIELDS (type) = nfields;
15306 TYPE_FIELDS (type) = (struct field *)
15307 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15308
15309 if (fip->non_public_fields && cu->language != language_ada)
15310 {
15311 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15312
15313 TYPE_FIELD_PRIVATE_BITS (type) =
15314 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15315 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15316
15317 TYPE_FIELD_PROTECTED_BITS (type) =
15318 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15319 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15320
15321 TYPE_FIELD_IGNORE_BITS (type) =
15322 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15323 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15324 }
15325
15326 /* If the type has baseclasses, allocate and clear a bit vector for
15327 TYPE_FIELD_VIRTUAL_BITS. */
15328 if (!fip->baseclasses.empty () && cu->language != language_ada)
15329 {
15330 int num_bytes = B_BYTES (fip->baseclasses.size ());
15331 unsigned char *pointer;
15332
15333 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15334 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15335 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15336 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15337 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15338 }
15339
15340 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15341 {
15342 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15343
15344 for (int index = 0; index < nfields; ++index)
15345 {
15346 struct nextfield &field = fip->fields[index];
15347
15348 if (field.variant.is_discriminant)
15349 di->discriminant_index = index;
15350 else if (field.variant.default_branch)
15351 di->default_index = index;
15352 else
15353 di->discriminants[index] = field.variant.discriminant_value;
15354 }
15355 }
15356
15357 /* Copy the saved-up fields into the field vector. */
15358 for (int i = 0; i < nfields; ++i)
15359 {
15360 struct nextfield &field
15361 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15362 : fip->fields[i - fip->baseclasses.size ()]);
15363
15364 TYPE_FIELD (type, i) = field.field;
15365 switch (field.accessibility)
15366 {
15367 case DW_ACCESS_private:
15368 if (cu->language != language_ada)
15369 SET_TYPE_FIELD_PRIVATE (type, i);
15370 break;
15371
15372 case DW_ACCESS_protected:
15373 if (cu->language != language_ada)
15374 SET_TYPE_FIELD_PROTECTED (type, i);
15375 break;
15376
15377 case DW_ACCESS_public:
15378 break;
15379
15380 default:
15381 /* Unknown accessibility. Complain and treat it as public. */
15382 {
15383 complaint (_("unsupported accessibility %d"),
15384 field.accessibility);
15385 }
15386 break;
15387 }
15388 if (i < fip->baseclasses.size ())
15389 {
15390 switch (field.virtuality)
15391 {
15392 case DW_VIRTUALITY_virtual:
15393 case DW_VIRTUALITY_pure_virtual:
15394 if (cu->language == language_ada)
15395 error (_("unexpected virtuality in component of Ada type"));
15396 SET_TYPE_FIELD_VIRTUAL (type, i);
15397 break;
15398 }
15399 }
15400 }
15401 }
15402
15403 /* Return true if this member function is a constructor, false
15404 otherwise. */
15405
15406 static int
15407 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15408 {
15409 const char *fieldname;
15410 const char *type_name;
15411 int len;
15412
15413 if (die->parent == NULL)
15414 return 0;
15415
15416 if (die->parent->tag != DW_TAG_structure_type
15417 && die->parent->tag != DW_TAG_union_type
15418 && die->parent->tag != DW_TAG_class_type)
15419 return 0;
15420
15421 fieldname = dwarf2_name (die, cu);
15422 type_name = dwarf2_name (die->parent, cu);
15423 if (fieldname == NULL || type_name == NULL)
15424 return 0;
15425
15426 len = strlen (fieldname);
15427 return (strncmp (fieldname, type_name, len) == 0
15428 && (type_name[len] == '\0' || type_name[len] == '<'));
15429 }
15430
15431 /* Add a member function to the proper fieldlist. */
15432
15433 static void
15434 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15435 struct type *type, struct dwarf2_cu *cu)
15436 {
15437 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15438 struct attribute *attr;
15439 int i;
15440 struct fnfieldlist *flp = nullptr;
15441 struct fn_field *fnp;
15442 const char *fieldname;
15443 struct type *this_type;
15444 enum dwarf_access_attribute accessibility;
15445
15446 if (cu->language == language_ada)
15447 error (_("unexpected member function in Ada type"));
15448
15449 /* Get name of member function. */
15450 fieldname = dwarf2_name (die, cu);
15451 if (fieldname == NULL)
15452 return;
15453
15454 /* Look up member function name in fieldlist. */
15455 for (i = 0; i < fip->fnfieldlists.size (); i++)
15456 {
15457 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15458 {
15459 flp = &fip->fnfieldlists[i];
15460 break;
15461 }
15462 }
15463
15464 /* Create a new fnfieldlist if necessary. */
15465 if (flp == nullptr)
15466 {
15467 fip->fnfieldlists.emplace_back ();
15468 flp = &fip->fnfieldlists.back ();
15469 flp->name = fieldname;
15470 i = fip->fnfieldlists.size () - 1;
15471 }
15472
15473 /* Create a new member function field and add it to the vector of
15474 fnfieldlists. */
15475 flp->fnfields.emplace_back ();
15476 fnp = &flp->fnfields.back ();
15477
15478 /* Delay processing of the physname until later. */
15479 if (cu->language == language_cplus)
15480 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15481 die, cu);
15482 else
15483 {
15484 const char *physname = dwarf2_physname (fieldname, die, cu);
15485 fnp->physname = physname ? physname : "";
15486 }
15487
15488 fnp->type = alloc_type (objfile);
15489 this_type = read_type_die (die, cu);
15490 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15491 {
15492 int nparams = TYPE_NFIELDS (this_type);
15493
15494 /* TYPE is the domain of this method, and THIS_TYPE is the type
15495 of the method itself (TYPE_CODE_METHOD). */
15496 smash_to_method_type (fnp->type, type,
15497 TYPE_TARGET_TYPE (this_type),
15498 TYPE_FIELDS (this_type),
15499 TYPE_NFIELDS (this_type),
15500 TYPE_VARARGS (this_type));
15501
15502 /* Handle static member functions.
15503 Dwarf2 has no clean way to discern C++ static and non-static
15504 member functions. G++ helps GDB by marking the first
15505 parameter for non-static member functions (which is the this
15506 pointer) as artificial. We obtain this information from
15507 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15508 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15509 fnp->voffset = VOFFSET_STATIC;
15510 }
15511 else
15512 complaint (_("member function type missing for '%s'"),
15513 dwarf2_full_name (fieldname, die, cu));
15514
15515 /* Get fcontext from DW_AT_containing_type if present. */
15516 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15517 fnp->fcontext = die_containing_type (die, cu);
15518
15519 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15520 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15521
15522 /* Get accessibility. */
15523 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15524 if (attr)
15525 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15526 else
15527 accessibility = dwarf2_default_access_attribute (die, cu);
15528 switch (accessibility)
15529 {
15530 case DW_ACCESS_private:
15531 fnp->is_private = 1;
15532 break;
15533 case DW_ACCESS_protected:
15534 fnp->is_protected = 1;
15535 break;
15536 }
15537
15538 /* Check for artificial methods. */
15539 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15540 if (attr && DW_UNSND (attr) != 0)
15541 fnp->is_artificial = 1;
15542
15543 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15544
15545 /* Get index in virtual function table if it is a virtual member
15546 function. For older versions of GCC, this is an offset in the
15547 appropriate virtual table, as specified by DW_AT_containing_type.
15548 For everyone else, it is an expression to be evaluated relative
15549 to the object address. */
15550
15551 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15552 if (attr)
15553 {
15554 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15555 {
15556 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15557 {
15558 /* Old-style GCC. */
15559 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15560 }
15561 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15562 || (DW_BLOCK (attr)->size > 1
15563 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15564 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15565 {
15566 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15567 if ((fnp->voffset % cu->header.addr_size) != 0)
15568 dwarf2_complex_location_expr_complaint ();
15569 else
15570 fnp->voffset /= cu->header.addr_size;
15571 fnp->voffset += 2;
15572 }
15573 else
15574 dwarf2_complex_location_expr_complaint ();
15575
15576 if (!fnp->fcontext)
15577 {
15578 /* If there is no `this' field and no DW_AT_containing_type,
15579 we cannot actually find a base class context for the
15580 vtable! */
15581 if (TYPE_NFIELDS (this_type) == 0
15582 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15583 {
15584 complaint (_("cannot determine context for virtual member "
15585 "function \"%s\" (offset %s)"),
15586 fieldname, sect_offset_str (die->sect_off));
15587 }
15588 else
15589 {
15590 fnp->fcontext
15591 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15592 }
15593 }
15594 }
15595 else if (attr_form_is_section_offset (attr))
15596 {
15597 dwarf2_complex_location_expr_complaint ();
15598 }
15599 else
15600 {
15601 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15602 fieldname);
15603 }
15604 }
15605 else
15606 {
15607 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15608 if (attr && DW_UNSND (attr))
15609 {
15610 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15611 complaint (_("Member function \"%s\" (offset %s) is virtual "
15612 "but the vtable offset is not specified"),
15613 fieldname, sect_offset_str (die->sect_off));
15614 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15615 TYPE_CPLUS_DYNAMIC (type) = 1;
15616 }
15617 }
15618 }
15619
15620 /* Create the vector of member function fields, and attach it to the type. */
15621
15622 static void
15623 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15624 struct dwarf2_cu *cu)
15625 {
15626 if (cu->language == language_ada)
15627 error (_("unexpected member functions in Ada type"));
15628
15629 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15630 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15631 TYPE_ALLOC (type,
15632 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15633
15634 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15635 {
15636 struct fnfieldlist &nf = fip->fnfieldlists[i];
15637 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15638
15639 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15640 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15641 fn_flp->fn_fields = (struct fn_field *)
15642 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15643
15644 for (int k = 0; k < nf.fnfields.size (); ++k)
15645 fn_flp->fn_fields[k] = nf.fnfields[k];
15646 }
15647
15648 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15649 }
15650
15651 /* Returns non-zero if NAME is the name of a vtable member in CU's
15652 language, zero otherwise. */
15653 static int
15654 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15655 {
15656 static const char vptr[] = "_vptr";
15657
15658 /* Look for the C++ form of the vtable. */
15659 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15660 return 1;
15661
15662 return 0;
15663 }
15664
15665 /* GCC outputs unnamed structures that are really pointers to member
15666 functions, with the ABI-specified layout. If TYPE describes
15667 such a structure, smash it into a member function type.
15668
15669 GCC shouldn't do this; it should just output pointer to member DIEs.
15670 This is GCC PR debug/28767. */
15671
15672 static void
15673 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15674 {
15675 struct type *pfn_type, *self_type, *new_type;
15676
15677 /* Check for a structure with no name and two children. */
15678 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15679 return;
15680
15681 /* Check for __pfn and __delta members. */
15682 if (TYPE_FIELD_NAME (type, 0) == NULL
15683 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15684 || TYPE_FIELD_NAME (type, 1) == NULL
15685 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15686 return;
15687
15688 /* Find the type of the method. */
15689 pfn_type = TYPE_FIELD_TYPE (type, 0);
15690 if (pfn_type == NULL
15691 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15692 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15693 return;
15694
15695 /* Look for the "this" argument. */
15696 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15697 if (TYPE_NFIELDS (pfn_type) == 0
15698 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15699 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15700 return;
15701
15702 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15703 new_type = alloc_type (objfile);
15704 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15705 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15706 TYPE_VARARGS (pfn_type));
15707 smash_to_methodptr_type (type, new_type);
15708 }
15709
15710 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15711 appropriate error checking and issuing complaints if there is a
15712 problem. */
15713
15714 static ULONGEST
15715 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15716 {
15717 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15718
15719 if (attr == nullptr)
15720 return 0;
15721
15722 if (!attr_form_is_constant (attr))
15723 {
15724 complaint (_("DW_AT_alignment must have constant form"
15725 " - DIE at %s [in module %s]"),
15726 sect_offset_str (die->sect_off),
15727 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15728 return 0;
15729 }
15730
15731 ULONGEST align;
15732 if (attr->form == DW_FORM_sdata)
15733 {
15734 LONGEST val = DW_SND (attr);
15735 if (val < 0)
15736 {
15737 complaint (_("DW_AT_alignment value must not be negative"
15738 " - DIE at %s [in module %s]"),
15739 sect_offset_str (die->sect_off),
15740 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15741 return 0;
15742 }
15743 align = val;
15744 }
15745 else
15746 align = DW_UNSND (attr);
15747
15748 if (align == 0)
15749 {
15750 complaint (_("DW_AT_alignment value must not be zero"
15751 " - DIE at %s [in module %s]"),
15752 sect_offset_str (die->sect_off),
15753 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15754 return 0;
15755 }
15756 if ((align & (align - 1)) != 0)
15757 {
15758 complaint (_("DW_AT_alignment value must be a power of 2"
15759 " - DIE at %s [in module %s]"),
15760 sect_offset_str (die->sect_off),
15761 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15762 return 0;
15763 }
15764
15765 return align;
15766 }
15767
15768 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15769 the alignment for TYPE. */
15770
15771 static void
15772 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15773 struct type *type)
15774 {
15775 if (!set_type_align (type, get_alignment (cu, die)))
15776 complaint (_("DW_AT_alignment value too large"
15777 " - DIE at %s [in module %s]"),
15778 sect_offset_str (die->sect_off),
15779 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15780 }
15781
15782 /* Called when we find the DIE that starts a structure or union scope
15783 (definition) to create a type for the structure or union. Fill in
15784 the type's name and general properties; the members will not be
15785 processed until process_structure_scope. A symbol table entry for
15786 the type will also not be done until process_structure_scope (assuming
15787 the type has a name).
15788
15789 NOTE: we need to call these functions regardless of whether or not the
15790 DIE has a DW_AT_name attribute, since it might be an anonymous
15791 structure or union. This gets the type entered into our set of
15792 user defined types. */
15793
15794 static struct type *
15795 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15796 {
15797 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15798 struct type *type;
15799 struct attribute *attr;
15800 const char *name;
15801
15802 /* If the definition of this type lives in .debug_types, read that type.
15803 Don't follow DW_AT_specification though, that will take us back up
15804 the chain and we want to go down. */
15805 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15806 if (attr)
15807 {
15808 type = get_DW_AT_signature_type (die, attr, cu);
15809
15810 /* The type's CU may not be the same as CU.
15811 Ensure TYPE is recorded with CU in die_type_hash. */
15812 return set_die_type (die, type, cu);
15813 }
15814
15815 type = alloc_type (objfile);
15816 INIT_CPLUS_SPECIFIC (type);
15817
15818 name = dwarf2_name (die, cu);
15819 if (name != NULL)
15820 {
15821 if (cu->language == language_cplus
15822 || cu->language == language_d
15823 || cu->language == language_rust)
15824 {
15825 const char *full_name = dwarf2_full_name (name, die, cu);
15826
15827 /* dwarf2_full_name might have already finished building the DIE's
15828 type. If so, there is no need to continue. */
15829 if (get_die_type (die, cu) != NULL)
15830 return get_die_type (die, cu);
15831
15832 TYPE_NAME (type) = full_name;
15833 }
15834 else
15835 {
15836 /* The name is already allocated along with this objfile, so
15837 we don't need to duplicate it for the type. */
15838 TYPE_NAME (type) = name;
15839 }
15840 }
15841
15842 if (die->tag == DW_TAG_structure_type)
15843 {
15844 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15845 }
15846 else if (die->tag == DW_TAG_union_type)
15847 {
15848 TYPE_CODE (type) = TYPE_CODE_UNION;
15849 }
15850 else if (die->tag == DW_TAG_variant_part)
15851 {
15852 TYPE_CODE (type) = TYPE_CODE_UNION;
15853 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15854 }
15855 else
15856 {
15857 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15858 }
15859
15860 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15861 TYPE_DECLARED_CLASS (type) = 1;
15862
15863 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15864 if (attr)
15865 {
15866 if (attr_form_is_constant (attr))
15867 TYPE_LENGTH (type) = DW_UNSND (attr);
15868 else
15869 {
15870 /* For the moment, dynamic type sizes are not supported
15871 by GDB's struct type. The actual size is determined
15872 on-demand when resolving the type of a given object,
15873 so set the type's length to zero for now. Otherwise,
15874 we record an expression as the length, and that expression
15875 could lead to a very large value, which could eventually
15876 lead to us trying to allocate that much memory when creating
15877 a value of that type. */
15878 TYPE_LENGTH (type) = 0;
15879 }
15880 }
15881 else
15882 {
15883 TYPE_LENGTH (type) = 0;
15884 }
15885
15886 maybe_set_alignment (cu, die, type);
15887
15888 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15889 {
15890 /* ICC<14 does not output the required DW_AT_declaration on
15891 incomplete types, but gives them a size of zero. */
15892 TYPE_STUB (type) = 1;
15893 }
15894 else
15895 TYPE_STUB_SUPPORTED (type) = 1;
15896
15897 if (die_is_declaration (die, cu))
15898 TYPE_STUB (type) = 1;
15899 else if (attr == NULL && die->child == NULL
15900 && producer_is_realview (cu->producer))
15901 /* RealView does not output the required DW_AT_declaration
15902 on incomplete types. */
15903 TYPE_STUB (type) = 1;
15904
15905 /* We need to add the type field to the die immediately so we don't
15906 infinitely recurse when dealing with pointers to the structure
15907 type within the structure itself. */
15908 set_die_type (die, type, cu);
15909
15910 /* set_die_type should be already done. */
15911 set_descriptive_type (type, die, cu);
15912
15913 return type;
15914 }
15915
15916 /* A helper for process_structure_scope that handles a single member
15917 DIE. */
15918
15919 static void
15920 handle_struct_member_die (struct die_info *child_die, struct type *type,
15921 struct field_info *fi,
15922 std::vector<struct symbol *> *template_args,
15923 struct dwarf2_cu *cu)
15924 {
15925 if (child_die->tag == DW_TAG_member
15926 || child_die->tag == DW_TAG_variable
15927 || child_die->tag == DW_TAG_variant_part)
15928 {
15929 /* NOTE: carlton/2002-11-05: A C++ static data member
15930 should be a DW_TAG_member that is a declaration, but
15931 all versions of G++ as of this writing (so through at
15932 least 3.2.1) incorrectly generate DW_TAG_variable
15933 tags for them instead. */
15934 dwarf2_add_field (fi, child_die, cu);
15935 }
15936 else if (child_die->tag == DW_TAG_subprogram)
15937 {
15938 /* Rust doesn't have member functions in the C++ sense.
15939 However, it does emit ordinary functions as children
15940 of a struct DIE. */
15941 if (cu->language == language_rust)
15942 read_func_scope (child_die, cu);
15943 else
15944 {
15945 /* C++ member function. */
15946 dwarf2_add_member_fn (fi, child_die, type, cu);
15947 }
15948 }
15949 else if (child_die->tag == DW_TAG_inheritance)
15950 {
15951 /* C++ base class field. */
15952 dwarf2_add_field (fi, child_die, cu);
15953 }
15954 else if (type_can_define_types (child_die))
15955 dwarf2_add_type_defn (fi, child_die, cu);
15956 else if (child_die->tag == DW_TAG_template_type_param
15957 || child_die->tag == DW_TAG_template_value_param)
15958 {
15959 struct symbol *arg = new_symbol (child_die, NULL, cu);
15960
15961 if (arg != NULL)
15962 template_args->push_back (arg);
15963 }
15964 else if (child_die->tag == DW_TAG_variant)
15965 {
15966 /* In a variant we want to get the discriminant and also add a
15967 field for our sole member child. */
15968 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15969
15970 for (die_info *variant_child = child_die->child;
15971 variant_child != NULL;
15972 variant_child = sibling_die (variant_child))
15973 {
15974 if (variant_child->tag == DW_TAG_member)
15975 {
15976 handle_struct_member_die (variant_child, type, fi,
15977 template_args, cu);
15978 /* Only handle the one. */
15979 break;
15980 }
15981 }
15982
15983 /* We don't handle this but we might as well report it if we see
15984 it. */
15985 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15986 complaint (_("DW_AT_discr_list is not supported yet"
15987 " - DIE at %s [in module %s]"),
15988 sect_offset_str (child_die->sect_off),
15989 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15990
15991 /* The first field was just added, so we can stash the
15992 discriminant there. */
15993 gdb_assert (!fi->fields.empty ());
15994 if (discr == NULL)
15995 fi->fields.back ().variant.default_branch = true;
15996 else
15997 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15998 }
15999 }
16000
16001 /* Finish creating a structure or union type, including filling in
16002 its members and creating a symbol for it. */
16003
16004 static void
16005 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
16006 {
16007 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16008 struct die_info *child_die;
16009 struct type *type;
16010
16011 type = get_die_type (die, cu);
16012 if (type == NULL)
16013 type = read_structure_type (die, cu);
16014
16015 /* When reading a DW_TAG_variant_part, we need to notice when we
16016 read the discriminant member, so we can record it later in the
16017 discriminant_info. */
16018 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
16019 sect_offset discr_offset;
16020 bool has_template_parameters = false;
16021
16022 if (is_variant_part)
16023 {
16024 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
16025 if (discr == NULL)
16026 {
16027 /* Maybe it's a univariant form, an extension we support.
16028 In this case arrange not to check the offset. */
16029 is_variant_part = false;
16030 }
16031 else if (attr_form_is_ref (discr))
16032 {
16033 struct dwarf2_cu *target_cu = cu;
16034 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
16035
16036 discr_offset = target_die->sect_off;
16037 }
16038 else
16039 {
16040 complaint (_("DW_AT_discr does not have DIE reference form"
16041 " - DIE at %s [in module %s]"),
16042 sect_offset_str (die->sect_off),
16043 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16044 is_variant_part = false;
16045 }
16046 }
16047
16048 if (die->child != NULL && ! die_is_declaration (die, cu))
16049 {
16050 struct field_info fi;
16051 std::vector<struct symbol *> template_args;
16052
16053 child_die = die->child;
16054
16055 while (child_die && child_die->tag)
16056 {
16057 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
16058
16059 if (is_variant_part && discr_offset == child_die->sect_off)
16060 fi.fields.back ().variant.is_discriminant = true;
16061
16062 child_die = sibling_die (child_die);
16063 }
16064
16065 /* Attach template arguments to type. */
16066 if (!template_args.empty ())
16067 {
16068 has_template_parameters = true;
16069 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16070 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
16071 TYPE_TEMPLATE_ARGUMENTS (type)
16072 = XOBNEWVEC (&objfile->objfile_obstack,
16073 struct symbol *,
16074 TYPE_N_TEMPLATE_ARGUMENTS (type));
16075 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
16076 template_args.data (),
16077 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16078 * sizeof (struct symbol *)));
16079 }
16080
16081 /* Attach fields and member functions to the type. */
16082 if (fi.nfields)
16083 dwarf2_attach_fields_to_type (&fi, type, cu);
16084 if (!fi.fnfieldlists.empty ())
16085 {
16086 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
16087
16088 /* Get the type which refers to the base class (possibly this
16089 class itself) which contains the vtable pointer for the current
16090 class from the DW_AT_containing_type attribute. This use of
16091 DW_AT_containing_type is a GNU extension. */
16092
16093 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16094 {
16095 struct type *t = die_containing_type (die, cu);
16096
16097 set_type_vptr_basetype (type, t);
16098 if (type == t)
16099 {
16100 int i;
16101
16102 /* Our own class provides vtbl ptr. */
16103 for (i = TYPE_NFIELDS (t) - 1;
16104 i >= TYPE_N_BASECLASSES (t);
16105 --i)
16106 {
16107 const char *fieldname = TYPE_FIELD_NAME (t, i);
16108
16109 if (is_vtable_name (fieldname, cu))
16110 {
16111 set_type_vptr_fieldno (type, i);
16112 break;
16113 }
16114 }
16115
16116 /* Complain if virtual function table field not found. */
16117 if (i < TYPE_N_BASECLASSES (t))
16118 complaint (_("virtual function table pointer "
16119 "not found when defining class '%s'"),
16120 TYPE_NAME (type) ? TYPE_NAME (type) : "");
16121 }
16122 else
16123 {
16124 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16125 }
16126 }
16127 else if (cu->producer
16128 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16129 {
16130 /* The IBM XLC compiler does not provide direct indication
16131 of the containing type, but the vtable pointer is
16132 always named __vfp. */
16133
16134 int i;
16135
16136 for (i = TYPE_NFIELDS (type) - 1;
16137 i >= TYPE_N_BASECLASSES (type);
16138 --i)
16139 {
16140 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16141 {
16142 set_type_vptr_fieldno (type, i);
16143 set_type_vptr_basetype (type, type);
16144 break;
16145 }
16146 }
16147 }
16148 }
16149
16150 /* Copy fi.typedef_field_list linked list elements content into the
16151 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16152 if (!fi.typedef_field_list.empty ())
16153 {
16154 int count = fi.typedef_field_list.size ();
16155
16156 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16157 TYPE_TYPEDEF_FIELD_ARRAY (type)
16158 = ((struct decl_field *)
16159 TYPE_ALLOC (type,
16160 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16161 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16162
16163 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16164 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16165 }
16166
16167 /* Copy fi.nested_types_list linked list elements content into the
16168 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16169 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16170 {
16171 int count = fi.nested_types_list.size ();
16172
16173 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16174 TYPE_NESTED_TYPES_ARRAY (type)
16175 = ((struct decl_field *)
16176 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16177 TYPE_NESTED_TYPES_COUNT (type) = count;
16178
16179 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16180 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16181 }
16182 }
16183
16184 quirk_gcc_member_function_pointer (type, objfile);
16185 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16186 cu->rust_unions.push_back (type);
16187
16188 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16189 snapshots) has been known to create a die giving a declaration
16190 for a class that has, as a child, a die giving a definition for a
16191 nested class. So we have to process our children even if the
16192 current die is a declaration. Normally, of course, a declaration
16193 won't have any children at all. */
16194
16195 child_die = die->child;
16196
16197 while (child_die != NULL && child_die->tag)
16198 {
16199 if (child_die->tag == DW_TAG_member
16200 || child_die->tag == DW_TAG_variable
16201 || child_die->tag == DW_TAG_inheritance
16202 || child_die->tag == DW_TAG_template_value_param
16203 || child_die->tag == DW_TAG_template_type_param)
16204 {
16205 /* Do nothing. */
16206 }
16207 else
16208 process_die (child_die, cu);
16209
16210 child_die = sibling_die (child_die);
16211 }
16212
16213 /* Do not consider external references. According to the DWARF standard,
16214 these DIEs are identified by the fact that they have no byte_size
16215 attribute, and a declaration attribute. */
16216 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16217 || !die_is_declaration (die, cu))
16218 {
16219 struct symbol *sym = new_symbol (die, type, cu);
16220
16221 if (has_template_parameters)
16222 {
16223 struct symtab *symtab;
16224 if (sym != nullptr)
16225 symtab = symbol_symtab (sym);
16226 else if (cu->line_header != nullptr)
16227 {
16228 /* Any related symtab will do. */
16229 symtab
16230 = cu->line_header->file_name_at (file_name_index (1))->symtab;
16231 }
16232 else
16233 {
16234 symtab = nullptr;
16235 complaint (_("could not find suitable "
16236 "symtab for template parameter"
16237 " - DIE at %s [in module %s]"),
16238 sect_offset_str (die->sect_off),
16239 objfile_name (objfile));
16240 }
16241
16242 if (symtab != nullptr)
16243 {
16244 /* Make sure that the symtab is set on the new symbols.
16245 Even though they don't appear in this symtab directly,
16246 other parts of gdb assume that symbols do, and this is
16247 reasonably true. */
16248 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16249 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
16250 }
16251 }
16252 }
16253 }
16254
16255 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16256 update TYPE using some information only available in DIE's children. */
16257
16258 static void
16259 update_enumeration_type_from_children (struct die_info *die,
16260 struct type *type,
16261 struct dwarf2_cu *cu)
16262 {
16263 struct die_info *child_die;
16264 int unsigned_enum = 1;
16265 int flag_enum = 1;
16266 ULONGEST mask = 0;
16267
16268 auto_obstack obstack;
16269
16270 for (child_die = die->child;
16271 child_die != NULL && child_die->tag;
16272 child_die = sibling_die (child_die))
16273 {
16274 struct attribute *attr;
16275 LONGEST value;
16276 const gdb_byte *bytes;
16277 struct dwarf2_locexpr_baton *baton;
16278 const char *name;
16279
16280 if (child_die->tag != DW_TAG_enumerator)
16281 continue;
16282
16283 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16284 if (attr == NULL)
16285 continue;
16286
16287 name = dwarf2_name (child_die, cu);
16288 if (name == NULL)
16289 name = "<anonymous enumerator>";
16290
16291 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16292 &value, &bytes, &baton);
16293 if (value < 0)
16294 {
16295 unsigned_enum = 0;
16296 flag_enum = 0;
16297 }
16298 else if ((mask & value) != 0)
16299 flag_enum = 0;
16300 else
16301 mask |= value;
16302
16303 /* If we already know that the enum type is neither unsigned, nor
16304 a flag type, no need to look at the rest of the enumerates. */
16305 if (!unsigned_enum && !flag_enum)
16306 break;
16307 }
16308
16309 if (unsigned_enum)
16310 TYPE_UNSIGNED (type) = 1;
16311 if (flag_enum)
16312 TYPE_FLAG_ENUM (type) = 1;
16313 }
16314
16315 /* Given a DW_AT_enumeration_type die, set its type. We do not
16316 complete the type's fields yet, or create any symbols. */
16317
16318 static struct type *
16319 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16320 {
16321 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16322 struct type *type;
16323 struct attribute *attr;
16324 const char *name;
16325
16326 /* If the definition of this type lives in .debug_types, read that type.
16327 Don't follow DW_AT_specification though, that will take us back up
16328 the chain and we want to go down. */
16329 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16330 if (attr)
16331 {
16332 type = get_DW_AT_signature_type (die, attr, cu);
16333
16334 /* The type's CU may not be the same as CU.
16335 Ensure TYPE is recorded with CU in die_type_hash. */
16336 return set_die_type (die, type, cu);
16337 }
16338
16339 type = alloc_type (objfile);
16340
16341 TYPE_CODE (type) = TYPE_CODE_ENUM;
16342 name = dwarf2_full_name (NULL, die, cu);
16343 if (name != NULL)
16344 TYPE_NAME (type) = name;
16345
16346 attr = dwarf2_attr (die, DW_AT_type, cu);
16347 if (attr != NULL)
16348 {
16349 struct type *underlying_type = die_type (die, cu);
16350
16351 TYPE_TARGET_TYPE (type) = underlying_type;
16352 }
16353
16354 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16355 if (attr)
16356 {
16357 TYPE_LENGTH (type) = DW_UNSND (attr);
16358 }
16359 else
16360 {
16361 TYPE_LENGTH (type) = 0;
16362 }
16363
16364 maybe_set_alignment (cu, die, type);
16365
16366 /* The enumeration DIE can be incomplete. In Ada, any type can be
16367 declared as private in the package spec, and then defined only
16368 inside the package body. Such types are known as Taft Amendment
16369 Types. When another package uses such a type, an incomplete DIE
16370 may be generated by the compiler. */
16371 if (die_is_declaration (die, cu))
16372 TYPE_STUB (type) = 1;
16373
16374 /* Finish the creation of this type by using the enum's children.
16375 We must call this even when the underlying type has been provided
16376 so that we can determine if we're looking at a "flag" enum. */
16377 update_enumeration_type_from_children (die, type, cu);
16378
16379 /* If this type has an underlying type that is not a stub, then we
16380 may use its attributes. We always use the "unsigned" attribute
16381 in this situation, because ordinarily we guess whether the type
16382 is unsigned -- but the guess can be wrong and the underlying type
16383 can tell us the reality. However, we defer to a local size
16384 attribute if one exists, because this lets the compiler override
16385 the underlying type if needed. */
16386 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16387 {
16388 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16389 if (TYPE_LENGTH (type) == 0)
16390 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16391 if (TYPE_RAW_ALIGN (type) == 0
16392 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16393 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16394 }
16395
16396 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16397
16398 return set_die_type (die, type, cu);
16399 }
16400
16401 /* Given a pointer to a die which begins an enumeration, process all
16402 the dies that define the members of the enumeration, and create the
16403 symbol for the enumeration type.
16404
16405 NOTE: We reverse the order of the element list. */
16406
16407 static void
16408 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16409 {
16410 struct type *this_type;
16411
16412 this_type = get_die_type (die, cu);
16413 if (this_type == NULL)
16414 this_type = read_enumeration_type (die, cu);
16415
16416 if (die->child != NULL)
16417 {
16418 struct die_info *child_die;
16419 struct symbol *sym;
16420 struct field *fields = NULL;
16421 int num_fields = 0;
16422 const char *name;
16423
16424 child_die = die->child;
16425 while (child_die && child_die->tag)
16426 {
16427 if (child_die->tag != DW_TAG_enumerator)
16428 {
16429 process_die (child_die, cu);
16430 }
16431 else
16432 {
16433 name = dwarf2_name (child_die, cu);
16434 if (name)
16435 {
16436 sym = new_symbol (child_die, this_type, cu);
16437
16438 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16439 {
16440 fields = (struct field *)
16441 xrealloc (fields,
16442 (num_fields + DW_FIELD_ALLOC_CHUNK)
16443 * sizeof (struct field));
16444 }
16445
16446 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16447 FIELD_TYPE (fields[num_fields]) = NULL;
16448 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16449 FIELD_BITSIZE (fields[num_fields]) = 0;
16450
16451 num_fields++;
16452 }
16453 }
16454
16455 child_die = sibling_die (child_die);
16456 }
16457
16458 if (num_fields)
16459 {
16460 TYPE_NFIELDS (this_type) = num_fields;
16461 TYPE_FIELDS (this_type) = (struct field *)
16462 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16463 memcpy (TYPE_FIELDS (this_type), fields,
16464 sizeof (struct field) * num_fields);
16465 xfree (fields);
16466 }
16467 }
16468
16469 /* If we are reading an enum from a .debug_types unit, and the enum
16470 is a declaration, and the enum is not the signatured type in the
16471 unit, then we do not want to add a symbol for it. Adding a
16472 symbol would in some cases obscure the true definition of the
16473 enum, giving users an incomplete type when the definition is
16474 actually available. Note that we do not want to do this for all
16475 enums which are just declarations, because C++0x allows forward
16476 enum declarations. */
16477 if (cu->per_cu->is_debug_types
16478 && die_is_declaration (die, cu))
16479 {
16480 struct signatured_type *sig_type;
16481
16482 sig_type = (struct signatured_type *) cu->per_cu;
16483 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16484 if (sig_type->type_offset_in_section != die->sect_off)
16485 return;
16486 }
16487
16488 new_symbol (die, this_type, cu);
16489 }
16490
16491 /* Extract all information from a DW_TAG_array_type DIE and put it in
16492 the DIE's type field. For now, this only handles one dimensional
16493 arrays. */
16494
16495 static struct type *
16496 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16497 {
16498 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16499 struct die_info *child_die;
16500 struct type *type;
16501 struct type *element_type, *range_type, *index_type;
16502 struct attribute *attr;
16503 const char *name;
16504 struct dynamic_prop *byte_stride_prop = NULL;
16505 unsigned int bit_stride = 0;
16506
16507 element_type = die_type (die, cu);
16508
16509 /* The die_type call above may have already set the type for this DIE. */
16510 type = get_die_type (die, cu);
16511 if (type)
16512 return type;
16513
16514 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16515 if (attr != NULL)
16516 {
16517 int stride_ok;
16518
16519 byte_stride_prop
16520 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16521 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16522 if (!stride_ok)
16523 {
16524 complaint (_("unable to read array DW_AT_byte_stride "
16525 " - DIE at %s [in module %s]"),
16526 sect_offset_str (die->sect_off),
16527 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16528 /* Ignore this attribute. We will likely not be able to print
16529 arrays of this type correctly, but there is little we can do
16530 to help if we cannot read the attribute's value. */
16531 byte_stride_prop = NULL;
16532 }
16533 }
16534
16535 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16536 if (attr != NULL)
16537 bit_stride = DW_UNSND (attr);
16538
16539 /* Irix 6.2 native cc creates array types without children for
16540 arrays with unspecified length. */
16541 if (die->child == NULL)
16542 {
16543 index_type = objfile_type (objfile)->builtin_int;
16544 range_type = create_static_range_type (NULL, index_type, 0, -1);
16545 type = create_array_type_with_stride (NULL, element_type, range_type,
16546 byte_stride_prop, bit_stride);
16547 return set_die_type (die, type, cu);
16548 }
16549
16550 std::vector<struct type *> range_types;
16551 child_die = die->child;
16552 while (child_die && child_die->tag)
16553 {
16554 if (child_die->tag == DW_TAG_subrange_type)
16555 {
16556 struct type *child_type = read_type_die (child_die, cu);
16557
16558 if (child_type != NULL)
16559 {
16560 /* The range type was succesfully read. Save it for the
16561 array type creation. */
16562 range_types.push_back (child_type);
16563 }
16564 }
16565 child_die = sibling_die (child_die);
16566 }
16567
16568 /* Dwarf2 dimensions are output from left to right, create the
16569 necessary array types in backwards order. */
16570
16571 type = element_type;
16572
16573 if (read_array_order (die, cu) == DW_ORD_col_major)
16574 {
16575 int i = 0;
16576
16577 while (i < range_types.size ())
16578 type = create_array_type_with_stride (NULL, type, range_types[i++],
16579 byte_stride_prop, bit_stride);
16580 }
16581 else
16582 {
16583 size_t ndim = range_types.size ();
16584 while (ndim-- > 0)
16585 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16586 byte_stride_prop, bit_stride);
16587 }
16588
16589 /* Understand Dwarf2 support for vector types (like they occur on
16590 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16591 array type. This is not part of the Dwarf2/3 standard yet, but a
16592 custom vendor extension. The main difference between a regular
16593 array and the vector variant is that vectors are passed by value
16594 to functions. */
16595 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16596 if (attr)
16597 make_vector_type (type);
16598
16599 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16600 implementation may choose to implement triple vectors using this
16601 attribute. */
16602 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16603 if (attr)
16604 {
16605 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16606 TYPE_LENGTH (type) = DW_UNSND (attr);
16607 else
16608 complaint (_("DW_AT_byte_size for array type smaller "
16609 "than the total size of elements"));
16610 }
16611
16612 name = dwarf2_name (die, cu);
16613 if (name)
16614 TYPE_NAME (type) = name;
16615
16616 maybe_set_alignment (cu, die, type);
16617
16618 /* Install the type in the die. */
16619 set_die_type (die, type, cu);
16620
16621 /* set_die_type should be already done. */
16622 set_descriptive_type (type, die, cu);
16623
16624 return type;
16625 }
16626
16627 static enum dwarf_array_dim_ordering
16628 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16629 {
16630 struct attribute *attr;
16631
16632 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16633
16634 if (attr)
16635 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16636
16637 /* GNU F77 is a special case, as at 08/2004 array type info is the
16638 opposite order to the dwarf2 specification, but data is still
16639 laid out as per normal fortran.
16640
16641 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16642 version checking. */
16643
16644 if (cu->language == language_fortran
16645 && cu->producer && strstr (cu->producer, "GNU F77"))
16646 {
16647 return DW_ORD_row_major;
16648 }
16649
16650 switch (cu->language_defn->la_array_ordering)
16651 {
16652 case array_column_major:
16653 return DW_ORD_col_major;
16654 case array_row_major:
16655 default:
16656 return DW_ORD_row_major;
16657 };
16658 }
16659
16660 /* Extract all information from a DW_TAG_set_type DIE and put it in
16661 the DIE's type field. */
16662
16663 static struct type *
16664 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16665 {
16666 struct type *domain_type, *set_type;
16667 struct attribute *attr;
16668
16669 domain_type = die_type (die, cu);
16670
16671 /* The die_type call above may have already set the type for this DIE. */
16672 set_type = get_die_type (die, cu);
16673 if (set_type)
16674 return set_type;
16675
16676 set_type = create_set_type (NULL, domain_type);
16677
16678 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16679 if (attr)
16680 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16681
16682 maybe_set_alignment (cu, die, set_type);
16683
16684 return set_die_type (die, set_type, cu);
16685 }
16686
16687 /* A helper for read_common_block that creates a locexpr baton.
16688 SYM is the symbol which we are marking as computed.
16689 COMMON_DIE is the DIE for the common block.
16690 COMMON_LOC is the location expression attribute for the common
16691 block itself.
16692 MEMBER_LOC is the location expression attribute for the particular
16693 member of the common block that we are processing.
16694 CU is the CU from which the above come. */
16695
16696 static void
16697 mark_common_block_symbol_computed (struct symbol *sym,
16698 struct die_info *common_die,
16699 struct attribute *common_loc,
16700 struct attribute *member_loc,
16701 struct dwarf2_cu *cu)
16702 {
16703 struct dwarf2_per_objfile *dwarf2_per_objfile
16704 = cu->per_cu->dwarf2_per_objfile;
16705 struct objfile *objfile = dwarf2_per_objfile->objfile;
16706 struct dwarf2_locexpr_baton *baton;
16707 gdb_byte *ptr;
16708 unsigned int cu_off;
16709 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16710 LONGEST offset = 0;
16711
16712 gdb_assert (common_loc && member_loc);
16713 gdb_assert (attr_form_is_block (common_loc));
16714 gdb_assert (attr_form_is_block (member_loc)
16715 || attr_form_is_constant (member_loc));
16716
16717 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16718 baton->per_cu = cu->per_cu;
16719 gdb_assert (baton->per_cu);
16720
16721 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16722
16723 if (attr_form_is_constant (member_loc))
16724 {
16725 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16726 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16727 }
16728 else
16729 baton->size += DW_BLOCK (member_loc)->size;
16730
16731 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16732 baton->data = ptr;
16733
16734 *ptr++ = DW_OP_call4;
16735 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16736 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16737 ptr += 4;
16738
16739 if (attr_form_is_constant (member_loc))
16740 {
16741 *ptr++ = DW_OP_addr;
16742 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16743 ptr += cu->header.addr_size;
16744 }
16745 else
16746 {
16747 /* We have to copy the data here, because DW_OP_call4 will only
16748 use a DW_AT_location attribute. */
16749 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16750 ptr += DW_BLOCK (member_loc)->size;
16751 }
16752
16753 *ptr++ = DW_OP_plus;
16754 gdb_assert (ptr - baton->data == baton->size);
16755
16756 SYMBOL_LOCATION_BATON (sym) = baton;
16757 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16758 }
16759
16760 /* Create appropriate locally-scoped variables for all the
16761 DW_TAG_common_block entries. Also create a struct common_block
16762 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16763 is used to sepate the common blocks name namespace from regular
16764 variable names. */
16765
16766 static void
16767 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16768 {
16769 struct attribute *attr;
16770
16771 attr = dwarf2_attr (die, DW_AT_location, cu);
16772 if (attr)
16773 {
16774 /* Support the .debug_loc offsets. */
16775 if (attr_form_is_block (attr))
16776 {
16777 /* Ok. */
16778 }
16779 else if (attr_form_is_section_offset (attr))
16780 {
16781 dwarf2_complex_location_expr_complaint ();
16782 attr = NULL;
16783 }
16784 else
16785 {
16786 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16787 "common block member");
16788 attr = NULL;
16789 }
16790 }
16791
16792 if (die->child != NULL)
16793 {
16794 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16795 struct die_info *child_die;
16796 size_t n_entries = 0, size;
16797 struct common_block *common_block;
16798 struct symbol *sym;
16799
16800 for (child_die = die->child;
16801 child_die && child_die->tag;
16802 child_die = sibling_die (child_die))
16803 ++n_entries;
16804
16805 size = (sizeof (struct common_block)
16806 + (n_entries - 1) * sizeof (struct symbol *));
16807 common_block
16808 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16809 size);
16810 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16811 common_block->n_entries = 0;
16812
16813 for (child_die = die->child;
16814 child_die && child_die->tag;
16815 child_die = sibling_die (child_die))
16816 {
16817 /* Create the symbol in the DW_TAG_common_block block in the current
16818 symbol scope. */
16819 sym = new_symbol (child_die, NULL, cu);
16820 if (sym != NULL)
16821 {
16822 struct attribute *member_loc;
16823
16824 common_block->contents[common_block->n_entries++] = sym;
16825
16826 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16827 cu);
16828 if (member_loc)
16829 {
16830 /* GDB has handled this for a long time, but it is
16831 not specified by DWARF. It seems to have been
16832 emitted by gfortran at least as recently as:
16833 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16834 complaint (_("Variable in common block has "
16835 "DW_AT_data_member_location "
16836 "- DIE at %s [in module %s]"),
16837 sect_offset_str (child_die->sect_off),
16838 objfile_name (objfile));
16839
16840 if (attr_form_is_section_offset (member_loc))
16841 dwarf2_complex_location_expr_complaint ();
16842 else if (attr_form_is_constant (member_loc)
16843 || attr_form_is_block (member_loc))
16844 {
16845 if (attr)
16846 mark_common_block_symbol_computed (sym, die, attr,
16847 member_loc, cu);
16848 }
16849 else
16850 dwarf2_complex_location_expr_complaint ();
16851 }
16852 }
16853 }
16854
16855 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16856 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16857 }
16858 }
16859
16860 /* Create a type for a C++ namespace. */
16861
16862 static struct type *
16863 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16864 {
16865 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16866 const char *previous_prefix, *name;
16867 int is_anonymous;
16868 struct type *type;
16869
16870 /* For extensions, reuse the type of the original namespace. */
16871 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16872 {
16873 struct die_info *ext_die;
16874 struct dwarf2_cu *ext_cu = cu;
16875
16876 ext_die = dwarf2_extension (die, &ext_cu);
16877 type = read_type_die (ext_die, ext_cu);
16878
16879 /* EXT_CU may not be the same as CU.
16880 Ensure TYPE is recorded with CU in die_type_hash. */
16881 return set_die_type (die, type, cu);
16882 }
16883
16884 name = namespace_name (die, &is_anonymous, cu);
16885
16886 /* Now build the name of the current namespace. */
16887
16888 previous_prefix = determine_prefix (die, cu);
16889 if (previous_prefix[0] != '\0')
16890 name = typename_concat (&objfile->objfile_obstack,
16891 previous_prefix, name, 0, cu);
16892
16893 /* Create the type. */
16894 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16895
16896 return set_die_type (die, type, cu);
16897 }
16898
16899 /* Read a namespace scope. */
16900
16901 static void
16902 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16903 {
16904 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16905 int is_anonymous;
16906
16907 /* Add a symbol associated to this if we haven't seen the namespace
16908 before. Also, add a using directive if it's an anonymous
16909 namespace. */
16910
16911 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16912 {
16913 struct type *type;
16914
16915 type = read_type_die (die, cu);
16916 new_symbol (die, type, cu);
16917
16918 namespace_name (die, &is_anonymous, cu);
16919 if (is_anonymous)
16920 {
16921 const char *previous_prefix = determine_prefix (die, cu);
16922
16923 std::vector<const char *> excludes;
16924 add_using_directive (using_directives (cu),
16925 previous_prefix, TYPE_NAME (type), NULL,
16926 NULL, excludes, 0, &objfile->objfile_obstack);
16927 }
16928 }
16929
16930 if (die->child != NULL)
16931 {
16932 struct die_info *child_die = die->child;
16933
16934 while (child_die && child_die->tag)
16935 {
16936 process_die (child_die, cu);
16937 child_die = sibling_die (child_die);
16938 }
16939 }
16940 }
16941
16942 /* Read a Fortran module as type. This DIE can be only a declaration used for
16943 imported module. Still we need that type as local Fortran "use ... only"
16944 declaration imports depend on the created type in determine_prefix. */
16945
16946 static struct type *
16947 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16948 {
16949 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16950 const char *module_name;
16951 struct type *type;
16952
16953 module_name = dwarf2_name (die, cu);
16954 if (!module_name)
16955 complaint (_("DW_TAG_module has no name, offset %s"),
16956 sect_offset_str (die->sect_off));
16957 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16958
16959 return set_die_type (die, type, cu);
16960 }
16961
16962 /* Read a Fortran module. */
16963
16964 static void
16965 read_module (struct die_info *die, struct dwarf2_cu *cu)
16966 {
16967 struct die_info *child_die = die->child;
16968 struct type *type;
16969
16970 type = read_type_die (die, cu);
16971 new_symbol (die, type, cu);
16972
16973 while (child_die && child_die->tag)
16974 {
16975 process_die (child_die, cu);
16976 child_die = sibling_die (child_die);
16977 }
16978 }
16979
16980 /* Return the name of the namespace represented by DIE. Set
16981 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16982 namespace. */
16983
16984 static const char *
16985 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16986 {
16987 struct die_info *current_die;
16988 const char *name = NULL;
16989
16990 /* Loop through the extensions until we find a name. */
16991
16992 for (current_die = die;
16993 current_die != NULL;
16994 current_die = dwarf2_extension (die, &cu))
16995 {
16996 /* We don't use dwarf2_name here so that we can detect the absence
16997 of a name -> anonymous namespace. */
16998 name = dwarf2_string_attr (die, DW_AT_name, cu);
16999
17000 if (name != NULL)
17001 break;
17002 }
17003
17004 /* Is it an anonymous namespace? */
17005
17006 *is_anonymous = (name == NULL);
17007 if (*is_anonymous)
17008 name = CP_ANONYMOUS_NAMESPACE_STR;
17009
17010 return name;
17011 }
17012
17013 /* Extract all information from a DW_TAG_pointer_type DIE and add to
17014 the user defined type vector. */
17015
17016 static struct type *
17017 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
17018 {
17019 struct gdbarch *gdbarch
17020 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
17021 struct comp_unit_head *cu_header = &cu->header;
17022 struct type *type;
17023 struct attribute *attr_byte_size;
17024 struct attribute *attr_address_class;
17025 int byte_size, addr_class;
17026 struct type *target_type;
17027
17028 target_type = die_type (die, cu);
17029
17030 /* The die_type call above may have already set the type for this DIE. */
17031 type = get_die_type (die, cu);
17032 if (type)
17033 return type;
17034
17035 type = lookup_pointer_type (target_type);
17036
17037 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
17038 if (attr_byte_size)
17039 byte_size = DW_UNSND (attr_byte_size);
17040 else
17041 byte_size = cu_header->addr_size;
17042
17043 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
17044 if (attr_address_class)
17045 addr_class = DW_UNSND (attr_address_class);
17046 else
17047 addr_class = DW_ADDR_none;
17048
17049 ULONGEST alignment = get_alignment (cu, die);
17050
17051 /* If the pointer size, alignment, or address class is different
17052 than the default, create a type variant marked as such and set
17053 the length accordingly. */
17054 if (TYPE_LENGTH (type) != byte_size
17055 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
17056 && alignment != TYPE_RAW_ALIGN (type))
17057 || addr_class != DW_ADDR_none)
17058 {
17059 if (gdbarch_address_class_type_flags_p (gdbarch))
17060 {
17061 int type_flags;
17062
17063 type_flags = gdbarch_address_class_type_flags
17064 (gdbarch, byte_size, addr_class);
17065 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
17066 == 0);
17067 type = make_type_with_address_space (type, type_flags);
17068 }
17069 else if (TYPE_LENGTH (type) != byte_size)
17070 {
17071 complaint (_("invalid pointer size %d"), byte_size);
17072 }
17073 else if (TYPE_RAW_ALIGN (type) != alignment)
17074 {
17075 complaint (_("Invalid DW_AT_alignment"
17076 " - DIE at %s [in module %s]"),
17077 sect_offset_str (die->sect_off),
17078 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17079 }
17080 else
17081 {
17082 /* Should we also complain about unhandled address classes? */
17083 }
17084 }
17085
17086 TYPE_LENGTH (type) = byte_size;
17087 set_type_align (type, alignment);
17088 return set_die_type (die, type, cu);
17089 }
17090
17091 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17092 the user defined type vector. */
17093
17094 static struct type *
17095 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17096 {
17097 struct type *type;
17098 struct type *to_type;
17099 struct type *domain;
17100
17101 to_type = die_type (die, cu);
17102 domain = die_containing_type (die, cu);
17103
17104 /* The calls above may have already set the type for this DIE. */
17105 type = get_die_type (die, cu);
17106 if (type)
17107 return type;
17108
17109 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17110 type = lookup_methodptr_type (to_type);
17111 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17112 {
17113 struct type *new_type
17114 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
17115
17116 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17117 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17118 TYPE_VARARGS (to_type));
17119 type = lookup_methodptr_type (new_type);
17120 }
17121 else
17122 type = lookup_memberptr_type (to_type, domain);
17123
17124 return set_die_type (die, type, cu);
17125 }
17126
17127 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17128 the user defined type vector. */
17129
17130 static struct type *
17131 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17132 enum type_code refcode)
17133 {
17134 struct comp_unit_head *cu_header = &cu->header;
17135 struct type *type, *target_type;
17136 struct attribute *attr;
17137
17138 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17139
17140 target_type = die_type (die, cu);
17141
17142 /* The die_type call above may have already set the type for this DIE. */
17143 type = get_die_type (die, cu);
17144 if (type)
17145 return type;
17146
17147 type = lookup_reference_type (target_type, refcode);
17148 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17149 if (attr)
17150 {
17151 TYPE_LENGTH (type) = DW_UNSND (attr);
17152 }
17153 else
17154 {
17155 TYPE_LENGTH (type) = cu_header->addr_size;
17156 }
17157 maybe_set_alignment (cu, die, type);
17158 return set_die_type (die, type, cu);
17159 }
17160
17161 /* Add the given cv-qualifiers to the element type of the array. GCC
17162 outputs DWARF type qualifiers that apply to an array, not the
17163 element type. But GDB relies on the array element type to carry
17164 the cv-qualifiers. This mimics section 6.7.3 of the C99
17165 specification. */
17166
17167 static struct type *
17168 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17169 struct type *base_type, int cnst, int voltl)
17170 {
17171 struct type *el_type, *inner_array;
17172
17173 base_type = copy_type (base_type);
17174 inner_array = base_type;
17175
17176 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17177 {
17178 TYPE_TARGET_TYPE (inner_array) =
17179 copy_type (TYPE_TARGET_TYPE (inner_array));
17180 inner_array = TYPE_TARGET_TYPE (inner_array);
17181 }
17182
17183 el_type = TYPE_TARGET_TYPE (inner_array);
17184 cnst |= TYPE_CONST (el_type);
17185 voltl |= TYPE_VOLATILE (el_type);
17186 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17187
17188 return set_die_type (die, base_type, cu);
17189 }
17190
17191 static struct type *
17192 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17193 {
17194 struct type *base_type, *cv_type;
17195
17196 base_type = die_type (die, cu);
17197
17198 /* The die_type call above may have already set the type for this DIE. */
17199 cv_type = get_die_type (die, cu);
17200 if (cv_type)
17201 return cv_type;
17202
17203 /* In case the const qualifier is applied to an array type, the element type
17204 is so qualified, not the array type (section 6.7.3 of C99). */
17205 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17206 return add_array_cv_type (die, cu, base_type, 1, 0);
17207
17208 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17209 return set_die_type (die, cv_type, cu);
17210 }
17211
17212 static struct type *
17213 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17214 {
17215 struct type *base_type, *cv_type;
17216
17217 base_type = die_type (die, cu);
17218
17219 /* The die_type call above may have already set the type for this DIE. */
17220 cv_type = get_die_type (die, cu);
17221 if (cv_type)
17222 return cv_type;
17223
17224 /* In case the volatile qualifier is applied to an array type, the
17225 element type is so qualified, not the array type (section 6.7.3
17226 of C99). */
17227 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17228 return add_array_cv_type (die, cu, base_type, 0, 1);
17229
17230 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17231 return set_die_type (die, cv_type, cu);
17232 }
17233
17234 /* Handle DW_TAG_restrict_type. */
17235
17236 static struct type *
17237 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17238 {
17239 struct type *base_type, *cv_type;
17240
17241 base_type = die_type (die, cu);
17242
17243 /* The die_type call above may have already set the type for this DIE. */
17244 cv_type = get_die_type (die, cu);
17245 if (cv_type)
17246 return cv_type;
17247
17248 cv_type = make_restrict_type (base_type);
17249 return set_die_type (die, cv_type, cu);
17250 }
17251
17252 /* Handle DW_TAG_atomic_type. */
17253
17254 static struct type *
17255 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17256 {
17257 struct type *base_type, *cv_type;
17258
17259 base_type = die_type (die, cu);
17260
17261 /* The die_type call above may have already set the type for this DIE. */
17262 cv_type = get_die_type (die, cu);
17263 if (cv_type)
17264 return cv_type;
17265
17266 cv_type = make_atomic_type (base_type);
17267 return set_die_type (die, cv_type, cu);
17268 }
17269
17270 /* Extract all information from a DW_TAG_string_type DIE and add to
17271 the user defined type vector. It isn't really a user defined type,
17272 but it behaves like one, with other DIE's using an AT_user_def_type
17273 attribute to reference it. */
17274
17275 static struct type *
17276 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17277 {
17278 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17279 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17280 struct type *type, *range_type, *index_type, *char_type;
17281 struct attribute *attr;
17282 unsigned int length;
17283
17284 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17285 if (attr)
17286 {
17287 length = DW_UNSND (attr);
17288 }
17289 else
17290 {
17291 /* Check for the DW_AT_byte_size attribute. */
17292 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17293 if (attr)
17294 {
17295 length = DW_UNSND (attr);
17296 }
17297 else
17298 {
17299 length = 1;
17300 }
17301 }
17302
17303 index_type = objfile_type (objfile)->builtin_int;
17304 range_type = create_static_range_type (NULL, index_type, 1, length);
17305 char_type = language_string_char_type (cu->language_defn, gdbarch);
17306 type = create_string_type (NULL, char_type, range_type);
17307
17308 return set_die_type (die, type, cu);
17309 }
17310
17311 /* Assuming that DIE corresponds to a function, returns nonzero
17312 if the function is prototyped. */
17313
17314 static int
17315 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17316 {
17317 struct attribute *attr;
17318
17319 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17320 if (attr && (DW_UNSND (attr) != 0))
17321 return 1;
17322
17323 /* The DWARF standard implies that the DW_AT_prototyped attribute
17324 is only meaninful for C, but the concept also extends to other
17325 languages that allow unprototyped functions (Eg: Objective C).
17326 For all other languages, assume that functions are always
17327 prototyped. */
17328 if (cu->language != language_c
17329 && cu->language != language_objc
17330 && cu->language != language_opencl)
17331 return 1;
17332
17333 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17334 prototyped and unprototyped functions; default to prototyped,
17335 since that is more common in modern code (and RealView warns
17336 about unprototyped functions). */
17337 if (producer_is_realview (cu->producer))
17338 return 1;
17339
17340 return 0;
17341 }
17342
17343 /* Handle DIES due to C code like:
17344
17345 struct foo
17346 {
17347 int (*funcp)(int a, long l);
17348 int b;
17349 };
17350
17351 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17352
17353 static struct type *
17354 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17355 {
17356 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17357 struct type *type; /* Type that this function returns. */
17358 struct type *ftype; /* Function that returns above type. */
17359 struct attribute *attr;
17360
17361 type = die_type (die, cu);
17362
17363 /* The die_type call above may have already set the type for this DIE. */
17364 ftype = get_die_type (die, cu);
17365 if (ftype)
17366 return ftype;
17367
17368 ftype = lookup_function_type (type);
17369
17370 if (prototyped_function_p (die, cu))
17371 TYPE_PROTOTYPED (ftype) = 1;
17372
17373 /* Store the calling convention in the type if it's available in
17374 the subroutine die. Otherwise set the calling convention to
17375 the default value DW_CC_normal. */
17376 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17377 if (attr)
17378 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17379 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17380 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17381 else
17382 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17383
17384 /* Record whether the function returns normally to its caller or not
17385 if the DWARF producer set that information. */
17386 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17387 if (attr && (DW_UNSND (attr) != 0))
17388 TYPE_NO_RETURN (ftype) = 1;
17389
17390 /* We need to add the subroutine type to the die immediately so
17391 we don't infinitely recurse when dealing with parameters
17392 declared as the same subroutine type. */
17393 set_die_type (die, ftype, cu);
17394
17395 if (die->child != NULL)
17396 {
17397 struct type *void_type = objfile_type (objfile)->builtin_void;
17398 struct die_info *child_die;
17399 int nparams, iparams;
17400
17401 /* Count the number of parameters.
17402 FIXME: GDB currently ignores vararg functions, but knows about
17403 vararg member functions. */
17404 nparams = 0;
17405 child_die = die->child;
17406 while (child_die && child_die->tag)
17407 {
17408 if (child_die->tag == DW_TAG_formal_parameter)
17409 nparams++;
17410 else if (child_die->tag == DW_TAG_unspecified_parameters)
17411 TYPE_VARARGS (ftype) = 1;
17412 child_die = sibling_die (child_die);
17413 }
17414
17415 /* Allocate storage for parameters and fill them in. */
17416 TYPE_NFIELDS (ftype) = nparams;
17417 TYPE_FIELDS (ftype) = (struct field *)
17418 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17419
17420 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17421 even if we error out during the parameters reading below. */
17422 for (iparams = 0; iparams < nparams; iparams++)
17423 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17424
17425 iparams = 0;
17426 child_die = die->child;
17427 while (child_die && child_die->tag)
17428 {
17429 if (child_die->tag == DW_TAG_formal_parameter)
17430 {
17431 struct type *arg_type;
17432
17433 /* DWARF version 2 has no clean way to discern C++
17434 static and non-static member functions. G++ helps
17435 GDB by marking the first parameter for non-static
17436 member functions (which is the this pointer) as
17437 artificial. We pass this information to
17438 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17439
17440 DWARF version 3 added DW_AT_object_pointer, which GCC
17441 4.5 does not yet generate. */
17442 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17443 if (attr)
17444 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17445 else
17446 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17447 arg_type = die_type (child_die, cu);
17448
17449 /* RealView does not mark THIS as const, which the testsuite
17450 expects. GCC marks THIS as const in method definitions,
17451 but not in the class specifications (GCC PR 43053). */
17452 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17453 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17454 {
17455 int is_this = 0;
17456 struct dwarf2_cu *arg_cu = cu;
17457 const char *name = dwarf2_name (child_die, cu);
17458
17459 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17460 if (attr)
17461 {
17462 /* If the compiler emits this, use it. */
17463 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17464 is_this = 1;
17465 }
17466 else if (name && strcmp (name, "this") == 0)
17467 /* Function definitions will have the argument names. */
17468 is_this = 1;
17469 else if (name == NULL && iparams == 0)
17470 /* Declarations may not have the names, so like
17471 elsewhere in GDB, assume an artificial first
17472 argument is "this". */
17473 is_this = 1;
17474
17475 if (is_this)
17476 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17477 arg_type, 0);
17478 }
17479
17480 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17481 iparams++;
17482 }
17483 child_die = sibling_die (child_die);
17484 }
17485 }
17486
17487 return ftype;
17488 }
17489
17490 static struct type *
17491 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17492 {
17493 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17494 const char *name = NULL;
17495 struct type *this_type, *target_type;
17496
17497 name = dwarf2_full_name (NULL, die, cu);
17498 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17499 TYPE_TARGET_STUB (this_type) = 1;
17500 set_die_type (die, this_type, cu);
17501 target_type = die_type (die, cu);
17502 if (target_type != this_type)
17503 TYPE_TARGET_TYPE (this_type) = target_type;
17504 else
17505 {
17506 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17507 spec and cause infinite loops in GDB. */
17508 complaint (_("Self-referential DW_TAG_typedef "
17509 "- DIE at %s [in module %s]"),
17510 sect_offset_str (die->sect_off), objfile_name (objfile));
17511 TYPE_TARGET_TYPE (this_type) = NULL;
17512 }
17513 return this_type;
17514 }
17515
17516 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17517 (which may be different from NAME) to the architecture back-end to allow
17518 it to guess the correct format if necessary. */
17519
17520 static struct type *
17521 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17522 const char *name_hint)
17523 {
17524 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17525 const struct floatformat **format;
17526 struct type *type;
17527
17528 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17529 if (format)
17530 type = init_float_type (objfile, bits, name, format);
17531 else
17532 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17533
17534 return type;
17535 }
17536
17537 /* Allocate an integer type of size BITS and name NAME. */
17538
17539 static struct type *
17540 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17541 int bits, int unsigned_p, const char *name)
17542 {
17543 struct type *type;
17544
17545 /* Versions of Intel's C Compiler generate an integer type called "void"
17546 instead of using DW_TAG_unspecified_type. This has been seen on
17547 at least versions 14, 17, and 18. */
17548 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17549 && strcmp (name, "void") == 0)
17550 type = objfile_type (objfile)->builtin_void;
17551 else
17552 type = init_integer_type (objfile, bits, unsigned_p, name);
17553
17554 return type;
17555 }
17556
17557 /* Initialise and return a floating point type of size BITS suitable for
17558 use as a component of a complex number. The NAME_HINT is passed through
17559 when initialising the floating point type and is the name of the complex
17560 type.
17561
17562 As DWARF doesn't currently provide an explicit name for the components
17563 of a complex number, but it can be helpful to have these components
17564 named, we try to select a suitable name based on the size of the
17565 component. */
17566 static struct type *
17567 dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
17568 struct objfile *objfile,
17569 int bits, const char *name_hint)
17570 {
17571 gdbarch *gdbarch = get_objfile_arch (objfile);
17572 struct type *tt = nullptr;
17573
17574 /* Try to find a suitable floating point builtin type of size BITS.
17575 We're going to use the name of this type as the name for the complex
17576 target type that we are about to create. */
17577 switch (cu->language)
17578 {
17579 case language_fortran:
17580 switch (bits)
17581 {
17582 case 32:
17583 tt = builtin_f_type (gdbarch)->builtin_real;
17584 break;
17585 case 64:
17586 tt = builtin_f_type (gdbarch)->builtin_real_s8;
17587 break;
17588 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17589 case 128:
17590 tt = builtin_f_type (gdbarch)->builtin_real_s16;
17591 break;
17592 }
17593 break;
17594 default:
17595 switch (bits)
17596 {
17597 case 32:
17598 tt = builtin_type (gdbarch)->builtin_float;
17599 break;
17600 case 64:
17601 tt = builtin_type (gdbarch)->builtin_double;
17602 break;
17603 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17604 case 128:
17605 tt = builtin_type (gdbarch)->builtin_long_double;
17606 break;
17607 }
17608 break;
17609 }
17610
17611 /* If the type we found doesn't match the size we were looking for, then
17612 pretend we didn't find a type at all, the complex target type we
17613 create will then be nameless. */
17614 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
17615 tt = nullptr;
17616
17617 const char *name = (tt == nullptr) ? nullptr : TYPE_NAME (tt);
17618 return dwarf2_init_float_type (objfile, bits, name, name_hint);
17619 }
17620
17621 /* Find a representation of a given base type and install
17622 it in the TYPE field of the die. */
17623
17624 static struct type *
17625 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17626 {
17627 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17628 struct type *type;
17629 struct attribute *attr;
17630 int encoding = 0, bits = 0;
17631 const char *name;
17632
17633 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17634 if (attr)
17635 {
17636 encoding = DW_UNSND (attr);
17637 }
17638 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17639 if (attr)
17640 {
17641 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17642 }
17643 name = dwarf2_name (die, cu);
17644 if (!name)
17645 {
17646 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17647 }
17648
17649 switch (encoding)
17650 {
17651 case DW_ATE_address:
17652 /* Turn DW_ATE_address into a void * pointer. */
17653 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17654 type = init_pointer_type (objfile, bits, name, type);
17655 break;
17656 case DW_ATE_boolean:
17657 type = init_boolean_type (objfile, bits, 1, name);
17658 break;
17659 case DW_ATE_complex_float:
17660 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name);
17661 type = init_complex_type (objfile, name, type);
17662 break;
17663 case DW_ATE_decimal_float:
17664 type = init_decfloat_type (objfile, bits, name);
17665 break;
17666 case DW_ATE_float:
17667 type = dwarf2_init_float_type (objfile, bits, name, name);
17668 break;
17669 case DW_ATE_signed:
17670 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17671 break;
17672 case DW_ATE_unsigned:
17673 if (cu->language == language_fortran
17674 && name
17675 && startswith (name, "character("))
17676 type = init_character_type (objfile, bits, 1, name);
17677 else
17678 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17679 break;
17680 case DW_ATE_signed_char:
17681 if (cu->language == language_ada || cu->language == language_m2
17682 || cu->language == language_pascal
17683 || cu->language == language_fortran)
17684 type = init_character_type (objfile, bits, 0, name);
17685 else
17686 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17687 break;
17688 case DW_ATE_unsigned_char:
17689 if (cu->language == language_ada || cu->language == language_m2
17690 || cu->language == language_pascal
17691 || cu->language == language_fortran
17692 || cu->language == language_rust)
17693 type = init_character_type (objfile, bits, 1, name);
17694 else
17695 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17696 break;
17697 case DW_ATE_UTF:
17698 {
17699 gdbarch *arch = get_objfile_arch (objfile);
17700
17701 if (bits == 16)
17702 type = builtin_type (arch)->builtin_char16;
17703 else if (bits == 32)
17704 type = builtin_type (arch)->builtin_char32;
17705 else
17706 {
17707 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17708 bits);
17709 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17710 }
17711 return set_die_type (die, type, cu);
17712 }
17713 break;
17714
17715 default:
17716 complaint (_("unsupported DW_AT_encoding: '%s'"),
17717 dwarf_type_encoding_name (encoding));
17718 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17719 break;
17720 }
17721
17722 if (name && strcmp (name, "char") == 0)
17723 TYPE_NOSIGN (type) = 1;
17724
17725 maybe_set_alignment (cu, die, type);
17726
17727 return set_die_type (die, type, cu);
17728 }
17729
17730 /* Parse dwarf attribute if it's a block, reference or constant and put the
17731 resulting value of the attribute into struct bound_prop.
17732 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17733
17734 static int
17735 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17736 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17737 {
17738 struct dwarf2_property_baton *baton;
17739 struct obstack *obstack
17740 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17741
17742 if (attr == NULL || prop == NULL)
17743 return 0;
17744
17745 if (attr_form_is_block (attr))
17746 {
17747 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17748 baton->referenced_type = NULL;
17749 baton->locexpr.per_cu = cu->per_cu;
17750 baton->locexpr.size = DW_BLOCK (attr)->size;
17751 baton->locexpr.data = DW_BLOCK (attr)->data;
17752 prop->data.baton = baton;
17753 prop->kind = PROP_LOCEXPR;
17754 gdb_assert (prop->data.baton != NULL);
17755 }
17756 else if (attr_form_is_ref (attr))
17757 {
17758 struct dwarf2_cu *target_cu = cu;
17759 struct die_info *target_die;
17760 struct attribute *target_attr;
17761
17762 target_die = follow_die_ref (die, attr, &target_cu);
17763 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17764 if (target_attr == NULL)
17765 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17766 target_cu);
17767 if (target_attr == NULL)
17768 return 0;
17769
17770 switch (target_attr->name)
17771 {
17772 case DW_AT_location:
17773 if (attr_form_is_section_offset (target_attr))
17774 {
17775 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17776 baton->referenced_type = die_type (target_die, target_cu);
17777 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17778 prop->data.baton = baton;
17779 prop->kind = PROP_LOCLIST;
17780 gdb_assert (prop->data.baton != NULL);
17781 }
17782 else if (attr_form_is_block (target_attr))
17783 {
17784 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17785 baton->referenced_type = die_type (target_die, target_cu);
17786 baton->locexpr.per_cu = cu->per_cu;
17787 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17788 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17789 prop->data.baton = baton;
17790 prop->kind = PROP_LOCEXPR;
17791 gdb_assert (prop->data.baton != NULL);
17792 }
17793 else
17794 {
17795 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17796 "dynamic property");
17797 return 0;
17798 }
17799 break;
17800 case DW_AT_data_member_location:
17801 {
17802 LONGEST offset;
17803
17804 if (!handle_data_member_location (target_die, target_cu,
17805 &offset))
17806 return 0;
17807
17808 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17809 baton->referenced_type = read_type_die (target_die->parent,
17810 target_cu);
17811 baton->offset_info.offset = offset;
17812 baton->offset_info.type = die_type (target_die, target_cu);
17813 prop->data.baton = baton;
17814 prop->kind = PROP_ADDR_OFFSET;
17815 break;
17816 }
17817 }
17818 }
17819 else if (attr_form_is_constant (attr))
17820 {
17821 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17822 prop->kind = PROP_CONST;
17823 }
17824 else
17825 {
17826 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17827 dwarf2_name (die, cu));
17828 return 0;
17829 }
17830
17831 return 1;
17832 }
17833
17834 /* Read the given DW_AT_subrange DIE. */
17835
17836 static struct type *
17837 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17838 {
17839 struct type *base_type, *orig_base_type;
17840 struct type *range_type;
17841 struct attribute *attr;
17842 struct dynamic_prop low, high;
17843 int low_default_is_valid;
17844 int high_bound_is_count = 0;
17845 const char *name;
17846 ULONGEST negative_mask;
17847
17848 orig_base_type = die_type (die, cu);
17849 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17850 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17851 creating the range type, but we use the result of check_typedef
17852 when examining properties of the type. */
17853 base_type = check_typedef (orig_base_type);
17854
17855 /* The die_type call above may have already set the type for this DIE. */
17856 range_type = get_die_type (die, cu);
17857 if (range_type)
17858 return range_type;
17859
17860 low.kind = PROP_CONST;
17861 high.kind = PROP_CONST;
17862 high.data.const_val = 0;
17863
17864 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17865 omitting DW_AT_lower_bound. */
17866 switch (cu->language)
17867 {
17868 case language_c:
17869 case language_cplus:
17870 low.data.const_val = 0;
17871 low_default_is_valid = 1;
17872 break;
17873 case language_fortran:
17874 low.data.const_val = 1;
17875 low_default_is_valid = 1;
17876 break;
17877 case language_d:
17878 case language_objc:
17879 case language_rust:
17880 low.data.const_val = 0;
17881 low_default_is_valid = (cu->header.version >= 4);
17882 break;
17883 case language_ada:
17884 case language_m2:
17885 case language_pascal:
17886 low.data.const_val = 1;
17887 low_default_is_valid = (cu->header.version >= 4);
17888 break;
17889 default:
17890 low.data.const_val = 0;
17891 low_default_is_valid = 0;
17892 break;
17893 }
17894
17895 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17896 if (attr)
17897 attr_to_dynamic_prop (attr, die, cu, &low);
17898 else if (!low_default_is_valid)
17899 complaint (_("Missing DW_AT_lower_bound "
17900 "- DIE at %s [in module %s]"),
17901 sect_offset_str (die->sect_off),
17902 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17903
17904 struct attribute *attr_ub, *attr_count;
17905 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17906 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17907 {
17908 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17909 if (attr_to_dynamic_prop (attr, die, cu, &high))
17910 {
17911 /* If bounds are constant do the final calculation here. */
17912 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17913 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17914 else
17915 high_bound_is_count = 1;
17916 }
17917 else
17918 {
17919 if (attr_ub != NULL)
17920 complaint (_("Unresolved DW_AT_upper_bound "
17921 "- DIE at %s [in module %s]"),
17922 sect_offset_str (die->sect_off),
17923 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17924 if (attr_count != NULL)
17925 complaint (_("Unresolved DW_AT_count "
17926 "- DIE at %s [in module %s]"),
17927 sect_offset_str (die->sect_off),
17928 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17929 }
17930
17931 }
17932
17933 /* Dwarf-2 specifications explicitly allows to create subrange types
17934 without specifying a base type.
17935 In that case, the base type must be set to the type of
17936 the lower bound, upper bound or count, in that order, if any of these
17937 three attributes references an object that has a type.
17938 If no base type is found, the Dwarf-2 specifications say that
17939 a signed integer type of size equal to the size of an address should
17940 be used.
17941 For the following C code: `extern char gdb_int [];'
17942 GCC produces an empty range DIE.
17943 FIXME: muller/2010-05-28: Possible references to object for low bound,
17944 high bound or count are not yet handled by this code. */
17945 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17946 {
17947 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17948 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17949 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17950 struct type *int_type = objfile_type (objfile)->builtin_int;
17951
17952 /* Test "int", "long int", and "long long int" objfile types,
17953 and select the first one having a size above or equal to the
17954 architecture address size. */
17955 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17956 base_type = int_type;
17957 else
17958 {
17959 int_type = objfile_type (objfile)->builtin_long;
17960 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17961 base_type = int_type;
17962 else
17963 {
17964 int_type = objfile_type (objfile)->builtin_long_long;
17965 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17966 base_type = int_type;
17967 }
17968 }
17969 }
17970
17971 /* Normally, the DWARF producers are expected to use a signed
17972 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17973 But this is unfortunately not always the case, as witnessed
17974 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17975 is used instead. To work around that ambiguity, we treat
17976 the bounds as signed, and thus sign-extend their values, when
17977 the base type is signed. */
17978 negative_mask =
17979 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17980 if (low.kind == PROP_CONST
17981 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17982 low.data.const_val |= negative_mask;
17983 if (high.kind == PROP_CONST
17984 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17985 high.data.const_val |= negative_mask;
17986
17987 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17988
17989 if (high_bound_is_count)
17990 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17991
17992 /* Ada expects an empty array on no boundary attributes. */
17993 if (attr == NULL && cu->language != language_ada)
17994 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17995
17996 name = dwarf2_name (die, cu);
17997 if (name)
17998 TYPE_NAME (range_type) = name;
17999
18000 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
18001 if (attr)
18002 TYPE_LENGTH (range_type) = DW_UNSND (attr);
18003
18004 maybe_set_alignment (cu, die, range_type);
18005
18006 set_die_type (die, range_type, cu);
18007
18008 /* set_die_type should be already done. */
18009 set_descriptive_type (range_type, die, cu);
18010
18011 return range_type;
18012 }
18013
18014 static struct type *
18015 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
18016 {
18017 struct type *type;
18018
18019 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
18020 NULL);
18021 TYPE_NAME (type) = dwarf2_name (die, cu);
18022
18023 /* In Ada, an unspecified type is typically used when the description
18024 of the type is defered to a different unit. When encountering
18025 such a type, we treat it as a stub, and try to resolve it later on,
18026 when needed. */
18027 if (cu->language == language_ada)
18028 TYPE_STUB (type) = 1;
18029
18030 return set_die_type (die, type, cu);
18031 }
18032
18033 /* Read a single die and all its descendents. Set the die's sibling
18034 field to NULL; set other fields in the die correctly, and set all
18035 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
18036 location of the info_ptr after reading all of those dies. PARENT
18037 is the parent of the die in question. */
18038
18039 static struct die_info *
18040 read_die_and_children (const struct die_reader_specs *reader,
18041 const gdb_byte *info_ptr,
18042 const gdb_byte **new_info_ptr,
18043 struct die_info *parent)
18044 {
18045 struct die_info *die;
18046 const gdb_byte *cur_ptr;
18047 int has_children;
18048
18049 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
18050 if (die == NULL)
18051 {
18052 *new_info_ptr = cur_ptr;
18053 return NULL;
18054 }
18055 store_in_ref_table (die, reader->cu);
18056
18057 if (has_children)
18058 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
18059 else
18060 {
18061 die->child = NULL;
18062 *new_info_ptr = cur_ptr;
18063 }
18064
18065 die->sibling = NULL;
18066 die->parent = parent;
18067 return die;
18068 }
18069
18070 /* Read a die, all of its descendents, and all of its siblings; set
18071 all of the fields of all of the dies correctly. Arguments are as
18072 in read_die_and_children. */
18073
18074 static struct die_info *
18075 read_die_and_siblings_1 (const struct die_reader_specs *reader,
18076 const gdb_byte *info_ptr,
18077 const gdb_byte **new_info_ptr,
18078 struct die_info *parent)
18079 {
18080 struct die_info *first_die, *last_sibling;
18081 const gdb_byte *cur_ptr;
18082
18083 cur_ptr = info_ptr;
18084 first_die = last_sibling = NULL;
18085
18086 while (1)
18087 {
18088 struct die_info *die
18089 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
18090
18091 if (die == NULL)
18092 {
18093 *new_info_ptr = cur_ptr;
18094 return first_die;
18095 }
18096
18097 if (!first_die)
18098 first_die = die;
18099 else
18100 last_sibling->sibling = die;
18101
18102 last_sibling = die;
18103 }
18104 }
18105
18106 /* Read a die, all of its descendents, and all of its siblings; set
18107 all of the fields of all of the dies correctly. Arguments are as
18108 in read_die_and_children.
18109 This the main entry point for reading a DIE and all its children. */
18110
18111 static struct die_info *
18112 read_die_and_siblings (const struct die_reader_specs *reader,
18113 const gdb_byte *info_ptr,
18114 const gdb_byte **new_info_ptr,
18115 struct die_info *parent)
18116 {
18117 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
18118 new_info_ptr, parent);
18119
18120 if (dwarf_die_debug)
18121 {
18122 fprintf_unfiltered (gdb_stdlog,
18123 "Read die from %s@0x%x of %s:\n",
18124 get_section_name (reader->die_section),
18125 (unsigned) (info_ptr - reader->die_section->buffer),
18126 bfd_get_filename (reader->abfd));
18127 dump_die (die, dwarf_die_debug);
18128 }
18129
18130 return die;
18131 }
18132
18133 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18134 attributes.
18135 The caller is responsible for filling in the extra attributes
18136 and updating (*DIEP)->num_attrs.
18137 Set DIEP to point to a newly allocated die with its information,
18138 except for its child, sibling, and parent fields.
18139 Set HAS_CHILDREN to tell whether the die has children or not. */
18140
18141 static const gdb_byte *
18142 read_full_die_1 (const struct die_reader_specs *reader,
18143 struct die_info **diep, const gdb_byte *info_ptr,
18144 int *has_children, int num_extra_attrs)
18145 {
18146 unsigned int abbrev_number, bytes_read, i;
18147 struct abbrev_info *abbrev;
18148 struct die_info *die;
18149 struct dwarf2_cu *cu = reader->cu;
18150 bfd *abfd = reader->abfd;
18151
18152 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18153 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18154 info_ptr += bytes_read;
18155 if (!abbrev_number)
18156 {
18157 *diep = NULL;
18158 *has_children = 0;
18159 return info_ptr;
18160 }
18161
18162 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18163 if (!abbrev)
18164 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18165 abbrev_number,
18166 bfd_get_filename (abfd));
18167
18168 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18169 die->sect_off = sect_off;
18170 die->tag = abbrev->tag;
18171 die->abbrev = abbrev_number;
18172
18173 /* Make the result usable.
18174 The caller needs to update num_attrs after adding the extra
18175 attributes. */
18176 die->num_attrs = abbrev->num_attrs;
18177
18178 for (i = 0; i < abbrev->num_attrs; ++i)
18179 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18180 info_ptr);
18181
18182 *diep = die;
18183 *has_children = abbrev->has_children;
18184 return info_ptr;
18185 }
18186
18187 /* Read a die and all its attributes.
18188 Set DIEP to point to a newly allocated die with its information,
18189 except for its child, sibling, and parent fields.
18190 Set HAS_CHILDREN to tell whether the die has children or not. */
18191
18192 static const gdb_byte *
18193 read_full_die (const struct die_reader_specs *reader,
18194 struct die_info **diep, const gdb_byte *info_ptr,
18195 int *has_children)
18196 {
18197 const gdb_byte *result;
18198
18199 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18200
18201 if (dwarf_die_debug)
18202 {
18203 fprintf_unfiltered (gdb_stdlog,
18204 "Read die from %s@0x%x of %s:\n",
18205 get_section_name (reader->die_section),
18206 (unsigned) (info_ptr - reader->die_section->buffer),
18207 bfd_get_filename (reader->abfd));
18208 dump_die (*diep, dwarf_die_debug);
18209 }
18210
18211 return result;
18212 }
18213 \f
18214 /* Abbreviation tables.
18215
18216 In DWARF version 2, the description of the debugging information is
18217 stored in a separate .debug_abbrev section. Before we read any
18218 dies from a section we read in all abbreviations and install them
18219 in a hash table. */
18220
18221 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18222
18223 struct abbrev_info *
18224 abbrev_table::alloc_abbrev ()
18225 {
18226 struct abbrev_info *abbrev;
18227
18228 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18229 memset (abbrev, 0, sizeof (struct abbrev_info));
18230
18231 return abbrev;
18232 }
18233
18234 /* Add an abbreviation to the table. */
18235
18236 void
18237 abbrev_table::add_abbrev (unsigned int abbrev_number,
18238 struct abbrev_info *abbrev)
18239 {
18240 unsigned int hash_number;
18241
18242 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18243 abbrev->next = m_abbrevs[hash_number];
18244 m_abbrevs[hash_number] = abbrev;
18245 }
18246
18247 /* Look up an abbrev in the table.
18248 Returns NULL if the abbrev is not found. */
18249
18250 struct abbrev_info *
18251 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18252 {
18253 unsigned int hash_number;
18254 struct abbrev_info *abbrev;
18255
18256 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18257 abbrev = m_abbrevs[hash_number];
18258
18259 while (abbrev)
18260 {
18261 if (abbrev->number == abbrev_number)
18262 return abbrev;
18263 abbrev = abbrev->next;
18264 }
18265 return NULL;
18266 }
18267
18268 /* Read in an abbrev table. */
18269
18270 static abbrev_table_up
18271 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18272 struct dwarf2_section_info *section,
18273 sect_offset sect_off)
18274 {
18275 struct objfile *objfile = dwarf2_per_objfile->objfile;
18276 bfd *abfd = get_section_bfd_owner (section);
18277 const gdb_byte *abbrev_ptr;
18278 struct abbrev_info *cur_abbrev;
18279 unsigned int abbrev_number, bytes_read, abbrev_name;
18280 unsigned int abbrev_form;
18281 struct attr_abbrev *cur_attrs;
18282 unsigned int allocated_attrs;
18283
18284 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18285
18286 dwarf2_read_section (objfile, section);
18287 abbrev_ptr = section->buffer + to_underlying (sect_off);
18288 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18289 abbrev_ptr += bytes_read;
18290
18291 allocated_attrs = ATTR_ALLOC_CHUNK;
18292 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18293
18294 /* Loop until we reach an abbrev number of 0. */
18295 while (abbrev_number)
18296 {
18297 cur_abbrev = abbrev_table->alloc_abbrev ();
18298
18299 /* read in abbrev header */
18300 cur_abbrev->number = abbrev_number;
18301 cur_abbrev->tag
18302 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18303 abbrev_ptr += bytes_read;
18304 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18305 abbrev_ptr += 1;
18306
18307 /* now read in declarations */
18308 for (;;)
18309 {
18310 LONGEST implicit_const;
18311
18312 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18313 abbrev_ptr += bytes_read;
18314 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18315 abbrev_ptr += bytes_read;
18316 if (abbrev_form == DW_FORM_implicit_const)
18317 {
18318 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18319 &bytes_read);
18320 abbrev_ptr += bytes_read;
18321 }
18322 else
18323 {
18324 /* Initialize it due to a false compiler warning. */
18325 implicit_const = -1;
18326 }
18327
18328 if (abbrev_name == 0)
18329 break;
18330
18331 if (cur_abbrev->num_attrs == allocated_attrs)
18332 {
18333 allocated_attrs += ATTR_ALLOC_CHUNK;
18334 cur_attrs
18335 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18336 }
18337
18338 cur_attrs[cur_abbrev->num_attrs].name
18339 = (enum dwarf_attribute) abbrev_name;
18340 cur_attrs[cur_abbrev->num_attrs].form
18341 = (enum dwarf_form) abbrev_form;
18342 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18343 ++cur_abbrev->num_attrs;
18344 }
18345
18346 cur_abbrev->attrs =
18347 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18348 cur_abbrev->num_attrs);
18349 memcpy (cur_abbrev->attrs, cur_attrs,
18350 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18351
18352 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18353
18354 /* Get next abbreviation.
18355 Under Irix6 the abbreviations for a compilation unit are not
18356 always properly terminated with an abbrev number of 0.
18357 Exit loop if we encounter an abbreviation which we have
18358 already read (which means we are about to read the abbreviations
18359 for the next compile unit) or if the end of the abbreviation
18360 table is reached. */
18361 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18362 break;
18363 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18364 abbrev_ptr += bytes_read;
18365 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18366 break;
18367 }
18368
18369 xfree (cur_attrs);
18370 return abbrev_table;
18371 }
18372
18373 /* Returns nonzero if TAG represents a type that we might generate a partial
18374 symbol for. */
18375
18376 static int
18377 is_type_tag_for_partial (int tag)
18378 {
18379 switch (tag)
18380 {
18381 #if 0
18382 /* Some types that would be reasonable to generate partial symbols for,
18383 that we don't at present. */
18384 case DW_TAG_array_type:
18385 case DW_TAG_file_type:
18386 case DW_TAG_ptr_to_member_type:
18387 case DW_TAG_set_type:
18388 case DW_TAG_string_type:
18389 case DW_TAG_subroutine_type:
18390 #endif
18391 case DW_TAG_base_type:
18392 case DW_TAG_class_type:
18393 case DW_TAG_interface_type:
18394 case DW_TAG_enumeration_type:
18395 case DW_TAG_structure_type:
18396 case DW_TAG_subrange_type:
18397 case DW_TAG_typedef:
18398 case DW_TAG_union_type:
18399 return 1;
18400 default:
18401 return 0;
18402 }
18403 }
18404
18405 /* Load all DIEs that are interesting for partial symbols into memory. */
18406
18407 static struct partial_die_info *
18408 load_partial_dies (const struct die_reader_specs *reader,
18409 const gdb_byte *info_ptr, int building_psymtab)
18410 {
18411 struct dwarf2_cu *cu = reader->cu;
18412 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18413 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18414 unsigned int bytes_read;
18415 unsigned int load_all = 0;
18416 int nesting_level = 1;
18417
18418 parent_die = NULL;
18419 last_die = NULL;
18420
18421 gdb_assert (cu->per_cu != NULL);
18422 if (cu->per_cu->load_all_dies)
18423 load_all = 1;
18424
18425 cu->partial_dies
18426 = htab_create_alloc_ex (cu->header.length / 12,
18427 partial_die_hash,
18428 partial_die_eq,
18429 NULL,
18430 &cu->comp_unit_obstack,
18431 hashtab_obstack_allocate,
18432 dummy_obstack_deallocate);
18433
18434 while (1)
18435 {
18436 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18437
18438 /* A NULL abbrev means the end of a series of children. */
18439 if (abbrev == NULL)
18440 {
18441 if (--nesting_level == 0)
18442 return first_die;
18443
18444 info_ptr += bytes_read;
18445 last_die = parent_die;
18446 parent_die = parent_die->die_parent;
18447 continue;
18448 }
18449
18450 /* Check for template arguments. We never save these; if
18451 they're seen, we just mark the parent, and go on our way. */
18452 if (parent_die != NULL
18453 && cu->language == language_cplus
18454 && (abbrev->tag == DW_TAG_template_type_param
18455 || abbrev->tag == DW_TAG_template_value_param))
18456 {
18457 parent_die->has_template_arguments = 1;
18458
18459 if (!load_all)
18460 {
18461 /* We don't need a partial DIE for the template argument. */
18462 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18463 continue;
18464 }
18465 }
18466
18467 /* We only recurse into c++ subprograms looking for template arguments.
18468 Skip their other children. */
18469 if (!load_all
18470 && cu->language == language_cplus
18471 && parent_die != NULL
18472 && parent_die->tag == DW_TAG_subprogram)
18473 {
18474 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18475 continue;
18476 }
18477
18478 /* Check whether this DIE is interesting enough to save. Normally
18479 we would not be interested in members here, but there may be
18480 later variables referencing them via DW_AT_specification (for
18481 static members). */
18482 if (!load_all
18483 && !is_type_tag_for_partial (abbrev->tag)
18484 && abbrev->tag != DW_TAG_constant
18485 && abbrev->tag != DW_TAG_enumerator
18486 && abbrev->tag != DW_TAG_subprogram
18487 && abbrev->tag != DW_TAG_inlined_subroutine
18488 && abbrev->tag != DW_TAG_lexical_block
18489 && abbrev->tag != DW_TAG_variable
18490 && abbrev->tag != DW_TAG_namespace
18491 && abbrev->tag != DW_TAG_module
18492 && abbrev->tag != DW_TAG_member
18493 && abbrev->tag != DW_TAG_imported_unit
18494 && abbrev->tag != DW_TAG_imported_declaration)
18495 {
18496 /* Otherwise we skip to the next sibling, if any. */
18497 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18498 continue;
18499 }
18500
18501 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18502 abbrev);
18503
18504 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18505
18506 /* This two-pass algorithm for processing partial symbols has a
18507 high cost in cache pressure. Thus, handle some simple cases
18508 here which cover the majority of C partial symbols. DIEs
18509 which neither have specification tags in them, nor could have
18510 specification tags elsewhere pointing at them, can simply be
18511 processed and discarded.
18512
18513 This segment is also optional; scan_partial_symbols and
18514 add_partial_symbol will handle these DIEs if we chain
18515 them in normally. When compilers which do not emit large
18516 quantities of duplicate debug information are more common,
18517 this code can probably be removed. */
18518
18519 /* Any complete simple types at the top level (pretty much all
18520 of them, for a language without namespaces), can be processed
18521 directly. */
18522 if (parent_die == NULL
18523 && pdi.has_specification == 0
18524 && pdi.is_declaration == 0
18525 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18526 || pdi.tag == DW_TAG_base_type
18527 || pdi.tag == DW_TAG_subrange_type))
18528 {
18529 if (building_psymtab && pdi.name != NULL)
18530 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18531 VAR_DOMAIN, LOC_TYPEDEF, -1,
18532 psymbol_placement::STATIC,
18533 0, cu->language, objfile);
18534 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18535 continue;
18536 }
18537
18538 /* The exception for DW_TAG_typedef with has_children above is
18539 a workaround of GCC PR debug/47510. In the case of this complaint
18540 type_name_or_error will error on such types later.
18541
18542 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18543 it could not find the child DIEs referenced later, this is checked
18544 above. In correct DWARF DW_TAG_typedef should have no children. */
18545
18546 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18547 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18548 "- DIE at %s [in module %s]"),
18549 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18550
18551 /* If we're at the second level, and we're an enumerator, and
18552 our parent has no specification (meaning possibly lives in a
18553 namespace elsewhere), then we can add the partial symbol now
18554 instead of queueing it. */
18555 if (pdi.tag == DW_TAG_enumerator
18556 && parent_die != NULL
18557 && parent_die->die_parent == NULL
18558 && parent_die->tag == DW_TAG_enumeration_type
18559 && parent_die->has_specification == 0)
18560 {
18561 if (pdi.name == NULL)
18562 complaint (_("malformed enumerator DIE ignored"));
18563 else if (building_psymtab)
18564 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18565 VAR_DOMAIN, LOC_CONST, -1,
18566 cu->language == language_cplus
18567 ? psymbol_placement::GLOBAL
18568 : psymbol_placement::STATIC,
18569 0, cu->language, objfile);
18570
18571 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18572 continue;
18573 }
18574
18575 struct partial_die_info *part_die
18576 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18577
18578 /* We'll save this DIE so link it in. */
18579 part_die->die_parent = parent_die;
18580 part_die->die_sibling = NULL;
18581 part_die->die_child = NULL;
18582
18583 if (last_die && last_die == parent_die)
18584 last_die->die_child = part_die;
18585 else if (last_die)
18586 last_die->die_sibling = part_die;
18587
18588 last_die = part_die;
18589
18590 if (first_die == NULL)
18591 first_die = part_die;
18592
18593 /* Maybe add the DIE to the hash table. Not all DIEs that we
18594 find interesting need to be in the hash table, because we
18595 also have the parent/sibling/child chains; only those that we
18596 might refer to by offset later during partial symbol reading.
18597
18598 For now this means things that might have be the target of a
18599 DW_AT_specification, DW_AT_abstract_origin, or
18600 DW_AT_extension. DW_AT_extension will refer only to
18601 namespaces; DW_AT_abstract_origin refers to functions (and
18602 many things under the function DIE, but we do not recurse
18603 into function DIEs during partial symbol reading) and
18604 possibly variables as well; DW_AT_specification refers to
18605 declarations. Declarations ought to have the DW_AT_declaration
18606 flag. It happens that GCC forgets to put it in sometimes, but
18607 only for functions, not for types.
18608
18609 Adding more things than necessary to the hash table is harmless
18610 except for the performance cost. Adding too few will result in
18611 wasted time in find_partial_die, when we reread the compilation
18612 unit with load_all_dies set. */
18613
18614 if (load_all
18615 || abbrev->tag == DW_TAG_constant
18616 || abbrev->tag == DW_TAG_subprogram
18617 || abbrev->tag == DW_TAG_variable
18618 || abbrev->tag == DW_TAG_namespace
18619 || part_die->is_declaration)
18620 {
18621 void **slot;
18622
18623 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18624 to_underlying (part_die->sect_off),
18625 INSERT);
18626 *slot = part_die;
18627 }
18628
18629 /* For some DIEs we want to follow their children (if any). For C
18630 we have no reason to follow the children of structures; for other
18631 languages we have to, so that we can get at method physnames
18632 to infer fully qualified class names, for DW_AT_specification,
18633 and for C++ template arguments. For C++, we also look one level
18634 inside functions to find template arguments (if the name of the
18635 function does not already contain the template arguments).
18636
18637 For Ada, we need to scan the children of subprograms and lexical
18638 blocks as well because Ada allows the definition of nested
18639 entities that could be interesting for the debugger, such as
18640 nested subprograms for instance. */
18641 if (last_die->has_children
18642 && (load_all
18643 || last_die->tag == DW_TAG_namespace
18644 || last_die->tag == DW_TAG_module
18645 || last_die->tag == DW_TAG_enumeration_type
18646 || (cu->language == language_cplus
18647 && last_die->tag == DW_TAG_subprogram
18648 && (last_die->name == NULL
18649 || strchr (last_die->name, '<') == NULL))
18650 || (cu->language != language_c
18651 && (last_die->tag == DW_TAG_class_type
18652 || last_die->tag == DW_TAG_interface_type
18653 || last_die->tag == DW_TAG_structure_type
18654 || last_die->tag == DW_TAG_union_type))
18655 || (cu->language == language_ada
18656 && (last_die->tag == DW_TAG_subprogram
18657 || last_die->tag == DW_TAG_lexical_block))))
18658 {
18659 nesting_level++;
18660 parent_die = last_die;
18661 continue;
18662 }
18663
18664 /* Otherwise we skip to the next sibling, if any. */
18665 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18666
18667 /* Back to the top, do it again. */
18668 }
18669 }
18670
18671 partial_die_info::partial_die_info (sect_offset sect_off_,
18672 struct abbrev_info *abbrev)
18673 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18674 {
18675 }
18676
18677 /* Read a minimal amount of information into the minimal die structure.
18678 INFO_PTR should point just after the initial uleb128 of a DIE. */
18679
18680 const gdb_byte *
18681 partial_die_info::read (const struct die_reader_specs *reader,
18682 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18683 {
18684 struct dwarf2_cu *cu = reader->cu;
18685 struct dwarf2_per_objfile *dwarf2_per_objfile
18686 = cu->per_cu->dwarf2_per_objfile;
18687 unsigned int i;
18688 int has_low_pc_attr = 0;
18689 int has_high_pc_attr = 0;
18690 int high_pc_relative = 0;
18691
18692 for (i = 0; i < abbrev.num_attrs; ++i)
18693 {
18694 struct attribute attr;
18695
18696 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18697
18698 /* Store the data if it is of an attribute we want to keep in a
18699 partial symbol table. */
18700 switch (attr.name)
18701 {
18702 case DW_AT_name:
18703 switch (tag)
18704 {
18705 case DW_TAG_compile_unit:
18706 case DW_TAG_partial_unit:
18707 case DW_TAG_type_unit:
18708 /* Compilation units have a DW_AT_name that is a filename, not
18709 a source language identifier. */
18710 case DW_TAG_enumeration_type:
18711 case DW_TAG_enumerator:
18712 /* These tags always have simple identifiers already; no need
18713 to canonicalize them. */
18714 name = DW_STRING (&attr);
18715 break;
18716 default:
18717 {
18718 struct objfile *objfile = dwarf2_per_objfile->objfile;
18719
18720 name
18721 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18722 &objfile->per_bfd->storage_obstack);
18723 }
18724 break;
18725 }
18726 break;
18727 case DW_AT_linkage_name:
18728 case DW_AT_MIPS_linkage_name:
18729 /* Note that both forms of linkage name might appear. We
18730 assume they will be the same, and we only store the last
18731 one we see. */
18732 if (cu->language == language_ada)
18733 name = DW_STRING (&attr);
18734 linkage_name = DW_STRING (&attr);
18735 break;
18736 case DW_AT_low_pc:
18737 has_low_pc_attr = 1;
18738 lowpc = attr_value_as_address (&attr);
18739 break;
18740 case DW_AT_high_pc:
18741 has_high_pc_attr = 1;
18742 highpc = attr_value_as_address (&attr);
18743 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18744 high_pc_relative = 1;
18745 break;
18746 case DW_AT_location:
18747 /* Support the .debug_loc offsets. */
18748 if (attr_form_is_block (&attr))
18749 {
18750 d.locdesc = DW_BLOCK (&attr);
18751 }
18752 else if (attr_form_is_section_offset (&attr))
18753 {
18754 dwarf2_complex_location_expr_complaint ();
18755 }
18756 else
18757 {
18758 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18759 "partial symbol information");
18760 }
18761 break;
18762 case DW_AT_external:
18763 is_external = DW_UNSND (&attr);
18764 break;
18765 case DW_AT_declaration:
18766 is_declaration = DW_UNSND (&attr);
18767 break;
18768 case DW_AT_type:
18769 has_type = 1;
18770 break;
18771 case DW_AT_abstract_origin:
18772 case DW_AT_specification:
18773 case DW_AT_extension:
18774 has_specification = 1;
18775 spec_offset = dwarf2_get_ref_die_offset (&attr);
18776 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18777 || cu->per_cu->is_dwz);
18778 break;
18779 case DW_AT_sibling:
18780 /* Ignore absolute siblings, they might point outside of
18781 the current compile unit. */
18782 if (attr.form == DW_FORM_ref_addr)
18783 complaint (_("ignoring absolute DW_AT_sibling"));
18784 else
18785 {
18786 const gdb_byte *buffer = reader->buffer;
18787 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18788 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18789
18790 if (sibling_ptr < info_ptr)
18791 complaint (_("DW_AT_sibling points backwards"));
18792 else if (sibling_ptr > reader->buffer_end)
18793 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18794 else
18795 sibling = sibling_ptr;
18796 }
18797 break;
18798 case DW_AT_byte_size:
18799 has_byte_size = 1;
18800 break;
18801 case DW_AT_const_value:
18802 has_const_value = 1;
18803 break;
18804 case DW_AT_calling_convention:
18805 /* DWARF doesn't provide a way to identify a program's source-level
18806 entry point. DW_AT_calling_convention attributes are only meant
18807 to describe functions' calling conventions.
18808
18809 However, because it's a necessary piece of information in
18810 Fortran, and before DWARF 4 DW_CC_program was the only
18811 piece of debugging information whose definition refers to
18812 a 'main program' at all, several compilers marked Fortran
18813 main programs with DW_CC_program --- even when those
18814 functions use the standard calling conventions.
18815
18816 Although DWARF now specifies a way to provide this
18817 information, we support this practice for backward
18818 compatibility. */
18819 if (DW_UNSND (&attr) == DW_CC_program
18820 && cu->language == language_fortran)
18821 main_subprogram = 1;
18822 break;
18823 case DW_AT_inline:
18824 if (DW_UNSND (&attr) == DW_INL_inlined
18825 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18826 may_be_inlined = 1;
18827 break;
18828
18829 case DW_AT_import:
18830 if (tag == DW_TAG_imported_unit)
18831 {
18832 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18833 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18834 || cu->per_cu->is_dwz);
18835 }
18836 break;
18837
18838 case DW_AT_main_subprogram:
18839 main_subprogram = DW_UNSND (&attr);
18840 break;
18841
18842 case DW_AT_ranges:
18843 {
18844 /* It would be nice to reuse dwarf2_get_pc_bounds here,
18845 but that requires a full DIE, so instead we just
18846 reimplement it. */
18847 int need_ranges_base = tag != DW_TAG_compile_unit;
18848 unsigned int ranges_offset = (DW_UNSND (&attr)
18849 + (need_ranges_base
18850 ? cu->ranges_base
18851 : 0));
18852
18853 /* Value of the DW_AT_ranges attribute is the offset in the
18854 .debug_ranges section. */
18855 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
18856 nullptr))
18857 has_pc_info = 1;
18858 }
18859 break;
18860
18861 default:
18862 break;
18863 }
18864 }
18865
18866 if (high_pc_relative)
18867 highpc += lowpc;
18868
18869 if (has_low_pc_attr && has_high_pc_attr)
18870 {
18871 /* When using the GNU linker, .gnu.linkonce. sections are used to
18872 eliminate duplicate copies of functions and vtables and such.
18873 The linker will arbitrarily choose one and discard the others.
18874 The AT_*_pc values for such functions refer to local labels in
18875 these sections. If the section from that file was discarded, the
18876 labels are not in the output, so the relocs get a value of 0.
18877 If this is a discarded function, mark the pc bounds as invalid,
18878 so that GDB will ignore it. */
18879 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18880 {
18881 struct objfile *objfile = dwarf2_per_objfile->objfile;
18882 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18883
18884 complaint (_("DW_AT_low_pc %s is zero "
18885 "for DIE at %s [in module %s]"),
18886 paddress (gdbarch, lowpc),
18887 sect_offset_str (sect_off),
18888 objfile_name (objfile));
18889 }
18890 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18891 else if (lowpc >= highpc)
18892 {
18893 struct objfile *objfile = dwarf2_per_objfile->objfile;
18894 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18895
18896 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18897 "for DIE at %s [in module %s]"),
18898 paddress (gdbarch, lowpc),
18899 paddress (gdbarch, highpc),
18900 sect_offset_str (sect_off),
18901 objfile_name (objfile));
18902 }
18903 else
18904 has_pc_info = 1;
18905 }
18906
18907 return info_ptr;
18908 }
18909
18910 /* Find a cached partial DIE at OFFSET in CU. */
18911
18912 struct partial_die_info *
18913 dwarf2_cu::find_partial_die (sect_offset sect_off)
18914 {
18915 struct partial_die_info *lookup_die = NULL;
18916 struct partial_die_info part_die (sect_off);
18917
18918 lookup_die = ((struct partial_die_info *)
18919 htab_find_with_hash (partial_dies, &part_die,
18920 to_underlying (sect_off)));
18921
18922 return lookup_die;
18923 }
18924
18925 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18926 except in the case of .debug_types DIEs which do not reference
18927 outside their CU (they do however referencing other types via
18928 DW_FORM_ref_sig8). */
18929
18930 static const struct cu_partial_die_info
18931 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18932 {
18933 struct dwarf2_per_objfile *dwarf2_per_objfile
18934 = cu->per_cu->dwarf2_per_objfile;
18935 struct objfile *objfile = dwarf2_per_objfile->objfile;
18936 struct dwarf2_per_cu_data *per_cu = NULL;
18937 struct partial_die_info *pd = NULL;
18938
18939 if (offset_in_dwz == cu->per_cu->is_dwz
18940 && offset_in_cu_p (&cu->header, sect_off))
18941 {
18942 pd = cu->find_partial_die (sect_off);
18943 if (pd != NULL)
18944 return { cu, pd };
18945 /* We missed recording what we needed.
18946 Load all dies and try again. */
18947 per_cu = cu->per_cu;
18948 }
18949 else
18950 {
18951 /* TUs don't reference other CUs/TUs (except via type signatures). */
18952 if (cu->per_cu->is_debug_types)
18953 {
18954 error (_("Dwarf Error: Type Unit at offset %s contains"
18955 " external reference to offset %s [in module %s].\n"),
18956 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18957 bfd_get_filename (objfile->obfd));
18958 }
18959 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18960 dwarf2_per_objfile);
18961
18962 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18963 load_partial_comp_unit (per_cu);
18964
18965 per_cu->cu->last_used = 0;
18966 pd = per_cu->cu->find_partial_die (sect_off);
18967 }
18968
18969 /* If we didn't find it, and not all dies have been loaded,
18970 load them all and try again. */
18971
18972 if (pd == NULL && per_cu->load_all_dies == 0)
18973 {
18974 per_cu->load_all_dies = 1;
18975
18976 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18977 THIS_CU->cu may already be in use. So we can't just free it and
18978 replace its DIEs with the ones we read in. Instead, we leave those
18979 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18980 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18981 set. */
18982 load_partial_comp_unit (per_cu);
18983
18984 pd = per_cu->cu->find_partial_die (sect_off);
18985 }
18986
18987 if (pd == NULL)
18988 internal_error (__FILE__, __LINE__,
18989 _("could not find partial DIE %s "
18990 "in cache [from module %s]\n"),
18991 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18992 return { per_cu->cu, pd };
18993 }
18994
18995 /* See if we can figure out if the class lives in a namespace. We do
18996 this by looking for a member function; its demangled name will
18997 contain namespace info, if there is any. */
18998
18999 static void
19000 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
19001 struct dwarf2_cu *cu)
19002 {
19003 /* NOTE: carlton/2003-10-07: Getting the info this way changes
19004 what template types look like, because the demangler
19005 frequently doesn't give the same name as the debug info. We
19006 could fix this by only using the demangled name to get the
19007 prefix (but see comment in read_structure_type). */
19008
19009 struct partial_die_info *real_pdi;
19010 struct partial_die_info *child_pdi;
19011
19012 /* If this DIE (this DIE's specification, if any) has a parent, then
19013 we should not do this. We'll prepend the parent's fully qualified
19014 name when we create the partial symbol. */
19015
19016 real_pdi = struct_pdi;
19017 while (real_pdi->has_specification)
19018 {
19019 auto res = find_partial_die (real_pdi->spec_offset,
19020 real_pdi->spec_is_dwz, cu);
19021 real_pdi = res.pdi;
19022 cu = res.cu;
19023 }
19024
19025 if (real_pdi->die_parent != NULL)
19026 return;
19027
19028 for (child_pdi = struct_pdi->die_child;
19029 child_pdi != NULL;
19030 child_pdi = child_pdi->die_sibling)
19031 {
19032 if (child_pdi->tag == DW_TAG_subprogram
19033 && child_pdi->linkage_name != NULL)
19034 {
19035 char *actual_class_name
19036 = language_class_name_from_physname (cu->language_defn,
19037 child_pdi->linkage_name);
19038 if (actual_class_name != NULL)
19039 {
19040 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19041 struct_pdi->name
19042 = ((const char *)
19043 obstack_copy0 (&objfile->per_bfd->storage_obstack,
19044 actual_class_name,
19045 strlen (actual_class_name)));
19046 xfree (actual_class_name);
19047 }
19048 break;
19049 }
19050 }
19051 }
19052
19053 void
19054 partial_die_info::fixup (struct dwarf2_cu *cu)
19055 {
19056 /* Once we've fixed up a die, there's no point in doing so again.
19057 This also avoids a memory leak if we were to call
19058 guess_partial_die_structure_name multiple times. */
19059 if (fixup_called)
19060 return;
19061
19062 /* If we found a reference attribute and the DIE has no name, try
19063 to find a name in the referred to DIE. */
19064
19065 if (name == NULL && has_specification)
19066 {
19067 struct partial_die_info *spec_die;
19068
19069 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
19070 spec_die = res.pdi;
19071 cu = res.cu;
19072
19073 spec_die->fixup (cu);
19074
19075 if (spec_die->name)
19076 {
19077 name = spec_die->name;
19078
19079 /* Copy DW_AT_external attribute if it is set. */
19080 if (spec_die->is_external)
19081 is_external = spec_die->is_external;
19082 }
19083 }
19084
19085 /* Set default names for some unnamed DIEs. */
19086
19087 if (name == NULL && tag == DW_TAG_namespace)
19088 name = CP_ANONYMOUS_NAMESPACE_STR;
19089
19090 /* If there is no parent die to provide a namespace, and there are
19091 children, see if we can determine the namespace from their linkage
19092 name. */
19093 if (cu->language == language_cplus
19094 && !VEC_empty (dwarf2_section_info_def,
19095 cu->per_cu->dwarf2_per_objfile->types)
19096 && die_parent == NULL
19097 && has_children
19098 && (tag == DW_TAG_class_type
19099 || tag == DW_TAG_structure_type
19100 || tag == DW_TAG_union_type))
19101 guess_partial_die_structure_name (this, cu);
19102
19103 /* GCC might emit a nameless struct or union that has a linkage
19104 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19105 if (name == NULL
19106 && (tag == DW_TAG_class_type
19107 || tag == DW_TAG_interface_type
19108 || tag == DW_TAG_structure_type
19109 || tag == DW_TAG_union_type)
19110 && linkage_name != NULL)
19111 {
19112 char *demangled;
19113
19114 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
19115 if (demangled)
19116 {
19117 const char *base;
19118
19119 /* Strip any leading namespaces/classes, keep only the base name.
19120 DW_AT_name for named DIEs does not contain the prefixes. */
19121 base = strrchr (demangled, ':');
19122 if (base && base > demangled && base[-1] == ':')
19123 base++;
19124 else
19125 base = demangled;
19126
19127 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19128 name
19129 = ((const char *)
19130 obstack_copy0 (&objfile->per_bfd->storage_obstack,
19131 base, strlen (base)));
19132 xfree (demangled);
19133 }
19134 }
19135
19136 fixup_called = 1;
19137 }
19138
19139 /* Read an attribute value described by an attribute form. */
19140
19141 static const gdb_byte *
19142 read_attribute_value (const struct die_reader_specs *reader,
19143 struct attribute *attr, unsigned form,
19144 LONGEST implicit_const, const gdb_byte *info_ptr)
19145 {
19146 struct dwarf2_cu *cu = reader->cu;
19147 struct dwarf2_per_objfile *dwarf2_per_objfile
19148 = cu->per_cu->dwarf2_per_objfile;
19149 struct objfile *objfile = dwarf2_per_objfile->objfile;
19150 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19151 bfd *abfd = reader->abfd;
19152 struct comp_unit_head *cu_header = &cu->header;
19153 unsigned int bytes_read;
19154 struct dwarf_block *blk;
19155
19156 attr->form = (enum dwarf_form) form;
19157 switch (form)
19158 {
19159 case DW_FORM_ref_addr:
19160 if (cu->header.version == 2)
19161 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19162 else
19163 DW_UNSND (attr) = read_offset (abfd, info_ptr,
19164 &cu->header, &bytes_read);
19165 info_ptr += bytes_read;
19166 break;
19167 case DW_FORM_GNU_ref_alt:
19168 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19169 info_ptr += bytes_read;
19170 break;
19171 case DW_FORM_addr:
19172 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19173 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
19174 info_ptr += bytes_read;
19175 break;
19176 case DW_FORM_block2:
19177 blk = dwarf_alloc_block (cu);
19178 blk->size = read_2_bytes (abfd, info_ptr);
19179 info_ptr += 2;
19180 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19181 info_ptr += blk->size;
19182 DW_BLOCK (attr) = blk;
19183 break;
19184 case DW_FORM_block4:
19185 blk = dwarf_alloc_block (cu);
19186 blk->size = read_4_bytes (abfd, info_ptr);
19187 info_ptr += 4;
19188 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19189 info_ptr += blk->size;
19190 DW_BLOCK (attr) = blk;
19191 break;
19192 case DW_FORM_data2:
19193 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19194 info_ptr += 2;
19195 break;
19196 case DW_FORM_data4:
19197 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19198 info_ptr += 4;
19199 break;
19200 case DW_FORM_data8:
19201 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19202 info_ptr += 8;
19203 break;
19204 case DW_FORM_data16:
19205 blk = dwarf_alloc_block (cu);
19206 blk->size = 16;
19207 blk->data = read_n_bytes (abfd, info_ptr, 16);
19208 info_ptr += 16;
19209 DW_BLOCK (attr) = blk;
19210 break;
19211 case DW_FORM_sec_offset:
19212 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19213 info_ptr += bytes_read;
19214 break;
19215 case DW_FORM_string:
19216 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19217 DW_STRING_IS_CANONICAL (attr) = 0;
19218 info_ptr += bytes_read;
19219 break;
19220 case DW_FORM_strp:
19221 if (!cu->per_cu->is_dwz)
19222 {
19223 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19224 abfd, info_ptr, cu_header,
19225 &bytes_read);
19226 DW_STRING_IS_CANONICAL (attr) = 0;
19227 info_ptr += bytes_read;
19228 break;
19229 }
19230 /* FALLTHROUGH */
19231 case DW_FORM_line_strp:
19232 if (!cu->per_cu->is_dwz)
19233 {
19234 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19235 abfd, info_ptr,
19236 cu_header, &bytes_read);
19237 DW_STRING_IS_CANONICAL (attr) = 0;
19238 info_ptr += bytes_read;
19239 break;
19240 }
19241 /* FALLTHROUGH */
19242 case DW_FORM_GNU_strp_alt:
19243 {
19244 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19245 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19246 &bytes_read);
19247
19248 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19249 dwz, str_offset);
19250 DW_STRING_IS_CANONICAL (attr) = 0;
19251 info_ptr += bytes_read;
19252 }
19253 break;
19254 case DW_FORM_exprloc:
19255 case DW_FORM_block:
19256 blk = dwarf_alloc_block (cu);
19257 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19258 info_ptr += bytes_read;
19259 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19260 info_ptr += blk->size;
19261 DW_BLOCK (attr) = blk;
19262 break;
19263 case DW_FORM_block1:
19264 blk = dwarf_alloc_block (cu);
19265 blk->size = read_1_byte (abfd, info_ptr);
19266 info_ptr += 1;
19267 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19268 info_ptr += blk->size;
19269 DW_BLOCK (attr) = blk;
19270 break;
19271 case DW_FORM_data1:
19272 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19273 info_ptr += 1;
19274 break;
19275 case DW_FORM_flag:
19276 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19277 info_ptr += 1;
19278 break;
19279 case DW_FORM_flag_present:
19280 DW_UNSND (attr) = 1;
19281 break;
19282 case DW_FORM_sdata:
19283 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19284 info_ptr += bytes_read;
19285 break;
19286 case DW_FORM_udata:
19287 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19288 info_ptr += bytes_read;
19289 break;
19290 case DW_FORM_ref1:
19291 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19292 + read_1_byte (abfd, info_ptr));
19293 info_ptr += 1;
19294 break;
19295 case DW_FORM_ref2:
19296 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19297 + read_2_bytes (abfd, info_ptr));
19298 info_ptr += 2;
19299 break;
19300 case DW_FORM_ref4:
19301 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19302 + read_4_bytes (abfd, info_ptr));
19303 info_ptr += 4;
19304 break;
19305 case DW_FORM_ref8:
19306 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19307 + read_8_bytes (abfd, info_ptr));
19308 info_ptr += 8;
19309 break;
19310 case DW_FORM_ref_sig8:
19311 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19312 info_ptr += 8;
19313 break;
19314 case DW_FORM_ref_udata:
19315 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19316 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19317 info_ptr += bytes_read;
19318 break;
19319 case DW_FORM_indirect:
19320 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19321 info_ptr += bytes_read;
19322 if (form == DW_FORM_implicit_const)
19323 {
19324 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19325 info_ptr += bytes_read;
19326 }
19327 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19328 info_ptr);
19329 break;
19330 case DW_FORM_implicit_const:
19331 DW_SND (attr) = implicit_const;
19332 break;
19333 case DW_FORM_addrx:
19334 case DW_FORM_GNU_addr_index:
19335 if (reader->dwo_file == NULL)
19336 {
19337 /* For now flag a hard error.
19338 Later we can turn this into a complaint. */
19339 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19340 dwarf_form_name (form),
19341 bfd_get_filename (abfd));
19342 }
19343 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19344 info_ptr += bytes_read;
19345 break;
19346 case DW_FORM_strx:
19347 case DW_FORM_strx1:
19348 case DW_FORM_strx2:
19349 case DW_FORM_strx3:
19350 case DW_FORM_strx4:
19351 case DW_FORM_GNU_str_index:
19352 if (reader->dwo_file == NULL)
19353 {
19354 /* For now flag a hard error.
19355 Later we can turn this into a complaint if warranted. */
19356 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19357 dwarf_form_name (form),
19358 bfd_get_filename (abfd));
19359 }
19360 {
19361 ULONGEST str_index;
19362 if (form == DW_FORM_strx1)
19363 {
19364 str_index = read_1_byte (abfd, info_ptr);
19365 info_ptr += 1;
19366 }
19367 else if (form == DW_FORM_strx2)
19368 {
19369 str_index = read_2_bytes (abfd, info_ptr);
19370 info_ptr += 2;
19371 }
19372 else if (form == DW_FORM_strx3)
19373 {
19374 str_index = read_3_bytes (abfd, info_ptr);
19375 info_ptr += 3;
19376 }
19377 else if (form == DW_FORM_strx4)
19378 {
19379 str_index = read_4_bytes (abfd, info_ptr);
19380 info_ptr += 4;
19381 }
19382 else
19383 {
19384 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19385 info_ptr += bytes_read;
19386 }
19387 DW_STRING (attr) = read_str_index (reader, str_index);
19388 DW_STRING_IS_CANONICAL (attr) = 0;
19389 }
19390 break;
19391 default:
19392 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19393 dwarf_form_name (form),
19394 bfd_get_filename (abfd));
19395 }
19396
19397 /* Super hack. */
19398 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19399 attr->form = DW_FORM_GNU_ref_alt;
19400
19401 /* We have seen instances where the compiler tried to emit a byte
19402 size attribute of -1 which ended up being encoded as an unsigned
19403 0xffffffff. Although 0xffffffff is technically a valid size value,
19404 an object of this size seems pretty unlikely so we can relatively
19405 safely treat these cases as if the size attribute was invalid and
19406 treat them as zero by default. */
19407 if (attr->name == DW_AT_byte_size
19408 && form == DW_FORM_data4
19409 && DW_UNSND (attr) >= 0xffffffff)
19410 {
19411 complaint
19412 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19413 hex_string (DW_UNSND (attr)));
19414 DW_UNSND (attr) = 0;
19415 }
19416
19417 return info_ptr;
19418 }
19419
19420 /* Read an attribute described by an abbreviated attribute. */
19421
19422 static const gdb_byte *
19423 read_attribute (const struct die_reader_specs *reader,
19424 struct attribute *attr, struct attr_abbrev *abbrev,
19425 const gdb_byte *info_ptr)
19426 {
19427 attr->name = abbrev->name;
19428 return read_attribute_value (reader, attr, abbrev->form,
19429 abbrev->implicit_const, info_ptr);
19430 }
19431
19432 /* Read dwarf information from a buffer. */
19433
19434 static unsigned int
19435 read_1_byte (bfd *abfd, const gdb_byte *buf)
19436 {
19437 return bfd_get_8 (abfd, buf);
19438 }
19439
19440 static int
19441 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19442 {
19443 return bfd_get_signed_8 (abfd, buf);
19444 }
19445
19446 static unsigned int
19447 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19448 {
19449 return bfd_get_16 (abfd, buf);
19450 }
19451
19452 static int
19453 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19454 {
19455 return bfd_get_signed_16 (abfd, buf);
19456 }
19457
19458 static unsigned int
19459 read_3_bytes (bfd *abfd, const gdb_byte *buf)
19460 {
19461 unsigned int result = 0;
19462 for (int i = 0; i < 3; ++i)
19463 {
19464 unsigned char byte = bfd_get_8 (abfd, buf);
19465 buf++;
19466 result |= ((unsigned int) byte << (i * 8));
19467 }
19468 return result;
19469 }
19470
19471 static unsigned int
19472 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19473 {
19474 return bfd_get_32 (abfd, buf);
19475 }
19476
19477 static int
19478 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19479 {
19480 return bfd_get_signed_32 (abfd, buf);
19481 }
19482
19483 static ULONGEST
19484 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19485 {
19486 return bfd_get_64 (abfd, buf);
19487 }
19488
19489 static CORE_ADDR
19490 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19491 unsigned int *bytes_read)
19492 {
19493 struct comp_unit_head *cu_header = &cu->header;
19494 CORE_ADDR retval = 0;
19495
19496 if (cu_header->signed_addr_p)
19497 {
19498 switch (cu_header->addr_size)
19499 {
19500 case 2:
19501 retval = bfd_get_signed_16 (abfd, buf);
19502 break;
19503 case 4:
19504 retval = bfd_get_signed_32 (abfd, buf);
19505 break;
19506 case 8:
19507 retval = bfd_get_signed_64 (abfd, buf);
19508 break;
19509 default:
19510 internal_error (__FILE__, __LINE__,
19511 _("read_address: bad switch, signed [in module %s]"),
19512 bfd_get_filename (abfd));
19513 }
19514 }
19515 else
19516 {
19517 switch (cu_header->addr_size)
19518 {
19519 case 2:
19520 retval = bfd_get_16 (abfd, buf);
19521 break;
19522 case 4:
19523 retval = bfd_get_32 (abfd, buf);
19524 break;
19525 case 8:
19526 retval = bfd_get_64 (abfd, buf);
19527 break;
19528 default:
19529 internal_error (__FILE__, __LINE__,
19530 _("read_address: bad switch, "
19531 "unsigned [in module %s]"),
19532 bfd_get_filename (abfd));
19533 }
19534 }
19535
19536 *bytes_read = cu_header->addr_size;
19537 return retval;
19538 }
19539
19540 /* Read the initial length from a section. The (draft) DWARF 3
19541 specification allows the initial length to take up either 4 bytes
19542 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19543 bytes describe the length and all offsets will be 8 bytes in length
19544 instead of 4.
19545
19546 An older, non-standard 64-bit format is also handled by this
19547 function. The older format in question stores the initial length
19548 as an 8-byte quantity without an escape value. Lengths greater
19549 than 2^32 aren't very common which means that the initial 4 bytes
19550 is almost always zero. Since a length value of zero doesn't make
19551 sense for the 32-bit format, this initial zero can be considered to
19552 be an escape value which indicates the presence of the older 64-bit
19553 format. As written, the code can't detect (old format) lengths
19554 greater than 4GB. If it becomes necessary to handle lengths
19555 somewhat larger than 4GB, we could allow other small values (such
19556 as the non-sensical values of 1, 2, and 3) to also be used as
19557 escape values indicating the presence of the old format.
19558
19559 The value returned via bytes_read should be used to increment the
19560 relevant pointer after calling read_initial_length().
19561
19562 [ Note: read_initial_length() and read_offset() are based on the
19563 document entitled "DWARF Debugging Information Format", revision
19564 3, draft 8, dated November 19, 2001. This document was obtained
19565 from:
19566
19567 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19568
19569 This document is only a draft and is subject to change. (So beware.)
19570
19571 Details regarding the older, non-standard 64-bit format were
19572 determined empirically by examining 64-bit ELF files produced by
19573 the SGI toolchain on an IRIX 6.5 machine.
19574
19575 - Kevin, July 16, 2002
19576 ] */
19577
19578 static LONGEST
19579 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19580 {
19581 LONGEST length = bfd_get_32 (abfd, buf);
19582
19583 if (length == 0xffffffff)
19584 {
19585 length = bfd_get_64 (abfd, buf + 4);
19586 *bytes_read = 12;
19587 }
19588 else if (length == 0)
19589 {
19590 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19591 length = bfd_get_64 (abfd, buf);
19592 *bytes_read = 8;
19593 }
19594 else
19595 {
19596 *bytes_read = 4;
19597 }
19598
19599 return length;
19600 }
19601
19602 /* Cover function for read_initial_length.
19603 Returns the length of the object at BUF, and stores the size of the
19604 initial length in *BYTES_READ and stores the size that offsets will be in
19605 *OFFSET_SIZE.
19606 If the initial length size is not equivalent to that specified in
19607 CU_HEADER then issue a complaint.
19608 This is useful when reading non-comp-unit headers. */
19609
19610 static LONGEST
19611 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19612 const struct comp_unit_head *cu_header,
19613 unsigned int *bytes_read,
19614 unsigned int *offset_size)
19615 {
19616 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19617
19618 gdb_assert (cu_header->initial_length_size == 4
19619 || cu_header->initial_length_size == 8
19620 || cu_header->initial_length_size == 12);
19621
19622 if (cu_header->initial_length_size != *bytes_read)
19623 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19624
19625 *offset_size = (*bytes_read == 4) ? 4 : 8;
19626 return length;
19627 }
19628
19629 /* Read an offset from the data stream. The size of the offset is
19630 given by cu_header->offset_size. */
19631
19632 static LONGEST
19633 read_offset (bfd *abfd, const gdb_byte *buf,
19634 const struct comp_unit_head *cu_header,
19635 unsigned int *bytes_read)
19636 {
19637 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19638
19639 *bytes_read = cu_header->offset_size;
19640 return offset;
19641 }
19642
19643 /* Read an offset from the data stream. */
19644
19645 static LONGEST
19646 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19647 {
19648 LONGEST retval = 0;
19649
19650 switch (offset_size)
19651 {
19652 case 4:
19653 retval = bfd_get_32 (abfd, buf);
19654 break;
19655 case 8:
19656 retval = bfd_get_64 (abfd, buf);
19657 break;
19658 default:
19659 internal_error (__FILE__, __LINE__,
19660 _("read_offset_1: bad switch [in module %s]"),
19661 bfd_get_filename (abfd));
19662 }
19663
19664 return retval;
19665 }
19666
19667 static const gdb_byte *
19668 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19669 {
19670 /* If the size of a host char is 8 bits, we can return a pointer
19671 to the buffer, otherwise we have to copy the data to a buffer
19672 allocated on the temporary obstack. */
19673 gdb_assert (HOST_CHAR_BIT == 8);
19674 return buf;
19675 }
19676
19677 static const char *
19678 read_direct_string (bfd *abfd, const gdb_byte *buf,
19679 unsigned int *bytes_read_ptr)
19680 {
19681 /* If the size of a host char is 8 bits, we can return a pointer
19682 to the string, otherwise we have to copy the string to a buffer
19683 allocated on the temporary obstack. */
19684 gdb_assert (HOST_CHAR_BIT == 8);
19685 if (*buf == '\0')
19686 {
19687 *bytes_read_ptr = 1;
19688 return NULL;
19689 }
19690 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19691 return (const char *) buf;
19692 }
19693
19694 /* Return pointer to string at section SECT offset STR_OFFSET with error
19695 reporting strings FORM_NAME and SECT_NAME. */
19696
19697 static const char *
19698 read_indirect_string_at_offset_from (struct objfile *objfile,
19699 bfd *abfd, LONGEST str_offset,
19700 struct dwarf2_section_info *sect,
19701 const char *form_name,
19702 const char *sect_name)
19703 {
19704 dwarf2_read_section (objfile, sect);
19705 if (sect->buffer == NULL)
19706 error (_("%s used without %s section [in module %s]"),
19707 form_name, sect_name, bfd_get_filename (abfd));
19708 if (str_offset >= sect->size)
19709 error (_("%s pointing outside of %s section [in module %s]"),
19710 form_name, sect_name, bfd_get_filename (abfd));
19711 gdb_assert (HOST_CHAR_BIT == 8);
19712 if (sect->buffer[str_offset] == '\0')
19713 return NULL;
19714 return (const char *) (sect->buffer + str_offset);
19715 }
19716
19717 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19718
19719 static const char *
19720 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19721 bfd *abfd, LONGEST str_offset)
19722 {
19723 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19724 abfd, str_offset,
19725 &dwarf2_per_objfile->str,
19726 "DW_FORM_strp", ".debug_str");
19727 }
19728
19729 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19730
19731 static const char *
19732 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19733 bfd *abfd, LONGEST str_offset)
19734 {
19735 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19736 abfd, str_offset,
19737 &dwarf2_per_objfile->line_str,
19738 "DW_FORM_line_strp",
19739 ".debug_line_str");
19740 }
19741
19742 /* Read a string at offset STR_OFFSET in the .debug_str section from
19743 the .dwz file DWZ. Throw an error if the offset is too large. If
19744 the string consists of a single NUL byte, return NULL; otherwise
19745 return a pointer to the string. */
19746
19747 static const char *
19748 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19749 LONGEST str_offset)
19750 {
19751 dwarf2_read_section (objfile, &dwz->str);
19752
19753 if (dwz->str.buffer == NULL)
19754 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19755 "section [in module %s]"),
19756 bfd_get_filename (dwz->dwz_bfd));
19757 if (str_offset >= dwz->str.size)
19758 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19759 ".debug_str section [in module %s]"),
19760 bfd_get_filename (dwz->dwz_bfd));
19761 gdb_assert (HOST_CHAR_BIT == 8);
19762 if (dwz->str.buffer[str_offset] == '\0')
19763 return NULL;
19764 return (const char *) (dwz->str.buffer + str_offset);
19765 }
19766
19767 /* Return pointer to string at .debug_str offset as read from BUF.
19768 BUF is assumed to be in a compilation unit described by CU_HEADER.
19769 Return *BYTES_READ_PTR count of bytes read from BUF. */
19770
19771 static const char *
19772 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19773 const gdb_byte *buf,
19774 const struct comp_unit_head *cu_header,
19775 unsigned int *bytes_read_ptr)
19776 {
19777 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19778
19779 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19780 }
19781
19782 /* Return pointer to string at .debug_line_str offset as read from BUF.
19783 BUF is assumed to be in a compilation unit described by CU_HEADER.
19784 Return *BYTES_READ_PTR count of bytes read from BUF. */
19785
19786 static const char *
19787 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19788 bfd *abfd, const gdb_byte *buf,
19789 const struct comp_unit_head *cu_header,
19790 unsigned int *bytes_read_ptr)
19791 {
19792 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19793
19794 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19795 str_offset);
19796 }
19797
19798 ULONGEST
19799 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19800 unsigned int *bytes_read_ptr)
19801 {
19802 ULONGEST result;
19803 unsigned int num_read;
19804 int shift;
19805 unsigned char byte;
19806
19807 result = 0;
19808 shift = 0;
19809 num_read = 0;
19810 while (1)
19811 {
19812 byte = bfd_get_8 (abfd, buf);
19813 buf++;
19814 num_read++;
19815 result |= ((ULONGEST) (byte & 127) << shift);
19816 if ((byte & 128) == 0)
19817 {
19818 break;
19819 }
19820 shift += 7;
19821 }
19822 *bytes_read_ptr = num_read;
19823 return result;
19824 }
19825
19826 static LONGEST
19827 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19828 unsigned int *bytes_read_ptr)
19829 {
19830 ULONGEST result;
19831 int shift, num_read;
19832 unsigned char byte;
19833
19834 result = 0;
19835 shift = 0;
19836 num_read = 0;
19837 while (1)
19838 {
19839 byte = bfd_get_8 (abfd, buf);
19840 buf++;
19841 num_read++;
19842 result |= ((ULONGEST) (byte & 127) << shift);
19843 shift += 7;
19844 if ((byte & 128) == 0)
19845 {
19846 break;
19847 }
19848 }
19849 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19850 result |= -(((ULONGEST) 1) << shift);
19851 *bytes_read_ptr = num_read;
19852 return result;
19853 }
19854
19855 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19856 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19857 ADDR_SIZE is the size of addresses from the CU header. */
19858
19859 static CORE_ADDR
19860 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19861 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19862 {
19863 struct objfile *objfile = dwarf2_per_objfile->objfile;
19864 bfd *abfd = objfile->obfd;
19865 const gdb_byte *info_ptr;
19866
19867 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19868 if (dwarf2_per_objfile->addr.buffer == NULL)
19869 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19870 objfile_name (objfile));
19871 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19872 error (_("DW_FORM_addr_index pointing outside of "
19873 ".debug_addr section [in module %s]"),
19874 objfile_name (objfile));
19875 info_ptr = (dwarf2_per_objfile->addr.buffer
19876 + addr_base + addr_index * addr_size);
19877 if (addr_size == 4)
19878 return bfd_get_32 (abfd, info_ptr);
19879 else
19880 return bfd_get_64 (abfd, info_ptr);
19881 }
19882
19883 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19884
19885 static CORE_ADDR
19886 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19887 {
19888 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19889 cu->addr_base, cu->header.addr_size);
19890 }
19891
19892 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19893
19894 static CORE_ADDR
19895 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19896 unsigned int *bytes_read)
19897 {
19898 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19899 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19900
19901 return read_addr_index (cu, addr_index);
19902 }
19903
19904 /* Data structure to pass results from dwarf2_read_addr_index_reader
19905 back to dwarf2_read_addr_index. */
19906
19907 struct dwarf2_read_addr_index_data
19908 {
19909 ULONGEST addr_base;
19910 int addr_size;
19911 };
19912
19913 /* die_reader_func for dwarf2_read_addr_index. */
19914
19915 static void
19916 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19917 const gdb_byte *info_ptr,
19918 struct die_info *comp_unit_die,
19919 int has_children,
19920 void *data)
19921 {
19922 struct dwarf2_cu *cu = reader->cu;
19923 struct dwarf2_read_addr_index_data *aidata =
19924 (struct dwarf2_read_addr_index_data *) data;
19925
19926 aidata->addr_base = cu->addr_base;
19927 aidata->addr_size = cu->header.addr_size;
19928 }
19929
19930 /* Given an index in .debug_addr, fetch the value.
19931 NOTE: This can be called during dwarf expression evaluation,
19932 long after the debug information has been read, and thus per_cu->cu
19933 may no longer exist. */
19934
19935 CORE_ADDR
19936 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19937 unsigned int addr_index)
19938 {
19939 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19940 struct dwarf2_cu *cu = per_cu->cu;
19941 ULONGEST addr_base;
19942 int addr_size;
19943
19944 /* We need addr_base and addr_size.
19945 If we don't have PER_CU->cu, we have to get it.
19946 Nasty, but the alternative is storing the needed info in PER_CU,
19947 which at this point doesn't seem justified: it's not clear how frequently
19948 it would get used and it would increase the size of every PER_CU.
19949 Entry points like dwarf2_per_cu_addr_size do a similar thing
19950 so we're not in uncharted territory here.
19951 Alas we need to be a bit more complicated as addr_base is contained
19952 in the DIE.
19953
19954 We don't need to read the entire CU(/TU).
19955 We just need the header and top level die.
19956
19957 IWBN to use the aging mechanism to let us lazily later discard the CU.
19958 For now we skip this optimization. */
19959
19960 if (cu != NULL)
19961 {
19962 addr_base = cu->addr_base;
19963 addr_size = cu->header.addr_size;
19964 }
19965 else
19966 {
19967 struct dwarf2_read_addr_index_data aidata;
19968
19969 /* Note: We can't use init_cutu_and_read_dies_simple here,
19970 we need addr_base. */
19971 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
19972 dwarf2_read_addr_index_reader, &aidata);
19973 addr_base = aidata.addr_base;
19974 addr_size = aidata.addr_size;
19975 }
19976
19977 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19978 addr_size);
19979 }
19980
19981 /* Given a DW_FORM_GNU_str_index or DW_FORM_strx, fetch the string.
19982 This is only used by the Fission support. */
19983
19984 static const char *
19985 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19986 {
19987 struct dwarf2_cu *cu = reader->cu;
19988 struct dwarf2_per_objfile *dwarf2_per_objfile
19989 = cu->per_cu->dwarf2_per_objfile;
19990 struct objfile *objfile = dwarf2_per_objfile->objfile;
19991 const char *objf_name = objfile_name (objfile);
19992 bfd *abfd = objfile->obfd;
19993 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19994 struct dwarf2_section_info *str_offsets_section =
19995 &reader->dwo_file->sections.str_offsets;
19996 const gdb_byte *info_ptr;
19997 ULONGEST str_offset;
19998 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
19999
20000 dwarf2_read_section (objfile, str_section);
20001 dwarf2_read_section (objfile, str_offsets_section);
20002 if (str_section->buffer == NULL)
20003 error (_("%s used without .debug_str.dwo section"
20004 " in CU at offset %s [in module %s]"),
20005 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20006 if (str_offsets_section->buffer == NULL)
20007 error (_("%s used without .debug_str_offsets.dwo section"
20008 " in CU at offset %s [in module %s]"),
20009 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20010 if (str_index * cu->header.offset_size >= str_offsets_section->size)
20011 error (_("%s pointing outside of .debug_str_offsets.dwo"
20012 " section in CU at offset %s [in module %s]"),
20013 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20014 info_ptr = (str_offsets_section->buffer
20015 + str_index * cu->header.offset_size);
20016 if (cu->header.offset_size == 4)
20017 str_offset = bfd_get_32 (abfd, info_ptr);
20018 else
20019 str_offset = bfd_get_64 (abfd, info_ptr);
20020 if (str_offset >= str_section->size)
20021 error (_("Offset from %s pointing outside of"
20022 " .debug_str.dwo section in CU at offset %s [in module %s]"),
20023 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20024 return (const char *) (str_section->buffer + str_offset);
20025 }
20026
20027 /* Return the length of an LEB128 number in BUF. */
20028
20029 static int
20030 leb128_size (const gdb_byte *buf)
20031 {
20032 const gdb_byte *begin = buf;
20033 gdb_byte byte;
20034
20035 while (1)
20036 {
20037 byte = *buf++;
20038 if ((byte & 128) == 0)
20039 return buf - begin;
20040 }
20041 }
20042
20043 static void
20044 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
20045 {
20046 switch (lang)
20047 {
20048 case DW_LANG_C89:
20049 case DW_LANG_C99:
20050 case DW_LANG_C11:
20051 case DW_LANG_C:
20052 case DW_LANG_UPC:
20053 cu->language = language_c;
20054 break;
20055 case DW_LANG_Java:
20056 case DW_LANG_C_plus_plus:
20057 case DW_LANG_C_plus_plus_11:
20058 case DW_LANG_C_plus_plus_14:
20059 cu->language = language_cplus;
20060 break;
20061 case DW_LANG_D:
20062 cu->language = language_d;
20063 break;
20064 case DW_LANG_Fortran77:
20065 case DW_LANG_Fortran90:
20066 case DW_LANG_Fortran95:
20067 case DW_LANG_Fortran03:
20068 case DW_LANG_Fortran08:
20069 cu->language = language_fortran;
20070 break;
20071 case DW_LANG_Go:
20072 cu->language = language_go;
20073 break;
20074 case DW_LANG_Mips_Assembler:
20075 cu->language = language_asm;
20076 break;
20077 case DW_LANG_Ada83:
20078 case DW_LANG_Ada95:
20079 cu->language = language_ada;
20080 break;
20081 case DW_LANG_Modula2:
20082 cu->language = language_m2;
20083 break;
20084 case DW_LANG_Pascal83:
20085 cu->language = language_pascal;
20086 break;
20087 case DW_LANG_ObjC:
20088 cu->language = language_objc;
20089 break;
20090 case DW_LANG_Rust:
20091 case DW_LANG_Rust_old:
20092 cu->language = language_rust;
20093 break;
20094 case DW_LANG_Cobol74:
20095 case DW_LANG_Cobol85:
20096 default:
20097 cu->language = language_minimal;
20098 break;
20099 }
20100 cu->language_defn = language_def (cu->language);
20101 }
20102
20103 /* Return the named attribute or NULL if not there. */
20104
20105 static struct attribute *
20106 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20107 {
20108 for (;;)
20109 {
20110 unsigned int i;
20111 struct attribute *spec = NULL;
20112
20113 for (i = 0; i < die->num_attrs; ++i)
20114 {
20115 if (die->attrs[i].name == name)
20116 return &die->attrs[i];
20117 if (die->attrs[i].name == DW_AT_specification
20118 || die->attrs[i].name == DW_AT_abstract_origin)
20119 spec = &die->attrs[i];
20120 }
20121
20122 if (!spec)
20123 break;
20124
20125 die = follow_die_ref (die, spec, &cu);
20126 }
20127
20128 return NULL;
20129 }
20130
20131 /* Return the named attribute or NULL if not there,
20132 but do not follow DW_AT_specification, etc.
20133 This is for use in contexts where we're reading .debug_types dies.
20134 Following DW_AT_specification, DW_AT_abstract_origin will take us
20135 back up the chain, and we want to go down. */
20136
20137 static struct attribute *
20138 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
20139 {
20140 unsigned int i;
20141
20142 for (i = 0; i < die->num_attrs; ++i)
20143 if (die->attrs[i].name == name)
20144 return &die->attrs[i];
20145
20146 return NULL;
20147 }
20148
20149 /* Return the string associated with a string-typed attribute, or NULL if it
20150 is either not found or is of an incorrect type. */
20151
20152 static const char *
20153 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20154 {
20155 struct attribute *attr;
20156 const char *str = NULL;
20157
20158 attr = dwarf2_attr (die, name, cu);
20159
20160 if (attr != NULL)
20161 {
20162 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
20163 || attr->form == DW_FORM_string
20164 || attr->form == DW_FORM_strx
20165 || attr->form == DW_FORM_GNU_str_index
20166 || attr->form == DW_FORM_GNU_strp_alt)
20167 str = DW_STRING (attr);
20168 else
20169 complaint (_("string type expected for attribute %s for "
20170 "DIE at %s in module %s"),
20171 dwarf_attr_name (name), sect_offset_str (die->sect_off),
20172 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
20173 }
20174
20175 return str;
20176 }
20177
20178 /* Return non-zero iff the attribute NAME is defined for the given DIE,
20179 and holds a non-zero value. This function should only be used for
20180 DW_FORM_flag or DW_FORM_flag_present attributes. */
20181
20182 static int
20183 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
20184 {
20185 struct attribute *attr = dwarf2_attr (die, name, cu);
20186
20187 return (attr && DW_UNSND (attr));
20188 }
20189
20190 static int
20191 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
20192 {
20193 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20194 which value is non-zero. However, we have to be careful with
20195 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20196 (via dwarf2_flag_true_p) follows this attribute. So we may
20197 end up accidently finding a declaration attribute that belongs
20198 to a different DIE referenced by the specification attribute,
20199 even though the given DIE does not have a declaration attribute. */
20200 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20201 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
20202 }
20203
20204 /* Return the die giving the specification for DIE, if there is
20205 one. *SPEC_CU is the CU containing DIE on input, and the CU
20206 containing the return value on output. If there is no
20207 specification, but there is an abstract origin, that is
20208 returned. */
20209
20210 static struct die_info *
20211 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20212 {
20213 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20214 *spec_cu);
20215
20216 if (spec_attr == NULL)
20217 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20218
20219 if (spec_attr == NULL)
20220 return NULL;
20221 else
20222 return follow_die_ref (die, spec_attr, spec_cu);
20223 }
20224
20225 /* Stub for free_line_header to match void * callback types. */
20226
20227 static void
20228 free_line_header_voidp (void *arg)
20229 {
20230 struct line_header *lh = (struct line_header *) arg;
20231
20232 delete lh;
20233 }
20234
20235 void
20236 line_header::add_include_dir (const char *include_dir)
20237 {
20238 if (dwarf_line_debug >= 2)
20239 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20240 include_dirs.size () + 1, include_dir);
20241
20242 include_dirs.push_back (include_dir);
20243 }
20244
20245 void
20246 line_header::add_file_name (const char *name,
20247 dir_index d_index,
20248 unsigned int mod_time,
20249 unsigned int length)
20250 {
20251 if (dwarf_line_debug >= 2)
20252 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
20253 (unsigned) file_names.size () + 1, name);
20254
20255 file_names.emplace_back (name, d_index, mod_time, length);
20256 }
20257
20258 /* A convenience function to find the proper .debug_line section for a CU. */
20259
20260 static struct dwarf2_section_info *
20261 get_debug_line_section (struct dwarf2_cu *cu)
20262 {
20263 struct dwarf2_section_info *section;
20264 struct dwarf2_per_objfile *dwarf2_per_objfile
20265 = cu->per_cu->dwarf2_per_objfile;
20266
20267 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20268 DWO file. */
20269 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20270 section = &cu->dwo_unit->dwo_file->sections.line;
20271 else if (cu->per_cu->is_dwz)
20272 {
20273 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
20274
20275 section = &dwz->line;
20276 }
20277 else
20278 section = &dwarf2_per_objfile->line;
20279
20280 return section;
20281 }
20282
20283 /* Read directory or file name entry format, starting with byte of
20284 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20285 entries count and the entries themselves in the described entry
20286 format. */
20287
20288 static void
20289 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20290 bfd *abfd, const gdb_byte **bufp,
20291 struct line_header *lh,
20292 const struct comp_unit_head *cu_header,
20293 void (*callback) (struct line_header *lh,
20294 const char *name,
20295 dir_index d_index,
20296 unsigned int mod_time,
20297 unsigned int length))
20298 {
20299 gdb_byte format_count, formati;
20300 ULONGEST data_count, datai;
20301 const gdb_byte *buf = *bufp;
20302 const gdb_byte *format_header_data;
20303 unsigned int bytes_read;
20304
20305 format_count = read_1_byte (abfd, buf);
20306 buf += 1;
20307 format_header_data = buf;
20308 for (formati = 0; formati < format_count; formati++)
20309 {
20310 read_unsigned_leb128 (abfd, buf, &bytes_read);
20311 buf += bytes_read;
20312 read_unsigned_leb128 (abfd, buf, &bytes_read);
20313 buf += bytes_read;
20314 }
20315
20316 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20317 buf += bytes_read;
20318 for (datai = 0; datai < data_count; datai++)
20319 {
20320 const gdb_byte *format = format_header_data;
20321 struct file_entry fe;
20322
20323 for (formati = 0; formati < format_count; formati++)
20324 {
20325 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20326 format += bytes_read;
20327
20328 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20329 format += bytes_read;
20330
20331 gdb::optional<const char *> string;
20332 gdb::optional<unsigned int> uint;
20333
20334 switch (form)
20335 {
20336 case DW_FORM_string:
20337 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20338 buf += bytes_read;
20339 break;
20340
20341 case DW_FORM_line_strp:
20342 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20343 abfd, buf,
20344 cu_header,
20345 &bytes_read));
20346 buf += bytes_read;
20347 break;
20348
20349 case DW_FORM_data1:
20350 uint.emplace (read_1_byte (abfd, buf));
20351 buf += 1;
20352 break;
20353
20354 case DW_FORM_data2:
20355 uint.emplace (read_2_bytes (abfd, buf));
20356 buf += 2;
20357 break;
20358
20359 case DW_FORM_data4:
20360 uint.emplace (read_4_bytes (abfd, buf));
20361 buf += 4;
20362 break;
20363
20364 case DW_FORM_data8:
20365 uint.emplace (read_8_bytes (abfd, buf));
20366 buf += 8;
20367 break;
20368
20369 case DW_FORM_udata:
20370 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20371 buf += bytes_read;
20372 break;
20373
20374 case DW_FORM_block:
20375 /* It is valid only for DW_LNCT_timestamp which is ignored by
20376 current GDB. */
20377 break;
20378 }
20379
20380 switch (content_type)
20381 {
20382 case DW_LNCT_path:
20383 if (string.has_value ())
20384 fe.name = *string;
20385 break;
20386 case DW_LNCT_directory_index:
20387 if (uint.has_value ())
20388 fe.d_index = (dir_index) *uint;
20389 break;
20390 case DW_LNCT_timestamp:
20391 if (uint.has_value ())
20392 fe.mod_time = *uint;
20393 break;
20394 case DW_LNCT_size:
20395 if (uint.has_value ())
20396 fe.length = *uint;
20397 break;
20398 case DW_LNCT_MD5:
20399 break;
20400 default:
20401 complaint (_("Unknown format content type %s"),
20402 pulongest (content_type));
20403 }
20404 }
20405
20406 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20407 }
20408
20409 *bufp = buf;
20410 }
20411
20412 /* Read the statement program header starting at OFFSET in
20413 .debug_line, or .debug_line.dwo. Return a pointer
20414 to a struct line_header, allocated using xmalloc.
20415 Returns NULL if there is a problem reading the header, e.g., if it
20416 has a version we don't understand.
20417
20418 NOTE: the strings in the include directory and file name tables of
20419 the returned object point into the dwarf line section buffer,
20420 and must not be freed. */
20421
20422 static line_header_up
20423 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20424 {
20425 const gdb_byte *line_ptr;
20426 unsigned int bytes_read, offset_size;
20427 int i;
20428 const char *cur_dir, *cur_file;
20429 struct dwarf2_section_info *section;
20430 bfd *abfd;
20431 struct dwarf2_per_objfile *dwarf2_per_objfile
20432 = cu->per_cu->dwarf2_per_objfile;
20433
20434 section = get_debug_line_section (cu);
20435 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20436 if (section->buffer == NULL)
20437 {
20438 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20439 complaint (_("missing .debug_line.dwo section"));
20440 else
20441 complaint (_("missing .debug_line section"));
20442 return 0;
20443 }
20444
20445 /* We can't do this until we know the section is non-empty.
20446 Only then do we know we have such a section. */
20447 abfd = get_section_bfd_owner (section);
20448
20449 /* Make sure that at least there's room for the total_length field.
20450 That could be 12 bytes long, but we're just going to fudge that. */
20451 if (to_underlying (sect_off) + 4 >= section->size)
20452 {
20453 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20454 return 0;
20455 }
20456
20457 line_header_up lh (new line_header ());
20458
20459 lh->sect_off = sect_off;
20460 lh->offset_in_dwz = cu->per_cu->is_dwz;
20461
20462 line_ptr = section->buffer + to_underlying (sect_off);
20463
20464 /* Read in the header. */
20465 lh->total_length =
20466 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20467 &bytes_read, &offset_size);
20468 line_ptr += bytes_read;
20469 if (line_ptr + lh->total_length > (section->buffer + section->size))
20470 {
20471 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20472 return 0;
20473 }
20474 lh->statement_program_end = line_ptr + lh->total_length;
20475 lh->version = read_2_bytes (abfd, line_ptr);
20476 line_ptr += 2;
20477 if (lh->version > 5)
20478 {
20479 /* This is a version we don't understand. The format could have
20480 changed in ways we don't handle properly so just punt. */
20481 complaint (_("unsupported version in .debug_line section"));
20482 return NULL;
20483 }
20484 if (lh->version >= 5)
20485 {
20486 gdb_byte segment_selector_size;
20487
20488 /* Skip address size. */
20489 read_1_byte (abfd, line_ptr);
20490 line_ptr += 1;
20491
20492 segment_selector_size = read_1_byte (abfd, line_ptr);
20493 line_ptr += 1;
20494 if (segment_selector_size != 0)
20495 {
20496 complaint (_("unsupported segment selector size %u "
20497 "in .debug_line section"),
20498 segment_selector_size);
20499 return NULL;
20500 }
20501 }
20502 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20503 line_ptr += offset_size;
20504 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20505 line_ptr += 1;
20506 if (lh->version >= 4)
20507 {
20508 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20509 line_ptr += 1;
20510 }
20511 else
20512 lh->maximum_ops_per_instruction = 1;
20513
20514 if (lh->maximum_ops_per_instruction == 0)
20515 {
20516 lh->maximum_ops_per_instruction = 1;
20517 complaint (_("invalid maximum_ops_per_instruction "
20518 "in `.debug_line' section"));
20519 }
20520
20521 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20522 line_ptr += 1;
20523 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20524 line_ptr += 1;
20525 lh->line_range = read_1_byte (abfd, line_ptr);
20526 line_ptr += 1;
20527 lh->opcode_base = read_1_byte (abfd, line_ptr);
20528 line_ptr += 1;
20529 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20530
20531 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20532 for (i = 1; i < lh->opcode_base; ++i)
20533 {
20534 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20535 line_ptr += 1;
20536 }
20537
20538 if (lh->version >= 5)
20539 {
20540 /* Read directory table. */
20541 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20542 &cu->header,
20543 [] (struct line_header *header, const char *name,
20544 dir_index d_index, unsigned int mod_time,
20545 unsigned int length)
20546 {
20547 header->add_include_dir (name);
20548 });
20549
20550 /* Read file name table. */
20551 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20552 &cu->header,
20553 [] (struct line_header *header, const char *name,
20554 dir_index d_index, unsigned int mod_time,
20555 unsigned int length)
20556 {
20557 header->add_file_name (name, d_index, mod_time, length);
20558 });
20559 }
20560 else
20561 {
20562 /* Read directory table. */
20563 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20564 {
20565 line_ptr += bytes_read;
20566 lh->add_include_dir (cur_dir);
20567 }
20568 line_ptr += bytes_read;
20569
20570 /* Read file name table. */
20571 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20572 {
20573 unsigned int mod_time, length;
20574 dir_index d_index;
20575
20576 line_ptr += bytes_read;
20577 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20578 line_ptr += bytes_read;
20579 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20580 line_ptr += bytes_read;
20581 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20582 line_ptr += bytes_read;
20583
20584 lh->add_file_name (cur_file, d_index, mod_time, length);
20585 }
20586 line_ptr += bytes_read;
20587 }
20588 lh->statement_program_start = line_ptr;
20589
20590 if (line_ptr > (section->buffer + section->size))
20591 complaint (_("line number info header doesn't "
20592 "fit in `.debug_line' section"));
20593
20594 return lh;
20595 }
20596
20597 /* Subroutine of dwarf_decode_lines to simplify it.
20598 Return the file name of the psymtab for included file FILE_INDEX
20599 in line header LH of PST.
20600 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20601 If space for the result is malloc'd, *NAME_HOLDER will be set.
20602 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20603
20604 static const char *
20605 psymtab_include_file_name (const struct line_header *lh, int file_index,
20606 const struct partial_symtab *pst,
20607 const char *comp_dir,
20608 gdb::unique_xmalloc_ptr<char> *name_holder)
20609 {
20610 const file_entry &fe = lh->file_names[file_index];
20611 const char *include_name = fe.name;
20612 const char *include_name_to_compare = include_name;
20613 const char *pst_filename;
20614 int file_is_pst;
20615
20616 const char *dir_name = fe.include_dir (lh);
20617
20618 gdb::unique_xmalloc_ptr<char> hold_compare;
20619 if (!IS_ABSOLUTE_PATH (include_name)
20620 && (dir_name != NULL || comp_dir != NULL))
20621 {
20622 /* Avoid creating a duplicate psymtab for PST.
20623 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20624 Before we do the comparison, however, we need to account
20625 for DIR_NAME and COMP_DIR.
20626 First prepend dir_name (if non-NULL). If we still don't
20627 have an absolute path prepend comp_dir (if non-NULL).
20628 However, the directory we record in the include-file's
20629 psymtab does not contain COMP_DIR (to match the
20630 corresponding symtab(s)).
20631
20632 Example:
20633
20634 bash$ cd /tmp
20635 bash$ gcc -g ./hello.c
20636 include_name = "hello.c"
20637 dir_name = "."
20638 DW_AT_comp_dir = comp_dir = "/tmp"
20639 DW_AT_name = "./hello.c"
20640
20641 */
20642
20643 if (dir_name != NULL)
20644 {
20645 name_holder->reset (concat (dir_name, SLASH_STRING,
20646 include_name, (char *) NULL));
20647 include_name = name_holder->get ();
20648 include_name_to_compare = include_name;
20649 }
20650 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20651 {
20652 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20653 include_name, (char *) NULL));
20654 include_name_to_compare = hold_compare.get ();
20655 }
20656 }
20657
20658 pst_filename = pst->filename;
20659 gdb::unique_xmalloc_ptr<char> copied_name;
20660 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20661 {
20662 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20663 pst_filename, (char *) NULL));
20664 pst_filename = copied_name.get ();
20665 }
20666
20667 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20668
20669 if (file_is_pst)
20670 return NULL;
20671 return include_name;
20672 }
20673
20674 /* State machine to track the state of the line number program. */
20675
20676 class lnp_state_machine
20677 {
20678 public:
20679 /* Initialize a machine state for the start of a line number
20680 program. */
20681 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20682 bool record_lines_p);
20683
20684 file_entry *current_file ()
20685 {
20686 /* lh->file_names is 0-based, but the file name numbers in the
20687 statement program are 1-based. */
20688 return m_line_header->file_name_at (m_file);
20689 }
20690
20691 /* Record the line in the state machine. END_SEQUENCE is true if
20692 we're processing the end of a sequence. */
20693 void record_line (bool end_sequence);
20694
20695 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20696 nop-out rest of the lines in this sequence. */
20697 void check_line_address (struct dwarf2_cu *cu,
20698 const gdb_byte *line_ptr,
20699 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20700
20701 void handle_set_discriminator (unsigned int discriminator)
20702 {
20703 m_discriminator = discriminator;
20704 m_line_has_non_zero_discriminator |= discriminator != 0;
20705 }
20706
20707 /* Handle DW_LNE_set_address. */
20708 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20709 {
20710 m_op_index = 0;
20711 address += baseaddr;
20712 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20713 }
20714
20715 /* Handle DW_LNS_advance_pc. */
20716 void handle_advance_pc (CORE_ADDR adjust);
20717
20718 /* Handle a special opcode. */
20719 void handle_special_opcode (unsigned char op_code);
20720
20721 /* Handle DW_LNS_advance_line. */
20722 void handle_advance_line (int line_delta)
20723 {
20724 advance_line (line_delta);
20725 }
20726
20727 /* Handle DW_LNS_set_file. */
20728 void handle_set_file (file_name_index file);
20729
20730 /* Handle DW_LNS_negate_stmt. */
20731 void handle_negate_stmt ()
20732 {
20733 m_is_stmt = !m_is_stmt;
20734 }
20735
20736 /* Handle DW_LNS_const_add_pc. */
20737 void handle_const_add_pc ();
20738
20739 /* Handle DW_LNS_fixed_advance_pc. */
20740 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20741 {
20742 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20743 m_op_index = 0;
20744 }
20745
20746 /* Handle DW_LNS_copy. */
20747 void handle_copy ()
20748 {
20749 record_line (false);
20750 m_discriminator = 0;
20751 }
20752
20753 /* Handle DW_LNE_end_sequence. */
20754 void handle_end_sequence ()
20755 {
20756 m_currently_recording_lines = true;
20757 }
20758
20759 private:
20760 /* Advance the line by LINE_DELTA. */
20761 void advance_line (int line_delta)
20762 {
20763 m_line += line_delta;
20764
20765 if (line_delta != 0)
20766 m_line_has_non_zero_discriminator = m_discriminator != 0;
20767 }
20768
20769 struct dwarf2_cu *m_cu;
20770
20771 gdbarch *m_gdbarch;
20772
20773 /* True if we're recording lines.
20774 Otherwise we're building partial symtabs and are just interested in
20775 finding include files mentioned by the line number program. */
20776 bool m_record_lines_p;
20777
20778 /* The line number header. */
20779 line_header *m_line_header;
20780
20781 /* These are part of the standard DWARF line number state machine,
20782 and initialized according to the DWARF spec. */
20783
20784 unsigned char m_op_index = 0;
20785 /* The line table index (1-based) of the current file. */
20786 file_name_index m_file = (file_name_index) 1;
20787 unsigned int m_line = 1;
20788
20789 /* These are initialized in the constructor. */
20790
20791 CORE_ADDR m_address;
20792 bool m_is_stmt;
20793 unsigned int m_discriminator;
20794
20795 /* Additional bits of state we need to track. */
20796
20797 /* The last file that we called dwarf2_start_subfile for.
20798 This is only used for TLLs. */
20799 unsigned int m_last_file = 0;
20800 /* The last file a line number was recorded for. */
20801 struct subfile *m_last_subfile = NULL;
20802
20803 /* When true, record the lines we decode. */
20804 bool m_currently_recording_lines = false;
20805
20806 /* The last line number that was recorded, used to coalesce
20807 consecutive entries for the same line. This can happen, for
20808 example, when discriminators are present. PR 17276. */
20809 unsigned int m_last_line = 0;
20810 bool m_line_has_non_zero_discriminator = false;
20811 };
20812
20813 void
20814 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20815 {
20816 CORE_ADDR addr_adj = (((m_op_index + adjust)
20817 / m_line_header->maximum_ops_per_instruction)
20818 * m_line_header->minimum_instruction_length);
20819 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20820 m_op_index = ((m_op_index + adjust)
20821 % m_line_header->maximum_ops_per_instruction);
20822 }
20823
20824 void
20825 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20826 {
20827 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20828 CORE_ADDR addr_adj = (((m_op_index
20829 + (adj_opcode / m_line_header->line_range))
20830 / m_line_header->maximum_ops_per_instruction)
20831 * m_line_header->minimum_instruction_length);
20832 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20833 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20834 % m_line_header->maximum_ops_per_instruction);
20835
20836 int line_delta = (m_line_header->line_base
20837 + (adj_opcode % m_line_header->line_range));
20838 advance_line (line_delta);
20839 record_line (false);
20840 m_discriminator = 0;
20841 }
20842
20843 void
20844 lnp_state_machine::handle_set_file (file_name_index file)
20845 {
20846 m_file = file;
20847
20848 const file_entry *fe = current_file ();
20849 if (fe == NULL)
20850 dwarf2_debug_line_missing_file_complaint ();
20851 else if (m_record_lines_p)
20852 {
20853 const char *dir = fe->include_dir (m_line_header);
20854
20855 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20856 m_line_has_non_zero_discriminator = m_discriminator != 0;
20857 dwarf2_start_subfile (m_cu, fe->name, dir);
20858 }
20859 }
20860
20861 void
20862 lnp_state_machine::handle_const_add_pc ()
20863 {
20864 CORE_ADDR adjust
20865 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20866
20867 CORE_ADDR addr_adj
20868 = (((m_op_index + adjust)
20869 / m_line_header->maximum_ops_per_instruction)
20870 * m_line_header->minimum_instruction_length);
20871
20872 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20873 m_op_index = ((m_op_index + adjust)
20874 % m_line_header->maximum_ops_per_instruction);
20875 }
20876
20877 /* Return non-zero if we should add LINE to the line number table.
20878 LINE is the line to add, LAST_LINE is the last line that was added,
20879 LAST_SUBFILE is the subfile for LAST_LINE.
20880 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20881 had a non-zero discriminator.
20882
20883 We have to be careful in the presence of discriminators.
20884 E.g., for this line:
20885
20886 for (i = 0; i < 100000; i++);
20887
20888 clang can emit four line number entries for that one line,
20889 each with a different discriminator.
20890 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20891
20892 However, we want gdb to coalesce all four entries into one.
20893 Otherwise the user could stepi into the middle of the line and
20894 gdb would get confused about whether the pc really was in the
20895 middle of the line.
20896
20897 Things are further complicated by the fact that two consecutive
20898 line number entries for the same line is a heuristic used by gcc
20899 to denote the end of the prologue. So we can't just discard duplicate
20900 entries, we have to be selective about it. The heuristic we use is
20901 that we only collapse consecutive entries for the same line if at least
20902 one of those entries has a non-zero discriminator. PR 17276.
20903
20904 Note: Addresses in the line number state machine can never go backwards
20905 within one sequence, thus this coalescing is ok. */
20906
20907 static int
20908 dwarf_record_line_p (struct dwarf2_cu *cu,
20909 unsigned int line, unsigned int last_line,
20910 int line_has_non_zero_discriminator,
20911 struct subfile *last_subfile)
20912 {
20913 if (cu->get_builder ()->get_current_subfile () != last_subfile)
20914 return 1;
20915 if (line != last_line)
20916 return 1;
20917 /* Same line for the same file that we've seen already.
20918 As a last check, for pr 17276, only record the line if the line
20919 has never had a non-zero discriminator. */
20920 if (!line_has_non_zero_discriminator)
20921 return 1;
20922 return 0;
20923 }
20924
20925 /* Use the CU's builder to record line number LINE beginning at
20926 address ADDRESS in the line table of subfile SUBFILE. */
20927
20928 static void
20929 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20930 unsigned int line, CORE_ADDR address,
20931 struct dwarf2_cu *cu)
20932 {
20933 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20934
20935 if (dwarf_line_debug)
20936 {
20937 fprintf_unfiltered (gdb_stdlog,
20938 "Recording line %u, file %s, address %s\n",
20939 line, lbasename (subfile->name),
20940 paddress (gdbarch, address));
20941 }
20942
20943 if (cu != nullptr)
20944 cu->get_builder ()->record_line (subfile, line, addr);
20945 }
20946
20947 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20948 Mark the end of a set of line number records.
20949 The arguments are the same as for dwarf_record_line_1.
20950 If SUBFILE is NULL the request is ignored. */
20951
20952 static void
20953 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20954 CORE_ADDR address, struct dwarf2_cu *cu)
20955 {
20956 if (subfile == NULL)
20957 return;
20958
20959 if (dwarf_line_debug)
20960 {
20961 fprintf_unfiltered (gdb_stdlog,
20962 "Finishing current line, file %s, address %s\n",
20963 lbasename (subfile->name),
20964 paddress (gdbarch, address));
20965 }
20966
20967 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
20968 }
20969
20970 void
20971 lnp_state_machine::record_line (bool end_sequence)
20972 {
20973 if (dwarf_line_debug)
20974 {
20975 fprintf_unfiltered (gdb_stdlog,
20976 "Processing actual line %u: file %u,"
20977 " address %s, is_stmt %u, discrim %u\n",
20978 m_line, to_underlying (m_file),
20979 paddress (m_gdbarch, m_address),
20980 m_is_stmt, m_discriminator);
20981 }
20982
20983 file_entry *fe = current_file ();
20984
20985 if (fe == NULL)
20986 dwarf2_debug_line_missing_file_complaint ();
20987 /* For now we ignore lines not starting on an instruction boundary.
20988 But not when processing end_sequence for compatibility with the
20989 previous version of the code. */
20990 else if (m_op_index == 0 || end_sequence)
20991 {
20992 fe->included_p = 1;
20993 if (m_record_lines_p && (producer_is_codewarrior (m_cu) || m_is_stmt))
20994 {
20995 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
20996 || end_sequence)
20997 {
20998 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20999 m_currently_recording_lines ? m_cu : nullptr);
21000 }
21001
21002 if (!end_sequence)
21003 {
21004 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
21005 m_line_has_non_zero_discriminator,
21006 m_last_subfile))
21007 {
21008 buildsym_compunit *builder = m_cu->get_builder ();
21009 dwarf_record_line_1 (m_gdbarch,
21010 builder->get_current_subfile (),
21011 m_line, m_address,
21012 m_currently_recording_lines ? m_cu : nullptr);
21013 }
21014 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
21015 m_last_line = m_line;
21016 }
21017 }
21018 }
21019 }
21020
21021 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
21022 line_header *lh, bool record_lines_p)
21023 {
21024 m_cu = cu;
21025 m_gdbarch = arch;
21026 m_record_lines_p = record_lines_p;
21027 m_line_header = lh;
21028
21029 m_currently_recording_lines = true;
21030
21031 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
21032 was a line entry for it so that the backend has a chance to adjust it
21033 and also record it in case it needs it. This is currently used by MIPS
21034 code, cf. `mips_adjust_dwarf2_line'. */
21035 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
21036 m_is_stmt = lh->default_is_stmt;
21037 m_discriminator = 0;
21038 }
21039
21040 void
21041 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
21042 const gdb_byte *line_ptr,
21043 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
21044 {
21045 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
21046 the pc range of the CU. However, we restrict the test to only ADDRESS
21047 values of zero to preserve GDB's previous behaviour which is to handle
21048 the specific case of a function being GC'd by the linker. */
21049
21050 if (address == 0 && address < unrelocated_lowpc)
21051 {
21052 /* This line table is for a function which has been
21053 GCd by the linker. Ignore it. PR gdb/12528 */
21054
21055 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21056 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
21057
21058 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
21059 line_offset, objfile_name (objfile));
21060 m_currently_recording_lines = false;
21061 /* Note: m_currently_recording_lines is left as false until we see
21062 DW_LNE_end_sequence. */
21063 }
21064 }
21065
21066 /* Subroutine of dwarf_decode_lines to simplify it.
21067 Process the line number information in LH.
21068 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
21069 program in order to set included_p for every referenced header. */
21070
21071 static void
21072 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
21073 const int decode_for_pst_p, CORE_ADDR lowpc)
21074 {
21075 const gdb_byte *line_ptr, *extended_end;
21076 const gdb_byte *line_end;
21077 unsigned int bytes_read, extended_len;
21078 unsigned char op_code, extended_op;
21079 CORE_ADDR baseaddr;
21080 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21081 bfd *abfd = objfile->obfd;
21082 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21083 /* True if we're recording line info (as opposed to building partial
21084 symtabs and just interested in finding include files mentioned by
21085 the line number program). */
21086 bool record_lines_p = !decode_for_pst_p;
21087
21088 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21089
21090 line_ptr = lh->statement_program_start;
21091 line_end = lh->statement_program_end;
21092
21093 /* Read the statement sequences until there's nothing left. */
21094 while (line_ptr < line_end)
21095 {
21096 /* The DWARF line number program state machine. Reset the state
21097 machine at the start of each sequence. */
21098 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
21099 bool end_sequence = false;
21100
21101 if (record_lines_p)
21102 {
21103 /* Start a subfile for the current file of the state
21104 machine. */
21105 const file_entry *fe = state_machine.current_file ();
21106
21107 if (fe != NULL)
21108 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
21109 }
21110
21111 /* Decode the table. */
21112 while (line_ptr < line_end && !end_sequence)
21113 {
21114 op_code = read_1_byte (abfd, line_ptr);
21115 line_ptr += 1;
21116
21117 if (op_code >= lh->opcode_base)
21118 {
21119 /* Special opcode. */
21120 state_machine.handle_special_opcode (op_code);
21121 }
21122 else switch (op_code)
21123 {
21124 case DW_LNS_extended_op:
21125 extended_len = read_unsigned_leb128 (abfd, line_ptr,
21126 &bytes_read);
21127 line_ptr += bytes_read;
21128 extended_end = line_ptr + extended_len;
21129 extended_op = read_1_byte (abfd, line_ptr);
21130 line_ptr += 1;
21131 switch (extended_op)
21132 {
21133 case DW_LNE_end_sequence:
21134 state_machine.handle_end_sequence ();
21135 end_sequence = true;
21136 break;
21137 case DW_LNE_set_address:
21138 {
21139 CORE_ADDR address
21140 = read_address (abfd, line_ptr, cu, &bytes_read);
21141 line_ptr += bytes_read;
21142
21143 state_machine.check_line_address (cu, line_ptr,
21144 lowpc - baseaddr, address);
21145 state_machine.handle_set_address (baseaddr, address);
21146 }
21147 break;
21148 case DW_LNE_define_file:
21149 {
21150 const char *cur_file;
21151 unsigned int mod_time, length;
21152 dir_index dindex;
21153
21154 cur_file = read_direct_string (abfd, line_ptr,
21155 &bytes_read);
21156 line_ptr += bytes_read;
21157 dindex = (dir_index)
21158 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21159 line_ptr += bytes_read;
21160 mod_time =
21161 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21162 line_ptr += bytes_read;
21163 length =
21164 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21165 line_ptr += bytes_read;
21166 lh->add_file_name (cur_file, dindex, mod_time, length);
21167 }
21168 break;
21169 case DW_LNE_set_discriminator:
21170 {
21171 /* The discriminator is not interesting to the
21172 debugger; just ignore it. We still need to
21173 check its value though:
21174 if there are consecutive entries for the same
21175 (non-prologue) line we want to coalesce them.
21176 PR 17276. */
21177 unsigned int discr
21178 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21179 line_ptr += bytes_read;
21180
21181 state_machine.handle_set_discriminator (discr);
21182 }
21183 break;
21184 default:
21185 complaint (_("mangled .debug_line section"));
21186 return;
21187 }
21188 /* Make sure that we parsed the extended op correctly. If e.g.
21189 we expected a different address size than the producer used,
21190 we may have read the wrong number of bytes. */
21191 if (line_ptr != extended_end)
21192 {
21193 complaint (_("mangled .debug_line section"));
21194 return;
21195 }
21196 break;
21197 case DW_LNS_copy:
21198 state_machine.handle_copy ();
21199 break;
21200 case DW_LNS_advance_pc:
21201 {
21202 CORE_ADDR adjust
21203 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21204 line_ptr += bytes_read;
21205
21206 state_machine.handle_advance_pc (adjust);
21207 }
21208 break;
21209 case DW_LNS_advance_line:
21210 {
21211 int line_delta
21212 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21213 line_ptr += bytes_read;
21214
21215 state_machine.handle_advance_line (line_delta);
21216 }
21217 break;
21218 case DW_LNS_set_file:
21219 {
21220 file_name_index file
21221 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21222 &bytes_read);
21223 line_ptr += bytes_read;
21224
21225 state_machine.handle_set_file (file);
21226 }
21227 break;
21228 case DW_LNS_set_column:
21229 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21230 line_ptr += bytes_read;
21231 break;
21232 case DW_LNS_negate_stmt:
21233 state_machine.handle_negate_stmt ();
21234 break;
21235 case DW_LNS_set_basic_block:
21236 break;
21237 /* Add to the address register of the state machine the
21238 address increment value corresponding to special opcode
21239 255. I.e., this value is scaled by the minimum
21240 instruction length since special opcode 255 would have
21241 scaled the increment. */
21242 case DW_LNS_const_add_pc:
21243 state_machine.handle_const_add_pc ();
21244 break;
21245 case DW_LNS_fixed_advance_pc:
21246 {
21247 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21248 line_ptr += 2;
21249
21250 state_machine.handle_fixed_advance_pc (addr_adj);
21251 }
21252 break;
21253 default:
21254 {
21255 /* Unknown standard opcode, ignore it. */
21256 int i;
21257
21258 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21259 {
21260 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21261 line_ptr += bytes_read;
21262 }
21263 }
21264 }
21265 }
21266
21267 if (!end_sequence)
21268 dwarf2_debug_line_missing_end_sequence_complaint ();
21269
21270 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21271 in which case we still finish recording the last line). */
21272 state_machine.record_line (true);
21273 }
21274 }
21275
21276 /* Decode the Line Number Program (LNP) for the given line_header
21277 structure and CU. The actual information extracted and the type
21278 of structures created from the LNP depends on the value of PST.
21279
21280 1. If PST is NULL, then this procedure uses the data from the program
21281 to create all necessary symbol tables, and their linetables.
21282
21283 2. If PST is not NULL, this procedure reads the program to determine
21284 the list of files included by the unit represented by PST, and
21285 builds all the associated partial symbol tables.
21286
21287 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21288 It is used for relative paths in the line table.
21289 NOTE: When processing partial symtabs (pst != NULL),
21290 comp_dir == pst->dirname.
21291
21292 NOTE: It is important that psymtabs have the same file name (via strcmp)
21293 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21294 symtab we don't use it in the name of the psymtabs we create.
21295 E.g. expand_line_sal requires this when finding psymtabs to expand.
21296 A good testcase for this is mb-inline.exp.
21297
21298 LOWPC is the lowest address in CU (or 0 if not known).
21299
21300 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21301 for its PC<->lines mapping information. Otherwise only the filename
21302 table is read in. */
21303
21304 static void
21305 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21306 struct dwarf2_cu *cu, struct partial_symtab *pst,
21307 CORE_ADDR lowpc, int decode_mapping)
21308 {
21309 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21310 const int decode_for_pst_p = (pst != NULL);
21311
21312 if (decode_mapping)
21313 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21314
21315 if (decode_for_pst_p)
21316 {
21317 int file_index;
21318
21319 /* Now that we're done scanning the Line Header Program, we can
21320 create the psymtab of each included file. */
21321 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21322 if (lh->file_names[file_index].included_p == 1)
21323 {
21324 gdb::unique_xmalloc_ptr<char> name_holder;
21325 const char *include_name =
21326 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21327 &name_holder);
21328 if (include_name != NULL)
21329 dwarf2_create_include_psymtab (include_name, pst, objfile);
21330 }
21331 }
21332 else
21333 {
21334 /* Make sure a symtab is created for every file, even files
21335 which contain only variables (i.e. no code with associated
21336 line numbers). */
21337 buildsym_compunit *builder = cu->get_builder ();
21338 struct compunit_symtab *cust = builder->get_compunit_symtab ();
21339 int i;
21340
21341 for (i = 0; i < lh->file_names.size (); i++)
21342 {
21343 file_entry &fe = lh->file_names[i];
21344
21345 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
21346
21347 if (builder->get_current_subfile ()->symtab == NULL)
21348 {
21349 builder->get_current_subfile ()->symtab
21350 = allocate_symtab (cust,
21351 builder->get_current_subfile ()->name);
21352 }
21353 fe.symtab = builder->get_current_subfile ()->symtab;
21354 }
21355 }
21356 }
21357
21358 /* Start a subfile for DWARF. FILENAME is the name of the file and
21359 DIRNAME the name of the source directory which contains FILENAME
21360 or NULL if not known.
21361 This routine tries to keep line numbers from identical absolute and
21362 relative file names in a common subfile.
21363
21364 Using the `list' example from the GDB testsuite, which resides in
21365 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21366 of /srcdir/list0.c yields the following debugging information for list0.c:
21367
21368 DW_AT_name: /srcdir/list0.c
21369 DW_AT_comp_dir: /compdir
21370 files.files[0].name: list0.h
21371 files.files[0].dir: /srcdir
21372 files.files[1].name: list0.c
21373 files.files[1].dir: /srcdir
21374
21375 The line number information for list0.c has to end up in a single
21376 subfile, so that `break /srcdir/list0.c:1' works as expected.
21377 start_subfile will ensure that this happens provided that we pass the
21378 concatenation of files.files[1].dir and files.files[1].name as the
21379 subfile's name. */
21380
21381 static void
21382 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21383 const char *dirname)
21384 {
21385 char *copy = NULL;
21386
21387 /* In order not to lose the line information directory,
21388 we concatenate it to the filename when it makes sense.
21389 Note that the Dwarf3 standard says (speaking of filenames in line
21390 information): ``The directory index is ignored for file names
21391 that represent full path names''. Thus ignoring dirname in the
21392 `else' branch below isn't an issue. */
21393
21394 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21395 {
21396 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21397 filename = copy;
21398 }
21399
21400 cu->get_builder ()->start_subfile (filename);
21401
21402 if (copy != NULL)
21403 xfree (copy);
21404 }
21405
21406 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21407 buildsym_compunit constructor. */
21408
21409 struct compunit_symtab *
21410 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
21411 CORE_ADDR low_pc)
21412 {
21413 gdb_assert (m_builder == nullptr);
21414
21415 m_builder.reset (new struct buildsym_compunit
21416 (per_cu->dwarf2_per_objfile->objfile,
21417 name, comp_dir, language, low_pc));
21418
21419 list_in_scope = get_builder ()->get_file_symbols ();
21420
21421 get_builder ()->record_debugformat ("DWARF 2");
21422 get_builder ()->record_producer (producer);
21423
21424 processing_has_namespace_info = false;
21425
21426 return get_builder ()->get_compunit_symtab ();
21427 }
21428
21429 static void
21430 var_decode_location (struct attribute *attr, struct symbol *sym,
21431 struct dwarf2_cu *cu)
21432 {
21433 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21434 struct comp_unit_head *cu_header = &cu->header;
21435
21436 /* NOTE drow/2003-01-30: There used to be a comment and some special
21437 code here to turn a symbol with DW_AT_external and a
21438 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21439 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21440 with some versions of binutils) where shared libraries could have
21441 relocations against symbols in their debug information - the
21442 minimal symbol would have the right address, but the debug info
21443 would not. It's no longer necessary, because we will explicitly
21444 apply relocations when we read in the debug information now. */
21445
21446 /* A DW_AT_location attribute with no contents indicates that a
21447 variable has been optimized away. */
21448 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21449 {
21450 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21451 return;
21452 }
21453
21454 /* Handle one degenerate form of location expression specially, to
21455 preserve GDB's previous behavior when section offsets are
21456 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
21457 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
21458
21459 if (attr_form_is_block (attr)
21460 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21461 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21462 || ((DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21463 || DW_BLOCK (attr)->data[0] == DW_OP_addrx)
21464 && (DW_BLOCK (attr)->size
21465 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21466 {
21467 unsigned int dummy;
21468
21469 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21470 SYMBOL_VALUE_ADDRESS (sym) =
21471 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21472 else
21473 SYMBOL_VALUE_ADDRESS (sym) =
21474 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21475 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21476 fixup_symbol_section (sym, objfile);
21477 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21478 SYMBOL_SECTION (sym));
21479 return;
21480 }
21481
21482 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21483 expression evaluator, and use LOC_COMPUTED only when necessary
21484 (i.e. when the value of a register or memory location is
21485 referenced, or a thread-local block, etc.). Then again, it might
21486 not be worthwhile. I'm assuming that it isn't unless performance
21487 or memory numbers show me otherwise. */
21488
21489 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21490
21491 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21492 cu->has_loclist = true;
21493 }
21494
21495 /* Given a pointer to a DWARF information entry, figure out if we need
21496 to make a symbol table entry for it, and if so, create a new entry
21497 and return a pointer to it.
21498 If TYPE is NULL, determine symbol type from the die, otherwise
21499 used the passed type.
21500 If SPACE is not NULL, use it to hold the new symbol. If it is
21501 NULL, allocate a new symbol on the objfile's obstack. */
21502
21503 static struct symbol *
21504 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21505 struct symbol *space)
21506 {
21507 struct dwarf2_per_objfile *dwarf2_per_objfile
21508 = cu->per_cu->dwarf2_per_objfile;
21509 struct objfile *objfile = dwarf2_per_objfile->objfile;
21510 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21511 struct symbol *sym = NULL;
21512 const char *name;
21513 struct attribute *attr = NULL;
21514 struct attribute *attr2 = NULL;
21515 CORE_ADDR baseaddr;
21516 struct pending **list_to_add = NULL;
21517
21518 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21519
21520 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21521
21522 name = dwarf2_name (die, cu);
21523 if (name)
21524 {
21525 const char *linkagename;
21526 int suppress_add = 0;
21527
21528 if (space)
21529 sym = space;
21530 else
21531 sym = allocate_symbol (objfile);
21532 OBJSTAT (objfile, n_syms++);
21533
21534 /* Cache this symbol's name and the name's demangled form (if any). */
21535 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21536 linkagename = dwarf2_physname (name, die, cu);
21537 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21538
21539 /* Fortran does not have mangling standard and the mangling does differ
21540 between gfortran, iFort etc. */
21541 if (cu->language == language_fortran
21542 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21543 symbol_set_demangled_name (&(sym->ginfo),
21544 dwarf2_full_name (name, die, cu),
21545 NULL);
21546
21547 /* Default assumptions.
21548 Use the passed type or decode it from the die. */
21549 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21550 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21551 if (type != NULL)
21552 SYMBOL_TYPE (sym) = type;
21553 else
21554 SYMBOL_TYPE (sym) = die_type (die, cu);
21555 attr = dwarf2_attr (die,
21556 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21557 cu);
21558 if (attr)
21559 {
21560 SYMBOL_LINE (sym) = DW_UNSND (attr);
21561 }
21562
21563 attr = dwarf2_attr (die,
21564 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21565 cu);
21566 if (attr)
21567 {
21568 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21569 struct file_entry *fe;
21570
21571 if (cu->line_header != NULL)
21572 fe = cu->line_header->file_name_at (file_index);
21573 else
21574 fe = NULL;
21575
21576 if (fe == NULL)
21577 complaint (_("file index out of range"));
21578 else
21579 symbol_set_symtab (sym, fe->symtab);
21580 }
21581
21582 switch (die->tag)
21583 {
21584 case DW_TAG_label:
21585 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21586 if (attr)
21587 {
21588 CORE_ADDR addr;
21589
21590 addr = attr_value_as_address (attr);
21591 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21592 SYMBOL_VALUE_ADDRESS (sym) = addr;
21593 }
21594 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21595 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21596 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21597 add_symbol_to_list (sym, cu->list_in_scope);
21598 break;
21599 case DW_TAG_subprogram:
21600 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21601 finish_block. */
21602 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21603 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21604 if ((attr2 && (DW_UNSND (attr2) != 0))
21605 || cu->language == language_ada)
21606 {
21607 /* Subprograms marked external are stored as a global symbol.
21608 Ada subprograms, whether marked external or not, are always
21609 stored as a global symbol, because we want to be able to
21610 access them globally. For instance, we want to be able
21611 to break on a nested subprogram without having to
21612 specify the context. */
21613 list_to_add = cu->get_builder ()->get_global_symbols ();
21614 }
21615 else
21616 {
21617 list_to_add = cu->list_in_scope;
21618 }
21619 break;
21620 case DW_TAG_inlined_subroutine:
21621 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21622 finish_block. */
21623 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21624 SYMBOL_INLINED (sym) = 1;
21625 list_to_add = cu->list_in_scope;
21626 break;
21627 case DW_TAG_template_value_param:
21628 suppress_add = 1;
21629 /* Fall through. */
21630 case DW_TAG_constant:
21631 case DW_TAG_variable:
21632 case DW_TAG_member:
21633 /* Compilation with minimal debug info may result in
21634 variables with missing type entries. Change the
21635 misleading `void' type to something sensible. */
21636 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21637 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21638
21639 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21640 /* In the case of DW_TAG_member, we should only be called for
21641 static const members. */
21642 if (die->tag == DW_TAG_member)
21643 {
21644 /* dwarf2_add_field uses die_is_declaration,
21645 so we do the same. */
21646 gdb_assert (die_is_declaration (die, cu));
21647 gdb_assert (attr);
21648 }
21649 if (attr)
21650 {
21651 dwarf2_const_value (attr, sym, cu);
21652 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21653 if (!suppress_add)
21654 {
21655 if (attr2 && (DW_UNSND (attr2) != 0))
21656 list_to_add = cu->get_builder ()->get_global_symbols ();
21657 else
21658 list_to_add = cu->list_in_scope;
21659 }
21660 break;
21661 }
21662 attr = dwarf2_attr (die, DW_AT_location, cu);
21663 if (attr)
21664 {
21665 var_decode_location (attr, sym, cu);
21666 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21667
21668 /* Fortran explicitly imports any global symbols to the local
21669 scope by DW_TAG_common_block. */
21670 if (cu->language == language_fortran && die->parent
21671 && die->parent->tag == DW_TAG_common_block)
21672 attr2 = NULL;
21673
21674 if (SYMBOL_CLASS (sym) == LOC_STATIC
21675 && SYMBOL_VALUE_ADDRESS (sym) == 0
21676 && !dwarf2_per_objfile->has_section_at_zero)
21677 {
21678 /* When a static variable is eliminated by the linker,
21679 the corresponding debug information is not stripped
21680 out, but the variable address is set to null;
21681 do not add such variables into symbol table. */
21682 }
21683 else if (attr2 && (DW_UNSND (attr2) != 0))
21684 {
21685 /* Workaround gfortran PR debug/40040 - it uses
21686 DW_AT_location for variables in -fPIC libraries which may
21687 get overriden by other libraries/executable and get
21688 a different address. Resolve it by the minimal symbol
21689 which may come from inferior's executable using copy
21690 relocation. Make this workaround only for gfortran as for
21691 other compilers GDB cannot guess the minimal symbol
21692 Fortran mangling kind. */
21693 if (cu->language == language_fortran && die->parent
21694 && die->parent->tag == DW_TAG_module
21695 && cu->producer
21696 && startswith (cu->producer, "GNU Fortran"))
21697 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21698
21699 /* A variable with DW_AT_external is never static,
21700 but it may be block-scoped. */
21701 list_to_add
21702 = ((cu->list_in_scope
21703 == cu->get_builder ()->get_file_symbols ())
21704 ? cu->get_builder ()->get_global_symbols ()
21705 : cu->list_in_scope);
21706 }
21707 else
21708 list_to_add = cu->list_in_scope;
21709 }
21710 else
21711 {
21712 /* We do not know the address of this symbol.
21713 If it is an external symbol and we have type information
21714 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21715 The address of the variable will then be determined from
21716 the minimal symbol table whenever the variable is
21717 referenced. */
21718 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21719
21720 /* Fortran explicitly imports any global symbols to the local
21721 scope by DW_TAG_common_block. */
21722 if (cu->language == language_fortran && die->parent
21723 && die->parent->tag == DW_TAG_common_block)
21724 {
21725 /* SYMBOL_CLASS doesn't matter here because
21726 read_common_block is going to reset it. */
21727 if (!suppress_add)
21728 list_to_add = cu->list_in_scope;
21729 }
21730 else if (attr2 && (DW_UNSND (attr2) != 0)
21731 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21732 {
21733 /* A variable with DW_AT_external is never static, but it
21734 may be block-scoped. */
21735 list_to_add
21736 = ((cu->list_in_scope
21737 == cu->get_builder ()->get_file_symbols ())
21738 ? cu->get_builder ()->get_global_symbols ()
21739 : cu->list_in_scope);
21740
21741 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21742 }
21743 else if (!die_is_declaration (die, cu))
21744 {
21745 /* Use the default LOC_OPTIMIZED_OUT class. */
21746 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21747 if (!suppress_add)
21748 list_to_add = cu->list_in_scope;
21749 }
21750 }
21751 break;
21752 case DW_TAG_formal_parameter:
21753 {
21754 /* If we are inside a function, mark this as an argument. If
21755 not, we might be looking at an argument to an inlined function
21756 when we do not have enough information to show inlined frames;
21757 pretend it's a local variable in that case so that the user can
21758 still see it. */
21759 struct context_stack *curr
21760 = cu->get_builder ()->get_current_context_stack ();
21761 if (curr != nullptr && curr->name != nullptr)
21762 SYMBOL_IS_ARGUMENT (sym) = 1;
21763 attr = dwarf2_attr (die, DW_AT_location, cu);
21764 if (attr)
21765 {
21766 var_decode_location (attr, sym, cu);
21767 }
21768 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21769 if (attr)
21770 {
21771 dwarf2_const_value (attr, sym, cu);
21772 }
21773
21774 list_to_add = cu->list_in_scope;
21775 }
21776 break;
21777 case DW_TAG_unspecified_parameters:
21778 /* From varargs functions; gdb doesn't seem to have any
21779 interest in this information, so just ignore it for now.
21780 (FIXME?) */
21781 break;
21782 case DW_TAG_template_type_param:
21783 suppress_add = 1;
21784 /* Fall through. */
21785 case DW_TAG_class_type:
21786 case DW_TAG_interface_type:
21787 case DW_TAG_structure_type:
21788 case DW_TAG_union_type:
21789 case DW_TAG_set_type:
21790 case DW_TAG_enumeration_type:
21791 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21792 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21793
21794 {
21795 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21796 really ever be static objects: otherwise, if you try
21797 to, say, break of a class's method and you're in a file
21798 which doesn't mention that class, it won't work unless
21799 the check for all static symbols in lookup_symbol_aux
21800 saves you. See the OtherFileClass tests in
21801 gdb.c++/namespace.exp. */
21802
21803 if (!suppress_add)
21804 {
21805 buildsym_compunit *builder = cu->get_builder ();
21806 list_to_add
21807 = (cu->list_in_scope == builder->get_file_symbols ()
21808 && cu->language == language_cplus
21809 ? builder->get_global_symbols ()
21810 : cu->list_in_scope);
21811
21812 /* The semantics of C++ state that "struct foo {
21813 ... }" also defines a typedef for "foo". */
21814 if (cu->language == language_cplus
21815 || cu->language == language_ada
21816 || cu->language == language_d
21817 || cu->language == language_rust)
21818 {
21819 /* The symbol's name is already allocated along
21820 with this objfile, so we don't need to
21821 duplicate it for the type. */
21822 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21823 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21824 }
21825 }
21826 }
21827 break;
21828 case DW_TAG_typedef:
21829 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21830 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21831 list_to_add = cu->list_in_scope;
21832 break;
21833 case DW_TAG_base_type:
21834 case DW_TAG_subrange_type:
21835 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21836 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21837 list_to_add = cu->list_in_scope;
21838 break;
21839 case DW_TAG_enumerator:
21840 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21841 if (attr)
21842 {
21843 dwarf2_const_value (attr, sym, cu);
21844 }
21845 {
21846 /* NOTE: carlton/2003-11-10: See comment above in the
21847 DW_TAG_class_type, etc. block. */
21848
21849 list_to_add
21850 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
21851 && cu->language == language_cplus
21852 ? cu->get_builder ()->get_global_symbols ()
21853 : cu->list_in_scope);
21854 }
21855 break;
21856 case DW_TAG_imported_declaration:
21857 case DW_TAG_namespace:
21858 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21859 list_to_add = cu->get_builder ()->get_global_symbols ();
21860 break;
21861 case DW_TAG_module:
21862 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21863 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21864 list_to_add = cu->get_builder ()->get_global_symbols ();
21865 break;
21866 case DW_TAG_common_block:
21867 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21868 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21869 add_symbol_to_list (sym, cu->list_in_scope);
21870 break;
21871 default:
21872 /* Not a tag we recognize. Hopefully we aren't processing
21873 trash data, but since we must specifically ignore things
21874 we don't recognize, there is nothing else we should do at
21875 this point. */
21876 complaint (_("unsupported tag: '%s'"),
21877 dwarf_tag_name (die->tag));
21878 break;
21879 }
21880
21881 if (suppress_add)
21882 {
21883 sym->hash_next = objfile->template_symbols;
21884 objfile->template_symbols = sym;
21885 list_to_add = NULL;
21886 }
21887
21888 if (list_to_add != NULL)
21889 add_symbol_to_list (sym, list_to_add);
21890
21891 /* For the benefit of old versions of GCC, check for anonymous
21892 namespaces based on the demangled name. */
21893 if (!cu->processing_has_namespace_info
21894 && cu->language == language_cplus)
21895 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
21896 }
21897 return (sym);
21898 }
21899
21900 /* Given an attr with a DW_FORM_dataN value in host byte order,
21901 zero-extend it as appropriate for the symbol's type. The DWARF
21902 standard (v4) is not entirely clear about the meaning of using
21903 DW_FORM_dataN for a constant with a signed type, where the type is
21904 wider than the data. The conclusion of a discussion on the DWARF
21905 list was that this is unspecified. We choose to always zero-extend
21906 because that is the interpretation long in use by GCC. */
21907
21908 static gdb_byte *
21909 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21910 struct dwarf2_cu *cu, LONGEST *value, int bits)
21911 {
21912 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21913 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21914 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21915 LONGEST l = DW_UNSND (attr);
21916
21917 if (bits < sizeof (*value) * 8)
21918 {
21919 l &= ((LONGEST) 1 << bits) - 1;
21920 *value = l;
21921 }
21922 else if (bits == sizeof (*value) * 8)
21923 *value = l;
21924 else
21925 {
21926 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21927 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21928 return bytes;
21929 }
21930
21931 return NULL;
21932 }
21933
21934 /* Read a constant value from an attribute. Either set *VALUE, or if
21935 the value does not fit in *VALUE, set *BYTES - either already
21936 allocated on the objfile obstack, or newly allocated on OBSTACK,
21937 or, set *BATON, if we translated the constant to a location
21938 expression. */
21939
21940 static void
21941 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21942 const char *name, struct obstack *obstack,
21943 struct dwarf2_cu *cu,
21944 LONGEST *value, const gdb_byte **bytes,
21945 struct dwarf2_locexpr_baton **baton)
21946 {
21947 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21948 struct comp_unit_head *cu_header = &cu->header;
21949 struct dwarf_block *blk;
21950 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21951 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21952
21953 *value = 0;
21954 *bytes = NULL;
21955 *baton = NULL;
21956
21957 switch (attr->form)
21958 {
21959 case DW_FORM_addr:
21960 case DW_FORM_addrx:
21961 case DW_FORM_GNU_addr_index:
21962 {
21963 gdb_byte *data;
21964
21965 if (TYPE_LENGTH (type) != cu_header->addr_size)
21966 dwarf2_const_value_length_mismatch_complaint (name,
21967 cu_header->addr_size,
21968 TYPE_LENGTH (type));
21969 /* Symbols of this form are reasonably rare, so we just
21970 piggyback on the existing location code rather than writing
21971 a new implementation of symbol_computed_ops. */
21972 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21973 (*baton)->per_cu = cu->per_cu;
21974 gdb_assert ((*baton)->per_cu);
21975
21976 (*baton)->size = 2 + cu_header->addr_size;
21977 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21978 (*baton)->data = data;
21979
21980 data[0] = DW_OP_addr;
21981 store_unsigned_integer (&data[1], cu_header->addr_size,
21982 byte_order, DW_ADDR (attr));
21983 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21984 }
21985 break;
21986 case DW_FORM_string:
21987 case DW_FORM_strp:
21988 case DW_FORM_strx:
21989 case DW_FORM_GNU_str_index:
21990 case DW_FORM_GNU_strp_alt:
21991 /* DW_STRING is already allocated on the objfile obstack, point
21992 directly to it. */
21993 *bytes = (const gdb_byte *) DW_STRING (attr);
21994 break;
21995 case DW_FORM_block1:
21996 case DW_FORM_block2:
21997 case DW_FORM_block4:
21998 case DW_FORM_block:
21999 case DW_FORM_exprloc:
22000 case DW_FORM_data16:
22001 blk = DW_BLOCK (attr);
22002 if (TYPE_LENGTH (type) != blk->size)
22003 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
22004 TYPE_LENGTH (type));
22005 *bytes = blk->data;
22006 break;
22007
22008 /* The DW_AT_const_value attributes are supposed to carry the
22009 symbol's value "represented as it would be on the target
22010 architecture." By the time we get here, it's already been
22011 converted to host endianness, so we just need to sign- or
22012 zero-extend it as appropriate. */
22013 case DW_FORM_data1:
22014 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
22015 break;
22016 case DW_FORM_data2:
22017 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
22018 break;
22019 case DW_FORM_data4:
22020 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
22021 break;
22022 case DW_FORM_data8:
22023 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
22024 break;
22025
22026 case DW_FORM_sdata:
22027 case DW_FORM_implicit_const:
22028 *value = DW_SND (attr);
22029 break;
22030
22031 case DW_FORM_udata:
22032 *value = DW_UNSND (attr);
22033 break;
22034
22035 default:
22036 complaint (_("unsupported const value attribute form: '%s'"),
22037 dwarf_form_name (attr->form));
22038 *value = 0;
22039 break;
22040 }
22041 }
22042
22043
22044 /* Copy constant value from an attribute to a symbol. */
22045
22046 static void
22047 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
22048 struct dwarf2_cu *cu)
22049 {
22050 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22051 LONGEST value;
22052 const gdb_byte *bytes;
22053 struct dwarf2_locexpr_baton *baton;
22054
22055 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
22056 SYMBOL_PRINT_NAME (sym),
22057 &objfile->objfile_obstack, cu,
22058 &value, &bytes, &baton);
22059
22060 if (baton != NULL)
22061 {
22062 SYMBOL_LOCATION_BATON (sym) = baton;
22063 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
22064 }
22065 else if (bytes != NULL)
22066 {
22067 SYMBOL_VALUE_BYTES (sym) = bytes;
22068 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
22069 }
22070 else
22071 {
22072 SYMBOL_VALUE (sym) = value;
22073 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
22074 }
22075 }
22076
22077 /* Return the type of the die in question using its DW_AT_type attribute. */
22078
22079 static struct type *
22080 die_type (struct die_info *die, struct dwarf2_cu *cu)
22081 {
22082 struct attribute *type_attr;
22083
22084 type_attr = dwarf2_attr (die, DW_AT_type, cu);
22085 if (!type_attr)
22086 {
22087 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22088 /* A missing DW_AT_type represents a void type. */
22089 return objfile_type (objfile)->builtin_void;
22090 }
22091
22092 return lookup_die_type (die, type_attr, cu);
22093 }
22094
22095 /* True iff CU's producer generates GNAT Ada auxiliary information
22096 that allows to find parallel types through that information instead
22097 of having to do expensive parallel lookups by type name. */
22098
22099 static int
22100 need_gnat_info (struct dwarf2_cu *cu)
22101 {
22102 /* Assume that the Ada compiler was GNAT, which always produces
22103 the auxiliary information. */
22104 return (cu->language == language_ada);
22105 }
22106
22107 /* Return the auxiliary type of the die in question using its
22108 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
22109 attribute is not present. */
22110
22111 static struct type *
22112 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
22113 {
22114 struct attribute *type_attr;
22115
22116 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
22117 if (!type_attr)
22118 return NULL;
22119
22120 return lookup_die_type (die, type_attr, cu);
22121 }
22122
22123 /* If DIE has a descriptive_type attribute, then set the TYPE's
22124 descriptive type accordingly. */
22125
22126 static void
22127 set_descriptive_type (struct type *type, struct die_info *die,
22128 struct dwarf2_cu *cu)
22129 {
22130 struct type *descriptive_type = die_descriptive_type (die, cu);
22131
22132 if (descriptive_type)
22133 {
22134 ALLOCATE_GNAT_AUX_TYPE (type);
22135 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
22136 }
22137 }
22138
22139 /* Return the containing type of the die in question using its
22140 DW_AT_containing_type attribute. */
22141
22142 static struct type *
22143 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
22144 {
22145 struct attribute *type_attr;
22146 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22147
22148 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
22149 if (!type_attr)
22150 error (_("Dwarf Error: Problem turning containing type into gdb type "
22151 "[in module %s]"), objfile_name (objfile));
22152
22153 return lookup_die_type (die, type_attr, cu);
22154 }
22155
22156 /* Return an error marker type to use for the ill formed type in DIE/CU. */
22157
22158 static struct type *
22159 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
22160 {
22161 struct dwarf2_per_objfile *dwarf2_per_objfile
22162 = cu->per_cu->dwarf2_per_objfile;
22163 struct objfile *objfile = dwarf2_per_objfile->objfile;
22164 char *saved;
22165
22166 std::string message
22167 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
22168 objfile_name (objfile),
22169 sect_offset_str (cu->header.sect_off),
22170 sect_offset_str (die->sect_off));
22171 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
22172 message.c_str (), message.length ());
22173
22174 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
22175 }
22176
22177 /* Look up the type of DIE in CU using its type attribute ATTR.
22178 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
22179 DW_AT_containing_type.
22180 If there is no type substitute an error marker. */
22181
22182 static struct type *
22183 lookup_die_type (struct die_info *die, const struct attribute *attr,
22184 struct dwarf2_cu *cu)
22185 {
22186 struct dwarf2_per_objfile *dwarf2_per_objfile
22187 = cu->per_cu->dwarf2_per_objfile;
22188 struct objfile *objfile = dwarf2_per_objfile->objfile;
22189 struct type *this_type;
22190
22191 gdb_assert (attr->name == DW_AT_type
22192 || attr->name == DW_AT_GNAT_descriptive_type
22193 || attr->name == DW_AT_containing_type);
22194
22195 /* First see if we have it cached. */
22196
22197 if (attr->form == DW_FORM_GNU_ref_alt)
22198 {
22199 struct dwarf2_per_cu_data *per_cu;
22200 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22201
22202 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
22203 dwarf2_per_objfile);
22204 this_type = get_die_type_at_offset (sect_off, per_cu);
22205 }
22206 else if (attr_form_is_ref (attr))
22207 {
22208 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22209
22210 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
22211 }
22212 else if (attr->form == DW_FORM_ref_sig8)
22213 {
22214 ULONGEST signature = DW_SIGNATURE (attr);
22215
22216 return get_signatured_type (die, signature, cu);
22217 }
22218 else
22219 {
22220 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
22221 " at %s [in module %s]"),
22222 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22223 objfile_name (objfile));
22224 return build_error_marker_type (cu, die);
22225 }
22226
22227 /* If not cached we need to read it in. */
22228
22229 if (this_type == NULL)
22230 {
22231 struct die_info *type_die = NULL;
22232 struct dwarf2_cu *type_cu = cu;
22233
22234 if (attr_form_is_ref (attr))
22235 type_die = follow_die_ref (die, attr, &type_cu);
22236 if (type_die == NULL)
22237 return build_error_marker_type (cu, die);
22238 /* If we find the type now, it's probably because the type came
22239 from an inter-CU reference and the type's CU got expanded before
22240 ours. */
22241 this_type = read_type_die (type_die, type_cu);
22242 }
22243
22244 /* If we still don't have a type use an error marker. */
22245
22246 if (this_type == NULL)
22247 return build_error_marker_type (cu, die);
22248
22249 return this_type;
22250 }
22251
22252 /* Return the type in DIE, CU.
22253 Returns NULL for invalid types.
22254
22255 This first does a lookup in die_type_hash,
22256 and only reads the die in if necessary.
22257
22258 NOTE: This can be called when reading in partial or full symbols. */
22259
22260 static struct type *
22261 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22262 {
22263 struct type *this_type;
22264
22265 this_type = get_die_type (die, cu);
22266 if (this_type)
22267 return this_type;
22268
22269 return read_type_die_1 (die, cu);
22270 }
22271
22272 /* Read the type in DIE, CU.
22273 Returns NULL for invalid types. */
22274
22275 static struct type *
22276 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22277 {
22278 struct type *this_type = NULL;
22279
22280 switch (die->tag)
22281 {
22282 case DW_TAG_class_type:
22283 case DW_TAG_interface_type:
22284 case DW_TAG_structure_type:
22285 case DW_TAG_union_type:
22286 this_type = read_structure_type (die, cu);
22287 break;
22288 case DW_TAG_enumeration_type:
22289 this_type = read_enumeration_type (die, cu);
22290 break;
22291 case DW_TAG_subprogram:
22292 case DW_TAG_subroutine_type:
22293 case DW_TAG_inlined_subroutine:
22294 this_type = read_subroutine_type (die, cu);
22295 break;
22296 case DW_TAG_array_type:
22297 this_type = read_array_type (die, cu);
22298 break;
22299 case DW_TAG_set_type:
22300 this_type = read_set_type (die, cu);
22301 break;
22302 case DW_TAG_pointer_type:
22303 this_type = read_tag_pointer_type (die, cu);
22304 break;
22305 case DW_TAG_ptr_to_member_type:
22306 this_type = read_tag_ptr_to_member_type (die, cu);
22307 break;
22308 case DW_TAG_reference_type:
22309 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22310 break;
22311 case DW_TAG_rvalue_reference_type:
22312 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22313 break;
22314 case DW_TAG_const_type:
22315 this_type = read_tag_const_type (die, cu);
22316 break;
22317 case DW_TAG_volatile_type:
22318 this_type = read_tag_volatile_type (die, cu);
22319 break;
22320 case DW_TAG_restrict_type:
22321 this_type = read_tag_restrict_type (die, cu);
22322 break;
22323 case DW_TAG_string_type:
22324 this_type = read_tag_string_type (die, cu);
22325 break;
22326 case DW_TAG_typedef:
22327 this_type = read_typedef (die, cu);
22328 break;
22329 case DW_TAG_subrange_type:
22330 this_type = read_subrange_type (die, cu);
22331 break;
22332 case DW_TAG_base_type:
22333 this_type = read_base_type (die, cu);
22334 break;
22335 case DW_TAG_unspecified_type:
22336 this_type = read_unspecified_type (die, cu);
22337 break;
22338 case DW_TAG_namespace:
22339 this_type = read_namespace_type (die, cu);
22340 break;
22341 case DW_TAG_module:
22342 this_type = read_module_type (die, cu);
22343 break;
22344 case DW_TAG_atomic_type:
22345 this_type = read_tag_atomic_type (die, cu);
22346 break;
22347 default:
22348 complaint (_("unexpected tag in read_type_die: '%s'"),
22349 dwarf_tag_name (die->tag));
22350 break;
22351 }
22352
22353 return this_type;
22354 }
22355
22356 /* See if we can figure out if the class lives in a namespace. We do
22357 this by looking for a member function; its demangled name will
22358 contain namespace info, if there is any.
22359 Return the computed name or NULL.
22360 Space for the result is allocated on the objfile's obstack.
22361 This is the full-die version of guess_partial_die_structure_name.
22362 In this case we know DIE has no useful parent. */
22363
22364 static char *
22365 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22366 {
22367 struct die_info *spec_die;
22368 struct dwarf2_cu *spec_cu;
22369 struct die_info *child;
22370 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22371
22372 spec_cu = cu;
22373 spec_die = die_specification (die, &spec_cu);
22374 if (spec_die != NULL)
22375 {
22376 die = spec_die;
22377 cu = spec_cu;
22378 }
22379
22380 for (child = die->child;
22381 child != NULL;
22382 child = child->sibling)
22383 {
22384 if (child->tag == DW_TAG_subprogram)
22385 {
22386 const char *linkage_name = dw2_linkage_name (child, cu);
22387
22388 if (linkage_name != NULL)
22389 {
22390 char *actual_name
22391 = language_class_name_from_physname (cu->language_defn,
22392 linkage_name);
22393 char *name = NULL;
22394
22395 if (actual_name != NULL)
22396 {
22397 const char *die_name = dwarf2_name (die, cu);
22398
22399 if (die_name != NULL
22400 && strcmp (die_name, actual_name) != 0)
22401 {
22402 /* Strip off the class name from the full name.
22403 We want the prefix. */
22404 int die_name_len = strlen (die_name);
22405 int actual_name_len = strlen (actual_name);
22406
22407 /* Test for '::' as a sanity check. */
22408 if (actual_name_len > die_name_len + 2
22409 && actual_name[actual_name_len
22410 - die_name_len - 1] == ':')
22411 name = (char *) obstack_copy0 (
22412 &objfile->per_bfd->storage_obstack,
22413 actual_name, actual_name_len - die_name_len - 2);
22414 }
22415 }
22416 xfree (actual_name);
22417 return name;
22418 }
22419 }
22420 }
22421
22422 return NULL;
22423 }
22424
22425 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22426 prefix part in such case. See
22427 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22428
22429 static const char *
22430 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22431 {
22432 struct attribute *attr;
22433 const char *base;
22434
22435 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22436 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22437 return NULL;
22438
22439 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22440 return NULL;
22441
22442 attr = dw2_linkage_name_attr (die, cu);
22443 if (attr == NULL || DW_STRING (attr) == NULL)
22444 return NULL;
22445
22446 /* dwarf2_name had to be already called. */
22447 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22448
22449 /* Strip the base name, keep any leading namespaces/classes. */
22450 base = strrchr (DW_STRING (attr), ':');
22451 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22452 return "";
22453
22454 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22455 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22456 DW_STRING (attr),
22457 &base[-1] - DW_STRING (attr));
22458 }
22459
22460 /* Return the name of the namespace/class that DIE is defined within,
22461 or "" if we can't tell. The caller should not xfree the result.
22462
22463 For example, if we're within the method foo() in the following
22464 code:
22465
22466 namespace N {
22467 class C {
22468 void foo () {
22469 }
22470 };
22471 }
22472
22473 then determine_prefix on foo's die will return "N::C". */
22474
22475 static const char *
22476 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22477 {
22478 struct dwarf2_per_objfile *dwarf2_per_objfile
22479 = cu->per_cu->dwarf2_per_objfile;
22480 struct die_info *parent, *spec_die;
22481 struct dwarf2_cu *spec_cu;
22482 struct type *parent_type;
22483 const char *retval;
22484
22485 if (cu->language != language_cplus
22486 && cu->language != language_fortran && cu->language != language_d
22487 && cu->language != language_rust)
22488 return "";
22489
22490 retval = anonymous_struct_prefix (die, cu);
22491 if (retval)
22492 return retval;
22493
22494 /* We have to be careful in the presence of DW_AT_specification.
22495 For example, with GCC 3.4, given the code
22496
22497 namespace N {
22498 void foo() {
22499 // Definition of N::foo.
22500 }
22501 }
22502
22503 then we'll have a tree of DIEs like this:
22504
22505 1: DW_TAG_compile_unit
22506 2: DW_TAG_namespace // N
22507 3: DW_TAG_subprogram // declaration of N::foo
22508 4: DW_TAG_subprogram // definition of N::foo
22509 DW_AT_specification // refers to die #3
22510
22511 Thus, when processing die #4, we have to pretend that we're in
22512 the context of its DW_AT_specification, namely the contex of die
22513 #3. */
22514 spec_cu = cu;
22515 spec_die = die_specification (die, &spec_cu);
22516 if (spec_die == NULL)
22517 parent = die->parent;
22518 else
22519 {
22520 parent = spec_die->parent;
22521 cu = spec_cu;
22522 }
22523
22524 if (parent == NULL)
22525 return "";
22526 else if (parent->building_fullname)
22527 {
22528 const char *name;
22529 const char *parent_name;
22530
22531 /* It has been seen on RealView 2.2 built binaries,
22532 DW_TAG_template_type_param types actually _defined_ as
22533 children of the parent class:
22534
22535 enum E {};
22536 template class <class Enum> Class{};
22537 Class<enum E> class_e;
22538
22539 1: DW_TAG_class_type (Class)
22540 2: DW_TAG_enumeration_type (E)
22541 3: DW_TAG_enumerator (enum1:0)
22542 3: DW_TAG_enumerator (enum2:1)
22543 ...
22544 2: DW_TAG_template_type_param
22545 DW_AT_type DW_FORM_ref_udata (E)
22546
22547 Besides being broken debug info, it can put GDB into an
22548 infinite loop. Consider:
22549
22550 When we're building the full name for Class<E>, we'll start
22551 at Class, and go look over its template type parameters,
22552 finding E. We'll then try to build the full name of E, and
22553 reach here. We're now trying to build the full name of E,
22554 and look over the parent DIE for containing scope. In the
22555 broken case, if we followed the parent DIE of E, we'd again
22556 find Class, and once again go look at its template type
22557 arguments, etc., etc. Simply don't consider such parent die
22558 as source-level parent of this die (it can't be, the language
22559 doesn't allow it), and break the loop here. */
22560 name = dwarf2_name (die, cu);
22561 parent_name = dwarf2_name (parent, cu);
22562 complaint (_("template param type '%s' defined within parent '%s'"),
22563 name ? name : "<unknown>",
22564 parent_name ? parent_name : "<unknown>");
22565 return "";
22566 }
22567 else
22568 switch (parent->tag)
22569 {
22570 case DW_TAG_namespace:
22571 parent_type = read_type_die (parent, cu);
22572 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22573 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22574 Work around this problem here. */
22575 if (cu->language == language_cplus
22576 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22577 return "";
22578 /* We give a name to even anonymous namespaces. */
22579 return TYPE_NAME (parent_type);
22580 case DW_TAG_class_type:
22581 case DW_TAG_interface_type:
22582 case DW_TAG_structure_type:
22583 case DW_TAG_union_type:
22584 case DW_TAG_module:
22585 parent_type = read_type_die (parent, cu);
22586 if (TYPE_NAME (parent_type) != NULL)
22587 return TYPE_NAME (parent_type);
22588 else
22589 /* An anonymous structure is only allowed non-static data
22590 members; no typedefs, no member functions, et cetera.
22591 So it does not need a prefix. */
22592 return "";
22593 case DW_TAG_compile_unit:
22594 case DW_TAG_partial_unit:
22595 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22596 if (cu->language == language_cplus
22597 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22598 && die->child != NULL
22599 && (die->tag == DW_TAG_class_type
22600 || die->tag == DW_TAG_structure_type
22601 || die->tag == DW_TAG_union_type))
22602 {
22603 char *name = guess_full_die_structure_name (die, cu);
22604 if (name != NULL)
22605 return name;
22606 }
22607 return "";
22608 case DW_TAG_enumeration_type:
22609 parent_type = read_type_die (parent, cu);
22610 if (TYPE_DECLARED_CLASS (parent_type))
22611 {
22612 if (TYPE_NAME (parent_type) != NULL)
22613 return TYPE_NAME (parent_type);
22614 return "";
22615 }
22616 /* Fall through. */
22617 default:
22618 return determine_prefix (parent, cu);
22619 }
22620 }
22621
22622 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22623 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22624 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22625 an obconcat, otherwise allocate storage for the result. The CU argument is
22626 used to determine the language and hence, the appropriate separator. */
22627
22628 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22629
22630 static char *
22631 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22632 int physname, struct dwarf2_cu *cu)
22633 {
22634 const char *lead = "";
22635 const char *sep;
22636
22637 if (suffix == NULL || suffix[0] == '\0'
22638 || prefix == NULL || prefix[0] == '\0')
22639 sep = "";
22640 else if (cu->language == language_d)
22641 {
22642 /* For D, the 'main' function could be defined in any module, but it
22643 should never be prefixed. */
22644 if (strcmp (suffix, "D main") == 0)
22645 {
22646 prefix = "";
22647 sep = "";
22648 }
22649 else
22650 sep = ".";
22651 }
22652 else if (cu->language == language_fortran && physname)
22653 {
22654 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22655 DW_AT_MIPS_linkage_name is preferred and used instead. */
22656
22657 lead = "__";
22658 sep = "_MOD_";
22659 }
22660 else
22661 sep = "::";
22662
22663 if (prefix == NULL)
22664 prefix = "";
22665 if (suffix == NULL)
22666 suffix = "";
22667
22668 if (obs == NULL)
22669 {
22670 char *retval
22671 = ((char *)
22672 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22673
22674 strcpy (retval, lead);
22675 strcat (retval, prefix);
22676 strcat (retval, sep);
22677 strcat (retval, suffix);
22678 return retval;
22679 }
22680 else
22681 {
22682 /* We have an obstack. */
22683 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22684 }
22685 }
22686
22687 /* Return sibling of die, NULL if no sibling. */
22688
22689 static struct die_info *
22690 sibling_die (struct die_info *die)
22691 {
22692 return die->sibling;
22693 }
22694
22695 /* Get name of a die, return NULL if not found. */
22696
22697 static const char *
22698 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22699 struct obstack *obstack)
22700 {
22701 if (name && cu->language == language_cplus)
22702 {
22703 std::string canon_name = cp_canonicalize_string (name);
22704
22705 if (!canon_name.empty ())
22706 {
22707 if (canon_name != name)
22708 name = (const char *) obstack_copy0 (obstack,
22709 canon_name.c_str (),
22710 canon_name.length ());
22711 }
22712 }
22713
22714 return name;
22715 }
22716
22717 /* Get name of a die, return NULL if not found.
22718 Anonymous namespaces are converted to their magic string. */
22719
22720 static const char *
22721 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22722 {
22723 struct attribute *attr;
22724 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22725
22726 attr = dwarf2_attr (die, DW_AT_name, cu);
22727 if ((!attr || !DW_STRING (attr))
22728 && die->tag != DW_TAG_namespace
22729 && die->tag != DW_TAG_class_type
22730 && die->tag != DW_TAG_interface_type
22731 && die->tag != DW_TAG_structure_type
22732 && die->tag != DW_TAG_union_type)
22733 return NULL;
22734
22735 switch (die->tag)
22736 {
22737 case DW_TAG_compile_unit:
22738 case DW_TAG_partial_unit:
22739 /* Compilation units have a DW_AT_name that is a filename, not
22740 a source language identifier. */
22741 case DW_TAG_enumeration_type:
22742 case DW_TAG_enumerator:
22743 /* These tags always have simple identifiers already; no need
22744 to canonicalize them. */
22745 return DW_STRING (attr);
22746
22747 case DW_TAG_namespace:
22748 if (attr != NULL && DW_STRING (attr) != NULL)
22749 return DW_STRING (attr);
22750 return CP_ANONYMOUS_NAMESPACE_STR;
22751
22752 case DW_TAG_class_type:
22753 case DW_TAG_interface_type:
22754 case DW_TAG_structure_type:
22755 case DW_TAG_union_type:
22756 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22757 structures or unions. These were of the form "._%d" in GCC 4.1,
22758 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22759 and GCC 4.4. We work around this problem by ignoring these. */
22760 if (attr && DW_STRING (attr)
22761 && (startswith (DW_STRING (attr), "._")
22762 || startswith (DW_STRING (attr), "<anonymous")))
22763 return NULL;
22764
22765 /* GCC might emit a nameless typedef that has a linkage name. See
22766 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22767 if (!attr || DW_STRING (attr) == NULL)
22768 {
22769 char *demangled = NULL;
22770
22771 attr = dw2_linkage_name_attr (die, cu);
22772 if (attr == NULL || DW_STRING (attr) == NULL)
22773 return NULL;
22774
22775 /* Avoid demangling DW_STRING (attr) the second time on a second
22776 call for the same DIE. */
22777 if (!DW_STRING_IS_CANONICAL (attr))
22778 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22779
22780 if (demangled)
22781 {
22782 const char *base;
22783
22784 /* FIXME: we already did this for the partial symbol... */
22785 DW_STRING (attr)
22786 = ((const char *)
22787 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22788 demangled, strlen (demangled)));
22789 DW_STRING_IS_CANONICAL (attr) = 1;
22790 xfree (demangled);
22791
22792 /* Strip any leading namespaces/classes, keep only the base name.
22793 DW_AT_name for named DIEs does not contain the prefixes. */
22794 base = strrchr (DW_STRING (attr), ':');
22795 if (base && base > DW_STRING (attr) && base[-1] == ':')
22796 return &base[1];
22797 else
22798 return DW_STRING (attr);
22799 }
22800 }
22801 break;
22802
22803 default:
22804 break;
22805 }
22806
22807 if (!DW_STRING_IS_CANONICAL (attr))
22808 {
22809 DW_STRING (attr)
22810 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22811 &objfile->per_bfd->storage_obstack);
22812 DW_STRING_IS_CANONICAL (attr) = 1;
22813 }
22814 return DW_STRING (attr);
22815 }
22816
22817 /* Return the die that this die in an extension of, or NULL if there
22818 is none. *EXT_CU is the CU containing DIE on input, and the CU
22819 containing the return value on output. */
22820
22821 static struct die_info *
22822 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22823 {
22824 struct attribute *attr;
22825
22826 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22827 if (attr == NULL)
22828 return NULL;
22829
22830 return follow_die_ref (die, attr, ext_cu);
22831 }
22832
22833 /* A convenience function that returns an "unknown" DWARF name,
22834 including the value of V. STR is the name of the entity being
22835 printed, e.g., "TAG". */
22836
22837 static const char *
22838 dwarf_unknown (const char *str, unsigned v)
22839 {
22840 char *cell = get_print_cell ();
22841 xsnprintf (cell, PRINT_CELL_SIZE, "DW_%s_<unknown: %u>", str, v);
22842 return cell;
22843 }
22844
22845 /* Convert a DIE tag into its string name. */
22846
22847 static const char *
22848 dwarf_tag_name (unsigned tag)
22849 {
22850 const char *name = get_DW_TAG_name (tag);
22851
22852 if (name == NULL)
22853 return dwarf_unknown ("TAG", tag);
22854
22855 return name;
22856 }
22857
22858 /* Convert a DWARF attribute code into its string name. */
22859
22860 static const char *
22861 dwarf_attr_name (unsigned attr)
22862 {
22863 const char *name;
22864
22865 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22866 if (attr == DW_AT_MIPS_fde)
22867 return "DW_AT_MIPS_fde";
22868 #else
22869 if (attr == DW_AT_HP_block_index)
22870 return "DW_AT_HP_block_index";
22871 #endif
22872
22873 name = get_DW_AT_name (attr);
22874
22875 if (name == NULL)
22876 return dwarf_unknown ("AT", attr);
22877
22878 return name;
22879 }
22880
22881 /* Convert a DWARF value form code into its string name. */
22882
22883 static const char *
22884 dwarf_form_name (unsigned form)
22885 {
22886 const char *name = get_DW_FORM_name (form);
22887
22888 if (name == NULL)
22889 return dwarf_unknown ("FORM", form);
22890
22891 return name;
22892 }
22893
22894 static const char *
22895 dwarf_bool_name (unsigned mybool)
22896 {
22897 if (mybool)
22898 return "TRUE";
22899 else
22900 return "FALSE";
22901 }
22902
22903 /* Convert a DWARF type code into its string name. */
22904
22905 static const char *
22906 dwarf_type_encoding_name (unsigned enc)
22907 {
22908 const char *name = get_DW_ATE_name (enc);
22909
22910 if (name == NULL)
22911 return dwarf_unknown ("ATE", enc);
22912
22913 return name;
22914 }
22915
22916 static void
22917 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22918 {
22919 unsigned int i;
22920
22921 print_spaces (indent, f);
22922 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22923 dwarf_tag_name (die->tag), die->abbrev,
22924 sect_offset_str (die->sect_off));
22925
22926 if (die->parent != NULL)
22927 {
22928 print_spaces (indent, f);
22929 fprintf_unfiltered (f, " parent at offset: %s\n",
22930 sect_offset_str (die->parent->sect_off));
22931 }
22932
22933 print_spaces (indent, f);
22934 fprintf_unfiltered (f, " has children: %s\n",
22935 dwarf_bool_name (die->child != NULL));
22936
22937 print_spaces (indent, f);
22938 fprintf_unfiltered (f, " attributes:\n");
22939
22940 for (i = 0; i < die->num_attrs; ++i)
22941 {
22942 print_spaces (indent, f);
22943 fprintf_unfiltered (f, " %s (%s) ",
22944 dwarf_attr_name (die->attrs[i].name),
22945 dwarf_form_name (die->attrs[i].form));
22946
22947 switch (die->attrs[i].form)
22948 {
22949 case DW_FORM_addr:
22950 case DW_FORM_addrx:
22951 case DW_FORM_GNU_addr_index:
22952 fprintf_unfiltered (f, "address: ");
22953 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22954 break;
22955 case DW_FORM_block2:
22956 case DW_FORM_block4:
22957 case DW_FORM_block:
22958 case DW_FORM_block1:
22959 fprintf_unfiltered (f, "block: size %s",
22960 pulongest (DW_BLOCK (&die->attrs[i])->size));
22961 break;
22962 case DW_FORM_exprloc:
22963 fprintf_unfiltered (f, "expression: size %s",
22964 pulongest (DW_BLOCK (&die->attrs[i])->size));
22965 break;
22966 case DW_FORM_data16:
22967 fprintf_unfiltered (f, "constant of 16 bytes");
22968 break;
22969 case DW_FORM_ref_addr:
22970 fprintf_unfiltered (f, "ref address: ");
22971 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22972 break;
22973 case DW_FORM_GNU_ref_alt:
22974 fprintf_unfiltered (f, "alt ref address: ");
22975 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22976 break;
22977 case DW_FORM_ref1:
22978 case DW_FORM_ref2:
22979 case DW_FORM_ref4:
22980 case DW_FORM_ref8:
22981 case DW_FORM_ref_udata:
22982 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22983 (long) (DW_UNSND (&die->attrs[i])));
22984 break;
22985 case DW_FORM_data1:
22986 case DW_FORM_data2:
22987 case DW_FORM_data4:
22988 case DW_FORM_data8:
22989 case DW_FORM_udata:
22990 case DW_FORM_sdata:
22991 fprintf_unfiltered (f, "constant: %s",
22992 pulongest (DW_UNSND (&die->attrs[i])));
22993 break;
22994 case DW_FORM_sec_offset:
22995 fprintf_unfiltered (f, "section offset: %s",
22996 pulongest (DW_UNSND (&die->attrs[i])));
22997 break;
22998 case DW_FORM_ref_sig8:
22999 fprintf_unfiltered (f, "signature: %s",
23000 hex_string (DW_SIGNATURE (&die->attrs[i])));
23001 break;
23002 case DW_FORM_string:
23003 case DW_FORM_strp:
23004 case DW_FORM_line_strp:
23005 case DW_FORM_strx:
23006 case DW_FORM_GNU_str_index:
23007 case DW_FORM_GNU_strp_alt:
23008 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
23009 DW_STRING (&die->attrs[i])
23010 ? DW_STRING (&die->attrs[i]) : "",
23011 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
23012 break;
23013 case DW_FORM_flag:
23014 if (DW_UNSND (&die->attrs[i]))
23015 fprintf_unfiltered (f, "flag: TRUE");
23016 else
23017 fprintf_unfiltered (f, "flag: FALSE");
23018 break;
23019 case DW_FORM_flag_present:
23020 fprintf_unfiltered (f, "flag: TRUE");
23021 break;
23022 case DW_FORM_indirect:
23023 /* The reader will have reduced the indirect form to
23024 the "base form" so this form should not occur. */
23025 fprintf_unfiltered (f,
23026 "unexpected attribute form: DW_FORM_indirect");
23027 break;
23028 case DW_FORM_implicit_const:
23029 fprintf_unfiltered (f, "constant: %s",
23030 plongest (DW_SND (&die->attrs[i])));
23031 break;
23032 default:
23033 fprintf_unfiltered (f, "unsupported attribute form: %d.",
23034 die->attrs[i].form);
23035 break;
23036 }
23037 fprintf_unfiltered (f, "\n");
23038 }
23039 }
23040
23041 static void
23042 dump_die_for_error (struct die_info *die)
23043 {
23044 dump_die_shallow (gdb_stderr, 0, die);
23045 }
23046
23047 static void
23048 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
23049 {
23050 int indent = level * 4;
23051
23052 gdb_assert (die != NULL);
23053
23054 if (level >= max_level)
23055 return;
23056
23057 dump_die_shallow (f, indent, die);
23058
23059 if (die->child != NULL)
23060 {
23061 print_spaces (indent, f);
23062 fprintf_unfiltered (f, " Children:");
23063 if (level + 1 < max_level)
23064 {
23065 fprintf_unfiltered (f, "\n");
23066 dump_die_1 (f, level + 1, max_level, die->child);
23067 }
23068 else
23069 {
23070 fprintf_unfiltered (f,
23071 " [not printed, max nesting level reached]\n");
23072 }
23073 }
23074
23075 if (die->sibling != NULL && level > 0)
23076 {
23077 dump_die_1 (f, level, max_level, die->sibling);
23078 }
23079 }
23080
23081 /* This is called from the pdie macro in gdbinit.in.
23082 It's not static so gcc will keep a copy callable from gdb. */
23083
23084 void
23085 dump_die (struct die_info *die, int max_level)
23086 {
23087 dump_die_1 (gdb_stdlog, 0, max_level, die);
23088 }
23089
23090 static void
23091 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
23092 {
23093 void **slot;
23094
23095 slot = htab_find_slot_with_hash (cu->die_hash, die,
23096 to_underlying (die->sect_off),
23097 INSERT);
23098
23099 *slot = die;
23100 }
23101
23102 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
23103 required kind. */
23104
23105 static sect_offset
23106 dwarf2_get_ref_die_offset (const struct attribute *attr)
23107 {
23108 if (attr_form_is_ref (attr))
23109 return (sect_offset) DW_UNSND (attr);
23110
23111 complaint (_("unsupported die ref attribute form: '%s'"),
23112 dwarf_form_name (attr->form));
23113 return {};
23114 }
23115
23116 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
23117 * the value held by the attribute is not constant. */
23118
23119 static LONGEST
23120 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
23121 {
23122 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
23123 return DW_SND (attr);
23124 else if (attr->form == DW_FORM_udata
23125 || attr->form == DW_FORM_data1
23126 || attr->form == DW_FORM_data2
23127 || attr->form == DW_FORM_data4
23128 || attr->form == DW_FORM_data8)
23129 return DW_UNSND (attr);
23130 else
23131 {
23132 /* For DW_FORM_data16 see attr_form_is_constant. */
23133 complaint (_("Attribute value is not a constant (%s)"),
23134 dwarf_form_name (attr->form));
23135 return default_value;
23136 }
23137 }
23138
23139 /* Follow reference or signature attribute ATTR of SRC_DIE.
23140 On entry *REF_CU is the CU of SRC_DIE.
23141 On exit *REF_CU is the CU of the result. */
23142
23143 static struct die_info *
23144 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
23145 struct dwarf2_cu **ref_cu)
23146 {
23147 struct die_info *die;
23148
23149 if (attr_form_is_ref (attr))
23150 die = follow_die_ref (src_die, attr, ref_cu);
23151 else if (attr->form == DW_FORM_ref_sig8)
23152 die = follow_die_sig (src_die, attr, ref_cu);
23153 else
23154 {
23155 dump_die_for_error (src_die);
23156 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
23157 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23158 }
23159
23160 return die;
23161 }
23162
23163 /* Follow reference OFFSET.
23164 On entry *REF_CU is the CU of the source die referencing OFFSET.
23165 On exit *REF_CU is the CU of the result.
23166 Returns NULL if OFFSET is invalid. */
23167
23168 static struct die_info *
23169 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
23170 struct dwarf2_cu **ref_cu)
23171 {
23172 struct die_info temp_die;
23173 struct dwarf2_cu *target_cu, *cu = *ref_cu;
23174 struct dwarf2_per_objfile *dwarf2_per_objfile
23175 = cu->per_cu->dwarf2_per_objfile;
23176
23177 gdb_assert (cu->per_cu != NULL);
23178
23179 target_cu = cu;
23180
23181 if (cu->per_cu->is_debug_types)
23182 {
23183 /* .debug_types CUs cannot reference anything outside their CU.
23184 If they need to, they have to reference a signatured type via
23185 DW_FORM_ref_sig8. */
23186 if (!offset_in_cu_p (&cu->header, sect_off))
23187 return NULL;
23188 }
23189 else if (offset_in_dwz != cu->per_cu->is_dwz
23190 || !offset_in_cu_p (&cu->header, sect_off))
23191 {
23192 struct dwarf2_per_cu_data *per_cu;
23193
23194 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23195 dwarf2_per_objfile);
23196
23197 /* If necessary, add it to the queue and load its DIEs. */
23198 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
23199 load_full_comp_unit (per_cu, false, cu->language);
23200
23201 target_cu = per_cu->cu;
23202 }
23203 else if (cu->dies == NULL)
23204 {
23205 /* We're loading full DIEs during partial symbol reading. */
23206 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
23207 load_full_comp_unit (cu->per_cu, false, language_minimal);
23208 }
23209
23210 *ref_cu = target_cu;
23211 temp_die.sect_off = sect_off;
23212
23213 if (target_cu != cu)
23214 target_cu->ancestor = cu;
23215
23216 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
23217 &temp_die,
23218 to_underlying (sect_off));
23219 }
23220
23221 /* Follow reference attribute ATTR of SRC_DIE.
23222 On entry *REF_CU is the CU of SRC_DIE.
23223 On exit *REF_CU is the CU of the result. */
23224
23225 static struct die_info *
23226 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
23227 struct dwarf2_cu **ref_cu)
23228 {
23229 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
23230 struct dwarf2_cu *cu = *ref_cu;
23231 struct die_info *die;
23232
23233 die = follow_die_offset (sect_off,
23234 (attr->form == DW_FORM_GNU_ref_alt
23235 || cu->per_cu->is_dwz),
23236 ref_cu);
23237 if (!die)
23238 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23239 "at %s [in module %s]"),
23240 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
23241 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
23242
23243 return die;
23244 }
23245
23246 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
23247 Returned value is intended for DW_OP_call*. Returned
23248 dwarf2_locexpr_baton->data has lifetime of
23249 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
23250
23251 struct dwarf2_locexpr_baton
23252 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
23253 struct dwarf2_per_cu_data *per_cu,
23254 CORE_ADDR (*get_frame_pc) (void *baton),
23255 void *baton, bool resolve_abstract_p)
23256 {
23257 struct dwarf2_cu *cu;
23258 struct die_info *die;
23259 struct attribute *attr;
23260 struct dwarf2_locexpr_baton retval;
23261 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23262 struct objfile *objfile = dwarf2_per_objfile->objfile;
23263
23264 if (per_cu->cu == NULL)
23265 load_cu (per_cu, false);
23266 cu = per_cu->cu;
23267 if (cu == NULL)
23268 {
23269 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23270 Instead just throw an error, not much else we can do. */
23271 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23272 sect_offset_str (sect_off), objfile_name (objfile));
23273 }
23274
23275 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23276 if (!die)
23277 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23278 sect_offset_str (sect_off), objfile_name (objfile));
23279
23280 attr = dwarf2_attr (die, DW_AT_location, cu);
23281 if (!attr && resolve_abstract_p
23282 && (dwarf2_per_objfile->abstract_to_concrete.find (die)
23283 != dwarf2_per_objfile->abstract_to_concrete.end ()))
23284 {
23285 CORE_ADDR pc = (*get_frame_pc) (baton);
23286
23287 for (const auto &cand : dwarf2_per_objfile->abstract_to_concrete[die])
23288 {
23289 if (!cand->parent
23290 || cand->parent->tag != DW_TAG_subprogram)
23291 continue;
23292
23293 CORE_ADDR pc_low, pc_high;
23294 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
23295 if (pc_low == ((CORE_ADDR) -1)
23296 || !(pc_low <= pc && pc < pc_high))
23297 continue;
23298
23299 die = cand;
23300 attr = dwarf2_attr (die, DW_AT_location, cu);
23301 break;
23302 }
23303 }
23304
23305 if (!attr)
23306 {
23307 /* DWARF: "If there is no such attribute, then there is no effect.".
23308 DATA is ignored if SIZE is 0. */
23309
23310 retval.data = NULL;
23311 retval.size = 0;
23312 }
23313 else if (attr_form_is_section_offset (attr))
23314 {
23315 struct dwarf2_loclist_baton loclist_baton;
23316 CORE_ADDR pc = (*get_frame_pc) (baton);
23317 size_t size;
23318
23319 fill_in_loclist_baton (cu, &loclist_baton, attr);
23320
23321 retval.data = dwarf2_find_location_expression (&loclist_baton,
23322 &size, pc);
23323 retval.size = size;
23324 }
23325 else
23326 {
23327 if (!attr_form_is_block (attr))
23328 error (_("Dwarf Error: DIE at %s referenced in module %s "
23329 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23330 sect_offset_str (sect_off), objfile_name (objfile));
23331
23332 retval.data = DW_BLOCK (attr)->data;
23333 retval.size = DW_BLOCK (attr)->size;
23334 }
23335 retval.per_cu = cu->per_cu;
23336
23337 age_cached_comp_units (dwarf2_per_objfile);
23338
23339 return retval;
23340 }
23341
23342 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23343 offset. */
23344
23345 struct dwarf2_locexpr_baton
23346 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23347 struct dwarf2_per_cu_data *per_cu,
23348 CORE_ADDR (*get_frame_pc) (void *baton),
23349 void *baton)
23350 {
23351 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23352
23353 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23354 }
23355
23356 /* Write a constant of a given type as target-ordered bytes into
23357 OBSTACK. */
23358
23359 static const gdb_byte *
23360 write_constant_as_bytes (struct obstack *obstack,
23361 enum bfd_endian byte_order,
23362 struct type *type,
23363 ULONGEST value,
23364 LONGEST *len)
23365 {
23366 gdb_byte *result;
23367
23368 *len = TYPE_LENGTH (type);
23369 result = (gdb_byte *) obstack_alloc (obstack, *len);
23370 store_unsigned_integer (result, *len, byte_order, value);
23371
23372 return result;
23373 }
23374
23375 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23376 pointer to the constant bytes and set LEN to the length of the
23377 data. If memory is needed, allocate it on OBSTACK. If the DIE
23378 does not have a DW_AT_const_value, return NULL. */
23379
23380 const gdb_byte *
23381 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23382 struct dwarf2_per_cu_data *per_cu,
23383 struct obstack *obstack,
23384 LONGEST *len)
23385 {
23386 struct dwarf2_cu *cu;
23387 struct die_info *die;
23388 struct attribute *attr;
23389 const gdb_byte *result = NULL;
23390 struct type *type;
23391 LONGEST value;
23392 enum bfd_endian byte_order;
23393 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23394
23395 if (per_cu->cu == NULL)
23396 load_cu (per_cu, false);
23397 cu = per_cu->cu;
23398 if (cu == NULL)
23399 {
23400 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23401 Instead just throw an error, not much else we can do. */
23402 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23403 sect_offset_str (sect_off), objfile_name (objfile));
23404 }
23405
23406 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23407 if (!die)
23408 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23409 sect_offset_str (sect_off), objfile_name (objfile));
23410
23411 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23412 if (attr == NULL)
23413 return NULL;
23414
23415 byte_order = (bfd_big_endian (objfile->obfd)
23416 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23417
23418 switch (attr->form)
23419 {
23420 case DW_FORM_addr:
23421 case DW_FORM_addrx:
23422 case DW_FORM_GNU_addr_index:
23423 {
23424 gdb_byte *tem;
23425
23426 *len = cu->header.addr_size;
23427 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23428 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23429 result = tem;
23430 }
23431 break;
23432 case DW_FORM_string:
23433 case DW_FORM_strp:
23434 case DW_FORM_strx:
23435 case DW_FORM_GNU_str_index:
23436 case DW_FORM_GNU_strp_alt:
23437 /* DW_STRING is already allocated on the objfile obstack, point
23438 directly to it. */
23439 result = (const gdb_byte *) DW_STRING (attr);
23440 *len = strlen (DW_STRING (attr));
23441 break;
23442 case DW_FORM_block1:
23443 case DW_FORM_block2:
23444 case DW_FORM_block4:
23445 case DW_FORM_block:
23446 case DW_FORM_exprloc:
23447 case DW_FORM_data16:
23448 result = DW_BLOCK (attr)->data;
23449 *len = DW_BLOCK (attr)->size;
23450 break;
23451
23452 /* The DW_AT_const_value attributes are supposed to carry the
23453 symbol's value "represented as it would be on the target
23454 architecture." By the time we get here, it's already been
23455 converted to host endianness, so we just need to sign- or
23456 zero-extend it as appropriate. */
23457 case DW_FORM_data1:
23458 type = die_type (die, cu);
23459 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23460 if (result == NULL)
23461 result = write_constant_as_bytes (obstack, byte_order,
23462 type, value, len);
23463 break;
23464 case DW_FORM_data2:
23465 type = die_type (die, cu);
23466 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23467 if (result == NULL)
23468 result = write_constant_as_bytes (obstack, byte_order,
23469 type, value, len);
23470 break;
23471 case DW_FORM_data4:
23472 type = die_type (die, cu);
23473 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23474 if (result == NULL)
23475 result = write_constant_as_bytes (obstack, byte_order,
23476 type, value, len);
23477 break;
23478 case DW_FORM_data8:
23479 type = die_type (die, cu);
23480 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23481 if (result == NULL)
23482 result = write_constant_as_bytes (obstack, byte_order,
23483 type, value, len);
23484 break;
23485
23486 case DW_FORM_sdata:
23487 case DW_FORM_implicit_const:
23488 type = die_type (die, cu);
23489 result = write_constant_as_bytes (obstack, byte_order,
23490 type, DW_SND (attr), len);
23491 break;
23492
23493 case DW_FORM_udata:
23494 type = die_type (die, cu);
23495 result = write_constant_as_bytes (obstack, byte_order,
23496 type, DW_UNSND (attr), len);
23497 break;
23498
23499 default:
23500 complaint (_("unsupported const value attribute form: '%s'"),
23501 dwarf_form_name (attr->form));
23502 break;
23503 }
23504
23505 return result;
23506 }
23507
23508 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23509 valid type for this die is found. */
23510
23511 struct type *
23512 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23513 struct dwarf2_per_cu_data *per_cu)
23514 {
23515 struct dwarf2_cu *cu;
23516 struct die_info *die;
23517
23518 if (per_cu->cu == NULL)
23519 load_cu (per_cu, false);
23520 cu = per_cu->cu;
23521 if (!cu)
23522 return NULL;
23523
23524 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23525 if (!die)
23526 return NULL;
23527
23528 return die_type (die, cu);
23529 }
23530
23531 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23532 PER_CU. */
23533
23534 struct type *
23535 dwarf2_get_die_type (cu_offset die_offset,
23536 struct dwarf2_per_cu_data *per_cu)
23537 {
23538 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23539 return get_die_type_at_offset (die_offset_sect, per_cu);
23540 }
23541
23542 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23543 On entry *REF_CU is the CU of SRC_DIE.
23544 On exit *REF_CU is the CU of the result.
23545 Returns NULL if the referenced DIE isn't found. */
23546
23547 static struct die_info *
23548 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23549 struct dwarf2_cu **ref_cu)
23550 {
23551 struct die_info temp_die;
23552 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
23553 struct die_info *die;
23554
23555 /* While it might be nice to assert sig_type->type == NULL here,
23556 we can get here for DW_AT_imported_declaration where we need
23557 the DIE not the type. */
23558
23559 /* If necessary, add it to the queue and load its DIEs. */
23560
23561 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23562 read_signatured_type (sig_type);
23563
23564 sig_cu = sig_type->per_cu.cu;
23565 gdb_assert (sig_cu != NULL);
23566 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23567 temp_die.sect_off = sig_type->type_offset_in_section;
23568 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23569 to_underlying (temp_die.sect_off));
23570 if (die)
23571 {
23572 struct dwarf2_per_objfile *dwarf2_per_objfile
23573 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23574
23575 /* For .gdb_index version 7 keep track of included TUs.
23576 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23577 if (dwarf2_per_objfile->index_table != NULL
23578 && dwarf2_per_objfile->index_table->version <= 7)
23579 {
23580 VEC_safe_push (dwarf2_per_cu_ptr,
23581 (*ref_cu)->per_cu->imported_symtabs,
23582 sig_cu->per_cu);
23583 }
23584
23585 *ref_cu = sig_cu;
23586 if (sig_cu != cu)
23587 sig_cu->ancestor = cu;
23588
23589 return die;
23590 }
23591
23592 return NULL;
23593 }
23594
23595 /* Follow signatured type referenced by ATTR in SRC_DIE.
23596 On entry *REF_CU is the CU of SRC_DIE.
23597 On exit *REF_CU is the CU of the result.
23598 The result is the DIE of the type.
23599 If the referenced type cannot be found an error is thrown. */
23600
23601 static struct die_info *
23602 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23603 struct dwarf2_cu **ref_cu)
23604 {
23605 ULONGEST signature = DW_SIGNATURE (attr);
23606 struct signatured_type *sig_type;
23607 struct die_info *die;
23608
23609 gdb_assert (attr->form == DW_FORM_ref_sig8);
23610
23611 sig_type = lookup_signatured_type (*ref_cu, signature);
23612 /* sig_type will be NULL if the signatured type is missing from
23613 the debug info. */
23614 if (sig_type == NULL)
23615 {
23616 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23617 " from DIE at %s [in module %s]"),
23618 hex_string (signature), sect_offset_str (src_die->sect_off),
23619 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23620 }
23621
23622 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23623 if (die == NULL)
23624 {
23625 dump_die_for_error (src_die);
23626 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23627 " from DIE at %s [in module %s]"),
23628 hex_string (signature), sect_offset_str (src_die->sect_off),
23629 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23630 }
23631
23632 return die;
23633 }
23634
23635 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23636 reading in and processing the type unit if necessary. */
23637
23638 static struct type *
23639 get_signatured_type (struct die_info *die, ULONGEST signature,
23640 struct dwarf2_cu *cu)
23641 {
23642 struct dwarf2_per_objfile *dwarf2_per_objfile
23643 = cu->per_cu->dwarf2_per_objfile;
23644 struct signatured_type *sig_type;
23645 struct dwarf2_cu *type_cu;
23646 struct die_info *type_die;
23647 struct type *type;
23648
23649 sig_type = lookup_signatured_type (cu, signature);
23650 /* sig_type will be NULL if the signatured type is missing from
23651 the debug info. */
23652 if (sig_type == NULL)
23653 {
23654 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23655 " from DIE at %s [in module %s]"),
23656 hex_string (signature), sect_offset_str (die->sect_off),
23657 objfile_name (dwarf2_per_objfile->objfile));
23658 return build_error_marker_type (cu, die);
23659 }
23660
23661 /* If we already know the type we're done. */
23662 if (sig_type->type != NULL)
23663 return sig_type->type;
23664
23665 type_cu = cu;
23666 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23667 if (type_die != NULL)
23668 {
23669 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23670 is created. This is important, for example, because for c++ classes
23671 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23672 type = read_type_die (type_die, type_cu);
23673 if (type == NULL)
23674 {
23675 complaint (_("Dwarf Error: Cannot build signatured type %s"
23676 " referenced from DIE at %s [in module %s]"),
23677 hex_string (signature), sect_offset_str (die->sect_off),
23678 objfile_name (dwarf2_per_objfile->objfile));
23679 type = build_error_marker_type (cu, die);
23680 }
23681 }
23682 else
23683 {
23684 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23685 " from DIE at %s [in module %s]"),
23686 hex_string (signature), sect_offset_str (die->sect_off),
23687 objfile_name (dwarf2_per_objfile->objfile));
23688 type = build_error_marker_type (cu, die);
23689 }
23690 sig_type->type = type;
23691
23692 return type;
23693 }
23694
23695 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23696 reading in and processing the type unit if necessary. */
23697
23698 static struct type *
23699 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23700 struct dwarf2_cu *cu) /* ARI: editCase function */
23701 {
23702 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23703 if (attr_form_is_ref (attr))
23704 {
23705 struct dwarf2_cu *type_cu = cu;
23706 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23707
23708 return read_type_die (type_die, type_cu);
23709 }
23710 else if (attr->form == DW_FORM_ref_sig8)
23711 {
23712 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23713 }
23714 else
23715 {
23716 struct dwarf2_per_objfile *dwarf2_per_objfile
23717 = cu->per_cu->dwarf2_per_objfile;
23718
23719 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23720 " at %s [in module %s]"),
23721 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23722 objfile_name (dwarf2_per_objfile->objfile));
23723 return build_error_marker_type (cu, die);
23724 }
23725 }
23726
23727 /* Load the DIEs associated with type unit PER_CU into memory. */
23728
23729 static void
23730 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23731 {
23732 struct signatured_type *sig_type;
23733
23734 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23735 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23736
23737 /* We have the per_cu, but we need the signatured_type.
23738 Fortunately this is an easy translation. */
23739 gdb_assert (per_cu->is_debug_types);
23740 sig_type = (struct signatured_type *) per_cu;
23741
23742 gdb_assert (per_cu->cu == NULL);
23743
23744 read_signatured_type (sig_type);
23745
23746 gdb_assert (per_cu->cu != NULL);
23747 }
23748
23749 /* die_reader_func for read_signatured_type.
23750 This is identical to load_full_comp_unit_reader,
23751 but is kept separate for now. */
23752
23753 static void
23754 read_signatured_type_reader (const struct die_reader_specs *reader,
23755 const gdb_byte *info_ptr,
23756 struct die_info *comp_unit_die,
23757 int has_children,
23758 void *data)
23759 {
23760 struct dwarf2_cu *cu = reader->cu;
23761
23762 gdb_assert (cu->die_hash == NULL);
23763 cu->die_hash =
23764 htab_create_alloc_ex (cu->header.length / 12,
23765 die_hash,
23766 die_eq,
23767 NULL,
23768 &cu->comp_unit_obstack,
23769 hashtab_obstack_allocate,
23770 dummy_obstack_deallocate);
23771
23772 if (has_children)
23773 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23774 &info_ptr, comp_unit_die);
23775 cu->dies = comp_unit_die;
23776 /* comp_unit_die is not stored in die_hash, no need. */
23777
23778 /* We try not to read any attributes in this function, because not
23779 all CUs needed for references have been loaded yet, and symbol
23780 table processing isn't initialized. But we have to set the CU language,
23781 or we won't be able to build types correctly.
23782 Similarly, if we do not read the producer, we can not apply
23783 producer-specific interpretation. */
23784 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23785 }
23786
23787 /* Read in a signatured type and build its CU and DIEs.
23788 If the type is a stub for the real type in a DWO file,
23789 read in the real type from the DWO file as well. */
23790
23791 static void
23792 read_signatured_type (struct signatured_type *sig_type)
23793 {
23794 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23795
23796 gdb_assert (per_cu->is_debug_types);
23797 gdb_assert (per_cu->cu == NULL);
23798
23799 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23800 read_signatured_type_reader, NULL);
23801 sig_type->per_cu.tu_read = 1;
23802 }
23803
23804 /* Decode simple location descriptions.
23805 Given a pointer to a dwarf block that defines a location, compute
23806 the location and return the value.
23807
23808 NOTE drow/2003-11-18: This function is called in two situations
23809 now: for the address of static or global variables (partial symbols
23810 only) and for offsets into structures which are expected to be
23811 (more or less) constant. The partial symbol case should go away,
23812 and only the constant case should remain. That will let this
23813 function complain more accurately. A few special modes are allowed
23814 without complaint for global variables (for instance, global
23815 register values and thread-local values).
23816
23817 A location description containing no operations indicates that the
23818 object is optimized out. The return value is 0 for that case.
23819 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23820 callers will only want a very basic result and this can become a
23821 complaint.
23822
23823 Note that stack[0] is unused except as a default error return. */
23824
23825 static CORE_ADDR
23826 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23827 {
23828 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23829 size_t i;
23830 size_t size = blk->size;
23831 const gdb_byte *data = blk->data;
23832 CORE_ADDR stack[64];
23833 int stacki;
23834 unsigned int bytes_read, unsnd;
23835 gdb_byte op;
23836
23837 i = 0;
23838 stacki = 0;
23839 stack[stacki] = 0;
23840 stack[++stacki] = 0;
23841
23842 while (i < size)
23843 {
23844 op = data[i++];
23845 switch (op)
23846 {
23847 case DW_OP_lit0:
23848 case DW_OP_lit1:
23849 case DW_OP_lit2:
23850 case DW_OP_lit3:
23851 case DW_OP_lit4:
23852 case DW_OP_lit5:
23853 case DW_OP_lit6:
23854 case DW_OP_lit7:
23855 case DW_OP_lit8:
23856 case DW_OP_lit9:
23857 case DW_OP_lit10:
23858 case DW_OP_lit11:
23859 case DW_OP_lit12:
23860 case DW_OP_lit13:
23861 case DW_OP_lit14:
23862 case DW_OP_lit15:
23863 case DW_OP_lit16:
23864 case DW_OP_lit17:
23865 case DW_OP_lit18:
23866 case DW_OP_lit19:
23867 case DW_OP_lit20:
23868 case DW_OP_lit21:
23869 case DW_OP_lit22:
23870 case DW_OP_lit23:
23871 case DW_OP_lit24:
23872 case DW_OP_lit25:
23873 case DW_OP_lit26:
23874 case DW_OP_lit27:
23875 case DW_OP_lit28:
23876 case DW_OP_lit29:
23877 case DW_OP_lit30:
23878 case DW_OP_lit31:
23879 stack[++stacki] = op - DW_OP_lit0;
23880 break;
23881
23882 case DW_OP_reg0:
23883 case DW_OP_reg1:
23884 case DW_OP_reg2:
23885 case DW_OP_reg3:
23886 case DW_OP_reg4:
23887 case DW_OP_reg5:
23888 case DW_OP_reg6:
23889 case DW_OP_reg7:
23890 case DW_OP_reg8:
23891 case DW_OP_reg9:
23892 case DW_OP_reg10:
23893 case DW_OP_reg11:
23894 case DW_OP_reg12:
23895 case DW_OP_reg13:
23896 case DW_OP_reg14:
23897 case DW_OP_reg15:
23898 case DW_OP_reg16:
23899 case DW_OP_reg17:
23900 case DW_OP_reg18:
23901 case DW_OP_reg19:
23902 case DW_OP_reg20:
23903 case DW_OP_reg21:
23904 case DW_OP_reg22:
23905 case DW_OP_reg23:
23906 case DW_OP_reg24:
23907 case DW_OP_reg25:
23908 case DW_OP_reg26:
23909 case DW_OP_reg27:
23910 case DW_OP_reg28:
23911 case DW_OP_reg29:
23912 case DW_OP_reg30:
23913 case DW_OP_reg31:
23914 stack[++stacki] = op - DW_OP_reg0;
23915 if (i < size)
23916 dwarf2_complex_location_expr_complaint ();
23917 break;
23918
23919 case DW_OP_regx:
23920 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23921 i += bytes_read;
23922 stack[++stacki] = unsnd;
23923 if (i < size)
23924 dwarf2_complex_location_expr_complaint ();
23925 break;
23926
23927 case DW_OP_addr:
23928 stack[++stacki] = read_address (objfile->obfd, &data[i],
23929 cu, &bytes_read);
23930 i += bytes_read;
23931 break;
23932
23933 case DW_OP_const1u:
23934 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23935 i += 1;
23936 break;
23937
23938 case DW_OP_const1s:
23939 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23940 i += 1;
23941 break;
23942
23943 case DW_OP_const2u:
23944 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23945 i += 2;
23946 break;
23947
23948 case DW_OP_const2s:
23949 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23950 i += 2;
23951 break;
23952
23953 case DW_OP_const4u:
23954 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23955 i += 4;
23956 break;
23957
23958 case DW_OP_const4s:
23959 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23960 i += 4;
23961 break;
23962
23963 case DW_OP_const8u:
23964 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23965 i += 8;
23966 break;
23967
23968 case DW_OP_constu:
23969 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23970 &bytes_read);
23971 i += bytes_read;
23972 break;
23973
23974 case DW_OP_consts:
23975 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23976 i += bytes_read;
23977 break;
23978
23979 case DW_OP_dup:
23980 stack[stacki + 1] = stack[stacki];
23981 stacki++;
23982 break;
23983
23984 case DW_OP_plus:
23985 stack[stacki - 1] += stack[stacki];
23986 stacki--;
23987 break;
23988
23989 case DW_OP_plus_uconst:
23990 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23991 &bytes_read);
23992 i += bytes_read;
23993 break;
23994
23995 case DW_OP_minus:
23996 stack[stacki - 1] -= stack[stacki];
23997 stacki--;
23998 break;
23999
24000 case DW_OP_deref:
24001 /* If we're not the last op, then we definitely can't encode
24002 this using GDB's address_class enum. This is valid for partial
24003 global symbols, although the variable's address will be bogus
24004 in the psymtab. */
24005 if (i < size)
24006 dwarf2_complex_location_expr_complaint ();
24007 break;
24008
24009 case DW_OP_GNU_push_tls_address:
24010 case DW_OP_form_tls_address:
24011 /* The top of the stack has the offset from the beginning
24012 of the thread control block at which the variable is located. */
24013 /* Nothing should follow this operator, so the top of stack would
24014 be returned. */
24015 /* This is valid for partial global symbols, but the variable's
24016 address will be bogus in the psymtab. Make it always at least
24017 non-zero to not look as a variable garbage collected by linker
24018 which have DW_OP_addr 0. */
24019 if (i < size)
24020 dwarf2_complex_location_expr_complaint ();
24021 stack[stacki]++;
24022 break;
24023
24024 case DW_OP_GNU_uninit:
24025 break;
24026
24027 case DW_OP_addrx:
24028 case DW_OP_GNU_addr_index:
24029 case DW_OP_GNU_const_index:
24030 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
24031 &bytes_read);
24032 i += bytes_read;
24033 break;
24034
24035 default:
24036 {
24037 const char *name = get_DW_OP_name (op);
24038
24039 if (name)
24040 complaint (_("unsupported stack op: '%s'"),
24041 name);
24042 else
24043 complaint (_("unsupported stack op: '%02x'"),
24044 op);
24045 }
24046
24047 return (stack[stacki]);
24048 }
24049
24050 /* Enforce maximum stack depth of SIZE-1 to avoid writing
24051 outside of the allocated space. Also enforce minimum>0. */
24052 if (stacki >= ARRAY_SIZE (stack) - 1)
24053 {
24054 complaint (_("location description stack overflow"));
24055 return 0;
24056 }
24057
24058 if (stacki <= 0)
24059 {
24060 complaint (_("location description stack underflow"));
24061 return 0;
24062 }
24063 }
24064 return (stack[stacki]);
24065 }
24066
24067 /* memory allocation interface */
24068
24069 static struct dwarf_block *
24070 dwarf_alloc_block (struct dwarf2_cu *cu)
24071 {
24072 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
24073 }
24074
24075 static struct die_info *
24076 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
24077 {
24078 struct die_info *die;
24079 size_t size = sizeof (struct die_info);
24080
24081 if (num_attrs > 1)
24082 size += (num_attrs - 1) * sizeof (struct attribute);
24083
24084 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
24085 memset (die, 0, sizeof (struct die_info));
24086 return (die);
24087 }
24088
24089 \f
24090 /* Macro support. */
24091
24092 /* Return file name relative to the compilation directory of file number I in
24093 *LH's file name table. The result is allocated using xmalloc; the caller is
24094 responsible for freeing it. */
24095
24096 static char *
24097 file_file_name (int file, struct line_header *lh)
24098 {
24099 /* Is the file number a valid index into the line header's file name
24100 table? Remember that file numbers start with one, not zero. */
24101 if (1 <= file && file <= lh->file_names.size ())
24102 {
24103 const file_entry &fe = lh->file_names[file - 1];
24104
24105 if (!IS_ABSOLUTE_PATH (fe.name))
24106 {
24107 const char *dir = fe.include_dir (lh);
24108 if (dir != NULL)
24109 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
24110 }
24111 return xstrdup (fe.name);
24112 }
24113 else
24114 {
24115 /* The compiler produced a bogus file number. We can at least
24116 record the macro definitions made in the file, even if we
24117 won't be able to find the file by name. */
24118 char fake_name[80];
24119
24120 xsnprintf (fake_name, sizeof (fake_name),
24121 "<bad macro file number %d>", file);
24122
24123 complaint (_("bad file number in macro information (%d)"),
24124 file);
24125
24126 return xstrdup (fake_name);
24127 }
24128 }
24129
24130 /* Return the full name of file number I in *LH's file name table.
24131 Use COMP_DIR as the name of the current directory of the
24132 compilation. The result is allocated using xmalloc; the caller is
24133 responsible for freeing it. */
24134 static char *
24135 file_full_name (int file, struct line_header *lh, const char *comp_dir)
24136 {
24137 /* Is the file number a valid index into the line header's file name
24138 table? Remember that file numbers start with one, not zero. */
24139 if (1 <= file && file <= lh->file_names.size ())
24140 {
24141 char *relative = file_file_name (file, lh);
24142
24143 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
24144 return relative;
24145 return reconcat (relative, comp_dir, SLASH_STRING,
24146 relative, (char *) NULL);
24147 }
24148 else
24149 return file_file_name (file, lh);
24150 }
24151
24152
24153 static struct macro_source_file *
24154 macro_start_file (struct dwarf2_cu *cu,
24155 int file, int line,
24156 struct macro_source_file *current_file,
24157 struct line_header *lh)
24158 {
24159 /* File name relative to the compilation directory of this source file. */
24160 char *file_name = file_file_name (file, lh);
24161
24162 if (! current_file)
24163 {
24164 /* Note: We don't create a macro table for this compilation unit
24165 at all until we actually get a filename. */
24166 struct macro_table *macro_table = cu->get_builder ()->get_macro_table ();
24167
24168 /* If we have no current file, then this must be the start_file
24169 directive for the compilation unit's main source file. */
24170 current_file = macro_set_main (macro_table, file_name);
24171 macro_define_special (macro_table);
24172 }
24173 else
24174 current_file = macro_include (current_file, line, file_name);
24175
24176 xfree (file_name);
24177
24178 return current_file;
24179 }
24180
24181 static const char *
24182 consume_improper_spaces (const char *p, const char *body)
24183 {
24184 if (*p == ' ')
24185 {
24186 complaint (_("macro definition contains spaces "
24187 "in formal argument list:\n`%s'"),
24188 body);
24189
24190 while (*p == ' ')
24191 p++;
24192 }
24193
24194 return p;
24195 }
24196
24197
24198 static void
24199 parse_macro_definition (struct macro_source_file *file, int line,
24200 const char *body)
24201 {
24202 const char *p;
24203
24204 /* The body string takes one of two forms. For object-like macro
24205 definitions, it should be:
24206
24207 <macro name> " " <definition>
24208
24209 For function-like macro definitions, it should be:
24210
24211 <macro name> "() " <definition>
24212 or
24213 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
24214
24215 Spaces may appear only where explicitly indicated, and in the
24216 <definition>.
24217
24218 The Dwarf 2 spec says that an object-like macro's name is always
24219 followed by a space, but versions of GCC around March 2002 omit
24220 the space when the macro's definition is the empty string.
24221
24222 The Dwarf 2 spec says that there should be no spaces between the
24223 formal arguments in a function-like macro's formal argument list,
24224 but versions of GCC around March 2002 include spaces after the
24225 commas. */
24226
24227
24228 /* Find the extent of the macro name. The macro name is terminated
24229 by either a space or null character (for an object-like macro) or
24230 an opening paren (for a function-like macro). */
24231 for (p = body; *p; p++)
24232 if (*p == ' ' || *p == '(')
24233 break;
24234
24235 if (*p == ' ' || *p == '\0')
24236 {
24237 /* It's an object-like macro. */
24238 int name_len = p - body;
24239 char *name = savestring (body, name_len);
24240 const char *replacement;
24241
24242 if (*p == ' ')
24243 replacement = body + name_len + 1;
24244 else
24245 {
24246 dwarf2_macro_malformed_definition_complaint (body);
24247 replacement = body + name_len;
24248 }
24249
24250 macro_define_object (file, line, name, replacement);
24251
24252 xfree (name);
24253 }
24254 else if (*p == '(')
24255 {
24256 /* It's a function-like macro. */
24257 char *name = savestring (body, p - body);
24258 int argc = 0;
24259 int argv_size = 1;
24260 char **argv = XNEWVEC (char *, argv_size);
24261
24262 p++;
24263
24264 p = consume_improper_spaces (p, body);
24265
24266 /* Parse the formal argument list. */
24267 while (*p && *p != ')')
24268 {
24269 /* Find the extent of the current argument name. */
24270 const char *arg_start = p;
24271
24272 while (*p && *p != ',' && *p != ')' && *p != ' ')
24273 p++;
24274
24275 if (! *p || p == arg_start)
24276 dwarf2_macro_malformed_definition_complaint (body);
24277 else
24278 {
24279 /* Make sure argv has room for the new argument. */
24280 if (argc >= argv_size)
24281 {
24282 argv_size *= 2;
24283 argv = XRESIZEVEC (char *, argv, argv_size);
24284 }
24285
24286 argv[argc++] = savestring (arg_start, p - arg_start);
24287 }
24288
24289 p = consume_improper_spaces (p, body);
24290
24291 /* Consume the comma, if present. */
24292 if (*p == ',')
24293 {
24294 p++;
24295
24296 p = consume_improper_spaces (p, body);
24297 }
24298 }
24299
24300 if (*p == ')')
24301 {
24302 p++;
24303
24304 if (*p == ' ')
24305 /* Perfectly formed definition, no complaints. */
24306 macro_define_function (file, line, name,
24307 argc, (const char **) argv,
24308 p + 1);
24309 else if (*p == '\0')
24310 {
24311 /* Complain, but do define it. */
24312 dwarf2_macro_malformed_definition_complaint (body);
24313 macro_define_function (file, line, name,
24314 argc, (const char **) argv,
24315 p);
24316 }
24317 else
24318 /* Just complain. */
24319 dwarf2_macro_malformed_definition_complaint (body);
24320 }
24321 else
24322 /* Just complain. */
24323 dwarf2_macro_malformed_definition_complaint (body);
24324
24325 xfree (name);
24326 {
24327 int i;
24328
24329 for (i = 0; i < argc; i++)
24330 xfree (argv[i]);
24331 }
24332 xfree (argv);
24333 }
24334 else
24335 dwarf2_macro_malformed_definition_complaint (body);
24336 }
24337
24338 /* Skip some bytes from BYTES according to the form given in FORM.
24339 Returns the new pointer. */
24340
24341 static const gdb_byte *
24342 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24343 enum dwarf_form form,
24344 unsigned int offset_size,
24345 struct dwarf2_section_info *section)
24346 {
24347 unsigned int bytes_read;
24348
24349 switch (form)
24350 {
24351 case DW_FORM_data1:
24352 case DW_FORM_flag:
24353 ++bytes;
24354 break;
24355
24356 case DW_FORM_data2:
24357 bytes += 2;
24358 break;
24359
24360 case DW_FORM_data4:
24361 bytes += 4;
24362 break;
24363
24364 case DW_FORM_data8:
24365 bytes += 8;
24366 break;
24367
24368 case DW_FORM_data16:
24369 bytes += 16;
24370 break;
24371
24372 case DW_FORM_string:
24373 read_direct_string (abfd, bytes, &bytes_read);
24374 bytes += bytes_read;
24375 break;
24376
24377 case DW_FORM_sec_offset:
24378 case DW_FORM_strp:
24379 case DW_FORM_GNU_strp_alt:
24380 bytes += offset_size;
24381 break;
24382
24383 case DW_FORM_block:
24384 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24385 bytes += bytes_read;
24386 break;
24387
24388 case DW_FORM_block1:
24389 bytes += 1 + read_1_byte (abfd, bytes);
24390 break;
24391 case DW_FORM_block2:
24392 bytes += 2 + read_2_bytes (abfd, bytes);
24393 break;
24394 case DW_FORM_block4:
24395 bytes += 4 + read_4_bytes (abfd, bytes);
24396 break;
24397
24398 case DW_FORM_addrx:
24399 case DW_FORM_sdata:
24400 case DW_FORM_strx:
24401 case DW_FORM_udata:
24402 case DW_FORM_GNU_addr_index:
24403 case DW_FORM_GNU_str_index:
24404 bytes = gdb_skip_leb128 (bytes, buffer_end);
24405 if (bytes == NULL)
24406 {
24407 dwarf2_section_buffer_overflow_complaint (section);
24408 return NULL;
24409 }
24410 break;
24411
24412 case DW_FORM_implicit_const:
24413 break;
24414
24415 default:
24416 {
24417 complaint (_("invalid form 0x%x in `%s'"),
24418 form, get_section_name (section));
24419 return NULL;
24420 }
24421 }
24422
24423 return bytes;
24424 }
24425
24426 /* A helper for dwarf_decode_macros that handles skipping an unknown
24427 opcode. Returns an updated pointer to the macro data buffer; or,
24428 on error, issues a complaint and returns NULL. */
24429
24430 static const gdb_byte *
24431 skip_unknown_opcode (unsigned int opcode,
24432 const gdb_byte **opcode_definitions,
24433 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24434 bfd *abfd,
24435 unsigned int offset_size,
24436 struct dwarf2_section_info *section)
24437 {
24438 unsigned int bytes_read, i;
24439 unsigned long arg;
24440 const gdb_byte *defn;
24441
24442 if (opcode_definitions[opcode] == NULL)
24443 {
24444 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
24445 opcode);
24446 return NULL;
24447 }
24448
24449 defn = opcode_definitions[opcode];
24450 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24451 defn += bytes_read;
24452
24453 for (i = 0; i < arg; ++i)
24454 {
24455 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24456 (enum dwarf_form) defn[i], offset_size,
24457 section);
24458 if (mac_ptr == NULL)
24459 {
24460 /* skip_form_bytes already issued the complaint. */
24461 return NULL;
24462 }
24463 }
24464
24465 return mac_ptr;
24466 }
24467
24468 /* A helper function which parses the header of a macro section.
24469 If the macro section is the extended (for now called "GNU") type,
24470 then this updates *OFFSET_SIZE. Returns a pointer to just after
24471 the header, or issues a complaint and returns NULL on error. */
24472
24473 static const gdb_byte *
24474 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24475 bfd *abfd,
24476 const gdb_byte *mac_ptr,
24477 unsigned int *offset_size,
24478 int section_is_gnu)
24479 {
24480 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24481
24482 if (section_is_gnu)
24483 {
24484 unsigned int version, flags;
24485
24486 version = read_2_bytes (abfd, mac_ptr);
24487 if (version != 4 && version != 5)
24488 {
24489 complaint (_("unrecognized version `%d' in .debug_macro section"),
24490 version);
24491 return NULL;
24492 }
24493 mac_ptr += 2;
24494
24495 flags = read_1_byte (abfd, mac_ptr);
24496 ++mac_ptr;
24497 *offset_size = (flags & 1) ? 8 : 4;
24498
24499 if ((flags & 2) != 0)
24500 /* We don't need the line table offset. */
24501 mac_ptr += *offset_size;
24502
24503 /* Vendor opcode descriptions. */
24504 if ((flags & 4) != 0)
24505 {
24506 unsigned int i, count;
24507
24508 count = read_1_byte (abfd, mac_ptr);
24509 ++mac_ptr;
24510 for (i = 0; i < count; ++i)
24511 {
24512 unsigned int opcode, bytes_read;
24513 unsigned long arg;
24514
24515 opcode = read_1_byte (abfd, mac_ptr);
24516 ++mac_ptr;
24517 opcode_definitions[opcode] = mac_ptr;
24518 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24519 mac_ptr += bytes_read;
24520 mac_ptr += arg;
24521 }
24522 }
24523 }
24524
24525 return mac_ptr;
24526 }
24527
24528 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24529 including DW_MACRO_import. */
24530
24531 static void
24532 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
24533 bfd *abfd,
24534 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24535 struct macro_source_file *current_file,
24536 struct line_header *lh,
24537 struct dwarf2_section_info *section,
24538 int section_is_gnu, int section_is_dwz,
24539 unsigned int offset_size,
24540 htab_t include_hash)
24541 {
24542 struct dwarf2_per_objfile *dwarf2_per_objfile
24543 = cu->per_cu->dwarf2_per_objfile;
24544 struct objfile *objfile = dwarf2_per_objfile->objfile;
24545 enum dwarf_macro_record_type macinfo_type;
24546 int at_commandline;
24547 const gdb_byte *opcode_definitions[256];
24548
24549 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24550 &offset_size, section_is_gnu);
24551 if (mac_ptr == NULL)
24552 {
24553 /* We already issued a complaint. */
24554 return;
24555 }
24556
24557 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24558 GDB is still reading the definitions from command line. First
24559 DW_MACINFO_start_file will need to be ignored as it was already executed
24560 to create CURRENT_FILE for the main source holding also the command line
24561 definitions. On first met DW_MACINFO_start_file this flag is reset to
24562 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24563
24564 at_commandline = 1;
24565
24566 do
24567 {
24568 /* Do we at least have room for a macinfo type byte? */
24569 if (mac_ptr >= mac_end)
24570 {
24571 dwarf2_section_buffer_overflow_complaint (section);
24572 break;
24573 }
24574
24575 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24576 mac_ptr++;
24577
24578 /* Note that we rely on the fact that the corresponding GNU and
24579 DWARF constants are the same. */
24580 DIAGNOSTIC_PUSH
24581 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24582 switch (macinfo_type)
24583 {
24584 /* A zero macinfo type indicates the end of the macro
24585 information. */
24586 case 0:
24587 break;
24588
24589 case DW_MACRO_define:
24590 case DW_MACRO_undef:
24591 case DW_MACRO_define_strp:
24592 case DW_MACRO_undef_strp:
24593 case DW_MACRO_define_sup:
24594 case DW_MACRO_undef_sup:
24595 {
24596 unsigned int bytes_read;
24597 int line;
24598 const char *body;
24599 int is_define;
24600
24601 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24602 mac_ptr += bytes_read;
24603
24604 if (macinfo_type == DW_MACRO_define
24605 || macinfo_type == DW_MACRO_undef)
24606 {
24607 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24608 mac_ptr += bytes_read;
24609 }
24610 else
24611 {
24612 LONGEST str_offset;
24613
24614 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24615 mac_ptr += offset_size;
24616
24617 if (macinfo_type == DW_MACRO_define_sup
24618 || macinfo_type == DW_MACRO_undef_sup
24619 || section_is_dwz)
24620 {
24621 struct dwz_file *dwz
24622 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24623
24624 body = read_indirect_string_from_dwz (objfile,
24625 dwz, str_offset);
24626 }
24627 else
24628 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24629 abfd, str_offset);
24630 }
24631
24632 is_define = (macinfo_type == DW_MACRO_define
24633 || macinfo_type == DW_MACRO_define_strp
24634 || macinfo_type == DW_MACRO_define_sup);
24635 if (! current_file)
24636 {
24637 /* DWARF violation as no main source is present. */
24638 complaint (_("debug info with no main source gives macro %s "
24639 "on line %d: %s"),
24640 is_define ? _("definition") : _("undefinition"),
24641 line, body);
24642 break;
24643 }
24644 if ((line == 0 && !at_commandline)
24645 || (line != 0 && at_commandline))
24646 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24647 at_commandline ? _("command-line") : _("in-file"),
24648 is_define ? _("definition") : _("undefinition"),
24649 line == 0 ? _("zero") : _("non-zero"), line, body);
24650
24651 if (body == NULL)
24652 {
24653 /* Fedora's rpm-build's "debugedit" binary
24654 corrupted .debug_macro sections.
24655
24656 For more info, see
24657 https://bugzilla.redhat.com/show_bug.cgi?id=1708786 */
24658 complaint (_("debug info gives %s invalid macro %s "
24659 "without body (corrupted?) at line %d "
24660 "on file %s"),
24661 at_commandline ? _("command-line") : _("in-file"),
24662 is_define ? _("definition") : _("undefinition"),
24663 line, current_file->filename);
24664 }
24665 else if (is_define)
24666 parse_macro_definition (current_file, line, body);
24667 else
24668 {
24669 gdb_assert (macinfo_type == DW_MACRO_undef
24670 || macinfo_type == DW_MACRO_undef_strp
24671 || macinfo_type == DW_MACRO_undef_sup);
24672 macro_undef (current_file, line, body);
24673 }
24674 }
24675 break;
24676
24677 case DW_MACRO_start_file:
24678 {
24679 unsigned int bytes_read;
24680 int line, file;
24681
24682 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24683 mac_ptr += bytes_read;
24684 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24685 mac_ptr += bytes_read;
24686
24687 if ((line == 0 && !at_commandline)
24688 || (line != 0 && at_commandline))
24689 complaint (_("debug info gives source %d included "
24690 "from %s at %s line %d"),
24691 file, at_commandline ? _("command-line") : _("file"),
24692 line == 0 ? _("zero") : _("non-zero"), line);
24693
24694 if (at_commandline)
24695 {
24696 /* This DW_MACRO_start_file was executed in the
24697 pass one. */
24698 at_commandline = 0;
24699 }
24700 else
24701 current_file = macro_start_file (cu, file, line, current_file,
24702 lh);
24703 }
24704 break;
24705
24706 case DW_MACRO_end_file:
24707 if (! current_file)
24708 complaint (_("macro debug info has an unmatched "
24709 "`close_file' directive"));
24710 else
24711 {
24712 current_file = current_file->included_by;
24713 if (! current_file)
24714 {
24715 enum dwarf_macro_record_type next_type;
24716
24717 /* GCC circa March 2002 doesn't produce the zero
24718 type byte marking the end of the compilation
24719 unit. Complain if it's not there, but exit no
24720 matter what. */
24721
24722 /* Do we at least have room for a macinfo type byte? */
24723 if (mac_ptr >= mac_end)
24724 {
24725 dwarf2_section_buffer_overflow_complaint (section);
24726 return;
24727 }
24728
24729 /* We don't increment mac_ptr here, so this is just
24730 a look-ahead. */
24731 next_type
24732 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24733 mac_ptr);
24734 if (next_type != 0)
24735 complaint (_("no terminating 0-type entry for "
24736 "macros in `.debug_macinfo' section"));
24737
24738 return;
24739 }
24740 }
24741 break;
24742
24743 case DW_MACRO_import:
24744 case DW_MACRO_import_sup:
24745 {
24746 LONGEST offset;
24747 void **slot;
24748 bfd *include_bfd = abfd;
24749 struct dwarf2_section_info *include_section = section;
24750 const gdb_byte *include_mac_end = mac_end;
24751 int is_dwz = section_is_dwz;
24752 const gdb_byte *new_mac_ptr;
24753
24754 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24755 mac_ptr += offset_size;
24756
24757 if (macinfo_type == DW_MACRO_import_sup)
24758 {
24759 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24760
24761 dwarf2_read_section (objfile, &dwz->macro);
24762
24763 include_section = &dwz->macro;
24764 include_bfd = get_section_bfd_owner (include_section);
24765 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24766 is_dwz = 1;
24767 }
24768
24769 new_mac_ptr = include_section->buffer + offset;
24770 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24771
24772 if (*slot != NULL)
24773 {
24774 /* This has actually happened; see
24775 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24776 complaint (_("recursive DW_MACRO_import in "
24777 ".debug_macro section"));
24778 }
24779 else
24780 {
24781 *slot = (void *) new_mac_ptr;
24782
24783 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
24784 include_mac_end, current_file, lh,
24785 section, section_is_gnu, is_dwz,
24786 offset_size, include_hash);
24787
24788 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24789 }
24790 }
24791 break;
24792
24793 case DW_MACINFO_vendor_ext:
24794 if (!section_is_gnu)
24795 {
24796 unsigned int bytes_read;
24797
24798 /* This reads the constant, but since we don't recognize
24799 any vendor extensions, we ignore it. */
24800 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24801 mac_ptr += bytes_read;
24802 read_direct_string (abfd, mac_ptr, &bytes_read);
24803 mac_ptr += bytes_read;
24804
24805 /* We don't recognize any vendor extensions. */
24806 break;
24807 }
24808 /* FALLTHROUGH */
24809
24810 default:
24811 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24812 mac_ptr, mac_end, abfd, offset_size,
24813 section);
24814 if (mac_ptr == NULL)
24815 return;
24816 break;
24817 }
24818 DIAGNOSTIC_POP
24819 } while (macinfo_type != 0);
24820 }
24821
24822 static void
24823 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24824 int section_is_gnu)
24825 {
24826 struct dwarf2_per_objfile *dwarf2_per_objfile
24827 = cu->per_cu->dwarf2_per_objfile;
24828 struct objfile *objfile = dwarf2_per_objfile->objfile;
24829 struct line_header *lh = cu->line_header;
24830 bfd *abfd;
24831 const gdb_byte *mac_ptr, *mac_end;
24832 struct macro_source_file *current_file = 0;
24833 enum dwarf_macro_record_type macinfo_type;
24834 unsigned int offset_size = cu->header.offset_size;
24835 const gdb_byte *opcode_definitions[256];
24836 void **slot;
24837 struct dwarf2_section_info *section;
24838 const char *section_name;
24839
24840 if (cu->dwo_unit != NULL)
24841 {
24842 if (section_is_gnu)
24843 {
24844 section = &cu->dwo_unit->dwo_file->sections.macro;
24845 section_name = ".debug_macro.dwo";
24846 }
24847 else
24848 {
24849 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24850 section_name = ".debug_macinfo.dwo";
24851 }
24852 }
24853 else
24854 {
24855 if (section_is_gnu)
24856 {
24857 section = &dwarf2_per_objfile->macro;
24858 section_name = ".debug_macro";
24859 }
24860 else
24861 {
24862 section = &dwarf2_per_objfile->macinfo;
24863 section_name = ".debug_macinfo";
24864 }
24865 }
24866
24867 dwarf2_read_section (objfile, section);
24868 if (section->buffer == NULL)
24869 {
24870 complaint (_("missing %s section"), section_name);
24871 return;
24872 }
24873 abfd = get_section_bfd_owner (section);
24874
24875 /* First pass: Find the name of the base filename.
24876 This filename is needed in order to process all macros whose definition
24877 (or undefinition) comes from the command line. These macros are defined
24878 before the first DW_MACINFO_start_file entry, and yet still need to be
24879 associated to the base file.
24880
24881 To determine the base file name, we scan the macro definitions until we
24882 reach the first DW_MACINFO_start_file entry. We then initialize
24883 CURRENT_FILE accordingly so that any macro definition found before the
24884 first DW_MACINFO_start_file can still be associated to the base file. */
24885
24886 mac_ptr = section->buffer + offset;
24887 mac_end = section->buffer + section->size;
24888
24889 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24890 &offset_size, section_is_gnu);
24891 if (mac_ptr == NULL)
24892 {
24893 /* We already issued a complaint. */
24894 return;
24895 }
24896
24897 do
24898 {
24899 /* Do we at least have room for a macinfo type byte? */
24900 if (mac_ptr >= mac_end)
24901 {
24902 /* Complaint is printed during the second pass as GDB will probably
24903 stop the first pass earlier upon finding
24904 DW_MACINFO_start_file. */
24905 break;
24906 }
24907
24908 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24909 mac_ptr++;
24910
24911 /* Note that we rely on the fact that the corresponding GNU and
24912 DWARF constants are the same. */
24913 DIAGNOSTIC_PUSH
24914 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24915 switch (macinfo_type)
24916 {
24917 /* A zero macinfo type indicates the end of the macro
24918 information. */
24919 case 0:
24920 break;
24921
24922 case DW_MACRO_define:
24923 case DW_MACRO_undef:
24924 /* Only skip the data by MAC_PTR. */
24925 {
24926 unsigned int bytes_read;
24927
24928 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24929 mac_ptr += bytes_read;
24930 read_direct_string (abfd, mac_ptr, &bytes_read);
24931 mac_ptr += bytes_read;
24932 }
24933 break;
24934
24935 case DW_MACRO_start_file:
24936 {
24937 unsigned int bytes_read;
24938 int line, file;
24939
24940 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24941 mac_ptr += bytes_read;
24942 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24943 mac_ptr += bytes_read;
24944
24945 current_file = macro_start_file (cu, file, line, current_file, lh);
24946 }
24947 break;
24948
24949 case DW_MACRO_end_file:
24950 /* No data to skip by MAC_PTR. */
24951 break;
24952
24953 case DW_MACRO_define_strp:
24954 case DW_MACRO_undef_strp:
24955 case DW_MACRO_define_sup:
24956 case DW_MACRO_undef_sup:
24957 {
24958 unsigned int bytes_read;
24959
24960 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24961 mac_ptr += bytes_read;
24962 mac_ptr += offset_size;
24963 }
24964 break;
24965
24966 case DW_MACRO_import:
24967 case DW_MACRO_import_sup:
24968 /* Note that, according to the spec, a transparent include
24969 chain cannot call DW_MACRO_start_file. So, we can just
24970 skip this opcode. */
24971 mac_ptr += offset_size;
24972 break;
24973
24974 case DW_MACINFO_vendor_ext:
24975 /* Only skip the data by MAC_PTR. */
24976 if (!section_is_gnu)
24977 {
24978 unsigned int bytes_read;
24979
24980 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24981 mac_ptr += bytes_read;
24982 read_direct_string (abfd, mac_ptr, &bytes_read);
24983 mac_ptr += bytes_read;
24984 }
24985 /* FALLTHROUGH */
24986
24987 default:
24988 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24989 mac_ptr, mac_end, abfd, offset_size,
24990 section);
24991 if (mac_ptr == NULL)
24992 return;
24993 break;
24994 }
24995 DIAGNOSTIC_POP
24996 } while (macinfo_type != 0 && current_file == NULL);
24997
24998 /* Second pass: Process all entries.
24999
25000 Use the AT_COMMAND_LINE flag to determine whether we are still processing
25001 command-line macro definitions/undefinitions. This flag is unset when we
25002 reach the first DW_MACINFO_start_file entry. */
25003
25004 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
25005 htab_eq_pointer,
25006 NULL, xcalloc, xfree));
25007 mac_ptr = section->buffer + offset;
25008 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
25009 *slot = (void *) mac_ptr;
25010 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
25011 current_file, lh, section,
25012 section_is_gnu, 0, offset_size,
25013 include_hash.get ());
25014 }
25015
25016 /* Check if the attribute's form is a DW_FORM_block*
25017 if so return true else false. */
25018
25019 static int
25020 attr_form_is_block (const struct attribute *attr)
25021 {
25022 return (attr == NULL ? 0 :
25023 attr->form == DW_FORM_block1
25024 || attr->form == DW_FORM_block2
25025 || attr->form == DW_FORM_block4
25026 || attr->form == DW_FORM_block
25027 || attr->form == DW_FORM_exprloc);
25028 }
25029
25030 /* Return non-zero if ATTR's value is a section offset --- classes
25031 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
25032 You may use DW_UNSND (attr) to retrieve such offsets.
25033
25034 Section 7.5.4, "Attribute Encodings", explains that no attribute
25035 may have a value that belongs to more than one of these classes; it
25036 would be ambiguous if we did, because we use the same forms for all
25037 of them. */
25038
25039 static int
25040 attr_form_is_section_offset (const struct attribute *attr)
25041 {
25042 return (attr->form == DW_FORM_data4
25043 || attr->form == DW_FORM_data8
25044 || attr->form == DW_FORM_sec_offset);
25045 }
25046
25047 /* Return non-zero if ATTR's value falls in the 'constant' class, or
25048 zero otherwise. When this function returns true, you can apply
25049 dwarf2_get_attr_constant_value to it.
25050
25051 However, note that for some attributes you must check
25052 attr_form_is_section_offset before using this test. DW_FORM_data4
25053 and DW_FORM_data8 are members of both the constant class, and of
25054 the classes that contain offsets into other debug sections
25055 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
25056 that, if an attribute's can be either a constant or one of the
25057 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
25058 taken as section offsets, not constants.
25059
25060 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
25061 cannot handle that. */
25062
25063 static int
25064 attr_form_is_constant (const struct attribute *attr)
25065 {
25066 switch (attr->form)
25067 {
25068 case DW_FORM_sdata:
25069 case DW_FORM_udata:
25070 case DW_FORM_data1:
25071 case DW_FORM_data2:
25072 case DW_FORM_data4:
25073 case DW_FORM_data8:
25074 case DW_FORM_implicit_const:
25075 return 1;
25076 default:
25077 return 0;
25078 }
25079 }
25080
25081
25082 /* DW_ADDR is always stored already as sect_offset; despite for the forms
25083 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
25084
25085 static int
25086 attr_form_is_ref (const struct attribute *attr)
25087 {
25088 switch (attr->form)
25089 {
25090 case DW_FORM_ref_addr:
25091 case DW_FORM_ref1:
25092 case DW_FORM_ref2:
25093 case DW_FORM_ref4:
25094 case DW_FORM_ref8:
25095 case DW_FORM_ref_udata:
25096 case DW_FORM_GNU_ref_alt:
25097 return 1;
25098 default:
25099 return 0;
25100 }
25101 }
25102
25103 /* Return the .debug_loc section to use for CU.
25104 For DWO files use .debug_loc.dwo. */
25105
25106 static struct dwarf2_section_info *
25107 cu_debug_loc_section (struct dwarf2_cu *cu)
25108 {
25109 struct dwarf2_per_objfile *dwarf2_per_objfile
25110 = cu->per_cu->dwarf2_per_objfile;
25111
25112 if (cu->dwo_unit)
25113 {
25114 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
25115
25116 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
25117 }
25118 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
25119 : &dwarf2_per_objfile->loc);
25120 }
25121
25122 /* A helper function that fills in a dwarf2_loclist_baton. */
25123
25124 static void
25125 fill_in_loclist_baton (struct dwarf2_cu *cu,
25126 struct dwarf2_loclist_baton *baton,
25127 const struct attribute *attr)
25128 {
25129 struct dwarf2_per_objfile *dwarf2_per_objfile
25130 = cu->per_cu->dwarf2_per_objfile;
25131 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25132
25133 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
25134
25135 baton->per_cu = cu->per_cu;
25136 gdb_assert (baton->per_cu);
25137 /* We don't know how long the location list is, but make sure we
25138 don't run off the edge of the section. */
25139 baton->size = section->size - DW_UNSND (attr);
25140 baton->data = section->buffer + DW_UNSND (attr);
25141 baton->base_address = cu->base_address;
25142 baton->from_dwo = cu->dwo_unit != NULL;
25143 }
25144
25145 static void
25146 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
25147 struct dwarf2_cu *cu, int is_block)
25148 {
25149 struct dwarf2_per_objfile *dwarf2_per_objfile
25150 = cu->per_cu->dwarf2_per_objfile;
25151 struct objfile *objfile = dwarf2_per_objfile->objfile;
25152 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25153
25154 if (attr_form_is_section_offset (attr)
25155 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
25156 the section. If so, fall through to the complaint in the
25157 other branch. */
25158 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
25159 {
25160 struct dwarf2_loclist_baton *baton;
25161
25162 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
25163
25164 fill_in_loclist_baton (cu, baton, attr);
25165
25166 if (cu->base_known == 0)
25167 complaint (_("Location list used without "
25168 "specifying the CU base address."));
25169
25170 SYMBOL_ACLASS_INDEX (sym) = (is_block
25171 ? dwarf2_loclist_block_index
25172 : dwarf2_loclist_index);
25173 SYMBOL_LOCATION_BATON (sym) = baton;
25174 }
25175 else
25176 {
25177 struct dwarf2_locexpr_baton *baton;
25178
25179 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
25180 baton->per_cu = cu->per_cu;
25181 gdb_assert (baton->per_cu);
25182
25183 if (attr_form_is_block (attr))
25184 {
25185 /* Note that we're just copying the block's data pointer
25186 here, not the actual data. We're still pointing into the
25187 info_buffer for SYM's objfile; right now we never release
25188 that buffer, but when we do clean up properly this may
25189 need to change. */
25190 baton->size = DW_BLOCK (attr)->size;
25191 baton->data = DW_BLOCK (attr)->data;
25192 }
25193 else
25194 {
25195 dwarf2_invalid_attrib_class_complaint ("location description",
25196 SYMBOL_NATURAL_NAME (sym));
25197 baton->size = 0;
25198 }
25199
25200 SYMBOL_ACLASS_INDEX (sym) = (is_block
25201 ? dwarf2_locexpr_block_index
25202 : dwarf2_locexpr_index);
25203 SYMBOL_LOCATION_BATON (sym) = baton;
25204 }
25205 }
25206
25207 /* Return the OBJFILE associated with the compilation unit CU. If CU
25208 came from a separate debuginfo file, then the master objfile is
25209 returned. */
25210
25211 struct objfile *
25212 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
25213 {
25214 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25215
25216 /* Return the master objfile, so that we can report and look up the
25217 correct file containing this variable. */
25218 if (objfile->separate_debug_objfile_backlink)
25219 objfile = objfile->separate_debug_objfile_backlink;
25220
25221 return objfile;
25222 }
25223
25224 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
25225 (CU_HEADERP is unused in such case) or prepare a temporary copy at
25226 CU_HEADERP first. */
25227
25228 static const struct comp_unit_head *
25229 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
25230 struct dwarf2_per_cu_data *per_cu)
25231 {
25232 const gdb_byte *info_ptr;
25233
25234 if (per_cu->cu)
25235 return &per_cu->cu->header;
25236
25237 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
25238
25239 memset (cu_headerp, 0, sizeof (*cu_headerp));
25240 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
25241 rcuh_kind::COMPILE);
25242
25243 return cu_headerp;
25244 }
25245
25246 /* Return the address size given in the compilation unit header for CU. */
25247
25248 int
25249 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
25250 {
25251 struct comp_unit_head cu_header_local;
25252 const struct comp_unit_head *cu_headerp;
25253
25254 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25255
25256 return cu_headerp->addr_size;
25257 }
25258
25259 /* Return the offset size given in the compilation unit header for CU. */
25260
25261 int
25262 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
25263 {
25264 struct comp_unit_head cu_header_local;
25265 const struct comp_unit_head *cu_headerp;
25266
25267 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25268
25269 return cu_headerp->offset_size;
25270 }
25271
25272 /* See its dwarf2loc.h declaration. */
25273
25274 int
25275 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
25276 {
25277 struct comp_unit_head cu_header_local;
25278 const struct comp_unit_head *cu_headerp;
25279
25280 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25281
25282 if (cu_headerp->version == 2)
25283 return cu_headerp->addr_size;
25284 else
25285 return cu_headerp->offset_size;
25286 }
25287
25288 /* Return the text offset of the CU. The returned offset comes from
25289 this CU's objfile. If this objfile came from a separate debuginfo
25290 file, then the offset may be different from the corresponding
25291 offset in the parent objfile. */
25292
25293 CORE_ADDR
25294 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25295 {
25296 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25297
25298 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25299 }
25300
25301 /* Return DWARF version number of PER_CU. */
25302
25303 short
25304 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25305 {
25306 return per_cu->dwarf_version;
25307 }
25308
25309 /* Locate the .debug_info compilation unit from CU's objfile which contains
25310 the DIE at OFFSET. Raises an error on failure. */
25311
25312 static struct dwarf2_per_cu_data *
25313 dwarf2_find_containing_comp_unit (sect_offset sect_off,
25314 unsigned int offset_in_dwz,
25315 struct dwarf2_per_objfile *dwarf2_per_objfile)
25316 {
25317 struct dwarf2_per_cu_data *this_cu;
25318 int low, high;
25319
25320 low = 0;
25321 high = dwarf2_per_objfile->all_comp_units.size () - 1;
25322 while (high > low)
25323 {
25324 struct dwarf2_per_cu_data *mid_cu;
25325 int mid = low + (high - low) / 2;
25326
25327 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25328 if (mid_cu->is_dwz > offset_in_dwz
25329 || (mid_cu->is_dwz == offset_in_dwz
25330 && mid_cu->sect_off + mid_cu->length >= sect_off))
25331 high = mid;
25332 else
25333 low = mid + 1;
25334 }
25335 gdb_assert (low == high);
25336 this_cu = dwarf2_per_objfile->all_comp_units[low];
25337 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
25338 {
25339 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25340 error (_("Dwarf Error: could not find partial DIE containing "
25341 "offset %s [in module %s]"),
25342 sect_offset_str (sect_off),
25343 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25344
25345 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25346 <= sect_off);
25347 return dwarf2_per_objfile->all_comp_units[low-1];
25348 }
25349 else
25350 {
25351 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
25352 && sect_off >= this_cu->sect_off + this_cu->length)
25353 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25354 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25355 return this_cu;
25356 }
25357 }
25358
25359 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25360
25361 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25362 : per_cu (per_cu_),
25363 mark (false),
25364 has_loclist (false),
25365 checked_producer (false),
25366 producer_is_gxx_lt_4_6 (false),
25367 producer_is_gcc_lt_4_3 (false),
25368 producer_is_icc (false),
25369 producer_is_icc_lt_14 (false),
25370 producer_is_codewarrior (false),
25371 processing_has_namespace_info (false)
25372 {
25373 per_cu->cu = this;
25374 }
25375
25376 /* Destroy a dwarf2_cu. */
25377
25378 dwarf2_cu::~dwarf2_cu ()
25379 {
25380 per_cu->cu = NULL;
25381 }
25382
25383 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25384
25385 static void
25386 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25387 enum language pretend_language)
25388 {
25389 struct attribute *attr;
25390
25391 /* Set the language we're debugging. */
25392 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25393 if (attr)
25394 set_cu_language (DW_UNSND (attr), cu);
25395 else
25396 {
25397 cu->language = pretend_language;
25398 cu->language_defn = language_def (cu->language);
25399 }
25400
25401 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25402 }
25403
25404 /* Increase the age counter on each cached compilation unit, and free
25405 any that are too old. */
25406
25407 static void
25408 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25409 {
25410 struct dwarf2_per_cu_data *per_cu, **last_chain;
25411
25412 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25413 per_cu = dwarf2_per_objfile->read_in_chain;
25414 while (per_cu != NULL)
25415 {
25416 per_cu->cu->last_used ++;
25417 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25418 dwarf2_mark (per_cu->cu);
25419 per_cu = per_cu->cu->read_in_chain;
25420 }
25421
25422 per_cu = dwarf2_per_objfile->read_in_chain;
25423 last_chain = &dwarf2_per_objfile->read_in_chain;
25424 while (per_cu != NULL)
25425 {
25426 struct dwarf2_per_cu_data *next_cu;
25427
25428 next_cu = per_cu->cu->read_in_chain;
25429
25430 if (!per_cu->cu->mark)
25431 {
25432 delete per_cu->cu;
25433 *last_chain = next_cu;
25434 }
25435 else
25436 last_chain = &per_cu->cu->read_in_chain;
25437
25438 per_cu = next_cu;
25439 }
25440 }
25441
25442 /* Remove a single compilation unit from the cache. */
25443
25444 static void
25445 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25446 {
25447 struct dwarf2_per_cu_data *per_cu, **last_chain;
25448 struct dwarf2_per_objfile *dwarf2_per_objfile
25449 = target_per_cu->dwarf2_per_objfile;
25450
25451 per_cu = dwarf2_per_objfile->read_in_chain;
25452 last_chain = &dwarf2_per_objfile->read_in_chain;
25453 while (per_cu != NULL)
25454 {
25455 struct dwarf2_per_cu_data *next_cu;
25456
25457 next_cu = per_cu->cu->read_in_chain;
25458
25459 if (per_cu == target_per_cu)
25460 {
25461 delete per_cu->cu;
25462 per_cu->cu = NULL;
25463 *last_chain = next_cu;
25464 break;
25465 }
25466 else
25467 last_chain = &per_cu->cu->read_in_chain;
25468
25469 per_cu = next_cu;
25470 }
25471 }
25472
25473 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25474 We store these in a hash table separate from the DIEs, and preserve them
25475 when the DIEs are flushed out of cache.
25476
25477 The CU "per_cu" pointer is needed because offset alone is not enough to
25478 uniquely identify the type. A file may have multiple .debug_types sections,
25479 or the type may come from a DWO file. Furthermore, while it's more logical
25480 to use per_cu->section+offset, with Fission the section with the data is in
25481 the DWO file but we don't know that section at the point we need it.
25482 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25483 because we can enter the lookup routine, get_die_type_at_offset, from
25484 outside this file, and thus won't necessarily have PER_CU->cu.
25485 Fortunately, PER_CU is stable for the life of the objfile. */
25486
25487 struct dwarf2_per_cu_offset_and_type
25488 {
25489 const struct dwarf2_per_cu_data *per_cu;
25490 sect_offset sect_off;
25491 struct type *type;
25492 };
25493
25494 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25495
25496 static hashval_t
25497 per_cu_offset_and_type_hash (const void *item)
25498 {
25499 const struct dwarf2_per_cu_offset_and_type *ofs
25500 = (const struct dwarf2_per_cu_offset_and_type *) item;
25501
25502 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25503 }
25504
25505 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25506
25507 static int
25508 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25509 {
25510 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25511 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25512 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25513 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25514
25515 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25516 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25517 }
25518
25519 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25520 table if necessary. For convenience, return TYPE.
25521
25522 The DIEs reading must have careful ordering to:
25523 * Not cause infite loops trying to read in DIEs as a prerequisite for
25524 reading current DIE.
25525 * Not trying to dereference contents of still incompletely read in types
25526 while reading in other DIEs.
25527 * Enable referencing still incompletely read in types just by a pointer to
25528 the type without accessing its fields.
25529
25530 Therefore caller should follow these rules:
25531 * Try to fetch any prerequisite types we may need to build this DIE type
25532 before building the type and calling set_die_type.
25533 * After building type call set_die_type for current DIE as soon as
25534 possible before fetching more types to complete the current type.
25535 * Make the type as complete as possible before fetching more types. */
25536
25537 static struct type *
25538 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25539 {
25540 struct dwarf2_per_objfile *dwarf2_per_objfile
25541 = cu->per_cu->dwarf2_per_objfile;
25542 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25543 struct objfile *objfile = dwarf2_per_objfile->objfile;
25544 struct attribute *attr;
25545 struct dynamic_prop prop;
25546
25547 /* For Ada types, make sure that the gnat-specific data is always
25548 initialized (if not already set). There are a few types where
25549 we should not be doing so, because the type-specific area is
25550 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25551 where the type-specific area is used to store the floatformat).
25552 But this is not a problem, because the gnat-specific information
25553 is actually not needed for these types. */
25554 if (need_gnat_info (cu)
25555 && TYPE_CODE (type) != TYPE_CODE_FUNC
25556 && TYPE_CODE (type) != TYPE_CODE_FLT
25557 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25558 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25559 && TYPE_CODE (type) != TYPE_CODE_METHOD
25560 && !HAVE_GNAT_AUX_INFO (type))
25561 INIT_GNAT_SPECIFIC (type);
25562
25563 /* Read DW_AT_allocated and set in type. */
25564 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25565 if (attr_form_is_block (attr))
25566 {
25567 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25568 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25569 }
25570 else if (attr != NULL)
25571 {
25572 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25573 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25574 sect_offset_str (die->sect_off));
25575 }
25576
25577 /* Read DW_AT_associated and set in type. */
25578 attr = dwarf2_attr (die, DW_AT_associated, cu);
25579 if (attr_form_is_block (attr))
25580 {
25581 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25582 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25583 }
25584 else if (attr != NULL)
25585 {
25586 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25587 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25588 sect_offset_str (die->sect_off));
25589 }
25590
25591 /* Read DW_AT_data_location and set in type. */
25592 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25593 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25594 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25595
25596 if (dwarf2_per_objfile->die_type_hash == NULL)
25597 {
25598 dwarf2_per_objfile->die_type_hash =
25599 htab_create_alloc_ex (127,
25600 per_cu_offset_and_type_hash,
25601 per_cu_offset_and_type_eq,
25602 NULL,
25603 &objfile->objfile_obstack,
25604 hashtab_obstack_allocate,
25605 dummy_obstack_deallocate);
25606 }
25607
25608 ofs.per_cu = cu->per_cu;
25609 ofs.sect_off = die->sect_off;
25610 ofs.type = type;
25611 slot = (struct dwarf2_per_cu_offset_and_type **)
25612 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25613 if (*slot)
25614 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25615 sect_offset_str (die->sect_off));
25616 *slot = XOBNEW (&objfile->objfile_obstack,
25617 struct dwarf2_per_cu_offset_and_type);
25618 **slot = ofs;
25619 return type;
25620 }
25621
25622 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25623 or return NULL if the die does not have a saved type. */
25624
25625 static struct type *
25626 get_die_type_at_offset (sect_offset sect_off,
25627 struct dwarf2_per_cu_data *per_cu)
25628 {
25629 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25630 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25631
25632 if (dwarf2_per_objfile->die_type_hash == NULL)
25633 return NULL;
25634
25635 ofs.per_cu = per_cu;
25636 ofs.sect_off = sect_off;
25637 slot = ((struct dwarf2_per_cu_offset_and_type *)
25638 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25639 if (slot)
25640 return slot->type;
25641 else
25642 return NULL;
25643 }
25644
25645 /* Look up the type for DIE in CU in die_type_hash,
25646 or return NULL if DIE does not have a saved type. */
25647
25648 static struct type *
25649 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25650 {
25651 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25652 }
25653
25654 /* Add a dependence relationship from CU to REF_PER_CU. */
25655
25656 static void
25657 dwarf2_add_dependence (struct dwarf2_cu *cu,
25658 struct dwarf2_per_cu_data *ref_per_cu)
25659 {
25660 void **slot;
25661
25662 if (cu->dependencies == NULL)
25663 cu->dependencies
25664 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25665 NULL, &cu->comp_unit_obstack,
25666 hashtab_obstack_allocate,
25667 dummy_obstack_deallocate);
25668
25669 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25670 if (*slot == NULL)
25671 *slot = ref_per_cu;
25672 }
25673
25674 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25675 Set the mark field in every compilation unit in the
25676 cache that we must keep because we are keeping CU. */
25677
25678 static int
25679 dwarf2_mark_helper (void **slot, void *data)
25680 {
25681 struct dwarf2_per_cu_data *per_cu;
25682
25683 per_cu = (struct dwarf2_per_cu_data *) *slot;
25684
25685 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25686 reading of the chain. As such dependencies remain valid it is not much
25687 useful to track and undo them during QUIT cleanups. */
25688 if (per_cu->cu == NULL)
25689 return 1;
25690
25691 if (per_cu->cu->mark)
25692 return 1;
25693 per_cu->cu->mark = true;
25694
25695 if (per_cu->cu->dependencies != NULL)
25696 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25697
25698 return 1;
25699 }
25700
25701 /* Set the mark field in CU and in every other compilation unit in the
25702 cache that we must keep because we are keeping CU. */
25703
25704 static void
25705 dwarf2_mark (struct dwarf2_cu *cu)
25706 {
25707 if (cu->mark)
25708 return;
25709 cu->mark = true;
25710 if (cu->dependencies != NULL)
25711 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25712 }
25713
25714 static void
25715 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25716 {
25717 while (per_cu)
25718 {
25719 per_cu->cu->mark = false;
25720 per_cu = per_cu->cu->read_in_chain;
25721 }
25722 }
25723
25724 /* Trivial hash function for partial_die_info: the hash value of a DIE
25725 is its offset in .debug_info for this objfile. */
25726
25727 static hashval_t
25728 partial_die_hash (const void *item)
25729 {
25730 const struct partial_die_info *part_die
25731 = (const struct partial_die_info *) item;
25732
25733 return to_underlying (part_die->sect_off);
25734 }
25735
25736 /* Trivial comparison function for partial_die_info structures: two DIEs
25737 are equal if they have the same offset. */
25738
25739 static int
25740 partial_die_eq (const void *item_lhs, const void *item_rhs)
25741 {
25742 const struct partial_die_info *part_die_lhs
25743 = (const struct partial_die_info *) item_lhs;
25744 const struct partial_die_info *part_die_rhs
25745 = (const struct partial_die_info *) item_rhs;
25746
25747 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25748 }
25749
25750 struct cmd_list_element *set_dwarf_cmdlist;
25751 struct cmd_list_element *show_dwarf_cmdlist;
25752
25753 static void
25754 set_dwarf_cmd (const char *args, int from_tty)
25755 {
25756 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25757 gdb_stdout);
25758 }
25759
25760 static void
25761 show_dwarf_cmd (const char *args, int from_tty)
25762 {
25763 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25764 }
25765
25766 int dwarf_always_disassemble;
25767
25768 static void
25769 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25770 struct cmd_list_element *c, const char *value)
25771 {
25772 fprintf_filtered (file,
25773 _("Whether to always disassemble "
25774 "DWARF expressions is %s.\n"),
25775 value);
25776 }
25777
25778 static void
25779 show_check_physname (struct ui_file *file, int from_tty,
25780 struct cmd_list_element *c, const char *value)
25781 {
25782 fprintf_filtered (file,
25783 _("Whether to check \"physname\" is %s.\n"),
25784 value);
25785 }
25786
25787 void
25788 _initialize_dwarf2_read (void)
25789 {
25790 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25791 Set DWARF specific variables.\n\
25792 Configure DWARF variables such as the cache size"),
25793 &set_dwarf_cmdlist, "maintenance set dwarf ",
25794 0/*allow-unknown*/, &maintenance_set_cmdlist);
25795
25796 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25797 Show DWARF specific variables\n\
25798 Show DWARF variables such as the cache size"),
25799 &show_dwarf_cmdlist, "maintenance show dwarf ",
25800 0/*allow-unknown*/, &maintenance_show_cmdlist);
25801
25802 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25803 &dwarf_max_cache_age, _("\
25804 Set the upper bound on the age of cached DWARF compilation units."), _("\
25805 Show the upper bound on the age of cached DWARF compilation units."), _("\
25806 A higher limit means that cached compilation units will be stored\n\
25807 in memory longer, and more total memory will be used. Zero disables\n\
25808 caching, which can slow down startup."),
25809 NULL,
25810 show_dwarf_max_cache_age,
25811 &set_dwarf_cmdlist,
25812 &show_dwarf_cmdlist);
25813
25814 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25815 &dwarf_always_disassemble, _("\
25816 Set whether `info address' always disassembles DWARF expressions."), _("\
25817 Show whether `info address' always disassembles DWARF expressions."), _("\
25818 When enabled, DWARF expressions are always printed in an assembly-like\n\
25819 syntax. When disabled, expressions will be printed in a more\n\
25820 conversational style, when possible."),
25821 NULL,
25822 show_dwarf_always_disassemble,
25823 &set_dwarf_cmdlist,
25824 &show_dwarf_cmdlist);
25825
25826 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25827 Set debugging of the DWARF reader."), _("\
25828 Show debugging of the DWARF reader."), _("\
25829 When enabled (non-zero), debugging messages are printed during DWARF\n\
25830 reading and symtab expansion. A value of 1 (one) provides basic\n\
25831 information. A value greater than 1 provides more verbose information."),
25832 NULL,
25833 NULL,
25834 &setdebuglist, &showdebuglist);
25835
25836 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25837 Set debugging of the DWARF DIE reader."), _("\
25838 Show debugging of the DWARF DIE reader."), _("\
25839 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25840 The value is the maximum depth to print."),
25841 NULL,
25842 NULL,
25843 &setdebuglist, &showdebuglist);
25844
25845 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25846 Set debugging of the dwarf line reader."), _("\
25847 Show debugging of the dwarf line reader."), _("\
25848 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25849 A value of 1 (one) provides basic information.\n\
25850 A value greater than 1 provides more verbose information."),
25851 NULL,
25852 NULL,
25853 &setdebuglist, &showdebuglist);
25854
25855 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25856 Set cross-checking of \"physname\" code against demangler."), _("\
25857 Show cross-checking of \"physname\" code against demangler."), _("\
25858 When enabled, GDB's internal \"physname\" code is checked against\n\
25859 the demangler."),
25860 NULL, show_check_physname,
25861 &setdebuglist, &showdebuglist);
25862
25863 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25864 no_class, &use_deprecated_index_sections, _("\
25865 Set whether to use deprecated gdb_index sections."), _("\
25866 Show whether to use deprecated gdb_index sections."), _("\
25867 When enabled, deprecated .gdb_index sections are used anyway.\n\
25868 Normally they are ignored either because of a missing feature or\n\
25869 performance issue.\n\
25870 Warning: This option must be enabled before gdb reads the file."),
25871 NULL,
25872 NULL,
25873 &setlist, &showlist);
25874
25875 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25876 &dwarf2_locexpr_funcs);
25877 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25878 &dwarf2_loclist_funcs);
25879
25880 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25881 &dwarf2_block_frame_base_locexpr_funcs);
25882 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25883 &dwarf2_block_frame_base_loclist_funcs);
25884
25885 #if GDB_SELF_TEST
25886 selftests::register_test ("dw2_expand_symtabs_matching",
25887 selftests::dw2_expand_symtabs_matching::run_test);
25888 #endif
25889 }
This page took 0.574267 seconds and 5 git commands to generate.