gdb/dwarf: Ensure the target type of ranges is not void
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2019 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2read.h"
33 #include "dwarf-index-cache.h"
34 #include "dwarf-index-common.h"
35 #include "bfd.h"
36 #include "elf-bfd.h"
37 #include "symtab.h"
38 #include "gdbtypes.h"
39 #include "objfiles.h"
40 #include "dwarf2.h"
41 #include "buildsym.h"
42 #include "demangle.h"
43 #include "gdb-demangle.h"
44 #include "expression.h"
45 #include "filenames.h" /* for DOSish file names */
46 #include "macrotab.h"
47 #include "language.h"
48 #include "complaints.h"
49 #include "dwarf2expr.h"
50 #include "dwarf2loc.h"
51 #include "cp-support.h"
52 #include "hashtab.h"
53 #include "command.h"
54 #include "gdbcmd.h"
55 #include "block.h"
56 #include "addrmap.h"
57 #include "typeprint.h"
58 #include "psympriv.h"
59 #include <sys/stat.h>
60 #include "completer.h"
61 #include "gdbsupport/vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "gdbsupport/filestuff.h"
72 #include "build-id.h"
73 #include "namespace.h"
74 #include "gdbsupport/gdb_unlinker.h"
75 #include "gdbsupport/function-view.h"
76 #include "gdbsupport/gdb_optional.h"
77 #include "gdbsupport/underlying.h"
78 #include "gdbsupport/byte-vector.h"
79 #include "gdbsupport/hash_enum.h"
80 #include "filename-seen-cache.h"
81 #include "producer.h"
82 #include <fcntl.h>
83 #include <sys/types.h>
84 #include <algorithm>
85 #include <unordered_set>
86 #include <unordered_map>
87 #include "gdbsupport/selftest.h"
88 #include <cmath>
89 #include <set>
90 #include <forward_list>
91 #include "rust-lang.h"
92 #include "gdbsupport/pathstuff.h"
93
94 /* When == 1, print basic high level tracing messages.
95 When > 1, be more verbose.
96 This is in contrast to the low level DIE reading of dwarf_die_debug. */
97 static unsigned int dwarf_read_debug = 0;
98
99 /* When non-zero, dump DIEs after they are read in. */
100 static unsigned int dwarf_die_debug = 0;
101
102 /* When non-zero, dump line number entries as they are read in. */
103 static unsigned int dwarf_line_debug = 0;
104
105 /* When non-zero, cross-check physname against demangler. */
106 static int check_physname = 0;
107
108 /* When non-zero, do not reject deprecated .gdb_index sections. */
109 static int use_deprecated_index_sections = 0;
110
111 static const struct objfile_key<dwarf2_per_objfile> dwarf2_objfile_data_key;
112
113 /* The "aclass" indices for various kinds of computed DWARF symbols. */
114
115 static int dwarf2_locexpr_index;
116 static int dwarf2_loclist_index;
117 static int dwarf2_locexpr_block_index;
118 static int dwarf2_loclist_block_index;
119
120 /* An index into a (C++) symbol name component in a symbol name as
121 recorded in the mapped_index's symbol table. For each C++ symbol
122 in the symbol table, we record one entry for the start of each
123 component in the symbol in a table of name components, and then
124 sort the table, in order to be able to binary search symbol names,
125 ignoring leading namespaces, both completion and regular look up.
126 For example, for symbol "A::B::C", we'll have an entry that points
127 to "A::B::C", another that points to "B::C", and another for "C".
128 Note that function symbols in GDB index have no parameter
129 information, just the function/method names. You can convert a
130 name_component to a "const char *" using the
131 'mapped_index::symbol_name_at(offset_type)' method. */
132
133 struct name_component
134 {
135 /* Offset in the symbol name where the component starts. Stored as
136 a (32-bit) offset instead of a pointer to save memory and improve
137 locality on 64-bit architectures. */
138 offset_type name_offset;
139
140 /* The symbol's index in the symbol and constant pool tables of a
141 mapped_index. */
142 offset_type idx;
143 };
144
145 /* Base class containing bits shared by both .gdb_index and
146 .debug_name indexes. */
147
148 struct mapped_index_base
149 {
150 mapped_index_base () = default;
151 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
152
153 /* The name_component table (a sorted vector). See name_component's
154 description above. */
155 std::vector<name_component> name_components;
156
157 /* How NAME_COMPONENTS is sorted. */
158 enum case_sensitivity name_components_casing;
159
160 /* Return the number of names in the symbol table. */
161 virtual size_t symbol_name_count () const = 0;
162
163 /* Get the name of the symbol at IDX in the symbol table. */
164 virtual const char *symbol_name_at (offset_type idx) const = 0;
165
166 /* Return whether the name at IDX in the symbol table should be
167 ignored. */
168 virtual bool symbol_name_slot_invalid (offset_type idx) const
169 {
170 return false;
171 }
172
173 /* Build the symbol name component sorted vector, if we haven't
174 yet. */
175 void build_name_components ();
176
177 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
178 possible matches for LN_NO_PARAMS in the name component
179 vector. */
180 std::pair<std::vector<name_component>::const_iterator,
181 std::vector<name_component>::const_iterator>
182 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
183
184 /* Prevent deleting/destroying via a base class pointer. */
185 protected:
186 ~mapped_index_base() = default;
187 };
188
189 /* A description of the mapped index. The file format is described in
190 a comment by the code that writes the index. */
191 struct mapped_index final : public mapped_index_base
192 {
193 /* A slot/bucket in the symbol table hash. */
194 struct symbol_table_slot
195 {
196 const offset_type name;
197 const offset_type vec;
198 };
199
200 /* Index data format version. */
201 int version = 0;
202
203 /* The address table data. */
204 gdb::array_view<const gdb_byte> address_table;
205
206 /* The symbol table, implemented as a hash table. */
207 gdb::array_view<symbol_table_slot> symbol_table;
208
209 /* A pointer to the constant pool. */
210 const char *constant_pool = nullptr;
211
212 bool symbol_name_slot_invalid (offset_type idx) const override
213 {
214 const auto &bucket = this->symbol_table[idx];
215 return bucket.name == 0 && bucket.vec == 0;
216 }
217
218 /* Convenience method to get at the name of the symbol at IDX in the
219 symbol table. */
220 const char *symbol_name_at (offset_type idx) const override
221 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
222
223 size_t symbol_name_count () const override
224 { return this->symbol_table.size (); }
225 };
226
227 /* A description of the mapped .debug_names.
228 Uninitialized map has CU_COUNT 0. */
229 struct mapped_debug_names final : public mapped_index_base
230 {
231 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
232 : dwarf2_per_objfile (dwarf2_per_objfile_)
233 {}
234
235 struct dwarf2_per_objfile *dwarf2_per_objfile;
236 bfd_endian dwarf5_byte_order;
237 bool dwarf5_is_dwarf64;
238 bool augmentation_is_gdb;
239 uint8_t offset_size;
240 uint32_t cu_count = 0;
241 uint32_t tu_count, bucket_count, name_count;
242 const gdb_byte *cu_table_reordered, *tu_table_reordered;
243 const uint32_t *bucket_table_reordered, *hash_table_reordered;
244 const gdb_byte *name_table_string_offs_reordered;
245 const gdb_byte *name_table_entry_offs_reordered;
246 const gdb_byte *entry_pool;
247
248 struct index_val
249 {
250 ULONGEST dwarf_tag;
251 struct attr
252 {
253 /* Attribute name DW_IDX_*. */
254 ULONGEST dw_idx;
255
256 /* Attribute form DW_FORM_*. */
257 ULONGEST form;
258
259 /* Value if FORM is DW_FORM_implicit_const. */
260 LONGEST implicit_const;
261 };
262 std::vector<attr> attr_vec;
263 };
264
265 std::unordered_map<ULONGEST, index_val> abbrev_map;
266
267 const char *namei_to_name (uint32_t namei) const;
268
269 /* Implementation of the mapped_index_base virtual interface, for
270 the name_components cache. */
271
272 const char *symbol_name_at (offset_type idx) const override
273 { return namei_to_name (idx); }
274
275 size_t symbol_name_count () const override
276 { return this->name_count; }
277 };
278
279 /* See dwarf2read.h. */
280
281 dwarf2_per_objfile *
282 get_dwarf2_per_objfile (struct objfile *objfile)
283 {
284 return dwarf2_objfile_data_key.get (objfile);
285 }
286
287 /* Default names of the debugging sections. */
288
289 /* Note that if the debugging section has been compressed, it might
290 have a name like .zdebug_info. */
291
292 static const struct dwarf2_debug_sections dwarf2_elf_names =
293 {
294 { ".debug_info", ".zdebug_info" },
295 { ".debug_abbrev", ".zdebug_abbrev" },
296 { ".debug_line", ".zdebug_line" },
297 { ".debug_loc", ".zdebug_loc" },
298 { ".debug_loclists", ".zdebug_loclists" },
299 { ".debug_macinfo", ".zdebug_macinfo" },
300 { ".debug_macro", ".zdebug_macro" },
301 { ".debug_str", ".zdebug_str" },
302 { ".debug_line_str", ".zdebug_line_str" },
303 { ".debug_ranges", ".zdebug_ranges" },
304 { ".debug_rnglists", ".zdebug_rnglists" },
305 { ".debug_types", ".zdebug_types" },
306 { ".debug_addr", ".zdebug_addr" },
307 { ".debug_frame", ".zdebug_frame" },
308 { ".eh_frame", NULL },
309 { ".gdb_index", ".zgdb_index" },
310 { ".debug_names", ".zdebug_names" },
311 { ".debug_aranges", ".zdebug_aranges" },
312 23
313 };
314
315 /* List of DWO/DWP sections. */
316
317 static const struct dwop_section_names
318 {
319 struct dwarf2_section_names abbrev_dwo;
320 struct dwarf2_section_names info_dwo;
321 struct dwarf2_section_names line_dwo;
322 struct dwarf2_section_names loc_dwo;
323 struct dwarf2_section_names loclists_dwo;
324 struct dwarf2_section_names macinfo_dwo;
325 struct dwarf2_section_names macro_dwo;
326 struct dwarf2_section_names str_dwo;
327 struct dwarf2_section_names str_offsets_dwo;
328 struct dwarf2_section_names types_dwo;
329 struct dwarf2_section_names cu_index;
330 struct dwarf2_section_names tu_index;
331 }
332 dwop_section_names =
333 {
334 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
335 { ".debug_info.dwo", ".zdebug_info.dwo" },
336 { ".debug_line.dwo", ".zdebug_line.dwo" },
337 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
338 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
339 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
340 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
341 { ".debug_str.dwo", ".zdebug_str.dwo" },
342 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
343 { ".debug_types.dwo", ".zdebug_types.dwo" },
344 { ".debug_cu_index", ".zdebug_cu_index" },
345 { ".debug_tu_index", ".zdebug_tu_index" },
346 };
347
348 /* local data types */
349
350 /* The data in a compilation unit header, after target2host
351 translation, looks like this. */
352 struct comp_unit_head
353 {
354 unsigned int length;
355 short version;
356 unsigned char addr_size;
357 unsigned char signed_addr_p;
358 sect_offset abbrev_sect_off;
359
360 /* Size of file offsets; either 4 or 8. */
361 unsigned int offset_size;
362
363 /* Size of the length field; either 4 or 12. */
364 unsigned int initial_length_size;
365
366 enum dwarf_unit_type unit_type;
367
368 /* Offset to the first byte of this compilation unit header in the
369 .debug_info section, for resolving relative reference dies. */
370 sect_offset sect_off;
371
372 /* Offset to first die in this cu from the start of the cu.
373 This will be the first byte following the compilation unit header. */
374 cu_offset first_die_cu_offset;
375
376 /* 64-bit signature of this type unit - it is valid only for
377 UNIT_TYPE DW_UT_type. */
378 ULONGEST signature;
379
380 /* For types, offset in the type's DIE of the type defined by this TU. */
381 cu_offset type_cu_offset_in_tu;
382 };
383
384 /* Type used for delaying computation of method physnames.
385 See comments for compute_delayed_physnames. */
386 struct delayed_method_info
387 {
388 /* The type to which the method is attached, i.e., its parent class. */
389 struct type *type;
390
391 /* The index of the method in the type's function fieldlists. */
392 int fnfield_index;
393
394 /* The index of the method in the fieldlist. */
395 int index;
396
397 /* The name of the DIE. */
398 const char *name;
399
400 /* The DIE associated with this method. */
401 struct die_info *die;
402 };
403
404 /* Internal state when decoding a particular compilation unit. */
405 struct dwarf2_cu
406 {
407 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
408 ~dwarf2_cu ();
409
410 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
411
412 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
413 Create the set of symtabs used by this TU, or if this TU is sharing
414 symtabs with another TU and the symtabs have already been created
415 then restore those symtabs in the line header.
416 We don't need the pc/line-number mapping for type units. */
417 void setup_type_unit_groups (struct die_info *die);
418
419 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
420 buildsym_compunit constructor. */
421 struct compunit_symtab *start_symtab (const char *name,
422 const char *comp_dir,
423 CORE_ADDR low_pc);
424
425 /* Reset the builder. */
426 void reset_builder () { m_builder.reset (); }
427
428 /* The header of the compilation unit. */
429 struct comp_unit_head header {};
430
431 /* Base address of this compilation unit. */
432 CORE_ADDR base_address = 0;
433
434 /* Non-zero if base_address has been set. */
435 int base_known = 0;
436
437 /* The language we are debugging. */
438 enum language language = language_unknown;
439 const struct language_defn *language_defn = nullptr;
440
441 const char *producer = nullptr;
442
443 private:
444 /* The symtab builder for this CU. This is only non-NULL when full
445 symbols are being read. */
446 std::unique_ptr<buildsym_compunit> m_builder;
447
448 public:
449 /* The generic symbol table building routines have separate lists for
450 file scope symbols and all all other scopes (local scopes). So
451 we need to select the right one to pass to add_symbol_to_list().
452 We do it by keeping a pointer to the correct list in list_in_scope.
453
454 FIXME: The original dwarf code just treated the file scope as the
455 first local scope, and all other local scopes as nested local
456 scopes, and worked fine. Check to see if we really need to
457 distinguish these in buildsym.c. */
458 struct pending **list_in_scope = nullptr;
459
460 /* Hash table holding all the loaded partial DIEs
461 with partial_die->offset.SECT_OFF as hash. */
462 htab_t partial_dies = nullptr;
463
464 /* Storage for things with the same lifetime as this read-in compilation
465 unit, including partial DIEs. */
466 auto_obstack comp_unit_obstack;
467
468 /* When multiple dwarf2_cu structures are living in memory, this field
469 chains them all together, so that they can be released efficiently.
470 We will probably also want a generation counter so that most-recently-used
471 compilation units are cached... */
472 struct dwarf2_per_cu_data *read_in_chain = nullptr;
473
474 /* Backlink to our per_cu entry. */
475 struct dwarf2_per_cu_data *per_cu;
476
477 /* How many compilation units ago was this CU last referenced? */
478 int last_used = 0;
479
480 /* A hash table of DIE cu_offset for following references with
481 die_info->offset.sect_off as hash. */
482 htab_t die_hash = nullptr;
483
484 /* Full DIEs if read in. */
485 struct die_info *dies = nullptr;
486
487 /* A set of pointers to dwarf2_per_cu_data objects for compilation
488 units referenced by this one. Only set during full symbol processing;
489 partial symbol tables do not have dependencies. */
490 htab_t dependencies = nullptr;
491
492 /* Header data from the line table, during full symbol processing. */
493 struct line_header *line_header = nullptr;
494 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
495 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
496 this is the DW_TAG_compile_unit die for this CU. We'll hold on
497 to the line header as long as this DIE is being processed. See
498 process_die_scope. */
499 die_info *line_header_die_owner = nullptr;
500
501 /* A list of methods which need to have physnames computed
502 after all type information has been read. */
503 std::vector<delayed_method_info> method_list;
504
505 /* To be copied to symtab->call_site_htab. */
506 htab_t call_site_htab = nullptr;
507
508 /* Non-NULL if this CU came from a DWO file.
509 There is an invariant here that is important to remember:
510 Except for attributes copied from the top level DIE in the "main"
511 (or "stub") file in preparation for reading the DWO file
512 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
513 Either there isn't a DWO file (in which case this is NULL and the point
514 is moot), or there is and either we're not going to read it (in which
515 case this is NULL) or there is and we are reading it (in which case this
516 is non-NULL). */
517 struct dwo_unit *dwo_unit = nullptr;
518
519 /* The DW_AT_addr_base attribute if present, zero otherwise
520 (zero is a valid value though).
521 Note this value comes from the Fission stub CU/TU's DIE. */
522 ULONGEST addr_base = 0;
523
524 /* The DW_AT_ranges_base attribute if present, zero otherwise
525 (zero is a valid value though).
526 Note this value comes from the Fission stub CU/TU's DIE.
527 Also note that the value is zero in the non-DWO case so this value can
528 be used without needing to know whether DWO files are in use or not.
529 N.B. This does not apply to DW_AT_ranges appearing in
530 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
531 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
532 DW_AT_ranges_base *would* have to be applied, and we'd have to care
533 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
534 ULONGEST ranges_base = 0;
535
536 /* When reading debug info generated by older versions of rustc, we
537 have to rewrite some union types to be struct types with a
538 variant part. This rewriting must be done after the CU is fully
539 read in, because otherwise at the point of rewriting some struct
540 type might not have been fully processed. So, we keep a list of
541 all such types here and process them after expansion. */
542 std::vector<struct type *> rust_unions;
543
544 /* Mark used when releasing cached dies. */
545 bool mark : 1;
546
547 /* This CU references .debug_loc. See the symtab->locations_valid field.
548 This test is imperfect as there may exist optimized debug code not using
549 any location list and still facing inlining issues if handled as
550 unoptimized code. For a future better test see GCC PR other/32998. */
551 bool has_loclist : 1;
552
553 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
554 if all the producer_is_* fields are valid. This information is cached
555 because profiling CU expansion showed excessive time spent in
556 producer_is_gxx_lt_4_6. */
557 bool checked_producer : 1;
558 bool producer_is_gxx_lt_4_6 : 1;
559 bool producer_is_gcc_lt_4_3 : 1;
560 bool producer_is_icc : 1;
561 bool producer_is_icc_lt_14 : 1;
562 bool producer_is_codewarrior : 1;
563
564 /* When true, the file that we're processing is known to have
565 debugging info for C++ namespaces. GCC 3.3.x did not produce
566 this information, but later versions do. */
567
568 bool processing_has_namespace_info : 1;
569
570 struct partial_die_info *find_partial_die (sect_offset sect_off);
571
572 /* If this CU was inherited by another CU (via specification,
573 abstract_origin, etc), this is the ancestor CU. */
574 dwarf2_cu *ancestor;
575
576 /* Get the buildsym_compunit for this CU. */
577 buildsym_compunit *get_builder ()
578 {
579 /* If this CU has a builder associated with it, use that. */
580 if (m_builder != nullptr)
581 return m_builder.get ();
582
583 /* Otherwise, search ancestors for a valid builder. */
584 if (ancestor != nullptr)
585 return ancestor->get_builder ();
586
587 return nullptr;
588 }
589 };
590
591 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
592 This includes type_unit_group and quick_file_names. */
593
594 struct stmt_list_hash
595 {
596 /* The DWO unit this table is from or NULL if there is none. */
597 struct dwo_unit *dwo_unit;
598
599 /* Offset in .debug_line or .debug_line.dwo. */
600 sect_offset line_sect_off;
601 };
602
603 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
604 an object of this type. */
605
606 struct type_unit_group
607 {
608 /* dwarf2read.c's main "handle" on a TU symtab.
609 To simplify things we create an artificial CU that "includes" all the
610 type units using this stmt_list so that the rest of the code still has
611 a "per_cu" handle on the symtab.
612 This PER_CU is recognized by having no section. */
613 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
614 struct dwarf2_per_cu_data per_cu;
615
616 /* The TUs that share this DW_AT_stmt_list entry.
617 This is added to while parsing type units to build partial symtabs,
618 and is deleted afterwards and not used again. */
619 VEC (sig_type_ptr) *tus;
620
621 /* The compunit symtab.
622 Type units in a group needn't all be defined in the same source file,
623 so we create an essentially anonymous symtab as the compunit symtab. */
624 struct compunit_symtab *compunit_symtab;
625
626 /* The data used to construct the hash key. */
627 struct stmt_list_hash hash;
628
629 /* The number of symtabs from the line header.
630 The value here must match line_header.num_file_names. */
631 unsigned int num_symtabs;
632
633 /* The symbol tables for this TU (obtained from the files listed in
634 DW_AT_stmt_list).
635 WARNING: The order of entries here must match the order of entries
636 in the line header. After the first TU using this type_unit_group, the
637 line header for the subsequent TUs is recreated from this. This is done
638 because we need to use the same symtabs for each TU using the same
639 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
640 there's no guarantee the line header doesn't have duplicate entries. */
641 struct symtab **symtabs;
642 };
643
644 /* These sections are what may appear in a (real or virtual) DWO file. */
645
646 struct dwo_sections
647 {
648 struct dwarf2_section_info abbrev;
649 struct dwarf2_section_info line;
650 struct dwarf2_section_info loc;
651 struct dwarf2_section_info loclists;
652 struct dwarf2_section_info macinfo;
653 struct dwarf2_section_info macro;
654 struct dwarf2_section_info str;
655 struct dwarf2_section_info str_offsets;
656 /* In the case of a virtual DWO file, these two are unused. */
657 struct dwarf2_section_info info;
658 std::vector<dwarf2_section_info> types;
659 };
660
661 /* CUs/TUs in DWP/DWO files. */
662
663 struct dwo_unit
664 {
665 /* Backlink to the containing struct dwo_file. */
666 struct dwo_file *dwo_file;
667
668 /* The "id" that distinguishes this CU/TU.
669 .debug_info calls this "dwo_id", .debug_types calls this "signature".
670 Since signatures came first, we stick with it for consistency. */
671 ULONGEST signature;
672
673 /* The section this CU/TU lives in, in the DWO file. */
674 struct dwarf2_section_info *section;
675
676 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
677 sect_offset sect_off;
678 unsigned int length;
679
680 /* For types, offset in the type's DIE of the type defined by this TU. */
681 cu_offset type_offset_in_tu;
682 };
683
684 /* include/dwarf2.h defines the DWP section codes.
685 It defines a max value but it doesn't define a min value, which we
686 use for error checking, so provide one. */
687
688 enum dwp_v2_section_ids
689 {
690 DW_SECT_MIN = 1
691 };
692
693 /* Data for one DWO file.
694
695 This includes virtual DWO files (a virtual DWO file is a DWO file as it
696 appears in a DWP file). DWP files don't really have DWO files per se -
697 comdat folding of types "loses" the DWO file they came from, and from
698 a high level view DWP files appear to contain a mass of random types.
699 However, to maintain consistency with the non-DWP case we pretend DWP
700 files contain virtual DWO files, and we assign each TU with one virtual
701 DWO file (generally based on the line and abbrev section offsets -
702 a heuristic that seems to work in practice). */
703
704 struct dwo_file
705 {
706 dwo_file () = default;
707 DISABLE_COPY_AND_ASSIGN (dwo_file);
708
709 /* The DW_AT_GNU_dwo_name attribute.
710 For virtual DWO files the name is constructed from the section offsets
711 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
712 from related CU+TUs. */
713 const char *dwo_name = nullptr;
714
715 /* The DW_AT_comp_dir attribute. */
716 const char *comp_dir = nullptr;
717
718 /* The bfd, when the file is open. Otherwise this is NULL.
719 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
720 gdb_bfd_ref_ptr dbfd;
721
722 /* The sections that make up this DWO file.
723 Remember that for virtual DWO files in DWP V2, these are virtual
724 sections (for lack of a better name). */
725 struct dwo_sections sections {};
726
727 /* The CUs in the file.
728 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
729 an extension to handle LLVM's Link Time Optimization output (where
730 multiple source files may be compiled into a single object/dwo pair). */
731 htab_t cus {};
732
733 /* Table of TUs in the file.
734 Each element is a struct dwo_unit. */
735 htab_t tus {};
736 };
737
738 /* These sections are what may appear in a DWP file. */
739
740 struct dwp_sections
741 {
742 /* These are used by both DWP version 1 and 2. */
743 struct dwarf2_section_info str;
744 struct dwarf2_section_info cu_index;
745 struct dwarf2_section_info tu_index;
746
747 /* These are only used by DWP version 2 files.
748 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
749 sections are referenced by section number, and are not recorded here.
750 In DWP version 2 there is at most one copy of all these sections, each
751 section being (effectively) comprised of the concatenation of all of the
752 individual sections that exist in the version 1 format.
753 To keep the code simple we treat each of these concatenated pieces as a
754 section itself (a virtual section?). */
755 struct dwarf2_section_info abbrev;
756 struct dwarf2_section_info info;
757 struct dwarf2_section_info line;
758 struct dwarf2_section_info loc;
759 struct dwarf2_section_info macinfo;
760 struct dwarf2_section_info macro;
761 struct dwarf2_section_info str_offsets;
762 struct dwarf2_section_info types;
763 };
764
765 /* These sections are what may appear in a virtual DWO file in DWP version 1.
766 A virtual DWO file is a DWO file as it appears in a DWP file. */
767
768 struct virtual_v1_dwo_sections
769 {
770 struct dwarf2_section_info abbrev;
771 struct dwarf2_section_info line;
772 struct dwarf2_section_info loc;
773 struct dwarf2_section_info macinfo;
774 struct dwarf2_section_info macro;
775 struct dwarf2_section_info str_offsets;
776 /* Each DWP hash table entry records one CU or one TU.
777 That is recorded here, and copied to dwo_unit.section. */
778 struct dwarf2_section_info info_or_types;
779 };
780
781 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
782 In version 2, the sections of the DWO files are concatenated together
783 and stored in one section of that name. Thus each ELF section contains
784 several "virtual" sections. */
785
786 struct virtual_v2_dwo_sections
787 {
788 bfd_size_type abbrev_offset;
789 bfd_size_type abbrev_size;
790
791 bfd_size_type line_offset;
792 bfd_size_type line_size;
793
794 bfd_size_type loc_offset;
795 bfd_size_type loc_size;
796
797 bfd_size_type macinfo_offset;
798 bfd_size_type macinfo_size;
799
800 bfd_size_type macro_offset;
801 bfd_size_type macro_size;
802
803 bfd_size_type str_offsets_offset;
804 bfd_size_type str_offsets_size;
805
806 /* Each DWP hash table entry records one CU or one TU.
807 That is recorded here, and copied to dwo_unit.section. */
808 bfd_size_type info_or_types_offset;
809 bfd_size_type info_or_types_size;
810 };
811
812 /* Contents of DWP hash tables. */
813
814 struct dwp_hash_table
815 {
816 uint32_t version, nr_columns;
817 uint32_t nr_units, nr_slots;
818 const gdb_byte *hash_table, *unit_table;
819 union
820 {
821 struct
822 {
823 const gdb_byte *indices;
824 } v1;
825 struct
826 {
827 /* This is indexed by column number and gives the id of the section
828 in that column. */
829 #define MAX_NR_V2_DWO_SECTIONS \
830 (1 /* .debug_info or .debug_types */ \
831 + 1 /* .debug_abbrev */ \
832 + 1 /* .debug_line */ \
833 + 1 /* .debug_loc */ \
834 + 1 /* .debug_str_offsets */ \
835 + 1 /* .debug_macro or .debug_macinfo */)
836 int section_ids[MAX_NR_V2_DWO_SECTIONS];
837 const gdb_byte *offsets;
838 const gdb_byte *sizes;
839 } v2;
840 } section_pool;
841 };
842
843 /* Data for one DWP file. */
844
845 struct dwp_file
846 {
847 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
848 : name (name_),
849 dbfd (std::move (abfd))
850 {
851 }
852
853 /* Name of the file. */
854 const char *name;
855
856 /* File format version. */
857 int version = 0;
858
859 /* The bfd. */
860 gdb_bfd_ref_ptr dbfd;
861
862 /* Section info for this file. */
863 struct dwp_sections sections {};
864
865 /* Table of CUs in the file. */
866 const struct dwp_hash_table *cus = nullptr;
867
868 /* Table of TUs in the file. */
869 const struct dwp_hash_table *tus = nullptr;
870
871 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
872 htab_t loaded_cus {};
873 htab_t loaded_tus {};
874
875 /* Table to map ELF section numbers to their sections.
876 This is only needed for the DWP V1 file format. */
877 unsigned int num_sections = 0;
878 asection **elf_sections = nullptr;
879 };
880
881 /* Struct used to pass misc. parameters to read_die_and_children, et
882 al. which are used for both .debug_info and .debug_types dies.
883 All parameters here are unchanging for the life of the call. This
884 struct exists to abstract away the constant parameters of die reading. */
885
886 struct die_reader_specs
887 {
888 /* The bfd of die_section. */
889 bfd* abfd;
890
891 /* The CU of the DIE we are parsing. */
892 struct dwarf2_cu *cu;
893
894 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
895 struct dwo_file *dwo_file;
896
897 /* The section the die comes from.
898 This is either .debug_info or .debug_types, or the .dwo variants. */
899 struct dwarf2_section_info *die_section;
900
901 /* die_section->buffer. */
902 const gdb_byte *buffer;
903
904 /* The end of the buffer. */
905 const gdb_byte *buffer_end;
906
907 /* The value of the DW_AT_comp_dir attribute. */
908 const char *comp_dir;
909
910 /* The abbreviation table to use when reading the DIEs. */
911 struct abbrev_table *abbrev_table;
912 };
913
914 /* Type of function passed to init_cutu_and_read_dies, et.al. */
915 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
916 const gdb_byte *info_ptr,
917 struct die_info *comp_unit_die,
918 int has_children,
919 void *data);
920
921 /* A 1-based directory index. This is a strong typedef to prevent
922 accidentally using a directory index as a 0-based index into an
923 array/vector. */
924 enum class dir_index : unsigned int {};
925
926 /* Likewise, a 1-based file name index. */
927 enum class file_name_index : unsigned int {};
928
929 struct file_entry
930 {
931 file_entry () = default;
932
933 file_entry (const char *name_, dir_index d_index_,
934 unsigned int mod_time_, unsigned int length_)
935 : name (name_),
936 d_index (d_index_),
937 mod_time (mod_time_),
938 length (length_)
939 {}
940
941 /* Return the include directory at D_INDEX stored in LH. Returns
942 NULL if D_INDEX is out of bounds. */
943 const char *include_dir (const line_header *lh) const;
944
945 /* The file name. Note this is an observing pointer. The memory is
946 owned by debug_line_buffer. */
947 const char *name {};
948
949 /* The directory index (1-based). */
950 dir_index d_index {};
951
952 unsigned int mod_time {};
953
954 unsigned int length {};
955
956 /* True if referenced by the Line Number Program. */
957 bool included_p {};
958
959 /* The associated symbol table, if any. */
960 struct symtab *symtab {};
961 };
962
963 /* The line number information for a compilation unit (found in the
964 .debug_line section) begins with a "statement program header",
965 which contains the following information. */
966 struct line_header
967 {
968 line_header ()
969 : offset_in_dwz {}
970 {}
971
972 /* Add an entry to the include directory table. */
973 void add_include_dir (const char *include_dir);
974
975 /* Add an entry to the file name table. */
976 void add_file_name (const char *name, dir_index d_index,
977 unsigned int mod_time, unsigned int length);
978
979 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
980 is out of bounds. */
981 const char *include_dir_at (dir_index index) const
982 {
983 /* Convert directory index number (1-based) to vector index
984 (0-based). */
985 size_t vec_index = to_underlying (index) - 1;
986
987 if (vec_index >= include_dirs.size ())
988 return NULL;
989 return include_dirs[vec_index];
990 }
991
992 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
993 is out of bounds. */
994 file_entry *file_name_at (file_name_index index)
995 {
996 /* Convert file name index number (1-based) to vector index
997 (0-based). */
998 size_t vec_index = to_underlying (index) - 1;
999
1000 if (vec_index >= file_names.size ())
1001 return NULL;
1002 return &file_names[vec_index];
1003 }
1004
1005 /* Offset of line number information in .debug_line section. */
1006 sect_offset sect_off {};
1007
1008 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1009 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1010
1011 unsigned int total_length {};
1012 unsigned short version {};
1013 unsigned int header_length {};
1014 unsigned char minimum_instruction_length {};
1015 unsigned char maximum_ops_per_instruction {};
1016 unsigned char default_is_stmt {};
1017 int line_base {};
1018 unsigned char line_range {};
1019 unsigned char opcode_base {};
1020
1021 /* standard_opcode_lengths[i] is the number of operands for the
1022 standard opcode whose value is i. This means that
1023 standard_opcode_lengths[0] is unused, and the last meaningful
1024 element is standard_opcode_lengths[opcode_base - 1]. */
1025 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1026
1027 /* The include_directories table. Note these are observing
1028 pointers. The memory is owned by debug_line_buffer. */
1029 std::vector<const char *> include_dirs;
1030
1031 /* The file_names table. */
1032 std::vector<file_entry> file_names;
1033
1034 /* The start and end of the statement program following this
1035 header. These point into dwarf2_per_objfile->line_buffer. */
1036 const gdb_byte *statement_program_start {}, *statement_program_end {};
1037 };
1038
1039 typedef std::unique_ptr<line_header> line_header_up;
1040
1041 const char *
1042 file_entry::include_dir (const line_header *lh) const
1043 {
1044 return lh->include_dir_at (d_index);
1045 }
1046
1047 /* When we construct a partial symbol table entry we only
1048 need this much information. */
1049 struct partial_die_info : public allocate_on_obstack
1050 {
1051 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1052
1053 /* Disable assign but still keep copy ctor, which is needed
1054 load_partial_dies. */
1055 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1056
1057 /* Adjust the partial die before generating a symbol for it. This
1058 function may set the is_external flag or change the DIE's
1059 name. */
1060 void fixup (struct dwarf2_cu *cu);
1061
1062 /* Read a minimal amount of information into the minimal die
1063 structure. */
1064 const gdb_byte *read (const struct die_reader_specs *reader,
1065 const struct abbrev_info &abbrev,
1066 const gdb_byte *info_ptr);
1067
1068 /* Offset of this DIE. */
1069 const sect_offset sect_off;
1070
1071 /* DWARF-2 tag for this DIE. */
1072 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1073
1074 /* Assorted flags describing the data found in this DIE. */
1075 const unsigned int has_children : 1;
1076
1077 unsigned int is_external : 1;
1078 unsigned int is_declaration : 1;
1079 unsigned int has_type : 1;
1080 unsigned int has_specification : 1;
1081 unsigned int has_pc_info : 1;
1082 unsigned int may_be_inlined : 1;
1083
1084 /* This DIE has been marked DW_AT_main_subprogram. */
1085 unsigned int main_subprogram : 1;
1086
1087 /* Flag set if the SCOPE field of this structure has been
1088 computed. */
1089 unsigned int scope_set : 1;
1090
1091 /* Flag set if the DIE has a byte_size attribute. */
1092 unsigned int has_byte_size : 1;
1093
1094 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1095 unsigned int has_const_value : 1;
1096
1097 /* Flag set if any of the DIE's children are template arguments. */
1098 unsigned int has_template_arguments : 1;
1099
1100 /* Flag set if fixup has been called on this die. */
1101 unsigned int fixup_called : 1;
1102
1103 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1104 unsigned int is_dwz : 1;
1105
1106 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1107 unsigned int spec_is_dwz : 1;
1108
1109 /* The name of this DIE. Normally the value of DW_AT_name, but
1110 sometimes a default name for unnamed DIEs. */
1111 const char *name = nullptr;
1112
1113 /* The linkage name, if present. */
1114 const char *linkage_name = nullptr;
1115
1116 /* The scope to prepend to our children. This is generally
1117 allocated on the comp_unit_obstack, so will disappear
1118 when this compilation unit leaves the cache. */
1119 const char *scope = nullptr;
1120
1121 /* Some data associated with the partial DIE. The tag determines
1122 which field is live. */
1123 union
1124 {
1125 /* The location description associated with this DIE, if any. */
1126 struct dwarf_block *locdesc;
1127 /* The offset of an import, for DW_TAG_imported_unit. */
1128 sect_offset sect_off;
1129 } d {};
1130
1131 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1132 CORE_ADDR lowpc = 0;
1133 CORE_ADDR highpc = 0;
1134
1135 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1136 DW_AT_sibling, if any. */
1137 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1138 could return DW_AT_sibling values to its caller load_partial_dies. */
1139 const gdb_byte *sibling = nullptr;
1140
1141 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1142 DW_AT_specification (or DW_AT_abstract_origin or
1143 DW_AT_extension). */
1144 sect_offset spec_offset {};
1145
1146 /* Pointers to this DIE's parent, first child, and next sibling,
1147 if any. */
1148 struct partial_die_info *die_parent = nullptr;
1149 struct partial_die_info *die_child = nullptr;
1150 struct partial_die_info *die_sibling = nullptr;
1151
1152 friend struct partial_die_info *
1153 dwarf2_cu::find_partial_die (sect_offset sect_off);
1154
1155 private:
1156 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1157 partial_die_info (sect_offset sect_off)
1158 : partial_die_info (sect_off, DW_TAG_padding, 0)
1159 {
1160 }
1161
1162 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1163 int has_children_)
1164 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1165 {
1166 is_external = 0;
1167 is_declaration = 0;
1168 has_type = 0;
1169 has_specification = 0;
1170 has_pc_info = 0;
1171 may_be_inlined = 0;
1172 main_subprogram = 0;
1173 scope_set = 0;
1174 has_byte_size = 0;
1175 has_const_value = 0;
1176 has_template_arguments = 0;
1177 fixup_called = 0;
1178 is_dwz = 0;
1179 spec_is_dwz = 0;
1180 }
1181 };
1182
1183 /* This data structure holds the information of an abbrev. */
1184 struct abbrev_info
1185 {
1186 unsigned int number; /* number identifying abbrev */
1187 enum dwarf_tag tag; /* dwarf tag */
1188 unsigned short has_children; /* boolean */
1189 unsigned short num_attrs; /* number of attributes */
1190 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1191 struct abbrev_info *next; /* next in chain */
1192 };
1193
1194 struct attr_abbrev
1195 {
1196 ENUM_BITFIELD(dwarf_attribute) name : 16;
1197 ENUM_BITFIELD(dwarf_form) form : 16;
1198
1199 /* It is valid only if FORM is DW_FORM_implicit_const. */
1200 LONGEST implicit_const;
1201 };
1202
1203 /* Size of abbrev_table.abbrev_hash_table. */
1204 #define ABBREV_HASH_SIZE 121
1205
1206 /* Top level data structure to contain an abbreviation table. */
1207
1208 struct abbrev_table
1209 {
1210 explicit abbrev_table (sect_offset off)
1211 : sect_off (off)
1212 {
1213 m_abbrevs =
1214 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1215 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1216 }
1217
1218 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1219
1220 /* Allocate space for a struct abbrev_info object in
1221 ABBREV_TABLE. */
1222 struct abbrev_info *alloc_abbrev ();
1223
1224 /* Add an abbreviation to the table. */
1225 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1226
1227 /* Look up an abbrev in the table.
1228 Returns NULL if the abbrev is not found. */
1229
1230 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1231
1232
1233 /* Where the abbrev table came from.
1234 This is used as a sanity check when the table is used. */
1235 const sect_offset sect_off;
1236
1237 /* Storage for the abbrev table. */
1238 auto_obstack abbrev_obstack;
1239
1240 private:
1241
1242 /* Hash table of abbrevs.
1243 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1244 It could be statically allocated, but the previous code didn't so we
1245 don't either. */
1246 struct abbrev_info **m_abbrevs;
1247 };
1248
1249 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1250
1251 /* Attributes have a name and a value. */
1252 struct attribute
1253 {
1254 ENUM_BITFIELD(dwarf_attribute) name : 16;
1255 ENUM_BITFIELD(dwarf_form) form : 15;
1256
1257 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1258 field should be in u.str (existing only for DW_STRING) but it is kept
1259 here for better struct attribute alignment. */
1260 unsigned int string_is_canonical : 1;
1261
1262 union
1263 {
1264 const char *str;
1265 struct dwarf_block *blk;
1266 ULONGEST unsnd;
1267 LONGEST snd;
1268 CORE_ADDR addr;
1269 ULONGEST signature;
1270 }
1271 u;
1272 };
1273
1274 /* This data structure holds a complete die structure. */
1275 struct die_info
1276 {
1277 /* DWARF-2 tag for this DIE. */
1278 ENUM_BITFIELD(dwarf_tag) tag : 16;
1279
1280 /* Number of attributes */
1281 unsigned char num_attrs;
1282
1283 /* True if we're presently building the full type name for the
1284 type derived from this DIE. */
1285 unsigned char building_fullname : 1;
1286
1287 /* True if this die is in process. PR 16581. */
1288 unsigned char in_process : 1;
1289
1290 /* Abbrev number */
1291 unsigned int abbrev;
1292
1293 /* Offset in .debug_info or .debug_types section. */
1294 sect_offset sect_off;
1295
1296 /* The dies in a compilation unit form an n-ary tree. PARENT
1297 points to this die's parent; CHILD points to the first child of
1298 this node; and all the children of a given node are chained
1299 together via their SIBLING fields. */
1300 struct die_info *child; /* Its first child, if any. */
1301 struct die_info *sibling; /* Its next sibling, if any. */
1302 struct die_info *parent; /* Its parent, if any. */
1303
1304 /* An array of attributes, with NUM_ATTRS elements. There may be
1305 zero, but it's not common and zero-sized arrays are not
1306 sufficiently portable C. */
1307 struct attribute attrs[1];
1308 };
1309
1310 /* Get at parts of an attribute structure. */
1311
1312 #define DW_STRING(attr) ((attr)->u.str)
1313 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1314 #define DW_UNSND(attr) ((attr)->u.unsnd)
1315 #define DW_BLOCK(attr) ((attr)->u.blk)
1316 #define DW_SND(attr) ((attr)->u.snd)
1317 #define DW_ADDR(attr) ((attr)->u.addr)
1318 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1319
1320 /* Blocks are a bunch of untyped bytes. */
1321 struct dwarf_block
1322 {
1323 size_t size;
1324
1325 /* Valid only if SIZE is not zero. */
1326 const gdb_byte *data;
1327 };
1328
1329 #ifndef ATTR_ALLOC_CHUNK
1330 #define ATTR_ALLOC_CHUNK 4
1331 #endif
1332
1333 /* Allocate fields for structs, unions and enums in this size. */
1334 #ifndef DW_FIELD_ALLOC_CHUNK
1335 #define DW_FIELD_ALLOC_CHUNK 4
1336 #endif
1337
1338 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1339 but this would require a corresponding change in unpack_field_as_long
1340 and friends. */
1341 static int bits_per_byte = 8;
1342
1343 /* When reading a variant or variant part, we track a bit more
1344 information about the field, and store it in an object of this
1345 type. */
1346
1347 struct variant_field
1348 {
1349 /* If we see a DW_TAG_variant, then this will be the discriminant
1350 value. */
1351 ULONGEST discriminant_value;
1352 /* If we see a DW_TAG_variant, then this will be set if this is the
1353 default branch. */
1354 bool default_branch;
1355 /* While reading a DW_TAG_variant_part, this will be set if this
1356 field is the discriminant. */
1357 bool is_discriminant;
1358 };
1359
1360 struct nextfield
1361 {
1362 int accessibility = 0;
1363 int virtuality = 0;
1364 /* Extra information to describe a variant or variant part. */
1365 struct variant_field variant {};
1366 struct field field {};
1367 };
1368
1369 struct fnfieldlist
1370 {
1371 const char *name = nullptr;
1372 std::vector<struct fn_field> fnfields;
1373 };
1374
1375 /* The routines that read and process dies for a C struct or C++ class
1376 pass lists of data member fields and lists of member function fields
1377 in an instance of a field_info structure, as defined below. */
1378 struct field_info
1379 {
1380 /* List of data member and baseclasses fields. */
1381 std::vector<struct nextfield> fields;
1382 std::vector<struct nextfield> baseclasses;
1383
1384 /* Number of fields (including baseclasses). */
1385 int nfields = 0;
1386
1387 /* Set if the accesibility of one of the fields is not public. */
1388 int non_public_fields = 0;
1389
1390 /* Member function fieldlist array, contains name of possibly overloaded
1391 member function, number of overloaded member functions and a pointer
1392 to the head of the member function field chain. */
1393 std::vector<struct fnfieldlist> fnfieldlists;
1394
1395 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1396 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1397 std::vector<struct decl_field> typedef_field_list;
1398
1399 /* Nested types defined by this class and the number of elements in this
1400 list. */
1401 std::vector<struct decl_field> nested_types_list;
1402 };
1403
1404 /* One item on the queue of compilation units to read in full symbols
1405 for. */
1406 struct dwarf2_queue_item
1407 {
1408 struct dwarf2_per_cu_data *per_cu;
1409 enum language pretend_language;
1410 struct dwarf2_queue_item *next;
1411 };
1412
1413 /* The current queue. */
1414 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1415
1416 /* Loaded secondary compilation units are kept in memory until they
1417 have not been referenced for the processing of this many
1418 compilation units. Set this to zero to disable caching. Cache
1419 sizes of up to at least twenty will improve startup time for
1420 typical inter-CU-reference binaries, at an obvious memory cost. */
1421 static int dwarf_max_cache_age = 5;
1422 static void
1423 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1424 struct cmd_list_element *c, const char *value)
1425 {
1426 fprintf_filtered (file, _("The upper bound on the age of cached "
1427 "DWARF compilation units is %s.\n"),
1428 value);
1429 }
1430 \f
1431 /* local function prototypes */
1432
1433 static const char *get_section_name (const struct dwarf2_section_info *);
1434
1435 static const char *get_section_file_name (const struct dwarf2_section_info *);
1436
1437 static void dwarf2_find_base_address (struct die_info *die,
1438 struct dwarf2_cu *cu);
1439
1440 static struct partial_symtab *create_partial_symtab
1441 (struct dwarf2_per_cu_data *per_cu, const char *name);
1442
1443 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1444 const gdb_byte *info_ptr,
1445 struct die_info *type_unit_die,
1446 int has_children, void *data);
1447
1448 static void dwarf2_build_psymtabs_hard
1449 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1450
1451 static void scan_partial_symbols (struct partial_die_info *,
1452 CORE_ADDR *, CORE_ADDR *,
1453 int, struct dwarf2_cu *);
1454
1455 static void add_partial_symbol (struct partial_die_info *,
1456 struct dwarf2_cu *);
1457
1458 static void add_partial_namespace (struct partial_die_info *pdi,
1459 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1460 int set_addrmap, struct dwarf2_cu *cu);
1461
1462 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1463 CORE_ADDR *highpc, int set_addrmap,
1464 struct dwarf2_cu *cu);
1465
1466 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1467 struct dwarf2_cu *cu);
1468
1469 static void add_partial_subprogram (struct partial_die_info *pdi,
1470 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1471 int need_pc, struct dwarf2_cu *cu);
1472
1473 static void dwarf2_read_symtab (struct partial_symtab *,
1474 struct objfile *);
1475
1476 static void psymtab_to_symtab_1 (struct partial_symtab *);
1477
1478 static abbrev_table_up abbrev_table_read_table
1479 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1480 sect_offset);
1481
1482 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1483
1484 static struct partial_die_info *load_partial_dies
1485 (const struct die_reader_specs *, const gdb_byte *, int);
1486
1487 /* A pair of partial_die_info and compilation unit. */
1488 struct cu_partial_die_info
1489 {
1490 /* The compilation unit of the partial_die_info. */
1491 struct dwarf2_cu *cu;
1492 /* A partial_die_info. */
1493 struct partial_die_info *pdi;
1494
1495 cu_partial_die_info (struct dwarf2_cu *cu, struct partial_die_info *pdi)
1496 : cu (cu),
1497 pdi (pdi)
1498 { /* Nothhing. */ }
1499
1500 private:
1501 cu_partial_die_info () = delete;
1502 };
1503
1504 static const struct cu_partial_die_info find_partial_die (sect_offset, int,
1505 struct dwarf2_cu *);
1506
1507 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1508 struct attribute *, struct attr_abbrev *,
1509 const gdb_byte *);
1510
1511 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1512
1513 static int read_1_signed_byte (bfd *, const gdb_byte *);
1514
1515 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1516
1517 /* Read the next three bytes (little-endian order) as an unsigned integer. */
1518 static unsigned int read_3_bytes (bfd *, const gdb_byte *);
1519
1520 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1521
1522 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1523
1524 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1525 unsigned int *);
1526
1527 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1528
1529 static LONGEST read_checked_initial_length_and_offset
1530 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1531 unsigned int *, unsigned int *);
1532
1533 static LONGEST read_offset (bfd *, const gdb_byte *,
1534 const struct comp_unit_head *,
1535 unsigned int *);
1536
1537 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1538
1539 static sect_offset read_abbrev_offset
1540 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1541 struct dwarf2_section_info *, sect_offset);
1542
1543 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1544
1545 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1546
1547 static const char *read_indirect_string
1548 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1549 const struct comp_unit_head *, unsigned int *);
1550
1551 static const char *read_indirect_line_string
1552 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1553 const struct comp_unit_head *, unsigned int *);
1554
1555 static const char *read_indirect_string_at_offset
1556 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1557 LONGEST str_offset);
1558
1559 static const char *read_indirect_string_from_dwz
1560 (struct objfile *objfile, struct dwz_file *, LONGEST);
1561
1562 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1563
1564 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1565 const gdb_byte *,
1566 unsigned int *);
1567
1568 static const char *read_str_index (const struct die_reader_specs *reader,
1569 ULONGEST str_index);
1570
1571 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1572
1573 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1574 struct dwarf2_cu *);
1575
1576 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1577 unsigned int);
1578
1579 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1580 struct dwarf2_cu *cu);
1581
1582 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1583 struct dwarf2_cu *cu);
1584
1585 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1586
1587 static struct die_info *die_specification (struct die_info *die,
1588 struct dwarf2_cu **);
1589
1590 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1591 struct dwarf2_cu *cu);
1592
1593 static void dwarf_decode_lines (struct line_header *, const char *,
1594 struct dwarf2_cu *, struct partial_symtab *,
1595 CORE_ADDR, int decode_mapping);
1596
1597 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1598 const char *);
1599
1600 static struct symbol *new_symbol (struct die_info *, struct type *,
1601 struct dwarf2_cu *, struct symbol * = NULL);
1602
1603 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1604 struct dwarf2_cu *);
1605
1606 static void dwarf2_const_value_attr (const struct attribute *attr,
1607 struct type *type,
1608 const char *name,
1609 struct obstack *obstack,
1610 struct dwarf2_cu *cu, LONGEST *value,
1611 const gdb_byte **bytes,
1612 struct dwarf2_locexpr_baton **baton);
1613
1614 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1615
1616 static int need_gnat_info (struct dwarf2_cu *);
1617
1618 static struct type *die_descriptive_type (struct die_info *,
1619 struct dwarf2_cu *);
1620
1621 static void set_descriptive_type (struct type *, struct die_info *,
1622 struct dwarf2_cu *);
1623
1624 static struct type *die_containing_type (struct die_info *,
1625 struct dwarf2_cu *);
1626
1627 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1628 struct dwarf2_cu *);
1629
1630 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1631
1632 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1633
1634 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1635
1636 static char *typename_concat (struct obstack *obs, const char *prefix,
1637 const char *suffix, int physname,
1638 struct dwarf2_cu *cu);
1639
1640 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1641
1642 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1643
1644 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1645
1646 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1647
1648 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1649
1650 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1651
1652 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1653 struct dwarf2_cu *, struct partial_symtab *);
1654
1655 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1656 values. Keep the items ordered with increasing constraints compliance. */
1657 enum pc_bounds_kind
1658 {
1659 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1660 PC_BOUNDS_NOT_PRESENT,
1661
1662 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1663 were present but they do not form a valid range of PC addresses. */
1664 PC_BOUNDS_INVALID,
1665
1666 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1667 PC_BOUNDS_RANGES,
1668
1669 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1670 PC_BOUNDS_HIGH_LOW,
1671 };
1672
1673 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1674 CORE_ADDR *, CORE_ADDR *,
1675 struct dwarf2_cu *,
1676 struct partial_symtab *);
1677
1678 static void get_scope_pc_bounds (struct die_info *,
1679 CORE_ADDR *, CORE_ADDR *,
1680 struct dwarf2_cu *);
1681
1682 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1683 CORE_ADDR, struct dwarf2_cu *);
1684
1685 static void dwarf2_add_field (struct field_info *, struct die_info *,
1686 struct dwarf2_cu *);
1687
1688 static void dwarf2_attach_fields_to_type (struct field_info *,
1689 struct type *, struct dwarf2_cu *);
1690
1691 static void dwarf2_add_member_fn (struct field_info *,
1692 struct die_info *, struct type *,
1693 struct dwarf2_cu *);
1694
1695 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1696 struct type *,
1697 struct dwarf2_cu *);
1698
1699 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1700
1701 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1702
1703 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1704
1705 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1706
1707 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1708
1709 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1710
1711 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1712
1713 static struct type *read_module_type (struct die_info *die,
1714 struct dwarf2_cu *cu);
1715
1716 static const char *namespace_name (struct die_info *die,
1717 int *is_anonymous, struct dwarf2_cu *);
1718
1719 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1720
1721 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1722
1723 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1724 struct dwarf2_cu *);
1725
1726 static struct die_info *read_die_and_siblings_1
1727 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1728 struct die_info *);
1729
1730 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1731 const gdb_byte *info_ptr,
1732 const gdb_byte **new_info_ptr,
1733 struct die_info *parent);
1734
1735 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1736 struct die_info **, const gdb_byte *,
1737 int *, int);
1738
1739 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1740 struct die_info **, const gdb_byte *,
1741 int *);
1742
1743 static void process_die (struct die_info *, struct dwarf2_cu *);
1744
1745 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1746 struct obstack *);
1747
1748 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1749
1750 static const char *dwarf2_full_name (const char *name,
1751 struct die_info *die,
1752 struct dwarf2_cu *cu);
1753
1754 static const char *dwarf2_physname (const char *name, struct die_info *die,
1755 struct dwarf2_cu *cu);
1756
1757 static struct die_info *dwarf2_extension (struct die_info *die,
1758 struct dwarf2_cu **);
1759
1760 static const char *dwarf_tag_name (unsigned int);
1761
1762 static const char *dwarf_attr_name (unsigned int);
1763
1764 static const char *dwarf_form_name (unsigned int);
1765
1766 static const char *dwarf_bool_name (unsigned int);
1767
1768 static const char *dwarf_type_encoding_name (unsigned int);
1769
1770 static struct die_info *sibling_die (struct die_info *);
1771
1772 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1773
1774 static void dump_die_for_error (struct die_info *);
1775
1776 static void dump_die_1 (struct ui_file *, int level, int max_level,
1777 struct die_info *);
1778
1779 /*static*/ void dump_die (struct die_info *, int max_level);
1780
1781 static void store_in_ref_table (struct die_info *,
1782 struct dwarf2_cu *);
1783
1784 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1785
1786 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1787
1788 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1789 const struct attribute *,
1790 struct dwarf2_cu **);
1791
1792 static struct die_info *follow_die_ref (struct die_info *,
1793 const struct attribute *,
1794 struct dwarf2_cu **);
1795
1796 static struct die_info *follow_die_sig (struct die_info *,
1797 const struct attribute *,
1798 struct dwarf2_cu **);
1799
1800 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1801 struct dwarf2_cu *);
1802
1803 static struct type *get_DW_AT_signature_type (struct die_info *,
1804 const struct attribute *,
1805 struct dwarf2_cu *);
1806
1807 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1808
1809 static void read_signatured_type (struct signatured_type *);
1810
1811 static int attr_to_dynamic_prop (const struct attribute *attr,
1812 struct die_info *die, struct dwarf2_cu *cu,
1813 struct dynamic_prop *prop);
1814
1815 /* memory allocation interface */
1816
1817 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1818
1819 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1820
1821 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1822
1823 static int attr_form_is_block (const struct attribute *);
1824
1825 static int attr_form_is_section_offset (const struct attribute *);
1826
1827 static int attr_form_is_constant (const struct attribute *);
1828
1829 static int attr_form_is_ref (const struct attribute *);
1830
1831 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1832 struct dwarf2_loclist_baton *baton,
1833 const struct attribute *attr);
1834
1835 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1836 struct symbol *sym,
1837 struct dwarf2_cu *cu,
1838 int is_block);
1839
1840 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1841 const gdb_byte *info_ptr,
1842 struct abbrev_info *abbrev);
1843
1844 static hashval_t partial_die_hash (const void *item);
1845
1846 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1847
1848 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1849 (sect_offset sect_off, unsigned int offset_in_dwz,
1850 struct dwarf2_per_objfile *dwarf2_per_objfile);
1851
1852 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1853 struct die_info *comp_unit_die,
1854 enum language pretend_language);
1855
1856 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1857
1858 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1859
1860 static struct type *set_die_type (struct die_info *, struct type *,
1861 struct dwarf2_cu *);
1862
1863 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1864
1865 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1866
1867 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1868 enum language);
1869
1870 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1871 enum language);
1872
1873 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1874 enum language);
1875
1876 static void dwarf2_add_dependence (struct dwarf2_cu *,
1877 struct dwarf2_per_cu_data *);
1878
1879 static void dwarf2_mark (struct dwarf2_cu *);
1880
1881 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1882
1883 static struct type *get_die_type_at_offset (sect_offset,
1884 struct dwarf2_per_cu_data *);
1885
1886 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1887
1888 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1889 enum language pretend_language);
1890
1891 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1892
1893 /* Class, the destructor of which frees all allocated queue entries. This
1894 will only have work to do if an error was thrown while processing the
1895 dwarf. If no error was thrown then the queue entries should have all
1896 been processed, and freed, as we went along. */
1897
1898 class dwarf2_queue_guard
1899 {
1900 public:
1901 dwarf2_queue_guard () = default;
1902
1903 /* Free any entries remaining on the queue. There should only be
1904 entries left if we hit an error while processing the dwarf. */
1905 ~dwarf2_queue_guard ()
1906 {
1907 struct dwarf2_queue_item *item, *last;
1908
1909 item = dwarf2_queue;
1910 while (item)
1911 {
1912 /* Anything still marked queued is likely to be in an
1913 inconsistent state, so discard it. */
1914 if (item->per_cu->queued)
1915 {
1916 if (item->per_cu->cu != NULL)
1917 free_one_cached_comp_unit (item->per_cu);
1918 item->per_cu->queued = 0;
1919 }
1920
1921 last = item;
1922 item = item->next;
1923 xfree (last);
1924 }
1925
1926 dwarf2_queue = dwarf2_queue_tail = NULL;
1927 }
1928 };
1929
1930 /* The return type of find_file_and_directory. Note, the enclosed
1931 string pointers are only valid while this object is valid. */
1932
1933 struct file_and_directory
1934 {
1935 /* The filename. This is never NULL. */
1936 const char *name;
1937
1938 /* The compilation directory. NULL if not known. If we needed to
1939 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1940 points directly to the DW_AT_comp_dir string attribute owned by
1941 the obstack that owns the DIE. */
1942 const char *comp_dir;
1943
1944 /* If we needed to build a new string for comp_dir, this is what
1945 owns the storage. */
1946 std::string comp_dir_storage;
1947 };
1948
1949 static file_and_directory find_file_and_directory (struct die_info *die,
1950 struct dwarf2_cu *cu);
1951
1952 static char *file_full_name (int file, struct line_header *lh,
1953 const char *comp_dir);
1954
1955 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1956 enum class rcuh_kind { COMPILE, TYPE };
1957
1958 static const gdb_byte *read_and_check_comp_unit_head
1959 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1960 struct comp_unit_head *header,
1961 struct dwarf2_section_info *section,
1962 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1963 rcuh_kind section_kind);
1964
1965 static void init_cutu_and_read_dies
1966 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1967 int use_existing_cu, int keep, bool skip_partial,
1968 die_reader_func_ftype *die_reader_func, void *data);
1969
1970 static void init_cutu_and_read_dies_simple
1971 (struct dwarf2_per_cu_data *this_cu,
1972 die_reader_func_ftype *die_reader_func, void *data);
1973
1974 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1975
1976 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1977
1978 static struct dwo_unit *lookup_dwo_unit_in_dwp
1979 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1980 struct dwp_file *dwp_file, const char *comp_dir,
1981 ULONGEST signature, int is_debug_types);
1982
1983 static struct dwp_file *get_dwp_file
1984 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1985
1986 static struct dwo_unit *lookup_dwo_comp_unit
1987 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1988
1989 static struct dwo_unit *lookup_dwo_type_unit
1990 (struct signatured_type *, const char *, const char *);
1991
1992 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1993
1994 /* A unique pointer to a dwo_file. */
1995
1996 typedef std::unique_ptr<struct dwo_file> dwo_file_up;
1997
1998 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
1999
2000 static void check_producer (struct dwarf2_cu *cu);
2001
2002 static void free_line_header_voidp (void *arg);
2003 \f
2004 /* Various complaints about symbol reading that don't abort the process. */
2005
2006 static void
2007 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2008 {
2009 complaint (_("statement list doesn't fit in .debug_line section"));
2010 }
2011
2012 static void
2013 dwarf2_debug_line_missing_file_complaint (void)
2014 {
2015 complaint (_(".debug_line section has line data without a file"));
2016 }
2017
2018 static void
2019 dwarf2_debug_line_missing_end_sequence_complaint (void)
2020 {
2021 complaint (_(".debug_line section has line "
2022 "program sequence without an end"));
2023 }
2024
2025 static void
2026 dwarf2_complex_location_expr_complaint (void)
2027 {
2028 complaint (_("location expression too complex"));
2029 }
2030
2031 static void
2032 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2033 int arg3)
2034 {
2035 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2036 arg1, arg2, arg3);
2037 }
2038
2039 static void
2040 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2041 {
2042 complaint (_("debug info runs off end of %s section"
2043 " [in module %s]"),
2044 get_section_name (section),
2045 get_section_file_name (section));
2046 }
2047
2048 static void
2049 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2050 {
2051 complaint (_("macro debug info contains a "
2052 "malformed macro definition:\n`%s'"),
2053 arg1);
2054 }
2055
2056 static void
2057 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2058 {
2059 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2060 arg1, arg2);
2061 }
2062
2063 /* Hash function for line_header_hash. */
2064
2065 static hashval_t
2066 line_header_hash (const struct line_header *ofs)
2067 {
2068 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2069 }
2070
2071 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2072
2073 static hashval_t
2074 line_header_hash_voidp (const void *item)
2075 {
2076 const struct line_header *ofs = (const struct line_header *) item;
2077
2078 return line_header_hash (ofs);
2079 }
2080
2081 /* Equality function for line_header_hash. */
2082
2083 static int
2084 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2085 {
2086 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2087 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2088
2089 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2090 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2091 }
2092
2093 \f
2094
2095 /* Read the given attribute value as an address, taking the attribute's
2096 form into account. */
2097
2098 static CORE_ADDR
2099 attr_value_as_address (struct attribute *attr)
2100 {
2101 CORE_ADDR addr;
2102
2103 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_addrx
2104 && attr->form != DW_FORM_GNU_addr_index)
2105 {
2106 /* Aside from a few clearly defined exceptions, attributes that
2107 contain an address must always be in DW_FORM_addr form.
2108 Unfortunately, some compilers happen to be violating this
2109 requirement by encoding addresses using other forms, such
2110 as DW_FORM_data4 for example. For those broken compilers,
2111 we try to do our best, without any guarantee of success,
2112 to interpret the address correctly. It would also be nice
2113 to generate a complaint, but that would require us to maintain
2114 a list of legitimate cases where a non-address form is allowed,
2115 as well as update callers to pass in at least the CU's DWARF
2116 version. This is more overhead than what we're willing to
2117 expand for a pretty rare case. */
2118 addr = DW_UNSND (attr);
2119 }
2120 else
2121 addr = DW_ADDR (attr);
2122
2123 return addr;
2124 }
2125
2126 /* See declaration. */
2127
2128 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2129 const dwarf2_debug_sections *names)
2130 : objfile (objfile_)
2131 {
2132 if (names == NULL)
2133 names = &dwarf2_elf_names;
2134
2135 bfd *obfd = objfile->obfd;
2136
2137 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2138 locate_sections (obfd, sec, *names);
2139 }
2140
2141 dwarf2_per_objfile::~dwarf2_per_objfile ()
2142 {
2143 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2144 free_cached_comp_units ();
2145
2146 if (quick_file_names_table)
2147 htab_delete (quick_file_names_table);
2148
2149 if (line_header_hash)
2150 htab_delete (line_header_hash);
2151
2152 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2153 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2154
2155 for (signatured_type *sig_type : all_type_units)
2156 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2157
2158 /* Everything else should be on the objfile obstack. */
2159 }
2160
2161 /* See declaration. */
2162
2163 void
2164 dwarf2_per_objfile::free_cached_comp_units ()
2165 {
2166 dwarf2_per_cu_data *per_cu = read_in_chain;
2167 dwarf2_per_cu_data **last_chain = &read_in_chain;
2168 while (per_cu != NULL)
2169 {
2170 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2171
2172 delete per_cu->cu;
2173 *last_chain = next_cu;
2174 per_cu = next_cu;
2175 }
2176 }
2177
2178 /* A helper class that calls free_cached_comp_units on
2179 destruction. */
2180
2181 class free_cached_comp_units
2182 {
2183 public:
2184
2185 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2186 : m_per_objfile (per_objfile)
2187 {
2188 }
2189
2190 ~free_cached_comp_units ()
2191 {
2192 m_per_objfile->free_cached_comp_units ();
2193 }
2194
2195 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2196
2197 private:
2198
2199 dwarf2_per_objfile *m_per_objfile;
2200 };
2201
2202 /* Try to locate the sections we need for DWARF 2 debugging
2203 information and return true if we have enough to do something.
2204 NAMES points to the dwarf2 section names, or is NULL if the standard
2205 ELF names are used. */
2206
2207 int
2208 dwarf2_has_info (struct objfile *objfile,
2209 const struct dwarf2_debug_sections *names)
2210 {
2211 if (objfile->flags & OBJF_READNEVER)
2212 return 0;
2213
2214 struct dwarf2_per_objfile *dwarf2_per_objfile
2215 = get_dwarf2_per_objfile (objfile);
2216
2217 if (dwarf2_per_objfile == NULL)
2218 dwarf2_per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile,
2219 names);
2220
2221 return (!dwarf2_per_objfile->info.is_virtual
2222 && dwarf2_per_objfile->info.s.section != NULL
2223 && !dwarf2_per_objfile->abbrev.is_virtual
2224 && dwarf2_per_objfile->abbrev.s.section != NULL);
2225 }
2226
2227 /* Return the containing section of virtual section SECTION. */
2228
2229 static struct dwarf2_section_info *
2230 get_containing_section (const struct dwarf2_section_info *section)
2231 {
2232 gdb_assert (section->is_virtual);
2233 return section->s.containing_section;
2234 }
2235
2236 /* Return the bfd owner of SECTION. */
2237
2238 static struct bfd *
2239 get_section_bfd_owner (const struct dwarf2_section_info *section)
2240 {
2241 if (section->is_virtual)
2242 {
2243 section = get_containing_section (section);
2244 gdb_assert (!section->is_virtual);
2245 }
2246 return section->s.section->owner;
2247 }
2248
2249 /* Return the bfd section of SECTION.
2250 Returns NULL if the section is not present. */
2251
2252 static asection *
2253 get_section_bfd_section (const struct dwarf2_section_info *section)
2254 {
2255 if (section->is_virtual)
2256 {
2257 section = get_containing_section (section);
2258 gdb_assert (!section->is_virtual);
2259 }
2260 return section->s.section;
2261 }
2262
2263 /* Return the name of SECTION. */
2264
2265 static const char *
2266 get_section_name (const struct dwarf2_section_info *section)
2267 {
2268 asection *sectp = get_section_bfd_section (section);
2269
2270 gdb_assert (sectp != NULL);
2271 return bfd_section_name (get_section_bfd_owner (section), sectp);
2272 }
2273
2274 /* Return the name of the file SECTION is in. */
2275
2276 static const char *
2277 get_section_file_name (const struct dwarf2_section_info *section)
2278 {
2279 bfd *abfd = get_section_bfd_owner (section);
2280
2281 return bfd_get_filename (abfd);
2282 }
2283
2284 /* Return the id of SECTION.
2285 Returns 0 if SECTION doesn't exist. */
2286
2287 static int
2288 get_section_id (const struct dwarf2_section_info *section)
2289 {
2290 asection *sectp = get_section_bfd_section (section);
2291
2292 if (sectp == NULL)
2293 return 0;
2294 return sectp->id;
2295 }
2296
2297 /* Return the flags of SECTION.
2298 SECTION (or containing section if this is a virtual section) must exist. */
2299
2300 static int
2301 get_section_flags (const struct dwarf2_section_info *section)
2302 {
2303 asection *sectp = get_section_bfd_section (section);
2304
2305 gdb_assert (sectp != NULL);
2306 return bfd_get_section_flags (sectp->owner, sectp);
2307 }
2308
2309 /* When loading sections, we look either for uncompressed section or for
2310 compressed section names. */
2311
2312 static int
2313 section_is_p (const char *section_name,
2314 const struct dwarf2_section_names *names)
2315 {
2316 if (names->normal != NULL
2317 && strcmp (section_name, names->normal) == 0)
2318 return 1;
2319 if (names->compressed != NULL
2320 && strcmp (section_name, names->compressed) == 0)
2321 return 1;
2322 return 0;
2323 }
2324
2325 /* See declaration. */
2326
2327 void
2328 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2329 const dwarf2_debug_sections &names)
2330 {
2331 flagword aflag = bfd_get_section_flags (abfd, sectp);
2332
2333 if ((aflag & SEC_HAS_CONTENTS) == 0)
2334 {
2335 }
2336 else if (section_is_p (sectp->name, &names.info))
2337 {
2338 this->info.s.section = sectp;
2339 this->info.size = bfd_get_section_size (sectp);
2340 }
2341 else if (section_is_p (sectp->name, &names.abbrev))
2342 {
2343 this->abbrev.s.section = sectp;
2344 this->abbrev.size = bfd_get_section_size (sectp);
2345 }
2346 else if (section_is_p (sectp->name, &names.line))
2347 {
2348 this->line.s.section = sectp;
2349 this->line.size = bfd_get_section_size (sectp);
2350 }
2351 else if (section_is_p (sectp->name, &names.loc))
2352 {
2353 this->loc.s.section = sectp;
2354 this->loc.size = bfd_get_section_size (sectp);
2355 }
2356 else if (section_is_p (sectp->name, &names.loclists))
2357 {
2358 this->loclists.s.section = sectp;
2359 this->loclists.size = bfd_get_section_size (sectp);
2360 }
2361 else if (section_is_p (sectp->name, &names.macinfo))
2362 {
2363 this->macinfo.s.section = sectp;
2364 this->macinfo.size = bfd_get_section_size (sectp);
2365 }
2366 else if (section_is_p (sectp->name, &names.macro))
2367 {
2368 this->macro.s.section = sectp;
2369 this->macro.size = bfd_get_section_size (sectp);
2370 }
2371 else if (section_is_p (sectp->name, &names.str))
2372 {
2373 this->str.s.section = sectp;
2374 this->str.size = bfd_get_section_size (sectp);
2375 }
2376 else if (section_is_p (sectp->name, &names.line_str))
2377 {
2378 this->line_str.s.section = sectp;
2379 this->line_str.size = bfd_get_section_size (sectp);
2380 }
2381 else if (section_is_p (sectp->name, &names.addr))
2382 {
2383 this->addr.s.section = sectp;
2384 this->addr.size = bfd_get_section_size (sectp);
2385 }
2386 else if (section_is_p (sectp->name, &names.frame))
2387 {
2388 this->frame.s.section = sectp;
2389 this->frame.size = bfd_get_section_size (sectp);
2390 }
2391 else if (section_is_p (sectp->name, &names.eh_frame))
2392 {
2393 this->eh_frame.s.section = sectp;
2394 this->eh_frame.size = bfd_get_section_size (sectp);
2395 }
2396 else if (section_is_p (sectp->name, &names.ranges))
2397 {
2398 this->ranges.s.section = sectp;
2399 this->ranges.size = bfd_get_section_size (sectp);
2400 }
2401 else if (section_is_p (sectp->name, &names.rnglists))
2402 {
2403 this->rnglists.s.section = sectp;
2404 this->rnglists.size = bfd_get_section_size (sectp);
2405 }
2406 else if (section_is_p (sectp->name, &names.types))
2407 {
2408 struct dwarf2_section_info type_section;
2409
2410 memset (&type_section, 0, sizeof (type_section));
2411 type_section.s.section = sectp;
2412 type_section.size = bfd_get_section_size (sectp);
2413
2414 this->types.push_back (type_section);
2415 }
2416 else if (section_is_p (sectp->name, &names.gdb_index))
2417 {
2418 this->gdb_index.s.section = sectp;
2419 this->gdb_index.size = bfd_get_section_size (sectp);
2420 }
2421 else if (section_is_p (sectp->name, &names.debug_names))
2422 {
2423 this->debug_names.s.section = sectp;
2424 this->debug_names.size = bfd_get_section_size (sectp);
2425 }
2426 else if (section_is_p (sectp->name, &names.debug_aranges))
2427 {
2428 this->debug_aranges.s.section = sectp;
2429 this->debug_aranges.size = bfd_get_section_size (sectp);
2430 }
2431
2432 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2433 && bfd_section_vma (abfd, sectp) == 0)
2434 this->has_section_at_zero = true;
2435 }
2436
2437 /* A helper function that decides whether a section is empty,
2438 or not present. */
2439
2440 static int
2441 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2442 {
2443 if (section->is_virtual)
2444 return section->size == 0;
2445 return section->s.section == NULL || section->size == 0;
2446 }
2447
2448 /* See dwarf2read.h. */
2449
2450 void
2451 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2452 {
2453 asection *sectp;
2454 bfd *abfd;
2455 gdb_byte *buf, *retbuf;
2456
2457 if (info->readin)
2458 return;
2459 info->buffer = NULL;
2460 info->readin = true;
2461
2462 if (dwarf2_section_empty_p (info))
2463 return;
2464
2465 sectp = get_section_bfd_section (info);
2466
2467 /* If this is a virtual section we need to read in the real one first. */
2468 if (info->is_virtual)
2469 {
2470 struct dwarf2_section_info *containing_section =
2471 get_containing_section (info);
2472
2473 gdb_assert (sectp != NULL);
2474 if ((sectp->flags & SEC_RELOC) != 0)
2475 {
2476 error (_("Dwarf Error: DWP format V2 with relocations is not"
2477 " supported in section %s [in module %s]"),
2478 get_section_name (info), get_section_file_name (info));
2479 }
2480 dwarf2_read_section (objfile, containing_section);
2481 /* Other code should have already caught virtual sections that don't
2482 fit. */
2483 gdb_assert (info->virtual_offset + info->size
2484 <= containing_section->size);
2485 /* If the real section is empty or there was a problem reading the
2486 section we shouldn't get here. */
2487 gdb_assert (containing_section->buffer != NULL);
2488 info->buffer = containing_section->buffer + info->virtual_offset;
2489 return;
2490 }
2491
2492 /* If the section has relocations, we must read it ourselves.
2493 Otherwise we attach it to the BFD. */
2494 if ((sectp->flags & SEC_RELOC) == 0)
2495 {
2496 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2497 return;
2498 }
2499
2500 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2501 info->buffer = buf;
2502
2503 /* When debugging .o files, we may need to apply relocations; see
2504 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2505 We never compress sections in .o files, so we only need to
2506 try this when the section is not compressed. */
2507 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2508 if (retbuf != NULL)
2509 {
2510 info->buffer = retbuf;
2511 return;
2512 }
2513
2514 abfd = get_section_bfd_owner (info);
2515 gdb_assert (abfd != NULL);
2516
2517 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2518 || bfd_bread (buf, info->size, abfd) != info->size)
2519 {
2520 error (_("Dwarf Error: Can't read DWARF data"
2521 " in section %s [in module %s]"),
2522 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2523 }
2524 }
2525
2526 /* A helper function that returns the size of a section in a safe way.
2527 If you are positive that the section has been read before using the
2528 size, then it is safe to refer to the dwarf2_section_info object's
2529 "size" field directly. In other cases, you must call this
2530 function, because for compressed sections the size field is not set
2531 correctly until the section has been read. */
2532
2533 static bfd_size_type
2534 dwarf2_section_size (struct objfile *objfile,
2535 struct dwarf2_section_info *info)
2536 {
2537 if (!info->readin)
2538 dwarf2_read_section (objfile, info);
2539 return info->size;
2540 }
2541
2542 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2543 SECTION_NAME. */
2544
2545 void
2546 dwarf2_get_section_info (struct objfile *objfile,
2547 enum dwarf2_section_enum sect,
2548 asection **sectp, const gdb_byte **bufp,
2549 bfd_size_type *sizep)
2550 {
2551 struct dwarf2_per_objfile *data = dwarf2_objfile_data_key.get (objfile);
2552 struct dwarf2_section_info *info;
2553
2554 /* We may see an objfile without any DWARF, in which case we just
2555 return nothing. */
2556 if (data == NULL)
2557 {
2558 *sectp = NULL;
2559 *bufp = NULL;
2560 *sizep = 0;
2561 return;
2562 }
2563 switch (sect)
2564 {
2565 case DWARF2_DEBUG_FRAME:
2566 info = &data->frame;
2567 break;
2568 case DWARF2_EH_FRAME:
2569 info = &data->eh_frame;
2570 break;
2571 default:
2572 gdb_assert_not_reached ("unexpected section");
2573 }
2574
2575 dwarf2_read_section (objfile, info);
2576
2577 *sectp = get_section_bfd_section (info);
2578 *bufp = info->buffer;
2579 *sizep = info->size;
2580 }
2581
2582 /* A helper function to find the sections for a .dwz file. */
2583
2584 static void
2585 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2586 {
2587 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2588
2589 /* Note that we only support the standard ELF names, because .dwz
2590 is ELF-only (at the time of writing). */
2591 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2592 {
2593 dwz_file->abbrev.s.section = sectp;
2594 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2595 }
2596 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2597 {
2598 dwz_file->info.s.section = sectp;
2599 dwz_file->info.size = bfd_get_section_size (sectp);
2600 }
2601 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2602 {
2603 dwz_file->str.s.section = sectp;
2604 dwz_file->str.size = bfd_get_section_size (sectp);
2605 }
2606 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2607 {
2608 dwz_file->line.s.section = sectp;
2609 dwz_file->line.size = bfd_get_section_size (sectp);
2610 }
2611 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2612 {
2613 dwz_file->macro.s.section = sectp;
2614 dwz_file->macro.size = bfd_get_section_size (sectp);
2615 }
2616 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2617 {
2618 dwz_file->gdb_index.s.section = sectp;
2619 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2620 }
2621 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2622 {
2623 dwz_file->debug_names.s.section = sectp;
2624 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2625 }
2626 }
2627
2628 /* See dwarf2read.h. */
2629
2630 struct dwz_file *
2631 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2632 {
2633 const char *filename;
2634 bfd_size_type buildid_len_arg;
2635 size_t buildid_len;
2636 bfd_byte *buildid;
2637
2638 if (dwarf2_per_objfile->dwz_file != NULL)
2639 return dwarf2_per_objfile->dwz_file.get ();
2640
2641 bfd_set_error (bfd_error_no_error);
2642 gdb::unique_xmalloc_ptr<char> data
2643 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2644 &buildid_len_arg, &buildid));
2645 if (data == NULL)
2646 {
2647 if (bfd_get_error () == bfd_error_no_error)
2648 return NULL;
2649 error (_("could not read '.gnu_debugaltlink' section: %s"),
2650 bfd_errmsg (bfd_get_error ()));
2651 }
2652
2653 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2654
2655 buildid_len = (size_t) buildid_len_arg;
2656
2657 filename = data.get ();
2658
2659 std::string abs_storage;
2660 if (!IS_ABSOLUTE_PATH (filename))
2661 {
2662 gdb::unique_xmalloc_ptr<char> abs
2663 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2664
2665 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2666 filename = abs_storage.c_str ();
2667 }
2668
2669 /* First try the file name given in the section. If that doesn't
2670 work, try to use the build-id instead. */
2671 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2672 if (dwz_bfd != NULL)
2673 {
2674 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2675 dwz_bfd.reset (nullptr);
2676 }
2677
2678 if (dwz_bfd == NULL)
2679 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2680
2681 if (dwz_bfd == NULL)
2682 error (_("could not find '.gnu_debugaltlink' file for %s"),
2683 objfile_name (dwarf2_per_objfile->objfile));
2684
2685 std::unique_ptr<struct dwz_file> result
2686 (new struct dwz_file (std::move (dwz_bfd)));
2687
2688 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2689 result.get ());
2690
2691 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2692 result->dwz_bfd.get ());
2693 dwarf2_per_objfile->dwz_file = std::move (result);
2694 return dwarf2_per_objfile->dwz_file.get ();
2695 }
2696 \f
2697 /* DWARF quick_symbols_functions support. */
2698
2699 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2700 unique line tables, so we maintain a separate table of all .debug_line
2701 derived entries to support the sharing.
2702 All the quick functions need is the list of file names. We discard the
2703 line_header when we're done and don't need to record it here. */
2704 struct quick_file_names
2705 {
2706 /* The data used to construct the hash key. */
2707 struct stmt_list_hash hash;
2708
2709 /* The number of entries in file_names, real_names. */
2710 unsigned int num_file_names;
2711
2712 /* The file names from the line table, after being run through
2713 file_full_name. */
2714 const char **file_names;
2715
2716 /* The file names from the line table after being run through
2717 gdb_realpath. These are computed lazily. */
2718 const char **real_names;
2719 };
2720
2721 /* When using the index (and thus not using psymtabs), each CU has an
2722 object of this type. This is used to hold information needed by
2723 the various "quick" methods. */
2724 struct dwarf2_per_cu_quick_data
2725 {
2726 /* The file table. This can be NULL if there was no file table
2727 or it's currently not read in.
2728 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2729 struct quick_file_names *file_names;
2730
2731 /* The corresponding symbol table. This is NULL if symbols for this
2732 CU have not yet been read. */
2733 struct compunit_symtab *compunit_symtab;
2734
2735 /* A temporary mark bit used when iterating over all CUs in
2736 expand_symtabs_matching. */
2737 unsigned int mark : 1;
2738
2739 /* True if we've tried to read the file table and found there isn't one.
2740 There will be no point in trying to read it again next time. */
2741 unsigned int no_file_data : 1;
2742 };
2743
2744 /* Utility hash function for a stmt_list_hash. */
2745
2746 static hashval_t
2747 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2748 {
2749 hashval_t v = 0;
2750
2751 if (stmt_list_hash->dwo_unit != NULL)
2752 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2753 v += to_underlying (stmt_list_hash->line_sect_off);
2754 return v;
2755 }
2756
2757 /* Utility equality function for a stmt_list_hash. */
2758
2759 static int
2760 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2761 const struct stmt_list_hash *rhs)
2762 {
2763 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2764 return 0;
2765 if (lhs->dwo_unit != NULL
2766 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2767 return 0;
2768
2769 return lhs->line_sect_off == rhs->line_sect_off;
2770 }
2771
2772 /* Hash function for a quick_file_names. */
2773
2774 static hashval_t
2775 hash_file_name_entry (const void *e)
2776 {
2777 const struct quick_file_names *file_data
2778 = (const struct quick_file_names *) e;
2779
2780 return hash_stmt_list_entry (&file_data->hash);
2781 }
2782
2783 /* Equality function for a quick_file_names. */
2784
2785 static int
2786 eq_file_name_entry (const void *a, const void *b)
2787 {
2788 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2789 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2790
2791 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2792 }
2793
2794 /* Delete function for a quick_file_names. */
2795
2796 static void
2797 delete_file_name_entry (void *e)
2798 {
2799 struct quick_file_names *file_data = (struct quick_file_names *) e;
2800 int i;
2801
2802 for (i = 0; i < file_data->num_file_names; ++i)
2803 {
2804 xfree ((void*) file_data->file_names[i]);
2805 if (file_data->real_names)
2806 xfree ((void*) file_data->real_names[i]);
2807 }
2808
2809 /* The space for the struct itself lives on objfile_obstack,
2810 so we don't free it here. */
2811 }
2812
2813 /* Create a quick_file_names hash table. */
2814
2815 static htab_t
2816 create_quick_file_names_table (unsigned int nr_initial_entries)
2817 {
2818 return htab_create_alloc (nr_initial_entries,
2819 hash_file_name_entry, eq_file_name_entry,
2820 delete_file_name_entry, xcalloc, xfree);
2821 }
2822
2823 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2824 have to be created afterwards. You should call age_cached_comp_units after
2825 processing PER_CU->CU. dw2_setup must have been already called. */
2826
2827 static void
2828 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2829 {
2830 if (per_cu->is_debug_types)
2831 load_full_type_unit (per_cu);
2832 else
2833 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2834
2835 if (per_cu->cu == NULL)
2836 return; /* Dummy CU. */
2837
2838 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2839 }
2840
2841 /* Read in the symbols for PER_CU. */
2842
2843 static void
2844 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2845 {
2846 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2847
2848 /* Skip type_unit_groups, reading the type units they contain
2849 is handled elsewhere. */
2850 if (IS_TYPE_UNIT_GROUP (per_cu))
2851 return;
2852
2853 /* The destructor of dwarf2_queue_guard frees any entries left on
2854 the queue. After this point we're guaranteed to leave this function
2855 with the dwarf queue empty. */
2856 dwarf2_queue_guard q_guard;
2857
2858 if (dwarf2_per_objfile->using_index
2859 ? per_cu->v.quick->compunit_symtab == NULL
2860 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2861 {
2862 queue_comp_unit (per_cu, language_minimal);
2863 load_cu (per_cu, skip_partial);
2864
2865 /* If we just loaded a CU from a DWO, and we're working with an index
2866 that may badly handle TUs, load all the TUs in that DWO as well.
2867 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2868 if (!per_cu->is_debug_types
2869 && per_cu->cu != NULL
2870 && per_cu->cu->dwo_unit != NULL
2871 && dwarf2_per_objfile->index_table != NULL
2872 && dwarf2_per_objfile->index_table->version <= 7
2873 /* DWP files aren't supported yet. */
2874 && get_dwp_file (dwarf2_per_objfile) == NULL)
2875 queue_and_load_all_dwo_tus (per_cu);
2876 }
2877
2878 process_queue (dwarf2_per_objfile);
2879
2880 /* Age the cache, releasing compilation units that have not
2881 been used recently. */
2882 age_cached_comp_units (dwarf2_per_objfile);
2883 }
2884
2885 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2886 the objfile from which this CU came. Returns the resulting symbol
2887 table. */
2888
2889 static struct compunit_symtab *
2890 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2891 {
2892 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2893
2894 gdb_assert (dwarf2_per_objfile->using_index);
2895 if (!per_cu->v.quick->compunit_symtab)
2896 {
2897 free_cached_comp_units freer (dwarf2_per_objfile);
2898 scoped_restore decrementer = increment_reading_symtab ();
2899 dw2_do_instantiate_symtab (per_cu, skip_partial);
2900 process_cu_includes (dwarf2_per_objfile);
2901 }
2902
2903 return per_cu->v.quick->compunit_symtab;
2904 }
2905
2906 /* See declaration. */
2907
2908 dwarf2_per_cu_data *
2909 dwarf2_per_objfile::get_cutu (int index)
2910 {
2911 if (index >= this->all_comp_units.size ())
2912 {
2913 index -= this->all_comp_units.size ();
2914 gdb_assert (index < this->all_type_units.size ());
2915 return &this->all_type_units[index]->per_cu;
2916 }
2917
2918 return this->all_comp_units[index];
2919 }
2920
2921 /* See declaration. */
2922
2923 dwarf2_per_cu_data *
2924 dwarf2_per_objfile::get_cu (int index)
2925 {
2926 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2927
2928 return this->all_comp_units[index];
2929 }
2930
2931 /* See declaration. */
2932
2933 signatured_type *
2934 dwarf2_per_objfile::get_tu (int index)
2935 {
2936 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2937
2938 return this->all_type_units[index];
2939 }
2940
2941 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2942 objfile_obstack, and constructed with the specified field
2943 values. */
2944
2945 static dwarf2_per_cu_data *
2946 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2947 struct dwarf2_section_info *section,
2948 int is_dwz,
2949 sect_offset sect_off, ULONGEST length)
2950 {
2951 struct objfile *objfile = dwarf2_per_objfile->objfile;
2952 dwarf2_per_cu_data *the_cu
2953 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2954 struct dwarf2_per_cu_data);
2955 the_cu->sect_off = sect_off;
2956 the_cu->length = length;
2957 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2958 the_cu->section = section;
2959 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2960 struct dwarf2_per_cu_quick_data);
2961 the_cu->is_dwz = is_dwz;
2962 return the_cu;
2963 }
2964
2965 /* A helper for create_cus_from_index that handles a given list of
2966 CUs. */
2967
2968 static void
2969 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2970 const gdb_byte *cu_list, offset_type n_elements,
2971 struct dwarf2_section_info *section,
2972 int is_dwz)
2973 {
2974 for (offset_type i = 0; i < n_elements; i += 2)
2975 {
2976 gdb_static_assert (sizeof (ULONGEST) >= 8);
2977
2978 sect_offset sect_off
2979 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2980 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2981 cu_list += 2 * 8;
2982
2983 dwarf2_per_cu_data *per_cu
2984 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
2985 sect_off, length);
2986 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
2987 }
2988 }
2989
2990 /* Read the CU list from the mapped index, and use it to create all
2991 the CU objects for this objfile. */
2992
2993 static void
2994 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2995 const gdb_byte *cu_list, offset_type cu_list_elements,
2996 const gdb_byte *dwz_list, offset_type dwz_elements)
2997 {
2998 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
2999 dwarf2_per_objfile->all_comp_units.reserve
3000 ((cu_list_elements + dwz_elements) / 2);
3001
3002 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3003 &dwarf2_per_objfile->info, 0);
3004
3005 if (dwz_elements == 0)
3006 return;
3007
3008 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3009 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3010 &dwz->info, 1);
3011 }
3012
3013 /* Create the signatured type hash table from the index. */
3014
3015 static void
3016 create_signatured_type_table_from_index
3017 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3018 struct dwarf2_section_info *section,
3019 const gdb_byte *bytes,
3020 offset_type elements)
3021 {
3022 struct objfile *objfile = dwarf2_per_objfile->objfile;
3023
3024 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3025 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3026
3027 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3028
3029 for (offset_type i = 0; i < elements; i += 3)
3030 {
3031 struct signatured_type *sig_type;
3032 ULONGEST signature;
3033 void **slot;
3034 cu_offset type_offset_in_tu;
3035
3036 gdb_static_assert (sizeof (ULONGEST) >= 8);
3037 sect_offset sect_off
3038 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3039 type_offset_in_tu
3040 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3041 BFD_ENDIAN_LITTLE);
3042 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3043 bytes += 3 * 8;
3044
3045 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3046 struct signatured_type);
3047 sig_type->signature = signature;
3048 sig_type->type_offset_in_tu = type_offset_in_tu;
3049 sig_type->per_cu.is_debug_types = 1;
3050 sig_type->per_cu.section = section;
3051 sig_type->per_cu.sect_off = sect_off;
3052 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3053 sig_type->per_cu.v.quick
3054 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3055 struct dwarf2_per_cu_quick_data);
3056
3057 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3058 *slot = sig_type;
3059
3060 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3061 }
3062
3063 dwarf2_per_objfile->signatured_types = sig_types_hash;
3064 }
3065
3066 /* Create the signatured type hash table from .debug_names. */
3067
3068 static void
3069 create_signatured_type_table_from_debug_names
3070 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3071 const mapped_debug_names &map,
3072 struct dwarf2_section_info *section,
3073 struct dwarf2_section_info *abbrev_section)
3074 {
3075 struct objfile *objfile = dwarf2_per_objfile->objfile;
3076
3077 dwarf2_read_section (objfile, section);
3078 dwarf2_read_section (objfile, abbrev_section);
3079
3080 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3081 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3082
3083 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3084
3085 for (uint32_t i = 0; i < map.tu_count; ++i)
3086 {
3087 struct signatured_type *sig_type;
3088 void **slot;
3089
3090 sect_offset sect_off
3091 = (sect_offset) (extract_unsigned_integer
3092 (map.tu_table_reordered + i * map.offset_size,
3093 map.offset_size,
3094 map.dwarf5_byte_order));
3095
3096 comp_unit_head cu_header;
3097 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3098 abbrev_section,
3099 section->buffer + to_underlying (sect_off),
3100 rcuh_kind::TYPE);
3101
3102 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3103 struct signatured_type);
3104 sig_type->signature = cu_header.signature;
3105 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3106 sig_type->per_cu.is_debug_types = 1;
3107 sig_type->per_cu.section = section;
3108 sig_type->per_cu.sect_off = sect_off;
3109 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3110 sig_type->per_cu.v.quick
3111 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3112 struct dwarf2_per_cu_quick_data);
3113
3114 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3115 *slot = sig_type;
3116
3117 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3118 }
3119
3120 dwarf2_per_objfile->signatured_types = sig_types_hash;
3121 }
3122
3123 /* Read the address map data from the mapped index, and use it to
3124 populate the objfile's psymtabs_addrmap. */
3125
3126 static void
3127 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3128 struct mapped_index *index)
3129 {
3130 struct objfile *objfile = dwarf2_per_objfile->objfile;
3131 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3132 const gdb_byte *iter, *end;
3133 struct addrmap *mutable_map;
3134 CORE_ADDR baseaddr;
3135
3136 auto_obstack temp_obstack;
3137
3138 mutable_map = addrmap_create_mutable (&temp_obstack);
3139
3140 iter = index->address_table.data ();
3141 end = iter + index->address_table.size ();
3142
3143 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3144
3145 while (iter < end)
3146 {
3147 ULONGEST hi, lo, cu_index;
3148 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3149 iter += 8;
3150 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3151 iter += 8;
3152 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3153 iter += 4;
3154
3155 if (lo > hi)
3156 {
3157 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3158 hex_string (lo), hex_string (hi));
3159 continue;
3160 }
3161
3162 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3163 {
3164 complaint (_(".gdb_index address table has invalid CU number %u"),
3165 (unsigned) cu_index);
3166 continue;
3167 }
3168
3169 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
3170 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
3171 addrmap_set_empty (mutable_map, lo, hi - 1,
3172 dwarf2_per_objfile->get_cu (cu_index));
3173 }
3174
3175 objfile->partial_symtabs->psymtabs_addrmap
3176 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3177 }
3178
3179 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3180 populate the objfile's psymtabs_addrmap. */
3181
3182 static void
3183 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3184 struct dwarf2_section_info *section)
3185 {
3186 struct objfile *objfile = dwarf2_per_objfile->objfile;
3187 bfd *abfd = objfile->obfd;
3188 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3189 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3190 SECT_OFF_TEXT (objfile));
3191
3192 auto_obstack temp_obstack;
3193 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3194
3195 std::unordered_map<sect_offset,
3196 dwarf2_per_cu_data *,
3197 gdb::hash_enum<sect_offset>>
3198 debug_info_offset_to_per_cu;
3199 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3200 {
3201 const auto insertpair
3202 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3203 if (!insertpair.second)
3204 {
3205 warning (_("Section .debug_aranges in %s has duplicate "
3206 "debug_info_offset %s, ignoring .debug_aranges."),
3207 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3208 return;
3209 }
3210 }
3211
3212 dwarf2_read_section (objfile, section);
3213
3214 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3215
3216 const gdb_byte *addr = section->buffer;
3217
3218 while (addr < section->buffer + section->size)
3219 {
3220 const gdb_byte *const entry_addr = addr;
3221 unsigned int bytes_read;
3222
3223 const LONGEST entry_length = read_initial_length (abfd, addr,
3224 &bytes_read);
3225 addr += bytes_read;
3226
3227 const gdb_byte *const entry_end = addr + entry_length;
3228 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3229 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3230 if (addr + entry_length > section->buffer + section->size)
3231 {
3232 warning (_("Section .debug_aranges in %s entry at offset %s "
3233 "length %s exceeds section length %s, "
3234 "ignoring .debug_aranges."),
3235 objfile_name (objfile),
3236 plongest (entry_addr - section->buffer),
3237 plongest (bytes_read + entry_length),
3238 pulongest (section->size));
3239 return;
3240 }
3241
3242 /* The version number. */
3243 const uint16_t version = read_2_bytes (abfd, addr);
3244 addr += 2;
3245 if (version != 2)
3246 {
3247 warning (_("Section .debug_aranges in %s entry at offset %s "
3248 "has unsupported version %d, ignoring .debug_aranges."),
3249 objfile_name (objfile),
3250 plongest (entry_addr - section->buffer), version);
3251 return;
3252 }
3253
3254 const uint64_t debug_info_offset
3255 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3256 addr += offset_size;
3257 const auto per_cu_it
3258 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3259 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3260 {
3261 warning (_("Section .debug_aranges in %s entry at offset %s "
3262 "debug_info_offset %s does not exists, "
3263 "ignoring .debug_aranges."),
3264 objfile_name (objfile),
3265 plongest (entry_addr - section->buffer),
3266 pulongest (debug_info_offset));
3267 return;
3268 }
3269 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3270
3271 const uint8_t address_size = *addr++;
3272 if (address_size < 1 || address_size > 8)
3273 {
3274 warning (_("Section .debug_aranges in %s entry at offset %s "
3275 "address_size %u is invalid, ignoring .debug_aranges."),
3276 objfile_name (objfile),
3277 plongest (entry_addr - section->buffer), address_size);
3278 return;
3279 }
3280
3281 const uint8_t segment_selector_size = *addr++;
3282 if (segment_selector_size != 0)
3283 {
3284 warning (_("Section .debug_aranges in %s entry at offset %s "
3285 "segment_selector_size %u is not supported, "
3286 "ignoring .debug_aranges."),
3287 objfile_name (objfile),
3288 plongest (entry_addr - section->buffer),
3289 segment_selector_size);
3290 return;
3291 }
3292
3293 /* Must pad to an alignment boundary that is twice the address
3294 size. It is undocumented by the DWARF standard but GCC does
3295 use it. */
3296 for (size_t padding = ((-(addr - section->buffer))
3297 & (2 * address_size - 1));
3298 padding > 0; padding--)
3299 if (*addr++ != 0)
3300 {
3301 warning (_("Section .debug_aranges in %s entry at offset %s "
3302 "padding is not zero, ignoring .debug_aranges."),
3303 objfile_name (objfile),
3304 plongest (entry_addr - section->buffer));
3305 return;
3306 }
3307
3308 for (;;)
3309 {
3310 if (addr + 2 * address_size > entry_end)
3311 {
3312 warning (_("Section .debug_aranges in %s entry at offset %s "
3313 "address list is not properly terminated, "
3314 "ignoring .debug_aranges."),
3315 objfile_name (objfile),
3316 plongest (entry_addr - section->buffer));
3317 return;
3318 }
3319 ULONGEST start = extract_unsigned_integer (addr, address_size,
3320 dwarf5_byte_order);
3321 addr += address_size;
3322 ULONGEST length = extract_unsigned_integer (addr, address_size,
3323 dwarf5_byte_order);
3324 addr += address_size;
3325 if (start == 0 && length == 0)
3326 break;
3327 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3328 {
3329 /* Symbol was eliminated due to a COMDAT group. */
3330 continue;
3331 }
3332 ULONGEST end = start + length;
3333 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3334 - baseaddr);
3335 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3336 - baseaddr);
3337 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3338 }
3339 }
3340
3341 objfile->partial_symtabs->psymtabs_addrmap
3342 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3343 }
3344
3345 /* Find a slot in the mapped index INDEX for the object named NAME.
3346 If NAME is found, set *VEC_OUT to point to the CU vector in the
3347 constant pool and return true. If NAME cannot be found, return
3348 false. */
3349
3350 static bool
3351 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3352 offset_type **vec_out)
3353 {
3354 offset_type hash;
3355 offset_type slot, step;
3356 int (*cmp) (const char *, const char *);
3357
3358 gdb::unique_xmalloc_ptr<char> without_params;
3359 if (current_language->la_language == language_cplus
3360 || current_language->la_language == language_fortran
3361 || current_language->la_language == language_d)
3362 {
3363 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3364 not contain any. */
3365
3366 if (strchr (name, '(') != NULL)
3367 {
3368 without_params = cp_remove_params (name);
3369
3370 if (without_params != NULL)
3371 name = without_params.get ();
3372 }
3373 }
3374
3375 /* Index version 4 did not support case insensitive searches. But the
3376 indices for case insensitive languages are built in lowercase, therefore
3377 simulate our NAME being searched is also lowercased. */
3378 hash = mapped_index_string_hash ((index->version == 4
3379 && case_sensitivity == case_sensitive_off
3380 ? 5 : index->version),
3381 name);
3382
3383 slot = hash & (index->symbol_table.size () - 1);
3384 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3385 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3386
3387 for (;;)
3388 {
3389 const char *str;
3390
3391 const auto &bucket = index->symbol_table[slot];
3392 if (bucket.name == 0 && bucket.vec == 0)
3393 return false;
3394
3395 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3396 if (!cmp (name, str))
3397 {
3398 *vec_out = (offset_type *) (index->constant_pool
3399 + MAYBE_SWAP (bucket.vec));
3400 return true;
3401 }
3402
3403 slot = (slot + step) & (index->symbol_table.size () - 1);
3404 }
3405 }
3406
3407 /* A helper function that reads the .gdb_index from BUFFER and fills
3408 in MAP. FILENAME is the name of the file containing the data;
3409 it is used for error reporting. DEPRECATED_OK is true if it is
3410 ok to use deprecated sections.
3411
3412 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3413 out parameters that are filled in with information about the CU and
3414 TU lists in the section.
3415
3416 Returns true if all went well, false otherwise. */
3417
3418 static bool
3419 read_gdb_index_from_buffer (struct objfile *objfile,
3420 const char *filename,
3421 bool deprecated_ok,
3422 gdb::array_view<const gdb_byte> buffer,
3423 struct mapped_index *map,
3424 const gdb_byte **cu_list,
3425 offset_type *cu_list_elements,
3426 const gdb_byte **types_list,
3427 offset_type *types_list_elements)
3428 {
3429 const gdb_byte *addr = &buffer[0];
3430
3431 /* Version check. */
3432 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
3433 /* Versions earlier than 3 emitted every copy of a psymbol. This
3434 causes the index to behave very poorly for certain requests. Version 3
3435 contained incomplete addrmap. So, it seems better to just ignore such
3436 indices. */
3437 if (version < 4)
3438 {
3439 static int warning_printed = 0;
3440 if (!warning_printed)
3441 {
3442 warning (_("Skipping obsolete .gdb_index section in %s."),
3443 filename);
3444 warning_printed = 1;
3445 }
3446 return 0;
3447 }
3448 /* Index version 4 uses a different hash function than index version
3449 5 and later.
3450
3451 Versions earlier than 6 did not emit psymbols for inlined
3452 functions. Using these files will cause GDB not to be able to
3453 set breakpoints on inlined functions by name, so we ignore these
3454 indices unless the user has done
3455 "set use-deprecated-index-sections on". */
3456 if (version < 6 && !deprecated_ok)
3457 {
3458 static int warning_printed = 0;
3459 if (!warning_printed)
3460 {
3461 warning (_("\
3462 Skipping deprecated .gdb_index section in %s.\n\
3463 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3464 to use the section anyway."),
3465 filename);
3466 warning_printed = 1;
3467 }
3468 return 0;
3469 }
3470 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3471 of the TU (for symbols coming from TUs),
3472 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3473 Plus gold-generated indices can have duplicate entries for global symbols,
3474 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3475 These are just performance bugs, and we can't distinguish gdb-generated
3476 indices from gold-generated ones, so issue no warning here. */
3477
3478 /* Indexes with higher version than the one supported by GDB may be no
3479 longer backward compatible. */
3480 if (version > 8)
3481 return 0;
3482
3483 map->version = version;
3484
3485 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3486
3487 int i = 0;
3488 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3489 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3490 / 8);
3491 ++i;
3492
3493 *types_list = addr + MAYBE_SWAP (metadata[i]);
3494 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3495 - MAYBE_SWAP (metadata[i]))
3496 / 8);
3497 ++i;
3498
3499 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3500 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3501 map->address_table
3502 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3503 ++i;
3504
3505 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3506 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3507 map->symbol_table
3508 = gdb::array_view<mapped_index::symbol_table_slot>
3509 ((mapped_index::symbol_table_slot *) symbol_table,
3510 (mapped_index::symbol_table_slot *) symbol_table_end);
3511
3512 ++i;
3513 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3514
3515 return 1;
3516 }
3517
3518 /* Callback types for dwarf2_read_gdb_index. */
3519
3520 typedef gdb::function_view
3521 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3522 get_gdb_index_contents_ftype;
3523 typedef gdb::function_view
3524 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3525 get_gdb_index_contents_dwz_ftype;
3526
3527 /* Read .gdb_index. If everything went ok, initialize the "quick"
3528 elements of all the CUs and return 1. Otherwise, return 0. */
3529
3530 static int
3531 dwarf2_read_gdb_index
3532 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3533 get_gdb_index_contents_ftype get_gdb_index_contents,
3534 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3535 {
3536 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3537 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3538 struct dwz_file *dwz;
3539 struct objfile *objfile = dwarf2_per_objfile->objfile;
3540
3541 gdb::array_view<const gdb_byte> main_index_contents
3542 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3543
3544 if (main_index_contents.empty ())
3545 return 0;
3546
3547 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3548 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3549 use_deprecated_index_sections,
3550 main_index_contents, map.get (), &cu_list,
3551 &cu_list_elements, &types_list,
3552 &types_list_elements))
3553 return 0;
3554
3555 /* Don't use the index if it's empty. */
3556 if (map->symbol_table.empty ())
3557 return 0;
3558
3559 /* If there is a .dwz file, read it so we can get its CU list as
3560 well. */
3561 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3562 if (dwz != NULL)
3563 {
3564 struct mapped_index dwz_map;
3565 const gdb_byte *dwz_types_ignore;
3566 offset_type dwz_types_elements_ignore;
3567
3568 gdb::array_view<const gdb_byte> dwz_index_content
3569 = get_gdb_index_contents_dwz (objfile, dwz);
3570
3571 if (dwz_index_content.empty ())
3572 return 0;
3573
3574 if (!read_gdb_index_from_buffer (objfile,
3575 bfd_get_filename (dwz->dwz_bfd), 1,
3576 dwz_index_content, &dwz_map,
3577 &dwz_list, &dwz_list_elements,
3578 &dwz_types_ignore,
3579 &dwz_types_elements_ignore))
3580 {
3581 warning (_("could not read '.gdb_index' section from %s; skipping"),
3582 bfd_get_filename (dwz->dwz_bfd));
3583 return 0;
3584 }
3585 }
3586
3587 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3588 dwz_list, dwz_list_elements);
3589
3590 if (types_list_elements)
3591 {
3592 /* We can only handle a single .debug_types when we have an
3593 index. */
3594 if (dwarf2_per_objfile->types.size () != 1)
3595 return 0;
3596
3597 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
3598
3599 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3600 types_list, types_list_elements);
3601 }
3602
3603 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3604
3605 dwarf2_per_objfile->index_table = std::move (map);
3606 dwarf2_per_objfile->using_index = 1;
3607 dwarf2_per_objfile->quick_file_names_table =
3608 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3609
3610 return 1;
3611 }
3612
3613 /* die_reader_func for dw2_get_file_names. */
3614
3615 static void
3616 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3617 const gdb_byte *info_ptr,
3618 struct die_info *comp_unit_die,
3619 int has_children,
3620 void *data)
3621 {
3622 struct dwarf2_cu *cu = reader->cu;
3623 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3624 struct dwarf2_per_objfile *dwarf2_per_objfile
3625 = cu->per_cu->dwarf2_per_objfile;
3626 struct objfile *objfile = dwarf2_per_objfile->objfile;
3627 struct dwarf2_per_cu_data *lh_cu;
3628 struct attribute *attr;
3629 int i;
3630 void **slot;
3631 struct quick_file_names *qfn;
3632
3633 gdb_assert (! this_cu->is_debug_types);
3634
3635 /* Our callers never want to match partial units -- instead they
3636 will match the enclosing full CU. */
3637 if (comp_unit_die->tag == DW_TAG_partial_unit)
3638 {
3639 this_cu->v.quick->no_file_data = 1;
3640 return;
3641 }
3642
3643 lh_cu = this_cu;
3644 slot = NULL;
3645
3646 line_header_up lh;
3647 sect_offset line_offset {};
3648
3649 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3650 if (attr)
3651 {
3652 struct quick_file_names find_entry;
3653
3654 line_offset = (sect_offset) DW_UNSND (attr);
3655
3656 /* We may have already read in this line header (TU line header sharing).
3657 If we have we're done. */
3658 find_entry.hash.dwo_unit = cu->dwo_unit;
3659 find_entry.hash.line_sect_off = line_offset;
3660 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3661 &find_entry, INSERT);
3662 if (*slot != NULL)
3663 {
3664 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3665 return;
3666 }
3667
3668 lh = dwarf_decode_line_header (line_offset, cu);
3669 }
3670 if (lh == NULL)
3671 {
3672 lh_cu->v.quick->no_file_data = 1;
3673 return;
3674 }
3675
3676 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3677 qfn->hash.dwo_unit = cu->dwo_unit;
3678 qfn->hash.line_sect_off = line_offset;
3679 gdb_assert (slot != NULL);
3680 *slot = qfn;
3681
3682 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3683
3684 qfn->num_file_names = lh->file_names.size ();
3685 qfn->file_names =
3686 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3687 for (i = 0; i < lh->file_names.size (); ++i)
3688 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3689 qfn->real_names = NULL;
3690
3691 lh_cu->v.quick->file_names = qfn;
3692 }
3693
3694 /* A helper for the "quick" functions which attempts to read the line
3695 table for THIS_CU. */
3696
3697 static struct quick_file_names *
3698 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3699 {
3700 /* This should never be called for TUs. */
3701 gdb_assert (! this_cu->is_debug_types);
3702 /* Nor type unit groups. */
3703 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3704
3705 if (this_cu->v.quick->file_names != NULL)
3706 return this_cu->v.quick->file_names;
3707 /* If we know there is no line data, no point in looking again. */
3708 if (this_cu->v.quick->no_file_data)
3709 return NULL;
3710
3711 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3712
3713 if (this_cu->v.quick->no_file_data)
3714 return NULL;
3715 return this_cu->v.quick->file_names;
3716 }
3717
3718 /* A helper for the "quick" functions which computes and caches the
3719 real path for a given file name from the line table. */
3720
3721 static const char *
3722 dw2_get_real_path (struct objfile *objfile,
3723 struct quick_file_names *qfn, int index)
3724 {
3725 if (qfn->real_names == NULL)
3726 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3727 qfn->num_file_names, const char *);
3728
3729 if (qfn->real_names[index] == NULL)
3730 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3731
3732 return qfn->real_names[index];
3733 }
3734
3735 static struct symtab *
3736 dw2_find_last_source_symtab (struct objfile *objfile)
3737 {
3738 struct dwarf2_per_objfile *dwarf2_per_objfile
3739 = get_dwarf2_per_objfile (objfile);
3740 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3741 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3742
3743 if (cust == NULL)
3744 return NULL;
3745
3746 return compunit_primary_filetab (cust);
3747 }
3748
3749 /* Traversal function for dw2_forget_cached_source_info. */
3750
3751 static int
3752 dw2_free_cached_file_names (void **slot, void *info)
3753 {
3754 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3755
3756 if (file_data->real_names)
3757 {
3758 int i;
3759
3760 for (i = 0; i < file_data->num_file_names; ++i)
3761 {
3762 xfree ((void*) file_data->real_names[i]);
3763 file_data->real_names[i] = NULL;
3764 }
3765 }
3766
3767 return 1;
3768 }
3769
3770 static void
3771 dw2_forget_cached_source_info (struct objfile *objfile)
3772 {
3773 struct dwarf2_per_objfile *dwarf2_per_objfile
3774 = get_dwarf2_per_objfile (objfile);
3775
3776 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3777 dw2_free_cached_file_names, NULL);
3778 }
3779
3780 /* Helper function for dw2_map_symtabs_matching_filename that expands
3781 the symtabs and calls the iterator. */
3782
3783 static int
3784 dw2_map_expand_apply (struct objfile *objfile,
3785 struct dwarf2_per_cu_data *per_cu,
3786 const char *name, const char *real_path,
3787 gdb::function_view<bool (symtab *)> callback)
3788 {
3789 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3790
3791 /* Don't visit already-expanded CUs. */
3792 if (per_cu->v.quick->compunit_symtab)
3793 return 0;
3794
3795 /* This may expand more than one symtab, and we want to iterate over
3796 all of them. */
3797 dw2_instantiate_symtab (per_cu, false);
3798
3799 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3800 last_made, callback);
3801 }
3802
3803 /* Implementation of the map_symtabs_matching_filename method. */
3804
3805 static bool
3806 dw2_map_symtabs_matching_filename
3807 (struct objfile *objfile, const char *name, const char *real_path,
3808 gdb::function_view<bool (symtab *)> callback)
3809 {
3810 const char *name_basename = lbasename (name);
3811 struct dwarf2_per_objfile *dwarf2_per_objfile
3812 = get_dwarf2_per_objfile (objfile);
3813
3814 /* The rule is CUs specify all the files, including those used by
3815 any TU, so there's no need to scan TUs here. */
3816
3817 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3818 {
3819 /* We only need to look at symtabs not already expanded. */
3820 if (per_cu->v.quick->compunit_symtab)
3821 continue;
3822
3823 quick_file_names *file_data = dw2_get_file_names (per_cu);
3824 if (file_data == NULL)
3825 continue;
3826
3827 for (int j = 0; j < file_data->num_file_names; ++j)
3828 {
3829 const char *this_name = file_data->file_names[j];
3830 const char *this_real_name;
3831
3832 if (compare_filenames_for_search (this_name, name))
3833 {
3834 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3835 callback))
3836 return true;
3837 continue;
3838 }
3839
3840 /* Before we invoke realpath, which can get expensive when many
3841 files are involved, do a quick comparison of the basenames. */
3842 if (! basenames_may_differ
3843 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3844 continue;
3845
3846 this_real_name = dw2_get_real_path (objfile, file_data, j);
3847 if (compare_filenames_for_search (this_real_name, name))
3848 {
3849 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3850 callback))
3851 return true;
3852 continue;
3853 }
3854
3855 if (real_path != NULL)
3856 {
3857 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3858 gdb_assert (IS_ABSOLUTE_PATH (name));
3859 if (this_real_name != NULL
3860 && FILENAME_CMP (real_path, this_real_name) == 0)
3861 {
3862 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3863 callback))
3864 return true;
3865 continue;
3866 }
3867 }
3868 }
3869 }
3870
3871 return false;
3872 }
3873
3874 /* Struct used to manage iterating over all CUs looking for a symbol. */
3875
3876 struct dw2_symtab_iterator
3877 {
3878 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3879 struct dwarf2_per_objfile *dwarf2_per_objfile;
3880 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3881 int want_specific_block;
3882 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3883 Unused if !WANT_SPECIFIC_BLOCK. */
3884 int block_index;
3885 /* The kind of symbol we're looking for. */
3886 domain_enum domain;
3887 /* The list of CUs from the index entry of the symbol,
3888 or NULL if not found. */
3889 offset_type *vec;
3890 /* The next element in VEC to look at. */
3891 int next;
3892 /* The number of elements in VEC, or zero if there is no match. */
3893 int length;
3894 /* Have we seen a global version of the symbol?
3895 If so we can ignore all further global instances.
3896 This is to work around gold/15646, inefficient gold-generated
3897 indices. */
3898 int global_seen;
3899 };
3900
3901 /* Initialize the index symtab iterator ITER.
3902 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3903 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3904
3905 static void
3906 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3907 struct dwarf2_per_objfile *dwarf2_per_objfile,
3908 int want_specific_block,
3909 int block_index,
3910 domain_enum domain,
3911 const char *name)
3912 {
3913 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3914 iter->want_specific_block = want_specific_block;
3915 iter->block_index = block_index;
3916 iter->domain = domain;
3917 iter->next = 0;
3918 iter->global_seen = 0;
3919
3920 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3921
3922 /* index is NULL if OBJF_READNOW. */
3923 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3924 iter->length = MAYBE_SWAP (*iter->vec);
3925 else
3926 {
3927 iter->vec = NULL;
3928 iter->length = 0;
3929 }
3930 }
3931
3932 /* Return the next matching CU or NULL if there are no more. */
3933
3934 static struct dwarf2_per_cu_data *
3935 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3936 {
3937 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3938
3939 for ( ; iter->next < iter->length; ++iter->next)
3940 {
3941 offset_type cu_index_and_attrs =
3942 MAYBE_SWAP (iter->vec[iter->next + 1]);
3943 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3944 int want_static = iter->block_index != GLOBAL_BLOCK;
3945 /* This value is only valid for index versions >= 7. */
3946 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3947 gdb_index_symbol_kind symbol_kind =
3948 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3949 /* Only check the symbol attributes if they're present.
3950 Indices prior to version 7 don't record them,
3951 and indices >= 7 may elide them for certain symbols
3952 (gold does this). */
3953 int attrs_valid =
3954 (dwarf2_per_objfile->index_table->version >= 7
3955 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3956
3957 /* Don't crash on bad data. */
3958 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3959 + dwarf2_per_objfile->all_type_units.size ()))
3960 {
3961 complaint (_(".gdb_index entry has bad CU index"
3962 " [in module %s]"),
3963 objfile_name (dwarf2_per_objfile->objfile));
3964 continue;
3965 }
3966
3967 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3968
3969 /* Skip if already read in. */
3970 if (per_cu->v.quick->compunit_symtab)
3971 continue;
3972
3973 /* Check static vs global. */
3974 if (attrs_valid)
3975 {
3976 if (iter->want_specific_block
3977 && want_static != is_static)
3978 continue;
3979 /* Work around gold/15646. */
3980 if (!is_static && iter->global_seen)
3981 continue;
3982 if (!is_static)
3983 iter->global_seen = 1;
3984 }
3985
3986 /* Only check the symbol's kind if it has one. */
3987 if (attrs_valid)
3988 {
3989 switch (iter->domain)
3990 {
3991 case VAR_DOMAIN:
3992 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3993 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3994 /* Some types are also in VAR_DOMAIN. */
3995 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3996 continue;
3997 break;
3998 case STRUCT_DOMAIN:
3999 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4000 continue;
4001 break;
4002 case LABEL_DOMAIN:
4003 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4004 continue;
4005 break;
4006 default:
4007 break;
4008 }
4009 }
4010
4011 ++iter->next;
4012 return per_cu;
4013 }
4014
4015 return NULL;
4016 }
4017
4018 static struct compunit_symtab *
4019 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4020 const char *name, domain_enum domain)
4021 {
4022 struct compunit_symtab *stab_best = NULL;
4023 struct dwarf2_per_objfile *dwarf2_per_objfile
4024 = get_dwarf2_per_objfile (objfile);
4025
4026 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4027
4028 struct dw2_symtab_iterator iter;
4029 struct dwarf2_per_cu_data *per_cu;
4030
4031 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4032
4033 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4034 {
4035 struct symbol *sym, *with_opaque = NULL;
4036 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4037 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4038 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4039
4040 sym = block_find_symbol (block, name, domain,
4041 block_find_non_opaque_type_preferred,
4042 &with_opaque);
4043
4044 /* Some caution must be observed with overloaded functions
4045 and methods, since the index will not contain any overload
4046 information (but NAME might contain it). */
4047
4048 if (sym != NULL
4049 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4050 return stab;
4051 if (with_opaque != NULL
4052 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4053 stab_best = stab;
4054
4055 /* Keep looking through other CUs. */
4056 }
4057
4058 return stab_best;
4059 }
4060
4061 static void
4062 dw2_print_stats (struct objfile *objfile)
4063 {
4064 struct dwarf2_per_objfile *dwarf2_per_objfile
4065 = get_dwarf2_per_objfile (objfile);
4066 int total = (dwarf2_per_objfile->all_comp_units.size ()
4067 + dwarf2_per_objfile->all_type_units.size ());
4068 int count = 0;
4069
4070 for (int i = 0; i < total; ++i)
4071 {
4072 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4073
4074 if (!per_cu->v.quick->compunit_symtab)
4075 ++count;
4076 }
4077 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4078 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4079 }
4080
4081 /* This dumps minimal information about the index.
4082 It is called via "mt print objfiles".
4083 One use is to verify .gdb_index has been loaded by the
4084 gdb.dwarf2/gdb-index.exp testcase. */
4085
4086 static void
4087 dw2_dump (struct objfile *objfile)
4088 {
4089 struct dwarf2_per_objfile *dwarf2_per_objfile
4090 = get_dwarf2_per_objfile (objfile);
4091
4092 gdb_assert (dwarf2_per_objfile->using_index);
4093 printf_filtered (".gdb_index:");
4094 if (dwarf2_per_objfile->index_table != NULL)
4095 {
4096 printf_filtered (" version %d\n",
4097 dwarf2_per_objfile->index_table->version);
4098 }
4099 else
4100 printf_filtered (" faked for \"readnow\"\n");
4101 printf_filtered ("\n");
4102 }
4103
4104 static void
4105 dw2_expand_symtabs_for_function (struct objfile *objfile,
4106 const char *func_name)
4107 {
4108 struct dwarf2_per_objfile *dwarf2_per_objfile
4109 = get_dwarf2_per_objfile (objfile);
4110
4111 struct dw2_symtab_iterator iter;
4112 struct dwarf2_per_cu_data *per_cu;
4113
4114 /* Note: It doesn't matter what we pass for block_index here. */
4115 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4116 func_name);
4117
4118 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4119 dw2_instantiate_symtab (per_cu, false);
4120
4121 }
4122
4123 static void
4124 dw2_expand_all_symtabs (struct objfile *objfile)
4125 {
4126 struct dwarf2_per_objfile *dwarf2_per_objfile
4127 = get_dwarf2_per_objfile (objfile);
4128 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4129 + dwarf2_per_objfile->all_type_units.size ());
4130
4131 for (int i = 0; i < total_units; ++i)
4132 {
4133 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4134
4135 /* We don't want to directly expand a partial CU, because if we
4136 read it with the wrong language, then assertion failures can
4137 be triggered later on. See PR symtab/23010. So, tell
4138 dw2_instantiate_symtab to skip partial CUs -- any important
4139 partial CU will be read via DW_TAG_imported_unit anyway. */
4140 dw2_instantiate_symtab (per_cu, true);
4141 }
4142 }
4143
4144 static void
4145 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4146 const char *fullname)
4147 {
4148 struct dwarf2_per_objfile *dwarf2_per_objfile
4149 = get_dwarf2_per_objfile (objfile);
4150
4151 /* We don't need to consider type units here.
4152 This is only called for examining code, e.g. expand_line_sal.
4153 There can be an order of magnitude (or more) more type units
4154 than comp units, and we avoid them if we can. */
4155
4156 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4157 {
4158 /* We only need to look at symtabs not already expanded. */
4159 if (per_cu->v.quick->compunit_symtab)
4160 continue;
4161
4162 quick_file_names *file_data = dw2_get_file_names (per_cu);
4163 if (file_data == NULL)
4164 continue;
4165
4166 for (int j = 0; j < file_data->num_file_names; ++j)
4167 {
4168 const char *this_fullname = file_data->file_names[j];
4169
4170 if (filename_cmp (this_fullname, fullname) == 0)
4171 {
4172 dw2_instantiate_symtab (per_cu, false);
4173 break;
4174 }
4175 }
4176 }
4177 }
4178
4179 static void
4180 dw2_map_matching_symbols (struct objfile *objfile,
4181 const char * name, domain_enum domain,
4182 int global,
4183 int (*callback) (const struct block *,
4184 struct symbol *, void *),
4185 void *data, symbol_name_match_type match,
4186 symbol_compare_ftype *ordered_compare)
4187 {
4188 /* Currently unimplemented; used for Ada. The function can be called if the
4189 current language is Ada for a non-Ada objfile using GNU index. As Ada
4190 does not look for non-Ada symbols this function should just return. */
4191 }
4192
4193 /* Symbol name matcher for .gdb_index names.
4194
4195 Symbol names in .gdb_index have a few particularities:
4196
4197 - There's no indication of which is the language of each symbol.
4198
4199 Since each language has its own symbol name matching algorithm,
4200 and we don't know which language is the right one, we must match
4201 each symbol against all languages. This would be a potential
4202 performance problem if it were not mitigated by the
4203 mapped_index::name_components lookup table, which significantly
4204 reduces the number of times we need to call into this matcher,
4205 making it a non-issue.
4206
4207 - Symbol names in the index have no overload (parameter)
4208 information. I.e., in C++, "foo(int)" and "foo(long)" both
4209 appear as "foo" in the index, for example.
4210
4211 This means that the lookup names passed to the symbol name
4212 matcher functions must have no parameter information either
4213 because (e.g.) symbol search name "foo" does not match
4214 lookup-name "foo(int)" [while swapping search name for lookup
4215 name would match].
4216 */
4217 class gdb_index_symbol_name_matcher
4218 {
4219 public:
4220 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4221 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4222
4223 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4224 Returns true if any matcher matches. */
4225 bool matches (const char *symbol_name);
4226
4227 private:
4228 /* A reference to the lookup name we're matching against. */
4229 const lookup_name_info &m_lookup_name;
4230
4231 /* A vector holding all the different symbol name matchers, for all
4232 languages. */
4233 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4234 };
4235
4236 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4237 (const lookup_name_info &lookup_name)
4238 : m_lookup_name (lookup_name)
4239 {
4240 /* Prepare the vector of comparison functions upfront, to avoid
4241 doing the same work for each symbol. Care is taken to avoid
4242 matching with the same matcher more than once if/when multiple
4243 languages use the same matcher function. */
4244 auto &matchers = m_symbol_name_matcher_funcs;
4245 matchers.reserve (nr_languages);
4246
4247 matchers.push_back (default_symbol_name_matcher);
4248
4249 for (int i = 0; i < nr_languages; i++)
4250 {
4251 const language_defn *lang = language_def ((enum language) i);
4252 symbol_name_matcher_ftype *name_matcher
4253 = get_symbol_name_matcher (lang, m_lookup_name);
4254
4255 /* Don't insert the same comparison routine more than once.
4256 Note that we do this linear walk instead of a seemingly
4257 cheaper sorted insert, or use a std::set or something like
4258 that, because relative order of function addresses is not
4259 stable. This is not a problem in practice because the number
4260 of supported languages is low, and the cost here is tiny
4261 compared to the number of searches we'll do afterwards using
4262 this object. */
4263 if (name_matcher != default_symbol_name_matcher
4264 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4265 == matchers.end ()))
4266 matchers.push_back (name_matcher);
4267 }
4268 }
4269
4270 bool
4271 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4272 {
4273 for (auto matches_name : m_symbol_name_matcher_funcs)
4274 if (matches_name (symbol_name, m_lookup_name, NULL))
4275 return true;
4276
4277 return false;
4278 }
4279
4280 /* Starting from a search name, return the string that finds the upper
4281 bound of all strings that start with SEARCH_NAME in a sorted name
4282 list. Returns the empty string to indicate that the upper bound is
4283 the end of the list. */
4284
4285 static std::string
4286 make_sort_after_prefix_name (const char *search_name)
4287 {
4288 /* When looking to complete "func", we find the upper bound of all
4289 symbols that start with "func" by looking for where we'd insert
4290 the closest string that would follow "func" in lexicographical
4291 order. Usually, that's "func"-with-last-character-incremented,
4292 i.e. "fund". Mind non-ASCII characters, though. Usually those
4293 will be UTF-8 multi-byte sequences, but we can't be certain.
4294 Especially mind the 0xff character, which is a valid character in
4295 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4296 rule out compilers allowing it in identifiers. Note that
4297 conveniently, strcmp/strcasecmp are specified to compare
4298 characters interpreted as unsigned char. So what we do is treat
4299 the whole string as a base 256 number composed of a sequence of
4300 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4301 to 0, and carries 1 to the following more-significant position.
4302 If the very first character in SEARCH_NAME ends up incremented
4303 and carries/overflows, then the upper bound is the end of the
4304 list. The string after the empty string is also the empty
4305 string.
4306
4307 Some examples of this operation:
4308
4309 SEARCH_NAME => "+1" RESULT
4310
4311 "abc" => "abd"
4312 "ab\xff" => "ac"
4313 "\xff" "a" "\xff" => "\xff" "b"
4314 "\xff" => ""
4315 "\xff\xff" => ""
4316 "" => ""
4317
4318 Then, with these symbols for example:
4319
4320 func
4321 func1
4322 fund
4323
4324 completing "func" looks for symbols between "func" and
4325 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4326 which finds "func" and "func1", but not "fund".
4327
4328 And with:
4329
4330 funcÿ (Latin1 'ÿ' [0xff])
4331 funcÿ1
4332 fund
4333
4334 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4335 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4336
4337 And with:
4338
4339 ÿÿ (Latin1 'ÿ' [0xff])
4340 ÿÿ1
4341
4342 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4343 the end of the list.
4344 */
4345 std::string after = search_name;
4346 while (!after.empty () && (unsigned char) after.back () == 0xff)
4347 after.pop_back ();
4348 if (!after.empty ())
4349 after.back () = (unsigned char) after.back () + 1;
4350 return after;
4351 }
4352
4353 /* See declaration. */
4354
4355 std::pair<std::vector<name_component>::const_iterator,
4356 std::vector<name_component>::const_iterator>
4357 mapped_index_base::find_name_components_bounds
4358 (const lookup_name_info &lookup_name_without_params) const
4359 {
4360 auto *name_cmp
4361 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4362
4363 const char *cplus
4364 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4365
4366 /* Comparison function object for lower_bound that matches against a
4367 given symbol name. */
4368 auto lookup_compare_lower = [&] (const name_component &elem,
4369 const char *name)
4370 {
4371 const char *elem_qualified = this->symbol_name_at (elem.idx);
4372 const char *elem_name = elem_qualified + elem.name_offset;
4373 return name_cmp (elem_name, name) < 0;
4374 };
4375
4376 /* Comparison function object for upper_bound that matches against a
4377 given symbol name. */
4378 auto lookup_compare_upper = [&] (const char *name,
4379 const name_component &elem)
4380 {
4381 const char *elem_qualified = this->symbol_name_at (elem.idx);
4382 const char *elem_name = elem_qualified + elem.name_offset;
4383 return name_cmp (name, elem_name) < 0;
4384 };
4385
4386 auto begin = this->name_components.begin ();
4387 auto end = this->name_components.end ();
4388
4389 /* Find the lower bound. */
4390 auto lower = [&] ()
4391 {
4392 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4393 return begin;
4394 else
4395 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4396 } ();
4397
4398 /* Find the upper bound. */
4399 auto upper = [&] ()
4400 {
4401 if (lookup_name_without_params.completion_mode ())
4402 {
4403 /* In completion mode, we want UPPER to point past all
4404 symbols names that have the same prefix. I.e., with
4405 these symbols, and completing "func":
4406
4407 function << lower bound
4408 function1
4409 other_function << upper bound
4410
4411 We find the upper bound by looking for the insertion
4412 point of "func"-with-last-character-incremented,
4413 i.e. "fund". */
4414 std::string after = make_sort_after_prefix_name (cplus);
4415 if (after.empty ())
4416 return end;
4417 return std::lower_bound (lower, end, after.c_str (),
4418 lookup_compare_lower);
4419 }
4420 else
4421 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4422 } ();
4423
4424 return {lower, upper};
4425 }
4426
4427 /* See declaration. */
4428
4429 void
4430 mapped_index_base::build_name_components ()
4431 {
4432 if (!this->name_components.empty ())
4433 return;
4434
4435 this->name_components_casing = case_sensitivity;
4436 auto *name_cmp
4437 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4438
4439 /* The code below only knows how to break apart components of C++
4440 symbol names (and other languages that use '::' as
4441 namespace/module separator). If we add support for wild matching
4442 to some language that uses some other operator (E.g., Ada, Go and
4443 D use '.'), then we'll need to try splitting the symbol name
4444 according to that language too. Note that Ada does support wild
4445 matching, but doesn't currently support .gdb_index. */
4446 auto count = this->symbol_name_count ();
4447 for (offset_type idx = 0; idx < count; idx++)
4448 {
4449 if (this->symbol_name_slot_invalid (idx))
4450 continue;
4451
4452 const char *name = this->symbol_name_at (idx);
4453
4454 /* Add each name component to the name component table. */
4455 unsigned int previous_len = 0;
4456 for (unsigned int current_len = cp_find_first_component (name);
4457 name[current_len] != '\0';
4458 current_len += cp_find_first_component (name + current_len))
4459 {
4460 gdb_assert (name[current_len] == ':');
4461 this->name_components.push_back ({previous_len, idx});
4462 /* Skip the '::'. */
4463 current_len += 2;
4464 previous_len = current_len;
4465 }
4466 this->name_components.push_back ({previous_len, idx});
4467 }
4468
4469 /* Sort name_components elements by name. */
4470 auto name_comp_compare = [&] (const name_component &left,
4471 const name_component &right)
4472 {
4473 const char *left_qualified = this->symbol_name_at (left.idx);
4474 const char *right_qualified = this->symbol_name_at (right.idx);
4475
4476 const char *left_name = left_qualified + left.name_offset;
4477 const char *right_name = right_qualified + right.name_offset;
4478
4479 return name_cmp (left_name, right_name) < 0;
4480 };
4481
4482 std::sort (this->name_components.begin (),
4483 this->name_components.end (),
4484 name_comp_compare);
4485 }
4486
4487 /* Helper for dw2_expand_symtabs_matching that works with a
4488 mapped_index_base instead of the containing objfile. This is split
4489 to a separate function in order to be able to unit test the
4490 name_components matching using a mock mapped_index_base. For each
4491 symbol name that matches, calls MATCH_CALLBACK, passing it the
4492 symbol's index in the mapped_index_base symbol table. */
4493
4494 static void
4495 dw2_expand_symtabs_matching_symbol
4496 (mapped_index_base &index,
4497 const lookup_name_info &lookup_name_in,
4498 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4499 enum search_domain kind,
4500 gdb::function_view<void (offset_type)> match_callback)
4501 {
4502 lookup_name_info lookup_name_without_params
4503 = lookup_name_in.make_ignore_params ();
4504 gdb_index_symbol_name_matcher lookup_name_matcher
4505 (lookup_name_without_params);
4506
4507 /* Build the symbol name component sorted vector, if we haven't
4508 yet. */
4509 index.build_name_components ();
4510
4511 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4512
4513 /* Now for each symbol name in range, check to see if we have a name
4514 match, and if so, call the MATCH_CALLBACK callback. */
4515
4516 /* The same symbol may appear more than once in the range though.
4517 E.g., if we're looking for symbols that complete "w", and we have
4518 a symbol named "w1::w2", we'll find the two name components for
4519 that same symbol in the range. To be sure we only call the
4520 callback once per symbol, we first collect the symbol name
4521 indexes that matched in a temporary vector and ignore
4522 duplicates. */
4523 std::vector<offset_type> matches;
4524 matches.reserve (std::distance (bounds.first, bounds.second));
4525
4526 for (; bounds.first != bounds.second; ++bounds.first)
4527 {
4528 const char *qualified = index.symbol_name_at (bounds.first->idx);
4529
4530 if (!lookup_name_matcher.matches (qualified)
4531 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4532 continue;
4533
4534 matches.push_back (bounds.first->idx);
4535 }
4536
4537 std::sort (matches.begin (), matches.end ());
4538
4539 /* Finally call the callback, once per match. */
4540 ULONGEST prev = -1;
4541 for (offset_type idx : matches)
4542 {
4543 if (prev != idx)
4544 {
4545 match_callback (idx);
4546 prev = idx;
4547 }
4548 }
4549
4550 /* Above we use a type wider than idx's for 'prev', since 0 and
4551 (offset_type)-1 are both possible values. */
4552 static_assert (sizeof (prev) > sizeof (offset_type), "");
4553 }
4554
4555 #if GDB_SELF_TEST
4556
4557 namespace selftests { namespace dw2_expand_symtabs_matching {
4558
4559 /* A mock .gdb_index/.debug_names-like name index table, enough to
4560 exercise dw2_expand_symtabs_matching_symbol, which works with the
4561 mapped_index_base interface. Builds an index from the symbol list
4562 passed as parameter to the constructor. */
4563 class mock_mapped_index : public mapped_index_base
4564 {
4565 public:
4566 mock_mapped_index (gdb::array_view<const char *> symbols)
4567 : m_symbol_table (symbols)
4568 {}
4569
4570 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4571
4572 /* Return the number of names in the symbol table. */
4573 size_t symbol_name_count () const override
4574 {
4575 return m_symbol_table.size ();
4576 }
4577
4578 /* Get the name of the symbol at IDX in the symbol table. */
4579 const char *symbol_name_at (offset_type idx) const override
4580 {
4581 return m_symbol_table[idx];
4582 }
4583
4584 private:
4585 gdb::array_view<const char *> m_symbol_table;
4586 };
4587
4588 /* Convenience function that converts a NULL pointer to a "<null>"
4589 string, to pass to print routines. */
4590
4591 static const char *
4592 string_or_null (const char *str)
4593 {
4594 return str != NULL ? str : "<null>";
4595 }
4596
4597 /* Check if a lookup_name_info built from
4598 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4599 index. EXPECTED_LIST is the list of expected matches, in expected
4600 matching order. If no match expected, then an empty list is
4601 specified. Returns true on success. On failure prints a warning
4602 indicating the file:line that failed, and returns false. */
4603
4604 static bool
4605 check_match (const char *file, int line,
4606 mock_mapped_index &mock_index,
4607 const char *name, symbol_name_match_type match_type,
4608 bool completion_mode,
4609 std::initializer_list<const char *> expected_list)
4610 {
4611 lookup_name_info lookup_name (name, match_type, completion_mode);
4612
4613 bool matched = true;
4614
4615 auto mismatch = [&] (const char *expected_str,
4616 const char *got)
4617 {
4618 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4619 "expected=\"%s\", got=\"%s\"\n"),
4620 file, line,
4621 (match_type == symbol_name_match_type::FULL
4622 ? "FULL" : "WILD"),
4623 name, string_or_null (expected_str), string_or_null (got));
4624 matched = false;
4625 };
4626
4627 auto expected_it = expected_list.begin ();
4628 auto expected_end = expected_list.end ();
4629
4630 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4631 NULL, ALL_DOMAIN,
4632 [&] (offset_type idx)
4633 {
4634 const char *matched_name = mock_index.symbol_name_at (idx);
4635 const char *expected_str
4636 = expected_it == expected_end ? NULL : *expected_it++;
4637
4638 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4639 mismatch (expected_str, matched_name);
4640 });
4641
4642 const char *expected_str
4643 = expected_it == expected_end ? NULL : *expected_it++;
4644 if (expected_str != NULL)
4645 mismatch (expected_str, NULL);
4646
4647 return matched;
4648 }
4649
4650 /* The symbols added to the mock mapped_index for testing (in
4651 canonical form). */
4652 static const char *test_symbols[] = {
4653 "function",
4654 "std::bar",
4655 "std::zfunction",
4656 "std::zfunction2",
4657 "w1::w2",
4658 "ns::foo<char*>",
4659 "ns::foo<int>",
4660 "ns::foo<long>",
4661 "ns2::tmpl<int>::foo2",
4662 "(anonymous namespace)::A::B::C",
4663
4664 /* These are used to check that the increment-last-char in the
4665 matching algorithm for completion doesn't match "t1_fund" when
4666 completing "t1_func". */
4667 "t1_func",
4668 "t1_func1",
4669 "t1_fund",
4670 "t1_fund1",
4671
4672 /* A UTF-8 name with multi-byte sequences to make sure that
4673 cp-name-parser understands this as a single identifier ("função"
4674 is "function" in PT). */
4675 u8"u8função",
4676
4677 /* \377 (0xff) is Latin1 'ÿ'. */
4678 "yfunc\377",
4679
4680 /* \377 (0xff) is Latin1 'ÿ'. */
4681 "\377",
4682 "\377\377123",
4683
4684 /* A name with all sorts of complications. Starts with "z" to make
4685 it easier for the completion tests below. */
4686 #define Z_SYM_NAME \
4687 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4688 "::tuple<(anonymous namespace)::ui*, " \
4689 "std::default_delete<(anonymous namespace)::ui>, void>"
4690
4691 Z_SYM_NAME
4692 };
4693
4694 /* Returns true if the mapped_index_base::find_name_component_bounds
4695 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4696 in completion mode. */
4697
4698 static bool
4699 check_find_bounds_finds (mapped_index_base &index,
4700 const char *search_name,
4701 gdb::array_view<const char *> expected_syms)
4702 {
4703 lookup_name_info lookup_name (search_name,
4704 symbol_name_match_type::FULL, true);
4705
4706 auto bounds = index.find_name_components_bounds (lookup_name);
4707
4708 size_t distance = std::distance (bounds.first, bounds.second);
4709 if (distance != expected_syms.size ())
4710 return false;
4711
4712 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4713 {
4714 auto nc_elem = bounds.first + exp_elem;
4715 const char *qualified = index.symbol_name_at (nc_elem->idx);
4716 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4717 return false;
4718 }
4719
4720 return true;
4721 }
4722
4723 /* Test the lower-level mapped_index::find_name_component_bounds
4724 method. */
4725
4726 static void
4727 test_mapped_index_find_name_component_bounds ()
4728 {
4729 mock_mapped_index mock_index (test_symbols);
4730
4731 mock_index.build_name_components ();
4732
4733 /* Test the lower-level mapped_index::find_name_component_bounds
4734 method in completion mode. */
4735 {
4736 static const char *expected_syms[] = {
4737 "t1_func",
4738 "t1_func1",
4739 };
4740
4741 SELF_CHECK (check_find_bounds_finds (mock_index,
4742 "t1_func", expected_syms));
4743 }
4744
4745 /* Check that the increment-last-char in the name matching algorithm
4746 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4747 {
4748 static const char *expected_syms1[] = {
4749 "\377",
4750 "\377\377123",
4751 };
4752 SELF_CHECK (check_find_bounds_finds (mock_index,
4753 "\377", expected_syms1));
4754
4755 static const char *expected_syms2[] = {
4756 "\377\377123",
4757 };
4758 SELF_CHECK (check_find_bounds_finds (mock_index,
4759 "\377\377", expected_syms2));
4760 }
4761 }
4762
4763 /* Test dw2_expand_symtabs_matching_symbol. */
4764
4765 static void
4766 test_dw2_expand_symtabs_matching_symbol ()
4767 {
4768 mock_mapped_index mock_index (test_symbols);
4769
4770 /* We let all tests run until the end even if some fails, for debug
4771 convenience. */
4772 bool any_mismatch = false;
4773
4774 /* Create the expected symbols list (an initializer_list). Needed
4775 because lists have commas, and we need to pass them to CHECK,
4776 which is a macro. */
4777 #define EXPECT(...) { __VA_ARGS__ }
4778
4779 /* Wrapper for check_match that passes down the current
4780 __FILE__/__LINE__. */
4781 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4782 any_mismatch |= !check_match (__FILE__, __LINE__, \
4783 mock_index, \
4784 NAME, MATCH_TYPE, COMPLETION_MODE, \
4785 EXPECTED_LIST)
4786
4787 /* Identity checks. */
4788 for (const char *sym : test_symbols)
4789 {
4790 /* Should be able to match all existing symbols. */
4791 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4792 EXPECT (sym));
4793
4794 /* Should be able to match all existing symbols with
4795 parameters. */
4796 std::string with_params = std::string (sym) + "(int)";
4797 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4798 EXPECT (sym));
4799
4800 /* Should be able to match all existing symbols with
4801 parameters and qualifiers. */
4802 with_params = std::string (sym) + " ( int ) const";
4803 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4804 EXPECT (sym));
4805
4806 /* This should really find sym, but cp-name-parser.y doesn't
4807 know about lvalue/rvalue qualifiers yet. */
4808 with_params = std::string (sym) + " ( int ) &&";
4809 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4810 {});
4811 }
4812
4813 /* Check that the name matching algorithm for completion doesn't get
4814 confused with Latin1 'ÿ' / 0xff. */
4815 {
4816 static const char str[] = "\377";
4817 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4818 EXPECT ("\377", "\377\377123"));
4819 }
4820
4821 /* Check that the increment-last-char in the matching algorithm for
4822 completion doesn't match "t1_fund" when completing "t1_func". */
4823 {
4824 static const char str[] = "t1_func";
4825 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4826 EXPECT ("t1_func", "t1_func1"));
4827 }
4828
4829 /* Check that completion mode works at each prefix of the expected
4830 symbol name. */
4831 {
4832 static const char str[] = "function(int)";
4833 size_t len = strlen (str);
4834 std::string lookup;
4835
4836 for (size_t i = 1; i < len; i++)
4837 {
4838 lookup.assign (str, i);
4839 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4840 EXPECT ("function"));
4841 }
4842 }
4843
4844 /* While "w" is a prefix of both components, the match function
4845 should still only be called once. */
4846 {
4847 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4848 EXPECT ("w1::w2"));
4849 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4850 EXPECT ("w1::w2"));
4851 }
4852
4853 /* Same, with a "complicated" symbol. */
4854 {
4855 static const char str[] = Z_SYM_NAME;
4856 size_t len = strlen (str);
4857 std::string lookup;
4858
4859 for (size_t i = 1; i < len; i++)
4860 {
4861 lookup.assign (str, i);
4862 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4863 EXPECT (Z_SYM_NAME));
4864 }
4865 }
4866
4867 /* In FULL mode, an incomplete symbol doesn't match. */
4868 {
4869 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4870 {});
4871 }
4872
4873 /* A complete symbol with parameters matches any overload, since the
4874 index has no overload info. */
4875 {
4876 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4877 EXPECT ("std::zfunction", "std::zfunction2"));
4878 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4879 EXPECT ("std::zfunction", "std::zfunction2"));
4880 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4881 EXPECT ("std::zfunction", "std::zfunction2"));
4882 }
4883
4884 /* Check that whitespace is ignored appropriately. A symbol with a
4885 template argument list. */
4886 {
4887 static const char expected[] = "ns::foo<int>";
4888 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4889 EXPECT (expected));
4890 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4891 EXPECT (expected));
4892 }
4893
4894 /* Check that whitespace is ignored appropriately. A symbol with a
4895 template argument list that includes a pointer. */
4896 {
4897 static const char expected[] = "ns::foo<char*>";
4898 /* Try both completion and non-completion modes. */
4899 static const bool completion_mode[2] = {false, true};
4900 for (size_t i = 0; i < 2; i++)
4901 {
4902 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4903 completion_mode[i], EXPECT (expected));
4904 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4905 completion_mode[i], EXPECT (expected));
4906
4907 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4908 completion_mode[i], EXPECT (expected));
4909 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4910 completion_mode[i], EXPECT (expected));
4911 }
4912 }
4913
4914 {
4915 /* Check method qualifiers are ignored. */
4916 static const char expected[] = "ns::foo<char*>";
4917 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4918 symbol_name_match_type::FULL, true, EXPECT (expected));
4919 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4920 symbol_name_match_type::FULL, true, EXPECT (expected));
4921 CHECK_MATCH ("foo < char * > ( int ) const",
4922 symbol_name_match_type::WILD, true, EXPECT (expected));
4923 CHECK_MATCH ("foo < char * > ( int ) &&",
4924 symbol_name_match_type::WILD, true, EXPECT (expected));
4925 }
4926
4927 /* Test lookup names that don't match anything. */
4928 {
4929 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4930 {});
4931
4932 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4933 {});
4934 }
4935
4936 /* Some wild matching tests, exercising "(anonymous namespace)",
4937 which should not be confused with a parameter list. */
4938 {
4939 static const char *syms[] = {
4940 "A::B::C",
4941 "B::C",
4942 "C",
4943 "A :: B :: C ( int )",
4944 "B :: C ( int )",
4945 "C ( int )",
4946 };
4947
4948 for (const char *s : syms)
4949 {
4950 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4951 EXPECT ("(anonymous namespace)::A::B::C"));
4952 }
4953 }
4954
4955 {
4956 static const char expected[] = "ns2::tmpl<int>::foo2";
4957 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4958 EXPECT (expected));
4959 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4960 EXPECT (expected));
4961 }
4962
4963 SELF_CHECK (!any_mismatch);
4964
4965 #undef EXPECT
4966 #undef CHECK_MATCH
4967 }
4968
4969 static void
4970 run_test ()
4971 {
4972 test_mapped_index_find_name_component_bounds ();
4973 test_dw2_expand_symtabs_matching_symbol ();
4974 }
4975
4976 }} // namespace selftests::dw2_expand_symtabs_matching
4977
4978 #endif /* GDB_SELF_TEST */
4979
4980 /* If FILE_MATCHER is NULL or if PER_CU has
4981 dwarf2_per_cu_quick_data::MARK set (see
4982 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4983 EXPANSION_NOTIFY on it. */
4984
4985 static void
4986 dw2_expand_symtabs_matching_one
4987 (struct dwarf2_per_cu_data *per_cu,
4988 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4989 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4990 {
4991 if (file_matcher == NULL || per_cu->v.quick->mark)
4992 {
4993 bool symtab_was_null
4994 = (per_cu->v.quick->compunit_symtab == NULL);
4995
4996 dw2_instantiate_symtab (per_cu, false);
4997
4998 if (expansion_notify != NULL
4999 && symtab_was_null
5000 && per_cu->v.quick->compunit_symtab != NULL)
5001 expansion_notify (per_cu->v.quick->compunit_symtab);
5002 }
5003 }
5004
5005 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5006 matched, to expand corresponding CUs that were marked. IDX is the
5007 index of the symbol name that matched. */
5008
5009 static void
5010 dw2_expand_marked_cus
5011 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5012 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5013 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5014 search_domain kind)
5015 {
5016 offset_type *vec, vec_len, vec_idx;
5017 bool global_seen = false;
5018 mapped_index &index = *dwarf2_per_objfile->index_table;
5019
5020 vec = (offset_type *) (index.constant_pool
5021 + MAYBE_SWAP (index.symbol_table[idx].vec));
5022 vec_len = MAYBE_SWAP (vec[0]);
5023 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5024 {
5025 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5026 /* This value is only valid for index versions >= 7. */
5027 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5028 gdb_index_symbol_kind symbol_kind =
5029 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5030 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5031 /* Only check the symbol attributes if they're present.
5032 Indices prior to version 7 don't record them,
5033 and indices >= 7 may elide them for certain symbols
5034 (gold does this). */
5035 int attrs_valid =
5036 (index.version >= 7
5037 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5038
5039 /* Work around gold/15646. */
5040 if (attrs_valid)
5041 {
5042 if (!is_static && global_seen)
5043 continue;
5044 if (!is_static)
5045 global_seen = true;
5046 }
5047
5048 /* Only check the symbol's kind if it has one. */
5049 if (attrs_valid)
5050 {
5051 switch (kind)
5052 {
5053 case VARIABLES_DOMAIN:
5054 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5055 continue;
5056 break;
5057 case FUNCTIONS_DOMAIN:
5058 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5059 continue;
5060 break;
5061 case TYPES_DOMAIN:
5062 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5063 continue;
5064 break;
5065 default:
5066 break;
5067 }
5068 }
5069
5070 /* Don't crash on bad data. */
5071 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5072 + dwarf2_per_objfile->all_type_units.size ()))
5073 {
5074 complaint (_(".gdb_index entry has bad CU index"
5075 " [in module %s]"),
5076 objfile_name (dwarf2_per_objfile->objfile));
5077 continue;
5078 }
5079
5080 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5081 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5082 expansion_notify);
5083 }
5084 }
5085
5086 /* If FILE_MATCHER is non-NULL, set all the
5087 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5088 that match FILE_MATCHER. */
5089
5090 static void
5091 dw_expand_symtabs_matching_file_matcher
5092 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5093 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5094 {
5095 if (file_matcher == NULL)
5096 return;
5097
5098 objfile *const objfile = dwarf2_per_objfile->objfile;
5099
5100 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5101 htab_eq_pointer,
5102 NULL, xcalloc, xfree));
5103 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5104 htab_eq_pointer,
5105 NULL, xcalloc, xfree));
5106
5107 /* The rule is CUs specify all the files, including those used by
5108 any TU, so there's no need to scan TUs here. */
5109
5110 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5111 {
5112 QUIT;
5113
5114 per_cu->v.quick->mark = 0;
5115
5116 /* We only need to look at symtabs not already expanded. */
5117 if (per_cu->v.quick->compunit_symtab)
5118 continue;
5119
5120 quick_file_names *file_data = dw2_get_file_names (per_cu);
5121 if (file_data == NULL)
5122 continue;
5123
5124 if (htab_find (visited_not_found.get (), file_data) != NULL)
5125 continue;
5126 else if (htab_find (visited_found.get (), file_data) != NULL)
5127 {
5128 per_cu->v.quick->mark = 1;
5129 continue;
5130 }
5131
5132 for (int j = 0; j < file_data->num_file_names; ++j)
5133 {
5134 const char *this_real_name;
5135
5136 if (file_matcher (file_data->file_names[j], false))
5137 {
5138 per_cu->v.quick->mark = 1;
5139 break;
5140 }
5141
5142 /* Before we invoke realpath, which can get expensive when many
5143 files are involved, do a quick comparison of the basenames. */
5144 if (!basenames_may_differ
5145 && !file_matcher (lbasename (file_data->file_names[j]),
5146 true))
5147 continue;
5148
5149 this_real_name = dw2_get_real_path (objfile, file_data, j);
5150 if (file_matcher (this_real_name, false))
5151 {
5152 per_cu->v.quick->mark = 1;
5153 break;
5154 }
5155 }
5156
5157 void **slot = htab_find_slot (per_cu->v.quick->mark
5158 ? visited_found.get ()
5159 : visited_not_found.get (),
5160 file_data, INSERT);
5161 *slot = file_data;
5162 }
5163 }
5164
5165 static void
5166 dw2_expand_symtabs_matching
5167 (struct objfile *objfile,
5168 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5169 const lookup_name_info &lookup_name,
5170 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5171 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5172 enum search_domain kind)
5173 {
5174 struct dwarf2_per_objfile *dwarf2_per_objfile
5175 = get_dwarf2_per_objfile (objfile);
5176
5177 /* index_table is NULL if OBJF_READNOW. */
5178 if (!dwarf2_per_objfile->index_table)
5179 return;
5180
5181 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5182
5183 mapped_index &index = *dwarf2_per_objfile->index_table;
5184
5185 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5186 symbol_matcher,
5187 kind, [&] (offset_type idx)
5188 {
5189 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5190 expansion_notify, kind);
5191 });
5192 }
5193
5194 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5195 symtab. */
5196
5197 static struct compunit_symtab *
5198 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5199 CORE_ADDR pc)
5200 {
5201 int i;
5202
5203 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5204 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5205 return cust;
5206
5207 if (cust->includes == NULL)
5208 return NULL;
5209
5210 for (i = 0; cust->includes[i]; ++i)
5211 {
5212 struct compunit_symtab *s = cust->includes[i];
5213
5214 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5215 if (s != NULL)
5216 return s;
5217 }
5218
5219 return NULL;
5220 }
5221
5222 static struct compunit_symtab *
5223 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5224 struct bound_minimal_symbol msymbol,
5225 CORE_ADDR pc,
5226 struct obj_section *section,
5227 int warn_if_readin)
5228 {
5229 struct dwarf2_per_cu_data *data;
5230 struct compunit_symtab *result;
5231
5232 if (!objfile->partial_symtabs->psymtabs_addrmap)
5233 return NULL;
5234
5235 CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
5236 SECT_OFF_TEXT (objfile));
5237 data = (struct dwarf2_per_cu_data *) addrmap_find
5238 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
5239 if (!data)
5240 return NULL;
5241
5242 if (warn_if_readin && data->v.quick->compunit_symtab)
5243 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5244 paddress (get_objfile_arch (objfile), pc));
5245
5246 result
5247 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5248 false),
5249 pc);
5250 gdb_assert (result != NULL);
5251 return result;
5252 }
5253
5254 static void
5255 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5256 void *data, int need_fullname)
5257 {
5258 struct dwarf2_per_objfile *dwarf2_per_objfile
5259 = get_dwarf2_per_objfile (objfile);
5260
5261 if (!dwarf2_per_objfile->filenames_cache)
5262 {
5263 dwarf2_per_objfile->filenames_cache.emplace ();
5264
5265 htab_up visited (htab_create_alloc (10,
5266 htab_hash_pointer, htab_eq_pointer,
5267 NULL, xcalloc, xfree));
5268
5269 /* The rule is CUs specify all the files, including those used
5270 by any TU, so there's no need to scan TUs here. We can
5271 ignore file names coming from already-expanded CUs. */
5272
5273 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5274 {
5275 if (per_cu->v.quick->compunit_symtab)
5276 {
5277 void **slot = htab_find_slot (visited.get (),
5278 per_cu->v.quick->file_names,
5279 INSERT);
5280
5281 *slot = per_cu->v.quick->file_names;
5282 }
5283 }
5284
5285 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5286 {
5287 /* We only need to look at symtabs not already expanded. */
5288 if (per_cu->v.quick->compunit_symtab)
5289 continue;
5290
5291 quick_file_names *file_data = dw2_get_file_names (per_cu);
5292 if (file_data == NULL)
5293 continue;
5294
5295 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5296 if (*slot)
5297 {
5298 /* Already visited. */
5299 continue;
5300 }
5301 *slot = file_data;
5302
5303 for (int j = 0; j < file_data->num_file_names; ++j)
5304 {
5305 const char *filename = file_data->file_names[j];
5306 dwarf2_per_objfile->filenames_cache->seen (filename);
5307 }
5308 }
5309 }
5310
5311 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5312 {
5313 gdb::unique_xmalloc_ptr<char> this_real_name;
5314
5315 if (need_fullname)
5316 this_real_name = gdb_realpath (filename);
5317 (*fun) (filename, this_real_name.get (), data);
5318 });
5319 }
5320
5321 static int
5322 dw2_has_symbols (struct objfile *objfile)
5323 {
5324 return 1;
5325 }
5326
5327 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5328 {
5329 dw2_has_symbols,
5330 dw2_find_last_source_symtab,
5331 dw2_forget_cached_source_info,
5332 dw2_map_symtabs_matching_filename,
5333 dw2_lookup_symbol,
5334 dw2_print_stats,
5335 dw2_dump,
5336 dw2_expand_symtabs_for_function,
5337 dw2_expand_all_symtabs,
5338 dw2_expand_symtabs_with_fullname,
5339 dw2_map_matching_symbols,
5340 dw2_expand_symtabs_matching,
5341 dw2_find_pc_sect_compunit_symtab,
5342 NULL,
5343 dw2_map_symbol_filenames
5344 };
5345
5346 /* DWARF-5 debug_names reader. */
5347
5348 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5349 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5350
5351 /* A helper function that reads the .debug_names section in SECTION
5352 and fills in MAP. FILENAME is the name of the file containing the
5353 section; it is used for error reporting.
5354
5355 Returns true if all went well, false otherwise. */
5356
5357 static bool
5358 read_debug_names_from_section (struct objfile *objfile,
5359 const char *filename,
5360 struct dwarf2_section_info *section,
5361 mapped_debug_names &map)
5362 {
5363 if (dwarf2_section_empty_p (section))
5364 return false;
5365
5366 /* Older elfutils strip versions could keep the section in the main
5367 executable while splitting it for the separate debug info file. */
5368 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5369 return false;
5370
5371 dwarf2_read_section (objfile, section);
5372
5373 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5374
5375 const gdb_byte *addr = section->buffer;
5376
5377 bfd *const abfd = get_section_bfd_owner (section);
5378
5379 unsigned int bytes_read;
5380 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5381 addr += bytes_read;
5382
5383 map.dwarf5_is_dwarf64 = bytes_read != 4;
5384 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5385 if (bytes_read + length != section->size)
5386 {
5387 /* There may be multiple per-CU indices. */
5388 warning (_("Section .debug_names in %s length %s does not match "
5389 "section length %s, ignoring .debug_names."),
5390 filename, plongest (bytes_read + length),
5391 pulongest (section->size));
5392 return false;
5393 }
5394
5395 /* The version number. */
5396 uint16_t version = read_2_bytes (abfd, addr);
5397 addr += 2;
5398 if (version != 5)
5399 {
5400 warning (_("Section .debug_names in %s has unsupported version %d, "
5401 "ignoring .debug_names."),
5402 filename, version);
5403 return false;
5404 }
5405
5406 /* Padding. */
5407 uint16_t padding = read_2_bytes (abfd, addr);
5408 addr += 2;
5409 if (padding != 0)
5410 {
5411 warning (_("Section .debug_names in %s has unsupported padding %d, "
5412 "ignoring .debug_names."),
5413 filename, padding);
5414 return false;
5415 }
5416
5417 /* comp_unit_count - The number of CUs in the CU list. */
5418 map.cu_count = read_4_bytes (abfd, addr);
5419 addr += 4;
5420
5421 /* local_type_unit_count - The number of TUs in the local TU
5422 list. */
5423 map.tu_count = read_4_bytes (abfd, addr);
5424 addr += 4;
5425
5426 /* foreign_type_unit_count - The number of TUs in the foreign TU
5427 list. */
5428 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5429 addr += 4;
5430 if (foreign_tu_count != 0)
5431 {
5432 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5433 "ignoring .debug_names."),
5434 filename, static_cast<unsigned long> (foreign_tu_count));
5435 return false;
5436 }
5437
5438 /* bucket_count - The number of hash buckets in the hash lookup
5439 table. */
5440 map.bucket_count = read_4_bytes (abfd, addr);
5441 addr += 4;
5442
5443 /* name_count - The number of unique names in the index. */
5444 map.name_count = read_4_bytes (abfd, addr);
5445 addr += 4;
5446
5447 /* abbrev_table_size - The size in bytes of the abbreviations
5448 table. */
5449 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5450 addr += 4;
5451
5452 /* augmentation_string_size - The size in bytes of the augmentation
5453 string. This value is rounded up to a multiple of 4. */
5454 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5455 addr += 4;
5456 map.augmentation_is_gdb = ((augmentation_string_size
5457 == sizeof (dwarf5_augmentation))
5458 && memcmp (addr, dwarf5_augmentation,
5459 sizeof (dwarf5_augmentation)) == 0);
5460 augmentation_string_size += (-augmentation_string_size) & 3;
5461 addr += augmentation_string_size;
5462
5463 /* List of CUs */
5464 map.cu_table_reordered = addr;
5465 addr += map.cu_count * map.offset_size;
5466
5467 /* List of Local TUs */
5468 map.tu_table_reordered = addr;
5469 addr += map.tu_count * map.offset_size;
5470
5471 /* Hash Lookup Table */
5472 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5473 addr += map.bucket_count * 4;
5474 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5475 addr += map.name_count * 4;
5476
5477 /* Name Table */
5478 map.name_table_string_offs_reordered = addr;
5479 addr += map.name_count * map.offset_size;
5480 map.name_table_entry_offs_reordered = addr;
5481 addr += map.name_count * map.offset_size;
5482
5483 const gdb_byte *abbrev_table_start = addr;
5484 for (;;)
5485 {
5486 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5487 addr += bytes_read;
5488 if (index_num == 0)
5489 break;
5490
5491 const auto insertpair
5492 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5493 if (!insertpair.second)
5494 {
5495 warning (_("Section .debug_names in %s has duplicate index %s, "
5496 "ignoring .debug_names."),
5497 filename, pulongest (index_num));
5498 return false;
5499 }
5500 mapped_debug_names::index_val &indexval = insertpair.first->second;
5501 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5502 addr += bytes_read;
5503
5504 for (;;)
5505 {
5506 mapped_debug_names::index_val::attr attr;
5507 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5508 addr += bytes_read;
5509 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5510 addr += bytes_read;
5511 if (attr.form == DW_FORM_implicit_const)
5512 {
5513 attr.implicit_const = read_signed_leb128 (abfd, addr,
5514 &bytes_read);
5515 addr += bytes_read;
5516 }
5517 if (attr.dw_idx == 0 && attr.form == 0)
5518 break;
5519 indexval.attr_vec.push_back (std::move (attr));
5520 }
5521 }
5522 if (addr != abbrev_table_start + abbrev_table_size)
5523 {
5524 warning (_("Section .debug_names in %s has abbreviation_table "
5525 "of size %s vs. written as %u, ignoring .debug_names."),
5526 filename, plongest (addr - abbrev_table_start),
5527 abbrev_table_size);
5528 return false;
5529 }
5530 map.entry_pool = addr;
5531
5532 return true;
5533 }
5534
5535 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5536 list. */
5537
5538 static void
5539 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5540 const mapped_debug_names &map,
5541 dwarf2_section_info &section,
5542 bool is_dwz)
5543 {
5544 sect_offset sect_off_prev;
5545 for (uint32_t i = 0; i <= map.cu_count; ++i)
5546 {
5547 sect_offset sect_off_next;
5548 if (i < map.cu_count)
5549 {
5550 sect_off_next
5551 = (sect_offset) (extract_unsigned_integer
5552 (map.cu_table_reordered + i * map.offset_size,
5553 map.offset_size,
5554 map.dwarf5_byte_order));
5555 }
5556 else
5557 sect_off_next = (sect_offset) section.size;
5558 if (i >= 1)
5559 {
5560 const ULONGEST length = sect_off_next - sect_off_prev;
5561 dwarf2_per_cu_data *per_cu
5562 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5563 sect_off_prev, length);
5564 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5565 }
5566 sect_off_prev = sect_off_next;
5567 }
5568 }
5569
5570 /* Read the CU list from the mapped index, and use it to create all
5571 the CU objects for this dwarf2_per_objfile. */
5572
5573 static void
5574 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5575 const mapped_debug_names &map,
5576 const mapped_debug_names &dwz_map)
5577 {
5578 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5579 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5580
5581 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5582 dwarf2_per_objfile->info,
5583 false /* is_dwz */);
5584
5585 if (dwz_map.cu_count == 0)
5586 return;
5587
5588 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5589 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5590 true /* is_dwz */);
5591 }
5592
5593 /* Read .debug_names. If everything went ok, initialize the "quick"
5594 elements of all the CUs and return true. Otherwise, return false. */
5595
5596 static bool
5597 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5598 {
5599 std::unique_ptr<mapped_debug_names> map
5600 (new mapped_debug_names (dwarf2_per_objfile));
5601 mapped_debug_names dwz_map (dwarf2_per_objfile);
5602 struct objfile *objfile = dwarf2_per_objfile->objfile;
5603
5604 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5605 &dwarf2_per_objfile->debug_names,
5606 *map))
5607 return false;
5608
5609 /* Don't use the index if it's empty. */
5610 if (map->name_count == 0)
5611 return false;
5612
5613 /* If there is a .dwz file, read it so we can get its CU list as
5614 well. */
5615 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5616 if (dwz != NULL)
5617 {
5618 if (!read_debug_names_from_section (objfile,
5619 bfd_get_filename (dwz->dwz_bfd),
5620 &dwz->debug_names, dwz_map))
5621 {
5622 warning (_("could not read '.debug_names' section from %s; skipping"),
5623 bfd_get_filename (dwz->dwz_bfd));
5624 return false;
5625 }
5626 }
5627
5628 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5629
5630 if (map->tu_count != 0)
5631 {
5632 /* We can only handle a single .debug_types when we have an
5633 index. */
5634 if (dwarf2_per_objfile->types.size () != 1)
5635 return false;
5636
5637 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
5638
5639 create_signatured_type_table_from_debug_names
5640 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5641 }
5642
5643 create_addrmap_from_aranges (dwarf2_per_objfile,
5644 &dwarf2_per_objfile->debug_aranges);
5645
5646 dwarf2_per_objfile->debug_names_table = std::move (map);
5647 dwarf2_per_objfile->using_index = 1;
5648 dwarf2_per_objfile->quick_file_names_table =
5649 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5650
5651 return true;
5652 }
5653
5654 /* Type used to manage iterating over all CUs looking for a symbol for
5655 .debug_names. */
5656
5657 class dw2_debug_names_iterator
5658 {
5659 public:
5660 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5661 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5662 dw2_debug_names_iterator (const mapped_debug_names &map,
5663 bool want_specific_block,
5664 block_enum block_index, domain_enum domain,
5665 const char *name)
5666 : m_map (map), m_want_specific_block (want_specific_block),
5667 m_block_index (block_index), m_domain (domain),
5668 m_addr (find_vec_in_debug_names (map, name))
5669 {}
5670
5671 dw2_debug_names_iterator (const mapped_debug_names &map,
5672 search_domain search, uint32_t namei)
5673 : m_map (map),
5674 m_search (search),
5675 m_addr (find_vec_in_debug_names (map, namei))
5676 {}
5677
5678 /* Return the next matching CU or NULL if there are no more. */
5679 dwarf2_per_cu_data *next ();
5680
5681 private:
5682 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5683 const char *name);
5684 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5685 uint32_t namei);
5686
5687 /* The internalized form of .debug_names. */
5688 const mapped_debug_names &m_map;
5689
5690 /* If true, only look for symbols that match BLOCK_INDEX. */
5691 const bool m_want_specific_block = false;
5692
5693 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5694 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5695 value. */
5696 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5697
5698 /* The kind of symbol we're looking for. */
5699 const domain_enum m_domain = UNDEF_DOMAIN;
5700 const search_domain m_search = ALL_DOMAIN;
5701
5702 /* The list of CUs from the index entry of the symbol, or NULL if
5703 not found. */
5704 const gdb_byte *m_addr;
5705 };
5706
5707 const char *
5708 mapped_debug_names::namei_to_name (uint32_t namei) const
5709 {
5710 const ULONGEST namei_string_offs
5711 = extract_unsigned_integer ((name_table_string_offs_reordered
5712 + namei * offset_size),
5713 offset_size,
5714 dwarf5_byte_order);
5715 return read_indirect_string_at_offset
5716 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5717 }
5718
5719 /* Find a slot in .debug_names for the object named NAME. If NAME is
5720 found, return pointer to its pool data. If NAME cannot be found,
5721 return NULL. */
5722
5723 const gdb_byte *
5724 dw2_debug_names_iterator::find_vec_in_debug_names
5725 (const mapped_debug_names &map, const char *name)
5726 {
5727 int (*cmp) (const char *, const char *);
5728
5729 gdb::unique_xmalloc_ptr<char> without_params;
5730 if (current_language->la_language == language_cplus
5731 || current_language->la_language == language_fortran
5732 || current_language->la_language == language_d)
5733 {
5734 /* NAME is already canonical. Drop any qualifiers as
5735 .debug_names does not contain any. */
5736
5737 if (strchr (name, '(') != NULL)
5738 {
5739 without_params = cp_remove_params (name);
5740 if (without_params != NULL)
5741 name = without_params.get ();
5742 }
5743 }
5744
5745 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5746
5747 const uint32_t full_hash = dwarf5_djb_hash (name);
5748 uint32_t namei
5749 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5750 (map.bucket_table_reordered
5751 + (full_hash % map.bucket_count)), 4,
5752 map.dwarf5_byte_order);
5753 if (namei == 0)
5754 return NULL;
5755 --namei;
5756 if (namei >= map.name_count)
5757 {
5758 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5759 "[in module %s]"),
5760 namei, map.name_count,
5761 objfile_name (map.dwarf2_per_objfile->objfile));
5762 return NULL;
5763 }
5764
5765 for (;;)
5766 {
5767 const uint32_t namei_full_hash
5768 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5769 (map.hash_table_reordered + namei), 4,
5770 map.dwarf5_byte_order);
5771 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5772 return NULL;
5773
5774 if (full_hash == namei_full_hash)
5775 {
5776 const char *const namei_string = map.namei_to_name (namei);
5777
5778 #if 0 /* An expensive sanity check. */
5779 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5780 {
5781 complaint (_("Wrong .debug_names hash for string at index %u "
5782 "[in module %s]"),
5783 namei, objfile_name (dwarf2_per_objfile->objfile));
5784 return NULL;
5785 }
5786 #endif
5787
5788 if (cmp (namei_string, name) == 0)
5789 {
5790 const ULONGEST namei_entry_offs
5791 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5792 + namei * map.offset_size),
5793 map.offset_size, map.dwarf5_byte_order);
5794 return map.entry_pool + namei_entry_offs;
5795 }
5796 }
5797
5798 ++namei;
5799 if (namei >= map.name_count)
5800 return NULL;
5801 }
5802 }
5803
5804 const gdb_byte *
5805 dw2_debug_names_iterator::find_vec_in_debug_names
5806 (const mapped_debug_names &map, uint32_t namei)
5807 {
5808 if (namei >= map.name_count)
5809 {
5810 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5811 "[in module %s]"),
5812 namei, map.name_count,
5813 objfile_name (map.dwarf2_per_objfile->objfile));
5814 return NULL;
5815 }
5816
5817 const ULONGEST namei_entry_offs
5818 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5819 + namei * map.offset_size),
5820 map.offset_size, map.dwarf5_byte_order);
5821 return map.entry_pool + namei_entry_offs;
5822 }
5823
5824 /* See dw2_debug_names_iterator. */
5825
5826 dwarf2_per_cu_data *
5827 dw2_debug_names_iterator::next ()
5828 {
5829 if (m_addr == NULL)
5830 return NULL;
5831
5832 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5833 struct objfile *objfile = dwarf2_per_objfile->objfile;
5834 bfd *const abfd = objfile->obfd;
5835
5836 again:
5837
5838 unsigned int bytes_read;
5839 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5840 m_addr += bytes_read;
5841 if (abbrev == 0)
5842 return NULL;
5843
5844 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5845 if (indexval_it == m_map.abbrev_map.cend ())
5846 {
5847 complaint (_("Wrong .debug_names undefined abbrev code %s "
5848 "[in module %s]"),
5849 pulongest (abbrev), objfile_name (objfile));
5850 return NULL;
5851 }
5852 const mapped_debug_names::index_val &indexval = indexval_it->second;
5853 bool have_is_static = false;
5854 bool is_static;
5855 dwarf2_per_cu_data *per_cu = NULL;
5856 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5857 {
5858 ULONGEST ull;
5859 switch (attr.form)
5860 {
5861 case DW_FORM_implicit_const:
5862 ull = attr.implicit_const;
5863 break;
5864 case DW_FORM_flag_present:
5865 ull = 1;
5866 break;
5867 case DW_FORM_udata:
5868 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5869 m_addr += bytes_read;
5870 break;
5871 default:
5872 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5873 dwarf_form_name (attr.form),
5874 objfile_name (objfile));
5875 return NULL;
5876 }
5877 switch (attr.dw_idx)
5878 {
5879 case DW_IDX_compile_unit:
5880 /* Don't crash on bad data. */
5881 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5882 {
5883 complaint (_(".debug_names entry has bad CU index %s"
5884 " [in module %s]"),
5885 pulongest (ull),
5886 objfile_name (dwarf2_per_objfile->objfile));
5887 continue;
5888 }
5889 per_cu = dwarf2_per_objfile->get_cutu (ull);
5890 break;
5891 case DW_IDX_type_unit:
5892 /* Don't crash on bad data. */
5893 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5894 {
5895 complaint (_(".debug_names entry has bad TU index %s"
5896 " [in module %s]"),
5897 pulongest (ull),
5898 objfile_name (dwarf2_per_objfile->objfile));
5899 continue;
5900 }
5901 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5902 break;
5903 case DW_IDX_GNU_internal:
5904 if (!m_map.augmentation_is_gdb)
5905 break;
5906 have_is_static = true;
5907 is_static = true;
5908 break;
5909 case DW_IDX_GNU_external:
5910 if (!m_map.augmentation_is_gdb)
5911 break;
5912 have_is_static = true;
5913 is_static = false;
5914 break;
5915 }
5916 }
5917
5918 /* Skip if already read in. */
5919 if (per_cu->v.quick->compunit_symtab)
5920 goto again;
5921
5922 /* Check static vs global. */
5923 if (have_is_static)
5924 {
5925 const bool want_static = m_block_index != GLOBAL_BLOCK;
5926 if (m_want_specific_block && want_static != is_static)
5927 goto again;
5928 }
5929
5930 /* Match dw2_symtab_iter_next, symbol_kind
5931 and debug_names::psymbol_tag. */
5932 switch (m_domain)
5933 {
5934 case VAR_DOMAIN:
5935 switch (indexval.dwarf_tag)
5936 {
5937 case DW_TAG_variable:
5938 case DW_TAG_subprogram:
5939 /* Some types are also in VAR_DOMAIN. */
5940 case DW_TAG_typedef:
5941 case DW_TAG_structure_type:
5942 break;
5943 default:
5944 goto again;
5945 }
5946 break;
5947 case STRUCT_DOMAIN:
5948 switch (indexval.dwarf_tag)
5949 {
5950 case DW_TAG_typedef:
5951 case DW_TAG_structure_type:
5952 break;
5953 default:
5954 goto again;
5955 }
5956 break;
5957 case LABEL_DOMAIN:
5958 switch (indexval.dwarf_tag)
5959 {
5960 case 0:
5961 case DW_TAG_variable:
5962 break;
5963 default:
5964 goto again;
5965 }
5966 break;
5967 default:
5968 break;
5969 }
5970
5971 /* Match dw2_expand_symtabs_matching, symbol_kind and
5972 debug_names::psymbol_tag. */
5973 switch (m_search)
5974 {
5975 case VARIABLES_DOMAIN:
5976 switch (indexval.dwarf_tag)
5977 {
5978 case DW_TAG_variable:
5979 break;
5980 default:
5981 goto again;
5982 }
5983 break;
5984 case FUNCTIONS_DOMAIN:
5985 switch (indexval.dwarf_tag)
5986 {
5987 case DW_TAG_subprogram:
5988 break;
5989 default:
5990 goto again;
5991 }
5992 break;
5993 case TYPES_DOMAIN:
5994 switch (indexval.dwarf_tag)
5995 {
5996 case DW_TAG_typedef:
5997 case DW_TAG_structure_type:
5998 break;
5999 default:
6000 goto again;
6001 }
6002 break;
6003 default:
6004 break;
6005 }
6006
6007 return per_cu;
6008 }
6009
6010 static struct compunit_symtab *
6011 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6012 const char *name, domain_enum domain)
6013 {
6014 const block_enum block_index = static_cast<block_enum> (block_index_int);
6015 struct dwarf2_per_objfile *dwarf2_per_objfile
6016 = get_dwarf2_per_objfile (objfile);
6017
6018 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6019 if (!mapp)
6020 {
6021 /* index is NULL if OBJF_READNOW. */
6022 return NULL;
6023 }
6024 const auto &map = *mapp;
6025
6026 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6027 block_index, domain, name);
6028
6029 struct compunit_symtab *stab_best = NULL;
6030 struct dwarf2_per_cu_data *per_cu;
6031 while ((per_cu = iter.next ()) != NULL)
6032 {
6033 struct symbol *sym, *with_opaque = NULL;
6034 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6035 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6036 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6037
6038 sym = block_find_symbol (block, name, domain,
6039 block_find_non_opaque_type_preferred,
6040 &with_opaque);
6041
6042 /* Some caution must be observed with overloaded functions and
6043 methods, since the index will not contain any overload
6044 information (but NAME might contain it). */
6045
6046 if (sym != NULL
6047 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6048 return stab;
6049 if (with_opaque != NULL
6050 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6051 stab_best = stab;
6052
6053 /* Keep looking through other CUs. */
6054 }
6055
6056 return stab_best;
6057 }
6058
6059 /* This dumps minimal information about .debug_names. It is called
6060 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6061 uses this to verify that .debug_names has been loaded. */
6062
6063 static void
6064 dw2_debug_names_dump (struct objfile *objfile)
6065 {
6066 struct dwarf2_per_objfile *dwarf2_per_objfile
6067 = get_dwarf2_per_objfile (objfile);
6068
6069 gdb_assert (dwarf2_per_objfile->using_index);
6070 printf_filtered (".debug_names:");
6071 if (dwarf2_per_objfile->debug_names_table)
6072 printf_filtered (" exists\n");
6073 else
6074 printf_filtered (" faked for \"readnow\"\n");
6075 printf_filtered ("\n");
6076 }
6077
6078 static void
6079 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6080 const char *func_name)
6081 {
6082 struct dwarf2_per_objfile *dwarf2_per_objfile
6083 = get_dwarf2_per_objfile (objfile);
6084
6085 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6086 if (dwarf2_per_objfile->debug_names_table)
6087 {
6088 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6089
6090 /* Note: It doesn't matter what we pass for block_index here. */
6091 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6092 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6093
6094 struct dwarf2_per_cu_data *per_cu;
6095 while ((per_cu = iter.next ()) != NULL)
6096 dw2_instantiate_symtab (per_cu, false);
6097 }
6098 }
6099
6100 static void
6101 dw2_debug_names_expand_symtabs_matching
6102 (struct objfile *objfile,
6103 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6104 const lookup_name_info &lookup_name,
6105 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6106 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6107 enum search_domain kind)
6108 {
6109 struct dwarf2_per_objfile *dwarf2_per_objfile
6110 = get_dwarf2_per_objfile (objfile);
6111
6112 /* debug_names_table is NULL if OBJF_READNOW. */
6113 if (!dwarf2_per_objfile->debug_names_table)
6114 return;
6115
6116 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6117
6118 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6119
6120 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6121 symbol_matcher,
6122 kind, [&] (offset_type namei)
6123 {
6124 /* The name was matched, now expand corresponding CUs that were
6125 marked. */
6126 dw2_debug_names_iterator iter (map, kind, namei);
6127
6128 struct dwarf2_per_cu_data *per_cu;
6129 while ((per_cu = iter.next ()) != NULL)
6130 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6131 expansion_notify);
6132 });
6133 }
6134
6135 const struct quick_symbol_functions dwarf2_debug_names_functions =
6136 {
6137 dw2_has_symbols,
6138 dw2_find_last_source_symtab,
6139 dw2_forget_cached_source_info,
6140 dw2_map_symtabs_matching_filename,
6141 dw2_debug_names_lookup_symbol,
6142 dw2_print_stats,
6143 dw2_debug_names_dump,
6144 dw2_debug_names_expand_symtabs_for_function,
6145 dw2_expand_all_symtabs,
6146 dw2_expand_symtabs_with_fullname,
6147 dw2_map_matching_symbols,
6148 dw2_debug_names_expand_symtabs_matching,
6149 dw2_find_pc_sect_compunit_symtab,
6150 NULL,
6151 dw2_map_symbol_filenames
6152 };
6153
6154 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
6155 to either a dwarf2_per_objfile or dwz_file object. */
6156
6157 template <typename T>
6158 static gdb::array_view<const gdb_byte>
6159 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
6160 {
6161 dwarf2_section_info *section = &section_owner->gdb_index;
6162
6163 if (dwarf2_section_empty_p (section))
6164 return {};
6165
6166 /* Older elfutils strip versions could keep the section in the main
6167 executable while splitting it for the separate debug info file. */
6168 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
6169 return {};
6170
6171 dwarf2_read_section (obj, section);
6172
6173 /* dwarf2_section_info::size is a bfd_size_type, while
6174 gdb::array_view works with size_t. On 32-bit hosts, with
6175 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
6176 is 32-bit. So we need an explicit narrowing conversion here.
6177 This is fine, because it's impossible to allocate or mmap an
6178 array/buffer larger than what size_t can represent. */
6179 return gdb::make_array_view (section->buffer, section->size);
6180 }
6181
6182 /* Lookup the index cache for the contents of the index associated to
6183 DWARF2_OBJ. */
6184
6185 static gdb::array_view<const gdb_byte>
6186 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
6187 {
6188 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
6189 if (build_id == nullptr)
6190 return {};
6191
6192 return global_index_cache.lookup_gdb_index (build_id,
6193 &dwarf2_obj->index_cache_res);
6194 }
6195
6196 /* Same as the above, but for DWZ. */
6197
6198 static gdb::array_view<const gdb_byte>
6199 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
6200 {
6201 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
6202 if (build_id == nullptr)
6203 return {};
6204
6205 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
6206 }
6207
6208 /* See symfile.h. */
6209
6210 bool
6211 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6212 {
6213 struct dwarf2_per_objfile *dwarf2_per_objfile
6214 = get_dwarf2_per_objfile (objfile);
6215
6216 /* If we're about to read full symbols, don't bother with the
6217 indices. In this case we also don't care if some other debug
6218 format is making psymtabs, because they are all about to be
6219 expanded anyway. */
6220 if ((objfile->flags & OBJF_READNOW))
6221 {
6222 dwarf2_per_objfile->using_index = 1;
6223 create_all_comp_units (dwarf2_per_objfile);
6224 create_all_type_units (dwarf2_per_objfile);
6225 dwarf2_per_objfile->quick_file_names_table
6226 = create_quick_file_names_table
6227 (dwarf2_per_objfile->all_comp_units.size ());
6228
6229 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6230 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6231 {
6232 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6233
6234 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6235 struct dwarf2_per_cu_quick_data);
6236 }
6237
6238 /* Return 1 so that gdb sees the "quick" functions. However,
6239 these functions will be no-ops because we will have expanded
6240 all symtabs. */
6241 *index_kind = dw_index_kind::GDB_INDEX;
6242 return true;
6243 }
6244
6245 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6246 {
6247 *index_kind = dw_index_kind::DEBUG_NAMES;
6248 return true;
6249 }
6250
6251 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6252 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6253 get_gdb_index_contents_from_section<dwz_file>))
6254 {
6255 *index_kind = dw_index_kind::GDB_INDEX;
6256 return true;
6257 }
6258
6259 /* ... otherwise, try to find the index in the index cache. */
6260 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6261 get_gdb_index_contents_from_cache,
6262 get_gdb_index_contents_from_cache_dwz))
6263 {
6264 global_index_cache.hit ();
6265 *index_kind = dw_index_kind::GDB_INDEX;
6266 return true;
6267 }
6268
6269 global_index_cache.miss ();
6270 return false;
6271 }
6272
6273 \f
6274
6275 /* Build a partial symbol table. */
6276
6277 void
6278 dwarf2_build_psymtabs (struct objfile *objfile)
6279 {
6280 struct dwarf2_per_objfile *dwarf2_per_objfile
6281 = get_dwarf2_per_objfile (objfile);
6282
6283 init_psymbol_list (objfile, 1024);
6284
6285 try
6286 {
6287 /* This isn't really ideal: all the data we allocate on the
6288 objfile's obstack is still uselessly kept around. However,
6289 freeing it seems unsafe. */
6290 psymtab_discarder psymtabs (objfile);
6291 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6292 psymtabs.keep ();
6293
6294 /* (maybe) store an index in the cache. */
6295 global_index_cache.store (dwarf2_per_objfile);
6296 }
6297 catch (const gdb_exception_error &except)
6298 {
6299 exception_print (gdb_stderr, except);
6300 }
6301 }
6302
6303 /* Return the total length of the CU described by HEADER. */
6304
6305 static unsigned int
6306 get_cu_length (const struct comp_unit_head *header)
6307 {
6308 return header->initial_length_size + header->length;
6309 }
6310
6311 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6312
6313 static inline bool
6314 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6315 {
6316 sect_offset bottom = cu_header->sect_off;
6317 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6318
6319 return sect_off >= bottom && sect_off < top;
6320 }
6321
6322 /* Find the base address of the compilation unit for range lists and
6323 location lists. It will normally be specified by DW_AT_low_pc.
6324 In DWARF-3 draft 4, the base address could be overridden by
6325 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6326 compilation units with discontinuous ranges. */
6327
6328 static void
6329 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6330 {
6331 struct attribute *attr;
6332
6333 cu->base_known = 0;
6334 cu->base_address = 0;
6335
6336 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6337 if (attr)
6338 {
6339 cu->base_address = attr_value_as_address (attr);
6340 cu->base_known = 1;
6341 }
6342 else
6343 {
6344 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6345 if (attr)
6346 {
6347 cu->base_address = attr_value_as_address (attr);
6348 cu->base_known = 1;
6349 }
6350 }
6351 }
6352
6353 /* Read in the comp unit header information from the debug_info at info_ptr.
6354 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6355 NOTE: This leaves members offset, first_die_offset to be filled in
6356 by the caller. */
6357
6358 static const gdb_byte *
6359 read_comp_unit_head (struct comp_unit_head *cu_header,
6360 const gdb_byte *info_ptr,
6361 struct dwarf2_section_info *section,
6362 rcuh_kind section_kind)
6363 {
6364 int signed_addr;
6365 unsigned int bytes_read;
6366 const char *filename = get_section_file_name (section);
6367 bfd *abfd = get_section_bfd_owner (section);
6368
6369 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6370 cu_header->initial_length_size = bytes_read;
6371 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6372 info_ptr += bytes_read;
6373 cu_header->version = read_2_bytes (abfd, info_ptr);
6374 if (cu_header->version < 2 || cu_header->version > 5)
6375 error (_("Dwarf Error: wrong version in compilation unit header "
6376 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6377 cu_header->version, filename);
6378 info_ptr += 2;
6379 if (cu_header->version < 5)
6380 switch (section_kind)
6381 {
6382 case rcuh_kind::COMPILE:
6383 cu_header->unit_type = DW_UT_compile;
6384 break;
6385 case rcuh_kind::TYPE:
6386 cu_header->unit_type = DW_UT_type;
6387 break;
6388 default:
6389 internal_error (__FILE__, __LINE__,
6390 _("read_comp_unit_head: invalid section_kind"));
6391 }
6392 else
6393 {
6394 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6395 (read_1_byte (abfd, info_ptr));
6396 info_ptr += 1;
6397 switch (cu_header->unit_type)
6398 {
6399 case DW_UT_compile:
6400 if (section_kind != rcuh_kind::COMPILE)
6401 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6402 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6403 filename);
6404 break;
6405 case DW_UT_type:
6406 section_kind = rcuh_kind::TYPE;
6407 break;
6408 default:
6409 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6410 "(is %d, should be %d or %d) [in module %s]"),
6411 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6412 }
6413
6414 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6415 info_ptr += 1;
6416 }
6417 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6418 cu_header,
6419 &bytes_read);
6420 info_ptr += bytes_read;
6421 if (cu_header->version < 5)
6422 {
6423 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6424 info_ptr += 1;
6425 }
6426 signed_addr = bfd_get_sign_extend_vma (abfd);
6427 if (signed_addr < 0)
6428 internal_error (__FILE__, __LINE__,
6429 _("read_comp_unit_head: dwarf from non elf file"));
6430 cu_header->signed_addr_p = signed_addr;
6431
6432 if (section_kind == rcuh_kind::TYPE)
6433 {
6434 LONGEST type_offset;
6435
6436 cu_header->signature = read_8_bytes (abfd, info_ptr);
6437 info_ptr += 8;
6438
6439 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6440 info_ptr += bytes_read;
6441 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6442 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6443 error (_("Dwarf Error: Too big type_offset in compilation unit "
6444 "header (is %s) [in module %s]"), plongest (type_offset),
6445 filename);
6446 }
6447
6448 return info_ptr;
6449 }
6450
6451 /* Helper function that returns the proper abbrev section for
6452 THIS_CU. */
6453
6454 static struct dwarf2_section_info *
6455 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6456 {
6457 struct dwarf2_section_info *abbrev;
6458 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6459
6460 if (this_cu->is_dwz)
6461 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6462 else
6463 abbrev = &dwarf2_per_objfile->abbrev;
6464
6465 return abbrev;
6466 }
6467
6468 /* Subroutine of read_and_check_comp_unit_head and
6469 read_and_check_type_unit_head to simplify them.
6470 Perform various error checking on the header. */
6471
6472 static void
6473 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6474 struct comp_unit_head *header,
6475 struct dwarf2_section_info *section,
6476 struct dwarf2_section_info *abbrev_section)
6477 {
6478 const char *filename = get_section_file_name (section);
6479
6480 if (to_underlying (header->abbrev_sect_off)
6481 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6482 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6483 "(offset %s + 6) [in module %s]"),
6484 sect_offset_str (header->abbrev_sect_off),
6485 sect_offset_str (header->sect_off),
6486 filename);
6487
6488 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6489 avoid potential 32-bit overflow. */
6490 if (((ULONGEST) header->sect_off + get_cu_length (header))
6491 > section->size)
6492 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6493 "(offset %s + 0) [in module %s]"),
6494 header->length, sect_offset_str (header->sect_off),
6495 filename);
6496 }
6497
6498 /* Read in a CU/TU header and perform some basic error checking.
6499 The contents of the header are stored in HEADER.
6500 The result is a pointer to the start of the first DIE. */
6501
6502 static const gdb_byte *
6503 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6504 struct comp_unit_head *header,
6505 struct dwarf2_section_info *section,
6506 struct dwarf2_section_info *abbrev_section,
6507 const gdb_byte *info_ptr,
6508 rcuh_kind section_kind)
6509 {
6510 const gdb_byte *beg_of_comp_unit = info_ptr;
6511
6512 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6513
6514 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6515
6516 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6517
6518 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6519 abbrev_section);
6520
6521 return info_ptr;
6522 }
6523
6524 /* Fetch the abbreviation table offset from a comp or type unit header. */
6525
6526 static sect_offset
6527 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6528 struct dwarf2_section_info *section,
6529 sect_offset sect_off)
6530 {
6531 bfd *abfd = get_section_bfd_owner (section);
6532 const gdb_byte *info_ptr;
6533 unsigned int initial_length_size, offset_size;
6534 uint16_t version;
6535
6536 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6537 info_ptr = section->buffer + to_underlying (sect_off);
6538 read_initial_length (abfd, info_ptr, &initial_length_size);
6539 offset_size = initial_length_size == 4 ? 4 : 8;
6540 info_ptr += initial_length_size;
6541
6542 version = read_2_bytes (abfd, info_ptr);
6543 info_ptr += 2;
6544 if (version >= 5)
6545 {
6546 /* Skip unit type and address size. */
6547 info_ptr += 2;
6548 }
6549
6550 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6551 }
6552
6553 /* Allocate a new partial symtab for file named NAME and mark this new
6554 partial symtab as being an include of PST. */
6555
6556 static void
6557 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6558 struct objfile *objfile)
6559 {
6560 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6561
6562 if (!IS_ABSOLUTE_PATH (subpst->filename))
6563 {
6564 /* It shares objfile->objfile_obstack. */
6565 subpst->dirname = pst->dirname;
6566 }
6567
6568 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
6569 subpst->dependencies[0] = pst;
6570 subpst->number_of_dependencies = 1;
6571
6572 subpst->read_symtab = pst->read_symtab;
6573
6574 /* No private part is necessary for include psymtabs. This property
6575 can be used to differentiate between such include psymtabs and
6576 the regular ones. */
6577 subpst->read_symtab_private = NULL;
6578 }
6579
6580 /* Read the Line Number Program data and extract the list of files
6581 included by the source file represented by PST. Build an include
6582 partial symtab for each of these included files. */
6583
6584 static void
6585 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6586 struct die_info *die,
6587 struct partial_symtab *pst)
6588 {
6589 line_header_up lh;
6590 struct attribute *attr;
6591
6592 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6593 if (attr)
6594 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6595 if (lh == NULL)
6596 return; /* No linetable, so no includes. */
6597
6598 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6599 that we pass in the raw text_low here; that is ok because we're
6600 only decoding the line table to make include partial symtabs, and
6601 so the addresses aren't really used. */
6602 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6603 pst->raw_text_low (), 1);
6604 }
6605
6606 static hashval_t
6607 hash_signatured_type (const void *item)
6608 {
6609 const struct signatured_type *sig_type
6610 = (const struct signatured_type *) item;
6611
6612 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6613 return sig_type->signature;
6614 }
6615
6616 static int
6617 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6618 {
6619 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6620 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6621
6622 return lhs->signature == rhs->signature;
6623 }
6624
6625 /* Allocate a hash table for signatured types. */
6626
6627 static htab_t
6628 allocate_signatured_type_table (struct objfile *objfile)
6629 {
6630 return htab_create_alloc_ex (41,
6631 hash_signatured_type,
6632 eq_signatured_type,
6633 NULL,
6634 &objfile->objfile_obstack,
6635 hashtab_obstack_allocate,
6636 dummy_obstack_deallocate);
6637 }
6638
6639 /* A helper function to add a signatured type CU to a table. */
6640
6641 static int
6642 add_signatured_type_cu_to_table (void **slot, void *datum)
6643 {
6644 struct signatured_type *sigt = (struct signatured_type *) *slot;
6645 std::vector<signatured_type *> *all_type_units
6646 = (std::vector<signatured_type *> *) datum;
6647
6648 all_type_units->push_back (sigt);
6649
6650 return 1;
6651 }
6652
6653 /* A helper for create_debug_types_hash_table. Read types from SECTION
6654 and fill them into TYPES_HTAB. It will process only type units,
6655 therefore DW_UT_type. */
6656
6657 static void
6658 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6659 struct dwo_file *dwo_file,
6660 dwarf2_section_info *section, htab_t &types_htab,
6661 rcuh_kind section_kind)
6662 {
6663 struct objfile *objfile = dwarf2_per_objfile->objfile;
6664 struct dwarf2_section_info *abbrev_section;
6665 bfd *abfd;
6666 const gdb_byte *info_ptr, *end_ptr;
6667
6668 abbrev_section = (dwo_file != NULL
6669 ? &dwo_file->sections.abbrev
6670 : &dwarf2_per_objfile->abbrev);
6671
6672 if (dwarf_read_debug)
6673 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6674 get_section_name (section),
6675 get_section_file_name (abbrev_section));
6676
6677 dwarf2_read_section (objfile, section);
6678 info_ptr = section->buffer;
6679
6680 if (info_ptr == NULL)
6681 return;
6682
6683 /* We can't set abfd until now because the section may be empty or
6684 not present, in which case the bfd is unknown. */
6685 abfd = get_section_bfd_owner (section);
6686
6687 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6688 because we don't need to read any dies: the signature is in the
6689 header. */
6690
6691 end_ptr = info_ptr + section->size;
6692 while (info_ptr < end_ptr)
6693 {
6694 struct signatured_type *sig_type;
6695 struct dwo_unit *dwo_tu;
6696 void **slot;
6697 const gdb_byte *ptr = info_ptr;
6698 struct comp_unit_head header;
6699 unsigned int length;
6700
6701 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6702
6703 /* Initialize it due to a false compiler warning. */
6704 header.signature = -1;
6705 header.type_cu_offset_in_tu = (cu_offset) -1;
6706
6707 /* We need to read the type's signature in order to build the hash
6708 table, but we don't need anything else just yet. */
6709
6710 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6711 abbrev_section, ptr, section_kind);
6712
6713 length = get_cu_length (&header);
6714
6715 /* Skip dummy type units. */
6716 if (ptr >= info_ptr + length
6717 || peek_abbrev_code (abfd, ptr) == 0
6718 || header.unit_type != DW_UT_type)
6719 {
6720 info_ptr += length;
6721 continue;
6722 }
6723
6724 if (types_htab == NULL)
6725 {
6726 if (dwo_file)
6727 types_htab = allocate_dwo_unit_table (objfile);
6728 else
6729 types_htab = allocate_signatured_type_table (objfile);
6730 }
6731
6732 if (dwo_file)
6733 {
6734 sig_type = NULL;
6735 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6736 struct dwo_unit);
6737 dwo_tu->dwo_file = dwo_file;
6738 dwo_tu->signature = header.signature;
6739 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6740 dwo_tu->section = section;
6741 dwo_tu->sect_off = sect_off;
6742 dwo_tu->length = length;
6743 }
6744 else
6745 {
6746 /* N.B.: type_offset is not usable if this type uses a DWO file.
6747 The real type_offset is in the DWO file. */
6748 dwo_tu = NULL;
6749 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6750 struct signatured_type);
6751 sig_type->signature = header.signature;
6752 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6753 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6754 sig_type->per_cu.is_debug_types = 1;
6755 sig_type->per_cu.section = section;
6756 sig_type->per_cu.sect_off = sect_off;
6757 sig_type->per_cu.length = length;
6758 }
6759
6760 slot = htab_find_slot (types_htab,
6761 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6762 INSERT);
6763 gdb_assert (slot != NULL);
6764 if (*slot != NULL)
6765 {
6766 sect_offset dup_sect_off;
6767
6768 if (dwo_file)
6769 {
6770 const struct dwo_unit *dup_tu
6771 = (const struct dwo_unit *) *slot;
6772
6773 dup_sect_off = dup_tu->sect_off;
6774 }
6775 else
6776 {
6777 const struct signatured_type *dup_tu
6778 = (const struct signatured_type *) *slot;
6779
6780 dup_sect_off = dup_tu->per_cu.sect_off;
6781 }
6782
6783 complaint (_("debug type entry at offset %s is duplicate to"
6784 " the entry at offset %s, signature %s"),
6785 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6786 hex_string (header.signature));
6787 }
6788 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6789
6790 if (dwarf_read_debug > 1)
6791 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6792 sect_offset_str (sect_off),
6793 hex_string (header.signature));
6794
6795 info_ptr += length;
6796 }
6797 }
6798
6799 /* Create the hash table of all entries in the .debug_types
6800 (or .debug_types.dwo) section(s).
6801 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6802 otherwise it is NULL.
6803
6804 The result is a pointer to the hash table or NULL if there are no types.
6805
6806 Note: This function processes DWO files only, not DWP files. */
6807
6808 static void
6809 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6810 struct dwo_file *dwo_file,
6811 gdb::array_view<dwarf2_section_info> type_sections,
6812 htab_t &types_htab)
6813 {
6814 for (dwarf2_section_info &section : type_sections)
6815 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, &section,
6816 types_htab, rcuh_kind::TYPE);
6817 }
6818
6819 /* Create the hash table of all entries in the .debug_types section,
6820 and initialize all_type_units.
6821 The result is zero if there is an error (e.g. missing .debug_types section),
6822 otherwise non-zero. */
6823
6824 static int
6825 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6826 {
6827 htab_t types_htab = NULL;
6828
6829 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6830 &dwarf2_per_objfile->info, types_htab,
6831 rcuh_kind::COMPILE);
6832 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6833 dwarf2_per_objfile->types, types_htab);
6834 if (types_htab == NULL)
6835 {
6836 dwarf2_per_objfile->signatured_types = NULL;
6837 return 0;
6838 }
6839
6840 dwarf2_per_objfile->signatured_types = types_htab;
6841
6842 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6843 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6844
6845 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6846 &dwarf2_per_objfile->all_type_units);
6847
6848 return 1;
6849 }
6850
6851 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6852 If SLOT is non-NULL, it is the entry to use in the hash table.
6853 Otherwise we find one. */
6854
6855 static struct signatured_type *
6856 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6857 void **slot)
6858 {
6859 struct objfile *objfile = dwarf2_per_objfile->objfile;
6860
6861 if (dwarf2_per_objfile->all_type_units.size ()
6862 == dwarf2_per_objfile->all_type_units.capacity ())
6863 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6864
6865 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6866 struct signatured_type);
6867
6868 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6869 sig_type->signature = sig;
6870 sig_type->per_cu.is_debug_types = 1;
6871 if (dwarf2_per_objfile->using_index)
6872 {
6873 sig_type->per_cu.v.quick =
6874 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6875 struct dwarf2_per_cu_quick_data);
6876 }
6877
6878 if (slot == NULL)
6879 {
6880 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6881 sig_type, INSERT);
6882 }
6883 gdb_assert (*slot == NULL);
6884 *slot = sig_type;
6885 /* The rest of sig_type must be filled in by the caller. */
6886 return sig_type;
6887 }
6888
6889 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6890 Fill in SIG_ENTRY with DWO_ENTRY. */
6891
6892 static void
6893 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6894 struct signatured_type *sig_entry,
6895 struct dwo_unit *dwo_entry)
6896 {
6897 /* Make sure we're not clobbering something we don't expect to. */
6898 gdb_assert (! sig_entry->per_cu.queued);
6899 gdb_assert (sig_entry->per_cu.cu == NULL);
6900 if (dwarf2_per_objfile->using_index)
6901 {
6902 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6903 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6904 }
6905 else
6906 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6907 gdb_assert (sig_entry->signature == dwo_entry->signature);
6908 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6909 gdb_assert (sig_entry->type_unit_group == NULL);
6910 gdb_assert (sig_entry->dwo_unit == NULL);
6911
6912 sig_entry->per_cu.section = dwo_entry->section;
6913 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6914 sig_entry->per_cu.length = dwo_entry->length;
6915 sig_entry->per_cu.reading_dwo_directly = 1;
6916 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6917 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6918 sig_entry->dwo_unit = dwo_entry;
6919 }
6920
6921 /* Subroutine of lookup_signatured_type.
6922 If we haven't read the TU yet, create the signatured_type data structure
6923 for a TU to be read in directly from a DWO file, bypassing the stub.
6924 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6925 using .gdb_index, then when reading a CU we want to stay in the DWO file
6926 containing that CU. Otherwise we could end up reading several other DWO
6927 files (due to comdat folding) to process the transitive closure of all the
6928 mentioned TUs, and that can be slow. The current DWO file will have every
6929 type signature that it needs.
6930 We only do this for .gdb_index because in the psymtab case we already have
6931 to read all the DWOs to build the type unit groups. */
6932
6933 static struct signatured_type *
6934 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6935 {
6936 struct dwarf2_per_objfile *dwarf2_per_objfile
6937 = cu->per_cu->dwarf2_per_objfile;
6938 struct objfile *objfile = dwarf2_per_objfile->objfile;
6939 struct dwo_file *dwo_file;
6940 struct dwo_unit find_dwo_entry, *dwo_entry;
6941 struct signatured_type find_sig_entry, *sig_entry;
6942 void **slot;
6943
6944 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6945
6946 /* If TU skeletons have been removed then we may not have read in any
6947 TUs yet. */
6948 if (dwarf2_per_objfile->signatured_types == NULL)
6949 {
6950 dwarf2_per_objfile->signatured_types
6951 = allocate_signatured_type_table (objfile);
6952 }
6953
6954 /* We only ever need to read in one copy of a signatured type.
6955 Use the global signatured_types array to do our own comdat-folding
6956 of types. If this is the first time we're reading this TU, and
6957 the TU has an entry in .gdb_index, replace the recorded data from
6958 .gdb_index with this TU. */
6959
6960 find_sig_entry.signature = sig;
6961 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6962 &find_sig_entry, INSERT);
6963 sig_entry = (struct signatured_type *) *slot;
6964
6965 /* We can get here with the TU already read, *or* in the process of being
6966 read. Don't reassign the global entry to point to this DWO if that's
6967 the case. Also note that if the TU is already being read, it may not
6968 have come from a DWO, the program may be a mix of Fission-compiled
6969 code and non-Fission-compiled code. */
6970
6971 /* Have we already tried to read this TU?
6972 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6973 needn't exist in the global table yet). */
6974 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
6975 return sig_entry;
6976
6977 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6978 dwo_unit of the TU itself. */
6979 dwo_file = cu->dwo_unit->dwo_file;
6980
6981 /* Ok, this is the first time we're reading this TU. */
6982 if (dwo_file->tus == NULL)
6983 return NULL;
6984 find_dwo_entry.signature = sig;
6985 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
6986 if (dwo_entry == NULL)
6987 return NULL;
6988
6989 /* If the global table doesn't have an entry for this TU, add one. */
6990 if (sig_entry == NULL)
6991 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6992
6993 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6994 sig_entry->per_cu.tu_read = 1;
6995 return sig_entry;
6996 }
6997
6998 /* Subroutine of lookup_signatured_type.
6999 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
7000 then try the DWP file. If the TU stub (skeleton) has been removed then
7001 it won't be in .gdb_index. */
7002
7003 static struct signatured_type *
7004 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7005 {
7006 struct dwarf2_per_objfile *dwarf2_per_objfile
7007 = cu->per_cu->dwarf2_per_objfile;
7008 struct objfile *objfile = dwarf2_per_objfile->objfile;
7009 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
7010 struct dwo_unit *dwo_entry;
7011 struct signatured_type find_sig_entry, *sig_entry;
7012 void **slot;
7013
7014 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7015 gdb_assert (dwp_file != NULL);
7016
7017 /* If TU skeletons have been removed then we may not have read in any
7018 TUs yet. */
7019 if (dwarf2_per_objfile->signatured_types == NULL)
7020 {
7021 dwarf2_per_objfile->signatured_types
7022 = allocate_signatured_type_table (objfile);
7023 }
7024
7025 find_sig_entry.signature = sig;
7026 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7027 &find_sig_entry, INSERT);
7028 sig_entry = (struct signatured_type *) *slot;
7029
7030 /* Have we already tried to read this TU?
7031 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7032 needn't exist in the global table yet). */
7033 if (sig_entry != NULL)
7034 return sig_entry;
7035
7036 if (dwp_file->tus == NULL)
7037 return NULL;
7038 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7039 sig, 1 /* is_debug_types */);
7040 if (dwo_entry == NULL)
7041 return NULL;
7042
7043 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7044 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7045
7046 return sig_entry;
7047 }
7048
7049 /* Lookup a signature based type for DW_FORM_ref_sig8.
7050 Returns NULL if signature SIG is not present in the table.
7051 It is up to the caller to complain about this. */
7052
7053 static struct signatured_type *
7054 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7055 {
7056 struct dwarf2_per_objfile *dwarf2_per_objfile
7057 = cu->per_cu->dwarf2_per_objfile;
7058
7059 if (cu->dwo_unit
7060 && dwarf2_per_objfile->using_index)
7061 {
7062 /* We're in a DWO/DWP file, and we're using .gdb_index.
7063 These cases require special processing. */
7064 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7065 return lookup_dwo_signatured_type (cu, sig);
7066 else
7067 return lookup_dwp_signatured_type (cu, sig);
7068 }
7069 else
7070 {
7071 struct signatured_type find_entry, *entry;
7072
7073 if (dwarf2_per_objfile->signatured_types == NULL)
7074 return NULL;
7075 find_entry.signature = sig;
7076 entry = ((struct signatured_type *)
7077 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7078 return entry;
7079 }
7080 }
7081 \f
7082 /* Low level DIE reading support. */
7083
7084 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7085
7086 static void
7087 init_cu_die_reader (struct die_reader_specs *reader,
7088 struct dwarf2_cu *cu,
7089 struct dwarf2_section_info *section,
7090 struct dwo_file *dwo_file,
7091 struct abbrev_table *abbrev_table)
7092 {
7093 gdb_assert (section->readin && section->buffer != NULL);
7094 reader->abfd = get_section_bfd_owner (section);
7095 reader->cu = cu;
7096 reader->dwo_file = dwo_file;
7097 reader->die_section = section;
7098 reader->buffer = section->buffer;
7099 reader->buffer_end = section->buffer + section->size;
7100 reader->comp_dir = NULL;
7101 reader->abbrev_table = abbrev_table;
7102 }
7103
7104 /* Subroutine of init_cutu_and_read_dies to simplify it.
7105 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7106 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7107 already.
7108
7109 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7110 from it to the DIE in the DWO. If NULL we are skipping the stub.
7111 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7112 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7113 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7114 STUB_COMP_DIR may be non-NULL.
7115 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7116 are filled in with the info of the DIE from the DWO file.
7117 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7118 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7119 kept around for at least as long as *RESULT_READER.
7120
7121 The result is non-zero if a valid (non-dummy) DIE was found. */
7122
7123 static int
7124 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7125 struct dwo_unit *dwo_unit,
7126 struct die_info *stub_comp_unit_die,
7127 const char *stub_comp_dir,
7128 struct die_reader_specs *result_reader,
7129 const gdb_byte **result_info_ptr,
7130 struct die_info **result_comp_unit_die,
7131 int *result_has_children,
7132 abbrev_table_up *result_dwo_abbrev_table)
7133 {
7134 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7135 struct objfile *objfile = dwarf2_per_objfile->objfile;
7136 struct dwarf2_cu *cu = this_cu->cu;
7137 bfd *abfd;
7138 const gdb_byte *begin_info_ptr, *info_ptr;
7139 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7140 int i,num_extra_attrs;
7141 struct dwarf2_section_info *dwo_abbrev_section;
7142 struct attribute *attr;
7143 struct die_info *comp_unit_die;
7144
7145 /* At most one of these may be provided. */
7146 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7147
7148 /* These attributes aren't processed until later:
7149 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7150 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7151 referenced later. However, these attributes are found in the stub
7152 which we won't have later. In order to not impose this complication
7153 on the rest of the code, we read them here and copy them to the
7154 DWO CU/TU die. */
7155
7156 stmt_list = NULL;
7157 low_pc = NULL;
7158 high_pc = NULL;
7159 ranges = NULL;
7160 comp_dir = NULL;
7161
7162 if (stub_comp_unit_die != NULL)
7163 {
7164 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7165 DWO file. */
7166 if (! this_cu->is_debug_types)
7167 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7168 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7169 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7170 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7171 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7172
7173 /* There should be a DW_AT_addr_base attribute here (if needed).
7174 We need the value before we can process DW_FORM_GNU_addr_index
7175 or DW_FORM_addrx. */
7176 cu->addr_base = 0;
7177 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7178 if (attr)
7179 cu->addr_base = DW_UNSND (attr);
7180
7181 /* There should be a DW_AT_ranges_base attribute here (if needed).
7182 We need the value before we can process DW_AT_ranges. */
7183 cu->ranges_base = 0;
7184 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7185 if (attr)
7186 cu->ranges_base = DW_UNSND (attr);
7187 }
7188 else if (stub_comp_dir != NULL)
7189 {
7190 /* Reconstruct the comp_dir attribute to simplify the code below. */
7191 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7192 comp_dir->name = DW_AT_comp_dir;
7193 comp_dir->form = DW_FORM_string;
7194 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7195 DW_STRING (comp_dir) = stub_comp_dir;
7196 }
7197
7198 /* Set up for reading the DWO CU/TU. */
7199 cu->dwo_unit = dwo_unit;
7200 dwarf2_section_info *section = dwo_unit->section;
7201 dwarf2_read_section (objfile, section);
7202 abfd = get_section_bfd_owner (section);
7203 begin_info_ptr = info_ptr = (section->buffer
7204 + to_underlying (dwo_unit->sect_off));
7205 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7206
7207 if (this_cu->is_debug_types)
7208 {
7209 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7210
7211 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7212 &cu->header, section,
7213 dwo_abbrev_section,
7214 info_ptr, rcuh_kind::TYPE);
7215 /* This is not an assert because it can be caused by bad debug info. */
7216 if (sig_type->signature != cu->header.signature)
7217 {
7218 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7219 " TU at offset %s [in module %s]"),
7220 hex_string (sig_type->signature),
7221 hex_string (cu->header.signature),
7222 sect_offset_str (dwo_unit->sect_off),
7223 bfd_get_filename (abfd));
7224 }
7225 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7226 /* For DWOs coming from DWP files, we don't know the CU length
7227 nor the type's offset in the TU until now. */
7228 dwo_unit->length = get_cu_length (&cu->header);
7229 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7230
7231 /* Establish the type offset that can be used to lookup the type.
7232 For DWO files, we don't know it until now. */
7233 sig_type->type_offset_in_section
7234 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7235 }
7236 else
7237 {
7238 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7239 &cu->header, section,
7240 dwo_abbrev_section,
7241 info_ptr, rcuh_kind::COMPILE);
7242 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7243 /* For DWOs coming from DWP files, we don't know the CU length
7244 until now. */
7245 dwo_unit->length = get_cu_length (&cu->header);
7246 }
7247
7248 *result_dwo_abbrev_table
7249 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7250 cu->header.abbrev_sect_off);
7251 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7252 result_dwo_abbrev_table->get ());
7253
7254 /* Read in the die, but leave space to copy over the attributes
7255 from the stub. This has the benefit of simplifying the rest of
7256 the code - all the work to maintain the illusion of a single
7257 DW_TAG_{compile,type}_unit DIE is done here. */
7258 num_extra_attrs = ((stmt_list != NULL)
7259 + (low_pc != NULL)
7260 + (high_pc != NULL)
7261 + (ranges != NULL)
7262 + (comp_dir != NULL));
7263 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7264 result_has_children, num_extra_attrs);
7265
7266 /* Copy over the attributes from the stub to the DIE we just read in. */
7267 comp_unit_die = *result_comp_unit_die;
7268 i = comp_unit_die->num_attrs;
7269 if (stmt_list != NULL)
7270 comp_unit_die->attrs[i++] = *stmt_list;
7271 if (low_pc != NULL)
7272 comp_unit_die->attrs[i++] = *low_pc;
7273 if (high_pc != NULL)
7274 comp_unit_die->attrs[i++] = *high_pc;
7275 if (ranges != NULL)
7276 comp_unit_die->attrs[i++] = *ranges;
7277 if (comp_dir != NULL)
7278 comp_unit_die->attrs[i++] = *comp_dir;
7279 comp_unit_die->num_attrs += num_extra_attrs;
7280
7281 if (dwarf_die_debug)
7282 {
7283 fprintf_unfiltered (gdb_stdlog,
7284 "Read die from %s@0x%x of %s:\n",
7285 get_section_name (section),
7286 (unsigned) (begin_info_ptr - section->buffer),
7287 bfd_get_filename (abfd));
7288 dump_die (comp_unit_die, dwarf_die_debug);
7289 }
7290
7291 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7292 TUs by skipping the stub and going directly to the entry in the DWO file.
7293 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7294 to get it via circuitous means. Blech. */
7295 if (comp_dir != NULL)
7296 result_reader->comp_dir = DW_STRING (comp_dir);
7297
7298 /* Skip dummy compilation units. */
7299 if (info_ptr >= begin_info_ptr + dwo_unit->length
7300 || peek_abbrev_code (abfd, info_ptr) == 0)
7301 return 0;
7302
7303 *result_info_ptr = info_ptr;
7304 return 1;
7305 }
7306
7307 /* Subroutine of init_cutu_and_read_dies to simplify it.
7308 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7309 Returns NULL if the specified DWO unit cannot be found. */
7310
7311 static struct dwo_unit *
7312 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7313 struct die_info *comp_unit_die)
7314 {
7315 struct dwarf2_cu *cu = this_cu->cu;
7316 ULONGEST signature;
7317 struct dwo_unit *dwo_unit;
7318 const char *comp_dir, *dwo_name;
7319
7320 gdb_assert (cu != NULL);
7321
7322 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7323 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7324 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7325
7326 if (this_cu->is_debug_types)
7327 {
7328 struct signatured_type *sig_type;
7329
7330 /* Since this_cu is the first member of struct signatured_type,
7331 we can go from a pointer to one to a pointer to the other. */
7332 sig_type = (struct signatured_type *) this_cu;
7333 signature = sig_type->signature;
7334 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7335 }
7336 else
7337 {
7338 struct attribute *attr;
7339
7340 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7341 if (! attr)
7342 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7343 " [in module %s]"),
7344 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7345 signature = DW_UNSND (attr);
7346 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7347 signature);
7348 }
7349
7350 return dwo_unit;
7351 }
7352
7353 /* Subroutine of init_cutu_and_read_dies to simplify it.
7354 See it for a description of the parameters.
7355 Read a TU directly from a DWO file, bypassing the stub. */
7356
7357 static void
7358 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7359 int use_existing_cu, int keep,
7360 die_reader_func_ftype *die_reader_func,
7361 void *data)
7362 {
7363 std::unique_ptr<dwarf2_cu> new_cu;
7364 struct signatured_type *sig_type;
7365 struct die_reader_specs reader;
7366 const gdb_byte *info_ptr;
7367 struct die_info *comp_unit_die;
7368 int has_children;
7369 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7370
7371 /* Verify we can do the following downcast, and that we have the
7372 data we need. */
7373 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7374 sig_type = (struct signatured_type *) this_cu;
7375 gdb_assert (sig_type->dwo_unit != NULL);
7376
7377 if (use_existing_cu && this_cu->cu != NULL)
7378 {
7379 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7380 /* There's no need to do the rereading_dwo_cu handling that
7381 init_cutu_and_read_dies does since we don't read the stub. */
7382 }
7383 else
7384 {
7385 /* If !use_existing_cu, this_cu->cu must be NULL. */
7386 gdb_assert (this_cu->cu == NULL);
7387 new_cu.reset (new dwarf2_cu (this_cu));
7388 }
7389
7390 /* A future optimization, if needed, would be to use an existing
7391 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7392 could share abbrev tables. */
7393
7394 /* The abbreviation table used by READER, this must live at least as long as
7395 READER. */
7396 abbrev_table_up dwo_abbrev_table;
7397
7398 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7399 NULL /* stub_comp_unit_die */,
7400 sig_type->dwo_unit->dwo_file->comp_dir,
7401 &reader, &info_ptr,
7402 &comp_unit_die, &has_children,
7403 &dwo_abbrev_table) == 0)
7404 {
7405 /* Dummy die. */
7406 return;
7407 }
7408
7409 /* All the "real" work is done here. */
7410 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7411
7412 /* This duplicates the code in init_cutu_and_read_dies,
7413 but the alternative is making the latter more complex.
7414 This function is only for the special case of using DWO files directly:
7415 no point in overly complicating the general case just to handle this. */
7416 if (new_cu != NULL && keep)
7417 {
7418 /* Link this CU into read_in_chain. */
7419 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7420 dwarf2_per_objfile->read_in_chain = this_cu;
7421 /* The chain owns it now. */
7422 new_cu.release ();
7423 }
7424 }
7425
7426 /* Initialize a CU (or TU) and read its DIEs.
7427 If the CU defers to a DWO file, read the DWO file as well.
7428
7429 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7430 Otherwise the table specified in the comp unit header is read in and used.
7431 This is an optimization for when we already have the abbrev table.
7432
7433 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7434 Otherwise, a new CU is allocated with xmalloc.
7435
7436 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7437 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7438
7439 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7440 linker) then DIE_READER_FUNC will not get called. */
7441
7442 static void
7443 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7444 struct abbrev_table *abbrev_table,
7445 int use_existing_cu, int keep,
7446 bool skip_partial,
7447 die_reader_func_ftype *die_reader_func,
7448 void *data)
7449 {
7450 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7451 struct objfile *objfile = dwarf2_per_objfile->objfile;
7452 struct dwarf2_section_info *section = this_cu->section;
7453 bfd *abfd = get_section_bfd_owner (section);
7454 struct dwarf2_cu *cu;
7455 const gdb_byte *begin_info_ptr, *info_ptr;
7456 struct die_reader_specs reader;
7457 struct die_info *comp_unit_die;
7458 int has_children;
7459 struct attribute *attr;
7460 struct signatured_type *sig_type = NULL;
7461 struct dwarf2_section_info *abbrev_section;
7462 /* Non-zero if CU currently points to a DWO file and we need to
7463 reread it. When this happens we need to reread the skeleton die
7464 before we can reread the DWO file (this only applies to CUs, not TUs). */
7465 int rereading_dwo_cu = 0;
7466
7467 if (dwarf_die_debug)
7468 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7469 this_cu->is_debug_types ? "type" : "comp",
7470 sect_offset_str (this_cu->sect_off));
7471
7472 if (use_existing_cu)
7473 gdb_assert (keep);
7474
7475 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7476 file (instead of going through the stub), short-circuit all of this. */
7477 if (this_cu->reading_dwo_directly)
7478 {
7479 /* Narrow down the scope of possibilities to have to understand. */
7480 gdb_assert (this_cu->is_debug_types);
7481 gdb_assert (abbrev_table == NULL);
7482 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7483 die_reader_func, data);
7484 return;
7485 }
7486
7487 /* This is cheap if the section is already read in. */
7488 dwarf2_read_section (objfile, section);
7489
7490 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7491
7492 abbrev_section = get_abbrev_section_for_cu (this_cu);
7493
7494 std::unique_ptr<dwarf2_cu> new_cu;
7495 if (use_existing_cu && this_cu->cu != NULL)
7496 {
7497 cu = this_cu->cu;
7498 /* If this CU is from a DWO file we need to start over, we need to
7499 refetch the attributes from the skeleton CU.
7500 This could be optimized by retrieving those attributes from when we
7501 were here the first time: the previous comp_unit_die was stored in
7502 comp_unit_obstack. But there's no data yet that we need this
7503 optimization. */
7504 if (cu->dwo_unit != NULL)
7505 rereading_dwo_cu = 1;
7506 }
7507 else
7508 {
7509 /* If !use_existing_cu, this_cu->cu must be NULL. */
7510 gdb_assert (this_cu->cu == NULL);
7511 new_cu.reset (new dwarf2_cu (this_cu));
7512 cu = new_cu.get ();
7513 }
7514
7515 /* Get the header. */
7516 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7517 {
7518 /* We already have the header, there's no need to read it in again. */
7519 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7520 }
7521 else
7522 {
7523 if (this_cu->is_debug_types)
7524 {
7525 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7526 &cu->header, section,
7527 abbrev_section, info_ptr,
7528 rcuh_kind::TYPE);
7529
7530 /* Since per_cu is the first member of struct signatured_type,
7531 we can go from a pointer to one to a pointer to the other. */
7532 sig_type = (struct signatured_type *) this_cu;
7533 gdb_assert (sig_type->signature == cu->header.signature);
7534 gdb_assert (sig_type->type_offset_in_tu
7535 == cu->header.type_cu_offset_in_tu);
7536 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7537
7538 /* LENGTH has not been set yet for type units if we're
7539 using .gdb_index. */
7540 this_cu->length = get_cu_length (&cu->header);
7541
7542 /* Establish the type offset that can be used to lookup the type. */
7543 sig_type->type_offset_in_section =
7544 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7545
7546 this_cu->dwarf_version = cu->header.version;
7547 }
7548 else
7549 {
7550 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7551 &cu->header, section,
7552 abbrev_section,
7553 info_ptr,
7554 rcuh_kind::COMPILE);
7555
7556 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7557 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7558 this_cu->dwarf_version = cu->header.version;
7559 }
7560 }
7561
7562 /* Skip dummy compilation units. */
7563 if (info_ptr >= begin_info_ptr + this_cu->length
7564 || peek_abbrev_code (abfd, info_ptr) == 0)
7565 return;
7566
7567 /* If we don't have them yet, read the abbrevs for this compilation unit.
7568 And if we need to read them now, make sure they're freed when we're
7569 done (own the table through ABBREV_TABLE_HOLDER). */
7570 abbrev_table_up abbrev_table_holder;
7571 if (abbrev_table != NULL)
7572 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7573 else
7574 {
7575 abbrev_table_holder
7576 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7577 cu->header.abbrev_sect_off);
7578 abbrev_table = abbrev_table_holder.get ();
7579 }
7580
7581 /* Read the top level CU/TU die. */
7582 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7583 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7584
7585 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7586 return;
7587
7588 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7589 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7590 table from the DWO file and pass the ownership over to us. It will be
7591 referenced from READER, so we must make sure to free it after we're done
7592 with READER.
7593
7594 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7595 DWO CU, that this test will fail (the attribute will not be present). */
7596 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7597 abbrev_table_up dwo_abbrev_table;
7598 if (attr)
7599 {
7600 struct dwo_unit *dwo_unit;
7601 struct die_info *dwo_comp_unit_die;
7602
7603 if (has_children)
7604 {
7605 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7606 " has children (offset %s) [in module %s]"),
7607 sect_offset_str (this_cu->sect_off),
7608 bfd_get_filename (abfd));
7609 }
7610 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7611 if (dwo_unit != NULL)
7612 {
7613 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7614 comp_unit_die, NULL,
7615 &reader, &info_ptr,
7616 &dwo_comp_unit_die, &has_children,
7617 &dwo_abbrev_table) == 0)
7618 {
7619 /* Dummy die. */
7620 return;
7621 }
7622 comp_unit_die = dwo_comp_unit_die;
7623 }
7624 else
7625 {
7626 /* Yikes, we couldn't find the rest of the DIE, we only have
7627 the stub. A complaint has already been logged. There's
7628 not much more we can do except pass on the stub DIE to
7629 die_reader_func. We don't want to throw an error on bad
7630 debug info. */
7631 }
7632 }
7633
7634 /* All of the above is setup for this call. Yikes. */
7635 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7636
7637 /* Done, clean up. */
7638 if (new_cu != NULL && keep)
7639 {
7640 /* Link this CU into read_in_chain. */
7641 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7642 dwarf2_per_objfile->read_in_chain = this_cu;
7643 /* The chain owns it now. */
7644 new_cu.release ();
7645 }
7646 }
7647
7648 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7649 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7650 to have already done the lookup to find the DWO file).
7651
7652 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7653 THIS_CU->is_debug_types, but nothing else.
7654
7655 We fill in THIS_CU->length.
7656
7657 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7658 linker) then DIE_READER_FUNC will not get called.
7659
7660 THIS_CU->cu is always freed when done.
7661 This is done in order to not leave THIS_CU->cu in a state where we have
7662 to care whether it refers to the "main" CU or the DWO CU. */
7663
7664 static void
7665 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7666 struct dwo_file *dwo_file,
7667 die_reader_func_ftype *die_reader_func,
7668 void *data)
7669 {
7670 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7671 struct objfile *objfile = dwarf2_per_objfile->objfile;
7672 struct dwarf2_section_info *section = this_cu->section;
7673 bfd *abfd = get_section_bfd_owner (section);
7674 struct dwarf2_section_info *abbrev_section;
7675 const gdb_byte *begin_info_ptr, *info_ptr;
7676 struct die_reader_specs reader;
7677 struct die_info *comp_unit_die;
7678 int has_children;
7679
7680 if (dwarf_die_debug)
7681 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7682 this_cu->is_debug_types ? "type" : "comp",
7683 sect_offset_str (this_cu->sect_off));
7684
7685 gdb_assert (this_cu->cu == NULL);
7686
7687 abbrev_section = (dwo_file != NULL
7688 ? &dwo_file->sections.abbrev
7689 : get_abbrev_section_for_cu (this_cu));
7690
7691 /* This is cheap if the section is already read in. */
7692 dwarf2_read_section (objfile, section);
7693
7694 struct dwarf2_cu cu (this_cu);
7695
7696 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7697 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7698 &cu.header, section,
7699 abbrev_section, info_ptr,
7700 (this_cu->is_debug_types
7701 ? rcuh_kind::TYPE
7702 : rcuh_kind::COMPILE));
7703
7704 this_cu->length = get_cu_length (&cu.header);
7705
7706 /* Skip dummy compilation units. */
7707 if (info_ptr >= begin_info_ptr + this_cu->length
7708 || peek_abbrev_code (abfd, info_ptr) == 0)
7709 return;
7710
7711 abbrev_table_up abbrev_table
7712 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7713 cu.header.abbrev_sect_off);
7714
7715 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7716 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7717
7718 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7719 }
7720
7721 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7722 does not lookup the specified DWO file.
7723 This cannot be used to read DWO files.
7724
7725 THIS_CU->cu is always freed when done.
7726 This is done in order to not leave THIS_CU->cu in a state where we have
7727 to care whether it refers to the "main" CU or the DWO CU.
7728 We can revisit this if the data shows there's a performance issue. */
7729
7730 static void
7731 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7732 die_reader_func_ftype *die_reader_func,
7733 void *data)
7734 {
7735 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7736 }
7737 \f
7738 /* Type Unit Groups.
7739
7740 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7741 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7742 so that all types coming from the same compilation (.o file) are grouped
7743 together. A future step could be to put the types in the same symtab as
7744 the CU the types ultimately came from. */
7745
7746 static hashval_t
7747 hash_type_unit_group (const void *item)
7748 {
7749 const struct type_unit_group *tu_group
7750 = (const struct type_unit_group *) item;
7751
7752 return hash_stmt_list_entry (&tu_group->hash);
7753 }
7754
7755 static int
7756 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7757 {
7758 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7759 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7760
7761 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7762 }
7763
7764 /* Allocate a hash table for type unit groups. */
7765
7766 static htab_t
7767 allocate_type_unit_groups_table (struct objfile *objfile)
7768 {
7769 return htab_create_alloc_ex (3,
7770 hash_type_unit_group,
7771 eq_type_unit_group,
7772 NULL,
7773 &objfile->objfile_obstack,
7774 hashtab_obstack_allocate,
7775 dummy_obstack_deallocate);
7776 }
7777
7778 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7779 partial symtabs. We combine several TUs per psymtab to not let the size
7780 of any one psymtab grow too big. */
7781 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7782 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7783
7784 /* Helper routine for get_type_unit_group.
7785 Create the type_unit_group object used to hold one or more TUs. */
7786
7787 static struct type_unit_group *
7788 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7789 {
7790 struct dwarf2_per_objfile *dwarf2_per_objfile
7791 = cu->per_cu->dwarf2_per_objfile;
7792 struct objfile *objfile = dwarf2_per_objfile->objfile;
7793 struct dwarf2_per_cu_data *per_cu;
7794 struct type_unit_group *tu_group;
7795
7796 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7797 struct type_unit_group);
7798 per_cu = &tu_group->per_cu;
7799 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7800
7801 if (dwarf2_per_objfile->using_index)
7802 {
7803 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7804 struct dwarf2_per_cu_quick_data);
7805 }
7806 else
7807 {
7808 unsigned int line_offset = to_underlying (line_offset_struct);
7809 struct partial_symtab *pst;
7810 std::string name;
7811
7812 /* Give the symtab a useful name for debug purposes. */
7813 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7814 name = string_printf ("<type_units_%d>",
7815 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7816 else
7817 name = string_printf ("<type_units_at_0x%x>", line_offset);
7818
7819 pst = create_partial_symtab (per_cu, name.c_str ());
7820 pst->anonymous = 1;
7821 }
7822
7823 tu_group->hash.dwo_unit = cu->dwo_unit;
7824 tu_group->hash.line_sect_off = line_offset_struct;
7825
7826 return tu_group;
7827 }
7828
7829 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7830 STMT_LIST is a DW_AT_stmt_list attribute. */
7831
7832 static struct type_unit_group *
7833 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7834 {
7835 struct dwarf2_per_objfile *dwarf2_per_objfile
7836 = cu->per_cu->dwarf2_per_objfile;
7837 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7838 struct type_unit_group *tu_group;
7839 void **slot;
7840 unsigned int line_offset;
7841 struct type_unit_group type_unit_group_for_lookup;
7842
7843 if (dwarf2_per_objfile->type_unit_groups == NULL)
7844 {
7845 dwarf2_per_objfile->type_unit_groups =
7846 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7847 }
7848
7849 /* Do we need to create a new group, or can we use an existing one? */
7850
7851 if (stmt_list)
7852 {
7853 line_offset = DW_UNSND (stmt_list);
7854 ++tu_stats->nr_symtab_sharers;
7855 }
7856 else
7857 {
7858 /* Ugh, no stmt_list. Rare, but we have to handle it.
7859 We can do various things here like create one group per TU or
7860 spread them over multiple groups to split up the expansion work.
7861 To avoid worst case scenarios (too many groups or too large groups)
7862 we, umm, group them in bunches. */
7863 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7864 | (tu_stats->nr_stmt_less_type_units
7865 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7866 ++tu_stats->nr_stmt_less_type_units;
7867 }
7868
7869 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7870 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7871 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7872 &type_unit_group_for_lookup, INSERT);
7873 if (*slot != NULL)
7874 {
7875 tu_group = (struct type_unit_group *) *slot;
7876 gdb_assert (tu_group != NULL);
7877 }
7878 else
7879 {
7880 sect_offset line_offset_struct = (sect_offset) line_offset;
7881 tu_group = create_type_unit_group (cu, line_offset_struct);
7882 *slot = tu_group;
7883 ++tu_stats->nr_symtabs;
7884 }
7885
7886 return tu_group;
7887 }
7888 \f
7889 /* Partial symbol tables. */
7890
7891 /* Create a psymtab named NAME and assign it to PER_CU.
7892
7893 The caller must fill in the following details:
7894 dirname, textlow, texthigh. */
7895
7896 static struct partial_symtab *
7897 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7898 {
7899 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7900 struct partial_symtab *pst;
7901
7902 pst = start_psymtab_common (objfile, name, 0);
7903
7904 pst->psymtabs_addrmap_supported = 1;
7905
7906 /* This is the glue that links PST into GDB's symbol API. */
7907 pst->read_symtab_private = per_cu;
7908 pst->read_symtab = dwarf2_read_symtab;
7909 per_cu->v.psymtab = pst;
7910
7911 return pst;
7912 }
7913
7914 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7915 type. */
7916
7917 struct process_psymtab_comp_unit_data
7918 {
7919 /* True if we are reading a DW_TAG_partial_unit. */
7920
7921 int want_partial_unit;
7922
7923 /* The "pretend" language that is used if the CU doesn't declare a
7924 language. */
7925
7926 enum language pretend_language;
7927 };
7928
7929 /* die_reader_func for process_psymtab_comp_unit. */
7930
7931 static void
7932 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7933 const gdb_byte *info_ptr,
7934 struct die_info *comp_unit_die,
7935 int has_children,
7936 void *data)
7937 {
7938 struct dwarf2_cu *cu = reader->cu;
7939 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7940 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7941 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7942 CORE_ADDR baseaddr;
7943 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7944 struct partial_symtab *pst;
7945 enum pc_bounds_kind cu_bounds_kind;
7946 const char *filename;
7947 struct process_psymtab_comp_unit_data *info
7948 = (struct process_psymtab_comp_unit_data *) data;
7949
7950 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
7951 return;
7952
7953 gdb_assert (! per_cu->is_debug_types);
7954
7955 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
7956
7957 /* Allocate a new partial symbol table structure. */
7958 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7959 if (filename == NULL)
7960 filename = "";
7961
7962 pst = create_partial_symtab (per_cu, filename);
7963
7964 /* This must be done before calling dwarf2_build_include_psymtabs. */
7965 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7966
7967 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7968
7969 dwarf2_find_base_address (comp_unit_die, cu);
7970
7971 /* Possibly set the default values of LOWPC and HIGHPC from
7972 `DW_AT_ranges'. */
7973 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7974 &best_highpc, cu, pst);
7975 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7976 {
7977 CORE_ADDR low
7978 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
7979 - baseaddr);
7980 CORE_ADDR high
7981 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
7982 - baseaddr - 1);
7983 /* Store the contiguous range if it is not empty; it can be
7984 empty for CUs with no code. */
7985 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
7986 low, high, pst);
7987 }
7988
7989 /* Check if comp unit has_children.
7990 If so, read the rest of the partial symbols from this comp unit.
7991 If not, there's no more debug_info for this comp unit. */
7992 if (has_children)
7993 {
7994 struct partial_die_info *first_die;
7995 CORE_ADDR lowpc, highpc;
7996
7997 lowpc = ((CORE_ADDR) -1);
7998 highpc = ((CORE_ADDR) 0);
7999
8000 first_die = load_partial_dies (reader, info_ptr, 1);
8001
8002 scan_partial_symbols (first_die, &lowpc, &highpc,
8003 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
8004
8005 /* If we didn't find a lowpc, set it to highpc to avoid
8006 complaints from `maint check'. */
8007 if (lowpc == ((CORE_ADDR) -1))
8008 lowpc = highpc;
8009
8010 /* If the compilation unit didn't have an explicit address range,
8011 then use the information extracted from its child dies. */
8012 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8013 {
8014 best_lowpc = lowpc;
8015 best_highpc = highpc;
8016 }
8017 }
8018 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
8019 best_lowpc + baseaddr)
8020 - baseaddr);
8021 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
8022 best_highpc + baseaddr)
8023 - baseaddr);
8024
8025 end_psymtab_common (objfile, pst);
8026
8027 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8028 {
8029 int i;
8030 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8031 struct dwarf2_per_cu_data *iter;
8032
8033 /* Fill in 'dependencies' here; we fill in 'users' in a
8034 post-pass. */
8035 pst->number_of_dependencies = len;
8036 pst->dependencies
8037 = objfile->partial_symtabs->allocate_dependencies (len);
8038 for (i = 0;
8039 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8040 i, iter);
8041 ++i)
8042 pst->dependencies[i] = iter->v.psymtab;
8043
8044 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8045 }
8046
8047 /* Get the list of files included in the current compilation unit,
8048 and build a psymtab for each of them. */
8049 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8050
8051 if (dwarf_read_debug)
8052 fprintf_unfiltered (gdb_stdlog,
8053 "Psymtab for %s unit @%s: %s - %s"
8054 ", %d global, %d static syms\n",
8055 per_cu->is_debug_types ? "type" : "comp",
8056 sect_offset_str (per_cu->sect_off),
8057 paddress (gdbarch, pst->text_low (objfile)),
8058 paddress (gdbarch, pst->text_high (objfile)),
8059 pst->n_global_syms, pst->n_static_syms);
8060 }
8061
8062 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8063 Process compilation unit THIS_CU for a psymtab. */
8064
8065 static void
8066 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8067 int want_partial_unit,
8068 enum language pretend_language)
8069 {
8070 /* If this compilation unit was already read in, free the
8071 cached copy in order to read it in again. This is
8072 necessary because we skipped some symbols when we first
8073 read in the compilation unit (see load_partial_dies).
8074 This problem could be avoided, but the benefit is unclear. */
8075 if (this_cu->cu != NULL)
8076 free_one_cached_comp_unit (this_cu);
8077
8078 if (this_cu->is_debug_types)
8079 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8080 build_type_psymtabs_reader, NULL);
8081 else
8082 {
8083 process_psymtab_comp_unit_data info;
8084 info.want_partial_unit = want_partial_unit;
8085 info.pretend_language = pretend_language;
8086 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8087 process_psymtab_comp_unit_reader, &info);
8088 }
8089
8090 /* Age out any secondary CUs. */
8091 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8092 }
8093
8094 /* Reader function for build_type_psymtabs. */
8095
8096 static void
8097 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8098 const gdb_byte *info_ptr,
8099 struct die_info *type_unit_die,
8100 int has_children,
8101 void *data)
8102 {
8103 struct dwarf2_per_objfile *dwarf2_per_objfile
8104 = reader->cu->per_cu->dwarf2_per_objfile;
8105 struct objfile *objfile = dwarf2_per_objfile->objfile;
8106 struct dwarf2_cu *cu = reader->cu;
8107 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8108 struct signatured_type *sig_type;
8109 struct type_unit_group *tu_group;
8110 struct attribute *attr;
8111 struct partial_die_info *first_die;
8112 CORE_ADDR lowpc, highpc;
8113 struct partial_symtab *pst;
8114
8115 gdb_assert (data == NULL);
8116 gdb_assert (per_cu->is_debug_types);
8117 sig_type = (struct signatured_type *) per_cu;
8118
8119 if (! has_children)
8120 return;
8121
8122 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8123 tu_group = get_type_unit_group (cu, attr);
8124
8125 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8126
8127 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8128 pst = create_partial_symtab (per_cu, "");
8129 pst->anonymous = 1;
8130
8131 first_die = load_partial_dies (reader, info_ptr, 1);
8132
8133 lowpc = (CORE_ADDR) -1;
8134 highpc = (CORE_ADDR) 0;
8135 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8136
8137 end_psymtab_common (objfile, pst);
8138 }
8139
8140 /* Struct used to sort TUs by their abbreviation table offset. */
8141
8142 struct tu_abbrev_offset
8143 {
8144 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8145 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8146 {}
8147
8148 signatured_type *sig_type;
8149 sect_offset abbrev_offset;
8150 };
8151
8152 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8153
8154 static bool
8155 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8156 const struct tu_abbrev_offset &b)
8157 {
8158 return a.abbrev_offset < b.abbrev_offset;
8159 }
8160
8161 /* Efficiently read all the type units.
8162 This does the bulk of the work for build_type_psymtabs.
8163
8164 The efficiency is because we sort TUs by the abbrev table they use and
8165 only read each abbrev table once. In one program there are 200K TUs
8166 sharing 8K abbrev tables.
8167
8168 The main purpose of this function is to support building the
8169 dwarf2_per_objfile->type_unit_groups table.
8170 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8171 can collapse the search space by grouping them by stmt_list.
8172 The savings can be significant, in the same program from above the 200K TUs
8173 share 8K stmt_list tables.
8174
8175 FUNC is expected to call get_type_unit_group, which will create the
8176 struct type_unit_group if necessary and add it to
8177 dwarf2_per_objfile->type_unit_groups. */
8178
8179 static void
8180 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8181 {
8182 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8183 abbrev_table_up abbrev_table;
8184 sect_offset abbrev_offset;
8185
8186 /* It's up to the caller to not call us multiple times. */
8187 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8188
8189 if (dwarf2_per_objfile->all_type_units.empty ())
8190 return;
8191
8192 /* TUs typically share abbrev tables, and there can be way more TUs than
8193 abbrev tables. Sort by abbrev table to reduce the number of times we
8194 read each abbrev table in.
8195 Alternatives are to punt or to maintain a cache of abbrev tables.
8196 This is simpler and efficient enough for now.
8197
8198 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8199 symtab to use). Typically TUs with the same abbrev offset have the same
8200 stmt_list value too so in practice this should work well.
8201
8202 The basic algorithm here is:
8203
8204 sort TUs by abbrev table
8205 for each TU with same abbrev table:
8206 read abbrev table if first user
8207 read TU top level DIE
8208 [IWBN if DWO skeletons had DW_AT_stmt_list]
8209 call FUNC */
8210
8211 if (dwarf_read_debug)
8212 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8213
8214 /* Sort in a separate table to maintain the order of all_type_units
8215 for .gdb_index: TU indices directly index all_type_units. */
8216 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8217 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8218
8219 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8220 sorted_by_abbrev.emplace_back
8221 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8222 sig_type->per_cu.section,
8223 sig_type->per_cu.sect_off));
8224
8225 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8226 sort_tu_by_abbrev_offset);
8227
8228 abbrev_offset = (sect_offset) ~(unsigned) 0;
8229
8230 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8231 {
8232 /* Switch to the next abbrev table if necessary. */
8233 if (abbrev_table == NULL
8234 || tu.abbrev_offset != abbrev_offset)
8235 {
8236 abbrev_offset = tu.abbrev_offset;
8237 abbrev_table =
8238 abbrev_table_read_table (dwarf2_per_objfile,
8239 &dwarf2_per_objfile->abbrev,
8240 abbrev_offset);
8241 ++tu_stats->nr_uniq_abbrev_tables;
8242 }
8243
8244 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8245 0, 0, false, build_type_psymtabs_reader, NULL);
8246 }
8247 }
8248
8249 /* Print collected type unit statistics. */
8250
8251 static void
8252 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8253 {
8254 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8255
8256 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8257 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8258 dwarf2_per_objfile->all_type_units.size ());
8259 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8260 tu_stats->nr_uniq_abbrev_tables);
8261 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8262 tu_stats->nr_symtabs);
8263 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8264 tu_stats->nr_symtab_sharers);
8265 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8266 tu_stats->nr_stmt_less_type_units);
8267 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8268 tu_stats->nr_all_type_units_reallocs);
8269 }
8270
8271 /* Traversal function for build_type_psymtabs. */
8272
8273 static int
8274 build_type_psymtab_dependencies (void **slot, void *info)
8275 {
8276 struct dwarf2_per_objfile *dwarf2_per_objfile
8277 = (struct dwarf2_per_objfile *) info;
8278 struct objfile *objfile = dwarf2_per_objfile->objfile;
8279 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8280 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8281 struct partial_symtab *pst = per_cu->v.psymtab;
8282 int len = VEC_length (sig_type_ptr, tu_group->tus);
8283 struct signatured_type *iter;
8284 int i;
8285
8286 gdb_assert (len > 0);
8287 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8288
8289 pst->number_of_dependencies = len;
8290 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
8291 for (i = 0;
8292 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8293 ++i)
8294 {
8295 gdb_assert (iter->per_cu.is_debug_types);
8296 pst->dependencies[i] = iter->per_cu.v.psymtab;
8297 iter->type_unit_group = tu_group;
8298 }
8299
8300 VEC_free (sig_type_ptr, tu_group->tus);
8301
8302 return 1;
8303 }
8304
8305 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8306 Build partial symbol tables for the .debug_types comp-units. */
8307
8308 static void
8309 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8310 {
8311 if (! create_all_type_units (dwarf2_per_objfile))
8312 return;
8313
8314 build_type_psymtabs_1 (dwarf2_per_objfile);
8315 }
8316
8317 /* Traversal function for process_skeletonless_type_unit.
8318 Read a TU in a DWO file and build partial symbols for it. */
8319
8320 static int
8321 process_skeletonless_type_unit (void **slot, void *info)
8322 {
8323 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8324 struct dwarf2_per_objfile *dwarf2_per_objfile
8325 = (struct dwarf2_per_objfile *) info;
8326 struct signatured_type find_entry, *entry;
8327
8328 /* If this TU doesn't exist in the global table, add it and read it in. */
8329
8330 if (dwarf2_per_objfile->signatured_types == NULL)
8331 {
8332 dwarf2_per_objfile->signatured_types
8333 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8334 }
8335
8336 find_entry.signature = dwo_unit->signature;
8337 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8338 INSERT);
8339 /* If we've already seen this type there's nothing to do. What's happening
8340 is we're doing our own version of comdat-folding here. */
8341 if (*slot != NULL)
8342 return 1;
8343
8344 /* This does the job that create_all_type_units would have done for
8345 this TU. */
8346 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8347 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8348 *slot = entry;
8349
8350 /* This does the job that build_type_psymtabs_1 would have done. */
8351 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8352 build_type_psymtabs_reader, NULL);
8353
8354 return 1;
8355 }
8356
8357 /* Traversal function for process_skeletonless_type_units. */
8358
8359 static int
8360 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8361 {
8362 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8363
8364 if (dwo_file->tus != NULL)
8365 {
8366 htab_traverse_noresize (dwo_file->tus,
8367 process_skeletonless_type_unit, info);
8368 }
8369
8370 return 1;
8371 }
8372
8373 /* Scan all TUs of DWO files, verifying we've processed them.
8374 This is needed in case a TU was emitted without its skeleton.
8375 Note: This can't be done until we know what all the DWO files are. */
8376
8377 static void
8378 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8379 {
8380 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8381 if (get_dwp_file (dwarf2_per_objfile) == NULL
8382 && dwarf2_per_objfile->dwo_files != NULL)
8383 {
8384 htab_traverse_noresize (dwarf2_per_objfile->dwo_files.get (),
8385 process_dwo_file_for_skeletonless_type_units,
8386 dwarf2_per_objfile);
8387 }
8388 }
8389
8390 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8391
8392 static void
8393 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8394 {
8395 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8396 {
8397 struct partial_symtab *pst = per_cu->v.psymtab;
8398
8399 if (pst == NULL)
8400 continue;
8401
8402 for (int j = 0; j < pst->number_of_dependencies; ++j)
8403 {
8404 /* Set the 'user' field only if it is not already set. */
8405 if (pst->dependencies[j]->user == NULL)
8406 pst->dependencies[j]->user = pst;
8407 }
8408 }
8409 }
8410
8411 /* Build the partial symbol table by doing a quick pass through the
8412 .debug_info and .debug_abbrev sections. */
8413
8414 static void
8415 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8416 {
8417 struct objfile *objfile = dwarf2_per_objfile->objfile;
8418
8419 if (dwarf_read_debug)
8420 {
8421 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8422 objfile_name (objfile));
8423 }
8424
8425 dwarf2_per_objfile->reading_partial_symbols = 1;
8426
8427 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8428
8429 /* Any cached compilation units will be linked by the per-objfile
8430 read_in_chain. Make sure to free them when we're done. */
8431 free_cached_comp_units freer (dwarf2_per_objfile);
8432
8433 build_type_psymtabs (dwarf2_per_objfile);
8434
8435 create_all_comp_units (dwarf2_per_objfile);
8436
8437 /* Create a temporary address map on a temporary obstack. We later
8438 copy this to the final obstack. */
8439 auto_obstack temp_obstack;
8440
8441 scoped_restore save_psymtabs_addrmap
8442 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
8443 addrmap_create_mutable (&temp_obstack));
8444
8445 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8446 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8447
8448 /* This has to wait until we read the CUs, we need the list of DWOs. */
8449 process_skeletonless_type_units (dwarf2_per_objfile);
8450
8451 /* Now that all TUs have been processed we can fill in the dependencies. */
8452 if (dwarf2_per_objfile->type_unit_groups != NULL)
8453 {
8454 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8455 build_type_psymtab_dependencies, dwarf2_per_objfile);
8456 }
8457
8458 if (dwarf_read_debug)
8459 print_tu_stats (dwarf2_per_objfile);
8460
8461 set_partial_user (dwarf2_per_objfile);
8462
8463 objfile->partial_symtabs->psymtabs_addrmap
8464 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
8465 objfile->partial_symtabs->obstack ());
8466 /* At this point we want to keep the address map. */
8467 save_psymtabs_addrmap.release ();
8468
8469 if (dwarf_read_debug)
8470 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8471 objfile_name (objfile));
8472 }
8473
8474 /* die_reader_func for load_partial_comp_unit. */
8475
8476 static void
8477 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8478 const gdb_byte *info_ptr,
8479 struct die_info *comp_unit_die,
8480 int has_children,
8481 void *data)
8482 {
8483 struct dwarf2_cu *cu = reader->cu;
8484
8485 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8486
8487 /* Check if comp unit has_children.
8488 If so, read the rest of the partial symbols from this comp unit.
8489 If not, there's no more debug_info for this comp unit. */
8490 if (has_children)
8491 load_partial_dies (reader, info_ptr, 0);
8492 }
8493
8494 /* Load the partial DIEs for a secondary CU into memory.
8495 This is also used when rereading a primary CU with load_all_dies. */
8496
8497 static void
8498 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8499 {
8500 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8501 load_partial_comp_unit_reader, NULL);
8502 }
8503
8504 static void
8505 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8506 struct dwarf2_section_info *section,
8507 struct dwarf2_section_info *abbrev_section,
8508 unsigned int is_dwz)
8509 {
8510 const gdb_byte *info_ptr;
8511 struct objfile *objfile = dwarf2_per_objfile->objfile;
8512
8513 if (dwarf_read_debug)
8514 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8515 get_section_name (section),
8516 get_section_file_name (section));
8517
8518 dwarf2_read_section (objfile, section);
8519
8520 info_ptr = section->buffer;
8521
8522 while (info_ptr < section->buffer + section->size)
8523 {
8524 struct dwarf2_per_cu_data *this_cu;
8525
8526 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8527
8528 comp_unit_head cu_header;
8529 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8530 abbrev_section, info_ptr,
8531 rcuh_kind::COMPILE);
8532
8533 /* Save the compilation unit for later lookup. */
8534 if (cu_header.unit_type != DW_UT_type)
8535 {
8536 this_cu = XOBNEW (&objfile->objfile_obstack,
8537 struct dwarf2_per_cu_data);
8538 memset (this_cu, 0, sizeof (*this_cu));
8539 }
8540 else
8541 {
8542 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8543 struct signatured_type);
8544 memset (sig_type, 0, sizeof (*sig_type));
8545 sig_type->signature = cu_header.signature;
8546 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8547 this_cu = &sig_type->per_cu;
8548 }
8549 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8550 this_cu->sect_off = sect_off;
8551 this_cu->length = cu_header.length + cu_header.initial_length_size;
8552 this_cu->is_dwz = is_dwz;
8553 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8554 this_cu->section = section;
8555
8556 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8557
8558 info_ptr = info_ptr + this_cu->length;
8559 }
8560 }
8561
8562 /* Create a list of all compilation units in OBJFILE.
8563 This is only done for -readnow and building partial symtabs. */
8564
8565 static void
8566 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8567 {
8568 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8569 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8570 &dwarf2_per_objfile->abbrev, 0);
8571
8572 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8573 if (dwz != NULL)
8574 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8575 1);
8576 }
8577
8578 /* Process all loaded DIEs for compilation unit CU, starting at
8579 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8580 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8581 DW_AT_ranges). See the comments of add_partial_subprogram on how
8582 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8583
8584 static void
8585 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8586 CORE_ADDR *highpc, int set_addrmap,
8587 struct dwarf2_cu *cu)
8588 {
8589 struct partial_die_info *pdi;
8590
8591 /* Now, march along the PDI's, descending into ones which have
8592 interesting children but skipping the children of the other ones,
8593 until we reach the end of the compilation unit. */
8594
8595 pdi = first_die;
8596
8597 while (pdi != NULL)
8598 {
8599 pdi->fixup (cu);
8600
8601 /* Anonymous namespaces or modules have no name but have interesting
8602 children, so we need to look at them. Ditto for anonymous
8603 enums. */
8604
8605 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8606 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8607 || pdi->tag == DW_TAG_imported_unit
8608 || pdi->tag == DW_TAG_inlined_subroutine)
8609 {
8610 switch (pdi->tag)
8611 {
8612 case DW_TAG_subprogram:
8613 case DW_TAG_inlined_subroutine:
8614 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8615 break;
8616 case DW_TAG_constant:
8617 case DW_TAG_variable:
8618 case DW_TAG_typedef:
8619 case DW_TAG_union_type:
8620 if (!pdi->is_declaration)
8621 {
8622 add_partial_symbol (pdi, cu);
8623 }
8624 break;
8625 case DW_TAG_class_type:
8626 case DW_TAG_interface_type:
8627 case DW_TAG_structure_type:
8628 if (!pdi->is_declaration)
8629 {
8630 add_partial_symbol (pdi, cu);
8631 }
8632 if ((cu->language == language_rust
8633 || cu->language == language_cplus) && pdi->has_children)
8634 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8635 set_addrmap, cu);
8636 break;
8637 case DW_TAG_enumeration_type:
8638 if (!pdi->is_declaration)
8639 add_partial_enumeration (pdi, cu);
8640 break;
8641 case DW_TAG_base_type:
8642 case DW_TAG_subrange_type:
8643 /* File scope base type definitions are added to the partial
8644 symbol table. */
8645 add_partial_symbol (pdi, cu);
8646 break;
8647 case DW_TAG_namespace:
8648 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8649 break;
8650 case DW_TAG_module:
8651 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8652 break;
8653 case DW_TAG_imported_unit:
8654 {
8655 struct dwarf2_per_cu_data *per_cu;
8656
8657 /* For now we don't handle imported units in type units. */
8658 if (cu->per_cu->is_debug_types)
8659 {
8660 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8661 " supported in type units [in module %s]"),
8662 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8663 }
8664
8665 per_cu = dwarf2_find_containing_comp_unit
8666 (pdi->d.sect_off, pdi->is_dwz,
8667 cu->per_cu->dwarf2_per_objfile);
8668
8669 /* Go read the partial unit, if needed. */
8670 if (per_cu->v.psymtab == NULL)
8671 process_psymtab_comp_unit (per_cu, 1, cu->language);
8672
8673 VEC_safe_push (dwarf2_per_cu_ptr,
8674 cu->per_cu->imported_symtabs, per_cu);
8675 }
8676 break;
8677 case DW_TAG_imported_declaration:
8678 add_partial_symbol (pdi, cu);
8679 break;
8680 default:
8681 break;
8682 }
8683 }
8684
8685 /* If the die has a sibling, skip to the sibling. */
8686
8687 pdi = pdi->die_sibling;
8688 }
8689 }
8690
8691 /* Functions used to compute the fully scoped name of a partial DIE.
8692
8693 Normally, this is simple. For C++, the parent DIE's fully scoped
8694 name is concatenated with "::" and the partial DIE's name.
8695 Enumerators are an exception; they use the scope of their parent
8696 enumeration type, i.e. the name of the enumeration type is not
8697 prepended to the enumerator.
8698
8699 There are two complexities. One is DW_AT_specification; in this
8700 case "parent" means the parent of the target of the specification,
8701 instead of the direct parent of the DIE. The other is compilers
8702 which do not emit DW_TAG_namespace; in this case we try to guess
8703 the fully qualified name of structure types from their members'
8704 linkage names. This must be done using the DIE's children rather
8705 than the children of any DW_AT_specification target. We only need
8706 to do this for structures at the top level, i.e. if the target of
8707 any DW_AT_specification (if any; otherwise the DIE itself) does not
8708 have a parent. */
8709
8710 /* Compute the scope prefix associated with PDI's parent, in
8711 compilation unit CU. The result will be allocated on CU's
8712 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8713 field. NULL is returned if no prefix is necessary. */
8714 static const char *
8715 partial_die_parent_scope (struct partial_die_info *pdi,
8716 struct dwarf2_cu *cu)
8717 {
8718 const char *grandparent_scope;
8719 struct partial_die_info *parent, *real_pdi;
8720
8721 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8722 then this means the parent of the specification DIE. */
8723
8724 real_pdi = pdi;
8725 while (real_pdi->has_specification)
8726 {
8727 auto res = find_partial_die (real_pdi->spec_offset,
8728 real_pdi->spec_is_dwz, cu);
8729 real_pdi = res.pdi;
8730 cu = res.cu;
8731 }
8732
8733 parent = real_pdi->die_parent;
8734 if (parent == NULL)
8735 return NULL;
8736
8737 if (parent->scope_set)
8738 return parent->scope;
8739
8740 parent->fixup (cu);
8741
8742 grandparent_scope = partial_die_parent_scope (parent, cu);
8743
8744 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8745 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8746 Work around this problem here. */
8747 if (cu->language == language_cplus
8748 && parent->tag == DW_TAG_namespace
8749 && strcmp (parent->name, "::") == 0
8750 && grandparent_scope == NULL)
8751 {
8752 parent->scope = NULL;
8753 parent->scope_set = 1;
8754 return NULL;
8755 }
8756
8757 if (pdi->tag == DW_TAG_enumerator)
8758 /* Enumerators should not get the name of the enumeration as a prefix. */
8759 parent->scope = grandparent_scope;
8760 else if (parent->tag == DW_TAG_namespace
8761 || parent->tag == DW_TAG_module
8762 || parent->tag == DW_TAG_structure_type
8763 || parent->tag == DW_TAG_class_type
8764 || parent->tag == DW_TAG_interface_type
8765 || parent->tag == DW_TAG_union_type
8766 || parent->tag == DW_TAG_enumeration_type)
8767 {
8768 if (grandparent_scope == NULL)
8769 parent->scope = parent->name;
8770 else
8771 parent->scope = typename_concat (&cu->comp_unit_obstack,
8772 grandparent_scope,
8773 parent->name, 0, cu);
8774 }
8775 else
8776 {
8777 /* FIXME drow/2004-04-01: What should we be doing with
8778 function-local names? For partial symbols, we should probably be
8779 ignoring them. */
8780 complaint (_("unhandled containing DIE tag %s for DIE at %s"),
8781 dwarf_tag_name (parent->tag),
8782 sect_offset_str (pdi->sect_off));
8783 parent->scope = grandparent_scope;
8784 }
8785
8786 parent->scope_set = 1;
8787 return parent->scope;
8788 }
8789
8790 /* Return the fully scoped name associated with PDI, from compilation unit
8791 CU. The result will be allocated with malloc. */
8792
8793 static char *
8794 partial_die_full_name (struct partial_die_info *pdi,
8795 struct dwarf2_cu *cu)
8796 {
8797 const char *parent_scope;
8798
8799 /* If this is a template instantiation, we can not work out the
8800 template arguments from partial DIEs. So, unfortunately, we have
8801 to go through the full DIEs. At least any work we do building
8802 types here will be reused if full symbols are loaded later. */
8803 if (pdi->has_template_arguments)
8804 {
8805 pdi->fixup (cu);
8806
8807 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8808 {
8809 struct die_info *die;
8810 struct attribute attr;
8811 struct dwarf2_cu *ref_cu = cu;
8812
8813 /* DW_FORM_ref_addr is using section offset. */
8814 attr.name = (enum dwarf_attribute) 0;
8815 attr.form = DW_FORM_ref_addr;
8816 attr.u.unsnd = to_underlying (pdi->sect_off);
8817 die = follow_die_ref (NULL, &attr, &ref_cu);
8818
8819 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8820 }
8821 }
8822
8823 parent_scope = partial_die_parent_scope (pdi, cu);
8824 if (parent_scope == NULL)
8825 return NULL;
8826 else
8827 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8828 }
8829
8830 static void
8831 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8832 {
8833 struct dwarf2_per_objfile *dwarf2_per_objfile
8834 = cu->per_cu->dwarf2_per_objfile;
8835 struct objfile *objfile = dwarf2_per_objfile->objfile;
8836 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8837 CORE_ADDR addr = 0;
8838 const char *actual_name = NULL;
8839 CORE_ADDR baseaddr;
8840 char *built_actual_name;
8841
8842 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8843
8844 built_actual_name = partial_die_full_name (pdi, cu);
8845 if (built_actual_name != NULL)
8846 actual_name = built_actual_name;
8847
8848 if (actual_name == NULL)
8849 actual_name = pdi->name;
8850
8851 switch (pdi->tag)
8852 {
8853 case DW_TAG_inlined_subroutine:
8854 case DW_TAG_subprogram:
8855 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8856 - baseaddr);
8857 if (pdi->is_external || cu->language == language_ada)
8858 {
8859 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8860 of the global scope. But in Ada, we want to be able to access
8861 nested procedures globally. So all Ada subprograms are stored
8862 in the global scope. */
8863 add_psymbol_to_list (actual_name, strlen (actual_name),
8864 built_actual_name != NULL,
8865 VAR_DOMAIN, LOC_BLOCK,
8866 SECT_OFF_TEXT (objfile),
8867 psymbol_placement::GLOBAL,
8868 addr,
8869 cu->language, objfile);
8870 }
8871 else
8872 {
8873 add_psymbol_to_list (actual_name, strlen (actual_name),
8874 built_actual_name != NULL,
8875 VAR_DOMAIN, LOC_BLOCK,
8876 SECT_OFF_TEXT (objfile),
8877 psymbol_placement::STATIC,
8878 addr, cu->language, objfile);
8879 }
8880
8881 if (pdi->main_subprogram && actual_name != NULL)
8882 set_objfile_main_name (objfile, actual_name, cu->language);
8883 break;
8884 case DW_TAG_constant:
8885 add_psymbol_to_list (actual_name, strlen (actual_name),
8886 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8887 -1, (pdi->is_external
8888 ? psymbol_placement::GLOBAL
8889 : psymbol_placement::STATIC),
8890 0, cu->language, objfile);
8891 break;
8892 case DW_TAG_variable:
8893 if (pdi->d.locdesc)
8894 addr = decode_locdesc (pdi->d.locdesc, cu);
8895
8896 if (pdi->d.locdesc
8897 && addr == 0
8898 && !dwarf2_per_objfile->has_section_at_zero)
8899 {
8900 /* A global or static variable may also have been stripped
8901 out by the linker if unused, in which case its address
8902 will be nullified; do not add such variables into partial
8903 symbol table then. */
8904 }
8905 else if (pdi->is_external)
8906 {
8907 /* Global Variable.
8908 Don't enter into the minimal symbol tables as there is
8909 a minimal symbol table entry from the ELF symbols already.
8910 Enter into partial symbol table if it has a location
8911 descriptor or a type.
8912 If the location descriptor is missing, new_symbol will create
8913 a LOC_UNRESOLVED symbol, the address of the variable will then
8914 be determined from the minimal symbol table whenever the variable
8915 is referenced.
8916 The address for the partial symbol table entry is not
8917 used by GDB, but it comes in handy for debugging partial symbol
8918 table building. */
8919
8920 if (pdi->d.locdesc || pdi->has_type)
8921 add_psymbol_to_list (actual_name, strlen (actual_name),
8922 built_actual_name != NULL,
8923 VAR_DOMAIN, LOC_STATIC,
8924 SECT_OFF_TEXT (objfile),
8925 psymbol_placement::GLOBAL,
8926 addr, cu->language, objfile);
8927 }
8928 else
8929 {
8930 int has_loc = pdi->d.locdesc != NULL;
8931
8932 /* Static Variable. Skip symbols whose value we cannot know (those
8933 without location descriptors or constant values). */
8934 if (!has_loc && !pdi->has_const_value)
8935 {
8936 xfree (built_actual_name);
8937 return;
8938 }
8939
8940 add_psymbol_to_list (actual_name, strlen (actual_name),
8941 built_actual_name != NULL,
8942 VAR_DOMAIN, LOC_STATIC,
8943 SECT_OFF_TEXT (objfile),
8944 psymbol_placement::STATIC,
8945 has_loc ? addr : 0,
8946 cu->language, objfile);
8947 }
8948 break;
8949 case DW_TAG_typedef:
8950 case DW_TAG_base_type:
8951 case DW_TAG_subrange_type:
8952 add_psymbol_to_list (actual_name, strlen (actual_name),
8953 built_actual_name != NULL,
8954 VAR_DOMAIN, LOC_TYPEDEF, -1,
8955 psymbol_placement::STATIC,
8956 0, cu->language, objfile);
8957 break;
8958 case DW_TAG_imported_declaration:
8959 case DW_TAG_namespace:
8960 add_psymbol_to_list (actual_name, strlen (actual_name),
8961 built_actual_name != NULL,
8962 VAR_DOMAIN, LOC_TYPEDEF, -1,
8963 psymbol_placement::GLOBAL,
8964 0, cu->language, objfile);
8965 break;
8966 case DW_TAG_module:
8967 /* With Fortran 77 there might be a "BLOCK DATA" module
8968 available without any name. If so, we skip the module as it
8969 doesn't bring any value. */
8970 if (actual_name != nullptr)
8971 add_psymbol_to_list (actual_name, strlen (actual_name),
8972 built_actual_name != NULL,
8973 MODULE_DOMAIN, LOC_TYPEDEF, -1,
8974 psymbol_placement::GLOBAL,
8975 0, cu->language, objfile);
8976 break;
8977 case DW_TAG_class_type:
8978 case DW_TAG_interface_type:
8979 case DW_TAG_structure_type:
8980 case DW_TAG_union_type:
8981 case DW_TAG_enumeration_type:
8982 /* Skip external references. The DWARF standard says in the section
8983 about "Structure, Union, and Class Type Entries": "An incomplete
8984 structure, union or class type is represented by a structure,
8985 union or class entry that does not have a byte size attribute
8986 and that has a DW_AT_declaration attribute." */
8987 if (!pdi->has_byte_size && pdi->is_declaration)
8988 {
8989 xfree (built_actual_name);
8990 return;
8991 }
8992
8993 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8994 static vs. global. */
8995 add_psymbol_to_list (actual_name, strlen (actual_name),
8996 built_actual_name != NULL,
8997 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
8998 cu->language == language_cplus
8999 ? psymbol_placement::GLOBAL
9000 : psymbol_placement::STATIC,
9001 0, cu->language, objfile);
9002
9003 break;
9004 case DW_TAG_enumerator:
9005 add_psymbol_to_list (actual_name, strlen (actual_name),
9006 built_actual_name != NULL,
9007 VAR_DOMAIN, LOC_CONST, -1,
9008 cu->language == language_cplus
9009 ? psymbol_placement::GLOBAL
9010 : psymbol_placement::STATIC,
9011 0, cu->language, objfile);
9012 break;
9013 default:
9014 break;
9015 }
9016
9017 xfree (built_actual_name);
9018 }
9019
9020 /* Read a partial die corresponding to a namespace; also, add a symbol
9021 corresponding to that namespace to the symbol table. NAMESPACE is
9022 the name of the enclosing namespace. */
9023
9024 static void
9025 add_partial_namespace (struct partial_die_info *pdi,
9026 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9027 int set_addrmap, struct dwarf2_cu *cu)
9028 {
9029 /* Add a symbol for the namespace. */
9030
9031 add_partial_symbol (pdi, cu);
9032
9033 /* Now scan partial symbols in that namespace. */
9034
9035 if (pdi->has_children)
9036 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9037 }
9038
9039 /* Read a partial die corresponding to a Fortran module. */
9040
9041 static void
9042 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9043 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9044 {
9045 /* Add a symbol for the namespace. */
9046
9047 add_partial_symbol (pdi, cu);
9048
9049 /* Now scan partial symbols in that module. */
9050
9051 if (pdi->has_children)
9052 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9053 }
9054
9055 /* Read a partial die corresponding to a subprogram or an inlined
9056 subprogram and create a partial symbol for that subprogram.
9057 When the CU language allows it, this routine also defines a partial
9058 symbol for each nested subprogram that this subprogram contains.
9059 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9060 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9061
9062 PDI may also be a lexical block, in which case we simply search
9063 recursively for subprograms defined inside that lexical block.
9064 Again, this is only performed when the CU language allows this
9065 type of definitions. */
9066
9067 static void
9068 add_partial_subprogram (struct partial_die_info *pdi,
9069 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9070 int set_addrmap, struct dwarf2_cu *cu)
9071 {
9072 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9073 {
9074 if (pdi->has_pc_info)
9075 {
9076 if (pdi->lowpc < *lowpc)
9077 *lowpc = pdi->lowpc;
9078 if (pdi->highpc > *highpc)
9079 *highpc = pdi->highpc;
9080 if (set_addrmap)
9081 {
9082 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9083 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9084 CORE_ADDR baseaddr;
9085 CORE_ADDR this_highpc;
9086 CORE_ADDR this_lowpc;
9087
9088 baseaddr = ANOFFSET (objfile->section_offsets,
9089 SECT_OFF_TEXT (objfile));
9090 this_lowpc
9091 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9092 pdi->lowpc + baseaddr)
9093 - baseaddr);
9094 this_highpc
9095 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9096 pdi->highpc + baseaddr)
9097 - baseaddr);
9098 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
9099 this_lowpc, this_highpc - 1,
9100 cu->per_cu->v.psymtab);
9101 }
9102 }
9103
9104 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9105 {
9106 if (!pdi->is_declaration)
9107 /* Ignore subprogram DIEs that do not have a name, they are
9108 illegal. Do not emit a complaint at this point, we will
9109 do so when we convert this psymtab into a symtab. */
9110 if (pdi->name)
9111 add_partial_symbol (pdi, cu);
9112 }
9113 }
9114
9115 if (! pdi->has_children)
9116 return;
9117
9118 if (cu->language == language_ada)
9119 {
9120 pdi = pdi->die_child;
9121 while (pdi != NULL)
9122 {
9123 pdi->fixup (cu);
9124 if (pdi->tag == DW_TAG_subprogram
9125 || pdi->tag == DW_TAG_inlined_subroutine
9126 || pdi->tag == DW_TAG_lexical_block)
9127 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9128 pdi = pdi->die_sibling;
9129 }
9130 }
9131 }
9132
9133 /* Read a partial die corresponding to an enumeration type. */
9134
9135 static void
9136 add_partial_enumeration (struct partial_die_info *enum_pdi,
9137 struct dwarf2_cu *cu)
9138 {
9139 struct partial_die_info *pdi;
9140
9141 if (enum_pdi->name != NULL)
9142 add_partial_symbol (enum_pdi, cu);
9143
9144 pdi = enum_pdi->die_child;
9145 while (pdi)
9146 {
9147 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9148 complaint (_("malformed enumerator DIE ignored"));
9149 else
9150 add_partial_symbol (pdi, cu);
9151 pdi = pdi->die_sibling;
9152 }
9153 }
9154
9155 /* Return the initial uleb128 in the die at INFO_PTR. */
9156
9157 static unsigned int
9158 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9159 {
9160 unsigned int bytes_read;
9161
9162 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9163 }
9164
9165 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9166 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9167
9168 Return the corresponding abbrev, or NULL if the number is zero (indicating
9169 an empty DIE). In either case *BYTES_READ will be set to the length of
9170 the initial number. */
9171
9172 static struct abbrev_info *
9173 peek_die_abbrev (const die_reader_specs &reader,
9174 const gdb_byte *info_ptr, unsigned int *bytes_read)
9175 {
9176 dwarf2_cu *cu = reader.cu;
9177 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9178 unsigned int abbrev_number
9179 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9180
9181 if (abbrev_number == 0)
9182 return NULL;
9183
9184 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9185 if (!abbrev)
9186 {
9187 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9188 " at offset %s [in module %s]"),
9189 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9190 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9191 }
9192
9193 return abbrev;
9194 }
9195
9196 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9197 Returns a pointer to the end of a series of DIEs, terminated by an empty
9198 DIE. Any children of the skipped DIEs will also be skipped. */
9199
9200 static const gdb_byte *
9201 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9202 {
9203 while (1)
9204 {
9205 unsigned int bytes_read;
9206 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9207
9208 if (abbrev == NULL)
9209 return info_ptr + bytes_read;
9210 else
9211 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9212 }
9213 }
9214
9215 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9216 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9217 abbrev corresponding to that skipped uleb128 should be passed in
9218 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9219 children. */
9220
9221 static const gdb_byte *
9222 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9223 struct abbrev_info *abbrev)
9224 {
9225 unsigned int bytes_read;
9226 struct attribute attr;
9227 bfd *abfd = reader->abfd;
9228 struct dwarf2_cu *cu = reader->cu;
9229 const gdb_byte *buffer = reader->buffer;
9230 const gdb_byte *buffer_end = reader->buffer_end;
9231 unsigned int form, i;
9232
9233 for (i = 0; i < abbrev->num_attrs; i++)
9234 {
9235 /* The only abbrev we care about is DW_AT_sibling. */
9236 if (abbrev->attrs[i].name == DW_AT_sibling)
9237 {
9238 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9239 if (attr.form == DW_FORM_ref_addr)
9240 complaint (_("ignoring absolute DW_AT_sibling"));
9241 else
9242 {
9243 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9244 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9245
9246 if (sibling_ptr < info_ptr)
9247 complaint (_("DW_AT_sibling points backwards"));
9248 else if (sibling_ptr > reader->buffer_end)
9249 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9250 else
9251 return sibling_ptr;
9252 }
9253 }
9254
9255 /* If it isn't DW_AT_sibling, skip this attribute. */
9256 form = abbrev->attrs[i].form;
9257 skip_attribute:
9258 switch (form)
9259 {
9260 case DW_FORM_ref_addr:
9261 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9262 and later it is offset sized. */
9263 if (cu->header.version == 2)
9264 info_ptr += cu->header.addr_size;
9265 else
9266 info_ptr += cu->header.offset_size;
9267 break;
9268 case DW_FORM_GNU_ref_alt:
9269 info_ptr += cu->header.offset_size;
9270 break;
9271 case DW_FORM_addr:
9272 info_ptr += cu->header.addr_size;
9273 break;
9274 case DW_FORM_data1:
9275 case DW_FORM_ref1:
9276 case DW_FORM_flag:
9277 info_ptr += 1;
9278 break;
9279 case DW_FORM_flag_present:
9280 case DW_FORM_implicit_const:
9281 break;
9282 case DW_FORM_data2:
9283 case DW_FORM_ref2:
9284 info_ptr += 2;
9285 break;
9286 case DW_FORM_data4:
9287 case DW_FORM_ref4:
9288 info_ptr += 4;
9289 break;
9290 case DW_FORM_data8:
9291 case DW_FORM_ref8:
9292 case DW_FORM_ref_sig8:
9293 info_ptr += 8;
9294 break;
9295 case DW_FORM_data16:
9296 info_ptr += 16;
9297 break;
9298 case DW_FORM_string:
9299 read_direct_string (abfd, info_ptr, &bytes_read);
9300 info_ptr += bytes_read;
9301 break;
9302 case DW_FORM_sec_offset:
9303 case DW_FORM_strp:
9304 case DW_FORM_GNU_strp_alt:
9305 info_ptr += cu->header.offset_size;
9306 break;
9307 case DW_FORM_exprloc:
9308 case DW_FORM_block:
9309 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9310 info_ptr += bytes_read;
9311 break;
9312 case DW_FORM_block1:
9313 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9314 break;
9315 case DW_FORM_block2:
9316 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9317 break;
9318 case DW_FORM_block4:
9319 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9320 break;
9321 case DW_FORM_addrx:
9322 case DW_FORM_strx:
9323 case DW_FORM_sdata:
9324 case DW_FORM_udata:
9325 case DW_FORM_ref_udata:
9326 case DW_FORM_GNU_addr_index:
9327 case DW_FORM_GNU_str_index:
9328 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9329 break;
9330 case DW_FORM_indirect:
9331 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9332 info_ptr += bytes_read;
9333 /* We need to continue parsing from here, so just go back to
9334 the top. */
9335 goto skip_attribute;
9336
9337 default:
9338 error (_("Dwarf Error: Cannot handle %s "
9339 "in DWARF reader [in module %s]"),
9340 dwarf_form_name (form),
9341 bfd_get_filename (abfd));
9342 }
9343 }
9344
9345 if (abbrev->has_children)
9346 return skip_children (reader, info_ptr);
9347 else
9348 return info_ptr;
9349 }
9350
9351 /* Locate ORIG_PDI's sibling.
9352 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9353
9354 static const gdb_byte *
9355 locate_pdi_sibling (const struct die_reader_specs *reader,
9356 struct partial_die_info *orig_pdi,
9357 const gdb_byte *info_ptr)
9358 {
9359 /* Do we know the sibling already? */
9360
9361 if (orig_pdi->sibling)
9362 return orig_pdi->sibling;
9363
9364 /* Are there any children to deal with? */
9365
9366 if (!orig_pdi->has_children)
9367 return info_ptr;
9368
9369 /* Skip the children the long way. */
9370
9371 return skip_children (reader, info_ptr);
9372 }
9373
9374 /* Expand this partial symbol table into a full symbol table. SELF is
9375 not NULL. */
9376
9377 static void
9378 dwarf2_read_symtab (struct partial_symtab *self,
9379 struct objfile *objfile)
9380 {
9381 struct dwarf2_per_objfile *dwarf2_per_objfile
9382 = get_dwarf2_per_objfile (objfile);
9383
9384 if (self->readin)
9385 {
9386 warning (_("bug: psymtab for %s is already read in."),
9387 self->filename);
9388 }
9389 else
9390 {
9391 if (info_verbose)
9392 {
9393 printf_filtered (_("Reading in symbols for %s..."),
9394 self->filename);
9395 gdb_flush (gdb_stdout);
9396 }
9397
9398 /* If this psymtab is constructed from a debug-only objfile, the
9399 has_section_at_zero flag will not necessarily be correct. We
9400 can get the correct value for this flag by looking at the data
9401 associated with the (presumably stripped) associated objfile. */
9402 if (objfile->separate_debug_objfile_backlink)
9403 {
9404 struct dwarf2_per_objfile *dpo_backlink
9405 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9406
9407 dwarf2_per_objfile->has_section_at_zero
9408 = dpo_backlink->has_section_at_zero;
9409 }
9410
9411 dwarf2_per_objfile->reading_partial_symbols = 0;
9412
9413 psymtab_to_symtab_1 (self);
9414
9415 /* Finish up the debug error message. */
9416 if (info_verbose)
9417 printf_filtered (_("done.\n"));
9418 }
9419
9420 process_cu_includes (dwarf2_per_objfile);
9421 }
9422 \f
9423 /* Reading in full CUs. */
9424
9425 /* Add PER_CU to the queue. */
9426
9427 static void
9428 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9429 enum language pretend_language)
9430 {
9431 struct dwarf2_queue_item *item;
9432
9433 per_cu->queued = 1;
9434 item = XNEW (struct dwarf2_queue_item);
9435 item->per_cu = per_cu;
9436 item->pretend_language = pretend_language;
9437 item->next = NULL;
9438
9439 if (dwarf2_queue == NULL)
9440 dwarf2_queue = item;
9441 else
9442 dwarf2_queue_tail->next = item;
9443
9444 dwarf2_queue_tail = item;
9445 }
9446
9447 /* If PER_CU is not yet queued, add it to the queue.
9448 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9449 dependency.
9450 The result is non-zero if PER_CU was queued, otherwise the result is zero
9451 meaning either PER_CU is already queued or it is already loaded.
9452
9453 N.B. There is an invariant here that if a CU is queued then it is loaded.
9454 The caller is required to load PER_CU if we return non-zero. */
9455
9456 static int
9457 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9458 struct dwarf2_per_cu_data *per_cu,
9459 enum language pretend_language)
9460 {
9461 /* We may arrive here during partial symbol reading, if we need full
9462 DIEs to process an unusual case (e.g. template arguments). Do
9463 not queue PER_CU, just tell our caller to load its DIEs. */
9464 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9465 {
9466 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9467 return 1;
9468 return 0;
9469 }
9470
9471 /* Mark the dependence relation so that we don't flush PER_CU
9472 too early. */
9473 if (dependent_cu != NULL)
9474 dwarf2_add_dependence (dependent_cu, per_cu);
9475
9476 /* If it's already on the queue, we have nothing to do. */
9477 if (per_cu->queued)
9478 return 0;
9479
9480 /* If the compilation unit is already loaded, just mark it as
9481 used. */
9482 if (per_cu->cu != NULL)
9483 {
9484 per_cu->cu->last_used = 0;
9485 return 0;
9486 }
9487
9488 /* Add it to the queue. */
9489 queue_comp_unit (per_cu, pretend_language);
9490
9491 return 1;
9492 }
9493
9494 /* Process the queue. */
9495
9496 static void
9497 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9498 {
9499 struct dwarf2_queue_item *item, *next_item;
9500
9501 if (dwarf_read_debug)
9502 {
9503 fprintf_unfiltered (gdb_stdlog,
9504 "Expanding one or more symtabs of objfile %s ...\n",
9505 objfile_name (dwarf2_per_objfile->objfile));
9506 }
9507
9508 /* The queue starts out with one item, but following a DIE reference
9509 may load a new CU, adding it to the end of the queue. */
9510 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9511 {
9512 if ((dwarf2_per_objfile->using_index
9513 ? !item->per_cu->v.quick->compunit_symtab
9514 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9515 /* Skip dummy CUs. */
9516 && item->per_cu->cu != NULL)
9517 {
9518 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9519 unsigned int debug_print_threshold;
9520 char buf[100];
9521
9522 if (per_cu->is_debug_types)
9523 {
9524 struct signatured_type *sig_type =
9525 (struct signatured_type *) per_cu;
9526
9527 sprintf (buf, "TU %s at offset %s",
9528 hex_string (sig_type->signature),
9529 sect_offset_str (per_cu->sect_off));
9530 /* There can be 100s of TUs.
9531 Only print them in verbose mode. */
9532 debug_print_threshold = 2;
9533 }
9534 else
9535 {
9536 sprintf (buf, "CU at offset %s",
9537 sect_offset_str (per_cu->sect_off));
9538 debug_print_threshold = 1;
9539 }
9540
9541 if (dwarf_read_debug >= debug_print_threshold)
9542 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9543
9544 if (per_cu->is_debug_types)
9545 process_full_type_unit (per_cu, item->pretend_language);
9546 else
9547 process_full_comp_unit (per_cu, item->pretend_language);
9548
9549 if (dwarf_read_debug >= debug_print_threshold)
9550 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9551 }
9552
9553 item->per_cu->queued = 0;
9554 next_item = item->next;
9555 xfree (item);
9556 }
9557
9558 dwarf2_queue_tail = NULL;
9559
9560 if (dwarf_read_debug)
9561 {
9562 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9563 objfile_name (dwarf2_per_objfile->objfile));
9564 }
9565 }
9566
9567 /* Read in full symbols for PST, and anything it depends on. */
9568
9569 static void
9570 psymtab_to_symtab_1 (struct partial_symtab *pst)
9571 {
9572 struct dwarf2_per_cu_data *per_cu;
9573 int i;
9574
9575 if (pst->readin)
9576 return;
9577
9578 for (i = 0; i < pst->number_of_dependencies; i++)
9579 if (!pst->dependencies[i]->readin
9580 && pst->dependencies[i]->user == NULL)
9581 {
9582 /* Inform about additional files that need to be read in. */
9583 if (info_verbose)
9584 {
9585 /* FIXME: i18n: Need to make this a single string. */
9586 fputs_filtered (" ", gdb_stdout);
9587 wrap_here ("");
9588 fputs_filtered ("and ", gdb_stdout);
9589 wrap_here ("");
9590 printf_filtered ("%s...", pst->dependencies[i]->filename);
9591 wrap_here (""); /* Flush output. */
9592 gdb_flush (gdb_stdout);
9593 }
9594 psymtab_to_symtab_1 (pst->dependencies[i]);
9595 }
9596
9597 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9598
9599 if (per_cu == NULL)
9600 {
9601 /* It's an include file, no symbols to read for it.
9602 Everything is in the parent symtab. */
9603 pst->readin = 1;
9604 return;
9605 }
9606
9607 dw2_do_instantiate_symtab (per_cu, false);
9608 }
9609
9610 /* Trivial hash function for die_info: the hash value of a DIE
9611 is its offset in .debug_info for this objfile. */
9612
9613 static hashval_t
9614 die_hash (const void *item)
9615 {
9616 const struct die_info *die = (const struct die_info *) item;
9617
9618 return to_underlying (die->sect_off);
9619 }
9620
9621 /* Trivial comparison function for die_info structures: two DIEs
9622 are equal if they have the same offset. */
9623
9624 static int
9625 die_eq (const void *item_lhs, const void *item_rhs)
9626 {
9627 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9628 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9629
9630 return die_lhs->sect_off == die_rhs->sect_off;
9631 }
9632
9633 /* die_reader_func for load_full_comp_unit.
9634 This is identical to read_signatured_type_reader,
9635 but is kept separate for now. */
9636
9637 static void
9638 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9639 const gdb_byte *info_ptr,
9640 struct die_info *comp_unit_die,
9641 int has_children,
9642 void *data)
9643 {
9644 struct dwarf2_cu *cu = reader->cu;
9645 enum language *language_ptr = (enum language *) data;
9646
9647 gdb_assert (cu->die_hash == NULL);
9648 cu->die_hash =
9649 htab_create_alloc_ex (cu->header.length / 12,
9650 die_hash,
9651 die_eq,
9652 NULL,
9653 &cu->comp_unit_obstack,
9654 hashtab_obstack_allocate,
9655 dummy_obstack_deallocate);
9656
9657 if (has_children)
9658 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9659 &info_ptr, comp_unit_die);
9660 cu->dies = comp_unit_die;
9661 /* comp_unit_die is not stored in die_hash, no need. */
9662
9663 /* We try not to read any attributes in this function, because not
9664 all CUs needed for references have been loaded yet, and symbol
9665 table processing isn't initialized. But we have to set the CU language,
9666 or we won't be able to build types correctly.
9667 Similarly, if we do not read the producer, we can not apply
9668 producer-specific interpretation. */
9669 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9670 }
9671
9672 /* Load the DIEs associated with PER_CU into memory. */
9673
9674 static void
9675 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9676 bool skip_partial,
9677 enum language pretend_language)
9678 {
9679 gdb_assert (! this_cu->is_debug_types);
9680
9681 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9682 load_full_comp_unit_reader, &pretend_language);
9683 }
9684
9685 /* Add a DIE to the delayed physname list. */
9686
9687 static void
9688 add_to_method_list (struct type *type, int fnfield_index, int index,
9689 const char *name, struct die_info *die,
9690 struct dwarf2_cu *cu)
9691 {
9692 struct delayed_method_info mi;
9693 mi.type = type;
9694 mi.fnfield_index = fnfield_index;
9695 mi.index = index;
9696 mi.name = name;
9697 mi.die = die;
9698 cu->method_list.push_back (mi);
9699 }
9700
9701 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9702 "const" / "volatile". If so, decrements LEN by the length of the
9703 modifier and return true. Otherwise return false. */
9704
9705 template<size_t N>
9706 static bool
9707 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9708 {
9709 size_t mod_len = sizeof (mod) - 1;
9710 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9711 {
9712 len -= mod_len;
9713 return true;
9714 }
9715 return false;
9716 }
9717
9718 /* Compute the physnames of any methods on the CU's method list.
9719
9720 The computation of method physnames is delayed in order to avoid the
9721 (bad) condition that one of the method's formal parameters is of an as yet
9722 incomplete type. */
9723
9724 static void
9725 compute_delayed_physnames (struct dwarf2_cu *cu)
9726 {
9727 /* Only C++ delays computing physnames. */
9728 if (cu->method_list.empty ())
9729 return;
9730 gdb_assert (cu->language == language_cplus);
9731
9732 for (const delayed_method_info &mi : cu->method_list)
9733 {
9734 const char *physname;
9735 struct fn_fieldlist *fn_flp
9736 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9737 physname = dwarf2_physname (mi.name, mi.die, cu);
9738 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9739 = physname ? physname : "";
9740
9741 /* Since there's no tag to indicate whether a method is a
9742 const/volatile overload, extract that information out of the
9743 demangled name. */
9744 if (physname != NULL)
9745 {
9746 size_t len = strlen (physname);
9747
9748 while (1)
9749 {
9750 if (physname[len] == ')') /* shortcut */
9751 break;
9752 else if (check_modifier (physname, len, " const"))
9753 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9754 else if (check_modifier (physname, len, " volatile"))
9755 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9756 else
9757 break;
9758 }
9759 }
9760 }
9761
9762 /* The list is no longer needed. */
9763 cu->method_list.clear ();
9764 }
9765
9766 /* Go objects should be embedded in a DW_TAG_module DIE,
9767 and it's not clear if/how imported objects will appear.
9768 To keep Go support simple until that's worked out,
9769 go back through what we've read and create something usable.
9770 We could do this while processing each DIE, and feels kinda cleaner,
9771 but that way is more invasive.
9772 This is to, for example, allow the user to type "p var" or "b main"
9773 without having to specify the package name, and allow lookups
9774 of module.object to work in contexts that use the expression
9775 parser. */
9776
9777 static void
9778 fixup_go_packaging (struct dwarf2_cu *cu)
9779 {
9780 char *package_name = NULL;
9781 struct pending *list;
9782 int i;
9783
9784 for (list = *cu->get_builder ()->get_global_symbols ();
9785 list != NULL;
9786 list = list->next)
9787 {
9788 for (i = 0; i < list->nsyms; ++i)
9789 {
9790 struct symbol *sym = list->symbol[i];
9791
9792 if (SYMBOL_LANGUAGE (sym) == language_go
9793 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9794 {
9795 char *this_package_name = go_symbol_package_name (sym);
9796
9797 if (this_package_name == NULL)
9798 continue;
9799 if (package_name == NULL)
9800 package_name = this_package_name;
9801 else
9802 {
9803 struct objfile *objfile
9804 = cu->per_cu->dwarf2_per_objfile->objfile;
9805 if (strcmp (package_name, this_package_name) != 0)
9806 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9807 (symbol_symtab (sym) != NULL
9808 ? symtab_to_filename_for_display
9809 (symbol_symtab (sym))
9810 : objfile_name (objfile)),
9811 this_package_name, package_name);
9812 xfree (this_package_name);
9813 }
9814 }
9815 }
9816 }
9817
9818 if (package_name != NULL)
9819 {
9820 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9821 const char *saved_package_name
9822 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9823 package_name,
9824 strlen (package_name));
9825 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9826 saved_package_name);
9827 struct symbol *sym;
9828
9829 sym = allocate_symbol (objfile);
9830 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9831 SYMBOL_SET_NAMES (sym, saved_package_name,
9832 strlen (saved_package_name), 0, objfile);
9833 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9834 e.g., "main" finds the "main" module and not C's main(). */
9835 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9836 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9837 SYMBOL_TYPE (sym) = type;
9838
9839 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9840
9841 xfree (package_name);
9842 }
9843 }
9844
9845 /* Allocate a fully-qualified name consisting of the two parts on the
9846 obstack. */
9847
9848 static const char *
9849 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9850 {
9851 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9852 }
9853
9854 /* A helper that allocates a struct discriminant_info to attach to a
9855 union type. */
9856
9857 static struct discriminant_info *
9858 alloc_discriminant_info (struct type *type, int discriminant_index,
9859 int default_index)
9860 {
9861 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9862 gdb_assert (discriminant_index == -1
9863 || (discriminant_index >= 0
9864 && discriminant_index < TYPE_NFIELDS (type)));
9865 gdb_assert (default_index == -1
9866 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9867
9868 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9869
9870 struct discriminant_info *disc
9871 = ((struct discriminant_info *)
9872 TYPE_ZALLOC (type,
9873 offsetof (struct discriminant_info, discriminants)
9874 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9875 disc->default_index = default_index;
9876 disc->discriminant_index = discriminant_index;
9877
9878 struct dynamic_prop prop;
9879 prop.kind = PROP_UNDEFINED;
9880 prop.data.baton = disc;
9881
9882 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9883
9884 return disc;
9885 }
9886
9887 /* Some versions of rustc emitted enums in an unusual way.
9888
9889 Ordinary enums were emitted as unions. The first element of each
9890 structure in the union was named "RUST$ENUM$DISR". This element
9891 held the discriminant.
9892
9893 These versions of Rust also implemented the "non-zero"
9894 optimization. When the enum had two values, and one is empty and
9895 the other holds a pointer that cannot be zero, the pointer is used
9896 as the discriminant, with a zero value meaning the empty variant.
9897 Here, the union's first member is of the form
9898 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9899 where the fieldnos are the indices of the fields that should be
9900 traversed in order to find the field (which may be several fields deep)
9901 and the variantname is the name of the variant of the case when the
9902 field is zero.
9903
9904 This function recognizes whether TYPE is of one of these forms,
9905 and, if so, smashes it to be a variant type. */
9906
9907 static void
9908 quirk_rust_enum (struct type *type, struct objfile *objfile)
9909 {
9910 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9911
9912 /* We don't need to deal with empty enums. */
9913 if (TYPE_NFIELDS (type) == 0)
9914 return;
9915
9916 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9917 if (TYPE_NFIELDS (type) == 1
9918 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9919 {
9920 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9921
9922 /* Decode the field name to find the offset of the
9923 discriminant. */
9924 ULONGEST bit_offset = 0;
9925 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9926 while (name[0] >= '0' && name[0] <= '9')
9927 {
9928 char *tail;
9929 unsigned long index = strtoul (name, &tail, 10);
9930 name = tail;
9931 if (*name != '$'
9932 || index >= TYPE_NFIELDS (field_type)
9933 || (TYPE_FIELD_LOC_KIND (field_type, index)
9934 != FIELD_LOC_KIND_BITPOS))
9935 {
9936 complaint (_("Could not parse Rust enum encoding string \"%s\""
9937 "[in module %s]"),
9938 TYPE_FIELD_NAME (type, 0),
9939 objfile_name (objfile));
9940 return;
9941 }
9942 ++name;
9943
9944 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9945 field_type = TYPE_FIELD_TYPE (field_type, index);
9946 }
9947
9948 /* Make a union to hold the variants. */
9949 struct type *union_type = alloc_type (objfile);
9950 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9951 TYPE_NFIELDS (union_type) = 3;
9952 TYPE_FIELDS (union_type)
9953 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9954 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9955 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9956
9957 /* Put the discriminant must at index 0. */
9958 TYPE_FIELD_TYPE (union_type, 0) = field_type;
9959 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9960 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9961 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
9962
9963 /* The order of fields doesn't really matter, so put the real
9964 field at index 1 and the data-less field at index 2. */
9965 struct discriminant_info *disc
9966 = alloc_discriminant_info (union_type, 0, 1);
9967 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
9968 TYPE_FIELD_NAME (union_type, 1)
9969 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
9970 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
9971 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9972 TYPE_FIELD_NAME (union_type, 1));
9973
9974 const char *dataless_name
9975 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9976 name);
9977 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
9978 dataless_name);
9979 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
9980 /* NAME points into the original discriminant name, which
9981 already has the correct lifetime. */
9982 TYPE_FIELD_NAME (union_type, 2) = name;
9983 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
9984 disc->discriminants[2] = 0;
9985
9986 /* Smash this type to be a structure type. We have to do this
9987 because the type has already been recorded. */
9988 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9989 TYPE_NFIELDS (type) = 1;
9990 TYPE_FIELDS (type)
9991 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
9992
9993 /* Install the variant part. */
9994 TYPE_FIELD_TYPE (type, 0) = union_type;
9995 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9996 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9997 }
9998 else if (TYPE_NFIELDS (type) == 1)
9999 {
10000 /* We assume that a union with a single field is a univariant
10001 enum. */
10002 /* Smash this type to be a structure type. We have to do this
10003 because the type has already been recorded. */
10004 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10005
10006 /* Make a union to hold the variants. */
10007 struct type *union_type = alloc_type (objfile);
10008 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10009 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
10010 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10011 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10012 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10013
10014 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10015 const char *variant_name
10016 = rust_last_path_segment (TYPE_NAME (field_type));
10017 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10018 TYPE_NAME (field_type)
10019 = rust_fully_qualify (&objfile->objfile_obstack,
10020 TYPE_NAME (type), variant_name);
10021
10022 /* Install the union in the outer struct type. */
10023 TYPE_NFIELDS (type) = 1;
10024 TYPE_FIELDS (type)
10025 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10026 TYPE_FIELD_TYPE (type, 0) = union_type;
10027 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10028 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10029
10030 alloc_discriminant_info (union_type, -1, 0);
10031 }
10032 else
10033 {
10034 struct type *disr_type = nullptr;
10035 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10036 {
10037 disr_type = TYPE_FIELD_TYPE (type, i);
10038
10039 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
10040 {
10041 /* All fields of a true enum will be structs. */
10042 return;
10043 }
10044 else if (TYPE_NFIELDS (disr_type) == 0)
10045 {
10046 /* Could be data-less variant, so keep going. */
10047 disr_type = nullptr;
10048 }
10049 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10050 "RUST$ENUM$DISR") != 0)
10051 {
10052 /* Not a Rust enum. */
10053 return;
10054 }
10055 else
10056 {
10057 /* Found one. */
10058 break;
10059 }
10060 }
10061
10062 /* If we got here without a discriminant, then it's probably
10063 just a union. */
10064 if (disr_type == nullptr)
10065 return;
10066
10067 /* Smash this type to be a structure type. We have to do this
10068 because the type has already been recorded. */
10069 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10070
10071 /* Make a union to hold the variants. */
10072 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10073 struct type *union_type = alloc_type (objfile);
10074 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10075 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10076 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10077 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10078 TYPE_FIELDS (union_type)
10079 = (struct field *) TYPE_ZALLOC (union_type,
10080 (TYPE_NFIELDS (union_type)
10081 * sizeof (struct field)));
10082
10083 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10084 TYPE_NFIELDS (type) * sizeof (struct field));
10085
10086 /* Install the discriminant at index 0 in the union. */
10087 TYPE_FIELD (union_type, 0) = *disr_field;
10088 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10089 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10090
10091 /* Install the union in the outer struct type. */
10092 TYPE_FIELD_TYPE (type, 0) = union_type;
10093 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10094 TYPE_NFIELDS (type) = 1;
10095
10096 /* Set the size and offset of the union type. */
10097 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10098
10099 /* We need a way to find the correct discriminant given a
10100 variant name. For convenience we build a map here. */
10101 struct type *enum_type = FIELD_TYPE (*disr_field);
10102 std::unordered_map<std::string, ULONGEST> discriminant_map;
10103 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10104 {
10105 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10106 {
10107 const char *name
10108 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10109 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10110 }
10111 }
10112
10113 int n_fields = TYPE_NFIELDS (union_type);
10114 struct discriminant_info *disc
10115 = alloc_discriminant_info (union_type, 0, -1);
10116 /* Skip the discriminant here. */
10117 for (int i = 1; i < n_fields; ++i)
10118 {
10119 /* Find the final word in the name of this variant's type.
10120 That name can be used to look up the correct
10121 discriminant. */
10122 const char *variant_name
10123 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10124 i)));
10125
10126 auto iter = discriminant_map.find (variant_name);
10127 if (iter != discriminant_map.end ())
10128 disc->discriminants[i] = iter->second;
10129
10130 /* Remove the discriminant field, if it exists. */
10131 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10132 if (TYPE_NFIELDS (sub_type) > 0)
10133 {
10134 --TYPE_NFIELDS (sub_type);
10135 ++TYPE_FIELDS (sub_type);
10136 }
10137 TYPE_FIELD_NAME (union_type, i) = variant_name;
10138 TYPE_NAME (sub_type)
10139 = rust_fully_qualify (&objfile->objfile_obstack,
10140 TYPE_NAME (type), variant_name);
10141 }
10142 }
10143 }
10144
10145 /* Rewrite some Rust unions to be structures with variants parts. */
10146
10147 static void
10148 rust_union_quirks (struct dwarf2_cu *cu)
10149 {
10150 gdb_assert (cu->language == language_rust);
10151 for (type *type_ : cu->rust_unions)
10152 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10153 /* We don't need this any more. */
10154 cu->rust_unions.clear ();
10155 }
10156
10157 /* Return the symtab for PER_CU. This works properly regardless of
10158 whether we're using the index or psymtabs. */
10159
10160 static struct compunit_symtab *
10161 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10162 {
10163 return (per_cu->dwarf2_per_objfile->using_index
10164 ? per_cu->v.quick->compunit_symtab
10165 : per_cu->v.psymtab->compunit_symtab);
10166 }
10167
10168 /* A helper function for computing the list of all symbol tables
10169 included by PER_CU. */
10170
10171 static void
10172 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
10173 htab_t all_children, htab_t all_type_symtabs,
10174 struct dwarf2_per_cu_data *per_cu,
10175 struct compunit_symtab *immediate_parent)
10176 {
10177 void **slot;
10178 int ix;
10179 struct compunit_symtab *cust;
10180 struct dwarf2_per_cu_data *iter;
10181
10182 slot = htab_find_slot (all_children, per_cu, INSERT);
10183 if (*slot != NULL)
10184 {
10185 /* This inclusion and its children have been processed. */
10186 return;
10187 }
10188
10189 *slot = per_cu;
10190 /* Only add a CU if it has a symbol table. */
10191 cust = get_compunit_symtab (per_cu);
10192 if (cust != NULL)
10193 {
10194 /* If this is a type unit only add its symbol table if we haven't
10195 seen it yet (type unit per_cu's can share symtabs). */
10196 if (per_cu->is_debug_types)
10197 {
10198 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10199 if (*slot == NULL)
10200 {
10201 *slot = cust;
10202 result->push_back (cust);
10203 if (cust->user == NULL)
10204 cust->user = immediate_parent;
10205 }
10206 }
10207 else
10208 {
10209 result->push_back (cust);
10210 if (cust->user == NULL)
10211 cust->user = immediate_parent;
10212 }
10213 }
10214
10215 for (ix = 0;
10216 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10217 ++ix)
10218 {
10219 recursively_compute_inclusions (result, all_children,
10220 all_type_symtabs, iter, cust);
10221 }
10222 }
10223
10224 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10225 PER_CU. */
10226
10227 static void
10228 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10229 {
10230 gdb_assert (! per_cu->is_debug_types);
10231
10232 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10233 {
10234 int ix, len;
10235 struct dwarf2_per_cu_data *per_cu_iter;
10236 std::vector<compunit_symtab *> result_symtabs;
10237 htab_t all_children, all_type_symtabs;
10238 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10239
10240 /* If we don't have a symtab, we can just skip this case. */
10241 if (cust == NULL)
10242 return;
10243
10244 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10245 NULL, xcalloc, xfree);
10246 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10247 NULL, xcalloc, xfree);
10248
10249 for (ix = 0;
10250 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10251 ix, per_cu_iter);
10252 ++ix)
10253 {
10254 recursively_compute_inclusions (&result_symtabs, all_children,
10255 all_type_symtabs, per_cu_iter,
10256 cust);
10257 }
10258
10259 /* Now we have a transitive closure of all the included symtabs. */
10260 len = result_symtabs.size ();
10261 cust->includes
10262 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10263 struct compunit_symtab *, len + 1);
10264 memcpy (cust->includes, result_symtabs.data (),
10265 len * sizeof (compunit_symtab *));
10266 cust->includes[len] = NULL;
10267
10268 htab_delete (all_children);
10269 htab_delete (all_type_symtabs);
10270 }
10271 }
10272
10273 /* Compute the 'includes' field for the symtabs of all the CUs we just
10274 read. */
10275
10276 static void
10277 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10278 {
10279 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
10280 {
10281 if (! iter->is_debug_types)
10282 compute_compunit_symtab_includes (iter);
10283 }
10284
10285 dwarf2_per_objfile->just_read_cus.clear ();
10286 }
10287
10288 /* Generate full symbol information for PER_CU, whose DIEs have
10289 already been loaded into memory. */
10290
10291 static void
10292 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10293 enum language pretend_language)
10294 {
10295 struct dwarf2_cu *cu = per_cu->cu;
10296 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10297 struct objfile *objfile = dwarf2_per_objfile->objfile;
10298 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10299 CORE_ADDR lowpc, highpc;
10300 struct compunit_symtab *cust;
10301 CORE_ADDR baseaddr;
10302 struct block *static_block;
10303 CORE_ADDR addr;
10304
10305 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10306
10307 /* Clear the list here in case something was left over. */
10308 cu->method_list.clear ();
10309
10310 cu->language = pretend_language;
10311 cu->language_defn = language_def (cu->language);
10312
10313 /* Do line number decoding in read_file_scope () */
10314 process_die (cu->dies, cu);
10315
10316 /* For now fudge the Go package. */
10317 if (cu->language == language_go)
10318 fixup_go_packaging (cu);
10319
10320 /* Now that we have processed all the DIEs in the CU, all the types
10321 should be complete, and it should now be safe to compute all of the
10322 physnames. */
10323 compute_delayed_physnames (cu);
10324
10325 if (cu->language == language_rust)
10326 rust_union_quirks (cu);
10327
10328 /* Some compilers don't define a DW_AT_high_pc attribute for the
10329 compilation unit. If the DW_AT_high_pc is missing, synthesize
10330 it, by scanning the DIE's below the compilation unit. */
10331 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10332
10333 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10334 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
10335
10336 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10337 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10338 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10339 addrmap to help ensure it has an accurate map of pc values belonging to
10340 this comp unit. */
10341 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10342
10343 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
10344 SECT_OFF_TEXT (objfile),
10345 0);
10346
10347 if (cust != NULL)
10348 {
10349 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10350
10351 /* Set symtab language to language from DW_AT_language. If the
10352 compilation is from a C file generated by language preprocessors, do
10353 not set the language if it was already deduced by start_subfile. */
10354 if (!(cu->language == language_c
10355 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10356 COMPUNIT_FILETABS (cust)->language = cu->language;
10357
10358 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10359 produce DW_AT_location with location lists but it can be possibly
10360 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10361 there were bugs in prologue debug info, fixed later in GCC-4.5
10362 by "unwind info for epilogues" patch (which is not directly related).
10363
10364 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10365 needed, it would be wrong due to missing DW_AT_producer there.
10366
10367 Still one can confuse GDB by using non-standard GCC compilation
10368 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10369 */
10370 if (cu->has_loclist && gcc_4_minor >= 5)
10371 cust->locations_valid = 1;
10372
10373 if (gcc_4_minor >= 5)
10374 cust->epilogue_unwind_valid = 1;
10375
10376 cust->call_site_htab = cu->call_site_htab;
10377 }
10378
10379 if (dwarf2_per_objfile->using_index)
10380 per_cu->v.quick->compunit_symtab = cust;
10381 else
10382 {
10383 struct partial_symtab *pst = per_cu->v.psymtab;
10384 pst->compunit_symtab = cust;
10385 pst->readin = 1;
10386 }
10387
10388 /* Push it for inclusion processing later. */
10389 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10390
10391 /* Not needed any more. */
10392 cu->reset_builder ();
10393 }
10394
10395 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10396 already been loaded into memory. */
10397
10398 static void
10399 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10400 enum language pretend_language)
10401 {
10402 struct dwarf2_cu *cu = per_cu->cu;
10403 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10404 struct objfile *objfile = dwarf2_per_objfile->objfile;
10405 struct compunit_symtab *cust;
10406 struct signatured_type *sig_type;
10407
10408 gdb_assert (per_cu->is_debug_types);
10409 sig_type = (struct signatured_type *) per_cu;
10410
10411 /* Clear the list here in case something was left over. */
10412 cu->method_list.clear ();
10413
10414 cu->language = pretend_language;
10415 cu->language_defn = language_def (cu->language);
10416
10417 /* The symbol tables are set up in read_type_unit_scope. */
10418 process_die (cu->dies, cu);
10419
10420 /* For now fudge the Go package. */
10421 if (cu->language == language_go)
10422 fixup_go_packaging (cu);
10423
10424 /* Now that we have processed all the DIEs in the CU, all the types
10425 should be complete, and it should now be safe to compute all of the
10426 physnames. */
10427 compute_delayed_physnames (cu);
10428
10429 if (cu->language == language_rust)
10430 rust_union_quirks (cu);
10431
10432 /* TUs share symbol tables.
10433 If this is the first TU to use this symtab, complete the construction
10434 of it with end_expandable_symtab. Otherwise, complete the addition of
10435 this TU's symbols to the existing symtab. */
10436 if (sig_type->type_unit_group->compunit_symtab == NULL)
10437 {
10438 buildsym_compunit *builder = cu->get_builder ();
10439 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10440 sig_type->type_unit_group->compunit_symtab = cust;
10441
10442 if (cust != NULL)
10443 {
10444 /* Set symtab language to language from DW_AT_language. If the
10445 compilation is from a C file generated by language preprocessors,
10446 do not set the language if it was already deduced by
10447 start_subfile. */
10448 if (!(cu->language == language_c
10449 && COMPUNIT_FILETABS (cust)->language != language_c))
10450 COMPUNIT_FILETABS (cust)->language = cu->language;
10451 }
10452 }
10453 else
10454 {
10455 cu->get_builder ()->augment_type_symtab ();
10456 cust = sig_type->type_unit_group->compunit_symtab;
10457 }
10458
10459 if (dwarf2_per_objfile->using_index)
10460 per_cu->v.quick->compunit_symtab = cust;
10461 else
10462 {
10463 struct partial_symtab *pst = per_cu->v.psymtab;
10464 pst->compunit_symtab = cust;
10465 pst->readin = 1;
10466 }
10467
10468 /* Not needed any more. */
10469 cu->reset_builder ();
10470 }
10471
10472 /* Process an imported unit DIE. */
10473
10474 static void
10475 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10476 {
10477 struct attribute *attr;
10478
10479 /* For now we don't handle imported units in type units. */
10480 if (cu->per_cu->is_debug_types)
10481 {
10482 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10483 " supported in type units [in module %s]"),
10484 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10485 }
10486
10487 attr = dwarf2_attr (die, DW_AT_import, cu);
10488 if (attr != NULL)
10489 {
10490 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10491 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10492 dwarf2_per_cu_data *per_cu
10493 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10494 cu->per_cu->dwarf2_per_objfile);
10495
10496 /* If necessary, add it to the queue and load its DIEs. */
10497 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10498 load_full_comp_unit (per_cu, false, cu->language);
10499
10500 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10501 per_cu);
10502 }
10503 }
10504
10505 /* RAII object that represents a process_die scope: i.e.,
10506 starts/finishes processing a DIE. */
10507 class process_die_scope
10508 {
10509 public:
10510 process_die_scope (die_info *die, dwarf2_cu *cu)
10511 : m_die (die), m_cu (cu)
10512 {
10513 /* We should only be processing DIEs not already in process. */
10514 gdb_assert (!m_die->in_process);
10515 m_die->in_process = true;
10516 }
10517
10518 ~process_die_scope ()
10519 {
10520 m_die->in_process = false;
10521
10522 /* If we're done processing the DIE for the CU that owns the line
10523 header, we don't need the line header anymore. */
10524 if (m_cu->line_header_die_owner == m_die)
10525 {
10526 delete m_cu->line_header;
10527 m_cu->line_header = NULL;
10528 m_cu->line_header_die_owner = NULL;
10529 }
10530 }
10531
10532 private:
10533 die_info *m_die;
10534 dwarf2_cu *m_cu;
10535 };
10536
10537 /* Process a die and its children. */
10538
10539 static void
10540 process_die (struct die_info *die, struct dwarf2_cu *cu)
10541 {
10542 process_die_scope scope (die, cu);
10543
10544 switch (die->tag)
10545 {
10546 case DW_TAG_padding:
10547 break;
10548 case DW_TAG_compile_unit:
10549 case DW_TAG_partial_unit:
10550 read_file_scope (die, cu);
10551 break;
10552 case DW_TAG_type_unit:
10553 read_type_unit_scope (die, cu);
10554 break;
10555 case DW_TAG_subprogram:
10556 case DW_TAG_inlined_subroutine:
10557 read_func_scope (die, cu);
10558 break;
10559 case DW_TAG_lexical_block:
10560 case DW_TAG_try_block:
10561 case DW_TAG_catch_block:
10562 read_lexical_block_scope (die, cu);
10563 break;
10564 case DW_TAG_call_site:
10565 case DW_TAG_GNU_call_site:
10566 read_call_site_scope (die, cu);
10567 break;
10568 case DW_TAG_class_type:
10569 case DW_TAG_interface_type:
10570 case DW_TAG_structure_type:
10571 case DW_TAG_union_type:
10572 process_structure_scope (die, cu);
10573 break;
10574 case DW_TAG_enumeration_type:
10575 process_enumeration_scope (die, cu);
10576 break;
10577
10578 /* These dies have a type, but processing them does not create
10579 a symbol or recurse to process the children. Therefore we can
10580 read them on-demand through read_type_die. */
10581 case DW_TAG_subroutine_type:
10582 case DW_TAG_set_type:
10583 case DW_TAG_array_type:
10584 case DW_TAG_pointer_type:
10585 case DW_TAG_ptr_to_member_type:
10586 case DW_TAG_reference_type:
10587 case DW_TAG_rvalue_reference_type:
10588 case DW_TAG_string_type:
10589 break;
10590
10591 case DW_TAG_base_type:
10592 case DW_TAG_subrange_type:
10593 case DW_TAG_typedef:
10594 /* Add a typedef symbol for the type definition, if it has a
10595 DW_AT_name. */
10596 new_symbol (die, read_type_die (die, cu), cu);
10597 break;
10598 case DW_TAG_common_block:
10599 read_common_block (die, cu);
10600 break;
10601 case DW_TAG_common_inclusion:
10602 break;
10603 case DW_TAG_namespace:
10604 cu->processing_has_namespace_info = true;
10605 read_namespace (die, cu);
10606 break;
10607 case DW_TAG_module:
10608 cu->processing_has_namespace_info = true;
10609 read_module (die, cu);
10610 break;
10611 case DW_TAG_imported_declaration:
10612 cu->processing_has_namespace_info = true;
10613 if (read_namespace_alias (die, cu))
10614 break;
10615 /* The declaration is not a global namespace alias. */
10616 /* Fall through. */
10617 case DW_TAG_imported_module:
10618 cu->processing_has_namespace_info = true;
10619 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10620 || cu->language != language_fortran))
10621 complaint (_("Tag '%s' has unexpected children"),
10622 dwarf_tag_name (die->tag));
10623 read_import_statement (die, cu);
10624 break;
10625
10626 case DW_TAG_imported_unit:
10627 process_imported_unit_die (die, cu);
10628 break;
10629
10630 case DW_TAG_variable:
10631 read_variable (die, cu);
10632 break;
10633
10634 default:
10635 new_symbol (die, NULL, cu);
10636 break;
10637 }
10638 }
10639 \f
10640 /* DWARF name computation. */
10641
10642 /* A helper function for dwarf2_compute_name which determines whether DIE
10643 needs to have the name of the scope prepended to the name listed in the
10644 die. */
10645
10646 static int
10647 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10648 {
10649 struct attribute *attr;
10650
10651 switch (die->tag)
10652 {
10653 case DW_TAG_namespace:
10654 case DW_TAG_typedef:
10655 case DW_TAG_class_type:
10656 case DW_TAG_interface_type:
10657 case DW_TAG_structure_type:
10658 case DW_TAG_union_type:
10659 case DW_TAG_enumeration_type:
10660 case DW_TAG_enumerator:
10661 case DW_TAG_subprogram:
10662 case DW_TAG_inlined_subroutine:
10663 case DW_TAG_member:
10664 case DW_TAG_imported_declaration:
10665 return 1;
10666
10667 case DW_TAG_variable:
10668 case DW_TAG_constant:
10669 /* We only need to prefix "globally" visible variables. These include
10670 any variable marked with DW_AT_external or any variable that
10671 lives in a namespace. [Variables in anonymous namespaces
10672 require prefixing, but they are not DW_AT_external.] */
10673
10674 if (dwarf2_attr (die, DW_AT_specification, cu))
10675 {
10676 struct dwarf2_cu *spec_cu = cu;
10677
10678 return die_needs_namespace (die_specification (die, &spec_cu),
10679 spec_cu);
10680 }
10681
10682 attr = dwarf2_attr (die, DW_AT_external, cu);
10683 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10684 && die->parent->tag != DW_TAG_module)
10685 return 0;
10686 /* A variable in a lexical block of some kind does not need a
10687 namespace, even though in C++ such variables may be external
10688 and have a mangled name. */
10689 if (die->parent->tag == DW_TAG_lexical_block
10690 || die->parent->tag == DW_TAG_try_block
10691 || die->parent->tag == DW_TAG_catch_block
10692 || die->parent->tag == DW_TAG_subprogram)
10693 return 0;
10694 return 1;
10695
10696 default:
10697 return 0;
10698 }
10699 }
10700
10701 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10702 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10703 defined for the given DIE. */
10704
10705 static struct attribute *
10706 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10707 {
10708 struct attribute *attr;
10709
10710 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10711 if (attr == NULL)
10712 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10713
10714 return attr;
10715 }
10716
10717 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10718 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10719 defined for the given DIE. */
10720
10721 static const char *
10722 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10723 {
10724 const char *linkage_name;
10725
10726 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10727 if (linkage_name == NULL)
10728 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10729
10730 return linkage_name;
10731 }
10732
10733 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10734 compute the physname for the object, which include a method's:
10735 - formal parameters (C++),
10736 - receiver type (Go),
10737
10738 The term "physname" is a bit confusing.
10739 For C++, for example, it is the demangled name.
10740 For Go, for example, it's the mangled name.
10741
10742 For Ada, return the DIE's linkage name rather than the fully qualified
10743 name. PHYSNAME is ignored..
10744
10745 The result is allocated on the objfile_obstack and canonicalized. */
10746
10747 static const char *
10748 dwarf2_compute_name (const char *name,
10749 struct die_info *die, struct dwarf2_cu *cu,
10750 int physname)
10751 {
10752 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10753
10754 if (name == NULL)
10755 name = dwarf2_name (die, cu);
10756
10757 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10758 but otherwise compute it by typename_concat inside GDB.
10759 FIXME: Actually this is not really true, or at least not always true.
10760 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10761 Fortran names because there is no mangling standard. So new_symbol
10762 will set the demangled name to the result of dwarf2_full_name, and it is
10763 the demangled name that GDB uses if it exists. */
10764 if (cu->language == language_ada
10765 || (cu->language == language_fortran && physname))
10766 {
10767 /* For Ada unit, we prefer the linkage name over the name, as
10768 the former contains the exported name, which the user expects
10769 to be able to reference. Ideally, we want the user to be able
10770 to reference this entity using either natural or linkage name,
10771 but we haven't started looking at this enhancement yet. */
10772 const char *linkage_name = dw2_linkage_name (die, cu);
10773
10774 if (linkage_name != NULL)
10775 return linkage_name;
10776 }
10777
10778 /* These are the only languages we know how to qualify names in. */
10779 if (name != NULL
10780 && (cu->language == language_cplus
10781 || cu->language == language_fortran || cu->language == language_d
10782 || cu->language == language_rust))
10783 {
10784 if (die_needs_namespace (die, cu))
10785 {
10786 const char *prefix;
10787 const char *canonical_name = NULL;
10788
10789 string_file buf;
10790
10791 prefix = determine_prefix (die, cu);
10792 if (*prefix != '\0')
10793 {
10794 char *prefixed_name = typename_concat (NULL, prefix, name,
10795 physname, cu);
10796
10797 buf.puts (prefixed_name);
10798 xfree (prefixed_name);
10799 }
10800 else
10801 buf.puts (name);
10802
10803 /* Template parameters may be specified in the DIE's DW_AT_name, or
10804 as children with DW_TAG_template_type_param or
10805 DW_TAG_value_type_param. If the latter, add them to the name
10806 here. If the name already has template parameters, then
10807 skip this step; some versions of GCC emit both, and
10808 it is more efficient to use the pre-computed name.
10809
10810 Something to keep in mind about this process: it is very
10811 unlikely, or in some cases downright impossible, to produce
10812 something that will match the mangled name of a function.
10813 If the definition of the function has the same debug info,
10814 we should be able to match up with it anyway. But fallbacks
10815 using the minimal symbol, for instance to find a method
10816 implemented in a stripped copy of libstdc++, will not work.
10817 If we do not have debug info for the definition, we will have to
10818 match them up some other way.
10819
10820 When we do name matching there is a related problem with function
10821 templates; two instantiated function templates are allowed to
10822 differ only by their return types, which we do not add here. */
10823
10824 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10825 {
10826 struct attribute *attr;
10827 struct die_info *child;
10828 int first = 1;
10829
10830 die->building_fullname = 1;
10831
10832 for (child = die->child; child != NULL; child = child->sibling)
10833 {
10834 struct type *type;
10835 LONGEST value;
10836 const gdb_byte *bytes;
10837 struct dwarf2_locexpr_baton *baton;
10838 struct value *v;
10839
10840 if (child->tag != DW_TAG_template_type_param
10841 && child->tag != DW_TAG_template_value_param)
10842 continue;
10843
10844 if (first)
10845 {
10846 buf.puts ("<");
10847 first = 0;
10848 }
10849 else
10850 buf.puts (", ");
10851
10852 attr = dwarf2_attr (child, DW_AT_type, cu);
10853 if (attr == NULL)
10854 {
10855 complaint (_("template parameter missing DW_AT_type"));
10856 buf.puts ("UNKNOWN_TYPE");
10857 continue;
10858 }
10859 type = die_type (child, cu);
10860
10861 if (child->tag == DW_TAG_template_type_param)
10862 {
10863 c_print_type (type, "", &buf, -1, 0, cu->language,
10864 &type_print_raw_options);
10865 continue;
10866 }
10867
10868 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10869 if (attr == NULL)
10870 {
10871 complaint (_("template parameter missing "
10872 "DW_AT_const_value"));
10873 buf.puts ("UNKNOWN_VALUE");
10874 continue;
10875 }
10876
10877 dwarf2_const_value_attr (attr, type, name,
10878 &cu->comp_unit_obstack, cu,
10879 &value, &bytes, &baton);
10880
10881 if (TYPE_NOSIGN (type))
10882 /* GDB prints characters as NUMBER 'CHAR'. If that's
10883 changed, this can use value_print instead. */
10884 c_printchar (value, type, &buf);
10885 else
10886 {
10887 struct value_print_options opts;
10888
10889 if (baton != NULL)
10890 v = dwarf2_evaluate_loc_desc (type, NULL,
10891 baton->data,
10892 baton->size,
10893 baton->per_cu);
10894 else if (bytes != NULL)
10895 {
10896 v = allocate_value (type);
10897 memcpy (value_contents_writeable (v), bytes,
10898 TYPE_LENGTH (type));
10899 }
10900 else
10901 v = value_from_longest (type, value);
10902
10903 /* Specify decimal so that we do not depend on
10904 the radix. */
10905 get_formatted_print_options (&opts, 'd');
10906 opts.raw = 1;
10907 value_print (v, &buf, &opts);
10908 release_value (v);
10909 }
10910 }
10911
10912 die->building_fullname = 0;
10913
10914 if (!first)
10915 {
10916 /* Close the argument list, with a space if necessary
10917 (nested templates). */
10918 if (!buf.empty () && buf.string ().back () == '>')
10919 buf.puts (" >");
10920 else
10921 buf.puts (">");
10922 }
10923 }
10924
10925 /* For C++ methods, append formal parameter type
10926 information, if PHYSNAME. */
10927
10928 if (physname && die->tag == DW_TAG_subprogram
10929 && cu->language == language_cplus)
10930 {
10931 struct type *type = read_type_die (die, cu);
10932
10933 c_type_print_args (type, &buf, 1, cu->language,
10934 &type_print_raw_options);
10935
10936 if (cu->language == language_cplus)
10937 {
10938 /* Assume that an artificial first parameter is
10939 "this", but do not crash if it is not. RealView
10940 marks unnamed (and thus unused) parameters as
10941 artificial; there is no way to differentiate
10942 the two cases. */
10943 if (TYPE_NFIELDS (type) > 0
10944 && TYPE_FIELD_ARTIFICIAL (type, 0)
10945 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10946 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10947 0))))
10948 buf.puts (" const");
10949 }
10950 }
10951
10952 const std::string &intermediate_name = buf.string ();
10953
10954 if (cu->language == language_cplus)
10955 canonical_name
10956 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10957 &objfile->per_bfd->storage_obstack);
10958
10959 /* If we only computed INTERMEDIATE_NAME, or if
10960 INTERMEDIATE_NAME is already canonical, then we need to
10961 copy it to the appropriate obstack. */
10962 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10963 name = ((const char *)
10964 obstack_copy0 (&objfile->per_bfd->storage_obstack,
10965 intermediate_name.c_str (),
10966 intermediate_name.length ()));
10967 else
10968 name = canonical_name;
10969 }
10970 }
10971
10972 return name;
10973 }
10974
10975 /* Return the fully qualified name of DIE, based on its DW_AT_name.
10976 If scope qualifiers are appropriate they will be added. The result
10977 will be allocated on the storage_obstack, or NULL if the DIE does
10978 not have a name. NAME may either be from a previous call to
10979 dwarf2_name or NULL.
10980
10981 The output string will be canonicalized (if C++). */
10982
10983 static const char *
10984 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10985 {
10986 return dwarf2_compute_name (name, die, cu, 0);
10987 }
10988
10989 /* Construct a physname for the given DIE in CU. NAME may either be
10990 from a previous call to dwarf2_name or NULL. The result will be
10991 allocated on the objfile_objstack or NULL if the DIE does not have a
10992 name.
10993
10994 The output string will be canonicalized (if C++). */
10995
10996 static const char *
10997 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10998 {
10999 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11000 const char *retval, *mangled = NULL, *canon = NULL;
11001 int need_copy = 1;
11002
11003 /* In this case dwarf2_compute_name is just a shortcut not building anything
11004 on its own. */
11005 if (!die_needs_namespace (die, cu))
11006 return dwarf2_compute_name (name, die, cu, 1);
11007
11008 mangled = dw2_linkage_name (die, cu);
11009
11010 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11011 See https://github.com/rust-lang/rust/issues/32925. */
11012 if (cu->language == language_rust && mangled != NULL
11013 && strchr (mangled, '{') != NULL)
11014 mangled = NULL;
11015
11016 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11017 has computed. */
11018 gdb::unique_xmalloc_ptr<char> demangled;
11019 if (mangled != NULL)
11020 {
11021
11022 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11023 {
11024 /* Do nothing (do not demangle the symbol name). */
11025 }
11026 else if (cu->language == language_go)
11027 {
11028 /* This is a lie, but we already lie to the caller new_symbol.
11029 new_symbol assumes we return the mangled name.
11030 This just undoes that lie until things are cleaned up. */
11031 }
11032 else
11033 {
11034 /* Use DMGL_RET_DROP for C++ template functions to suppress
11035 their return type. It is easier for GDB users to search
11036 for such functions as `name(params)' than `long name(params)'.
11037 In such case the minimal symbol names do not match the full
11038 symbol names but for template functions there is never a need
11039 to look up their definition from their declaration so
11040 the only disadvantage remains the minimal symbol variant
11041 `long name(params)' does not have the proper inferior type. */
11042 demangled.reset (gdb_demangle (mangled,
11043 (DMGL_PARAMS | DMGL_ANSI
11044 | DMGL_RET_DROP)));
11045 }
11046 if (demangled)
11047 canon = demangled.get ();
11048 else
11049 {
11050 canon = mangled;
11051 need_copy = 0;
11052 }
11053 }
11054
11055 if (canon == NULL || check_physname)
11056 {
11057 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11058
11059 if (canon != NULL && strcmp (physname, canon) != 0)
11060 {
11061 /* It may not mean a bug in GDB. The compiler could also
11062 compute DW_AT_linkage_name incorrectly. But in such case
11063 GDB would need to be bug-to-bug compatible. */
11064
11065 complaint (_("Computed physname <%s> does not match demangled <%s> "
11066 "(from linkage <%s>) - DIE at %s [in module %s]"),
11067 physname, canon, mangled, sect_offset_str (die->sect_off),
11068 objfile_name (objfile));
11069
11070 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11071 is available here - over computed PHYSNAME. It is safer
11072 against both buggy GDB and buggy compilers. */
11073
11074 retval = canon;
11075 }
11076 else
11077 {
11078 retval = physname;
11079 need_copy = 0;
11080 }
11081 }
11082 else
11083 retval = canon;
11084
11085 if (need_copy)
11086 retval = ((const char *)
11087 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11088 retval, strlen (retval)));
11089
11090 return retval;
11091 }
11092
11093 /* Inspect DIE in CU for a namespace alias. If one exists, record
11094 a new symbol for it.
11095
11096 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11097
11098 static int
11099 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11100 {
11101 struct attribute *attr;
11102
11103 /* If the die does not have a name, this is not a namespace
11104 alias. */
11105 attr = dwarf2_attr (die, DW_AT_name, cu);
11106 if (attr != NULL)
11107 {
11108 int num;
11109 struct die_info *d = die;
11110 struct dwarf2_cu *imported_cu = cu;
11111
11112 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11113 keep inspecting DIEs until we hit the underlying import. */
11114 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11115 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11116 {
11117 attr = dwarf2_attr (d, DW_AT_import, cu);
11118 if (attr == NULL)
11119 break;
11120
11121 d = follow_die_ref (d, attr, &imported_cu);
11122 if (d->tag != DW_TAG_imported_declaration)
11123 break;
11124 }
11125
11126 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11127 {
11128 complaint (_("DIE at %s has too many recursively imported "
11129 "declarations"), sect_offset_str (d->sect_off));
11130 return 0;
11131 }
11132
11133 if (attr != NULL)
11134 {
11135 struct type *type;
11136 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11137
11138 type = get_die_type_at_offset (sect_off, cu->per_cu);
11139 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11140 {
11141 /* This declaration is a global namespace alias. Add
11142 a symbol for it whose type is the aliased namespace. */
11143 new_symbol (die, type, cu);
11144 return 1;
11145 }
11146 }
11147 }
11148
11149 return 0;
11150 }
11151
11152 /* Return the using directives repository (global or local?) to use in the
11153 current context for CU.
11154
11155 For Ada, imported declarations can materialize renamings, which *may* be
11156 global. However it is impossible (for now?) in DWARF to distinguish
11157 "external" imported declarations and "static" ones. As all imported
11158 declarations seem to be static in all other languages, make them all CU-wide
11159 global only in Ada. */
11160
11161 static struct using_direct **
11162 using_directives (struct dwarf2_cu *cu)
11163 {
11164 if (cu->language == language_ada
11165 && cu->get_builder ()->outermost_context_p ())
11166 return cu->get_builder ()->get_global_using_directives ();
11167 else
11168 return cu->get_builder ()->get_local_using_directives ();
11169 }
11170
11171 /* Read the import statement specified by the given die and record it. */
11172
11173 static void
11174 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11175 {
11176 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11177 struct attribute *import_attr;
11178 struct die_info *imported_die, *child_die;
11179 struct dwarf2_cu *imported_cu;
11180 const char *imported_name;
11181 const char *imported_name_prefix;
11182 const char *canonical_name;
11183 const char *import_alias;
11184 const char *imported_declaration = NULL;
11185 const char *import_prefix;
11186 std::vector<const char *> excludes;
11187
11188 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11189 if (import_attr == NULL)
11190 {
11191 complaint (_("Tag '%s' has no DW_AT_import"),
11192 dwarf_tag_name (die->tag));
11193 return;
11194 }
11195
11196 imported_cu = cu;
11197 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11198 imported_name = dwarf2_name (imported_die, imported_cu);
11199 if (imported_name == NULL)
11200 {
11201 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11202
11203 The import in the following code:
11204 namespace A
11205 {
11206 typedef int B;
11207 }
11208
11209 int main ()
11210 {
11211 using A::B;
11212 B b;
11213 return b;
11214 }
11215
11216 ...
11217 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11218 <52> DW_AT_decl_file : 1
11219 <53> DW_AT_decl_line : 6
11220 <54> DW_AT_import : <0x75>
11221 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11222 <59> DW_AT_name : B
11223 <5b> DW_AT_decl_file : 1
11224 <5c> DW_AT_decl_line : 2
11225 <5d> DW_AT_type : <0x6e>
11226 ...
11227 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11228 <76> DW_AT_byte_size : 4
11229 <77> DW_AT_encoding : 5 (signed)
11230
11231 imports the wrong die ( 0x75 instead of 0x58 ).
11232 This case will be ignored until the gcc bug is fixed. */
11233 return;
11234 }
11235
11236 /* Figure out the local name after import. */
11237 import_alias = dwarf2_name (die, cu);
11238
11239 /* Figure out where the statement is being imported to. */
11240 import_prefix = determine_prefix (die, cu);
11241
11242 /* Figure out what the scope of the imported die is and prepend it
11243 to the name of the imported die. */
11244 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11245
11246 if (imported_die->tag != DW_TAG_namespace
11247 && imported_die->tag != DW_TAG_module)
11248 {
11249 imported_declaration = imported_name;
11250 canonical_name = imported_name_prefix;
11251 }
11252 else if (strlen (imported_name_prefix) > 0)
11253 canonical_name = obconcat (&objfile->objfile_obstack,
11254 imported_name_prefix,
11255 (cu->language == language_d ? "." : "::"),
11256 imported_name, (char *) NULL);
11257 else
11258 canonical_name = imported_name;
11259
11260 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11261 for (child_die = die->child; child_die && child_die->tag;
11262 child_die = sibling_die (child_die))
11263 {
11264 /* DWARF-4: A Fortran use statement with a “rename list” may be
11265 represented by an imported module entry with an import attribute
11266 referring to the module and owned entries corresponding to those
11267 entities that are renamed as part of being imported. */
11268
11269 if (child_die->tag != DW_TAG_imported_declaration)
11270 {
11271 complaint (_("child DW_TAG_imported_declaration expected "
11272 "- DIE at %s [in module %s]"),
11273 sect_offset_str (child_die->sect_off),
11274 objfile_name (objfile));
11275 continue;
11276 }
11277
11278 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11279 if (import_attr == NULL)
11280 {
11281 complaint (_("Tag '%s' has no DW_AT_import"),
11282 dwarf_tag_name (child_die->tag));
11283 continue;
11284 }
11285
11286 imported_cu = cu;
11287 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11288 &imported_cu);
11289 imported_name = dwarf2_name (imported_die, imported_cu);
11290 if (imported_name == NULL)
11291 {
11292 complaint (_("child DW_TAG_imported_declaration has unknown "
11293 "imported name - DIE at %s [in module %s]"),
11294 sect_offset_str (child_die->sect_off),
11295 objfile_name (objfile));
11296 continue;
11297 }
11298
11299 excludes.push_back (imported_name);
11300
11301 process_die (child_die, cu);
11302 }
11303
11304 add_using_directive (using_directives (cu),
11305 import_prefix,
11306 canonical_name,
11307 import_alias,
11308 imported_declaration,
11309 excludes,
11310 0,
11311 &objfile->objfile_obstack);
11312 }
11313
11314 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11315 types, but gives them a size of zero. Starting with version 14,
11316 ICC is compatible with GCC. */
11317
11318 static bool
11319 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11320 {
11321 if (!cu->checked_producer)
11322 check_producer (cu);
11323
11324 return cu->producer_is_icc_lt_14;
11325 }
11326
11327 /* ICC generates a DW_AT_type for C void functions. This was observed on
11328 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
11329 which says that void functions should not have a DW_AT_type. */
11330
11331 static bool
11332 producer_is_icc (struct dwarf2_cu *cu)
11333 {
11334 if (!cu->checked_producer)
11335 check_producer (cu);
11336
11337 return cu->producer_is_icc;
11338 }
11339
11340 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11341 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11342 this, it was first present in GCC release 4.3.0. */
11343
11344 static bool
11345 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11346 {
11347 if (!cu->checked_producer)
11348 check_producer (cu);
11349
11350 return cu->producer_is_gcc_lt_4_3;
11351 }
11352
11353 static file_and_directory
11354 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11355 {
11356 file_and_directory res;
11357
11358 /* Find the filename. Do not use dwarf2_name here, since the filename
11359 is not a source language identifier. */
11360 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11361 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11362
11363 if (res.comp_dir == NULL
11364 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11365 && IS_ABSOLUTE_PATH (res.name))
11366 {
11367 res.comp_dir_storage = ldirname (res.name);
11368 if (!res.comp_dir_storage.empty ())
11369 res.comp_dir = res.comp_dir_storage.c_str ();
11370 }
11371 if (res.comp_dir != NULL)
11372 {
11373 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11374 directory, get rid of it. */
11375 const char *cp = strchr (res.comp_dir, ':');
11376
11377 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11378 res.comp_dir = cp + 1;
11379 }
11380
11381 if (res.name == NULL)
11382 res.name = "<unknown>";
11383
11384 return res;
11385 }
11386
11387 /* Handle DW_AT_stmt_list for a compilation unit.
11388 DIE is the DW_TAG_compile_unit die for CU.
11389 COMP_DIR is the compilation directory. LOWPC is passed to
11390 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11391
11392 static void
11393 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11394 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11395 {
11396 struct dwarf2_per_objfile *dwarf2_per_objfile
11397 = cu->per_cu->dwarf2_per_objfile;
11398 struct objfile *objfile = dwarf2_per_objfile->objfile;
11399 struct attribute *attr;
11400 struct line_header line_header_local;
11401 hashval_t line_header_local_hash;
11402 void **slot;
11403 int decode_mapping;
11404
11405 gdb_assert (! cu->per_cu->is_debug_types);
11406
11407 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11408 if (attr == NULL)
11409 return;
11410
11411 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11412
11413 /* The line header hash table is only created if needed (it exists to
11414 prevent redundant reading of the line table for partial_units).
11415 If we're given a partial_unit, we'll need it. If we're given a
11416 compile_unit, then use the line header hash table if it's already
11417 created, but don't create one just yet. */
11418
11419 if (dwarf2_per_objfile->line_header_hash == NULL
11420 && die->tag == DW_TAG_partial_unit)
11421 {
11422 dwarf2_per_objfile->line_header_hash
11423 = htab_create_alloc_ex (127, line_header_hash_voidp,
11424 line_header_eq_voidp,
11425 free_line_header_voidp,
11426 &objfile->objfile_obstack,
11427 hashtab_obstack_allocate,
11428 dummy_obstack_deallocate);
11429 }
11430
11431 line_header_local.sect_off = line_offset;
11432 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11433 line_header_local_hash = line_header_hash (&line_header_local);
11434 if (dwarf2_per_objfile->line_header_hash != NULL)
11435 {
11436 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11437 &line_header_local,
11438 line_header_local_hash, NO_INSERT);
11439
11440 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11441 is not present in *SLOT (since if there is something in *SLOT then
11442 it will be for a partial_unit). */
11443 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11444 {
11445 gdb_assert (*slot != NULL);
11446 cu->line_header = (struct line_header *) *slot;
11447 return;
11448 }
11449 }
11450
11451 /* dwarf_decode_line_header does not yet provide sufficient information.
11452 We always have to call also dwarf_decode_lines for it. */
11453 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11454 if (lh == NULL)
11455 return;
11456
11457 cu->line_header = lh.release ();
11458 cu->line_header_die_owner = die;
11459
11460 if (dwarf2_per_objfile->line_header_hash == NULL)
11461 slot = NULL;
11462 else
11463 {
11464 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11465 &line_header_local,
11466 line_header_local_hash, INSERT);
11467 gdb_assert (slot != NULL);
11468 }
11469 if (slot != NULL && *slot == NULL)
11470 {
11471 /* This newly decoded line number information unit will be owned
11472 by line_header_hash hash table. */
11473 *slot = cu->line_header;
11474 cu->line_header_die_owner = NULL;
11475 }
11476 else
11477 {
11478 /* We cannot free any current entry in (*slot) as that struct line_header
11479 may be already used by multiple CUs. Create only temporary decoded
11480 line_header for this CU - it may happen at most once for each line
11481 number information unit. And if we're not using line_header_hash
11482 then this is what we want as well. */
11483 gdb_assert (die->tag != DW_TAG_partial_unit);
11484 }
11485 decode_mapping = (die->tag != DW_TAG_partial_unit);
11486 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11487 decode_mapping);
11488
11489 }
11490
11491 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11492
11493 static void
11494 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11495 {
11496 struct dwarf2_per_objfile *dwarf2_per_objfile
11497 = cu->per_cu->dwarf2_per_objfile;
11498 struct objfile *objfile = dwarf2_per_objfile->objfile;
11499 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11500 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11501 CORE_ADDR highpc = ((CORE_ADDR) 0);
11502 struct attribute *attr;
11503 struct die_info *child_die;
11504 CORE_ADDR baseaddr;
11505
11506 prepare_one_comp_unit (cu, die, cu->language);
11507 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11508
11509 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11510
11511 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11512 from finish_block. */
11513 if (lowpc == ((CORE_ADDR) -1))
11514 lowpc = highpc;
11515 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11516
11517 file_and_directory fnd = find_file_and_directory (die, cu);
11518
11519 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11520 standardised yet. As a workaround for the language detection we fall
11521 back to the DW_AT_producer string. */
11522 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11523 cu->language = language_opencl;
11524
11525 /* Similar hack for Go. */
11526 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11527 set_cu_language (DW_LANG_Go, cu);
11528
11529 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
11530
11531 /* Decode line number information if present. We do this before
11532 processing child DIEs, so that the line header table is available
11533 for DW_AT_decl_file. */
11534 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11535
11536 /* Process all dies in compilation unit. */
11537 if (die->child != NULL)
11538 {
11539 child_die = die->child;
11540 while (child_die && child_die->tag)
11541 {
11542 process_die (child_die, cu);
11543 child_die = sibling_die (child_die);
11544 }
11545 }
11546
11547 /* Decode macro information, if present. Dwarf 2 macro information
11548 refers to information in the line number info statement program
11549 header, so we can only read it if we've read the header
11550 successfully. */
11551 attr = dwarf2_attr (die, DW_AT_macros, cu);
11552 if (attr == NULL)
11553 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11554 if (attr && cu->line_header)
11555 {
11556 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11557 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11558
11559 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11560 }
11561 else
11562 {
11563 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11564 if (attr && cu->line_header)
11565 {
11566 unsigned int macro_offset = DW_UNSND (attr);
11567
11568 dwarf_decode_macros (cu, macro_offset, 0);
11569 }
11570 }
11571 }
11572
11573 void
11574 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
11575 {
11576 struct type_unit_group *tu_group;
11577 int first_time;
11578 struct attribute *attr;
11579 unsigned int i;
11580 struct signatured_type *sig_type;
11581
11582 gdb_assert (per_cu->is_debug_types);
11583 sig_type = (struct signatured_type *) per_cu;
11584
11585 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
11586
11587 /* If we're using .gdb_index (includes -readnow) then
11588 per_cu->type_unit_group may not have been set up yet. */
11589 if (sig_type->type_unit_group == NULL)
11590 sig_type->type_unit_group = get_type_unit_group (this, attr);
11591 tu_group = sig_type->type_unit_group;
11592
11593 /* If we've already processed this stmt_list there's no real need to
11594 do it again, we could fake it and just recreate the part we need
11595 (file name,index -> symtab mapping). If data shows this optimization
11596 is useful we can do it then. */
11597 first_time = tu_group->compunit_symtab == NULL;
11598
11599 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11600 debug info. */
11601 line_header_up lh;
11602 if (attr != NULL)
11603 {
11604 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11605 lh = dwarf_decode_line_header (line_offset, this);
11606 }
11607 if (lh == NULL)
11608 {
11609 if (first_time)
11610 start_symtab ("", NULL, 0);
11611 else
11612 {
11613 gdb_assert (tu_group->symtabs == NULL);
11614 gdb_assert (m_builder == nullptr);
11615 struct compunit_symtab *cust = tu_group->compunit_symtab;
11616 m_builder.reset (new struct buildsym_compunit
11617 (COMPUNIT_OBJFILE (cust), "",
11618 COMPUNIT_DIRNAME (cust),
11619 compunit_language (cust),
11620 0, cust));
11621 }
11622 return;
11623 }
11624
11625 line_header = lh.release ();
11626 line_header_die_owner = die;
11627
11628 if (first_time)
11629 {
11630 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
11631
11632 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11633 still initializing it, and our caller (a few levels up)
11634 process_full_type_unit still needs to know if this is the first
11635 time. */
11636
11637 tu_group->num_symtabs = line_header->file_names.size ();
11638 tu_group->symtabs = XNEWVEC (struct symtab *,
11639 line_header->file_names.size ());
11640
11641 for (i = 0; i < line_header->file_names.size (); ++i)
11642 {
11643 file_entry &fe = line_header->file_names[i];
11644
11645 dwarf2_start_subfile (this, fe.name,
11646 fe.include_dir (line_header));
11647 buildsym_compunit *b = get_builder ();
11648 if (b->get_current_subfile ()->symtab == NULL)
11649 {
11650 /* NOTE: start_subfile will recognize when it's been
11651 passed a file it has already seen. So we can't
11652 assume there's a simple mapping from
11653 cu->line_header->file_names to subfiles, plus
11654 cu->line_header->file_names may contain dups. */
11655 b->get_current_subfile ()->symtab
11656 = allocate_symtab (cust, b->get_current_subfile ()->name);
11657 }
11658
11659 fe.symtab = b->get_current_subfile ()->symtab;
11660 tu_group->symtabs[i] = fe.symtab;
11661 }
11662 }
11663 else
11664 {
11665 gdb_assert (m_builder == nullptr);
11666 struct compunit_symtab *cust = tu_group->compunit_symtab;
11667 m_builder.reset (new struct buildsym_compunit
11668 (COMPUNIT_OBJFILE (cust), "",
11669 COMPUNIT_DIRNAME (cust),
11670 compunit_language (cust),
11671 0, cust));
11672
11673 for (i = 0; i < line_header->file_names.size (); ++i)
11674 {
11675 file_entry &fe = line_header->file_names[i];
11676
11677 fe.symtab = tu_group->symtabs[i];
11678 }
11679 }
11680
11681 /* The main symtab is allocated last. Type units don't have DW_AT_name
11682 so they don't have a "real" (so to speak) symtab anyway.
11683 There is later code that will assign the main symtab to all symbols
11684 that don't have one. We need to handle the case of a symbol with a
11685 missing symtab (DW_AT_decl_file) anyway. */
11686 }
11687
11688 /* Process DW_TAG_type_unit.
11689 For TUs we want to skip the first top level sibling if it's not the
11690 actual type being defined by this TU. In this case the first top
11691 level sibling is there to provide context only. */
11692
11693 static void
11694 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11695 {
11696 struct die_info *child_die;
11697
11698 prepare_one_comp_unit (cu, die, language_minimal);
11699
11700 /* Initialize (or reinitialize) the machinery for building symtabs.
11701 We do this before processing child DIEs, so that the line header table
11702 is available for DW_AT_decl_file. */
11703 cu->setup_type_unit_groups (die);
11704
11705 if (die->child != NULL)
11706 {
11707 child_die = die->child;
11708 while (child_die && child_die->tag)
11709 {
11710 process_die (child_die, cu);
11711 child_die = sibling_die (child_die);
11712 }
11713 }
11714 }
11715 \f
11716 /* DWO/DWP files.
11717
11718 http://gcc.gnu.org/wiki/DebugFission
11719 http://gcc.gnu.org/wiki/DebugFissionDWP
11720
11721 To simplify handling of both DWO files ("object" files with the DWARF info)
11722 and DWP files (a file with the DWOs packaged up into one file), we treat
11723 DWP files as having a collection of virtual DWO files. */
11724
11725 static hashval_t
11726 hash_dwo_file (const void *item)
11727 {
11728 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11729 hashval_t hash;
11730
11731 hash = htab_hash_string (dwo_file->dwo_name);
11732 if (dwo_file->comp_dir != NULL)
11733 hash += htab_hash_string (dwo_file->comp_dir);
11734 return hash;
11735 }
11736
11737 static int
11738 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11739 {
11740 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11741 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11742
11743 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11744 return 0;
11745 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11746 return lhs->comp_dir == rhs->comp_dir;
11747 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11748 }
11749
11750 /* Allocate a hash table for DWO files. */
11751
11752 static htab_up
11753 allocate_dwo_file_hash_table (struct objfile *objfile)
11754 {
11755 auto delete_dwo_file = [] (void *item)
11756 {
11757 struct dwo_file *dwo_file = (struct dwo_file *) item;
11758
11759 delete dwo_file;
11760 };
11761
11762 return htab_up (htab_create_alloc_ex (41,
11763 hash_dwo_file,
11764 eq_dwo_file,
11765 delete_dwo_file,
11766 &objfile->objfile_obstack,
11767 hashtab_obstack_allocate,
11768 dummy_obstack_deallocate));
11769 }
11770
11771 /* Lookup DWO file DWO_NAME. */
11772
11773 static void **
11774 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11775 const char *dwo_name,
11776 const char *comp_dir)
11777 {
11778 struct dwo_file find_entry;
11779 void **slot;
11780
11781 if (dwarf2_per_objfile->dwo_files == NULL)
11782 dwarf2_per_objfile->dwo_files
11783 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11784
11785 find_entry.dwo_name = dwo_name;
11786 find_entry.comp_dir = comp_dir;
11787 slot = htab_find_slot (dwarf2_per_objfile->dwo_files.get (), &find_entry,
11788 INSERT);
11789
11790 return slot;
11791 }
11792
11793 static hashval_t
11794 hash_dwo_unit (const void *item)
11795 {
11796 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11797
11798 /* This drops the top 32 bits of the id, but is ok for a hash. */
11799 return dwo_unit->signature;
11800 }
11801
11802 static int
11803 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11804 {
11805 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11806 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11807
11808 /* The signature is assumed to be unique within the DWO file.
11809 So while object file CU dwo_id's always have the value zero,
11810 that's OK, assuming each object file DWO file has only one CU,
11811 and that's the rule for now. */
11812 return lhs->signature == rhs->signature;
11813 }
11814
11815 /* Allocate a hash table for DWO CUs,TUs.
11816 There is one of these tables for each of CUs,TUs for each DWO file. */
11817
11818 static htab_t
11819 allocate_dwo_unit_table (struct objfile *objfile)
11820 {
11821 /* Start out with a pretty small number.
11822 Generally DWO files contain only one CU and maybe some TUs. */
11823 return htab_create_alloc_ex (3,
11824 hash_dwo_unit,
11825 eq_dwo_unit,
11826 NULL,
11827 &objfile->objfile_obstack,
11828 hashtab_obstack_allocate,
11829 dummy_obstack_deallocate);
11830 }
11831
11832 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11833
11834 struct create_dwo_cu_data
11835 {
11836 struct dwo_file *dwo_file;
11837 struct dwo_unit dwo_unit;
11838 };
11839
11840 /* die_reader_func for create_dwo_cu. */
11841
11842 static void
11843 create_dwo_cu_reader (const struct die_reader_specs *reader,
11844 const gdb_byte *info_ptr,
11845 struct die_info *comp_unit_die,
11846 int has_children,
11847 void *datap)
11848 {
11849 struct dwarf2_cu *cu = reader->cu;
11850 sect_offset sect_off = cu->per_cu->sect_off;
11851 struct dwarf2_section_info *section = cu->per_cu->section;
11852 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11853 struct dwo_file *dwo_file = data->dwo_file;
11854 struct dwo_unit *dwo_unit = &data->dwo_unit;
11855 struct attribute *attr;
11856
11857 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11858 if (attr == NULL)
11859 {
11860 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11861 " its dwo_id [in module %s]"),
11862 sect_offset_str (sect_off), dwo_file->dwo_name);
11863 return;
11864 }
11865
11866 dwo_unit->dwo_file = dwo_file;
11867 dwo_unit->signature = DW_UNSND (attr);
11868 dwo_unit->section = section;
11869 dwo_unit->sect_off = sect_off;
11870 dwo_unit->length = cu->per_cu->length;
11871
11872 if (dwarf_read_debug)
11873 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11874 sect_offset_str (sect_off),
11875 hex_string (dwo_unit->signature));
11876 }
11877
11878 /* Create the dwo_units for the CUs in a DWO_FILE.
11879 Note: This function processes DWO files only, not DWP files. */
11880
11881 static void
11882 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11883 struct dwo_file &dwo_file, dwarf2_section_info &section,
11884 htab_t &cus_htab)
11885 {
11886 struct objfile *objfile = dwarf2_per_objfile->objfile;
11887 const gdb_byte *info_ptr, *end_ptr;
11888
11889 dwarf2_read_section (objfile, &section);
11890 info_ptr = section.buffer;
11891
11892 if (info_ptr == NULL)
11893 return;
11894
11895 if (dwarf_read_debug)
11896 {
11897 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11898 get_section_name (&section),
11899 get_section_file_name (&section));
11900 }
11901
11902 end_ptr = info_ptr + section.size;
11903 while (info_ptr < end_ptr)
11904 {
11905 struct dwarf2_per_cu_data per_cu;
11906 struct create_dwo_cu_data create_dwo_cu_data;
11907 struct dwo_unit *dwo_unit;
11908 void **slot;
11909 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11910
11911 memset (&create_dwo_cu_data.dwo_unit, 0,
11912 sizeof (create_dwo_cu_data.dwo_unit));
11913 memset (&per_cu, 0, sizeof (per_cu));
11914 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11915 per_cu.is_debug_types = 0;
11916 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11917 per_cu.section = &section;
11918 create_dwo_cu_data.dwo_file = &dwo_file;
11919
11920 init_cutu_and_read_dies_no_follow (
11921 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11922 info_ptr += per_cu.length;
11923
11924 // If the unit could not be parsed, skip it.
11925 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11926 continue;
11927
11928 if (cus_htab == NULL)
11929 cus_htab = allocate_dwo_unit_table (objfile);
11930
11931 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11932 *dwo_unit = create_dwo_cu_data.dwo_unit;
11933 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11934 gdb_assert (slot != NULL);
11935 if (*slot != NULL)
11936 {
11937 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11938 sect_offset dup_sect_off = dup_cu->sect_off;
11939
11940 complaint (_("debug cu entry at offset %s is duplicate to"
11941 " the entry at offset %s, signature %s"),
11942 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11943 hex_string (dwo_unit->signature));
11944 }
11945 *slot = (void *)dwo_unit;
11946 }
11947 }
11948
11949 /* DWP file .debug_{cu,tu}_index section format:
11950 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11951
11952 DWP Version 1:
11953
11954 Both index sections have the same format, and serve to map a 64-bit
11955 signature to a set of section numbers. Each section begins with a header,
11956 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11957 indexes, and a pool of 32-bit section numbers. The index sections will be
11958 aligned at 8-byte boundaries in the file.
11959
11960 The index section header consists of:
11961
11962 V, 32 bit version number
11963 -, 32 bits unused
11964 N, 32 bit number of compilation units or type units in the index
11965 M, 32 bit number of slots in the hash table
11966
11967 Numbers are recorded using the byte order of the application binary.
11968
11969 The hash table begins at offset 16 in the section, and consists of an array
11970 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11971 order of the application binary). Unused slots in the hash table are 0.
11972 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11973
11974 The parallel table begins immediately after the hash table
11975 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11976 array of 32-bit indexes (using the byte order of the application binary),
11977 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11978 table contains a 32-bit index into the pool of section numbers. For unused
11979 hash table slots, the corresponding entry in the parallel table will be 0.
11980
11981 The pool of section numbers begins immediately following the hash table
11982 (at offset 16 + 12 * M from the beginning of the section). The pool of
11983 section numbers consists of an array of 32-bit words (using the byte order
11984 of the application binary). Each item in the array is indexed starting
11985 from 0. The hash table entry provides the index of the first section
11986 number in the set. Additional section numbers in the set follow, and the
11987 set is terminated by a 0 entry (section number 0 is not used in ELF).
11988
11989 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
11990 section must be the first entry in the set, and the .debug_abbrev.dwo must
11991 be the second entry. Other members of the set may follow in any order.
11992
11993 ---
11994
11995 DWP Version 2:
11996
11997 DWP Version 2 combines all the .debug_info, etc. sections into one,
11998 and the entries in the index tables are now offsets into these sections.
11999 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12000 section.
12001
12002 Index Section Contents:
12003 Header
12004 Hash Table of Signatures dwp_hash_table.hash_table
12005 Parallel Table of Indices dwp_hash_table.unit_table
12006 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12007 Table of Section Sizes dwp_hash_table.v2.sizes
12008
12009 The index section header consists of:
12010
12011 V, 32 bit version number
12012 L, 32 bit number of columns in the table of section offsets
12013 N, 32 bit number of compilation units or type units in the index
12014 M, 32 bit number of slots in the hash table
12015
12016 Numbers are recorded using the byte order of the application binary.
12017
12018 The hash table has the same format as version 1.
12019 The parallel table of indices has the same format as version 1,
12020 except that the entries are origin-1 indices into the table of sections
12021 offsets and the table of section sizes.
12022
12023 The table of offsets begins immediately following the parallel table
12024 (at offset 16 + 12 * M from the beginning of the section). The table is
12025 a two-dimensional array of 32-bit words (using the byte order of the
12026 application binary), with L columns and N+1 rows, in row-major order.
12027 Each row in the array is indexed starting from 0. The first row provides
12028 a key to the remaining rows: each column in this row provides an identifier
12029 for a debug section, and the offsets in the same column of subsequent rows
12030 refer to that section. The section identifiers are:
12031
12032 DW_SECT_INFO 1 .debug_info.dwo
12033 DW_SECT_TYPES 2 .debug_types.dwo
12034 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12035 DW_SECT_LINE 4 .debug_line.dwo
12036 DW_SECT_LOC 5 .debug_loc.dwo
12037 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12038 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12039 DW_SECT_MACRO 8 .debug_macro.dwo
12040
12041 The offsets provided by the CU and TU index sections are the base offsets
12042 for the contributions made by each CU or TU to the corresponding section
12043 in the package file. Each CU and TU header contains an abbrev_offset
12044 field, used to find the abbreviations table for that CU or TU within the
12045 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12046 be interpreted as relative to the base offset given in the index section.
12047 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12048 should be interpreted as relative to the base offset for .debug_line.dwo,
12049 and offsets into other debug sections obtained from DWARF attributes should
12050 also be interpreted as relative to the corresponding base offset.
12051
12052 The table of sizes begins immediately following the table of offsets.
12053 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12054 with L columns and N rows, in row-major order. Each row in the array is
12055 indexed starting from 1 (row 0 is shared by the two tables).
12056
12057 ---
12058
12059 Hash table lookup is handled the same in version 1 and 2:
12060
12061 We assume that N and M will not exceed 2^32 - 1.
12062 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12063
12064 Given a 64-bit compilation unit signature or a type signature S, an entry
12065 in the hash table is located as follows:
12066
12067 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12068 the low-order k bits all set to 1.
12069
12070 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12071
12072 3) If the hash table entry at index H matches the signature, use that
12073 entry. If the hash table entry at index H is unused (all zeroes),
12074 terminate the search: the signature is not present in the table.
12075
12076 4) Let H = (H + H') modulo M. Repeat at Step 3.
12077
12078 Because M > N and H' and M are relatively prime, the search is guaranteed
12079 to stop at an unused slot or find the match. */
12080
12081 /* Create a hash table to map DWO IDs to their CU/TU entry in
12082 .debug_{info,types}.dwo in DWP_FILE.
12083 Returns NULL if there isn't one.
12084 Note: This function processes DWP files only, not DWO files. */
12085
12086 static struct dwp_hash_table *
12087 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12088 struct dwp_file *dwp_file, int is_debug_types)
12089 {
12090 struct objfile *objfile = dwarf2_per_objfile->objfile;
12091 bfd *dbfd = dwp_file->dbfd.get ();
12092 const gdb_byte *index_ptr, *index_end;
12093 struct dwarf2_section_info *index;
12094 uint32_t version, nr_columns, nr_units, nr_slots;
12095 struct dwp_hash_table *htab;
12096
12097 if (is_debug_types)
12098 index = &dwp_file->sections.tu_index;
12099 else
12100 index = &dwp_file->sections.cu_index;
12101
12102 if (dwarf2_section_empty_p (index))
12103 return NULL;
12104 dwarf2_read_section (objfile, index);
12105
12106 index_ptr = index->buffer;
12107 index_end = index_ptr + index->size;
12108
12109 version = read_4_bytes (dbfd, index_ptr);
12110 index_ptr += 4;
12111 if (version == 2)
12112 nr_columns = read_4_bytes (dbfd, index_ptr);
12113 else
12114 nr_columns = 0;
12115 index_ptr += 4;
12116 nr_units = read_4_bytes (dbfd, index_ptr);
12117 index_ptr += 4;
12118 nr_slots = read_4_bytes (dbfd, index_ptr);
12119 index_ptr += 4;
12120
12121 if (version != 1 && version != 2)
12122 {
12123 error (_("Dwarf Error: unsupported DWP file version (%s)"
12124 " [in module %s]"),
12125 pulongest (version), dwp_file->name);
12126 }
12127 if (nr_slots != (nr_slots & -nr_slots))
12128 {
12129 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12130 " is not power of 2 [in module %s]"),
12131 pulongest (nr_slots), dwp_file->name);
12132 }
12133
12134 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12135 htab->version = version;
12136 htab->nr_columns = nr_columns;
12137 htab->nr_units = nr_units;
12138 htab->nr_slots = nr_slots;
12139 htab->hash_table = index_ptr;
12140 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12141
12142 /* Exit early if the table is empty. */
12143 if (nr_slots == 0 || nr_units == 0
12144 || (version == 2 && nr_columns == 0))
12145 {
12146 /* All must be zero. */
12147 if (nr_slots != 0 || nr_units != 0
12148 || (version == 2 && nr_columns != 0))
12149 {
12150 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12151 " all zero [in modules %s]"),
12152 dwp_file->name);
12153 }
12154 return htab;
12155 }
12156
12157 if (version == 1)
12158 {
12159 htab->section_pool.v1.indices =
12160 htab->unit_table + sizeof (uint32_t) * nr_slots;
12161 /* It's harder to decide whether the section is too small in v1.
12162 V1 is deprecated anyway so we punt. */
12163 }
12164 else
12165 {
12166 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12167 int *ids = htab->section_pool.v2.section_ids;
12168 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
12169 /* Reverse map for error checking. */
12170 int ids_seen[DW_SECT_MAX + 1];
12171 int i;
12172
12173 if (nr_columns < 2)
12174 {
12175 error (_("Dwarf Error: bad DWP hash table, too few columns"
12176 " in section table [in module %s]"),
12177 dwp_file->name);
12178 }
12179 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12180 {
12181 error (_("Dwarf Error: bad DWP hash table, too many columns"
12182 " in section table [in module %s]"),
12183 dwp_file->name);
12184 }
12185 memset (ids, 255, sizeof_ids);
12186 memset (ids_seen, 255, sizeof (ids_seen));
12187 for (i = 0; i < nr_columns; ++i)
12188 {
12189 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12190
12191 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12192 {
12193 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12194 " in section table [in module %s]"),
12195 id, dwp_file->name);
12196 }
12197 if (ids_seen[id] != -1)
12198 {
12199 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12200 " id %d in section table [in module %s]"),
12201 id, dwp_file->name);
12202 }
12203 ids_seen[id] = i;
12204 ids[i] = id;
12205 }
12206 /* Must have exactly one info or types section. */
12207 if (((ids_seen[DW_SECT_INFO] != -1)
12208 + (ids_seen[DW_SECT_TYPES] != -1))
12209 != 1)
12210 {
12211 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12212 " DWO info/types section [in module %s]"),
12213 dwp_file->name);
12214 }
12215 /* Must have an abbrev section. */
12216 if (ids_seen[DW_SECT_ABBREV] == -1)
12217 {
12218 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12219 " section [in module %s]"),
12220 dwp_file->name);
12221 }
12222 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12223 htab->section_pool.v2.sizes =
12224 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12225 * nr_units * nr_columns);
12226 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12227 * nr_units * nr_columns))
12228 > index_end)
12229 {
12230 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12231 " [in module %s]"),
12232 dwp_file->name);
12233 }
12234 }
12235
12236 return htab;
12237 }
12238
12239 /* Update SECTIONS with the data from SECTP.
12240
12241 This function is like the other "locate" section routines that are
12242 passed to bfd_map_over_sections, but in this context the sections to
12243 read comes from the DWP V1 hash table, not the full ELF section table.
12244
12245 The result is non-zero for success, or zero if an error was found. */
12246
12247 static int
12248 locate_v1_virtual_dwo_sections (asection *sectp,
12249 struct virtual_v1_dwo_sections *sections)
12250 {
12251 const struct dwop_section_names *names = &dwop_section_names;
12252
12253 if (section_is_p (sectp->name, &names->abbrev_dwo))
12254 {
12255 /* There can be only one. */
12256 if (sections->abbrev.s.section != NULL)
12257 return 0;
12258 sections->abbrev.s.section = sectp;
12259 sections->abbrev.size = bfd_get_section_size (sectp);
12260 }
12261 else if (section_is_p (sectp->name, &names->info_dwo)
12262 || section_is_p (sectp->name, &names->types_dwo))
12263 {
12264 /* There can be only one. */
12265 if (sections->info_or_types.s.section != NULL)
12266 return 0;
12267 sections->info_or_types.s.section = sectp;
12268 sections->info_or_types.size = bfd_get_section_size (sectp);
12269 }
12270 else if (section_is_p (sectp->name, &names->line_dwo))
12271 {
12272 /* There can be only one. */
12273 if (sections->line.s.section != NULL)
12274 return 0;
12275 sections->line.s.section = sectp;
12276 sections->line.size = bfd_get_section_size (sectp);
12277 }
12278 else if (section_is_p (sectp->name, &names->loc_dwo))
12279 {
12280 /* There can be only one. */
12281 if (sections->loc.s.section != NULL)
12282 return 0;
12283 sections->loc.s.section = sectp;
12284 sections->loc.size = bfd_get_section_size (sectp);
12285 }
12286 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12287 {
12288 /* There can be only one. */
12289 if (sections->macinfo.s.section != NULL)
12290 return 0;
12291 sections->macinfo.s.section = sectp;
12292 sections->macinfo.size = bfd_get_section_size (sectp);
12293 }
12294 else if (section_is_p (sectp->name, &names->macro_dwo))
12295 {
12296 /* There can be only one. */
12297 if (sections->macro.s.section != NULL)
12298 return 0;
12299 sections->macro.s.section = sectp;
12300 sections->macro.size = bfd_get_section_size (sectp);
12301 }
12302 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12303 {
12304 /* There can be only one. */
12305 if (sections->str_offsets.s.section != NULL)
12306 return 0;
12307 sections->str_offsets.s.section = sectp;
12308 sections->str_offsets.size = bfd_get_section_size (sectp);
12309 }
12310 else
12311 {
12312 /* No other kind of section is valid. */
12313 return 0;
12314 }
12315
12316 return 1;
12317 }
12318
12319 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12320 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12321 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12322 This is for DWP version 1 files. */
12323
12324 static struct dwo_unit *
12325 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12326 struct dwp_file *dwp_file,
12327 uint32_t unit_index,
12328 const char *comp_dir,
12329 ULONGEST signature, int is_debug_types)
12330 {
12331 struct objfile *objfile = dwarf2_per_objfile->objfile;
12332 const struct dwp_hash_table *dwp_htab =
12333 is_debug_types ? dwp_file->tus : dwp_file->cus;
12334 bfd *dbfd = dwp_file->dbfd.get ();
12335 const char *kind = is_debug_types ? "TU" : "CU";
12336 struct dwo_file *dwo_file;
12337 struct dwo_unit *dwo_unit;
12338 struct virtual_v1_dwo_sections sections;
12339 void **dwo_file_slot;
12340 int i;
12341
12342 gdb_assert (dwp_file->version == 1);
12343
12344 if (dwarf_read_debug)
12345 {
12346 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12347 kind,
12348 pulongest (unit_index), hex_string (signature),
12349 dwp_file->name);
12350 }
12351
12352 /* Fetch the sections of this DWO unit.
12353 Put a limit on the number of sections we look for so that bad data
12354 doesn't cause us to loop forever. */
12355
12356 #define MAX_NR_V1_DWO_SECTIONS \
12357 (1 /* .debug_info or .debug_types */ \
12358 + 1 /* .debug_abbrev */ \
12359 + 1 /* .debug_line */ \
12360 + 1 /* .debug_loc */ \
12361 + 1 /* .debug_str_offsets */ \
12362 + 1 /* .debug_macro or .debug_macinfo */ \
12363 + 1 /* trailing zero */)
12364
12365 memset (&sections, 0, sizeof (sections));
12366
12367 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12368 {
12369 asection *sectp;
12370 uint32_t section_nr =
12371 read_4_bytes (dbfd,
12372 dwp_htab->section_pool.v1.indices
12373 + (unit_index + i) * sizeof (uint32_t));
12374
12375 if (section_nr == 0)
12376 break;
12377 if (section_nr >= dwp_file->num_sections)
12378 {
12379 error (_("Dwarf Error: bad DWP hash table, section number too large"
12380 " [in module %s]"),
12381 dwp_file->name);
12382 }
12383
12384 sectp = dwp_file->elf_sections[section_nr];
12385 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12386 {
12387 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12388 " [in module %s]"),
12389 dwp_file->name);
12390 }
12391 }
12392
12393 if (i < 2
12394 || dwarf2_section_empty_p (&sections.info_or_types)
12395 || dwarf2_section_empty_p (&sections.abbrev))
12396 {
12397 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12398 " [in module %s]"),
12399 dwp_file->name);
12400 }
12401 if (i == MAX_NR_V1_DWO_SECTIONS)
12402 {
12403 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12404 " [in module %s]"),
12405 dwp_file->name);
12406 }
12407
12408 /* It's easier for the rest of the code if we fake a struct dwo_file and
12409 have dwo_unit "live" in that. At least for now.
12410
12411 The DWP file can be made up of a random collection of CUs and TUs.
12412 However, for each CU + set of TUs that came from the same original DWO
12413 file, we can combine them back into a virtual DWO file to save space
12414 (fewer struct dwo_file objects to allocate). Remember that for really
12415 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12416
12417 std::string virtual_dwo_name =
12418 string_printf ("virtual-dwo/%d-%d-%d-%d",
12419 get_section_id (&sections.abbrev),
12420 get_section_id (&sections.line),
12421 get_section_id (&sections.loc),
12422 get_section_id (&sections.str_offsets));
12423 /* Can we use an existing virtual DWO file? */
12424 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12425 virtual_dwo_name.c_str (),
12426 comp_dir);
12427 /* Create one if necessary. */
12428 if (*dwo_file_slot == NULL)
12429 {
12430 if (dwarf_read_debug)
12431 {
12432 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12433 virtual_dwo_name.c_str ());
12434 }
12435 dwo_file = new struct dwo_file;
12436 dwo_file->dwo_name
12437 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12438 virtual_dwo_name.c_str (),
12439 virtual_dwo_name.size ());
12440 dwo_file->comp_dir = comp_dir;
12441 dwo_file->sections.abbrev = sections.abbrev;
12442 dwo_file->sections.line = sections.line;
12443 dwo_file->sections.loc = sections.loc;
12444 dwo_file->sections.macinfo = sections.macinfo;
12445 dwo_file->sections.macro = sections.macro;
12446 dwo_file->sections.str_offsets = sections.str_offsets;
12447 /* The "str" section is global to the entire DWP file. */
12448 dwo_file->sections.str = dwp_file->sections.str;
12449 /* The info or types section is assigned below to dwo_unit,
12450 there's no need to record it in dwo_file.
12451 Also, we can't simply record type sections in dwo_file because
12452 we record a pointer into the vector in dwo_unit. As we collect more
12453 types we'll grow the vector and eventually have to reallocate space
12454 for it, invalidating all copies of pointers into the previous
12455 contents. */
12456 *dwo_file_slot = dwo_file;
12457 }
12458 else
12459 {
12460 if (dwarf_read_debug)
12461 {
12462 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12463 virtual_dwo_name.c_str ());
12464 }
12465 dwo_file = (struct dwo_file *) *dwo_file_slot;
12466 }
12467
12468 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12469 dwo_unit->dwo_file = dwo_file;
12470 dwo_unit->signature = signature;
12471 dwo_unit->section =
12472 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12473 *dwo_unit->section = sections.info_or_types;
12474 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12475
12476 return dwo_unit;
12477 }
12478
12479 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12480 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12481 piece within that section used by a TU/CU, return a virtual section
12482 of just that piece. */
12483
12484 static struct dwarf2_section_info
12485 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12486 struct dwarf2_section_info *section,
12487 bfd_size_type offset, bfd_size_type size)
12488 {
12489 struct dwarf2_section_info result;
12490 asection *sectp;
12491
12492 gdb_assert (section != NULL);
12493 gdb_assert (!section->is_virtual);
12494
12495 memset (&result, 0, sizeof (result));
12496 result.s.containing_section = section;
12497 result.is_virtual = true;
12498
12499 if (size == 0)
12500 return result;
12501
12502 sectp = get_section_bfd_section (section);
12503
12504 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12505 bounds of the real section. This is a pretty-rare event, so just
12506 flag an error (easier) instead of a warning and trying to cope. */
12507 if (sectp == NULL
12508 || offset + size > bfd_get_section_size (sectp))
12509 {
12510 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12511 " in section %s [in module %s]"),
12512 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12513 objfile_name (dwarf2_per_objfile->objfile));
12514 }
12515
12516 result.virtual_offset = offset;
12517 result.size = size;
12518 return result;
12519 }
12520
12521 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12522 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12523 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12524 This is for DWP version 2 files. */
12525
12526 static struct dwo_unit *
12527 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12528 struct dwp_file *dwp_file,
12529 uint32_t unit_index,
12530 const char *comp_dir,
12531 ULONGEST signature, int is_debug_types)
12532 {
12533 struct objfile *objfile = dwarf2_per_objfile->objfile;
12534 const struct dwp_hash_table *dwp_htab =
12535 is_debug_types ? dwp_file->tus : dwp_file->cus;
12536 bfd *dbfd = dwp_file->dbfd.get ();
12537 const char *kind = is_debug_types ? "TU" : "CU";
12538 struct dwo_file *dwo_file;
12539 struct dwo_unit *dwo_unit;
12540 struct virtual_v2_dwo_sections sections;
12541 void **dwo_file_slot;
12542 int i;
12543
12544 gdb_assert (dwp_file->version == 2);
12545
12546 if (dwarf_read_debug)
12547 {
12548 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12549 kind,
12550 pulongest (unit_index), hex_string (signature),
12551 dwp_file->name);
12552 }
12553
12554 /* Fetch the section offsets of this DWO unit. */
12555
12556 memset (&sections, 0, sizeof (sections));
12557
12558 for (i = 0; i < dwp_htab->nr_columns; ++i)
12559 {
12560 uint32_t offset = read_4_bytes (dbfd,
12561 dwp_htab->section_pool.v2.offsets
12562 + (((unit_index - 1) * dwp_htab->nr_columns
12563 + i)
12564 * sizeof (uint32_t)));
12565 uint32_t size = read_4_bytes (dbfd,
12566 dwp_htab->section_pool.v2.sizes
12567 + (((unit_index - 1) * dwp_htab->nr_columns
12568 + i)
12569 * sizeof (uint32_t)));
12570
12571 switch (dwp_htab->section_pool.v2.section_ids[i])
12572 {
12573 case DW_SECT_INFO:
12574 case DW_SECT_TYPES:
12575 sections.info_or_types_offset = offset;
12576 sections.info_or_types_size = size;
12577 break;
12578 case DW_SECT_ABBREV:
12579 sections.abbrev_offset = offset;
12580 sections.abbrev_size = size;
12581 break;
12582 case DW_SECT_LINE:
12583 sections.line_offset = offset;
12584 sections.line_size = size;
12585 break;
12586 case DW_SECT_LOC:
12587 sections.loc_offset = offset;
12588 sections.loc_size = size;
12589 break;
12590 case DW_SECT_STR_OFFSETS:
12591 sections.str_offsets_offset = offset;
12592 sections.str_offsets_size = size;
12593 break;
12594 case DW_SECT_MACINFO:
12595 sections.macinfo_offset = offset;
12596 sections.macinfo_size = size;
12597 break;
12598 case DW_SECT_MACRO:
12599 sections.macro_offset = offset;
12600 sections.macro_size = size;
12601 break;
12602 }
12603 }
12604
12605 /* It's easier for the rest of the code if we fake a struct dwo_file and
12606 have dwo_unit "live" in that. At least for now.
12607
12608 The DWP file can be made up of a random collection of CUs and TUs.
12609 However, for each CU + set of TUs that came from the same original DWO
12610 file, we can combine them back into a virtual DWO file to save space
12611 (fewer struct dwo_file objects to allocate). Remember that for really
12612 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12613
12614 std::string virtual_dwo_name =
12615 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12616 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12617 (long) (sections.line_size ? sections.line_offset : 0),
12618 (long) (sections.loc_size ? sections.loc_offset : 0),
12619 (long) (sections.str_offsets_size
12620 ? sections.str_offsets_offset : 0));
12621 /* Can we use an existing virtual DWO file? */
12622 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12623 virtual_dwo_name.c_str (),
12624 comp_dir);
12625 /* Create one if necessary. */
12626 if (*dwo_file_slot == NULL)
12627 {
12628 if (dwarf_read_debug)
12629 {
12630 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12631 virtual_dwo_name.c_str ());
12632 }
12633 dwo_file = new struct dwo_file;
12634 dwo_file->dwo_name
12635 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12636 virtual_dwo_name.c_str (),
12637 virtual_dwo_name.size ());
12638 dwo_file->comp_dir = comp_dir;
12639 dwo_file->sections.abbrev =
12640 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12641 sections.abbrev_offset, sections.abbrev_size);
12642 dwo_file->sections.line =
12643 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12644 sections.line_offset, sections.line_size);
12645 dwo_file->sections.loc =
12646 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12647 sections.loc_offset, sections.loc_size);
12648 dwo_file->sections.macinfo =
12649 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12650 sections.macinfo_offset, sections.macinfo_size);
12651 dwo_file->sections.macro =
12652 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12653 sections.macro_offset, sections.macro_size);
12654 dwo_file->sections.str_offsets =
12655 create_dwp_v2_section (dwarf2_per_objfile,
12656 &dwp_file->sections.str_offsets,
12657 sections.str_offsets_offset,
12658 sections.str_offsets_size);
12659 /* The "str" section is global to the entire DWP file. */
12660 dwo_file->sections.str = dwp_file->sections.str;
12661 /* The info or types section is assigned below to dwo_unit,
12662 there's no need to record it in dwo_file.
12663 Also, we can't simply record type sections in dwo_file because
12664 we record a pointer into the vector in dwo_unit. As we collect more
12665 types we'll grow the vector and eventually have to reallocate space
12666 for it, invalidating all copies of pointers into the previous
12667 contents. */
12668 *dwo_file_slot = dwo_file;
12669 }
12670 else
12671 {
12672 if (dwarf_read_debug)
12673 {
12674 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12675 virtual_dwo_name.c_str ());
12676 }
12677 dwo_file = (struct dwo_file *) *dwo_file_slot;
12678 }
12679
12680 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12681 dwo_unit->dwo_file = dwo_file;
12682 dwo_unit->signature = signature;
12683 dwo_unit->section =
12684 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12685 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12686 is_debug_types
12687 ? &dwp_file->sections.types
12688 : &dwp_file->sections.info,
12689 sections.info_or_types_offset,
12690 sections.info_or_types_size);
12691 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12692
12693 return dwo_unit;
12694 }
12695
12696 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12697 Returns NULL if the signature isn't found. */
12698
12699 static struct dwo_unit *
12700 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12701 struct dwp_file *dwp_file, const char *comp_dir,
12702 ULONGEST signature, int is_debug_types)
12703 {
12704 const struct dwp_hash_table *dwp_htab =
12705 is_debug_types ? dwp_file->tus : dwp_file->cus;
12706 bfd *dbfd = dwp_file->dbfd.get ();
12707 uint32_t mask = dwp_htab->nr_slots - 1;
12708 uint32_t hash = signature & mask;
12709 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12710 unsigned int i;
12711 void **slot;
12712 struct dwo_unit find_dwo_cu;
12713
12714 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12715 find_dwo_cu.signature = signature;
12716 slot = htab_find_slot (is_debug_types
12717 ? dwp_file->loaded_tus
12718 : dwp_file->loaded_cus,
12719 &find_dwo_cu, INSERT);
12720
12721 if (*slot != NULL)
12722 return (struct dwo_unit *) *slot;
12723
12724 /* Use a for loop so that we don't loop forever on bad debug info. */
12725 for (i = 0; i < dwp_htab->nr_slots; ++i)
12726 {
12727 ULONGEST signature_in_table;
12728
12729 signature_in_table =
12730 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12731 if (signature_in_table == signature)
12732 {
12733 uint32_t unit_index =
12734 read_4_bytes (dbfd,
12735 dwp_htab->unit_table + hash * sizeof (uint32_t));
12736
12737 if (dwp_file->version == 1)
12738 {
12739 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12740 dwp_file, unit_index,
12741 comp_dir, signature,
12742 is_debug_types);
12743 }
12744 else
12745 {
12746 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12747 dwp_file, unit_index,
12748 comp_dir, signature,
12749 is_debug_types);
12750 }
12751 return (struct dwo_unit *) *slot;
12752 }
12753 if (signature_in_table == 0)
12754 return NULL;
12755 hash = (hash + hash2) & mask;
12756 }
12757
12758 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12759 " [in module %s]"),
12760 dwp_file->name);
12761 }
12762
12763 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12764 Open the file specified by FILE_NAME and hand it off to BFD for
12765 preliminary analysis. Return a newly initialized bfd *, which
12766 includes a canonicalized copy of FILE_NAME.
12767 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12768 SEARCH_CWD is true if the current directory is to be searched.
12769 It will be searched before debug-file-directory.
12770 If successful, the file is added to the bfd include table of the
12771 objfile's bfd (see gdb_bfd_record_inclusion).
12772 If unable to find/open the file, return NULL.
12773 NOTE: This function is derived from symfile_bfd_open. */
12774
12775 static gdb_bfd_ref_ptr
12776 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12777 const char *file_name, int is_dwp, int search_cwd)
12778 {
12779 int desc;
12780 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12781 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12782 to debug_file_directory. */
12783 const char *search_path;
12784 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12785
12786 gdb::unique_xmalloc_ptr<char> search_path_holder;
12787 if (search_cwd)
12788 {
12789 if (*debug_file_directory != '\0')
12790 {
12791 search_path_holder.reset (concat (".", dirname_separator_string,
12792 debug_file_directory,
12793 (char *) NULL));
12794 search_path = search_path_holder.get ();
12795 }
12796 else
12797 search_path = ".";
12798 }
12799 else
12800 search_path = debug_file_directory;
12801
12802 openp_flags flags = OPF_RETURN_REALPATH;
12803 if (is_dwp)
12804 flags |= OPF_SEARCH_IN_PATH;
12805
12806 gdb::unique_xmalloc_ptr<char> absolute_name;
12807 desc = openp (search_path, flags, file_name,
12808 O_RDONLY | O_BINARY, &absolute_name);
12809 if (desc < 0)
12810 return NULL;
12811
12812 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12813 gnutarget, desc));
12814 if (sym_bfd == NULL)
12815 return NULL;
12816 bfd_set_cacheable (sym_bfd.get (), 1);
12817
12818 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12819 return NULL;
12820
12821 /* Success. Record the bfd as having been included by the objfile's bfd.
12822 This is important because things like demangled_names_hash lives in the
12823 objfile's per_bfd space and may have references to things like symbol
12824 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12825 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12826
12827 return sym_bfd;
12828 }
12829
12830 /* Try to open DWO file FILE_NAME.
12831 COMP_DIR is the DW_AT_comp_dir attribute.
12832 The result is the bfd handle of the file.
12833 If there is a problem finding or opening the file, return NULL.
12834 Upon success, the canonicalized path of the file is stored in the bfd,
12835 same as symfile_bfd_open. */
12836
12837 static gdb_bfd_ref_ptr
12838 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12839 const char *file_name, const char *comp_dir)
12840 {
12841 if (IS_ABSOLUTE_PATH (file_name))
12842 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12843 0 /*is_dwp*/, 0 /*search_cwd*/);
12844
12845 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12846
12847 if (comp_dir != NULL)
12848 {
12849 char *path_to_try = concat (comp_dir, SLASH_STRING,
12850 file_name, (char *) NULL);
12851
12852 /* NOTE: If comp_dir is a relative path, this will also try the
12853 search path, which seems useful. */
12854 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12855 path_to_try,
12856 0 /*is_dwp*/,
12857 1 /*search_cwd*/));
12858 xfree (path_to_try);
12859 if (abfd != NULL)
12860 return abfd;
12861 }
12862
12863 /* That didn't work, try debug-file-directory, which, despite its name,
12864 is a list of paths. */
12865
12866 if (*debug_file_directory == '\0')
12867 return NULL;
12868
12869 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12870 0 /*is_dwp*/, 1 /*search_cwd*/);
12871 }
12872
12873 /* This function is mapped across the sections and remembers the offset and
12874 size of each of the DWO debugging sections we are interested in. */
12875
12876 static void
12877 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12878 {
12879 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12880 const struct dwop_section_names *names = &dwop_section_names;
12881
12882 if (section_is_p (sectp->name, &names->abbrev_dwo))
12883 {
12884 dwo_sections->abbrev.s.section = sectp;
12885 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12886 }
12887 else if (section_is_p (sectp->name, &names->info_dwo))
12888 {
12889 dwo_sections->info.s.section = sectp;
12890 dwo_sections->info.size = bfd_get_section_size (sectp);
12891 }
12892 else if (section_is_p (sectp->name, &names->line_dwo))
12893 {
12894 dwo_sections->line.s.section = sectp;
12895 dwo_sections->line.size = bfd_get_section_size (sectp);
12896 }
12897 else if (section_is_p (sectp->name, &names->loc_dwo))
12898 {
12899 dwo_sections->loc.s.section = sectp;
12900 dwo_sections->loc.size = bfd_get_section_size (sectp);
12901 }
12902 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12903 {
12904 dwo_sections->macinfo.s.section = sectp;
12905 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12906 }
12907 else if (section_is_p (sectp->name, &names->macro_dwo))
12908 {
12909 dwo_sections->macro.s.section = sectp;
12910 dwo_sections->macro.size = bfd_get_section_size (sectp);
12911 }
12912 else if (section_is_p (sectp->name, &names->str_dwo))
12913 {
12914 dwo_sections->str.s.section = sectp;
12915 dwo_sections->str.size = bfd_get_section_size (sectp);
12916 }
12917 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12918 {
12919 dwo_sections->str_offsets.s.section = sectp;
12920 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12921 }
12922 else if (section_is_p (sectp->name, &names->types_dwo))
12923 {
12924 struct dwarf2_section_info type_section;
12925
12926 memset (&type_section, 0, sizeof (type_section));
12927 type_section.s.section = sectp;
12928 type_section.size = bfd_get_section_size (sectp);
12929 dwo_sections->types.push_back (type_section);
12930 }
12931 }
12932
12933 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12934 by PER_CU. This is for the non-DWP case.
12935 The result is NULL if DWO_NAME can't be found. */
12936
12937 static struct dwo_file *
12938 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12939 const char *dwo_name, const char *comp_dir)
12940 {
12941 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12942
12943 gdb_bfd_ref_ptr dbfd = open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir);
12944 if (dbfd == NULL)
12945 {
12946 if (dwarf_read_debug)
12947 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12948 return NULL;
12949 }
12950
12951 dwo_file_up dwo_file (new struct dwo_file);
12952 dwo_file->dwo_name = dwo_name;
12953 dwo_file->comp_dir = comp_dir;
12954 dwo_file->dbfd = std::move (dbfd);
12955
12956 bfd_map_over_sections (dwo_file->dbfd.get (), dwarf2_locate_dwo_sections,
12957 &dwo_file->sections);
12958
12959 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
12960 dwo_file->cus);
12961
12962 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12963 dwo_file->sections.types, dwo_file->tus);
12964
12965 if (dwarf_read_debug)
12966 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12967
12968 return dwo_file.release ();
12969 }
12970
12971 /* This function is mapped across the sections and remembers the offset and
12972 size of each of the DWP debugging sections common to version 1 and 2 that
12973 we are interested in. */
12974
12975 static void
12976 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12977 void *dwp_file_ptr)
12978 {
12979 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12980 const struct dwop_section_names *names = &dwop_section_names;
12981 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12982
12983 /* Record the ELF section number for later lookup: this is what the
12984 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12985 gdb_assert (elf_section_nr < dwp_file->num_sections);
12986 dwp_file->elf_sections[elf_section_nr] = sectp;
12987
12988 /* Look for specific sections that we need. */
12989 if (section_is_p (sectp->name, &names->str_dwo))
12990 {
12991 dwp_file->sections.str.s.section = sectp;
12992 dwp_file->sections.str.size = bfd_get_section_size (sectp);
12993 }
12994 else if (section_is_p (sectp->name, &names->cu_index))
12995 {
12996 dwp_file->sections.cu_index.s.section = sectp;
12997 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
12998 }
12999 else if (section_is_p (sectp->name, &names->tu_index))
13000 {
13001 dwp_file->sections.tu_index.s.section = sectp;
13002 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
13003 }
13004 }
13005
13006 /* This function is mapped across the sections and remembers the offset and
13007 size of each of the DWP version 2 debugging sections that we are interested
13008 in. This is split into a separate function because we don't know if we
13009 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13010
13011 static void
13012 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13013 {
13014 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13015 const struct dwop_section_names *names = &dwop_section_names;
13016 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13017
13018 /* Record the ELF section number for later lookup: this is what the
13019 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13020 gdb_assert (elf_section_nr < dwp_file->num_sections);
13021 dwp_file->elf_sections[elf_section_nr] = sectp;
13022
13023 /* Look for specific sections that we need. */
13024 if (section_is_p (sectp->name, &names->abbrev_dwo))
13025 {
13026 dwp_file->sections.abbrev.s.section = sectp;
13027 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
13028 }
13029 else if (section_is_p (sectp->name, &names->info_dwo))
13030 {
13031 dwp_file->sections.info.s.section = sectp;
13032 dwp_file->sections.info.size = bfd_get_section_size (sectp);
13033 }
13034 else if (section_is_p (sectp->name, &names->line_dwo))
13035 {
13036 dwp_file->sections.line.s.section = sectp;
13037 dwp_file->sections.line.size = bfd_get_section_size (sectp);
13038 }
13039 else if (section_is_p (sectp->name, &names->loc_dwo))
13040 {
13041 dwp_file->sections.loc.s.section = sectp;
13042 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
13043 }
13044 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13045 {
13046 dwp_file->sections.macinfo.s.section = sectp;
13047 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13048 }
13049 else if (section_is_p (sectp->name, &names->macro_dwo))
13050 {
13051 dwp_file->sections.macro.s.section = sectp;
13052 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13053 }
13054 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13055 {
13056 dwp_file->sections.str_offsets.s.section = sectp;
13057 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13058 }
13059 else if (section_is_p (sectp->name, &names->types_dwo))
13060 {
13061 dwp_file->sections.types.s.section = sectp;
13062 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13063 }
13064 }
13065
13066 /* Hash function for dwp_file loaded CUs/TUs. */
13067
13068 static hashval_t
13069 hash_dwp_loaded_cutus (const void *item)
13070 {
13071 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13072
13073 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13074 return dwo_unit->signature;
13075 }
13076
13077 /* Equality function for dwp_file loaded CUs/TUs. */
13078
13079 static int
13080 eq_dwp_loaded_cutus (const void *a, const void *b)
13081 {
13082 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13083 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13084
13085 return dua->signature == dub->signature;
13086 }
13087
13088 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13089
13090 static htab_t
13091 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13092 {
13093 return htab_create_alloc_ex (3,
13094 hash_dwp_loaded_cutus,
13095 eq_dwp_loaded_cutus,
13096 NULL,
13097 &objfile->objfile_obstack,
13098 hashtab_obstack_allocate,
13099 dummy_obstack_deallocate);
13100 }
13101
13102 /* Try to open DWP file FILE_NAME.
13103 The result is the bfd handle of the file.
13104 If there is a problem finding or opening the file, return NULL.
13105 Upon success, the canonicalized path of the file is stored in the bfd,
13106 same as symfile_bfd_open. */
13107
13108 static gdb_bfd_ref_ptr
13109 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13110 const char *file_name)
13111 {
13112 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13113 1 /*is_dwp*/,
13114 1 /*search_cwd*/));
13115 if (abfd != NULL)
13116 return abfd;
13117
13118 /* Work around upstream bug 15652.
13119 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13120 [Whether that's a "bug" is debatable, but it is getting in our way.]
13121 We have no real idea where the dwp file is, because gdb's realpath-ing
13122 of the executable's path may have discarded the needed info.
13123 [IWBN if the dwp file name was recorded in the executable, akin to
13124 .gnu_debuglink, but that doesn't exist yet.]
13125 Strip the directory from FILE_NAME and search again. */
13126 if (*debug_file_directory != '\0')
13127 {
13128 /* Don't implicitly search the current directory here.
13129 If the user wants to search "." to handle this case,
13130 it must be added to debug-file-directory. */
13131 return try_open_dwop_file (dwarf2_per_objfile,
13132 lbasename (file_name), 1 /*is_dwp*/,
13133 0 /*search_cwd*/);
13134 }
13135
13136 return NULL;
13137 }
13138
13139 /* Initialize the use of the DWP file for the current objfile.
13140 By convention the name of the DWP file is ${objfile}.dwp.
13141 The result is NULL if it can't be found. */
13142
13143 static std::unique_ptr<struct dwp_file>
13144 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13145 {
13146 struct objfile *objfile = dwarf2_per_objfile->objfile;
13147
13148 /* Try to find first .dwp for the binary file before any symbolic links
13149 resolving. */
13150
13151 /* If the objfile is a debug file, find the name of the real binary
13152 file and get the name of dwp file from there. */
13153 std::string dwp_name;
13154 if (objfile->separate_debug_objfile_backlink != NULL)
13155 {
13156 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13157 const char *backlink_basename = lbasename (backlink->original_name);
13158
13159 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13160 }
13161 else
13162 dwp_name = objfile->original_name;
13163
13164 dwp_name += ".dwp";
13165
13166 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13167 if (dbfd == NULL
13168 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13169 {
13170 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13171 dwp_name = objfile_name (objfile);
13172 dwp_name += ".dwp";
13173 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13174 }
13175
13176 if (dbfd == NULL)
13177 {
13178 if (dwarf_read_debug)
13179 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13180 return std::unique_ptr<dwp_file> ();
13181 }
13182
13183 const char *name = bfd_get_filename (dbfd.get ());
13184 std::unique_ptr<struct dwp_file> dwp_file
13185 (new struct dwp_file (name, std::move (dbfd)));
13186
13187 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
13188 dwp_file->elf_sections =
13189 OBSTACK_CALLOC (&objfile->objfile_obstack,
13190 dwp_file->num_sections, asection *);
13191
13192 bfd_map_over_sections (dwp_file->dbfd.get (),
13193 dwarf2_locate_common_dwp_sections,
13194 dwp_file.get ());
13195
13196 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13197 0);
13198
13199 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13200 1);
13201
13202 /* The DWP file version is stored in the hash table. Oh well. */
13203 if (dwp_file->cus && dwp_file->tus
13204 && dwp_file->cus->version != dwp_file->tus->version)
13205 {
13206 /* Technically speaking, we should try to limp along, but this is
13207 pretty bizarre. We use pulongest here because that's the established
13208 portability solution (e.g, we cannot use %u for uint32_t). */
13209 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13210 " TU version %s [in DWP file %s]"),
13211 pulongest (dwp_file->cus->version),
13212 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13213 }
13214
13215 if (dwp_file->cus)
13216 dwp_file->version = dwp_file->cus->version;
13217 else if (dwp_file->tus)
13218 dwp_file->version = dwp_file->tus->version;
13219 else
13220 dwp_file->version = 2;
13221
13222 if (dwp_file->version == 2)
13223 bfd_map_over_sections (dwp_file->dbfd.get (),
13224 dwarf2_locate_v2_dwp_sections,
13225 dwp_file.get ());
13226
13227 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13228 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13229
13230 if (dwarf_read_debug)
13231 {
13232 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13233 fprintf_unfiltered (gdb_stdlog,
13234 " %s CUs, %s TUs\n",
13235 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13236 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13237 }
13238
13239 return dwp_file;
13240 }
13241
13242 /* Wrapper around open_and_init_dwp_file, only open it once. */
13243
13244 static struct dwp_file *
13245 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13246 {
13247 if (! dwarf2_per_objfile->dwp_checked)
13248 {
13249 dwarf2_per_objfile->dwp_file
13250 = open_and_init_dwp_file (dwarf2_per_objfile);
13251 dwarf2_per_objfile->dwp_checked = 1;
13252 }
13253 return dwarf2_per_objfile->dwp_file.get ();
13254 }
13255
13256 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13257 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13258 or in the DWP file for the objfile, referenced by THIS_UNIT.
13259 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13260 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13261
13262 This is called, for example, when wanting to read a variable with a
13263 complex location. Therefore we don't want to do file i/o for every call.
13264 Therefore we don't want to look for a DWO file on every call.
13265 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13266 then we check if we've already seen DWO_NAME, and only THEN do we check
13267 for a DWO file.
13268
13269 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13270 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13271
13272 static struct dwo_unit *
13273 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13274 const char *dwo_name, const char *comp_dir,
13275 ULONGEST signature, int is_debug_types)
13276 {
13277 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13278 struct objfile *objfile = dwarf2_per_objfile->objfile;
13279 const char *kind = is_debug_types ? "TU" : "CU";
13280 void **dwo_file_slot;
13281 struct dwo_file *dwo_file;
13282 struct dwp_file *dwp_file;
13283
13284 /* First see if there's a DWP file.
13285 If we have a DWP file but didn't find the DWO inside it, don't
13286 look for the original DWO file. It makes gdb behave differently
13287 depending on whether one is debugging in the build tree. */
13288
13289 dwp_file = get_dwp_file (dwarf2_per_objfile);
13290 if (dwp_file != NULL)
13291 {
13292 const struct dwp_hash_table *dwp_htab =
13293 is_debug_types ? dwp_file->tus : dwp_file->cus;
13294
13295 if (dwp_htab != NULL)
13296 {
13297 struct dwo_unit *dwo_cutu =
13298 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13299 signature, is_debug_types);
13300
13301 if (dwo_cutu != NULL)
13302 {
13303 if (dwarf_read_debug)
13304 {
13305 fprintf_unfiltered (gdb_stdlog,
13306 "Virtual DWO %s %s found: @%s\n",
13307 kind, hex_string (signature),
13308 host_address_to_string (dwo_cutu));
13309 }
13310 return dwo_cutu;
13311 }
13312 }
13313 }
13314 else
13315 {
13316 /* No DWP file, look for the DWO file. */
13317
13318 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13319 dwo_name, comp_dir);
13320 if (*dwo_file_slot == NULL)
13321 {
13322 /* Read in the file and build a table of the CUs/TUs it contains. */
13323 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13324 }
13325 /* NOTE: This will be NULL if unable to open the file. */
13326 dwo_file = (struct dwo_file *) *dwo_file_slot;
13327
13328 if (dwo_file != NULL)
13329 {
13330 struct dwo_unit *dwo_cutu = NULL;
13331
13332 if (is_debug_types && dwo_file->tus)
13333 {
13334 struct dwo_unit find_dwo_cutu;
13335
13336 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13337 find_dwo_cutu.signature = signature;
13338 dwo_cutu
13339 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13340 }
13341 else if (!is_debug_types && dwo_file->cus)
13342 {
13343 struct dwo_unit find_dwo_cutu;
13344
13345 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13346 find_dwo_cutu.signature = signature;
13347 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13348 &find_dwo_cutu);
13349 }
13350
13351 if (dwo_cutu != NULL)
13352 {
13353 if (dwarf_read_debug)
13354 {
13355 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13356 kind, dwo_name, hex_string (signature),
13357 host_address_to_string (dwo_cutu));
13358 }
13359 return dwo_cutu;
13360 }
13361 }
13362 }
13363
13364 /* We didn't find it. This could mean a dwo_id mismatch, or
13365 someone deleted the DWO/DWP file, or the search path isn't set up
13366 correctly to find the file. */
13367
13368 if (dwarf_read_debug)
13369 {
13370 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13371 kind, dwo_name, hex_string (signature));
13372 }
13373
13374 /* This is a warning and not a complaint because it can be caused by
13375 pilot error (e.g., user accidentally deleting the DWO). */
13376 {
13377 /* Print the name of the DWP file if we looked there, helps the user
13378 better diagnose the problem. */
13379 std::string dwp_text;
13380
13381 if (dwp_file != NULL)
13382 dwp_text = string_printf (" [in DWP file %s]",
13383 lbasename (dwp_file->name));
13384
13385 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13386 " [in module %s]"),
13387 kind, dwo_name, hex_string (signature),
13388 dwp_text.c_str (),
13389 this_unit->is_debug_types ? "TU" : "CU",
13390 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13391 }
13392 return NULL;
13393 }
13394
13395 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13396 See lookup_dwo_cutu_unit for details. */
13397
13398 static struct dwo_unit *
13399 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13400 const char *dwo_name, const char *comp_dir,
13401 ULONGEST signature)
13402 {
13403 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13404 }
13405
13406 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13407 See lookup_dwo_cutu_unit for details. */
13408
13409 static struct dwo_unit *
13410 lookup_dwo_type_unit (struct signatured_type *this_tu,
13411 const char *dwo_name, const char *comp_dir)
13412 {
13413 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13414 }
13415
13416 /* Traversal function for queue_and_load_all_dwo_tus. */
13417
13418 static int
13419 queue_and_load_dwo_tu (void **slot, void *info)
13420 {
13421 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13422 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13423 ULONGEST signature = dwo_unit->signature;
13424 struct signatured_type *sig_type =
13425 lookup_dwo_signatured_type (per_cu->cu, signature);
13426
13427 if (sig_type != NULL)
13428 {
13429 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13430
13431 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13432 a real dependency of PER_CU on SIG_TYPE. That is detected later
13433 while processing PER_CU. */
13434 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13435 load_full_type_unit (sig_cu);
13436 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13437 }
13438
13439 return 1;
13440 }
13441
13442 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13443 The DWO may have the only definition of the type, though it may not be
13444 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13445 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13446
13447 static void
13448 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13449 {
13450 struct dwo_unit *dwo_unit;
13451 struct dwo_file *dwo_file;
13452
13453 gdb_assert (!per_cu->is_debug_types);
13454 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13455 gdb_assert (per_cu->cu != NULL);
13456
13457 dwo_unit = per_cu->cu->dwo_unit;
13458 gdb_assert (dwo_unit != NULL);
13459
13460 dwo_file = dwo_unit->dwo_file;
13461 if (dwo_file->tus != NULL)
13462 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13463 }
13464
13465 /* Read in various DIEs. */
13466
13467 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13468 Inherit only the children of the DW_AT_abstract_origin DIE not being
13469 already referenced by DW_AT_abstract_origin from the children of the
13470 current DIE. */
13471
13472 static void
13473 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13474 {
13475 struct die_info *child_die;
13476 sect_offset *offsetp;
13477 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13478 struct die_info *origin_die;
13479 /* Iterator of the ORIGIN_DIE children. */
13480 struct die_info *origin_child_die;
13481 struct attribute *attr;
13482 struct dwarf2_cu *origin_cu;
13483 struct pending **origin_previous_list_in_scope;
13484
13485 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13486 if (!attr)
13487 return;
13488
13489 /* Note that following die references may follow to a die in a
13490 different cu. */
13491
13492 origin_cu = cu;
13493 origin_die = follow_die_ref (die, attr, &origin_cu);
13494
13495 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13496 symbols in. */
13497 origin_previous_list_in_scope = origin_cu->list_in_scope;
13498 origin_cu->list_in_scope = cu->list_in_scope;
13499
13500 if (die->tag != origin_die->tag
13501 && !(die->tag == DW_TAG_inlined_subroutine
13502 && origin_die->tag == DW_TAG_subprogram))
13503 complaint (_("DIE %s and its abstract origin %s have different tags"),
13504 sect_offset_str (die->sect_off),
13505 sect_offset_str (origin_die->sect_off));
13506
13507 std::vector<sect_offset> offsets;
13508
13509 for (child_die = die->child;
13510 child_die && child_die->tag;
13511 child_die = sibling_die (child_die))
13512 {
13513 struct die_info *child_origin_die;
13514 struct dwarf2_cu *child_origin_cu;
13515
13516 /* We are trying to process concrete instance entries:
13517 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13518 it's not relevant to our analysis here. i.e. detecting DIEs that are
13519 present in the abstract instance but not referenced in the concrete
13520 one. */
13521 if (child_die->tag == DW_TAG_call_site
13522 || child_die->tag == DW_TAG_GNU_call_site)
13523 continue;
13524
13525 /* For each CHILD_DIE, find the corresponding child of
13526 ORIGIN_DIE. If there is more than one layer of
13527 DW_AT_abstract_origin, follow them all; there shouldn't be,
13528 but GCC versions at least through 4.4 generate this (GCC PR
13529 40573). */
13530 child_origin_die = child_die;
13531 child_origin_cu = cu;
13532 while (1)
13533 {
13534 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13535 child_origin_cu);
13536 if (attr == NULL)
13537 break;
13538 child_origin_die = follow_die_ref (child_origin_die, attr,
13539 &child_origin_cu);
13540 }
13541
13542 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13543 counterpart may exist. */
13544 if (child_origin_die != child_die)
13545 {
13546 if (child_die->tag != child_origin_die->tag
13547 && !(child_die->tag == DW_TAG_inlined_subroutine
13548 && child_origin_die->tag == DW_TAG_subprogram))
13549 complaint (_("Child DIE %s and its abstract origin %s have "
13550 "different tags"),
13551 sect_offset_str (child_die->sect_off),
13552 sect_offset_str (child_origin_die->sect_off));
13553 if (child_origin_die->parent != origin_die)
13554 complaint (_("Child DIE %s and its abstract origin %s have "
13555 "different parents"),
13556 sect_offset_str (child_die->sect_off),
13557 sect_offset_str (child_origin_die->sect_off));
13558 else
13559 offsets.push_back (child_origin_die->sect_off);
13560 }
13561 }
13562 std::sort (offsets.begin (), offsets.end ());
13563 sect_offset *offsets_end = offsets.data () + offsets.size ();
13564 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13565 if (offsetp[-1] == *offsetp)
13566 complaint (_("Multiple children of DIE %s refer "
13567 "to DIE %s as their abstract origin"),
13568 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13569
13570 offsetp = offsets.data ();
13571 origin_child_die = origin_die->child;
13572 while (origin_child_die && origin_child_die->tag)
13573 {
13574 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13575 while (offsetp < offsets_end
13576 && *offsetp < origin_child_die->sect_off)
13577 offsetp++;
13578 if (offsetp >= offsets_end
13579 || *offsetp > origin_child_die->sect_off)
13580 {
13581 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13582 Check whether we're already processing ORIGIN_CHILD_DIE.
13583 This can happen with mutually referenced abstract_origins.
13584 PR 16581. */
13585 if (!origin_child_die->in_process)
13586 process_die (origin_child_die, origin_cu);
13587 }
13588 origin_child_die = sibling_die (origin_child_die);
13589 }
13590 origin_cu->list_in_scope = origin_previous_list_in_scope;
13591 }
13592
13593 static void
13594 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13595 {
13596 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13597 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13598 struct context_stack *newobj;
13599 CORE_ADDR lowpc;
13600 CORE_ADDR highpc;
13601 struct die_info *child_die;
13602 struct attribute *attr, *call_line, *call_file;
13603 const char *name;
13604 CORE_ADDR baseaddr;
13605 struct block *block;
13606 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13607 std::vector<struct symbol *> template_args;
13608 struct template_symbol *templ_func = NULL;
13609
13610 if (inlined_func)
13611 {
13612 /* If we do not have call site information, we can't show the
13613 caller of this inlined function. That's too confusing, so
13614 only use the scope for local variables. */
13615 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13616 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13617 if (call_line == NULL || call_file == NULL)
13618 {
13619 read_lexical_block_scope (die, cu);
13620 return;
13621 }
13622 }
13623
13624 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13625
13626 name = dwarf2_name (die, cu);
13627
13628 /* Ignore functions with missing or empty names. These are actually
13629 illegal according to the DWARF standard. */
13630 if (name == NULL)
13631 {
13632 complaint (_("missing name for subprogram DIE at %s"),
13633 sect_offset_str (die->sect_off));
13634 return;
13635 }
13636
13637 /* Ignore functions with missing or invalid low and high pc attributes. */
13638 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13639 <= PC_BOUNDS_INVALID)
13640 {
13641 attr = dwarf2_attr (die, DW_AT_external, cu);
13642 if (!attr || !DW_UNSND (attr))
13643 complaint (_("cannot get low and high bounds "
13644 "for subprogram DIE at %s"),
13645 sect_offset_str (die->sect_off));
13646 return;
13647 }
13648
13649 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13650 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13651
13652 /* If we have any template arguments, then we must allocate a
13653 different sort of symbol. */
13654 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13655 {
13656 if (child_die->tag == DW_TAG_template_type_param
13657 || child_die->tag == DW_TAG_template_value_param)
13658 {
13659 templ_func = allocate_template_symbol (objfile);
13660 templ_func->subclass = SYMBOL_TEMPLATE;
13661 break;
13662 }
13663 }
13664
13665 newobj = cu->get_builder ()->push_context (0, lowpc);
13666 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13667 (struct symbol *) templ_func);
13668
13669 if (dwarf2_flag_true_p (die, DW_AT_main_subprogram, cu))
13670 set_objfile_main_name (objfile, SYMBOL_LINKAGE_NAME (newobj->name),
13671 cu->language);
13672
13673 /* If there is a location expression for DW_AT_frame_base, record
13674 it. */
13675 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13676 if (attr)
13677 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13678
13679 /* If there is a location for the static link, record it. */
13680 newobj->static_link = NULL;
13681 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13682 if (attr)
13683 {
13684 newobj->static_link
13685 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13686 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13687 }
13688
13689 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
13690
13691 if (die->child != NULL)
13692 {
13693 child_die = die->child;
13694 while (child_die && child_die->tag)
13695 {
13696 if (child_die->tag == DW_TAG_template_type_param
13697 || child_die->tag == DW_TAG_template_value_param)
13698 {
13699 struct symbol *arg = new_symbol (child_die, NULL, cu);
13700
13701 if (arg != NULL)
13702 template_args.push_back (arg);
13703 }
13704 else
13705 process_die (child_die, cu);
13706 child_die = sibling_die (child_die);
13707 }
13708 }
13709
13710 inherit_abstract_dies (die, cu);
13711
13712 /* If we have a DW_AT_specification, we might need to import using
13713 directives from the context of the specification DIE. See the
13714 comment in determine_prefix. */
13715 if (cu->language == language_cplus
13716 && dwarf2_attr (die, DW_AT_specification, cu))
13717 {
13718 struct dwarf2_cu *spec_cu = cu;
13719 struct die_info *spec_die = die_specification (die, &spec_cu);
13720
13721 while (spec_die)
13722 {
13723 child_die = spec_die->child;
13724 while (child_die && child_die->tag)
13725 {
13726 if (child_die->tag == DW_TAG_imported_module)
13727 process_die (child_die, spec_cu);
13728 child_die = sibling_die (child_die);
13729 }
13730
13731 /* In some cases, GCC generates specification DIEs that
13732 themselves contain DW_AT_specification attributes. */
13733 spec_die = die_specification (spec_die, &spec_cu);
13734 }
13735 }
13736
13737 struct context_stack cstk = cu->get_builder ()->pop_context ();
13738 /* Make a block for the local symbols within. */
13739 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
13740 cstk.static_link, lowpc, highpc);
13741
13742 /* For C++, set the block's scope. */
13743 if ((cu->language == language_cplus
13744 || cu->language == language_fortran
13745 || cu->language == language_d
13746 || cu->language == language_rust)
13747 && cu->processing_has_namespace_info)
13748 block_set_scope (block, determine_prefix (die, cu),
13749 &objfile->objfile_obstack);
13750
13751 /* If we have address ranges, record them. */
13752 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13753
13754 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13755
13756 /* Attach template arguments to function. */
13757 if (!template_args.empty ())
13758 {
13759 gdb_assert (templ_func != NULL);
13760
13761 templ_func->n_template_arguments = template_args.size ();
13762 templ_func->template_arguments
13763 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13764 templ_func->n_template_arguments);
13765 memcpy (templ_func->template_arguments,
13766 template_args.data (),
13767 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13768
13769 /* Make sure that the symtab is set on the new symbols. Even
13770 though they don't appear in this symtab directly, other parts
13771 of gdb assume that symbols do, and this is reasonably
13772 true. */
13773 for (symbol *sym : template_args)
13774 symbol_set_symtab (sym, symbol_symtab (templ_func));
13775 }
13776
13777 /* In C++, we can have functions nested inside functions (e.g., when
13778 a function declares a class that has methods). This means that
13779 when we finish processing a function scope, we may need to go
13780 back to building a containing block's symbol lists. */
13781 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13782 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13783
13784 /* If we've finished processing a top-level function, subsequent
13785 symbols go in the file symbol list. */
13786 if (cu->get_builder ()->outermost_context_p ())
13787 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13788 }
13789
13790 /* Process all the DIES contained within a lexical block scope. Start
13791 a new scope, process the dies, and then close the scope. */
13792
13793 static void
13794 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13795 {
13796 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13797 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13798 CORE_ADDR lowpc, highpc;
13799 struct die_info *child_die;
13800 CORE_ADDR baseaddr;
13801
13802 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13803
13804 /* Ignore blocks with missing or invalid low and high pc attributes. */
13805 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13806 as multiple lexical blocks? Handling children in a sane way would
13807 be nasty. Might be easier to properly extend generic blocks to
13808 describe ranges. */
13809 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13810 {
13811 case PC_BOUNDS_NOT_PRESENT:
13812 /* DW_TAG_lexical_block has no attributes, process its children as if
13813 there was no wrapping by that DW_TAG_lexical_block.
13814 GCC does no longer produces such DWARF since GCC r224161. */
13815 for (child_die = die->child;
13816 child_die != NULL && child_die->tag;
13817 child_die = sibling_die (child_die))
13818 process_die (child_die, cu);
13819 return;
13820 case PC_BOUNDS_INVALID:
13821 return;
13822 }
13823 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13824 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13825
13826 cu->get_builder ()->push_context (0, lowpc);
13827 if (die->child != NULL)
13828 {
13829 child_die = die->child;
13830 while (child_die && child_die->tag)
13831 {
13832 process_die (child_die, cu);
13833 child_die = sibling_die (child_die);
13834 }
13835 }
13836 inherit_abstract_dies (die, cu);
13837 struct context_stack cstk = cu->get_builder ()->pop_context ();
13838
13839 if (*cu->get_builder ()->get_local_symbols () != NULL
13840 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13841 {
13842 struct block *block
13843 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13844 cstk.start_addr, highpc);
13845
13846 /* Note that recording ranges after traversing children, as we
13847 do here, means that recording a parent's ranges entails
13848 walking across all its children's ranges as they appear in
13849 the address map, which is quadratic behavior.
13850
13851 It would be nicer to record the parent's ranges before
13852 traversing its children, simply overriding whatever you find
13853 there. But since we don't even decide whether to create a
13854 block until after we've traversed its children, that's hard
13855 to do. */
13856 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13857 }
13858 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13859 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13860 }
13861
13862 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13863
13864 static void
13865 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13866 {
13867 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13868 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13869 CORE_ADDR pc, baseaddr;
13870 struct attribute *attr;
13871 struct call_site *call_site, call_site_local;
13872 void **slot;
13873 int nparams;
13874 struct die_info *child_die;
13875
13876 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13877
13878 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13879 if (attr == NULL)
13880 {
13881 /* This was a pre-DWARF-5 GNU extension alias
13882 for DW_AT_call_return_pc. */
13883 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13884 }
13885 if (!attr)
13886 {
13887 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13888 "DIE %s [in module %s]"),
13889 sect_offset_str (die->sect_off), objfile_name (objfile));
13890 return;
13891 }
13892 pc = attr_value_as_address (attr) + baseaddr;
13893 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13894
13895 if (cu->call_site_htab == NULL)
13896 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13897 NULL, &objfile->objfile_obstack,
13898 hashtab_obstack_allocate, NULL);
13899 call_site_local.pc = pc;
13900 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13901 if (*slot != NULL)
13902 {
13903 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13904 "DIE %s [in module %s]"),
13905 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13906 objfile_name (objfile));
13907 return;
13908 }
13909
13910 /* Count parameters at the caller. */
13911
13912 nparams = 0;
13913 for (child_die = die->child; child_die && child_die->tag;
13914 child_die = sibling_die (child_die))
13915 {
13916 if (child_die->tag != DW_TAG_call_site_parameter
13917 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13918 {
13919 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13920 "DW_TAG_call_site child DIE %s [in module %s]"),
13921 child_die->tag, sect_offset_str (child_die->sect_off),
13922 objfile_name (objfile));
13923 continue;
13924 }
13925
13926 nparams++;
13927 }
13928
13929 call_site
13930 = ((struct call_site *)
13931 obstack_alloc (&objfile->objfile_obstack,
13932 sizeof (*call_site)
13933 + (sizeof (*call_site->parameter) * (nparams - 1))));
13934 *slot = call_site;
13935 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13936 call_site->pc = pc;
13937
13938 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13939 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13940 {
13941 struct die_info *func_die;
13942
13943 /* Skip also over DW_TAG_inlined_subroutine. */
13944 for (func_die = die->parent;
13945 func_die && func_die->tag != DW_TAG_subprogram
13946 && func_die->tag != DW_TAG_subroutine_type;
13947 func_die = func_die->parent);
13948
13949 /* DW_AT_call_all_calls is a superset
13950 of DW_AT_call_all_tail_calls. */
13951 if (func_die
13952 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
13953 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
13954 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
13955 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13956 {
13957 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13958 not complete. But keep CALL_SITE for look ups via call_site_htab,
13959 both the initial caller containing the real return address PC and
13960 the final callee containing the current PC of a chain of tail
13961 calls do not need to have the tail call list complete. But any
13962 function candidate for a virtual tail call frame searched via
13963 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13964 determined unambiguously. */
13965 }
13966 else
13967 {
13968 struct type *func_type = NULL;
13969
13970 if (func_die)
13971 func_type = get_die_type (func_die, cu);
13972 if (func_type != NULL)
13973 {
13974 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
13975
13976 /* Enlist this call site to the function. */
13977 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13978 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13979 }
13980 else
13981 complaint (_("Cannot find function owning DW_TAG_call_site "
13982 "DIE %s [in module %s]"),
13983 sect_offset_str (die->sect_off), objfile_name (objfile));
13984 }
13985 }
13986
13987 attr = dwarf2_attr (die, DW_AT_call_target, cu);
13988 if (attr == NULL)
13989 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
13990 if (attr == NULL)
13991 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
13992 if (attr == NULL)
13993 {
13994 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
13995 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13996 }
13997 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
13998 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
13999 /* Keep NULL DWARF_BLOCK. */;
14000 else if (attr_form_is_block (attr))
14001 {
14002 struct dwarf2_locexpr_baton *dlbaton;
14003
14004 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14005 dlbaton->data = DW_BLOCK (attr)->data;
14006 dlbaton->size = DW_BLOCK (attr)->size;
14007 dlbaton->per_cu = cu->per_cu;
14008
14009 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14010 }
14011 else if (attr_form_is_ref (attr))
14012 {
14013 struct dwarf2_cu *target_cu = cu;
14014 struct die_info *target_die;
14015
14016 target_die = follow_die_ref (die, attr, &target_cu);
14017 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14018 if (die_is_declaration (target_die, target_cu))
14019 {
14020 const char *target_physname;
14021
14022 /* Prefer the mangled name; otherwise compute the demangled one. */
14023 target_physname = dw2_linkage_name (target_die, target_cu);
14024 if (target_physname == NULL)
14025 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14026 if (target_physname == NULL)
14027 complaint (_("DW_AT_call_target target DIE has invalid "
14028 "physname, for referencing DIE %s [in module %s]"),
14029 sect_offset_str (die->sect_off), objfile_name (objfile));
14030 else
14031 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14032 }
14033 else
14034 {
14035 CORE_ADDR lowpc;
14036
14037 /* DW_AT_entry_pc should be preferred. */
14038 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14039 <= PC_BOUNDS_INVALID)
14040 complaint (_("DW_AT_call_target target DIE has invalid "
14041 "low pc, for referencing DIE %s [in module %s]"),
14042 sect_offset_str (die->sect_off), objfile_name (objfile));
14043 else
14044 {
14045 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14046 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14047 }
14048 }
14049 }
14050 else
14051 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
14052 "block nor reference, for DIE %s [in module %s]"),
14053 sect_offset_str (die->sect_off), objfile_name (objfile));
14054
14055 call_site->per_cu = cu->per_cu;
14056
14057 for (child_die = die->child;
14058 child_die && child_die->tag;
14059 child_die = sibling_die (child_die))
14060 {
14061 struct call_site_parameter *parameter;
14062 struct attribute *loc, *origin;
14063
14064 if (child_die->tag != DW_TAG_call_site_parameter
14065 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14066 {
14067 /* Already printed the complaint above. */
14068 continue;
14069 }
14070
14071 gdb_assert (call_site->parameter_count < nparams);
14072 parameter = &call_site->parameter[call_site->parameter_count];
14073
14074 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14075 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14076 register is contained in DW_AT_call_value. */
14077
14078 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14079 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14080 if (origin == NULL)
14081 {
14082 /* This was a pre-DWARF-5 GNU extension alias
14083 for DW_AT_call_parameter. */
14084 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14085 }
14086 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14087 {
14088 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14089
14090 sect_offset sect_off
14091 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14092 if (!offset_in_cu_p (&cu->header, sect_off))
14093 {
14094 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14095 binding can be done only inside one CU. Such referenced DIE
14096 therefore cannot be even moved to DW_TAG_partial_unit. */
14097 complaint (_("DW_AT_call_parameter offset is not in CU for "
14098 "DW_TAG_call_site child DIE %s [in module %s]"),
14099 sect_offset_str (child_die->sect_off),
14100 objfile_name (objfile));
14101 continue;
14102 }
14103 parameter->u.param_cu_off
14104 = (cu_offset) (sect_off - cu->header.sect_off);
14105 }
14106 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14107 {
14108 complaint (_("No DW_FORM_block* DW_AT_location for "
14109 "DW_TAG_call_site child DIE %s [in module %s]"),
14110 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14111 continue;
14112 }
14113 else
14114 {
14115 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14116 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14117 if (parameter->u.dwarf_reg != -1)
14118 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14119 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14120 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14121 &parameter->u.fb_offset))
14122 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14123 else
14124 {
14125 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14126 "for DW_FORM_block* DW_AT_location is supported for "
14127 "DW_TAG_call_site child DIE %s "
14128 "[in module %s]"),
14129 sect_offset_str (child_die->sect_off),
14130 objfile_name (objfile));
14131 continue;
14132 }
14133 }
14134
14135 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14136 if (attr == NULL)
14137 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14138 if (!attr_form_is_block (attr))
14139 {
14140 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14141 "DW_TAG_call_site child DIE %s [in module %s]"),
14142 sect_offset_str (child_die->sect_off),
14143 objfile_name (objfile));
14144 continue;
14145 }
14146 parameter->value = DW_BLOCK (attr)->data;
14147 parameter->value_size = DW_BLOCK (attr)->size;
14148
14149 /* Parameters are not pre-cleared by memset above. */
14150 parameter->data_value = NULL;
14151 parameter->data_value_size = 0;
14152 call_site->parameter_count++;
14153
14154 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14155 if (attr == NULL)
14156 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14157 if (attr)
14158 {
14159 if (!attr_form_is_block (attr))
14160 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14161 "DW_TAG_call_site child DIE %s [in module %s]"),
14162 sect_offset_str (child_die->sect_off),
14163 objfile_name (objfile));
14164 else
14165 {
14166 parameter->data_value = DW_BLOCK (attr)->data;
14167 parameter->data_value_size = DW_BLOCK (attr)->size;
14168 }
14169 }
14170 }
14171 }
14172
14173 /* Helper function for read_variable. If DIE represents a virtual
14174 table, then return the type of the concrete object that is
14175 associated with the virtual table. Otherwise, return NULL. */
14176
14177 static struct type *
14178 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14179 {
14180 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14181 if (attr == NULL)
14182 return NULL;
14183
14184 /* Find the type DIE. */
14185 struct die_info *type_die = NULL;
14186 struct dwarf2_cu *type_cu = cu;
14187
14188 if (attr_form_is_ref (attr))
14189 type_die = follow_die_ref (die, attr, &type_cu);
14190 if (type_die == NULL)
14191 return NULL;
14192
14193 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14194 return NULL;
14195 return die_containing_type (type_die, type_cu);
14196 }
14197
14198 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14199
14200 static void
14201 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14202 {
14203 struct rust_vtable_symbol *storage = NULL;
14204
14205 if (cu->language == language_rust)
14206 {
14207 struct type *containing_type = rust_containing_type (die, cu);
14208
14209 if (containing_type != NULL)
14210 {
14211 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14212
14213 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14214 struct rust_vtable_symbol);
14215 initialize_objfile_symbol (storage);
14216 storage->concrete_type = containing_type;
14217 storage->subclass = SYMBOL_RUST_VTABLE;
14218 }
14219 }
14220
14221 struct symbol *res = new_symbol (die, NULL, cu, storage);
14222 struct attribute *abstract_origin
14223 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14224 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
14225 if (res == NULL && loc && abstract_origin)
14226 {
14227 /* We have a variable without a name, but with a location and an abstract
14228 origin. This may be a concrete instance of an abstract variable
14229 referenced from an DW_OP_GNU_variable_value, so save it to find it back
14230 later. */
14231 struct dwarf2_cu *origin_cu = cu;
14232 struct die_info *origin_die
14233 = follow_die_ref (die, abstract_origin, &origin_cu);
14234 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
14235 dpo->abstract_to_concrete[origin_die->sect_off].push_back (die->sect_off);
14236 }
14237 }
14238
14239 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14240 reading .debug_rnglists.
14241 Callback's type should be:
14242 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14243 Return true if the attributes are present and valid, otherwise,
14244 return false. */
14245
14246 template <typename Callback>
14247 static bool
14248 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14249 Callback &&callback)
14250 {
14251 struct dwarf2_per_objfile *dwarf2_per_objfile
14252 = cu->per_cu->dwarf2_per_objfile;
14253 struct objfile *objfile = dwarf2_per_objfile->objfile;
14254 bfd *obfd = objfile->obfd;
14255 /* Base address selection entry. */
14256 CORE_ADDR base;
14257 int found_base;
14258 const gdb_byte *buffer;
14259 CORE_ADDR baseaddr;
14260 bool overflow = false;
14261
14262 found_base = cu->base_known;
14263 base = cu->base_address;
14264
14265 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14266 if (offset >= dwarf2_per_objfile->rnglists.size)
14267 {
14268 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14269 offset);
14270 return false;
14271 }
14272 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14273
14274 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14275
14276 while (1)
14277 {
14278 /* Initialize it due to a false compiler warning. */
14279 CORE_ADDR range_beginning = 0, range_end = 0;
14280 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14281 + dwarf2_per_objfile->rnglists.size);
14282 unsigned int bytes_read;
14283
14284 if (buffer == buf_end)
14285 {
14286 overflow = true;
14287 break;
14288 }
14289 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14290 switch (rlet)
14291 {
14292 case DW_RLE_end_of_list:
14293 break;
14294 case DW_RLE_base_address:
14295 if (buffer + cu->header.addr_size > buf_end)
14296 {
14297 overflow = true;
14298 break;
14299 }
14300 base = read_address (obfd, buffer, cu, &bytes_read);
14301 found_base = 1;
14302 buffer += bytes_read;
14303 break;
14304 case DW_RLE_start_length:
14305 if (buffer + cu->header.addr_size > buf_end)
14306 {
14307 overflow = true;
14308 break;
14309 }
14310 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14311 buffer += bytes_read;
14312 range_end = (range_beginning
14313 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14314 buffer += bytes_read;
14315 if (buffer > buf_end)
14316 {
14317 overflow = true;
14318 break;
14319 }
14320 break;
14321 case DW_RLE_offset_pair:
14322 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14323 buffer += bytes_read;
14324 if (buffer > buf_end)
14325 {
14326 overflow = true;
14327 break;
14328 }
14329 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14330 buffer += bytes_read;
14331 if (buffer > buf_end)
14332 {
14333 overflow = true;
14334 break;
14335 }
14336 break;
14337 case DW_RLE_start_end:
14338 if (buffer + 2 * cu->header.addr_size > buf_end)
14339 {
14340 overflow = true;
14341 break;
14342 }
14343 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14344 buffer += bytes_read;
14345 range_end = read_address (obfd, buffer, cu, &bytes_read);
14346 buffer += bytes_read;
14347 break;
14348 default:
14349 complaint (_("Invalid .debug_rnglists data (no base address)"));
14350 return false;
14351 }
14352 if (rlet == DW_RLE_end_of_list || overflow)
14353 break;
14354 if (rlet == DW_RLE_base_address)
14355 continue;
14356
14357 if (!found_base)
14358 {
14359 /* We have no valid base address for the ranges
14360 data. */
14361 complaint (_("Invalid .debug_rnglists data (no base address)"));
14362 return false;
14363 }
14364
14365 if (range_beginning > range_end)
14366 {
14367 /* Inverted range entries are invalid. */
14368 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14369 return false;
14370 }
14371
14372 /* Empty range entries have no effect. */
14373 if (range_beginning == range_end)
14374 continue;
14375
14376 range_beginning += base;
14377 range_end += base;
14378
14379 /* A not-uncommon case of bad debug info.
14380 Don't pollute the addrmap with bad data. */
14381 if (range_beginning + baseaddr == 0
14382 && !dwarf2_per_objfile->has_section_at_zero)
14383 {
14384 complaint (_(".debug_rnglists entry has start address of zero"
14385 " [in module %s]"), objfile_name (objfile));
14386 continue;
14387 }
14388
14389 callback (range_beginning, range_end);
14390 }
14391
14392 if (overflow)
14393 {
14394 complaint (_("Offset %d is not terminated "
14395 "for DW_AT_ranges attribute"),
14396 offset);
14397 return false;
14398 }
14399
14400 return true;
14401 }
14402
14403 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14404 Callback's type should be:
14405 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14406 Return 1 if the attributes are present and valid, otherwise, return 0. */
14407
14408 template <typename Callback>
14409 static int
14410 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14411 Callback &&callback)
14412 {
14413 struct dwarf2_per_objfile *dwarf2_per_objfile
14414 = cu->per_cu->dwarf2_per_objfile;
14415 struct objfile *objfile = dwarf2_per_objfile->objfile;
14416 struct comp_unit_head *cu_header = &cu->header;
14417 bfd *obfd = objfile->obfd;
14418 unsigned int addr_size = cu_header->addr_size;
14419 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14420 /* Base address selection entry. */
14421 CORE_ADDR base;
14422 int found_base;
14423 unsigned int dummy;
14424 const gdb_byte *buffer;
14425 CORE_ADDR baseaddr;
14426
14427 if (cu_header->version >= 5)
14428 return dwarf2_rnglists_process (offset, cu, callback);
14429
14430 found_base = cu->base_known;
14431 base = cu->base_address;
14432
14433 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14434 if (offset >= dwarf2_per_objfile->ranges.size)
14435 {
14436 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14437 offset);
14438 return 0;
14439 }
14440 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14441
14442 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14443
14444 while (1)
14445 {
14446 CORE_ADDR range_beginning, range_end;
14447
14448 range_beginning = read_address (obfd, buffer, cu, &dummy);
14449 buffer += addr_size;
14450 range_end = read_address (obfd, buffer, cu, &dummy);
14451 buffer += addr_size;
14452 offset += 2 * addr_size;
14453
14454 /* An end of list marker is a pair of zero addresses. */
14455 if (range_beginning == 0 && range_end == 0)
14456 /* Found the end of list entry. */
14457 break;
14458
14459 /* Each base address selection entry is a pair of 2 values.
14460 The first is the largest possible address, the second is
14461 the base address. Check for a base address here. */
14462 if ((range_beginning & mask) == mask)
14463 {
14464 /* If we found the largest possible address, then we already
14465 have the base address in range_end. */
14466 base = range_end;
14467 found_base = 1;
14468 continue;
14469 }
14470
14471 if (!found_base)
14472 {
14473 /* We have no valid base address for the ranges
14474 data. */
14475 complaint (_("Invalid .debug_ranges data (no base address)"));
14476 return 0;
14477 }
14478
14479 if (range_beginning > range_end)
14480 {
14481 /* Inverted range entries are invalid. */
14482 complaint (_("Invalid .debug_ranges data (inverted range)"));
14483 return 0;
14484 }
14485
14486 /* Empty range entries have no effect. */
14487 if (range_beginning == range_end)
14488 continue;
14489
14490 range_beginning += base;
14491 range_end += base;
14492
14493 /* A not-uncommon case of bad debug info.
14494 Don't pollute the addrmap with bad data. */
14495 if (range_beginning + baseaddr == 0
14496 && !dwarf2_per_objfile->has_section_at_zero)
14497 {
14498 complaint (_(".debug_ranges entry has start address of zero"
14499 " [in module %s]"), objfile_name (objfile));
14500 continue;
14501 }
14502
14503 callback (range_beginning, range_end);
14504 }
14505
14506 return 1;
14507 }
14508
14509 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14510 Return 1 if the attributes are present and valid, otherwise, return 0.
14511 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14512
14513 static int
14514 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14515 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14516 struct partial_symtab *ranges_pst)
14517 {
14518 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14519 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14520 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14521 SECT_OFF_TEXT (objfile));
14522 int low_set = 0;
14523 CORE_ADDR low = 0;
14524 CORE_ADDR high = 0;
14525 int retval;
14526
14527 retval = dwarf2_ranges_process (offset, cu,
14528 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14529 {
14530 if (ranges_pst != NULL)
14531 {
14532 CORE_ADDR lowpc;
14533 CORE_ADDR highpc;
14534
14535 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14536 range_beginning + baseaddr)
14537 - baseaddr);
14538 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14539 range_end + baseaddr)
14540 - baseaddr);
14541 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
14542 lowpc, highpc - 1, ranges_pst);
14543 }
14544
14545 /* FIXME: This is recording everything as a low-high
14546 segment of consecutive addresses. We should have a
14547 data structure for discontiguous block ranges
14548 instead. */
14549 if (! low_set)
14550 {
14551 low = range_beginning;
14552 high = range_end;
14553 low_set = 1;
14554 }
14555 else
14556 {
14557 if (range_beginning < low)
14558 low = range_beginning;
14559 if (range_end > high)
14560 high = range_end;
14561 }
14562 });
14563 if (!retval)
14564 return 0;
14565
14566 if (! low_set)
14567 /* If the first entry is an end-of-list marker, the range
14568 describes an empty scope, i.e. no instructions. */
14569 return 0;
14570
14571 if (low_return)
14572 *low_return = low;
14573 if (high_return)
14574 *high_return = high;
14575 return 1;
14576 }
14577
14578 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14579 definition for the return value. *LOWPC and *HIGHPC are set iff
14580 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14581
14582 static enum pc_bounds_kind
14583 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14584 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14585 struct partial_symtab *pst)
14586 {
14587 struct dwarf2_per_objfile *dwarf2_per_objfile
14588 = cu->per_cu->dwarf2_per_objfile;
14589 struct attribute *attr;
14590 struct attribute *attr_high;
14591 CORE_ADDR low = 0;
14592 CORE_ADDR high = 0;
14593 enum pc_bounds_kind ret;
14594
14595 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14596 if (attr_high)
14597 {
14598 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14599 if (attr)
14600 {
14601 low = attr_value_as_address (attr);
14602 high = attr_value_as_address (attr_high);
14603 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14604 high += low;
14605 }
14606 else
14607 /* Found high w/o low attribute. */
14608 return PC_BOUNDS_INVALID;
14609
14610 /* Found consecutive range of addresses. */
14611 ret = PC_BOUNDS_HIGH_LOW;
14612 }
14613 else
14614 {
14615 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14616 if (attr != NULL)
14617 {
14618 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14619 We take advantage of the fact that DW_AT_ranges does not appear
14620 in DW_TAG_compile_unit of DWO files. */
14621 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14622 unsigned int ranges_offset = (DW_UNSND (attr)
14623 + (need_ranges_base
14624 ? cu->ranges_base
14625 : 0));
14626
14627 /* Value of the DW_AT_ranges attribute is the offset in the
14628 .debug_ranges section. */
14629 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14630 return PC_BOUNDS_INVALID;
14631 /* Found discontinuous range of addresses. */
14632 ret = PC_BOUNDS_RANGES;
14633 }
14634 else
14635 return PC_BOUNDS_NOT_PRESENT;
14636 }
14637
14638 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14639 if (high <= low)
14640 return PC_BOUNDS_INVALID;
14641
14642 /* When using the GNU linker, .gnu.linkonce. sections are used to
14643 eliminate duplicate copies of functions and vtables and such.
14644 The linker will arbitrarily choose one and discard the others.
14645 The AT_*_pc values for such functions refer to local labels in
14646 these sections. If the section from that file was discarded, the
14647 labels are not in the output, so the relocs get a value of 0.
14648 If this is a discarded function, mark the pc bounds as invalid,
14649 so that GDB will ignore it. */
14650 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14651 return PC_BOUNDS_INVALID;
14652
14653 *lowpc = low;
14654 if (highpc)
14655 *highpc = high;
14656 return ret;
14657 }
14658
14659 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14660 its low and high PC addresses. Do nothing if these addresses could not
14661 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14662 and HIGHPC to the high address if greater than HIGHPC. */
14663
14664 static void
14665 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14666 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14667 struct dwarf2_cu *cu)
14668 {
14669 CORE_ADDR low, high;
14670 struct die_info *child = die->child;
14671
14672 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14673 {
14674 *lowpc = std::min (*lowpc, low);
14675 *highpc = std::max (*highpc, high);
14676 }
14677
14678 /* If the language does not allow nested subprograms (either inside
14679 subprograms or lexical blocks), we're done. */
14680 if (cu->language != language_ada)
14681 return;
14682
14683 /* Check all the children of the given DIE. If it contains nested
14684 subprograms, then check their pc bounds. Likewise, we need to
14685 check lexical blocks as well, as they may also contain subprogram
14686 definitions. */
14687 while (child && child->tag)
14688 {
14689 if (child->tag == DW_TAG_subprogram
14690 || child->tag == DW_TAG_lexical_block)
14691 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14692 child = sibling_die (child);
14693 }
14694 }
14695
14696 /* Get the low and high pc's represented by the scope DIE, and store
14697 them in *LOWPC and *HIGHPC. If the correct values can't be
14698 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14699
14700 static void
14701 get_scope_pc_bounds (struct die_info *die,
14702 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14703 struct dwarf2_cu *cu)
14704 {
14705 CORE_ADDR best_low = (CORE_ADDR) -1;
14706 CORE_ADDR best_high = (CORE_ADDR) 0;
14707 CORE_ADDR current_low, current_high;
14708
14709 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14710 >= PC_BOUNDS_RANGES)
14711 {
14712 best_low = current_low;
14713 best_high = current_high;
14714 }
14715 else
14716 {
14717 struct die_info *child = die->child;
14718
14719 while (child && child->tag)
14720 {
14721 switch (child->tag) {
14722 case DW_TAG_subprogram:
14723 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14724 break;
14725 case DW_TAG_namespace:
14726 case DW_TAG_module:
14727 /* FIXME: carlton/2004-01-16: Should we do this for
14728 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14729 that current GCC's always emit the DIEs corresponding
14730 to definitions of methods of classes as children of a
14731 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14732 the DIEs giving the declarations, which could be
14733 anywhere). But I don't see any reason why the
14734 standards says that they have to be there. */
14735 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14736
14737 if (current_low != ((CORE_ADDR) -1))
14738 {
14739 best_low = std::min (best_low, current_low);
14740 best_high = std::max (best_high, current_high);
14741 }
14742 break;
14743 default:
14744 /* Ignore. */
14745 break;
14746 }
14747
14748 child = sibling_die (child);
14749 }
14750 }
14751
14752 *lowpc = best_low;
14753 *highpc = best_high;
14754 }
14755
14756 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14757 in DIE. */
14758
14759 static void
14760 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14761 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14762 {
14763 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14764 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14765 struct attribute *attr;
14766 struct attribute *attr_high;
14767
14768 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14769 if (attr_high)
14770 {
14771 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14772 if (attr)
14773 {
14774 CORE_ADDR low = attr_value_as_address (attr);
14775 CORE_ADDR high = attr_value_as_address (attr_high);
14776
14777 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14778 high += low;
14779
14780 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14781 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14782 cu->get_builder ()->record_block_range (block, low, high - 1);
14783 }
14784 }
14785
14786 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14787 if (attr)
14788 {
14789 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14790 We take advantage of the fact that DW_AT_ranges does not appear
14791 in DW_TAG_compile_unit of DWO files. */
14792 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14793
14794 /* The value of the DW_AT_ranges attribute is the offset of the
14795 address range list in the .debug_ranges section. */
14796 unsigned long offset = (DW_UNSND (attr)
14797 + (need_ranges_base ? cu->ranges_base : 0));
14798
14799 std::vector<blockrange> blockvec;
14800 dwarf2_ranges_process (offset, cu,
14801 [&] (CORE_ADDR start, CORE_ADDR end)
14802 {
14803 start += baseaddr;
14804 end += baseaddr;
14805 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14806 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14807 cu->get_builder ()->record_block_range (block, start, end - 1);
14808 blockvec.emplace_back (start, end);
14809 });
14810
14811 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14812 }
14813 }
14814
14815 /* Check whether the producer field indicates either of GCC < 4.6, or the
14816 Intel C/C++ compiler, and cache the result in CU. */
14817
14818 static void
14819 check_producer (struct dwarf2_cu *cu)
14820 {
14821 int major, minor;
14822
14823 if (cu->producer == NULL)
14824 {
14825 /* For unknown compilers expect their behavior is DWARF version
14826 compliant.
14827
14828 GCC started to support .debug_types sections by -gdwarf-4 since
14829 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14830 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14831 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14832 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14833 }
14834 else if (producer_is_gcc (cu->producer, &major, &minor))
14835 {
14836 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14837 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14838 }
14839 else if (producer_is_icc (cu->producer, &major, &minor))
14840 {
14841 cu->producer_is_icc = true;
14842 cu->producer_is_icc_lt_14 = major < 14;
14843 }
14844 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14845 cu->producer_is_codewarrior = true;
14846 else
14847 {
14848 /* For other non-GCC compilers, expect their behavior is DWARF version
14849 compliant. */
14850 }
14851
14852 cu->checked_producer = true;
14853 }
14854
14855 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14856 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14857 during 4.6.0 experimental. */
14858
14859 static bool
14860 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14861 {
14862 if (!cu->checked_producer)
14863 check_producer (cu);
14864
14865 return cu->producer_is_gxx_lt_4_6;
14866 }
14867
14868
14869 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14870 with incorrect is_stmt attributes. */
14871
14872 static bool
14873 producer_is_codewarrior (struct dwarf2_cu *cu)
14874 {
14875 if (!cu->checked_producer)
14876 check_producer (cu);
14877
14878 return cu->producer_is_codewarrior;
14879 }
14880
14881 /* Return the default accessibility type if it is not overriden by
14882 DW_AT_accessibility. */
14883
14884 static enum dwarf_access_attribute
14885 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14886 {
14887 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14888 {
14889 /* The default DWARF 2 accessibility for members is public, the default
14890 accessibility for inheritance is private. */
14891
14892 if (die->tag != DW_TAG_inheritance)
14893 return DW_ACCESS_public;
14894 else
14895 return DW_ACCESS_private;
14896 }
14897 else
14898 {
14899 /* DWARF 3+ defines the default accessibility a different way. The same
14900 rules apply now for DW_TAG_inheritance as for the members and it only
14901 depends on the container kind. */
14902
14903 if (die->parent->tag == DW_TAG_class_type)
14904 return DW_ACCESS_private;
14905 else
14906 return DW_ACCESS_public;
14907 }
14908 }
14909
14910 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14911 offset. If the attribute was not found return 0, otherwise return
14912 1. If it was found but could not properly be handled, set *OFFSET
14913 to 0. */
14914
14915 static int
14916 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14917 LONGEST *offset)
14918 {
14919 struct attribute *attr;
14920
14921 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14922 if (attr != NULL)
14923 {
14924 *offset = 0;
14925
14926 /* Note that we do not check for a section offset first here.
14927 This is because DW_AT_data_member_location is new in DWARF 4,
14928 so if we see it, we can assume that a constant form is really
14929 a constant and not a section offset. */
14930 if (attr_form_is_constant (attr))
14931 *offset = dwarf2_get_attr_constant_value (attr, 0);
14932 else if (attr_form_is_section_offset (attr))
14933 dwarf2_complex_location_expr_complaint ();
14934 else if (attr_form_is_block (attr))
14935 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14936 else
14937 dwarf2_complex_location_expr_complaint ();
14938
14939 return 1;
14940 }
14941
14942 return 0;
14943 }
14944
14945 /* Add an aggregate field to the field list. */
14946
14947 static void
14948 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14949 struct dwarf2_cu *cu)
14950 {
14951 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14952 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14953 struct nextfield *new_field;
14954 struct attribute *attr;
14955 struct field *fp;
14956 const char *fieldname = "";
14957
14958 if (die->tag == DW_TAG_inheritance)
14959 {
14960 fip->baseclasses.emplace_back ();
14961 new_field = &fip->baseclasses.back ();
14962 }
14963 else
14964 {
14965 fip->fields.emplace_back ();
14966 new_field = &fip->fields.back ();
14967 }
14968
14969 fip->nfields++;
14970
14971 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14972 if (attr)
14973 new_field->accessibility = DW_UNSND (attr);
14974 else
14975 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
14976 if (new_field->accessibility != DW_ACCESS_public)
14977 fip->non_public_fields = 1;
14978
14979 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14980 if (attr)
14981 new_field->virtuality = DW_UNSND (attr);
14982 else
14983 new_field->virtuality = DW_VIRTUALITY_none;
14984
14985 fp = &new_field->field;
14986
14987 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
14988 {
14989 LONGEST offset;
14990
14991 /* Data member other than a C++ static data member. */
14992
14993 /* Get type of field. */
14994 fp->type = die_type (die, cu);
14995
14996 SET_FIELD_BITPOS (*fp, 0);
14997
14998 /* Get bit size of field (zero if none). */
14999 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
15000 if (attr)
15001 {
15002 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15003 }
15004 else
15005 {
15006 FIELD_BITSIZE (*fp) = 0;
15007 }
15008
15009 /* Get bit offset of field. */
15010 if (handle_data_member_location (die, cu, &offset))
15011 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15012 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15013 if (attr)
15014 {
15015 if (gdbarch_bits_big_endian (gdbarch))
15016 {
15017 /* For big endian bits, the DW_AT_bit_offset gives the
15018 additional bit offset from the MSB of the containing
15019 anonymous object to the MSB of the field. We don't
15020 have to do anything special since we don't need to
15021 know the size of the anonymous object. */
15022 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15023 }
15024 else
15025 {
15026 /* For little endian bits, compute the bit offset to the
15027 MSB of the anonymous object, subtract off the number of
15028 bits from the MSB of the field to the MSB of the
15029 object, and then subtract off the number of bits of
15030 the field itself. The result is the bit offset of
15031 the LSB of the field. */
15032 int anonymous_size;
15033 int bit_offset = DW_UNSND (attr);
15034
15035 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15036 if (attr)
15037 {
15038 /* The size of the anonymous object containing
15039 the bit field is explicit, so use the
15040 indicated size (in bytes). */
15041 anonymous_size = DW_UNSND (attr);
15042 }
15043 else
15044 {
15045 /* The size of the anonymous object containing
15046 the bit field must be inferred from the type
15047 attribute of the data member containing the
15048 bit field. */
15049 anonymous_size = TYPE_LENGTH (fp->type);
15050 }
15051 SET_FIELD_BITPOS (*fp,
15052 (FIELD_BITPOS (*fp)
15053 + anonymous_size * bits_per_byte
15054 - bit_offset - FIELD_BITSIZE (*fp)));
15055 }
15056 }
15057 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15058 if (attr != NULL)
15059 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15060 + dwarf2_get_attr_constant_value (attr, 0)));
15061
15062 /* Get name of field. */
15063 fieldname = dwarf2_name (die, cu);
15064 if (fieldname == NULL)
15065 fieldname = "";
15066
15067 /* The name is already allocated along with this objfile, so we don't
15068 need to duplicate it for the type. */
15069 fp->name = fieldname;
15070
15071 /* Change accessibility for artificial fields (e.g. virtual table
15072 pointer or virtual base class pointer) to private. */
15073 if (dwarf2_attr (die, DW_AT_artificial, cu))
15074 {
15075 FIELD_ARTIFICIAL (*fp) = 1;
15076 new_field->accessibility = DW_ACCESS_private;
15077 fip->non_public_fields = 1;
15078 }
15079 }
15080 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15081 {
15082 /* C++ static member. */
15083
15084 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15085 is a declaration, but all versions of G++ as of this writing
15086 (so through at least 3.2.1) incorrectly generate
15087 DW_TAG_variable tags. */
15088
15089 const char *physname;
15090
15091 /* Get name of field. */
15092 fieldname = dwarf2_name (die, cu);
15093 if (fieldname == NULL)
15094 return;
15095
15096 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15097 if (attr
15098 /* Only create a symbol if this is an external value.
15099 new_symbol checks this and puts the value in the global symbol
15100 table, which we want. If it is not external, new_symbol
15101 will try to put the value in cu->list_in_scope which is wrong. */
15102 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15103 {
15104 /* A static const member, not much different than an enum as far as
15105 we're concerned, except that we can support more types. */
15106 new_symbol (die, NULL, cu);
15107 }
15108
15109 /* Get physical name. */
15110 physname = dwarf2_physname (fieldname, die, cu);
15111
15112 /* The name is already allocated along with this objfile, so we don't
15113 need to duplicate it for the type. */
15114 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15115 FIELD_TYPE (*fp) = die_type (die, cu);
15116 FIELD_NAME (*fp) = fieldname;
15117 }
15118 else if (die->tag == DW_TAG_inheritance)
15119 {
15120 LONGEST offset;
15121
15122 /* C++ base class field. */
15123 if (handle_data_member_location (die, cu, &offset))
15124 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15125 FIELD_BITSIZE (*fp) = 0;
15126 FIELD_TYPE (*fp) = die_type (die, cu);
15127 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
15128 }
15129 else if (die->tag == DW_TAG_variant_part)
15130 {
15131 /* process_structure_scope will treat this DIE as a union. */
15132 process_structure_scope (die, cu);
15133
15134 /* The variant part is relative to the start of the enclosing
15135 structure. */
15136 SET_FIELD_BITPOS (*fp, 0);
15137 fp->type = get_die_type (die, cu);
15138 fp->artificial = 1;
15139 fp->name = "<<variant>>";
15140
15141 /* Normally a DW_TAG_variant_part won't have a size, but our
15142 representation requires one, so set it to the maximum of the
15143 child sizes. */
15144 if (TYPE_LENGTH (fp->type) == 0)
15145 {
15146 unsigned max = 0;
15147 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
15148 if (TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)) > max)
15149 max = TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i));
15150 TYPE_LENGTH (fp->type) = max;
15151 }
15152 }
15153 else
15154 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15155 }
15156
15157 /* Can the type given by DIE define another type? */
15158
15159 static bool
15160 type_can_define_types (const struct die_info *die)
15161 {
15162 switch (die->tag)
15163 {
15164 case DW_TAG_typedef:
15165 case DW_TAG_class_type:
15166 case DW_TAG_structure_type:
15167 case DW_TAG_union_type:
15168 case DW_TAG_enumeration_type:
15169 return true;
15170
15171 default:
15172 return false;
15173 }
15174 }
15175
15176 /* Add a type definition defined in the scope of the FIP's class. */
15177
15178 static void
15179 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15180 struct dwarf2_cu *cu)
15181 {
15182 struct decl_field fp;
15183 memset (&fp, 0, sizeof (fp));
15184
15185 gdb_assert (type_can_define_types (die));
15186
15187 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15188 fp.name = dwarf2_name (die, cu);
15189 fp.type = read_type_die (die, cu);
15190
15191 /* Save accessibility. */
15192 enum dwarf_access_attribute accessibility;
15193 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15194 if (attr != NULL)
15195 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15196 else
15197 accessibility = dwarf2_default_access_attribute (die, cu);
15198 switch (accessibility)
15199 {
15200 case DW_ACCESS_public:
15201 /* The assumed value if neither private nor protected. */
15202 break;
15203 case DW_ACCESS_private:
15204 fp.is_private = 1;
15205 break;
15206 case DW_ACCESS_protected:
15207 fp.is_protected = 1;
15208 break;
15209 default:
15210 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15211 }
15212
15213 if (die->tag == DW_TAG_typedef)
15214 fip->typedef_field_list.push_back (fp);
15215 else
15216 fip->nested_types_list.push_back (fp);
15217 }
15218
15219 /* Create the vector of fields, and attach it to the type. */
15220
15221 static void
15222 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15223 struct dwarf2_cu *cu)
15224 {
15225 int nfields = fip->nfields;
15226
15227 /* Record the field count, allocate space for the array of fields,
15228 and create blank accessibility bitfields if necessary. */
15229 TYPE_NFIELDS (type) = nfields;
15230 TYPE_FIELDS (type) = (struct field *)
15231 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15232
15233 if (fip->non_public_fields && cu->language != language_ada)
15234 {
15235 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15236
15237 TYPE_FIELD_PRIVATE_BITS (type) =
15238 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15239 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15240
15241 TYPE_FIELD_PROTECTED_BITS (type) =
15242 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15243 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15244
15245 TYPE_FIELD_IGNORE_BITS (type) =
15246 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15247 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15248 }
15249
15250 /* If the type has baseclasses, allocate and clear a bit vector for
15251 TYPE_FIELD_VIRTUAL_BITS. */
15252 if (!fip->baseclasses.empty () && cu->language != language_ada)
15253 {
15254 int num_bytes = B_BYTES (fip->baseclasses.size ());
15255 unsigned char *pointer;
15256
15257 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15258 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15259 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15260 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15261 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15262 }
15263
15264 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15265 {
15266 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15267
15268 for (int index = 0; index < nfields; ++index)
15269 {
15270 struct nextfield &field = fip->fields[index];
15271
15272 if (field.variant.is_discriminant)
15273 di->discriminant_index = index;
15274 else if (field.variant.default_branch)
15275 di->default_index = index;
15276 else
15277 di->discriminants[index] = field.variant.discriminant_value;
15278 }
15279 }
15280
15281 /* Copy the saved-up fields into the field vector. */
15282 for (int i = 0; i < nfields; ++i)
15283 {
15284 struct nextfield &field
15285 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15286 : fip->fields[i - fip->baseclasses.size ()]);
15287
15288 TYPE_FIELD (type, i) = field.field;
15289 switch (field.accessibility)
15290 {
15291 case DW_ACCESS_private:
15292 if (cu->language != language_ada)
15293 SET_TYPE_FIELD_PRIVATE (type, i);
15294 break;
15295
15296 case DW_ACCESS_protected:
15297 if (cu->language != language_ada)
15298 SET_TYPE_FIELD_PROTECTED (type, i);
15299 break;
15300
15301 case DW_ACCESS_public:
15302 break;
15303
15304 default:
15305 /* Unknown accessibility. Complain and treat it as public. */
15306 {
15307 complaint (_("unsupported accessibility %d"),
15308 field.accessibility);
15309 }
15310 break;
15311 }
15312 if (i < fip->baseclasses.size ())
15313 {
15314 switch (field.virtuality)
15315 {
15316 case DW_VIRTUALITY_virtual:
15317 case DW_VIRTUALITY_pure_virtual:
15318 if (cu->language == language_ada)
15319 error (_("unexpected virtuality in component of Ada type"));
15320 SET_TYPE_FIELD_VIRTUAL (type, i);
15321 break;
15322 }
15323 }
15324 }
15325 }
15326
15327 /* Return true if this member function is a constructor, false
15328 otherwise. */
15329
15330 static int
15331 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15332 {
15333 const char *fieldname;
15334 const char *type_name;
15335 int len;
15336
15337 if (die->parent == NULL)
15338 return 0;
15339
15340 if (die->parent->tag != DW_TAG_structure_type
15341 && die->parent->tag != DW_TAG_union_type
15342 && die->parent->tag != DW_TAG_class_type)
15343 return 0;
15344
15345 fieldname = dwarf2_name (die, cu);
15346 type_name = dwarf2_name (die->parent, cu);
15347 if (fieldname == NULL || type_name == NULL)
15348 return 0;
15349
15350 len = strlen (fieldname);
15351 return (strncmp (fieldname, type_name, len) == 0
15352 && (type_name[len] == '\0' || type_name[len] == '<'));
15353 }
15354
15355 /* Add a member function to the proper fieldlist. */
15356
15357 static void
15358 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15359 struct type *type, struct dwarf2_cu *cu)
15360 {
15361 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15362 struct attribute *attr;
15363 int i;
15364 struct fnfieldlist *flp = nullptr;
15365 struct fn_field *fnp;
15366 const char *fieldname;
15367 struct type *this_type;
15368 enum dwarf_access_attribute accessibility;
15369
15370 if (cu->language == language_ada)
15371 error (_("unexpected member function in Ada type"));
15372
15373 /* Get name of member function. */
15374 fieldname = dwarf2_name (die, cu);
15375 if (fieldname == NULL)
15376 return;
15377
15378 /* Look up member function name in fieldlist. */
15379 for (i = 0; i < fip->fnfieldlists.size (); i++)
15380 {
15381 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15382 {
15383 flp = &fip->fnfieldlists[i];
15384 break;
15385 }
15386 }
15387
15388 /* Create a new fnfieldlist if necessary. */
15389 if (flp == nullptr)
15390 {
15391 fip->fnfieldlists.emplace_back ();
15392 flp = &fip->fnfieldlists.back ();
15393 flp->name = fieldname;
15394 i = fip->fnfieldlists.size () - 1;
15395 }
15396
15397 /* Create a new member function field and add it to the vector of
15398 fnfieldlists. */
15399 flp->fnfields.emplace_back ();
15400 fnp = &flp->fnfields.back ();
15401
15402 /* Delay processing of the physname until later. */
15403 if (cu->language == language_cplus)
15404 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15405 die, cu);
15406 else
15407 {
15408 const char *physname = dwarf2_physname (fieldname, die, cu);
15409 fnp->physname = physname ? physname : "";
15410 }
15411
15412 fnp->type = alloc_type (objfile);
15413 this_type = read_type_die (die, cu);
15414 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15415 {
15416 int nparams = TYPE_NFIELDS (this_type);
15417
15418 /* TYPE is the domain of this method, and THIS_TYPE is the type
15419 of the method itself (TYPE_CODE_METHOD). */
15420 smash_to_method_type (fnp->type, type,
15421 TYPE_TARGET_TYPE (this_type),
15422 TYPE_FIELDS (this_type),
15423 TYPE_NFIELDS (this_type),
15424 TYPE_VARARGS (this_type));
15425
15426 /* Handle static member functions.
15427 Dwarf2 has no clean way to discern C++ static and non-static
15428 member functions. G++ helps GDB by marking the first
15429 parameter for non-static member functions (which is the this
15430 pointer) as artificial. We obtain this information from
15431 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15432 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15433 fnp->voffset = VOFFSET_STATIC;
15434 }
15435 else
15436 complaint (_("member function type missing for '%s'"),
15437 dwarf2_full_name (fieldname, die, cu));
15438
15439 /* Get fcontext from DW_AT_containing_type if present. */
15440 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15441 fnp->fcontext = die_containing_type (die, cu);
15442
15443 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15444 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15445
15446 /* Get accessibility. */
15447 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15448 if (attr)
15449 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15450 else
15451 accessibility = dwarf2_default_access_attribute (die, cu);
15452 switch (accessibility)
15453 {
15454 case DW_ACCESS_private:
15455 fnp->is_private = 1;
15456 break;
15457 case DW_ACCESS_protected:
15458 fnp->is_protected = 1;
15459 break;
15460 }
15461
15462 /* Check for artificial methods. */
15463 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15464 if (attr && DW_UNSND (attr) != 0)
15465 fnp->is_artificial = 1;
15466
15467 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15468
15469 /* Get index in virtual function table if it is a virtual member
15470 function. For older versions of GCC, this is an offset in the
15471 appropriate virtual table, as specified by DW_AT_containing_type.
15472 For everyone else, it is an expression to be evaluated relative
15473 to the object address. */
15474
15475 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15476 if (attr)
15477 {
15478 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15479 {
15480 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15481 {
15482 /* Old-style GCC. */
15483 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15484 }
15485 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15486 || (DW_BLOCK (attr)->size > 1
15487 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15488 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15489 {
15490 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15491 if ((fnp->voffset % cu->header.addr_size) != 0)
15492 dwarf2_complex_location_expr_complaint ();
15493 else
15494 fnp->voffset /= cu->header.addr_size;
15495 fnp->voffset += 2;
15496 }
15497 else
15498 dwarf2_complex_location_expr_complaint ();
15499
15500 if (!fnp->fcontext)
15501 {
15502 /* If there is no `this' field and no DW_AT_containing_type,
15503 we cannot actually find a base class context for the
15504 vtable! */
15505 if (TYPE_NFIELDS (this_type) == 0
15506 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15507 {
15508 complaint (_("cannot determine context for virtual member "
15509 "function \"%s\" (offset %s)"),
15510 fieldname, sect_offset_str (die->sect_off));
15511 }
15512 else
15513 {
15514 fnp->fcontext
15515 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15516 }
15517 }
15518 }
15519 else if (attr_form_is_section_offset (attr))
15520 {
15521 dwarf2_complex_location_expr_complaint ();
15522 }
15523 else
15524 {
15525 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15526 fieldname);
15527 }
15528 }
15529 else
15530 {
15531 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15532 if (attr && DW_UNSND (attr))
15533 {
15534 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15535 complaint (_("Member function \"%s\" (offset %s) is virtual "
15536 "but the vtable offset is not specified"),
15537 fieldname, sect_offset_str (die->sect_off));
15538 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15539 TYPE_CPLUS_DYNAMIC (type) = 1;
15540 }
15541 }
15542 }
15543
15544 /* Create the vector of member function fields, and attach it to the type. */
15545
15546 static void
15547 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15548 struct dwarf2_cu *cu)
15549 {
15550 if (cu->language == language_ada)
15551 error (_("unexpected member functions in Ada type"));
15552
15553 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15554 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15555 TYPE_ALLOC (type,
15556 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15557
15558 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15559 {
15560 struct fnfieldlist &nf = fip->fnfieldlists[i];
15561 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15562
15563 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15564 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15565 fn_flp->fn_fields = (struct fn_field *)
15566 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15567
15568 for (int k = 0; k < nf.fnfields.size (); ++k)
15569 fn_flp->fn_fields[k] = nf.fnfields[k];
15570 }
15571
15572 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15573 }
15574
15575 /* Returns non-zero if NAME is the name of a vtable member in CU's
15576 language, zero otherwise. */
15577 static int
15578 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15579 {
15580 static const char vptr[] = "_vptr";
15581
15582 /* Look for the C++ form of the vtable. */
15583 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15584 return 1;
15585
15586 return 0;
15587 }
15588
15589 /* GCC outputs unnamed structures that are really pointers to member
15590 functions, with the ABI-specified layout. If TYPE describes
15591 such a structure, smash it into a member function type.
15592
15593 GCC shouldn't do this; it should just output pointer to member DIEs.
15594 This is GCC PR debug/28767. */
15595
15596 static void
15597 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15598 {
15599 struct type *pfn_type, *self_type, *new_type;
15600
15601 /* Check for a structure with no name and two children. */
15602 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15603 return;
15604
15605 /* Check for __pfn and __delta members. */
15606 if (TYPE_FIELD_NAME (type, 0) == NULL
15607 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15608 || TYPE_FIELD_NAME (type, 1) == NULL
15609 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15610 return;
15611
15612 /* Find the type of the method. */
15613 pfn_type = TYPE_FIELD_TYPE (type, 0);
15614 if (pfn_type == NULL
15615 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15616 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15617 return;
15618
15619 /* Look for the "this" argument. */
15620 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15621 if (TYPE_NFIELDS (pfn_type) == 0
15622 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15623 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15624 return;
15625
15626 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15627 new_type = alloc_type (objfile);
15628 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15629 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15630 TYPE_VARARGS (pfn_type));
15631 smash_to_methodptr_type (type, new_type);
15632 }
15633
15634 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15635 appropriate error checking and issuing complaints if there is a
15636 problem. */
15637
15638 static ULONGEST
15639 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15640 {
15641 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15642
15643 if (attr == nullptr)
15644 return 0;
15645
15646 if (!attr_form_is_constant (attr))
15647 {
15648 complaint (_("DW_AT_alignment must have constant form"
15649 " - DIE at %s [in module %s]"),
15650 sect_offset_str (die->sect_off),
15651 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15652 return 0;
15653 }
15654
15655 ULONGEST align;
15656 if (attr->form == DW_FORM_sdata)
15657 {
15658 LONGEST val = DW_SND (attr);
15659 if (val < 0)
15660 {
15661 complaint (_("DW_AT_alignment value must not be negative"
15662 " - DIE at %s [in module %s]"),
15663 sect_offset_str (die->sect_off),
15664 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15665 return 0;
15666 }
15667 align = val;
15668 }
15669 else
15670 align = DW_UNSND (attr);
15671
15672 if (align == 0)
15673 {
15674 complaint (_("DW_AT_alignment value must not be zero"
15675 " - DIE at %s [in module %s]"),
15676 sect_offset_str (die->sect_off),
15677 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15678 return 0;
15679 }
15680 if ((align & (align - 1)) != 0)
15681 {
15682 complaint (_("DW_AT_alignment value must be a power of 2"
15683 " - DIE at %s [in module %s]"),
15684 sect_offset_str (die->sect_off),
15685 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15686 return 0;
15687 }
15688
15689 return align;
15690 }
15691
15692 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15693 the alignment for TYPE. */
15694
15695 static void
15696 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15697 struct type *type)
15698 {
15699 if (!set_type_align (type, get_alignment (cu, die)))
15700 complaint (_("DW_AT_alignment value too large"
15701 " - DIE at %s [in module %s]"),
15702 sect_offset_str (die->sect_off),
15703 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15704 }
15705
15706 /* Called when we find the DIE that starts a structure or union scope
15707 (definition) to create a type for the structure or union. Fill in
15708 the type's name and general properties; the members will not be
15709 processed until process_structure_scope. A symbol table entry for
15710 the type will also not be done until process_structure_scope (assuming
15711 the type has a name).
15712
15713 NOTE: we need to call these functions regardless of whether or not the
15714 DIE has a DW_AT_name attribute, since it might be an anonymous
15715 structure or union. This gets the type entered into our set of
15716 user defined types. */
15717
15718 static struct type *
15719 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15720 {
15721 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15722 struct type *type;
15723 struct attribute *attr;
15724 const char *name;
15725
15726 /* If the definition of this type lives in .debug_types, read that type.
15727 Don't follow DW_AT_specification though, that will take us back up
15728 the chain and we want to go down. */
15729 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15730 if (attr)
15731 {
15732 type = get_DW_AT_signature_type (die, attr, cu);
15733
15734 /* The type's CU may not be the same as CU.
15735 Ensure TYPE is recorded with CU in die_type_hash. */
15736 return set_die_type (die, type, cu);
15737 }
15738
15739 type = alloc_type (objfile);
15740 INIT_CPLUS_SPECIFIC (type);
15741
15742 name = dwarf2_name (die, cu);
15743 if (name != NULL)
15744 {
15745 if (cu->language == language_cplus
15746 || cu->language == language_d
15747 || cu->language == language_rust)
15748 {
15749 const char *full_name = dwarf2_full_name (name, die, cu);
15750
15751 /* dwarf2_full_name might have already finished building the DIE's
15752 type. If so, there is no need to continue. */
15753 if (get_die_type (die, cu) != NULL)
15754 return get_die_type (die, cu);
15755
15756 TYPE_NAME (type) = full_name;
15757 }
15758 else
15759 {
15760 /* The name is already allocated along with this objfile, so
15761 we don't need to duplicate it for the type. */
15762 TYPE_NAME (type) = name;
15763 }
15764 }
15765
15766 if (die->tag == DW_TAG_structure_type)
15767 {
15768 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15769 }
15770 else if (die->tag == DW_TAG_union_type)
15771 {
15772 TYPE_CODE (type) = TYPE_CODE_UNION;
15773 }
15774 else if (die->tag == DW_TAG_variant_part)
15775 {
15776 TYPE_CODE (type) = TYPE_CODE_UNION;
15777 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15778 }
15779 else
15780 {
15781 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15782 }
15783
15784 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15785 TYPE_DECLARED_CLASS (type) = 1;
15786
15787 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15788 if (attr)
15789 {
15790 if (attr_form_is_constant (attr))
15791 TYPE_LENGTH (type) = DW_UNSND (attr);
15792 else
15793 {
15794 /* For the moment, dynamic type sizes are not supported
15795 by GDB's struct type. The actual size is determined
15796 on-demand when resolving the type of a given object,
15797 so set the type's length to zero for now. Otherwise,
15798 we record an expression as the length, and that expression
15799 could lead to a very large value, which could eventually
15800 lead to us trying to allocate that much memory when creating
15801 a value of that type. */
15802 TYPE_LENGTH (type) = 0;
15803 }
15804 }
15805 else
15806 {
15807 TYPE_LENGTH (type) = 0;
15808 }
15809
15810 maybe_set_alignment (cu, die, type);
15811
15812 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15813 {
15814 /* ICC<14 does not output the required DW_AT_declaration on
15815 incomplete types, but gives them a size of zero. */
15816 TYPE_STUB (type) = 1;
15817 }
15818 else
15819 TYPE_STUB_SUPPORTED (type) = 1;
15820
15821 if (die_is_declaration (die, cu))
15822 TYPE_STUB (type) = 1;
15823 else if (attr == NULL && die->child == NULL
15824 && producer_is_realview (cu->producer))
15825 /* RealView does not output the required DW_AT_declaration
15826 on incomplete types. */
15827 TYPE_STUB (type) = 1;
15828
15829 /* We need to add the type field to the die immediately so we don't
15830 infinitely recurse when dealing with pointers to the structure
15831 type within the structure itself. */
15832 set_die_type (die, type, cu);
15833
15834 /* set_die_type should be already done. */
15835 set_descriptive_type (type, die, cu);
15836
15837 return type;
15838 }
15839
15840 /* A helper for process_structure_scope that handles a single member
15841 DIE. */
15842
15843 static void
15844 handle_struct_member_die (struct die_info *child_die, struct type *type,
15845 struct field_info *fi,
15846 std::vector<struct symbol *> *template_args,
15847 struct dwarf2_cu *cu)
15848 {
15849 if (child_die->tag == DW_TAG_member
15850 || child_die->tag == DW_TAG_variable
15851 || child_die->tag == DW_TAG_variant_part)
15852 {
15853 /* NOTE: carlton/2002-11-05: A C++ static data member
15854 should be a DW_TAG_member that is a declaration, but
15855 all versions of G++ as of this writing (so through at
15856 least 3.2.1) incorrectly generate DW_TAG_variable
15857 tags for them instead. */
15858 dwarf2_add_field (fi, child_die, cu);
15859 }
15860 else if (child_die->tag == DW_TAG_subprogram)
15861 {
15862 /* Rust doesn't have member functions in the C++ sense.
15863 However, it does emit ordinary functions as children
15864 of a struct DIE. */
15865 if (cu->language == language_rust)
15866 read_func_scope (child_die, cu);
15867 else
15868 {
15869 /* C++ member function. */
15870 dwarf2_add_member_fn (fi, child_die, type, cu);
15871 }
15872 }
15873 else if (child_die->tag == DW_TAG_inheritance)
15874 {
15875 /* C++ base class field. */
15876 dwarf2_add_field (fi, child_die, cu);
15877 }
15878 else if (type_can_define_types (child_die))
15879 dwarf2_add_type_defn (fi, child_die, cu);
15880 else if (child_die->tag == DW_TAG_template_type_param
15881 || child_die->tag == DW_TAG_template_value_param)
15882 {
15883 struct symbol *arg = new_symbol (child_die, NULL, cu);
15884
15885 if (arg != NULL)
15886 template_args->push_back (arg);
15887 }
15888 else if (child_die->tag == DW_TAG_variant)
15889 {
15890 /* In a variant we want to get the discriminant and also add a
15891 field for our sole member child. */
15892 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15893
15894 for (die_info *variant_child = child_die->child;
15895 variant_child != NULL;
15896 variant_child = sibling_die (variant_child))
15897 {
15898 if (variant_child->tag == DW_TAG_member)
15899 {
15900 handle_struct_member_die (variant_child, type, fi,
15901 template_args, cu);
15902 /* Only handle the one. */
15903 break;
15904 }
15905 }
15906
15907 /* We don't handle this but we might as well report it if we see
15908 it. */
15909 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15910 complaint (_("DW_AT_discr_list is not supported yet"
15911 " - DIE at %s [in module %s]"),
15912 sect_offset_str (child_die->sect_off),
15913 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15914
15915 /* The first field was just added, so we can stash the
15916 discriminant there. */
15917 gdb_assert (!fi->fields.empty ());
15918 if (discr == NULL)
15919 fi->fields.back ().variant.default_branch = true;
15920 else
15921 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15922 }
15923 }
15924
15925 /* Finish creating a structure or union type, including filling in
15926 its members and creating a symbol for it. */
15927
15928 static void
15929 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15930 {
15931 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15932 struct die_info *child_die;
15933 struct type *type;
15934
15935 type = get_die_type (die, cu);
15936 if (type == NULL)
15937 type = read_structure_type (die, cu);
15938
15939 /* When reading a DW_TAG_variant_part, we need to notice when we
15940 read the discriminant member, so we can record it later in the
15941 discriminant_info. */
15942 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
15943 sect_offset discr_offset;
15944 bool has_template_parameters = false;
15945
15946 if (is_variant_part)
15947 {
15948 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15949 if (discr == NULL)
15950 {
15951 /* Maybe it's a univariant form, an extension we support.
15952 In this case arrange not to check the offset. */
15953 is_variant_part = false;
15954 }
15955 else if (attr_form_is_ref (discr))
15956 {
15957 struct dwarf2_cu *target_cu = cu;
15958 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15959
15960 discr_offset = target_die->sect_off;
15961 }
15962 else
15963 {
15964 complaint (_("DW_AT_discr does not have DIE reference form"
15965 " - DIE at %s [in module %s]"),
15966 sect_offset_str (die->sect_off),
15967 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15968 is_variant_part = false;
15969 }
15970 }
15971
15972 if (die->child != NULL && ! die_is_declaration (die, cu))
15973 {
15974 struct field_info fi;
15975 std::vector<struct symbol *> template_args;
15976
15977 child_die = die->child;
15978
15979 while (child_die && child_die->tag)
15980 {
15981 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
15982
15983 if (is_variant_part && discr_offset == child_die->sect_off)
15984 fi.fields.back ().variant.is_discriminant = true;
15985
15986 child_die = sibling_die (child_die);
15987 }
15988
15989 /* Attach template arguments to type. */
15990 if (!template_args.empty ())
15991 {
15992 has_template_parameters = true;
15993 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15994 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
15995 TYPE_TEMPLATE_ARGUMENTS (type)
15996 = XOBNEWVEC (&objfile->objfile_obstack,
15997 struct symbol *,
15998 TYPE_N_TEMPLATE_ARGUMENTS (type));
15999 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
16000 template_args.data (),
16001 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16002 * sizeof (struct symbol *)));
16003 }
16004
16005 /* Attach fields and member functions to the type. */
16006 if (fi.nfields)
16007 dwarf2_attach_fields_to_type (&fi, type, cu);
16008 if (!fi.fnfieldlists.empty ())
16009 {
16010 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
16011
16012 /* Get the type which refers to the base class (possibly this
16013 class itself) which contains the vtable pointer for the current
16014 class from the DW_AT_containing_type attribute. This use of
16015 DW_AT_containing_type is a GNU extension. */
16016
16017 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16018 {
16019 struct type *t = die_containing_type (die, cu);
16020
16021 set_type_vptr_basetype (type, t);
16022 if (type == t)
16023 {
16024 int i;
16025
16026 /* Our own class provides vtbl ptr. */
16027 for (i = TYPE_NFIELDS (t) - 1;
16028 i >= TYPE_N_BASECLASSES (t);
16029 --i)
16030 {
16031 const char *fieldname = TYPE_FIELD_NAME (t, i);
16032
16033 if (is_vtable_name (fieldname, cu))
16034 {
16035 set_type_vptr_fieldno (type, i);
16036 break;
16037 }
16038 }
16039
16040 /* Complain if virtual function table field not found. */
16041 if (i < TYPE_N_BASECLASSES (t))
16042 complaint (_("virtual function table pointer "
16043 "not found when defining class '%s'"),
16044 TYPE_NAME (type) ? TYPE_NAME (type) : "");
16045 }
16046 else
16047 {
16048 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16049 }
16050 }
16051 else if (cu->producer
16052 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16053 {
16054 /* The IBM XLC compiler does not provide direct indication
16055 of the containing type, but the vtable pointer is
16056 always named __vfp. */
16057
16058 int i;
16059
16060 for (i = TYPE_NFIELDS (type) - 1;
16061 i >= TYPE_N_BASECLASSES (type);
16062 --i)
16063 {
16064 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16065 {
16066 set_type_vptr_fieldno (type, i);
16067 set_type_vptr_basetype (type, type);
16068 break;
16069 }
16070 }
16071 }
16072 }
16073
16074 /* Copy fi.typedef_field_list linked list elements content into the
16075 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16076 if (!fi.typedef_field_list.empty ())
16077 {
16078 int count = fi.typedef_field_list.size ();
16079
16080 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16081 TYPE_TYPEDEF_FIELD_ARRAY (type)
16082 = ((struct decl_field *)
16083 TYPE_ALLOC (type,
16084 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16085 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16086
16087 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16088 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16089 }
16090
16091 /* Copy fi.nested_types_list linked list elements content into the
16092 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16093 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16094 {
16095 int count = fi.nested_types_list.size ();
16096
16097 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16098 TYPE_NESTED_TYPES_ARRAY (type)
16099 = ((struct decl_field *)
16100 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16101 TYPE_NESTED_TYPES_COUNT (type) = count;
16102
16103 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16104 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16105 }
16106 }
16107
16108 quirk_gcc_member_function_pointer (type, objfile);
16109 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16110 cu->rust_unions.push_back (type);
16111
16112 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16113 snapshots) has been known to create a die giving a declaration
16114 for a class that has, as a child, a die giving a definition for a
16115 nested class. So we have to process our children even if the
16116 current die is a declaration. Normally, of course, a declaration
16117 won't have any children at all. */
16118
16119 child_die = die->child;
16120
16121 while (child_die != NULL && child_die->tag)
16122 {
16123 if (child_die->tag == DW_TAG_member
16124 || child_die->tag == DW_TAG_variable
16125 || child_die->tag == DW_TAG_inheritance
16126 || child_die->tag == DW_TAG_template_value_param
16127 || child_die->tag == DW_TAG_template_type_param)
16128 {
16129 /* Do nothing. */
16130 }
16131 else
16132 process_die (child_die, cu);
16133
16134 child_die = sibling_die (child_die);
16135 }
16136
16137 /* Do not consider external references. According to the DWARF standard,
16138 these DIEs are identified by the fact that they have no byte_size
16139 attribute, and a declaration attribute. */
16140 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16141 || !die_is_declaration (die, cu))
16142 {
16143 struct symbol *sym = new_symbol (die, type, cu);
16144
16145 if (has_template_parameters)
16146 {
16147 struct symtab *symtab;
16148 if (sym != nullptr)
16149 symtab = symbol_symtab (sym);
16150 else if (cu->line_header != nullptr)
16151 {
16152 /* Any related symtab will do. */
16153 symtab
16154 = cu->line_header->file_name_at (file_name_index (1))->symtab;
16155 }
16156 else
16157 {
16158 symtab = nullptr;
16159 complaint (_("could not find suitable "
16160 "symtab for template parameter"
16161 " - DIE at %s [in module %s]"),
16162 sect_offset_str (die->sect_off),
16163 objfile_name (objfile));
16164 }
16165
16166 if (symtab != nullptr)
16167 {
16168 /* Make sure that the symtab is set on the new symbols.
16169 Even though they don't appear in this symtab directly,
16170 other parts of gdb assume that symbols do, and this is
16171 reasonably true. */
16172 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16173 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
16174 }
16175 }
16176 }
16177 }
16178
16179 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16180 update TYPE using some information only available in DIE's children. */
16181
16182 static void
16183 update_enumeration_type_from_children (struct die_info *die,
16184 struct type *type,
16185 struct dwarf2_cu *cu)
16186 {
16187 struct die_info *child_die;
16188 int unsigned_enum = 1;
16189 int flag_enum = 1;
16190 ULONGEST mask = 0;
16191
16192 auto_obstack obstack;
16193
16194 for (child_die = die->child;
16195 child_die != NULL && child_die->tag;
16196 child_die = sibling_die (child_die))
16197 {
16198 struct attribute *attr;
16199 LONGEST value;
16200 const gdb_byte *bytes;
16201 struct dwarf2_locexpr_baton *baton;
16202 const char *name;
16203
16204 if (child_die->tag != DW_TAG_enumerator)
16205 continue;
16206
16207 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16208 if (attr == NULL)
16209 continue;
16210
16211 name = dwarf2_name (child_die, cu);
16212 if (name == NULL)
16213 name = "<anonymous enumerator>";
16214
16215 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16216 &value, &bytes, &baton);
16217 if (value < 0)
16218 {
16219 unsigned_enum = 0;
16220 flag_enum = 0;
16221 }
16222 else if ((mask & value) != 0)
16223 flag_enum = 0;
16224 else
16225 mask |= value;
16226
16227 /* If we already know that the enum type is neither unsigned, nor
16228 a flag type, no need to look at the rest of the enumerates. */
16229 if (!unsigned_enum && !flag_enum)
16230 break;
16231 }
16232
16233 if (unsigned_enum)
16234 TYPE_UNSIGNED (type) = 1;
16235 if (flag_enum)
16236 TYPE_FLAG_ENUM (type) = 1;
16237 }
16238
16239 /* Given a DW_AT_enumeration_type die, set its type. We do not
16240 complete the type's fields yet, or create any symbols. */
16241
16242 static struct type *
16243 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16244 {
16245 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16246 struct type *type;
16247 struct attribute *attr;
16248 const char *name;
16249
16250 /* If the definition of this type lives in .debug_types, read that type.
16251 Don't follow DW_AT_specification though, that will take us back up
16252 the chain and we want to go down. */
16253 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16254 if (attr)
16255 {
16256 type = get_DW_AT_signature_type (die, attr, cu);
16257
16258 /* The type's CU may not be the same as CU.
16259 Ensure TYPE is recorded with CU in die_type_hash. */
16260 return set_die_type (die, type, cu);
16261 }
16262
16263 type = alloc_type (objfile);
16264
16265 TYPE_CODE (type) = TYPE_CODE_ENUM;
16266 name = dwarf2_full_name (NULL, die, cu);
16267 if (name != NULL)
16268 TYPE_NAME (type) = name;
16269
16270 attr = dwarf2_attr (die, DW_AT_type, cu);
16271 if (attr != NULL)
16272 {
16273 struct type *underlying_type = die_type (die, cu);
16274
16275 TYPE_TARGET_TYPE (type) = underlying_type;
16276 }
16277
16278 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16279 if (attr)
16280 {
16281 TYPE_LENGTH (type) = DW_UNSND (attr);
16282 }
16283 else
16284 {
16285 TYPE_LENGTH (type) = 0;
16286 }
16287
16288 maybe_set_alignment (cu, die, type);
16289
16290 /* The enumeration DIE can be incomplete. In Ada, any type can be
16291 declared as private in the package spec, and then defined only
16292 inside the package body. Such types are known as Taft Amendment
16293 Types. When another package uses such a type, an incomplete DIE
16294 may be generated by the compiler. */
16295 if (die_is_declaration (die, cu))
16296 TYPE_STUB (type) = 1;
16297
16298 /* Finish the creation of this type by using the enum's children.
16299 We must call this even when the underlying type has been provided
16300 so that we can determine if we're looking at a "flag" enum. */
16301 update_enumeration_type_from_children (die, type, cu);
16302
16303 /* If this type has an underlying type that is not a stub, then we
16304 may use its attributes. We always use the "unsigned" attribute
16305 in this situation, because ordinarily we guess whether the type
16306 is unsigned -- but the guess can be wrong and the underlying type
16307 can tell us the reality. However, we defer to a local size
16308 attribute if one exists, because this lets the compiler override
16309 the underlying type if needed. */
16310 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16311 {
16312 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16313 if (TYPE_LENGTH (type) == 0)
16314 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16315 if (TYPE_RAW_ALIGN (type) == 0
16316 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16317 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16318 }
16319
16320 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16321
16322 return set_die_type (die, type, cu);
16323 }
16324
16325 /* Given a pointer to a die which begins an enumeration, process all
16326 the dies that define the members of the enumeration, and create the
16327 symbol for the enumeration type.
16328
16329 NOTE: We reverse the order of the element list. */
16330
16331 static void
16332 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16333 {
16334 struct type *this_type;
16335
16336 this_type = get_die_type (die, cu);
16337 if (this_type == NULL)
16338 this_type = read_enumeration_type (die, cu);
16339
16340 if (die->child != NULL)
16341 {
16342 struct die_info *child_die;
16343 struct symbol *sym;
16344 struct field *fields = NULL;
16345 int num_fields = 0;
16346 const char *name;
16347
16348 child_die = die->child;
16349 while (child_die && child_die->tag)
16350 {
16351 if (child_die->tag != DW_TAG_enumerator)
16352 {
16353 process_die (child_die, cu);
16354 }
16355 else
16356 {
16357 name = dwarf2_name (child_die, cu);
16358 if (name)
16359 {
16360 sym = new_symbol (child_die, this_type, cu);
16361
16362 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16363 {
16364 fields = (struct field *)
16365 xrealloc (fields,
16366 (num_fields + DW_FIELD_ALLOC_CHUNK)
16367 * sizeof (struct field));
16368 }
16369
16370 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16371 FIELD_TYPE (fields[num_fields]) = NULL;
16372 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16373 FIELD_BITSIZE (fields[num_fields]) = 0;
16374
16375 num_fields++;
16376 }
16377 }
16378
16379 child_die = sibling_die (child_die);
16380 }
16381
16382 if (num_fields)
16383 {
16384 TYPE_NFIELDS (this_type) = num_fields;
16385 TYPE_FIELDS (this_type) = (struct field *)
16386 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16387 memcpy (TYPE_FIELDS (this_type), fields,
16388 sizeof (struct field) * num_fields);
16389 xfree (fields);
16390 }
16391 }
16392
16393 /* If we are reading an enum from a .debug_types unit, and the enum
16394 is a declaration, and the enum is not the signatured type in the
16395 unit, then we do not want to add a symbol for it. Adding a
16396 symbol would in some cases obscure the true definition of the
16397 enum, giving users an incomplete type when the definition is
16398 actually available. Note that we do not want to do this for all
16399 enums which are just declarations, because C++0x allows forward
16400 enum declarations. */
16401 if (cu->per_cu->is_debug_types
16402 && die_is_declaration (die, cu))
16403 {
16404 struct signatured_type *sig_type;
16405
16406 sig_type = (struct signatured_type *) cu->per_cu;
16407 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16408 if (sig_type->type_offset_in_section != die->sect_off)
16409 return;
16410 }
16411
16412 new_symbol (die, this_type, cu);
16413 }
16414
16415 /* Extract all information from a DW_TAG_array_type DIE and put it in
16416 the DIE's type field. For now, this only handles one dimensional
16417 arrays. */
16418
16419 static struct type *
16420 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16421 {
16422 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16423 struct die_info *child_die;
16424 struct type *type;
16425 struct type *element_type, *range_type, *index_type;
16426 struct attribute *attr;
16427 const char *name;
16428 struct dynamic_prop *byte_stride_prop = NULL;
16429 unsigned int bit_stride = 0;
16430
16431 element_type = die_type (die, cu);
16432
16433 /* The die_type call above may have already set the type for this DIE. */
16434 type = get_die_type (die, cu);
16435 if (type)
16436 return type;
16437
16438 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16439 if (attr != NULL)
16440 {
16441 int stride_ok;
16442
16443 byte_stride_prop
16444 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16445 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16446 if (!stride_ok)
16447 {
16448 complaint (_("unable to read array DW_AT_byte_stride "
16449 " - DIE at %s [in module %s]"),
16450 sect_offset_str (die->sect_off),
16451 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16452 /* Ignore this attribute. We will likely not be able to print
16453 arrays of this type correctly, but there is little we can do
16454 to help if we cannot read the attribute's value. */
16455 byte_stride_prop = NULL;
16456 }
16457 }
16458
16459 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16460 if (attr != NULL)
16461 bit_stride = DW_UNSND (attr);
16462
16463 /* Irix 6.2 native cc creates array types without children for
16464 arrays with unspecified length. */
16465 if (die->child == NULL)
16466 {
16467 index_type = objfile_type (objfile)->builtin_int;
16468 range_type = create_static_range_type (NULL, index_type, 0, -1);
16469 type = create_array_type_with_stride (NULL, element_type, range_type,
16470 byte_stride_prop, bit_stride);
16471 return set_die_type (die, type, cu);
16472 }
16473
16474 std::vector<struct type *> range_types;
16475 child_die = die->child;
16476 while (child_die && child_die->tag)
16477 {
16478 if (child_die->tag == DW_TAG_subrange_type)
16479 {
16480 struct type *child_type = read_type_die (child_die, cu);
16481
16482 if (child_type != NULL)
16483 {
16484 /* The range type was succesfully read. Save it for the
16485 array type creation. */
16486 range_types.push_back (child_type);
16487 }
16488 }
16489 child_die = sibling_die (child_die);
16490 }
16491
16492 /* Dwarf2 dimensions are output from left to right, create the
16493 necessary array types in backwards order. */
16494
16495 type = element_type;
16496
16497 if (read_array_order (die, cu) == DW_ORD_col_major)
16498 {
16499 int i = 0;
16500
16501 while (i < range_types.size ())
16502 type = create_array_type_with_stride (NULL, type, range_types[i++],
16503 byte_stride_prop, bit_stride);
16504 }
16505 else
16506 {
16507 size_t ndim = range_types.size ();
16508 while (ndim-- > 0)
16509 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16510 byte_stride_prop, bit_stride);
16511 }
16512
16513 /* Understand Dwarf2 support for vector types (like they occur on
16514 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16515 array type. This is not part of the Dwarf2/3 standard yet, but a
16516 custom vendor extension. The main difference between a regular
16517 array and the vector variant is that vectors are passed by value
16518 to functions. */
16519 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16520 if (attr)
16521 make_vector_type (type);
16522
16523 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16524 implementation may choose to implement triple vectors using this
16525 attribute. */
16526 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16527 if (attr)
16528 {
16529 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16530 TYPE_LENGTH (type) = DW_UNSND (attr);
16531 else
16532 complaint (_("DW_AT_byte_size for array type smaller "
16533 "than the total size of elements"));
16534 }
16535
16536 name = dwarf2_name (die, cu);
16537 if (name)
16538 TYPE_NAME (type) = name;
16539
16540 maybe_set_alignment (cu, die, type);
16541
16542 /* Install the type in the die. */
16543 set_die_type (die, type, cu);
16544
16545 /* set_die_type should be already done. */
16546 set_descriptive_type (type, die, cu);
16547
16548 return type;
16549 }
16550
16551 static enum dwarf_array_dim_ordering
16552 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16553 {
16554 struct attribute *attr;
16555
16556 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16557
16558 if (attr)
16559 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16560
16561 /* GNU F77 is a special case, as at 08/2004 array type info is the
16562 opposite order to the dwarf2 specification, but data is still
16563 laid out as per normal fortran.
16564
16565 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16566 version checking. */
16567
16568 if (cu->language == language_fortran
16569 && cu->producer && strstr (cu->producer, "GNU F77"))
16570 {
16571 return DW_ORD_row_major;
16572 }
16573
16574 switch (cu->language_defn->la_array_ordering)
16575 {
16576 case array_column_major:
16577 return DW_ORD_col_major;
16578 case array_row_major:
16579 default:
16580 return DW_ORD_row_major;
16581 };
16582 }
16583
16584 /* Extract all information from a DW_TAG_set_type DIE and put it in
16585 the DIE's type field. */
16586
16587 static struct type *
16588 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16589 {
16590 struct type *domain_type, *set_type;
16591 struct attribute *attr;
16592
16593 domain_type = die_type (die, cu);
16594
16595 /* The die_type call above may have already set the type for this DIE. */
16596 set_type = get_die_type (die, cu);
16597 if (set_type)
16598 return set_type;
16599
16600 set_type = create_set_type (NULL, domain_type);
16601
16602 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16603 if (attr)
16604 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16605
16606 maybe_set_alignment (cu, die, set_type);
16607
16608 return set_die_type (die, set_type, cu);
16609 }
16610
16611 /* A helper for read_common_block that creates a locexpr baton.
16612 SYM is the symbol which we are marking as computed.
16613 COMMON_DIE is the DIE for the common block.
16614 COMMON_LOC is the location expression attribute for the common
16615 block itself.
16616 MEMBER_LOC is the location expression attribute for the particular
16617 member of the common block that we are processing.
16618 CU is the CU from which the above come. */
16619
16620 static void
16621 mark_common_block_symbol_computed (struct symbol *sym,
16622 struct die_info *common_die,
16623 struct attribute *common_loc,
16624 struct attribute *member_loc,
16625 struct dwarf2_cu *cu)
16626 {
16627 struct dwarf2_per_objfile *dwarf2_per_objfile
16628 = cu->per_cu->dwarf2_per_objfile;
16629 struct objfile *objfile = dwarf2_per_objfile->objfile;
16630 struct dwarf2_locexpr_baton *baton;
16631 gdb_byte *ptr;
16632 unsigned int cu_off;
16633 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16634 LONGEST offset = 0;
16635
16636 gdb_assert (common_loc && member_loc);
16637 gdb_assert (attr_form_is_block (common_loc));
16638 gdb_assert (attr_form_is_block (member_loc)
16639 || attr_form_is_constant (member_loc));
16640
16641 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16642 baton->per_cu = cu->per_cu;
16643 gdb_assert (baton->per_cu);
16644
16645 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16646
16647 if (attr_form_is_constant (member_loc))
16648 {
16649 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16650 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16651 }
16652 else
16653 baton->size += DW_BLOCK (member_loc)->size;
16654
16655 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16656 baton->data = ptr;
16657
16658 *ptr++ = DW_OP_call4;
16659 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16660 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16661 ptr += 4;
16662
16663 if (attr_form_is_constant (member_loc))
16664 {
16665 *ptr++ = DW_OP_addr;
16666 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16667 ptr += cu->header.addr_size;
16668 }
16669 else
16670 {
16671 /* We have to copy the data here, because DW_OP_call4 will only
16672 use a DW_AT_location attribute. */
16673 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16674 ptr += DW_BLOCK (member_loc)->size;
16675 }
16676
16677 *ptr++ = DW_OP_plus;
16678 gdb_assert (ptr - baton->data == baton->size);
16679
16680 SYMBOL_LOCATION_BATON (sym) = baton;
16681 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16682 }
16683
16684 /* Create appropriate locally-scoped variables for all the
16685 DW_TAG_common_block entries. Also create a struct common_block
16686 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16687 is used to sepate the common blocks name namespace from regular
16688 variable names. */
16689
16690 static void
16691 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16692 {
16693 struct attribute *attr;
16694
16695 attr = dwarf2_attr (die, DW_AT_location, cu);
16696 if (attr)
16697 {
16698 /* Support the .debug_loc offsets. */
16699 if (attr_form_is_block (attr))
16700 {
16701 /* Ok. */
16702 }
16703 else if (attr_form_is_section_offset (attr))
16704 {
16705 dwarf2_complex_location_expr_complaint ();
16706 attr = NULL;
16707 }
16708 else
16709 {
16710 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16711 "common block member");
16712 attr = NULL;
16713 }
16714 }
16715
16716 if (die->child != NULL)
16717 {
16718 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16719 struct die_info *child_die;
16720 size_t n_entries = 0, size;
16721 struct common_block *common_block;
16722 struct symbol *sym;
16723
16724 for (child_die = die->child;
16725 child_die && child_die->tag;
16726 child_die = sibling_die (child_die))
16727 ++n_entries;
16728
16729 size = (sizeof (struct common_block)
16730 + (n_entries - 1) * sizeof (struct symbol *));
16731 common_block
16732 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16733 size);
16734 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16735 common_block->n_entries = 0;
16736
16737 for (child_die = die->child;
16738 child_die && child_die->tag;
16739 child_die = sibling_die (child_die))
16740 {
16741 /* Create the symbol in the DW_TAG_common_block block in the current
16742 symbol scope. */
16743 sym = new_symbol (child_die, NULL, cu);
16744 if (sym != NULL)
16745 {
16746 struct attribute *member_loc;
16747
16748 common_block->contents[common_block->n_entries++] = sym;
16749
16750 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16751 cu);
16752 if (member_loc)
16753 {
16754 /* GDB has handled this for a long time, but it is
16755 not specified by DWARF. It seems to have been
16756 emitted by gfortran at least as recently as:
16757 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16758 complaint (_("Variable in common block has "
16759 "DW_AT_data_member_location "
16760 "- DIE at %s [in module %s]"),
16761 sect_offset_str (child_die->sect_off),
16762 objfile_name (objfile));
16763
16764 if (attr_form_is_section_offset (member_loc))
16765 dwarf2_complex_location_expr_complaint ();
16766 else if (attr_form_is_constant (member_loc)
16767 || attr_form_is_block (member_loc))
16768 {
16769 if (attr)
16770 mark_common_block_symbol_computed (sym, die, attr,
16771 member_loc, cu);
16772 }
16773 else
16774 dwarf2_complex_location_expr_complaint ();
16775 }
16776 }
16777 }
16778
16779 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16780 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16781 }
16782 }
16783
16784 /* Create a type for a C++ namespace. */
16785
16786 static struct type *
16787 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16788 {
16789 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16790 const char *previous_prefix, *name;
16791 int is_anonymous;
16792 struct type *type;
16793
16794 /* For extensions, reuse the type of the original namespace. */
16795 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16796 {
16797 struct die_info *ext_die;
16798 struct dwarf2_cu *ext_cu = cu;
16799
16800 ext_die = dwarf2_extension (die, &ext_cu);
16801 type = read_type_die (ext_die, ext_cu);
16802
16803 /* EXT_CU may not be the same as CU.
16804 Ensure TYPE is recorded with CU in die_type_hash. */
16805 return set_die_type (die, type, cu);
16806 }
16807
16808 name = namespace_name (die, &is_anonymous, cu);
16809
16810 /* Now build the name of the current namespace. */
16811
16812 previous_prefix = determine_prefix (die, cu);
16813 if (previous_prefix[0] != '\0')
16814 name = typename_concat (&objfile->objfile_obstack,
16815 previous_prefix, name, 0, cu);
16816
16817 /* Create the type. */
16818 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16819
16820 return set_die_type (die, type, cu);
16821 }
16822
16823 /* Read a namespace scope. */
16824
16825 static void
16826 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16827 {
16828 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16829 int is_anonymous;
16830
16831 /* Add a symbol associated to this if we haven't seen the namespace
16832 before. Also, add a using directive if it's an anonymous
16833 namespace. */
16834
16835 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16836 {
16837 struct type *type;
16838
16839 type = read_type_die (die, cu);
16840 new_symbol (die, type, cu);
16841
16842 namespace_name (die, &is_anonymous, cu);
16843 if (is_anonymous)
16844 {
16845 const char *previous_prefix = determine_prefix (die, cu);
16846
16847 std::vector<const char *> excludes;
16848 add_using_directive (using_directives (cu),
16849 previous_prefix, TYPE_NAME (type), NULL,
16850 NULL, excludes, 0, &objfile->objfile_obstack);
16851 }
16852 }
16853
16854 if (die->child != NULL)
16855 {
16856 struct die_info *child_die = die->child;
16857
16858 while (child_die && child_die->tag)
16859 {
16860 process_die (child_die, cu);
16861 child_die = sibling_die (child_die);
16862 }
16863 }
16864 }
16865
16866 /* Read a Fortran module as type. This DIE can be only a declaration used for
16867 imported module. Still we need that type as local Fortran "use ... only"
16868 declaration imports depend on the created type in determine_prefix. */
16869
16870 static struct type *
16871 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16872 {
16873 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16874 const char *module_name;
16875 struct type *type;
16876
16877 module_name = dwarf2_name (die, cu);
16878 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16879
16880 return set_die_type (die, type, cu);
16881 }
16882
16883 /* Read a Fortran module. */
16884
16885 static void
16886 read_module (struct die_info *die, struct dwarf2_cu *cu)
16887 {
16888 struct die_info *child_die = die->child;
16889 struct type *type;
16890
16891 type = read_type_die (die, cu);
16892 new_symbol (die, type, cu);
16893
16894 while (child_die && child_die->tag)
16895 {
16896 process_die (child_die, cu);
16897 child_die = sibling_die (child_die);
16898 }
16899 }
16900
16901 /* Return the name of the namespace represented by DIE. Set
16902 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16903 namespace. */
16904
16905 static const char *
16906 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16907 {
16908 struct die_info *current_die;
16909 const char *name = NULL;
16910
16911 /* Loop through the extensions until we find a name. */
16912
16913 for (current_die = die;
16914 current_die != NULL;
16915 current_die = dwarf2_extension (die, &cu))
16916 {
16917 /* We don't use dwarf2_name here so that we can detect the absence
16918 of a name -> anonymous namespace. */
16919 name = dwarf2_string_attr (die, DW_AT_name, cu);
16920
16921 if (name != NULL)
16922 break;
16923 }
16924
16925 /* Is it an anonymous namespace? */
16926
16927 *is_anonymous = (name == NULL);
16928 if (*is_anonymous)
16929 name = CP_ANONYMOUS_NAMESPACE_STR;
16930
16931 return name;
16932 }
16933
16934 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16935 the user defined type vector. */
16936
16937 static struct type *
16938 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16939 {
16940 struct gdbarch *gdbarch
16941 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16942 struct comp_unit_head *cu_header = &cu->header;
16943 struct type *type;
16944 struct attribute *attr_byte_size;
16945 struct attribute *attr_address_class;
16946 int byte_size, addr_class;
16947 struct type *target_type;
16948
16949 target_type = die_type (die, cu);
16950
16951 /* The die_type call above may have already set the type for this DIE. */
16952 type = get_die_type (die, cu);
16953 if (type)
16954 return type;
16955
16956 type = lookup_pointer_type (target_type);
16957
16958 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16959 if (attr_byte_size)
16960 byte_size = DW_UNSND (attr_byte_size);
16961 else
16962 byte_size = cu_header->addr_size;
16963
16964 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16965 if (attr_address_class)
16966 addr_class = DW_UNSND (attr_address_class);
16967 else
16968 addr_class = DW_ADDR_none;
16969
16970 ULONGEST alignment = get_alignment (cu, die);
16971
16972 /* If the pointer size, alignment, or address class is different
16973 than the default, create a type variant marked as such and set
16974 the length accordingly. */
16975 if (TYPE_LENGTH (type) != byte_size
16976 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
16977 && alignment != TYPE_RAW_ALIGN (type))
16978 || addr_class != DW_ADDR_none)
16979 {
16980 if (gdbarch_address_class_type_flags_p (gdbarch))
16981 {
16982 int type_flags;
16983
16984 type_flags = gdbarch_address_class_type_flags
16985 (gdbarch, byte_size, addr_class);
16986 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16987 == 0);
16988 type = make_type_with_address_space (type, type_flags);
16989 }
16990 else if (TYPE_LENGTH (type) != byte_size)
16991 {
16992 complaint (_("invalid pointer size %d"), byte_size);
16993 }
16994 else if (TYPE_RAW_ALIGN (type) != alignment)
16995 {
16996 complaint (_("Invalid DW_AT_alignment"
16997 " - DIE at %s [in module %s]"),
16998 sect_offset_str (die->sect_off),
16999 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17000 }
17001 else
17002 {
17003 /* Should we also complain about unhandled address classes? */
17004 }
17005 }
17006
17007 TYPE_LENGTH (type) = byte_size;
17008 set_type_align (type, alignment);
17009 return set_die_type (die, type, cu);
17010 }
17011
17012 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17013 the user defined type vector. */
17014
17015 static struct type *
17016 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17017 {
17018 struct type *type;
17019 struct type *to_type;
17020 struct type *domain;
17021
17022 to_type = die_type (die, cu);
17023 domain = die_containing_type (die, cu);
17024
17025 /* The calls above may have already set the type for this DIE. */
17026 type = get_die_type (die, cu);
17027 if (type)
17028 return type;
17029
17030 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17031 type = lookup_methodptr_type (to_type);
17032 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17033 {
17034 struct type *new_type
17035 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
17036
17037 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17038 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17039 TYPE_VARARGS (to_type));
17040 type = lookup_methodptr_type (new_type);
17041 }
17042 else
17043 type = lookup_memberptr_type (to_type, domain);
17044
17045 return set_die_type (die, type, cu);
17046 }
17047
17048 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17049 the user defined type vector. */
17050
17051 static struct type *
17052 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17053 enum type_code refcode)
17054 {
17055 struct comp_unit_head *cu_header = &cu->header;
17056 struct type *type, *target_type;
17057 struct attribute *attr;
17058
17059 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17060
17061 target_type = die_type (die, cu);
17062
17063 /* The die_type call above may have already set the type for this DIE. */
17064 type = get_die_type (die, cu);
17065 if (type)
17066 return type;
17067
17068 type = lookup_reference_type (target_type, refcode);
17069 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17070 if (attr)
17071 {
17072 TYPE_LENGTH (type) = DW_UNSND (attr);
17073 }
17074 else
17075 {
17076 TYPE_LENGTH (type) = cu_header->addr_size;
17077 }
17078 maybe_set_alignment (cu, die, type);
17079 return set_die_type (die, type, cu);
17080 }
17081
17082 /* Add the given cv-qualifiers to the element type of the array. GCC
17083 outputs DWARF type qualifiers that apply to an array, not the
17084 element type. But GDB relies on the array element type to carry
17085 the cv-qualifiers. This mimics section 6.7.3 of the C99
17086 specification. */
17087
17088 static struct type *
17089 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17090 struct type *base_type, int cnst, int voltl)
17091 {
17092 struct type *el_type, *inner_array;
17093
17094 base_type = copy_type (base_type);
17095 inner_array = base_type;
17096
17097 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17098 {
17099 TYPE_TARGET_TYPE (inner_array) =
17100 copy_type (TYPE_TARGET_TYPE (inner_array));
17101 inner_array = TYPE_TARGET_TYPE (inner_array);
17102 }
17103
17104 el_type = TYPE_TARGET_TYPE (inner_array);
17105 cnst |= TYPE_CONST (el_type);
17106 voltl |= TYPE_VOLATILE (el_type);
17107 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17108
17109 return set_die_type (die, base_type, cu);
17110 }
17111
17112 static struct type *
17113 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17114 {
17115 struct type *base_type, *cv_type;
17116
17117 base_type = die_type (die, cu);
17118
17119 /* The die_type call above may have already set the type for this DIE. */
17120 cv_type = get_die_type (die, cu);
17121 if (cv_type)
17122 return cv_type;
17123
17124 /* In case the const qualifier is applied to an array type, the element type
17125 is so qualified, not the array type (section 6.7.3 of C99). */
17126 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17127 return add_array_cv_type (die, cu, base_type, 1, 0);
17128
17129 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17130 return set_die_type (die, cv_type, cu);
17131 }
17132
17133 static struct type *
17134 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17135 {
17136 struct type *base_type, *cv_type;
17137
17138 base_type = die_type (die, cu);
17139
17140 /* The die_type call above may have already set the type for this DIE. */
17141 cv_type = get_die_type (die, cu);
17142 if (cv_type)
17143 return cv_type;
17144
17145 /* In case the volatile qualifier is applied to an array type, the
17146 element type is so qualified, not the array type (section 6.7.3
17147 of C99). */
17148 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17149 return add_array_cv_type (die, cu, base_type, 0, 1);
17150
17151 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17152 return set_die_type (die, cv_type, cu);
17153 }
17154
17155 /* Handle DW_TAG_restrict_type. */
17156
17157 static struct type *
17158 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17159 {
17160 struct type *base_type, *cv_type;
17161
17162 base_type = die_type (die, cu);
17163
17164 /* The die_type call above may have already set the type for this DIE. */
17165 cv_type = get_die_type (die, cu);
17166 if (cv_type)
17167 return cv_type;
17168
17169 cv_type = make_restrict_type (base_type);
17170 return set_die_type (die, cv_type, cu);
17171 }
17172
17173 /* Handle DW_TAG_atomic_type. */
17174
17175 static struct type *
17176 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17177 {
17178 struct type *base_type, *cv_type;
17179
17180 base_type = die_type (die, cu);
17181
17182 /* The die_type call above may have already set the type for this DIE. */
17183 cv_type = get_die_type (die, cu);
17184 if (cv_type)
17185 return cv_type;
17186
17187 cv_type = make_atomic_type (base_type);
17188 return set_die_type (die, cv_type, cu);
17189 }
17190
17191 /* Extract all information from a DW_TAG_string_type DIE and add to
17192 the user defined type vector. It isn't really a user defined type,
17193 but it behaves like one, with other DIE's using an AT_user_def_type
17194 attribute to reference it. */
17195
17196 static struct type *
17197 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17198 {
17199 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17200 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17201 struct type *type, *range_type, *index_type, *char_type;
17202 struct attribute *attr;
17203 unsigned int length;
17204
17205 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17206 if (attr)
17207 {
17208 length = DW_UNSND (attr);
17209 }
17210 else
17211 {
17212 /* Check for the DW_AT_byte_size attribute. */
17213 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17214 if (attr)
17215 {
17216 length = DW_UNSND (attr);
17217 }
17218 else
17219 {
17220 length = 1;
17221 }
17222 }
17223
17224 index_type = objfile_type (objfile)->builtin_int;
17225 range_type = create_static_range_type (NULL, index_type, 1, length);
17226 char_type = language_string_char_type (cu->language_defn, gdbarch);
17227 type = create_string_type (NULL, char_type, range_type);
17228
17229 return set_die_type (die, type, cu);
17230 }
17231
17232 /* Assuming that DIE corresponds to a function, returns nonzero
17233 if the function is prototyped. */
17234
17235 static int
17236 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17237 {
17238 struct attribute *attr;
17239
17240 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17241 if (attr && (DW_UNSND (attr) != 0))
17242 return 1;
17243
17244 /* The DWARF standard implies that the DW_AT_prototyped attribute
17245 is only meaninful for C, but the concept also extends to other
17246 languages that allow unprototyped functions (Eg: Objective C).
17247 For all other languages, assume that functions are always
17248 prototyped. */
17249 if (cu->language != language_c
17250 && cu->language != language_objc
17251 && cu->language != language_opencl)
17252 return 1;
17253
17254 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17255 prototyped and unprototyped functions; default to prototyped,
17256 since that is more common in modern code (and RealView warns
17257 about unprototyped functions). */
17258 if (producer_is_realview (cu->producer))
17259 return 1;
17260
17261 return 0;
17262 }
17263
17264 /* Handle DIES due to C code like:
17265
17266 struct foo
17267 {
17268 int (*funcp)(int a, long l);
17269 int b;
17270 };
17271
17272 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17273
17274 static struct type *
17275 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17276 {
17277 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17278 struct type *type; /* Type that this function returns. */
17279 struct type *ftype; /* Function that returns above type. */
17280 struct attribute *attr;
17281
17282 type = die_type (die, cu);
17283
17284 /* The die_type call above may have already set the type for this DIE. */
17285 ftype = get_die_type (die, cu);
17286 if (ftype)
17287 return ftype;
17288
17289 ftype = lookup_function_type (type);
17290
17291 if (prototyped_function_p (die, cu))
17292 TYPE_PROTOTYPED (ftype) = 1;
17293
17294 /* Store the calling convention in the type if it's available in
17295 the subroutine die. Otherwise set the calling convention to
17296 the default value DW_CC_normal. */
17297 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17298 if (attr)
17299 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17300 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17301 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17302 else
17303 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17304
17305 /* Record whether the function returns normally to its caller or not
17306 if the DWARF producer set that information. */
17307 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17308 if (attr && (DW_UNSND (attr) != 0))
17309 TYPE_NO_RETURN (ftype) = 1;
17310
17311 /* We need to add the subroutine type to the die immediately so
17312 we don't infinitely recurse when dealing with parameters
17313 declared as the same subroutine type. */
17314 set_die_type (die, ftype, cu);
17315
17316 if (die->child != NULL)
17317 {
17318 struct type *void_type = objfile_type (objfile)->builtin_void;
17319 struct die_info *child_die;
17320 int nparams, iparams;
17321
17322 /* Count the number of parameters.
17323 FIXME: GDB currently ignores vararg functions, but knows about
17324 vararg member functions. */
17325 nparams = 0;
17326 child_die = die->child;
17327 while (child_die && child_die->tag)
17328 {
17329 if (child_die->tag == DW_TAG_formal_parameter)
17330 nparams++;
17331 else if (child_die->tag == DW_TAG_unspecified_parameters)
17332 TYPE_VARARGS (ftype) = 1;
17333 child_die = sibling_die (child_die);
17334 }
17335
17336 /* Allocate storage for parameters and fill them in. */
17337 TYPE_NFIELDS (ftype) = nparams;
17338 TYPE_FIELDS (ftype) = (struct field *)
17339 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17340
17341 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17342 even if we error out during the parameters reading below. */
17343 for (iparams = 0; iparams < nparams; iparams++)
17344 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17345
17346 iparams = 0;
17347 child_die = die->child;
17348 while (child_die && child_die->tag)
17349 {
17350 if (child_die->tag == DW_TAG_formal_parameter)
17351 {
17352 struct type *arg_type;
17353
17354 /* DWARF version 2 has no clean way to discern C++
17355 static and non-static member functions. G++ helps
17356 GDB by marking the first parameter for non-static
17357 member functions (which is the this pointer) as
17358 artificial. We pass this information to
17359 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17360
17361 DWARF version 3 added DW_AT_object_pointer, which GCC
17362 4.5 does not yet generate. */
17363 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17364 if (attr)
17365 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17366 else
17367 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17368 arg_type = die_type (child_die, cu);
17369
17370 /* RealView does not mark THIS as const, which the testsuite
17371 expects. GCC marks THIS as const in method definitions,
17372 but not in the class specifications (GCC PR 43053). */
17373 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17374 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17375 {
17376 int is_this = 0;
17377 struct dwarf2_cu *arg_cu = cu;
17378 const char *name = dwarf2_name (child_die, cu);
17379
17380 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17381 if (attr)
17382 {
17383 /* If the compiler emits this, use it. */
17384 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17385 is_this = 1;
17386 }
17387 else if (name && strcmp (name, "this") == 0)
17388 /* Function definitions will have the argument names. */
17389 is_this = 1;
17390 else if (name == NULL && iparams == 0)
17391 /* Declarations may not have the names, so like
17392 elsewhere in GDB, assume an artificial first
17393 argument is "this". */
17394 is_this = 1;
17395
17396 if (is_this)
17397 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17398 arg_type, 0);
17399 }
17400
17401 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17402 iparams++;
17403 }
17404 child_die = sibling_die (child_die);
17405 }
17406 }
17407
17408 return ftype;
17409 }
17410
17411 static struct type *
17412 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17413 {
17414 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17415 const char *name = NULL;
17416 struct type *this_type, *target_type;
17417
17418 name = dwarf2_full_name (NULL, die, cu);
17419 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17420 TYPE_TARGET_STUB (this_type) = 1;
17421 set_die_type (die, this_type, cu);
17422 target_type = die_type (die, cu);
17423 if (target_type != this_type)
17424 TYPE_TARGET_TYPE (this_type) = target_type;
17425 else
17426 {
17427 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17428 spec and cause infinite loops in GDB. */
17429 complaint (_("Self-referential DW_TAG_typedef "
17430 "- DIE at %s [in module %s]"),
17431 sect_offset_str (die->sect_off), objfile_name (objfile));
17432 TYPE_TARGET_TYPE (this_type) = NULL;
17433 }
17434 return this_type;
17435 }
17436
17437 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17438 (which may be different from NAME) to the architecture back-end to allow
17439 it to guess the correct format if necessary. */
17440
17441 static struct type *
17442 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17443 const char *name_hint)
17444 {
17445 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17446 const struct floatformat **format;
17447 struct type *type;
17448
17449 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17450 if (format)
17451 type = init_float_type (objfile, bits, name, format);
17452 else
17453 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17454
17455 return type;
17456 }
17457
17458 /* Allocate an integer type of size BITS and name NAME. */
17459
17460 static struct type *
17461 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17462 int bits, int unsigned_p, const char *name)
17463 {
17464 struct type *type;
17465
17466 /* Versions of Intel's C Compiler generate an integer type called "void"
17467 instead of using DW_TAG_unspecified_type. This has been seen on
17468 at least versions 14, 17, and 18. */
17469 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17470 && strcmp (name, "void") == 0)
17471 type = objfile_type (objfile)->builtin_void;
17472 else
17473 type = init_integer_type (objfile, bits, unsigned_p, name);
17474
17475 return type;
17476 }
17477
17478 /* Initialise and return a floating point type of size BITS suitable for
17479 use as a component of a complex number. The NAME_HINT is passed through
17480 when initialising the floating point type and is the name of the complex
17481 type.
17482
17483 As DWARF doesn't currently provide an explicit name for the components
17484 of a complex number, but it can be helpful to have these components
17485 named, we try to select a suitable name based on the size of the
17486 component. */
17487 static struct type *
17488 dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
17489 struct objfile *objfile,
17490 int bits, const char *name_hint)
17491 {
17492 gdbarch *gdbarch = get_objfile_arch (objfile);
17493 struct type *tt = nullptr;
17494
17495 /* Try to find a suitable floating point builtin type of size BITS.
17496 We're going to use the name of this type as the name for the complex
17497 target type that we are about to create. */
17498 switch (cu->language)
17499 {
17500 case language_fortran:
17501 switch (bits)
17502 {
17503 case 32:
17504 tt = builtin_f_type (gdbarch)->builtin_real;
17505 break;
17506 case 64:
17507 tt = builtin_f_type (gdbarch)->builtin_real_s8;
17508 break;
17509 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17510 case 128:
17511 tt = builtin_f_type (gdbarch)->builtin_real_s16;
17512 break;
17513 }
17514 break;
17515 default:
17516 switch (bits)
17517 {
17518 case 32:
17519 tt = builtin_type (gdbarch)->builtin_float;
17520 break;
17521 case 64:
17522 tt = builtin_type (gdbarch)->builtin_double;
17523 break;
17524 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17525 case 128:
17526 tt = builtin_type (gdbarch)->builtin_long_double;
17527 break;
17528 }
17529 break;
17530 }
17531
17532 /* If the type we found doesn't match the size we were looking for, then
17533 pretend we didn't find a type at all, the complex target type we
17534 create will then be nameless. */
17535 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
17536 tt = nullptr;
17537
17538 const char *name = (tt == nullptr) ? nullptr : TYPE_NAME (tt);
17539 return dwarf2_init_float_type (objfile, bits, name, name_hint);
17540 }
17541
17542 /* Find a representation of a given base type and install
17543 it in the TYPE field of the die. */
17544
17545 static struct type *
17546 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17547 {
17548 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17549 struct type *type;
17550 struct attribute *attr;
17551 int encoding = 0, bits = 0;
17552 const char *name;
17553
17554 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17555 if (attr)
17556 {
17557 encoding = DW_UNSND (attr);
17558 }
17559 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17560 if (attr)
17561 {
17562 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17563 }
17564 name = dwarf2_name (die, cu);
17565 if (!name)
17566 {
17567 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17568 }
17569
17570 switch (encoding)
17571 {
17572 case DW_ATE_address:
17573 /* Turn DW_ATE_address into a void * pointer. */
17574 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17575 type = init_pointer_type (objfile, bits, name, type);
17576 break;
17577 case DW_ATE_boolean:
17578 type = init_boolean_type (objfile, bits, 1, name);
17579 break;
17580 case DW_ATE_complex_float:
17581 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name);
17582 type = init_complex_type (objfile, name, type);
17583 break;
17584 case DW_ATE_decimal_float:
17585 type = init_decfloat_type (objfile, bits, name);
17586 break;
17587 case DW_ATE_float:
17588 type = dwarf2_init_float_type (objfile, bits, name, name);
17589 break;
17590 case DW_ATE_signed:
17591 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17592 break;
17593 case DW_ATE_unsigned:
17594 if (cu->language == language_fortran
17595 && name
17596 && startswith (name, "character("))
17597 type = init_character_type (objfile, bits, 1, name);
17598 else
17599 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17600 break;
17601 case DW_ATE_signed_char:
17602 if (cu->language == language_ada || cu->language == language_m2
17603 || cu->language == language_pascal
17604 || cu->language == language_fortran)
17605 type = init_character_type (objfile, bits, 0, name);
17606 else
17607 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17608 break;
17609 case DW_ATE_unsigned_char:
17610 if (cu->language == language_ada || cu->language == language_m2
17611 || cu->language == language_pascal
17612 || cu->language == language_fortran
17613 || cu->language == language_rust)
17614 type = init_character_type (objfile, bits, 1, name);
17615 else
17616 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17617 break;
17618 case DW_ATE_UTF:
17619 {
17620 gdbarch *arch = get_objfile_arch (objfile);
17621
17622 if (bits == 16)
17623 type = builtin_type (arch)->builtin_char16;
17624 else if (bits == 32)
17625 type = builtin_type (arch)->builtin_char32;
17626 else
17627 {
17628 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17629 bits);
17630 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17631 }
17632 return set_die_type (die, type, cu);
17633 }
17634 break;
17635
17636 default:
17637 complaint (_("unsupported DW_AT_encoding: '%s'"),
17638 dwarf_type_encoding_name (encoding));
17639 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17640 break;
17641 }
17642
17643 if (name && strcmp (name, "char") == 0)
17644 TYPE_NOSIGN (type) = 1;
17645
17646 maybe_set_alignment (cu, die, type);
17647
17648 return set_die_type (die, type, cu);
17649 }
17650
17651 /* Parse dwarf attribute if it's a block, reference or constant and put the
17652 resulting value of the attribute into struct bound_prop.
17653 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17654
17655 static int
17656 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17657 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17658 {
17659 struct dwarf2_property_baton *baton;
17660 struct obstack *obstack
17661 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17662
17663 if (attr == NULL || prop == NULL)
17664 return 0;
17665
17666 if (attr_form_is_block (attr))
17667 {
17668 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17669 baton->referenced_type = NULL;
17670 baton->locexpr.per_cu = cu->per_cu;
17671 baton->locexpr.size = DW_BLOCK (attr)->size;
17672 baton->locexpr.data = DW_BLOCK (attr)->data;
17673 prop->data.baton = baton;
17674 prop->kind = PROP_LOCEXPR;
17675 gdb_assert (prop->data.baton != NULL);
17676 }
17677 else if (attr_form_is_ref (attr))
17678 {
17679 struct dwarf2_cu *target_cu = cu;
17680 struct die_info *target_die;
17681 struct attribute *target_attr;
17682
17683 target_die = follow_die_ref (die, attr, &target_cu);
17684 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17685 if (target_attr == NULL)
17686 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17687 target_cu);
17688 if (target_attr == NULL)
17689 return 0;
17690
17691 switch (target_attr->name)
17692 {
17693 case DW_AT_location:
17694 if (attr_form_is_section_offset (target_attr))
17695 {
17696 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17697 baton->referenced_type = die_type (target_die, target_cu);
17698 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17699 prop->data.baton = baton;
17700 prop->kind = PROP_LOCLIST;
17701 gdb_assert (prop->data.baton != NULL);
17702 }
17703 else if (attr_form_is_block (target_attr))
17704 {
17705 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17706 baton->referenced_type = die_type (target_die, target_cu);
17707 baton->locexpr.per_cu = cu->per_cu;
17708 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17709 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17710 prop->data.baton = baton;
17711 prop->kind = PROP_LOCEXPR;
17712 gdb_assert (prop->data.baton != NULL);
17713 }
17714 else
17715 {
17716 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17717 "dynamic property");
17718 return 0;
17719 }
17720 break;
17721 case DW_AT_data_member_location:
17722 {
17723 LONGEST offset;
17724
17725 if (!handle_data_member_location (target_die, target_cu,
17726 &offset))
17727 return 0;
17728
17729 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17730 baton->referenced_type = read_type_die (target_die->parent,
17731 target_cu);
17732 baton->offset_info.offset = offset;
17733 baton->offset_info.type = die_type (target_die, target_cu);
17734 prop->data.baton = baton;
17735 prop->kind = PROP_ADDR_OFFSET;
17736 break;
17737 }
17738 }
17739 }
17740 else if (attr_form_is_constant (attr))
17741 {
17742 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17743 prop->kind = PROP_CONST;
17744 }
17745 else
17746 {
17747 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17748 dwarf2_name (die, cu));
17749 return 0;
17750 }
17751
17752 return 1;
17753 }
17754
17755 /* Read the DW_AT_type attribute for a sub-range. If this attribute is not
17756 present (which is valid) then compute the default type based on the
17757 compilation units address size. */
17758
17759 static struct type *
17760 read_subrange_index_type (struct die_info *die, struct dwarf2_cu *cu)
17761 {
17762 struct type *index_type = die_type (die, cu);
17763
17764 /* Dwarf-2 specifications explicitly allows to create subrange types
17765 without specifying a base type.
17766 In that case, the base type must be set to the type of
17767 the lower bound, upper bound or count, in that order, if any of these
17768 three attributes references an object that has a type.
17769 If no base type is found, the Dwarf-2 specifications say that
17770 a signed integer type of size equal to the size of an address should
17771 be used.
17772 For the following C code: `extern char gdb_int [];'
17773 GCC produces an empty range DIE.
17774 FIXME: muller/2010-05-28: Possible references to object for low bound,
17775 high bound or count are not yet handled by this code. */
17776 if (TYPE_CODE (index_type) == TYPE_CODE_VOID)
17777 {
17778 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17779 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17780 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17781 struct type *int_type = objfile_type (objfile)->builtin_int;
17782
17783 /* Test "int", "long int", and "long long int" objfile types,
17784 and select the first one having a size above or equal to the
17785 architecture address size. */
17786 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17787 index_type = int_type;
17788 else
17789 {
17790 int_type = objfile_type (objfile)->builtin_long;
17791 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17792 index_type = int_type;
17793 else
17794 {
17795 int_type = objfile_type (objfile)->builtin_long_long;
17796 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17797 index_type = int_type;
17798 }
17799 }
17800 }
17801
17802 return index_type;
17803 }
17804
17805 /* Read the given DW_AT_subrange DIE. */
17806
17807 static struct type *
17808 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17809 {
17810 struct type *base_type, *orig_base_type;
17811 struct type *range_type;
17812 struct attribute *attr;
17813 struct dynamic_prop low, high;
17814 int low_default_is_valid;
17815 int high_bound_is_count = 0;
17816 const char *name;
17817 ULONGEST negative_mask;
17818
17819 orig_base_type = read_subrange_index_type (die, cu);
17820
17821 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17822 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17823 creating the range type, but we use the result of check_typedef
17824 when examining properties of the type. */
17825 base_type = check_typedef (orig_base_type);
17826
17827 /* The die_type call above may have already set the type for this DIE. */
17828 range_type = get_die_type (die, cu);
17829 if (range_type)
17830 return range_type;
17831
17832 low.kind = PROP_CONST;
17833 high.kind = PROP_CONST;
17834 high.data.const_val = 0;
17835
17836 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17837 omitting DW_AT_lower_bound. */
17838 switch (cu->language)
17839 {
17840 case language_c:
17841 case language_cplus:
17842 low.data.const_val = 0;
17843 low_default_is_valid = 1;
17844 break;
17845 case language_fortran:
17846 low.data.const_val = 1;
17847 low_default_is_valid = 1;
17848 break;
17849 case language_d:
17850 case language_objc:
17851 case language_rust:
17852 low.data.const_val = 0;
17853 low_default_is_valid = (cu->header.version >= 4);
17854 break;
17855 case language_ada:
17856 case language_m2:
17857 case language_pascal:
17858 low.data.const_val = 1;
17859 low_default_is_valid = (cu->header.version >= 4);
17860 break;
17861 default:
17862 low.data.const_val = 0;
17863 low_default_is_valid = 0;
17864 break;
17865 }
17866
17867 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17868 if (attr)
17869 attr_to_dynamic_prop (attr, die, cu, &low);
17870 else if (!low_default_is_valid)
17871 complaint (_("Missing DW_AT_lower_bound "
17872 "- DIE at %s [in module %s]"),
17873 sect_offset_str (die->sect_off),
17874 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17875
17876 struct attribute *attr_ub, *attr_count;
17877 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17878 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17879 {
17880 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17881 if (attr_to_dynamic_prop (attr, die, cu, &high))
17882 {
17883 /* If bounds are constant do the final calculation here. */
17884 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17885 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17886 else
17887 high_bound_is_count = 1;
17888 }
17889 else
17890 {
17891 if (attr_ub != NULL)
17892 complaint (_("Unresolved DW_AT_upper_bound "
17893 "- DIE at %s [in module %s]"),
17894 sect_offset_str (die->sect_off),
17895 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17896 if (attr_count != NULL)
17897 complaint (_("Unresolved DW_AT_count "
17898 "- DIE at %s [in module %s]"),
17899 sect_offset_str (die->sect_off),
17900 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17901 }
17902 }
17903
17904 /* Normally, the DWARF producers are expected to use a signed
17905 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17906 But this is unfortunately not always the case, as witnessed
17907 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17908 is used instead. To work around that ambiguity, we treat
17909 the bounds as signed, and thus sign-extend their values, when
17910 the base type is signed. */
17911 negative_mask =
17912 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17913 if (low.kind == PROP_CONST
17914 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17915 low.data.const_val |= negative_mask;
17916 if (high.kind == PROP_CONST
17917 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17918 high.data.const_val |= negative_mask;
17919
17920 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17921
17922 if (high_bound_is_count)
17923 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17924
17925 /* Ada expects an empty array on no boundary attributes. */
17926 if (attr == NULL && cu->language != language_ada)
17927 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17928
17929 name = dwarf2_name (die, cu);
17930 if (name)
17931 TYPE_NAME (range_type) = name;
17932
17933 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17934 if (attr)
17935 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17936
17937 maybe_set_alignment (cu, die, range_type);
17938
17939 set_die_type (die, range_type, cu);
17940
17941 /* set_die_type should be already done. */
17942 set_descriptive_type (range_type, die, cu);
17943
17944 return range_type;
17945 }
17946
17947 static struct type *
17948 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17949 {
17950 struct type *type;
17951
17952 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17953 NULL);
17954 TYPE_NAME (type) = dwarf2_name (die, cu);
17955
17956 /* In Ada, an unspecified type is typically used when the description
17957 of the type is defered to a different unit. When encountering
17958 such a type, we treat it as a stub, and try to resolve it later on,
17959 when needed. */
17960 if (cu->language == language_ada)
17961 TYPE_STUB (type) = 1;
17962
17963 return set_die_type (die, type, cu);
17964 }
17965
17966 /* Read a single die and all its descendents. Set the die's sibling
17967 field to NULL; set other fields in the die correctly, and set all
17968 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17969 location of the info_ptr after reading all of those dies. PARENT
17970 is the parent of the die in question. */
17971
17972 static struct die_info *
17973 read_die_and_children (const struct die_reader_specs *reader,
17974 const gdb_byte *info_ptr,
17975 const gdb_byte **new_info_ptr,
17976 struct die_info *parent)
17977 {
17978 struct die_info *die;
17979 const gdb_byte *cur_ptr;
17980 int has_children;
17981
17982 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
17983 if (die == NULL)
17984 {
17985 *new_info_ptr = cur_ptr;
17986 return NULL;
17987 }
17988 store_in_ref_table (die, reader->cu);
17989
17990 if (has_children)
17991 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17992 else
17993 {
17994 die->child = NULL;
17995 *new_info_ptr = cur_ptr;
17996 }
17997
17998 die->sibling = NULL;
17999 die->parent = parent;
18000 return die;
18001 }
18002
18003 /* Read a die, all of its descendents, and all of its siblings; set
18004 all of the fields of all of the dies correctly. Arguments are as
18005 in read_die_and_children. */
18006
18007 static struct die_info *
18008 read_die_and_siblings_1 (const struct die_reader_specs *reader,
18009 const gdb_byte *info_ptr,
18010 const gdb_byte **new_info_ptr,
18011 struct die_info *parent)
18012 {
18013 struct die_info *first_die, *last_sibling;
18014 const gdb_byte *cur_ptr;
18015
18016 cur_ptr = info_ptr;
18017 first_die = last_sibling = NULL;
18018
18019 while (1)
18020 {
18021 struct die_info *die
18022 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
18023
18024 if (die == NULL)
18025 {
18026 *new_info_ptr = cur_ptr;
18027 return first_die;
18028 }
18029
18030 if (!first_die)
18031 first_die = die;
18032 else
18033 last_sibling->sibling = die;
18034
18035 last_sibling = die;
18036 }
18037 }
18038
18039 /* Read a die, all of its descendents, and all of its siblings; set
18040 all of the fields of all of the dies correctly. Arguments are as
18041 in read_die_and_children.
18042 This the main entry point for reading a DIE and all its children. */
18043
18044 static struct die_info *
18045 read_die_and_siblings (const struct die_reader_specs *reader,
18046 const gdb_byte *info_ptr,
18047 const gdb_byte **new_info_ptr,
18048 struct die_info *parent)
18049 {
18050 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
18051 new_info_ptr, parent);
18052
18053 if (dwarf_die_debug)
18054 {
18055 fprintf_unfiltered (gdb_stdlog,
18056 "Read die from %s@0x%x of %s:\n",
18057 get_section_name (reader->die_section),
18058 (unsigned) (info_ptr - reader->die_section->buffer),
18059 bfd_get_filename (reader->abfd));
18060 dump_die (die, dwarf_die_debug);
18061 }
18062
18063 return die;
18064 }
18065
18066 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18067 attributes.
18068 The caller is responsible for filling in the extra attributes
18069 and updating (*DIEP)->num_attrs.
18070 Set DIEP to point to a newly allocated die with its information,
18071 except for its child, sibling, and parent fields.
18072 Set HAS_CHILDREN to tell whether the die has children or not. */
18073
18074 static const gdb_byte *
18075 read_full_die_1 (const struct die_reader_specs *reader,
18076 struct die_info **diep, const gdb_byte *info_ptr,
18077 int *has_children, int num_extra_attrs)
18078 {
18079 unsigned int abbrev_number, bytes_read, i;
18080 struct abbrev_info *abbrev;
18081 struct die_info *die;
18082 struct dwarf2_cu *cu = reader->cu;
18083 bfd *abfd = reader->abfd;
18084
18085 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18086 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18087 info_ptr += bytes_read;
18088 if (!abbrev_number)
18089 {
18090 *diep = NULL;
18091 *has_children = 0;
18092 return info_ptr;
18093 }
18094
18095 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18096 if (!abbrev)
18097 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18098 abbrev_number,
18099 bfd_get_filename (abfd));
18100
18101 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18102 die->sect_off = sect_off;
18103 die->tag = abbrev->tag;
18104 die->abbrev = abbrev_number;
18105
18106 /* Make the result usable.
18107 The caller needs to update num_attrs after adding the extra
18108 attributes. */
18109 die->num_attrs = abbrev->num_attrs;
18110
18111 for (i = 0; i < abbrev->num_attrs; ++i)
18112 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18113 info_ptr);
18114
18115 *diep = die;
18116 *has_children = abbrev->has_children;
18117 return info_ptr;
18118 }
18119
18120 /* Read a die and all its attributes.
18121 Set DIEP to point to a newly allocated die with its information,
18122 except for its child, sibling, and parent fields.
18123 Set HAS_CHILDREN to tell whether the die has children or not. */
18124
18125 static const gdb_byte *
18126 read_full_die (const struct die_reader_specs *reader,
18127 struct die_info **diep, const gdb_byte *info_ptr,
18128 int *has_children)
18129 {
18130 const gdb_byte *result;
18131
18132 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18133
18134 if (dwarf_die_debug)
18135 {
18136 fprintf_unfiltered (gdb_stdlog,
18137 "Read die from %s@0x%x of %s:\n",
18138 get_section_name (reader->die_section),
18139 (unsigned) (info_ptr - reader->die_section->buffer),
18140 bfd_get_filename (reader->abfd));
18141 dump_die (*diep, dwarf_die_debug);
18142 }
18143
18144 return result;
18145 }
18146 \f
18147 /* Abbreviation tables.
18148
18149 In DWARF version 2, the description of the debugging information is
18150 stored in a separate .debug_abbrev section. Before we read any
18151 dies from a section we read in all abbreviations and install them
18152 in a hash table. */
18153
18154 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18155
18156 struct abbrev_info *
18157 abbrev_table::alloc_abbrev ()
18158 {
18159 struct abbrev_info *abbrev;
18160
18161 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18162 memset (abbrev, 0, sizeof (struct abbrev_info));
18163
18164 return abbrev;
18165 }
18166
18167 /* Add an abbreviation to the table. */
18168
18169 void
18170 abbrev_table::add_abbrev (unsigned int abbrev_number,
18171 struct abbrev_info *abbrev)
18172 {
18173 unsigned int hash_number;
18174
18175 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18176 abbrev->next = m_abbrevs[hash_number];
18177 m_abbrevs[hash_number] = abbrev;
18178 }
18179
18180 /* Look up an abbrev in the table.
18181 Returns NULL if the abbrev is not found. */
18182
18183 struct abbrev_info *
18184 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18185 {
18186 unsigned int hash_number;
18187 struct abbrev_info *abbrev;
18188
18189 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18190 abbrev = m_abbrevs[hash_number];
18191
18192 while (abbrev)
18193 {
18194 if (abbrev->number == abbrev_number)
18195 return abbrev;
18196 abbrev = abbrev->next;
18197 }
18198 return NULL;
18199 }
18200
18201 /* Read in an abbrev table. */
18202
18203 static abbrev_table_up
18204 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18205 struct dwarf2_section_info *section,
18206 sect_offset sect_off)
18207 {
18208 struct objfile *objfile = dwarf2_per_objfile->objfile;
18209 bfd *abfd = get_section_bfd_owner (section);
18210 const gdb_byte *abbrev_ptr;
18211 struct abbrev_info *cur_abbrev;
18212 unsigned int abbrev_number, bytes_read, abbrev_name;
18213 unsigned int abbrev_form;
18214 struct attr_abbrev *cur_attrs;
18215 unsigned int allocated_attrs;
18216
18217 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18218
18219 dwarf2_read_section (objfile, section);
18220 abbrev_ptr = section->buffer + to_underlying (sect_off);
18221 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18222 abbrev_ptr += bytes_read;
18223
18224 allocated_attrs = ATTR_ALLOC_CHUNK;
18225 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18226
18227 /* Loop until we reach an abbrev number of 0. */
18228 while (abbrev_number)
18229 {
18230 cur_abbrev = abbrev_table->alloc_abbrev ();
18231
18232 /* read in abbrev header */
18233 cur_abbrev->number = abbrev_number;
18234 cur_abbrev->tag
18235 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18236 abbrev_ptr += bytes_read;
18237 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18238 abbrev_ptr += 1;
18239
18240 /* now read in declarations */
18241 for (;;)
18242 {
18243 LONGEST implicit_const;
18244
18245 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18246 abbrev_ptr += bytes_read;
18247 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18248 abbrev_ptr += bytes_read;
18249 if (abbrev_form == DW_FORM_implicit_const)
18250 {
18251 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18252 &bytes_read);
18253 abbrev_ptr += bytes_read;
18254 }
18255 else
18256 {
18257 /* Initialize it due to a false compiler warning. */
18258 implicit_const = -1;
18259 }
18260
18261 if (abbrev_name == 0)
18262 break;
18263
18264 if (cur_abbrev->num_attrs == allocated_attrs)
18265 {
18266 allocated_attrs += ATTR_ALLOC_CHUNK;
18267 cur_attrs
18268 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18269 }
18270
18271 cur_attrs[cur_abbrev->num_attrs].name
18272 = (enum dwarf_attribute) abbrev_name;
18273 cur_attrs[cur_abbrev->num_attrs].form
18274 = (enum dwarf_form) abbrev_form;
18275 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18276 ++cur_abbrev->num_attrs;
18277 }
18278
18279 cur_abbrev->attrs =
18280 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18281 cur_abbrev->num_attrs);
18282 memcpy (cur_abbrev->attrs, cur_attrs,
18283 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18284
18285 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18286
18287 /* Get next abbreviation.
18288 Under Irix6 the abbreviations for a compilation unit are not
18289 always properly terminated with an abbrev number of 0.
18290 Exit loop if we encounter an abbreviation which we have
18291 already read (which means we are about to read the abbreviations
18292 for the next compile unit) or if the end of the abbreviation
18293 table is reached. */
18294 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18295 break;
18296 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18297 abbrev_ptr += bytes_read;
18298 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18299 break;
18300 }
18301
18302 xfree (cur_attrs);
18303 return abbrev_table;
18304 }
18305
18306 /* Returns nonzero if TAG represents a type that we might generate a partial
18307 symbol for. */
18308
18309 static int
18310 is_type_tag_for_partial (int tag)
18311 {
18312 switch (tag)
18313 {
18314 #if 0
18315 /* Some types that would be reasonable to generate partial symbols for,
18316 that we don't at present. */
18317 case DW_TAG_array_type:
18318 case DW_TAG_file_type:
18319 case DW_TAG_ptr_to_member_type:
18320 case DW_TAG_set_type:
18321 case DW_TAG_string_type:
18322 case DW_TAG_subroutine_type:
18323 #endif
18324 case DW_TAG_base_type:
18325 case DW_TAG_class_type:
18326 case DW_TAG_interface_type:
18327 case DW_TAG_enumeration_type:
18328 case DW_TAG_structure_type:
18329 case DW_TAG_subrange_type:
18330 case DW_TAG_typedef:
18331 case DW_TAG_union_type:
18332 return 1;
18333 default:
18334 return 0;
18335 }
18336 }
18337
18338 /* Load all DIEs that are interesting for partial symbols into memory. */
18339
18340 static struct partial_die_info *
18341 load_partial_dies (const struct die_reader_specs *reader,
18342 const gdb_byte *info_ptr, int building_psymtab)
18343 {
18344 struct dwarf2_cu *cu = reader->cu;
18345 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18346 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18347 unsigned int bytes_read;
18348 unsigned int load_all = 0;
18349 int nesting_level = 1;
18350
18351 parent_die = NULL;
18352 last_die = NULL;
18353
18354 gdb_assert (cu->per_cu != NULL);
18355 if (cu->per_cu->load_all_dies)
18356 load_all = 1;
18357
18358 cu->partial_dies
18359 = htab_create_alloc_ex (cu->header.length / 12,
18360 partial_die_hash,
18361 partial_die_eq,
18362 NULL,
18363 &cu->comp_unit_obstack,
18364 hashtab_obstack_allocate,
18365 dummy_obstack_deallocate);
18366
18367 while (1)
18368 {
18369 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18370
18371 /* A NULL abbrev means the end of a series of children. */
18372 if (abbrev == NULL)
18373 {
18374 if (--nesting_level == 0)
18375 return first_die;
18376
18377 info_ptr += bytes_read;
18378 last_die = parent_die;
18379 parent_die = parent_die->die_parent;
18380 continue;
18381 }
18382
18383 /* Check for template arguments. We never save these; if
18384 they're seen, we just mark the parent, and go on our way. */
18385 if (parent_die != NULL
18386 && cu->language == language_cplus
18387 && (abbrev->tag == DW_TAG_template_type_param
18388 || abbrev->tag == DW_TAG_template_value_param))
18389 {
18390 parent_die->has_template_arguments = 1;
18391
18392 if (!load_all)
18393 {
18394 /* We don't need a partial DIE for the template argument. */
18395 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18396 continue;
18397 }
18398 }
18399
18400 /* We only recurse into c++ subprograms looking for template arguments.
18401 Skip their other children. */
18402 if (!load_all
18403 && cu->language == language_cplus
18404 && parent_die != NULL
18405 && parent_die->tag == DW_TAG_subprogram)
18406 {
18407 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18408 continue;
18409 }
18410
18411 /* Check whether this DIE is interesting enough to save. Normally
18412 we would not be interested in members here, but there may be
18413 later variables referencing them via DW_AT_specification (for
18414 static members). */
18415 if (!load_all
18416 && !is_type_tag_for_partial (abbrev->tag)
18417 && abbrev->tag != DW_TAG_constant
18418 && abbrev->tag != DW_TAG_enumerator
18419 && abbrev->tag != DW_TAG_subprogram
18420 && abbrev->tag != DW_TAG_inlined_subroutine
18421 && abbrev->tag != DW_TAG_lexical_block
18422 && abbrev->tag != DW_TAG_variable
18423 && abbrev->tag != DW_TAG_namespace
18424 && abbrev->tag != DW_TAG_module
18425 && abbrev->tag != DW_TAG_member
18426 && abbrev->tag != DW_TAG_imported_unit
18427 && abbrev->tag != DW_TAG_imported_declaration)
18428 {
18429 /* Otherwise we skip to the next sibling, if any. */
18430 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18431 continue;
18432 }
18433
18434 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18435 abbrev);
18436
18437 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18438
18439 /* This two-pass algorithm for processing partial symbols has a
18440 high cost in cache pressure. Thus, handle some simple cases
18441 here which cover the majority of C partial symbols. DIEs
18442 which neither have specification tags in them, nor could have
18443 specification tags elsewhere pointing at them, can simply be
18444 processed and discarded.
18445
18446 This segment is also optional; scan_partial_symbols and
18447 add_partial_symbol will handle these DIEs if we chain
18448 them in normally. When compilers which do not emit large
18449 quantities of duplicate debug information are more common,
18450 this code can probably be removed. */
18451
18452 /* Any complete simple types at the top level (pretty much all
18453 of them, for a language without namespaces), can be processed
18454 directly. */
18455 if (parent_die == NULL
18456 && pdi.has_specification == 0
18457 && pdi.is_declaration == 0
18458 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18459 || pdi.tag == DW_TAG_base_type
18460 || pdi.tag == DW_TAG_subrange_type))
18461 {
18462 if (building_psymtab && pdi.name != NULL)
18463 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18464 VAR_DOMAIN, LOC_TYPEDEF, -1,
18465 psymbol_placement::STATIC,
18466 0, cu->language, objfile);
18467 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18468 continue;
18469 }
18470
18471 /* The exception for DW_TAG_typedef with has_children above is
18472 a workaround of GCC PR debug/47510. In the case of this complaint
18473 type_name_or_error will error on such types later.
18474
18475 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18476 it could not find the child DIEs referenced later, this is checked
18477 above. In correct DWARF DW_TAG_typedef should have no children. */
18478
18479 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18480 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18481 "- DIE at %s [in module %s]"),
18482 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18483
18484 /* If we're at the second level, and we're an enumerator, and
18485 our parent has no specification (meaning possibly lives in a
18486 namespace elsewhere), then we can add the partial symbol now
18487 instead of queueing it. */
18488 if (pdi.tag == DW_TAG_enumerator
18489 && parent_die != NULL
18490 && parent_die->die_parent == NULL
18491 && parent_die->tag == DW_TAG_enumeration_type
18492 && parent_die->has_specification == 0)
18493 {
18494 if (pdi.name == NULL)
18495 complaint (_("malformed enumerator DIE ignored"));
18496 else if (building_psymtab)
18497 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18498 VAR_DOMAIN, LOC_CONST, -1,
18499 cu->language == language_cplus
18500 ? psymbol_placement::GLOBAL
18501 : psymbol_placement::STATIC,
18502 0, cu->language, objfile);
18503
18504 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18505 continue;
18506 }
18507
18508 struct partial_die_info *part_die
18509 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18510
18511 /* We'll save this DIE so link it in. */
18512 part_die->die_parent = parent_die;
18513 part_die->die_sibling = NULL;
18514 part_die->die_child = NULL;
18515
18516 if (last_die && last_die == parent_die)
18517 last_die->die_child = part_die;
18518 else if (last_die)
18519 last_die->die_sibling = part_die;
18520
18521 last_die = part_die;
18522
18523 if (first_die == NULL)
18524 first_die = part_die;
18525
18526 /* Maybe add the DIE to the hash table. Not all DIEs that we
18527 find interesting need to be in the hash table, because we
18528 also have the parent/sibling/child chains; only those that we
18529 might refer to by offset later during partial symbol reading.
18530
18531 For now this means things that might have be the target of a
18532 DW_AT_specification, DW_AT_abstract_origin, or
18533 DW_AT_extension. DW_AT_extension will refer only to
18534 namespaces; DW_AT_abstract_origin refers to functions (and
18535 many things under the function DIE, but we do not recurse
18536 into function DIEs during partial symbol reading) and
18537 possibly variables as well; DW_AT_specification refers to
18538 declarations. Declarations ought to have the DW_AT_declaration
18539 flag. It happens that GCC forgets to put it in sometimes, but
18540 only for functions, not for types.
18541
18542 Adding more things than necessary to the hash table is harmless
18543 except for the performance cost. Adding too few will result in
18544 wasted time in find_partial_die, when we reread the compilation
18545 unit with load_all_dies set. */
18546
18547 if (load_all
18548 || abbrev->tag == DW_TAG_constant
18549 || abbrev->tag == DW_TAG_subprogram
18550 || abbrev->tag == DW_TAG_variable
18551 || abbrev->tag == DW_TAG_namespace
18552 || part_die->is_declaration)
18553 {
18554 void **slot;
18555
18556 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18557 to_underlying (part_die->sect_off),
18558 INSERT);
18559 *slot = part_die;
18560 }
18561
18562 /* For some DIEs we want to follow their children (if any). For C
18563 we have no reason to follow the children of structures; for other
18564 languages we have to, so that we can get at method physnames
18565 to infer fully qualified class names, for DW_AT_specification,
18566 and for C++ template arguments. For C++, we also look one level
18567 inside functions to find template arguments (if the name of the
18568 function does not already contain the template arguments).
18569
18570 For Ada, we need to scan the children of subprograms and lexical
18571 blocks as well because Ada allows the definition of nested
18572 entities that could be interesting for the debugger, such as
18573 nested subprograms for instance. */
18574 if (last_die->has_children
18575 && (load_all
18576 || last_die->tag == DW_TAG_namespace
18577 || last_die->tag == DW_TAG_module
18578 || last_die->tag == DW_TAG_enumeration_type
18579 || (cu->language == language_cplus
18580 && last_die->tag == DW_TAG_subprogram
18581 && (last_die->name == NULL
18582 || strchr (last_die->name, '<') == NULL))
18583 || (cu->language != language_c
18584 && (last_die->tag == DW_TAG_class_type
18585 || last_die->tag == DW_TAG_interface_type
18586 || last_die->tag == DW_TAG_structure_type
18587 || last_die->tag == DW_TAG_union_type))
18588 || (cu->language == language_ada
18589 && (last_die->tag == DW_TAG_subprogram
18590 || last_die->tag == DW_TAG_lexical_block))))
18591 {
18592 nesting_level++;
18593 parent_die = last_die;
18594 continue;
18595 }
18596
18597 /* Otherwise we skip to the next sibling, if any. */
18598 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18599
18600 /* Back to the top, do it again. */
18601 }
18602 }
18603
18604 partial_die_info::partial_die_info (sect_offset sect_off_,
18605 struct abbrev_info *abbrev)
18606 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18607 {
18608 }
18609
18610 /* Read a minimal amount of information into the minimal die structure.
18611 INFO_PTR should point just after the initial uleb128 of a DIE. */
18612
18613 const gdb_byte *
18614 partial_die_info::read (const struct die_reader_specs *reader,
18615 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18616 {
18617 struct dwarf2_cu *cu = reader->cu;
18618 struct dwarf2_per_objfile *dwarf2_per_objfile
18619 = cu->per_cu->dwarf2_per_objfile;
18620 unsigned int i;
18621 int has_low_pc_attr = 0;
18622 int has_high_pc_attr = 0;
18623 int high_pc_relative = 0;
18624
18625 for (i = 0; i < abbrev.num_attrs; ++i)
18626 {
18627 struct attribute attr;
18628
18629 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18630
18631 /* Store the data if it is of an attribute we want to keep in a
18632 partial symbol table. */
18633 switch (attr.name)
18634 {
18635 case DW_AT_name:
18636 switch (tag)
18637 {
18638 case DW_TAG_compile_unit:
18639 case DW_TAG_partial_unit:
18640 case DW_TAG_type_unit:
18641 /* Compilation units have a DW_AT_name that is a filename, not
18642 a source language identifier. */
18643 case DW_TAG_enumeration_type:
18644 case DW_TAG_enumerator:
18645 /* These tags always have simple identifiers already; no need
18646 to canonicalize them. */
18647 name = DW_STRING (&attr);
18648 break;
18649 default:
18650 {
18651 struct objfile *objfile = dwarf2_per_objfile->objfile;
18652
18653 name
18654 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18655 &objfile->per_bfd->storage_obstack);
18656 }
18657 break;
18658 }
18659 break;
18660 case DW_AT_linkage_name:
18661 case DW_AT_MIPS_linkage_name:
18662 /* Note that both forms of linkage name might appear. We
18663 assume they will be the same, and we only store the last
18664 one we see. */
18665 linkage_name = DW_STRING (&attr);
18666 break;
18667 case DW_AT_low_pc:
18668 has_low_pc_attr = 1;
18669 lowpc = attr_value_as_address (&attr);
18670 break;
18671 case DW_AT_high_pc:
18672 has_high_pc_attr = 1;
18673 highpc = attr_value_as_address (&attr);
18674 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18675 high_pc_relative = 1;
18676 break;
18677 case DW_AT_location:
18678 /* Support the .debug_loc offsets. */
18679 if (attr_form_is_block (&attr))
18680 {
18681 d.locdesc = DW_BLOCK (&attr);
18682 }
18683 else if (attr_form_is_section_offset (&attr))
18684 {
18685 dwarf2_complex_location_expr_complaint ();
18686 }
18687 else
18688 {
18689 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18690 "partial symbol information");
18691 }
18692 break;
18693 case DW_AT_external:
18694 is_external = DW_UNSND (&attr);
18695 break;
18696 case DW_AT_declaration:
18697 is_declaration = DW_UNSND (&attr);
18698 break;
18699 case DW_AT_type:
18700 has_type = 1;
18701 break;
18702 case DW_AT_abstract_origin:
18703 case DW_AT_specification:
18704 case DW_AT_extension:
18705 has_specification = 1;
18706 spec_offset = dwarf2_get_ref_die_offset (&attr);
18707 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18708 || cu->per_cu->is_dwz);
18709 break;
18710 case DW_AT_sibling:
18711 /* Ignore absolute siblings, they might point outside of
18712 the current compile unit. */
18713 if (attr.form == DW_FORM_ref_addr)
18714 complaint (_("ignoring absolute DW_AT_sibling"));
18715 else
18716 {
18717 const gdb_byte *buffer = reader->buffer;
18718 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18719 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18720
18721 if (sibling_ptr < info_ptr)
18722 complaint (_("DW_AT_sibling points backwards"));
18723 else if (sibling_ptr > reader->buffer_end)
18724 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18725 else
18726 sibling = sibling_ptr;
18727 }
18728 break;
18729 case DW_AT_byte_size:
18730 has_byte_size = 1;
18731 break;
18732 case DW_AT_const_value:
18733 has_const_value = 1;
18734 break;
18735 case DW_AT_calling_convention:
18736 /* DWARF doesn't provide a way to identify a program's source-level
18737 entry point. DW_AT_calling_convention attributes are only meant
18738 to describe functions' calling conventions.
18739
18740 However, because it's a necessary piece of information in
18741 Fortran, and before DWARF 4 DW_CC_program was the only
18742 piece of debugging information whose definition refers to
18743 a 'main program' at all, several compilers marked Fortran
18744 main programs with DW_CC_program --- even when those
18745 functions use the standard calling conventions.
18746
18747 Although DWARF now specifies a way to provide this
18748 information, we support this practice for backward
18749 compatibility. */
18750 if (DW_UNSND (&attr) == DW_CC_program
18751 && cu->language == language_fortran)
18752 main_subprogram = 1;
18753 break;
18754 case DW_AT_inline:
18755 if (DW_UNSND (&attr) == DW_INL_inlined
18756 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18757 may_be_inlined = 1;
18758 break;
18759
18760 case DW_AT_import:
18761 if (tag == DW_TAG_imported_unit)
18762 {
18763 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18764 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18765 || cu->per_cu->is_dwz);
18766 }
18767 break;
18768
18769 case DW_AT_main_subprogram:
18770 main_subprogram = DW_UNSND (&attr);
18771 break;
18772
18773 case DW_AT_ranges:
18774 {
18775 /* It would be nice to reuse dwarf2_get_pc_bounds here,
18776 but that requires a full DIE, so instead we just
18777 reimplement it. */
18778 int need_ranges_base = tag != DW_TAG_compile_unit;
18779 unsigned int ranges_offset = (DW_UNSND (&attr)
18780 + (need_ranges_base
18781 ? cu->ranges_base
18782 : 0));
18783
18784 /* Value of the DW_AT_ranges attribute is the offset in the
18785 .debug_ranges section. */
18786 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
18787 nullptr))
18788 has_pc_info = 1;
18789 }
18790 break;
18791
18792 default:
18793 break;
18794 }
18795 }
18796
18797 /* For Ada, if both the name and the linkage name appear, we prefer
18798 the latter. This lets "catch exception" work better, regardless
18799 of the order in which the name and linkage name were emitted.
18800 Really, though, this is just a workaround for the fact that gdb
18801 doesn't store both the name and the linkage name. */
18802 if (cu->language == language_ada && linkage_name != nullptr)
18803 name = linkage_name;
18804
18805 if (high_pc_relative)
18806 highpc += lowpc;
18807
18808 if (has_low_pc_attr && has_high_pc_attr)
18809 {
18810 /* When using the GNU linker, .gnu.linkonce. sections are used to
18811 eliminate duplicate copies of functions and vtables and such.
18812 The linker will arbitrarily choose one and discard the others.
18813 The AT_*_pc values for such functions refer to local labels in
18814 these sections. If the section from that file was discarded, the
18815 labels are not in the output, so the relocs get a value of 0.
18816 If this is a discarded function, mark the pc bounds as invalid,
18817 so that GDB will ignore it. */
18818 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18819 {
18820 struct objfile *objfile = dwarf2_per_objfile->objfile;
18821 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18822
18823 complaint (_("DW_AT_low_pc %s is zero "
18824 "for DIE at %s [in module %s]"),
18825 paddress (gdbarch, lowpc),
18826 sect_offset_str (sect_off),
18827 objfile_name (objfile));
18828 }
18829 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18830 else if (lowpc >= highpc)
18831 {
18832 struct objfile *objfile = dwarf2_per_objfile->objfile;
18833 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18834
18835 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18836 "for DIE at %s [in module %s]"),
18837 paddress (gdbarch, lowpc),
18838 paddress (gdbarch, highpc),
18839 sect_offset_str (sect_off),
18840 objfile_name (objfile));
18841 }
18842 else
18843 has_pc_info = 1;
18844 }
18845
18846 return info_ptr;
18847 }
18848
18849 /* Find a cached partial DIE at OFFSET in CU. */
18850
18851 struct partial_die_info *
18852 dwarf2_cu::find_partial_die (sect_offset sect_off)
18853 {
18854 struct partial_die_info *lookup_die = NULL;
18855 struct partial_die_info part_die (sect_off);
18856
18857 lookup_die = ((struct partial_die_info *)
18858 htab_find_with_hash (partial_dies, &part_die,
18859 to_underlying (sect_off)));
18860
18861 return lookup_die;
18862 }
18863
18864 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18865 except in the case of .debug_types DIEs which do not reference
18866 outside their CU (they do however referencing other types via
18867 DW_FORM_ref_sig8). */
18868
18869 static const struct cu_partial_die_info
18870 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18871 {
18872 struct dwarf2_per_objfile *dwarf2_per_objfile
18873 = cu->per_cu->dwarf2_per_objfile;
18874 struct objfile *objfile = dwarf2_per_objfile->objfile;
18875 struct dwarf2_per_cu_data *per_cu = NULL;
18876 struct partial_die_info *pd = NULL;
18877
18878 if (offset_in_dwz == cu->per_cu->is_dwz
18879 && offset_in_cu_p (&cu->header, sect_off))
18880 {
18881 pd = cu->find_partial_die (sect_off);
18882 if (pd != NULL)
18883 return { cu, pd };
18884 /* We missed recording what we needed.
18885 Load all dies and try again. */
18886 per_cu = cu->per_cu;
18887 }
18888 else
18889 {
18890 /* TUs don't reference other CUs/TUs (except via type signatures). */
18891 if (cu->per_cu->is_debug_types)
18892 {
18893 error (_("Dwarf Error: Type Unit at offset %s contains"
18894 " external reference to offset %s [in module %s].\n"),
18895 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18896 bfd_get_filename (objfile->obfd));
18897 }
18898 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18899 dwarf2_per_objfile);
18900
18901 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18902 load_partial_comp_unit (per_cu);
18903
18904 per_cu->cu->last_used = 0;
18905 pd = per_cu->cu->find_partial_die (sect_off);
18906 }
18907
18908 /* If we didn't find it, and not all dies have been loaded,
18909 load them all and try again. */
18910
18911 if (pd == NULL && per_cu->load_all_dies == 0)
18912 {
18913 per_cu->load_all_dies = 1;
18914
18915 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18916 THIS_CU->cu may already be in use. So we can't just free it and
18917 replace its DIEs with the ones we read in. Instead, we leave those
18918 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18919 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18920 set. */
18921 load_partial_comp_unit (per_cu);
18922
18923 pd = per_cu->cu->find_partial_die (sect_off);
18924 }
18925
18926 if (pd == NULL)
18927 internal_error (__FILE__, __LINE__,
18928 _("could not find partial DIE %s "
18929 "in cache [from module %s]\n"),
18930 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18931 return { per_cu->cu, pd };
18932 }
18933
18934 /* See if we can figure out if the class lives in a namespace. We do
18935 this by looking for a member function; its demangled name will
18936 contain namespace info, if there is any. */
18937
18938 static void
18939 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18940 struct dwarf2_cu *cu)
18941 {
18942 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18943 what template types look like, because the demangler
18944 frequently doesn't give the same name as the debug info. We
18945 could fix this by only using the demangled name to get the
18946 prefix (but see comment in read_structure_type). */
18947
18948 struct partial_die_info *real_pdi;
18949 struct partial_die_info *child_pdi;
18950
18951 /* If this DIE (this DIE's specification, if any) has a parent, then
18952 we should not do this. We'll prepend the parent's fully qualified
18953 name when we create the partial symbol. */
18954
18955 real_pdi = struct_pdi;
18956 while (real_pdi->has_specification)
18957 {
18958 auto res = find_partial_die (real_pdi->spec_offset,
18959 real_pdi->spec_is_dwz, cu);
18960 real_pdi = res.pdi;
18961 cu = res.cu;
18962 }
18963
18964 if (real_pdi->die_parent != NULL)
18965 return;
18966
18967 for (child_pdi = struct_pdi->die_child;
18968 child_pdi != NULL;
18969 child_pdi = child_pdi->die_sibling)
18970 {
18971 if (child_pdi->tag == DW_TAG_subprogram
18972 && child_pdi->linkage_name != NULL)
18973 {
18974 char *actual_class_name
18975 = language_class_name_from_physname (cu->language_defn,
18976 child_pdi->linkage_name);
18977 if (actual_class_name != NULL)
18978 {
18979 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18980 struct_pdi->name
18981 = ((const char *)
18982 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18983 actual_class_name,
18984 strlen (actual_class_name)));
18985 xfree (actual_class_name);
18986 }
18987 break;
18988 }
18989 }
18990 }
18991
18992 void
18993 partial_die_info::fixup (struct dwarf2_cu *cu)
18994 {
18995 /* Once we've fixed up a die, there's no point in doing so again.
18996 This also avoids a memory leak if we were to call
18997 guess_partial_die_structure_name multiple times. */
18998 if (fixup_called)
18999 return;
19000
19001 /* If we found a reference attribute and the DIE has no name, try
19002 to find a name in the referred to DIE. */
19003
19004 if (name == NULL && has_specification)
19005 {
19006 struct partial_die_info *spec_die;
19007
19008 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
19009 spec_die = res.pdi;
19010 cu = res.cu;
19011
19012 spec_die->fixup (cu);
19013
19014 if (spec_die->name)
19015 {
19016 name = spec_die->name;
19017
19018 /* Copy DW_AT_external attribute if it is set. */
19019 if (spec_die->is_external)
19020 is_external = spec_die->is_external;
19021 }
19022 }
19023
19024 /* Set default names for some unnamed DIEs. */
19025
19026 if (name == NULL && tag == DW_TAG_namespace)
19027 name = CP_ANONYMOUS_NAMESPACE_STR;
19028
19029 /* If there is no parent die to provide a namespace, and there are
19030 children, see if we can determine the namespace from their linkage
19031 name. */
19032 if (cu->language == language_cplus
19033 && !cu->per_cu->dwarf2_per_objfile->types.empty ()
19034 && die_parent == NULL
19035 && has_children
19036 && (tag == DW_TAG_class_type
19037 || tag == DW_TAG_structure_type
19038 || tag == DW_TAG_union_type))
19039 guess_partial_die_structure_name (this, cu);
19040
19041 /* GCC might emit a nameless struct or union that has a linkage
19042 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19043 if (name == NULL
19044 && (tag == DW_TAG_class_type
19045 || tag == DW_TAG_interface_type
19046 || tag == DW_TAG_structure_type
19047 || tag == DW_TAG_union_type)
19048 && linkage_name != NULL)
19049 {
19050 char *demangled;
19051
19052 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
19053 if (demangled)
19054 {
19055 const char *base;
19056
19057 /* Strip any leading namespaces/classes, keep only the base name.
19058 DW_AT_name for named DIEs does not contain the prefixes. */
19059 base = strrchr (demangled, ':');
19060 if (base && base > demangled && base[-1] == ':')
19061 base++;
19062 else
19063 base = demangled;
19064
19065 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19066 name
19067 = ((const char *)
19068 obstack_copy0 (&objfile->per_bfd->storage_obstack,
19069 base, strlen (base)));
19070 xfree (demangled);
19071 }
19072 }
19073
19074 fixup_called = 1;
19075 }
19076
19077 /* Read an attribute value described by an attribute form. */
19078
19079 static const gdb_byte *
19080 read_attribute_value (const struct die_reader_specs *reader,
19081 struct attribute *attr, unsigned form,
19082 LONGEST implicit_const, const gdb_byte *info_ptr)
19083 {
19084 struct dwarf2_cu *cu = reader->cu;
19085 struct dwarf2_per_objfile *dwarf2_per_objfile
19086 = cu->per_cu->dwarf2_per_objfile;
19087 struct objfile *objfile = dwarf2_per_objfile->objfile;
19088 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19089 bfd *abfd = reader->abfd;
19090 struct comp_unit_head *cu_header = &cu->header;
19091 unsigned int bytes_read;
19092 struct dwarf_block *blk;
19093
19094 attr->form = (enum dwarf_form) form;
19095 switch (form)
19096 {
19097 case DW_FORM_ref_addr:
19098 if (cu->header.version == 2)
19099 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19100 else
19101 DW_UNSND (attr) = read_offset (abfd, info_ptr,
19102 &cu->header, &bytes_read);
19103 info_ptr += bytes_read;
19104 break;
19105 case DW_FORM_GNU_ref_alt:
19106 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19107 info_ptr += bytes_read;
19108 break;
19109 case DW_FORM_addr:
19110 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19111 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
19112 info_ptr += bytes_read;
19113 break;
19114 case DW_FORM_block2:
19115 blk = dwarf_alloc_block (cu);
19116 blk->size = read_2_bytes (abfd, info_ptr);
19117 info_ptr += 2;
19118 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19119 info_ptr += blk->size;
19120 DW_BLOCK (attr) = blk;
19121 break;
19122 case DW_FORM_block4:
19123 blk = dwarf_alloc_block (cu);
19124 blk->size = read_4_bytes (abfd, info_ptr);
19125 info_ptr += 4;
19126 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19127 info_ptr += blk->size;
19128 DW_BLOCK (attr) = blk;
19129 break;
19130 case DW_FORM_data2:
19131 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19132 info_ptr += 2;
19133 break;
19134 case DW_FORM_data4:
19135 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19136 info_ptr += 4;
19137 break;
19138 case DW_FORM_data8:
19139 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19140 info_ptr += 8;
19141 break;
19142 case DW_FORM_data16:
19143 blk = dwarf_alloc_block (cu);
19144 blk->size = 16;
19145 blk->data = read_n_bytes (abfd, info_ptr, 16);
19146 info_ptr += 16;
19147 DW_BLOCK (attr) = blk;
19148 break;
19149 case DW_FORM_sec_offset:
19150 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19151 info_ptr += bytes_read;
19152 break;
19153 case DW_FORM_string:
19154 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19155 DW_STRING_IS_CANONICAL (attr) = 0;
19156 info_ptr += bytes_read;
19157 break;
19158 case DW_FORM_strp:
19159 if (!cu->per_cu->is_dwz)
19160 {
19161 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19162 abfd, info_ptr, cu_header,
19163 &bytes_read);
19164 DW_STRING_IS_CANONICAL (attr) = 0;
19165 info_ptr += bytes_read;
19166 break;
19167 }
19168 /* FALLTHROUGH */
19169 case DW_FORM_line_strp:
19170 if (!cu->per_cu->is_dwz)
19171 {
19172 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19173 abfd, info_ptr,
19174 cu_header, &bytes_read);
19175 DW_STRING_IS_CANONICAL (attr) = 0;
19176 info_ptr += bytes_read;
19177 break;
19178 }
19179 /* FALLTHROUGH */
19180 case DW_FORM_GNU_strp_alt:
19181 {
19182 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19183 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19184 &bytes_read);
19185
19186 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19187 dwz, str_offset);
19188 DW_STRING_IS_CANONICAL (attr) = 0;
19189 info_ptr += bytes_read;
19190 }
19191 break;
19192 case DW_FORM_exprloc:
19193 case DW_FORM_block:
19194 blk = dwarf_alloc_block (cu);
19195 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19196 info_ptr += bytes_read;
19197 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19198 info_ptr += blk->size;
19199 DW_BLOCK (attr) = blk;
19200 break;
19201 case DW_FORM_block1:
19202 blk = dwarf_alloc_block (cu);
19203 blk->size = read_1_byte (abfd, info_ptr);
19204 info_ptr += 1;
19205 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19206 info_ptr += blk->size;
19207 DW_BLOCK (attr) = blk;
19208 break;
19209 case DW_FORM_data1:
19210 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19211 info_ptr += 1;
19212 break;
19213 case DW_FORM_flag:
19214 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19215 info_ptr += 1;
19216 break;
19217 case DW_FORM_flag_present:
19218 DW_UNSND (attr) = 1;
19219 break;
19220 case DW_FORM_sdata:
19221 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19222 info_ptr += bytes_read;
19223 break;
19224 case DW_FORM_udata:
19225 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19226 info_ptr += bytes_read;
19227 break;
19228 case DW_FORM_ref1:
19229 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19230 + read_1_byte (abfd, info_ptr));
19231 info_ptr += 1;
19232 break;
19233 case DW_FORM_ref2:
19234 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19235 + read_2_bytes (abfd, info_ptr));
19236 info_ptr += 2;
19237 break;
19238 case DW_FORM_ref4:
19239 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19240 + read_4_bytes (abfd, info_ptr));
19241 info_ptr += 4;
19242 break;
19243 case DW_FORM_ref8:
19244 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19245 + read_8_bytes (abfd, info_ptr));
19246 info_ptr += 8;
19247 break;
19248 case DW_FORM_ref_sig8:
19249 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19250 info_ptr += 8;
19251 break;
19252 case DW_FORM_ref_udata:
19253 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19254 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19255 info_ptr += bytes_read;
19256 break;
19257 case DW_FORM_indirect:
19258 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19259 info_ptr += bytes_read;
19260 if (form == DW_FORM_implicit_const)
19261 {
19262 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19263 info_ptr += bytes_read;
19264 }
19265 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19266 info_ptr);
19267 break;
19268 case DW_FORM_implicit_const:
19269 DW_SND (attr) = implicit_const;
19270 break;
19271 case DW_FORM_addrx:
19272 case DW_FORM_GNU_addr_index:
19273 if (reader->dwo_file == NULL)
19274 {
19275 /* For now flag a hard error.
19276 Later we can turn this into a complaint. */
19277 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19278 dwarf_form_name (form),
19279 bfd_get_filename (abfd));
19280 }
19281 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19282 info_ptr += bytes_read;
19283 break;
19284 case DW_FORM_strx:
19285 case DW_FORM_strx1:
19286 case DW_FORM_strx2:
19287 case DW_FORM_strx3:
19288 case DW_FORM_strx4:
19289 case DW_FORM_GNU_str_index:
19290 if (reader->dwo_file == NULL)
19291 {
19292 /* For now flag a hard error.
19293 Later we can turn this into a complaint if warranted. */
19294 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19295 dwarf_form_name (form),
19296 bfd_get_filename (abfd));
19297 }
19298 {
19299 ULONGEST str_index;
19300 if (form == DW_FORM_strx1)
19301 {
19302 str_index = read_1_byte (abfd, info_ptr);
19303 info_ptr += 1;
19304 }
19305 else if (form == DW_FORM_strx2)
19306 {
19307 str_index = read_2_bytes (abfd, info_ptr);
19308 info_ptr += 2;
19309 }
19310 else if (form == DW_FORM_strx3)
19311 {
19312 str_index = read_3_bytes (abfd, info_ptr);
19313 info_ptr += 3;
19314 }
19315 else if (form == DW_FORM_strx4)
19316 {
19317 str_index = read_4_bytes (abfd, info_ptr);
19318 info_ptr += 4;
19319 }
19320 else
19321 {
19322 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19323 info_ptr += bytes_read;
19324 }
19325 DW_STRING (attr) = read_str_index (reader, str_index);
19326 DW_STRING_IS_CANONICAL (attr) = 0;
19327 }
19328 break;
19329 default:
19330 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19331 dwarf_form_name (form),
19332 bfd_get_filename (abfd));
19333 }
19334
19335 /* Super hack. */
19336 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19337 attr->form = DW_FORM_GNU_ref_alt;
19338
19339 /* We have seen instances where the compiler tried to emit a byte
19340 size attribute of -1 which ended up being encoded as an unsigned
19341 0xffffffff. Although 0xffffffff is technically a valid size value,
19342 an object of this size seems pretty unlikely so we can relatively
19343 safely treat these cases as if the size attribute was invalid and
19344 treat them as zero by default. */
19345 if (attr->name == DW_AT_byte_size
19346 && form == DW_FORM_data4
19347 && DW_UNSND (attr) >= 0xffffffff)
19348 {
19349 complaint
19350 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19351 hex_string (DW_UNSND (attr)));
19352 DW_UNSND (attr) = 0;
19353 }
19354
19355 return info_ptr;
19356 }
19357
19358 /* Read an attribute described by an abbreviated attribute. */
19359
19360 static const gdb_byte *
19361 read_attribute (const struct die_reader_specs *reader,
19362 struct attribute *attr, struct attr_abbrev *abbrev,
19363 const gdb_byte *info_ptr)
19364 {
19365 attr->name = abbrev->name;
19366 return read_attribute_value (reader, attr, abbrev->form,
19367 abbrev->implicit_const, info_ptr);
19368 }
19369
19370 /* Read dwarf information from a buffer. */
19371
19372 static unsigned int
19373 read_1_byte (bfd *abfd, const gdb_byte *buf)
19374 {
19375 return bfd_get_8 (abfd, buf);
19376 }
19377
19378 static int
19379 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19380 {
19381 return bfd_get_signed_8 (abfd, buf);
19382 }
19383
19384 static unsigned int
19385 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19386 {
19387 return bfd_get_16 (abfd, buf);
19388 }
19389
19390 static int
19391 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19392 {
19393 return bfd_get_signed_16 (abfd, buf);
19394 }
19395
19396 static unsigned int
19397 read_3_bytes (bfd *abfd, const gdb_byte *buf)
19398 {
19399 unsigned int result = 0;
19400 for (int i = 0; i < 3; ++i)
19401 {
19402 unsigned char byte = bfd_get_8 (abfd, buf);
19403 buf++;
19404 result |= ((unsigned int) byte << (i * 8));
19405 }
19406 return result;
19407 }
19408
19409 static unsigned int
19410 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19411 {
19412 return bfd_get_32 (abfd, buf);
19413 }
19414
19415 static int
19416 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19417 {
19418 return bfd_get_signed_32 (abfd, buf);
19419 }
19420
19421 static ULONGEST
19422 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19423 {
19424 return bfd_get_64 (abfd, buf);
19425 }
19426
19427 static CORE_ADDR
19428 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19429 unsigned int *bytes_read)
19430 {
19431 struct comp_unit_head *cu_header = &cu->header;
19432 CORE_ADDR retval = 0;
19433
19434 if (cu_header->signed_addr_p)
19435 {
19436 switch (cu_header->addr_size)
19437 {
19438 case 2:
19439 retval = bfd_get_signed_16 (abfd, buf);
19440 break;
19441 case 4:
19442 retval = bfd_get_signed_32 (abfd, buf);
19443 break;
19444 case 8:
19445 retval = bfd_get_signed_64 (abfd, buf);
19446 break;
19447 default:
19448 internal_error (__FILE__, __LINE__,
19449 _("read_address: bad switch, signed [in module %s]"),
19450 bfd_get_filename (abfd));
19451 }
19452 }
19453 else
19454 {
19455 switch (cu_header->addr_size)
19456 {
19457 case 2:
19458 retval = bfd_get_16 (abfd, buf);
19459 break;
19460 case 4:
19461 retval = bfd_get_32 (abfd, buf);
19462 break;
19463 case 8:
19464 retval = bfd_get_64 (abfd, buf);
19465 break;
19466 default:
19467 internal_error (__FILE__, __LINE__,
19468 _("read_address: bad switch, "
19469 "unsigned [in module %s]"),
19470 bfd_get_filename (abfd));
19471 }
19472 }
19473
19474 *bytes_read = cu_header->addr_size;
19475 return retval;
19476 }
19477
19478 /* Read the initial length from a section. The (draft) DWARF 3
19479 specification allows the initial length to take up either 4 bytes
19480 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19481 bytes describe the length and all offsets will be 8 bytes in length
19482 instead of 4.
19483
19484 An older, non-standard 64-bit format is also handled by this
19485 function. The older format in question stores the initial length
19486 as an 8-byte quantity without an escape value. Lengths greater
19487 than 2^32 aren't very common which means that the initial 4 bytes
19488 is almost always zero. Since a length value of zero doesn't make
19489 sense for the 32-bit format, this initial zero can be considered to
19490 be an escape value which indicates the presence of the older 64-bit
19491 format. As written, the code can't detect (old format) lengths
19492 greater than 4GB. If it becomes necessary to handle lengths
19493 somewhat larger than 4GB, we could allow other small values (such
19494 as the non-sensical values of 1, 2, and 3) to also be used as
19495 escape values indicating the presence of the old format.
19496
19497 The value returned via bytes_read should be used to increment the
19498 relevant pointer after calling read_initial_length().
19499
19500 [ Note: read_initial_length() and read_offset() are based on the
19501 document entitled "DWARF Debugging Information Format", revision
19502 3, draft 8, dated November 19, 2001. This document was obtained
19503 from:
19504
19505 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19506
19507 This document is only a draft and is subject to change. (So beware.)
19508
19509 Details regarding the older, non-standard 64-bit format were
19510 determined empirically by examining 64-bit ELF files produced by
19511 the SGI toolchain on an IRIX 6.5 machine.
19512
19513 - Kevin, July 16, 2002
19514 ] */
19515
19516 static LONGEST
19517 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19518 {
19519 LONGEST length = bfd_get_32 (abfd, buf);
19520
19521 if (length == 0xffffffff)
19522 {
19523 length = bfd_get_64 (abfd, buf + 4);
19524 *bytes_read = 12;
19525 }
19526 else if (length == 0)
19527 {
19528 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19529 length = bfd_get_64 (abfd, buf);
19530 *bytes_read = 8;
19531 }
19532 else
19533 {
19534 *bytes_read = 4;
19535 }
19536
19537 return length;
19538 }
19539
19540 /* Cover function for read_initial_length.
19541 Returns the length of the object at BUF, and stores the size of the
19542 initial length in *BYTES_READ and stores the size that offsets will be in
19543 *OFFSET_SIZE.
19544 If the initial length size is not equivalent to that specified in
19545 CU_HEADER then issue a complaint.
19546 This is useful when reading non-comp-unit headers. */
19547
19548 static LONGEST
19549 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19550 const struct comp_unit_head *cu_header,
19551 unsigned int *bytes_read,
19552 unsigned int *offset_size)
19553 {
19554 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19555
19556 gdb_assert (cu_header->initial_length_size == 4
19557 || cu_header->initial_length_size == 8
19558 || cu_header->initial_length_size == 12);
19559
19560 if (cu_header->initial_length_size != *bytes_read)
19561 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19562
19563 *offset_size = (*bytes_read == 4) ? 4 : 8;
19564 return length;
19565 }
19566
19567 /* Read an offset from the data stream. The size of the offset is
19568 given by cu_header->offset_size. */
19569
19570 static LONGEST
19571 read_offset (bfd *abfd, const gdb_byte *buf,
19572 const struct comp_unit_head *cu_header,
19573 unsigned int *bytes_read)
19574 {
19575 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19576
19577 *bytes_read = cu_header->offset_size;
19578 return offset;
19579 }
19580
19581 /* Read an offset from the data stream. */
19582
19583 static LONGEST
19584 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19585 {
19586 LONGEST retval = 0;
19587
19588 switch (offset_size)
19589 {
19590 case 4:
19591 retval = bfd_get_32 (abfd, buf);
19592 break;
19593 case 8:
19594 retval = bfd_get_64 (abfd, buf);
19595 break;
19596 default:
19597 internal_error (__FILE__, __LINE__,
19598 _("read_offset_1: bad switch [in module %s]"),
19599 bfd_get_filename (abfd));
19600 }
19601
19602 return retval;
19603 }
19604
19605 static const gdb_byte *
19606 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19607 {
19608 /* If the size of a host char is 8 bits, we can return a pointer
19609 to the buffer, otherwise we have to copy the data to a buffer
19610 allocated on the temporary obstack. */
19611 gdb_assert (HOST_CHAR_BIT == 8);
19612 return buf;
19613 }
19614
19615 static const char *
19616 read_direct_string (bfd *abfd, const gdb_byte *buf,
19617 unsigned int *bytes_read_ptr)
19618 {
19619 /* If the size of a host char is 8 bits, we can return a pointer
19620 to the string, otherwise we have to copy the string to a buffer
19621 allocated on the temporary obstack. */
19622 gdb_assert (HOST_CHAR_BIT == 8);
19623 if (*buf == '\0')
19624 {
19625 *bytes_read_ptr = 1;
19626 return NULL;
19627 }
19628 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19629 return (const char *) buf;
19630 }
19631
19632 /* Return pointer to string at section SECT offset STR_OFFSET with error
19633 reporting strings FORM_NAME and SECT_NAME. */
19634
19635 static const char *
19636 read_indirect_string_at_offset_from (struct objfile *objfile,
19637 bfd *abfd, LONGEST str_offset,
19638 struct dwarf2_section_info *sect,
19639 const char *form_name,
19640 const char *sect_name)
19641 {
19642 dwarf2_read_section (objfile, sect);
19643 if (sect->buffer == NULL)
19644 error (_("%s used without %s section [in module %s]"),
19645 form_name, sect_name, bfd_get_filename (abfd));
19646 if (str_offset >= sect->size)
19647 error (_("%s pointing outside of %s section [in module %s]"),
19648 form_name, sect_name, bfd_get_filename (abfd));
19649 gdb_assert (HOST_CHAR_BIT == 8);
19650 if (sect->buffer[str_offset] == '\0')
19651 return NULL;
19652 return (const char *) (sect->buffer + str_offset);
19653 }
19654
19655 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19656
19657 static const char *
19658 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19659 bfd *abfd, LONGEST str_offset)
19660 {
19661 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19662 abfd, str_offset,
19663 &dwarf2_per_objfile->str,
19664 "DW_FORM_strp", ".debug_str");
19665 }
19666
19667 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19668
19669 static const char *
19670 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19671 bfd *abfd, LONGEST str_offset)
19672 {
19673 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19674 abfd, str_offset,
19675 &dwarf2_per_objfile->line_str,
19676 "DW_FORM_line_strp",
19677 ".debug_line_str");
19678 }
19679
19680 /* Read a string at offset STR_OFFSET in the .debug_str section from
19681 the .dwz file DWZ. Throw an error if the offset is too large. If
19682 the string consists of a single NUL byte, return NULL; otherwise
19683 return a pointer to the string. */
19684
19685 static const char *
19686 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19687 LONGEST str_offset)
19688 {
19689 dwarf2_read_section (objfile, &dwz->str);
19690
19691 if (dwz->str.buffer == NULL)
19692 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19693 "section [in module %s]"),
19694 bfd_get_filename (dwz->dwz_bfd));
19695 if (str_offset >= dwz->str.size)
19696 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19697 ".debug_str section [in module %s]"),
19698 bfd_get_filename (dwz->dwz_bfd));
19699 gdb_assert (HOST_CHAR_BIT == 8);
19700 if (dwz->str.buffer[str_offset] == '\0')
19701 return NULL;
19702 return (const char *) (dwz->str.buffer + str_offset);
19703 }
19704
19705 /* Return pointer to string at .debug_str offset as read from BUF.
19706 BUF is assumed to be in a compilation unit described by CU_HEADER.
19707 Return *BYTES_READ_PTR count of bytes read from BUF. */
19708
19709 static const char *
19710 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19711 const gdb_byte *buf,
19712 const struct comp_unit_head *cu_header,
19713 unsigned int *bytes_read_ptr)
19714 {
19715 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19716
19717 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19718 }
19719
19720 /* Return pointer to string at .debug_line_str offset as read from BUF.
19721 BUF is assumed to be in a compilation unit described by CU_HEADER.
19722 Return *BYTES_READ_PTR count of bytes read from BUF. */
19723
19724 static const char *
19725 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19726 bfd *abfd, const gdb_byte *buf,
19727 const struct comp_unit_head *cu_header,
19728 unsigned int *bytes_read_ptr)
19729 {
19730 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19731
19732 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19733 str_offset);
19734 }
19735
19736 ULONGEST
19737 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19738 unsigned int *bytes_read_ptr)
19739 {
19740 ULONGEST result;
19741 unsigned int num_read;
19742 int shift;
19743 unsigned char byte;
19744
19745 result = 0;
19746 shift = 0;
19747 num_read = 0;
19748 while (1)
19749 {
19750 byte = bfd_get_8 (abfd, buf);
19751 buf++;
19752 num_read++;
19753 result |= ((ULONGEST) (byte & 127) << shift);
19754 if ((byte & 128) == 0)
19755 {
19756 break;
19757 }
19758 shift += 7;
19759 }
19760 *bytes_read_ptr = num_read;
19761 return result;
19762 }
19763
19764 static LONGEST
19765 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19766 unsigned int *bytes_read_ptr)
19767 {
19768 ULONGEST result;
19769 int shift, num_read;
19770 unsigned char byte;
19771
19772 result = 0;
19773 shift = 0;
19774 num_read = 0;
19775 while (1)
19776 {
19777 byte = bfd_get_8 (abfd, buf);
19778 buf++;
19779 num_read++;
19780 result |= ((ULONGEST) (byte & 127) << shift);
19781 shift += 7;
19782 if ((byte & 128) == 0)
19783 {
19784 break;
19785 }
19786 }
19787 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19788 result |= -(((ULONGEST) 1) << shift);
19789 *bytes_read_ptr = num_read;
19790 return result;
19791 }
19792
19793 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19794 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19795 ADDR_SIZE is the size of addresses from the CU header. */
19796
19797 static CORE_ADDR
19798 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19799 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19800 {
19801 struct objfile *objfile = dwarf2_per_objfile->objfile;
19802 bfd *abfd = objfile->obfd;
19803 const gdb_byte *info_ptr;
19804
19805 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19806 if (dwarf2_per_objfile->addr.buffer == NULL)
19807 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19808 objfile_name (objfile));
19809 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19810 error (_("DW_FORM_addr_index pointing outside of "
19811 ".debug_addr section [in module %s]"),
19812 objfile_name (objfile));
19813 info_ptr = (dwarf2_per_objfile->addr.buffer
19814 + addr_base + addr_index * addr_size);
19815 if (addr_size == 4)
19816 return bfd_get_32 (abfd, info_ptr);
19817 else
19818 return bfd_get_64 (abfd, info_ptr);
19819 }
19820
19821 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19822
19823 static CORE_ADDR
19824 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19825 {
19826 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19827 cu->addr_base, cu->header.addr_size);
19828 }
19829
19830 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19831
19832 static CORE_ADDR
19833 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19834 unsigned int *bytes_read)
19835 {
19836 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19837 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19838
19839 return read_addr_index (cu, addr_index);
19840 }
19841
19842 /* Data structure to pass results from dwarf2_read_addr_index_reader
19843 back to dwarf2_read_addr_index. */
19844
19845 struct dwarf2_read_addr_index_data
19846 {
19847 ULONGEST addr_base;
19848 int addr_size;
19849 };
19850
19851 /* die_reader_func for dwarf2_read_addr_index. */
19852
19853 static void
19854 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19855 const gdb_byte *info_ptr,
19856 struct die_info *comp_unit_die,
19857 int has_children,
19858 void *data)
19859 {
19860 struct dwarf2_cu *cu = reader->cu;
19861 struct dwarf2_read_addr_index_data *aidata =
19862 (struct dwarf2_read_addr_index_data *) data;
19863
19864 aidata->addr_base = cu->addr_base;
19865 aidata->addr_size = cu->header.addr_size;
19866 }
19867
19868 /* Given an index in .debug_addr, fetch the value.
19869 NOTE: This can be called during dwarf expression evaluation,
19870 long after the debug information has been read, and thus per_cu->cu
19871 may no longer exist. */
19872
19873 CORE_ADDR
19874 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19875 unsigned int addr_index)
19876 {
19877 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19878 struct dwarf2_cu *cu = per_cu->cu;
19879 ULONGEST addr_base;
19880 int addr_size;
19881
19882 /* We need addr_base and addr_size.
19883 If we don't have PER_CU->cu, we have to get it.
19884 Nasty, but the alternative is storing the needed info in PER_CU,
19885 which at this point doesn't seem justified: it's not clear how frequently
19886 it would get used and it would increase the size of every PER_CU.
19887 Entry points like dwarf2_per_cu_addr_size do a similar thing
19888 so we're not in uncharted territory here.
19889 Alas we need to be a bit more complicated as addr_base is contained
19890 in the DIE.
19891
19892 We don't need to read the entire CU(/TU).
19893 We just need the header and top level die.
19894
19895 IWBN to use the aging mechanism to let us lazily later discard the CU.
19896 For now we skip this optimization. */
19897
19898 if (cu != NULL)
19899 {
19900 addr_base = cu->addr_base;
19901 addr_size = cu->header.addr_size;
19902 }
19903 else
19904 {
19905 struct dwarf2_read_addr_index_data aidata;
19906
19907 /* Note: We can't use init_cutu_and_read_dies_simple here,
19908 we need addr_base. */
19909 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
19910 dwarf2_read_addr_index_reader, &aidata);
19911 addr_base = aidata.addr_base;
19912 addr_size = aidata.addr_size;
19913 }
19914
19915 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19916 addr_size);
19917 }
19918
19919 /* Given a DW_FORM_GNU_str_index or DW_FORM_strx, fetch the string.
19920 This is only used by the Fission support. */
19921
19922 static const char *
19923 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19924 {
19925 struct dwarf2_cu *cu = reader->cu;
19926 struct dwarf2_per_objfile *dwarf2_per_objfile
19927 = cu->per_cu->dwarf2_per_objfile;
19928 struct objfile *objfile = dwarf2_per_objfile->objfile;
19929 const char *objf_name = objfile_name (objfile);
19930 bfd *abfd = objfile->obfd;
19931 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19932 struct dwarf2_section_info *str_offsets_section =
19933 &reader->dwo_file->sections.str_offsets;
19934 const gdb_byte *info_ptr;
19935 ULONGEST str_offset;
19936 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
19937
19938 dwarf2_read_section (objfile, str_section);
19939 dwarf2_read_section (objfile, str_offsets_section);
19940 if (str_section->buffer == NULL)
19941 error (_("%s used without .debug_str.dwo section"
19942 " in CU at offset %s [in module %s]"),
19943 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19944 if (str_offsets_section->buffer == NULL)
19945 error (_("%s used without .debug_str_offsets.dwo section"
19946 " in CU at offset %s [in module %s]"),
19947 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19948 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19949 error (_("%s pointing outside of .debug_str_offsets.dwo"
19950 " section in CU at offset %s [in module %s]"),
19951 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19952 info_ptr = (str_offsets_section->buffer
19953 + str_index * cu->header.offset_size);
19954 if (cu->header.offset_size == 4)
19955 str_offset = bfd_get_32 (abfd, info_ptr);
19956 else
19957 str_offset = bfd_get_64 (abfd, info_ptr);
19958 if (str_offset >= str_section->size)
19959 error (_("Offset from %s pointing outside of"
19960 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19961 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19962 return (const char *) (str_section->buffer + str_offset);
19963 }
19964
19965 /* Return the length of an LEB128 number in BUF. */
19966
19967 static int
19968 leb128_size (const gdb_byte *buf)
19969 {
19970 const gdb_byte *begin = buf;
19971 gdb_byte byte;
19972
19973 while (1)
19974 {
19975 byte = *buf++;
19976 if ((byte & 128) == 0)
19977 return buf - begin;
19978 }
19979 }
19980
19981 static void
19982 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19983 {
19984 switch (lang)
19985 {
19986 case DW_LANG_C89:
19987 case DW_LANG_C99:
19988 case DW_LANG_C11:
19989 case DW_LANG_C:
19990 case DW_LANG_UPC:
19991 cu->language = language_c;
19992 break;
19993 case DW_LANG_Java:
19994 case DW_LANG_C_plus_plus:
19995 case DW_LANG_C_plus_plus_11:
19996 case DW_LANG_C_plus_plus_14:
19997 cu->language = language_cplus;
19998 break;
19999 case DW_LANG_D:
20000 cu->language = language_d;
20001 break;
20002 case DW_LANG_Fortran77:
20003 case DW_LANG_Fortran90:
20004 case DW_LANG_Fortran95:
20005 case DW_LANG_Fortran03:
20006 case DW_LANG_Fortran08:
20007 cu->language = language_fortran;
20008 break;
20009 case DW_LANG_Go:
20010 cu->language = language_go;
20011 break;
20012 case DW_LANG_Mips_Assembler:
20013 cu->language = language_asm;
20014 break;
20015 case DW_LANG_Ada83:
20016 case DW_LANG_Ada95:
20017 cu->language = language_ada;
20018 break;
20019 case DW_LANG_Modula2:
20020 cu->language = language_m2;
20021 break;
20022 case DW_LANG_Pascal83:
20023 cu->language = language_pascal;
20024 break;
20025 case DW_LANG_ObjC:
20026 cu->language = language_objc;
20027 break;
20028 case DW_LANG_Rust:
20029 case DW_LANG_Rust_old:
20030 cu->language = language_rust;
20031 break;
20032 case DW_LANG_Cobol74:
20033 case DW_LANG_Cobol85:
20034 default:
20035 cu->language = language_minimal;
20036 break;
20037 }
20038 cu->language_defn = language_def (cu->language);
20039 }
20040
20041 /* Return the named attribute or NULL if not there. */
20042
20043 static struct attribute *
20044 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20045 {
20046 for (;;)
20047 {
20048 unsigned int i;
20049 struct attribute *spec = NULL;
20050
20051 for (i = 0; i < die->num_attrs; ++i)
20052 {
20053 if (die->attrs[i].name == name)
20054 return &die->attrs[i];
20055 if (die->attrs[i].name == DW_AT_specification
20056 || die->attrs[i].name == DW_AT_abstract_origin)
20057 spec = &die->attrs[i];
20058 }
20059
20060 if (!spec)
20061 break;
20062
20063 die = follow_die_ref (die, spec, &cu);
20064 }
20065
20066 return NULL;
20067 }
20068
20069 /* Return the named attribute or NULL if not there,
20070 but do not follow DW_AT_specification, etc.
20071 This is for use in contexts where we're reading .debug_types dies.
20072 Following DW_AT_specification, DW_AT_abstract_origin will take us
20073 back up the chain, and we want to go down. */
20074
20075 static struct attribute *
20076 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
20077 {
20078 unsigned int i;
20079
20080 for (i = 0; i < die->num_attrs; ++i)
20081 if (die->attrs[i].name == name)
20082 return &die->attrs[i];
20083
20084 return NULL;
20085 }
20086
20087 /* Return the string associated with a string-typed attribute, or NULL if it
20088 is either not found or is of an incorrect type. */
20089
20090 static const char *
20091 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20092 {
20093 struct attribute *attr;
20094 const char *str = NULL;
20095
20096 attr = dwarf2_attr (die, name, cu);
20097
20098 if (attr != NULL)
20099 {
20100 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
20101 || attr->form == DW_FORM_string
20102 || attr->form == DW_FORM_strx
20103 || attr->form == DW_FORM_GNU_str_index
20104 || attr->form == DW_FORM_GNU_strp_alt)
20105 str = DW_STRING (attr);
20106 else
20107 complaint (_("string type expected for attribute %s for "
20108 "DIE at %s in module %s"),
20109 dwarf_attr_name (name), sect_offset_str (die->sect_off),
20110 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
20111 }
20112
20113 return str;
20114 }
20115
20116 /* Return non-zero iff the attribute NAME is defined for the given DIE,
20117 and holds a non-zero value. This function should only be used for
20118 DW_FORM_flag or DW_FORM_flag_present attributes. */
20119
20120 static int
20121 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
20122 {
20123 struct attribute *attr = dwarf2_attr (die, name, cu);
20124
20125 return (attr && DW_UNSND (attr));
20126 }
20127
20128 static int
20129 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
20130 {
20131 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20132 which value is non-zero. However, we have to be careful with
20133 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20134 (via dwarf2_flag_true_p) follows this attribute. So we may
20135 end up accidently finding a declaration attribute that belongs
20136 to a different DIE referenced by the specification attribute,
20137 even though the given DIE does not have a declaration attribute. */
20138 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20139 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
20140 }
20141
20142 /* Return the die giving the specification for DIE, if there is
20143 one. *SPEC_CU is the CU containing DIE on input, and the CU
20144 containing the return value on output. If there is no
20145 specification, but there is an abstract origin, that is
20146 returned. */
20147
20148 static struct die_info *
20149 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20150 {
20151 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20152 *spec_cu);
20153
20154 if (spec_attr == NULL)
20155 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20156
20157 if (spec_attr == NULL)
20158 return NULL;
20159 else
20160 return follow_die_ref (die, spec_attr, spec_cu);
20161 }
20162
20163 /* Stub for free_line_header to match void * callback types. */
20164
20165 static void
20166 free_line_header_voidp (void *arg)
20167 {
20168 struct line_header *lh = (struct line_header *) arg;
20169
20170 delete lh;
20171 }
20172
20173 void
20174 line_header::add_include_dir (const char *include_dir)
20175 {
20176 if (dwarf_line_debug >= 2)
20177 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20178 include_dirs.size () + 1, include_dir);
20179
20180 include_dirs.push_back (include_dir);
20181 }
20182
20183 void
20184 line_header::add_file_name (const char *name,
20185 dir_index d_index,
20186 unsigned int mod_time,
20187 unsigned int length)
20188 {
20189 if (dwarf_line_debug >= 2)
20190 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
20191 (unsigned) file_names.size () + 1, name);
20192
20193 file_names.emplace_back (name, d_index, mod_time, length);
20194 }
20195
20196 /* A convenience function to find the proper .debug_line section for a CU. */
20197
20198 static struct dwarf2_section_info *
20199 get_debug_line_section (struct dwarf2_cu *cu)
20200 {
20201 struct dwarf2_section_info *section;
20202 struct dwarf2_per_objfile *dwarf2_per_objfile
20203 = cu->per_cu->dwarf2_per_objfile;
20204
20205 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20206 DWO file. */
20207 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20208 section = &cu->dwo_unit->dwo_file->sections.line;
20209 else if (cu->per_cu->is_dwz)
20210 {
20211 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
20212
20213 section = &dwz->line;
20214 }
20215 else
20216 section = &dwarf2_per_objfile->line;
20217
20218 return section;
20219 }
20220
20221 /* Read directory or file name entry format, starting with byte of
20222 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20223 entries count and the entries themselves in the described entry
20224 format. */
20225
20226 static void
20227 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20228 bfd *abfd, const gdb_byte **bufp,
20229 struct line_header *lh,
20230 const struct comp_unit_head *cu_header,
20231 void (*callback) (struct line_header *lh,
20232 const char *name,
20233 dir_index d_index,
20234 unsigned int mod_time,
20235 unsigned int length))
20236 {
20237 gdb_byte format_count, formati;
20238 ULONGEST data_count, datai;
20239 const gdb_byte *buf = *bufp;
20240 const gdb_byte *format_header_data;
20241 unsigned int bytes_read;
20242
20243 format_count = read_1_byte (abfd, buf);
20244 buf += 1;
20245 format_header_data = buf;
20246 for (formati = 0; formati < format_count; formati++)
20247 {
20248 read_unsigned_leb128 (abfd, buf, &bytes_read);
20249 buf += bytes_read;
20250 read_unsigned_leb128 (abfd, buf, &bytes_read);
20251 buf += bytes_read;
20252 }
20253
20254 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20255 buf += bytes_read;
20256 for (datai = 0; datai < data_count; datai++)
20257 {
20258 const gdb_byte *format = format_header_data;
20259 struct file_entry fe;
20260
20261 for (formati = 0; formati < format_count; formati++)
20262 {
20263 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20264 format += bytes_read;
20265
20266 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20267 format += bytes_read;
20268
20269 gdb::optional<const char *> string;
20270 gdb::optional<unsigned int> uint;
20271
20272 switch (form)
20273 {
20274 case DW_FORM_string:
20275 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20276 buf += bytes_read;
20277 break;
20278
20279 case DW_FORM_line_strp:
20280 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20281 abfd, buf,
20282 cu_header,
20283 &bytes_read));
20284 buf += bytes_read;
20285 break;
20286
20287 case DW_FORM_data1:
20288 uint.emplace (read_1_byte (abfd, buf));
20289 buf += 1;
20290 break;
20291
20292 case DW_FORM_data2:
20293 uint.emplace (read_2_bytes (abfd, buf));
20294 buf += 2;
20295 break;
20296
20297 case DW_FORM_data4:
20298 uint.emplace (read_4_bytes (abfd, buf));
20299 buf += 4;
20300 break;
20301
20302 case DW_FORM_data8:
20303 uint.emplace (read_8_bytes (abfd, buf));
20304 buf += 8;
20305 break;
20306
20307 case DW_FORM_udata:
20308 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20309 buf += bytes_read;
20310 break;
20311
20312 case DW_FORM_block:
20313 /* It is valid only for DW_LNCT_timestamp which is ignored by
20314 current GDB. */
20315 break;
20316 }
20317
20318 switch (content_type)
20319 {
20320 case DW_LNCT_path:
20321 if (string.has_value ())
20322 fe.name = *string;
20323 break;
20324 case DW_LNCT_directory_index:
20325 if (uint.has_value ())
20326 fe.d_index = (dir_index) *uint;
20327 break;
20328 case DW_LNCT_timestamp:
20329 if (uint.has_value ())
20330 fe.mod_time = *uint;
20331 break;
20332 case DW_LNCT_size:
20333 if (uint.has_value ())
20334 fe.length = *uint;
20335 break;
20336 case DW_LNCT_MD5:
20337 break;
20338 default:
20339 complaint (_("Unknown format content type %s"),
20340 pulongest (content_type));
20341 }
20342 }
20343
20344 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20345 }
20346
20347 *bufp = buf;
20348 }
20349
20350 /* Read the statement program header starting at OFFSET in
20351 .debug_line, or .debug_line.dwo. Return a pointer
20352 to a struct line_header, allocated using xmalloc.
20353 Returns NULL if there is a problem reading the header, e.g., if it
20354 has a version we don't understand.
20355
20356 NOTE: the strings in the include directory and file name tables of
20357 the returned object point into the dwarf line section buffer,
20358 and must not be freed. */
20359
20360 static line_header_up
20361 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20362 {
20363 const gdb_byte *line_ptr;
20364 unsigned int bytes_read, offset_size;
20365 int i;
20366 const char *cur_dir, *cur_file;
20367 struct dwarf2_section_info *section;
20368 bfd *abfd;
20369 struct dwarf2_per_objfile *dwarf2_per_objfile
20370 = cu->per_cu->dwarf2_per_objfile;
20371
20372 section = get_debug_line_section (cu);
20373 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20374 if (section->buffer == NULL)
20375 {
20376 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20377 complaint (_("missing .debug_line.dwo section"));
20378 else
20379 complaint (_("missing .debug_line section"));
20380 return 0;
20381 }
20382
20383 /* We can't do this until we know the section is non-empty.
20384 Only then do we know we have such a section. */
20385 abfd = get_section_bfd_owner (section);
20386
20387 /* Make sure that at least there's room for the total_length field.
20388 That could be 12 bytes long, but we're just going to fudge that. */
20389 if (to_underlying (sect_off) + 4 >= section->size)
20390 {
20391 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20392 return 0;
20393 }
20394
20395 line_header_up lh (new line_header ());
20396
20397 lh->sect_off = sect_off;
20398 lh->offset_in_dwz = cu->per_cu->is_dwz;
20399
20400 line_ptr = section->buffer + to_underlying (sect_off);
20401
20402 /* Read in the header. */
20403 lh->total_length =
20404 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20405 &bytes_read, &offset_size);
20406 line_ptr += bytes_read;
20407 if (line_ptr + lh->total_length > (section->buffer + section->size))
20408 {
20409 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20410 return 0;
20411 }
20412 lh->statement_program_end = line_ptr + lh->total_length;
20413 lh->version = read_2_bytes (abfd, line_ptr);
20414 line_ptr += 2;
20415 if (lh->version > 5)
20416 {
20417 /* This is a version we don't understand. The format could have
20418 changed in ways we don't handle properly so just punt. */
20419 complaint (_("unsupported version in .debug_line section"));
20420 return NULL;
20421 }
20422 if (lh->version >= 5)
20423 {
20424 gdb_byte segment_selector_size;
20425
20426 /* Skip address size. */
20427 read_1_byte (abfd, line_ptr);
20428 line_ptr += 1;
20429
20430 segment_selector_size = read_1_byte (abfd, line_ptr);
20431 line_ptr += 1;
20432 if (segment_selector_size != 0)
20433 {
20434 complaint (_("unsupported segment selector size %u "
20435 "in .debug_line section"),
20436 segment_selector_size);
20437 return NULL;
20438 }
20439 }
20440 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20441 line_ptr += offset_size;
20442 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20443 line_ptr += 1;
20444 if (lh->version >= 4)
20445 {
20446 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20447 line_ptr += 1;
20448 }
20449 else
20450 lh->maximum_ops_per_instruction = 1;
20451
20452 if (lh->maximum_ops_per_instruction == 0)
20453 {
20454 lh->maximum_ops_per_instruction = 1;
20455 complaint (_("invalid maximum_ops_per_instruction "
20456 "in `.debug_line' section"));
20457 }
20458
20459 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20460 line_ptr += 1;
20461 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20462 line_ptr += 1;
20463 lh->line_range = read_1_byte (abfd, line_ptr);
20464 line_ptr += 1;
20465 lh->opcode_base = read_1_byte (abfd, line_ptr);
20466 line_ptr += 1;
20467 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20468
20469 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20470 for (i = 1; i < lh->opcode_base; ++i)
20471 {
20472 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20473 line_ptr += 1;
20474 }
20475
20476 if (lh->version >= 5)
20477 {
20478 /* Read directory table. */
20479 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20480 &cu->header,
20481 [] (struct line_header *header, const char *name,
20482 dir_index d_index, unsigned int mod_time,
20483 unsigned int length)
20484 {
20485 header->add_include_dir (name);
20486 });
20487
20488 /* Read file name table. */
20489 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20490 &cu->header,
20491 [] (struct line_header *header, const char *name,
20492 dir_index d_index, unsigned int mod_time,
20493 unsigned int length)
20494 {
20495 header->add_file_name (name, d_index, mod_time, length);
20496 });
20497 }
20498 else
20499 {
20500 /* Read directory table. */
20501 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20502 {
20503 line_ptr += bytes_read;
20504 lh->add_include_dir (cur_dir);
20505 }
20506 line_ptr += bytes_read;
20507
20508 /* Read file name table. */
20509 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20510 {
20511 unsigned int mod_time, length;
20512 dir_index d_index;
20513
20514 line_ptr += bytes_read;
20515 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20516 line_ptr += bytes_read;
20517 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20518 line_ptr += bytes_read;
20519 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20520 line_ptr += bytes_read;
20521
20522 lh->add_file_name (cur_file, d_index, mod_time, length);
20523 }
20524 line_ptr += bytes_read;
20525 }
20526 lh->statement_program_start = line_ptr;
20527
20528 if (line_ptr > (section->buffer + section->size))
20529 complaint (_("line number info header doesn't "
20530 "fit in `.debug_line' section"));
20531
20532 return lh;
20533 }
20534
20535 /* Subroutine of dwarf_decode_lines to simplify it.
20536 Return the file name of the psymtab for included file FILE_INDEX
20537 in line header LH of PST.
20538 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20539 If space for the result is malloc'd, *NAME_HOLDER will be set.
20540 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20541
20542 static const char *
20543 psymtab_include_file_name (const struct line_header *lh, int file_index,
20544 const struct partial_symtab *pst,
20545 const char *comp_dir,
20546 gdb::unique_xmalloc_ptr<char> *name_holder)
20547 {
20548 const file_entry &fe = lh->file_names[file_index];
20549 const char *include_name = fe.name;
20550 const char *include_name_to_compare = include_name;
20551 const char *pst_filename;
20552 int file_is_pst;
20553
20554 const char *dir_name = fe.include_dir (lh);
20555
20556 gdb::unique_xmalloc_ptr<char> hold_compare;
20557 if (!IS_ABSOLUTE_PATH (include_name)
20558 && (dir_name != NULL || comp_dir != NULL))
20559 {
20560 /* Avoid creating a duplicate psymtab for PST.
20561 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20562 Before we do the comparison, however, we need to account
20563 for DIR_NAME and COMP_DIR.
20564 First prepend dir_name (if non-NULL). If we still don't
20565 have an absolute path prepend comp_dir (if non-NULL).
20566 However, the directory we record in the include-file's
20567 psymtab does not contain COMP_DIR (to match the
20568 corresponding symtab(s)).
20569
20570 Example:
20571
20572 bash$ cd /tmp
20573 bash$ gcc -g ./hello.c
20574 include_name = "hello.c"
20575 dir_name = "."
20576 DW_AT_comp_dir = comp_dir = "/tmp"
20577 DW_AT_name = "./hello.c"
20578
20579 */
20580
20581 if (dir_name != NULL)
20582 {
20583 name_holder->reset (concat (dir_name, SLASH_STRING,
20584 include_name, (char *) NULL));
20585 include_name = name_holder->get ();
20586 include_name_to_compare = include_name;
20587 }
20588 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20589 {
20590 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20591 include_name, (char *) NULL));
20592 include_name_to_compare = hold_compare.get ();
20593 }
20594 }
20595
20596 pst_filename = pst->filename;
20597 gdb::unique_xmalloc_ptr<char> copied_name;
20598 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20599 {
20600 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20601 pst_filename, (char *) NULL));
20602 pst_filename = copied_name.get ();
20603 }
20604
20605 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20606
20607 if (file_is_pst)
20608 return NULL;
20609 return include_name;
20610 }
20611
20612 /* State machine to track the state of the line number program. */
20613
20614 class lnp_state_machine
20615 {
20616 public:
20617 /* Initialize a machine state for the start of a line number
20618 program. */
20619 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20620 bool record_lines_p);
20621
20622 file_entry *current_file ()
20623 {
20624 /* lh->file_names is 0-based, but the file name numbers in the
20625 statement program are 1-based. */
20626 return m_line_header->file_name_at (m_file);
20627 }
20628
20629 /* Record the line in the state machine. END_SEQUENCE is true if
20630 we're processing the end of a sequence. */
20631 void record_line (bool end_sequence);
20632
20633 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20634 nop-out rest of the lines in this sequence. */
20635 void check_line_address (struct dwarf2_cu *cu,
20636 const gdb_byte *line_ptr,
20637 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20638
20639 void handle_set_discriminator (unsigned int discriminator)
20640 {
20641 m_discriminator = discriminator;
20642 m_line_has_non_zero_discriminator |= discriminator != 0;
20643 }
20644
20645 /* Handle DW_LNE_set_address. */
20646 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20647 {
20648 m_op_index = 0;
20649 address += baseaddr;
20650 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20651 }
20652
20653 /* Handle DW_LNS_advance_pc. */
20654 void handle_advance_pc (CORE_ADDR adjust);
20655
20656 /* Handle a special opcode. */
20657 void handle_special_opcode (unsigned char op_code);
20658
20659 /* Handle DW_LNS_advance_line. */
20660 void handle_advance_line (int line_delta)
20661 {
20662 advance_line (line_delta);
20663 }
20664
20665 /* Handle DW_LNS_set_file. */
20666 void handle_set_file (file_name_index file);
20667
20668 /* Handle DW_LNS_negate_stmt. */
20669 void handle_negate_stmt ()
20670 {
20671 m_is_stmt = !m_is_stmt;
20672 }
20673
20674 /* Handle DW_LNS_const_add_pc. */
20675 void handle_const_add_pc ();
20676
20677 /* Handle DW_LNS_fixed_advance_pc. */
20678 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20679 {
20680 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20681 m_op_index = 0;
20682 }
20683
20684 /* Handle DW_LNS_copy. */
20685 void handle_copy ()
20686 {
20687 record_line (false);
20688 m_discriminator = 0;
20689 }
20690
20691 /* Handle DW_LNE_end_sequence. */
20692 void handle_end_sequence ()
20693 {
20694 m_currently_recording_lines = true;
20695 }
20696
20697 private:
20698 /* Advance the line by LINE_DELTA. */
20699 void advance_line (int line_delta)
20700 {
20701 m_line += line_delta;
20702
20703 if (line_delta != 0)
20704 m_line_has_non_zero_discriminator = m_discriminator != 0;
20705 }
20706
20707 struct dwarf2_cu *m_cu;
20708
20709 gdbarch *m_gdbarch;
20710
20711 /* True if we're recording lines.
20712 Otherwise we're building partial symtabs and are just interested in
20713 finding include files mentioned by the line number program. */
20714 bool m_record_lines_p;
20715
20716 /* The line number header. */
20717 line_header *m_line_header;
20718
20719 /* These are part of the standard DWARF line number state machine,
20720 and initialized according to the DWARF spec. */
20721
20722 unsigned char m_op_index = 0;
20723 /* The line table index (1-based) of the current file. */
20724 file_name_index m_file = (file_name_index) 1;
20725 unsigned int m_line = 1;
20726
20727 /* These are initialized in the constructor. */
20728
20729 CORE_ADDR m_address;
20730 bool m_is_stmt;
20731 unsigned int m_discriminator;
20732
20733 /* Additional bits of state we need to track. */
20734
20735 /* The last file that we called dwarf2_start_subfile for.
20736 This is only used for TLLs. */
20737 unsigned int m_last_file = 0;
20738 /* The last file a line number was recorded for. */
20739 struct subfile *m_last_subfile = NULL;
20740
20741 /* When true, record the lines we decode. */
20742 bool m_currently_recording_lines = false;
20743
20744 /* The last line number that was recorded, used to coalesce
20745 consecutive entries for the same line. This can happen, for
20746 example, when discriminators are present. PR 17276. */
20747 unsigned int m_last_line = 0;
20748 bool m_line_has_non_zero_discriminator = false;
20749 };
20750
20751 void
20752 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20753 {
20754 CORE_ADDR addr_adj = (((m_op_index + adjust)
20755 / m_line_header->maximum_ops_per_instruction)
20756 * m_line_header->minimum_instruction_length);
20757 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20758 m_op_index = ((m_op_index + adjust)
20759 % m_line_header->maximum_ops_per_instruction);
20760 }
20761
20762 void
20763 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20764 {
20765 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20766 CORE_ADDR addr_adj = (((m_op_index
20767 + (adj_opcode / m_line_header->line_range))
20768 / m_line_header->maximum_ops_per_instruction)
20769 * m_line_header->minimum_instruction_length);
20770 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20771 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20772 % m_line_header->maximum_ops_per_instruction);
20773
20774 int line_delta = (m_line_header->line_base
20775 + (adj_opcode % m_line_header->line_range));
20776 advance_line (line_delta);
20777 record_line (false);
20778 m_discriminator = 0;
20779 }
20780
20781 void
20782 lnp_state_machine::handle_set_file (file_name_index file)
20783 {
20784 m_file = file;
20785
20786 const file_entry *fe = current_file ();
20787 if (fe == NULL)
20788 dwarf2_debug_line_missing_file_complaint ();
20789 else if (m_record_lines_p)
20790 {
20791 const char *dir = fe->include_dir (m_line_header);
20792
20793 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20794 m_line_has_non_zero_discriminator = m_discriminator != 0;
20795 dwarf2_start_subfile (m_cu, fe->name, dir);
20796 }
20797 }
20798
20799 void
20800 lnp_state_machine::handle_const_add_pc ()
20801 {
20802 CORE_ADDR adjust
20803 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20804
20805 CORE_ADDR addr_adj
20806 = (((m_op_index + adjust)
20807 / m_line_header->maximum_ops_per_instruction)
20808 * m_line_header->minimum_instruction_length);
20809
20810 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20811 m_op_index = ((m_op_index + adjust)
20812 % m_line_header->maximum_ops_per_instruction);
20813 }
20814
20815 /* Return non-zero if we should add LINE to the line number table.
20816 LINE is the line to add, LAST_LINE is the last line that was added,
20817 LAST_SUBFILE is the subfile for LAST_LINE.
20818 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20819 had a non-zero discriminator.
20820
20821 We have to be careful in the presence of discriminators.
20822 E.g., for this line:
20823
20824 for (i = 0; i < 100000; i++);
20825
20826 clang can emit four line number entries for that one line,
20827 each with a different discriminator.
20828 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20829
20830 However, we want gdb to coalesce all four entries into one.
20831 Otherwise the user could stepi into the middle of the line and
20832 gdb would get confused about whether the pc really was in the
20833 middle of the line.
20834
20835 Things are further complicated by the fact that two consecutive
20836 line number entries for the same line is a heuristic used by gcc
20837 to denote the end of the prologue. So we can't just discard duplicate
20838 entries, we have to be selective about it. The heuristic we use is
20839 that we only collapse consecutive entries for the same line if at least
20840 one of those entries has a non-zero discriminator. PR 17276.
20841
20842 Note: Addresses in the line number state machine can never go backwards
20843 within one sequence, thus this coalescing is ok. */
20844
20845 static int
20846 dwarf_record_line_p (struct dwarf2_cu *cu,
20847 unsigned int line, unsigned int last_line,
20848 int line_has_non_zero_discriminator,
20849 struct subfile *last_subfile)
20850 {
20851 if (cu->get_builder ()->get_current_subfile () != last_subfile)
20852 return 1;
20853 if (line != last_line)
20854 return 1;
20855 /* Same line for the same file that we've seen already.
20856 As a last check, for pr 17276, only record the line if the line
20857 has never had a non-zero discriminator. */
20858 if (!line_has_non_zero_discriminator)
20859 return 1;
20860 return 0;
20861 }
20862
20863 /* Use the CU's builder to record line number LINE beginning at
20864 address ADDRESS in the line table of subfile SUBFILE. */
20865
20866 static void
20867 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20868 unsigned int line, CORE_ADDR address,
20869 struct dwarf2_cu *cu)
20870 {
20871 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20872
20873 if (dwarf_line_debug)
20874 {
20875 fprintf_unfiltered (gdb_stdlog,
20876 "Recording line %u, file %s, address %s\n",
20877 line, lbasename (subfile->name),
20878 paddress (gdbarch, address));
20879 }
20880
20881 if (cu != nullptr)
20882 cu->get_builder ()->record_line (subfile, line, addr);
20883 }
20884
20885 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20886 Mark the end of a set of line number records.
20887 The arguments are the same as for dwarf_record_line_1.
20888 If SUBFILE is NULL the request is ignored. */
20889
20890 static void
20891 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20892 CORE_ADDR address, struct dwarf2_cu *cu)
20893 {
20894 if (subfile == NULL)
20895 return;
20896
20897 if (dwarf_line_debug)
20898 {
20899 fprintf_unfiltered (gdb_stdlog,
20900 "Finishing current line, file %s, address %s\n",
20901 lbasename (subfile->name),
20902 paddress (gdbarch, address));
20903 }
20904
20905 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
20906 }
20907
20908 void
20909 lnp_state_machine::record_line (bool end_sequence)
20910 {
20911 if (dwarf_line_debug)
20912 {
20913 fprintf_unfiltered (gdb_stdlog,
20914 "Processing actual line %u: file %u,"
20915 " address %s, is_stmt %u, discrim %u\n",
20916 m_line, to_underlying (m_file),
20917 paddress (m_gdbarch, m_address),
20918 m_is_stmt, m_discriminator);
20919 }
20920
20921 file_entry *fe = current_file ();
20922
20923 if (fe == NULL)
20924 dwarf2_debug_line_missing_file_complaint ();
20925 /* For now we ignore lines not starting on an instruction boundary.
20926 But not when processing end_sequence for compatibility with the
20927 previous version of the code. */
20928 else if (m_op_index == 0 || end_sequence)
20929 {
20930 fe->included_p = 1;
20931 if (m_record_lines_p && (producer_is_codewarrior (m_cu) || m_is_stmt))
20932 {
20933 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
20934 || end_sequence)
20935 {
20936 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20937 m_currently_recording_lines ? m_cu : nullptr);
20938 }
20939
20940 if (!end_sequence)
20941 {
20942 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20943 m_line_has_non_zero_discriminator,
20944 m_last_subfile))
20945 {
20946 buildsym_compunit *builder = m_cu->get_builder ();
20947 dwarf_record_line_1 (m_gdbarch,
20948 builder->get_current_subfile (),
20949 m_line, m_address,
20950 m_currently_recording_lines ? m_cu : nullptr);
20951 }
20952 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20953 m_last_line = m_line;
20954 }
20955 }
20956 }
20957 }
20958
20959 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20960 line_header *lh, bool record_lines_p)
20961 {
20962 m_cu = cu;
20963 m_gdbarch = arch;
20964 m_record_lines_p = record_lines_p;
20965 m_line_header = lh;
20966
20967 m_currently_recording_lines = true;
20968
20969 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20970 was a line entry for it so that the backend has a chance to adjust it
20971 and also record it in case it needs it. This is currently used by MIPS
20972 code, cf. `mips_adjust_dwarf2_line'. */
20973 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20974 m_is_stmt = lh->default_is_stmt;
20975 m_discriminator = 0;
20976 }
20977
20978 void
20979 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20980 const gdb_byte *line_ptr,
20981 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20982 {
20983 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20984 the pc range of the CU. However, we restrict the test to only ADDRESS
20985 values of zero to preserve GDB's previous behaviour which is to handle
20986 the specific case of a function being GC'd by the linker. */
20987
20988 if (address == 0 && address < unrelocated_lowpc)
20989 {
20990 /* This line table is for a function which has been
20991 GCd by the linker. Ignore it. PR gdb/12528 */
20992
20993 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20994 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20995
20996 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20997 line_offset, objfile_name (objfile));
20998 m_currently_recording_lines = false;
20999 /* Note: m_currently_recording_lines is left as false until we see
21000 DW_LNE_end_sequence. */
21001 }
21002 }
21003
21004 /* Subroutine of dwarf_decode_lines to simplify it.
21005 Process the line number information in LH.
21006 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
21007 program in order to set included_p for every referenced header. */
21008
21009 static void
21010 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
21011 const int decode_for_pst_p, CORE_ADDR lowpc)
21012 {
21013 const gdb_byte *line_ptr, *extended_end;
21014 const gdb_byte *line_end;
21015 unsigned int bytes_read, extended_len;
21016 unsigned char op_code, extended_op;
21017 CORE_ADDR baseaddr;
21018 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21019 bfd *abfd = objfile->obfd;
21020 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21021 /* True if we're recording line info (as opposed to building partial
21022 symtabs and just interested in finding include files mentioned by
21023 the line number program). */
21024 bool record_lines_p = !decode_for_pst_p;
21025
21026 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21027
21028 line_ptr = lh->statement_program_start;
21029 line_end = lh->statement_program_end;
21030
21031 /* Read the statement sequences until there's nothing left. */
21032 while (line_ptr < line_end)
21033 {
21034 /* The DWARF line number program state machine. Reset the state
21035 machine at the start of each sequence. */
21036 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
21037 bool end_sequence = false;
21038
21039 if (record_lines_p)
21040 {
21041 /* Start a subfile for the current file of the state
21042 machine. */
21043 const file_entry *fe = state_machine.current_file ();
21044
21045 if (fe != NULL)
21046 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
21047 }
21048
21049 /* Decode the table. */
21050 while (line_ptr < line_end && !end_sequence)
21051 {
21052 op_code = read_1_byte (abfd, line_ptr);
21053 line_ptr += 1;
21054
21055 if (op_code >= lh->opcode_base)
21056 {
21057 /* Special opcode. */
21058 state_machine.handle_special_opcode (op_code);
21059 }
21060 else switch (op_code)
21061 {
21062 case DW_LNS_extended_op:
21063 extended_len = read_unsigned_leb128 (abfd, line_ptr,
21064 &bytes_read);
21065 line_ptr += bytes_read;
21066 extended_end = line_ptr + extended_len;
21067 extended_op = read_1_byte (abfd, line_ptr);
21068 line_ptr += 1;
21069 switch (extended_op)
21070 {
21071 case DW_LNE_end_sequence:
21072 state_machine.handle_end_sequence ();
21073 end_sequence = true;
21074 break;
21075 case DW_LNE_set_address:
21076 {
21077 CORE_ADDR address
21078 = read_address (abfd, line_ptr, cu, &bytes_read);
21079 line_ptr += bytes_read;
21080
21081 state_machine.check_line_address (cu, line_ptr,
21082 lowpc - baseaddr, address);
21083 state_machine.handle_set_address (baseaddr, address);
21084 }
21085 break;
21086 case DW_LNE_define_file:
21087 {
21088 const char *cur_file;
21089 unsigned int mod_time, length;
21090 dir_index dindex;
21091
21092 cur_file = read_direct_string (abfd, line_ptr,
21093 &bytes_read);
21094 line_ptr += bytes_read;
21095 dindex = (dir_index)
21096 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21097 line_ptr += bytes_read;
21098 mod_time =
21099 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21100 line_ptr += bytes_read;
21101 length =
21102 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21103 line_ptr += bytes_read;
21104 lh->add_file_name (cur_file, dindex, mod_time, length);
21105 }
21106 break;
21107 case DW_LNE_set_discriminator:
21108 {
21109 /* The discriminator is not interesting to the
21110 debugger; just ignore it. We still need to
21111 check its value though:
21112 if there are consecutive entries for the same
21113 (non-prologue) line we want to coalesce them.
21114 PR 17276. */
21115 unsigned int discr
21116 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21117 line_ptr += bytes_read;
21118
21119 state_machine.handle_set_discriminator (discr);
21120 }
21121 break;
21122 default:
21123 complaint (_("mangled .debug_line section"));
21124 return;
21125 }
21126 /* Make sure that we parsed the extended op correctly. If e.g.
21127 we expected a different address size than the producer used,
21128 we may have read the wrong number of bytes. */
21129 if (line_ptr != extended_end)
21130 {
21131 complaint (_("mangled .debug_line section"));
21132 return;
21133 }
21134 break;
21135 case DW_LNS_copy:
21136 state_machine.handle_copy ();
21137 break;
21138 case DW_LNS_advance_pc:
21139 {
21140 CORE_ADDR adjust
21141 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21142 line_ptr += bytes_read;
21143
21144 state_machine.handle_advance_pc (adjust);
21145 }
21146 break;
21147 case DW_LNS_advance_line:
21148 {
21149 int line_delta
21150 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21151 line_ptr += bytes_read;
21152
21153 state_machine.handle_advance_line (line_delta);
21154 }
21155 break;
21156 case DW_LNS_set_file:
21157 {
21158 file_name_index file
21159 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21160 &bytes_read);
21161 line_ptr += bytes_read;
21162
21163 state_machine.handle_set_file (file);
21164 }
21165 break;
21166 case DW_LNS_set_column:
21167 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21168 line_ptr += bytes_read;
21169 break;
21170 case DW_LNS_negate_stmt:
21171 state_machine.handle_negate_stmt ();
21172 break;
21173 case DW_LNS_set_basic_block:
21174 break;
21175 /* Add to the address register of the state machine the
21176 address increment value corresponding to special opcode
21177 255. I.e., this value is scaled by the minimum
21178 instruction length since special opcode 255 would have
21179 scaled the increment. */
21180 case DW_LNS_const_add_pc:
21181 state_machine.handle_const_add_pc ();
21182 break;
21183 case DW_LNS_fixed_advance_pc:
21184 {
21185 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21186 line_ptr += 2;
21187
21188 state_machine.handle_fixed_advance_pc (addr_adj);
21189 }
21190 break;
21191 default:
21192 {
21193 /* Unknown standard opcode, ignore it. */
21194 int i;
21195
21196 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21197 {
21198 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21199 line_ptr += bytes_read;
21200 }
21201 }
21202 }
21203 }
21204
21205 if (!end_sequence)
21206 dwarf2_debug_line_missing_end_sequence_complaint ();
21207
21208 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21209 in which case we still finish recording the last line). */
21210 state_machine.record_line (true);
21211 }
21212 }
21213
21214 /* Decode the Line Number Program (LNP) for the given line_header
21215 structure and CU. The actual information extracted and the type
21216 of structures created from the LNP depends on the value of PST.
21217
21218 1. If PST is NULL, then this procedure uses the data from the program
21219 to create all necessary symbol tables, and their linetables.
21220
21221 2. If PST is not NULL, this procedure reads the program to determine
21222 the list of files included by the unit represented by PST, and
21223 builds all the associated partial symbol tables.
21224
21225 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21226 It is used for relative paths in the line table.
21227 NOTE: When processing partial symtabs (pst != NULL),
21228 comp_dir == pst->dirname.
21229
21230 NOTE: It is important that psymtabs have the same file name (via strcmp)
21231 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21232 symtab we don't use it in the name of the psymtabs we create.
21233 E.g. expand_line_sal requires this when finding psymtabs to expand.
21234 A good testcase for this is mb-inline.exp.
21235
21236 LOWPC is the lowest address in CU (or 0 if not known).
21237
21238 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21239 for its PC<->lines mapping information. Otherwise only the filename
21240 table is read in. */
21241
21242 static void
21243 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21244 struct dwarf2_cu *cu, struct partial_symtab *pst,
21245 CORE_ADDR lowpc, int decode_mapping)
21246 {
21247 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21248 const int decode_for_pst_p = (pst != NULL);
21249
21250 if (decode_mapping)
21251 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21252
21253 if (decode_for_pst_p)
21254 {
21255 int file_index;
21256
21257 /* Now that we're done scanning the Line Header Program, we can
21258 create the psymtab of each included file. */
21259 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21260 if (lh->file_names[file_index].included_p == 1)
21261 {
21262 gdb::unique_xmalloc_ptr<char> name_holder;
21263 const char *include_name =
21264 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21265 &name_holder);
21266 if (include_name != NULL)
21267 dwarf2_create_include_psymtab (include_name, pst, objfile);
21268 }
21269 }
21270 else
21271 {
21272 /* Make sure a symtab is created for every file, even files
21273 which contain only variables (i.e. no code with associated
21274 line numbers). */
21275 buildsym_compunit *builder = cu->get_builder ();
21276 struct compunit_symtab *cust = builder->get_compunit_symtab ();
21277 int i;
21278
21279 for (i = 0; i < lh->file_names.size (); i++)
21280 {
21281 file_entry &fe = lh->file_names[i];
21282
21283 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
21284
21285 if (builder->get_current_subfile ()->symtab == NULL)
21286 {
21287 builder->get_current_subfile ()->symtab
21288 = allocate_symtab (cust,
21289 builder->get_current_subfile ()->name);
21290 }
21291 fe.symtab = builder->get_current_subfile ()->symtab;
21292 }
21293 }
21294 }
21295
21296 /* Start a subfile for DWARF. FILENAME is the name of the file and
21297 DIRNAME the name of the source directory which contains FILENAME
21298 or NULL if not known.
21299 This routine tries to keep line numbers from identical absolute and
21300 relative file names in a common subfile.
21301
21302 Using the `list' example from the GDB testsuite, which resides in
21303 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21304 of /srcdir/list0.c yields the following debugging information for list0.c:
21305
21306 DW_AT_name: /srcdir/list0.c
21307 DW_AT_comp_dir: /compdir
21308 files.files[0].name: list0.h
21309 files.files[0].dir: /srcdir
21310 files.files[1].name: list0.c
21311 files.files[1].dir: /srcdir
21312
21313 The line number information for list0.c has to end up in a single
21314 subfile, so that `break /srcdir/list0.c:1' works as expected.
21315 start_subfile will ensure that this happens provided that we pass the
21316 concatenation of files.files[1].dir and files.files[1].name as the
21317 subfile's name. */
21318
21319 static void
21320 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21321 const char *dirname)
21322 {
21323 char *copy = NULL;
21324
21325 /* In order not to lose the line information directory,
21326 we concatenate it to the filename when it makes sense.
21327 Note that the Dwarf3 standard says (speaking of filenames in line
21328 information): ``The directory index is ignored for file names
21329 that represent full path names''. Thus ignoring dirname in the
21330 `else' branch below isn't an issue. */
21331
21332 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21333 {
21334 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21335 filename = copy;
21336 }
21337
21338 cu->get_builder ()->start_subfile (filename);
21339
21340 if (copy != NULL)
21341 xfree (copy);
21342 }
21343
21344 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21345 buildsym_compunit constructor. */
21346
21347 struct compunit_symtab *
21348 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
21349 CORE_ADDR low_pc)
21350 {
21351 gdb_assert (m_builder == nullptr);
21352
21353 m_builder.reset (new struct buildsym_compunit
21354 (per_cu->dwarf2_per_objfile->objfile,
21355 name, comp_dir, language, low_pc));
21356
21357 list_in_scope = get_builder ()->get_file_symbols ();
21358
21359 get_builder ()->record_debugformat ("DWARF 2");
21360 get_builder ()->record_producer (producer);
21361
21362 processing_has_namespace_info = false;
21363
21364 return get_builder ()->get_compunit_symtab ();
21365 }
21366
21367 static void
21368 var_decode_location (struct attribute *attr, struct symbol *sym,
21369 struct dwarf2_cu *cu)
21370 {
21371 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21372 struct comp_unit_head *cu_header = &cu->header;
21373
21374 /* NOTE drow/2003-01-30: There used to be a comment and some special
21375 code here to turn a symbol with DW_AT_external and a
21376 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21377 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21378 with some versions of binutils) where shared libraries could have
21379 relocations against symbols in their debug information - the
21380 minimal symbol would have the right address, but the debug info
21381 would not. It's no longer necessary, because we will explicitly
21382 apply relocations when we read in the debug information now. */
21383
21384 /* A DW_AT_location attribute with no contents indicates that a
21385 variable has been optimized away. */
21386 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21387 {
21388 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21389 return;
21390 }
21391
21392 /* Handle one degenerate form of location expression specially, to
21393 preserve GDB's previous behavior when section offsets are
21394 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
21395 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
21396
21397 if (attr_form_is_block (attr)
21398 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21399 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21400 || ((DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21401 || DW_BLOCK (attr)->data[0] == DW_OP_addrx)
21402 && (DW_BLOCK (attr)->size
21403 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21404 {
21405 unsigned int dummy;
21406
21407 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21408 SYMBOL_VALUE_ADDRESS (sym) =
21409 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21410 else
21411 SYMBOL_VALUE_ADDRESS (sym) =
21412 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21413 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21414 fixup_symbol_section (sym, objfile);
21415 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21416 SYMBOL_SECTION (sym));
21417 return;
21418 }
21419
21420 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21421 expression evaluator, and use LOC_COMPUTED only when necessary
21422 (i.e. when the value of a register or memory location is
21423 referenced, or a thread-local block, etc.). Then again, it might
21424 not be worthwhile. I'm assuming that it isn't unless performance
21425 or memory numbers show me otherwise. */
21426
21427 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21428
21429 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21430 cu->has_loclist = true;
21431 }
21432
21433 /* Given a pointer to a DWARF information entry, figure out if we need
21434 to make a symbol table entry for it, and if so, create a new entry
21435 and return a pointer to it.
21436 If TYPE is NULL, determine symbol type from the die, otherwise
21437 used the passed type.
21438 If SPACE is not NULL, use it to hold the new symbol. If it is
21439 NULL, allocate a new symbol on the objfile's obstack. */
21440
21441 static struct symbol *
21442 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21443 struct symbol *space)
21444 {
21445 struct dwarf2_per_objfile *dwarf2_per_objfile
21446 = cu->per_cu->dwarf2_per_objfile;
21447 struct objfile *objfile = dwarf2_per_objfile->objfile;
21448 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21449 struct symbol *sym = NULL;
21450 const char *name;
21451 struct attribute *attr = NULL;
21452 struct attribute *attr2 = NULL;
21453 CORE_ADDR baseaddr;
21454 struct pending **list_to_add = NULL;
21455
21456 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21457
21458 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21459
21460 name = dwarf2_name (die, cu);
21461 if (name)
21462 {
21463 const char *linkagename;
21464 int suppress_add = 0;
21465
21466 if (space)
21467 sym = space;
21468 else
21469 sym = allocate_symbol (objfile);
21470 OBJSTAT (objfile, n_syms++);
21471
21472 /* Cache this symbol's name and the name's demangled form (if any). */
21473 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21474 linkagename = dwarf2_physname (name, die, cu);
21475 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21476
21477 /* Fortran does not have mangling standard and the mangling does differ
21478 between gfortran, iFort etc. */
21479 if (cu->language == language_fortran
21480 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21481 symbol_set_demangled_name (&(sym->ginfo),
21482 dwarf2_full_name (name, die, cu),
21483 NULL);
21484
21485 /* Default assumptions.
21486 Use the passed type or decode it from the die. */
21487 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21488 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21489 if (type != NULL)
21490 SYMBOL_TYPE (sym) = type;
21491 else
21492 SYMBOL_TYPE (sym) = die_type (die, cu);
21493 attr = dwarf2_attr (die,
21494 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21495 cu);
21496 if (attr)
21497 {
21498 SYMBOL_LINE (sym) = DW_UNSND (attr);
21499 }
21500
21501 attr = dwarf2_attr (die,
21502 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21503 cu);
21504 if (attr)
21505 {
21506 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21507 struct file_entry *fe;
21508
21509 if (cu->line_header != NULL)
21510 fe = cu->line_header->file_name_at (file_index);
21511 else
21512 fe = NULL;
21513
21514 if (fe == NULL)
21515 complaint (_("file index out of range"));
21516 else
21517 symbol_set_symtab (sym, fe->symtab);
21518 }
21519
21520 switch (die->tag)
21521 {
21522 case DW_TAG_label:
21523 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21524 if (attr)
21525 {
21526 CORE_ADDR addr;
21527
21528 addr = attr_value_as_address (attr);
21529 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21530 SYMBOL_VALUE_ADDRESS (sym) = addr;
21531 }
21532 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21533 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21534 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21535 add_symbol_to_list (sym, cu->list_in_scope);
21536 break;
21537 case DW_TAG_subprogram:
21538 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21539 finish_block. */
21540 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21541 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21542 if ((attr2 && (DW_UNSND (attr2) != 0))
21543 || cu->language == language_ada)
21544 {
21545 /* Subprograms marked external are stored as a global symbol.
21546 Ada subprograms, whether marked external or not, are always
21547 stored as a global symbol, because we want to be able to
21548 access them globally. For instance, we want to be able
21549 to break on a nested subprogram without having to
21550 specify the context. */
21551 list_to_add = cu->get_builder ()->get_global_symbols ();
21552 }
21553 else
21554 {
21555 list_to_add = cu->list_in_scope;
21556 }
21557 break;
21558 case DW_TAG_inlined_subroutine:
21559 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21560 finish_block. */
21561 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21562 SYMBOL_INLINED (sym) = 1;
21563 list_to_add = cu->list_in_scope;
21564 break;
21565 case DW_TAG_template_value_param:
21566 suppress_add = 1;
21567 /* Fall through. */
21568 case DW_TAG_constant:
21569 case DW_TAG_variable:
21570 case DW_TAG_member:
21571 /* Compilation with minimal debug info may result in
21572 variables with missing type entries. Change the
21573 misleading `void' type to something sensible. */
21574 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21575 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21576
21577 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21578 /* In the case of DW_TAG_member, we should only be called for
21579 static const members. */
21580 if (die->tag == DW_TAG_member)
21581 {
21582 /* dwarf2_add_field uses die_is_declaration,
21583 so we do the same. */
21584 gdb_assert (die_is_declaration (die, cu));
21585 gdb_assert (attr);
21586 }
21587 if (attr)
21588 {
21589 dwarf2_const_value (attr, sym, cu);
21590 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21591 if (!suppress_add)
21592 {
21593 if (attr2 && (DW_UNSND (attr2) != 0))
21594 list_to_add = cu->get_builder ()->get_global_symbols ();
21595 else
21596 list_to_add = cu->list_in_scope;
21597 }
21598 break;
21599 }
21600 attr = dwarf2_attr (die, DW_AT_location, cu);
21601 if (attr)
21602 {
21603 var_decode_location (attr, sym, cu);
21604 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21605
21606 /* Fortran explicitly imports any global symbols to the local
21607 scope by DW_TAG_common_block. */
21608 if (cu->language == language_fortran && die->parent
21609 && die->parent->tag == DW_TAG_common_block)
21610 attr2 = NULL;
21611
21612 if (SYMBOL_CLASS (sym) == LOC_STATIC
21613 && SYMBOL_VALUE_ADDRESS (sym) == 0
21614 && !dwarf2_per_objfile->has_section_at_zero)
21615 {
21616 /* When a static variable is eliminated by the linker,
21617 the corresponding debug information is not stripped
21618 out, but the variable address is set to null;
21619 do not add such variables into symbol table. */
21620 }
21621 else if (attr2 && (DW_UNSND (attr2) != 0))
21622 {
21623 /* Workaround gfortran PR debug/40040 - it uses
21624 DW_AT_location for variables in -fPIC libraries which may
21625 get overriden by other libraries/executable and get
21626 a different address. Resolve it by the minimal symbol
21627 which may come from inferior's executable using copy
21628 relocation. Make this workaround only for gfortran as for
21629 other compilers GDB cannot guess the minimal symbol
21630 Fortran mangling kind. */
21631 if (cu->language == language_fortran && die->parent
21632 && die->parent->tag == DW_TAG_module
21633 && cu->producer
21634 && startswith (cu->producer, "GNU Fortran"))
21635 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21636
21637 /* A variable with DW_AT_external is never static,
21638 but it may be block-scoped. */
21639 list_to_add
21640 = ((cu->list_in_scope
21641 == cu->get_builder ()->get_file_symbols ())
21642 ? cu->get_builder ()->get_global_symbols ()
21643 : cu->list_in_scope);
21644 }
21645 else
21646 list_to_add = cu->list_in_scope;
21647 }
21648 else
21649 {
21650 /* We do not know the address of this symbol.
21651 If it is an external symbol and we have type information
21652 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21653 The address of the variable will then be determined from
21654 the minimal symbol table whenever the variable is
21655 referenced. */
21656 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21657
21658 /* Fortran explicitly imports any global symbols to the local
21659 scope by DW_TAG_common_block. */
21660 if (cu->language == language_fortran && die->parent
21661 && die->parent->tag == DW_TAG_common_block)
21662 {
21663 /* SYMBOL_CLASS doesn't matter here because
21664 read_common_block is going to reset it. */
21665 if (!suppress_add)
21666 list_to_add = cu->list_in_scope;
21667 }
21668 else if (attr2 && (DW_UNSND (attr2) != 0)
21669 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21670 {
21671 /* A variable with DW_AT_external is never static, but it
21672 may be block-scoped. */
21673 list_to_add
21674 = ((cu->list_in_scope
21675 == cu->get_builder ()->get_file_symbols ())
21676 ? cu->get_builder ()->get_global_symbols ()
21677 : cu->list_in_scope);
21678
21679 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21680 }
21681 else if (!die_is_declaration (die, cu))
21682 {
21683 /* Use the default LOC_OPTIMIZED_OUT class. */
21684 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21685 if (!suppress_add)
21686 list_to_add = cu->list_in_scope;
21687 }
21688 }
21689 break;
21690 case DW_TAG_formal_parameter:
21691 {
21692 /* If we are inside a function, mark this as an argument. If
21693 not, we might be looking at an argument to an inlined function
21694 when we do not have enough information to show inlined frames;
21695 pretend it's a local variable in that case so that the user can
21696 still see it. */
21697 struct context_stack *curr
21698 = cu->get_builder ()->get_current_context_stack ();
21699 if (curr != nullptr && curr->name != nullptr)
21700 SYMBOL_IS_ARGUMENT (sym) = 1;
21701 attr = dwarf2_attr (die, DW_AT_location, cu);
21702 if (attr)
21703 {
21704 var_decode_location (attr, sym, cu);
21705 }
21706 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21707 if (attr)
21708 {
21709 dwarf2_const_value (attr, sym, cu);
21710 }
21711
21712 list_to_add = cu->list_in_scope;
21713 }
21714 break;
21715 case DW_TAG_unspecified_parameters:
21716 /* From varargs functions; gdb doesn't seem to have any
21717 interest in this information, so just ignore it for now.
21718 (FIXME?) */
21719 break;
21720 case DW_TAG_template_type_param:
21721 suppress_add = 1;
21722 /* Fall through. */
21723 case DW_TAG_class_type:
21724 case DW_TAG_interface_type:
21725 case DW_TAG_structure_type:
21726 case DW_TAG_union_type:
21727 case DW_TAG_set_type:
21728 case DW_TAG_enumeration_type:
21729 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21730 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21731
21732 {
21733 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21734 really ever be static objects: otherwise, if you try
21735 to, say, break of a class's method and you're in a file
21736 which doesn't mention that class, it won't work unless
21737 the check for all static symbols in lookup_symbol_aux
21738 saves you. See the OtherFileClass tests in
21739 gdb.c++/namespace.exp. */
21740
21741 if (!suppress_add)
21742 {
21743 buildsym_compunit *builder = cu->get_builder ();
21744 list_to_add
21745 = (cu->list_in_scope == builder->get_file_symbols ()
21746 && cu->language == language_cplus
21747 ? builder->get_global_symbols ()
21748 : cu->list_in_scope);
21749
21750 /* The semantics of C++ state that "struct foo {
21751 ... }" also defines a typedef for "foo". */
21752 if (cu->language == language_cplus
21753 || cu->language == language_ada
21754 || cu->language == language_d
21755 || cu->language == language_rust)
21756 {
21757 /* The symbol's name is already allocated along
21758 with this objfile, so we don't need to
21759 duplicate it for the type. */
21760 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21761 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21762 }
21763 }
21764 }
21765 break;
21766 case DW_TAG_typedef:
21767 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21768 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21769 list_to_add = cu->list_in_scope;
21770 break;
21771 case DW_TAG_base_type:
21772 case DW_TAG_subrange_type:
21773 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21774 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21775 list_to_add = cu->list_in_scope;
21776 break;
21777 case DW_TAG_enumerator:
21778 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21779 if (attr)
21780 {
21781 dwarf2_const_value (attr, sym, cu);
21782 }
21783 {
21784 /* NOTE: carlton/2003-11-10: See comment above in the
21785 DW_TAG_class_type, etc. block. */
21786
21787 list_to_add
21788 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
21789 && cu->language == language_cplus
21790 ? cu->get_builder ()->get_global_symbols ()
21791 : cu->list_in_scope);
21792 }
21793 break;
21794 case DW_TAG_imported_declaration:
21795 case DW_TAG_namespace:
21796 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21797 list_to_add = cu->get_builder ()->get_global_symbols ();
21798 break;
21799 case DW_TAG_module:
21800 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21801 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21802 list_to_add = cu->get_builder ()->get_global_symbols ();
21803 break;
21804 case DW_TAG_common_block:
21805 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21806 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21807 add_symbol_to_list (sym, cu->list_in_scope);
21808 break;
21809 default:
21810 /* Not a tag we recognize. Hopefully we aren't processing
21811 trash data, but since we must specifically ignore things
21812 we don't recognize, there is nothing else we should do at
21813 this point. */
21814 complaint (_("unsupported tag: '%s'"),
21815 dwarf_tag_name (die->tag));
21816 break;
21817 }
21818
21819 if (suppress_add)
21820 {
21821 sym->hash_next = objfile->template_symbols;
21822 objfile->template_symbols = sym;
21823 list_to_add = NULL;
21824 }
21825
21826 if (list_to_add != NULL)
21827 add_symbol_to_list (sym, list_to_add);
21828
21829 /* For the benefit of old versions of GCC, check for anonymous
21830 namespaces based on the demangled name. */
21831 if (!cu->processing_has_namespace_info
21832 && cu->language == language_cplus)
21833 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
21834 }
21835 return (sym);
21836 }
21837
21838 /* Given an attr with a DW_FORM_dataN value in host byte order,
21839 zero-extend it as appropriate for the symbol's type. The DWARF
21840 standard (v4) is not entirely clear about the meaning of using
21841 DW_FORM_dataN for a constant with a signed type, where the type is
21842 wider than the data. The conclusion of a discussion on the DWARF
21843 list was that this is unspecified. We choose to always zero-extend
21844 because that is the interpretation long in use by GCC. */
21845
21846 static gdb_byte *
21847 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21848 struct dwarf2_cu *cu, LONGEST *value, int bits)
21849 {
21850 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21851 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21852 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21853 LONGEST l = DW_UNSND (attr);
21854
21855 if (bits < sizeof (*value) * 8)
21856 {
21857 l &= ((LONGEST) 1 << bits) - 1;
21858 *value = l;
21859 }
21860 else if (bits == sizeof (*value) * 8)
21861 *value = l;
21862 else
21863 {
21864 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21865 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21866 return bytes;
21867 }
21868
21869 return NULL;
21870 }
21871
21872 /* Read a constant value from an attribute. Either set *VALUE, or if
21873 the value does not fit in *VALUE, set *BYTES - either already
21874 allocated on the objfile obstack, or newly allocated on OBSTACK,
21875 or, set *BATON, if we translated the constant to a location
21876 expression. */
21877
21878 static void
21879 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21880 const char *name, struct obstack *obstack,
21881 struct dwarf2_cu *cu,
21882 LONGEST *value, const gdb_byte **bytes,
21883 struct dwarf2_locexpr_baton **baton)
21884 {
21885 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21886 struct comp_unit_head *cu_header = &cu->header;
21887 struct dwarf_block *blk;
21888 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21889 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21890
21891 *value = 0;
21892 *bytes = NULL;
21893 *baton = NULL;
21894
21895 switch (attr->form)
21896 {
21897 case DW_FORM_addr:
21898 case DW_FORM_addrx:
21899 case DW_FORM_GNU_addr_index:
21900 {
21901 gdb_byte *data;
21902
21903 if (TYPE_LENGTH (type) != cu_header->addr_size)
21904 dwarf2_const_value_length_mismatch_complaint (name,
21905 cu_header->addr_size,
21906 TYPE_LENGTH (type));
21907 /* Symbols of this form are reasonably rare, so we just
21908 piggyback on the existing location code rather than writing
21909 a new implementation of symbol_computed_ops. */
21910 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21911 (*baton)->per_cu = cu->per_cu;
21912 gdb_assert ((*baton)->per_cu);
21913
21914 (*baton)->size = 2 + cu_header->addr_size;
21915 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21916 (*baton)->data = data;
21917
21918 data[0] = DW_OP_addr;
21919 store_unsigned_integer (&data[1], cu_header->addr_size,
21920 byte_order, DW_ADDR (attr));
21921 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21922 }
21923 break;
21924 case DW_FORM_string:
21925 case DW_FORM_strp:
21926 case DW_FORM_strx:
21927 case DW_FORM_GNU_str_index:
21928 case DW_FORM_GNU_strp_alt:
21929 /* DW_STRING is already allocated on the objfile obstack, point
21930 directly to it. */
21931 *bytes = (const gdb_byte *) DW_STRING (attr);
21932 break;
21933 case DW_FORM_block1:
21934 case DW_FORM_block2:
21935 case DW_FORM_block4:
21936 case DW_FORM_block:
21937 case DW_FORM_exprloc:
21938 case DW_FORM_data16:
21939 blk = DW_BLOCK (attr);
21940 if (TYPE_LENGTH (type) != blk->size)
21941 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21942 TYPE_LENGTH (type));
21943 *bytes = blk->data;
21944 break;
21945
21946 /* The DW_AT_const_value attributes are supposed to carry the
21947 symbol's value "represented as it would be on the target
21948 architecture." By the time we get here, it's already been
21949 converted to host endianness, so we just need to sign- or
21950 zero-extend it as appropriate. */
21951 case DW_FORM_data1:
21952 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21953 break;
21954 case DW_FORM_data2:
21955 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21956 break;
21957 case DW_FORM_data4:
21958 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21959 break;
21960 case DW_FORM_data8:
21961 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21962 break;
21963
21964 case DW_FORM_sdata:
21965 case DW_FORM_implicit_const:
21966 *value = DW_SND (attr);
21967 break;
21968
21969 case DW_FORM_udata:
21970 *value = DW_UNSND (attr);
21971 break;
21972
21973 default:
21974 complaint (_("unsupported const value attribute form: '%s'"),
21975 dwarf_form_name (attr->form));
21976 *value = 0;
21977 break;
21978 }
21979 }
21980
21981
21982 /* Copy constant value from an attribute to a symbol. */
21983
21984 static void
21985 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21986 struct dwarf2_cu *cu)
21987 {
21988 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21989 LONGEST value;
21990 const gdb_byte *bytes;
21991 struct dwarf2_locexpr_baton *baton;
21992
21993 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21994 SYMBOL_PRINT_NAME (sym),
21995 &objfile->objfile_obstack, cu,
21996 &value, &bytes, &baton);
21997
21998 if (baton != NULL)
21999 {
22000 SYMBOL_LOCATION_BATON (sym) = baton;
22001 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
22002 }
22003 else if (bytes != NULL)
22004 {
22005 SYMBOL_VALUE_BYTES (sym) = bytes;
22006 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
22007 }
22008 else
22009 {
22010 SYMBOL_VALUE (sym) = value;
22011 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
22012 }
22013 }
22014
22015 /* Return the type of the die in question using its DW_AT_type attribute. */
22016
22017 static struct type *
22018 die_type (struct die_info *die, struct dwarf2_cu *cu)
22019 {
22020 struct attribute *type_attr;
22021
22022 type_attr = dwarf2_attr (die, DW_AT_type, cu);
22023 if (!type_attr)
22024 {
22025 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22026 /* A missing DW_AT_type represents a void type. */
22027 return objfile_type (objfile)->builtin_void;
22028 }
22029
22030 return lookup_die_type (die, type_attr, cu);
22031 }
22032
22033 /* True iff CU's producer generates GNAT Ada auxiliary information
22034 that allows to find parallel types through that information instead
22035 of having to do expensive parallel lookups by type name. */
22036
22037 static int
22038 need_gnat_info (struct dwarf2_cu *cu)
22039 {
22040 /* Assume that the Ada compiler was GNAT, which always produces
22041 the auxiliary information. */
22042 return (cu->language == language_ada);
22043 }
22044
22045 /* Return the auxiliary type of the die in question using its
22046 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
22047 attribute is not present. */
22048
22049 static struct type *
22050 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
22051 {
22052 struct attribute *type_attr;
22053
22054 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
22055 if (!type_attr)
22056 return NULL;
22057
22058 return lookup_die_type (die, type_attr, cu);
22059 }
22060
22061 /* If DIE has a descriptive_type attribute, then set the TYPE's
22062 descriptive type accordingly. */
22063
22064 static void
22065 set_descriptive_type (struct type *type, struct die_info *die,
22066 struct dwarf2_cu *cu)
22067 {
22068 struct type *descriptive_type = die_descriptive_type (die, cu);
22069
22070 if (descriptive_type)
22071 {
22072 ALLOCATE_GNAT_AUX_TYPE (type);
22073 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
22074 }
22075 }
22076
22077 /* Return the containing type of the die in question using its
22078 DW_AT_containing_type attribute. */
22079
22080 static struct type *
22081 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
22082 {
22083 struct attribute *type_attr;
22084 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22085
22086 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
22087 if (!type_attr)
22088 error (_("Dwarf Error: Problem turning containing type into gdb type "
22089 "[in module %s]"), objfile_name (objfile));
22090
22091 return lookup_die_type (die, type_attr, cu);
22092 }
22093
22094 /* Return an error marker type to use for the ill formed type in DIE/CU. */
22095
22096 static struct type *
22097 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
22098 {
22099 struct dwarf2_per_objfile *dwarf2_per_objfile
22100 = cu->per_cu->dwarf2_per_objfile;
22101 struct objfile *objfile = dwarf2_per_objfile->objfile;
22102 char *saved;
22103
22104 std::string message
22105 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
22106 objfile_name (objfile),
22107 sect_offset_str (cu->header.sect_off),
22108 sect_offset_str (die->sect_off));
22109 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
22110 message.c_str (), message.length ());
22111
22112 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
22113 }
22114
22115 /* Look up the type of DIE in CU using its type attribute ATTR.
22116 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
22117 DW_AT_containing_type.
22118 If there is no type substitute an error marker. */
22119
22120 static struct type *
22121 lookup_die_type (struct die_info *die, const struct attribute *attr,
22122 struct dwarf2_cu *cu)
22123 {
22124 struct dwarf2_per_objfile *dwarf2_per_objfile
22125 = cu->per_cu->dwarf2_per_objfile;
22126 struct objfile *objfile = dwarf2_per_objfile->objfile;
22127 struct type *this_type;
22128
22129 gdb_assert (attr->name == DW_AT_type
22130 || attr->name == DW_AT_GNAT_descriptive_type
22131 || attr->name == DW_AT_containing_type);
22132
22133 /* First see if we have it cached. */
22134
22135 if (attr->form == DW_FORM_GNU_ref_alt)
22136 {
22137 struct dwarf2_per_cu_data *per_cu;
22138 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22139
22140 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
22141 dwarf2_per_objfile);
22142 this_type = get_die_type_at_offset (sect_off, per_cu);
22143 }
22144 else if (attr_form_is_ref (attr))
22145 {
22146 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22147
22148 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
22149 }
22150 else if (attr->form == DW_FORM_ref_sig8)
22151 {
22152 ULONGEST signature = DW_SIGNATURE (attr);
22153
22154 return get_signatured_type (die, signature, cu);
22155 }
22156 else
22157 {
22158 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
22159 " at %s [in module %s]"),
22160 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22161 objfile_name (objfile));
22162 return build_error_marker_type (cu, die);
22163 }
22164
22165 /* If not cached we need to read it in. */
22166
22167 if (this_type == NULL)
22168 {
22169 struct die_info *type_die = NULL;
22170 struct dwarf2_cu *type_cu = cu;
22171
22172 if (attr_form_is_ref (attr))
22173 type_die = follow_die_ref (die, attr, &type_cu);
22174 if (type_die == NULL)
22175 return build_error_marker_type (cu, die);
22176 /* If we find the type now, it's probably because the type came
22177 from an inter-CU reference and the type's CU got expanded before
22178 ours. */
22179 this_type = read_type_die (type_die, type_cu);
22180 }
22181
22182 /* If we still don't have a type use an error marker. */
22183
22184 if (this_type == NULL)
22185 return build_error_marker_type (cu, die);
22186
22187 return this_type;
22188 }
22189
22190 /* Return the type in DIE, CU.
22191 Returns NULL for invalid types.
22192
22193 This first does a lookup in die_type_hash,
22194 and only reads the die in if necessary.
22195
22196 NOTE: This can be called when reading in partial or full symbols. */
22197
22198 static struct type *
22199 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22200 {
22201 struct type *this_type;
22202
22203 this_type = get_die_type (die, cu);
22204 if (this_type)
22205 return this_type;
22206
22207 return read_type_die_1 (die, cu);
22208 }
22209
22210 /* Read the type in DIE, CU.
22211 Returns NULL for invalid types. */
22212
22213 static struct type *
22214 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22215 {
22216 struct type *this_type = NULL;
22217
22218 switch (die->tag)
22219 {
22220 case DW_TAG_class_type:
22221 case DW_TAG_interface_type:
22222 case DW_TAG_structure_type:
22223 case DW_TAG_union_type:
22224 this_type = read_structure_type (die, cu);
22225 break;
22226 case DW_TAG_enumeration_type:
22227 this_type = read_enumeration_type (die, cu);
22228 break;
22229 case DW_TAG_subprogram:
22230 case DW_TAG_subroutine_type:
22231 case DW_TAG_inlined_subroutine:
22232 this_type = read_subroutine_type (die, cu);
22233 break;
22234 case DW_TAG_array_type:
22235 this_type = read_array_type (die, cu);
22236 break;
22237 case DW_TAG_set_type:
22238 this_type = read_set_type (die, cu);
22239 break;
22240 case DW_TAG_pointer_type:
22241 this_type = read_tag_pointer_type (die, cu);
22242 break;
22243 case DW_TAG_ptr_to_member_type:
22244 this_type = read_tag_ptr_to_member_type (die, cu);
22245 break;
22246 case DW_TAG_reference_type:
22247 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22248 break;
22249 case DW_TAG_rvalue_reference_type:
22250 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22251 break;
22252 case DW_TAG_const_type:
22253 this_type = read_tag_const_type (die, cu);
22254 break;
22255 case DW_TAG_volatile_type:
22256 this_type = read_tag_volatile_type (die, cu);
22257 break;
22258 case DW_TAG_restrict_type:
22259 this_type = read_tag_restrict_type (die, cu);
22260 break;
22261 case DW_TAG_string_type:
22262 this_type = read_tag_string_type (die, cu);
22263 break;
22264 case DW_TAG_typedef:
22265 this_type = read_typedef (die, cu);
22266 break;
22267 case DW_TAG_subrange_type:
22268 this_type = read_subrange_type (die, cu);
22269 break;
22270 case DW_TAG_base_type:
22271 this_type = read_base_type (die, cu);
22272 break;
22273 case DW_TAG_unspecified_type:
22274 this_type = read_unspecified_type (die, cu);
22275 break;
22276 case DW_TAG_namespace:
22277 this_type = read_namespace_type (die, cu);
22278 break;
22279 case DW_TAG_module:
22280 this_type = read_module_type (die, cu);
22281 break;
22282 case DW_TAG_atomic_type:
22283 this_type = read_tag_atomic_type (die, cu);
22284 break;
22285 default:
22286 complaint (_("unexpected tag in read_type_die: '%s'"),
22287 dwarf_tag_name (die->tag));
22288 break;
22289 }
22290
22291 return this_type;
22292 }
22293
22294 /* See if we can figure out if the class lives in a namespace. We do
22295 this by looking for a member function; its demangled name will
22296 contain namespace info, if there is any.
22297 Return the computed name or NULL.
22298 Space for the result is allocated on the objfile's obstack.
22299 This is the full-die version of guess_partial_die_structure_name.
22300 In this case we know DIE has no useful parent. */
22301
22302 static char *
22303 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22304 {
22305 struct die_info *spec_die;
22306 struct dwarf2_cu *spec_cu;
22307 struct die_info *child;
22308 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22309
22310 spec_cu = cu;
22311 spec_die = die_specification (die, &spec_cu);
22312 if (spec_die != NULL)
22313 {
22314 die = spec_die;
22315 cu = spec_cu;
22316 }
22317
22318 for (child = die->child;
22319 child != NULL;
22320 child = child->sibling)
22321 {
22322 if (child->tag == DW_TAG_subprogram)
22323 {
22324 const char *linkage_name = dw2_linkage_name (child, cu);
22325
22326 if (linkage_name != NULL)
22327 {
22328 char *actual_name
22329 = language_class_name_from_physname (cu->language_defn,
22330 linkage_name);
22331 char *name = NULL;
22332
22333 if (actual_name != NULL)
22334 {
22335 const char *die_name = dwarf2_name (die, cu);
22336
22337 if (die_name != NULL
22338 && strcmp (die_name, actual_name) != 0)
22339 {
22340 /* Strip off the class name from the full name.
22341 We want the prefix. */
22342 int die_name_len = strlen (die_name);
22343 int actual_name_len = strlen (actual_name);
22344
22345 /* Test for '::' as a sanity check. */
22346 if (actual_name_len > die_name_len + 2
22347 && actual_name[actual_name_len
22348 - die_name_len - 1] == ':')
22349 name = (char *) obstack_copy0 (
22350 &objfile->per_bfd->storage_obstack,
22351 actual_name, actual_name_len - die_name_len - 2);
22352 }
22353 }
22354 xfree (actual_name);
22355 return name;
22356 }
22357 }
22358 }
22359
22360 return NULL;
22361 }
22362
22363 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22364 prefix part in such case. See
22365 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22366
22367 static const char *
22368 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22369 {
22370 struct attribute *attr;
22371 const char *base;
22372
22373 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22374 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22375 return NULL;
22376
22377 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22378 return NULL;
22379
22380 attr = dw2_linkage_name_attr (die, cu);
22381 if (attr == NULL || DW_STRING (attr) == NULL)
22382 return NULL;
22383
22384 /* dwarf2_name had to be already called. */
22385 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22386
22387 /* Strip the base name, keep any leading namespaces/classes. */
22388 base = strrchr (DW_STRING (attr), ':');
22389 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22390 return "";
22391
22392 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22393 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22394 DW_STRING (attr),
22395 &base[-1] - DW_STRING (attr));
22396 }
22397
22398 /* Return the name of the namespace/class that DIE is defined within,
22399 or "" if we can't tell. The caller should not xfree the result.
22400
22401 For example, if we're within the method foo() in the following
22402 code:
22403
22404 namespace N {
22405 class C {
22406 void foo () {
22407 }
22408 };
22409 }
22410
22411 then determine_prefix on foo's die will return "N::C". */
22412
22413 static const char *
22414 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22415 {
22416 struct dwarf2_per_objfile *dwarf2_per_objfile
22417 = cu->per_cu->dwarf2_per_objfile;
22418 struct die_info *parent, *spec_die;
22419 struct dwarf2_cu *spec_cu;
22420 struct type *parent_type;
22421 const char *retval;
22422
22423 if (cu->language != language_cplus
22424 && cu->language != language_fortran && cu->language != language_d
22425 && cu->language != language_rust)
22426 return "";
22427
22428 retval = anonymous_struct_prefix (die, cu);
22429 if (retval)
22430 return retval;
22431
22432 /* We have to be careful in the presence of DW_AT_specification.
22433 For example, with GCC 3.4, given the code
22434
22435 namespace N {
22436 void foo() {
22437 // Definition of N::foo.
22438 }
22439 }
22440
22441 then we'll have a tree of DIEs like this:
22442
22443 1: DW_TAG_compile_unit
22444 2: DW_TAG_namespace // N
22445 3: DW_TAG_subprogram // declaration of N::foo
22446 4: DW_TAG_subprogram // definition of N::foo
22447 DW_AT_specification // refers to die #3
22448
22449 Thus, when processing die #4, we have to pretend that we're in
22450 the context of its DW_AT_specification, namely the contex of die
22451 #3. */
22452 spec_cu = cu;
22453 spec_die = die_specification (die, &spec_cu);
22454 if (spec_die == NULL)
22455 parent = die->parent;
22456 else
22457 {
22458 parent = spec_die->parent;
22459 cu = spec_cu;
22460 }
22461
22462 if (parent == NULL)
22463 return "";
22464 else if (parent->building_fullname)
22465 {
22466 const char *name;
22467 const char *parent_name;
22468
22469 /* It has been seen on RealView 2.2 built binaries,
22470 DW_TAG_template_type_param types actually _defined_ as
22471 children of the parent class:
22472
22473 enum E {};
22474 template class <class Enum> Class{};
22475 Class<enum E> class_e;
22476
22477 1: DW_TAG_class_type (Class)
22478 2: DW_TAG_enumeration_type (E)
22479 3: DW_TAG_enumerator (enum1:0)
22480 3: DW_TAG_enumerator (enum2:1)
22481 ...
22482 2: DW_TAG_template_type_param
22483 DW_AT_type DW_FORM_ref_udata (E)
22484
22485 Besides being broken debug info, it can put GDB into an
22486 infinite loop. Consider:
22487
22488 When we're building the full name for Class<E>, we'll start
22489 at Class, and go look over its template type parameters,
22490 finding E. We'll then try to build the full name of E, and
22491 reach here. We're now trying to build the full name of E,
22492 and look over the parent DIE for containing scope. In the
22493 broken case, if we followed the parent DIE of E, we'd again
22494 find Class, and once again go look at its template type
22495 arguments, etc., etc. Simply don't consider such parent die
22496 as source-level parent of this die (it can't be, the language
22497 doesn't allow it), and break the loop here. */
22498 name = dwarf2_name (die, cu);
22499 parent_name = dwarf2_name (parent, cu);
22500 complaint (_("template param type '%s' defined within parent '%s'"),
22501 name ? name : "<unknown>",
22502 parent_name ? parent_name : "<unknown>");
22503 return "";
22504 }
22505 else
22506 switch (parent->tag)
22507 {
22508 case DW_TAG_namespace:
22509 parent_type = read_type_die (parent, cu);
22510 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22511 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22512 Work around this problem here. */
22513 if (cu->language == language_cplus
22514 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22515 return "";
22516 /* We give a name to even anonymous namespaces. */
22517 return TYPE_NAME (parent_type);
22518 case DW_TAG_class_type:
22519 case DW_TAG_interface_type:
22520 case DW_TAG_structure_type:
22521 case DW_TAG_union_type:
22522 case DW_TAG_module:
22523 parent_type = read_type_die (parent, cu);
22524 if (TYPE_NAME (parent_type) != NULL)
22525 return TYPE_NAME (parent_type);
22526 else
22527 /* An anonymous structure is only allowed non-static data
22528 members; no typedefs, no member functions, et cetera.
22529 So it does not need a prefix. */
22530 return "";
22531 case DW_TAG_compile_unit:
22532 case DW_TAG_partial_unit:
22533 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22534 if (cu->language == language_cplus
22535 && !dwarf2_per_objfile->types.empty ()
22536 && die->child != NULL
22537 && (die->tag == DW_TAG_class_type
22538 || die->tag == DW_TAG_structure_type
22539 || die->tag == DW_TAG_union_type))
22540 {
22541 char *name = guess_full_die_structure_name (die, cu);
22542 if (name != NULL)
22543 return name;
22544 }
22545 return "";
22546 case DW_TAG_enumeration_type:
22547 parent_type = read_type_die (parent, cu);
22548 if (TYPE_DECLARED_CLASS (parent_type))
22549 {
22550 if (TYPE_NAME (parent_type) != NULL)
22551 return TYPE_NAME (parent_type);
22552 return "";
22553 }
22554 /* Fall through. */
22555 default:
22556 return determine_prefix (parent, cu);
22557 }
22558 }
22559
22560 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22561 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22562 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22563 an obconcat, otherwise allocate storage for the result. The CU argument is
22564 used to determine the language and hence, the appropriate separator. */
22565
22566 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22567
22568 static char *
22569 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22570 int physname, struct dwarf2_cu *cu)
22571 {
22572 const char *lead = "";
22573 const char *sep;
22574
22575 if (suffix == NULL || suffix[0] == '\0'
22576 || prefix == NULL || prefix[0] == '\0')
22577 sep = "";
22578 else if (cu->language == language_d)
22579 {
22580 /* For D, the 'main' function could be defined in any module, but it
22581 should never be prefixed. */
22582 if (strcmp (suffix, "D main") == 0)
22583 {
22584 prefix = "";
22585 sep = "";
22586 }
22587 else
22588 sep = ".";
22589 }
22590 else if (cu->language == language_fortran && physname)
22591 {
22592 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22593 DW_AT_MIPS_linkage_name is preferred and used instead. */
22594
22595 lead = "__";
22596 sep = "_MOD_";
22597 }
22598 else
22599 sep = "::";
22600
22601 if (prefix == NULL)
22602 prefix = "";
22603 if (suffix == NULL)
22604 suffix = "";
22605
22606 if (obs == NULL)
22607 {
22608 char *retval
22609 = ((char *)
22610 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22611
22612 strcpy (retval, lead);
22613 strcat (retval, prefix);
22614 strcat (retval, sep);
22615 strcat (retval, suffix);
22616 return retval;
22617 }
22618 else
22619 {
22620 /* We have an obstack. */
22621 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22622 }
22623 }
22624
22625 /* Return sibling of die, NULL if no sibling. */
22626
22627 static struct die_info *
22628 sibling_die (struct die_info *die)
22629 {
22630 return die->sibling;
22631 }
22632
22633 /* Get name of a die, return NULL if not found. */
22634
22635 static const char *
22636 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22637 struct obstack *obstack)
22638 {
22639 if (name && cu->language == language_cplus)
22640 {
22641 std::string canon_name = cp_canonicalize_string (name);
22642
22643 if (!canon_name.empty ())
22644 {
22645 if (canon_name != name)
22646 name = (const char *) obstack_copy0 (obstack,
22647 canon_name.c_str (),
22648 canon_name.length ());
22649 }
22650 }
22651
22652 return name;
22653 }
22654
22655 /* Get name of a die, return NULL if not found.
22656 Anonymous namespaces are converted to their magic string. */
22657
22658 static const char *
22659 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22660 {
22661 struct attribute *attr;
22662 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22663
22664 attr = dwarf2_attr (die, DW_AT_name, cu);
22665 if ((!attr || !DW_STRING (attr))
22666 && die->tag != DW_TAG_namespace
22667 && die->tag != DW_TAG_class_type
22668 && die->tag != DW_TAG_interface_type
22669 && die->tag != DW_TAG_structure_type
22670 && die->tag != DW_TAG_union_type)
22671 return NULL;
22672
22673 switch (die->tag)
22674 {
22675 case DW_TAG_compile_unit:
22676 case DW_TAG_partial_unit:
22677 /* Compilation units have a DW_AT_name that is a filename, not
22678 a source language identifier. */
22679 case DW_TAG_enumeration_type:
22680 case DW_TAG_enumerator:
22681 /* These tags always have simple identifiers already; no need
22682 to canonicalize them. */
22683 return DW_STRING (attr);
22684
22685 case DW_TAG_namespace:
22686 if (attr != NULL && DW_STRING (attr) != NULL)
22687 return DW_STRING (attr);
22688 return CP_ANONYMOUS_NAMESPACE_STR;
22689
22690 case DW_TAG_class_type:
22691 case DW_TAG_interface_type:
22692 case DW_TAG_structure_type:
22693 case DW_TAG_union_type:
22694 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22695 structures or unions. These were of the form "._%d" in GCC 4.1,
22696 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22697 and GCC 4.4. We work around this problem by ignoring these. */
22698 if (attr && DW_STRING (attr)
22699 && (startswith (DW_STRING (attr), "._")
22700 || startswith (DW_STRING (attr), "<anonymous")))
22701 return NULL;
22702
22703 /* GCC might emit a nameless typedef that has a linkage name. See
22704 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22705 if (!attr || DW_STRING (attr) == NULL)
22706 {
22707 char *demangled = NULL;
22708
22709 attr = dw2_linkage_name_attr (die, cu);
22710 if (attr == NULL || DW_STRING (attr) == NULL)
22711 return NULL;
22712
22713 /* Avoid demangling DW_STRING (attr) the second time on a second
22714 call for the same DIE. */
22715 if (!DW_STRING_IS_CANONICAL (attr))
22716 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22717
22718 if (demangled)
22719 {
22720 const char *base;
22721
22722 /* FIXME: we already did this for the partial symbol... */
22723 DW_STRING (attr)
22724 = ((const char *)
22725 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22726 demangled, strlen (demangled)));
22727 DW_STRING_IS_CANONICAL (attr) = 1;
22728 xfree (demangled);
22729
22730 /* Strip any leading namespaces/classes, keep only the base name.
22731 DW_AT_name for named DIEs does not contain the prefixes. */
22732 base = strrchr (DW_STRING (attr), ':');
22733 if (base && base > DW_STRING (attr) && base[-1] == ':')
22734 return &base[1];
22735 else
22736 return DW_STRING (attr);
22737 }
22738 }
22739 break;
22740
22741 default:
22742 break;
22743 }
22744
22745 if (!DW_STRING_IS_CANONICAL (attr))
22746 {
22747 DW_STRING (attr)
22748 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22749 &objfile->per_bfd->storage_obstack);
22750 DW_STRING_IS_CANONICAL (attr) = 1;
22751 }
22752 return DW_STRING (attr);
22753 }
22754
22755 /* Return the die that this die in an extension of, or NULL if there
22756 is none. *EXT_CU is the CU containing DIE on input, and the CU
22757 containing the return value on output. */
22758
22759 static struct die_info *
22760 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22761 {
22762 struct attribute *attr;
22763
22764 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22765 if (attr == NULL)
22766 return NULL;
22767
22768 return follow_die_ref (die, attr, ext_cu);
22769 }
22770
22771 /* A convenience function that returns an "unknown" DWARF name,
22772 including the value of V. STR is the name of the entity being
22773 printed, e.g., "TAG". */
22774
22775 static const char *
22776 dwarf_unknown (const char *str, unsigned v)
22777 {
22778 char *cell = get_print_cell ();
22779 xsnprintf (cell, PRINT_CELL_SIZE, "DW_%s_<unknown: %u>", str, v);
22780 return cell;
22781 }
22782
22783 /* Convert a DIE tag into its string name. */
22784
22785 static const char *
22786 dwarf_tag_name (unsigned tag)
22787 {
22788 const char *name = get_DW_TAG_name (tag);
22789
22790 if (name == NULL)
22791 return dwarf_unknown ("TAG", tag);
22792
22793 return name;
22794 }
22795
22796 /* Convert a DWARF attribute code into its string name. */
22797
22798 static const char *
22799 dwarf_attr_name (unsigned attr)
22800 {
22801 const char *name;
22802
22803 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22804 if (attr == DW_AT_MIPS_fde)
22805 return "DW_AT_MIPS_fde";
22806 #else
22807 if (attr == DW_AT_HP_block_index)
22808 return "DW_AT_HP_block_index";
22809 #endif
22810
22811 name = get_DW_AT_name (attr);
22812
22813 if (name == NULL)
22814 return dwarf_unknown ("AT", attr);
22815
22816 return name;
22817 }
22818
22819 /* Convert a DWARF value form code into its string name. */
22820
22821 static const char *
22822 dwarf_form_name (unsigned form)
22823 {
22824 const char *name = get_DW_FORM_name (form);
22825
22826 if (name == NULL)
22827 return dwarf_unknown ("FORM", form);
22828
22829 return name;
22830 }
22831
22832 static const char *
22833 dwarf_bool_name (unsigned mybool)
22834 {
22835 if (mybool)
22836 return "TRUE";
22837 else
22838 return "FALSE";
22839 }
22840
22841 /* Convert a DWARF type code into its string name. */
22842
22843 static const char *
22844 dwarf_type_encoding_name (unsigned enc)
22845 {
22846 const char *name = get_DW_ATE_name (enc);
22847
22848 if (name == NULL)
22849 return dwarf_unknown ("ATE", enc);
22850
22851 return name;
22852 }
22853
22854 static void
22855 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22856 {
22857 unsigned int i;
22858
22859 print_spaces (indent, f);
22860 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22861 dwarf_tag_name (die->tag), die->abbrev,
22862 sect_offset_str (die->sect_off));
22863
22864 if (die->parent != NULL)
22865 {
22866 print_spaces (indent, f);
22867 fprintf_unfiltered (f, " parent at offset: %s\n",
22868 sect_offset_str (die->parent->sect_off));
22869 }
22870
22871 print_spaces (indent, f);
22872 fprintf_unfiltered (f, " has children: %s\n",
22873 dwarf_bool_name (die->child != NULL));
22874
22875 print_spaces (indent, f);
22876 fprintf_unfiltered (f, " attributes:\n");
22877
22878 for (i = 0; i < die->num_attrs; ++i)
22879 {
22880 print_spaces (indent, f);
22881 fprintf_unfiltered (f, " %s (%s) ",
22882 dwarf_attr_name (die->attrs[i].name),
22883 dwarf_form_name (die->attrs[i].form));
22884
22885 switch (die->attrs[i].form)
22886 {
22887 case DW_FORM_addr:
22888 case DW_FORM_addrx:
22889 case DW_FORM_GNU_addr_index:
22890 fprintf_unfiltered (f, "address: ");
22891 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22892 break;
22893 case DW_FORM_block2:
22894 case DW_FORM_block4:
22895 case DW_FORM_block:
22896 case DW_FORM_block1:
22897 fprintf_unfiltered (f, "block: size %s",
22898 pulongest (DW_BLOCK (&die->attrs[i])->size));
22899 break;
22900 case DW_FORM_exprloc:
22901 fprintf_unfiltered (f, "expression: size %s",
22902 pulongest (DW_BLOCK (&die->attrs[i])->size));
22903 break;
22904 case DW_FORM_data16:
22905 fprintf_unfiltered (f, "constant of 16 bytes");
22906 break;
22907 case DW_FORM_ref_addr:
22908 fprintf_unfiltered (f, "ref address: ");
22909 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22910 break;
22911 case DW_FORM_GNU_ref_alt:
22912 fprintf_unfiltered (f, "alt ref address: ");
22913 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22914 break;
22915 case DW_FORM_ref1:
22916 case DW_FORM_ref2:
22917 case DW_FORM_ref4:
22918 case DW_FORM_ref8:
22919 case DW_FORM_ref_udata:
22920 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22921 (long) (DW_UNSND (&die->attrs[i])));
22922 break;
22923 case DW_FORM_data1:
22924 case DW_FORM_data2:
22925 case DW_FORM_data4:
22926 case DW_FORM_data8:
22927 case DW_FORM_udata:
22928 case DW_FORM_sdata:
22929 fprintf_unfiltered (f, "constant: %s",
22930 pulongest (DW_UNSND (&die->attrs[i])));
22931 break;
22932 case DW_FORM_sec_offset:
22933 fprintf_unfiltered (f, "section offset: %s",
22934 pulongest (DW_UNSND (&die->attrs[i])));
22935 break;
22936 case DW_FORM_ref_sig8:
22937 fprintf_unfiltered (f, "signature: %s",
22938 hex_string (DW_SIGNATURE (&die->attrs[i])));
22939 break;
22940 case DW_FORM_string:
22941 case DW_FORM_strp:
22942 case DW_FORM_line_strp:
22943 case DW_FORM_strx:
22944 case DW_FORM_GNU_str_index:
22945 case DW_FORM_GNU_strp_alt:
22946 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22947 DW_STRING (&die->attrs[i])
22948 ? DW_STRING (&die->attrs[i]) : "",
22949 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22950 break;
22951 case DW_FORM_flag:
22952 if (DW_UNSND (&die->attrs[i]))
22953 fprintf_unfiltered (f, "flag: TRUE");
22954 else
22955 fprintf_unfiltered (f, "flag: FALSE");
22956 break;
22957 case DW_FORM_flag_present:
22958 fprintf_unfiltered (f, "flag: TRUE");
22959 break;
22960 case DW_FORM_indirect:
22961 /* The reader will have reduced the indirect form to
22962 the "base form" so this form should not occur. */
22963 fprintf_unfiltered (f,
22964 "unexpected attribute form: DW_FORM_indirect");
22965 break;
22966 case DW_FORM_implicit_const:
22967 fprintf_unfiltered (f, "constant: %s",
22968 plongest (DW_SND (&die->attrs[i])));
22969 break;
22970 default:
22971 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22972 die->attrs[i].form);
22973 break;
22974 }
22975 fprintf_unfiltered (f, "\n");
22976 }
22977 }
22978
22979 static void
22980 dump_die_for_error (struct die_info *die)
22981 {
22982 dump_die_shallow (gdb_stderr, 0, die);
22983 }
22984
22985 static void
22986 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22987 {
22988 int indent = level * 4;
22989
22990 gdb_assert (die != NULL);
22991
22992 if (level >= max_level)
22993 return;
22994
22995 dump_die_shallow (f, indent, die);
22996
22997 if (die->child != NULL)
22998 {
22999 print_spaces (indent, f);
23000 fprintf_unfiltered (f, " Children:");
23001 if (level + 1 < max_level)
23002 {
23003 fprintf_unfiltered (f, "\n");
23004 dump_die_1 (f, level + 1, max_level, die->child);
23005 }
23006 else
23007 {
23008 fprintf_unfiltered (f,
23009 " [not printed, max nesting level reached]\n");
23010 }
23011 }
23012
23013 if (die->sibling != NULL && level > 0)
23014 {
23015 dump_die_1 (f, level, max_level, die->sibling);
23016 }
23017 }
23018
23019 /* This is called from the pdie macro in gdbinit.in.
23020 It's not static so gcc will keep a copy callable from gdb. */
23021
23022 void
23023 dump_die (struct die_info *die, int max_level)
23024 {
23025 dump_die_1 (gdb_stdlog, 0, max_level, die);
23026 }
23027
23028 static void
23029 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
23030 {
23031 void **slot;
23032
23033 slot = htab_find_slot_with_hash (cu->die_hash, die,
23034 to_underlying (die->sect_off),
23035 INSERT);
23036
23037 *slot = die;
23038 }
23039
23040 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
23041 required kind. */
23042
23043 static sect_offset
23044 dwarf2_get_ref_die_offset (const struct attribute *attr)
23045 {
23046 if (attr_form_is_ref (attr))
23047 return (sect_offset) DW_UNSND (attr);
23048
23049 complaint (_("unsupported die ref attribute form: '%s'"),
23050 dwarf_form_name (attr->form));
23051 return {};
23052 }
23053
23054 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
23055 * the value held by the attribute is not constant. */
23056
23057 static LONGEST
23058 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
23059 {
23060 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
23061 return DW_SND (attr);
23062 else if (attr->form == DW_FORM_udata
23063 || attr->form == DW_FORM_data1
23064 || attr->form == DW_FORM_data2
23065 || attr->form == DW_FORM_data4
23066 || attr->form == DW_FORM_data8)
23067 return DW_UNSND (attr);
23068 else
23069 {
23070 /* For DW_FORM_data16 see attr_form_is_constant. */
23071 complaint (_("Attribute value is not a constant (%s)"),
23072 dwarf_form_name (attr->form));
23073 return default_value;
23074 }
23075 }
23076
23077 /* Follow reference or signature attribute ATTR of SRC_DIE.
23078 On entry *REF_CU is the CU of SRC_DIE.
23079 On exit *REF_CU is the CU of the result. */
23080
23081 static struct die_info *
23082 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
23083 struct dwarf2_cu **ref_cu)
23084 {
23085 struct die_info *die;
23086
23087 if (attr_form_is_ref (attr))
23088 die = follow_die_ref (src_die, attr, ref_cu);
23089 else if (attr->form == DW_FORM_ref_sig8)
23090 die = follow_die_sig (src_die, attr, ref_cu);
23091 else
23092 {
23093 dump_die_for_error (src_die);
23094 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
23095 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23096 }
23097
23098 return die;
23099 }
23100
23101 /* Follow reference OFFSET.
23102 On entry *REF_CU is the CU of the source die referencing OFFSET.
23103 On exit *REF_CU is the CU of the result.
23104 Returns NULL if OFFSET is invalid. */
23105
23106 static struct die_info *
23107 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
23108 struct dwarf2_cu **ref_cu)
23109 {
23110 struct die_info temp_die;
23111 struct dwarf2_cu *target_cu, *cu = *ref_cu;
23112 struct dwarf2_per_objfile *dwarf2_per_objfile
23113 = cu->per_cu->dwarf2_per_objfile;
23114
23115 gdb_assert (cu->per_cu != NULL);
23116
23117 target_cu = cu;
23118
23119 if (cu->per_cu->is_debug_types)
23120 {
23121 /* .debug_types CUs cannot reference anything outside their CU.
23122 If they need to, they have to reference a signatured type via
23123 DW_FORM_ref_sig8. */
23124 if (!offset_in_cu_p (&cu->header, sect_off))
23125 return NULL;
23126 }
23127 else if (offset_in_dwz != cu->per_cu->is_dwz
23128 || !offset_in_cu_p (&cu->header, sect_off))
23129 {
23130 struct dwarf2_per_cu_data *per_cu;
23131
23132 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23133 dwarf2_per_objfile);
23134
23135 /* If necessary, add it to the queue and load its DIEs. */
23136 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
23137 load_full_comp_unit (per_cu, false, cu->language);
23138
23139 target_cu = per_cu->cu;
23140 }
23141 else if (cu->dies == NULL)
23142 {
23143 /* We're loading full DIEs during partial symbol reading. */
23144 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
23145 load_full_comp_unit (cu->per_cu, false, language_minimal);
23146 }
23147
23148 *ref_cu = target_cu;
23149 temp_die.sect_off = sect_off;
23150
23151 if (target_cu != cu)
23152 target_cu->ancestor = cu;
23153
23154 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
23155 &temp_die,
23156 to_underlying (sect_off));
23157 }
23158
23159 /* Follow reference attribute ATTR of SRC_DIE.
23160 On entry *REF_CU is the CU of SRC_DIE.
23161 On exit *REF_CU is the CU of the result. */
23162
23163 static struct die_info *
23164 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
23165 struct dwarf2_cu **ref_cu)
23166 {
23167 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
23168 struct dwarf2_cu *cu = *ref_cu;
23169 struct die_info *die;
23170
23171 die = follow_die_offset (sect_off,
23172 (attr->form == DW_FORM_GNU_ref_alt
23173 || cu->per_cu->is_dwz),
23174 ref_cu);
23175 if (!die)
23176 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23177 "at %s [in module %s]"),
23178 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
23179 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
23180
23181 return die;
23182 }
23183
23184 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
23185 Returned value is intended for DW_OP_call*. Returned
23186 dwarf2_locexpr_baton->data has lifetime of
23187 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
23188
23189 struct dwarf2_locexpr_baton
23190 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
23191 struct dwarf2_per_cu_data *per_cu,
23192 CORE_ADDR (*get_frame_pc) (void *baton),
23193 void *baton, bool resolve_abstract_p)
23194 {
23195 struct dwarf2_cu *cu;
23196 struct die_info *die;
23197 struct attribute *attr;
23198 struct dwarf2_locexpr_baton retval;
23199 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23200 struct objfile *objfile = dwarf2_per_objfile->objfile;
23201
23202 if (per_cu->cu == NULL)
23203 load_cu (per_cu, false);
23204 cu = per_cu->cu;
23205 if (cu == NULL)
23206 {
23207 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23208 Instead just throw an error, not much else we can do. */
23209 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23210 sect_offset_str (sect_off), objfile_name (objfile));
23211 }
23212
23213 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23214 if (!die)
23215 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23216 sect_offset_str (sect_off), objfile_name (objfile));
23217
23218 attr = dwarf2_attr (die, DW_AT_location, cu);
23219 if (!attr && resolve_abstract_p
23220 && (dwarf2_per_objfile->abstract_to_concrete.find (die->sect_off)
23221 != dwarf2_per_objfile->abstract_to_concrete.end ()))
23222 {
23223 CORE_ADDR pc = (*get_frame_pc) (baton);
23224
23225 for (const auto &cand_off
23226 : dwarf2_per_objfile->abstract_to_concrete[die->sect_off])
23227 {
23228 struct dwarf2_cu *cand_cu = cu;
23229 struct die_info *cand
23230 = follow_die_offset (cand_off, per_cu->is_dwz, &cand_cu);
23231 if (!cand
23232 || !cand->parent
23233 || cand->parent->tag != DW_TAG_subprogram)
23234 continue;
23235
23236 CORE_ADDR pc_low, pc_high;
23237 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
23238 if (pc_low == ((CORE_ADDR) -1)
23239 || !(pc_low <= pc && pc < pc_high))
23240 continue;
23241
23242 die = cand;
23243 attr = dwarf2_attr (die, DW_AT_location, cu);
23244 break;
23245 }
23246 }
23247
23248 if (!attr)
23249 {
23250 /* DWARF: "If there is no such attribute, then there is no effect.".
23251 DATA is ignored if SIZE is 0. */
23252
23253 retval.data = NULL;
23254 retval.size = 0;
23255 }
23256 else if (attr_form_is_section_offset (attr))
23257 {
23258 struct dwarf2_loclist_baton loclist_baton;
23259 CORE_ADDR pc = (*get_frame_pc) (baton);
23260 size_t size;
23261
23262 fill_in_loclist_baton (cu, &loclist_baton, attr);
23263
23264 retval.data = dwarf2_find_location_expression (&loclist_baton,
23265 &size, pc);
23266 retval.size = size;
23267 }
23268 else
23269 {
23270 if (!attr_form_is_block (attr))
23271 error (_("Dwarf Error: DIE at %s referenced in module %s "
23272 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23273 sect_offset_str (sect_off), objfile_name (objfile));
23274
23275 retval.data = DW_BLOCK (attr)->data;
23276 retval.size = DW_BLOCK (attr)->size;
23277 }
23278 retval.per_cu = cu->per_cu;
23279
23280 age_cached_comp_units (dwarf2_per_objfile);
23281
23282 return retval;
23283 }
23284
23285 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23286 offset. */
23287
23288 struct dwarf2_locexpr_baton
23289 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23290 struct dwarf2_per_cu_data *per_cu,
23291 CORE_ADDR (*get_frame_pc) (void *baton),
23292 void *baton)
23293 {
23294 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23295
23296 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23297 }
23298
23299 /* Write a constant of a given type as target-ordered bytes into
23300 OBSTACK. */
23301
23302 static const gdb_byte *
23303 write_constant_as_bytes (struct obstack *obstack,
23304 enum bfd_endian byte_order,
23305 struct type *type,
23306 ULONGEST value,
23307 LONGEST *len)
23308 {
23309 gdb_byte *result;
23310
23311 *len = TYPE_LENGTH (type);
23312 result = (gdb_byte *) obstack_alloc (obstack, *len);
23313 store_unsigned_integer (result, *len, byte_order, value);
23314
23315 return result;
23316 }
23317
23318 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23319 pointer to the constant bytes and set LEN to the length of the
23320 data. If memory is needed, allocate it on OBSTACK. If the DIE
23321 does not have a DW_AT_const_value, return NULL. */
23322
23323 const gdb_byte *
23324 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23325 struct dwarf2_per_cu_data *per_cu,
23326 struct obstack *obstack,
23327 LONGEST *len)
23328 {
23329 struct dwarf2_cu *cu;
23330 struct die_info *die;
23331 struct attribute *attr;
23332 const gdb_byte *result = NULL;
23333 struct type *type;
23334 LONGEST value;
23335 enum bfd_endian byte_order;
23336 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23337
23338 if (per_cu->cu == NULL)
23339 load_cu (per_cu, false);
23340 cu = per_cu->cu;
23341 if (cu == NULL)
23342 {
23343 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23344 Instead just throw an error, not much else we can do. */
23345 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23346 sect_offset_str (sect_off), objfile_name (objfile));
23347 }
23348
23349 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23350 if (!die)
23351 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23352 sect_offset_str (sect_off), objfile_name (objfile));
23353
23354 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23355 if (attr == NULL)
23356 return NULL;
23357
23358 byte_order = (bfd_big_endian (objfile->obfd)
23359 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23360
23361 switch (attr->form)
23362 {
23363 case DW_FORM_addr:
23364 case DW_FORM_addrx:
23365 case DW_FORM_GNU_addr_index:
23366 {
23367 gdb_byte *tem;
23368
23369 *len = cu->header.addr_size;
23370 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23371 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23372 result = tem;
23373 }
23374 break;
23375 case DW_FORM_string:
23376 case DW_FORM_strp:
23377 case DW_FORM_strx:
23378 case DW_FORM_GNU_str_index:
23379 case DW_FORM_GNU_strp_alt:
23380 /* DW_STRING is already allocated on the objfile obstack, point
23381 directly to it. */
23382 result = (const gdb_byte *) DW_STRING (attr);
23383 *len = strlen (DW_STRING (attr));
23384 break;
23385 case DW_FORM_block1:
23386 case DW_FORM_block2:
23387 case DW_FORM_block4:
23388 case DW_FORM_block:
23389 case DW_FORM_exprloc:
23390 case DW_FORM_data16:
23391 result = DW_BLOCK (attr)->data;
23392 *len = DW_BLOCK (attr)->size;
23393 break;
23394
23395 /* The DW_AT_const_value attributes are supposed to carry the
23396 symbol's value "represented as it would be on the target
23397 architecture." By the time we get here, it's already been
23398 converted to host endianness, so we just need to sign- or
23399 zero-extend it as appropriate. */
23400 case DW_FORM_data1:
23401 type = die_type (die, cu);
23402 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23403 if (result == NULL)
23404 result = write_constant_as_bytes (obstack, byte_order,
23405 type, value, len);
23406 break;
23407 case DW_FORM_data2:
23408 type = die_type (die, cu);
23409 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23410 if (result == NULL)
23411 result = write_constant_as_bytes (obstack, byte_order,
23412 type, value, len);
23413 break;
23414 case DW_FORM_data4:
23415 type = die_type (die, cu);
23416 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23417 if (result == NULL)
23418 result = write_constant_as_bytes (obstack, byte_order,
23419 type, value, len);
23420 break;
23421 case DW_FORM_data8:
23422 type = die_type (die, cu);
23423 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23424 if (result == NULL)
23425 result = write_constant_as_bytes (obstack, byte_order,
23426 type, value, len);
23427 break;
23428
23429 case DW_FORM_sdata:
23430 case DW_FORM_implicit_const:
23431 type = die_type (die, cu);
23432 result = write_constant_as_bytes (obstack, byte_order,
23433 type, DW_SND (attr), len);
23434 break;
23435
23436 case DW_FORM_udata:
23437 type = die_type (die, cu);
23438 result = write_constant_as_bytes (obstack, byte_order,
23439 type, DW_UNSND (attr), len);
23440 break;
23441
23442 default:
23443 complaint (_("unsupported const value attribute form: '%s'"),
23444 dwarf_form_name (attr->form));
23445 break;
23446 }
23447
23448 return result;
23449 }
23450
23451 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23452 valid type for this die is found. */
23453
23454 struct type *
23455 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23456 struct dwarf2_per_cu_data *per_cu)
23457 {
23458 struct dwarf2_cu *cu;
23459 struct die_info *die;
23460
23461 if (per_cu->cu == NULL)
23462 load_cu (per_cu, false);
23463 cu = per_cu->cu;
23464 if (!cu)
23465 return NULL;
23466
23467 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23468 if (!die)
23469 return NULL;
23470
23471 return die_type (die, cu);
23472 }
23473
23474 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23475 PER_CU. */
23476
23477 struct type *
23478 dwarf2_get_die_type (cu_offset die_offset,
23479 struct dwarf2_per_cu_data *per_cu)
23480 {
23481 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23482 return get_die_type_at_offset (die_offset_sect, per_cu);
23483 }
23484
23485 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23486 On entry *REF_CU is the CU of SRC_DIE.
23487 On exit *REF_CU is the CU of the result.
23488 Returns NULL if the referenced DIE isn't found. */
23489
23490 static struct die_info *
23491 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23492 struct dwarf2_cu **ref_cu)
23493 {
23494 struct die_info temp_die;
23495 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
23496 struct die_info *die;
23497
23498 /* While it might be nice to assert sig_type->type == NULL here,
23499 we can get here for DW_AT_imported_declaration where we need
23500 the DIE not the type. */
23501
23502 /* If necessary, add it to the queue and load its DIEs. */
23503
23504 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23505 read_signatured_type (sig_type);
23506
23507 sig_cu = sig_type->per_cu.cu;
23508 gdb_assert (sig_cu != NULL);
23509 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23510 temp_die.sect_off = sig_type->type_offset_in_section;
23511 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23512 to_underlying (temp_die.sect_off));
23513 if (die)
23514 {
23515 struct dwarf2_per_objfile *dwarf2_per_objfile
23516 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23517
23518 /* For .gdb_index version 7 keep track of included TUs.
23519 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23520 if (dwarf2_per_objfile->index_table != NULL
23521 && dwarf2_per_objfile->index_table->version <= 7)
23522 {
23523 VEC_safe_push (dwarf2_per_cu_ptr,
23524 (*ref_cu)->per_cu->imported_symtabs,
23525 sig_cu->per_cu);
23526 }
23527
23528 *ref_cu = sig_cu;
23529 if (sig_cu != cu)
23530 sig_cu->ancestor = cu;
23531
23532 return die;
23533 }
23534
23535 return NULL;
23536 }
23537
23538 /* Follow signatured type referenced by ATTR in SRC_DIE.
23539 On entry *REF_CU is the CU of SRC_DIE.
23540 On exit *REF_CU is the CU of the result.
23541 The result is the DIE of the type.
23542 If the referenced type cannot be found an error is thrown. */
23543
23544 static struct die_info *
23545 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23546 struct dwarf2_cu **ref_cu)
23547 {
23548 ULONGEST signature = DW_SIGNATURE (attr);
23549 struct signatured_type *sig_type;
23550 struct die_info *die;
23551
23552 gdb_assert (attr->form == DW_FORM_ref_sig8);
23553
23554 sig_type = lookup_signatured_type (*ref_cu, signature);
23555 /* sig_type will be NULL if the signatured type is missing from
23556 the debug info. */
23557 if (sig_type == NULL)
23558 {
23559 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23560 " from DIE at %s [in module %s]"),
23561 hex_string (signature), sect_offset_str (src_die->sect_off),
23562 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23563 }
23564
23565 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23566 if (die == NULL)
23567 {
23568 dump_die_for_error (src_die);
23569 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23570 " from DIE at %s [in module %s]"),
23571 hex_string (signature), sect_offset_str (src_die->sect_off),
23572 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23573 }
23574
23575 return die;
23576 }
23577
23578 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23579 reading in and processing the type unit if necessary. */
23580
23581 static struct type *
23582 get_signatured_type (struct die_info *die, ULONGEST signature,
23583 struct dwarf2_cu *cu)
23584 {
23585 struct dwarf2_per_objfile *dwarf2_per_objfile
23586 = cu->per_cu->dwarf2_per_objfile;
23587 struct signatured_type *sig_type;
23588 struct dwarf2_cu *type_cu;
23589 struct die_info *type_die;
23590 struct type *type;
23591
23592 sig_type = lookup_signatured_type (cu, signature);
23593 /* sig_type will be NULL if the signatured type is missing from
23594 the debug info. */
23595 if (sig_type == NULL)
23596 {
23597 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23598 " from DIE at %s [in module %s]"),
23599 hex_string (signature), sect_offset_str (die->sect_off),
23600 objfile_name (dwarf2_per_objfile->objfile));
23601 return build_error_marker_type (cu, die);
23602 }
23603
23604 /* If we already know the type we're done. */
23605 if (sig_type->type != NULL)
23606 return sig_type->type;
23607
23608 type_cu = cu;
23609 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23610 if (type_die != NULL)
23611 {
23612 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23613 is created. This is important, for example, because for c++ classes
23614 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23615 type = read_type_die (type_die, type_cu);
23616 if (type == NULL)
23617 {
23618 complaint (_("Dwarf Error: Cannot build signatured type %s"
23619 " referenced from DIE at %s [in module %s]"),
23620 hex_string (signature), sect_offset_str (die->sect_off),
23621 objfile_name (dwarf2_per_objfile->objfile));
23622 type = build_error_marker_type (cu, die);
23623 }
23624 }
23625 else
23626 {
23627 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23628 " from DIE at %s [in module %s]"),
23629 hex_string (signature), sect_offset_str (die->sect_off),
23630 objfile_name (dwarf2_per_objfile->objfile));
23631 type = build_error_marker_type (cu, die);
23632 }
23633 sig_type->type = type;
23634
23635 return type;
23636 }
23637
23638 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23639 reading in and processing the type unit if necessary. */
23640
23641 static struct type *
23642 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23643 struct dwarf2_cu *cu) /* ARI: editCase function */
23644 {
23645 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23646 if (attr_form_is_ref (attr))
23647 {
23648 struct dwarf2_cu *type_cu = cu;
23649 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23650
23651 return read_type_die (type_die, type_cu);
23652 }
23653 else if (attr->form == DW_FORM_ref_sig8)
23654 {
23655 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23656 }
23657 else
23658 {
23659 struct dwarf2_per_objfile *dwarf2_per_objfile
23660 = cu->per_cu->dwarf2_per_objfile;
23661
23662 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23663 " at %s [in module %s]"),
23664 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23665 objfile_name (dwarf2_per_objfile->objfile));
23666 return build_error_marker_type (cu, die);
23667 }
23668 }
23669
23670 /* Load the DIEs associated with type unit PER_CU into memory. */
23671
23672 static void
23673 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23674 {
23675 struct signatured_type *sig_type;
23676
23677 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23678 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23679
23680 /* We have the per_cu, but we need the signatured_type.
23681 Fortunately this is an easy translation. */
23682 gdb_assert (per_cu->is_debug_types);
23683 sig_type = (struct signatured_type *) per_cu;
23684
23685 gdb_assert (per_cu->cu == NULL);
23686
23687 read_signatured_type (sig_type);
23688
23689 gdb_assert (per_cu->cu != NULL);
23690 }
23691
23692 /* die_reader_func for read_signatured_type.
23693 This is identical to load_full_comp_unit_reader,
23694 but is kept separate for now. */
23695
23696 static void
23697 read_signatured_type_reader (const struct die_reader_specs *reader,
23698 const gdb_byte *info_ptr,
23699 struct die_info *comp_unit_die,
23700 int has_children,
23701 void *data)
23702 {
23703 struct dwarf2_cu *cu = reader->cu;
23704
23705 gdb_assert (cu->die_hash == NULL);
23706 cu->die_hash =
23707 htab_create_alloc_ex (cu->header.length / 12,
23708 die_hash,
23709 die_eq,
23710 NULL,
23711 &cu->comp_unit_obstack,
23712 hashtab_obstack_allocate,
23713 dummy_obstack_deallocate);
23714
23715 if (has_children)
23716 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23717 &info_ptr, comp_unit_die);
23718 cu->dies = comp_unit_die;
23719 /* comp_unit_die is not stored in die_hash, no need. */
23720
23721 /* We try not to read any attributes in this function, because not
23722 all CUs needed for references have been loaded yet, and symbol
23723 table processing isn't initialized. But we have to set the CU language,
23724 or we won't be able to build types correctly.
23725 Similarly, if we do not read the producer, we can not apply
23726 producer-specific interpretation. */
23727 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23728 }
23729
23730 /* Read in a signatured type and build its CU and DIEs.
23731 If the type is a stub for the real type in a DWO file,
23732 read in the real type from the DWO file as well. */
23733
23734 static void
23735 read_signatured_type (struct signatured_type *sig_type)
23736 {
23737 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23738
23739 gdb_assert (per_cu->is_debug_types);
23740 gdb_assert (per_cu->cu == NULL);
23741
23742 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23743 read_signatured_type_reader, NULL);
23744 sig_type->per_cu.tu_read = 1;
23745 }
23746
23747 /* Decode simple location descriptions.
23748 Given a pointer to a dwarf block that defines a location, compute
23749 the location and return the value.
23750
23751 NOTE drow/2003-11-18: This function is called in two situations
23752 now: for the address of static or global variables (partial symbols
23753 only) and for offsets into structures which are expected to be
23754 (more or less) constant. The partial symbol case should go away,
23755 and only the constant case should remain. That will let this
23756 function complain more accurately. A few special modes are allowed
23757 without complaint for global variables (for instance, global
23758 register values and thread-local values).
23759
23760 A location description containing no operations indicates that the
23761 object is optimized out. The return value is 0 for that case.
23762 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23763 callers will only want a very basic result and this can become a
23764 complaint.
23765
23766 Note that stack[0] is unused except as a default error return. */
23767
23768 static CORE_ADDR
23769 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23770 {
23771 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23772 size_t i;
23773 size_t size = blk->size;
23774 const gdb_byte *data = blk->data;
23775 CORE_ADDR stack[64];
23776 int stacki;
23777 unsigned int bytes_read, unsnd;
23778 gdb_byte op;
23779
23780 i = 0;
23781 stacki = 0;
23782 stack[stacki] = 0;
23783 stack[++stacki] = 0;
23784
23785 while (i < size)
23786 {
23787 op = data[i++];
23788 switch (op)
23789 {
23790 case DW_OP_lit0:
23791 case DW_OP_lit1:
23792 case DW_OP_lit2:
23793 case DW_OP_lit3:
23794 case DW_OP_lit4:
23795 case DW_OP_lit5:
23796 case DW_OP_lit6:
23797 case DW_OP_lit7:
23798 case DW_OP_lit8:
23799 case DW_OP_lit9:
23800 case DW_OP_lit10:
23801 case DW_OP_lit11:
23802 case DW_OP_lit12:
23803 case DW_OP_lit13:
23804 case DW_OP_lit14:
23805 case DW_OP_lit15:
23806 case DW_OP_lit16:
23807 case DW_OP_lit17:
23808 case DW_OP_lit18:
23809 case DW_OP_lit19:
23810 case DW_OP_lit20:
23811 case DW_OP_lit21:
23812 case DW_OP_lit22:
23813 case DW_OP_lit23:
23814 case DW_OP_lit24:
23815 case DW_OP_lit25:
23816 case DW_OP_lit26:
23817 case DW_OP_lit27:
23818 case DW_OP_lit28:
23819 case DW_OP_lit29:
23820 case DW_OP_lit30:
23821 case DW_OP_lit31:
23822 stack[++stacki] = op - DW_OP_lit0;
23823 break;
23824
23825 case DW_OP_reg0:
23826 case DW_OP_reg1:
23827 case DW_OP_reg2:
23828 case DW_OP_reg3:
23829 case DW_OP_reg4:
23830 case DW_OP_reg5:
23831 case DW_OP_reg6:
23832 case DW_OP_reg7:
23833 case DW_OP_reg8:
23834 case DW_OP_reg9:
23835 case DW_OP_reg10:
23836 case DW_OP_reg11:
23837 case DW_OP_reg12:
23838 case DW_OP_reg13:
23839 case DW_OP_reg14:
23840 case DW_OP_reg15:
23841 case DW_OP_reg16:
23842 case DW_OP_reg17:
23843 case DW_OP_reg18:
23844 case DW_OP_reg19:
23845 case DW_OP_reg20:
23846 case DW_OP_reg21:
23847 case DW_OP_reg22:
23848 case DW_OP_reg23:
23849 case DW_OP_reg24:
23850 case DW_OP_reg25:
23851 case DW_OP_reg26:
23852 case DW_OP_reg27:
23853 case DW_OP_reg28:
23854 case DW_OP_reg29:
23855 case DW_OP_reg30:
23856 case DW_OP_reg31:
23857 stack[++stacki] = op - DW_OP_reg0;
23858 if (i < size)
23859 dwarf2_complex_location_expr_complaint ();
23860 break;
23861
23862 case DW_OP_regx:
23863 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23864 i += bytes_read;
23865 stack[++stacki] = unsnd;
23866 if (i < size)
23867 dwarf2_complex_location_expr_complaint ();
23868 break;
23869
23870 case DW_OP_addr:
23871 stack[++stacki] = read_address (objfile->obfd, &data[i],
23872 cu, &bytes_read);
23873 i += bytes_read;
23874 break;
23875
23876 case DW_OP_const1u:
23877 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23878 i += 1;
23879 break;
23880
23881 case DW_OP_const1s:
23882 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23883 i += 1;
23884 break;
23885
23886 case DW_OP_const2u:
23887 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23888 i += 2;
23889 break;
23890
23891 case DW_OP_const2s:
23892 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23893 i += 2;
23894 break;
23895
23896 case DW_OP_const4u:
23897 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23898 i += 4;
23899 break;
23900
23901 case DW_OP_const4s:
23902 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23903 i += 4;
23904 break;
23905
23906 case DW_OP_const8u:
23907 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23908 i += 8;
23909 break;
23910
23911 case DW_OP_constu:
23912 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23913 &bytes_read);
23914 i += bytes_read;
23915 break;
23916
23917 case DW_OP_consts:
23918 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23919 i += bytes_read;
23920 break;
23921
23922 case DW_OP_dup:
23923 stack[stacki + 1] = stack[stacki];
23924 stacki++;
23925 break;
23926
23927 case DW_OP_plus:
23928 stack[stacki - 1] += stack[stacki];
23929 stacki--;
23930 break;
23931
23932 case DW_OP_plus_uconst:
23933 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23934 &bytes_read);
23935 i += bytes_read;
23936 break;
23937
23938 case DW_OP_minus:
23939 stack[stacki - 1] -= stack[stacki];
23940 stacki--;
23941 break;
23942
23943 case DW_OP_deref:
23944 /* If we're not the last op, then we definitely can't encode
23945 this using GDB's address_class enum. This is valid for partial
23946 global symbols, although the variable's address will be bogus
23947 in the psymtab. */
23948 if (i < size)
23949 dwarf2_complex_location_expr_complaint ();
23950 break;
23951
23952 case DW_OP_GNU_push_tls_address:
23953 case DW_OP_form_tls_address:
23954 /* The top of the stack has the offset from the beginning
23955 of the thread control block at which the variable is located. */
23956 /* Nothing should follow this operator, so the top of stack would
23957 be returned. */
23958 /* This is valid for partial global symbols, but the variable's
23959 address will be bogus in the psymtab. Make it always at least
23960 non-zero to not look as a variable garbage collected by linker
23961 which have DW_OP_addr 0. */
23962 if (i < size)
23963 dwarf2_complex_location_expr_complaint ();
23964 stack[stacki]++;
23965 break;
23966
23967 case DW_OP_GNU_uninit:
23968 break;
23969
23970 case DW_OP_addrx:
23971 case DW_OP_GNU_addr_index:
23972 case DW_OP_GNU_const_index:
23973 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23974 &bytes_read);
23975 i += bytes_read;
23976 break;
23977
23978 default:
23979 {
23980 const char *name = get_DW_OP_name (op);
23981
23982 if (name)
23983 complaint (_("unsupported stack op: '%s'"),
23984 name);
23985 else
23986 complaint (_("unsupported stack op: '%02x'"),
23987 op);
23988 }
23989
23990 return (stack[stacki]);
23991 }
23992
23993 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23994 outside of the allocated space. Also enforce minimum>0. */
23995 if (stacki >= ARRAY_SIZE (stack) - 1)
23996 {
23997 complaint (_("location description stack overflow"));
23998 return 0;
23999 }
24000
24001 if (stacki <= 0)
24002 {
24003 complaint (_("location description stack underflow"));
24004 return 0;
24005 }
24006 }
24007 return (stack[stacki]);
24008 }
24009
24010 /* memory allocation interface */
24011
24012 static struct dwarf_block *
24013 dwarf_alloc_block (struct dwarf2_cu *cu)
24014 {
24015 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
24016 }
24017
24018 static struct die_info *
24019 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
24020 {
24021 struct die_info *die;
24022 size_t size = sizeof (struct die_info);
24023
24024 if (num_attrs > 1)
24025 size += (num_attrs - 1) * sizeof (struct attribute);
24026
24027 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
24028 memset (die, 0, sizeof (struct die_info));
24029 return (die);
24030 }
24031
24032 \f
24033 /* Macro support. */
24034
24035 /* Return file name relative to the compilation directory of file number I in
24036 *LH's file name table. The result is allocated using xmalloc; the caller is
24037 responsible for freeing it. */
24038
24039 static char *
24040 file_file_name (int file, struct line_header *lh)
24041 {
24042 /* Is the file number a valid index into the line header's file name
24043 table? Remember that file numbers start with one, not zero. */
24044 if (1 <= file && file <= lh->file_names.size ())
24045 {
24046 const file_entry &fe = lh->file_names[file - 1];
24047
24048 if (!IS_ABSOLUTE_PATH (fe.name))
24049 {
24050 const char *dir = fe.include_dir (lh);
24051 if (dir != NULL)
24052 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
24053 }
24054 return xstrdup (fe.name);
24055 }
24056 else
24057 {
24058 /* The compiler produced a bogus file number. We can at least
24059 record the macro definitions made in the file, even if we
24060 won't be able to find the file by name. */
24061 char fake_name[80];
24062
24063 xsnprintf (fake_name, sizeof (fake_name),
24064 "<bad macro file number %d>", file);
24065
24066 complaint (_("bad file number in macro information (%d)"),
24067 file);
24068
24069 return xstrdup (fake_name);
24070 }
24071 }
24072
24073 /* Return the full name of file number I in *LH's file name table.
24074 Use COMP_DIR as the name of the current directory of the
24075 compilation. The result is allocated using xmalloc; the caller is
24076 responsible for freeing it. */
24077 static char *
24078 file_full_name (int file, struct line_header *lh, const char *comp_dir)
24079 {
24080 /* Is the file number a valid index into the line header's file name
24081 table? Remember that file numbers start with one, not zero. */
24082 if (1 <= file && file <= lh->file_names.size ())
24083 {
24084 char *relative = file_file_name (file, lh);
24085
24086 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
24087 return relative;
24088 return reconcat (relative, comp_dir, SLASH_STRING,
24089 relative, (char *) NULL);
24090 }
24091 else
24092 return file_file_name (file, lh);
24093 }
24094
24095
24096 static struct macro_source_file *
24097 macro_start_file (struct dwarf2_cu *cu,
24098 int file, int line,
24099 struct macro_source_file *current_file,
24100 struct line_header *lh)
24101 {
24102 /* File name relative to the compilation directory of this source file. */
24103 char *file_name = file_file_name (file, lh);
24104
24105 if (! current_file)
24106 {
24107 /* Note: We don't create a macro table for this compilation unit
24108 at all until we actually get a filename. */
24109 struct macro_table *macro_table = cu->get_builder ()->get_macro_table ();
24110
24111 /* If we have no current file, then this must be the start_file
24112 directive for the compilation unit's main source file. */
24113 current_file = macro_set_main (macro_table, file_name);
24114 macro_define_special (macro_table);
24115 }
24116 else
24117 current_file = macro_include (current_file, line, file_name);
24118
24119 xfree (file_name);
24120
24121 return current_file;
24122 }
24123
24124 static const char *
24125 consume_improper_spaces (const char *p, const char *body)
24126 {
24127 if (*p == ' ')
24128 {
24129 complaint (_("macro definition contains spaces "
24130 "in formal argument list:\n`%s'"),
24131 body);
24132
24133 while (*p == ' ')
24134 p++;
24135 }
24136
24137 return p;
24138 }
24139
24140
24141 static void
24142 parse_macro_definition (struct macro_source_file *file, int line,
24143 const char *body)
24144 {
24145 const char *p;
24146
24147 /* The body string takes one of two forms. For object-like macro
24148 definitions, it should be:
24149
24150 <macro name> " " <definition>
24151
24152 For function-like macro definitions, it should be:
24153
24154 <macro name> "() " <definition>
24155 or
24156 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
24157
24158 Spaces may appear only where explicitly indicated, and in the
24159 <definition>.
24160
24161 The Dwarf 2 spec says that an object-like macro's name is always
24162 followed by a space, but versions of GCC around March 2002 omit
24163 the space when the macro's definition is the empty string.
24164
24165 The Dwarf 2 spec says that there should be no spaces between the
24166 formal arguments in a function-like macro's formal argument list,
24167 but versions of GCC around March 2002 include spaces after the
24168 commas. */
24169
24170
24171 /* Find the extent of the macro name. The macro name is terminated
24172 by either a space or null character (for an object-like macro) or
24173 an opening paren (for a function-like macro). */
24174 for (p = body; *p; p++)
24175 if (*p == ' ' || *p == '(')
24176 break;
24177
24178 if (*p == ' ' || *p == '\0')
24179 {
24180 /* It's an object-like macro. */
24181 int name_len = p - body;
24182 char *name = savestring (body, name_len);
24183 const char *replacement;
24184
24185 if (*p == ' ')
24186 replacement = body + name_len + 1;
24187 else
24188 {
24189 dwarf2_macro_malformed_definition_complaint (body);
24190 replacement = body + name_len;
24191 }
24192
24193 macro_define_object (file, line, name, replacement);
24194
24195 xfree (name);
24196 }
24197 else if (*p == '(')
24198 {
24199 /* It's a function-like macro. */
24200 char *name = savestring (body, p - body);
24201 int argc = 0;
24202 int argv_size = 1;
24203 char **argv = XNEWVEC (char *, argv_size);
24204
24205 p++;
24206
24207 p = consume_improper_spaces (p, body);
24208
24209 /* Parse the formal argument list. */
24210 while (*p && *p != ')')
24211 {
24212 /* Find the extent of the current argument name. */
24213 const char *arg_start = p;
24214
24215 while (*p && *p != ',' && *p != ')' && *p != ' ')
24216 p++;
24217
24218 if (! *p || p == arg_start)
24219 dwarf2_macro_malformed_definition_complaint (body);
24220 else
24221 {
24222 /* Make sure argv has room for the new argument. */
24223 if (argc >= argv_size)
24224 {
24225 argv_size *= 2;
24226 argv = XRESIZEVEC (char *, argv, argv_size);
24227 }
24228
24229 argv[argc++] = savestring (arg_start, p - arg_start);
24230 }
24231
24232 p = consume_improper_spaces (p, body);
24233
24234 /* Consume the comma, if present. */
24235 if (*p == ',')
24236 {
24237 p++;
24238
24239 p = consume_improper_spaces (p, body);
24240 }
24241 }
24242
24243 if (*p == ')')
24244 {
24245 p++;
24246
24247 if (*p == ' ')
24248 /* Perfectly formed definition, no complaints. */
24249 macro_define_function (file, line, name,
24250 argc, (const char **) argv,
24251 p + 1);
24252 else if (*p == '\0')
24253 {
24254 /* Complain, but do define it. */
24255 dwarf2_macro_malformed_definition_complaint (body);
24256 macro_define_function (file, line, name,
24257 argc, (const char **) argv,
24258 p);
24259 }
24260 else
24261 /* Just complain. */
24262 dwarf2_macro_malformed_definition_complaint (body);
24263 }
24264 else
24265 /* Just complain. */
24266 dwarf2_macro_malformed_definition_complaint (body);
24267
24268 xfree (name);
24269 {
24270 int i;
24271
24272 for (i = 0; i < argc; i++)
24273 xfree (argv[i]);
24274 }
24275 xfree (argv);
24276 }
24277 else
24278 dwarf2_macro_malformed_definition_complaint (body);
24279 }
24280
24281 /* Skip some bytes from BYTES according to the form given in FORM.
24282 Returns the new pointer. */
24283
24284 static const gdb_byte *
24285 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24286 enum dwarf_form form,
24287 unsigned int offset_size,
24288 struct dwarf2_section_info *section)
24289 {
24290 unsigned int bytes_read;
24291
24292 switch (form)
24293 {
24294 case DW_FORM_data1:
24295 case DW_FORM_flag:
24296 ++bytes;
24297 break;
24298
24299 case DW_FORM_data2:
24300 bytes += 2;
24301 break;
24302
24303 case DW_FORM_data4:
24304 bytes += 4;
24305 break;
24306
24307 case DW_FORM_data8:
24308 bytes += 8;
24309 break;
24310
24311 case DW_FORM_data16:
24312 bytes += 16;
24313 break;
24314
24315 case DW_FORM_string:
24316 read_direct_string (abfd, bytes, &bytes_read);
24317 bytes += bytes_read;
24318 break;
24319
24320 case DW_FORM_sec_offset:
24321 case DW_FORM_strp:
24322 case DW_FORM_GNU_strp_alt:
24323 bytes += offset_size;
24324 break;
24325
24326 case DW_FORM_block:
24327 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24328 bytes += bytes_read;
24329 break;
24330
24331 case DW_FORM_block1:
24332 bytes += 1 + read_1_byte (abfd, bytes);
24333 break;
24334 case DW_FORM_block2:
24335 bytes += 2 + read_2_bytes (abfd, bytes);
24336 break;
24337 case DW_FORM_block4:
24338 bytes += 4 + read_4_bytes (abfd, bytes);
24339 break;
24340
24341 case DW_FORM_addrx:
24342 case DW_FORM_sdata:
24343 case DW_FORM_strx:
24344 case DW_FORM_udata:
24345 case DW_FORM_GNU_addr_index:
24346 case DW_FORM_GNU_str_index:
24347 bytes = gdb_skip_leb128 (bytes, buffer_end);
24348 if (bytes == NULL)
24349 {
24350 dwarf2_section_buffer_overflow_complaint (section);
24351 return NULL;
24352 }
24353 break;
24354
24355 case DW_FORM_implicit_const:
24356 break;
24357
24358 default:
24359 {
24360 complaint (_("invalid form 0x%x in `%s'"),
24361 form, get_section_name (section));
24362 return NULL;
24363 }
24364 }
24365
24366 return bytes;
24367 }
24368
24369 /* A helper for dwarf_decode_macros that handles skipping an unknown
24370 opcode. Returns an updated pointer to the macro data buffer; or,
24371 on error, issues a complaint and returns NULL. */
24372
24373 static const gdb_byte *
24374 skip_unknown_opcode (unsigned int opcode,
24375 const gdb_byte **opcode_definitions,
24376 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24377 bfd *abfd,
24378 unsigned int offset_size,
24379 struct dwarf2_section_info *section)
24380 {
24381 unsigned int bytes_read, i;
24382 unsigned long arg;
24383 const gdb_byte *defn;
24384
24385 if (opcode_definitions[opcode] == NULL)
24386 {
24387 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
24388 opcode);
24389 return NULL;
24390 }
24391
24392 defn = opcode_definitions[opcode];
24393 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24394 defn += bytes_read;
24395
24396 for (i = 0; i < arg; ++i)
24397 {
24398 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24399 (enum dwarf_form) defn[i], offset_size,
24400 section);
24401 if (mac_ptr == NULL)
24402 {
24403 /* skip_form_bytes already issued the complaint. */
24404 return NULL;
24405 }
24406 }
24407
24408 return mac_ptr;
24409 }
24410
24411 /* A helper function which parses the header of a macro section.
24412 If the macro section is the extended (for now called "GNU") type,
24413 then this updates *OFFSET_SIZE. Returns a pointer to just after
24414 the header, or issues a complaint and returns NULL on error. */
24415
24416 static const gdb_byte *
24417 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24418 bfd *abfd,
24419 const gdb_byte *mac_ptr,
24420 unsigned int *offset_size,
24421 int section_is_gnu)
24422 {
24423 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24424
24425 if (section_is_gnu)
24426 {
24427 unsigned int version, flags;
24428
24429 version = read_2_bytes (abfd, mac_ptr);
24430 if (version != 4 && version != 5)
24431 {
24432 complaint (_("unrecognized version `%d' in .debug_macro section"),
24433 version);
24434 return NULL;
24435 }
24436 mac_ptr += 2;
24437
24438 flags = read_1_byte (abfd, mac_ptr);
24439 ++mac_ptr;
24440 *offset_size = (flags & 1) ? 8 : 4;
24441
24442 if ((flags & 2) != 0)
24443 /* We don't need the line table offset. */
24444 mac_ptr += *offset_size;
24445
24446 /* Vendor opcode descriptions. */
24447 if ((flags & 4) != 0)
24448 {
24449 unsigned int i, count;
24450
24451 count = read_1_byte (abfd, mac_ptr);
24452 ++mac_ptr;
24453 for (i = 0; i < count; ++i)
24454 {
24455 unsigned int opcode, bytes_read;
24456 unsigned long arg;
24457
24458 opcode = read_1_byte (abfd, mac_ptr);
24459 ++mac_ptr;
24460 opcode_definitions[opcode] = mac_ptr;
24461 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24462 mac_ptr += bytes_read;
24463 mac_ptr += arg;
24464 }
24465 }
24466 }
24467
24468 return mac_ptr;
24469 }
24470
24471 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24472 including DW_MACRO_import. */
24473
24474 static void
24475 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
24476 bfd *abfd,
24477 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24478 struct macro_source_file *current_file,
24479 struct line_header *lh,
24480 struct dwarf2_section_info *section,
24481 int section_is_gnu, int section_is_dwz,
24482 unsigned int offset_size,
24483 htab_t include_hash)
24484 {
24485 struct dwarf2_per_objfile *dwarf2_per_objfile
24486 = cu->per_cu->dwarf2_per_objfile;
24487 struct objfile *objfile = dwarf2_per_objfile->objfile;
24488 enum dwarf_macro_record_type macinfo_type;
24489 int at_commandline;
24490 const gdb_byte *opcode_definitions[256];
24491
24492 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24493 &offset_size, section_is_gnu);
24494 if (mac_ptr == NULL)
24495 {
24496 /* We already issued a complaint. */
24497 return;
24498 }
24499
24500 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24501 GDB is still reading the definitions from command line. First
24502 DW_MACINFO_start_file will need to be ignored as it was already executed
24503 to create CURRENT_FILE for the main source holding also the command line
24504 definitions. On first met DW_MACINFO_start_file this flag is reset to
24505 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24506
24507 at_commandline = 1;
24508
24509 do
24510 {
24511 /* Do we at least have room for a macinfo type byte? */
24512 if (mac_ptr >= mac_end)
24513 {
24514 dwarf2_section_buffer_overflow_complaint (section);
24515 break;
24516 }
24517
24518 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24519 mac_ptr++;
24520
24521 /* Note that we rely on the fact that the corresponding GNU and
24522 DWARF constants are the same. */
24523 DIAGNOSTIC_PUSH
24524 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24525 switch (macinfo_type)
24526 {
24527 /* A zero macinfo type indicates the end of the macro
24528 information. */
24529 case 0:
24530 break;
24531
24532 case DW_MACRO_define:
24533 case DW_MACRO_undef:
24534 case DW_MACRO_define_strp:
24535 case DW_MACRO_undef_strp:
24536 case DW_MACRO_define_sup:
24537 case DW_MACRO_undef_sup:
24538 {
24539 unsigned int bytes_read;
24540 int line;
24541 const char *body;
24542 int is_define;
24543
24544 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24545 mac_ptr += bytes_read;
24546
24547 if (macinfo_type == DW_MACRO_define
24548 || macinfo_type == DW_MACRO_undef)
24549 {
24550 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24551 mac_ptr += bytes_read;
24552 }
24553 else
24554 {
24555 LONGEST str_offset;
24556
24557 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24558 mac_ptr += offset_size;
24559
24560 if (macinfo_type == DW_MACRO_define_sup
24561 || macinfo_type == DW_MACRO_undef_sup
24562 || section_is_dwz)
24563 {
24564 struct dwz_file *dwz
24565 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24566
24567 body = read_indirect_string_from_dwz (objfile,
24568 dwz, str_offset);
24569 }
24570 else
24571 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24572 abfd, str_offset);
24573 }
24574
24575 is_define = (macinfo_type == DW_MACRO_define
24576 || macinfo_type == DW_MACRO_define_strp
24577 || macinfo_type == DW_MACRO_define_sup);
24578 if (! current_file)
24579 {
24580 /* DWARF violation as no main source is present. */
24581 complaint (_("debug info with no main source gives macro %s "
24582 "on line %d: %s"),
24583 is_define ? _("definition") : _("undefinition"),
24584 line, body);
24585 break;
24586 }
24587 if ((line == 0 && !at_commandline)
24588 || (line != 0 && at_commandline))
24589 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24590 at_commandline ? _("command-line") : _("in-file"),
24591 is_define ? _("definition") : _("undefinition"),
24592 line == 0 ? _("zero") : _("non-zero"), line, body);
24593
24594 if (body == NULL)
24595 {
24596 /* Fedora's rpm-build's "debugedit" binary
24597 corrupted .debug_macro sections.
24598
24599 For more info, see
24600 https://bugzilla.redhat.com/show_bug.cgi?id=1708786 */
24601 complaint (_("debug info gives %s invalid macro %s "
24602 "without body (corrupted?) at line %d "
24603 "on file %s"),
24604 at_commandline ? _("command-line") : _("in-file"),
24605 is_define ? _("definition") : _("undefinition"),
24606 line, current_file->filename);
24607 }
24608 else if (is_define)
24609 parse_macro_definition (current_file, line, body);
24610 else
24611 {
24612 gdb_assert (macinfo_type == DW_MACRO_undef
24613 || macinfo_type == DW_MACRO_undef_strp
24614 || macinfo_type == DW_MACRO_undef_sup);
24615 macro_undef (current_file, line, body);
24616 }
24617 }
24618 break;
24619
24620 case DW_MACRO_start_file:
24621 {
24622 unsigned int bytes_read;
24623 int line, file;
24624
24625 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24626 mac_ptr += bytes_read;
24627 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24628 mac_ptr += bytes_read;
24629
24630 if ((line == 0 && !at_commandline)
24631 || (line != 0 && at_commandline))
24632 complaint (_("debug info gives source %d included "
24633 "from %s at %s line %d"),
24634 file, at_commandline ? _("command-line") : _("file"),
24635 line == 0 ? _("zero") : _("non-zero"), line);
24636
24637 if (at_commandline)
24638 {
24639 /* This DW_MACRO_start_file was executed in the
24640 pass one. */
24641 at_commandline = 0;
24642 }
24643 else
24644 current_file = macro_start_file (cu, file, line, current_file,
24645 lh);
24646 }
24647 break;
24648
24649 case DW_MACRO_end_file:
24650 if (! current_file)
24651 complaint (_("macro debug info has an unmatched "
24652 "`close_file' directive"));
24653 else
24654 {
24655 current_file = current_file->included_by;
24656 if (! current_file)
24657 {
24658 enum dwarf_macro_record_type next_type;
24659
24660 /* GCC circa March 2002 doesn't produce the zero
24661 type byte marking the end of the compilation
24662 unit. Complain if it's not there, but exit no
24663 matter what. */
24664
24665 /* Do we at least have room for a macinfo type byte? */
24666 if (mac_ptr >= mac_end)
24667 {
24668 dwarf2_section_buffer_overflow_complaint (section);
24669 return;
24670 }
24671
24672 /* We don't increment mac_ptr here, so this is just
24673 a look-ahead. */
24674 next_type
24675 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24676 mac_ptr);
24677 if (next_type != 0)
24678 complaint (_("no terminating 0-type entry for "
24679 "macros in `.debug_macinfo' section"));
24680
24681 return;
24682 }
24683 }
24684 break;
24685
24686 case DW_MACRO_import:
24687 case DW_MACRO_import_sup:
24688 {
24689 LONGEST offset;
24690 void **slot;
24691 bfd *include_bfd = abfd;
24692 struct dwarf2_section_info *include_section = section;
24693 const gdb_byte *include_mac_end = mac_end;
24694 int is_dwz = section_is_dwz;
24695 const gdb_byte *new_mac_ptr;
24696
24697 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24698 mac_ptr += offset_size;
24699
24700 if (macinfo_type == DW_MACRO_import_sup)
24701 {
24702 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24703
24704 dwarf2_read_section (objfile, &dwz->macro);
24705
24706 include_section = &dwz->macro;
24707 include_bfd = get_section_bfd_owner (include_section);
24708 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24709 is_dwz = 1;
24710 }
24711
24712 new_mac_ptr = include_section->buffer + offset;
24713 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24714
24715 if (*slot != NULL)
24716 {
24717 /* This has actually happened; see
24718 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24719 complaint (_("recursive DW_MACRO_import in "
24720 ".debug_macro section"));
24721 }
24722 else
24723 {
24724 *slot = (void *) new_mac_ptr;
24725
24726 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
24727 include_mac_end, current_file, lh,
24728 section, section_is_gnu, is_dwz,
24729 offset_size, include_hash);
24730
24731 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24732 }
24733 }
24734 break;
24735
24736 case DW_MACINFO_vendor_ext:
24737 if (!section_is_gnu)
24738 {
24739 unsigned int bytes_read;
24740
24741 /* This reads the constant, but since we don't recognize
24742 any vendor extensions, we ignore it. */
24743 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24744 mac_ptr += bytes_read;
24745 read_direct_string (abfd, mac_ptr, &bytes_read);
24746 mac_ptr += bytes_read;
24747
24748 /* We don't recognize any vendor extensions. */
24749 break;
24750 }
24751 /* FALLTHROUGH */
24752
24753 default:
24754 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24755 mac_ptr, mac_end, abfd, offset_size,
24756 section);
24757 if (mac_ptr == NULL)
24758 return;
24759 break;
24760 }
24761 DIAGNOSTIC_POP
24762 } while (macinfo_type != 0);
24763 }
24764
24765 static void
24766 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24767 int section_is_gnu)
24768 {
24769 struct dwarf2_per_objfile *dwarf2_per_objfile
24770 = cu->per_cu->dwarf2_per_objfile;
24771 struct objfile *objfile = dwarf2_per_objfile->objfile;
24772 struct line_header *lh = cu->line_header;
24773 bfd *abfd;
24774 const gdb_byte *mac_ptr, *mac_end;
24775 struct macro_source_file *current_file = 0;
24776 enum dwarf_macro_record_type macinfo_type;
24777 unsigned int offset_size = cu->header.offset_size;
24778 const gdb_byte *opcode_definitions[256];
24779 void **slot;
24780 struct dwarf2_section_info *section;
24781 const char *section_name;
24782
24783 if (cu->dwo_unit != NULL)
24784 {
24785 if (section_is_gnu)
24786 {
24787 section = &cu->dwo_unit->dwo_file->sections.macro;
24788 section_name = ".debug_macro.dwo";
24789 }
24790 else
24791 {
24792 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24793 section_name = ".debug_macinfo.dwo";
24794 }
24795 }
24796 else
24797 {
24798 if (section_is_gnu)
24799 {
24800 section = &dwarf2_per_objfile->macro;
24801 section_name = ".debug_macro";
24802 }
24803 else
24804 {
24805 section = &dwarf2_per_objfile->macinfo;
24806 section_name = ".debug_macinfo";
24807 }
24808 }
24809
24810 dwarf2_read_section (objfile, section);
24811 if (section->buffer == NULL)
24812 {
24813 complaint (_("missing %s section"), section_name);
24814 return;
24815 }
24816 abfd = get_section_bfd_owner (section);
24817
24818 /* First pass: Find the name of the base filename.
24819 This filename is needed in order to process all macros whose definition
24820 (or undefinition) comes from the command line. These macros are defined
24821 before the first DW_MACINFO_start_file entry, and yet still need to be
24822 associated to the base file.
24823
24824 To determine the base file name, we scan the macro definitions until we
24825 reach the first DW_MACINFO_start_file entry. We then initialize
24826 CURRENT_FILE accordingly so that any macro definition found before the
24827 first DW_MACINFO_start_file can still be associated to the base file. */
24828
24829 mac_ptr = section->buffer + offset;
24830 mac_end = section->buffer + section->size;
24831
24832 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24833 &offset_size, section_is_gnu);
24834 if (mac_ptr == NULL)
24835 {
24836 /* We already issued a complaint. */
24837 return;
24838 }
24839
24840 do
24841 {
24842 /* Do we at least have room for a macinfo type byte? */
24843 if (mac_ptr >= mac_end)
24844 {
24845 /* Complaint is printed during the second pass as GDB will probably
24846 stop the first pass earlier upon finding
24847 DW_MACINFO_start_file. */
24848 break;
24849 }
24850
24851 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24852 mac_ptr++;
24853
24854 /* Note that we rely on the fact that the corresponding GNU and
24855 DWARF constants are the same. */
24856 DIAGNOSTIC_PUSH
24857 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24858 switch (macinfo_type)
24859 {
24860 /* A zero macinfo type indicates the end of the macro
24861 information. */
24862 case 0:
24863 break;
24864
24865 case DW_MACRO_define:
24866 case DW_MACRO_undef:
24867 /* Only skip the data by MAC_PTR. */
24868 {
24869 unsigned int bytes_read;
24870
24871 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24872 mac_ptr += bytes_read;
24873 read_direct_string (abfd, mac_ptr, &bytes_read);
24874 mac_ptr += bytes_read;
24875 }
24876 break;
24877
24878 case DW_MACRO_start_file:
24879 {
24880 unsigned int bytes_read;
24881 int line, file;
24882
24883 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24884 mac_ptr += bytes_read;
24885 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24886 mac_ptr += bytes_read;
24887
24888 current_file = macro_start_file (cu, file, line, current_file, lh);
24889 }
24890 break;
24891
24892 case DW_MACRO_end_file:
24893 /* No data to skip by MAC_PTR. */
24894 break;
24895
24896 case DW_MACRO_define_strp:
24897 case DW_MACRO_undef_strp:
24898 case DW_MACRO_define_sup:
24899 case DW_MACRO_undef_sup:
24900 {
24901 unsigned int bytes_read;
24902
24903 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24904 mac_ptr += bytes_read;
24905 mac_ptr += offset_size;
24906 }
24907 break;
24908
24909 case DW_MACRO_import:
24910 case DW_MACRO_import_sup:
24911 /* Note that, according to the spec, a transparent include
24912 chain cannot call DW_MACRO_start_file. So, we can just
24913 skip this opcode. */
24914 mac_ptr += offset_size;
24915 break;
24916
24917 case DW_MACINFO_vendor_ext:
24918 /* Only skip the data by MAC_PTR. */
24919 if (!section_is_gnu)
24920 {
24921 unsigned int bytes_read;
24922
24923 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24924 mac_ptr += bytes_read;
24925 read_direct_string (abfd, mac_ptr, &bytes_read);
24926 mac_ptr += bytes_read;
24927 }
24928 /* FALLTHROUGH */
24929
24930 default:
24931 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24932 mac_ptr, mac_end, abfd, offset_size,
24933 section);
24934 if (mac_ptr == NULL)
24935 return;
24936 break;
24937 }
24938 DIAGNOSTIC_POP
24939 } while (macinfo_type != 0 && current_file == NULL);
24940
24941 /* Second pass: Process all entries.
24942
24943 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24944 command-line macro definitions/undefinitions. This flag is unset when we
24945 reach the first DW_MACINFO_start_file entry. */
24946
24947 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24948 htab_eq_pointer,
24949 NULL, xcalloc, xfree));
24950 mac_ptr = section->buffer + offset;
24951 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24952 *slot = (void *) mac_ptr;
24953 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
24954 current_file, lh, section,
24955 section_is_gnu, 0, offset_size,
24956 include_hash.get ());
24957 }
24958
24959 /* Check if the attribute's form is a DW_FORM_block*
24960 if so return true else false. */
24961
24962 static int
24963 attr_form_is_block (const struct attribute *attr)
24964 {
24965 return (attr == NULL ? 0 :
24966 attr->form == DW_FORM_block1
24967 || attr->form == DW_FORM_block2
24968 || attr->form == DW_FORM_block4
24969 || attr->form == DW_FORM_block
24970 || attr->form == DW_FORM_exprloc);
24971 }
24972
24973 /* Return non-zero if ATTR's value is a section offset --- classes
24974 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24975 You may use DW_UNSND (attr) to retrieve such offsets.
24976
24977 Section 7.5.4, "Attribute Encodings", explains that no attribute
24978 may have a value that belongs to more than one of these classes; it
24979 would be ambiguous if we did, because we use the same forms for all
24980 of them. */
24981
24982 static int
24983 attr_form_is_section_offset (const struct attribute *attr)
24984 {
24985 return (attr->form == DW_FORM_data4
24986 || attr->form == DW_FORM_data8
24987 || attr->form == DW_FORM_sec_offset);
24988 }
24989
24990 /* Return non-zero if ATTR's value falls in the 'constant' class, or
24991 zero otherwise. When this function returns true, you can apply
24992 dwarf2_get_attr_constant_value to it.
24993
24994 However, note that for some attributes you must check
24995 attr_form_is_section_offset before using this test. DW_FORM_data4
24996 and DW_FORM_data8 are members of both the constant class, and of
24997 the classes that contain offsets into other debug sections
24998 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24999 that, if an attribute's can be either a constant or one of the
25000 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
25001 taken as section offsets, not constants.
25002
25003 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
25004 cannot handle that. */
25005
25006 static int
25007 attr_form_is_constant (const struct attribute *attr)
25008 {
25009 switch (attr->form)
25010 {
25011 case DW_FORM_sdata:
25012 case DW_FORM_udata:
25013 case DW_FORM_data1:
25014 case DW_FORM_data2:
25015 case DW_FORM_data4:
25016 case DW_FORM_data8:
25017 case DW_FORM_implicit_const:
25018 return 1;
25019 default:
25020 return 0;
25021 }
25022 }
25023
25024
25025 /* DW_ADDR is always stored already as sect_offset; despite for the forms
25026 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
25027
25028 static int
25029 attr_form_is_ref (const struct attribute *attr)
25030 {
25031 switch (attr->form)
25032 {
25033 case DW_FORM_ref_addr:
25034 case DW_FORM_ref1:
25035 case DW_FORM_ref2:
25036 case DW_FORM_ref4:
25037 case DW_FORM_ref8:
25038 case DW_FORM_ref_udata:
25039 case DW_FORM_GNU_ref_alt:
25040 return 1;
25041 default:
25042 return 0;
25043 }
25044 }
25045
25046 /* Return the .debug_loc section to use for CU.
25047 For DWO files use .debug_loc.dwo. */
25048
25049 static struct dwarf2_section_info *
25050 cu_debug_loc_section (struct dwarf2_cu *cu)
25051 {
25052 struct dwarf2_per_objfile *dwarf2_per_objfile
25053 = cu->per_cu->dwarf2_per_objfile;
25054
25055 if (cu->dwo_unit)
25056 {
25057 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
25058
25059 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
25060 }
25061 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
25062 : &dwarf2_per_objfile->loc);
25063 }
25064
25065 /* A helper function that fills in a dwarf2_loclist_baton. */
25066
25067 static void
25068 fill_in_loclist_baton (struct dwarf2_cu *cu,
25069 struct dwarf2_loclist_baton *baton,
25070 const struct attribute *attr)
25071 {
25072 struct dwarf2_per_objfile *dwarf2_per_objfile
25073 = cu->per_cu->dwarf2_per_objfile;
25074 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25075
25076 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
25077
25078 baton->per_cu = cu->per_cu;
25079 gdb_assert (baton->per_cu);
25080 /* We don't know how long the location list is, but make sure we
25081 don't run off the edge of the section. */
25082 baton->size = section->size - DW_UNSND (attr);
25083 baton->data = section->buffer + DW_UNSND (attr);
25084 baton->base_address = cu->base_address;
25085 baton->from_dwo = cu->dwo_unit != NULL;
25086 }
25087
25088 static void
25089 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
25090 struct dwarf2_cu *cu, int is_block)
25091 {
25092 struct dwarf2_per_objfile *dwarf2_per_objfile
25093 = cu->per_cu->dwarf2_per_objfile;
25094 struct objfile *objfile = dwarf2_per_objfile->objfile;
25095 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25096
25097 if (attr_form_is_section_offset (attr)
25098 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
25099 the section. If so, fall through to the complaint in the
25100 other branch. */
25101 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
25102 {
25103 struct dwarf2_loclist_baton *baton;
25104
25105 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
25106
25107 fill_in_loclist_baton (cu, baton, attr);
25108
25109 if (cu->base_known == 0)
25110 complaint (_("Location list used without "
25111 "specifying the CU base address."));
25112
25113 SYMBOL_ACLASS_INDEX (sym) = (is_block
25114 ? dwarf2_loclist_block_index
25115 : dwarf2_loclist_index);
25116 SYMBOL_LOCATION_BATON (sym) = baton;
25117 }
25118 else
25119 {
25120 struct dwarf2_locexpr_baton *baton;
25121
25122 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
25123 baton->per_cu = cu->per_cu;
25124 gdb_assert (baton->per_cu);
25125
25126 if (attr_form_is_block (attr))
25127 {
25128 /* Note that we're just copying the block's data pointer
25129 here, not the actual data. We're still pointing into the
25130 info_buffer for SYM's objfile; right now we never release
25131 that buffer, but when we do clean up properly this may
25132 need to change. */
25133 baton->size = DW_BLOCK (attr)->size;
25134 baton->data = DW_BLOCK (attr)->data;
25135 }
25136 else
25137 {
25138 dwarf2_invalid_attrib_class_complaint ("location description",
25139 SYMBOL_NATURAL_NAME (sym));
25140 baton->size = 0;
25141 }
25142
25143 SYMBOL_ACLASS_INDEX (sym) = (is_block
25144 ? dwarf2_locexpr_block_index
25145 : dwarf2_locexpr_index);
25146 SYMBOL_LOCATION_BATON (sym) = baton;
25147 }
25148 }
25149
25150 /* Return the OBJFILE associated with the compilation unit CU. If CU
25151 came from a separate debuginfo file, then the master objfile is
25152 returned. */
25153
25154 struct objfile *
25155 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
25156 {
25157 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25158
25159 /* Return the master objfile, so that we can report and look up the
25160 correct file containing this variable. */
25161 if (objfile->separate_debug_objfile_backlink)
25162 objfile = objfile->separate_debug_objfile_backlink;
25163
25164 return objfile;
25165 }
25166
25167 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
25168 (CU_HEADERP is unused in such case) or prepare a temporary copy at
25169 CU_HEADERP first. */
25170
25171 static const struct comp_unit_head *
25172 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
25173 struct dwarf2_per_cu_data *per_cu)
25174 {
25175 const gdb_byte *info_ptr;
25176
25177 if (per_cu->cu)
25178 return &per_cu->cu->header;
25179
25180 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
25181
25182 memset (cu_headerp, 0, sizeof (*cu_headerp));
25183 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
25184 rcuh_kind::COMPILE);
25185
25186 return cu_headerp;
25187 }
25188
25189 /* Return the address size given in the compilation unit header for CU. */
25190
25191 int
25192 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
25193 {
25194 struct comp_unit_head cu_header_local;
25195 const struct comp_unit_head *cu_headerp;
25196
25197 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25198
25199 return cu_headerp->addr_size;
25200 }
25201
25202 /* Return the offset size given in the compilation unit header for CU. */
25203
25204 int
25205 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
25206 {
25207 struct comp_unit_head cu_header_local;
25208 const struct comp_unit_head *cu_headerp;
25209
25210 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25211
25212 return cu_headerp->offset_size;
25213 }
25214
25215 /* See its dwarf2loc.h declaration. */
25216
25217 int
25218 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
25219 {
25220 struct comp_unit_head cu_header_local;
25221 const struct comp_unit_head *cu_headerp;
25222
25223 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25224
25225 if (cu_headerp->version == 2)
25226 return cu_headerp->addr_size;
25227 else
25228 return cu_headerp->offset_size;
25229 }
25230
25231 /* Return the text offset of the CU. The returned offset comes from
25232 this CU's objfile. If this objfile came from a separate debuginfo
25233 file, then the offset may be different from the corresponding
25234 offset in the parent objfile. */
25235
25236 CORE_ADDR
25237 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25238 {
25239 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25240
25241 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25242 }
25243
25244 /* Return DWARF version number of PER_CU. */
25245
25246 short
25247 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25248 {
25249 return per_cu->dwarf_version;
25250 }
25251
25252 /* Locate the .debug_info compilation unit from CU's objfile which contains
25253 the DIE at OFFSET. Raises an error on failure. */
25254
25255 static struct dwarf2_per_cu_data *
25256 dwarf2_find_containing_comp_unit (sect_offset sect_off,
25257 unsigned int offset_in_dwz,
25258 struct dwarf2_per_objfile *dwarf2_per_objfile)
25259 {
25260 struct dwarf2_per_cu_data *this_cu;
25261 int low, high;
25262
25263 low = 0;
25264 high = dwarf2_per_objfile->all_comp_units.size () - 1;
25265 while (high > low)
25266 {
25267 struct dwarf2_per_cu_data *mid_cu;
25268 int mid = low + (high - low) / 2;
25269
25270 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25271 if (mid_cu->is_dwz > offset_in_dwz
25272 || (mid_cu->is_dwz == offset_in_dwz
25273 && mid_cu->sect_off + mid_cu->length >= sect_off))
25274 high = mid;
25275 else
25276 low = mid + 1;
25277 }
25278 gdb_assert (low == high);
25279 this_cu = dwarf2_per_objfile->all_comp_units[low];
25280 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
25281 {
25282 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25283 error (_("Dwarf Error: could not find partial DIE containing "
25284 "offset %s [in module %s]"),
25285 sect_offset_str (sect_off),
25286 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25287
25288 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25289 <= sect_off);
25290 return dwarf2_per_objfile->all_comp_units[low-1];
25291 }
25292 else
25293 {
25294 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
25295 && sect_off >= this_cu->sect_off + this_cu->length)
25296 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25297 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25298 return this_cu;
25299 }
25300 }
25301
25302 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25303
25304 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25305 : per_cu (per_cu_),
25306 mark (false),
25307 has_loclist (false),
25308 checked_producer (false),
25309 producer_is_gxx_lt_4_6 (false),
25310 producer_is_gcc_lt_4_3 (false),
25311 producer_is_icc (false),
25312 producer_is_icc_lt_14 (false),
25313 producer_is_codewarrior (false),
25314 processing_has_namespace_info (false)
25315 {
25316 per_cu->cu = this;
25317 }
25318
25319 /* Destroy a dwarf2_cu. */
25320
25321 dwarf2_cu::~dwarf2_cu ()
25322 {
25323 per_cu->cu = NULL;
25324 }
25325
25326 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25327
25328 static void
25329 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25330 enum language pretend_language)
25331 {
25332 struct attribute *attr;
25333
25334 /* Set the language we're debugging. */
25335 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25336 if (attr)
25337 set_cu_language (DW_UNSND (attr), cu);
25338 else
25339 {
25340 cu->language = pretend_language;
25341 cu->language_defn = language_def (cu->language);
25342 }
25343
25344 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25345 }
25346
25347 /* Increase the age counter on each cached compilation unit, and free
25348 any that are too old. */
25349
25350 static void
25351 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25352 {
25353 struct dwarf2_per_cu_data *per_cu, **last_chain;
25354
25355 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25356 per_cu = dwarf2_per_objfile->read_in_chain;
25357 while (per_cu != NULL)
25358 {
25359 per_cu->cu->last_used ++;
25360 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25361 dwarf2_mark (per_cu->cu);
25362 per_cu = per_cu->cu->read_in_chain;
25363 }
25364
25365 per_cu = dwarf2_per_objfile->read_in_chain;
25366 last_chain = &dwarf2_per_objfile->read_in_chain;
25367 while (per_cu != NULL)
25368 {
25369 struct dwarf2_per_cu_data *next_cu;
25370
25371 next_cu = per_cu->cu->read_in_chain;
25372
25373 if (!per_cu->cu->mark)
25374 {
25375 delete per_cu->cu;
25376 *last_chain = next_cu;
25377 }
25378 else
25379 last_chain = &per_cu->cu->read_in_chain;
25380
25381 per_cu = next_cu;
25382 }
25383 }
25384
25385 /* Remove a single compilation unit from the cache. */
25386
25387 static void
25388 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25389 {
25390 struct dwarf2_per_cu_data *per_cu, **last_chain;
25391 struct dwarf2_per_objfile *dwarf2_per_objfile
25392 = target_per_cu->dwarf2_per_objfile;
25393
25394 per_cu = dwarf2_per_objfile->read_in_chain;
25395 last_chain = &dwarf2_per_objfile->read_in_chain;
25396 while (per_cu != NULL)
25397 {
25398 struct dwarf2_per_cu_data *next_cu;
25399
25400 next_cu = per_cu->cu->read_in_chain;
25401
25402 if (per_cu == target_per_cu)
25403 {
25404 delete per_cu->cu;
25405 per_cu->cu = NULL;
25406 *last_chain = next_cu;
25407 break;
25408 }
25409 else
25410 last_chain = &per_cu->cu->read_in_chain;
25411
25412 per_cu = next_cu;
25413 }
25414 }
25415
25416 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25417 We store these in a hash table separate from the DIEs, and preserve them
25418 when the DIEs are flushed out of cache.
25419
25420 The CU "per_cu" pointer is needed because offset alone is not enough to
25421 uniquely identify the type. A file may have multiple .debug_types sections,
25422 or the type may come from a DWO file. Furthermore, while it's more logical
25423 to use per_cu->section+offset, with Fission the section with the data is in
25424 the DWO file but we don't know that section at the point we need it.
25425 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25426 because we can enter the lookup routine, get_die_type_at_offset, from
25427 outside this file, and thus won't necessarily have PER_CU->cu.
25428 Fortunately, PER_CU is stable for the life of the objfile. */
25429
25430 struct dwarf2_per_cu_offset_and_type
25431 {
25432 const struct dwarf2_per_cu_data *per_cu;
25433 sect_offset sect_off;
25434 struct type *type;
25435 };
25436
25437 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25438
25439 static hashval_t
25440 per_cu_offset_and_type_hash (const void *item)
25441 {
25442 const struct dwarf2_per_cu_offset_and_type *ofs
25443 = (const struct dwarf2_per_cu_offset_and_type *) item;
25444
25445 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25446 }
25447
25448 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25449
25450 static int
25451 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25452 {
25453 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25454 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25455 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25456 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25457
25458 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25459 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25460 }
25461
25462 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25463 table if necessary. For convenience, return TYPE.
25464
25465 The DIEs reading must have careful ordering to:
25466 * Not cause infite loops trying to read in DIEs as a prerequisite for
25467 reading current DIE.
25468 * Not trying to dereference contents of still incompletely read in types
25469 while reading in other DIEs.
25470 * Enable referencing still incompletely read in types just by a pointer to
25471 the type without accessing its fields.
25472
25473 Therefore caller should follow these rules:
25474 * Try to fetch any prerequisite types we may need to build this DIE type
25475 before building the type and calling set_die_type.
25476 * After building type call set_die_type for current DIE as soon as
25477 possible before fetching more types to complete the current type.
25478 * Make the type as complete as possible before fetching more types. */
25479
25480 static struct type *
25481 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25482 {
25483 struct dwarf2_per_objfile *dwarf2_per_objfile
25484 = cu->per_cu->dwarf2_per_objfile;
25485 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25486 struct objfile *objfile = dwarf2_per_objfile->objfile;
25487 struct attribute *attr;
25488 struct dynamic_prop prop;
25489
25490 /* For Ada types, make sure that the gnat-specific data is always
25491 initialized (if not already set). There are a few types where
25492 we should not be doing so, because the type-specific area is
25493 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25494 where the type-specific area is used to store the floatformat).
25495 But this is not a problem, because the gnat-specific information
25496 is actually not needed for these types. */
25497 if (need_gnat_info (cu)
25498 && TYPE_CODE (type) != TYPE_CODE_FUNC
25499 && TYPE_CODE (type) != TYPE_CODE_FLT
25500 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25501 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25502 && TYPE_CODE (type) != TYPE_CODE_METHOD
25503 && !HAVE_GNAT_AUX_INFO (type))
25504 INIT_GNAT_SPECIFIC (type);
25505
25506 /* Read DW_AT_allocated and set in type. */
25507 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25508 if (attr_form_is_block (attr))
25509 {
25510 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25511 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25512 }
25513 else if (attr != NULL)
25514 {
25515 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25516 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25517 sect_offset_str (die->sect_off));
25518 }
25519
25520 /* Read DW_AT_associated and set in type. */
25521 attr = dwarf2_attr (die, DW_AT_associated, cu);
25522 if (attr_form_is_block (attr))
25523 {
25524 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25525 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25526 }
25527 else if (attr != NULL)
25528 {
25529 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25530 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25531 sect_offset_str (die->sect_off));
25532 }
25533
25534 /* Read DW_AT_data_location and set in type. */
25535 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25536 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25537 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25538
25539 if (dwarf2_per_objfile->die_type_hash == NULL)
25540 {
25541 dwarf2_per_objfile->die_type_hash =
25542 htab_create_alloc_ex (127,
25543 per_cu_offset_and_type_hash,
25544 per_cu_offset_and_type_eq,
25545 NULL,
25546 &objfile->objfile_obstack,
25547 hashtab_obstack_allocate,
25548 dummy_obstack_deallocate);
25549 }
25550
25551 ofs.per_cu = cu->per_cu;
25552 ofs.sect_off = die->sect_off;
25553 ofs.type = type;
25554 slot = (struct dwarf2_per_cu_offset_and_type **)
25555 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25556 if (*slot)
25557 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25558 sect_offset_str (die->sect_off));
25559 *slot = XOBNEW (&objfile->objfile_obstack,
25560 struct dwarf2_per_cu_offset_and_type);
25561 **slot = ofs;
25562 return type;
25563 }
25564
25565 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25566 or return NULL if the die does not have a saved type. */
25567
25568 static struct type *
25569 get_die_type_at_offset (sect_offset sect_off,
25570 struct dwarf2_per_cu_data *per_cu)
25571 {
25572 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25573 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25574
25575 if (dwarf2_per_objfile->die_type_hash == NULL)
25576 return NULL;
25577
25578 ofs.per_cu = per_cu;
25579 ofs.sect_off = sect_off;
25580 slot = ((struct dwarf2_per_cu_offset_and_type *)
25581 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25582 if (slot)
25583 return slot->type;
25584 else
25585 return NULL;
25586 }
25587
25588 /* Look up the type for DIE in CU in die_type_hash,
25589 or return NULL if DIE does not have a saved type. */
25590
25591 static struct type *
25592 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25593 {
25594 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25595 }
25596
25597 /* Add a dependence relationship from CU to REF_PER_CU. */
25598
25599 static void
25600 dwarf2_add_dependence (struct dwarf2_cu *cu,
25601 struct dwarf2_per_cu_data *ref_per_cu)
25602 {
25603 void **slot;
25604
25605 if (cu->dependencies == NULL)
25606 cu->dependencies
25607 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25608 NULL, &cu->comp_unit_obstack,
25609 hashtab_obstack_allocate,
25610 dummy_obstack_deallocate);
25611
25612 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25613 if (*slot == NULL)
25614 *slot = ref_per_cu;
25615 }
25616
25617 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25618 Set the mark field in every compilation unit in the
25619 cache that we must keep because we are keeping CU. */
25620
25621 static int
25622 dwarf2_mark_helper (void **slot, void *data)
25623 {
25624 struct dwarf2_per_cu_data *per_cu;
25625
25626 per_cu = (struct dwarf2_per_cu_data *) *slot;
25627
25628 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25629 reading of the chain. As such dependencies remain valid it is not much
25630 useful to track and undo them during QUIT cleanups. */
25631 if (per_cu->cu == NULL)
25632 return 1;
25633
25634 if (per_cu->cu->mark)
25635 return 1;
25636 per_cu->cu->mark = true;
25637
25638 if (per_cu->cu->dependencies != NULL)
25639 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25640
25641 return 1;
25642 }
25643
25644 /* Set the mark field in CU and in every other compilation unit in the
25645 cache that we must keep because we are keeping CU. */
25646
25647 static void
25648 dwarf2_mark (struct dwarf2_cu *cu)
25649 {
25650 if (cu->mark)
25651 return;
25652 cu->mark = true;
25653 if (cu->dependencies != NULL)
25654 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25655 }
25656
25657 static void
25658 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25659 {
25660 while (per_cu)
25661 {
25662 per_cu->cu->mark = false;
25663 per_cu = per_cu->cu->read_in_chain;
25664 }
25665 }
25666
25667 /* Trivial hash function for partial_die_info: the hash value of a DIE
25668 is its offset in .debug_info for this objfile. */
25669
25670 static hashval_t
25671 partial_die_hash (const void *item)
25672 {
25673 const struct partial_die_info *part_die
25674 = (const struct partial_die_info *) item;
25675
25676 return to_underlying (part_die->sect_off);
25677 }
25678
25679 /* Trivial comparison function for partial_die_info structures: two DIEs
25680 are equal if they have the same offset. */
25681
25682 static int
25683 partial_die_eq (const void *item_lhs, const void *item_rhs)
25684 {
25685 const struct partial_die_info *part_die_lhs
25686 = (const struct partial_die_info *) item_lhs;
25687 const struct partial_die_info *part_die_rhs
25688 = (const struct partial_die_info *) item_rhs;
25689
25690 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25691 }
25692
25693 struct cmd_list_element *set_dwarf_cmdlist;
25694 struct cmd_list_element *show_dwarf_cmdlist;
25695
25696 static void
25697 set_dwarf_cmd (const char *args, int from_tty)
25698 {
25699 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25700 gdb_stdout);
25701 }
25702
25703 static void
25704 show_dwarf_cmd (const char *args, int from_tty)
25705 {
25706 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25707 }
25708
25709 int dwarf_always_disassemble;
25710
25711 static void
25712 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25713 struct cmd_list_element *c, const char *value)
25714 {
25715 fprintf_filtered (file,
25716 _("Whether to always disassemble "
25717 "DWARF expressions is %s.\n"),
25718 value);
25719 }
25720
25721 static void
25722 show_check_physname (struct ui_file *file, int from_tty,
25723 struct cmd_list_element *c, const char *value)
25724 {
25725 fprintf_filtered (file,
25726 _("Whether to check \"physname\" is %s.\n"),
25727 value);
25728 }
25729
25730 void
25731 _initialize_dwarf2_read (void)
25732 {
25733 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25734 Set DWARF specific variables.\n\
25735 Configure DWARF variables such as the cache size"),
25736 &set_dwarf_cmdlist, "maintenance set dwarf ",
25737 0/*allow-unknown*/, &maintenance_set_cmdlist);
25738
25739 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25740 Show DWARF specific variables\n\
25741 Show DWARF variables such as the cache size"),
25742 &show_dwarf_cmdlist, "maintenance show dwarf ",
25743 0/*allow-unknown*/, &maintenance_show_cmdlist);
25744
25745 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25746 &dwarf_max_cache_age, _("\
25747 Set the upper bound on the age of cached DWARF compilation units."), _("\
25748 Show the upper bound on the age of cached DWARF compilation units."), _("\
25749 A higher limit means that cached compilation units will be stored\n\
25750 in memory longer, and more total memory will be used. Zero disables\n\
25751 caching, which can slow down startup."),
25752 NULL,
25753 show_dwarf_max_cache_age,
25754 &set_dwarf_cmdlist,
25755 &show_dwarf_cmdlist);
25756
25757 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25758 &dwarf_always_disassemble, _("\
25759 Set whether `info address' always disassembles DWARF expressions."), _("\
25760 Show whether `info address' always disassembles DWARF expressions."), _("\
25761 When enabled, DWARF expressions are always printed in an assembly-like\n\
25762 syntax. When disabled, expressions will be printed in a more\n\
25763 conversational style, when possible."),
25764 NULL,
25765 show_dwarf_always_disassemble,
25766 &set_dwarf_cmdlist,
25767 &show_dwarf_cmdlist);
25768
25769 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25770 Set debugging of the DWARF reader."), _("\
25771 Show debugging of the DWARF reader."), _("\
25772 When enabled (non-zero), debugging messages are printed during DWARF\n\
25773 reading and symtab expansion. A value of 1 (one) provides basic\n\
25774 information. A value greater than 1 provides more verbose information."),
25775 NULL,
25776 NULL,
25777 &setdebuglist, &showdebuglist);
25778
25779 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25780 Set debugging of the DWARF DIE reader."), _("\
25781 Show debugging of the DWARF DIE reader."), _("\
25782 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25783 The value is the maximum depth to print."),
25784 NULL,
25785 NULL,
25786 &setdebuglist, &showdebuglist);
25787
25788 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25789 Set debugging of the dwarf line reader."), _("\
25790 Show debugging of the dwarf line reader."), _("\
25791 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25792 A value of 1 (one) provides basic information.\n\
25793 A value greater than 1 provides more verbose information."),
25794 NULL,
25795 NULL,
25796 &setdebuglist, &showdebuglist);
25797
25798 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25799 Set cross-checking of \"physname\" code against demangler."), _("\
25800 Show cross-checking of \"physname\" code against demangler."), _("\
25801 When enabled, GDB's internal \"physname\" code is checked against\n\
25802 the demangler."),
25803 NULL, show_check_physname,
25804 &setdebuglist, &showdebuglist);
25805
25806 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25807 no_class, &use_deprecated_index_sections, _("\
25808 Set whether to use deprecated gdb_index sections."), _("\
25809 Show whether to use deprecated gdb_index sections."), _("\
25810 When enabled, deprecated .gdb_index sections are used anyway.\n\
25811 Normally they are ignored either because of a missing feature or\n\
25812 performance issue.\n\
25813 Warning: This option must be enabled before gdb reads the file."),
25814 NULL,
25815 NULL,
25816 &setlist, &showlist);
25817
25818 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25819 &dwarf2_locexpr_funcs);
25820 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25821 &dwarf2_loclist_funcs);
25822
25823 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25824 &dwarf2_block_frame_base_locexpr_funcs);
25825 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25826 &dwarf2_block_frame_base_loclist_funcs);
25827
25828 #if GDB_SELF_TEST
25829 selftests::register_test ("dw2_expand_symtabs_matching",
25830 selftests::dw2_expand_symtabs_matching::run_test);
25831 #endif
25832 }
This page took 0.592485 seconds and 5 git commands to generate.