Fix crash in quirk_rust_enum
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2018 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2read.h"
33 #include "dwarf-index-common.h"
34 #include "bfd.h"
35 #include "elf-bfd.h"
36 #include "symtab.h"
37 #include "gdbtypes.h"
38 #include "objfiles.h"
39 #include "dwarf2.h"
40 #include "buildsym.h"
41 #include "demangle.h"
42 #include "gdb-demangle.h"
43 #include "expression.h"
44 #include "filenames.h" /* for DOSish file names */
45 #include "macrotab.h"
46 #include "language.h"
47 #include "complaints.h"
48 #include "bcache.h"
49 #include "dwarf2expr.h"
50 #include "dwarf2loc.h"
51 #include "cp-support.h"
52 #include "hashtab.h"
53 #include "command.h"
54 #include "gdbcmd.h"
55 #include "block.h"
56 #include "addrmap.h"
57 #include "typeprint.h"
58 #include "psympriv.h"
59 #include <sys/stat.h>
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "filestuff.h"
72 #include "build-id.h"
73 #include "namespace.h"
74 #include "common/gdb_unlinker.h"
75 #include "common/function-view.h"
76 #include "common/gdb_optional.h"
77 #include "common/underlying.h"
78 #include "common/byte-vector.h"
79 #include "common/hash_enum.h"
80 #include "filename-seen-cache.h"
81 #include "producer.h"
82 #include <fcntl.h>
83 #include <sys/types.h>
84 #include <algorithm>
85 #include <unordered_set>
86 #include <unordered_map>
87 #include "selftest.h"
88 #include <cmath>
89 #include <set>
90 #include <forward_list>
91 #include "rust-lang.h"
92 #include "common/pathstuff.h"
93
94 /* When == 1, print basic high level tracing messages.
95 When > 1, be more verbose.
96 This is in contrast to the low level DIE reading of dwarf_die_debug. */
97 static unsigned int dwarf_read_debug = 0;
98
99 /* When non-zero, dump DIEs after they are read in. */
100 static unsigned int dwarf_die_debug = 0;
101
102 /* When non-zero, dump line number entries as they are read in. */
103 static unsigned int dwarf_line_debug = 0;
104
105 /* When non-zero, cross-check physname against demangler. */
106 static int check_physname = 0;
107
108 /* When non-zero, do not reject deprecated .gdb_index sections. */
109 static int use_deprecated_index_sections = 0;
110
111 static const struct objfile_data *dwarf2_objfile_data_key;
112
113 /* The "aclass" indices for various kinds of computed DWARF symbols. */
114
115 static int dwarf2_locexpr_index;
116 static int dwarf2_loclist_index;
117 static int dwarf2_locexpr_block_index;
118 static int dwarf2_loclist_block_index;
119
120 /* An index into a (C++) symbol name component in a symbol name as
121 recorded in the mapped_index's symbol table. For each C++ symbol
122 in the symbol table, we record one entry for the start of each
123 component in the symbol in a table of name components, and then
124 sort the table, in order to be able to binary search symbol names,
125 ignoring leading namespaces, both completion and regular look up.
126 For example, for symbol "A::B::C", we'll have an entry that points
127 to "A::B::C", another that points to "B::C", and another for "C".
128 Note that function symbols in GDB index have no parameter
129 information, just the function/method names. You can convert a
130 name_component to a "const char *" using the
131 'mapped_index::symbol_name_at(offset_type)' method. */
132
133 struct name_component
134 {
135 /* Offset in the symbol name where the component starts. Stored as
136 a (32-bit) offset instead of a pointer to save memory and improve
137 locality on 64-bit architectures. */
138 offset_type name_offset;
139
140 /* The symbol's index in the symbol and constant pool tables of a
141 mapped_index. */
142 offset_type idx;
143 };
144
145 /* Base class containing bits shared by both .gdb_index and
146 .debug_name indexes. */
147
148 struct mapped_index_base
149 {
150 /* The name_component table (a sorted vector). See name_component's
151 description above. */
152 std::vector<name_component> name_components;
153
154 /* How NAME_COMPONENTS is sorted. */
155 enum case_sensitivity name_components_casing;
156
157 /* Return the number of names in the symbol table. */
158 virtual size_t symbol_name_count () const = 0;
159
160 /* Get the name of the symbol at IDX in the symbol table. */
161 virtual const char *symbol_name_at (offset_type idx) const = 0;
162
163 /* Return whether the name at IDX in the symbol table should be
164 ignored. */
165 virtual bool symbol_name_slot_invalid (offset_type idx) const
166 {
167 return false;
168 }
169
170 /* Build the symbol name component sorted vector, if we haven't
171 yet. */
172 void build_name_components ();
173
174 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
175 possible matches for LN_NO_PARAMS in the name component
176 vector. */
177 std::pair<std::vector<name_component>::const_iterator,
178 std::vector<name_component>::const_iterator>
179 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
180
181 /* Prevent deleting/destroying via a base class pointer. */
182 protected:
183 ~mapped_index_base() = default;
184 };
185
186 /* A description of the mapped index. The file format is described in
187 a comment by the code that writes the index. */
188 struct mapped_index final : public mapped_index_base
189 {
190 /* A slot/bucket in the symbol table hash. */
191 struct symbol_table_slot
192 {
193 const offset_type name;
194 const offset_type vec;
195 };
196
197 /* Index data format version. */
198 int version;
199
200 /* The total length of the buffer. */
201 off_t total_size;
202
203 /* The address table data. */
204 gdb::array_view<const gdb_byte> address_table;
205
206 /* The symbol table, implemented as a hash table. */
207 gdb::array_view<symbol_table_slot> symbol_table;
208
209 /* A pointer to the constant pool. */
210 const char *constant_pool;
211
212 bool symbol_name_slot_invalid (offset_type idx) const override
213 {
214 const auto &bucket = this->symbol_table[idx];
215 return bucket.name == 0 && bucket.vec;
216 }
217
218 /* Convenience method to get at the name of the symbol at IDX in the
219 symbol table. */
220 const char *symbol_name_at (offset_type idx) const override
221 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
222
223 size_t symbol_name_count () const override
224 { return this->symbol_table.size (); }
225 };
226
227 /* A description of the mapped .debug_names.
228 Uninitialized map has CU_COUNT 0. */
229 struct mapped_debug_names final : public mapped_index_base
230 {
231 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
232 : dwarf2_per_objfile (dwarf2_per_objfile_)
233 {}
234
235 struct dwarf2_per_objfile *dwarf2_per_objfile;
236 bfd_endian dwarf5_byte_order;
237 bool dwarf5_is_dwarf64;
238 bool augmentation_is_gdb;
239 uint8_t offset_size;
240 uint32_t cu_count = 0;
241 uint32_t tu_count, bucket_count, name_count;
242 const gdb_byte *cu_table_reordered, *tu_table_reordered;
243 const uint32_t *bucket_table_reordered, *hash_table_reordered;
244 const gdb_byte *name_table_string_offs_reordered;
245 const gdb_byte *name_table_entry_offs_reordered;
246 const gdb_byte *entry_pool;
247
248 struct index_val
249 {
250 ULONGEST dwarf_tag;
251 struct attr
252 {
253 /* Attribute name DW_IDX_*. */
254 ULONGEST dw_idx;
255
256 /* Attribute form DW_FORM_*. */
257 ULONGEST form;
258
259 /* Value if FORM is DW_FORM_implicit_const. */
260 LONGEST implicit_const;
261 };
262 std::vector<attr> attr_vec;
263 };
264
265 std::unordered_map<ULONGEST, index_val> abbrev_map;
266
267 const char *namei_to_name (uint32_t namei) const;
268
269 /* Implementation of the mapped_index_base virtual interface, for
270 the name_components cache. */
271
272 const char *symbol_name_at (offset_type idx) const override
273 { return namei_to_name (idx); }
274
275 size_t symbol_name_count () const override
276 { return this->name_count; }
277 };
278
279 /* See dwarf2read.h. */
280
281 dwarf2_per_objfile *
282 get_dwarf2_per_objfile (struct objfile *objfile)
283 {
284 return ((struct dwarf2_per_objfile *)
285 objfile_data (objfile, dwarf2_objfile_data_key));
286 }
287
288 /* Set the dwarf2_per_objfile associated to OBJFILE. */
289
290 void
291 set_dwarf2_per_objfile (struct objfile *objfile,
292 struct dwarf2_per_objfile *dwarf2_per_objfile)
293 {
294 gdb_assert (get_dwarf2_per_objfile (objfile) == NULL);
295 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
296 }
297
298 /* Default names of the debugging sections. */
299
300 /* Note that if the debugging section has been compressed, it might
301 have a name like .zdebug_info. */
302
303 static const struct dwarf2_debug_sections dwarf2_elf_names =
304 {
305 { ".debug_info", ".zdebug_info" },
306 { ".debug_abbrev", ".zdebug_abbrev" },
307 { ".debug_line", ".zdebug_line" },
308 { ".debug_loc", ".zdebug_loc" },
309 { ".debug_loclists", ".zdebug_loclists" },
310 { ".debug_macinfo", ".zdebug_macinfo" },
311 { ".debug_macro", ".zdebug_macro" },
312 { ".debug_str", ".zdebug_str" },
313 { ".debug_line_str", ".zdebug_line_str" },
314 { ".debug_ranges", ".zdebug_ranges" },
315 { ".debug_rnglists", ".zdebug_rnglists" },
316 { ".debug_types", ".zdebug_types" },
317 { ".debug_addr", ".zdebug_addr" },
318 { ".debug_frame", ".zdebug_frame" },
319 { ".eh_frame", NULL },
320 { ".gdb_index", ".zgdb_index" },
321 { ".debug_names", ".zdebug_names" },
322 { ".debug_aranges", ".zdebug_aranges" },
323 23
324 };
325
326 /* List of DWO/DWP sections. */
327
328 static const struct dwop_section_names
329 {
330 struct dwarf2_section_names abbrev_dwo;
331 struct dwarf2_section_names info_dwo;
332 struct dwarf2_section_names line_dwo;
333 struct dwarf2_section_names loc_dwo;
334 struct dwarf2_section_names loclists_dwo;
335 struct dwarf2_section_names macinfo_dwo;
336 struct dwarf2_section_names macro_dwo;
337 struct dwarf2_section_names str_dwo;
338 struct dwarf2_section_names str_offsets_dwo;
339 struct dwarf2_section_names types_dwo;
340 struct dwarf2_section_names cu_index;
341 struct dwarf2_section_names tu_index;
342 }
343 dwop_section_names =
344 {
345 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
346 { ".debug_info.dwo", ".zdebug_info.dwo" },
347 { ".debug_line.dwo", ".zdebug_line.dwo" },
348 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
349 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
350 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
351 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
352 { ".debug_str.dwo", ".zdebug_str.dwo" },
353 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
354 { ".debug_types.dwo", ".zdebug_types.dwo" },
355 { ".debug_cu_index", ".zdebug_cu_index" },
356 { ".debug_tu_index", ".zdebug_tu_index" },
357 };
358
359 /* local data types */
360
361 /* The data in a compilation unit header, after target2host
362 translation, looks like this. */
363 struct comp_unit_head
364 {
365 unsigned int length;
366 short version;
367 unsigned char addr_size;
368 unsigned char signed_addr_p;
369 sect_offset abbrev_sect_off;
370
371 /* Size of file offsets; either 4 or 8. */
372 unsigned int offset_size;
373
374 /* Size of the length field; either 4 or 12. */
375 unsigned int initial_length_size;
376
377 enum dwarf_unit_type unit_type;
378
379 /* Offset to the first byte of this compilation unit header in the
380 .debug_info section, for resolving relative reference dies. */
381 sect_offset sect_off;
382
383 /* Offset to first die in this cu from the start of the cu.
384 This will be the first byte following the compilation unit header. */
385 cu_offset first_die_cu_offset;
386
387 /* 64-bit signature of this type unit - it is valid only for
388 UNIT_TYPE DW_UT_type. */
389 ULONGEST signature;
390
391 /* For types, offset in the type's DIE of the type defined by this TU. */
392 cu_offset type_cu_offset_in_tu;
393 };
394
395 /* Type used for delaying computation of method physnames.
396 See comments for compute_delayed_physnames. */
397 struct delayed_method_info
398 {
399 /* The type to which the method is attached, i.e., its parent class. */
400 struct type *type;
401
402 /* The index of the method in the type's function fieldlists. */
403 int fnfield_index;
404
405 /* The index of the method in the fieldlist. */
406 int index;
407
408 /* The name of the DIE. */
409 const char *name;
410
411 /* The DIE associated with this method. */
412 struct die_info *die;
413 };
414
415 /* Internal state when decoding a particular compilation unit. */
416 struct dwarf2_cu
417 {
418 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
419 ~dwarf2_cu ();
420
421 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
422
423 /* The header of the compilation unit. */
424 struct comp_unit_head header {};
425
426 /* Base address of this compilation unit. */
427 CORE_ADDR base_address = 0;
428
429 /* Non-zero if base_address has been set. */
430 int base_known = 0;
431
432 /* The language we are debugging. */
433 enum language language = language_unknown;
434 const struct language_defn *language_defn = nullptr;
435
436 const char *producer = nullptr;
437
438 /* The generic symbol table building routines have separate lists for
439 file scope symbols and all all other scopes (local scopes). So
440 we need to select the right one to pass to add_symbol_to_list().
441 We do it by keeping a pointer to the correct list in list_in_scope.
442
443 FIXME: The original dwarf code just treated the file scope as the
444 first local scope, and all other local scopes as nested local
445 scopes, and worked fine. Check to see if we really need to
446 distinguish these in buildsym.c. */
447 struct pending **list_in_scope = nullptr;
448
449 /* Hash table holding all the loaded partial DIEs
450 with partial_die->offset.SECT_OFF as hash. */
451 htab_t partial_dies = nullptr;
452
453 /* Storage for things with the same lifetime as this read-in compilation
454 unit, including partial DIEs. */
455 auto_obstack comp_unit_obstack;
456
457 /* When multiple dwarf2_cu structures are living in memory, this field
458 chains them all together, so that they can be released efficiently.
459 We will probably also want a generation counter so that most-recently-used
460 compilation units are cached... */
461 struct dwarf2_per_cu_data *read_in_chain = nullptr;
462
463 /* Backlink to our per_cu entry. */
464 struct dwarf2_per_cu_data *per_cu;
465
466 /* How many compilation units ago was this CU last referenced? */
467 int last_used = 0;
468
469 /* A hash table of DIE cu_offset for following references with
470 die_info->offset.sect_off as hash. */
471 htab_t die_hash = nullptr;
472
473 /* Full DIEs if read in. */
474 struct die_info *dies = nullptr;
475
476 /* A set of pointers to dwarf2_per_cu_data objects for compilation
477 units referenced by this one. Only set during full symbol processing;
478 partial symbol tables do not have dependencies. */
479 htab_t dependencies = nullptr;
480
481 /* Header data from the line table, during full symbol processing. */
482 struct line_header *line_header = nullptr;
483 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
484 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
485 this is the DW_TAG_compile_unit die for this CU. We'll hold on
486 to the line header as long as this DIE is being processed. See
487 process_die_scope. */
488 die_info *line_header_die_owner = nullptr;
489
490 /* A list of methods which need to have physnames computed
491 after all type information has been read. */
492 std::vector<delayed_method_info> method_list;
493
494 /* To be copied to symtab->call_site_htab. */
495 htab_t call_site_htab = nullptr;
496
497 /* Non-NULL if this CU came from a DWO file.
498 There is an invariant here that is important to remember:
499 Except for attributes copied from the top level DIE in the "main"
500 (or "stub") file in preparation for reading the DWO file
501 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
502 Either there isn't a DWO file (in which case this is NULL and the point
503 is moot), or there is and either we're not going to read it (in which
504 case this is NULL) or there is and we are reading it (in which case this
505 is non-NULL). */
506 struct dwo_unit *dwo_unit = nullptr;
507
508 /* The DW_AT_addr_base attribute if present, zero otherwise
509 (zero is a valid value though).
510 Note this value comes from the Fission stub CU/TU's DIE. */
511 ULONGEST addr_base = 0;
512
513 /* The DW_AT_ranges_base attribute if present, zero otherwise
514 (zero is a valid value though).
515 Note this value comes from the Fission stub CU/TU's DIE.
516 Also note that the value is zero in the non-DWO case so this value can
517 be used without needing to know whether DWO files are in use or not.
518 N.B. This does not apply to DW_AT_ranges appearing in
519 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
520 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
521 DW_AT_ranges_base *would* have to be applied, and we'd have to care
522 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
523 ULONGEST ranges_base = 0;
524
525 /* When reading debug info generated by older versions of rustc, we
526 have to rewrite some union types to be struct types with a
527 variant part. This rewriting must be done after the CU is fully
528 read in, because otherwise at the point of rewriting some struct
529 type might not have been fully processed. So, we keep a list of
530 all such types here and process them after expansion. */
531 std::vector<struct type *> rust_unions;
532
533 /* Mark used when releasing cached dies. */
534 unsigned int mark : 1;
535
536 /* This CU references .debug_loc. See the symtab->locations_valid field.
537 This test is imperfect as there may exist optimized debug code not using
538 any location list and still facing inlining issues if handled as
539 unoptimized code. For a future better test see GCC PR other/32998. */
540 unsigned int has_loclist : 1;
541
542 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
543 if all the producer_is_* fields are valid. This information is cached
544 because profiling CU expansion showed excessive time spent in
545 producer_is_gxx_lt_4_6. */
546 unsigned int checked_producer : 1;
547 unsigned int producer_is_gxx_lt_4_6 : 1;
548 unsigned int producer_is_gcc_lt_4_3 : 1;
549 unsigned int producer_is_icc_lt_14 : 1;
550
551 /* When set, the file that we're processing is known to have
552 debugging info for C++ namespaces. GCC 3.3.x did not produce
553 this information, but later versions do. */
554
555 unsigned int processing_has_namespace_info : 1;
556
557 struct partial_die_info *find_partial_die (sect_offset sect_off);
558 };
559
560 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
561 This includes type_unit_group and quick_file_names. */
562
563 struct stmt_list_hash
564 {
565 /* The DWO unit this table is from or NULL if there is none. */
566 struct dwo_unit *dwo_unit;
567
568 /* Offset in .debug_line or .debug_line.dwo. */
569 sect_offset line_sect_off;
570 };
571
572 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
573 an object of this type. */
574
575 struct type_unit_group
576 {
577 /* dwarf2read.c's main "handle" on a TU symtab.
578 To simplify things we create an artificial CU that "includes" all the
579 type units using this stmt_list so that the rest of the code still has
580 a "per_cu" handle on the symtab.
581 This PER_CU is recognized by having no section. */
582 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
583 struct dwarf2_per_cu_data per_cu;
584
585 /* The TUs that share this DW_AT_stmt_list entry.
586 This is added to while parsing type units to build partial symtabs,
587 and is deleted afterwards and not used again. */
588 VEC (sig_type_ptr) *tus;
589
590 /* The compunit symtab.
591 Type units in a group needn't all be defined in the same source file,
592 so we create an essentially anonymous symtab as the compunit symtab. */
593 struct compunit_symtab *compunit_symtab;
594
595 /* The data used to construct the hash key. */
596 struct stmt_list_hash hash;
597
598 /* The number of symtabs from the line header.
599 The value here must match line_header.num_file_names. */
600 unsigned int num_symtabs;
601
602 /* The symbol tables for this TU (obtained from the files listed in
603 DW_AT_stmt_list).
604 WARNING: The order of entries here must match the order of entries
605 in the line header. After the first TU using this type_unit_group, the
606 line header for the subsequent TUs is recreated from this. This is done
607 because we need to use the same symtabs for each TU using the same
608 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
609 there's no guarantee the line header doesn't have duplicate entries. */
610 struct symtab **symtabs;
611 };
612
613 /* These sections are what may appear in a (real or virtual) DWO file. */
614
615 struct dwo_sections
616 {
617 struct dwarf2_section_info abbrev;
618 struct dwarf2_section_info line;
619 struct dwarf2_section_info loc;
620 struct dwarf2_section_info loclists;
621 struct dwarf2_section_info macinfo;
622 struct dwarf2_section_info macro;
623 struct dwarf2_section_info str;
624 struct dwarf2_section_info str_offsets;
625 /* In the case of a virtual DWO file, these two are unused. */
626 struct dwarf2_section_info info;
627 VEC (dwarf2_section_info_def) *types;
628 };
629
630 /* CUs/TUs in DWP/DWO files. */
631
632 struct dwo_unit
633 {
634 /* Backlink to the containing struct dwo_file. */
635 struct dwo_file *dwo_file;
636
637 /* The "id" that distinguishes this CU/TU.
638 .debug_info calls this "dwo_id", .debug_types calls this "signature".
639 Since signatures came first, we stick with it for consistency. */
640 ULONGEST signature;
641
642 /* The section this CU/TU lives in, in the DWO file. */
643 struct dwarf2_section_info *section;
644
645 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
646 sect_offset sect_off;
647 unsigned int length;
648
649 /* For types, offset in the type's DIE of the type defined by this TU. */
650 cu_offset type_offset_in_tu;
651 };
652
653 /* include/dwarf2.h defines the DWP section codes.
654 It defines a max value but it doesn't define a min value, which we
655 use for error checking, so provide one. */
656
657 enum dwp_v2_section_ids
658 {
659 DW_SECT_MIN = 1
660 };
661
662 /* Data for one DWO file.
663
664 This includes virtual DWO files (a virtual DWO file is a DWO file as it
665 appears in a DWP file). DWP files don't really have DWO files per se -
666 comdat folding of types "loses" the DWO file they came from, and from
667 a high level view DWP files appear to contain a mass of random types.
668 However, to maintain consistency with the non-DWP case we pretend DWP
669 files contain virtual DWO files, and we assign each TU with one virtual
670 DWO file (generally based on the line and abbrev section offsets -
671 a heuristic that seems to work in practice). */
672
673 struct dwo_file
674 {
675 /* The DW_AT_GNU_dwo_name attribute.
676 For virtual DWO files the name is constructed from the section offsets
677 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
678 from related CU+TUs. */
679 const char *dwo_name;
680
681 /* The DW_AT_comp_dir attribute. */
682 const char *comp_dir;
683
684 /* The bfd, when the file is open. Otherwise this is NULL.
685 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
686 bfd *dbfd;
687
688 /* The sections that make up this DWO file.
689 Remember that for virtual DWO files in DWP V2, these are virtual
690 sections (for lack of a better name). */
691 struct dwo_sections sections;
692
693 /* The CUs in the file.
694 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
695 an extension to handle LLVM's Link Time Optimization output (where
696 multiple source files may be compiled into a single object/dwo pair). */
697 htab_t cus;
698
699 /* Table of TUs in the file.
700 Each element is a struct dwo_unit. */
701 htab_t tus;
702 };
703
704 /* These sections are what may appear in a DWP file. */
705
706 struct dwp_sections
707 {
708 /* These are used by both DWP version 1 and 2. */
709 struct dwarf2_section_info str;
710 struct dwarf2_section_info cu_index;
711 struct dwarf2_section_info tu_index;
712
713 /* These are only used by DWP version 2 files.
714 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
715 sections are referenced by section number, and are not recorded here.
716 In DWP version 2 there is at most one copy of all these sections, each
717 section being (effectively) comprised of the concatenation of all of the
718 individual sections that exist in the version 1 format.
719 To keep the code simple we treat each of these concatenated pieces as a
720 section itself (a virtual section?). */
721 struct dwarf2_section_info abbrev;
722 struct dwarf2_section_info info;
723 struct dwarf2_section_info line;
724 struct dwarf2_section_info loc;
725 struct dwarf2_section_info macinfo;
726 struct dwarf2_section_info macro;
727 struct dwarf2_section_info str_offsets;
728 struct dwarf2_section_info types;
729 };
730
731 /* These sections are what may appear in a virtual DWO file in DWP version 1.
732 A virtual DWO file is a DWO file as it appears in a DWP file. */
733
734 struct virtual_v1_dwo_sections
735 {
736 struct dwarf2_section_info abbrev;
737 struct dwarf2_section_info line;
738 struct dwarf2_section_info loc;
739 struct dwarf2_section_info macinfo;
740 struct dwarf2_section_info macro;
741 struct dwarf2_section_info str_offsets;
742 /* Each DWP hash table entry records one CU or one TU.
743 That is recorded here, and copied to dwo_unit.section. */
744 struct dwarf2_section_info info_or_types;
745 };
746
747 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
748 In version 2, the sections of the DWO files are concatenated together
749 and stored in one section of that name. Thus each ELF section contains
750 several "virtual" sections. */
751
752 struct virtual_v2_dwo_sections
753 {
754 bfd_size_type abbrev_offset;
755 bfd_size_type abbrev_size;
756
757 bfd_size_type line_offset;
758 bfd_size_type line_size;
759
760 bfd_size_type loc_offset;
761 bfd_size_type loc_size;
762
763 bfd_size_type macinfo_offset;
764 bfd_size_type macinfo_size;
765
766 bfd_size_type macro_offset;
767 bfd_size_type macro_size;
768
769 bfd_size_type str_offsets_offset;
770 bfd_size_type str_offsets_size;
771
772 /* Each DWP hash table entry records one CU or one TU.
773 That is recorded here, and copied to dwo_unit.section. */
774 bfd_size_type info_or_types_offset;
775 bfd_size_type info_or_types_size;
776 };
777
778 /* Contents of DWP hash tables. */
779
780 struct dwp_hash_table
781 {
782 uint32_t version, nr_columns;
783 uint32_t nr_units, nr_slots;
784 const gdb_byte *hash_table, *unit_table;
785 union
786 {
787 struct
788 {
789 const gdb_byte *indices;
790 } v1;
791 struct
792 {
793 /* This is indexed by column number and gives the id of the section
794 in that column. */
795 #define MAX_NR_V2_DWO_SECTIONS \
796 (1 /* .debug_info or .debug_types */ \
797 + 1 /* .debug_abbrev */ \
798 + 1 /* .debug_line */ \
799 + 1 /* .debug_loc */ \
800 + 1 /* .debug_str_offsets */ \
801 + 1 /* .debug_macro or .debug_macinfo */)
802 int section_ids[MAX_NR_V2_DWO_SECTIONS];
803 const gdb_byte *offsets;
804 const gdb_byte *sizes;
805 } v2;
806 } section_pool;
807 };
808
809 /* Data for one DWP file. */
810
811 struct dwp_file
812 {
813 /* Name of the file. */
814 const char *name;
815
816 /* File format version. */
817 int version;
818
819 /* The bfd. */
820 bfd *dbfd;
821
822 /* Section info for this file. */
823 struct dwp_sections sections;
824
825 /* Table of CUs in the file. */
826 const struct dwp_hash_table *cus;
827
828 /* Table of TUs in the file. */
829 const struct dwp_hash_table *tus;
830
831 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
832 htab_t loaded_cus;
833 htab_t loaded_tus;
834
835 /* Table to map ELF section numbers to their sections.
836 This is only needed for the DWP V1 file format. */
837 unsigned int num_sections;
838 asection **elf_sections;
839 };
840
841 /* This represents a '.dwz' file. */
842
843 struct dwz_file
844 {
845 /* A dwz file can only contain a few sections. */
846 struct dwarf2_section_info abbrev;
847 struct dwarf2_section_info info;
848 struct dwarf2_section_info str;
849 struct dwarf2_section_info line;
850 struct dwarf2_section_info macro;
851 struct dwarf2_section_info gdb_index;
852 struct dwarf2_section_info debug_names;
853
854 /* The dwz's BFD. */
855 bfd *dwz_bfd;
856 };
857
858 /* Struct used to pass misc. parameters to read_die_and_children, et
859 al. which are used for both .debug_info and .debug_types dies.
860 All parameters here are unchanging for the life of the call. This
861 struct exists to abstract away the constant parameters of die reading. */
862
863 struct die_reader_specs
864 {
865 /* The bfd of die_section. */
866 bfd* abfd;
867
868 /* The CU of the DIE we are parsing. */
869 struct dwarf2_cu *cu;
870
871 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
872 struct dwo_file *dwo_file;
873
874 /* The section the die comes from.
875 This is either .debug_info or .debug_types, or the .dwo variants. */
876 struct dwarf2_section_info *die_section;
877
878 /* die_section->buffer. */
879 const gdb_byte *buffer;
880
881 /* The end of the buffer. */
882 const gdb_byte *buffer_end;
883
884 /* The value of the DW_AT_comp_dir attribute. */
885 const char *comp_dir;
886
887 /* The abbreviation table to use when reading the DIEs. */
888 struct abbrev_table *abbrev_table;
889 };
890
891 /* Type of function passed to init_cutu_and_read_dies, et.al. */
892 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
893 const gdb_byte *info_ptr,
894 struct die_info *comp_unit_die,
895 int has_children,
896 void *data);
897
898 /* A 1-based directory index. This is a strong typedef to prevent
899 accidentally using a directory index as a 0-based index into an
900 array/vector. */
901 enum class dir_index : unsigned int {};
902
903 /* Likewise, a 1-based file name index. */
904 enum class file_name_index : unsigned int {};
905
906 struct file_entry
907 {
908 file_entry () = default;
909
910 file_entry (const char *name_, dir_index d_index_,
911 unsigned int mod_time_, unsigned int length_)
912 : name (name_),
913 d_index (d_index_),
914 mod_time (mod_time_),
915 length (length_)
916 {}
917
918 /* Return the include directory at D_INDEX stored in LH. Returns
919 NULL if D_INDEX is out of bounds. */
920 const char *include_dir (const line_header *lh) const;
921
922 /* The file name. Note this is an observing pointer. The memory is
923 owned by debug_line_buffer. */
924 const char *name {};
925
926 /* The directory index (1-based). */
927 dir_index d_index {};
928
929 unsigned int mod_time {};
930
931 unsigned int length {};
932
933 /* True if referenced by the Line Number Program. */
934 bool included_p {};
935
936 /* The associated symbol table, if any. */
937 struct symtab *symtab {};
938 };
939
940 /* The line number information for a compilation unit (found in the
941 .debug_line section) begins with a "statement program header",
942 which contains the following information. */
943 struct line_header
944 {
945 line_header ()
946 : offset_in_dwz {}
947 {}
948
949 /* Add an entry to the include directory table. */
950 void add_include_dir (const char *include_dir);
951
952 /* Add an entry to the file name table. */
953 void add_file_name (const char *name, dir_index d_index,
954 unsigned int mod_time, unsigned int length);
955
956 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
957 is out of bounds. */
958 const char *include_dir_at (dir_index index) const
959 {
960 /* Convert directory index number (1-based) to vector index
961 (0-based). */
962 size_t vec_index = to_underlying (index) - 1;
963
964 if (vec_index >= include_dirs.size ())
965 return NULL;
966 return include_dirs[vec_index];
967 }
968
969 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
970 is out of bounds. */
971 file_entry *file_name_at (file_name_index index)
972 {
973 /* Convert file name index number (1-based) to vector index
974 (0-based). */
975 size_t vec_index = to_underlying (index) - 1;
976
977 if (vec_index >= file_names.size ())
978 return NULL;
979 return &file_names[vec_index];
980 }
981
982 /* Const version of the above. */
983 const file_entry *file_name_at (unsigned int index) const
984 {
985 if (index >= file_names.size ())
986 return NULL;
987 return &file_names[index];
988 }
989
990 /* Offset of line number information in .debug_line section. */
991 sect_offset sect_off {};
992
993 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
994 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
995
996 unsigned int total_length {};
997 unsigned short version {};
998 unsigned int header_length {};
999 unsigned char minimum_instruction_length {};
1000 unsigned char maximum_ops_per_instruction {};
1001 unsigned char default_is_stmt {};
1002 int line_base {};
1003 unsigned char line_range {};
1004 unsigned char opcode_base {};
1005
1006 /* standard_opcode_lengths[i] is the number of operands for the
1007 standard opcode whose value is i. This means that
1008 standard_opcode_lengths[0] is unused, and the last meaningful
1009 element is standard_opcode_lengths[opcode_base - 1]. */
1010 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1011
1012 /* The include_directories table. Note these are observing
1013 pointers. The memory is owned by debug_line_buffer. */
1014 std::vector<const char *> include_dirs;
1015
1016 /* The file_names table. */
1017 std::vector<file_entry> file_names;
1018
1019 /* The start and end of the statement program following this
1020 header. These point into dwarf2_per_objfile->line_buffer. */
1021 const gdb_byte *statement_program_start {}, *statement_program_end {};
1022 };
1023
1024 typedef std::unique_ptr<line_header> line_header_up;
1025
1026 const char *
1027 file_entry::include_dir (const line_header *lh) const
1028 {
1029 return lh->include_dir_at (d_index);
1030 }
1031
1032 /* When we construct a partial symbol table entry we only
1033 need this much information. */
1034 struct partial_die_info : public allocate_on_obstack
1035 {
1036 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1037
1038 /* Disable assign but still keep copy ctor, which is needed
1039 load_partial_dies. */
1040 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1041
1042 /* Adjust the partial die before generating a symbol for it. This
1043 function may set the is_external flag or change the DIE's
1044 name. */
1045 void fixup (struct dwarf2_cu *cu);
1046
1047 /* Read a minimal amount of information into the minimal die
1048 structure. */
1049 const gdb_byte *read (const struct die_reader_specs *reader,
1050 const struct abbrev_info &abbrev,
1051 const gdb_byte *info_ptr);
1052
1053 /* Offset of this DIE. */
1054 const sect_offset sect_off;
1055
1056 /* DWARF-2 tag for this DIE. */
1057 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1058
1059 /* Assorted flags describing the data found in this DIE. */
1060 const unsigned int has_children : 1;
1061
1062 unsigned int is_external : 1;
1063 unsigned int is_declaration : 1;
1064 unsigned int has_type : 1;
1065 unsigned int has_specification : 1;
1066 unsigned int has_pc_info : 1;
1067 unsigned int may_be_inlined : 1;
1068
1069 /* This DIE has been marked DW_AT_main_subprogram. */
1070 unsigned int main_subprogram : 1;
1071
1072 /* Flag set if the SCOPE field of this structure has been
1073 computed. */
1074 unsigned int scope_set : 1;
1075
1076 /* Flag set if the DIE has a byte_size attribute. */
1077 unsigned int has_byte_size : 1;
1078
1079 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1080 unsigned int has_const_value : 1;
1081
1082 /* Flag set if any of the DIE's children are template arguments. */
1083 unsigned int has_template_arguments : 1;
1084
1085 /* Flag set if fixup has been called on this die. */
1086 unsigned int fixup_called : 1;
1087
1088 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1089 unsigned int is_dwz : 1;
1090
1091 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1092 unsigned int spec_is_dwz : 1;
1093
1094 /* The name of this DIE. Normally the value of DW_AT_name, but
1095 sometimes a default name for unnamed DIEs. */
1096 const char *name = nullptr;
1097
1098 /* The linkage name, if present. */
1099 const char *linkage_name = nullptr;
1100
1101 /* The scope to prepend to our children. This is generally
1102 allocated on the comp_unit_obstack, so will disappear
1103 when this compilation unit leaves the cache. */
1104 const char *scope = nullptr;
1105
1106 /* Some data associated with the partial DIE. The tag determines
1107 which field is live. */
1108 union
1109 {
1110 /* The location description associated with this DIE, if any. */
1111 struct dwarf_block *locdesc;
1112 /* The offset of an import, for DW_TAG_imported_unit. */
1113 sect_offset sect_off;
1114 } d {};
1115
1116 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1117 CORE_ADDR lowpc = 0;
1118 CORE_ADDR highpc = 0;
1119
1120 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1121 DW_AT_sibling, if any. */
1122 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1123 could return DW_AT_sibling values to its caller load_partial_dies. */
1124 const gdb_byte *sibling = nullptr;
1125
1126 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1127 DW_AT_specification (or DW_AT_abstract_origin or
1128 DW_AT_extension). */
1129 sect_offset spec_offset {};
1130
1131 /* Pointers to this DIE's parent, first child, and next sibling,
1132 if any. */
1133 struct partial_die_info *die_parent = nullptr;
1134 struct partial_die_info *die_child = nullptr;
1135 struct partial_die_info *die_sibling = nullptr;
1136
1137 friend struct partial_die_info *
1138 dwarf2_cu::find_partial_die (sect_offset sect_off);
1139
1140 private:
1141 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1142 partial_die_info (sect_offset sect_off)
1143 : partial_die_info (sect_off, DW_TAG_padding, 0)
1144 {
1145 }
1146
1147 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1148 int has_children_)
1149 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1150 {
1151 is_external = 0;
1152 is_declaration = 0;
1153 has_type = 0;
1154 has_specification = 0;
1155 has_pc_info = 0;
1156 may_be_inlined = 0;
1157 main_subprogram = 0;
1158 scope_set = 0;
1159 has_byte_size = 0;
1160 has_const_value = 0;
1161 has_template_arguments = 0;
1162 fixup_called = 0;
1163 is_dwz = 0;
1164 spec_is_dwz = 0;
1165 }
1166 };
1167
1168 /* This data structure holds the information of an abbrev. */
1169 struct abbrev_info
1170 {
1171 unsigned int number; /* number identifying abbrev */
1172 enum dwarf_tag tag; /* dwarf tag */
1173 unsigned short has_children; /* boolean */
1174 unsigned short num_attrs; /* number of attributes */
1175 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1176 struct abbrev_info *next; /* next in chain */
1177 };
1178
1179 struct attr_abbrev
1180 {
1181 ENUM_BITFIELD(dwarf_attribute) name : 16;
1182 ENUM_BITFIELD(dwarf_form) form : 16;
1183
1184 /* It is valid only if FORM is DW_FORM_implicit_const. */
1185 LONGEST implicit_const;
1186 };
1187
1188 /* Size of abbrev_table.abbrev_hash_table. */
1189 #define ABBREV_HASH_SIZE 121
1190
1191 /* Top level data structure to contain an abbreviation table. */
1192
1193 struct abbrev_table
1194 {
1195 explicit abbrev_table (sect_offset off)
1196 : sect_off (off)
1197 {
1198 m_abbrevs =
1199 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1200 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1201 }
1202
1203 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1204
1205 /* Allocate space for a struct abbrev_info object in
1206 ABBREV_TABLE. */
1207 struct abbrev_info *alloc_abbrev ();
1208
1209 /* Add an abbreviation to the table. */
1210 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1211
1212 /* Look up an abbrev in the table.
1213 Returns NULL if the abbrev is not found. */
1214
1215 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1216
1217
1218 /* Where the abbrev table came from.
1219 This is used as a sanity check when the table is used. */
1220 const sect_offset sect_off;
1221
1222 /* Storage for the abbrev table. */
1223 auto_obstack abbrev_obstack;
1224
1225 private:
1226
1227 /* Hash table of abbrevs.
1228 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1229 It could be statically allocated, but the previous code didn't so we
1230 don't either. */
1231 struct abbrev_info **m_abbrevs;
1232 };
1233
1234 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1235
1236 /* Attributes have a name and a value. */
1237 struct attribute
1238 {
1239 ENUM_BITFIELD(dwarf_attribute) name : 16;
1240 ENUM_BITFIELD(dwarf_form) form : 15;
1241
1242 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1243 field should be in u.str (existing only for DW_STRING) but it is kept
1244 here for better struct attribute alignment. */
1245 unsigned int string_is_canonical : 1;
1246
1247 union
1248 {
1249 const char *str;
1250 struct dwarf_block *blk;
1251 ULONGEST unsnd;
1252 LONGEST snd;
1253 CORE_ADDR addr;
1254 ULONGEST signature;
1255 }
1256 u;
1257 };
1258
1259 /* This data structure holds a complete die structure. */
1260 struct die_info
1261 {
1262 /* DWARF-2 tag for this DIE. */
1263 ENUM_BITFIELD(dwarf_tag) tag : 16;
1264
1265 /* Number of attributes */
1266 unsigned char num_attrs;
1267
1268 /* True if we're presently building the full type name for the
1269 type derived from this DIE. */
1270 unsigned char building_fullname : 1;
1271
1272 /* True if this die is in process. PR 16581. */
1273 unsigned char in_process : 1;
1274
1275 /* Abbrev number */
1276 unsigned int abbrev;
1277
1278 /* Offset in .debug_info or .debug_types section. */
1279 sect_offset sect_off;
1280
1281 /* The dies in a compilation unit form an n-ary tree. PARENT
1282 points to this die's parent; CHILD points to the first child of
1283 this node; and all the children of a given node are chained
1284 together via their SIBLING fields. */
1285 struct die_info *child; /* Its first child, if any. */
1286 struct die_info *sibling; /* Its next sibling, if any. */
1287 struct die_info *parent; /* Its parent, if any. */
1288
1289 /* An array of attributes, with NUM_ATTRS elements. There may be
1290 zero, but it's not common and zero-sized arrays are not
1291 sufficiently portable C. */
1292 struct attribute attrs[1];
1293 };
1294
1295 /* Get at parts of an attribute structure. */
1296
1297 #define DW_STRING(attr) ((attr)->u.str)
1298 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1299 #define DW_UNSND(attr) ((attr)->u.unsnd)
1300 #define DW_BLOCK(attr) ((attr)->u.blk)
1301 #define DW_SND(attr) ((attr)->u.snd)
1302 #define DW_ADDR(attr) ((attr)->u.addr)
1303 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1304
1305 /* Blocks are a bunch of untyped bytes. */
1306 struct dwarf_block
1307 {
1308 size_t size;
1309
1310 /* Valid only if SIZE is not zero. */
1311 const gdb_byte *data;
1312 };
1313
1314 #ifndef ATTR_ALLOC_CHUNK
1315 #define ATTR_ALLOC_CHUNK 4
1316 #endif
1317
1318 /* Allocate fields for structs, unions and enums in this size. */
1319 #ifndef DW_FIELD_ALLOC_CHUNK
1320 #define DW_FIELD_ALLOC_CHUNK 4
1321 #endif
1322
1323 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1324 but this would require a corresponding change in unpack_field_as_long
1325 and friends. */
1326 static int bits_per_byte = 8;
1327
1328 /* When reading a variant or variant part, we track a bit more
1329 information about the field, and store it in an object of this
1330 type. */
1331
1332 struct variant_field
1333 {
1334 /* If we see a DW_TAG_variant, then this will be the discriminant
1335 value. */
1336 ULONGEST discriminant_value;
1337 /* If we see a DW_TAG_variant, then this will be set if this is the
1338 default branch. */
1339 bool default_branch;
1340 /* While reading a DW_TAG_variant_part, this will be set if this
1341 field is the discriminant. */
1342 bool is_discriminant;
1343 };
1344
1345 struct nextfield
1346 {
1347 int accessibility = 0;
1348 int virtuality = 0;
1349 /* Extra information to describe a variant or variant part. */
1350 struct variant_field variant {};
1351 struct field field {};
1352 };
1353
1354 struct fnfieldlist
1355 {
1356 const char *name = nullptr;
1357 std::vector<struct fn_field> fnfields;
1358 };
1359
1360 /* The routines that read and process dies for a C struct or C++ class
1361 pass lists of data member fields and lists of member function fields
1362 in an instance of a field_info structure, as defined below. */
1363 struct field_info
1364 {
1365 /* List of data member and baseclasses fields. */
1366 std::vector<struct nextfield> fields;
1367 std::vector<struct nextfield> baseclasses;
1368
1369 /* Number of fields (including baseclasses). */
1370 int nfields = 0;
1371
1372 /* Set if the accesibility of one of the fields is not public. */
1373 int non_public_fields = 0;
1374
1375 /* Member function fieldlist array, contains name of possibly overloaded
1376 member function, number of overloaded member functions and a pointer
1377 to the head of the member function field chain. */
1378 std::vector<struct fnfieldlist> fnfieldlists;
1379
1380 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1381 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1382 std::vector<struct decl_field> typedef_field_list;
1383
1384 /* Nested types defined by this class and the number of elements in this
1385 list. */
1386 std::vector<struct decl_field> nested_types_list;
1387 };
1388
1389 /* One item on the queue of compilation units to read in full symbols
1390 for. */
1391 struct dwarf2_queue_item
1392 {
1393 struct dwarf2_per_cu_data *per_cu;
1394 enum language pretend_language;
1395 struct dwarf2_queue_item *next;
1396 };
1397
1398 /* The current queue. */
1399 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1400
1401 /* Loaded secondary compilation units are kept in memory until they
1402 have not been referenced for the processing of this many
1403 compilation units. Set this to zero to disable caching. Cache
1404 sizes of up to at least twenty will improve startup time for
1405 typical inter-CU-reference binaries, at an obvious memory cost. */
1406 static int dwarf_max_cache_age = 5;
1407 static void
1408 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1409 struct cmd_list_element *c, const char *value)
1410 {
1411 fprintf_filtered (file, _("The upper bound on the age of cached "
1412 "DWARF compilation units is %s.\n"),
1413 value);
1414 }
1415 \f
1416 /* local function prototypes */
1417
1418 static const char *get_section_name (const struct dwarf2_section_info *);
1419
1420 static const char *get_section_file_name (const struct dwarf2_section_info *);
1421
1422 static void dwarf2_find_base_address (struct die_info *die,
1423 struct dwarf2_cu *cu);
1424
1425 static struct partial_symtab *create_partial_symtab
1426 (struct dwarf2_per_cu_data *per_cu, const char *name);
1427
1428 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1429 const gdb_byte *info_ptr,
1430 struct die_info *type_unit_die,
1431 int has_children, void *data);
1432
1433 static void dwarf2_build_psymtabs_hard
1434 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1435
1436 static void scan_partial_symbols (struct partial_die_info *,
1437 CORE_ADDR *, CORE_ADDR *,
1438 int, struct dwarf2_cu *);
1439
1440 static void add_partial_symbol (struct partial_die_info *,
1441 struct dwarf2_cu *);
1442
1443 static void add_partial_namespace (struct partial_die_info *pdi,
1444 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1445 int set_addrmap, struct dwarf2_cu *cu);
1446
1447 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1448 CORE_ADDR *highpc, int set_addrmap,
1449 struct dwarf2_cu *cu);
1450
1451 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1452 struct dwarf2_cu *cu);
1453
1454 static void add_partial_subprogram (struct partial_die_info *pdi,
1455 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1456 int need_pc, struct dwarf2_cu *cu);
1457
1458 static void dwarf2_read_symtab (struct partial_symtab *,
1459 struct objfile *);
1460
1461 static void psymtab_to_symtab_1 (struct partial_symtab *);
1462
1463 static abbrev_table_up abbrev_table_read_table
1464 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1465 sect_offset);
1466
1467 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1468
1469 static struct partial_die_info *load_partial_dies
1470 (const struct die_reader_specs *, const gdb_byte *, int);
1471
1472 static struct partial_die_info *find_partial_die (sect_offset, int,
1473 struct dwarf2_cu *);
1474
1475 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1476 struct attribute *, struct attr_abbrev *,
1477 const gdb_byte *);
1478
1479 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1480
1481 static int read_1_signed_byte (bfd *, const gdb_byte *);
1482
1483 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1484
1485 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1486
1487 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1488
1489 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1490 unsigned int *);
1491
1492 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1493
1494 static LONGEST read_checked_initial_length_and_offset
1495 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1496 unsigned int *, unsigned int *);
1497
1498 static LONGEST read_offset (bfd *, const gdb_byte *,
1499 const struct comp_unit_head *,
1500 unsigned int *);
1501
1502 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1503
1504 static sect_offset read_abbrev_offset
1505 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1506 struct dwarf2_section_info *, sect_offset);
1507
1508 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1509
1510 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1511
1512 static const char *read_indirect_string
1513 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1514 const struct comp_unit_head *, unsigned int *);
1515
1516 static const char *read_indirect_line_string
1517 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1518 const struct comp_unit_head *, unsigned int *);
1519
1520 static const char *read_indirect_string_at_offset
1521 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1522 LONGEST str_offset);
1523
1524 static const char *read_indirect_string_from_dwz
1525 (struct objfile *objfile, struct dwz_file *, LONGEST);
1526
1527 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1528
1529 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1530 const gdb_byte *,
1531 unsigned int *);
1532
1533 static const char *read_str_index (const struct die_reader_specs *reader,
1534 ULONGEST str_index);
1535
1536 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1537
1538 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1539 struct dwarf2_cu *);
1540
1541 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1542 unsigned int);
1543
1544 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1545 struct dwarf2_cu *cu);
1546
1547 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1548 struct dwarf2_cu *cu);
1549
1550 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1551
1552 static struct die_info *die_specification (struct die_info *die,
1553 struct dwarf2_cu **);
1554
1555 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1556 struct dwarf2_cu *cu);
1557
1558 static void dwarf_decode_lines (struct line_header *, const char *,
1559 struct dwarf2_cu *, struct partial_symtab *,
1560 CORE_ADDR, int decode_mapping);
1561
1562 static void dwarf2_start_subfile (const char *, const char *);
1563
1564 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1565 const char *, const char *,
1566 CORE_ADDR);
1567
1568 static struct symbol *new_symbol (struct die_info *, struct type *,
1569 struct dwarf2_cu *, struct symbol * = NULL);
1570
1571 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1572 struct dwarf2_cu *);
1573
1574 static void dwarf2_const_value_attr (const struct attribute *attr,
1575 struct type *type,
1576 const char *name,
1577 struct obstack *obstack,
1578 struct dwarf2_cu *cu, LONGEST *value,
1579 const gdb_byte **bytes,
1580 struct dwarf2_locexpr_baton **baton);
1581
1582 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1583
1584 static int need_gnat_info (struct dwarf2_cu *);
1585
1586 static struct type *die_descriptive_type (struct die_info *,
1587 struct dwarf2_cu *);
1588
1589 static void set_descriptive_type (struct type *, struct die_info *,
1590 struct dwarf2_cu *);
1591
1592 static struct type *die_containing_type (struct die_info *,
1593 struct dwarf2_cu *);
1594
1595 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1596 struct dwarf2_cu *);
1597
1598 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1599
1600 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1601
1602 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1603
1604 static char *typename_concat (struct obstack *obs, const char *prefix,
1605 const char *suffix, int physname,
1606 struct dwarf2_cu *cu);
1607
1608 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1609
1610 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1611
1612 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1613
1614 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1615
1616 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1617
1618 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1619
1620 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1621 struct dwarf2_cu *, struct partial_symtab *);
1622
1623 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1624 values. Keep the items ordered with increasing constraints compliance. */
1625 enum pc_bounds_kind
1626 {
1627 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1628 PC_BOUNDS_NOT_PRESENT,
1629
1630 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1631 were present but they do not form a valid range of PC addresses. */
1632 PC_BOUNDS_INVALID,
1633
1634 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1635 PC_BOUNDS_RANGES,
1636
1637 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1638 PC_BOUNDS_HIGH_LOW,
1639 };
1640
1641 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1642 CORE_ADDR *, CORE_ADDR *,
1643 struct dwarf2_cu *,
1644 struct partial_symtab *);
1645
1646 static void get_scope_pc_bounds (struct die_info *,
1647 CORE_ADDR *, CORE_ADDR *,
1648 struct dwarf2_cu *);
1649
1650 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1651 CORE_ADDR, struct dwarf2_cu *);
1652
1653 static void dwarf2_add_field (struct field_info *, struct die_info *,
1654 struct dwarf2_cu *);
1655
1656 static void dwarf2_attach_fields_to_type (struct field_info *,
1657 struct type *, struct dwarf2_cu *);
1658
1659 static void dwarf2_add_member_fn (struct field_info *,
1660 struct die_info *, struct type *,
1661 struct dwarf2_cu *);
1662
1663 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1664 struct type *,
1665 struct dwarf2_cu *);
1666
1667 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1668
1669 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1670
1671 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1672
1673 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1674
1675 static struct using_direct **using_directives (enum language);
1676
1677 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1678
1679 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1680
1681 static struct type *read_module_type (struct die_info *die,
1682 struct dwarf2_cu *cu);
1683
1684 static const char *namespace_name (struct die_info *die,
1685 int *is_anonymous, struct dwarf2_cu *);
1686
1687 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1688
1689 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1690
1691 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1692 struct dwarf2_cu *);
1693
1694 static struct die_info *read_die_and_siblings_1
1695 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1696 struct die_info *);
1697
1698 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1699 const gdb_byte *info_ptr,
1700 const gdb_byte **new_info_ptr,
1701 struct die_info *parent);
1702
1703 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1704 struct die_info **, const gdb_byte *,
1705 int *, int);
1706
1707 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1708 struct die_info **, const gdb_byte *,
1709 int *);
1710
1711 static void process_die (struct die_info *, struct dwarf2_cu *);
1712
1713 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1714 struct obstack *);
1715
1716 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1717
1718 static const char *dwarf2_full_name (const char *name,
1719 struct die_info *die,
1720 struct dwarf2_cu *cu);
1721
1722 static const char *dwarf2_physname (const char *name, struct die_info *die,
1723 struct dwarf2_cu *cu);
1724
1725 static struct die_info *dwarf2_extension (struct die_info *die,
1726 struct dwarf2_cu **);
1727
1728 static const char *dwarf_tag_name (unsigned int);
1729
1730 static const char *dwarf_attr_name (unsigned int);
1731
1732 static const char *dwarf_form_name (unsigned int);
1733
1734 static const char *dwarf_bool_name (unsigned int);
1735
1736 static const char *dwarf_type_encoding_name (unsigned int);
1737
1738 static struct die_info *sibling_die (struct die_info *);
1739
1740 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1741
1742 static void dump_die_for_error (struct die_info *);
1743
1744 static void dump_die_1 (struct ui_file *, int level, int max_level,
1745 struct die_info *);
1746
1747 /*static*/ void dump_die (struct die_info *, int max_level);
1748
1749 static void store_in_ref_table (struct die_info *,
1750 struct dwarf2_cu *);
1751
1752 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1753
1754 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1755
1756 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1757 const struct attribute *,
1758 struct dwarf2_cu **);
1759
1760 static struct die_info *follow_die_ref (struct die_info *,
1761 const struct attribute *,
1762 struct dwarf2_cu **);
1763
1764 static struct die_info *follow_die_sig (struct die_info *,
1765 const struct attribute *,
1766 struct dwarf2_cu **);
1767
1768 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1769 struct dwarf2_cu *);
1770
1771 static struct type *get_DW_AT_signature_type (struct die_info *,
1772 const struct attribute *,
1773 struct dwarf2_cu *);
1774
1775 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1776
1777 static void read_signatured_type (struct signatured_type *);
1778
1779 static int attr_to_dynamic_prop (const struct attribute *attr,
1780 struct die_info *die, struct dwarf2_cu *cu,
1781 struct dynamic_prop *prop);
1782
1783 /* memory allocation interface */
1784
1785 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1786
1787 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1788
1789 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1790
1791 static int attr_form_is_block (const struct attribute *);
1792
1793 static int attr_form_is_section_offset (const struct attribute *);
1794
1795 static int attr_form_is_constant (const struct attribute *);
1796
1797 static int attr_form_is_ref (const struct attribute *);
1798
1799 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1800 struct dwarf2_loclist_baton *baton,
1801 const struct attribute *attr);
1802
1803 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1804 struct symbol *sym,
1805 struct dwarf2_cu *cu,
1806 int is_block);
1807
1808 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1809 const gdb_byte *info_ptr,
1810 struct abbrev_info *abbrev);
1811
1812 static hashval_t partial_die_hash (const void *item);
1813
1814 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1815
1816 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1817 (sect_offset sect_off, unsigned int offset_in_dwz,
1818 struct dwarf2_per_objfile *dwarf2_per_objfile);
1819
1820 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1821 struct die_info *comp_unit_die,
1822 enum language pretend_language);
1823
1824 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1825
1826 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1827
1828 static struct type *set_die_type (struct die_info *, struct type *,
1829 struct dwarf2_cu *);
1830
1831 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1832
1833 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1834
1835 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1836 enum language);
1837
1838 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1839 enum language);
1840
1841 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1842 enum language);
1843
1844 static void dwarf2_add_dependence (struct dwarf2_cu *,
1845 struct dwarf2_per_cu_data *);
1846
1847 static void dwarf2_mark (struct dwarf2_cu *);
1848
1849 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1850
1851 static struct type *get_die_type_at_offset (sect_offset,
1852 struct dwarf2_per_cu_data *);
1853
1854 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1855
1856 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1857 enum language pretend_language);
1858
1859 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1860
1861 /* Class, the destructor of which frees all allocated queue entries. This
1862 will only have work to do if an error was thrown while processing the
1863 dwarf. If no error was thrown then the queue entries should have all
1864 been processed, and freed, as we went along. */
1865
1866 class dwarf2_queue_guard
1867 {
1868 public:
1869 dwarf2_queue_guard () = default;
1870
1871 /* Free any entries remaining on the queue. There should only be
1872 entries left if we hit an error while processing the dwarf. */
1873 ~dwarf2_queue_guard ()
1874 {
1875 struct dwarf2_queue_item *item, *last;
1876
1877 item = dwarf2_queue;
1878 while (item)
1879 {
1880 /* Anything still marked queued is likely to be in an
1881 inconsistent state, so discard it. */
1882 if (item->per_cu->queued)
1883 {
1884 if (item->per_cu->cu != NULL)
1885 free_one_cached_comp_unit (item->per_cu);
1886 item->per_cu->queued = 0;
1887 }
1888
1889 last = item;
1890 item = item->next;
1891 xfree (last);
1892 }
1893
1894 dwarf2_queue = dwarf2_queue_tail = NULL;
1895 }
1896 };
1897
1898 /* The return type of find_file_and_directory. Note, the enclosed
1899 string pointers are only valid while this object is valid. */
1900
1901 struct file_and_directory
1902 {
1903 /* The filename. This is never NULL. */
1904 const char *name;
1905
1906 /* The compilation directory. NULL if not known. If we needed to
1907 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1908 points directly to the DW_AT_comp_dir string attribute owned by
1909 the obstack that owns the DIE. */
1910 const char *comp_dir;
1911
1912 /* If we needed to build a new string for comp_dir, this is what
1913 owns the storage. */
1914 std::string comp_dir_storage;
1915 };
1916
1917 static file_and_directory find_file_and_directory (struct die_info *die,
1918 struct dwarf2_cu *cu);
1919
1920 static char *file_full_name (int file, struct line_header *lh,
1921 const char *comp_dir);
1922
1923 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1924 enum class rcuh_kind { COMPILE, TYPE };
1925
1926 static const gdb_byte *read_and_check_comp_unit_head
1927 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1928 struct comp_unit_head *header,
1929 struct dwarf2_section_info *section,
1930 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1931 rcuh_kind section_kind);
1932
1933 static void init_cutu_and_read_dies
1934 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1935 int use_existing_cu, int keep,
1936 die_reader_func_ftype *die_reader_func, void *data);
1937
1938 static void init_cutu_and_read_dies_simple
1939 (struct dwarf2_per_cu_data *this_cu,
1940 die_reader_func_ftype *die_reader_func, void *data);
1941
1942 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1943
1944 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1945
1946 static struct dwo_unit *lookup_dwo_unit_in_dwp
1947 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1948 struct dwp_file *dwp_file, const char *comp_dir,
1949 ULONGEST signature, int is_debug_types);
1950
1951 static struct dwp_file *get_dwp_file
1952 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1953
1954 static struct dwo_unit *lookup_dwo_comp_unit
1955 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1956
1957 static struct dwo_unit *lookup_dwo_type_unit
1958 (struct signatured_type *, const char *, const char *);
1959
1960 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1961
1962 static void free_dwo_file (struct dwo_file *);
1963
1964 /* A unique_ptr helper to free a dwo_file. */
1965
1966 struct dwo_file_deleter
1967 {
1968 void operator() (struct dwo_file *df) const
1969 {
1970 free_dwo_file (df);
1971 }
1972 };
1973
1974 /* A unique pointer to a dwo_file. */
1975
1976 typedef std::unique_ptr<struct dwo_file, dwo_file_deleter> dwo_file_up;
1977
1978 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
1979
1980 static void check_producer (struct dwarf2_cu *cu);
1981
1982 static void free_line_header_voidp (void *arg);
1983 \f
1984 /* Various complaints about symbol reading that don't abort the process. */
1985
1986 static void
1987 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1988 {
1989 complaint (&symfile_complaints,
1990 _("statement list doesn't fit in .debug_line section"));
1991 }
1992
1993 static void
1994 dwarf2_debug_line_missing_file_complaint (void)
1995 {
1996 complaint (&symfile_complaints,
1997 _(".debug_line section has line data without a file"));
1998 }
1999
2000 static void
2001 dwarf2_debug_line_missing_end_sequence_complaint (void)
2002 {
2003 complaint (&symfile_complaints,
2004 _(".debug_line section has line "
2005 "program sequence without an end"));
2006 }
2007
2008 static void
2009 dwarf2_complex_location_expr_complaint (void)
2010 {
2011 complaint (&symfile_complaints, _("location expression too complex"));
2012 }
2013
2014 static void
2015 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2016 int arg3)
2017 {
2018 complaint (&symfile_complaints,
2019 _("const value length mismatch for '%s', got %d, expected %d"),
2020 arg1, arg2, arg3);
2021 }
2022
2023 static void
2024 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2025 {
2026 complaint (&symfile_complaints,
2027 _("debug info runs off end of %s section"
2028 " [in module %s]"),
2029 get_section_name (section),
2030 get_section_file_name (section));
2031 }
2032
2033 static void
2034 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2035 {
2036 complaint (&symfile_complaints,
2037 _("macro debug info contains a "
2038 "malformed macro definition:\n`%s'"),
2039 arg1);
2040 }
2041
2042 static void
2043 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2044 {
2045 complaint (&symfile_complaints,
2046 _("invalid attribute class or form for '%s' in '%s'"),
2047 arg1, arg2);
2048 }
2049
2050 /* Hash function for line_header_hash. */
2051
2052 static hashval_t
2053 line_header_hash (const struct line_header *ofs)
2054 {
2055 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2056 }
2057
2058 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2059
2060 static hashval_t
2061 line_header_hash_voidp (const void *item)
2062 {
2063 const struct line_header *ofs = (const struct line_header *) item;
2064
2065 return line_header_hash (ofs);
2066 }
2067
2068 /* Equality function for line_header_hash. */
2069
2070 static int
2071 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2072 {
2073 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2074 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2075
2076 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2077 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2078 }
2079
2080 \f
2081
2082 /* Read the given attribute value as an address, taking the attribute's
2083 form into account. */
2084
2085 static CORE_ADDR
2086 attr_value_as_address (struct attribute *attr)
2087 {
2088 CORE_ADDR addr;
2089
2090 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2091 {
2092 /* Aside from a few clearly defined exceptions, attributes that
2093 contain an address must always be in DW_FORM_addr form.
2094 Unfortunately, some compilers happen to be violating this
2095 requirement by encoding addresses using other forms, such
2096 as DW_FORM_data4 for example. For those broken compilers,
2097 we try to do our best, without any guarantee of success,
2098 to interpret the address correctly. It would also be nice
2099 to generate a complaint, but that would require us to maintain
2100 a list of legitimate cases where a non-address form is allowed,
2101 as well as update callers to pass in at least the CU's DWARF
2102 version. This is more overhead than what we're willing to
2103 expand for a pretty rare case. */
2104 addr = DW_UNSND (attr);
2105 }
2106 else
2107 addr = DW_ADDR (attr);
2108
2109 return addr;
2110 }
2111
2112 /* See declaration. */
2113
2114 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2115 const dwarf2_debug_sections *names)
2116 : objfile (objfile_)
2117 {
2118 if (names == NULL)
2119 names = &dwarf2_elf_names;
2120
2121 bfd *obfd = objfile->obfd;
2122
2123 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2124 locate_sections (obfd, sec, *names);
2125 }
2126
2127 static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2128
2129 dwarf2_per_objfile::~dwarf2_per_objfile ()
2130 {
2131 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2132 free_cached_comp_units ();
2133
2134 if (quick_file_names_table)
2135 htab_delete (quick_file_names_table);
2136
2137 if (line_header_hash)
2138 htab_delete (line_header_hash);
2139
2140 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2141 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2142
2143 for (signatured_type *sig_type : all_type_units)
2144 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2145
2146 VEC_free (dwarf2_section_info_def, types);
2147
2148 if (dwo_files != NULL)
2149 free_dwo_files (dwo_files, objfile);
2150 if (dwp_file != NULL)
2151 gdb_bfd_unref (dwp_file->dbfd);
2152
2153 if (dwz_file != NULL && dwz_file->dwz_bfd)
2154 gdb_bfd_unref (dwz_file->dwz_bfd);
2155
2156 if (index_table != NULL)
2157 index_table->~mapped_index ();
2158
2159 /* Everything else should be on the objfile obstack. */
2160 }
2161
2162 /* See declaration. */
2163
2164 void
2165 dwarf2_per_objfile::free_cached_comp_units ()
2166 {
2167 dwarf2_per_cu_data *per_cu = read_in_chain;
2168 dwarf2_per_cu_data **last_chain = &read_in_chain;
2169 while (per_cu != NULL)
2170 {
2171 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2172
2173 delete per_cu->cu;
2174 *last_chain = next_cu;
2175 per_cu = next_cu;
2176 }
2177 }
2178
2179 /* A helper class that calls free_cached_comp_units on
2180 destruction. */
2181
2182 class free_cached_comp_units
2183 {
2184 public:
2185
2186 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2187 : m_per_objfile (per_objfile)
2188 {
2189 }
2190
2191 ~free_cached_comp_units ()
2192 {
2193 m_per_objfile->free_cached_comp_units ();
2194 }
2195
2196 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2197
2198 private:
2199
2200 dwarf2_per_objfile *m_per_objfile;
2201 };
2202
2203 /* Try to locate the sections we need for DWARF 2 debugging
2204 information and return true if we have enough to do something.
2205 NAMES points to the dwarf2 section names, or is NULL if the standard
2206 ELF names are used. */
2207
2208 int
2209 dwarf2_has_info (struct objfile *objfile,
2210 const struct dwarf2_debug_sections *names)
2211 {
2212 if (objfile->flags & OBJF_READNEVER)
2213 return 0;
2214
2215 struct dwarf2_per_objfile *dwarf2_per_objfile
2216 = get_dwarf2_per_objfile (objfile);
2217
2218 if (dwarf2_per_objfile == NULL)
2219 {
2220 /* Initialize per-objfile state. */
2221 dwarf2_per_objfile
2222 = new (&objfile->objfile_obstack) struct dwarf2_per_objfile (objfile,
2223 names);
2224 set_dwarf2_per_objfile (objfile, dwarf2_per_objfile);
2225 }
2226 return (!dwarf2_per_objfile->info.is_virtual
2227 && dwarf2_per_objfile->info.s.section != NULL
2228 && !dwarf2_per_objfile->abbrev.is_virtual
2229 && dwarf2_per_objfile->abbrev.s.section != NULL);
2230 }
2231
2232 /* Return the containing section of virtual section SECTION. */
2233
2234 static struct dwarf2_section_info *
2235 get_containing_section (const struct dwarf2_section_info *section)
2236 {
2237 gdb_assert (section->is_virtual);
2238 return section->s.containing_section;
2239 }
2240
2241 /* Return the bfd owner of SECTION. */
2242
2243 static struct bfd *
2244 get_section_bfd_owner (const struct dwarf2_section_info *section)
2245 {
2246 if (section->is_virtual)
2247 {
2248 section = get_containing_section (section);
2249 gdb_assert (!section->is_virtual);
2250 }
2251 return section->s.section->owner;
2252 }
2253
2254 /* Return the bfd section of SECTION.
2255 Returns NULL if the section is not present. */
2256
2257 static asection *
2258 get_section_bfd_section (const struct dwarf2_section_info *section)
2259 {
2260 if (section->is_virtual)
2261 {
2262 section = get_containing_section (section);
2263 gdb_assert (!section->is_virtual);
2264 }
2265 return section->s.section;
2266 }
2267
2268 /* Return the name of SECTION. */
2269
2270 static const char *
2271 get_section_name (const struct dwarf2_section_info *section)
2272 {
2273 asection *sectp = get_section_bfd_section (section);
2274
2275 gdb_assert (sectp != NULL);
2276 return bfd_section_name (get_section_bfd_owner (section), sectp);
2277 }
2278
2279 /* Return the name of the file SECTION is in. */
2280
2281 static const char *
2282 get_section_file_name (const struct dwarf2_section_info *section)
2283 {
2284 bfd *abfd = get_section_bfd_owner (section);
2285
2286 return bfd_get_filename (abfd);
2287 }
2288
2289 /* Return the id of SECTION.
2290 Returns 0 if SECTION doesn't exist. */
2291
2292 static int
2293 get_section_id (const struct dwarf2_section_info *section)
2294 {
2295 asection *sectp = get_section_bfd_section (section);
2296
2297 if (sectp == NULL)
2298 return 0;
2299 return sectp->id;
2300 }
2301
2302 /* Return the flags of SECTION.
2303 SECTION (or containing section if this is a virtual section) must exist. */
2304
2305 static int
2306 get_section_flags (const struct dwarf2_section_info *section)
2307 {
2308 asection *sectp = get_section_bfd_section (section);
2309
2310 gdb_assert (sectp != NULL);
2311 return bfd_get_section_flags (sectp->owner, sectp);
2312 }
2313
2314 /* When loading sections, we look either for uncompressed section or for
2315 compressed section names. */
2316
2317 static int
2318 section_is_p (const char *section_name,
2319 const struct dwarf2_section_names *names)
2320 {
2321 if (names->normal != NULL
2322 && strcmp (section_name, names->normal) == 0)
2323 return 1;
2324 if (names->compressed != NULL
2325 && strcmp (section_name, names->compressed) == 0)
2326 return 1;
2327 return 0;
2328 }
2329
2330 /* See declaration. */
2331
2332 void
2333 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2334 const dwarf2_debug_sections &names)
2335 {
2336 flagword aflag = bfd_get_section_flags (abfd, sectp);
2337
2338 if ((aflag & SEC_HAS_CONTENTS) == 0)
2339 {
2340 }
2341 else if (section_is_p (sectp->name, &names.info))
2342 {
2343 this->info.s.section = sectp;
2344 this->info.size = bfd_get_section_size (sectp);
2345 }
2346 else if (section_is_p (sectp->name, &names.abbrev))
2347 {
2348 this->abbrev.s.section = sectp;
2349 this->abbrev.size = bfd_get_section_size (sectp);
2350 }
2351 else if (section_is_p (sectp->name, &names.line))
2352 {
2353 this->line.s.section = sectp;
2354 this->line.size = bfd_get_section_size (sectp);
2355 }
2356 else if (section_is_p (sectp->name, &names.loc))
2357 {
2358 this->loc.s.section = sectp;
2359 this->loc.size = bfd_get_section_size (sectp);
2360 }
2361 else if (section_is_p (sectp->name, &names.loclists))
2362 {
2363 this->loclists.s.section = sectp;
2364 this->loclists.size = bfd_get_section_size (sectp);
2365 }
2366 else if (section_is_p (sectp->name, &names.macinfo))
2367 {
2368 this->macinfo.s.section = sectp;
2369 this->macinfo.size = bfd_get_section_size (sectp);
2370 }
2371 else if (section_is_p (sectp->name, &names.macro))
2372 {
2373 this->macro.s.section = sectp;
2374 this->macro.size = bfd_get_section_size (sectp);
2375 }
2376 else if (section_is_p (sectp->name, &names.str))
2377 {
2378 this->str.s.section = sectp;
2379 this->str.size = bfd_get_section_size (sectp);
2380 }
2381 else if (section_is_p (sectp->name, &names.line_str))
2382 {
2383 this->line_str.s.section = sectp;
2384 this->line_str.size = bfd_get_section_size (sectp);
2385 }
2386 else if (section_is_p (sectp->name, &names.addr))
2387 {
2388 this->addr.s.section = sectp;
2389 this->addr.size = bfd_get_section_size (sectp);
2390 }
2391 else if (section_is_p (sectp->name, &names.frame))
2392 {
2393 this->frame.s.section = sectp;
2394 this->frame.size = bfd_get_section_size (sectp);
2395 }
2396 else if (section_is_p (sectp->name, &names.eh_frame))
2397 {
2398 this->eh_frame.s.section = sectp;
2399 this->eh_frame.size = bfd_get_section_size (sectp);
2400 }
2401 else if (section_is_p (sectp->name, &names.ranges))
2402 {
2403 this->ranges.s.section = sectp;
2404 this->ranges.size = bfd_get_section_size (sectp);
2405 }
2406 else if (section_is_p (sectp->name, &names.rnglists))
2407 {
2408 this->rnglists.s.section = sectp;
2409 this->rnglists.size = bfd_get_section_size (sectp);
2410 }
2411 else if (section_is_p (sectp->name, &names.types))
2412 {
2413 struct dwarf2_section_info type_section;
2414
2415 memset (&type_section, 0, sizeof (type_section));
2416 type_section.s.section = sectp;
2417 type_section.size = bfd_get_section_size (sectp);
2418
2419 VEC_safe_push (dwarf2_section_info_def, this->types,
2420 &type_section);
2421 }
2422 else if (section_is_p (sectp->name, &names.gdb_index))
2423 {
2424 this->gdb_index.s.section = sectp;
2425 this->gdb_index.size = bfd_get_section_size (sectp);
2426 }
2427 else if (section_is_p (sectp->name, &names.debug_names))
2428 {
2429 this->debug_names.s.section = sectp;
2430 this->debug_names.size = bfd_get_section_size (sectp);
2431 }
2432 else if (section_is_p (sectp->name, &names.debug_aranges))
2433 {
2434 this->debug_aranges.s.section = sectp;
2435 this->debug_aranges.size = bfd_get_section_size (sectp);
2436 }
2437
2438 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2439 && bfd_section_vma (abfd, sectp) == 0)
2440 this->has_section_at_zero = true;
2441 }
2442
2443 /* A helper function that decides whether a section is empty,
2444 or not present. */
2445
2446 static int
2447 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2448 {
2449 if (section->is_virtual)
2450 return section->size == 0;
2451 return section->s.section == NULL || section->size == 0;
2452 }
2453
2454 /* See dwarf2read.h. */
2455
2456 void
2457 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2458 {
2459 asection *sectp;
2460 bfd *abfd;
2461 gdb_byte *buf, *retbuf;
2462
2463 if (info->readin)
2464 return;
2465 info->buffer = NULL;
2466 info->readin = 1;
2467
2468 if (dwarf2_section_empty_p (info))
2469 return;
2470
2471 sectp = get_section_bfd_section (info);
2472
2473 /* If this is a virtual section we need to read in the real one first. */
2474 if (info->is_virtual)
2475 {
2476 struct dwarf2_section_info *containing_section =
2477 get_containing_section (info);
2478
2479 gdb_assert (sectp != NULL);
2480 if ((sectp->flags & SEC_RELOC) != 0)
2481 {
2482 error (_("Dwarf Error: DWP format V2 with relocations is not"
2483 " supported in section %s [in module %s]"),
2484 get_section_name (info), get_section_file_name (info));
2485 }
2486 dwarf2_read_section (objfile, containing_section);
2487 /* Other code should have already caught virtual sections that don't
2488 fit. */
2489 gdb_assert (info->virtual_offset + info->size
2490 <= containing_section->size);
2491 /* If the real section is empty or there was a problem reading the
2492 section we shouldn't get here. */
2493 gdb_assert (containing_section->buffer != NULL);
2494 info->buffer = containing_section->buffer + info->virtual_offset;
2495 return;
2496 }
2497
2498 /* If the section has relocations, we must read it ourselves.
2499 Otherwise we attach it to the BFD. */
2500 if ((sectp->flags & SEC_RELOC) == 0)
2501 {
2502 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2503 return;
2504 }
2505
2506 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2507 info->buffer = buf;
2508
2509 /* When debugging .o files, we may need to apply relocations; see
2510 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2511 We never compress sections in .o files, so we only need to
2512 try this when the section is not compressed. */
2513 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2514 if (retbuf != NULL)
2515 {
2516 info->buffer = retbuf;
2517 return;
2518 }
2519
2520 abfd = get_section_bfd_owner (info);
2521 gdb_assert (abfd != NULL);
2522
2523 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2524 || bfd_bread (buf, info->size, abfd) != info->size)
2525 {
2526 error (_("Dwarf Error: Can't read DWARF data"
2527 " in section %s [in module %s]"),
2528 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2529 }
2530 }
2531
2532 /* A helper function that returns the size of a section in a safe way.
2533 If you are positive that the section has been read before using the
2534 size, then it is safe to refer to the dwarf2_section_info object's
2535 "size" field directly. In other cases, you must call this
2536 function, because for compressed sections the size field is not set
2537 correctly until the section has been read. */
2538
2539 static bfd_size_type
2540 dwarf2_section_size (struct objfile *objfile,
2541 struct dwarf2_section_info *info)
2542 {
2543 if (!info->readin)
2544 dwarf2_read_section (objfile, info);
2545 return info->size;
2546 }
2547
2548 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2549 SECTION_NAME. */
2550
2551 void
2552 dwarf2_get_section_info (struct objfile *objfile,
2553 enum dwarf2_section_enum sect,
2554 asection **sectp, const gdb_byte **bufp,
2555 bfd_size_type *sizep)
2556 {
2557 struct dwarf2_per_objfile *data
2558 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2559 dwarf2_objfile_data_key);
2560 struct dwarf2_section_info *info;
2561
2562 /* We may see an objfile without any DWARF, in which case we just
2563 return nothing. */
2564 if (data == NULL)
2565 {
2566 *sectp = NULL;
2567 *bufp = NULL;
2568 *sizep = 0;
2569 return;
2570 }
2571 switch (sect)
2572 {
2573 case DWARF2_DEBUG_FRAME:
2574 info = &data->frame;
2575 break;
2576 case DWARF2_EH_FRAME:
2577 info = &data->eh_frame;
2578 break;
2579 default:
2580 gdb_assert_not_reached ("unexpected section");
2581 }
2582
2583 dwarf2_read_section (objfile, info);
2584
2585 *sectp = get_section_bfd_section (info);
2586 *bufp = info->buffer;
2587 *sizep = info->size;
2588 }
2589
2590 /* A helper function to find the sections for a .dwz file. */
2591
2592 static void
2593 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2594 {
2595 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2596
2597 /* Note that we only support the standard ELF names, because .dwz
2598 is ELF-only (at the time of writing). */
2599 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2600 {
2601 dwz_file->abbrev.s.section = sectp;
2602 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2603 }
2604 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2605 {
2606 dwz_file->info.s.section = sectp;
2607 dwz_file->info.size = bfd_get_section_size (sectp);
2608 }
2609 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2610 {
2611 dwz_file->str.s.section = sectp;
2612 dwz_file->str.size = bfd_get_section_size (sectp);
2613 }
2614 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2615 {
2616 dwz_file->line.s.section = sectp;
2617 dwz_file->line.size = bfd_get_section_size (sectp);
2618 }
2619 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2620 {
2621 dwz_file->macro.s.section = sectp;
2622 dwz_file->macro.size = bfd_get_section_size (sectp);
2623 }
2624 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2625 {
2626 dwz_file->gdb_index.s.section = sectp;
2627 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2628 }
2629 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2630 {
2631 dwz_file->debug_names.s.section = sectp;
2632 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2633 }
2634 }
2635
2636 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2637 there is no .gnu_debugaltlink section in the file. Error if there
2638 is such a section but the file cannot be found. */
2639
2640 static struct dwz_file *
2641 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2642 {
2643 const char *filename;
2644 struct dwz_file *result;
2645 bfd_size_type buildid_len_arg;
2646 size_t buildid_len;
2647 bfd_byte *buildid;
2648
2649 if (dwarf2_per_objfile->dwz_file != NULL)
2650 return dwarf2_per_objfile->dwz_file;
2651
2652 bfd_set_error (bfd_error_no_error);
2653 gdb::unique_xmalloc_ptr<char> data
2654 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2655 &buildid_len_arg, &buildid));
2656 if (data == NULL)
2657 {
2658 if (bfd_get_error () == bfd_error_no_error)
2659 return NULL;
2660 error (_("could not read '.gnu_debugaltlink' section: %s"),
2661 bfd_errmsg (bfd_get_error ()));
2662 }
2663
2664 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2665
2666 buildid_len = (size_t) buildid_len_arg;
2667
2668 filename = data.get ();
2669
2670 std::string abs_storage;
2671 if (!IS_ABSOLUTE_PATH (filename))
2672 {
2673 gdb::unique_xmalloc_ptr<char> abs
2674 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2675
2676 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2677 filename = abs_storage.c_str ();
2678 }
2679
2680 /* First try the file name given in the section. If that doesn't
2681 work, try to use the build-id instead. */
2682 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2683 if (dwz_bfd != NULL)
2684 {
2685 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2686 dwz_bfd.release ();
2687 }
2688
2689 if (dwz_bfd == NULL)
2690 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2691
2692 if (dwz_bfd == NULL)
2693 error (_("could not find '.gnu_debugaltlink' file for %s"),
2694 objfile_name (dwarf2_per_objfile->objfile));
2695
2696 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2697 struct dwz_file);
2698 result->dwz_bfd = dwz_bfd.release ();
2699
2700 bfd_map_over_sections (result->dwz_bfd, locate_dwz_sections, result);
2701
2702 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, result->dwz_bfd);
2703 dwarf2_per_objfile->dwz_file = result;
2704 return result;
2705 }
2706 \f
2707 /* DWARF quick_symbols_functions support. */
2708
2709 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2710 unique line tables, so we maintain a separate table of all .debug_line
2711 derived entries to support the sharing.
2712 All the quick functions need is the list of file names. We discard the
2713 line_header when we're done and don't need to record it here. */
2714 struct quick_file_names
2715 {
2716 /* The data used to construct the hash key. */
2717 struct stmt_list_hash hash;
2718
2719 /* The number of entries in file_names, real_names. */
2720 unsigned int num_file_names;
2721
2722 /* The file names from the line table, after being run through
2723 file_full_name. */
2724 const char **file_names;
2725
2726 /* The file names from the line table after being run through
2727 gdb_realpath. These are computed lazily. */
2728 const char **real_names;
2729 };
2730
2731 /* When using the index (and thus not using psymtabs), each CU has an
2732 object of this type. This is used to hold information needed by
2733 the various "quick" methods. */
2734 struct dwarf2_per_cu_quick_data
2735 {
2736 /* The file table. This can be NULL if there was no file table
2737 or it's currently not read in.
2738 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2739 struct quick_file_names *file_names;
2740
2741 /* The corresponding symbol table. This is NULL if symbols for this
2742 CU have not yet been read. */
2743 struct compunit_symtab *compunit_symtab;
2744
2745 /* A temporary mark bit used when iterating over all CUs in
2746 expand_symtabs_matching. */
2747 unsigned int mark : 1;
2748
2749 /* True if we've tried to read the file table and found there isn't one.
2750 There will be no point in trying to read it again next time. */
2751 unsigned int no_file_data : 1;
2752 };
2753
2754 /* Utility hash function for a stmt_list_hash. */
2755
2756 static hashval_t
2757 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2758 {
2759 hashval_t v = 0;
2760
2761 if (stmt_list_hash->dwo_unit != NULL)
2762 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2763 v += to_underlying (stmt_list_hash->line_sect_off);
2764 return v;
2765 }
2766
2767 /* Utility equality function for a stmt_list_hash. */
2768
2769 static int
2770 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2771 const struct stmt_list_hash *rhs)
2772 {
2773 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2774 return 0;
2775 if (lhs->dwo_unit != NULL
2776 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2777 return 0;
2778
2779 return lhs->line_sect_off == rhs->line_sect_off;
2780 }
2781
2782 /* Hash function for a quick_file_names. */
2783
2784 static hashval_t
2785 hash_file_name_entry (const void *e)
2786 {
2787 const struct quick_file_names *file_data
2788 = (const struct quick_file_names *) e;
2789
2790 return hash_stmt_list_entry (&file_data->hash);
2791 }
2792
2793 /* Equality function for a quick_file_names. */
2794
2795 static int
2796 eq_file_name_entry (const void *a, const void *b)
2797 {
2798 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2799 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2800
2801 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2802 }
2803
2804 /* Delete function for a quick_file_names. */
2805
2806 static void
2807 delete_file_name_entry (void *e)
2808 {
2809 struct quick_file_names *file_data = (struct quick_file_names *) e;
2810 int i;
2811
2812 for (i = 0; i < file_data->num_file_names; ++i)
2813 {
2814 xfree ((void*) file_data->file_names[i]);
2815 if (file_data->real_names)
2816 xfree ((void*) file_data->real_names[i]);
2817 }
2818
2819 /* The space for the struct itself lives on objfile_obstack,
2820 so we don't free it here. */
2821 }
2822
2823 /* Create a quick_file_names hash table. */
2824
2825 static htab_t
2826 create_quick_file_names_table (unsigned int nr_initial_entries)
2827 {
2828 return htab_create_alloc (nr_initial_entries,
2829 hash_file_name_entry, eq_file_name_entry,
2830 delete_file_name_entry, xcalloc, xfree);
2831 }
2832
2833 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2834 have to be created afterwards. You should call age_cached_comp_units after
2835 processing PER_CU->CU. dw2_setup must have been already called. */
2836
2837 static void
2838 load_cu (struct dwarf2_per_cu_data *per_cu)
2839 {
2840 if (per_cu->is_debug_types)
2841 load_full_type_unit (per_cu);
2842 else
2843 load_full_comp_unit (per_cu, language_minimal);
2844
2845 if (per_cu->cu == NULL)
2846 return; /* Dummy CU. */
2847
2848 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2849 }
2850
2851 /* Read in the symbols for PER_CU. */
2852
2853 static void
2854 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2855 {
2856 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2857
2858 /* Skip type_unit_groups, reading the type units they contain
2859 is handled elsewhere. */
2860 if (IS_TYPE_UNIT_GROUP (per_cu))
2861 return;
2862
2863 /* The destructor of dwarf2_queue_guard frees any entries left on
2864 the queue. After this point we're guaranteed to leave this function
2865 with the dwarf queue empty. */
2866 dwarf2_queue_guard q_guard;
2867
2868 if (dwarf2_per_objfile->using_index
2869 ? per_cu->v.quick->compunit_symtab == NULL
2870 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2871 {
2872 queue_comp_unit (per_cu, language_minimal);
2873 load_cu (per_cu);
2874
2875 /* If we just loaded a CU from a DWO, and we're working with an index
2876 that may badly handle TUs, load all the TUs in that DWO as well.
2877 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2878 if (!per_cu->is_debug_types
2879 && per_cu->cu != NULL
2880 && per_cu->cu->dwo_unit != NULL
2881 && dwarf2_per_objfile->index_table != NULL
2882 && dwarf2_per_objfile->index_table->version <= 7
2883 /* DWP files aren't supported yet. */
2884 && get_dwp_file (dwarf2_per_objfile) == NULL)
2885 queue_and_load_all_dwo_tus (per_cu);
2886 }
2887
2888 process_queue (dwarf2_per_objfile);
2889
2890 /* Age the cache, releasing compilation units that have not
2891 been used recently. */
2892 age_cached_comp_units (dwarf2_per_objfile);
2893 }
2894
2895 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2896 the objfile from which this CU came. Returns the resulting symbol
2897 table. */
2898
2899 static struct compunit_symtab *
2900 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2901 {
2902 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2903
2904 gdb_assert (dwarf2_per_objfile->using_index);
2905 if (!per_cu->v.quick->compunit_symtab)
2906 {
2907 free_cached_comp_units freer (dwarf2_per_objfile);
2908 scoped_restore decrementer = increment_reading_symtab ();
2909 dw2_do_instantiate_symtab (per_cu);
2910 process_cu_includes (dwarf2_per_objfile);
2911 }
2912
2913 return per_cu->v.quick->compunit_symtab;
2914 }
2915
2916 /* See declaration. */
2917
2918 dwarf2_per_cu_data *
2919 dwarf2_per_objfile::get_cutu (int index)
2920 {
2921 if (index >= this->all_comp_units.size ())
2922 {
2923 index -= this->all_comp_units.size ();
2924 gdb_assert (index < this->all_type_units.size ());
2925 return &this->all_type_units[index]->per_cu;
2926 }
2927
2928 return this->all_comp_units[index];
2929 }
2930
2931 /* See declaration. */
2932
2933 dwarf2_per_cu_data *
2934 dwarf2_per_objfile::get_cu (int index)
2935 {
2936 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2937
2938 return this->all_comp_units[index];
2939 }
2940
2941 /* See declaration. */
2942
2943 signatured_type *
2944 dwarf2_per_objfile::get_tu (int index)
2945 {
2946 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2947
2948 return this->all_type_units[index];
2949 }
2950
2951 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2952 objfile_obstack, and constructed with the specified field
2953 values. */
2954
2955 static dwarf2_per_cu_data *
2956 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2957 struct dwarf2_section_info *section,
2958 int is_dwz,
2959 sect_offset sect_off, ULONGEST length)
2960 {
2961 struct objfile *objfile = dwarf2_per_objfile->objfile;
2962 dwarf2_per_cu_data *the_cu
2963 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2964 struct dwarf2_per_cu_data);
2965 the_cu->sect_off = sect_off;
2966 the_cu->length = length;
2967 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2968 the_cu->section = section;
2969 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2970 struct dwarf2_per_cu_quick_data);
2971 the_cu->is_dwz = is_dwz;
2972 return the_cu;
2973 }
2974
2975 /* A helper for create_cus_from_index that handles a given list of
2976 CUs. */
2977
2978 static void
2979 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2980 const gdb_byte *cu_list, offset_type n_elements,
2981 struct dwarf2_section_info *section,
2982 int is_dwz)
2983 {
2984 for (offset_type i = 0; i < n_elements; i += 2)
2985 {
2986 gdb_static_assert (sizeof (ULONGEST) >= 8);
2987
2988 sect_offset sect_off
2989 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2990 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2991 cu_list += 2 * 8;
2992
2993 dwarf2_per_cu_data *per_cu
2994 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
2995 sect_off, length);
2996 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
2997 }
2998 }
2999
3000 /* Read the CU list from the mapped index, and use it to create all
3001 the CU objects for this objfile. */
3002
3003 static void
3004 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3005 const gdb_byte *cu_list, offset_type cu_list_elements,
3006 const gdb_byte *dwz_list, offset_type dwz_elements)
3007 {
3008 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3009 dwarf2_per_objfile->all_comp_units.reserve
3010 ((cu_list_elements + dwz_elements) / 2);
3011
3012 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3013 &dwarf2_per_objfile->info, 0);
3014
3015 if (dwz_elements == 0)
3016 return;
3017
3018 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3019 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3020 &dwz->info, 1);
3021 }
3022
3023 /* Create the signatured type hash table from the index. */
3024
3025 static void
3026 create_signatured_type_table_from_index
3027 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3028 struct dwarf2_section_info *section,
3029 const gdb_byte *bytes,
3030 offset_type elements)
3031 {
3032 struct objfile *objfile = dwarf2_per_objfile->objfile;
3033
3034 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3035 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3036
3037 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3038
3039 for (offset_type i = 0; i < elements; i += 3)
3040 {
3041 struct signatured_type *sig_type;
3042 ULONGEST signature;
3043 void **slot;
3044 cu_offset type_offset_in_tu;
3045
3046 gdb_static_assert (sizeof (ULONGEST) >= 8);
3047 sect_offset sect_off
3048 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3049 type_offset_in_tu
3050 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3051 BFD_ENDIAN_LITTLE);
3052 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3053 bytes += 3 * 8;
3054
3055 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3056 struct signatured_type);
3057 sig_type->signature = signature;
3058 sig_type->type_offset_in_tu = type_offset_in_tu;
3059 sig_type->per_cu.is_debug_types = 1;
3060 sig_type->per_cu.section = section;
3061 sig_type->per_cu.sect_off = sect_off;
3062 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3063 sig_type->per_cu.v.quick
3064 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3065 struct dwarf2_per_cu_quick_data);
3066
3067 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3068 *slot = sig_type;
3069
3070 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3071 }
3072
3073 dwarf2_per_objfile->signatured_types = sig_types_hash;
3074 }
3075
3076 /* Create the signatured type hash table from .debug_names. */
3077
3078 static void
3079 create_signatured_type_table_from_debug_names
3080 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3081 const mapped_debug_names &map,
3082 struct dwarf2_section_info *section,
3083 struct dwarf2_section_info *abbrev_section)
3084 {
3085 struct objfile *objfile = dwarf2_per_objfile->objfile;
3086
3087 dwarf2_read_section (objfile, section);
3088 dwarf2_read_section (objfile, abbrev_section);
3089
3090 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3091 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3092
3093 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3094
3095 for (uint32_t i = 0; i < map.tu_count; ++i)
3096 {
3097 struct signatured_type *sig_type;
3098 void **slot;
3099
3100 sect_offset sect_off
3101 = (sect_offset) (extract_unsigned_integer
3102 (map.tu_table_reordered + i * map.offset_size,
3103 map.offset_size,
3104 map.dwarf5_byte_order));
3105
3106 comp_unit_head cu_header;
3107 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3108 abbrev_section,
3109 section->buffer + to_underlying (sect_off),
3110 rcuh_kind::TYPE);
3111
3112 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3113 struct signatured_type);
3114 sig_type->signature = cu_header.signature;
3115 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3116 sig_type->per_cu.is_debug_types = 1;
3117 sig_type->per_cu.section = section;
3118 sig_type->per_cu.sect_off = sect_off;
3119 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3120 sig_type->per_cu.v.quick
3121 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3122 struct dwarf2_per_cu_quick_data);
3123
3124 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3125 *slot = sig_type;
3126
3127 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3128 }
3129
3130 dwarf2_per_objfile->signatured_types = sig_types_hash;
3131 }
3132
3133 /* Read the address map data from the mapped index, and use it to
3134 populate the objfile's psymtabs_addrmap. */
3135
3136 static void
3137 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3138 struct mapped_index *index)
3139 {
3140 struct objfile *objfile = dwarf2_per_objfile->objfile;
3141 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3142 const gdb_byte *iter, *end;
3143 struct addrmap *mutable_map;
3144 CORE_ADDR baseaddr;
3145
3146 auto_obstack temp_obstack;
3147
3148 mutable_map = addrmap_create_mutable (&temp_obstack);
3149
3150 iter = index->address_table.data ();
3151 end = iter + index->address_table.size ();
3152
3153 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3154
3155 while (iter < end)
3156 {
3157 ULONGEST hi, lo, cu_index;
3158 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3159 iter += 8;
3160 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3161 iter += 8;
3162 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3163 iter += 4;
3164
3165 if (lo > hi)
3166 {
3167 complaint (&symfile_complaints,
3168 _(".gdb_index address table has invalid range (%s - %s)"),
3169 hex_string (lo), hex_string (hi));
3170 continue;
3171 }
3172
3173 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3174 {
3175 complaint (&symfile_complaints,
3176 _(".gdb_index address table has invalid CU number %u"),
3177 (unsigned) cu_index);
3178 continue;
3179 }
3180
3181 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3182 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3183 addrmap_set_empty (mutable_map, lo, hi - 1,
3184 dwarf2_per_objfile->get_cu (cu_index));
3185 }
3186
3187 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3188 &objfile->objfile_obstack);
3189 }
3190
3191 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3192 populate the objfile's psymtabs_addrmap. */
3193
3194 static void
3195 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3196 struct dwarf2_section_info *section)
3197 {
3198 struct objfile *objfile = dwarf2_per_objfile->objfile;
3199 bfd *abfd = objfile->obfd;
3200 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3201 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3202 SECT_OFF_TEXT (objfile));
3203
3204 auto_obstack temp_obstack;
3205 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3206
3207 std::unordered_map<sect_offset,
3208 dwarf2_per_cu_data *,
3209 gdb::hash_enum<sect_offset>>
3210 debug_info_offset_to_per_cu;
3211 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3212 {
3213 const auto insertpair
3214 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3215 if (!insertpair.second)
3216 {
3217 warning (_("Section .debug_aranges in %s has duplicate "
3218 "debug_info_offset %s, ignoring .debug_aranges."),
3219 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3220 return;
3221 }
3222 }
3223
3224 dwarf2_read_section (objfile, section);
3225
3226 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3227
3228 const gdb_byte *addr = section->buffer;
3229
3230 while (addr < section->buffer + section->size)
3231 {
3232 const gdb_byte *const entry_addr = addr;
3233 unsigned int bytes_read;
3234
3235 const LONGEST entry_length = read_initial_length (abfd, addr,
3236 &bytes_read);
3237 addr += bytes_read;
3238
3239 const gdb_byte *const entry_end = addr + entry_length;
3240 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3241 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3242 if (addr + entry_length > section->buffer + section->size)
3243 {
3244 warning (_("Section .debug_aranges in %s entry at offset %zu "
3245 "length %s exceeds section length %s, "
3246 "ignoring .debug_aranges."),
3247 objfile_name (objfile), entry_addr - section->buffer,
3248 plongest (bytes_read + entry_length),
3249 pulongest (section->size));
3250 return;
3251 }
3252
3253 /* The version number. */
3254 const uint16_t version = read_2_bytes (abfd, addr);
3255 addr += 2;
3256 if (version != 2)
3257 {
3258 warning (_("Section .debug_aranges in %s entry at offset %zu "
3259 "has unsupported version %d, ignoring .debug_aranges."),
3260 objfile_name (objfile), entry_addr - section->buffer,
3261 version);
3262 return;
3263 }
3264
3265 const uint64_t debug_info_offset
3266 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3267 addr += offset_size;
3268 const auto per_cu_it
3269 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3270 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3271 {
3272 warning (_("Section .debug_aranges in %s entry at offset %zu "
3273 "debug_info_offset %s does not exists, "
3274 "ignoring .debug_aranges."),
3275 objfile_name (objfile), entry_addr - section->buffer,
3276 pulongest (debug_info_offset));
3277 return;
3278 }
3279 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3280
3281 const uint8_t address_size = *addr++;
3282 if (address_size < 1 || address_size > 8)
3283 {
3284 warning (_("Section .debug_aranges in %s entry at offset %zu "
3285 "address_size %u is invalid, ignoring .debug_aranges."),
3286 objfile_name (objfile), entry_addr - section->buffer,
3287 address_size);
3288 return;
3289 }
3290
3291 const uint8_t segment_selector_size = *addr++;
3292 if (segment_selector_size != 0)
3293 {
3294 warning (_("Section .debug_aranges in %s entry at offset %zu "
3295 "segment_selector_size %u is not supported, "
3296 "ignoring .debug_aranges."),
3297 objfile_name (objfile), entry_addr - section->buffer,
3298 segment_selector_size);
3299 return;
3300 }
3301
3302 /* Must pad to an alignment boundary that is twice the address
3303 size. It is undocumented by the DWARF standard but GCC does
3304 use it. */
3305 for (size_t padding = ((-(addr - section->buffer))
3306 & (2 * address_size - 1));
3307 padding > 0; padding--)
3308 if (*addr++ != 0)
3309 {
3310 warning (_("Section .debug_aranges in %s entry at offset %zu "
3311 "padding is not zero, ignoring .debug_aranges."),
3312 objfile_name (objfile), entry_addr - section->buffer);
3313 return;
3314 }
3315
3316 for (;;)
3317 {
3318 if (addr + 2 * address_size > entry_end)
3319 {
3320 warning (_("Section .debug_aranges in %s entry at offset %zu "
3321 "address list is not properly terminated, "
3322 "ignoring .debug_aranges."),
3323 objfile_name (objfile), entry_addr - section->buffer);
3324 return;
3325 }
3326 ULONGEST start = extract_unsigned_integer (addr, address_size,
3327 dwarf5_byte_order);
3328 addr += address_size;
3329 ULONGEST length = extract_unsigned_integer (addr, address_size,
3330 dwarf5_byte_order);
3331 addr += address_size;
3332 if (start == 0 && length == 0)
3333 break;
3334 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3335 {
3336 /* Symbol was eliminated due to a COMDAT group. */
3337 continue;
3338 }
3339 ULONGEST end = start + length;
3340 start = gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr);
3341 end = gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr);
3342 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3343 }
3344 }
3345
3346 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3347 &objfile->objfile_obstack);
3348 }
3349
3350 /* Find a slot in the mapped index INDEX for the object named NAME.
3351 If NAME is found, set *VEC_OUT to point to the CU vector in the
3352 constant pool and return true. If NAME cannot be found, return
3353 false. */
3354
3355 static bool
3356 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3357 offset_type **vec_out)
3358 {
3359 offset_type hash;
3360 offset_type slot, step;
3361 int (*cmp) (const char *, const char *);
3362
3363 gdb::unique_xmalloc_ptr<char> without_params;
3364 if (current_language->la_language == language_cplus
3365 || current_language->la_language == language_fortran
3366 || current_language->la_language == language_d)
3367 {
3368 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3369 not contain any. */
3370
3371 if (strchr (name, '(') != NULL)
3372 {
3373 without_params = cp_remove_params (name);
3374
3375 if (without_params != NULL)
3376 name = without_params.get ();
3377 }
3378 }
3379
3380 /* Index version 4 did not support case insensitive searches. But the
3381 indices for case insensitive languages are built in lowercase, therefore
3382 simulate our NAME being searched is also lowercased. */
3383 hash = mapped_index_string_hash ((index->version == 4
3384 && case_sensitivity == case_sensitive_off
3385 ? 5 : index->version),
3386 name);
3387
3388 slot = hash & (index->symbol_table.size () - 1);
3389 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3390 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3391
3392 for (;;)
3393 {
3394 const char *str;
3395
3396 const auto &bucket = index->symbol_table[slot];
3397 if (bucket.name == 0 && bucket.vec == 0)
3398 return false;
3399
3400 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3401 if (!cmp (name, str))
3402 {
3403 *vec_out = (offset_type *) (index->constant_pool
3404 + MAYBE_SWAP (bucket.vec));
3405 return true;
3406 }
3407
3408 slot = (slot + step) & (index->symbol_table.size () - 1);
3409 }
3410 }
3411
3412 /* A helper function that reads the .gdb_index from SECTION and fills
3413 in MAP. FILENAME is the name of the file containing the section;
3414 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3415 ok to use deprecated sections.
3416
3417 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3418 out parameters that are filled in with information about the CU and
3419 TU lists in the section.
3420
3421 Returns 1 if all went well, 0 otherwise. */
3422
3423 static int
3424 read_index_from_section (struct objfile *objfile,
3425 const char *filename,
3426 int deprecated_ok,
3427 struct dwarf2_section_info *section,
3428 struct mapped_index *map,
3429 const gdb_byte **cu_list,
3430 offset_type *cu_list_elements,
3431 const gdb_byte **types_list,
3432 offset_type *types_list_elements)
3433 {
3434 const gdb_byte *addr;
3435 offset_type version;
3436 offset_type *metadata;
3437 int i;
3438
3439 if (dwarf2_section_empty_p (section))
3440 return 0;
3441
3442 /* Older elfutils strip versions could keep the section in the main
3443 executable while splitting it for the separate debug info file. */
3444 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3445 return 0;
3446
3447 dwarf2_read_section (objfile, section);
3448
3449 addr = section->buffer;
3450 /* Version check. */
3451 version = MAYBE_SWAP (*(offset_type *) addr);
3452 /* Versions earlier than 3 emitted every copy of a psymbol. This
3453 causes the index to behave very poorly for certain requests. Version 3
3454 contained incomplete addrmap. So, it seems better to just ignore such
3455 indices. */
3456 if (version < 4)
3457 {
3458 static int warning_printed = 0;
3459 if (!warning_printed)
3460 {
3461 warning (_("Skipping obsolete .gdb_index section in %s."),
3462 filename);
3463 warning_printed = 1;
3464 }
3465 return 0;
3466 }
3467 /* Index version 4 uses a different hash function than index version
3468 5 and later.
3469
3470 Versions earlier than 6 did not emit psymbols for inlined
3471 functions. Using these files will cause GDB not to be able to
3472 set breakpoints on inlined functions by name, so we ignore these
3473 indices unless the user has done
3474 "set use-deprecated-index-sections on". */
3475 if (version < 6 && !deprecated_ok)
3476 {
3477 static int warning_printed = 0;
3478 if (!warning_printed)
3479 {
3480 warning (_("\
3481 Skipping deprecated .gdb_index section in %s.\n\
3482 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3483 to use the section anyway."),
3484 filename);
3485 warning_printed = 1;
3486 }
3487 return 0;
3488 }
3489 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3490 of the TU (for symbols coming from TUs),
3491 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3492 Plus gold-generated indices can have duplicate entries for global symbols,
3493 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3494 These are just performance bugs, and we can't distinguish gdb-generated
3495 indices from gold-generated ones, so issue no warning here. */
3496
3497 /* Indexes with higher version than the one supported by GDB may be no
3498 longer backward compatible. */
3499 if (version > 8)
3500 return 0;
3501
3502 map->version = version;
3503 map->total_size = section->size;
3504
3505 metadata = (offset_type *) (addr + sizeof (offset_type));
3506
3507 i = 0;
3508 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3509 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3510 / 8);
3511 ++i;
3512
3513 *types_list = addr + MAYBE_SWAP (metadata[i]);
3514 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3515 - MAYBE_SWAP (metadata[i]))
3516 / 8);
3517 ++i;
3518
3519 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3520 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3521 map->address_table
3522 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3523 ++i;
3524
3525 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3526 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3527 map->symbol_table
3528 = gdb::array_view<mapped_index::symbol_table_slot>
3529 ((mapped_index::symbol_table_slot *) symbol_table,
3530 (mapped_index::symbol_table_slot *) symbol_table_end);
3531
3532 ++i;
3533 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3534
3535 return 1;
3536 }
3537
3538 /* Read .gdb_index. If everything went ok, initialize the "quick"
3539 elements of all the CUs and return 1. Otherwise, return 0. */
3540
3541 static int
3542 dwarf2_read_index (struct dwarf2_per_objfile *dwarf2_per_objfile)
3543 {
3544 struct mapped_index local_map, *map;
3545 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3546 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3547 struct dwz_file *dwz;
3548 struct objfile *objfile = dwarf2_per_objfile->objfile;
3549
3550 if (!read_index_from_section (objfile, objfile_name (objfile),
3551 use_deprecated_index_sections,
3552 &dwarf2_per_objfile->gdb_index, &local_map,
3553 &cu_list, &cu_list_elements,
3554 &types_list, &types_list_elements))
3555 return 0;
3556
3557 /* Don't use the index if it's empty. */
3558 if (local_map.symbol_table.empty ())
3559 return 0;
3560
3561 /* If there is a .dwz file, read it so we can get its CU list as
3562 well. */
3563 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3564 if (dwz != NULL)
3565 {
3566 struct mapped_index dwz_map;
3567 const gdb_byte *dwz_types_ignore;
3568 offset_type dwz_types_elements_ignore;
3569
3570 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3571 1,
3572 &dwz->gdb_index, &dwz_map,
3573 &dwz_list, &dwz_list_elements,
3574 &dwz_types_ignore,
3575 &dwz_types_elements_ignore))
3576 {
3577 warning (_("could not read '.gdb_index' section from %s; skipping"),
3578 bfd_get_filename (dwz->dwz_bfd));
3579 return 0;
3580 }
3581 }
3582
3583 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3584 dwz_list, dwz_list_elements);
3585
3586 if (types_list_elements)
3587 {
3588 struct dwarf2_section_info *section;
3589
3590 /* We can only handle a single .debug_types when we have an
3591 index. */
3592 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3593 return 0;
3594
3595 section = VEC_index (dwarf2_section_info_def,
3596 dwarf2_per_objfile->types, 0);
3597
3598 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3599 types_list, types_list_elements);
3600 }
3601
3602 create_addrmap_from_index (dwarf2_per_objfile, &local_map);
3603
3604 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
3605 map = new (map) mapped_index ();
3606 *map = local_map;
3607
3608 dwarf2_per_objfile->index_table = map;
3609 dwarf2_per_objfile->using_index = 1;
3610 dwarf2_per_objfile->quick_file_names_table =
3611 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3612
3613 return 1;
3614 }
3615
3616 /* die_reader_func for dw2_get_file_names. */
3617
3618 static void
3619 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3620 const gdb_byte *info_ptr,
3621 struct die_info *comp_unit_die,
3622 int has_children,
3623 void *data)
3624 {
3625 struct dwarf2_cu *cu = reader->cu;
3626 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3627 struct dwarf2_per_objfile *dwarf2_per_objfile
3628 = cu->per_cu->dwarf2_per_objfile;
3629 struct objfile *objfile = dwarf2_per_objfile->objfile;
3630 struct dwarf2_per_cu_data *lh_cu;
3631 struct attribute *attr;
3632 int i;
3633 void **slot;
3634 struct quick_file_names *qfn;
3635
3636 gdb_assert (! this_cu->is_debug_types);
3637
3638 /* Our callers never want to match partial units -- instead they
3639 will match the enclosing full CU. */
3640 if (comp_unit_die->tag == DW_TAG_partial_unit)
3641 {
3642 this_cu->v.quick->no_file_data = 1;
3643 return;
3644 }
3645
3646 lh_cu = this_cu;
3647 slot = NULL;
3648
3649 line_header_up lh;
3650 sect_offset line_offset {};
3651
3652 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3653 if (attr)
3654 {
3655 struct quick_file_names find_entry;
3656
3657 line_offset = (sect_offset) DW_UNSND (attr);
3658
3659 /* We may have already read in this line header (TU line header sharing).
3660 If we have we're done. */
3661 find_entry.hash.dwo_unit = cu->dwo_unit;
3662 find_entry.hash.line_sect_off = line_offset;
3663 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3664 &find_entry, INSERT);
3665 if (*slot != NULL)
3666 {
3667 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3668 return;
3669 }
3670
3671 lh = dwarf_decode_line_header (line_offset, cu);
3672 }
3673 if (lh == NULL)
3674 {
3675 lh_cu->v.quick->no_file_data = 1;
3676 return;
3677 }
3678
3679 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3680 qfn->hash.dwo_unit = cu->dwo_unit;
3681 qfn->hash.line_sect_off = line_offset;
3682 gdb_assert (slot != NULL);
3683 *slot = qfn;
3684
3685 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3686
3687 qfn->num_file_names = lh->file_names.size ();
3688 qfn->file_names =
3689 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3690 for (i = 0; i < lh->file_names.size (); ++i)
3691 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3692 qfn->real_names = NULL;
3693
3694 lh_cu->v.quick->file_names = qfn;
3695 }
3696
3697 /* A helper for the "quick" functions which attempts to read the line
3698 table for THIS_CU. */
3699
3700 static struct quick_file_names *
3701 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3702 {
3703 /* This should never be called for TUs. */
3704 gdb_assert (! this_cu->is_debug_types);
3705 /* Nor type unit groups. */
3706 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3707
3708 if (this_cu->v.quick->file_names != NULL)
3709 return this_cu->v.quick->file_names;
3710 /* If we know there is no line data, no point in looking again. */
3711 if (this_cu->v.quick->no_file_data)
3712 return NULL;
3713
3714 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3715
3716 if (this_cu->v.quick->no_file_data)
3717 return NULL;
3718 return this_cu->v.quick->file_names;
3719 }
3720
3721 /* A helper for the "quick" functions which computes and caches the
3722 real path for a given file name from the line table. */
3723
3724 static const char *
3725 dw2_get_real_path (struct objfile *objfile,
3726 struct quick_file_names *qfn, int index)
3727 {
3728 if (qfn->real_names == NULL)
3729 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3730 qfn->num_file_names, const char *);
3731
3732 if (qfn->real_names[index] == NULL)
3733 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3734
3735 return qfn->real_names[index];
3736 }
3737
3738 static struct symtab *
3739 dw2_find_last_source_symtab (struct objfile *objfile)
3740 {
3741 struct dwarf2_per_objfile *dwarf2_per_objfile
3742 = get_dwarf2_per_objfile (objfile);
3743 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3744 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu);
3745
3746 if (cust == NULL)
3747 return NULL;
3748
3749 return compunit_primary_filetab (cust);
3750 }
3751
3752 /* Traversal function for dw2_forget_cached_source_info. */
3753
3754 static int
3755 dw2_free_cached_file_names (void **slot, void *info)
3756 {
3757 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3758
3759 if (file_data->real_names)
3760 {
3761 int i;
3762
3763 for (i = 0; i < file_data->num_file_names; ++i)
3764 {
3765 xfree ((void*) file_data->real_names[i]);
3766 file_data->real_names[i] = NULL;
3767 }
3768 }
3769
3770 return 1;
3771 }
3772
3773 static void
3774 dw2_forget_cached_source_info (struct objfile *objfile)
3775 {
3776 struct dwarf2_per_objfile *dwarf2_per_objfile
3777 = get_dwarf2_per_objfile (objfile);
3778
3779 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3780 dw2_free_cached_file_names, NULL);
3781 }
3782
3783 /* Helper function for dw2_map_symtabs_matching_filename that expands
3784 the symtabs and calls the iterator. */
3785
3786 static int
3787 dw2_map_expand_apply (struct objfile *objfile,
3788 struct dwarf2_per_cu_data *per_cu,
3789 const char *name, const char *real_path,
3790 gdb::function_view<bool (symtab *)> callback)
3791 {
3792 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3793
3794 /* Don't visit already-expanded CUs. */
3795 if (per_cu->v.quick->compunit_symtab)
3796 return 0;
3797
3798 /* This may expand more than one symtab, and we want to iterate over
3799 all of them. */
3800 dw2_instantiate_symtab (per_cu);
3801
3802 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3803 last_made, callback);
3804 }
3805
3806 /* Implementation of the map_symtabs_matching_filename method. */
3807
3808 static bool
3809 dw2_map_symtabs_matching_filename
3810 (struct objfile *objfile, const char *name, const char *real_path,
3811 gdb::function_view<bool (symtab *)> callback)
3812 {
3813 const char *name_basename = lbasename (name);
3814 struct dwarf2_per_objfile *dwarf2_per_objfile
3815 = get_dwarf2_per_objfile (objfile);
3816
3817 /* The rule is CUs specify all the files, including those used by
3818 any TU, so there's no need to scan TUs here. */
3819
3820 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3821 {
3822 /* We only need to look at symtabs not already expanded. */
3823 if (per_cu->v.quick->compunit_symtab)
3824 continue;
3825
3826 quick_file_names *file_data = dw2_get_file_names (per_cu);
3827 if (file_data == NULL)
3828 continue;
3829
3830 for (int j = 0; j < file_data->num_file_names; ++j)
3831 {
3832 const char *this_name = file_data->file_names[j];
3833 const char *this_real_name;
3834
3835 if (compare_filenames_for_search (this_name, name))
3836 {
3837 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3838 callback))
3839 return true;
3840 continue;
3841 }
3842
3843 /* Before we invoke realpath, which can get expensive when many
3844 files are involved, do a quick comparison of the basenames. */
3845 if (! basenames_may_differ
3846 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3847 continue;
3848
3849 this_real_name = dw2_get_real_path (objfile, file_data, j);
3850 if (compare_filenames_for_search (this_real_name, name))
3851 {
3852 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3853 callback))
3854 return true;
3855 continue;
3856 }
3857
3858 if (real_path != NULL)
3859 {
3860 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3861 gdb_assert (IS_ABSOLUTE_PATH (name));
3862 if (this_real_name != NULL
3863 && FILENAME_CMP (real_path, this_real_name) == 0)
3864 {
3865 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3866 callback))
3867 return true;
3868 continue;
3869 }
3870 }
3871 }
3872 }
3873
3874 return false;
3875 }
3876
3877 /* Struct used to manage iterating over all CUs looking for a symbol. */
3878
3879 struct dw2_symtab_iterator
3880 {
3881 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3882 struct dwarf2_per_objfile *dwarf2_per_objfile;
3883 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3884 int want_specific_block;
3885 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3886 Unused if !WANT_SPECIFIC_BLOCK. */
3887 int block_index;
3888 /* The kind of symbol we're looking for. */
3889 domain_enum domain;
3890 /* The list of CUs from the index entry of the symbol,
3891 or NULL if not found. */
3892 offset_type *vec;
3893 /* The next element in VEC to look at. */
3894 int next;
3895 /* The number of elements in VEC, or zero if there is no match. */
3896 int length;
3897 /* Have we seen a global version of the symbol?
3898 If so we can ignore all further global instances.
3899 This is to work around gold/15646, inefficient gold-generated
3900 indices. */
3901 int global_seen;
3902 };
3903
3904 /* Initialize the index symtab iterator ITER.
3905 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3906 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3907
3908 static void
3909 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3910 struct dwarf2_per_objfile *dwarf2_per_objfile,
3911 int want_specific_block,
3912 int block_index,
3913 domain_enum domain,
3914 const char *name)
3915 {
3916 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3917 iter->want_specific_block = want_specific_block;
3918 iter->block_index = block_index;
3919 iter->domain = domain;
3920 iter->next = 0;
3921 iter->global_seen = 0;
3922
3923 mapped_index *index = dwarf2_per_objfile->index_table;
3924
3925 /* index is NULL if OBJF_READNOW. */
3926 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3927 iter->length = MAYBE_SWAP (*iter->vec);
3928 else
3929 {
3930 iter->vec = NULL;
3931 iter->length = 0;
3932 }
3933 }
3934
3935 /* Return the next matching CU or NULL if there are no more. */
3936
3937 static struct dwarf2_per_cu_data *
3938 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3939 {
3940 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3941
3942 for ( ; iter->next < iter->length; ++iter->next)
3943 {
3944 offset_type cu_index_and_attrs =
3945 MAYBE_SWAP (iter->vec[iter->next + 1]);
3946 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3947 int want_static = iter->block_index != GLOBAL_BLOCK;
3948 /* This value is only valid for index versions >= 7. */
3949 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3950 gdb_index_symbol_kind symbol_kind =
3951 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3952 /* Only check the symbol attributes if they're present.
3953 Indices prior to version 7 don't record them,
3954 and indices >= 7 may elide them for certain symbols
3955 (gold does this). */
3956 int attrs_valid =
3957 (dwarf2_per_objfile->index_table->version >= 7
3958 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3959
3960 /* Don't crash on bad data. */
3961 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3962 + dwarf2_per_objfile->all_type_units.size ()))
3963 {
3964 complaint (&symfile_complaints,
3965 _(".gdb_index entry has bad CU index"
3966 " [in module %s]"),
3967 objfile_name (dwarf2_per_objfile->objfile));
3968 continue;
3969 }
3970
3971 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3972
3973 /* Skip if already read in. */
3974 if (per_cu->v.quick->compunit_symtab)
3975 continue;
3976
3977 /* Check static vs global. */
3978 if (attrs_valid)
3979 {
3980 if (iter->want_specific_block
3981 && want_static != is_static)
3982 continue;
3983 /* Work around gold/15646. */
3984 if (!is_static && iter->global_seen)
3985 continue;
3986 if (!is_static)
3987 iter->global_seen = 1;
3988 }
3989
3990 /* Only check the symbol's kind if it has one. */
3991 if (attrs_valid)
3992 {
3993 switch (iter->domain)
3994 {
3995 case VAR_DOMAIN:
3996 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3997 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3998 /* Some types are also in VAR_DOMAIN. */
3999 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4000 continue;
4001 break;
4002 case STRUCT_DOMAIN:
4003 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4004 continue;
4005 break;
4006 case LABEL_DOMAIN:
4007 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4008 continue;
4009 break;
4010 default:
4011 break;
4012 }
4013 }
4014
4015 ++iter->next;
4016 return per_cu;
4017 }
4018
4019 return NULL;
4020 }
4021
4022 static struct compunit_symtab *
4023 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4024 const char *name, domain_enum domain)
4025 {
4026 struct compunit_symtab *stab_best = NULL;
4027 struct dwarf2_per_objfile *dwarf2_per_objfile
4028 = get_dwarf2_per_objfile (objfile);
4029
4030 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4031
4032 struct dw2_symtab_iterator iter;
4033 struct dwarf2_per_cu_data *per_cu;
4034
4035 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4036
4037 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4038 {
4039 struct symbol *sym, *with_opaque = NULL;
4040 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
4041 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4042 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4043
4044 sym = block_find_symbol (block, name, domain,
4045 block_find_non_opaque_type_preferred,
4046 &with_opaque);
4047
4048 /* Some caution must be observed with overloaded functions
4049 and methods, since the index will not contain any overload
4050 information (but NAME might contain it). */
4051
4052 if (sym != NULL
4053 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4054 return stab;
4055 if (with_opaque != NULL
4056 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4057 stab_best = stab;
4058
4059 /* Keep looking through other CUs. */
4060 }
4061
4062 return stab_best;
4063 }
4064
4065 static void
4066 dw2_print_stats (struct objfile *objfile)
4067 {
4068 struct dwarf2_per_objfile *dwarf2_per_objfile
4069 = get_dwarf2_per_objfile (objfile);
4070 int total = (dwarf2_per_objfile->all_comp_units.size ()
4071 + dwarf2_per_objfile->all_type_units.size ());
4072 int count = 0;
4073
4074 for (int i = 0; i < total; ++i)
4075 {
4076 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4077
4078 if (!per_cu->v.quick->compunit_symtab)
4079 ++count;
4080 }
4081 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4082 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4083 }
4084
4085 /* This dumps minimal information about the index.
4086 It is called via "mt print objfiles".
4087 One use is to verify .gdb_index has been loaded by the
4088 gdb.dwarf2/gdb-index.exp testcase. */
4089
4090 static void
4091 dw2_dump (struct objfile *objfile)
4092 {
4093 struct dwarf2_per_objfile *dwarf2_per_objfile
4094 = get_dwarf2_per_objfile (objfile);
4095
4096 gdb_assert (dwarf2_per_objfile->using_index);
4097 printf_filtered (".gdb_index:");
4098 if (dwarf2_per_objfile->index_table != NULL)
4099 {
4100 printf_filtered (" version %d\n",
4101 dwarf2_per_objfile->index_table->version);
4102 }
4103 else
4104 printf_filtered (" faked for \"readnow\"\n");
4105 printf_filtered ("\n");
4106 }
4107
4108 static void
4109 dw2_relocate (struct objfile *objfile,
4110 const struct section_offsets *new_offsets,
4111 const struct section_offsets *delta)
4112 {
4113 /* There's nothing to relocate here. */
4114 }
4115
4116 static void
4117 dw2_expand_symtabs_for_function (struct objfile *objfile,
4118 const char *func_name)
4119 {
4120 struct dwarf2_per_objfile *dwarf2_per_objfile
4121 = get_dwarf2_per_objfile (objfile);
4122
4123 struct dw2_symtab_iterator iter;
4124 struct dwarf2_per_cu_data *per_cu;
4125
4126 /* Note: It doesn't matter what we pass for block_index here. */
4127 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4128 func_name);
4129
4130 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4131 dw2_instantiate_symtab (per_cu);
4132
4133 }
4134
4135 static void
4136 dw2_expand_all_symtabs (struct objfile *objfile)
4137 {
4138 struct dwarf2_per_objfile *dwarf2_per_objfile
4139 = get_dwarf2_per_objfile (objfile);
4140 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4141 + dwarf2_per_objfile->all_type_units.size ());
4142
4143 for (int i = 0; i < total_units; ++i)
4144 {
4145 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4146
4147 dw2_instantiate_symtab (per_cu);
4148 }
4149 }
4150
4151 static void
4152 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4153 const char *fullname)
4154 {
4155 struct dwarf2_per_objfile *dwarf2_per_objfile
4156 = get_dwarf2_per_objfile (objfile);
4157
4158 /* We don't need to consider type units here.
4159 This is only called for examining code, e.g. expand_line_sal.
4160 There can be an order of magnitude (or more) more type units
4161 than comp units, and we avoid them if we can. */
4162
4163 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4164 {
4165 /* We only need to look at symtabs not already expanded. */
4166 if (per_cu->v.quick->compunit_symtab)
4167 continue;
4168
4169 quick_file_names *file_data = dw2_get_file_names (per_cu);
4170 if (file_data == NULL)
4171 continue;
4172
4173 for (int j = 0; j < file_data->num_file_names; ++j)
4174 {
4175 const char *this_fullname = file_data->file_names[j];
4176
4177 if (filename_cmp (this_fullname, fullname) == 0)
4178 {
4179 dw2_instantiate_symtab (per_cu);
4180 break;
4181 }
4182 }
4183 }
4184 }
4185
4186 static void
4187 dw2_map_matching_symbols (struct objfile *objfile,
4188 const char * name, domain_enum domain,
4189 int global,
4190 int (*callback) (struct block *,
4191 struct symbol *, void *),
4192 void *data, symbol_name_match_type match,
4193 symbol_compare_ftype *ordered_compare)
4194 {
4195 /* Currently unimplemented; used for Ada. The function can be called if the
4196 current language is Ada for a non-Ada objfile using GNU index. As Ada
4197 does not look for non-Ada symbols this function should just return. */
4198 }
4199
4200 /* Symbol name matcher for .gdb_index names.
4201
4202 Symbol names in .gdb_index have a few particularities:
4203
4204 - There's no indication of which is the language of each symbol.
4205
4206 Since each language has its own symbol name matching algorithm,
4207 and we don't know which language is the right one, we must match
4208 each symbol against all languages. This would be a potential
4209 performance problem if it were not mitigated by the
4210 mapped_index::name_components lookup table, which significantly
4211 reduces the number of times we need to call into this matcher,
4212 making it a non-issue.
4213
4214 - Symbol names in the index have no overload (parameter)
4215 information. I.e., in C++, "foo(int)" and "foo(long)" both
4216 appear as "foo" in the index, for example.
4217
4218 This means that the lookup names passed to the symbol name
4219 matcher functions must have no parameter information either
4220 because (e.g.) symbol search name "foo" does not match
4221 lookup-name "foo(int)" [while swapping search name for lookup
4222 name would match].
4223 */
4224 class gdb_index_symbol_name_matcher
4225 {
4226 public:
4227 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4228 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4229
4230 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4231 Returns true if any matcher matches. */
4232 bool matches (const char *symbol_name);
4233
4234 private:
4235 /* A reference to the lookup name we're matching against. */
4236 const lookup_name_info &m_lookup_name;
4237
4238 /* A vector holding all the different symbol name matchers, for all
4239 languages. */
4240 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4241 };
4242
4243 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4244 (const lookup_name_info &lookup_name)
4245 : m_lookup_name (lookup_name)
4246 {
4247 /* Prepare the vector of comparison functions upfront, to avoid
4248 doing the same work for each symbol. Care is taken to avoid
4249 matching with the same matcher more than once if/when multiple
4250 languages use the same matcher function. */
4251 auto &matchers = m_symbol_name_matcher_funcs;
4252 matchers.reserve (nr_languages);
4253
4254 matchers.push_back (default_symbol_name_matcher);
4255
4256 for (int i = 0; i < nr_languages; i++)
4257 {
4258 const language_defn *lang = language_def ((enum language) i);
4259 symbol_name_matcher_ftype *name_matcher
4260 = get_symbol_name_matcher (lang, m_lookup_name);
4261
4262 /* Don't insert the same comparison routine more than once.
4263 Note that we do this linear walk instead of a seemingly
4264 cheaper sorted insert, or use a std::set or something like
4265 that, because relative order of function addresses is not
4266 stable. This is not a problem in practice because the number
4267 of supported languages is low, and the cost here is tiny
4268 compared to the number of searches we'll do afterwards using
4269 this object. */
4270 if (name_matcher != default_symbol_name_matcher
4271 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4272 == matchers.end ()))
4273 matchers.push_back (name_matcher);
4274 }
4275 }
4276
4277 bool
4278 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4279 {
4280 for (auto matches_name : m_symbol_name_matcher_funcs)
4281 if (matches_name (symbol_name, m_lookup_name, NULL))
4282 return true;
4283
4284 return false;
4285 }
4286
4287 /* Starting from a search name, return the string that finds the upper
4288 bound of all strings that start with SEARCH_NAME in a sorted name
4289 list. Returns the empty string to indicate that the upper bound is
4290 the end of the list. */
4291
4292 static std::string
4293 make_sort_after_prefix_name (const char *search_name)
4294 {
4295 /* When looking to complete "func", we find the upper bound of all
4296 symbols that start with "func" by looking for where we'd insert
4297 the closest string that would follow "func" in lexicographical
4298 order. Usually, that's "func"-with-last-character-incremented,
4299 i.e. "fund". Mind non-ASCII characters, though. Usually those
4300 will be UTF-8 multi-byte sequences, but we can't be certain.
4301 Especially mind the 0xff character, which is a valid character in
4302 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4303 rule out compilers allowing it in identifiers. Note that
4304 conveniently, strcmp/strcasecmp are specified to compare
4305 characters interpreted as unsigned char. So what we do is treat
4306 the whole string as a base 256 number composed of a sequence of
4307 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4308 to 0, and carries 1 to the following more-significant position.
4309 If the very first character in SEARCH_NAME ends up incremented
4310 and carries/overflows, then the upper bound is the end of the
4311 list. The string after the empty string is also the empty
4312 string.
4313
4314 Some examples of this operation:
4315
4316 SEARCH_NAME => "+1" RESULT
4317
4318 "abc" => "abd"
4319 "ab\xff" => "ac"
4320 "\xff" "a" "\xff" => "\xff" "b"
4321 "\xff" => ""
4322 "\xff\xff" => ""
4323 "" => ""
4324
4325 Then, with these symbols for example:
4326
4327 func
4328 func1
4329 fund
4330
4331 completing "func" looks for symbols between "func" and
4332 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4333 which finds "func" and "func1", but not "fund".
4334
4335 And with:
4336
4337 funcÿ (Latin1 'ÿ' [0xff])
4338 funcÿ1
4339 fund
4340
4341 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4342 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4343
4344 And with:
4345
4346 ÿÿ (Latin1 'ÿ' [0xff])
4347 ÿÿ1
4348
4349 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4350 the end of the list.
4351 */
4352 std::string after = search_name;
4353 while (!after.empty () && (unsigned char) after.back () == 0xff)
4354 after.pop_back ();
4355 if (!after.empty ())
4356 after.back () = (unsigned char) after.back () + 1;
4357 return after;
4358 }
4359
4360 /* See declaration. */
4361
4362 std::pair<std::vector<name_component>::const_iterator,
4363 std::vector<name_component>::const_iterator>
4364 mapped_index_base::find_name_components_bounds
4365 (const lookup_name_info &lookup_name_without_params) const
4366 {
4367 auto *name_cmp
4368 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4369
4370 const char *cplus
4371 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4372
4373 /* Comparison function object for lower_bound that matches against a
4374 given symbol name. */
4375 auto lookup_compare_lower = [&] (const name_component &elem,
4376 const char *name)
4377 {
4378 const char *elem_qualified = this->symbol_name_at (elem.idx);
4379 const char *elem_name = elem_qualified + elem.name_offset;
4380 return name_cmp (elem_name, name) < 0;
4381 };
4382
4383 /* Comparison function object for upper_bound that matches against a
4384 given symbol name. */
4385 auto lookup_compare_upper = [&] (const char *name,
4386 const name_component &elem)
4387 {
4388 const char *elem_qualified = this->symbol_name_at (elem.idx);
4389 const char *elem_name = elem_qualified + elem.name_offset;
4390 return name_cmp (name, elem_name) < 0;
4391 };
4392
4393 auto begin = this->name_components.begin ();
4394 auto end = this->name_components.end ();
4395
4396 /* Find the lower bound. */
4397 auto lower = [&] ()
4398 {
4399 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4400 return begin;
4401 else
4402 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4403 } ();
4404
4405 /* Find the upper bound. */
4406 auto upper = [&] ()
4407 {
4408 if (lookup_name_without_params.completion_mode ())
4409 {
4410 /* In completion mode, we want UPPER to point past all
4411 symbols names that have the same prefix. I.e., with
4412 these symbols, and completing "func":
4413
4414 function << lower bound
4415 function1
4416 other_function << upper bound
4417
4418 We find the upper bound by looking for the insertion
4419 point of "func"-with-last-character-incremented,
4420 i.e. "fund". */
4421 std::string after = make_sort_after_prefix_name (cplus);
4422 if (after.empty ())
4423 return end;
4424 return std::lower_bound (lower, end, after.c_str (),
4425 lookup_compare_lower);
4426 }
4427 else
4428 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4429 } ();
4430
4431 return {lower, upper};
4432 }
4433
4434 /* See declaration. */
4435
4436 void
4437 mapped_index_base::build_name_components ()
4438 {
4439 if (!this->name_components.empty ())
4440 return;
4441
4442 this->name_components_casing = case_sensitivity;
4443 auto *name_cmp
4444 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4445
4446 /* The code below only knows how to break apart components of C++
4447 symbol names (and other languages that use '::' as
4448 namespace/module separator). If we add support for wild matching
4449 to some language that uses some other operator (E.g., Ada, Go and
4450 D use '.'), then we'll need to try splitting the symbol name
4451 according to that language too. Note that Ada does support wild
4452 matching, but doesn't currently support .gdb_index. */
4453 auto count = this->symbol_name_count ();
4454 for (offset_type idx = 0; idx < count; idx++)
4455 {
4456 if (this->symbol_name_slot_invalid (idx))
4457 continue;
4458
4459 const char *name = this->symbol_name_at (idx);
4460
4461 /* Add each name component to the name component table. */
4462 unsigned int previous_len = 0;
4463 for (unsigned int current_len = cp_find_first_component (name);
4464 name[current_len] != '\0';
4465 current_len += cp_find_first_component (name + current_len))
4466 {
4467 gdb_assert (name[current_len] == ':');
4468 this->name_components.push_back ({previous_len, idx});
4469 /* Skip the '::'. */
4470 current_len += 2;
4471 previous_len = current_len;
4472 }
4473 this->name_components.push_back ({previous_len, idx});
4474 }
4475
4476 /* Sort name_components elements by name. */
4477 auto name_comp_compare = [&] (const name_component &left,
4478 const name_component &right)
4479 {
4480 const char *left_qualified = this->symbol_name_at (left.idx);
4481 const char *right_qualified = this->symbol_name_at (right.idx);
4482
4483 const char *left_name = left_qualified + left.name_offset;
4484 const char *right_name = right_qualified + right.name_offset;
4485
4486 return name_cmp (left_name, right_name) < 0;
4487 };
4488
4489 std::sort (this->name_components.begin (),
4490 this->name_components.end (),
4491 name_comp_compare);
4492 }
4493
4494 /* Helper for dw2_expand_symtabs_matching that works with a
4495 mapped_index_base instead of the containing objfile. This is split
4496 to a separate function in order to be able to unit test the
4497 name_components matching using a mock mapped_index_base. For each
4498 symbol name that matches, calls MATCH_CALLBACK, passing it the
4499 symbol's index in the mapped_index_base symbol table. */
4500
4501 static void
4502 dw2_expand_symtabs_matching_symbol
4503 (mapped_index_base &index,
4504 const lookup_name_info &lookup_name_in,
4505 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4506 enum search_domain kind,
4507 gdb::function_view<void (offset_type)> match_callback)
4508 {
4509 lookup_name_info lookup_name_without_params
4510 = lookup_name_in.make_ignore_params ();
4511 gdb_index_symbol_name_matcher lookup_name_matcher
4512 (lookup_name_without_params);
4513
4514 /* Build the symbol name component sorted vector, if we haven't
4515 yet. */
4516 index.build_name_components ();
4517
4518 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4519
4520 /* Now for each symbol name in range, check to see if we have a name
4521 match, and if so, call the MATCH_CALLBACK callback. */
4522
4523 /* The same symbol may appear more than once in the range though.
4524 E.g., if we're looking for symbols that complete "w", and we have
4525 a symbol named "w1::w2", we'll find the two name components for
4526 that same symbol in the range. To be sure we only call the
4527 callback once per symbol, we first collect the symbol name
4528 indexes that matched in a temporary vector and ignore
4529 duplicates. */
4530 std::vector<offset_type> matches;
4531 matches.reserve (std::distance (bounds.first, bounds.second));
4532
4533 for (; bounds.first != bounds.second; ++bounds.first)
4534 {
4535 const char *qualified = index.symbol_name_at (bounds.first->idx);
4536
4537 if (!lookup_name_matcher.matches (qualified)
4538 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4539 continue;
4540
4541 matches.push_back (bounds.first->idx);
4542 }
4543
4544 std::sort (matches.begin (), matches.end ());
4545
4546 /* Finally call the callback, once per match. */
4547 ULONGEST prev = -1;
4548 for (offset_type idx : matches)
4549 {
4550 if (prev != idx)
4551 {
4552 match_callback (idx);
4553 prev = idx;
4554 }
4555 }
4556
4557 /* Above we use a type wider than idx's for 'prev', since 0 and
4558 (offset_type)-1 are both possible values. */
4559 static_assert (sizeof (prev) > sizeof (offset_type), "");
4560 }
4561
4562 #if GDB_SELF_TEST
4563
4564 namespace selftests { namespace dw2_expand_symtabs_matching {
4565
4566 /* A mock .gdb_index/.debug_names-like name index table, enough to
4567 exercise dw2_expand_symtabs_matching_symbol, which works with the
4568 mapped_index_base interface. Builds an index from the symbol list
4569 passed as parameter to the constructor. */
4570 class mock_mapped_index : public mapped_index_base
4571 {
4572 public:
4573 mock_mapped_index (gdb::array_view<const char *> symbols)
4574 : m_symbol_table (symbols)
4575 {}
4576
4577 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4578
4579 /* Return the number of names in the symbol table. */
4580 virtual size_t symbol_name_count () const
4581 {
4582 return m_symbol_table.size ();
4583 }
4584
4585 /* Get the name of the symbol at IDX in the symbol table. */
4586 virtual const char *symbol_name_at (offset_type idx) const
4587 {
4588 return m_symbol_table[idx];
4589 }
4590
4591 private:
4592 gdb::array_view<const char *> m_symbol_table;
4593 };
4594
4595 /* Convenience function that converts a NULL pointer to a "<null>"
4596 string, to pass to print routines. */
4597
4598 static const char *
4599 string_or_null (const char *str)
4600 {
4601 return str != NULL ? str : "<null>";
4602 }
4603
4604 /* Check if a lookup_name_info built from
4605 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4606 index. EXPECTED_LIST is the list of expected matches, in expected
4607 matching order. If no match expected, then an empty list is
4608 specified. Returns true on success. On failure prints a warning
4609 indicating the file:line that failed, and returns false. */
4610
4611 static bool
4612 check_match (const char *file, int line,
4613 mock_mapped_index &mock_index,
4614 const char *name, symbol_name_match_type match_type,
4615 bool completion_mode,
4616 std::initializer_list<const char *> expected_list)
4617 {
4618 lookup_name_info lookup_name (name, match_type, completion_mode);
4619
4620 bool matched = true;
4621
4622 auto mismatch = [&] (const char *expected_str,
4623 const char *got)
4624 {
4625 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4626 "expected=\"%s\", got=\"%s\"\n"),
4627 file, line,
4628 (match_type == symbol_name_match_type::FULL
4629 ? "FULL" : "WILD"),
4630 name, string_or_null (expected_str), string_or_null (got));
4631 matched = false;
4632 };
4633
4634 auto expected_it = expected_list.begin ();
4635 auto expected_end = expected_list.end ();
4636
4637 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4638 NULL, ALL_DOMAIN,
4639 [&] (offset_type idx)
4640 {
4641 const char *matched_name = mock_index.symbol_name_at (idx);
4642 const char *expected_str
4643 = expected_it == expected_end ? NULL : *expected_it++;
4644
4645 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4646 mismatch (expected_str, matched_name);
4647 });
4648
4649 const char *expected_str
4650 = expected_it == expected_end ? NULL : *expected_it++;
4651 if (expected_str != NULL)
4652 mismatch (expected_str, NULL);
4653
4654 return matched;
4655 }
4656
4657 /* The symbols added to the mock mapped_index for testing (in
4658 canonical form). */
4659 static const char *test_symbols[] = {
4660 "function",
4661 "std::bar",
4662 "std::zfunction",
4663 "std::zfunction2",
4664 "w1::w2",
4665 "ns::foo<char*>",
4666 "ns::foo<int>",
4667 "ns::foo<long>",
4668 "ns2::tmpl<int>::foo2",
4669 "(anonymous namespace)::A::B::C",
4670
4671 /* These are used to check that the increment-last-char in the
4672 matching algorithm for completion doesn't match "t1_fund" when
4673 completing "t1_func". */
4674 "t1_func",
4675 "t1_func1",
4676 "t1_fund",
4677 "t1_fund1",
4678
4679 /* A UTF-8 name with multi-byte sequences to make sure that
4680 cp-name-parser understands this as a single identifier ("função"
4681 is "function" in PT). */
4682 u8"u8função",
4683
4684 /* \377 (0xff) is Latin1 'ÿ'. */
4685 "yfunc\377",
4686
4687 /* \377 (0xff) is Latin1 'ÿ'. */
4688 "\377",
4689 "\377\377123",
4690
4691 /* A name with all sorts of complications. Starts with "z" to make
4692 it easier for the completion tests below. */
4693 #define Z_SYM_NAME \
4694 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4695 "::tuple<(anonymous namespace)::ui*, " \
4696 "std::default_delete<(anonymous namespace)::ui>, void>"
4697
4698 Z_SYM_NAME
4699 };
4700
4701 /* Returns true if the mapped_index_base::find_name_component_bounds
4702 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4703 in completion mode. */
4704
4705 static bool
4706 check_find_bounds_finds (mapped_index_base &index,
4707 const char *search_name,
4708 gdb::array_view<const char *> expected_syms)
4709 {
4710 lookup_name_info lookup_name (search_name,
4711 symbol_name_match_type::FULL, true);
4712
4713 auto bounds = index.find_name_components_bounds (lookup_name);
4714
4715 size_t distance = std::distance (bounds.first, bounds.second);
4716 if (distance != expected_syms.size ())
4717 return false;
4718
4719 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4720 {
4721 auto nc_elem = bounds.first + exp_elem;
4722 const char *qualified = index.symbol_name_at (nc_elem->idx);
4723 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4724 return false;
4725 }
4726
4727 return true;
4728 }
4729
4730 /* Test the lower-level mapped_index::find_name_component_bounds
4731 method. */
4732
4733 static void
4734 test_mapped_index_find_name_component_bounds ()
4735 {
4736 mock_mapped_index mock_index (test_symbols);
4737
4738 mock_index.build_name_components ();
4739
4740 /* Test the lower-level mapped_index::find_name_component_bounds
4741 method in completion mode. */
4742 {
4743 static const char *expected_syms[] = {
4744 "t1_func",
4745 "t1_func1",
4746 };
4747
4748 SELF_CHECK (check_find_bounds_finds (mock_index,
4749 "t1_func", expected_syms));
4750 }
4751
4752 /* Check that the increment-last-char in the name matching algorithm
4753 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4754 {
4755 static const char *expected_syms1[] = {
4756 "\377",
4757 "\377\377123",
4758 };
4759 SELF_CHECK (check_find_bounds_finds (mock_index,
4760 "\377", expected_syms1));
4761
4762 static const char *expected_syms2[] = {
4763 "\377\377123",
4764 };
4765 SELF_CHECK (check_find_bounds_finds (mock_index,
4766 "\377\377", expected_syms2));
4767 }
4768 }
4769
4770 /* Test dw2_expand_symtabs_matching_symbol. */
4771
4772 static void
4773 test_dw2_expand_symtabs_matching_symbol ()
4774 {
4775 mock_mapped_index mock_index (test_symbols);
4776
4777 /* We let all tests run until the end even if some fails, for debug
4778 convenience. */
4779 bool any_mismatch = false;
4780
4781 /* Create the expected symbols list (an initializer_list). Needed
4782 because lists have commas, and we need to pass them to CHECK,
4783 which is a macro. */
4784 #define EXPECT(...) { __VA_ARGS__ }
4785
4786 /* Wrapper for check_match that passes down the current
4787 __FILE__/__LINE__. */
4788 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4789 any_mismatch |= !check_match (__FILE__, __LINE__, \
4790 mock_index, \
4791 NAME, MATCH_TYPE, COMPLETION_MODE, \
4792 EXPECTED_LIST)
4793
4794 /* Identity checks. */
4795 for (const char *sym : test_symbols)
4796 {
4797 /* Should be able to match all existing symbols. */
4798 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4799 EXPECT (sym));
4800
4801 /* Should be able to match all existing symbols with
4802 parameters. */
4803 std::string with_params = std::string (sym) + "(int)";
4804 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4805 EXPECT (sym));
4806
4807 /* Should be able to match all existing symbols with
4808 parameters and qualifiers. */
4809 with_params = std::string (sym) + " ( int ) const";
4810 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4811 EXPECT (sym));
4812
4813 /* This should really find sym, but cp-name-parser.y doesn't
4814 know about lvalue/rvalue qualifiers yet. */
4815 with_params = std::string (sym) + " ( int ) &&";
4816 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4817 {});
4818 }
4819
4820 /* Check that the name matching algorithm for completion doesn't get
4821 confused with Latin1 'ÿ' / 0xff. */
4822 {
4823 static const char str[] = "\377";
4824 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4825 EXPECT ("\377", "\377\377123"));
4826 }
4827
4828 /* Check that the increment-last-char in the matching algorithm for
4829 completion doesn't match "t1_fund" when completing "t1_func". */
4830 {
4831 static const char str[] = "t1_func";
4832 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4833 EXPECT ("t1_func", "t1_func1"));
4834 }
4835
4836 /* Check that completion mode works at each prefix of the expected
4837 symbol name. */
4838 {
4839 static const char str[] = "function(int)";
4840 size_t len = strlen (str);
4841 std::string lookup;
4842
4843 for (size_t i = 1; i < len; i++)
4844 {
4845 lookup.assign (str, i);
4846 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4847 EXPECT ("function"));
4848 }
4849 }
4850
4851 /* While "w" is a prefix of both components, the match function
4852 should still only be called once. */
4853 {
4854 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4855 EXPECT ("w1::w2"));
4856 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4857 EXPECT ("w1::w2"));
4858 }
4859
4860 /* Same, with a "complicated" symbol. */
4861 {
4862 static const char str[] = Z_SYM_NAME;
4863 size_t len = strlen (str);
4864 std::string lookup;
4865
4866 for (size_t i = 1; i < len; i++)
4867 {
4868 lookup.assign (str, i);
4869 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4870 EXPECT (Z_SYM_NAME));
4871 }
4872 }
4873
4874 /* In FULL mode, an incomplete symbol doesn't match. */
4875 {
4876 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4877 {});
4878 }
4879
4880 /* A complete symbol with parameters matches any overload, since the
4881 index has no overload info. */
4882 {
4883 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4884 EXPECT ("std::zfunction", "std::zfunction2"));
4885 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4886 EXPECT ("std::zfunction", "std::zfunction2"));
4887 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4888 EXPECT ("std::zfunction", "std::zfunction2"));
4889 }
4890
4891 /* Check that whitespace is ignored appropriately. A symbol with a
4892 template argument list. */
4893 {
4894 static const char expected[] = "ns::foo<int>";
4895 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4896 EXPECT (expected));
4897 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4898 EXPECT (expected));
4899 }
4900
4901 /* Check that whitespace is ignored appropriately. A symbol with a
4902 template argument list that includes a pointer. */
4903 {
4904 static const char expected[] = "ns::foo<char*>";
4905 /* Try both completion and non-completion modes. */
4906 static const bool completion_mode[2] = {false, true};
4907 for (size_t i = 0; i < 2; i++)
4908 {
4909 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4910 completion_mode[i], EXPECT (expected));
4911 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4912 completion_mode[i], EXPECT (expected));
4913
4914 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4915 completion_mode[i], EXPECT (expected));
4916 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4917 completion_mode[i], EXPECT (expected));
4918 }
4919 }
4920
4921 {
4922 /* Check method qualifiers are ignored. */
4923 static const char expected[] = "ns::foo<char*>";
4924 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4925 symbol_name_match_type::FULL, true, EXPECT (expected));
4926 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4927 symbol_name_match_type::FULL, true, EXPECT (expected));
4928 CHECK_MATCH ("foo < char * > ( int ) const",
4929 symbol_name_match_type::WILD, true, EXPECT (expected));
4930 CHECK_MATCH ("foo < char * > ( int ) &&",
4931 symbol_name_match_type::WILD, true, EXPECT (expected));
4932 }
4933
4934 /* Test lookup names that don't match anything. */
4935 {
4936 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4937 {});
4938
4939 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4940 {});
4941 }
4942
4943 /* Some wild matching tests, exercising "(anonymous namespace)",
4944 which should not be confused with a parameter list. */
4945 {
4946 static const char *syms[] = {
4947 "A::B::C",
4948 "B::C",
4949 "C",
4950 "A :: B :: C ( int )",
4951 "B :: C ( int )",
4952 "C ( int )",
4953 };
4954
4955 for (const char *s : syms)
4956 {
4957 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4958 EXPECT ("(anonymous namespace)::A::B::C"));
4959 }
4960 }
4961
4962 {
4963 static const char expected[] = "ns2::tmpl<int>::foo2";
4964 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4965 EXPECT (expected));
4966 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4967 EXPECT (expected));
4968 }
4969
4970 SELF_CHECK (!any_mismatch);
4971
4972 #undef EXPECT
4973 #undef CHECK_MATCH
4974 }
4975
4976 static void
4977 run_test ()
4978 {
4979 test_mapped_index_find_name_component_bounds ();
4980 test_dw2_expand_symtabs_matching_symbol ();
4981 }
4982
4983 }} // namespace selftests::dw2_expand_symtabs_matching
4984
4985 #endif /* GDB_SELF_TEST */
4986
4987 /* If FILE_MATCHER is NULL or if PER_CU has
4988 dwarf2_per_cu_quick_data::MARK set (see
4989 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4990 EXPANSION_NOTIFY on it. */
4991
4992 static void
4993 dw2_expand_symtabs_matching_one
4994 (struct dwarf2_per_cu_data *per_cu,
4995 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4996 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4997 {
4998 if (file_matcher == NULL || per_cu->v.quick->mark)
4999 {
5000 bool symtab_was_null
5001 = (per_cu->v.quick->compunit_symtab == NULL);
5002
5003 dw2_instantiate_symtab (per_cu);
5004
5005 if (expansion_notify != NULL
5006 && symtab_was_null
5007 && per_cu->v.quick->compunit_symtab != NULL)
5008 expansion_notify (per_cu->v.quick->compunit_symtab);
5009 }
5010 }
5011
5012 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5013 matched, to expand corresponding CUs that were marked. IDX is the
5014 index of the symbol name that matched. */
5015
5016 static void
5017 dw2_expand_marked_cus
5018 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5019 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5020 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5021 search_domain kind)
5022 {
5023 offset_type *vec, vec_len, vec_idx;
5024 bool global_seen = false;
5025 mapped_index &index = *dwarf2_per_objfile->index_table;
5026
5027 vec = (offset_type *) (index.constant_pool
5028 + MAYBE_SWAP (index.symbol_table[idx].vec));
5029 vec_len = MAYBE_SWAP (vec[0]);
5030 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5031 {
5032 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5033 /* This value is only valid for index versions >= 7. */
5034 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5035 gdb_index_symbol_kind symbol_kind =
5036 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5037 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5038 /* Only check the symbol attributes if they're present.
5039 Indices prior to version 7 don't record them,
5040 and indices >= 7 may elide them for certain symbols
5041 (gold does this). */
5042 int attrs_valid =
5043 (index.version >= 7
5044 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5045
5046 /* Work around gold/15646. */
5047 if (attrs_valid)
5048 {
5049 if (!is_static && global_seen)
5050 continue;
5051 if (!is_static)
5052 global_seen = true;
5053 }
5054
5055 /* Only check the symbol's kind if it has one. */
5056 if (attrs_valid)
5057 {
5058 switch (kind)
5059 {
5060 case VARIABLES_DOMAIN:
5061 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5062 continue;
5063 break;
5064 case FUNCTIONS_DOMAIN:
5065 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5066 continue;
5067 break;
5068 case TYPES_DOMAIN:
5069 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5070 continue;
5071 break;
5072 default:
5073 break;
5074 }
5075 }
5076
5077 /* Don't crash on bad data. */
5078 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5079 + dwarf2_per_objfile->all_type_units.size ()))
5080 {
5081 complaint (&symfile_complaints,
5082 _(".gdb_index entry has bad CU index"
5083 " [in module %s]"),
5084 objfile_name (dwarf2_per_objfile->objfile));
5085 continue;
5086 }
5087
5088 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5089 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5090 expansion_notify);
5091 }
5092 }
5093
5094 /* If FILE_MATCHER is non-NULL, set all the
5095 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5096 that match FILE_MATCHER. */
5097
5098 static void
5099 dw_expand_symtabs_matching_file_matcher
5100 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5101 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5102 {
5103 if (file_matcher == NULL)
5104 return;
5105
5106 objfile *const objfile = dwarf2_per_objfile->objfile;
5107
5108 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5109 htab_eq_pointer,
5110 NULL, xcalloc, xfree));
5111 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5112 htab_eq_pointer,
5113 NULL, xcalloc, xfree));
5114
5115 /* The rule is CUs specify all the files, including those used by
5116 any TU, so there's no need to scan TUs here. */
5117
5118 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5119 {
5120 QUIT;
5121
5122 per_cu->v.quick->mark = 0;
5123
5124 /* We only need to look at symtabs not already expanded. */
5125 if (per_cu->v.quick->compunit_symtab)
5126 continue;
5127
5128 quick_file_names *file_data = dw2_get_file_names (per_cu);
5129 if (file_data == NULL)
5130 continue;
5131
5132 if (htab_find (visited_not_found.get (), file_data) != NULL)
5133 continue;
5134 else if (htab_find (visited_found.get (), file_data) != NULL)
5135 {
5136 per_cu->v.quick->mark = 1;
5137 continue;
5138 }
5139
5140 for (int j = 0; j < file_data->num_file_names; ++j)
5141 {
5142 const char *this_real_name;
5143
5144 if (file_matcher (file_data->file_names[j], false))
5145 {
5146 per_cu->v.quick->mark = 1;
5147 break;
5148 }
5149
5150 /* Before we invoke realpath, which can get expensive when many
5151 files are involved, do a quick comparison of the basenames. */
5152 if (!basenames_may_differ
5153 && !file_matcher (lbasename (file_data->file_names[j]),
5154 true))
5155 continue;
5156
5157 this_real_name = dw2_get_real_path (objfile, file_data, j);
5158 if (file_matcher (this_real_name, false))
5159 {
5160 per_cu->v.quick->mark = 1;
5161 break;
5162 }
5163 }
5164
5165 void **slot = htab_find_slot (per_cu->v.quick->mark
5166 ? visited_found.get ()
5167 : visited_not_found.get (),
5168 file_data, INSERT);
5169 *slot = file_data;
5170 }
5171 }
5172
5173 static void
5174 dw2_expand_symtabs_matching
5175 (struct objfile *objfile,
5176 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5177 const lookup_name_info &lookup_name,
5178 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5179 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5180 enum search_domain kind)
5181 {
5182 struct dwarf2_per_objfile *dwarf2_per_objfile
5183 = get_dwarf2_per_objfile (objfile);
5184
5185 /* index_table is NULL if OBJF_READNOW. */
5186 if (!dwarf2_per_objfile->index_table)
5187 return;
5188
5189 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5190
5191 mapped_index &index = *dwarf2_per_objfile->index_table;
5192
5193 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5194 symbol_matcher,
5195 kind, [&] (offset_type idx)
5196 {
5197 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5198 expansion_notify, kind);
5199 });
5200 }
5201
5202 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5203 symtab. */
5204
5205 static struct compunit_symtab *
5206 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5207 CORE_ADDR pc)
5208 {
5209 int i;
5210
5211 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5212 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5213 return cust;
5214
5215 if (cust->includes == NULL)
5216 return NULL;
5217
5218 for (i = 0; cust->includes[i]; ++i)
5219 {
5220 struct compunit_symtab *s = cust->includes[i];
5221
5222 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5223 if (s != NULL)
5224 return s;
5225 }
5226
5227 return NULL;
5228 }
5229
5230 static struct compunit_symtab *
5231 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5232 struct bound_minimal_symbol msymbol,
5233 CORE_ADDR pc,
5234 struct obj_section *section,
5235 int warn_if_readin)
5236 {
5237 struct dwarf2_per_cu_data *data;
5238 struct compunit_symtab *result;
5239
5240 if (!objfile->psymtabs_addrmap)
5241 return NULL;
5242
5243 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
5244 pc);
5245 if (!data)
5246 return NULL;
5247
5248 if (warn_if_readin && data->v.quick->compunit_symtab)
5249 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5250 paddress (get_objfile_arch (objfile), pc));
5251
5252 result
5253 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
5254 pc);
5255 gdb_assert (result != NULL);
5256 return result;
5257 }
5258
5259 static void
5260 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5261 void *data, int need_fullname)
5262 {
5263 struct dwarf2_per_objfile *dwarf2_per_objfile
5264 = get_dwarf2_per_objfile (objfile);
5265
5266 if (!dwarf2_per_objfile->filenames_cache)
5267 {
5268 dwarf2_per_objfile->filenames_cache.emplace ();
5269
5270 htab_up visited (htab_create_alloc (10,
5271 htab_hash_pointer, htab_eq_pointer,
5272 NULL, xcalloc, xfree));
5273
5274 /* The rule is CUs specify all the files, including those used
5275 by any TU, so there's no need to scan TUs here. We can
5276 ignore file names coming from already-expanded CUs. */
5277
5278 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5279 {
5280 if (per_cu->v.quick->compunit_symtab)
5281 {
5282 void **slot = htab_find_slot (visited.get (),
5283 per_cu->v.quick->file_names,
5284 INSERT);
5285
5286 *slot = per_cu->v.quick->file_names;
5287 }
5288 }
5289
5290 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5291 {
5292 /* We only need to look at symtabs not already expanded. */
5293 if (per_cu->v.quick->compunit_symtab)
5294 continue;
5295
5296 quick_file_names *file_data = dw2_get_file_names (per_cu);
5297 if (file_data == NULL)
5298 continue;
5299
5300 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5301 if (*slot)
5302 {
5303 /* Already visited. */
5304 continue;
5305 }
5306 *slot = file_data;
5307
5308 for (int j = 0; j < file_data->num_file_names; ++j)
5309 {
5310 const char *filename = file_data->file_names[j];
5311 dwarf2_per_objfile->filenames_cache->seen (filename);
5312 }
5313 }
5314 }
5315
5316 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5317 {
5318 gdb::unique_xmalloc_ptr<char> this_real_name;
5319
5320 if (need_fullname)
5321 this_real_name = gdb_realpath (filename);
5322 (*fun) (filename, this_real_name.get (), data);
5323 });
5324 }
5325
5326 static int
5327 dw2_has_symbols (struct objfile *objfile)
5328 {
5329 return 1;
5330 }
5331
5332 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5333 {
5334 dw2_has_symbols,
5335 dw2_find_last_source_symtab,
5336 dw2_forget_cached_source_info,
5337 dw2_map_symtabs_matching_filename,
5338 dw2_lookup_symbol,
5339 dw2_print_stats,
5340 dw2_dump,
5341 dw2_relocate,
5342 dw2_expand_symtabs_for_function,
5343 dw2_expand_all_symtabs,
5344 dw2_expand_symtabs_with_fullname,
5345 dw2_map_matching_symbols,
5346 dw2_expand_symtabs_matching,
5347 dw2_find_pc_sect_compunit_symtab,
5348 NULL,
5349 dw2_map_symbol_filenames
5350 };
5351
5352 /* DWARF-5 debug_names reader. */
5353
5354 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5355 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5356
5357 /* A helper function that reads the .debug_names section in SECTION
5358 and fills in MAP. FILENAME is the name of the file containing the
5359 section; it is used for error reporting.
5360
5361 Returns true if all went well, false otherwise. */
5362
5363 static bool
5364 read_debug_names_from_section (struct objfile *objfile,
5365 const char *filename,
5366 struct dwarf2_section_info *section,
5367 mapped_debug_names &map)
5368 {
5369 if (dwarf2_section_empty_p (section))
5370 return false;
5371
5372 /* Older elfutils strip versions could keep the section in the main
5373 executable while splitting it for the separate debug info file. */
5374 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5375 return false;
5376
5377 dwarf2_read_section (objfile, section);
5378
5379 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5380
5381 const gdb_byte *addr = section->buffer;
5382
5383 bfd *const abfd = get_section_bfd_owner (section);
5384
5385 unsigned int bytes_read;
5386 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5387 addr += bytes_read;
5388
5389 map.dwarf5_is_dwarf64 = bytes_read != 4;
5390 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5391 if (bytes_read + length != section->size)
5392 {
5393 /* There may be multiple per-CU indices. */
5394 warning (_("Section .debug_names in %s length %s does not match "
5395 "section length %s, ignoring .debug_names."),
5396 filename, plongest (bytes_read + length),
5397 pulongest (section->size));
5398 return false;
5399 }
5400
5401 /* The version number. */
5402 uint16_t version = read_2_bytes (abfd, addr);
5403 addr += 2;
5404 if (version != 5)
5405 {
5406 warning (_("Section .debug_names in %s has unsupported version %d, "
5407 "ignoring .debug_names."),
5408 filename, version);
5409 return false;
5410 }
5411
5412 /* Padding. */
5413 uint16_t padding = read_2_bytes (abfd, addr);
5414 addr += 2;
5415 if (padding != 0)
5416 {
5417 warning (_("Section .debug_names in %s has unsupported padding %d, "
5418 "ignoring .debug_names."),
5419 filename, padding);
5420 return false;
5421 }
5422
5423 /* comp_unit_count - The number of CUs in the CU list. */
5424 map.cu_count = read_4_bytes (abfd, addr);
5425 addr += 4;
5426
5427 /* local_type_unit_count - The number of TUs in the local TU
5428 list. */
5429 map.tu_count = read_4_bytes (abfd, addr);
5430 addr += 4;
5431
5432 /* foreign_type_unit_count - The number of TUs in the foreign TU
5433 list. */
5434 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5435 addr += 4;
5436 if (foreign_tu_count != 0)
5437 {
5438 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5439 "ignoring .debug_names."),
5440 filename, static_cast<unsigned long> (foreign_tu_count));
5441 return false;
5442 }
5443
5444 /* bucket_count - The number of hash buckets in the hash lookup
5445 table. */
5446 map.bucket_count = read_4_bytes (abfd, addr);
5447 addr += 4;
5448
5449 /* name_count - The number of unique names in the index. */
5450 map.name_count = read_4_bytes (abfd, addr);
5451 addr += 4;
5452
5453 /* abbrev_table_size - The size in bytes of the abbreviations
5454 table. */
5455 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5456 addr += 4;
5457
5458 /* augmentation_string_size - The size in bytes of the augmentation
5459 string. This value is rounded up to a multiple of 4. */
5460 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5461 addr += 4;
5462 map.augmentation_is_gdb = ((augmentation_string_size
5463 == sizeof (dwarf5_augmentation))
5464 && memcmp (addr, dwarf5_augmentation,
5465 sizeof (dwarf5_augmentation)) == 0);
5466 augmentation_string_size += (-augmentation_string_size) & 3;
5467 addr += augmentation_string_size;
5468
5469 /* List of CUs */
5470 map.cu_table_reordered = addr;
5471 addr += map.cu_count * map.offset_size;
5472
5473 /* List of Local TUs */
5474 map.tu_table_reordered = addr;
5475 addr += map.tu_count * map.offset_size;
5476
5477 /* Hash Lookup Table */
5478 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5479 addr += map.bucket_count * 4;
5480 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5481 addr += map.name_count * 4;
5482
5483 /* Name Table */
5484 map.name_table_string_offs_reordered = addr;
5485 addr += map.name_count * map.offset_size;
5486 map.name_table_entry_offs_reordered = addr;
5487 addr += map.name_count * map.offset_size;
5488
5489 const gdb_byte *abbrev_table_start = addr;
5490 for (;;)
5491 {
5492 unsigned int bytes_read;
5493 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5494 addr += bytes_read;
5495 if (index_num == 0)
5496 break;
5497
5498 const auto insertpair
5499 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5500 if (!insertpair.second)
5501 {
5502 warning (_("Section .debug_names in %s has duplicate index %s, "
5503 "ignoring .debug_names."),
5504 filename, pulongest (index_num));
5505 return false;
5506 }
5507 mapped_debug_names::index_val &indexval = insertpair.first->second;
5508 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5509 addr += bytes_read;
5510
5511 for (;;)
5512 {
5513 mapped_debug_names::index_val::attr attr;
5514 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5515 addr += bytes_read;
5516 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5517 addr += bytes_read;
5518 if (attr.form == DW_FORM_implicit_const)
5519 {
5520 attr.implicit_const = read_signed_leb128 (abfd, addr,
5521 &bytes_read);
5522 addr += bytes_read;
5523 }
5524 if (attr.dw_idx == 0 && attr.form == 0)
5525 break;
5526 indexval.attr_vec.push_back (std::move (attr));
5527 }
5528 }
5529 if (addr != abbrev_table_start + abbrev_table_size)
5530 {
5531 warning (_("Section .debug_names in %s has abbreviation_table "
5532 "of size %zu vs. written as %u, ignoring .debug_names."),
5533 filename, addr - abbrev_table_start, abbrev_table_size);
5534 return false;
5535 }
5536 map.entry_pool = addr;
5537
5538 return true;
5539 }
5540
5541 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5542 list. */
5543
5544 static void
5545 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5546 const mapped_debug_names &map,
5547 dwarf2_section_info &section,
5548 bool is_dwz)
5549 {
5550 sect_offset sect_off_prev;
5551 for (uint32_t i = 0; i <= map.cu_count; ++i)
5552 {
5553 sect_offset sect_off_next;
5554 if (i < map.cu_count)
5555 {
5556 sect_off_next
5557 = (sect_offset) (extract_unsigned_integer
5558 (map.cu_table_reordered + i * map.offset_size,
5559 map.offset_size,
5560 map.dwarf5_byte_order));
5561 }
5562 else
5563 sect_off_next = (sect_offset) section.size;
5564 if (i >= 1)
5565 {
5566 const ULONGEST length = sect_off_next - sect_off_prev;
5567 dwarf2_per_cu_data *per_cu
5568 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5569 sect_off_prev, length);
5570 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5571 }
5572 sect_off_prev = sect_off_next;
5573 }
5574 }
5575
5576 /* Read the CU list from the mapped index, and use it to create all
5577 the CU objects for this dwarf2_per_objfile. */
5578
5579 static void
5580 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5581 const mapped_debug_names &map,
5582 const mapped_debug_names &dwz_map)
5583 {
5584 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5585 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5586
5587 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5588 dwarf2_per_objfile->info,
5589 false /* is_dwz */);
5590
5591 if (dwz_map.cu_count == 0)
5592 return;
5593
5594 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5595 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5596 true /* is_dwz */);
5597 }
5598
5599 /* Read .debug_names. If everything went ok, initialize the "quick"
5600 elements of all the CUs and return true. Otherwise, return false. */
5601
5602 static bool
5603 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5604 {
5605 mapped_debug_names local_map (dwarf2_per_objfile);
5606 mapped_debug_names dwz_map (dwarf2_per_objfile);
5607 struct objfile *objfile = dwarf2_per_objfile->objfile;
5608
5609 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5610 &dwarf2_per_objfile->debug_names,
5611 local_map))
5612 return false;
5613
5614 /* Don't use the index if it's empty. */
5615 if (local_map.name_count == 0)
5616 return false;
5617
5618 /* If there is a .dwz file, read it so we can get its CU list as
5619 well. */
5620 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5621 if (dwz != NULL)
5622 {
5623 if (!read_debug_names_from_section (objfile,
5624 bfd_get_filename (dwz->dwz_bfd),
5625 &dwz->debug_names, dwz_map))
5626 {
5627 warning (_("could not read '.debug_names' section from %s; skipping"),
5628 bfd_get_filename (dwz->dwz_bfd));
5629 return false;
5630 }
5631 }
5632
5633 create_cus_from_debug_names (dwarf2_per_objfile, local_map, dwz_map);
5634
5635 if (local_map.tu_count != 0)
5636 {
5637 /* We can only handle a single .debug_types when we have an
5638 index. */
5639 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
5640 return false;
5641
5642 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
5643 dwarf2_per_objfile->types, 0);
5644
5645 create_signatured_type_table_from_debug_names
5646 (dwarf2_per_objfile, local_map, section, &dwarf2_per_objfile->abbrev);
5647 }
5648
5649 create_addrmap_from_aranges (dwarf2_per_objfile,
5650 &dwarf2_per_objfile->debug_aranges);
5651
5652 dwarf2_per_objfile->debug_names_table.reset
5653 (new mapped_debug_names (dwarf2_per_objfile));
5654 *dwarf2_per_objfile->debug_names_table = std::move (local_map);
5655 dwarf2_per_objfile->using_index = 1;
5656 dwarf2_per_objfile->quick_file_names_table =
5657 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5658
5659 return true;
5660 }
5661
5662 /* Type used to manage iterating over all CUs looking for a symbol for
5663 .debug_names. */
5664
5665 class dw2_debug_names_iterator
5666 {
5667 public:
5668 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5669 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5670 dw2_debug_names_iterator (const mapped_debug_names &map,
5671 bool want_specific_block,
5672 block_enum block_index, domain_enum domain,
5673 const char *name)
5674 : m_map (map), m_want_specific_block (want_specific_block),
5675 m_block_index (block_index), m_domain (domain),
5676 m_addr (find_vec_in_debug_names (map, name))
5677 {}
5678
5679 dw2_debug_names_iterator (const mapped_debug_names &map,
5680 search_domain search, uint32_t namei)
5681 : m_map (map),
5682 m_search (search),
5683 m_addr (find_vec_in_debug_names (map, namei))
5684 {}
5685
5686 /* Return the next matching CU or NULL if there are no more. */
5687 dwarf2_per_cu_data *next ();
5688
5689 private:
5690 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5691 const char *name);
5692 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5693 uint32_t namei);
5694
5695 /* The internalized form of .debug_names. */
5696 const mapped_debug_names &m_map;
5697
5698 /* If true, only look for symbols that match BLOCK_INDEX. */
5699 const bool m_want_specific_block = false;
5700
5701 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5702 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5703 value. */
5704 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5705
5706 /* The kind of symbol we're looking for. */
5707 const domain_enum m_domain = UNDEF_DOMAIN;
5708 const search_domain m_search = ALL_DOMAIN;
5709
5710 /* The list of CUs from the index entry of the symbol, or NULL if
5711 not found. */
5712 const gdb_byte *m_addr;
5713 };
5714
5715 const char *
5716 mapped_debug_names::namei_to_name (uint32_t namei) const
5717 {
5718 const ULONGEST namei_string_offs
5719 = extract_unsigned_integer ((name_table_string_offs_reordered
5720 + namei * offset_size),
5721 offset_size,
5722 dwarf5_byte_order);
5723 return read_indirect_string_at_offset
5724 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5725 }
5726
5727 /* Find a slot in .debug_names for the object named NAME. If NAME is
5728 found, return pointer to its pool data. If NAME cannot be found,
5729 return NULL. */
5730
5731 const gdb_byte *
5732 dw2_debug_names_iterator::find_vec_in_debug_names
5733 (const mapped_debug_names &map, const char *name)
5734 {
5735 int (*cmp) (const char *, const char *);
5736
5737 if (current_language->la_language == language_cplus
5738 || current_language->la_language == language_fortran
5739 || current_language->la_language == language_d)
5740 {
5741 /* NAME is already canonical. Drop any qualifiers as
5742 .debug_names does not contain any. */
5743
5744 if (strchr (name, '(') != NULL)
5745 {
5746 gdb::unique_xmalloc_ptr<char> without_params
5747 = cp_remove_params (name);
5748
5749 if (without_params != NULL)
5750 {
5751 name = without_params.get();
5752 }
5753 }
5754 }
5755
5756 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5757
5758 const uint32_t full_hash = dwarf5_djb_hash (name);
5759 uint32_t namei
5760 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5761 (map.bucket_table_reordered
5762 + (full_hash % map.bucket_count)), 4,
5763 map.dwarf5_byte_order);
5764 if (namei == 0)
5765 return NULL;
5766 --namei;
5767 if (namei >= map.name_count)
5768 {
5769 complaint (&symfile_complaints,
5770 _("Wrong .debug_names with name index %u but name_count=%u "
5771 "[in module %s]"),
5772 namei, map.name_count,
5773 objfile_name (map.dwarf2_per_objfile->objfile));
5774 return NULL;
5775 }
5776
5777 for (;;)
5778 {
5779 const uint32_t namei_full_hash
5780 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5781 (map.hash_table_reordered + namei), 4,
5782 map.dwarf5_byte_order);
5783 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5784 return NULL;
5785
5786 if (full_hash == namei_full_hash)
5787 {
5788 const char *const namei_string = map.namei_to_name (namei);
5789
5790 #if 0 /* An expensive sanity check. */
5791 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5792 {
5793 complaint (&symfile_complaints,
5794 _("Wrong .debug_names hash for string at index %u "
5795 "[in module %s]"),
5796 namei, objfile_name (dwarf2_per_objfile->objfile));
5797 return NULL;
5798 }
5799 #endif
5800
5801 if (cmp (namei_string, name) == 0)
5802 {
5803 const ULONGEST namei_entry_offs
5804 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5805 + namei * map.offset_size),
5806 map.offset_size, map.dwarf5_byte_order);
5807 return map.entry_pool + namei_entry_offs;
5808 }
5809 }
5810
5811 ++namei;
5812 if (namei >= map.name_count)
5813 return NULL;
5814 }
5815 }
5816
5817 const gdb_byte *
5818 dw2_debug_names_iterator::find_vec_in_debug_names
5819 (const mapped_debug_names &map, uint32_t namei)
5820 {
5821 if (namei >= map.name_count)
5822 {
5823 complaint (&symfile_complaints,
5824 _("Wrong .debug_names with name index %u but name_count=%u "
5825 "[in module %s]"),
5826 namei, map.name_count,
5827 objfile_name (map.dwarf2_per_objfile->objfile));
5828 return NULL;
5829 }
5830
5831 const ULONGEST namei_entry_offs
5832 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5833 + namei * map.offset_size),
5834 map.offset_size, map.dwarf5_byte_order);
5835 return map.entry_pool + namei_entry_offs;
5836 }
5837
5838 /* See dw2_debug_names_iterator. */
5839
5840 dwarf2_per_cu_data *
5841 dw2_debug_names_iterator::next ()
5842 {
5843 if (m_addr == NULL)
5844 return NULL;
5845
5846 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5847 struct objfile *objfile = dwarf2_per_objfile->objfile;
5848 bfd *const abfd = objfile->obfd;
5849
5850 again:
5851
5852 unsigned int bytes_read;
5853 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5854 m_addr += bytes_read;
5855 if (abbrev == 0)
5856 return NULL;
5857
5858 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5859 if (indexval_it == m_map.abbrev_map.cend ())
5860 {
5861 complaint (&symfile_complaints,
5862 _("Wrong .debug_names undefined abbrev code %s "
5863 "[in module %s]"),
5864 pulongest (abbrev), objfile_name (objfile));
5865 return NULL;
5866 }
5867 const mapped_debug_names::index_val &indexval = indexval_it->second;
5868 bool have_is_static = false;
5869 bool is_static;
5870 dwarf2_per_cu_data *per_cu = NULL;
5871 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5872 {
5873 ULONGEST ull;
5874 switch (attr.form)
5875 {
5876 case DW_FORM_implicit_const:
5877 ull = attr.implicit_const;
5878 break;
5879 case DW_FORM_flag_present:
5880 ull = 1;
5881 break;
5882 case DW_FORM_udata:
5883 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5884 m_addr += bytes_read;
5885 break;
5886 default:
5887 complaint (&symfile_complaints,
5888 _("Unsupported .debug_names form %s [in module %s]"),
5889 dwarf_form_name (attr.form),
5890 objfile_name (objfile));
5891 return NULL;
5892 }
5893 switch (attr.dw_idx)
5894 {
5895 case DW_IDX_compile_unit:
5896 /* Don't crash on bad data. */
5897 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5898 {
5899 complaint (&symfile_complaints,
5900 _(".debug_names entry has bad CU index %s"
5901 " [in module %s]"),
5902 pulongest (ull),
5903 objfile_name (dwarf2_per_objfile->objfile));
5904 continue;
5905 }
5906 per_cu = dwarf2_per_objfile->get_cutu (ull);
5907 break;
5908 case DW_IDX_type_unit:
5909 /* Don't crash on bad data. */
5910 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5911 {
5912 complaint (&symfile_complaints,
5913 _(".debug_names entry has bad TU index %s"
5914 " [in module %s]"),
5915 pulongest (ull),
5916 objfile_name (dwarf2_per_objfile->objfile));
5917 continue;
5918 }
5919 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5920 break;
5921 case DW_IDX_GNU_internal:
5922 if (!m_map.augmentation_is_gdb)
5923 break;
5924 have_is_static = true;
5925 is_static = true;
5926 break;
5927 case DW_IDX_GNU_external:
5928 if (!m_map.augmentation_is_gdb)
5929 break;
5930 have_is_static = true;
5931 is_static = false;
5932 break;
5933 }
5934 }
5935
5936 /* Skip if already read in. */
5937 if (per_cu->v.quick->compunit_symtab)
5938 goto again;
5939
5940 /* Check static vs global. */
5941 if (have_is_static)
5942 {
5943 const bool want_static = m_block_index != GLOBAL_BLOCK;
5944 if (m_want_specific_block && want_static != is_static)
5945 goto again;
5946 }
5947
5948 /* Match dw2_symtab_iter_next, symbol_kind
5949 and debug_names::psymbol_tag. */
5950 switch (m_domain)
5951 {
5952 case VAR_DOMAIN:
5953 switch (indexval.dwarf_tag)
5954 {
5955 case DW_TAG_variable:
5956 case DW_TAG_subprogram:
5957 /* Some types are also in VAR_DOMAIN. */
5958 case DW_TAG_typedef:
5959 case DW_TAG_structure_type:
5960 break;
5961 default:
5962 goto again;
5963 }
5964 break;
5965 case STRUCT_DOMAIN:
5966 switch (indexval.dwarf_tag)
5967 {
5968 case DW_TAG_typedef:
5969 case DW_TAG_structure_type:
5970 break;
5971 default:
5972 goto again;
5973 }
5974 break;
5975 case LABEL_DOMAIN:
5976 switch (indexval.dwarf_tag)
5977 {
5978 case 0:
5979 case DW_TAG_variable:
5980 break;
5981 default:
5982 goto again;
5983 }
5984 break;
5985 default:
5986 break;
5987 }
5988
5989 /* Match dw2_expand_symtabs_matching, symbol_kind and
5990 debug_names::psymbol_tag. */
5991 switch (m_search)
5992 {
5993 case VARIABLES_DOMAIN:
5994 switch (indexval.dwarf_tag)
5995 {
5996 case DW_TAG_variable:
5997 break;
5998 default:
5999 goto again;
6000 }
6001 break;
6002 case FUNCTIONS_DOMAIN:
6003 switch (indexval.dwarf_tag)
6004 {
6005 case DW_TAG_subprogram:
6006 break;
6007 default:
6008 goto again;
6009 }
6010 break;
6011 case TYPES_DOMAIN:
6012 switch (indexval.dwarf_tag)
6013 {
6014 case DW_TAG_typedef:
6015 case DW_TAG_structure_type:
6016 break;
6017 default:
6018 goto again;
6019 }
6020 break;
6021 default:
6022 break;
6023 }
6024
6025 return per_cu;
6026 }
6027
6028 static struct compunit_symtab *
6029 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6030 const char *name, domain_enum domain)
6031 {
6032 const block_enum block_index = static_cast<block_enum> (block_index_int);
6033 struct dwarf2_per_objfile *dwarf2_per_objfile
6034 = get_dwarf2_per_objfile (objfile);
6035
6036 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6037 if (!mapp)
6038 {
6039 /* index is NULL if OBJF_READNOW. */
6040 return NULL;
6041 }
6042 const auto &map = *mapp;
6043
6044 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6045 block_index, domain, name);
6046
6047 struct compunit_symtab *stab_best = NULL;
6048 struct dwarf2_per_cu_data *per_cu;
6049 while ((per_cu = iter.next ()) != NULL)
6050 {
6051 struct symbol *sym, *with_opaque = NULL;
6052 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
6053 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6054 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6055
6056 sym = block_find_symbol (block, name, domain,
6057 block_find_non_opaque_type_preferred,
6058 &with_opaque);
6059
6060 /* Some caution must be observed with overloaded functions and
6061 methods, since the index will not contain any overload
6062 information (but NAME might contain it). */
6063
6064 if (sym != NULL
6065 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6066 return stab;
6067 if (with_opaque != NULL
6068 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6069 stab_best = stab;
6070
6071 /* Keep looking through other CUs. */
6072 }
6073
6074 return stab_best;
6075 }
6076
6077 /* This dumps minimal information about .debug_names. It is called
6078 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6079 uses this to verify that .debug_names has been loaded. */
6080
6081 static void
6082 dw2_debug_names_dump (struct objfile *objfile)
6083 {
6084 struct dwarf2_per_objfile *dwarf2_per_objfile
6085 = get_dwarf2_per_objfile (objfile);
6086
6087 gdb_assert (dwarf2_per_objfile->using_index);
6088 printf_filtered (".debug_names:");
6089 if (dwarf2_per_objfile->debug_names_table)
6090 printf_filtered (" exists\n");
6091 else
6092 printf_filtered (" faked for \"readnow\"\n");
6093 printf_filtered ("\n");
6094 }
6095
6096 static void
6097 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6098 const char *func_name)
6099 {
6100 struct dwarf2_per_objfile *dwarf2_per_objfile
6101 = get_dwarf2_per_objfile (objfile);
6102
6103 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6104 if (dwarf2_per_objfile->debug_names_table)
6105 {
6106 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6107
6108 /* Note: It doesn't matter what we pass for block_index here. */
6109 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6110 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6111
6112 struct dwarf2_per_cu_data *per_cu;
6113 while ((per_cu = iter.next ()) != NULL)
6114 dw2_instantiate_symtab (per_cu);
6115 }
6116 }
6117
6118 static void
6119 dw2_debug_names_expand_symtabs_matching
6120 (struct objfile *objfile,
6121 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6122 const lookup_name_info &lookup_name,
6123 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6124 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6125 enum search_domain kind)
6126 {
6127 struct dwarf2_per_objfile *dwarf2_per_objfile
6128 = get_dwarf2_per_objfile (objfile);
6129
6130 /* debug_names_table is NULL if OBJF_READNOW. */
6131 if (!dwarf2_per_objfile->debug_names_table)
6132 return;
6133
6134 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6135
6136 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6137
6138 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6139 symbol_matcher,
6140 kind, [&] (offset_type namei)
6141 {
6142 /* The name was matched, now expand corresponding CUs that were
6143 marked. */
6144 dw2_debug_names_iterator iter (map, kind, namei);
6145
6146 struct dwarf2_per_cu_data *per_cu;
6147 while ((per_cu = iter.next ()) != NULL)
6148 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6149 expansion_notify);
6150 });
6151 }
6152
6153 const struct quick_symbol_functions dwarf2_debug_names_functions =
6154 {
6155 dw2_has_symbols,
6156 dw2_find_last_source_symtab,
6157 dw2_forget_cached_source_info,
6158 dw2_map_symtabs_matching_filename,
6159 dw2_debug_names_lookup_symbol,
6160 dw2_print_stats,
6161 dw2_debug_names_dump,
6162 dw2_relocate,
6163 dw2_debug_names_expand_symtabs_for_function,
6164 dw2_expand_all_symtabs,
6165 dw2_expand_symtabs_with_fullname,
6166 dw2_map_matching_symbols,
6167 dw2_debug_names_expand_symtabs_matching,
6168 dw2_find_pc_sect_compunit_symtab,
6169 NULL,
6170 dw2_map_symbol_filenames
6171 };
6172
6173 /* See symfile.h. */
6174
6175 bool
6176 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6177 {
6178 struct dwarf2_per_objfile *dwarf2_per_objfile
6179 = get_dwarf2_per_objfile (objfile);
6180
6181 /* If we're about to read full symbols, don't bother with the
6182 indices. In this case we also don't care if some other debug
6183 format is making psymtabs, because they are all about to be
6184 expanded anyway. */
6185 if ((objfile->flags & OBJF_READNOW))
6186 {
6187 dwarf2_per_objfile->using_index = 1;
6188 create_all_comp_units (dwarf2_per_objfile);
6189 create_all_type_units (dwarf2_per_objfile);
6190 dwarf2_per_objfile->quick_file_names_table
6191 = create_quick_file_names_table
6192 (dwarf2_per_objfile->all_comp_units.size ());
6193
6194 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6195 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6196 {
6197 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6198
6199 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6200 struct dwarf2_per_cu_quick_data);
6201 }
6202
6203 /* Return 1 so that gdb sees the "quick" functions. However,
6204 these functions will be no-ops because we will have expanded
6205 all symtabs. */
6206 *index_kind = dw_index_kind::GDB_INDEX;
6207 return true;
6208 }
6209
6210 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6211 {
6212 *index_kind = dw_index_kind::DEBUG_NAMES;
6213 return true;
6214 }
6215
6216 if (dwarf2_read_index (dwarf2_per_objfile))
6217 {
6218 *index_kind = dw_index_kind::GDB_INDEX;
6219 return true;
6220 }
6221
6222 return false;
6223 }
6224
6225 \f
6226
6227 /* Build a partial symbol table. */
6228
6229 void
6230 dwarf2_build_psymtabs (struct objfile *objfile)
6231 {
6232 struct dwarf2_per_objfile *dwarf2_per_objfile
6233 = get_dwarf2_per_objfile (objfile);
6234
6235 if (objfile->global_psymbols.capacity () == 0
6236 && objfile->static_psymbols.capacity () == 0)
6237 init_psymbol_list (objfile, 1024);
6238
6239 TRY
6240 {
6241 /* This isn't really ideal: all the data we allocate on the
6242 objfile's obstack is still uselessly kept around. However,
6243 freeing it seems unsafe. */
6244 psymtab_discarder psymtabs (objfile);
6245 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6246 psymtabs.keep ();
6247 }
6248 CATCH (except, RETURN_MASK_ERROR)
6249 {
6250 exception_print (gdb_stderr, except);
6251 }
6252 END_CATCH
6253 }
6254
6255 /* Return the total length of the CU described by HEADER. */
6256
6257 static unsigned int
6258 get_cu_length (const struct comp_unit_head *header)
6259 {
6260 return header->initial_length_size + header->length;
6261 }
6262
6263 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6264
6265 static inline bool
6266 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6267 {
6268 sect_offset bottom = cu_header->sect_off;
6269 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6270
6271 return sect_off >= bottom && sect_off < top;
6272 }
6273
6274 /* Find the base address of the compilation unit for range lists and
6275 location lists. It will normally be specified by DW_AT_low_pc.
6276 In DWARF-3 draft 4, the base address could be overridden by
6277 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6278 compilation units with discontinuous ranges. */
6279
6280 static void
6281 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6282 {
6283 struct attribute *attr;
6284
6285 cu->base_known = 0;
6286 cu->base_address = 0;
6287
6288 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6289 if (attr)
6290 {
6291 cu->base_address = attr_value_as_address (attr);
6292 cu->base_known = 1;
6293 }
6294 else
6295 {
6296 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6297 if (attr)
6298 {
6299 cu->base_address = attr_value_as_address (attr);
6300 cu->base_known = 1;
6301 }
6302 }
6303 }
6304
6305 /* Read in the comp unit header information from the debug_info at info_ptr.
6306 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6307 NOTE: This leaves members offset, first_die_offset to be filled in
6308 by the caller. */
6309
6310 static const gdb_byte *
6311 read_comp_unit_head (struct comp_unit_head *cu_header,
6312 const gdb_byte *info_ptr,
6313 struct dwarf2_section_info *section,
6314 rcuh_kind section_kind)
6315 {
6316 int signed_addr;
6317 unsigned int bytes_read;
6318 const char *filename = get_section_file_name (section);
6319 bfd *abfd = get_section_bfd_owner (section);
6320
6321 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6322 cu_header->initial_length_size = bytes_read;
6323 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6324 info_ptr += bytes_read;
6325 cu_header->version = read_2_bytes (abfd, info_ptr);
6326 info_ptr += 2;
6327 if (cu_header->version < 5)
6328 switch (section_kind)
6329 {
6330 case rcuh_kind::COMPILE:
6331 cu_header->unit_type = DW_UT_compile;
6332 break;
6333 case rcuh_kind::TYPE:
6334 cu_header->unit_type = DW_UT_type;
6335 break;
6336 default:
6337 internal_error (__FILE__, __LINE__,
6338 _("read_comp_unit_head: invalid section_kind"));
6339 }
6340 else
6341 {
6342 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6343 (read_1_byte (abfd, info_ptr));
6344 info_ptr += 1;
6345 switch (cu_header->unit_type)
6346 {
6347 case DW_UT_compile:
6348 if (section_kind != rcuh_kind::COMPILE)
6349 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6350 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6351 filename);
6352 break;
6353 case DW_UT_type:
6354 section_kind = rcuh_kind::TYPE;
6355 break;
6356 default:
6357 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6358 "(is %d, should be %d or %d) [in module %s]"),
6359 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6360 }
6361
6362 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6363 info_ptr += 1;
6364 }
6365 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6366 cu_header,
6367 &bytes_read);
6368 info_ptr += bytes_read;
6369 if (cu_header->version < 5)
6370 {
6371 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6372 info_ptr += 1;
6373 }
6374 signed_addr = bfd_get_sign_extend_vma (abfd);
6375 if (signed_addr < 0)
6376 internal_error (__FILE__, __LINE__,
6377 _("read_comp_unit_head: dwarf from non elf file"));
6378 cu_header->signed_addr_p = signed_addr;
6379
6380 if (section_kind == rcuh_kind::TYPE)
6381 {
6382 LONGEST type_offset;
6383
6384 cu_header->signature = read_8_bytes (abfd, info_ptr);
6385 info_ptr += 8;
6386
6387 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6388 info_ptr += bytes_read;
6389 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6390 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6391 error (_("Dwarf Error: Too big type_offset in compilation unit "
6392 "header (is %s) [in module %s]"), plongest (type_offset),
6393 filename);
6394 }
6395
6396 return info_ptr;
6397 }
6398
6399 /* Helper function that returns the proper abbrev section for
6400 THIS_CU. */
6401
6402 static struct dwarf2_section_info *
6403 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6404 {
6405 struct dwarf2_section_info *abbrev;
6406 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6407
6408 if (this_cu->is_dwz)
6409 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6410 else
6411 abbrev = &dwarf2_per_objfile->abbrev;
6412
6413 return abbrev;
6414 }
6415
6416 /* Subroutine of read_and_check_comp_unit_head and
6417 read_and_check_type_unit_head to simplify them.
6418 Perform various error checking on the header. */
6419
6420 static void
6421 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6422 struct comp_unit_head *header,
6423 struct dwarf2_section_info *section,
6424 struct dwarf2_section_info *abbrev_section)
6425 {
6426 const char *filename = get_section_file_name (section);
6427
6428 if (header->version < 2 || header->version > 5)
6429 error (_("Dwarf Error: wrong version in compilation unit header "
6430 "(is %d, should be 2, 3, 4 or 5) [in module %s]"), header->version,
6431 filename);
6432
6433 if (to_underlying (header->abbrev_sect_off)
6434 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6435 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6436 "(offset %s + 6) [in module %s]"),
6437 sect_offset_str (header->abbrev_sect_off),
6438 sect_offset_str (header->sect_off),
6439 filename);
6440
6441 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6442 avoid potential 32-bit overflow. */
6443 if (((ULONGEST) header->sect_off + get_cu_length (header))
6444 > section->size)
6445 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6446 "(offset %s + 0) [in module %s]"),
6447 header->length, sect_offset_str (header->sect_off),
6448 filename);
6449 }
6450
6451 /* Read in a CU/TU header and perform some basic error checking.
6452 The contents of the header are stored in HEADER.
6453 The result is a pointer to the start of the first DIE. */
6454
6455 static const gdb_byte *
6456 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6457 struct comp_unit_head *header,
6458 struct dwarf2_section_info *section,
6459 struct dwarf2_section_info *abbrev_section,
6460 const gdb_byte *info_ptr,
6461 rcuh_kind section_kind)
6462 {
6463 const gdb_byte *beg_of_comp_unit = info_ptr;
6464
6465 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6466
6467 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6468
6469 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6470
6471 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6472 abbrev_section);
6473
6474 return info_ptr;
6475 }
6476
6477 /* Fetch the abbreviation table offset from a comp or type unit header. */
6478
6479 static sect_offset
6480 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6481 struct dwarf2_section_info *section,
6482 sect_offset sect_off)
6483 {
6484 bfd *abfd = get_section_bfd_owner (section);
6485 const gdb_byte *info_ptr;
6486 unsigned int initial_length_size, offset_size;
6487 uint16_t version;
6488
6489 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6490 info_ptr = section->buffer + to_underlying (sect_off);
6491 read_initial_length (abfd, info_ptr, &initial_length_size);
6492 offset_size = initial_length_size == 4 ? 4 : 8;
6493 info_ptr += initial_length_size;
6494
6495 version = read_2_bytes (abfd, info_ptr);
6496 info_ptr += 2;
6497 if (version >= 5)
6498 {
6499 /* Skip unit type and address size. */
6500 info_ptr += 2;
6501 }
6502
6503 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6504 }
6505
6506 /* Allocate a new partial symtab for file named NAME and mark this new
6507 partial symtab as being an include of PST. */
6508
6509 static void
6510 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6511 struct objfile *objfile)
6512 {
6513 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6514
6515 if (!IS_ABSOLUTE_PATH (subpst->filename))
6516 {
6517 /* It shares objfile->objfile_obstack. */
6518 subpst->dirname = pst->dirname;
6519 }
6520
6521 subpst->textlow = 0;
6522 subpst->texthigh = 0;
6523
6524 subpst->dependencies
6525 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
6526 subpst->dependencies[0] = pst;
6527 subpst->number_of_dependencies = 1;
6528
6529 subpst->globals_offset = 0;
6530 subpst->n_global_syms = 0;
6531 subpst->statics_offset = 0;
6532 subpst->n_static_syms = 0;
6533 subpst->compunit_symtab = NULL;
6534 subpst->read_symtab = pst->read_symtab;
6535 subpst->readin = 0;
6536
6537 /* No private part is necessary for include psymtabs. This property
6538 can be used to differentiate between such include psymtabs and
6539 the regular ones. */
6540 subpst->read_symtab_private = NULL;
6541 }
6542
6543 /* Read the Line Number Program data and extract the list of files
6544 included by the source file represented by PST. Build an include
6545 partial symtab for each of these included files. */
6546
6547 static void
6548 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6549 struct die_info *die,
6550 struct partial_symtab *pst)
6551 {
6552 line_header_up lh;
6553 struct attribute *attr;
6554
6555 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6556 if (attr)
6557 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6558 if (lh == NULL)
6559 return; /* No linetable, so no includes. */
6560
6561 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
6562 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst, pst->textlow, 1);
6563 }
6564
6565 static hashval_t
6566 hash_signatured_type (const void *item)
6567 {
6568 const struct signatured_type *sig_type
6569 = (const struct signatured_type *) item;
6570
6571 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6572 return sig_type->signature;
6573 }
6574
6575 static int
6576 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6577 {
6578 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6579 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6580
6581 return lhs->signature == rhs->signature;
6582 }
6583
6584 /* Allocate a hash table for signatured types. */
6585
6586 static htab_t
6587 allocate_signatured_type_table (struct objfile *objfile)
6588 {
6589 return htab_create_alloc_ex (41,
6590 hash_signatured_type,
6591 eq_signatured_type,
6592 NULL,
6593 &objfile->objfile_obstack,
6594 hashtab_obstack_allocate,
6595 dummy_obstack_deallocate);
6596 }
6597
6598 /* A helper function to add a signatured type CU to a table. */
6599
6600 static int
6601 add_signatured_type_cu_to_table (void **slot, void *datum)
6602 {
6603 struct signatured_type *sigt = (struct signatured_type *) *slot;
6604 std::vector<signatured_type *> *all_type_units
6605 = (std::vector<signatured_type *> *) datum;
6606
6607 all_type_units->push_back (sigt);
6608
6609 return 1;
6610 }
6611
6612 /* A helper for create_debug_types_hash_table. Read types from SECTION
6613 and fill them into TYPES_HTAB. It will process only type units,
6614 therefore DW_UT_type. */
6615
6616 static void
6617 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6618 struct dwo_file *dwo_file,
6619 dwarf2_section_info *section, htab_t &types_htab,
6620 rcuh_kind section_kind)
6621 {
6622 struct objfile *objfile = dwarf2_per_objfile->objfile;
6623 struct dwarf2_section_info *abbrev_section;
6624 bfd *abfd;
6625 const gdb_byte *info_ptr, *end_ptr;
6626
6627 abbrev_section = (dwo_file != NULL
6628 ? &dwo_file->sections.abbrev
6629 : &dwarf2_per_objfile->abbrev);
6630
6631 if (dwarf_read_debug)
6632 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6633 get_section_name (section),
6634 get_section_file_name (abbrev_section));
6635
6636 dwarf2_read_section (objfile, section);
6637 info_ptr = section->buffer;
6638
6639 if (info_ptr == NULL)
6640 return;
6641
6642 /* We can't set abfd until now because the section may be empty or
6643 not present, in which case the bfd is unknown. */
6644 abfd = get_section_bfd_owner (section);
6645
6646 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6647 because we don't need to read any dies: the signature is in the
6648 header. */
6649
6650 end_ptr = info_ptr + section->size;
6651 while (info_ptr < end_ptr)
6652 {
6653 struct signatured_type *sig_type;
6654 struct dwo_unit *dwo_tu;
6655 void **slot;
6656 const gdb_byte *ptr = info_ptr;
6657 struct comp_unit_head header;
6658 unsigned int length;
6659
6660 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6661
6662 /* Initialize it due to a false compiler warning. */
6663 header.signature = -1;
6664 header.type_cu_offset_in_tu = (cu_offset) -1;
6665
6666 /* We need to read the type's signature in order to build the hash
6667 table, but we don't need anything else just yet. */
6668
6669 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6670 abbrev_section, ptr, section_kind);
6671
6672 length = get_cu_length (&header);
6673
6674 /* Skip dummy type units. */
6675 if (ptr >= info_ptr + length
6676 || peek_abbrev_code (abfd, ptr) == 0
6677 || header.unit_type != DW_UT_type)
6678 {
6679 info_ptr += length;
6680 continue;
6681 }
6682
6683 if (types_htab == NULL)
6684 {
6685 if (dwo_file)
6686 types_htab = allocate_dwo_unit_table (objfile);
6687 else
6688 types_htab = allocate_signatured_type_table (objfile);
6689 }
6690
6691 if (dwo_file)
6692 {
6693 sig_type = NULL;
6694 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6695 struct dwo_unit);
6696 dwo_tu->dwo_file = dwo_file;
6697 dwo_tu->signature = header.signature;
6698 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6699 dwo_tu->section = section;
6700 dwo_tu->sect_off = sect_off;
6701 dwo_tu->length = length;
6702 }
6703 else
6704 {
6705 /* N.B.: type_offset is not usable if this type uses a DWO file.
6706 The real type_offset is in the DWO file. */
6707 dwo_tu = NULL;
6708 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6709 struct signatured_type);
6710 sig_type->signature = header.signature;
6711 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6712 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6713 sig_type->per_cu.is_debug_types = 1;
6714 sig_type->per_cu.section = section;
6715 sig_type->per_cu.sect_off = sect_off;
6716 sig_type->per_cu.length = length;
6717 }
6718
6719 slot = htab_find_slot (types_htab,
6720 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6721 INSERT);
6722 gdb_assert (slot != NULL);
6723 if (*slot != NULL)
6724 {
6725 sect_offset dup_sect_off;
6726
6727 if (dwo_file)
6728 {
6729 const struct dwo_unit *dup_tu
6730 = (const struct dwo_unit *) *slot;
6731
6732 dup_sect_off = dup_tu->sect_off;
6733 }
6734 else
6735 {
6736 const struct signatured_type *dup_tu
6737 = (const struct signatured_type *) *slot;
6738
6739 dup_sect_off = dup_tu->per_cu.sect_off;
6740 }
6741
6742 complaint (&symfile_complaints,
6743 _("debug type entry at offset %s is duplicate to"
6744 " the entry at offset %s, signature %s"),
6745 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6746 hex_string (header.signature));
6747 }
6748 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6749
6750 if (dwarf_read_debug > 1)
6751 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6752 sect_offset_str (sect_off),
6753 hex_string (header.signature));
6754
6755 info_ptr += length;
6756 }
6757 }
6758
6759 /* Create the hash table of all entries in the .debug_types
6760 (or .debug_types.dwo) section(s).
6761 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6762 otherwise it is NULL.
6763
6764 The result is a pointer to the hash table or NULL if there are no types.
6765
6766 Note: This function processes DWO files only, not DWP files. */
6767
6768 static void
6769 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6770 struct dwo_file *dwo_file,
6771 VEC (dwarf2_section_info_def) *types,
6772 htab_t &types_htab)
6773 {
6774 int ix;
6775 struct dwarf2_section_info *section;
6776
6777 if (VEC_empty (dwarf2_section_info_def, types))
6778 return;
6779
6780 for (ix = 0;
6781 VEC_iterate (dwarf2_section_info_def, types, ix, section);
6782 ++ix)
6783 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
6784 types_htab, rcuh_kind::TYPE);
6785 }
6786
6787 /* Create the hash table of all entries in the .debug_types section,
6788 and initialize all_type_units.
6789 The result is zero if there is an error (e.g. missing .debug_types section),
6790 otherwise non-zero. */
6791
6792 static int
6793 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6794 {
6795 htab_t types_htab = NULL;
6796
6797 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6798 &dwarf2_per_objfile->info, types_htab,
6799 rcuh_kind::COMPILE);
6800 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6801 dwarf2_per_objfile->types, types_htab);
6802 if (types_htab == NULL)
6803 {
6804 dwarf2_per_objfile->signatured_types = NULL;
6805 return 0;
6806 }
6807
6808 dwarf2_per_objfile->signatured_types = types_htab;
6809
6810 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6811 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6812
6813 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6814 &dwarf2_per_objfile->all_type_units);
6815
6816 return 1;
6817 }
6818
6819 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6820 If SLOT is non-NULL, it is the entry to use in the hash table.
6821 Otherwise we find one. */
6822
6823 static struct signatured_type *
6824 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6825 void **slot)
6826 {
6827 struct objfile *objfile = dwarf2_per_objfile->objfile;
6828
6829 if (dwarf2_per_objfile->all_type_units.size ()
6830 == dwarf2_per_objfile->all_type_units.capacity ())
6831 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6832
6833 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6834 struct signatured_type);
6835
6836 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6837 sig_type->signature = sig;
6838 sig_type->per_cu.is_debug_types = 1;
6839 if (dwarf2_per_objfile->using_index)
6840 {
6841 sig_type->per_cu.v.quick =
6842 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6843 struct dwarf2_per_cu_quick_data);
6844 }
6845
6846 if (slot == NULL)
6847 {
6848 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6849 sig_type, INSERT);
6850 }
6851 gdb_assert (*slot == NULL);
6852 *slot = sig_type;
6853 /* The rest of sig_type must be filled in by the caller. */
6854 return sig_type;
6855 }
6856
6857 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6858 Fill in SIG_ENTRY with DWO_ENTRY. */
6859
6860 static void
6861 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6862 struct signatured_type *sig_entry,
6863 struct dwo_unit *dwo_entry)
6864 {
6865 /* Make sure we're not clobbering something we don't expect to. */
6866 gdb_assert (! sig_entry->per_cu.queued);
6867 gdb_assert (sig_entry->per_cu.cu == NULL);
6868 if (dwarf2_per_objfile->using_index)
6869 {
6870 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6871 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6872 }
6873 else
6874 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6875 gdb_assert (sig_entry->signature == dwo_entry->signature);
6876 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6877 gdb_assert (sig_entry->type_unit_group == NULL);
6878 gdb_assert (sig_entry->dwo_unit == NULL);
6879
6880 sig_entry->per_cu.section = dwo_entry->section;
6881 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6882 sig_entry->per_cu.length = dwo_entry->length;
6883 sig_entry->per_cu.reading_dwo_directly = 1;
6884 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6885 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6886 sig_entry->dwo_unit = dwo_entry;
6887 }
6888
6889 /* Subroutine of lookup_signatured_type.
6890 If we haven't read the TU yet, create the signatured_type data structure
6891 for a TU to be read in directly from a DWO file, bypassing the stub.
6892 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6893 using .gdb_index, then when reading a CU we want to stay in the DWO file
6894 containing that CU. Otherwise we could end up reading several other DWO
6895 files (due to comdat folding) to process the transitive closure of all the
6896 mentioned TUs, and that can be slow. The current DWO file will have every
6897 type signature that it needs.
6898 We only do this for .gdb_index because in the psymtab case we already have
6899 to read all the DWOs to build the type unit groups. */
6900
6901 static struct signatured_type *
6902 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6903 {
6904 struct dwarf2_per_objfile *dwarf2_per_objfile
6905 = cu->per_cu->dwarf2_per_objfile;
6906 struct objfile *objfile = dwarf2_per_objfile->objfile;
6907 struct dwo_file *dwo_file;
6908 struct dwo_unit find_dwo_entry, *dwo_entry;
6909 struct signatured_type find_sig_entry, *sig_entry;
6910 void **slot;
6911
6912 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6913
6914 /* If TU skeletons have been removed then we may not have read in any
6915 TUs yet. */
6916 if (dwarf2_per_objfile->signatured_types == NULL)
6917 {
6918 dwarf2_per_objfile->signatured_types
6919 = allocate_signatured_type_table (objfile);
6920 }
6921
6922 /* We only ever need to read in one copy of a signatured type.
6923 Use the global signatured_types array to do our own comdat-folding
6924 of types. If this is the first time we're reading this TU, and
6925 the TU has an entry in .gdb_index, replace the recorded data from
6926 .gdb_index with this TU. */
6927
6928 find_sig_entry.signature = sig;
6929 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6930 &find_sig_entry, INSERT);
6931 sig_entry = (struct signatured_type *) *slot;
6932
6933 /* We can get here with the TU already read, *or* in the process of being
6934 read. Don't reassign the global entry to point to this DWO if that's
6935 the case. Also note that if the TU is already being read, it may not
6936 have come from a DWO, the program may be a mix of Fission-compiled
6937 code and non-Fission-compiled code. */
6938
6939 /* Have we already tried to read this TU?
6940 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6941 needn't exist in the global table yet). */
6942 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
6943 return sig_entry;
6944
6945 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6946 dwo_unit of the TU itself. */
6947 dwo_file = cu->dwo_unit->dwo_file;
6948
6949 /* Ok, this is the first time we're reading this TU. */
6950 if (dwo_file->tus == NULL)
6951 return NULL;
6952 find_dwo_entry.signature = sig;
6953 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
6954 if (dwo_entry == NULL)
6955 return NULL;
6956
6957 /* If the global table doesn't have an entry for this TU, add one. */
6958 if (sig_entry == NULL)
6959 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6960
6961 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6962 sig_entry->per_cu.tu_read = 1;
6963 return sig_entry;
6964 }
6965
6966 /* Subroutine of lookup_signatured_type.
6967 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6968 then try the DWP file. If the TU stub (skeleton) has been removed then
6969 it won't be in .gdb_index. */
6970
6971 static struct signatured_type *
6972 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6973 {
6974 struct dwarf2_per_objfile *dwarf2_per_objfile
6975 = cu->per_cu->dwarf2_per_objfile;
6976 struct objfile *objfile = dwarf2_per_objfile->objfile;
6977 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
6978 struct dwo_unit *dwo_entry;
6979 struct signatured_type find_sig_entry, *sig_entry;
6980 void **slot;
6981
6982 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6983 gdb_assert (dwp_file != NULL);
6984
6985 /* If TU skeletons have been removed then we may not have read in any
6986 TUs yet. */
6987 if (dwarf2_per_objfile->signatured_types == NULL)
6988 {
6989 dwarf2_per_objfile->signatured_types
6990 = allocate_signatured_type_table (objfile);
6991 }
6992
6993 find_sig_entry.signature = sig;
6994 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6995 &find_sig_entry, INSERT);
6996 sig_entry = (struct signatured_type *) *slot;
6997
6998 /* Have we already tried to read this TU?
6999 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7000 needn't exist in the global table yet). */
7001 if (sig_entry != NULL)
7002 return sig_entry;
7003
7004 if (dwp_file->tus == NULL)
7005 return NULL;
7006 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7007 sig, 1 /* is_debug_types */);
7008 if (dwo_entry == NULL)
7009 return NULL;
7010
7011 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7012 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7013
7014 return sig_entry;
7015 }
7016
7017 /* Lookup a signature based type for DW_FORM_ref_sig8.
7018 Returns NULL if signature SIG is not present in the table.
7019 It is up to the caller to complain about this. */
7020
7021 static struct signatured_type *
7022 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7023 {
7024 struct dwarf2_per_objfile *dwarf2_per_objfile
7025 = cu->per_cu->dwarf2_per_objfile;
7026
7027 if (cu->dwo_unit
7028 && dwarf2_per_objfile->using_index)
7029 {
7030 /* We're in a DWO/DWP file, and we're using .gdb_index.
7031 These cases require special processing. */
7032 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7033 return lookup_dwo_signatured_type (cu, sig);
7034 else
7035 return lookup_dwp_signatured_type (cu, sig);
7036 }
7037 else
7038 {
7039 struct signatured_type find_entry, *entry;
7040
7041 if (dwarf2_per_objfile->signatured_types == NULL)
7042 return NULL;
7043 find_entry.signature = sig;
7044 entry = ((struct signatured_type *)
7045 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7046 return entry;
7047 }
7048 }
7049 \f
7050 /* Low level DIE reading support. */
7051
7052 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7053
7054 static void
7055 init_cu_die_reader (struct die_reader_specs *reader,
7056 struct dwarf2_cu *cu,
7057 struct dwarf2_section_info *section,
7058 struct dwo_file *dwo_file,
7059 struct abbrev_table *abbrev_table)
7060 {
7061 gdb_assert (section->readin && section->buffer != NULL);
7062 reader->abfd = get_section_bfd_owner (section);
7063 reader->cu = cu;
7064 reader->dwo_file = dwo_file;
7065 reader->die_section = section;
7066 reader->buffer = section->buffer;
7067 reader->buffer_end = section->buffer + section->size;
7068 reader->comp_dir = NULL;
7069 reader->abbrev_table = abbrev_table;
7070 }
7071
7072 /* Subroutine of init_cutu_and_read_dies to simplify it.
7073 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7074 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7075 already.
7076
7077 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7078 from it to the DIE in the DWO. If NULL we are skipping the stub.
7079 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7080 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7081 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7082 STUB_COMP_DIR may be non-NULL.
7083 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7084 are filled in with the info of the DIE from the DWO file.
7085 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7086 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7087 kept around for at least as long as *RESULT_READER.
7088
7089 The result is non-zero if a valid (non-dummy) DIE was found. */
7090
7091 static int
7092 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7093 struct dwo_unit *dwo_unit,
7094 struct die_info *stub_comp_unit_die,
7095 const char *stub_comp_dir,
7096 struct die_reader_specs *result_reader,
7097 const gdb_byte **result_info_ptr,
7098 struct die_info **result_comp_unit_die,
7099 int *result_has_children,
7100 abbrev_table_up *result_dwo_abbrev_table)
7101 {
7102 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7103 struct objfile *objfile = dwarf2_per_objfile->objfile;
7104 struct dwarf2_cu *cu = this_cu->cu;
7105 bfd *abfd;
7106 const gdb_byte *begin_info_ptr, *info_ptr;
7107 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7108 int i,num_extra_attrs;
7109 struct dwarf2_section_info *dwo_abbrev_section;
7110 struct attribute *attr;
7111 struct die_info *comp_unit_die;
7112
7113 /* At most one of these may be provided. */
7114 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7115
7116 /* These attributes aren't processed until later:
7117 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7118 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7119 referenced later. However, these attributes are found in the stub
7120 which we won't have later. In order to not impose this complication
7121 on the rest of the code, we read them here and copy them to the
7122 DWO CU/TU die. */
7123
7124 stmt_list = NULL;
7125 low_pc = NULL;
7126 high_pc = NULL;
7127 ranges = NULL;
7128 comp_dir = NULL;
7129
7130 if (stub_comp_unit_die != NULL)
7131 {
7132 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7133 DWO file. */
7134 if (! this_cu->is_debug_types)
7135 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7136 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7137 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7138 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7139 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7140
7141 /* There should be a DW_AT_addr_base attribute here (if needed).
7142 We need the value before we can process DW_FORM_GNU_addr_index. */
7143 cu->addr_base = 0;
7144 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7145 if (attr)
7146 cu->addr_base = DW_UNSND (attr);
7147
7148 /* There should be a DW_AT_ranges_base attribute here (if needed).
7149 We need the value before we can process DW_AT_ranges. */
7150 cu->ranges_base = 0;
7151 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7152 if (attr)
7153 cu->ranges_base = DW_UNSND (attr);
7154 }
7155 else if (stub_comp_dir != NULL)
7156 {
7157 /* Reconstruct the comp_dir attribute to simplify the code below. */
7158 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7159 comp_dir->name = DW_AT_comp_dir;
7160 comp_dir->form = DW_FORM_string;
7161 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7162 DW_STRING (comp_dir) = stub_comp_dir;
7163 }
7164
7165 /* Set up for reading the DWO CU/TU. */
7166 cu->dwo_unit = dwo_unit;
7167 dwarf2_section_info *section = dwo_unit->section;
7168 dwarf2_read_section (objfile, section);
7169 abfd = get_section_bfd_owner (section);
7170 begin_info_ptr = info_ptr = (section->buffer
7171 + to_underlying (dwo_unit->sect_off));
7172 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7173
7174 if (this_cu->is_debug_types)
7175 {
7176 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7177
7178 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7179 &cu->header, section,
7180 dwo_abbrev_section,
7181 info_ptr, rcuh_kind::TYPE);
7182 /* This is not an assert because it can be caused by bad debug info. */
7183 if (sig_type->signature != cu->header.signature)
7184 {
7185 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7186 " TU at offset %s [in module %s]"),
7187 hex_string (sig_type->signature),
7188 hex_string (cu->header.signature),
7189 sect_offset_str (dwo_unit->sect_off),
7190 bfd_get_filename (abfd));
7191 }
7192 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7193 /* For DWOs coming from DWP files, we don't know the CU length
7194 nor the type's offset in the TU until now. */
7195 dwo_unit->length = get_cu_length (&cu->header);
7196 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7197
7198 /* Establish the type offset that can be used to lookup the type.
7199 For DWO files, we don't know it until now. */
7200 sig_type->type_offset_in_section
7201 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7202 }
7203 else
7204 {
7205 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7206 &cu->header, section,
7207 dwo_abbrev_section,
7208 info_ptr, rcuh_kind::COMPILE);
7209 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7210 /* For DWOs coming from DWP files, we don't know the CU length
7211 until now. */
7212 dwo_unit->length = get_cu_length (&cu->header);
7213 }
7214
7215 *result_dwo_abbrev_table
7216 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7217 cu->header.abbrev_sect_off);
7218 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7219 result_dwo_abbrev_table->get ());
7220
7221 /* Read in the die, but leave space to copy over the attributes
7222 from the stub. This has the benefit of simplifying the rest of
7223 the code - all the work to maintain the illusion of a single
7224 DW_TAG_{compile,type}_unit DIE is done here. */
7225 num_extra_attrs = ((stmt_list != NULL)
7226 + (low_pc != NULL)
7227 + (high_pc != NULL)
7228 + (ranges != NULL)
7229 + (comp_dir != NULL));
7230 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7231 result_has_children, num_extra_attrs);
7232
7233 /* Copy over the attributes from the stub to the DIE we just read in. */
7234 comp_unit_die = *result_comp_unit_die;
7235 i = comp_unit_die->num_attrs;
7236 if (stmt_list != NULL)
7237 comp_unit_die->attrs[i++] = *stmt_list;
7238 if (low_pc != NULL)
7239 comp_unit_die->attrs[i++] = *low_pc;
7240 if (high_pc != NULL)
7241 comp_unit_die->attrs[i++] = *high_pc;
7242 if (ranges != NULL)
7243 comp_unit_die->attrs[i++] = *ranges;
7244 if (comp_dir != NULL)
7245 comp_unit_die->attrs[i++] = *comp_dir;
7246 comp_unit_die->num_attrs += num_extra_attrs;
7247
7248 if (dwarf_die_debug)
7249 {
7250 fprintf_unfiltered (gdb_stdlog,
7251 "Read die from %s@0x%x of %s:\n",
7252 get_section_name (section),
7253 (unsigned) (begin_info_ptr - section->buffer),
7254 bfd_get_filename (abfd));
7255 dump_die (comp_unit_die, dwarf_die_debug);
7256 }
7257
7258 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7259 TUs by skipping the stub and going directly to the entry in the DWO file.
7260 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7261 to get it via circuitous means. Blech. */
7262 if (comp_dir != NULL)
7263 result_reader->comp_dir = DW_STRING (comp_dir);
7264
7265 /* Skip dummy compilation units. */
7266 if (info_ptr >= begin_info_ptr + dwo_unit->length
7267 || peek_abbrev_code (abfd, info_ptr) == 0)
7268 return 0;
7269
7270 *result_info_ptr = info_ptr;
7271 return 1;
7272 }
7273
7274 /* Subroutine of init_cutu_and_read_dies to simplify it.
7275 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7276 Returns NULL if the specified DWO unit cannot be found. */
7277
7278 static struct dwo_unit *
7279 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7280 struct die_info *comp_unit_die)
7281 {
7282 struct dwarf2_cu *cu = this_cu->cu;
7283 ULONGEST signature;
7284 struct dwo_unit *dwo_unit;
7285 const char *comp_dir, *dwo_name;
7286
7287 gdb_assert (cu != NULL);
7288
7289 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7290 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7291 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7292
7293 if (this_cu->is_debug_types)
7294 {
7295 struct signatured_type *sig_type;
7296
7297 /* Since this_cu is the first member of struct signatured_type,
7298 we can go from a pointer to one to a pointer to the other. */
7299 sig_type = (struct signatured_type *) this_cu;
7300 signature = sig_type->signature;
7301 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7302 }
7303 else
7304 {
7305 struct attribute *attr;
7306
7307 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7308 if (! attr)
7309 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7310 " [in module %s]"),
7311 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7312 signature = DW_UNSND (attr);
7313 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7314 signature);
7315 }
7316
7317 return dwo_unit;
7318 }
7319
7320 /* Subroutine of init_cutu_and_read_dies to simplify it.
7321 See it for a description of the parameters.
7322 Read a TU directly from a DWO file, bypassing the stub. */
7323
7324 static void
7325 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7326 int use_existing_cu, int keep,
7327 die_reader_func_ftype *die_reader_func,
7328 void *data)
7329 {
7330 std::unique_ptr<dwarf2_cu> new_cu;
7331 struct signatured_type *sig_type;
7332 struct die_reader_specs reader;
7333 const gdb_byte *info_ptr;
7334 struct die_info *comp_unit_die;
7335 int has_children;
7336 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7337
7338 /* Verify we can do the following downcast, and that we have the
7339 data we need. */
7340 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7341 sig_type = (struct signatured_type *) this_cu;
7342 gdb_assert (sig_type->dwo_unit != NULL);
7343
7344 if (use_existing_cu && this_cu->cu != NULL)
7345 {
7346 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7347 /* There's no need to do the rereading_dwo_cu handling that
7348 init_cutu_and_read_dies does since we don't read the stub. */
7349 }
7350 else
7351 {
7352 /* If !use_existing_cu, this_cu->cu must be NULL. */
7353 gdb_assert (this_cu->cu == NULL);
7354 new_cu.reset (new dwarf2_cu (this_cu));
7355 }
7356
7357 /* A future optimization, if needed, would be to use an existing
7358 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7359 could share abbrev tables. */
7360
7361 /* The abbreviation table used by READER, this must live at least as long as
7362 READER. */
7363 abbrev_table_up dwo_abbrev_table;
7364
7365 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7366 NULL /* stub_comp_unit_die */,
7367 sig_type->dwo_unit->dwo_file->comp_dir,
7368 &reader, &info_ptr,
7369 &comp_unit_die, &has_children,
7370 &dwo_abbrev_table) == 0)
7371 {
7372 /* Dummy die. */
7373 return;
7374 }
7375
7376 /* All the "real" work is done here. */
7377 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7378
7379 /* This duplicates the code in init_cutu_and_read_dies,
7380 but the alternative is making the latter more complex.
7381 This function is only for the special case of using DWO files directly:
7382 no point in overly complicating the general case just to handle this. */
7383 if (new_cu != NULL && keep)
7384 {
7385 /* Link this CU into read_in_chain. */
7386 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7387 dwarf2_per_objfile->read_in_chain = this_cu;
7388 /* The chain owns it now. */
7389 new_cu.release ();
7390 }
7391 }
7392
7393 /* Initialize a CU (or TU) and read its DIEs.
7394 If the CU defers to a DWO file, read the DWO file as well.
7395
7396 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7397 Otherwise the table specified in the comp unit header is read in and used.
7398 This is an optimization for when we already have the abbrev table.
7399
7400 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7401 Otherwise, a new CU is allocated with xmalloc.
7402
7403 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7404 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7405
7406 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7407 linker) then DIE_READER_FUNC will not get called. */
7408
7409 static void
7410 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7411 struct abbrev_table *abbrev_table,
7412 int use_existing_cu, int keep,
7413 die_reader_func_ftype *die_reader_func,
7414 void *data)
7415 {
7416 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7417 struct objfile *objfile = dwarf2_per_objfile->objfile;
7418 struct dwarf2_section_info *section = this_cu->section;
7419 bfd *abfd = get_section_bfd_owner (section);
7420 struct dwarf2_cu *cu;
7421 const gdb_byte *begin_info_ptr, *info_ptr;
7422 struct die_reader_specs reader;
7423 struct die_info *comp_unit_die;
7424 int has_children;
7425 struct attribute *attr;
7426 struct signatured_type *sig_type = NULL;
7427 struct dwarf2_section_info *abbrev_section;
7428 /* Non-zero if CU currently points to a DWO file and we need to
7429 reread it. When this happens we need to reread the skeleton die
7430 before we can reread the DWO file (this only applies to CUs, not TUs). */
7431 int rereading_dwo_cu = 0;
7432
7433 if (dwarf_die_debug)
7434 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7435 this_cu->is_debug_types ? "type" : "comp",
7436 sect_offset_str (this_cu->sect_off));
7437
7438 if (use_existing_cu)
7439 gdb_assert (keep);
7440
7441 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7442 file (instead of going through the stub), short-circuit all of this. */
7443 if (this_cu->reading_dwo_directly)
7444 {
7445 /* Narrow down the scope of possibilities to have to understand. */
7446 gdb_assert (this_cu->is_debug_types);
7447 gdb_assert (abbrev_table == NULL);
7448 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7449 die_reader_func, data);
7450 return;
7451 }
7452
7453 /* This is cheap if the section is already read in. */
7454 dwarf2_read_section (objfile, section);
7455
7456 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7457
7458 abbrev_section = get_abbrev_section_for_cu (this_cu);
7459
7460 std::unique_ptr<dwarf2_cu> new_cu;
7461 if (use_existing_cu && this_cu->cu != NULL)
7462 {
7463 cu = this_cu->cu;
7464 /* If this CU is from a DWO file we need to start over, we need to
7465 refetch the attributes from the skeleton CU.
7466 This could be optimized by retrieving those attributes from when we
7467 were here the first time: the previous comp_unit_die was stored in
7468 comp_unit_obstack. But there's no data yet that we need this
7469 optimization. */
7470 if (cu->dwo_unit != NULL)
7471 rereading_dwo_cu = 1;
7472 }
7473 else
7474 {
7475 /* If !use_existing_cu, this_cu->cu must be NULL. */
7476 gdb_assert (this_cu->cu == NULL);
7477 new_cu.reset (new dwarf2_cu (this_cu));
7478 cu = new_cu.get ();
7479 }
7480
7481 /* Get the header. */
7482 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7483 {
7484 /* We already have the header, there's no need to read it in again. */
7485 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7486 }
7487 else
7488 {
7489 if (this_cu->is_debug_types)
7490 {
7491 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7492 &cu->header, section,
7493 abbrev_section, info_ptr,
7494 rcuh_kind::TYPE);
7495
7496 /* Since per_cu is the first member of struct signatured_type,
7497 we can go from a pointer to one to a pointer to the other. */
7498 sig_type = (struct signatured_type *) this_cu;
7499 gdb_assert (sig_type->signature == cu->header.signature);
7500 gdb_assert (sig_type->type_offset_in_tu
7501 == cu->header.type_cu_offset_in_tu);
7502 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7503
7504 /* LENGTH has not been set yet for type units if we're
7505 using .gdb_index. */
7506 this_cu->length = get_cu_length (&cu->header);
7507
7508 /* Establish the type offset that can be used to lookup the type. */
7509 sig_type->type_offset_in_section =
7510 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7511
7512 this_cu->dwarf_version = cu->header.version;
7513 }
7514 else
7515 {
7516 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7517 &cu->header, section,
7518 abbrev_section,
7519 info_ptr,
7520 rcuh_kind::COMPILE);
7521
7522 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7523 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7524 this_cu->dwarf_version = cu->header.version;
7525 }
7526 }
7527
7528 /* Skip dummy compilation units. */
7529 if (info_ptr >= begin_info_ptr + this_cu->length
7530 || peek_abbrev_code (abfd, info_ptr) == 0)
7531 return;
7532
7533 /* If we don't have them yet, read the abbrevs for this compilation unit.
7534 And if we need to read them now, make sure they're freed when we're
7535 done (own the table through ABBREV_TABLE_HOLDER). */
7536 abbrev_table_up abbrev_table_holder;
7537 if (abbrev_table != NULL)
7538 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7539 else
7540 {
7541 abbrev_table_holder
7542 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7543 cu->header.abbrev_sect_off);
7544 abbrev_table = abbrev_table_holder.get ();
7545 }
7546
7547 /* Read the top level CU/TU die. */
7548 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7549 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7550
7551 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7552 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7553 table from the DWO file and pass the ownership over to us. It will be
7554 referenced from READER, so we must make sure to free it after we're done
7555 with READER.
7556
7557 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7558 DWO CU, that this test will fail (the attribute will not be present). */
7559 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7560 abbrev_table_up dwo_abbrev_table;
7561 if (attr)
7562 {
7563 struct dwo_unit *dwo_unit;
7564 struct die_info *dwo_comp_unit_die;
7565
7566 if (has_children)
7567 {
7568 complaint (&symfile_complaints,
7569 _("compilation unit with DW_AT_GNU_dwo_name"
7570 " has children (offset %s) [in module %s]"),
7571 sect_offset_str (this_cu->sect_off),
7572 bfd_get_filename (abfd));
7573 }
7574 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7575 if (dwo_unit != NULL)
7576 {
7577 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7578 comp_unit_die, NULL,
7579 &reader, &info_ptr,
7580 &dwo_comp_unit_die, &has_children,
7581 &dwo_abbrev_table) == 0)
7582 {
7583 /* Dummy die. */
7584 return;
7585 }
7586 comp_unit_die = dwo_comp_unit_die;
7587 }
7588 else
7589 {
7590 /* Yikes, we couldn't find the rest of the DIE, we only have
7591 the stub. A complaint has already been logged. There's
7592 not much more we can do except pass on the stub DIE to
7593 die_reader_func. We don't want to throw an error on bad
7594 debug info. */
7595 }
7596 }
7597
7598 /* All of the above is setup for this call. Yikes. */
7599 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7600
7601 /* Done, clean up. */
7602 if (new_cu != NULL && keep)
7603 {
7604 /* Link this CU into read_in_chain. */
7605 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7606 dwarf2_per_objfile->read_in_chain = this_cu;
7607 /* The chain owns it now. */
7608 new_cu.release ();
7609 }
7610 }
7611
7612 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7613 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7614 to have already done the lookup to find the DWO file).
7615
7616 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7617 THIS_CU->is_debug_types, but nothing else.
7618
7619 We fill in THIS_CU->length.
7620
7621 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7622 linker) then DIE_READER_FUNC will not get called.
7623
7624 THIS_CU->cu is always freed when done.
7625 This is done in order to not leave THIS_CU->cu in a state where we have
7626 to care whether it refers to the "main" CU or the DWO CU. */
7627
7628 static void
7629 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7630 struct dwo_file *dwo_file,
7631 die_reader_func_ftype *die_reader_func,
7632 void *data)
7633 {
7634 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7635 struct objfile *objfile = dwarf2_per_objfile->objfile;
7636 struct dwarf2_section_info *section = this_cu->section;
7637 bfd *abfd = get_section_bfd_owner (section);
7638 struct dwarf2_section_info *abbrev_section;
7639 const gdb_byte *begin_info_ptr, *info_ptr;
7640 struct die_reader_specs reader;
7641 struct die_info *comp_unit_die;
7642 int has_children;
7643
7644 if (dwarf_die_debug)
7645 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7646 this_cu->is_debug_types ? "type" : "comp",
7647 sect_offset_str (this_cu->sect_off));
7648
7649 gdb_assert (this_cu->cu == NULL);
7650
7651 abbrev_section = (dwo_file != NULL
7652 ? &dwo_file->sections.abbrev
7653 : get_abbrev_section_for_cu (this_cu));
7654
7655 /* This is cheap if the section is already read in. */
7656 dwarf2_read_section (objfile, section);
7657
7658 struct dwarf2_cu cu (this_cu);
7659
7660 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7661 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7662 &cu.header, section,
7663 abbrev_section, info_ptr,
7664 (this_cu->is_debug_types
7665 ? rcuh_kind::TYPE
7666 : rcuh_kind::COMPILE));
7667
7668 this_cu->length = get_cu_length (&cu.header);
7669
7670 /* Skip dummy compilation units. */
7671 if (info_ptr >= begin_info_ptr + this_cu->length
7672 || peek_abbrev_code (abfd, info_ptr) == 0)
7673 return;
7674
7675 abbrev_table_up abbrev_table
7676 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7677 cu.header.abbrev_sect_off);
7678
7679 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7680 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7681
7682 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7683 }
7684
7685 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7686 does not lookup the specified DWO file.
7687 This cannot be used to read DWO files.
7688
7689 THIS_CU->cu is always freed when done.
7690 This is done in order to not leave THIS_CU->cu in a state where we have
7691 to care whether it refers to the "main" CU or the DWO CU.
7692 We can revisit this if the data shows there's a performance issue. */
7693
7694 static void
7695 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7696 die_reader_func_ftype *die_reader_func,
7697 void *data)
7698 {
7699 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7700 }
7701 \f
7702 /* Type Unit Groups.
7703
7704 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7705 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7706 so that all types coming from the same compilation (.o file) are grouped
7707 together. A future step could be to put the types in the same symtab as
7708 the CU the types ultimately came from. */
7709
7710 static hashval_t
7711 hash_type_unit_group (const void *item)
7712 {
7713 const struct type_unit_group *tu_group
7714 = (const struct type_unit_group *) item;
7715
7716 return hash_stmt_list_entry (&tu_group->hash);
7717 }
7718
7719 static int
7720 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7721 {
7722 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7723 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7724
7725 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7726 }
7727
7728 /* Allocate a hash table for type unit groups. */
7729
7730 static htab_t
7731 allocate_type_unit_groups_table (struct objfile *objfile)
7732 {
7733 return htab_create_alloc_ex (3,
7734 hash_type_unit_group,
7735 eq_type_unit_group,
7736 NULL,
7737 &objfile->objfile_obstack,
7738 hashtab_obstack_allocate,
7739 dummy_obstack_deallocate);
7740 }
7741
7742 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7743 partial symtabs. We combine several TUs per psymtab to not let the size
7744 of any one psymtab grow too big. */
7745 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7746 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7747
7748 /* Helper routine for get_type_unit_group.
7749 Create the type_unit_group object used to hold one or more TUs. */
7750
7751 static struct type_unit_group *
7752 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7753 {
7754 struct dwarf2_per_objfile *dwarf2_per_objfile
7755 = cu->per_cu->dwarf2_per_objfile;
7756 struct objfile *objfile = dwarf2_per_objfile->objfile;
7757 struct dwarf2_per_cu_data *per_cu;
7758 struct type_unit_group *tu_group;
7759
7760 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7761 struct type_unit_group);
7762 per_cu = &tu_group->per_cu;
7763 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7764
7765 if (dwarf2_per_objfile->using_index)
7766 {
7767 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7768 struct dwarf2_per_cu_quick_data);
7769 }
7770 else
7771 {
7772 unsigned int line_offset = to_underlying (line_offset_struct);
7773 struct partial_symtab *pst;
7774 char *name;
7775
7776 /* Give the symtab a useful name for debug purposes. */
7777 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7778 name = xstrprintf ("<type_units_%d>",
7779 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7780 else
7781 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
7782
7783 pst = create_partial_symtab (per_cu, name);
7784 pst->anonymous = 1;
7785
7786 xfree (name);
7787 }
7788
7789 tu_group->hash.dwo_unit = cu->dwo_unit;
7790 tu_group->hash.line_sect_off = line_offset_struct;
7791
7792 return tu_group;
7793 }
7794
7795 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7796 STMT_LIST is a DW_AT_stmt_list attribute. */
7797
7798 static struct type_unit_group *
7799 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7800 {
7801 struct dwarf2_per_objfile *dwarf2_per_objfile
7802 = cu->per_cu->dwarf2_per_objfile;
7803 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7804 struct type_unit_group *tu_group;
7805 void **slot;
7806 unsigned int line_offset;
7807 struct type_unit_group type_unit_group_for_lookup;
7808
7809 if (dwarf2_per_objfile->type_unit_groups == NULL)
7810 {
7811 dwarf2_per_objfile->type_unit_groups =
7812 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7813 }
7814
7815 /* Do we need to create a new group, or can we use an existing one? */
7816
7817 if (stmt_list)
7818 {
7819 line_offset = DW_UNSND (stmt_list);
7820 ++tu_stats->nr_symtab_sharers;
7821 }
7822 else
7823 {
7824 /* Ugh, no stmt_list. Rare, but we have to handle it.
7825 We can do various things here like create one group per TU or
7826 spread them over multiple groups to split up the expansion work.
7827 To avoid worst case scenarios (too many groups or too large groups)
7828 we, umm, group them in bunches. */
7829 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7830 | (tu_stats->nr_stmt_less_type_units
7831 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7832 ++tu_stats->nr_stmt_less_type_units;
7833 }
7834
7835 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7836 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7837 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7838 &type_unit_group_for_lookup, INSERT);
7839 if (*slot != NULL)
7840 {
7841 tu_group = (struct type_unit_group *) *slot;
7842 gdb_assert (tu_group != NULL);
7843 }
7844 else
7845 {
7846 sect_offset line_offset_struct = (sect_offset) line_offset;
7847 tu_group = create_type_unit_group (cu, line_offset_struct);
7848 *slot = tu_group;
7849 ++tu_stats->nr_symtabs;
7850 }
7851
7852 return tu_group;
7853 }
7854 \f
7855 /* Partial symbol tables. */
7856
7857 /* Create a psymtab named NAME and assign it to PER_CU.
7858
7859 The caller must fill in the following details:
7860 dirname, textlow, texthigh. */
7861
7862 static struct partial_symtab *
7863 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7864 {
7865 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7866 struct partial_symtab *pst;
7867
7868 pst = start_psymtab_common (objfile, name, 0,
7869 objfile->global_psymbols,
7870 objfile->static_psymbols);
7871
7872 pst->psymtabs_addrmap_supported = 1;
7873
7874 /* This is the glue that links PST into GDB's symbol API. */
7875 pst->read_symtab_private = per_cu;
7876 pst->read_symtab = dwarf2_read_symtab;
7877 per_cu->v.psymtab = pst;
7878
7879 return pst;
7880 }
7881
7882 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7883 type. */
7884
7885 struct process_psymtab_comp_unit_data
7886 {
7887 /* True if we are reading a DW_TAG_partial_unit. */
7888
7889 int want_partial_unit;
7890
7891 /* The "pretend" language that is used if the CU doesn't declare a
7892 language. */
7893
7894 enum language pretend_language;
7895 };
7896
7897 /* die_reader_func for process_psymtab_comp_unit. */
7898
7899 static void
7900 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7901 const gdb_byte *info_ptr,
7902 struct die_info *comp_unit_die,
7903 int has_children,
7904 void *data)
7905 {
7906 struct dwarf2_cu *cu = reader->cu;
7907 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7908 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7909 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7910 CORE_ADDR baseaddr;
7911 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7912 struct partial_symtab *pst;
7913 enum pc_bounds_kind cu_bounds_kind;
7914 const char *filename;
7915 struct process_psymtab_comp_unit_data *info
7916 = (struct process_psymtab_comp_unit_data *) data;
7917
7918 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
7919 return;
7920
7921 gdb_assert (! per_cu->is_debug_types);
7922
7923 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
7924
7925 cu->list_in_scope = &file_symbols;
7926
7927 /* Allocate a new partial symbol table structure. */
7928 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7929 if (filename == NULL)
7930 filename = "";
7931
7932 pst = create_partial_symtab (per_cu, filename);
7933
7934 /* This must be done before calling dwarf2_build_include_psymtabs. */
7935 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7936
7937 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7938
7939 dwarf2_find_base_address (comp_unit_die, cu);
7940
7941 /* Possibly set the default values of LOWPC and HIGHPC from
7942 `DW_AT_ranges'. */
7943 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7944 &best_highpc, cu, pst);
7945 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7946 /* Store the contiguous range if it is not empty; it can be empty for
7947 CUs with no code. */
7948 addrmap_set_empty (objfile->psymtabs_addrmap,
7949 gdbarch_adjust_dwarf2_addr (gdbarch,
7950 best_lowpc + baseaddr),
7951 gdbarch_adjust_dwarf2_addr (gdbarch,
7952 best_highpc + baseaddr) - 1,
7953 pst);
7954
7955 /* Check if comp unit has_children.
7956 If so, read the rest of the partial symbols from this comp unit.
7957 If not, there's no more debug_info for this comp unit. */
7958 if (has_children)
7959 {
7960 struct partial_die_info *first_die;
7961 CORE_ADDR lowpc, highpc;
7962
7963 lowpc = ((CORE_ADDR) -1);
7964 highpc = ((CORE_ADDR) 0);
7965
7966 first_die = load_partial_dies (reader, info_ptr, 1);
7967
7968 scan_partial_symbols (first_die, &lowpc, &highpc,
7969 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
7970
7971 /* If we didn't find a lowpc, set it to highpc to avoid
7972 complaints from `maint check'. */
7973 if (lowpc == ((CORE_ADDR) -1))
7974 lowpc = highpc;
7975
7976 /* If the compilation unit didn't have an explicit address range,
7977 then use the information extracted from its child dies. */
7978 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
7979 {
7980 best_lowpc = lowpc;
7981 best_highpc = highpc;
7982 }
7983 }
7984 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
7985 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
7986
7987 end_psymtab_common (objfile, pst);
7988
7989 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
7990 {
7991 int i;
7992 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
7993 struct dwarf2_per_cu_data *iter;
7994
7995 /* Fill in 'dependencies' here; we fill in 'users' in a
7996 post-pass. */
7997 pst->number_of_dependencies = len;
7998 pst->dependencies =
7999 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8000 for (i = 0;
8001 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8002 i, iter);
8003 ++i)
8004 pst->dependencies[i] = iter->v.psymtab;
8005
8006 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8007 }
8008
8009 /* Get the list of files included in the current compilation unit,
8010 and build a psymtab for each of them. */
8011 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8012
8013 if (dwarf_read_debug)
8014 {
8015 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8016
8017 fprintf_unfiltered (gdb_stdlog,
8018 "Psymtab for %s unit @%s: %s - %s"
8019 ", %d global, %d static syms\n",
8020 per_cu->is_debug_types ? "type" : "comp",
8021 sect_offset_str (per_cu->sect_off),
8022 paddress (gdbarch, pst->textlow),
8023 paddress (gdbarch, pst->texthigh),
8024 pst->n_global_syms, pst->n_static_syms);
8025 }
8026 }
8027
8028 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8029 Process compilation unit THIS_CU for a psymtab. */
8030
8031 static void
8032 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8033 int want_partial_unit,
8034 enum language pretend_language)
8035 {
8036 /* If this compilation unit was already read in, free the
8037 cached copy in order to read it in again. This is
8038 necessary because we skipped some symbols when we first
8039 read in the compilation unit (see load_partial_dies).
8040 This problem could be avoided, but the benefit is unclear. */
8041 if (this_cu->cu != NULL)
8042 free_one_cached_comp_unit (this_cu);
8043
8044 if (this_cu->is_debug_types)
8045 init_cutu_and_read_dies (this_cu, NULL, 0, 0, build_type_psymtabs_reader,
8046 NULL);
8047 else
8048 {
8049 process_psymtab_comp_unit_data info;
8050 info.want_partial_unit = want_partial_unit;
8051 info.pretend_language = pretend_language;
8052 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
8053 process_psymtab_comp_unit_reader, &info);
8054 }
8055
8056 /* Age out any secondary CUs. */
8057 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8058 }
8059
8060 /* Reader function for build_type_psymtabs. */
8061
8062 static void
8063 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8064 const gdb_byte *info_ptr,
8065 struct die_info *type_unit_die,
8066 int has_children,
8067 void *data)
8068 {
8069 struct dwarf2_per_objfile *dwarf2_per_objfile
8070 = reader->cu->per_cu->dwarf2_per_objfile;
8071 struct objfile *objfile = dwarf2_per_objfile->objfile;
8072 struct dwarf2_cu *cu = reader->cu;
8073 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8074 struct signatured_type *sig_type;
8075 struct type_unit_group *tu_group;
8076 struct attribute *attr;
8077 struct partial_die_info *first_die;
8078 CORE_ADDR lowpc, highpc;
8079 struct partial_symtab *pst;
8080
8081 gdb_assert (data == NULL);
8082 gdb_assert (per_cu->is_debug_types);
8083 sig_type = (struct signatured_type *) per_cu;
8084
8085 if (! has_children)
8086 return;
8087
8088 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8089 tu_group = get_type_unit_group (cu, attr);
8090
8091 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8092
8093 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8094 cu->list_in_scope = &file_symbols;
8095 pst = create_partial_symtab (per_cu, "");
8096 pst->anonymous = 1;
8097
8098 first_die = load_partial_dies (reader, info_ptr, 1);
8099
8100 lowpc = (CORE_ADDR) -1;
8101 highpc = (CORE_ADDR) 0;
8102 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8103
8104 end_psymtab_common (objfile, pst);
8105 }
8106
8107 /* Struct used to sort TUs by their abbreviation table offset. */
8108
8109 struct tu_abbrev_offset
8110 {
8111 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8112 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8113 {}
8114
8115 signatured_type *sig_type;
8116 sect_offset abbrev_offset;
8117 };
8118
8119 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8120
8121 static bool
8122 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8123 const struct tu_abbrev_offset &b)
8124 {
8125 return a.abbrev_offset < b.abbrev_offset;
8126 }
8127
8128 /* Efficiently read all the type units.
8129 This does the bulk of the work for build_type_psymtabs.
8130
8131 The efficiency is because we sort TUs by the abbrev table they use and
8132 only read each abbrev table once. In one program there are 200K TUs
8133 sharing 8K abbrev tables.
8134
8135 The main purpose of this function is to support building the
8136 dwarf2_per_objfile->type_unit_groups table.
8137 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8138 can collapse the search space by grouping them by stmt_list.
8139 The savings can be significant, in the same program from above the 200K TUs
8140 share 8K stmt_list tables.
8141
8142 FUNC is expected to call get_type_unit_group, which will create the
8143 struct type_unit_group if necessary and add it to
8144 dwarf2_per_objfile->type_unit_groups. */
8145
8146 static void
8147 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8148 {
8149 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8150 abbrev_table_up abbrev_table;
8151 sect_offset abbrev_offset;
8152
8153 /* It's up to the caller to not call us multiple times. */
8154 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8155
8156 if (dwarf2_per_objfile->all_type_units.empty ())
8157 return;
8158
8159 /* TUs typically share abbrev tables, and there can be way more TUs than
8160 abbrev tables. Sort by abbrev table to reduce the number of times we
8161 read each abbrev table in.
8162 Alternatives are to punt or to maintain a cache of abbrev tables.
8163 This is simpler and efficient enough for now.
8164
8165 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8166 symtab to use). Typically TUs with the same abbrev offset have the same
8167 stmt_list value too so in practice this should work well.
8168
8169 The basic algorithm here is:
8170
8171 sort TUs by abbrev table
8172 for each TU with same abbrev table:
8173 read abbrev table if first user
8174 read TU top level DIE
8175 [IWBN if DWO skeletons had DW_AT_stmt_list]
8176 call FUNC */
8177
8178 if (dwarf_read_debug)
8179 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8180
8181 /* Sort in a separate table to maintain the order of all_type_units
8182 for .gdb_index: TU indices directly index all_type_units. */
8183 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8184 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8185
8186 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8187 sorted_by_abbrev.emplace_back
8188 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8189 sig_type->per_cu.section,
8190 sig_type->per_cu.sect_off));
8191
8192 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8193 sort_tu_by_abbrev_offset);
8194
8195 abbrev_offset = (sect_offset) ~(unsigned) 0;
8196
8197 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8198 {
8199 /* Switch to the next abbrev table if necessary. */
8200 if (abbrev_table == NULL
8201 || tu.abbrev_offset != abbrev_offset)
8202 {
8203 abbrev_offset = tu.abbrev_offset;
8204 abbrev_table =
8205 abbrev_table_read_table (dwarf2_per_objfile,
8206 &dwarf2_per_objfile->abbrev,
8207 abbrev_offset);
8208 ++tu_stats->nr_uniq_abbrev_tables;
8209 }
8210
8211 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8212 0, 0, build_type_psymtabs_reader, NULL);
8213 }
8214 }
8215
8216 /* Print collected type unit statistics. */
8217
8218 static void
8219 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8220 {
8221 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8222
8223 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8224 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8225 dwarf2_per_objfile->all_type_units.size ());
8226 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8227 tu_stats->nr_uniq_abbrev_tables);
8228 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8229 tu_stats->nr_symtabs);
8230 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8231 tu_stats->nr_symtab_sharers);
8232 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8233 tu_stats->nr_stmt_less_type_units);
8234 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8235 tu_stats->nr_all_type_units_reallocs);
8236 }
8237
8238 /* Traversal function for build_type_psymtabs. */
8239
8240 static int
8241 build_type_psymtab_dependencies (void **slot, void *info)
8242 {
8243 struct dwarf2_per_objfile *dwarf2_per_objfile
8244 = (struct dwarf2_per_objfile *) info;
8245 struct objfile *objfile = dwarf2_per_objfile->objfile;
8246 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8247 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8248 struct partial_symtab *pst = per_cu->v.psymtab;
8249 int len = VEC_length (sig_type_ptr, tu_group->tus);
8250 struct signatured_type *iter;
8251 int i;
8252
8253 gdb_assert (len > 0);
8254 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8255
8256 pst->number_of_dependencies = len;
8257 pst->dependencies =
8258 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8259 for (i = 0;
8260 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8261 ++i)
8262 {
8263 gdb_assert (iter->per_cu.is_debug_types);
8264 pst->dependencies[i] = iter->per_cu.v.psymtab;
8265 iter->type_unit_group = tu_group;
8266 }
8267
8268 VEC_free (sig_type_ptr, tu_group->tus);
8269
8270 return 1;
8271 }
8272
8273 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8274 Build partial symbol tables for the .debug_types comp-units. */
8275
8276 static void
8277 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8278 {
8279 if (! create_all_type_units (dwarf2_per_objfile))
8280 return;
8281
8282 build_type_psymtabs_1 (dwarf2_per_objfile);
8283 }
8284
8285 /* Traversal function for process_skeletonless_type_unit.
8286 Read a TU in a DWO file and build partial symbols for it. */
8287
8288 static int
8289 process_skeletonless_type_unit (void **slot, void *info)
8290 {
8291 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8292 struct dwarf2_per_objfile *dwarf2_per_objfile
8293 = (struct dwarf2_per_objfile *) info;
8294 struct signatured_type find_entry, *entry;
8295
8296 /* If this TU doesn't exist in the global table, add it and read it in. */
8297
8298 if (dwarf2_per_objfile->signatured_types == NULL)
8299 {
8300 dwarf2_per_objfile->signatured_types
8301 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8302 }
8303
8304 find_entry.signature = dwo_unit->signature;
8305 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8306 INSERT);
8307 /* If we've already seen this type there's nothing to do. What's happening
8308 is we're doing our own version of comdat-folding here. */
8309 if (*slot != NULL)
8310 return 1;
8311
8312 /* This does the job that create_all_type_units would have done for
8313 this TU. */
8314 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8315 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8316 *slot = entry;
8317
8318 /* This does the job that build_type_psymtabs_1 would have done. */
8319 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
8320 build_type_psymtabs_reader, NULL);
8321
8322 return 1;
8323 }
8324
8325 /* Traversal function for process_skeletonless_type_units. */
8326
8327 static int
8328 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8329 {
8330 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8331
8332 if (dwo_file->tus != NULL)
8333 {
8334 htab_traverse_noresize (dwo_file->tus,
8335 process_skeletonless_type_unit, info);
8336 }
8337
8338 return 1;
8339 }
8340
8341 /* Scan all TUs of DWO files, verifying we've processed them.
8342 This is needed in case a TU was emitted without its skeleton.
8343 Note: This can't be done until we know what all the DWO files are. */
8344
8345 static void
8346 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8347 {
8348 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8349 if (get_dwp_file (dwarf2_per_objfile) == NULL
8350 && dwarf2_per_objfile->dwo_files != NULL)
8351 {
8352 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8353 process_dwo_file_for_skeletonless_type_units,
8354 dwarf2_per_objfile);
8355 }
8356 }
8357
8358 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8359
8360 static void
8361 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8362 {
8363 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8364 {
8365 struct partial_symtab *pst = per_cu->v.psymtab;
8366
8367 if (pst == NULL)
8368 continue;
8369
8370 for (int j = 0; j < pst->number_of_dependencies; ++j)
8371 {
8372 /* Set the 'user' field only if it is not already set. */
8373 if (pst->dependencies[j]->user == NULL)
8374 pst->dependencies[j]->user = pst;
8375 }
8376 }
8377 }
8378
8379 /* Build the partial symbol table by doing a quick pass through the
8380 .debug_info and .debug_abbrev sections. */
8381
8382 static void
8383 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8384 {
8385 struct objfile *objfile = dwarf2_per_objfile->objfile;
8386
8387 if (dwarf_read_debug)
8388 {
8389 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8390 objfile_name (objfile));
8391 }
8392
8393 dwarf2_per_objfile->reading_partial_symbols = 1;
8394
8395 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8396
8397 /* Any cached compilation units will be linked by the per-objfile
8398 read_in_chain. Make sure to free them when we're done. */
8399 free_cached_comp_units freer (dwarf2_per_objfile);
8400
8401 build_type_psymtabs (dwarf2_per_objfile);
8402
8403 create_all_comp_units (dwarf2_per_objfile);
8404
8405 /* Create a temporary address map on a temporary obstack. We later
8406 copy this to the final obstack. */
8407 auto_obstack temp_obstack;
8408
8409 scoped_restore save_psymtabs_addrmap
8410 = make_scoped_restore (&objfile->psymtabs_addrmap,
8411 addrmap_create_mutable (&temp_obstack));
8412
8413 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8414 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8415
8416 /* This has to wait until we read the CUs, we need the list of DWOs. */
8417 process_skeletonless_type_units (dwarf2_per_objfile);
8418
8419 /* Now that all TUs have been processed we can fill in the dependencies. */
8420 if (dwarf2_per_objfile->type_unit_groups != NULL)
8421 {
8422 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8423 build_type_psymtab_dependencies, dwarf2_per_objfile);
8424 }
8425
8426 if (dwarf_read_debug)
8427 print_tu_stats (dwarf2_per_objfile);
8428
8429 set_partial_user (dwarf2_per_objfile);
8430
8431 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
8432 &objfile->objfile_obstack);
8433 /* At this point we want to keep the address map. */
8434 save_psymtabs_addrmap.release ();
8435
8436 if (dwarf_read_debug)
8437 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8438 objfile_name (objfile));
8439 }
8440
8441 /* die_reader_func for load_partial_comp_unit. */
8442
8443 static void
8444 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8445 const gdb_byte *info_ptr,
8446 struct die_info *comp_unit_die,
8447 int has_children,
8448 void *data)
8449 {
8450 struct dwarf2_cu *cu = reader->cu;
8451
8452 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8453
8454 /* Check if comp unit has_children.
8455 If so, read the rest of the partial symbols from this comp unit.
8456 If not, there's no more debug_info for this comp unit. */
8457 if (has_children)
8458 load_partial_dies (reader, info_ptr, 0);
8459 }
8460
8461 /* Load the partial DIEs for a secondary CU into memory.
8462 This is also used when rereading a primary CU with load_all_dies. */
8463
8464 static void
8465 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8466 {
8467 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
8468 load_partial_comp_unit_reader, NULL);
8469 }
8470
8471 static void
8472 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8473 struct dwarf2_section_info *section,
8474 struct dwarf2_section_info *abbrev_section,
8475 unsigned int is_dwz)
8476 {
8477 const gdb_byte *info_ptr;
8478 struct objfile *objfile = dwarf2_per_objfile->objfile;
8479
8480 if (dwarf_read_debug)
8481 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8482 get_section_name (section),
8483 get_section_file_name (section));
8484
8485 dwarf2_read_section (objfile, section);
8486
8487 info_ptr = section->buffer;
8488
8489 while (info_ptr < section->buffer + section->size)
8490 {
8491 struct dwarf2_per_cu_data *this_cu;
8492
8493 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8494
8495 comp_unit_head cu_header;
8496 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8497 abbrev_section, info_ptr,
8498 rcuh_kind::COMPILE);
8499
8500 /* Save the compilation unit for later lookup. */
8501 if (cu_header.unit_type != DW_UT_type)
8502 {
8503 this_cu = XOBNEW (&objfile->objfile_obstack,
8504 struct dwarf2_per_cu_data);
8505 memset (this_cu, 0, sizeof (*this_cu));
8506 }
8507 else
8508 {
8509 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8510 struct signatured_type);
8511 memset (sig_type, 0, sizeof (*sig_type));
8512 sig_type->signature = cu_header.signature;
8513 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8514 this_cu = &sig_type->per_cu;
8515 }
8516 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8517 this_cu->sect_off = sect_off;
8518 this_cu->length = cu_header.length + cu_header.initial_length_size;
8519 this_cu->is_dwz = is_dwz;
8520 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8521 this_cu->section = section;
8522
8523 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8524
8525 info_ptr = info_ptr + this_cu->length;
8526 }
8527 }
8528
8529 /* Create a list of all compilation units in OBJFILE.
8530 This is only done for -readnow and building partial symtabs. */
8531
8532 static void
8533 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8534 {
8535 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8536 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8537 &dwarf2_per_objfile->abbrev, 0);
8538
8539 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8540 if (dwz != NULL)
8541 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8542 1);
8543 }
8544
8545 /* Process all loaded DIEs for compilation unit CU, starting at
8546 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8547 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8548 DW_AT_ranges). See the comments of add_partial_subprogram on how
8549 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8550
8551 static void
8552 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8553 CORE_ADDR *highpc, int set_addrmap,
8554 struct dwarf2_cu *cu)
8555 {
8556 struct partial_die_info *pdi;
8557
8558 /* Now, march along the PDI's, descending into ones which have
8559 interesting children but skipping the children of the other ones,
8560 until we reach the end of the compilation unit. */
8561
8562 pdi = first_die;
8563
8564 while (pdi != NULL)
8565 {
8566 pdi->fixup (cu);
8567
8568 /* Anonymous namespaces or modules have no name but have interesting
8569 children, so we need to look at them. Ditto for anonymous
8570 enums. */
8571
8572 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8573 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8574 || pdi->tag == DW_TAG_imported_unit
8575 || pdi->tag == DW_TAG_inlined_subroutine)
8576 {
8577 switch (pdi->tag)
8578 {
8579 case DW_TAG_subprogram:
8580 case DW_TAG_inlined_subroutine:
8581 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8582 break;
8583 case DW_TAG_constant:
8584 case DW_TAG_variable:
8585 case DW_TAG_typedef:
8586 case DW_TAG_union_type:
8587 if (!pdi->is_declaration)
8588 {
8589 add_partial_symbol (pdi, cu);
8590 }
8591 break;
8592 case DW_TAG_class_type:
8593 case DW_TAG_interface_type:
8594 case DW_TAG_structure_type:
8595 if (!pdi->is_declaration)
8596 {
8597 add_partial_symbol (pdi, cu);
8598 }
8599 if ((cu->language == language_rust
8600 || cu->language == language_cplus) && pdi->has_children)
8601 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8602 set_addrmap, cu);
8603 break;
8604 case DW_TAG_enumeration_type:
8605 if (!pdi->is_declaration)
8606 add_partial_enumeration (pdi, cu);
8607 break;
8608 case DW_TAG_base_type:
8609 case DW_TAG_subrange_type:
8610 /* File scope base type definitions are added to the partial
8611 symbol table. */
8612 add_partial_symbol (pdi, cu);
8613 break;
8614 case DW_TAG_namespace:
8615 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8616 break;
8617 case DW_TAG_module:
8618 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8619 break;
8620 case DW_TAG_imported_unit:
8621 {
8622 struct dwarf2_per_cu_data *per_cu;
8623
8624 /* For now we don't handle imported units in type units. */
8625 if (cu->per_cu->is_debug_types)
8626 {
8627 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8628 " supported in type units [in module %s]"),
8629 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8630 }
8631
8632 per_cu = dwarf2_find_containing_comp_unit
8633 (pdi->d.sect_off, pdi->is_dwz,
8634 cu->per_cu->dwarf2_per_objfile);
8635
8636 /* Go read the partial unit, if needed. */
8637 if (per_cu->v.psymtab == NULL)
8638 process_psymtab_comp_unit (per_cu, 1, cu->language);
8639
8640 VEC_safe_push (dwarf2_per_cu_ptr,
8641 cu->per_cu->imported_symtabs, per_cu);
8642 }
8643 break;
8644 case DW_TAG_imported_declaration:
8645 add_partial_symbol (pdi, cu);
8646 break;
8647 default:
8648 break;
8649 }
8650 }
8651
8652 /* If the die has a sibling, skip to the sibling. */
8653
8654 pdi = pdi->die_sibling;
8655 }
8656 }
8657
8658 /* Functions used to compute the fully scoped name of a partial DIE.
8659
8660 Normally, this is simple. For C++, the parent DIE's fully scoped
8661 name is concatenated with "::" and the partial DIE's name.
8662 Enumerators are an exception; they use the scope of their parent
8663 enumeration type, i.e. the name of the enumeration type is not
8664 prepended to the enumerator.
8665
8666 There are two complexities. One is DW_AT_specification; in this
8667 case "parent" means the parent of the target of the specification,
8668 instead of the direct parent of the DIE. The other is compilers
8669 which do not emit DW_TAG_namespace; in this case we try to guess
8670 the fully qualified name of structure types from their members'
8671 linkage names. This must be done using the DIE's children rather
8672 than the children of any DW_AT_specification target. We only need
8673 to do this for structures at the top level, i.e. if the target of
8674 any DW_AT_specification (if any; otherwise the DIE itself) does not
8675 have a parent. */
8676
8677 /* Compute the scope prefix associated with PDI's parent, in
8678 compilation unit CU. The result will be allocated on CU's
8679 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8680 field. NULL is returned if no prefix is necessary. */
8681 static const char *
8682 partial_die_parent_scope (struct partial_die_info *pdi,
8683 struct dwarf2_cu *cu)
8684 {
8685 const char *grandparent_scope;
8686 struct partial_die_info *parent, *real_pdi;
8687
8688 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8689 then this means the parent of the specification DIE. */
8690
8691 real_pdi = pdi;
8692 while (real_pdi->has_specification)
8693 real_pdi = find_partial_die (real_pdi->spec_offset,
8694 real_pdi->spec_is_dwz, cu);
8695
8696 parent = real_pdi->die_parent;
8697 if (parent == NULL)
8698 return NULL;
8699
8700 if (parent->scope_set)
8701 return parent->scope;
8702
8703 parent->fixup (cu);
8704
8705 grandparent_scope = partial_die_parent_scope (parent, cu);
8706
8707 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8708 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8709 Work around this problem here. */
8710 if (cu->language == language_cplus
8711 && parent->tag == DW_TAG_namespace
8712 && strcmp (parent->name, "::") == 0
8713 && grandparent_scope == NULL)
8714 {
8715 parent->scope = NULL;
8716 parent->scope_set = 1;
8717 return NULL;
8718 }
8719
8720 if (pdi->tag == DW_TAG_enumerator)
8721 /* Enumerators should not get the name of the enumeration as a prefix. */
8722 parent->scope = grandparent_scope;
8723 else if (parent->tag == DW_TAG_namespace
8724 || parent->tag == DW_TAG_module
8725 || parent->tag == DW_TAG_structure_type
8726 || parent->tag == DW_TAG_class_type
8727 || parent->tag == DW_TAG_interface_type
8728 || parent->tag == DW_TAG_union_type
8729 || parent->tag == DW_TAG_enumeration_type)
8730 {
8731 if (grandparent_scope == NULL)
8732 parent->scope = parent->name;
8733 else
8734 parent->scope = typename_concat (&cu->comp_unit_obstack,
8735 grandparent_scope,
8736 parent->name, 0, cu);
8737 }
8738 else
8739 {
8740 /* FIXME drow/2004-04-01: What should we be doing with
8741 function-local names? For partial symbols, we should probably be
8742 ignoring them. */
8743 complaint (&symfile_complaints,
8744 _("unhandled containing DIE tag %d for DIE at %s"),
8745 parent->tag, sect_offset_str (pdi->sect_off));
8746 parent->scope = grandparent_scope;
8747 }
8748
8749 parent->scope_set = 1;
8750 return parent->scope;
8751 }
8752
8753 /* Return the fully scoped name associated with PDI, from compilation unit
8754 CU. The result will be allocated with malloc. */
8755
8756 static char *
8757 partial_die_full_name (struct partial_die_info *pdi,
8758 struct dwarf2_cu *cu)
8759 {
8760 const char *parent_scope;
8761
8762 /* If this is a template instantiation, we can not work out the
8763 template arguments from partial DIEs. So, unfortunately, we have
8764 to go through the full DIEs. At least any work we do building
8765 types here will be reused if full symbols are loaded later. */
8766 if (pdi->has_template_arguments)
8767 {
8768 pdi->fixup (cu);
8769
8770 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8771 {
8772 struct die_info *die;
8773 struct attribute attr;
8774 struct dwarf2_cu *ref_cu = cu;
8775
8776 /* DW_FORM_ref_addr is using section offset. */
8777 attr.name = (enum dwarf_attribute) 0;
8778 attr.form = DW_FORM_ref_addr;
8779 attr.u.unsnd = to_underlying (pdi->sect_off);
8780 die = follow_die_ref (NULL, &attr, &ref_cu);
8781
8782 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8783 }
8784 }
8785
8786 parent_scope = partial_die_parent_scope (pdi, cu);
8787 if (parent_scope == NULL)
8788 return NULL;
8789 else
8790 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8791 }
8792
8793 static void
8794 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8795 {
8796 struct dwarf2_per_objfile *dwarf2_per_objfile
8797 = cu->per_cu->dwarf2_per_objfile;
8798 struct objfile *objfile = dwarf2_per_objfile->objfile;
8799 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8800 CORE_ADDR addr = 0;
8801 const char *actual_name = NULL;
8802 CORE_ADDR baseaddr;
8803 char *built_actual_name;
8804
8805 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8806
8807 built_actual_name = partial_die_full_name (pdi, cu);
8808 if (built_actual_name != NULL)
8809 actual_name = built_actual_name;
8810
8811 if (actual_name == NULL)
8812 actual_name = pdi->name;
8813
8814 switch (pdi->tag)
8815 {
8816 case DW_TAG_inlined_subroutine:
8817 case DW_TAG_subprogram:
8818 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
8819 if (pdi->is_external || cu->language == language_ada)
8820 {
8821 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8822 of the global scope. But in Ada, we want to be able to access
8823 nested procedures globally. So all Ada subprograms are stored
8824 in the global scope. */
8825 add_psymbol_to_list (actual_name, strlen (actual_name),
8826 built_actual_name != NULL,
8827 VAR_DOMAIN, LOC_BLOCK,
8828 &objfile->global_psymbols,
8829 addr, cu->language, objfile);
8830 }
8831 else
8832 {
8833 add_psymbol_to_list (actual_name, strlen (actual_name),
8834 built_actual_name != NULL,
8835 VAR_DOMAIN, LOC_BLOCK,
8836 &objfile->static_psymbols,
8837 addr, cu->language, objfile);
8838 }
8839
8840 if (pdi->main_subprogram && actual_name != NULL)
8841 set_objfile_main_name (objfile, actual_name, cu->language);
8842 break;
8843 case DW_TAG_constant:
8844 {
8845 std::vector<partial_symbol *> *list;
8846
8847 if (pdi->is_external)
8848 list = &objfile->global_psymbols;
8849 else
8850 list = &objfile->static_psymbols;
8851 add_psymbol_to_list (actual_name, strlen (actual_name),
8852 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8853 list, 0, cu->language, objfile);
8854 }
8855 break;
8856 case DW_TAG_variable:
8857 if (pdi->d.locdesc)
8858 addr = decode_locdesc (pdi->d.locdesc, cu);
8859
8860 if (pdi->d.locdesc
8861 && addr == 0
8862 && !dwarf2_per_objfile->has_section_at_zero)
8863 {
8864 /* A global or static variable may also have been stripped
8865 out by the linker if unused, in which case its address
8866 will be nullified; do not add such variables into partial
8867 symbol table then. */
8868 }
8869 else if (pdi->is_external)
8870 {
8871 /* Global Variable.
8872 Don't enter into the minimal symbol tables as there is
8873 a minimal symbol table entry from the ELF symbols already.
8874 Enter into partial symbol table if it has a location
8875 descriptor or a type.
8876 If the location descriptor is missing, new_symbol will create
8877 a LOC_UNRESOLVED symbol, the address of the variable will then
8878 be determined from the minimal symbol table whenever the variable
8879 is referenced.
8880 The address for the partial symbol table entry is not
8881 used by GDB, but it comes in handy for debugging partial symbol
8882 table building. */
8883
8884 if (pdi->d.locdesc || pdi->has_type)
8885 add_psymbol_to_list (actual_name, strlen (actual_name),
8886 built_actual_name != NULL,
8887 VAR_DOMAIN, LOC_STATIC,
8888 &objfile->global_psymbols,
8889 addr + baseaddr,
8890 cu->language, objfile);
8891 }
8892 else
8893 {
8894 int has_loc = pdi->d.locdesc != NULL;
8895
8896 /* Static Variable. Skip symbols whose value we cannot know (those
8897 without location descriptors or constant values). */
8898 if (!has_loc && !pdi->has_const_value)
8899 {
8900 xfree (built_actual_name);
8901 return;
8902 }
8903
8904 add_psymbol_to_list (actual_name, strlen (actual_name),
8905 built_actual_name != NULL,
8906 VAR_DOMAIN, LOC_STATIC,
8907 &objfile->static_psymbols,
8908 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
8909 cu->language, objfile);
8910 }
8911 break;
8912 case DW_TAG_typedef:
8913 case DW_TAG_base_type:
8914 case DW_TAG_subrange_type:
8915 add_psymbol_to_list (actual_name, strlen (actual_name),
8916 built_actual_name != NULL,
8917 VAR_DOMAIN, LOC_TYPEDEF,
8918 &objfile->static_psymbols,
8919 0, cu->language, objfile);
8920 break;
8921 case DW_TAG_imported_declaration:
8922 case DW_TAG_namespace:
8923 add_psymbol_to_list (actual_name, strlen (actual_name),
8924 built_actual_name != NULL,
8925 VAR_DOMAIN, LOC_TYPEDEF,
8926 &objfile->global_psymbols,
8927 0, cu->language, objfile);
8928 break;
8929 case DW_TAG_module:
8930 add_psymbol_to_list (actual_name, strlen (actual_name),
8931 built_actual_name != NULL,
8932 MODULE_DOMAIN, LOC_TYPEDEF,
8933 &objfile->global_psymbols,
8934 0, cu->language, objfile);
8935 break;
8936 case DW_TAG_class_type:
8937 case DW_TAG_interface_type:
8938 case DW_TAG_structure_type:
8939 case DW_TAG_union_type:
8940 case DW_TAG_enumeration_type:
8941 /* Skip external references. The DWARF standard says in the section
8942 about "Structure, Union, and Class Type Entries": "An incomplete
8943 structure, union or class type is represented by a structure,
8944 union or class entry that does not have a byte size attribute
8945 and that has a DW_AT_declaration attribute." */
8946 if (!pdi->has_byte_size && pdi->is_declaration)
8947 {
8948 xfree (built_actual_name);
8949 return;
8950 }
8951
8952 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8953 static vs. global. */
8954 add_psymbol_to_list (actual_name, strlen (actual_name),
8955 built_actual_name != NULL,
8956 STRUCT_DOMAIN, LOC_TYPEDEF,
8957 cu->language == language_cplus
8958 ? &objfile->global_psymbols
8959 : &objfile->static_psymbols,
8960 0, cu->language, objfile);
8961
8962 break;
8963 case DW_TAG_enumerator:
8964 add_psymbol_to_list (actual_name, strlen (actual_name),
8965 built_actual_name != NULL,
8966 VAR_DOMAIN, LOC_CONST,
8967 cu->language == language_cplus
8968 ? &objfile->global_psymbols
8969 : &objfile->static_psymbols,
8970 0, cu->language, objfile);
8971 break;
8972 default:
8973 break;
8974 }
8975
8976 xfree (built_actual_name);
8977 }
8978
8979 /* Read a partial die corresponding to a namespace; also, add a symbol
8980 corresponding to that namespace to the symbol table. NAMESPACE is
8981 the name of the enclosing namespace. */
8982
8983 static void
8984 add_partial_namespace (struct partial_die_info *pdi,
8985 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8986 int set_addrmap, struct dwarf2_cu *cu)
8987 {
8988 /* Add a symbol for the namespace. */
8989
8990 add_partial_symbol (pdi, cu);
8991
8992 /* Now scan partial symbols in that namespace. */
8993
8994 if (pdi->has_children)
8995 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8996 }
8997
8998 /* Read a partial die corresponding to a Fortran module. */
8999
9000 static void
9001 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9002 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9003 {
9004 /* Add a symbol for the namespace. */
9005
9006 add_partial_symbol (pdi, cu);
9007
9008 /* Now scan partial symbols in that module. */
9009
9010 if (pdi->has_children)
9011 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9012 }
9013
9014 /* Read a partial die corresponding to a subprogram or an inlined
9015 subprogram and create a partial symbol for that subprogram.
9016 When the CU language allows it, this routine also defines a partial
9017 symbol for each nested subprogram that this subprogram contains.
9018 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9019 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9020
9021 PDI may also be a lexical block, in which case we simply search
9022 recursively for subprograms defined inside that lexical block.
9023 Again, this is only performed when the CU language allows this
9024 type of definitions. */
9025
9026 static void
9027 add_partial_subprogram (struct partial_die_info *pdi,
9028 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9029 int set_addrmap, struct dwarf2_cu *cu)
9030 {
9031 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9032 {
9033 if (pdi->has_pc_info)
9034 {
9035 if (pdi->lowpc < *lowpc)
9036 *lowpc = pdi->lowpc;
9037 if (pdi->highpc > *highpc)
9038 *highpc = pdi->highpc;
9039 if (set_addrmap)
9040 {
9041 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9042 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9043 CORE_ADDR baseaddr;
9044 CORE_ADDR highpc;
9045 CORE_ADDR lowpc;
9046
9047 baseaddr = ANOFFSET (objfile->section_offsets,
9048 SECT_OFF_TEXT (objfile));
9049 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9050 pdi->lowpc + baseaddr);
9051 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9052 pdi->highpc + baseaddr);
9053 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9054 cu->per_cu->v.psymtab);
9055 }
9056 }
9057
9058 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9059 {
9060 if (!pdi->is_declaration)
9061 /* Ignore subprogram DIEs that do not have a name, they are
9062 illegal. Do not emit a complaint at this point, we will
9063 do so when we convert this psymtab into a symtab. */
9064 if (pdi->name)
9065 add_partial_symbol (pdi, cu);
9066 }
9067 }
9068
9069 if (! pdi->has_children)
9070 return;
9071
9072 if (cu->language == language_ada)
9073 {
9074 pdi = pdi->die_child;
9075 while (pdi != NULL)
9076 {
9077 pdi->fixup (cu);
9078 if (pdi->tag == DW_TAG_subprogram
9079 || pdi->tag == DW_TAG_inlined_subroutine
9080 || pdi->tag == DW_TAG_lexical_block)
9081 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9082 pdi = pdi->die_sibling;
9083 }
9084 }
9085 }
9086
9087 /* Read a partial die corresponding to an enumeration type. */
9088
9089 static void
9090 add_partial_enumeration (struct partial_die_info *enum_pdi,
9091 struct dwarf2_cu *cu)
9092 {
9093 struct partial_die_info *pdi;
9094
9095 if (enum_pdi->name != NULL)
9096 add_partial_symbol (enum_pdi, cu);
9097
9098 pdi = enum_pdi->die_child;
9099 while (pdi)
9100 {
9101 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9102 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
9103 else
9104 add_partial_symbol (pdi, cu);
9105 pdi = pdi->die_sibling;
9106 }
9107 }
9108
9109 /* Return the initial uleb128 in the die at INFO_PTR. */
9110
9111 static unsigned int
9112 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9113 {
9114 unsigned int bytes_read;
9115
9116 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9117 }
9118
9119 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9120 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9121
9122 Return the corresponding abbrev, or NULL if the number is zero (indicating
9123 an empty DIE). In either case *BYTES_READ will be set to the length of
9124 the initial number. */
9125
9126 static struct abbrev_info *
9127 peek_die_abbrev (const die_reader_specs &reader,
9128 const gdb_byte *info_ptr, unsigned int *bytes_read)
9129 {
9130 dwarf2_cu *cu = reader.cu;
9131 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9132 unsigned int abbrev_number
9133 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9134
9135 if (abbrev_number == 0)
9136 return NULL;
9137
9138 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9139 if (!abbrev)
9140 {
9141 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9142 " at offset %s [in module %s]"),
9143 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9144 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9145 }
9146
9147 return abbrev;
9148 }
9149
9150 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9151 Returns a pointer to the end of a series of DIEs, terminated by an empty
9152 DIE. Any children of the skipped DIEs will also be skipped. */
9153
9154 static const gdb_byte *
9155 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9156 {
9157 while (1)
9158 {
9159 unsigned int bytes_read;
9160 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9161
9162 if (abbrev == NULL)
9163 return info_ptr + bytes_read;
9164 else
9165 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9166 }
9167 }
9168
9169 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9170 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9171 abbrev corresponding to that skipped uleb128 should be passed in
9172 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9173 children. */
9174
9175 static const gdb_byte *
9176 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9177 struct abbrev_info *abbrev)
9178 {
9179 unsigned int bytes_read;
9180 struct attribute attr;
9181 bfd *abfd = reader->abfd;
9182 struct dwarf2_cu *cu = reader->cu;
9183 const gdb_byte *buffer = reader->buffer;
9184 const gdb_byte *buffer_end = reader->buffer_end;
9185 unsigned int form, i;
9186
9187 for (i = 0; i < abbrev->num_attrs; i++)
9188 {
9189 /* The only abbrev we care about is DW_AT_sibling. */
9190 if (abbrev->attrs[i].name == DW_AT_sibling)
9191 {
9192 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9193 if (attr.form == DW_FORM_ref_addr)
9194 complaint (&symfile_complaints,
9195 _("ignoring absolute DW_AT_sibling"));
9196 else
9197 {
9198 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9199 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9200
9201 if (sibling_ptr < info_ptr)
9202 complaint (&symfile_complaints,
9203 _("DW_AT_sibling points backwards"));
9204 else if (sibling_ptr > reader->buffer_end)
9205 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9206 else
9207 return sibling_ptr;
9208 }
9209 }
9210
9211 /* If it isn't DW_AT_sibling, skip this attribute. */
9212 form = abbrev->attrs[i].form;
9213 skip_attribute:
9214 switch (form)
9215 {
9216 case DW_FORM_ref_addr:
9217 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9218 and later it is offset sized. */
9219 if (cu->header.version == 2)
9220 info_ptr += cu->header.addr_size;
9221 else
9222 info_ptr += cu->header.offset_size;
9223 break;
9224 case DW_FORM_GNU_ref_alt:
9225 info_ptr += cu->header.offset_size;
9226 break;
9227 case DW_FORM_addr:
9228 info_ptr += cu->header.addr_size;
9229 break;
9230 case DW_FORM_data1:
9231 case DW_FORM_ref1:
9232 case DW_FORM_flag:
9233 info_ptr += 1;
9234 break;
9235 case DW_FORM_flag_present:
9236 case DW_FORM_implicit_const:
9237 break;
9238 case DW_FORM_data2:
9239 case DW_FORM_ref2:
9240 info_ptr += 2;
9241 break;
9242 case DW_FORM_data4:
9243 case DW_FORM_ref4:
9244 info_ptr += 4;
9245 break;
9246 case DW_FORM_data8:
9247 case DW_FORM_ref8:
9248 case DW_FORM_ref_sig8:
9249 info_ptr += 8;
9250 break;
9251 case DW_FORM_data16:
9252 info_ptr += 16;
9253 break;
9254 case DW_FORM_string:
9255 read_direct_string (abfd, info_ptr, &bytes_read);
9256 info_ptr += bytes_read;
9257 break;
9258 case DW_FORM_sec_offset:
9259 case DW_FORM_strp:
9260 case DW_FORM_GNU_strp_alt:
9261 info_ptr += cu->header.offset_size;
9262 break;
9263 case DW_FORM_exprloc:
9264 case DW_FORM_block:
9265 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9266 info_ptr += bytes_read;
9267 break;
9268 case DW_FORM_block1:
9269 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9270 break;
9271 case DW_FORM_block2:
9272 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9273 break;
9274 case DW_FORM_block4:
9275 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9276 break;
9277 case DW_FORM_sdata:
9278 case DW_FORM_udata:
9279 case DW_FORM_ref_udata:
9280 case DW_FORM_GNU_addr_index:
9281 case DW_FORM_GNU_str_index:
9282 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9283 break;
9284 case DW_FORM_indirect:
9285 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9286 info_ptr += bytes_read;
9287 /* We need to continue parsing from here, so just go back to
9288 the top. */
9289 goto skip_attribute;
9290
9291 default:
9292 error (_("Dwarf Error: Cannot handle %s "
9293 "in DWARF reader [in module %s]"),
9294 dwarf_form_name (form),
9295 bfd_get_filename (abfd));
9296 }
9297 }
9298
9299 if (abbrev->has_children)
9300 return skip_children (reader, info_ptr);
9301 else
9302 return info_ptr;
9303 }
9304
9305 /* Locate ORIG_PDI's sibling.
9306 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9307
9308 static const gdb_byte *
9309 locate_pdi_sibling (const struct die_reader_specs *reader,
9310 struct partial_die_info *orig_pdi,
9311 const gdb_byte *info_ptr)
9312 {
9313 /* Do we know the sibling already? */
9314
9315 if (orig_pdi->sibling)
9316 return orig_pdi->sibling;
9317
9318 /* Are there any children to deal with? */
9319
9320 if (!orig_pdi->has_children)
9321 return info_ptr;
9322
9323 /* Skip the children the long way. */
9324
9325 return skip_children (reader, info_ptr);
9326 }
9327
9328 /* Expand this partial symbol table into a full symbol table. SELF is
9329 not NULL. */
9330
9331 static void
9332 dwarf2_read_symtab (struct partial_symtab *self,
9333 struct objfile *objfile)
9334 {
9335 struct dwarf2_per_objfile *dwarf2_per_objfile
9336 = get_dwarf2_per_objfile (objfile);
9337
9338 if (self->readin)
9339 {
9340 warning (_("bug: psymtab for %s is already read in."),
9341 self->filename);
9342 }
9343 else
9344 {
9345 if (info_verbose)
9346 {
9347 printf_filtered (_("Reading in symbols for %s..."),
9348 self->filename);
9349 gdb_flush (gdb_stdout);
9350 }
9351
9352 /* If this psymtab is constructed from a debug-only objfile, the
9353 has_section_at_zero flag will not necessarily be correct. We
9354 can get the correct value for this flag by looking at the data
9355 associated with the (presumably stripped) associated objfile. */
9356 if (objfile->separate_debug_objfile_backlink)
9357 {
9358 struct dwarf2_per_objfile *dpo_backlink
9359 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9360
9361 dwarf2_per_objfile->has_section_at_zero
9362 = dpo_backlink->has_section_at_zero;
9363 }
9364
9365 dwarf2_per_objfile->reading_partial_symbols = 0;
9366
9367 psymtab_to_symtab_1 (self);
9368
9369 /* Finish up the debug error message. */
9370 if (info_verbose)
9371 printf_filtered (_("done.\n"));
9372 }
9373
9374 process_cu_includes (dwarf2_per_objfile);
9375 }
9376 \f
9377 /* Reading in full CUs. */
9378
9379 /* Add PER_CU to the queue. */
9380
9381 static void
9382 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9383 enum language pretend_language)
9384 {
9385 struct dwarf2_queue_item *item;
9386
9387 per_cu->queued = 1;
9388 item = XNEW (struct dwarf2_queue_item);
9389 item->per_cu = per_cu;
9390 item->pretend_language = pretend_language;
9391 item->next = NULL;
9392
9393 if (dwarf2_queue == NULL)
9394 dwarf2_queue = item;
9395 else
9396 dwarf2_queue_tail->next = item;
9397
9398 dwarf2_queue_tail = item;
9399 }
9400
9401 /* If PER_CU is not yet queued, add it to the queue.
9402 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9403 dependency.
9404 The result is non-zero if PER_CU was queued, otherwise the result is zero
9405 meaning either PER_CU is already queued or it is already loaded.
9406
9407 N.B. There is an invariant here that if a CU is queued then it is loaded.
9408 The caller is required to load PER_CU if we return non-zero. */
9409
9410 static int
9411 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9412 struct dwarf2_per_cu_data *per_cu,
9413 enum language pretend_language)
9414 {
9415 /* We may arrive here during partial symbol reading, if we need full
9416 DIEs to process an unusual case (e.g. template arguments). Do
9417 not queue PER_CU, just tell our caller to load its DIEs. */
9418 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9419 {
9420 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9421 return 1;
9422 return 0;
9423 }
9424
9425 /* Mark the dependence relation so that we don't flush PER_CU
9426 too early. */
9427 if (dependent_cu != NULL)
9428 dwarf2_add_dependence (dependent_cu, per_cu);
9429
9430 /* If it's already on the queue, we have nothing to do. */
9431 if (per_cu->queued)
9432 return 0;
9433
9434 /* If the compilation unit is already loaded, just mark it as
9435 used. */
9436 if (per_cu->cu != NULL)
9437 {
9438 per_cu->cu->last_used = 0;
9439 return 0;
9440 }
9441
9442 /* Add it to the queue. */
9443 queue_comp_unit (per_cu, pretend_language);
9444
9445 return 1;
9446 }
9447
9448 /* Process the queue. */
9449
9450 static void
9451 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9452 {
9453 struct dwarf2_queue_item *item, *next_item;
9454
9455 if (dwarf_read_debug)
9456 {
9457 fprintf_unfiltered (gdb_stdlog,
9458 "Expanding one or more symtabs of objfile %s ...\n",
9459 objfile_name (dwarf2_per_objfile->objfile));
9460 }
9461
9462 /* The queue starts out with one item, but following a DIE reference
9463 may load a new CU, adding it to the end of the queue. */
9464 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9465 {
9466 if ((dwarf2_per_objfile->using_index
9467 ? !item->per_cu->v.quick->compunit_symtab
9468 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9469 /* Skip dummy CUs. */
9470 && item->per_cu->cu != NULL)
9471 {
9472 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9473 unsigned int debug_print_threshold;
9474 char buf[100];
9475
9476 if (per_cu->is_debug_types)
9477 {
9478 struct signatured_type *sig_type =
9479 (struct signatured_type *) per_cu;
9480
9481 sprintf (buf, "TU %s at offset %s",
9482 hex_string (sig_type->signature),
9483 sect_offset_str (per_cu->sect_off));
9484 /* There can be 100s of TUs.
9485 Only print them in verbose mode. */
9486 debug_print_threshold = 2;
9487 }
9488 else
9489 {
9490 sprintf (buf, "CU at offset %s",
9491 sect_offset_str (per_cu->sect_off));
9492 debug_print_threshold = 1;
9493 }
9494
9495 if (dwarf_read_debug >= debug_print_threshold)
9496 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9497
9498 if (per_cu->is_debug_types)
9499 process_full_type_unit (per_cu, item->pretend_language);
9500 else
9501 process_full_comp_unit (per_cu, item->pretend_language);
9502
9503 if (dwarf_read_debug >= debug_print_threshold)
9504 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9505 }
9506
9507 item->per_cu->queued = 0;
9508 next_item = item->next;
9509 xfree (item);
9510 }
9511
9512 dwarf2_queue_tail = NULL;
9513
9514 if (dwarf_read_debug)
9515 {
9516 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9517 objfile_name (dwarf2_per_objfile->objfile));
9518 }
9519 }
9520
9521 /* Read in full symbols for PST, and anything it depends on. */
9522
9523 static void
9524 psymtab_to_symtab_1 (struct partial_symtab *pst)
9525 {
9526 struct dwarf2_per_cu_data *per_cu;
9527 int i;
9528
9529 if (pst->readin)
9530 return;
9531
9532 for (i = 0; i < pst->number_of_dependencies; i++)
9533 if (!pst->dependencies[i]->readin
9534 && pst->dependencies[i]->user == NULL)
9535 {
9536 /* Inform about additional files that need to be read in. */
9537 if (info_verbose)
9538 {
9539 /* FIXME: i18n: Need to make this a single string. */
9540 fputs_filtered (" ", gdb_stdout);
9541 wrap_here ("");
9542 fputs_filtered ("and ", gdb_stdout);
9543 wrap_here ("");
9544 printf_filtered ("%s...", pst->dependencies[i]->filename);
9545 wrap_here (""); /* Flush output. */
9546 gdb_flush (gdb_stdout);
9547 }
9548 psymtab_to_symtab_1 (pst->dependencies[i]);
9549 }
9550
9551 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9552
9553 if (per_cu == NULL)
9554 {
9555 /* It's an include file, no symbols to read for it.
9556 Everything is in the parent symtab. */
9557 pst->readin = 1;
9558 return;
9559 }
9560
9561 dw2_do_instantiate_symtab (per_cu);
9562 }
9563
9564 /* Trivial hash function for die_info: the hash value of a DIE
9565 is its offset in .debug_info for this objfile. */
9566
9567 static hashval_t
9568 die_hash (const void *item)
9569 {
9570 const struct die_info *die = (const struct die_info *) item;
9571
9572 return to_underlying (die->sect_off);
9573 }
9574
9575 /* Trivial comparison function for die_info structures: two DIEs
9576 are equal if they have the same offset. */
9577
9578 static int
9579 die_eq (const void *item_lhs, const void *item_rhs)
9580 {
9581 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9582 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9583
9584 return die_lhs->sect_off == die_rhs->sect_off;
9585 }
9586
9587 /* die_reader_func for load_full_comp_unit.
9588 This is identical to read_signatured_type_reader,
9589 but is kept separate for now. */
9590
9591 static void
9592 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9593 const gdb_byte *info_ptr,
9594 struct die_info *comp_unit_die,
9595 int has_children,
9596 void *data)
9597 {
9598 struct dwarf2_cu *cu = reader->cu;
9599 enum language *language_ptr = (enum language *) data;
9600
9601 gdb_assert (cu->die_hash == NULL);
9602 cu->die_hash =
9603 htab_create_alloc_ex (cu->header.length / 12,
9604 die_hash,
9605 die_eq,
9606 NULL,
9607 &cu->comp_unit_obstack,
9608 hashtab_obstack_allocate,
9609 dummy_obstack_deallocate);
9610
9611 if (has_children)
9612 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9613 &info_ptr, comp_unit_die);
9614 cu->dies = comp_unit_die;
9615 /* comp_unit_die is not stored in die_hash, no need. */
9616
9617 /* We try not to read any attributes in this function, because not
9618 all CUs needed for references have been loaded yet, and symbol
9619 table processing isn't initialized. But we have to set the CU language,
9620 or we won't be able to build types correctly.
9621 Similarly, if we do not read the producer, we can not apply
9622 producer-specific interpretation. */
9623 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9624 }
9625
9626 /* Load the DIEs associated with PER_CU into memory. */
9627
9628 static void
9629 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9630 enum language pretend_language)
9631 {
9632 gdb_assert (! this_cu->is_debug_types);
9633
9634 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
9635 load_full_comp_unit_reader, &pretend_language);
9636 }
9637
9638 /* Add a DIE to the delayed physname list. */
9639
9640 static void
9641 add_to_method_list (struct type *type, int fnfield_index, int index,
9642 const char *name, struct die_info *die,
9643 struct dwarf2_cu *cu)
9644 {
9645 struct delayed_method_info mi;
9646 mi.type = type;
9647 mi.fnfield_index = fnfield_index;
9648 mi.index = index;
9649 mi.name = name;
9650 mi.die = die;
9651 cu->method_list.push_back (mi);
9652 }
9653
9654 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9655 "const" / "volatile". If so, decrements LEN by the length of the
9656 modifier and return true. Otherwise return false. */
9657
9658 template<size_t N>
9659 static bool
9660 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9661 {
9662 size_t mod_len = sizeof (mod) - 1;
9663 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9664 {
9665 len -= mod_len;
9666 return true;
9667 }
9668 return false;
9669 }
9670
9671 /* Compute the physnames of any methods on the CU's method list.
9672
9673 The computation of method physnames is delayed in order to avoid the
9674 (bad) condition that one of the method's formal parameters is of an as yet
9675 incomplete type. */
9676
9677 static void
9678 compute_delayed_physnames (struct dwarf2_cu *cu)
9679 {
9680 /* Only C++ delays computing physnames. */
9681 if (cu->method_list.empty ())
9682 return;
9683 gdb_assert (cu->language == language_cplus);
9684
9685 for (struct delayed_method_info &mi : cu->method_list)
9686 {
9687 const char *physname;
9688 struct fn_fieldlist *fn_flp
9689 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9690 physname = dwarf2_physname (mi.name, mi.die, cu);
9691 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9692 = physname ? physname : "";
9693
9694 /* Since there's no tag to indicate whether a method is a
9695 const/volatile overload, extract that information out of the
9696 demangled name. */
9697 if (physname != NULL)
9698 {
9699 size_t len = strlen (physname);
9700
9701 while (1)
9702 {
9703 if (physname[len] == ')') /* shortcut */
9704 break;
9705 else if (check_modifier (physname, len, " const"))
9706 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9707 else if (check_modifier (physname, len, " volatile"))
9708 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9709 else
9710 break;
9711 }
9712 }
9713 }
9714
9715 /* The list is no longer needed. */
9716 cu->method_list.clear ();
9717 }
9718
9719 /* Go objects should be embedded in a DW_TAG_module DIE,
9720 and it's not clear if/how imported objects will appear.
9721 To keep Go support simple until that's worked out,
9722 go back through what we've read and create something usable.
9723 We could do this while processing each DIE, and feels kinda cleaner,
9724 but that way is more invasive.
9725 This is to, for example, allow the user to type "p var" or "b main"
9726 without having to specify the package name, and allow lookups
9727 of module.object to work in contexts that use the expression
9728 parser. */
9729
9730 static void
9731 fixup_go_packaging (struct dwarf2_cu *cu)
9732 {
9733 char *package_name = NULL;
9734 struct pending *list;
9735 int i;
9736
9737 for (list = global_symbols; list != NULL; list = list->next)
9738 {
9739 for (i = 0; i < list->nsyms; ++i)
9740 {
9741 struct symbol *sym = list->symbol[i];
9742
9743 if (SYMBOL_LANGUAGE (sym) == language_go
9744 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9745 {
9746 char *this_package_name = go_symbol_package_name (sym);
9747
9748 if (this_package_name == NULL)
9749 continue;
9750 if (package_name == NULL)
9751 package_name = this_package_name;
9752 else
9753 {
9754 struct objfile *objfile
9755 = cu->per_cu->dwarf2_per_objfile->objfile;
9756 if (strcmp (package_name, this_package_name) != 0)
9757 complaint (&symfile_complaints,
9758 _("Symtab %s has objects from two different Go packages: %s and %s"),
9759 (symbol_symtab (sym) != NULL
9760 ? symtab_to_filename_for_display
9761 (symbol_symtab (sym))
9762 : objfile_name (objfile)),
9763 this_package_name, package_name);
9764 xfree (this_package_name);
9765 }
9766 }
9767 }
9768 }
9769
9770 if (package_name != NULL)
9771 {
9772 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9773 const char *saved_package_name
9774 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9775 package_name,
9776 strlen (package_name));
9777 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9778 saved_package_name);
9779 struct symbol *sym;
9780
9781 TYPE_TAG_NAME (type) = TYPE_NAME (type);
9782
9783 sym = allocate_symbol (objfile);
9784 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9785 SYMBOL_SET_NAMES (sym, saved_package_name,
9786 strlen (saved_package_name), 0, objfile);
9787 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9788 e.g., "main" finds the "main" module and not C's main(). */
9789 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9790 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9791 SYMBOL_TYPE (sym) = type;
9792
9793 add_symbol_to_list (sym, &global_symbols);
9794
9795 xfree (package_name);
9796 }
9797 }
9798
9799 /* Allocate a fully-qualified name consisting of the two parts on the
9800 obstack. */
9801
9802 static const char *
9803 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9804 {
9805 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9806 }
9807
9808 /* A helper that allocates a struct discriminant_info to attach to a
9809 union type. */
9810
9811 static struct discriminant_info *
9812 alloc_discriminant_info (struct type *type, int discriminant_index,
9813 int default_index)
9814 {
9815 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9816 gdb_assert (discriminant_index == -1
9817 || (discriminant_index >= 0
9818 && discriminant_index < TYPE_NFIELDS (type)));
9819 gdb_assert (default_index == -1
9820 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9821
9822 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9823
9824 struct discriminant_info *disc
9825 = ((struct discriminant_info *)
9826 TYPE_ZALLOC (type,
9827 offsetof (struct discriminant_info, discriminants)
9828 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9829 disc->default_index = default_index;
9830 disc->discriminant_index = discriminant_index;
9831
9832 struct dynamic_prop prop;
9833 prop.kind = PROP_UNDEFINED;
9834 prop.data.baton = disc;
9835
9836 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9837
9838 return disc;
9839 }
9840
9841 /* Some versions of rustc emitted enums in an unusual way.
9842
9843 Ordinary enums were emitted as unions. The first element of each
9844 structure in the union was named "RUST$ENUM$DISR". This element
9845 held the discriminant.
9846
9847 These versions of Rust also implemented the "non-zero"
9848 optimization. When the enum had two values, and one is empty and
9849 the other holds a pointer that cannot be zero, the pointer is used
9850 as the discriminant, with a zero value meaning the empty variant.
9851 Here, the union's first member is of the form
9852 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9853 where the fieldnos are the indices of the fields that should be
9854 traversed in order to find the field (which may be several fields deep)
9855 and the variantname is the name of the variant of the case when the
9856 field is zero.
9857
9858 This function recognizes whether TYPE is of one of these forms,
9859 and, if so, smashes it to be a variant type. */
9860
9861 static void
9862 quirk_rust_enum (struct type *type, struct objfile *objfile)
9863 {
9864 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9865
9866 /* We don't need to deal with empty enums. */
9867 if (TYPE_NFIELDS (type) == 0)
9868 return;
9869
9870 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9871 if (TYPE_NFIELDS (type) == 1
9872 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9873 {
9874 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9875
9876 /* Decode the field name to find the offset of the
9877 discriminant. */
9878 ULONGEST bit_offset = 0;
9879 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9880 while (name[0] >= '0' && name[0] <= '9')
9881 {
9882 char *tail;
9883 unsigned long index = strtoul (name, &tail, 10);
9884 name = tail;
9885 if (*name != '$'
9886 || index >= TYPE_NFIELDS (field_type)
9887 || (TYPE_FIELD_LOC_KIND (field_type, index)
9888 != FIELD_LOC_KIND_BITPOS))
9889 {
9890 complaint (&symfile_complaints,
9891 _("Could not parse Rust enum encoding string \"%s\""
9892 "[in module %s]"),
9893 TYPE_FIELD_NAME (type, 0),
9894 objfile_name (objfile));
9895 return;
9896 }
9897 ++name;
9898
9899 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9900 field_type = TYPE_FIELD_TYPE (field_type, index);
9901 }
9902
9903 /* Make a union to hold the variants. */
9904 struct type *union_type = alloc_type (objfile);
9905 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9906 TYPE_NFIELDS (union_type) = 3;
9907 TYPE_FIELDS (union_type)
9908 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9909 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9910
9911 /* Put the discriminant must at index 0. */
9912 TYPE_FIELD_TYPE (union_type, 0) = field_type;
9913 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9914 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9915 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
9916
9917 /* The order of fields doesn't really matter, so put the real
9918 field at index 1 and the data-less field at index 2. */
9919 struct discriminant_info *disc
9920 = alloc_discriminant_info (union_type, 0, 1);
9921 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
9922 TYPE_FIELD_NAME (union_type, 1)
9923 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
9924 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
9925 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9926 TYPE_FIELD_NAME (union_type, 1));
9927
9928 const char *dataless_name
9929 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9930 name);
9931 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
9932 dataless_name);
9933 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
9934 /* NAME points into the original discriminant name, which
9935 already has the correct lifetime. */
9936 TYPE_FIELD_NAME (union_type, 2) = name;
9937 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
9938 disc->discriminants[2] = 0;
9939
9940 /* Smash this type to be a structure type. We have to do this
9941 because the type has already been recorded. */
9942 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9943 TYPE_NFIELDS (type) = 1;
9944 TYPE_FIELDS (type)
9945 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
9946
9947 /* Install the variant part. */
9948 TYPE_FIELD_TYPE (type, 0) = union_type;
9949 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9950 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9951 }
9952 else if (TYPE_NFIELDS (type) == 1)
9953 {
9954 /* We assume that a union with a single field is a univariant
9955 enum. */
9956 /* Smash this type to be a structure type. We have to do this
9957 because the type has already been recorded. */
9958 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9959
9960 /* Make a union to hold the variants. */
9961 struct type *union_type = alloc_type (objfile);
9962 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9963 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
9964 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9965 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
9966
9967 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
9968 const char *variant_name
9969 = rust_last_path_segment (TYPE_NAME (field_type));
9970 TYPE_FIELD_NAME (union_type, 0) = variant_name;
9971 TYPE_NAME (field_type)
9972 = rust_fully_qualify (&objfile->objfile_obstack,
9973 TYPE_NAME (type), variant_name);
9974
9975 /* Install the union in the outer struct type. */
9976 TYPE_NFIELDS (type) = 1;
9977 TYPE_FIELDS (type)
9978 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
9979 TYPE_FIELD_TYPE (type, 0) = union_type;
9980 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9981 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9982
9983 alloc_discriminant_info (union_type, -1, 0);
9984 }
9985 else
9986 {
9987 struct type *disr_type = nullptr;
9988 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
9989 {
9990 disr_type = TYPE_FIELD_TYPE (type, i);
9991
9992 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
9993 {
9994 /* All fields of a true enum will be structs. */
9995 return;
9996 }
9997 else if (TYPE_NFIELDS (disr_type) == 0)
9998 {
9999 /* Could be data-less variant, so keep going. */
10000 disr_type = nullptr;
10001 }
10002 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10003 "RUST$ENUM$DISR") != 0)
10004 {
10005 /* Not a Rust enum. */
10006 return;
10007 }
10008 else
10009 {
10010 /* Found one. */
10011 break;
10012 }
10013 }
10014
10015 /* If we got here without a discriminant, then it's probably
10016 just a union. */
10017 if (disr_type == nullptr)
10018 return;
10019
10020 /* Smash this type to be a structure type. We have to do this
10021 because the type has already been recorded. */
10022 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10023
10024 /* Make a union to hold the variants. */
10025 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10026 struct type *union_type = alloc_type (objfile);
10027 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10028 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10029 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10030 TYPE_FIELDS (union_type)
10031 = (struct field *) TYPE_ZALLOC (union_type,
10032 (TYPE_NFIELDS (union_type)
10033 * sizeof (struct field)));
10034
10035 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10036 TYPE_NFIELDS (type) * sizeof (struct field));
10037
10038 /* Install the discriminant at index 0 in the union. */
10039 TYPE_FIELD (union_type, 0) = *disr_field;
10040 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10041 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10042
10043 /* Install the union in the outer struct type. */
10044 TYPE_FIELD_TYPE (type, 0) = union_type;
10045 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10046 TYPE_NFIELDS (type) = 1;
10047
10048 /* Set the size and offset of the union type. */
10049 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10050
10051 /* We need a way to find the correct discriminant given a
10052 variant name. For convenience we build a map here. */
10053 struct type *enum_type = FIELD_TYPE (*disr_field);
10054 std::unordered_map<std::string, ULONGEST> discriminant_map;
10055 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10056 {
10057 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10058 {
10059 const char *name
10060 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10061 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10062 }
10063 }
10064
10065 int n_fields = TYPE_NFIELDS (union_type);
10066 struct discriminant_info *disc
10067 = alloc_discriminant_info (union_type, 0, -1);
10068 /* Skip the discriminant here. */
10069 for (int i = 1; i < n_fields; ++i)
10070 {
10071 /* Find the final word in the name of this variant's type.
10072 That name can be used to look up the correct
10073 discriminant. */
10074 const char *variant_name
10075 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10076 i)));
10077
10078 auto iter = discriminant_map.find (variant_name);
10079 if (iter != discriminant_map.end ())
10080 disc->discriminants[i] = iter->second;
10081
10082 /* Remove the discriminant field. */
10083 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10084 --TYPE_NFIELDS (sub_type);
10085 ++TYPE_FIELDS (sub_type);
10086 TYPE_FIELD_NAME (union_type, i) = variant_name;
10087 TYPE_NAME (sub_type)
10088 = rust_fully_qualify (&objfile->objfile_obstack,
10089 TYPE_NAME (type), variant_name);
10090 }
10091 }
10092 }
10093
10094 /* Rewrite some Rust unions to be structures with variants parts. */
10095
10096 static void
10097 rust_union_quirks (struct dwarf2_cu *cu)
10098 {
10099 gdb_assert (cu->language == language_rust);
10100 for (struct type *type : cu->rust_unions)
10101 quirk_rust_enum (type, cu->per_cu->dwarf2_per_objfile->objfile);
10102 }
10103
10104 /* Return the symtab for PER_CU. This works properly regardless of
10105 whether we're using the index or psymtabs. */
10106
10107 static struct compunit_symtab *
10108 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10109 {
10110 return (per_cu->dwarf2_per_objfile->using_index
10111 ? per_cu->v.quick->compunit_symtab
10112 : per_cu->v.psymtab->compunit_symtab);
10113 }
10114
10115 /* A helper function for computing the list of all symbol tables
10116 included by PER_CU. */
10117
10118 static void
10119 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
10120 htab_t all_children, htab_t all_type_symtabs,
10121 struct dwarf2_per_cu_data *per_cu,
10122 struct compunit_symtab *immediate_parent)
10123 {
10124 void **slot;
10125 int ix;
10126 struct compunit_symtab *cust;
10127 struct dwarf2_per_cu_data *iter;
10128
10129 slot = htab_find_slot (all_children, per_cu, INSERT);
10130 if (*slot != NULL)
10131 {
10132 /* This inclusion and its children have been processed. */
10133 return;
10134 }
10135
10136 *slot = per_cu;
10137 /* Only add a CU if it has a symbol table. */
10138 cust = get_compunit_symtab (per_cu);
10139 if (cust != NULL)
10140 {
10141 /* If this is a type unit only add its symbol table if we haven't
10142 seen it yet (type unit per_cu's can share symtabs). */
10143 if (per_cu->is_debug_types)
10144 {
10145 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10146 if (*slot == NULL)
10147 {
10148 *slot = cust;
10149 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10150 if (cust->user == NULL)
10151 cust->user = immediate_parent;
10152 }
10153 }
10154 else
10155 {
10156 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10157 if (cust->user == NULL)
10158 cust->user = immediate_parent;
10159 }
10160 }
10161
10162 for (ix = 0;
10163 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10164 ++ix)
10165 {
10166 recursively_compute_inclusions (result, all_children,
10167 all_type_symtabs, iter, cust);
10168 }
10169 }
10170
10171 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10172 PER_CU. */
10173
10174 static void
10175 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10176 {
10177 gdb_assert (! per_cu->is_debug_types);
10178
10179 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10180 {
10181 int ix, len;
10182 struct dwarf2_per_cu_data *per_cu_iter;
10183 struct compunit_symtab *compunit_symtab_iter;
10184 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
10185 htab_t all_children, all_type_symtabs;
10186 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10187
10188 /* If we don't have a symtab, we can just skip this case. */
10189 if (cust == NULL)
10190 return;
10191
10192 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10193 NULL, xcalloc, xfree);
10194 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10195 NULL, xcalloc, xfree);
10196
10197 for (ix = 0;
10198 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10199 ix, per_cu_iter);
10200 ++ix)
10201 {
10202 recursively_compute_inclusions (&result_symtabs, all_children,
10203 all_type_symtabs, per_cu_iter,
10204 cust);
10205 }
10206
10207 /* Now we have a transitive closure of all the included symtabs. */
10208 len = VEC_length (compunit_symtab_ptr, result_symtabs);
10209 cust->includes
10210 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10211 struct compunit_symtab *, len + 1);
10212 for (ix = 0;
10213 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
10214 compunit_symtab_iter);
10215 ++ix)
10216 cust->includes[ix] = compunit_symtab_iter;
10217 cust->includes[len] = NULL;
10218
10219 VEC_free (compunit_symtab_ptr, result_symtabs);
10220 htab_delete (all_children);
10221 htab_delete (all_type_symtabs);
10222 }
10223 }
10224
10225 /* Compute the 'includes' field for the symtabs of all the CUs we just
10226 read. */
10227
10228 static void
10229 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10230 {
10231 int ix;
10232 struct dwarf2_per_cu_data *iter;
10233
10234 for (ix = 0;
10235 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
10236 ix, iter);
10237 ++ix)
10238 {
10239 if (! iter->is_debug_types)
10240 compute_compunit_symtab_includes (iter);
10241 }
10242
10243 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
10244 }
10245
10246 /* Generate full symbol information for PER_CU, whose DIEs have
10247 already been loaded into memory. */
10248
10249 static void
10250 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10251 enum language pretend_language)
10252 {
10253 struct dwarf2_cu *cu = per_cu->cu;
10254 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10255 struct objfile *objfile = dwarf2_per_objfile->objfile;
10256 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10257 CORE_ADDR lowpc, highpc;
10258 struct compunit_symtab *cust;
10259 CORE_ADDR baseaddr;
10260 struct block *static_block;
10261 CORE_ADDR addr;
10262
10263 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10264
10265 buildsym_init ();
10266 scoped_free_pendings free_pending;
10267
10268 /* Clear the list here in case something was left over. */
10269 cu->method_list.clear ();
10270
10271 cu->list_in_scope = &file_symbols;
10272
10273 cu->language = pretend_language;
10274 cu->language_defn = language_def (cu->language);
10275
10276 /* Do line number decoding in read_file_scope () */
10277 process_die (cu->dies, cu);
10278
10279 /* For now fudge the Go package. */
10280 if (cu->language == language_go)
10281 fixup_go_packaging (cu);
10282
10283 /* Now that we have processed all the DIEs in the CU, all the types
10284 should be complete, and it should now be safe to compute all of the
10285 physnames. */
10286 compute_delayed_physnames (cu);
10287
10288 if (cu->language == language_rust)
10289 rust_union_quirks (cu);
10290
10291 /* Some compilers don't define a DW_AT_high_pc attribute for the
10292 compilation unit. If the DW_AT_high_pc is missing, synthesize
10293 it, by scanning the DIE's below the compilation unit. */
10294 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10295
10296 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10297 static_block = end_symtab_get_static_block (addr, 0, 1);
10298
10299 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10300 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10301 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10302 addrmap to help ensure it has an accurate map of pc values belonging to
10303 this comp unit. */
10304 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10305
10306 cust = end_symtab_from_static_block (static_block,
10307 SECT_OFF_TEXT (objfile), 0);
10308
10309 if (cust != NULL)
10310 {
10311 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10312
10313 /* Set symtab language to language from DW_AT_language. If the
10314 compilation is from a C file generated by language preprocessors, do
10315 not set the language if it was already deduced by start_subfile. */
10316 if (!(cu->language == language_c
10317 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10318 COMPUNIT_FILETABS (cust)->language = cu->language;
10319
10320 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10321 produce DW_AT_location with location lists but it can be possibly
10322 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10323 there were bugs in prologue debug info, fixed later in GCC-4.5
10324 by "unwind info for epilogues" patch (which is not directly related).
10325
10326 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10327 needed, it would be wrong due to missing DW_AT_producer there.
10328
10329 Still one can confuse GDB by using non-standard GCC compilation
10330 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10331 */
10332 if (cu->has_loclist && gcc_4_minor >= 5)
10333 cust->locations_valid = 1;
10334
10335 if (gcc_4_minor >= 5)
10336 cust->epilogue_unwind_valid = 1;
10337
10338 cust->call_site_htab = cu->call_site_htab;
10339 }
10340
10341 if (dwarf2_per_objfile->using_index)
10342 per_cu->v.quick->compunit_symtab = cust;
10343 else
10344 {
10345 struct partial_symtab *pst = per_cu->v.psymtab;
10346 pst->compunit_symtab = cust;
10347 pst->readin = 1;
10348 }
10349
10350 /* Push it for inclusion processing later. */
10351 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
10352 }
10353
10354 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10355 already been loaded into memory. */
10356
10357 static void
10358 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10359 enum language pretend_language)
10360 {
10361 struct dwarf2_cu *cu = per_cu->cu;
10362 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10363 struct objfile *objfile = dwarf2_per_objfile->objfile;
10364 struct compunit_symtab *cust;
10365 struct signatured_type *sig_type;
10366
10367 gdb_assert (per_cu->is_debug_types);
10368 sig_type = (struct signatured_type *) per_cu;
10369
10370 buildsym_init ();
10371 scoped_free_pendings free_pending;
10372
10373 /* Clear the list here in case something was left over. */
10374 cu->method_list.clear ();
10375
10376 cu->list_in_scope = &file_symbols;
10377
10378 cu->language = pretend_language;
10379 cu->language_defn = language_def (cu->language);
10380
10381 /* The symbol tables are set up in read_type_unit_scope. */
10382 process_die (cu->dies, cu);
10383
10384 /* For now fudge the Go package. */
10385 if (cu->language == language_go)
10386 fixup_go_packaging (cu);
10387
10388 /* Now that we have processed all the DIEs in the CU, all the types
10389 should be complete, and it should now be safe to compute all of the
10390 physnames. */
10391 compute_delayed_physnames (cu);
10392
10393 if (cu->language == language_rust)
10394 rust_union_quirks (cu);
10395
10396 /* TUs share symbol tables.
10397 If this is the first TU to use this symtab, complete the construction
10398 of it with end_expandable_symtab. Otherwise, complete the addition of
10399 this TU's symbols to the existing symtab. */
10400 if (sig_type->type_unit_group->compunit_symtab == NULL)
10401 {
10402 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10403 sig_type->type_unit_group->compunit_symtab = cust;
10404
10405 if (cust != NULL)
10406 {
10407 /* Set symtab language to language from DW_AT_language. If the
10408 compilation is from a C file generated by language preprocessors,
10409 do not set the language if it was already deduced by
10410 start_subfile. */
10411 if (!(cu->language == language_c
10412 && COMPUNIT_FILETABS (cust)->language != language_c))
10413 COMPUNIT_FILETABS (cust)->language = cu->language;
10414 }
10415 }
10416 else
10417 {
10418 augment_type_symtab ();
10419 cust = sig_type->type_unit_group->compunit_symtab;
10420 }
10421
10422 if (dwarf2_per_objfile->using_index)
10423 per_cu->v.quick->compunit_symtab = cust;
10424 else
10425 {
10426 struct partial_symtab *pst = per_cu->v.psymtab;
10427 pst->compunit_symtab = cust;
10428 pst->readin = 1;
10429 }
10430 }
10431
10432 /* Process an imported unit DIE. */
10433
10434 static void
10435 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10436 {
10437 struct attribute *attr;
10438
10439 /* For now we don't handle imported units in type units. */
10440 if (cu->per_cu->is_debug_types)
10441 {
10442 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10443 " supported in type units [in module %s]"),
10444 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10445 }
10446
10447 attr = dwarf2_attr (die, DW_AT_import, cu);
10448 if (attr != NULL)
10449 {
10450 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10451 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10452 dwarf2_per_cu_data *per_cu
10453 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10454 cu->per_cu->dwarf2_per_objfile);
10455
10456 /* If necessary, add it to the queue and load its DIEs. */
10457 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10458 load_full_comp_unit (per_cu, cu->language);
10459
10460 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10461 per_cu);
10462 }
10463 }
10464
10465 /* RAII object that represents a process_die scope: i.e.,
10466 starts/finishes processing a DIE. */
10467 class process_die_scope
10468 {
10469 public:
10470 process_die_scope (die_info *die, dwarf2_cu *cu)
10471 : m_die (die), m_cu (cu)
10472 {
10473 /* We should only be processing DIEs not already in process. */
10474 gdb_assert (!m_die->in_process);
10475 m_die->in_process = true;
10476 }
10477
10478 ~process_die_scope ()
10479 {
10480 m_die->in_process = false;
10481
10482 /* If we're done processing the DIE for the CU that owns the line
10483 header, we don't need the line header anymore. */
10484 if (m_cu->line_header_die_owner == m_die)
10485 {
10486 delete m_cu->line_header;
10487 m_cu->line_header = NULL;
10488 m_cu->line_header_die_owner = NULL;
10489 }
10490 }
10491
10492 private:
10493 die_info *m_die;
10494 dwarf2_cu *m_cu;
10495 };
10496
10497 /* Process a die and its children. */
10498
10499 static void
10500 process_die (struct die_info *die, struct dwarf2_cu *cu)
10501 {
10502 process_die_scope scope (die, cu);
10503
10504 switch (die->tag)
10505 {
10506 case DW_TAG_padding:
10507 break;
10508 case DW_TAG_compile_unit:
10509 case DW_TAG_partial_unit:
10510 read_file_scope (die, cu);
10511 break;
10512 case DW_TAG_type_unit:
10513 read_type_unit_scope (die, cu);
10514 break;
10515 case DW_TAG_subprogram:
10516 case DW_TAG_inlined_subroutine:
10517 read_func_scope (die, cu);
10518 break;
10519 case DW_TAG_lexical_block:
10520 case DW_TAG_try_block:
10521 case DW_TAG_catch_block:
10522 read_lexical_block_scope (die, cu);
10523 break;
10524 case DW_TAG_call_site:
10525 case DW_TAG_GNU_call_site:
10526 read_call_site_scope (die, cu);
10527 break;
10528 case DW_TAG_class_type:
10529 case DW_TAG_interface_type:
10530 case DW_TAG_structure_type:
10531 case DW_TAG_union_type:
10532 process_structure_scope (die, cu);
10533 break;
10534 case DW_TAG_enumeration_type:
10535 process_enumeration_scope (die, cu);
10536 break;
10537
10538 /* These dies have a type, but processing them does not create
10539 a symbol or recurse to process the children. Therefore we can
10540 read them on-demand through read_type_die. */
10541 case DW_TAG_subroutine_type:
10542 case DW_TAG_set_type:
10543 case DW_TAG_array_type:
10544 case DW_TAG_pointer_type:
10545 case DW_TAG_ptr_to_member_type:
10546 case DW_TAG_reference_type:
10547 case DW_TAG_rvalue_reference_type:
10548 case DW_TAG_string_type:
10549 break;
10550
10551 case DW_TAG_base_type:
10552 case DW_TAG_subrange_type:
10553 case DW_TAG_typedef:
10554 /* Add a typedef symbol for the type definition, if it has a
10555 DW_AT_name. */
10556 new_symbol (die, read_type_die (die, cu), cu);
10557 break;
10558 case DW_TAG_common_block:
10559 read_common_block (die, cu);
10560 break;
10561 case DW_TAG_common_inclusion:
10562 break;
10563 case DW_TAG_namespace:
10564 cu->processing_has_namespace_info = 1;
10565 read_namespace (die, cu);
10566 break;
10567 case DW_TAG_module:
10568 cu->processing_has_namespace_info = 1;
10569 read_module (die, cu);
10570 break;
10571 case DW_TAG_imported_declaration:
10572 cu->processing_has_namespace_info = 1;
10573 if (read_namespace_alias (die, cu))
10574 break;
10575 /* The declaration is not a global namespace alias: fall through. */
10576 case DW_TAG_imported_module:
10577 cu->processing_has_namespace_info = 1;
10578 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10579 || cu->language != language_fortran))
10580 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
10581 dwarf_tag_name (die->tag));
10582 read_import_statement (die, cu);
10583 break;
10584
10585 case DW_TAG_imported_unit:
10586 process_imported_unit_die (die, cu);
10587 break;
10588
10589 case DW_TAG_variable:
10590 read_variable (die, cu);
10591 break;
10592
10593 default:
10594 new_symbol (die, NULL, cu);
10595 break;
10596 }
10597 }
10598 \f
10599 /* DWARF name computation. */
10600
10601 /* A helper function for dwarf2_compute_name which determines whether DIE
10602 needs to have the name of the scope prepended to the name listed in the
10603 die. */
10604
10605 static int
10606 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10607 {
10608 struct attribute *attr;
10609
10610 switch (die->tag)
10611 {
10612 case DW_TAG_namespace:
10613 case DW_TAG_typedef:
10614 case DW_TAG_class_type:
10615 case DW_TAG_interface_type:
10616 case DW_TAG_structure_type:
10617 case DW_TAG_union_type:
10618 case DW_TAG_enumeration_type:
10619 case DW_TAG_enumerator:
10620 case DW_TAG_subprogram:
10621 case DW_TAG_inlined_subroutine:
10622 case DW_TAG_member:
10623 case DW_TAG_imported_declaration:
10624 return 1;
10625
10626 case DW_TAG_variable:
10627 case DW_TAG_constant:
10628 /* We only need to prefix "globally" visible variables. These include
10629 any variable marked with DW_AT_external or any variable that
10630 lives in a namespace. [Variables in anonymous namespaces
10631 require prefixing, but they are not DW_AT_external.] */
10632
10633 if (dwarf2_attr (die, DW_AT_specification, cu))
10634 {
10635 struct dwarf2_cu *spec_cu = cu;
10636
10637 return die_needs_namespace (die_specification (die, &spec_cu),
10638 spec_cu);
10639 }
10640
10641 attr = dwarf2_attr (die, DW_AT_external, cu);
10642 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10643 && die->parent->tag != DW_TAG_module)
10644 return 0;
10645 /* A variable in a lexical block of some kind does not need a
10646 namespace, even though in C++ such variables may be external
10647 and have a mangled name. */
10648 if (die->parent->tag == DW_TAG_lexical_block
10649 || die->parent->tag == DW_TAG_try_block
10650 || die->parent->tag == DW_TAG_catch_block
10651 || die->parent->tag == DW_TAG_subprogram)
10652 return 0;
10653 return 1;
10654
10655 default:
10656 return 0;
10657 }
10658 }
10659
10660 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10661 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10662 defined for the given DIE. */
10663
10664 static struct attribute *
10665 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10666 {
10667 struct attribute *attr;
10668
10669 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10670 if (attr == NULL)
10671 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10672
10673 return attr;
10674 }
10675
10676 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10677 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10678 defined for the given DIE. */
10679
10680 static const char *
10681 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10682 {
10683 const char *linkage_name;
10684
10685 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10686 if (linkage_name == NULL)
10687 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10688
10689 return linkage_name;
10690 }
10691
10692 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10693 compute the physname for the object, which include a method's:
10694 - formal parameters (C++),
10695 - receiver type (Go),
10696
10697 The term "physname" is a bit confusing.
10698 For C++, for example, it is the demangled name.
10699 For Go, for example, it's the mangled name.
10700
10701 For Ada, return the DIE's linkage name rather than the fully qualified
10702 name. PHYSNAME is ignored..
10703
10704 The result is allocated on the objfile_obstack and canonicalized. */
10705
10706 static const char *
10707 dwarf2_compute_name (const char *name,
10708 struct die_info *die, struct dwarf2_cu *cu,
10709 int physname)
10710 {
10711 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10712
10713 if (name == NULL)
10714 name = dwarf2_name (die, cu);
10715
10716 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10717 but otherwise compute it by typename_concat inside GDB.
10718 FIXME: Actually this is not really true, or at least not always true.
10719 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10720 Fortran names because there is no mangling standard. So new_symbol
10721 will set the demangled name to the result of dwarf2_full_name, and it is
10722 the demangled name that GDB uses if it exists. */
10723 if (cu->language == language_ada
10724 || (cu->language == language_fortran && physname))
10725 {
10726 /* For Ada unit, we prefer the linkage name over the name, as
10727 the former contains the exported name, which the user expects
10728 to be able to reference. Ideally, we want the user to be able
10729 to reference this entity using either natural or linkage name,
10730 but we haven't started looking at this enhancement yet. */
10731 const char *linkage_name = dw2_linkage_name (die, cu);
10732
10733 if (linkage_name != NULL)
10734 return linkage_name;
10735 }
10736
10737 /* These are the only languages we know how to qualify names in. */
10738 if (name != NULL
10739 && (cu->language == language_cplus
10740 || cu->language == language_fortran || cu->language == language_d
10741 || cu->language == language_rust))
10742 {
10743 if (die_needs_namespace (die, cu))
10744 {
10745 const char *prefix;
10746 const char *canonical_name = NULL;
10747
10748 string_file buf;
10749
10750 prefix = determine_prefix (die, cu);
10751 if (*prefix != '\0')
10752 {
10753 char *prefixed_name = typename_concat (NULL, prefix, name,
10754 physname, cu);
10755
10756 buf.puts (prefixed_name);
10757 xfree (prefixed_name);
10758 }
10759 else
10760 buf.puts (name);
10761
10762 /* Template parameters may be specified in the DIE's DW_AT_name, or
10763 as children with DW_TAG_template_type_param or
10764 DW_TAG_value_type_param. If the latter, add them to the name
10765 here. If the name already has template parameters, then
10766 skip this step; some versions of GCC emit both, and
10767 it is more efficient to use the pre-computed name.
10768
10769 Something to keep in mind about this process: it is very
10770 unlikely, or in some cases downright impossible, to produce
10771 something that will match the mangled name of a function.
10772 If the definition of the function has the same debug info,
10773 we should be able to match up with it anyway. But fallbacks
10774 using the minimal symbol, for instance to find a method
10775 implemented in a stripped copy of libstdc++, will not work.
10776 If we do not have debug info for the definition, we will have to
10777 match them up some other way.
10778
10779 When we do name matching there is a related problem with function
10780 templates; two instantiated function templates are allowed to
10781 differ only by their return types, which we do not add here. */
10782
10783 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10784 {
10785 struct attribute *attr;
10786 struct die_info *child;
10787 int first = 1;
10788
10789 die->building_fullname = 1;
10790
10791 for (child = die->child; child != NULL; child = child->sibling)
10792 {
10793 struct type *type;
10794 LONGEST value;
10795 const gdb_byte *bytes;
10796 struct dwarf2_locexpr_baton *baton;
10797 struct value *v;
10798
10799 if (child->tag != DW_TAG_template_type_param
10800 && child->tag != DW_TAG_template_value_param)
10801 continue;
10802
10803 if (first)
10804 {
10805 buf.puts ("<");
10806 first = 0;
10807 }
10808 else
10809 buf.puts (", ");
10810
10811 attr = dwarf2_attr (child, DW_AT_type, cu);
10812 if (attr == NULL)
10813 {
10814 complaint (&symfile_complaints,
10815 _("template parameter missing DW_AT_type"));
10816 buf.puts ("UNKNOWN_TYPE");
10817 continue;
10818 }
10819 type = die_type (child, cu);
10820
10821 if (child->tag == DW_TAG_template_type_param)
10822 {
10823 c_print_type (type, "", &buf, -1, 0, &type_print_raw_options);
10824 continue;
10825 }
10826
10827 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10828 if (attr == NULL)
10829 {
10830 complaint (&symfile_complaints,
10831 _("template parameter missing "
10832 "DW_AT_const_value"));
10833 buf.puts ("UNKNOWN_VALUE");
10834 continue;
10835 }
10836
10837 dwarf2_const_value_attr (attr, type, name,
10838 &cu->comp_unit_obstack, cu,
10839 &value, &bytes, &baton);
10840
10841 if (TYPE_NOSIGN (type))
10842 /* GDB prints characters as NUMBER 'CHAR'. If that's
10843 changed, this can use value_print instead. */
10844 c_printchar (value, type, &buf);
10845 else
10846 {
10847 struct value_print_options opts;
10848
10849 if (baton != NULL)
10850 v = dwarf2_evaluate_loc_desc (type, NULL,
10851 baton->data,
10852 baton->size,
10853 baton->per_cu);
10854 else if (bytes != NULL)
10855 {
10856 v = allocate_value (type);
10857 memcpy (value_contents_writeable (v), bytes,
10858 TYPE_LENGTH (type));
10859 }
10860 else
10861 v = value_from_longest (type, value);
10862
10863 /* Specify decimal so that we do not depend on
10864 the radix. */
10865 get_formatted_print_options (&opts, 'd');
10866 opts.raw = 1;
10867 value_print (v, &buf, &opts);
10868 release_value (v);
10869 }
10870 }
10871
10872 die->building_fullname = 0;
10873
10874 if (!first)
10875 {
10876 /* Close the argument list, with a space if necessary
10877 (nested templates). */
10878 if (!buf.empty () && buf.string ().back () == '>')
10879 buf.puts (" >");
10880 else
10881 buf.puts (">");
10882 }
10883 }
10884
10885 /* For C++ methods, append formal parameter type
10886 information, if PHYSNAME. */
10887
10888 if (physname && die->tag == DW_TAG_subprogram
10889 && cu->language == language_cplus)
10890 {
10891 struct type *type = read_type_die (die, cu);
10892
10893 c_type_print_args (type, &buf, 1, cu->language,
10894 &type_print_raw_options);
10895
10896 if (cu->language == language_cplus)
10897 {
10898 /* Assume that an artificial first parameter is
10899 "this", but do not crash if it is not. RealView
10900 marks unnamed (and thus unused) parameters as
10901 artificial; there is no way to differentiate
10902 the two cases. */
10903 if (TYPE_NFIELDS (type) > 0
10904 && TYPE_FIELD_ARTIFICIAL (type, 0)
10905 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10906 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10907 0))))
10908 buf.puts (" const");
10909 }
10910 }
10911
10912 const std::string &intermediate_name = buf.string ();
10913
10914 if (cu->language == language_cplus)
10915 canonical_name
10916 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10917 &objfile->per_bfd->storage_obstack);
10918
10919 /* If we only computed INTERMEDIATE_NAME, or if
10920 INTERMEDIATE_NAME is already canonical, then we need to
10921 copy it to the appropriate obstack. */
10922 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10923 name = ((const char *)
10924 obstack_copy0 (&objfile->per_bfd->storage_obstack,
10925 intermediate_name.c_str (),
10926 intermediate_name.length ()));
10927 else
10928 name = canonical_name;
10929 }
10930 }
10931
10932 return name;
10933 }
10934
10935 /* Return the fully qualified name of DIE, based on its DW_AT_name.
10936 If scope qualifiers are appropriate they will be added. The result
10937 will be allocated on the storage_obstack, or NULL if the DIE does
10938 not have a name. NAME may either be from a previous call to
10939 dwarf2_name or NULL.
10940
10941 The output string will be canonicalized (if C++). */
10942
10943 static const char *
10944 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10945 {
10946 return dwarf2_compute_name (name, die, cu, 0);
10947 }
10948
10949 /* Construct a physname for the given DIE in CU. NAME may either be
10950 from a previous call to dwarf2_name or NULL. The result will be
10951 allocated on the objfile_objstack or NULL if the DIE does not have a
10952 name.
10953
10954 The output string will be canonicalized (if C++). */
10955
10956 static const char *
10957 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10958 {
10959 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10960 const char *retval, *mangled = NULL, *canon = NULL;
10961 int need_copy = 1;
10962
10963 /* In this case dwarf2_compute_name is just a shortcut not building anything
10964 on its own. */
10965 if (!die_needs_namespace (die, cu))
10966 return dwarf2_compute_name (name, die, cu, 1);
10967
10968 mangled = dw2_linkage_name (die, cu);
10969
10970 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
10971 See https://github.com/rust-lang/rust/issues/32925. */
10972 if (cu->language == language_rust && mangled != NULL
10973 && strchr (mangled, '{') != NULL)
10974 mangled = NULL;
10975
10976 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
10977 has computed. */
10978 gdb::unique_xmalloc_ptr<char> demangled;
10979 if (mangled != NULL)
10980 {
10981
10982 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
10983 {
10984 /* Do nothing (do not demangle the symbol name). */
10985 }
10986 else if (cu->language == language_go)
10987 {
10988 /* This is a lie, but we already lie to the caller new_symbol.
10989 new_symbol assumes we return the mangled name.
10990 This just undoes that lie until things are cleaned up. */
10991 }
10992 else
10993 {
10994 /* Use DMGL_RET_DROP for C++ template functions to suppress
10995 their return type. It is easier for GDB users to search
10996 for such functions as `name(params)' than `long name(params)'.
10997 In such case the minimal symbol names do not match the full
10998 symbol names but for template functions there is never a need
10999 to look up their definition from their declaration so
11000 the only disadvantage remains the minimal symbol variant
11001 `long name(params)' does not have the proper inferior type. */
11002 demangled.reset (gdb_demangle (mangled,
11003 (DMGL_PARAMS | DMGL_ANSI
11004 | DMGL_RET_DROP)));
11005 }
11006 if (demangled)
11007 canon = demangled.get ();
11008 else
11009 {
11010 canon = mangled;
11011 need_copy = 0;
11012 }
11013 }
11014
11015 if (canon == NULL || check_physname)
11016 {
11017 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11018
11019 if (canon != NULL && strcmp (physname, canon) != 0)
11020 {
11021 /* It may not mean a bug in GDB. The compiler could also
11022 compute DW_AT_linkage_name incorrectly. But in such case
11023 GDB would need to be bug-to-bug compatible. */
11024
11025 complaint (&symfile_complaints,
11026 _("Computed physname <%s> does not match demangled <%s> "
11027 "(from linkage <%s>) - DIE at %s [in module %s]"),
11028 physname, canon, mangled, sect_offset_str (die->sect_off),
11029 objfile_name (objfile));
11030
11031 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11032 is available here - over computed PHYSNAME. It is safer
11033 against both buggy GDB and buggy compilers. */
11034
11035 retval = canon;
11036 }
11037 else
11038 {
11039 retval = physname;
11040 need_copy = 0;
11041 }
11042 }
11043 else
11044 retval = canon;
11045
11046 if (need_copy)
11047 retval = ((const char *)
11048 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11049 retval, strlen (retval)));
11050
11051 return retval;
11052 }
11053
11054 /* Inspect DIE in CU for a namespace alias. If one exists, record
11055 a new symbol for it.
11056
11057 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11058
11059 static int
11060 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11061 {
11062 struct attribute *attr;
11063
11064 /* If the die does not have a name, this is not a namespace
11065 alias. */
11066 attr = dwarf2_attr (die, DW_AT_name, cu);
11067 if (attr != NULL)
11068 {
11069 int num;
11070 struct die_info *d = die;
11071 struct dwarf2_cu *imported_cu = cu;
11072
11073 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11074 keep inspecting DIEs until we hit the underlying import. */
11075 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11076 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11077 {
11078 attr = dwarf2_attr (d, DW_AT_import, cu);
11079 if (attr == NULL)
11080 break;
11081
11082 d = follow_die_ref (d, attr, &imported_cu);
11083 if (d->tag != DW_TAG_imported_declaration)
11084 break;
11085 }
11086
11087 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11088 {
11089 complaint (&symfile_complaints,
11090 _("DIE at %s has too many recursively imported "
11091 "declarations"), sect_offset_str (d->sect_off));
11092 return 0;
11093 }
11094
11095 if (attr != NULL)
11096 {
11097 struct type *type;
11098 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11099
11100 type = get_die_type_at_offset (sect_off, cu->per_cu);
11101 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11102 {
11103 /* This declaration is a global namespace alias. Add
11104 a symbol for it whose type is the aliased namespace. */
11105 new_symbol (die, type, cu);
11106 return 1;
11107 }
11108 }
11109 }
11110
11111 return 0;
11112 }
11113
11114 /* Return the using directives repository (global or local?) to use in the
11115 current context for LANGUAGE.
11116
11117 For Ada, imported declarations can materialize renamings, which *may* be
11118 global. However it is impossible (for now?) in DWARF to distinguish
11119 "external" imported declarations and "static" ones. As all imported
11120 declarations seem to be static in all other languages, make them all CU-wide
11121 global only in Ada. */
11122
11123 static struct using_direct **
11124 using_directives (enum language language)
11125 {
11126 if (language == language_ada && context_stack_depth == 0)
11127 return &global_using_directives;
11128 else
11129 return &local_using_directives;
11130 }
11131
11132 /* Read the import statement specified by the given die and record it. */
11133
11134 static void
11135 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11136 {
11137 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11138 struct attribute *import_attr;
11139 struct die_info *imported_die, *child_die;
11140 struct dwarf2_cu *imported_cu;
11141 const char *imported_name;
11142 const char *imported_name_prefix;
11143 const char *canonical_name;
11144 const char *import_alias;
11145 const char *imported_declaration = NULL;
11146 const char *import_prefix;
11147 std::vector<const char *> excludes;
11148
11149 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11150 if (import_attr == NULL)
11151 {
11152 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
11153 dwarf_tag_name (die->tag));
11154 return;
11155 }
11156
11157 imported_cu = cu;
11158 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11159 imported_name = dwarf2_name (imported_die, imported_cu);
11160 if (imported_name == NULL)
11161 {
11162 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11163
11164 The import in the following code:
11165 namespace A
11166 {
11167 typedef int B;
11168 }
11169
11170 int main ()
11171 {
11172 using A::B;
11173 B b;
11174 return b;
11175 }
11176
11177 ...
11178 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11179 <52> DW_AT_decl_file : 1
11180 <53> DW_AT_decl_line : 6
11181 <54> DW_AT_import : <0x75>
11182 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11183 <59> DW_AT_name : B
11184 <5b> DW_AT_decl_file : 1
11185 <5c> DW_AT_decl_line : 2
11186 <5d> DW_AT_type : <0x6e>
11187 ...
11188 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11189 <76> DW_AT_byte_size : 4
11190 <77> DW_AT_encoding : 5 (signed)
11191
11192 imports the wrong die ( 0x75 instead of 0x58 ).
11193 This case will be ignored until the gcc bug is fixed. */
11194 return;
11195 }
11196
11197 /* Figure out the local name after import. */
11198 import_alias = dwarf2_name (die, cu);
11199
11200 /* Figure out where the statement is being imported to. */
11201 import_prefix = determine_prefix (die, cu);
11202
11203 /* Figure out what the scope of the imported die is and prepend it
11204 to the name of the imported die. */
11205 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11206
11207 if (imported_die->tag != DW_TAG_namespace
11208 && imported_die->tag != DW_TAG_module)
11209 {
11210 imported_declaration = imported_name;
11211 canonical_name = imported_name_prefix;
11212 }
11213 else if (strlen (imported_name_prefix) > 0)
11214 canonical_name = obconcat (&objfile->objfile_obstack,
11215 imported_name_prefix,
11216 (cu->language == language_d ? "." : "::"),
11217 imported_name, (char *) NULL);
11218 else
11219 canonical_name = imported_name;
11220
11221 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11222 for (child_die = die->child; child_die && child_die->tag;
11223 child_die = sibling_die (child_die))
11224 {
11225 /* DWARF-4: A Fortran use statement with a “rename list” may be
11226 represented by an imported module entry with an import attribute
11227 referring to the module and owned entries corresponding to those
11228 entities that are renamed as part of being imported. */
11229
11230 if (child_die->tag != DW_TAG_imported_declaration)
11231 {
11232 complaint (&symfile_complaints,
11233 _("child DW_TAG_imported_declaration expected "
11234 "- DIE at %s [in module %s]"),
11235 sect_offset_str (child_die->sect_off),
11236 objfile_name (objfile));
11237 continue;
11238 }
11239
11240 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11241 if (import_attr == NULL)
11242 {
11243 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
11244 dwarf_tag_name (child_die->tag));
11245 continue;
11246 }
11247
11248 imported_cu = cu;
11249 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11250 &imported_cu);
11251 imported_name = dwarf2_name (imported_die, imported_cu);
11252 if (imported_name == NULL)
11253 {
11254 complaint (&symfile_complaints,
11255 _("child DW_TAG_imported_declaration has unknown "
11256 "imported name - DIE at %s [in module %s]"),
11257 sect_offset_str (child_die->sect_off),
11258 objfile_name (objfile));
11259 continue;
11260 }
11261
11262 excludes.push_back (imported_name);
11263
11264 process_die (child_die, cu);
11265 }
11266
11267 add_using_directive (using_directives (cu->language),
11268 import_prefix,
11269 canonical_name,
11270 import_alias,
11271 imported_declaration,
11272 excludes,
11273 0,
11274 &objfile->objfile_obstack);
11275 }
11276
11277 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11278 types, but gives them a size of zero. Starting with version 14,
11279 ICC is compatible with GCC. */
11280
11281 static int
11282 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11283 {
11284 if (!cu->checked_producer)
11285 check_producer (cu);
11286
11287 return cu->producer_is_icc_lt_14;
11288 }
11289
11290 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11291 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11292 this, it was first present in GCC release 4.3.0. */
11293
11294 static int
11295 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11296 {
11297 if (!cu->checked_producer)
11298 check_producer (cu);
11299
11300 return cu->producer_is_gcc_lt_4_3;
11301 }
11302
11303 static file_and_directory
11304 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11305 {
11306 file_and_directory res;
11307
11308 /* Find the filename. Do not use dwarf2_name here, since the filename
11309 is not a source language identifier. */
11310 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11311 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11312
11313 if (res.comp_dir == NULL
11314 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11315 && IS_ABSOLUTE_PATH (res.name))
11316 {
11317 res.comp_dir_storage = ldirname (res.name);
11318 if (!res.comp_dir_storage.empty ())
11319 res.comp_dir = res.comp_dir_storage.c_str ();
11320 }
11321 if (res.comp_dir != NULL)
11322 {
11323 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11324 directory, get rid of it. */
11325 const char *cp = strchr (res.comp_dir, ':');
11326
11327 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11328 res.comp_dir = cp + 1;
11329 }
11330
11331 if (res.name == NULL)
11332 res.name = "<unknown>";
11333
11334 return res;
11335 }
11336
11337 /* Handle DW_AT_stmt_list for a compilation unit.
11338 DIE is the DW_TAG_compile_unit die for CU.
11339 COMP_DIR is the compilation directory. LOWPC is passed to
11340 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11341
11342 static void
11343 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11344 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11345 {
11346 struct dwarf2_per_objfile *dwarf2_per_objfile
11347 = cu->per_cu->dwarf2_per_objfile;
11348 struct objfile *objfile = dwarf2_per_objfile->objfile;
11349 struct attribute *attr;
11350 struct line_header line_header_local;
11351 hashval_t line_header_local_hash;
11352 void **slot;
11353 int decode_mapping;
11354
11355 gdb_assert (! cu->per_cu->is_debug_types);
11356
11357 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11358 if (attr == NULL)
11359 return;
11360
11361 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11362
11363 /* The line header hash table is only created if needed (it exists to
11364 prevent redundant reading of the line table for partial_units).
11365 If we're given a partial_unit, we'll need it. If we're given a
11366 compile_unit, then use the line header hash table if it's already
11367 created, but don't create one just yet. */
11368
11369 if (dwarf2_per_objfile->line_header_hash == NULL
11370 && die->tag == DW_TAG_partial_unit)
11371 {
11372 dwarf2_per_objfile->line_header_hash
11373 = htab_create_alloc_ex (127, line_header_hash_voidp,
11374 line_header_eq_voidp,
11375 free_line_header_voidp,
11376 &objfile->objfile_obstack,
11377 hashtab_obstack_allocate,
11378 dummy_obstack_deallocate);
11379 }
11380
11381 line_header_local.sect_off = line_offset;
11382 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11383 line_header_local_hash = line_header_hash (&line_header_local);
11384 if (dwarf2_per_objfile->line_header_hash != NULL)
11385 {
11386 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11387 &line_header_local,
11388 line_header_local_hash, NO_INSERT);
11389
11390 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11391 is not present in *SLOT (since if there is something in *SLOT then
11392 it will be for a partial_unit). */
11393 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11394 {
11395 gdb_assert (*slot != NULL);
11396 cu->line_header = (struct line_header *) *slot;
11397 return;
11398 }
11399 }
11400
11401 /* dwarf_decode_line_header does not yet provide sufficient information.
11402 We always have to call also dwarf_decode_lines for it. */
11403 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11404 if (lh == NULL)
11405 return;
11406
11407 cu->line_header = lh.release ();
11408 cu->line_header_die_owner = die;
11409
11410 if (dwarf2_per_objfile->line_header_hash == NULL)
11411 slot = NULL;
11412 else
11413 {
11414 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11415 &line_header_local,
11416 line_header_local_hash, INSERT);
11417 gdb_assert (slot != NULL);
11418 }
11419 if (slot != NULL && *slot == NULL)
11420 {
11421 /* This newly decoded line number information unit will be owned
11422 by line_header_hash hash table. */
11423 *slot = cu->line_header;
11424 cu->line_header_die_owner = NULL;
11425 }
11426 else
11427 {
11428 /* We cannot free any current entry in (*slot) as that struct line_header
11429 may be already used by multiple CUs. Create only temporary decoded
11430 line_header for this CU - it may happen at most once for each line
11431 number information unit. And if we're not using line_header_hash
11432 then this is what we want as well. */
11433 gdb_assert (die->tag != DW_TAG_partial_unit);
11434 }
11435 decode_mapping = (die->tag != DW_TAG_partial_unit);
11436 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11437 decode_mapping);
11438
11439 }
11440
11441 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11442
11443 static void
11444 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11445 {
11446 struct dwarf2_per_objfile *dwarf2_per_objfile
11447 = cu->per_cu->dwarf2_per_objfile;
11448 struct objfile *objfile = dwarf2_per_objfile->objfile;
11449 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11450 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11451 CORE_ADDR highpc = ((CORE_ADDR) 0);
11452 struct attribute *attr;
11453 struct die_info *child_die;
11454 CORE_ADDR baseaddr;
11455
11456 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11457
11458 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11459
11460 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11461 from finish_block. */
11462 if (lowpc == ((CORE_ADDR) -1))
11463 lowpc = highpc;
11464 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11465
11466 file_and_directory fnd = find_file_and_directory (die, cu);
11467
11468 prepare_one_comp_unit (cu, die, cu->language);
11469
11470 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11471 standardised yet. As a workaround for the language detection we fall
11472 back to the DW_AT_producer string. */
11473 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11474 cu->language = language_opencl;
11475
11476 /* Similar hack for Go. */
11477 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11478 set_cu_language (DW_LANG_Go, cu);
11479
11480 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
11481
11482 /* Decode line number information if present. We do this before
11483 processing child DIEs, so that the line header table is available
11484 for DW_AT_decl_file. */
11485 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11486
11487 /* Process all dies in compilation unit. */
11488 if (die->child != NULL)
11489 {
11490 child_die = die->child;
11491 while (child_die && child_die->tag)
11492 {
11493 process_die (child_die, cu);
11494 child_die = sibling_die (child_die);
11495 }
11496 }
11497
11498 /* Decode macro information, if present. Dwarf 2 macro information
11499 refers to information in the line number info statement program
11500 header, so we can only read it if we've read the header
11501 successfully. */
11502 attr = dwarf2_attr (die, DW_AT_macros, cu);
11503 if (attr == NULL)
11504 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11505 if (attr && cu->line_header)
11506 {
11507 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11508 complaint (&symfile_complaints,
11509 _("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11510
11511 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11512 }
11513 else
11514 {
11515 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11516 if (attr && cu->line_header)
11517 {
11518 unsigned int macro_offset = DW_UNSND (attr);
11519
11520 dwarf_decode_macros (cu, macro_offset, 0);
11521 }
11522 }
11523 }
11524
11525 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
11526 Create the set of symtabs used by this TU, or if this TU is sharing
11527 symtabs with another TU and the symtabs have already been created
11528 then restore those symtabs in the line header.
11529 We don't need the pc/line-number mapping for type units. */
11530
11531 static void
11532 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
11533 {
11534 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
11535 struct type_unit_group *tu_group;
11536 int first_time;
11537 struct attribute *attr;
11538 unsigned int i;
11539 struct signatured_type *sig_type;
11540
11541 gdb_assert (per_cu->is_debug_types);
11542 sig_type = (struct signatured_type *) per_cu;
11543
11544 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11545
11546 /* If we're using .gdb_index (includes -readnow) then
11547 per_cu->type_unit_group may not have been set up yet. */
11548 if (sig_type->type_unit_group == NULL)
11549 sig_type->type_unit_group = get_type_unit_group (cu, attr);
11550 tu_group = sig_type->type_unit_group;
11551
11552 /* If we've already processed this stmt_list there's no real need to
11553 do it again, we could fake it and just recreate the part we need
11554 (file name,index -> symtab mapping). If data shows this optimization
11555 is useful we can do it then. */
11556 first_time = tu_group->compunit_symtab == NULL;
11557
11558 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11559 debug info. */
11560 line_header_up lh;
11561 if (attr != NULL)
11562 {
11563 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11564 lh = dwarf_decode_line_header (line_offset, cu);
11565 }
11566 if (lh == NULL)
11567 {
11568 if (first_time)
11569 dwarf2_start_symtab (cu, "", NULL, 0);
11570 else
11571 {
11572 gdb_assert (tu_group->symtabs == NULL);
11573 restart_symtab (tu_group->compunit_symtab, "", 0);
11574 }
11575 return;
11576 }
11577
11578 cu->line_header = lh.release ();
11579 cu->line_header_die_owner = die;
11580
11581 if (first_time)
11582 {
11583 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
11584
11585 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11586 still initializing it, and our caller (a few levels up)
11587 process_full_type_unit still needs to know if this is the first
11588 time. */
11589
11590 tu_group->num_symtabs = cu->line_header->file_names.size ();
11591 tu_group->symtabs = XNEWVEC (struct symtab *,
11592 cu->line_header->file_names.size ());
11593
11594 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11595 {
11596 file_entry &fe = cu->line_header->file_names[i];
11597
11598 dwarf2_start_subfile (fe.name, fe.include_dir (cu->line_header));
11599
11600 if (current_subfile->symtab == NULL)
11601 {
11602 /* NOTE: start_subfile will recognize when it's been
11603 passed a file it has already seen. So we can't
11604 assume there's a simple mapping from
11605 cu->line_header->file_names to subfiles, plus
11606 cu->line_header->file_names may contain dups. */
11607 current_subfile->symtab
11608 = allocate_symtab (cust, current_subfile->name);
11609 }
11610
11611 fe.symtab = current_subfile->symtab;
11612 tu_group->symtabs[i] = fe.symtab;
11613 }
11614 }
11615 else
11616 {
11617 restart_symtab (tu_group->compunit_symtab, "", 0);
11618
11619 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11620 {
11621 file_entry &fe = cu->line_header->file_names[i];
11622
11623 fe.symtab = tu_group->symtabs[i];
11624 }
11625 }
11626
11627 /* The main symtab is allocated last. Type units don't have DW_AT_name
11628 so they don't have a "real" (so to speak) symtab anyway.
11629 There is later code that will assign the main symtab to all symbols
11630 that don't have one. We need to handle the case of a symbol with a
11631 missing symtab (DW_AT_decl_file) anyway. */
11632 }
11633
11634 /* Process DW_TAG_type_unit.
11635 For TUs we want to skip the first top level sibling if it's not the
11636 actual type being defined by this TU. In this case the first top
11637 level sibling is there to provide context only. */
11638
11639 static void
11640 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11641 {
11642 struct die_info *child_die;
11643
11644 prepare_one_comp_unit (cu, die, language_minimal);
11645
11646 /* Initialize (or reinitialize) the machinery for building symtabs.
11647 We do this before processing child DIEs, so that the line header table
11648 is available for DW_AT_decl_file. */
11649 setup_type_unit_groups (die, cu);
11650
11651 if (die->child != NULL)
11652 {
11653 child_die = die->child;
11654 while (child_die && child_die->tag)
11655 {
11656 process_die (child_die, cu);
11657 child_die = sibling_die (child_die);
11658 }
11659 }
11660 }
11661 \f
11662 /* DWO/DWP files.
11663
11664 http://gcc.gnu.org/wiki/DebugFission
11665 http://gcc.gnu.org/wiki/DebugFissionDWP
11666
11667 To simplify handling of both DWO files ("object" files with the DWARF info)
11668 and DWP files (a file with the DWOs packaged up into one file), we treat
11669 DWP files as having a collection of virtual DWO files. */
11670
11671 static hashval_t
11672 hash_dwo_file (const void *item)
11673 {
11674 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11675 hashval_t hash;
11676
11677 hash = htab_hash_string (dwo_file->dwo_name);
11678 if (dwo_file->comp_dir != NULL)
11679 hash += htab_hash_string (dwo_file->comp_dir);
11680 return hash;
11681 }
11682
11683 static int
11684 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11685 {
11686 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11687 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11688
11689 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11690 return 0;
11691 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11692 return lhs->comp_dir == rhs->comp_dir;
11693 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11694 }
11695
11696 /* Allocate a hash table for DWO files. */
11697
11698 static htab_t
11699 allocate_dwo_file_hash_table (struct objfile *objfile)
11700 {
11701 return htab_create_alloc_ex (41,
11702 hash_dwo_file,
11703 eq_dwo_file,
11704 NULL,
11705 &objfile->objfile_obstack,
11706 hashtab_obstack_allocate,
11707 dummy_obstack_deallocate);
11708 }
11709
11710 /* Lookup DWO file DWO_NAME. */
11711
11712 static void **
11713 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11714 const char *dwo_name,
11715 const char *comp_dir)
11716 {
11717 struct dwo_file find_entry;
11718 void **slot;
11719
11720 if (dwarf2_per_objfile->dwo_files == NULL)
11721 dwarf2_per_objfile->dwo_files
11722 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11723
11724 memset (&find_entry, 0, sizeof (find_entry));
11725 find_entry.dwo_name = dwo_name;
11726 find_entry.comp_dir = comp_dir;
11727 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11728
11729 return slot;
11730 }
11731
11732 static hashval_t
11733 hash_dwo_unit (const void *item)
11734 {
11735 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11736
11737 /* This drops the top 32 bits of the id, but is ok for a hash. */
11738 return dwo_unit->signature;
11739 }
11740
11741 static int
11742 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11743 {
11744 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11745 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11746
11747 /* The signature is assumed to be unique within the DWO file.
11748 So while object file CU dwo_id's always have the value zero,
11749 that's OK, assuming each object file DWO file has only one CU,
11750 and that's the rule for now. */
11751 return lhs->signature == rhs->signature;
11752 }
11753
11754 /* Allocate a hash table for DWO CUs,TUs.
11755 There is one of these tables for each of CUs,TUs for each DWO file. */
11756
11757 static htab_t
11758 allocate_dwo_unit_table (struct objfile *objfile)
11759 {
11760 /* Start out with a pretty small number.
11761 Generally DWO files contain only one CU and maybe some TUs. */
11762 return htab_create_alloc_ex (3,
11763 hash_dwo_unit,
11764 eq_dwo_unit,
11765 NULL,
11766 &objfile->objfile_obstack,
11767 hashtab_obstack_allocate,
11768 dummy_obstack_deallocate);
11769 }
11770
11771 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11772
11773 struct create_dwo_cu_data
11774 {
11775 struct dwo_file *dwo_file;
11776 struct dwo_unit dwo_unit;
11777 };
11778
11779 /* die_reader_func for create_dwo_cu. */
11780
11781 static void
11782 create_dwo_cu_reader (const struct die_reader_specs *reader,
11783 const gdb_byte *info_ptr,
11784 struct die_info *comp_unit_die,
11785 int has_children,
11786 void *datap)
11787 {
11788 struct dwarf2_cu *cu = reader->cu;
11789 sect_offset sect_off = cu->per_cu->sect_off;
11790 struct dwarf2_section_info *section = cu->per_cu->section;
11791 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11792 struct dwo_file *dwo_file = data->dwo_file;
11793 struct dwo_unit *dwo_unit = &data->dwo_unit;
11794 struct attribute *attr;
11795
11796 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11797 if (attr == NULL)
11798 {
11799 complaint (&symfile_complaints,
11800 _("Dwarf Error: debug entry at offset %s is missing"
11801 " its dwo_id [in module %s]"),
11802 sect_offset_str (sect_off), dwo_file->dwo_name);
11803 return;
11804 }
11805
11806 dwo_unit->dwo_file = dwo_file;
11807 dwo_unit->signature = DW_UNSND (attr);
11808 dwo_unit->section = section;
11809 dwo_unit->sect_off = sect_off;
11810 dwo_unit->length = cu->per_cu->length;
11811
11812 if (dwarf_read_debug)
11813 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11814 sect_offset_str (sect_off),
11815 hex_string (dwo_unit->signature));
11816 }
11817
11818 /* Create the dwo_units for the CUs in a DWO_FILE.
11819 Note: This function processes DWO files only, not DWP files. */
11820
11821 static void
11822 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11823 struct dwo_file &dwo_file, dwarf2_section_info &section,
11824 htab_t &cus_htab)
11825 {
11826 struct objfile *objfile = dwarf2_per_objfile->objfile;
11827 const gdb_byte *info_ptr, *end_ptr;
11828
11829 dwarf2_read_section (objfile, &section);
11830 info_ptr = section.buffer;
11831
11832 if (info_ptr == NULL)
11833 return;
11834
11835 if (dwarf_read_debug)
11836 {
11837 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11838 get_section_name (&section),
11839 get_section_file_name (&section));
11840 }
11841
11842 end_ptr = info_ptr + section.size;
11843 while (info_ptr < end_ptr)
11844 {
11845 struct dwarf2_per_cu_data per_cu;
11846 struct create_dwo_cu_data create_dwo_cu_data;
11847 struct dwo_unit *dwo_unit;
11848 void **slot;
11849 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11850
11851 memset (&create_dwo_cu_data.dwo_unit, 0,
11852 sizeof (create_dwo_cu_data.dwo_unit));
11853 memset (&per_cu, 0, sizeof (per_cu));
11854 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11855 per_cu.is_debug_types = 0;
11856 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11857 per_cu.section = &section;
11858 create_dwo_cu_data.dwo_file = &dwo_file;
11859
11860 init_cutu_and_read_dies_no_follow (
11861 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11862 info_ptr += per_cu.length;
11863
11864 // If the unit could not be parsed, skip it.
11865 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11866 continue;
11867
11868 if (cus_htab == NULL)
11869 cus_htab = allocate_dwo_unit_table (objfile);
11870
11871 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11872 *dwo_unit = create_dwo_cu_data.dwo_unit;
11873 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11874 gdb_assert (slot != NULL);
11875 if (*slot != NULL)
11876 {
11877 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11878 sect_offset dup_sect_off = dup_cu->sect_off;
11879
11880 complaint (&symfile_complaints,
11881 _("debug cu entry at offset %s is duplicate to"
11882 " the entry at offset %s, signature %s"),
11883 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11884 hex_string (dwo_unit->signature));
11885 }
11886 *slot = (void *)dwo_unit;
11887 }
11888 }
11889
11890 /* DWP file .debug_{cu,tu}_index section format:
11891 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11892
11893 DWP Version 1:
11894
11895 Both index sections have the same format, and serve to map a 64-bit
11896 signature to a set of section numbers. Each section begins with a header,
11897 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11898 indexes, and a pool of 32-bit section numbers. The index sections will be
11899 aligned at 8-byte boundaries in the file.
11900
11901 The index section header consists of:
11902
11903 V, 32 bit version number
11904 -, 32 bits unused
11905 N, 32 bit number of compilation units or type units in the index
11906 M, 32 bit number of slots in the hash table
11907
11908 Numbers are recorded using the byte order of the application binary.
11909
11910 The hash table begins at offset 16 in the section, and consists of an array
11911 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11912 order of the application binary). Unused slots in the hash table are 0.
11913 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11914
11915 The parallel table begins immediately after the hash table
11916 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11917 array of 32-bit indexes (using the byte order of the application binary),
11918 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11919 table contains a 32-bit index into the pool of section numbers. For unused
11920 hash table slots, the corresponding entry in the parallel table will be 0.
11921
11922 The pool of section numbers begins immediately following the hash table
11923 (at offset 16 + 12 * M from the beginning of the section). The pool of
11924 section numbers consists of an array of 32-bit words (using the byte order
11925 of the application binary). Each item in the array is indexed starting
11926 from 0. The hash table entry provides the index of the first section
11927 number in the set. Additional section numbers in the set follow, and the
11928 set is terminated by a 0 entry (section number 0 is not used in ELF).
11929
11930 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
11931 section must be the first entry in the set, and the .debug_abbrev.dwo must
11932 be the second entry. Other members of the set may follow in any order.
11933
11934 ---
11935
11936 DWP Version 2:
11937
11938 DWP Version 2 combines all the .debug_info, etc. sections into one,
11939 and the entries in the index tables are now offsets into these sections.
11940 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
11941 section.
11942
11943 Index Section Contents:
11944 Header
11945 Hash Table of Signatures dwp_hash_table.hash_table
11946 Parallel Table of Indices dwp_hash_table.unit_table
11947 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
11948 Table of Section Sizes dwp_hash_table.v2.sizes
11949
11950 The index section header consists of:
11951
11952 V, 32 bit version number
11953 L, 32 bit number of columns in the table of section offsets
11954 N, 32 bit number of compilation units or type units in the index
11955 M, 32 bit number of slots in the hash table
11956
11957 Numbers are recorded using the byte order of the application binary.
11958
11959 The hash table has the same format as version 1.
11960 The parallel table of indices has the same format as version 1,
11961 except that the entries are origin-1 indices into the table of sections
11962 offsets and the table of section sizes.
11963
11964 The table of offsets begins immediately following the parallel table
11965 (at offset 16 + 12 * M from the beginning of the section). The table is
11966 a two-dimensional array of 32-bit words (using the byte order of the
11967 application binary), with L columns and N+1 rows, in row-major order.
11968 Each row in the array is indexed starting from 0. The first row provides
11969 a key to the remaining rows: each column in this row provides an identifier
11970 for a debug section, and the offsets in the same column of subsequent rows
11971 refer to that section. The section identifiers are:
11972
11973 DW_SECT_INFO 1 .debug_info.dwo
11974 DW_SECT_TYPES 2 .debug_types.dwo
11975 DW_SECT_ABBREV 3 .debug_abbrev.dwo
11976 DW_SECT_LINE 4 .debug_line.dwo
11977 DW_SECT_LOC 5 .debug_loc.dwo
11978 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
11979 DW_SECT_MACINFO 7 .debug_macinfo.dwo
11980 DW_SECT_MACRO 8 .debug_macro.dwo
11981
11982 The offsets provided by the CU and TU index sections are the base offsets
11983 for the contributions made by each CU or TU to the corresponding section
11984 in the package file. Each CU and TU header contains an abbrev_offset
11985 field, used to find the abbreviations table for that CU or TU within the
11986 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
11987 be interpreted as relative to the base offset given in the index section.
11988 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
11989 should be interpreted as relative to the base offset for .debug_line.dwo,
11990 and offsets into other debug sections obtained from DWARF attributes should
11991 also be interpreted as relative to the corresponding base offset.
11992
11993 The table of sizes begins immediately following the table of offsets.
11994 Like the table of offsets, it is a two-dimensional array of 32-bit words,
11995 with L columns and N rows, in row-major order. Each row in the array is
11996 indexed starting from 1 (row 0 is shared by the two tables).
11997
11998 ---
11999
12000 Hash table lookup is handled the same in version 1 and 2:
12001
12002 We assume that N and M will not exceed 2^32 - 1.
12003 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12004
12005 Given a 64-bit compilation unit signature or a type signature S, an entry
12006 in the hash table is located as follows:
12007
12008 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12009 the low-order k bits all set to 1.
12010
12011 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12012
12013 3) If the hash table entry at index H matches the signature, use that
12014 entry. If the hash table entry at index H is unused (all zeroes),
12015 terminate the search: the signature is not present in the table.
12016
12017 4) Let H = (H + H') modulo M. Repeat at Step 3.
12018
12019 Because M > N and H' and M are relatively prime, the search is guaranteed
12020 to stop at an unused slot or find the match. */
12021
12022 /* Create a hash table to map DWO IDs to their CU/TU entry in
12023 .debug_{info,types}.dwo in DWP_FILE.
12024 Returns NULL if there isn't one.
12025 Note: This function processes DWP files only, not DWO files. */
12026
12027 static struct dwp_hash_table *
12028 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12029 struct dwp_file *dwp_file, int is_debug_types)
12030 {
12031 struct objfile *objfile = dwarf2_per_objfile->objfile;
12032 bfd *dbfd = dwp_file->dbfd;
12033 const gdb_byte *index_ptr, *index_end;
12034 struct dwarf2_section_info *index;
12035 uint32_t version, nr_columns, nr_units, nr_slots;
12036 struct dwp_hash_table *htab;
12037
12038 if (is_debug_types)
12039 index = &dwp_file->sections.tu_index;
12040 else
12041 index = &dwp_file->sections.cu_index;
12042
12043 if (dwarf2_section_empty_p (index))
12044 return NULL;
12045 dwarf2_read_section (objfile, index);
12046
12047 index_ptr = index->buffer;
12048 index_end = index_ptr + index->size;
12049
12050 version = read_4_bytes (dbfd, index_ptr);
12051 index_ptr += 4;
12052 if (version == 2)
12053 nr_columns = read_4_bytes (dbfd, index_ptr);
12054 else
12055 nr_columns = 0;
12056 index_ptr += 4;
12057 nr_units = read_4_bytes (dbfd, index_ptr);
12058 index_ptr += 4;
12059 nr_slots = read_4_bytes (dbfd, index_ptr);
12060 index_ptr += 4;
12061
12062 if (version != 1 && version != 2)
12063 {
12064 error (_("Dwarf Error: unsupported DWP file version (%s)"
12065 " [in module %s]"),
12066 pulongest (version), dwp_file->name);
12067 }
12068 if (nr_slots != (nr_slots & -nr_slots))
12069 {
12070 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12071 " is not power of 2 [in module %s]"),
12072 pulongest (nr_slots), dwp_file->name);
12073 }
12074
12075 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12076 htab->version = version;
12077 htab->nr_columns = nr_columns;
12078 htab->nr_units = nr_units;
12079 htab->nr_slots = nr_slots;
12080 htab->hash_table = index_ptr;
12081 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12082
12083 /* Exit early if the table is empty. */
12084 if (nr_slots == 0 || nr_units == 0
12085 || (version == 2 && nr_columns == 0))
12086 {
12087 /* All must be zero. */
12088 if (nr_slots != 0 || nr_units != 0
12089 || (version == 2 && nr_columns != 0))
12090 {
12091 complaint (&symfile_complaints,
12092 _("Empty DWP but nr_slots,nr_units,nr_columns not"
12093 " all zero [in modules %s]"),
12094 dwp_file->name);
12095 }
12096 return htab;
12097 }
12098
12099 if (version == 1)
12100 {
12101 htab->section_pool.v1.indices =
12102 htab->unit_table + sizeof (uint32_t) * nr_slots;
12103 /* It's harder to decide whether the section is too small in v1.
12104 V1 is deprecated anyway so we punt. */
12105 }
12106 else
12107 {
12108 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12109 int *ids = htab->section_pool.v2.section_ids;
12110 /* Reverse map for error checking. */
12111 int ids_seen[DW_SECT_MAX + 1];
12112 int i;
12113
12114 if (nr_columns < 2)
12115 {
12116 error (_("Dwarf Error: bad DWP hash table, too few columns"
12117 " in section table [in module %s]"),
12118 dwp_file->name);
12119 }
12120 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12121 {
12122 error (_("Dwarf Error: bad DWP hash table, too many columns"
12123 " in section table [in module %s]"),
12124 dwp_file->name);
12125 }
12126 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12127 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12128 for (i = 0; i < nr_columns; ++i)
12129 {
12130 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12131
12132 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12133 {
12134 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12135 " in section table [in module %s]"),
12136 id, dwp_file->name);
12137 }
12138 if (ids_seen[id] != -1)
12139 {
12140 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12141 " id %d in section table [in module %s]"),
12142 id, dwp_file->name);
12143 }
12144 ids_seen[id] = i;
12145 ids[i] = id;
12146 }
12147 /* Must have exactly one info or types section. */
12148 if (((ids_seen[DW_SECT_INFO] != -1)
12149 + (ids_seen[DW_SECT_TYPES] != -1))
12150 != 1)
12151 {
12152 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12153 " DWO info/types section [in module %s]"),
12154 dwp_file->name);
12155 }
12156 /* Must have an abbrev section. */
12157 if (ids_seen[DW_SECT_ABBREV] == -1)
12158 {
12159 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12160 " section [in module %s]"),
12161 dwp_file->name);
12162 }
12163 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12164 htab->section_pool.v2.sizes =
12165 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12166 * nr_units * nr_columns);
12167 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12168 * nr_units * nr_columns))
12169 > index_end)
12170 {
12171 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12172 " [in module %s]"),
12173 dwp_file->name);
12174 }
12175 }
12176
12177 return htab;
12178 }
12179
12180 /* Update SECTIONS with the data from SECTP.
12181
12182 This function is like the other "locate" section routines that are
12183 passed to bfd_map_over_sections, but in this context the sections to
12184 read comes from the DWP V1 hash table, not the full ELF section table.
12185
12186 The result is non-zero for success, or zero if an error was found. */
12187
12188 static int
12189 locate_v1_virtual_dwo_sections (asection *sectp,
12190 struct virtual_v1_dwo_sections *sections)
12191 {
12192 const struct dwop_section_names *names = &dwop_section_names;
12193
12194 if (section_is_p (sectp->name, &names->abbrev_dwo))
12195 {
12196 /* There can be only one. */
12197 if (sections->abbrev.s.section != NULL)
12198 return 0;
12199 sections->abbrev.s.section = sectp;
12200 sections->abbrev.size = bfd_get_section_size (sectp);
12201 }
12202 else if (section_is_p (sectp->name, &names->info_dwo)
12203 || section_is_p (sectp->name, &names->types_dwo))
12204 {
12205 /* There can be only one. */
12206 if (sections->info_or_types.s.section != NULL)
12207 return 0;
12208 sections->info_or_types.s.section = sectp;
12209 sections->info_or_types.size = bfd_get_section_size (sectp);
12210 }
12211 else if (section_is_p (sectp->name, &names->line_dwo))
12212 {
12213 /* There can be only one. */
12214 if (sections->line.s.section != NULL)
12215 return 0;
12216 sections->line.s.section = sectp;
12217 sections->line.size = bfd_get_section_size (sectp);
12218 }
12219 else if (section_is_p (sectp->name, &names->loc_dwo))
12220 {
12221 /* There can be only one. */
12222 if (sections->loc.s.section != NULL)
12223 return 0;
12224 sections->loc.s.section = sectp;
12225 sections->loc.size = bfd_get_section_size (sectp);
12226 }
12227 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12228 {
12229 /* There can be only one. */
12230 if (sections->macinfo.s.section != NULL)
12231 return 0;
12232 sections->macinfo.s.section = sectp;
12233 sections->macinfo.size = bfd_get_section_size (sectp);
12234 }
12235 else if (section_is_p (sectp->name, &names->macro_dwo))
12236 {
12237 /* There can be only one. */
12238 if (sections->macro.s.section != NULL)
12239 return 0;
12240 sections->macro.s.section = sectp;
12241 sections->macro.size = bfd_get_section_size (sectp);
12242 }
12243 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12244 {
12245 /* There can be only one. */
12246 if (sections->str_offsets.s.section != NULL)
12247 return 0;
12248 sections->str_offsets.s.section = sectp;
12249 sections->str_offsets.size = bfd_get_section_size (sectp);
12250 }
12251 else
12252 {
12253 /* No other kind of section is valid. */
12254 return 0;
12255 }
12256
12257 return 1;
12258 }
12259
12260 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12261 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12262 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12263 This is for DWP version 1 files. */
12264
12265 static struct dwo_unit *
12266 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12267 struct dwp_file *dwp_file,
12268 uint32_t unit_index,
12269 const char *comp_dir,
12270 ULONGEST signature, int is_debug_types)
12271 {
12272 struct objfile *objfile = dwarf2_per_objfile->objfile;
12273 const struct dwp_hash_table *dwp_htab =
12274 is_debug_types ? dwp_file->tus : dwp_file->cus;
12275 bfd *dbfd = dwp_file->dbfd;
12276 const char *kind = is_debug_types ? "TU" : "CU";
12277 struct dwo_file *dwo_file;
12278 struct dwo_unit *dwo_unit;
12279 struct virtual_v1_dwo_sections sections;
12280 void **dwo_file_slot;
12281 int i;
12282
12283 gdb_assert (dwp_file->version == 1);
12284
12285 if (dwarf_read_debug)
12286 {
12287 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12288 kind,
12289 pulongest (unit_index), hex_string (signature),
12290 dwp_file->name);
12291 }
12292
12293 /* Fetch the sections of this DWO unit.
12294 Put a limit on the number of sections we look for so that bad data
12295 doesn't cause us to loop forever. */
12296
12297 #define MAX_NR_V1_DWO_SECTIONS \
12298 (1 /* .debug_info or .debug_types */ \
12299 + 1 /* .debug_abbrev */ \
12300 + 1 /* .debug_line */ \
12301 + 1 /* .debug_loc */ \
12302 + 1 /* .debug_str_offsets */ \
12303 + 1 /* .debug_macro or .debug_macinfo */ \
12304 + 1 /* trailing zero */)
12305
12306 memset (&sections, 0, sizeof (sections));
12307
12308 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12309 {
12310 asection *sectp;
12311 uint32_t section_nr =
12312 read_4_bytes (dbfd,
12313 dwp_htab->section_pool.v1.indices
12314 + (unit_index + i) * sizeof (uint32_t));
12315
12316 if (section_nr == 0)
12317 break;
12318 if (section_nr >= dwp_file->num_sections)
12319 {
12320 error (_("Dwarf Error: bad DWP hash table, section number too large"
12321 " [in module %s]"),
12322 dwp_file->name);
12323 }
12324
12325 sectp = dwp_file->elf_sections[section_nr];
12326 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12327 {
12328 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12329 " [in module %s]"),
12330 dwp_file->name);
12331 }
12332 }
12333
12334 if (i < 2
12335 || dwarf2_section_empty_p (&sections.info_or_types)
12336 || dwarf2_section_empty_p (&sections.abbrev))
12337 {
12338 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12339 " [in module %s]"),
12340 dwp_file->name);
12341 }
12342 if (i == MAX_NR_V1_DWO_SECTIONS)
12343 {
12344 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12345 " [in module %s]"),
12346 dwp_file->name);
12347 }
12348
12349 /* It's easier for the rest of the code if we fake a struct dwo_file and
12350 have dwo_unit "live" in that. At least for now.
12351
12352 The DWP file can be made up of a random collection of CUs and TUs.
12353 However, for each CU + set of TUs that came from the same original DWO
12354 file, we can combine them back into a virtual DWO file to save space
12355 (fewer struct dwo_file objects to allocate). Remember that for really
12356 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12357
12358 std::string virtual_dwo_name =
12359 string_printf ("virtual-dwo/%d-%d-%d-%d",
12360 get_section_id (&sections.abbrev),
12361 get_section_id (&sections.line),
12362 get_section_id (&sections.loc),
12363 get_section_id (&sections.str_offsets));
12364 /* Can we use an existing virtual DWO file? */
12365 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12366 virtual_dwo_name.c_str (),
12367 comp_dir);
12368 /* Create one if necessary. */
12369 if (*dwo_file_slot == NULL)
12370 {
12371 if (dwarf_read_debug)
12372 {
12373 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12374 virtual_dwo_name.c_str ());
12375 }
12376 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12377 dwo_file->dwo_name
12378 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12379 virtual_dwo_name.c_str (),
12380 virtual_dwo_name.size ());
12381 dwo_file->comp_dir = comp_dir;
12382 dwo_file->sections.abbrev = sections.abbrev;
12383 dwo_file->sections.line = sections.line;
12384 dwo_file->sections.loc = sections.loc;
12385 dwo_file->sections.macinfo = sections.macinfo;
12386 dwo_file->sections.macro = sections.macro;
12387 dwo_file->sections.str_offsets = sections.str_offsets;
12388 /* The "str" section is global to the entire DWP file. */
12389 dwo_file->sections.str = dwp_file->sections.str;
12390 /* The info or types section is assigned below to dwo_unit,
12391 there's no need to record it in dwo_file.
12392 Also, we can't simply record type sections in dwo_file because
12393 we record a pointer into the vector in dwo_unit. As we collect more
12394 types we'll grow the vector and eventually have to reallocate space
12395 for it, invalidating all copies of pointers into the previous
12396 contents. */
12397 *dwo_file_slot = dwo_file;
12398 }
12399 else
12400 {
12401 if (dwarf_read_debug)
12402 {
12403 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12404 virtual_dwo_name.c_str ());
12405 }
12406 dwo_file = (struct dwo_file *) *dwo_file_slot;
12407 }
12408
12409 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12410 dwo_unit->dwo_file = dwo_file;
12411 dwo_unit->signature = signature;
12412 dwo_unit->section =
12413 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12414 *dwo_unit->section = sections.info_or_types;
12415 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12416
12417 return dwo_unit;
12418 }
12419
12420 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12421 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12422 piece within that section used by a TU/CU, return a virtual section
12423 of just that piece. */
12424
12425 static struct dwarf2_section_info
12426 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12427 struct dwarf2_section_info *section,
12428 bfd_size_type offset, bfd_size_type size)
12429 {
12430 struct dwarf2_section_info result;
12431 asection *sectp;
12432
12433 gdb_assert (section != NULL);
12434 gdb_assert (!section->is_virtual);
12435
12436 memset (&result, 0, sizeof (result));
12437 result.s.containing_section = section;
12438 result.is_virtual = 1;
12439
12440 if (size == 0)
12441 return result;
12442
12443 sectp = get_section_bfd_section (section);
12444
12445 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12446 bounds of the real section. This is a pretty-rare event, so just
12447 flag an error (easier) instead of a warning and trying to cope. */
12448 if (sectp == NULL
12449 || offset + size > bfd_get_section_size (sectp))
12450 {
12451 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12452 " in section %s [in module %s]"),
12453 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12454 objfile_name (dwarf2_per_objfile->objfile));
12455 }
12456
12457 result.virtual_offset = offset;
12458 result.size = size;
12459 return result;
12460 }
12461
12462 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12463 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12464 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12465 This is for DWP version 2 files. */
12466
12467 static struct dwo_unit *
12468 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12469 struct dwp_file *dwp_file,
12470 uint32_t unit_index,
12471 const char *comp_dir,
12472 ULONGEST signature, int is_debug_types)
12473 {
12474 struct objfile *objfile = dwarf2_per_objfile->objfile;
12475 const struct dwp_hash_table *dwp_htab =
12476 is_debug_types ? dwp_file->tus : dwp_file->cus;
12477 bfd *dbfd = dwp_file->dbfd;
12478 const char *kind = is_debug_types ? "TU" : "CU";
12479 struct dwo_file *dwo_file;
12480 struct dwo_unit *dwo_unit;
12481 struct virtual_v2_dwo_sections sections;
12482 void **dwo_file_slot;
12483 int i;
12484
12485 gdb_assert (dwp_file->version == 2);
12486
12487 if (dwarf_read_debug)
12488 {
12489 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12490 kind,
12491 pulongest (unit_index), hex_string (signature),
12492 dwp_file->name);
12493 }
12494
12495 /* Fetch the section offsets of this DWO unit. */
12496
12497 memset (&sections, 0, sizeof (sections));
12498
12499 for (i = 0; i < dwp_htab->nr_columns; ++i)
12500 {
12501 uint32_t offset = read_4_bytes (dbfd,
12502 dwp_htab->section_pool.v2.offsets
12503 + (((unit_index - 1) * dwp_htab->nr_columns
12504 + i)
12505 * sizeof (uint32_t)));
12506 uint32_t size = read_4_bytes (dbfd,
12507 dwp_htab->section_pool.v2.sizes
12508 + (((unit_index - 1) * dwp_htab->nr_columns
12509 + i)
12510 * sizeof (uint32_t)));
12511
12512 switch (dwp_htab->section_pool.v2.section_ids[i])
12513 {
12514 case DW_SECT_INFO:
12515 case DW_SECT_TYPES:
12516 sections.info_or_types_offset = offset;
12517 sections.info_or_types_size = size;
12518 break;
12519 case DW_SECT_ABBREV:
12520 sections.abbrev_offset = offset;
12521 sections.abbrev_size = size;
12522 break;
12523 case DW_SECT_LINE:
12524 sections.line_offset = offset;
12525 sections.line_size = size;
12526 break;
12527 case DW_SECT_LOC:
12528 sections.loc_offset = offset;
12529 sections.loc_size = size;
12530 break;
12531 case DW_SECT_STR_OFFSETS:
12532 sections.str_offsets_offset = offset;
12533 sections.str_offsets_size = size;
12534 break;
12535 case DW_SECT_MACINFO:
12536 sections.macinfo_offset = offset;
12537 sections.macinfo_size = size;
12538 break;
12539 case DW_SECT_MACRO:
12540 sections.macro_offset = offset;
12541 sections.macro_size = size;
12542 break;
12543 }
12544 }
12545
12546 /* It's easier for the rest of the code if we fake a struct dwo_file and
12547 have dwo_unit "live" in that. At least for now.
12548
12549 The DWP file can be made up of a random collection of CUs and TUs.
12550 However, for each CU + set of TUs that came from the same original DWO
12551 file, we can combine them back into a virtual DWO file to save space
12552 (fewer struct dwo_file objects to allocate). Remember that for really
12553 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12554
12555 std::string virtual_dwo_name =
12556 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12557 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12558 (long) (sections.line_size ? sections.line_offset : 0),
12559 (long) (sections.loc_size ? sections.loc_offset : 0),
12560 (long) (sections.str_offsets_size
12561 ? sections.str_offsets_offset : 0));
12562 /* Can we use an existing virtual DWO file? */
12563 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12564 virtual_dwo_name.c_str (),
12565 comp_dir);
12566 /* Create one if necessary. */
12567 if (*dwo_file_slot == NULL)
12568 {
12569 if (dwarf_read_debug)
12570 {
12571 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12572 virtual_dwo_name.c_str ());
12573 }
12574 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12575 dwo_file->dwo_name
12576 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12577 virtual_dwo_name.c_str (),
12578 virtual_dwo_name.size ());
12579 dwo_file->comp_dir = comp_dir;
12580 dwo_file->sections.abbrev =
12581 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12582 sections.abbrev_offset, sections.abbrev_size);
12583 dwo_file->sections.line =
12584 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12585 sections.line_offset, sections.line_size);
12586 dwo_file->sections.loc =
12587 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12588 sections.loc_offset, sections.loc_size);
12589 dwo_file->sections.macinfo =
12590 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12591 sections.macinfo_offset, sections.macinfo_size);
12592 dwo_file->sections.macro =
12593 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12594 sections.macro_offset, sections.macro_size);
12595 dwo_file->sections.str_offsets =
12596 create_dwp_v2_section (dwarf2_per_objfile,
12597 &dwp_file->sections.str_offsets,
12598 sections.str_offsets_offset,
12599 sections.str_offsets_size);
12600 /* The "str" section is global to the entire DWP file. */
12601 dwo_file->sections.str = dwp_file->sections.str;
12602 /* The info or types section is assigned below to dwo_unit,
12603 there's no need to record it in dwo_file.
12604 Also, we can't simply record type sections in dwo_file because
12605 we record a pointer into the vector in dwo_unit. As we collect more
12606 types we'll grow the vector and eventually have to reallocate space
12607 for it, invalidating all copies of pointers into the previous
12608 contents. */
12609 *dwo_file_slot = dwo_file;
12610 }
12611 else
12612 {
12613 if (dwarf_read_debug)
12614 {
12615 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12616 virtual_dwo_name.c_str ());
12617 }
12618 dwo_file = (struct dwo_file *) *dwo_file_slot;
12619 }
12620
12621 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12622 dwo_unit->dwo_file = dwo_file;
12623 dwo_unit->signature = signature;
12624 dwo_unit->section =
12625 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12626 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12627 is_debug_types
12628 ? &dwp_file->sections.types
12629 : &dwp_file->sections.info,
12630 sections.info_or_types_offset,
12631 sections.info_or_types_size);
12632 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12633
12634 return dwo_unit;
12635 }
12636
12637 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12638 Returns NULL if the signature isn't found. */
12639
12640 static struct dwo_unit *
12641 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12642 struct dwp_file *dwp_file, const char *comp_dir,
12643 ULONGEST signature, int is_debug_types)
12644 {
12645 const struct dwp_hash_table *dwp_htab =
12646 is_debug_types ? dwp_file->tus : dwp_file->cus;
12647 bfd *dbfd = dwp_file->dbfd;
12648 uint32_t mask = dwp_htab->nr_slots - 1;
12649 uint32_t hash = signature & mask;
12650 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12651 unsigned int i;
12652 void **slot;
12653 struct dwo_unit find_dwo_cu;
12654
12655 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12656 find_dwo_cu.signature = signature;
12657 slot = htab_find_slot (is_debug_types
12658 ? dwp_file->loaded_tus
12659 : dwp_file->loaded_cus,
12660 &find_dwo_cu, INSERT);
12661
12662 if (*slot != NULL)
12663 return (struct dwo_unit *) *slot;
12664
12665 /* Use a for loop so that we don't loop forever on bad debug info. */
12666 for (i = 0; i < dwp_htab->nr_slots; ++i)
12667 {
12668 ULONGEST signature_in_table;
12669
12670 signature_in_table =
12671 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12672 if (signature_in_table == signature)
12673 {
12674 uint32_t unit_index =
12675 read_4_bytes (dbfd,
12676 dwp_htab->unit_table + hash * sizeof (uint32_t));
12677
12678 if (dwp_file->version == 1)
12679 {
12680 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12681 dwp_file, unit_index,
12682 comp_dir, signature,
12683 is_debug_types);
12684 }
12685 else
12686 {
12687 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12688 dwp_file, unit_index,
12689 comp_dir, signature,
12690 is_debug_types);
12691 }
12692 return (struct dwo_unit *) *slot;
12693 }
12694 if (signature_in_table == 0)
12695 return NULL;
12696 hash = (hash + hash2) & mask;
12697 }
12698
12699 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12700 " [in module %s]"),
12701 dwp_file->name);
12702 }
12703
12704 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12705 Open the file specified by FILE_NAME and hand it off to BFD for
12706 preliminary analysis. Return a newly initialized bfd *, which
12707 includes a canonicalized copy of FILE_NAME.
12708 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12709 SEARCH_CWD is true if the current directory is to be searched.
12710 It will be searched before debug-file-directory.
12711 If successful, the file is added to the bfd include table of the
12712 objfile's bfd (see gdb_bfd_record_inclusion).
12713 If unable to find/open the file, return NULL.
12714 NOTE: This function is derived from symfile_bfd_open. */
12715
12716 static gdb_bfd_ref_ptr
12717 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12718 const char *file_name, int is_dwp, int search_cwd)
12719 {
12720 int desc;
12721 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12722 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12723 to debug_file_directory. */
12724 const char *search_path;
12725 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12726
12727 gdb::unique_xmalloc_ptr<char> search_path_holder;
12728 if (search_cwd)
12729 {
12730 if (*debug_file_directory != '\0')
12731 {
12732 search_path_holder.reset (concat (".", dirname_separator_string,
12733 debug_file_directory,
12734 (char *) NULL));
12735 search_path = search_path_holder.get ();
12736 }
12737 else
12738 search_path = ".";
12739 }
12740 else
12741 search_path = debug_file_directory;
12742
12743 openp_flags flags = OPF_RETURN_REALPATH;
12744 if (is_dwp)
12745 flags |= OPF_SEARCH_IN_PATH;
12746
12747 gdb::unique_xmalloc_ptr<char> absolute_name;
12748 desc = openp (search_path, flags, file_name,
12749 O_RDONLY | O_BINARY, &absolute_name);
12750 if (desc < 0)
12751 return NULL;
12752
12753 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12754 gnutarget, desc));
12755 if (sym_bfd == NULL)
12756 return NULL;
12757 bfd_set_cacheable (sym_bfd.get (), 1);
12758
12759 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12760 return NULL;
12761
12762 /* Success. Record the bfd as having been included by the objfile's bfd.
12763 This is important because things like demangled_names_hash lives in the
12764 objfile's per_bfd space and may have references to things like symbol
12765 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12766 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12767
12768 return sym_bfd;
12769 }
12770
12771 /* Try to open DWO file FILE_NAME.
12772 COMP_DIR is the DW_AT_comp_dir attribute.
12773 The result is the bfd handle of the file.
12774 If there is a problem finding or opening the file, return NULL.
12775 Upon success, the canonicalized path of the file is stored in the bfd,
12776 same as symfile_bfd_open. */
12777
12778 static gdb_bfd_ref_ptr
12779 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12780 const char *file_name, const char *comp_dir)
12781 {
12782 if (IS_ABSOLUTE_PATH (file_name))
12783 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12784 0 /*is_dwp*/, 0 /*search_cwd*/);
12785
12786 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12787
12788 if (comp_dir != NULL)
12789 {
12790 char *path_to_try = concat (comp_dir, SLASH_STRING,
12791 file_name, (char *) NULL);
12792
12793 /* NOTE: If comp_dir is a relative path, this will also try the
12794 search path, which seems useful. */
12795 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12796 path_to_try,
12797 0 /*is_dwp*/,
12798 1 /*search_cwd*/));
12799 xfree (path_to_try);
12800 if (abfd != NULL)
12801 return abfd;
12802 }
12803
12804 /* That didn't work, try debug-file-directory, which, despite its name,
12805 is a list of paths. */
12806
12807 if (*debug_file_directory == '\0')
12808 return NULL;
12809
12810 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12811 0 /*is_dwp*/, 1 /*search_cwd*/);
12812 }
12813
12814 /* This function is mapped across the sections and remembers the offset and
12815 size of each of the DWO debugging sections we are interested in. */
12816
12817 static void
12818 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12819 {
12820 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12821 const struct dwop_section_names *names = &dwop_section_names;
12822
12823 if (section_is_p (sectp->name, &names->abbrev_dwo))
12824 {
12825 dwo_sections->abbrev.s.section = sectp;
12826 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12827 }
12828 else if (section_is_p (sectp->name, &names->info_dwo))
12829 {
12830 dwo_sections->info.s.section = sectp;
12831 dwo_sections->info.size = bfd_get_section_size (sectp);
12832 }
12833 else if (section_is_p (sectp->name, &names->line_dwo))
12834 {
12835 dwo_sections->line.s.section = sectp;
12836 dwo_sections->line.size = bfd_get_section_size (sectp);
12837 }
12838 else if (section_is_p (sectp->name, &names->loc_dwo))
12839 {
12840 dwo_sections->loc.s.section = sectp;
12841 dwo_sections->loc.size = bfd_get_section_size (sectp);
12842 }
12843 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12844 {
12845 dwo_sections->macinfo.s.section = sectp;
12846 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12847 }
12848 else if (section_is_p (sectp->name, &names->macro_dwo))
12849 {
12850 dwo_sections->macro.s.section = sectp;
12851 dwo_sections->macro.size = bfd_get_section_size (sectp);
12852 }
12853 else if (section_is_p (sectp->name, &names->str_dwo))
12854 {
12855 dwo_sections->str.s.section = sectp;
12856 dwo_sections->str.size = bfd_get_section_size (sectp);
12857 }
12858 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12859 {
12860 dwo_sections->str_offsets.s.section = sectp;
12861 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12862 }
12863 else if (section_is_p (sectp->name, &names->types_dwo))
12864 {
12865 struct dwarf2_section_info type_section;
12866
12867 memset (&type_section, 0, sizeof (type_section));
12868 type_section.s.section = sectp;
12869 type_section.size = bfd_get_section_size (sectp);
12870 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
12871 &type_section);
12872 }
12873 }
12874
12875 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12876 by PER_CU. This is for the non-DWP case.
12877 The result is NULL if DWO_NAME can't be found. */
12878
12879 static struct dwo_file *
12880 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12881 const char *dwo_name, const char *comp_dir)
12882 {
12883 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12884 struct objfile *objfile = dwarf2_per_objfile->objfile;
12885
12886 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
12887 if (dbfd == NULL)
12888 {
12889 if (dwarf_read_debug)
12890 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12891 return NULL;
12892 }
12893
12894 /* We use a unique pointer here, despite the obstack allocation,
12895 because a dwo_file needs some cleanup if it is abandoned. */
12896 dwo_file_up dwo_file (OBSTACK_ZALLOC (&objfile->objfile_obstack,
12897 struct dwo_file));
12898 dwo_file->dwo_name = dwo_name;
12899 dwo_file->comp_dir = comp_dir;
12900 dwo_file->dbfd = dbfd.release ();
12901
12902 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
12903 &dwo_file->sections);
12904
12905 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
12906 dwo_file->cus);
12907
12908 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12909 dwo_file->sections.types, dwo_file->tus);
12910
12911 if (dwarf_read_debug)
12912 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12913
12914 return dwo_file.release ();
12915 }
12916
12917 /* This function is mapped across the sections and remembers the offset and
12918 size of each of the DWP debugging sections common to version 1 and 2 that
12919 we are interested in. */
12920
12921 static void
12922 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12923 void *dwp_file_ptr)
12924 {
12925 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12926 const struct dwop_section_names *names = &dwop_section_names;
12927 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12928
12929 /* Record the ELF section number for later lookup: this is what the
12930 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12931 gdb_assert (elf_section_nr < dwp_file->num_sections);
12932 dwp_file->elf_sections[elf_section_nr] = sectp;
12933
12934 /* Look for specific sections that we need. */
12935 if (section_is_p (sectp->name, &names->str_dwo))
12936 {
12937 dwp_file->sections.str.s.section = sectp;
12938 dwp_file->sections.str.size = bfd_get_section_size (sectp);
12939 }
12940 else if (section_is_p (sectp->name, &names->cu_index))
12941 {
12942 dwp_file->sections.cu_index.s.section = sectp;
12943 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
12944 }
12945 else if (section_is_p (sectp->name, &names->tu_index))
12946 {
12947 dwp_file->sections.tu_index.s.section = sectp;
12948 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
12949 }
12950 }
12951
12952 /* This function is mapped across the sections and remembers the offset and
12953 size of each of the DWP version 2 debugging sections that we are interested
12954 in. This is split into a separate function because we don't know if we
12955 have version 1 or 2 until we parse the cu_index/tu_index sections. */
12956
12957 static void
12958 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
12959 {
12960 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12961 const struct dwop_section_names *names = &dwop_section_names;
12962 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12963
12964 /* Record the ELF section number for later lookup: this is what the
12965 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12966 gdb_assert (elf_section_nr < dwp_file->num_sections);
12967 dwp_file->elf_sections[elf_section_nr] = sectp;
12968
12969 /* Look for specific sections that we need. */
12970 if (section_is_p (sectp->name, &names->abbrev_dwo))
12971 {
12972 dwp_file->sections.abbrev.s.section = sectp;
12973 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
12974 }
12975 else if (section_is_p (sectp->name, &names->info_dwo))
12976 {
12977 dwp_file->sections.info.s.section = sectp;
12978 dwp_file->sections.info.size = bfd_get_section_size (sectp);
12979 }
12980 else if (section_is_p (sectp->name, &names->line_dwo))
12981 {
12982 dwp_file->sections.line.s.section = sectp;
12983 dwp_file->sections.line.size = bfd_get_section_size (sectp);
12984 }
12985 else if (section_is_p (sectp->name, &names->loc_dwo))
12986 {
12987 dwp_file->sections.loc.s.section = sectp;
12988 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
12989 }
12990 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12991 {
12992 dwp_file->sections.macinfo.s.section = sectp;
12993 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
12994 }
12995 else if (section_is_p (sectp->name, &names->macro_dwo))
12996 {
12997 dwp_file->sections.macro.s.section = sectp;
12998 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
12999 }
13000 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13001 {
13002 dwp_file->sections.str_offsets.s.section = sectp;
13003 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13004 }
13005 else if (section_is_p (sectp->name, &names->types_dwo))
13006 {
13007 dwp_file->sections.types.s.section = sectp;
13008 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13009 }
13010 }
13011
13012 /* Hash function for dwp_file loaded CUs/TUs. */
13013
13014 static hashval_t
13015 hash_dwp_loaded_cutus (const void *item)
13016 {
13017 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13018
13019 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13020 return dwo_unit->signature;
13021 }
13022
13023 /* Equality function for dwp_file loaded CUs/TUs. */
13024
13025 static int
13026 eq_dwp_loaded_cutus (const void *a, const void *b)
13027 {
13028 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13029 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13030
13031 return dua->signature == dub->signature;
13032 }
13033
13034 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13035
13036 static htab_t
13037 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13038 {
13039 return htab_create_alloc_ex (3,
13040 hash_dwp_loaded_cutus,
13041 eq_dwp_loaded_cutus,
13042 NULL,
13043 &objfile->objfile_obstack,
13044 hashtab_obstack_allocate,
13045 dummy_obstack_deallocate);
13046 }
13047
13048 /* Try to open DWP file FILE_NAME.
13049 The result is the bfd handle of the file.
13050 If there is a problem finding or opening the file, return NULL.
13051 Upon success, the canonicalized path of the file is stored in the bfd,
13052 same as symfile_bfd_open. */
13053
13054 static gdb_bfd_ref_ptr
13055 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13056 const char *file_name)
13057 {
13058 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13059 1 /*is_dwp*/,
13060 1 /*search_cwd*/));
13061 if (abfd != NULL)
13062 return abfd;
13063
13064 /* Work around upstream bug 15652.
13065 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13066 [Whether that's a "bug" is debatable, but it is getting in our way.]
13067 We have no real idea where the dwp file is, because gdb's realpath-ing
13068 of the executable's path may have discarded the needed info.
13069 [IWBN if the dwp file name was recorded in the executable, akin to
13070 .gnu_debuglink, but that doesn't exist yet.]
13071 Strip the directory from FILE_NAME and search again. */
13072 if (*debug_file_directory != '\0')
13073 {
13074 /* Don't implicitly search the current directory here.
13075 If the user wants to search "." to handle this case,
13076 it must be added to debug-file-directory. */
13077 return try_open_dwop_file (dwarf2_per_objfile,
13078 lbasename (file_name), 1 /*is_dwp*/,
13079 0 /*search_cwd*/);
13080 }
13081
13082 return NULL;
13083 }
13084
13085 /* Initialize the use of the DWP file for the current objfile.
13086 By convention the name of the DWP file is ${objfile}.dwp.
13087 The result is NULL if it can't be found. */
13088
13089 static struct dwp_file *
13090 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13091 {
13092 struct objfile *objfile = dwarf2_per_objfile->objfile;
13093 struct dwp_file *dwp_file;
13094
13095 /* Try to find first .dwp for the binary file before any symbolic links
13096 resolving. */
13097
13098 /* If the objfile is a debug file, find the name of the real binary
13099 file and get the name of dwp file from there. */
13100 std::string dwp_name;
13101 if (objfile->separate_debug_objfile_backlink != NULL)
13102 {
13103 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13104 const char *backlink_basename = lbasename (backlink->original_name);
13105
13106 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13107 }
13108 else
13109 dwp_name = objfile->original_name;
13110
13111 dwp_name += ".dwp";
13112
13113 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13114 if (dbfd == NULL
13115 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13116 {
13117 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13118 dwp_name = objfile_name (objfile);
13119 dwp_name += ".dwp";
13120 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13121 }
13122
13123 if (dbfd == NULL)
13124 {
13125 if (dwarf_read_debug)
13126 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13127 return NULL;
13128 }
13129 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
13130 dwp_file->name = bfd_get_filename (dbfd.get ());
13131 dwp_file->dbfd = dbfd.release ();
13132
13133 /* +1: section 0 is unused */
13134 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
13135 dwp_file->elf_sections =
13136 OBSTACK_CALLOC (&objfile->objfile_obstack,
13137 dwp_file->num_sections, asection *);
13138
13139 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_common_dwp_sections,
13140 dwp_file);
13141
13142 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file, 0);
13143
13144 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file, 1);
13145
13146 /* The DWP file version is stored in the hash table. Oh well. */
13147 if (dwp_file->cus && dwp_file->tus
13148 && dwp_file->cus->version != dwp_file->tus->version)
13149 {
13150 /* Technically speaking, we should try to limp along, but this is
13151 pretty bizarre. We use pulongest here because that's the established
13152 portability solution (e.g, we cannot use %u for uint32_t). */
13153 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13154 " TU version %s [in DWP file %s]"),
13155 pulongest (dwp_file->cus->version),
13156 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13157 }
13158
13159 if (dwp_file->cus)
13160 dwp_file->version = dwp_file->cus->version;
13161 else if (dwp_file->tus)
13162 dwp_file->version = dwp_file->tus->version;
13163 else
13164 dwp_file->version = 2;
13165
13166 if (dwp_file->version == 2)
13167 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_v2_dwp_sections,
13168 dwp_file);
13169
13170 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13171 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13172
13173 if (dwarf_read_debug)
13174 {
13175 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13176 fprintf_unfiltered (gdb_stdlog,
13177 " %s CUs, %s TUs\n",
13178 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13179 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13180 }
13181
13182 return dwp_file;
13183 }
13184
13185 /* Wrapper around open_and_init_dwp_file, only open it once. */
13186
13187 static struct dwp_file *
13188 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13189 {
13190 if (! dwarf2_per_objfile->dwp_checked)
13191 {
13192 dwarf2_per_objfile->dwp_file
13193 = open_and_init_dwp_file (dwarf2_per_objfile);
13194 dwarf2_per_objfile->dwp_checked = 1;
13195 }
13196 return dwarf2_per_objfile->dwp_file;
13197 }
13198
13199 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13200 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13201 or in the DWP file for the objfile, referenced by THIS_UNIT.
13202 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13203 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13204
13205 This is called, for example, when wanting to read a variable with a
13206 complex location. Therefore we don't want to do file i/o for every call.
13207 Therefore we don't want to look for a DWO file on every call.
13208 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13209 then we check if we've already seen DWO_NAME, and only THEN do we check
13210 for a DWO file.
13211
13212 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13213 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13214
13215 static struct dwo_unit *
13216 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13217 const char *dwo_name, const char *comp_dir,
13218 ULONGEST signature, int is_debug_types)
13219 {
13220 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13221 struct objfile *objfile = dwarf2_per_objfile->objfile;
13222 const char *kind = is_debug_types ? "TU" : "CU";
13223 void **dwo_file_slot;
13224 struct dwo_file *dwo_file;
13225 struct dwp_file *dwp_file;
13226
13227 /* First see if there's a DWP file.
13228 If we have a DWP file but didn't find the DWO inside it, don't
13229 look for the original DWO file. It makes gdb behave differently
13230 depending on whether one is debugging in the build tree. */
13231
13232 dwp_file = get_dwp_file (dwarf2_per_objfile);
13233 if (dwp_file != NULL)
13234 {
13235 const struct dwp_hash_table *dwp_htab =
13236 is_debug_types ? dwp_file->tus : dwp_file->cus;
13237
13238 if (dwp_htab != NULL)
13239 {
13240 struct dwo_unit *dwo_cutu =
13241 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13242 signature, is_debug_types);
13243
13244 if (dwo_cutu != NULL)
13245 {
13246 if (dwarf_read_debug)
13247 {
13248 fprintf_unfiltered (gdb_stdlog,
13249 "Virtual DWO %s %s found: @%s\n",
13250 kind, hex_string (signature),
13251 host_address_to_string (dwo_cutu));
13252 }
13253 return dwo_cutu;
13254 }
13255 }
13256 }
13257 else
13258 {
13259 /* No DWP file, look for the DWO file. */
13260
13261 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13262 dwo_name, comp_dir);
13263 if (*dwo_file_slot == NULL)
13264 {
13265 /* Read in the file and build a table of the CUs/TUs it contains. */
13266 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13267 }
13268 /* NOTE: This will be NULL if unable to open the file. */
13269 dwo_file = (struct dwo_file *) *dwo_file_slot;
13270
13271 if (dwo_file != NULL)
13272 {
13273 struct dwo_unit *dwo_cutu = NULL;
13274
13275 if (is_debug_types && dwo_file->tus)
13276 {
13277 struct dwo_unit find_dwo_cutu;
13278
13279 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13280 find_dwo_cutu.signature = signature;
13281 dwo_cutu
13282 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13283 }
13284 else if (!is_debug_types && dwo_file->cus)
13285 {
13286 struct dwo_unit find_dwo_cutu;
13287
13288 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13289 find_dwo_cutu.signature = signature;
13290 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13291 &find_dwo_cutu);
13292 }
13293
13294 if (dwo_cutu != NULL)
13295 {
13296 if (dwarf_read_debug)
13297 {
13298 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13299 kind, dwo_name, hex_string (signature),
13300 host_address_to_string (dwo_cutu));
13301 }
13302 return dwo_cutu;
13303 }
13304 }
13305 }
13306
13307 /* We didn't find it. This could mean a dwo_id mismatch, or
13308 someone deleted the DWO/DWP file, or the search path isn't set up
13309 correctly to find the file. */
13310
13311 if (dwarf_read_debug)
13312 {
13313 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13314 kind, dwo_name, hex_string (signature));
13315 }
13316
13317 /* This is a warning and not a complaint because it can be caused by
13318 pilot error (e.g., user accidentally deleting the DWO). */
13319 {
13320 /* Print the name of the DWP file if we looked there, helps the user
13321 better diagnose the problem. */
13322 std::string dwp_text;
13323
13324 if (dwp_file != NULL)
13325 dwp_text = string_printf (" [in DWP file %s]",
13326 lbasename (dwp_file->name));
13327
13328 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13329 " [in module %s]"),
13330 kind, dwo_name, hex_string (signature),
13331 dwp_text.c_str (),
13332 this_unit->is_debug_types ? "TU" : "CU",
13333 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13334 }
13335 return NULL;
13336 }
13337
13338 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13339 See lookup_dwo_cutu_unit for details. */
13340
13341 static struct dwo_unit *
13342 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13343 const char *dwo_name, const char *comp_dir,
13344 ULONGEST signature)
13345 {
13346 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13347 }
13348
13349 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13350 See lookup_dwo_cutu_unit for details. */
13351
13352 static struct dwo_unit *
13353 lookup_dwo_type_unit (struct signatured_type *this_tu,
13354 const char *dwo_name, const char *comp_dir)
13355 {
13356 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13357 }
13358
13359 /* Traversal function for queue_and_load_all_dwo_tus. */
13360
13361 static int
13362 queue_and_load_dwo_tu (void **slot, void *info)
13363 {
13364 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13365 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13366 ULONGEST signature = dwo_unit->signature;
13367 struct signatured_type *sig_type =
13368 lookup_dwo_signatured_type (per_cu->cu, signature);
13369
13370 if (sig_type != NULL)
13371 {
13372 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13373
13374 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13375 a real dependency of PER_CU on SIG_TYPE. That is detected later
13376 while processing PER_CU. */
13377 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13378 load_full_type_unit (sig_cu);
13379 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13380 }
13381
13382 return 1;
13383 }
13384
13385 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13386 The DWO may have the only definition of the type, though it may not be
13387 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13388 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13389
13390 static void
13391 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13392 {
13393 struct dwo_unit *dwo_unit;
13394 struct dwo_file *dwo_file;
13395
13396 gdb_assert (!per_cu->is_debug_types);
13397 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13398 gdb_assert (per_cu->cu != NULL);
13399
13400 dwo_unit = per_cu->cu->dwo_unit;
13401 gdb_assert (dwo_unit != NULL);
13402
13403 dwo_file = dwo_unit->dwo_file;
13404 if (dwo_file->tus != NULL)
13405 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13406 }
13407
13408 /* Free all resources associated with DWO_FILE.
13409 Close the DWO file and munmap the sections. */
13410
13411 static void
13412 free_dwo_file (struct dwo_file *dwo_file)
13413 {
13414 /* Note: dbfd is NULL for virtual DWO files. */
13415 gdb_bfd_unref (dwo_file->dbfd);
13416
13417 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13418 }
13419
13420 /* Traversal function for free_dwo_files. */
13421
13422 static int
13423 free_dwo_file_from_slot (void **slot, void *info)
13424 {
13425 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13426
13427 free_dwo_file (dwo_file);
13428
13429 return 1;
13430 }
13431
13432 /* Free all resources associated with DWO_FILES. */
13433
13434 static void
13435 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13436 {
13437 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
13438 }
13439 \f
13440 /* Read in various DIEs. */
13441
13442 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13443 Inherit only the children of the DW_AT_abstract_origin DIE not being
13444 already referenced by DW_AT_abstract_origin from the children of the
13445 current DIE. */
13446
13447 static void
13448 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13449 {
13450 struct die_info *child_die;
13451 sect_offset *offsetp;
13452 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13453 struct die_info *origin_die;
13454 /* Iterator of the ORIGIN_DIE children. */
13455 struct die_info *origin_child_die;
13456 struct attribute *attr;
13457 struct dwarf2_cu *origin_cu;
13458 struct pending **origin_previous_list_in_scope;
13459
13460 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13461 if (!attr)
13462 return;
13463
13464 /* Note that following die references may follow to a die in a
13465 different cu. */
13466
13467 origin_cu = cu;
13468 origin_die = follow_die_ref (die, attr, &origin_cu);
13469
13470 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13471 symbols in. */
13472 origin_previous_list_in_scope = origin_cu->list_in_scope;
13473 origin_cu->list_in_scope = cu->list_in_scope;
13474
13475 if (die->tag != origin_die->tag
13476 && !(die->tag == DW_TAG_inlined_subroutine
13477 && origin_die->tag == DW_TAG_subprogram))
13478 complaint (&symfile_complaints,
13479 _("DIE %s and its abstract origin %s have different tags"),
13480 sect_offset_str (die->sect_off),
13481 sect_offset_str (origin_die->sect_off));
13482
13483 std::vector<sect_offset> offsets;
13484
13485 for (child_die = die->child;
13486 child_die && child_die->tag;
13487 child_die = sibling_die (child_die))
13488 {
13489 struct die_info *child_origin_die;
13490 struct dwarf2_cu *child_origin_cu;
13491
13492 /* We are trying to process concrete instance entries:
13493 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13494 it's not relevant to our analysis here. i.e. detecting DIEs that are
13495 present in the abstract instance but not referenced in the concrete
13496 one. */
13497 if (child_die->tag == DW_TAG_call_site
13498 || child_die->tag == DW_TAG_GNU_call_site)
13499 continue;
13500
13501 /* For each CHILD_DIE, find the corresponding child of
13502 ORIGIN_DIE. If there is more than one layer of
13503 DW_AT_abstract_origin, follow them all; there shouldn't be,
13504 but GCC versions at least through 4.4 generate this (GCC PR
13505 40573). */
13506 child_origin_die = child_die;
13507 child_origin_cu = cu;
13508 while (1)
13509 {
13510 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13511 child_origin_cu);
13512 if (attr == NULL)
13513 break;
13514 child_origin_die = follow_die_ref (child_origin_die, attr,
13515 &child_origin_cu);
13516 }
13517
13518 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13519 counterpart may exist. */
13520 if (child_origin_die != child_die)
13521 {
13522 if (child_die->tag != child_origin_die->tag
13523 && !(child_die->tag == DW_TAG_inlined_subroutine
13524 && child_origin_die->tag == DW_TAG_subprogram))
13525 complaint (&symfile_complaints,
13526 _("Child DIE %s and its abstract origin %s have "
13527 "different tags"),
13528 sect_offset_str (child_die->sect_off),
13529 sect_offset_str (child_origin_die->sect_off));
13530 if (child_origin_die->parent != origin_die)
13531 complaint (&symfile_complaints,
13532 _("Child DIE %s and its abstract origin %s have "
13533 "different parents"),
13534 sect_offset_str (child_die->sect_off),
13535 sect_offset_str (child_origin_die->sect_off));
13536 else
13537 offsets.push_back (child_origin_die->sect_off);
13538 }
13539 }
13540 std::sort (offsets.begin (), offsets.end ());
13541 sect_offset *offsets_end = offsets.data () + offsets.size ();
13542 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13543 if (offsetp[-1] == *offsetp)
13544 complaint (&symfile_complaints,
13545 _("Multiple children of DIE %s refer "
13546 "to DIE %s as their abstract origin"),
13547 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13548
13549 offsetp = offsets.data ();
13550 origin_child_die = origin_die->child;
13551 while (origin_child_die && origin_child_die->tag)
13552 {
13553 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13554 while (offsetp < offsets_end
13555 && *offsetp < origin_child_die->sect_off)
13556 offsetp++;
13557 if (offsetp >= offsets_end
13558 || *offsetp > origin_child_die->sect_off)
13559 {
13560 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13561 Check whether we're already processing ORIGIN_CHILD_DIE.
13562 This can happen with mutually referenced abstract_origins.
13563 PR 16581. */
13564 if (!origin_child_die->in_process)
13565 process_die (origin_child_die, origin_cu);
13566 }
13567 origin_child_die = sibling_die (origin_child_die);
13568 }
13569 origin_cu->list_in_scope = origin_previous_list_in_scope;
13570 }
13571
13572 static void
13573 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13574 {
13575 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13576 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13577 struct context_stack *newobj;
13578 CORE_ADDR lowpc;
13579 CORE_ADDR highpc;
13580 struct die_info *child_die;
13581 struct attribute *attr, *call_line, *call_file;
13582 const char *name;
13583 CORE_ADDR baseaddr;
13584 struct block *block;
13585 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13586 std::vector<struct symbol *> template_args;
13587 struct template_symbol *templ_func = NULL;
13588
13589 if (inlined_func)
13590 {
13591 /* If we do not have call site information, we can't show the
13592 caller of this inlined function. That's too confusing, so
13593 only use the scope for local variables. */
13594 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13595 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13596 if (call_line == NULL || call_file == NULL)
13597 {
13598 read_lexical_block_scope (die, cu);
13599 return;
13600 }
13601 }
13602
13603 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13604
13605 name = dwarf2_name (die, cu);
13606
13607 /* Ignore functions with missing or empty names. These are actually
13608 illegal according to the DWARF standard. */
13609 if (name == NULL)
13610 {
13611 complaint (&symfile_complaints,
13612 _("missing name for subprogram DIE at %s"),
13613 sect_offset_str (die->sect_off));
13614 return;
13615 }
13616
13617 /* Ignore functions with missing or invalid low and high pc attributes. */
13618 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13619 <= PC_BOUNDS_INVALID)
13620 {
13621 attr = dwarf2_attr (die, DW_AT_external, cu);
13622 if (!attr || !DW_UNSND (attr))
13623 complaint (&symfile_complaints,
13624 _("cannot get low and high bounds "
13625 "for subprogram DIE at %s"),
13626 sect_offset_str (die->sect_off));
13627 return;
13628 }
13629
13630 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13631 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13632
13633 /* If we have any template arguments, then we must allocate a
13634 different sort of symbol. */
13635 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13636 {
13637 if (child_die->tag == DW_TAG_template_type_param
13638 || child_die->tag == DW_TAG_template_value_param)
13639 {
13640 templ_func = allocate_template_symbol (objfile);
13641 templ_func->subclass = SYMBOL_TEMPLATE;
13642 break;
13643 }
13644 }
13645
13646 newobj = push_context (0, lowpc);
13647 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13648 (struct symbol *) templ_func);
13649
13650 /* If there is a location expression for DW_AT_frame_base, record
13651 it. */
13652 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13653 if (attr)
13654 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13655
13656 /* If there is a location for the static link, record it. */
13657 newobj->static_link = NULL;
13658 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13659 if (attr)
13660 {
13661 newobj->static_link
13662 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13663 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13664 }
13665
13666 cu->list_in_scope = &local_symbols;
13667
13668 if (die->child != NULL)
13669 {
13670 child_die = die->child;
13671 while (child_die && child_die->tag)
13672 {
13673 if (child_die->tag == DW_TAG_template_type_param
13674 || child_die->tag == DW_TAG_template_value_param)
13675 {
13676 struct symbol *arg = new_symbol (child_die, NULL, cu);
13677
13678 if (arg != NULL)
13679 template_args.push_back (arg);
13680 }
13681 else
13682 process_die (child_die, cu);
13683 child_die = sibling_die (child_die);
13684 }
13685 }
13686
13687 inherit_abstract_dies (die, cu);
13688
13689 /* If we have a DW_AT_specification, we might need to import using
13690 directives from the context of the specification DIE. See the
13691 comment in determine_prefix. */
13692 if (cu->language == language_cplus
13693 && dwarf2_attr (die, DW_AT_specification, cu))
13694 {
13695 struct dwarf2_cu *spec_cu = cu;
13696 struct die_info *spec_die = die_specification (die, &spec_cu);
13697
13698 while (spec_die)
13699 {
13700 child_die = spec_die->child;
13701 while (child_die && child_die->tag)
13702 {
13703 if (child_die->tag == DW_TAG_imported_module)
13704 process_die (child_die, spec_cu);
13705 child_die = sibling_die (child_die);
13706 }
13707
13708 /* In some cases, GCC generates specification DIEs that
13709 themselves contain DW_AT_specification attributes. */
13710 spec_die = die_specification (spec_die, &spec_cu);
13711 }
13712 }
13713
13714 newobj = pop_context ();
13715 /* Make a block for the local symbols within. */
13716 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
13717 newobj->static_link, lowpc, highpc);
13718
13719 /* For C++, set the block's scope. */
13720 if ((cu->language == language_cplus
13721 || cu->language == language_fortran
13722 || cu->language == language_d
13723 || cu->language == language_rust)
13724 && cu->processing_has_namespace_info)
13725 block_set_scope (block, determine_prefix (die, cu),
13726 &objfile->objfile_obstack);
13727
13728 /* If we have address ranges, record them. */
13729 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13730
13731 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
13732
13733 /* Attach template arguments to function. */
13734 if (!template_args.empty ())
13735 {
13736 gdb_assert (templ_func != NULL);
13737
13738 templ_func->n_template_arguments = template_args.size ();
13739 templ_func->template_arguments
13740 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13741 templ_func->n_template_arguments);
13742 memcpy (templ_func->template_arguments,
13743 template_args.data (),
13744 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13745 }
13746
13747 /* In C++, we can have functions nested inside functions (e.g., when
13748 a function declares a class that has methods). This means that
13749 when we finish processing a function scope, we may need to go
13750 back to building a containing block's symbol lists. */
13751 local_symbols = newobj->locals;
13752 local_using_directives = newobj->local_using_directives;
13753
13754 /* If we've finished processing a top-level function, subsequent
13755 symbols go in the file symbol list. */
13756 if (outermost_context_p ())
13757 cu->list_in_scope = &file_symbols;
13758 }
13759
13760 /* Process all the DIES contained within a lexical block scope. Start
13761 a new scope, process the dies, and then close the scope. */
13762
13763 static void
13764 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13765 {
13766 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13767 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13768 struct context_stack *newobj;
13769 CORE_ADDR lowpc, highpc;
13770 struct die_info *child_die;
13771 CORE_ADDR baseaddr;
13772
13773 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13774
13775 /* Ignore blocks with missing or invalid low and high pc attributes. */
13776 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13777 as multiple lexical blocks? Handling children in a sane way would
13778 be nasty. Might be easier to properly extend generic blocks to
13779 describe ranges. */
13780 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13781 {
13782 case PC_BOUNDS_NOT_PRESENT:
13783 /* DW_TAG_lexical_block has no attributes, process its children as if
13784 there was no wrapping by that DW_TAG_lexical_block.
13785 GCC does no longer produces such DWARF since GCC r224161. */
13786 for (child_die = die->child;
13787 child_die != NULL && child_die->tag;
13788 child_die = sibling_die (child_die))
13789 process_die (child_die, cu);
13790 return;
13791 case PC_BOUNDS_INVALID:
13792 return;
13793 }
13794 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13795 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13796
13797 push_context (0, lowpc);
13798 if (die->child != NULL)
13799 {
13800 child_die = die->child;
13801 while (child_die && child_die->tag)
13802 {
13803 process_die (child_die, cu);
13804 child_die = sibling_die (child_die);
13805 }
13806 }
13807 inherit_abstract_dies (die, cu);
13808 newobj = pop_context ();
13809
13810 if (local_symbols != NULL || local_using_directives != NULL)
13811 {
13812 struct block *block
13813 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
13814 newobj->start_addr, highpc);
13815
13816 /* Note that recording ranges after traversing children, as we
13817 do here, means that recording a parent's ranges entails
13818 walking across all its children's ranges as they appear in
13819 the address map, which is quadratic behavior.
13820
13821 It would be nicer to record the parent's ranges before
13822 traversing its children, simply overriding whatever you find
13823 there. But since we don't even decide whether to create a
13824 block until after we've traversed its children, that's hard
13825 to do. */
13826 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13827 }
13828 local_symbols = newobj->locals;
13829 local_using_directives = newobj->local_using_directives;
13830 }
13831
13832 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13833
13834 static void
13835 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13836 {
13837 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13838 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13839 CORE_ADDR pc, baseaddr;
13840 struct attribute *attr;
13841 struct call_site *call_site, call_site_local;
13842 void **slot;
13843 int nparams;
13844 struct die_info *child_die;
13845
13846 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13847
13848 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13849 if (attr == NULL)
13850 {
13851 /* This was a pre-DWARF-5 GNU extension alias
13852 for DW_AT_call_return_pc. */
13853 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13854 }
13855 if (!attr)
13856 {
13857 complaint (&symfile_complaints,
13858 _("missing DW_AT_call_return_pc for DW_TAG_call_site "
13859 "DIE %s [in module %s]"),
13860 sect_offset_str (die->sect_off), objfile_name (objfile));
13861 return;
13862 }
13863 pc = attr_value_as_address (attr) + baseaddr;
13864 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13865
13866 if (cu->call_site_htab == NULL)
13867 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13868 NULL, &objfile->objfile_obstack,
13869 hashtab_obstack_allocate, NULL);
13870 call_site_local.pc = pc;
13871 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13872 if (*slot != NULL)
13873 {
13874 complaint (&symfile_complaints,
13875 _("Duplicate PC %s for DW_TAG_call_site "
13876 "DIE %s [in module %s]"),
13877 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13878 objfile_name (objfile));
13879 return;
13880 }
13881
13882 /* Count parameters at the caller. */
13883
13884 nparams = 0;
13885 for (child_die = die->child; child_die && child_die->tag;
13886 child_die = sibling_die (child_die))
13887 {
13888 if (child_die->tag != DW_TAG_call_site_parameter
13889 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13890 {
13891 complaint (&symfile_complaints,
13892 _("Tag %d is not DW_TAG_call_site_parameter in "
13893 "DW_TAG_call_site child DIE %s [in module %s]"),
13894 child_die->tag, sect_offset_str (child_die->sect_off),
13895 objfile_name (objfile));
13896 continue;
13897 }
13898
13899 nparams++;
13900 }
13901
13902 call_site
13903 = ((struct call_site *)
13904 obstack_alloc (&objfile->objfile_obstack,
13905 sizeof (*call_site)
13906 + (sizeof (*call_site->parameter) * (nparams - 1))));
13907 *slot = call_site;
13908 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13909 call_site->pc = pc;
13910
13911 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13912 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13913 {
13914 struct die_info *func_die;
13915
13916 /* Skip also over DW_TAG_inlined_subroutine. */
13917 for (func_die = die->parent;
13918 func_die && func_die->tag != DW_TAG_subprogram
13919 && func_die->tag != DW_TAG_subroutine_type;
13920 func_die = func_die->parent);
13921
13922 /* DW_AT_call_all_calls is a superset
13923 of DW_AT_call_all_tail_calls. */
13924 if (func_die
13925 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
13926 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
13927 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
13928 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13929 {
13930 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13931 not complete. But keep CALL_SITE for look ups via call_site_htab,
13932 both the initial caller containing the real return address PC and
13933 the final callee containing the current PC of a chain of tail
13934 calls do not need to have the tail call list complete. But any
13935 function candidate for a virtual tail call frame searched via
13936 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13937 determined unambiguously. */
13938 }
13939 else
13940 {
13941 struct type *func_type = NULL;
13942
13943 if (func_die)
13944 func_type = get_die_type (func_die, cu);
13945 if (func_type != NULL)
13946 {
13947 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
13948
13949 /* Enlist this call site to the function. */
13950 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13951 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13952 }
13953 else
13954 complaint (&symfile_complaints,
13955 _("Cannot find function owning DW_TAG_call_site "
13956 "DIE %s [in module %s]"),
13957 sect_offset_str (die->sect_off), objfile_name (objfile));
13958 }
13959 }
13960
13961 attr = dwarf2_attr (die, DW_AT_call_target, cu);
13962 if (attr == NULL)
13963 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
13964 if (attr == NULL)
13965 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
13966 if (attr == NULL)
13967 {
13968 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
13969 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13970 }
13971 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
13972 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
13973 /* Keep NULL DWARF_BLOCK. */;
13974 else if (attr_form_is_block (attr))
13975 {
13976 struct dwarf2_locexpr_baton *dlbaton;
13977
13978 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13979 dlbaton->data = DW_BLOCK (attr)->data;
13980 dlbaton->size = DW_BLOCK (attr)->size;
13981 dlbaton->per_cu = cu->per_cu;
13982
13983 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
13984 }
13985 else if (attr_form_is_ref (attr))
13986 {
13987 struct dwarf2_cu *target_cu = cu;
13988 struct die_info *target_die;
13989
13990 target_die = follow_die_ref (die, attr, &target_cu);
13991 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
13992 if (die_is_declaration (target_die, target_cu))
13993 {
13994 const char *target_physname;
13995
13996 /* Prefer the mangled name; otherwise compute the demangled one. */
13997 target_physname = dw2_linkage_name (target_die, target_cu);
13998 if (target_physname == NULL)
13999 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14000 if (target_physname == NULL)
14001 complaint (&symfile_complaints,
14002 _("DW_AT_call_target target DIE has invalid "
14003 "physname, for referencing DIE %s [in module %s]"),
14004 sect_offset_str (die->sect_off), objfile_name (objfile));
14005 else
14006 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14007 }
14008 else
14009 {
14010 CORE_ADDR lowpc;
14011
14012 /* DW_AT_entry_pc should be preferred. */
14013 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14014 <= PC_BOUNDS_INVALID)
14015 complaint (&symfile_complaints,
14016 _("DW_AT_call_target target DIE has invalid "
14017 "low pc, for referencing DIE %s [in module %s]"),
14018 sect_offset_str (die->sect_off), objfile_name (objfile));
14019 else
14020 {
14021 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14022 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14023 }
14024 }
14025 }
14026 else
14027 complaint (&symfile_complaints,
14028 _("DW_TAG_call_site DW_AT_call_target is neither "
14029 "block nor reference, for DIE %s [in module %s]"),
14030 sect_offset_str (die->sect_off), objfile_name (objfile));
14031
14032 call_site->per_cu = cu->per_cu;
14033
14034 for (child_die = die->child;
14035 child_die && child_die->tag;
14036 child_die = sibling_die (child_die))
14037 {
14038 struct call_site_parameter *parameter;
14039 struct attribute *loc, *origin;
14040
14041 if (child_die->tag != DW_TAG_call_site_parameter
14042 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14043 {
14044 /* Already printed the complaint above. */
14045 continue;
14046 }
14047
14048 gdb_assert (call_site->parameter_count < nparams);
14049 parameter = &call_site->parameter[call_site->parameter_count];
14050
14051 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14052 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14053 register is contained in DW_AT_call_value. */
14054
14055 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14056 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14057 if (origin == NULL)
14058 {
14059 /* This was a pre-DWARF-5 GNU extension alias
14060 for DW_AT_call_parameter. */
14061 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14062 }
14063 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14064 {
14065 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14066
14067 sect_offset sect_off
14068 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14069 if (!offset_in_cu_p (&cu->header, sect_off))
14070 {
14071 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14072 binding can be done only inside one CU. Such referenced DIE
14073 therefore cannot be even moved to DW_TAG_partial_unit. */
14074 complaint (&symfile_complaints,
14075 _("DW_AT_call_parameter offset is not in CU for "
14076 "DW_TAG_call_site child DIE %s [in module %s]"),
14077 sect_offset_str (child_die->sect_off),
14078 objfile_name (objfile));
14079 continue;
14080 }
14081 parameter->u.param_cu_off
14082 = (cu_offset) (sect_off - cu->header.sect_off);
14083 }
14084 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14085 {
14086 complaint (&symfile_complaints,
14087 _("No DW_FORM_block* DW_AT_location for "
14088 "DW_TAG_call_site child DIE %s [in module %s]"),
14089 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14090 continue;
14091 }
14092 else
14093 {
14094 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14095 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14096 if (parameter->u.dwarf_reg != -1)
14097 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14098 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14099 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14100 &parameter->u.fb_offset))
14101 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14102 else
14103 {
14104 complaint (&symfile_complaints,
14105 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
14106 "for DW_FORM_block* DW_AT_location is supported for "
14107 "DW_TAG_call_site child DIE %s "
14108 "[in module %s]"),
14109 sect_offset_str (child_die->sect_off),
14110 objfile_name (objfile));
14111 continue;
14112 }
14113 }
14114
14115 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14116 if (attr == NULL)
14117 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14118 if (!attr_form_is_block (attr))
14119 {
14120 complaint (&symfile_complaints,
14121 _("No DW_FORM_block* DW_AT_call_value for "
14122 "DW_TAG_call_site child DIE %s [in module %s]"),
14123 sect_offset_str (child_die->sect_off),
14124 objfile_name (objfile));
14125 continue;
14126 }
14127 parameter->value = DW_BLOCK (attr)->data;
14128 parameter->value_size = DW_BLOCK (attr)->size;
14129
14130 /* Parameters are not pre-cleared by memset above. */
14131 parameter->data_value = NULL;
14132 parameter->data_value_size = 0;
14133 call_site->parameter_count++;
14134
14135 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14136 if (attr == NULL)
14137 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14138 if (attr)
14139 {
14140 if (!attr_form_is_block (attr))
14141 complaint (&symfile_complaints,
14142 _("No DW_FORM_block* DW_AT_call_data_value for "
14143 "DW_TAG_call_site child DIE %s [in module %s]"),
14144 sect_offset_str (child_die->sect_off),
14145 objfile_name (objfile));
14146 else
14147 {
14148 parameter->data_value = DW_BLOCK (attr)->data;
14149 parameter->data_value_size = DW_BLOCK (attr)->size;
14150 }
14151 }
14152 }
14153 }
14154
14155 /* Helper function for read_variable. If DIE represents a virtual
14156 table, then return the type of the concrete object that is
14157 associated with the virtual table. Otherwise, return NULL. */
14158
14159 static struct type *
14160 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14161 {
14162 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14163 if (attr == NULL)
14164 return NULL;
14165
14166 /* Find the type DIE. */
14167 struct die_info *type_die = NULL;
14168 struct dwarf2_cu *type_cu = cu;
14169
14170 if (attr_form_is_ref (attr))
14171 type_die = follow_die_ref (die, attr, &type_cu);
14172 if (type_die == NULL)
14173 return NULL;
14174
14175 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14176 return NULL;
14177 return die_containing_type (type_die, type_cu);
14178 }
14179
14180 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14181
14182 static void
14183 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14184 {
14185 struct rust_vtable_symbol *storage = NULL;
14186
14187 if (cu->language == language_rust)
14188 {
14189 struct type *containing_type = rust_containing_type (die, cu);
14190
14191 if (containing_type != NULL)
14192 {
14193 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14194
14195 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14196 struct rust_vtable_symbol);
14197 initialize_objfile_symbol (storage);
14198 storage->concrete_type = containing_type;
14199 storage->subclass = SYMBOL_RUST_VTABLE;
14200 }
14201 }
14202
14203 new_symbol (die, NULL, cu, storage);
14204 }
14205
14206 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14207 reading .debug_rnglists.
14208 Callback's type should be:
14209 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14210 Return true if the attributes are present and valid, otherwise,
14211 return false. */
14212
14213 template <typename Callback>
14214 static bool
14215 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14216 Callback &&callback)
14217 {
14218 struct dwarf2_per_objfile *dwarf2_per_objfile
14219 = cu->per_cu->dwarf2_per_objfile;
14220 struct objfile *objfile = dwarf2_per_objfile->objfile;
14221 bfd *obfd = objfile->obfd;
14222 /* Base address selection entry. */
14223 CORE_ADDR base;
14224 int found_base;
14225 const gdb_byte *buffer;
14226 CORE_ADDR baseaddr;
14227 bool overflow = false;
14228
14229 found_base = cu->base_known;
14230 base = cu->base_address;
14231
14232 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14233 if (offset >= dwarf2_per_objfile->rnglists.size)
14234 {
14235 complaint (&symfile_complaints,
14236 _("Offset %d out of bounds for DW_AT_ranges attribute"),
14237 offset);
14238 return false;
14239 }
14240 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14241
14242 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14243
14244 while (1)
14245 {
14246 /* Initialize it due to a false compiler warning. */
14247 CORE_ADDR range_beginning = 0, range_end = 0;
14248 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14249 + dwarf2_per_objfile->rnglists.size);
14250 unsigned int bytes_read;
14251
14252 if (buffer == buf_end)
14253 {
14254 overflow = true;
14255 break;
14256 }
14257 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14258 switch (rlet)
14259 {
14260 case DW_RLE_end_of_list:
14261 break;
14262 case DW_RLE_base_address:
14263 if (buffer + cu->header.addr_size > buf_end)
14264 {
14265 overflow = true;
14266 break;
14267 }
14268 base = read_address (obfd, buffer, cu, &bytes_read);
14269 found_base = 1;
14270 buffer += bytes_read;
14271 break;
14272 case DW_RLE_start_length:
14273 if (buffer + cu->header.addr_size > buf_end)
14274 {
14275 overflow = true;
14276 break;
14277 }
14278 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14279 buffer += bytes_read;
14280 range_end = (range_beginning
14281 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14282 buffer += bytes_read;
14283 if (buffer > buf_end)
14284 {
14285 overflow = true;
14286 break;
14287 }
14288 break;
14289 case DW_RLE_offset_pair:
14290 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14291 buffer += bytes_read;
14292 if (buffer > buf_end)
14293 {
14294 overflow = true;
14295 break;
14296 }
14297 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14298 buffer += bytes_read;
14299 if (buffer > buf_end)
14300 {
14301 overflow = true;
14302 break;
14303 }
14304 break;
14305 case DW_RLE_start_end:
14306 if (buffer + 2 * cu->header.addr_size > buf_end)
14307 {
14308 overflow = true;
14309 break;
14310 }
14311 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14312 buffer += bytes_read;
14313 range_end = read_address (obfd, buffer, cu, &bytes_read);
14314 buffer += bytes_read;
14315 break;
14316 default:
14317 complaint (&symfile_complaints,
14318 _("Invalid .debug_rnglists data (no base address)"));
14319 return false;
14320 }
14321 if (rlet == DW_RLE_end_of_list || overflow)
14322 break;
14323 if (rlet == DW_RLE_base_address)
14324 continue;
14325
14326 if (!found_base)
14327 {
14328 /* We have no valid base address for the ranges
14329 data. */
14330 complaint (&symfile_complaints,
14331 _("Invalid .debug_rnglists data (no base address)"));
14332 return false;
14333 }
14334
14335 if (range_beginning > range_end)
14336 {
14337 /* Inverted range entries are invalid. */
14338 complaint (&symfile_complaints,
14339 _("Invalid .debug_rnglists data (inverted range)"));
14340 return false;
14341 }
14342
14343 /* Empty range entries have no effect. */
14344 if (range_beginning == range_end)
14345 continue;
14346
14347 range_beginning += base;
14348 range_end += base;
14349
14350 /* A not-uncommon case of bad debug info.
14351 Don't pollute the addrmap with bad data. */
14352 if (range_beginning + baseaddr == 0
14353 && !dwarf2_per_objfile->has_section_at_zero)
14354 {
14355 complaint (&symfile_complaints,
14356 _(".debug_rnglists entry has start address of zero"
14357 " [in module %s]"), objfile_name (objfile));
14358 continue;
14359 }
14360
14361 callback (range_beginning, range_end);
14362 }
14363
14364 if (overflow)
14365 {
14366 complaint (&symfile_complaints,
14367 _("Offset %d is not terminated "
14368 "for DW_AT_ranges attribute"),
14369 offset);
14370 return false;
14371 }
14372
14373 return true;
14374 }
14375
14376 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14377 Callback's type should be:
14378 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14379 Return 1 if the attributes are present and valid, otherwise, return 0. */
14380
14381 template <typename Callback>
14382 static int
14383 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14384 Callback &&callback)
14385 {
14386 struct dwarf2_per_objfile *dwarf2_per_objfile
14387 = cu->per_cu->dwarf2_per_objfile;
14388 struct objfile *objfile = dwarf2_per_objfile->objfile;
14389 struct comp_unit_head *cu_header = &cu->header;
14390 bfd *obfd = objfile->obfd;
14391 unsigned int addr_size = cu_header->addr_size;
14392 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14393 /* Base address selection entry. */
14394 CORE_ADDR base;
14395 int found_base;
14396 unsigned int dummy;
14397 const gdb_byte *buffer;
14398 CORE_ADDR baseaddr;
14399
14400 if (cu_header->version >= 5)
14401 return dwarf2_rnglists_process (offset, cu, callback);
14402
14403 found_base = cu->base_known;
14404 base = cu->base_address;
14405
14406 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14407 if (offset >= dwarf2_per_objfile->ranges.size)
14408 {
14409 complaint (&symfile_complaints,
14410 _("Offset %d out of bounds for DW_AT_ranges attribute"),
14411 offset);
14412 return 0;
14413 }
14414 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14415
14416 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14417
14418 while (1)
14419 {
14420 CORE_ADDR range_beginning, range_end;
14421
14422 range_beginning = read_address (obfd, buffer, cu, &dummy);
14423 buffer += addr_size;
14424 range_end = read_address (obfd, buffer, cu, &dummy);
14425 buffer += addr_size;
14426 offset += 2 * addr_size;
14427
14428 /* An end of list marker is a pair of zero addresses. */
14429 if (range_beginning == 0 && range_end == 0)
14430 /* Found the end of list entry. */
14431 break;
14432
14433 /* Each base address selection entry is a pair of 2 values.
14434 The first is the largest possible address, the second is
14435 the base address. Check for a base address here. */
14436 if ((range_beginning & mask) == mask)
14437 {
14438 /* If we found the largest possible address, then we already
14439 have the base address in range_end. */
14440 base = range_end;
14441 found_base = 1;
14442 continue;
14443 }
14444
14445 if (!found_base)
14446 {
14447 /* We have no valid base address for the ranges
14448 data. */
14449 complaint (&symfile_complaints,
14450 _("Invalid .debug_ranges data (no base address)"));
14451 return 0;
14452 }
14453
14454 if (range_beginning > range_end)
14455 {
14456 /* Inverted range entries are invalid. */
14457 complaint (&symfile_complaints,
14458 _("Invalid .debug_ranges data (inverted range)"));
14459 return 0;
14460 }
14461
14462 /* Empty range entries have no effect. */
14463 if (range_beginning == range_end)
14464 continue;
14465
14466 range_beginning += base;
14467 range_end += base;
14468
14469 /* A not-uncommon case of bad debug info.
14470 Don't pollute the addrmap with bad data. */
14471 if (range_beginning + baseaddr == 0
14472 && !dwarf2_per_objfile->has_section_at_zero)
14473 {
14474 complaint (&symfile_complaints,
14475 _(".debug_ranges entry has start address of zero"
14476 " [in module %s]"), objfile_name (objfile));
14477 continue;
14478 }
14479
14480 callback (range_beginning, range_end);
14481 }
14482
14483 return 1;
14484 }
14485
14486 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14487 Return 1 if the attributes are present and valid, otherwise, return 0.
14488 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14489
14490 static int
14491 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14492 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14493 struct partial_symtab *ranges_pst)
14494 {
14495 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14496 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14497 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14498 SECT_OFF_TEXT (objfile));
14499 int low_set = 0;
14500 CORE_ADDR low = 0;
14501 CORE_ADDR high = 0;
14502 int retval;
14503
14504 retval = dwarf2_ranges_process (offset, cu,
14505 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14506 {
14507 if (ranges_pst != NULL)
14508 {
14509 CORE_ADDR lowpc;
14510 CORE_ADDR highpc;
14511
14512 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
14513 range_beginning + baseaddr);
14514 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
14515 range_end + baseaddr);
14516 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
14517 ranges_pst);
14518 }
14519
14520 /* FIXME: This is recording everything as a low-high
14521 segment of consecutive addresses. We should have a
14522 data structure for discontiguous block ranges
14523 instead. */
14524 if (! low_set)
14525 {
14526 low = range_beginning;
14527 high = range_end;
14528 low_set = 1;
14529 }
14530 else
14531 {
14532 if (range_beginning < low)
14533 low = range_beginning;
14534 if (range_end > high)
14535 high = range_end;
14536 }
14537 });
14538 if (!retval)
14539 return 0;
14540
14541 if (! low_set)
14542 /* If the first entry is an end-of-list marker, the range
14543 describes an empty scope, i.e. no instructions. */
14544 return 0;
14545
14546 if (low_return)
14547 *low_return = low;
14548 if (high_return)
14549 *high_return = high;
14550 return 1;
14551 }
14552
14553 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14554 definition for the return value. *LOWPC and *HIGHPC are set iff
14555 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14556
14557 static enum pc_bounds_kind
14558 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14559 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14560 struct partial_symtab *pst)
14561 {
14562 struct dwarf2_per_objfile *dwarf2_per_objfile
14563 = cu->per_cu->dwarf2_per_objfile;
14564 struct attribute *attr;
14565 struct attribute *attr_high;
14566 CORE_ADDR low = 0;
14567 CORE_ADDR high = 0;
14568 enum pc_bounds_kind ret;
14569
14570 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14571 if (attr_high)
14572 {
14573 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14574 if (attr)
14575 {
14576 low = attr_value_as_address (attr);
14577 high = attr_value_as_address (attr_high);
14578 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14579 high += low;
14580 }
14581 else
14582 /* Found high w/o low attribute. */
14583 return PC_BOUNDS_INVALID;
14584
14585 /* Found consecutive range of addresses. */
14586 ret = PC_BOUNDS_HIGH_LOW;
14587 }
14588 else
14589 {
14590 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14591 if (attr != NULL)
14592 {
14593 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14594 We take advantage of the fact that DW_AT_ranges does not appear
14595 in DW_TAG_compile_unit of DWO files. */
14596 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14597 unsigned int ranges_offset = (DW_UNSND (attr)
14598 + (need_ranges_base
14599 ? cu->ranges_base
14600 : 0));
14601
14602 /* Value of the DW_AT_ranges attribute is the offset in the
14603 .debug_ranges section. */
14604 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14605 return PC_BOUNDS_INVALID;
14606 /* Found discontinuous range of addresses. */
14607 ret = PC_BOUNDS_RANGES;
14608 }
14609 else
14610 return PC_BOUNDS_NOT_PRESENT;
14611 }
14612
14613 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14614 if (high <= low)
14615 return PC_BOUNDS_INVALID;
14616
14617 /* When using the GNU linker, .gnu.linkonce. sections are used to
14618 eliminate duplicate copies of functions and vtables and such.
14619 The linker will arbitrarily choose one and discard the others.
14620 The AT_*_pc values for such functions refer to local labels in
14621 these sections. If the section from that file was discarded, the
14622 labels are not in the output, so the relocs get a value of 0.
14623 If this is a discarded function, mark the pc bounds as invalid,
14624 so that GDB will ignore it. */
14625 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14626 return PC_BOUNDS_INVALID;
14627
14628 *lowpc = low;
14629 if (highpc)
14630 *highpc = high;
14631 return ret;
14632 }
14633
14634 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14635 its low and high PC addresses. Do nothing if these addresses could not
14636 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14637 and HIGHPC to the high address if greater than HIGHPC. */
14638
14639 static void
14640 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14641 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14642 struct dwarf2_cu *cu)
14643 {
14644 CORE_ADDR low, high;
14645 struct die_info *child = die->child;
14646
14647 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14648 {
14649 *lowpc = std::min (*lowpc, low);
14650 *highpc = std::max (*highpc, high);
14651 }
14652
14653 /* If the language does not allow nested subprograms (either inside
14654 subprograms or lexical blocks), we're done. */
14655 if (cu->language != language_ada)
14656 return;
14657
14658 /* Check all the children of the given DIE. If it contains nested
14659 subprograms, then check their pc bounds. Likewise, we need to
14660 check lexical blocks as well, as they may also contain subprogram
14661 definitions. */
14662 while (child && child->tag)
14663 {
14664 if (child->tag == DW_TAG_subprogram
14665 || child->tag == DW_TAG_lexical_block)
14666 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14667 child = sibling_die (child);
14668 }
14669 }
14670
14671 /* Get the low and high pc's represented by the scope DIE, and store
14672 them in *LOWPC and *HIGHPC. If the correct values can't be
14673 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14674
14675 static void
14676 get_scope_pc_bounds (struct die_info *die,
14677 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14678 struct dwarf2_cu *cu)
14679 {
14680 CORE_ADDR best_low = (CORE_ADDR) -1;
14681 CORE_ADDR best_high = (CORE_ADDR) 0;
14682 CORE_ADDR current_low, current_high;
14683
14684 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14685 >= PC_BOUNDS_RANGES)
14686 {
14687 best_low = current_low;
14688 best_high = current_high;
14689 }
14690 else
14691 {
14692 struct die_info *child = die->child;
14693
14694 while (child && child->tag)
14695 {
14696 switch (child->tag) {
14697 case DW_TAG_subprogram:
14698 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14699 break;
14700 case DW_TAG_namespace:
14701 case DW_TAG_module:
14702 /* FIXME: carlton/2004-01-16: Should we do this for
14703 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14704 that current GCC's always emit the DIEs corresponding
14705 to definitions of methods of classes as children of a
14706 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14707 the DIEs giving the declarations, which could be
14708 anywhere). But I don't see any reason why the
14709 standards says that they have to be there. */
14710 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14711
14712 if (current_low != ((CORE_ADDR) -1))
14713 {
14714 best_low = std::min (best_low, current_low);
14715 best_high = std::max (best_high, current_high);
14716 }
14717 break;
14718 default:
14719 /* Ignore. */
14720 break;
14721 }
14722
14723 child = sibling_die (child);
14724 }
14725 }
14726
14727 *lowpc = best_low;
14728 *highpc = best_high;
14729 }
14730
14731 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14732 in DIE. */
14733
14734 static void
14735 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14736 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14737 {
14738 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14739 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14740 struct attribute *attr;
14741 struct attribute *attr_high;
14742
14743 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14744 if (attr_high)
14745 {
14746 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14747 if (attr)
14748 {
14749 CORE_ADDR low = attr_value_as_address (attr);
14750 CORE_ADDR high = attr_value_as_address (attr_high);
14751
14752 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14753 high += low;
14754
14755 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14756 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14757 record_block_range (block, low, high - 1);
14758 }
14759 }
14760
14761 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14762 if (attr)
14763 {
14764 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14765 We take advantage of the fact that DW_AT_ranges does not appear
14766 in DW_TAG_compile_unit of DWO files. */
14767 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14768
14769 /* The value of the DW_AT_ranges attribute is the offset of the
14770 address range list in the .debug_ranges section. */
14771 unsigned long offset = (DW_UNSND (attr)
14772 + (need_ranges_base ? cu->ranges_base : 0));
14773
14774 dwarf2_ranges_process (offset, cu,
14775 [&] (CORE_ADDR start, CORE_ADDR end)
14776 {
14777 start += baseaddr;
14778 end += baseaddr;
14779 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14780 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14781 record_block_range (block, start, end - 1);
14782 });
14783 }
14784 }
14785
14786 /* Check whether the producer field indicates either of GCC < 4.6, or the
14787 Intel C/C++ compiler, and cache the result in CU. */
14788
14789 static void
14790 check_producer (struct dwarf2_cu *cu)
14791 {
14792 int major, minor;
14793
14794 if (cu->producer == NULL)
14795 {
14796 /* For unknown compilers expect their behavior is DWARF version
14797 compliant.
14798
14799 GCC started to support .debug_types sections by -gdwarf-4 since
14800 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14801 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14802 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14803 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14804 }
14805 else if (producer_is_gcc (cu->producer, &major, &minor))
14806 {
14807 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14808 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14809 }
14810 else if (producer_is_icc (cu->producer, &major, &minor))
14811 cu->producer_is_icc_lt_14 = major < 14;
14812 else
14813 {
14814 /* For other non-GCC compilers, expect their behavior is DWARF version
14815 compliant. */
14816 }
14817
14818 cu->checked_producer = 1;
14819 }
14820
14821 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14822 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14823 during 4.6.0 experimental. */
14824
14825 static int
14826 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14827 {
14828 if (!cu->checked_producer)
14829 check_producer (cu);
14830
14831 return cu->producer_is_gxx_lt_4_6;
14832 }
14833
14834 /* Return the default accessibility type if it is not overriden by
14835 DW_AT_accessibility. */
14836
14837 static enum dwarf_access_attribute
14838 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14839 {
14840 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14841 {
14842 /* The default DWARF 2 accessibility for members is public, the default
14843 accessibility for inheritance is private. */
14844
14845 if (die->tag != DW_TAG_inheritance)
14846 return DW_ACCESS_public;
14847 else
14848 return DW_ACCESS_private;
14849 }
14850 else
14851 {
14852 /* DWARF 3+ defines the default accessibility a different way. The same
14853 rules apply now for DW_TAG_inheritance as for the members and it only
14854 depends on the container kind. */
14855
14856 if (die->parent->tag == DW_TAG_class_type)
14857 return DW_ACCESS_private;
14858 else
14859 return DW_ACCESS_public;
14860 }
14861 }
14862
14863 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14864 offset. If the attribute was not found return 0, otherwise return
14865 1. If it was found but could not properly be handled, set *OFFSET
14866 to 0. */
14867
14868 static int
14869 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14870 LONGEST *offset)
14871 {
14872 struct attribute *attr;
14873
14874 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14875 if (attr != NULL)
14876 {
14877 *offset = 0;
14878
14879 /* Note that we do not check for a section offset first here.
14880 This is because DW_AT_data_member_location is new in DWARF 4,
14881 so if we see it, we can assume that a constant form is really
14882 a constant and not a section offset. */
14883 if (attr_form_is_constant (attr))
14884 *offset = dwarf2_get_attr_constant_value (attr, 0);
14885 else if (attr_form_is_section_offset (attr))
14886 dwarf2_complex_location_expr_complaint ();
14887 else if (attr_form_is_block (attr))
14888 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14889 else
14890 dwarf2_complex_location_expr_complaint ();
14891
14892 return 1;
14893 }
14894
14895 return 0;
14896 }
14897
14898 /* Add an aggregate field to the field list. */
14899
14900 static void
14901 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14902 struct dwarf2_cu *cu)
14903 {
14904 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14905 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14906 struct nextfield *new_field;
14907 struct attribute *attr;
14908 struct field *fp;
14909 const char *fieldname = "";
14910
14911 if (die->tag == DW_TAG_inheritance)
14912 {
14913 fip->baseclasses.emplace_back ();
14914 new_field = &fip->baseclasses.back ();
14915 }
14916 else
14917 {
14918 fip->fields.emplace_back ();
14919 new_field = &fip->fields.back ();
14920 }
14921
14922 fip->nfields++;
14923
14924 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14925 if (attr)
14926 new_field->accessibility = DW_UNSND (attr);
14927 else
14928 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
14929 if (new_field->accessibility != DW_ACCESS_public)
14930 fip->non_public_fields = 1;
14931
14932 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14933 if (attr)
14934 new_field->virtuality = DW_UNSND (attr);
14935 else
14936 new_field->virtuality = DW_VIRTUALITY_none;
14937
14938 fp = &new_field->field;
14939
14940 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
14941 {
14942 LONGEST offset;
14943
14944 /* Data member other than a C++ static data member. */
14945
14946 /* Get type of field. */
14947 fp->type = die_type (die, cu);
14948
14949 SET_FIELD_BITPOS (*fp, 0);
14950
14951 /* Get bit size of field (zero if none). */
14952 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
14953 if (attr)
14954 {
14955 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
14956 }
14957 else
14958 {
14959 FIELD_BITSIZE (*fp) = 0;
14960 }
14961
14962 /* Get bit offset of field. */
14963 if (handle_data_member_location (die, cu, &offset))
14964 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
14965 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
14966 if (attr)
14967 {
14968 if (gdbarch_bits_big_endian (gdbarch))
14969 {
14970 /* For big endian bits, the DW_AT_bit_offset gives the
14971 additional bit offset from the MSB of the containing
14972 anonymous object to the MSB of the field. We don't
14973 have to do anything special since we don't need to
14974 know the size of the anonymous object. */
14975 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
14976 }
14977 else
14978 {
14979 /* For little endian bits, compute the bit offset to the
14980 MSB of the anonymous object, subtract off the number of
14981 bits from the MSB of the field to the MSB of the
14982 object, and then subtract off the number of bits of
14983 the field itself. The result is the bit offset of
14984 the LSB of the field. */
14985 int anonymous_size;
14986 int bit_offset = DW_UNSND (attr);
14987
14988 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14989 if (attr)
14990 {
14991 /* The size of the anonymous object containing
14992 the bit field is explicit, so use the
14993 indicated size (in bytes). */
14994 anonymous_size = DW_UNSND (attr);
14995 }
14996 else
14997 {
14998 /* The size of the anonymous object containing
14999 the bit field must be inferred from the type
15000 attribute of the data member containing the
15001 bit field. */
15002 anonymous_size = TYPE_LENGTH (fp->type);
15003 }
15004 SET_FIELD_BITPOS (*fp,
15005 (FIELD_BITPOS (*fp)
15006 + anonymous_size * bits_per_byte
15007 - bit_offset - FIELD_BITSIZE (*fp)));
15008 }
15009 }
15010 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15011 if (attr != NULL)
15012 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15013 + dwarf2_get_attr_constant_value (attr, 0)));
15014
15015 /* Get name of field. */
15016 fieldname = dwarf2_name (die, cu);
15017 if (fieldname == NULL)
15018 fieldname = "";
15019
15020 /* The name is already allocated along with this objfile, so we don't
15021 need to duplicate it for the type. */
15022 fp->name = fieldname;
15023
15024 /* Change accessibility for artificial fields (e.g. virtual table
15025 pointer or virtual base class pointer) to private. */
15026 if (dwarf2_attr (die, DW_AT_artificial, cu))
15027 {
15028 FIELD_ARTIFICIAL (*fp) = 1;
15029 new_field->accessibility = DW_ACCESS_private;
15030 fip->non_public_fields = 1;
15031 }
15032 }
15033 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15034 {
15035 /* C++ static member. */
15036
15037 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15038 is a declaration, but all versions of G++ as of this writing
15039 (so through at least 3.2.1) incorrectly generate
15040 DW_TAG_variable tags. */
15041
15042 const char *physname;
15043
15044 /* Get name of field. */
15045 fieldname = dwarf2_name (die, cu);
15046 if (fieldname == NULL)
15047 return;
15048
15049 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15050 if (attr
15051 /* Only create a symbol if this is an external value.
15052 new_symbol checks this and puts the value in the global symbol
15053 table, which we want. If it is not external, new_symbol
15054 will try to put the value in cu->list_in_scope which is wrong. */
15055 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15056 {
15057 /* A static const member, not much different than an enum as far as
15058 we're concerned, except that we can support more types. */
15059 new_symbol (die, NULL, cu);
15060 }
15061
15062 /* Get physical name. */
15063 physname = dwarf2_physname (fieldname, die, cu);
15064
15065 /* The name is already allocated along with this objfile, so we don't
15066 need to duplicate it for the type. */
15067 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15068 FIELD_TYPE (*fp) = die_type (die, cu);
15069 FIELD_NAME (*fp) = fieldname;
15070 }
15071 else if (die->tag == DW_TAG_inheritance)
15072 {
15073 LONGEST offset;
15074
15075 /* C++ base class field. */
15076 if (handle_data_member_location (die, cu, &offset))
15077 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15078 FIELD_BITSIZE (*fp) = 0;
15079 FIELD_TYPE (*fp) = die_type (die, cu);
15080 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
15081 }
15082 else if (die->tag == DW_TAG_variant_part)
15083 {
15084 /* process_structure_scope will treat this DIE as a union. */
15085 process_structure_scope (die, cu);
15086
15087 /* The variant part is relative to the start of the enclosing
15088 structure. */
15089 SET_FIELD_BITPOS (*fp, 0);
15090 fp->type = get_die_type (die, cu);
15091 fp->artificial = 1;
15092 fp->name = "<<variant>>";
15093 }
15094 else
15095 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15096 }
15097
15098 /* Can the type given by DIE define another type? */
15099
15100 static bool
15101 type_can_define_types (const struct die_info *die)
15102 {
15103 switch (die->tag)
15104 {
15105 case DW_TAG_typedef:
15106 case DW_TAG_class_type:
15107 case DW_TAG_structure_type:
15108 case DW_TAG_union_type:
15109 case DW_TAG_enumeration_type:
15110 return true;
15111
15112 default:
15113 return false;
15114 }
15115 }
15116
15117 /* Add a type definition defined in the scope of the FIP's class. */
15118
15119 static void
15120 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15121 struct dwarf2_cu *cu)
15122 {
15123 struct decl_field fp;
15124 memset (&fp, 0, sizeof (fp));
15125
15126 gdb_assert (type_can_define_types (die));
15127
15128 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15129 fp.name = dwarf2_name (die, cu);
15130 fp.type = read_type_die (die, cu);
15131
15132 /* Save accessibility. */
15133 enum dwarf_access_attribute accessibility;
15134 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15135 if (attr != NULL)
15136 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15137 else
15138 accessibility = dwarf2_default_access_attribute (die, cu);
15139 switch (accessibility)
15140 {
15141 case DW_ACCESS_public:
15142 /* The assumed value if neither private nor protected. */
15143 break;
15144 case DW_ACCESS_private:
15145 fp.is_private = 1;
15146 break;
15147 case DW_ACCESS_protected:
15148 fp.is_protected = 1;
15149 break;
15150 default:
15151 complaint (&symfile_complaints,
15152 _("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15153 }
15154
15155 if (die->tag == DW_TAG_typedef)
15156 fip->typedef_field_list.push_back (fp);
15157 else
15158 fip->nested_types_list.push_back (fp);
15159 }
15160
15161 /* Create the vector of fields, and attach it to the type. */
15162
15163 static void
15164 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15165 struct dwarf2_cu *cu)
15166 {
15167 int nfields = fip->nfields;
15168
15169 /* Record the field count, allocate space for the array of fields,
15170 and create blank accessibility bitfields if necessary. */
15171 TYPE_NFIELDS (type) = nfields;
15172 TYPE_FIELDS (type) = (struct field *)
15173 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15174
15175 if (fip->non_public_fields && cu->language != language_ada)
15176 {
15177 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15178
15179 TYPE_FIELD_PRIVATE_BITS (type) =
15180 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15181 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15182
15183 TYPE_FIELD_PROTECTED_BITS (type) =
15184 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15185 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15186
15187 TYPE_FIELD_IGNORE_BITS (type) =
15188 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15189 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15190 }
15191
15192 /* If the type has baseclasses, allocate and clear a bit vector for
15193 TYPE_FIELD_VIRTUAL_BITS. */
15194 if (!fip->baseclasses.empty () && cu->language != language_ada)
15195 {
15196 int num_bytes = B_BYTES (fip->baseclasses.size ());
15197 unsigned char *pointer;
15198
15199 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15200 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15201 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15202 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15203 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15204 }
15205
15206 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15207 {
15208 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15209
15210 for (int index = 0; index < nfields; ++index)
15211 {
15212 struct nextfield &field = fip->fields[index];
15213
15214 if (field.variant.is_discriminant)
15215 di->discriminant_index = index;
15216 else if (field.variant.default_branch)
15217 di->default_index = index;
15218 else
15219 di->discriminants[index] = field.variant.discriminant_value;
15220 }
15221 }
15222
15223 /* Copy the saved-up fields into the field vector. */
15224 for (int i = 0; i < nfields; ++i)
15225 {
15226 struct nextfield &field
15227 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15228 : fip->fields[i - fip->baseclasses.size ()]);
15229
15230 TYPE_FIELD (type, i) = field.field;
15231 switch (field.accessibility)
15232 {
15233 case DW_ACCESS_private:
15234 if (cu->language != language_ada)
15235 SET_TYPE_FIELD_PRIVATE (type, i);
15236 break;
15237
15238 case DW_ACCESS_protected:
15239 if (cu->language != language_ada)
15240 SET_TYPE_FIELD_PROTECTED (type, i);
15241 break;
15242
15243 case DW_ACCESS_public:
15244 break;
15245
15246 default:
15247 /* Unknown accessibility. Complain and treat it as public. */
15248 {
15249 complaint (&symfile_complaints, _("unsupported accessibility %d"),
15250 field.accessibility);
15251 }
15252 break;
15253 }
15254 if (i < fip->baseclasses.size ())
15255 {
15256 switch (field.virtuality)
15257 {
15258 case DW_VIRTUALITY_virtual:
15259 case DW_VIRTUALITY_pure_virtual:
15260 if (cu->language == language_ada)
15261 error (_("unexpected virtuality in component of Ada type"));
15262 SET_TYPE_FIELD_VIRTUAL (type, i);
15263 break;
15264 }
15265 }
15266 }
15267 }
15268
15269 /* Return true if this member function is a constructor, false
15270 otherwise. */
15271
15272 static int
15273 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15274 {
15275 const char *fieldname;
15276 const char *type_name;
15277 int len;
15278
15279 if (die->parent == NULL)
15280 return 0;
15281
15282 if (die->parent->tag != DW_TAG_structure_type
15283 && die->parent->tag != DW_TAG_union_type
15284 && die->parent->tag != DW_TAG_class_type)
15285 return 0;
15286
15287 fieldname = dwarf2_name (die, cu);
15288 type_name = dwarf2_name (die->parent, cu);
15289 if (fieldname == NULL || type_name == NULL)
15290 return 0;
15291
15292 len = strlen (fieldname);
15293 return (strncmp (fieldname, type_name, len) == 0
15294 && (type_name[len] == '\0' || type_name[len] == '<'));
15295 }
15296
15297 /* Add a member function to the proper fieldlist. */
15298
15299 static void
15300 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15301 struct type *type, struct dwarf2_cu *cu)
15302 {
15303 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15304 struct attribute *attr;
15305 int i;
15306 struct fnfieldlist *flp = nullptr;
15307 struct fn_field *fnp;
15308 const char *fieldname;
15309 struct type *this_type;
15310 enum dwarf_access_attribute accessibility;
15311
15312 if (cu->language == language_ada)
15313 error (_("unexpected member function in Ada type"));
15314
15315 /* Get name of member function. */
15316 fieldname = dwarf2_name (die, cu);
15317 if (fieldname == NULL)
15318 return;
15319
15320 /* Look up member function name in fieldlist. */
15321 for (i = 0; i < fip->fnfieldlists.size (); i++)
15322 {
15323 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15324 {
15325 flp = &fip->fnfieldlists[i];
15326 break;
15327 }
15328 }
15329
15330 /* Create a new fnfieldlist if necessary. */
15331 if (flp == nullptr)
15332 {
15333 fip->fnfieldlists.emplace_back ();
15334 flp = &fip->fnfieldlists.back ();
15335 flp->name = fieldname;
15336 i = fip->fnfieldlists.size () - 1;
15337 }
15338
15339 /* Create a new member function field and add it to the vector of
15340 fnfieldlists. */
15341 flp->fnfields.emplace_back ();
15342 fnp = &flp->fnfields.back ();
15343
15344 /* Delay processing of the physname until later. */
15345 if (cu->language == language_cplus)
15346 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15347 die, cu);
15348 else
15349 {
15350 const char *physname = dwarf2_physname (fieldname, die, cu);
15351 fnp->physname = physname ? physname : "";
15352 }
15353
15354 fnp->type = alloc_type (objfile);
15355 this_type = read_type_die (die, cu);
15356 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15357 {
15358 int nparams = TYPE_NFIELDS (this_type);
15359
15360 /* TYPE is the domain of this method, and THIS_TYPE is the type
15361 of the method itself (TYPE_CODE_METHOD). */
15362 smash_to_method_type (fnp->type, type,
15363 TYPE_TARGET_TYPE (this_type),
15364 TYPE_FIELDS (this_type),
15365 TYPE_NFIELDS (this_type),
15366 TYPE_VARARGS (this_type));
15367
15368 /* Handle static member functions.
15369 Dwarf2 has no clean way to discern C++ static and non-static
15370 member functions. G++ helps GDB by marking the first
15371 parameter for non-static member functions (which is the this
15372 pointer) as artificial. We obtain this information from
15373 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15374 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15375 fnp->voffset = VOFFSET_STATIC;
15376 }
15377 else
15378 complaint (&symfile_complaints, _("member function type missing for '%s'"),
15379 dwarf2_full_name (fieldname, die, cu));
15380
15381 /* Get fcontext from DW_AT_containing_type if present. */
15382 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15383 fnp->fcontext = die_containing_type (die, cu);
15384
15385 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15386 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15387
15388 /* Get accessibility. */
15389 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15390 if (attr)
15391 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15392 else
15393 accessibility = dwarf2_default_access_attribute (die, cu);
15394 switch (accessibility)
15395 {
15396 case DW_ACCESS_private:
15397 fnp->is_private = 1;
15398 break;
15399 case DW_ACCESS_protected:
15400 fnp->is_protected = 1;
15401 break;
15402 }
15403
15404 /* Check for artificial methods. */
15405 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15406 if (attr && DW_UNSND (attr) != 0)
15407 fnp->is_artificial = 1;
15408
15409 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15410
15411 /* Get index in virtual function table if it is a virtual member
15412 function. For older versions of GCC, this is an offset in the
15413 appropriate virtual table, as specified by DW_AT_containing_type.
15414 For everyone else, it is an expression to be evaluated relative
15415 to the object address. */
15416
15417 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15418 if (attr)
15419 {
15420 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15421 {
15422 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15423 {
15424 /* Old-style GCC. */
15425 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15426 }
15427 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15428 || (DW_BLOCK (attr)->size > 1
15429 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15430 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15431 {
15432 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15433 if ((fnp->voffset % cu->header.addr_size) != 0)
15434 dwarf2_complex_location_expr_complaint ();
15435 else
15436 fnp->voffset /= cu->header.addr_size;
15437 fnp->voffset += 2;
15438 }
15439 else
15440 dwarf2_complex_location_expr_complaint ();
15441
15442 if (!fnp->fcontext)
15443 {
15444 /* If there is no `this' field and no DW_AT_containing_type,
15445 we cannot actually find a base class context for the
15446 vtable! */
15447 if (TYPE_NFIELDS (this_type) == 0
15448 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15449 {
15450 complaint (&symfile_complaints,
15451 _("cannot determine context for virtual member "
15452 "function \"%s\" (offset %s)"),
15453 fieldname, sect_offset_str (die->sect_off));
15454 }
15455 else
15456 {
15457 fnp->fcontext
15458 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15459 }
15460 }
15461 }
15462 else if (attr_form_is_section_offset (attr))
15463 {
15464 dwarf2_complex_location_expr_complaint ();
15465 }
15466 else
15467 {
15468 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15469 fieldname);
15470 }
15471 }
15472 else
15473 {
15474 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15475 if (attr && DW_UNSND (attr))
15476 {
15477 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15478 complaint (&symfile_complaints,
15479 _("Member function \"%s\" (offset %s) is virtual "
15480 "but the vtable offset is not specified"),
15481 fieldname, sect_offset_str (die->sect_off));
15482 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15483 TYPE_CPLUS_DYNAMIC (type) = 1;
15484 }
15485 }
15486 }
15487
15488 /* Create the vector of member function fields, and attach it to the type. */
15489
15490 static void
15491 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15492 struct dwarf2_cu *cu)
15493 {
15494 if (cu->language == language_ada)
15495 error (_("unexpected member functions in Ada type"));
15496
15497 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15498 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15499 TYPE_ALLOC (type,
15500 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15501
15502 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15503 {
15504 struct fnfieldlist &nf = fip->fnfieldlists[i];
15505 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15506
15507 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15508 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15509 fn_flp->fn_fields = (struct fn_field *)
15510 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15511
15512 for (int k = 0; k < nf.fnfields.size (); ++k)
15513 fn_flp->fn_fields[k] = nf.fnfields[k];
15514 }
15515
15516 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15517 }
15518
15519 /* Returns non-zero if NAME is the name of a vtable member in CU's
15520 language, zero otherwise. */
15521 static int
15522 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15523 {
15524 static const char vptr[] = "_vptr";
15525
15526 /* Look for the C++ form of the vtable. */
15527 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15528 return 1;
15529
15530 return 0;
15531 }
15532
15533 /* GCC outputs unnamed structures that are really pointers to member
15534 functions, with the ABI-specified layout. If TYPE describes
15535 such a structure, smash it into a member function type.
15536
15537 GCC shouldn't do this; it should just output pointer to member DIEs.
15538 This is GCC PR debug/28767. */
15539
15540 static void
15541 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15542 {
15543 struct type *pfn_type, *self_type, *new_type;
15544
15545 /* Check for a structure with no name and two children. */
15546 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15547 return;
15548
15549 /* Check for __pfn and __delta members. */
15550 if (TYPE_FIELD_NAME (type, 0) == NULL
15551 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15552 || TYPE_FIELD_NAME (type, 1) == NULL
15553 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15554 return;
15555
15556 /* Find the type of the method. */
15557 pfn_type = TYPE_FIELD_TYPE (type, 0);
15558 if (pfn_type == NULL
15559 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15560 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15561 return;
15562
15563 /* Look for the "this" argument. */
15564 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15565 if (TYPE_NFIELDS (pfn_type) == 0
15566 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15567 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15568 return;
15569
15570 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15571 new_type = alloc_type (objfile);
15572 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15573 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15574 TYPE_VARARGS (pfn_type));
15575 smash_to_methodptr_type (type, new_type);
15576 }
15577
15578
15579 /* Called when we find the DIE that starts a structure or union scope
15580 (definition) to create a type for the structure or union. Fill in
15581 the type's name and general properties; the members will not be
15582 processed until process_structure_scope. A symbol table entry for
15583 the type will also not be done until process_structure_scope (assuming
15584 the type has a name).
15585
15586 NOTE: we need to call these functions regardless of whether or not the
15587 DIE has a DW_AT_name attribute, since it might be an anonymous
15588 structure or union. This gets the type entered into our set of
15589 user defined types. */
15590
15591 static struct type *
15592 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15593 {
15594 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15595 struct type *type;
15596 struct attribute *attr;
15597 const char *name;
15598
15599 /* If the definition of this type lives in .debug_types, read that type.
15600 Don't follow DW_AT_specification though, that will take us back up
15601 the chain and we want to go down. */
15602 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15603 if (attr)
15604 {
15605 type = get_DW_AT_signature_type (die, attr, cu);
15606
15607 /* The type's CU may not be the same as CU.
15608 Ensure TYPE is recorded with CU in die_type_hash. */
15609 return set_die_type (die, type, cu);
15610 }
15611
15612 type = alloc_type (objfile);
15613 INIT_CPLUS_SPECIFIC (type);
15614
15615 name = dwarf2_name (die, cu);
15616 if (name != NULL)
15617 {
15618 if (cu->language == language_cplus
15619 || cu->language == language_d
15620 || cu->language == language_rust)
15621 {
15622 const char *full_name = dwarf2_full_name (name, die, cu);
15623
15624 /* dwarf2_full_name might have already finished building the DIE's
15625 type. If so, there is no need to continue. */
15626 if (get_die_type (die, cu) != NULL)
15627 return get_die_type (die, cu);
15628
15629 TYPE_TAG_NAME (type) = full_name;
15630 if (die->tag == DW_TAG_structure_type
15631 || die->tag == DW_TAG_class_type)
15632 TYPE_NAME (type) = TYPE_TAG_NAME (type);
15633 }
15634 else
15635 {
15636 /* The name is already allocated along with this objfile, so
15637 we don't need to duplicate it for the type. */
15638 TYPE_TAG_NAME (type) = name;
15639 if (die->tag == DW_TAG_class_type)
15640 TYPE_NAME (type) = TYPE_TAG_NAME (type);
15641 }
15642 }
15643
15644 if (die->tag == DW_TAG_structure_type)
15645 {
15646 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15647 }
15648 else if (die->tag == DW_TAG_union_type)
15649 {
15650 TYPE_CODE (type) = TYPE_CODE_UNION;
15651 }
15652 else if (die->tag == DW_TAG_variant_part)
15653 {
15654 TYPE_CODE (type) = TYPE_CODE_UNION;
15655 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15656 }
15657 else
15658 {
15659 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15660 }
15661
15662 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15663 TYPE_DECLARED_CLASS (type) = 1;
15664
15665 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15666 if (attr)
15667 {
15668 if (attr_form_is_constant (attr))
15669 TYPE_LENGTH (type) = DW_UNSND (attr);
15670 else
15671 {
15672 /* For the moment, dynamic type sizes are not supported
15673 by GDB's struct type. The actual size is determined
15674 on-demand when resolving the type of a given object,
15675 so set the type's length to zero for now. Otherwise,
15676 we record an expression as the length, and that expression
15677 could lead to a very large value, which could eventually
15678 lead to us trying to allocate that much memory when creating
15679 a value of that type. */
15680 TYPE_LENGTH (type) = 0;
15681 }
15682 }
15683 else
15684 {
15685 TYPE_LENGTH (type) = 0;
15686 }
15687
15688 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15689 {
15690 /* ICC<14 does not output the required DW_AT_declaration on
15691 incomplete types, but gives them a size of zero. */
15692 TYPE_STUB (type) = 1;
15693 }
15694 else
15695 TYPE_STUB_SUPPORTED (type) = 1;
15696
15697 if (die_is_declaration (die, cu))
15698 TYPE_STUB (type) = 1;
15699 else if (attr == NULL && die->child == NULL
15700 && producer_is_realview (cu->producer))
15701 /* RealView does not output the required DW_AT_declaration
15702 on incomplete types. */
15703 TYPE_STUB (type) = 1;
15704
15705 /* We need to add the type field to the die immediately so we don't
15706 infinitely recurse when dealing with pointers to the structure
15707 type within the structure itself. */
15708 set_die_type (die, type, cu);
15709
15710 /* set_die_type should be already done. */
15711 set_descriptive_type (type, die, cu);
15712
15713 return type;
15714 }
15715
15716 /* A helper for process_structure_scope that handles a single member
15717 DIE. */
15718
15719 static void
15720 handle_struct_member_die (struct die_info *child_die, struct type *type,
15721 struct field_info *fi,
15722 std::vector<struct symbol *> *template_args,
15723 struct dwarf2_cu *cu)
15724 {
15725 if (child_die->tag == DW_TAG_member
15726 || child_die->tag == DW_TAG_variable
15727 || child_die->tag == DW_TAG_variant_part)
15728 {
15729 /* NOTE: carlton/2002-11-05: A C++ static data member
15730 should be a DW_TAG_member that is a declaration, but
15731 all versions of G++ as of this writing (so through at
15732 least 3.2.1) incorrectly generate DW_TAG_variable
15733 tags for them instead. */
15734 dwarf2_add_field (fi, child_die, cu);
15735 }
15736 else if (child_die->tag == DW_TAG_subprogram)
15737 {
15738 /* Rust doesn't have member functions in the C++ sense.
15739 However, it does emit ordinary functions as children
15740 of a struct DIE. */
15741 if (cu->language == language_rust)
15742 read_func_scope (child_die, cu);
15743 else
15744 {
15745 /* C++ member function. */
15746 dwarf2_add_member_fn (fi, child_die, type, cu);
15747 }
15748 }
15749 else if (child_die->tag == DW_TAG_inheritance)
15750 {
15751 /* C++ base class field. */
15752 dwarf2_add_field (fi, child_die, cu);
15753 }
15754 else if (type_can_define_types (child_die))
15755 dwarf2_add_type_defn (fi, child_die, cu);
15756 else if (child_die->tag == DW_TAG_template_type_param
15757 || child_die->tag == DW_TAG_template_value_param)
15758 {
15759 struct symbol *arg = new_symbol (child_die, NULL, cu);
15760
15761 if (arg != NULL)
15762 template_args->push_back (arg);
15763 }
15764 else if (child_die->tag == DW_TAG_variant)
15765 {
15766 /* In a variant we want to get the discriminant and also add a
15767 field for our sole member child. */
15768 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15769
15770 for (struct die_info *variant_child = child_die->child;
15771 variant_child != NULL;
15772 variant_child = sibling_die (variant_child))
15773 {
15774 if (variant_child->tag == DW_TAG_member)
15775 {
15776 handle_struct_member_die (variant_child, type, fi,
15777 template_args, cu);
15778 /* Only handle the one. */
15779 break;
15780 }
15781 }
15782
15783 /* We don't handle this but we might as well report it if we see
15784 it. */
15785 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15786 complaint (&symfile_complaints,
15787 _("DW_AT_discr_list is not supported yet"
15788 " - DIE at %s [in module %s]"),
15789 sect_offset_str (child_die->sect_off),
15790 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15791
15792 /* The first field was just added, so we can stash the
15793 discriminant there. */
15794 gdb_assert (!fi->fields.empty ());
15795 if (discr == NULL)
15796 fi->fields.back ().variant.default_branch = true;
15797 else
15798 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15799 }
15800 }
15801
15802 /* Finish creating a structure or union type, including filling in
15803 its members and creating a symbol for it. */
15804
15805 static void
15806 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15807 {
15808 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15809 struct die_info *child_die;
15810 struct type *type;
15811
15812 type = get_die_type (die, cu);
15813 if (type == NULL)
15814 type = read_structure_type (die, cu);
15815
15816 /* When reading a DW_TAG_variant_part, we need to notice when we
15817 read the discriminant member, so we can record it later in the
15818 discriminant_info. */
15819 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
15820 sect_offset discr_offset;
15821
15822 if (is_variant_part)
15823 {
15824 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15825 if (discr == NULL)
15826 {
15827 /* Maybe it's a univariant form, an extension we support.
15828 In this case arrange not to check the offset. */
15829 is_variant_part = false;
15830 }
15831 else if (attr_form_is_ref (discr))
15832 {
15833 struct dwarf2_cu *target_cu = cu;
15834 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15835
15836 discr_offset = target_die->sect_off;
15837 }
15838 else
15839 {
15840 complaint (&symfile_complaints,
15841 _("DW_AT_discr does not have DIE reference form"
15842 " - DIE at %s [in module %s]"),
15843 sect_offset_str (die->sect_off),
15844 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15845 is_variant_part = false;
15846 }
15847 }
15848
15849 if (die->child != NULL && ! die_is_declaration (die, cu))
15850 {
15851 struct field_info fi;
15852 std::vector<struct symbol *> template_args;
15853
15854 child_die = die->child;
15855
15856 while (child_die && child_die->tag)
15857 {
15858 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
15859
15860 if (is_variant_part && discr_offset == child_die->sect_off)
15861 fi.fields.back ().variant.is_discriminant = true;
15862
15863 child_die = sibling_die (child_die);
15864 }
15865
15866 /* Attach template arguments to type. */
15867 if (!template_args.empty ())
15868 {
15869 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15870 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
15871 TYPE_TEMPLATE_ARGUMENTS (type)
15872 = XOBNEWVEC (&objfile->objfile_obstack,
15873 struct symbol *,
15874 TYPE_N_TEMPLATE_ARGUMENTS (type));
15875 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
15876 template_args.data (),
15877 (TYPE_N_TEMPLATE_ARGUMENTS (type)
15878 * sizeof (struct symbol *)));
15879 }
15880
15881 /* Attach fields and member functions to the type. */
15882 if (fi.nfields)
15883 dwarf2_attach_fields_to_type (&fi, type, cu);
15884 if (!fi.fnfieldlists.empty ())
15885 {
15886 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
15887
15888 /* Get the type which refers to the base class (possibly this
15889 class itself) which contains the vtable pointer for the current
15890 class from the DW_AT_containing_type attribute. This use of
15891 DW_AT_containing_type is a GNU extension. */
15892
15893 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15894 {
15895 struct type *t = die_containing_type (die, cu);
15896
15897 set_type_vptr_basetype (type, t);
15898 if (type == t)
15899 {
15900 int i;
15901
15902 /* Our own class provides vtbl ptr. */
15903 for (i = TYPE_NFIELDS (t) - 1;
15904 i >= TYPE_N_BASECLASSES (t);
15905 --i)
15906 {
15907 const char *fieldname = TYPE_FIELD_NAME (t, i);
15908
15909 if (is_vtable_name (fieldname, cu))
15910 {
15911 set_type_vptr_fieldno (type, i);
15912 break;
15913 }
15914 }
15915
15916 /* Complain if virtual function table field not found. */
15917 if (i < TYPE_N_BASECLASSES (t))
15918 complaint (&symfile_complaints,
15919 _("virtual function table pointer "
15920 "not found when defining class '%s'"),
15921 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
15922 "");
15923 }
15924 else
15925 {
15926 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
15927 }
15928 }
15929 else if (cu->producer
15930 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
15931 {
15932 /* The IBM XLC compiler does not provide direct indication
15933 of the containing type, but the vtable pointer is
15934 always named __vfp. */
15935
15936 int i;
15937
15938 for (i = TYPE_NFIELDS (type) - 1;
15939 i >= TYPE_N_BASECLASSES (type);
15940 --i)
15941 {
15942 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
15943 {
15944 set_type_vptr_fieldno (type, i);
15945 set_type_vptr_basetype (type, type);
15946 break;
15947 }
15948 }
15949 }
15950 }
15951
15952 /* Copy fi.typedef_field_list linked list elements content into the
15953 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
15954 if (!fi.typedef_field_list.empty ())
15955 {
15956 int count = fi.typedef_field_list.size ();
15957
15958 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15959 TYPE_TYPEDEF_FIELD_ARRAY (type)
15960 = ((struct decl_field *)
15961 TYPE_ALLOC (type,
15962 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
15963 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
15964
15965 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
15966 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
15967 }
15968
15969 /* Copy fi.nested_types_list linked list elements content into the
15970 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
15971 if (!fi.nested_types_list.empty () && cu->language != language_ada)
15972 {
15973 int count = fi.nested_types_list.size ();
15974
15975 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15976 TYPE_NESTED_TYPES_ARRAY (type)
15977 = ((struct decl_field *)
15978 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
15979 TYPE_NESTED_TYPES_COUNT (type) = count;
15980
15981 for (int i = 0; i < fi.nested_types_list.size (); ++i)
15982 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
15983 }
15984 }
15985
15986 quirk_gcc_member_function_pointer (type, objfile);
15987 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
15988 cu->rust_unions.push_back (type);
15989
15990 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
15991 snapshots) has been known to create a die giving a declaration
15992 for a class that has, as a child, a die giving a definition for a
15993 nested class. So we have to process our children even if the
15994 current die is a declaration. Normally, of course, a declaration
15995 won't have any children at all. */
15996
15997 child_die = die->child;
15998
15999 while (child_die != NULL && child_die->tag)
16000 {
16001 if (child_die->tag == DW_TAG_member
16002 || child_die->tag == DW_TAG_variable
16003 || child_die->tag == DW_TAG_inheritance
16004 || child_die->tag == DW_TAG_template_value_param
16005 || child_die->tag == DW_TAG_template_type_param)
16006 {
16007 /* Do nothing. */
16008 }
16009 else
16010 process_die (child_die, cu);
16011
16012 child_die = sibling_die (child_die);
16013 }
16014
16015 /* Do not consider external references. According to the DWARF standard,
16016 these DIEs are identified by the fact that they have no byte_size
16017 attribute, and a declaration attribute. */
16018 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16019 || !die_is_declaration (die, cu))
16020 new_symbol (die, type, cu);
16021 }
16022
16023 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16024 update TYPE using some information only available in DIE's children. */
16025
16026 static void
16027 update_enumeration_type_from_children (struct die_info *die,
16028 struct type *type,
16029 struct dwarf2_cu *cu)
16030 {
16031 struct die_info *child_die;
16032 int unsigned_enum = 1;
16033 int flag_enum = 1;
16034 ULONGEST mask = 0;
16035
16036 auto_obstack obstack;
16037
16038 for (child_die = die->child;
16039 child_die != NULL && child_die->tag;
16040 child_die = sibling_die (child_die))
16041 {
16042 struct attribute *attr;
16043 LONGEST value;
16044 const gdb_byte *bytes;
16045 struct dwarf2_locexpr_baton *baton;
16046 const char *name;
16047
16048 if (child_die->tag != DW_TAG_enumerator)
16049 continue;
16050
16051 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16052 if (attr == NULL)
16053 continue;
16054
16055 name = dwarf2_name (child_die, cu);
16056 if (name == NULL)
16057 name = "<anonymous enumerator>";
16058
16059 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16060 &value, &bytes, &baton);
16061 if (value < 0)
16062 {
16063 unsigned_enum = 0;
16064 flag_enum = 0;
16065 }
16066 else if ((mask & value) != 0)
16067 flag_enum = 0;
16068 else
16069 mask |= value;
16070
16071 /* If we already know that the enum type is neither unsigned, nor
16072 a flag type, no need to look at the rest of the enumerates. */
16073 if (!unsigned_enum && !flag_enum)
16074 break;
16075 }
16076
16077 if (unsigned_enum)
16078 TYPE_UNSIGNED (type) = 1;
16079 if (flag_enum)
16080 TYPE_FLAG_ENUM (type) = 1;
16081 }
16082
16083 /* Given a DW_AT_enumeration_type die, set its type. We do not
16084 complete the type's fields yet, or create any symbols. */
16085
16086 static struct type *
16087 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16088 {
16089 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16090 struct type *type;
16091 struct attribute *attr;
16092 const char *name;
16093
16094 /* If the definition of this type lives in .debug_types, read that type.
16095 Don't follow DW_AT_specification though, that will take us back up
16096 the chain and we want to go down. */
16097 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16098 if (attr)
16099 {
16100 type = get_DW_AT_signature_type (die, attr, cu);
16101
16102 /* The type's CU may not be the same as CU.
16103 Ensure TYPE is recorded with CU in die_type_hash. */
16104 return set_die_type (die, type, cu);
16105 }
16106
16107 type = alloc_type (objfile);
16108
16109 TYPE_CODE (type) = TYPE_CODE_ENUM;
16110 name = dwarf2_full_name (NULL, die, cu);
16111 if (name != NULL)
16112 TYPE_TAG_NAME (type) = name;
16113
16114 attr = dwarf2_attr (die, DW_AT_type, cu);
16115 if (attr != NULL)
16116 {
16117 struct type *underlying_type = die_type (die, cu);
16118
16119 TYPE_TARGET_TYPE (type) = underlying_type;
16120 }
16121
16122 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16123 if (attr)
16124 {
16125 TYPE_LENGTH (type) = DW_UNSND (attr);
16126 }
16127 else
16128 {
16129 TYPE_LENGTH (type) = 0;
16130 }
16131
16132 /* The enumeration DIE can be incomplete. In Ada, any type can be
16133 declared as private in the package spec, and then defined only
16134 inside the package body. Such types are known as Taft Amendment
16135 Types. When another package uses such a type, an incomplete DIE
16136 may be generated by the compiler. */
16137 if (die_is_declaration (die, cu))
16138 TYPE_STUB (type) = 1;
16139
16140 /* Finish the creation of this type by using the enum's children.
16141 We must call this even when the underlying type has been provided
16142 so that we can determine if we're looking at a "flag" enum. */
16143 update_enumeration_type_from_children (die, type, cu);
16144
16145 /* If this type has an underlying type that is not a stub, then we
16146 may use its attributes. We always use the "unsigned" attribute
16147 in this situation, because ordinarily we guess whether the type
16148 is unsigned -- but the guess can be wrong and the underlying type
16149 can tell us the reality. However, we defer to a local size
16150 attribute if one exists, because this lets the compiler override
16151 the underlying type if needed. */
16152 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16153 {
16154 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16155 if (TYPE_LENGTH (type) == 0)
16156 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16157 }
16158
16159 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16160
16161 return set_die_type (die, type, cu);
16162 }
16163
16164 /* Given a pointer to a die which begins an enumeration, process all
16165 the dies that define the members of the enumeration, and create the
16166 symbol for the enumeration type.
16167
16168 NOTE: We reverse the order of the element list. */
16169
16170 static void
16171 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16172 {
16173 struct type *this_type;
16174
16175 this_type = get_die_type (die, cu);
16176 if (this_type == NULL)
16177 this_type = read_enumeration_type (die, cu);
16178
16179 if (die->child != NULL)
16180 {
16181 struct die_info *child_die;
16182 struct symbol *sym;
16183 struct field *fields = NULL;
16184 int num_fields = 0;
16185 const char *name;
16186
16187 child_die = die->child;
16188 while (child_die && child_die->tag)
16189 {
16190 if (child_die->tag != DW_TAG_enumerator)
16191 {
16192 process_die (child_die, cu);
16193 }
16194 else
16195 {
16196 name = dwarf2_name (child_die, cu);
16197 if (name)
16198 {
16199 sym = new_symbol (child_die, this_type, cu);
16200
16201 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16202 {
16203 fields = (struct field *)
16204 xrealloc (fields,
16205 (num_fields + DW_FIELD_ALLOC_CHUNK)
16206 * sizeof (struct field));
16207 }
16208
16209 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16210 FIELD_TYPE (fields[num_fields]) = NULL;
16211 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16212 FIELD_BITSIZE (fields[num_fields]) = 0;
16213
16214 num_fields++;
16215 }
16216 }
16217
16218 child_die = sibling_die (child_die);
16219 }
16220
16221 if (num_fields)
16222 {
16223 TYPE_NFIELDS (this_type) = num_fields;
16224 TYPE_FIELDS (this_type) = (struct field *)
16225 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16226 memcpy (TYPE_FIELDS (this_type), fields,
16227 sizeof (struct field) * num_fields);
16228 xfree (fields);
16229 }
16230 }
16231
16232 /* If we are reading an enum from a .debug_types unit, and the enum
16233 is a declaration, and the enum is not the signatured type in the
16234 unit, then we do not want to add a symbol for it. Adding a
16235 symbol would in some cases obscure the true definition of the
16236 enum, giving users an incomplete type when the definition is
16237 actually available. Note that we do not want to do this for all
16238 enums which are just declarations, because C++0x allows forward
16239 enum declarations. */
16240 if (cu->per_cu->is_debug_types
16241 && die_is_declaration (die, cu))
16242 {
16243 struct signatured_type *sig_type;
16244
16245 sig_type = (struct signatured_type *) cu->per_cu;
16246 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16247 if (sig_type->type_offset_in_section != die->sect_off)
16248 return;
16249 }
16250
16251 new_symbol (die, this_type, cu);
16252 }
16253
16254 /* Extract all information from a DW_TAG_array_type DIE and put it in
16255 the DIE's type field. For now, this only handles one dimensional
16256 arrays. */
16257
16258 static struct type *
16259 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16260 {
16261 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16262 struct die_info *child_die;
16263 struct type *type;
16264 struct type *element_type, *range_type, *index_type;
16265 struct attribute *attr;
16266 const char *name;
16267 struct dynamic_prop *byte_stride_prop = NULL;
16268 unsigned int bit_stride = 0;
16269
16270 element_type = die_type (die, cu);
16271
16272 /* The die_type call above may have already set the type for this DIE. */
16273 type = get_die_type (die, cu);
16274 if (type)
16275 return type;
16276
16277 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16278 if (attr != NULL)
16279 {
16280 int stride_ok;
16281
16282 byte_stride_prop
16283 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16284 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16285 if (!stride_ok)
16286 {
16287 complaint (&symfile_complaints,
16288 _("unable to read array DW_AT_byte_stride "
16289 " - DIE at %s [in module %s]"),
16290 sect_offset_str (die->sect_off),
16291 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16292 /* Ignore this attribute. We will likely not be able to print
16293 arrays of this type correctly, but there is little we can do
16294 to help if we cannot read the attribute's value. */
16295 byte_stride_prop = NULL;
16296 }
16297 }
16298
16299 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16300 if (attr != NULL)
16301 bit_stride = DW_UNSND (attr);
16302
16303 /* Irix 6.2 native cc creates array types without children for
16304 arrays with unspecified length. */
16305 if (die->child == NULL)
16306 {
16307 index_type = objfile_type (objfile)->builtin_int;
16308 range_type = create_static_range_type (NULL, index_type, 0, -1);
16309 type = create_array_type_with_stride (NULL, element_type, range_type,
16310 byte_stride_prop, bit_stride);
16311 return set_die_type (die, type, cu);
16312 }
16313
16314 std::vector<struct type *> range_types;
16315 child_die = die->child;
16316 while (child_die && child_die->tag)
16317 {
16318 if (child_die->tag == DW_TAG_subrange_type)
16319 {
16320 struct type *child_type = read_type_die (child_die, cu);
16321
16322 if (child_type != NULL)
16323 {
16324 /* The range type was succesfully read. Save it for the
16325 array type creation. */
16326 range_types.push_back (child_type);
16327 }
16328 }
16329 child_die = sibling_die (child_die);
16330 }
16331
16332 /* Dwarf2 dimensions are output from left to right, create the
16333 necessary array types in backwards order. */
16334
16335 type = element_type;
16336
16337 if (read_array_order (die, cu) == DW_ORD_col_major)
16338 {
16339 int i = 0;
16340
16341 while (i < range_types.size ())
16342 type = create_array_type_with_stride (NULL, type, range_types[i++],
16343 byte_stride_prop, bit_stride);
16344 }
16345 else
16346 {
16347 size_t ndim = range_types.size ();
16348 while (ndim-- > 0)
16349 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16350 byte_stride_prop, bit_stride);
16351 }
16352
16353 /* Understand Dwarf2 support for vector types (like they occur on
16354 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16355 array type. This is not part of the Dwarf2/3 standard yet, but a
16356 custom vendor extension. The main difference between a regular
16357 array and the vector variant is that vectors are passed by value
16358 to functions. */
16359 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16360 if (attr)
16361 make_vector_type (type);
16362
16363 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16364 implementation may choose to implement triple vectors using this
16365 attribute. */
16366 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16367 if (attr)
16368 {
16369 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16370 TYPE_LENGTH (type) = DW_UNSND (attr);
16371 else
16372 complaint (&symfile_complaints,
16373 _("DW_AT_byte_size for array type smaller "
16374 "than the total size of elements"));
16375 }
16376
16377 name = dwarf2_name (die, cu);
16378 if (name)
16379 TYPE_NAME (type) = name;
16380
16381 /* Install the type in the die. */
16382 set_die_type (die, type, cu);
16383
16384 /* set_die_type should be already done. */
16385 set_descriptive_type (type, die, cu);
16386
16387 return type;
16388 }
16389
16390 static enum dwarf_array_dim_ordering
16391 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16392 {
16393 struct attribute *attr;
16394
16395 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16396
16397 if (attr)
16398 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16399
16400 /* GNU F77 is a special case, as at 08/2004 array type info is the
16401 opposite order to the dwarf2 specification, but data is still
16402 laid out as per normal fortran.
16403
16404 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16405 version checking. */
16406
16407 if (cu->language == language_fortran
16408 && cu->producer && strstr (cu->producer, "GNU F77"))
16409 {
16410 return DW_ORD_row_major;
16411 }
16412
16413 switch (cu->language_defn->la_array_ordering)
16414 {
16415 case array_column_major:
16416 return DW_ORD_col_major;
16417 case array_row_major:
16418 default:
16419 return DW_ORD_row_major;
16420 };
16421 }
16422
16423 /* Extract all information from a DW_TAG_set_type DIE and put it in
16424 the DIE's type field. */
16425
16426 static struct type *
16427 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16428 {
16429 struct type *domain_type, *set_type;
16430 struct attribute *attr;
16431
16432 domain_type = die_type (die, cu);
16433
16434 /* The die_type call above may have already set the type for this DIE. */
16435 set_type = get_die_type (die, cu);
16436 if (set_type)
16437 return set_type;
16438
16439 set_type = create_set_type (NULL, domain_type);
16440
16441 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16442 if (attr)
16443 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16444
16445 return set_die_type (die, set_type, cu);
16446 }
16447
16448 /* A helper for read_common_block that creates a locexpr baton.
16449 SYM is the symbol which we are marking as computed.
16450 COMMON_DIE is the DIE for the common block.
16451 COMMON_LOC is the location expression attribute for the common
16452 block itself.
16453 MEMBER_LOC is the location expression attribute for the particular
16454 member of the common block that we are processing.
16455 CU is the CU from which the above come. */
16456
16457 static void
16458 mark_common_block_symbol_computed (struct symbol *sym,
16459 struct die_info *common_die,
16460 struct attribute *common_loc,
16461 struct attribute *member_loc,
16462 struct dwarf2_cu *cu)
16463 {
16464 struct dwarf2_per_objfile *dwarf2_per_objfile
16465 = cu->per_cu->dwarf2_per_objfile;
16466 struct objfile *objfile = dwarf2_per_objfile->objfile;
16467 struct dwarf2_locexpr_baton *baton;
16468 gdb_byte *ptr;
16469 unsigned int cu_off;
16470 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16471 LONGEST offset = 0;
16472
16473 gdb_assert (common_loc && member_loc);
16474 gdb_assert (attr_form_is_block (common_loc));
16475 gdb_assert (attr_form_is_block (member_loc)
16476 || attr_form_is_constant (member_loc));
16477
16478 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16479 baton->per_cu = cu->per_cu;
16480 gdb_assert (baton->per_cu);
16481
16482 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16483
16484 if (attr_form_is_constant (member_loc))
16485 {
16486 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16487 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16488 }
16489 else
16490 baton->size += DW_BLOCK (member_loc)->size;
16491
16492 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16493 baton->data = ptr;
16494
16495 *ptr++ = DW_OP_call4;
16496 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16497 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16498 ptr += 4;
16499
16500 if (attr_form_is_constant (member_loc))
16501 {
16502 *ptr++ = DW_OP_addr;
16503 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16504 ptr += cu->header.addr_size;
16505 }
16506 else
16507 {
16508 /* We have to copy the data here, because DW_OP_call4 will only
16509 use a DW_AT_location attribute. */
16510 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16511 ptr += DW_BLOCK (member_loc)->size;
16512 }
16513
16514 *ptr++ = DW_OP_plus;
16515 gdb_assert (ptr - baton->data == baton->size);
16516
16517 SYMBOL_LOCATION_BATON (sym) = baton;
16518 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16519 }
16520
16521 /* Create appropriate locally-scoped variables for all the
16522 DW_TAG_common_block entries. Also create a struct common_block
16523 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16524 is used to sepate the common blocks name namespace from regular
16525 variable names. */
16526
16527 static void
16528 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16529 {
16530 struct attribute *attr;
16531
16532 attr = dwarf2_attr (die, DW_AT_location, cu);
16533 if (attr)
16534 {
16535 /* Support the .debug_loc offsets. */
16536 if (attr_form_is_block (attr))
16537 {
16538 /* Ok. */
16539 }
16540 else if (attr_form_is_section_offset (attr))
16541 {
16542 dwarf2_complex_location_expr_complaint ();
16543 attr = NULL;
16544 }
16545 else
16546 {
16547 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16548 "common block member");
16549 attr = NULL;
16550 }
16551 }
16552
16553 if (die->child != NULL)
16554 {
16555 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16556 struct die_info *child_die;
16557 size_t n_entries = 0, size;
16558 struct common_block *common_block;
16559 struct symbol *sym;
16560
16561 for (child_die = die->child;
16562 child_die && child_die->tag;
16563 child_die = sibling_die (child_die))
16564 ++n_entries;
16565
16566 size = (sizeof (struct common_block)
16567 + (n_entries - 1) * sizeof (struct symbol *));
16568 common_block
16569 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16570 size);
16571 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16572 common_block->n_entries = 0;
16573
16574 for (child_die = die->child;
16575 child_die && child_die->tag;
16576 child_die = sibling_die (child_die))
16577 {
16578 /* Create the symbol in the DW_TAG_common_block block in the current
16579 symbol scope. */
16580 sym = new_symbol (child_die, NULL, cu);
16581 if (sym != NULL)
16582 {
16583 struct attribute *member_loc;
16584
16585 common_block->contents[common_block->n_entries++] = sym;
16586
16587 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16588 cu);
16589 if (member_loc)
16590 {
16591 /* GDB has handled this for a long time, but it is
16592 not specified by DWARF. It seems to have been
16593 emitted by gfortran at least as recently as:
16594 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16595 complaint (&symfile_complaints,
16596 _("Variable in common block has "
16597 "DW_AT_data_member_location "
16598 "- DIE at %s [in module %s]"),
16599 sect_offset_str (child_die->sect_off),
16600 objfile_name (objfile));
16601
16602 if (attr_form_is_section_offset (member_loc))
16603 dwarf2_complex_location_expr_complaint ();
16604 else if (attr_form_is_constant (member_loc)
16605 || attr_form_is_block (member_loc))
16606 {
16607 if (attr)
16608 mark_common_block_symbol_computed (sym, die, attr,
16609 member_loc, cu);
16610 }
16611 else
16612 dwarf2_complex_location_expr_complaint ();
16613 }
16614 }
16615 }
16616
16617 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16618 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16619 }
16620 }
16621
16622 /* Create a type for a C++ namespace. */
16623
16624 static struct type *
16625 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16626 {
16627 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16628 const char *previous_prefix, *name;
16629 int is_anonymous;
16630 struct type *type;
16631
16632 /* For extensions, reuse the type of the original namespace. */
16633 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16634 {
16635 struct die_info *ext_die;
16636 struct dwarf2_cu *ext_cu = cu;
16637
16638 ext_die = dwarf2_extension (die, &ext_cu);
16639 type = read_type_die (ext_die, ext_cu);
16640
16641 /* EXT_CU may not be the same as CU.
16642 Ensure TYPE is recorded with CU in die_type_hash. */
16643 return set_die_type (die, type, cu);
16644 }
16645
16646 name = namespace_name (die, &is_anonymous, cu);
16647
16648 /* Now build the name of the current namespace. */
16649
16650 previous_prefix = determine_prefix (die, cu);
16651 if (previous_prefix[0] != '\0')
16652 name = typename_concat (&objfile->objfile_obstack,
16653 previous_prefix, name, 0, cu);
16654
16655 /* Create the type. */
16656 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16657 TYPE_TAG_NAME (type) = TYPE_NAME (type);
16658
16659 return set_die_type (die, type, cu);
16660 }
16661
16662 /* Read a namespace scope. */
16663
16664 static void
16665 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16666 {
16667 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16668 int is_anonymous;
16669
16670 /* Add a symbol associated to this if we haven't seen the namespace
16671 before. Also, add a using directive if it's an anonymous
16672 namespace. */
16673
16674 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16675 {
16676 struct type *type;
16677
16678 type = read_type_die (die, cu);
16679 new_symbol (die, type, cu);
16680
16681 namespace_name (die, &is_anonymous, cu);
16682 if (is_anonymous)
16683 {
16684 const char *previous_prefix = determine_prefix (die, cu);
16685
16686 std::vector<const char *> excludes;
16687 add_using_directive (using_directives (cu->language),
16688 previous_prefix, TYPE_NAME (type), NULL,
16689 NULL, excludes, 0, &objfile->objfile_obstack);
16690 }
16691 }
16692
16693 if (die->child != NULL)
16694 {
16695 struct die_info *child_die = die->child;
16696
16697 while (child_die && child_die->tag)
16698 {
16699 process_die (child_die, cu);
16700 child_die = sibling_die (child_die);
16701 }
16702 }
16703 }
16704
16705 /* Read a Fortran module as type. This DIE can be only a declaration used for
16706 imported module. Still we need that type as local Fortran "use ... only"
16707 declaration imports depend on the created type in determine_prefix. */
16708
16709 static struct type *
16710 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16711 {
16712 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16713 const char *module_name;
16714 struct type *type;
16715
16716 module_name = dwarf2_name (die, cu);
16717 if (!module_name)
16718 complaint (&symfile_complaints,
16719 _("DW_TAG_module has no name, offset %s"),
16720 sect_offset_str (die->sect_off));
16721 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16722
16723 /* determine_prefix uses TYPE_TAG_NAME. */
16724 TYPE_TAG_NAME (type) = TYPE_NAME (type);
16725
16726 return set_die_type (die, type, cu);
16727 }
16728
16729 /* Read a Fortran module. */
16730
16731 static void
16732 read_module (struct die_info *die, struct dwarf2_cu *cu)
16733 {
16734 struct die_info *child_die = die->child;
16735 struct type *type;
16736
16737 type = read_type_die (die, cu);
16738 new_symbol (die, type, cu);
16739
16740 while (child_die && child_die->tag)
16741 {
16742 process_die (child_die, cu);
16743 child_die = sibling_die (child_die);
16744 }
16745 }
16746
16747 /* Return the name of the namespace represented by DIE. Set
16748 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16749 namespace. */
16750
16751 static const char *
16752 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16753 {
16754 struct die_info *current_die;
16755 const char *name = NULL;
16756
16757 /* Loop through the extensions until we find a name. */
16758
16759 for (current_die = die;
16760 current_die != NULL;
16761 current_die = dwarf2_extension (die, &cu))
16762 {
16763 /* We don't use dwarf2_name here so that we can detect the absence
16764 of a name -> anonymous namespace. */
16765 name = dwarf2_string_attr (die, DW_AT_name, cu);
16766
16767 if (name != NULL)
16768 break;
16769 }
16770
16771 /* Is it an anonymous namespace? */
16772
16773 *is_anonymous = (name == NULL);
16774 if (*is_anonymous)
16775 name = CP_ANONYMOUS_NAMESPACE_STR;
16776
16777 return name;
16778 }
16779
16780 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16781 the user defined type vector. */
16782
16783 static struct type *
16784 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16785 {
16786 struct gdbarch *gdbarch
16787 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16788 struct comp_unit_head *cu_header = &cu->header;
16789 struct type *type;
16790 struct attribute *attr_byte_size;
16791 struct attribute *attr_address_class;
16792 int byte_size, addr_class;
16793 struct type *target_type;
16794
16795 target_type = die_type (die, cu);
16796
16797 /* The die_type call above may have already set the type for this DIE. */
16798 type = get_die_type (die, cu);
16799 if (type)
16800 return type;
16801
16802 type = lookup_pointer_type (target_type);
16803
16804 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16805 if (attr_byte_size)
16806 byte_size = DW_UNSND (attr_byte_size);
16807 else
16808 byte_size = cu_header->addr_size;
16809
16810 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16811 if (attr_address_class)
16812 addr_class = DW_UNSND (attr_address_class);
16813 else
16814 addr_class = DW_ADDR_none;
16815
16816 /* If the pointer size or address class is different than the
16817 default, create a type variant marked as such and set the
16818 length accordingly. */
16819 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
16820 {
16821 if (gdbarch_address_class_type_flags_p (gdbarch))
16822 {
16823 int type_flags;
16824
16825 type_flags = gdbarch_address_class_type_flags
16826 (gdbarch, byte_size, addr_class);
16827 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16828 == 0);
16829 type = make_type_with_address_space (type, type_flags);
16830 }
16831 else if (TYPE_LENGTH (type) != byte_size)
16832 {
16833 complaint (&symfile_complaints,
16834 _("invalid pointer size %d"), byte_size);
16835 }
16836 else
16837 {
16838 /* Should we also complain about unhandled address classes? */
16839 }
16840 }
16841
16842 TYPE_LENGTH (type) = byte_size;
16843 return set_die_type (die, type, cu);
16844 }
16845
16846 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
16847 the user defined type vector. */
16848
16849 static struct type *
16850 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
16851 {
16852 struct type *type;
16853 struct type *to_type;
16854 struct type *domain;
16855
16856 to_type = die_type (die, cu);
16857 domain = die_containing_type (die, cu);
16858
16859 /* The calls above may have already set the type for this DIE. */
16860 type = get_die_type (die, cu);
16861 if (type)
16862 return type;
16863
16864 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
16865 type = lookup_methodptr_type (to_type);
16866 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
16867 {
16868 struct type *new_type
16869 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
16870
16871 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
16872 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
16873 TYPE_VARARGS (to_type));
16874 type = lookup_methodptr_type (new_type);
16875 }
16876 else
16877 type = lookup_memberptr_type (to_type, domain);
16878
16879 return set_die_type (die, type, cu);
16880 }
16881
16882 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
16883 the user defined type vector. */
16884
16885 static struct type *
16886 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
16887 enum type_code refcode)
16888 {
16889 struct comp_unit_head *cu_header = &cu->header;
16890 struct type *type, *target_type;
16891 struct attribute *attr;
16892
16893 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
16894
16895 target_type = die_type (die, cu);
16896
16897 /* The die_type call above may have already set the type for this DIE. */
16898 type = get_die_type (die, cu);
16899 if (type)
16900 return type;
16901
16902 type = lookup_reference_type (target_type, refcode);
16903 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16904 if (attr)
16905 {
16906 TYPE_LENGTH (type) = DW_UNSND (attr);
16907 }
16908 else
16909 {
16910 TYPE_LENGTH (type) = cu_header->addr_size;
16911 }
16912 return set_die_type (die, type, cu);
16913 }
16914
16915 /* Add the given cv-qualifiers to the element type of the array. GCC
16916 outputs DWARF type qualifiers that apply to an array, not the
16917 element type. But GDB relies on the array element type to carry
16918 the cv-qualifiers. This mimics section 6.7.3 of the C99
16919 specification. */
16920
16921 static struct type *
16922 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
16923 struct type *base_type, int cnst, int voltl)
16924 {
16925 struct type *el_type, *inner_array;
16926
16927 base_type = copy_type (base_type);
16928 inner_array = base_type;
16929
16930 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
16931 {
16932 TYPE_TARGET_TYPE (inner_array) =
16933 copy_type (TYPE_TARGET_TYPE (inner_array));
16934 inner_array = TYPE_TARGET_TYPE (inner_array);
16935 }
16936
16937 el_type = TYPE_TARGET_TYPE (inner_array);
16938 cnst |= TYPE_CONST (el_type);
16939 voltl |= TYPE_VOLATILE (el_type);
16940 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
16941
16942 return set_die_type (die, base_type, cu);
16943 }
16944
16945 static struct type *
16946 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
16947 {
16948 struct type *base_type, *cv_type;
16949
16950 base_type = die_type (die, cu);
16951
16952 /* The die_type call above may have already set the type for this DIE. */
16953 cv_type = get_die_type (die, cu);
16954 if (cv_type)
16955 return cv_type;
16956
16957 /* In case the const qualifier is applied to an array type, the element type
16958 is so qualified, not the array type (section 6.7.3 of C99). */
16959 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
16960 return add_array_cv_type (die, cu, base_type, 1, 0);
16961
16962 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
16963 return set_die_type (die, cv_type, cu);
16964 }
16965
16966 static struct type *
16967 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
16968 {
16969 struct type *base_type, *cv_type;
16970
16971 base_type = die_type (die, cu);
16972
16973 /* The die_type call above may have already set the type for this DIE. */
16974 cv_type = get_die_type (die, cu);
16975 if (cv_type)
16976 return cv_type;
16977
16978 /* In case the volatile qualifier is applied to an array type, the
16979 element type is so qualified, not the array type (section 6.7.3
16980 of C99). */
16981 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
16982 return add_array_cv_type (die, cu, base_type, 0, 1);
16983
16984 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
16985 return set_die_type (die, cv_type, cu);
16986 }
16987
16988 /* Handle DW_TAG_restrict_type. */
16989
16990 static struct type *
16991 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
16992 {
16993 struct type *base_type, *cv_type;
16994
16995 base_type = die_type (die, cu);
16996
16997 /* The die_type call above may have already set the type for this DIE. */
16998 cv_type = get_die_type (die, cu);
16999 if (cv_type)
17000 return cv_type;
17001
17002 cv_type = make_restrict_type (base_type);
17003 return set_die_type (die, cv_type, cu);
17004 }
17005
17006 /* Handle DW_TAG_atomic_type. */
17007
17008 static struct type *
17009 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17010 {
17011 struct type *base_type, *cv_type;
17012
17013 base_type = die_type (die, cu);
17014
17015 /* The die_type call above may have already set the type for this DIE. */
17016 cv_type = get_die_type (die, cu);
17017 if (cv_type)
17018 return cv_type;
17019
17020 cv_type = make_atomic_type (base_type);
17021 return set_die_type (die, cv_type, cu);
17022 }
17023
17024 /* Extract all information from a DW_TAG_string_type DIE and add to
17025 the user defined type vector. It isn't really a user defined type,
17026 but it behaves like one, with other DIE's using an AT_user_def_type
17027 attribute to reference it. */
17028
17029 static struct type *
17030 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17031 {
17032 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17033 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17034 struct type *type, *range_type, *index_type, *char_type;
17035 struct attribute *attr;
17036 unsigned int length;
17037
17038 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17039 if (attr)
17040 {
17041 length = DW_UNSND (attr);
17042 }
17043 else
17044 {
17045 /* Check for the DW_AT_byte_size attribute. */
17046 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17047 if (attr)
17048 {
17049 length = DW_UNSND (attr);
17050 }
17051 else
17052 {
17053 length = 1;
17054 }
17055 }
17056
17057 index_type = objfile_type (objfile)->builtin_int;
17058 range_type = create_static_range_type (NULL, index_type, 1, length);
17059 char_type = language_string_char_type (cu->language_defn, gdbarch);
17060 type = create_string_type (NULL, char_type, range_type);
17061
17062 return set_die_type (die, type, cu);
17063 }
17064
17065 /* Assuming that DIE corresponds to a function, returns nonzero
17066 if the function is prototyped. */
17067
17068 static int
17069 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17070 {
17071 struct attribute *attr;
17072
17073 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17074 if (attr && (DW_UNSND (attr) != 0))
17075 return 1;
17076
17077 /* The DWARF standard implies that the DW_AT_prototyped attribute
17078 is only meaninful for C, but the concept also extends to other
17079 languages that allow unprototyped functions (Eg: Objective C).
17080 For all other languages, assume that functions are always
17081 prototyped. */
17082 if (cu->language != language_c
17083 && cu->language != language_objc
17084 && cu->language != language_opencl)
17085 return 1;
17086
17087 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17088 prototyped and unprototyped functions; default to prototyped,
17089 since that is more common in modern code (and RealView warns
17090 about unprototyped functions). */
17091 if (producer_is_realview (cu->producer))
17092 return 1;
17093
17094 return 0;
17095 }
17096
17097 /* Handle DIES due to C code like:
17098
17099 struct foo
17100 {
17101 int (*funcp)(int a, long l);
17102 int b;
17103 };
17104
17105 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17106
17107 static struct type *
17108 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17109 {
17110 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17111 struct type *type; /* Type that this function returns. */
17112 struct type *ftype; /* Function that returns above type. */
17113 struct attribute *attr;
17114
17115 type = die_type (die, cu);
17116
17117 /* The die_type call above may have already set the type for this DIE. */
17118 ftype = get_die_type (die, cu);
17119 if (ftype)
17120 return ftype;
17121
17122 ftype = lookup_function_type (type);
17123
17124 if (prototyped_function_p (die, cu))
17125 TYPE_PROTOTYPED (ftype) = 1;
17126
17127 /* Store the calling convention in the type if it's available in
17128 the subroutine die. Otherwise set the calling convention to
17129 the default value DW_CC_normal. */
17130 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17131 if (attr)
17132 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17133 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17134 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17135 else
17136 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17137
17138 /* Record whether the function returns normally to its caller or not
17139 if the DWARF producer set that information. */
17140 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17141 if (attr && (DW_UNSND (attr) != 0))
17142 TYPE_NO_RETURN (ftype) = 1;
17143
17144 /* We need to add the subroutine type to the die immediately so
17145 we don't infinitely recurse when dealing with parameters
17146 declared as the same subroutine type. */
17147 set_die_type (die, ftype, cu);
17148
17149 if (die->child != NULL)
17150 {
17151 struct type *void_type = objfile_type (objfile)->builtin_void;
17152 struct die_info *child_die;
17153 int nparams, iparams;
17154
17155 /* Count the number of parameters.
17156 FIXME: GDB currently ignores vararg functions, but knows about
17157 vararg member functions. */
17158 nparams = 0;
17159 child_die = die->child;
17160 while (child_die && child_die->tag)
17161 {
17162 if (child_die->tag == DW_TAG_formal_parameter)
17163 nparams++;
17164 else if (child_die->tag == DW_TAG_unspecified_parameters)
17165 TYPE_VARARGS (ftype) = 1;
17166 child_die = sibling_die (child_die);
17167 }
17168
17169 /* Allocate storage for parameters and fill them in. */
17170 TYPE_NFIELDS (ftype) = nparams;
17171 TYPE_FIELDS (ftype) = (struct field *)
17172 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17173
17174 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17175 even if we error out during the parameters reading below. */
17176 for (iparams = 0; iparams < nparams; iparams++)
17177 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17178
17179 iparams = 0;
17180 child_die = die->child;
17181 while (child_die && child_die->tag)
17182 {
17183 if (child_die->tag == DW_TAG_formal_parameter)
17184 {
17185 struct type *arg_type;
17186
17187 /* DWARF version 2 has no clean way to discern C++
17188 static and non-static member functions. G++ helps
17189 GDB by marking the first parameter for non-static
17190 member functions (which is the this pointer) as
17191 artificial. We pass this information to
17192 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17193
17194 DWARF version 3 added DW_AT_object_pointer, which GCC
17195 4.5 does not yet generate. */
17196 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17197 if (attr)
17198 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17199 else
17200 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17201 arg_type = die_type (child_die, cu);
17202
17203 /* RealView does not mark THIS as const, which the testsuite
17204 expects. GCC marks THIS as const in method definitions,
17205 but not in the class specifications (GCC PR 43053). */
17206 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17207 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17208 {
17209 int is_this = 0;
17210 struct dwarf2_cu *arg_cu = cu;
17211 const char *name = dwarf2_name (child_die, cu);
17212
17213 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17214 if (attr)
17215 {
17216 /* If the compiler emits this, use it. */
17217 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17218 is_this = 1;
17219 }
17220 else if (name && strcmp (name, "this") == 0)
17221 /* Function definitions will have the argument names. */
17222 is_this = 1;
17223 else if (name == NULL && iparams == 0)
17224 /* Declarations may not have the names, so like
17225 elsewhere in GDB, assume an artificial first
17226 argument is "this". */
17227 is_this = 1;
17228
17229 if (is_this)
17230 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17231 arg_type, 0);
17232 }
17233
17234 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17235 iparams++;
17236 }
17237 child_die = sibling_die (child_die);
17238 }
17239 }
17240
17241 return ftype;
17242 }
17243
17244 static struct type *
17245 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17246 {
17247 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17248 const char *name = NULL;
17249 struct type *this_type, *target_type;
17250
17251 name = dwarf2_full_name (NULL, die, cu);
17252 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17253 TYPE_TARGET_STUB (this_type) = 1;
17254 set_die_type (die, this_type, cu);
17255 target_type = die_type (die, cu);
17256 if (target_type != this_type)
17257 TYPE_TARGET_TYPE (this_type) = target_type;
17258 else
17259 {
17260 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17261 spec and cause infinite loops in GDB. */
17262 complaint (&symfile_complaints,
17263 _("Self-referential DW_TAG_typedef "
17264 "- DIE at %s [in module %s]"),
17265 sect_offset_str (die->sect_off), objfile_name (objfile));
17266 TYPE_TARGET_TYPE (this_type) = NULL;
17267 }
17268 return this_type;
17269 }
17270
17271 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17272 (which may be different from NAME) to the architecture back-end to allow
17273 it to guess the correct format if necessary. */
17274
17275 static struct type *
17276 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17277 const char *name_hint)
17278 {
17279 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17280 const struct floatformat **format;
17281 struct type *type;
17282
17283 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17284 if (format)
17285 type = init_float_type (objfile, bits, name, format);
17286 else
17287 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17288
17289 return type;
17290 }
17291
17292 /* Find a representation of a given base type and install
17293 it in the TYPE field of the die. */
17294
17295 static struct type *
17296 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17297 {
17298 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17299 struct type *type;
17300 struct attribute *attr;
17301 int encoding = 0, bits = 0;
17302 const char *name;
17303
17304 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17305 if (attr)
17306 {
17307 encoding = DW_UNSND (attr);
17308 }
17309 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17310 if (attr)
17311 {
17312 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17313 }
17314 name = dwarf2_name (die, cu);
17315 if (!name)
17316 {
17317 complaint (&symfile_complaints,
17318 _("DW_AT_name missing from DW_TAG_base_type"));
17319 }
17320
17321 switch (encoding)
17322 {
17323 case DW_ATE_address:
17324 /* Turn DW_ATE_address into a void * pointer. */
17325 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17326 type = init_pointer_type (objfile, bits, name, type);
17327 break;
17328 case DW_ATE_boolean:
17329 type = init_boolean_type (objfile, bits, 1, name);
17330 break;
17331 case DW_ATE_complex_float:
17332 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
17333 type = init_complex_type (objfile, name, type);
17334 break;
17335 case DW_ATE_decimal_float:
17336 type = init_decfloat_type (objfile, bits, name);
17337 break;
17338 case DW_ATE_float:
17339 type = dwarf2_init_float_type (objfile, bits, name, name);
17340 break;
17341 case DW_ATE_signed:
17342 type = init_integer_type (objfile, bits, 0, name);
17343 break;
17344 case DW_ATE_unsigned:
17345 if (cu->language == language_fortran
17346 && name
17347 && startswith (name, "character("))
17348 type = init_character_type (objfile, bits, 1, name);
17349 else
17350 type = init_integer_type (objfile, bits, 1, name);
17351 break;
17352 case DW_ATE_signed_char:
17353 if (cu->language == language_ada || cu->language == language_m2
17354 || cu->language == language_pascal
17355 || cu->language == language_fortran)
17356 type = init_character_type (objfile, bits, 0, name);
17357 else
17358 type = init_integer_type (objfile, bits, 0, name);
17359 break;
17360 case DW_ATE_unsigned_char:
17361 if (cu->language == language_ada || cu->language == language_m2
17362 || cu->language == language_pascal
17363 || cu->language == language_fortran
17364 || cu->language == language_rust)
17365 type = init_character_type (objfile, bits, 1, name);
17366 else
17367 type = init_integer_type (objfile, bits, 1, name);
17368 break;
17369 case DW_ATE_UTF:
17370 {
17371 gdbarch *arch = get_objfile_arch (objfile);
17372
17373 if (bits == 16)
17374 type = builtin_type (arch)->builtin_char16;
17375 else if (bits == 32)
17376 type = builtin_type (arch)->builtin_char32;
17377 else
17378 {
17379 complaint (&symfile_complaints,
17380 _("unsupported DW_ATE_UTF bit size: '%d'"),
17381 bits);
17382 type = init_integer_type (objfile, bits, 1, name);
17383 }
17384 return set_die_type (die, type, cu);
17385 }
17386 break;
17387
17388 default:
17389 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
17390 dwarf_type_encoding_name (encoding));
17391 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17392 break;
17393 }
17394
17395 if (name && strcmp (name, "char") == 0)
17396 TYPE_NOSIGN (type) = 1;
17397
17398 return set_die_type (die, type, cu);
17399 }
17400
17401 /* Parse dwarf attribute if it's a block, reference or constant and put the
17402 resulting value of the attribute into struct bound_prop.
17403 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17404
17405 static int
17406 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17407 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17408 {
17409 struct dwarf2_property_baton *baton;
17410 struct obstack *obstack
17411 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17412
17413 if (attr == NULL || prop == NULL)
17414 return 0;
17415
17416 if (attr_form_is_block (attr))
17417 {
17418 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17419 baton->referenced_type = NULL;
17420 baton->locexpr.per_cu = cu->per_cu;
17421 baton->locexpr.size = DW_BLOCK (attr)->size;
17422 baton->locexpr.data = DW_BLOCK (attr)->data;
17423 prop->data.baton = baton;
17424 prop->kind = PROP_LOCEXPR;
17425 gdb_assert (prop->data.baton != NULL);
17426 }
17427 else if (attr_form_is_ref (attr))
17428 {
17429 struct dwarf2_cu *target_cu = cu;
17430 struct die_info *target_die;
17431 struct attribute *target_attr;
17432
17433 target_die = follow_die_ref (die, attr, &target_cu);
17434 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17435 if (target_attr == NULL)
17436 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17437 target_cu);
17438 if (target_attr == NULL)
17439 return 0;
17440
17441 switch (target_attr->name)
17442 {
17443 case DW_AT_location:
17444 if (attr_form_is_section_offset (target_attr))
17445 {
17446 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17447 baton->referenced_type = die_type (target_die, target_cu);
17448 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17449 prop->data.baton = baton;
17450 prop->kind = PROP_LOCLIST;
17451 gdb_assert (prop->data.baton != NULL);
17452 }
17453 else if (attr_form_is_block (target_attr))
17454 {
17455 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17456 baton->referenced_type = die_type (target_die, target_cu);
17457 baton->locexpr.per_cu = cu->per_cu;
17458 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17459 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17460 prop->data.baton = baton;
17461 prop->kind = PROP_LOCEXPR;
17462 gdb_assert (prop->data.baton != NULL);
17463 }
17464 else
17465 {
17466 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17467 "dynamic property");
17468 return 0;
17469 }
17470 break;
17471 case DW_AT_data_member_location:
17472 {
17473 LONGEST offset;
17474
17475 if (!handle_data_member_location (target_die, target_cu,
17476 &offset))
17477 return 0;
17478
17479 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17480 baton->referenced_type = read_type_die (target_die->parent,
17481 target_cu);
17482 baton->offset_info.offset = offset;
17483 baton->offset_info.type = die_type (target_die, target_cu);
17484 prop->data.baton = baton;
17485 prop->kind = PROP_ADDR_OFFSET;
17486 break;
17487 }
17488 }
17489 }
17490 else if (attr_form_is_constant (attr))
17491 {
17492 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17493 prop->kind = PROP_CONST;
17494 }
17495 else
17496 {
17497 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17498 dwarf2_name (die, cu));
17499 return 0;
17500 }
17501
17502 return 1;
17503 }
17504
17505 /* Read the given DW_AT_subrange DIE. */
17506
17507 static struct type *
17508 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17509 {
17510 struct type *base_type, *orig_base_type;
17511 struct type *range_type;
17512 struct attribute *attr;
17513 struct dynamic_prop low, high;
17514 int low_default_is_valid;
17515 int high_bound_is_count = 0;
17516 const char *name;
17517 LONGEST negative_mask;
17518
17519 orig_base_type = die_type (die, cu);
17520 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17521 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17522 creating the range type, but we use the result of check_typedef
17523 when examining properties of the type. */
17524 base_type = check_typedef (orig_base_type);
17525
17526 /* The die_type call above may have already set the type for this DIE. */
17527 range_type = get_die_type (die, cu);
17528 if (range_type)
17529 return range_type;
17530
17531 low.kind = PROP_CONST;
17532 high.kind = PROP_CONST;
17533 high.data.const_val = 0;
17534
17535 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17536 omitting DW_AT_lower_bound. */
17537 switch (cu->language)
17538 {
17539 case language_c:
17540 case language_cplus:
17541 low.data.const_val = 0;
17542 low_default_is_valid = 1;
17543 break;
17544 case language_fortran:
17545 low.data.const_val = 1;
17546 low_default_is_valid = 1;
17547 break;
17548 case language_d:
17549 case language_objc:
17550 case language_rust:
17551 low.data.const_val = 0;
17552 low_default_is_valid = (cu->header.version >= 4);
17553 break;
17554 case language_ada:
17555 case language_m2:
17556 case language_pascal:
17557 low.data.const_val = 1;
17558 low_default_is_valid = (cu->header.version >= 4);
17559 break;
17560 default:
17561 low.data.const_val = 0;
17562 low_default_is_valid = 0;
17563 break;
17564 }
17565
17566 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17567 if (attr)
17568 attr_to_dynamic_prop (attr, die, cu, &low);
17569 else if (!low_default_is_valid)
17570 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
17571 "- DIE at %s [in module %s]"),
17572 sect_offset_str (die->sect_off),
17573 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17574
17575 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
17576 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17577 {
17578 attr = dwarf2_attr (die, DW_AT_count, cu);
17579 if (attr_to_dynamic_prop (attr, die, cu, &high))
17580 {
17581 /* If bounds are constant do the final calculation here. */
17582 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17583 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17584 else
17585 high_bound_is_count = 1;
17586 }
17587 }
17588
17589 /* Dwarf-2 specifications explicitly allows to create subrange types
17590 without specifying a base type.
17591 In that case, the base type must be set to the type of
17592 the lower bound, upper bound or count, in that order, if any of these
17593 three attributes references an object that has a type.
17594 If no base type is found, the Dwarf-2 specifications say that
17595 a signed integer type of size equal to the size of an address should
17596 be used.
17597 For the following C code: `extern char gdb_int [];'
17598 GCC produces an empty range DIE.
17599 FIXME: muller/2010-05-28: Possible references to object for low bound,
17600 high bound or count are not yet handled by this code. */
17601 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17602 {
17603 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17604 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17605 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17606 struct type *int_type = objfile_type (objfile)->builtin_int;
17607
17608 /* Test "int", "long int", and "long long int" objfile types,
17609 and select the first one having a size above or equal to the
17610 architecture address size. */
17611 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17612 base_type = int_type;
17613 else
17614 {
17615 int_type = objfile_type (objfile)->builtin_long;
17616 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17617 base_type = int_type;
17618 else
17619 {
17620 int_type = objfile_type (objfile)->builtin_long_long;
17621 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17622 base_type = int_type;
17623 }
17624 }
17625 }
17626
17627 /* Normally, the DWARF producers are expected to use a signed
17628 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17629 But this is unfortunately not always the case, as witnessed
17630 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17631 is used instead. To work around that ambiguity, we treat
17632 the bounds as signed, and thus sign-extend their values, when
17633 the base type is signed. */
17634 negative_mask =
17635 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17636 if (low.kind == PROP_CONST
17637 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17638 low.data.const_val |= negative_mask;
17639 if (high.kind == PROP_CONST
17640 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17641 high.data.const_val |= negative_mask;
17642
17643 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17644
17645 if (high_bound_is_count)
17646 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17647
17648 /* Ada expects an empty array on no boundary attributes. */
17649 if (attr == NULL && cu->language != language_ada)
17650 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17651
17652 name = dwarf2_name (die, cu);
17653 if (name)
17654 TYPE_NAME (range_type) = name;
17655
17656 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17657 if (attr)
17658 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17659
17660 set_die_type (die, range_type, cu);
17661
17662 /* set_die_type should be already done. */
17663 set_descriptive_type (range_type, die, cu);
17664
17665 return range_type;
17666 }
17667
17668 static struct type *
17669 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17670 {
17671 struct type *type;
17672
17673 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17674 NULL);
17675 TYPE_NAME (type) = dwarf2_name (die, cu);
17676
17677 /* In Ada, an unspecified type is typically used when the description
17678 of the type is defered to a different unit. When encountering
17679 such a type, we treat it as a stub, and try to resolve it later on,
17680 when needed. */
17681 if (cu->language == language_ada)
17682 TYPE_STUB (type) = 1;
17683
17684 return set_die_type (die, type, cu);
17685 }
17686
17687 /* Read a single die and all its descendents. Set the die's sibling
17688 field to NULL; set other fields in the die correctly, and set all
17689 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17690 location of the info_ptr after reading all of those dies. PARENT
17691 is the parent of the die in question. */
17692
17693 static struct die_info *
17694 read_die_and_children (const struct die_reader_specs *reader,
17695 const gdb_byte *info_ptr,
17696 const gdb_byte **new_info_ptr,
17697 struct die_info *parent)
17698 {
17699 struct die_info *die;
17700 const gdb_byte *cur_ptr;
17701 int has_children;
17702
17703 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
17704 if (die == NULL)
17705 {
17706 *new_info_ptr = cur_ptr;
17707 return NULL;
17708 }
17709 store_in_ref_table (die, reader->cu);
17710
17711 if (has_children)
17712 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17713 else
17714 {
17715 die->child = NULL;
17716 *new_info_ptr = cur_ptr;
17717 }
17718
17719 die->sibling = NULL;
17720 die->parent = parent;
17721 return die;
17722 }
17723
17724 /* Read a die, all of its descendents, and all of its siblings; set
17725 all of the fields of all of the dies correctly. Arguments are as
17726 in read_die_and_children. */
17727
17728 static struct die_info *
17729 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17730 const gdb_byte *info_ptr,
17731 const gdb_byte **new_info_ptr,
17732 struct die_info *parent)
17733 {
17734 struct die_info *first_die, *last_sibling;
17735 const gdb_byte *cur_ptr;
17736
17737 cur_ptr = info_ptr;
17738 first_die = last_sibling = NULL;
17739
17740 while (1)
17741 {
17742 struct die_info *die
17743 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
17744
17745 if (die == NULL)
17746 {
17747 *new_info_ptr = cur_ptr;
17748 return first_die;
17749 }
17750
17751 if (!first_die)
17752 first_die = die;
17753 else
17754 last_sibling->sibling = die;
17755
17756 last_sibling = die;
17757 }
17758 }
17759
17760 /* Read a die, all of its descendents, and all of its siblings; set
17761 all of the fields of all of the dies correctly. Arguments are as
17762 in read_die_and_children.
17763 This the main entry point for reading a DIE and all its children. */
17764
17765 static struct die_info *
17766 read_die_and_siblings (const struct die_reader_specs *reader,
17767 const gdb_byte *info_ptr,
17768 const gdb_byte **new_info_ptr,
17769 struct die_info *parent)
17770 {
17771 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
17772 new_info_ptr, parent);
17773
17774 if (dwarf_die_debug)
17775 {
17776 fprintf_unfiltered (gdb_stdlog,
17777 "Read die from %s@0x%x of %s:\n",
17778 get_section_name (reader->die_section),
17779 (unsigned) (info_ptr - reader->die_section->buffer),
17780 bfd_get_filename (reader->abfd));
17781 dump_die (die, dwarf_die_debug);
17782 }
17783
17784 return die;
17785 }
17786
17787 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
17788 attributes.
17789 The caller is responsible for filling in the extra attributes
17790 and updating (*DIEP)->num_attrs.
17791 Set DIEP to point to a newly allocated die with its information,
17792 except for its child, sibling, and parent fields.
17793 Set HAS_CHILDREN to tell whether the die has children or not. */
17794
17795 static const gdb_byte *
17796 read_full_die_1 (const struct die_reader_specs *reader,
17797 struct die_info **diep, const gdb_byte *info_ptr,
17798 int *has_children, int num_extra_attrs)
17799 {
17800 unsigned int abbrev_number, bytes_read, i;
17801 struct abbrev_info *abbrev;
17802 struct die_info *die;
17803 struct dwarf2_cu *cu = reader->cu;
17804 bfd *abfd = reader->abfd;
17805
17806 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
17807 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17808 info_ptr += bytes_read;
17809 if (!abbrev_number)
17810 {
17811 *diep = NULL;
17812 *has_children = 0;
17813 return info_ptr;
17814 }
17815
17816 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
17817 if (!abbrev)
17818 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
17819 abbrev_number,
17820 bfd_get_filename (abfd));
17821
17822 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
17823 die->sect_off = sect_off;
17824 die->tag = abbrev->tag;
17825 die->abbrev = abbrev_number;
17826
17827 /* Make the result usable.
17828 The caller needs to update num_attrs after adding the extra
17829 attributes. */
17830 die->num_attrs = abbrev->num_attrs;
17831
17832 for (i = 0; i < abbrev->num_attrs; ++i)
17833 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
17834 info_ptr);
17835
17836 *diep = die;
17837 *has_children = abbrev->has_children;
17838 return info_ptr;
17839 }
17840
17841 /* Read a die and all its attributes.
17842 Set DIEP to point to a newly allocated die with its information,
17843 except for its child, sibling, and parent fields.
17844 Set HAS_CHILDREN to tell whether the die has children or not. */
17845
17846 static const gdb_byte *
17847 read_full_die (const struct die_reader_specs *reader,
17848 struct die_info **diep, const gdb_byte *info_ptr,
17849 int *has_children)
17850 {
17851 const gdb_byte *result;
17852
17853 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
17854
17855 if (dwarf_die_debug)
17856 {
17857 fprintf_unfiltered (gdb_stdlog,
17858 "Read die from %s@0x%x of %s:\n",
17859 get_section_name (reader->die_section),
17860 (unsigned) (info_ptr - reader->die_section->buffer),
17861 bfd_get_filename (reader->abfd));
17862 dump_die (*diep, dwarf_die_debug);
17863 }
17864
17865 return result;
17866 }
17867 \f
17868 /* Abbreviation tables.
17869
17870 In DWARF version 2, the description of the debugging information is
17871 stored in a separate .debug_abbrev section. Before we read any
17872 dies from a section we read in all abbreviations and install them
17873 in a hash table. */
17874
17875 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
17876
17877 struct abbrev_info *
17878 abbrev_table::alloc_abbrev ()
17879 {
17880 struct abbrev_info *abbrev;
17881
17882 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
17883 memset (abbrev, 0, sizeof (struct abbrev_info));
17884
17885 return abbrev;
17886 }
17887
17888 /* Add an abbreviation to the table. */
17889
17890 void
17891 abbrev_table::add_abbrev (unsigned int abbrev_number,
17892 struct abbrev_info *abbrev)
17893 {
17894 unsigned int hash_number;
17895
17896 hash_number = abbrev_number % ABBREV_HASH_SIZE;
17897 abbrev->next = m_abbrevs[hash_number];
17898 m_abbrevs[hash_number] = abbrev;
17899 }
17900
17901 /* Look up an abbrev in the table.
17902 Returns NULL if the abbrev is not found. */
17903
17904 struct abbrev_info *
17905 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
17906 {
17907 unsigned int hash_number;
17908 struct abbrev_info *abbrev;
17909
17910 hash_number = abbrev_number % ABBREV_HASH_SIZE;
17911 abbrev = m_abbrevs[hash_number];
17912
17913 while (abbrev)
17914 {
17915 if (abbrev->number == abbrev_number)
17916 return abbrev;
17917 abbrev = abbrev->next;
17918 }
17919 return NULL;
17920 }
17921
17922 /* Read in an abbrev table. */
17923
17924 static abbrev_table_up
17925 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
17926 struct dwarf2_section_info *section,
17927 sect_offset sect_off)
17928 {
17929 struct objfile *objfile = dwarf2_per_objfile->objfile;
17930 bfd *abfd = get_section_bfd_owner (section);
17931 const gdb_byte *abbrev_ptr;
17932 struct abbrev_info *cur_abbrev;
17933 unsigned int abbrev_number, bytes_read, abbrev_name;
17934 unsigned int abbrev_form;
17935 struct attr_abbrev *cur_attrs;
17936 unsigned int allocated_attrs;
17937
17938 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
17939
17940 dwarf2_read_section (objfile, section);
17941 abbrev_ptr = section->buffer + to_underlying (sect_off);
17942 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
17943 abbrev_ptr += bytes_read;
17944
17945 allocated_attrs = ATTR_ALLOC_CHUNK;
17946 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
17947
17948 /* Loop until we reach an abbrev number of 0. */
17949 while (abbrev_number)
17950 {
17951 cur_abbrev = abbrev_table->alloc_abbrev ();
17952
17953 /* read in abbrev header */
17954 cur_abbrev->number = abbrev_number;
17955 cur_abbrev->tag
17956 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
17957 abbrev_ptr += bytes_read;
17958 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
17959 abbrev_ptr += 1;
17960
17961 /* now read in declarations */
17962 for (;;)
17963 {
17964 LONGEST implicit_const;
17965
17966 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
17967 abbrev_ptr += bytes_read;
17968 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
17969 abbrev_ptr += bytes_read;
17970 if (abbrev_form == DW_FORM_implicit_const)
17971 {
17972 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
17973 &bytes_read);
17974 abbrev_ptr += bytes_read;
17975 }
17976 else
17977 {
17978 /* Initialize it due to a false compiler warning. */
17979 implicit_const = -1;
17980 }
17981
17982 if (abbrev_name == 0)
17983 break;
17984
17985 if (cur_abbrev->num_attrs == allocated_attrs)
17986 {
17987 allocated_attrs += ATTR_ALLOC_CHUNK;
17988 cur_attrs
17989 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
17990 }
17991
17992 cur_attrs[cur_abbrev->num_attrs].name
17993 = (enum dwarf_attribute) abbrev_name;
17994 cur_attrs[cur_abbrev->num_attrs].form
17995 = (enum dwarf_form) abbrev_form;
17996 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
17997 ++cur_abbrev->num_attrs;
17998 }
17999
18000 cur_abbrev->attrs =
18001 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18002 cur_abbrev->num_attrs);
18003 memcpy (cur_abbrev->attrs, cur_attrs,
18004 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18005
18006 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18007
18008 /* Get next abbreviation.
18009 Under Irix6 the abbreviations for a compilation unit are not
18010 always properly terminated with an abbrev number of 0.
18011 Exit loop if we encounter an abbreviation which we have
18012 already read (which means we are about to read the abbreviations
18013 for the next compile unit) or if the end of the abbreviation
18014 table is reached. */
18015 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18016 break;
18017 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18018 abbrev_ptr += bytes_read;
18019 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18020 break;
18021 }
18022
18023 xfree (cur_attrs);
18024 return abbrev_table;
18025 }
18026
18027 /* Returns nonzero if TAG represents a type that we might generate a partial
18028 symbol for. */
18029
18030 static int
18031 is_type_tag_for_partial (int tag)
18032 {
18033 switch (tag)
18034 {
18035 #if 0
18036 /* Some types that would be reasonable to generate partial symbols for,
18037 that we don't at present. */
18038 case DW_TAG_array_type:
18039 case DW_TAG_file_type:
18040 case DW_TAG_ptr_to_member_type:
18041 case DW_TAG_set_type:
18042 case DW_TAG_string_type:
18043 case DW_TAG_subroutine_type:
18044 #endif
18045 case DW_TAG_base_type:
18046 case DW_TAG_class_type:
18047 case DW_TAG_interface_type:
18048 case DW_TAG_enumeration_type:
18049 case DW_TAG_structure_type:
18050 case DW_TAG_subrange_type:
18051 case DW_TAG_typedef:
18052 case DW_TAG_union_type:
18053 return 1;
18054 default:
18055 return 0;
18056 }
18057 }
18058
18059 /* Load all DIEs that are interesting for partial symbols into memory. */
18060
18061 static struct partial_die_info *
18062 load_partial_dies (const struct die_reader_specs *reader,
18063 const gdb_byte *info_ptr, int building_psymtab)
18064 {
18065 struct dwarf2_cu *cu = reader->cu;
18066 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18067 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18068 unsigned int bytes_read;
18069 unsigned int load_all = 0;
18070 int nesting_level = 1;
18071
18072 parent_die = NULL;
18073 last_die = NULL;
18074
18075 gdb_assert (cu->per_cu != NULL);
18076 if (cu->per_cu->load_all_dies)
18077 load_all = 1;
18078
18079 cu->partial_dies
18080 = htab_create_alloc_ex (cu->header.length / 12,
18081 partial_die_hash,
18082 partial_die_eq,
18083 NULL,
18084 &cu->comp_unit_obstack,
18085 hashtab_obstack_allocate,
18086 dummy_obstack_deallocate);
18087
18088 while (1)
18089 {
18090 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18091
18092 /* A NULL abbrev means the end of a series of children. */
18093 if (abbrev == NULL)
18094 {
18095 if (--nesting_level == 0)
18096 return first_die;
18097
18098 info_ptr += bytes_read;
18099 last_die = parent_die;
18100 parent_die = parent_die->die_parent;
18101 continue;
18102 }
18103
18104 /* Check for template arguments. We never save these; if
18105 they're seen, we just mark the parent, and go on our way. */
18106 if (parent_die != NULL
18107 && cu->language == language_cplus
18108 && (abbrev->tag == DW_TAG_template_type_param
18109 || abbrev->tag == DW_TAG_template_value_param))
18110 {
18111 parent_die->has_template_arguments = 1;
18112
18113 if (!load_all)
18114 {
18115 /* We don't need a partial DIE for the template argument. */
18116 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18117 continue;
18118 }
18119 }
18120
18121 /* We only recurse into c++ subprograms looking for template arguments.
18122 Skip their other children. */
18123 if (!load_all
18124 && cu->language == language_cplus
18125 && parent_die != NULL
18126 && parent_die->tag == DW_TAG_subprogram)
18127 {
18128 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18129 continue;
18130 }
18131
18132 /* Check whether this DIE is interesting enough to save. Normally
18133 we would not be interested in members here, but there may be
18134 later variables referencing them via DW_AT_specification (for
18135 static members). */
18136 if (!load_all
18137 && !is_type_tag_for_partial (abbrev->tag)
18138 && abbrev->tag != DW_TAG_constant
18139 && abbrev->tag != DW_TAG_enumerator
18140 && abbrev->tag != DW_TAG_subprogram
18141 && abbrev->tag != DW_TAG_inlined_subroutine
18142 && abbrev->tag != DW_TAG_lexical_block
18143 && abbrev->tag != DW_TAG_variable
18144 && abbrev->tag != DW_TAG_namespace
18145 && abbrev->tag != DW_TAG_module
18146 && abbrev->tag != DW_TAG_member
18147 && abbrev->tag != DW_TAG_imported_unit
18148 && abbrev->tag != DW_TAG_imported_declaration)
18149 {
18150 /* Otherwise we skip to the next sibling, if any. */
18151 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18152 continue;
18153 }
18154
18155 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18156 abbrev);
18157
18158 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18159
18160 /* This two-pass algorithm for processing partial symbols has a
18161 high cost in cache pressure. Thus, handle some simple cases
18162 here which cover the majority of C partial symbols. DIEs
18163 which neither have specification tags in them, nor could have
18164 specification tags elsewhere pointing at them, can simply be
18165 processed and discarded.
18166
18167 This segment is also optional; scan_partial_symbols and
18168 add_partial_symbol will handle these DIEs if we chain
18169 them in normally. When compilers which do not emit large
18170 quantities of duplicate debug information are more common,
18171 this code can probably be removed. */
18172
18173 /* Any complete simple types at the top level (pretty much all
18174 of them, for a language without namespaces), can be processed
18175 directly. */
18176 if (parent_die == NULL
18177 && pdi.has_specification == 0
18178 && pdi.is_declaration == 0
18179 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18180 || pdi.tag == DW_TAG_base_type
18181 || pdi.tag == DW_TAG_subrange_type))
18182 {
18183 if (building_psymtab && pdi.name != NULL)
18184 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18185 VAR_DOMAIN, LOC_TYPEDEF,
18186 &objfile->static_psymbols,
18187 0, cu->language, objfile);
18188 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18189 continue;
18190 }
18191
18192 /* The exception for DW_TAG_typedef with has_children above is
18193 a workaround of GCC PR debug/47510. In the case of this complaint
18194 type_name_no_tag_or_error will error on such types later.
18195
18196 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18197 it could not find the child DIEs referenced later, this is checked
18198 above. In correct DWARF DW_TAG_typedef should have no children. */
18199
18200 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18201 complaint (&symfile_complaints,
18202 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18203 "- DIE at %s [in module %s]"),
18204 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18205
18206 /* If we're at the second level, and we're an enumerator, and
18207 our parent has no specification (meaning possibly lives in a
18208 namespace elsewhere), then we can add the partial symbol now
18209 instead of queueing it. */
18210 if (pdi.tag == DW_TAG_enumerator
18211 && parent_die != NULL
18212 && parent_die->die_parent == NULL
18213 && parent_die->tag == DW_TAG_enumeration_type
18214 && parent_die->has_specification == 0)
18215 {
18216 if (pdi.name == NULL)
18217 complaint (&symfile_complaints,
18218 _("malformed enumerator DIE ignored"));
18219 else if (building_psymtab)
18220 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18221 VAR_DOMAIN, LOC_CONST,
18222 cu->language == language_cplus
18223 ? &objfile->global_psymbols
18224 : &objfile->static_psymbols,
18225 0, cu->language, objfile);
18226
18227 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18228 continue;
18229 }
18230
18231 struct partial_die_info *part_die
18232 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18233
18234 /* We'll save this DIE so link it in. */
18235 part_die->die_parent = parent_die;
18236 part_die->die_sibling = NULL;
18237 part_die->die_child = NULL;
18238
18239 if (last_die && last_die == parent_die)
18240 last_die->die_child = part_die;
18241 else if (last_die)
18242 last_die->die_sibling = part_die;
18243
18244 last_die = part_die;
18245
18246 if (first_die == NULL)
18247 first_die = part_die;
18248
18249 /* Maybe add the DIE to the hash table. Not all DIEs that we
18250 find interesting need to be in the hash table, because we
18251 also have the parent/sibling/child chains; only those that we
18252 might refer to by offset later during partial symbol reading.
18253
18254 For now this means things that might have be the target of a
18255 DW_AT_specification, DW_AT_abstract_origin, or
18256 DW_AT_extension. DW_AT_extension will refer only to
18257 namespaces; DW_AT_abstract_origin refers to functions (and
18258 many things under the function DIE, but we do not recurse
18259 into function DIEs during partial symbol reading) and
18260 possibly variables as well; DW_AT_specification refers to
18261 declarations. Declarations ought to have the DW_AT_declaration
18262 flag. It happens that GCC forgets to put it in sometimes, but
18263 only for functions, not for types.
18264
18265 Adding more things than necessary to the hash table is harmless
18266 except for the performance cost. Adding too few will result in
18267 wasted time in find_partial_die, when we reread the compilation
18268 unit with load_all_dies set. */
18269
18270 if (load_all
18271 || abbrev->tag == DW_TAG_constant
18272 || abbrev->tag == DW_TAG_subprogram
18273 || abbrev->tag == DW_TAG_variable
18274 || abbrev->tag == DW_TAG_namespace
18275 || part_die->is_declaration)
18276 {
18277 void **slot;
18278
18279 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18280 to_underlying (part_die->sect_off),
18281 INSERT);
18282 *slot = part_die;
18283 }
18284
18285 /* For some DIEs we want to follow their children (if any). For C
18286 we have no reason to follow the children of structures; for other
18287 languages we have to, so that we can get at method physnames
18288 to infer fully qualified class names, for DW_AT_specification,
18289 and for C++ template arguments. For C++, we also look one level
18290 inside functions to find template arguments (if the name of the
18291 function does not already contain the template arguments).
18292
18293 For Ada, we need to scan the children of subprograms and lexical
18294 blocks as well because Ada allows the definition of nested
18295 entities that could be interesting for the debugger, such as
18296 nested subprograms for instance. */
18297 if (last_die->has_children
18298 && (load_all
18299 || last_die->tag == DW_TAG_namespace
18300 || last_die->tag == DW_TAG_module
18301 || last_die->tag == DW_TAG_enumeration_type
18302 || (cu->language == language_cplus
18303 && last_die->tag == DW_TAG_subprogram
18304 && (last_die->name == NULL
18305 || strchr (last_die->name, '<') == NULL))
18306 || (cu->language != language_c
18307 && (last_die->tag == DW_TAG_class_type
18308 || last_die->tag == DW_TAG_interface_type
18309 || last_die->tag == DW_TAG_structure_type
18310 || last_die->tag == DW_TAG_union_type))
18311 || (cu->language == language_ada
18312 && (last_die->tag == DW_TAG_subprogram
18313 || last_die->tag == DW_TAG_lexical_block))))
18314 {
18315 nesting_level++;
18316 parent_die = last_die;
18317 continue;
18318 }
18319
18320 /* Otherwise we skip to the next sibling, if any. */
18321 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18322
18323 /* Back to the top, do it again. */
18324 }
18325 }
18326
18327 partial_die_info::partial_die_info (sect_offset sect_off_,
18328 struct abbrev_info *abbrev)
18329 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18330 {
18331 }
18332
18333 /* Read a minimal amount of information into the minimal die structure.
18334 INFO_PTR should point just after the initial uleb128 of a DIE. */
18335
18336 const gdb_byte *
18337 partial_die_info::read (const struct die_reader_specs *reader,
18338 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18339 {
18340 struct dwarf2_cu *cu = reader->cu;
18341 struct dwarf2_per_objfile *dwarf2_per_objfile
18342 = cu->per_cu->dwarf2_per_objfile;
18343 unsigned int i;
18344 int has_low_pc_attr = 0;
18345 int has_high_pc_attr = 0;
18346 int high_pc_relative = 0;
18347
18348 for (i = 0; i < abbrev.num_attrs; ++i)
18349 {
18350 struct attribute attr;
18351
18352 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18353
18354 /* Store the data if it is of an attribute we want to keep in a
18355 partial symbol table. */
18356 switch (attr.name)
18357 {
18358 case DW_AT_name:
18359 switch (tag)
18360 {
18361 case DW_TAG_compile_unit:
18362 case DW_TAG_partial_unit:
18363 case DW_TAG_type_unit:
18364 /* Compilation units have a DW_AT_name that is a filename, not
18365 a source language identifier. */
18366 case DW_TAG_enumeration_type:
18367 case DW_TAG_enumerator:
18368 /* These tags always have simple identifiers already; no need
18369 to canonicalize them. */
18370 name = DW_STRING (&attr);
18371 break;
18372 default:
18373 {
18374 struct objfile *objfile = dwarf2_per_objfile->objfile;
18375
18376 name
18377 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18378 &objfile->per_bfd->storage_obstack);
18379 }
18380 break;
18381 }
18382 break;
18383 case DW_AT_linkage_name:
18384 case DW_AT_MIPS_linkage_name:
18385 /* Note that both forms of linkage name might appear. We
18386 assume they will be the same, and we only store the last
18387 one we see. */
18388 if (cu->language == language_ada)
18389 name = DW_STRING (&attr);
18390 linkage_name = DW_STRING (&attr);
18391 break;
18392 case DW_AT_low_pc:
18393 has_low_pc_attr = 1;
18394 lowpc = attr_value_as_address (&attr);
18395 break;
18396 case DW_AT_high_pc:
18397 has_high_pc_attr = 1;
18398 highpc = attr_value_as_address (&attr);
18399 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18400 high_pc_relative = 1;
18401 break;
18402 case DW_AT_location:
18403 /* Support the .debug_loc offsets. */
18404 if (attr_form_is_block (&attr))
18405 {
18406 d.locdesc = DW_BLOCK (&attr);
18407 }
18408 else if (attr_form_is_section_offset (&attr))
18409 {
18410 dwarf2_complex_location_expr_complaint ();
18411 }
18412 else
18413 {
18414 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18415 "partial symbol information");
18416 }
18417 break;
18418 case DW_AT_external:
18419 is_external = DW_UNSND (&attr);
18420 break;
18421 case DW_AT_declaration:
18422 is_declaration = DW_UNSND (&attr);
18423 break;
18424 case DW_AT_type:
18425 has_type = 1;
18426 break;
18427 case DW_AT_abstract_origin:
18428 case DW_AT_specification:
18429 case DW_AT_extension:
18430 has_specification = 1;
18431 spec_offset = dwarf2_get_ref_die_offset (&attr);
18432 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18433 || cu->per_cu->is_dwz);
18434 break;
18435 case DW_AT_sibling:
18436 /* Ignore absolute siblings, they might point outside of
18437 the current compile unit. */
18438 if (attr.form == DW_FORM_ref_addr)
18439 complaint (&symfile_complaints,
18440 _("ignoring absolute DW_AT_sibling"));
18441 else
18442 {
18443 const gdb_byte *buffer = reader->buffer;
18444 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18445 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18446
18447 if (sibling_ptr < info_ptr)
18448 complaint (&symfile_complaints,
18449 _("DW_AT_sibling points backwards"));
18450 else if (sibling_ptr > reader->buffer_end)
18451 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18452 else
18453 sibling = sibling_ptr;
18454 }
18455 break;
18456 case DW_AT_byte_size:
18457 has_byte_size = 1;
18458 break;
18459 case DW_AT_const_value:
18460 has_const_value = 1;
18461 break;
18462 case DW_AT_calling_convention:
18463 /* DWARF doesn't provide a way to identify a program's source-level
18464 entry point. DW_AT_calling_convention attributes are only meant
18465 to describe functions' calling conventions.
18466
18467 However, because it's a necessary piece of information in
18468 Fortran, and before DWARF 4 DW_CC_program was the only
18469 piece of debugging information whose definition refers to
18470 a 'main program' at all, several compilers marked Fortran
18471 main programs with DW_CC_program --- even when those
18472 functions use the standard calling conventions.
18473
18474 Although DWARF now specifies a way to provide this
18475 information, we support this practice for backward
18476 compatibility. */
18477 if (DW_UNSND (&attr) == DW_CC_program
18478 && cu->language == language_fortran)
18479 main_subprogram = 1;
18480 break;
18481 case DW_AT_inline:
18482 if (DW_UNSND (&attr) == DW_INL_inlined
18483 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18484 may_be_inlined = 1;
18485 break;
18486
18487 case DW_AT_import:
18488 if (tag == DW_TAG_imported_unit)
18489 {
18490 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18491 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18492 || cu->per_cu->is_dwz);
18493 }
18494 break;
18495
18496 case DW_AT_main_subprogram:
18497 main_subprogram = DW_UNSND (&attr);
18498 break;
18499
18500 default:
18501 break;
18502 }
18503 }
18504
18505 if (high_pc_relative)
18506 highpc += lowpc;
18507
18508 if (has_low_pc_attr && has_high_pc_attr)
18509 {
18510 /* When using the GNU linker, .gnu.linkonce. sections are used to
18511 eliminate duplicate copies of functions and vtables and such.
18512 The linker will arbitrarily choose one and discard the others.
18513 The AT_*_pc values for such functions refer to local labels in
18514 these sections. If the section from that file was discarded, the
18515 labels are not in the output, so the relocs get a value of 0.
18516 If this is a discarded function, mark the pc bounds as invalid,
18517 so that GDB will ignore it. */
18518 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18519 {
18520 struct objfile *objfile = dwarf2_per_objfile->objfile;
18521 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18522
18523 complaint (&symfile_complaints,
18524 _("DW_AT_low_pc %s is zero "
18525 "for DIE at %s [in module %s]"),
18526 paddress (gdbarch, lowpc),
18527 sect_offset_str (sect_off),
18528 objfile_name (objfile));
18529 }
18530 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18531 else if (lowpc >= highpc)
18532 {
18533 struct objfile *objfile = dwarf2_per_objfile->objfile;
18534 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18535
18536 complaint (&symfile_complaints,
18537 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18538 "for DIE at %s [in module %s]"),
18539 paddress (gdbarch, lowpc),
18540 paddress (gdbarch, highpc),
18541 sect_offset_str (sect_off),
18542 objfile_name (objfile));
18543 }
18544 else
18545 has_pc_info = 1;
18546 }
18547
18548 return info_ptr;
18549 }
18550
18551 /* Find a cached partial DIE at OFFSET in CU. */
18552
18553 struct partial_die_info *
18554 dwarf2_cu::find_partial_die (sect_offset sect_off)
18555 {
18556 struct partial_die_info *lookup_die = NULL;
18557 struct partial_die_info part_die (sect_off);
18558
18559 lookup_die = ((struct partial_die_info *)
18560 htab_find_with_hash (partial_dies, &part_die,
18561 to_underlying (sect_off)));
18562
18563 return lookup_die;
18564 }
18565
18566 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18567 except in the case of .debug_types DIEs which do not reference
18568 outside their CU (they do however referencing other types via
18569 DW_FORM_ref_sig8). */
18570
18571 static struct partial_die_info *
18572 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18573 {
18574 struct dwarf2_per_objfile *dwarf2_per_objfile
18575 = cu->per_cu->dwarf2_per_objfile;
18576 struct objfile *objfile = dwarf2_per_objfile->objfile;
18577 struct dwarf2_per_cu_data *per_cu = NULL;
18578 struct partial_die_info *pd = NULL;
18579
18580 if (offset_in_dwz == cu->per_cu->is_dwz
18581 && offset_in_cu_p (&cu->header, sect_off))
18582 {
18583 pd = cu->find_partial_die (sect_off);
18584 if (pd != NULL)
18585 return pd;
18586 /* We missed recording what we needed.
18587 Load all dies and try again. */
18588 per_cu = cu->per_cu;
18589 }
18590 else
18591 {
18592 /* TUs don't reference other CUs/TUs (except via type signatures). */
18593 if (cu->per_cu->is_debug_types)
18594 {
18595 error (_("Dwarf Error: Type Unit at offset %s contains"
18596 " external reference to offset %s [in module %s].\n"),
18597 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18598 bfd_get_filename (objfile->obfd));
18599 }
18600 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18601 dwarf2_per_objfile);
18602
18603 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18604 load_partial_comp_unit (per_cu);
18605
18606 per_cu->cu->last_used = 0;
18607 pd = per_cu->cu->find_partial_die (sect_off);
18608 }
18609
18610 /* If we didn't find it, and not all dies have been loaded,
18611 load them all and try again. */
18612
18613 if (pd == NULL && per_cu->load_all_dies == 0)
18614 {
18615 per_cu->load_all_dies = 1;
18616
18617 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18618 THIS_CU->cu may already be in use. So we can't just free it and
18619 replace its DIEs with the ones we read in. Instead, we leave those
18620 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18621 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18622 set. */
18623 load_partial_comp_unit (per_cu);
18624
18625 pd = per_cu->cu->find_partial_die (sect_off);
18626 }
18627
18628 if (pd == NULL)
18629 internal_error (__FILE__, __LINE__,
18630 _("could not find partial DIE %s "
18631 "in cache [from module %s]\n"),
18632 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18633 return pd;
18634 }
18635
18636 /* See if we can figure out if the class lives in a namespace. We do
18637 this by looking for a member function; its demangled name will
18638 contain namespace info, if there is any. */
18639
18640 static void
18641 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18642 struct dwarf2_cu *cu)
18643 {
18644 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18645 what template types look like, because the demangler
18646 frequently doesn't give the same name as the debug info. We
18647 could fix this by only using the demangled name to get the
18648 prefix (but see comment in read_structure_type). */
18649
18650 struct partial_die_info *real_pdi;
18651 struct partial_die_info *child_pdi;
18652
18653 /* If this DIE (this DIE's specification, if any) has a parent, then
18654 we should not do this. We'll prepend the parent's fully qualified
18655 name when we create the partial symbol. */
18656
18657 real_pdi = struct_pdi;
18658 while (real_pdi->has_specification)
18659 real_pdi = find_partial_die (real_pdi->spec_offset,
18660 real_pdi->spec_is_dwz, cu);
18661
18662 if (real_pdi->die_parent != NULL)
18663 return;
18664
18665 for (child_pdi = struct_pdi->die_child;
18666 child_pdi != NULL;
18667 child_pdi = child_pdi->die_sibling)
18668 {
18669 if (child_pdi->tag == DW_TAG_subprogram
18670 && child_pdi->linkage_name != NULL)
18671 {
18672 char *actual_class_name
18673 = language_class_name_from_physname (cu->language_defn,
18674 child_pdi->linkage_name);
18675 if (actual_class_name != NULL)
18676 {
18677 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18678 struct_pdi->name
18679 = ((const char *)
18680 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18681 actual_class_name,
18682 strlen (actual_class_name)));
18683 xfree (actual_class_name);
18684 }
18685 break;
18686 }
18687 }
18688 }
18689
18690 void
18691 partial_die_info::fixup (struct dwarf2_cu *cu)
18692 {
18693 /* Once we've fixed up a die, there's no point in doing so again.
18694 This also avoids a memory leak if we were to call
18695 guess_partial_die_structure_name multiple times. */
18696 if (fixup_called)
18697 return;
18698
18699 /* If we found a reference attribute and the DIE has no name, try
18700 to find a name in the referred to DIE. */
18701
18702 if (name == NULL && has_specification)
18703 {
18704 struct partial_die_info *spec_die;
18705
18706 spec_die = find_partial_die (spec_offset, spec_is_dwz, cu);
18707
18708 spec_die->fixup (cu);
18709
18710 if (spec_die->name)
18711 {
18712 name = spec_die->name;
18713
18714 /* Copy DW_AT_external attribute if it is set. */
18715 if (spec_die->is_external)
18716 is_external = spec_die->is_external;
18717 }
18718 }
18719
18720 /* Set default names for some unnamed DIEs. */
18721
18722 if (name == NULL && tag == DW_TAG_namespace)
18723 name = CP_ANONYMOUS_NAMESPACE_STR;
18724
18725 /* If there is no parent die to provide a namespace, and there are
18726 children, see if we can determine the namespace from their linkage
18727 name. */
18728 if (cu->language == language_cplus
18729 && !VEC_empty (dwarf2_section_info_def,
18730 cu->per_cu->dwarf2_per_objfile->types)
18731 && die_parent == NULL
18732 && has_children
18733 && (tag == DW_TAG_class_type
18734 || tag == DW_TAG_structure_type
18735 || tag == DW_TAG_union_type))
18736 guess_partial_die_structure_name (this, cu);
18737
18738 /* GCC might emit a nameless struct or union that has a linkage
18739 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18740 if (name == NULL
18741 && (tag == DW_TAG_class_type
18742 || tag == DW_TAG_interface_type
18743 || tag == DW_TAG_structure_type
18744 || tag == DW_TAG_union_type)
18745 && linkage_name != NULL)
18746 {
18747 char *demangled;
18748
18749 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
18750 if (demangled)
18751 {
18752 const char *base;
18753
18754 /* Strip any leading namespaces/classes, keep only the base name.
18755 DW_AT_name for named DIEs does not contain the prefixes. */
18756 base = strrchr (demangled, ':');
18757 if (base && base > demangled && base[-1] == ':')
18758 base++;
18759 else
18760 base = demangled;
18761
18762 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18763 name
18764 = ((const char *)
18765 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18766 base, strlen (base)));
18767 xfree (demangled);
18768 }
18769 }
18770
18771 fixup_called = 1;
18772 }
18773
18774 /* Read an attribute value described by an attribute form. */
18775
18776 static const gdb_byte *
18777 read_attribute_value (const struct die_reader_specs *reader,
18778 struct attribute *attr, unsigned form,
18779 LONGEST implicit_const, const gdb_byte *info_ptr)
18780 {
18781 struct dwarf2_cu *cu = reader->cu;
18782 struct dwarf2_per_objfile *dwarf2_per_objfile
18783 = cu->per_cu->dwarf2_per_objfile;
18784 struct objfile *objfile = dwarf2_per_objfile->objfile;
18785 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18786 bfd *abfd = reader->abfd;
18787 struct comp_unit_head *cu_header = &cu->header;
18788 unsigned int bytes_read;
18789 struct dwarf_block *blk;
18790
18791 attr->form = (enum dwarf_form) form;
18792 switch (form)
18793 {
18794 case DW_FORM_ref_addr:
18795 if (cu->header.version == 2)
18796 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18797 else
18798 DW_UNSND (attr) = read_offset (abfd, info_ptr,
18799 &cu->header, &bytes_read);
18800 info_ptr += bytes_read;
18801 break;
18802 case DW_FORM_GNU_ref_alt:
18803 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
18804 info_ptr += bytes_read;
18805 break;
18806 case DW_FORM_addr:
18807 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18808 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
18809 info_ptr += bytes_read;
18810 break;
18811 case DW_FORM_block2:
18812 blk = dwarf_alloc_block (cu);
18813 blk->size = read_2_bytes (abfd, info_ptr);
18814 info_ptr += 2;
18815 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18816 info_ptr += blk->size;
18817 DW_BLOCK (attr) = blk;
18818 break;
18819 case DW_FORM_block4:
18820 blk = dwarf_alloc_block (cu);
18821 blk->size = read_4_bytes (abfd, info_ptr);
18822 info_ptr += 4;
18823 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18824 info_ptr += blk->size;
18825 DW_BLOCK (attr) = blk;
18826 break;
18827 case DW_FORM_data2:
18828 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
18829 info_ptr += 2;
18830 break;
18831 case DW_FORM_data4:
18832 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
18833 info_ptr += 4;
18834 break;
18835 case DW_FORM_data8:
18836 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
18837 info_ptr += 8;
18838 break;
18839 case DW_FORM_data16:
18840 blk = dwarf_alloc_block (cu);
18841 blk->size = 16;
18842 blk->data = read_n_bytes (abfd, info_ptr, 16);
18843 info_ptr += 16;
18844 DW_BLOCK (attr) = blk;
18845 break;
18846 case DW_FORM_sec_offset:
18847 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
18848 info_ptr += bytes_read;
18849 break;
18850 case DW_FORM_string:
18851 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
18852 DW_STRING_IS_CANONICAL (attr) = 0;
18853 info_ptr += bytes_read;
18854 break;
18855 case DW_FORM_strp:
18856 if (!cu->per_cu->is_dwz)
18857 {
18858 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
18859 abfd, info_ptr, cu_header,
18860 &bytes_read);
18861 DW_STRING_IS_CANONICAL (attr) = 0;
18862 info_ptr += bytes_read;
18863 break;
18864 }
18865 /* FALLTHROUGH */
18866 case DW_FORM_line_strp:
18867 if (!cu->per_cu->is_dwz)
18868 {
18869 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
18870 abfd, info_ptr,
18871 cu_header, &bytes_read);
18872 DW_STRING_IS_CANONICAL (attr) = 0;
18873 info_ptr += bytes_read;
18874 break;
18875 }
18876 /* FALLTHROUGH */
18877 case DW_FORM_GNU_strp_alt:
18878 {
18879 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
18880 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
18881 &bytes_read);
18882
18883 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
18884 dwz, str_offset);
18885 DW_STRING_IS_CANONICAL (attr) = 0;
18886 info_ptr += bytes_read;
18887 }
18888 break;
18889 case DW_FORM_exprloc:
18890 case DW_FORM_block:
18891 blk = dwarf_alloc_block (cu);
18892 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18893 info_ptr += bytes_read;
18894 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18895 info_ptr += blk->size;
18896 DW_BLOCK (attr) = blk;
18897 break;
18898 case DW_FORM_block1:
18899 blk = dwarf_alloc_block (cu);
18900 blk->size = read_1_byte (abfd, info_ptr);
18901 info_ptr += 1;
18902 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18903 info_ptr += blk->size;
18904 DW_BLOCK (attr) = blk;
18905 break;
18906 case DW_FORM_data1:
18907 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
18908 info_ptr += 1;
18909 break;
18910 case DW_FORM_flag:
18911 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
18912 info_ptr += 1;
18913 break;
18914 case DW_FORM_flag_present:
18915 DW_UNSND (attr) = 1;
18916 break;
18917 case DW_FORM_sdata:
18918 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
18919 info_ptr += bytes_read;
18920 break;
18921 case DW_FORM_udata:
18922 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18923 info_ptr += bytes_read;
18924 break;
18925 case DW_FORM_ref1:
18926 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18927 + read_1_byte (abfd, info_ptr));
18928 info_ptr += 1;
18929 break;
18930 case DW_FORM_ref2:
18931 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18932 + read_2_bytes (abfd, info_ptr));
18933 info_ptr += 2;
18934 break;
18935 case DW_FORM_ref4:
18936 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18937 + read_4_bytes (abfd, info_ptr));
18938 info_ptr += 4;
18939 break;
18940 case DW_FORM_ref8:
18941 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18942 + read_8_bytes (abfd, info_ptr));
18943 info_ptr += 8;
18944 break;
18945 case DW_FORM_ref_sig8:
18946 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
18947 info_ptr += 8;
18948 break;
18949 case DW_FORM_ref_udata:
18950 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18951 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
18952 info_ptr += bytes_read;
18953 break;
18954 case DW_FORM_indirect:
18955 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18956 info_ptr += bytes_read;
18957 if (form == DW_FORM_implicit_const)
18958 {
18959 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
18960 info_ptr += bytes_read;
18961 }
18962 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
18963 info_ptr);
18964 break;
18965 case DW_FORM_implicit_const:
18966 DW_SND (attr) = implicit_const;
18967 break;
18968 case DW_FORM_GNU_addr_index:
18969 if (reader->dwo_file == NULL)
18970 {
18971 /* For now flag a hard error.
18972 Later we can turn this into a complaint. */
18973 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
18974 dwarf_form_name (form),
18975 bfd_get_filename (abfd));
18976 }
18977 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
18978 info_ptr += bytes_read;
18979 break;
18980 case DW_FORM_GNU_str_index:
18981 if (reader->dwo_file == NULL)
18982 {
18983 /* For now flag a hard error.
18984 Later we can turn this into a complaint if warranted. */
18985 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
18986 dwarf_form_name (form),
18987 bfd_get_filename (abfd));
18988 }
18989 {
18990 ULONGEST str_index =
18991 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18992
18993 DW_STRING (attr) = read_str_index (reader, str_index);
18994 DW_STRING_IS_CANONICAL (attr) = 0;
18995 info_ptr += bytes_read;
18996 }
18997 break;
18998 default:
18999 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19000 dwarf_form_name (form),
19001 bfd_get_filename (abfd));
19002 }
19003
19004 /* Super hack. */
19005 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19006 attr->form = DW_FORM_GNU_ref_alt;
19007
19008 /* We have seen instances where the compiler tried to emit a byte
19009 size attribute of -1 which ended up being encoded as an unsigned
19010 0xffffffff. Although 0xffffffff is technically a valid size value,
19011 an object of this size seems pretty unlikely so we can relatively
19012 safely treat these cases as if the size attribute was invalid and
19013 treat them as zero by default. */
19014 if (attr->name == DW_AT_byte_size
19015 && form == DW_FORM_data4
19016 && DW_UNSND (attr) >= 0xffffffff)
19017 {
19018 complaint
19019 (&symfile_complaints,
19020 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19021 hex_string (DW_UNSND (attr)));
19022 DW_UNSND (attr) = 0;
19023 }
19024
19025 return info_ptr;
19026 }
19027
19028 /* Read an attribute described by an abbreviated attribute. */
19029
19030 static const gdb_byte *
19031 read_attribute (const struct die_reader_specs *reader,
19032 struct attribute *attr, struct attr_abbrev *abbrev,
19033 const gdb_byte *info_ptr)
19034 {
19035 attr->name = abbrev->name;
19036 return read_attribute_value (reader, attr, abbrev->form,
19037 abbrev->implicit_const, info_ptr);
19038 }
19039
19040 /* Read dwarf information from a buffer. */
19041
19042 static unsigned int
19043 read_1_byte (bfd *abfd, const gdb_byte *buf)
19044 {
19045 return bfd_get_8 (abfd, buf);
19046 }
19047
19048 static int
19049 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19050 {
19051 return bfd_get_signed_8 (abfd, buf);
19052 }
19053
19054 static unsigned int
19055 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19056 {
19057 return bfd_get_16 (abfd, buf);
19058 }
19059
19060 static int
19061 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19062 {
19063 return bfd_get_signed_16 (abfd, buf);
19064 }
19065
19066 static unsigned int
19067 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19068 {
19069 return bfd_get_32 (abfd, buf);
19070 }
19071
19072 static int
19073 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19074 {
19075 return bfd_get_signed_32 (abfd, buf);
19076 }
19077
19078 static ULONGEST
19079 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19080 {
19081 return bfd_get_64 (abfd, buf);
19082 }
19083
19084 static CORE_ADDR
19085 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19086 unsigned int *bytes_read)
19087 {
19088 struct comp_unit_head *cu_header = &cu->header;
19089 CORE_ADDR retval = 0;
19090
19091 if (cu_header->signed_addr_p)
19092 {
19093 switch (cu_header->addr_size)
19094 {
19095 case 2:
19096 retval = bfd_get_signed_16 (abfd, buf);
19097 break;
19098 case 4:
19099 retval = bfd_get_signed_32 (abfd, buf);
19100 break;
19101 case 8:
19102 retval = bfd_get_signed_64 (abfd, buf);
19103 break;
19104 default:
19105 internal_error (__FILE__, __LINE__,
19106 _("read_address: bad switch, signed [in module %s]"),
19107 bfd_get_filename (abfd));
19108 }
19109 }
19110 else
19111 {
19112 switch (cu_header->addr_size)
19113 {
19114 case 2:
19115 retval = bfd_get_16 (abfd, buf);
19116 break;
19117 case 4:
19118 retval = bfd_get_32 (abfd, buf);
19119 break;
19120 case 8:
19121 retval = bfd_get_64 (abfd, buf);
19122 break;
19123 default:
19124 internal_error (__FILE__, __LINE__,
19125 _("read_address: bad switch, "
19126 "unsigned [in module %s]"),
19127 bfd_get_filename (abfd));
19128 }
19129 }
19130
19131 *bytes_read = cu_header->addr_size;
19132 return retval;
19133 }
19134
19135 /* Read the initial length from a section. The (draft) DWARF 3
19136 specification allows the initial length to take up either 4 bytes
19137 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19138 bytes describe the length and all offsets will be 8 bytes in length
19139 instead of 4.
19140
19141 An older, non-standard 64-bit format is also handled by this
19142 function. The older format in question stores the initial length
19143 as an 8-byte quantity without an escape value. Lengths greater
19144 than 2^32 aren't very common which means that the initial 4 bytes
19145 is almost always zero. Since a length value of zero doesn't make
19146 sense for the 32-bit format, this initial zero can be considered to
19147 be an escape value which indicates the presence of the older 64-bit
19148 format. As written, the code can't detect (old format) lengths
19149 greater than 4GB. If it becomes necessary to handle lengths
19150 somewhat larger than 4GB, we could allow other small values (such
19151 as the non-sensical values of 1, 2, and 3) to also be used as
19152 escape values indicating the presence of the old format.
19153
19154 The value returned via bytes_read should be used to increment the
19155 relevant pointer after calling read_initial_length().
19156
19157 [ Note: read_initial_length() and read_offset() are based on the
19158 document entitled "DWARF Debugging Information Format", revision
19159 3, draft 8, dated November 19, 2001. This document was obtained
19160 from:
19161
19162 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19163
19164 This document is only a draft and is subject to change. (So beware.)
19165
19166 Details regarding the older, non-standard 64-bit format were
19167 determined empirically by examining 64-bit ELF files produced by
19168 the SGI toolchain on an IRIX 6.5 machine.
19169
19170 - Kevin, July 16, 2002
19171 ] */
19172
19173 static LONGEST
19174 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19175 {
19176 LONGEST length = bfd_get_32 (abfd, buf);
19177
19178 if (length == 0xffffffff)
19179 {
19180 length = bfd_get_64 (abfd, buf + 4);
19181 *bytes_read = 12;
19182 }
19183 else if (length == 0)
19184 {
19185 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19186 length = bfd_get_64 (abfd, buf);
19187 *bytes_read = 8;
19188 }
19189 else
19190 {
19191 *bytes_read = 4;
19192 }
19193
19194 return length;
19195 }
19196
19197 /* Cover function for read_initial_length.
19198 Returns the length of the object at BUF, and stores the size of the
19199 initial length in *BYTES_READ and stores the size that offsets will be in
19200 *OFFSET_SIZE.
19201 If the initial length size is not equivalent to that specified in
19202 CU_HEADER then issue a complaint.
19203 This is useful when reading non-comp-unit headers. */
19204
19205 static LONGEST
19206 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19207 const struct comp_unit_head *cu_header,
19208 unsigned int *bytes_read,
19209 unsigned int *offset_size)
19210 {
19211 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19212
19213 gdb_assert (cu_header->initial_length_size == 4
19214 || cu_header->initial_length_size == 8
19215 || cu_header->initial_length_size == 12);
19216
19217 if (cu_header->initial_length_size != *bytes_read)
19218 complaint (&symfile_complaints,
19219 _("intermixed 32-bit and 64-bit DWARF sections"));
19220
19221 *offset_size = (*bytes_read == 4) ? 4 : 8;
19222 return length;
19223 }
19224
19225 /* Read an offset from the data stream. The size of the offset is
19226 given by cu_header->offset_size. */
19227
19228 static LONGEST
19229 read_offset (bfd *abfd, const gdb_byte *buf,
19230 const struct comp_unit_head *cu_header,
19231 unsigned int *bytes_read)
19232 {
19233 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19234
19235 *bytes_read = cu_header->offset_size;
19236 return offset;
19237 }
19238
19239 /* Read an offset from the data stream. */
19240
19241 static LONGEST
19242 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19243 {
19244 LONGEST retval = 0;
19245
19246 switch (offset_size)
19247 {
19248 case 4:
19249 retval = bfd_get_32 (abfd, buf);
19250 break;
19251 case 8:
19252 retval = bfd_get_64 (abfd, buf);
19253 break;
19254 default:
19255 internal_error (__FILE__, __LINE__,
19256 _("read_offset_1: bad switch [in module %s]"),
19257 bfd_get_filename (abfd));
19258 }
19259
19260 return retval;
19261 }
19262
19263 static const gdb_byte *
19264 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19265 {
19266 /* If the size of a host char is 8 bits, we can return a pointer
19267 to the buffer, otherwise we have to copy the data to a buffer
19268 allocated on the temporary obstack. */
19269 gdb_assert (HOST_CHAR_BIT == 8);
19270 return buf;
19271 }
19272
19273 static const char *
19274 read_direct_string (bfd *abfd, const gdb_byte *buf,
19275 unsigned int *bytes_read_ptr)
19276 {
19277 /* If the size of a host char is 8 bits, we can return a pointer
19278 to the string, otherwise we have to copy the string to a buffer
19279 allocated on the temporary obstack. */
19280 gdb_assert (HOST_CHAR_BIT == 8);
19281 if (*buf == '\0')
19282 {
19283 *bytes_read_ptr = 1;
19284 return NULL;
19285 }
19286 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19287 return (const char *) buf;
19288 }
19289
19290 /* Return pointer to string at section SECT offset STR_OFFSET with error
19291 reporting strings FORM_NAME and SECT_NAME. */
19292
19293 static const char *
19294 read_indirect_string_at_offset_from (struct objfile *objfile,
19295 bfd *abfd, LONGEST str_offset,
19296 struct dwarf2_section_info *sect,
19297 const char *form_name,
19298 const char *sect_name)
19299 {
19300 dwarf2_read_section (objfile, sect);
19301 if (sect->buffer == NULL)
19302 error (_("%s used without %s section [in module %s]"),
19303 form_name, sect_name, bfd_get_filename (abfd));
19304 if (str_offset >= sect->size)
19305 error (_("%s pointing outside of %s section [in module %s]"),
19306 form_name, sect_name, bfd_get_filename (abfd));
19307 gdb_assert (HOST_CHAR_BIT == 8);
19308 if (sect->buffer[str_offset] == '\0')
19309 return NULL;
19310 return (const char *) (sect->buffer + str_offset);
19311 }
19312
19313 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19314
19315 static const char *
19316 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19317 bfd *abfd, LONGEST str_offset)
19318 {
19319 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19320 abfd, str_offset,
19321 &dwarf2_per_objfile->str,
19322 "DW_FORM_strp", ".debug_str");
19323 }
19324
19325 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19326
19327 static const char *
19328 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19329 bfd *abfd, LONGEST str_offset)
19330 {
19331 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19332 abfd, str_offset,
19333 &dwarf2_per_objfile->line_str,
19334 "DW_FORM_line_strp",
19335 ".debug_line_str");
19336 }
19337
19338 /* Read a string at offset STR_OFFSET in the .debug_str section from
19339 the .dwz file DWZ. Throw an error if the offset is too large. If
19340 the string consists of a single NUL byte, return NULL; otherwise
19341 return a pointer to the string. */
19342
19343 static const char *
19344 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19345 LONGEST str_offset)
19346 {
19347 dwarf2_read_section (objfile, &dwz->str);
19348
19349 if (dwz->str.buffer == NULL)
19350 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19351 "section [in module %s]"),
19352 bfd_get_filename (dwz->dwz_bfd));
19353 if (str_offset >= dwz->str.size)
19354 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19355 ".debug_str section [in module %s]"),
19356 bfd_get_filename (dwz->dwz_bfd));
19357 gdb_assert (HOST_CHAR_BIT == 8);
19358 if (dwz->str.buffer[str_offset] == '\0')
19359 return NULL;
19360 return (const char *) (dwz->str.buffer + str_offset);
19361 }
19362
19363 /* Return pointer to string at .debug_str offset as read from BUF.
19364 BUF is assumed to be in a compilation unit described by CU_HEADER.
19365 Return *BYTES_READ_PTR count of bytes read from BUF. */
19366
19367 static const char *
19368 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19369 const gdb_byte *buf,
19370 const struct comp_unit_head *cu_header,
19371 unsigned int *bytes_read_ptr)
19372 {
19373 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19374
19375 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19376 }
19377
19378 /* Return pointer to string at .debug_line_str offset as read from BUF.
19379 BUF is assumed to be in a compilation unit described by CU_HEADER.
19380 Return *BYTES_READ_PTR count of bytes read from BUF. */
19381
19382 static const char *
19383 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19384 bfd *abfd, const gdb_byte *buf,
19385 const struct comp_unit_head *cu_header,
19386 unsigned int *bytes_read_ptr)
19387 {
19388 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19389
19390 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19391 str_offset);
19392 }
19393
19394 ULONGEST
19395 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19396 unsigned int *bytes_read_ptr)
19397 {
19398 ULONGEST result;
19399 unsigned int num_read;
19400 int shift;
19401 unsigned char byte;
19402
19403 result = 0;
19404 shift = 0;
19405 num_read = 0;
19406 while (1)
19407 {
19408 byte = bfd_get_8 (abfd, buf);
19409 buf++;
19410 num_read++;
19411 result |= ((ULONGEST) (byte & 127) << shift);
19412 if ((byte & 128) == 0)
19413 {
19414 break;
19415 }
19416 shift += 7;
19417 }
19418 *bytes_read_ptr = num_read;
19419 return result;
19420 }
19421
19422 static LONGEST
19423 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19424 unsigned int *bytes_read_ptr)
19425 {
19426 LONGEST result;
19427 int shift, num_read;
19428 unsigned char byte;
19429
19430 result = 0;
19431 shift = 0;
19432 num_read = 0;
19433 while (1)
19434 {
19435 byte = bfd_get_8 (abfd, buf);
19436 buf++;
19437 num_read++;
19438 result |= ((LONGEST) (byte & 127) << shift);
19439 shift += 7;
19440 if ((byte & 128) == 0)
19441 {
19442 break;
19443 }
19444 }
19445 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19446 result |= -(((LONGEST) 1) << shift);
19447 *bytes_read_ptr = num_read;
19448 return result;
19449 }
19450
19451 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19452 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19453 ADDR_SIZE is the size of addresses from the CU header. */
19454
19455 static CORE_ADDR
19456 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19457 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19458 {
19459 struct objfile *objfile = dwarf2_per_objfile->objfile;
19460 bfd *abfd = objfile->obfd;
19461 const gdb_byte *info_ptr;
19462
19463 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19464 if (dwarf2_per_objfile->addr.buffer == NULL)
19465 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19466 objfile_name (objfile));
19467 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19468 error (_("DW_FORM_addr_index pointing outside of "
19469 ".debug_addr section [in module %s]"),
19470 objfile_name (objfile));
19471 info_ptr = (dwarf2_per_objfile->addr.buffer
19472 + addr_base + addr_index * addr_size);
19473 if (addr_size == 4)
19474 return bfd_get_32 (abfd, info_ptr);
19475 else
19476 return bfd_get_64 (abfd, info_ptr);
19477 }
19478
19479 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19480
19481 static CORE_ADDR
19482 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19483 {
19484 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19485 cu->addr_base, cu->header.addr_size);
19486 }
19487
19488 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19489
19490 static CORE_ADDR
19491 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19492 unsigned int *bytes_read)
19493 {
19494 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19495 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19496
19497 return read_addr_index (cu, addr_index);
19498 }
19499
19500 /* Data structure to pass results from dwarf2_read_addr_index_reader
19501 back to dwarf2_read_addr_index. */
19502
19503 struct dwarf2_read_addr_index_data
19504 {
19505 ULONGEST addr_base;
19506 int addr_size;
19507 };
19508
19509 /* die_reader_func for dwarf2_read_addr_index. */
19510
19511 static void
19512 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19513 const gdb_byte *info_ptr,
19514 struct die_info *comp_unit_die,
19515 int has_children,
19516 void *data)
19517 {
19518 struct dwarf2_cu *cu = reader->cu;
19519 struct dwarf2_read_addr_index_data *aidata =
19520 (struct dwarf2_read_addr_index_data *) data;
19521
19522 aidata->addr_base = cu->addr_base;
19523 aidata->addr_size = cu->header.addr_size;
19524 }
19525
19526 /* Given an index in .debug_addr, fetch the value.
19527 NOTE: This can be called during dwarf expression evaluation,
19528 long after the debug information has been read, and thus per_cu->cu
19529 may no longer exist. */
19530
19531 CORE_ADDR
19532 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19533 unsigned int addr_index)
19534 {
19535 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19536 struct dwarf2_cu *cu = per_cu->cu;
19537 ULONGEST addr_base;
19538 int addr_size;
19539
19540 /* We need addr_base and addr_size.
19541 If we don't have PER_CU->cu, we have to get it.
19542 Nasty, but the alternative is storing the needed info in PER_CU,
19543 which at this point doesn't seem justified: it's not clear how frequently
19544 it would get used and it would increase the size of every PER_CU.
19545 Entry points like dwarf2_per_cu_addr_size do a similar thing
19546 so we're not in uncharted territory here.
19547 Alas we need to be a bit more complicated as addr_base is contained
19548 in the DIE.
19549
19550 We don't need to read the entire CU(/TU).
19551 We just need the header and top level die.
19552
19553 IWBN to use the aging mechanism to let us lazily later discard the CU.
19554 For now we skip this optimization. */
19555
19556 if (cu != NULL)
19557 {
19558 addr_base = cu->addr_base;
19559 addr_size = cu->header.addr_size;
19560 }
19561 else
19562 {
19563 struct dwarf2_read_addr_index_data aidata;
19564
19565 /* Note: We can't use init_cutu_and_read_dies_simple here,
19566 we need addr_base. */
19567 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
19568 dwarf2_read_addr_index_reader, &aidata);
19569 addr_base = aidata.addr_base;
19570 addr_size = aidata.addr_size;
19571 }
19572
19573 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19574 addr_size);
19575 }
19576
19577 /* Given a DW_FORM_GNU_str_index, fetch the string.
19578 This is only used by the Fission support. */
19579
19580 static const char *
19581 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19582 {
19583 struct dwarf2_cu *cu = reader->cu;
19584 struct dwarf2_per_objfile *dwarf2_per_objfile
19585 = cu->per_cu->dwarf2_per_objfile;
19586 struct objfile *objfile = dwarf2_per_objfile->objfile;
19587 const char *objf_name = objfile_name (objfile);
19588 bfd *abfd = objfile->obfd;
19589 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19590 struct dwarf2_section_info *str_offsets_section =
19591 &reader->dwo_file->sections.str_offsets;
19592 const gdb_byte *info_ptr;
19593 ULONGEST str_offset;
19594 static const char form_name[] = "DW_FORM_GNU_str_index";
19595
19596 dwarf2_read_section (objfile, str_section);
19597 dwarf2_read_section (objfile, str_offsets_section);
19598 if (str_section->buffer == NULL)
19599 error (_("%s used without .debug_str.dwo section"
19600 " in CU at offset %s [in module %s]"),
19601 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19602 if (str_offsets_section->buffer == NULL)
19603 error (_("%s used without .debug_str_offsets.dwo section"
19604 " in CU at offset %s [in module %s]"),
19605 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19606 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19607 error (_("%s pointing outside of .debug_str_offsets.dwo"
19608 " section in CU at offset %s [in module %s]"),
19609 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19610 info_ptr = (str_offsets_section->buffer
19611 + str_index * cu->header.offset_size);
19612 if (cu->header.offset_size == 4)
19613 str_offset = bfd_get_32 (abfd, info_ptr);
19614 else
19615 str_offset = bfd_get_64 (abfd, info_ptr);
19616 if (str_offset >= str_section->size)
19617 error (_("Offset from %s pointing outside of"
19618 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19619 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19620 return (const char *) (str_section->buffer + str_offset);
19621 }
19622
19623 /* Return the length of an LEB128 number in BUF. */
19624
19625 static int
19626 leb128_size (const gdb_byte *buf)
19627 {
19628 const gdb_byte *begin = buf;
19629 gdb_byte byte;
19630
19631 while (1)
19632 {
19633 byte = *buf++;
19634 if ((byte & 128) == 0)
19635 return buf - begin;
19636 }
19637 }
19638
19639 static void
19640 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19641 {
19642 switch (lang)
19643 {
19644 case DW_LANG_C89:
19645 case DW_LANG_C99:
19646 case DW_LANG_C11:
19647 case DW_LANG_C:
19648 case DW_LANG_UPC:
19649 cu->language = language_c;
19650 break;
19651 case DW_LANG_Java:
19652 case DW_LANG_C_plus_plus:
19653 case DW_LANG_C_plus_plus_11:
19654 case DW_LANG_C_plus_plus_14:
19655 cu->language = language_cplus;
19656 break;
19657 case DW_LANG_D:
19658 cu->language = language_d;
19659 break;
19660 case DW_LANG_Fortran77:
19661 case DW_LANG_Fortran90:
19662 case DW_LANG_Fortran95:
19663 case DW_LANG_Fortran03:
19664 case DW_LANG_Fortran08:
19665 cu->language = language_fortran;
19666 break;
19667 case DW_LANG_Go:
19668 cu->language = language_go;
19669 break;
19670 case DW_LANG_Mips_Assembler:
19671 cu->language = language_asm;
19672 break;
19673 case DW_LANG_Ada83:
19674 case DW_LANG_Ada95:
19675 cu->language = language_ada;
19676 break;
19677 case DW_LANG_Modula2:
19678 cu->language = language_m2;
19679 break;
19680 case DW_LANG_Pascal83:
19681 cu->language = language_pascal;
19682 break;
19683 case DW_LANG_ObjC:
19684 cu->language = language_objc;
19685 break;
19686 case DW_LANG_Rust:
19687 case DW_LANG_Rust_old:
19688 cu->language = language_rust;
19689 break;
19690 case DW_LANG_Cobol74:
19691 case DW_LANG_Cobol85:
19692 default:
19693 cu->language = language_minimal;
19694 break;
19695 }
19696 cu->language_defn = language_def (cu->language);
19697 }
19698
19699 /* Return the named attribute or NULL if not there. */
19700
19701 static struct attribute *
19702 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19703 {
19704 for (;;)
19705 {
19706 unsigned int i;
19707 struct attribute *spec = NULL;
19708
19709 for (i = 0; i < die->num_attrs; ++i)
19710 {
19711 if (die->attrs[i].name == name)
19712 return &die->attrs[i];
19713 if (die->attrs[i].name == DW_AT_specification
19714 || die->attrs[i].name == DW_AT_abstract_origin)
19715 spec = &die->attrs[i];
19716 }
19717
19718 if (!spec)
19719 break;
19720
19721 die = follow_die_ref (die, spec, &cu);
19722 }
19723
19724 return NULL;
19725 }
19726
19727 /* Return the named attribute or NULL if not there,
19728 but do not follow DW_AT_specification, etc.
19729 This is for use in contexts where we're reading .debug_types dies.
19730 Following DW_AT_specification, DW_AT_abstract_origin will take us
19731 back up the chain, and we want to go down. */
19732
19733 static struct attribute *
19734 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
19735 {
19736 unsigned int i;
19737
19738 for (i = 0; i < die->num_attrs; ++i)
19739 if (die->attrs[i].name == name)
19740 return &die->attrs[i];
19741
19742 return NULL;
19743 }
19744
19745 /* Return the string associated with a string-typed attribute, or NULL if it
19746 is either not found or is of an incorrect type. */
19747
19748 static const char *
19749 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19750 {
19751 struct attribute *attr;
19752 const char *str = NULL;
19753
19754 attr = dwarf2_attr (die, name, cu);
19755
19756 if (attr != NULL)
19757 {
19758 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
19759 || attr->form == DW_FORM_string
19760 || attr->form == DW_FORM_GNU_str_index
19761 || attr->form == DW_FORM_GNU_strp_alt)
19762 str = DW_STRING (attr);
19763 else
19764 complaint (&symfile_complaints,
19765 _("string type expected for attribute %s for "
19766 "DIE at %s in module %s"),
19767 dwarf_attr_name (name), sect_offset_str (die->sect_off),
19768 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
19769 }
19770
19771 return str;
19772 }
19773
19774 /* Return non-zero iff the attribute NAME is defined for the given DIE,
19775 and holds a non-zero value. This function should only be used for
19776 DW_FORM_flag or DW_FORM_flag_present attributes. */
19777
19778 static int
19779 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
19780 {
19781 struct attribute *attr = dwarf2_attr (die, name, cu);
19782
19783 return (attr && DW_UNSND (attr));
19784 }
19785
19786 static int
19787 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
19788 {
19789 /* A DIE is a declaration if it has a DW_AT_declaration attribute
19790 which value is non-zero. However, we have to be careful with
19791 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
19792 (via dwarf2_flag_true_p) follows this attribute. So we may
19793 end up accidently finding a declaration attribute that belongs
19794 to a different DIE referenced by the specification attribute,
19795 even though the given DIE does not have a declaration attribute. */
19796 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
19797 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
19798 }
19799
19800 /* Return the die giving the specification for DIE, if there is
19801 one. *SPEC_CU is the CU containing DIE on input, and the CU
19802 containing the return value on output. If there is no
19803 specification, but there is an abstract origin, that is
19804 returned. */
19805
19806 static struct die_info *
19807 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
19808 {
19809 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
19810 *spec_cu);
19811
19812 if (spec_attr == NULL)
19813 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
19814
19815 if (spec_attr == NULL)
19816 return NULL;
19817 else
19818 return follow_die_ref (die, spec_attr, spec_cu);
19819 }
19820
19821 /* Stub for free_line_header to match void * callback types. */
19822
19823 static void
19824 free_line_header_voidp (void *arg)
19825 {
19826 struct line_header *lh = (struct line_header *) arg;
19827
19828 delete lh;
19829 }
19830
19831 void
19832 line_header::add_include_dir (const char *include_dir)
19833 {
19834 if (dwarf_line_debug >= 2)
19835 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
19836 include_dirs.size () + 1, include_dir);
19837
19838 include_dirs.push_back (include_dir);
19839 }
19840
19841 void
19842 line_header::add_file_name (const char *name,
19843 dir_index d_index,
19844 unsigned int mod_time,
19845 unsigned int length)
19846 {
19847 if (dwarf_line_debug >= 2)
19848 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
19849 (unsigned) file_names.size () + 1, name);
19850
19851 file_names.emplace_back (name, d_index, mod_time, length);
19852 }
19853
19854 /* A convenience function to find the proper .debug_line section for a CU. */
19855
19856 static struct dwarf2_section_info *
19857 get_debug_line_section (struct dwarf2_cu *cu)
19858 {
19859 struct dwarf2_section_info *section;
19860 struct dwarf2_per_objfile *dwarf2_per_objfile
19861 = cu->per_cu->dwarf2_per_objfile;
19862
19863 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
19864 DWO file. */
19865 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19866 section = &cu->dwo_unit->dwo_file->sections.line;
19867 else if (cu->per_cu->is_dwz)
19868 {
19869 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19870
19871 section = &dwz->line;
19872 }
19873 else
19874 section = &dwarf2_per_objfile->line;
19875
19876 return section;
19877 }
19878
19879 /* Read directory or file name entry format, starting with byte of
19880 format count entries, ULEB128 pairs of entry formats, ULEB128 of
19881 entries count and the entries themselves in the described entry
19882 format. */
19883
19884 static void
19885 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
19886 bfd *abfd, const gdb_byte **bufp,
19887 struct line_header *lh,
19888 const struct comp_unit_head *cu_header,
19889 void (*callback) (struct line_header *lh,
19890 const char *name,
19891 dir_index d_index,
19892 unsigned int mod_time,
19893 unsigned int length))
19894 {
19895 gdb_byte format_count, formati;
19896 ULONGEST data_count, datai;
19897 const gdb_byte *buf = *bufp;
19898 const gdb_byte *format_header_data;
19899 unsigned int bytes_read;
19900
19901 format_count = read_1_byte (abfd, buf);
19902 buf += 1;
19903 format_header_data = buf;
19904 for (formati = 0; formati < format_count; formati++)
19905 {
19906 read_unsigned_leb128 (abfd, buf, &bytes_read);
19907 buf += bytes_read;
19908 read_unsigned_leb128 (abfd, buf, &bytes_read);
19909 buf += bytes_read;
19910 }
19911
19912 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
19913 buf += bytes_read;
19914 for (datai = 0; datai < data_count; datai++)
19915 {
19916 const gdb_byte *format = format_header_data;
19917 struct file_entry fe;
19918
19919 for (formati = 0; formati < format_count; formati++)
19920 {
19921 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
19922 format += bytes_read;
19923
19924 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
19925 format += bytes_read;
19926
19927 gdb::optional<const char *> string;
19928 gdb::optional<unsigned int> uint;
19929
19930 switch (form)
19931 {
19932 case DW_FORM_string:
19933 string.emplace (read_direct_string (abfd, buf, &bytes_read));
19934 buf += bytes_read;
19935 break;
19936
19937 case DW_FORM_line_strp:
19938 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
19939 abfd, buf,
19940 cu_header,
19941 &bytes_read));
19942 buf += bytes_read;
19943 break;
19944
19945 case DW_FORM_data1:
19946 uint.emplace (read_1_byte (abfd, buf));
19947 buf += 1;
19948 break;
19949
19950 case DW_FORM_data2:
19951 uint.emplace (read_2_bytes (abfd, buf));
19952 buf += 2;
19953 break;
19954
19955 case DW_FORM_data4:
19956 uint.emplace (read_4_bytes (abfd, buf));
19957 buf += 4;
19958 break;
19959
19960 case DW_FORM_data8:
19961 uint.emplace (read_8_bytes (abfd, buf));
19962 buf += 8;
19963 break;
19964
19965 case DW_FORM_udata:
19966 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
19967 buf += bytes_read;
19968 break;
19969
19970 case DW_FORM_block:
19971 /* It is valid only for DW_LNCT_timestamp which is ignored by
19972 current GDB. */
19973 break;
19974 }
19975
19976 switch (content_type)
19977 {
19978 case DW_LNCT_path:
19979 if (string.has_value ())
19980 fe.name = *string;
19981 break;
19982 case DW_LNCT_directory_index:
19983 if (uint.has_value ())
19984 fe.d_index = (dir_index) *uint;
19985 break;
19986 case DW_LNCT_timestamp:
19987 if (uint.has_value ())
19988 fe.mod_time = *uint;
19989 break;
19990 case DW_LNCT_size:
19991 if (uint.has_value ())
19992 fe.length = *uint;
19993 break;
19994 case DW_LNCT_MD5:
19995 break;
19996 default:
19997 complaint (&symfile_complaints,
19998 _("Unknown format content type %s"),
19999 pulongest (content_type));
20000 }
20001 }
20002
20003 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20004 }
20005
20006 *bufp = buf;
20007 }
20008
20009 /* Read the statement program header starting at OFFSET in
20010 .debug_line, or .debug_line.dwo. Return a pointer
20011 to a struct line_header, allocated using xmalloc.
20012 Returns NULL if there is a problem reading the header, e.g., if it
20013 has a version we don't understand.
20014
20015 NOTE: the strings in the include directory and file name tables of
20016 the returned object point into the dwarf line section buffer,
20017 and must not be freed. */
20018
20019 static line_header_up
20020 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20021 {
20022 const gdb_byte *line_ptr;
20023 unsigned int bytes_read, offset_size;
20024 int i;
20025 const char *cur_dir, *cur_file;
20026 struct dwarf2_section_info *section;
20027 bfd *abfd;
20028 struct dwarf2_per_objfile *dwarf2_per_objfile
20029 = cu->per_cu->dwarf2_per_objfile;
20030
20031 section = get_debug_line_section (cu);
20032 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20033 if (section->buffer == NULL)
20034 {
20035 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20036 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
20037 else
20038 complaint (&symfile_complaints, _("missing .debug_line section"));
20039 return 0;
20040 }
20041
20042 /* We can't do this until we know the section is non-empty.
20043 Only then do we know we have such a section. */
20044 abfd = get_section_bfd_owner (section);
20045
20046 /* Make sure that at least there's room for the total_length field.
20047 That could be 12 bytes long, but we're just going to fudge that. */
20048 if (to_underlying (sect_off) + 4 >= section->size)
20049 {
20050 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20051 return 0;
20052 }
20053
20054 line_header_up lh (new line_header ());
20055
20056 lh->sect_off = sect_off;
20057 lh->offset_in_dwz = cu->per_cu->is_dwz;
20058
20059 line_ptr = section->buffer + to_underlying (sect_off);
20060
20061 /* Read in the header. */
20062 lh->total_length =
20063 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20064 &bytes_read, &offset_size);
20065 line_ptr += bytes_read;
20066 if (line_ptr + lh->total_length > (section->buffer + section->size))
20067 {
20068 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20069 return 0;
20070 }
20071 lh->statement_program_end = line_ptr + lh->total_length;
20072 lh->version = read_2_bytes (abfd, line_ptr);
20073 line_ptr += 2;
20074 if (lh->version > 5)
20075 {
20076 /* This is a version we don't understand. The format could have
20077 changed in ways we don't handle properly so just punt. */
20078 complaint (&symfile_complaints,
20079 _("unsupported version in .debug_line section"));
20080 return NULL;
20081 }
20082 if (lh->version >= 5)
20083 {
20084 gdb_byte segment_selector_size;
20085
20086 /* Skip address size. */
20087 read_1_byte (abfd, line_ptr);
20088 line_ptr += 1;
20089
20090 segment_selector_size = read_1_byte (abfd, line_ptr);
20091 line_ptr += 1;
20092 if (segment_selector_size != 0)
20093 {
20094 complaint (&symfile_complaints,
20095 _("unsupported segment selector size %u "
20096 "in .debug_line section"),
20097 segment_selector_size);
20098 return NULL;
20099 }
20100 }
20101 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20102 line_ptr += offset_size;
20103 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20104 line_ptr += 1;
20105 if (lh->version >= 4)
20106 {
20107 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20108 line_ptr += 1;
20109 }
20110 else
20111 lh->maximum_ops_per_instruction = 1;
20112
20113 if (lh->maximum_ops_per_instruction == 0)
20114 {
20115 lh->maximum_ops_per_instruction = 1;
20116 complaint (&symfile_complaints,
20117 _("invalid maximum_ops_per_instruction "
20118 "in `.debug_line' section"));
20119 }
20120
20121 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20122 line_ptr += 1;
20123 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20124 line_ptr += 1;
20125 lh->line_range = read_1_byte (abfd, line_ptr);
20126 line_ptr += 1;
20127 lh->opcode_base = read_1_byte (abfd, line_ptr);
20128 line_ptr += 1;
20129 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20130
20131 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20132 for (i = 1; i < lh->opcode_base; ++i)
20133 {
20134 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20135 line_ptr += 1;
20136 }
20137
20138 if (lh->version >= 5)
20139 {
20140 /* Read directory table. */
20141 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20142 &cu->header,
20143 [] (struct line_header *lh, const char *name,
20144 dir_index d_index, unsigned int mod_time,
20145 unsigned int length)
20146 {
20147 lh->add_include_dir (name);
20148 });
20149
20150 /* Read file name table. */
20151 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20152 &cu->header,
20153 [] (struct line_header *lh, const char *name,
20154 dir_index d_index, unsigned int mod_time,
20155 unsigned int length)
20156 {
20157 lh->add_file_name (name, d_index, mod_time, length);
20158 });
20159 }
20160 else
20161 {
20162 /* Read directory table. */
20163 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20164 {
20165 line_ptr += bytes_read;
20166 lh->add_include_dir (cur_dir);
20167 }
20168 line_ptr += bytes_read;
20169
20170 /* Read file name table. */
20171 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20172 {
20173 unsigned int mod_time, length;
20174 dir_index d_index;
20175
20176 line_ptr += bytes_read;
20177 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20178 line_ptr += bytes_read;
20179 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20180 line_ptr += bytes_read;
20181 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20182 line_ptr += bytes_read;
20183
20184 lh->add_file_name (cur_file, d_index, mod_time, length);
20185 }
20186 line_ptr += bytes_read;
20187 }
20188 lh->statement_program_start = line_ptr;
20189
20190 if (line_ptr > (section->buffer + section->size))
20191 complaint (&symfile_complaints,
20192 _("line number info header doesn't "
20193 "fit in `.debug_line' section"));
20194
20195 return lh;
20196 }
20197
20198 /* Subroutine of dwarf_decode_lines to simplify it.
20199 Return the file name of the psymtab for included file FILE_INDEX
20200 in line header LH of PST.
20201 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20202 If space for the result is malloc'd, *NAME_HOLDER will be set.
20203 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20204
20205 static const char *
20206 psymtab_include_file_name (const struct line_header *lh, int file_index,
20207 const struct partial_symtab *pst,
20208 const char *comp_dir,
20209 gdb::unique_xmalloc_ptr<char> *name_holder)
20210 {
20211 const file_entry &fe = lh->file_names[file_index];
20212 const char *include_name = fe.name;
20213 const char *include_name_to_compare = include_name;
20214 const char *pst_filename;
20215 int file_is_pst;
20216
20217 const char *dir_name = fe.include_dir (lh);
20218
20219 gdb::unique_xmalloc_ptr<char> hold_compare;
20220 if (!IS_ABSOLUTE_PATH (include_name)
20221 && (dir_name != NULL || comp_dir != NULL))
20222 {
20223 /* Avoid creating a duplicate psymtab for PST.
20224 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20225 Before we do the comparison, however, we need to account
20226 for DIR_NAME and COMP_DIR.
20227 First prepend dir_name (if non-NULL). If we still don't
20228 have an absolute path prepend comp_dir (if non-NULL).
20229 However, the directory we record in the include-file's
20230 psymtab does not contain COMP_DIR (to match the
20231 corresponding symtab(s)).
20232
20233 Example:
20234
20235 bash$ cd /tmp
20236 bash$ gcc -g ./hello.c
20237 include_name = "hello.c"
20238 dir_name = "."
20239 DW_AT_comp_dir = comp_dir = "/tmp"
20240 DW_AT_name = "./hello.c"
20241
20242 */
20243
20244 if (dir_name != NULL)
20245 {
20246 name_holder->reset (concat (dir_name, SLASH_STRING,
20247 include_name, (char *) NULL));
20248 include_name = name_holder->get ();
20249 include_name_to_compare = include_name;
20250 }
20251 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20252 {
20253 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20254 include_name, (char *) NULL));
20255 include_name_to_compare = hold_compare.get ();
20256 }
20257 }
20258
20259 pst_filename = pst->filename;
20260 gdb::unique_xmalloc_ptr<char> copied_name;
20261 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20262 {
20263 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20264 pst_filename, (char *) NULL));
20265 pst_filename = copied_name.get ();
20266 }
20267
20268 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20269
20270 if (file_is_pst)
20271 return NULL;
20272 return include_name;
20273 }
20274
20275 /* State machine to track the state of the line number program. */
20276
20277 class lnp_state_machine
20278 {
20279 public:
20280 /* Initialize a machine state for the start of a line number
20281 program. */
20282 lnp_state_machine (gdbarch *arch, line_header *lh, bool record_lines_p);
20283
20284 file_entry *current_file ()
20285 {
20286 /* lh->file_names is 0-based, but the file name numbers in the
20287 statement program are 1-based. */
20288 return m_line_header->file_name_at (m_file);
20289 }
20290
20291 /* Record the line in the state machine. END_SEQUENCE is true if
20292 we're processing the end of a sequence. */
20293 void record_line (bool end_sequence);
20294
20295 /* Check address and if invalid nop-out the rest of the lines in this
20296 sequence. */
20297 void check_line_address (struct dwarf2_cu *cu,
20298 const gdb_byte *line_ptr,
20299 CORE_ADDR lowpc, CORE_ADDR address);
20300
20301 void handle_set_discriminator (unsigned int discriminator)
20302 {
20303 m_discriminator = discriminator;
20304 m_line_has_non_zero_discriminator |= discriminator != 0;
20305 }
20306
20307 /* Handle DW_LNE_set_address. */
20308 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20309 {
20310 m_op_index = 0;
20311 address += baseaddr;
20312 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20313 }
20314
20315 /* Handle DW_LNS_advance_pc. */
20316 void handle_advance_pc (CORE_ADDR adjust);
20317
20318 /* Handle a special opcode. */
20319 void handle_special_opcode (unsigned char op_code);
20320
20321 /* Handle DW_LNS_advance_line. */
20322 void handle_advance_line (int line_delta)
20323 {
20324 advance_line (line_delta);
20325 }
20326
20327 /* Handle DW_LNS_set_file. */
20328 void handle_set_file (file_name_index file);
20329
20330 /* Handle DW_LNS_negate_stmt. */
20331 void handle_negate_stmt ()
20332 {
20333 m_is_stmt = !m_is_stmt;
20334 }
20335
20336 /* Handle DW_LNS_const_add_pc. */
20337 void handle_const_add_pc ();
20338
20339 /* Handle DW_LNS_fixed_advance_pc. */
20340 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20341 {
20342 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20343 m_op_index = 0;
20344 }
20345
20346 /* Handle DW_LNS_copy. */
20347 void handle_copy ()
20348 {
20349 record_line (false);
20350 m_discriminator = 0;
20351 }
20352
20353 /* Handle DW_LNE_end_sequence. */
20354 void handle_end_sequence ()
20355 {
20356 m_record_line_callback = ::record_line;
20357 }
20358
20359 private:
20360 /* Advance the line by LINE_DELTA. */
20361 void advance_line (int line_delta)
20362 {
20363 m_line += line_delta;
20364
20365 if (line_delta != 0)
20366 m_line_has_non_zero_discriminator = m_discriminator != 0;
20367 }
20368
20369 gdbarch *m_gdbarch;
20370
20371 /* True if we're recording lines.
20372 Otherwise we're building partial symtabs and are just interested in
20373 finding include files mentioned by the line number program. */
20374 bool m_record_lines_p;
20375
20376 /* The line number header. */
20377 line_header *m_line_header;
20378
20379 /* These are part of the standard DWARF line number state machine,
20380 and initialized according to the DWARF spec. */
20381
20382 unsigned char m_op_index = 0;
20383 /* The line table index (1-based) of the current file. */
20384 file_name_index m_file = (file_name_index) 1;
20385 unsigned int m_line = 1;
20386
20387 /* These are initialized in the constructor. */
20388
20389 CORE_ADDR m_address;
20390 bool m_is_stmt;
20391 unsigned int m_discriminator;
20392
20393 /* Additional bits of state we need to track. */
20394
20395 /* The last file that we called dwarf2_start_subfile for.
20396 This is only used for TLLs. */
20397 unsigned int m_last_file = 0;
20398 /* The last file a line number was recorded for. */
20399 struct subfile *m_last_subfile = NULL;
20400
20401 /* The function to call to record a line. */
20402 record_line_ftype *m_record_line_callback = NULL;
20403
20404 /* The last line number that was recorded, used to coalesce
20405 consecutive entries for the same line. This can happen, for
20406 example, when discriminators are present. PR 17276. */
20407 unsigned int m_last_line = 0;
20408 bool m_line_has_non_zero_discriminator = false;
20409 };
20410
20411 void
20412 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20413 {
20414 CORE_ADDR addr_adj = (((m_op_index + adjust)
20415 / m_line_header->maximum_ops_per_instruction)
20416 * m_line_header->minimum_instruction_length);
20417 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20418 m_op_index = ((m_op_index + adjust)
20419 % m_line_header->maximum_ops_per_instruction);
20420 }
20421
20422 void
20423 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20424 {
20425 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20426 CORE_ADDR addr_adj = (((m_op_index
20427 + (adj_opcode / m_line_header->line_range))
20428 / m_line_header->maximum_ops_per_instruction)
20429 * m_line_header->minimum_instruction_length);
20430 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20431 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20432 % m_line_header->maximum_ops_per_instruction);
20433
20434 int line_delta = (m_line_header->line_base
20435 + (adj_opcode % m_line_header->line_range));
20436 advance_line (line_delta);
20437 record_line (false);
20438 m_discriminator = 0;
20439 }
20440
20441 void
20442 lnp_state_machine::handle_set_file (file_name_index file)
20443 {
20444 m_file = file;
20445
20446 const file_entry *fe = current_file ();
20447 if (fe == NULL)
20448 dwarf2_debug_line_missing_file_complaint ();
20449 else if (m_record_lines_p)
20450 {
20451 const char *dir = fe->include_dir (m_line_header);
20452
20453 m_last_subfile = current_subfile;
20454 m_line_has_non_zero_discriminator = m_discriminator != 0;
20455 dwarf2_start_subfile (fe->name, dir);
20456 }
20457 }
20458
20459 void
20460 lnp_state_machine::handle_const_add_pc ()
20461 {
20462 CORE_ADDR adjust
20463 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20464
20465 CORE_ADDR addr_adj
20466 = (((m_op_index + adjust)
20467 / m_line_header->maximum_ops_per_instruction)
20468 * m_line_header->minimum_instruction_length);
20469
20470 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20471 m_op_index = ((m_op_index + adjust)
20472 % m_line_header->maximum_ops_per_instruction);
20473 }
20474
20475 /* Ignore this record_line request. */
20476
20477 static void
20478 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
20479 {
20480 return;
20481 }
20482
20483 /* Return non-zero if we should add LINE to the line number table.
20484 LINE is the line to add, LAST_LINE is the last line that was added,
20485 LAST_SUBFILE is the subfile for LAST_LINE.
20486 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20487 had a non-zero discriminator.
20488
20489 We have to be careful in the presence of discriminators.
20490 E.g., for this line:
20491
20492 for (i = 0; i < 100000; i++);
20493
20494 clang can emit four line number entries for that one line,
20495 each with a different discriminator.
20496 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20497
20498 However, we want gdb to coalesce all four entries into one.
20499 Otherwise the user could stepi into the middle of the line and
20500 gdb would get confused about whether the pc really was in the
20501 middle of the line.
20502
20503 Things are further complicated by the fact that two consecutive
20504 line number entries for the same line is a heuristic used by gcc
20505 to denote the end of the prologue. So we can't just discard duplicate
20506 entries, we have to be selective about it. The heuristic we use is
20507 that we only collapse consecutive entries for the same line if at least
20508 one of those entries has a non-zero discriminator. PR 17276.
20509
20510 Note: Addresses in the line number state machine can never go backwards
20511 within one sequence, thus this coalescing is ok. */
20512
20513 static int
20514 dwarf_record_line_p (unsigned int line, unsigned int last_line,
20515 int line_has_non_zero_discriminator,
20516 struct subfile *last_subfile)
20517 {
20518 if (current_subfile != last_subfile)
20519 return 1;
20520 if (line != last_line)
20521 return 1;
20522 /* Same line for the same file that we've seen already.
20523 As a last check, for pr 17276, only record the line if the line
20524 has never had a non-zero discriminator. */
20525 if (!line_has_non_zero_discriminator)
20526 return 1;
20527 return 0;
20528 }
20529
20530 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
20531 in the line table of subfile SUBFILE. */
20532
20533 static void
20534 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20535 unsigned int line, CORE_ADDR address,
20536 record_line_ftype p_record_line)
20537 {
20538 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20539
20540 if (dwarf_line_debug)
20541 {
20542 fprintf_unfiltered (gdb_stdlog,
20543 "Recording line %u, file %s, address %s\n",
20544 line, lbasename (subfile->name),
20545 paddress (gdbarch, address));
20546 }
20547
20548 (*p_record_line) (subfile, line, addr);
20549 }
20550
20551 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20552 Mark the end of a set of line number records.
20553 The arguments are the same as for dwarf_record_line_1.
20554 If SUBFILE is NULL the request is ignored. */
20555
20556 static void
20557 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20558 CORE_ADDR address, record_line_ftype p_record_line)
20559 {
20560 if (subfile == NULL)
20561 return;
20562
20563 if (dwarf_line_debug)
20564 {
20565 fprintf_unfiltered (gdb_stdlog,
20566 "Finishing current line, file %s, address %s\n",
20567 lbasename (subfile->name),
20568 paddress (gdbarch, address));
20569 }
20570
20571 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
20572 }
20573
20574 void
20575 lnp_state_machine::record_line (bool end_sequence)
20576 {
20577 if (dwarf_line_debug)
20578 {
20579 fprintf_unfiltered (gdb_stdlog,
20580 "Processing actual line %u: file %u,"
20581 " address %s, is_stmt %u, discrim %u\n",
20582 m_line, to_underlying (m_file),
20583 paddress (m_gdbarch, m_address),
20584 m_is_stmt, m_discriminator);
20585 }
20586
20587 file_entry *fe = current_file ();
20588
20589 if (fe == NULL)
20590 dwarf2_debug_line_missing_file_complaint ();
20591 /* For now we ignore lines not starting on an instruction boundary.
20592 But not when processing end_sequence for compatibility with the
20593 previous version of the code. */
20594 else if (m_op_index == 0 || end_sequence)
20595 {
20596 fe->included_p = 1;
20597 if (m_record_lines_p && m_is_stmt)
20598 {
20599 if (m_last_subfile != current_subfile || end_sequence)
20600 {
20601 dwarf_finish_line (m_gdbarch, m_last_subfile,
20602 m_address, m_record_line_callback);
20603 }
20604
20605 if (!end_sequence)
20606 {
20607 if (dwarf_record_line_p (m_line, m_last_line,
20608 m_line_has_non_zero_discriminator,
20609 m_last_subfile))
20610 {
20611 dwarf_record_line_1 (m_gdbarch, current_subfile,
20612 m_line, m_address,
20613 m_record_line_callback);
20614 }
20615 m_last_subfile = current_subfile;
20616 m_last_line = m_line;
20617 }
20618 }
20619 }
20620 }
20621
20622 lnp_state_machine::lnp_state_machine (gdbarch *arch, line_header *lh,
20623 bool record_lines_p)
20624 {
20625 m_gdbarch = arch;
20626 m_record_lines_p = record_lines_p;
20627 m_line_header = lh;
20628
20629 m_record_line_callback = ::record_line;
20630
20631 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20632 was a line entry for it so that the backend has a chance to adjust it
20633 and also record it in case it needs it. This is currently used by MIPS
20634 code, cf. `mips_adjust_dwarf2_line'. */
20635 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20636 m_is_stmt = lh->default_is_stmt;
20637 m_discriminator = 0;
20638 }
20639
20640 void
20641 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20642 const gdb_byte *line_ptr,
20643 CORE_ADDR lowpc, CORE_ADDR address)
20644 {
20645 /* If address < lowpc then it's not a usable value, it's outside the
20646 pc range of the CU. However, we restrict the test to only address
20647 values of zero to preserve GDB's previous behaviour which is to
20648 handle the specific case of a function being GC'd by the linker. */
20649
20650 if (address == 0 && address < lowpc)
20651 {
20652 /* This line table is for a function which has been
20653 GCd by the linker. Ignore it. PR gdb/12528 */
20654
20655 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20656 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20657
20658 complaint (&symfile_complaints,
20659 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20660 line_offset, objfile_name (objfile));
20661 m_record_line_callback = noop_record_line;
20662 /* Note: record_line_callback is left as noop_record_line until
20663 we see DW_LNE_end_sequence. */
20664 }
20665 }
20666
20667 /* Subroutine of dwarf_decode_lines to simplify it.
20668 Process the line number information in LH.
20669 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20670 program in order to set included_p for every referenced header. */
20671
20672 static void
20673 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20674 const int decode_for_pst_p, CORE_ADDR lowpc)
20675 {
20676 const gdb_byte *line_ptr, *extended_end;
20677 const gdb_byte *line_end;
20678 unsigned int bytes_read, extended_len;
20679 unsigned char op_code, extended_op;
20680 CORE_ADDR baseaddr;
20681 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20682 bfd *abfd = objfile->obfd;
20683 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20684 /* True if we're recording line info (as opposed to building partial
20685 symtabs and just interested in finding include files mentioned by
20686 the line number program). */
20687 bool record_lines_p = !decode_for_pst_p;
20688
20689 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20690
20691 line_ptr = lh->statement_program_start;
20692 line_end = lh->statement_program_end;
20693
20694 /* Read the statement sequences until there's nothing left. */
20695 while (line_ptr < line_end)
20696 {
20697 /* The DWARF line number program state machine. Reset the state
20698 machine at the start of each sequence. */
20699 lnp_state_machine state_machine (gdbarch, lh, record_lines_p);
20700 bool end_sequence = false;
20701
20702 if (record_lines_p)
20703 {
20704 /* Start a subfile for the current file of the state
20705 machine. */
20706 const file_entry *fe = state_machine.current_file ();
20707
20708 if (fe != NULL)
20709 dwarf2_start_subfile (fe->name, fe->include_dir (lh));
20710 }
20711
20712 /* Decode the table. */
20713 while (line_ptr < line_end && !end_sequence)
20714 {
20715 op_code = read_1_byte (abfd, line_ptr);
20716 line_ptr += 1;
20717
20718 if (op_code >= lh->opcode_base)
20719 {
20720 /* Special opcode. */
20721 state_machine.handle_special_opcode (op_code);
20722 }
20723 else switch (op_code)
20724 {
20725 case DW_LNS_extended_op:
20726 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20727 &bytes_read);
20728 line_ptr += bytes_read;
20729 extended_end = line_ptr + extended_len;
20730 extended_op = read_1_byte (abfd, line_ptr);
20731 line_ptr += 1;
20732 switch (extended_op)
20733 {
20734 case DW_LNE_end_sequence:
20735 state_machine.handle_end_sequence ();
20736 end_sequence = true;
20737 break;
20738 case DW_LNE_set_address:
20739 {
20740 CORE_ADDR address
20741 = read_address (abfd, line_ptr, cu, &bytes_read);
20742 line_ptr += bytes_read;
20743
20744 state_machine.check_line_address (cu, line_ptr,
20745 lowpc, address);
20746 state_machine.handle_set_address (baseaddr, address);
20747 }
20748 break;
20749 case DW_LNE_define_file:
20750 {
20751 const char *cur_file;
20752 unsigned int mod_time, length;
20753 dir_index dindex;
20754
20755 cur_file = read_direct_string (abfd, line_ptr,
20756 &bytes_read);
20757 line_ptr += bytes_read;
20758 dindex = (dir_index)
20759 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20760 line_ptr += bytes_read;
20761 mod_time =
20762 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20763 line_ptr += bytes_read;
20764 length =
20765 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20766 line_ptr += bytes_read;
20767 lh->add_file_name (cur_file, dindex, mod_time, length);
20768 }
20769 break;
20770 case DW_LNE_set_discriminator:
20771 {
20772 /* The discriminator is not interesting to the
20773 debugger; just ignore it. We still need to
20774 check its value though:
20775 if there are consecutive entries for the same
20776 (non-prologue) line we want to coalesce them.
20777 PR 17276. */
20778 unsigned int discr
20779 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20780 line_ptr += bytes_read;
20781
20782 state_machine.handle_set_discriminator (discr);
20783 }
20784 break;
20785 default:
20786 complaint (&symfile_complaints,
20787 _("mangled .debug_line section"));
20788 return;
20789 }
20790 /* Make sure that we parsed the extended op correctly. If e.g.
20791 we expected a different address size than the producer used,
20792 we may have read the wrong number of bytes. */
20793 if (line_ptr != extended_end)
20794 {
20795 complaint (&symfile_complaints,
20796 _("mangled .debug_line section"));
20797 return;
20798 }
20799 break;
20800 case DW_LNS_copy:
20801 state_machine.handle_copy ();
20802 break;
20803 case DW_LNS_advance_pc:
20804 {
20805 CORE_ADDR adjust
20806 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20807 line_ptr += bytes_read;
20808
20809 state_machine.handle_advance_pc (adjust);
20810 }
20811 break;
20812 case DW_LNS_advance_line:
20813 {
20814 int line_delta
20815 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
20816 line_ptr += bytes_read;
20817
20818 state_machine.handle_advance_line (line_delta);
20819 }
20820 break;
20821 case DW_LNS_set_file:
20822 {
20823 file_name_index file
20824 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
20825 &bytes_read);
20826 line_ptr += bytes_read;
20827
20828 state_machine.handle_set_file (file);
20829 }
20830 break;
20831 case DW_LNS_set_column:
20832 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20833 line_ptr += bytes_read;
20834 break;
20835 case DW_LNS_negate_stmt:
20836 state_machine.handle_negate_stmt ();
20837 break;
20838 case DW_LNS_set_basic_block:
20839 break;
20840 /* Add to the address register of the state machine the
20841 address increment value corresponding to special opcode
20842 255. I.e., this value is scaled by the minimum
20843 instruction length since special opcode 255 would have
20844 scaled the increment. */
20845 case DW_LNS_const_add_pc:
20846 state_machine.handle_const_add_pc ();
20847 break;
20848 case DW_LNS_fixed_advance_pc:
20849 {
20850 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
20851 line_ptr += 2;
20852
20853 state_machine.handle_fixed_advance_pc (addr_adj);
20854 }
20855 break;
20856 default:
20857 {
20858 /* Unknown standard opcode, ignore it. */
20859 int i;
20860
20861 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
20862 {
20863 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20864 line_ptr += bytes_read;
20865 }
20866 }
20867 }
20868 }
20869
20870 if (!end_sequence)
20871 dwarf2_debug_line_missing_end_sequence_complaint ();
20872
20873 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
20874 in which case we still finish recording the last line). */
20875 state_machine.record_line (true);
20876 }
20877 }
20878
20879 /* Decode the Line Number Program (LNP) for the given line_header
20880 structure and CU. The actual information extracted and the type
20881 of structures created from the LNP depends on the value of PST.
20882
20883 1. If PST is NULL, then this procedure uses the data from the program
20884 to create all necessary symbol tables, and their linetables.
20885
20886 2. If PST is not NULL, this procedure reads the program to determine
20887 the list of files included by the unit represented by PST, and
20888 builds all the associated partial symbol tables.
20889
20890 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20891 It is used for relative paths in the line table.
20892 NOTE: When processing partial symtabs (pst != NULL),
20893 comp_dir == pst->dirname.
20894
20895 NOTE: It is important that psymtabs have the same file name (via strcmp)
20896 as the corresponding symtab. Since COMP_DIR is not used in the name of the
20897 symtab we don't use it in the name of the psymtabs we create.
20898 E.g. expand_line_sal requires this when finding psymtabs to expand.
20899 A good testcase for this is mb-inline.exp.
20900
20901 LOWPC is the lowest address in CU (or 0 if not known).
20902
20903 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
20904 for its PC<->lines mapping information. Otherwise only the filename
20905 table is read in. */
20906
20907 static void
20908 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
20909 struct dwarf2_cu *cu, struct partial_symtab *pst,
20910 CORE_ADDR lowpc, int decode_mapping)
20911 {
20912 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20913 const int decode_for_pst_p = (pst != NULL);
20914
20915 if (decode_mapping)
20916 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
20917
20918 if (decode_for_pst_p)
20919 {
20920 int file_index;
20921
20922 /* Now that we're done scanning the Line Header Program, we can
20923 create the psymtab of each included file. */
20924 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
20925 if (lh->file_names[file_index].included_p == 1)
20926 {
20927 gdb::unique_xmalloc_ptr<char> name_holder;
20928 const char *include_name =
20929 psymtab_include_file_name (lh, file_index, pst, comp_dir,
20930 &name_holder);
20931 if (include_name != NULL)
20932 dwarf2_create_include_psymtab (include_name, pst, objfile);
20933 }
20934 }
20935 else
20936 {
20937 /* Make sure a symtab is created for every file, even files
20938 which contain only variables (i.e. no code with associated
20939 line numbers). */
20940 struct compunit_symtab *cust = buildsym_compunit_symtab ();
20941 int i;
20942
20943 for (i = 0; i < lh->file_names.size (); i++)
20944 {
20945 file_entry &fe = lh->file_names[i];
20946
20947 dwarf2_start_subfile (fe.name, fe.include_dir (lh));
20948
20949 if (current_subfile->symtab == NULL)
20950 {
20951 current_subfile->symtab
20952 = allocate_symtab (cust, current_subfile->name);
20953 }
20954 fe.symtab = current_subfile->symtab;
20955 }
20956 }
20957 }
20958
20959 /* Start a subfile for DWARF. FILENAME is the name of the file and
20960 DIRNAME the name of the source directory which contains FILENAME
20961 or NULL if not known.
20962 This routine tries to keep line numbers from identical absolute and
20963 relative file names in a common subfile.
20964
20965 Using the `list' example from the GDB testsuite, which resides in
20966 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
20967 of /srcdir/list0.c yields the following debugging information for list0.c:
20968
20969 DW_AT_name: /srcdir/list0.c
20970 DW_AT_comp_dir: /compdir
20971 files.files[0].name: list0.h
20972 files.files[0].dir: /srcdir
20973 files.files[1].name: list0.c
20974 files.files[1].dir: /srcdir
20975
20976 The line number information for list0.c has to end up in a single
20977 subfile, so that `break /srcdir/list0.c:1' works as expected.
20978 start_subfile will ensure that this happens provided that we pass the
20979 concatenation of files.files[1].dir and files.files[1].name as the
20980 subfile's name. */
20981
20982 static void
20983 dwarf2_start_subfile (const char *filename, const char *dirname)
20984 {
20985 char *copy = NULL;
20986
20987 /* In order not to lose the line information directory,
20988 we concatenate it to the filename when it makes sense.
20989 Note that the Dwarf3 standard says (speaking of filenames in line
20990 information): ``The directory index is ignored for file names
20991 that represent full path names''. Thus ignoring dirname in the
20992 `else' branch below isn't an issue. */
20993
20994 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
20995 {
20996 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
20997 filename = copy;
20998 }
20999
21000 start_subfile (filename);
21001
21002 if (copy != NULL)
21003 xfree (copy);
21004 }
21005
21006 /* Start a symtab for DWARF.
21007 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
21008
21009 static struct compunit_symtab *
21010 dwarf2_start_symtab (struct dwarf2_cu *cu,
21011 const char *name, const char *comp_dir, CORE_ADDR low_pc)
21012 {
21013 struct compunit_symtab *cust
21014 = start_symtab (cu->per_cu->dwarf2_per_objfile->objfile, name, comp_dir,
21015 low_pc, cu->language);
21016
21017 record_debugformat ("DWARF 2");
21018 record_producer (cu->producer);
21019
21020 /* We assume that we're processing GCC output. */
21021 processing_gcc_compilation = 2;
21022
21023 cu->processing_has_namespace_info = 0;
21024
21025 return cust;
21026 }
21027
21028 static void
21029 var_decode_location (struct attribute *attr, struct symbol *sym,
21030 struct dwarf2_cu *cu)
21031 {
21032 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21033 struct comp_unit_head *cu_header = &cu->header;
21034
21035 /* NOTE drow/2003-01-30: There used to be a comment and some special
21036 code here to turn a symbol with DW_AT_external and a
21037 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21038 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21039 with some versions of binutils) where shared libraries could have
21040 relocations against symbols in their debug information - the
21041 minimal symbol would have the right address, but the debug info
21042 would not. It's no longer necessary, because we will explicitly
21043 apply relocations when we read in the debug information now. */
21044
21045 /* A DW_AT_location attribute with no contents indicates that a
21046 variable has been optimized away. */
21047 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21048 {
21049 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21050 return;
21051 }
21052
21053 /* Handle one degenerate form of location expression specially, to
21054 preserve GDB's previous behavior when section offsets are
21055 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
21056 then mark this symbol as LOC_STATIC. */
21057
21058 if (attr_form_is_block (attr)
21059 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21060 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21061 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21062 && (DW_BLOCK (attr)->size
21063 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21064 {
21065 unsigned int dummy;
21066
21067 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21068 SYMBOL_VALUE_ADDRESS (sym) =
21069 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21070 else
21071 SYMBOL_VALUE_ADDRESS (sym) =
21072 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21073 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21074 fixup_symbol_section (sym, objfile);
21075 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21076 SYMBOL_SECTION (sym));
21077 return;
21078 }
21079
21080 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21081 expression evaluator, and use LOC_COMPUTED only when necessary
21082 (i.e. when the value of a register or memory location is
21083 referenced, or a thread-local block, etc.). Then again, it might
21084 not be worthwhile. I'm assuming that it isn't unless performance
21085 or memory numbers show me otherwise. */
21086
21087 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21088
21089 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21090 cu->has_loclist = 1;
21091 }
21092
21093 /* Given a pointer to a DWARF information entry, figure out if we need
21094 to make a symbol table entry for it, and if so, create a new entry
21095 and return a pointer to it.
21096 If TYPE is NULL, determine symbol type from the die, otherwise
21097 used the passed type.
21098 If SPACE is not NULL, use it to hold the new symbol. If it is
21099 NULL, allocate a new symbol on the objfile's obstack. */
21100
21101 static struct symbol *
21102 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21103 struct symbol *space)
21104 {
21105 struct dwarf2_per_objfile *dwarf2_per_objfile
21106 = cu->per_cu->dwarf2_per_objfile;
21107 struct objfile *objfile = dwarf2_per_objfile->objfile;
21108 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21109 struct symbol *sym = NULL;
21110 const char *name;
21111 struct attribute *attr = NULL;
21112 struct attribute *attr2 = NULL;
21113 CORE_ADDR baseaddr;
21114 struct pending **list_to_add = NULL;
21115
21116 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21117
21118 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21119
21120 name = dwarf2_name (die, cu);
21121 if (name)
21122 {
21123 const char *linkagename;
21124 int suppress_add = 0;
21125
21126 if (space)
21127 sym = space;
21128 else
21129 sym = allocate_symbol (objfile);
21130 OBJSTAT (objfile, n_syms++);
21131
21132 /* Cache this symbol's name and the name's demangled form (if any). */
21133 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21134 linkagename = dwarf2_physname (name, die, cu);
21135 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21136
21137 /* Fortran does not have mangling standard and the mangling does differ
21138 between gfortran, iFort etc. */
21139 if (cu->language == language_fortran
21140 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21141 symbol_set_demangled_name (&(sym->ginfo),
21142 dwarf2_full_name (name, die, cu),
21143 NULL);
21144
21145 /* Default assumptions.
21146 Use the passed type or decode it from the die. */
21147 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21148 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21149 if (type != NULL)
21150 SYMBOL_TYPE (sym) = type;
21151 else
21152 SYMBOL_TYPE (sym) = die_type (die, cu);
21153 attr = dwarf2_attr (die,
21154 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21155 cu);
21156 if (attr)
21157 {
21158 SYMBOL_LINE (sym) = DW_UNSND (attr);
21159 }
21160
21161 attr = dwarf2_attr (die,
21162 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21163 cu);
21164 if (attr)
21165 {
21166 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21167 struct file_entry *fe;
21168
21169 if (cu->line_header != NULL)
21170 fe = cu->line_header->file_name_at (file_index);
21171 else
21172 fe = NULL;
21173
21174 if (fe == NULL)
21175 complaint (&symfile_complaints,
21176 _("file index out of range"));
21177 else
21178 symbol_set_symtab (sym, fe->symtab);
21179 }
21180
21181 switch (die->tag)
21182 {
21183 case DW_TAG_label:
21184 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21185 if (attr)
21186 {
21187 CORE_ADDR addr;
21188
21189 addr = attr_value_as_address (attr);
21190 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21191 SYMBOL_VALUE_ADDRESS (sym) = addr;
21192 }
21193 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21194 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21195 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21196 add_symbol_to_list (sym, cu->list_in_scope);
21197 break;
21198 case DW_TAG_subprogram:
21199 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21200 finish_block. */
21201 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21202 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21203 if ((attr2 && (DW_UNSND (attr2) != 0))
21204 || cu->language == language_ada)
21205 {
21206 /* Subprograms marked external are stored as a global symbol.
21207 Ada subprograms, whether marked external or not, are always
21208 stored as a global symbol, because we want to be able to
21209 access them globally. For instance, we want to be able
21210 to break on a nested subprogram without having to
21211 specify the context. */
21212 list_to_add = &global_symbols;
21213 }
21214 else
21215 {
21216 list_to_add = cu->list_in_scope;
21217 }
21218 break;
21219 case DW_TAG_inlined_subroutine:
21220 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21221 finish_block. */
21222 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21223 SYMBOL_INLINED (sym) = 1;
21224 list_to_add = cu->list_in_scope;
21225 break;
21226 case DW_TAG_template_value_param:
21227 suppress_add = 1;
21228 /* Fall through. */
21229 case DW_TAG_constant:
21230 case DW_TAG_variable:
21231 case DW_TAG_member:
21232 /* Compilation with minimal debug info may result in
21233 variables with missing type entries. Change the
21234 misleading `void' type to something sensible. */
21235 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21236 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21237
21238 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21239 /* In the case of DW_TAG_member, we should only be called for
21240 static const members. */
21241 if (die->tag == DW_TAG_member)
21242 {
21243 /* dwarf2_add_field uses die_is_declaration,
21244 so we do the same. */
21245 gdb_assert (die_is_declaration (die, cu));
21246 gdb_assert (attr);
21247 }
21248 if (attr)
21249 {
21250 dwarf2_const_value (attr, sym, cu);
21251 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21252 if (!suppress_add)
21253 {
21254 if (attr2 && (DW_UNSND (attr2) != 0))
21255 list_to_add = &global_symbols;
21256 else
21257 list_to_add = cu->list_in_scope;
21258 }
21259 break;
21260 }
21261 attr = dwarf2_attr (die, DW_AT_location, cu);
21262 if (attr)
21263 {
21264 var_decode_location (attr, sym, cu);
21265 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21266
21267 /* Fortran explicitly imports any global symbols to the local
21268 scope by DW_TAG_common_block. */
21269 if (cu->language == language_fortran && die->parent
21270 && die->parent->tag == DW_TAG_common_block)
21271 attr2 = NULL;
21272
21273 if (SYMBOL_CLASS (sym) == LOC_STATIC
21274 && SYMBOL_VALUE_ADDRESS (sym) == 0
21275 && !dwarf2_per_objfile->has_section_at_zero)
21276 {
21277 /* When a static variable is eliminated by the linker,
21278 the corresponding debug information is not stripped
21279 out, but the variable address is set to null;
21280 do not add such variables into symbol table. */
21281 }
21282 else if (attr2 && (DW_UNSND (attr2) != 0))
21283 {
21284 /* Workaround gfortran PR debug/40040 - it uses
21285 DW_AT_location for variables in -fPIC libraries which may
21286 get overriden by other libraries/executable and get
21287 a different address. Resolve it by the minimal symbol
21288 which may come from inferior's executable using copy
21289 relocation. Make this workaround only for gfortran as for
21290 other compilers GDB cannot guess the minimal symbol
21291 Fortran mangling kind. */
21292 if (cu->language == language_fortran && die->parent
21293 && die->parent->tag == DW_TAG_module
21294 && cu->producer
21295 && startswith (cu->producer, "GNU Fortran"))
21296 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21297
21298 /* A variable with DW_AT_external is never static,
21299 but it may be block-scoped. */
21300 list_to_add = (cu->list_in_scope == &file_symbols
21301 ? &global_symbols : cu->list_in_scope);
21302 }
21303 else
21304 list_to_add = cu->list_in_scope;
21305 }
21306 else
21307 {
21308 /* We do not know the address of this symbol.
21309 If it is an external symbol and we have type information
21310 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21311 The address of the variable will then be determined from
21312 the minimal symbol table whenever the variable is
21313 referenced. */
21314 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21315
21316 /* Fortran explicitly imports any global symbols to the local
21317 scope by DW_TAG_common_block. */
21318 if (cu->language == language_fortran && die->parent
21319 && die->parent->tag == DW_TAG_common_block)
21320 {
21321 /* SYMBOL_CLASS doesn't matter here because
21322 read_common_block is going to reset it. */
21323 if (!suppress_add)
21324 list_to_add = cu->list_in_scope;
21325 }
21326 else if (attr2 && (DW_UNSND (attr2) != 0)
21327 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21328 {
21329 /* A variable with DW_AT_external is never static, but it
21330 may be block-scoped. */
21331 list_to_add = (cu->list_in_scope == &file_symbols
21332 ? &global_symbols : cu->list_in_scope);
21333
21334 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21335 }
21336 else if (!die_is_declaration (die, cu))
21337 {
21338 /* Use the default LOC_OPTIMIZED_OUT class. */
21339 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21340 if (!suppress_add)
21341 list_to_add = cu->list_in_scope;
21342 }
21343 }
21344 break;
21345 case DW_TAG_formal_parameter:
21346 /* If we are inside a function, mark this as an argument. If
21347 not, we might be looking at an argument to an inlined function
21348 when we do not have enough information to show inlined frames;
21349 pretend it's a local variable in that case so that the user can
21350 still see it. */
21351 if (context_stack_depth > 0
21352 && context_stack[context_stack_depth - 1].name != NULL)
21353 SYMBOL_IS_ARGUMENT (sym) = 1;
21354 attr = dwarf2_attr (die, DW_AT_location, cu);
21355 if (attr)
21356 {
21357 var_decode_location (attr, sym, cu);
21358 }
21359 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21360 if (attr)
21361 {
21362 dwarf2_const_value (attr, sym, cu);
21363 }
21364
21365 list_to_add = cu->list_in_scope;
21366 break;
21367 case DW_TAG_unspecified_parameters:
21368 /* From varargs functions; gdb doesn't seem to have any
21369 interest in this information, so just ignore it for now.
21370 (FIXME?) */
21371 break;
21372 case DW_TAG_template_type_param:
21373 suppress_add = 1;
21374 /* Fall through. */
21375 case DW_TAG_class_type:
21376 case DW_TAG_interface_type:
21377 case DW_TAG_structure_type:
21378 case DW_TAG_union_type:
21379 case DW_TAG_set_type:
21380 case DW_TAG_enumeration_type:
21381 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21382 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21383
21384 {
21385 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21386 really ever be static objects: otherwise, if you try
21387 to, say, break of a class's method and you're in a file
21388 which doesn't mention that class, it won't work unless
21389 the check for all static symbols in lookup_symbol_aux
21390 saves you. See the OtherFileClass tests in
21391 gdb.c++/namespace.exp. */
21392
21393 if (!suppress_add)
21394 {
21395 list_to_add = (cu->list_in_scope == &file_symbols
21396 && cu->language == language_cplus
21397 ? &global_symbols : cu->list_in_scope);
21398
21399 /* The semantics of C++ state that "struct foo {
21400 ... }" also defines a typedef for "foo". */
21401 if (cu->language == language_cplus
21402 || cu->language == language_ada
21403 || cu->language == language_d
21404 || cu->language == language_rust)
21405 {
21406 /* The symbol's name is already allocated along
21407 with this objfile, so we don't need to
21408 duplicate it for the type. */
21409 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21410 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21411 }
21412 }
21413 }
21414 break;
21415 case DW_TAG_typedef:
21416 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21417 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21418 list_to_add = cu->list_in_scope;
21419 break;
21420 case DW_TAG_base_type:
21421 case DW_TAG_subrange_type:
21422 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21423 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21424 list_to_add = cu->list_in_scope;
21425 break;
21426 case DW_TAG_enumerator:
21427 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21428 if (attr)
21429 {
21430 dwarf2_const_value (attr, sym, cu);
21431 }
21432 {
21433 /* NOTE: carlton/2003-11-10: See comment above in the
21434 DW_TAG_class_type, etc. block. */
21435
21436 list_to_add = (cu->list_in_scope == &file_symbols
21437 && cu->language == language_cplus
21438 ? &global_symbols : cu->list_in_scope);
21439 }
21440 break;
21441 case DW_TAG_imported_declaration:
21442 case DW_TAG_namespace:
21443 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21444 list_to_add = &global_symbols;
21445 break;
21446 case DW_TAG_module:
21447 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21448 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21449 list_to_add = &global_symbols;
21450 break;
21451 case DW_TAG_common_block:
21452 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21453 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21454 add_symbol_to_list (sym, cu->list_in_scope);
21455 break;
21456 default:
21457 /* Not a tag we recognize. Hopefully we aren't processing
21458 trash data, but since we must specifically ignore things
21459 we don't recognize, there is nothing else we should do at
21460 this point. */
21461 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
21462 dwarf_tag_name (die->tag));
21463 break;
21464 }
21465
21466 if (suppress_add)
21467 {
21468 sym->hash_next = objfile->template_symbols;
21469 objfile->template_symbols = sym;
21470 list_to_add = NULL;
21471 }
21472
21473 if (list_to_add != NULL)
21474 add_symbol_to_list (sym, list_to_add);
21475
21476 /* For the benefit of old versions of GCC, check for anonymous
21477 namespaces based on the demangled name. */
21478 if (!cu->processing_has_namespace_info
21479 && cu->language == language_cplus)
21480 cp_scan_for_anonymous_namespaces (sym, objfile);
21481 }
21482 return (sym);
21483 }
21484
21485 /* Given an attr with a DW_FORM_dataN value in host byte order,
21486 zero-extend it as appropriate for the symbol's type. The DWARF
21487 standard (v4) is not entirely clear about the meaning of using
21488 DW_FORM_dataN for a constant with a signed type, where the type is
21489 wider than the data. The conclusion of a discussion on the DWARF
21490 list was that this is unspecified. We choose to always zero-extend
21491 because that is the interpretation long in use by GCC. */
21492
21493 static gdb_byte *
21494 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21495 struct dwarf2_cu *cu, LONGEST *value, int bits)
21496 {
21497 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21498 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21499 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21500 LONGEST l = DW_UNSND (attr);
21501
21502 if (bits < sizeof (*value) * 8)
21503 {
21504 l &= ((LONGEST) 1 << bits) - 1;
21505 *value = l;
21506 }
21507 else if (bits == sizeof (*value) * 8)
21508 *value = l;
21509 else
21510 {
21511 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21512 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21513 return bytes;
21514 }
21515
21516 return NULL;
21517 }
21518
21519 /* Read a constant value from an attribute. Either set *VALUE, or if
21520 the value does not fit in *VALUE, set *BYTES - either already
21521 allocated on the objfile obstack, or newly allocated on OBSTACK,
21522 or, set *BATON, if we translated the constant to a location
21523 expression. */
21524
21525 static void
21526 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21527 const char *name, struct obstack *obstack,
21528 struct dwarf2_cu *cu,
21529 LONGEST *value, const gdb_byte **bytes,
21530 struct dwarf2_locexpr_baton **baton)
21531 {
21532 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21533 struct comp_unit_head *cu_header = &cu->header;
21534 struct dwarf_block *blk;
21535 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21536 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21537
21538 *value = 0;
21539 *bytes = NULL;
21540 *baton = NULL;
21541
21542 switch (attr->form)
21543 {
21544 case DW_FORM_addr:
21545 case DW_FORM_GNU_addr_index:
21546 {
21547 gdb_byte *data;
21548
21549 if (TYPE_LENGTH (type) != cu_header->addr_size)
21550 dwarf2_const_value_length_mismatch_complaint (name,
21551 cu_header->addr_size,
21552 TYPE_LENGTH (type));
21553 /* Symbols of this form are reasonably rare, so we just
21554 piggyback on the existing location code rather than writing
21555 a new implementation of symbol_computed_ops. */
21556 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21557 (*baton)->per_cu = cu->per_cu;
21558 gdb_assert ((*baton)->per_cu);
21559
21560 (*baton)->size = 2 + cu_header->addr_size;
21561 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21562 (*baton)->data = data;
21563
21564 data[0] = DW_OP_addr;
21565 store_unsigned_integer (&data[1], cu_header->addr_size,
21566 byte_order, DW_ADDR (attr));
21567 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21568 }
21569 break;
21570 case DW_FORM_string:
21571 case DW_FORM_strp:
21572 case DW_FORM_GNU_str_index:
21573 case DW_FORM_GNU_strp_alt:
21574 /* DW_STRING is already allocated on the objfile obstack, point
21575 directly to it. */
21576 *bytes = (const gdb_byte *) DW_STRING (attr);
21577 break;
21578 case DW_FORM_block1:
21579 case DW_FORM_block2:
21580 case DW_FORM_block4:
21581 case DW_FORM_block:
21582 case DW_FORM_exprloc:
21583 case DW_FORM_data16:
21584 blk = DW_BLOCK (attr);
21585 if (TYPE_LENGTH (type) != blk->size)
21586 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21587 TYPE_LENGTH (type));
21588 *bytes = blk->data;
21589 break;
21590
21591 /* The DW_AT_const_value attributes are supposed to carry the
21592 symbol's value "represented as it would be on the target
21593 architecture." By the time we get here, it's already been
21594 converted to host endianness, so we just need to sign- or
21595 zero-extend it as appropriate. */
21596 case DW_FORM_data1:
21597 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21598 break;
21599 case DW_FORM_data2:
21600 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21601 break;
21602 case DW_FORM_data4:
21603 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21604 break;
21605 case DW_FORM_data8:
21606 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21607 break;
21608
21609 case DW_FORM_sdata:
21610 case DW_FORM_implicit_const:
21611 *value = DW_SND (attr);
21612 break;
21613
21614 case DW_FORM_udata:
21615 *value = DW_UNSND (attr);
21616 break;
21617
21618 default:
21619 complaint (&symfile_complaints,
21620 _("unsupported const value attribute form: '%s'"),
21621 dwarf_form_name (attr->form));
21622 *value = 0;
21623 break;
21624 }
21625 }
21626
21627
21628 /* Copy constant value from an attribute to a symbol. */
21629
21630 static void
21631 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21632 struct dwarf2_cu *cu)
21633 {
21634 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21635 LONGEST value;
21636 const gdb_byte *bytes;
21637 struct dwarf2_locexpr_baton *baton;
21638
21639 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21640 SYMBOL_PRINT_NAME (sym),
21641 &objfile->objfile_obstack, cu,
21642 &value, &bytes, &baton);
21643
21644 if (baton != NULL)
21645 {
21646 SYMBOL_LOCATION_BATON (sym) = baton;
21647 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21648 }
21649 else if (bytes != NULL)
21650 {
21651 SYMBOL_VALUE_BYTES (sym) = bytes;
21652 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21653 }
21654 else
21655 {
21656 SYMBOL_VALUE (sym) = value;
21657 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21658 }
21659 }
21660
21661 /* Return the type of the die in question using its DW_AT_type attribute. */
21662
21663 static struct type *
21664 die_type (struct die_info *die, struct dwarf2_cu *cu)
21665 {
21666 struct attribute *type_attr;
21667
21668 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21669 if (!type_attr)
21670 {
21671 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21672 /* A missing DW_AT_type represents a void type. */
21673 return objfile_type (objfile)->builtin_void;
21674 }
21675
21676 return lookup_die_type (die, type_attr, cu);
21677 }
21678
21679 /* True iff CU's producer generates GNAT Ada auxiliary information
21680 that allows to find parallel types through that information instead
21681 of having to do expensive parallel lookups by type name. */
21682
21683 static int
21684 need_gnat_info (struct dwarf2_cu *cu)
21685 {
21686 /* Assume that the Ada compiler was GNAT, which always produces
21687 the auxiliary information. */
21688 return (cu->language == language_ada);
21689 }
21690
21691 /* Return the auxiliary type of the die in question using its
21692 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21693 attribute is not present. */
21694
21695 static struct type *
21696 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21697 {
21698 struct attribute *type_attr;
21699
21700 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21701 if (!type_attr)
21702 return NULL;
21703
21704 return lookup_die_type (die, type_attr, cu);
21705 }
21706
21707 /* If DIE has a descriptive_type attribute, then set the TYPE's
21708 descriptive type accordingly. */
21709
21710 static void
21711 set_descriptive_type (struct type *type, struct die_info *die,
21712 struct dwarf2_cu *cu)
21713 {
21714 struct type *descriptive_type = die_descriptive_type (die, cu);
21715
21716 if (descriptive_type)
21717 {
21718 ALLOCATE_GNAT_AUX_TYPE (type);
21719 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21720 }
21721 }
21722
21723 /* Return the containing type of the die in question using its
21724 DW_AT_containing_type attribute. */
21725
21726 static struct type *
21727 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21728 {
21729 struct attribute *type_attr;
21730 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21731
21732 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21733 if (!type_attr)
21734 error (_("Dwarf Error: Problem turning containing type into gdb type "
21735 "[in module %s]"), objfile_name (objfile));
21736
21737 return lookup_die_type (die, type_attr, cu);
21738 }
21739
21740 /* Return an error marker type to use for the ill formed type in DIE/CU. */
21741
21742 static struct type *
21743 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21744 {
21745 struct dwarf2_per_objfile *dwarf2_per_objfile
21746 = cu->per_cu->dwarf2_per_objfile;
21747 struct objfile *objfile = dwarf2_per_objfile->objfile;
21748 char *message, *saved;
21749
21750 message = xstrprintf (_("<unknown type in %s, CU %s, DIE %s>"),
21751 objfile_name (objfile),
21752 sect_offset_str (cu->header.sect_off),
21753 sect_offset_str (die->sect_off));
21754 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
21755 message, strlen (message));
21756 xfree (message);
21757
21758 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
21759 }
21760
21761 /* Look up the type of DIE in CU using its type attribute ATTR.
21762 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
21763 DW_AT_containing_type.
21764 If there is no type substitute an error marker. */
21765
21766 static struct type *
21767 lookup_die_type (struct die_info *die, const struct attribute *attr,
21768 struct dwarf2_cu *cu)
21769 {
21770 struct dwarf2_per_objfile *dwarf2_per_objfile
21771 = cu->per_cu->dwarf2_per_objfile;
21772 struct objfile *objfile = dwarf2_per_objfile->objfile;
21773 struct type *this_type;
21774
21775 gdb_assert (attr->name == DW_AT_type
21776 || attr->name == DW_AT_GNAT_descriptive_type
21777 || attr->name == DW_AT_containing_type);
21778
21779 /* First see if we have it cached. */
21780
21781 if (attr->form == DW_FORM_GNU_ref_alt)
21782 {
21783 struct dwarf2_per_cu_data *per_cu;
21784 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21785
21786 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
21787 dwarf2_per_objfile);
21788 this_type = get_die_type_at_offset (sect_off, per_cu);
21789 }
21790 else if (attr_form_is_ref (attr))
21791 {
21792 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21793
21794 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
21795 }
21796 else if (attr->form == DW_FORM_ref_sig8)
21797 {
21798 ULONGEST signature = DW_SIGNATURE (attr);
21799
21800 return get_signatured_type (die, signature, cu);
21801 }
21802 else
21803 {
21804 complaint (&symfile_complaints,
21805 _("Dwarf Error: Bad type attribute %s in DIE"
21806 " at %s [in module %s]"),
21807 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
21808 objfile_name (objfile));
21809 return build_error_marker_type (cu, die);
21810 }
21811
21812 /* If not cached we need to read it in. */
21813
21814 if (this_type == NULL)
21815 {
21816 struct die_info *type_die = NULL;
21817 struct dwarf2_cu *type_cu = cu;
21818
21819 if (attr_form_is_ref (attr))
21820 type_die = follow_die_ref (die, attr, &type_cu);
21821 if (type_die == NULL)
21822 return build_error_marker_type (cu, die);
21823 /* If we find the type now, it's probably because the type came
21824 from an inter-CU reference and the type's CU got expanded before
21825 ours. */
21826 this_type = read_type_die (type_die, type_cu);
21827 }
21828
21829 /* If we still don't have a type use an error marker. */
21830
21831 if (this_type == NULL)
21832 return build_error_marker_type (cu, die);
21833
21834 return this_type;
21835 }
21836
21837 /* Return the type in DIE, CU.
21838 Returns NULL for invalid types.
21839
21840 This first does a lookup in die_type_hash,
21841 and only reads the die in if necessary.
21842
21843 NOTE: This can be called when reading in partial or full symbols. */
21844
21845 static struct type *
21846 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
21847 {
21848 struct type *this_type;
21849
21850 this_type = get_die_type (die, cu);
21851 if (this_type)
21852 return this_type;
21853
21854 return read_type_die_1 (die, cu);
21855 }
21856
21857 /* Read the type in DIE, CU.
21858 Returns NULL for invalid types. */
21859
21860 static struct type *
21861 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
21862 {
21863 struct type *this_type = NULL;
21864
21865 switch (die->tag)
21866 {
21867 case DW_TAG_class_type:
21868 case DW_TAG_interface_type:
21869 case DW_TAG_structure_type:
21870 case DW_TAG_union_type:
21871 this_type = read_structure_type (die, cu);
21872 break;
21873 case DW_TAG_enumeration_type:
21874 this_type = read_enumeration_type (die, cu);
21875 break;
21876 case DW_TAG_subprogram:
21877 case DW_TAG_subroutine_type:
21878 case DW_TAG_inlined_subroutine:
21879 this_type = read_subroutine_type (die, cu);
21880 break;
21881 case DW_TAG_array_type:
21882 this_type = read_array_type (die, cu);
21883 break;
21884 case DW_TAG_set_type:
21885 this_type = read_set_type (die, cu);
21886 break;
21887 case DW_TAG_pointer_type:
21888 this_type = read_tag_pointer_type (die, cu);
21889 break;
21890 case DW_TAG_ptr_to_member_type:
21891 this_type = read_tag_ptr_to_member_type (die, cu);
21892 break;
21893 case DW_TAG_reference_type:
21894 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
21895 break;
21896 case DW_TAG_rvalue_reference_type:
21897 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
21898 break;
21899 case DW_TAG_const_type:
21900 this_type = read_tag_const_type (die, cu);
21901 break;
21902 case DW_TAG_volatile_type:
21903 this_type = read_tag_volatile_type (die, cu);
21904 break;
21905 case DW_TAG_restrict_type:
21906 this_type = read_tag_restrict_type (die, cu);
21907 break;
21908 case DW_TAG_string_type:
21909 this_type = read_tag_string_type (die, cu);
21910 break;
21911 case DW_TAG_typedef:
21912 this_type = read_typedef (die, cu);
21913 break;
21914 case DW_TAG_subrange_type:
21915 this_type = read_subrange_type (die, cu);
21916 break;
21917 case DW_TAG_base_type:
21918 this_type = read_base_type (die, cu);
21919 break;
21920 case DW_TAG_unspecified_type:
21921 this_type = read_unspecified_type (die, cu);
21922 break;
21923 case DW_TAG_namespace:
21924 this_type = read_namespace_type (die, cu);
21925 break;
21926 case DW_TAG_module:
21927 this_type = read_module_type (die, cu);
21928 break;
21929 case DW_TAG_atomic_type:
21930 this_type = read_tag_atomic_type (die, cu);
21931 break;
21932 default:
21933 complaint (&symfile_complaints,
21934 _("unexpected tag in read_type_die: '%s'"),
21935 dwarf_tag_name (die->tag));
21936 break;
21937 }
21938
21939 return this_type;
21940 }
21941
21942 /* See if we can figure out if the class lives in a namespace. We do
21943 this by looking for a member function; its demangled name will
21944 contain namespace info, if there is any.
21945 Return the computed name or NULL.
21946 Space for the result is allocated on the objfile's obstack.
21947 This is the full-die version of guess_partial_die_structure_name.
21948 In this case we know DIE has no useful parent. */
21949
21950 static char *
21951 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
21952 {
21953 struct die_info *spec_die;
21954 struct dwarf2_cu *spec_cu;
21955 struct die_info *child;
21956 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21957
21958 spec_cu = cu;
21959 spec_die = die_specification (die, &spec_cu);
21960 if (spec_die != NULL)
21961 {
21962 die = spec_die;
21963 cu = spec_cu;
21964 }
21965
21966 for (child = die->child;
21967 child != NULL;
21968 child = child->sibling)
21969 {
21970 if (child->tag == DW_TAG_subprogram)
21971 {
21972 const char *linkage_name = dw2_linkage_name (child, cu);
21973
21974 if (linkage_name != NULL)
21975 {
21976 char *actual_name
21977 = language_class_name_from_physname (cu->language_defn,
21978 linkage_name);
21979 char *name = NULL;
21980
21981 if (actual_name != NULL)
21982 {
21983 const char *die_name = dwarf2_name (die, cu);
21984
21985 if (die_name != NULL
21986 && strcmp (die_name, actual_name) != 0)
21987 {
21988 /* Strip off the class name from the full name.
21989 We want the prefix. */
21990 int die_name_len = strlen (die_name);
21991 int actual_name_len = strlen (actual_name);
21992
21993 /* Test for '::' as a sanity check. */
21994 if (actual_name_len > die_name_len + 2
21995 && actual_name[actual_name_len
21996 - die_name_len - 1] == ':')
21997 name = (char *) obstack_copy0 (
21998 &objfile->per_bfd->storage_obstack,
21999 actual_name, actual_name_len - die_name_len - 2);
22000 }
22001 }
22002 xfree (actual_name);
22003 return name;
22004 }
22005 }
22006 }
22007
22008 return NULL;
22009 }
22010
22011 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22012 prefix part in such case. See
22013 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22014
22015 static const char *
22016 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22017 {
22018 struct attribute *attr;
22019 const char *base;
22020
22021 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22022 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22023 return NULL;
22024
22025 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22026 return NULL;
22027
22028 attr = dw2_linkage_name_attr (die, cu);
22029 if (attr == NULL || DW_STRING (attr) == NULL)
22030 return NULL;
22031
22032 /* dwarf2_name had to be already called. */
22033 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22034
22035 /* Strip the base name, keep any leading namespaces/classes. */
22036 base = strrchr (DW_STRING (attr), ':');
22037 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22038 return "";
22039
22040 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22041 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22042 DW_STRING (attr),
22043 &base[-1] - DW_STRING (attr));
22044 }
22045
22046 /* Return the name of the namespace/class that DIE is defined within,
22047 or "" if we can't tell. The caller should not xfree the result.
22048
22049 For example, if we're within the method foo() in the following
22050 code:
22051
22052 namespace N {
22053 class C {
22054 void foo () {
22055 }
22056 };
22057 }
22058
22059 then determine_prefix on foo's die will return "N::C". */
22060
22061 static const char *
22062 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22063 {
22064 struct dwarf2_per_objfile *dwarf2_per_objfile
22065 = cu->per_cu->dwarf2_per_objfile;
22066 struct die_info *parent, *spec_die;
22067 struct dwarf2_cu *spec_cu;
22068 struct type *parent_type;
22069 const char *retval;
22070
22071 if (cu->language != language_cplus
22072 && cu->language != language_fortran && cu->language != language_d
22073 && cu->language != language_rust)
22074 return "";
22075
22076 retval = anonymous_struct_prefix (die, cu);
22077 if (retval)
22078 return retval;
22079
22080 /* We have to be careful in the presence of DW_AT_specification.
22081 For example, with GCC 3.4, given the code
22082
22083 namespace N {
22084 void foo() {
22085 // Definition of N::foo.
22086 }
22087 }
22088
22089 then we'll have a tree of DIEs like this:
22090
22091 1: DW_TAG_compile_unit
22092 2: DW_TAG_namespace // N
22093 3: DW_TAG_subprogram // declaration of N::foo
22094 4: DW_TAG_subprogram // definition of N::foo
22095 DW_AT_specification // refers to die #3
22096
22097 Thus, when processing die #4, we have to pretend that we're in
22098 the context of its DW_AT_specification, namely the contex of die
22099 #3. */
22100 spec_cu = cu;
22101 spec_die = die_specification (die, &spec_cu);
22102 if (spec_die == NULL)
22103 parent = die->parent;
22104 else
22105 {
22106 parent = spec_die->parent;
22107 cu = spec_cu;
22108 }
22109
22110 if (parent == NULL)
22111 return "";
22112 else if (parent->building_fullname)
22113 {
22114 const char *name;
22115 const char *parent_name;
22116
22117 /* It has been seen on RealView 2.2 built binaries,
22118 DW_TAG_template_type_param types actually _defined_ as
22119 children of the parent class:
22120
22121 enum E {};
22122 template class <class Enum> Class{};
22123 Class<enum E> class_e;
22124
22125 1: DW_TAG_class_type (Class)
22126 2: DW_TAG_enumeration_type (E)
22127 3: DW_TAG_enumerator (enum1:0)
22128 3: DW_TAG_enumerator (enum2:1)
22129 ...
22130 2: DW_TAG_template_type_param
22131 DW_AT_type DW_FORM_ref_udata (E)
22132
22133 Besides being broken debug info, it can put GDB into an
22134 infinite loop. Consider:
22135
22136 When we're building the full name for Class<E>, we'll start
22137 at Class, and go look over its template type parameters,
22138 finding E. We'll then try to build the full name of E, and
22139 reach here. We're now trying to build the full name of E,
22140 and look over the parent DIE for containing scope. In the
22141 broken case, if we followed the parent DIE of E, we'd again
22142 find Class, and once again go look at its template type
22143 arguments, etc., etc. Simply don't consider such parent die
22144 as source-level parent of this die (it can't be, the language
22145 doesn't allow it), and break the loop here. */
22146 name = dwarf2_name (die, cu);
22147 parent_name = dwarf2_name (parent, cu);
22148 complaint (&symfile_complaints,
22149 _("template param type '%s' defined within parent '%s'"),
22150 name ? name : "<unknown>",
22151 parent_name ? parent_name : "<unknown>");
22152 return "";
22153 }
22154 else
22155 switch (parent->tag)
22156 {
22157 case DW_TAG_namespace:
22158 parent_type = read_type_die (parent, cu);
22159 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22160 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22161 Work around this problem here. */
22162 if (cu->language == language_cplus
22163 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
22164 return "";
22165 /* We give a name to even anonymous namespaces. */
22166 return TYPE_TAG_NAME (parent_type);
22167 case DW_TAG_class_type:
22168 case DW_TAG_interface_type:
22169 case DW_TAG_structure_type:
22170 case DW_TAG_union_type:
22171 case DW_TAG_module:
22172 parent_type = read_type_die (parent, cu);
22173 if (TYPE_TAG_NAME (parent_type) != NULL)
22174 return TYPE_TAG_NAME (parent_type);
22175 else
22176 /* An anonymous structure is only allowed non-static data
22177 members; no typedefs, no member functions, et cetera.
22178 So it does not need a prefix. */
22179 return "";
22180 case DW_TAG_compile_unit:
22181 case DW_TAG_partial_unit:
22182 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22183 if (cu->language == language_cplus
22184 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22185 && die->child != NULL
22186 && (die->tag == DW_TAG_class_type
22187 || die->tag == DW_TAG_structure_type
22188 || die->tag == DW_TAG_union_type))
22189 {
22190 char *name = guess_full_die_structure_name (die, cu);
22191 if (name != NULL)
22192 return name;
22193 }
22194 return "";
22195 case DW_TAG_enumeration_type:
22196 parent_type = read_type_die (parent, cu);
22197 if (TYPE_DECLARED_CLASS (parent_type))
22198 {
22199 if (TYPE_TAG_NAME (parent_type) != NULL)
22200 return TYPE_TAG_NAME (parent_type);
22201 return "";
22202 }
22203 /* Fall through. */
22204 default:
22205 return determine_prefix (parent, cu);
22206 }
22207 }
22208
22209 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22210 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22211 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22212 an obconcat, otherwise allocate storage for the result. The CU argument is
22213 used to determine the language and hence, the appropriate separator. */
22214
22215 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22216
22217 static char *
22218 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22219 int physname, struct dwarf2_cu *cu)
22220 {
22221 const char *lead = "";
22222 const char *sep;
22223
22224 if (suffix == NULL || suffix[0] == '\0'
22225 || prefix == NULL || prefix[0] == '\0')
22226 sep = "";
22227 else if (cu->language == language_d)
22228 {
22229 /* For D, the 'main' function could be defined in any module, but it
22230 should never be prefixed. */
22231 if (strcmp (suffix, "D main") == 0)
22232 {
22233 prefix = "";
22234 sep = "";
22235 }
22236 else
22237 sep = ".";
22238 }
22239 else if (cu->language == language_fortran && physname)
22240 {
22241 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22242 DW_AT_MIPS_linkage_name is preferred and used instead. */
22243
22244 lead = "__";
22245 sep = "_MOD_";
22246 }
22247 else
22248 sep = "::";
22249
22250 if (prefix == NULL)
22251 prefix = "";
22252 if (suffix == NULL)
22253 suffix = "";
22254
22255 if (obs == NULL)
22256 {
22257 char *retval
22258 = ((char *)
22259 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22260
22261 strcpy (retval, lead);
22262 strcat (retval, prefix);
22263 strcat (retval, sep);
22264 strcat (retval, suffix);
22265 return retval;
22266 }
22267 else
22268 {
22269 /* We have an obstack. */
22270 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22271 }
22272 }
22273
22274 /* Return sibling of die, NULL if no sibling. */
22275
22276 static struct die_info *
22277 sibling_die (struct die_info *die)
22278 {
22279 return die->sibling;
22280 }
22281
22282 /* Get name of a die, return NULL if not found. */
22283
22284 static const char *
22285 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22286 struct obstack *obstack)
22287 {
22288 if (name && cu->language == language_cplus)
22289 {
22290 std::string canon_name = cp_canonicalize_string (name);
22291
22292 if (!canon_name.empty ())
22293 {
22294 if (canon_name != name)
22295 name = (const char *) obstack_copy0 (obstack,
22296 canon_name.c_str (),
22297 canon_name.length ());
22298 }
22299 }
22300
22301 return name;
22302 }
22303
22304 /* Get name of a die, return NULL if not found.
22305 Anonymous namespaces are converted to their magic string. */
22306
22307 static const char *
22308 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22309 {
22310 struct attribute *attr;
22311 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22312
22313 attr = dwarf2_attr (die, DW_AT_name, cu);
22314 if ((!attr || !DW_STRING (attr))
22315 && die->tag != DW_TAG_namespace
22316 && die->tag != DW_TAG_class_type
22317 && die->tag != DW_TAG_interface_type
22318 && die->tag != DW_TAG_structure_type
22319 && die->tag != DW_TAG_union_type)
22320 return NULL;
22321
22322 switch (die->tag)
22323 {
22324 case DW_TAG_compile_unit:
22325 case DW_TAG_partial_unit:
22326 /* Compilation units have a DW_AT_name that is a filename, not
22327 a source language identifier. */
22328 case DW_TAG_enumeration_type:
22329 case DW_TAG_enumerator:
22330 /* These tags always have simple identifiers already; no need
22331 to canonicalize them. */
22332 return DW_STRING (attr);
22333
22334 case DW_TAG_namespace:
22335 if (attr != NULL && DW_STRING (attr) != NULL)
22336 return DW_STRING (attr);
22337 return CP_ANONYMOUS_NAMESPACE_STR;
22338
22339 case DW_TAG_class_type:
22340 case DW_TAG_interface_type:
22341 case DW_TAG_structure_type:
22342 case DW_TAG_union_type:
22343 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22344 structures or unions. These were of the form "._%d" in GCC 4.1,
22345 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22346 and GCC 4.4. We work around this problem by ignoring these. */
22347 if (attr && DW_STRING (attr)
22348 && (startswith (DW_STRING (attr), "._")
22349 || startswith (DW_STRING (attr), "<anonymous")))
22350 return NULL;
22351
22352 /* GCC might emit a nameless typedef that has a linkage name. See
22353 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22354 if (!attr || DW_STRING (attr) == NULL)
22355 {
22356 char *demangled = NULL;
22357
22358 attr = dw2_linkage_name_attr (die, cu);
22359 if (attr == NULL || DW_STRING (attr) == NULL)
22360 return NULL;
22361
22362 /* Avoid demangling DW_STRING (attr) the second time on a second
22363 call for the same DIE. */
22364 if (!DW_STRING_IS_CANONICAL (attr))
22365 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22366
22367 if (demangled)
22368 {
22369 const char *base;
22370
22371 /* FIXME: we already did this for the partial symbol... */
22372 DW_STRING (attr)
22373 = ((const char *)
22374 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22375 demangled, strlen (demangled)));
22376 DW_STRING_IS_CANONICAL (attr) = 1;
22377 xfree (demangled);
22378
22379 /* Strip any leading namespaces/classes, keep only the base name.
22380 DW_AT_name for named DIEs does not contain the prefixes. */
22381 base = strrchr (DW_STRING (attr), ':');
22382 if (base && base > DW_STRING (attr) && base[-1] == ':')
22383 return &base[1];
22384 else
22385 return DW_STRING (attr);
22386 }
22387 }
22388 break;
22389
22390 default:
22391 break;
22392 }
22393
22394 if (!DW_STRING_IS_CANONICAL (attr))
22395 {
22396 DW_STRING (attr)
22397 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22398 &objfile->per_bfd->storage_obstack);
22399 DW_STRING_IS_CANONICAL (attr) = 1;
22400 }
22401 return DW_STRING (attr);
22402 }
22403
22404 /* Return the die that this die in an extension of, or NULL if there
22405 is none. *EXT_CU is the CU containing DIE on input, and the CU
22406 containing the return value on output. */
22407
22408 static struct die_info *
22409 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22410 {
22411 struct attribute *attr;
22412
22413 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22414 if (attr == NULL)
22415 return NULL;
22416
22417 return follow_die_ref (die, attr, ext_cu);
22418 }
22419
22420 /* Convert a DIE tag into its string name. */
22421
22422 static const char *
22423 dwarf_tag_name (unsigned tag)
22424 {
22425 const char *name = get_DW_TAG_name (tag);
22426
22427 if (name == NULL)
22428 return "DW_TAG_<unknown>";
22429
22430 return name;
22431 }
22432
22433 /* Convert a DWARF attribute code into its string name. */
22434
22435 static const char *
22436 dwarf_attr_name (unsigned attr)
22437 {
22438 const char *name;
22439
22440 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22441 if (attr == DW_AT_MIPS_fde)
22442 return "DW_AT_MIPS_fde";
22443 #else
22444 if (attr == DW_AT_HP_block_index)
22445 return "DW_AT_HP_block_index";
22446 #endif
22447
22448 name = get_DW_AT_name (attr);
22449
22450 if (name == NULL)
22451 return "DW_AT_<unknown>";
22452
22453 return name;
22454 }
22455
22456 /* Convert a DWARF value form code into its string name. */
22457
22458 static const char *
22459 dwarf_form_name (unsigned form)
22460 {
22461 const char *name = get_DW_FORM_name (form);
22462
22463 if (name == NULL)
22464 return "DW_FORM_<unknown>";
22465
22466 return name;
22467 }
22468
22469 static const char *
22470 dwarf_bool_name (unsigned mybool)
22471 {
22472 if (mybool)
22473 return "TRUE";
22474 else
22475 return "FALSE";
22476 }
22477
22478 /* Convert a DWARF type code into its string name. */
22479
22480 static const char *
22481 dwarf_type_encoding_name (unsigned enc)
22482 {
22483 const char *name = get_DW_ATE_name (enc);
22484
22485 if (name == NULL)
22486 return "DW_ATE_<unknown>";
22487
22488 return name;
22489 }
22490
22491 static void
22492 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22493 {
22494 unsigned int i;
22495
22496 print_spaces (indent, f);
22497 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22498 dwarf_tag_name (die->tag), die->abbrev,
22499 sect_offset_str (die->sect_off));
22500
22501 if (die->parent != NULL)
22502 {
22503 print_spaces (indent, f);
22504 fprintf_unfiltered (f, " parent at offset: %s\n",
22505 sect_offset_str (die->parent->sect_off));
22506 }
22507
22508 print_spaces (indent, f);
22509 fprintf_unfiltered (f, " has children: %s\n",
22510 dwarf_bool_name (die->child != NULL));
22511
22512 print_spaces (indent, f);
22513 fprintf_unfiltered (f, " attributes:\n");
22514
22515 for (i = 0; i < die->num_attrs; ++i)
22516 {
22517 print_spaces (indent, f);
22518 fprintf_unfiltered (f, " %s (%s) ",
22519 dwarf_attr_name (die->attrs[i].name),
22520 dwarf_form_name (die->attrs[i].form));
22521
22522 switch (die->attrs[i].form)
22523 {
22524 case DW_FORM_addr:
22525 case DW_FORM_GNU_addr_index:
22526 fprintf_unfiltered (f, "address: ");
22527 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22528 break;
22529 case DW_FORM_block2:
22530 case DW_FORM_block4:
22531 case DW_FORM_block:
22532 case DW_FORM_block1:
22533 fprintf_unfiltered (f, "block: size %s",
22534 pulongest (DW_BLOCK (&die->attrs[i])->size));
22535 break;
22536 case DW_FORM_exprloc:
22537 fprintf_unfiltered (f, "expression: size %s",
22538 pulongest (DW_BLOCK (&die->attrs[i])->size));
22539 break;
22540 case DW_FORM_data16:
22541 fprintf_unfiltered (f, "constant of 16 bytes");
22542 break;
22543 case DW_FORM_ref_addr:
22544 fprintf_unfiltered (f, "ref address: ");
22545 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22546 break;
22547 case DW_FORM_GNU_ref_alt:
22548 fprintf_unfiltered (f, "alt ref address: ");
22549 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22550 break;
22551 case DW_FORM_ref1:
22552 case DW_FORM_ref2:
22553 case DW_FORM_ref4:
22554 case DW_FORM_ref8:
22555 case DW_FORM_ref_udata:
22556 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22557 (long) (DW_UNSND (&die->attrs[i])));
22558 break;
22559 case DW_FORM_data1:
22560 case DW_FORM_data2:
22561 case DW_FORM_data4:
22562 case DW_FORM_data8:
22563 case DW_FORM_udata:
22564 case DW_FORM_sdata:
22565 fprintf_unfiltered (f, "constant: %s",
22566 pulongest (DW_UNSND (&die->attrs[i])));
22567 break;
22568 case DW_FORM_sec_offset:
22569 fprintf_unfiltered (f, "section offset: %s",
22570 pulongest (DW_UNSND (&die->attrs[i])));
22571 break;
22572 case DW_FORM_ref_sig8:
22573 fprintf_unfiltered (f, "signature: %s",
22574 hex_string (DW_SIGNATURE (&die->attrs[i])));
22575 break;
22576 case DW_FORM_string:
22577 case DW_FORM_strp:
22578 case DW_FORM_line_strp:
22579 case DW_FORM_GNU_str_index:
22580 case DW_FORM_GNU_strp_alt:
22581 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22582 DW_STRING (&die->attrs[i])
22583 ? DW_STRING (&die->attrs[i]) : "",
22584 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22585 break;
22586 case DW_FORM_flag:
22587 if (DW_UNSND (&die->attrs[i]))
22588 fprintf_unfiltered (f, "flag: TRUE");
22589 else
22590 fprintf_unfiltered (f, "flag: FALSE");
22591 break;
22592 case DW_FORM_flag_present:
22593 fprintf_unfiltered (f, "flag: TRUE");
22594 break;
22595 case DW_FORM_indirect:
22596 /* The reader will have reduced the indirect form to
22597 the "base form" so this form should not occur. */
22598 fprintf_unfiltered (f,
22599 "unexpected attribute form: DW_FORM_indirect");
22600 break;
22601 case DW_FORM_implicit_const:
22602 fprintf_unfiltered (f, "constant: %s",
22603 plongest (DW_SND (&die->attrs[i])));
22604 break;
22605 default:
22606 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22607 die->attrs[i].form);
22608 break;
22609 }
22610 fprintf_unfiltered (f, "\n");
22611 }
22612 }
22613
22614 static void
22615 dump_die_for_error (struct die_info *die)
22616 {
22617 dump_die_shallow (gdb_stderr, 0, die);
22618 }
22619
22620 static void
22621 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22622 {
22623 int indent = level * 4;
22624
22625 gdb_assert (die != NULL);
22626
22627 if (level >= max_level)
22628 return;
22629
22630 dump_die_shallow (f, indent, die);
22631
22632 if (die->child != NULL)
22633 {
22634 print_spaces (indent, f);
22635 fprintf_unfiltered (f, " Children:");
22636 if (level + 1 < max_level)
22637 {
22638 fprintf_unfiltered (f, "\n");
22639 dump_die_1 (f, level + 1, max_level, die->child);
22640 }
22641 else
22642 {
22643 fprintf_unfiltered (f,
22644 " [not printed, max nesting level reached]\n");
22645 }
22646 }
22647
22648 if (die->sibling != NULL && level > 0)
22649 {
22650 dump_die_1 (f, level, max_level, die->sibling);
22651 }
22652 }
22653
22654 /* This is called from the pdie macro in gdbinit.in.
22655 It's not static so gcc will keep a copy callable from gdb. */
22656
22657 void
22658 dump_die (struct die_info *die, int max_level)
22659 {
22660 dump_die_1 (gdb_stdlog, 0, max_level, die);
22661 }
22662
22663 static void
22664 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22665 {
22666 void **slot;
22667
22668 slot = htab_find_slot_with_hash (cu->die_hash, die,
22669 to_underlying (die->sect_off),
22670 INSERT);
22671
22672 *slot = die;
22673 }
22674
22675 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22676 required kind. */
22677
22678 static sect_offset
22679 dwarf2_get_ref_die_offset (const struct attribute *attr)
22680 {
22681 if (attr_form_is_ref (attr))
22682 return (sect_offset) DW_UNSND (attr);
22683
22684 complaint (&symfile_complaints,
22685 _("unsupported die ref attribute form: '%s'"),
22686 dwarf_form_name (attr->form));
22687 return {};
22688 }
22689
22690 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22691 * the value held by the attribute is not constant. */
22692
22693 static LONGEST
22694 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
22695 {
22696 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
22697 return DW_SND (attr);
22698 else if (attr->form == DW_FORM_udata
22699 || attr->form == DW_FORM_data1
22700 || attr->form == DW_FORM_data2
22701 || attr->form == DW_FORM_data4
22702 || attr->form == DW_FORM_data8)
22703 return DW_UNSND (attr);
22704 else
22705 {
22706 /* For DW_FORM_data16 see attr_form_is_constant. */
22707 complaint (&symfile_complaints,
22708 _("Attribute value is not a constant (%s)"),
22709 dwarf_form_name (attr->form));
22710 return default_value;
22711 }
22712 }
22713
22714 /* Follow reference or signature attribute ATTR of SRC_DIE.
22715 On entry *REF_CU is the CU of SRC_DIE.
22716 On exit *REF_CU is the CU of the result. */
22717
22718 static struct die_info *
22719 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22720 struct dwarf2_cu **ref_cu)
22721 {
22722 struct die_info *die;
22723
22724 if (attr_form_is_ref (attr))
22725 die = follow_die_ref (src_die, attr, ref_cu);
22726 else if (attr->form == DW_FORM_ref_sig8)
22727 die = follow_die_sig (src_die, attr, ref_cu);
22728 else
22729 {
22730 dump_die_for_error (src_die);
22731 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22732 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22733 }
22734
22735 return die;
22736 }
22737
22738 /* Follow reference OFFSET.
22739 On entry *REF_CU is the CU of the source die referencing OFFSET.
22740 On exit *REF_CU is the CU of the result.
22741 Returns NULL if OFFSET is invalid. */
22742
22743 static struct die_info *
22744 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22745 struct dwarf2_cu **ref_cu)
22746 {
22747 struct die_info temp_die;
22748 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22749 struct dwarf2_per_objfile *dwarf2_per_objfile
22750 = cu->per_cu->dwarf2_per_objfile;
22751
22752 gdb_assert (cu->per_cu != NULL);
22753
22754 target_cu = cu;
22755
22756 if (cu->per_cu->is_debug_types)
22757 {
22758 /* .debug_types CUs cannot reference anything outside their CU.
22759 If they need to, they have to reference a signatured type via
22760 DW_FORM_ref_sig8. */
22761 if (!offset_in_cu_p (&cu->header, sect_off))
22762 return NULL;
22763 }
22764 else if (offset_in_dwz != cu->per_cu->is_dwz
22765 || !offset_in_cu_p (&cu->header, sect_off))
22766 {
22767 struct dwarf2_per_cu_data *per_cu;
22768
22769 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
22770 dwarf2_per_objfile);
22771
22772 /* If necessary, add it to the queue and load its DIEs. */
22773 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
22774 load_full_comp_unit (per_cu, cu->language);
22775
22776 target_cu = per_cu->cu;
22777 }
22778 else if (cu->dies == NULL)
22779 {
22780 /* We're loading full DIEs during partial symbol reading. */
22781 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
22782 load_full_comp_unit (cu->per_cu, language_minimal);
22783 }
22784
22785 *ref_cu = target_cu;
22786 temp_die.sect_off = sect_off;
22787 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
22788 &temp_die,
22789 to_underlying (sect_off));
22790 }
22791
22792 /* Follow reference attribute ATTR of SRC_DIE.
22793 On entry *REF_CU is the CU of SRC_DIE.
22794 On exit *REF_CU is the CU of the result. */
22795
22796 static struct die_info *
22797 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
22798 struct dwarf2_cu **ref_cu)
22799 {
22800 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22801 struct dwarf2_cu *cu = *ref_cu;
22802 struct die_info *die;
22803
22804 die = follow_die_offset (sect_off,
22805 (attr->form == DW_FORM_GNU_ref_alt
22806 || cu->per_cu->is_dwz),
22807 ref_cu);
22808 if (!die)
22809 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
22810 "at %s [in module %s]"),
22811 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
22812 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
22813
22814 return die;
22815 }
22816
22817 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
22818 Returned value is intended for DW_OP_call*. Returned
22819 dwarf2_locexpr_baton->data has lifetime of
22820 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
22821
22822 struct dwarf2_locexpr_baton
22823 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
22824 struct dwarf2_per_cu_data *per_cu,
22825 CORE_ADDR (*get_frame_pc) (void *baton),
22826 void *baton)
22827 {
22828 struct dwarf2_cu *cu;
22829 struct die_info *die;
22830 struct attribute *attr;
22831 struct dwarf2_locexpr_baton retval;
22832 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
22833 struct objfile *objfile = dwarf2_per_objfile->objfile;
22834
22835 if (per_cu->cu == NULL)
22836 load_cu (per_cu);
22837 cu = per_cu->cu;
22838 if (cu == NULL)
22839 {
22840 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22841 Instead just throw an error, not much else we can do. */
22842 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22843 sect_offset_str (sect_off), objfile_name (objfile));
22844 }
22845
22846 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22847 if (!die)
22848 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22849 sect_offset_str (sect_off), objfile_name (objfile));
22850
22851 attr = dwarf2_attr (die, DW_AT_location, cu);
22852 if (!attr)
22853 {
22854 /* DWARF: "If there is no such attribute, then there is no effect.".
22855 DATA is ignored if SIZE is 0. */
22856
22857 retval.data = NULL;
22858 retval.size = 0;
22859 }
22860 else if (attr_form_is_section_offset (attr))
22861 {
22862 struct dwarf2_loclist_baton loclist_baton;
22863 CORE_ADDR pc = (*get_frame_pc) (baton);
22864 size_t size;
22865
22866 fill_in_loclist_baton (cu, &loclist_baton, attr);
22867
22868 retval.data = dwarf2_find_location_expression (&loclist_baton,
22869 &size, pc);
22870 retval.size = size;
22871 }
22872 else
22873 {
22874 if (!attr_form_is_block (attr))
22875 error (_("Dwarf Error: DIE at %s referenced in module %s "
22876 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
22877 sect_offset_str (sect_off), objfile_name (objfile));
22878
22879 retval.data = DW_BLOCK (attr)->data;
22880 retval.size = DW_BLOCK (attr)->size;
22881 }
22882 retval.per_cu = cu->per_cu;
22883
22884 age_cached_comp_units (dwarf2_per_objfile);
22885
22886 return retval;
22887 }
22888
22889 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
22890 offset. */
22891
22892 struct dwarf2_locexpr_baton
22893 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
22894 struct dwarf2_per_cu_data *per_cu,
22895 CORE_ADDR (*get_frame_pc) (void *baton),
22896 void *baton)
22897 {
22898 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
22899
22900 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
22901 }
22902
22903 /* Write a constant of a given type as target-ordered bytes into
22904 OBSTACK. */
22905
22906 static const gdb_byte *
22907 write_constant_as_bytes (struct obstack *obstack,
22908 enum bfd_endian byte_order,
22909 struct type *type,
22910 ULONGEST value,
22911 LONGEST *len)
22912 {
22913 gdb_byte *result;
22914
22915 *len = TYPE_LENGTH (type);
22916 result = (gdb_byte *) obstack_alloc (obstack, *len);
22917 store_unsigned_integer (result, *len, byte_order, value);
22918
22919 return result;
22920 }
22921
22922 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
22923 pointer to the constant bytes and set LEN to the length of the
22924 data. If memory is needed, allocate it on OBSTACK. If the DIE
22925 does not have a DW_AT_const_value, return NULL. */
22926
22927 const gdb_byte *
22928 dwarf2_fetch_constant_bytes (sect_offset sect_off,
22929 struct dwarf2_per_cu_data *per_cu,
22930 struct obstack *obstack,
22931 LONGEST *len)
22932 {
22933 struct dwarf2_cu *cu;
22934 struct die_info *die;
22935 struct attribute *attr;
22936 const gdb_byte *result = NULL;
22937 struct type *type;
22938 LONGEST value;
22939 enum bfd_endian byte_order;
22940 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
22941
22942 if (per_cu->cu == NULL)
22943 load_cu (per_cu);
22944 cu = per_cu->cu;
22945 if (cu == NULL)
22946 {
22947 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22948 Instead just throw an error, not much else we can do. */
22949 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22950 sect_offset_str (sect_off), objfile_name (objfile));
22951 }
22952
22953 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22954 if (!die)
22955 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22956 sect_offset_str (sect_off), objfile_name (objfile));
22957
22958 attr = dwarf2_attr (die, DW_AT_const_value, cu);
22959 if (attr == NULL)
22960 return NULL;
22961
22962 byte_order = (bfd_big_endian (objfile->obfd)
22963 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
22964
22965 switch (attr->form)
22966 {
22967 case DW_FORM_addr:
22968 case DW_FORM_GNU_addr_index:
22969 {
22970 gdb_byte *tem;
22971
22972 *len = cu->header.addr_size;
22973 tem = (gdb_byte *) obstack_alloc (obstack, *len);
22974 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
22975 result = tem;
22976 }
22977 break;
22978 case DW_FORM_string:
22979 case DW_FORM_strp:
22980 case DW_FORM_GNU_str_index:
22981 case DW_FORM_GNU_strp_alt:
22982 /* DW_STRING is already allocated on the objfile obstack, point
22983 directly to it. */
22984 result = (const gdb_byte *) DW_STRING (attr);
22985 *len = strlen (DW_STRING (attr));
22986 break;
22987 case DW_FORM_block1:
22988 case DW_FORM_block2:
22989 case DW_FORM_block4:
22990 case DW_FORM_block:
22991 case DW_FORM_exprloc:
22992 case DW_FORM_data16:
22993 result = DW_BLOCK (attr)->data;
22994 *len = DW_BLOCK (attr)->size;
22995 break;
22996
22997 /* The DW_AT_const_value attributes are supposed to carry the
22998 symbol's value "represented as it would be on the target
22999 architecture." By the time we get here, it's already been
23000 converted to host endianness, so we just need to sign- or
23001 zero-extend it as appropriate. */
23002 case DW_FORM_data1:
23003 type = die_type (die, cu);
23004 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23005 if (result == NULL)
23006 result = write_constant_as_bytes (obstack, byte_order,
23007 type, value, len);
23008 break;
23009 case DW_FORM_data2:
23010 type = die_type (die, cu);
23011 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23012 if (result == NULL)
23013 result = write_constant_as_bytes (obstack, byte_order,
23014 type, value, len);
23015 break;
23016 case DW_FORM_data4:
23017 type = die_type (die, cu);
23018 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23019 if (result == NULL)
23020 result = write_constant_as_bytes (obstack, byte_order,
23021 type, value, len);
23022 break;
23023 case DW_FORM_data8:
23024 type = die_type (die, cu);
23025 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23026 if (result == NULL)
23027 result = write_constant_as_bytes (obstack, byte_order,
23028 type, value, len);
23029 break;
23030
23031 case DW_FORM_sdata:
23032 case DW_FORM_implicit_const:
23033 type = die_type (die, cu);
23034 result = write_constant_as_bytes (obstack, byte_order,
23035 type, DW_SND (attr), len);
23036 break;
23037
23038 case DW_FORM_udata:
23039 type = die_type (die, cu);
23040 result = write_constant_as_bytes (obstack, byte_order,
23041 type, DW_UNSND (attr), len);
23042 break;
23043
23044 default:
23045 complaint (&symfile_complaints,
23046 _("unsupported const value attribute form: '%s'"),
23047 dwarf_form_name (attr->form));
23048 break;
23049 }
23050
23051 return result;
23052 }
23053
23054 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23055 valid type for this die is found. */
23056
23057 struct type *
23058 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23059 struct dwarf2_per_cu_data *per_cu)
23060 {
23061 struct dwarf2_cu *cu;
23062 struct die_info *die;
23063
23064 if (per_cu->cu == NULL)
23065 load_cu (per_cu);
23066 cu = per_cu->cu;
23067 if (!cu)
23068 return NULL;
23069
23070 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23071 if (!die)
23072 return NULL;
23073
23074 return die_type (die, cu);
23075 }
23076
23077 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23078 PER_CU. */
23079
23080 struct type *
23081 dwarf2_get_die_type (cu_offset die_offset,
23082 struct dwarf2_per_cu_data *per_cu)
23083 {
23084 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23085 return get_die_type_at_offset (die_offset_sect, per_cu);
23086 }
23087
23088 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23089 On entry *REF_CU is the CU of SRC_DIE.
23090 On exit *REF_CU is the CU of the result.
23091 Returns NULL if the referenced DIE isn't found. */
23092
23093 static struct die_info *
23094 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23095 struct dwarf2_cu **ref_cu)
23096 {
23097 struct die_info temp_die;
23098 struct dwarf2_cu *sig_cu;
23099 struct die_info *die;
23100
23101 /* While it might be nice to assert sig_type->type == NULL here,
23102 we can get here for DW_AT_imported_declaration where we need
23103 the DIE not the type. */
23104
23105 /* If necessary, add it to the queue and load its DIEs. */
23106
23107 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23108 read_signatured_type (sig_type);
23109
23110 sig_cu = sig_type->per_cu.cu;
23111 gdb_assert (sig_cu != NULL);
23112 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23113 temp_die.sect_off = sig_type->type_offset_in_section;
23114 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23115 to_underlying (temp_die.sect_off));
23116 if (die)
23117 {
23118 struct dwarf2_per_objfile *dwarf2_per_objfile
23119 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23120
23121 /* For .gdb_index version 7 keep track of included TUs.
23122 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23123 if (dwarf2_per_objfile->index_table != NULL
23124 && dwarf2_per_objfile->index_table->version <= 7)
23125 {
23126 VEC_safe_push (dwarf2_per_cu_ptr,
23127 (*ref_cu)->per_cu->imported_symtabs,
23128 sig_cu->per_cu);
23129 }
23130
23131 *ref_cu = sig_cu;
23132 return die;
23133 }
23134
23135 return NULL;
23136 }
23137
23138 /* Follow signatured type referenced by ATTR in SRC_DIE.
23139 On entry *REF_CU is the CU of SRC_DIE.
23140 On exit *REF_CU is the CU of the result.
23141 The result is the DIE of the type.
23142 If the referenced type cannot be found an error is thrown. */
23143
23144 static struct die_info *
23145 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23146 struct dwarf2_cu **ref_cu)
23147 {
23148 ULONGEST signature = DW_SIGNATURE (attr);
23149 struct signatured_type *sig_type;
23150 struct die_info *die;
23151
23152 gdb_assert (attr->form == DW_FORM_ref_sig8);
23153
23154 sig_type = lookup_signatured_type (*ref_cu, signature);
23155 /* sig_type will be NULL if the signatured type is missing from
23156 the debug info. */
23157 if (sig_type == NULL)
23158 {
23159 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23160 " from DIE at %s [in module %s]"),
23161 hex_string (signature), sect_offset_str (src_die->sect_off),
23162 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23163 }
23164
23165 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23166 if (die == NULL)
23167 {
23168 dump_die_for_error (src_die);
23169 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23170 " from DIE at %s [in module %s]"),
23171 hex_string (signature), sect_offset_str (src_die->sect_off),
23172 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23173 }
23174
23175 return die;
23176 }
23177
23178 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23179 reading in and processing the type unit if necessary. */
23180
23181 static struct type *
23182 get_signatured_type (struct die_info *die, ULONGEST signature,
23183 struct dwarf2_cu *cu)
23184 {
23185 struct dwarf2_per_objfile *dwarf2_per_objfile
23186 = cu->per_cu->dwarf2_per_objfile;
23187 struct signatured_type *sig_type;
23188 struct dwarf2_cu *type_cu;
23189 struct die_info *type_die;
23190 struct type *type;
23191
23192 sig_type = lookup_signatured_type (cu, signature);
23193 /* sig_type will be NULL if the signatured type is missing from
23194 the debug info. */
23195 if (sig_type == NULL)
23196 {
23197 complaint (&symfile_complaints,
23198 _("Dwarf Error: Cannot find signatured DIE %s referenced"
23199 " from DIE at %s [in module %s]"),
23200 hex_string (signature), sect_offset_str (die->sect_off),
23201 objfile_name (dwarf2_per_objfile->objfile));
23202 return build_error_marker_type (cu, die);
23203 }
23204
23205 /* If we already know the type we're done. */
23206 if (sig_type->type != NULL)
23207 return sig_type->type;
23208
23209 type_cu = cu;
23210 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23211 if (type_die != NULL)
23212 {
23213 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23214 is created. This is important, for example, because for c++ classes
23215 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23216 type = read_type_die (type_die, type_cu);
23217 if (type == NULL)
23218 {
23219 complaint (&symfile_complaints,
23220 _("Dwarf Error: Cannot build signatured type %s"
23221 " referenced from DIE at %s [in module %s]"),
23222 hex_string (signature), sect_offset_str (die->sect_off),
23223 objfile_name (dwarf2_per_objfile->objfile));
23224 type = build_error_marker_type (cu, die);
23225 }
23226 }
23227 else
23228 {
23229 complaint (&symfile_complaints,
23230 _("Dwarf Error: Problem reading signatured DIE %s referenced"
23231 " from DIE at %s [in module %s]"),
23232 hex_string (signature), sect_offset_str (die->sect_off),
23233 objfile_name (dwarf2_per_objfile->objfile));
23234 type = build_error_marker_type (cu, die);
23235 }
23236 sig_type->type = type;
23237
23238 return type;
23239 }
23240
23241 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23242 reading in and processing the type unit if necessary. */
23243
23244 static struct type *
23245 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23246 struct dwarf2_cu *cu) /* ARI: editCase function */
23247 {
23248 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23249 if (attr_form_is_ref (attr))
23250 {
23251 struct dwarf2_cu *type_cu = cu;
23252 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23253
23254 return read_type_die (type_die, type_cu);
23255 }
23256 else if (attr->form == DW_FORM_ref_sig8)
23257 {
23258 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23259 }
23260 else
23261 {
23262 struct dwarf2_per_objfile *dwarf2_per_objfile
23263 = cu->per_cu->dwarf2_per_objfile;
23264
23265 complaint (&symfile_complaints,
23266 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23267 " at %s [in module %s]"),
23268 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23269 objfile_name (dwarf2_per_objfile->objfile));
23270 return build_error_marker_type (cu, die);
23271 }
23272 }
23273
23274 /* Load the DIEs associated with type unit PER_CU into memory. */
23275
23276 static void
23277 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23278 {
23279 struct signatured_type *sig_type;
23280
23281 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23282 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23283
23284 /* We have the per_cu, but we need the signatured_type.
23285 Fortunately this is an easy translation. */
23286 gdb_assert (per_cu->is_debug_types);
23287 sig_type = (struct signatured_type *) per_cu;
23288
23289 gdb_assert (per_cu->cu == NULL);
23290
23291 read_signatured_type (sig_type);
23292
23293 gdb_assert (per_cu->cu != NULL);
23294 }
23295
23296 /* die_reader_func for read_signatured_type.
23297 This is identical to load_full_comp_unit_reader,
23298 but is kept separate for now. */
23299
23300 static void
23301 read_signatured_type_reader (const struct die_reader_specs *reader,
23302 const gdb_byte *info_ptr,
23303 struct die_info *comp_unit_die,
23304 int has_children,
23305 void *data)
23306 {
23307 struct dwarf2_cu *cu = reader->cu;
23308
23309 gdb_assert (cu->die_hash == NULL);
23310 cu->die_hash =
23311 htab_create_alloc_ex (cu->header.length / 12,
23312 die_hash,
23313 die_eq,
23314 NULL,
23315 &cu->comp_unit_obstack,
23316 hashtab_obstack_allocate,
23317 dummy_obstack_deallocate);
23318
23319 if (has_children)
23320 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23321 &info_ptr, comp_unit_die);
23322 cu->dies = comp_unit_die;
23323 /* comp_unit_die is not stored in die_hash, no need. */
23324
23325 /* We try not to read any attributes in this function, because not
23326 all CUs needed for references have been loaded yet, and symbol
23327 table processing isn't initialized. But we have to set the CU language,
23328 or we won't be able to build types correctly.
23329 Similarly, if we do not read the producer, we can not apply
23330 producer-specific interpretation. */
23331 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23332 }
23333
23334 /* Read in a signatured type and build its CU and DIEs.
23335 If the type is a stub for the real type in a DWO file,
23336 read in the real type from the DWO file as well. */
23337
23338 static void
23339 read_signatured_type (struct signatured_type *sig_type)
23340 {
23341 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23342
23343 gdb_assert (per_cu->is_debug_types);
23344 gdb_assert (per_cu->cu == NULL);
23345
23346 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
23347 read_signatured_type_reader, NULL);
23348 sig_type->per_cu.tu_read = 1;
23349 }
23350
23351 /* Decode simple location descriptions.
23352 Given a pointer to a dwarf block that defines a location, compute
23353 the location and return the value.
23354
23355 NOTE drow/2003-11-18: This function is called in two situations
23356 now: for the address of static or global variables (partial symbols
23357 only) and for offsets into structures which are expected to be
23358 (more or less) constant. The partial symbol case should go away,
23359 and only the constant case should remain. That will let this
23360 function complain more accurately. A few special modes are allowed
23361 without complaint for global variables (for instance, global
23362 register values and thread-local values).
23363
23364 A location description containing no operations indicates that the
23365 object is optimized out. The return value is 0 for that case.
23366 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23367 callers will only want a very basic result and this can become a
23368 complaint.
23369
23370 Note that stack[0] is unused except as a default error return. */
23371
23372 static CORE_ADDR
23373 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23374 {
23375 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23376 size_t i;
23377 size_t size = blk->size;
23378 const gdb_byte *data = blk->data;
23379 CORE_ADDR stack[64];
23380 int stacki;
23381 unsigned int bytes_read, unsnd;
23382 gdb_byte op;
23383
23384 i = 0;
23385 stacki = 0;
23386 stack[stacki] = 0;
23387 stack[++stacki] = 0;
23388
23389 while (i < size)
23390 {
23391 op = data[i++];
23392 switch (op)
23393 {
23394 case DW_OP_lit0:
23395 case DW_OP_lit1:
23396 case DW_OP_lit2:
23397 case DW_OP_lit3:
23398 case DW_OP_lit4:
23399 case DW_OP_lit5:
23400 case DW_OP_lit6:
23401 case DW_OP_lit7:
23402 case DW_OP_lit8:
23403 case DW_OP_lit9:
23404 case DW_OP_lit10:
23405 case DW_OP_lit11:
23406 case DW_OP_lit12:
23407 case DW_OP_lit13:
23408 case DW_OP_lit14:
23409 case DW_OP_lit15:
23410 case DW_OP_lit16:
23411 case DW_OP_lit17:
23412 case DW_OP_lit18:
23413 case DW_OP_lit19:
23414 case DW_OP_lit20:
23415 case DW_OP_lit21:
23416 case DW_OP_lit22:
23417 case DW_OP_lit23:
23418 case DW_OP_lit24:
23419 case DW_OP_lit25:
23420 case DW_OP_lit26:
23421 case DW_OP_lit27:
23422 case DW_OP_lit28:
23423 case DW_OP_lit29:
23424 case DW_OP_lit30:
23425 case DW_OP_lit31:
23426 stack[++stacki] = op - DW_OP_lit0;
23427 break;
23428
23429 case DW_OP_reg0:
23430 case DW_OP_reg1:
23431 case DW_OP_reg2:
23432 case DW_OP_reg3:
23433 case DW_OP_reg4:
23434 case DW_OP_reg5:
23435 case DW_OP_reg6:
23436 case DW_OP_reg7:
23437 case DW_OP_reg8:
23438 case DW_OP_reg9:
23439 case DW_OP_reg10:
23440 case DW_OP_reg11:
23441 case DW_OP_reg12:
23442 case DW_OP_reg13:
23443 case DW_OP_reg14:
23444 case DW_OP_reg15:
23445 case DW_OP_reg16:
23446 case DW_OP_reg17:
23447 case DW_OP_reg18:
23448 case DW_OP_reg19:
23449 case DW_OP_reg20:
23450 case DW_OP_reg21:
23451 case DW_OP_reg22:
23452 case DW_OP_reg23:
23453 case DW_OP_reg24:
23454 case DW_OP_reg25:
23455 case DW_OP_reg26:
23456 case DW_OP_reg27:
23457 case DW_OP_reg28:
23458 case DW_OP_reg29:
23459 case DW_OP_reg30:
23460 case DW_OP_reg31:
23461 stack[++stacki] = op - DW_OP_reg0;
23462 if (i < size)
23463 dwarf2_complex_location_expr_complaint ();
23464 break;
23465
23466 case DW_OP_regx:
23467 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23468 i += bytes_read;
23469 stack[++stacki] = unsnd;
23470 if (i < size)
23471 dwarf2_complex_location_expr_complaint ();
23472 break;
23473
23474 case DW_OP_addr:
23475 stack[++stacki] = read_address (objfile->obfd, &data[i],
23476 cu, &bytes_read);
23477 i += bytes_read;
23478 break;
23479
23480 case DW_OP_const1u:
23481 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23482 i += 1;
23483 break;
23484
23485 case DW_OP_const1s:
23486 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23487 i += 1;
23488 break;
23489
23490 case DW_OP_const2u:
23491 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23492 i += 2;
23493 break;
23494
23495 case DW_OP_const2s:
23496 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23497 i += 2;
23498 break;
23499
23500 case DW_OP_const4u:
23501 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23502 i += 4;
23503 break;
23504
23505 case DW_OP_const4s:
23506 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23507 i += 4;
23508 break;
23509
23510 case DW_OP_const8u:
23511 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23512 i += 8;
23513 break;
23514
23515 case DW_OP_constu:
23516 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23517 &bytes_read);
23518 i += bytes_read;
23519 break;
23520
23521 case DW_OP_consts:
23522 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23523 i += bytes_read;
23524 break;
23525
23526 case DW_OP_dup:
23527 stack[stacki + 1] = stack[stacki];
23528 stacki++;
23529 break;
23530
23531 case DW_OP_plus:
23532 stack[stacki - 1] += stack[stacki];
23533 stacki--;
23534 break;
23535
23536 case DW_OP_plus_uconst:
23537 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23538 &bytes_read);
23539 i += bytes_read;
23540 break;
23541
23542 case DW_OP_minus:
23543 stack[stacki - 1] -= stack[stacki];
23544 stacki--;
23545 break;
23546
23547 case DW_OP_deref:
23548 /* If we're not the last op, then we definitely can't encode
23549 this using GDB's address_class enum. This is valid for partial
23550 global symbols, although the variable's address will be bogus
23551 in the psymtab. */
23552 if (i < size)
23553 dwarf2_complex_location_expr_complaint ();
23554 break;
23555
23556 case DW_OP_GNU_push_tls_address:
23557 case DW_OP_form_tls_address:
23558 /* The top of the stack has the offset from the beginning
23559 of the thread control block at which the variable is located. */
23560 /* Nothing should follow this operator, so the top of stack would
23561 be returned. */
23562 /* This is valid for partial global symbols, but the variable's
23563 address will be bogus in the psymtab. Make it always at least
23564 non-zero to not look as a variable garbage collected by linker
23565 which have DW_OP_addr 0. */
23566 if (i < size)
23567 dwarf2_complex_location_expr_complaint ();
23568 stack[stacki]++;
23569 break;
23570
23571 case DW_OP_GNU_uninit:
23572 break;
23573
23574 case DW_OP_GNU_addr_index:
23575 case DW_OP_GNU_const_index:
23576 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23577 &bytes_read);
23578 i += bytes_read;
23579 break;
23580
23581 default:
23582 {
23583 const char *name = get_DW_OP_name (op);
23584
23585 if (name)
23586 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
23587 name);
23588 else
23589 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
23590 op);
23591 }
23592
23593 return (stack[stacki]);
23594 }
23595
23596 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23597 outside of the allocated space. Also enforce minimum>0. */
23598 if (stacki >= ARRAY_SIZE (stack) - 1)
23599 {
23600 complaint (&symfile_complaints,
23601 _("location description stack overflow"));
23602 return 0;
23603 }
23604
23605 if (stacki <= 0)
23606 {
23607 complaint (&symfile_complaints,
23608 _("location description stack underflow"));
23609 return 0;
23610 }
23611 }
23612 return (stack[stacki]);
23613 }
23614
23615 /* memory allocation interface */
23616
23617 static struct dwarf_block *
23618 dwarf_alloc_block (struct dwarf2_cu *cu)
23619 {
23620 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23621 }
23622
23623 static struct die_info *
23624 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23625 {
23626 struct die_info *die;
23627 size_t size = sizeof (struct die_info);
23628
23629 if (num_attrs > 1)
23630 size += (num_attrs - 1) * sizeof (struct attribute);
23631
23632 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23633 memset (die, 0, sizeof (struct die_info));
23634 return (die);
23635 }
23636
23637 \f
23638 /* Macro support. */
23639
23640 /* Return file name relative to the compilation directory of file number I in
23641 *LH's file name table. The result is allocated using xmalloc; the caller is
23642 responsible for freeing it. */
23643
23644 static char *
23645 file_file_name (int file, struct line_header *lh)
23646 {
23647 /* Is the file number a valid index into the line header's file name
23648 table? Remember that file numbers start with one, not zero. */
23649 if (1 <= file && file <= lh->file_names.size ())
23650 {
23651 const file_entry &fe = lh->file_names[file - 1];
23652
23653 if (!IS_ABSOLUTE_PATH (fe.name))
23654 {
23655 const char *dir = fe.include_dir (lh);
23656 if (dir != NULL)
23657 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
23658 }
23659 return xstrdup (fe.name);
23660 }
23661 else
23662 {
23663 /* The compiler produced a bogus file number. We can at least
23664 record the macro definitions made in the file, even if we
23665 won't be able to find the file by name. */
23666 char fake_name[80];
23667
23668 xsnprintf (fake_name, sizeof (fake_name),
23669 "<bad macro file number %d>", file);
23670
23671 complaint (&symfile_complaints,
23672 _("bad file number in macro information (%d)"),
23673 file);
23674
23675 return xstrdup (fake_name);
23676 }
23677 }
23678
23679 /* Return the full name of file number I in *LH's file name table.
23680 Use COMP_DIR as the name of the current directory of the
23681 compilation. The result is allocated using xmalloc; the caller is
23682 responsible for freeing it. */
23683 static char *
23684 file_full_name (int file, struct line_header *lh, const char *comp_dir)
23685 {
23686 /* Is the file number a valid index into the line header's file name
23687 table? Remember that file numbers start with one, not zero. */
23688 if (1 <= file && file <= lh->file_names.size ())
23689 {
23690 char *relative = file_file_name (file, lh);
23691
23692 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
23693 return relative;
23694 return reconcat (relative, comp_dir, SLASH_STRING,
23695 relative, (char *) NULL);
23696 }
23697 else
23698 return file_file_name (file, lh);
23699 }
23700
23701
23702 static struct macro_source_file *
23703 macro_start_file (int file, int line,
23704 struct macro_source_file *current_file,
23705 struct line_header *lh)
23706 {
23707 /* File name relative to the compilation directory of this source file. */
23708 char *file_name = file_file_name (file, lh);
23709
23710 if (! current_file)
23711 {
23712 /* Note: We don't create a macro table for this compilation unit
23713 at all until we actually get a filename. */
23714 struct macro_table *macro_table = get_macro_table ();
23715
23716 /* If we have no current file, then this must be the start_file
23717 directive for the compilation unit's main source file. */
23718 current_file = macro_set_main (macro_table, file_name);
23719 macro_define_special (macro_table);
23720 }
23721 else
23722 current_file = macro_include (current_file, line, file_name);
23723
23724 xfree (file_name);
23725
23726 return current_file;
23727 }
23728
23729 static const char *
23730 consume_improper_spaces (const char *p, const char *body)
23731 {
23732 if (*p == ' ')
23733 {
23734 complaint (&symfile_complaints,
23735 _("macro definition contains spaces "
23736 "in formal argument list:\n`%s'"),
23737 body);
23738
23739 while (*p == ' ')
23740 p++;
23741 }
23742
23743 return p;
23744 }
23745
23746
23747 static void
23748 parse_macro_definition (struct macro_source_file *file, int line,
23749 const char *body)
23750 {
23751 const char *p;
23752
23753 /* The body string takes one of two forms. For object-like macro
23754 definitions, it should be:
23755
23756 <macro name> " " <definition>
23757
23758 For function-like macro definitions, it should be:
23759
23760 <macro name> "() " <definition>
23761 or
23762 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
23763
23764 Spaces may appear only where explicitly indicated, and in the
23765 <definition>.
23766
23767 The Dwarf 2 spec says that an object-like macro's name is always
23768 followed by a space, but versions of GCC around March 2002 omit
23769 the space when the macro's definition is the empty string.
23770
23771 The Dwarf 2 spec says that there should be no spaces between the
23772 formal arguments in a function-like macro's formal argument list,
23773 but versions of GCC around March 2002 include spaces after the
23774 commas. */
23775
23776
23777 /* Find the extent of the macro name. The macro name is terminated
23778 by either a space or null character (for an object-like macro) or
23779 an opening paren (for a function-like macro). */
23780 for (p = body; *p; p++)
23781 if (*p == ' ' || *p == '(')
23782 break;
23783
23784 if (*p == ' ' || *p == '\0')
23785 {
23786 /* It's an object-like macro. */
23787 int name_len = p - body;
23788 char *name = savestring (body, name_len);
23789 const char *replacement;
23790
23791 if (*p == ' ')
23792 replacement = body + name_len + 1;
23793 else
23794 {
23795 dwarf2_macro_malformed_definition_complaint (body);
23796 replacement = body + name_len;
23797 }
23798
23799 macro_define_object (file, line, name, replacement);
23800
23801 xfree (name);
23802 }
23803 else if (*p == '(')
23804 {
23805 /* It's a function-like macro. */
23806 char *name = savestring (body, p - body);
23807 int argc = 0;
23808 int argv_size = 1;
23809 char **argv = XNEWVEC (char *, argv_size);
23810
23811 p++;
23812
23813 p = consume_improper_spaces (p, body);
23814
23815 /* Parse the formal argument list. */
23816 while (*p && *p != ')')
23817 {
23818 /* Find the extent of the current argument name. */
23819 const char *arg_start = p;
23820
23821 while (*p && *p != ',' && *p != ')' && *p != ' ')
23822 p++;
23823
23824 if (! *p || p == arg_start)
23825 dwarf2_macro_malformed_definition_complaint (body);
23826 else
23827 {
23828 /* Make sure argv has room for the new argument. */
23829 if (argc >= argv_size)
23830 {
23831 argv_size *= 2;
23832 argv = XRESIZEVEC (char *, argv, argv_size);
23833 }
23834
23835 argv[argc++] = savestring (arg_start, p - arg_start);
23836 }
23837
23838 p = consume_improper_spaces (p, body);
23839
23840 /* Consume the comma, if present. */
23841 if (*p == ',')
23842 {
23843 p++;
23844
23845 p = consume_improper_spaces (p, body);
23846 }
23847 }
23848
23849 if (*p == ')')
23850 {
23851 p++;
23852
23853 if (*p == ' ')
23854 /* Perfectly formed definition, no complaints. */
23855 macro_define_function (file, line, name,
23856 argc, (const char **) argv,
23857 p + 1);
23858 else if (*p == '\0')
23859 {
23860 /* Complain, but do define it. */
23861 dwarf2_macro_malformed_definition_complaint (body);
23862 macro_define_function (file, line, name,
23863 argc, (const char **) argv,
23864 p);
23865 }
23866 else
23867 /* Just complain. */
23868 dwarf2_macro_malformed_definition_complaint (body);
23869 }
23870 else
23871 /* Just complain. */
23872 dwarf2_macro_malformed_definition_complaint (body);
23873
23874 xfree (name);
23875 {
23876 int i;
23877
23878 for (i = 0; i < argc; i++)
23879 xfree (argv[i]);
23880 }
23881 xfree (argv);
23882 }
23883 else
23884 dwarf2_macro_malformed_definition_complaint (body);
23885 }
23886
23887 /* Skip some bytes from BYTES according to the form given in FORM.
23888 Returns the new pointer. */
23889
23890 static const gdb_byte *
23891 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
23892 enum dwarf_form form,
23893 unsigned int offset_size,
23894 struct dwarf2_section_info *section)
23895 {
23896 unsigned int bytes_read;
23897
23898 switch (form)
23899 {
23900 case DW_FORM_data1:
23901 case DW_FORM_flag:
23902 ++bytes;
23903 break;
23904
23905 case DW_FORM_data2:
23906 bytes += 2;
23907 break;
23908
23909 case DW_FORM_data4:
23910 bytes += 4;
23911 break;
23912
23913 case DW_FORM_data8:
23914 bytes += 8;
23915 break;
23916
23917 case DW_FORM_data16:
23918 bytes += 16;
23919 break;
23920
23921 case DW_FORM_string:
23922 read_direct_string (abfd, bytes, &bytes_read);
23923 bytes += bytes_read;
23924 break;
23925
23926 case DW_FORM_sec_offset:
23927 case DW_FORM_strp:
23928 case DW_FORM_GNU_strp_alt:
23929 bytes += offset_size;
23930 break;
23931
23932 case DW_FORM_block:
23933 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
23934 bytes += bytes_read;
23935 break;
23936
23937 case DW_FORM_block1:
23938 bytes += 1 + read_1_byte (abfd, bytes);
23939 break;
23940 case DW_FORM_block2:
23941 bytes += 2 + read_2_bytes (abfd, bytes);
23942 break;
23943 case DW_FORM_block4:
23944 bytes += 4 + read_4_bytes (abfd, bytes);
23945 break;
23946
23947 case DW_FORM_sdata:
23948 case DW_FORM_udata:
23949 case DW_FORM_GNU_addr_index:
23950 case DW_FORM_GNU_str_index:
23951 bytes = gdb_skip_leb128 (bytes, buffer_end);
23952 if (bytes == NULL)
23953 {
23954 dwarf2_section_buffer_overflow_complaint (section);
23955 return NULL;
23956 }
23957 break;
23958
23959 case DW_FORM_implicit_const:
23960 break;
23961
23962 default:
23963 {
23964 complaint (&symfile_complaints,
23965 _("invalid form 0x%x in `%s'"),
23966 form, get_section_name (section));
23967 return NULL;
23968 }
23969 }
23970
23971 return bytes;
23972 }
23973
23974 /* A helper for dwarf_decode_macros that handles skipping an unknown
23975 opcode. Returns an updated pointer to the macro data buffer; or,
23976 on error, issues a complaint and returns NULL. */
23977
23978 static const gdb_byte *
23979 skip_unknown_opcode (unsigned int opcode,
23980 const gdb_byte **opcode_definitions,
23981 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
23982 bfd *abfd,
23983 unsigned int offset_size,
23984 struct dwarf2_section_info *section)
23985 {
23986 unsigned int bytes_read, i;
23987 unsigned long arg;
23988 const gdb_byte *defn;
23989
23990 if (opcode_definitions[opcode] == NULL)
23991 {
23992 complaint (&symfile_complaints,
23993 _("unrecognized DW_MACFINO opcode 0x%x"),
23994 opcode);
23995 return NULL;
23996 }
23997
23998 defn = opcode_definitions[opcode];
23999 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24000 defn += bytes_read;
24001
24002 for (i = 0; i < arg; ++i)
24003 {
24004 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24005 (enum dwarf_form) defn[i], offset_size,
24006 section);
24007 if (mac_ptr == NULL)
24008 {
24009 /* skip_form_bytes already issued the complaint. */
24010 return NULL;
24011 }
24012 }
24013
24014 return mac_ptr;
24015 }
24016
24017 /* A helper function which parses the header of a macro section.
24018 If the macro section is the extended (for now called "GNU") type,
24019 then this updates *OFFSET_SIZE. Returns a pointer to just after
24020 the header, or issues a complaint and returns NULL on error. */
24021
24022 static const gdb_byte *
24023 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24024 bfd *abfd,
24025 const gdb_byte *mac_ptr,
24026 unsigned int *offset_size,
24027 int section_is_gnu)
24028 {
24029 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24030
24031 if (section_is_gnu)
24032 {
24033 unsigned int version, flags;
24034
24035 version = read_2_bytes (abfd, mac_ptr);
24036 if (version != 4 && version != 5)
24037 {
24038 complaint (&symfile_complaints,
24039 _("unrecognized version `%d' in .debug_macro section"),
24040 version);
24041 return NULL;
24042 }
24043 mac_ptr += 2;
24044
24045 flags = read_1_byte (abfd, mac_ptr);
24046 ++mac_ptr;
24047 *offset_size = (flags & 1) ? 8 : 4;
24048
24049 if ((flags & 2) != 0)
24050 /* We don't need the line table offset. */
24051 mac_ptr += *offset_size;
24052
24053 /* Vendor opcode descriptions. */
24054 if ((flags & 4) != 0)
24055 {
24056 unsigned int i, count;
24057
24058 count = read_1_byte (abfd, mac_ptr);
24059 ++mac_ptr;
24060 for (i = 0; i < count; ++i)
24061 {
24062 unsigned int opcode, bytes_read;
24063 unsigned long arg;
24064
24065 opcode = read_1_byte (abfd, mac_ptr);
24066 ++mac_ptr;
24067 opcode_definitions[opcode] = mac_ptr;
24068 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24069 mac_ptr += bytes_read;
24070 mac_ptr += arg;
24071 }
24072 }
24073 }
24074
24075 return mac_ptr;
24076 }
24077
24078 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24079 including DW_MACRO_import. */
24080
24081 static void
24082 dwarf_decode_macro_bytes (struct dwarf2_per_objfile *dwarf2_per_objfile,
24083 bfd *abfd,
24084 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24085 struct macro_source_file *current_file,
24086 struct line_header *lh,
24087 struct dwarf2_section_info *section,
24088 int section_is_gnu, int section_is_dwz,
24089 unsigned int offset_size,
24090 htab_t include_hash)
24091 {
24092 struct objfile *objfile = dwarf2_per_objfile->objfile;
24093 enum dwarf_macro_record_type macinfo_type;
24094 int at_commandline;
24095 const gdb_byte *opcode_definitions[256];
24096
24097 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24098 &offset_size, section_is_gnu);
24099 if (mac_ptr == NULL)
24100 {
24101 /* We already issued a complaint. */
24102 return;
24103 }
24104
24105 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24106 GDB is still reading the definitions from command line. First
24107 DW_MACINFO_start_file will need to be ignored as it was already executed
24108 to create CURRENT_FILE for the main source holding also the command line
24109 definitions. On first met DW_MACINFO_start_file this flag is reset to
24110 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24111
24112 at_commandline = 1;
24113
24114 do
24115 {
24116 /* Do we at least have room for a macinfo type byte? */
24117 if (mac_ptr >= mac_end)
24118 {
24119 dwarf2_section_buffer_overflow_complaint (section);
24120 break;
24121 }
24122
24123 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24124 mac_ptr++;
24125
24126 /* Note that we rely on the fact that the corresponding GNU and
24127 DWARF constants are the same. */
24128 DIAGNOSTIC_PUSH
24129 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24130 switch (macinfo_type)
24131 {
24132 /* A zero macinfo type indicates the end of the macro
24133 information. */
24134 case 0:
24135 break;
24136
24137 case DW_MACRO_define:
24138 case DW_MACRO_undef:
24139 case DW_MACRO_define_strp:
24140 case DW_MACRO_undef_strp:
24141 case DW_MACRO_define_sup:
24142 case DW_MACRO_undef_sup:
24143 {
24144 unsigned int bytes_read;
24145 int line;
24146 const char *body;
24147 int is_define;
24148
24149 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24150 mac_ptr += bytes_read;
24151
24152 if (macinfo_type == DW_MACRO_define
24153 || macinfo_type == DW_MACRO_undef)
24154 {
24155 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24156 mac_ptr += bytes_read;
24157 }
24158 else
24159 {
24160 LONGEST str_offset;
24161
24162 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24163 mac_ptr += offset_size;
24164
24165 if (macinfo_type == DW_MACRO_define_sup
24166 || macinfo_type == DW_MACRO_undef_sup
24167 || section_is_dwz)
24168 {
24169 struct dwz_file *dwz
24170 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24171
24172 body = read_indirect_string_from_dwz (objfile,
24173 dwz, str_offset);
24174 }
24175 else
24176 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24177 abfd, str_offset);
24178 }
24179
24180 is_define = (macinfo_type == DW_MACRO_define
24181 || macinfo_type == DW_MACRO_define_strp
24182 || macinfo_type == DW_MACRO_define_sup);
24183 if (! current_file)
24184 {
24185 /* DWARF violation as no main source is present. */
24186 complaint (&symfile_complaints,
24187 _("debug info with no main source gives macro %s "
24188 "on line %d: %s"),
24189 is_define ? _("definition") : _("undefinition"),
24190 line, body);
24191 break;
24192 }
24193 if ((line == 0 && !at_commandline)
24194 || (line != 0 && at_commandline))
24195 complaint (&symfile_complaints,
24196 _("debug info gives %s macro %s with %s line %d: %s"),
24197 at_commandline ? _("command-line") : _("in-file"),
24198 is_define ? _("definition") : _("undefinition"),
24199 line == 0 ? _("zero") : _("non-zero"), line, body);
24200
24201 if (is_define)
24202 parse_macro_definition (current_file, line, body);
24203 else
24204 {
24205 gdb_assert (macinfo_type == DW_MACRO_undef
24206 || macinfo_type == DW_MACRO_undef_strp
24207 || macinfo_type == DW_MACRO_undef_sup);
24208 macro_undef (current_file, line, body);
24209 }
24210 }
24211 break;
24212
24213 case DW_MACRO_start_file:
24214 {
24215 unsigned int bytes_read;
24216 int line, file;
24217
24218 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24219 mac_ptr += bytes_read;
24220 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24221 mac_ptr += bytes_read;
24222
24223 if ((line == 0 && !at_commandline)
24224 || (line != 0 && at_commandline))
24225 complaint (&symfile_complaints,
24226 _("debug info gives source %d included "
24227 "from %s at %s line %d"),
24228 file, at_commandline ? _("command-line") : _("file"),
24229 line == 0 ? _("zero") : _("non-zero"), line);
24230
24231 if (at_commandline)
24232 {
24233 /* This DW_MACRO_start_file was executed in the
24234 pass one. */
24235 at_commandline = 0;
24236 }
24237 else
24238 current_file = macro_start_file (file, line, current_file, lh);
24239 }
24240 break;
24241
24242 case DW_MACRO_end_file:
24243 if (! current_file)
24244 complaint (&symfile_complaints,
24245 _("macro debug info has an unmatched "
24246 "`close_file' directive"));
24247 else
24248 {
24249 current_file = current_file->included_by;
24250 if (! current_file)
24251 {
24252 enum dwarf_macro_record_type next_type;
24253
24254 /* GCC circa March 2002 doesn't produce the zero
24255 type byte marking the end of the compilation
24256 unit. Complain if it's not there, but exit no
24257 matter what. */
24258
24259 /* Do we at least have room for a macinfo type byte? */
24260 if (mac_ptr >= mac_end)
24261 {
24262 dwarf2_section_buffer_overflow_complaint (section);
24263 return;
24264 }
24265
24266 /* We don't increment mac_ptr here, so this is just
24267 a look-ahead. */
24268 next_type
24269 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24270 mac_ptr);
24271 if (next_type != 0)
24272 complaint (&symfile_complaints,
24273 _("no terminating 0-type entry for "
24274 "macros in `.debug_macinfo' section"));
24275
24276 return;
24277 }
24278 }
24279 break;
24280
24281 case DW_MACRO_import:
24282 case DW_MACRO_import_sup:
24283 {
24284 LONGEST offset;
24285 void **slot;
24286 bfd *include_bfd = abfd;
24287 struct dwarf2_section_info *include_section = section;
24288 const gdb_byte *include_mac_end = mac_end;
24289 int is_dwz = section_is_dwz;
24290 const gdb_byte *new_mac_ptr;
24291
24292 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24293 mac_ptr += offset_size;
24294
24295 if (macinfo_type == DW_MACRO_import_sup)
24296 {
24297 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24298
24299 dwarf2_read_section (objfile, &dwz->macro);
24300
24301 include_section = &dwz->macro;
24302 include_bfd = get_section_bfd_owner (include_section);
24303 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24304 is_dwz = 1;
24305 }
24306
24307 new_mac_ptr = include_section->buffer + offset;
24308 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24309
24310 if (*slot != NULL)
24311 {
24312 /* This has actually happened; see
24313 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24314 complaint (&symfile_complaints,
24315 _("recursive DW_MACRO_import in "
24316 ".debug_macro section"));
24317 }
24318 else
24319 {
24320 *slot = (void *) new_mac_ptr;
24321
24322 dwarf_decode_macro_bytes (dwarf2_per_objfile,
24323 include_bfd, new_mac_ptr,
24324 include_mac_end, current_file, lh,
24325 section, section_is_gnu, is_dwz,
24326 offset_size, include_hash);
24327
24328 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24329 }
24330 }
24331 break;
24332
24333 case DW_MACINFO_vendor_ext:
24334 if (!section_is_gnu)
24335 {
24336 unsigned int bytes_read;
24337
24338 /* This reads the constant, but since we don't recognize
24339 any vendor extensions, we ignore it. */
24340 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24341 mac_ptr += bytes_read;
24342 read_direct_string (abfd, mac_ptr, &bytes_read);
24343 mac_ptr += bytes_read;
24344
24345 /* We don't recognize any vendor extensions. */
24346 break;
24347 }
24348 /* FALLTHROUGH */
24349
24350 default:
24351 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24352 mac_ptr, mac_end, abfd, offset_size,
24353 section);
24354 if (mac_ptr == NULL)
24355 return;
24356 break;
24357 }
24358 DIAGNOSTIC_POP
24359 } while (macinfo_type != 0);
24360 }
24361
24362 static void
24363 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24364 int section_is_gnu)
24365 {
24366 struct dwarf2_per_objfile *dwarf2_per_objfile
24367 = cu->per_cu->dwarf2_per_objfile;
24368 struct objfile *objfile = dwarf2_per_objfile->objfile;
24369 struct line_header *lh = cu->line_header;
24370 bfd *abfd;
24371 const gdb_byte *mac_ptr, *mac_end;
24372 struct macro_source_file *current_file = 0;
24373 enum dwarf_macro_record_type macinfo_type;
24374 unsigned int offset_size = cu->header.offset_size;
24375 const gdb_byte *opcode_definitions[256];
24376 void **slot;
24377 struct dwarf2_section_info *section;
24378 const char *section_name;
24379
24380 if (cu->dwo_unit != NULL)
24381 {
24382 if (section_is_gnu)
24383 {
24384 section = &cu->dwo_unit->dwo_file->sections.macro;
24385 section_name = ".debug_macro.dwo";
24386 }
24387 else
24388 {
24389 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24390 section_name = ".debug_macinfo.dwo";
24391 }
24392 }
24393 else
24394 {
24395 if (section_is_gnu)
24396 {
24397 section = &dwarf2_per_objfile->macro;
24398 section_name = ".debug_macro";
24399 }
24400 else
24401 {
24402 section = &dwarf2_per_objfile->macinfo;
24403 section_name = ".debug_macinfo";
24404 }
24405 }
24406
24407 dwarf2_read_section (objfile, section);
24408 if (section->buffer == NULL)
24409 {
24410 complaint (&symfile_complaints, _("missing %s section"), section_name);
24411 return;
24412 }
24413 abfd = get_section_bfd_owner (section);
24414
24415 /* First pass: Find the name of the base filename.
24416 This filename is needed in order to process all macros whose definition
24417 (or undefinition) comes from the command line. These macros are defined
24418 before the first DW_MACINFO_start_file entry, and yet still need to be
24419 associated to the base file.
24420
24421 To determine the base file name, we scan the macro definitions until we
24422 reach the first DW_MACINFO_start_file entry. We then initialize
24423 CURRENT_FILE accordingly so that any macro definition found before the
24424 first DW_MACINFO_start_file can still be associated to the base file. */
24425
24426 mac_ptr = section->buffer + offset;
24427 mac_end = section->buffer + section->size;
24428
24429 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24430 &offset_size, section_is_gnu);
24431 if (mac_ptr == NULL)
24432 {
24433 /* We already issued a complaint. */
24434 return;
24435 }
24436
24437 do
24438 {
24439 /* Do we at least have room for a macinfo type byte? */
24440 if (mac_ptr >= mac_end)
24441 {
24442 /* Complaint is printed during the second pass as GDB will probably
24443 stop the first pass earlier upon finding
24444 DW_MACINFO_start_file. */
24445 break;
24446 }
24447
24448 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24449 mac_ptr++;
24450
24451 /* Note that we rely on the fact that the corresponding GNU and
24452 DWARF constants are the same. */
24453 DIAGNOSTIC_PUSH
24454 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24455 switch (macinfo_type)
24456 {
24457 /* A zero macinfo type indicates the end of the macro
24458 information. */
24459 case 0:
24460 break;
24461
24462 case DW_MACRO_define:
24463 case DW_MACRO_undef:
24464 /* Only skip the data by MAC_PTR. */
24465 {
24466 unsigned int bytes_read;
24467
24468 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24469 mac_ptr += bytes_read;
24470 read_direct_string (abfd, mac_ptr, &bytes_read);
24471 mac_ptr += bytes_read;
24472 }
24473 break;
24474
24475 case DW_MACRO_start_file:
24476 {
24477 unsigned int bytes_read;
24478 int line, file;
24479
24480 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24481 mac_ptr += bytes_read;
24482 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24483 mac_ptr += bytes_read;
24484
24485 current_file = macro_start_file (file, line, current_file, lh);
24486 }
24487 break;
24488
24489 case DW_MACRO_end_file:
24490 /* No data to skip by MAC_PTR. */
24491 break;
24492
24493 case DW_MACRO_define_strp:
24494 case DW_MACRO_undef_strp:
24495 case DW_MACRO_define_sup:
24496 case DW_MACRO_undef_sup:
24497 {
24498 unsigned int bytes_read;
24499
24500 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24501 mac_ptr += bytes_read;
24502 mac_ptr += offset_size;
24503 }
24504 break;
24505
24506 case DW_MACRO_import:
24507 case DW_MACRO_import_sup:
24508 /* Note that, according to the spec, a transparent include
24509 chain cannot call DW_MACRO_start_file. So, we can just
24510 skip this opcode. */
24511 mac_ptr += offset_size;
24512 break;
24513
24514 case DW_MACINFO_vendor_ext:
24515 /* Only skip the data by MAC_PTR. */
24516 if (!section_is_gnu)
24517 {
24518 unsigned int bytes_read;
24519
24520 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24521 mac_ptr += bytes_read;
24522 read_direct_string (abfd, mac_ptr, &bytes_read);
24523 mac_ptr += bytes_read;
24524 }
24525 /* FALLTHROUGH */
24526
24527 default:
24528 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24529 mac_ptr, mac_end, abfd, offset_size,
24530 section);
24531 if (mac_ptr == NULL)
24532 return;
24533 break;
24534 }
24535 DIAGNOSTIC_POP
24536 } while (macinfo_type != 0 && current_file == NULL);
24537
24538 /* Second pass: Process all entries.
24539
24540 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24541 command-line macro definitions/undefinitions. This flag is unset when we
24542 reach the first DW_MACINFO_start_file entry. */
24543
24544 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24545 htab_eq_pointer,
24546 NULL, xcalloc, xfree));
24547 mac_ptr = section->buffer + offset;
24548 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24549 *slot = (void *) mac_ptr;
24550 dwarf_decode_macro_bytes (dwarf2_per_objfile,
24551 abfd, mac_ptr, mac_end,
24552 current_file, lh, section,
24553 section_is_gnu, 0, offset_size,
24554 include_hash.get ());
24555 }
24556
24557 /* Check if the attribute's form is a DW_FORM_block*
24558 if so return true else false. */
24559
24560 static int
24561 attr_form_is_block (const struct attribute *attr)
24562 {
24563 return (attr == NULL ? 0 :
24564 attr->form == DW_FORM_block1
24565 || attr->form == DW_FORM_block2
24566 || attr->form == DW_FORM_block4
24567 || attr->form == DW_FORM_block
24568 || attr->form == DW_FORM_exprloc);
24569 }
24570
24571 /* Return non-zero if ATTR's value is a section offset --- classes
24572 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24573 You may use DW_UNSND (attr) to retrieve such offsets.
24574
24575 Section 7.5.4, "Attribute Encodings", explains that no attribute
24576 may have a value that belongs to more than one of these classes; it
24577 would be ambiguous if we did, because we use the same forms for all
24578 of them. */
24579
24580 static int
24581 attr_form_is_section_offset (const struct attribute *attr)
24582 {
24583 return (attr->form == DW_FORM_data4
24584 || attr->form == DW_FORM_data8
24585 || attr->form == DW_FORM_sec_offset);
24586 }
24587
24588 /* Return non-zero if ATTR's value falls in the 'constant' class, or
24589 zero otherwise. When this function returns true, you can apply
24590 dwarf2_get_attr_constant_value to it.
24591
24592 However, note that for some attributes you must check
24593 attr_form_is_section_offset before using this test. DW_FORM_data4
24594 and DW_FORM_data8 are members of both the constant class, and of
24595 the classes that contain offsets into other debug sections
24596 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24597 that, if an attribute's can be either a constant or one of the
24598 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
24599 taken as section offsets, not constants.
24600
24601 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
24602 cannot handle that. */
24603
24604 static int
24605 attr_form_is_constant (const struct attribute *attr)
24606 {
24607 switch (attr->form)
24608 {
24609 case DW_FORM_sdata:
24610 case DW_FORM_udata:
24611 case DW_FORM_data1:
24612 case DW_FORM_data2:
24613 case DW_FORM_data4:
24614 case DW_FORM_data8:
24615 case DW_FORM_implicit_const:
24616 return 1;
24617 default:
24618 return 0;
24619 }
24620 }
24621
24622
24623 /* DW_ADDR is always stored already as sect_offset; despite for the forms
24624 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
24625
24626 static int
24627 attr_form_is_ref (const struct attribute *attr)
24628 {
24629 switch (attr->form)
24630 {
24631 case DW_FORM_ref_addr:
24632 case DW_FORM_ref1:
24633 case DW_FORM_ref2:
24634 case DW_FORM_ref4:
24635 case DW_FORM_ref8:
24636 case DW_FORM_ref_udata:
24637 case DW_FORM_GNU_ref_alt:
24638 return 1;
24639 default:
24640 return 0;
24641 }
24642 }
24643
24644 /* Return the .debug_loc section to use for CU.
24645 For DWO files use .debug_loc.dwo. */
24646
24647 static struct dwarf2_section_info *
24648 cu_debug_loc_section (struct dwarf2_cu *cu)
24649 {
24650 struct dwarf2_per_objfile *dwarf2_per_objfile
24651 = cu->per_cu->dwarf2_per_objfile;
24652
24653 if (cu->dwo_unit)
24654 {
24655 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24656
24657 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
24658 }
24659 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
24660 : &dwarf2_per_objfile->loc);
24661 }
24662
24663 /* A helper function that fills in a dwarf2_loclist_baton. */
24664
24665 static void
24666 fill_in_loclist_baton (struct dwarf2_cu *cu,
24667 struct dwarf2_loclist_baton *baton,
24668 const struct attribute *attr)
24669 {
24670 struct dwarf2_per_objfile *dwarf2_per_objfile
24671 = cu->per_cu->dwarf2_per_objfile;
24672 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24673
24674 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
24675
24676 baton->per_cu = cu->per_cu;
24677 gdb_assert (baton->per_cu);
24678 /* We don't know how long the location list is, but make sure we
24679 don't run off the edge of the section. */
24680 baton->size = section->size - DW_UNSND (attr);
24681 baton->data = section->buffer + DW_UNSND (attr);
24682 baton->base_address = cu->base_address;
24683 baton->from_dwo = cu->dwo_unit != NULL;
24684 }
24685
24686 static void
24687 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
24688 struct dwarf2_cu *cu, int is_block)
24689 {
24690 struct dwarf2_per_objfile *dwarf2_per_objfile
24691 = cu->per_cu->dwarf2_per_objfile;
24692 struct objfile *objfile = dwarf2_per_objfile->objfile;
24693 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24694
24695 if (attr_form_is_section_offset (attr)
24696 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
24697 the section. If so, fall through to the complaint in the
24698 other branch. */
24699 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
24700 {
24701 struct dwarf2_loclist_baton *baton;
24702
24703 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
24704
24705 fill_in_loclist_baton (cu, baton, attr);
24706
24707 if (cu->base_known == 0)
24708 complaint (&symfile_complaints,
24709 _("Location list used without "
24710 "specifying the CU base address."));
24711
24712 SYMBOL_ACLASS_INDEX (sym) = (is_block
24713 ? dwarf2_loclist_block_index
24714 : dwarf2_loclist_index);
24715 SYMBOL_LOCATION_BATON (sym) = baton;
24716 }
24717 else
24718 {
24719 struct dwarf2_locexpr_baton *baton;
24720
24721 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
24722 baton->per_cu = cu->per_cu;
24723 gdb_assert (baton->per_cu);
24724
24725 if (attr_form_is_block (attr))
24726 {
24727 /* Note that we're just copying the block's data pointer
24728 here, not the actual data. We're still pointing into the
24729 info_buffer for SYM's objfile; right now we never release
24730 that buffer, but when we do clean up properly this may
24731 need to change. */
24732 baton->size = DW_BLOCK (attr)->size;
24733 baton->data = DW_BLOCK (attr)->data;
24734 }
24735 else
24736 {
24737 dwarf2_invalid_attrib_class_complaint ("location description",
24738 SYMBOL_NATURAL_NAME (sym));
24739 baton->size = 0;
24740 }
24741
24742 SYMBOL_ACLASS_INDEX (sym) = (is_block
24743 ? dwarf2_locexpr_block_index
24744 : dwarf2_locexpr_index);
24745 SYMBOL_LOCATION_BATON (sym) = baton;
24746 }
24747 }
24748
24749 /* Return the OBJFILE associated with the compilation unit CU. If CU
24750 came from a separate debuginfo file, then the master objfile is
24751 returned. */
24752
24753 struct objfile *
24754 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
24755 {
24756 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24757
24758 /* Return the master objfile, so that we can report and look up the
24759 correct file containing this variable. */
24760 if (objfile->separate_debug_objfile_backlink)
24761 objfile = objfile->separate_debug_objfile_backlink;
24762
24763 return objfile;
24764 }
24765
24766 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
24767 (CU_HEADERP is unused in such case) or prepare a temporary copy at
24768 CU_HEADERP first. */
24769
24770 static const struct comp_unit_head *
24771 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
24772 struct dwarf2_per_cu_data *per_cu)
24773 {
24774 const gdb_byte *info_ptr;
24775
24776 if (per_cu->cu)
24777 return &per_cu->cu->header;
24778
24779 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
24780
24781 memset (cu_headerp, 0, sizeof (*cu_headerp));
24782 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
24783 rcuh_kind::COMPILE);
24784
24785 return cu_headerp;
24786 }
24787
24788 /* Return the address size given in the compilation unit header for CU. */
24789
24790 int
24791 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
24792 {
24793 struct comp_unit_head cu_header_local;
24794 const struct comp_unit_head *cu_headerp;
24795
24796 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24797
24798 return cu_headerp->addr_size;
24799 }
24800
24801 /* Return the offset size given in the compilation unit header for CU. */
24802
24803 int
24804 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
24805 {
24806 struct comp_unit_head cu_header_local;
24807 const struct comp_unit_head *cu_headerp;
24808
24809 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24810
24811 return cu_headerp->offset_size;
24812 }
24813
24814 /* See its dwarf2loc.h declaration. */
24815
24816 int
24817 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
24818 {
24819 struct comp_unit_head cu_header_local;
24820 const struct comp_unit_head *cu_headerp;
24821
24822 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24823
24824 if (cu_headerp->version == 2)
24825 return cu_headerp->addr_size;
24826 else
24827 return cu_headerp->offset_size;
24828 }
24829
24830 /* Return the text offset of the CU. The returned offset comes from
24831 this CU's objfile. If this objfile came from a separate debuginfo
24832 file, then the offset may be different from the corresponding
24833 offset in the parent objfile. */
24834
24835 CORE_ADDR
24836 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
24837 {
24838 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24839
24840 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
24841 }
24842
24843 /* Return DWARF version number of PER_CU. */
24844
24845 short
24846 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
24847 {
24848 return per_cu->dwarf_version;
24849 }
24850
24851 /* Locate the .debug_info compilation unit from CU's objfile which contains
24852 the DIE at OFFSET. Raises an error on failure. */
24853
24854 static struct dwarf2_per_cu_data *
24855 dwarf2_find_containing_comp_unit (sect_offset sect_off,
24856 unsigned int offset_in_dwz,
24857 struct dwarf2_per_objfile *dwarf2_per_objfile)
24858 {
24859 struct dwarf2_per_cu_data *this_cu;
24860 int low, high;
24861 const sect_offset *cu_off;
24862
24863 low = 0;
24864 high = dwarf2_per_objfile->all_comp_units.size () - 1;
24865 while (high > low)
24866 {
24867 struct dwarf2_per_cu_data *mid_cu;
24868 int mid = low + (high - low) / 2;
24869
24870 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
24871 cu_off = &mid_cu->sect_off;
24872 if (mid_cu->is_dwz > offset_in_dwz
24873 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
24874 high = mid;
24875 else
24876 low = mid + 1;
24877 }
24878 gdb_assert (low == high);
24879 this_cu = dwarf2_per_objfile->all_comp_units[low];
24880 cu_off = &this_cu->sect_off;
24881 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
24882 {
24883 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
24884 error (_("Dwarf Error: could not find partial DIE containing "
24885 "offset %s [in module %s]"),
24886 sect_offset_str (sect_off),
24887 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
24888
24889 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
24890 <= sect_off);
24891 return dwarf2_per_objfile->all_comp_units[low-1];
24892 }
24893 else
24894 {
24895 this_cu = dwarf2_per_objfile->all_comp_units[low];
24896 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
24897 && sect_off >= this_cu->sect_off + this_cu->length)
24898 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
24899 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
24900 return this_cu;
24901 }
24902 }
24903
24904 /* Initialize dwarf2_cu CU, owned by PER_CU. */
24905
24906 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
24907 : per_cu (per_cu_),
24908 mark (0),
24909 has_loclist (0),
24910 checked_producer (0),
24911 producer_is_gxx_lt_4_6 (0),
24912 producer_is_gcc_lt_4_3 (0),
24913 producer_is_icc_lt_14 (0),
24914 processing_has_namespace_info (0)
24915 {
24916 per_cu->cu = this;
24917 }
24918
24919 /* Destroy a dwarf2_cu. */
24920
24921 dwarf2_cu::~dwarf2_cu ()
24922 {
24923 per_cu->cu = NULL;
24924 }
24925
24926 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
24927
24928 static void
24929 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
24930 enum language pretend_language)
24931 {
24932 struct attribute *attr;
24933
24934 /* Set the language we're debugging. */
24935 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
24936 if (attr)
24937 set_cu_language (DW_UNSND (attr), cu);
24938 else
24939 {
24940 cu->language = pretend_language;
24941 cu->language_defn = language_def (cu->language);
24942 }
24943
24944 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
24945 }
24946
24947 /* Increase the age counter on each cached compilation unit, and free
24948 any that are too old. */
24949
24950 static void
24951 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
24952 {
24953 struct dwarf2_per_cu_data *per_cu, **last_chain;
24954
24955 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
24956 per_cu = dwarf2_per_objfile->read_in_chain;
24957 while (per_cu != NULL)
24958 {
24959 per_cu->cu->last_used ++;
24960 if (per_cu->cu->last_used <= dwarf_max_cache_age)
24961 dwarf2_mark (per_cu->cu);
24962 per_cu = per_cu->cu->read_in_chain;
24963 }
24964
24965 per_cu = dwarf2_per_objfile->read_in_chain;
24966 last_chain = &dwarf2_per_objfile->read_in_chain;
24967 while (per_cu != NULL)
24968 {
24969 struct dwarf2_per_cu_data *next_cu;
24970
24971 next_cu = per_cu->cu->read_in_chain;
24972
24973 if (!per_cu->cu->mark)
24974 {
24975 delete per_cu->cu;
24976 *last_chain = next_cu;
24977 }
24978 else
24979 last_chain = &per_cu->cu->read_in_chain;
24980
24981 per_cu = next_cu;
24982 }
24983 }
24984
24985 /* Remove a single compilation unit from the cache. */
24986
24987 static void
24988 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
24989 {
24990 struct dwarf2_per_cu_data *per_cu, **last_chain;
24991 struct dwarf2_per_objfile *dwarf2_per_objfile
24992 = target_per_cu->dwarf2_per_objfile;
24993
24994 per_cu = dwarf2_per_objfile->read_in_chain;
24995 last_chain = &dwarf2_per_objfile->read_in_chain;
24996 while (per_cu != NULL)
24997 {
24998 struct dwarf2_per_cu_data *next_cu;
24999
25000 next_cu = per_cu->cu->read_in_chain;
25001
25002 if (per_cu == target_per_cu)
25003 {
25004 delete per_cu->cu;
25005 per_cu->cu = NULL;
25006 *last_chain = next_cu;
25007 break;
25008 }
25009 else
25010 last_chain = &per_cu->cu->read_in_chain;
25011
25012 per_cu = next_cu;
25013 }
25014 }
25015
25016 /* Release all extra memory associated with OBJFILE. */
25017
25018 void
25019 dwarf2_free_objfile (struct objfile *objfile)
25020 {
25021 struct dwarf2_per_objfile *dwarf2_per_objfile
25022 = get_dwarf2_per_objfile (objfile);
25023
25024 delete dwarf2_per_objfile;
25025 }
25026
25027 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25028 We store these in a hash table separate from the DIEs, and preserve them
25029 when the DIEs are flushed out of cache.
25030
25031 The CU "per_cu" pointer is needed because offset alone is not enough to
25032 uniquely identify the type. A file may have multiple .debug_types sections,
25033 or the type may come from a DWO file. Furthermore, while it's more logical
25034 to use per_cu->section+offset, with Fission the section with the data is in
25035 the DWO file but we don't know that section at the point we need it.
25036 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25037 because we can enter the lookup routine, get_die_type_at_offset, from
25038 outside this file, and thus won't necessarily have PER_CU->cu.
25039 Fortunately, PER_CU is stable for the life of the objfile. */
25040
25041 struct dwarf2_per_cu_offset_and_type
25042 {
25043 const struct dwarf2_per_cu_data *per_cu;
25044 sect_offset sect_off;
25045 struct type *type;
25046 };
25047
25048 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25049
25050 static hashval_t
25051 per_cu_offset_and_type_hash (const void *item)
25052 {
25053 const struct dwarf2_per_cu_offset_and_type *ofs
25054 = (const struct dwarf2_per_cu_offset_and_type *) item;
25055
25056 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25057 }
25058
25059 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25060
25061 static int
25062 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25063 {
25064 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25065 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25066 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25067 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25068
25069 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25070 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25071 }
25072
25073 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25074 table if necessary. For convenience, return TYPE.
25075
25076 The DIEs reading must have careful ordering to:
25077 * Not cause infite loops trying to read in DIEs as a prerequisite for
25078 reading current DIE.
25079 * Not trying to dereference contents of still incompletely read in types
25080 while reading in other DIEs.
25081 * Enable referencing still incompletely read in types just by a pointer to
25082 the type without accessing its fields.
25083
25084 Therefore caller should follow these rules:
25085 * Try to fetch any prerequisite types we may need to build this DIE type
25086 before building the type and calling set_die_type.
25087 * After building type call set_die_type for current DIE as soon as
25088 possible before fetching more types to complete the current type.
25089 * Make the type as complete as possible before fetching more types. */
25090
25091 static struct type *
25092 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25093 {
25094 struct dwarf2_per_objfile *dwarf2_per_objfile
25095 = cu->per_cu->dwarf2_per_objfile;
25096 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25097 struct objfile *objfile = dwarf2_per_objfile->objfile;
25098 struct attribute *attr;
25099 struct dynamic_prop prop;
25100
25101 /* For Ada types, make sure that the gnat-specific data is always
25102 initialized (if not already set). There are a few types where
25103 we should not be doing so, because the type-specific area is
25104 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25105 where the type-specific area is used to store the floatformat).
25106 But this is not a problem, because the gnat-specific information
25107 is actually not needed for these types. */
25108 if (need_gnat_info (cu)
25109 && TYPE_CODE (type) != TYPE_CODE_FUNC
25110 && TYPE_CODE (type) != TYPE_CODE_FLT
25111 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25112 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25113 && TYPE_CODE (type) != TYPE_CODE_METHOD
25114 && !HAVE_GNAT_AUX_INFO (type))
25115 INIT_GNAT_SPECIFIC (type);
25116
25117 /* Read DW_AT_allocated and set in type. */
25118 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25119 if (attr_form_is_block (attr))
25120 {
25121 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25122 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25123 }
25124 else if (attr != NULL)
25125 {
25126 complaint (&symfile_complaints,
25127 _("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25128 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25129 sect_offset_str (die->sect_off));
25130 }
25131
25132 /* Read DW_AT_associated and set in type. */
25133 attr = dwarf2_attr (die, DW_AT_associated, cu);
25134 if (attr_form_is_block (attr))
25135 {
25136 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25137 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25138 }
25139 else if (attr != NULL)
25140 {
25141 complaint (&symfile_complaints,
25142 _("DW_AT_associated has the wrong form (%s) at DIE %s"),
25143 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25144 sect_offset_str (die->sect_off));
25145 }
25146
25147 /* Read DW_AT_data_location and set in type. */
25148 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25149 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25150 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25151
25152 if (dwarf2_per_objfile->die_type_hash == NULL)
25153 {
25154 dwarf2_per_objfile->die_type_hash =
25155 htab_create_alloc_ex (127,
25156 per_cu_offset_and_type_hash,
25157 per_cu_offset_and_type_eq,
25158 NULL,
25159 &objfile->objfile_obstack,
25160 hashtab_obstack_allocate,
25161 dummy_obstack_deallocate);
25162 }
25163
25164 ofs.per_cu = cu->per_cu;
25165 ofs.sect_off = die->sect_off;
25166 ofs.type = type;
25167 slot = (struct dwarf2_per_cu_offset_and_type **)
25168 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25169 if (*slot)
25170 complaint (&symfile_complaints,
25171 _("A problem internal to GDB: DIE %s has type already set"),
25172 sect_offset_str (die->sect_off));
25173 *slot = XOBNEW (&objfile->objfile_obstack,
25174 struct dwarf2_per_cu_offset_and_type);
25175 **slot = ofs;
25176 return type;
25177 }
25178
25179 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25180 or return NULL if the die does not have a saved type. */
25181
25182 static struct type *
25183 get_die_type_at_offset (sect_offset sect_off,
25184 struct dwarf2_per_cu_data *per_cu)
25185 {
25186 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25187 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25188
25189 if (dwarf2_per_objfile->die_type_hash == NULL)
25190 return NULL;
25191
25192 ofs.per_cu = per_cu;
25193 ofs.sect_off = sect_off;
25194 slot = ((struct dwarf2_per_cu_offset_and_type *)
25195 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25196 if (slot)
25197 return slot->type;
25198 else
25199 return NULL;
25200 }
25201
25202 /* Look up the type for DIE in CU in die_type_hash,
25203 or return NULL if DIE does not have a saved type. */
25204
25205 static struct type *
25206 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25207 {
25208 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25209 }
25210
25211 /* Add a dependence relationship from CU to REF_PER_CU. */
25212
25213 static void
25214 dwarf2_add_dependence (struct dwarf2_cu *cu,
25215 struct dwarf2_per_cu_data *ref_per_cu)
25216 {
25217 void **slot;
25218
25219 if (cu->dependencies == NULL)
25220 cu->dependencies
25221 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25222 NULL, &cu->comp_unit_obstack,
25223 hashtab_obstack_allocate,
25224 dummy_obstack_deallocate);
25225
25226 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25227 if (*slot == NULL)
25228 *slot = ref_per_cu;
25229 }
25230
25231 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25232 Set the mark field in every compilation unit in the
25233 cache that we must keep because we are keeping CU. */
25234
25235 static int
25236 dwarf2_mark_helper (void **slot, void *data)
25237 {
25238 struct dwarf2_per_cu_data *per_cu;
25239
25240 per_cu = (struct dwarf2_per_cu_data *) *slot;
25241
25242 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25243 reading of the chain. As such dependencies remain valid it is not much
25244 useful to track and undo them during QUIT cleanups. */
25245 if (per_cu->cu == NULL)
25246 return 1;
25247
25248 if (per_cu->cu->mark)
25249 return 1;
25250 per_cu->cu->mark = 1;
25251
25252 if (per_cu->cu->dependencies != NULL)
25253 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25254
25255 return 1;
25256 }
25257
25258 /* Set the mark field in CU and in every other compilation unit in the
25259 cache that we must keep because we are keeping CU. */
25260
25261 static void
25262 dwarf2_mark (struct dwarf2_cu *cu)
25263 {
25264 if (cu->mark)
25265 return;
25266 cu->mark = 1;
25267 if (cu->dependencies != NULL)
25268 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25269 }
25270
25271 static void
25272 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25273 {
25274 while (per_cu)
25275 {
25276 per_cu->cu->mark = 0;
25277 per_cu = per_cu->cu->read_in_chain;
25278 }
25279 }
25280
25281 /* Trivial hash function for partial_die_info: the hash value of a DIE
25282 is its offset in .debug_info for this objfile. */
25283
25284 static hashval_t
25285 partial_die_hash (const void *item)
25286 {
25287 const struct partial_die_info *part_die
25288 = (const struct partial_die_info *) item;
25289
25290 return to_underlying (part_die->sect_off);
25291 }
25292
25293 /* Trivial comparison function for partial_die_info structures: two DIEs
25294 are equal if they have the same offset. */
25295
25296 static int
25297 partial_die_eq (const void *item_lhs, const void *item_rhs)
25298 {
25299 const struct partial_die_info *part_die_lhs
25300 = (const struct partial_die_info *) item_lhs;
25301 const struct partial_die_info *part_die_rhs
25302 = (const struct partial_die_info *) item_rhs;
25303
25304 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25305 }
25306
25307 static struct cmd_list_element *set_dwarf_cmdlist;
25308 static struct cmd_list_element *show_dwarf_cmdlist;
25309
25310 static void
25311 set_dwarf_cmd (const char *args, int from_tty)
25312 {
25313 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25314 gdb_stdout);
25315 }
25316
25317 static void
25318 show_dwarf_cmd (const char *args, int from_tty)
25319 {
25320 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25321 }
25322
25323 int dwarf_always_disassemble;
25324
25325 static void
25326 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25327 struct cmd_list_element *c, const char *value)
25328 {
25329 fprintf_filtered (file,
25330 _("Whether to always disassemble "
25331 "DWARF expressions is %s.\n"),
25332 value);
25333 }
25334
25335 static void
25336 show_check_physname (struct ui_file *file, int from_tty,
25337 struct cmd_list_element *c, const char *value)
25338 {
25339 fprintf_filtered (file,
25340 _("Whether to check \"physname\" is %s.\n"),
25341 value);
25342 }
25343
25344 void
25345 _initialize_dwarf2_read (void)
25346 {
25347
25348 dwarf2_objfile_data_key = register_objfile_data ();
25349
25350 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25351 Set DWARF specific variables.\n\
25352 Configure DWARF variables such as the cache size"),
25353 &set_dwarf_cmdlist, "maintenance set dwarf ",
25354 0/*allow-unknown*/, &maintenance_set_cmdlist);
25355
25356 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25357 Show DWARF specific variables\n\
25358 Show DWARF variables such as the cache size"),
25359 &show_dwarf_cmdlist, "maintenance show dwarf ",
25360 0/*allow-unknown*/, &maintenance_show_cmdlist);
25361
25362 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25363 &dwarf_max_cache_age, _("\
25364 Set the upper bound on the age of cached DWARF compilation units."), _("\
25365 Show the upper bound on the age of cached DWARF compilation units."), _("\
25366 A higher limit means that cached compilation units will be stored\n\
25367 in memory longer, and more total memory will be used. Zero disables\n\
25368 caching, which can slow down startup."),
25369 NULL,
25370 show_dwarf_max_cache_age,
25371 &set_dwarf_cmdlist,
25372 &show_dwarf_cmdlist);
25373
25374 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25375 &dwarf_always_disassemble, _("\
25376 Set whether `info address' always disassembles DWARF expressions."), _("\
25377 Show whether `info address' always disassembles DWARF expressions."), _("\
25378 When enabled, DWARF expressions are always printed in an assembly-like\n\
25379 syntax. When disabled, expressions will be printed in a more\n\
25380 conversational style, when possible."),
25381 NULL,
25382 show_dwarf_always_disassemble,
25383 &set_dwarf_cmdlist,
25384 &show_dwarf_cmdlist);
25385
25386 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25387 Set debugging of the DWARF reader."), _("\
25388 Show debugging of the DWARF reader."), _("\
25389 When enabled (non-zero), debugging messages are printed during DWARF\n\
25390 reading and symtab expansion. A value of 1 (one) provides basic\n\
25391 information. A value greater than 1 provides more verbose information."),
25392 NULL,
25393 NULL,
25394 &setdebuglist, &showdebuglist);
25395
25396 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25397 Set debugging of the DWARF DIE reader."), _("\
25398 Show debugging of the DWARF DIE reader."), _("\
25399 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25400 The value is the maximum depth to print."),
25401 NULL,
25402 NULL,
25403 &setdebuglist, &showdebuglist);
25404
25405 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25406 Set debugging of the dwarf line reader."), _("\
25407 Show debugging of the dwarf line reader."), _("\
25408 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25409 A value of 1 (one) provides basic information.\n\
25410 A value greater than 1 provides more verbose information."),
25411 NULL,
25412 NULL,
25413 &setdebuglist, &showdebuglist);
25414
25415 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25416 Set cross-checking of \"physname\" code against demangler."), _("\
25417 Show cross-checking of \"physname\" code against demangler."), _("\
25418 When enabled, GDB's internal \"physname\" code is checked against\n\
25419 the demangler."),
25420 NULL, show_check_physname,
25421 &setdebuglist, &showdebuglist);
25422
25423 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25424 no_class, &use_deprecated_index_sections, _("\
25425 Set whether to use deprecated gdb_index sections."), _("\
25426 Show whether to use deprecated gdb_index sections."), _("\
25427 When enabled, deprecated .gdb_index sections are used anyway.\n\
25428 Normally they are ignored either because of a missing feature or\n\
25429 performance issue.\n\
25430 Warning: This option must be enabled before gdb reads the file."),
25431 NULL,
25432 NULL,
25433 &setlist, &showlist);
25434
25435 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25436 &dwarf2_locexpr_funcs);
25437 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25438 &dwarf2_loclist_funcs);
25439
25440 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25441 &dwarf2_block_frame_base_locexpr_funcs);
25442 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25443 &dwarf2_block_frame_base_loclist_funcs);
25444
25445 #if GDB_SELF_TEST
25446 selftests::register_test ("dw2_expand_symtabs_matching",
25447 selftests::dw2_expand_symtabs_matching::run_test);
25448 #endif
25449 }
This page took 0.54343 seconds and 5 git commands to generate.