* p-valprint.c (pascal_val_print): Use TYPE_ERROR_NAME.
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
8 Inc. with support from Florida State University (under contract
9 with the Ada Joint Program Office), and Silicon Graphics, Inc.
10 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
11 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 support.
13
14 This file is part of GDB.
15
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation; either version 3 of the License, or
19 (at your option) any later version.
20
21 This program is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
25
26 You should have received a copy of the GNU General Public License
27 along with this program. If not, see <http://www.gnu.org/licenses/>. */
28
29 #include "defs.h"
30 #include "bfd.h"
31 #include "symtab.h"
32 #include "gdbtypes.h"
33 #include "objfiles.h"
34 #include "dwarf2.h"
35 #include "buildsym.h"
36 #include "demangle.h"
37 #include "expression.h"
38 #include "filenames.h" /* for DOSish file names */
39 #include "macrotab.h"
40 #include "language.h"
41 #include "complaints.h"
42 #include "bcache.h"
43 #include "dwarf2expr.h"
44 #include "dwarf2loc.h"
45 #include "cp-support.h"
46 #include "hashtab.h"
47 #include "command.h"
48 #include "gdbcmd.h"
49 #include "block.h"
50 #include "addrmap.h"
51 #include "typeprint.h"
52 #include "jv-lang.h"
53 #include "psympriv.h"
54
55 #include <fcntl.h>
56 #include "gdb_string.h"
57 #include "gdb_assert.h"
58 #include <sys/types.h>
59 #ifdef HAVE_ZLIB_H
60 #include <zlib.h>
61 #endif
62 #ifdef HAVE_MMAP
63 #include <sys/mman.h>
64 #ifndef MAP_FAILED
65 #define MAP_FAILED ((void *) -1)
66 #endif
67 #endif
68
69 #if 0
70 /* .debug_info header for a compilation unit
71 Because of alignment constraints, this structure has padding and cannot
72 be mapped directly onto the beginning of the .debug_info section. */
73 typedef struct comp_unit_header
74 {
75 unsigned int length; /* length of the .debug_info
76 contribution */
77 unsigned short version; /* version number -- 2 for DWARF
78 version 2 */
79 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
80 unsigned char addr_size; /* byte size of an address -- 4 */
81 }
82 _COMP_UNIT_HEADER;
83 #define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
84 #endif
85
86 /* .debug_line statement program prologue
87 Because of alignment constraints, this structure has padding and cannot
88 be mapped directly onto the beginning of the .debug_info section. */
89 typedef struct statement_prologue
90 {
91 unsigned int total_length; /* byte length of the statement
92 information */
93 unsigned short version; /* version number -- 2 for DWARF
94 version 2 */
95 unsigned int prologue_length; /* # bytes between prologue &
96 stmt program */
97 unsigned char minimum_instruction_length; /* byte size of
98 smallest instr */
99 unsigned char default_is_stmt; /* initial value of is_stmt
100 register */
101 char line_base;
102 unsigned char line_range;
103 unsigned char opcode_base; /* number assigned to first special
104 opcode */
105 unsigned char *standard_opcode_lengths;
106 }
107 _STATEMENT_PROLOGUE;
108
109 /* When non-zero, dump DIEs after they are read in. */
110 static int dwarf2_die_debug = 0;
111
112 static int pagesize;
113
114 /* When set, the file that we're processing is known to have debugging
115 info for C++ namespaces. GCC 3.3.x did not produce this information,
116 but later versions do. */
117
118 static int processing_has_namespace_info;
119
120 static const struct objfile_data *dwarf2_objfile_data_key;
121
122 struct dwarf2_section_info
123 {
124 asection *asection;
125 gdb_byte *buffer;
126 bfd_size_type size;
127 int was_mmapped;
128 /* True if we have tried to read this section. */
129 int readin;
130 };
131
132 struct dwarf2_per_objfile
133 {
134 struct dwarf2_section_info info;
135 struct dwarf2_section_info abbrev;
136 struct dwarf2_section_info line;
137 struct dwarf2_section_info loc;
138 struct dwarf2_section_info macinfo;
139 struct dwarf2_section_info str;
140 struct dwarf2_section_info ranges;
141 struct dwarf2_section_info types;
142 struct dwarf2_section_info frame;
143 struct dwarf2_section_info eh_frame;
144
145 /* Back link. */
146 struct objfile *objfile;
147
148 /* A list of all the compilation units. This is used to locate
149 the target compilation unit of a particular reference. */
150 struct dwarf2_per_cu_data **all_comp_units;
151
152 /* The number of compilation units in ALL_COMP_UNITS. */
153 int n_comp_units;
154
155 /* A chain of compilation units that are currently read in, so that
156 they can be freed later. */
157 struct dwarf2_per_cu_data *read_in_chain;
158
159 /* A table mapping .debug_types signatures to its signatured_type entry.
160 This is NULL if the .debug_types section hasn't been read in yet. */
161 htab_t signatured_types;
162
163 /* A flag indicating wether this objfile has a section loaded at a
164 VMA of 0. */
165 int has_section_at_zero;
166 };
167
168 static struct dwarf2_per_objfile *dwarf2_per_objfile;
169
170 /* names of the debugging sections */
171
172 /* Note that if the debugging section has been compressed, it might
173 have a name like .zdebug_info. */
174
175 #define INFO_SECTION "debug_info"
176 #define ABBREV_SECTION "debug_abbrev"
177 #define LINE_SECTION "debug_line"
178 #define LOC_SECTION "debug_loc"
179 #define MACINFO_SECTION "debug_macinfo"
180 #define STR_SECTION "debug_str"
181 #define RANGES_SECTION "debug_ranges"
182 #define TYPES_SECTION "debug_types"
183 #define FRAME_SECTION "debug_frame"
184 #define EH_FRAME_SECTION "eh_frame"
185
186 /* local data types */
187
188 /* We hold several abbreviation tables in memory at the same time. */
189 #ifndef ABBREV_HASH_SIZE
190 #define ABBREV_HASH_SIZE 121
191 #endif
192
193 /* The data in a compilation unit header, after target2host
194 translation, looks like this. */
195 struct comp_unit_head
196 {
197 unsigned int length;
198 short version;
199 unsigned char addr_size;
200 unsigned char signed_addr_p;
201 unsigned int abbrev_offset;
202
203 /* Size of file offsets; either 4 or 8. */
204 unsigned int offset_size;
205
206 /* Size of the length field; either 4 or 12. */
207 unsigned int initial_length_size;
208
209 /* Offset to the first byte of this compilation unit header in the
210 .debug_info section, for resolving relative reference dies. */
211 unsigned int offset;
212
213 /* Offset to first die in this cu from the start of the cu.
214 This will be the first byte following the compilation unit header. */
215 unsigned int first_die_offset;
216 };
217
218 /* Internal state when decoding a particular compilation unit. */
219 struct dwarf2_cu
220 {
221 /* The objfile containing this compilation unit. */
222 struct objfile *objfile;
223
224 /* The header of the compilation unit. */
225 struct comp_unit_head header;
226
227 /* Base address of this compilation unit. */
228 CORE_ADDR base_address;
229
230 /* Non-zero if base_address has been set. */
231 int base_known;
232
233 struct function_range *first_fn, *last_fn, *cached_fn;
234
235 /* The language we are debugging. */
236 enum language language;
237 const struct language_defn *language_defn;
238
239 const char *producer;
240
241 /* The generic symbol table building routines have separate lists for
242 file scope symbols and all all other scopes (local scopes). So
243 we need to select the right one to pass to add_symbol_to_list().
244 We do it by keeping a pointer to the correct list in list_in_scope.
245
246 FIXME: The original dwarf code just treated the file scope as the
247 first local scope, and all other local scopes as nested local
248 scopes, and worked fine. Check to see if we really need to
249 distinguish these in buildsym.c. */
250 struct pending **list_in_scope;
251
252 /* DWARF abbreviation table associated with this compilation unit. */
253 struct abbrev_info **dwarf2_abbrevs;
254
255 /* Storage for the abbrev table. */
256 struct obstack abbrev_obstack;
257
258 /* Hash table holding all the loaded partial DIEs. */
259 htab_t partial_dies;
260
261 /* Storage for things with the same lifetime as this read-in compilation
262 unit, including partial DIEs. */
263 struct obstack comp_unit_obstack;
264
265 /* When multiple dwarf2_cu structures are living in memory, this field
266 chains them all together, so that they can be released efficiently.
267 We will probably also want a generation counter so that most-recently-used
268 compilation units are cached... */
269 struct dwarf2_per_cu_data *read_in_chain;
270
271 /* Backchain to our per_cu entry if the tree has been built. */
272 struct dwarf2_per_cu_data *per_cu;
273
274 /* Pointer to the die -> type map. Although it is stored
275 permanently in per_cu, we copy it here to avoid double
276 indirection. */
277 htab_t type_hash;
278
279 /* How many compilation units ago was this CU last referenced? */
280 int last_used;
281
282 /* A hash table of die offsets for following references. */
283 htab_t die_hash;
284
285 /* Full DIEs if read in. */
286 struct die_info *dies;
287
288 /* A set of pointers to dwarf2_per_cu_data objects for compilation
289 units referenced by this one. Only set during full symbol processing;
290 partial symbol tables do not have dependencies. */
291 htab_t dependencies;
292
293 /* Header data from the line table, during full symbol processing. */
294 struct line_header *line_header;
295
296 /* Mark used when releasing cached dies. */
297 unsigned int mark : 1;
298
299 /* This flag will be set if this compilation unit might include
300 inter-compilation-unit references. */
301 unsigned int has_form_ref_addr : 1;
302
303 /* This flag will be set if this compilation unit includes any
304 DW_TAG_namespace DIEs. If we know that there are explicit
305 DIEs for namespaces, we don't need to try to infer them
306 from mangled names. */
307 unsigned int has_namespace_info : 1;
308 };
309
310 /* Persistent data held for a compilation unit, even when not
311 processing it. We put a pointer to this structure in the
312 read_symtab_private field of the psymtab. If we encounter
313 inter-compilation-unit references, we also maintain a sorted
314 list of all compilation units. */
315
316 struct dwarf2_per_cu_data
317 {
318 /* The start offset and length of this compilation unit. 2**29-1
319 bytes should suffice to store the length of any compilation unit
320 - if it doesn't, GDB will fall over anyway.
321 NOTE: Unlike comp_unit_head.length, this length includes
322 initial_length_size. */
323 unsigned int offset;
324 unsigned int length : 29;
325
326 /* Flag indicating this compilation unit will be read in before
327 any of the current compilation units are processed. */
328 unsigned int queued : 1;
329
330 /* This flag will be set if we need to load absolutely all DIEs
331 for this compilation unit, instead of just the ones we think
332 are interesting. It gets set if we look for a DIE in the
333 hash table and don't find it. */
334 unsigned int load_all_dies : 1;
335
336 /* Non-zero if this CU is from .debug_types.
337 Otherwise it's from .debug_info. */
338 unsigned int from_debug_types : 1;
339
340 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
341 of the CU cache it gets reset to NULL again. */
342 struct dwarf2_cu *cu;
343
344 /* If full symbols for this CU have been read in, then this field
345 holds a map of DIE offsets to types. It isn't always possible
346 to reconstruct this information later, so we have to preserve
347 it. */
348 htab_t type_hash;
349
350 /* The partial symbol table associated with this compilation unit,
351 or NULL for partial units (which do not have an associated
352 symtab). */
353 struct partial_symtab *psymtab;
354 };
355
356 /* Entry in the signatured_types hash table. */
357
358 struct signatured_type
359 {
360 ULONGEST signature;
361
362 /* Offset in .debug_types of the TU (type_unit) for this type. */
363 unsigned int offset;
364
365 /* Offset in .debug_types of the type defined by this TU. */
366 unsigned int type_offset;
367
368 /* The CU(/TU) of this type. */
369 struct dwarf2_per_cu_data per_cu;
370 };
371
372 /* Struct used to pass misc. parameters to read_die_and_children, et. al.
373 which are used for both .debug_info and .debug_types dies.
374 All parameters here are unchanging for the life of the call.
375 This struct exists to abstract away the constant parameters of
376 die reading. */
377
378 struct die_reader_specs
379 {
380 /* The bfd of this objfile. */
381 bfd* abfd;
382
383 /* The CU of the DIE we are parsing. */
384 struct dwarf2_cu *cu;
385
386 /* Pointer to start of section buffer.
387 This is either the start of .debug_info or .debug_types. */
388 const gdb_byte *buffer;
389 };
390
391 /* The line number information for a compilation unit (found in the
392 .debug_line section) begins with a "statement program header",
393 which contains the following information. */
394 struct line_header
395 {
396 unsigned int total_length;
397 unsigned short version;
398 unsigned int header_length;
399 unsigned char minimum_instruction_length;
400 unsigned char maximum_ops_per_instruction;
401 unsigned char default_is_stmt;
402 int line_base;
403 unsigned char line_range;
404 unsigned char opcode_base;
405
406 /* standard_opcode_lengths[i] is the number of operands for the
407 standard opcode whose value is i. This means that
408 standard_opcode_lengths[0] is unused, and the last meaningful
409 element is standard_opcode_lengths[opcode_base - 1]. */
410 unsigned char *standard_opcode_lengths;
411
412 /* The include_directories table. NOTE! These strings are not
413 allocated with xmalloc; instead, they are pointers into
414 debug_line_buffer. If you try to free them, `free' will get
415 indigestion. */
416 unsigned int num_include_dirs, include_dirs_size;
417 char **include_dirs;
418
419 /* The file_names table. NOTE! These strings are not allocated
420 with xmalloc; instead, they are pointers into debug_line_buffer.
421 Don't try to free them directly. */
422 unsigned int num_file_names, file_names_size;
423 struct file_entry
424 {
425 char *name;
426 unsigned int dir_index;
427 unsigned int mod_time;
428 unsigned int length;
429 int included_p; /* Non-zero if referenced by the Line Number Program. */
430 struct symtab *symtab; /* The associated symbol table, if any. */
431 } *file_names;
432
433 /* The start and end of the statement program following this
434 header. These point into dwarf2_per_objfile->line_buffer. */
435 gdb_byte *statement_program_start, *statement_program_end;
436 };
437
438 /* When we construct a partial symbol table entry we only
439 need this much information. */
440 struct partial_die_info
441 {
442 /* Offset of this DIE. */
443 unsigned int offset;
444
445 /* DWARF-2 tag for this DIE. */
446 ENUM_BITFIELD(dwarf_tag) tag : 16;
447
448 /* Assorted flags describing the data found in this DIE. */
449 unsigned int has_children : 1;
450 unsigned int is_external : 1;
451 unsigned int is_declaration : 1;
452 unsigned int has_type : 1;
453 unsigned int has_specification : 1;
454 unsigned int has_pc_info : 1;
455
456 /* Flag set if the SCOPE field of this structure has been
457 computed. */
458 unsigned int scope_set : 1;
459
460 /* Flag set if the DIE has a byte_size attribute. */
461 unsigned int has_byte_size : 1;
462
463 /* The name of this DIE. Normally the value of DW_AT_name, but
464 sometimes a default name for unnamed DIEs. */
465 char *name;
466
467 /* The scope to prepend to our children. This is generally
468 allocated on the comp_unit_obstack, so will disappear
469 when this compilation unit leaves the cache. */
470 char *scope;
471
472 /* The location description associated with this DIE, if any. */
473 struct dwarf_block *locdesc;
474
475 /* If HAS_PC_INFO, the PC range associated with this DIE. */
476 CORE_ADDR lowpc;
477 CORE_ADDR highpc;
478
479 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
480 DW_AT_sibling, if any. */
481 gdb_byte *sibling;
482
483 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
484 DW_AT_specification (or DW_AT_abstract_origin or
485 DW_AT_extension). */
486 unsigned int spec_offset;
487
488 /* Pointers to this DIE's parent, first child, and next sibling,
489 if any. */
490 struct partial_die_info *die_parent, *die_child, *die_sibling;
491 };
492
493 /* This data structure holds the information of an abbrev. */
494 struct abbrev_info
495 {
496 unsigned int number; /* number identifying abbrev */
497 enum dwarf_tag tag; /* dwarf tag */
498 unsigned short has_children; /* boolean */
499 unsigned short num_attrs; /* number of attributes */
500 struct attr_abbrev *attrs; /* an array of attribute descriptions */
501 struct abbrev_info *next; /* next in chain */
502 };
503
504 struct attr_abbrev
505 {
506 ENUM_BITFIELD(dwarf_attribute) name : 16;
507 ENUM_BITFIELD(dwarf_form) form : 16;
508 };
509
510 /* Attributes have a name and a value */
511 struct attribute
512 {
513 ENUM_BITFIELD(dwarf_attribute) name : 16;
514 ENUM_BITFIELD(dwarf_form) form : 15;
515
516 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
517 field should be in u.str (existing only for DW_STRING) but it is kept
518 here for better struct attribute alignment. */
519 unsigned int string_is_canonical : 1;
520
521 union
522 {
523 char *str;
524 struct dwarf_block *blk;
525 ULONGEST unsnd;
526 LONGEST snd;
527 CORE_ADDR addr;
528 struct signatured_type *signatured_type;
529 }
530 u;
531 };
532
533 /* This data structure holds a complete die structure. */
534 struct die_info
535 {
536 /* DWARF-2 tag for this DIE. */
537 ENUM_BITFIELD(dwarf_tag) tag : 16;
538
539 /* Number of attributes */
540 unsigned short num_attrs;
541
542 /* Abbrev number */
543 unsigned int abbrev;
544
545 /* Offset in .debug_info or .debug_types section. */
546 unsigned int offset;
547
548 /* The dies in a compilation unit form an n-ary tree. PARENT
549 points to this die's parent; CHILD points to the first child of
550 this node; and all the children of a given node are chained
551 together via their SIBLING fields, terminated by a die whose
552 tag is zero. */
553 struct die_info *child; /* Its first child, if any. */
554 struct die_info *sibling; /* Its next sibling, if any. */
555 struct die_info *parent; /* Its parent, if any. */
556
557 /* An array of attributes, with NUM_ATTRS elements. There may be
558 zero, but it's not common and zero-sized arrays are not
559 sufficiently portable C. */
560 struct attribute attrs[1];
561 };
562
563 struct function_range
564 {
565 const char *name;
566 CORE_ADDR lowpc, highpc;
567 int seen_line;
568 struct function_range *next;
569 };
570
571 /* Get at parts of an attribute structure */
572
573 #define DW_STRING(attr) ((attr)->u.str)
574 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
575 #define DW_UNSND(attr) ((attr)->u.unsnd)
576 #define DW_BLOCK(attr) ((attr)->u.blk)
577 #define DW_SND(attr) ((attr)->u.snd)
578 #define DW_ADDR(attr) ((attr)->u.addr)
579 #define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
580
581 /* Blocks are a bunch of untyped bytes. */
582 struct dwarf_block
583 {
584 unsigned int size;
585 gdb_byte *data;
586 };
587
588 #ifndef ATTR_ALLOC_CHUNK
589 #define ATTR_ALLOC_CHUNK 4
590 #endif
591
592 /* Allocate fields for structs, unions and enums in this size. */
593 #ifndef DW_FIELD_ALLOC_CHUNK
594 #define DW_FIELD_ALLOC_CHUNK 4
595 #endif
596
597 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
598 but this would require a corresponding change in unpack_field_as_long
599 and friends. */
600 static int bits_per_byte = 8;
601
602 /* The routines that read and process dies for a C struct or C++ class
603 pass lists of data member fields and lists of member function fields
604 in an instance of a field_info structure, as defined below. */
605 struct field_info
606 {
607 /* List of data member and baseclasses fields. */
608 struct nextfield
609 {
610 struct nextfield *next;
611 int accessibility;
612 int virtuality;
613 struct field field;
614 }
615 *fields, *baseclasses;
616
617 /* Number of fields (including baseclasses). */
618 int nfields;
619
620 /* Number of baseclasses. */
621 int nbaseclasses;
622
623 /* Set if the accesibility of one of the fields is not public. */
624 int non_public_fields;
625
626 /* Member function fields array, entries are allocated in the order they
627 are encountered in the object file. */
628 struct nextfnfield
629 {
630 struct nextfnfield *next;
631 struct fn_field fnfield;
632 }
633 *fnfields;
634
635 /* Member function fieldlist array, contains name of possibly overloaded
636 member function, number of overloaded member functions and a pointer
637 to the head of the member function field chain. */
638 struct fnfieldlist
639 {
640 char *name;
641 int length;
642 struct nextfnfield *head;
643 }
644 *fnfieldlists;
645
646 /* Number of entries in the fnfieldlists array. */
647 int nfnfields;
648 };
649
650 /* One item on the queue of compilation units to read in full symbols
651 for. */
652 struct dwarf2_queue_item
653 {
654 struct dwarf2_per_cu_data *per_cu;
655 struct dwarf2_queue_item *next;
656 };
657
658 /* The current queue. */
659 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
660
661 /* Loaded secondary compilation units are kept in memory until they
662 have not been referenced for the processing of this many
663 compilation units. Set this to zero to disable caching. Cache
664 sizes of up to at least twenty will improve startup time for
665 typical inter-CU-reference binaries, at an obvious memory cost. */
666 static int dwarf2_max_cache_age = 5;
667 static void
668 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
669 struct cmd_list_element *c, const char *value)
670 {
671 fprintf_filtered (file, _("\
672 The upper bound on the age of cached dwarf2 compilation units is %s.\n"),
673 value);
674 }
675
676
677 /* Various complaints about symbol reading that don't abort the process */
678
679 static void
680 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
681 {
682 complaint (&symfile_complaints,
683 _("statement list doesn't fit in .debug_line section"));
684 }
685
686 static void
687 dwarf2_debug_line_missing_file_complaint (void)
688 {
689 complaint (&symfile_complaints,
690 _(".debug_line section has line data without a file"));
691 }
692
693 static void
694 dwarf2_debug_line_missing_end_sequence_complaint (void)
695 {
696 complaint (&symfile_complaints,
697 _(".debug_line section has line program sequence without an end"));
698 }
699
700 static void
701 dwarf2_complex_location_expr_complaint (void)
702 {
703 complaint (&symfile_complaints, _("location expression too complex"));
704 }
705
706 static void
707 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
708 int arg3)
709 {
710 complaint (&symfile_complaints,
711 _("const value length mismatch for '%s', got %d, expected %d"), arg1,
712 arg2, arg3);
713 }
714
715 static void
716 dwarf2_macros_too_long_complaint (void)
717 {
718 complaint (&symfile_complaints,
719 _("macro info runs off end of `.debug_macinfo' section"));
720 }
721
722 static void
723 dwarf2_macro_malformed_definition_complaint (const char *arg1)
724 {
725 complaint (&symfile_complaints,
726 _("macro debug info contains a malformed macro definition:\n`%s'"),
727 arg1);
728 }
729
730 static void
731 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
732 {
733 complaint (&symfile_complaints,
734 _("invalid attribute class or form for '%s' in '%s'"), arg1, arg2);
735 }
736
737 /* local function prototypes */
738
739 static void dwarf2_locate_sections (bfd *, asection *, void *);
740
741 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
742 struct objfile *);
743
744 static void dwarf2_build_include_psymtabs (struct dwarf2_cu *,
745 struct die_info *,
746 struct partial_symtab *);
747
748 static void dwarf2_build_psymtabs_hard (struct objfile *);
749
750 static void scan_partial_symbols (struct partial_die_info *,
751 CORE_ADDR *, CORE_ADDR *,
752 int, struct dwarf2_cu *);
753
754 static void add_partial_symbol (struct partial_die_info *,
755 struct dwarf2_cu *);
756
757 static void add_partial_namespace (struct partial_die_info *pdi,
758 CORE_ADDR *lowpc, CORE_ADDR *highpc,
759 int need_pc, struct dwarf2_cu *cu);
760
761 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
762 CORE_ADDR *highpc, int need_pc,
763 struct dwarf2_cu *cu);
764
765 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
766 struct dwarf2_cu *cu);
767
768 static void add_partial_subprogram (struct partial_die_info *pdi,
769 CORE_ADDR *lowpc, CORE_ADDR *highpc,
770 int need_pc, struct dwarf2_cu *cu);
771
772 static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
773 gdb_byte *buffer, gdb_byte *info_ptr,
774 bfd *abfd, struct dwarf2_cu *cu);
775
776 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
777
778 static void psymtab_to_symtab_1 (struct partial_symtab *);
779
780 static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
781
782 static void dwarf2_free_abbrev_table (void *);
783
784 static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
785 struct dwarf2_cu *);
786
787 static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
788 struct dwarf2_cu *);
789
790 static struct partial_die_info *load_partial_dies (bfd *,
791 gdb_byte *, gdb_byte *,
792 int, struct dwarf2_cu *);
793
794 static gdb_byte *read_partial_die (struct partial_die_info *,
795 struct abbrev_info *abbrev,
796 unsigned int, bfd *,
797 gdb_byte *, gdb_byte *,
798 struct dwarf2_cu *);
799
800 static struct partial_die_info *find_partial_die (unsigned int,
801 struct dwarf2_cu *);
802
803 static void fixup_partial_die (struct partial_die_info *,
804 struct dwarf2_cu *);
805
806 static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
807 bfd *, gdb_byte *, struct dwarf2_cu *);
808
809 static gdb_byte *read_attribute_value (struct attribute *, unsigned,
810 bfd *, gdb_byte *, struct dwarf2_cu *);
811
812 static unsigned int read_1_byte (bfd *, gdb_byte *);
813
814 static int read_1_signed_byte (bfd *, gdb_byte *);
815
816 static unsigned int read_2_bytes (bfd *, gdb_byte *);
817
818 static unsigned int read_4_bytes (bfd *, gdb_byte *);
819
820 static ULONGEST read_8_bytes (bfd *, gdb_byte *);
821
822 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
823 unsigned int *);
824
825 static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
826
827 static LONGEST read_checked_initial_length_and_offset
828 (bfd *, gdb_byte *, const struct comp_unit_head *,
829 unsigned int *, unsigned int *);
830
831 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
832 unsigned int *);
833
834 static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
835
836 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
837
838 static char *read_string (bfd *, gdb_byte *, unsigned int *);
839
840 static char *read_indirect_string (bfd *, gdb_byte *,
841 const struct comp_unit_head *,
842 unsigned int *);
843
844 static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
845
846 static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
847
848 static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
849
850 static void set_cu_language (unsigned int, struct dwarf2_cu *);
851
852 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
853 struct dwarf2_cu *);
854
855 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
856 unsigned int,
857 struct dwarf2_cu *);
858
859 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
860 struct dwarf2_cu *cu);
861
862 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
863
864 static struct die_info *die_specification (struct die_info *die,
865 struct dwarf2_cu **);
866
867 static void free_line_header (struct line_header *lh);
868
869 static void add_file_name (struct line_header *, char *, unsigned int,
870 unsigned int, unsigned int);
871
872 static struct line_header *(dwarf_decode_line_header
873 (unsigned int offset,
874 bfd *abfd, struct dwarf2_cu *cu));
875
876 static void dwarf_decode_lines (struct line_header *, char *, bfd *,
877 struct dwarf2_cu *, struct partial_symtab *);
878
879 static void dwarf2_start_subfile (char *, char *, char *);
880
881 static struct symbol *new_symbol (struct die_info *, struct type *,
882 struct dwarf2_cu *);
883
884 static void dwarf2_const_value (struct attribute *, struct symbol *,
885 struct dwarf2_cu *);
886
887 static void dwarf2_const_value_data (struct attribute *attr,
888 struct symbol *sym,
889 int bits);
890
891 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
892
893 static int need_gnat_info (struct dwarf2_cu *);
894
895 static struct type *die_descriptive_type (struct die_info *, struct dwarf2_cu *);
896
897 static void set_descriptive_type (struct type *, struct die_info *,
898 struct dwarf2_cu *);
899
900 static struct type *die_containing_type (struct die_info *,
901 struct dwarf2_cu *);
902
903 static struct type *tag_type_to_type (struct die_info *, struct dwarf2_cu *);
904
905 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
906
907 static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
908
909 static char *typename_concat (struct obstack *obs, const char *prefix,
910 const char *suffix, int physname,
911 struct dwarf2_cu *cu);
912
913 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
914
915 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
916
917 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
918
919 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
920
921 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
922 struct dwarf2_cu *, struct partial_symtab *);
923
924 static int dwarf2_get_pc_bounds (struct die_info *,
925 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
926 struct partial_symtab *);
927
928 static void get_scope_pc_bounds (struct die_info *,
929 CORE_ADDR *, CORE_ADDR *,
930 struct dwarf2_cu *);
931
932 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
933 CORE_ADDR, struct dwarf2_cu *);
934
935 static void dwarf2_add_field (struct field_info *, struct die_info *,
936 struct dwarf2_cu *);
937
938 static void dwarf2_attach_fields_to_type (struct field_info *,
939 struct type *, struct dwarf2_cu *);
940
941 static void dwarf2_add_member_fn (struct field_info *,
942 struct die_info *, struct type *,
943 struct dwarf2_cu *);
944
945 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
946 struct type *, struct dwarf2_cu *);
947
948 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
949
950 static void read_common_block (struct die_info *, struct dwarf2_cu *);
951
952 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
953
954 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
955
956 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
957
958 static struct type *read_module_type (struct die_info *die,
959 struct dwarf2_cu *cu);
960
961 static const char *namespace_name (struct die_info *die,
962 int *is_anonymous, struct dwarf2_cu *);
963
964 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
965
966 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
967
968 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
969 struct dwarf2_cu *);
970
971 static struct die_info *read_comp_unit (gdb_byte *, struct dwarf2_cu *);
972
973 static struct die_info *read_die_and_children_1 (const struct die_reader_specs *reader,
974 gdb_byte *info_ptr,
975 gdb_byte **new_info_ptr,
976 struct die_info *parent);
977
978 static struct die_info *read_die_and_children (const struct die_reader_specs *reader,
979 gdb_byte *info_ptr,
980 gdb_byte **new_info_ptr,
981 struct die_info *parent);
982
983 static struct die_info *read_die_and_siblings (const struct die_reader_specs *reader,
984 gdb_byte *info_ptr,
985 gdb_byte **new_info_ptr,
986 struct die_info *parent);
987
988 static gdb_byte *read_full_die (const struct die_reader_specs *reader,
989 struct die_info **, gdb_byte *,
990 int *);
991
992 static void process_die (struct die_info *, struct dwarf2_cu *);
993
994 static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
995 struct obstack *);
996
997 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
998
999 static struct die_info *dwarf2_extension (struct die_info *die,
1000 struct dwarf2_cu **);
1001
1002 static char *dwarf_tag_name (unsigned int);
1003
1004 static char *dwarf_attr_name (unsigned int);
1005
1006 static char *dwarf_form_name (unsigned int);
1007
1008 static char *dwarf_bool_name (unsigned int);
1009
1010 static char *dwarf_type_encoding_name (unsigned int);
1011
1012 #if 0
1013 static char *dwarf_cfi_name (unsigned int);
1014 #endif
1015
1016 static struct die_info *sibling_die (struct die_info *);
1017
1018 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1019
1020 static void dump_die_for_error (struct die_info *);
1021
1022 static void dump_die_1 (struct ui_file *, int level, int max_level,
1023 struct die_info *);
1024
1025 /*static*/ void dump_die (struct die_info *, int max_level);
1026
1027 static void store_in_ref_table (struct die_info *,
1028 struct dwarf2_cu *);
1029
1030 static int is_ref_attr (struct attribute *);
1031
1032 static unsigned int dwarf2_get_ref_die_offset (struct attribute *);
1033
1034 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1035
1036 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1037 struct attribute *,
1038 struct dwarf2_cu **);
1039
1040 static struct die_info *follow_die_ref (struct die_info *,
1041 struct attribute *,
1042 struct dwarf2_cu **);
1043
1044 static struct die_info *follow_die_sig (struct die_info *,
1045 struct attribute *,
1046 struct dwarf2_cu **);
1047
1048 static void read_signatured_type_at_offset (struct objfile *objfile,
1049 unsigned int offset);
1050
1051 static void read_signatured_type (struct objfile *,
1052 struct signatured_type *type_sig);
1053
1054 /* memory allocation interface */
1055
1056 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1057
1058 static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
1059
1060 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1061
1062 static void initialize_cu_func_list (struct dwarf2_cu *);
1063
1064 static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1065 struct dwarf2_cu *);
1066
1067 static void dwarf_decode_macros (struct line_header *, unsigned int,
1068 char *, bfd *, struct dwarf2_cu *);
1069
1070 static int attr_form_is_block (struct attribute *);
1071
1072 static int attr_form_is_section_offset (struct attribute *);
1073
1074 static int attr_form_is_constant (struct attribute *);
1075
1076 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1077 struct symbol *sym,
1078 struct dwarf2_cu *cu);
1079
1080 static gdb_byte *skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
1081 struct abbrev_info *abbrev,
1082 struct dwarf2_cu *cu);
1083
1084 static void free_stack_comp_unit (void *);
1085
1086 static hashval_t partial_die_hash (const void *item);
1087
1088 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1089
1090 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1091 (unsigned int offset, struct objfile *objfile);
1092
1093 static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1094 (unsigned int offset, struct objfile *objfile);
1095
1096 static struct dwarf2_cu *alloc_one_comp_unit (struct objfile *objfile);
1097
1098 static void free_one_comp_unit (void *);
1099
1100 static void free_cached_comp_units (void *);
1101
1102 static void age_cached_comp_units (void);
1103
1104 static void free_one_cached_comp_unit (void *);
1105
1106 static struct type *set_die_type (struct die_info *, struct type *,
1107 struct dwarf2_cu *);
1108
1109 static void create_all_comp_units (struct objfile *);
1110
1111 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1112 struct objfile *);
1113
1114 static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1115
1116 static void dwarf2_add_dependence (struct dwarf2_cu *,
1117 struct dwarf2_per_cu_data *);
1118
1119 static void dwarf2_mark (struct dwarf2_cu *);
1120
1121 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1122
1123 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1124
1125 /* Try to locate the sections we need for DWARF 2 debugging
1126 information and return true if we have enough to do something. */
1127
1128 int
1129 dwarf2_has_info (struct objfile *objfile)
1130 {
1131 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1132 if (!dwarf2_per_objfile)
1133 {
1134 /* Initialize per-objfile state. */
1135 struct dwarf2_per_objfile *data
1136 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1137
1138 memset (data, 0, sizeof (*data));
1139 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1140 dwarf2_per_objfile = data;
1141
1142 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
1143 dwarf2_per_objfile->objfile = objfile;
1144 }
1145 return (dwarf2_per_objfile->info.asection != NULL
1146 && dwarf2_per_objfile->abbrev.asection != NULL);
1147 }
1148
1149 /* When loading sections, we can either look for ".<name>", or for
1150 * ".z<name>", which indicates a compressed section. */
1151
1152 static int
1153 section_is_p (const char *section_name, const char *name)
1154 {
1155 return (section_name[0] == '.'
1156 && (strcmp (section_name + 1, name) == 0
1157 || (section_name[1] == 'z'
1158 && strcmp (section_name + 2, name) == 0)));
1159 }
1160
1161 /* This function is mapped across the sections and remembers the
1162 offset and size of each of the debugging sections we are interested
1163 in. */
1164
1165 static void
1166 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *ignore_ptr)
1167 {
1168 if (section_is_p (sectp->name, INFO_SECTION))
1169 {
1170 dwarf2_per_objfile->info.asection = sectp;
1171 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1172 }
1173 else if (section_is_p (sectp->name, ABBREV_SECTION))
1174 {
1175 dwarf2_per_objfile->abbrev.asection = sectp;
1176 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1177 }
1178 else if (section_is_p (sectp->name, LINE_SECTION))
1179 {
1180 dwarf2_per_objfile->line.asection = sectp;
1181 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1182 }
1183 else if (section_is_p (sectp->name, LOC_SECTION))
1184 {
1185 dwarf2_per_objfile->loc.asection = sectp;
1186 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1187 }
1188 else if (section_is_p (sectp->name, MACINFO_SECTION))
1189 {
1190 dwarf2_per_objfile->macinfo.asection = sectp;
1191 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1192 }
1193 else if (section_is_p (sectp->name, STR_SECTION))
1194 {
1195 dwarf2_per_objfile->str.asection = sectp;
1196 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1197 }
1198 else if (section_is_p (sectp->name, FRAME_SECTION))
1199 {
1200 dwarf2_per_objfile->frame.asection = sectp;
1201 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1202 }
1203 else if (section_is_p (sectp->name, EH_FRAME_SECTION))
1204 {
1205 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1206
1207 if (aflag & SEC_HAS_CONTENTS)
1208 {
1209 dwarf2_per_objfile->eh_frame.asection = sectp;
1210 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1211 }
1212 }
1213 else if (section_is_p (sectp->name, RANGES_SECTION))
1214 {
1215 dwarf2_per_objfile->ranges.asection = sectp;
1216 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1217 }
1218 else if (section_is_p (sectp->name, TYPES_SECTION))
1219 {
1220 dwarf2_per_objfile->types.asection = sectp;
1221 dwarf2_per_objfile->types.size = bfd_get_section_size (sectp);
1222 }
1223
1224 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1225 && bfd_section_vma (abfd, sectp) == 0)
1226 dwarf2_per_objfile->has_section_at_zero = 1;
1227 }
1228
1229 /* Decompress a section that was compressed using zlib. Store the
1230 decompressed buffer, and its size, in OUTBUF and OUTSIZE. */
1231
1232 static void
1233 zlib_decompress_section (struct objfile *objfile, asection *sectp,
1234 gdb_byte **outbuf, bfd_size_type *outsize)
1235 {
1236 bfd *abfd = objfile->obfd;
1237 #ifndef HAVE_ZLIB_H
1238 error (_("Support for zlib-compressed DWARF data (from '%s') "
1239 "is disabled in this copy of GDB"),
1240 bfd_get_filename (abfd));
1241 #else
1242 bfd_size_type compressed_size = bfd_get_section_size (sectp);
1243 gdb_byte *compressed_buffer = xmalloc (compressed_size);
1244 struct cleanup *cleanup = make_cleanup (xfree, compressed_buffer);
1245 bfd_size_type uncompressed_size;
1246 gdb_byte *uncompressed_buffer;
1247 z_stream strm;
1248 int rc;
1249 int header_size = 12;
1250
1251 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1252 || bfd_bread (compressed_buffer, compressed_size, abfd) != compressed_size)
1253 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1254 bfd_get_filename (abfd));
1255
1256 /* Read the zlib header. In this case, it should be "ZLIB" followed
1257 by the uncompressed section size, 8 bytes in big-endian order. */
1258 if (compressed_size < header_size
1259 || strncmp (compressed_buffer, "ZLIB", 4) != 0)
1260 error (_("Dwarf Error: Corrupt DWARF ZLIB header from '%s'"),
1261 bfd_get_filename (abfd));
1262 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
1263 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
1264 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
1265 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
1266 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
1267 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
1268 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
1269 uncompressed_size += compressed_buffer[11];
1270
1271 /* It is possible the section consists of several compressed
1272 buffers concatenated together, so we uncompress in a loop. */
1273 strm.zalloc = NULL;
1274 strm.zfree = NULL;
1275 strm.opaque = NULL;
1276 strm.avail_in = compressed_size - header_size;
1277 strm.next_in = (Bytef*) compressed_buffer + header_size;
1278 strm.avail_out = uncompressed_size;
1279 uncompressed_buffer = obstack_alloc (&objfile->objfile_obstack,
1280 uncompressed_size);
1281 rc = inflateInit (&strm);
1282 while (strm.avail_in > 0)
1283 {
1284 if (rc != Z_OK)
1285 error (_("Dwarf Error: setting up DWARF uncompression in '%s': %d"),
1286 bfd_get_filename (abfd), rc);
1287 strm.next_out = ((Bytef*) uncompressed_buffer
1288 + (uncompressed_size - strm.avail_out));
1289 rc = inflate (&strm, Z_FINISH);
1290 if (rc != Z_STREAM_END)
1291 error (_("Dwarf Error: zlib error uncompressing from '%s': %d"),
1292 bfd_get_filename (abfd), rc);
1293 rc = inflateReset (&strm);
1294 }
1295 rc = inflateEnd (&strm);
1296 if (rc != Z_OK
1297 || strm.avail_out != 0)
1298 error (_("Dwarf Error: concluding DWARF uncompression in '%s': %d"),
1299 bfd_get_filename (abfd), rc);
1300
1301 do_cleanups (cleanup);
1302 *outbuf = uncompressed_buffer;
1303 *outsize = uncompressed_size;
1304 #endif
1305 }
1306
1307 /* Read the contents of the section SECTP from object file specified by
1308 OBJFILE, store info about the section into INFO.
1309 If the section is compressed, uncompress it before returning. */
1310
1311 static void
1312 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1313 {
1314 bfd *abfd = objfile->obfd;
1315 asection *sectp = info->asection;
1316 gdb_byte *buf, *retbuf;
1317 unsigned char header[4];
1318
1319 if (info->readin)
1320 return;
1321 info->buffer = NULL;
1322 info->was_mmapped = 0;
1323 info->readin = 1;
1324
1325 if (info->asection == NULL || info->size == 0)
1326 return;
1327
1328 /* Check if the file has a 4-byte header indicating compression. */
1329 if (info->size > sizeof (header)
1330 && bfd_seek (abfd, sectp->filepos, SEEK_SET) == 0
1331 && bfd_bread (header, sizeof (header), abfd) == sizeof (header))
1332 {
1333 /* Upon decompression, update the buffer and its size. */
1334 if (strncmp (header, "ZLIB", sizeof (header)) == 0)
1335 {
1336 zlib_decompress_section (objfile, sectp, &info->buffer,
1337 &info->size);
1338 return;
1339 }
1340 }
1341
1342 #ifdef HAVE_MMAP
1343 if (pagesize == 0)
1344 pagesize = getpagesize ();
1345
1346 /* Only try to mmap sections which are large enough: we don't want to
1347 waste space due to fragmentation. Also, only try mmap for sections
1348 without relocations. */
1349
1350 if (info->size > 4 * pagesize && (sectp->flags & SEC_RELOC) == 0)
1351 {
1352 off_t pg_offset = sectp->filepos & ~(pagesize - 1);
1353 size_t map_length = info->size + sectp->filepos - pg_offset;
1354 caddr_t retbuf = bfd_mmap (abfd, 0, map_length, PROT_READ,
1355 MAP_PRIVATE, pg_offset);
1356
1357 if (retbuf != MAP_FAILED)
1358 {
1359 info->was_mmapped = 1;
1360 info->buffer = retbuf + (sectp->filepos & (pagesize - 1)) ;
1361 #if HAVE_POSIX_MADVISE
1362 posix_madvise (retbuf, map_length, POSIX_MADV_WILLNEED);
1363 #endif
1364 return;
1365 }
1366 }
1367 #endif
1368
1369 /* If we get here, we are a normal, not-compressed section. */
1370 info->buffer = buf
1371 = obstack_alloc (&objfile->objfile_obstack, info->size);
1372
1373 /* When debugging .o files, we may need to apply relocations; see
1374 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1375 We never compress sections in .o files, so we only need to
1376 try this when the section is not compressed. */
1377 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1378 if (retbuf != NULL)
1379 {
1380 info->buffer = retbuf;
1381 return;
1382 }
1383
1384 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1385 || bfd_bread (buf, info->size, abfd) != info->size)
1386 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1387 bfd_get_filename (abfd));
1388 }
1389
1390 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1391 SECTION_NAME. */
1392
1393 void
1394 dwarf2_get_section_info (struct objfile *objfile, const char *section_name,
1395 asection **sectp, gdb_byte **bufp,
1396 bfd_size_type *sizep)
1397 {
1398 struct dwarf2_per_objfile *data
1399 = objfile_data (objfile, dwarf2_objfile_data_key);
1400 struct dwarf2_section_info *info;
1401
1402 /* We may see an objfile without any DWARF, in which case we just
1403 return nothing. */
1404 if (data == NULL)
1405 {
1406 *sectp = NULL;
1407 *bufp = NULL;
1408 *sizep = 0;
1409 return;
1410 }
1411 if (section_is_p (section_name, EH_FRAME_SECTION))
1412 info = &data->eh_frame;
1413 else if (section_is_p (section_name, FRAME_SECTION))
1414 info = &data->frame;
1415 else
1416 gdb_assert (0);
1417
1418 if (info->asection != NULL && info->size != 0 && info->buffer == NULL)
1419 /* We haven't read this section in yet. Do it now. */
1420 dwarf2_read_section (objfile, info);
1421
1422 *sectp = info->asection;
1423 *bufp = info->buffer;
1424 *sizep = info->size;
1425 }
1426
1427 /* Build a partial symbol table. */
1428
1429 void
1430 dwarf2_build_psymtabs (struct objfile *objfile)
1431 {
1432 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
1433 {
1434 init_psymbol_list (objfile, 1024);
1435 }
1436
1437 dwarf2_build_psymtabs_hard (objfile);
1438 }
1439
1440 /* Return TRUE if OFFSET is within CU_HEADER. */
1441
1442 static inline int
1443 offset_in_cu_p (const struct comp_unit_head *cu_header, unsigned int offset)
1444 {
1445 unsigned int bottom = cu_header->offset;
1446 unsigned int top = (cu_header->offset
1447 + cu_header->length
1448 + cu_header->initial_length_size);
1449
1450 return (offset >= bottom && offset < top);
1451 }
1452
1453 /* Read in the comp unit header information from the debug_info at info_ptr.
1454 NOTE: This leaves members offset, first_die_offset to be filled in
1455 by the caller. */
1456
1457 static gdb_byte *
1458 read_comp_unit_head (struct comp_unit_head *cu_header,
1459 gdb_byte *info_ptr, bfd *abfd)
1460 {
1461 int signed_addr;
1462 unsigned int bytes_read;
1463
1464 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
1465 cu_header->initial_length_size = bytes_read;
1466 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
1467 info_ptr += bytes_read;
1468 cu_header->version = read_2_bytes (abfd, info_ptr);
1469 info_ptr += 2;
1470 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
1471 &bytes_read);
1472 info_ptr += bytes_read;
1473 cu_header->addr_size = read_1_byte (abfd, info_ptr);
1474 info_ptr += 1;
1475 signed_addr = bfd_get_sign_extend_vma (abfd);
1476 if (signed_addr < 0)
1477 internal_error (__FILE__, __LINE__,
1478 _("read_comp_unit_head: dwarf from non elf file"));
1479 cu_header->signed_addr_p = signed_addr;
1480
1481 return info_ptr;
1482 }
1483
1484 static gdb_byte *
1485 partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
1486 gdb_byte *buffer, unsigned int buffer_size,
1487 bfd *abfd)
1488 {
1489 gdb_byte *beg_of_comp_unit = info_ptr;
1490
1491 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
1492
1493 if (header->version != 2 && header->version != 3 && header->version != 4)
1494 error (_("Dwarf Error: wrong version in compilation unit header "
1495 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
1496 bfd_get_filename (abfd));
1497
1498 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev.size)
1499 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
1500 "(offset 0x%lx + 6) [in module %s]"),
1501 (long) header->abbrev_offset,
1502 (long) (beg_of_comp_unit - buffer),
1503 bfd_get_filename (abfd));
1504
1505 if (beg_of_comp_unit + header->length + header->initial_length_size
1506 > buffer + buffer_size)
1507 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
1508 "(offset 0x%lx + 0) [in module %s]"),
1509 (long) header->length,
1510 (long) (beg_of_comp_unit - buffer),
1511 bfd_get_filename (abfd));
1512
1513 return info_ptr;
1514 }
1515
1516 /* Read in the types comp unit header information from .debug_types entry at
1517 types_ptr. The result is a pointer to one past the end of the header. */
1518
1519 static gdb_byte *
1520 read_type_comp_unit_head (struct comp_unit_head *cu_header,
1521 ULONGEST *signature,
1522 gdb_byte *types_ptr, bfd *abfd)
1523 {
1524 gdb_byte *initial_types_ptr = types_ptr;
1525
1526 dwarf2_read_section (dwarf2_per_objfile->objfile,
1527 &dwarf2_per_objfile->types);
1528 cu_header->offset = types_ptr - dwarf2_per_objfile->types.buffer;
1529
1530 types_ptr = read_comp_unit_head (cu_header, types_ptr, abfd);
1531
1532 *signature = read_8_bytes (abfd, types_ptr);
1533 types_ptr += 8;
1534 types_ptr += cu_header->offset_size;
1535 cu_header->first_die_offset = types_ptr - initial_types_ptr;
1536
1537 return types_ptr;
1538 }
1539
1540 /* Allocate a new partial symtab for file named NAME and mark this new
1541 partial symtab as being an include of PST. */
1542
1543 static void
1544 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
1545 struct objfile *objfile)
1546 {
1547 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
1548
1549 subpst->section_offsets = pst->section_offsets;
1550 subpst->textlow = 0;
1551 subpst->texthigh = 0;
1552
1553 subpst->dependencies = (struct partial_symtab **)
1554 obstack_alloc (&objfile->objfile_obstack,
1555 sizeof (struct partial_symtab *));
1556 subpst->dependencies[0] = pst;
1557 subpst->number_of_dependencies = 1;
1558
1559 subpst->globals_offset = 0;
1560 subpst->n_global_syms = 0;
1561 subpst->statics_offset = 0;
1562 subpst->n_static_syms = 0;
1563 subpst->symtab = NULL;
1564 subpst->read_symtab = pst->read_symtab;
1565 subpst->readin = 0;
1566
1567 /* No private part is necessary for include psymtabs. This property
1568 can be used to differentiate between such include psymtabs and
1569 the regular ones. */
1570 subpst->read_symtab_private = NULL;
1571 }
1572
1573 /* Read the Line Number Program data and extract the list of files
1574 included by the source file represented by PST. Build an include
1575 partial symtab for each of these included files. */
1576
1577 static void
1578 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
1579 struct die_info *die,
1580 struct partial_symtab *pst)
1581 {
1582 struct objfile *objfile = cu->objfile;
1583 bfd *abfd = objfile->obfd;
1584 struct line_header *lh = NULL;
1585 struct attribute *attr;
1586
1587 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
1588 if (attr)
1589 {
1590 unsigned int line_offset = DW_UNSND (attr);
1591
1592 lh = dwarf_decode_line_header (line_offset, abfd, cu);
1593 }
1594 if (lh == NULL)
1595 return; /* No linetable, so no includes. */
1596
1597 dwarf_decode_lines (lh, NULL, abfd, cu, pst);
1598
1599 free_line_header (lh);
1600 }
1601
1602 static hashval_t
1603 hash_type_signature (const void *item)
1604 {
1605 const struct signatured_type *type_sig = item;
1606
1607 /* This drops the top 32 bits of the signature, but is ok for a hash. */
1608 return type_sig->signature;
1609 }
1610
1611 static int
1612 eq_type_signature (const void *item_lhs, const void *item_rhs)
1613 {
1614 const struct signatured_type *lhs = item_lhs;
1615 const struct signatured_type *rhs = item_rhs;
1616
1617 return lhs->signature == rhs->signature;
1618 }
1619
1620 /* Create the hash table of all entries in the .debug_types section.
1621 The result is zero if there is an error (e.g. missing .debug_types section),
1622 otherwise non-zero. */
1623
1624 static int
1625 create_debug_types_hash_table (struct objfile *objfile)
1626 {
1627 gdb_byte *info_ptr;
1628 htab_t types_htab;
1629
1630 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
1631 info_ptr = dwarf2_per_objfile->types.buffer;
1632
1633 if (info_ptr == NULL)
1634 {
1635 dwarf2_per_objfile->signatured_types = NULL;
1636 return 0;
1637 }
1638
1639 types_htab = htab_create_alloc_ex (41,
1640 hash_type_signature,
1641 eq_type_signature,
1642 NULL,
1643 &objfile->objfile_obstack,
1644 hashtab_obstack_allocate,
1645 dummy_obstack_deallocate);
1646
1647 if (dwarf2_die_debug)
1648 fprintf_unfiltered (gdb_stdlog, "Signatured types:\n");
1649
1650 while (info_ptr < dwarf2_per_objfile->types.buffer + dwarf2_per_objfile->types.size)
1651 {
1652 unsigned int offset;
1653 unsigned int offset_size;
1654 unsigned int type_offset;
1655 unsigned int length, initial_length_size;
1656 unsigned short version;
1657 ULONGEST signature;
1658 struct signatured_type *type_sig;
1659 void **slot;
1660 gdb_byte *ptr = info_ptr;
1661
1662 offset = ptr - dwarf2_per_objfile->types.buffer;
1663
1664 /* We need to read the type's signature in order to build the hash
1665 table, but we don't need to read anything else just yet. */
1666
1667 /* Sanity check to ensure entire cu is present. */
1668 length = read_initial_length (objfile->obfd, ptr, &initial_length_size);
1669 if (ptr + length + initial_length_size
1670 > dwarf2_per_objfile->types.buffer + dwarf2_per_objfile->types.size)
1671 {
1672 complaint (&symfile_complaints,
1673 _("debug type entry runs off end of `.debug_types' section, ignored"));
1674 break;
1675 }
1676
1677 offset_size = initial_length_size == 4 ? 4 : 8;
1678 ptr += initial_length_size;
1679 version = bfd_get_16 (objfile->obfd, ptr);
1680 ptr += 2;
1681 ptr += offset_size; /* abbrev offset */
1682 ptr += 1; /* address size */
1683 signature = bfd_get_64 (objfile->obfd, ptr);
1684 ptr += 8;
1685 type_offset = read_offset_1 (objfile->obfd, ptr, offset_size);
1686
1687 type_sig = obstack_alloc (&objfile->objfile_obstack, sizeof (*type_sig));
1688 memset (type_sig, 0, sizeof (*type_sig));
1689 type_sig->signature = signature;
1690 type_sig->offset = offset;
1691 type_sig->type_offset = type_offset;
1692
1693 slot = htab_find_slot (types_htab, type_sig, INSERT);
1694 gdb_assert (slot != NULL);
1695 *slot = type_sig;
1696
1697 if (dwarf2_die_debug)
1698 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
1699 offset, phex (signature, sizeof (signature)));
1700
1701 info_ptr = info_ptr + initial_length_size + length;
1702 }
1703
1704 dwarf2_per_objfile->signatured_types = types_htab;
1705
1706 return 1;
1707 }
1708
1709 /* Lookup a signature based type.
1710 Returns NULL if SIG is not present in the table. */
1711
1712 static struct signatured_type *
1713 lookup_signatured_type (struct objfile *objfile, ULONGEST sig)
1714 {
1715 struct signatured_type find_entry, *entry;
1716
1717 if (dwarf2_per_objfile->signatured_types == NULL)
1718 {
1719 complaint (&symfile_complaints,
1720 _("missing `.debug_types' section for DW_FORM_sig8 die"));
1721 return 0;
1722 }
1723
1724 find_entry.signature = sig;
1725 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
1726 return entry;
1727 }
1728
1729 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
1730
1731 static void
1732 init_cu_die_reader (struct die_reader_specs *reader,
1733 struct dwarf2_cu *cu)
1734 {
1735 reader->abfd = cu->objfile->obfd;
1736 reader->cu = cu;
1737 if (cu->per_cu->from_debug_types)
1738 {
1739 gdb_assert (dwarf2_per_objfile->types.readin);
1740 reader->buffer = dwarf2_per_objfile->types.buffer;
1741 }
1742 else
1743 {
1744 gdb_assert (dwarf2_per_objfile->info.readin);
1745 reader->buffer = dwarf2_per_objfile->info.buffer;
1746 }
1747 }
1748
1749 /* Find the base address of the compilation unit for range lists and
1750 location lists. It will normally be specified by DW_AT_low_pc.
1751 In DWARF-3 draft 4, the base address could be overridden by
1752 DW_AT_entry_pc. It's been removed, but GCC still uses this for
1753 compilation units with discontinuous ranges. */
1754
1755 static void
1756 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
1757 {
1758 struct attribute *attr;
1759
1760 cu->base_known = 0;
1761 cu->base_address = 0;
1762
1763 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
1764 if (attr)
1765 {
1766 cu->base_address = DW_ADDR (attr);
1767 cu->base_known = 1;
1768 }
1769 else
1770 {
1771 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
1772 if (attr)
1773 {
1774 cu->base_address = DW_ADDR (attr);
1775 cu->base_known = 1;
1776 }
1777 }
1778 }
1779
1780 /* Subroutine of process_type_comp_unit and dwarf2_build_psymtabs_hard
1781 to combine the common parts.
1782 Process a compilation unit for a psymtab.
1783 BUFFER is a pointer to the beginning of the dwarf section buffer,
1784 either .debug_info or debug_types.
1785 INFO_PTR is a pointer to the start of the CU.
1786 Returns a pointer to the next CU. */
1787
1788 static gdb_byte *
1789 process_psymtab_comp_unit (struct objfile *objfile,
1790 struct dwarf2_per_cu_data *this_cu,
1791 gdb_byte *buffer, gdb_byte *info_ptr,
1792 unsigned int buffer_size)
1793 {
1794 bfd *abfd = objfile->obfd;
1795 gdb_byte *beg_of_comp_unit = info_ptr;
1796 struct die_info *comp_unit_die;
1797 struct partial_symtab *pst;
1798 CORE_ADDR baseaddr;
1799 struct cleanup *back_to_inner;
1800 struct dwarf2_cu cu;
1801 int has_children, has_pc_info;
1802 struct attribute *attr;
1803 CORE_ADDR best_lowpc = 0, best_highpc = 0;
1804 struct die_reader_specs reader_specs;
1805
1806 memset (&cu, 0, sizeof (cu));
1807 cu.objfile = objfile;
1808 obstack_init (&cu.comp_unit_obstack);
1809
1810 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
1811
1812 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
1813 buffer, buffer_size,
1814 abfd);
1815
1816 /* Complete the cu_header. */
1817 cu.header.offset = beg_of_comp_unit - buffer;
1818 cu.header.first_die_offset = info_ptr - beg_of_comp_unit;
1819
1820 cu.list_in_scope = &file_symbols;
1821
1822 /* If this compilation unit was already read in, free the
1823 cached copy in order to read it in again. This is
1824 necessary because we skipped some symbols when we first
1825 read in the compilation unit (see load_partial_dies).
1826 This problem could be avoided, but the benefit is
1827 unclear. */
1828 if (this_cu->cu != NULL)
1829 free_one_cached_comp_unit (this_cu->cu);
1830
1831 /* Note that this is a pointer to our stack frame, being
1832 added to a global data structure. It will be cleaned up
1833 in free_stack_comp_unit when we finish with this
1834 compilation unit. */
1835 this_cu->cu = &cu;
1836 cu.per_cu = this_cu;
1837
1838 /* Read the abbrevs for this compilation unit into a table. */
1839 dwarf2_read_abbrevs (abfd, &cu);
1840 make_cleanup (dwarf2_free_abbrev_table, &cu);
1841
1842 /* Read the compilation unit die. */
1843 if (this_cu->from_debug_types)
1844 info_ptr += 8 /*signature*/ + cu.header.offset_size;
1845 init_cu_die_reader (&reader_specs, &cu);
1846 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
1847 &has_children);
1848
1849 if (this_cu->from_debug_types)
1850 {
1851 /* offset,length haven't been set yet for type units. */
1852 this_cu->offset = cu.header.offset;
1853 this_cu->length = cu.header.length + cu.header.initial_length_size;
1854 }
1855 else if (comp_unit_die->tag == DW_TAG_partial_unit)
1856 {
1857 info_ptr = (beg_of_comp_unit + cu.header.length
1858 + cu.header.initial_length_size);
1859 do_cleanups (back_to_inner);
1860 return info_ptr;
1861 }
1862
1863 /* Set the language we're debugging. */
1864 attr = dwarf2_attr (comp_unit_die, DW_AT_language, &cu);
1865 if (attr)
1866 set_cu_language (DW_UNSND (attr), &cu);
1867 else
1868 set_cu_language (language_minimal, &cu);
1869
1870 /* Allocate a new partial symbol table structure. */
1871 attr = dwarf2_attr (comp_unit_die, DW_AT_name, &cu);
1872 pst = start_psymtab_common (objfile, objfile->section_offsets,
1873 (attr != NULL) ? DW_STRING (attr) : "",
1874 /* TEXTLOW and TEXTHIGH are set below. */
1875 0,
1876 objfile->global_psymbols.next,
1877 objfile->static_psymbols.next);
1878
1879 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, &cu);
1880 if (attr != NULL)
1881 pst->dirname = DW_STRING (attr);
1882
1883 pst->read_symtab_private = this_cu;
1884
1885 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1886
1887 /* Store the function that reads in the rest of the symbol table */
1888 pst->read_symtab = dwarf2_psymtab_to_symtab;
1889
1890 this_cu->psymtab = pst;
1891
1892 dwarf2_find_base_address (comp_unit_die, &cu);
1893
1894 /* Possibly set the default values of LOWPC and HIGHPC from
1895 `DW_AT_ranges'. */
1896 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
1897 &best_highpc, &cu, pst);
1898 if (has_pc_info == 1 && best_lowpc < best_highpc)
1899 /* Store the contiguous range if it is not empty; it can be empty for
1900 CUs with no code. */
1901 addrmap_set_empty (objfile->psymtabs_addrmap,
1902 best_lowpc + baseaddr,
1903 best_highpc + baseaddr - 1, pst);
1904
1905 /* Check if comp unit has_children.
1906 If so, read the rest of the partial symbols from this comp unit.
1907 If not, there's no more debug_info for this comp unit. */
1908 if (has_children)
1909 {
1910 struct partial_die_info *first_die;
1911 CORE_ADDR lowpc, highpc;
1912
1913 lowpc = ((CORE_ADDR) -1);
1914 highpc = ((CORE_ADDR) 0);
1915
1916 first_die = load_partial_dies (abfd, buffer, info_ptr, 1, &cu);
1917
1918 scan_partial_symbols (first_die, &lowpc, &highpc,
1919 ! has_pc_info, &cu);
1920
1921 /* If we didn't find a lowpc, set it to highpc to avoid
1922 complaints from `maint check'. */
1923 if (lowpc == ((CORE_ADDR) -1))
1924 lowpc = highpc;
1925
1926 /* If the compilation unit didn't have an explicit address range,
1927 then use the information extracted from its child dies. */
1928 if (! has_pc_info)
1929 {
1930 best_lowpc = lowpc;
1931 best_highpc = highpc;
1932 }
1933 }
1934 pst->textlow = best_lowpc + baseaddr;
1935 pst->texthigh = best_highpc + baseaddr;
1936
1937 pst->n_global_syms = objfile->global_psymbols.next -
1938 (objfile->global_psymbols.list + pst->globals_offset);
1939 pst->n_static_syms = objfile->static_psymbols.next -
1940 (objfile->static_psymbols.list + pst->statics_offset);
1941 sort_pst_symbols (pst);
1942
1943 info_ptr = (beg_of_comp_unit + cu.header.length
1944 + cu.header.initial_length_size);
1945
1946 if (this_cu->from_debug_types)
1947 {
1948 /* It's not clear we want to do anything with stmt lists here.
1949 Waiting to see what gcc ultimately does. */
1950 }
1951 else
1952 {
1953 /* Get the list of files included in the current compilation unit,
1954 and build a psymtab for each of them. */
1955 dwarf2_build_include_psymtabs (&cu, comp_unit_die, pst);
1956 }
1957
1958 do_cleanups (back_to_inner);
1959
1960 return info_ptr;
1961 }
1962
1963 /* Traversal function for htab_traverse_noresize.
1964 Process one .debug_types comp-unit. */
1965
1966 static int
1967 process_type_comp_unit (void **slot, void *info)
1968 {
1969 struct signatured_type *entry = (struct signatured_type *) *slot;
1970 struct objfile *objfile = (struct objfile *) info;
1971 struct dwarf2_per_cu_data *this_cu;
1972
1973 this_cu = &entry->per_cu;
1974 this_cu->from_debug_types = 1;
1975
1976 gdb_assert (dwarf2_per_objfile->types.readin);
1977 process_psymtab_comp_unit (objfile, this_cu,
1978 dwarf2_per_objfile->types.buffer,
1979 dwarf2_per_objfile->types.buffer + entry->offset,
1980 dwarf2_per_objfile->types.size);
1981
1982 return 1;
1983 }
1984
1985 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
1986 Build partial symbol tables for the .debug_types comp-units. */
1987
1988 static void
1989 build_type_psymtabs (struct objfile *objfile)
1990 {
1991 if (! create_debug_types_hash_table (objfile))
1992 return;
1993
1994 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
1995 process_type_comp_unit, objfile);
1996 }
1997
1998 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
1999
2000 static void
2001 psymtabs_addrmap_cleanup (void *o)
2002 {
2003 struct objfile *objfile = o;
2004
2005 objfile->psymtabs_addrmap = NULL;
2006 }
2007
2008 /* Build the partial symbol table by doing a quick pass through the
2009 .debug_info and .debug_abbrev sections. */
2010
2011 static void
2012 dwarf2_build_psymtabs_hard (struct objfile *objfile)
2013 {
2014 gdb_byte *info_ptr;
2015 struct cleanup *back_to, *addrmap_cleanup;
2016 struct obstack temp_obstack;
2017
2018 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
2019 info_ptr = dwarf2_per_objfile->info.buffer;
2020
2021 /* Any cached compilation units will be linked by the per-objfile
2022 read_in_chain. Make sure to free them when we're done. */
2023 back_to = make_cleanup (free_cached_comp_units, NULL);
2024
2025 build_type_psymtabs (objfile);
2026
2027 create_all_comp_units (objfile);
2028
2029 /* Create a temporary address map on a temporary obstack. We later
2030 copy this to the final obstack. */
2031 obstack_init (&temp_obstack);
2032 make_cleanup_obstack_free (&temp_obstack);
2033 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
2034 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
2035
2036 /* Since the objects we're extracting from .debug_info vary in
2037 length, only the individual functions to extract them (like
2038 read_comp_unit_head and load_partial_die) can really know whether
2039 the buffer is large enough to hold another complete object.
2040
2041 At the moment, they don't actually check that. If .debug_info
2042 holds just one extra byte after the last compilation unit's dies,
2043 then read_comp_unit_head will happily read off the end of the
2044 buffer. read_partial_die is similarly casual. Those functions
2045 should be fixed.
2046
2047 For this loop condition, simply checking whether there's any data
2048 left at all should be sufficient. */
2049
2050 while (info_ptr < (dwarf2_per_objfile->info.buffer
2051 + dwarf2_per_objfile->info.size))
2052 {
2053 struct dwarf2_per_cu_data *this_cu;
2054
2055 this_cu = dwarf2_find_comp_unit (info_ptr - dwarf2_per_objfile->info.buffer,
2056 objfile);
2057
2058 info_ptr = process_psymtab_comp_unit (objfile, this_cu,
2059 dwarf2_per_objfile->info.buffer,
2060 info_ptr,
2061 dwarf2_per_objfile->info.size);
2062 }
2063
2064 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
2065 &objfile->objfile_obstack);
2066 discard_cleanups (addrmap_cleanup);
2067
2068 do_cleanups (back_to);
2069 }
2070
2071 /* Load the partial DIEs for a secondary CU into memory. */
2072
2073 static void
2074 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu,
2075 struct objfile *objfile)
2076 {
2077 bfd *abfd = objfile->obfd;
2078 gdb_byte *info_ptr, *beg_of_comp_unit;
2079 struct die_info *comp_unit_die;
2080 struct dwarf2_cu *cu;
2081 struct cleanup *back_to;
2082 struct attribute *attr;
2083 int has_children;
2084 struct die_reader_specs reader_specs;
2085
2086 gdb_assert (! this_cu->from_debug_types);
2087
2088 gdb_assert (dwarf2_per_objfile->info.readin);
2089 info_ptr = dwarf2_per_objfile->info.buffer + this_cu->offset;
2090 beg_of_comp_unit = info_ptr;
2091
2092 cu = alloc_one_comp_unit (objfile);
2093
2094 /* ??? Missing cleanup for CU? */
2095
2096 /* Link this compilation unit into the compilation unit tree. */
2097 this_cu->cu = cu;
2098 cu->per_cu = this_cu;
2099 cu->type_hash = this_cu->type_hash;
2100
2101 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr,
2102 dwarf2_per_objfile->info.buffer,
2103 dwarf2_per_objfile->info.size,
2104 abfd);
2105
2106 /* Complete the cu_header. */
2107 cu->header.offset = this_cu->offset;
2108 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
2109
2110 /* Read the abbrevs for this compilation unit into a table. */
2111 dwarf2_read_abbrevs (abfd, cu);
2112 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
2113
2114 /* Read the compilation unit die. */
2115 init_cu_die_reader (&reader_specs, cu);
2116 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
2117 &has_children);
2118
2119 /* Set the language we're debugging. */
2120 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
2121 if (attr)
2122 set_cu_language (DW_UNSND (attr), cu);
2123 else
2124 set_cu_language (language_minimal, cu);
2125
2126 /* Check if comp unit has_children.
2127 If so, read the rest of the partial symbols from this comp unit.
2128 If not, there's no more debug_info for this comp unit. */
2129 if (has_children)
2130 load_partial_dies (abfd, dwarf2_per_objfile->info.buffer, info_ptr, 0, cu);
2131
2132 do_cleanups (back_to);
2133 }
2134
2135 /* Create a list of all compilation units in OBJFILE. We do this only
2136 if an inter-comp-unit reference is found; presumably if there is one,
2137 there will be many, and one will occur early in the .debug_info section.
2138 So there's no point in building this list incrementally. */
2139
2140 static void
2141 create_all_comp_units (struct objfile *objfile)
2142 {
2143 int n_allocated;
2144 int n_comp_units;
2145 struct dwarf2_per_cu_data **all_comp_units;
2146 gdb_byte *info_ptr;
2147
2148 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
2149 info_ptr = dwarf2_per_objfile->info.buffer;
2150
2151 n_comp_units = 0;
2152 n_allocated = 10;
2153 all_comp_units = xmalloc (n_allocated
2154 * sizeof (struct dwarf2_per_cu_data *));
2155
2156 while (info_ptr < dwarf2_per_objfile->info.buffer + dwarf2_per_objfile->info.size)
2157 {
2158 unsigned int length, initial_length_size;
2159 struct dwarf2_per_cu_data *this_cu;
2160 unsigned int offset;
2161
2162 offset = info_ptr - dwarf2_per_objfile->info.buffer;
2163
2164 /* Read just enough information to find out where the next
2165 compilation unit is. */
2166 length = read_initial_length (objfile->obfd, info_ptr,
2167 &initial_length_size);
2168
2169 /* Save the compilation unit for later lookup. */
2170 this_cu = obstack_alloc (&objfile->objfile_obstack,
2171 sizeof (struct dwarf2_per_cu_data));
2172 memset (this_cu, 0, sizeof (*this_cu));
2173 this_cu->offset = offset;
2174 this_cu->length = length + initial_length_size;
2175
2176 if (n_comp_units == n_allocated)
2177 {
2178 n_allocated *= 2;
2179 all_comp_units = xrealloc (all_comp_units,
2180 n_allocated
2181 * sizeof (struct dwarf2_per_cu_data *));
2182 }
2183 all_comp_units[n_comp_units++] = this_cu;
2184
2185 info_ptr = info_ptr + this_cu->length;
2186 }
2187
2188 dwarf2_per_objfile->all_comp_units
2189 = obstack_alloc (&objfile->objfile_obstack,
2190 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
2191 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
2192 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
2193 xfree (all_comp_units);
2194 dwarf2_per_objfile->n_comp_units = n_comp_units;
2195 }
2196
2197 /* Process all loaded DIEs for compilation unit CU, starting at
2198 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
2199 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
2200 DW_AT_ranges). If NEED_PC is set, then this function will set
2201 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
2202 and record the covered ranges in the addrmap. */
2203
2204 static void
2205 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
2206 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
2207 {
2208 struct partial_die_info *pdi;
2209
2210 /* Now, march along the PDI's, descending into ones which have
2211 interesting children but skipping the children of the other ones,
2212 until we reach the end of the compilation unit. */
2213
2214 pdi = first_die;
2215
2216 while (pdi != NULL)
2217 {
2218 fixup_partial_die (pdi, cu);
2219
2220 /* Anonymous namespaces or modules have no name but have interesting
2221 children, so we need to look at them. Ditto for anonymous
2222 enums. */
2223
2224 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
2225 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type)
2226 {
2227 switch (pdi->tag)
2228 {
2229 case DW_TAG_subprogram:
2230 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
2231 break;
2232 case DW_TAG_variable:
2233 case DW_TAG_typedef:
2234 case DW_TAG_union_type:
2235 if (!pdi->is_declaration)
2236 {
2237 add_partial_symbol (pdi, cu);
2238 }
2239 break;
2240 case DW_TAG_class_type:
2241 case DW_TAG_interface_type:
2242 case DW_TAG_structure_type:
2243 if (!pdi->is_declaration)
2244 {
2245 add_partial_symbol (pdi, cu);
2246 }
2247 break;
2248 case DW_TAG_enumeration_type:
2249 if (!pdi->is_declaration)
2250 add_partial_enumeration (pdi, cu);
2251 break;
2252 case DW_TAG_base_type:
2253 case DW_TAG_subrange_type:
2254 /* File scope base type definitions are added to the partial
2255 symbol table. */
2256 add_partial_symbol (pdi, cu);
2257 break;
2258 case DW_TAG_namespace:
2259 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
2260 break;
2261 case DW_TAG_module:
2262 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
2263 break;
2264 default:
2265 break;
2266 }
2267 }
2268
2269 /* If the die has a sibling, skip to the sibling. */
2270
2271 pdi = pdi->die_sibling;
2272 }
2273 }
2274
2275 /* Functions used to compute the fully scoped name of a partial DIE.
2276
2277 Normally, this is simple. For C++, the parent DIE's fully scoped
2278 name is concatenated with "::" and the partial DIE's name. For
2279 Java, the same thing occurs except that "." is used instead of "::".
2280 Enumerators are an exception; they use the scope of their parent
2281 enumeration type, i.e. the name of the enumeration type is not
2282 prepended to the enumerator.
2283
2284 There are two complexities. One is DW_AT_specification; in this
2285 case "parent" means the parent of the target of the specification,
2286 instead of the direct parent of the DIE. The other is compilers
2287 which do not emit DW_TAG_namespace; in this case we try to guess
2288 the fully qualified name of structure types from their members'
2289 linkage names. This must be done using the DIE's children rather
2290 than the children of any DW_AT_specification target. We only need
2291 to do this for structures at the top level, i.e. if the target of
2292 any DW_AT_specification (if any; otherwise the DIE itself) does not
2293 have a parent. */
2294
2295 /* Compute the scope prefix associated with PDI's parent, in
2296 compilation unit CU. The result will be allocated on CU's
2297 comp_unit_obstack, or a copy of the already allocated PDI->NAME
2298 field. NULL is returned if no prefix is necessary. */
2299 static char *
2300 partial_die_parent_scope (struct partial_die_info *pdi,
2301 struct dwarf2_cu *cu)
2302 {
2303 char *grandparent_scope;
2304 struct partial_die_info *parent, *real_pdi;
2305
2306 /* We need to look at our parent DIE; if we have a DW_AT_specification,
2307 then this means the parent of the specification DIE. */
2308
2309 real_pdi = pdi;
2310 while (real_pdi->has_specification)
2311 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
2312
2313 parent = real_pdi->die_parent;
2314 if (parent == NULL)
2315 return NULL;
2316
2317 if (parent->scope_set)
2318 return parent->scope;
2319
2320 fixup_partial_die (parent, cu);
2321
2322 grandparent_scope = partial_die_parent_scope (parent, cu);
2323
2324 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
2325 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
2326 Work around this problem here. */
2327 if (cu->language == language_cplus
2328 && parent->tag == DW_TAG_namespace
2329 && strcmp (parent->name, "::") == 0
2330 && grandparent_scope == NULL)
2331 {
2332 parent->scope = NULL;
2333 parent->scope_set = 1;
2334 return NULL;
2335 }
2336
2337 if (parent->tag == DW_TAG_namespace
2338 || parent->tag == DW_TAG_module
2339 || parent->tag == DW_TAG_structure_type
2340 || parent->tag == DW_TAG_class_type
2341 || parent->tag == DW_TAG_interface_type
2342 || parent->tag == DW_TAG_union_type
2343 || parent->tag == DW_TAG_enumeration_type)
2344 {
2345 if (grandparent_scope == NULL)
2346 parent->scope = parent->name;
2347 else
2348 parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope,
2349 parent->name, 0, cu);
2350 }
2351 else if (parent->tag == DW_TAG_enumerator)
2352 /* Enumerators should not get the name of the enumeration as a prefix. */
2353 parent->scope = grandparent_scope;
2354 else
2355 {
2356 /* FIXME drow/2004-04-01: What should we be doing with
2357 function-local names? For partial symbols, we should probably be
2358 ignoring them. */
2359 complaint (&symfile_complaints,
2360 _("unhandled containing DIE tag %d for DIE at %d"),
2361 parent->tag, pdi->offset);
2362 parent->scope = grandparent_scope;
2363 }
2364
2365 parent->scope_set = 1;
2366 return parent->scope;
2367 }
2368
2369 /* Return the fully scoped name associated with PDI, from compilation unit
2370 CU. The result will be allocated with malloc. */
2371 static char *
2372 partial_die_full_name (struct partial_die_info *pdi,
2373 struct dwarf2_cu *cu)
2374 {
2375 char *parent_scope;
2376
2377 parent_scope = partial_die_parent_scope (pdi, cu);
2378 if (parent_scope == NULL)
2379 return NULL;
2380 else
2381 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
2382 }
2383
2384 static void
2385 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
2386 {
2387 struct objfile *objfile = cu->objfile;
2388 CORE_ADDR addr = 0;
2389 char *actual_name = NULL;
2390 const struct partial_symbol *psym = NULL;
2391 CORE_ADDR baseaddr;
2392 int built_actual_name = 0;
2393
2394 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2395
2396 actual_name = partial_die_full_name (pdi, cu);
2397 if (actual_name)
2398 built_actual_name = 1;
2399
2400 if (actual_name == NULL)
2401 actual_name = pdi->name;
2402
2403 switch (pdi->tag)
2404 {
2405 case DW_TAG_subprogram:
2406 if (pdi->is_external || cu->language == language_ada)
2407 {
2408 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
2409 of the global scope. But in Ada, we want to be able to access
2410 nested procedures globally. So all Ada subprograms are stored
2411 in the global scope. */
2412 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
2413 mst_text, objfile); */
2414 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
2415 built_actual_name,
2416 VAR_DOMAIN, LOC_BLOCK,
2417 &objfile->global_psymbols,
2418 0, pdi->lowpc + baseaddr,
2419 cu->language, objfile);
2420 }
2421 else
2422 {
2423 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
2424 mst_file_text, objfile); */
2425 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
2426 built_actual_name,
2427 VAR_DOMAIN, LOC_BLOCK,
2428 &objfile->static_psymbols,
2429 0, pdi->lowpc + baseaddr,
2430 cu->language, objfile);
2431 }
2432 break;
2433 case DW_TAG_variable:
2434 if (pdi->is_external)
2435 {
2436 /* Global Variable.
2437 Don't enter into the minimal symbol tables as there is
2438 a minimal symbol table entry from the ELF symbols already.
2439 Enter into partial symbol table if it has a location
2440 descriptor or a type.
2441 If the location descriptor is missing, new_symbol will create
2442 a LOC_UNRESOLVED symbol, the address of the variable will then
2443 be determined from the minimal symbol table whenever the variable
2444 is referenced.
2445 The address for the partial symbol table entry is not
2446 used by GDB, but it comes in handy for debugging partial symbol
2447 table building. */
2448
2449 if (pdi->locdesc)
2450 addr = decode_locdesc (pdi->locdesc, cu);
2451 if (pdi->locdesc || pdi->has_type)
2452 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
2453 built_actual_name,
2454 VAR_DOMAIN, LOC_STATIC,
2455 &objfile->global_psymbols,
2456 0, addr + baseaddr,
2457 cu->language, objfile);
2458 }
2459 else
2460 {
2461 /* Static Variable. Skip symbols without location descriptors. */
2462 if (pdi->locdesc == NULL)
2463 {
2464 if (built_actual_name)
2465 xfree (actual_name);
2466 return;
2467 }
2468 addr = decode_locdesc (pdi->locdesc, cu);
2469 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
2470 mst_file_data, objfile); */
2471 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
2472 built_actual_name,
2473 VAR_DOMAIN, LOC_STATIC,
2474 &objfile->static_psymbols,
2475 0, addr + baseaddr,
2476 cu->language, objfile);
2477 }
2478 break;
2479 case DW_TAG_typedef:
2480 case DW_TAG_base_type:
2481 case DW_TAG_subrange_type:
2482 add_psymbol_to_list (actual_name, strlen (actual_name),
2483 built_actual_name,
2484 VAR_DOMAIN, LOC_TYPEDEF,
2485 &objfile->static_psymbols,
2486 0, (CORE_ADDR) 0, cu->language, objfile);
2487 break;
2488 case DW_TAG_namespace:
2489 add_psymbol_to_list (actual_name, strlen (actual_name),
2490 built_actual_name,
2491 VAR_DOMAIN, LOC_TYPEDEF,
2492 &objfile->global_psymbols,
2493 0, (CORE_ADDR) 0, cu->language, objfile);
2494 break;
2495 case DW_TAG_class_type:
2496 case DW_TAG_interface_type:
2497 case DW_TAG_structure_type:
2498 case DW_TAG_union_type:
2499 case DW_TAG_enumeration_type:
2500 /* Skip external references. The DWARF standard says in the section
2501 about "Structure, Union, and Class Type Entries": "An incomplete
2502 structure, union or class type is represented by a structure,
2503 union or class entry that does not have a byte size attribute
2504 and that has a DW_AT_declaration attribute." */
2505 if (!pdi->has_byte_size && pdi->is_declaration)
2506 {
2507 if (built_actual_name)
2508 xfree (actual_name);
2509 return;
2510 }
2511
2512 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
2513 static vs. global. */
2514 add_psymbol_to_list (actual_name, strlen (actual_name),
2515 built_actual_name,
2516 STRUCT_DOMAIN, LOC_TYPEDEF,
2517 (cu->language == language_cplus
2518 || cu->language == language_java)
2519 ? &objfile->global_psymbols
2520 : &objfile->static_psymbols,
2521 0, (CORE_ADDR) 0, cu->language, objfile);
2522
2523 break;
2524 case DW_TAG_enumerator:
2525 add_psymbol_to_list (actual_name, strlen (actual_name),
2526 built_actual_name,
2527 VAR_DOMAIN, LOC_CONST,
2528 (cu->language == language_cplus
2529 || cu->language == language_java)
2530 ? &objfile->global_psymbols
2531 : &objfile->static_psymbols,
2532 0, (CORE_ADDR) 0, cu->language, objfile);
2533 break;
2534 default:
2535 break;
2536 }
2537
2538 if (built_actual_name)
2539 xfree (actual_name);
2540 }
2541
2542 /* Read a partial die corresponding to a namespace; also, add a symbol
2543 corresponding to that namespace to the symbol table. NAMESPACE is
2544 the name of the enclosing namespace. */
2545
2546 static void
2547 add_partial_namespace (struct partial_die_info *pdi,
2548 CORE_ADDR *lowpc, CORE_ADDR *highpc,
2549 int need_pc, struct dwarf2_cu *cu)
2550 {
2551 /* Add a symbol for the namespace. */
2552
2553 add_partial_symbol (pdi, cu);
2554
2555 /* Now scan partial symbols in that namespace. */
2556
2557 if (pdi->has_children)
2558 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
2559 }
2560
2561 /* Read a partial die corresponding to a Fortran module. */
2562
2563 static void
2564 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
2565 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
2566 {
2567 /* Now scan partial symbols in that module. */
2568
2569 if (pdi->has_children)
2570 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
2571 }
2572
2573 /* Read a partial die corresponding to a subprogram and create a partial
2574 symbol for that subprogram. When the CU language allows it, this
2575 routine also defines a partial symbol for each nested subprogram
2576 that this subprogram contains.
2577
2578 DIE my also be a lexical block, in which case we simply search
2579 recursively for suprograms defined inside that lexical block.
2580 Again, this is only performed when the CU language allows this
2581 type of definitions. */
2582
2583 static void
2584 add_partial_subprogram (struct partial_die_info *pdi,
2585 CORE_ADDR *lowpc, CORE_ADDR *highpc,
2586 int need_pc, struct dwarf2_cu *cu)
2587 {
2588 if (pdi->tag == DW_TAG_subprogram)
2589 {
2590 if (pdi->has_pc_info)
2591 {
2592 if (pdi->lowpc < *lowpc)
2593 *lowpc = pdi->lowpc;
2594 if (pdi->highpc > *highpc)
2595 *highpc = pdi->highpc;
2596 if (need_pc)
2597 {
2598 CORE_ADDR baseaddr;
2599 struct objfile *objfile = cu->objfile;
2600
2601 baseaddr = ANOFFSET (objfile->section_offsets,
2602 SECT_OFF_TEXT (objfile));
2603 addrmap_set_empty (objfile->psymtabs_addrmap,
2604 pdi->lowpc + baseaddr,
2605 pdi->highpc - 1 + baseaddr,
2606 cu->per_cu->psymtab);
2607 }
2608 if (!pdi->is_declaration)
2609 /* Ignore subprogram DIEs that do not have a name, they are
2610 illegal. Do not emit a complaint at this point, we will
2611 do so when we convert this psymtab into a symtab. */
2612 if (pdi->name)
2613 add_partial_symbol (pdi, cu);
2614 }
2615 }
2616
2617 if (! pdi->has_children)
2618 return;
2619
2620 if (cu->language == language_ada)
2621 {
2622 pdi = pdi->die_child;
2623 while (pdi != NULL)
2624 {
2625 fixup_partial_die (pdi, cu);
2626 if (pdi->tag == DW_TAG_subprogram
2627 || pdi->tag == DW_TAG_lexical_block)
2628 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
2629 pdi = pdi->die_sibling;
2630 }
2631 }
2632 }
2633
2634 /* See if we can figure out if the class lives in a namespace. We do
2635 this by looking for a member function; its demangled name will
2636 contain namespace info, if there is any. */
2637
2638 static void
2639 guess_structure_name (struct partial_die_info *struct_pdi,
2640 struct dwarf2_cu *cu)
2641 {
2642 if ((cu->language == language_cplus
2643 || cu->language == language_java)
2644 && cu->has_namespace_info == 0
2645 && struct_pdi->has_children)
2646 {
2647 /* NOTE: carlton/2003-10-07: Getting the info this way changes
2648 what template types look like, because the demangler
2649 frequently doesn't give the same name as the debug info. We
2650 could fix this by only using the demangled name to get the
2651 prefix (but see comment in read_structure_type). */
2652
2653 struct partial_die_info *real_pdi;
2654
2655 /* If this DIE (this DIE's specification, if any) has a parent, then
2656 we should not do this. We'll prepend the parent's fully qualified
2657 name when we create the partial symbol. */
2658
2659 real_pdi = struct_pdi;
2660 while (real_pdi->has_specification)
2661 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
2662
2663 if (real_pdi->die_parent != NULL)
2664 return;
2665 }
2666 }
2667
2668 /* Read a partial die corresponding to an enumeration type. */
2669
2670 static void
2671 add_partial_enumeration (struct partial_die_info *enum_pdi,
2672 struct dwarf2_cu *cu)
2673 {
2674 struct partial_die_info *pdi;
2675
2676 if (enum_pdi->name != NULL)
2677 add_partial_symbol (enum_pdi, cu);
2678
2679 pdi = enum_pdi->die_child;
2680 while (pdi)
2681 {
2682 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
2683 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
2684 else
2685 add_partial_symbol (pdi, cu);
2686 pdi = pdi->die_sibling;
2687 }
2688 }
2689
2690 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
2691 Return the corresponding abbrev, or NULL if the number is zero (indicating
2692 an empty DIE). In either case *BYTES_READ will be set to the length of
2693 the initial number. */
2694
2695 static struct abbrev_info *
2696 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
2697 struct dwarf2_cu *cu)
2698 {
2699 bfd *abfd = cu->objfile->obfd;
2700 unsigned int abbrev_number;
2701 struct abbrev_info *abbrev;
2702
2703 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
2704
2705 if (abbrev_number == 0)
2706 return NULL;
2707
2708 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
2709 if (!abbrev)
2710 {
2711 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"), abbrev_number,
2712 bfd_get_filename (abfd));
2713 }
2714
2715 return abbrev;
2716 }
2717
2718 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
2719 Returns a pointer to the end of a series of DIEs, terminated by an empty
2720 DIE. Any children of the skipped DIEs will also be skipped. */
2721
2722 static gdb_byte *
2723 skip_children (gdb_byte *buffer, gdb_byte *info_ptr, struct dwarf2_cu *cu)
2724 {
2725 struct abbrev_info *abbrev;
2726 unsigned int bytes_read;
2727
2728 while (1)
2729 {
2730 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
2731 if (abbrev == NULL)
2732 return info_ptr + bytes_read;
2733 else
2734 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
2735 }
2736 }
2737
2738 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
2739 INFO_PTR should point just after the initial uleb128 of a DIE, and the
2740 abbrev corresponding to that skipped uleb128 should be passed in
2741 ABBREV. Returns a pointer to this DIE's sibling, skipping any
2742 children. */
2743
2744 static gdb_byte *
2745 skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
2746 struct abbrev_info *abbrev, struct dwarf2_cu *cu)
2747 {
2748 unsigned int bytes_read;
2749 struct attribute attr;
2750 bfd *abfd = cu->objfile->obfd;
2751 unsigned int form, i;
2752
2753 for (i = 0; i < abbrev->num_attrs; i++)
2754 {
2755 /* The only abbrev we care about is DW_AT_sibling. */
2756 if (abbrev->attrs[i].name == DW_AT_sibling)
2757 {
2758 read_attribute (&attr, &abbrev->attrs[i],
2759 abfd, info_ptr, cu);
2760 if (attr.form == DW_FORM_ref_addr)
2761 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
2762 else
2763 return buffer + dwarf2_get_ref_die_offset (&attr);
2764 }
2765
2766 /* If it isn't DW_AT_sibling, skip this attribute. */
2767 form = abbrev->attrs[i].form;
2768 skip_attribute:
2769 switch (form)
2770 {
2771 case DW_FORM_ref_addr:
2772 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
2773 and later it is offset sized. */
2774 if (cu->header.version == 2)
2775 info_ptr += cu->header.addr_size;
2776 else
2777 info_ptr += cu->header.offset_size;
2778 break;
2779 case DW_FORM_addr:
2780 info_ptr += cu->header.addr_size;
2781 break;
2782 case DW_FORM_data1:
2783 case DW_FORM_ref1:
2784 case DW_FORM_flag:
2785 info_ptr += 1;
2786 break;
2787 case DW_FORM_flag_present:
2788 break;
2789 case DW_FORM_data2:
2790 case DW_FORM_ref2:
2791 info_ptr += 2;
2792 break;
2793 case DW_FORM_data4:
2794 case DW_FORM_ref4:
2795 info_ptr += 4;
2796 break;
2797 case DW_FORM_data8:
2798 case DW_FORM_ref8:
2799 case DW_FORM_sig8:
2800 info_ptr += 8;
2801 break;
2802 case DW_FORM_string:
2803 read_string (abfd, info_ptr, &bytes_read);
2804 info_ptr += bytes_read;
2805 break;
2806 case DW_FORM_sec_offset:
2807 case DW_FORM_strp:
2808 info_ptr += cu->header.offset_size;
2809 break;
2810 case DW_FORM_exprloc:
2811 case DW_FORM_block:
2812 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2813 info_ptr += bytes_read;
2814 break;
2815 case DW_FORM_block1:
2816 info_ptr += 1 + read_1_byte (abfd, info_ptr);
2817 break;
2818 case DW_FORM_block2:
2819 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
2820 break;
2821 case DW_FORM_block4:
2822 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
2823 break;
2824 case DW_FORM_sdata:
2825 case DW_FORM_udata:
2826 case DW_FORM_ref_udata:
2827 info_ptr = skip_leb128 (abfd, info_ptr);
2828 break;
2829 case DW_FORM_indirect:
2830 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2831 info_ptr += bytes_read;
2832 /* We need to continue parsing from here, so just go back to
2833 the top. */
2834 goto skip_attribute;
2835
2836 default:
2837 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
2838 dwarf_form_name (form),
2839 bfd_get_filename (abfd));
2840 }
2841 }
2842
2843 if (abbrev->has_children)
2844 return skip_children (buffer, info_ptr, cu);
2845 else
2846 return info_ptr;
2847 }
2848
2849 /* Locate ORIG_PDI's sibling.
2850 INFO_PTR should point to the start of the next DIE after ORIG_PDI
2851 in BUFFER. */
2852
2853 static gdb_byte *
2854 locate_pdi_sibling (struct partial_die_info *orig_pdi,
2855 gdb_byte *buffer, gdb_byte *info_ptr,
2856 bfd *abfd, struct dwarf2_cu *cu)
2857 {
2858 /* Do we know the sibling already? */
2859
2860 if (orig_pdi->sibling)
2861 return orig_pdi->sibling;
2862
2863 /* Are there any children to deal with? */
2864
2865 if (!orig_pdi->has_children)
2866 return info_ptr;
2867
2868 /* Skip the children the long way. */
2869
2870 return skip_children (buffer, info_ptr, cu);
2871 }
2872
2873 /* Expand this partial symbol table into a full symbol table. */
2874
2875 static void
2876 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
2877 {
2878 /* FIXME: This is barely more than a stub. */
2879 if (pst != NULL)
2880 {
2881 if (pst->readin)
2882 {
2883 warning (_("bug: psymtab for %s is already read in."), pst->filename);
2884 }
2885 else
2886 {
2887 if (info_verbose)
2888 {
2889 printf_filtered (_("Reading in symbols for %s..."), pst->filename);
2890 gdb_flush (gdb_stdout);
2891 }
2892
2893 /* Restore our global data. */
2894 dwarf2_per_objfile = objfile_data (pst->objfile,
2895 dwarf2_objfile_data_key);
2896
2897 /* If this psymtab is constructed from a debug-only objfile, the
2898 has_section_at_zero flag will not necessarily be correct. We
2899 can get the correct value for this flag by looking at the data
2900 associated with the (presumably stripped) associated objfile. */
2901 if (pst->objfile->separate_debug_objfile_backlink)
2902 {
2903 struct dwarf2_per_objfile *dpo_backlink
2904 = objfile_data (pst->objfile->separate_debug_objfile_backlink,
2905 dwarf2_objfile_data_key);
2906
2907 dwarf2_per_objfile->has_section_at_zero
2908 = dpo_backlink->has_section_at_zero;
2909 }
2910
2911 psymtab_to_symtab_1 (pst);
2912
2913 /* Finish up the debug error message. */
2914 if (info_verbose)
2915 printf_filtered (_("done.\n"));
2916 }
2917 }
2918 }
2919
2920 /* Add PER_CU to the queue. */
2921
2922 static void
2923 queue_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
2924 {
2925 struct dwarf2_queue_item *item;
2926
2927 per_cu->queued = 1;
2928 item = xmalloc (sizeof (*item));
2929 item->per_cu = per_cu;
2930 item->next = NULL;
2931
2932 if (dwarf2_queue == NULL)
2933 dwarf2_queue = item;
2934 else
2935 dwarf2_queue_tail->next = item;
2936
2937 dwarf2_queue_tail = item;
2938 }
2939
2940 /* Process the queue. */
2941
2942 static void
2943 process_queue (struct objfile *objfile)
2944 {
2945 struct dwarf2_queue_item *item, *next_item;
2946
2947 /* The queue starts out with one item, but following a DIE reference
2948 may load a new CU, adding it to the end of the queue. */
2949 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
2950 {
2951 if (item->per_cu->psymtab && !item->per_cu->psymtab->readin)
2952 process_full_comp_unit (item->per_cu);
2953
2954 item->per_cu->queued = 0;
2955 next_item = item->next;
2956 xfree (item);
2957 }
2958
2959 dwarf2_queue_tail = NULL;
2960 }
2961
2962 /* Free all allocated queue entries. This function only releases anything if
2963 an error was thrown; if the queue was processed then it would have been
2964 freed as we went along. */
2965
2966 static void
2967 dwarf2_release_queue (void *dummy)
2968 {
2969 struct dwarf2_queue_item *item, *last;
2970
2971 item = dwarf2_queue;
2972 while (item)
2973 {
2974 /* Anything still marked queued is likely to be in an
2975 inconsistent state, so discard it. */
2976 if (item->per_cu->queued)
2977 {
2978 if (item->per_cu->cu != NULL)
2979 free_one_cached_comp_unit (item->per_cu->cu);
2980 item->per_cu->queued = 0;
2981 }
2982
2983 last = item;
2984 item = item->next;
2985 xfree (last);
2986 }
2987
2988 dwarf2_queue = dwarf2_queue_tail = NULL;
2989 }
2990
2991 /* Read in full symbols for PST, and anything it depends on. */
2992
2993 static void
2994 psymtab_to_symtab_1 (struct partial_symtab *pst)
2995 {
2996 struct dwarf2_per_cu_data *per_cu;
2997 struct cleanup *back_to;
2998 int i;
2999
3000 for (i = 0; i < pst->number_of_dependencies; i++)
3001 if (!pst->dependencies[i]->readin)
3002 {
3003 /* Inform about additional files that need to be read in. */
3004 if (info_verbose)
3005 {
3006 /* FIXME: i18n: Need to make this a single string. */
3007 fputs_filtered (" ", gdb_stdout);
3008 wrap_here ("");
3009 fputs_filtered ("and ", gdb_stdout);
3010 wrap_here ("");
3011 printf_filtered ("%s...", pst->dependencies[i]->filename);
3012 wrap_here (""); /* Flush output */
3013 gdb_flush (gdb_stdout);
3014 }
3015 psymtab_to_symtab_1 (pst->dependencies[i]);
3016 }
3017
3018 per_cu = pst->read_symtab_private;
3019
3020 if (per_cu == NULL)
3021 {
3022 /* It's an include file, no symbols to read for it.
3023 Everything is in the parent symtab. */
3024 pst->readin = 1;
3025 return;
3026 }
3027
3028 back_to = make_cleanup (dwarf2_release_queue, NULL);
3029
3030 queue_comp_unit (per_cu, pst->objfile);
3031
3032 if (per_cu->from_debug_types)
3033 read_signatured_type_at_offset (pst->objfile, per_cu->offset);
3034 else
3035 load_full_comp_unit (per_cu, pst->objfile);
3036
3037 process_queue (pst->objfile);
3038
3039 /* Age the cache, releasing compilation units that have not
3040 been used recently. */
3041 age_cached_comp_units ();
3042
3043 do_cleanups (back_to);
3044 }
3045
3046 /* Load the DIEs associated with PER_CU into memory. */
3047
3048 static void
3049 load_full_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
3050 {
3051 bfd *abfd = objfile->obfd;
3052 struct dwarf2_cu *cu;
3053 unsigned int offset;
3054 gdb_byte *info_ptr, *beg_of_comp_unit;
3055 struct cleanup *back_to, *free_cu_cleanup;
3056 struct attribute *attr;
3057
3058 gdb_assert (! per_cu->from_debug_types);
3059
3060 /* Set local variables from the partial symbol table info. */
3061 offset = per_cu->offset;
3062
3063 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3064 info_ptr = dwarf2_per_objfile->info.buffer + offset;
3065 beg_of_comp_unit = info_ptr;
3066
3067 cu = alloc_one_comp_unit (objfile);
3068
3069 /* If an error occurs while loading, release our storage. */
3070 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
3071
3072 /* Read in the comp_unit header. */
3073 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
3074
3075 /* Complete the cu_header. */
3076 cu->header.offset = offset;
3077 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
3078
3079 /* Read the abbrevs for this compilation unit. */
3080 dwarf2_read_abbrevs (abfd, cu);
3081 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
3082
3083 /* Link this compilation unit into the compilation unit tree. */
3084 per_cu->cu = cu;
3085 cu->per_cu = per_cu;
3086 cu->type_hash = per_cu->type_hash;
3087
3088 cu->dies = read_comp_unit (info_ptr, cu);
3089
3090 /* We try not to read any attributes in this function, because not
3091 all objfiles needed for references have been loaded yet, and symbol
3092 table processing isn't initialized. But we have to set the CU language,
3093 or we won't be able to build types correctly. */
3094 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
3095 if (attr)
3096 set_cu_language (DW_UNSND (attr), cu);
3097 else
3098 set_cu_language (language_minimal, cu);
3099
3100 /* Similarly, if we do not read the producer, we can not apply
3101 producer-specific interpretation. */
3102 attr = dwarf2_attr (cu->dies, DW_AT_producer, cu);
3103 if (attr)
3104 cu->producer = DW_STRING (attr);
3105
3106 /* Link this CU into read_in_chain. */
3107 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
3108 dwarf2_per_objfile->read_in_chain = per_cu;
3109
3110 do_cleanups (back_to);
3111
3112 /* We've successfully allocated this compilation unit. Let our caller
3113 clean it up when finished with it. */
3114 discard_cleanups (free_cu_cleanup);
3115 }
3116
3117 /* Generate full symbol information for PST and CU, whose DIEs have
3118 already been loaded into memory. */
3119
3120 static void
3121 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
3122 {
3123 struct partial_symtab *pst = per_cu->psymtab;
3124 struct dwarf2_cu *cu = per_cu->cu;
3125 struct objfile *objfile = pst->objfile;
3126 CORE_ADDR lowpc, highpc;
3127 struct symtab *symtab;
3128 struct cleanup *back_to;
3129 CORE_ADDR baseaddr;
3130
3131 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3132
3133 buildsym_init ();
3134 back_to = make_cleanup (really_free_pendings, NULL);
3135
3136 cu->list_in_scope = &file_symbols;
3137
3138 dwarf2_find_base_address (cu->dies, cu);
3139
3140 /* Do line number decoding in read_file_scope () */
3141 process_die (cu->dies, cu);
3142
3143 /* Some compilers don't define a DW_AT_high_pc attribute for the
3144 compilation unit. If the DW_AT_high_pc is missing, synthesize
3145 it, by scanning the DIE's below the compilation unit. */
3146 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
3147
3148 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
3149
3150 /* Set symtab language to language from DW_AT_language.
3151 If the compilation is from a C file generated by language preprocessors,
3152 do not set the language if it was already deduced by start_subfile. */
3153 if (symtab != NULL
3154 && !(cu->language == language_c && symtab->language != language_c))
3155 {
3156 symtab->language = cu->language;
3157 }
3158 pst->symtab = symtab;
3159 pst->readin = 1;
3160
3161 do_cleanups (back_to);
3162 }
3163
3164 /* Process a die and its children. */
3165
3166 static void
3167 process_die (struct die_info *die, struct dwarf2_cu *cu)
3168 {
3169 switch (die->tag)
3170 {
3171 case DW_TAG_padding:
3172 break;
3173 case DW_TAG_compile_unit:
3174 read_file_scope (die, cu);
3175 break;
3176 case DW_TAG_type_unit:
3177 read_type_unit_scope (die, cu);
3178 break;
3179 case DW_TAG_subprogram:
3180 case DW_TAG_inlined_subroutine:
3181 read_func_scope (die, cu);
3182 break;
3183 case DW_TAG_lexical_block:
3184 case DW_TAG_try_block:
3185 case DW_TAG_catch_block:
3186 read_lexical_block_scope (die, cu);
3187 break;
3188 case DW_TAG_class_type:
3189 case DW_TAG_interface_type:
3190 case DW_TAG_structure_type:
3191 case DW_TAG_union_type:
3192 process_structure_scope (die, cu);
3193 break;
3194 case DW_TAG_enumeration_type:
3195 process_enumeration_scope (die, cu);
3196 break;
3197
3198 /* These dies have a type, but processing them does not create
3199 a symbol or recurse to process the children. Therefore we can
3200 read them on-demand through read_type_die. */
3201 case DW_TAG_subroutine_type:
3202 case DW_TAG_set_type:
3203 case DW_TAG_array_type:
3204 case DW_TAG_pointer_type:
3205 case DW_TAG_ptr_to_member_type:
3206 case DW_TAG_reference_type:
3207 case DW_TAG_string_type:
3208 break;
3209
3210 case DW_TAG_base_type:
3211 case DW_TAG_subrange_type:
3212 case DW_TAG_typedef:
3213 case DW_TAG_const_type:
3214 case DW_TAG_volatile_type:
3215 /* Add a typedef symbol for the type definition, if it has a
3216 DW_AT_name. */
3217 new_symbol (die, read_type_die (die, cu), cu);
3218 break;
3219 case DW_TAG_common_block:
3220 read_common_block (die, cu);
3221 break;
3222 case DW_TAG_common_inclusion:
3223 break;
3224 case DW_TAG_namespace:
3225 processing_has_namespace_info = 1;
3226 read_namespace (die, cu);
3227 break;
3228 case DW_TAG_module:
3229 processing_has_namespace_info = 1;
3230 read_module (die, cu);
3231 break;
3232 case DW_TAG_imported_declaration:
3233 case DW_TAG_imported_module:
3234 processing_has_namespace_info = 1;
3235 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
3236 || cu->language != language_fortran))
3237 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
3238 dwarf_tag_name (die->tag));
3239 read_import_statement (die, cu);
3240 break;
3241 default:
3242 new_symbol (die, NULL, cu);
3243 break;
3244 }
3245 }
3246
3247 /* A helper function for dwarf2_compute_name which determines whether DIE
3248 needs to have the name of the scope prepended to the name listed in the
3249 die. */
3250
3251 static int
3252 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
3253 {
3254 struct attribute *attr;
3255
3256 switch (die->tag)
3257 {
3258 case DW_TAG_namespace:
3259 case DW_TAG_typedef:
3260 case DW_TAG_class_type:
3261 case DW_TAG_interface_type:
3262 case DW_TAG_structure_type:
3263 case DW_TAG_union_type:
3264 case DW_TAG_enumeration_type:
3265 case DW_TAG_enumerator:
3266 case DW_TAG_subprogram:
3267 case DW_TAG_member:
3268 return 1;
3269
3270 case DW_TAG_variable:
3271 /* We only need to prefix "globally" visible variables. These include
3272 any variable marked with DW_AT_external or any variable that
3273 lives in a namespace. [Variables in anonymous namespaces
3274 require prefixing, but they are not DW_AT_external.] */
3275
3276 if (dwarf2_attr (die, DW_AT_specification, cu))
3277 {
3278 struct dwarf2_cu *spec_cu = cu;
3279
3280 return die_needs_namespace (die_specification (die, &spec_cu),
3281 spec_cu);
3282 }
3283
3284 attr = dwarf2_attr (die, DW_AT_external, cu);
3285 if (attr == NULL && die->parent->tag != DW_TAG_namespace
3286 && die->parent->tag != DW_TAG_module)
3287 return 0;
3288 /* A variable in a lexical block of some kind does not need a
3289 namespace, even though in C++ such variables may be external
3290 and have a mangled name. */
3291 if (die->parent->tag == DW_TAG_lexical_block
3292 || die->parent->tag == DW_TAG_try_block
3293 || die->parent->tag == DW_TAG_catch_block
3294 || die->parent->tag == DW_TAG_subprogram)
3295 return 0;
3296 return 1;
3297
3298 default:
3299 return 0;
3300 }
3301 }
3302
3303 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
3304 compute the physname for the object, which include a method's
3305 formal parameters (C++/Java) and return type (Java).
3306
3307 For Ada, return the DIE's linkage name rather than the fully qualified
3308 name. PHYSNAME is ignored..
3309
3310 The result is allocated on the objfile_obstack and canonicalized. */
3311
3312 static const char *
3313 dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu,
3314 int physname)
3315 {
3316 if (name == NULL)
3317 name = dwarf2_name (die, cu);
3318
3319 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
3320 compute it by typename_concat inside GDB. */
3321 if (cu->language == language_ada
3322 || (cu->language == language_fortran && physname))
3323 {
3324 /* For Ada unit, we prefer the linkage name over the name, as
3325 the former contains the exported name, which the user expects
3326 to be able to reference. Ideally, we want the user to be able
3327 to reference this entity using either natural or linkage name,
3328 but we haven't started looking at this enhancement yet. */
3329 struct attribute *attr;
3330
3331 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
3332 if (attr == NULL)
3333 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
3334 if (attr && DW_STRING (attr))
3335 return DW_STRING (attr);
3336 }
3337
3338 /* These are the only languages we know how to qualify names in. */
3339 if (name != NULL
3340 && (cu->language == language_cplus || cu->language == language_java
3341 || cu->language == language_fortran))
3342 {
3343 if (die_needs_namespace (die, cu))
3344 {
3345 long length;
3346 char *prefix;
3347 struct ui_file *buf;
3348
3349 prefix = determine_prefix (die, cu);
3350 buf = mem_fileopen ();
3351 if (*prefix != '\0')
3352 {
3353 char *prefixed_name = typename_concat (NULL, prefix, name,
3354 physname, cu);
3355
3356 fputs_unfiltered (prefixed_name, buf);
3357 xfree (prefixed_name);
3358 }
3359 else
3360 fputs_unfiltered (name ? name : "", buf);
3361
3362 /* For Java and C++ methods, append formal parameter type
3363 information, if PHYSNAME. */
3364
3365 if (physname && die->tag == DW_TAG_subprogram
3366 && (cu->language == language_cplus
3367 || cu->language == language_java))
3368 {
3369 struct type *type = read_type_die (die, cu);
3370
3371 c_type_print_args (type, buf, 0, cu->language);
3372
3373 if (cu->language == language_java)
3374 {
3375 /* For java, we must append the return type to method
3376 names. */
3377 if (die->tag == DW_TAG_subprogram)
3378 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
3379 0, 0);
3380 }
3381 else if (cu->language == language_cplus)
3382 {
3383 if (TYPE_NFIELDS (type) > 0
3384 && TYPE_FIELD_ARTIFICIAL (type, 0)
3385 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0))))
3386 fputs_unfiltered (" const", buf);
3387 }
3388 }
3389
3390 name = ui_file_obsavestring (buf, &cu->objfile->objfile_obstack,
3391 &length);
3392 ui_file_delete (buf);
3393
3394 if (cu->language == language_cplus)
3395 {
3396 char *cname
3397 = dwarf2_canonicalize_name (name, cu,
3398 &cu->objfile->objfile_obstack);
3399
3400 if (cname != NULL)
3401 name = cname;
3402 }
3403 }
3404 }
3405
3406 return name;
3407 }
3408
3409 /* Return the fully qualified name of DIE, based on its DW_AT_name.
3410 If scope qualifiers are appropriate they will be added. The result
3411 will be allocated on the objfile_obstack, or NULL if the DIE does
3412 not have a name. NAME may either be from a previous call to
3413 dwarf2_name or NULL.
3414
3415 The output string will be canonicalized (if C++/Java). */
3416
3417 static const char *
3418 dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu)
3419 {
3420 return dwarf2_compute_name (name, die, cu, 0);
3421 }
3422
3423 /* Construct a physname for the given DIE in CU. NAME may either be
3424 from a previous call to dwarf2_name or NULL. The result will be
3425 allocated on the objfile_objstack or NULL if the DIE does not have a
3426 name.
3427
3428 The output string will be canonicalized (if C++/Java). */
3429
3430 static const char *
3431 dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu)
3432 {
3433 return dwarf2_compute_name (name, die, cu, 1);
3434 }
3435
3436 /* Read the import statement specified by the given die and record it. */
3437
3438 static void
3439 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
3440 {
3441 struct attribute *import_attr;
3442 struct die_info *imported_die;
3443 struct dwarf2_cu *imported_cu;
3444 const char *imported_name;
3445 const char *imported_name_prefix;
3446 const char *canonical_name;
3447 const char *import_alias;
3448 const char *imported_declaration = NULL;
3449 const char *import_prefix;
3450
3451 char *temp;
3452
3453 import_attr = dwarf2_attr (die, DW_AT_import, cu);
3454 if (import_attr == NULL)
3455 {
3456 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
3457 dwarf_tag_name (die->tag));
3458 return;
3459 }
3460
3461 imported_cu = cu;
3462 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
3463 imported_name = dwarf2_name (imported_die, imported_cu);
3464 if (imported_name == NULL)
3465 {
3466 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
3467
3468 The import in the following code:
3469 namespace A
3470 {
3471 typedef int B;
3472 }
3473
3474 int main ()
3475 {
3476 using A::B;
3477 B b;
3478 return b;
3479 }
3480
3481 ...
3482 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
3483 <52> DW_AT_decl_file : 1
3484 <53> DW_AT_decl_line : 6
3485 <54> DW_AT_import : <0x75>
3486 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
3487 <59> DW_AT_name : B
3488 <5b> DW_AT_decl_file : 1
3489 <5c> DW_AT_decl_line : 2
3490 <5d> DW_AT_type : <0x6e>
3491 ...
3492 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
3493 <76> DW_AT_byte_size : 4
3494 <77> DW_AT_encoding : 5 (signed)
3495
3496 imports the wrong die ( 0x75 instead of 0x58 ).
3497 This case will be ignored until the gcc bug is fixed. */
3498 return;
3499 }
3500
3501 /* Figure out the local name after import. */
3502 import_alias = dwarf2_name (die, cu);
3503
3504 /* Figure out where the statement is being imported to. */
3505 import_prefix = determine_prefix (die, cu);
3506
3507 /* Figure out what the scope of the imported die is and prepend it
3508 to the name of the imported die. */
3509 imported_name_prefix = determine_prefix (imported_die, imported_cu);
3510
3511 if (imported_die->tag != DW_TAG_namespace
3512 && imported_die->tag != DW_TAG_module)
3513 {
3514 imported_declaration = imported_name;
3515 canonical_name = imported_name_prefix;
3516 }
3517 else if (strlen (imported_name_prefix) > 0)
3518 {
3519 temp = alloca (strlen (imported_name_prefix)
3520 + 2 + strlen (imported_name) + 1);
3521 strcpy (temp, imported_name_prefix);
3522 strcat (temp, "::");
3523 strcat (temp, imported_name);
3524 canonical_name = temp;
3525 }
3526 else
3527 canonical_name = imported_name;
3528
3529 cp_add_using_directive (import_prefix,
3530 canonical_name,
3531 import_alias,
3532 imported_declaration,
3533 &cu->objfile->objfile_obstack);
3534 }
3535
3536 static void
3537 initialize_cu_func_list (struct dwarf2_cu *cu)
3538 {
3539 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
3540 }
3541
3542 static void
3543 free_cu_line_header (void *arg)
3544 {
3545 struct dwarf2_cu *cu = arg;
3546
3547 free_line_header (cu->line_header);
3548 cu->line_header = NULL;
3549 }
3550
3551 static void
3552 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
3553 {
3554 struct objfile *objfile = cu->objfile;
3555 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
3556 CORE_ADDR lowpc = ((CORE_ADDR) -1);
3557 CORE_ADDR highpc = ((CORE_ADDR) 0);
3558 struct attribute *attr;
3559 char *name = NULL;
3560 char *comp_dir = NULL;
3561 struct die_info *child_die;
3562 bfd *abfd = objfile->obfd;
3563 struct line_header *line_header = 0;
3564 CORE_ADDR baseaddr;
3565
3566 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3567
3568 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
3569
3570 /* If we didn't find a lowpc, set it to highpc to avoid complaints
3571 from finish_block. */
3572 if (lowpc == ((CORE_ADDR) -1))
3573 lowpc = highpc;
3574 lowpc += baseaddr;
3575 highpc += baseaddr;
3576
3577 /* Find the filename. Do not use dwarf2_name here, since the filename
3578 is not a source language identifier. */
3579 attr = dwarf2_attr (die, DW_AT_name, cu);
3580 if (attr)
3581 {
3582 name = DW_STRING (attr);
3583 }
3584
3585 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
3586 if (attr)
3587 comp_dir = DW_STRING (attr);
3588 else if (name != NULL && IS_ABSOLUTE_PATH (name))
3589 {
3590 comp_dir = ldirname (name);
3591 if (comp_dir != NULL)
3592 make_cleanup (xfree, comp_dir);
3593 }
3594 if (comp_dir != NULL)
3595 {
3596 /* Irix 6.2 native cc prepends <machine>.: to the compilation
3597 directory, get rid of it. */
3598 char *cp = strchr (comp_dir, ':');
3599
3600 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
3601 comp_dir = cp + 1;
3602 }
3603
3604 if (name == NULL)
3605 name = "<unknown>";
3606
3607 attr = dwarf2_attr (die, DW_AT_language, cu);
3608 if (attr)
3609 {
3610 set_cu_language (DW_UNSND (attr), cu);
3611 }
3612
3613 attr = dwarf2_attr (die, DW_AT_producer, cu);
3614 if (attr)
3615 cu->producer = DW_STRING (attr);
3616
3617 /* We assume that we're processing GCC output. */
3618 processing_gcc_compilation = 2;
3619
3620 processing_has_namespace_info = 0;
3621
3622 start_symtab (name, comp_dir, lowpc);
3623 record_debugformat ("DWARF 2");
3624 record_producer (cu->producer);
3625
3626 initialize_cu_func_list (cu);
3627
3628 /* Decode line number information if present. We do this before
3629 processing child DIEs, so that the line header table is available
3630 for DW_AT_decl_file. */
3631 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3632 if (attr)
3633 {
3634 unsigned int line_offset = DW_UNSND (attr);
3635 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
3636 if (line_header)
3637 {
3638 cu->line_header = line_header;
3639 make_cleanup (free_cu_line_header, cu);
3640 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
3641 }
3642 }
3643
3644 /* Process all dies in compilation unit. */
3645 if (die->child != NULL)
3646 {
3647 child_die = die->child;
3648 while (child_die && child_die->tag)
3649 {
3650 process_die (child_die, cu);
3651 child_die = sibling_die (child_die);
3652 }
3653 }
3654
3655 /* Decode macro information, if present. Dwarf 2 macro information
3656 refers to information in the line number info statement program
3657 header, so we can only read it if we've read the header
3658 successfully. */
3659 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
3660 if (attr && line_header)
3661 {
3662 unsigned int macro_offset = DW_UNSND (attr);
3663
3664 dwarf_decode_macros (line_header, macro_offset,
3665 comp_dir, abfd, cu);
3666 }
3667 do_cleanups (back_to);
3668 }
3669
3670 /* For TUs we want to skip the first top level sibling if it's not the
3671 actual type being defined by this TU. In this case the first top
3672 level sibling is there to provide context only. */
3673
3674 static void
3675 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
3676 {
3677 struct objfile *objfile = cu->objfile;
3678 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
3679 CORE_ADDR lowpc;
3680 struct attribute *attr;
3681 char *name = NULL;
3682 char *comp_dir = NULL;
3683 struct die_info *child_die;
3684 bfd *abfd = objfile->obfd;
3685
3686 /* start_symtab needs a low pc, but we don't really have one.
3687 Do what read_file_scope would do in the absence of such info. */
3688 lowpc = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3689
3690 /* Find the filename. Do not use dwarf2_name here, since the filename
3691 is not a source language identifier. */
3692 attr = dwarf2_attr (die, DW_AT_name, cu);
3693 if (attr)
3694 name = DW_STRING (attr);
3695
3696 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
3697 if (attr)
3698 comp_dir = DW_STRING (attr);
3699 else if (name != NULL && IS_ABSOLUTE_PATH (name))
3700 {
3701 comp_dir = ldirname (name);
3702 if (comp_dir != NULL)
3703 make_cleanup (xfree, comp_dir);
3704 }
3705
3706 if (name == NULL)
3707 name = "<unknown>";
3708
3709 attr = dwarf2_attr (die, DW_AT_language, cu);
3710 if (attr)
3711 set_cu_language (DW_UNSND (attr), cu);
3712
3713 /* This isn't technically needed today. It is done for symmetry
3714 with read_file_scope. */
3715 attr = dwarf2_attr (die, DW_AT_producer, cu);
3716 if (attr)
3717 cu->producer = DW_STRING (attr);
3718
3719 /* We assume that we're processing GCC output. */
3720 processing_gcc_compilation = 2;
3721
3722 processing_has_namespace_info = 0;
3723
3724 start_symtab (name, comp_dir, lowpc);
3725 record_debugformat ("DWARF 2");
3726 record_producer (cu->producer);
3727
3728 /* Process the dies in the type unit. */
3729 if (die->child == NULL)
3730 {
3731 dump_die_for_error (die);
3732 error (_("Dwarf Error: Missing children for type unit [in module %s]"),
3733 bfd_get_filename (abfd));
3734 }
3735
3736 child_die = die->child;
3737
3738 while (child_die && child_die->tag)
3739 {
3740 process_die (child_die, cu);
3741
3742 child_die = sibling_die (child_die);
3743 }
3744
3745 do_cleanups (back_to);
3746 }
3747
3748 static void
3749 add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
3750 struct dwarf2_cu *cu)
3751 {
3752 struct function_range *thisfn;
3753
3754 thisfn = (struct function_range *)
3755 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
3756 thisfn->name = name;
3757 thisfn->lowpc = lowpc;
3758 thisfn->highpc = highpc;
3759 thisfn->seen_line = 0;
3760 thisfn->next = NULL;
3761
3762 if (cu->last_fn == NULL)
3763 cu->first_fn = thisfn;
3764 else
3765 cu->last_fn->next = thisfn;
3766
3767 cu->last_fn = thisfn;
3768 }
3769
3770 /* qsort helper for inherit_abstract_dies. */
3771
3772 static int
3773 unsigned_int_compar (const void *ap, const void *bp)
3774 {
3775 unsigned int a = *(unsigned int *) ap;
3776 unsigned int b = *(unsigned int *) bp;
3777
3778 return (a > b) - (b > a);
3779 }
3780
3781 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3782 Inherit only the children of the DW_AT_abstract_origin DIE not being already
3783 referenced by DW_AT_abstract_origin from the children of the current DIE. */
3784
3785 static void
3786 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
3787 {
3788 struct die_info *child_die;
3789 unsigned die_children_count;
3790 /* CU offsets which were referenced by children of the current DIE. */
3791 unsigned *offsets;
3792 unsigned *offsets_end, *offsetp;
3793 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
3794 struct die_info *origin_die;
3795 /* Iterator of the ORIGIN_DIE children. */
3796 struct die_info *origin_child_die;
3797 struct cleanup *cleanups;
3798 struct attribute *attr;
3799
3800 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
3801 if (!attr)
3802 return;
3803
3804 origin_die = follow_die_ref (die, attr, &cu);
3805 if (die->tag != origin_die->tag
3806 && !(die->tag == DW_TAG_inlined_subroutine
3807 && origin_die->tag == DW_TAG_subprogram))
3808 complaint (&symfile_complaints,
3809 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
3810 die->offset, origin_die->offset);
3811
3812 child_die = die->child;
3813 die_children_count = 0;
3814 while (child_die && child_die->tag)
3815 {
3816 child_die = sibling_die (child_die);
3817 die_children_count++;
3818 }
3819 offsets = xmalloc (sizeof (*offsets) * die_children_count);
3820 cleanups = make_cleanup (xfree, offsets);
3821
3822 offsets_end = offsets;
3823 child_die = die->child;
3824 while (child_die && child_die->tag)
3825 {
3826 /* For each CHILD_DIE, find the corresponding child of
3827 ORIGIN_DIE. If there is more than one layer of
3828 DW_AT_abstract_origin, follow them all; there shouldn't be,
3829 but GCC versions at least through 4.4 generate this (GCC PR
3830 40573). */
3831 struct die_info *child_origin_die = child_die;
3832
3833 while (1)
3834 {
3835 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin, cu);
3836 if (attr == NULL)
3837 break;
3838 child_origin_die = follow_die_ref (child_origin_die, attr, &cu);
3839 }
3840
3841 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
3842 counterpart may exist. */
3843 if (child_origin_die != child_die)
3844 {
3845 if (child_die->tag != child_origin_die->tag
3846 && !(child_die->tag == DW_TAG_inlined_subroutine
3847 && child_origin_die->tag == DW_TAG_subprogram))
3848 complaint (&symfile_complaints,
3849 _("Child DIE 0x%x and its abstract origin 0x%x have "
3850 "different tags"), child_die->offset,
3851 child_origin_die->offset);
3852 if (child_origin_die->parent != origin_die)
3853 complaint (&symfile_complaints,
3854 _("Child DIE 0x%x and its abstract origin 0x%x have "
3855 "different parents"), child_die->offset,
3856 child_origin_die->offset);
3857 else
3858 *offsets_end++ = child_origin_die->offset;
3859 }
3860 child_die = sibling_die (child_die);
3861 }
3862 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
3863 unsigned_int_compar);
3864 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
3865 if (offsetp[-1] == *offsetp)
3866 complaint (&symfile_complaints, _("Multiple children of DIE 0x%x refer "
3867 "to DIE 0x%x as their abstract origin"),
3868 die->offset, *offsetp);
3869
3870 offsetp = offsets;
3871 origin_child_die = origin_die->child;
3872 while (origin_child_die && origin_child_die->tag)
3873 {
3874 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
3875 while (offsetp < offsets_end && *offsetp < origin_child_die->offset)
3876 offsetp++;
3877 if (offsetp >= offsets_end || *offsetp > origin_child_die->offset)
3878 {
3879 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
3880 process_die (origin_child_die, cu);
3881 }
3882 origin_child_die = sibling_die (origin_child_die);
3883 }
3884
3885 do_cleanups (cleanups);
3886 }
3887
3888 static void
3889 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
3890 {
3891 struct objfile *objfile = cu->objfile;
3892 struct context_stack *new;
3893 CORE_ADDR lowpc;
3894 CORE_ADDR highpc;
3895 struct die_info *child_die;
3896 struct attribute *attr, *call_line, *call_file;
3897 char *name;
3898 CORE_ADDR baseaddr;
3899 struct block *block;
3900 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
3901
3902 if (inlined_func)
3903 {
3904 /* If we do not have call site information, we can't show the
3905 caller of this inlined function. That's too confusing, so
3906 only use the scope for local variables. */
3907 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
3908 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
3909 if (call_line == NULL || call_file == NULL)
3910 {
3911 read_lexical_block_scope (die, cu);
3912 return;
3913 }
3914 }
3915
3916 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3917
3918 name = dwarf2_name (die, cu);
3919
3920 /* Ignore functions with missing or empty names. These are actually
3921 illegal according to the DWARF standard. */
3922 if (name == NULL)
3923 {
3924 complaint (&symfile_complaints,
3925 _("missing name for subprogram DIE at %d"), die->offset);
3926 return;
3927 }
3928
3929 /* Ignore functions with missing or invalid low and high pc attributes. */
3930 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
3931 {
3932 attr = dwarf2_attr (die, DW_AT_external, cu);
3933 if (!attr || !DW_UNSND (attr))
3934 complaint (&symfile_complaints,
3935 _("cannot get low and high bounds for subprogram DIE at %d"),
3936 die->offset);
3937 return;
3938 }
3939
3940 lowpc += baseaddr;
3941 highpc += baseaddr;
3942
3943 /* Record the function range for dwarf_decode_lines. */
3944 add_to_cu_func_list (name, lowpc, highpc, cu);
3945
3946 new = push_context (0, lowpc);
3947 new->name = new_symbol (die, read_type_die (die, cu), cu);
3948
3949 /* If there is a location expression for DW_AT_frame_base, record
3950 it. */
3951 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
3952 if (attr)
3953 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
3954 expression is being recorded directly in the function's symbol
3955 and not in a separate frame-base object. I guess this hack is
3956 to avoid adding some sort of frame-base adjunct/annex to the
3957 function's symbol :-(. The problem with doing this is that it
3958 results in a function symbol with a location expression that
3959 has nothing to do with the location of the function, ouch! The
3960 relationship should be: a function's symbol has-a frame base; a
3961 frame-base has-a location expression. */
3962 dwarf2_symbol_mark_computed (attr, new->name, cu);
3963
3964 cu->list_in_scope = &local_symbols;
3965
3966 if (die->child != NULL)
3967 {
3968 child_die = die->child;
3969 while (child_die && child_die->tag)
3970 {
3971 process_die (child_die, cu);
3972 child_die = sibling_die (child_die);
3973 }
3974 }
3975
3976 inherit_abstract_dies (die, cu);
3977
3978 /* If we have a DW_AT_specification, we might need to import using
3979 directives from the context of the specification DIE. See the
3980 comment in determine_prefix. */
3981 if (cu->language == language_cplus
3982 && dwarf2_attr (die, DW_AT_specification, cu))
3983 {
3984 struct dwarf2_cu *spec_cu = cu;
3985 struct die_info *spec_die = die_specification (die, &spec_cu);
3986
3987 while (spec_die)
3988 {
3989 child_die = spec_die->child;
3990 while (child_die && child_die->tag)
3991 {
3992 if (child_die->tag == DW_TAG_imported_module)
3993 process_die (child_die, spec_cu);
3994 child_die = sibling_die (child_die);
3995 }
3996
3997 /* In some cases, GCC generates specification DIEs that
3998 themselves contain DW_AT_specification attributes. */
3999 spec_die = die_specification (spec_die, &spec_cu);
4000 }
4001 }
4002
4003 new = pop_context ();
4004 /* Make a block for the local symbols within. */
4005 block = finish_block (new->name, &local_symbols, new->old_blocks,
4006 lowpc, highpc, objfile);
4007
4008 /* For C++, set the block's scope. */
4009 if (cu->language == language_cplus || cu->language == language_fortran)
4010 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
4011 determine_prefix (die, cu),
4012 processing_has_namespace_info);
4013
4014 /* If we have address ranges, record them. */
4015 dwarf2_record_block_ranges (die, block, baseaddr, cu);
4016
4017 /* In C++, we can have functions nested inside functions (e.g., when
4018 a function declares a class that has methods). This means that
4019 when we finish processing a function scope, we may need to go
4020 back to building a containing block's symbol lists. */
4021 local_symbols = new->locals;
4022 param_symbols = new->params;
4023 using_directives = new->using_directives;
4024
4025 /* If we've finished processing a top-level function, subsequent
4026 symbols go in the file symbol list. */
4027 if (outermost_context_p ())
4028 cu->list_in_scope = &file_symbols;
4029 }
4030
4031 /* Process all the DIES contained within a lexical block scope. Start
4032 a new scope, process the dies, and then close the scope. */
4033
4034 static void
4035 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
4036 {
4037 struct objfile *objfile = cu->objfile;
4038 struct context_stack *new;
4039 CORE_ADDR lowpc, highpc;
4040 struct die_info *child_die;
4041 CORE_ADDR baseaddr;
4042
4043 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4044
4045 /* Ignore blocks with missing or invalid low and high pc attributes. */
4046 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
4047 as multiple lexical blocks? Handling children in a sane way would
4048 be nasty. Might be easier to properly extend generic blocks to
4049 describe ranges. */
4050 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
4051 return;
4052 lowpc += baseaddr;
4053 highpc += baseaddr;
4054
4055 push_context (0, lowpc);
4056 if (die->child != NULL)
4057 {
4058 child_die = die->child;
4059 while (child_die && child_die->tag)
4060 {
4061 process_die (child_die, cu);
4062 child_die = sibling_die (child_die);
4063 }
4064 }
4065 new = pop_context ();
4066
4067 if (local_symbols != NULL || using_directives != NULL)
4068 {
4069 struct block *block
4070 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
4071 highpc, objfile);
4072
4073 /* Note that recording ranges after traversing children, as we
4074 do here, means that recording a parent's ranges entails
4075 walking across all its children's ranges as they appear in
4076 the address map, which is quadratic behavior.
4077
4078 It would be nicer to record the parent's ranges before
4079 traversing its children, simply overriding whatever you find
4080 there. But since we don't even decide whether to create a
4081 block until after we've traversed its children, that's hard
4082 to do. */
4083 dwarf2_record_block_ranges (die, block, baseaddr, cu);
4084 }
4085 local_symbols = new->locals;
4086 using_directives = new->using_directives;
4087 }
4088
4089 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
4090 Return 1 if the attributes are present and valid, otherwise, return 0.
4091 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
4092
4093 static int
4094 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
4095 CORE_ADDR *high_return, struct dwarf2_cu *cu,
4096 struct partial_symtab *ranges_pst)
4097 {
4098 struct objfile *objfile = cu->objfile;
4099 struct comp_unit_head *cu_header = &cu->header;
4100 bfd *obfd = objfile->obfd;
4101 unsigned int addr_size = cu_header->addr_size;
4102 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
4103 /* Base address selection entry. */
4104 CORE_ADDR base;
4105 int found_base;
4106 unsigned int dummy;
4107 gdb_byte *buffer;
4108 CORE_ADDR marker;
4109 int low_set;
4110 CORE_ADDR low = 0;
4111 CORE_ADDR high = 0;
4112 CORE_ADDR baseaddr;
4113
4114 found_base = cu->base_known;
4115 base = cu->base_address;
4116
4117 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
4118 if (offset >= dwarf2_per_objfile->ranges.size)
4119 {
4120 complaint (&symfile_complaints,
4121 _("Offset %d out of bounds for DW_AT_ranges attribute"),
4122 offset);
4123 return 0;
4124 }
4125 buffer = dwarf2_per_objfile->ranges.buffer + offset;
4126
4127 /* Read in the largest possible address. */
4128 marker = read_address (obfd, buffer, cu, &dummy);
4129 if ((marker & mask) == mask)
4130 {
4131 /* If we found the largest possible address, then
4132 read the base address. */
4133 base = read_address (obfd, buffer + addr_size, cu, &dummy);
4134 buffer += 2 * addr_size;
4135 offset += 2 * addr_size;
4136 found_base = 1;
4137 }
4138
4139 low_set = 0;
4140
4141 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4142
4143 while (1)
4144 {
4145 CORE_ADDR range_beginning, range_end;
4146
4147 range_beginning = read_address (obfd, buffer, cu, &dummy);
4148 buffer += addr_size;
4149 range_end = read_address (obfd, buffer, cu, &dummy);
4150 buffer += addr_size;
4151 offset += 2 * addr_size;
4152
4153 /* An end of list marker is a pair of zero addresses. */
4154 if (range_beginning == 0 && range_end == 0)
4155 /* Found the end of list entry. */
4156 break;
4157
4158 /* Each base address selection entry is a pair of 2 values.
4159 The first is the largest possible address, the second is
4160 the base address. Check for a base address here. */
4161 if ((range_beginning & mask) == mask)
4162 {
4163 /* If we found the largest possible address, then
4164 read the base address. */
4165 base = read_address (obfd, buffer + addr_size, cu, &dummy);
4166 found_base = 1;
4167 continue;
4168 }
4169
4170 if (!found_base)
4171 {
4172 /* We have no valid base address for the ranges
4173 data. */
4174 complaint (&symfile_complaints,
4175 _("Invalid .debug_ranges data (no base address)"));
4176 return 0;
4177 }
4178
4179 range_beginning += base;
4180 range_end += base;
4181
4182 if (ranges_pst != NULL && range_beginning < range_end)
4183 addrmap_set_empty (objfile->psymtabs_addrmap,
4184 range_beginning + baseaddr, range_end - 1 + baseaddr,
4185 ranges_pst);
4186
4187 /* FIXME: This is recording everything as a low-high
4188 segment of consecutive addresses. We should have a
4189 data structure for discontiguous block ranges
4190 instead. */
4191 if (! low_set)
4192 {
4193 low = range_beginning;
4194 high = range_end;
4195 low_set = 1;
4196 }
4197 else
4198 {
4199 if (range_beginning < low)
4200 low = range_beginning;
4201 if (range_end > high)
4202 high = range_end;
4203 }
4204 }
4205
4206 if (! low_set)
4207 /* If the first entry is an end-of-list marker, the range
4208 describes an empty scope, i.e. no instructions. */
4209 return 0;
4210
4211 if (low_return)
4212 *low_return = low;
4213 if (high_return)
4214 *high_return = high;
4215 return 1;
4216 }
4217
4218 /* Get low and high pc attributes from a die. Return 1 if the attributes
4219 are present and valid, otherwise, return 0. Return -1 if the range is
4220 discontinuous, i.e. derived from DW_AT_ranges information. */
4221 static int
4222 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
4223 CORE_ADDR *highpc, struct dwarf2_cu *cu,
4224 struct partial_symtab *pst)
4225 {
4226 struct attribute *attr;
4227 CORE_ADDR low = 0;
4228 CORE_ADDR high = 0;
4229 int ret = 0;
4230
4231 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
4232 if (attr)
4233 {
4234 high = DW_ADDR (attr);
4235 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4236 if (attr)
4237 low = DW_ADDR (attr);
4238 else
4239 /* Found high w/o low attribute. */
4240 return 0;
4241
4242 /* Found consecutive range of addresses. */
4243 ret = 1;
4244 }
4245 else
4246 {
4247 attr = dwarf2_attr (die, DW_AT_ranges, cu);
4248 if (attr != NULL)
4249 {
4250 /* Value of the DW_AT_ranges attribute is the offset in the
4251 .debug_ranges section. */
4252 if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu, pst))
4253 return 0;
4254 /* Found discontinuous range of addresses. */
4255 ret = -1;
4256 }
4257 }
4258
4259 if (high < low)
4260 return 0;
4261
4262 /* When using the GNU linker, .gnu.linkonce. sections are used to
4263 eliminate duplicate copies of functions and vtables and such.
4264 The linker will arbitrarily choose one and discard the others.
4265 The AT_*_pc values for such functions refer to local labels in
4266 these sections. If the section from that file was discarded, the
4267 labels are not in the output, so the relocs get a value of 0.
4268 If this is a discarded function, mark the pc bounds as invalid,
4269 so that GDB will ignore it. */
4270 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
4271 return 0;
4272
4273 *lowpc = low;
4274 *highpc = high;
4275 return ret;
4276 }
4277
4278 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
4279 its low and high PC addresses. Do nothing if these addresses could not
4280 be determined. Otherwise, set LOWPC to the low address if it is smaller,
4281 and HIGHPC to the high address if greater than HIGHPC. */
4282
4283 static void
4284 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
4285 CORE_ADDR *lowpc, CORE_ADDR *highpc,
4286 struct dwarf2_cu *cu)
4287 {
4288 CORE_ADDR low, high;
4289 struct die_info *child = die->child;
4290
4291 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
4292 {
4293 *lowpc = min (*lowpc, low);
4294 *highpc = max (*highpc, high);
4295 }
4296
4297 /* If the language does not allow nested subprograms (either inside
4298 subprograms or lexical blocks), we're done. */
4299 if (cu->language != language_ada)
4300 return;
4301
4302 /* Check all the children of the given DIE. If it contains nested
4303 subprograms, then check their pc bounds. Likewise, we need to
4304 check lexical blocks as well, as they may also contain subprogram
4305 definitions. */
4306 while (child && child->tag)
4307 {
4308 if (child->tag == DW_TAG_subprogram
4309 || child->tag == DW_TAG_lexical_block)
4310 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
4311 child = sibling_die (child);
4312 }
4313 }
4314
4315 /* Get the low and high pc's represented by the scope DIE, and store
4316 them in *LOWPC and *HIGHPC. If the correct values can't be
4317 determined, set *LOWPC to -1 and *HIGHPC to 0. */
4318
4319 static void
4320 get_scope_pc_bounds (struct die_info *die,
4321 CORE_ADDR *lowpc, CORE_ADDR *highpc,
4322 struct dwarf2_cu *cu)
4323 {
4324 CORE_ADDR best_low = (CORE_ADDR) -1;
4325 CORE_ADDR best_high = (CORE_ADDR) 0;
4326 CORE_ADDR current_low, current_high;
4327
4328 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
4329 {
4330 best_low = current_low;
4331 best_high = current_high;
4332 }
4333 else
4334 {
4335 struct die_info *child = die->child;
4336
4337 while (child && child->tag)
4338 {
4339 switch (child->tag) {
4340 case DW_TAG_subprogram:
4341 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
4342 break;
4343 case DW_TAG_namespace:
4344 case DW_TAG_module:
4345 /* FIXME: carlton/2004-01-16: Should we do this for
4346 DW_TAG_class_type/DW_TAG_structure_type, too? I think
4347 that current GCC's always emit the DIEs corresponding
4348 to definitions of methods of classes as children of a
4349 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
4350 the DIEs giving the declarations, which could be
4351 anywhere). But I don't see any reason why the
4352 standards says that they have to be there. */
4353 get_scope_pc_bounds (child, &current_low, &current_high, cu);
4354
4355 if (current_low != ((CORE_ADDR) -1))
4356 {
4357 best_low = min (best_low, current_low);
4358 best_high = max (best_high, current_high);
4359 }
4360 break;
4361 default:
4362 /* Ignore. */
4363 break;
4364 }
4365
4366 child = sibling_die (child);
4367 }
4368 }
4369
4370 *lowpc = best_low;
4371 *highpc = best_high;
4372 }
4373
4374 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
4375 in DIE. */
4376 static void
4377 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
4378 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
4379 {
4380 struct attribute *attr;
4381
4382 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
4383 if (attr)
4384 {
4385 CORE_ADDR high = DW_ADDR (attr);
4386
4387 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4388 if (attr)
4389 {
4390 CORE_ADDR low = DW_ADDR (attr);
4391
4392 record_block_range (block, baseaddr + low, baseaddr + high - 1);
4393 }
4394 }
4395
4396 attr = dwarf2_attr (die, DW_AT_ranges, cu);
4397 if (attr)
4398 {
4399 bfd *obfd = cu->objfile->obfd;
4400
4401 /* The value of the DW_AT_ranges attribute is the offset of the
4402 address range list in the .debug_ranges section. */
4403 unsigned long offset = DW_UNSND (attr);
4404 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
4405
4406 /* For some target architectures, but not others, the
4407 read_address function sign-extends the addresses it returns.
4408 To recognize base address selection entries, we need a
4409 mask. */
4410 unsigned int addr_size = cu->header.addr_size;
4411 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
4412
4413 /* The base address, to which the next pair is relative. Note
4414 that this 'base' is a DWARF concept: most entries in a range
4415 list are relative, to reduce the number of relocs against the
4416 debugging information. This is separate from this function's
4417 'baseaddr' argument, which GDB uses to relocate debugging
4418 information from a shared library based on the address at
4419 which the library was loaded. */
4420 CORE_ADDR base = cu->base_address;
4421 int base_known = cu->base_known;
4422
4423 gdb_assert (dwarf2_per_objfile->ranges.readin);
4424 if (offset >= dwarf2_per_objfile->ranges.size)
4425 {
4426 complaint (&symfile_complaints,
4427 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
4428 offset);
4429 return;
4430 }
4431
4432 for (;;)
4433 {
4434 unsigned int bytes_read;
4435 CORE_ADDR start, end;
4436
4437 start = read_address (obfd, buffer, cu, &bytes_read);
4438 buffer += bytes_read;
4439 end = read_address (obfd, buffer, cu, &bytes_read);
4440 buffer += bytes_read;
4441
4442 /* Did we find the end of the range list? */
4443 if (start == 0 && end == 0)
4444 break;
4445
4446 /* Did we find a base address selection entry? */
4447 else if ((start & base_select_mask) == base_select_mask)
4448 {
4449 base = end;
4450 base_known = 1;
4451 }
4452
4453 /* We found an ordinary address range. */
4454 else
4455 {
4456 if (!base_known)
4457 {
4458 complaint (&symfile_complaints,
4459 _("Invalid .debug_ranges data (no base address)"));
4460 return;
4461 }
4462
4463 record_block_range (block,
4464 baseaddr + base + start,
4465 baseaddr + base + end - 1);
4466 }
4467 }
4468 }
4469 }
4470
4471 /* Add an aggregate field to the field list. */
4472
4473 static void
4474 dwarf2_add_field (struct field_info *fip, struct die_info *die,
4475 struct dwarf2_cu *cu)
4476 {
4477 struct objfile *objfile = cu->objfile;
4478 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4479 struct nextfield *new_field;
4480 struct attribute *attr;
4481 struct field *fp;
4482 char *fieldname = "";
4483
4484 /* Allocate a new field list entry and link it in. */
4485 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
4486 make_cleanup (xfree, new_field);
4487 memset (new_field, 0, sizeof (struct nextfield));
4488
4489 if (die->tag == DW_TAG_inheritance)
4490 {
4491 new_field->next = fip->baseclasses;
4492 fip->baseclasses = new_field;
4493 }
4494 else
4495 {
4496 new_field->next = fip->fields;
4497 fip->fields = new_field;
4498 }
4499 fip->nfields++;
4500
4501 /* Handle accessibility and virtuality of field.
4502 The default accessibility for members is public, the default
4503 accessibility for inheritance is private. */
4504 if (die->tag != DW_TAG_inheritance)
4505 new_field->accessibility = DW_ACCESS_public;
4506 else
4507 new_field->accessibility = DW_ACCESS_private;
4508 new_field->virtuality = DW_VIRTUALITY_none;
4509
4510 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
4511 if (attr)
4512 new_field->accessibility = DW_UNSND (attr);
4513 if (new_field->accessibility != DW_ACCESS_public)
4514 fip->non_public_fields = 1;
4515 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
4516 if (attr)
4517 new_field->virtuality = DW_UNSND (attr);
4518
4519 fp = &new_field->field;
4520
4521 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
4522 {
4523 /* Data member other than a C++ static data member. */
4524
4525 /* Get type of field. */
4526 fp->type = die_type (die, cu);
4527
4528 SET_FIELD_BITPOS (*fp, 0);
4529
4530 /* Get bit size of field (zero if none). */
4531 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
4532 if (attr)
4533 {
4534 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
4535 }
4536 else
4537 {
4538 FIELD_BITSIZE (*fp) = 0;
4539 }
4540
4541 /* Get bit offset of field. */
4542 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
4543 if (attr)
4544 {
4545 int byte_offset = 0;
4546
4547 if (attr_form_is_section_offset (attr))
4548 dwarf2_complex_location_expr_complaint ();
4549 else if (attr_form_is_constant (attr))
4550 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
4551 else if (attr_form_is_block (attr))
4552 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
4553 else
4554 dwarf2_complex_location_expr_complaint ();
4555
4556 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
4557 }
4558 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
4559 if (attr)
4560 {
4561 if (gdbarch_bits_big_endian (gdbarch))
4562 {
4563 /* For big endian bits, the DW_AT_bit_offset gives the
4564 additional bit offset from the MSB of the containing
4565 anonymous object to the MSB of the field. We don't
4566 have to do anything special since we don't need to
4567 know the size of the anonymous object. */
4568 FIELD_BITPOS (*fp) += DW_UNSND (attr);
4569 }
4570 else
4571 {
4572 /* For little endian bits, compute the bit offset to the
4573 MSB of the anonymous object, subtract off the number of
4574 bits from the MSB of the field to the MSB of the
4575 object, and then subtract off the number of bits of
4576 the field itself. The result is the bit offset of
4577 the LSB of the field. */
4578 int anonymous_size;
4579 int bit_offset = DW_UNSND (attr);
4580
4581 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4582 if (attr)
4583 {
4584 /* The size of the anonymous object containing
4585 the bit field is explicit, so use the
4586 indicated size (in bytes). */
4587 anonymous_size = DW_UNSND (attr);
4588 }
4589 else
4590 {
4591 /* The size of the anonymous object containing
4592 the bit field must be inferred from the type
4593 attribute of the data member containing the
4594 bit field. */
4595 anonymous_size = TYPE_LENGTH (fp->type);
4596 }
4597 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
4598 - bit_offset - FIELD_BITSIZE (*fp);
4599 }
4600 }
4601
4602 /* Get name of field. */
4603 fieldname = dwarf2_name (die, cu);
4604 if (fieldname == NULL)
4605 fieldname = "";
4606
4607 /* The name is already allocated along with this objfile, so we don't
4608 need to duplicate it for the type. */
4609 fp->name = fieldname;
4610
4611 /* Change accessibility for artificial fields (e.g. virtual table
4612 pointer or virtual base class pointer) to private. */
4613 if (dwarf2_attr (die, DW_AT_artificial, cu))
4614 {
4615 FIELD_ARTIFICIAL (*fp) = 1;
4616 new_field->accessibility = DW_ACCESS_private;
4617 fip->non_public_fields = 1;
4618 }
4619 }
4620 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
4621 {
4622 /* C++ static member. */
4623
4624 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
4625 is a declaration, but all versions of G++ as of this writing
4626 (so through at least 3.2.1) incorrectly generate
4627 DW_TAG_variable tags. */
4628
4629 char *physname;
4630
4631 /* Get name of field. */
4632 fieldname = dwarf2_name (die, cu);
4633 if (fieldname == NULL)
4634 return;
4635
4636 /* Get physical name. */
4637 physname = (char *) dwarf2_physname (fieldname, die, cu);
4638
4639 /* The name is already allocated along with this objfile, so we don't
4640 need to duplicate it for the type. */
4641 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
4642 FIELD_TYPE (*fp) = die_type (die, cu);
4643 FIELD_NAME (*fp) = fieldname;
4644 }
4645 else if (die->tag == DW_TAG_inheritance)
4646 {
4647 /* C++ base class field. */
4648 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
4649 if (attr)
4650 {
4651 int byte_offset = 0;
4652
4653 if (attr_form_is_section_offset (attr))
4654 dwarf2_complex_location_expr_complaint ();
4655 else if (attr_form_is_constant (attr))
4656 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
4657 else if (attr_form_is_block (attr))
4658 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
4659 else
4660 dwarf2_complex_location_expr_complaint ();
4661
4662 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
4663 }
4664 FIELD_BITSIZE (*fp) = 0;
4665 FIELD_TYPE (*fp) = die_type (die, cu);
4666 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
4667 fip->nbaseclasses++;
4668 }
4669 }
4670
4671 /* Create the vector of fields, and attach it to the type. */
4672
4673 static void
4674 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
4675 struct dwarf2_cu *cu)
4676 {
4677 int nfields = fip->nfields;
4678
4679 /* Record the field count, allocate space for the array of fields,
4680 and create blank accessibility bitfields if necessary. */
4681 TYPE_NFIELDS (type) = nfields;
4682 TYPE_FIELDS (type) = (struct field *)
4683 TYPE_ALLOC (type, sizeof (struct field) * nfields);
4684 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
4685
4686 if (fip->non_public_fields && cu->language != language_ada)
4687 {
4688 ALLOCATE_CPLUS_STRUCT_TYPE (type);
4689
4690 TYPE_FIELD_PRIVATE_BITS (type) =
4691 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
4692 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
4693
4694 TYPE_FIELD_PROTECTED_BITS (type) =
4695 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
4696 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
4697
4698 TYPE_FIELD_IGNORE_BITS (type) =
4699 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
4700 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
4701 }
4702
4703 /* If the type has baseclasses, allocate and clear a bit vector for
4704 TYPE_FIELD_VIRTUAL_BITS. */
4705 if (fip->nbaseclasses && cu->language != language_ada)
4706 {
4707 int num_bytes = B_BYTES (fip->nbaseclasses);
4708 unsigned char *pointer;
4709
4710 ALLOCATE_CPLUS_STRUCT_TYPE (type);
4711 pointer = TYPE_ALLOC (type, num_bytes);
4712 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
4713 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
4714 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
4715 }
4716
4717 /* Copy the saved-up fields into the field vector. Start from the head
4718 of the list, adding to the tail of the field array, so that they end
4719 up in the same order in the array in which they were added to the list. */
4720 while (nfields-- > 0)
4721 {
4722 struct nextfield *fieldp;
4723
4724 if (fip->fields)
4725 {
4726 fieldp = fip->fields;
4727 fip->fields = fieldp->next;
4728 }
4729 else
4730 {
4731 fieldp = fip->baseclasses;
4732 fip->baseclasses = fieldp->next;
4733 }
4734
4735 TYPE_FIELD (type, nfields) = fieldp->field;
4736 switch (fieldp->accessibility)
4737 {
4738 case DW_ACCESS_private:
4739 if (cu->language != language_ada)
4740 SET_TYPE_FIELD_PRIVATE (type, nfields);
4741 break;
4742
4743 case DW_ACCESS_protected:
4744 if (cu->language != language_ada)
4745 SET_TYPE_FIELD_PROTECTED (type, nfields);
4746 break;
4747
4748 case DW_ACCESS_public:
4749 break;
4750
4751 default:
4752 /* Unknown accessibility. Complain and treat it as public. */
4753 {
4754 complaint (&symfile_complaints, _("unsupported accessibility %d"),
4755 fieldp->accessibility);
4756 }
4757 break;
4758 }
4759 if (nfields < fip->nbaseclasses)
4760 {
4761 switch (fieldp->virtuality)
4762 {
4763 case DW_VIRTUALITY_virtual:
4764 case DW_VIRTUALITY_pure_virtual:
4765 if (cu->language == language_ada)
4766 error ("unexpected virtuality in component of Ada type");
4767 SET_TYPE_FIELD_VIRTUAL (type, nfields);
4768 break;
4769 }
4770 }
4771 }
4772 }
4773
4774 /* Add a member function to the proper fieldlist. */
4775
4776 static void
4777 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
4778 struct type *type, struct dwarf2_cu *cu)
4779 {
4780 struct objfile *objfile = cu->objfile;
4781 struct attribute *attr;
4782 struct fnfieldlist *flp;
4783 int i;
4784 struct fn_field *fnp;
4785 char *fieldname;
4786 char *physname;
4787 struct nextfnfield *new_fnfield;
4788 struct type *this_type;
4789
4790 if (cu->language == language_ada)
4791 error ("unexpected member function in Ada type");
4792
4793 /* Get name of member function. */
4794 fieldname = dwarf2_name (die, cu);
4795 if (fieldname == NULL)
4796 return;
4797
4798 /* Get the mangled name. */
4799 physname = (char *) dwarf2_physname (fieldname, die, cu);
4800
4801 /* Look up member function name in fieldlist. */
4802 for (i = 0; i < fip->nfnfields; i++)
4803 {
4804 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
4805 break;
4806 }
4807
4808 /* Create new list element if necessary. */
4809 if (i < fip->nfnfields)
4810 flp = &fip->fnfieldlists[i];
4811 else
4812 {
4813 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
4814 {
4815 fip->fnfieldlists = (struct fnfieldlist *)
4816 xrealloc (fip->fnfieldlists,
4817 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
4818 * sizeof (struct fnfieldlist));
4819 if (fip->nfnfields == 0)
4820 make_cleanup (free_current_contents, &fip->fnfieldlists);
4821 }
4822 flp = &fip->fnfieldlists[fip->nfnfields];
4823 flp->name = fieldname;
4824 flp->length = 0;
4825 flp->head = NULL;
4826 fip->nfnfields++;
4827 }
4828
4829 /* Create a new member function field and chain it to the field list
4830 entry. */
4831 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
4832 make_cleanup (xfree, new_fnfield);
4833 memset (new_fnfield, 0, sizeof (struct nextfnfield));
4834 new_fnfield->next = flp->head;
4835 flp->head = new_fnfield;
4836 flp->length++;
4837
4838 /* Fill in the member function field info. */
4839 fnp = &new_fnfield->fnfield;
4840 /* The name is already allocated along with this objfile, so we don't
4841 need to duplicate it for the type. */
4842 fnp->physname = physname ? physname : "";
4843 fnp->type = alloc_type (objfile);
4844 this_type = read_type_die (die, cu);
4845 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
4846 {
4847 int nparams = TYPE_NFIELDS (this_type);
4848
4849 /* TYPE is the domain of this method, and THIS_TYPE is the type
4850 of the method itself (TYPE_CODE_METHOD). */
4851 smash_to_method_type (fnp->type, type,
4852 TYPE_TARGET_TYPE (this_type),
4853 TYPE_FIELDS (this_type),
4854 TYPE_NFIELDS (this_type),
4855 TYPE_VARARGS (this_type));
4856
4857 /* Handle static member functions.
4858 Dwarf2 has no clean way to discern C++ static and non-static
4859 member functions. G++ helps GDB by marking the first
4860 parameter for non-static member functions (which is the
4861 this pointer) as artificial. We obtain this information
4862 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
4863 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
4864 fnp->voffset = VOFFSET_STATIC;
4865 }
4866 else
4867 complaint (&symfile_complaints, _("member function type missing for '%s'"),
4868 physname);
4869
4870 /* Get fcontext from DW_AT_containing_type if present. */
4871 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
4872 fnp->fcontext = die_containing_type (die, cu);
4873
4874 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
4875 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
4876
4877 /* Get accessibility. */
4878 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
4879 if (attr)
4880 {
4881 switch (DW_UNSND (attr))
4882 {
4883 case DW_ACCESS_private:
4884 fnp->is_private = 1;
4885 break;
4886 case DW_ACCESS_protected:
4887 fnp->is_protected = 1;
4888 break;
4889 }
4890 }
4891
4892 /* Check for artificial methods. */
4893 attr = dwarf2_attr (die, DW_AT_artificial, cu);
4894 if (attr && DW_UNSND (attr) != 0)
4895 fnp->is_artificial = 1;
4896
4897 /* Get index in virtual function table if it is a virtual member
4898 function. For older versions of GCC, this is an offset in the
4899 appropriate virtual table, as specified by DW_AT_containing_type.
4900 For everyone else, it is an expression to be evaluated relative
4901 to the object address. */
4902
4903 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
4904 if (attr)
4905 {
4906 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
4907 {
4908 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
4909 {
4910 /* Old-style GCC. */
4911 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
4912 }
4913 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
4914 || (DW_BLOCK (attr)->size > 1
4915 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
4916 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
4917 {
4918 struct dwarf_block blk;
4919 int offset;
4920
4921 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
4922 ? 1 : 2);
4923 blk.size = DW_BLOCK (attr)->size - offset;
4924 blk.data = DW_BLOCK (attr)->data + offset;
4925 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
4926 if ((fnp->voffset % cu->header.addr_size) != 0)
4927 dwarf2_complex_location_expr_complaint ();
4928 else
4929 fnp->voffset /= cu->header.addr_size;
4930 fnp->voffset += 2;
4931 }
4932 else
4933 dwarf2_complex_location_expr_complaint ();
4934
4935 if (!fnp->fcontext)
4936 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
4937 }
4938 else if (attr_form_is_section_offset (attr))
4939 {
4940 dwarf2_complex_location_expr_complaint ();
4941 }
4942 else
4943 {
4944 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
4945 fieldname);
4946 }
4947 }
4948 else
4949 {
4950 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
4951 if (attr && DW_UNSND (attr))
4952 {
4953 /* GCC does this, as of 2008-08-25; PR debug/37237. */
4954 complaint (&symfile_complaints,
4955 _("Member function \"%s\" (offset %d) is virtual but the vtable offset is not specified"),
4956 fieldname, die->offset);
4957 TYPE_CPLUS_DYNAMIC (type) = 1;
4958 }
4959 }
4960 }
4961
4962 /* Create the vector of member function fields, and attach it to the type. */
4963
4964 static void
4965 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
4966 struct dwarf2_cu *cu)
4967 {
4968 struct fnfieldlist *flp;
4969 int total_length = 0;
4970 int i;
4971
4972 if (cu->language == language_ada)
4973 error ("unexpected member functions in Ada type");
4974
4975 ALLOCATE_CPLUS_STRUCT_TYPE (type);
4976 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
4977 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
4978
4979 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
4980 {
4981 struct nextfnfield *nfp = flp->head;
4982 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
4983 int k;
4984
4985 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
4986 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
4987 fn_flp->fn_fields = (struct fn_field *)
4988 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
4989 for (k = flp->length; (k--, nfp); nfp = nfp->next)
4990 fn_flp->fn_fields[k] = nfp->fnfield;
4991
4992 total_length += flp->length;
4993 }
4994
4995 TYPE_NFN_FIELDS (type) = fip->nfnfields;
4996 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
4997 }
4998
4999 /* Returns non-zero if NAME is the name of a vtable member in CU's
5000 language, zero otherwise. */
5001 static int
5002 is_vtable_name (const char *name, struct dwarf2_cu *cu)
5003 {
5004 static const char vptr[] = "_vptr";
5005 static const char vtable[] = "vtable";
5006
5007 /* Look for the C++ and Java forms of the vtable. */
5008 if ((cu->language == language_java
5009 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
5010 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
5011 && is_cplus_marker (name[sizeof (vptr) - 1])))
5012 return 1;
5013
5014 return 0;
5015 }
5016
5017 /* GCC outputs unnamed structures that are really pointers to member
5018 functions, with the ABI-specified layout. If TYPE describes
5019 such a structure, smash it into a member function type.
5020
5021 GCC shouldn't do this; it should just output pointer to member DIEs.
5022 This is GCC PR debug/28767. */
5023
5024 static void
5025 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
5026 {
5027 struct type *pfn_type, *domain_type, *new_type;
5028
5029 /* Check for a structure with no name and two children. */
5030 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
5031 return;
5032
5033 /* Check for __pfn and __delta members. */
5034 if (TYPE_FIELD_NAME (type, 0) == NULL
5035 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
5036 || TYPE_FIELD_NAME (type, 1) == NULL
5037 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
5038 return;
5039
5040 /* Find the type of the method. */
5041 pfn_type = TYPE_FIELD_TYPE (type, 0);
5042 if (pfn_type == NULL
5043 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
5044 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
5045 return;
5046
5047 /* Look for the "this" argument. */
5048 pfn_type = TYPE_TARGET_TYPE (pfn_type);
5049 if (TYPE_NFIELDS (pfn_type) == 0
5050 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
5051 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
5052 return;
5053
5054 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
5055 new_type = alloc_type (objfile);
5056 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
5057 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
5058 TYPE_VARARGS (pfn_type));
5059 smash_to_methodptr_type (type, new_type);
5060 }
5061
5062 /* Called when we find the DIE that starts a structure or union scope
5063 (definition) to process all dies that define the members of the
5064 structure or union.
5065
5066 NOTE: we need to call struct_type regardless of whether or not the
5067 DIE has an at_name attribute, since it might be an anonymous
5068 structure or union. This gets the type entered into our set of
5069 user defined types.
5070
5071 However, if the structure is incomplete (an opaque struct/union)
5072 then suppress creating a symbol table entry for it since gdb only
5073 wants to find the one with the complete definition. Note that if
5074 it is complete, we just call new_symbol, which does it's own
5075 checking about whether the struct/union is anonymous or not (and
5076 suppresses creating a symbol table entry itself). */
5077
5078 static struct type *
5079 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
5080 {
5081 struct objfile *objfile = cu->objfile;
5082 struct type *type;
5083 struct attribute *attr;
5084 char *name;
5085 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5086
5087 /* If the definition of this type lives in .debug_types, read that type.
5088 Don't follow DW_AT_specification though, that will take us back up
5089 the chain and we want to go down. */
5090 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
5091 if (attr)
5092 {
5093 struct dwarf2_cu *type_cu = cu;
5094 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
5095
5096 /* We could just recurse on read_structure_type, but we need to call
5097 get_die_type to ensure only one type for this DIE is created.
5098 This is important, for example, because for c++ classes we need
5099 TYPE_NAME set which is only done by new_symbol. Blech. */
5100 type = read_type_die (type_die, type_cu);
5101 return set_die_type (die, type, cu);
5102 }
5103
5104 type = alloc_type (objfile);
5105 INIT_CPLUS_SPECIFIC (type);
5106
5107 name = dwarf2_name (die, cu);
5108 if (name != NULL)
5109 {
5110 if (cu->language == language_cplus
5111 || cu->language == language_java)
5112 {
5113 TYPE_TAG_NAME (type) = (char *) dwarf2_full_name (name, die, cu);
5114 if (die->tag == DW_TAG_structure_type
5115 || die->tag == DW_TAG_class_type)
5116 TYPE_NAME (type) = TYPE_TAG_NAME (type);
5117 }
5118 else
5119 {
5120 /* The name is already allocated along with this objfile, so
5121 we don't need to duplicate it for the type. */
5122 TYPE_TAG_NAME (type) = (char *) name;
5123 if (die->tag == DW_TAG_class_type)
5124 TYPE_NAME (type) = TYPE_TAG_NAME (type);
5125 }
5126 }
5127
5128 if (die->tag == DW_TAG_structure_type)
5129 {
5130 TYPE_CODE (type) = TYPE_CODE_STRUCT;
5131 }
5132 else if (die->tag == DW_TAG_union_type)
5133 {
5134 TYPE_CODE (type) = TYPE_CODE_UNION;
5135 }
5136 else
5137 {
5138 TYPE_CODE (type) = TYPE_CODE_CLASS;
5139 }
5140
5141 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
5142 TYPE_DECLARED_CLASS (type) = 1;
5143
5144 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
5145 if (attr)
5146 {
5147 TYPE_LENGTH (type) = DW_UNSND (attr);
5148 }
5149 else
5150 {
5151 TYPE_LENGTH (type) = 0;
5152 }
5153
5154 TYPE_STUB_SUPPORTED (type) = 1;
5155 if (die_is_declaration (die, cu))
5156 TYPE_STUB (type) = 1;
5157 else if (attr == NULL && die->child == NULL
5158 && producer_is_realview (cu->producer))
5159 /* RealView does not output the required DW_AT_declaration
5160 on incomplete types. */
5161 TYPE_STUB (type) = 1;
5162
5163 /* We need to add the type field to the die immediately so we don't
5164 infinitely recurse when dealing with pointers to the structure
5165 type within the structure itself. */
5166 set_die_type (die, type, cu);
5167
5168 /* set_die_type should be already done. */
5169 set_descriptive_type (type, die, cu);
5170
5171 if (die->child != NULL && ! die_is_declaration (die, cu))
5172 {
5173 struct field_info fi;
5174 struct die_info *child_die;
5175
5176 memset (&fi, 0, sizeof (struct field_info));
5177
5178 child_die = die->child;
5179
5180 while (child_die && child_die->tag)
5181 {
5182 if (child_die->tag == DW_TAG_member
5183 || child_die->tag == DW_TAG_variable)
5184 {
5185 /* NOTE: carlton/2002-11-05: A C++ static data member
5186 should be a DW_TAG_member that is a declaration, but
5187 all versions of G++ as of this writing (so through at
5188 least 3.2.1) incorrectly generate DW_TAG_variable
5189 tags for them instead. */
5190 dwarf2_add_field (&fi, child_die, cu);
5191 }
5192 else if (child_die->tag == DW_TAG_subprogram)
5193 {
5194 /* C++ member function. */
5195 dwarf2_add_member_fn (&fi, child_die, type, cu);
5196 }
5197 else if (child_die->tag == DW_TAG_inheritance)
5198 {
5199 /* C++ base class field. */
5200 dwarf2_add_field (&fi, child_die, cu);
5201 }
5202 child_die = sibling_die (child_die);
5203 }
5204
5205 /* Attach fields and member functions to the type. */
5206 if (fi.nfields)
5207 dwarf2_attach_fields_to_type (&fi, type, cu);
5208 if (fi.nfnfields)
5209 {
5210 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
5211
5212 /* Get the type which refers to the base class (possibly this
5213 class itself) which contains the vtable pointer for the current
5214 class from the DW_AT_containing_type attribute. This use of
5215 DW_AT_containing_type is a GNU extension. */
5216
5217 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
5218 {
5219 struct type *t = die_containing_type (die, cu);
5220
5221 TYPE_VPTR_BASETYPE (type) = t;
5222 if (type == t)
5223 {
5224 int i;
5225
5226 /* Our own class provides vtbl ptr. */
5227 for (i = TYPE_NFIELDS (t) - 1;
5228 i >= TYPE_N_BASECLASSES (t);
5229 --i)
5230 {
5231 char *fieldname = TYPE_FIELD_NAME (t, i);
5232
5233 if (is_vtable_name (fieldname, cu))
5234 {
5235 TYPE_VPTR_FIELDNO (type) = i;
5236 break;
5237 }
5238 }
5239
5240 /* Complain if virtual function table field not found. */
5241 if (i < TYPE_N_BASECLASSES (t))
5242 complaint (&symfile_complaints,
5243 _("virtual function table pointer not found when defining class '%s'"),
5244 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
5245 "");
5246 }
5247 else
5248 {
5249 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
5250 }
5251 }
5252 else if (cu->producer
5253 && strncmp (cu->producer,
5254 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
5255 {
5256 /* The IBM XLC compiler does not provide direct indication
5257 of the containing type, but the vtable pointer is
5258 always named __vfp. */
5259
5260 int i;
5261
5262 for (i = TYPE_NFIELDS (type) - 1;
5263 i >= TYPE_N_BASECLASSES (type);
5264 --i)
5265 {
5266 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
5267 {
5268 TYPE_VPTR_FIELDNO (type) = i;
5269 TYPE_VPTR_BASETYPE (type) = type;
5270 break;
5271 }
5272 }
5273 }
5274 }
5275 }
5276
5277 quirk_gcc_member_function_pointer (type, cu->objfile);
5278
5279 do_cleanups (back_to);
5280 return type;
5281 }
5282
5283 static void
5284 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
5285 {
5286 struct die_info *child_die = die->child;
5287 struct type *this_type;
5288
5289 this_type = get_die_type (die, cu);
5290 if (this_type == NULL)
5291 this_type = read_structure_type (die, cu);
5292
5293 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
5294 snapshots) has been known to create a die giving a declaration
5295 for a class that has, as a child, a die giving a definition for a
5296 nested class. So we have to process our children even if the
5297 current die is a declaration. Normally, of course, a declaration
5298 won't have any children at all. */
5299
5300 while (child_die != NULL && child_die->tag)
5301 {
5302 if (child_die->tag == DW_TAG_member
5303 || child_die->tag == DW_TAG_variable
5304 || child_die->tag == DW_TAG_inheritance)
5305 {
5306 /* Do nothing. */
5307 }
5308 else
5309 process_die (child_die, cu);
5310
5311 child_die = sibling_die (child_die);
5312 }
5313
5314 /* Do not consider external references. According to the DWARF standard,
5315 these DIEs are identified by the fact that they have no byte_size
5316 attribute, and a declaration attribute. */
5317 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
5318 || !die_is_declaration (die, cu))
5319 new_symbol (die, this_type, cu);
5320 }
5321
5322 /* Given a DW_AT_enumeration_type die, set its type. We do not
5323 complete the type's fields yet, or create any symbols. */
5324
5325 static struct type *
5326 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
5327 {
5328 struct objfile *objfile = cu->objfile;
5329 struct type *type;
5330 struct attribute *attr;
5331 const char *name;
5332
5333 /* If the definition of this type lives in .debug_types, read that type.
5334 Don't follow DW_AT_specification though, that will take us back up
5335 the chain and we want to go down. */
5336 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
5337 if (attr)
5338 {
5339 struct dwarf2_cu *type_cu = cu;
5340 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
5341
5342 type = read_type_die (type_die, type_cu);
5343 return set_die_type (die, type, cu);
5344 }
5345
5346 type = alloc_type (objfile);
5347
5348 TYPE_CODE (type) = TYPE_CODE_ENUM;
5349 name = dwarf2_full_name (NULL, die, cu);
5350 if (name != NULL)
5351 TYPE_TAG_NAME (type) = (char *) name;
5352
5353 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
5354 if (attr)
5355 {
5356 TYPE_LENGTH (type) = DW_UNSND (attr);
5357 }
5358 else
5359 {
5360 TYPE_LENGTH (type) = 0;
5361 }
5362
5363 /* The enumeration DIE can be incomplete. In Ada, any type can be
5364 declared as private in the package spec, and then defined only
5365 inside the package body. Such types are known as Taft Amendment
5366 Types. When another package uses such a type, an incomplete DIE
5367 may be generated by the compiler. */
5368 if (die_is_declaration (die, cu))
5369 TYPE_STUB (type) = 1;
5370
5371 return set_die_type (die, type, cu);
5372 }
5373
5374 /* Given a pointer to a die which begins an enumeration, process all
5375 the dies that define the members of the enumeration, and create the
5376 symbol for the enumeration type.
5377
5378 NOTE: We reverse the order of the element list. */
5379
5380 static void
5381 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
5382 {
5383 struct die_info *child_die;
5384 struct field *fields;
5385 struct symbol *sym;
5386 int num_fields;
5387 int unsigned_enum = 1;
5388 char *name;
5389 struct type *this_type;
5390
5391 num_fields = 0;
5392 fields = NULL;
5393 this_type = get_die_type (die, cu);
5394 if (this_type == NULL)
5395 this_type = read_enumeration_type (die, cu);
5396 if (die->child != NULL)
5397 {
5398 child_die = die->child;
5399 while (child_die && child_die->tag)
5400 {
5401 if (child_die->tag != DW_TAG_enumerator)
5402 {
5403 process_die (child_die, cu);
5404 }
5405 else
5406 {
5407 name = dwarf2_name (child_die, cu);
5408 if (name)
5409 {
5410 sym = new_symbol (child_die, this_type, cu);
5411 if (SYMBOL_VALUE (sym) < 0)
5412 unsigned_enum = 0;
5413
5414 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
5415 {
5416 fields = (struct field *)
5417 xrealloc (fields,
5418 (num_fields + DW_FIELD_ALLOC_CHUNK)
5419 * sizeof (struct field));
5420 }
5421
5422 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
5423 FIELD_TYPE (fields[num_fields]) = NULL;
5424 SET_FIELD_BITPOS (fields[num_fields], SYMBOL_VALUE (sym));
5425 FIELD_BITSIZE (fields[num_fields]) = 0;
5426
5427 num_fields++;
5428 }
5429 }
5430
5431 child_die = sibling_die (child_die);
5432 }
5433
5434 if (num_fields)
5435 {
5436 TYPE_NFIELDS (this_type) = num_fields;
5437 TYPE_FIELDS (this_type) = (struct field *)
5438 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
5439 memcpy (TYPE_FIELDS (this_type), fields,
5440 sizeof (struct field) * num_fields);
5441 xfree (fields);
5442 }
5443 if (unsigned_enum)
5444 TYPE_UNSIGNED (this_type) = 1;
5445 }
5446
5447 new_symbol (die, this_type, cu);
5448 }
5449
5450 /* Extract all information from a DW_TAG_array_type DIE and put it in
5451 the DIE's type field. For now, this only handles one dimensional
5452 arrays. */
5453
5454 static struct type *
5455 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
5456 {
5457 struct objfile *objfile = cu->objfile;
5458 struct die_info *child_die;
5459 struct type *type;
5460 struct type *element_type, *range_type, *index_type;
5461 struct type **range_types = NULL;
5462 struct attribute *attr;
5463 int ndim = 0;
5464 struct cleanup *back_to;
5465 char *name;
5466
5467 element_type = die_type (die, cu);
5468
5469 /* The die_type call above may have already set the type for this DIE. */
5470 type = get_die_type (die, cu);
5471 if (type)
5472 return type;
5473
5474 /* Irix 6.2 native cc creates array types without children for
5475 arrays with unspecified length. */
5476 if (die->child == NULL)
5477 {
5478 index_type = objfile_type (objfile)->builtin_int;
5479 range_type = create_range_type (NULL, index_type, 0, -1);
5480 type = create_array_type (NULL, element_type, range_type);
5481 return set_die_type (die, type, cu);
5482 }
5483
5484 back_to = make_cleanup (null_cleanup, NULL);
5485 child_die = die->child;
5486 while (child_die && child_die->tag)
5487 {
5488 if (child_die->tag == DW_TAG_subrange_type)
5489 {
5490 struct type *child_type = read_type_die (child_die, cu);
5491
5492 if (child_type != NULL)
5493 {
5494 /* The range type was succesfully read. Save it for
5495 the array type creation. */
5496 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
5497 {
5498 range_types = (struct type **)
5499 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
5500 * sizeof (struct type *));
5501 if (ndim == 0)
5502 make_cleanup (free_current_contents, &range_types);
5503 }
5504 range_types[ndim++] = child_type;
5505 }
5506 }
5507 child_die = sibling_die (child_die);
5508 }
5509
5510 /* Dwarf2 dimensions are output from left to right, create the
5511 necessary array types in backwards order. */
5512
5513 type = element_type;
5514
5515 if (read_array_order (die, cu) == DW_ORD_col_major)
5516 {
5517 int i = 0;
5518
5519 while (i < ndim)
5520 type = create_array_type (NULL, type, range_types[i++]);
5521 }
5522 else
5523 {
5524 while (ndim-- > 0)
5525 type = create_array_type (NULL, type, range_types[ndim]);
5526 }
5527
5528 /* Understand Dwarf2 support for vector types (like they occur on
5529 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
5530 array type. This is not part of the Dwarf2/3 standard yet, but a
5531 custom vendor extension. The main difference between a regular
5532 array and the vector variant is that vectors are passed by value
5533 to functions. */
5534 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
5535 if (attr)
5536 make_vector_type (type);
5537
5538 name = dwarf2_name (die, cu);
5539 if (name)
5540 TYPE_NAME (type) = name;
5541
5542 /* Install the type in the die. */
5543 set_die_type (die, type, cu);
5544
5545 /* set_die_type should be already done. */
5546 set_descriptive_type (type, die, cu);
5547
5548 do_cleanups (back_to);
5549
5550 return type;
5551 }
5552
5553 static enum dwarf_array_dim_ordering
5554 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
5555 {
5556 struct attribute *attr;
5557
5558 attr = dwarf2_attr (die, DW_AT_ordering, cu);
5559
5560 if (attr) return DW_SND (attr);
5561
5562 /*
5563 GNU F77 is a special case, as at 08/2004 array type info is the
5564 opposite order to the dwarf2 specification, but data is still
5565 laid out as per normal fortran.
5566
5567 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
5568 version checking.
5569 */
5570
5571 if (cu->language == language_fortran
5572 && cu->producer && strstr (cu->producer, "GNU F77"))
5573 {
5574 return DW_ORD_row_major;
5575 }
5576
5577 switch (cu->language_defn->la_array_ordering)
5578 {
5579 case array_column_major:
5580 return DW_ORD_col_major;
5581 case array_row_major:
5582 default:
5583 return DW_ORD_row_major;
5584 };
5585 }
5586
5587 /* Extract all information from a DW_TAG_set_type DIE and put it in
5588 the DIE's type field. */
5589
5590 static struct type *
5591 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
5592 {
5593 struct type *domain_type, *set_type;
5594 struct attribute *attr;
5595
5596 domain_type = die_type (die, cu);
5597
5598 /* The die_type call above may have already set the type for this DIE. */
5599 set_type = get_die_type (die, cu);
5600 if (set_type)
5601 return set_type;
5602
5603 set_type = create_set_type (NULL, domain_type);
5604
5605 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
5606 if (attr)
5607 TYPE_LENGTH (set_type) = DW_UNSND (attr);
5608
5609 return set_die_type (die, set_type, cu);
5610 }
5611
5612 /* First cut: install each common block member as a global variable. */
5613
5614 static void
5615 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
5616 {
5617 struct die_info *child_die;
5618 struct attribute *attr;
5619 struct symbol *sym;
5620 CORE_ADDR base = (CORE_ADDR) 0;
5621
5622 attr = dwarf2_attr (die, DW_AT_location, cu);
5623 if (attr)
5624 {
5625 /* Support the .debug_loc offsets */
5626 if (attr_form_is_block (attr))
5627 {
5628 base = decode_locdesc (DW_BLOCK (attr), cu);
5629 }
5630 else if (attr_form_is_section_offset (attr))
5631 {
5632 dwarf2_complex_location_expr_complaint ();
5633 }
5634 else
5635 {
5636 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
5637 "common block member");
5638 }
5639 }
5640 if (die->child != NULL)
5641 {
5642 child_die = die->child;
5643 while (child_die && child_die->tag)
5644 {
5645 sym = new_symbol (child_die, NULL, cu);
5646 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
5647 if (attr)
5648 {
5649 CORE_ADDR byte_offset = 0;
5650
5651 if (attr_form_is_section_offset (attr))
5652 dwarf2_complex_location_expr_complaint ();
5653 else if (attr_form_is_constant (attr))
5654 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
5655 else if (attr_form_is_block (attr))
5656 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
5657 else
5658 dwarf2_complex_location_expr_complaint ();
5659
5660 SYMBOL_VALUE_ADDRESS (sym) = base + byte_offset;
5661 add_symbol_to_list (sym, &global_symbols);
5662 }
5663 child_die = sibling_die (child_die);
5664 }
5665 }
5666 }
5667
5668 /* Create a type for a C++ namespace. */
5669
5670 static struct type *
5671 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
5672 {
5673 struct objfile *objfile = cu->objfile;
5674 const char *previous_prefix, *name;
5675 int is_anonymous;
5676 struct type *type;
5677
5678 /* For extensions, reuse the type of the original namespace. */
5679 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
5680 {
5681 struct die_info *ext_die;
5682 struct dwarf2_cu *ext_cu = cu;
5683
5684 ext_die = dwarf2_extension (die, &ext_cu);
5685 type = read_type_die (ext_die, ext_cu);
5686 return set_die_type (die, type, cu);
5687 }
5688
5689 name = namespace_name (die, &is_anonymous, cu);
5690
5691 /* Now build the name of the current namespace. */
5692
5693 previous_prefix = determine_prefix (die, cu);
5694 if (previous_prefix[0] != '\0')
5695 name = typename_concat (&objfile->objfile_obstack,
5696 previous_prefix, name, 0, cu);
5697
5698 /* Create the type. */
5699 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
5700 objfile);
5701 TYPE_NAME (type) = (char *) name;
5702 TYPE_TAG_NAME (type) = TYPE_NAME (type);
5703
5704 return set_die_type (die, type, cu);
5705 }
5706
5707 /* Read a C++ namespace. */
5708
5709 static void
5710 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
5711 {
5712 struct objfile *objfile = cu->objfile;
5713 const char *name;
5714 int is_anonymous;
5715
5716 /* Add a symbol associated to this if we haven't seen the namespace
5717 before. Also, add a using directive if it's an anonymous
5718 namespace. */
5719
5720 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5721 {
5722 struct type *type;
5723
5724 type = read_type_die (die, cu);
5725 new_symbol (die, type, cu);
5726
5727 name = namespace_name (die, &is_anonymous, cu);
5728 if (is_anonymous)
5729 {
5730 const char *previous_prefix = determine_prefix (die, cu);
5731
5732 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
5733 NULL, &objfile->objfile_obstack);
5734 }
5735 }
5736
5737 if (die->child != NULL)
5738 {
5739 struct die_info *child_die = die->child;
5740
5741 while (child_die && child_die->tag)
5742 {
5743 process_die (child_die, cu);
5744 child_die = sibling_die (child_die);
5745 }
5746 }
5747 }
5748
5749 /* Read a Fortran module as type. This DIE can be only a declaration used for
5750 imported module. Still we need that type as local Fortran "use ... only"
5751 declaration imports depend on the created type in determine_prefix. */
5752
5753 static struct type *
5754 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
5755 {
5756 struct objfile *objfile = cu->objfile;
5757 char *module_name;
5758 struct type *type;
5759
5760 module_name = dwarf2_name (die, cu);
5761 if (!module_name)
5762 complaint (&symfile_complaints, _("DW_TAG_module has no name, offset 0x%x"),
5763 die->offset);
5764 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
5765
5766 /* determine_prefix uses TYPE_TAG_NAME. */
5767 TYPE_TAG_NAME (type) = TYPE_NAME (type);
5768
5769 return set_die_type (die, type, cu);
5770 }
5771
5772 /* Read a Fortran module. */
5773
5774 static void
5775 read_module (struct die_info *die, struct dwarf2_cu *cu)
5776 {
5777 struct die_info *child_die = die->child;
5778
5779 while (child_die && child_die->tag)
5780 {
5781 process_die (child_die, cu);
5782 child_die = sibling_die (child_die);
5783 }
5784 }
5785
5786 /* Return the name of the namespace represented by DIE. Set
5787 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
5788 namespace. */
5789
5790 static const char *
5791 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
5792 {
5793 struct die_info *current_die;
5794 const char *name = NULL;
5795
5796 /* Loop through the extensions until we find a name. */
5797
5798 for (current_die = die;
5799 current_die != NULL;
5800 current_die = dwarf2_extension (die, &cu))
5801 {
5802 name = dwarf2_name (current_die, cu);
5803 if (name != NULL)
5804 break;
5805 }
5806
5807 /* Is it an anonymous namespace? */
5808
5809 *is_anonymous = (name == NULL);
5810 if (*is_anonymous)
5811 name = "(anonymous namespace)";
5812
5813 return name;
5814 }
5815
5816 /* Extract all information from a DW_TAG_pointer_type DIE and add to
5817 the user defined type vector. */
5818
5819 static struct type *
5820 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
5821 {
5822 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
5823 struct comp_unit_head *cu_header = &cu->header;
5824 struct type *type;
5825 struct attribute *attr_byte_size;
5826 struct attribute *attr_address_class;
5827 int byte_size, addr_class;
5828 struct type *target_type;
5829
5830 target_type = die_type (die, cu);
5831
5832 /* The die_type call above may have already set the type for this DIE. */
5833 type = get_die_type (die, cu);
5834 if (type)
5835 return type;
5836
5837 type = lookup_pointer_type (target_type);
5838
5839 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
5840 if (attr_byte_size)
5841 byte_size = DW_UNSND (attr_byte_size);
5842 else
5843 byte_size = cu_header->addr_size;
5844
5845 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
5846 if (attr_address_class)
5847 addr_class = DW_UNSND (attr_address_class);
5848 else
5849 addr_class = DW_ADDR_none;
5850
5851 /* If the pointer size or address class is different than the
5852 default, create a type variant marked as such and set the
5853 length accordingly. */
5854 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
5855 {
5856 if (gdbarch_address_class_type_flags_p (gdbarch))
5857 {
5858 int type_flags;
5859
5860 type_flags = gdbarch_address_class_type_flags
5861 (gdbarch, byte_size, addr_class);
5862 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5863 == 0);
5864 type = make_type_with_address_space (type, type_flags);
5865 }
5866 else if (TYPE_LENGTH (type) != byte_size)
5867 {
5868 complaint (&symfile_complaints, _("invalid pointer size %d"), byte_size);
5869 }
5870 else
5871 {
5872 /* Should we also complain about unhandled address classes? */
5873 }
5874 }
5875
5876 TYPE_LENGTH (type) = byte_size;
5877 return set_die_type (die, type, cu);
5878 }
5879
5880 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
5881 the user defined type vector. */
5882
5883 static struct type *
5884 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
5885 {
5886 struct type *type;
5887 struct type *to_type;
5888 struct type *domain;
5889
5890 to_type = die_type (die, cu);
5891 domain = die_containing_type (die, cu);
5892
5893 /* The calls above may have already set the type for this DIE. */
5894 type = get_die_type (die, cu);
5895 if (type)
5896 return type;
5897
5898 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
5899 type = lookup_methodptr_type (to_type);
5900 else
5901 type = lookup_memberptr_type (to_type, domain);
5902
5903 return set_die_type (die, type, cu);
5904 }
5905
5906 /* Extract all information from a DW_TAG_reference_type DIE and add to
5907 the user defined type vector. */
5908
5909 static struct type *
5910 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
5911 {
5912 struct comp_unit_head *cu_header = &cu->header;
5913 struct type *type, *target_type;
5914 struct attribute *attr;
5915
5916 target_type = die_type (die, cu);
5917
5918 /* The die_type call above may have already set the type for this DIE. */
5919 type = get_die_type (die, cu);
5920 if (type)
5921 return type;
5922
5923 type = lookup_reference_type (target_type);
5924 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
5925 if (attr)
5926 {
5927 TYPE_LENGTH (type) = DW_UNSND (attr);
5928 }
5929 else
5930 {
5931 TYPE_LENGTH (type) = cu_header->addr_size;
5932 }
5933 return set_die_type (die, type, cu);
5934 }
5935
5936 static struct type *
5937 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
5938 {
5939 struct type *base_type, *cv_type;
5940
5941 base_type = die_type (die, cu);
5942
5943 /* The die_type call above may have already set the type for this DIE. */
5944 cv_type = get_die_type (die, cu);
5945 if (cv_type)
5946 return cv_type;
5947
5948 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
5949 return set_die_type (die, cv_type, cu);
5950 }
5951
5952 static struct type *
5953 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
5954 {
5955 struct type *base_type, *cv_type;
5956
5957 base_type = die_type (die, cu);
5958
5959 /* The die_type call above may have already set the type for this DIE. */
5960 cv_type = get_die_type (die, cu);
5961 if (cv_type)
5962 return cv_type;
5963
5964 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
5965 return set_die_type (die, cv_type, cu);
5966 }
5967
5968 /* Extract all information from a DW_TAG_string_type DIE and add to
5969 the user defined type vector. It isn't really a user defined type,
5970 but it behaves like one, with other DIE's using an AT_user_def_type
5971 attribute to reference it. */
5972
5973 static struct type *
5974 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
5975 {
5976 struct objfile *objfile = cu->objfile;
5977 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5978 struct type *type, *range_type, *index_type, *char_type;
5979 struct attribute *attr;
5980 unsigned int length;
5981
5982 attr = dwarf2_attr (die, DW_AT_string_length, cu);
5983 if (attr)
5984 {
5985 length = DW_UNSND (attr);
5986 }
5987 else
5988 {
5989 /* check for the DW_AT_byte_size attribute */
5990 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
5991 if (attr)
5992 {
5993 length = DW_UNSND (attr);
5994 }
5995 else
5996 {
5997 length = 1;
5998 }
5999 }
6000
6001 index_type = objfile_type (objfile)->builtin_int;
6002 range_type = create_range_type (NULL, index_type, 1, length);
6003 char_type = language_string_char_type (cu->language_defn, gdbarch);
6004 type = create_string_type (NULL, char_type, range_type);
6005
6006 return set_die_type (die, type, cu);
6007 }
6008
6009 /* Handle DIES due to C code like:
6010
6011 struct foo
6012 {
6013 int (*funcp)(int a, long l);
6014 int b;
6015 };
6016
6017 ('funcp' generates a DW_TAG_subroutine_type DIE)
6018 */
6019
6020 static struct type *
6021 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
6022 {
6023 struct type *type; /* Type that this function returns */
6024 struct type *ftype; /* Function that returns above type */
6025 struct attribute *attr;
6026
6027 type = die_type (die, cu);
6028
6029 /* The die_type call above may have already set the type for this DIE. */
6030 ftype = get_die_type (die, cu);
6031 if (ftype)
6032 return ftype;
6033
6034 ftype = lookup_function_type (type);
6035
6036 /* All functions in C++, Pascal and Java have prototypes. */
6037 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
6038 if ((attr && (DW_UNSND (attr) != 0))
6039 || cu->language == language_cplus
6040 || cu->language == language_java
6041 || cu->language == language_pascal)
6042 TYPE_PROTOTYPED (ftype) = 1;
6043 else if (producer_is_realview (cu->producer))
6044 /* RealView does not emit DW_AT_prototyped. We can not
6045 distinguish prototyped and unprototyped functions; default to
6046 prototyped, since that is more common in modern code (and
6047 RealView warns about unprototyped functions). */
6048 TYPE_PROTOTYPED (ftype) = 1;
6049
6050 /* Store the calling convention in the type if it's available in
6051 the subroutine die. Otherwise set the calling convention to
6052 the default value DW_CC_normal. */
6053 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
6054 TYPE_CALLING_CONVENTION (ftype) = attr ? DW_UNSND (attr) : DW_CC_normal;
6055
6056 /* We need to add the subroutine type to the die immediately so
6057 we don't infinitely recurse when dealing with parameters
6058 declared as the same subroutine type. */
6059 set_die_type (die, ftype, cu);
6060
6061 if (die->child != NULL)
6062 {
6063 struct type *void_type = objfile_type (cu->objfile)->builtin_void;
6064 struct die_info *child_die;
6065 int nparams, iparams;
6066
6067 /* Count the number of parameters.
6068 FIXME: GDB currently ignores vararg functions, but knows about
6069 vararg member functions. */
6070 nparams = 0;
6071 child_die = die->child;
6072 while (child_die && child_die->tag)
6073 {
6074 if (child_die->tag == DW_TAG_formal_parameter)
6075 nparams++;
6076 else if (child_die->tag == DW_TAG_unspecified_parameters)
6077 TYPE_VARARGS (ftype) = 1;
6078 child_die = sibling_die (child_die);
6079 }
6080
6081 /* Allocate storage for parameters and fill them in. */
6082 TYPE_NFIELDS (ftype) = nparams;
6083 TYPE_FIELDS (ftype) = (struct field *)
6084 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
6085
6086 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
6087 even if we error out during the parameters reading below. */
6088 for (iparams = 0; iparams < nparams; iparams++)
6089 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
6090
6091 iparams = 0;
6092 child_die = die->child;
6093 while (child_die && child_die->tag)
6094 {
6095 if (child_die->tag == DW_TAG_formal_parameter)
6096 {
6097 /* Dwarf2 has no clean way to discern C++ static and non-static
6098 member functions. G++ helps GDB by marking the first
6099 parameter for non-static member functions (which is the
6100 this pointer) as artificial. We pass this information
6101 to dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL. */
6102 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
6103 if (attr)
6104 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
6105 else
6106 {
6107 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
6108
6109 /* GCC/43521: In java, the formal parameter
6110 "this" is sometimes not marked with DW_AT_artificial. */
6111 if (cu->language == language_java)
6112 {
6113 const char *name = dwarf2_name (child_die, cu);
6114
6115 if (name && !strcmp (name, "this"))
6116 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
6117 }
6118 }
6119 TYPE_FIELD_TYPE (ftype, iparams) = die_type (child_die, cu);
6120 iparams++;
6121 }
6122 child_die = sibling_die (child_die);
6123 }
6124 }
6125
6126 return ftype;
6127 }
6128
6129 static struct type *
6130 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
6131 {
6132 struct objfile *objfile = cu->objfile;
6133 const char *name = NULL;
6134 struct type *this_type;
6135
6136 name = dwarf2_full_name (NULL, die, cu);
6137 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
6138 TYPE_FLAG_TARGET_STUB, NULL, objfile);
6139 TYPE_NAME (this_type) = (char *) name;
6140 set_die_type (die, this_type, cu);
6141 TYPE_TARGET_TYPE (this_type) = die_type (die, cu);
6142 return this_type;
6143 }
6144
6145 /* Find a representation of a given base type and install
6146 it in the TYPE field of the die. */
6147
6148 static struct type *
6149 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
6150 {
6151 struct objfile *objfile = cu->objfile;
6152 struct type *type;
6153 struct attribute *attr;
6154 int encoding = 0, size = 0;
6155 char *name;
6156 enum type_code code = TYPE_CODE_INT;
6157 int type_flags = 0;
6158 struct type *target_type = NULL;
6159
6160 attr = dwarf2_attr (die, DW_AT_encoding, cu);
6161 if (attr)
6162 {
6163 encoding = DW_UNSND (attr);
6164 }
6165 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
6166 if (attr)
6167 {
6168 size = DW_UNSND (attr);
6169 }
6170 name = dwarf2_name (die, cu);
6171 if (!name)
6172 {
6173 complaint (&symfile_complaints,
6174 _("DW_AT_name missing from DW_TAG_base_type"));
6175 }
6176
6177 switch (encoding)
6178 {
6179 case DW_ATE_address:
6180 /* Turn DW_ATE_address into a void * pointer. */
6181 code = TYPE_CODE_PTR;
6182 type_flags |= TYPE_FLAG_UNSIGNED;
6183 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
6184 break;
6185 case DW_ATE_boolean:
6186 code = TYPE_CODE_BOOL;
6187 type_flags |= TYPE_FLAG_UNSIGNED;
6188 break;
6189 case DW_ATE_complex_float:
6190 code = TYPE_CODE_COMPLEX;
6191 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
6192 break;
6193 case DW_ATE_decimal_float:
6194 code = TYPE_CODE_DECFLOAT;
6195 break;
6196 case DW_ATE_float:
6197 code = TYPE_CODE_FLT;
6198 break;
6199 case DW_ATE_signed:
6200 break;
6201 case DW_ATE_unsigned:
6202 type_flags |= TYPE_FLAG_UNSIGNED;
6203 break;
6204 case DW_ATE_signed_char:
6205 if (cu->language == language_ada || cu->language == language_m2
6206 || cu->language == language_pascal)
6207 code = TYPE_CODE_CHAR;
6208 break;
6209 case DW_ATE_unsigned_char:
6210 if (cu->language == language_ada || cu->language == language_m2
6211 || cu->language == language_pascal)
6212 code = TYPE_CODE_CHAR;
6213 type_flags |= TYPE_FLAG_UNSIGNED;
6214 break;
6215 default:
6216 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
6217 dwarf_type_encoding_name (encoding));
6218 break;
6219 }
6220
6221 type = init_type (code, size, type_flags, NULL, objfile);
6222 TYPE_NAME (type) = name;
6223 TYPE_TARGET_TYPE (type) = target_type;
6224
6225 if (name && strcmp (name, "char") == 0)
6226 TYPE_NOSIGN (type) = 1;
6227
6228 return set_die_type (die, type, cu);
6229 }
6230
6231 /* Read the given DW_AT_subrange DIE. */
6232
6233 static struct type *
6234 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
6235 {
6236 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
6237 struct type *base_type;
6238 struct type *range_type;
6239 struct attribute *attr;
6240 LONGEST low = 0;
6241 LONGEST high = -1;
6242 char *name;
6243 LONGEST negative_mask;
6244
6245 base_type = die_type (die, cu);
6246
6247 /* The die_type call above may have already set the type for this DIE. */
6248 range_type = get_die_type (die, cu);
6249 if (range_type)
6250 return range_type;
6251
6252 if (cu->language == language_fortran)
6253 {
6254 /* FORTRAN implies a lower bound of 1, if not given. */
6255 low = 1;
6256 }
6257
6258 /* FIXME: For variable sized arrays either of these could be
6259 a variable rather than a constant value. We'll allow it,
6260 but we don't know how to handle it. */
6261 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
6262 if (attr)
6263 low = dwarf2_get_attr_constant_value (attr, 0);
6264
6265 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
6266 if (attr)
6267 {
6268 if (attr->form == DW_FORM_block1 || is_ref_attr (attr))
6269 {
6270 /* GCC encodes arrays with unspecified or dynamic length
6271 with a DW_FORM_block1 attribute or a reference attribute.
6272 FIXME: GDB does not yet know how to handle dynamic
6273 arrays properly, treat them as arrays with unspecified
6274 length for now.
6275
6276 FIXME: jimb/2003-09-22: GDB does not really know
6277 how to handle arrays of unspecified length
6278 either; we just represent them as zero-length
6279 arrays. Choose an appropriate upper bound given
6280 the lower bound we've computed above. */
6281 high = low - 1;
6282 }
6283 else
6284 high = dwarf2_get_attr_constant_value (attr, 1);
6285 }
6286 else
6287 {
6288 attr = dwarf2_attr (die, DW_AT_count, cu);
6289 if (attr)
6290 {
6291 int count = dwarf2_get_attr_constant_value (attr, 1);
6292 high = low + count - 1;
6293 }
6294 }
6295
6296 /* Dwarf-2 specifications explicitly allows to create subrange types
6297 without specifying a base type.
6298 In that case, the base type must be set to the type of
6299 the lower bound, upper bound or count, in that order, if any of these
6300 three attributes references an object that has a type.
6301 If no base type is found, the Dwarf-2 specifications say that
6302 a signed integer type of size equal to the size of an address should
6303 be used.
6304 For the following C code: `extern char gdb_int [];'
6305 GCC produces an empty range DIE.
6306 FIXME: muller/2010-05-28: Possible references to object for low bound,
6307 high bound or count are not yet handled by this code.
6308 */
6309 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
6310 {
6311 struct objfile *objfile = cu->objfile;
6312 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6313 int addr_size = gdbarch_addr_bit (gdbarch) /8;
6314 struct type *int_type = objfile_type (objfile)->builtin_int;
6315
6316 /* Test "int", "long int", and "long long int" objfile types,
6317 and select the first one having a size above or equal to the
6318 architecture address size. */
6319 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
6320 base_type = int_type;
6321 else
6322 {
6323 int_type = objfile_type (objfile)->builtin_long;
6324 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
6325 base_type = int_type;
6326 else
6327 {
6328 int_type = objfile_type (objfile)->builtin_long_long;
6329 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
6330 base_type = int_type;
6331 }
6332 }
6333 }
6334
6335 negative_mask =
6336 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
6337 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
6338 low |= negative_mask;
6339 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
6340 high |= negative_mask;
6341
6342 range_type = create_range_type (NULL, base_type, low, high);
6343
6344 /* Mark arrays with dynamic length at least as an array of unspecified
6345 length. GDB could check the boundary but before it gets implemented at
6346 least allow accessing the array elements. */
6347 if (attr && attr->form == DW_FORM_block1)
6348 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
6349
6350 name = dwarf2_name (die, cu);
6351 if (name)
6352 TYPE_NAME (range_type) = name;
6353
6354 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
6355 if (attr)
6356 TYPE_LENGTH (range_type) = DW_UNSND (attr);
6357
6358 set_die_type (die, range_type, cu);
6359
6360 /* set_die_type should be already done. */
6361 set_descriptive_type (range_type, die, cu);
6362
6363 return range_type;
6364 }
6365
6366 static struct type *
6367 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
6368 {
6369 struct type *type;
6370
6371 /* For now, we only support the C meaning of an unspecified type: void. */
6372
6373 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
6374 TYPE_NAME (type) = dwarf2_name (die, cu);
6375
6376 return set_die_type (die, type, cu);
6377 }
6378
6379 /* Trivial hash function for die_info: the hash value of a DIE
6380 is its offset in .debug_info for this objfile. */
6381
6382 static hashval_t
6383 die_hash (const void *item)
6384 {
6385 const struct die_info *die = item;
6386
6387 return die->offset;
6388 }
6389
6390 /* Trivial comparison function for die_info structures: two DIEs
6391 are equal if they have the same offset. */
6392
6393 static int
6394 die_eq (const void *item_lhs, const void *item_rhs)
6395 {
6396 const struct die_info *die_lhs = item_lhs;
6397 const struct die_info *die_rhs = item_rhs;
6398
6399 return die_lhs->offset == die_rhs->offset;
6400 }
6401
6402 /* Read a whole compilation unit into a linked list of dies. */
6403
6404 static struct die_info *
6405 read_comp_unit (gdb_byte *info_ptr, struct dwarf2_cu *cu)
6406 {
6407 struct die_reader_specs reader_specs;
6408
6409 gdb_assert (cu->die_hash == NULL);
6410 cu->die_hash
6411 = htab_create_alloc_ex (cu->header.length / 12,
6412 die_hash,
6413 die_eq,
6414 NULL,
6415 &cu->comp_unit_obstack,
6416 hashtab_obstack_allocate,
6417 dummy_obstack_deallocate);
6418
6419 init_cu_die_reader (&reader_specs, cu);
6420
6421 return read_die_and_children (&reader_specs, info_ptr, &info_ptr, NULL);
6422 }
6423
6424 /* Main entry point for reading a DIE and all children.
6425 Read the DIE and dump it if requested. */
6426
6427 static struct die_info *
6428 read_die_and_children (const struct die_reader_specs *reader,
6429 gdb_byte *info_ptr,
6430 gdb_byte **new_info_ptr,
6431 struct die_info *parent)
6432 {
6433 struct die_info *result = read_die_and_children_1 (reader, info_ptr,
6434 new_info_ptr, parent);
6435
6436 if (dwarf2_die_debug)
6437 {
6438 fprintf_unfiltered (gdb_stdlog,
6439 "\nRead die from %s of %s:\n",
6440 reader->buffer == dwarf2_per_objfile->info.buffer
6441 ? ".debug_info"
6442 : reader->buffer == dwarf2_per_objfile->types.buffer
6443 ? ".debug_types"
6444 : "unknown section",
6445 reader->abfd->filename);
6446 dump_die (result, dwarf2_die_debug);
6447 }
6448
6449 return result;
6450 }
6451
6452 /* Read a single die and all its descendents. Set the die's sibling
6453 field to NULL; set other fields in the die correctly, and set all
6454 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
6455 location of the info_ptr after reading all of those dies. PARENT
6456 is the parent of the die in question. */
6457
6458 static struct die_info *
6459 read_die_and_children_1 (const struct die_reader_specs *reader,
6460 gdb_byte *info_ptr,
6461 gdb_byte **new_info_ptr,
6462 struct die_info *parent)
6463 {
6464 struct die_info *die;
6465 gdb_byte *cur_ptr;
6466 int has_children;
6467
6468 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
6469 if (die == NULL)
6470 {
6471 *new_info_ptr = cur_ptr;
6472 return NULL;
6473 }
6474 store_in_ref_table (die, reader->cu);
6475
6476 if (has_children)
6477 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
6478 else
6479 {
6480 die->child = NULL;
6481 *new_info_ptr = cur_ptr;
6482 }
6483
6484 die->sibling = NULL;
6485 die->parent = parent;
6486 return die;
6487 }
6488
6489 /* Read a die, all of its descendents, and all of its siblings; set
6490 all of the fields of all of the dies correctly. Arguments are as
6491 in read_die_and_children. */
6492
6493 static struct die_info *
6494 read_die_and_siblings (const struct die_reader_specs *reader,
6495 gdb_byte *info_ptr,
6496 gdb_byte **new_info_ptr,
6497 struct die_info *parent)
6498 {
6499 struct die_info *first_die, *last_sibling;
6500 gdb_byte *cur_ptr;
6501
6502 cur_ptr = info_ptr;
6503 first_die = last_sibling = NULL;
6504
6505 while (1)
6506 {
6507 struct die_info *die
6508 = read_die_and_children_1 (reader, cur_ptr, &cur_ptr, parent);
6509
6510 if (die == NULL)
6511 {
6512 *new_info_ptr = cur_ptr;
6513 return first_die;
6514 }
6515
6516 if (!first_die)
6517 first_die = die;
6518 else
6519 last_sibling->sibling = die;
6520
6521 last_sibling = die;
6522 }
6523 }
6524
6525 /* Read the die from the .debug_info section buffer. Set DIEP to
6526 point to a newly allocated die with its information, except for its
6527 child, sibling, and parent fields. Set HAS_CHILDREN to tell
6528 whether the die has children or not. */
6529
6530 static gdb_byte *
6531 read_full_die (const struct die_reader_specs *reader,
6532 struct die_info **diep, gdb_byte *info_ptr,
6533 int *has_children)
6534 {
6535 unsigned int abbrev_number, bytes_read, i, offset;
6536 struct abbrev_info *abbrev;
6537 struct die_info *die;
6538 struct dwarf2_cu *cu = reader->cu;
6539 bfd *abfd = reader->abfd;
6540
6541 offset = info_ptr - reader->buffer;
6542 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6543 info_ptr += bytes_read;
6544 if (!abbrev_number)
6545 {
6546 *diep = NULL;
6547 *has_children = 0;
6548 return info_ptr;
6549 }
6550
6551 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
6552 if (!abbrev)
6553 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
6554 abbrev_number,
6555 bfd_get_filename (abfd));
6556
6557 die = dwarf_alloc_die (cu, abbrev->num_attrs);
6558 die->offset = offset;
6559 die->tag = abbrev->tag;
6560 die->abbrev = abbrev_number;
6561
6562 die->num_attrs = abbrev->num_attrs;
6563
6564 for (i = 0; i < abbrev->num_attrs; ++i)
6565 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
6566 abfd, info_ptr, cu);
6567
6568 *diep = die;
6569 *has_children = abbrev->has_children;
6570 return info_ptr;
6571 }
6572
6573 /* In DWARF version 2, the description of the debugging information is
6574 stored in a separate .debug_abbrev section. Before we read any
6575 dies from a section we read in all abbreviations and install them
6576 in a hash table. This function also sets flags in CU describing
6577 the data found in the abbrev table. */
6578
6579 static void
6580 dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
6581 {
6582 struct comp_unit_head *cu_header = &cu->header;
6583 gdb_byte *abbrev_ptr;
6584 struct abbrev_info *cur_abbrev;
6585 unsigned int abbrev_number, bytes_read, abbrev_name;
6586 unsigned int abbrev_form, hash_number;
6587 struct attr_abbrev *cur_attrs;
6588 unsigned int allocated_attrs;
6589
6590 /* Initialize dwarf2 abbrevs */
6591 obstack_init (&cu->abbrev_obstack);
6592 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
6593 (ABBREV_HASH_SIZE
6594 * sizeof (struct abbrev_info *)));
6595 memset (cu->dwarf2_abbrevs, 0,
6596 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
6597
6598 dwarf2_read_section (dwarf2_per_objfile->objfile,
6599 &dwarf2_per_objfile->abbrev);
6600 abbrev_ptr = dwarf2_per_objfile->abbrev.buffer + cu_header->abbrev_offset;
6601 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6602 abbrev_ptr += bytes_read;
6603
6604 allocated_attrs = ATTR_ALLOC_CHUNK;
6605 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
6606
6607 /* loop until we reach an abbrev number of 0 */
6608 while (abbrev_number)
6609 {
6610 cur_abbrev = dwarf_alloc_abbrev (cu);
6611
6612 /* read in abbrev header */
6613 cur_abbrev->number = abbrev_number;
6614 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6615 abbrev_ptr += bytes_read;
6616 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
6617 abbrev_ptr += 1;
6618
6619 if (cur_abbrev->tag == DW_TAG_namespace)
6620 cu->has_namespace_info = 1;
6621
6622 /* now read in declarations */
6623 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6624 abbrev_ptr += bytes_read;
6625 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6626 abbrev_ptr += bytes_read;
6627 while (abbrev_name)
6628 {
6629 if (cur_abbrev->num_attrs == allocated_attrs)
6630 {
6631 allocated_attrs += ATTR_ALLOC_CHUNK;
6632 cur_attrs
6633 = xrealloc (cur_attrs, (allocated_attrs
6634 * sizeof (struct attr_abbrev)));
6635 }
6636
6637 /* Record whether this compilation unit might have
6638 inter-compilation-unit references. If we don't know what form
6639 this attribute will have, then it might potentially be a
6640 DW_FORM_ref_addr, so we conservatively expect inter-CU
6641 references. */
6642
6643 if (abbrev_form == DW_FORM_ref_addr
6644 || abbrev_form == DW_FORM_indirect)
6645 cu->has_form_ref_addr = 1;
6646
6647 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
6648 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
6649 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6650 abbrev_ptr += bytes_read;
6651 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6652 abbrev_ptr += bytes_read;
6653 }
6654
6655 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
6656 (cur_abbrev->num_attrs
6657 * sizeof (struct attr_abbrev)));
6658 memcpy (cur_abbrev->attrs, cur_attrs,
6659 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
6660
6661 hash_number = abbrev_number % ABBREV_HASH_SIZE;
6662 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
6663 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
6664
6665 /* Get next abbreviation.
6666 Under Irix6 the abbreviations for a compilation unit are not
6667 always properly terminated with an abbrev number of 0.
6668 Exit loop if we encounter an abbreviation which we have
6669 already read (which means we are about to read the abbreviations
6670 for the next compile unit) or if the end of the abbreviation
6671 table is reached. */
6672 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev.buffer)
6673 >= dwarf2_per_objfile->abbrev.size)
6674 break;
6675 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6676 abbrev_ptr += bytes_read;
6677 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
6678 break;
6679 }
6680
6681 xfree (cur_attrs);
6682 }
6683
6684 /* Release the memory used by the abbrev table for a compilation unit. */
6685
6686 static void
6687 dwarf2_free_abbrev_table (void *ptr_to_cu)
6688 {
6689 struct dwarf2_cu *cu = ptr_to_cu;
6690
6691 obstack_free (&cu->abbrev_obstack, NULL);
6692 cu->dwarf2_abbrevs = NULL;
6693 }
6694
6695 /* Lookup an abbrev_info structure in the abbrev hash table. */
6696
6697 static struct abbrev_info *
6698 dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
6699 {
6700 unsigned int hash_number;
6701 struct abbrev_info *abbrev;
6702
6703 hash_number = number % ABBREV_HASH_SIZE;
6704 abbrev = cu->dwarf2_abbrevs[hash_number];
6705
6706 while (abbrev)
6707 {
6708 if (abbrev->number == number)
6709 return abbrev;
6710 else
6711 abbrev = abbrev->next;
6712 }
6713 return NULL;
6714 }
6715
6716 /* Returns nonzero if TAG represents a type that we might generate a partial
6717 symbol for. */
6718
6719 static int
6720 is_type_tag_for_partial (int tag)
6721 {
6722 switch (tag)
6723 {
6724 #if 0
6725 /* Some types that would be reasonable to generate partial symbols for,
6726 that we don't at present. */
6727 case DW_TAG_array_type:
6728 case DW_TAG_file_type:
6729 case DW_TAG_ptr_to_member_type:
6730 case DW_TAG_set_type:
6731 case DW_TAG_string_type:
6732 case DW_TAG_subroutine_type:
6733 #endif
6734 case DW_TAG_base_type:
6735 case DW_TAG_class_type:
6736 case DW_TAG_interface_type:
6737 case DW_TAG_enumeration_type:
6738 case DW_TAG_structure_type:
6739 case DW_TAG_subrange_type:
6740 case DW_TAG_typedef:
6741 case DW_TAG_union_type:
6742 return 1;
6743 default:
6744 return 0;
6745 }
6746 }
6747
6748 /* Load all DIEs that are interesting for partial symbols into memory. */
6749
6750 static struct partial_die_info *
6751 load_partial_dies (bfd *abfd, gdb_byte *buffer, gdb_byte *info_ptr,
6752 int building_psymtab, struct dwarf2_cu *cu)
6753 {
6754 struct partial_die_info *part_die;
6755 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
6756 struct abbrev_info *abbrev;
6757 unsigned int bytes_read;
6758 unsigned int load_all = 0;
6759
6760 int nesting_level = 1;
6761
6762 parent_die = NULL;
6763 last_die = NULL;
6764
6765 if (cu->per_cu && cu->per_cu->load_all_dies)
6766 load_all = 1;
6767
6768 cu->partial_dies
6769 = htab_create_alloc_ex (cu->header.length / 12,
6770 partial_die_hash,
6771 partial_die_eq,
6772 NULL,
6773 &cu->comp_unit_obstack,
6774 hashtab_obstack_allocate,
6775 dummy_obstack_deallocate);
6776
6777 part_die = obstack_alloc (&cu->comp_unit_obstack,
6778 sizeof (struct partial_die_info));
6779
6780 while (1)
6781 {
6782 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
6783
6784 /* A NULL abbrev means the end of a series of children. */
6785 if (abbrev == NULL)
6786 {
6787 if (--nesting_level == 0)
6788 {
6789 /* PART_DIE was probably the last thing allocated on the
6790 comp_unit_obstack, so we could call obstack_free
6791 here. We don't do that because the waste is small,
6792 and will be cleaned up when we're done with this
6793 compilation unit. This way, we're also more robust
6794 against other users of the comp_unit_obstack. */
6795 return first_die;
6796 }
6797 info_ptr += bytes_read;
6798 last_die = parent_die;
6799 parent_die = parent_die->die_parent;
6800 continue;
6801 }
6802
6803 /* Check whether this DIE is interesting enough to save. Normally
6804 we would not be interested in members here, but there may be
6805 later variables referencing them via DW_AT_specification (for
6806 static members). */
6807 if (!load_all
6808 && !is_type_tag_for_partial (abbrev->tag)
6809 && abbrev->tag != DW_TAG_enumerator
6810 && abbrev->tag != DW_TAG_subprogram
6811 && abbrev->tag != DW_TAG_lexical_block
6812 && abbrev->tag != DW_TAG_variable
6813 && abbrev->tag != DW_TAG_namespace
6814 && abbrev->tag != DW_TAG_module
6815 && abbrev->tag != DW_TAG_member)
6816 {
6817 /* Otherwise we skip to the next sibling, if any. */
6818 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
6819 continue;
6820 }
6821
6822 info_ptr = read_partial_die (part_die, abbrev, bytes_read, abfd,
6823 buffer, info_ptr, cu);
6824
6825 /* This two-pass algorithm for processing partial symbols has a
6826 high cost in cache pressure. Thus, handle some simple cases
6827 here which cover the majority of C partial symbols. DIEs
6828 which neither have specification tags in them, nor could have
6829 specification tags elsewhere pointing at them, can simply be
6830 processed and discarded.
6831
6832 This segment is also optional; scan_partial_symbols and
6833 add_partial_symbol will handle these DIEs if we chain
6834 them in normally. When compilers which do not emit large
6835 quantities of duplicate debug information are more common,
6836 this code can probably be removed. */
6837
6838 /* Any complete simple types at the top level (pretty much all
6839 of them, for a language without namespaces), can be processed
6840 directly. */
6841 if (parent_die == NULL
6842 && part_die->has_specification == 0
6843 && part_die->is_declaration == 0
6844 && (part_die->tag == DW_TAG_typedef
6845 || part_die->tag == DW_TAG_base_type
6846 || part_die->tag == DW_TAG_subrange_type))
6847 {
6848 if (building_psymtab && part_die->name != NULL)
6849 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
6850 VAR_DOMAIN, LOC_TYPEDEF,
6851 &cu->objfile->static_psymbols,
6852 0, (CORE_ADDR) 0, cu->language, cu->objfile);
6853 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
6854 continue;
6855 }
6856
6857 /* If we're at the second level, and we're an enumerator, and
6858 our parent has no specification (meaning possibly lives in a
6859 namespace elsewhere), then we can add the partial symbol now
6860 instead of queueing it. */
6861 if (part_die->tag == DW_TAG_enumerator
6862 && parent_die != NULL
6863 && parent_die->die_parent == NULL
6864 && parent_die->tag == DW_TAG_enumeration_type
6865 && parent_die->has_specification == 0)
6866 {
6867 if (part_die->name == NULL)
6868 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
6869 else if (building_psymtab)
6870 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
6871 VAR_DOMAIN, LOC_CONST,
6872 (cu->language == language_cplus
6873 || cu->language == language_java)
6874 ? &cu->objfile->global_psymbols
6875 : &cu->objfile->static_psymbols,
6876 0, (CORE_ADDR) 0, cu->language, cu->objfile);
6877
6878 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
6879 continue;
6880 }
6881
6882 /* We'll save this DIE so link it in. */
6883 part_die->die_parent = parent_die;
6884 part_die->die_sibling = NULL;
6885 part_die->die_child = NULL;
6886
6887 if (last_die && last_die == parent_die)
6888 last_die->die_child = part_die;
6889 else if (last_die)
6890 last_die->die_sibling = part_die;
6891
6892 last_die = part_die;
6893
6894 if (first_die == NULL)
6895 first_die = part_die;
6896
6897 /* Maybe add the DIE to the hash table. Not all DIEs that we
6898 find interesting need to be in the hash table, because we
6899 also have the parent/sibling/child chains; only those that we
6900 might refer to by offset later during partial symbol reading.
6901
6902 For now this means things that might have be the target of a
6903 DW_AT_specification, DW_AT_abstract_origin, or
6904 DW_AT_extension. DW_AT_extension will refer only to
6905 namespaces; DW_AT_abstract_origin refers to functions (and
6906 many things under the function DIE, but we do not recurse
6907 into function DIEs during partial symbol reading) and
6908 possibly variables as well; DW_AT_specification refers to
6909 declarations. Declarations ought to have the DW_AT_declaration
6910 flag. It happens that GCC forgets to put it in sometimes, but
6911 only for functions, not for types.
6912
6913 Adding more things than necessary to the hash table is harmless
6914 except for the performance cost. Adding too few will result in
6915 wasted time in find_partial_die, when we reread the compilation
6916 unit with load_all_dies set. */
6917
6918 if (load_all
6919 || abbrev->tag == DW_TAG_subprogram
6920 || abbrev->tag == DW_TAG_variable
6921 || abbrev->tag == DW_TAG_namespace
6922 || part_die->is_declaration)
6923 {
6924 void **slot;
6925
6926 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
6927 part_die->offset, INSERT);
6928 *slot = part_die;
6929 }
6930
6931 part_die = obstack_alloc (&cu->comp_unit_obstack,
6932 sizeof (struct partial_die_info));
6933
6934 /* For some DIEs we want to follow their children (if any). For C
6935 we have no reason to follow the children of structures; for other
6936 languages we have to, both so that we can get at method physnames
6937 to infer fully qualified class names, and for DW_AT_specification.
6938
6939 For Ada, we need to scan the children of subprograms and lexical
6940 blocks as well because Ada allows the definition of nested
6941 entities that could be interesting for the debugger, such as
6942 nested subprograms for instance. */
6943 if (last_die->has_children
6944 && (load_all
6945 || last_die->tag == DW_TAG_namespace
6946 || last_die->tag == DW_TAG_module
6947 || last_die->tag == DW_TAG_enumeration_type
6948 || (cu->language != language_c
6949 && (last_die->tag == DW_TAG_class_type
6950 || last_die->tag == DW_TAG_interface_type
6951 || last_die->tag == DW_TAG_structure_type
6952 || last_die->tag == DW_TAG_union_type))
6953 || (cu->language == language_ada
6954 && (last_die->tag == DW_TAG_subprogram
6955 || last_die->tag == DW_TAG_lexical_block))))
6956 {
6957 nesting_level++;
6958 parent_die = last_die;
6959 continue;
6960 }
6961
6962 /* Otherwise we skip to the next sibling, if any. */
6963 info_ptr = locate_pdi_sibling (last_die, buffer, info_ptr, abfd, cu);
6964
6965 /* Back to the top, do it again. */
6966 }
6967 }
6968
6969 /* Read a minimal amount of information into the minimal die structure. */
6970
6971 static gdb_byte *
6972 read_partial_die (struct partial_die_info *part_die,
6973 struct abbrev_info *abbrev,
6974 unsigned int abbrev_len, bfd *abfd,
6975 gdb_byte *buffer, gdb_byte *info_ptr,
6976 struct dwarf2_cu *cu)
6977 {
6978 unsigned int i;
6979 struct attribute attr;
6980 int has_low_pc_attr = 0;
6981 int has_high_pc_attr = 0;
6982
6983 memset (part_die, 0, sizeof (struct partial_die_info));
6984
6985 part_die->offset = info_ptr - buffer;
6986
6987 info_ptr += abbrev_len;
6988
6989 if (abbrev == NULL)
6990 return info_ptr;
6991
6992 part_die->tag = abbrev->tag;
6993 part_die->has_children = abbrev->has_children;
6994
6995 for (i = 0; i < abbrev->num_attrs; ++i)
6996 {
6997 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
6998
6999 /* Store the data if it is of an attribute we want to keep in a
7000 partial symbol table. */
7001 switch (attr.name)
7002 {
7003 case DW_AT_name:
7004 switch (part_die->tag)
7005 {
7006 case DW_TAG_compile_unit:
7007 case DW_TAG_type_unit:
7008 /* Compilation units have a DW_AT_name that is a filename, not
7009 a source language identifier. */
7010 case DW_TAG_enumeration_type:
7011 case DW_TAG_enumerator:
7012 /* These tags always have simple identifiers already; no need
7013 to canonicalize them. */
7014 part_die->name = DW_STRING (&attr);
7015 break;
7016 default:
7017 part_die->name
7018 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
7019 &cu->objfile->objfile_obstack);
7020 break;
7021 }
7022 break;
7023 case DW_AT_linkage_name:
7024 case DW_AT_MIPS_linkage_name:
7025 /* Note that both forms of linkage name might appear. We
7026 assume they will be the same, and we only store the last
7027 one we see. */
7028 if (cu->language == language_ada)
7029 part_die->name = DW_STRING (&attr);
7030 break;
7031 case DW_AT_low_pc:
7032 has_low_pc_attr = 1;
7033 part_die->lowpc = DW_ADDR (&attr);
7034 break;
7035 case DW_AT_high_pc:
7036 has_high_pc_attr = 1;
7037 part_die->highpc = DW_ADDR (&attr);
7038 break;
7039 case DW_AT_location:
7040 /* Support the .debug_loc offsets */
7041 if (attr_form_is_block (&attr))
7042 {
7043 part_die->locdesc = DW_BLOCK (&attr);
7044 }
7045 else if (attr_form_is_section_offset (&attr))
7046 {
7047 dwarf2_complex_location_expr_complaint ();
7048 }
7049 else
7050 {
7051 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
7052 "partial symbol information");
7053 }
7054 break;
7055 case DW_AT_external:
7056 part_die->is_external = DW_UNSND (&attr);
7057 break;
7058 case DW_AT_declaration:
7059 part_die->is_declaration = DW_UNSND (&attr);
7060 break;
7061 case DW_AT_type:
7062 part_die->has_type = 1;
7063 break;
7064 case DW_AT_abstract_origin:
7065 case DW_AT_specification:
7066 case DW_AT_extension:
7067 part_die->has_specification = 1;
7068 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
7069 break;
7070 case DW_AT_sibling:
7071 /* Ignore absolute siblings, they might point outside of
7072 the current compile unit. */
7073 if (attr.form == DW_FORM_ref_addr)
7074 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
7075 else
7076 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr);
7077 break;
7078 case DW_AT_byte_size:
7079 part_die->has_byte_size = 1;
7080 break;
7081 case DW_AT_calling_convention:
7082 /* DWARF doesn't provide a way to identify a program's source-level
7083 entry point. DW_AT_calling_convention attributes are only meant
7084 to describe functions' calling conventions.
7085
7086 However, because it's a necessary piece of information in
7087 Fortran, and because DW_CC_program is the only piece of debugging
7088 information whose definition refers to a 'main program' at all,
7089 several compilers have begun marking Fortran main programs with
7090 DW_CC_program --- even when those functions use the standard
7091 calling conventions.
7092
7093 So until DWARF specifies a way to provide this information and
7094 compilers pick up the new representation, we'll support this
7095 practice. */
7096 if (DW_UNSND (&attr) == DW_CC_program
7097 && cu->language == language_fortran)
7098 set_main_name (part_die->name);
7099 break;
7100 default:
7101 break;
7102 }
7103 }
7104
7105 /* When using the GNU linker, .gnu.linkonce. sections are used to
7106 eliminate duplicate copies of functions and vtables and such.
7107 The linker will arbitrarily choose one and discard the others.
7108 The AT_*_pc values for such functions refer to local labels in
7109 these sections. If the section from that file was discarded, the
7110 labels are not in the output, so the relocs get a value of 0.
7111 If this is a discarded function, mark the pc bounds as invalid,
7112 so that GDB will ignore it. */
7113 if (has_low_pc_attr && has_high_pc_attr
7114 && part_die->lowpc < part_die->highpc
7115 && (part_die->lowpc != 0
7116 || dwarf2_per_objfile->has_section_at_zero))
7117 part_die->has_pc_info = 1;
7118
7119 return info_ptr;
7120 }
7121
7122 /* Find a cached partial DIE at OFFSET in CU. */
7123
7124 static struct partial_die_info *
7125 find_partial_die_in_comp_unit (unsigned int offset, struct dwarf2_cu *cu)
7126 {
7127 struct partial_die_info *lookup_die = NULL;
7128 struct partial_die_info part_die;
7129
7130 part_die.offset = offset;
7131 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
7132
7133 return lookup_die;
7134 }
7135
7136 /* Find a partial DIE at OFFSET, which may or may not be in CU,
7137 except in the case of .debug_types DIEs which do not reference
7138 outside their CU (they do however referencing other types via
7139 DW_FORM_sig8). */
7140
7141 static struct partial_die_info *
7142 find_partial_die (unsigned int offset, struct dwarf2_cu *cu)
7143 {
7144 struct dwarf2_per_cu_data *per_cu = NULL;
7145 struct partial_die_info *pd = NULL;
7146
7147 if (cu->per_cu->from_debug_types)
7148 {
7149 pd = find_partial_die_in_comp_unit (offset, cu);
7150 if (pd != NULL)
7151 return pd;
7152 goto not_found;
7153 }
7154
7155 if (offset_in_cu_p (&cu->header, offset))
7156 {
7157 pd = find_partial_die_in_comp_unit (offset, cu);
7158 if (pd != NULL)
7159 return pd;
7160 }
7161
7162 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
7163
7164 if (per_cu->cu == NULL)
7165 {
7166 load_partial_comp_unit (per_cu, cu->objfile);
7167 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7168 dwarf2_per_objfile->read_in_chain = per_cu;
7169 }
7170
7171 per_cu->cu->last_used = 0;
7172 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
7173
7174 if (pd == NULL && per_cu->load_all_dies == 0)
7175 {
7176 struct cleanup *back_to;
7177 struct partial_die_info comp_unit_die;
7178 struct abbrev_info *abbrev;
7179 unsigned int bytes_read;
7180 char *info_ptr;
7181
7182 per_cu->load_all_dies = 1;
7183
7184 /* Re-read the DIEs. */
7185 back_to = make_cleanup (null_cleanup, 0);
7186 if (per_cu->cu->dwarf2_abbrevs == NULL)
7187 {
7188 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
7189 make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
7190 }
7191 info_ptr = (dwarf2_per_objfile->info.buffer
7192 + per_cu->cu->header.offset
7193 + per_cu->cu->header.first_die_offset);
7194 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
7195 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
7196 per_cu->cu->objfile->obfd,
7197 dwarf2_per_objfile->info.buffer, info_ptr,
7198 per_cu->cu);
7199 if (comp_unit_die.has_children)
7200 load_partial_dies (per_cu->cu->objfile->obfd,
7201 dwarf2_per_objfile->info.buffer, info_ptr,
7202 0, per_cu->cu);
7203 do_cleanups (back_to);
7204
7205 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
7206 }
7207
7208 not_found:
7209
7210 if (pd == NULL)
7211 internal_error (__FILE__, __LINE__,
7212 _("could not find partial DIE 0x%x in cache [from module %s]\n"),
7213 offset, bfd_get_filename (cu->objfile->obfd));
7214 return pd;
7215 }
7216
7217 /* Adjust PART_DIE before generating a symbol for it. This function
7218 may set the is_external flag or change the DIE's name. */
7219
7220 static void
7221 fixup_partial_die (struct partial_die_info *part_die,
7222 struct dwarf2_cu *cu)
7223 {
7224 /* If we found a reference attribute and the DIE has no name, try
7225 to find a name in the referred to DIE. */
7226
7227 if (part_die->name == NULL && part_die->has_specification)
7228 {
7229 struct partial_die_info *spec_die;
7230
7231 spec_die = find_partial_die (part_die->spec_offset, cu);
7232
7233 fixup_partial_die (spec_die, cu);
7234
7235 if (spec_die->name)
7236 {
7237 part_die->name = spec_die->name;
7238
7239 /* Copy DW_AT_external attribute if it is set. */
7240 if (spec_die->is_external)
7241 part_die->is_external = spec_die->is_external;
7242 }
7243 }
7244
7245 /* Set default names for some unnamed DIEs. */
7246 if (part_die->name == NULL && (part_die->tag == DW_TAG_structure_type
7247 || part_die->tag == DW_TAG_class_type))
7248 part_die->name = "(anonymous class)";
7249
7250 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
7251 part_die->name = "(anonymous namespace)";
7252
7253 if (part_die->tag == DW_TAG_structure_type
7254 || part_die->tag == DW_TAG_class_type
7255 || part_die->tag == DW_TAG_union_type)
7256 guess_structure_name (part_die, cu);
7257 }
7258
7259 /* Read an attribute value described by an attribute form. */
7260
7261 static gdb_byte *
7262 read_attribute_value (struct attribute *attr, unsigned form,
7263 bfd *abfd, gdb_byte *info_ptr,
7264 struct dwarf2_cu *cu)
7265 {
7266 struct comp_unit_head *cu_header = &cu->header;
7267 unsigned int bytes_read;
7268 struct dwarf_block *blk;
7269
7270 attr->form = form;
7271 switch (form)
7272 {
7273 case DW_FORM_ref_addr:
7274 if (cu->header.version == 2)
7275 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
7276 else
7277 DW_ADDR (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
7278 info_ptr += bytes_read;
7279 break;
7280 case DW_FORM_addr:
7281 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
7282 info_ptr += bytes_read;
7283 break;
7284 case DW_FORM_block2:
7285 blk = dwarf_alloc_block (cu);
7286 blk->size = read_2_bytes (abfd, info_ptr);
7287 info_ptr += 2;
7288 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
7289 info_ptr += blk->size;
7290 DW_BLOCK (attr) = blk;
7291 break;
7292 case DW_FORM_block4:
7293 blk = dwarf_alloc_block (cu);
7294 blk->size = read_4_bytes (abfd, info_ptr);
7295 info_ptr += 4;
7296 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
7297 info_ptr += blk->size;
7298 DW_BLOCK (attr) = blk;
7299 break;
7300 case DW_FORM_data2:
7301 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
7302 info_ptr += 2;
7303 break;
7304 case DW_FORM_data4:
7305 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
7306 info_ptr += 4;
7307 break;
7308 case DW_FORM_data8:
7309 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
7310 info_ptr += 8;
7311 break;
7312 case DW_FORM_sec_offset:
7313 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
7314 info_ptr += bytes_read;
7315 break;
7316 case DW_FORM_string:
7317 DW_STRING (attr) = read_string (abfd, info_ptr, &bytes_read);
7318 DW_STRING_IS_CANONICAL (attr) = 0;
7319 info_ptr += bytes_read;
7320 break;
7321 case DW_FORM_strp:
7322 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
7323 &bytes_read);
7324 DW_STRING_IS_CANONICAL (attr) = 0;
7325 info_ptr += bytes_read;
7326 break;
7327 case DW_FORM_exprloc:
7328 case DW_FORM_block:
7329 blk = dwarf_alloc_block (cu);
7330 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7331 info_ptr += bytes_read;
7332 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
7333 info_ptr += blk->size;
7334 DW_BLOCK (attr) = blk;
7335 break;
7336 case DW_FORM_block1:
7337 blk = dwarf_alloc_block (cu);
7338 blk->size = read_1_byte (abfd, info_ptr);
7339 info_ptr += 1;
7340 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
7341 info_ptr += blk->size;
7342 DW_BLOCK (attr) = blk;
7343 break;
7344 case DW_FORM_data1:
7345 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
7346 info_ptr += 1;
7347 break;
7348 case DW_FORM_flag:
7349 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
7350 info_ptr += 1;
7351 break;
7352 case DW_FORM_flag_present:
7353 DW_UNSND (attr) = 1;
7354 break;
7355 case DW_FORM_sdata:
7356 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
7357 info_ptr += bytes_read;
7358 break;
7359 case DW_FORM_udata:
7360 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7361 info_ptr += bytes_read;
7362 break;
7363 case DW_FORM_ref1:
7364 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
7365 info_ptr += 1;
7366 break;
7367 case DW_FORM_ref2:
7368 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
7369 info_ptr += 2;
7370 break;
7371 case DW_FORM_ref4:
7372 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
7373 info_ptr += 4;
7374 break;
7375 case DW_FORM_ref8:
7376 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
7377 info_ptr += 8;
7378 break;
7379 case DW_FORM_sig8:
7380 /* Convert the signature to something we can record in DW_UNSND
7381 for later lookup.
7382 NOTE: This is NULL if the type wasn't found. */
7383 DW_SIGNATURED_TYPE (attr) =
7384 lookup_signatured_type (cu->objfile, read_8_bytes (abfd, info_ptr));
7385 info_ptr += 8;
7386 break;
7387 case DW_FORM_ref_udata:
7388 DW_ADDR (attr) = (cu->header.offset
7389 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
7390 info_ptr += bytes_read;
7391 break;
7392 case DW_FORM_indirect:
7393 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7394 info_ptr += bytes_read;
7395 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
7396 break;
7397 default:
7398 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
7399 dwarf_form_name (form),
7400 bfd_get_filename (abfd));
7401 }
7402
7403 /* We have seen instances where the compiler tried to emit a byte
7404 size attribute of -1 which ended up being encoded as an unsigned
7405 0xffffffff. Although 0xffffffff is technically a valid size value,
7406 an object of this size seems pretty unlikely so we can relatively
7407 safely treat these cases as if the size attribute was invalid and
7408 treat them as zero by default. */
7409 if (attr->name == DW_AT_byte_size
7410 && form == DW_FORM_data4
7411 && DW_UNSND (attr) >= 0xffffffff)
7412 {
7413 complaint
7414 (&symfile_complaints,
7415 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
7416 hex_string (DW_UNSND (attr)));
7417 DW_UNSND (attr) = 0;
7418 }
7419
7420 return info_ptr;
7421 }
7422
7423 /* Read an attribute described by an abbreviated attribute. */
7424
7425 static gdb_byte *
7426 read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
7427 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
7428 {
7429 attr->name = abbrev->name;
7430 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
7431 }
7432
7433 /* read dwarf information from a buffer */
7434
7435 static unsigned int
7436 read_1_byte (bfd *abfd, gdb_byte *buf)
7437 {
7438 return bfd_get_8 (abfd, buf);
7439 }
7440
7441 static int
7442 read_1_signed_byte (bfd *abfd, gdb_byte *buf)
7443 {
7444 return bfd_get_signed_8 (abfd, buf);
7445 }
7446
7447 static unsigned int
7448 read_2_bytes (bfd *abfd, gdb_byte *buf)
7449 {
7450 return bfd_get_16 (abfd, buf);
7451 }
7452
7453 static int
7454 read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
7455 {
7456 return bfd_get_signed_16 (abfd, buf);
7457 }
7458
7459 static unsigned int
7460 read_4_bytes (bfd *abfd, gdb_byte *buf)
7461 {
7462 return bfd_get_32 (abfd, buf);
7463 }
7464
7465 static int
7466 read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
7467 {
7468 return bfd_get_signed_32 (abfd, buf);
7469 }
7470
7471 static ULONGEST
7472 read_8_bytes (bfd *abfd, gdb_byte *buf)
7473 {
7474 return bfd_get_64 (abfd, buf);
7475 }
7476
7477 static CORE_ADDR
7478 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
7479 unsigned int *bytes_read)
7480 {
7481 struct comp_unit_head *cu_header = &cu->header;
7482 CORE_ADDR retval = 0;
7483
7484 if (cu_header->signed_addr_p)
7485 {
7486 switch (cu_header->addr_size)
7487 {
7488 case 2:
7489 retval = bfd_get_signed_16 (abfd, buf);
7490 break;
7491 case 4:
7492 retval = bfd_get_signed_32 (abfd, buf);
7493 break;
7494 case 8:
7495 retval = bfd_get_signed_64 (abfd, buf);
7496 break;
7497 default:
7498 internal_error (__FILE__, __LINE__,
7499 _("read_address: bad switch, signed [in module %s]"),
7500 bfd_get_filename (abfd));
7501 }
7502 }
7503 else
7504 {
7505 switch (cu_header->addr_size)
7506 {
7507 case 2:
7508 retval = bfd_get_16 (abfd, buf);
7509 break;
7510 case 4:
7511 retval = bfd_get_32 (abfd, buf);
7512 break;
7513 case 8:
7514 retval = bfd_get_64 (abfd, buf);
7515 break;
7516 default:
7517 internal_error (__FILE__, __LINE__,
7518 _("read_address: bad switch, unsigned [in module %s]"),
7519 bfd_get_filename (abfd));
7520 }
7521 }
7522
7523 *bytes_read = cu_header->addr_size;
7524 return retval;
7525 }
7526
7527 /* Read the initial length from a section. The (draft) DWARF 3
7528 specification allows the initial length to take up either 4 bytes
7529 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
7530 bytes describe the length and all offsets will be 8 bytes in length
7531 instead of 4.
7532
7533 An older, non-standard 64-bit format is also handled by this
7534 function. The older format in question stores the initial length
7535 as an 8-byte quantity without an escape value. Lengths greater
7536 than 2^32 aren't very common which means that the initial 4 bytes
7537 is almost always zero. Since a length value of zero doesn't make
7538 sense for the 32-bit format, this initial zero can be considered to
7539 be an escape value which indicates the presence of the older 64-bit
7540 format. As written, the code can't detect (old format) lengths
7541 greater than 4GB. If it becomes necessary to handle lengths
7542 somewhat larger than 4GB, we could allow other small values (such
7543 as the non-sensical values of 1, 2, and 3) to also be used as
7544 escape values indicating the presence of the old format.
7545
7546 The value returned via bytes_read should be used to increment the
7547 relevant pointer after calling read_initial_length().
7548
7549 [ Note: read_initial_length() and read_offset() are based on the
7550 document entitled "DWARF Debugging Information Format", revision
7551 3, draft 8, dated November 19, 2001. This document was obtained
7552 from:
7553
7554 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
7555
7556 This document is only a draft and is subject to change. (So beware.)
7557
7558 Details regarding the older, non-standard 64-bit format were
7559 determined empirically by examining 64-bit ELF files produced by
7560 the SGI toolchain on an IRIX 6.5 machine.
7561
7562 - Kevin, July 16, 2002
7563 ] */
7564
7565 static LONGEST
7566 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
7567 {
7568 LONGEST length = bfd_get_32 (abfd, buf);
7569
7570 if (length == 0xffffffff)
7571 {
7572 length = bfd_get_64 (abfd, buf + 4);
7573 *bytes_read = 12;
7574 }
7575 else if (length == 0)
7576 {
7577 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
7578 length = bfd_get_64 (abfd, buf);
7579 *bytes_read = 8;
7580 }
7581 else
7582 {
7583 *bytes_read = 4;
7584 }
7585
7586 return length;
7587 }
7588
7589 /* Cover function for read_initial_length.
7590 Returns the length of the object at BUF, and stores the size of the
7591 initial length in *BYTES_READ and stores the size that offsets will be in
7592 *OFFSET_SIZE.
7593 If the initial length size is not equivalent to that specified in
7594 CU_HEADER then issue a complaint.
7595 This is useful when reading non-comp-unit headers. */
7596
7597 static LONGEST
7598 read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
7599 const struct comp_unit_head *cu_header,
7600 unsigned int *bytes_read,
7601 unsigned int *offset_size)
7602 {
7603 LONGEST length = read_initial_length (abfd, buf, bytes_read);
7604
7605 gdb_assert (cu_header->initial_length_size == 4
7606 || cu_header->initial_length_size == 8
7607 || cu_header->initial_length_size == 12);
7608
7609 if (cu_header->initial_length_size != *bytes_read)
7610 complaint (&symfile_complaints,
7611 _("intermixed 32-bit and 64-bit DWARF sections"));
7612
7613 *offset_size = (*bytes_read == 4) ? 4 : 8;
7614 return length;
7615 }
7616
7617 /* Read an offset from the data stream. The size of the offset is
7618 given by cu_header->offset_size. */
7619
7620 static LONGEST
7621 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
7622 unsigned int *bytes_read)
7623 {
7624 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
7625
7626 *bytes_read = cu_header->offset_size;
7627 return offset;
7628 }
7629
7630 /* Read an offset from the data stream. */
7631
7632 static LONGEST
7633 read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
7634 {
7635 LONGEST retval = 0;
7636
7637 switch (offset_size)
7638 {
7639 case 4:
7640 retval = bfd_get_32 (abfd, buf);
7641 break;
7642 case 8:
7643 retval = bfd_get_64 (abfd, buf);
7644 break;
7645 default:
7646 internal_error (__FILE__, __LINE__,
7647 _("read_offset_1: bad switch [in module %s]"),
7648 bfd_get_filename (abfd));
7649 }
7650
7651 return retval;
7652 }
7653
7654 static gdb_byte *
7655 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
7656 {
7657 /* If the size of a host char is 8 bits, we can return a pointer
7658 to the buffer, otherwise we have to copy the data to a buffer
7659 allocated on the temporary obstack. */
7660 gdb_assert (HOST_CHAR_BIT == 8);
7661 return buf;
7662 }
7663
7664 static char *
7665 read_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
7666 {
7667 /* If the size of a host char is 8 bits, we can return a pointer
7668 to the string, otherwise we have to copy the string to a buffer
7669 allocated on the temporary obstack. */
7670 gdb_assert (HOST_CHAR_BIT == 8);
7671 if (*buf == '\0')
7672 {
7673 *bytes_read_ptr = 1;
7674 return NULL;
7675 }
7676 *bytes_read_ptr = strlen ((char *) buf) + 1;
7677 return (char *) buf;
7678 }
7679
7680 static char *
7681 read_indirect_string (bfd *abfd, gdb_byte *buf,
7682 const struct comp_unit_head *cu_header,
7683 unsigned int *bytes_read_ptr)
7684 {
7685 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
7686
7687 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
7688 if (dwarf2_per_objfile->str.buffer == NULL)
7689 {
7690 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
7691 bfd_get_filename (abfd));
7692 return NULL;
7693 }
7694 if (str_offset >= dwarf2_per_objfile->str.size)
7695 {
7696 error (_("DW_FORM_strp pointing outside of .debug_str section [in module %s]"),
7697 bfd_get_filename (abfd));
7698 return NULL;
7699 }
7700 gdb_assert (HOST_CHAR_BIT == 8);
7701 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
7702 return NULL;
7703 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
7704 }
7705
7706 static unsigned long
7707 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
7708 {
7709 unsigned long result;
7710 unsigned int num_read;
7711 int i, shift;
7712 unsigned char byte;
7713
7714 result = 0;
7715 shift = 0;
7716 num_read = 0;
7717 i = 0;
7718 while (1)
7719 {
7720 byte = bfd_get_8 (abfd, buf);
7721 buf++;
7722 num_read++;
7723 result |= ((unsigned long)(byte & 127) << shift);
7724 if ((byte & 128) == 0)
7725 {
7726 break;
7727 }
7728 shift += 7;
7729 }
7730 *bytes_read_ptr = num_read;
7731 return result;
7732 }
7733
7734 static long
7735 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
7736 {
7737 long result;
7738 int i, shift, num_read;
7739 unsigned char byte;
7740
7741 result = 0;
7742 shift = 0;
7743 num_read = 0;
7744 i = 0;
7745 while (1)
7746 {
7747 byte = bfd_get_8 (abfd, buf);
7748 buf++;
7749 num_read++;
7750 result |= ((long)(byte & 127) << shift);
7751 shift += 7;
7752 if ((byte & 128) == 0)
7753 {
7754 break;
7755 }
7756 }
7757 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
7758 result |= -(((long)1) << shift);
7759 *bytes_read_ptr = num_read;
7760 return result;
7761 }
7762
7763 /* Return a pointer to just past the end of an LEB128 number in BUF. */
7764
7765 static gdb_byte *
7766 skip_leb128 (bfd *abfd, gdb_byte *buf)
7767 {
7768 int byte;
7769
7770 while (1)
7771 {
7772 byte = bfd_get_8 (abfd, buf);
7773 buf++;
7774 if ((byte & 128) == 0)
7775 return buf;
7776 }
7777 }
7778
7779 static void
7780 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
7781 {
7782 switch (lang)
7783 {
7784 case DW_LANG_C89:
7785 case DW_LANG_C99:
7786 case DW_LANG_C:
7787 cu->language = language_c;
7788 break;
7789 case DW_LANG_C_plus_plus:
7790 cu->language = language_cplus;
7791 break;
7792 case DW_LANG_D:
7793 cu->language = language_d;
7794 break;
7795 case DW_LANG_Fortran77:
7796 case DW_LANG_Fortran90:
7797 case DW_LANG_Fortran95:
7798 cu->language = language_fortran;
7799 break;
7800 case DW_LANG_Mips_Assembler:
7801 cu->language = language_asm;
7802 break;
7803 case DW_LANG_Java:
7804 cu->language = language_java;
7805 break;
7806 case DW_LANG_Ada83:
7807 case DW_LANG_Ada95:
7808 cu->language = language_ada;
7809 break;
7810 case DW_LANG_Modula2:
7811 cu->language = language_m2;
7812 break;
7813 case DW_LANG_Pascal83:
7814 cu->language = language_pascal;
7815 break;
7816 case DW_LANG_ObjC:
7817 cu->language = language_objc;
7818 break;
7819 case DW_LANG_Cobol74:
7820 case DW_LANG_Cobol85:
7821 default:
7822 cu->language = language_minimal;
7823 break;
7824 }
7825 cu->language_defn = language_def (cu->language);
7826 }
7827
7828 /* Return the named attribute or NULL if not there. */
7829
7830 static struct attribute *
7831 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
7832 {
7833 unsigned int i;
7834 struct attribute *spec = NULL;
7835
7836 for (i = 0; i < die->num_attrs; ++i)
7837 {
7838 if (die->attrs[i].name == name)
7839 return &die->attrs[i];
7840 if (die->attrs[i].name == DW_AT_specification
7841 || die->attrs[i].name == DW_AT_abstract_origin)
7842 spec = &die->attrs[i];
7843 }
7844
7845 if (spec)
7846 {
7847 die = follow_die_ref (die, spec, &cu);
7848 return dwarf2_attr (die, name, cu);
7849 }
7850
7851 return NULL;
7852 }
7853
7854 /* Return the named attribute or NULL if not there,
7855 but do not follow DW_AT_specification, etc.
7856 This is for use in contexts where we're reading .debug_types dies.
7857 Following DW_AT_specification, DW_AT_abstract_origin will take us
7858 back up the chain, and we want to go down. */
7859
7860 static struct attribute *
7861 dwarf2_attr_no_follow (struct die_info *die, unsigned int name,
7862 struct dwarf2_cu *cu)
7863 {
7864 unsigned int i;
7865
7866 for (i = 0; i < die->num_attrs; ++i)
7867 if (die->attrs[i].name == name)
7868 return &die->attrs[i];
7869
7870 return NULL;
7871 }
7872
7873 /* Return non-zero iff the attribute NAME is defined for the given DIE,
7874 and holds a non-zero value. This function should only be used for
7875 DW_FORM_flag or DW_FORM_flag_present attributes. */
7876
7877 static int
7878 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
7879 {
7880 struct attribute *attr = dwarf2_attr (die, name, cu);
7881
7882 return (attr && DW_UNSND (attr));
7883 }
7884
7885 static int
7886 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
7887 {
7888 /* A DIE is a declaration if it has a DW_AT_declaration attribute
7889 which value is non-zero. However, we have to be careful with
7890 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
7891 (via dwarf2_flag_true_p) follows this attribute. So we may
7892 end up accidently finding a declaration attribute that belongs
7893 to a different DIE referenced by the specification attribute,
7894 even though the given DIE does not have a declaration attribute. */
7895 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
7896 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
7897 }
7898
7899 /* Return the die giving the specification for DIE, if there is
7900 one. *SPEC_CU is the CU containing DIE on input, and the CU
7901 containing the return value on output. If there is no
7902 specification, but there is an abstract origin, that is
7903 returned. */
7904
7905 static struct die_info *
7906 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
7907 {
7908 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
7909 *spec_cu);
7910
7911 if (spec_attr == NULL)
7912 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
7913
7914 if (spec_attr == NULL)
7915 return NULL;
7916 else
7917 return follow_die_ref (die, spec_attr, spec_cu);
7918 }
7919
7920 /* Free the line_header structure *LH, and any arrays and strings it
7921 refers to. */
7922 static void
7923 free_line_header (struct line_header *lh)
7924 {
7925 if (lh->standard_opcode_lengths)
7926 xfree (lh->standard_opcode_lengths);
7927
7928 /* Remember that all the lh->file_names[i].name pointers are
7929 pointers into debug_line_buffer, and don't need to be freed. */
7930 if (lh->file_names)
7931 xfree (lh->file_names);
7932
7933 /* Similarly for the include directory names. */
7934 if (lh->include_dirs)
7935 xfree (lh->include_dirs);
7936
7937 xfree (lh);
7938 }
7939
7940
7941 /* Add an entry to LH's include directory table. */
7942 static void
7943 add_include_dir (struct line_header *lh, char *include_dir)
7944 {
7945 /* Grow the array if necessary. */
7946 if (lh->include_dirs_size == 0)
7947 {
7948 lh->include_dirs_size = 1; /* for testing */
7949 lh->include_dirs = xmalloc (lh->include_dirs_size
7950 * sizeof (*lh->include_dirs));
7951 }
7952 else if (lh->num_include_dirs >= lh->include_dirs_size)
7953 {
7954 lh->include_dirs_size *= 2;
7955 lh->include_dirs = xrealloc (lh->include_dirs,
7956 (lh->include_dirs_size
7957 * sizeof (*lh->include_dirs)));
7958 }
7959
7960 lh->include_dirs[lh->num_include_dirs++] = include_dir;
7961 }
7962
7963
7964 /* Add an entry to LH's file name table. */
7965 static void
7966 add_file_name (struct line_header *lh,
7967 char *name,
7968 unsigned int dir_index,
7969 unsigned int mod_time,
7970 unsigned int length)
7971 {
7972 struct file_entry *fe;
7973
7974 /* Grow the array if necessary. */
7975 if (lh->file_names_size == 0)
7976 {
7977 lh->file_names_size = 1; /* for testing */
7978 lh->file_names = xmalloc (lh->file_names_size
7979 * sizeof (*lh->file_names));
7980 }
7981 else if (lh->num_file_names >= lh->file_names_size)
7982 {
7983 lh->file_names_size *= 2;
7984 lh->file_names = xrealloc (lh->file_names,
7985 (lh->file_names_size
7986 * sizeof (*lh->file_names)));
7987 }
7988
7989 fe = &lh->file_names[lh->num_file_names++];
7990 fe->name = name;
7991 fe->dir_index = dir_index;
7992 fe->mod_time = mod_time;
7993 fe->length = length;
7994 fe->included_p = 0;
7995 fe->symtab = NULL;
7996 }
7997
7998
7999 /* Read the statement program header starting at OFFSET in
8000 .debug_line, according to the endianness of ABFD. Return a pointer
8001 to a struct line_header, allocated using xmalloc.
8002
8003 NOTE: the strings in the include directory and file name tables of
8004 the returned object point into debug_line_buffer, and must not be
8005 freed. */
8006 static struct line_header *
8007 dwarf_decode_line_header (unsigned int offset, bfd *abfd,
8008 struct dwarf2_cu *cu)
8009 {
8010 struct cleanup *back_to;
8011 struct line_header *lh;
8012 gdb_byte *line_ptr;
8013 unsigned int bytes_read, offset_size;
8014 int i;
8015 char *cur_dir, *cur_file;
8016
8017 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->line);
8018 if (dwarf2_per_objfile->line.buffer == NULL)
8019 {
8020 complaint (&symfile_complaints, _("missing .debug_line section"));
8021 return 0;
8022 }
8023
8024 /* Make sure that at least there's room for the total_length field.
8025 That could be 12 bytes long, but we're just going to fudge that. */
8026 if (offset + 4 >= dwarf2_per_objfile->line.size)
8027 {
8028 dwarf2_statement_list_fits_in_line_number_section_complaint ();
8029 return 0;
8030 }
8031
8032 lh = xmalloc (sizeof (*lh));
8033 memset (lh, 0, sizeof (*lh));
8034 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
8035 (void *) lh);
8036
8037 line_ptr = dwarf2_per_objfile->line.buffer + offset;
8038
8039 /* Read in the header. */
8040 lh->total_length =
8041 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
8042 &bytes_read, &offset_size);
8043 line_ptr += bytes_read;
8044 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line.buffer
8045 + dwarf2_per_objfile->line.size))
8046 {
8047 dwarf2_statement_list_fits_in_line_number_section_complaint ();
8048 return 0;
8049 }
8050 lh->statement_program_end = line_ptr + lh->total_length;
8051 lh->version = read_2_bytes (abfd, line_ptr);
8052 line_ptr += 2;
8053 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
8054 line_ptr += offset_size;
8055 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
8056 line_ptr += 1;
8057 if (lh->version >= 4)
8058 {
8059 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
8060 line_ptr += 1;
8061 }
8062 else
8063 lh->maximum_ops_per_instruction = 1;
8064
8065 if (lh->maximum_ops_per_instruction == 0)
8066 {
8067 lh->maximum_ops_per_instruction = 1;
8068 complaint (&symfile_complaints,
8069 _("invalid maximum_ops_per_instruction in `.debug_line' section"));
8070 }
8071
8072 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
8073 line_ptr += 1;
8074 lh->line_base = read_1_signed_byte (abfd, line_ptr);
8075 line_ptr += 1;
8076 lh->line_range = read_1_byte (abfd, line_ptr);
8077 line_ptr += 1;
8078 lh->opcode_base = read_1_byte (abfd, line_ptr);
8079 line_ptr += 1;
8080 lh->standard_opcode_lengths
8081 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
8082
8083 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
8084 for (i = 1; i < lh->opcode_base; ++i)
8085 {
8086 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
8087 line_ptr += 1;
8088 }
8089
8090 /* Read directory table. */
8091 while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL)
8092 {
8093 line_ptr += bytes_read;
8094 add_include_dir (lh, cur_dir);
8095 }
8096 line_ptr += bytes_read;
8097
8098 /* Read file name table. */
8099 while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL)
8100 {
8101 unsigned int dir_index, mod_time, length;
8102
8103 line_ptr += bytes_read;
8104 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8105 line_ptr += bytes_read;
8106 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8107 line_ptr += bytes_read;
8108 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8109 line_ptr += bytes_read;
8110
8111 add_file_name (lh, cur_file, dir_index, mod_time, length);
8112 }
8113 line_ptr += bytes_read;
8114 lh->statement_program_start = line_ptr;
8115
8116 if (line_ptr > (dwarf2_per_objfile->line.buffer
8117 + dwarf2_per_objfile->line.size))
8118 complaint (&symfile_complaints,
8119 _("line number info header doesn't fit in `.debug_line' section"));
8120
8121 discard_cleanups (back_to);
8122 return lh;
8123 }
8124
8125 /* This function exists to work around a bug in certain compilers
8126 (particularly GCC 2.95), in which the first line number marker of a
8127 function does not show up until after the prologue, right before
8128 the second line number marker. This function shifts ADDRESS down
8129 to the beginning of the function if necessary, and is called on
8130 addresses passed to record_line. */
8131
8132 static CORE_ADDR
8133 check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
8134 {
8135 struct function_range *fn;
8136
8137 /* Find the function_range containing address. */
8138 if (!cu->first_fn)
8139 return address;
8140
8141 if (!cu->cached_fn)
8142 cu->cached_fn = cu->first_fn;
8143
8144 fn = cu->cached_fn;
8145 while (fn)
8146 if (fn->lowpc <= address && fn->highpc > address)
8147 goto found;
8148 else
8149 fn = fn->next;
8150
8151 fn = cu->first_fn;
8152 while (fn && fn != cu->cached_fn)
8153 if (fn->lowpc <= address && fn->highpc > address)
8154 goto found;
8155 else
8156 fn = fn->next;
8157
8158 return address;
8159
8160 found:
8161 if (fn->seen_line)
8162 return address;
8163 if (address != fn->lowpc)
8164 complaint (&symfile_complaints,
8165 _("misplaced first line number at 0x%lx for '%s'"),
8166 (unsigned long) address, fn->name);
8167 fn->seen_line = 1;
8168 return fn->lowpc;
8169 }
8170
8171 /* Decode the Line Number Program (LNP) for the given line_header
8172 structure and CU. The actual information extracted and the type
8173 of structures created from the LNP depends on the value of PST.
8174
8175 1. If PST is NULL, then this procedure uses the data from the program
8176 to create all necessary symbol tables, and their linetables.
8177 The compilation directory of the file is passed in COMP_DIR,
8178 and must not be NULL.
8179
8180 2. If PST is not NULL, this procedure reads the program to determine
8181 the list of files included by the unit represented by PST, and
8182 builds all the associated partial symbol tables. In this case,
8183 the value of COMP_DIR is ignored, and can thus be NULL (the COMP_DIR
8184 is not used to compute the full name of the symtab, and therefore
8185 omitting it when building the partial symtab does not introduce
8186 the potential for inconsistency - a partial symtab and its associated
8187 symbtab having a different fullname -). */
8188
8189 static void
8190 dwarf_decode_lines (struct line_header *lh, char *comp_dir, bfd *abfd,
8191 struct dwarf2_cu *cu, struct partial_symtab *pst)
8192 {
8193 gdb_byte *line_ptr, *extended_end;
8194 gdb_byte *line_end;
8195 unsigned int bytes_read, extended_len;
8196 unsigned char op_code, extended_op, adj_opcode;
8197 CORE_ADDR baseaddr;
8198 struct objfile *objfile = cu->objfile;
8199 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8200 const int decode_for_pst_p = (pst != NULL);
8201 struct subfile *last_subfile = NULL, *first_subfile = current_subfile;
8202
8203 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8204
8205 line_ptr = lh->statement_program_start;
8206 line_end = lh->statement_program_end;
8207
8208 /* Read the statement sequences until there's nothing left. */
8209 while (line_ptr < line_end)
8210 {
8211 /* state machine registers */
8212 CORE_ADDR address = 0;
8213 unsigned int file = 1;
8214 unsigned int line = 1;
8215 unsigned int column = 0;
8216 int is_stmt = lh->default_is_stmt;
8217 int basic_block = 0;
8218 int end_sequence = 0;
8219 CORE_ADDR addr;
8220 unsigned char op_index = 0;
8221
8222 if (!decode_for_pst_p && lh->num_file_names >= file)
8223 {
8224 /* Start a subfile for the current file of the state machine. */
8225 /* lh->include_dirs and lh->file_names are 0-based, but the
8226 directory and file name numbers in the statement program
8227 are 1-based. */
8228 struct file_entry *fe = &lh->file_names[file - 1];
8229 char *dir = NULL;
8230
8231 if (fe->dir_index)
8232 dir = lh->include_dirs[fe->dir_index - 1];
8233
8234 dwarf2_start_subfile (fe->name, dir, comp_dir);
8235 }
8236
8237 /* Decode the table. */
8238 while (!end_sequence)
8239 {
8240 op_code = read_1_byte (abfd, line_ptr);
8241 line_ptr += 1;
8242 if (line_ptr > line_end)
8243 {
8244 dwarf2_debug_line_missing_end_sequence_complaint ();
8245 break;
8246 }
8247
8248 if (op_code >= lh->opcode_base)
8249 {
8250 /* Special operand. */
8251 adj_opcode = op_code - lh->opcode_base;
8252 address += (((op_index + (adj_opcode / lh->line_range))
8253 / lh->maximum_ops_per_instruction)
8254 * lh->minimum_instruction_length);
8255 op_index = ((op_index + (adj_opcode / lh->line_range))
8256 % lh->maximum_ops_per_instruction);
8257 line += lh->line_base + (adj_opcode % lh->line_range);
8258 if (lh->num_file_names < file || file == 0)
8259 dwarf2_debug_line_missing_file_complaint ();
8260 /* For now we ignore lines not starting on an
8261 instruction boundary. */
8262 else if (op_index == 0)
8263 {
8264 lh->file_names[file - 1].included_p = 1;
8265 if (!decode_for_pst_p && is_stmt)
8266 {
8267 if (last_subfile != current_subfile)
8268 {
8269 addr = gdbarch_addr_bits_remove (gdbarch, address);
8270 if (last_subfile)
8271 record_line (last_subfile, 0, addr);
8272 last_subfile = current_subfile;
8273 }
8274 /* Append row to matrix using current values. */
8275 addr = check_cu_functions (address, cu);
8276 addr = gdbarch_addr_bits_remove (gdbarch, addr);
8277 record_line (current_subfile, line, addr);
8278 }
8279 }
8280 basic_block = 0;
8281 }
8282 else switch (op_code)
8283 {
8284 case DW_LNS_extended_op:
8285 extended_len = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8286 line_ptr += bytes_read;
8287 extended_end = line_ptr + extended_len;
8288 extended_op = read_1_byte (abfd, line_ptr);
8289 line_ptr += 1;
8290 switch (extended_op)
8291 {
8292 case DW_LNE_end_sequence:
8293 end_sequence = 1;
8294 break;
8295 case DW_LNE_set_address:
8296 address = read_address (abfd, line_ptr, cu, &bytes_read);
8297 op_index = 0;
8298 line_ptr += bytes_read;
8299 address += baseaddr;
8300 break;
8301 case DW_LNE_define_file:
8302 {
8303 char *cur_file;
8304 unsigned int dir_index, mod_time, length;
8305
8306 cur_file = read_string (abfd, line_ptr, &bytes_read);
8307 line_ptr += bytes_read;
8308 dir_index =
8309 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8310 line_ptr += bytes_read;
8311 mod_time =
8312 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8313 line_ptr += bytes_read;
8314 length =
8315 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8316 line_ptr += bytes_read;
8317 add_file_name (lh, cur_file, dir_index, mod_time, length);
8318 }
8319 break;
8320 case DW_LNE_set_discriminator:
8321 /* The discriminator is not interesting to the debugger;
8322 just ignore it. */
8323 line_ptr = extended_end;
8324 break;
8325 default:
8326 complaint (&symfile_complaints,
8327 _("mangled .debug_line section"));
8328 return;
8329 }
8330 /* Make sure that we parsed the extended op correctly. If e.g.
8331 we expected a different address size than the producer used,
8332 we may have read the wrong number of bytes. */
8333 if (line_ptr != extended_end)
8334 {
8335 complaint (&symfile_complaints,
8336 _("mangled .debug_line section"));
8337 return;
8338 }
8339 break;
8340 case DW_LNS_copy:
8341 if (lh->num_file_names < file || file == 0)
8342 dwarf2_debug_line_missing_file_complaint ();
8343 else
8344 {
8345 lh->file_names[file - 1].included_p = 1;
8346 if (!decode_for_pst_p && is_stmt)
8347 {
8348 if (last_subfile != current_subfile)
8349 {
8350 addr = gdbarch_addr_bits_remove (gdbarch, address);
8351 if (last_subfile)
8352 record_line (last_subfile, 0, addr);
8353 last_subfile = current_subfile;
8354 }
8355 addr = check_cu_functions (address, cu);
8356 addr = gdbarch_addr_bits_remove (gdbarch, addr);
8357 record_line (current_subfile, line, addr);
8358 }
8359 }
8360 basic_block = 0;
8361 break;
8362 case DW_LNS_advance_pc:
8363 {
8364 CORE_ADDR adjust
8365 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8366
8367 address += (((op_index + adjust)
8368 / lh->maximum_ops_per_instruction)
8369 * lh->minimum_instruction_length);
8370 op_index = ((op_index + adjust)
8371 % lh->maximum_ops_per_instruction);
8372 line_ptr += bytes_read;
8373 }
8374 break;
8375 case DW_LNS_advance_line:
8376 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
8377 line_ptr += bytes_read;
8378 break;
8379 case DW_LNS_set_file:
8380 {
8381 /* The arrays lh->include_dirs and lh->file_names are
8382 0-based, but the directory and file name numbers in
8383 the statement program are 1-based. */
8384 struct file_entry *fe;
8385 char *dir = NULL;
8386
8387 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8388 line_ptr += bytes_read;
8389 if (lh->num_file_names < file || file == 0)
8390 dwarf2_debug_line_missing_file_complaint ();
8391 else
8392 {
8393 fe = &lh->file_names[file - 1];
8394 if (fe->dir_index)
8395 dir = lh->include_dirs[fe->dir_index - 1];
8396 if (!decode_for_pst_p)
8397 {
8398 last_subfile = current_subfile;
8399 dwarf2_start_subfile (fe->name, dir, comp_dir);
8400 }
8401 }
8402 }
8403 break;
8404 case DW_LNS_set_column:
8405 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8406 line_ptr += bytes_read;
8407 break;
8408 case DW_LNS_negate_stmt:
8409 is_stmt = (!is_stmt);
8410 break;
8411 case DW_LNS_set_basic_block:
8412 basic_block = 1;
8413 break;
8414 /* Add to the address register of the state machine the
8415 address increment value corresponding to special opcode
8416 255. I.e., this value is scaled by the minimum
8417 instruction length since special opcode 255 would have
8418 scaled the the increment. */
8419 case DW_LNS_const_add_pc:
8420 {
8421 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
8422
8423 address += (((op_index + adjust)
8424 / lh->maximum_ops_per_instruction)
8425 * lh->minimum_instruction_length);
8426 op_index = ((op_index + adjust)
8427 % lh->maximum_ops_per_instruction);
8428 }
8429 break;
8430 case DW_LNS_fixed_advance_pc:
8431 address += read_2_bytes (abfd, line_ptr);
8432 op_index = 0;
8433 line_ptr += 2;
8434 break;
8435 default:
8436 {
8437 /* Unknown standard opcode, ignore it. */
8438 int i;
8439
8440 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
8441 {
8442 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8443 line_ptr += bytes_read;
8444 }
8445 }
8446 }
8447 }
8448 if (lh->num_file_names < file || file == 0)
8449 dwarf2_debug_line_missing_file_complaint ();
8450 else
8451 {
8452 lh->file_names[file - 1].included_p = 1;
8453 if (!decode_for_pst_p)
8454 {
8455 addr = gdbarch_addr_bits_remove (gdbarch, address);
8456 record_line (current_subfile, 0, addr);
8457 }
8458 }
8459 }
8460
8461 if (decode_for_pst_p)
8462 {
8463 int file_index;
8464
8465 /* Now that we're done scanning the Line Header Program, we can
8466 create the psymtab of each included file. */
8467 for (file_index = 0; file_index < lh->num_file_names; file_index++)
8468 if (lh->file_names[file_index].included_p == 1)
8469 {
8470 const struct file_entry fe = lh->file_names [file_index];
8471 char *include_name = fe.name;
8472 char *dir_name = NULL;
8473 char *pst_filename = pst->filename;
8474
8475 if (fe.dir_index)
8476 dir_name = lh->include_dirs[fe.dir_index - 1];
8477
8478 if (!IS_ABSOLUTE_PATH (include_name) && dir_name != NULL)
8479 {
8480 include_name = concat (dir_name, SLASH_STRING,
8481 include_name, (char *)NULL);
8482 make_cleanup (xfree, include_name);
8483 }
8484
8485 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
8486 {
8487 pst_filename = concat (pst->dirname, SLASH_STRING,
8488 pst_filename, (char *)NULL);
8489 make_cleanup (xfree, pst_filename);
8490 }
8491
8492 if (strcmp (include_name, pst_filename) != 0)
8493 dwarf2_create_include_psymtab (include_name, pst, objfile);
8494 }
8495 }
8496 else
8497 {
8498 /* Make sure a symtab is created for every file, even files
8499 which contain only variables (i.e. no code with associated
8500 line numbers). */
8501
8502 int i;
8503 struct file_entry *fe;
8504
8505 for (i = 0; i < lh->num_file_names; i++)
8506 {
8507 char *dir = NULL;
8508
8509 fe = &lh->file_names[i];
8510 if (fe->dir_index)
8511 dir = lh->include_dirs[fe->dir_index - 1];
8512 dwarf2_start_subfile (fe->name, dir, comp_dir);
8513
8514 /* Skip the main file; we don't need it, and it must be
8515 allocated last, so that it will show up before the
8516 non-primary symtabs in the objfile's symtab list. */
8517 if (current_subfile == first_subfile)
8518 continue;
8519
8520 if (current_subfile->symtab == NULL)
8521 current_subfile->symtab = allocate_symtab (current_subfile->name,
8522 cu->objfile);
8523 fe->symtab = current_subfile->symtab;
8524 }
8525 }
8526 }
8527
8528 /* Start a subfile for DWARF. FILENAME is the name of the file and
8529 DIRNAME the name of the source directory which contains FILENAME
8530 or NULL if not known. COMP_DIR is the compilation directory for the
8531 linetable's compilation unit or NULL if not known.
8532 This routine tries to keep line numbers from identical absolute and
8533 relative file names in a common subfile.
8534
8535 Using the `list' example from the GDB testsuite, which resides in
8536 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
8537 of /srcdir/list0.c yields the following debugging information for list0.c:
8538
8539 DW_AT_name: /srcdir/list0.c
8540 DW_AT_comp_dir: /compdir
8541 files.files[0].name: list0.h
8542 files.files[0].dir: /srcdir
8543 files.files[1].name: list0.c
8544 files.files[1].dir: /srcdir
8545
8546 The line number information for list0.c has to end up in a single
8547 subfile, so that `break /srcdir/list0.c:1' works as expected.
8548 start_subfile will ensure that this happens provided that we pass the
8549 concatenation of files.files[1].dir and files.files[1].name as the
8550 subfile's name. */
8551
8552 static void
8553 dwarf2_start_subfile (char *filename, char *dirname, char *comp_dir)
8554 {
8555 char *fullname;
8556
8557 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
8558 `start_symtab' will always pass the contents of DW_AT_comp_dir as
8559 second argument to start_subfile. To be consistent, we do the
8560 same here. In order not to lose the line information directory,
8561 we concatenate it to the filename when it makes sense.
8562 Note that the Dwarf3 standard says (speaking of filenames in line
8563 information): ``The directory index is ignored for file names
8564 that represent full path names''. Thus ignoring dirname in the
8565 `else' branch below isn't an issue. */
8566
8567 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
8568 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
8569 else
8570 fullname = filename;
8571
8572 start_subfile (fullname, comp_dir);
8573
8574 if (fullname != filename)
8575 xfree (fullname);
8576 }
8577
8578 static void
8579 var_decode_location (struct attribute *attr, struct symbol *sym,
8580 struct dwarf2_cu *cu)
8581 {
8582 struct objfile *objfile = cu->objfile;
8583 struct comp_unit_head *cu_header = &cu->header;
8584
8585 /* NOTE drow/2003-01-30: There used to be a comment and some special
8586 code here to turn a symbol with DW_AT_external and a
8587 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
8588 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
8589 with some versions of binutils) where shared libraries could have
8590 relocations against symbols in their debug information - the
8591 minimal symbol would have the right address, but the debug info
8592 would not. It's no longer necessary, because we will explicitly
8593 apply relocations when we read in the debug information now. */
8594
8595 /* A DW_AT_location attribute with no contents indicates that a
8596 variable has been optimized away. */
8597 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
8598 {
8599 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
8600 return;
8601 }
8602
8603 /* Handle one degenerate form of location expression specially, to
8604 preserve GDB's previous behavior when section offsets are
8605 specified. If this is just a DW_OP_addr then mark this symbol
8606 as LOC_STATIC. */
8607
8608 if (attr_form_is_block (attr)
8609 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
8610 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
8611 {
8612 unsigned int dummy;
8613
8614 SYMBOL_VALUE_ADDRESS (sym) =
8615 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
8616 SYMBOL_CLASS (sym) = LOC_STATIC;
8617 fixup_symbol_section (sym, objfile);
8618 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
8619 SYMBOL_SECTION (sym));
8620 return;
8621 }
8622
8623 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
8624 expression evaluator, and use LOC_COMPUTED only when necessary
8625 (i.e. when the value of a register or memory location is
8626 referenced, or a thread-local block, etc.). Then again, it might
8627 not be worthwhile. I'm assuming that it isn't unless performance
8628 or memory numbers show me otherwise. */
8629
8630 dwarf2_symbol_mark_computed (attr, sym, cu);
8631 SYMBOL_CLASS (sym) = LOC_COMPUTED;
8632 }
8633
8634 /* Given a pointer to a DWARF information entry, figure out if we need
8635 to make a symbol table entry for it, and if so, create a new entry
8636 and return a pointer to it.
8637 If TYPE is NULL, determine symbol type from the die, otherwise
8638 used the passed type. */
8639
8640 static struct symbol *
8641 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
8642 {
8643 struct objfile *objfile = cu->objfile;
8644 struct symbol *sym = NULL;
8645 char *name;
8646 struct attribute *attr = NULL;
8647 struct attribute *attr2 = NULL;
8648 CORE_ADDR baseaddr;
8649 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
8650
8651 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8652
8653 name = dwarf2_name (die, cu);
8654 if (name)
8655 {
8656 const char *linkagename;
8657
8658 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
8659 sizeof (struct symbol));
8660 OBJSTAT (objfile, n_syms++);
8661 memset (sym, 0, sizeof (struct symbol));
8662
8663 /* Cache this symbol's name and the name's demangled form (if any). */
8664 SYMBOL_LANGUAGE (sym) = cu->language;
8665 linkagename = dwarf2_physname (name, die, cu);
8666 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
8667
8668 /* Fortran does not have mangling standard and the mangling does differ
8669 between gfortran, iFort etc. */
8670 if (cu->language == language_fortran
8671 && sym->ginfo.language_specific.cplus_specific.demangled_name == NULL)
8672 sym->ginfo.language_specific.cplus_specific.demangled_name
8673 = (char *) dwarf2_full_name (name, die, cu);
8674
8675 /* Default assumptions.
8676 Use the passed type or decode it from the die. */
8677 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
8678 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
8679 if (type != NULL)
8680 SYMBOL_TYPE (sym) = type;
8681 else
8682 SYMBOL_TYPE (sym) = die_type (die, cu);
8683 attr = dwarf2_attr (die,
8684 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
8685 cu);
8686 if (attr)
8687 {
8688 SYMBOL_LINE (sym) = DW_UNSND (attr);
8689 }
8690
8691 attr = dwarf2_attr (die,
8692 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
8693 cu);
8694 if (attr)
8695 {
8696 int file_index = DW_UNSND (attr);
8697
8698 if (cu->line_header == NULL
8699 || file_index > cu->line_header->num_file_names)
8700 complaint (&symfile_complaints,
8701 _("file index out of range"));
8702 else if (file_index > 0)
8703 {
8704 struct file_entry *fe;
8705
8706 fe = &cu->line_header->file_names[file_index - 1];
8707 SYMBOL_SYMTAB (sym) = fe->symtab;
8708 }
8709 }
8710
8711 switch (die->tag)
8712 {
8713 case DW_TAG_label:
8714 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
8715 if (attr)
8716 {
8717 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
8718 }
8719 SYMBOL_CLASS (sym) = LOC_LABEL;
8720 break;
8721 case DW_TAG_subprogram:
8722 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
8723 finish_block. */
8724 SYMBOL_CLASS (sym) = LOC_BLOCK;
8725 attr2 = dwarf2_attr (die, DW_AT_external, cu);
8726 if ((attr2 && (DW_UNSND (attr2) != 0))
8727 || cu->language == language_ada)
8728 {
8729 /* Subprograms marked external are stored as a global symbol.
8730 Ada subprograms, whether marked external or not, are always
8731 stored as a global symbol, because we want to be able to
8732 access them globally. For instance, we want to be able
8733 to break on a nested subprogram without having to
8734 specify the context. */
8735 add_symbol_to_list (sym, &global_symbols);
8736 }
8737 else
8738 {
8739 add_symbol_to_list (sym, cu->list_in_scope);
8740 }
8741 break;
8742 case DW_TAG_inlined_subroutine:
8743 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
8744 finish_block. */
8745 SYMBOL_CLASS (sym) = LOC_BLOCK;
8746 SYMBOL_INLINED (sym) = 1;
8747 /* Do not add the symbol to any lists. It will be found via
8748 BLOCK_FUNCTION from the blockvector. */
8749 break;
8750 case DW_TAG_variable:
8751 /* Compilation with minimal debug info may result in variables
8752 with missing type entries. Change the misleading `void' type
8753 to something sensible. */
8754 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
8755 SYMBOL_TYPE (sym)
8756 = objfile_type (objfile)->nodebug_data_symbol;
8757
8758 attr = dwarf2_attr (die, DW_AT_const_value, cu);
8759 if (attr)
8760 {
8761 dwarf2_const_value (attr, sym, cu);
8762 attr2 = dwarf2_attr (die, DW_AT_external, cu);
8763 if (attr2 && (DW_UNSND (attr2) != 0))
8764 add_symbol_to_list (sym, &global_symbols);
8765 else
8766 add_symbol_to_list (sym, cu->list_in_scope);
8767 break;
8768 }
8769 attr = dwarf2_attr (die, DW_AT_location, cu);
8770 if (attr)
8771 {
8772 var_decode_location (attr, sym, cu);
8773 attr2 = dwarf2_attr (die, DW_AT_external, cu);
8774 if (attr2 && (DW_UNSND (attr2) != 0))
8775 {
8776 struct pending **list_to_add;
8777
8778 /* Workaround gfortran PR debug/40040 - it uses
8779 DW_AT_location for variables in -fPIC libraries which may
8780 get overriden by other libraries/executable and get
8781 a different address. Resolve it by the minimal symbol
8782 which may come from inferior's executable using copy
8783 relocation. Make this workaround only for gfortran as for
8784 other compilers GDB cannot guess the minimal symbol
8785 Fortran mangling kind. */
8786 if (cu->language == language_fortran && die->parent
8787 && die->parent->tag == DW_TAG_module
8788 && cu->producer
8789 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
8790 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
8791
8792 /* A variable with DW_AT_external is never static,
8793 but it may be block-scoped. */
8794 list_to_add = (cu->list_in_scope == &file_symbols
8795 ? &global_symbols : cu->list_in_scope);
8796 add_symbol_to_list (sym, list_to_add);
8797 }
8798 else
8799 add_symbol_to_list (sym, cu->list_in_scope);
8800 }
8801 else
8802 {
8803 /* We do not know the address of this symbol.
8804 If it is an external symbol and we have type information
8805 for it, enter the symbol as a LOC_UNRESOLVED symbol.
8806 The address of the variable will then be determined from
8807 the minimal symbol table whenever the variable is
8808 referenced. */
8809 attr2 = dwarf2_attr (die, DW_AT_external, cu);
8810 if (attr2 && (DW_UNSND (attr2) != 0)
8811 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
8812 {
8813 struct pending **list_to_add;
8814
8815 /* A variable with DW_AT_external is never static, but it
8816 may be block-scoped. */
8817 list_to_add = (cu->list_in_scope == &file_symbols
8818 ? &global_symbols : cu->list_in_scope);
8819
8820 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
8821 add_symbol_to_list (sym, list_to_add);
8822 }
8823 else if (!die_is_declaration (die, cu))
8824 {
8825 /* Use the default LOC_OPTIMIZED_OUT class. */
8826 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
8827 add_symbol_to_list (sym, cu->list_in_scope);
8828 }
8829 }
8830 break;
8831 case DW_TAG_formal_parameter:
8832 /* If we are inside a function, mark this as an argument. If
8833 not, we might be looking at an argument to an inlined function
8834 when we do not have enough information to show inlined frames;
8835 pretend it's a local variable in that case so that the user can
8836 still see it. */
8837 if (context_stack_depth > 0
8838 && context_stack[context_stack_depth - 1].name != NULL)
8839 SYMBOL_IS_ARGUMENT (sym) = 1;
8840 attr = dwarf2_attr (die, DW_AT_location, cu);
8841 if (attr)
8842 {
8843 var_decode_location (attr, sym, cu);
8844 }
8845 attr = dwarf2_attr (die, DW_AT_const_value, cu);
8846 if (attr)
8847 {
8848 dwarf2_const_value (attr, sym, cu);
8849 }
8850 attr = dwarf2_attr (die, DW_AT_variable_parameter, cu);
8851 if (attr && DW_UNSND (attr))
8852 {
8853 struct type *ref_type;
8854
8855 ref_type = lookup_reference_type (SYMBOL_TYPE (sym));
8856 SYMBOL_TYPE (sym) = ref_type;
8857 }
8858
8859 add_symbol_to_list (sym, cu->list_in_scope);
8860 break;
8861 case DW_TAG_unspecified_parameters:
8862 /* From varargs functions; gdb doesn't seem to have any
8863 interest in this information, so just ignore it for now.
8864 (FIXME?) */
8865 break;
8866 case DW_TAG_class_type:
8867 case DW_TAG_interface_type:
8868 case DW_TAG_structure_type:
8869 case DW_TAG_union_type:
8870 case DW_TAG_set_type:
8871 case DW_TAG_enumeration_type:
8872 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
8873 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
8874
8875 {
8876 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
8877 really ever be static objects: otherwise, if you try
8878 to, say, break of a class's method and you're in a file
8879 which doesn't mention that class, it won't work unless
8880 the check for all static symbols in lookup_symbol_aux
8881 saves you. See the OtherFileClass tests in
8882 gdb.c++/namespace.exp. */
8883
8884 struct pending **list_to_add;
8885
8886 list_to_add = (cu->list_in_scope == &file_symbols
8887 && (cu->language == language_cplus
8888 || cu->language == language_java)
8889 ? &global_symbols : cu->list_in_scope);
8890
8891 add_symbol_to_list (sym, list_to_add);
8892
8893 /* The semantics of C++ state that "struct foo { ... }" also
8894 defines a typedef for "foo". A Java class declaration also
8895 defines a typedef for the class. */
8896 if (cu->language == language_cplus
8897 || cu->language == language_java
8898 || cu->language == language_ada)
8899 {
8900 /* The symbol's name is already allocated along with
8901 this objfile, so we don't need to duplicate it for
8902 the type. */
8903 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
8904 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
8905 }
8906 }
8907 break;
8908 case DW_TAG_typedef:
8909 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
8910 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
8911 add_symbol_to_list (sym, cu->list_in_scope);
8912 break;
8913 case DW_TAG_base_type:
8914 case DW_TAG_subrange_type:
8915 case DW_TAG_const_type:
8916 case DW_TAG_volatile_type:
8917 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
8918 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
8919 add_symbol_to_list (sym, cu->list_in_scope);
8920 break;
8921 case DW_TAG_enumerator:
8922 attr = dwarf2_attr (die, DW_AT_const_value, cu);
8923 if (attr)
8924 {
8925 dwarf2_const_value (attr, sym, cu);
8926 }
8927 {
8928 /* NOTE: carlton/2003-11-10: See comment above in the
8929 DW_TAG_class_type, etc. block. */
8930
8931 struct pending **list_to_add;
8932
8933 list_to_add = (cu->list_in_scope == &file_symbols
8934 && (cu->language == language_cplus
8935 || cu->language == language_java)
8936 ? &global_symbols : cu->list_in_scope);
8937
8938 add_symbol_to_list (sym, list_to_add);
8939 }
8940 break;
8941 case DW_TAG_namespace:
8942 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
8943 add_symbol_to_list (sym, &global_symbols);
8944 break;
8945 default:
8946 /* Not a tag we recognize. Hopefully we aren't processing
8947 trash data, but since we must specifically ignore things
8948 we don't recognize, there is nothing else we should do at
8949 this point. */
8950 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
8951 dwarf_tag_name (die->tag));
8952 break;
8953 }
8954
8955 /* For the benefit of old versions of GCC, check for anonymous
8956 namespaces based on the demangled name. */
8957 if (!processing_has_namespace_info
8958 && cu->language == language_cplus)
8959 cp_scan_for_anonymous_namespaces (sym);
8960 }
8961 return (sym);
8962 }
8963
8964 /* Copy constant value from an attribute to a symbol. */
8965
8966 static void
8967 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
8968 struct dwarf2_cu *cu)
8969 {
8970 struct objfile *objfile = cu->objfile;
8971 struct comp_unit_head *cu_header = &cu->header;
8972 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
8973 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
8974 struct dwarf_block *blk;
8975
8976 switch (attr->form)
8977 {
8978 case DW_FORM_addr:
8979 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != cu_header->addr_size)
8980 dwarf2_const_value_length_mismatch_complaint (SYMBOL_PRINT_NAME (sym),
8981 cu_header->addr_size,
8982 TYPE_LENGTH (SYMBOL_TYPE
8983 (sym)));
8984 SYMBOL_VALUE_BYTES (sym) =
8985 obstack_alloc (&objfile->objfile_obstack, cu_header->addr_size);
8986 /* NOTE: cagney/2003-05-09: In-lined store_address call with
8987 it's body - store_unsigned_integer. */
8988 store_unsigned_integer (SYMBOL_VALUE_BYTES (sym), cu_header->addr_size,
8989 byte_order, DW_ADDR (attr));
8990 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
8991 break;
8992 case DW_FORM_string:
8993 case DW_FORM_strp:
8994 /* DW_STRING is already allocated on the obstack, point directly
8995 to it. */
8996 SYMBOL_VALUE_BYTES (sym) = (gdb_byte *) DW_STRING (attr);
8997 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
8998 break;
8999 case DW_FORM_block1:
9000 case DW_FORM_block2:
9001 case DW_FORM_block4:
9002 case DW_FORM_block:
9003 case DW_FORM_exprloc:
9004 blk = DW_BLOCK (attr);
9005 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != blk->size)
9006 dwarf2_const_value_length_mismatch_complaint (SYMBOL_PRINT_NAME (sym),
9007 blk->size,
9008 TYPE_LENGTH (SYMBOL_TYPE
9009 (sym)));
9010 SYMBOL_VALUE_BYTES (sym) =
9011 obstack_alloc (&objfile->objfile_obstack, blk->size);
9012 memcpy (SYMBOL_VALUE_BYTES (sym), blk->data, blk->size);
9013 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
9014 break;
9015
9016 /* The DW_AT_const_value attributes are supposed to carry the
9017 symbol's value "represented as it would be on the target
9018 architecture." By the time we get here, it's already been
9019 converted to host endianness, so we just need to sign- or
9020 zero-extend it as appropriate. */
9021 case DW_FORM_data1:
9022 dwarf2_const_value_data (attr, sym, 8);
9023 break;
9024 case DW_FORM_data2:
9025 dwarf2_const_value_data (attr, sym, 16);
9026 break;
9027 case DW_FORM_data4:
9028 dwarf2_const_value_data (attr, sym, 32);
9029 break;
9030 case DW_FORM_data8:
9031 dwarf2_const_value_data (attr, sym, 64);
9032 break;
9033
9034 case DW_FORM_sdata:
9035 SYMBOL_VALUE (sym) = DW_SND (attr);
9036 SYMBOL_CLASS (sym) = LOC_CONST;
9037 break;
9038
9039 case DW_FORM_udata:
9040 SYMBOL_VALUE (sym) = DW_UNSND (attr);
9041 SYMBOL_CLASS (sym) = LOC_CONST;
9042 break;
9043
9044 default:
9045 complaint (&symfile_complaints,
9046 _("unsupported const value attribute form: '%s'"),
9047 dwarf_form_name (attr->form));
9048 SYMBOL_VALUE (sym) = 0;
9049 SYMBOL_CLASS (sym) = LOC_CONST;
9050 break;
9051 }
9052 }
9053
9054
9055 /* Given an attr with a DW_FORM_dataN value in host byte order, sign-
9056 or zero-extend it as appropriate for the symbol's type. */
9057 static void
9058 dwarf2_const_value_data (struct attribute *attr,
9059 struct symbol *sym,
9060 int bits)
9061 {
9062 LONGEST l = DW_UNSND (attr);
9063
9064 if (bits < sizeof (l) * 8)
9065 {
9066 if (TYPE_UNSIGNED (SYMBOL_TYPE (sym)))
9067 l &= ((LONGEST) 1 << bits) - 1;
9068 else
9069 l = (l << (sizeof (l) * 8 - bits)) >> (sizeof (l) * 8 - bits);
9070 }
9071
9072 SYMBOL_VALUE (sym) = l;
9073 SYMBOL_CLASS (sym) = LOC_CONST;
9074 }
9075
9076
9077 /* Return the type of the die in question using its DW_AT_type attribute. */
9078
9079 static struct type *
9080 die_type (struct die_info *die, struct dwarf2_cu *cu)
9081 {
9082 struct attribute *type_attr;
9083 struct die_info *type_die;
9084
9085 type_attr = dwarf2_attr (die, DW_AT_type, cu);
9086 if (!type_attr)
9087 {
9088 /* A missing DW_AT_type represents a void type. */
9089 return objfile_type (cu->objfile)->builtin_void;
9090 }
9091
9092 type_die = follow_die_ref_or_sig (die, type_attr, &cu);
9093
9094 return tag_type_to_type (type_die, cu);
9095 }
9096
9097 /* True iff CU's producer generates GNAT Ada auxiliary information
9098 that allows to find parallel types through that information instead
9099 of having to do expensive parallel lookups by type name. */
9100
9101 static int
9102 need_gnat_info (struct dwarf2_cu *cu)
9103 {
9104 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
9105 of GNAT produces this auxiliary information, without any indication
9106 that it is produced. Part of enhancing the FSF version of GNAT
9107 to produce that information will be to put in place an indicator
9108 that we can use in order to determine whether the descriptive type
9109 info is available or not. One suggestion that has been made is
9110 to use a new attribute, attached to the CU die. For now, assume
9111 that the descriptive type info is not available. */
9112 return 0;
9113 }
9114
9115
9116 /* Return the auxiliary type of the die in question using its
9117 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
9118 attribute is not present. */
9119
9120 static struct type *
9121 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
9122 {
9123 struct attribute *type_attr;
9124 struct die_info *type_die;
9125
9126 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
9127 if (!type_attr)
9128 return NULL;
9129
9130 type_die = follow_die_ref (die, type_attr, &cu);
9131 return tag_type_to_type (type_die, cu);
9132 }
9133
9134 /* If DIE has a descriptive_type attribute, then set the TYPE's
9135 descriptive type accordingly. */
9136
9137 static void
9138 set_descriptive_type (struct type *type, struct die_info *die,
9139 struct dwarf2_cu *cu)
9140 {
9141 struct type *descriptive_type = die_descriptive_type (die, cu);
9142
9143 if (descriptive_type)
9144 {
9145 ALLOCATE_GNAT_AUX_TYPE (type);
9146 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
9147 }
9148 }
9149
9150 /* Return the containing type of the die in question using its
9151 DW_AT_containing_type attribute. */
9152
9153 static struct type *
9154 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
9155 {
9156 struct attribute *type_attr;
9157 struct die_info *type_die;
9158
9159 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
9160 if (!type_attr)
9161 error (_("Dwarf Error: Problem turning containing type into gdb type "
9162 "[in module %s]"), cu->objfile->name);
9163
9164 type_die = follow_die_ref_or_sig (die, type_attr, &cu);
9165 return tag_type_to_type (type_die, cu);
9166 }
9167
9168 static struct type *
9169 tag_type_to_type (struct die_info *die, struct dwarf2_cu *cu)
9170 {
9171 struct type *this_type;
9172
9173 this_type = read_type_die (die, cu);
9174 if (!this_type)
9175 {
9176 char *message, *saved;
9177
9178 /* read_type_die already issued a complaint. */
9179 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
9180 cu->objfile->name,
9181 cu->header.offset,
9182 die->offset);
9183 saved = obstack_copy0 (&cu->objfile->objfile_obstack,
9184 message, strlen (message));
9185 xfree (message);
9186
9187 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, cu->objfile);
9188 }
9189 return this_type;
9190 }
9191
9192 static struct type *
9193 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
9194 {
9195 struct type *this_type;
9196
9197 this_type = get_die_type (die, cu);
9198 if (this_type)
9199 return this_type;
9200
9201 switch (die->tag)
9202 {
9203 case DW_TAG_class_type:
9204 case DW_TAG_interface_type:
9205 case DW_TAG_structure_type:
9206 case DW_TAG_union_type:
9207 this_type = read_structure_type (die, cu);
9208 break;
9209 case DW_TAG_enumeration_type:
9210 this_type = read_enumeration_type (die, cu);
9211 break;
9212 case DW_TAG_subprogram:
9213 case DW_TAG_subroutine_type:
9214 case DW_TAG_inlined_subroutine:
9215 this_type = read_subroutine_type (die, cu);
9216 break;
9217 case DW_TAG_array_type:
9218 this_type = read_array_type (die, cu);
9219 break;
9220 case DW_TAG_set_type:
9221 this_type = read_set_type (die, cu);
9222 break;
9223 case DW_TAG_pointer_type:
9224 this_type = read_tag_pointer_type (die, cu);
9225 break;
9226 case DW_TAG_ptr_to_member_type:
9227 this_type = read_tag_ptr_to_member_type (die, cu);
9228 break;
9229 case DW_TAG_reference_type:
9230 this_type = read_tag_reference_type (die, cu);
9231 break;
9232 case DW_TAG_const_type:
9233 this_type = read_tag_const_type (die, cu);
9234 break;
9235 case DW_TAG_volatile_type:
9236 this_type = read_tag_volatile_type (die, cu);
9237 break;
9238 case DW_TAG_string_type:
9239 this_type = read_tag_string_type (die, cu);
9240 break;
9241 case DW_TAG_typedef:
9242 this_type = read_typedef (die, cu);
9243 break;
9244 case DW_TAG_subrange_type:
9245 this_type = read_subrange_type (die, cu);
9246 break;
9247 case DW_TAG_base_type:
9248 this_type = read_base_type (die, cu);
9249 break;
9250 case DW_TAG_unspecified_type:
9251 this_type = read_unspecified_type (die, cu);
9252 break;
9253 case DW_TAG_namespace:
9254 this_type = read_namespace_type (die, cu);
9255 break;
9256 case DW_TAG_module:
9257 this_type = read_module_type (die, cu);
9258 break;
9259 default:
9260 complaint (&symfile_complaints, _("unexpected tag in read_type_die: '%s'"),
9261 dwarf_tag_name (die->tag));
9262 break;
9263 }
9264
9265 return this_type;
9266 }
9267
9268 /* Return the name of the namespace/class that DIE is defined within,
9269 or "" if we can't tell. The caller should not xfree the result.
9270
9271 For example, if we're within the method foo() in the following
9272 code:
9273
9274 namespace N {
9275 class C {
9276 void foo () {
9277 }
9278 };
9279 }
9280
9281 then determine_prefix on foo's die will return "N::C". */
9282
9283 static char *
9284 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
9285 {
9286 struct die_info *parent, *spec_die;
9287 struct dwarf2_cu *spec_cu;
9288 struct type *parent_type;
9289
9290 if (cu->language != language_cplus && cu->language != language_java
9291 && cu->language != language_fortran)
9292 return "";
9293
9294 /* We have to be careful in the presence of DW_AT_specification.
9295 For example, with GCC 3.4, given the code
9296
9297 namespace N {
9298 void foo() {
9299 // Definition of N::foo.
9300 }
9301 }
9302
9303 then we'll have a tree of DIEs like this:
9304
9305 1: DW_TAG_compile_unit
9306 2: DW_TAG_namespace // N
9307 3: DW_TAG_subprogram // declaration of N::foo
9308 4: DW_TAG_subprogram // definition of N::foo
9309 DW_AT_specification // refers to die #3
9310
9311 Thus, when processing die #4, we have to pretend that we're in
9312 the context of its DW_AT_specification, namely the contex of die
9313 #3. */
9314 spec_cu = cu;
9315 spec_die = die_specification (die, &spec_cu);
9316 if (spec_die == NULL)
9317 parent = die->parent;
9318 else
9319 {
9320 parent = spec_die->parent;
9321 cu = spec_cu;
9322 }
9323
9324 if (parent == NULL)
9325 return "";
9326 else
9327 switch (parent->tag)
9328 {
9329 case DW_TAG_namespace:
9330 parent_type = read_type_die (parent, cu);
9331 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
9332 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
9333 Work around this problem here. */
9334 if (cu->language == language_cplus
9335 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
9336 return "";
9337 /* We give a name to even anonymous namespaces. */
9338 return TYPE_TAG_NAME (parent_type);
9339 case DW_TAG_class_type:
9340 case DW_TAG_interface_type:
9341 case DW_TAG_structure_type:
9342 case DW_TAG_union_type:
9343 case DW_TAG_module:
9344 parent_type = read_type_die (parent, cu);
9345 if (TYPE_TAG_NAME (parent_type) != NULL)
9346 return TYPE_TAG_NAME (parent_type);
9347 else
9348 /* An anonymous structure is only allowed non-static data
9349 members; no typedefs, no member functions, et cetera.
9350 So it does not need a prefix. */
9351 return "";
9352 default:
9353 return determine_prefix (parent, cu);
9354 }
9355 }
9356
9357 /* Return a newly-allocated string formed by concatenating PREFIX and
9358 SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
9359 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null,
9360 perform an obconcat, otherwise allocate storage for the result. The CU argument
9361 is used to determine the language and hence, the appropriate separator. */
9362
9363 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
9364
9365 static char *
9366 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
9367 int physname, struct dwarf2_cu *cu)
9368 {
9369 const char *lead = "";
9370 const char *sep;
9371
9372 if (suffix == NULL || suffix[0] == '\0' || prefix == NULL || prefix[0] == '\0')
9373 sep = "";
9374 else if (cu->language == language_java)
9375 sep = ".";
9376 else if (cu->language == language_fortran && physname)
9377 {
9378 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
9379 DW_AT_MIPS_linkage_name is preferred and used instead. */
9380
9381 lead = "__";
9382 sep = "_MOD_";
9383 }
9384 else
9385 sep = "::";
9386
9387 if (prefix == NULL)
9388 prefix = "";
9389 if (suffix == NULL)
9390 suffix = "";
9391
9392 if (obs == NULL)
9393 {
9394 char *retval = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
9395
9396 strcpy (retval, lead);
9397 strcat (retval, prefix);
9398 strcat (retval, sep);
9399 strcat (retval, suffix);
9400 return retval;
9401 }
9402 else
9403 {
9404 /* We have an obstack. */
9405 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
9406 }
9407 }
9408
9409 /* Return sibling of die, NULL if no sibling. */
9410
9411 static struct die_info *
9412 sibling_die (struct die_info *die)
9413 {
9414 return die->sibling;
9415 }
9416
9417 /* Get name of a die, return NULL if not found. */
9418
9419 static char *
9420 dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
9421 struct obstack *obstack)
9422 {
9423 if (name && cu->language == language_cplus)
9424 {
9425 char *canon_name = cp_canonicalize_string (name);
9426
9427 if (canon_name != NULL)
9428 {
9429 if (strcmp (canon_name, name) != 0)
9430 name = obsavestring (canon_name, strlen (canon_name),
9431 obstack);
9432 xfree (canon_name);
9433 }
9434 }
9435
9436 return name;
9437 }
9438
9439 /* Get name of a die, return NULL if not found. */
9440
9441 static char *
9442 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9443 {
9444 struct attribute *attr;
9445
9446 attr = dwarf2_attr (die, DW_AT_name, cu);
9447 if (!attr || !DW_STRING (attr))
9448 return NULL;
9449
9450 switch (die->tag)
9451 {
9452 case DW_TAG_compile_unit:
9453 /* Compilation units have a DW_AT_name that is a filename, not
9454 a source language identifier. */
9455 case DW_TAG_enumeration_type:
9456 case DW_TAG_enumerator:
9457 /* These tags always have simple identifiers already; no need
9458 to canonicalize them. */
9459 return DW_STRING (attr);
9460
9461 case DW_TAG_subprogram:
9462 /* Java constructors will all be named "<init>", so return
9463 the class name when we see this special case. */
9464 if (cu->language == language_java
9465 && DW_STRING (attr) != NULL
9466 && strcmp (DW_STRING (attr), "<init>") == 0)
9467 {
9468 struct dwarf2_cu *spec_cu = cu;
9469 struct die_info *spec_die;
9470
9471 /* GCJ will output '<init>' for Java constructor names.
9472 For this special case, return the name of the parent class. */
9473
9474 /* GCJ may output suprogram DIEs with AT_specification set.
9475 If so, use the name of the specified DIE. */
9476 spec_die = die_specification (die, &spec_cu);
9477 if (spec_die != NULL)
9478 return dwarf2_name (spec_die, spec_cu);
9479
9480 do
9481 {
9482 die = die->parent;
9483 if (die->tag == DW_TAG_class_type)
9484 return dwarf2_name (die, cu);
9485 }
9486 while (die->tag != DW_TAG_compile_unit);
9487 }
9488 break;
9489
9490 case DW_TAG_class_type:
9491 case DW_TAG_interface_type:
9492 case DW_TAG_structure_type:
9493 case DW_TAG_union_type:
9494 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
9495 structures or unions. These were of the form "._%d" in GCC 4.1,
9496 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
9497 and GCC 4.4. We work around this problem by ignoring these. */
9498 if (strncmp (DW_STRING (attr), "._", 2) == 0
9499 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0)
9500 return NULL;
9501 break;
9502
9503 default:
9504 break;
9505 }
9506
9507 if (!DW_STRING_IS_CANONICAL (attr))
9508 {
9509 DW_STRING (attr)
9510 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
9511 &cu->objfile->objfile_obstack);
9512 DW_STRING_IS_CANONICAL (attr) = 1;
9513 }
9514 return DW_STRING (attr);
9515 }
9516
9517 /* Return the die that this die in an extension of, or NULL if there
9518 is none. *EXT_CU is the CU containing DIE on input, and the CU
9519 containing the return value on output. */
9520
9521 static struct die_info *
9522 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9523 {
9524 struct attribute *attr;
9525
9526 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9527 if (attr == NULL)
9528 return NULL;
9529
9530 return follow_die_ref (die, attr, ext_cu);
9531 }
9532
9533 /* Convert a DIE tag into its string name. */
9534
9535 static char *
9536 dwarf_tag_name (unsigned tag)
9537 {
9538 switch (tag)
9539 {
9540 case DW_TAG_padding:
9541 return "DW_TAG_padding";
9542 case DW_TAG_array_type:
9543 return "DW_TAG_array_type";
9544 case DW_TAG_class_type:
9545 return "DW_TAG_class_type";
9546 case DW_TAG_entry_point:
9547 return "DW_TAG_entry_point";
9548 case DW_TAG_enumeration_type:
9549 return "DW_TAG_enumeration_type";
9550 case DW_TAG_formal_parameter:
9551 return "DW_TAG_formal_parameter";
9552 case DW_TAG_imported_declaration:
9553 return "DW_TAG_imported_declaration";
9554 case DW_TAG_label:
9555 return "DW_TAG_label";
9556 case DW_TAG_lexical_block:
9557 return "DW_TAG_lexical_block";
9558 case DW_TAG_member:
9559 return "DW_TAG_member";
9560 case DW_TAG_pointer_type:
9561 return "DW_TAG_pointer_type";
9562 case DW_TAG_reference_type:
9563 return "DW_TAG_reference_type";
9564 case DW_TAG_compile_unit:
9565 return "DW_TAG_compile_unit";
9566 case DW_TAG_string_type:
9567 return "DW_TAG_string_type";
9568 case DW_TAG_structure_type:
9569 return "DW_TAG_structure_type";
9570 case DW_TAG_subroutine_type:
9571 return "DW_TAG_subroutine_type";
9572 case DW_TAG_typedef:
9573 return "DW_TAG_typedef";
9574 case DW_TAG_union_type:
9575 return "DW_TAG_union_type";
9576 case DW_TAG_unspecified_parameters:
9577 return "DW_TAG_unspecified_parameters";
9578 case DW_TAG_variant:
9579 return "DW_TAG_variant";
9580 case DW_TAG_common_block:
9581 return "DW_TAG_common_block";
9582 case DW_TAG_common_inclusion:
9583 return "DW_TAG_common_inclusion";
9584 case DW_TAG_inheritance:
9585 return "DW_TAG_inheritance";
9586 case DW_TAG_inlined_subroutine:
9587 return "DW_TAG_inlined_subroutine";
9588 case DW_TAG_module:
9589 return "DW_TAG_module";
9590 case DW_TAG_ptr_to_member_type:
9591 return "DW_TAG_ptr_to_member_type";
9592 case DW_TAG_set_type:
9593 return "DW_TAG_set_type";
9594 case DW_TAG_subrange_type:
9595 return "DW_TAG_subrange_type";
9596 case DW_TAG_with_stmt:
9597 return "DW_TAG_with_stmt";
9598 case DW_TAG_access_declaration:
9599 return "DW_TAG_access_declaration";
9600 case DW_TAG_base_type:
9601 return "DW_TAG_base_type";
9602 case DW_TAG_catch_block:
9603 return "DW_TAG_catch_block";
9604 case DW_TAG_const_type:
9605 return "DW_TAG_const_type";
9606 case DW_TAG_constant:
9607 return "DW_TAG_constant";
9608 case DW_TAG_enumerator:
9609 return "DW_TAG_enumerator";
9610 case DW_TAG_file_type:
9611 return "DW_TAG_file_type";
9612 case DW_TAG_friend:
9613 return "DW_TAG_friend";
9614 case DW_TAG_namelist:
9615 return "DW_TAG_namelist";
9616 case DW_TAG_namelist_item:
9617 return "DW_TAG_namelist_item";
9618 case DW_TAG_packed_type:
9619 return "DW_TAG_packed_type";
9620 case DW_TAG_subprogram:
9621 return "DW_TAG_subprogram";
9622 case DW_TAG_template_type_param:
9623 return "DW_TAG_template_type_param";
9624 case DW_TAG_template_value_param:
9625 return "DW_TAG_template_value_param";
9626 case DW_TAG_thrown_type:
9627 return "DW_TAG_thrown_type";
9628 case DW_TAG_try_block:
9629 return "DW_TAG_try_block";
9630 case DW_TAG_variant_part:
9631 return "DW_TAG_variant_part";
9632 case DW_TAG_variable:
9633 return "DW_TAG_variable";
9634 case DW_TAG_volatile_type:
9635 return "DW_TAG_volatile_type";
9636 case DW_TAG_dwarf_procedure:
9637 return "DW_TAG_dwarf_procedure";
9638 case DW_TAG_restrict_type:
9639 return "DW_TAG_restrict_type";
9640 case DW_TAG_interface_type:
9641 return "DW_TAG_interface_type";
9642 case DW_TAG_namespace:
9643 return "DW_TAG_namespace";
9644 case DW_TAG_imported_module:
9645 return "DW_TAG_imported_module";
9646 case DW_TAG_unspecified_type:
9647 return "DW_TAG_unspecified_type";
9648 case DW_TAG_partial_unit:
9649 return "DW_TAG_partial_unit";
9650 case DW_TAG_imported_unit:
9651 return "DW_TAG_imported_unit";
9652 case DW_TAG_condition:
9653 return "DW_TAG_condition";
9654 case DW_TAG_shared_type:
9655 return "DW_TAG_shared_type";
9656 case DW_TAG_type_unit:
9657 return "DW_TAG_type_unit";
9658 case DW_TAG_MIPS_loop:
9659 return "DW_TAG_MIPS_loop";
9660 case DW_TAG_HP_array_descriptor:
9661 return "DW_TAG_HP_array_descriptor";
9662 case DW_TAG_format_label:
9663 return "DW_TAG_format_label";
9664 case DW_TAG_function_template:
9665 return "DW_TAG_function_template";
9666 case DW_TAG_class_template:
9667 return "DW_TAG_class_template";
9668 case DW_TAG_GNU_BINCL:
9669 return "DW_TAG_GNU_BINCL";
9670 case DW_TAG_GNU_EINCL:
9671 return "DW_TAG_GNU_EINCL";
9672 case DW_TAG_upc_shared_type:
9673 return "DW_TAG_upc_shared_type";
9674 case DW_TAG_upc_strict_type:
9675 return "DW_TAG_upc_strict_type";
9676 case DW_TAG_upc_relaxed_type:
9677 return "DW_TAG_upc_relaxed_type";
9678 case DW_TAG_PGI_kanji_type:
9679 return "DW_TAG_PGI_kanji_type";
9680 case DW_TAG_PGI_interface_block:
9681 return "DW_TAG_PGI_interface_block";
9682 default:
9683 return "DW_TAG_<unknown>";
9684 }
9685 }
9686
9687 /* Convert a DWARF attribute code into its string name. */
9688
9689 static char *
9690 dwarf_attr_name (unsigned attr)
9691 {
9692 switch (attr)
9693 {
9694 case DW_AT_sibling:
9695 return "DW_AT_sibling";
9696 case DW_AT_location:
9697 return "DW_AT_location";
9698 case DW_AT_name:
9699 return "DW_AT_name";
9700 case DW_AT_ordering:
9701 return "DW_AT_ordering";
9702 case DW_AT_subscr_data:
9703 return "DW_AT_subscr_data";
9704 case DW_AT_byte_size:
9705 return "DW_AT_byte_size";
9706 case DW_AT_bit_offset:
9707 return "DW_AT_bit_offset";
9708 case DW_AT_bit_size:
9709 return "DW_AT_bit_size";
9710 case DW_AT_element_list:
9711 return "DW_AT_element_list";
9712 case DW_AT_stmt_list:
9713 return "DW_AT_stmt_list";
9714 case DW_AT_low_pc:
9715 return "DW_AT_low_pc";
9716 case DW_AT_high_pc:
9717 return "DW_AT_high_pc";
9718 case DW_AT_language:
9719 return "DW_AT_language";
9720 case DW_AT_member:
9721 return "DW_AT_member";
9722 case DW_AT_discr:
9723 return "DW_AT_discr";
9724 case DW_AT_discr_value:
9725 return "DW_AT_discr_value";
9726 case DW_AT_visibility:
9727 return "DW_AT_visibility";
9728 case DW_AT_import:
9729 return "DW_AT_import";
9730 case DW_AT_string_length:
9731 return "DW_AT_string_length";
9732 case DW_AT_common_reference:
9733 return "DW_AT_common_reference";
9734 case DW_AT_comp_dir:
9735 return "DW_AT_comp_dir";
9736 case DW_AT_const_value:
9737 return "DW_AT_const_value";
9738 case DW_AT_containing_type:
9739 return "DW_AT_containing_type";
9740 case DW_AT_default_value:
9741 return "DW_AT_default_value";
9742 case DW_AT_inline:
9743 return "DW_AT_inline";
9744 case DW_AT_is_optional:
9745 return "DW_AT_is_optional";
9746 case DW_AT_lower_bound:
9747 return "DW_AT_lower_bound";
9748 case DW_AT_producer:
9749 return "DW_AT_producer";
9750 case DW_AT_prototyped:
9751 return "DW_AT_prototyped";
9752 case DW_AT_return_addr:
9753 return "DW_AT_return_addr";
9754 case DW_AT_start_scope:
9755 return "DW_AT_start_scope";
9756 case DW_AT_bit_stride:
9757 return "DW_AT_bit_stride";
9758 case DW_AT_upper_bound:
9759 return "DW_AT_upper_bound";
9760 case DW_AT_abstract_origin:
9761 return "DW_AT_abstract_origin";
9762 case DW_AT_accessibility:
9763 return "DW_AT_accessibility";
9764 case DW_AT_address_class:
9765 return "DW_AT_address_class";
9766 case DW_AT_artificial:
9767 return "DW_AT_artificial";
9768 case DW_AT_base_types:
9769 return "DW_AT_base_types";
9770 case DW_AT_calling_convention:
9771 return "DW_AT_calling_convention";
9772 case DW_AT_count:
9773 return "DW_AT_count";
9774 case DW_AT_data_member_location:
9775 return "DW_AT_data_member_location";
9776 case DW_AT_decl_column:
9777 return "DW_AT_decl_column";
9778 case DW_AT_decl_file:
9779 return "DW_AT_decl_file";
9780 case DW_AT_decl_line:
9781 return "DW_AT_decl_line";
9782 case DW_AT_declaration:
9783 return "DW_AT_declaration";
9784 case DW_AT_discr_list:
9785 return "DW_AT_discr_list";
9786 case DW_AT_encoding:
9787 return "DW_AT_encoding";
9788 case DW_AT_external:
9789 return "DW_AT_external";
9790 case DW_AT_frame_base:
9791 return "DW_AT_frame_base";
9792 case DW_AT_friend:
9793 return "DW_AT_friend";
9794 case DW_AT_identifier_case:
9795 return "DW_AT_identifier_case";
9796 case DW_AT_macro_info:
9797 return "DW_AT_macro_info";
9798 case DW_AT_namelist_items:
9799 return "DW_AT_namelist_items";
9800 case DW_AT_priority:
9801 return "DW_AT_priority";
9802 case DW_AT_segment:
9803 return "DW_AT_segment";
9804 case DW_AT_specification:
9805 return "DW_AT_specification";
9806 case DW_AT_static_link:
9807 return "DW_AT_static_link";
9808 case DW_AT_type:
9809 return "DW_AT_type";
9810 case DW_AT_use_location:
9811 return "DW_AT_use_location";
9812 case DW_AT_variable_parameter:
9813 return "DW_AT_variable_parameter";
9814 case DW_AT_virtuality:
9815 return "DW_AT_virtuality";
9816 case DW_AT_vtable_elem_location:
9817 return "DW_AT_vtable_elem_location";
9818 /* DWARF 3 values. */
9819 case DW_AT_allocated:
9820 return "DW_AT_allocated";
9821 case DW_AT_associated:
9822 return "DW_AT_associated";
9823 case DW_AT_data_location:
9824 return "DW_AT_data_location";
9825 case DW_AT_byte_stride:
9826 return "DW_AT_byte_stride";
9827 case DW_AT_entry_pc:
9828 return "DW_AT_entry_pc";
9829 case DW_AT_use_UTF8:
9830 return "DW_AT_use_UTF8";
9831 case DW_AT_extension:
9832 return "DW_AT_extension";
9833 case DW_AT_ranges:
9834 return "DW_AT_ranges";
9835 case DW_AT_trampoline:
9836 return "DW_AT_trampoline";
9837 case DW_AT_call_column:
9838 return "DW_AT_call_column";
9839 case DW_AT_call_file:
9840 return "DW_AT_call_file";
9841 case DW_AT_call_line:
9842 return "DW_AT_call_line";
9843 case DW_AT_description:
9844 return "DW_AT_description";
9845 case DW_AT_binary_scale:
9846 return "DW_AT_binary_scale";
9847 case DW_AT_decimal_scale:
9848 return "DW_AT_decimal_scale";
9849 case DW_AT_small:
9850 return "DW_AT_small";
9851 case DW_AT_decimal_sign:
9852 return "DW_AT_decimal_sign";
9853 case DW_AT_digit_count:
9854 return "DW_AT_digit_count";
9855 case DW_AT_picture_string:
9856 return "DW_AT_picture_string";
9857 case DW_AT_mutable:
9858 return "DW_AT_mutable";
9859 case DW_AT_threads_scaled:
9860 return "DW_AT_threads_scaled";
9861 case DW_AT_explicit:
9862 return "DW_AT_explicit";
9863 case DW_AT_object_pointer:
9864 return "DW_AT_object_pointer";
9865 case DW_AT_endianity:
9866 return "DW_AT_endianity";
9867 case DW_AT_elemental:
9868 return "DW_AT_elemental";
9869 case DW_AT_pure:
9870 return "DW_AT_pure";
9871 case DW_AT_recursive:
9872 return "DW_AT_recursive";
9873 /* DWARF 4 values. */
9874 case DW_AT_signature:
9875 return "DW_AT_signature";
9876 case DW_AT_linkage_name:
9877 return "DW_AT_linkage_name";
9878 /* SGI/MIPS extensions. */
9879 #ifdef MIPS /* collides with DW_AT_HP_block_index */
9880 case DW_AT_MIPS_fde:
9881 return "DW_AT_MIPS_fde";
9882 #endif
9883 case DW_AT_MIPS_loop_begin:
9884 return "DW_AT_MIPS_loop_begin";
9885 case DW_AT_MIPS_tail_loop_begin:
9886 return "DW_AT_MIPS_tail_loop_begin";
9887 case DW_AT_MIPS_epilog_begin:
9888 return "DW_AT_MIPS_epilog_begin";
9889 case DW_AT_MIPS_loop_unroll_factor:
9890 return "DW_AT_MIPS_loop_unroll_factor";
9891 case DW_AT_MIPS_software_pipeline_depth:
9892 return "DW_AT_MIPS_software_pipeline_depth";
9893 case DW_AT_MIPS_linkage_name:
9894 return "DW_AT_MIPS_linkage_name";
9895 case DW_AT_MIPS_stride:
9896 return "DW_AT_MIPS_stride";
9897 case DW_AT_MIPS_abstract_name:
9898 return "DW_AT_MIPS_abstract_name";
9899 case DW_AT_MIPS_clone_origin:
9900 return "DW_AT_MIPS_clone_origin";
9901 case DW_AT_MIPS_has_inlines:
9902 return "DW_AT_MIPS_has_inlines";
9903 /* HP extensions. */
9904 #ifndef MIPS /* collides with DW_AT_MIPS_fde */
9905 case DW_AT_HP_block_index:
9906 return "DW_AT_HP_block_index";
9907 #endif
9908 case DW_AT_HP_unmodifiable:
9909 return "DW_AT_HP_unmodifiable";
9910 case DW_AT_HP_actuals_stmt_list:
9911 return "DW_AT_HP_actuals_stmt_list";
9912 case DW_AT_HP_proc_per_section:
9913 return "DW_AT_HP_proc_per_section";
9914 case DW_AT_HP_raw_data_ptr:
9915 return "DW_AT_HP_raw_data_ptr";
9916 case DW_AT_HP_pass_by_reference:
9917 return "DW_AT_HP_pass_by_reference";
9918 case DW_AT_HP_opt_level:
9919 return "DW_AT_HP_opt_level";
9920 case DW_AT_HP_prof_version_id:
9921 return "DW_AT_HP_prof_version_id";
9922 case DW_AT_HP_opt_flags:
9923 return "DW_AT_HP_opt_flags";
9924 case DW_AT_HP_cold_region_low_pc:
9925 return "DW_AT_HP_cold_region_low_pc";
9926 case DW_AT_HP_cold_region_high_pc:
9927 return "DW_AT_HP_cold_region_high_pc";
9928 case DW_AT_HP_all_variables_modifiable:
9929 return "DW_AT_HP_all_variables_modifiable";
9930 case DW_AT_HP_linkage_name:
9931 return "DW_AT_HP_linkage_name";
9932 case DW_AT_HP_prof_flags:
9933 return "DW_AT_HP_prof_flags";
9934 /* GNU extensions. */
9935 case DW_AT_sf_names:
9936 return "DW_AT_sf_names";
9937 case DW_AT_src_info:
9938 return "DW_AT_src_info";
9939 case DW_AT_mac_info:
9940 return "DW_AT_mac_info";
9941 case DW_AT_src_coords:
9942 return "DW_AT_src_coords";
9943 case DW_AT_body_begin:
9944 return "DW_AT_body_begin";
9945 case DW_AT_body_end:
9946 return "DW_AT_body_end";
9947 case DW_AT_GNU_vector:
9948 return "DW_AT_GNU_vector";
9949 /* VMS extensions. */
9950 case DW_AT_VMS_rtnbeg_pd_address:
9951 return "DW_AT_VMS_rtnbeg_pd_address";
9952 /* UPC extension. */
9953 case DW_AT_upc_threads_scaled:
9954 return "DW_AT_upc_threads_scaled";
9955 /* PGI (STMicroelectronics) extensions. */
9956 case DW_AT_PGI_lbase:
9957 return "DW_AT_PGI_lbase";
9958 case DW_AT_PGI_soffset:
9959 return "DW_AT_PGI_soffset";
9960 case DW_AT_PGI_lstride:
9961 return "DW_AT_PGI_lstride";
9962 default:
9963 return "DW_AT_<unknown>";
9964 }
9965 }
9966
9967 /* Convert a DWARF value form code into its string name. */
9968
9969 static char *
9970 dwarf_form_name (unsigned form)
9971 {
9972 switch (form)
9973 {
9974 case DW_FORM_addr:
9975 return "DW_FORM_addr";
9976 case DW_FORM_block2:
9977 return "DW_FORM_block2";
9978 case DW_FORM_block4:
9979 return "DW_FORM_block4";
9980 case DW_FORM_data2:
9981 return "DW_FORM_data2";
9982 case DW_FORM_data4:
9983 return "DW_FORM_data4";
9984 case DW_FORM_data8:
9985 return "DW_FORM_data8";
9986 case DW_FORM_string:
9987 return "DW_FORM_string";
9988 case DW_FORM_block:
9989 return "DW_FORM_block";
9990 case DW_FORM_block1:
9991 return "DW_FORM_block1";
9992 case DW_FORM_data1:
9993 return "DW_FORM_data1";
9994 case DW_FORM_flag:
9995 return "DW_FORM_flag";
9996 case DW_FORM_sdata:
9997 return "DW_FORM_sdata";
9998 case DW_FORM_strp:
9999 return "DW_FORM_strp";
10000 case DW_FORM_udata:
10001 return "DW_FORM_udata";
10002 case DW_FORM_ref_addr:
10003 return "DW_FORM_ref_addr";
10004 case DW_FORM_ref1:
10005 return "DW_FORM_ref1";
10006 case DW_FORM_ref2:
10007 return "DW_FORM_ref2";
10008 case DW_FORM_ref4:
10009 return "DW_FORM_ref4";
10010 case DW_FORM_ref8:
10011 return "DW_FORM_ref8";
10012 case DW_FORM_ref_udata:
10013 return "DW_FORM_ref_udata";
10014 case DW_FORM_indirect:
10015 return "DW_FORM_indirect";
10016 case DW_FORM_sec_offset:
10017 return "DW_FORM_sec_offset";
10018 case DW_FORM_exprloc:
10019 return "DW_FORM_exprloc";
10020 case DW_FORM_flag_present:
10021 return "DW_FORM_flag_present";
10022 case DW_FORM_sig8:
10023 return "DW_FORM_sig8";
10024 default:
10025 return "DW_FORM_<unknown>";
10026 }
10027 }
10028
10029 /* Convert a DWARF stack opcode into its string name. */
10030
10031 const char *
10032 dwarf_stack_op_name (unsigned op, int def)
10033 {
10034 switch (op)
10035 {
10036 case DW_OP_addr:
10037 return "DW_OP_addr";
10038 case DW_OP_deref:
10039 return "DW_OP_deref";
10040 case DW_OP_const1u:
10041 return "DW_OP_const1u";
10042 case DW_OP_const1s:
10043 return "DW_OP_const1s";
10044 case DW_OP_const2u:
10045 return "DW_OP_const2u";
10046 case DW_OP_const2s:
10047 return "DW_OP_const2s";
10048 case DW_OP_const4u:
10049 return "DW_OP_const4u";
10050 case DW_OP_const4s:
10051 return "DW_OP_const4s";
10052 case DW_OP_const8u:
10053 return "DW_OP_const8u";
10054 case DW_OP_const8s:
10055 return "DW_OP_const8s";
10056 case DW_OP_constu:
10057 return "DW_OP_constu";
10058 case DW_OP_consts:
10059 return "DW_OP_consts";
10060 case DW_OP_dup:
10061 return "DW_OP_dup";
10062 case DW_OP_drop:
10063 return "DW_OP_drop";
10064 case DW_OP_over:
10065 return "DW_OP_over";
10066 case DW_OP_pick:
10067 return "DW_OP_pick";
10068 case DW_OP_swap:
10069 return "DW_OP_swap";
10070 case DW_OP_rot:
10071 return "DW_OP_rot";
10072 case DW_OP_xderef:
10073 return "DW_OP_xderef";
10074 case DW_OP_abs:
10075 return "DW_OP_abs";
10076 case DW_OP_and:
10077 return "DW_OP_and";
10078 case DW_OP_div:
10079 return "DW_OP_div";
10080 case DW_OP_minus:
10081 return "DW_OP_minus";
10082 case DW_OP_mod:
10083 return "DW_OP_mod";
10084 case DW_OP_mul:
10085 return "DW_OP_mul";
10086 case DW_OP_neg:
10087 return "DW_OP_neg";
10088 case DW_OP_not:
10089 return "DW_OP_not";
10090 case DW_OP_or:
10091 return "DW_OP_or";
10092 case DW_OP_plus:
10093 return "DW_OP_plus";
10094 case DW_OP_plus_uconst:
10095 return "DW_OP_plus_uconst";
10096 case DW_OP_shl:
10097 return "DW_OP_shl";
10098 case DW_OP_shr:
10099 return "DW_OP_shr";
10100 case DW_OP_shra:
10101 return "DW_OP_shra";
10102 case DW_OP_xor:
10103 return "DW_OP_xor";
10104 case DW_OP_bra:
10105 return "DW_OP_bra";
10106 case DW_OP_eq:
10107 return "DW_OP_eq";
10108 case DW_OP_ge:
10109 return "DW_OP_ge";
10110 case DW_OP_gt:
10111 return "DW_OP_gt";
10112 case DW_OP_le:
10113 return "DW_OP_le";
10114 case DW_OP_lt:
10115 return "DW_OP_lt";
10116 case DW_OP_ne:
10117 return "DW_OP_ne";
10118 case DW_OP_skip:
10119 return "DW_OP_skip";
10120 case DW_OP_lit0:
10121 return "DW_OP_lit0";
10122 case DW_OP_lit1:
10123 return "DW_OP_lit1";
10124 case DW_OP_lit2:
10125 return "DW_OP_lit2";
10126 case DW_OP_lit3:
10127 return "DW_OP_lit3";
10128 case DW_OP_lit4:
10129 return "DW_OP_lit4";
10130 case DW_OP_lit5:
10131 return "DW_OP_lit5";
10132 case DW_OP_lit6:
10133 return "DW_OP_lit6";
10134 case DW_OP_lit7:
10135 return "DW_OP_lit7";
10136 case DW_OP_lit8:
10137 return "DW_OP_lit8";
10138 case DW_OP_lit9:
10139 return "DW_OP_lit9";
10140 case DW_OP_lit10:
10141 return "DW_OP_lit10";
10142 case DW_OP_lit11:
10143 return "DW_OP_lit11";
10144 case DW_OP_lit12:
10145 return "DW_OP_lit12";
10146 case DW_OP_lit13:
10147 return "DW_OP_lit13";
10148 case DW_OP_lit14:
10149 return "DW_OP_lit14";
10150 case DW_OP_lit15:
10151 return "DW_OP_lit15";
10152 case DW_OP_lit16:
10153 return "DW_OP_lit16";
10154 case DW_OP_lit17:
10155 return "DW_OP_lit17";
10156 case DW_OP_lit18:
10157 return "DW_OP_lit18";
10158 case DW_OP_lit19:
10159 return "DW_OP_lit19";
10160 case DW_OP_lit20:
10161 return "DW_OP_lit20";
10162 case DW_OP_lit21:
10163 return "DW_OP_lit21";
10164 case DW_OP_lit22:
10165 return "DW_OP_lit22";
10166 case DW_OP_lit23:
10167 return "DW_OP_lit23";
10168 case DW_OP_lit24:
10169 return "DW_OP_lit24";
10170 case DW_OP_lit25:
10171 return "DW_OP_lit25";
10172 case DW_OP_lit26:
10173 return "DW_OP_lit26";
10174 case DW_OP_lit27:
10175 return "DW_OP_lit27";
10176 case DW_OP_lit28:
10177 return "DW_OP_lit28";
10178 case DW_OP_lit29:
10179 return "DW_OP_lit29";
10180 case DW_OP_lit30:
10181 return "DW_OP_lit30";
10182 case DW_OP_lit31:
10183 return "DW_OP_lit31";
10184 case DW_OP_reg0:
10185 return "DW_OP_reg0";
10186 case DW_OP_reg1:
10187 return "DW_OP_reg1";
10188 case DW_OP_reg2:
10189 return "DW_OP_reg2";
10190 case DW_OP_reg3:
10191 return "DW_OP_reg3";
10192 case DW_OP_reg4:
10193 return "DW_OP_reg4";
10194 case DW_OP_reg5:
10195 return "DW_OP_reg5";
10196 case DW_OP_reg6:
10197 return "DW_OP_reg6";
10198 case DW_OP_reg7:
10199 return "DW_OP_reg7";
10200 case DW_OP_reg8:
10201 return "DW_OP_reg8";
10202 case DW_OP_reg9:
10203 return "DW_OP_reg9";
10204 case DW_OP_reg10:
10205 return "DW_OP_reg10";
10206 case DW_OP_reg11:
10207 return "DW_OP_reg11";
10208 case DW_OP_reg12:
10209 return "DW_OP_reg12";
10210 case DW_OP_reg13:
10211 return "DW_OP_reg13";
10212 case DW_OP_reg14:
10213 return "DW_OP_reg14";
10214 case DW_OP_reg15:
10215 return "DW_OP_reg15";
10216 case DW_OP_reg16:
10217 return "DW_OP_reg16";
10218 case DW_OP_reg17:
10219 return "DW_OP_reg17";
10220 case DW_OP_reg18:
10221 return "DW_OP_reg18";
10222 case DW_OP_reg19:
10223 return "DW_OP_reg19";
10224 case DW_OP_reg20:
10225 return "DW_OP_reg20";
10226 case DW_OP_reg21:
10227 return "DW_OP_reg21";
10228 case DW_OP_reg22:
10229 return "DW_OP_reg22";
10230 case DW_OP_reg23:
10231 return "DW_OP_reg23";
10232 case DW_OP_reg24:
10233 return "DW_OP_reg24";
10234 case DW_OP_reg25:
10235 return "DW_OP_reg25";
10236 case DW_OP_reg26:
10237 return "DW_OP_reg26";
10238 case DW_OP_reg27:
10239 return "DW_OP_reg27";
10240 case DW_OP_reg28:
10241 return "DW_OP_reg28";
10242 case DW_OP_reg29:
10243 return "DW_OP_reg29";
10244 case DW_OP_reg30:
10245 return "DW_OP_reg30";
10246 case DW_OP_reg31:
10247 return "DW_OP_reg31";
10248 case DW_OP_breg0:
10249 return "DW_OP_breg0";
10250 case DW_OP_breg1:
10251 return "DW_OP_breg1";
10252 case DW_OP_breg2:
10253 return "DW_OP_breg2";
10254 case DW_OP_breg3:
10255 return "DW_OP_breg3";
10256 case DW_OP_breg4:
10257 return "DW_OP_breg4";
10258 case DW_OP_breg5:
10259 return "DW_OP_breg5";
10260 case DW_OP_breg6:
10261 return "DW_OP_breg6";
10262 case DW_OP_breg7:
10263 return "DW_OP_breg7";
10264 case DW_OP_breg8:
10265 return "DW_OP_breg8";
10266 case DW_OP_breg9:
10267 return "DW_OP_breg9";
10268 case DW_OP_breg10:
10269 return "DW_OP_breg10";
10270 case DW_OP_breg11:
10271 return "DW_OP_breg11";
10272 case DW_OP_breg12:
10273 return "DW_OP_breg12";
10274 case DW_OP_breg13:
10275 return "DW_OP_breg13";
10276 case DW_OP_breg14:
10277 return "DW_OP_breg14";
10278 case DW_OP_breg15:
10279 return "DW_OP_breg15";
10280 case DW_OP_breg16:
10281 return "DW_OP_breg16";
10282 case DW_OP_breg17:
10283 return "DW_OP_breg17";
10284 case DW_OP_breg18:
10285 return "DW_OP_breg18";
10286 case DW_OP_breg19:
10287 return "DW_OP_breg19";
10288 case DW_OP_breg20:
10289 return "DW_OP_breg20";
10290 case DW_OP_breg21:
10291 return "DW_OP_breg21";
10292 case DW_OP_breg22:
10293 return "DW_OP_breg22";
10294 case DW_OP_breg23:
10295 return "DW_OP_breg23";
10296 case DW_OP_breg24:
10297 return "DW_OP_breg24";
10298 case DW_OP_breg25:
10299 return "DW_OP_breg25";
10300 case DW_OP_breg26:
10301 return "DW_OP_breg26";
10302 case DW_OP_breg27:
10303 return "DW_OP_breg27";
10304 case DW_OP_breg28:
10305 return "DW_OP_breg28";
10306 case DW_OP_breg29:
10307 return "DW_OP_breg29";
10308 case DW_OP_breg30:
10309 return "DW_OP_breg30";
10310 case DW_OP_breg31:
10311 return "DW_OP_breg31";
10312 case DW_OP_regx:
10313 return "DW_OP_regx";
10314 case DW_OP_fbreg:
10315 return "DW_OP_fbreg";
10316 case DW_OP_bregx:
10317 return "DW_OP_bregx";
10318 case DW_OP_piece:
10319 return "DW_OP_piece";
10320 case DW_OP_deref_size:
10321 return "DW_OP_deref_size";
10322 case DW_OP_xderef_size:
10323 return "DW_OP_xderef_size";
10324 case DW_OP_nop:
10325 return "DW_OP_nop";
10326 /* DWARF 3 extensions. */
10327 case DW_OP_push_object_address:
10328 return "DW_OP_push_object_address";
10329 case DW_OP_call2:
10330 return "DW_OP_call2";
10331 case DW_OP_call4:
10332 return "DW_OP_call4";
10333 case DW_OP_call_ref:
10334 return "DW_OP_call_ref";
10335 case DW_OP_form_tls_address:
10336 return "DW_OP_form_tls_address";
10337 case DW_OP_call_frame_cfa:
10338 return "DW_OP_call_frame_cfa";
10339 case DW_OP_bit_piece:
10340 return "DW_OP_bit_piece";
10341 /* DWARF 4 extensions. */
10342 case DW_OP_implicit_value:
10343 return "DW_OP_implicit_value";
10344 case DW_OP_stack_value:
10345 return "DW_OP_stack_value";
10346 /* GNU extensions. */
10347 case DW_OP_GNU_push_tls_address:
10348 return "DW_OP_GNU_push_tls_address";
10349 case DW_OP_GNU_uninit:
10350 return "DW_OP_GNU_uninit";
10351 default:
10352 return def ? "OP_<unknown>" : NULL;
10353 }
10354 }
10355
10356 static char *
10357 dwarf_bool_name (unsigned mybool)
10358 {
10359 if (mybool)
10360 return "TRUE";
10361 else
10362 return "FALSE";
10363 }
10364
10365 /* Convert a DWARF type code into its string name. */
10366
10367 static char *
10368 dwarf_type_encoding_name (unsigned enc)
10369 {
10370 switch (enc)
10371 {
10372 case DW_ATE_void:
10373 return "DW_ATE_void";
10374 case DW_ATE_address:
10375 return "DW_ATE_address";
10376 case DW_ATE_boolean:
10377 return "DW_ATE_boolean";
10378 case DW_ATE_complex_float:
10379 return "DW_ATE_complex_float";
10380 case DW_ATE_float:
10381 return "DW_ATE_float";
10382 case DW_ATE_signed:
10383 return "DW_ATE_signed";
10384 case DW_ATE_signed_char:
10385 return "DW_ATE_signed_char";
10386 case DW_ATE_unsigned:
10387 return "DW_ATE_unsigned";
10388 case DW_ATE_unsigned_char:
10389 return "DW_ATE_unsigned_char";
10390 /* DWARF 3. */
10391 case DW_ATE_imaginary_float:
10392 return "DW_ATE_imaginary_float";
10393 case DW_ATE_packed_decimal:
10394 return "DW_ATE_packed_decimal";
10395 case DW_ATE_numeric_string:
10396 return "DW_ATE_numeric_string";
10397 case DW_ATE_edited:
10398 return "DW_ATE_edited";
10399 case DW_ATE_signed_fixed:
10400 return "DW_ATE_signed_fixed";
10401 case DW_ATE_unsigned_fixed:
10402 return "DW_ATE_unsigned_fixed";
10403 case DW_ATE_decimal_float:
10404 return "DW_ATE_decimal_float";
10405 /* HP extensions. */
10406 case DW_ATE_HP_float80:
10407 return "DW_ATE_HP_float80";
10408 case DW_ATE_HP_complex_float80:
10409 return "DW_ATE_HP_complex_float80";
10410 case DW_ATE_HP_float128:
10411 return "DW_ATE_HP_float128";
10412 case DW_ATE_HP_complex_float128:
10413 return "DW_ATE_HP_complex_float128";
10414 case DW_ATE_HP_floathpintel:
10415 return "DW_ATE_HP_floathpintel";
10416 case DW_ATE_HP_imaginary_float80:
10417 return "DW_ATE_HP_imaginary_float80";
10418 case DW_ATE_HP_imaginary_float128:
10419 return "DW_ATE_HP_imaginary_float128";
10420 default:
10421 return "DW_ATE_<unknown>";
10422 }
10423 }
10424
10425 /* Convert a DWARF call frame info operation to its string name. */
10426
10427 #if 0
10428 static char *
10429 dwarf_cfi_name (unsigned cfi_opc)
10430 {
10431 switch (cfi_opc)
10432 {
10433 case DW_CFA_advance_loc:
10434 return "DW_CFA_advance_loc";
10435 case DW_CFA_offset:
10436 return "DW_CFA_offset";
10437 case DW_CFA_restore:
10438 return "DW_CFA_restore";
10439 case DW_CFA_nop:
10440 return "DW_CFA_nop";
10441 case DW_CFA_set_loc:
10442 return "DW_CFA_set_loc";
10443 case DW_CFA_advance_loc1:
10444 return "DW_CFA_advance_loc1";
10445 case DW_CFA_advance_loc2:
10446 return "DW_CFA_advance_loc2";
10447 case DW_CFA_advance_loc4:
10448 return "DW_CFA_advance_loc4";
10449 case DW_CFA_offset_extended:
10450 return "DW_CFA_offset_extended";
10451 case DW_CFA_restore_extended:
10452 return "DW_CFA_restore_extended";
10453 case DW_CFA_undefined:
10454 return "DW_CFA_undefined";
10455 case DW_CFA_same_value:
10456 return "DW_CFA_same_value";
10457 case DW_CFA_register:
10458 return "DW_CFA_register";
10459 case DW_CFA_remember_state:
10460 return "DW_CFA_remember_state";
10461 case DW_CFA_restore_state:
10462 return "DW_CFA_restore_state";
10463 case DW_CFA_def_cfa:
10464 return "DW_CFA_def_cfa";
10465 case DW_CFA_def_cfa_register:
10466 return "DW_CFA_def_cfa_register";
10467 case DW_CFA_def_cfa_offset:
10468 return "DW_CFA_def_cfa_offset";
10469 /* DWARF 3. */
10470 case DW_CFA_def_cfa_expression:
10471 return "DW_CFA_def_cfa_expression";
10472 case DW_CFA_expression:
10473 return "DW_CFA_expression";
10474 case DW_CFA_offset_extended_sf:
10475 return "DW_CFA_offset_extended_sf";
10476 case DW_CFA_def_cfa_sf:
10477 return "DW_CFA_def_cfa_sf";
10478 case DW_CFA_def_cfa_offset_sf:
10479 return "DW_CFA_def_cfa_offset_sf";
10480 case DW_CFA_val_offset:
10481 return "DW_CFA_val_offset";
10482 case DW_CFA_val_offset_sf:
10483 return "DW_CFA_val_offset_sf";
10484 case DW_CFA_val_expression:
10485 return "DW_CFA_val_expression";
10486 /* SGI/MIPS specific. */
10487 case DW_CFA_MIPS_advance_loc8:
10488 return "DW_CFA_MIPS_advance_loc8";
10489 /* GNU extensions. */
10490 case DW_CFA_GNU_window_save:
10491 return "DW_CFA_GNU_window_save";
10492 case DW_CFA_GNU_args_size:
10493 return "DW_CFA_GNU_args_size";
10494 case DW_CFA_GNU_negative_offset_extended:
10495 return "DW_CFA_GNU_negative_offset_extended";
10496 default:
10497 return "DW_CFA_<unknown>";
10498 }
10499 }
10500 #endif
10501
10502 static void
10503 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
10504 {
10505 unsigned int i;
10506
10507 print_spaces (indent, f);
10508 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
10509 dwarf_tag_name (die->tag), die->abbrev, die->offset);
10510
10511 if (die->parent != NULL)
10512 {
10513 print_spaces (indent, f);
10514 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
10515 die->parent->offset);
10516 }
10517
10518 print_spaces (indent, f);
10519 fprintf_unfiltered (f, " has children: %s\n",
10520 dwarf_bool_name (die->child != NULL));
10521
10522 print_spaces (indent, f);
10523 fprintf_unfiltered (f, " attributes:\n");
10524
10525 for (i = 0; i < die->num_attrs; ++i)
10526 {
10527 print_spaces (indent, f);
10528 fprintf_unfiltered (f, " %s (%s) ",
10529 dwarf_attr_name (die->attrs[i].name),
10530 dwarf_form_name (die->attrs[i].form));
10531
10532 switch (die->attrs[i].form)
10533 {
10534 case DW_FORM_ref_addr:
10535 case DW_FORM_addr:
10536 fprintf_unfiltered (f, "address: ");
10537 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
10538 break;
10539 case DW_FORM_block2:
10540 case DW_FORM_block4:
10541 case DW_FORM_block:
10542 case DW_FORM_block1:
10543 fprintf_unfiltered (f, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
10544 break;
10545 case DW_FORM_exprloc:
10546 fprintf_unfiltered (f, "expression: size %u",
10547 DW_BLOCK (&die->attrs[i])->size);
10548 break;
10549 case DW_FORM_ref1:
10550 case DW_FORM_ref2:
10551 case DW_FORM_ref4:
10552 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
10553 (long) (DW_ADDR (&die->attrs[i])));
10554 break;
10555 case DW_FORM_data1:
10556 case DW_FORM_data2:
10557 case DW_FORM_data4:
10558 case DW_FORM_data8:
10559 case DW_FORM_udata:
10560 case DW_FORM_sdata:
10561 fprintf_unfiltered (f, "constant: %s",
10562 pulongest (DW_UNSND (&die->attrs[i])));
10563 break;
10564 case DW_FORM_sec_offset:
10565 fprintf_unfiltered (f, "section offset: %s",
10566 pulongest (DW_UNSND (&die->attrs[i])));
10567 break;
10568 case DW_FORM_sig8:
10569 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
10570 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
10571 DW_SIGNATURED_TYPE (&die->attrs[i])->offset);
10572 else
10573 fprintf_unfiltered (f, "signatured type, offset: unknown");
10574 break;
10575 case DW_FORM_string:
10576 case DW_FORM_strp:
10577 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
10578 DW_STRING (&die->attrs[i])
10579 ? DW_STRING (&die->attrs[i]) : "",
10580 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
10581 break;
10582 case DW_FORM_flag:
10583 if (DW_UNSND (&die->attrs[i]))
10584 fprintf_unfiltered (f, "flag: TRUE");
10585 else
10586 fprintf_unfiltered (f, "flag: FALSE");
10587 break;
10588 case DW_FORM_flag_present:
10589 fprintf_unfiltered (f, "flag: TRUE");
10590 break;
10591 case DW_FORM_indirect:
10592 /* the reader will have reduced the indirect form to
10593 the "base form" so this form should not occur */
10594 fprintf_unfiltered (f, "unexpected attribute form: DW_FORM_indirect");
10595 break;
10596 default:
10597 fprintf_unfiltered (f, "unsupported attribute form: %d.",
10598 die->attrs[i].form);
10599 break;
10600 }
10601 fprintf_unfiltered (f, "\n");
10602 }
10603 }
10604
10605 static void
10606 dump_die_for_error (struct die_info *die)
10607 {
10608 dump_die_shallow (gdb_stderr, 0, die);
10609 }
10610
10611 static void
10612 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
10613 {
10614 int indent = level * 4;
10615
10616 gdb_assert (die != NULL);
10617
10618 if (level >= max_level)
10619 return;
10620
10621 dump_die_shallow (f, indent, die);
10622
10623 if (die->child != NULL)
10624 {
10625 print_spaces (indent, f);
10626 fprintf_unfiltered (f, " Children:");
10627 if (level + 1 < max_level)
10628 {
10629 fprintf_unfiltered (f, "\n");
10630 dump_die_1 (f, level + 1, max_level, die->child);
10631 }
10632 else
10633 {
10634 fprintf_unfiltered (f, " [not printed, max nesting level reached]\n");
10635 }
10636 }
10637
10638 if (die->sibling != NULL && level > 0)
10639 {
10640 dump_die_1 (f, level, max_level, die->sibling);
10641 }
10642 }
10643
10644 /* This is called from the pdie macro in gdbinit.in.
10645 It's not static so gcc will keep a copy callable from gdb. */
10646
10647 void
10648 dump_die (struct die_info *die, int max_level)
10649 {
10650 dump_die_1 (gdb_stdlog, 0, max_level, die);
10651 }
10652
10653 static void
10654 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
10655 {
10656 void **slot;
10657
10658 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset, INSERT);
10659
10660 *slot = die;
10661 }
10662
10663 static int
10664 is_ref_attr (struct attribute *attr)
10665 {
10666 switch (attr->form)
10667 {
10668 case DW_FORM_ref_addr:
10669 case DW_FORM_ref1:
10670 case DW_FORM_ref2:
10671 case DW_FORM_ref4:
10672 case DW_FORM_ref8:
10673 case DW_FORM_ref_udata:
10674 return 1;
10675 default:
10676 return 0;
10677 }
10678 }
10679
10680 static unsigned int
10681 dwarf2_get_ref_die_offset (struct attribute *attr)
10682 {
10683 if (is_ref_attr (attr))
10684 return DW_ADDR (attr);
10685
10686 complaint (&symfile_complaints,
10687 _("unsupported die ref attribute form: '%s'"),
10688 dwarf_form_name (attr->form));
10689 return 0;
10690 }
10691
10692 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
10693 * the value held by the attribute is not constant. */
10694
10695 static LONGEST
10696 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
10697 {
10698 if (attr->form == DW_FORM_sdata)
10699 return DW_SND (attr);
10700 else if (attr->form == DW_FORM_udata
10701 || attr->form == DW_FORM_data1
10702 || attr->form == DW_FORM_data2
10703 || attr->form == DW_FORM_data4
10704 || attr->form == DW_FORM_data8)
10705 return DW_UNSND (attr);
10706 else
10707 {
10708 complaint (&symfile_complaints, _("Attribute value is not a constant (%s)"),
10709 dwarf_form_name (attr->form));
10710 return default_value;
10711 }
10712 }
10713
10714 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
10715 unit and add it to our queue.
10716 The result is non-zero if PER_CU was queued, otherwise the result is zero
10717 meaning either PER_CU is already queued or it is already loaded. */
10718
10719 static int
10720 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
10721 struct dwarf2_per_cu_data *per_cu)
10722 {
10723 /* Mark the dependence relation so that we don't flush PER_CU
10724 too early. */
10725 dwarf2_add_dependence (this_cu, per_cu);
10726
10727 /* If it's already on the queue, we have nothing to do. */
10728 if (per_cu->queued)
10729 return 0;
10730
10731 /* If the compilation unit is already loaded, just mark it as
10732 used. */
10733 if (per_cu->cu != NULL)
10734 {
10735 per_cu->cu->last_used = 0;
10736 return 0;
10737 }
10738
10739 /* Add it to the queue. */
10740 queue_comp_unit (per_cu, this_cu->objfile);
10741
10742 return 1;
10743 }
10744
10745 /* Follow reference or signature attribute ATTR of SRC_DIE.
10746 On entry *REF_CU is the CU of SRC_DIE.
10747 On exit *REF_CU is the CU of the result. */
10748
10749 static struct die_info *
10750 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
10751 struct dwarf2_cu **ref_cu)
10752 {
10753 struct die_info *die;
10754
10755 if (is_ref_attr (attr))
10756 die = follow_die_ref (src_die, attr, ref_cu);
10757 else if (attr->form == DW_FORM_sig8)
10758 die = follow_die_sig (src_die, attr, ref_cu);
10759 else
10760 {
10761 dump_die_for_error (src_die);
10762 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
10763 (*ref_cu)->objfile->name);
10764 }
10765
10766 return die;
10767 }
10768
10769 /* Follow reference OFFSET.
10770 On entry *REF_CU is the CU of source DIE referencing OFFSET.
10771 On exit *REF_CU is the CU of the result. */
10772
10773 static struct die_info *
10774 follow_die_offset (unsigned int offset, struct dwarf2_cu **ref_cu)
10775 {
10776 struct die_info temp_die;
10777 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10778
10779 gdb_assert (cu->per_cu != NULL);
10780
10781 if (cu->per_cu->from_debug_types)
10782 {
10783 /* .debug_types CUs cannot reference anything outside their CU.
10784 If they need to, they have to reference a signatured type via
10785 DW_FORM_sig8. */
10786 if (! offset_in_cu_p (&cu->header, offset))
10787 return NULL;
10788 target_cu = cu;
10789 }
10790 else if (! offset_in_cu_p (&cu->header, offset))
10791 {
10792 struct dwarf2_per_cu_data *per_cu;
10793
10794 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
10795
10796 /* If necessary, add it to the queue and load its DIEs. */
10797 if (maybe_queue_comp_unit (cu, per_cu))
10798 load_full_comp_unit (per_cu, cu->objfile);
10799
10800 target_cu = per_cu->cu;
10801 }
10802 else
10803 target_cu = cu;
10804
10805 *ref_cu = target_cu;
10806 temp_die.offset = offset;
10807 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset);
10808 }
10809
10810 /* Follow reference attribute ATTR of SRC_DIE.
10811 On entry *REF_CU is the CU of SRC_DIE.
10812 On exit *REF_CU is the CU of the result. */
10813
10814 static struct die_info *
10815 follow_die_ref (struct die_info *src_die, struct attribute *attr,
10816 struct dwarf2_cu **ref_cu)
10817 {
10818 unsigned int offset = dwarf2_get_ref_die_offset (attr);
10819 struct dwarf2_cu *cu = *ref_cu;
10820 struct die_info *die;
10821
10822 die = follow_die_offset (offset, ref_cu);
10823 if (!die)
10824 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
10825 "at 0x%x [in module %s]"),
10826 offset, src_die->offset, cu->objfile->name);
10827
10828 return die;
10829 }
10830
10831 /* Return DWARF block and its CU referenced by OFFSET at PER_CU. Returned
10832 value is intended for DW_OP_call*. */
10833
10834 struct dwarf2_locexpr_baton
10835 dwarf2_fetch_die_location_block (unsigned int offset,
10836 struct dwarf2_per_cu_data *per_cu)
10837 {
10838 struct dwarf2_cu *cu = per_cu->cu;
10839 struct die_info *die;
10840 struct attribute *attr;
10841 struct dwarf2_locexpr_baton retval;
10842
10843 die = follow_die_offset (offset, &cu);
10844 if (!die)
10845 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
10846 offset, per_cu->cu->objfile->name);
10847
10848 attr = dwarf2_attr (die, DW_AT_location, cu);
10849 if (!attr)
10850 {
10851 /* DWARF: "If there is no such attribute, then there is no effect.". */
10852
10853 retval.data = NULL;
10854 retval.size = 0;
10855 }
10856 else
10857 {
10858 if (!attr_form_is_block (attr))
10859 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
10860 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
10861 offset, per_cu->cu->objfile->name);
10862
10863 retval.data = DW_BLOCK (attr)->data;
10864 retval.size = DW_BLOCK (attr)->size;
10865 }
10866 retval.per_cu = cu->per_cu;
10867 return retval;
10868 }
10869
10870 /* Follow the signature attribute ATTR in SRC_DIE.
10871 On entry *REF_CU is the CU of SRC_DIE.
10872 On exit *REF_CU is the CU of the result. */
10873
10874 static struct die_info *
10875 follow_die_sig (struct die_info *src_die, struct attribute *attr,
10876 struct dwarf2_cu **ref_cu)
10877 {
10878 struct objfile *objfile = (*ref_cu)->objfile;
10879 struct die_info temp_die;
10880 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
10881 struct dwarf2_cu *sig_cu;
10882 struct die_info *die;
10883
10884 /* sig_type will be NULL if the signatured type is missing from
10885 the debug info. */
10886 if (sig_type == NULL)
10887 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
10888 "at 0x%x [in module %s]"),
10889 src_die->offset, objfile->name);
10890
10891 /* If necessary, add it to the queue and load its DIEs. */
10892
10893 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu))
10894 read_signatured_type (objfile, sig_type);
10895
10896 gdb_assert (sig_type->per_cu.cu != NULL);
10897
10898 sig_cu = sig_type->per_cu.cu;
10899 temp_die.offset = sig_cu->header.offset + sig_type->type_offset;
10900 die = htab_find_with_hash (sig_cu->die_hash, &temp_die, temp_die.offset);
10901 if (die)
10902 {
10903 *ref_cu = sig_cu;
10904 return die;
10905 }
10906
10907 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced from DIE "
10908 "at 0x%x [in module %s]"),
10909 sig_type->type_offset, src_die->offset, objfile->name);
10910 }
10911
10912 /* Given an offset of a signatured type, return its signatured_type. */
10913
10914 static struct signatured_type *
10915 lookup_signatured_type_at_offset (struct objfile *objfile, unsigned int offset)
10916 {
10917 gdb_byte *info_ptr = dwarf2_per_objfile->types.buffer + offset;
10918 unsigned int length, initial_length_size;
10919 unsigned int sig_offset;
10920 struct signatured_type find_entry, *type_sig;
10921
10922 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
10923 sig_offset = (initial_length_size
10924 + 2 /*version*/
10925 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
10926 + 1 /*address_size*/);
10927 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
10928 type_sig = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
10929
10930 /* This is only used to lookup previously recorded types.
10931 If we didn't find it, it's our bug. */
10932 gdb_assert (type_sig != NULL);
10933 gdb_assert (offset == type_sig->offset);
10934
10935 return type_sig;
10936 }
10937
10938 /* Read in signatured type at OFFSET and build its CU and die(s). */
10939
10940 static void
10941 read_signatured_type_at_offset (struct objfile *objfile,
10942 unsigned int offset)
10943 {
10944 struct signatured_type *type_sig;
10945
10946 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
10947
10948 /* We have the section offset, but we need the signature to do the
10949 hash table lookup. */
10950 type_sig = lookup_signatured_type_at_offset (objfile, offset);
10951
10952 gdb_assert (type_sig->per_cu.cu == NULL);
10953
10954 read_signatured_type (objfile, type_sig);
10955
10956 gdb_assert (type_sig->per_cu.cu != NULL);
10957 }
10958
10959 /* Read in a signatured type and build its CU and DIEs. */
10960
10961 static void
10962 read_signatured_type (struct objfile *objfile,
10963 struct signatured_type *type_sig)
10964 {
10965 gdb_byte *types_ptr = dwarf2_per_objfile->types.buffer + type_sig->offset;
10966 struct die_reader_specs reader_specs;
10967 struct dwarf2_cu *cu;
10968 ULONGEST signature;
10969 struct cleanup *back_to, *free_cu_cleanup;
10970 struct attribute *attr;
10971
10972 gdb_assert (type_sig->per_cu.cu == NULL);
10973
10974 cu = xmalloc (sizeof (struct dwarf2_cu));
10975 memset (cu, 0, sizeof (struct dwarf2_cu));
10976 obstack_init (&cu->comp_unit_obstack);
10977 cu->objfile = objfile;
10978 type_sig->per_cu.cu = cu;
10979 cu->per_cu = &type_sig->per_cu;
10980
10981 /* If an error occurs while loading, release our storage. */
10982 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
10983
10984 types_ptr = read_type_comp_unit_head (&cu->header, &signature,
10985 types_ptr, objfile->obfd);
10986 gdb_assert (signature == type_sig->signature);
10987
10988 cu->die_hash
10989 = htab_create_alloc_ex (cu->header.length / 12,
10990 die_hash,
10991 die_eq,
10992 NULL,
10993 &cu->comp_unit_obstack,
10994 hashtab_obstack_allocate,
10995 dummy_obstack_deallocate);
10996
10997 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
10998 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
10999
11000 init_cu_die_reader (&reader_specs, cu);
11001
11002 cu->dies = read_die_and_children (&reader_specs, types_ptr, &types_ptr,
11003 NULL /*parent*/);
11004
11005 /* We try not to read any attributes in this function, because not
11006 all objfiles needed for references have been loaded yet, and symbol
11007 table processing isn't initialized. But we have to set the CU language,
11008 or we won't be able to build types correctly. */
11009 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
11010 if (attr)
11011 set_cu_language (DW_UNSND (attr), cu);
11012 else
11013 set_cu_language (language_minimal, cu);
11014
11015 do_cleanups (back_to);
11016
11017 /* We've successfully allocated this compilation unit. Let our caller
11018 clean it up when finished with it. */
11019 discard_cleanups (free_cu_cleanup);
11020
11021 type_sig->per_cu.cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
11022 dwarf2_per_objfile->read_in_chain = &type_sig->per_cu;
11023 }
11024
11025 /* Decode simple location descriptions.
11026 Given a pointer to a dwarf block that defines a location, compute
11027 the location and return the value.
11028
11029 NOTE drow/2003-11-18: This function is called in two situations
11030 now: for the address of static or global variables (partial symbols
11031 only) and for offsets into structures which are expected to be
11032 (more or less) constant. The partial symbol case should go away,
11033 and only the constant case should remain. That will let this
11034 function complain more accurately. A few special modes are allowed
11035 without complaint for global variables (for instance, global
11036 register values and thread-local values).
11037
11038 A location description containing no operations indicates that the
11039 object is optimized out. The return value is 0 for that case.
11040 FIXME drow/2003-11-16: No callers check for this case any more; soon all
11041 callers will only want a very basic result and this can become a
11042 complaint.
11043
11044 Note that stack[0] is unused except as a default error return.
11045 Note that stack overflow is not yet handled. */
11046
11047 static CORE_ADDR
11048 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
11049 {
11050 struct objfile *objfile = cu->objfile;
11051 int i;
11052 int size = blk->size;
11053 gdb_byte *data = blk->data;
11054 CORE_ADDR stack[64];
11055 int stacki;
11056 unsigned int bytes_read, unsnd;
11057 gdb_byte op;
11058
11059 i = 0;
11060 stacki = 0;
11061 stack[stacki] = 0;
11062
11063 while (i < size)
11064 {
11065 op = data[i++];
11066 switch (op)
11067 {
11068 case DW_OP_lit0:
11069 case DW_OP_lit1:
11070 case DW_OP_lit2:
11071 case DW_OP_lit3:
11072 case DW_OP_lit4:
11073 case DW_OP_lit5:
11074 case DW_OP_lit6:
11075 case DW_OP_lit7:
11076 case DW_OP_lit8:
11077 case DW_OP_lit9:
11078 case DW_OP_lit10:
11079 case DW_OP_lit11:
11080 case DW_OP_lit12:
11081 case DW_OP_lit13:
11082 case DW_OP_lit14:
11083 case DW_OP_lit15:
11084 case DW_OP_lit16:
11085 case DW_OP_lit17:
11086 case DW_OP_lit18:
11087 case DW_OP_lit19:
11088 case DW_OP_lit20:
11089 case DW_OP_lit21:
11090 case DW_OP_lit22:
11091 case DW_OP_lit23:
11092 case DW_OP_lit24:
11093 case DW_OP_lit25:
11094 case DW_OP_lit26:
11095 case DW_OP_lit27:
11096 case DW_OP_lit28:
11097 case DW_OP_lit29:
11098 case DW_OP_lit30:
11099 case DW_OP_lit31:
11100 stack[++stacki] = op - DW_OP_lit0;
11101 break;
11102
11103 case DW_OP_reg0:
11104 case DW_OP_reg1:
11105 case DW_OP_reg2:
11106 case DW_OP_reg3:
11107 case DW_OP_reg4:
11108 case DW_OP_reg5:
11109 case DW_OP_reg6:
11110 case DW_OP_reg7:
11111 case DW_OP_reg8:
11112 case DW_OP_reg9:
11113 case DW_OP_reg10:
11114 case DW_OP_reg11:
11115 case DW_OP_reg12:
11116 case DW_OP_reg13:
11117 case DW_OP_reg14:
11118 case DW_OP_reg15:
11119 case DW_OP_reg16:
11120 case DW_OP_reg17:
11121 case DW_OP_reg18:
11122 case DW_OP_reg19:
11123 case DW_OP_reg20:
11124 case DW_OP_reg21:
11125 case DW_OP_reg22:
11126 case DW_OP_reg23:
11127 case DW_OP_reg24:
11128 case DW_OP_reg25:
11129 case DW_OP_reg26:
11130 case DW_OP_reg27:
11131 case DW_OP_reg28:
11132 case DW_OP_reg29:
11133 case DW_OP_reg30:
11134 case DW_OP_reg31:
11135 stack[++stacki] = op - DW_OP_reg0;
11136 if (i < size)
11137 dwarf2_complex_location_expr_complaint ();
11138 break;
11139
11140 case DW_OP_regx:
11141 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
11142 i += bytes_read;
11143 stack[++stacki] = unsnd;
11144 if (i < size)
11145 dwarf2_complex_location_expr_complaint ();
11146 break;
11147
11148 case DW_OP_addr:
11149 stack[++stacki] = read_address (objfile->obfd, &data[i],
11150 cu, &bytes_read);
11151 i += bytes_read;
11152 break;
11153
11154 case DW_OP_const1u:
11155 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
11156 i += 1;
11157 break;
11158
11159 case DW_OP_const1s:
11160 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
11161 i += 1;
11162 break;
11163
11164 case DW_OP_const2u:
11165 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
11166 i += 2;
11167 break;
11168
11169 case DW_OP_const2s:
11170 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
11171 i += 2;
11172 break;
11173
11174 case DW_OP_const4u:
11175 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
11176 i += 4;
11177 break;
11178
11179 case DW_OP_const4s:
11180 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
11181 i += 4;
11182 break;
11183
11184 case DW_OP_constu:
11185 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
11186 &bytes_read);
11187 i += bytes_read;
11188 break;
11189
11190 case DW_OP_consts:
11191 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
11192 i += bytes_read;
11193 break;
11194
11195 case DW_OP_dup:
11196 stack[stacki + 1] = stack[stacki];
11197 stacki++;
11198 break;
11199
11200 case DW_OP_plus:
11201 stack[stacki - 1] += stack[stacki];
11202 stacki--;
11203 break;
11204
11205 case DW_OP_plus_uconst:
11206 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
11207 i += bytes_read;
11208 break;
11209
11210 case DW_OP_minus:
11211 stack[stacki - 1] -= stack[stacki];
11212 stacki--;
11213 break;
11214
11215 case DW_OP_deref:
11216 /* If we're not the last op, then we definitely can't encode
11217 this using GDB's address_class enum. This is valid for partial
11218 global symbols, although the variable's address will be bogus
11219 in the psymtab. */
11220 if (i < size)
11221 dwarf2_complex_location_expr_complaint ();
11222 break;
11223
11224 case DW_OP_GNU_push_tls_address:
11225 /* The top of the stack has the offset from the beginning
11226 of the thread control block at which the variable is located. */
11227 /* Nothing should follow this operator, so the top of stack would
11228 be returned. */
11229 /* This is valid for partial global symbols, but the variable's
11230 address will be bogus in the psymtab. */
11231 if (i < size)
11232 dwarf2_complex_location_expr_complaint ();
11233 break;
11234
11235 case DW_OP_GNU_uninit:
11236 break;
11237
11238 default:
11239 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
11240 dwarf_stack_op_name (op, 1));
11241 return (stack[stacki]);
11242 }
11243 }
11244 return (stack[stacki]);
11245 }
11246
11247 /* memory allocation interface */
11248
11249 static struct dwarf_block *
11250 dwarf_alloc_block (struct dwarf2_cu *cu)
11251 {
11252 struct dwarf_block *blk;
11253
11254 blk = (struct dwarf_block *)
11255 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
11256 return (blk);
11257 }
11258
11259 static struct abbrev_info *
11260 dwarf_alloc_abbrev (struct dwarf2_cu *cu)
11261 {
11262 struct abbrev_info *abbrev;
11263
11264 abbrev = (struct abbrev_info *)
11265 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
11266 memset (abbrev, 0, sizeof (struct abbrev_info));
11267 return (abbrev);
11268 }
11269
11270 static struct die_info *
11271 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
11272 {
11273 struct die_info *die;
11274 size_t size = sizeof (struct die_info);
11275
11276 if (num_attrs > 1)
11277 size += (num_attrs - 1) * sizeof (struct attribute);
11278
11279 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
11280 memset (die, 0, sizeof (struct die_info));
11281 return (die);
11282 }
11283
11284 \f
11285 /* Macro support. */
11286
11287
11288 /* Return the full name of file number I in *LH's file name table.
11289 Use COMP_DIR as the name of the current directory of the
11290 compilation. The result is allocated using xmalloc; the caller is
11291 responsible for freeing it. */
11292 static char *
11293 file_full_name (int file, struct line_header *lh, const char *comp_dir)
11294 {
11295 /* Is the file number a valid index into the line header's file name
11296 table? Remember that file numbers start with one, not zero. */
11297 if (1 <= file && file <= lh->num_file_names)
11298 {
11299 struct file_entry *fe = &lh->file_names[file - 1];
11300
11301 if (IS_ABSOLUTE_PATH (fe->name))
11302 return xstrdup (fe->name);
11303 else
11304 {
11305 const char *dir;
11306 int dir_len;
11307 char *full_name;
11308
11309 if (fe->dir_index)
11310 dir = lh->include_dirs[fe->dir_index - 1];
11311 else
11312 dir = comp_dir;
11313
11314 if (dir)
11315 {
11316 dir_len = strlen (dir);
11317 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
11318 strcpy (full_name, dir);
11319 full_name[dir_len] = '/';
11320 strcpy (full_name + dir_len + 1, fe->name);
11321 return full_name;
11322 }
11323 else
11324 return xstrdup (fe->name);
11325 }
11326 }
11327 else
11328 {
11329 /* The compiler produced a bogus file number. We can at least
11330 record the macro definitions made in the file, even if we
11331 won't be able to find the file by name. */
11332 char fake_name[80];
11333
11334 sprintf (fake_name, "<bad macro file number %d>", file);
11335
11336 complaint (&symfile_complaints,
11337 _("bad file number in macro information (%d)"),
11338 file);
11339
11340 return xstrdup (fake_name);
11341 }
11342 }
11343
11344
11345 static struct macro_source_file *
11346 macro_start_file (int file, int line,
11347 struct macro_source_file *current_file,
11348 const char *comp_dir,
11349 struct line_header *lh, struct objfile *objfile)
11350 {
11351 /* The full name of this source file. */
11352 char *full_name = file_full_name (file, lh, comp_dir);
11353
11354 /* We don't create a macro table for this compilation unit
11355 at all until we actually get a filename. */
11356 if (! pending_macros)
11357 pending_macros = new_macro_table (&objfile->objfile_obstack,
11358 objfile->macro_cache);
11359
11360 if (! current_file)
11361 /* If we have no current file, then this must be the start_file
11362 directive for the compilation unit's main source file. */
11363 current_file = macro_set_main (pending_macros, full_name);
11364 else
11365 current_file = macro_include (current_file, line, full_name);
11366
11367 xfree (full_name);
11368
11369 return current_file;
11370 }
11371
11372
11373 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
11374 followed by a null byte. */
11375 static char *
11376 copy_string (const char *buf, int len)
11377 {
11378 char *s = xmalloc (len + 1);
11379
11380 memcpy (s, buf, len);
11381 s[len] = '\0';
11382 return s;
11383 }
11384
11385
11386 static const char *
11387 consume_improper_spaces (const char *p, const char *body)
11388 {
11389 if (*p == ' ')
11390 {
11391 complaint (&symfile_complaints,
11392 _("macro definition contains spaces in formal argument list:\n`%s'"),
11393 body);
11394
11395 while (*p == ' ')
11396 p++;
11397 }
11398
11399 return p;
11400 }
11401
11402
11403 static void
11404 parse_macro_definition (struct macro_source_file *file, int line,
11405 const char *body)
11406 {
11407 const char *p;
11408
11409 /* The body string takes one of two forms. For object-like macro
11410 definitions, it should be:
11411
11412 <macro name> " " <definition>
11413
11414 For function-like macro definitions, it should be:
11415
11416 <macro name> "() " <definition>
11417 or
11418 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
11419
11420 Spaces may appear only where explicitly indicated, and in the
11421 <definition>.
11422
11423 The Dwarf 2 spec says that an object-like macro's name is always
11424 followed by a space, but versions of GCC around March 2002 omit
11425 the space when the macro's definition is the empty string.
11426
11427 The Dwarf 2 spec says that there should be no spaces between the
11428 formal arguments in a function-like macro's formal argument list,
11429 but versions of GCC around March 2002 include spaces after the
11430 commas. */
11431
11432
11433 /* Find the extent of the macro name. The macro name is terminated
11434 by either a space or null character (for an object-like macro) or
11435 an opening paren (for a function-like macro). */
11436 for (p = body; *p; p++)
11437 if (*p == ' ' || *p == '(')
11438 break;
11439
11440 if (*p == ' ' || *p == '\0')
11441 {
11442 /* It's an object-like macro. */
11443 int name_len = p - body;
11444 char *name = copy_string (body, name_len);
11445 const char *replacement;
11446
11447 if (*p == ' ')
11448 replacement = body + name_len + 1;
11449 else
11450 {
11451 dwarf2_macro_malformed_definition_complaint (body);
11452 replacement = body + name_len;
11453 }
11454
11455 macro_define_object (file, line, name, replacement);
11456
11457 xfree (name);
11458 }
11459 else if (*p == '(')
11460 {
11461 /* It's a function-like macro. */
11462 char *name = copy_string (body, p - body);
11463 int argc = 0;
11464 int argv_size = 1;
11465 char **argv = xmalloc (argv_size * sizeof (*argv));
11466
11467 p++;
11468
11469 p = consume_improper_spaces (p, body);
11470
11471 /* Parse the formal argument list. */
11472 while (*p && *p != ')')
11473 {
11474 /* Find the extent of the current argument name. */
11475 const char *arg_start = p;
11476
11477 while (*p && *p != ',' && *p != ')' && *p != ' ')
11478 p++;
11479
11480 if (! *p || p == arg_start)
11481 dwarf2_macro_malformed_definition_complaint (body);
11482 else
11483 {
11484 /* Make sure argv has room for the new argument. */
11485 if (argc >= argv_size)
11486 {
11487 argv_size *= 2;
11488 argv = xrealloc (argv, argv_size * sizeof (*argv));
11489 }
11490
11491 argv[argc++] = copy_string (arg_start, p - arg_start);
11492 }
11493
11494 p = consume_improper_spaces (p, body);
11495
11496 /* Consume the comma, if present. */
11497 if (*p == ',')
11498 {
11499 p++;
11500
11501 p = consume_improper_spaces (p, body);
11502 }
11503 }
11504
11505 if (*p == ')')
11506 {
11507 p++;
11508
11509 if (*p == ' ')
11510 /* Perfectly formed definition, no complaints. */
11511 macro_define_function (file, line, name,
11512 argc, (const char **) argv,
11513 p + 1);
11514 else if (*p == '\0')
11515 {
11516 /* Complain, but do define it. */
11517 dwarf2_macro_malformed_definition_complaint (body);
11518 macro_define_function (file, line, name,
11519 argc, (const char **) argv,
11520 p);
11521 }
11522 else
11523 /* Just complain. */
11524 dwarf2_macro_malformed_definition_complaint (body);
11525 }
11526 else
11527 /* Just complain. */
11528 dwarf2_macro_malformed_definition_complaint (body);
11529
11530 xfree (name);
11531 {
11532 int i;
11533
11534 for (i = 0; i < argc; i++)
11535 xfree (argv[i]);
11536 }
11537 xfree (argv);
11538 }
11539 else
11540 dwarf2_macro_malformed_definition_complaint (body);
11541 }
11542
11543
11544 static void
11545 dwarf_decode_macros (struct line_header *lh, unsigned int offset,
11546 char *comp_dir, bfd *abfd,
11547 struct dwarf2_cu *cu)
11548 {
11549 gdb_byte *mac_ptr, *mac_end;
11550 struct macro_source_file *current_file = 0;
11551 enum dwarf_macinfo_record_type macinfo_type;
11552 int at_commandline;
11553
11554 dwarf2_read_section (dwarf2_per_objfile->objfile,
11555 &dwarf2_per_objfile->macinfo);
11556 if (dwarf2_per_objfile->macinfo.buffer == NULL)
11557 {
11558 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
11559 return;
11560 }
11561
11562 /* First pass: Find the name of the base filename.
11563 This filename is needed in order to process all macros whose definition
11564 (or undefinition) comes from the command line. These macros are defined
11565 before the first DW_MACINFO_start_file entry, and yet still need to be
11566 associated to the base file.
11567
11568 To determine the base file name, we scan the macro definitions until we
11569 reach the first DW_MACINFO_start_file entry. We then initialize
11570 CURRENT_FILE accordingly so that any macro definition found before the
11571 first DW_MACINFO_start_file can still be associated to the base file. */
11572
11573 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
11574 mac_end = dwarf2_per_objfile->macinfo.buffer
11575 + dwarf2_per_objfile->macinfo.size;
11576
11577 do
11578 {
11579 /* Do we at least have room for a macinfo type byte? */
11580 if (mac_ptr >= mac_end)
11581 {
11582 /* Complaint is printed during the second pass as GDB will probably
11583 stop the first pass earlier upon finding DW_MACINFO_start_file. */
11584 break;
11585 }
11586
11587 macinfo_type = read_1_byte (abfd, mac_ptr);
11588 mac_ptr++;
11589
11590 switch (macinfo_type)
11591 {
11592 /* A zero macinfo type indicates the end of the macro
11593 information. */
11594 case 0:
11595 break;
11596
11597 case DW_MACINFO_define:
11598 case DW_MACINFO_undef:
11599 /* Only skip the data by MAC_PTR. */
11600 {
11601 unsigned int bytes_read;
11602
11603 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11604 mac_ptr += bytes_read;
11605 read_string (abfd, mac_ptr, &bytes_read);
11606 mac_ptr += bytes_read;
11607 }
11608 break;
11609
11610 case DW_MACINFO_start_file:
11611 {
11612 unsigned int bytes_read;
11613 int line, file;
11614
11615 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11616 mac_ptr += bytes_read;
11617 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11618 mac_ptr += bytes_read;
11619
11620 current_file = macro_start_file (file, line, current_file, comp_dir,
11621 lh, cu->objfile);
11622 }
11623 break;
11624
11625 case DW_MACINFO_end_file:
11626 /* No data to skip by MAC_PTR. */
11627 break;
11628
11629 case DW_MACINFO_vendor_ext:
11630 /* Only skip the data by MAC_PTR. */
11631 {
11632 unsigned int bytes_read;
11633
11634 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11635 mac_ptr += bytes_read;
11636 read_string (abfd, mac_ptr, &bytes_read);
11637 mac_ptr += bytes_read;
11638 }
11639 break;
11640
11641 default:
11642 break;
11643 }
11644 } while (macinfo_type != 0 && current_file == NULL);
11645
11646 /* Second pass: Process all entries.
11647
11648 Use the AT_COMMAND_LINE flag to determine whether we are still processing
11649 command-line macro definitions/undefinitions. This flag is unset when we
11650 reach the first DW_MACINFO_start_file entry. */
11651
11652 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
11653
11654 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
11655 GDB is still reading the definitions from command line. First
11656 DW_MACINFO_start_file will need to be ignored as it was already executed
11657 to create CURRENT_FILE for the main source holding also the command line
11658 definitions. On first met DW_MACINFO_start_file this flag is reset to
11659 normally execute all the remaining DW_MACINFO_start_file macinfos. */
11660
11661 at_commandline = 1;
11662
11663 do
11664 {
11665 /* Do we at least have room for a macinfo type byte? */
11666 if (mac_ptr >= mac_end)
11667 {
11668 dwarf2_macros_too_long_complaint ();
11669 break;
11670 }
11671
11672 macinfo_type = read_1_byte (abfd, mac_ptr);
11673 mac_ptr++;
11674
11675 switch (macinfo_type)
11676 {
11677 /* A zero macinfo type indicates the end of the macro
11678 information. */
11679 case 0:
11680 break;
11681
11682 case DW_MACINFO_define:
11683 case DW_MACINFO_undef:
11684 {
11685 unsigned int bytes_read;
11686 int line;
11687 char *body;
11688
11689 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11690 mac_ptr += bytes_read;
11691 body = read_string (abfd, mac_ptr, &bytes_read);
11692 mac_ptr += bytes_read;
11693
11694 if (! current_file)
11695 {
11696 /* DWARF violation as no main source is present. */
11697 complaint (&symfile_complaints,
11698 _("debug info with no main source gives macro %s "
11699 "on line %d: %s"),
11700 macinfo_type == DW_MACINFO_define ?
11701 _("definition") :
11702 macinfo_type == DW_MACINFO_undef ?
11703 _("undefinition") :
11704 _("something-or-other"), line, body);
11705 break;
11706 }
11707 if ((line == 0 && !at_commandline) || (line != 0 && at_commandline))
11708 complaint (&symfile_complaints,
11709 _("debug info gives %s macro %s with %s line %d: %s"),
11710 at_commandline ? _("command-line") : _("in-file"),
11711 macinfo_type == DW_MACINFO_define ?
11712 _("definition") :
11713 macinfo_type == DW_MACINFO_undef ?
11714 _("undefinition") :
11715 _("something-or-other"),
11716 line == 0 ? _("zero") : _("non-zero"), line, body);
11717
11718 if (macinfo_type == DW_MACINFO_define)
11719 parse_macro_definition (current_file, line, body);
11720 else if (macinfo_type == DW_MACINFO_undef)
11721 macro_undef (current_file, line, body);
11722 }
11723 break;
11724
11725 case DW_MACINFO_start_file:
11726 {
11727 unsigned int bytes_read;
11728 int line, file;
11729
11730 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11731 mac_ptr += bytes_read;
11732 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11733 mac_ptr += bytes_read;
11734
11735 if ((line == 0 && !at_commandline) || (line != 0 && at_commandline))
11736 complaint (&symfile_complaints,
11737 _("debug info gives source %d included "
11738 "from %s at %s line %d"),
11739 file, at_commandline ? _("command-line") : _("file"),
11740 line == 0 ? _("zero") : _("non-zero"), line);
11741
11742 if (at_commandline)
11743 {
11744 /* This DW_MACINFO_start_file was executed in the pass one. */
11745 at_commandline = 0;
11746 }
11747 else
11748 current_file = macro_start_file (file, line,
11749 current_file, comp_dir,
11750 lh, cu->objfile);
11751 }
11752 break;
11753
11754 case DW_MACINFO_end_file:
11755 if (! current_file)
11756 complaint (&symfile_complaints,
11757 _("macro debug info has an unmatched `close_file' directive"));
11758 else
11759 {
11760 current_file = current_file->included_by;
11761 if (! current_file)
11762 {
11763 enum dwarf_macinfo_record_type next_type;
11764
11765 /* GCC circa March 2002 doesn't produce the zero
11766 type byte marking the end of the compilation
11767 unit. Complain if it's not there, but exit no
11768 matter what. */
11769
11770 /* Do we at least have room for a macinfo type byte? */
11771 if (mac_ptr >= mac_end)
11772 {
11773 dwarf2_macros_too_long_complaint ();
11774 return;
11775 }
11776
11777 /* We don't increment mac_ptr here, so this is just
11778 a look-ahead. */
11779 next_type = read_1_byte (abfd, mac_ptr);
11780 if (next_type != 0)
11781 complaint (&symfile_complaints,
11782 _("no terminating 0-type entry for macros in `.debug_macinfo' section"));
11783
11784 return;
11785 }
11786 }
11787 break;
11788
11789 case DW_MACINFO_vendor_ext:
11790 {
11791 unsigned int bytes_read;
11792 int constant;
11793 char *string;
11794
11795 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11796 mac_ptr += bytes_read;
11797 string = read_string (abfd, mac_ptr, &bytes_read);
11798 mac_ptr += bytes_read;
11799
11800 /* We don't recognize any vendor extensions. */
11801 }
11802 break;
11803 }
11804 } while (macinfo_type != 0);
11805 }
11806
11807 /* Check if the attribute's form is a DW_FORM_block*
11808 if so return true else false. */
11809 static int
11810 attr_form_is_block (struct attribute *attr)
11811 {
11812 return (attr == NULL ? 0 :
11813 attr->form == DW_FORM_block1
11814 || attr->form == DW_FORM_block2
11815 || attr->form == DW_FORM_block4
11816 || attr->form == DW_FORM_block
11817 || attr->form == DW_FORM_exprloc);
11818 }
11819
11820 /* Return non-zero if ATTR's value is a section offset --- classes
11821 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
11822 You may use DW_UNSND (attr) to retrieve such offsets.
11823
11824 Section 7.5.4, "Attribute Encodings", explains that no attribute
11825 may have a value that belongs to more than one of these classes; it
11826 would be ambiguous if we did, because we use the same forms for all
11827 of them. */
11828 static int
11829 attr_form_is_section_offset (struct attribute *attr)
11830 {
11831 return (attr->form == DW_FORM_data4
11832 || attr->form == DW_FORM_data8
11833 || attr->form == DW_FORM_sec_offset);
11834 }
11835
11836
11837 /* Return non-zero if ATTR's value falls in the 'constant' class, or
11838 zero otherwise. When this function returns true, you can apply
11839 dwarf2_get_attr_constant_value to it.
11840
11841 However, note that for some attributes you must check
11842 attr_form_is_section_offset before using this test. DW_FORM_data4
11843 and DW_FORM_data8 are members of both the constant class, and of
11844 the classes that contain offsets into other debug sections
11845 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
11846 that, if an attribute's can be either a constant or one of the
11847 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
11848 taken as section offsets, not constants. */
11849 static int
11850 attr_form_is_constant (struct attribute *attr)
11851 {
11852 switch (attr->form)
11853 {
11854 case DW_FORM_sdata:
11855 case DW_FORM_udata:
11856 case DW_FORM_data1:
11857 case DW_FORM_data2:
11858 case DW_FORM_data4:
11859 case DW_FORM_data8:
11860 return 1;
11861 default:
11862 return 0;
11863 }
11864 }
11865
11866 static void
11867 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
11868 struct dwarf2_cu *cu)
11869 {
11870 if (attr_form_is_section_offset (attr)
11871 /* ".debug_loc" may not exist at all, or the offset may be outside
11872 the section. If so, fall through to the complaint in the
11873 other branch. */
11874 && DW_UNSND (attr) < dwarf2_per_objfile->loc.size)
11875 {
11876 struct dwarf2_loclist_baton *baton;
11877
11878 baton = obstack_alloc (&cu->objfile->objfile_obstack,
11879 sizeof (struct dwarf2_loclist_baton));
11880 baton->per_cu = cu->per_cu;
11881 gdb_assert (baton->per_cu);
11882
11883 dwarf2_read_section (dwarf2_per_objfile->objfile,
11884 &dwarf2_per_objfile->loc);
11885
11886 /* We don't know how long the location list is, but make sure we
11887 don't run off the edge of the section. */
11888 baton->size = dwarf2_per_objfile->loc.size - DW_UNSND (attr);
11889 baton->data = dwarf2_per_objfile->loc.buffer + DW_UNSND (attr);
11890 baton->base_address = cu->base_address;
11891 if (cu->base_known == 0)
11892 complaint (&symfile_complaints,
11893 _("Location list used without specifying the CU base address."));
11894
11895 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
11896 SYMBOL_LOCATION_BATON (sym) = baton;
11897 }
11898 else
11899 {
11900 struct dwarf2_locexpr_baton *baton;
11901
11902 baton = obstack_alloc (&cu->objfile->objfile_obstack,
11903 sizeof (struct dwarf2_locexpr_baton));
11904 baton->per_cu = cu->per_cu;
11905 gdb_assert (baton->per_cu);
11906
11907 if (attr_form_is_block (attr))
11908 {
11909 /* Note that we're just copying the block's data pointer
11910 here, not the actual data. We're still pointing into the
11911 info_buffer for SYM's objfile; right now we never release
11912 that buffer, but when we do clean up properly this may
11913 need to change. */
11914 baton->size = DW_BLOCK (attr)->size;
11915 baton->data = DW_BLOCK (attr)->data;
11916 }
11917 else
11918 {
11919 dwarf2_invalid_attrib_class_complaint ("location description",
11920 SYMBOL_NATURAL_NAME (sym));
11921 baton->size = 0;
11922 baton->data = NULL;
11923 }
11924
11925 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
11926 SYMBOL_LOCATION_BATON (sym) = baton;
11927 }
11928 }
11929
11930 /* Return the OBJFILE associated with the compilation unit CU. */
11931
11932 struct objfile *
11933 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
11934 {
11935 struct objfile *objfile = per_cu->psymtab->objfile;
11936
11937 /* Return the master objfile, so that we can report and look up the
11938 correct file containing this variable. */
11939 if (objfile->separate_debug_objfile_backlink)
11940 objfile = objfile->separate_debug_objfile_backlink;
11941
11942 return objfile;
11943 }
11944
11945 /* Return the address size given in the compilation unit header for CU. */
11946
11947 CORE_ADDR
11948 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
11949 {
11950 if (per_cu->cu)
11951 return per_cu->cu->header.addr_size;
11952 else
11953 {
11954 /* If the CU is not currently read in, we re-read its header. */
11955 struct objfile *objfile = per_cu->psymtab->objfile;
11956 struct dwarf2_per_objfile *per_objfile
11957 = objfile_data (objfile, dwarf2_objfile_data_key);
11958 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
11959 struct comp_unit_head cu_header;
11960
11961 memset (&cu_header, 0, sizeof cu_header);
11962 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
11963 return cu_header.addr_size;
11964 }
11965 }
11966
11967 /* Return the offset size given in the compilation unit header for CU. */
11968
11969 int
11970 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
11971 {
11972 if (per_cu->cu)
11973 return per_cu->cu->header.offset_size;
11974 else
11975 {
11976 /* If the CU is not currently read in, we re-read its header. */
11977 struct objfile *objfile = per_cu->psymtab->objfile;
11978 struct dwarf2_per_objfile *per_objfile
11979 = objfile_data (objfile, dwarf2_objfile_data_key);
11980 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
11981 struct comp_unit_head cu_header;
11982
11983 memset (&cu_header, 0, sizeof cu_header);
11984 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
11985 return cu_header.offset_size;
11986 }
11987 }
11988
11989 /* Locate the .debug_info compilation unit from CU's objfile which contains
11990 the DIE at OFFSET. Raises an error on failure. */
11991
11992 static struct dwarf2_per_cu_data *
11993 dwarf2_find_containing_comp_unit (unsigned int offset,
11994 struct objfile *objfile)
11995 {
11996 struct dwarf2_per_cu_data *this_cu;
11997 int low, high;
11998
11999 low = 0;
12000 high = dwarf2_per_objfile->n_comp_units - 1;
12001 while (high > low)
12002 {
12003 int mid = low + (high - low) / 2;
12004
12005 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
12006 high = mid;
12007 else
12008 low = mid + 1;
12009 }
12010 gdb_assert (low == high);
12011 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
12012 {
12013 if (low == 0)
12014 error (_("Dwarf Error: could not find partial DIE containing "
12015 "offset 0x%lx [in module %s]"),
12016 (long) offset, bfd_get_filename (objfile->obfd));
12017
12018 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
12019 return dwarf2_per_objfile->all_comp_units[low-1];
12020 }
12021 else
12022 {
12023 this_cu = dwarf2_per_objfile->all_comp_units[low];
12024 if (low == dwarf2_per_objfile->n_comp_units - 1
12025 && offset >= this_cu->offset + this_cu->length)
12026 error (_("invalid dwarf2 offset %u"), offset);
12027 gdb_assert (offset < this_cu->offset + this_cu->length);
12028 return this_cu;
12029 }
12030 }
12031
12032 /* Locate the compilation unit from OBJFILE which is located at exactly
12033 OFFSET. Raises an error on failure. */
12034
12035 static struct dwarf2_per_cu_data *
12036 dwarf2_find_comp_unit (unsigned int offset, struct objfile *objfile)
12037 {
12038 struct dwarf2_per_cu_data *this_cu;
12039
12040 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
12041 if (this_cu->offset != offset)
12042 error (_("no compilation unit with offset %u."), offset);
12043 return this_cu;
12044 }
12045
12046 /* Malloc space for a dwarf2_cu for OBJFILE and initialize it. */
12047
12048 static struct dwarf2_cu *
12049 alloc_one_comp_unit (struct objfile *objfile)
12050 {
12051 struct dwarf2_cu *cu = xcalloc (1, sizeof (struct dwarf2_cu));
12052 cu->objfile = objfile;
12053 obstack_init (&cu->comp_unit_obstack);
12054 return cu;
12055 }
12056
12057 /* Release one cached compilation unit, CU. We unlink it from the tree
12058 of compilation units, but we don't remove it from the read_in_chain;
12059 the caller is responsible for that.
12060 NOTE: DATA is a void * because this function is also used as a
12061 cleanup routine. */
12062
12063 static void
12064 free_one_comp_unit (void *data)
12065 {
12066 struct dwarf2_cu *cu = data;
12067
12068 if (cu->per_cu != NULL)
12069 cu->per_cu->cu = NULL;
12070 cu->per_cu = NULL;
12071
12072 obstack_free (&cu->comp_unit_obstack, NULL);
12073
12074 xfree (cu);
12075 }
12076
12077 /* This cleanup function is passed the address of a dwarf2_cu on the stack
12078 when we're finished with it. We can't free the pointer itself, but be
12079 sure to unlink it from the cache. Also release any associated storage
12080 and perform cache maintenance.
12081
12082 Only used during partial symbol parsing. */
12083
12084 static void
12085 free_stack_comp_unit (void *data)
12086 {
12087 struct dwarf2_cu *cu = data;
12088
12089 obstack_free (&cu->comp_unit_obstack, NULL);
12090 cu->partial_dies = NULL;
12091
12092 if (cu->per_cu != NULL)
12093 {
12094 /* This compilation unit is on the stack in our caller, so we
12095 should not xfree it. Just unlink it. */
12096 cu->per_cu->cu = NULL;
12097 cu->per_cu = NULL;
12098
12099 /* If we had a per-cu pointer, then we may have other compilation
12100 units loaded, so age them now. */
12101 age_cached_comp_units ();
12102 }
12103 }
12104
12105 /* Free all cached compilation units. */
12106
12107 static void
12108 free_cached_comp_units (void *data)
12109 {
12110 struct dwarf2_per_cu_data *per_cu, **last_chain;
12111
12112 per_cu = dwarf2_per_objfile->read_in_chain;
12113 last_chain = &dwarf2_per_objfile->read_in_chain;
12114 while (per_cu != NULL)
12115 {
12116 struct dwarf2_per_cu_data *next_cu;
12117
12118 next_cu = per_cu->cu->read_in_chain;
12119
12120 free_one_comp_unit (per_cu->cu);
12121 *last_chain = next_cu;
12122
12123 per_cu = next_cu;
12124 }
12125 }
12126
12127 /* Increase the age counter on each cached compilation unit, and free
12128 any that are too old. */
12129
12130 static void
12131 age_cached_comp_units (void)
12132 {
12133 struct dwarf2_per_cu_data *per_cu, **last_chain;
12134
12135 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
12136 per_cu = dwarf2_per_objfile->read_in_chain;
12137 while (per_cu != NULL)
12138 {
12139 per_cu->cu->last_used ++;
12140 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
12141 dwarf2_mark (per_cu->cu);
12142 per_cu = per_cu->cu->read_in_chain;
12143 }
12144
12145 per_cu = dwarf2_per_objfile->read_in_chain;
12146 last_chain = &dwarf2_per_objfile->read_in_chain;
12147 while (per_cu != NULL)
12148 {
12149 struct dwarf2_per_cu_data *next_cu;
12150
12151 next_cu = per_cu->cu->read_in_chain;
12152
12153 if (!per_cu->cu->mark)
12154 {
12155 free_one_comp_unit (per_cu->cu);
12156 *last_chain = next_cu;
12157 }
12158 else
12159 last_chain = &per_cu->cu->read_in_chain;
12160
12161 per_cu = next_cu;
12162 }
12163 }
12164
12165 /* Remove a single compilation unit from the cache. */
12166
12167 static void
12168 free_one_cached_comp_unit (void *target_cu)
12169 {
12170 struct dwarf2_per_cu_data *per_cu, **last_chain;
12171
12172 per_cu = dwarf2_per_objfile->read_in_chain;
12173 last_chain = &dwarf2_per_objfile->read_in_chain;
12174 while (per_cu != NULL)
12175 {
12176 struct dwarf2_per_cu_data *next_cu;
12177
12178 next_cu = per_cu->cu->read_in_chain;
12179
12180 if (per_cu->cu == target_cu)
12181 {
12182 free_one_comp_unit (per_cu->cu);
12183 *last_chain = next_cu;
12184 break;
12185 }
12186 else
12187 last_chain = &per_cu->cu->read_in_chain;
12188
12189 per_cu = next_cu;
12190 }
12191 }
12192
12193 /* Release all extra memory associated with OBJFILE. */
12194
12195 void
12196 dwarf2_free_objfile (struct objfile *objfile)
12197 {
12198 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
12199
12200 if (dwarf2_per_objfile == NULL)
12201 return;
12202
12203 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
12204 free_cached_comp_units (NULL);
12205
12206 /* Everything else should be on the objfile obstack. */
12207 }
12208
12209 /* A pair of DIE offset and GDB type pointer. We store these
12210 in a hash table separate from the DIEs, and preserve them
12211 when the DIEs are flushed out of cache. */
12212
12213 struct dwarf2_offset_and_type
12214 {
12215 unsigned int offset;
12216 struct type *type;
12217 };
12218
12219 /* Hash function for a dwarf2_offset_and_type. */
12220
12221 static hashval_t
12222 offset_and_type_hash (const void *item)
12223 {
12224 const struct dwarf2_offset_and_type *ofs = item;
12225
12226 return ofs->offset;
12227 }
12228
12229 /* Equality function for a dwarf2_offset_and_type. */
12230
12231 static int
12232 offset_and_type_eq (const void *item_lhs, const void *item_rhs)
12233 {
12234 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
12235 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
12236
12237 return ofs_lhs->offset == ofs_rhs->offset;
12238 }
12239
12240 /* Set the type associated with DIE to TYPE. Save it in CU's hash
12241 table if necessary. For convenience, return TYPE.
12242
12243 The DIEs reading must have careful ordering to:
12244 * Not cause infite loops trying to read in DIEs as a prerequisite for
12245 reading current DIE.
12246 * Not trying to dereference contents of still incompletely read in types
12247 while reading in other DIEs.
12248 * Enable referencing still incompletely read in types just by a pointer to
12249 the type without accessing its fields.
12250
12251 Therefore caller should follow these rules:
12252 * Try to fetch any prerequisite types we may need to build this DIE type
12253 before building the type and calling set_die_type.
12254 * After building typer call set_die_type for current DIE as soon as
12255 possible before fetching more types to complete the current type.
12256 * Make the type as complete as possible before fetching more types. */
12257
12258 static struct type *
12259 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
12260 {
12261 struct dwarf2_offset_and_type **slot, ofs;
12262
12263 /* For Ada types, make sure that the gnat-specific data is always
12264 initialized (if not already set). There are a few types where
12265 we should not be doing so, because the type-specific area is
12266 already used to hold some other piece of info (eg: TYPE_CODE_FLT
12267 where the type-specific area is used to store the floatformat).
12268 But this is not a problem, because the gnat-specific information
12269 is actually not needed for these types. */
12270 if (need_gnat_info (cu)
12271 && TYPE_CODE (type) != TYPE_CODE_FUNC
12272 && TYPE_CODE (type) != TYPE_CODE_FLT
12273 && !HAVE_GNAT_AUX_INFO (type))
12274 INIT_GNAT_SPECIFIC (type);
12275
12276 if (cu->type_hash == NULL)
12277 {
12278 gdb_assert (cu->per_cu != NULL);
12279 cu->per_cu->type_hash
12280 = htab_create_alloc_ex (cu->header.length / 24,
12281 offset_and_type_hash,
12282 offset_and_type_eq,
12283 NULL,
12284 &cu->objfile->objfile_obstack,
12285 hashtab_obstack_allocate,
12286 dummy_obstack_deallocate);
12287 cu->type_hash = cu->per_cu->type_hash;
12288 }
12289
12290 ofs.offset = die->offset;
12291 ofs.type = type;
12292 slot = (struct dwarf2_offset_and_type **)
12293 htab_find_slot_with_hash (cu->type_hash, &ofs, ofs.offset, INSERT);
12294 if (*slot)
12295 complaint (&symfile_complaints,
12296 _("A problem internal to GDB: DIE 0x%x has type already set"),
12297 die->offset);
12298 *slot = obstack_alloc (&cu->objfile->objfile_obstack, sizeof (**slot));
12299 **slot = ofs;
12300 return type;
12301 }
12302
12303 /* Find the type for DIE in CU's type_hash, or return NULL if DIE does
12304 not have a saved type. */
12305
12306 static struct type *
12307 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
12308 {
12309 struct dwarf2_offset_and_type *slot, ofs;
12310 htab_t type_hash = cu->type_hash;
12311
12312 if (type_hash == NULL)
12313 return NULL;
12314
12315 ofs.offset = die->offset;
12316 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
12317 if (slot)
12318 return slot->type;
12319 else
12320 return NULL;
12321 }
12322
12323 /* Add a dependence relationship from CU to REF_PER_CU. */
12324
12325 static void
12326 dwarf2_add_dependence (struct dwarf2_cu *cu,
12327 struct dwarf2_per_cu_data *ref_per_cu)
12328 {
12329 void **slot;
12330
12331 if (cu->dependencies == NULL)
12332 cu->dependencies
12333 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
12334 NULL, &cu->comp_unit_obstack,
12335 hashtab_obstack_allocate,
12336 dummy_obstack_deallocate);
12337
12338 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
12339 if (*slot == NULL)
12340 *slot = ref_per_cu;
12341 }
12342
12343 /* Subroutine of dwarf2_mark to pass to htab_traverse.
12344 Set the mark field in every compilation unit in the
12345 cache that we must keep because we are keeping CU. */
12346
12347 static int
12348 dwarf2_mark_helper (void **slot, void *data)
12349 {
12350 struct dwarf2_per_cu_data *per_cu;
12351
12352 per_cu = (struct dwarf2_per_cu_data *) *slot;
12353 if (per_cu->cu->mark)
12354 return 1;
12355 per_cu->cu->mark = 1;
12356
12357 if (per_cu->cu->dependencies != NULL)
12358 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
12359
12360 return 1;
12361 }
12362
12363 /* Set the mark field in CU and in every other compilation unit in the
12364 cache that we must keep because we are keeping CU. */
12365
12366 static void
12367 dwarf2_mark (struct dwarf2_cu *cu)
12368 {
12369 if (cu->mark)
12370 return;
12371 cu->mark = 1;
12372 if (cu->dependencies != NULL)
12373 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
12374 }
12375
12376 static void
12377 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
12378 {
12379 while (per_cu)
12380 {
12381 per_cu->cu->mark = 0;
12382 per_cu = per_cu->cu->read_in_chain;
12383 }
12384 }
12385
12386 /* Trivial hash function for partial_die_info: the hash value of a DIE
12387 is its offset in .debug_info for this objfile. */
12388
12389 static hashval_t
12390 partial_die_hash (const void *item)
12391 {
12392 const struct partial_die_info *part_die = item;
12393
12394 return part_die->offset;
12395 }
12396
12397 /* Trivial comparison function for partial_die_info structures: two DIEs
12398 are equal if they have the same offset. */
12399
12400 static int
12401 partial_die_eq (const void *item_lhs, const void *item_rhs)
12402 {
12403 const struct partial_die_info *part_die_lhs = item_lhs;
12404 const struct partial_die_info *part_die_rhs = item_rhs;
12405
12406 return part_die_lhs->offset == part_die_rhs->offset;
12407 }
12408
12409 static struct cmd_list_element *set_dwarf2_cmdlist;
12410 static struct cmd_list_element *show_dwarf2_cmdlist;
12411
12412 static void
12413 set_dwarf2_cmd (char *args, int from_tty)
12414 {
12415 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
12416 }
12417
12418 static void
12419 show_dwarf2_cmd (char *args, int from_tty)
12420 {
12421 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
12422 }
12423
12424 /* If section described by INFO was mmapped, munmap it now. */
12425
12426 static void
12427 munmap_section_buffer (struct dwarf2_section_info *info)
12428 {
12429 if (info->was_mmapped)
12430 {
12431 #ifdef HAVE_MMAP
12432 intptr_t begin = (intptr_t) info->buffer;
12433 intptr_t map_begin = begin & ~(pagesize - 1);
12434 size_t map_length = info->size + begin - map_begin;
12435
12436 gdb_assert (munmap ((void *) map_begin, map_length) == 0);
12437 #else
12438 /* Without HAVE_MMAP, we should never be here to begin with. */
12439 gdb_assert (0);
12440 #endif
12441 }
12442 }
12443
12444 /* munmap debug sections for OBJFILE, if necessary. */
12445
12446 static void
12447 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
12448 {
12449 struct dwarf2_per_objfile *data = d;
12450
12451 munmap_section_buffer (&data->info);
12452 munmap_section_buffer (&data->abbrev);
12453 munmap_section_buffer (&data->line);
12454 munmap_section_buffer (&data->str);
12455 munmap_section_buffer (&data->macinfo);
12456 munmap_section_buffer (&data->ranges);
12457 munmap_section_buffer (&data->loc);
12458 munmap_section_buffer (&data->frame);
12459 munmap_section_buffer (&data->eh_frame);
12460 }
12461
12462 int dwarf2_always_disassemble;
12463
12464 static void
12465 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
12466 struct cmd_list_element *c, const char *value)
12467 {
12468 fprintf_filtered (file, _("\
12469 Whether to always disassemble DWARF expressions is %s.\n"),
12470 value);
12471 }
12472
12473 void _initialize_dwarf2_read (void);
12474
12475 void
12476 _initialize_dwarf2_read (void)
12477 {
12478 dwarf2_objfile_data_key
12479 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
12480
12481 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
12482 Set DWARF 2 specific variables.\n\
12483 Configure DWARF 2 variables such as the cache size"),
12484 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
12485 0/*allow-unknown*/, &maintenance_set_cmdlist);
12486
12487 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
12488 Show DWARF 2 specific variables\n\
12489 Show DWARF 2 variables such as the cache size"),
12490 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
12491 0/*allow-unknown*/, &maintenance_show_cmdlist);
12492
12493 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
12494 &dwarf2_max_cache_age, _("\
12495 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
12496 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
12497 A higher limit means that cached compilation units will be stored\n\
12498 in memory longer, and more total memory will be used. Zero disables\n\
12499 caching, which can slow down startup."),
12500 NULL,
12501 show_dwarf2_max_cache_age,
12502 &set_dwarf2_cmdlist,
12503 &show_dwarf2_cmdlist);
12504
12505 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
12506 &dwarf2_always_disassemble, _("\
12507 Set whether `info address' always disassembles DWARF expressions."), _("\
12508 Show whether `info address' always disassembles DWARF expressions."), _("\
12509 When enabled, DWARF expressions are always printed in an assembly-like\n\
12510 syntax. When disabled, expressions will be printed in a more\n\
12511 conversational style, when possible."),
12512 NULL,
12513 show_dwarf2_always_disassemble,
12514 &set_dwarf2_cmdlist,
12515 &show_dwarf2_cmdlist);
12516
12517 add_setshow_zinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
12518 Set debugging of the dwarf2 DIE reader."), _("\
12519 Show debugging of the dwarf2 DIE reader."), _("\
12520 When enabled (non-zero), DIEs are dumped after they are read in.\n\
12521 The value is the maximum depth to print."),
12522 NULL,
12523 NULL,
12524 &setdebuglist, &showdebuglist);
12525 }
This page took 0.271453 seconds and 5 git commands to generate.